path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
example/Simulate Ground Motion Maps for an Earthquake Scenario.ipynb
###Markdown input the site locations ###Code site_file = 'SF_Downtown_Sites.csv' sites = pd.read_csv(site_file) n_sites = len(sites) ###Output _____no_output_____ ###Markdown specify rupture index for EQHazard (see the rupture selection Notebook) ###Code name = 'SF_NSanAndreasM725_UCERF2' rupture_forecast = 'WGCEP (2007) UCERF2 - Single Branch' source_idx = 127 rupture_idx = 636 rupture_dict = {'rupture_forecast':rupture_forecast, 'source_idx':source_idx, 'rupture_idx':rupture_idx} ###Output _____no_output_____ ###Markdown select the number of realizations, a Ground Motion Model and the desired intensity measures ###Code n_realizations = 10000 gmm = 'Chiou & Youngs (2014)' # a list of the desired periods or None sa_periods = None if (sa_periods == None) & (gmm=='Chiou & Youngs (2014)'): sa_periods = [0.01, 0.02, 0.03, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 7.5, 10.0] ###Output _____no_output_____ ###Markdown set up the file names ###Code output_folder = 'map_simulations/' if not os.path.exists(output_folder[:-1]): os.makedirs(output_folder[:-1]) eq_input_file = output_folder + name + '.json' eqhazard_file = output_folder + name + '_EQHazard.h5' output_file = output_folder + name + '_Realizations.h5' ###Output _____no_output_____ ###Markdown create the EQHazard input file ###Code create_eqhazard_input(eq_input_file, rupture_dict, sites, gmm, sa_periods) ###Output _____no_output_____ ###Markdown run EQHazard, convert output to an .h5 file ###Code extract_eqhazard_data(eq_input_file, eqhazard_file) ###Output EQHazard ran successfully. ###Markdown simulate the ground motion maps ###Code ground_motion_simulation(eqhazard_file, n_realizations, output_file) ###Output _____no_output_____ ###Markdown retrieve the ground motion maps and statistics ###Code ruptures = pd.read_hdf(output_file, key='Ruptures') sites = pd.read_hdf(output_file, key='Sites') display(ruptures) display(sites) with h5py.File(output_file, 'r') as hf: # list of periods periods = hf['Periods'][:] # OpenSHA output medians = hf['Medians'][:] between_event_std = hf['BetweenEvStdDevs'][:] within_event_std = hf['WithinEvStdDevs'][:] total_std = hf['TotalStdDevs'][:] # Ground Motion Simulation Maps ground_motions = hf['GroundMotions'][:] etas = hf['Etas'][:] between_event_residuals = hf['BetweenEvResiduals'][:] epsilons = hf['Epsilons'][:] within_event_residuals = hf['WithinEvResiduals'][:] [n_rups, n_sites, n_periods, n_realizations] = ground_motions.shape # plot the first n simulations n_sims = 100 for i_rup in range(n_rups): for i_site in range(n_sites): print('Site: '+str(i_site)+', Vs30: '+'{0:.0f}'.format(sites.loc[i_site,'Vs30'])) fig,ax = plt.subplots(1,1) _ = plt.plot(periods, medians[i_rup,i_site,:], color='k', linewidth=2) for a in [1,-1]: _ = plt.plot(periods, np.exp(np.log(medians[i_rup,i_site,:])+a*total_std[i_rup,i_site,:]), color='k', linestyle='--', linewidth=2) for i_real in range(n_sims): _ = plt.plot(periods, ground_motions[i_rup,i_site,:, i_real], color='dimgray', alpha=0.2, zorder=-1) _ = plt.xlabel('Period, $T$') _ = plt.xlim([0, max(periods)]) _ = plt.ylabel('Spectral Acceleration, $Sa(T)$') if False: _ = plt.ylim(bottom=0) else: _ = plt.yscale('log') _ = ax.spines['top'].set_visible(False) _ = ax.spines['right'].set_visible(False) _ = plt.show() ###Output Site: 0, Vs30: 800
Labsheets/Lab6/Lab6_Clustering_Practice.ipynb
###Markdown This lab uses the Crecit Card dataset Load the data using pandas and inspect the head. Use the describe function to get a feel for the data, and the categorys Use the info function to get a feel for the different categories and there counts and data type. Using the drop function, remove the 'CUST_ID' column as we don't need this piece of information. Inspect the original data see if we have an NA or missing values Based on the column(s) you found had missing values, replace the data with an appropriate fill value (Median, Mean etc.) For each data column, plot the Kernel Density Estimate using the seaborn package. Inpsect the KDE plots and consider which columns you think are important to the Credit Card dataset. Consider how the plots are skewed, and the variation across the plots. Because we're going to be using clustering to get a good visualisation we want to include the skewness. ###Code cols = ['BALANCE', 'ONEOFF_PURCHASES', 'INSTALLMENTS_PURCHASES', 'CASH_ADVANCE', 'ONEOFF_PURCHASES_FREQUENCY','PURCHASES_INSTALLMENTS_FREQUENCY', 'CASH_ADVANCE_TRX', 'PURCHASES_TRX', 'CREDIT_LIMIT', 'PAYMENTS', 'MINIMUM_PAYMENTS', 'PRC_FULL_PAYMENT'] ###Output _____no_output_____
00_download_preprocess_sentinel2.ipynb
###Markdown Download and preprocess Sentinel-2 images Notebook for downloading and preprocessing Sentinel-2 images from Copernicus Open Access Hub (requires account)* Level-2A products are globally available from December 2018 onwards * Older images (Level-1C) in the archive are processed using a standalone Sen2Cor tool (http://step.esa.int/main/third-party-plugins-2/sen2cor/sen2cor_v2-8/)* Sen2Cor-02.08.00-win64 directory path should be added to System Variables* Images are downloaded over two different tile IDs: T19PEP (covers Bonaires) T19PFP (covers east sea of Bonaire)* Some products are not readily available and are stored in a Long Term Archive (LTA). Running download_all() will trigger retrieval from LTA and make the data available within 24 hours. Unfortunately, offline products can only be requested every 30 minutes. These products were downloaded manually via Copernicus Hub.* Sentinel products are always stored outside project directory (GitHub repository) ###Code from sentinelsat import * from collections import OrderedDict from datetime import datetime,timedelta, date import pandas as pd import getpass import os import re from glob import glob import subprocess ###Output _____no_output_____ ###Markdown Downloading Sentinel-2 images ###Code #user authentication (Copernicus account) username = getpass.getpass("Username:") pswd = getpass.getpass("Password:") api = SentinelAPI(username,pswd,'https://scihub.copernicus.eu/dhus') #dictionary with selected dates per tile dates_tiles = {"T19PEP":[20180304,20180309,20180314,20180319,20190108, 20190128,20190212,20190304, 20190309, 20190314, 20190319, 20190508, 20190513, 20190518, 20190523, 20190821, 20191129], "T19PFP":[20180304,20190304,20190428]} #retrieving product informations products = OrderedDict() for tile in list(dates_tiles.keys()): for d in dates_tiles[tile]: date = datetime.strptime(str(d),'%Y%m%d').date() #contrsuct query kw_query = {'platformname': 'Sentinel-2', 'filename':f'*_{tile}_*', 'date':(date, date+timedelta(days=5))} #plus 5 days to get single scene #get level-2 products if date> December 2018 if date>datetime.strptime(str(20181201),'%Y%m%d').date(): kw_query['producttype']= 'S2MSI2A' else: kw_query['producttype']= 'S2MSI1C' #retrieve ID used to download the data and store to OrderedDict() pp = api.query(**kw_query) products.update(pp) #convert to dataframe to view product information (cloud coverage, sensing date, etc.) df_products = api.to_dataframe(products) #store product IDs according to product type level2_online = [] level1_online = [] #check online products for product_id in df_products.index: odata = api.get_product_odata(product_id) print(f"{odata['title']} is available: {odata['Online']} ") #sort products if odata['Online'] and "MSIL2A" in odata['title']: level2_online.append(product_id) elif odata['Online'] and "MSIL1C" in odata['title']: level1_online.append(product_id) #create output folders for each product type level2_dir = '...' level1_dir = '...' os.makedirs(level2_dir,exist_ok=True) os.makedirs(level1_dir,exist_ok=True) #download products to each folder if os.path.exists(level1_dir) and os.path.exists(level2_dir): api.download_all(products=level1_online,directory_path=level1_dir) api.download_all(products=level2_online,directory_path=level2_dir) ###Output _____no_output_____ ###Markdown Processing level-1C to level-2A products ###Code #set I/O directories level2_dir = '...' level1_dir = '...' #get level-1C file paths level1_files = glob(level1_dir+"/*.SAFE") #pop-up cmd window(s) and execute Sen2Cor processor sen2cor_dir = "../projects/Sen2Cor-02.08.00-win64" for file in level1_files: cmd = f'L2A_Process --resolution 10 {file} --output_dir {level2_dir}' os.system(f' start cmd /k "cd {sen2cor_dir} && {cmd}" ') ###Output _____no_output_____
House_Price_Data_V2/Project.ipynb
###Markdown Take a look at the data ###Code df[['RegionName', 'State','average_price',]].nlargest(10,'average_price') df[['RegionName', 'State', 'average_price']].nsmallest(10, 'average_price') ###Output _____no_output_____ ###Markdown Let's see how the average price over the time period is related to size of the region and the volatility of the price. ###Code #Let's color code for each region colors = np.random.rand(df.shape[0]) #the variance by a factor of 10 so the sizes are more managable sizes = df['price_variance'] / 10 plt.style.use('fivethirtyeight') #Scatter plot of the data plt.scatter(df['size'],df['average_price'],s=sizes,c=colors,alpha=0.7) plt.ylim([0,2500]) plt.xlim([-10,85]) plt.ylabel('Median Listing Price') plt.xlabel('Size') labels = df['RegionName'] plt.text(-10,2500,'The size of the dot represents varinace in price for the region',fontsize=10,color='red') #let's label out plot, dots top_five_variance = df[['RegionName','size','average_price','price_variance']].nlargest(5,'price_variance') for r in top_five_variance.itertuples(index=False): plt.annotate(r[0],xy=(r[1],r[2]),size=10,xycoords='data',xytext=(r[1]+10,r[2]+20),arrowprops=dict(arrowstyle = '->', color='black')) plt.show() ###Output _____no_output_____
AWS Machine Learning Engineering/4_optimizing_code_holiday_gifts.ipynb
###Markdown Optimizing Code: Holiday GiftsIn the last example, you learned that using vectorized operations and more efficient data structures can optimize your code. Let's use these tips for one more example.Say your online gift store has one million users that each listed a gift on a wish list. You have the prices for each of these gifts stored in `gift_costs.txt`. For the holidays, you're going to give each customer their wish list gift for free if it is under 25 dollars. Now, you want to calculate the total cost of all gifts under 25 dollars to see how much you'd spend on free gifts. Here's one way you could've done it. ###Code import time import numpy as np with open('gift_costs.txt') as f: gift_costs = f.read().split('\n') gift_costs = np.array(gift_costs).astype(int) # convert string to int start = time.time() total_price = 0 for cost in gift_costs: if cost < 25: total_price += cost * 1.08 # add cost after tax print(total_price) print('Duration: {} seconds'.format(time.time() - start)) ###Output 32765421.24 Duration: 5.542772054672241 seconds ###Markdown Here you iterate through each cost in the list, and check if it's less than 25. If so, you add the cost to the total price after tax. This works, but there is a much faster way to do this. Can you refactor this to run under half a second? Refactor Code**Hint:** Using numpy makes it very easy to select all the elements in an array that meet a certain condition, and then perform operations on them together all at once. You can them find the sum of what those values end up being. ###Code start = time.time() total_price = (gift_costs[gift_costs < 25]).sum() * 1.08 # TODO: compute the total price print(total_price) print('Duration: {} seconds'.format(time.time() - start)) ###Output 32765421.24 Duration: 0.11274290084838867 seconds
experiments/train_parallel_coco_i1_5-shot.ipynb
###Markdown Train ###Code # Create model object in inference mode. model = siamese_model.SiameseMaskRCNN(mode="training", model_dir=MODEL_DIR, config=config) train_schedule = OrderedDict() train_schedule[1] = {"learning_rate": config.LEARNING_RATE, "layers": "heads"} train_schedule[120] = {"learning_rate": config.LEARNING_RATE, "layers": "all"} train_schedule[160] = {"learning_rate": config.LEARNING_RATE/10, "layers": "all"} # Load weights trained on Imagenet try: model.load_latest_checkpoint(training_schedule=train_schedule) except: model.load_imagenet_weights(pretraining='imagenet-687') for epochs, parameters in train_schedule.items(): print("") print("training layers {} until epoch {} with learning_rate {}".format(parameters["layers"], epochs, parameters["learning_rate"])) model.train(coco_train, coco_val, learning_rate=parameters["learning_rate"], epochs=epochs, layers=parameters["layers"]) ###Output _____no_output_____
final_notebooks_Final-XGBoost.ipynb
###Markdown This notebook trains and test the XGBoost Model. ###Code %autosave 60 # defining os variables BUCKET_NAME = "msil_raw" FOLDER_NAME = "training_data" TRAINFILE = "trainset_final.csv" VALIDFILE = "validset_final.csv" TESTFILE = "testset_final.csv" # importing the variables import google.datalab.storage as storage import pandas as pd from io import BytesIO import numpy as np import matplotlib.pyplot as plt import seaborn as sns import xgboost as xgb from sklearn.model_selection import GridSearchCV import time from datetime import datetime from scipy import integrate import pickle # setting up the parameters plt.rcParams["figure.figsize"] = (10, 10) pd.set_option("display.max_rows", 200) pd.set_option("display.max_columns", 200) pd.set_option("precision", 15) sns.set_style("darkgrid") # importing the training data. If using local system, skip this cell and use os library instead. mybucket = storage.Bucket(BUCKET_NAME) data_csv = mybucket.object(FOLDER_NAME + "/" + TRAINFILE) uri = data_csv.uri %gcs read --object $uri --variable data trainset = pd.read_csv(BytesIO(data)) trainset.head() # importing the validset mybucket = storage.Bucket(BUCKET_NAME) data_csv = mybucket.object(FOLDER_NAME + "/" + VALIDFILE) uri = data_csv.uri %gcs read --object $uri --variable data validset = pd.read_csv(BytesIO(data)) validset.head() # importing the testset mybucket = storage.Bucket(BUCKET_NAME) data_csv = mybucket.object(FOLDER_NAME + "/" + TESTFILE) uri = data_csv.uri %gcs read --object $uri --variable data testset = pd.read_csv(BytesIO(data)) testset.head() len(trainset) ###Output _____no_output_____ ###Markdown Info Table regarding Dataset division| Data | Range of Trips |Number of Observations||---------|----------------|----------------------||Trainset | 0 - 1643 | 3871645 ||Validset | 1643 - 1743 | 224878 ||Testset | 1743 - 2218 | 667516 | ###Code trainset = trainset.drop(columns = ["tp", "EVSMA_EWMA"]) validset = validset.drop(columns = ["tp", "EVSMA_EWMA"]) testset = testset.drop(columns = ["tp", "EVSMA_EWMA"]) # dropping the target variables from our dataset x_trainset = trainset.drop(columns = ["EVSMA_delta"]) y_trainset = trainset["EVSMA_delta"] x_validset = validset.drop(columns = ["EVSMA_delta"]) y_validset = validset["EVSMA_delta"] x_testset = testset.drop(columns = ["EVSMA_delta"]) y_testset = testset["EVSMA_delta"] # defining the model parameters params = { "eta":0.01, "n_estimators": 100, "max_depth": 6, "subsample": 0.8, "colsample_bytree": 1, "gamma": 0, "eval_metric": "rmse", "nthreads": 4, "objective": "reg:linear" } # converting the datasets into DMatrix, a format required by XGBoost dtrainset = xgb.DMatrix(x_trainset, label = y_trainset) dvalidset = xgb.DMatrix(x_validset, label = y_validset) # training the Model model_train = xgb.train(params, dtrainset, 5000, evals = [(dvalidset, "valid_set")], verbose_eval=1000) # saving the trained model pickle.dump(model_train, open("model_xgb_stack_final.pickle.dat", "wb")) # loading the saved model model_train = pickle.load(open('model_xgb_stack_final.pickle.dat','rb')) # converting the testset into DMatrix dtest = xgb.DMatrix(x_testset) # Predictions y_pred = model_train.predict(dtest) # making a dataframe of actual and predicted values result_df = pd.DataFrame({ "y": y_testset, "yhat": y_pred }) # calculating the Root Mean Square Error err = (((result_df["y"] - result_df["yhat"])**2).mean())**0.5 print("RMSE = {:.4f}".format(err)) # calculating the Mean Average Precision Error #mape = ((result_df["y"] - result_df["yhat"])/result_df["y"]).mean() #print("MAPE = {:.4f}".format(mape)) ###Output RMSE = 0.0056 ###Markdown --- Testing Model on different trips ###Code # importing the testset mybucket = storage.Bucket(BUCKET_NAME) data_csv = mybucket.object(FOLDER_NAME + "/" + TESTFILE) uri = data_csv.uri %gcs read --object $uri --variable data testset = pd.read_csv(BytesIO(data)) testset.head() # extracting few trips test_trip_1814 = testset[testset["tp"] == 1814] test_trip_1936 = testset[testset["tp"] == 1936] test_trip_1973 = testset[testset["tp"] == 1973] test_trip_1757 = testset[testset["tp"] == 1757] test_trip_1937 = testset[testset["tp"] == 1937] test_trip_1889 = testset[testset["tp"] == 1889] test_trip_2018 = testset[testset["tp"] == 2018] test_trip_2011 = testset[testset["tp"] == 2011] test_trip_1947 = testset[testset["tp"] == 1947] test_trip_1860 = testset[testset["tp"] == 1860] tpno = 1756 test_trip = testset[testset["tp"] == tpno] dist = testset[testset["tp"] == tpno]["EVODOH"].iloc[-1] sma_absolute = test_trip["EVSMA_EWMA"].iloc[0] print("SMA Absolute = {}".format(sma_absolute)) sma_actual = test_trip["EVSMA_EWMA"] test_trip = test_trip.drop(columns = ["EVSMA_EWMA", "tp"]) x_test_trip = test_trip.drop(columns = ["EVSMA_delta"]) y_test_trip = test_trip["EVSMA_delta"] #model_train = pickle.load(open('xgb_finale.dat','rb')) d_test_trip = xgb.DMatrix(x_test_trip) predictions = model_train.predict(d_test_trip) for i in range(0, len(predictions)): if predictions[i]<0: predictions[i]=0 # making a dataframe of actual and predicted values test_trip_df = pd.DataFrame({ "y": y_test_trip, "yhat": predictions }) sma_list = [] for i in range(0, len(predictions)): temp_sma = sma_absolute - predictions[i] sma_list.append(temp_sma) sma_absolute = temp_sma title = "Trip " + str(tpno) + " | Dist ==" + str(round(dist, 2)) plt.plot(sma_list, label = "prediction") plt.plot(list(sma_actual), label = "actual") plt.title(title) plt.legend() plt.show() err = (((sma_list[-1] - list(sma_actual)[-1])))/(list(sma_actual)[0] - list(sma_actual)[-1]) print("Error for the Trip = {:.2f} %".format(err * 100)) for i in range(1744,1750): test_trip = testset[testset["tp"] == i] dist = testset[testset["tp"] == i]["EVODOH"].iloc[-1] sma_absolute = test_trip["EVSMA_EWMA"].iloc[0] sma_actual = test_trip["EVSMA_EWMA"] test_trip = test_trip.drop(columns = ["EVSMA_EWMA", "tp"]) x_test_trip = test_trip.drop(columns = ["EVSMA_delta"]) y_test_trip = test_trip["EVSMA_delta"] d_test_trip = xgb.DMatrix(x_test_trip) predictions = model_train.predict(d_test_trip) for k in range(0, len(predictions)): if predictions[k]<0: predictions[k]=0 # making a dataframe of actual and predicted values test_trip_df = pd.DataFrame({ "y": y_test_trip, "yhat": predictions }) sma_list = [] for j in range(0, len(predictions)): temp_sma = sma_absolute - predictions[j] sma_list.append(temp_sma) sma_absolute = temp_sma err = (((sma_list[-1] - list(sma_actual)[-1])))/(list(sma_actual)[0] - list(sma_actual)[-1]) title = "Trip "+str(i)+" | Dist = "+str(round(dist, 2))+" Error = "+str(round(err, 2)) plot_name = "XGB" + str(i) +".png" plt.plot(sma_list, label = "prediction") plt.plot(list(sma_actual), label = "actual") plt.title(title) plt.legend() plt.savefig(plot_name) print(plot_name) print("------------------------------") xgb.plot_importance(model_train) ###Output _____no_output_____ ###Markdown --- Creating the Stacked DataSet ###Code test_trip = trainset[trainset["tp"] == 0] sma_absolute = test_trip["EVSMA_EWMA"].iloc[0] print("SMA Absolute = {}".format(sma_absolute)) sma_actual = test_trip["EVSMA_EWMA"] test_trip = test_trip.drop(columns = ["EVSMA_EWMA", "tp"]) x_test_trip = test_trip.drop(columns = ["EVSMA_delta"]) y_test_trip = test_trip["EVSMA_delta"] d_test_trip = xgb.DMatrix(x_test_trip) predictions = model_train.predict(d_test_trip) for i in range(0, len(predictions)): if predictions[i]<0: predictions[i]=0 sma_list = [] for i in range(0, len(predictions)): temp_sma = sma_absolute - predictions[i] sma_list.append(temp_sma) sma_absolute = temp_sma # making a dataframe of actual and predicted values test_trip_df = pd.DataFrame({ "y": sma_actual, "yhat": sma_list }) test_trip_df.head() # calculating the Root Mean Square Error err = (((test_trip_df["y"] - test_trip_df["yhat"])**2).mean())**0.5 print("RMSE = {:.4f}".format(err)) # calculating the Mean Average Precision Error mape = ((test_trip_df["y"] - test_trip_df["yhat"])/test_trip_df["y"]).mean() print("MAPE = {:.4f} %".format(mape*100)) len(test_trip_df) test_trip_df.to_csv('stack_xgb_data.csv', index = False) !gsutil cp 'stack_xgb_data.csv' 'gs://msil_raw/training_data/stack_xgb_data.csv' %gcs read --object gs://msil_raw/training_data/stack_xgb_data.csv --variable stack_xgb_data df2 = pd.read_csv(BytesIO(stack_xgb_data)) ################################# test_trip = trainset[trainset["tp"] == 1] sma_absolute = test_trip["EVSMA_EWMA"].iloc[0] print("SMA Absolute = {}".format(sma_absolute)) sma_actual = test_trip["EVSMA_EWMA"] test_trip = test_trip.drop(columns = ["EVSMA_EWMA", "tp"]) x_test_trip = test_trip.drop(columns = ["EVSMA_delta"]) y_test_trip = test_trip["EVSMA_delta"] d_test_trip = xgb.DMatrix(x_test_trip) predictions = model_train.predict(d_test_trip) for i in range(0, len(predictions)): if predictions[i]<0: predictions[i]=0 for i in range(0, len(predictions)): if predictions[i]<0: predictions[i]=0 sma_list = [] for i in range(0, len(predictions)): temp_sma = sma_absolute - predictions[i] sma_list.append(temp_sma) sma_absolute = temp_sma test_trip_df = pd.DataFrame({ "y": sma_actual, "yhat": sma_list }) test_trip_df.head() # calculating the Root Mean Square Error err = (((test_trip_df["y"] - test_trip_df["yhat"])**2).mean())**0.5 print("RMSE = {:.4f}".format(err)) # calculating the Mean Average Precision Error mape = ((test_trip_df["y"] - test_trip_df["yhat"])/test_trip_df["y"]).mean() print("MAPE = {:.4f} %".format(mape*100)) len(test_trip_df) mybucket = storage.Bucket('msil_raw') data_csv = mybucket.object('training_data/stack_xgb_data.csv') uri = data_csv.uri %gcs read --object $uri --variable daaa stacked_df = pd.read_csv(BytesIO(daaa)) stacked_df.head() len(stacked_df) test_trip_df = pd.concat((stacked_df, test_trip_df), axis = 0).reset_index(drop = True) len(test_trip_df) test_trip_df.to_csv('stack_xgb_data.csv', index = False) !gsutil cp 'stack_xgb_data.csv' 'gs://msil_raw/training_data/stack_xgb_data.csv' %gcs read --object gs://msil_raw/training_data/stack_xgb_data.csv --variable stack_xgb_data df2 = pd.read_csv(BytesIO(stack_xgb_data)) ###Output Copying file://stack_xgb_data.csv [Content-Type=text/csv]... - [1 files][109.9 KiB/109.9 KiB] Operation completed over 1 objects/109.9 KiB. ###Markdown Looping through all other trips ###Code for i in range(756, 1643): print("------------------------------") test_trip = trainset[trainset["tp"] == i] print("Trip Number = {}".format(i)) sma_absolute = test_trip["EVSMA_EWMA"].iloc[0] print("SMA Absolute = {}".format(sma_absolute)) sma_actual = test_trip["EVSMA_EWMA"] test_trip = test_trip.drop(columns = ["EVSMA_EWMA", "tp"]) x_test_trip = test_trip.drop(columns = ["EVSMA_delta"]) y_test_trip = test_trip["EVSMA_delta"] d_test_trip = xgb.DMatrix(x_test_trip) predictions = model_train.predict(d_test_trip) for i in range(0, len(predictions)): if predictions[i]<0: predictions[i]=0 sma_list = [] for i in range(0, len(predictions)): temp_sma = sma_absolute - predictions[i] sma_list.append(temp_sma) sma_absolute = temp_sma test_trip_df = pd.DataFrame({ "y": sma_actual, "yhat": sma_list }) # calculating the Root Mean Square Error err = (((test_trip_df["y"] - test_trip_df["yhat"])**2).mean())**0.5 print("RMSE = {:.4f}".format(err)) # calculating the Mean Average Precision Error mape = ((test_trip_df["y"] - test_trip_df["yhat"])/test_trip_df["y"]).mean() print("MAPE = {:.4f}".format(mape)) mybucket = storage.Bucket('msil_raw') data_csv = mybucket.object('training_data/stack_xgb_data.csv') uri = data_csv.uri %gcs read --object $uri --variable daaa stacked_df = pd.read_csv(BytesIO(daaa)) stacked_df.head() print("Trip length = {}".format(len(test_trip_df))) print("Data length prior = {}".format(len(stacked_df))) test_trip_df = pd.concat((stacked_df, test_trip_df), axis = 0).reset_index(drop = True) print("Data length after = {}".format(len(test_trip_df))) test_trip_df.to_csv('stack_xgb_data.csv', index = False) !gsutil cp 'stack_xgb_data.csv' 'gs://msil_raw/training_data/stack_xgb_data.csv' %gcs read --object gs://msil_raw/training_data/stack_xgb_data.csv --variable stack_xgb_data df2 = pd.read_csv(BytesIO(stack_xgb_data)) path_fig='gs://msil_raw/test_figures/'+plot_name !gsutil cp plot_name path_fig path_fig ###Output _____no_output_____
examples/atmospheres/surface_radiation_field_checking_tools_tutorial.ipynb
###Markdown Surface radiation field tools In this tutorial we demonstrate usage of several tools for checking the implementation of a surface radiation field extension module. ###Code %matplotlib inline import warnings warnings.filterwarnings(action='ignore') import numpy as np import xpsi from matplotlib import pyplot as plt plt.rc('font', size=20.0) plt.rc('font', family = 'Ubuntu') ###Output _____no_output_____ ###Markdown Calculate the specific intensity directly from local variables ###Code # keV (local comoving frame) E = np.logspace(-2.0, 0.5, 1000, base=10.0) # cos(angle to local surface normal in comoving frame) mu = np.ones(1000) * 0.5 # log10(eff. temperature [K]) and log10(local eff. gravity [cm/s^2]) local_vars = np.array([[6.11, 13.8]]*1000) xpsi.surface_radiation_field? xpsi.surface_radiation_field.intensity? ###Output _____no_output_____ ###Markdown For the following cell, compile `blackbody.pyx` radiation field as the `hot.pyx` extension: ###Code plt.figure(figsize=(8,8)) BB_I = xpsi.surface_radiation_field.intensity(E, mu, local_vars, # NB: isotropic blackbody extension='hot', numTHREADS=2) plt.plot(E, BB_I, 'k-', lw=2.0) # write it to disk so accessible upon kernel restart np.savetxt('./blackbody_spectrum_cache.txt', BB_I) ax = plt.gca() ax.set_yscale('log') ax.set_xscale('log') ax.set_ylabel('Photon specific intensity') _ = ax.set_xlabel('Energy [keV]') ###Output _____no_output_____ ###Markdown Let's check out a numerical atmosphere (this code you typically find in a custom photosphere class). The numerical atmospheres loaded here were genereated by the NSX atmosphere code [(Ho, W.C.G & Heinke, C.O. 2009)](https://ui.adsabs.harvard.edu/link_gateway/2009Natur.462...71H/doi:10.1038/nature08525), courtesy of W.C.G. Ho for NICER modeling efforts. One of these atmospheres (fully-ionized hydrogen) was used in [Riley et al. (2019)](https://arxiv.org/abs/1912.05702). ###Code def preload(path, size): NSX = np.loadtxt(path, dtype=np.double) logT = np.zeros(size[0]) logg = np.zeros(size[1]) _mu = np.zeros(size[2]) # use underscore to bypass errors with the other mu array logE = np.zeros(size[3]) reorder_buf = np.zeros(size) index = 0 for i in range(reorder_buf.shape[0]): for j in range(reorder_buf.shape[1]): for k in range(reorder_buf.shape[3]): for l in range(reorder_buf.shape[2]): logT[i] = NSX[index,3] logg[j] = NSX[index,4] logE[k] = NSX[index,0] _mu[reorder_buf.shape[2] - l - 1] = NSX[index,1] reorder_buf[i,j,reorder_buf.shape[2] - l - 1,k] = 10.0**(NSX[index,2]) index += 1 buf = np.zeros(np.prod(reorder_buf.shape)) bufdex = 0 for i in range(reorder_buf.shape[0]): for j in range(reorder_buf.shape[1]): for k in range(reorder_buf.shape[2]): for l in range(reorder_buf.shape[3]): buf[bufdex] = reorder_buf[i,j,k,l]; bufdex += 1 atmosphere = (logT, logg, _mu, logE, buf) return atmosphere H_fully = preload('/home/thomas/Documents/NICER_analyses/H-atmosphere_Spectra (fully ionized)/NSX_H-atmosphere_Spectra/nsx_H_v171019.out', size=(35, 11, 67, 166)) He_fully = preload('/home/thomas/Documents/NICER_analyses/He-atmosphere_Spectra (fully ionized)/NSX_He-atmosphere_Spectra/nsx_He_v170925.out', size=(29, 11, 67, 166)) ###Output _____no_output_____ ###Markdown Next compile the `archive/hot/numerical.pyx` radiation field as the `hot.pyx` extension, and compile the `archive/elsewhere/numerical.pyx` radiation field as the `elsewhere.pyx` extension. The numerical extensions infer the size of the parameter grid, but are hard-coded for four-dimensional cubic polynomial interpolation. ###Code plt.figure(figsize=(8,8)) BB_I = np.loadtxt('./blackbody_spectrum_cache.txt') plt.plot(E, BB_I, 'k--', lw=1.0) hot_I = xpsi.surface_radiation_field.intensity(E, mu, local_vars, atmosphere=H_fully, extension='hot', numTHREADS=2) plt.plot(E, hot_I, 'b-', lw=2.0) elsewhere_I = xpsi.surface_radiation_field.intensity(E, mu, local_vars, atmosphere=H_fully, extension='elsewhere', numTHREADS=2) plt.plot(E, elsewhere_I, 'r-', lw=1.0) He_fully_I = xpsi.surface_radiation_field.intensity(E, mu, local_vars, atmosphere=He_fully, extension='hot', numTHREADS=2) plt.plot(E, He_fully_I, 'k-.', lw=1.0) # H_partial_I = xpsi.surface_radiation_field.intensity(E, mu, local_vars, # atmosphere=H_partial, # extension='hot', # numTHREADS=2) # plt.plot(E, H_partial_I, 'b-.', lw=2.0) ax = plt.gca() ax.set_yscale('log') ax.set_ylim([9.0e25,4.0e29]) ax.set_xscale('log') ax.set_ylabel('Photon specific intensity') _ = ax.set_xlabel('Energy [keV]') ###Output _____no_output_____ ###Markdown This behaviour is typical for an isotropic blackbody radiation field with temperature $T$ in comparison to a radiation field emergent from a (non-magnetic, fully-ionized) geometrically-thin H/He atmosphere with effective temperature $T$. Let's plot the angular dependence: ###Code # keV (local comoving frame) E = np.ones(1000) * 0.2 # cos(angle to local surface normal in comoving frame) mu = np.linspace(0.01,1.0,1000) fig = plt.figure(figsize=(16,8)) # Hydrogen ax = fig.add_subplot(121, projection='polar') ax.set_theta_direction(1) ax.set_thetamin(-90.0) ax.set_thetamax(90.0) # log10(eff. temperature [K]) and log10(local eff. gravity [cm/s^2]) local_vars = np.array([[6.0, 13.8]]*1000) H_fully_I = xpsi.surface_radiation_field.intensity(E, mu, local_vars, atmosphere=H_fully, extension='hot', numTHREADS=2) ax.plot(np.arccos(mu), np.log10(H_fully_I/np.max(H_fully_I)), 'k-', lw=1.0) ax.plot(-np.arccos(mu), np.log10(H_fully_I/np.max(H_fully_I)), 'k-', lw=1.0) # log10(eff. temperature [K]) and log10(local eff. gravity [cm/s^2]) local_vars = np.array([[5.5, 13.8]]*1000) H_fully_I = xpsi.surface_radiation_field.intensity(E, mu, local_vars, atmosphere=H_fully, extension='hot', numTHREADS=2) ax.plot(np.arccos(mu), np.log10(H_fully_I/np.max(H_fully_I)), 'r-', lw=1.0) ax.plot(-np.arccos(mu), np.log10(H_fully_I/np.max(H_fully_I)), 'r-', lw=1.0) # log10(eff. temperature [K]) and log10(local eff. gravity [cm/s^2]) local_vars = np.array([[6.5, 13.8]]*1000) H_fully_I = xpsi.surface_radiation_field.intensity(E, mu, local_vars, atmosphere=H_fully, extension='hot', numTHREADS=2) ax.plot(np.arccos(mu), np.log10(H_fully_I/np.max(H_fully_I)), 'b-', lw=1.0) ax.plot(-np.arccos(mu), np.log10(H_fully_I/np.max(H_fully_I)), 'b-', lw=1.0) ax.set_rmax(0.05) ax.set_rmin(-1) ax.set_theta_zero_location("N") ax.set_rticks([-1.0,-0.5, 0.0]) ax.set_xlabel('log10$(I_E/I_E(\mu=1))$') ax.xaxis.set_label_coords(0.5, 0.15) _ = ax.set_title('H (fully-ionized)', pad=-50) # Helium ax = fig.add_subplot(122, projection='polar') ax.set_theta_direction(1) ax.set_thetamin(-90.0) ax.set_thetamax(90.0) # log10(eff. temperature [K]) and log10(local eff. gravity [cm/s^2]) local_vars = np.array([[6.0, 13.8]]*1000) He_fully_I = xpsi.surface_radiation_field.intensity(E, mu, local_vars, atmosphere=He_fully, extension='hot', numTHREADS=2) ax.plot(np.arccos(mu), np.log10(He_fully_I/np.max(He_fully_I)), 'k-', lw=1.0) ax.plot(-np.arccos(mu), np.log10(He_fully_I/np.max(He_fully_I)), 'k-', lw=1.0) # log10(eff. temperature [K]) and log10(local eff. gravity [cm/s^2]) local_vars = np.array([[5.5, 13.8]]*1000) He_fully_I = xpsi.surface_radiation_field.intensity(E, mu, local_vars, atmosphere=He_fully, extension='hot', numTHREADS=2) ax.plot(np.arccos(mu), np.log10(He_fully_I/np.max(He_fully_I)), 'r-', lw=1.0) ax.plot(-np.arccos(mu), np.log10(He_fully_I/np.max(He_fully_I)), 'r-', lw=1.0) # log10(eff. temperature [K]) and log10(local eff. gravity [cm/s^2]) local_vars = np.array([[6.5, 13.8]]*1000) He_fully_I = xpsi.surface_radiation_field.intensity(E, mu, local_vars, atmosphere=He_fully, extension='hot', numTHREADS=2) ax.plot(np.arccos(mu), np.log10(He_fully_I/np.max(He_fully_I)), 'b-', lw=1.0) ax.plot(-np.arccos(mu), np.log10(He_fully_I/np.max(He_fully_I)), 'b-', lw=1.0) ax.set_rmax(0.05) ax.set_rmin(-1) ax.set_theta_zero_location("N") ax.set_rticks([-1.0,-0.5, 0.0]) ax.set_xlabel('log10$(I_E/I_E(\mu=1))$') ax.xaxis.set_label_coords(0.5, 0.15) _ = ax.set_title('He (fully-ionized)', pad=-50) ###Output _____no_output_____ ###Markdown Calculate the specific intensity indirectly via global variables We can also calculate intensities by specifying spacetime coordinates at the surface and values for some set of global variables that control the radiation field. ###Code xpsi.surface_radiation_field.intensity_from_globals? # unimportant here; just use strict bounds bounds = dict(mass = (None, None), radius = (None, None), distance = (None, None), inclination = (None, None)) spacetime = xpsi.Spacetime(bounds, dict(frequency = 1.0/(4.87e-3))) # J0030 spin colatitude = np.ones(1000) * 1.0 # radians azimuth = np.zeros(1000) phase = np.zeros(1000) global_vars = np.array([6.11]) # just temperature (globally invariant local variable) spacetime.params spacetime['radius'] = 12.0 spacetime['mass'] = 1.4 # we do not need the observer coordinates to compute effective gravity # the first 5 arguments are 1D arrays that specific a point sequence in the # joint space of surface spacetime coordinates, energy, and angle # if you have a set of such points that does not conform readily # to a 1D array, write a custom wrapper to handle the structure # in your point set I_E = xpsi.surface_radiation_field.intensity_from_globals(E, mu, colatitude, azimuth, phase, global_vars, # -> eff. temp. spacetime.R, # -> eff. grav. spacetime.zeta, # -> eff. grav. spacetime.epsilon, # -> eff. grav. atmosphere=atmosphere, numTHREADS=2) ###Output _____no_output_____ ###Markdown Note that only the `hot.pyx` extension is invoked here. Let's plot the spectrum and also the spectrum generated by declaring the effective gravity directly above: ###Code plt.figure(figsize=(8,8)) plt.plot(E, hot_I, 'k-', lw=1.0) plt.plot(E, I_E, 'r-', lw=1.0) ax = plt.gca() ax.set_yscale('log') ax.set_xscale('log') ax.set_ylabel('Photon specific intensity') _ = ax.set_xlabel('Energy [keV]') ###Output _____no_output_____
Matt/linear_modeling.ipynb
###Markdown log: ['TotalBsmtSF', 'BsmtCond_ord', 'BsmtQual_ord', 'GarageCond', 'GarageQual', 'GarageType_com', 'SalePrice_log', 'Garage_age_bin', 'Remod_age_bin'] : 1e-06 , 0.943454281780628log: ['TotalBsmtSF', 'BsmtCond_ord', 'BsmtQual_ord', 'GarageCond', 'GarageQual', 'GarageType_com', 'SalePrice_log', 'Garage_age_bin', 'Remod_age_bin', '1stFlrSF_log'] : 1e-06 , 0.9424740060473317log: ['TotalBsmtSF', 'BsmtCond_ord', 'BsmtQual_ord', 'GarageCond', 'GarageQual', 'GarageType_com', 'SalePrice_log', 'Garage_age_bin', 'Remod_age_bin', '1stFlrSF_log', '2ndFlrSF'] : 1e-06 , 0.9420770647332499log: ['TotalBsmtSF', 'BsmtCond_ord', 'BsmtQual_ord', 'GarageCond', 'GarageQual', 'GarageType_com', 'SalePrice_log', 'Garage_age_bin', 'Remod_age_bin', '1stFlrSF_log', '2ndFlrSF', 'KitchenAbvGr'] : 1e-06 , 0.9417616764602397['TotalBsmtSF', 'BsmtCond_ord', 'BsmtQual_ord', 'GarageCond', 'GarageQual', 'GarageType_com', 'SalePrice_log', 'Garage_age_bin', 'Remod_age_bin', '1stFlrSF_log', '2ndFlrSF', 'KitchenAbvGr', 'TotRmsAbvGrd', 'GarageArea'] : 1e-06 , 0.9416195613781179 , 39.9001979416710['TotalBsmtSF', 'BsmtCond_ord', 'BsmtQual_ord', 'GarageCond', 'GarageQual', 'GarageType_com', 'SalePrice_log', 'Garage_age_bin', 'Remod_age_bin', '1stFlrSF_log', '2ndFlrSF', 'KitchenAbvGr', 'TotRmsAbvGrd', 'GarageArea', 'GarageFinish', 'Fence'] : 1e-06 , 0.9417193728756516 , 41.05487105565105['TotalBsmtSF', 'BsmtCond_ord', 'BsmtQual_ord', 'GarageCond', 'GarageQual', 'SalePrice_log', 'Garage_age_bin', 'Remod_age_bin', '1stFlrSF_log', '2ndFlrSF', 'KitchenAbvGr', 'TotRmsAbvGrd', 'GarageArea', 'GarageFinish', 'Fence'] : 1e-06 , 0.9416530339287166 , 39.99237976054064['TotalBsmtSF', 'BsmtCond_ord', 'BsmtQual_ord', 'GarageCond', 'GarageQual', 'GarageType_com', 'SalePrice_log', 'Garage_age_bin', 'Remod_age_bin', '1stFlrSF_log', '2ndFlrSF', 'KitchenAbvGr', 'TotRmsAbvGrd', 'GarageArea', 'GarageFinish', 'Fence', 'Alley'] : 1e-06 , 0.9417665575176081 , 41.1929734948757['TotalBsmtSF', 'BsmtCond_ord', 'BsmtQual_ord', 'GarageCond', 'GarageQual', 'GarageType_com', 'SalePrice_log', 'Garage_age_bin', 'Remod_age_bin', '1stFlrSF_log', '2ndFlrSF', 'KitchenAbvGr', 'TotRmsAbvGrd', 'GarageArea', 'GarageFinish', 'Fence', 'Alley', 'number_floors'] : 1e-06 , 0.9418035097906687 , 39.559875261890845['TotalBsmtSF', 'BsmtCond_ord', 'BsmtQual_ord', 'GarageCond', 'GarageQual', 'GarageType_com', 'SalePrice_log', 'Garage_age_bin', 'Remod_age_bin', '1stFlrSF_log', '2ndFlrSF', 'KitchenAbvGr', 'TotRmsAbvGrd', 'GarageArea', 'GarageFinish', 'Fence', 'Alley', 'number_floors', 'FireplaceQu'] : 1e-06 , 0.9417500104695516 , 40.30945260646638['TotalBsmtSF', 'BsmtCond_ord', 'BsmtQual_ord', 'GarageCond', 'GarageQual', 'GarageType_com', 'SalePrice_log', 'Garage_age_bin', 'Remod_age_bin', '1stFlrSF_log', '2ndFlrSF', 'KitchenAbvGr', 'TotRmsAbvGrd', 'GarageArea', 'GarageFinish', 'Fence', 'Alley', 'number_floors', 'FireplaceQu', 'LotFrontage', 'LowQualFinSF', 'BsmtExposure_ord', 'MasVnrArea'] : 1e-06 , 0.9468407408759749 , 36.57884336374308No radials: ['TotalBsmtSF', 'BsmtCond_ord', 'BsmtQual_ord', 'GarageCond', 'GarageQual', 'GarageType_com', 'SalePrice_log', 'Garage_age_bin', 'Remod_age_bin', '1stFlrSF_log', '2ndFlrSF', 'KitchenAbvGr', 'TotRmsAbvGrd', 'GarageArea', 'GarageFinish', 'Fence', 'Alley', 'number_floors', 'FireplaceQu', 'LotFrontage', 'LowQualFinSF', 'BsmtExposure_ord', 'MasVnrArea', 'LotShape_com'] : 1e-06 , 0.946833771716485 , 35.69657081462711 ###Code radial = pd.read_csv('./../data/house_coordinates_1.0.csv') radial.drop(columns = ('2204_park'), inplace = True) for col in radial.columns: prefix = str(col)[0:4] if re.search('^\d\d\d\d_', str(col)): radial.rename(columns = {col: col[5:]}, inplace = True) rad_drops = [ 'Address', 'Coords4', 'latitude', 'longitude', 'town_hall', 'cemetery', 'motel', 'camp_site', 'general', 'picnic_site', 'wastewater_plant', 'spring', 'beach', 'street_lamp', 'helipad', 'vineyard', 'crossing', 'tree', 'grass', 'christian', 'bus_stop', 'parking', 'toilet', 'bench', 'commercial', 'waste_basket', 'drinking_water', 'convenience', 'camera_surveillance', 'comms_tower', 'residential', 'gift_shop', 'jeweller', 'hairdresser', 'bookshop', 'clothes', 'retail', 'food_court', 'artwork', 'cafe', 'traffic_signals', 'beauty_shop', 'sports_shop', 'weir', 'track', 'turning_circle', 'computer_shop', 'bicycle_shop', 'department_store', 'parking_bicycle', 'golf_course', 'tower', 'beverages', 'university' ] radial.drop(columns = rad_drops, inplace = True) sub = df.loc[:,['PID', 'SalePrice_log']] radial = pd.merge(radial, sub, how = 'right', on = 'PID') radial.drop(columns = ['PID','SalePrice_log'], inplace = True) lasso_tuner3 = GridSearchCV(lasso2, params_log, cv=kfold, return_train_score = True) lasso_tuner3.fit(radial, price_log) lasso_tuner3.cv_results_['mean_test_score'] lasso_tuner3.cv_results_['mean_train_score'] len(radial.columns) feat_imp_rad = pd.Series(data = lasso_tuner3.best_estimator_.coef_, index = radial.columns) feat_imp_rad = feat_imp_rad.sort_values(ascending = False) ignored_rad = feat_imp_rad[feat_imp_rad == 0] feat_imp_rad = feat_imp_rad[feat_imp_rad != 0] print(len(feat_imp_rad)) print(feat_imp_rad) print(len(ignored_rad)) print(ignored_rad) vif_rad = pd.DataFrame() vif_rad['feature'] = radial.columns vif_rad['vif'] = [variance_inflation_factor(radial.values, i) for i in range(len(radial.columns))] print(sum(vif_rad['vif'])/len(vif_rad)) vif_rad.sort_values(by = 'vif', ascending = False) radial.columns radial = pd.read_csv('./../data/house_coordinates_1.0.csv') radial.drop(columns = ('2204_park'), inplace = True) for col in radial.columns: prefix = str(col)[0:4] if re.search('^\d\d\d\d_', str(col)): radial.rename(columns = {col: col[5:]}, inplace = True) df6 = pd.merge(df.copy(), radial, on = 'PID', how = 'left') from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() def fit_scale(df, col): scaler.fit(df[[col]]) df[[col]]=scaler.transform(df[[col]]) fit_scale(df6, 'OverallQual') fit_scale(df6, 'ExterQual') fit_scale(df6, 'OverallCond') fit_scale(df6, 'KitchenQual') #df2['Porch']=((df2['OpenPorchSF']>0) | (df2['EnclosedPorch']>0) | (df2['3SsnPorch']>0) | (df2['ScreenPorch']>0)) df6['PorchSF']=df6['OpenPorchSF']+df6['EnclosedPorch']+df6['3SsnPorch']+df6['ScreenPorch'] #df2['1stFloorArea%']=df2['1stFlrSF']/df2['GrLivArea'] #df2['2ndFloorArea%']=df2['2ndFlrSF']/df2['GrLivArea'] df6['ExterQualDisc'] = df6['ExterQual'] - df6['OverallQual'] df6['OverallCondDisc'] = df6['OverallCond'] - df6['OverallQual'] df6['KitchenQualDisc'] = df6['KitchenQual'] - df6['OverallQual'] df6['SaleTypeNew']=(df6['SaleType']=='New') df6['SaleTypeNew']=df6['SaleTypeNew'].apply(lambda x: 1 if x==True else 0) #df2['BSMT_GLQ%']=df2['BSMT_GLQ']/df2['TotalBsmtSF'] #df2['BSMT_ALQ%']=df2['BSMT_ALQ']/df2['TotalBsmtSF'] #df2['BSMT_GLQ%']=df2['BSMT_GLQ%'].fillna(0) #df2['BSMT_ALQ%']=df2['BSMT_ALQ%'].fillna(0) df6['BSMT_LowQual']=df6['TotalBsmtSF']-df6['BSMT_GLQ']-df6['BSMT_ALQ'] df6['BSMT_HighQual']=df6['BSMT_GLQ']+df6['BSMT_ALQ'] df6['AreaPerPerson'] = np.log10(df6['GrLivArea']/df6['BedroomAbvGr']) df6['BSMT_HighQual_bin'] = pd.cut(df6['BSMT_HighQual'], [-1, 1, 500, 1000, 1500, 2500], labels = ['No basement', '0-500', '500-1000', '1000-1500', '1500+']) df6['BSMT_LowQual_bin'] = pd.cut(df6['BSMT_LowQual'], [-1, 1, 500, 1000, 1500, 2500], labels = ['No basement', '0-500', '500-1000', '1000-1500', '1500+']) feat_incl =[ ### from original dataset 'GrLivArea', 'LotArea', 'OverallQual', 'BSMT_LowQual', 'house_age_years', 'GarageCars', 'MasVnrType', 'FullBath', 'HalfBath', 'BsmtExposure_ord', 'SaleTypeNew', 'Neighborhood', 'BldgType', 'PorchSF', 'BSMT_HighQual', 'Fireplaces', 'Pool', 'BedroomAbvGr', 'ExterQual', 'OverallCond', 'KitchenQual', ### from radial location data 'water_tower', 'graveyard', 'police', 'optician', 'slipway', 'bar', 'cinema', 'supermarket', 'hotel', 'stop', 'farmyard', 'christian_catholic', 'jewish', 'muslim', 'garden_centre', 'christian_lutheran' ] list(radial.columns) df7 = df6.loc[:,feat_incl] df7 non_dummies = [ 'MasVnrType', 'Neighborhood', 'BldgType', 'BSMT_HighQual_bin', 'BSMT_LowQual_bin' ] dummies = [ 'Neighborhood_Blueste', 'Neighborhood_BrDale', 'Neighborhood_BrkSide', 'Neighborhood_ClearCr', 'Neighborhood_CollgCr', 'Neighborhood_Crawfor', 'Neighborhood_Edwards', 'Neighborhood_Gilbert', 'Neighborhood_Greens', 'Neighborhood_GrnHill', 'Neighborhood_IDOTRR', 'Neighborhood_Landmrk', 'Neighborhood_MeadowV', 'Neighborhood_Mitchel', 'Neighborhood_NAmes', 'Neighborhood_NPkVill', 'Neighborhood_NWAmes', 'Neighborhood_NoRidge', 'Neighborhood_NridgHt', 'Neighborhood_OldTown', 'Neighborhood_SWISU', 'Neighborhood_Sawyer', 'Neighborhood_SawyerW', 'Neighborhood_Somerst', 'Neighborhood_StoneBr', 'Neighborhood_Timber', 'Neighborhood_Veenker', 'BldgType_2fmCon', 'BldgType_Duplex', 'BldgType_Twnhs', 'BldgType_TwnhsE', 'MasVnrType_None', 'MasVnrType_Stone', 'BSMT_HighQual_bin_500-1000', 'BSMT_HighQual_bin_0-500', 'BSMT_HighQual_bin_1000-1500', 'BSMT_HighQual_bin_1500+', 'BSMT_LowQual_bin_0-500', 'BSMT_LowQual_bin_500-1000', 'BSMT_LowQual_bin_1000-1500', 'BSMT_LowQual_bin_1500+' ] def dummify(df, non_dummies, dummies): for dummified in dummies: for original in non_dummies: if original in dummified: orig_name = f'{original}_' value = dummified.replace(orig_name, '') df[dummified] = df[original].map(lambda x: 1 if x == value else 0) df = df.drop(columns = non_dummies, axis = 1) return df df7.columns df7 = dummify(df7, non_dummies, dummies) lasso_tuner4 = GridSearchCV(lasso2, params_log, cv=kfold, return_train_score = True) lasso_tuner4.fit(df7, price_log) lasso_tuner4.cv_results_['mean_test_score'] lasso_tuner4.best_params_ import pickle lasso_tuner4.best_estimator_.predict(df7) asdf = open('linear_model.txt', mode = 'wb') asdf.close() with open('linearmodel.pickle', mode = 'wb') as file: pickle.dump(lasso_tuner4.best_estimator_, file) with open('linearmodel.pickle', mode = 'rb') as file: lm = pickle.load(file) loaded_obj.predict(df7) print(loc_feat_incl, ': ', max(lasso_tuner4.cv_results_['mean_test_score']), ', ', sum(vif_df['vif'])/len(vif_df)) ###Output ['slipway', 'bar', 'farmyard', 'christian_catholic', 'jewish', 'muslim', 'garden_centre', 'christian_methodist', 'christian_evangelical', 'christian_lutheran'] : 0.9345469007364361 , 36.054356259285186 ###Markdown ['slipway', 'bar', 'cinema', 'supermarket', 'farmyard', 'christian_catholic', 'jewish', 'muslim', 'garden_centre', 'christian_methodist', 'christian_evangelical', 'christian_lutheran'] : 0.9350983215981801 , 36.054356259285186['slipway', 'bar', 'cinema', 'supermarket', 'farmyard', 'christian_catholic', 'jewish', 'muslim', 'garden_centre', 'christian_methodist', 'christian_evangelical', 'christian_lutheran'] : 0.9351894282916218 , 36.054356259285186 ###Code feat_imp_min = pd.Series(data = lasso_tuner4.best_estimator_.coef_, index = df7.columns) feat_imp_min = feat_imp_min.sort_values(ascending = False) ignored_min = feat_imp_min[feat_imp_min == 0] feat_imp_min = feat_imp_min[feat_imp_min != 0] print(len(feat_imp_min)) print(feat_imp_min) print(len(ignored_min)) print(ignored_min) vif_min = pd.DataFrame() vif_min['feature'] = df7.columns vif_min['vif'] = [variance_inflation_factor(df7.values, i) for i in range(len(df7.columns))] print(sum(vif_min['vif'])/len(vif_min)) vif_min.sort_values(by = 'vif', ascending = False) column_title_dict = { ### from original dataset 'GrLivArea' : 'Above-ground living area in sq ft', 'LotArea' : 'Lot area in sq ft', 'OverallQual' : 'Overall quality', 'BSMT_LowQual' : 'Low-quality basement area in sq ft', 'BSMT_HighQual' : 'High-quality basement area in sq ft', 'house_age_years' : 'House age in years', 'GarageCars' : 'Number of cars held by garage', 'FullBath' : 'Number of full bathrooms', 'HalfBath' : 'Number of half-bathrooms', 'BsmtExposure_ord' : 'Basement exposure', 'Neighborhood' : 'Neighborhood', 'BldgType' : 'Building type', 'PorchSF' : 'Porch area in sq ft', 'ExterQualDisc' : 'Exterior quality score - overall quality score', 'OverallCondDisc' : 'Overall condition score - overall quality score', 'KitchenQualDisc' : 'Kitchen quality score - overall quality score', 'Fireplaces' : 'Number of fireplaces', 'Pool' : 'Pool', 'BedroomAbvGr' : 'Number of bedrooms', 'ext_Asbestos_Shingles' : 'Asbestos used in walls', ### location features 'graveyard' : 'Number graveyards within 1 mile', 'police' : 'Number of police stations within 1 mile', 'optician' : 'Number of opticians within 1 mile', 'stop' : 'Number of stop signs within 1 mile', 'slipway' : 'Number of slipways within 1 mile', 'bar' : 'Number of bars within 1 mile', 'cinema' : 'Number of cinemas within 1 mile', 'supermarket' : 'Number of supermarkets within 1 mile', 'hotel' : 'Number of hotels within 1 mile', 'farmyard' : 'Number of farmyards within 1 mile', 'water_tower' : 'Number of water towers within 1 mile', 'christian_catholic' : 'Number of catholic churches within 1 mile', 'jewish' : 'Number of synagogues within 1 mile', 'muslim' : 'Number of mosques within 1 mile', 'garden_centre' : 'Number of garden centers within 1 mile', 'christian_lutheran' : 'Number of lutheran churches within 1 mile' } ###Output _____no_output_____
udemy/machine_learning_a-z_hands-on_python_&_r_in_data_science/python/simple_linear_regression_template.ipynb
###Markdown Simple Linear Regression Importing the libraries ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd ###Output _____no_output_____ ###Markdown Importing the dataset ###Code dataset = pd.read_csv('Salary_Data.csv') x = dataset.iloc[:, :-1].values y = dataset.iloc[:, -1].values ###Output _____no_output_____ ###Markdown Splitting the dataset into the Training set and Test set ###Code from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 1/3, random_state = 0) ###Output _____no_output_____ ###Markdown Training the Simple Linear Regression model on the Training set ###Code from sklearn.linear_model import LinearRegression regressor = LinearRegression() regressor.fit(x_train, y_train) ###Output _____no_output_____ ###Markdown Predicting the Test set results ###Code y_pred = regressor.predict(x_test) ###Output _____no_output_____ ###Markdown Visualising the Training set results ###Code plt.scatter(x_train, y_train, color = 'red') plt.plot(x_train, regressor.predict(x_train), color = 'blue') plt.title('Salary vs Experience (Training set)') plt.xlabel('Years of Experience') plt.ylabel('Salary') plt.show() ###Output _____no_output_____ ###Markdown Visualising the Test set results ###Code plt.scatter(x_test, y_test, color = 'red') plt.plot(x_train, regressor.predict(x_train), color = 'blue') plt.title('Salary vs Experience (Test set)') plt.xlabel('Years of Experience') plt.ylabel('Salary') plt.show() ###Output _____no_output_____ ###Markdown Making a single prediction (for example the salary of an employee with 12 years of experience) ###Code print(regressor.predict([[12]])) ###Output _____no_output_____ ###Markdown Getting the final linear regression equation with the values of the coefficients ###Code print(regressor.coef_) print(regressor.intercept_) ###Output [9345.94244312] 26816.19224403119
examples/.ipynb_checkpoints/homework6-checkpoint.ipynb
###Markdown Greedy PiracyBitTorrent allows people to download movies without staying strictly within the confines of the law, but because of the peer to peer naturre of the download, the file will not download sequentially. The VLC player can play the incomplete movie, but if it encounters a missing chunk while streaming it will fail.A pirate is downloading _Avengers: Infinity War_, which is 149 minutes long and 12.91 GB. The priate has been watching the download speed, and has reccorded a list of download speeds in megabytes per second, each sampled over two seconds. The torrent is downloaded in 4 MB chunks in a random order.If the pirate starts watching the movie when the client says it is $x$ percent downloaded, what is the probability that they can watch the entire movie without encountering a missing chunk? For this I'll assume that all missing chunks are equally likely to be downloaded, and that chunk reception is a poisson process.The priate, being a l33t hax0r, has used wireshark to obtain a list of arrival times for chunks, to be used in modeling. ###Code # Configure Jupyter so figures appear in the notebook %matplotlib inline # Configure Jupyter to display the assigned value after an assignment %config InteractiveShell.ast_node_interactivity='last_expr_or_assign' import numpy as np import pandas as pd from scipy.stats import poisson, norm import pymc3 as pm from math import ceil from thinkbayes2 import Suite,Joint,Pmf,MakePoissonPmf,MakeNormalPmf import thinkplot import pandas as pd from math import exp fileSize = 12.91*1000; #MB chunkSize = 4; fileSize = fileSize/chunkSize; #flie size in chunks runtime = 149*60; #s data = pd.read_csv('torrent pieces.csv') #wireshark dump data = data[data.Info=="Piece[Malformed Packet]"] #this finds the piece packets times = np.array(data.Time); times = times[45:] #dump the initial times, they aren't representitive interTimes = np.diff(times) lamPrior = np.linspace(0.5,1.6); class Chunk(Suite): def Likelihood(self, inter, lam): return lam*exp(-lam*inter) lamSuite = Chunk(lamPrior) lamSuite.UpdateSet(interTimes) thinkplot.Pdf(lamSuite) thinkplot.decorate(title="PMF for $\lambda$",xlabel="$\lambda$ (chunks/s)",ylabel="PMF") print(lamSuite.Mean()) ###Output 1.0925243203772743 ###Markdown Here's a histogram of the interarrival times:![](interTimes.png)That looks a exponential, so I'd say it was ok to model chunk arival as a poisson process.For now let's do the forward problem, assuming that we know $\lambda$ (the mean download rate in chunks per second) exactly. This will help us find an easy optimization. ###Code lam = lamSuite.Mean() nChunks = ceil(fileSize); #number of chunks in the file sPerChunk = runtime/nChunks; #how long each chunk takes to play def PHaveChunkSlow(t): """ Probability that we have a specific chunk by time t """ pmf = MakePoissonPmf(lam*t,nChunks) #probabilities that have each number of chunks, 0-nChunks pHave = 0; for n,p in pmf.Items(): pHave += (n/nChunks)*p return pHave def PHaveChunk(t): n = min(lam*t,nChunks) return n/nChunks ts = np.linspace(0,4000); ps = [PHaveChunkSlow(t) for t in ts]; ps2 = [PHaveChunk(t) for t in ts]; thinkplot.plot(ts,ps,label='correct') thinkplot.plot(ts,ps2,label='approx') thinkplot.decorate(title='Probability of having a specific chunk over time', xlabel='time (s)', ylabel='probability') ###Output _____no_output_____ ###Markdown It looks like the native interpretation, where the probability of having a specific chunk at time t is$$P=\frac{\min(\lambda t,N)}{N}$$(where $N$ is the total number of chunks) is very close to the 'correct' implementation where$$P=\sum_{n=0}^N \frac{n\cdot\text{poisson}(n;\lambda t)}{N}$$but the approximate solution is much faster, so let's go with that.Now we can predict how likely the priate is to be able to watch the movie uninterrupted. ###Code #we need a specific chunk every sPerChunk seconds to not break VLC ts = np.linspace(0,runtime, ceil(runtime/sPerChunk)+1); def PHaveChunk(x,t,lam): n0 = x*nChunks #number of chunks at the begining n = min(lam*t+n0,nChunks) #number of chunks at time t return n/nChunks def PSuccess(x,lam,ts=ts): """ probability of getting all the way through the movie without missing a chunk having started watching at x percent downloaded """ ps = [PHaveChunk(x, t, lam) for t in ts]; return np.product(ps) xs = np.linspace(0,1); ps = [PSuccess(x,lam) for x in xs]; thinkplot.plot(xs,ps) thinkplot.decorate(title='Probability of finishing the movie for different starting percentages', xlabel='starting percentage', ylabel='probability') ###Output _____no_output_____ ###Markdown And we can now sum that over our $\lambda$ suite to find the real prediction: ###Code xs = np.linspace(0.8,1); psTotal = np.zeros(len(xs)); for lam,p in lamSuite.Items(): ps = [PSuccess(x,lam) for x in xs]; psTotal += np.array(ps)*p thinkplot.plot(xs,ps) thinkplot.decorate(title='Probability of finishing the movie for different starting percentages', xlabel='starting percentage', ylabel='probability') ###Output _____no_output_____ ###Markdown And would you look at that, nothing really changed. To answer the question, it looks like the pirate will have to wait until the movie is about 90% downloaded before they have any chance of finishing it, and they will have to wait until 95% downloaded to have a 50-50 shot. ###Code def P(x,t): pTot = 0 ts = ts = np.linspace(0, t, ceil(t/sPerChunk)+1) for lam,p in lamSuite.Items(): pTot += p*PSuccess(x,lam,ts) return pTot ps = [P(0.6,t) for t in ts] ###Output _____no_output_____
notebooks/prepare_and_index_news.ipynb
###Markdown Load real corona news and data to index ###Code import pandas as pd import os import random import json data_path = "../data/" fake_news_path = os.path.join(data_path+"fake_news/", "fake_news_corona.csv") news_data_frame = pd.read_csv(fake_news_path, sep=";", encoding="utf8", names=["fake","real","real_url"]) news_data_frame.head() ###Output _____no_output_____ ###Markdown Create dataset ###Code dataset_path = "../data/preprocessed/" data_file = os.path.join(dataset_path, "fake_news_train.tsv") data_frame = pd.DataFrame(columns=["text", "label"]) for index, row in news_data_frame.iterrows(): fake = row["fake"] data_frame = data_frame.append({"text": fake, "label": "fake"}, ignore_index=True) real = row["real"] if not pd.isna(real): data_frame = data_frame.append({"text": real, "label": "real"}, ignore_index=True) real_url = row["real_url"] data_frame.to_csv(data_file, sep="\t", encoding="utf8", index=False) ###Output _____no_output_____ ###Markdown Create mock jsons ###Code from geopy.geocoders import Nominatim geolocator = Nominatim(user_agent="specify_your_app_name_here") cities = ["Berlin", "München", "Hamburg", "Stuttgart", "Köln", "Heinsberg", "Bremen", "Potsdam", "Mannheim", "Darmstadt", "Kaiserslautern", "Nürnberg", "Freiburg"] locations = [] for city in cities: location = geolocator.geocode(city) locations.append(location) jsons = list() for index, row in news_data_frame.iterrows(): template = dict() fake = row["fake"] real = row["real"] real_url = row["real_url"] template["text"] = fake fake_prob = random.random() fake_prob = max(1-fake_prob, fake_prob) template["classification"] = { "fake": fake_prob, "unknown": 0.0, "real": 1-fake_prob } template["evidence"] = [] if not pd.isna(real): template["evidence"].append({ "title": "Real title", "text": real, "url": real_url if pd.isna(real_url) else None, "for_class": "real" }) location = random.choice(locations) template["derived"] = dict() template["derived"]["locations"] = [{ "country": "Deutschland", "country_code": "DE", "locality": "Deutschland", "region": "Bundesland", "sub_region": "Landkreis", "full_name": str(location), "geo": { "coordinates": [ location.latitude, location.longitude ], "type": "point" } } ] jsons.append(template) # save list in file with open("../data/mock_jsons/mock_jsons.json","w+", encoding="utf8", newline='') as json_file: json.dump(jsons, json_file, indent=2, ensure_ascii=False) ###Output _____no_output_____
notebooks/ExploringDriveProGPS.ipynb
###Markdown Exploring DrivePro GPS formatThe Transcend DrivePro 220 exports its videos in Quicktime MOV format, in a way that also includes GPS information every second in the video. This information can be viewed using their Windows and/or Mac apps, but not exported. This notebook will attempt to get to the bottom of how the GPS data is stored, so I can use this dashcam to provide data to the OpenStreetView project. The Quicktime `.mov` files exported by the dashcam do appear to have a custom tag, which can be extracted using the `Unknown_gps` tag using `exiftool` (or `pyexiftool` in this case). Let's choose a video ([this one](sample/2017_0706_093256_013.MOV)), and see how far we can get: ###Code video = 'sample/2017_0706_093256_013.MOV' # use exiftool to load the gps tag import exiftool import base64 import numpy as np with exiftool.ExifTool() as et: data = et.get_tag('Unknown_gps', video) # decode the base64 data to a byte-string assert data.startswith('base64:') data = base64.b64decode(data[len('base64:'):]) # convert the byte string to a numpy array data = np.frombuffer(data, dtype=np.uint8) # and reshape into 8 bytes per sample data = data.reshape((-1,8)) ###Output _____no_output_____ ###Markdown Now that we have the data, let's see if anything useful is apparent ###Code from matplotlib import pyplot as plt f, ax = plt.subplots(data.shape[1], 1, figsize=(20,10), sharex='col') for i in range(data.shape[1]): ax[i].plot(data[:,i]) ax[i].legend(['byte {}'.format(i)], loc='upper right') ###Output _____no_output_____ ###Markdown We can see that byte 0 and 1 (of every 8 bytes) appears to be related to a timestamp, and bytes 4-7 appear to largely be unchanging.Let's have a closer look at bytes 2 and 3 and see if we can see anything in them: ###Code f, ax = plt.subplots(1, 1, figsize=(10,10)) ax.plot(data[:,2],data[:,3],'o-') ax.set_xlabel('Byte 2') ax.set_ylabel('Byte 3') ###Output _____no_output_____
Fut-Brasileiro.ipynb
###Markdown Utilização de algoritmos de inteligência artificial na previsão de resultados de partidas de futebol Estudo e comparação do desempenho de diferentes algoritmos de inteligência artificialTCC do curso de Ciência da Computação do Instituto Federal do Triângulo Mineiro - Campus ItuiutabaAutor: Olesio Gardenghi Neto Pré-processamento dos dados ###Code # Import das bibliotecas que serão utilizadas import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings from sklearn import preprocessing from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report, confusion_matrix from sklearn.model_selection import GridSearchCV from sklearn.model_selection import cross_val_score # Silenciando os warnings warnings.filterwarnings("ignore") # Mudando o estilo de plot dos gráficos plt.style.use('seaborn') # Comando para mostrar os gráficos dentro do Jupyter %matplotlib inline # Lendo a base de dados e transformando em dataframe df = pd.read_csv("data/Brasileirao2012.csv") df.head() df.columns df.describe() # Selecionando apenas as características que nos interessa df = df[['assistances', 'receivedBalls', 'recoveredBalls', 'lostBalls', 'yellowCards', 'redCards', 'receivedCrossBalls', 'missedCrossBalls', 'defenses', 'sucessfulTackles','unsucessfulTackles','sucessfulDribles', 'unsucessfulDribles', 'givenCorners', 'receivedCorners', 'receivedFouls', 'committedFouls', 'goodFinishes','badFinishes', 'ownGoals', 'offsides','sucessfulLongPasses', 'unsucessfulLongPasses', 'sucessfulPasses', 'unsucessfulPasses', 'win', 'draw', 'defeat']] df.head() # Junção das 3 colunas de resultados em uma só def convert_output(source): target = source.copy() #make a copy from source target['new'] = 2 #create a new column and initialize it with a random value for i, rows in target.iterrows(): if rows['win'] == 1: rows['new'] = 2 if rows['draw'] == 1: rows['new'] = 1 if rows['defeat'] == 1: rows['new'] = 0 return target.iloc[:, -1] # return all rows, and only the last column df['FTR'] = convert_output(df[['win','draw','defeat']]) df.drop(['win','draw','defeat'],axis=1, inplace=True) df.head() df.info() df.isnull().sum() df.dropna(inplace=True) df.head() # 0 - Derrota, 1 - Empate, 2 - Vitória sns.countplot(x='FTR', data=df) # Normalizando os dados com o StandardScaler # A distribuição dos dados será transformada tal que sua média = 0 e o desvio padrão = 1 # z = (x-u)/σ # x = dados, u = média, σ = desvio padrão scaler = StandardScaler() scaler.fit(df.drop(['FTR'],axis=1)) dados_normalizados = scaler.transform(df.drop(['FTR'],axis=1)) df_normalizado = pd.DataFrame(dados_normalizados, columns=df.columns[:-1]) df = df[['FTR']] df = pd.concat([df, df_normalizado], axis=1, sort=False) df.dropna(inplace=True) df.head() #Mapa de calor de correlações sns.heatmap(df.corr(),linewidths=0.1,linecolor="black") ###Output _____no_output_____ ###Markdown Aplicando os algoritmos de IA ###Code # Características X = df.drop('FTR',axis=1) # Alvo da previsão y = df['FTR'] # Divisão treino/teste X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3, random_state=101) df_y_test = y_test.reset_index() df_y_test.drop('index',axis=1, inplace=True) ###Output _____no_output_____ ###Markdown Regressão Logística ###Code from sklearn.linear_model import LogisticRegression logistic_regression = LogisticRegression(solver='lbfgs', multi_class='auto') logistic_regression.fit(X_train, y_train) predict_logistic_regression = logistic_regression.predict(X_test) reg_log_all = logistic_regression.score(X_test, y_test) * 100 cross_log_all = max(cross_val_score(logistic_regression, X, y, cv=10)) * 100 print(classification_report(y_test,predict_logistic_regression)) print(confusion_matrix(y_test,predict_logistic_regression)) print('\nScore Regressão Logística: %.2f' %reg_log_all + "%") print('\nScore Regressão Logística Cross Validation: %.2f' %cross_log_all + "%") plt.figure(figsize=(25, 5)) plt.plot(df_y_test, 'go', ms=15, label='Real') plt.plot(predict_logistic_regression, '+', color='black', ms=10, markeredgewidth=2, label='Predicted') plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize = 'xx-large') plt.ylabel('FTR',fontsize=16) plt.xlabel('Número',fontsize=16) plt.title('Regressão Logística',fontsize=20) plt.show() ###Output _____no_output_____ ###Markdown Árvore de Decisão ###Code from sklearn.tree import DecisionTreeClassifier decision_tree = DecisionTreeClassifier() decision_tree.fit(X_train, y_train) predict_decision_tree = decision_tree.predict(X_test) dec_tree_all = decision_tree.score(X_test, y_test) * 100 cross_dec_tree_all = max(cross_val_score(decision_tree, X, y, cv=10)) * 100 print(classification_report(y_test,predict_decision_tree)) print(confusion_matrix(y_test,predict_decision_tree)) print('\nScore Árvore de Decisão: %.2f' %dec_tree_all + "%") print('\nScore Árvore de Decisão Cross Validation: %.2f' %cross_dec_tree_all + "%") plt.figure(figsize=(25, 5)) plt.plot(df_y_test, 'go', ms=15, label='Real') plt.plot(predict_decision_tree, '+', color='black', ms=10, markeredgewidth=2, label='Predicted') plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize = 'xx-large') plt.ylabel('FTR',fontsize=16) plt.xlabel('Número',fontsize=16) plt.title('Árvore de Decisão',fontsize=20) plt.show() ###Output _____no_output_____ ###Markdown Floresta Aleatória ###Code from sklearn.ensemble import RandomForestClassifier #Método do cotovelo error_rate = [] for i in range(1,200): random_forest = RandomForestClassifier(n_estimators=i) random_forest.fit(X_train, y_train) predict_random_forest = random_forest.predict(X_test) error_rate.append(np.mean(predict_random_forest!=y_test)) plt.figure(figsize=(14,8)) plt.plot(range(1,200),error_rate,color="blue",linestyle='dashed',marker='o',markerfacecolor='red') plt.xlabel('N') plt.ylabel("Taxa de erro") plt.title("Taxa de erro vs. Número estimativas") random_forest = RandomForestClassifier(n_estimators=error_rate.index(min(error_rate))) random_forest.fit(X_train, y_train) predict_random_forest = random_forest.predict(X_test) rand_for_all = random_forest.score(X_test, y_test) * 100 cross_rand_for_all = max(cross_val_score(random_forest, X, y, cv=10)) * 100 print(classification_report(y_test,predict_random_forest)) print(confusion_matrix(y_test,predict_random_forest)) print('\nScore Floresta Aleatória: %.2f' %rand_for_all + "%") print("\nScore Floresta Aleatória: %.2f" %cross_rand_for_all + "%") plt.figure(figsize=(25, 5)) plt.plot(df_y_test, 'go', ms=15, label='Real') plt.plot(predict_random_forest, '+', color='black', ms=10, markeredgewidth=2, label='Predicted') plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize = 'xx-large') plt.ylabel('FTR',fontsize=16) plt.xlabel('Número',fontsize=16) plt.title('Floresta Aleatória',fontsize=20) plt.show() ###Output _____no_output_____ ###Markdown K Nearest Neighbours (KNN) ###Code from sklearn.neighbors import KNeighborsClassifier error_rate = [] for i in range(1,40): knn = KNeighborsClassifier(n_neighbors=i) knn.fit(X_train, y_train) predict_knn = knn.predict(X_test) error_rate.append(np.mean(predict_knn!=y_test)) plt.figure(figsize=(14,8)) plt.plot(range(1,40),error_rate,color="blue",linestyle='dashed',marker='o',markerfacecolor='red') plt.xlabel('N') plt.ylabel("Taxa de erro") plt.title("Taxa de erro vs. Número estimativas") knn = KNeighborsClassifier(n_neighbors=error_rate.index(min(error_rate))) knn.fit(X_train, y_train) predict_knn = knn.predict(X_test) knn_all = knn.score(X_test, y_test) * 100 cross_knn_all = max(cross_val_score(knn, X, y, cv=10)) * 100 print(classification_report(y_test,predict_knn)) print(confusion_matrix(y_test,predict_knn)) print('\nScore KNN: %.2f' %knn_all + "%") print("\nScore KNN Cross Validation: %.2f" %cross_knn_all + "%") plt.figure(figsize=(25, 5)) plt.plot(df_y_test, 'go', ms=15, label='Real') plt.plot(predict_knn, '+', color='black', ms=10, markeredgewidth=2, label='Predicted') plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize = 'xx-large') plt.ylabel('FTR',fontsize=16) plt.xlabel('Número',fontsize=16) plt.title('KNN',fontsize=20) plt.show() ###Output _____no_output_____ ###Markdown Support-vector Machine (SVM) ###Code from sklearn.svm import SVC param_grid = {'C':[0.1,1,10,100,1000],'gamma': [1,0.1,0.01,0.001,0.001], 'kernel':['rbf']} grid = GridSearchCV(SVC(),param_grid,refit=True,cv=10,iid=False) grid.fit(X_train, y_train) predict_svm = grid.predict(X_test) svm_all = grid.score(X_test, y_test) * 100 cross_svm_all = max(cross_val_score(grid, X, y, cv=10)) * 100 print(confusion_matrix(y_test,predict_svm)) print('\nScore SVM: %.2f' %svm_all + "%") print("\nScore SVM Cross Validation: %.2f" %cross_svm_all + "%") plt.figure(figsize=(25, 5)) plt.plot(df_y_test, 'go', ms=15, label='Real') plt.plot(predict_svm, '+', color='black', ms=10, markeredgewidth=2, label='Predicted') plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize = 'xx-large') plt.ylabel('FTR',fontsize=16) plt.xlabel('Número',fontsize=16) plt.title('SVM',fontsize=20) plt.show() ###Output _____no_output_____ ###Markdown Multi-layer Perceptron Classifier ###Code from sklearn.neural_network import MLPClassifier mlp_classifier = MLPClassifier(hidden_layer_sizes=(2,8), activation='logistic', solver='adam', max_iter=1000) mlp_classifier.fit(X_train,y_train) predict_mlp_classifier = mlp_classifier.predict(X_test) mlp_all = mlp_classifier.score(X_test, y_test) * 100 cross_mlp_all = max(cross_val_score(mlp_classifier, X, y, cv=10)) * 100 #print(classification_report(y_test,predict_mlp)) print(confusion_matrix(y_test,predict_mlp_classifier)) print('\nScore MLP: %.2f' %mlp_all + "%") print("\nScore MLP Cross Validation: %.2f" %cross_mlp_all + "%") plt.figure(figsize=(25, 5)) plt.plot(df_y_test, 'go', ms=15, label='Real') plt.plot(predict_mlp_classifier, '+', color='black', ms=10, markeredgewidth=2, label='Predicted') plt.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize = 'xx-large') plt.ylabel('FTR',fontsize=16) plt.xlabel('Número',fontsize=16) plt.title('MLP',fontsize=20) plt.show() ###Output _____no_output_____ ###Markdown Resultados finais ###Code print('\nRegressão logística: %.2f' %reg_log_all + "%") print('\nÁrvore de decisão: %.2f' %dec_tree_all + "%") print('\nFloresta aleatória: %.2f' %rand_for_all + "%") print('\nKNN: %.2f' %knn_all + "%") print('\nSVM: %.2f' %svm_all + "%") print('\nMLP: %.2f' %mlp_all + "%") print("Cross Validation") print('\nRegressão logística: %.2f' %cross_log_all + "%") print('\nÁrvore de decisão: %.2f' %cross_dec_tree_all + "%") print('\nFloresta aleatória: %.2f' %cross_rand_for_all + "%") print('\nKNN: %.2f' %cross_knn_all + "%") print('\nSVM: %.2f' %cross_svm_all + "%") print('\nMLP: %.2f' %cross_mlp_all + "%") ###Output Cross Validation Regressão logística: 58.67% Árvore de decisão: 54.67% Floresta aleatória: 54.67% KNN: 49.33% SVM: 60.00% MLP: 53.33% ###Markdown Outra abordagem Vitória x Derrota ###Code # 2 - Vitória, 0 - Derrota, 1 - Empate df_cxf = df[df['FTR'] != 1] df_cxf.head() sns.countplot(x='FTR', data=df_cxf) # Características X = df_cxf.drop('FTR',axis=1) # Alvo da previsão y = df_cxf['FTR'] # Divisão treino/teste X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3, random_state=101) # Regressão Logística logistic_regression = LogisticRegression(solver='lbfgs', multi_class='auto') logistic_regression.fit(X_train, y_train) predict_logistic_regression = logistic_regression.predict(X_test) reg_log_cxf = logistic_regression.score(X_test, y_test) * 100 cross_log_cxf = max(cross_val_score(logistic_regression, X, y, cv=10)) * 100 # Árvore de Decisão decision_tree = DecisionTreeClassifier() decision_tree.fit(X_train, y_train) predict_decision_tree = decision_tree.predict(X_test) dec_tree_cxf = decision_tree.score(X_test, y_test) * 100 cross_dec_tree_cxf = max(cross_val_score(decision_tree, X, y, cv=10)) * 100 # Floresta Aleatória error_rate = [] for i in range(1,200): random_forest = RandomForestClassifier(n_estimators=i) random_forest.fit(X_train, y_train) predict_random_forest = random_forest.predict(X_test) error_rate.append(np.mean(predict_random_forest!=y_test)) random_forest = RandomForestClassifier(n_estimators=error_rate.index(min(error_rate))) random_forest.fit(X_train, y_train) predict_random_forest = random_forest.predict(X_test) rand_for_cxf = random_forest.score(X_test, y_test) * 100 cross_rand_for_cxf = max(cross_val_score(random_forest, X, y, cv=10)) * 100 # KNN error_rate = [] for i in range(1,40): knn = KNeighborsClassifier(n_neighbors=i) knn.fit(X_train, y_train) predict_knn = knn.predict(X_test) error_rate.append(np.mean(predict_knn!=y_test)) knn = KNeighborsClassifier(n_neighbors=error_rate.index(min(error_rate))) knn.fit(X_train, y_train) predict_knn = knn.predict(X_test) knn_cxf = knn.score(X_test, y_test) * 100 cross_knn_cxf = max(cross_val_score(knn, X, y, cv=10)) * 100 # SVM param_grid = {'C':[0.1,1,10,100,1000],'gamma': [1,0.1,0.01,0.001,0.001], 'kernel':['rbf']} grid = GridSearchCV(SVC(),param_grid,refit=True,cv=10,iid=False) grid.fit(X_train, y_train) predict_svm = grid.predict(X_test) svm_cxf = grid.score(X_test, y_test) * 100 cross_svm_cxf = max(cross_val_score(grid, X, y, cv=10)) * 100 # MLP mlp_classifier = MLPClassifier(hidden_layer_sizes=(2,8), activation='logistic', solver='adam', max_iter=1000) mlp_classifier.fit(X_train,y_train) predict_mlp_classifier = mlp_classifier.predict(X_test) mlp_cxf = mlp_classifier.score(X_test, y_test) * 100 cross_mlp_cxf = max(cross_val_score(mlp_classifier, X, y, cv=10)) * 100 print('\nRegressão logística: %.2f' %reg_log_cxf + "%") print('\nÁrvore de decisão: %.2f' %dec_tree_cxf + "%") print('\nFloresta aleatória: %.2f' %rand_for_cxf + "%") print('\nKNN: %.2f' %knn_cxf + "%") print('\nSVM: %.2f' %svm_cxf + "%") print('\nMLP: %.2f' %mlp_cxf + "%") print("Cross Validation") print('\nRegressão logística: %.2f' %cross_log_cxf + "%") print('\nÁrvore de decisão: %.2f' %cross_dec_tree_cxf + "%") print('\nFloresta aleatória: %.2f' %cross_rand_for_cxf + "%") print('\nKNN: %.2f' %cross_knn_cxf + "%") print("\nSVM: %.2f" %cross_svm_cxf + "%") print('\nMLP: %.2f' %cross_mlp_cxf + "%") ###Output Cross Validation Regressão logística: 83.33% Árvore de decisão: 64.81% Floresta aleatória: 79.63% KNN: 75.93% SVM: 81.48% MLP: 75.93% ###Markdown Vitória x Empate ###Code # 2 - Casa, 0 - Fora, 1 - Empate df_cxe = df[df['FTR'] != 0] df_cxe.head() sns.countplot(x='FTR', data=df_cxe) # Características X = df_cxe.drop('FTR',axis=1) # Alvo da previsão y = df_cxe['FTR'] # Divisão treino/teste X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3, random_state=101) # Regressão Logística logistic_regression = LogisticRegression(solver='lbfgs', multi_class='auto') logistic_regression.fit(X_train, y_train) predict_logistic_regression = logistic_regression.predict(X_test) reg_log_cxe = logistic_regression.score(X_test, y_test) * 100 cross_log_cxe = max(cross_val_score(logistic_regression, X, y, cv=10)) * 100 # Árvore de Decisão decision_tree = DecisionTreeClassifier() decision_tree.fit(X_train, y_train) predict_decision_tree = decision_tree.predict(X_test) dec_tree_cxe = decision_tree.score(X_test, y_test) * 100 cross_dec_tree_cxe = max(cross_val_score(decision_tree, X, y, cv=10)) * 100 # Floresta Aleatória error_rate = [] for i in range(1,200): random_forest = RandomForestClassifier(n_estimators=i) random_forest.fit(X_train, y_train) predict_random_forest = random_forest.predict(X_test) error_rate.append(np.mean(predict_random_forest!=y_test)) random_forest = RandomForestClassifier(n_estimators=error_rate.index(min(error_rate))) random_forest.fit(X_train, y_train) predict_random_forest = random_forest.predict(X_test) rand_for_cxe = random_forest.score(X_test, y_test) * 100 cross_rand_for_cxe = max(cross_val_score(random_forest, X, y, cv=10)) * 100 # KNN error_rate = [] for i in range(1,40): knn = KNeighborsClassifier(n_neighbors=i) knn.fit(X_train, y_train) predict_knn = knn.predict(X_test) error_rate.append(np.mean(predict_knn!=y_test)) knn = KNeighborsClassifier(n_neighbors=error_rate.index(min(error_rate))) knn.fit(X_train, y_train) predict_knn = knn.predict(X_test) knn_cxe = knn.score(X_test, y_test) * 100 cross_knn_cxe = max(cross_val_score(knn, X, y, cv=10)) * 100 # SVM param_grid = {'C':[0.1,1,10,100,1000],'gamma': [1,0.1,0.01,0.001,0.001], 'kernel':['rbf']} grid = GridSearchCV(SVC(),param_grid,refit=True,cv=10,iid=False) grid.fit(X_train, y_train) predict_svm = grid.predict(X_test) svm_cxe = grid.score(X_test, y_test) * 100 cross_svm_cxe = max(cross_val_score(grid, X, y, cv=10)) * 100 # MLP mlp_classifier = MLPClassifier(hidden_layer_sizes=(2,8), activation='logistic', solver='adam', max_iter=1000) mlp_classifier.fit(X_train,y_train) predict_mlp_classifier = mlp_classifier.predict(X_test) mlp_cxe = mlp_classifier.score(X_test, y_test) * 100 cross_mlp_cxe = max(cross_val_score(mlp_classifier, X, y, cv=10)) * 100 print('\nRegressão logística: %.2f' %reg_log_cxe + "%") print('\nÁrvore de decisão: %.2f' %dec_tree_cxe + "%") print('\nFloresta aleatória: %.2f' %rand_for_cxe + "%") print('\nKNN: %.2f' %knn_cxe + "%") print('\nSVM: %.2f' %svm_cxe + "%") print('\nMLP: %.2f' %mlp_cxe + "%") print("Cross Validation") print('\nRegressão logística: %.2f' %cross_log_cxe + "%") print('\nÁrvore de decisão: %.2f' %cross_dec_tree_cxe + "%") print('\nFloresta aleatória: %.2f' %cross_rand_for_cxe + "%") print('\nKNN: %.2f' %cross_knn_cxe + "%") print('\nSVM: %.2f' %cross_svm_cxe + "%") print('\nMLP: %.2f' %cross_mlp_cxe + "%") ###Output Cross Validation Regressão logística: 66.67% Árvore de decisão: 60.42% Floresta aleatória: 68.75% KNN: 68.75% SVM: 68.75% MLP: 57.14% ###Markdown Derrota x Empate ###Code # 2 - Casa, 0 - Fora, 1 - Empate df_fxe = df[df['FTR'] != 2] df_fxe.head() sns.countplot(x='FTR', data=df_fxe) # Características X = df_fxe.drop('FTR',axis=1) # Alvo da previsão y = df_fxe['FTR'] # Divisão treino/teste X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.3, random_state=101) # Regressão Logística logistic_regression = LogisticRegression(solver='lbfgs', multi_class='auto') logistic_regression.fit(X_train, y_train) predict_logistic_regression = logistic_regression.predict(X_test) reg_log_fxe = logistic_regression.score(X_test, y_test) * 100 cross_log_fxe = max(cross_val_score(logistic_regression, X, y, cv=10)) * 100 # Árvore de Decisão decision_tree = DecisionTreeClassifier() decision_tree.fit(X_train, y_train) predict_decision_tree = decision_tree.predict(X_test) dec_tree_fxe = decision_tree.score(X_test, y_test) * 100 cross_dec_tree_fxe = max(cross_val_score(decision_tree, X, y, cv=10)) * 100 # Floresta Aleatória error_rate = [] for i in range(1,200): random_forest = RandomForestClassifier(n_estimators=i) random_forest.fit(X_train, y_train) predict_random_forest = random_forest.predict(X_test) error_rate.append(np.mean(predict_random_forest!=y_test)) random_forest = RandomForestClassifier(n_estimators=error_rate.index(min(error_rate))) random_forest.fit(X_train, y_train) predict_random_forest = random_forest.predict(X_test) rand_for_fxe = random_forest.score(X_test, y_test) * 100 cross_rand_for_fxe = max(cross_val_score(random_forest, X, y, cv=10)) * 100 # KNN error_rate = [] for i in range(1,40): knn = KNeighborsClassifier(n_neighbors=i) knn.fit(X_train, y_train) predict_knn = knn.predict(X_test) error_rate.append(np.mean(predict_knn!=y_test)) knn = KNeighborsClassifier(n_neighbors=error_rate.index(min(error_rate))) knn.fit(X_train, y_train) predict_knn = knn.predict(X_test) knn_fxe = knn.score(X_test, y_test) * 100 cross_knn_fxe = max(cross_val_score(knn, X, y, cv=10)) * 100 # SVM param_grid = {'C':[0.1,1,10,100,1000],'gamma': [1,0.1,0.01,0.001,0.001], 'kernel':['rbf']} grid = GridSearchCV(SVC(),param_grid,refit=True,cv=10,iid=False) grid.fit(X_train, y_train) predict_svm = grid.predict(X_test) svm_fxe = grid.score(X_test, y_test) * 100 cross_svm_fxe = max(cross_val_score(grid, X, y, cv=10)) * 100 # MLP mlp_classifier = MLPClassifier(hidden_layer_sizes=(2,8), activation='logistic', solver='adam', max_iter=1000) mlp_classifier.fit(X_train,y_train) predict_mlp_classifier = mlp_classifier.predict(X_test) mlp_fxe = mlp_classifier.score(X_test, y_test) * 100 cross_mlp_fxe = max(cross_val_score(mlp_classifier, X, y, cv=10)) * 100 print('\nRegressão logística: %.2f' %reg_log_fxe + "%") print('\nÁrvore de decisão: %.2f' %dec_tree_fxe + "%") print('\nFloresta aleatória: %.2f' %rand_for_fxe + "%") print('\nKNN: %.2f' %knn_fxe + "%") print('\nSVM: %.2f' %svm_fxe + "%") print('\nMLP: %.2f' %mlp_fxe + "%") print("Cross Validation") print('\nRegressão logística: %.2f' %cross_log_fxe + "%") print('\nÁrvore de decisão: %.2f' %cross_dec_tree_fxe + "%") print('\nFloresta aleatória: %.2f' %cross_rand_for_fxe + "%") print('\nKNN: %.2f' %cross_knn_fxe + "%") print('\nSVM: %.2f' %cross_svm_fxe + "%") print('\nMLP: %.2f' %cross_mlp_fxe + "%") ###Output Cross Validation Regressão logística: 60.42% Árvore de decisão: 62.50% Floresta aleatória: 62.50% KNN: 56.25% SVM: 56.25% MLP: 57.14% ###Markdown Resultados ###Code print("Casa x Fora x Empate") print('\nRegressão logística: %.2f' %reg_log_all + "%") print('\nÁrvore de decisão: %.2f' %dec_tree_all + "%") print('\nFloresta aleatória: %.2f' %rand_for_all + "%") print('\nKNN: %.2f' %knn_all + "%") print("\nSVM: %.2f" %svm_all + "%") print('\nMLP: %.2f' %mlp_all + "%") print("\nCross Validation") print('\nRegressão logística: %.2f' %cross_log_all + "%") print('\nÁrvore de decisão: %.2f' %cross_dec_tree_all + "%") print('\nFloresta aleatória: %.2f' %cross_rand_for_all + "%") print('\nKNN: %.2f' %cross_knn_all + "%") print('\nSVM: %.2f' %cross_svm_all + "%") print('\nMLP: %.2f' %cross_mlp_all + "%") print("\n\nCasa x Fora") print('\nRegressão logística: %.2f' %reg_log_cxf + "%") print('\nÁrvore de decisão: %.2f' %dec_tree_cxf + "%") print('\nFloresta aleatória: %.2f' %rand_for_cxf + "%") print('\nKNN: %.2f' %knn_cxf + "%") print("\nSVM: %.2f" %svm_cxf + "%") print('\nMLP: %.2f' %mlp_cxf + "%") print("\nCross Validation") print('\nRegressão logística: %.2f' %cross_log_cxf + "%") print('\nÁrvore de decisão: %.2f' %cross_dec_tree_cxf + "%") print('\nFloresta aleatória: %.2f' %cross_rand_for_cxf + "%") print('\nKNN: %.2f' %cross_knn_cxf + "%") print('\nSVM: %.2f' %cross_svm_cxf + "%") print('\nMLP: %.2f' %cross_mlp_cxf + "%") print("\n\nCasa x Empate") print('\nRegressão logística: %.2f' %reg_log_cxe + "%") print('\nÁrvore de decisão: %.2f' %dec_tree_cxe + "%") print('\nFloresta aleatória: %.2f' %rand_for_cxe + "%") print('\nKNN: %.2f' %knn_cxe + "%") print("\nSVM: %.2f" %svm_cxe + "%") print('\nMLP: %.2f' %mlp_cxe + "%") print("\nCross Validation") print('\nRegressão logística: %.2f' %cross_log_cxe + "%") print('\nÁrvore de decisão: %.2f' %cross_dec_tree_cxe + "%") print('\nFloresta aleatória: %.2f' %cross_rand_for_cxe + "%") print('\nKNN: %.2f' %cross_knn_cxe + "%") print('\nSVM: %.2f' %cross_svm_cxe + "%") print('\nMLP: %.2f' %cross_mlp_cxe + "%") print("\n\nFora x Empate") print('\nRegressão logística: %.2f' %reg_log_fxe + "%") print('\nÁrvore de decisão: %.2f' %dec_tree_fxe + "%") print('\nFloresta aleatória: %.2f' %rand_for_fxe + "%") print('\nKNN: %.2f' %knn_fxe + "%") print("\nSVM: %.2f" %svm_fxe + "%") print('\nMLP: %.2f' %mlp_fxe + "%") print("\nCross Validation") print('\nRegressão logística: %.2f' %cross_log_fxe + "%") print('\nÁrvore de decisão: %.2f' %cross_dec_tree_fxe + "%") print('\nFloresta aleatória: %.2f' %cross_rand_for_fxe + "%") print('\nKNN: %.2f' %cross_knn_fxe + "%") print('\nSVM: %.2f' %cross_svm_fxe + "%") print('\nMLP: %.2f' %cross_mlp_fxe + "%") sns.set(font_scale=1.1) # Regressões Logística plt.figure(figsize=(15,5)) plt.suptitle('Regressão Logística') plt.subplot(1, 2, 1) plt.title("Train Test Split(70/30)") graph = sns.barplot(x=['VxDxE','VxD','VxE','DxE'], y=[reg_log_all,reg_log_cxf,reg_log_cxe,reg_log_fxe],palette='bright') for p in graph.patches: graph.annotate(format(p.get_height(), '.2f') + "%", (p.get_x() + p.get_width() / 2., p.get_height()), ha = 'center', va = 'center', xytext = (0, 8), textcoords = 'offset points') plt.xlabel("Abordagem") plt.ylabel("Precisão") plt.ylim([0, 100]) plt.subplot(1, 2, 2) plt.title("Cross Validation") graph2 = sns.barplot(x=['VxDxE','VxD','VxE','DxE'], y=[cross_log_all,cross_log_cxf,cross_log_cxe,cross_log_fxe],palette='bright') for p in graph2.patches: graph2.annotate(format(p.get_height(), '.2f') + "%", (p.get_x() + p.get_width() / 2., p.get_height()), ha = 'center', va = 'center', xytext = (0, 8), textcoords = 'offset points') plt.xlabel("Abordagem") plt.ylabel("Precisão") plt.ylim([0, 100]) plt.savefig('img/regressao_logistica_br.png') # Árvore de Decisão plt.figure(figsize=(15,5)) plt.suptitle('Árvore de Decisão') plt.subplot(1, 2, 1) plt.title("Train Test Split(70/30)") graph = sns.barplot(x=['VxDxE','VxD','VxE','DxE'], y=[dec_tree_all,dec_tree_cxf,dec_tree_cxe,dec_tree_fxe],palette='bright') for p in graph.patches: graph.annotate(format(p.get_height(), '.2f') + "%", (p.get_x() + p.get_width() / 2., p.get_height()), ha = 'center', va = 'center', xytext = (0, 8), textcoords = 'offset points') plt.xlabel("Abordagem") plt.ylabel("Precisão") plt.ylim([0, 100]) plt.subplot(1, 2, 2) plt.title("Cross Validation") graph2 = sns.barplot(x=['VxDxE','VxD','VxE','DxE'], y=[cross_dec_tree_all,cross_dec_tree_cxf,cross_dec_tree_cxe,cross_dec_tree_fxe],palette='bright') for p in graph2.patches: graph2.annotate(format(p.get_height(), '.2f') + "%", (p.get_x() + p.get_width() / 2., p.get_height()), ha = 'center', va = 'center', xytext = (0, 8), textcoords = 'offset points') plt.xlabel("Abordagem") plt.ylabel("Precisão") plt.ylim([0, 100]) plt.savefig('img/arvore_decisao_br.png') # Floresta Aleatória plt.figure(figsize=(15,5)) plt.suptitle('Floresta Aleatória') plt.subplot(1, 2, 1) plt.title("Train Test Split(70/30)") graph = sns.barplot(x=['VxDxE','VxD','VxE','DxE'], y=[rand_for_all,rand_for_cxf,rand_for_cxe,rand_for_fxe],palette='bright') for p in graph.patches: graph.annotate(format(p.get_height(), '.2f') + "%", (p.get_x() + p.get_width() / 2., p.get_height()), ha = 'center', va = 'center', xytext = (0, 8), textcoords = 'offset points') plt.xlabel("Abordagem") plt.ylabel("Precisão") plt.ylim([0, 100]) plt.subplot(1, 2, 2) plt.title("Cross Validation") graph2 = sns.barplot(x=['VxDxE','VxD','VxE','DxE'], y=[cross_rand_for_all,cross_rand_for_cxf,cross_rand_for_cxe,cross_rand_for_fxe],palette='bright') for p in graph2.patches: graph2.annotate(format(p.get_height(), '.2f') + "%", (p.get_x() + p.get_width() / 2., p.get_height()), ha = 'center', va = 'center', xytext = (0, 8), textcoords = 'offset points') plt.xlabel("Abordagem") plt.ylabel("Precisão") plt.ylim([0, 100]) plt.savefig('img/floresta_aleatoria_br.png') # KNN plt.figure(figsize=(15,5)) plt.suptitle('KNN') plt.subplot(1, 2, 1) plt.title("Train Test Split(70/30)") graph = sns.barplot(x=['VxDxE','VxD','VxE','DxE'], y=[knn_all,knn_cxf,knn_cxe,knn_fxe],palette='bright') for p in graph.patches: graph.annotate(format(p.get_height(), '.2f') + "%", (p.get_x() + p.get_width() / 2., p.get_height()), ha = 'center', va = 'center', xytext = (0, 8), textcoords = 'offset points') plt.xlabel("Abordagem") plt.ylabel("Precisão") plt.ylim([0, 100]) plt.subplot(1, 2, 2) plt.title("Cross Validation") graph2 = sns.barplot(x=['VxDxE','VxD','VxE','DxE'], y=[cross_knn_all,cross_knn_cxf,cross_knn_cxe,cross_knn_fxe],palette='bright') for p in graph2.patches: graph2.annotate(format(p.get_height(), '.2f') + "%", (p.get_x() + p.get_width() / 2., p.get_height()), ha = 'center', va = 'center', xytext = (0, 8), textcoords = 'offset points') plt.xlabel("Abordagem") plt.ylabel("Precisão") plt.ylim([0, 100]) plt.savefig('img/knn_br.png') # SVM plt.figure(figsize=(15,5)) plt.suptitle('SVM') plt.subplot(1, 2, 1) plt.title("Train Test Split(70/30)") graph = sns.barplot(x=['VxDxE','VxD','VxE','DxE'], y=[svm_all,svm_cxf,svm_cxe,svm_fxe],palette='bright') for p in graph.patches: graph.annotate(format(p.get_height(), '.2f') + "%", (p.get_x() + p.get_width() / 2., p.get_height()), ha = 'center', va = 'center', xytext = (0, 8), textcoords = 'offset points') plt.xlabel("Abordagem") plt.ylabel("Precisão") plt.ylim([0, 100]) plt.subplot(1, 2, 2) plt.title("Cross Validation") graph2 = sns.barplot(x=['VxDxE','VxD','VxE','DxE'], y=[cross_svm_all,cross_svm_cxf,cross_svm_cxe,cross_svm_fxe],palette='bright') for p in graph2.patches: graph2.annotate(format(p.get_height(), '.2f') + "%", (p.get_x() + p.get_width() / 2., p.get_height()), ha = 'center', va = 'center', xytext = (0, 8), textcoords = 'offset points') plt.xlabel("Abordagem") plt.ylabel("Precisão") plt.ylim([0, 100]) plt.savefig('img/svm_br.png') # MLP plt.figure(figsize=(15,5)) plt.suptitle('MLP') plt.subplot(1, 2, 1) plt.title("Train Test Split(70/30)") graph = sns.barplot(x=['VxDxE','VxD','VxE','DxE'], y=[mlp_all,mlp_cxf,mlp_cxe,mlp_fxe],palette='bright') for p in graph.patches: graph.annotate(format(p.get_height(), '.2f') + "%", (p.get_x() + p.get_width() / 2., p.get_height()), ha = 'center', va = 'center', xytext = (0, 8), textcoords = 'offset points') plt.xlabel("Abordagem") plt.ylabel("Precisão") plt.ylim([0, 100]) plt.subplot(1, 2, 2) plt.title("Cross Validation") graph2 = sns.barplot(x=['VxDxE','VxD','VxE','DxE'], y=[cross_mlp_all,cross_mlp_cxf,cross_mlp_cxe,cross_mlp_fxe],palette='bright') for p in graph2.patches: graph2.annotate(format(p.get_height(), '.2f') + "%", (p.get_x() + p.get_width() / 2., p.get_height()), ha = 'center', va = 'center', xytext = (0, 8), textcoords = 'offset points') plt.xlabel("Abordagem") plt.ylabel("Precisão") plt.ylim([0, 100]) plt.savefig('img/mlp_br.png') ###Output _____no_output_____
data-ingestion-and-preparation/grafana-grafwiz.ipynb
###Markdown Generating a Grafana Dashboard with grafwizThis tutorial demonstrates how to use [grafwiz](https://github.com/v3io/grafwiz), Iguazio's open-source Python library for generating a Grafana dashboard programmatically. - [Setup](grafwiz-setup)- [Generating Data](grafwiz-gen-data)- [Creating a DataFrame with the Generated Data](grafwiz-df-create)- [Writing the Data to the Platform's Data Store](grafwiz-write-to-data-store)- [Adding a Platform Data Source to Grafana](grafwiz-add-data-source)- [Creating a Grafana Dashboard](grafwiz-grafana-dashboard-create)- [Adding Dashboard Visualization Elements](grafwiz-add-dashboard-visualization-elements)- [Deploying the Dashboard to Grafana](grafwiz-grafana-dashboard-deploy) SetupInitialize and configure your environment. Installing grafwizRun the following code to ensure that the `grafwiz` Python package is installed, and the restart the Jupyter kernel. ###Code !pip install git+https://github.com/v3io/grafwiz --upgrade ###Output _____no_output_____ ###Markdown Creating a Grafana Service1. Ensure that you have a running platform Grafana service. You can create such a service from the platform dashboard's **Services** page.2. Copy the URL of your Grafana service from the service-name link on the **Services** dashboard page. Defining VariablesDefine variables for your environment.> **Note:** Replace the `` placeholder with the URL of your Grafana service, as copied in the previous step. ###Code import os grafana_url = '<Grafana URL>' # TODO: Replace <Grafana URL> with the API URL of your Grafana API service. v3io_container = 'users' stocks_kv_table = os.path.join(os.getenv("V3IO_USERNAME"),'stocks_kv_table') stocks_tsdb_table = os.path.join(os.getenv("V3IO_USERNAME"),'stocks_tsdb_table') sym = 'XYZ' rows = 3450 ###Output _____no_output_____ ###Markdown Importing LibrariesImport required libraries. ###Code from grafwiz import * import v3io_frames as v3f import pandas as pd ###Output _____no_output_____ ###Markdown Creating a V3IO Frames ClientCreate a V3IO Frames client object. ###Code client = v3f.Client('framesd:8081',container=v3io_container) ###Output _____no_output_____ ###Markdown Generating DataGenerate random data to visualize on the Grafana dashboard. ###Code import random import datetime import numpy as np def generate_date(rows): datetimes = [datetime.datetime.today() - (random.random() * datetime.timedelta(minutes=15)) for i in range(rows)] return datetimes time = sorted(generate_date(rows)) volume = np.random.randint(low=100, high=10000, size=rows) price = np.cumsum([0.0001] * rows + np.random.random(rows)) ###Output _____no_output_____ ###Markdown Creating a DataFrame with the Generated DataStore the generated data in a pandas DataFrame. ###Code stocks_df = pd.DataFrame( {'last_updated': time, 'volume': volume, 'price': price }) stocks_df['symbol'] = sym stocks_df = stocks_df.sort_values('last_updated') stocks_df ###Output _____no_output_____ ###Markdown Define the `last_updated` column (attribute) as a DataFrame index column, which will be used to identify the ingestion times of the TSDB metric samples. ###Code stocks_df_tsdb = stocks_df stocks_df_tsdb = stocks_df.reset_index() stocks_df_tsdb = stocks_df.set_index(['last_updated']) ###Output _____no_output_____ ###Markdown Writing the Data to the Platform's Data StoreUse the V3IO Frames API to write the data from the pandas DataFrame to TSDB and NoSQL tables in the platform's persistent data store. Writing the Data to a TSDB TableWrite the data from the DataFrame to a new platform TSDB table. ###Code client.create(backend='tsdb', table=stocks_tsdb_table, rate='1/m', if_exists=1) client.write(backend='tsdb', table=stocks_tsdb_table, dfs=stocks_df_tsdb) ###Output _____no_output_____ ###Markdown Writing the Data to a NoSQL TableWrite the data from the DataFrame to a new platform NoSQL table in order of rows arrival, to simulate real-time data consumption. ###Code expr_template = "symbol='{symbol}';price='{price}';volume='{volume}';last_updated='{last_updated}'" # Write the stock data to a NoSQL table for idx, record in stocks_df.iterrows(): stock = {'symbol': sym, 'price': record['price'], 'volume': record['volume'], 'last_updated': record['last_updated']} expr = expr_template.format(**stock) client.execute('kv', stocks_kv_table, 'update', args={'key': sym, 'expression': expr}) ###Output _____no_output_____ ###Markdown Infer the schema of the NoSQL table to verify that it can be accessed and displayed on the dashboard. ###Code # Infer the schema of the NoSQL table client.execute(backend='kv', table=stocks_kv_table, command='infer') ###Output _____no_output_____ ###Markdown Adding a Platform Data Source to GrafanaAdd an "Iguazio" data source for the platform's custom `iguazio` Grafana data source to your Grafana service. ###Code # Create a data source DataSource(name='Iguazio').deploy(grafana_url, use_auth=True) ###Output _____no_output_____ ###Markdown Creating a Grafana DashboardCreate a new Grafana dashboard that uses the platform's `iguazio` data source. ###Code # Create grafana dashboard dash = Dashboard("stocks", start='now-15m', dataSource='Iguazio', end='now') ###Output _____no_output_____ ###Markdown Adding Dashboard Visualization ElementsCreate a table for the NoSQL table and graphs for each of the metrics in the TSDB table, to be used for visualizing the data on the Grafana dashboard.> **Note:** It might take a few minutes for the graphs to be updated with the data. ###Code # Create a table and log viewer for the NoSQL table in one row tbl = Table('Current Stocks Value', span=12).source(table=stocks_kv_table,fields=['symbol','volume', 'price', 'last_updated'],container=v3io_container) dash.row([tbl]) # Create TSDB-metric graphs metrics_row = [Graph(metric).series(table=stocks_tsdb_table, fields=[metric], container=v3io_container) for metric in ['price','volume']] dash.row(metrics_row) ###Output _____no_output_____ ###Markdown Deploying the Dashboard to GrafanaDeploy the new Grafana dashboard to your Grafana service. ###Code # Deploy to Grafana dash.deploy(grafana_url) ###Output _____no_output_____
week-3-project-bak.ipynb
###Markdown Toronto Neighborhoods ###Code from bs4 import BeautifulSoup import requests import numpy as np import pandas as pd from geopy.geocoders import Nominatim import folium ###Output _____no_output_____ ###Markdown will use 'https://en.wikipedia.org/wiki/List_of_neighbourhoods_in_Toronto' ###Code url = 'https://en.wikipedia.org/wiki/List_of_neighbourhoods_in_Toronto' result = requests.get(url) print(url) print(result.status_code) print(result.headers) # define the dataframe df = pd.DataFrame(columns=['Hood', 'Latitude', 'Longitude']) df.head() ###Output _____no_output_____ ###Markdown get data + clean it ###Code soup = BeautifulSoup(result.content, 'html.parser') table = soup.find('table') lis = table.find_all('li') list_of_n = [] for li in lis: a = li.find('a') list_of_n.append(a.get('title').split(", ")[0].split(" (neighbourhood)")[0].split(" (Toronto)")[0] ) ###Output _____no_output_____ ###Markdown will start populating the dataframe with hood names ###Code df['Hood'] = pd.Series(list_of_n) print(df.shape) df.head() ###Output (89, 3) ###Markdown duplicates? ###Code df.drop_duplicates(inplace=True) print(df.shape) df.head() ###Output (86, 3) ###Markdown loop over to get coordinates and populate the dfneed to drop those hoods that the geo does not find ###Code to_drop_unknown = [] geolocator = Nominatim(user_agent="coursera") for index, row in df.iterrows(): address = row['Hood'] + ', Toronto' try: location = geolocator.geocode(address) latitude = location.latitude longitude = location.longitude print('The geograpical coordinate of {} are {}, {}.'.format(address, latitude, longitude)) df.loc[index, 'Latitude'] = latitude df.loc[index, 'Longitude'] = longitude except AttributeError: print('Cannot do: {}, will drop index: {}'.format(address, index)) to_drop_unknown.append(index) df.head() clean_df = df.drop(to_drop_unknown) clean_df.shape ###Output _____no_output_____ ###Markdown mapping time ###Code address = 'Toronto' try: location = geolocator.geocode(address) latitude = location.latitude longitude = location.longitude print('The geograpical coordinate of {} are {}, {}.'.format(address, latitude, longitude)) df.loc[index, 'Latitude'] = latitude df.loc[index, 'Longitude'] = longitude except AttributeError: print('Cannot do: {}, will drop index: {}'.format(address, index)) my_map = folium.Map(location=[latitude, longitude], zoom_start=11) # add markers to map for lat, lng, label in zip(clean_df['Latitude'], clean_df['Longitude'], clean_df['Hood']): label = folium.Popup(label) folium.CircleMarker( [lat, lng], radius=5, popup=label, color='blue', fill_color='#3186cc', fill_opacity=0.7).add_to(my_map) my_map ###Output The geograpical coordinate of Toronto are 43.653963, -79.387207.
Instructions/Pymaceuticals/Pymaceuticals_starter_with_outputs_JB.ipynb
###Markdown Pymaceuticals Inc.--- Analysis* This is a great spot to put your final analysis ###Code # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import scipy.stats as st import numpy as np from scipy.stats import linregress # Study data files mouse_metadata_path = "data/Mouse_metadata.csv" study_results_path = "data/Study_results.csv" # Read the mouse data and the study results mouse_metadata = pd.read_csv(mouse_metadata_path) study_results = pd.read_csv(study_results_path) # Combine the data into a single dataset combined_data = pd.merge(study_results, mouse_metadata, on=('Mouse ID')) # Display the data table for preview combined_data # Checking the number of mice. mouse_count = len(combined_data['Mouse ID'].unique()) print(f"There are {mouse_count} mice in this study.") # Getting the duplicate mice by ID number that shows up for Mouse ID and Timepoint. duplicate_mice = combined_data.loc[combined_data.duplicated(subset= ['Mouse ID', 'Timepoint']), 'Mouse ID'].unique() # Optional: Get all the data for the duplicate mouse ID. # Create a clean DataFrame by dropping the duplicate mouse by its ID. cleaned_mice = combined_data[combined_data["Mouse ID"].isin(duplicate_mice) == False] cleaned_mice.head() # Checking the number of mice in the clean DataFrame. cleaned_mouse_count = len(cleaned_mice['Mouse ID'].unique()) print(f"There are {cleaned_mouse_count} mice in this study.") ###Output There are 248 mice in this study. ###Markdown Summary Statistics ###Code # Generate a summary statistics table of mean, median, variance, standard deviation, and SEM of the tumor volume for each regimen # This method is the most straighforward, creating multiple series and putting them all together at the end. tum_vol_stats = cleaned_mice.loc[:, ['Mouse ID', 'Drug Regimen', 'Tumor Volume (mm3)']] mean = tum_vol_stats.groupby(["Drug Regimen"]).mean()["Tumor Volume (mm3)"] median = tum_vol_stats.groupby(["Drug Regimen"]).median()["Tumor Volume (mm3)"] variance = tum_vol_stats.groupby(["Drug Regimen"]).var()["Tumor Volume (mm3)"] stddev = tum_vol_stats.groupby(["Drug Regimen"]).std()["Tumor Volume (mm3)"] sem = tum_vol_stats.groupby(["Drug Regimen"]).sem()["Tumor Volume (mm3)"] summary_stats = pd.DataFrame({"Mean Tumor Volume": mean, "Median Tumor Volume": median, "Tumor Volume Variance": variance, "Tumor Volume Std Dev": stddev, "Tumor Volume Std Er": sem}) summary_stats # Generate a summary statistics table of mean, median, variance, standard deviation, and SEM of the tumor volume for each regimen # This method produces everything in a single groupby function groupby_stats = cleaned_mice.groupby('Drug Regimen') summary_stats_2 = groupby_stats.agg(['mean', 'median', 'var', 'std', 'sem'])["Tumor Volume (mm3)"] summary_stats_2 ###Output _____no_output_____ ###Markdown Bar and Pie Charts ###Code # Generate a bar plot showing the total number of mice for each treatment throughout the course of the study using pandas. mouse_per_treatment = cleaned_mice["Drug Regimen"].value_counts() y_axis = mouse_per_treatment.values x_axis= mouse_per_treatment.index mouse_per_treatment.plot(kind="bar", color='green') plt.ylabel("Number of Mice") plt.xlabel("Drug Regimen") plt.show() # Generate a bar plot showing the total number of mice for each treatment throughout the course of the study using pyplot. mouse_per_treatment = cleaned_mice["Drug Regimen"].value_counts() y_axis = mouse_per_treatment.values x_treatment= mouse_per_treatment.index plt.bar(x_treatment, y_axis, color='g') plt.ylabel("Number of Mice") plt.xlabel("Drug Regimen") plt.xticks(rotation=90) plt.show() # Generate a pie plot showing the distribution of female versus male mice using pandas male_female_dis = cleaned_mice["Sex"].value_counts() labels = male_female_dis.index size = male_female_dis.values colors = ["lightblue", "orange"] explode=[0,0] male_female_dis.plot(kind="pie", explode=explode, labels=labels, colors=colors, autopct="%1.1f%%", shadow=True, startangle=0) # Generate a pie plot showing the distribution of female versus male mice using pyplot male_female_dis = cleaned_mice["Sex"].value_counts() labels = male_female_dis.index size = male_female_dis.values colors = ["lightblue", "orange"] explode=[0,0] plt.pie(size, explode=explode, labels=labels, colors=colors, autopct="%1.1f%%", shadow=True, startangle=0) plt.title("Sex") ###Output _____no_output_____ ###Markdown Quartiles, Outliers and Boxplots ###Code # Calculate the final tumor volume of each mouse across four of the treatment regimens: # Capomulin, Ramicane, Infubinol, and Ceftamin # Start by getting the last (greatest) timepoint for each mouse greatest_timepoint = cleaned_mice.groupby("Mouse ID").max().reset_index() # Merge this group df with the original dataframe to get the tumor volume at the last timepoint merged_df = greatest_timepoint[["Mouse ID", "Timepoint"]].merge(cleaned_mice, on=["Mouse ID", "Timepoint"]) merged_df # Put treatments into a list for for loop (and later for plot labels) # Create empty list to fill with tumor vol data (for plotting) capomulin_tv = [] ramicane_tv = [] infubinol_tv = [] ceftamin_tv = [] # Calculate the IQR and quantitatively determine if there are any potential outliers. #see regimen boxes below # Locate the rows which contain mice on each drug and get the tumor volumes capomulin = merged_df.loc[merged_df['Drug Regimen'] == 'Capomulin']['Tumor Volume (mm3)'] ramicane = merged_df.loc[merged_df['Drug Regimen'] == 'Ramicane']['Tumor Volume (mm3)'] infubinol = merged_df.loc[merged_df['Drug Regimen'] == 'Infubinol']['Tumor Volume (mm3)'] ceftamin = merged_df.loc[merged_df['Drug Regimen'] == 'Ceftamin']['Tumor Volume (mm3)'] # Determine outliers using upper and lower bounds #see regimen boxes below #capomulin ca_quartiles = capomulin.quantile([.25,.5,.75]) ca_lowerq = ca_quartiles[0.25] ca_upperq = ca_quartiles[0.75] ca_iqr = ca_upperq-ca_lowerq print(f"The lower quartile is: {ca_lowerq}") print(f"The upper quartile is: {ca_upperq}") print(f"The interquartile range is: {ca_iqr}") print(f"The median is: {ca_quartiles[0.5]} ") ca_lower_bound = ca_lowerq - (1.5*ca_iqr) ca_upper_bound = ca_upperq + (1.5*ca_iqr) print(f"Values below {ca_lower_bound} could be outliers.") print(f"Values above {ca_upper_bound} could be outliers.") #ramicane ra_quartiles = ramicane.quantile([.25,.5,.75]) ra_lowerq = ra_quartiles[0.25] ra_upperq = ra_quartiles[0.75] ra_iqr = ra_upperq-ra_lowerq print(f"The lower quartile is: {ra_lowerq}") print(f"The upper quartile is: {ra_upperq}") print(f"The interquartile range is: {ra_iqr}") print(f"The median is: {ra_quartiles[0.5]} ") ra_lower_bound = ra_lowerq - (1.5*ra_iqr) ra_upper_bound = ra_upperq + (1.5*ra_iqr) print(f"Values below {ra_lower_bound} could be outliers.") print(f"Values above {ra_upper_bound} could be outliers.") #Infubinol in_quartiles = infubinol.quantile([.25,.5,.75]) in_lowerq = in_quartiles[0.25] in_upperq = in_quartiles[0.75] in_iqr = in_upperq-in_lowerq print(f"The lower quartile is: {in_lowerq}") print(f"The upper quartile is: {in_upperq}") print(f"The interquartile range is: {in_iqr}") print(f"The median is: {in_quartiles[0.5]} ") in_lower_bound = in_lowerq - (1.5*in_iqr) in_upper_bound = in_upperq + (1.5*in_iqr) print(f"Values below {in_lower_bound} could be outliers.") print(f"Values above {in_upper_bound} could be outliers.") #Ceftamin ce_quartiles = ceftamin.quantile([.25,.5,.75]) ce_lowerq = ce_quartiles[0.25] ce_upperq = ce_quartiles[0.75] ce_iqr = ce_upperq-ce_lowerq print(f"The lower quartile is: {ce_lowerq}") print(f"The upper quartile is: {ce_upperq}") print(f"The interquartile range is: {ce_iqr}") print(f"The median is: {ce_quartiles[0.5]} ") ce_lower_bound = ce_lowerq - (1.5*ce_iqr) ce_upper_bound = in_upperq + (1.5*ce_iqr) print(f"Values below {ce_lower_bound} could be outliers.") print(f"Values above {ce_upper_bound} could be outliers.") # Generate a box plot of the final tumor volume of each mouse across four regimens of interest dark_out = dict(markerfacecolor='red', markersize=10) plt.boxplot([capomulin,ramicane, infubinol, ceftamin], labels=["Capomulin","Ramicane","Infubinol","Ceftamin"],flierprops= dark_out) plt.title("Final Tumor Volumes Across Four Regimens") plt.ylabel("Tumor Volume (mm3)") ###Output _____no_output_____ ###Markdown Line and Scatter Plots ###Code # Generate a line plot of time point versus tumor volume for a mouse treated with Capomulin capomulin_time = cleaned_mice.loc[cleaned_mice["Drug Regimen"] == "Capomulin"] cap_mouse = cleaned_mice.loc[cleaned_mice["Mouse ID"] == "l509"] plt.plot(cap_mouse["Timepoint"], cap_mouse["Tumor Volume (mm3)"]) plt.xlabel("Timepoint(days)") plt.ylabel("Tumor Volume (mm3)") plt.title("Capomulin treatment of mouse l509") # Generate a scatter plot of mouse weight versus average tumor volume for the Capomulin regimen capomulin_weight = cleaned_mice.loc[cleaned_mice["Drug Regimen"] == "Capomulin"] cap_mouse_avg = capomulin_weight.groupby(["Mouse ID"]).mean() plt.scatter(cap_mouse_avg["Weight (g)"], cap_mouse_avg["Tumor Volume (mm3)"]) plt.xlabel("Weight (g)") plt.ylabel("Average Tumor Volume (mm3)") ###Output _____no_output_____ ###Markdown Correlation and Regression ###Code # Calculate the correlation coefficient and linear regression model # for mouse weight and average tumor volume for the Capomulin regimen (slope, intercept, rvalue, pvalue, stderr) = linregress(cap_mouse_avg["Weight (g)"], cap_mouse_avg["Tumor Volume (mm3)"]) regress_values = cap_mouse_avg["Weight (g)"] * slope + intercept line_eq = "y = " + str(round(slope,2)) + "x + " + str(round(intercept,2)) print(f"The correlation between mouse weight and the average tumor volume is {round(rvalue,2)}") plt.scatter(cap_mouse_avg["Weight (g)"], cap_mouse_avg["Tumor Volume (mm3)"]) plt.plot(cap_mouse_avg["Weight (g)"],regress_values,"r-") plt.annotate(line_eq,(6,10),fontsize=15,color="red") plt.ylabel("Average Tumor Volume (mm3)") plt.xlabel("Weight (g)") plt.show() #Observations #1) There are more male mice in this experiment. #2) Mice in the Capomulin treatment group survived longer throughout the study compared to other treatments #3) Tumors volumes in mice treated with Capomulin were smaller in comparison to mice treated with Ceftamin ###Output _____no_output_____
Multiclass Classification Of Flower Species.ipynb
###Markdown Iris FLowers Classification Project The attributes for this dataset1. Sepal length in centimeters2. Sepal width in centimeters3. Petal length in centimeters4. Petal width in centimeters5. Class 1. Import Classes and Functions ###Code import numpy as np import pandas as pd from keras.models import Sequential from keras.layers import Dense from keras.wrappers.scikit_learn import KerasClassifier from keras.utils import np_utils from sklearn.model_selection import cross_val_score from sklearn.model_selection import KFold from sklearn.preprocessing import LabelEncoder from sklearn.pipeline import Pipeline ###Output _____no_output_____ ###Markdown 2. Initialize Random Number Generator ###Code # fix random seed for reproducibility seed = 7 np.random.seed(seed) ###Output _____no_output_____ ###Markdown 3. Load the Dataset ###Code # load dataset dataframe = pd.read_csv('iris.csv',header=None) dataset = dataframe.values X = dataset[:,0:4].astype(float) Y = dataset[:,4] ###Output _____no_output_____ ###Markdown 4. Encode the output variable* The three class values **Iris-setosa,Iris-versicolor and Iris-virginica**.* First encoding the strings consistently to integers using the scikit-learn class **LabelEncoder**.* Then convert the vector of integers to a one hot encoding using the keras function **to_categorical()**. ###Code # encode class values as integers encoder = LabelEncoder() encoder.fit(Y) encoded_Y = encoder.transform(Y) print(encoded_Y) # convert integers to dummy variables (one hot encoded) dummy_y = np_utils.to_categorical(encoded_Y) print(dummy_y) ###Output [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2] [[1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [1. 0. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 1. 0.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.] [0. 0. 1.]] ###Markdown 5. Define the Neural Netowork Model* 4 inputs -> [4 hidden nodes] -> 3 outputs* we use sigmoid activation function in the output layer,to ensure the output values are in the range of 0 and 1.* we use logarithmic loss function,which is called *categorical_Crossentropy* in keras ###Code # define the model def baseline_model(): # create model model = Sequential() model.add(Dense(4,input_dim=4,activation='relu')) model.add(Dense(3,activation='sigmoid')) # compile model model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy']) return model estimator = KerasClassifier(build_fn=baseline_model,epochs=200,batch_size=5,verbose=0) ###Output _____no_output_____ ###Markdown 6. Evaluate the Model with k-fold Cross Validation ###Code kfold = KFold(n_splits=10,shuffle=True,random_state=seed) results = cross_val_score(estimator,X,dummy_y,cv=kfold) print('Accuracy: %.2f%% (%.2f%%)' %(results.mean()*100,results.std()*100)) ###Output WARNING:tensorflow:5 out of the last 13 calls to <function Model.make_test_function.<locals>.test_function at 0x7fa0843d63b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. WARNING:tensorflow:5 out of the last 13 calls to <function Model.make_test_function.<locals>.test_function at 0x7fa0842a9320> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. WARNING:tensorflow:5 out of the last 13 calls to <function Model.make_test_function.<locals>.test_function at 0x7fa0841a0e60> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. WARNING:tensorflow:5 out of the last 13 calls to <function Model.make_test_function.<locals>.test_function at 0x7fa07c7bccb0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. WARNING:tensorflow:5 out of the last 13 calls to <function Model.make_test_function.<locals>.test_function at 0x7fa07c686a70> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. WARNING:tensorflow:5 out of the last 13 calls to <function Model.make_test_function.<locals>.test_function at 0x7fa07c551830> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. Accuracy: 94.00% (9.64%)
talleres_inov_docente/1-03-representacion_datos_aa.ipynb
###Markdown Representación y visualización de datos El aprendizaje automático trata de ajustar modelos a los datos; por esta razón, empezaremos discutiendo como los datos pueden ser representados para ser accesibles por el ordenador. Además de esto, nos basaremos en los ejemplos de matplotlib de la sección anterior para usarlos para representar datos. Datos en scikit-learn Los datos en scikit-learn, salvo algunas excepciones, suelen estar almacenados en **arrays de 2 dimensiones**, con forma `[n_samples, n_features]`. Muchos algoritmos aceptan también matrices ``scipy.sparse`` con la misma forma. - **n_samples:** este es el número de ejemplos. Cada ejemplo es un item a procesar (por ejemplo, clasificar). Un ejemplo puede ser un documento, una imagen, un sonido, un vídeo, un objeto astronómico, una fila de una base de datos o de un fichero CSV, o cualquier cosa que se pueda describir usando un conjunto prefijado de trazas cuantitativas.- **n_features:** este es el número de características descriptoras que se utilizan para describir cada item de forma cuantitativa. Las características son, generalmente, valores reales, aunque pueden ser categóricas o valores discretos.El número de características debe ser fijado de antemano. Sin embargo, puede ser extremadamente alto (por ejemplo, millones de características), siendo cero en la mayoría de casos. En este tipo de datos, es buena idea usar matrices `scipy.sparse` que manejan mucho mejor la memoria.Como ya comentamos en la sección anterior, representamos los ejemplos (puntos o instancias) como filas en el array de datos y almacenamos las características correspondientes, las "dimensiones", como columnas. Un ejemplo simple: el dataset Iris Como ejemplo de un dataset simple, vamos a echar un vistazo al conjunto iris almacenado en scikit-learn.Los datos consisten en medidas de tres especies de flores iris distintas: Iris SetosaIris VersicolorIris Virginica Pregunta rápida: **Asumamos que estamos interesados en categorizar nuevos ejemplos; queremos predecir si una flor nueva va a ser Iris-Setosa, Iris-Versicolor, o Iris-Virginica. Basándonos en lo discutido en secciones anteriores, ¿cómo construiríamos este dataset?**Recuerda: necesitamos un array 2D con forma (*shape*) `[n_samples x n_features]`.- ¿Qué sería `n_samples`?- ¿Qué podría ser `n_features`?Recuerda que debe haber un número **fijo** de características por cada ejemplo, y cada característica *j* debe ser el mismo tipo de cantidad para cada ejemplo. Cargando el dataset Iris desde scikit-learn Para futuros experimentos con algoritmos de aprendizaje automático, te recomendamos que añadas a favoritos el [Repositorio UCI](http://archive.ics.uci.edu/ml/), que aloja muchos de los datasets que se utilizan para probar los algoritmos de aprendizaje automático. Además, algunos de estos datasets ya están incluidos en scikit-learn, pudiendo así evitar tener que descargar, leer, convertir y limpiar los ficheros de texto o CSV. El listado de datasets ya disponibles en scikit learn puede consultarse [aquí](http://scikit-learn.org/stable/datasets/toy-datasets).Por ejemplo, scikit-learn contiene el dataset iris. Los datos consisten en:- Características: 1. Longitud de sépalo en cm 2. Ancho de sépalo en cm 3. Longitud de pétalo en cm 4. Ancho de sépalo en cm- Etiquetas a predecir: 1. Iris Setosa 2. Iris Versicolour 3. Iris Virginica (Image: "Petal-sepal". Licensed under CC BY-SA 3.0 via Wikimedia Commons - https://commons.wikimedia.org/wiki/File:Petal-sepal.jpg/media/File:Petal-sepal.jpg) ``scikit-learn`` incluye una copia del archivo CSV de iris junto con una función que lo lee a arrays de numpy: ###Code from sklearn.datasets import load_iris iris = load_iris() ###Output _____no_output_____ ###Markdown El dataset es un objeto ``Bunch``. Puedes ver que contiene utilizando el método ``keys()``: ###Code iris.keys() ###Output _____no_output_____ ###Markdown Las características de cada flor se encuentra en el atributo ``data`` del dataset: ###Code n_samples, n_features = iris.data.shape print('Número de ejemplos: %d'% n_samples) print('Número de características: %d'% n_features) # sepal length, sepal width, petal length y petal width del primer ejemplo (primera flor) print(iris.data[0]) ###Output _____no_output_____ ###Markdown La información sobre la clase de cada ejemplo se encuentra en el atributo ``target`` del dataset: ###Code print(iris.data.shape) print(iris.target.shape) print(iris.target) import numpy as np np.bincount(iris.target) ###Output _____no_output_____ ###Markdown La función de numpy llamada `bincount` (arriba) nos permite ver que las clases se distribuyen de forma uniforme en este conjunto de datos (50 flores de cada especie), donde:- clase 0: Iris-Setosa- clase 1: Iris-Versicolor- clase 2: Iris-Virginica Los nombres de las clases se almacenan en ``target_names``: ###Code print(iris.target_names) ###Output _____no_output_____ ###Markdown Estos datos tienen cuatro dimensiones, pero podemos visualizar una o dos de las dimensiones usando un histograma o un scatter. Primero, activamos el *matplotlib inline mode*: ###Code %matplotlib inline import matplotlib.pyplot as plt x_index = 3 colors = ['blue', 'red', 'green'] for label, color in zip(range(len(iris.target_names)), colors): plt.hist(iris.data[iris.target==label, x_index], label=iris.target_names[label], color=color) plt.xlabel(iris.feature_names[x_index]) plt.legend(loc='upper right') plt.show() x_index = 3 y_index = 0 colors = ['blue', 'red', 'green'] for label, color in zip(range(len(iris.target_names)), colors): plt.scatter(iris.data[iris.target==label, x_index], iris.data[iris.target==label, y_index], label=iris.target_names[label], c=color) plt.xlabel(iris.feature_names[x_index]) plt.ylabel(iris.feature_names[y_index]) plt.legend(loc='upper left') plt.show() ###Output _____no_output_____ ###Markdown Ejercicio: **Cambia** `x_index` **e** `y_index` ** en el script anterior y encuentra una combinación de los dos parámetros que separe de la mejor forma posible las tres clases.** Este ejercicio es un adelanto a lo que se denomina **reducción de dimensionalidad**, que veremos después. Matrices scatterplotEn lugar de realizar los plots por separado, una herramienta común que utilizan los analistas son las **matrices scatterplot**.Estas matrices muestran los scatter plots entre todas las características del dataset, así como los histogramas para ver la distribución de cada característica. ###Code import pandas as pd iris_df = pd.DataFrame(iris.data, columns=iris.feature_names) pd.plotting.scatter_matrix(iris_df, c=iris.target, figsize=(8, 8)); ###Output _____no_output_____ ###Markdown Otros datasets disponibles [Scikit-learn pone a disposición de la comunidad una gran cantidad de datasets](http://scikit-learn.org/stable/datasets/dataset-loading-utilities). Vienen en tres modos:- **Packaged Data:** pequeños datasets ya disponibles en la distribución de scikit-learn, a los que se puede acceder mediante ``sklearn.datasets.load_*``- **Downloadable Data:** estos datasets son más grandes y pueden descargarse mediante herramientas que scikit-learn ya incluye. Estas herramientas están en ``sklearn.datasets.fetch_*``- **Generated Data:** estos datasets se generan mediante modelos basados en semillas aleatorias (datasets sintéticos). Están disponibles en ``sklearn.datasets.make_*``Puedes explorar las herramientas de datasets de scikit-learn usando la funcionalidad de autocompletado que tiene IPython. Tras importar el paquete ``datasets`` de ``sklearn``, teclea datasets.load_o datasets.fetch_o datasets.make_para ver una lista de las funciones disponibles ###Code from sklearn import datasets ###Output _____no_output_____ ###Markdown Advertencia: muchos de estos datasets son bastante grandes y puede llevar bastante tiempo descargarlos.Si comienzas una descarga con un libro de IPython y luego quieres detenerla, puedes utilizar la opción "kernel interrupt" accesible por el menú o con ``Ctrl-m i``.Puedes presionar ``Ctrl-m h`` para una lista de todos los atajos ``ipython``. Cargando los datos de dígitos Ahora vamos a ver otro dataset, donde podemos estudiar mejor como representar los datos. Podemos explorar los datos de la siguiente forma: ###Code from sklearn.datasets import load_digits digits = load_digits() digits.keys() n_samples, n_features = digits.data.shape print((n_samples, n_features)) print(digits.data[0]) print(digits.data[-1]) print(digits.target) ###Output _____no_output_____ ###Markdown Aquí la etiqueta es directamente el dígito que representa cada ejemplo. Los datos consisten en un array de longitud 64... pero, ¿qué significan estos datos? Una pista viene dada por el hecho de que tenemos dos versiones de los datos:``data`` y ``images``. Vamos a echar un vistazo a ambas: ###Code print(digits.data.shape) print(digits.images.shape) ###Output _____no_output_____ ###Markdown Podemos ver que son lo mismo, mediante un simple *reshaping*: ###Code import numpy as np print(np.all(digits.images.reshape((1797, 64)) == digits.data)) ###Output _____no_output_____ ###Markdown Vamos a visualizar los datos. Es un poco más complejo que el scatter plot que hicimos anteriormente. ###Code # Configurar la figura fig = plt.figure(figsize=(6, 6)) # tamaño en pulgadas fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.05, wspace=0.05) # mostrar algunos dígitos: cada imagen es de 8x8 for i in range(64): ax = fig.add_subplot(8, 8, i + 1, xticks=[], yticks=[]) ax.imshow(digits.images[i], cmap=plt.cm.binary, interpolation='nearest') # Etiquetar la imagen con el valor objetivo ax.text(0, 7, str(digits.target[i])) ###Output _____no_output_____ ###Markdown Ahora podemos saber que significan las características. Cada característica es una cantidad real que representa la oscuridad de un píxel en una imagen 8x8 de un dígito manuscrito.Aunque cada ejemplo tiene datos que son inherentemente de dos dimensiones, la matriz de datos incluye estos datos 2D en un **solo vector**, contenido en cada **fila** de la misma. Ejercicio: trabajando con un dataset de reconocimiento facial: Vamos a pararnos a explorar el dataset de reconocimiento facial de Olivetti.Descarga los datos (sobre 1.4MB), y visualiza las caras.Puedes copiar el código utilizado para visualizar los dígitos, modificándolo convenientemente. ###Code from sklearn.datasets import fetch_olivetti_faces # descarga el dataset faces # Utiliza el script anterior para representar las caras # Pista: plt.cm.bone es un buen colormap para este dataset ###Output _____no_output_____
MiscNotebookFiles/Update_VS_TTC_Tester.ipynb
###Markdown Main tester ###Code ttct = 0. # ---Variables--- nTests = 10 #Number of intervals ex: 100, 200, 300 updates is 3 intervals nloop = 5 #Number of times the calculations are to be redone for avg nStep = 100. #Step number ex: 100, 200, 300 updates is 100 step number dataArray = np.zeros(shape=(5,nTests)) for j in range(0, nTests): rTotal = 0. eMax = 0. eTotal = np.zeros_like(system.planet.map.values) lcTotal = np.zeros_like(baselineLightcurve) for i in range(0, nloop): Teq = system.get_teq() T0 = np.ones_like(system.planet.map.values)*Teq t0 = 0. t1 = t0+system.planet.Porb*1 dt = system.planet.Porb/(nStep*(j+1)) testMaps, ttc = system.run_model_tester(T0, t0, t1, dt, verbose=False) rTotal = rTotal + float(ttc) ttct = ttct + float(ttc) eTotal = eTotal + testMaps lcTotal = lcTotal + np.absolute(system.lightcurve()) if (np.amax(np.absolute(testMaps))>eMax): eMax = np.amax(np.absolute(baselineMaps-testMaps)) ttcavg = rTotal/nloop eTotalavg = eTotal/nloop lcTotalavg = lcTotal/nloop dataArray[0,j] = ttcavg #Time to Compute dataArray[1,j] = (nStep*(j+1)) #Time steps dataArray[2,j] = (np.mean(np.absolute(baselineMaps-eTotalavg))) #Mean error on heat dataArray[3,j] = (np.amax(np.absolute(baselineMaps-eTotalavg))) #Maximum error on heat dataArray[4,j] = (np.mean(np.absolute(baselineLightcurve-lcTotalavg))) #Mean error on lightcurve print('Accuracy lost at ' + str((nStep*(j+1))) + ' updates:' + str(np.mean(np.absolute(baselineMaps-eTotalavg)))) print('Max accuracy lost at ' + str((nStep*(j+1))) + ' updates:' + str(eMax)) print('Avergae time to compute at ' + str((nStep*(j+1)))+ ' updates: ' + str(ttcavg)) print('Accuracy lost (LC) at ' + str((nStep*(j+1))) + ' updates:' + str(dataArray[4,j])) print('----------') print('Total computational time: ' + str(ttct/60) + ' minutes') print(str(eTotal)) y = dataArray[0,:] x = dataArray[1,:] plt.scatter(x, y) plt.xlabel("Updates") plt.ylabel("Time to Compute (s)") plt.title('Time to Compute Compared to Updates') plt.grid(True, linestyle='-.') plt.show() """ y = dataArray[2,:] x = dataArray[1,:] plt.scatter(x, y) plt.xlabel("Updates") plt.ylabel("Averge Error (K)") plt.title('Averge Error Compared to Updates') plt.grid(True, linestyle='-.') plt.show() """ x = dataArray[0,:] y = dataArray[2,:] plt.scatter(x, y) plt.ylabel("Averge Error (K)") plt.xlabel("Time to Compute (s)") plt.title('Time to Compute Compared to Average Error') plt.grid(True, linestyle='-.') plt.show() x = dataArray[0,:] y = dataArray[3,:] plt.scatter(x, y) plt.ylabel("Max Error (K)") plt.xlabel("Time to Compute (s)") plt.title('Time to Compute Compared to Max Error') plt.grid(True, linestyle='-.') plt.show() x = dataArray[0,:] y = np.log(dataArray[4,:]) plt.scatter(x, y) plt.ylabel("Mean LC Error") plt.xlabel("Time to Compute (s)") plt.title('Time to Compute Compared to Mean LC Error') plt.grid(True, linestyle='-.') #plt.ylim(bottom=0, top = 1e-6) plt.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) plt.show() fig = system.planet.plot_map(baselineMaps) title = 'High Update Baseline Map' plt.title(title) plt.show() fig = system.planet.plot_map((eTotalavg)) title = 'Lower Update Test Map' plt.title(title) plt.show() fig = system.planet.plot_map((baselineMaps-eTotalavg)) plt.title('High-Low Difference Map') plt.show() system.lightcurve() dataArray[3,:] dataArray[3,:] ###Output _____no_output_____
2__feature_extract.ipynb
###Markdown **Visualise the MFCC** ###Code # Source - RAVDESS; Gender - Female; Emotion - Angry path = RAV + "/Actor_08/03-01-05-02-01-01-08.wav" X, sample_rate = librosa.load(path, res_type='kaiser_fast',duration=2.5,sr=22050*2,offset=0.5) mfcc = librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=13) # audio wave plt.figure(figsize=(20, 15)) plt.subplot(3,1,1) librosa.display.waveplot(X, sr=sample_rate) plt.title('Audio sampled at 44100 hrz') # MFCC plt.figure(figsize=(20, 15)) plt.subplot(3,1,1) librosa.display.specshow(mfcc, x_axis='time') plt.ylabel('MFCC') plt.colorbar() ipd.Audio(path) ###Output _____no_output_____ ###Markdown **Statistical features** ###Code # Source - RAVDESS; Gender - Female; Emotion - Angry path = RAV + "/Actor_08/03-01-05-02-01-01-08.wav" X, sample_rate = librosa.load(path, res_type='kaiser_fast',duration=2.5,sr=22050*2,offset=0.5) female = librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=13) female = np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=13), axis=0) print(len(female)) # Source - RAVDESS; Gender - Male; Emotion - Angry path = RAV + "/Actor_09/03-01-05-01-01-01-09.wav" X, sample_rate = librosa.load(path, res_type='kaiser_fast',duration=2.5,sr=22050*2,offset=0.5) male = librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=13) male = np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=13), axis=0) print(len(male)) # audio wave plt.figure(figsize=(20, 15)) plt.subplot(3,1,1) plt.plot(female, label='female') plt.plot(male, label='male') plt.legend() ###Output 216 216
examples/Processing Magic in IPython.ipynb
###Markdown Processing in IPythonThis notebook shows the ability to use the Processing library (based on Java). There is also a full [Processing kernel](https://github.com/Calysto/calysto_processing) that does a Java-compile (showing any errors) with additional benefits. This magic does no error checking.Requirements:* IPython/Jupyter notebook* [metakernel](https://github.com/Calysto/metakernel)* Internet connectionFirst you need to install metakernel: ###Code ! pip install metakernel --user ###Output _____no_output_____ ###Markdown Next, you should enable metakernel magics for IPython: ###Code from metakernel import register_ipython_magics register_ipython_magics() ###Output _____no_output_____ ###Markdown Now, you are ready to embed Processing sketches in your notebook. Try moving your mouse over the sketch: ###Code %%processing void draw() { background(128); ellipse(mouseX, mouseY, 10, 10); } ###Output _____no_output_____ ###Markdown This example from https://processing.org/examples/clock.html : ###Code %%processing int cx, cy; float secondsRadius; float minutesRadius; float hoursRadius; float clockDiameter; void setup() { size(640, 360); stroke(255); int radius = min(width, height) / 2; secondsRadius = radius * 0.72; minutesRadius = radius * 0.60; hoursRadius = radius * 0.50; clockDiameter = radius * 1.8; cx = width / 2; cy = height / 2; } void draw() { background(0); // Draw the clock background fill(80); noStroke(); ellipse(cx, cy, clockDiameter, clockDiameter); // Angles for sin() and cos() start at 3 o'clock; // subtract HALF_PI to make them start at the top float s = map(second(), 0, 60, 0, TWO_PI) - HALF_PI; float m = map(minute() + norm(second(), 0, 60), 0, 60, 0, TWO_PI) - HALF_PI; float h = map(hour() + norm(minute(), 0, 60), 0, 24, 0, TWO_PI * 2) - HALF_PI; // Draw the hands of the clock stroke(255); strokeWeight(1); line(cx, cy, cx + cos(s) * secondsRadius, cy + sin(s) * secondsRadius); strokeWeight(2); line(cx, cy, cx + cos(m) * minutesRadius, cy + sin(m) * minutesRadius); strokeWeight(4); line(cx, cy, cx + cos(h) * hoursRadius, cy + sin(h) * hoursRadius); // Draw the minute ticks strokeWeight(2); beginShape(POINTS); for (int a = 0; a < 360; a+=6) { float angle = radians(a); float x = cx + cos(angle) * secondsRadius; float y = cy + sin(angle) * secondsRadius; vertex(x, y); } endShape(); } ###Output _____no_output_____
docs/examples/superoperator_tools.ipynb
###Markdown Superoperator toolsIn this notebook we explore the submodules of `operator_tools` that enable easy manipulation of the various quantum channel representations.To summarize the functionality:- vectorization and conversions between different representations of quantum channels- apply quantum operations- compose quantum operations- validate that quantum channels are physical- project unphysical channels to physical channels Brief motivation and introduction Perfect gates in **reversible classical computation** are described by permutation matrices, e.g. the [Toffoli gate](https://en.wikipedia.org/wiki/Toffoli_gate), while the input states are vectors. A noisy classical gate could be modeled as a perfect gate followed by a noise channel, e.g. [binary symmetric channel](https://en.wikipedia.org/wiki/Binary_symmetric_channel), on all the bits in the state vector.Perfect gates in **quantum computation** are described by unitary matrices and states are described by complex vectors, e.g.$$|\psi\rangle = U |\psi_0\rangle$$Modeling **noisy quantum computation** often makes use of [mixed states](https://en.wikipedia.org/wiki/Density_matrix) and quantum operations or quantum noise channels.Interestingly there are a number of ways to represent quantum noise channels, and depending on your task some can be more convenient than others. The simplest case to illustrate this point is to consider a mixed initial state $\rho$ undergoing unitary evolution$$\rho' = U \rho U^\dagger$$The fact that the unitary has to act on both sides of the initial state means it is a [*superoperator*](https://en.wikipedia.org/wiki/Superoperator), that is an object that can act on operators like the state matrix. It turns out using a special matrix multiplication identity we can write this as$$|\rho'\rangle \rangle = \mathcal U |\rho\rangle\rangle$$where $\mathcal U = U^*\otimes U$ and $|\rho\rangle\rangle = {\rm vec}(\rho)$. The nice thing about this is it looks like the pure state case. This is because the operator (the state) has become a vector and the superoperator (the left right action of $U$) has become an operator. **More information** Below we will assume that you are already an expert in these topics. If you are unfamiliar with these topics we recommend the following references- chapter 8 of [Mike_N_Ike] which is on *Quantum noise and quantum operations*. - chapter 3 of John Preskill's lecture notes [Physics 219/Computer Science 219](http://www.theory.caltech.edu/people/preskill/ph219/chap3_15.pdf)- the [file](../superoperator_representations.rst) `/docs/superoperator_representations.md` - for an intuitive but advanced treatment see [GRAPTN]| [Mike_N_Ike] *Quantum Computation and Quantum Information*. | Michael A. Nielsen & Isaac L. Chuang. | Cambridge: Cambridge University Press (2000). | [GRAPTN] *Tensor networks and graphical calculus for open quantum systems*. | Christopher Wood et al. | Quant. Inf. Comp. 15, 0579-0811 (2015). | https://arxiv.org/abs/1111.6950 Conversion between different descriptions of quantum channelsWe intentionally chose not to make quantum channels python objects with methods that would automatically transform between representations. The functions to convert between different representations are called things like `kraus2chi`, `kraus2choi`, `pauli_liouville2choi` etc.This assumes the user does not do silly things like input a Choi matrix to a function `chi2choi`. ###Code import numpy as np from pyquil.gate_matrices import I, X, Y, Z, H, CNOT ###Output _____no_output_____ ###Markdown Define some channels ###Code def amplitude_damping_kraus(p): Ad0 = np.asarray([[1, 0], [0, np.sqrt(1 - p)]]) Ad1 = np.asarray([[0, np.sqrt(p)], [0, 0]]) return [Ad0, Ad1] def bit_flip_kraus(p): M0 = np.sqrt(1 - p) * I M1 = np.sqrt(p) * X return [M0, M1] ###Output _____no_output_____ ###Markdown Define some states ###Code one_state = np.asarray([[0,0],[0,1]]) zero_state = np.asarray([[1,0],[0,0]]) rho_mixed = np.asarray([[0.9,0],[0,0.1]]) ###Output _____no_output_____ ###Markdown vec and unvec We can vectorize i.e. `vec` and unvec matrices.We chose a column stacking convention so that the matrix$$A = \begin{pmatrix} 1 & 2\\ 3 & 4\end{pmatrix}$$becomes$$|A\rangle\rangle = {\rm vec}(A) = \begin{pmatrix} 1\\ 3\\ 2\\ 4\end{pmatrix}$$Let's check that ###Code from forest.benchmarking.operator_tools import vec, unvec A = np.asarray([[1, 2], [3, 4]]) print(A) print(" ") print(vec(A)) print(" ") print('Does the story check out? ', np.all(unvec(vec(A))==A)) ###Output [[1 2] [3 4]] [[1] [3] [2] [4]] Does the story check out? True ###Markdown Kraus to $\chi$ matrix (aka chi or process matrix) ###Code from forest.benchmarking.operator_tools import kraus2chi ###Output _____no_output_____ ###Markdown Lets do a unitary gate first, say the Hadamard ###Code print('The Kraus operator is:\n', np.round(H,3)) print('\n') print('The Chi matrix is:\n', kraus2chi(H)) ###Output The Kraus operator is: [[ 0.707 0.707] [ 0.707 -0.707]] The Chi matrix is: [[0. +0.j 0. +0.j 0. +0.j 0. +0.j] [0. +0.j 0.5+0.j 0. +0.j 0.5+0.j] [0. +0.j 0. +0.j 0. +0.j 0. +0.j] [0. +0.j 0.5+0.j 0. +0.j 0.5+0.j]] ###Markdown Now consider the Amplitude damping channel ###Code AD_kraus = amplitude_damping_kraus(0.1) print('The Kraus operators are:\n', np.round(AD_kraus,3)) print('\n') print('The Chi matrix is:\n', np.round(kraus2chi(AD_kraus),3)) ###Output The Kraus operators are: [[[1. 0. ] [0. 0.949]] [[0. 0.316] [0. 0. ]]] The Chi matrix is: [[0.949+0.j 0. +0.j 0. +0.j 0.025+0.j ] [0. +0.j 0.025+0.j 0. -0.025j 0. +0.j ] [0. +0.j 0. +0.025j 0.025+0.j 0. +0.j ] [0.025+0.j 0. +0.j 0. +0.j 0.001+0.j ]] ###Markdown Kraus to Pauli Liouville aka the "Pauli Transfer Matrix" ###Code from forest.benchmarking.operator_tools import kraus2pauli_liouville Hpaulirep = kraus2pauli_liouville(H) Hpaulirep ###Output _____no_output_____ ###Markdown We can visualize this using the tools from the plotting module. ###Code from forest.benchmarking.plotting.state_process import plot_pauli_transfer_matrix import matplotlib.pyplot as plt f, (ax1) = plt.subplots(1, 1, figsize=(5, 4.2)) plot_pauli_transfer_matrix(Hpaulirep,ax=ax1) ###Output _____no_output_____ ###Markdown The above figure is a graphical representation of: (out operator) = H (in operator) HZ = H X H -Y = H Y H X = H Z H Evolving states using quantum channelsIn many superoperator representations evolution corresponds to multiplying the vec'ed state by the superoperator. E.g. ###Code from forest.benchmarking.operator_tools import kraus2superop zero_state_vec = vec(zero_state) answer_vec = np.matmul(kraus2superop([H]), zero_state_vec) print('The vec\'ed answer is', answer_vec) print('\n') print('The unvec\'ed answer is\n', np.real(unvec(answer_vec))) print('\n') print('Let\'s compare it to the normal calculation\n', H @ zero_state @ H) ###Output The vec'ed answer is [[0.5+0.j] [0.5+0.j] [0.5+0.j] [0.5+0.j]] The unvec'ed answer is [[0.5 0.5] [0.5 0.5]] Let's compare it to the normal calculation [[0.5 0.5] [0.5 0.5]] ###Markdown For representations with this simple application there are no inbuilt functions in forest benchmarking. However applying a channel is more painful in the Choi and Kraus representation.Consider the amplitude damping channel where we need to perform the following calculation to find out put of channel $\rho_{out} = A_0 \rho A_0^\dagger + A_1 \rho A_1^\dagger$.We provide helper functions to do these calculations. ###Code from forest.benchmarking.operator_tools import apply_kraus_ops_2_state, apply_choi_matrix_2_state, kraus2choi apply_kraus_ops_2_state(AD_kraus, one_state) ###Output _____no_output_____ ###Markdown In the Choi representation we get the same answer: ###Code AD_choi = kraus2choi(AD_kraus) apply_choi_matrix_2_state(AD_choi, one_state) ###Output _____no_output_____ ###Markdown Compose quantum channelsComposing channels is useful when describing larger circuits. In some representations e.g. in the superoperator or Liouville representation it is just matrix multiplication e.g. ###Code from forest.benchmarking.operator_tools import superop2kraus, kraus2superop H_super = kraus2superop(H) H_squared_super = H_super @ H_super print('Hadamard squared as a superoperator:\n', np.round(H_squared_super,2)) print('\n As a Kraus operator:\n', np.round(superop2kraus(H_squared_super),2)) ###Output Hadamard squared as a superoperator: [[ 1.+0.j -0.+0.j -0.+0.j 0.+0.j] [-0.+0.j 1.+0.j 0.+0.j -0.+0.j] [-0.+0.j 0.+0.j 1.+0.j -0.+0.j] [ 0.+0.j -0.+0.j -0.+0.j 1.+0.j]] As a Kraus operator: [[[ 1.+0.j -0.+0.j] [ 0.+0.j 1.+0.j]]] ###Markdown Composing channels in the Kraus representation is more difficult. Consider composing two channels $\mathcal A$ (with Kraus operators $[A_0, A_1]$) and $\mathcal B$ (with Kraus operators $[B_0, B_1]$). The composition is $$\begin{align}\mathcal B(\mathcal A(\rho)) & = \sum_i \sum_j B_j A_i \rho A_i^\dagger B_j^\dagger \end{align}$$ ###Code from forest.benchmarking.operator_tools import compose_channel_kraus, superop2kraus BitFlip_kraus = bit_flip_kraus(0.2) kraus2superop(compose_channel_kraus(AD_kraus, BitFlip_kraus)) ###Output _____no_output_____ ###Markdown This is the same as if we do ###Code BitFlip_super = kraus2superop(BitFlip_kraus) AD_super = kraus2superop(AD_kraus) AD_super @ BitFlip_super ###Output _____no_output_____ ###Markdown We can also easily compose channels acting on independent spaces.Consider composing the same two channels as above, $\mathcal A$ and $\mathcal B$. However this time they act on different Hilbert spaces. With respect to the tensor product structure $H_2 \otimes H_1$ the Kraus operators are $[A_0\otimes I, A_1\otimes I]$ and $[I \otimes B_0, I \otimes B_1]$.In this case the order of the operations commutes $$\begin{align}\mathcal A(\mathcal B(\rho))= \mathcal B(\mathcal A(\rho)) & = \sum_i \sum_j A_i\otimes B_j \rho A_i^\dagger\otimes B_j^\dagger \end{align}$$In forest benchmarking you can specify the two channels without the Identity tensored on and it will take care of it for you: ###Code from forest.benchmarking.operator_tools import tensor_channel_kraus np.round(tensor_channel_kraus(AD_kraus,BitFlip_kraus),3) ###Output _____no_output_____ ###Markdown Validate quantum channels are physicalWhen doing process tomography sometimes the estimates returned by various estimation methods can result in unphysical processes.The functions below can be used to check if the estimates are physical. As a starting point, we might want to check if a process specified by Kraus operators is valid. Unless a process is unitary you need more than one Kraus operator to be a valid quantum operation. ###Code from forest.benchmarking.operator_tools import kraus_operators_are_valid kraus_operators_are_valid(AD_kraus[0]) ###Output _____no_output_____ ###Markdown However a full set is valid: ###Code kraus_operators_are_valid(AD_kraus) ###Output _____no_output_____ ###Markdown We can also validate other properties of quantum channels such as completely positivity and trace preservation. This is done on the **Choi** representation, so you many need to convert your quantum operation to the Choi representation first. ###Code from forest.benchmarking.operator_tools import (choi_is_unitary, choi_is_unital, choi_is_trace_preserving, choi_is_completely_positive, choi_is_cptp) # amplitude damping is not unitary print(choi_is_unitary(AD_choi),'\n') # amplitude damping is not unital print(choi_is_unital(AD_choi)) # amplitude damping is trace preserving (TP) print(choi_is_trace_preserving(AD_choi),'\n') # amplitude damping is completely positive (CP) print(choi_is_completely_positive(AD_choi), '\n') # amplitude damping is CPTP print(choi_is_cptp(AD_choi)) ###Output True True True ###Markdown Project an unphysical state to the closest physical state ###Code from forest.benchmarking.operator_tools.project_state_matrix import project_state_matrix_to_physical # Test the method. Example from fig 1 of maximum likelihood minimum effort # https://doi.org/10.1103/PhysRevLett.108.070502 eigs = np.diag(np.array(list(reversed([3.0/5, 1.0/2, 7.0/20, 1.0/10, -11.0/20])))) phys = project_state_matrix_to_physical(eigs) np.allclose(phys, np.diag([0, 0, 1.0/5, 7.0/20, 9.0/20])) from forest.benchmarking.plotting import hinton rho_unphys = np.random.uniform(-1, 1, (2, 2)) \ * np.exp(1.j * np.random.uniform(-np.pi, np.pi, (2, 2))) rho_phys = project_state_matrix_to_physical(rho_unphys) fig, (ax1, ax2) = plt.subplots(1, 2) hinton(rho_unphys, ax=ax1) hinton(rho_phys, ax=ax2) ax1.set_title('Unphysical') ax2.set_title('Physical projection') fig.tight_layout() ###Output _____no_output_____ ###Markdown Project unphysical channels to physical channelsWhen doing process tomography often the estimates returned by maximum likelihood estimation or linear inversion methods can result in unphysical processes.The functions below can be used to project the unphysical estimates back to physical estimates. ###Code from forest.benchmarking.operator_tools.project_superoperators import (proj_choi_to_completely_positive, proj_choi_to_trace_non_increasing, proj_choi_to_trace_preserving, proj_choi_to_physical, proj_choi_to_unitary) neg_Id_choi = -kraus2choi(I) proj_choi_to_completely_positive(neg_Id_choi) proj_choi_to_trace_non_increasing(neg_Id_choi) proj_choi_to_trace_preserving(neg_Id_choi) proj_choi_to_physical(neg_Id_choi) # closer to identity proj_choi_to_unitary(kraus2choi(bit_flip_kraus(0.1))) # closer to X gate proj_choi_to_unitary(kraus2choi(bit_flip_kraus(0.9))) ###Output _____no_output_____ ###Markdown Validate operatorsA lot of the work in validating the physicality of quantum channels comes down to validating properties of matrices: ###Code from forest.benchmarking.operator_tools.validate_operator import (is_square_matrix, is_identity_matrix, is_idempotent_matrix, is_unitary_matrix, is_positive_semidefinite_matrix) # a vector is not square is_square_matrix(np.array([[1], [0]])) # NBVAL_RAISES_EXCEPTION # the line above is for testing purposes, do not remove. # a tensor is not a matrix tensor = np.ones(8).reshape(2,2,2) print(tensor) is_square_matrix(tensor) is_identity_matrix(X) projector_zero = np.array([[1, 0], [0, 0]]) is_idempotent_matrix(projector_zero) is_unitary_matrix(AD_kraus[0]) is_positive_semidefinite_matrix(I) ###Output _____no_output_____
evacuation_kanagawa.ipynb
###Markdown >本研究では,解析範囲内の国勢調査の基本単位区毎に累積収容人数を累積収容人数曲線として表現し,基本単位区毎の累積収容人数を比較した.各基本単位区から,各広域避難所までの移動距離を求める。 ###Code ku_dist=pd.DataFrame() for i,row in ninomiya.iterrows(): #i番目の基本区のcentroidをポイントとしてcent_locに設定する print(i,"番目の基本区から") cent_loc=Point(row['geometry'].centroid.x,row['geometry'].centroid.y) orig=ox.distance.nearest_nodes(ninomiya_graph,X=cent_loc.x,Y=cent_loc.y) print("orig:",orig) for j,row2 in evac_fac.iterrows(): #j番目の施設をポイントとしてfac_locに設定する fac_loc=Point(row2['geometry'].x,row2['geometry'].y) dest=ox.distance.nearest_nodes(ninomiya_graph,X=fac_loc.x,Y=fac_loc.y) print("dest:",dest) route = ox.shortest_path(ninomiya_graph, orig, dest, weight="travel_time") print("") print("") evac_fac # print("") import networkx as nx ku_dist=pd.DataFrame() for i,row in ninomiya.iterrows(): #i番目の基本区のcentroidをポイントとしてcent_locに設定する print(i,"番目の基本区から") cent_loc=Point(row['geometry'].centroid.x,row['geometry'].centroid.y) ku_dist.loc[i,"cent_loc"]=row['KEY_CODE'] orig=ox.distance.nearest_nodes(ninomiya_graph,X=cent_loc.x,Y=cent_loc.y) for j,row2 in evac_fac.iterrows(): fac_loc=Point(row2['geometry'].x,row2['geometry'].y) dest=ox.distance.nearest_nodes(ninomiya_graph,X=fac_loc.x,Y=fac_loc.y) print("cent_loc:",cent_loc.x,cent_loc.y," fac:",fac_loc.x,fac_loc.y) route = ox.shortest_path(ninomiya_graph, orig, dest) min_dist = nx.shortest_path_length(ninomiya_graph, orig, dest) ku_dist.loc[i,j]=min_dist*100 print("dist:",min_dist*100, " m") fig,ax=ox.plot_graph_route(ninomiya_graph,route,node_size=0) #各基本区のcentroidから,各広域避難所への距離 ku_dist #平均徒歩避難速度を50m/分として, 一定時間以内に到達可能な広域避難所の収容人数を足して累積収容人数を計算する。 thres_min=[5,10,15,20,30] #累積収容人数を計算するための移動時間閾値 walk_speed=50 for i,row in ku_dist.iterrows(): print(i,"th 基本区") row['cum_cap']=0 for tmin in thres_min: print(tmin," 分以内に到達できる施設") print(row[ row.astype(float)/walk_speed< tmin ] ) fac_reachable=row.astype(float)/walk_speed< tmin print("fac:",fac_reachable) # print("sum:",row[ row.astype(float)/walk_speed< tmin ] ) print("fac reachable:",ninomiya_evac_fac[fac_reachable]) # print("cumsum:",ninomiya_evac_fac[fac_reachable]['ninzu'].sum()) #row['cum_cap'+str(tmin)]=ninomiya_evac_fac[fac_reachable]['ninzu'].sum() print("") #print(ku_dist) ###Output _____no_output_____
notebooks/Individuals_using_the_Internet/Individuals_using_the_Internet.ipynb
###Markdown Individuals using the Internet (% of population) from 1990 to 2017 The digital and information revolution has dramatically changed the way the world communicates, learns, does business and treats disease. Indeed, the new information and communications technologies (ICTs) offer vast possibilities for advancement in all fields in all countries, from the most to the least developed. Comparable statistics on access, use, quality and affordability of ICT are essential for formulating policies favorable to the growth of the sector and for monitoring and evaluating the impact of this sector on the development of each country. Although basic access data are available for many countries, in most developing countries little is known about ICT users, including their usage, and how they affect people and businesses. The Global Partnership on Measuring ICT for Development is there to help set standards, harmonize information and communications technology statistics, and build the statistical capacity of developing countries. However, despite significant improvements in developing countries, the gap remains.Hereafter, we will use Plotly library to spatially visualize the time evolution of the individuals using the Internet through the world. Import required libraries ###Code import pandas as pd import numpy as np import plotly.express as px import plotly.io as pio from IPython.display import Javascript Javascript( """require.config({ paths: { plotly: 'https://cdn.plot.ly/plotly-latest.min' } });""" ) pio.renderers.default = 'notebook_connected' ###Output _____no_output_____ ###Markdown Data pre-processing ###Code df = pd.read_csv('Data/Individuals_using_the_Internet.csv', header=0, names=['year', 'time_code', 'country_name', 'country_code', 'percentage_internet_users'], usecols=['year', 'country_name', 'country_code', 'percentage_internet_users'], parse_dates=True, dtype={'percentage_internet_users': float}, na_values='..') df.head() ###Output <ipython-input-2-8c7ef5338f76>:6: DeprecationWarning: `np.float` is a deprecated alias for the builtin `float`. To silence this warning, use `float` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.float64` here. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations ###Markdown Cleaning Our dataset extends from 1960 to 2018. The Internet has started to be developped in the 1960's, but has really started to be popularized in the 1990's, there has therefor been few or no users between the 1960's and the 1990's.To prepare our mapping, we begin by dropping all "not a number (NaN)" values. Then, because there is no real interest to map years with all data to 0 - typically years from 1960 to 1990 - we look for and exclude each year where the sum of the percentage of internet users for the whole countries is 0. This process brings us to 1990 as first year with significant values. We also choose to exclude 2018 from the dataset because it still lacks some not negligible values for this year. ###Code df.dropna(inplace=True) group = df.groupby('year') df = group.filter(lambda x: x['percentage_internet_users'].sum() > 0) df = df.drop(df[df['year']=='2018'].index) df.reset_index(drop=True, inplace=True) df ###Output _____no_output_____ ###Markdown Mapping ###Code fig = px.choropleth(df, locations='country_code', color='percentage_internet_users', hover_name='country_name', animation_frame='year', range_color=[0,100], scope='world', labels={'percentage_internet_users':'% of population<br>using Internet'}, title="<b>Individuals using the Internet from 1990 to 2017</b><br>" + "<i>Source : International Telecommunication Union</i>", color_continuous_scale=px.colors.sequential.deep) # Style fig.update_layout( font_family='Helvetica', font_color='grey', font_size=12, title_font_size=20 ) fig.show() fig = px.choropleth(df, locations='country_code', color='percentage_internet_users', hover_name='country_name', scope='world', labels={'percentage_internet_users':'% of population<br>using Internet'}, color_continuous_scale=px.colors.sequential.deep, title="<b>Individuals using the Internet in 2017</b><br>" + "<i>Source : International Telecommunication Union</i>" ) # Style fig.update_layout( font_family='Helvetica', font_color='grey', font_size=12, title_font_size=20, ) fig.show() ###Output _____no_output_____
PyData_Pune_2019.ipynb
###Markdown Haptic Learning : inferencing human features using deep networks This python notebook is for explanation of the core concepts used and the models developed for this webinar. AcknowledgementI would like to extend my gratitude towards PyData, Pune team for giving me this opportunity to showcase my findings Akshay Bahadur * Software engineer, Symantec. * ML Researcher * Software Innovator, Intel Contact * [Portfolio](https://www.akshaybahadur.com/) * [LinkedIN](https://www.linkedin.com/in/akshaybahadur21/) * [GitHub](https://github.com/akshaybahadur21) Tania's story ###Code %%HTML <iframe width="700" height="400" src="https://www.youtube.com/embed/Oc_QMQ4QHcw"></iframe> ###Output _____no_output_____ ###Markdown MNIST Digit Recognition Showing content using Webcam ###Code from keras import Sequential from keras.callbacks import ModelCheckpoint from keras.datasets import mnist import numpy as np import matplotlib.pyplot as plt from keras.layers import Flatten, Dense, Dropout from keras.utils import np_utils, print_summary from keras.models import load_model import warnings warnings.filterwarnings('ignore') (x_train, y_train), (x_test, y_test) = mnist.load_data() def showData(x, label): pixels = np.array(x, dtype='uint8') pixels = pixels.reshape((28, 28)) plt.title('Label is {label}'.format(label=label)) plt.imshow(pixels, cmap='gray') plt.show() showData(x_train[250], y_train[250]) showData(x_train[24], y_train[24]) x_train_norm= x_train / 255. x_test_norm=x_test / 255. def preprocess_labels(y): labels = np_utils.to_categorical(y) return labels y_train = preprocess_labels(y_train) y_test = preprocess_labels(y_test) x_train_norm = x_train_norm.reshape(x_train_norm.shape[0], 28, 28, 1) x_test_norm = x_test_norm.reshape(x_test_norm.shape[0], 28, 28, 1) print("number of training examples = " + str(x_train.shape[0])) print("number of test examples = " + str(x_test.shape[0])) print("X_train shape: " + str(x_train.shape)) print("Y_train shape: " + str(y_train.shape)) def keras_model(image_x, image_y): num_of_classes = 10 model = Sequential() model.add(Flatten(input_shape=(image_x, image_y, 1))) model.add(Dense(512, activation='relu')) model.add(Dropout(0.6)) model.add(Dense(128, activation='relu')) model.add(Dropout(0.6)) model.add(Dense(num_of_classes, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) filepath = "pyData.h5" checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max') callbacks_list = [checkpoint] return model, callbacks_list model, callbacks_list = keras_model(28, 28) print_summary(model) model, callbacks_list = keras_model(28, 28) model.fit(x_train_norm, y_train, validation_data=(x_test_norm, y_test), epochs=2, batch_size=64, callbacks=callbacks_list) # Computer vision part import cv2 loaded_model=load_model('pyData.h5') cap = cv2.VideoCapture(0) while (cap.isOpened()): ret, img = cap.read() img, contours, thresh = get_img_contour_thresh(img) if len(contours) > 0: contour = max(contours, key=cv2.contourArea) if cv2.contourArea(contour) > 2500: x, y, w, h = cv2.boundingRect(contour) newImage = thresh[y:y + h, x:x + w] newImage = cv2.resize(newImage, (28, 28)) newImage = np.array(newImage) newImage = newImage.flatten() newImage = newImage.reshape(newImage.shape[0], 1) ans= loaded_model.predict(newImage) x, y, w, h = 0, 0, 300, 300 cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.putText(img, "Prediction : " + str(ans), (10, 320), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) cv2.imshow("Frame", img) cv2.imshow("Contours", thresh) k = cv2.waitKey(10) if k == 27: break def get_img_contour_thresh(img): x, y, w, h = 0, 0, 300, 300 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) blur = cv2.GaussianBlur(gray, (35, 35), 0) ret, thresh1 = cv2.threshold(blur, 70, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU) thresh1 = thresh1[y:y + h, x:x + w] contours, hierarchy = cv2.findContours(thresh1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[-2:] return img, contours, thresh1 %%HTML <iframe width="700" height="400" src="https://www.youtube.com/embed/MRNODXrYK3Q"></iframe> ###Output _____no_output_____ ###Markdown Quick, Draw Feeding data by writing on screen For the initial steps, you can look here : https://www.akshaybahadur.com/post/quick-draw ###Code from collections import deque cap = cv2.VideoCapture(0) Lower_blue = np.array([110, 50, 50]) Upper_blue = np.array([130, 255, 255]) pts = deque(maxlen=512) blackboard = np.zeros((480, 640, 3), dtype=np.uint8) digit = np.zeros((200, 200, 3), dtype=np.uint8) pred_class = 0 model = load_model('QuickDraw.h5') while (cap.isOpened()): ret, img = cap.read() img = cv2.flip(img, 1) hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) kernel = np.ones((5, 5), np.uint8) mask = cv2.inRange(hsv, Lower_green, Upper_green) mask = cv2.erode(mask, kernel, iterations=2) mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) mask = cv2.dilate(mask, kernel, iterations=1) res = cv2.bitwise_and(img, img, mask=mask) cnts, heir = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[-2:] center = None if len(cnts) >= 1: cnt = max(cnts, key=cv2.contourArea) if cv2.contourArea(cnt) > 200: ((x, y), radius) = cv2.minEnclosingCircle(cnt) cv2.circle(img, (int(x), int(y)), int(radius), (0, 255, 255), 2) cv2.circle(img, center, 5, (0, 0, 255), -1) M = cv2.moments(cnt) center = (int(M['m10'] / M['m00']), int(M['m01'] / M['m00'])) pts.appendleft(center) for i in range(1, len(pts)): if pts[i - 1] is None or pts[i] is None: continue cv2.line(blackboard, pts[i - 1], pts[i], (255, 255, 255), 7) cv2.line(img, pts[i - 1], pts[i], (0, 0, 255), 2) elif len(cnts) == 0: if len(pts) != []: blackboard_gray = cv2.cvtColor(blackboard, cv2.COLOR_BGR2GRAY) blur1 = cv2.medianBlur(blackboard_gray, 15) blur1 = cv2.GaussianBlur(blur1, (5, 5), 0) thresh1 = cv2.threshold(blur1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1] blackboard_cnts = cv2.findContours(thresh1.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)[1] if len(blackboard_cnts) >= 1: cnt = max(blackboard_cnts, key=cv2.contourArea) print(cv2.contourArea(cnt)) if cv2.contourArea(cnt) > 2000: x, y, w, h = cv2.boundingRect(cnt) digit = blackboard_gray[y:y + h, x:x + w] pred_probab, pred_class = keras_predict(model, digit) print(pred_class, pred_probab) pts = deque(maxlen=512) blackboard = np.zeros((480, 640, 3), dtype=np.uint8) img = overlay(img, emojis[pred_class], 400, 250, 100, 100) cv2.imshow("Frame", img) k = cv2.waitKey(10) if k == 27: break %%HTML <iframe width="700" height="400" src="https://www.youtube.com/embed/X0qk4aEqg3o"></iframe> %%HTML <iframe width="700" height="400" src="https://www.youtube.com/embed/Qkpgv16-JRM"></iframe> ###Output _____no_output_____ ###Markdown Emojinator Haptically feeding hand gestures For more details, you can look here : https://github.com/akshaybahadur21/Emojinator ###Code model = load_model('emojinator.h5') cap = cv2.VideoCapture(0) x, y, w, h = 300, 50, 350, 350 while (cap.isOpened()): ret, img = cap.read() img = cv2.flip(img, 1) hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) mask2 = cv2.inRange(hsv, np.array([2, 50, 60]), np.array([25, 150, 255])) res = cv2.bitwise_and(img, img, mask=mask2) gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY) median = cv2.GaussianBlur(gray, (5, 5), 0) kernel_square = np.ones((5, 5), np.uint8) dilation = cv2.dilate(median, kernel_square, iterations=2) opening = cv2.morphologyEx(dilation, cv2.MORPH_CLOSE, kernel_square) ret, thresh = cv2.threshold(opening, 30, 255, cv2.THRESH_BINARY) thresh = thresh[y:y + h, x:x + w] contours = cv2.findContours(thresh.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)[1] if len(contours) > 0: contour = max(contours, key=cv2.contourArea) if cv2.contourArea(contour) > 2500: x, y, w1, h1 = cv2.boundingRect(contour) newImage = thresh[y:y + h1, x:x + w1] newImage = cv2.resize(newImage, (50, 50)) pred_probab, pred_class = keras_predict(model, newImage) print(pred_class, pred_probab) img = overlay(img, emojis[pred_class], 400, 250, 90, 90) x, y, w, h = 300, 50, 350, 350 cv2.imshow("Frame", img) cv2.imshow("Contours", thresh) k = cv2.waitKey(10) if k == 27: break %%HTML <iframe width="700" height="400" src="https://www.youtube.com/embed/1eor41gIbF8"></iframe> %%HTML <iframe width="700" height="400" src="https://www.youtube.com/embed/WFm23haaWTQ"></iframe> %%HTML <iframe width="700" height="400" src="https://www.youtube.com/embed/Ujl8L4QoHHU"></iframe> ###Output _____no_output_____ ###Markdown Drowsiness Detection Feeding Eye aspect ratio for detection ###Code def eye_aspect_ratio(eye): A = distance.euclidean(eye[1], eye[5]) B = distance.euclidean(eye[2], eye[4]) C = distance.euclidean(eye[0], eye[3]) ear = (A + B) / (2.0 * C) return ear thresh = 0.25 frame_check = 20 detect = dlib.get_frontal_face_detector() predict = dlib.shape_predictor("E:\Github projects\Drowsiness_Detection_fork\shape_predictor_68_face_landmarks.dat")# Dat file is the crux of the code (lStart, lEnd) = face_utils.FACIAL_LANDMARKS_68_IDXS["left_eye"] (rStart, rEnd) = face_utils.FACIAL_LANDMARKS_68_IDXS["right_eye"] cap=cv2.VideoCapture(0) flag=0 while True: ret, frame=cap.read() frame = imutils.resize(frame, width=450) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) subjects = detect(gray, 0) for subject in subjects: shape = predict(gray, subject) shape = face_utils.shape_to_np(shape)#converting to NumPy Array leftEye = shape[lStart:lEnd] rightEye = shape[rStart:rEnd] leftEAR = eye_aspect_ratio(leftEye) rightEAR = eye_aspect_ratio(rightEye) ear = (leftEAR + rightEAR) / 2.0 leftEyeHull = cv2.convexHull(leftEye) rightEyeHull = cv2.convexHull(rightEye) cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1) cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1) if ear < thresh: flag += 1 print (flag) if flag >= frame_check: cv2.putText(frame, "****************ALERT!****************", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) cv2.putText(frame, "****************ALERT!****************", (10,325), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) #print ("Drowsy") else: flag = 0 cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF if key == ord("q"): break %%HTML <iframe width="700" height="400" src="https://www.youtube.com/embed/twmHZE20rRY"></iframe> %%HTML <iframe width="700" height="400" src="https://www.youtube.com/embed/eFQvKHdjeEw"></iframe> ###Output _____no_output_____ ###Markdown Facial Recognition using FaceNets For detailed code : https://github.com/akshaybahadur21/Facial-Recognition-using-Facenet ###Code def recognize_face(face_descriptor, database): encoding = img_to_encoding(face_descriptor, FRmodel) min_dist = 100 identity = None # Loop over the database dictionary's names and encodings. for (name, db_enc) in database.items(): # Compute L2 distance between the target "encoding" and the current "emb" from the database. dist = np.linalg.norm(db_enc - encoding) print('distance for %s is %s' % (name, dist)) # If this distance is less than the min_dist, then set min_dist to dist, and identity to name if dist < min_dist: min_dist = dist identity = name if int(identity) <=4: return str('Akshay'), min_dist if int(identity) <=8: return str('Apoorva'), min_dist def img_to_encoding(image, model): image = cv2.resize(image, (96, 96)) img = image[...,::-1] img = np.around(np.transpose(img, (2,0,1))/255.0, decimals=12) x_train = np.array([img]) embedding = model.predict(x_train) return embedding %%HTML <iframe width="700" height="400" src="https://www.youtube.com/embed/v2dPVx9qCEo"></iframe> ###Output _____no_output_____ ###Markdown Open Pose ###Code %%HTML <iframe width="700" height="400" src="https://www.youtube.com/embed/C1Sxk6zxWLM"></iframe> %%HTML <iframe width="700" height="400" src="https://www.youtube.com/embed/xyiLxIMDiAY"></iframe> ###Output _____no_output_____
analysis/cogsci2021/perceptual_chunk_exploratory.ipynb
###Markdown Visualizations ###Code # visualize all participant's chunks fig, axs = plt.subplots(n_ppt, numTrials, figsize=(20,2*n_ppt)) for i, ppt in enumerate(ppts): for j, target in enumerate(targets): chunks = df_trial[(df_trial.gameID==ppt) & (df_trial.targetName==target)]['gameGrid'].iloc[0] chunks = np.rot90(chunks) axs[i,j].axis('off') axs[i,j].imshow(chunks, cmap='Set3') # how many chunks do people identify in each structure? fig = plt.figure(figsize=(10,6)) sns.set_context('poster') sns.set_style('whitegrid', {'legend':False}) sns.set(style="ticks", rc={"lines.linewidth": 0.7}) sns.barplot(data=df_trial, y='nChunksHighlighted',x='targetName', order=targets) ###Output _____no_output_____ ###Markdown Perceptual chunk analysis notes Properties of the chunk painting process- size of chunk colored in over time - distinguish adding to the same chunk from creating new ones- average position of colored square over trial - is it bottom to top? Simple properties of perceptual chunks as predictors of difficulty/ complexity- Number of perceptual chunks in each structure, as a measure of (perceptual) complexity- Proportion of perceptual chunks that can't be made with blocks provided (as a measure of difficulty)- Variance in perceptual chunks as a measure of 'knowing what to do first' when building (e.g. thinking time pre first block) - calculate using edit distance below Strategies for comparing perceptual chunks with procedural chunksWithin *perceptual* chunks:- Find an edit distance - cost: +1 for changing a square, 0 for changing color of all members of a group to a unique color- Find a unique 'median' perceptual decomposition - minimum edit distance to all decompositionsCurrently, our *procedural* chunk measures don't give us a full decomposition.Bag of chunks:- Proportion of perceptual chunks that are also procedural chunks - i.e. get the overlap in distributions - Would need to think about chunk sizes, as well as popularity: don't want to be systematically skimming-off the procedural chunks that could match. - As a measure of difficulty?- Find the most popular procedural chunks in all reconstructions - Are these more likely to be within, or crossing, a perceptual chunk? Compare to some baseline. - Do procedural chunks become less tied to the perceptual ones with practice? Alternatively, we could find a way to obtain decompositions from procedural chunks. Once we have a metric:- Pre vs. in post: do people start off with perceptual chunks but move on to procedural ones? Future analyses and experiments - Do *perceptual parses* change with building experience?- How consistent are perceptual parses for an individual? - Do they become more consistent with building practice? Properties of chunk painting processThe main purpose of this experiment was to obtain perceptual decompositions. The process of recording them is less relevant to our goals, however we include some basic analyses. Notes about experiment:- To add a chunk people could either click once to change the color on one square (colorType='click') or drag color from a square (colorType='drag'). If they dragged from an empty square, the color would auto-increment to a new color. Clicks on individual squares cycle through colors, so we expect many more clicks than drags.- People may also overwrite previously colored squares. Therefore the recording of one particular chunk may span several color events, and may also be distributed among other coloring events unrelated to that chunk.- For each coloring event, we record the squares changed, the new color group (1-8), the number of chunks currently highlighted (number of colors on shape not including the default grey), and timing data. ###Code # how many grid-squares are selected in each action? # In general, people are selecting the biggest regions first sns.scatterplot(data=df_color, x='relativeTrialDuration', y='nSquaresSelected') # do people highlight the largest chunks first? # although- nChunksHighlighted isn't the same as finishing a chunk. # this will be biased: nChunks highlighted stays the same if you just extend a chunk by a little bit, but only one square is selected at that point # fig = plt.figure(figsize=(10,6)) sns.set_context('poster') sns.set_style('whitegrid', {'legend':False}) sns.set(style="ticks", rc={"lines.linewidth": 0.7}) sns.pointplot(data=df_color, x='nChunksHighlighted', y='nSquaresSelected') ###Output _____no_output_____ ###Markdown Perceptual chunks as predictors of difficulty/ complexity Number of perceptual chunks in each structureThis is a potential measure of structure difficulty, particularly for early trials where we expect perceptual decompositions to more strongly structure participant's plans.I'd predict that structures with a greater number of perceptual chunks require more extensive planning. ###Code fig = plt.figure(figsize=(10,6)) sns.set_context('poster') sns.set_style('whitegrid', {'legend':False}) sns.set(style="ticks", rc={"lines.linewidth": 0.7}) g = sns.FacetGrid(df_trial, col="targetName", col_order=targets) g.map(sns.countplot, "nChunksHighlighted", order=range(2,9)); ###Output _____no_output_____ ###Markdown Comparing perceptual chunks with building procedures Cluster chunks to identify a set of chunks for each tower ###Code def chunks_from_KMeans(chunks, k_values = [10, 20], thresholds = [0.4]): kms = {} df_kms = pd.DataFrame() for target in targets: kms[target] = {} for n_cluster in k_values: feature_mat = np.array(chunks[target]) # get the mean number of chunks for that structure meanNChunks = np.round(df_trial.groupby('targetName')['nChunksHighlighted'].mean()).astype(int).to_dict() # group into n clusters where n is the mean amount of chunks for that structure # kmeans = KMeans(n_clusters=meanNChunks[target], random_state=0).fit(feature_mat) kms[target][n_cluster] = KMeans(n_clusters=n_cluster, random_state=0).fit(feature_mat) for threshold in thresholds: df_kms = df_kms.append( { 'cluster_method': 'k-means', 'cluster_object': kms[target][n_cluster], 'targetName': target, 'n_cluster': n_cluster, 'cluster_centers': kms[target][n_cluster].cluster_centers_, 'chunks': (kms[target][n_cluster].cluster_centers_>=threshold)*1, 'threshold': threshold, 'inertia': kms[target][n_cluster].inertia_, }, ignore_index=True ) return df_kms, kms def max_values(cc): return np.array([cc[i] == np.max(cc,axis=1)[i] for i in range(0, cc.shape[0])])*1 def quantile_values(cc, quantile = 0.5): b = cc b[b==0] = np.nan #take values greater than 0, find a quantile return np.array([b[i] >= np.nanquantile(b, quantile, axis=1)[i] for i in range(0, b.shape[0])])*1 # def chunks_from_KMeans_method(chunks, # k_values = [10, 20], # method = 'max', # quantile = 0.5): # kms = {} # df_kms = pd.DataFrame() # for target in targets: # kms[target] = {} # for n_cluster in k_values: # feature_mat = np.array(chunks[target]) # # get the mean number of chunks for that structure # meanNChunks = np.round(df_trial.groupby('targetName')['nChunksHighlighted'].mean()).astype(int).to_dict() # # group into n clusters where n is the mean amount of chunks for that structure # # kmeans = KMeans(n_clusters=meanNChunks[target], random_state=0).fit(feature_mat) # kms[target][n_cluster] = KMeans(n_clusters=n_cluster, random_state=0).fit(feature_mat) # if method == 'max': # rounded_chunks = max_values(kms[target][n_cluster].cluster_centers_) # quantile = '' # elif method == 'quantile': # rounded_chunks = quantile_values(kms[target][n_cluster].cluster_centers_, quantile=quantile) # print(rounded_chunks) # df_kms = df_kms.append( # { # 'cluster_method': 'k-means', # 'cluster_object': kms[target][n_cluster], # 'targetName': target, # 'n_cluster': n_cluster, # 'cluster_centers': kms[target][n_cluster].cluster_centers_, # 'chunks': rounded_chunks, # 'threshold': method + str(quantile), # 'inertia': kms[target][n_cluster].inertia_, # }, # ignore_index=True # ) # return df_kms, kms def chunks_from_affinity_prop(feature_mats, damping_values = [0.74]): clusters = {} df_AP = pd.DataFrame() for target in targets: clusters[target] = {} for d in damping_values: clusters[target][d] = AffinityPropagation(damping=d).fit(feature_mats[target]) df_AP = df_AP.append( { 'cluster_method': 'affinity_propagation', 'cluster_object': clusters[target][d], 'targetName': target, 'n_cluster': len(clusters[target][d].cluster_centers_indices_), 'chunks': clusters[target][d].cluster_centers_, 'damping': d, }, ignore_index=True ) return df_AP # sorted_chunks = feature_mat[np.argsort(kmeans.labels_),:] def find_world_diffs(df_proc_world_states): # find all chunks for all structures (so we can search for the structures that involve this chunk) # a 'window-size' is the amount of states between first and final one considered INCLUSIVE. i.e. n is n-1 actions. # i.e. window size 3 means 2 consecutive actions window_sizes = range(2,10) df_target_grouped = df_proc_world_states.groupby(['gameID','targetName','phase_extended'])['flatDiscreteWorldStr'] df_world_deltas = df_proc_trial.copy() for chunk_size in window_sizes: # for each reconstruction, get a list of ngrams of that length df_ngrams = df_target_grouped.agg(lambda ws: list(nltk.ngrams(list(ws), chunk_size))).reset_index() # find the chunks (world deltas) from those ngrams df_ngrams['world_diff'] = df_ngrams['flatDiscreteWorldStr'].apply(lambda ngrams: ["".join([str(int(a)) for a in list( np.logical_xor(np.array(list(ngram[-1])).astype(np.bool), np.array(list(ngram[0])).astype(np.bool)) )]) for ngram in ngrams]) df_ngrams = df_ngrams.rename(columns={"flatDiscreteWorldStr": str(chunk_size)+'_grams', "world_diff": str(chunk_size)+'_chunks'}) df_world_deltas = df_world_deltas.merge(df_ngrams, how='left', on=['gameID','targetName','phase_extended']) # combine chunks from all window sized into list, so we can search for chunks in the entire reconstruction df_world_deltas['all_chunks'] = df_world_deltas[[(str(chunk_window)+'_chunks') \ for chunk_window in window_sizes if (str(chunk_window)+'_chunks') in df_world_deltas.columns]]\ .apply(lambda row: [chunk for chunks in list(row) for chunk in chunks], axis=1) return df_world_deltas def find_perc_chunks_in_procedures(df_cluster_rows, df_proc_chunks, min_cluster_members = 0): # for each exemplar with more than 3 members, count proportion of reconstructions in first, and number of reconstructions in final attempt cluster_counts = pd.DataFrame() for target in targets: # row = df_cluster_rows[(df_cluster_rows.targetName == target) & # (df_cluster_rows.cluster_method=='affinity_propagation') & # (df_cluster_rows.damping==0.74)].reset_index() row = df_cluster_rows[(df_cluster_rows.targetName == target)].reset_index() labels = row.cluster_object[0].labels_ for cluster_number, exemplar in enumerate(row.chunks[0]): chunk_array = exemplar.reshape((8,8)) chunk_str = bc.cropped_chunk_to_string(chunk_array) n_cluster_members = sum(labels == cluster_number) if n_cluster_members >= min_cluster_members: props = {} for phase in ['pre','post']: subset_for_target = df_proc_chunks[#(df_proc_chunks.blockFell == False) & (df_proc_chunks.targetName == target) & (df_proc_chunks.phase == phase)] subset_with_chunk = subset_for_target[(subset_for_target['all_chunks']\ .apply(lambda chunks: chunk_str in chunks))] row = { 'targetName': target, 'phase': phase, 'chunk_str': chunk_str, 'chunk_array': chunk_array, 'n_cluster_members': n_cluster_members, # 'reconstructions_with_chunk': list(subset_with_chunk['discreteWorld']), 'total_phase_reconstructions': subset_for_target.shape[0], 'n_with_chunk': subset_with_chunk.shape[0], 'chunk_id': cluster_number, 'chunk_height': np.sum(np.dot(np.sum(chunk_array, axis=0),np.arange(8)))/np.sum(chunk_array) + 0.5, 'proportion_with_chunk': subset_with_chunk.shape[0] / subset_for_target.shape[0] } props[phase] = subset_with_chunk.shape[0] /subset_for_target.shape[0] cluster_counts = cluster_counts.append(row,ignore_index=True) cluster_counts.loc[(cluster_counts.targetName == target) & (cluster_counts.chunk_str == chunk_str), 'difference'] = props['post'] - props['pre'] cluster_counts.loc[(cluster_counts.targetName == target) & (cluster_counts.chunk_str == chunk_str), 'both_zero'] = \ (props['pre'] == 0) & (props['post'] == 0) return cluster_counts ###Output _____no_output_____ ###Markdown Precompute clustering Create dictionaries of chunks (for k-means), and distance matrices between chunks (for affinity propagation) ###Code def addPerceptualChunks(chunk_list, decomposition, group_number): ''' Checks whether a chunk with that group number exists in the decomposition and adds it to chunk_list ''' chunk = (decomposition==group_number)*1 if chunk.any(): chunk_list.append(chunk) # for each structure, throw all chunks from all decompositions into a giant list perceptual_chunks = {} for target in targets: perceptual_chunks[target] = [] for group in range(1,9): df_trial[df_trial.targetName==target].structureGrid.apply(\ lambda decomposition: addPerceptualChunks(perceptual_chunks[target], decomposition, group)) # create distance matrices between chunks within each structure dmats = {} chunks = {} for target in targets: chunks[target] = [chunk.flatten() for chunk in perceptual_chunks[target]] dmats[target] = np.zeros((len(chunks[target]), len(chunks[target]))) for i, chunk_i in enumerate(chunks[target]): for j, chunk_j in enumerate(chunks[target]): dmats[target][i,j] = distance.euclidean(chunk_i, chunk_j) # create feature matrices for affinity propagation (nsamples, nfeatures) feature_mats = {} for target in targets: flat_chunks = [chunk.flatten() for chunk in perceptual_chunks[target]] feature_mats[target] = np.array(flat_chunks) # Do clustering # affinity propagation: provides us with exemplar, and allows us to filter out clusters with few members. # WARNING: sensitive to damping value! df_ap = chunks_from_affinity_prop(feature_mats, damping_values = [0.74]) # k-means: needs prespecified k df_kms, _ = chunks_from_KMeans(chunks, thresholds=[0.1,0.2,0.4,0.6,0.8]) df_chunk_clusters = df_ap.append(df_kms).reset_index() # df_kms_max, kms = chunks_from_KMeans_method(chunks, method='quantile', quantile=0.9) # df_chunk_clusters = df_chunk_clusters.append(df_kms_max).reset_index() # df_chunk_clusters = df_chunk_clusters.drop(['level_0','index'],axis=1) ###Output _____no_output_____ ###Markdown Load in building procedures from block_silhouette, and find all world-deltas for all reconstructions'world-deltas': change in world state (i.e. squares covered by blocks) between action i and action j, for all i and j. ###Code # load in procedural data from silhouette experiment silhouette_world_path = os.path.join(silhouette_csv_dir,'procedural_chunks_world_states_{}.p'.format('Exp2Pilot3_all')) df_proc_world_states = pickle.load( open(silhouette_world_path, "rb" )) silhouette_trial_path = os.path.join(silhouette_csv_dir,'block_silhouette_{}_good.csv'.format('Exp2Pilot3_all')) df_proc_trial = pd.read_csv(silhouette_trial_path) # find the world-deltas in building procedures df_world_deltas = find_world_diffs(df_proc_world_states) # count occurrences of each chunk by looking at world deltas cluster_counts = find_perc_chunks_in_procedures(df_chunk_clusters[ (df_chunk_clusters.cluster_method=='k-means') & (df_chunk_clusters.threshold == 0.4) & (df_chunk_clusters.n_cluster == 20)], df_world_deltas, min_cluster_members = 0) n_chunks = 20 fig, axs = plt.subplots(n_chunks, len(targets), figsize=(20,2*n_chunks)) for i, target in enumerate(targets): for j in range(0, n_chunks): greatest_increase = cluster_counts[(cluster_counts.phase=='post') & (cluster_counts.targetName==target)].sort_values('n_cluster_members', ascending=False).reset_index() axs[j,i].axis('off') axs[j,i].set_title(str(round(greatest_increase.loc[j,'n_cluster_members'], 2))) drawing.show_chunk([greatest_increase.loc[j,'chunk_str']], axs[j,i], target=target, cmap='Blues', cropped=True) # x = df_chunk_clusters.loc[(df_chunk_clusters.targetName==targets[5]) & # (df_chunk_clusters.threshold==0.4) & # (df_chunk_clusters.n_cluster==20),'cluster_object'].reset_index().loc[0,'cluster_object'] cluster_counts[(cluster_counts.phase=='post') & (cluster_counts.both_zero)].groupby('targetName').count() #something going wrong here n_chunks = 5 fig, axs = plt.subplots(len(targets), n_chunks*2, figsize=(4*n_chunks,2.5*len(targets))) for i, target in enumerate(targets): for j in range(0, n_chunks): greatest_increase = cluster_counts[(cluster_counts.phase=='post') & (cluster_counts.targetName==target)].sort_values('difference', ascending=False).reset_index() # do something graphically with: greatest_increase.loc[j,'diff'] axs[i,j].axis('off') axs[i,j].set_title(str(round(greatest_increase.loc[j,'difference'], 2))) drawing.show_chunk([greatest_increase.loc[j,'chunk_str']], axs[i,j], target=target, cmap='Blues', cropped=True) for i, target in enumerate(targets): for j in range(0, n_chunks): greatest_increase = cluster_counts[(cluster_counts.phase=='post') & (cluster_counts.targetName==target)].sort_values('difference', ascending=True).reset_index() # do something graphically with: greatest_increase.loc[j,'diff'] axs[i,n_chunks*2-1-j].axis('off') axs[i,n_chunks*2-1-j].set_title(str(round(greatest_increase.loc[j,'difference'], 2))) drawing.show_chunk([greatest_increase.loc[j,'chunk_str']], axs[i,n_chunks*2-1-j], target=target, cmap='Blues', cropped=True) # <-- Largest increase first to final ... Largest decrease first to final--> # filter out totally missing chunks cluster_counts_full = cluster_counts cluster_counts = cluster_counts[cluster_counts.both_zero==False] proportion_chunks_not_built_at_all = cluster_counts[cluster_counts.phase=='pre'].shape[0] / cluster_counts_full[cluster_counts_full.phase=='pre'].shape[0] print(str(proportion_chunks_not_built_at_all*100) + '% of perceptual chunks built in one of first and final reps') n_chunks_total = cluster_counts_full[(cluster_counts_full.phase=='pre')].shape[0] assert cluster_counts_full[(cluster_counts_full.phase=='pre')].shape[0] == cluster_counts_full[(cluster_counts_full.phase=='post')].shape[0] n_chunks_built_pre = cluster_counts_full[(cluster_counts_full.phase=='pre') & (cluster_counts_full.n_with_chunk==0)].shape[0] n_chunks_built_post = cluster_counts_full[(cluster_counts_full.phase=='post') & (cluster_counts_full.n_with_chunk==0)].shape[0] print(str(100*n_chunks_built_pre/n_chunks_total) + '% of perceptual chunks not built in pre') print(str(100*n_chunks_built_post/n_chunks_total) + '% of perceptual chunks not built in post') ###Output 33.75% of perceptual chunks not built in pre 31.875% of perceptual chunks not built in post ###Markdown How often are the shapes identified in the perceptual experiment built in a sequence of consecutive block-placements?Clustering has given us a set of 'perceptual chunks'. We now look at building procedures to see how often reconstructions contained each chunk. If consecutive actions yield a world-delta that is the same shape as a perceptual chunk, we say that that chunk was built. ###Code # Were perceptual chunks built more in the first or final repetition? By structure fig = plt.figure(figsize=(10,6)) sns.set_context('poster') sns.set_style('whitegrid', {'legend':False}) sns.set(style="ticks", rc={"lines.linewidth": 0.7}) sns.pointplot(data=cluster_counts, x='phase', y='proportion_with_chunk', hue='targetName') # How many chunks were build more, and how many were built less? fig = plt.figure(figsize=(14,10)) sns.set_context('poster') sns.set_style('whitegrid', {'legend':False}) sns.set(style="ticks", rc={"lines.linewidth": 0.7}) g = sns.FacetGrid(data=cluster_counts, col="targetName", hue="chunk_str", col_order=targets) g.map(sns.pointplot,"phase","proportion_with_chunk", order=['pre','post']) p = sns.swarmplot(y='difference', x='targetName', data=cluster_counts[cluster_counts.phase=='post'], dodge=True) ax = p.axes ax.axhline(0, ls='--') # How many chunks were build more, and how many were built less? fig = plt.figure(figsize=(14,10)) sns.set_context('poster') sns.set_style('whitegrid', {'legend':False}) sns.set(style="ticks", rc={"lines.linewidth": 0.7}) # just select one phase g = sns.FacetGrid(data=cluster_counts[cluster_counts.phase=='post'], col="targetName", col_order=targets) g.map(sns.distplot,"difference", rug=True, bins=10,) sns.distplot(cluster_counts[cluster_counts.phase=='post']['difference'], rug=True) def draw_row_chunk(row): axs[row.name].axis('off') chunk = bc.cropped_chunk_to_string(row.chunk_array) drawing.show_chunk([chunk], axs[row.name], target=row.targetName) cluster_counts cluster_count_diffs = cluster_counts[(cluster_counts.phase=='post')] cluster_count_diffs[cluster_count_diffs.targetName=='hand_selected_009'] # show chunks built less over time df_negative_diffs = cluster_counts[(cluster_counts.phase=='post') & (cluster_counts.difference < 0)].reset_index() n_chunks = df_negative_diffs.shape[0] fig, axs = plt.subplots(n_chunks, figsize=(4,n_chunks*4)) _ = df_negative_diffs.apply(lambda row: draw_row_chunk(row), axis=1) # show chunks built a lot more over time df_negative_diffs = cluster_counts[(cluster_counts.phase=='post') & (cluster_counts.difference > 0.15)].reset_index() n_chunks = df_negative_diffs.shape[0] fig, axs = plt.subplots(n_chunks, figsize=(4,n_chunks*4)) _ = df_negative_diffs.apply(lambda row: draw_row_chunk(row), axis=1) sns.scatterplot(data=cluster_counts, x='difference', y='chunk_height') up_mean = np.mean(cluster_counts[(cluster_counts.phase=='pre') & (cluster_counts.difference > 0)].chunk_height) up_std = np.std(cluster_counts[(cluster_counts.phase=='pre') & (cluster_counts.difference > 0)].chunk_height) down_mean = np.mean(cluster_counts[(cluster_counts.phase=='pre') & (cluster_counts.difference < 0)].chunk_height) down_std = np.mean(cluster_counts[(cluster_counts.phase=='pre') & (cluster_counts.difference < 0)].chunk_height) #find out if these means are different # https://en.wikipedia.org/wiki/Student%27s_t-test (up_mean - down_mean)/(np.sqrt((up_std**2 + down_std**2)/2)) #not this! # inspect one target target = 'hand_selected_016' fig = plt.figure(figsize=(10,6)) sns.set_context('poster') sns.set_style('whitegrid') sns.set(style="ticks", rc={"lines.linewidth": 0.7}) sns.pointplot(data=cluster_counts[cluster_counts.targetName== target],\ x='phase', y='proportion_with_chunk', hue='chunk_id') # print chunks from chunks = df_chunk_clusters[(df_chunk_clusters.targetName == target) & (df_chunk_clusters.cluster_method=='k-means') & (df_chunk_clusters.n_cluster==10)].reset_index().chunks[0] n_chunks = len(chunks) fig, axs = plt.subplots(n_chunks, figsize=(4,n_chunks*4)) target_name = df_proc_chunks.iloc[30]['targetName'] for j, chunk in enumerate(chunks): axs[j].axis('off') drawing.show_chunk([bc.cropped_chunk_to_string(chunk.reshape((8,8)))], axs[j], target=target) axs[j].set_title(str(j)) ###Output _____no_output_____ ###Markdown Exploration For each structure I've got a list of all chunks from all decompositions. I'm now clustering these to give us something to compare to building procedures (either a median, or exemplar, or set of chunks from that cluster).As I see it there are two sensible ways of clustering:1. Use biclustering where k = the mean number of chunks assigned to that structure. - this seems intuitive and works fairly well, but in trying to assign every single chunk to a cluster it ends up with some messier clusters. It seems like a bad decision to force obscure chunks into a cluster.2. Use affinity propagation - this seems the better strategy. Here we don't have to prespecify the number of chunks, and we can just throw away any clusters with few members. It also clusters by finding an exemplar, which gives us something simple to work with when comparing with procedures. Cluster using biclustering, where k = mean number of chunks for that structure.Looks cool, but probably not the best clustering method as it forces every chunk into a cluster. Maybe some chunks are completely different from the others and we'd rather throw them away. ###Code target = 'hand_selected_012' # get the mean number of chunks for that structure meanNChunks = np.round(df_trial.groupby('targetName')['nChunksHighlighted'].mean()).astype(int).to_dict() # group into n clusters where n is the mean amount of chunks for that structure clustering = SpectralBiclustering(n_clusters=meanNChunks[target], random_state=0).fit(dmats[target]) # https://scikit-learn.org/stable/auto_examples/bicluster/plot_spectral_biclustering.html order = clustering.row_labels_ sorted_rdm = dmats[target][np.argsort(clustering.row_labels_)] sorted_rdm = sorted_rdm[:, np.argsort(clustering.column_labels_)] img1 = plt.matshow(dmats[target]) plt.axis('off') plt.colorbar() img2 = plt.matshow(sorted_rdm) plt.axis('off') img1.set_cmap('hot') img2.set_cmap('hot') plt.colorbar() ###Output _____no_output_____ ###Markdown cluster using k-means ###Code # explore k-means target = 'hand_selected_012' feature_mat = np.array(chunks[target]) # get the mean number of chunks for that structure meanNChunks = np.round(df_trial.groupby('targetName')['nChunksHighlighted'].mean()).astype(int).to_dict() # group into n clusters where n is the mean amount of chunks for that structure kmeans = KMeans(n_clusters=meanNChunks[target], random_state=0).fit(feature_mat) # kmeans = KMeans(n_clusters=19, random_state=0).fit(feature_mat) order = kmeans.labels_ sorted_chunks = feature_mat[np.argsort(kmeans.labels_),:] # kmeans.labels_ # for i in range(sorted_chunks.shape[0]): # plt.matshow(np.rot90(np.reshape(sorted_chunks[i,:],(8,8)))) # plt.axis('off') # plt.title(np.sort(kmeans.labels_)[i]) for prototype in kmeans.cluster_centers_: fig = plt.figure(figsize=(1,1)) img1 = plt.imshow(np.rot90(prototype.reshape((8,8)))) plt.axis('off') # round up to get possible chunks threshold = 0.4 for prototype in (kmeans.cluster_centers_>=threshold)*1: fig = plt.figure(figsize=(1,1)) img1 = plt.imshow(np.rot90(prototype.reshape((8,8)))) plt.axis('off') # explore parameters of k-means that minimize objective # number of clusters kms = {} df_kms = pd.DataFrame() for target in targets: kms[target] = {} for n_cluster in range(3,20): feature_mat = np.array(chunks[target]) # get the mean number of chunks for that structure meanNChunks = np.round(df_trial.groupby('targetName')['nChunksHighlighted'].mean()).astype(int).to_dict() # group into n clusters where n is the mean amount of chunks for that structure # kmeans = KMeans(n_clusters=meanNChunks[target], random_state=0).fit(feature_mat) kms[target][n_cluster] = KMeans(n_clusters=n_cluster, random_state=0).fit(feature_mat) df_kms = df_kms.append( { 'targetName': target, 'n_cluster': n_cluster, 'kmeans': kms[target][n_cluster], 'inertia': kms[target][n_cluster].inertia_ }, ignore_index=True ) # sorted_chunks = feature_mat[np.argsort(kmeans.labels_),:] sns.lineplot(x='n_cluster', y='inertia',hue='targetName',data=df_kms) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ###Output _____no_output_____ ###Markdown Visualize clusters ###Code target = 'hand_selected_006' # Explore clustering clustering = clusters[target] labels = clustering.labels_ cluster_centers_indices = clustering.cluster_centers_indices_ cluster_centers_ = clustering.cluster_centers_ n_clusters_ = len(cluster_centers_indices) print(str(n_clusters_) + ' clusters') label = 0 for label in np.unique(labels): chunk_cluster = featureMats[target][labels==label,:].sum(axis=0).reshape((8,8)) fig = plt.figure(figsize=(1,1)) img1 = plt.imshow(np.rot90(chunk_cluster)) plt.title(str(featureMats[target][labels==label,:].shape[0])) plt.axis('off') for exemplar in cluster_centers_: fig = plt.figure(figsize=(1,1)) img1 = plt.imshow(np.rot90(exemplar.reshape((8,8)))) plt.axis('off') ###Output _____no_output_____ ###Markdown Next:- For each chunk: - go through action sequences to see: - number of exact matches - ratio of contained vs. spanning Somewhere I have a way of searching action sequences by world-diff, which should be the same representation as these perceptual chunks (once they've been aligned in an 18x13 gridworld)Lots of testing needed at this stage consider:- construct dataframe with all world differences. - i.e. action 0-1, 0-2, 0-3, 1-2, 1-3, etc. - would be large. - (gameID, targetName, trialNum, rep, condition, world-diff, action_1, action_2, window)- see if there's a match, if so +1 ###Code # construct dataframe with all world differences. # i.e. action 0-1, 0-2, 0-3, 1-2, 1-3, etc. # (gameID, targetName, trialNum, rep, condition, world-diff, action_1, action_2, window) ###Output _____no_output_____ ###Markdown Example of searching for reconstructions containing perceptual chunk ###Code n_chunks = len(df_proc_chunks.iloc[30]['all_chunks']) fig, axs = plt.subplots(n_chunks, figsize=(4,n_chunks*4)) target_name = df_proc_chunks.iloc[30]['targetName'] for j, chunk in enumerate(df_proc_chunks.iloc[30]['all_chunks']): axs[j].axis('off') drawing.show_chunk([chunk], axs[j], target=target_name) # find the structures with that chunk (assumes chunk in same format, and a given window size) target = 'hand_selected_012' # convert perceptual chunks into string chunk_str = bc.cropped_chunk_to_string(cluster_centers_[0].reshape((8,8))) subset_with_chunk = df_proc_chunks[(df_proc_chunks.targetName == target) & (df_proc_chunks['all_chunks'].apply(lambda chunks: chunk_str in chunks))] # draw all reconstructions for h drawing.draw_reconstructions(subset_with_chunk) ###Output _____no_output_____ ###Markdown Find proportion of reconstructions with each chunkQuestions:- some average of cluster members, or exemplars?- do I use all clusters, take a pre-specified number, or drop clusters with few members? - I'm fairly sure I should drop clusters with few members, but not sure of the exact criteria I should use ###Code # for each exemplar with more than 3 members, count proportion of reconstructions in pre, and number of reconstructions in post cluster_counts = pd.DataFrame() for target in targets: for cluster_number, exemplar in enumerate(clusters[target].cluster_centers_): chunk_str = bc.cropped_chunk_to_string(exemplar.reshape((8,8))) n_cluster_members = sum(clusters[target].labels_ == cluster_number) if n_cluster_members > 3: for phase in ['pre','post']: subset_for_target = df_proc_chunks[(df_proc_chunks.blockFell == False) & (df_proc_chunks.targetName == target) & (df_proc_chunks.phase == phase)] subset_with_chunk = subset_for_target[(subset_for_target['all_chunks']\ .apply(lambda chunks: chunk_str in chunks))] row = { 'targetName': target, 'phase': phase, 'chunk_str': chunk_str, 'n_cluster_members': n_cluster_members, # 'reconstructions_with_chunk': list(subset_with_chunk['discreteWorld']), 'total_phase_reconstructions': subset_for_target.shape[0], 'n_with_chunk': subset_with_chunk.shape[0], 'proportion_with_chunk': subset_with_chunk.shape[0] /subset_for_target.shape[0] } cluster_counts = cluster_counts.append(row,ignore_index=True) cluster_counts fig = plt.figure(figsize=(10,6)) sns.set_context('poster') sns.set_style('whitegrid', {'legend':False}) sns.set(style="ticks", rc={"lines.linewidth": 0.7}) sns.pointplot(data=cluster_counts, x='phase', y='proportion_with_chunk', hue='targetName') fig = plt.figure(figsize=(10,6)) sns.set_context('poster') sns.set_style('whitegrid', {'legend':False}) sns.set(style="ticks", rc={"lines.linewidth": 0.7}) g = sns.FacetGrid(data=cluster_counts, col="targetName", hue="chunk_str", col_order=targets) g.map(sns.pointplot,"phase","proportion_with_chunk", order=['pre','post']) cluster_counts[cluster_counts.targetName=='hand_selected_006'] drawing.show_chunk([chunk], axs[j], target='hand_selected_006') ###Output _____no_output_____ ###Markdown Facetgrid:Facet is silhouetteDot is chunkdifference scoreSlope is stat we're interested in___Spatial biases:Chunks near the top more likely to appear more at the end?Popular chunks:Can popularity be explained by perceptual biases?Are more popular chunks ones that appear less at the end?(are less popular chunks relatively flat pre to post?)___Keep returning to: is convergence explained by convergence to perceptual chunks? Or something else- not perceptual chunks? ###Code # Distribution of differences between pre and post cluster_counts.groupby('chunk_str') ###Output _____no_output_____
pandas_series_lesson.ipynb
###Markdown Pandas Overview - The pandas library is used to deal with structured data stored in tables. You might aquire the structured data from CSV files, TSV files, SQL database tables, or spreadsheets. You can also *create* pandas Series and DataFrames. - "[P]andas objects (Index, Series, DataFrame) can be thought of as containers for arrays, which hold the actual data and do the actual computation. For many types, the underlying array is a numpy.ndarray." [source](https://pandas.pydata.org/pandas-docs/stable/user_guide/basics.html)- "A DataFrame is a two-dimensional array with labeled axes. In other words, a DataFrame is a matrix of rows and columns that have labels — column names for columns, and index labels for rows. A single column or row in a Pandas DataFrame is a Pandas series — a one-dimensional array with axis labels." [source](https://engineering.upside.com/a-beginners-guide-to-optimizing-pandas-code-for-speed-c09ef2c6a4d6)- You can think of a pandas DataFrame like a table in SQL, Excel, or Google Sheets and a pandas Series like a single column from a table.![dataframe diagram](https://www.w3resource.com/w3r_images/pandas-data-structure.svg)[Image Source](https://www.w3resource.com/python-exercises/pandas/index.php) The Pandas Series Object What Is a Pandas Series?A pandas Series object is a one-dimensional, labeled array made up of an autogenerated index that starts at 0 and data of a single data type. Think of the index as the address of a data point; did you ever play the game Battleship? A couple of important things to note here:- If I try to make a pandas Series using multiple data types like `int` and `string` values, the data will be converted to the same `object` data type; the `int` values will lose their `int` functionality. - A pandas Series can be created in several ways, some of which I'll demonstrate below, but **it will most often be created by slecting a single column from a pandas Dataframe in which case the Series retains the same index as the Dataframe.** Create a Pandas Series: From a Python List ###Code # Here I create a list of colors creatively named 'colors'. colors = ['red', 'yellow', 'green', 'blue', 'orange', 'red', 'violet', 'indigo'] colors # Here I create the 'colors_series' Series using the Series() constructor method. colors_series = pd.Series(colors) # How can I confirm that 'colors_series' is now a pandas Series object? type(colors_series) ###Output _____no_output_____ ###Markdown From a NumPy Array ###Code # Create a numpy array 'arr'. arr = np.array([5, 10, 15, 20, 25, 30, 35, 40, 40]) # Convert my numpy array to a pandas Series called 'numeric_series'. numeric_series = pd.Series(arr) # How can I confirm that 'numeric_series' is now a pandas Series object? type(numeric_series) ###Output _____no_output_____ ###Markdown From a Python Dictionary. - Here the dictionary keys are used to construct the labeled index. ###Code # Create a python dictionary. data = {'a' : 0, 'b' : 1.5, 'c' : 2, 'd': 3.5, 'e': 4, 'f': 5.5} data # Create a pandas Series 'diction_series' using the pandas Series() constructor method. diction_series = pd.Series(data) # Confirm the type of 'diction_series.' type(diction_series) ###Output _____no_output_____ ###Markdown From a Pandas DataFrame - When I select a column from a pandas DataFrame, this is also a Series object. It will retain the same index as the DataFrame.*This is just a preview of acquiring data from a database as a DataFrame. For now, focus on the Series, not the code reading in the data. We will get plenty of practice using pandas functions to acquire data in the near future.* ```python Import my access information to connect to Codeup's database.from env import host, password, user Function to connect to database.def get_connection(db, user=user, host=host, password=password): return f'mysql+pymysql://{user}:{password}@{host}/{db}'``` ```python Create SQL query to acquire desired data.sql_query = ''' SELECT first_name, last_name, dept_name FROM employees AS e JOIN dept_emp AS de ON e.emp_no = de.emp_no AND to_date > CURDATE() JOIN departments AS d USING(dept_no) '''``` ```python Read data from database using sql and assign DataFrame to df.df = pd.read_sql(sql_query, get_connection('employees'))``` ```python Write DataFrame to a csv to quickly read in data.df.to_csv('names.csv')``` ###Code # Read data in from my csv to a pandas DataFrame. pd.read_csv('names.csv', index_col=0) # This is a pandas DataFrame from which I will select Series I want to use below. # How can we return information about the index of this DataFrame? # How can we return information about the columns of this DataFrame? # How can we return information about the values of this DataFrame? ###Output _____no_output_____ ###Markdown **For now, all you need to know is that a Series can be selected from a DataFrame in one of the following ways:**- **By Passing a Column Name as a String to the Indexing Operator *aka Bracket Notation*.**```pythondf['series']``` ###Code # Grab a Series using bracket notation. Assign it to a variable called 'names'. # Validate the object type of 'names'. ###Output _____no_output_____ ###Markdown - **Using Attribute Access *aka Dot Notation*.**```pythondf.series``` ###Code # Grab a Series using dot notation. Assign it to a variable called 'dept_names'. # Validate the object type of 'dept_name'. ###Output _____no_output_____ ###Markdown So What's So Great About a Pandas Series?**A Series...**- can handle any data type.- allows for fast indexing and subsetting of data.- has lots of built-in attributes and methods.- is optimized for Pandas vectorized functions. Attributes**Attributes** return useful information about the Series properties; they don't perform operations or calculations with the Series.- Jupyter Notebook allows you to quickly access a list of available attributes by pressing the tab key after the series name followed by a period or dot; this is called dot notation or attribute access. Common Attributes `.index`, `.values`**The Components of a Pandas Series - Index, Data**- Now that I have some pandas Series to work with, I can look at the components of the Series object using the `.index` and the `.values` attributes. ###Code # I can access its autogenerated index by using the .index attribute. # I can access its data by using the .values attribute. # I can see that accessing the data in my Series using the .values attribute returns a numpy array. ###Output _____no_output_____ ###Markdown `.dtype`- The `.dtype` attribute returns the pandas data type for the Series. **Below is a helpful overview of pandas data types and their relation to python and NumPy data types.**![pandas data types](https://pbpython.com/images/pandas_dtypes.png) ###Code # What is the data type of our 'colors_series' Series? # What is the data type of our 'numeric_series' Series? # What is the data type of our 'names' Series? ###Output _____no_output_____ ###Markdown `.size`- The `.size` attribute returns an int representing the number of rows in the Series. ###Code # What is the size of our 'colors_series' Series? # What is the size of our 'numeric_series' Series? # What is the size of our 'names' Series? ###Output _____no_output_____ ###Markdown `.shape`- The `.shape` attribute returns a tuple representing the rows and columns in a DataFrame, but it can also be used on a Series to return the rows. ###Code # What is the shape of our 'names' Series? ###Output _____no_output_____ ###Markdown Methods**Methods** used on pandas Series objects often return new Series objects; most also offer parameters with default settings designed to keep the user from mutating the original Series objects. (`inplace=False`)- I can either assign the transformed Series to a variable or adjust my parameters. Be careful about mutating your original data, and always, always confirm that the data you are working with is the data, and data type, that you think you are working with! Now What? `.head()`, `.tail()`, `.sample()`- The `.head(n)` method returns the first n rows in the Series; `n = 5` by default. This method returns a new Series with the same indexing as the original Series. - The `.tail(n)` method returns the last n rows in the Series; `n = 5` by default. Increase or decrease your value for n to return more or less than 5 rows.- The `.sample(n)` method returns a random sample of rows in the Series; `n = 1` by default. Again, the index is retained. ###Code # Grab the first five rows in our 'names' Series; the default is the first 5 rows. # Grab the last two rows of the 'names' Series; we can pass 2 as our argument to n. # Grab a random sample of 10 rows from the 'names' Series; the default argument is 1. # What type of object is returned by the `.head()`, `.tail()`, or `.sample()` methods? ###Output _____no_output_____ ###Markdown `.astype()`- The `.astype()` method allows me to convert a Series from one data type to another. - Like most methods, it returns a new transformed Series by default instead of mutating my original data. ###Code # How can I change the data type of `numeric_series` to an object? # Did this transform the data type of my 'numeric_series'? ###Output _____no_output_____ ###Markdown `.value_counts()`- The `.value_counts()` method returns a new Series consisting of a labeled index representing the unique values from the original Series and values representing the frequency each unique value appears in the original Series. - This is an extremely useful method you will find yourself using often with Series containing object and category data types. Below you can see the default settings for the method's parameters.```pythonseries.value_counts( normalize=False, sort=True, ascending=False, bins=None, dropna=True,)``` ###Code # How can I obtain the frequency of unique values in 'colors_series'? # How can I obtain the relative frequency of the unique values in 'colors_series'? ###Output _____no_output_____ ###Markdown `.sort_values()` and `.sort_index()`- These are handy methods that allow you to either sort your values or index respectively in ascending or descending order. ###Code # How can I obtain my 'colors_series' with the values in alphabetical order? # How can I reverse the order? # How can I obtain my 'numeric_series' ordered from least to greatest values? # How can I reverse the order? # How can I sort my labeled index in 'diction_series' to be in reverse alphabetical order? ###Output _____no_output_____ ###Markdown `.describe()`- The `.describe()` method can be used to return descriptive statistics on either a pandas Series or DataFrame object; the information it returns depends on whether it's used on a numerical or non-numerical Series. - *Note that when used on a DataFrame, `.describe()` analyzes only the numerical columns by default. The parameters can be adjusted to include other data types.*```pythonseries_or_df.describe(percentiles=None, include=None, exclude=None)``` ###Code # What does the .describe() method return if our Series values are strings? (Try 'dept_names' or 'colors_series') # Validate that the .describe() method returns a new Series. # What does the .describe() method return if our Series values are numeric? (Try 'numeric_series') ###Output _____no_output_____ ###Markdown `.any()` and `.all()`- The `.any()` method performs a logical `OR` operation on a row or column and returns a bool value indicating whether **any of the elements are True**. ###Code # Are any of the values in my 'colors_series' 'red'? # How can I check to see if any of the values in `numeric_series` are less than 0? ###Output _____no_output_____ ###Markdown - The `.all()` method performs a logical `AND` operation on a row or column and returns a bool value indicating whether **all of the elements are True**. ###Code # Are all of the values in 'colors_series' 'red'? # Are all of the values in the 'dept_names' Series 'Customer Service'? ###Output _____no_output_____ ###Markdown String Methods- **String Methods** perform vectorized string operations on each string value in the original Series and return a transformed copy of the original Series. - We have to use the `.str` attribute to access the string method. ```pythonseries.str.string_method()```- More string methods listed [here](https://docs.python.org/2.5/lib/string-methods.html). ###Code # How can I capitalize every string in my 'colors_series'? # How can I check to see if the string values in my 'colors_series' start with the letter 'r'? # How could I remove all of the 'e's in my 'colors_series'? ###Output _____no_output_____ ###Markdown Method Chaining- Since many pandas Series methods return a new Series object, I can call one method after another using dot notation to chain them together.```pythonseries.method().method().method()``` ###Code # Can I generate a boolean Series identifying values in 'colors_series' ending with the letter `d`. # Can I return the actual values from 'colors_series' ending with the letter 'd'. # Can I use method chaining to also make those values all uppercased? ###Output _____no_output_____ ###Markdown `.apply()`- The `.apply()` method accepts a python or NumPy function as an argument and applies that function to each element in my Series. - *`.apply()` does not only accept a built-in function as an argument; you can pass custom and even lambda functions as arguments.*>**Scenario:** What if I want to know the length of each element in my `colors_series` Series? What if I then want to see the frequency of the unique values in the Series returned? ###Code # How can I use `.apply()` with a lambda function to count the letter 'r' in each value in my 'colors_series'? # Create custom function I can apply to each element in my 'colors_series'; it must take in a string argument. def red_or_not(string): if string.lower() == 'red': return 'red' else: return 'not_red' # How can I use the `.apply()` method with my custom function to return a new Series? # How can I use method chaining to get a count of each unique value in this new Series? ###Output _____no_output_____ ###Markdown Remember: Unless I assign the Series returned from using the functions and methods above, my original Series data remains the same. If I want to keep the Series with weekend and weekday labels, I have to assign it to a variable. ###Code # Confirm that my 'colors_series' still contains its original values. ###Output _____no_output_____ ###Markdown `.isin()`- The `.isin()` method returns a boolean Series with the same index as the original Series. - `True` values indicate that the original Series value at a given index position is in the sequence. - `False` values indicate that the original value is not present in the sequence.```pythonseries.isin(values)``` ###Code # Create a list of colors. my_colors = ['black', 'white', 'red'] # How can I check which values in `colors_series` are in the 'my_colors' list and create a new Series 'bools'? ###Output _____no_output_____ ###Markdown **This is handy, but what if I want to access the actual observations or rows where the condition is True for being in the `my_colors` list, not just the bool values True or False?** The Indexing Operator `[]`- This is where the pandas index shines; we can select subsets of our data using index labels, index position, or boolean sequences (list, array, Series).- Earlier, I demonstrated that bracket notation, `df['series']` can be used to pull a Series from a pandas DataFrame when a column label is passed into the indexing operator `[]`. - I can also pass a sequence of boolean values to the indexing operator; that sequence could be a list or array, but it can also be another pandas Series **if the index of the boolean Series matches the original Series**. >**Example:** Here I use the boolean Series `bools` that I created above as the selector in the indexing operator for `colors_series`. This returns only the rows in `colors_series` where the value is `True` in our boolean Series, `bools`. - Since I created my boolean Series from my original Series, they share the same index. That's what makes this operation possible. ###Code # What type of pandas object is my 'bools' Series? # Which rows meet my conditional above? ###Output _____no_output_____ ###Markdown **How can I return the actual values from `colors_series` where my condition is being met, the value is `red`, instead of just a True or False value?** ###Code # Use the boolean Series as a selector for values in 'colors_series' that meet my condition. # I can skip the middle woman and pass a conditional directly into the indexing operator. ###Output _____no_output_____ ###Markdown >**Example of Indexing with a Labeled Index**- Recall that our `diction_series` has a labeled index.- Notice that the indexing is inclusive when using index labels. ###Code # Can I return a subset of the first three rows of 'diction_series' using labels instead of integer positions? # Can I return a subset of 'diction_series' containing only rows ['a', 'd', 'f']? ###Output _____no_output_____ ###Markdown Binning Data- I can bin continuous data to convert it to categorical data.- We will look at two different ways I can accomplish binning below. - `.value_counts()` - `pd.cut()` ###Code # I need a numerical Series to work with here; I'll import the 'tips' dataset from pydataset. from pydataset import data tips = data('tips') tips # How can I create a Series named `tip` from our tips DataFrame above. # How can I see the descriptive statistics for this Series? # How can I create 5 bins of equal size using `.cut()`? What is the data type of this Series of bins? # How can I return a Series with my unique bin values as the index and the frequency of each bin as the value. # Is there another way I can bin my 'tip' data get the value counts like I did above? Spoiler alert, Yes! ###Output _____no_output_____ ###Markdown `.plot()`- **The `.plot()` method** allows us to quickly visualize the data in our Series.- By default, Matplotlib will choose the best type of plot for us.- We can also customize our plot if we like.Check the docs [here](https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.Series.plot.html) for more on the `.plot()` method. ###Code # How can I make a quick plot of the data in the 'tip' Series? (bar plot) tip.value_counts(bins=5).plot.bar() # How can I make a quick plot of the data in the 'tip' Series? (horizontal bar plot using value_count(bins=5)) tip.value_counts(bins=5).sort_values().plot.barh() # I can clean up my plot and add labels. tip.value_counts(bins=5).plot.barh(color='thistle', width=1, ec='black') plt.title('Tip Bins') plt.xlabel('Number of Tips') plt.ylabel('US $') # reorder y-axis of horizontal bar chart plt.gca().invert_yaxis() plt.show() ###Output _____no_output_____ ###Markdown `.cut()`- The pandas `.cut()` function allows me to create bins of equal size to convert a continuous variable to a categorical variable if I like. - This function has parameters that make it versatile; I can define my own bin edges and labels.```python Defaults for parameters I will use in this example.pd.cut(x, bins, labels=None, include_lowest=False)``` Note: The lower bounds of the bins are open-ended while the upper bounds are closed-ended by default; there are parameters if you want to adjust this behavior. ###Code # Define bin edges. bin_edges = [0, 2, 4, 6, 8, 10.01] # Create a list of bin labels; you should have one less than bin edges. bin_labels = ['$0-1.99', '$2.00-3.99', '$4.00-5.99', '$6.00-7.99', '$8.00-10.00'] # Use the .cut() function to create 5 bins as defined and labeled and create Series of value_counts sorted by index value. pd.cut(tip, bins=bin_edges, labels=bin_labels, include_lowest=True).value_counts().sort_index() # Define bin edges bin_edges = [0, 2, 4, 6, 8, 10.01] # Create a list of bin labels bin_labels = ['$0-2.00', '$2.01-4.00', '$4.01-6.00', '$6.01-8.00', '$8.01-10.00'] # Use the .cut() function to create my 5 equal-sized bins and create a horizontal bar plot to visualize value_counts(). pd.cut(tip, bins=bin_edges, labels=bin_labels, include_lowest=True).value_counts().sort_index().plot.barh(color='thistle', width=1, ec='black') # Axes labels and plot title plt.title('Tip Bins') plt.xlabel('Number of Tips') plt.ylabel('US $') # Reorder y-axis of horizontal bar chart plt.gca().invert_yaxis() # Clean up plot display plt.show() ###Output _____no_output_____
examples/non-interactive/importing_and_exporting/LiP_import_export_example.ipynb
###Markdown Importing/exporting ###Code from matador.query import DBQuery from matador.hull import QueryConvexHull kwargs = {'composition': ['LiP'], 'summary': True, 'hull_cutoff': 0.05, 'cutoff': [300, 301]} hull = QueryConvexHull(**kwargs) ###Output 8386 results found for query in ajm. Creating hull from AJM db structures. Finding the best calculation set for hull... possible shock : matched 8383 structures. -> PBE, 300.0 eV, 0.08 1/A Matched at least 2/3 of total number, composing hull... Composing hull from set containing possible shock ──────────────────────────────────────────────────────────── Scanning for suitable Li chemical potential... Using difference crate as chem pot for Li ──────────────────────────────────────────────────────────── Scanning for suitable P chemical potential... Using contributor visitor as chem pot for P ──────────────────────────────────────────────────────────── Constructing binary hull... 18 structures within 0.05 eV of the hull with chosen chemical potentials. ───────────────────────────────────────────────────────────────────────────────────────────────────────────── ID !?! Pressure Volume/fu Hull dist./atom Space group Formula # fu Prov. ───────────────────────────────────────────────────────────────────────────────────────────────────────────── * contributor visitor 0.005 20.677 0.00000 Cmca P 4 ICSD * hysteria expert 0.012 170.510 0.00000 I41/acd LiP7 8 ICSD distention cry 0.004 126.142 0.04266 R-3m LiP6 1 AIRSS infinity throne 0.021 114.089 0.01039 Pna21 LiP5 4 ICSD proficiency cake -0.009 278.933 0.01584 Pbcn Li3P11 4 ICSD * percolate copper -0.022 197.601 0.00000 P212121 Li3P7 4 ICSD salience mountain 0.056 119.112 0.04695 P-1 Li3P4 1 AIRSS * missal writer -0.026 31.351 0.00000 P21/c LiP 8 ICSD gauge planes -0.029 178.171 0.04578 P-1 Li6P5 2 AIRSS butt vest 0.003 141.239 0.01148 C2/m Li5P4 1 ICSD eulogize mark 0.000 110.235 0.01509 Cmcm Li4P3 2 ICSD sonata hobbies 0.041 77.160 0.01844 Immm Li3P2 2 AIRSS incapacitate organization 0.042 120.438 0.04901 Pna21 Li5P3 4 AIRSS redoubtable bird 0.026 41.984 0.02983 P-62c Li2P 6 ICSD * nomic guitar -0.016 59.296 0.00000 P63/mmc Li3P 2 AIRSS rupture sack 0.024 76.434 0.04529 P1 Li4P 3 AIRSS possible shock 0.005 123.099 0.02873 Pbcn Li6P 4 AIRSS * difference crate 0.002 20.394 0.00000 R-3m Li 3 ICSD ###Markdown Dump to json files ###Code from json import dump, load for doc in hull.cursor[:5]: source_root = [src for src in doc['source'] if src.endswith('.res') or src.endswith('.castep')][0].split('/')[-1] del doc['_id'] with open(source_root + '.json', 'w') as f: dump(doc, f) ###Output _____no_output_____ ###Markdown Load from json files ###Code from glob import glob json_list = glob('*.json') hull_cursor = [] for json_file in json_list: with open(json_file, 'r') as f: hull_cursor.append(load(f)) hull_cursor[4] ###Output _____no_output_____
Digit_Recognition_With_CNN_On_MNIST_Dataset.ipynb
###Markdown 1. The model type that we will be using is Sequential. Sequential is the easiest way to build a model in Keras. It allows you to build a model layer by layer.2. The ‘add()’ function is to add layers to our model.3. These are convolution layers that will deal with our input images, which are seen as 2-dimensional matrices. Add as many convolutinal layers until staisfied.4. 64 in the first layer and 32 in the second layer are the number of nodes in each layer. This number can be adjusted to be higher or lower, depending on the size of the dataset.5. Kernel size is the size of the filter matrix for our convolution. So a kernel size of 3 means we will have a 3x3 filter matrix.6. Activation is the activation function for the layer. The activation function we will be using for our first 2 layers is the ReLU, or Rectified Linear Activation. 7. In between the Conv2D layers and the dense layer, there is a ‘Flatten’ layer. Flatten serves as a connection between the convolution and dense layers.8. ‘Dense’ is the layer type we will use in for our output layer. Dense is a standard layer type that is used in many cases for neural networks.9. We will have 10 nodes in our output layer, one for each possible outcome (0–9).10. The activation is ‘softmax’. Softmax makes the output sum up to 1 so the output can be interpreted as probabilities.The model will then make its prediction based on which option has the highest probability. ###Code model.summary() ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv2d_1 (Conv2D) (None, 26, 26, 64) 640 _________________________________________________________________ max_pooling2d_1 (MaxPooling2 (None, 13, 13, 64) 0 _________________________________________________________________ conv2d_2 (Conv2D) (None, 11, 11, 32) 18464 _________________________________________________________________ max_pooling2d_2 (MaxPooling2 (None, 5, 5, 32) 0 _________________________________________________________________ flatten_1 (Flatten) (None, 800) 0 _________________________________________________________________ dense_1 (Dense) (None, 10) 8010 ================================================================= Total params: 27,114 Trainable params: 27,114 Non-trainable params: 0 _________________________________________________________________ ###Markdown The summary is textual and includes information about:1. The layers and their order in the model.2. The output shape of each layer.3. The number of parameters (weights) in each layer.4. The total number of parameters (weights) in the model. Next, we need to compile our model. Compiling the model takes three parameters: optimizer, loss and metrics. ###Code # Compile model using accuracy as a measure of model performance model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) ###Output _____no_output_____ ###Markdown 1. The optimizer controls the learning rate. We will be using ‘adam’ as our optmizer. Adam is generally a good optimizer to use for many cases. The adam optimizer adjusts the learning rate throughout training.2. The learning rate determines how fast the optimal weights for the model are calculated. A smaller learning rate may lead to more accurate weights (up to a certain point), but the time it takes to compute the weights will be longer.3. ‘categorical_crossentropy’ is used for our loss function. This is the most common choice for classification. A lower score indicates that the model is performing better.4. ‘accuracy’ metric is used to see the accuracy score on the validation set when we train the model. ###Code #train model model.fit(x_train, y_train, validation_data=(x_test, y_test), epochs=3) ###Output Train on 60000 samples, validate on 10000 samples Epoch 1/3 60000/60000 [==============================] - 148s 2ms/step - loss: 5.5121 - acc: 0.6374 - val_loss: 0.0883 - val_acc: 0.9738 Epoch 2/3 60000/60000 [==============================] - 143s 2ms/step - loss: 0.0774 - acc: 0.9765 - val_loss: 0.0626 - val_acc: 0.9820 Epoch 3/3 60000/60000 [==============================] - 141s 2ms/step - loss: 0.0580 - acc: 0.9829 - val_loss: 0.0568 - val_acc: 0.9831 ###Markdown To train, we will use the ‘fit()’ function on our model with the following parameters: training data (x_train), target data (y_train), validation data, and the number of epochs.1. x_train: The training data consisting of only the independent factors2. y_train: The training data consisting of only the dependent factors3. validation_data: For our validation data, we will use the test set provided to us in our dataset, which we have split into x_test and y_test.4. epochs: one epoch stands for one complete training of the neural network with all samples. ###Code # Observing predictions for the first 3 images in the test set preds=model.predict(x_test[:4]) preds ###Output _____no_output_____ ###Markdown For seeing the predictions that our model has made for the test data, we can use the predict function. The predict function will give an array with 10 numbers. These numbers are the probabilities that the input image represents each digit (0–9). The array index with the highest number represents the model prediction. ###Code # For getting tha index with maximum value np.argmax(preds, axis=-1) # show actual results for the first 3 images in the test set y_test[:4] # For getting tha index with maximum value np.argmax(y_test[:4], axis=-1) # Evaluating the performance on the test set test_loss, test_acc = model.evaluate(x_test, y_test) print("Loss: ",test_loss.round(3),"\nAccu: ",test_acc.round(3)) ###Output 10000/10000 [==============================] - 8s 778us/step Loss: 0.057 Accu: 0.983 ###Markdown Visualize Model ###Code model.layers # Printing the name of the layers for layer in model.layers: print(layer.name, layer.trainable) for layer in model.layers: print('Layer Configuration:') print(layer.get_config(),"\n","------"*20) ###Output Layer Configuration: {'kernel_initializer': {'class_name': 'VarianceScaling', 'config': {'seed': None, 'mode': 'fan_avg', 'distribution': 'uniform', 'scale': 1.0}}, 'activation': 'relu', 'padding': 'valid', 'batch_input_shape': (None, 28, 28, 1), 'strides': (1, 1), 'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 'activity_regularizer': None, 'bias_constraint': None, 'bias_regularizer': None, 'dtype': 'float32', 'trainable': True, 'dilation_rate': (1, 1), 'kernel_constraint': None, 'kernel_size': (3, 3), 'name': 'conv2d_1', 'data_format': 'channels_last', 'filters': 64, 'kernel_regularizer': None, 'use_bias': True} ------------------------------------------------------------------------------------------------------------------------ Layer Configuration: {'trainable': True, 'strides': (2, 2), 'pool_size': (2, 2), 'name': 'max_pooling2d_1', 'padding': 'valid', 'data_format': 'channels_last'} ------------------------------------------------------------------------------------------------------------------------ Layer Configuration: {'kernel_initializer': {'class_name': 'VarianceScaling', 'config': {'seed': None, 'mode': 'fan_avg', 'distribution': 'uniform', 'scale': 1.0}}, 'filters': 32, 'activation': 'relu', 'bias_regularizer': None, 'strides': (1, 1), 'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 'activity_regularizer': None, 'padding': 'valid', 'data_format': 'channels_last', 'trainable': True, 'dilation_rate': (1, 1), 'kernel_constraint': None, 'kernel_size': (3, 3), 'name': 'conv2d_2', 'bias_constraint': None, 'kernel_regularizer': None, 'use_bias': True} ------------------------------------------------------------------------------------------------------------------------ Layer Configuration: {'trainable': True, 'strides': (2, 2), 'pool_size': (2, 2), 'name': 'max_pooling2d_2', 'padding': 'valid', 'data_format': 'channels_last'} ------------------------------------------------------------------------------------------------------------------------ Layer Configuration: {'trainable': True, 'name': 'flatten_1', 'data_format': 'channels_last'} ------------------------------------------------------------------------------------------------------------------------ Layer Configuration: {'kernel_initializer': {'class_name': 'VarianceScaling', 'config': {'seed': None, 'mode': 'fan_avg', 'distribution': 'uniform', 'scale': 1.0}}, 'activation': 'softmax', 'bias_regularizer': None, 'bias_initializer': {'class_name': 'Zeros', 'config': {}}, 'activity_regularizer': None, 'bias_constraint': None, 'trainable': True, 'kernel_constraint': None, 'name': 'dense_1', 'kernel_regularizer': None, 'units': 10, 'use_bias': True} ------------------------------------------------------------------------------------------------------------------------ ###Markdown The weights of each layer can be obtained using ###Code for i in range(len(model.layers)): print("For Layer ",model.layers[i].name," weights are") print(model.layers[i].get_weights()) print() print("----"*30) ###Output For Layer conv2d_1 weights are [array([[[[-0.07117332, -0.11871236, -0.02792738, -0.02604584, -0.12552024, 0.06599326, -0.0009745 , -0.10929321, -0.00706674, 0.05502931, -0.08452702, -0.04653251, -0.0949929 , -0.11232311, 0.00024684, 0.00849208, -0.00574883, -0.0736568 , 0.01780812, -0.00077945, -0.07600698, -0.07713334, -0.01890288, -0.12654534, -0.00616101, -0.09747548, -0.01090491, -0.02375196, 0.03713597, -0.07474131, -0.00866111, -0.00204889, -0.00632484, 0.03857862, -0.05244157, 0.01286643, -0.0185243 , -0.04976959, -0.08375214, -0.11644132, -0.03624744, -0.04530561, -0.07460491, -0.0014205 , -0.13252297, -0.02572778, -0.03993769, 0.02834358, -0.10054269, -0.08127081, 0.00123064, -0.0067372 , 0.02846469, -0.05443987, 0.02492472, -0.00435449, -0.0030198 , -0.07127823, -0.02900791, -0.09636054, 0.0123684 , -0.16246228, 0.0245565 , -0.09998744]], [[ 0.08447798, -0.10675451, -0.11540053, 0.01037752, 0.03638961, 0.03950764, -0.05664811, 0.01244815, -0.00035768, -0.10479114, 0.01640861, -0.10472696, -0.1353851 , -0.05508336, -0.02732663, -0.11511774, -0.08889554, -0.07136763, 0.0201474 , -0.06985815, -0.07117468, -0.12249623, -0.07940701, 0.00898849, -0.09195764, 0.0561309 , -0.00092454, 0.05771503, -0.06547861, -0.06580272, -0.04000534, 0.0277759 , -0.11919779, 0.03464814, -0.1292196 , 0.0152442 , 0.06336793, 0.11401469, -0.05180689, -0.03307243, -0.04246629, -0.09695424, 0.06761556, -0.09985224, -0.00262992, -0.03270812, 0.08091559, 0.00240913, -0.06545446, -0.1295374 , 0.03737393, -0.02615711, -0.04106867, -0.05803075, -0.0033087 , -0.12559319, -0.00031429, -0.06331053, 0.04220006, -0.06885358, 0.05371145, -0.01354953, -0.1222773 , 0.03474844]], [[-0.02345826, 0.00879307, -0.03506756, -0.0998463 , 0.03574207, -0.06883927, -0.09460594, -0.09840403, -0.05230983, -0.04664407, -0.00508413, -0.08192607, -0.11315824, -0.00108418, -0.07536927, 0.03852654, 0.03417294, -0.11292624, -0.06174188, -0.09413037, -0.00140126, -0.03871202, 0.0360465 , 0.00157606, -0.00231779, -0.08265376, -0.12642808, -0.04307734, -0.1829269 , -0.12454443, -0.09541831, -0.02079365, -0.11971967, -0.15446821, -0.08507422, 0.02740215, -0.01129526, -0.04340963, -0.05075004, -0.11283467, 0.0075107 , -0.12878223, -0.13040459, -0.0483269 , -0.01540897, -0.01812512, -0.09962723, -0.11089242, 0.04066715, -0.03661088, 0.00576867, -0.1140487 , -0.1165807 , -0.04230535, 0.01364185, -0.00622581, -0.05396102, -0.04765547, -0.03558381, -0.12614685, 0.06361349, 0.01375276, -0.06466734, -0.06951197]]], [[[-0.00872445, -0.05021581, -0.00515768, -0.0078065 , 0.03765333, 0.00746253, -0.04333509, -0.08510514, -0.0226424 , -0.05700384, -0.00056886, 0.05590802, -0.08579811, 0.02949394, -0.01391746, -0.04049771, -0.02890239, -0.05394748, -0.07647687, -0.11196511, -0.05487207, 0.03229039, 0.07973446, -0.1272497 , -0.17779139, 0.02318418, -0.03869567, -0.07362141, 0.02992093, -0.06130052, -0.09674872, 0.04340508, -0.00952491, -0.03737658, -0.02154541, 0.05971988, 0.02745396, -0.05833017, -0.08287732, 0.05988121, -0.06774816, 0.02100799, 0.01141225, -0.00072003, 0.00715496, -0.00547277, -0.14209735, -0.11612639, -0.13624136, -0.02552314, -0.0868283 , -0.04525357, -0.10614338, -0.117608 , -0.07952435, -0.06351376, -0.01496877, -0.02894251, -0.07460505, 0.01891474, -0.06865213, -0.02794718, 0.00132732, -0.1031634 ]], [[-0.06850489, 0.03387357, -0.05687363, 0.00574512, -0.07613487, -0.04301169, -0.08362585, 0.06322757, -0.01905222, -0.13250452, -0.04425525, 0.05665417, -0.02932111, 0.08929042, -0.10340419, 0.04147007, -0.07240648, -0.10258965, 0.00392788, -0.01920092, -0.08376064, 0.00379926, -0.07540207, 0.02632105, -0.0805808 , -0.0621942 , 0.01209461, -0.06104959, 0.01676912, 0.0794052 , 0.06866191, 0.05021181, -0.22541064, -0.02771796, -0.05791441, 0.00034 , 0.00567228, -0.02506464, 0.0224198 , -0.00608086, -0.03740827, 0.01196067, 0.02913756, -0.02652275, -0.03672565, -0.01586006, -0.14681304, -0.05059617, -0.01705231, -0.0349501 , -0.02855689, 0.09042568, -0.12469415, -0.05441951, 0.00118525, 0.06166201, -0.01199335, 0.00273925, -0.08333818, 0.02486665, 0.00797554, -0.01194996, 0.02549597, 0.06496098]], [[ 0.02773764, 0.04820566, -0.00293464, 0.05010955, -0.04620614, -0.08360271, -0.0066494 , -0.11574119, 0.0169933 , -0.02419385, 0.05776184, 0.00421795, 0.03337151, 0.03932162, -0.02406464, -0.11237382, -0.12990002, -0.08341685, -0.00645028, -0.07985427, -0.07991454, -0.13329422, -0.0693965 , 0.01809661, -0.14013888, -0.09186098, 0.01681847, -0.06660898, -0.1718421 , 0.05314119, -0.09123161, -0.1154896 , 0.07425418, -0.1588041 , 0.01623648, -0.08485984, 0.02920865, -0.05555152, 0.00223899, -0.15745491, 0.0059534 , -0.01335897, 0.03421222, -0.0598258 , -0.0728912 , -0.03396851, -0.00938856, -0.08656713, 0.0702358 , 0.01179086, -0.07536164, -0.00098328, -0.03001666, -0.03504293, 0.02902822, -0.10593861, -0.07953295, 0.10574228, -0.06319083, -0.06887974, -0.01124017, 0.06895528, -0.12196758, -0.05369453]]], [[[-0.20815198, -0.00440105, 0.0287188 , -0.03328489, 0.02903937, -0.00152312, -0.00727096, -0.01578625, -0.02864425, -0.17098002, -0.10597537, -0.12533881, -0.08826925, 0.02960703, -0.05718121, -0.06383619, -0.10313582, -0.10480042, -0.10670441, 0.07464282, -0.07483207, -0.06320179, -0.05682871, -0.1408936 , 0.02406375, -0.08334149, 0.02730196, -0.09242893, -0.09937346, -0.03572691, -0.10011245, 0.02903499, -0.02808065, -0.10052233, -0.02385575, -0.06670771, -0.020346 , 0.03682933, -0.01903624, 0.06887703, -0.07739822, -0.12165511, -0.11376353, -0.04472189, -0.01383531, -0.03941099, -0.11727992, -0.00296587, -0.03418158, -0.00225437, -0.13556832, -0.07532859, -0.0394014 , -0.00126334, 0.013274 , -0.02858677, -0.01914487, -0.00297442, -0.08698839, -0.06130847, -0.03728948, -0.03530406, 0.02397774, -0.00980016]], [[-0.01391999, 0.00533542, -0.13022862, -0.09590016, -0.04021743, -0.06029318, -0.00918405, -0.00960081, -0.00134189, -0.08668274, -0.05736934, -0.15192612, -0.06902713, -0.04347692, 0.03018776, -0.09302849, 0.11542557, -0.13387617, -0.07090872, 0.06899968, -0.09588496, 0.02702403, -0.02122652, 0.02879054, -0.06693469, -0.04194311, -0.09225386, -0.05814867, -0.14327322, -0.06111673, -0.06016694, 0.0049184 , -0.10998747, -0.04329059, -0.00077693, -0.11546659, -0.0313705 , -0.07584186, -0.1326769 , -0.02986187, -0.04949946, 0.04571829, -0.04038511, -0.00684647, -0.05333999, -0.04389523, -0.04881751, -0.10692581, -0.06753148, -0.02310853, -0.05022598, -0.11820489, -0.00323643, -0.03145607, -0.10103579, -0.09857317, -0.06434342, -0.19839574, -0.11829505, -0.05266193, -0.07491773, -0.0622046 , 0.03803477, -0.02933186]], [[-0.1247382 , -0.03485401, 0.04220204, -0.0533133 , -0.02622193, 0.03903452, -0.07107251, -0.09940782, -0.03402586, -0.00651949, -0.10042509, -0.03209064, 0.00152026, -0.08211438, -0.03205695, -0.01295862, -0.06220527, -0.00539724, 0.0269601 , -0.02895791, -0.04000992, -0.0183319 , -0.10718589, -0.01822807, -0.06522793, 0.04155295, -0.114325 , 0.01984718, 0.01465203, -0.06666005, -0.0033835 , -0.06465342, 0.00172313, -0.0771261 , 0.03461384, 0.01092802, 0.0206871 , -0.03581536, -0.00700719, -0.06308696, -0.00029517, 0.03146335, -0.05338996, -0.07290274, -0.06172956, -0.07477669, 0.03361305, 0.03839117, -0.00278286, -0.11538932, 0.0016399 , -0.03960989, -0.07888297, -0.00318916, -0.05844743, -0.01737376, -0.00167911, -0.1025303 , 0.00033489, 0.01045327, -0.11905272, -0.06980276, -0.06009643, -0.03707501]]]], dtype=float32), array([ 0.16362906, -0.19920488, -0.05131278, -0.03918614, -0.07396127, -0.11191096, -0.0122976 , 0.09280987, -0.14364952, 0.11108728, -0.07637112, -0.0727768 , -0.0769791 , -0.19905463, -0.14828241, -0.05303967, -0.0095891 , 0.08531517, -0.2008735 , -0.03723214, -0.01810488, -0.14492409, 0.09305369, -0.11942552, -0.02450363, -0.01291143, -0.15586361, -0.03780345, 0.13438338, -0.0491783 , -0.13057396, -0.14469838, -0.04261843, -0.01492063, -0.05406488, -0.13373847, -0.1871528 , -0.0114229 , 0.2265421 , 0.19165981, -0.06756905, -0.07845617, -0.10806536, -0.07989664, -0.10426535, -0.11765559, -0.01571426, -0.06161196, -0.11035869, -0.04827874, -0.15027952, -0.03222513, 0.09988561, -0.05248236, -0.24445036, 0.17703323, -0.02300324, -0.00808931, -0.09001867, 0.055414 , -0.0425432 , -0.00539372, -0.16036756, -0.02117861], dtype=float32)] ------------------------------------------------------------------------------------------------------------------------ For Layer max_pooling2d_1 weights are [] ------------------------------------------------------------------------------------------------------------------------ For Layer conv2d_2 weights are [array([[[[ 1.47242755e-01, 2.66789906e-02, 5.04215211e-02, ..., 1.17153395e-02, -8.84918496e-02, 1.49413375e-02], [-9.45985783e-03, -1.70304760e-01, -1.29538938e-01, ..., -1.53739909e-02, -1.57493889e-01, -8.63202438e-02], [ 9.25283507e-02, -8.66336096e-03, -5.41876769e-03, ..., 3.63539569e-02, -5.36373965e-02, 1.83970667e-02], ..., [ 2.97880471e-02, -7.87177309e-02, -3.33618699e-03, ..., -5.09566143e-02, 4.74112816e-02, -1.38479456e-01], [ 2.66195182e-02, -1.25526246e-02, -6.53924197e-02, ..., -6.34578466e-02, -2.29504704e-02, 3.41749117e-02], [ 1.10229738e-01, 3.45107391e-02, -1.43238783e-01, ..., 4.32725549e-02, -1.82550214e-02, -8.12208503e-02]], [[-3.23588774e-02, -1.40136749e-01, 1.12119121e-02, ..., -6.85858577e-02, -8.10684562e-02, 3.60856391e-02], [-1.53639978e-02, -9.84892547e-02, -2.57338071e-03, ..., 3.67429070e-02, -1.21523209e-01, -5.12350397e-03], [-9.01409909e-02, -8.78074914e-02, -1.35933533e-01, ..., -7.30963647e-02, 9.42765623e-02, 2.47306395e-02], ..., [-3.83386873e-02, -1.25316992e-01, -1.76616102e-01, ..., 5.03977053e-02, -3.78032140e-02, -1.92265622e-02], [-6.09666072e-02, -2.14817934e-02, -3.19942944e-02, ..., 2.25282777e-02, 1.82351787e-02, -7.15589896e-02], [ 1.68286934e-02, 1.67781319e-02, -1.49384633e-01, ..., -2.91456785e-02, -1.62401311e-02, -7.03098327e-02]], [[-1.04356920e-02, -7.50258490e-02, -1.05425358e-01, ..., -8.17408785e-02, -1.10115465e-02, -2.08047722e-02], [-7.13476585e-03, 1.89891625e-02, 8.59914441e-03, ..., 2.23856810e-02, 6.27234876e-02, 4.09330055e-02], [-9.55698565e-02, 3.58661450e-02, 3.69029641e-02, ..., -3.42580006e-02, -9.77186486e-02, 3.97637151e-02], ..., [ 4.51069735e-02, -5.88098168e-02, -2.25810632e-02, ..., -4.33140621e-02, -5.65709136e-02, 4.75902110e-03], [-3.01821642e-02, -5.70200458e-02, -1.06811345e-01, ..., 4.27577235e-02, -4.73121926e-02, -4.00995351e-02], [-2.85557173e-02, -1.13448285e-01, -1.10264853e-01, ..., 7.31734484e-02, -1.21356174e-01, -1.10395938e-01]]], [[[-7.42831379e-02, -4.20271643e-02, -4.56541590e-02, ..., -3.64116170e-02, 9.63895768e-03, -4.15653177e-02], [ 2.16544550e-02, -3.89177874e-02, -1.61513746e-01, ..., -5.99172413e-02, -3.30981016e-02, 4.24917489e-02], [-6.32038563e-02, 4.97998670e-03, 4.99285832e-02, ..., -3.57105918e-02, -5.50891757e-02, -6.36984110e-02], ..., [-4.58841696e-02, 4.65462729e-02, 6.51880130e-02, ..., 1.76802650e-02, -3.16915922e-02, -6.87682852e-02], [-1.05615053e-02, 7.21931309e-02, 4.40869778e-02, ..., -6.05663173e-02, -5.45338116e-05, 3.61469351e-02], [-2.04362646e-02, 8.61063674e-02, 1.01525724e-01, ..., -6.57881983e-03, 1.17480099e-01, 1.65729776e-01]], [[ 6.03367900e-03, -7.44615644e-02, 6.43182620e-02, ..., -1.83179732e-02, -1.02882646e-01, -4.33815308e-02], [-1.33785224e-02, -9.32527855e-02, -2.40945611e-02, ..., -4.30291668e-02, 1.29592726e-02, 8.10526535e-02], [ 3.40652317e-02, -1.36186397e-02, -1.45747140e-02, ..., -9.07168314e-02, -5.16638830e-02, 2.26590615e-02], ..., [-6.59192652e-02, 1.31926080e-02, 1.57805476e-02, ..., 3.70068918e-03, -1.12008424e-02, -1.18654966e-01], [-5.67757487e-02, -3.50484289e-02, -6.03253506e-02, ..., -2.88796425e-02, -5.09755202e-02, -2.39123292e-02], [ 1.50047513e-02, 4.90384139e-02, -6.05917796e-02, ..., -5.03946729e-02, -4.91564570e-04, -3.86972278e-02]], [[-9.70722660e-02, -3.92881893e-02, -3.31214629e-02, ..., -6.37730956e-02, -5.40726297e-02, -1.52105480e-01], [-4.12522033e-02, -4.01144736e-02, -5.51840067e-02, ..., -6.73935935e-02, -8.19227472e-02, -2.70670075e-02], [-4.29089367e-02, -1.06783845e-02, -1.50408102e-02, ..., -5.92597015e-02, -5.85464388e-02, 3.39204520e-02], ..., [ 7.02334568e-03, -3.79257277e-02, 5.41646034e-02, ..., 2.54155900e-02, -1.25564054e-01, 4.14403751e-02], [-1.15616685e-02, 6.49858043e-02, -6.27052560e-02, ..., -3.55830975e-02, 8.95072240e-03, -8.53924081e-02], [-1.25390282e-02, 5.42574786e-02, -1.71353206e-01, ..., -4.02617604e-02, -5.54625280e-02, -5.63652851e-02]]], [[[ 1.24008413e-02, -2.69593503e-02, 4.84607033e-02, ..., -1.27874717e-01, 2.28085816e-02, -8.17716643e-02], [-2.21765451e-02, 2.11700350e-02, -1.33167401e-01, ..., -1.06587075e-02, -1.88206974e-02, -8.38784650e-02], [-9.19862688e-02, -4.81441431e-02, -1.72143113e-02, ..., -8.73892978e-02, -3.43989879e-02, 8.24080855e-02], ..., [-1.51772646e-03, 1.09046400e-01, -6.16853572e-02, ..., 2.14315318e-02, 2.30486244e-02, -9.62861720e-03], [ 2.75206156e-02, 1.04895616e-02, -1.31891191e-01, ..., -6.64265677e-02, -3.10947467e-02, -5.32123074e-02], [-1.96635704e-02, -3.76867093e-02, 8.65489319e-02, ..., -1.22101726e-02, -9.00545046e-02, 8.84499215e-03]], [[-8.03298652e-02, 4.35877740e-02, 2.04582531e-02, ..., -3.69669348e-02, -5.39523666e-04, -3.51063758e-02], [ 5.01956232e-02, -6.86801225e-02, 6.22917525e-02, ..., -7.33482689e-02, -4.32569385e-02, 5.65941306e-03], [-3.28259394e-02, 3.74205746e-02, -2.66329534e-02, ..., -3.10606211e-02, -5.68326339e-02, 2.98417024e-02], ..., [ 3.26395929e-02, -1.99200232e-02, -8.53372440e-02, ..., -2.92070955e-02, 2.88725812e-02, -8.85830969e-02], [-6.83150515e-02, -8.10724571e-02, 3.56491245e-02, ..., -5.66566736e-02, 4.44304310e-02, -1.27224252e-01], [-4.78342809e-02, 6.20808452e-03, 8.07235762e-03, ..., -1.57145709e-02, 6.72117323e-02, -1.25826120e-01]], [[-7.95219690e-02, 2.43019331e-02, -8.30961540e-02, ..., -7.69272894e-02, 5.75096870e-04, -8.86841211e-03], [ 1.55063821e-02, 1.57060511e-02, -5.02336472e-02, ..., -5.66256382e-02, -7.39021376e-02, 7.32171088e-02], [ 6.41202554e-02, 1.32158957e-02, -7.18665272e-02, ..., 5.44177070e-02, -3.46358716e-02, -1.02468237e-01], ..., [-4.28491235e-02, -1.71934769e-01, 4.27224599e-02, ..., 6.17890656e-02, -3.02133523e-02, -6.42241985e-02], [-5.36799245e-02, -1.55935651e-02, 4.50714529e-02, ..., -4.25501727e-02, 1.09358709e-02, -9.96129662e-02], [-4.72083129e-02, 9.64651257e-03, -4.03786227e-02, ..., 6.00905754e-02, -1.57352407e-02, -8.68089683e-03]]]], dtype=float32), array([-0.06703257, -0.14032975, -0.08035215, -0.1151592 , -0.10963862, -0.04494528, 0.03309212, -0.01448882, -0.16388717, -0.14389631, -0.0592902 , -0.04692275, -0.05926466, -0.09937331, -0.042744 , -0.1435697 , -0.08504525, -0.04954272, -0.04959323, -0.03587022, -0.05506749, -0.0513914 , -0.07166238, -0.08292232, 0.05499171, -0.11737438, 0.08524324, -0.0494863 , -0.09996063, -0.09213842, -0.06284288, -0.03348019], dtype=float32)] ------------------------------------------------------------------------------------------------------------------------ For Layer max_pooling2d_2 weights are [] ------------------------------------------------------------------------------------------------------------------------ For Layer flatten_1 weights are [] ------------------------------------------------------------------------------------------------------------------------ For Layer dense_1 weights are [array([[-0.0393944 , 0.03685861, 0.10786375, ..., 0.01056521, 0.04718429, 0.05705115], [ 0.02495749, -0.12434618, 0.06060372, ..., -0.05735463, 0.07334856, -0.00496952], [-0.17000145, 0.05811244, 0.03101713, ..., 0.05700269, -0.10992602, -0.12855726], ..., [-0.15952289, -0.05728431, -0.03810475, ..., -0.10806225, -0.13424054, -0.0302014 ], [ 0.05468585, -0.15723929, -0.15520404, ..., 0.0444172 , -0.03954192, 0.02277395], [-0.05103776, -0.06624476, 0.02015143, ..., -0.02508527, -0.07558399, -0.09718696]], dtype=float32), array([ 0.03967373, 0.07477923, -0.01405334, -0.00678689, -0.0154657 , 0.00377952, -0.03890229, 0.03050109, 0.05264371, -0.03742404], dtype=float32)] ------------------------------------------------------------------------------------------------------------------------ ###Markdown Keras also provides a function to create a plot of the network neural network graph that can make more complex models easier to understand.The plot_model() function in Keras will create a plot of your network. This function takes a few useful arguments:1. model: (required) The model that you wish to plot.2. to_file: (required) The name of the file to which to save the plot.3. show_shapes: (optional, defaults to False) Whether or not to show the output shapes of each layer.4. show_layer_names: (optional, defaults to True) Whether or not to show the name for each layer.Example : plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True) ###Code from keras.utils.vis_utils import plot_model import pydot plot_model(model, to_file='DigitRecognitionWithANN.png', show_shapes=True, show_layer_names=True) # Python program to read # image using matplotlib # importing matplotlib modules import matplotlib.image as mpimg import matplotlib.pyplot as plt # Read Images img = mpimg.imread('DigitRecognitionWithANN.png') # increasing the size of image plt.figure(figsize=(10,12)) # Output Images plt.imshow(img) # for deleting the png file import os try: os.remove("DigitRecognitionWithANN.png") except: print("Not Removed") ###Output _____no_output_____
IoTHub_Device_Basics.ipynb
###Markdown Setup1. Upgrade ipykernel - necessary to support async io2. Restart the runtime3. Install the Azure IOT Device package2. (May need to) Restart the runtime ###Code %pip install ipython ipykernel --upgrade %pip install azure-iot-device ###Output _____no_output_____ ###Markdown IOT Hub OverviewAzure IoT Hub is a managed service hosted in the cloud that acts as a central message hub for communication between an IoT application and its attached devices. In our simple example, IoT Hub receives messages fromm devices (real and simulated) and forwards them to Azure Event Hub, which runs as part of the SAS Intelligent Monitoring solution.Multiple IoT Hubs are typically used with a large number of IoT assets.![IoT Hub.png]()See: https://docs.microsoft.com/en-us/azure/iot-hub/iot-concepts-and-iot-hub AuthenticationBefore a device can connect to IoT Hub, it must be registered in the IoT Hub's device registry. When you do this, the IoT Hub registry generates authentication credentials for the device.IoT hub supports two types of authentication:- Shared Access Signature (SAS) - symmetric key sent with each call- X.509 -physical layer TLS, the foundation of HTTPS![IoT Hub flow.png]() The Code ###Code import asyncio from azure.iot.device.aio import IoTHubDeviceClient import json from time import sleep from datetime import datetime # In a live environment, these should be loaded from an environment variable, not code CONN_STR_202801='' ###Output _____no_output_____ ###Markdown Instructions: Configure your device information1. Replace ```CONN_STR_202801``` with the connection string for your device ID ###Code MY_DEVICE_ID = '202801' MY_CONNECTION_STRING = CONN_STR_202801 # Utilities def SAS_now_string(): return( datetime.now().strftime("%b %d, %Y %I:%M:%S %p") ) ###Output _____no_output_____ ###Markdown Simple Function Example from Microsoft ###Code async def run_device(my_connection_string): # Fetch the connection string from an environment variable #conn_str = os.getenv("IOTHUB_DEVICE_CONNECTION_STRING") # Create instance of the device client using the authentication provider device_client = IoTHubDeviceClient.create_from_connection_string(my_connection_string) # Connect the device client. await device_client.connect() # Send a single message print("Sending message...", 1) await device_client.send_message("This is a message that is being sent") print("Message successfully sent!") # finally, shut down the client await device_client.shutdown() await run_device(MY_CONNECTION_STRING) ###Output _____no_output_____ ###Markdown A Simple Device Simulator Class ###Code # Define a basic simulator class class deviceSimulator: _conn_str = None _device_client = None _device_ID = None def __init__(self, conn_str, device_ID): self._conn_str = conn_str self._device_ID = device_ID async def connect(self): if self._conn_str is not None: self._device_client = IoTHubDeviceClient.create_from_connection_string(self._conn_str) await self._device_client.connect() async def send_message(self, msg): print(msg) await self._device_client.send_message(msg) async def disconnect(self): await self._device_client.disconnect() ###Output _____no_output_____ ###Markdown Create a Simulator and Send Four Messages ###Code # Create a device simulator test_id = MY_DEVICE_ID test_sim = deviceSimulator(MY_CONNECTION_STRING, test_id) # Connect to the IoT Hub await test_sim.connect() # Send a few test messages for i in range(0, 4,1): val4 = round((i/50)+0.387104, 5) val5 = round(-0.145001 + (i/1000), 5) val6 = round(0.09452 - (i/100), 5) val3 = 85 + i message = json.dumps({"telemetryDataList" :[ {"devId" : test_id, "varId" : "3", "value" : val3,"dateTime" : SAS_now_string()}, {"devId" : test_id, "varId" : "4", "value" : val4,"dateTime" : SAS_now_string()}, {"devId" : test_id, "varId" : "5", "value" : val5,"dateTime" : SAS_now_string()}, {"devId" : test_id, "varId" : "6", "value" : val6,"dateTime" : SAS_now_string()} ]}) await test_sim.send_message(message) sleep(1) # When done, disconnect and release resources await test_sim.disconnect() ###Output _____no_output_____
TSF TASK-2.ipynb
###Markdown **TAST-2** **Anurag Ranjan** **Prediction using Unupervised ML****Goal:** From the given dataset, predict the optimum number of cluster and represent it visually. Importing required modules. ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn import datasets pwd ###Output _____no_output_____ ###Markdown Importing Dataset ###Code d = datasets.load_iris() df = pd.DataFrame(d.data, columns = d.feature_names) df.head() d.target_names ###Output _____no_output_____ ###Markdown Checking for null values ###Code df.isnull().sum() df.describe() ###Output _____no_output_____ ###Markdown A simple Box Plotting of the Dataset ###Code df.plot.box() ###Output _____no_output_____ ###Markdown Finding Optimal number of Cluster ###Code x = df.iloc[:, [0, 1, 2, 3]].values from sklearn.cluster import KMeans wcss = [] for i in range(1, 11): kmeans = KMeans(n_clusters = i, init = 'k-means++', max_iter = 400, n_init = 10, random_state = 0) kmeans.fit(x) wcss.append(kmeans.inertia_) plt.plot(range(1, 11), wcss, color='g') plt.title('elbow method') plt.xlabel('Number of clusters') plt.ylabel('wcss') plt.show() ###Output _____no_output_____ ###Markdown Number of clusters is 3 (according to the Plotting-Graph)The optimum clusters is where the elbow occurs,when the within cluster sum of squares (WCSS) doesn't decrease significantly with every iteration. Training the model with optimal number of cluster ###Code kmeans = KMeans(n_clusters = 3, init = "k-means++", max_iter = 300, n_init = 10, random_state = 0) y_kmeans = kmeans.fit_predict(x) ###Output _____no_output_____ ###Markdown Visualising the clusters ###Code plt.scatter(x[y_kmeans == 0, 0], x[y_kmeans ==0, 1], s = 50, c = 'r', label = 'D-setosa') plt.scatter(x[y_kmeans == 1, 0], x[y_kmeans ==1, 1], s = 50, c = 'b', label = 'D-versicolour') plt.scatter(x[y_kmeans == 2, 0], x[y_kmeans == 2, 1], s = 50, c = 'g', label = 'D-virginica') plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:,1], s = 100, c = 'yellow', label = 'Centroids') plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.00), shadow=True, ncol=2) ###Output _____no_output_____
.ipynb_checkpoints/1main-v8-sparse0.5-ln4-checkpoint.ipynb
###Markdown Network inference of categorical variables: non-sequential data ###Code import sys import numpy as np from scipy import linalg from sklearn.preprocessing import OneHotEncoder import matplotlib.pyplot as plt %matplotlib inline import inference # setting parameter: np.random.seed(1) n = 20 # number of positions m = 3 # number of values at each position l = int(4*((n*m)**2)) # number of samples g = 2. sp = 0. # degree of sparsity nm = n*m def itab(n,m): i1 = np.zeros(n) i2 = np.zeros(n) for i in range(n): i1[i] = i*m i2[i] = (i+1)*m return i1.astype(int),i2.astype(int) # generate coupling matrix w0: def generate_interactions(n,m,g,sp): nm = n*m w = np.random.normal(0.0,g/np.sqrt(nm),size=(nm,nm)) i1tab,i2tab = itab(n,m) for i in range(n): for j in range(n): if (j != i) and (np.random.rand() < sp): w[i1tab[i]:i2tab[i],i1tab[j]:i2tab[j]] = 0. for i in range(n): i1,i2 = i1tab[i],i2tab[i] w[i1:i2,:] -= w[i1:i2,:].mean(axis=0) for i in range(n): i1,i2 = i1tab[i],i2tab[i] w[i1:i2,i1:i2] = 0. # no self-interactions for i in range(nm): for j in range(nm): if j > i: w[i,j] = w[j,i] return w i1tab,i2tab = itab(n,m) w0 = generate_interactions(n,m,g,sp) plt.imshow(w0,cmap='rainbow',origin='lower') plt.clim(-0.5,0.5) plt.colorbar(fraction=0.045, pad=0.05,ticks=[-0.5,0,0.5]) plt.show() #print(w0) # 2018.11.07: equilibrium def generate_sequences_vp_tai(w,n,m,l): nm = n*m nrepeat = 50*n nrelax = m b = np.zeros(nm) s0 = np.random.randint(0,m,size=(l,n)) # integer values enc = OneHotEncoder(n_values=m) s = enc.fit_transform(s0).toarray() e_old = np.sum(s*(s.dot(w.T)),axis=1) for irepeat in range(nrepeat): for i in range(n): for irelax in range(nrelax): r_trial = np.random.randint(0,m,size=l) s0_trial = s0.copy() s0_trial[:,i] = r_trial s = enc.fit_transform(s0_trial).toarray() e_new = np.sum(s*(s.dot(w.T)),axis=1) t = np.exp(e_new - e_old) > np.random.rand(l) s0[t,i] = r_trial[t] e_old[t] = e_new[t] if irepeat%(5*n) == 0: print(irepeat,np.mean(e_old)) return enc.fit_transform(s0).toarray() s = generate_sequences_vp_tai(w0,n,m,l) ## 2018.11.07: for non sequencial data def fit_additive(s,n,m): nloop = 10 i1tab,i2tab = itab(n,m) nm = n*m nm1 = nm - m w_infer = np.zeros((nm,nm)) for i in range(n): i1,i2 = i1tab[i],i2tab[i] # remove column i x = np.hstack([s[:,:i1],s[:,i2:]]) x_av = np.mean(x,axis=0) dx = x - x_av c = np.cov(dx,rowvar=False,bias=True) c_inv = linalg.pinv(c,rcond=1e-15) #print(c_inv.shape) h = s[:,i1:i2].copy() for iloop in range(nloop): h_av = h.mean(axis=0) dh = h - h_av dhdx = dh[:,:,np.newaxis]*dx[:,np.newaxis,:] dhdx_av = dhdx.mean(axis=0) w = np.dot(dhdx_av,c_inv) #w = w - w.mean(axis=0) h = np.dot(x,w.T) p = np.exp(h) p_sum = p.sum(axis=1) #p /= p_sum[:,np.newaxis] for k in range(m): p[:,k] = p[:,k]/p_sum[:] h += s[:,i1:i2] - p w_infer[i1:i2,:i1] = w[:,:i1] w_infer[i1:i2,i2:] = w[:,i1:] return w_infer w2 = fit_additive(s,n,m) plt.plot([-1,1],[-1,1],'r--') plt.scatter(w0,w2) def fit_multiplicative(s,n,m,l): i1tab,i2tab = itab(n,m) nloop = 10 nm1 = nm - m w_infer = np.zeros((nm,nm)) wini = np.random.normal(0.0,1./np.sqrt(nm),size=(nm,nm1)) for i in range(n): i1,i2 = i1tab[i],i2tab[i] x = np.hstack([s[:,:i1],s[:,i2:]]) y = s.copy() # covariance[ia,ib] cab_inv = np.empty((m,m,nm1,nm1)) eps = np.empty((m,m,l)) for ia in range(m): for ib in range(m): if ib != ia: eps[ia,ib,:] = y[:,i1+ia] - y[:,i1+ib] which_ab = eps[ia,ib,:] !=0. xab = x[which_ab] # ---------------------------- xab_av = np.mean(xab,axis=0) dxab = xab - xab_av cab = np.cov(dxab,rowvar=False,bias=True) cab_inv[ia,ib,:,:] = linalg.pinv(cab,rcond=1e-15) w = wini[i1:i2,:].copy() cost = np.full(nloop,100.) for iloop in range(nloop): h = np.dot(x,w.T) # stopping criterion -------------------- p = np.exp(h) p_sum = p.sum(axis=1) p /= p_sum[:,np.newaxis] cost[iloop] = ((y[:,i1:i2] - p[:,:])**2).mean() if iloop > 1 and cost[iloop] >= cost[iloop-1]: break for ia in range(m): wa = np.zeros(nm1) for ib in range(m): if ib != ia: which_ab = eps[ia,ib,:] !=0. eps_ab = eps[ia,ib,which_ab] xab = x[which_ab] # ---------------------------- xab_av = np.mean(xab,axis=0) dxab = xab - xab_av h_ab = h[which_ab,ia] - h[which_ab,ib] ha = np.divide(eps_ab*h_ab,np.tanh(h_ab/2.), out=np.zeros_like(h_ab), where=h_ab!=0) dhdx = (ha - ha.mean())[:,np.newaxis]*dxab dhdx_av = dhdx.mean(axis=0) wab = cab_inv[ia,ib,:,:].dot(dhdx_av) # wa - wb wa += wab w[ia,:] = wa/m w_infer[i1:i2,:i1] = w[:,:i1] w_infer[i1:i2,i2:] = w[:,i1:] return w_infer w_infer = fit_multiplicative(s,n,m,l) plt.plot([-1,1],[-1,1],'r--') plt.scatter(w0,w_infer) #plt.scatter(w0[0:3,3:],w[0:3,:]) ###Output _____no_output_____
doc/euclidean/natural-non-uniform.ipynb
###Markdown This notebook is part of https://github.com/AudioSceneDescriptionFormat/splines, see also https://splines.readthedocs.io/.[back to overview](natural.ipynb) Non-Uniform Natural SplinesThe derivation is similar to[the uniform case](natural-uniform.ipynb),but this time the parameter intervals can have arbitrary values. ###Code import sympy as sp sp.init_printing(order='grevlex') from utility import NamedExpression t = sp.symbols('t') ###Output _____no_output_____ ###Markdown Just like in the uniform case,we are considering two adjacent spline segments,but this time we must allow arbitrary parameter values: ###Code t3, t4, t5 = sp.symbols('t3:6') b_monomial = sp.Matrix([t**3, t**2, t, 1]).T b_monomial coefficients3 = sp.symbols('a:dbm3')[::-1] coefficients4 = sp.symbols('a:dbm4')[::-1] b_monomial.dot(coefficients3) p3 = NamedExpression( 'pbm3', b_monomial.dot(coefficients3).subs(t, (t - t3)/(t4 - t3))) p4 = NamedExpression( 'pbm4', b_monomial.dot(coefficients4).subs(t, (t - t4)/(t5 - t4))) display(p3, p4) pd3 = p3.diff(t) pd4 = p4.diff(t) display(pd3, pd4) equations = [ p3.evaluated_at(t, t3).with_name('xbm3'), p3.evaluated_at(t, t4).with_name('xbm4'), p4.evaluated_at(t, t4).with_name('xbm4'), p4.evaluated_at(t, t5).with_name('xbm5'), pd3.evaluated_at(t, t3).with_name('xbmdot3'), pd3.evaluated_at(t, t4).with_name('xbmdot4'), pd4.evaluated_at(t, t4).with_name('xbmdot4'), pd4.evaluated_at(t, t5).with_name('xbmdot5'), ] ###Output _____no_output_____ ###Markdown We introduce a few new symbols to simplify the display,but we keep calculating with $t_i$: ###Code deltas = { t3: 0, t4: sp.Symbol('Delta3'), t5: sp.Symbol('Delta3') + sp.Symbol('Delta4'), } for e in equations: display(e.subs(deltas)) coefficients = sp.solve(equations, coefficients3 + coefficients4) for c, e in coefficients.items(): display(NamedExpression(c, e.subs(deltas))) pdd3 = pd3.diff(t) pdd4 = pd4.diff(t) display(pdd3, pdd4) sp.Eq(pdd3.expr.subs(t, t4), pdd4.expr.subs(t, t4)) _.subs(coefficients).subs(deltas).simplify() ###Output _____no_output_____
Notebooks/weighted_stats_xarray.ipynb
###Markdown How to deal with weighted statistics (with xarray)Xarray introduced weighted statistics in v0.15.1 (23 Mar 2020). Here we take a quick look at how to make use of this. It's a good time-saving approach, since broadcasting seems to work well. ###Code import xarray as xr # some data ds = xr.open_dataset('/Users/brianpm/Dropbox/DataTemporary/f.e20.F2000climo.f09_f09.ag.release_tag.cam.h0.0001-01.ncrcat.FLNT.nc') # don't worry about correcting time rightnow X = ds['FLNT'] X lat = ds['lat'] import numpy as np # imagine you don't have any way to get weights: weights_uni = xr.DataArray(1.0) weighted_uniform = X.weighted(weights_uni) # average over spatial dims dims = X.dims avgdims = [dim for dim in X.dims if dim != 'time'] print(avgdims) x_avg_uniwgt = weighted_uniform.mean(dim=avgdims) x_avg_uniwgt # cos(lat) weights: weights = np.cos(np.deg2rad(X.lat)) weights.name = "weights" weighted_coslat = X.weighted(weights) # average over spatial dims dims = X.dims avgdims = [dim for dim in X.dims if dim != 'time'] print(avgdims) x_avg_coslat = weighted_coslat.mean(dim=avgdims) x_avg_coslat ###Output ['lat', 'lon']
Integracao_por_origem_exame_HSL_v3.ipynb
###Markdown **DADOS DO HOSPITAL SÍRIO-LIBANÊS (HSL)** Data: 19/10/2021Filipe Loyola LopesInformativo: - Análise dos dados com a classificação de gravidade a partir da origem do exame. - Origens dos exames: pronto socorro, internação ou UTI.- Os pacientes foram divididos em quatro grupos e cada grupo classificado como GRAVE ou NÃO_GRAVE, conforme abaixo:GRUPO_0 - pacientes com exames provindos apenas do pronto socorro (NÃO_GRAVE); GRUPO_1 - pacientes com exames provindos do pronto socorro e internação (NÃO_GRAVE);GRUPO_2 - pacientes com exames provindos do pronto socorro e UTI (GRAVE).GRUPO_3 - pacientes com exames provindos do pronto socorro, internação e UTI (GRAVE). Links úteis:https://www.vooo.pro/insights/12-tecnicas-pandas-uteis-em-python-para-manipulacao-de-dados/https://medium.com/data-hackers/pandas-combinando-data-frames-com-merge-e-concat-10e7d07ca5echttps://minerandodados.com.br/analise-de-dados-com-python-usando-pandas/ ###Code #Bibliotecas import numpy as np import pandas as pd from pandas import DataFrame import csv from numpy import mean from numpy import std from numpy import correlate from numpy.random import randn from numpy.random import seed from matplotlib import pyplot import matplotlib.pyplot as plt import seaborn as sns import pandas_profiling from google.colab import files import datetime as dt from matplotlib import pyplot as plt plt.style.use('default') #%matplotlib inline import seaborn as sns import warnings import datetime as dt from datetime import date ###Output _____no_output_____ ###Markdown **INTEGRAÇÃO DE DADOS** ###Code from google.colab import drive drive.mount('/content/drive') ###Output Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True). ###Markdown **DATASET HSL_PACIENTES** ###Code # arquivo "HSL_Pacientes_3.csv" referente a janeiro 2021 pacientes = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/2021 dezembro Artigo/HSL_Pacientes_3.csv', sep='|') print(pacientes.shape) pacientes.head(3) #verificando a existência de valores duplicatos pacientes['ID_PACIENTE'].nunique() ###Output _____no_output_____ ###Markdown **DATASET HSL_EXAMES** ###Code # arquivo "HSL_Exames_3.csv" sirio_libanes = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/2021 dezembro Artigo/HSL_Exames_3.csv', sep='|') print(sirio_libanes.shape) sirio_libanes.head(2) #Eliminando exemplos repetidos sirio_libanes = sirio_libanes.drop_duplicates() sirio_libanes.shape #verificando analitos unicos sirio_libanes['DE_ANALITO'].nunique() ###Output _____no_output_____ ###Markdown **DATASET HSL_DESFECHO** ###Code # arquivo "HSL_Desfechos_3.csv" desfecho = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/2021 dezembro Artigo/HSL_Desfechos_3.csv', sep='|') desfecho.shape #Eliminando exemplos repetidos desfecho = desfecho.drop_duplicates() desfecho.shape desfecho.head(3) desfecho['ID_PACIENTE'].nunique() desfecho['DE_DESFECHO'].value_counts() desfecho['DE_TIPO_ATENDIMENTO'].value_counts() ###Output _____no_output_____ ###Markdown **JUNTANDO DATASET'S** Exames e desfecho ###Code #adiciona colunas do dataset 'desfecho' na frente dos repectivos id_paciente e id_atendimento iguais sirio = sirio_libanes.merge(desfecho, on = ["ID_PACIENTE", "ID_ATENDIMENTO"], how = "left") sirio.head(3) sirio.shape sirio.head(1) pacientes.head(1) ###Output _____no_output_____ ###Markdown https://medium.com/data-hackers/pandas-combinando-data-frames-com-merge-e-concat-10e7d07ca5ec Obtendo SEXO e Ano de nascimento da planilha HSL_PACIENTES ###Code pacientes_2 = pacientes[['ID_PACIENTE','aa_nascimento','IC_SEXO']] pacientes_2.head(1) ###Output _____no_output_____ ###Markdown **DATASET SIRIO** ###Code #adiciona a coluna aa_nacimento do dataframe pacientes em sirio sirio = sirio.merge(pacientes_2, on=['ID_PACIENTE'], how='left') sirio.head(3) sirio.shape sirio['ID_PACIENTE'].nunique() ###Output _____no_output_____ ###Markdown --- **VERIFICANDO VALORES NULOS** ###Code # cópia profunda do dataframe para não alterar o df original sirio2 = sirio.copy(deep=True) # Considera apenas o último exame no caso de repetidos no mesmo dia. sirio2 = sirio2.groupby(['ID_PACIENTE', 'ID_ATENDIMENTO','DT_COLETA','DE_ANALITO']).agg({'DE_RESULTADO' : ['last']}).reset_index() # solucionando nome colunas dois niveis sirio2.columns = [ '_'.join(x) for x in sirio2.columns ] # criando chave a partir de ID_PACIENTE, ID_ATENDIMENTO e DT_COLETA sirio2['chave'] = sirio2['ID_PACIENTE_']+'.'+sirio2['ID_ATENDIMENTO_']+'.'+sirio2['DT_COLETA_'] sirio2 = sirio2[['chave','DE_ANALITO_','DE_RESULTADO_last']] sirio2.columns = ['chave', 'analito','resultado'] print(sirio2.shape) sirio2.head(3) sirio_pivot = sirio2.pivot(index='chave', columns='analito', values='resultado').reset_index() print(sirio_pivot.shape) sirio_pivot.head() #sirio_pivot.to_csv('sirio_pivot.csv', sep='|', encoding='utf-8') # gera csv co valores_nulos = pd.DataFrame() valores_nulos['Null'] = sirio_pivot.isnull().sum() valores_nulos = valores_nulos.reset_index() #valores_nulos = valores_nulos.T # Get names of indexes for which column Stock has value No indexNames = valores_nulos[ valores_nulos['analito'] == 'chave' ].index # Delete these row indexes from dataFrame valores_nulos.drop(indexNames , inplace=True) print(valores_nulos.head()) print("\nshape: ", valores_nulos.shape, "\n") valores_nulos.describe() # No total são 39104 exemplos # Transformando valor absoluto em porcentagem: # Media media_null = (37753.619497 / 39104)*100 print("Média: ", media_null) # desvio padrão desvio_null = (4836.900438 / 39104)*100 print("\nDesvio padrão: ", desvio_null) # mínimo minimo_null = (11354 / 39104)*100 print("\nMínimo: ", minimo_null) # máximo maximo_null = (39103 / 39104)*100 print("\nMáximo: ", maximo_null) ###Output Média: 96.5466947038666 Desvio padrão: 12.36932395151391 Mínimo: 29.035392798690673 Máximo: 99.9974427168576 ###Markdown --- **FILTRO 1: SELEÇÃO MANUAL DE ATRIBUTOS** ###Code # Excluindo colunas desnecessárias df_sirio = sirio.drop(columns=['CD_UNIDADE', 'DE_VALOR_REFERENCIA']) print(df_sirio.shape) df_sirio.head(3) ###Output (1436537, 15) ###Markdown DATETIME ###Code #Formato data df_sirio['DT_ATENDIMENTO'] = pd.to_datetime(df_sirio['DT_ATENDIMENTO']) df_sirio['DT_COLETA'] = pd.to_datetime(df_sirio['DT_COLETA']) df_sirio['DT_DESFECHO'] = pd.to_datetime(df_sirio['DT_COLETA']) ###Output _____no_output_____ ###Markdown **FILTRO 2: VERIFICANDO PACIENTES COM COVID POSITIVO** ###Code tipos_exames = df_sirio['DE_EXAME'].value_counts() print(tipos_exames.shape) tipos_exames tipos_exames.to_csv('tipos_exames.csv', sep='|', encoding='utf-8') # gera csv com os tipos de exame #**Lista de exames de COVID** #Analisando os tipos de exames foram identificados aqueles que são teste de COVID-19 (ls_exames_covid) ls_exames_covid = ['COVID-19-PCR para SARS-COV-2, Vários Materiais (Fleury)', 'COVID-19-Sorologia IgM e IgG por quimiluminescência, soro', 'Detecção de Coronavírus (NCoV-2019) POR PCR (Anatomia Patológica)', 'COVID-19-Teste Rápido (IgM e IgG), soro', 'COVID-19, anticorpos IGA e IGG, soro', 'Sars Cov-2, Teste Molecular Rápido Para Detecção, Vários Materiais', 'Sorologia - Coronavírus, IgG', 'Sorologia - Coronavírus, IgA'] df_exames_covid = df_sirio.loc[df_sirio['DE_EXAME'].isin(ls_exames_covid)] #df_exames_covid.to_csv('exames_covid', sep='\t', encoding='utf-8') df_exames_covid.shape # Tipos de resultados para o exame de covid resultados_covid = df_exames_covid['DE_RESULTADO'].value_counts() #resultados_covid.to_csv('tipos_resultados.csv', sep='\t', encoding='utf-8') resultados_covid.shape # Foi realizada uma análise para identificar os resultados que indicam COVID POSITIVOS (ls_resultados_positivos) ls_resultados_positivos = ['DETECTADO', 'DETECTADO (POSITIVO)', 'REAGENTE', 'Detectados anticorpos da classe IgG contra SARS-CoV-2, Este perfil é compatível com infecção pregressa, Estudos demonstram que, sobretudo em pessoas que apresentaram quadro clínico leve ou não apresentaram sintomas, os níveis de anticorpos podem diminuir ao longo do tempo, podendo inclusive, se tornar indetectáveis (negativos), O papel destes anticorpos na proteção contra reinfecção não é completamente estabelecido,', 'Amostra REAGENTE para IgG contra SARS-CoV-2,', 'Detectados anticorpos das classes IgM e IgG contra SARS-CoV-2, Este perfil sugere infecção recente, Estudos demonstram que, sobretudo em pessoas que apresentaram quadro clínico leve ou não apresentaram sintomas, os níveis de anticorpos podem diminuir ao longo do tempo, podendo inclusive, se tornar indetectáveis (negativos), O papel destes anticorpos na proteção contra reinfecção não é completamente estabelecido,', 'Amostra REAGENTE para IgM e IgG contra SARS-CoV-2,', 'Evidência sorológica de infecção recente por SARS-CoV-2,', 'Detectados anticorpos da classe IgM contra SARS-CoV-2, Este perfil é compatível com soroconversão inicial ou produção de baixos níveis de anticorpos da classe IgG, Estudos demonstram que, sobretudo em pessoas que apresentaram quadro clínico leve ou não apresentaram sintomas, a soroconversão pode ocorrer mais tardiamente, em baixos níveis de anticorpos, ou mesmo não ocorrer, Sugere-se seguimento sorológico para avaliar a soroconversão de IgG em, no mínimo, 7 dias,', 'Evidência sorológica de infecção pregressa por SARS-CoV-2,', 'Detectados anticorpos totais contra SARS-CoV-2, porém não foi possível definir, nesta amostra, a(s) classe(s) de imunoglobulina(s) presente(s) (IgM e/ou IgG), Estudos demonstram que, sobretudo em pessoas que apresentaram quadro clínico leve ou não apresentaram sintomas, a soroconversão pode ocorrer mais tardiamente ou em baixos níveis de anticorpos, A aparente discrepância observada entre as metodologias pode se dever à diferença de sensibilidade ou à utilização de antígenos distintos, Sugere-se o seguimento sorológico em, no mínimo, 7 dias,', 'Amostra REAGENTE para anticorpos contra SARS-CoV-2,', 'Amostra REAGENTE para IgM contra SARS-CoV-2,', 'Detectados anticorpos da classe IgM contra SARS-CoV-2, em apenas uma das metodologias utilizadas, A possibilidade de falsa reatividade não pode ser descartada, Sugere-se seguimento sorológico em, no mínimo, 7 dias,', 'Amostra REAGENTE para IgG contra SARS-CoV-2, em apenas uma metodologia,', 'Amostra REAGENTE para IgM contra SARS-CoV-2, em apenas uma metodologia,', 'Detectados anticorpos da classe IgG contra SARS-CoV-2 em baixos níveis, em apenas uma das metodologias utilizadas, A possibilidade de falsa reatividade não pode ser descartada, embora a aparente discrepância entre as metodologias possa se dever às diferenças de sensibilidade ou à utilização de antígenos distintos, Sugere-se seguimento sorológico em, no mínimo, 7 dias,', 'Possível evidência sorológica de infecção recente por SARS-CoV-2,', 'Detectados anticorpos da classe IgG contra SARS-CoV-2 em baixos níveis, em apenas uma das metodologias utilizadas, Este perfil pode se dever à soroconversão inicial ou à produção de baixos níveis de anticorpos, contudo, a possibilidade de falsa reatividade não pode ser descartada, Sugere-se seguimento sorológico em, no mínimo, 7 dias,', 'Detectados anticorpos da classe IgG contra SARS-CoV-2, Este perfil é compatível com infecção pregressa, Estudos mostram que, sobretudo em pessoas que apresentaram quadro clínico leve ou não apresentaram sintomas, os níveis de anticorpos podem diminuir ao longo do tempo, podendo inclusive, tornar-se negativos, O papel destes anticorpos na proteção contra reinfecção não é completamente estabelecido,', 'Possível evidência sorológica de infecção recente por SARS-COV-2,', 'O resultado sugere que já tenham transcorrido mais de 3 semanas da infecção aguda, A capacidade protetora dos anticorpos da classe IgG não é completamente estabelecida,;' ] df_covid_positivo = df_exames_covid.loc[df_exames_covid['DE_RESULTADO'].isin(ls_resultados_positivos)] df_covid_positivo.shape #número de pacientes com covid positivo df_covid_positivo['ID_PACIENTE'].nunique() #pacientes com covid positivo pacientes_positivos = df_covid_positivo['ID_PACIENTE'].unique() pacientes_positivos df_covid_positivo = df_sirio.loc[df_sirio['ID_PACIENTE'].isin(pacientes_positivos)] print(df_covid_positivo.shape) df_covid_positivo['ID_PACIENTE'].nunique() #pacientes com covid negativo df_covid_negativo = df_sirio.loc[~df_sirio['ID_PACIENTE'].isin(pacientes_positivos)] print(df_covid_negativo.shape) print(df_covid_negativo['ID_PACIENTE'].nunique()) #verificando qual a porcentagem de pacientes para cada desfecho, entre os que não tiveram covid: desfechos_pacientes_sem_covid = df_covid_negativo['DE_DESFECHO'].value_counts() desfechos_pacientes_sem_covid df_covid_negativo.loc[df_covid_negativo['DE_DESFECHO'] =='Óbito após 48hs de internação sem necrópsia'].value_counts() # PACIENTES POSITIVOS df_hsl = df_covid_positivo df_hsl['DE_ORIGEM'].value_counts() df_hsl.head(3) #agrupando pacientes para verificar última data de atendimento, para pacientes com mais de uma data de atendimento atendimento_paciente = df_hsl.groupby(['ID_PACIENTE']).agg({'DT_ATENDIMENTO': ['max']}).reset_index() atendimento_paciente.columns=['ID_PACIENTE', 'DT_ATENDIMENTO_MAXIMA'] atendimento_paciente['DT_ATENDIMENTO_MAXIMA'] = pd.to_datetime(atendimento_paciente['DT_ATENDIMENTO_MAXIMA']) atendimento_paciente.head(3) #juntando datasets para auxiliar próximo filtro que é Exame covid até 15 dias após DT_ATENDIMENTO_MAXIMA df_hsl_temp = df_hsl.merge(atendimento_paciente, on=['ID_PACIENTE'], how='left') df_hsl_temp.head(3) #verificando se existe diferença entre DT_COLETA e DT_COLETA_MAXIMA df_hsl_temp['delta_dt_atendimento'] = (df_hsl_temp['DT_ATENDIMENTO_MAXIMA']-df_hsl_temp['DT_ATENDIMENTO']).dt.days df_hsl_temp.head(3) # Filtrando apenas pacientes com COVID confirmado até 15 dias após o atendimento df_hsl_temp['delta_covid_positivo'] = (df_hsl_temp['DT_COLETA'] - df_hsl_temp['DT_ATENDIMENTO_MAXIMA']).dt.days print(df_hsl_temp['delta_covid_positivo'].value_counts()) #delta_covid_positivo = df_hsl_temp['delta_covid_positivo'].value_counts() #delta_covid_positivo.to_csv('Delta_covid_positivo.csv', sep='|', encoding='utf8') #Selecionando apenas exemplos com delta_covid_positivo <= 15 para selecionar esses pacientes quinze_dias = df_hsl_temp[df_hsl_temp['delta_covid_positivo']<=15] quinze_dias = quinze_dias[quinze_dias['delta_covid_positivo']>=0] print(quinze_dias.shape) quinze_dias['delta_covid_positivo'].value_counts() pacientes_quinze_dias = quinze_dias['ID_PACIENTE'].unique() print(pacientes_quinze_dias.shape) pacientes_quinze_dias # Finalmente base com o filtro de 15 dias (covid positivo) df_hsl = df_hsl.loc[df_hsl['ID_PACIENTE'].isin(pacientes_quinze_dias)] print(df_hsl['ID_PACIENTE'].nunique()) df_hsl.head(3) ###Output 8750 ###Markdown **ANALISANDO AS ORIGENS DOS EXAMES PARA DIVISÃO EM GRUPOS**GRUPO_0 - pacientes com exames provindos apenas do pronto socorro (NÃO_GRAVE);GRUPO_1 - pacientes com exames provindos apenas do pronto socorro e internação (NÃO_GRAVE);GRUPO_2 - pacientes com exames provindos do PS e UTI (GRAVE).GRUPO_3 - pacientes com exames provindos do PS, Internação e UTI (GRAVE). ###Code # Origens categorizadas em três tipos: UTI (Unidade de Terapia Intensiva), INT (Internação) ou PS (Pronto Socorro) grupos = df_hsl grupos['UTI'] = 'NaN' #Cria coluna UTI com valores nulos grupos['INT'] = 'Nan' #Cria coluna INT com valores nulos grupos['PS'] = 'Nan' #Cria coluna PS com valores nulos print(grupos.shape) grupos.head(2) # Rotular exemplos provindos de UTI # Toda origem "UTI" foi categorizada como UTI, tendo os atributos: # UTI = 1 # INT = 0 # PS = 0 exemplos_UTI = grupos[grupos['DE_ORIGEM']=='UTI'] print('total de exemplos UTI: ', exemplos_UTI.shape) atendimentos_UTI = exemplos_UTI['ID_ATENDIMENTO'].unique() print('Total de chaves unicas de atendimentos com exames UTI: ', atendimentos_UTI.shape) print('\n') print('\n') exemplos_UTI['UTI'] = 1 exemplos_UTI['INT'] = 0 exemplos_UTI['PS'] = 0 exemplos_UTI.head(3) # Rotular exemplos provindos da INT # Toda origem "Unidades de Internação" ou "Atendimento - Recepção Internação" foi categorizada como INT, ou seja: # UTI = 0 # INT = 1 # PS = 0 exemplos_INT = grupos.query('DE_ORIGEM == "Unidades de Internação" | DE_ORIGEM == "Atendimento - Recepção / Internação"') print('total de exemplos INT: ', exemplos_INT.shape) atendimentos_INT = exemplos_INT['ID_ATENDIMENTO'].unique() print('Total de chaves unicas de atendimentos com exames em INT: ', atendimentos_INT.shape) exemplos_INT['UTI'] = 0 exemplos_INT['INT'] = 1 exemplos_INT['PS'] = 0 exemplos_INT.head(3) ###Output total de exemplos INT: (345799, 18) Total de chaves unicas de atendimentos com exames em INT: (1848,) ###Markdown Todos os outros tipos de origens foram categorizadas como PS, tendo os atributos: UTI = 0INT = 0PS = 1 ###Code #Rotular exemplos provindos do PS exemplos_PS = grupos.query('DE_ORIGEM != "Unidades de Internação" & DE_ORIGEM != "Atendimento - Recepção / Internação" & DE_ORIGEM != "UTI"') print('total de exemplos PS: ', exemplos_PS.shape) atendimentos_PS = exemplos_PS['ID_ATENDIMENTO'].unique() print('Total de chaves unicas de atendimentos com exame em PS: ', atendimentos_PS.shape) exemplos_PS['UTI'] = 0 exemplos_PS['INT'] = 0 exemplos_PS['PS'] = 1 exemplos_PS.head(5) # juntando os exemplos de UTI, INT e PS em um dataset só df_grupos = pd.concat([exemplos_UTI, exemplos_INT, exemplos_PS]) df_grupos[df_grupos['UTI']==1].head(2) df_grupos[df_grupos['INT']==1].head(2) #Passando para csv #df_grupos.to_csv('dados_grupos.csv', sep='\t', encoding='utf-8') ###Output _____no_output_____ ###Markdown **FILTRO 3: CRIANDO DATAFRAME COM EXAMES APENAS PROVINDOS DO PS** ###Code df_PS = df_grupos[df_grupos['PS']==1] df_PS.head(2) df_PS.shape df_PS['ID_PACIENTE'].nunique() #df_PS.to_csv('ps.csv', sep='\t', encoding='utf-8') ###Output _____no_output_____ ###Markdown **PACIENTES vs FLAGS (INT, PS, UTI)** ###Code #Criando um agrupamento em função do ID_Paciente e agregando valores das flags 'UTI', 'INT' e 'PS' df_hsl_1 = df_grupos.pivot_table(index='ID_PACIENTE', values=['UTI','INT','PS'], columns=[], aggfunc='sum') print(df_hsl_1.shape) df_hsl_1.head(10) #gera csv #df_hsl_1.to_csv('pacientes_flag.csv', sep='\t', encoding='utf-8') # transformando o index em uma coluna df_hsl_1 = df_hsl_1.reset_index() df_hsl_1.head() ###Output _____no_output_____ ###Markdown **PACIENTES GRUPO_0** ###Code # Selecionando pacientes do grupo 0 grupo_0 = df_hsl_1.query('PS > 0 & INT == 0 & UTI == 0') print(grupo_0.head(3), '\n') pacientes_grupo_0 = grupo_0['ID_PACIENTE'].unique() print(pacientes_grupo_0,'\n') print('quantidade de pacientes no GRUPO_0: ', len(pacientes_grupo_0)) #Criando o Grupo_0 a partir do dataframe df_PS GRUPO_0 = df_PS.loc[df_hsl['ID_PACIENTE'].isin(pacientes_grupo_0)] GRUPO_0['GRUPO'] = 'GRUPO_0' GRUPO_0.head(2) ###Output /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy """ ###Markdown **PACIENTES GRUPO_1** ###Code # Selecionando pacientes do grupo 1 grupo_1 = df_hsl_1.query('PS > 0 & INT > 0 & UTI == 0') print(grupo_1.head(3), '\n') pacientes_grupo_1 = grupo_1['ID_PACIENTE'].unique() #print(pacientes_grupo_1,'\n') print('quantidade de pacientes no GRUPO_1: ', len(pacientes_grupo_1)) #Criando o Grupo_1 a partir do dataframe df_PS GRUPO_1 = df_PS.loc[df_hsl['ID_PACIENTE'].isin(pacientes_grupo_1)] GRUPO_1['GRUPO'] = 'GRUPO_1' GRUPO_1.head(3) ###Output /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:5: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy """ ###Markdown **PACIENTES GRUPO_2** ###Code # Selecionando pacientes grupo 2 grupo_2 = df_hsl_1.query('INT == 0 & PS > 0 & UTI > 0') print(grupo_2.head(5), '\n') pacientes_grupo_2 = grupo_2['ID_PACIENTE'].unique() #print(pacientes_grupo_2,'\n') print('Quantidade de pacientes no GRUPO_2: ', len(pacientes_grupo_2)) #Criando o Grupo_2 a partir do dataframe df_PS GRUPO_2 = df_PS.loc[df_hsl['ID_PACIENTE'].isin(pacientes_grupo_2)] GRUPO_2['GRUPO'] = 'GRUPO_2' print(GRUPO_2['ID_PACIENTE'].nunique(), '\n') GRUPO_2.head(3) ###Output 112 ###Markdown **PACIENTES GRUPO_3** ###Code # Selecionando pacientes grupo 3 grupo_3 = df_hsl_1.query('UTI > 0 & PS > 0 & INT > 0') print(grupo_3.head(5), '\n') pacientes_grupo_3 = grupo_3['ID_PACIENTE'].unique() #print(pacientes_grupo_3,'\n') print('Quantidade de pacientes no GRUPO_3: ', len(pacientes_grupo_3)) #Criando o Grupo_3 a partir do dataframe df_PS GRUPO_3 = df_PS.loc[df_hsl['ID_PACIENTE'].isin(pacientes_grupo_3)] GRUPO_3['GRUPO'] = 'GRUPO_3' print(GRUPO_3['ID_PACIENTE'].nunique(), '\n') GRUPO_3.head(3) ###Output 400 ###Markdown **OUTROS PACIENTES**OBS: ESSES PACIENTES SERÃO DESCONSIDERADOS, POIS NÃO POSSUIEM EXAMES QUE INDIQUEM PREDISPOSIÇÃO INCIAL ###Code # Verificando os pacientes que não possuem exames em PS, esses pacientes foram desconsiderados grupo_4 = df_hsl_1.query('PS == 0') print(grupo_4.head(5), '\n') pacientes_grupo_4 = grupo_4['ID_PACIENTE'].unique() #print(pacientes_grupo_2,'\n') print('Quantidade de pacientes no GRUPO_4: ', len(pacientes_grupo_4)) ###Output ID_PACIENTE INT PS UTI 43 01451931334246A7DE4F71DEE7710859 113 0 0 53 0183BA4D9368936BAD131398B55CDDC3 603 0 1495 58 01A29BBFDC18988C5200E74AE169841E 155 0 0 86 0296EEF7845CE2C5DAB358E894256092 1 0 730 121 03921BD7EFD5787934B8900682F73608 0 0 437 Quantidade de pacientes no GRUPO_4: 528 ###Markdown **JUNTANDO OS GRUPOS EM UM SÓ DATASET** ###Code df_sirio_libanes = pd.concat([GRUPO_0, GRUPO_1, GRUPO_2, GRUPO_3]) df_sirio_libanes.head(2) df_sirio_libanes.shape df_sirio_libanes['ID_PACIENTE'].nunique() G0 = df_sirio_libanes[df_sirio_libanes['GRUPO']=='GRUPO_0'] print('GRUPO_0: ', G0['ID_PACIENTE'].nunique()) G1 = df_sirio_libanes[df_sirio_libanes['GRUPO']=='GRUPO_1'] print('GRUPO_1: ', G1['ID_PACIENTE'].nunique()) G2 = df_sirio_libanes[df_sirio_libanes['GRUPO']=='GRUPO_2'] print('GRUPO_2: ', G2['ID_PACIENTE'].nunique()) G3 = df_sirio_libanes[df_sirio_libanes['GRUPO']=='GRUPO_3'] print('GRUPO_3: ', G3['ID_PACIENTE'].nunique()) ###Output GRUPO_0: 7092 GRUPO_1: 618 GRUPO_2: 112 GRUPO_3: 400 ###Markdown **FILTRO 4: NOVA SELEÇÃO MANUAL DE ATRIBUTOS** ###Code #deletando colunas que não serão mais necesárias df_sirio = df_sirio_libanes.drop(columns=['ID_ATENDIMENTO','DE_ORIGEM','ID_CLINICA','DE_CLINICA', 'DT_DESFECHO', 'UTI','INT','PS']) df_sirio.head(3) df_sirio.shape ###Output _____no_output_____ ###Markdown **FILTRO 5: SELECIONANDO EXAMES COM ATÉ 3 DIAS APÓS O ATENDIMENTO** (OU SEJA, DATA DE COLETA - DATA DE ATENDIMENTO <= 3 DIAS) ###Code #criando coluna com período de exames df_sirio['PERIODO_EXAMES'] = (df_sirio['DT_COLETA']-df_sirio['DT_ATENDIMENTO']).dt.days print(df_sirio.shape) df_sirio.head(3) #Selecionando apenas exemplos de exames com até três dias da entrada no hospital tres_dias = df_sirio[df_sirio['PERIODO_EXAMES']<=3] print(tres_dias.shape) tres_dias['PERIODO_EXAMES'].value_counts() #investigando 'PERIODO_EXAMES' negativos # Os intervalos negativos significam que DT_COLETA é anterior a DT_ATENDIMENTO. x = tres_dias[tres_dias['PERIODO_EXAMES']<0] x.head(3) #pegando um paciente como exemplo x[x['ID_PACIENTE']=='A812B082EE43AFA716B6F9C33145F8EE'] ###Output _____no_output_____ ###Markdown Os pacientes com período_exames negativo possuem data de coleta anterior ao atendimento, o que pode ser uma inconsistência. ###Code # Verificando quais são os desfechos desses exemplos: x['DE_DESFECHO'].value_counts() #eliminando exemplos com 'PERIODO_EXAMES' negativos tres_dias = tres_dias[tres_dias['PERIODO_EXAMES']>=0] print(tres_dias['PERIODO_EXAMES'].value_counts()) print('\n', tres_dias.shape) tres_dias['DE_DESFECHO'].value_counts() #investigando quantos pacientes unicos em cada tipo de desfecho pacientes = tres_dias['ID_PACIENTE'].unique() print('Pacientes unicos com exames de 0 a 3 dias: ', pacientes.shape, '\n') pacientes = tres_dias.drop_duplicates(subset='ID_PACIENTE', keep='first') pacientes['DE_DESFECHO'].value_counts() df_hsl = tres_dias df_hsl.head(2) df_hsl.shape df_hsl['ID_PACIENTE'].nunique() ###Output _____no_output_____ ###Markdown **ÓBITOS** ###Code #Verificando se todos os óbitos estão no grupo grave obitos = ['Óbito após 48hs de internação sem necrópsia', 'Óbito nas primeiras 48hs de internação sem necrópsia não agônico', 'Óbito nas primeiras 48hs de internação sem necrópsia agônico'] df_obitos = df_hsl.loc[df_hsl['DE_DESFECHO'].isin(obitos)] df_obitos['GRUPO'].value_counts() obitos_GRUPO_1 = df_obitos[df_obitos['GRUPO']=='GRUPO_1'] obitos_GRUPO_1['ID_PACIENTE'].nunique() #esses pacientes precisão passar para o grupo 2, pois dem ter gravidade máxima obitos_GRUPO_1['ID_PACIENTE'].unique() df_hsl.head(50) ###Output _____no_output_____ ###Markdown **FILTRO 6: ELIMINANDO EXAMES COM RESULTADOS EM FORMA DE TEXTO** https://www.vooo.pro/insights/12-tecnicas-pandas-uteis-em-python-para-manipulacao-de-dados/ ###Code # Trocando ',' por '.'. df_hsl['DE_RESULTADO'] = [x.replace(',', '.') for x in df_hsl['DE_RESULTADO']] resultados = df_hsl['DE_RESULTADO'].value_counts() resultados.to_csv('resultados.csv', sep='\t',encoding='utf-8') # Convertendo a coluna DE_RESULTADO para numérico # Deu erro, pois existem resultados não numericos # Então nos próximos passos serão excluídos os resultados não numéricos #df_hsl['DE_RESULTADO'] = df_hsl['DE_RESULTADO'].astype(float) #df_final.info() df_hsl.dtypes #função para verificar se um variável é numérica def is_number(s): try: float(s) return True except ValueError: return False num = '9999.999' is_number(num) #Criando uma nova coluna para testar se o resultado é numérico df_hsl['Tipo_resultado'] = '' df_hsl.head(3) ###Output _____no_output_____ ###Markdown O código abaixo verifica linha por linha se a variável é numérica, ou seja, se poderá ser convertida em float. ###Code # Este bloco funciona, porém é demorado. """ for index, row in df_hsl.iterrows(): verifica = is_number(row['DE_RESULTADO']) if verifica == True: df_hsl.loc[index,'Tipo_resultado'] = True else: df_hsl.loc[index,'Tipo_resultado'] = False # gera arquivo: df_hsl_true_false.csv df_hsl.to_csv('df_hsl_true_false.csv', sep=';',encoding='utf-8') """ # lê arquivo: df_hsl_true_false.csv df_hsl_1 = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/2021 dezembro Artigo/Arquivos_v3/df_hsl_true_false_v3.csv', sep=';') df_hsl_1.head(3) df_hsl_1 = df_hsl_1.drop(columns=['Unnamed: 0']) df_hsl_1.head(3) df_hsl_1.shape df_hsl_1[df_hsl_1['Tipo_resultado']==False] # Apaga linhas em que Resultado não é do tipo numérico df_hsl_1.drop(df_hsl_1.loc[df_hsl_1['Tipo_resultado']==False].index, inplace=True) df_hsl_1.shape df_hsl_1[df_hsl_1['Tipo_resultado']==False] df_hsl_1['ID_PACIENTE'].nunique() ###Output _____no_output_____ ###Markdown **CONVERTENDO RESULTADOS DE STR PARA FLOAT** ###Code df_hsl_1['DE_RESULTADO'] = df_hsl_1['DE_RESULTADO'].astype(float) ###Output _____no_output_____ ###Markdown **NOVA SELEÇÃO MANUAL DE ATRIBUTOS** ###Code pivot_sirio = df_hsl_1.drop(columns=(['DE_EXAME', 'DT_ATENDIMENTO', 'DE_TIPO_ATENDIMENTO', 'DE_DESFECHO', 'PERIODO_EXAMES', 'Tipo_resultado'])) pivot_sirio['ID_PACIENTE'].value_counts() pivot_sirio.head(3) #pivot_sirio.to_csv("ANALISE_SIRIO_FINAL.csv", encoding="utf-8") pivot_sirio.shape ###Output _____no_output_____ ###Markdown **GERANDO DATAFRAME SIRIO_APRENDIZADO** ###Code AL7 = pivot_sirio # AL7 = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/2021 dezembro Artigo/ANALISE_SIRIO_FINAL.csv', sep=',', index_col=0) AL7.head(3) ###Output _____no_output_____ ###Markdown **FILTRO 8: AGRUPAMENTO DE EXAMES REPETIDOS PARA O MESMO PACIENTE** ###Code #Considera apenas o último exame no caso de repetidos. AL7 = AL7.groupby(['ID_PACIENTE', 'GRUPO','aa_nascimento','IC_SEXO','DE_ANALITO']).agg({'DT_COLETA': ['max'], 'DE_RESULTADO' : ['last']}).reset_index() AL7.head(3) AL7.columns = ['ID_PACIENTE', 'GRUPO', 'Idade','Sexo', 'DE_ANALITO','DT_COLETA', 'DE_RESULTADO'] AL7.head(3) AL7.info() AL7.shape AL7['ID_PACIENTE'].nunique() # Transformando Ano de nascimento em idade # Erro porque pacientes com ano de nascimento = YYYY ou AAAA # Esses exemplos serão removidos nos próximos passos #AL7['Idade'] = AL7['Idade'].astype(int) ###Output _____no_output_____ ###Markdown **FILTRO 9: ELIMINANDO LINHAS COM DATA DE NASCIMENTO AAAA OU YYYY** ###Code AL7.drop(AL7.loc[AL7['Idade']=='AAAA'].index, inplace=True) AL7.drop(AL7.loc[AL7['Idade']=='YYYY'].index, inplace=True) AL7['Idade'] = AL7['Idade'].astype(int) AL7['Idade'] = 2021 - AL7['Idade'] AL7.head(3) AL7.shape AL7['ID_PACIENTE'].nunique() #AL7.to_excel("ANALISE_SIRIO_FINAL_v2.xlsx") ###Output _____no_output_____ ###Markdown **FILTRO 10: PIVOTAMENTO PARA OS EXAMES SE TORNAREM COLUNAS** ###Code sirio_aprendizado = AL7.pivot_table(index=['ID_PACIENTE','GRUPO','Idade','Sexo'], values=['DE_RESULTADO'], columns=['DE_ANALITO'], aggfunc=[np.mean]).reset_index() sirio_aprendizado.head(3) sirio_aprendizado.to_csv('pivot_table_V3.csv', sep='|',encoding='utf-8') #analise_sirio_final.to_excel("ANALISE_SIRIO_FINAL_v3.xlsx") #nomes_exames = sirio_aprendizado nomes_exames = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/2021 dezembro Artigo/Arquivos_v3/pivot_table_v3.csv', sep='|') nomes_exames.head(10) nomes_exames = nomes_exames.T nomes_exames.head(10) #nomes_exames = nomes_exames.reset_index() #nomes_exames.head(5) nomes = nomes_exames[1].values.tolist() nomes[0:10] nomes[0] = 'ID_PACIENTE' nomes[1] = 'GRUPO' nomes[2] = 'Idade' nomes[3] = 'Sexo' del nomes[4] # deleta valor nulo nomes[0:10] ###Output _____no_output_____ ###Markdown **TABELA FINAL PARA MANIPULAÇÃO** ###Code sirio_aprendizado.columns = nomes sirio_aprendizado.head(5) #sirio_aprendizado.to_excel("dados_pre_processado.xlsx") sirio_aprendizado.shape ###Output _____no_output_____ ###Markdown **VERIFICANDO VALORES NULOS POR EXAME**https://sigmoidal.ai/como-tratar-dados-ausentes-com-pandas/ ###Code ausentes = sirio_aprendizado.isnull().sum() ausentes = pd.DataFrame([ausentes]) ausentes = ausentes.drop(columns=['ID_PACIENTE', 'GRUPO']) ausentes = ausentes.T ausentes ausentes['Nulos por cento'] = '' ausentes.head(3) for index, row in ausentes.iterrows(): porcentagem = round((row[0]/4320)*100, 2) ausentes.loc[index,'Nulos por cento'] = porcentagem ausentes = ausentes.sort_values(by=[0], ascending=False) ausentes.head(3) ausentes.reset_index(inplace=True, drop=False) ausentes.head() ausentes.to_csv('ausentes.csv', sep='|', encoding='utf-8') ###Output _____no_output_____ ###Markdown **FILTRO 11: ELIMINANDO EXAMES AUSENTES EM MAIS DE 50% DOS PACIENTES** ###Code ausentes.drop(ausentes.loc[ausentes['Nulos por cento']<50].index, inplace=True) ausentes exames_eliminar = ausentes['index'].values.tolist() exames_eliminar[0:10] sirio_aprendizado = sirio_aprendizado.drop(columns=(exames_eliminar)) sirio_aprendizado.head(3) ###Output _____no_output_____ ###Markdown Substituindo sexo feminino por 0 e sexo masculino por 1 ###Code sirio_aprendizado['SEXO'] = '' for index, row in sirio_aprendizado.iterrows(): if row['Sexo'] == 'F': sirio_aprendizado.loc[index,'SEXO'] = 0 else: sirio_aprendizado.loc[index,'SEXO'] = 1 sirio_aprendizado['Sexo'].value_counts() sirio_aprendizado['SEXO'].value_counts() #Converto Sexo para int sirio_aprendizado['SEXO'] = sirio_aprendizado['SEXO'].astype(int) sirio_aprendizado.head(10) #Gerando arquivo csv sirio_aprendizado.to_csv('sirio_aprendizado_v3.csv', sep='|', encoding='utf-8') ###Output _____no_output_____ ###Markdown **ANÁLISE DOS DADOS** ###Code sirio_aprendizado.info() sirio_aprendizado.shape sirio_aprendizado.head() #Quantidade de pacientes por grupo G0 = sirio_aprendizado[sirio_aprendizado['GRUPO']=='GRUPO_0'] print('GRUPO_0: ', G0.shape) G1 = sirio_aprendizado[sirio_aprendizado['GRUPO']=='GRUPO_1'] print('GRUPO_1: ', G1.shape) G2 = sirio_aprendizado[sirio_aprendizado['GRUPO']=='GRUPO_2'] print('GRUPO_2: ', G2.shape) G3 = sirio_aprendizado[sirio_aprendizado['GRUPO']=='GRUPO_3'] print('GRUPO_3: ', G3.shape) # Valores ausentes por exames mi = sirio_aprendizado.isnull().sum() #mi = mi.sort() mi mi = pd.Series(mi) #mi.index = X_train.columns mi=mi.sort_values(ascending = False) my_colors = ['r', 'g', 'b', 'k', 'y', 'm', 'c'] plt.rcParams['xtick.labelsize'] = 14 plt.rcParams['ytick.labelsize'] = 14 mi.plot(kind='bar', color=my_colors, figsize=(15,3)) plt.show() #ausentes por grupo ausentes_G0 = G0.isnull().sum() ausentes_G0 = pd.DataFrame([ausentes_G0]) ausentes_G0 = ausentes_G0.T ausentes_G0.reset_index(inplace=True, drop=False) ausentes_G0.columns = [['exame','G0']] ausentes_G1 = G1.isnull().sum() ausentes_G1 = pd.DataFrame([ausentes_G1]) ausentes_G1 = ausentes_G1.T ausentes_G1.reset_index(inplace=True, drop=False) ausentes_G1.columns = [['exame','G1']] ausentes_G2 = G2.isnull().sum() ausentes_G2 = pd.DataFrame([ausentes_G2]) ausentes_G2 = ausentes_G2.T ausentes_G2.columns = ['G2'] ausentes_G2.reset_index(inplace=True, drop=False) ausentes_G2.columns = [['exame','G2']] ausentes_G3 = G3.isnull().sum() ausentes_G3 = pd.DataFrame([ausentes_G3]) ausentes_G3 = ausentes_G3.T ausentes_G3.columns = ['G3'] ausentes_G3.reset_index(inplace=True, drop=False) ausentes_G3.columns = [['exame','G3']] df_ausentes = ausentes_G0.merge(ausentes_G1) df_ausentes = df_ausentes.merge(ausentes_G2) df_ausentes = df_ausentes.merge(ausentes_G3) df_ausentes ###Output _____no_output_____ ###Markdown **DESCRIBE** ###Code des_G0 = G0.describe().T des_G1 = G1.describe().T des_G2 = G2.describe().T des_G3 = G3.describe().T des_G0.head(3) describe_G0 = des_G0.drop(columns=['count','min','25%','50%','75%','max']) describe_G0.reset_index(inplace=True, drop=False) describe_G0.columns = ['Exame', 'mean_G0', 'std_G0'] describe_G1 = des_G1.drop(columns=['count','min','25%','50%','75%','max']) describe_G1.reset_index(inplace=True, drop=False) describe_G1.columns = ['Exame', 'mean_G1', 'std_G1'] describe_G2 = des_G2.drop(columns=['count','min','25%','50%','75%','max']) describe_G2.reset_index(inplace=True, drop=False) describe_G2.columns = ['Exame', 'mean_G2', 'std_G2'] describe_G3 = des_G3.drop(columns=['count','min','25%','50%','75%','max']) describe_G3.reset_index(inplace=True, drop=False) describe_G3.columns = ['Exame', 'mean_G3', 'std_G3'] describe_G0.head(3) print(describe_G0.shape) print(describe_G1.shape) print(describe_G2.shape) print(describe_G3.shape) #Juntando o describe de cada grupo em um único dataframe df_describe = describe_G0.merge(describe_G1, on = ["Exame"], how = "left") df_describe = df_describe.merge(describe_G2, on=['Exame'], how = 'left') df_describe = df_describe.merge(describe_G3, on=['Exame'], how = 'left') df_describe.head(3) decimals = 2 df_describe[['mean_G0', 'std_G0', 'mean_G1', 'std_G1', 'mean_G2', 'std_G2', 'mean_G3', 'std_G3']] = df_describe[['mean_G0', 'std_G0', 'mean_G1', 'std_G1', 'mean_G2', 'std_G2', 'mean_G3', 'std_G3']].apply(lambda x: round(x, decimals)) df_describe df_describe.to_csv('df_describe.csv', sep='|', encoding='utf-8') ###Output _____no_output_____ ###Markdown **BOXPLOT** ###Code plt.title("Idade", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 100, 10)) # mudar escala do eixo X ax = sns.boxplot(x="Idade", y="GRUPO", data=sirio_aprendizado) plt.title("ALT (TGP)", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 420, 15)) # mudar escala do eixo X ax = sns.boxplot(x="ALT (TGP)", y="GRUPO", data=sirio_aprendizado) plt.title("AST (TGO)", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 250, 10)) # mudar escala do eixo X ax = sns.boxplot(x="AST (TGO)", y="GRUPO", data=sirio_aprendizado) plt.title("Basófilos", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 420, 15)) # mudar escala do eixo X ax = sns.boxplot(x="Basófilos", y="GRUPO", data=sirio_aprendizado) plt.title("Basófilos (%)", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 5, 1)) # mudar escala do eixo X ax = sns.boxplot(x="Basófilos (%)", y="GRUPO", data=sirio_aprendizado) plt.title("CHCM", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 38, 1)) # mudar escala do eixo X ax = sns.boxplot(x="CHCM", y="GRUPO", data=sirio_aprendizado) plt.title("Creatinina", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 10, 1)) # mudar escala do eixo X ax = sns.boxplot(x="Creatinina", y="GRUPO", data=sirio_aprendizado) plt.title("Eosinófilos", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 3200, 100)) # mudar escala do eixo X ax = sns.boxplot(x="Eosinófilos", y="GRUPO", data=sirio_aprendizado) plt.title("Eosinófilos (%)", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 25, 1)) # mudar escala do eixo X ax = sns.boxplot(x="Eosinófilos (%)", y="GRUPO", data=sirio_aprendizado) plt.title("Eritrócitos", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 8, 1)) # mudar escala do eixo X ax = sns.boxplot(x="Eritrócitos", y="GRUPO", data=sirio_aprendizado) plt.title("HCM", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 41, 1)) # mudar escala do eixo X ax = sns.boxplot(x="HCM", y="GRUPO", data=sirio_aprendizado) plt.title("Hematócrito", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 65, 1)) # mudar escala do eixo X ax = sns.boxplot(x="Hematócrito", y="GRUPO", data=sirio_aprendizado) plt.title("Hemoglobina", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 25, 1)) # mudar escala do eixo X ax = sns.boxplot(x="Hemoglobina", y="GRUPO", data=sirio_aprendizado) plt.title("Leucócitos", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 120000, 10000)) # mudar escala do eixo X ax = sns.boxplot(x="Leucócitos", y="GRUPO", data=sirio_aprendizado) plt.title("Linfócitos", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 120000, 10000)) # mudar escala do eixo X ax = sns.boxplot(x="Linfócitos", y="GRUPO", data=sirio_aprendizado) plt.title("Linfócitos (%)", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 100, 5)) # mudar escala do eixo X ax = sns.boxplot(x="Linfócitos (%)", y="GRUPO", data=sirio_aprendizado) plt.title("Monócitos", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 4000, 500)) # mudar escala do eixo X ax = sns.boxplot(x="Monócitos", y="GRUPO", data=sirio_aprendizado) plt.title("Monócitos (%)", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 100, 1)) # mudar escala do eixo X ax = sns.boxplot(x="Monócitos (%)", y="GRUPO", data=sirio_aprendizado) plt.title("Neutrófilos", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 30000, 2500)) # mudar escala do eixo X ax = sns.boxplot(x="Neutrófilos", y="GRUPO", data=sirio_aprendizado) plt.title("Neutrófilos (%)", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 100, 10)) # mudar escala do eixo X ax = sns.boxplot(x="Neutrófilos (%)", y="GRUPO", data=sirio_aprendizado) plt.title("Plaquetas", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 750000, 50000)) # mudar escala do eixo X ax = sns.boxplot(x="Plaquetas", y="GRUPO", data=sirio_aprendizado) plt.title("Potássio", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 10, 1)) # mudar escala do eixo X ax = sns.boxplot(x="Potássio", y="GRUPO", data=sirio_aprendizado) plt.title("Proteína C-Reativa", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 100, 1)) # mudar escala do eixo X ax = sns.boxplot(x="Proteína C-Reativa", y="GRUPO", data=sirio_aprendizado) plt.title("RDW", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 30, 1)) # mudar escala do eixo X ax = sns.boxplot(x="RDW", y="GRUPO", data=sirio_aprendizado) plt.title("Sódio", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 170, 10)) # mudar escala do eixo X ax = sns.boxplot(x="Sódio", y="GRUPO", data=sirio_aprendizado) plt.title("Uréia", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 300, 10)) # mudar escala do eixo X ax = sns.boxplot(x="Uréia", y="GRUPO", data=sirio_aprendizado) plt.title("VCM", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 120, 10)) # mudar escala do eixo X ax = sns.boxplot(x="VCM", y="GRUPO", data=sirio_aprendizado) plt.title("Volume plaquetário médio", size=14) plt.gcf().set_size_inches(15, 3) # alterar tamanho plt.xticks(range(0, 15, 1)) # mudar escala do eixo X ax = sns.boxplot(x="Volume plaquetário médio", y="GRUPO", data=sirio_aprendizado) #! pip install https://github.com/pandas-profiling/pandas-profiling/archive/master.zip #pandas_profiling.ProfileReport(sirio) #profile = sirio_aprendizado.profile_report(title="RELATORIO") #profile.to_file(output_file="RELATORIO.html") ###Output _____no_output_____
Chapter 4/ex4_7/.ipynb_checkpoints/RL_ex4_7B-checkpoint.ipynb
###Markdown Car Rental Problem Exercise 4.7 (programming)Write a program for policy iteration and re-solve Jack’s carrental problem with the following changes. One of Jack’s employees at the first locationrides a bus home each night and lives near the second location. She is happy to shuttleone car to the second location for free. Each additional car still costs 2, as do all carsmoved in the other direction. In addition, Jack has limited parking space at each location.If more than 10 cars are kept overnight at a location (after any moving of cars), then anadditional cost of 4 must be incurred to use a second parking lot (independent of howmany cars are kept there). These sorts of nonlinearities and arbitrary dynamics oftenoccur in real problems and cannot easily be handled by optimization methods other thandynamic programming. To check your program, first replicate the results given for theoriginal problem. Solve problem as presented in Ex4.7 ###Code import numpy as np import pickle import matplotlib.pyplot as plt import os from jupyterthemes import jtplot jtplot.style() from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter from scipy.special import factorial """ Parameters: n_cars: Max #cars allowed at each lot n_cars_mv: Max #cars moved between lots each step V: Initial state-value function PI: Initial policy theta: Policy evaluation convergence constant gamma: Return discount parameter lambda_req: Parameters for car request poisson r.v. lambda_ret: Parameters for car return poisson r.v. """ n_cars1 = 20 n_cars2 = 20 n_cars_mv = 5 V = np.zeros((n_cars1+1, n_cars2+1)) PI = np.zeros((n_cars1+1, n_cars2+1), dtype=int) theta = 0.00001 gamma = 0.9 lambda_req = [3,4] lambda_ret = [3,2] PICKLE_DIR = "RL_ex4_7_data" def evaluate_policy(pi, v): """ Evaluate a policy by determining expected returns at each state. Intuitively, the value at each state is updated to reflect the new policy's action at the current state. This implementation does not sum over environment probabilities, but instead uses the mean of poisson random variables. Parameters ---------- pi : ndarray(shape=(n_cars1+1,n_cars2+1), dtype=int) Policy to be evaluated v : ndarray(shape=(n_cars1+1,n_cars2+1), dtype = float) Current state-value function Returns ------- ndarray State-value function after evaluating pi """ while True: delta = 0 for i in range(n_cars1+1): for j in range(n_cars2+1): v_old = v[i,j] a = pi[i,j] i_day = max(i-a, 0) j_day = max(j+a, 0) reward = 10 * (min(i_day, lambda_req[0]) + min(j_day, lambda_req[1])) - 2 * abs(a) if (a > 0): reward += 2 reward += (0 if ((i - a) <= 10) else -4) reward += (0 if ((j + a) <= 10) else -4) i_p = min(max(i_day-lambda_req[0], 0) + lambda_ret[0], n_cars1) j_p = min(max(j_day-lambda_req[1], 0) + lambda_ret[1], n_cars2) s_p = [i_p, j_p] v[i,j] = reward + gamma * v[s_p[0],s_p[1]] delta = max(delta, np.abs(v[i,j]-v_old)) if (delta < theta): return v def improve_policy(pi, v, dynamics): """ Updates policy greedily w.r.t. to previously calculated state-values. For each state, the new policy chooses the action that gives the highest expected returns. Uses a dictionary to lookup environment dynamics for state-action Checks policy stability via lookback. If a state-value function has been seen before, then the policy is stable Multiple optimal policies are possible, hence the lookback to prevent infinite loops Parameters ---------- pi : ndarray(shape=(n_cars1+1,n_cars2+1), dtype=int) Policy to be improved v : ndarray(shape=(n_cars1+1,n_cars2+1), dtype = float) Current state-value function dynamics : dict Environment dynamics f(s'r|s,a) = p(s',r|s,a) = { (s,a): { (s',r): y } } Returns ------- (ndarray, ndarray) Optimal policies and state-value functions """ lookback = 5 policies = [] reward_rec = [] while True: policy_stable = True for i in range(n_cars1+1): for j in range(n_cars2+1): if (i != 0 or j != 0): actions = np.arange(-min(n_cars_mv,j), min(n_cars_mv,i) + 1, 1, dtype=float) actions = actions[np.where( (actions <= i) & (-actions <= j) & (-actions + i <= n_cars1) & (actions + j <= n_cars2))] action_returns = np.zeros(actions.size) for n, a in enumerate(actions): cond_dynamics = dynamics[(i, j, a)] action_return = 0 for k in cond_dynamics.keys(): action_return += cond_dynamics[k] * (k[2] + gamma * v[k[0], k[1]]) action_returns[n] = action_return pi[i,j] = actions[np.argmax(action_returns)] v = evaluate_policy(pi, v) if (round(np.sum(v), 1) not in reward_rec): plt.figure() plt.imshow(pi, origin='lower') plt.show() policy_stable = False policies.append(pi) reward_rec.append(round(np.sum(v), 1)) if (len(policies) > lookback): policies.pop(0) reward_rec.pop(0) if policy_stable: return (policies, v) def eval_poisson(l, n): """ Evaluates probability P(n) according to poisson(l) distribution Parameters ---------- l : list Poisson parameters n : list Returns ------- ndarray Probabilities """ return np.maximum(np.repeat(np.finfo(float).eps,len(l)), np.abs(np.divide(np.multiply(np.power(l, n), np.exp(np.multiply(l, -1))), factorial(n)))) def train(): """ Calculate environment dynamics For each (s',r,s,a), calculate its probability s' and r are indirectly determined from (reqx,reqy,retx,retx), the number of requests/returns on each site (reqx,reqy,retx,rety) makes up a joint distribution of poisson r.v.s Returns ------- dict f(s'r|s,a) = p(s',r|s,a) = { (s,a): { (s',r): y } } """ all_possibilities = {} for reqx in range(n_cars1+1): for reqy in range(n_cars2+1): for retx in range(n_cars1+1): for rety in range(n_cars2+1): all_possibilities[(reqx, reqy, retx, rety)] = np.prod(eval_poisson([lambda_ret[0], lambda_ret[1], lambda_req[0], lambda_req[1]], [retx, rety, reqx, reqy])) P = {} for sx in range(n_cars1+1): print("State: {}".format(sx)) for sy in range(n_cars2+1): for a in np.arange(-n_cars_mv, n_cars_mv +1, 1, dtype=int): if a <= sx and -a <= sy and -a + sx <= n_cars1 and a + sy <= n_cars2: P[(sx,sy,a)] = {} for reqx in range(n_cars1+1): for reqy in range(n_cars2+1): r = int(10 * min(sx - a, reqx) + 10 * min(sy + a, reqy) - 2 * abs(a)) if (a > 0): r += 2 if (sx - a > 10): r += -4 if (sy + a > 10): r += -4 for retx in range(n_cars1+1): for rety in range(n_cars2+1): sx_p = min(max(sx - a - reqx, 0) + retx, n_cars1) sy_p = min(max(sy + a - reqy, 0) + rety, n_cars2) if (sx_p,sy_p,r) in P[(sx,sy,a)]: P[(sx,sy,a)][(sx_p,sy_p,r)] += all_possibilities[(reqx, reqy, retx, rety)] else: P[(sx,sy,a)][(sx_p,sy_p,r)] = all_possibilities[(reqx, reqy, retx, rety)] return P if __name__ == "__main__": dynamics = train() if not os.path.isdir(PICKLE_DIR): os.mkdir(PICKLE_DIR) with open(PICKLE_DIR + '/dynamicsB.pickle', 'wb') as handle: pickle.dump(dynamics, handle, protocol=pickle.HIGHEST_PROTOCOL) #with open(PICKLE_DIR + '/dynamicsB.pickle', 'rb') as handle: #dynamics = pickle.load(handle) v = evaluate_policy(PI,V) (policies, v) = improve_policy(PI, v, dynamics) fig = plt.figure() ax = fig.gca(projection='3d') X = np.arange(0,n_cars1+1,1) Y = np.arange(0,n_cars2+1,1) X, Y = np.meshgrid(X, Y) surf = ax.plot_surface(X, Y, v, cmap=cm.coolwarm, linewidth=0, antialiased=False) plt.title('Optimal State-Value Function') plt.xlabel('#Cars at Loc 1') plt.ylabel('#Cars at Loc 2') plt.show() fig = plt.figure() ax = fig.gca(projection='3d') X = np.arange(0,n_cars1+1,1) Y = np.arange(0,n_cars2+1,1) X, Y = np.meshgrid(X, Y) surf = ax.plot_surface(X, Y, policies[-1], cmap=cm.coolwarm, linewidth=0, antialiased=False) plt.title('Optimal Policy') plt.show() ###Output _____no_output_____
notebooks/Basic Solution.ipynb
###Markdown AbstractThis is a clone of the script at https://www.kaggle.com/ceshine/lgbm-starter which is intended to give an idea of how to structure the data for trainig Prelude Configuration ###Code DataSetPath = "/home/bryanfeeney/Workspace/OttomanDiviner/favorita/" StoresPath = DataSetPath + "stores.csv.gz" ItemsPath = DataSetPath + "items.csv.gz" OilPricePath = DataSetPath + "oil.csv.gz" HolidaysPath = DataSetPath + "holidays_events.csv.gz" Transactions = DataSetPath + "transactions.csv.gz" TrainData = DataSetPath + "train-2017.csv.gz" TestData = DataSetPath + "test.csv.gz" # TrainData = DataSetPath + "train-2018.csv.gz" # TestData = DataSetPath + "query-2018.csv" FutureDaysToCalculate=16 WeeksOfHistoryForFeature=8 WeeksOfHistoryForFeatureOnValidation=3 ###Output _____no_output_____ ###Markdown Imports ###Code from datetime import date, datetime, timedelta import pandas as pd import numpy as np from sklearn.metrics import mean_squared_error import lightgbm as lgb ###Output _____no_output_____ ###Markdown Intro to the Data ###Code cumul_sales = pd.read_csv( TrainData, usecols=[1, 2, 3, 4, 5], dtype={'onpromotion': bool}, converters={'unit_sales': lambda u: np.log1p(float(u)) if float(u) > 0 else 0}, parse_dates=["date"], compression='gzip' ) cumul_sales_query = pd.read_csv( TestData, usecols=[0, 1, 2, 3, 4], dtype={'onpromotion': bool}, parse_dates=["date"] # , date_parser=parser ) query_start_date = str(cumul_sales_query.iloc[0,1]).split(" ")[0] query_start_date cumul_sales_query = cumul_sales_query.set_index( ['store_nbr', 'item_nbr', 'date'] ) cumul_sales.shape, cumul_sales_query.shape cumul_sales.head() ###Output _____no_output_____ ###Markdown DEBUG ###Code cumul_sales_query.head() promo_variables_test = cumul_sales_query[["onpromotion"]].unstack(level=-1).fillna(False) promo_variables_test.head() ###Output _____no_output_____ ###Markdown DEBUG ###Code cumul_sales cumul_sales_query.iloc[0,:] items = pd.read_csv( ItemsPath, ).set_index("item_nbr") stores = pd.read_csv( StoresPath ).set_index("store_nbr") cumul_sales_query cumul_sales.shape cumul_sales_query.shape items.shape ###Output _____no_output_____ ###Markdown Select only Last Three MonthsThis is a peculiar one, and it **games the benchmark** in a not great way. Essentially it uses the last 11 weeks of data before the prediction threshold to predict what's happening next ###Code nowtime = datetime.now() now = date(nowtime.year, nowtime.month, nowtime.day) # How far back to go to start generating trend features for demand data_start = now - timedelta(7*11) + timedelta(1) training_history_start = now - timedelta(7*WeeksOfHistoryForFeature) + timedelta(1) validation_start = now - timedelta(7*WeeksOfHistoryForFeatureOnValidation) + timedelta(1) data_start, training_history_start, query_start_date cumul_sales = cumul_sales[cumul_sales.date.isin( pd.date_range(data_start, periods=7 * 11))].copy() cumul_sales.head() cumul_sales.shape cumul_sales.iloc[-1,:] ###Output _____no_output_____ ###Markdown Creating Promotion VariablesSo this is a tricky. If one presumes that on-promotion will lead to a boost in demand, if if we presume we'll know *whats on promotion in advance*, then we can create variables to say that this product will be on promotion 1, 2, 3, ... 16 days from now (16 days in the future is the target)In this case, this is also peculiar, there is a column for every single day! ###Code promo_variables = cumul_sales.set_index( ["store_nbr", "item_nbr", "date"])[["onpromotion"]] promo_variables.head() promo_variables = cumul_sales.set_index( ["store_nbr", "item_nbr", "date"])[["onpromotion"]].unstack( level=-1).fillna(False) promo_variables.head() promo_variables.columns = promo_variables.columns.get_level_values(1) promo_variables_query = cumul_sales_query[["onpromotion"]].unstack(level=-1).fillna(False) promo_variables_query.columns = promo_variables_query.columns.get_level_values(1) promo_variables_query = promo_variables_query.reindex(promo_variables.index).fillna(False) promo_variables_train_and_query = pd.concat([promo_variables, promo_variables_query], axis=1) promo_variables.shape, items.shape[0] * stores.shape[0] cumul_sales.shape, cumul_sales_query.shape ###Output _____no_output_____ ###Markdown Unstack unit sales - do it across all days in a sliding windowAh... they're creating a multi-task learning problem ###Code cumul_sales = cumul_sales.set_index( ["store_nbr", "item_nbr", "date"])[["unit_sales"]].unstack( level=-1).fillna(0) cumul_sales.columns = cumul_sales.columns.get_level_values(1) cumul_sales.shape cumul_sales.head() ###Output _____no_output_____ ###Markdown Make items match other data framesThey're sacraficing generability ###Code items = items.reindex(cumul_sales.index.get_level_values(1)) items.head() items.shape ###Output _____no_output_____ ###Markdown Time futzing ###Code # Return that portion of the data frame that corresponds to the time period # beginning "minus" days before "dt" and extending for "periods" days def get_timespan(df, dt, minus, periods): return df[ pd.date_range(dt - timedelta(days=minus), periods=periods) ] def prepare_dataset(cumul_sales, promo_variables_train_and_query, start_date, is_train=True): X = pd.DataFrame({ # Mean target for different retrospective timespans & total # promotions "mean_3_2017": get_timespan(cumul_sales, start_date, 3, 3).mean(axis=1).values, "mean_7_2017": get_timespan(cumul_sales, start_date, 7, 7).mean(axis=1).values, "mean_14_2017": get_timespan(cumul_sales, start_date, 14, 14).mean(axis=1).values, "promo_14_2017": get_timespan(promo_variables_train_and_query, start_date, 14, 14).sum(axis=1).values }) for i in range(16): # Promotions on future days X["promo_{}".format(i)] = promo_variables_train_and_query[ start_date + timedelta(days=i)].values.astype(np.uint8) if is_train: y = cumul_sales[ # Target values for future days pd.date_range(start_date, periods=16) ].values return X, y return X promo_variables_train_and_query.shape training_history_start, validation_start, now promo_variables print("Preparing dataset...") X_l, y_l = [], [] for i in range(4): delta = timedelta(days=7 * i) X_tmp, y_tmp = prepare_dataset(cumul_sales, promo_variables_train_and_query, training_history_start + delta) X_l.append(X_tmp) y_l.append(y_tmp) X_train = pd.concat(X_l, axis=0) y_train = np.concatenate(y_l, axis=0) del X_l, y_l X_validate, y_validate = prepare_dataset(cumul_sales, promo_variables_train_and_query, validation_start) X_query = prepare_dataset(cumul_sales, promo_variables_train_and_query, now, is_train=False) X_train.shape, X_validate.shape, X_query.shape ###Output _____no_output_____ ###Markdown This dataset is **super gamey**. They're using the means for the week, fortnight, and last three days, and then seeing how to permute it to generate values for the following window of time. It's hardcoded to product IDs, not categories.It does however, permit multi-task learning, and therefore better representation learningIt does not incorporate any information about seasonality at all, and so would fall arse over face at Christmas ###Code print("Training and predicting models...") params = { 'num_leaves': 2**5 - 1, 'objective': 'regression_l2', 'max_depth': 8, 'min_data_in_leaf': 50, 'learning_rate': 0.05, 'feature_fraction': 0.75, 'bagging_fraction': 0.75, 'bagging_freq': 1, 'metric': 'l2', 'num_threads': 4 } MAX_ROUNDS = 1000 validate_pred = [] query_pred = [] cate_vars = cat for i in range(16): print("=" * 50) print("Step %d" % (i+1)) print("=" * 50) dtrain = lgb.Dataset( X_train, label=y_train[:, i], categorical_feature=cate_vars, weight=pd.concat([items["perishable"]] * 4) * 0.25 + 1 ) dvalidate = lgb.Dataset( X_validate, label=y_validate[:, i], reference=dtrain, weight=items["perishable"] * 0.25 + 1, categorical_feature=cate_vars) bst = lgb.train( params, dtrain, num_boost_round=MAX_ROUNDS, valid_sets=[dtrain, dvalidate], early_stopping_rounds=50, verbose_eval=50 ) print("\n".join(("%s: %.2f" % x) for x in sorted( zip(X_train.columns, bst.feature_importance("gain")), key=lambda x: x[1], reverse=True ))) validate_pred.append(bst.predict( X_validate, num_iteration=bst.best_iteration or MAX_ROUNDS)) query_pred.append(bst.predict( X_query, num_iteration=bst.best_iteration or MAX_ROUNDS)) print("Validation mse:", np.sqrt(mean_squared_error( np.expm1(y_validate), np.expm1(np.array(validate_pred)).transpose()))) validate_pred query_pred print("Making submission...") y_query = np.array(query_pred).transpose() df_preds = pd.DataFrame( y_query, index=cumul_sales.index, columns=pd.date_range(query_start_date, periods=16) ).stack().to_frame("unit_sales") df_preds.to_csv("/tmp/preds-2018.csv") df_preds df_preds.index.set_names(["store_nbr", "item_nbr", "date"], inplace=True) submission = df_test[["id"]].join(df_preds, how="left").fillna(0) submission["unit_sales"] = np.clip(np.expm1(submission["unit_sales"]), 0, 1000) submission ###Output _____no_output_____ ###Markdown Further Improvements This is based on the work in this file: https://www.kaggle.com/vrtjso/lgbm-one-step-aheadThis was apparently in the top 10% at one point. ###Code df_train = pd.read_csv( TrainData, usecols=[1, 2, 3, 4, 5], dtype={'onpromotion': bool}, converters={'unit_sales': lambda u: np.log1p( float(u)) if float(u) > 0 else 0}, parse_dates=["date"], skiprows=range(1, 66458909) # 2016-01-01 ) df_test = pd.read_csv( TestData, usecols=[0, 1, 2, 3, 4], dtype={'onpromotion': bool}, parse_dates=["date"] # , date_parser=parser ).set_index( ['store_nbr', 'item_nbr', 'date'] ) items = pd.read_csv( ItemsPath, ).set_index("item_nbr") df_2017 = df_train.loc[df_train.date>=pd.datetime(2017,1,1)] del df_train promo_2017_train = df_2017.set_index( ["store_nbr", "item_nbr", "date"])[["onpromotion"]].unstack( level=-1).fillna(False) promo_2017_train.columns = promo_2017_train.columns.get_level_values(1) promo_2017_test = df_test[["onpromotion"]].unstack(level=-1).fillna(False) promo_2017_test.columns = promo_2017_test.columns.get_level_values(1) promo_2017_test = promo_2017_test.reindex(promo_2017_train.index).fillna(False) promo_2017 = pd.concat([promo_2017_train, promo_2017_test], axis=1) del promo_2017_test, promo_2017_train df_2017 = df_2017.set_index( ["store_nbr", "item_nbr", "date"])[["unit_sales"]].unstack( level=-1).fillna(0) df_2017.columns = df_2017.columns.get_level_values(1) items = items.reindex(df_2017.index.get_level_values(1)) def get_timespan(df, dt, minus, periods, freq='D'): return df[pd.date_range(dt - timedelta(days=minus), periods=periods, freq=freq)] def prepare_dataset(t2017, is_train=True): X = pd.DataFrame({ "day_1_2017": get_timespan(df_2017, t2017, 1, 1).values.ravel(), "mean_3_2017": get_timespan(df_2017, t2017, 3, 3).mean(axis=1).values, "mean_7_2017": get_timespan(df_2017, t2017, 7, 7).mean(axis=1).values, "mean_14_2017": get_timespan(df_2017, t2017, 14, 14).mean(axis=1).values, "mean_30_2017": get_timespan(df_2017, t2017, 30, 30).mean(axis=1).values, "mean_60_2017": get_timespan(df_2017, t2017, 60, 60).mean(axis=1).values, "mean_140_2017": get_timespan(df_2017, t2017, 140, 140).mean(axis=1).values, "promo_14_2017": get_timespan(promo_2017, t2017, 14, 14).sum(axis=1).values, "promo_60_2017": get_timespan(promo_2017, t2017, 60, 60).sum(axis=1).values, "promo_140_2017": get_timespan(promo_2017, t2017, 140, 140).sum(axis=1).values }) for i in range(7): X['mean_4_dow{}_2017'.format(i)] = get_timespan(df_2017, t2017, 28-i, 4, freq='7D').mean(axis=1).values X['mean_20_dow{}_2017'.format(i)] = get_timespan(df_2017, t2017, 140-i, 20, freq='7D').mean(axis=1).values for i in range(16): X["promo_{}".format(i)] = promo_2017[ t2017 + timedelta(days=i)].values.astype(np.uint8) if is_train: y = df_2017[ pd.date_range(t2017, periods=16) ].values return X, y return X print("Preparing dataset...") t2017 = date(2017, 5, 31) X_l, y_l = [], [] for i in range(6): delta = timedelta(days=7 * i) X_tmp, y_tmp = prepare_dataset( t2017 + delta ) X_l.append(X_tmp) y_l.append(y_tmp) X_train = pd.concat(X_l, axis=0) y_train = np.concatenate(y_l, axis=0) del X_l, y_l X_val, y_val = prepare_dataset(date(2017, 7, 26)) X_test = prepare_dataset(date(2017, 8, 16), is_train=False) print("Training and predicting models...") params = { 'num_leaves': 31, 'objective': 'regression', 'min_data_in_leaf': 300, 'learning_rate': 0.1, 'feature_fraction': 0.8, 'bagging_fraction': 0.8, 'bagging_freq': 2, 'metric': 'l2', 'num_threads': 4 } MAX_ROUNDS = 500 val_pred = [] test_pred = [] cate_vars = [] for i in range(16): print("=" * 50) print("Step %d" % (i+1)) print("=" * 50) dtrain = lgb.Dataset( X_train, label=y_train[:, i], categorical_feature=cate_vars, weight=pd.concat([items["perishable"]] * 6) * 0.25 + 1 ) dval = lgb.Dataset( X_val, label=y_val[:, i], reference=dtrain, weight=items["perishable"] * 0.25 + 1, categorical_feature=cate_vars) bst = lgb.train( params, dtrain, num_boost_round=MAX_ROUNDS, valid_sets=[dtrain, dval], early_stopping_rounds=50, verbose_eval=100 ) print("\n".join(("%s: %.2f" % x) for x in sorted( zip(X_train.columns, bst.feature_importance("gain")), key=lambda x: x[1], reverse=True ))) val_pred.append(bst.predict( X_val, num_iteration=bst.best_iteration or MAX_ROUNDS)) test_pred.append(bst.predict( X_test, num_iteration=bst.best_iteration or MAX_ROUNDS)) print("Validation mse:", mean_squared_error( y_val, np.array(val_pred).transpose())) print("Making submission...") y_test = np.array(test_pred).transpose() df_preds = pd.DataFrame( y_test, index=df_2017.index, columns=pd.date_range("2017-08-16", periods=16) ).stack().to_frame("unit_sales") df_preds.index.set_names(["store_nbr", "item_nbr", "date"], inplace=True) submission = df_test[["id"]].join(df_preds, how="left").fillna(0) submission["unit_sales"] = np.clip(np.expm1(submission["unit_sales"]), 0, 1000) submission.to_csv('lgb.csv', float_format='%.4f', index=None) print("Validation mse:", mean_squared_error( np.expm1(y_validate), np.expm1(np.array(validate_pred)).transpose())) np.sqrt(275), np.sqrt(247) ###Output _____no_output_____
FourierConstruction.ipynb
###Markdown Fourier Construction interactive demonstrationThis is a prototype of an interactive app to demonstrate the construction of square, sawtooth, and other periodic signals using N components of the fourier series. Adapted by Jamie Bayer, based on [code described by Dr. Shyamal Bhar](https://vcfw.org/pdf/Department/Physics/Fourier_series_python_code.pdf), Department of Physics, Vidyasagar College for Women, Kolkata.Please send any ideas for improvement to F. Jones. ###Code from ipywidgets import interact import numpy as np import matplotlib.pyplot as plt from scipy.signal import square, sawtooth, triang from scipy.integrate import simps def fourier_series(x, y, L, n): # Calculation of Co-efficients a0 = 2.0/L*simps(y, x) an = lambda n:2.0/L*simps(y*np.cos(2.0*np.pi*n*x/L), x) bn = lambda n:2.0/L*simps(y*np.sin(2.0*np.pi*n*x/L), x) # Sum of the series s = a0/2.0 + sum([an(k)*np.cos(2.*np.pi*k*x/L)+bn(k)*np.sin(2.*np.pi*k*x/L) for k in range(1,n+1)]) return s def plot_periodic_function(Function): if Function == 'Square': L = 1 # Periodicity of the periodic function f(x) freq = 1 # No of waves in time period L dutycycle = 0.5 samples = 1000 # Generation of square wave x = np.linspace(0, L, samples, endpoint=False) y = square(2.0*np.pi*x*freq/L, duty=dutycycle) elif Function == 'Sawtooth': L = 1 # Periodicity of the periodic function f(x) freq = 2 # No of waves in time period L width_range = 1 samples = 1000 # Generation of Sawtooth function x = np.linspace(0, L, samples,endpoint=False) y = sawtooth(2.0*np.pi*x*freq/L, width=width_range) elif Function == 'Triangular': L = 1 #Periodicity of the periodic function f(x) samples = 501 # Generation of Triangular wave x = np.linspace(0,L,samples,endpoint=False) y = triang(samples) @interact(n=(1, 50)) def plot_functions(n): # Plotting plt.plot(x, fourier_series(x, y, L, n)) plt.plot(x, y) #plt.xlabel("$x$") #plt.ylabel("$y=f(x)$") plt.title(Function + " signal reconstruction by Fourier series") interact(plot_periodic_function, Function=['Square','Sawtooth','Triangular']); ###Output _____no_output_____
notebook/rbsa-demo.ipynb
###Markdown Change point model for real datasetBy Sang woo Ham ([email protected]), Last edited on 09/15/2021 Table of Contents* [Introduction](Introduction)* [Dataset](Dataset)* [Example](Example)* [Discussion points](Discussion-points)* [References](References) IntroductionBuilding energy analysis is a challenging task because of its complexity and lacks in systematic data collection. Therefore, the application of building energy model into the real dataset is complicated and even fails in many cases. In this notebook, we apply the change point model into the real dataset and discuss possible challenges. DatasetResidential Building Stock Assessment(RBSA) dataset [1,2] is large-scale residential energy consumption survey prepared by Ecotope, Inc. for Northwest Energy Efficiency Alliance (NEEA). Two studies have beeen conducted in parallel. One is survey (phone call and billing information) based baseline study for large poluation. The other is detailed measurements for daily load shapes of end-use level. >*primary objective of the RBSA is to develop an inventory and profile of existing residential building stock in the Northwest based on field data from a representative, random sample of existing homes. The RBSA establishes the 2011 regional baseline for housing stock for three categories of residences: single-family homes, manufactured homes, and multifamily homes. The results will guide future planning efforts and provide a solid base for assessing energy savings on residential programs throughout the Northwest.*The dataset is available from these two links [link1](https://neea.org/data/residential-building-stock-assessment) and [link2](https://neea.org/resources/2011-rbsa-metering-study). But, for the simplicity, we provide the pre-processed data in this notebook. ###Code # loading required packages import pandas as pd import numpy as np import matplotlib.pyplot as plt # visualization #import pyarrow.feather as feather import os %matplotlib inline ###Output _____no_output_____ ###Markdown The first part of the RBSA data is building metadata and yearly energy consumption. We've processed the data as a csv file. Below table shows the data. ###Code # building metadata survey=pd.read_csv("../data/rbsa/survey.csv") survey.head(3) ###Output _____no_output_____ ###Markdown | Name | Description || :--- | :----------- || siteid | An unique identifier for a a residential building || heat_[elec/gas] | Whether to have an electric/gas heating device. (1: yes, 0: no). || heat_[elec/gas]_type | Type of heating device. (`baseboard`, `boiler`, `hp`: heatpump, `faf`: forced air furnace, `gshp`: geo-source heatpump, `dualfuelhp`: dual fuel heatpump) || heat_[elec/gas]_control | Control method of heating device. (`programmable`: programmable thermostat, `thermostat`: non-programmable thermostat, `none`: no control device, `on/off` or `manual`: on/off switch|| heat_[elec/gas]_dist | Heating distribution method of heating device. (`ducted`: air duct, `zonal`: device in each zone, `none`: no heating device.|| backup_[elec/gas/other] | If there is backup [electric/gas/other] heating device.||num_[bath/bedroom] | Number of bathroom/bedroom. ||MoveIn | Move in year. || year_built | Built year of the building. || homebusiness | If residnets are doing home business. || homerent | Home ownership (rent:1, non-rent: 0).|| primaryres | Is this home your primary residence? (1: yes, 0: no) || income_support | Do you get any income support? (1: yes, 0: no) || workingoutside | How many people are working outside? ||num_occupant | Number of occupants. ||has_[kid/senior]|Whether to have kids or senior people in the building.||dish_load|Number of dishwasher loads per week||wash_load|Number of clothes washer loads per week||ac_use|Whether to use air-conditioning device. (1: yes, 0: no).||heat_sp|Self-reported averaged heating setpoint [F].||heat_sp_night|Self-reported heating setpoint in night time [F].||ave_height|Average height of the building [ft].||ua_ceiling|Overall UA value of ceiling [BTU/(hr-F)].||has_dryer|Whether to have a dryer (or more) (1: yes, 0: no). ||num_computer|Number of computers.|| cook_[elec/gas] | Electric or gas cooking. || has_washer | Do you have a washer (1: yes, 0: no). || dryer_elec | Whether to have electric dryer (1: yes, 0: no). || dryer_gas | Whether to have gas dryer (1: yes, 0: no). || num_[audio/charger/game/tv] | Number of audio device, charger, game, or TV. || y_kwh |Yearly electricity consumption. || y_kbtu | Yearly gas consumption. || light_ex_watt | The total wattage of exterior lights installed [W]. || ua_floor | Overall UA value of floors [BTU/(hr-F)]. || light_in_watt | The total wattage of interior lights installed [W]. || bldg_type | Building type (Single residnetial home or multiplex building). || level_floor | Indicates the number of floors above grade present at site || num_room | Number of rooms || tot_sqft | The conditioned area in square feet (calculated). || tot_vol | The estimated volume of the house (calculated). || fraction_window | Calculated ratio of window area square foot over site conditioned square foot. || [hdd65/cdd65] | Heating/cooling degree day. || population_city | Number of population in the city. || pv | Whether to have a photovoltaic. || year_ref | Refrigerator year of manufacture. || vol_ref | Volume of refrigerator [ft3]. || flow_shower | Size of shower fixtures [gpm] || ua_total | Overall UA value of all surfaces [BTU/(hr-F)]. || ua_wall | Overall UA value of walls [BTU/(hr-F)]. || hw_[elec/gas] | Electric or gas water heater (1: yes, 0: no). || hw_[btuhr/kw] | Size of gas/electric water heater [btu/hr or kW] || hw_solar | Whether to use solar water heater. || hw_conditioned | If the water heater is located in conditioned space. || hw_year | Water heater year of manufacture. || hw_size | Water heater size [Gallons]. || hw_type | Water heater type. || ua_window | Overall UA value of windows [BTU/(hr-F)]. | The second part of the RBSA data is time-series meter data for each house. Hourly data is splitted into 8 pieces (i.e., `hourly_meter_data_x.feather`). Daily data is one file. Loading all data may be not available when you have a computer with small memory. Each file includes data of different houses. It includes appliance specific energy consumption in kWh. Also, it has outdoor and indoor air temperatures. ###Code #df=feather.read_feather("../data/rbsa/daily_meter_data.feather") df=pd.read_csv("../data/rbsa/daily_meter_data.csv") df.head(3) ###Output _____no_output_____ ###Markdown |Name|Description||:-|:-||[ymd/timehour]|Day or Hourly timestamp||siteid|An unique identifier for a a residential building||heating|Heating device electricity consumption [kWh].||heating_gas|Heating device gas consumption [kWh].||cooling|Cooling device electricity consumption [kWh].||total|Total electricity consumption [kWh].||other|Total electricity - sum of all appliance specific electricity [kWh].||rat|Room air temperature [F].||oat|Outdoor air temperature [F].||thp| Heat pump vapor line temperature measured in Fahrenheit [F].||wst| Outdoor air temperature from the nearest weather station [F].|The other columns (lighting, plug, water_heater, water_haeter_gas, dryer, dwasher, fridge, washer, microwave, range) show the electricity consumption of each appliance. ExampleChange point model [3-5] is used to analyze the impact of retrofit. However, it is also used to characterize house's building thermal performance based on the data. In this example, we use a simple example of how to build the change point model by using data of two houses. ###Code # loading data df=pd.read_csv("../data/rbsa/daily_meter_data.csv") # meter data house_survey=survey[survey.siteid.isin(np.array([21355,22938]))] # meta data # Select two houses. 21355, 22938 house1=df[df['siteid']==21355] house2=df[df['siteid']==22938] ###Output _____no_output_____ ###Markdown We use two houses (21355: House1, 22938: House2). These two houses show very similar characteristics except for House2 is bigger than House1. Also, House2 is in cold region because its Heating degree days higher. ###Code house_survey[['siteid','heat_elec','heat_elec_control','heat_elec_type','year_built','tot_sqft','heat_sp','ua_total','hdd65','y_kwh']] ###Output _____no_output_____ ###Markdown Visualize the data. It seems like House2 has cooling energy consumption, but House1's measurement does not have enough measurement in the cooling season (i.e., $oat>75^\circ\text{F}$). Therefore, we discard the data for $oat>75^\circ\text{F}$ in this analysis. ###Code fig, ax =plt.subplots(nrows=1, ncols=2, figsize=(12,5)) ax[0].plot(house1['oat'].to_numpy(), house1['total'].to_numpy(), "kx",label="House1",markersize=5,alpha=0.8) #ax[0,0].plot(T_out_grid, piecewise_linear(T_out_grid, *theta_case1),'r-',label='Model (case1)',linewidth=1.0) ax[0].legend(fontsize=10,loc="best") ax[0].set_xlabel("$T_{out}$ [${^{\circ}}$F]",fontsize=12) ax[0].set_ylabel("$E_{total}$ [kWh]",fontsize=12) #ax[0].set_xlim([-22,30]) #ax[0].set_ylim([0,2]) ax[1].plot(house2['oat'].to_numpy(), house2['total'].to_numpy(), "bx",label="House2",markersize=5,alpha=0.8) #ax[0,0].plot(T_out_grid, piecewise_linear(T_out_grid, *theta_case1),'r-',label='Model (case1)',linewidth=1.0) ax[1].legend(fontsize=10,loc="best") ax[1].set_xlabel("$T_{out}$ [${^{\circ}}$F]",fontsize=12) ax[1].set_ylabel("$E_{total}$ [kWh]",fontsize=12) # discard summer data house1=house1[house1['oat']<75] house2=house2[house2['oat']<75] ###Output _____no_output_____ ###Markdown Also, it is numerically useful for learning change point model parameters to scale the data into [0,1] range by dividing each variable's maximum value. ###Code # scaled data frame as shouse1 and shouse2 shouse1=house1.copy() shouse2=house2.copy() oat_max=100 # maximum value total_max=200 # maximum value shouse1['oat']=shouse1['oat']/oat_max shouse2['oat']=shouse2['oat']/oat_max shouse1['total']=shouse1['total']/total_max shouse2['total']=shouse2['total']/total_max ###Output _____no_output_____ ###Markdown Also, we put bounds to help the optimizer finds correct answer. beta0 is positive number as it represents baseline load. beta1 is negative value because it is heating coefficient. beta2 is in [0,1] range because the oat value is scaled into [0,1]. ###Code # Piecewise linear regression model (change point model) # loading package from scipy import optimize def piecewise_linear(x, beta0, beta1, beta2): condlist = [x < beta2, x >= beta2] # x<beta3 applies to lambda x: beta0+beta1*x. funclist = [lambda x: beta0+beta1*(x-beta2), lambda x:beta0 ] return np.piecewise(x, condlist, funclist) # estimate theta* and covariance of theta* theta_house1 , theta_cov_house1 = optimize.curve_fit(piecewise_linear, shouse1['oat'].to_numpy(), shouse1['total'].to_numpy(),bounds=((0,-np.inf,0),(np.inf,0,1))) #least square theta_house2 , theta_cov_house2 = optimize.curve_fit(piecewise_linear, shouse2['oat'].to_numpy(), shouse2['total'].to_numpy(),bounds=((0,-np.inf,0),(np.inf,0,1))) #least square ###Output _____no_output_____ ###Markdown The change model is well identified. ###Code oat_grid=np.linspace(0.2,0.8,51) fig, ax =plt.subplots(nrows=1, ncols=2, figsize=(12,5)) ax[0].plot(house1['oat'].to_numpy(), house1['total'].to_numpy(), "kx",label="House1",markersize=5,alpha=0.8) ax[0].plot(oat_grid*oat_max, piecewise_linear(oat_grid, *theta_house1)*total_max,'r-',label='Model (House1)',linewidth=1.0) ax[0].legend(fontsize=10,loc="best") ax[0].set_xlabel("$T_{out}$ [${^{\circ}}$F]",fontsize=12) ax[0].set_ylabel("$E_{total}$ [kWh]",fontsize=12) ax[0].set_xlim([20,80]) ax[0].set_ylim([0,160]) ax[1].plot(house2['oat'].to_numpy(), house2['total'].to_numpy(), "kx",label="House2",markersize=5,alpha=0.8) ax[1].plot(oat_grid*oat_max, piecewise_linear(oat_grid, *theta_house2)*total_max,'r-',label='Model (House2)',linewidth=1.0) ax[1].legend(fontsize=10,loc="best") ax[1].set_xlabel("$T_{out}$ [${^{\circ}}$F]",fontsize=12) ax[1].set_ylabel("$E_{total}$ [kWh]",fontsize=12) ax[1].set_xlim([20,80]) ax[1].set_ylim([0,160]) ###Output _____no_output_____ ###Markdown beta1 indicates $HC\frac{\Delta t}{\eta_{\text{heat}}}$ where $HC=\left( UA+ c_{p,\text{air}} \rho_{\text{air}} \dot{V}_{\text{out}} \right)$. Therefore, the ratio of beta1 of two houses should be similar to the ratio of UA values of two houses. ###Code # ratio of slopes theta_house1[1]/theta_house2[1] # ratio of UAs house_survey['ua_total'].to_numpy()[0]/house_survey['ua_total'].to_numpy()[1] ###Output _____no_output_____
Student-notebook.ipynb
###Markdown ![Callysto.ca Banner](https://github.com/callysto/curriculum-notebooks/blob/master/callysto-notebook-banner-top.jpg?raw=true) Diversity in Math: Modeling the COVID 19 OutbreakUse this notebook to enter your code and exercises. TA/Mentor:Team members (specify if undergraduate or high school student):- - - Task I: Explain the flow diagram we worked on during the first session Our assumptions1. Mode of transmission of the disease from person to person is through contact ("contact transmission") between a person who interacts with an infectious person. 2. Once a person comes into contact with the pathogen, there is a period of time (called the latency period) in which they are infected, but cannot infect others (yet!). 3. Population is not-constant (that is, people are born and die as time goes by).4. A person in the population is either one of: - Susceptible, i.e. not infected but not yet exposed, - Exposed to the infection, i.e. exposed to the virus, but not yet infectious, - Infectious, and - Recovered from the infection. 5. People can die by "natural causes" during any of the stages. We assume an additional cause of death associated with the infectious stage. How does a person move from one stage into another? In other words, how does a person go from susceptible to exposed, to infected, to recovered? $\Delta$: Per-capita birth rate.$\mu$: Per-capita natural death rate.$\alpha$: Virus-induced average fatality rate.$\beta$: Probability of disease transmission per contact (dimensionless) times the number of contacts per unit time.$\epsilon$: Rate of progression from exposed to infectious (the reciprocal is the incubation period).$\gamma$: Recovery rate of infectious individuals (the reciprocal is the infectious period). Flow diagram$$\stackrel{\Delta N} {\longrightarrow} \text{S} \stackrel{\beta\frac{S}{N} I}{\longrightarrow} \text{E} \stackrel{\epsilon}{\longrightarrow} \text{I} \stackrel{\gamma}{\longrightarrow} \text{R}$$$$\hspace{1.1cm} \downarrow \mu \hspace{0.6cm} \downarrow \mu \hspace{0.5cm} \downarrow \mu, \alpha \hspace{0.1cm} \downarrow \mu $$ Optional: Team members are welcome to discuss other ways we can capture the behaviour of people moving in between stages, other assumptions, and to create your own flow diagram. Use this cell to capture other assumptions you make. You are free to draw a different diagram. Make sure you create one along with your mentor, and send to the facilitator. ____ Task II: Choosing Differential EquationsWork together to use differential equations to generate the rest of the equations for Exposed, Infectious and Recovered individuals.Your task is to discuss and agree on the equations for $$\frac{dE}{dt} = \text{?}, \frac{dI}{dt}= \text{?}, \frac{dR}{dt} = \text{?}$$If your model makes different assumptions, and as such the flow diagram is different from the instructors, make sure your equations reflect this. ___ Task III: Implement the system of equations using PythonYour task is to guide the TA to implement the set of equations using Python.When we translate from Math to Python, it is useful to give appropriate names to our variables. |Math symbol|Variable name in Python | What it represents|| - | - | - |$\Delta $ |$\text{Delta}$| Per-capita birth rate|$\mu$|$\text{mu}$|Per-capita natural death rate|$\alpha$|$\text{alpha}$| Virus-induced average fatality rate.|$\beta$|$\text{beta}$|Probability of disease transmission per contact (dimensionless) times the number of contacts per unit time.|$\epsilon$|$\text{epsilon}$|Rate of progression from exposed to infectious (the reciprocal is the incubation period).|$\gamma$|$\text{gamma}$|Recovery rate of infectious individuals (the reciprocal is the infectious period).|$N$| N | Total population||$S$| S | Susceptible population||$E$| E | Exposed population||$I$| I | Infectious population||$R$| R | Recovered population||$\frac{dS}{dt}$|dS|Rate of change of Susceptible population| ###Code # Code here ###Output _____no_output_____
notebooks/fast-test.ipynb
###Markdown The following table shows the probability at each beach that an exceedance (i.e. period of time when the tests were all above the beach-closure threshold) will only last one day.The probability is derived from the historical data:$$ \text{probability} = \frac{\text{ times an exceedance lasted only 1 day}}{\text{ exceedances in total}} $$We also report the value $\text{ exceedances in total}$ as the column `n` to get a sense of how trust worthy the probability is (the higher the `n`, the more accurate the estimated probability).Lastly, we also show the average length of exceedances (in days) for each beach. ###Code fast_test_df ###Output _____no_output_____
vdma_test/VDMA Test.ipynb
###Markdown Video DMA TestTransfer a frame of data from one Video DMA to a second Video DMA.This driver was built from [AXI Video Direct Memory Access V6.2](https://www.xilinx.com/support/documentation/ip_documentation/axi_vdma/v6_2/pg020_axi_vdma.pdf) Sending a frameIn order to send a frame through the VDMA the following steps are provided:1. Instantiate the VDMA core. ```python vdma_egress = VDMA(name = VDMA_NAME_IN_IP) ```2. Set the size of the image. ```python vdma_egress.set_image_size(WIDTH, HEIGHT) ```3. Write an image to one of the internal buffers. ```python image_in = np.zeros((HEIGHT, WIDTH, 3)).astype(np.uint8) i = 0 for y in range(HEIGHT): for x in range(WIDTH): for p in range(3): image_in[y, x, p] = i if i < 255: i += 1 else: i = 0 egress_frame = vdma_egress.get_frame() egress_frame.set_bytearray(bytearray(image_in.astype(np.int8).tobytes())) ```4. Start the Egress Engine. ```python vdma_egress.start_egress_engine(continuous = , parked = , num_frames = , frame_index = , interrupt = ) ``` Receiving a frameIn order to receive a frame from the VDMA the following steps are provided:1. Instantiate the VDMA core. ```python vdma_ingress = VDMA(name = VDMA_NAME_IN_IP) ```2. Set the size of the image. ```python vdma_ingress.set_image_size(WIDTH, HEIGHT) ```3. Start the ingress engine. ```python vdma_ingress.start_ingress_engine( continuous = , parked = , num_frames = , frame_index = , interrupt = ) ```4. Stop the ingress engine. ```python vdma_ingress.stop_ingress_engine() ``` Source Code for this project can be found here[VDMA Demo](https://github.com/CospanDesign/pynq-hdl/tree/master/Projects/Simple%20VDMA) ###Code # %matplotlib inline from time import sleep from pynq import Overlay from pynq.drivers import VDMA from pynq.drivers import Frame from pynq.drivers import video import cv2 from matplotlib import pyplot as plt from IPython.display import Image import numpy as np #Constants BITFILE_NAME = "./simple_vdma.bit" IMAGE_FILE = "./orig.jpg" EGRESS_VDMA_NAME = "SEG_axi_vdma_0_Reg" INGRESS_VDMA_NAME = "SEG_axi_vdma_1_Reg" # Set Debug to true to enable debug messages from the VDMA core DEBUG = False #DEBUG = True # Set Verbose to true to dump a lot of messages about VERBOSE = False #VERBOSE = True #These can be set between 0 - 2, the VDMA can also be configured for up to 32 frames in 32-bit memspace and 16 in 64-bit memspace EGRESS_FRAME_INDEX = 0 INGRESS_FRAME_INDEX = 0 image_in = cv2.imread(IMAGE_FILE) #Flip the color, the image stored in the image image_in = cv2.cvtColor(image_in, cv2.COLOR_BGR2RGB) IMAGE_WIDTH = image_in.shape[1] IMAGE_HEIGHT = image_in.shape[0] #Download Images ol = Overlay(BITFILE_NAME) ol.download() vdma_egress = VDMA(name = EGRESS_VDMA_NAME, debug = DEBUG) vdma_ingress = VDMA(name = INGRESS_VDMA_NAME, debug = DEBUG) #Set the size of the image vdma_egress.set_image_size(IMAGE_WIDTH, IMAGE_HEIGHT) vdma_ingress.set_image_size(IMAGE_WIDTH, IMAGE_HEIGHT) #The above functions created the video frames #Create a Numpy NDArray frame_out = np.zeros((IMAGE_HEIGHT, IMAGE_WIDTH, 3)).astype(np.uint8) frame_out[0:IMAGE_HEIGHT, 0:IMAGE_WIDTH, :] = image_in[0:IMAGE_HEIGHT, 0:IMAGE_WIDTH, :] #Populate the frame frame = vdma_egress.get_frame(EGRESS_FRAME_INDEX) frame.set_bytearray(bytearray(frame_out.astype(np.int8).tobytes())) print ("Frame width, height: %d, %d" % (frame.width, frame.height)) print ("") print ("Running? Egress:Ingress %s:%s" % (vdma_egress.is_egress_enabled(), vdma_ingress.is_ingress_enabled())) if VERBOSE: vdma_egress.dump_egress_registers() vdma_ingress.dump_ingress_registers() print ("") print ("Enabling One of the Engine") #Open Up the Ingress Side vdma_ingress.start_ingress_engine( continuous = False, num_frames = 1, frame_index = INGRESS_FRAME_INDEX, interrupt = False) if VERBOSE: vdma_egress.dump_egress_registers() vdma_ingress.dump_ingress_registers() print ("Running? Egress:Ingress %s:%s" % (vdma_egress.is_egress_enabled(), vdma_ingress.is_ingress_enabled())) print ("") print ("Enabling Both Engines") #Quick Start vdma_egress.start_egress_engine( continuous = False, num_frames = 1, frame_index = EGRESS_FRAME_INDEX, interrupt = False) print ("") print ("Both of the engines should be halted after transferring one frame") #XXX: I think this sleep isn't needed but the core erroniously reports an engine isn't finished even though it is. #XXX: This sleep line can be commented out but the egress core may report it is not finished. sleep(0.1) if VERBOSE: vdma_egress.dump_egress_registers() vdma_ingress.dump_ingress_registers() print ("Running? Egress:Ingress %s:%s" % (vdma_egress.is_egress_enabled(), vdma_ingress.is_ingress_enabled())) if VERBOSE: print ("Egress WIP: %d" % vdma_egress.get_wip_egress_frame()) print ("Ingress WIP: %d" % vdma_ingress.get_wip_ingress_frame()) #Check to see if the egress frame point progressed print ("") print ("Disabling both engines") #Disable both vdma_egress.stop_egress_engine() vdma_ingress.stop_ingress_engine() print ("Running? Egress:Ingress %s:%s" % (vdma_egress.is_egress_enabled(), vdma_ingress.is_ingress_enabled())) if VERBOSE: vdma_egress.dump_egress_registers() vdma_ingress.dump_ingress_registers() print ("Egress Error: 0x%08X" % vdma_egress.get_egress_error()) print ("Ingress Error: 0x%08X" % vdma_ingress.get_ingress_error()) frame = vdma_ingress.get_frame(INGRESS_FRAME_INDEX) #frame.save_as_jpeg("./image.jpg") np_frame = np.ndarray( shape = (IMAGE_HEIGHT, IMAGE_WIDTH, 3), dtype=np.uint8, buffer = frame.get_bytearray()) #SHOW IMAGE plt.imshow(np_frame) plt.show() ###Output Frame width, height: 1920, 1080 Running? Egress:Ingress False:False Enabling One of the Engine Running? Egress:Ingress False:True Enabling Both Engines Both of the engines should be halted after transferring one frame Running? Egress:Ingress False:False Disabling both engines Running? Egress:Ingress False:False
03NamedEntityRecognition.ipynb
###Markdown 1) Basics of Named Entity Recognition Named Entity Recognition is a subtask of information extraction that classify named entities into pre-defined categories such as names of persons, organizations, locationsspaCy features an extremely fast statistical entity recognition system, that assigns labels to contiguous spans of tokensThe default model identifies a variety of named and numeric entities, including companies, locations, organizations and products ###Code # officaial documentation # https://spacy.io/usage/linguistic-features/#named-entities # Import spaCy import spacy # load the English language library nlp = spacy.load(name='en_core_web_sm') # Create a simple doc object doc = nlp("Apple is looking at buying U.K. startup for $1 billion") for ent in doc.ents: print(ent.text, ent.start_char, ent.end_char, ent.label_, str(spacy.explain(ent.label_))) # Create another doc object doc_2 = nlp("San Francisco considers banning sidewalk delivery robots") for ent in doc_2.ents: print(ent.text, ent.start_char, ent.end_char, ent.label_, str(spacy.explain(ent.label_))) ###Output San Francisco 0 13 GPE Countries, cities, states ###Markdown 2) Adding Named Entity to Span ###Code doc_3 = nlp("facebook is hiring a new vice president in U.S.") for ent in doc_3.ents: print(ent.text, ent.label_, str(spacy.explain(ent.label_))) # we will add Facebook as Named Entity as a company from spacy.tokens import Span # Get the hash value of ORG entity label ORG = doc_3.vocab.strings['ORG'] print(ORG) # Create a Span for new entity new_ent = Span(doc_3, 0, 1, label=ORG) # Index locations from 0 to 1 (excludes 1) # Add the entity to the existing Doc object doc_3.ents = list(doc_3.ents) + [new_ent] for ent in doc_3.ents: print(ent.text, ent.label_, str(spacy.explain(ent.label_))) ###Output facebook ORG Companies, agencies, institutions, etc. U.S. GPE Countries, cities, states ###Markdown 3) Visualizing Named Entities ###Code # Import spaCy import spacy # load the English language library nlp = spacy.load(name='en_core_web_sm') # Import the displaCy library from spacy import displacy doc = nlp("Apple is looking at buying U.K. startup for $1 billion") displacy.render(docs=doc,style='ent',jupyter=True) # Viewing Specific Entities options = {'ents': ['ORG', 'MONEY']} displacy.render(docs=doc,style='ent',jupyter=True,options=options) ###Output _____no_output_____
guest_lectures/material/nlsy_introduction_notebook.ipynb
###Markdown Introduction to the NLSY79 dataset We will see:1. How to perform simple regressions2. How to generate density plot3. How to generate a heatmap Background: Investigation of the wage dynamics in [The career decisions of young men](http://www.journals.uchicago.edu/doi/10.1086/262080) by Keane, M. P. and Wolpin, K. I. (1997).$\rightarrow$ How persistent are the wage shocks?* Perform wage regressions* Use wage residuals where the effect of observable characteristics and common aggregate time trends have been eliminated* Investigate persistence by * Density plots * Coveariance matrix in a heatmaps Sample selection in this analysis:* White males aged 16 or less as of October 1, 1977* Time dimension is measured in periods, i.e. period 0 begins once an individual has turned 16 by October* 10 years of follow-up 1) Import packagesImporting packages in a notebook once is sufficient. ###Code import pandas as pd import statsmodels.api as sm import numpy as np import matplotlib.pyplot as plt import seaborn as sns from patsy import dmatrices, dmatrix import math % matplotlib inline # We ensure a proper formatting of the variables. pd.options.display.float_format = '{:,.2f}'.format # Adjust the default options s.t. the full dataset can be viewed. pd.set_option('display.max_columns', 100) ###Output _____no_output_____ ###Markdown 2) Import the dataset ###Code df = pd.read_pickle('Data/nlsy_intro_data') # show dataframe df # Seperate the dataset by years df_container = [] for i in range(0,11): df_container.append(df.loc[df['Period'] == i]) df_container[i] = df_container[i].set_index('Identifier') # show data_container for different years df_container[8] ###Output _____no_output_____ ###Markdown 3) Explore the dataset ###Code # number of individuals: len(df.Identifier.unique()) # describe the dataset df.describe() ###Output _____no_output_____ ###Markdown 3.1.) Explore the wage variable ###Code # Generate a table with the average wage by occupation and wage pd.crosstab(index = df['Age'], columns = df['Choice'], values = df['Wage'], aggfunc = 'mean', margins =True) ###Output _____no_output_____ ###Markdown 4) Run a simple regressions for period 9 $\text{log}(\text{wage}_{i,t}) = $ $\beta_{t,0}$ $+ \beta_{t,1} \cdot \text{schooling}_{i,t} $ $+ \beta_{t,2} \cdot \text{AFQT}_{i,t} $ $+ \epsilon_{i,t}$where $t = 9$ ###Code # create matrices y, x = dmatrices('Log_wage ~ Schooling + AFQT_1', data = df_container[9]) # show dependent variable y # show regressor matrix x # choose the model (here OLS) model_fit = sm.OLS(y,x) # fit the model and store results results = model_fit.fit() # print results print(results.summary()) # Predict fitted values y_hat = results.predict() y_hat # compute the residuals u = y - y_hat u # Access the parameters results.params # t statistic results.tvalues ###Output _____no_output_____ ###Markdown Please check [Statsmodels's](https://www.statsmodels.org/dev/regression.html) documentation website for further information and examples. 4) Describe the regressionsFor each year run the regression: $\text{log}(\text{wage}_{i,t}) = $$\beta_{t,0}$ $+ \beta_{t,1} \cdot \text{schooling}_{i,t} $$+ \beta_{t,2} \cdot \text{exper_blue}_{i,t} $$+ \beta_{t,3} \cdot \text{exper_blue}_{i,t}^2 $$+ \beta_{t,4} \cdot \text{exper_white}_{i,t} $$+ \beta_{t,5} \cdot \text{exper_white}_{i,t}^2 $$+ \beta_{t,6} \cdot \text{exper_military}_{i,t} $$+ \beta_{t,7} \cdot \text{exper_military}_{i,t}^2 $$+ \beta_{t,8} \cdot \text{AFQT}_{i,t} $$+ \beta_{t,9} \cdot \text{rotter_score}_{i,t} $$+ \beta_{t,10} \cdot \text{rosenberg_score}_{i,t} $$+ \beta_{t, 11} \cdot \text{mother_schooling}_{i,t} $$+ \text{year_dummies} $$+ \epsilon_{i,t}$ 5) Run the regressions for period 9 ###Code y, x = dmatrices('Log_wage ~ Schooling + exper_blue + np.power(exper_blue,2)+ exper_white + \ np.power(exper_white,2) + exper_military + np.power(exper_military,2) + AFQT_1 + \ ROTTER_SCORE + ROSENBERG_SCORE + Mother_edu + d_1985 + d_1986 + d_1987 \ + d_1988', data = df_container[9]) # choose the model (here OLS) model_fit = sm.OLS(y,x) # fit the model and store results results = model_fit.fit() # print results print(results.summary()) ###Output OLS Regression Results ============================================================================== Dep. Variable: Log_wage R-squared: 0.168 Model: OLS Adj. R-squared: 0.140 Method: Least Squares F-statistic: 6.076 Date: Sun, 25 Nov 2018 Prob (F-statistic): 5.23e-11 Time: 15:06:47 Log-Likelihood: -321.46 No. Observations: 436 AIC: 672.9 Df Residuals: 421 BIC: 734.1 Df Model: 14 Covariance Type: nonrobust =============================================================================================== coef std err t P>|t| [0.025 0.975] ----------------------------------------------------------------------------------------------- Intercept 7.2599 0.269 27.002 0.000 6.731 7.788 Schooling 0.0437 0.019 2.332 0.020 0.007 0.081 exper_blue -0.0169 0.041 -0.415 0.678 -0.097 0.063 np.power(exper_blue, 2) 0.0096 0.005 1.909 0.057 -0.000 0.020 exper_white 0.1138 0.046 2.481 0.013 0.024 0.204 np.power(exper_white, 2) -0.0077 0.009 -0.892 0.373 -0.025 0.009 exper_military -0.0661 0.073 -0.902 0.368 -0.210 0.078 np.power(exper_military, 2) 0.0069 0.013 0.520 0.604 -0.019 0.033 AFQT_1 0.0022 0.001 1.841 0.066 -0.000 0.005 ROTTER_SCORE -0.0264 0.011 -2.298 0.022 -0.049 -0.004 ROSENBERG_SCORE 0.0158 0.007 2.305 0.022 0.002 0.029 Mother_edu -0.0201 0.011 -1.790 0.074 -0.042 0.002 d_1985 1.8883 0.136 13.868 0.000 1.621 2.156 d_1986 1.8794 0.083 22.682 0.000 1.717 2.042 d_1987 1.7905 0.082 21.763 0.000 1.629 1.952 d_1988 1.7016 0.148 11.470 0.000 1.410 1.993 ============================================================================== Omnibus: 47.141 Durbin-Watson: 1.967 Prob(Omnibus): 0.000 Jarque-Bera (JB): 291.055 Skew: 0.095 Prob(JB): 6.28e-64 Kurtosis: 6.998 Cond. No. 3.40e+17 ============================================================================== Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The smallest eigenvalue is 1.73e-29. This might indicate that there are strong multicollinearity problems or that the design matrix is singular. ###Markdown 5) Run the regressions for all periods and store the residuals as a variable ###Code model_string = 'Log_wage ~ Schooling + exper_blue + np.power(exper_blue,2)+ exper_white + \ np.power(exper_white,2) + exper_military + np.power(exper_military,2) + AFQT_1 + \ ROTTER_SCORE + ROSENBERG_SCORE + Mother_edu + d_1978 + d_1979 + d_1980 + d_1981 + \ d_1982 + d_1983 + d_1984 + d_1985 + d_1986 + d_1987 + d_1988' for i in df_container: y,x = dmatrices(model_string, i) i['resid'] = sm.OLS(y, x).fit().resid ###Output _____no_output_____ ###Markdown 6) Density Plots of Residuals 6.1) Density between residuals of period 2 and period 9 ###Code # Intersection of residuals in period 2 and period 9 (may not be the case due to attrition) matched_identifier = list(set(df_container[2].index) & set(df_container[9].index)) # Define values used for the x and y axis of the density plot x = df_container[2].loc[matched_identifier]['resid'].values y = df_container[9].loc[matched_identifier]['resid'].values # Create density plot graph = sns.jointplot(x,y, kind = 'kde') x_axis = 'Resid of period 2' y_axis = 'Residual of period 9' graph.set_axis_labels(x_axis,y_axis, fontsize =12) ###Output _____no_output_____ ###Markdown 6.1) Density between residuals of period 8 and period 9 ###Code # Intersection of residuals in period 8 and period 9 (may not be the case due to attrition) matched_identifier = list(set(df_container[8].index) & set(df_container[9].index)) # Define values used for the x and y axis x = df_container[8].loc[matched_identifier]['resid'].values y = df_container[9].loc[matched_identifier]['resid'].values graph = sns.jointplot(x, y, kind = "kde") x_axis = 'Residual of Period 8' y_axis = 'Residual of Period 9' graph.set_axis_labels(x_axis, y_axis, fontsize=12) sns.plt.title('Observations: ' + str(len(matched_identifier))) ###Output _____no_output_____ ###Markdown More information on seaborn jointplots may be found [here](https://seaborn.pydata.org/generated/seaborn.jointplot.html) 7) Heatmap 7.1) Covariance matrix ###Code cov = np.empty((11,11)) cov[:] = np.nan column = -1 for period in df_container: row = -1 column += 1 for lag in df_container: row += 1 matched_identifier = list(set(period.index) & set(lag.index)) # more than 30 observations: if len(matched_identifier) >= 30: cov[(row,column)] = round((np.cov(period.loc[matched_identifier]['resid'].values, lag.loc[matched_identifier]['resid'].values, rowvar = False, bias = True)[(0,1)]),2) else: pass # show coariance cov ###Output _____no_output_____ ###Markdown 7.2) Covariance matrix as a heatmap Result ###Code # Heatmap of covariance matrix of residuals mask = np.zeros_like(cov[1:11,1:11]) mask[np.triu_indices_from(mask, k = 1)] = True with sns.axes_style("white"): ax = sns.heatmap(np.round(cov[1:11,1:11],2),mask=mask,annot=True) plt.xlabel('Residuals of Period') plt.ylabel('Residuals of Period') ax.set_yticklabels(reversed(range(1, 11))) ax.set_xticklabels(range(1, 11)) plt.title('Covariance matrix of residuals') plt.savefig('Figures/cov_heatmap.png') ###Output _____no_output_____ ###Markdown Generate the covariance matrix heatmap step by step1. Plot the covariance matrix in a heatmap2. Select relevant covariance matrix rows and columns3. Create a mask to show only covariance triangular matrix below the diagonal4. Add covariance values to the heatmap5. Add x axis and y axis names. Add a title.6. Adjust the counter of the axes7. Save the figure8. Change the color to blue ###Code # create the heatmap step by step mask = np.zeros_like(cov[1:11, 1:11]) mask[np.triu_indices_from(mask, k = 1)] = True with sns.axes_style('white'): ax = sns.heatmap(cov[1:11, 1:11], mask = mask, annot = True, cmap="YlGnBu") plt.title('Covariance matrix') plt.xlabel('Resid of period') plt.ylabel('Resid of period') ax.set_yticklabels(reversed(range(1, 11))) ax.set_xticklabels(range(1, 11)) plt.savefig('Figures/cov_matrix.png') ###Output _____no_output_____
Showcase Notebook Energy Consumption.ipynb
###Markdown Day 1 ###Code item.gap_minder(1990) item.gap_minder(2016) ###Output _____no_output_____ ###Markdown The two plots clearly show, that the overall word’s energy consumption as well as GDP has gone up over the recent years. For countries in the lower end, it looks like there GDP has slightly increased while energy consumption remained roughly the same. On the other hand, high economic development stands in conjunction with increased energy consumption. It is visible that countries with a higher population tend to be on the upper end of the consumption side. Also, the overall density of the map increased corresponding to a higher population. ###Code item.plot_consumption("Germany") item.plot_consumption("Germany", True) item.plot_consumption("India") item.plot_consumption("India", True) item.plot_consumption("China") item.plot_consumption("China", True) ###Output _____no_output_____ ###Markdown Looking at the six plots, it is clearly evident that the total energy consumption of India and China vastly increased over the years corresponding to their strong development. This is backed by coal and oil as the main energy providers for both countries. In comparison, the overall energy consumption remained rather constant for Germany, and even seems to have slightly decreased in recent years. This corresponds to the fact that Germany can already be considered a developed country over the observation period whereas India and China only recently experienced exponential economic growth.As India and China, Germany is also still highly reliant on coal and oil. Additionally, it shows high dependance on gas and some dependency on nuclear. While coal, oil, and nuclear consumption slightly decreased over the past, gas consumption stayed at a rather constant level. However, it should be pointed out that Germany also tries so increasingly shift to renewable energy sources such as wind and solar from the 2000s on. Nevertheless, while their share is noticeably higher in Germany compared to India and China, it still only makes up a tiny portion of the energy mix. The EU carbon tax likely also contributes to this shift which will be further discussed below. Looking at China, the relative consumption amounts seem to be somehow similar to India whereas its absolute consumption skyrockets in comparison to both - India and Germany. This corresponds to the fact that it is the country with the highest population while simultaneously being the number one greenhouse emissioner.Overall, all plots clearly show that the current efforts of all countries are certainly not enough to meet the goal of 1.5 degrees by 2030, and neither net-zero by 2050. ###Code item.gdp("Germany", "India", "China") ###Output _____no_output_____ ###Markdown The plot shows that the GDP of all countries has risen since 1970. However, there are clear differences in the steepness of the curves. Germany shows a rather constant increase. While it had the highest GDP back in the 1970s, it has been overtaken by China around 1980 as well as by India in the 2000s. This corresponds to the huge developments of the Indian and Chinese economy over the recent years whereas Germany already has reached a high level of economic development. However, as especially apparent when looking at China in both - consumption and GDP plots - economic development also leads to an extreme increase of energy consumption which is currently majorly carried by non-sustainable energy sources. To conclude, it is evident that there is a clear connection between energy consumption, GDP and population. A higher GDP corresponds to a higher energy consumption as does an increasing population. This intuitively makes sense; however, the key issue is what energy sources are backing a country's development and how much emissions they are causing. Here, individual political frameworks and requirements come into play. Day 2 will shed some more light on recent developments, interdependencies and also tries to give some insights into possible ways ahead. Day 2 ###Code item.compare_consumption("Germany", "India", "China") ###Output _____no_output_____ ###Markdown This plot backs the insights of the previously plotted consumption patterns in absolute and relative terms. Furthermore, it gives some insights on the corresponding Co2 emissions which are a key factor when assessing the sustainability of energy sources. Evidently, wind, solar as well as nuclear energy consumption do not cause any Co2 emissions. In contrast, coal is the main driver of greenhouse gases followed by oil. Comparatively, gas consumption certainly leads to less Co2 emissions than oil or gas. Thus, while it clearly needs to be reduced and replaced by green solutions in the future, it might serve as an intermediate solution/buffer on the way to net zero. This is even more true for hydro consumption which shows even less Co2 emissions and, thus presents one of the hopes of future energy mixes besides the even preferred zero-emission sources. However, recent developments clearly showed that the wide expansion and adoption of those sources is hindered by the high investments in necessary infrastructure, bureaucracy and corresponding political unwillingness on a national and international level. ###Code item.scatter_plot() ###Output No handles with labels found to put in legend. ###Markdown This plot complements the interdependence of economic development and energy consumption by clearly showing that higher development alias higher consumption ultimately also leads to higher emissions, given countries do ot change their energy mix. Therefore, it emphasizes the urgent need for all countries to initiate a shift to renewable energy sources right now!Let's have a look how energy consumptions and emissions are predicted to evolve over the next 5 years based on the historical data and trends: ###Code item.arima_predict("Germany", 5) item.arima_predict("India", 5) item.arima_predict("China", 5) ###Output _____no_output_____
MLEveryday2.ipynb
###Markdown **ML** **day2** >今天的目标是 NumPy ###Code import numpy as np np.random.seed(seed=1234) # 标量(scalars) x = np.array(6) print ("x: ",x) #输出x print("x ndim: ",x.ndim) #x的维度 print("x shape:",x.shape) #表示数组形状(shape)的元组,表示各维度大小的元组 print("x size: ",x.size) # print ("x dtype: ",x.dtype) # 数组(array) x = np.array([1,2,3,4,5]) print("x :",x) print("x ndim",x.ndim) ###Output x: 6 x ndim: 0 x shape: () x size: 1 x dtype: int64 ###Markdown 今日进度: NumPy 0% 亚人真好看,不写了 ###Code ###Output _____no_output_____
#100Viz/01 - Firefighters in CA/src/01 Fighting Fire in CA.ipynb
###Markdown Daily Chart 01: Firefighters in CaliforniaSource: American Community Survey, 2003-2016.Notes: Adults (18+) in California (FIPS = 06), occupational code (OCC) 3740: Firefighters. List and dates of largest fires in California from [Wikipedia](https://en.wikipedia.org/wiki/List_of_California_wildfires) *****Set up** ###Code import pandas as pd import altair as alt # Theme: %run "../../00 - Set Up/scripts/cimarron_theme.py" %%html <style> @import url('https://fonts.googleapis.com/css?family=Ubuntu|Ubuntu+Condensed|Ubuntu+Mono'); </style> df = pd.read_csv('../data/processed/Firefighters in CA.csv', parse_dates=['Year']) df.head() dff = df.melt(id_vars='Year').copy() dff.columns = ['year', 'native status', 'number of people',] fires = alt.pd.read_csv('../data/processed/fires.csv', encoding = 'utf-8', parse_dates=['end','start']) fires.head() base_df = dff.groupby('year')["number of people"].sum().reset_index() alt_df = dff[dff['native status'] == 'Foreign-Born'] base = alt.Chart(base_df).mark_line().encode( x = alt.X("year:T", title = " ", axis = alt.Axis(tickCount = 13, grid = False,),), y = alt.Y("number of people:Q", title = "number of firefighters",), ).properties( title = "01: Fighting Fire in California", width = 1200, height = 600, ) band = alt.Chart(fires).mark_rect().encode( x='start:T', x2='end:T', color = alt.Color("acres:Q", legend = alt.Legend(title = "total acres burned", zindex = 0, padding = 0, offset=-120)) ).properties( width = 1080, height = 800, ) main_chart = base + band source = "SOURCE: American Community Survey, 2003-2016." source2 = "List and dates of largest fires in California from Wikipedia." notes = "NOTES: Adults (18+) in California, OCCupational code 3740: Firefighters. " source_chart = alt.Chart(fires).mark_text(text = source, dx = 800, size = 18).properties( height = 20, width = 1080, ) # source2_chart = alt.Chart(fires).mark_text(text = source2, dx = 800, size = 18).properties( # height = 20, # width = 1080, # ) notes_chart = alt.Chart(fires).mark_text(text = notes + source2, dx = 800, size = 18).properties( height = 20, width = 1080, ) # caption = source_chart & source2_chart & notes_chart daily_chart1 = main_chart & source_chart & notes_chart daily_chart1 ###Output _____no_output_____
docs/source/examples/tutorial/01-preprocess.ipynb
###Markdown Preliminary Preprocessing Read and Process E-Commerce data In this notebook, we are going to use a subset of a publicly available [eCommerce dataset](https://www.kaggle.com/mkechinov/ecommerce-behavior-data-from-multi-category-store). The full dataset contains 7 months data (from October 2019 to April 2020) from a large multi-category online store. Each row in the file represents an event. All events are related to products and users. Each event is like many-to-many relation between products and users.Data collected by Open CDP project and the source of the dataset is [REES46 Marketing Platform](https://rees46.com/). We use only `2019-Oct.csv` file for training our models, so you can visit this site and download the csv file: https://www.kaggle.com/mkechinov/ecommerce-behavior-data-from-multi-category-store. Import the required libraries ###Code import os import numpy as np import gc import shutil import glob import cudf import nvtabular as nvt ###Output _____no_output_____ ###Markdown Read Data via cuDF from CSV At this point we expect that you have already downloaded the `2019-Oct.csv` dataset and stored it in the `INPUT_DATA_DIR` as defined below. It is worth mentioning that the raw dataset is ~ 6 GB, therefore a single GPU with 16 GB or less memory might run out of memory. To avoid that, you can directly start from the second notebook, `02-ETL_with_NVTabular`, using `'Oct-2019.parquet` provided in [here](https://drive.google.com/drive/folders/1GjNKerPMvEtQHt9Z37ncF1zFedDXL_RJ). ###Code # define some information about where to get our data INPUT_DATA_DIR = os.environ.get("INPUT_DATA_DIR", "/workspace/data/") %%time raw_df = cudf.read_csv(os.path.join(INPUT_DATA_DIR, '2019-Oct.csv')) raw_df.head() raw_df.shape ###Output _____no_output_____ ###Markdown Convert timestamp from datetime ###Code raw_df['event_time_dt'] = raw_df['event_time'].astype('datetime64[s]') raw_df['event_time_ts']= raw_df['event_time_dt'].astype('int') raw_df.head() # check out the columns with nulls raw_df.isnull().any() # Remove rows where `user_session` is null. raw_df = raw_df[raw_df['user_session'].isnull()==False] len(raw_df) ###Output _____no_output_____ ###Markdown We no longer need `event_time` column. ###Code raw_df = raw_df.drop(['event_time'], axis=1) ###Output _____no_output_____ ###Markdown Categorify `user_session` columnAlthough `user_session` is not used as an input feature for the model, it is useful to convert those raw long string to int values to avoid potential failures when grouping interactions by `user_session` in the next notebook. ###Code cols = list(raw_df.columns) cols.remove('user_session') cols # load data df_event = nvt.Dataset(raw_df) # categorify user_session cat_feats = ['user_session'] >> nvt.ops.Categorify() workflow = nvt.Workflow(cols + cat_feats) workflow.fit(df_event) df = workflow.transform(df_event).to_ddf().compute() df.head() raw_df = None del(raw_df) gc.collect() ###Output _____no_output_____ ###Markdown Removing consecutive repeated (user, item) interactions We keep repeated interactions on the same items, removing only consecutive interactions, because it might be due to browser tab refreshes or different interaction types (e.g. click, add-to-card, purchase) ###Code %%time df = df.sort_values(['user_session', 'event_time_ts']).reset_index(drop=True) print("Count with in-session repeated interactions: {}".format(len(df))) # Sorts the dataframe by session and timestamp, to remove consecutive repetitions df['product_id_past'] = df['product_id'].shift(1).fillna(0) df['session_id_past'] = df['user_session'].shift(1).fillna(0) #Keeping only no consecutive repeated in session interactions df = df[~((df['user_session'] == df['session_id_past']) & \ (df['product_id'] == df['product_id_past']))] print("Count after removed in-session repeated interactions: {}".format(len(df))) del(df['product_id_past']) del(df['session_id_past']) gc.collect() ###Output Count with in-session repeated interactions: 42448762 Count after removed in-session repeated interactions: 30733301 CPU times: user 789 ms, sys: 120 ms, total: 909 ms Wall time: 1.16 s ###Markdown Include the item first time seen feature (for recency calculation) We create `prod_first_event_time_ts` column which indicates the timestamp that an item was seen first time. ###Code item_first_interaction_df = df.groupby('product_id').agg({'event_time_ts': 'min'}) \ .reset_index().rename(columns={'event_time_ts': 'prod_first_event_time_ts'}) item_first_interaction_df.head() gc.collect() df = df.merge(item_first_interaction_df, on=['product_id'], how='left').reset_index(drop=True) df.head() del(item_first_interaction_df) item_first_interaction_df=None gc.collect() ###Output _____no_output_____ ###Markdown In this tutorial, we only use one week of data from Oct 2019 dataset. ###Code # check the min date df['event_time_dt'].min() # Filters only the first week of the data. df = df[df['event_time_dt'] < np.datetime64('2019-10-08')].reset_index(drop=True) ###Output _____no_output_____ ###Markdown We verify that we only have the first week of Oct-2019 dataset. ###Code df['event_time_dt'].max() ###Output _____no_output_____ ###Markdown We drop `event_time_dt` column as it will not be used anymore. ###Code df = df.drop(['event_time_dt'], axis=1) df.head() ###Output _____no_output_____ ###Markdown Save the data as a single parquet file to be used in the ETL notebook. ###Code # save df as parquet files on disk df.to_parquet(os.path.join(INPUT_DATA_DIR, 'Oct-2019.parquet')) ###Output _____no_output_____ ###Markdown - Shut down the kernel ###Code import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____
notebooks/visualizing_imagenet_classes_upscaled.ipynb
###Markdown Install dependencies ###Code !pip install ipdb tqdm cloudpickle matplotlib lucid PyDrive ###Output _____no_output_____ ###Markdown Download checkpoint files for painters ###Code !mkdir tf_vae !wget -O tf_vae/vae-300000.index 'https://docs.google.com/uc?export=download&id=1ulHdDxebH46m_0ZoLa2Wsz_6vStYqJQm' !wget -O tf_vae/vae-300000.meta 'https://docs.google.com/uc?export=download&id=1nHN_i7Ro9g0lP4y_YQCvIWrOVX1I3CJa' !wget -O tf_vae/vae-300000.data-00000-of-00001 'https://docs.google.com/uc?export=download&id=18rAJcUJwFJOAcjzsabtqK12udsHMZkVk' !wget -O tf_vae/checkpoint 'https://docs.google.com/uc?export=download&id=18U4qMNBdyvEk-Y-Mr3MNPEHSHxhcO9hn' !mkdir tf_gan3 !wget -O tf_gan3/gan-571445.meta 'https://docs.google.com/uc?export=download&id=15kEG1Tiu2FUg5SILVt_9yOsSd3QHwVGA' !wget -O tf_gan3/gan-571445.index 'https://docs.google.com/uc?export=download&id=11uyFbQsRZoWa9Yq52AFXDXPjPQoGF_ER' !wget -O tf_gan3/gan-571445.data-00000-of-00001 'https://docs.google.com/uc?export=download&id=11cbvz-CH3KvfZEwNQ2OUujfbf6AKNoQa' !wget -O tf_gan3/checkpoint 'https://docs.google.com/uc?export=download&id=1A539u51t0L31Ab1M2uPUV2SsCFsNDQRo' !mkdir tf_gan4 !wget -O tf_gan4/gan-279892.meta 'https://docs.google.com/uc?export=download&id=15qcjIqxnJ7UaB_EP8Jko1IjpY1JQMCh7' !wget -O tf_gan4/gan-279892.index 'https://docs.google.com/uc?export=download&id=1q5g-q04HOGpNJY83tk4_0aRLwg800av1' !wget -O tf_gan4/gan-279892.data-00000-of-00001 'https://docs.google.com/uc?export=download&id=1Jtx9_5Dms9NXUnNq8r-TIf94dZyDjdBj' !wget -O tf_gan4/checkpoint 'https://docs.google.com/uc?export=download&id=1cnagxjLZvWWWPFl0FJzTVuoja2HorBk8' ###Output _____no_output_____ ###Markdown Imports ###Code import numpy as np import tensorflow as tf import tensorflow.contrib.layers as tcl from IPython.display import display import moviepy.editor as mpy from moviepy.video.io.ffmpeg_writer import FFMPEG_VideoWriter import lucid.modelzoo.vision_models as models from lucid.misc.io import show import lucid.optvis.objectives as objectives import lucid.optvis.param as param import lucid.optvis.render as render import lucid.optvis.transform as transform from lucid.misc.redirected_relu_grad import redirected_relu_grad, redirected_relu6_grad from lucid.misc.gradient_override import gradient_override_map print(tf.__version__) ###Output _____no_output_____ ###Markdown VAE painter ###Code class ConvVAE2(object): def __init__(self, reuse=False, gpu_mode=True, graph=None): self.z_size = 64 self.reuse = reuse if not gpu_mode: with tf.device('/cpu:0'): tf.logging.info('conv_vae using cpu.') self._build_graph(graph) else: tf.logging.info('conv_vae using gpu.') self._build_graph(graph) self._init_session() def build_decoder(self, z, reuse=False): with tf.variable_scope('decoder', reuse=reuse): h = tf.layers.dense(z, 4*256, name="fc") h = tf.reshape(h, [-1, 1, 1, 4*256]) h = tf.layers.conv2d_transpose(h, 128, 5, strides=2, activation=tf.nn.relu, name="deconv1") h = tf.layers.conv2d_transpose(h, 64, 5, strides=2, activation=tf.nn.relu, name="deconv2") h = tf.layers.conv2d_transpose(h, 32, 6, strides=2, activation=tf.nn.relu, name="deconv3") return tf.layers.conv2d_transpose(h, 3, 6, strides=2, activation=tf.nn.sigmoid, name="deconv4") def build_predictor(self, actions, reuse=False, is_training=False): with tf.variable_scope('predictor', reuse=reuse): h = tf.layers.dense(actions, 256, activation=tf.nn.leaky_relu, name="fc1") h = tf.layers.batch_normalization(h, training=is_training, name="bn1") h = tf.layers.dense(h, 64, activation=tf.nn.leaky_relu, name="fc2") h = tf.layers.batch_normalization(h, training=is_training, name="bn2") h = tf.layers.dense(h, 64, activation=tf.nn.leaky_relu, name="fc3") h = tf.layers.batch_normalization(h, training=is_training, name="bn3") return tf.layers.dense(h, self.z_size, name='fc4') def _build_graph(self, graph): if graph is None: self.g = tf.Graph() else: self.g = graph with self.g.as_default(), tf.variable_scope('conv_vae', reuse=self.reuse): #### predicting part self.actions = tf.placeholder(tf.float32, shape=[None, 12]) self.predicted_z = self.build_predictor(self.actions, is_training=False) self.predicted_y = self.build_decoder(self.predicted_z) # initialize vars self.init = tf.global_variables_initializer() def generate_stroke_graph(self, actions): with tf.variable_scope('conv_vae', reuse=True): with self.g.as_default(): # Encoder? z = self.build_predictor(actions, reuse=True, is_training=False) # Decoder return self.build_decoder(z, reuse=True) def _init_session(self): """Launch TensorFlow session and initialize variables""" self.sess = tf.Session(graph=self.g) self.sess.run(self.init) def close_sess(self): """ Close TensorFlow session """ self.sess.close() ###Output _____no_output_____ ###Markdown GAN Painter ###Code def relu_batch_norm(x): return tf.nn.relu(tf.contrib.layers.batch_norm(x, updates_collections=None)) class GeneratorConditional(object): def __init__(self, divisor=1, add_noise=False): self.x_dim = 64 * 64 * 3 self.divisor=divisor self.name = 'lsun/dcgan/g_net' self.add_noise = add_noise def __call__(self, conditions, is_training): with tf.contrib.framework.arg_scope([tcl.batch_norm], is_training=is_training): with tf.variable_scope(self.name) as vs: bs = tf.shape(conditions)[0] if self.add_noise: conditions = tf.concat([conditions, tf.random.uniform([bs, 10])], axis=1) fc = tcl.fully_connected(conditions, 4 * 4 * 1024/self.divisor, activation_fn=tf.identity) conv1 = tf.reshape(fc, tf.stack([bs, 4, 4, 1024/self.divisor])) conv1 = relu_batch_norm(conv1) conv2 = tcl.conv2d_transpose( conv1, 512/self.divisor, [4, 4], [2, 2], weights_initializer=tf.random_normal_initializer(stddev=0.02), activation_fn=relu_batch_norm ) conv3 = tcl.conv2d_transpose( conv2, 256/self.divisor, [4, 4], [2, 2], weights_initializer=tf.random_normal_initializer(stddev=0.02), activation_fn=relu_batch_norm ) conv4 = tcl.conv2d_transpose( conv3, 128/self.divisor, [4, 4], [2, 2], weights_initializer=tf.random_normal_initializer(stddev=0.02), activation_fn=relu_batch_norm ) conv5 = tcl.conv2d_transpose( conv4, 3, [4, 4], [2, 2], weights_initializer=tf.random_normal_initializer(stddev=0.02), activation_fn=tf.sigmoid) return conv5 @property def vars(self): return [var for var in tf.global_variables() if self.name in var.name] class ConvGAN(object): def __init__(self, add_noise=False, reuse=False, gpu_mode=True, graph=None): self.reuse = reuse self.g_net = GeneratorConditional(divisor=4, add_noise=add_noise) if not gpu_mode: with tf.device('/cpu:0'): tf.logging.info('conv_gan using cpu.') self._build_graph(graph) else: tf.logging.info('conv_gan using gpu.') self._build_graph(graph) self._init_session() def _build_graph(self, graph): if graph is None: self.g = tf.Graph() else: self.g = graph with self.g.as_default(), tf.variable_scope('conv_gan', reuse=self.reuse): self.actions = tf.placeholder(tf.float32, shape=[None, 12]) self.y = self.g_net(self.actions, is_training=False) self.init = tf.global_variables_initializer() def generate_stroke_graph(self, actions): with tf.variable_scope('conv_gan', reuse=True): with self.g.as_default(): return self.g_net(actions, is_training=False) def _init_session(self): """Launch TensorFlow session and initialize variables""" self.sess = tf.Session(graph=self.g) self.sess.run(self.init) def close_sess(self): """ Close TensorFlow session """ self.sess.close() ###Output _____no_output_____ ###Markdown Construct the Lucid graph ###Code def import_model(model, t_image, t_image_raw, scope="import"): model.import_graph(t_image, scope=scope, forget_xy_shape=True) def T(layer): if layer == "input": return t_image_raw if layer == "labels": return model.labels if ":" in layer: return t_image.graph.get_tensor_by_name("%s/%s" % (scope,layer)) else: return t_image.graph.get_tensor_by_name("%s/%s:0" % (scope,layer)) return T class LucidGraph(object): def __init__(self, class_to_plot='centipede', num_strokes=4, batch_size=1, painter_type="GAN", connected=True, add_noise=False, lr=0.05, models_to_optimize=['inception_v1', 'inception_v1_slim'], overlap_px=10, repeat=2, alternate=True, gpu_mode=True, graph=None): self.class_to_plot = class_to_plot self.batch_size = batch_size self.painter_type = painter_type self.connected=connected self.add_noise = add_noise # For overlapping canvases self.overlap_px = overlap_px self.repeat = repeat self.alternate = alternate self.full_size = 64*repeat - overlap_px*(repeat - 1) self.unrepeated_num_strokes= num_strokes self.num_strokes= num_strokes * self.repeat**2 print('full_size', self.full_size, 'max_seq_len', self.num_strokes) self.inception_v1 = models.InceptionV1() self.inception_v1.load_graphdef() self.inception_v1_slim = models.InceptionV1_slim() self.inception_v1_slim.load_graphdef() self.inception_v2_slim = models.InceptionV2_slim() self.inception_v2_slim.load_graphdef() self.mobilenet_v2_14 = models.MobilenetV2_14_slim() self.mobilenet_v2_14.load_graphdef() self.resnet_v1_50 = models.ResnetV1_50_slim() self.resnet_v1_50.load_graphdef() transforms = [ #transform.pad(12, mode='constant', constant_value=.5), transform.jitter(8), #transform.random_scale([1 + (i-5)/50. for i in range(11)]), transform.random_rotate(list(range(-20, 21)) + 5*[0]), transform.jitter(4), ] self.transform_f = render.make_transform_f(transforms) self.optim = render.make_optimizer(tf.train.AdamOptimizer(lr), []) self.obj_inception_v1 = objectives.class_logit('softmax1', class_to_plot) self.obj_inception_v1_slim = objectives.class_logit('InceptionV1/Logits/Predictions/Softmax', class_to_plot) self.obj_inception_v2_slim = objectives.class_logit('InceptionV2/Predictions/Softmax', class_to_plot) self.obj_mobilenet_v2_14 = objectives.class_logit('MobilenetV2/Predictions/Softmax', class_to_plot) self.obj_resnet_v1_50 = objectives.class_logit('resnet_v1_50/predictions/Softmax', class_to_plot) self.models_to_optimize_dict = { 'inception_v1': {'model': self.inception_v1, 'obj': self.obj_inception_v1, 'scope': 'i'}, 'inception_v1_slim': {'model': self.inception_v1_slim, 'obj': self.obj_inception_v1_slim, 'scope': 'i_slim'}, 'inception_v2_slim': {'model': self.inception_v2_slim, 'obj': self.obj_inception_v2_slim, 'scope': 'i2_slim'}, 'mobilenet_v2_14': {'model': self.mobilenet_v2_14, 'obj': self.obj_mobilenet_v2_14, 'scope': 'm_v2_14'}, 'resnet_v1_50': {'model': self.resnet_v1_50, 'obj': self.obj_resnet_v1_50, 'scope': 'resnet_v1_50'} } self.models_to_optimize = [self.models_to_optimize_dict[key] for key in models_to_optimize] self.gpu_mode = gpu_mode if not gpu_mode: with tf.device('/cpu:0'): tf.logging.info('Model using cpu.') self._build_graph(graph) else: #tf.logging.info('Model using gpu.') self._build_graph(graph) self._init_session() def _build_graph(self, graph): if graph is None: self.g = tf.Graph() else: self.g = graph # Set up graphs of VAE or GAN if self.painter_type == "GAN": self.painter = ConvGAN( add_noise=self.add_noise, reuse=False, gpu_mode=self.gpu_mode, graph=self.g) elif self.painter_type=="VAE": self.painter = ConvVAE2( reuse=False, gpu_mode=self.gpu_mode, graph=self.g) self.painter.close_sess() with self.g.as_default(): print('GLOBAL VARS', tf.global_variables()) with self.g.as_default(): batch_size = self.batch_size tile_size = 5 self.actions = tf.get_variable("action_vars", [batch_size, self.num_strokes, 12], #initializer=tf.initializers.random_normal() initializer=tf.initializers.random_uniform() ) # Prepare loop vars for rnn loop canvas_state = tf.ones(shape=[batch_size, self.full_size, self.full_size, 3], dtype=tf.float32) i = tf.constant(0) initial_canvas_ta = tf.TensorArray(dtype=tf.float32, size=self.num_strokes) loop_vars = ( canvas_state, initial_canvas_ta, i) # condition for continuation def cond(cs, c_ta, i): return tf.less(i, self.num_strokes) # run one state of rnn cell def body(cs, c_ta, i): trimmed_actions = tf.sigmoid(self.actions) print(trimmed_actions.get_shape()) def use_whole_action(): return trimmed_actions[:, i, :12] def use_previous_entrypoint(): # start x and y are previous end x and y # start pressure is previous pressure return tf.concat([trimmed_actions[:, i, :9], trimmed_actions[:, i-1, 4:6], trimmed_actions[:, i-1, 0:1]], axis=1) if self.connected: inp = tf.cond(tf.equal(i, 0), true_fn=use_whole_action, false_fn=use_previous_entrypoint) else: inp = use_whole_action() inp = tf.reshape(inp, [-1, 12]) print(inp.get_shape()) decoded_stroke = self.painter.generate_stroke_graph(inp) cases = [] ctr = 0 for a in range(self.repeat): for b in range(self.repeat): print([int(self.repeat**2), ctr]) print([[0, 0], [(64-self.overlap_px)*a, (64-self.overlap_px)*(self.repeat-1-a)], [(64-self.overlap_px)*b, (64-self.overlap_px)*(self.repeat-1-b)], [0, 0]]) cases.append( ( tf.equal(tf.floormod(i, int(self.repeat**2)), ctr) if self.alternate else tf.less(i, self.unrepeated_num_strokes*(ctr+1)), lambda a=a, b=b: tf.pad(decoded_stroke, [[0, 0], [(64-self.overlap_px)*a, (64-self.overlap_px)*(self.repeat-1-a)], [(64-self.overlap_px)*b, (64-self.overlap_px)*(self.repeat-1-b)], [0, 0]], constant_values=1) ) ) ctr += 1 print(cases) decoded_stroke = tf.case(cases) darkness_mask = tf.reduce_mean(decoded_stroke, axis=3) darkness_mask = 1 - tf.reshape(darkness_mask, [batch_size, self.full_size, self.full_size, 1]) darkness_mask = darkness_mask / tf.reduce_max(darkness_mask) color_action = trimmed_actions[:, i, 6:9] color_action = tf.reshape(color_action, [batch_size, 1, 1, 3]) color_action = tf.tile(color_action, [1, self.full_size, self.full_size, 1]) stroke_whitespace = tf.equal(decoded_stroke, 1.) maxed_stroke = tf.where(stroke_whitespace, decoded_stroke, color_action) cs = (darkness_mask)*maxed_stroke + (1-darkness_mask)*cs c_ta = c_ta.write(i, cs) i = tf.add(i, 1) return (cs, c_ta, i) final_canvas_state, final_canvas_ta, _ = tf.while_loop(cond, body, loop_vars, swap_memory=True) self.final_canvas_state = final_canvas_state self.intermediate_canvases = final_canvas_ta.stack() self.resized_canvas = tf.image.resize_images(self.final_canvas_state, [224, 224]) self.resized_canvas_227 = tf.image.resize_images(self.final_canvas_state, [227, 227]) tiled_canvas = tf.tile(self.resized_canvas, [tile_size, 1, 1, 1]) tiled_canvas_227 = tf.tile(self.resized_canvas_227, [tile_size, 1, 1, 1]) global_step = tf.train.get_or_create_global_step() with gradient_override_map({'Relu': redirected_relu_grad, 'Relu6': redirected_relu6_grad}): #self.T = render.import_model(self.inception_v1, self.transform_f(tiled_canvas), tiled_canvas) #self.T2 = import_model(self.inception_v1_slim, self.transform_f(tiled_canvas), tiled_canvas, scope='i_slim') #self.T3 = import_model(self.inception_v2_slim, self.transform_f(tiled_canvas), tiled_canvas, scope='i2_slim') T_list = [import_model(x['model'], self.transform_f(tiled_canvas), tiled_canvas, scope=x['scope']) for x in self.models_to_optimize] self.loss = 0 self.loss_list = [] for i in range(len(T_list)): l = self.models_to_optimize[i]['obj'](T_list[i])/tile_size self.loss = self.loss + l self.loss_list.append(l) self.loss = self.loss / len(T_list) #self.loss = self.obj_inception_v1(self.T)/5 + self.obj_inception_v1_slim(self.T2)/5 + self.obj_inception_v2_slim(self.T3)/5 self.vis_op = self.optim.minimize(-self.loss, global_step=global_step, var_list=[self.actions]) # initialize vars self.init = tf.global_variables_initializer() print('TRAINABLE', tf.trainable_variables()) def train(self, thresholds=range(0, 5000, 30)): self.images = [] vis = self.sess.run(self.resized_canvas) show(np.hstack(vis)) try: for i in range(max(thresholds)+1): loss_, _ = self.sess.run([self.loss_list, self.vis_op]) if i in thresholds: #print(self.sess.run(self.actions)) vis = self.sess.run(self.resized_canvas) print('step', i, 'scores_per_net', loss_, 'max_score', self.batch_size) show(np.hstack(vis)) if i % 1 == 0: vis = self.sess.run(self.resized_canvas) self.images.append(vis) except KeyboardInterrupt: vis = self.sess.run(self.resized_canvas) show(np.hstack(vis)) def _init_session(self): self.sess = tf.Session(graph=self.g) self.sess.run(self.init) def close_sess(self): self.sess.close() def load_painter_checkpoint(self, checkpoint_path='tf_conv_vae', actual_path=None): sess = self.sess with self.g.as_default(): if self.painter_type == "VAE": pth = 'conv_vae' elif self.painter_type == "GAN": pth = 'conv_gan' saver = tf.train.Saver(tf.global_variables(pth)) ckpt = tf.train.get_checkpoint_state(checkpoint_path) if actual_path is None: actual_path = ckpt.model_checkpoint_path print('loading model', actual_path) tf.logging.info('Loading model %s.', actual_path) saver.restore(sess, actual_path) ###Output _____no_output_____ ###Markdown Utility code for searching available ImageNet classesYou don't really need this but I found it helpful to look for classes to optimize. You will notice that the labels for the Slim models are not always the same as the labels for inception_v1 for the same object e.g. 'lipstick' vs 'lipstick, lip rouge'. In this case, you can't optimize inception_v1 together with a Slim model (of course, you are free to use inception_v1_slim). ###Code def search(_search_term): print('searching matching labels for {}'.format(_search_term)) inception_v1 = models.InceptionV1() inception_v1_slim = models.InceptionV1_slim() inception_v2_slim = models.InceptionV2_slim() mobilenet_v2_14 = models.MobilenetV2_14_slim() resnet_v1_50 = models.ResnetV1_50_slim() print('inception_v1 labels: {}'.format([x for x in inception_v1.labels if _search_term in x])) print('inception_v1_slim labels: {}'.format([x for x in inception_v1_slim.labels if _search_term in x])) print('inception_v2_slim labels: {}'.format([x for x in inception_v2_slim.labels if _search_term in x])) print('mobilenet_v2_14 labels: {}'.format([x for x in mobilenet_v2_14.labels if _search_term in x])) print('resnet_v1_50 labels: {}'.format([x for x in resnet_v1_50.labels if _search_term in x])) search('l') ###Output searching matching labels for l inception_v1 labels: [u'English setter', u'Australian terrier', u'English springer', u'grey whale', u'lesser panda', u'gazelle', u'sea lion', u'malamute', u'Walker hound', u'Welsh springer spaniel', u'killer whale', u'African elephant', u'red wolf', u'Old English sheepdog', u'bloodhound', u'Airedale', u'three-toed sloth', u'sorrel', u'black-footed ferret', u'dalmatian', u'black-and-tan coonhound', u'papillon', u'Staffordshire bullterrier', u'Mexican hairless', u'Bouvier des Flandres', u'weasel', u'miniature poodle', u'malinois', u'fox squirrel', u'colobus', u'impala', u'Newfoundland', u'Norwegian elkhound', u'Rottweiler', u'Saluki', u'West Highland white terrier', u'Sealyham terrier', u'Irish wolfhound', u'wild boar', u'EntleBucher', u'French bulldog', u'leopard', u'Maltese dog', u'Norfolk terrier', u'vizsla', u'squirrel monkey', u'groenendael', u'clumber', u'Japanese spaniel', u'white wolf', u'gorilla', u'toy poodle', u'Kerry blue terrier', u'Boston bull', u'Appenzeller', u'Irish water spaniel', u'Bedlington terrier', u'Arabian camel', u'collie', u'golden retriever', u'Border collie', u'silky terrier', u'beagle', u'dhole', u'bull mastiff', u'curly-coated retriever', u'flat-coated retriever', u'Brittany spaniel', u'standard poodle', u'Lakeland terrier', u'snow leopard', u'water buffalo', u'American black bear', u'howler monkey', u'Shetland sheepdog', u'armadillo', u'bluetick', u'polecat', u'kelpie', u'llama', u'Italian greyhound', u'lion', u'cocker spaniel', u'Indian elephant', u'Sussex spaniel', u'Blenheim spaniel', u'lynx', u'langur', u'timber wolf', u'English foxhound', u'sloth bear', u'koala', u'wallaby', u'platypus', u'revolver', u'umbrella', u'soccer ball', u'chambered nautilus', u'laptop', u'airliner', u'warplane', u'balloon', u'space shuttle', u'gondola', u'lifeboat', u'yawl', u'liner', u'half track', u'missile', u'bobsled', u'dogsled', u'bicycle-built-for-two', u'forklift', u'electric locomotive', u'steam locomotive', u'ambulance', u'convertible', u'limousine', u'Model T', u'golfcart', u'snowplow', u'trailer truck', u'police van', u'recreational vehicle', u'snowmobile', u'mobile home', u'tricycle', u'unicycle', u'cradle', u'table lamp', u'file', u'folding chair', u'toilet seat', u'pool table', u'dining table', u'lemon', u'pineapple', u'custard apple', u'steel drum', u'cello', u'violin', u'electric guitar', u'flute', u"yellow lady's slipper", u'cliff', u'valley', u'alp', u'volcano', u'coral reef', u'lakeside', u'cleaver', u'letter opener', u'plane', u'power drill', u'lawn mower', u'plunger', u'shovel', u'plow', u'brambling', u'goldfinch', u'bulbul', u'water ouzel', u'bald eagle', u'vulture', u'great grey owl', u'black grouse', u'quail', u'sulphur-crested cockatoo', u'lorikeet', u'coucal', u'hornbill', u'black swan', u'black stork', u'spoonbill', u'flamingo', u'little blue heron', u'limpkin', u'European gallinule', u'pelican', u'albatross', u'electric ray', u'goldfish', u'eel', u'lionfish', u'loggerhead', u'leatherback turtle', u'mud turtle', u'box turtle', u'American chameleon', u'whiptail', u'frilled lizard', u'alligator lizard', u'Gila monster', u'green lizard', u'African chameleon', u'African crocodile', u'American alligator', u'European fire salamander', u'spotted salamander', u'axolotl', u'bullfrog', u'tailed frog', u'whistle', u'hand blower', u'snorkel', u'loudspeaker', u'electric fan', u'oil filter', u'guillotine', u'rule', u'scale', u'analog clock', u'digital clock', u'wall clock', u'hourglass', u'sundial', u'digital watch', u'binoculars', u'sunglasses', u'loupe', u'radio telescope', u'assault rifle', u'rifle', u'projectile', u'lighter', u'slide rule', u'hand-held computer', u'slot', u'car wheel', u'paddlewheel', u'pinwheel', u"potter's wheel", u'carousel', u'reel', u'sunglass', u'solar dish', u'remote control', u'buckle', u'hair slide', u'combination lock', u'padlock', u'nail', u'muzzle', u'seat belt', u'candle', u"jack-o'-lantern", u'spotlight', u'maypole', u'trilobite', u'black and gold garden spider', u'black widow', u'tarantula', u'wolf spider', u'fiddler crab', u'American lobster', u'spiny lobster', u'tiger beetle', u'ladybug', u'ground beetle', u'long-horned beetle', u'leaf beetle', u'dung beetle', u'rhinoceros beetle', u'weevil', u'fly', u'walking stick', u'leafhopper', u'lacewing', u'dragonfly', u'damselfly', u'admiral', u'ringlet', u'cabbage butterfly', u'sulphur butterfly', u'lycaenid', u'jellyfish', u'brain coral', u'flatworm', u'snail', u'slug', u'sea slug', u'waffle iron', u'caldron', u'spatula', u'altar', u'triumphal arch', u'steel arch bridge', u'palace', u'library', u'planetarium', u'lumbermill', u'coil', u'obelisk', u'totem pole', u'castle', u'cliff dwelling', u'megalith', u'chainlink fence', u'stone wall', u'grille', u'sliding door', u'turnstile', u'plate rack', u'pedestal', u'bell pepper', u'broccoli', u'cauliflower', u'sandal', u'plate', u'necklace', u'croquet ball', u'thimble', u'cocktail shaker', u'manhole cover', u'balance beam', u'bagel', u'spindle', u'beer bottle', u'crash helmet', u'bottlecap', u'tile roof', u'maillot', u'football helmet', u'holster', u'pop bottle', u'crossword puzzle', u'golf ball', u'trifle', u'cloak', u'shield', u'meat loaf', u'baseball', u'beer glass', u'guacamole', u'lampshade', u'wool', u'mailbag', u'soup bowl', u'paddle', u'mixing bowl', u'wine bottle', u'bulletproof vest', u'drilling platform', u'ping-pong ball', u'pencil box', u'pencil sharpener', u'Polaroid camera', u'traffic light', u'quill', u'military uniform', u'lipstick', u'oscilloscope', u'French loaf', u'milk can', u'rugby ball', u'paper towel', u'envelope', u'trolleybus', u'coral fungus', u'bullet train', u'pillow', u'toilet tissue', u'ladle', u'lotion', u'pill bottle', u'chain mail', u'barrel', u'ballpoint', u'basketball', u'bath towel', u'cellular telephone', u'nipple', u'barbell', u'mailbox', u'lab coat', u'pole', u'horizontal bar', u'pickelhaube', u'rain barrel', u'wallet', u'cassette player', u'bell cote', u'volleyball', u'bolo tie', u'sleeping bag', u'television', u'breastplate', u'saltshaker', u'chocolate sauce', u'ballplayer', u'goblet', u'water bottle', u'dial telephone', u'school bus', u'jigsaw puzzle', u'plastic bag', u'reflex camera', u'ice lolly', u'velvet', u'tennis ball', u'pretzel', u'quilt', u'maillot', u'tape player', u'clog', u'bolete', u'CD player', u'lens cap', u'vault', u'bubble', u'parallel bars', u'flagpole', u'stole', u'dumbbell'] inception_v1_slim labels: [u'goldfish, Carassius auratus', u'tiger shark, Galeocerdo cuvieri', u'electric ray, crampfish, numbfish, torpedo', u'ostrich, Struthio camelus', u'brambling, Fringilla montifringilla', u'goldfinch, Carduelis carduelis', u'house finch, linnet, Carpodacus mexicanus', u'bulbul', u'water ouzel, dipper', u'bald eagle, American eagle, Haliaeetus leucocephalus', u'vulture', u'great grey owl, great gray owl, Strix nebulosa', u'European fire salamander, Salamandra salamandra', u'common newt, Triturus vulgaris', u'spotted salamander, Ambystoma maculatum', u'axolotl, mud puppy, Ambystoma mexicanum', u'bullfrog, Rana catesbeiana', u'tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui', u'loggerhead, loggerhead turtle, Caretta caretta', u'leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea', u'mud turtle', u'box turtle, box tortoise', u'American chameleon, anole, Anolis carolinensis', u'whiptail, whiptail lizard', u'frilled lizard, Chlamydosaurus kingi', u'alligator lizard', u'Gila monster, Heloderma suspectum', u'green lizard, Lacerta viridis', u'African chameleon, Chamaeleo chamaeleon', u'Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis', u'African crocodile, Nile crocodile, Crocodylus niloticus', u'American alligator, Alligator mississipiensis', u'night snake, Hypsiglena torquata', u'diamondback, diamondback rattlesnake, Crotalus adamanteus', u'sidewinder, horned rattlesnake, Crotalus cerastes', u'trilobite', u'harvestman, daddy longlegs, Phalangium opilio', u'black and gold garden spider, Argiope aurantia', u'black widow, Latrodectus mactans', u'tarantula', u'wolf spider, hunting spider', u'black grouse', u'ruffed grouse, partridge, Bonasa umbellus', u'prairie chicken, prairie grouse, prairie fowl', u'quail', u'sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita', u'lorikeet', u'coucal', u'hornbill', u'black swan, Cygnus atratus', u'platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus', u'wallaby, brush kangaroo', u'koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus', u'jellyfish', u'brain coral', u'flatworm, platyhelminth', u'snail', u'slug', u'sea slug, nudibranch', u'chiton, coat-of-mail shell, sea cradle, polyplacophore', u'chambered nautilus, pearly nautilus, nautilus', u'fiddler crab', u'king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica', u'American lobster, Northern lobster, Maine lobster, Homarus americanus', u'spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish', u'black stork, Ciconia nigra', u'spoonbill', u'flamingo', u'little blue heron, Egretta caerulea', u'American egret, great white heron, Egretta albus', u'limpkin, Aramus pictus', u'European gallinule, Porphyrio porphyrio', u'American coot, marsh hen, mud hen, water hen, Fulica americana', u'red-backed sandpiper, dunlin, Erolia alpina', u'pelican', u'albatross, mollymawk', u'grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus', u'killer whale, killer, orca, grampus, sea wolf, Orcinus orca', u'sea lion', u'Japanese spaniel', u'Maltese dog, Maltese terrier, Maltese', u'Blenheim spaniel', u'papillon', u'beagle', u'bloodhound, sleuthhound', u'bluetick', u'black-and-tan coonhound', u'Walker hound, Walker foxhound', u'English foxhound', u'borzoi, Russian wolfhound', u'Irish wolfhound', u'Italian greyhound', u'Norwegian elkhound, elkhound', u'Saluki, gazelle hound', u'Staffordshire bullterrier, Staffordshire bull terrier', u'American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier', u'Bedlington terrier', u'Kerry blue terrier', u'Norfolk terrier', u'Lakeland terrier', u'Sealyham terrier, Sealyham', u'Airedale, Airedale terrier', u'Australian terrier', u'Boston bull, Boston terrier', u'silky terrier, Sydney silky', u'West Highland white terrier', u'flat-coated retriever', u'curly-coated retriever', u'golden retriever', u'vizsla, Hungarian pointer', u'English setter', u'Brittany spaniel', u'clumber, clumber spaniel', u'English springer, English springer spaniel', u'Welsh springer spaniel', u'cocker spaniel, English cocker spaniel, cocker', u'Sussex spaniel', u'Irish water spaniel', u'groenendael', u'malinois', u'kelpie', u'Old English sheepdog, bobtail', u'Shetland sheepdog, Shetland sheep dog, Shetland', u'collie', u'Border collie', u'Bouvier des Flandres, Bouviers des Flandres', u'Rottweiler', u'German shepherd, German shepherd dog, German police dog, alsatian', u'Appenzeller', u'EntleBucher', u'bull mastiff', u'French bulldog', u'malamute, malemute, Alaskan malamute', u'dalmatian, coach dog, carriage dog', u'Newfoundland, Newfoundland dog', u'Pembroke, Pembroke Welsh corgi', u'Cardigan, Cardigan Welsh corgi', u'toy poodle', u'miniature poodle', u'standard poodle', u'Mexican hairless', u'timber wolf, grey wolf, gray wolf, Canis lupus', u'white wolf, Arctic wolf, Canis lupus tundrarum', u'red wolf, maned wolf, Canis rufus, Canis niger', u'coyote, prairie wolf, brush wolf, Canis latrans', u'dingo, warrigal, warragal, Canis dingo', u'dhole, Cuon alpinus', u'red fox, Vulpes vulpes', u'kit fox, Vulpes macrotis', u'Arctic fox, white fox, Alopex lagopus', u'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor', u'lynx, catamount', u'leopard, Panthera pardus', u'snow leopard, ounce, Panthera uncia', u'jaguar, panther, Panthera onca, Felis onca', u'lion, king of beasts, Panthera leo', u'American black bear, black bear, Ursus americanus, Euarctos americanus', u'ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus', u'sloth bear, Melursus ursinus, Ursus ursinus', u'tiger beetle', u'ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle', u'ground beetle, carabid beetle', u'long-horned beetle, longicorn, longicorn beetle', u'leaf beetle, chrysomelid', u'dung beetle', u'rhinoceros beetle', u'weevil', u'fly', u'walking stick, walkingstick, stick insect', u'cicada, cicala', u'leafhopper', u'lacewing, lacewing fly', u"dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", u'damselfly', u'admiral', u'ringlet, ringlet butterfly', u'monarch, monarch butterfly, milkweed butterfly, Danaus plexippus', u'cabbage butterfly', u'sulphur butterfly, sulfur butterfly', u'lycaenid, lycaenid butterfly', u'sea cucumber, holothurian', u'wood rabbit, cottontail, cottontail rabbit', u'fox squirrel, eastern fox squirrel, Sciurus niger', u'sorrel', u'hog, pig, grunter, squealer, Sus scrofa', u'wild boar, boar, Sus scrofa', u'water buffalo, water ox, Asiatic buffalo, Bubalus bubalis', u'impala, Aepyceros melampus', u'gazelle', u'Arabian camel, dromedary, Camelus dromedarius', u'llama', u'weasel', u'polecat, fitch, foulmart, foumart, Mustela putorius', u'black-footed ferret, ferret, Mustela nigripes', u'skunk, polecat, wood pussy', u'armadillo', u'three-toed sloth, ai, Bradypus tridactylus', u'gorilla, Gorilla gorilla', u'chimpanzee, chimp, Pan troglodytes', u'gibbon, Hylobates lar', u'siamang, Hylobates syndactylus, Symphalangus syndactylus', u'langur', u'colobus, colobus monkey', u'proboscis monkey, Nasalis larvatus', u'capuchin, ringtail, Cebus capucinus', u'howler monkey, howler', u'spider monkey, Ateles geoffroyi', u'squirrel monkey, Saimiri sciureus', u'Madagascar cat, ring-tailed lemur, Lemur catta', u'Indian elephant, Elephas maximus', u'African elephant, Loxodonta africana', u'lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens', u'giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca', u'eel', u'coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch', u'rock beauty, Holocanthus tricolor', u'gar, garfish, garpike, billfish, Lepisosteus osseus', u'lionfish', u'puffer, pufferfish, blowfish, globefish', u'aircraft carrier, carrier, flattop, attack aircraft carrier', u'airliner', u'airship, dirigible', u'altar', u'ambulance', u'amphibian, amphibious vehicle', u'analog clock', u'ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin', u'assault rifle, assault gun', u'balance beam, beam', u'balloon', u'ballpoint, ballpoint pen, ballpen, Biro', u'bannister, banister, balustrade, balusters, handrail', u'barbell', u'barrel, cask', u'barrow, garden cart, lawn cart, wheelbarrow', u'baseball', u'basketball', u'bath towel', u'beacon, lighthouse, beacon light, pharos', u'beer bottle', u'beer glass', u'bell cote, bell cot', u'bicycle-built-for-two, tandem bicycle, tandem', u'binoculars, field glasses, opera glasses', u'bobsled, bobsleigh, bob', u'bolo tie, bolo, bola tie, bola', u'bookshop, bookstore, bookstall', u'bottlecap', u'brass, memorial tablet, plaque', u'breakwater, groin, groyne, mole, bulwark, seawall, jetty', u'breastplate, aegis, egis', u'bucket, pail', u'buckle', u'bulletproof vest', u'bullet train, bullet', u'caldron, cauldron', u'candle, taper, wax light', u'carousel, carrousel, merry-go-round, roundabout, whirligig', u"carpenter's kit, tool kit", u'car wheel', u'cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM', u'cassette player', u'castle', u'CD player', u'cello, violoncello', u'cellular telephone, cellular phone, cellphone, cell, mobile phone', u'chainlink fence', u'chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour', u'chime, bell, gong', u'china cabinet, china closet', u'church, church building', u'cinema, movie theater, movie theatre, movie house, picture palace', u'cleaver, meat cleaver, chopper', u'cliff dwelling', u'cloak', u'clog, geta, patten, sabot', u'cocktail shaker', u'coil, spiral, volute, whorl, helix', u'combination lock', u'container ship, containership, container vessel', u'convertible', u'corkscrew, bottle screw', u'cowboy hat, ten-gallon hat', u'cradle', u'crash helmet', u'croquet ball', u'dial telephone, dial phone', u'digital clock', u'digital watch', u'dining table, board', u'dishrag, dishcloth', u'dock, dockage, docking facility', u'dogsled, dog sled, dog sleigh', u'doormat, welcome mat', u'drilling platform, offshore rig', u'dumbbell', u'electric fan, blower', u'electric guitar', u'electric locomotive', u'envelope', u'file, file cabinet, filing cabinet', u'flagpole, flagstaff', u'flute, transverse flute', u'folding chair', u'football helmet', u'forklift', u'frying pan, frypan, skillet', u'gasmask, respirator, gas helmet', u'gas pump, gasoline pump, petrol pump, island dispenser', u'goblet', u'golf ball', u'golfcart, golf cart', u'gondola', u'greenhouse, nursery, glasshouse', u'grille, radiator grille', u'guillotine', u'hair slide', u'half track', u'hand blower, blow dryer, blow drier, hair dryer, hair drier', u'hand-held computer, hand-held microcomputer', u'holster', u'hook, claw', u'hoopskirt, crinoline', u'horizontal bar, high bar', u'hourglass', u"jack-o'-lantern", u'jean, blue jean, denim', u'jeep, landrover', u'jigsaw puzzle', u'lab coat, laboratory coat', u'ladle', u'lampshade, lamp shade', u'laptop, laptop computer', u'lawn mower, mower', u'lens cap, lens cover', u'letter opener, paper knife, paperknife', u'library', u'lifeboat', u'lighter, light, igniter, ignitor', u'limousine, limo', u'liner, ocean liner', u'lipstick, lip rouge', u'lotion', u'loudspeaker, speaker, speaker unit, loudspeaker system, speaker system', u"loupe, jeweler's loupe", u'lumbermill, sawmill', u'mailbag, postbag', u'mailbox, letter box', u'maillot', u'maillot, tank suit', u'manhole cover', u'marimba, xylophone', u'maypole', u'maze, labyrinth', u'megalith, megalithic structure', u'military uniform', u'milk can', u'missile', u'mixing bowl', u'mobile home, manufactured home', u'Model T', u'mountain bike, all-terrain bike, off-roader', u'muzzle', u'nail', u'necklace', u'nipple', u'obelisk', u'odometer, hodometer, mileometer, milometer', u'oil filter', u'oscilloscope, scope, cathode-ray oscilloscope, CRO', u'paddle, boat paddle', u'paddlewheel, paddle wheel', u'padlock', u'palace', u'paper towel', u'parallel bars, bars', u'pedestal, plinth, footstall', u'pencil box, pencil case', u'pencil sharpener', u'pick, plectrum, plectron', u'pickelhaube', u'picket fence, paling', u'pill bottle', u'pillow', u'ping-pong ball', u'pinwheel', u"plane, carpenter's plane, woodworking plane", u'planetarium', u'plastic bag', u'plate rack', u'plow, plough', u"plunger, plumber's helper", u'Polaroid camera, Polaroid Land camera', u'pole', u'police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria', u'pool table, billiard table, snooker table', u'pop bottle, soda bottle', u'pot, flowerpot', u"potter's wheel", u'power drill', u'projectile, missile', u'punching bag, punch bag, punching ball, punchball', u'quill, quill pen', u'quilt, comforter, comfort, puff', u'radio, wireless', u'radio telescope, radio reflector', u'rain barrel', u'recreational vehicle, RV, R.V.', u'reel', u'reflex camera', u'remote control, remote', u'restaurant, eating house, eating place, eatery', u'revolver, six-gun, six-shooter', u'rifle', u'rubber eraser, rubber, pencil eraser', u'rugby ball', u'rule, ruler', u'saltshaker, salt shaker', u'sandal', u'scale, weighing machine', u'school bus', u'seat belt, seatbelt', u'shield, buckler', u'shovel', u'sleeping bag', u'slide rule, slipstick', u'sliding door', u'slot, one-armed bandit', u'snorkel', u'snowmobile', u'snowplow, snowplough', u'soccer ball', u'solar dish, solar collector, solar furnace', u'soup bowl', u'space shuttle', u'spatula', u'spindle', u'spotlight, spot', u'steam locomotive', u'steel arch bridge', u'steel drum', u'stole', u'stone wall', u'streetcar, tram, tramcar, trolley, trolley car', u'suit, suit of clothes', u'sundial', u'sunglass', u'sunglasses, dark glasses, shades', u'sunscreen, sunblock, sun blocker', u'switch, electric switch, electrical switch', u'table lamp', u'tank, army tank, armored combat vehicle, armoured combat vehicle', u'tape player', u'television, television system', u'tennis ball', u'thimble', u'tile roof', u'toilet seat', u'totem pole', u'trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi', u'tricycle, trike, velocipede', u'triumphal arch', u'trolleybus, trolley coach, trackless trolley', u'turnstile', u'umbrella', u'unicycle, monocycle', u'vacuum, vacuum cleaner', u'vault', u'velvet', u'violin, fiddle', u'volleyball', u'waffle iron', u'wall clock', u'wallet, billfold, notecase, pocketbook', u'wardrobe, closet, press', u'warplane, military plane', u'washbasin, handbasin, washbowl, lavabo, wash-hand basin', u'water bottle', u'whistle', u'wine bottle', u'wool, woolen, woollen', u'worm fence, snake fence, snake-rail fence, Virginia fence', u'yawl', u'crossword puzzle, crossword', u'traffic light, traffic signal, stoplight', u'plate', u'guacamole', u'trifle', u'ice lolly, lolly, lollipop, popsicle', u'French loaf', u'bagel, beigel', u'pretzel', u'broccoli', u'cauliflower', u'artichoke, globe artichoke', u'bell pepper', u'lemon', u'pineapple, ananas', u'custard apple', u'chocolate sauce, chocolate syrup', u'meat loaf, meatloaf', u'alp', u'bubble', u'cliff, drop, drop-off', u'coral reef', u'lakeside, lakeshore', u'promontory, headland, head, foreland', u'valley, vale', u'volcano', u'ballplayer, baseball player', u"yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum", u'coral fungus', u'hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa', u'bolete', u'ear, spike, capitulum', u'toilet tissue, toilet paper, bathroom tissue'] inception_v2_slim labels: [u'goldfish, Carassius auratus', u'tiger shark, Galeocerdo cuvieri', u'electric ray, crampfish, numbfish, torpedo', u'ostrich, Struthio camelus', u'brambling, Fringilla montifringilla', u'goldfinch, Carduelis carduelis', u'house finch, linnet, Carpodacus mexicanus', u'bulbul', u'water ouzel, dipper', u'bald eagle, American eagle, Haliaeetus leucocephalus', u'vulture', u'great grey owl, great gray owl, Strix nebulosa', u'European fire salamander, Salamandra salamandra', u'common newt, Triturus vulgaris', u'spotted salamander, Ambystoma maculatum', u'axolotl, mud puppy, Ambystoma mexicanum', u'bullfrog, Rana catesbeiana', u'tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui', u'loggerhead, loggerhead turtle, Caretta caretta', u'leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea', u'mud turtle', u'box turtle, box tortoise', u'American chameleon, anole, Anolis carolinensis', u'whiptail, whiptail lizard', u'frilled lizard, Chlamydosaurus kingi', u'alligator lizard', u'Gila monster, Heloderma suspectum', u'green lizard, Lacerta viridis', u'African chameleon, Chamaeleo chamaeleon', u'Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis', u'African crocodile, Nile crocodile, Crocodylus niloticus', u'American alligator, Alligator mississipiensis', u'night snake, Hypsiglena torquata', u'diamondback, diamondback rattlesnake, Crotalus adamanteus', u'sidewinder, horned rattlesnake, Crotalus cerastes', u'trilobite', u'harvestman, daddy longlegs, Phalangium opilio', u'black and gold garden spider, Argiope aurantia', u'black widow, Latrodectus mactans', u'tarantula', u'wolf spider, hunting spider', u'black grouse', u'ruffed grouse, partridge, Bonasa umbellus', u'prairie chicken, prairie grouse, prairie fowl', u'quail', u'sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita', u'lorikeet', u'coucal', u'hornbill', u'black swan, Cygnus atratus', u'platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus', u'wallaby, brush kangaroo', u'koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus', u'jellyfish', u'brain coral', u'flatworm, platyhelminth', u'snail', u'slug', u'sea slug, nudibranch', u'chiton, coat-of-mail shell, sea cradle, polyplacophore', u'chambered nautilus, pearly nautilus, nautilus', u'fiddler crab', u'king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica', u'American lobster, Northern lobster, Maine lobster, Homarus americanus', u'spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish', u'black stork, Ciconia nigra', u'spoonbill', u'flamingo', u'little blue heron, Egretta caerulea', u'American egret, great white heron, Egretta albus', u'limpkin, Aramus pictus', u'European gallinule, Porphyrio porphyrio', u'American coot, marsh hen, mud hen, water hen, Fulica americana', u'red-backed sandpiper, dunlin, Erolia alpina', u'pelican', u'albatross, mollymawk', u'grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus', u'killer whale, killer, orca, grampus, sea wolf, Orcinus orca', u'sea lion', u'Japanese spaniel', u'Maltese dog, Maltese terrier, Maltese', u'Blenheim spaniel', u'papillon', u'beagle', u'bloodhound, sleuthhound', u'bluetick', u'black-and-tan coonhound', u'Walker hound, Walker foxhound', u'English foxhound', u'borzoi, Russian wolfhound', u'Irish wolfhound', u'Italian greyhound', u'Norwegian elkhound, elkhound', u'Saluki, gazelle hound', u'Staffordshire bullterrier, Staffordshire bull terrier', u'American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier', u'Bedlington terrier', u'Kerry blue terrier', u'Norfolk terrier', u'Lakeland terrier', u'Sealyham terrier, Sealyham', u'Airedale, Airedale terrier', u'Australian terrier', u'Boston bull, Boston terrier', u'silky terrier, Sydney silky', u'West Highland white terrier', u'flat-coated retriever', u'curly-coated retriever', u'golden retriever', u'vizsla, Hungarian pointer', u'English setter', u'Brittany spaniel', u'clumber, clumber spaniel', u'English springer, English springer spaniel', u'Welsh springer spaniel', u'cocker spaniel, English cocker spaniel, cocker', u'Sussex spaniel', u'Irish water spaniel', u'groenendael', u'malinois', u'kelpie', u'Old English sheepdog, bobtail', u'Shetland sheepdog, Shetland sheep dog, Shetland', u'collie', u'Border collie', u'Bouvier des Flandres, Bouviers des Flandres', u'Rottweiler', u'German shepherd, German shepherd dog, German police dog, alsatian', u'Appenzeller', u'EntleBucher', u'bull mastiff', u'French bulldog', u'malamute, malemute, Alaskan malamute', u'dalmatian, coach dog, carriage dog', u'Newfoundland, Newfoundland dog', u'Pembroke, Pembroke Welsh corgi', u'Cardigan, Cardigan Welsh corgi', u'toy poodle', u'miniature poodle', u'standard poodle', u'Mexican hairless', u'timber wolf, grey wolf, gray wolf, Canis lupus', u'white wolf, Arctic wolf, Canis lupus tundrarum', u'red wolf, maned wolf, Canis rufus, Canis niger', u'coyote, prairie wolf, brush wolf, Canis latrans', u'dingo, warrigal, warragal, Canis dingo', u'dhole, Cuon alpinus', u'red fox, Vulpes vulpes', u'kit fox, Vulpes macrotis', u'Arctic fox, white fox, Alopex lagopus', u'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor', u'lynx, catamount', u'leopard, Panthera pardus', u'snow leopard, ounce, Panthera uncia', u'jaguar, panther, Panthera onca, Felis onca', u'lion, king of beasts, Panthera leo', u'American black bear, black bear, Ursus americanus, Euarctos americanus', u'ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus', u'sloth bear, Melursus ursinus, Ursus ursinus', u'tiger beetle', u'ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle', u'ground beetle, carabid beetle', u'long-horned beetle, longicorn, longicorn beetle', u'leaf beetle, chrysomelid', u'dung beetle', u'rhinoceros beetle', u'weevil', u'fly', u'walking stick, walkingstick, stick insect', u'cicada, cicala', u'leafhopper', u'lacewing, lacewing fly', u"dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", u'damselfly', u'admiral', u'ringlet, ringlet butterfly', u'monarch, monarch butterfly, milkweed butterfly, Danaus plexippus', u'cabbage butterfly', u'sulphur butterfly, sulfur butterfly', u'lycaenid, lycaenid butterfly', u'sea cucumber, holothurian', u'wood rabbit, cottontail, cottontail rabbit', u'fox squirrel, eastern fox squirrel, Sciurus niger', u'sorrel', u'hog, pig, grunter, squealer, Sus scrofa', u'wild boar, boar, Sus scrofa', u'water buffalo, water ox, Asiatic buffalo, Bubalus bubalis', u'impala, Aepyceros melampus', u'gazelle', u'Arabian camel, dromedary, Camelus dromedarius', u'llama', u'weasel', u'polecat, fitch, foulmart, foumart, Mustela putorius', u'black-footed ferret, ferret, Mustela nigripes', u'skunk, polecat, wood pussy', u'armadillo', u'three-toed sloth, ai, Bradypus tridactylus', u'gorilla, Gorilla gorilla', u'chimpanzee, chimp, Pan troglodytes', u'gibbon, Hylobates lar', u'siamang, Hylobates syndactylus, Symphalangus syndactylus', u'langur', u'colobus, colobus monkey', u'proboscis monkey, Nasalis larvatus', u'capuchin, ringtail, Cebus capucinus', u'howler monkey, howler', u'spider monkey, Ateles geoffroyi', u'squirrel monkey, Saimiri sciureus', u'Madagascar cat, ring-tailed lemur, Lemur catta', u'Indian elephant, Elephas maximus', u'African elephant, Loxodonta africana', u'lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens', u'giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca', u'eel', u'coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch', u'rock beauty, Holocanthus tricolor', u'gar, garfish, garpike, billfish, Lepisosteus osseus', u'lionfish', u'puffer, pufferfish, blowfish, globefish', u'aircraft carrier, carrier, flattop, attack aircraft carrier', u'airliner', u'airship, dirigible', u'altar', u'ambulance', u'amphibian, amphibious vehicle', u'analog clock', u'ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin', u'assault rifle, assault gun', u'balance beam, beam', u'balloon', u'ballpoint, ballpoint pen, ballpen, Biro', u'bannister, banister, balustrade, balusters, handrail', u'barbell', u'barrel, cask', u'barrow, garden cart, lawn cart, wheelbarrow', u'baseball', u'basketball', u'bath towel', u'beacon, lighthouse, beacon light, pharos', u'beer bottle', u'beer glass', u'bell cote, bell cot', u'bicycle-built-for-two, tandem bicycle, tandem', u'binoculars, field glasses, opera glasses', u'bobsled, bobsleigh, bob', u'bolo tie, bolo, bola tie, bola', u'bookshop, bookstore, bookstall', u'bottlecap', u'brass, memorial tablet, plaque', u'breakwater, groin, groyne, mole, bulwark, seawall, jetty', u'breastplate, aegis, egis', u'bucket, pail', u'buckle', u'bulletproof vest', u'bullet train, bullet', u'caldron, cauldron', u'candle, taper, wax light', u'carousel, carrousel, merry-go-round, roundabout, whirligig', u"carpenter's kit, tool kit", u'car wheel', u'cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM', u'cassette player', u'castle', u'CD player', u'cello, violoncello', u'cellular telephone, cellular phone, cellphone, cell, mobile phone', u'chainlink fence', u'chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour', u'chime, bell, gong', u'china cabinet, china closet', u'church, church building', u'cinema, movie theater, movie theatre, movie house, picture palace', u'cleaver, meat cleaver, chopper', u'cliff dwelling', u'cloak', u'clog, geta, patten, sabot', u'cocktail shaker', u'coil, spiral, volute, whorl, helix', u'combination lock', u'container ship, containership, container vessel', u'convertible', u'corkscrew, bottle screw', u'cowboy hat, ten-gallon hat', u'cradle', u'crash helmet', u'croquet ball', u'dial telephone, dial phone', u'digital clock', u'digital watch', u'dining table, board', u'dishrag, dishcloth', u'dock, dockage, docking facility', u'dogsled, dog sled, dog sleigh', u'doormat, welcome mat', u'drilling platform, offshore rig', u'dumbbell', u'electric fan, blower', u'electric guitar', u'electric locomotive', u'envelope', u'file, file cabinet, filing cabinet', u'flagpole, flagstaff', u'flute, transverse flute', u'folding chair', u'football helmet', u'forklift', u'frying pan, frypan, skillet', u'gasmask, respirator, gas helmet', u'gas pump, gasoline pump, petrol pump, island dispenser', u'goblet', u'golf ball', u'golfcart, golf cart', u'gondola', u'greenhouse, nursery, glasshouse', u'grille, radiator grille', u'guillotine', u'hair slide', u'half track', u'hand blower, blow dryer, blow drier, hair dryer, hair drier', u'hand-held computer, hand-held microcomputer', u'holster', u'hook, claw', u'hoopskirt, crinoline', u'horizontal bar, high bar', u'hourglass', u"jack-o'-lantern", u'jean, blue jean, denim', u'jeep, landrover', u'jigsaw puzzle', u'lab coat, laboratory coat', u'ladle', u'lampshade, lamp shade', u'laptop, laptop computer', u'lawn mower, mower', u'lens cap, lens cover', u'letter opener, paper knife, paperknife', u'library', u'lifeboat', u'lighter, light, igniter, ignitor', u'limousine, limo', u'liner, ocean liner', u'lipstick, lip rouge', u'lotion', u'loudspeaker, speaker, speaker unit, loudspeaker system, speaker system', u"loupe, jeweler's loupe", u'lumbermill, sawmill', u'mailbag, postbag', u'mailbox, letter box', u'maillot', u'maillot, tank suit', u'manhole cover', u'marimba, xylophone', u'maypole', u'maze, labyrinth', u'megalith, megalithic structure', u'military uniform', u'milk can', u'missile', u'mixing bowl', u'mobile home, manufactured home', u'Model T', u'mountain bike, all-terrain bike, off-roader', u'muzzle', u'nail', u'necklace', u'nipple', u'obelisk', u'odometer, hodometer, mileometer, milometer', u'oil filter', u'oscilloscope, scope, cathode-ray oscilloscope, CRO', u'paddle, boat paddle', u'paddlewheel, paddle wheel', u'padlock', u'palace', u'paper towel', u'parallel bars, bars', u'pedestal, plinth, footstall', u'pencil box, pencil case', u'pencil sharpener', u'pick, plectrum, plectron', u'pickelhaube', u'picket fence, paling', u'pill bottle', u'pillow', u'ping-pong ball', u'pinwheel', u"plane, carpenter's plane, woodworking plane", u'planetarium', u'plastic bag', u'plate rack', u'plow, plough', u"plunger, plumber's helper", u'Polaroid camera, Polaroid Land camera', u'pole', u'police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria', u'pool table, billiard table, snooker table', u'pop bottle, soda bottle', u'pot, flowerpot', u"potter's wheel", u'power drill', u'projectile, missile', u'punching bag, punch bag, punching ball, punchball', u'quill, quill pen', u'quilt, comforter, comfort, puff', u'radio, wireless', u'radio telescope, radio reflector', u'rain barrel', u'recreational vehicle, RV, R.V.', u'reel', u'reflex camera', u'remote control, remote', u'restaurant, eating house, eating place, eatery', u'revolver, six-gun, six-shooter', u'rifle', u'rubber eraser, rubber, pencil eraser', u'rugby ball', u'rule, ruler', u'saltshaker, salt shaker', u'sandal', u'scale, weighing machine', u'school bus', u'seat belt, seatbelt', u'shield, buckler', u'shovel', u'sleeping bag', u'slide rule, slipstick', u'sliding door', u'slot, one-armed bandit', u'snorkel', u'snowmobile', u'snowplow, snowplough', u'soccer ball', u'solar dish, solar collector, solar furnace', u'soup bowl', u'space shuttle', u'spatula', u'spindle', u'spotlight, spot', u'steam locomotive', u'steel arch bridge', u'steel drum', u'stole', u'stone wall', u'streetcar, tram, tramcar, trolley, trolley car', u'suit, suit of clothes', u'sundial', u'sunglass', u'sunglasses, dark glasses, shades', u'sunscreen, sunblock, sun blocker', u'switch, electric switch, electrical switch', u'table lamp', u'tank, army tank, armored combat vehicle, armoured combat vehicle', u'tape player', u'television, television system', u'tennis ball', u'thimble', u'tile roof', u'toilet seat', u'totem pole', u'trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi', u'tricycle, trike, velocipede', u'triumphal arch', u'trolleybus, trolley coach, trackless trolley', u'turnstile', u'umbrella', u'unicycle, monocycle', u'vacuum, vacuum cleaner', u'vault', u'velvet', u'violin, fiddle', u'volleyball', u'waffle iron', u'wall clock', u'wallet, billfold, notecase, pocketbook', u'wardrobe, closet, press', u'warplane, military plane', u'washbasin, handbasin, washbowl, lavabo, wash-hand basin', u'water bottle', u'whistle', u'wine bottle', u'wool, woolen, woollen', u'worm fence, snake fence, snake-rail fence, Virginia fence', u'yawl', u'crossword puzzle, crossword', u'traffic light, traffic signal, stoplight', u'plate', u'guacamole', u'trifle', u'ice lolly, lolly, lollipop, popsicle', u'French loaf', u'bagel, beigel', u'pretzel', u'broccoli', u'cauliflower', u'artichoke, globe artichoke', u'bell pepper', u'lemon', u'pineapple, ananas', u'custard apple', u'chocolate sauce, chocolate syrup', u'meat loaf, meatloaf', u'alp', u'bubble', u'cliff, drop, drop-off', u'coral reef', u'lakeside, lakeshore', u'promontory, headland, head, foreland', u'valley, vale', u'volcano', u'ballplayer, baseball player', u"yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum", u'coral fungus', u'hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa', u'bolete', u'ear, spike, capitulum', u'toilet tissue, toilet paper, bathroom tissue'] mobilenet_v2_14 labels: [u'goldfish, Carassius auratus', u'tiger shark, Galeocerdo cuvieri', u'electric ray, crampfish, numbfish, torpedo', u'ostrich, Struthio camelus', u'brambling, Fringilla montifringilla', u'goldfinch, Carduelis carduelis', u'house finch, linnet, Carpodacus mexicanus', u'bulbul', u'water ouzel, dipper', u'bald eagle, American eagle, Haliaeetus leucocephalus', u'vulture', u'great grey owl, great gray owl, Strix nebulosa', u'European fire salamander, Salamandra salamandra', u'common newt, Triturus vulgaris', u'spotted salamander, Ambystoma maculatum', u'axolotl, mud puppy, Ambystoma mexicanum', u'bullfrog, Rana catesbeiana', u'tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui', u'loggerhead, loggerhead turtle, Caretta caretta', u'leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea', u'mud turtle', u'box turtle, box tortoise', u'American chameleon, anole, Anolis carolinensis', u'whiptail, whiptail lizard', u'frilled lizard, Chlamydosaurus kingi', u'alligator lizard', u'Gila monster, Heloderma suspectum', u'green lizard, Lacerta viridis', u'African chameleon, Chamaeleo chamaeleon', u'Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis', u'African crocodile, Nile crocodile, Crocodylus niloticus', u'American alligator, Alligator mississipiensis', u'night snake, Hypsiglena torquata', u'diamondback, diamondback rattlesnake, Crotalus adamanteus', u'sidewinder, horned rattlesnake, Crotalus cerastes', u'trilobite', u'harvestman, daddy longlegs, Phalangium opilio', u'black and gold garden spider, Argiope aurantia', u'black widow, Latrodectus mactans', u'tarantula', u'wolf spider, hunting spider', u'black grouse', u'ruffed grouse, partridge, Bonasa umbellus', u'prairie chicken, prairie grouse, prairie fowl', u'quail', u'sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita', u'lorikeet', u'coucal', u'hornbill', u'black swan, Cygnus atratus', u'platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus', u'wallaby, brush kangaroo', u'koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus', u'jellyfish', u'brain coral', u'flatworm, platyhelminth', u'snail', u'slug', u'sea slug, nudibranch', u'chiton, coat-of-mail shell, sea cradle, polyplacophore', u'chambered nautilus, pearly nautilus, nautilus', u'fiddler crab', u'king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica', u'American lobster, Northern lobster, Maine lobster, Homarus americanus', u'spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish', u'black stork, Ciconia nigra', u'spoonbill', u'flamingo', u'little blue heron, Egretta caerulea', u'American egret, great white heron, Egretta albus', u'limpkin, Aramus pictus', u'European gallinule, Porphyrio porphyrio', u'American coot, marsh hen, mud hen, water hen, Fulica americana', u'red-backed sandpiper, dunlin, Erolia alpina', u'pelican', u'albatross, mollymawk', u'grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus', u'killer whale, killer, orca, grampus, sea wolf, Orcinus orca', u'sea lion', u'Japanese spaniel', u'Maltese dog, Maltese terrier, Maltese', u'Blenheim spaniel', u'papillon', u'beagle', u'bloodhound, sleuthhound', u'bluetick', u'black-and-tan coonhound', u'Walker hound, Walker foxhound', u'English foxhound', u'borzoi, Russian wolfhound', u'Irish wolfhound', u'Italian greyhound', u'Norwegian elkhound, elkhound', u'Saluki, gazelle hound', u'Staffordshire bullterrier, Staffordshire bull terrier', u'American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier', u'Bedlington terrier', u'Kerry blue terrier', u'Norfolk terrier', u'Lakeland terrier', u'Sealyham terrier, Sealyham', u'Airedale, Airedale terrier', u'Australian terrier', u'Boston bull, Boston terrier', u'silky terrier, Sydney silky', u'West Highland white terrier', u'flat-coated retriever', u'curly-coated retriever', u'golden retriever', u'vizsla, Hungarian pointer', u'English setter', u'Brittany spaniel', u'clumber, clumber spaniel', u'English springer, English springer spaniel', u'Welsh springer spaniel', u'cocker spaniel, English cocker spaniel, cocker', u'Sussex spaniel', u'Irish water spaniel', u'groenendael', u'malinois', u'kelpie', u'Old English sheepdog, bobtail', u'Shetland sheepdog, Shetland sheep dog, Shetland', u'collie', u'Border collie', u'Bouvier des Flandres, Bouviers des Flandres', u'Rottweiler', u'German shepherd, German shepherd dog, German police dog, alsatian', u'Appenzeller', u'EntleBucher', u'bull mastiff', u'French bulldog', u'malamute, malemute, Alaskan malamute', u'dalmatian, coach dog, carriage dog', u'Newfoundland, Newfoundland dog', u'Pembroke, Pembroke Welsh corgi', u'Cardigan, Cardigan Welsh corgi', u'toy poodle', u'miniature poodle', u'standard poodle', u'Mexican hairless', u'timber wolf, grey wolf, gray wolf, Canis lupus', u'white wolf, Arctic wolf, Canis lupus tundrarum', u'red wolf, maned wolf, Canis rufus, Canis niger', u'coyote, prairie wolf, brush wolf, Canis latrans', u'dingo, warrigal, warragal, Canis dingo', u'dhole, Cuon alpinus', u'red fox, Vulpes vulpes', u'kit fox, Vulpes macrotis', u'Arctic fox, white fox, Alopex lagopus', u'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor', u'lynx, catamount', u'leopard, Panthera pardus', u'snow leopard, ounce, Panthera uncia', u'jaguar, panther, Panthera onca, Felis onca', u'lion, king of beasts, Panthera leo', u'American black bear, black bear, Ursus americanus, Euarctos americanus', u'ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus', u'sloth bear, Melursus ursinus, Ursus ursinus', u'tiger beetle', u'ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle', u'ground beetle, carabid beetle', u'long-horned beetle, longicorn, longicorn beetle', u'leaf beetle, chrysomelid', u'dung beetle', u'rhinoceros beetle', u'weevil', u'fly', u'walking stick, walkingstick, stick insect', u'cicada, cicala', u'leafhopper', u'lacewing, lacewing fly', u"dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", u'damselfly', u'admiral', u'ringlet, ringlet butterfly', u'monarch, monarch butterfly, milkweed butterfly, Danaus plexippus', u'cabbage butterfly', u'sulphur butterfly, sulfur butterfly', u'lycaenid, lycaenid butterfly', u'sea cucumber, holothurian', u'wood rabbit, cottontail, cottontail rabbit', u'fox squirrel, eastern fox squirrel, Sciurus niger', u'sorrel', u'hog, pig, grunter, squealer, Sus scrofa', u'wild boar, boar, Sus scrofa', u'water buffalo, water ox, Asiatic buffalo, Bubalus bubalis', u'impala, Aepyceros melampus', u'gazelle', u'Arabian camel, dromedary, Camelus dromedarius', u'llama', u'weasel', u'polecat, fitch, foulmart, foumart, Mustela putorius', u'black-footed ferret, ferret, Mustela nigripes', u'skunk, polecat, wood pussy', u'armadillo', u'three-toed sloth, ai, Bradypus tridactylus', u'gorilla, Gorilla gorilla', u'chimpanzee, chimp, Pan troglodytes', u'gibbon, Hylobates lar', u'siamang, Hylobates syndactylus, Symphalangus syndactylus', u'langur', u'colobus, colobus monkey', u'proboscis monkey, Nasalis larvatus', u'capuchin, ringtail, Cebus capucinus', u'howler monkey, howler', u'spider monkey, Ateles geoffroyi', u'squirrel monkey, Saimiri sciureus', u'Madagascar cat, ring-tailed lemur, Lemur catta', u'Indian elephant, Elephas maximus', u'African elephant, Loxodonta africana', u'lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens', u'giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca', u'eel', u'coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch', u'rock beauty, Holocanthus tricolor', u'gar, garfish, garpike, billfish, Lepisosteus osseus', u'lionfish', u'puffer, pufferfish, blowfish, globefish', u'aircraft carrier, carrier, flattop, attack aircraft carrier', u'airliner', u'airship, dirigible', u'altar', u'ambulance', u'amphibian, amphibious vehicle', u'analog clock', u'ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin', u'assault rifle, assault gun', u'balance beam, beam', u'balloon', u'ballpoint, ballpoint pen, ballpen, Biro', u'bannister, banister, balustrade, balusters, handrail', u'barbell', u'barrel, cask', u'barrow, garden cart, lawn cart, wheelbarrow', u'baseball', u'basketball', u'bath towel', u'beacon, lighthouse, beacon light, pharos', u'beer bottle', u'beer glass', u'bell cote, bell cot', u'bicycle-built-for-two, tandem bicycle, tandem', u'binoculars, field glasses, opera glasses', u'bobsled, bobsleigh, bob', u'bolo tie, bolo, bola tie, bola', u'bookshop, bookstore, bookstall', u'bottlecap', u'brass, memorial tablet, plaque', u'breakwater, groin, groyne, mole, bulwark, seawall, jetty', u'breastplate, aegis, egis', u'bucket, pail', u'buckle', u'bulletproof vest', u'bullet train, bullet', u'caldron, cauldron', u'candle, taper, wax light', u'carousel, carrousel, merry-go-round, roundabout, whirligig', u"carpenter's kit, tool kit", u'car wheel', u'cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM', u'cassette player', u'castle', u'CD player', u'cello, violoncello', u'cellular telephone, cellular phone, cellphone, cell, mobile phone', u'chainlink fence', u'chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour', u'chime, bell, gong', u'china cabinet, china closet', u'church, church building', u'cinema, movie theater, movie theatre, movie house, picture palace', u'cleaver, meat cleaver, chopper', u'cliff dwelling', u'cloak', u'clog, geta, patten, sabot', u'cocktail shaker', u'coil, spiral, volute, whorl, helix', u'combination lock', u'container ship, containership, container vessel', u'convertible', u'corkscrew, bottle screw', u'cowboy hat, ten-gallon hat', u'cradle', u'crash helmet', u'croquet ball', u'dial telephone, dial phone', u'digital clock', u'digital watch', u'dining table, board', u'dishrag, dishcloth', u'dock, dockage, docking facility', u'dogsled, dog sled, dog sleigh', u'doormat, welcome mat', u'drilling platform, offshore rig', u'dumbbell', u'electric fan, blower', u'electric guitar', u'electric locomotive', u'envelope', u'file, file cabinet, filing cabinet', u'flagpole, flagstaff', u'flute, transverse flute', u'folding chair', u'football helmet', u'forklift', u'frying pan, frypan, skillet', u'gasmask, respirator, gas helmet', u'gas pump, gasoline pump, petrol pump, island dispenser', u'goblet', u'golf ball', u'golfcart, golf cart', u'gondola', u'greenhouse, nursery, glasshouse', u'grille, radiator grille', u'guillotine', u'hair slide', u'half track', u'hand blower, blow dryer, blow drier, hair dryer, hair drier', u'hand-held computer, hand-held microcomputer', u'holster', u'hook, claw', u'hoopskirt, crinoline', u'horizontal bar, high bar', u'hourglass', u"jack-o'-lantern", u'jean, blue jean, denim', u'jeep, landrover', u'jigsaw puzzle', u'lab coat, laboratory coat', u'ladle', u'lampshade, lamp shade', u'laptop, laptop computer', u'lawn mower, mower', u'lens cap, lens cover', u'letter opener, paper knife, paperknife', u'library', u'lifeboat', u'lighter, light, igniter, ignitor', u'limousine, limo', u'liner, ocean liner', u'lipstick, lip rouge', u'lotion', u'loudspeaker, speaker, speaker unit, loudspeaker system, speaker system', u"loupe, jeweler's loupe", u'lumbermill, sawmill', u'mailbag, postbag', u'mailbox, letter box', u'maillot', u'maillot, tank suit', u'manhole cover', u'marimba, xylophone', u'maypole', u'maze, labyrinth', u'megalith, megalithic structure', u'military uniform', u'milk can', u'missile', u'mixing bowl', u'mobile home, manufactured home', u'Model T', u'mountain bike, all-terrain bike, off-roader', u'muzzle', u'nail', u'necklace', u'nipple', u'obelisk', u'odometer, hodometer, mileometer, milometer', u'oil filter', u'oscilloscope, scope, cathode-ray oscilloscope, CRO', u'paddle, boat paddle', u'paddlewheel, paddle wheel', u'padlock', u'palace', u'paper towel', u'parallel bars, bars', u'pedestal, plinth, footstall', u'pencil box, pencil case', u'pencil sharpener', u'pick, plectrum, plectron', u'pickelhaube', u'picket fence, paling', u'pill bottle', u'pillow', u'ping-pong ball', u'pinwheel', u"plane, carpenter's plane, woodworking plane", u'planetarium', u'plastic bag', u'plate rack', u'plow, plough', u"plunger, plumber's helper", u'Polaroid camera, Polaroid Land camera', u'pole', u'police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria', u'pool table, billiard table, snooker table', u'pop bottle, soda bottle', u'pot, flowerpot', u"potter's wheel", u'power drill', u'projectile, missile', u'punching bag, punch bag, punching ball, punchball', u'quill, quill pen', u'quilt, comforter, comfort, puff', u'radio, wireless', u'radio telescope, radio reflector', u'rain barrel', u'recreational vehicle, RV, R.V.', u'reel', u'reflex camera', u'remote control, remote', u'restaurant, eating house, eating place, eatery', u'revolver, six-gun, six-shooter', u'rifle', u'rubber eraser, rubber, pencil eraser', u'rugby ball', u'rule, ruler', u'saltshaker, salt shaker', u'sandal', u'scale, weighing machine', u'school bus', u'seat belt, seatbelt', u'shield, buckler', u'shovel', u'sleeping bag', u'slide rule, slipstick', u'sliding door', u'slot, one-armed bandit', u'snorkel', u'snowmobile', u'snowplow, snowplough', u'soccer ball', u'solar dish, solar collector, solar furnace', u'soup bowl', u'space shuttle', u'spatula', u'spindle', u'spotlight, spot', u'steam locomotive', u'steel arch bridge', u'steel drum', u'stole', u'stone wall', u'streetcar, tram, tramcar, trolley, trolley car', u'suit, suit of clothes', u'sundial', u'sunglass', u'sunglasses, dark glasses, shades', u'sunscreen, sunblock, sun blocker', u'switch, electric switch, electrical switch', u'table lamp', u'tank, army tank, armored combat vehicle, armoured combat vehicle', u'tape player', u'television, television system', u'tennis ball', u'thimble', u'tile roof', u'toilet seat', u'totem pole', u'trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi', u'tricycle, trike, velocipede', u'triumphal arch', u'trolleybus, trolley coach, trackless trolley', u'turnstile', u'umbrella', u'unicycle, monocycle', u'vacuum, vacuum cleaner', u'vault', u'velvet', u'violin, fiddle', u'volleyball', u'waffle iron', u'wall clock', u'wallet, billfold, notecase, pocketbook', u'wardrobe, closet, press', u'warplane, military plane', u'washbasin, handbasin, washbowl, lavabo, wash-hand basin', u'water bottle', u'whistle', u'wine bottle', u'wool, woolen, woollen', u'worm fence, snake fence, snake-rail fence, Virginia fence', u'yawl', u'crossword puzzle, crossword', u'traffic light, traffic signal, stoplight', u'plate', u'guacamole', u'trifle', u'ice lolly, lolly, lollipop, popsicle', u'French loaf', u'bagel, beigel', u'pretzel', u'broccoli', u'cauliflower', u'artichoke, globe artichoke', u'bell pepper', u'lemon', u'pineapple, ananas', u'custard apple', u'chocolate sauce, chocolate syrup', u'meat loaf, meatloaf', u'alp', u'bubble', u'cliff, drop, drop-off', u'coral reef', u'lakeside, lakeshore', u'promontory, headland, head, foreland', u'valley, vale', u'volcano', u'ballplayer, baseball player', u"yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum", u'coral fungus', u'hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa', u'bolete', u'ear, spike, capitulum', u'toilet tissue, toilet paper, bathroom tissue'] resnet_v1_50 labels: [u'goldfish, Carassius auratus', u'tiger shark, Galeocerdo cuvieri', u'electric ray, crampfish, numbfish, torpedo', u'ostrich, Struthio camelus', u'brambling, Fringilla montifringilla', u'goldfinch, Carduelis carduelis', u'house finch, linnet, Carpodacus mexicanus', u'bulbul', u'water ouzel, dipper', u'bald eagle, American eagle, Haliaeetus leucocephalus', u'vulture', u'great grey owl, great gray owl, Strix nebulosa', u'European fire salamander, Salamandra salamandra', u'common newt, Triturus vulgaris', u'spotted salamander, Ambystoma maculatum', u'axolotl, mud puppy, Ambystoma mexicanum', u'bullfrog, Rana catesbeiana', u'tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui', u'loggerhead, loggerhead turtle, Caretta caretta', u'leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea', u'mud turtle', u'box turtle, box tortoise', u'American chameleon, anole, Anolis carolinensis', u'whiptail, whiptail lizard', u'frilled lizard, Chlamydosaurus kingi', u'alligator lizard', u'Gila monster, Heloderma suspectum', u'green lizard, Lacerta viridis', u'African chameleon, Chamaeleo chamaeleon', u'Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis', u'African crocodile, Nile crocodile, Crocodylus niloticus', u'American alligator, Alligator mississipiensis', u'night snake, Hypsiglena torquata', u'diamondback, diamondback rattlesnake, Crotalus adamanteus', u'sidewinder, horned rattlesnake, Crotalus cerastes', u'trilobite', u'harvestman, daddy longlegs, Phalangium opilio', u'black and gold garden spider, Argiope aurantia', u'black widow, Latrodectus mactans', u'tarantula', u'wolf spider, hunting spider', u'black grouse', u'ruffed grouse, partridge, Bonasa umbellus', u'prairie chicken, prairie grouse, prairie fowl', u'quail', u'sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita', u'lorikeet', u'coucal', u'hornbill', u'black swan, Cygnus atratus', u'platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus', u'wallaby, brush kangaroo', u'koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus', u'jellyfish', u'brain coral', u'flatworm, platyhelminth', u'snail', u'slug', u'sea slug, nudibranch', u'chiton, coat-of-mail shell, sea cradle, polyplacophore', u'chambered nautilus, pearly nautilus, nautilus', u'fiddler crab', u'king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica', u'American lobster, Northern lobster, Maine lobster, Homarus americanus', u'spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish', u'black stork, Ciconia nigra', u'spoonbill', u'flamingo', u'little blue heron, Egretta caerulea', u'American egret, great white heron, Egretta albus', u'limpkin, Aramus pictus', u'European gallinule, Porphyrio porphyrio', u'American coot, marsh hen, mud hen, water hen, Fulica americana', u'red-backed sandpiper, dunlin, Erolia alpina', u'pelican', u'albatross, mollymawk', u'grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus', u'killer whale, killer, orca, grampus, sea wolf, Orcinus orca', u'sea lion', u'Japanese spaniel', u'Maltese dog, Maltese terrier, Maltese', u'Blenheim spaniel', u'papillon', u'beagle', u'bloodhound, sleuthhound', u'bluetick', u'black-and-tan coonhound', u'Walker hound, Walker foxhound', u'English foxhound', u'borzoi, Russian wolfhound', u'Irish wolfhound', u'Italian greyhound', u'Norwegian elkhound, elkhound', u'Saluki, gazelle hound', u'Staffordshire bullterrier, Staffordshire bull terrier', u'American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier', u'Bedlington terrier', u'Kerry blue terrier', u'Norfolk terrier', u'Lakeland terrier', u'Sealyham terrier, Sealyham', u'Airedale, Airedale terrier', u'Australian terrier', u'Boston bull, Boston terrier', u'silky terrier, Sydney silky', u'West Highland white terrier', u'flat-coated retriever', u'curly-coated retriever', u'golden retriever', u'vizsla, Hungarian pointer', u'English setter', u'Brittany spaniel', u'clumber, clumber spaniel', u'English springer, English springer spaniel', u'Welsh springer spaniel', u'cocker spaniel, English cocker spaniel, cocker', u'Sussex spaniel', u'Irish water spaniel', u'groenendael', u'malinois', u'kelpie', u'Old English sheepdog, bobtail', u'Shetland sheepdog, Shetland sheep dog, Shetland', u'collie', u'Border collie', u'Bouvier des Flandres, Bouviers des Flandres', u'Rottweiler', u'German shepherd, German shepherd dog, German police dog, alsatian', u'Appenzeller', u'EntleBucher', u'bull mastiff', u'French bulldog', u'malamute, malemute, Alaskan malamute', u'dalmatian, coach dog, carriage dog', u'Newfoundland, Newfoundland dog', u'Pembroke, Pembroke Welsh corgi', u'Cardigan, Cardigan Welsh corgi', u'toy poodle', u'miniature poodle', u'standard poodle', u'Mexican hairless', u'timber wolf, grey wolf, gray wolf, Canis lupus', u'white wolf, Arctic wolf, Canis lupus tundrarum', u'red wolf, maned wolf, Canis rufus, Canis niger', u'coyote, prairie wolf, brush wolf, Canis latrans', u'dingo, warrigal, warragal, Canis dingo', u'dhole, Cuon alpinus', u'red fox, Vulpes vulpes', u'kit fox, Vulpes macrotis', u'Arctic fox, white fox, Alopex lagopus', u'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor', u'lynx, catamount', u'leopard, Panthera pardus', u'snow leopard, ounce, Panthera uncia', u'jaguar, panther, Panthera onca, Felis onca', u'lion, king of beasts, Panthera leo', u'American black bear, black bear, Ursus americanus, Euarctos americanus', u'ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus', u'sloth bear, Melursus ursinus, Ursus ursinus', u'tiger beetle', u'ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle', u'ground beetle, carabid beetle', u'long-horned beetle, longicorn, longicorn beetle', u'leaf beetle, chrysomelid', u'dung beetle', u'rhinoceros beetle', u'weevil', u'fly', u'walking stick, walkingstick, stick insect', u'cicada, cicala', u'leafhopper', u'lacewing, lacewing fly', u"dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk", u'damselfly', u'admiral', u'ringlet, ringlet butterfly', u'monarch, monarch butterfly, milkweed butterfly, Danaus plexippus', u'cabbage butterfly', u'sulphur butterfly, sulfur butterfly', u'lycaenid, lycaenid butterfly', u'sea cucumber, holothurian', u'wood rabbit, cottontail, cottontail rabbit', u'fox squirrel, eastern fox squirrel, Sciurus niger', u'sorrel', u'hog, pig, grunter, squealer, Sus scrofa', u'wild boar, boar, Sus scrofa', u'water buffalo, water ox, Asiatic buffalo, Bubalus bubalis', u'impala, Aepyceros melampus', u'gazelle', u'Arabian camel, dromedary, Camelus dromedarius', u'llama', u'weasel', u'polecat, fitch, foulmart, foumart, Mustela putorius', u'black-footed ferret, ferret, Mustela nigripes', u'skunk, polecat, wood pussy', u'armadillo', u'three-toed sloth, ai, Bradypus tridactylus', u'gorilla, Gorilla gorilla', u'chimpanzee, chimp, Pan troglodytes', u'gibbon, Hylobates lar', u'siamang, Hylobates syndactylus, Symphalangus syndactylus', u'langur', u'colobus, colobus monkey', u'proboscis monkey, Nasalis larvatus', u'capuchin, ringtail, Cebus capucinus', u'howler monkey, howler', u'spider monkey, Ateles geoffroyi', u'squirrel monkey, Saimiri sciureus', u'Madagascar cat, ring-tailed lemur, Lemur catta', u'Indian elephant, Elephas maximus', u'African elephant, Loxodonta africana', u'lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens', u'giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca', u'eel', u'coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch', u'rock beauty, Holocanthus tricolor', u'gar, garfish, garpike, billfish, Lepisosteus osseus', u'lionfish', u'puffer, pufferfish, blowfish, globefish', u'aircraft carrier, carrier, flattop, attack aircraft carrier', u'airliner', u'airship, dirigible', u'altar', u'ambulance', u'amphibian, amphibious vehicle', u'analog clock', u'ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin', u'assault rifle, assault gun', u'balance beam, beam', u'balloon', u'ballpoint, ballpoint pen, ballpen, Biro', u'bannister, banister, balustrade, balusters, handrail', u'barbell', u'barrel, cask', u'barrow, garden cart, lawn cart, wheelbarrow', u'baseball', u'basketball', u'bath towel', u'beacon, lighthouse, beacon light, pharos', u'beer bottle', u'beer glass', u'bell cote, bell cot', u'bicycle-built-for-two, tandem bicycle, tandem', u'binoculars, field glasses, opera glasses', u'bobsled, bobsleigh, bob', u'bolo tie, bolo, bola tie, bola', u'bookshop, bookstore, bookstall', u'bottlecap', u'brass, memorial tablet, plaque', u'breakwater, groin, groyne, mole, bulwark, seawall, jetty', u'breastplate, aegis, egis', u'bucket, pail', u'buckle', u'bulletproof vest', u'bullet train, bullet', u'caldron, cauldron', u'candle, taper, wax light', u'carousel, carrousel, merry-go-round, roundabout, whirligig', u"carpenter's kit, tool kit", u'car wheel', u'cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM', u'cassette player', u'castle', u'CD player', u'cello, violoncello', u'cellular telephone, cellular phone, cellphone, cell, mobile phone', u'chainlink fence', u'chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour', u'chime, bell, gong', u'china cabinet, china closet', u'church, church building', u'cinema, movie theater, movie theatre, movie house, picture palace', u'cleaver, meat cleaver, chopper', u'cliff dwelling', u'cloak', u'clog, geta, patten, sabot', u'cocktail shaker', u'coil, spiral, volute, whorl, helix', u'combination lock', u'container ship, containership, container vessel', u'convertible', u'corkscrew, bottle screw', u'cowboy hat, ten-gallon hat', u'cradle', u'crash helmet', u'croquet ball', u'dial telephone, dial phone', u'digital clock', u'digital watch', u'dining table, board', u'dishrag, dishcloth', u'dock, dockage, docking facility', u'dogsled, dog sled, dog sleigh', u'doormat, welcome mat', u'drilling platform, offshore rig', u'dumbbell', u'electric fan, blower', u'electric guitar', u'electric locomotive', u'envelope', u'file, file cabinet, filing cabinet', u'flagpole, flagstaff', u'flute, transverse flute', u'folding chair', u'football helmet', u'forklift', u'frying pan, frypan, skillet', u'gasmask, respirator, gas helmet', u'gas pump, gasoline pump, petrol pump, island dispenser', u'goblet', u'golf ball', u'golfcart, golf cart', u'gondola', u'greenhouse, nursery, glasshouse', u'grille, radiator grille', u'guillotine', u'hair slide', u'half track', u'hand blower, blow dryer, blow drier, hair dryer, hair drier', u'hand-held computer, hand-held microcomputer', u'holster', u'hook, claw', u'hoopskirt, crinoline', u'horizontal bar, high bar', u'hourglass', u"jack-o'-lantern", u'jean, blue jean, denim', u'jeep, landrover', u'jigsaw puzzle', u'lab coat, laboratory coat', u'ladle', u'lampshade, lamp shade', u'laptop, laptop computer', u'lawn mower, mower', u'lens cap, lens cover', u'letter opener, paper knife, paperknife', u'library', u'lifeboat', u'lighter, light, igniter, ignitor', u'limousine, limo', u'liner, ocean liner', u'lipstick, lip rouge', u'lotion', u'loudspeaker, speaker, speaker unit, loudspeaker system, speaker system', u"loupe, jeweler's loupe", u'lumbermill, sawmill', u'mailbag, postbag', u'mailbox, letter box', u'maillot', u'maillot, tank suit', u'manhole cover', u'marimba, xylophone', u'maypole', u'maze, labyrinth', u'megalith, megalithic structure', u'military uniform', u'milk can', u'missile', u'mixing bowl', u'mobile home, manufactured home', u'Model T', u'mountain bike, all-terrain bike, off-roader', u'muzzle', u'nail', u'necklace', u'nipple', u'obelisk', u'odometer, hodometer, mileometer, milometer', u'oil filter', u'oscilloscope, scope, cathode-ray oscilloscope, CRO', u'paddle, boat paddle', u'paddlewheel, paddle wheel', u'padlock', u'palace', u'paper towel', u'parallel bars, bars', u'pedestal, plinth, footstall', u'pencil box, pencil case', u'pencil sharpener', u'pick, plectrum, plectron', u'pickelhaube', u'picket fence, paling', u'pill bottle', u'pillow', u'ping-pong ball', u'pinwheel', u"plane, carpenter's plane, woodworking plane", u'planetarium', u'plastic bag', u'plate rack', u'plow, plough', u"plunger, plumber's helper", u'Polaroid camera, Polaroid Land camera', u'pole', u'police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria', u'pool table, billiard table, snooker table', u'pop bottle, soda bottle', u'pot, flowerpot', u"potter's wheel", u'power drill', u'projectile, missile', u'punching bag, punch bag, punching ball, punchball', u'quill, quill pen', u'quilt, comforter, comfort, puff', u'radio, wireless', u'radio telescope, radio reflector', u'rain barrel', u'recreational vehicle, RV, R.V.', u'reel', u'reflex camera', u'remote control, remote', u'restaurant, eating house, eating place, eatery', u'revolver, six-gun, six-shooter', u'rifle', u'rubber eraser, rubber, pencil eraser', u'rugby ball', u'rule, ruler', u'saltshaker, salt shaker', u'sandal', u'scale, weighing machine', u'school bus', u'seat belt, seatbelt', u'shield, buckler', u'shovel', u'sleeping bag', u'slide rule, slipstick', u'sliding door', u'slot, one-armed bandit', u'snorkel', u'snowmobile', u'snowplow, snowplough', u'soccer ball', u'solar dish, solar collector, solar furnace', u'soup bowl', u'space shuttle', u'spatula', u'spindle', u'spotlight, spot', u'steam locomotive', u'steel arch bridge', u'steel drum', u'stole', u'stone wall', u'streetcar, tram, tramcar, trolley, trolley car', u'suit, suit of clothes', u'sundial', u'sunglass', u'sunglasses, dark glasses, shades', u'sunscreen, sunblock, sun blocker', u'switch, electric switch, electrical switch', u'table lamp', u'tank, army tank, armored combat vehicle, armoured combat vehicle', u'tape player', u'television, television system', u'tennis ball', u'thimble', u'tile roof', u'toilet seat', u'totem pole', u'trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi', u'tricycle, trike, velocipede', u'triumphal arch', u'trolleybus, trolley coach, trackless trolley', u'turnstile', u'umbrella', u'unicycle, monocycle', u'vacuum, vacuum cleaner', u'vault', u'velvet', u'violin, fiddle', u'volleyball', u'waffle iron', u'wall clock', u'wallet, billfold, notecase, pocketbook', u'wardrobe, closet, press', u'warplane, military plane', u'washbasin, handbasin, washbowl, lavabo, wash-hand basin', u'water bottle', u'whistle', u'wine bottle', u'wool, woolen, woollen', u'worm fence, snake fence, snake-rail fence, Virginia fence', u'yawl', u'crossword puzzle, crossword', u'traffic light, traffic signal, stoplight', u'plate', u'guacamole', u'trifle', u'ice lolly, lolly, lollipop, popsicle', u'French loaf', u'bagel, beigel', u'pretzel', u'broccoli', u'cauliflower', u'artichoke, globe artichoke', u'bell pepper', u'lemon', u'pineapple, ananas', u'custard apple', u'chocolate sauce, chocolate syrup', u'meat loaf, meatloaf', u'alp', u'bubble', u'cliff, drop, drop-off', u'coral reef', u'lakeside, lakeshore', u'promontory, headland, head, foreland', u'valley, vale', u'volcano', u'ballplayer, baseball player', u"yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum", u'coral fungus', u'hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa', u'bolete', u'ear, spike, capitulum', u'toilet tissue, toilet paper, bathroom tissue'] ###Markdown Choose parameters ###Code #@title After running this cell manually, it will auto-run if you change the selected value. { run: "auto", display-mode: "form" } CATEGORY_TO_OPTIMIZE = "lemon" #@param {type:"string"} #@markdown Some of my favorite categories are "bee", "lemon", "strawberry", "Granny Smith", "pelican" (pelican is quite difficult to optimize) #@markdown --- NUMBER_STROKES = 2 #@param {type:"slider", min:1, max:30, step:1} #@markdown Number of strokes per canvas. Make sure to keep this a low number (~3-10) if you are using a lot of canvases. #@markdown --- BATCH_SIZE = 3 #@param {type:"slider", min:1, max:5, step:1} #@markdown --- PAINTER_MODE = "VAE" #@param ["GAN", "VAE"] #@markdown VAE mode results in more solid strokes that are easier to optimize for. #@markdown GAN mode results in strokes that actually look like paintbrush strokes, although they might be harder to optimize for. #@markdown --- ADD_NOISE = True #@param {type:"boolean"} #@markdown Experimental. Adding uncertainty may (or may not) help produce more robust images. Currently only the GAN painter uses this parameter. #@markdown --- CANVAS_MULTIPLIER = 4 #@param {type:"slider", min:1, max:8} #@markdown Number of times canvas is repeated horizontally and vertically. The amount of computation increases exponentially with this parameter. #@markdown --- OVERLAP_PX = 48 #@param {type: "slider", min: 0, max: 48} #@markdown Number of overlapping pixels between canvases (the canvases are size 64x64). #@markdown --- CONNECTED_STROKES = False #@param {type:"boolean"} #@markdown If true, strokes begin at the endpoint of the previous stroke. Otherwise, strokes are independent and can start anywhere. #@markdown --- LEARNING_RATE = 0.05 #@param {type: "number"} #@markdown --- #@markdown ### Choose which models are optimized *at the same time*: USE_INCEPTION_V1 = False #@param {type:"boolean"} USE_INCEPTION_V1_SLIM = True #@param {type:"boolean"} USE_INCEPTION_V2_SLIM = True #@param {type:"boolean"} USE_MOBILENET_V2_14 = True #@param {type:"boolean"} USE_RESNET_V1_50 = True #@param {type:"boolean"} MODELS_TO_OPTIMIZE = [] if USE_INCEPTION_V1: MODELS_TO_OPTIMIZE.append('inception_v1') if USE_INCEPTION_V1_SLIM: MODELS_TO_OPTIMIZE.append('inception_v1_slim') if USE_INCEPTION_V2_SLIM: MODELS_TO_OPTIMIZE.append('inception_v2_slim') if USE_MOBILENET_V2_14: MODELS_TO_OPTIMIZE.append('mobilenet_v2_14') if USE_RESNET_V1_50: MODELS_TO_OPTIMIZE.append('resnet_v1_50') print("Category to optimize", CATEGORY_TO_OPTIMIZE) print("Number of strokes", NUMBER_STROKES) print("Batch size", BATCH_SIZE) print("Using {} painter".format(PAINTER_MODE)) print("Adding noise", ADD_NOISE) print("Canvas multiplier", CANVAS_MULTIPLIER) print("Pixel overlap", OVERLAP_PX) print("Using connected strokes", CONNECTED_STROKES) print("Learning Rate", LEARNING_RATE) print("Models to optimize", MODELS_TO_OPTIMIZE) print('--------------------') search(CATEGORY_TO_OPTIMIZE) if USE_INCEPTION_V1: if CATEGORY_TO_OPTIMIZE not in models.InceptionV1().labels: raise Exception("{} not in inception_v1".format(CATEGORY_TO_OPTIMIZE)) if USE_INCEPTION_V1_SLIM: if CATEGORY_TO_OPTIMIZE not in models.InceptionV1_slim().labels: raise Exception("{} not in inception_v1_slim".format(CATEGORY_TO_OPTIMIZE)) if USE_INCEPTION_V2_SLIM: if CATEGORY_TO_OPTIMIZE not in models.InceptionV2_slim().labels: raise Exception("{} not in inception_v2_slim".format(CATEGORY_TO_OPTIMIZE)) if USE_MOBILENET_V2_14: if CATEGORY_TO_OPTIMIZE not in models.MobilenetV2_14_slim().labels: raise Exception("{} not in mobilenet_v2_14".format(CATEGORY_TO_OPTIMIZE)) if USE_RESNET_V1_50: if CATEGORY_TO_OPTIMIZE not in models.ResnetV1_50_slim().labels: raise Exception("{} not in resnet_v1_50".format(CATEGORY_TO_OPTIMIZE)) ###Output ('Category to optimize', 'bald eagle, American eagle, Haliaeetus leucocephalus') ('Number of strokes', 2) ('Batch size', 3) Using VAE painter ('Adding noise', True) ('Canvas multiplier', 4) ('Pixel overlap', 48) ('Using connected strokes', False) ('Learning Rate', 0.05) ('Models to optimize', ['inception_v1_slim', 'inception_v2_slim', 'mobilenet_v2_14', 'resnet_v1_50']) -------------------- searching matching labels for bald eagle, American eagle, Haliaeetus leucocephalus inception_v1 labels: [] inception_v1_slim labels: [u'bald eagle, American eagle, Haliaeetus leucocephalus'] inception_v2_slim labels: [u'bald eagle, American eagle, Haliaeetus leucocephalus'] mobilenet_v2_14 labels: [u'bald eagle, American eagle, Haliaeetus leucocephalus'] resnet_v1_50 labels: [u'bald eagle, American eagle, Haliaeetus leucocephalus'] ###Markdown Run! ###Code lol = LucidGraph(CATEGORY_TO_OPTIMIZE, NUMBER_STROKES, BATCH_SIZE, painter_type=PAINTER_MODE, connected=CONNECTED_STROKES, add_noise=ADD_NOISE, lr=LEARNING_RATE, overlap_px=OVERLAP_PX, repeat=CANVAS_MULTIPLIER, alternate=False, models_to_optimize=MODELS_TO_OPTIMIZE) if PAINTER_MODE == "GAN": if ADD_NOISE: lol.load_painter_checkpoint('tf_gan4') else: lol.load_painter_checkpoint('tf_gan3') elif PAINTER_MODE == "VAE": lol.load_painter_checkpoint('tf_vae') lol.train() ###Output _____no_output_____ ###Markdown Evaluate results ###Code def print_results(): def sigmoid(x): s = 1/(1+np.exp(-x)) return s acs, dream_paintings = lol.sess.run([lol.actions, lol.resized_canvas]) actual_acs = sigmoid(acs) for p in dream_paintings: show(p) print_results() def vid(my_frames): def frame(t): t = int(t*30) if t >= len(my_frames): t = len(my_frames)-1 return (np.hstack(my_frames[t])*255).astype(np.float) clip = mpy.VideoClip(frame, duration=len(my_frames)/30.) clip.write_videofile('tmp.mp4', fps=30.0) display(mpy.ipython_display('tmp.mp4', height=200, max_duration=70.)) # If the video is too long, you can skip some keep_1_in_n = 1 vid(lol.images[::keep_1_in_n]) ###Output _____no_output_____
Lab08/Phase_Picking.ipynb
###Markdown ESS 136A Lab 8 Convolutional Neural Network (Part 2) Due Mar 9, 2021, 17:00 > `Convolutional Neural Networks (ConvNets or CNNs) are a category of Neural Networks proven effective in image recognition and classification. ConvNets have been successful in identifying faces, objects and traffic signs apart from powering vision in robots and self-driving cars.` [More details](https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/) 1. Introduction> In this lab, we will build a Convolutional Neural Network to automatically detecting P and S phases in the seismic waveforms. This lab is modified from the paper entitled ["Generalized Seismic Phase Detection with Deep Learning" by Zachary E. Ross et al., 2019](https://arxiv.org/abs/1805.01075)> The training dataset are provided in the Waveform.npy and Label.npy. The waveforms (X) are composed of three components (N,E,Z) with the window length of 4 seconds. The sampling rate is 100 Hz. Therefore, for each training seismgram, there are 400*3 data points. The Labels (Y) distinguish 3 classes (P,S, and Noise windows) with 3 numbers (0,1,2). In order to perform multiple classification by CNN, we need to do one-hot encoding for the labels. The link of why we need one-hot encoding is attached: https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/. By using one-hot encoding we change the labels 0,1,and 2 into [1,0,0],[0,1,0],and[0,0,1] > We then split the training dataset into two parts: one for training, one for testing. We use the testing dataset to select best model. To measure the performance of best trained model, we plot the [confusion matrix](https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/:~:text=A%20confusion%20matrix%20is%20a,related%20terminology%20can%20be%20confusing.), [precision-recall curve](https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html) and [ROC curve](https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5).> __Note__: If you meet a bug from Keras packages (version problem), please try to change the import source. For example, you can switch `from keras.layers import Conv1D` to `from tensorflow.keras.layers import Conv1D` ###Code import numpy as np import matplotlib import matplotlib.pyplot as plt import scipy.stats as stats from obspy.signal.trigger import trigger_onset # sklearn packages from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.metrics import confusion_matrix, precision_recall_curve, roc_curve # keras packages from keras import backend as K from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.models import Sequential, Model from keras.layers import Input, Conv1D, MaxPooling1D, UpSampling1D,Flatten,Dense,Dropout,BatchNormalization from keras.utils import np_utils from keras.optimizers import Adam ###Output /Users/tianfeng/anaconda3/lib/python3.6/site-packages/obspy/signal/headers.py:93: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. ], align=True) Using TensorFlow backend. ###Markdown 2. Read Data > Load waveform (X) and label (Y) dataset from [Southern California Earthquake Data Center](http://scedc.caltech.edu/research-tools/deeplearning.html). The dataset used in this labe includes 10000 samples (1% of total dataset). The following section plot 3 examples of P/S waves and Noise windows. The window length are all 4 seconds with sampling rate of 100 Hz. The P and S wave arrivals occurs at the center of the windows. > In order to perform multiple classification with CNN, we need to perform one-hot encoding on labels [[link]](https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/). By using one-hot encoding we change the labels 0,1,and 2 into [1,0,0],[0,1,0],and[0,0,1] respectively. We use [1,0,0],[0,1,0],and[0,0,1] to represent P phase, noise, and S pahse respectively. ###Code X=np.load('Waveform.npy') Y=np.load('Label.npy') labels=['P','S','Noise'] # Plot examples of 3 classes matplotlib.rc('font', **{'size' : 15}) order=[0,2,1] plt.figure(figsize=(8,8)) for k in range(3): plt.subplot(3,1,k+1) for i in range(3): plt.plot(np.arange(400)*0.01,X[order[k],:,i]+i) plt.title(labels[k]) plt.yticks([]) if k<2: plt.xticks([]) plt.show() # convert integers to dummy variables (one hot encoding) encoder = LabelEncoder() encoded_Y = encoder.fit_transform(Y) en_Y = np_utils.to_categorical(encoded_Y) # split dataset into training set and validation set X_train, X_val, y_train, y_val = train_test_split(X, en_Y, test_size=0.33, random_state=42) ###Output _____no_output_____ ###Markdown 3. Build Model> Training a convolutional nerual network is similar to training a (fully-connected) nerual network. You can find the definition of loss function, optimizer, activation functions, epoch and batch size in the lab of nerual network. > The largest difference between CNN and NN is that CNN use layers called Conv1D or Conv2D. In our lab, waveforms are time series not a 2D images. So we use the [Conv1D](https://keras.io/api/layers/convolution_layers/convolution1d/). The first argument for Conv1D is the number of filters. It means the dimensionality of the output space (i.e. the number of output filters in the convolution). It must be a integer. The second argument is kernel size. It specifies the length of the 1D convolution window. Another important argument is strides, specifying the stride length of the convolution. It means the downsampling rate, if you set stride equals 2, the output time series would downsample by 2. It has similar effect as [pooling layers](https://keras.io/api/layers/pooling_layers/max_pooling1d/). The first layer is very special, you need to define the input shape (input_shape). In our case the shape of input is 400*3. The window length of a recording of waveform is 4 seconds and the sampling rate is 100 Hz. So we had 400 points for a waveform recording. The number 3 means the number of channels (N,E,Z).> We usually use relu function for the activation functions in the Conv1D and Dense layers, however, for the last layer, we should use softmax. The softmax function takes the output vector, and scales all values such that they sum up to 1. In this way, we get a vector of probabilities. The first entry in the output corresponds to the probability that the input image is a 0, the second entry that the input is 1, etc.:>$$P = \left[\begin{matrix} p(0) \\ p(1) \\ p(2) \\ ... \\ p(9) \end{matrix} \right] \quad , \quad \sum_{i=0}^9 P_i = 1$$>We now have to choose a loss function. For multi-class classification tasks, _categorical cross-entropy_ is usually a good choice. This loss function is defined as follows:>$$\mathcal{L} = - \sum_{c=0}^N y_c \log \left( p_c \right)$$>where $y_c$ is the label of class $c$, and $p$ is the predicted probability. Note that $y_c$ is either 0 or 1, and that $0 < p_c < 1$. With our chosen loss function, we are ready for the final assembly of the model.>In addition, we add Dropout. You can learn more about it if you are interested. [Dropout](https://towardsdatascience.com/machine-learning-part-20-dropout-keras-layers-explained-8c9f6dc4c9ab) is a technique used to prevent a model from overfitting. Dropout works by randomly setting the outgoing edges of hidden units (neurons that make up hidden layers) to 0 at each update of the training phase.> We build the model with the following code:> ```model = Sequential()model.add(Conv1D(16, 3, activation='relu',strides=2,input_shape=(n_in,3)))model.add(Conv1D(32, 3, strides=2,activation='relu'))model.add(Conv1D(64, 3, strides=2,activation='relu'))model.add(Conv1D(128, 3, strides=2,activation='relu'))model.add(Flatten())model.add(Dense(128, activation='relu'))model.add(Dropout(0.5))model.add(Dense(3, activation='softmax'))```> The model structure is shown below:> ![image](./Fig/phase_model.png) ###Code # 3 classes n_in=400 model = Sequential() # add convolutional layers model.add(Conv1D(16, 3, activation='relu',strides=2,input_shape=(n_in,3))) model.add(Conv1D(32, 3, strides=2,activation='relu')) model.add(Conv1D(64, 3, strides=2,activation='relu')) model.add(Conv1D(128, 3, strides=2,activation='relu')) # Flatten before fully connected layers model.add(Flatten()) model.add(Dense(128, activation='relu')) # Dropout to prevent a model from overfitting. 0.5 means 50% neurals are deactivated. model.add(Dropout(0.5)) # Softmax is suitable for multiple classification problem model.add(Dense(3, activation='softmax')) model.summary() adam=Adam(learning_rate=0.0005, beta_1=0.9, beta_2=0.999, amsgrad=False) model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy']) # Early stop es = EarlyStopping(monitor='val_accuracy', mode='max', verbose=1, patience=5) mc = ModelCheckpoint('CNNclassifier.h5', monitor='val_accuracy', mode='max', verbose=0, save_best_only=True) history=model.fit(X_train, y_train, epochs=100, batch_size=128, validation_data=(X_val, y_val), callbacks=[es,mc], verbose=0) ###Output Model: "sequential_1" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= conv1d_1 (Conv1D) (None, 199, 16) 160 _________________________________________________________________ conv1d_2 (Conv1D) (None, 99, 32) 1568 _________________________________________________________________ conv1d_3 (Conv1D) (None, 49, 64) 6208 _________________________________________________________________ conv1d_4 (Conv1D) (None, 24, 128) 24704 _________________________________________________________________ flatten_1 (Flatten) (None, 3072) 0 _________________________________________________________________ dense_1 (Dense) (None, 128) 393344 _________________________________________________________________ dropout_1 (Dropout) (None, 128) 0 _________________________________________________________________ dense_2 (Dense) (None, 3) 387 ================================================================= Total params: 426,371 Trainable params: 426,371 Non-trainable params: 0 _________________________________________________________________ Epoch 00019: early stopping ###Markdown 3. Training History> We have recorded the history of training with a variable named 'history'. We wll then visualize the history of the training/testing loss. In addition to loss, we can plot the metrics change with the training epoch. In the following plots, you can see the training loss would be smaller than testing loss after certain epoch. It means the model starts to overfit after that epoch and we should stop training then. ###Code # plot metrics plt.figure(figsize=(7,7)) plt.subplot(211) plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.legend(['train_loss','val_loss']) plt.subplot(212) plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.legend(['train_accuracy','val_accuracy']) plt.xlabel('epoch') scores = model.evaluate(X_val, y_val, verbose=0) print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100)) ###Output accuracy: 94.58% ###Markdown 4. Plotting Confusion Matrix> In this section, we would plot the confusion matrix. You could learn more about it through the [link](https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/:~:text=A%20confusion%20matrix%20is%20a,related%20terminology%20can%20be%20confusing.). ###Code y_pred = model.predict(X_val) y_val_nonhot=np.round(y_val.argmax(axis=1)) y_pred_nonhot=np.round(y_pred.argmax(axis=1)) cm = confusion_matrix(y_val_nonhot, y_pred_nonhot) print(cm) plt.figure(figsize=(6,6)) plt.imshow(cm, interpolation='nearest', cmap='jet') plt.colorbar() tick_marks = np.arange(3) plt.xticks(tick_marks, labels, rotation=45) plt.yticks(tick_marks, labels) plt.ylim([2.5,-0.5]) plt.xlim([-0.5,2.5]) plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') ###Output [[1025 50 49] [ 24 1034 27] [ 16 13 1062]] ###Markdown [5. Plotting Precision-Recall Curve](https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html) ###Code # precision recall curve plt.figure(figsize=(7,7)) precision = dict() recall = dict() for i in range(3): precision[i], recall[i], _ = precision_recall_curve(y_val[:, i],y_pred[:, i]) plt.plot(recall[i], precision[i], lw=2, label='{}'.format(labels[i])) plt.xlabel("recall") plt.ylabel("precision") plt.legend(loc="best") plt.title("precision vs. recall curve") plt.show() ###Output _____no_output_____ ###Markdown [6. Plotting ROC Curve](https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5) ###Code # roc curve plt.figure(figsize=(7,7)) fpr = dict() tpr = dict() for i in range(3): fpr[i], tpr[i], _ = roc_curve(y_val[:, i], y_pred[:, i]) plt.plot(fpr[i], tpr[i], lw=2, label='{}'.format(labels[i])) plt.xlabel("false positive rate") plt.ylabel("true positive rate") plt.legend(loc="best") plt.title("ROC curve") plt.show() ###Output _____no_output_____
tds/src/main/webapp/WEB-INF/altContent/startup/jupyter_notebooks/jupyter_viewer.ipynb
###Markdown Siphon THREDDS Jupyter Notebook ViewerDataset: {{datasetName}} Dependencies: Siphon: `pip install siphon` matplotlib: `pip install matplotlib` or `conda install -c conda-forge matplotlib` ipywidgets: `pip install ipywidgets` or `conda install -c conda-forge ipywidgets` then Using Jupyter Notebook: `jupyter nbextension enable --py widgetsnbextension` Using JupyterLab: Requires nodejs: `conda install nodejs` `jupyter labextension install @jupyter-widgets/jupyterlab-manager` numpy: `pip install numpy` or `conda install numpy` ###Code from siphon.catalog import TDSCatalog import matplotlib.pyplot as plt import numpy as np import ipywidgets as widgets catUrl = "{{catUrl}}"; datasetName = "{{datasetName}}"; ###Output _____no_output_____ ###Markdown Access a datasetWith the TDS catalog url, we can use Siphon to get the dataset named `datasetName`. ###Code catalog = TDSCatalog(catUrl) ds = catalog.datasets[datasetName] ds.name ###Output _____no_output_____ ###Markdown Datasets each have a set of access protocols: ###Code list(ds.access_urls) ###Output _____no_output_____ ###Markdown Siphon's `remote-access` returns a `Dataset` object, which opens the remote dataset and provides access to its metadata: ###Code dataset = ds.remote_access() list(dataset.ncattrs()) ###Output _____no_output_____ ###Markdown Display a variable: Run the cells below to get an interactive list of variables in this dataset. Select the variable you wish to view. Execute the next cell to display info about the selected variable and plot it. To plot a different variable, select it from the list and rerun the following cell. ###Code var_name = widgets.RadioButtons( options=list(dataset.variables), description='Variable:') display(var_name) var = dataset.variables[var_name.value] # display information about the variable print(var.name) print(list(var.dimensions)) print(var.shape) %matplotlib inline # attempt to plot the variable canPlot = var.dtype == np.uint8 or np.can_cast(var.dtype, float, "same_kind") # Only plot numeric types if (canPlot): ndims = np.squeeze(var[:]).ndim # for one-dimensional data, print value if (ndims == 0): print(var.name, ": ", var) # for two-dimensional data, make a line plot elif (ndims == 1): plt.plot(np.squeeze(np.array([range(len(np.squeeze(var[:])))])), np.squeeze(var[:]), 'bo', markersize=5) plt.title(var.name) plt.show() # for three-dimensional data, make an image elif (ndims == 2): plt.imshow(var[:]) plt.title(var.name) plt.show() # for four or more dimensional data, print values else: print("Too many dimensions - Cannot display variable: ", var.name) print(var[:]) else: print("Not a numeric type - Cannot display variable: ", var.name) print(var[:]) ###Output _____no_output_____ ###Markdown Note that data are only transferred over the network when the variable is sliced, and only data corresponding to the slice are downloaded. In this case, we are asking for all of the data with `var[:]`. More with SiphonTo see what else you can do, view the Siphon API. ###Code ### Your code here ### ###Output _____no_output_____
docs/source/examples/MNIST.ipynb
###Markdown Autoencoders and multi-stage training for MNIST classificationIn [this blog post](https://blog.keras.io/building-autoencoders-in-keras.html), [Francois Chollet](https://twitter.com/fchollet) demonstrates how to build several different variations of image auto-encodersin Keras.We build on the example above using `timeserio`'s `multinetwork`, and demonstrate some key features:- we add a digit classifier that uses pre-trained encodings- we encapsulate a neural network with multiple inter-connected parts using `MultiNetworkBase`- we show how to implement multi-stage training with layer freezing- we show how to add training callbacks and inspect multi-stage training history ###Code import numpy as np import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Load and normalize data ###Code def to_onehot(y, num_classes=10): """Convert numpy array to one-hot.""" onehot = np.zeros((len(y), num_classes)) onehot[np.arange(len(y)), y] = 1 return onehot from keras.datasets import mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. y_train_oh = to_onehot(y_train) y_test_oh = to_onehot(y_test) print(x_train.shape, x_test.shape, y_train.shape, y_test.shape, y_train_oh.shape, y_test_oh.shape) def plot_images(x, y=None): """Plot all images in x, with optional labels given by y. Expect x.shape == (n, h, w), where n = number images, h = image height, w = image width """ plt.figure(figsize=(20, 4)) n = x.shape[0] for i in range(n): image = x[i] ax = plt.subplot(2, n, i + 1) plt.imshow(x[i]) plt.gray() if y is not None: label = y[i] plt.title(label) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show() plot_images(x_train[:10], y_train[:10]) ###Output _____no_output_____ ###Markdown Define network architecturesWe follow the above blog post closely, but demonstrate some of the convenient features of `timeserio`.In addition to the encoder-decoder, we add a classification model with softmax output that can be used either with image encodings,or combined with the encoder for a full image classification pipeline:![](img/MNIST.svg) ###Code from timeserio.keras.multinetwork import MultiNetworkBase from keras.layers import Input, Dense, Flatten, Reshape from keras.models import Model from keras.callbacks import EarlyStopping, ReduceLROnPlateau from IPython.display import SVG from keras.utils.vis_utils import model_to_dot class AutoEncoderNetwork(MultiNetworkBase): def _model(self, image_side=28, encoding_dim=32, classifier_units=32, num_classes=10): """Define model architectures.""" image_shape = (image_side, image_side) flat_shape = image_shape[0] * image_shape[1] input_img = Input(shape=image_shape, name="input_image") encoded = Dense(encoding_dim, activation='tanh')(Flatten()(input_img)) encoder_model = Model(input_img, encoded, name="encoder") input_encoded = Input(shape=(encoding_dim,), name="input_encoding") decoded = Reshape(image_shape)(Dense(flat_shape, activation='sigmoid')(input_encoded)) decoder_model = Model(input_encoded, decoded, name="decoder") autoencoder_model = Model(input_img, decoder_model(encoder_model(input_img))) autoencoder_model.compile(optimizer='adam', loss='binary_crossentropy') clf_intermediate = Dense(classifier_units, activation='relu')(input_encoded) clf = Dense(num_classes, activation='softmax')(clf_intermediate) # this model classifies encoding vectors encoding_clf_model = Model(input_encoded, clf, name="encoder_classifier") # this model classifies images classifier_model = Model(input_img, encoding_clf_model(encoder_model(input_img)), name="image_classifier") classifier_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['categorical_accuracy']) return { 'encoder': encoder_model, 'decoder': decoder_model, 'autoencoder': autoencoder_model, 'encoding_classifier': encoding_clf_model, # we expose this model to allow granular freezing/un-freezing 'classifier': classifier_model, } def _callbacks( self, *, es_params={ 'patience': 20, 'monitor': 'val_loss' }, lr_params={ 'monitor': 'val_loss', 'patience': 4, 'factor': 0.2 } ): """Define optional callbacks for each model.""" early_stopping = EarlyStopping(**es_params) learning_rate_reduction = ReduceLROnPlateau(**lr_params) return { 'autoencoder': [early_stopping, learning_rate_reduction], 'classifier': [early_stopping, learning_rate_reduction], } multinetwork = AutoEncoderNetwork(encoding_dim=32) SVG(model_to_dot(multinetwork.model['encoder'], show_shapes=True).create(prog='dot', format='svg')) SVG(model_to_dot(multinetwork.model['autoencoder'], show_shapes=True).create(prog='dot', format='svg')) SVG(model_to_dot(multinetwork.model['classifier'], show_shapes=True).create(prog='dot', format='svg')) ###Output _____no_output_____ ###Markdown Train autoencoderWe see that using `adam` optimizer gives us a better loss compared to `adadelta`, even for a shallow auto-encoder ###Code multinetwork.fit( x_train, x_train, model='autoencoder', reset_weights=True, epochs=100, batch_size=2 ** 8, shuffle=True, validation_data=(x_test, x_test), verbose=1, ) ###Output _____no_output_____ ###Markdown Training history is stored in the `multinetwork.history` list. Every time we call `fit`, a new history record is appended.This allows us to track training history over multiple pre-/post-training runs.History includes information such as learning rate (`lr`) and time duration per epoch. ###Code from kerashistoryplot.plot import plot_history h = multinetwork.history[-1]["history"] plot_history(h, batches=True, n_cols=3, figsize=(15,5)) ###Output _____no_output_____ ###Markdown Encode and decode some digitsSweet, eh? ###Code encoded_imgs = multinetwork.predict(x_test, model='encoder') decoded_imgs = multinetwork.predict(encoded_imgs, model='decoder') plot_images(x_test[:10], y_test[:10]) plot_images(decoded_imgs[:10]) ###Output _____no_output_____ ###Markdown Visualize encodingsWe use simple PCA to visualize 32-dimensional embeddings in 2D. ###Code from sklearn.decomposition import PCA encoded_imgs_2D = PCA(n_components=2).fit_transform(encoded_imgs) plt.figure(figsize=(10, 10)) for label in range(10): encodings = encoded_imgs_2D[y_test == label, :] plt.scatter(encodings[:, 0], encodings[:, 1], alpha=.5, label=label) plt.legend() ###Output _____no_output_____ ###Markdown Fit classifier modelUsing the pre-trained encoder, we can fit a classification model by training the dense layers of the `encoding_classifier` model only. ###Code multinetwork.fit( x_train, y_train_oh, model='classifier', # this is the compiled model we use to perform gradient descent trainable_models=['encoding_classifier'], # only the layers in this model will be un-frozen epochs=100, batch_size=2 ** 8, shuffle=True, validation_data=(x_test, y_test_oh), verbose=1, ) ###Output _____no_output_____ ###Markdown Training historyNote that `multinetwork.history` now contains two records: one for the autoencoder pre-training, and one for post-training the dense layers.By freezing the encoder, we also speed up classifier post-training significantly. ###Code pre_training = multinetwork.history[0] print(f"Training model: {pre_training['model']}, trainable: {pre_training['trainable_models']}") plot_history(pre_training["history"], batches=True, n_cols=3, figsize=(15,5)) post_training = multinetwork.history[1] print(f"Training model: {post_training['model']}, trainable: {post_training['trainable_models']}") plot_history(post_training["history"], batches=False, n_cols=2, figsize=(15,5)) ###Output _____no_output_____ ###Markdown Final classifier scoreOur classifier performance is not ground-breaking, but our example show a simple way to implement multi-stage training using a `multinetwork`. ###Code loss, acc = multinetwork.evaluate(x_test, y_test_oh, model='classifier') print(f"Loss: {loss:.3f}, accuracy: {acc:.3f}") ###Output Loss: 0.113, accuracy: 0.967 ###Markdown Some examplesWe plot original images from the test set with their true labels on top, and decoded images with classifier labels on the bottom. ###Code y_test_pred_oh = multinetwork.predict(x_test, model='classifier') y_test_pred = np.argmax(y_test_pred_oh, axis=1) n = 20 idx = np.random.choice(len(x_test), size=n, replace=False) print("True labels: ") plot_images(x_test[idx], y_test[idx]) print("Predicted labels: ") plot_images(decoded_imgs[idx], y_test_pred[idx]) ###Output True labels:
clustering/dbscan.ipynb
###Markdown Import libraries* `fiona` used to import/export geodata* `shapely` allows usage of geometry objects * `matplotlib` visualization* `sklearn`contains clustering algorithms* `numpy` allows to handle data efficiently as vectors/matrices ###Code %matplotlib inline import matplotlib.pyplot as plt import fiona from shapely.geometry.geo import shape from sklearn.cluster import DBSCAN from sklearn.neighbors import KDTree import numpy as np from ipywidgets import interactive, interact import ipywidgets as widgets ###Output _____no_output_____ ###Markdown Import data ###Code data = [] with fiona.open('buildings.gpkg') as src: for f in src: pt = shape(f['geometry']) data.append((pt.x, pt.y)) X = np.array(data) xlim = (min(X[:, 0]), max(X[:, 0])) ylim = (min(X[:, 1]), max(X[:, 1])) print(X) ###Output [[620833.85998787 174007.15094989] [620868.99624114 174004.57972814] [621488.04172939 173610.55634672] ... [619923.282964 174145.152089 ] [619915.40984854 174142.34965183] [620032.66250959 174144.92612771]] ###Markdown Show data ###Code fig = plt.figure() plt.scatter(X[:, 0], X[:, 1], s=1) plt.xlim(xlim) plt.ylim(ylim) ###Output _____no_output_____ ###Markdown Finden von optimalen Werten von eps und min_samples ###Code def plot_nb_dists(nearest_neighbor, metric='euclidean'): """ Plots distance sorted by `neared_neighbor`th Args: X (list of lists): list with data tuples nearest_neighbor (int): nr of nearest neighbor to plot metric (string): name of scipy metric function to use """ tree = KDTree(X, leaf_size=2) if not isinstance(nearest_neighbor, list): nearest_neighbor = [nearest_neighbor] max_nn = max(nearest_neighbor) dist, _ = tree.query(X, k=max_nn + 1) plt.figure() for nnb in nearest_neighbor: col = dist[:, nnb] col.sort() plt.plot(col, label="{}th nearest neighbor".format(nnb)) #plt.ylim(0, min(250, max(dist[:, max_nn]))) plt.ylabel("Distance to k nearest neighbor") plt.xlabel("Points sorted according to distance of k nearest neighbor") plt.grid() plt.legend() plt.show() interact(plot_nb_dists, nearest_neighbor=widgets.IntSlider(min=1, max=100, step=1, value=1, continuous_update=False)); ###Output _____no_output_____ ###Markdown DBSCAN Clustering ###Code def plot_dbscan(eps, min_samples, metric='euclidean'): db = DBSCAN(eps=eps, min_samples=min_samples, metric=metric).fit(X) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) core_samples_mask[db.core_sample_indices_] = True labels = db.labels_ # Number of clusters in labels, ignoring noise if present. n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) n_noise_ = list(labels).count(-1) #print('Estimated number of clusters: %d' % n_clusters_) #print('Estimated number of noise points: %d' % n_noise_) # ############################################################################# # Plot result # Black removed and is used for noise instead. unique_labels = set(labels) colors = [plt.cm.Spectral(each) for each in np.linspace(0, 1, len(unique_labels))] plt.figure() for k, col in zip(unique_labels, colors): if k == -1: # Black used for noise. col = [0, 0, 0, 1] class_member_mask = (labels == k) xy = X[class_member_mask & core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col), markeredgecolor=tuple(col), markersize=2) xy = X[class_member_mask & ~core_samples_mask] plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col), markeredgecolor=tuple(col), markersize=2) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.xlim(xlim) plt.ylim(ylim) plt.show() interact(plot_dbscan, eps=widgets.IntSlider(min=1, max=300, step=1, value=50, continuous_update=False), min_samples=widgets.IntSlider(min=0, max=50, step=1, value=10, continuous_update=False)); ###Output _____no_output_____
Module3/Mastering_Python_Data_Analysis_Code/Chapter 2/B03551_02_code.ipynb
###Markdown Relationships ###Code hubble_data = pd.read_csv('data/hubble.csv', skiprows=2, names=['id', 'r', 'v']) hubble_data.head() hubble_data.plot(kind='scatter', x='r',y='v', s=50) plt.locator_params(nbins=5); from scipy.stats import linregress rv = hubble_data.as_matrix(columns=['r','v']) a, b, r, p, stderr = linregress(rv) print(a, b, r, p, stderr) hubble_data.plot(kind='scatter', x='r', y='v', s=50) rdata = hubble_data['r'] rmin, rmax = min(rdata), max(rdata) rvalues = np.linspace(rmin, rmax, 200) yvalues = a * rvalues + b plt.plot(rvalues, yvalues, color='IndianRed', lw=2) plt.locator_params(nbins=5); ###Output _____no_output_____
sklearn&machine-learning/03_classification.ipynb
###Markdown **Chapter 3 – Classification**_This notebook contains all the sample code and solutions to the exercises in chapter 3._ Setup First, let's make sure this notebook works well in both python 2 and 3, import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures: ###Code # To support both python 2 and python 3 from __future__ import division, print_function, unicode_literals # Common imports import numpy as np import os # to make this notebook's output stable across runs np.random.seed(42) # To plot pretty figures %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt mpl.rc('axes', labelsize=14) mpl.rc('xtick', labelsize=12) mpl.rc('ytick', labelsize=12) # Where to save the figures PROJECT_ROOT_DIR = "." CHAPTER_ID = "classification" def save_fig(fig_id, tight_layout=True): path = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID, fig_id + ".png") print("Saving figure", fig_id) if tight_layout: plt.tight_layout() plt.savefig(path, format='png', dpi=300) ###Output _____no_output_____ ###Markdown MNIST **Warning**: `fetch_mldata()` is deprecated since Scikit-Learn 0.20. You should use `fetch_openml()` instead. However, it returns the unsorted MNIST dataset, whereas `fetch_mldata()` returned the dataset sorted by target (the training set and the test test were sorted separately). In general, this is fine, but if you want to get the exact same results as before, you need to sort the dataset using the following function: ###Code def sort_by_target(mnist): reorder_train = np.array(sorted([(target, i) for i, target in enumerate(mnist.target[:60000])]))[:, 1] reorder_test = np.array(sorted([(target, i) for i, target in enumerate(mnist.target[60000:])]))[:, 1] mnist.data[:60000] = mnist.data[reorder_train] mnist.target[:60000] = mnist.target[reorder_train] mnist.data[60000:] = mnist.data[reorder_test + 60000] mnist.target[60000:] = mnist.target[reorder_test + 60000] try: from sklearn.datasets import fetch_openml mnist = fetch_openml('mnist_784', version=1, cache=True) mnist.target = mnist.target.astype(np.int8) # fetch_openml() returns targets as strings sort_by_target(mnist) # fetch_openml() returns an unsorted dataset except ImportError: from sklearn.datasets import fetch_mldata mnist = fetch_mldata('MNIST original') mnist["data"], mnist["target"] mnist.data.shape X, y = mnist["data"], mnist["target"] X.shape y.shape 28*28 some_digit = X[36000] some_digit_image = some_digit.reshape(28, 28) plt.imshow(some_digit_image, cmap = mpl.cm.binary, interpolation="nearest") plt.axis("off") save_fig("some_digit_plot") plt.show() def plot_digit(data): image = data.reshape(28, 28) plt.imshow(image, cmap = mpl.cm.binary, interpolation="nearest") plt.axis("off") # EXTRA def plot_digits(instances, images_per_row=10, **options): size = 28 images_per_row = min(len(instances), images_per_row) images = [instance.reshape(size,size) for instance in instances] n_rows = (len(instances) - 1) // images_per_row + 1 row_images = [] n_empty = n_rows * images_per_row - len(instances) images.append(np.zeros((size, size * n_empty))) for row in range(n_rows): rimages = images[row * images_per_row : (row + 1) * images_per_row] row_images.append(np.concatenate(rimages, axis=1)) image = np.concatenate(row_images, axis=0) plt.imshow(image, cmap = mpl.cm.binary, **options) plt.axis("off") plt.figure(figsize=(9,9)) example_images = np.r_[X[:12000:600], X[13000:30600:600], X[30600:60000:590]] plot_digits(example_images, images_per_row=10) save_fig("more_digits_plot") plt.show() y[36000] X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:] import numpy as np shuffle_index = np.random.permutation(60000) X_train, y_train = X_train[shuffle_index], y_train[shuffle_index] ###Output _____no_output_____ ###Markdown Binary classifier ###Code y_train_5 = (y_train == 5) y_test_5 = (y_test == 5) ###Output _____no_output_____ ###Markdown **Note**: a few hyperparameters will have a different default value in future versions of Scikit-Learn, so a warning is issued if you do not set them explicitly. This is why we set `max_iter=5` and `tol=-np.infty`, to get the same results as in the book, while avoiding the warnings. ###Code from sklearn.linear_model import SGDClassifier sgd_clf = SGDClassifier(max_iter=5, tol=-np.infty, random_state=42) sgd_clf.fit(X_train, y_train_5) sgd_clf.predict([some_digit]) from sklearn.model_selection import cross_val_score cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring="accuracy") from sklearn.model_selection import StratifiedKFold from sklearn.base import clone skfolds = StratifiedKFold(n_splits=3, random_state=42) for train_index, test_index in skfolds.split(X_train, y_train_5): clone_clf = clone(sgd_clf) X_train_folds = X_train[train_index] y_train_folds = (y_train_5[train_index]) X_test_fold = X_train[test_index] y_test_fold = (y_train_5[test_index]) clone_clf.fit(X_train_folds, y_train_folds) y_pred = clone_clf.predict(X_test_fold) n_correct = sum(y_pred == y_test_fold) print(n_correct / len(y_pred)) from sklearn.base import BaseEstimator class Never5Classifier(BaseEstimator): def fit(self, X, y=None): pass def predict(self, X): return np.zeros((len(X), 1), dtype=bool) never_5_clf = Never5Classifier() cross_val_score(never_5_clf, X_train, y_train_5, cv=3, scoring="accuracy") from sklearn.model_selection import cross_val_predict y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3) from sklearn.metrics import confusion_matrix confusion_matrix(y_train_5, y_train_pred) y_train_perfect_predictions = y_train_5 confusion_matrix(y_train_5, y_train_perfect_predictions) from sklearn.metrics import precision_score, recall_score precision_score(y_train_5, y_train_pred) 4344 / (4344 + 1307) recall_score(y_train_5, y_train_pred) 4344 / (4344 + 1077) from sklearn.metrics import f1_score f1_score(y_train_5, y_train_pred) 4344 / (4344 + (1077 + 1307)/2) y_scores = sgd_clf.decision_function([some_digit]) y_scores threshold = 0 y_some_digit_pred = (y_scores > threshold) y_some_digit_pred threshold = 200000 y_some_digit_pred = (y_scores > threshold) y_some_digit_pred y_scores = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3, method="decision_function") ###Output _____no_output_____ ###Markdown Note: there was an [issue](https://github.com/scikit-learn/scikit-learn/issues/9589) in Scikit-Learn 0.19.0 (fixed in 0.19.1) where the result of `cross_val_predict()` was incorrect in the binary classification case when using `method="decision_function"`, as in the code above. The resulting array had an extra first dimension full of 0s. Just in case you are using 0.19.0, we need to add this small hack to work around this issue: ###Code y_scores.shape # hack to work around issue #9589 in Scikit-Learn 0.19.0 if y_scores.ndim == 2: y_scores = y_scores[:, 1] from sklearn.metrics import precision_recall_curve precisions, recalls, thresholds = precision_recall_curve(y_train_5, y_scores) def plot_precision_recall_vs_threshold(precisions, recalls, thresholds): plt.plot(thresholds, precisions[:-1], "b--", label="Precision", linewidth=2) plt.plot(thresholds, recalls[:-1], "g-", label="Recall", linewidth=2) plt.xlabel("Threshold", fontsize=16) plt.legend(loc="upper left", fontsize=16) plt.ylim([0, 1]) plt.figure(figsize=(8, 4)) plot_precision_recall_vs_threshold(precisions, recalls, thresholds) plt.xlim([-700000, 700000]) save_fig("precision_recall_vs_threshold_plot") plt.show() (y_train_pred == (y_scores > 0)).all() y_train_pred_90 = (y_scores > 70000) precision_score(y_train_5, y_train_pred_90) recall_score(y_train_5, y_train_pred_90) def plot_precision_vs_recall(precisions, recalls): plt.plot(recalls, precisions, "b-", linewidth=2) plt.xlabel("Recall", fontsize=16) plt.ylabel("Precision", fontsize=16) plt.axis([0, 1, 0, 1]) plt.figure(figsize=(8, 6)) plot_precision_vs_recall(precisions, recalls) save_fig("precision_vs_recall_plot") plt.show() ###Output Saving figure precision_vs_recall_plot ###Markdown ROC curves ###Code from sklearn.metrics import roc_curve fpr, tpr, thresholds = roc_curve(y_train_5, y_scores) def plot_roc_curve(fpr, tpr, label=None): plt.plot(fpr, tpr, linewidth=2, label=label) plt.plot([0, 1], [0, 1], 'k--') plt.axis([0, 1, 0, 1]) plt.xlabel('False Positive Rate', fontsize=16) plt.ylabel('True Positive Rate', fontsize=16) plt.figure(figsize=(8, 6)) plot_roc_curve(fpr, tpr) save_fig("roc_curve_plot") plt.show() from sklearn.metrics import roc_auc_score roc_auc_score(y_train_5, y_scores) ###Output _____no_output_____ ###Markdown **Note**: we set `n_estimators=10` to avoid a warning about the fact that its default value will be set to 100 in Scikit-Learn 0.22. ###Code from sklearn.ensemble import RandomForestClassifier forest_clf = RandomForestClassifier(n_estimators=10, random_state=42) y_probas_forest = cross_val_predict(forest_clf, X_train, y_train_5, cv=3, method="predict_proba") y_scores_forest = y_probas_forest[:, 1] # score = proba of positive class fpr_forest, tpr_forest, thresholds_forest = roc_curve(y_train_5,y_scores_forest) plt.figure(figsize=(8, 6)) plt.plot(fpr, tpr, "b:", linewidth=2, label="SGD") plot_roc_curve(fpr_forest, tpr_forest, "Random Forest") plt.legend(loc="lower right", fontsize=16) save_fig("roc_curve_comparison_plot") plt.show() roc_auc_score(y_train_5, y_scores_forest) y_train_pred_forest = cross_val_predict(forest_clf, X_train, y_train_5, cv=3) precision_score(y_train_5, y_train_pred_forest) recall_score(y_train_5, y_train_pred_forest) ###Output _____no_output_____ ###Markdown Multiclass classification ###Code sgd_clf.fit(X_train, y_train) sgd_clf.predict([some_digit]) some_digit_scores = sgd_clf.decision_function([some_digit]) some_digit_scores np.argmax(some_digit_scores) sgd_clf.classes_ sgd_clf.classes_[5] from sklearn.multiclass import OneVsOneClassifier ovo_clf = OneVsOneClassifier(SGDClassifier(max_iter=5, tol=-np.infty, random_state=42)) ovo_clf.fit(X_train, y_train) ovo_clf.predict([some_digit]) len(ovo_clf.estimators_) forest_clf.fit(X_train, y_train) forest_clf.predict([some_digit]) forest_clf.predict_proba([some_digit]) cross_val_score(sgd_clf, X_train, y_train, cv=3, scoring="accuracy") from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train.astype(np.float64)) cross_val_score(sgd_clf, X_train_scaled, y_train, cv=3, scoring="accuracy") y_train_pred = cross_val_predict(sgd_clf, X_train_scaled, y_train, cv=3) conf_mx = confusion_matrix(y_train, y_train_pred) conf_mx def plot_confusion_matrix(matrix): """If you prefer color and a colorbar""" fig = plt.figure(figsize=(8,8)) ax = fig.add_subplot(111) cax = ax.matshow(matrix) fig.colorbar(cax) plt.matshow(conf_mx, cmap=plt.cm.gray) save_fig("confusion_matrix_plot", tight_layout=False) plt.show() row_sums = conf_mx.sum(axis=1, keepdims=True) norm_conf_mx = conf_mx / row_sums np.fill_diagonal(norm_conf_mx, 0) plt.matshow(norm_conf_mx, cmap=plt.cm.gray) save_fig("confusion_matrix_errors_plot", tight_layout=False) plt.show() cl_a, cl_b = 3, 5 X_aa = X_train[(y_train == cl_a) & (y_train_pred == cl_a)] X_ab = X_train[(y_train == cl_a) & (y_train_pred == cl_b)] X_ba = X_train[(y_train == cl_b) & (y_train_pred == cl_a)] X_bb = X_train[(y_train == cl_b) & (y_train_pred == cl_b)] plt.figure(figsize=(8,8)) plt.subplot(221); plot_digits(X_aa[:25], images_per_row=5) plt.subplot(222); plot_digits(X_ab[:25], images_per_row=5) plt.subplot(223); plot_digits(X_ba[:25], images_per_row=5) plt.subplot(224); plot_digits(X_bb[:25], images_per_row=5) save_fig("error_analysis_digits_plot") plt.show() ###Output Saving figure error_analysis_digits_plot ###Markdown Multilabel classification ###Code from sklearn.neighbors import KNeighborsClassifier y_train_large = (y_train >= 7) y_train_odd = (y_train % 2 == 1) y_multilabel = np.c_[y_train_large, y_train_odd] knn_clf = KNeighborsClassifier() knn_clf.fit(X_train, y_multilabel) knn_clf.predict([some_digit]) ###Output _____no_output_____ ###Markdown **Warning**: the following cell may take a very long time (possibly hours depending on your hardware). ###Code y_train_knn_pred = cross_val_predict(knn_clf, X_train, y_multilabel, cv=3, n_jobs=-1) f1_score(y_multilabel, y_train_knn_pred, average="macro") ###Output _____no_output_____ ###Markdown Multioutput classification ###Code noise = np.random.randint(0, 100, (len(X_train), 784)) X_train_mod = X_train + noise noise = np.random.randint(0, 100, (len(X_test), 784)) X_test_mod = X_test + noise y_train_mod = X_train y_test_mod = X_test some_index = 5500 plt.subplot(121); plot_digit(X_test_mod[some_index]) plt.subplot(122); plot_digit(y_test_mod[some_index]) save_fig("noisy_digit_example_plot") plt.show() knn_clf.fit(X_train_mod, y_train_mod) clean_digit = knn_clf.predict([X_test_mod[some_index]]) plot_digit(clean_digit) save_fig("cleaned_digit_example_plot") ###Output Saving figure cleaned_digit_example_plot ###Markdown Extra material Dummy (ie. random) classifier ###Code from sklearn.dummy import DummyClassifier dmy_clf = DummyClassifier() y_probas_dmy = cross_val_predict(dmy_clf, X_train, y_train_5, cv=3, method="predict_proba") y_scores_dmy = y_probas_dmy[:, 1] fprr, tprr, thresholdsr = roc_curve(y_train_5, y_scores_dmy) plot_roc_curve(fprr, tprr) ###Output _____no_output_____ ###Markdown KNN classifier ###Code from sklearn.neighbors import KNeighborsClassifier knn_clf = KNeighborsClassifier(n_jobs=-1, weights='distance', n_neighbors=4) knn_clf.fit(X_train, y_train) y_knn_pred = knn_clf.predict(X_test) from sklearn.metrics import accuracy_score accuracy_score(y_test, y_knn_pred) from scipy.ndimage.interpolation import shift def shift_digit(digit_array, dx, dy, new=0): return shift(digit_array.reshape(28, 28), [dy, dx], cval=new).reshape(784) plot_digit(shift_digit(some_digit, 5, 1, new=100)) X_train_expanded = [X_train] y_train_expanded = [y_train] for dx, dy in ((1, 0), (-1, 0), (0, 1), (0, -1)): shifted_images = np.apply_along_axis(shift_digit, axis=1, arr=X_train, dx=dx, dy=dy) X_train_expanded.append(shifted_images) y_train_expanded.append(y_train) X_train_expanded = np.concatenate(X_train_expanded) y_train_expanded = np.concatenate(y_train_expanded) X_train_expanded.shape, y_train_expanded.shape knn_clf.fit(X_train_expanded, y_train_expanded) y_knn_expanded_pred = knn_clf.predict(X_test) accuracy_score(y_test, y_knn_expanded_pred) ambiguous_digit = X_test[2589] knn_clf.predict_proba([ambiguous_digit]) plot_digit(ambiguous_digit) ###Output _____no_output_____ ###Markdown Exercise solutions 1. An MNIST Classifier With Over 97% Accuracy **Warning**: the next cell may take hours to run, depending on your hardware. ###Code from sklearn.model_selection import GridSearchCV param_grid = [{'weights': ["uniform", "distance"], 'n_neighbors': [3, 4, 5]}] knn_clf = KNeighborsClassifier() grid_search = GridSearchCV(knn_clf, param_grid, cv=5, verbose=3, n_jobs=-1) grid_search.fit(X_train, y_train) grid_search.best_params_ grid_search.best_score_ from sklearn.metrics import accuracy_score y_pred = grid_search.predict(X_test) accuracy_score(y_test, y_pred) ###Output _____no_output_____ ###Markdown 2. Data Augmentation ###Code from scipy.ndimage.interpolation import shift def shift_image(image, dx, dy): image = image.reshape((28, 28)) shifted_image = shift(image, [dy, dx], cval=0, mode="constant") return shifted_image.reshape([-1]) image = X_train[1000] shifted_image_down = shift_image(image, 0, 5) shifted_image_left = shift_image(image, -5, 0) plt.figure(figsize=(12,3)) plt.subplot(131) plt.title("Original", fontsize=14) plt.imshow(image.reshape(28, 28), interpolation="nearest", cmap="Greys") plt.subplot(132) plt.title("Shifted down", fontsize=14) plt.imshow(shifted_image_down.reshape(28, 28), interpolation="nearest", cmap="Greys") plt.subplot(133) plt.title("Shifted left", fontsize=14) plt.imshow(shifted_image_left.reshape(28, 28), interpolation="nearest", cmap="Greys") plt.show() X_train_augmented = [image for image in X_train] y_train_augmented = [label for label in y_train] for dx, dy in ((1, 0), (-1, 0), (0, 1), (0, -1)): for image, label in zip(X_train, y_train): X_train_augmented.append(shift_image(image, dx, dy)) y_train_augmented.append(label) X_train_augmented = np.array(X_train_augmented) y_train_augmented = np.array(y_train_augmented) shuffle_idx = np.random.permutation(len(X_train_augmented)) X_train_augmented = X_train_augmented[shuffle_idx] y_train_augmented = y_train_augmented[shuffle_idx] knn_clf = KNeighborsClassifier(**grid_search.best_params_) knn_clf.fit(X_train_augmented, y_train_augmented) y_pred = knn_clf.predict(X_test) accuracy_score(y_test, y_pred) ###Output _____no_output_____ ###Markdown By simply augmenting the data, we got a 0.5% accuracy boost. :) 3. Tackle the Titanic dataset The goal is to predict whether or not a passenger survived based on attributes such as their age, sex, passenger class, where they embarked and so on. First, login to [Kaggle](https://www.kaggle.com/) and go to the [Titanic challenge](https://www.kaggle.com/c/titanic) to download `train.csv` and `test.csv`. Save them to the `datasets/titanic` directory. Next, let's load the data: ###Code import os TITANIC_PATH = os.path.join("datasets", "titanic") import pandas as pd def load_titanic_data(filename, titanic_path=TITANIC_PATH): csv_path = os.path.join(titanic_path, filename) return pd.read_csv(csv_path) train_data = load_titanic_data("train.csv") test_data = load_titanic_data("test.csv") ###Output _____no_output_____ ###Markdown The data is already split into a training set and a test set. However, the test data does *not* contain the labels: your goal is to train the best model you can using the training data, then make your predictions on the test data and upload them to Kaggle to see your final score. Let's take a peek at the top few rows of the training set: ###Code train_data.head() ###Output _____no_output_____ ###Markdown The attributes have the following meaning:* **Survived**: that's the target, 0 means the passenger did not survive, while 1 means he/she survived.* **Pclass**: passenger class.* **Name**, **Sex**, **Age**: self-explanatory* **SibSp**: how many siblings & spouses of the passenger aboard the Titanic.* **Parch**: how many children & parents of the passenger aboard the Titanic.* **Ticket**: ticket id* **Fare**: price paid (in pounds)* **Cabin**: passenger's cabin number* **Embarked**: where the passenger embarked the Titanic Let's get more info to see how much data is missing: ###Code train_data.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns): PassengerId 891 non-null int64 Survived 891 non-null int64 Pclass 891 non-null int64 Name 891 non-null object Sex 891 non-null object Age 714 non-null float64 SibSp 891 non-null int64 Parch 891 non-null int64 Ticket 891 non-null object Fare 891 non-null float64 Cabin 204 non-null object Embarked 889 non-null object dtypes: float64(2), int64(5), object(5) memory usage: 83.6+ KB ###Markdown Okay, the **Age**, **Cabin** and **Embarked** attributes are sometimes null (less than 891 non-null), especially the **Cabin** (77% are null). We will ignore the **Cabin** for now and focus on the rest. The **Age** attribute has about 19% null values, so we will need to decide what to do with them. Replacing null values with the median age seems reasonable. The **Name** and **Ticket** attributes may have some value, but they will be a bit tricky to convert into useful numbers that a model can consume. So for now, we will ignore them. Let's take a look at the numerical attributes: ###Code train_data.describe() ###Output _____no_output_____ ###Markdown * Yikes, only 38% **Survived**. :( That's close enough to 40%, so accuracy will be a reasonable metric to evaluate our model.* The mean **Fare** was £32.20, which does not seem so expensive (but it was probably a lot of money back then).* The mean **Age** was less than 30 years old. Let's check that the target is indeed 0 or 1: ###Code train_data["Survived"].value_counts() ###Output _____no_output_____ ###Markdown Now let's take a quick look at all the categorical attributes: ###Code train_data["Pclass"].value_counts() train_data["Sex"].value_counts() train_data["Embarked"].value_counts() ###Output _____no_output_____ ###Markdown The Embarked attribute tells us where the passenger embarked: C=Cherbourg, Q=Queenstown, S=Southampton. Now let's build our preprocessing pipelines. We will reuse the `DataframeSelector` we built in the previous chapter to select specific attributes from the `DataFrame`: ###Code from sklearn.base import BaseEstimator, TransformerMixin # A class to select numerical or categorical columns # since Scikit-Learn doesn't handle DataFrames yet class DataFrameSelector(BaseEstimator, TransformerMixin): def __init__(self, attribute_names): self.attribute_names = attribute_names def fit(self, X, y=None): return self def transform(self, X): return X[self.attribute_names] ###Output _____no_output_____ ###Markdown Let's build the pipeline for the numerical attributes:**Warning**: Since Scikit-Learn 0.20, the `sklearn.preprocessing.Imputer` class was replaced by the `sklearn.impute.SimpleImputer` class. ###Code from sklearn.pipeline import Pipeline try: from sklearn.impute import SimpleImputer # Scikit-Learn 0.20+ except ImportError: from sklearn.preprocessing import Imputer as SimpleImputer num_pipeline = Pipeline([ ("select_numeric", DataFrameSelector(["Age", "SibSp", "Parch", "Fare"])), ("imputer", SimpleImputer(strategy="median")), ]) num_pipeline.fit_transform(train_data) ###Output _____no_output_____ ###Markdown We will also need an imputer for the string categorical columns (the regular `SimpleImputer` does not work on those): ###Code # Inspired from stackoverflow.com/questions/25239958 class MostFrequentImputer(BaseEstimator, TransformerMixin): def fit(self, X, y=None): self.most_frequent_ = pd.Series([X[c].value_counts().index[0] for c in X], index=X.columns) return self def transform(self, X, y=None): return X.fillna(self.most_frequent_) ###Output _____no_output_____ ###Markdown **Warning**: earlier versions of the book used the `LabelBinarizer` or `CategoricalEncoder` classes to convert each categorical value to a one-hot vector. It is now preferable to use the `OneHotEncoder` class. Since Scikit-Learn 0.20 it can handle string categorical inputs (see [PR 10521](https://github.com/scikit-learn/scikit-learn/issues/10521)), not just integer categorical inputs. If you are using an older version of Scikit-Learn, you can import the new version from `future_encoders.py`: ###Code try: from sklearn.preprocessing import OrdinalEncoder # just to raise an ImportError if Scikit-Learn < 0.20 from sklearn.preprocessing import OneHotEncoder except ImportError: from future_encoders import OneHotEncoder # Scikit-Learn < 0.20 ###Output _____no_output_____ ###Markdown Now we can build the pipeline for the categorical attributes: ###Code cat_pipeline = Pipeline([ ("select_cat", DataFrameSelector(["Pclass", "Sex", "Embarked"])), ("imputer", MostFrequentImputer()), ("cat_encoder", OneHotEncoder(sparse=False)), ]) cat_pipeline.fit_transform(train_data) ###Output _____no_output_____ ###Markdown Finally, let's join the numerical and categorical pipelines: ###Code from sklearn.pipeline import FeatureUnion preprocess_pipeline = FeatureUnion(transformer_list=[ ("num_pipeline", num_pipeline), ("cat_pipeline", cat_pipeline), ]) ###Output _____no_output_____ ###Markdown Cool! Now we have a nice preprocessing pipeline that takes the raw data and outputs numerical input features that we can feed to any Machine Learning model we want. ###Code X_train = preprocess_pipeline.fit_transform(train_data) X_train ###Output _____no_output_____ ###Markdown Let's not forget to get the labels: ###Code y_train = train_data["Survived"] ###Output _____no_output_____ ###Markdown We are now ready to train a classifier. Let's start with an `SVC`: ###Code from sklearn.svm import SVC svm_clf = SVC(gamma="auto") svm_clf.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Great, our model is trained, let's use it to make predictions on the test set: ###Code X_test = preprocess_pipeline.transform(test_data) y_pred = svm_clf.predict(X_test) ###Output _____no_output_____ ###Markdown And now we could just build a CSV file with these predictions (respecting the format excepted by Kaggle), then upload it and hope for the best. But wait! We can do better than hope. Why don't we use cross-validation to have an idea of how good our model is? ###Code from sklearn.model_selection import cross_val_score svm_scores = cross_val_score(svm_clf, X_train, y_train, cv=10) svm_scores.mean() ###Output _____no_output_____ ###Markdown Okay, over 73% accuracy, clearly better than random chance, but it's not a great score. Looking at the [leaderboard](https://www.kaggle.com/c/titanic/leaderboard) for the Titanic competition on Kaggle, you can see that you need to reach above 80% accuracy to be within the top 10% Kagglers. Some reached 100%, but since you can easily find the [list of victims](https://www.encyclopedia-titanica.org/titanic-victims/) of the Titanic, it seems likely that there was little Machine Learning involved in their performance! ;-) So let's try to build a model that reaches 80% accuracy. Let's try a `RandomForestClassifier`: ###Code from sklearn.ensemble import RandomForestClassifier forest_clf = RandomForestClassifier(n_estimators=100, random_state=42) forest_scores = cross_val_score(forest_clf, X_train, y_train, cv=10) forest_scores.mean() ###Output _____no_output_____ ###Markdown That's much better! Instead of just looking at the mean accuracy across the 10 cross-validation folds, let's plot all 10 scores for each model, along with a box plot highlighting the lower and upper quartiles, and "whiskers" showing the extent of the scores (thanks to Nevin Yilmaz for suggesting this visualization). Note that the `boxplot()` function detects outliers (called "fliers") and does not include them within the whiskers. Specifically, if the lower quartile is $Q_1$ and the upper quartile is $Q_3$, then the interquartile range $IQR = Q_3 - Q_1$ (this is the box's height), and any score lower than $Q_1 - 1.5 \times IQR$ is a flier, and so is any score greater than $Q3 + 1.5 \times IQR$. ###Code plt.figure(figsize=(8, 4)) plt.plot([1]*10, svm_scores, ".") plt.plot([2]*10, forest_scores, ".") plt.boxplot([svm_scores, forest_scores], labels=("SVM","Random Forest")) plt.ylabel("Accuracy", fontsize=14) plt.show() ###Output _____no_output_____ ###Markdown To improve this result further, you could:* Compare many more models and tune hyperparameters using cross validation and grid search,* Do more feature engineering, for example: * replace **SibSp** and **Parch** with their sum, * try to identify parts of names that correlate well with the **Survived** attribute (e.g. if the name contains "Countess", then survival seems more likely),* try to convert numerical attributes to categorical attributes: for example, different age groups had very different survival rates (see below), so it may help to create an age bucket category and use it instead of the age. Similarly, it may be useful to have a special category for people traveling alone since only 30% of them survived (see below). ###Code train_data["AgeBucket"] = train_data["Age"] // 15 * 15 train_data[["AgeBucket", "Survived"]].groupby(['AgeBucket']).mean() train_data["RelativesOnboard"] = train_data["SibSp"] + train_data["Parch"] train_data[["RelativesOnboard", "Survived"]].groupby(['RelativesOnboard']).mean() ###Output _____no_output_____ ###Markdown 4. Spam classifier First, let's fetch the data: ###Code import os import tarfile from six.moves import urllib DOWNLOAD_ROOT = "http://spamassassin.apache.org/old/publiccorpus/" HAM_URL = DOWNLOAD_ROOT + "20030228_easy_ham.tar.bz2" SPAM_URL = DOWNLOAD_ROOT + "20030228_spam.tar.bz2" SPAM_PATH = os.path.join("datasets", "spam") def fetch_spam_data(spam_url=SPAM_URL, spam_path=SPAM_PATH): if not os.path.isdir(spam_path): os.makedirs(spam_path) for filename, url in (("ham.tar.bz2", HAM_URL), ("spam.tar.bz2", SPAM_URL)): path = os.path.join(spam_path, filename) if not os.path.isfile(path): urllib.request.urlretrieve(url, path) tar_bz2_file = tarfile.open(path) tar_bz2_file.extractall(path=SPAM_PATH) tar_bz2_file.close() fetch_spam_data() ###Output _____no_output_____ ###Markdown Next, let's load all the emails: ###Code HAM_DIR = os.path.join(SPAM_PATH, "easy_ham") SPAM_DIR = os.path.join(SPAM_PATH, "spam") ham_filenames = [name for name in sorted(os.listdir(HAM_DIR)) if len(name) > 20] spam_filenames = [name for name in sorted(os.listdir(SPAM_DIR)) if len(name) > 20] len(ham_filenames) len(spam_filenames) ###Output _____no_output_____ ###Markdown We can use Python's `email` module to parse these emails (this handles headers, encoding, and so on): ###Code import email import email.policy def load_email(is_spam, filename, spam_path=SPAM_PATH): directory = "spam" if is_spam else "easy_ham" with open(os.path.join(spam_path, directory, filename), "rb") as f: return email.parser.BytesParser(policy=email.policy.default).parse(f) ham_emails = [load_email(is_spam=False, filename=name) for name in ham_filenames] spam_emails = [load_email(is_spam=True, filename=name) for name in spam_filenames] ###Output _____no_output_____ ###Markdown Let's look at one example of ham and one example of spam, to get a feel of what the data looks like: ###Code print(ham_emails[1].get_content().strip()) print(spam_emails[6].get_content().strip()) ###Output Help wanted. We are a 14 year old fortune 500 company, that is growing at a tremendous rate. We are looking for individuals who want to work from home. This is an opportunity to make an excellent income. No experience is required. We will train you. So if you are looking to be employed from home with a career that has vast opportunities, then go: http://www.basetel.com/wealthnow We are looking for energetic and self motivated people. If that is you than click on the link and fill out the form, and one of our employement specialist will contact you. To be removed from our link simple go to: http://www.basetel.com/remove.html 4139vOLW7-758DoDY1425FRhM1-764SMFc8513fCsLl40 ###Markdown Some emails are actually multipart, with images and attachments (which can have their own attachments). Let's look at the various types of structures we have: ###Code def get_email_structure(email): if isinstance(email, str): return email payload = email.get_payload() if isinstance(payload, list): return "multipart({})".format(", ".join([ get_email_structure(sub_email) for sub_email in payload ])) else: return email.get_content_type() from collections import Counter def structures_counter(emails): structures = Counter() for email in emails: structure = get_email_structure(email) structures[structure] += 1 return structures structures_counter(ham_emails).most_common() structures_counter(spam_emails).most_common() ###Output _____no_output_____ ###Markdown It seems that the ham emails are more often plain text, while spam has quite a lot of HTML. Moreover, quite a few ham emails are signed using PGP, while no spam is. In short, it seems that the email structure is useful information to have. Now let's take a look at the email headers: ###Code for header, value in spam_emails[0].items(): print(header,":",value) ###Output Return-Path : <[email protected]> Delivered-To : [email protected] Received : from localhost (localhost [127.0.0.1]) by phobos.labs.spamassassin.taint.org (Postfix) with ESMTP id 136B943C32 for <zzzz@localhost>; Thu, 22 Aug 2002 08:17:21 -0400 (EDT) Received : from mail.webnote.net [193.120.211.219] by localhost with POP3 (fetchmail-5.9.0) for zzzz@localhost (single-drop); Thu, 22 Aug 2002 13:17:21 +0100 (IST) Received : from dd_it7 ([210.97.77.167]) by webnote.net (8.9.3/8.9.3) with ESMTP id NAA04623 for <[email protected]>; Thu, 22 Aug 2002 13:09:41 +0100 From : [email protected] Received : from r-smtp.korea.com - 203.122.2.197 by dd_it7 with Microsoft SMTPSVC(5.5.1775.675.6); Sat, 24 Aug 2002 09:42:10 +0900 To : [email protected] Subject : Life Insurance - Why Pay More? Date : Wed, 21 Aug 2002 20:31:57 -1600 MIME-Version : 1.0 Message-ID : <0103c1042001882DD_IT7@dd_it7> Content-Type : text/html; charset="iso-8859-1" Content-Transfer-Encoding : quoted-printable ###Markdown There's probably a lot of useful information in there, such as the sender's email address ([email protected] looks fishy), but we will just focus on the `Subject` header: ###Code spam_emails[0]["Subject"] ###Output _____no_output_____ ###Markdown Okay, before we learn too much about the data, let's not forget to split it into a training set and a test set: ###Code import numpy as np from sklearn.model_selection import train_test_split X = np.array(ham_emails + spam_emails) y = np.array([0] * len(ham_emails) + [1] * len(spam_emails)) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ###Output _____no_output_____ ###Markdown Okay, let's start writing the preprocessing functions. First, we will need a function to convert HTML to plain text. Arguably the best way to do this would be to use the great [BeautifulSoup](https://www.crummy.com/software/BeautifulSoup/) library, but I would like to avoid adding another dependency to this project, so let's hack a quick & dirty solution using regular expressions (at the risk of [un̨ho͞ly radiańcé destro҉ying all enli̍̈́̂̈́ghtenment](https://stackoverflow.com/a/1732454/38626)). The following function first drops the `` section, then converts all `` tags to the word HYPERLINK, then it gets rid of all HTML tags, leaving only the plain text. For readability, it also replaces multiple newlines with single newlines, and finally it unescapes html entities (such as `&gt;` or `&nbsp;`): ###Code import re from html import unescape def html_to_plain_text(html): text = re.sub('<head.*?>.*?</head>', '', html, flags=re.M | re.S | re.I) text = re.sub('<a\s.*?>', ' HYPERLINK ', text, flags=re.M | re.S | re.I) text = re.sub('<.*?>', '', text, flags=re.M | re.S) text = re.sub(r'(\s*\n)+', '\n', text, flags=re.M | re.S) return unescape(text) ###Output _____no_output_____ ###Markdown Let's see if it works. This is HTML spam: ###Code html_spam_emails = [email for email in X_train[y_train==1] if get_email_structure(email) == "text/html"] sample_html_spam = html_spam_emails[7] print(sample_html_spam.get_content().strip()[:1000], "...") ###Output <HTML><HEAD><TITLE></TITLE><META http-equiv="Content-Type" content="text/html; charset=windows-1252"><STYLE>A:link {TEX-DECORATION: none}A:active {TEXT-DECORATION: none}A:visited {TEXT-DECORATION: none}A:hover {COLOR: #0033ff; TEXT-DECORATION: underline}</STYLE><META content="MSHTML 6.00.2713.1100" name="GENERATOR"></HEAD> <BODY text="#000000" vLink="#0033ff" link="#0033ff" bgColor="#CCCC99"><TABLE borderColor="#660000" cellSpacing="0" cellPadding="0" border="0" width="100%"><TR><TD bgColor="#CCCC99" valign="top" colspan="2" height="27"> <font size="6" face="Arial, Helvetica, sans-serif" color="#660000"> <b>OTC</b></font></TD></TR><TR><TD height="2" bgcolor="#6a694f"> <font size="5" face="Times New Roman, Times, serif" color="#FFFFFF"> <b>&nbsp;Newsletter</b></font></TD><TD height="2" bgcolor="#6a694f"><div align="right"><font color="#FFFFFF"> <b>Discover Tomorrow's Winners&nbsp;</b></font></div></TD></TR><TR><TD height="25" colspan="2" bgcolor="#CCCC99"><table width="100%" border="0" ... ###Markdown And this is the resulting plain text: ###Code print(html_to_plain_text(sample_html_spam.get_content())[:1000], "...") ###Output OTC  Newsletter Discover Tomorrow's Winners  For Immediate Release Cal-Bay (Stock Symbol: CBYI) Watch for analyst "Strong Buy Recommendations" and several advisory newsletters picking CBYI. CBYI has filed to be traded on the OTCBB, share prices historically INCREASE when companies get listed on this larger trading exchange. CBYI is trading around 25 cents and should skyrocket to $2.66 - $3.25 a share in the near future. Put CBYI on your watch list, acquire a position TODAY. REASONS TO INVEST IN CBYI A profitable company and is on track to beat ALL earnings estimates! One of the FASTEST growing distributors in environmental & safety equipment instruments. Excellent management team, several EXCLUSIVE contracts. IMPRESSIVE client list including the U.S. Air Force, Anheuser-Busch, Chevron Refining and Mitsubishi Heavy Industries, GE-Energy & Environmental Research. RAPIDLY GROWING INDUSTRY Industry revenues exceed $900 million, estimates indicate that there could be as much as $25 billi ... ###Markdown Great! Now let's write a function that takes an email as input and returns its content as plain text, whatever its format is: ###Code def email_to_text(email): html = None for part in email.walk(): ctype = part.get_content_type() if not ctype in ("text/plain", "text/html"): continue try: content = part.get_content() except: # in case of encoding issues content = str(part.get_payload()) if ctype == "text/plain": return content else: html = content if html: return html_to_plain_text(html) print(email_to_text(sample_html_spam)[:100], "...") ###Output OTC  Newsletter Discover Tomorrow's Winners  For Immediate Release Cal-Bay (Stock Symbol: CBYI) Wat ... ###Markdown Let's throw in some stemming! For this to work, you need to install the Natural Language Toolkit ([NLTK](http://www.nltk.org/)). It's as simple as running the following command (don't forget to activate your virtualenv first; if you don't have one, you will likely need administrator rights, or use the `--user` option):`$ pip3 install nltk` ###Code try: import nltk stemmer = nltk.PorterStemmer() for word in ("Computations", "Computation", "Computing", "Computed", "Compute", "Compulsive"): print(word, "=>", stemmer.stem(word)) except ImportError: print("Error: stemming requires the NLTK module.") stemmer = None ###Output Computations => comput Computation => comput Computing => comput Computed => comput Compute => comput Compulsive => compuls ###Markdown We will also need a way to replace URLs with the word "URL". For this, we could use hard core [regular expressions](https://mathiasbynens.be/demo/url-regex) but we will just use the [urlextract](https://github.com/lipoja/URLExtract) library. You can install it with the following command (don't forget to activate your virtualenv first; if you don't have one, you will likely need administrator rights, or use the `--user` option):`$ pip3 install urlextract` ###Code try: import urlextract # may require an Internet connection to download root domain names url_extractor = urlextract.URLExtract() print(url_extractor.find_urls("Will it detect github.com and https://youtu.be/7Pq-S557XQU?t=3m32s")) except ImportError: print("Error: replacing URLs requires the urlextract module.") url_extractor = None ###Output ['github.com', 'https://youtu.be/7Pq-S557XQU?t=3m32s'] ###Markdown We are ready to put all this together into a transformer that we will use to convert emails to word counters. Note that we split sentences into words using Python's `split()` method, which uses whitespaces for word boundaries. This works for many written languages, but not all. For example, Chinese and Japanese scripts generally don't use spaces between words, and Vietnamese often uses spaces even between syllables. It's okay in this exercise, because the dataset is (mostly) in English. ###Code from sklearn.base import BaseEstimator, TransformerMixin class EmailToWordCounterTransformer(BaseEstimator, TransformerMixin): def __init__(self, strip_headers=True, lower_case=True, remove_punctuation=True, replace_urls=True, replace_numbers=True, stemming=True): self.strip_headers = strip_headers self.lower_case = lower_case self.remove_punctuation = remove_punctuation self.replace_urls = replace_urls self.replace_numbers = replace_numbers self.stemming = stemming def fit(self, X, y=None): return self def transform(self, X, y=None): X_transformed = [] for email in X: text = email_to_text(email) or "" if self.lower_case: text = text.lower() if self.replace_urls and url_extractor is not None: urls = list(set(url_extractor.find_urls(text))) urls.sort(key=lambda url: len(url), reverse=True) for url in urls: text = text.replace(url, " URL ") if self.replace_numbers: text = re.sub(r'\d+(?:\.\d*(?:[eE]\d+))?', 'NUMBER', text) if self.remove_punctuation: text = re.sub(r'\W+', ' ', text, flags=re.M) word_counts = Counter(text.split()) if self.stemming and stemmer is not None: stemmed_word_counts = Counter() for word, count in word_counts.items(): stemmed_word = stemmer.stem(word) stemmed_word_counts[stemmed_word] += count word_counts = stemmed_word_counts X_transformed.append(word_counts) return np.array(X_transformed) ###Output _____no_output_____ ###Markdown Let's try this transformer on a few emails: ###Code X_few = X_train[:3] X_few_wordcounts = EmailToWordCounterTransformer().fit_transform(X_few) X_few_wordcounts ###Output _____no_output_____ ###Markdown This looks about right! Now we have the word counts, and we need to convert them to vectors. For this, we will build another transformer whose `fit()` method will build the vocabulary (an ordered list of the most common words) and whose `transform()` method will use the vocabulary to convert word counts to vectors. The output is a sparse matrix. ###Code from scipy.sparse import csr_matrix class WordCounterToVectorTransformer(BaseEstimator, TransformerMixin): def __init__(self, vocabulary_size=1000): self.vocabulary_size = vocabulary_size def fit(self, X, y=None): total_count = Counter() for word_count in X: for word, count in word_count.items(): total_count[word] += min(count, 10) most_common = total_count.most_common()[:self.vocabulary_size] self.most_common_ = most_common self.vocabulary_ = {word: index + 1 for index, (word, count) in enumerate(most_common)} return self def transform(self, X, y=None): rows = [] cols = [] data = [] for row, word_count in enumerate(X): for word, count in word_count.items(): rows.append(row) cols.append(self.vocabulary_.get(word, 0)) data.append(count) return csr_matrix((data, (rows, cols)), shape=(len(X), self.vocabulary_size + 1)) vocab_transformer = WordCounterToVectorTransformer(vocabulary_size=10) X_few_vectors = vocab_transformer.fit_transform(X_few_wordcounts) X_few_vectors X_few_vectors.toarray() ###Output _____no_output_____ ###Markdown What does this matrix mean? Well, the 64 in the third row, first column, means that the third email contains 64 words that are not part of the vocabulary. The 1 next to it means that the first word in the vocabulary is present once in this email. The 2 next to it means that the second word is present twice, and so on. You can look at the vocabulary to know which words we are talking about. The first word is "of", the second word is "and", etc. ###Code vocab_transformer.vocabulary_ ###Output _____no_output_____ ###Markdown We are now ready to train our first spam classifier! Let's transform the whole dataset: ###Code from sklearn.pipeline import Pipeline preprocess_pipeline = Pipeline([ ("email_to_wordcount", EmailToWordCounterTransformer()), ("wordcount_to_vector", WordCounterToVectorTransformer()), ]) X_train_transformed = preprocess_pipeline.fit_transform(X_train) from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score log_clf = LogisticRegression(solver="liblinear", random_state=42) score = cross_val_score(log_clf, X_train_transformed, y_train, cv=3, verbose=3) score.mean() ###Output [Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers. [Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s [Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.1s remaining: 0.0s ###Markdown Over 98.7%, not bad for a first try! :) However, remember that we are using the "easy" dataset. You can try with the harder datasets, the results won't be so amazing. You would have to try multiple models, select the best ones and fine-tune them using cross-validation, and so on.But you get the picture, so let's stop now, and just print out the precision/recall we get on the test set: ###Code from sklearn.metrics import precision_score, recall_score X_test_transformed = preprocess_pipeline.transform(X_test) log_clf = LogisticRegression(solver="liblinear", random_state=42) log_clf.fit(X_train_transformed, y_train) y_pred = log_clf.predict(X_test_transformed) print("Precision: {:.2f}%".format(100 * precision_score(y_test, y_pred))) print("Recall: {:.2f}%".format(100 * recall_score(y_test, y_pred))) ###Output Precision: 94.90% Recall: 97.89%
notebooks/dc2/validation/calibrate_dc2_densities.ipynb
###Markdown Define new sprinkler with a new AGN density functionWe want to calibrate probabilities of choosing DC2 AGN to be sprinkled. To calibrate these probabilities we will try to match aspects of the overall OM10 population with our sprinkled population. Currently we are looking to match redshift and i-band magnitude. We are going to try to match the OM10 redshift and magnitude distributionsFirst we design a probability distribution in each component for galaxies that will get matched. First look at overall OM10 distributions in redshift and i-band magnitudes ###Code # Load OM10 catalog agn_cat = dc2_sp.gl_agn_cat # The Minimum and Maximum Redshifts in the catalog but cosmoDC2 only goes up to z=3.1 z_min, z_max = np.min(agn_cat['z_src']), np.max(agn_cat['z_src']) print(z_min, z_max) # Since we allow matching within 0.1 in dex these are the min, max allowable redshifts in DC2 matching binz_min, binz_max = 10**(np.log10(z_min)-0.1), z_max print(binz_min, binz_max) n_z, bins_z, _ = plt.hist(agn_cat['z_src'], bins=20, range=(binz_min, binz_max)) plt.xlabel('Redshift') plt.ylabel('Lensed AGN Count') plt.title('Lensed AGN Redshifts in OM10') # The Minimum and Maximum Redshifts in the catalog mag_i_min, mag_i_max = np.min(agn_cat['mag_i_src']), np.max(agn_cat['mag_i_src']) print(mag_i_min, mag_i_max) # Since we allow matching within 0.25 these are the min, max allowable AGN i-band mags in DC2 matching bin_imag_min, bin_imag_max = mag_i_min-0.25, mag_i_max+.25 print(bin_imag_min, bin_imag_max) n_imag, bins_imag, _ = plt.hist(agn_cat['mag_i_src'], bins=20, range=(bin_imag_min, bin_imag_max)) plt.xlabel('i-band AGN Magnitude') plt.ylabel('Lensed AGN Count') plt.title('Lensed AGN i-band mag in OM10') ###Output _____no_output_____ ###Markdown Set up sampling functionsWe will use these to set probabilities of choosing DC2 AGN that fall in these bins. ###Code dens_z = copy(n_z) dens_z = dens_z / np.max(dens_z) dens_z[:8] += 0.1 dens_z[-8:] = 1.0 dens_z[:-8] -= 0.08 dens_z[5:-8] -= 0.05 dens_z[3] -= 0.01 dens_z[4] -= 0.03 dens_z[5] += 0.0 dens_z[6] -= 0.03 dens_z[7] -= 0.05 dens_z[8] -= 0.01 dens_z[9] -= 0.03 dens_z[10] += 0.04 dens_z[11] -= 0.02 plt.plot(bins_z[:-1], dens_z) plt.xlabel('Redshift') plt.ylabel('Probability') plt.title('Probability of choosing DC2 galaxy in Sprinkler') np.savetxt('../data/agn_z_density.dat', dens_z) dens_imag = copy(n_imag) dens_imag = dens_imag / np.max(dens_imag) dens_imag[2:-6] += 2. * dens_imag[8:] dens_imag[9] += 0.1 dens_imag[10] += 0.2 dens_imag[11] += 0.1 dens_imag[6:15] += 1. * (1. - np.linspace(0, 1, 9)) dens_imag = dens_imag / np.max(dens_imag) dens_imag[2:4] += .2 dens_imag[4:10] = 1.0 dens_imag[10:-7] = 1.0 dens_imag[11] = 0.8 dens_imag[12] = 0.6 dens_imag[-7:] *= 0.5 bins_imag plt.plot(bins_imag[:-1], dens_imag) plt.xlabel('i-band magnitude') plt.ylabel('Probability') plt.title('Probability of choosing DC2 galaxy in Sprinkler') bins_imag np.savetxt('../data/agn_imag_density.dat', dens_imag) ###Output _____no_output_____ ###Markdown We save these sampling functions to file and then use them in the sprinkler code. In the sprinkler we multiply the redshift probability times the magnitude probability and multiply by a scaling value which is currently 1.0 and calibrates the overall number of systems. Test out the sampling by running the sprinkler ###Code agn_hosts, agn_sys_cat = dc2_sp.sprinkle_agn() agn_hosts.head() agn_hosts.iloc[0]['varParamStr_agn'] import json json.loads(agn_hosts.iloc[0]['varParamStr_agn'])['p'] agn_sys_cat.head() len(agn_hosts) fig = plt.figure(figsize=(10,6)) n, bins, _ = plt.hist(agn_hosts['redshift'], density=True, histtype='step', label='Matched DC2 Galaxies', lw=3, bins=10, range=(binz_min, binz_max)) plt.hist(agn_cat.query('z_src <= %f' % binz_max)['z_src'], density=True, histtype='step', label='OM10', lw=3, bins=bins) plt.hist(dc2_sp.gal_cat.query('magnorm_agn > -99')['redshift'], density=True, histtype='step', bins=bins, label='Overall DC2 DDF AGN', lw=3) plt.xlabel('Redshift', size=16) plt.ylabel('Normalized # of AGN', size=16) plt.xticks(size=14) plt.yticks(size=14) plt.legend(fontsize=14, loc=2) plt.title('Comparing Matched Redshifts to OM10') fig = plt.figure(figsize=(10,6)) n, bins, _ = plt.hist(agn_hosts['mag_i_agn'], density=True, histtype='step', label='Matched DC2 Galaxies', lw=3, bins=10) plt.hist(agn_cat.query('z_src <= %f' % binz_max)['mag_i_src'], density=True, histtype='step', label='OM10', lw=3, bins=bins) plt.hist(dc2_sp.gal_cat.query('magnorm_agn > -99')['mag_i_agn'], density=True, histtype='step', bins=bins, label='Overall DC2 DDF AGN', lw=3) plt.xlabel('i-band magnitude', size=16) plt.ylabel('Normalized # of AGN', size=16) plt.xticks(size=14) plt.yticks(size=14) plt.legend(fontsize=14, loc=2) plt.title('Comparing Matched i-band magnitudes to OM10') fig = corner.corner(agn_hosts[['redshift', 'mag_i_agn']].values, bins=10, hist_kwargs={'density':True}, labels=['redshift', 'AGN i-band mag'], label_kwargs={'size':14}) corner.corner(agn_cat.query('z_src <= %f' % binz_max)[['z_src', 'mag_i_src']].values, bins=10, color='r', fig=fig, hist_kwargs={'density':True}) plt.show() ###Output _____no_output_____ ###Markdown Our redshift distribution looks close but we have some trouble with i-band magnitudes since the OM10 population is brighter than is actually possible with the DC2 population. It looks like it's about as well as we can do with what we have and yields 1476 systems which is a good sample size. Define new sprinkler with a new SNe density functionWe want to calibrate probabilities of choosing DC2 SNe hosts to be sprinkled. To calibrate these probabilities we will try to match aspects of the overall SNe and SNe host population with our sprinkled population. Review of matching code currently in Sprinkler The function `assign_matches_sne` works in the sprinkler to match potential host galaxies to sprinkled systemsIt first calculates a probability for a galaxy to host a SN with the function `sne_density` based upon stellar mass and galaxy type. Then it draws from a value from a uniform distribution to see if that galaxy gets a SN. If it does then it moves on to `find_possible_match_sne` to find the lensed SN systems that match up to this galaxy based upon redshift and galaxy type.``` def assign_matches_sne(self, sne_gals, rand_state): sprinkled_sne_gal_rows = [] sprinkled_gl_sne_cat_rows = [] for i in range(len(sne_gals)): if i % 10000 == 0: print(i) Draw probability that galaxy is sprinkled sne_density = self.sne_density(sne_gals.iloc[i]) density_draw = rand_state.uniform() if density_draw > sne_density: continue sne_cat_idx = self.find_possible_match_sne(sne_gals.iloc[i]) sne_idx_keep = [x for x in sne_cat_idx if x not in sprinkled_gl_sne_cat_rows] if len(sne_idx_keep) == 0: continue weight = self.gl_sne_cat['weight'].iloc[sne_idx_keep] sprinkled_gl_sne_cat_rows.append( rand_state.choice(sne_idx_keep, p = weight/np.sum(weight))) sprinkled_sne_gal_rows.append(i) return sprinkled_sne_gal_rows, sprinkled_gl_sne_cat_rows``` `sne_density` determines the probability of a galaxy hosting a SNWe use the galaxy types we determined when creating the catalog and the stellar mass of the galaxy to get probabilities that conform with the rates in Table 2 of [Mannucci et al. 2005](https://www.aanda.org/articles/aa/pdf/2005/15/aa1411.pdf).We add in a normalization factor to get the approximate number of lensed SNe we want in the DDF field over the 10 years.``` def sne_density(self, sne_gal_row): density_norm = 0.05 stellar_mass = sne_gal_row['stellar_mass'] host_type = sne_gal_row['gal_type'] if host_type == 'kinney-elliptical': density_host = 0.044 * stellar_mass * 1e-10 elif host_type == 'kinney-sc': density_host = 0.17 * stellar_mass * 1e-10 elif host_type == 'kinney-starburst': density_host = 0.77 * stellar_mass * 1e-10 density_val = density_norm * density_host return density_val``` `find_possible_match_sne` matches potential host galaxies with appropriate systems in the lensed SNe catalogWe find lensed SNe systems that are approximately the same in host mass redshift and type.``` def find_possible_match_sne(self, gal_cat): gal_z = gal_cat['redshift'] gal_type = gal_cat['gal_type'] search the SNe catalog for all sources +- 0.05 dex in redshift and with matching type lens_candidate_idx = [] w = np.where((np.abs(np.log10(self.gl_sne_cat['z_src']) - np.log10(gal_z)) <= 0.05) & (self.gl_sne_cat['type_host'] == gal_type)) lens_candidate_idx = w[0] return lens_candidate_idx``` ###Code # Load Goldstein et al. catalog sne_cat = dc2_sp.gl_sne_cat ###Output _____no_output_____ ###Markdown Test out the sampling by running the sprinkler ###Code #dc2_sp.gal_cat = dc2_sp.gal_cat.iloc[:10000] len(dc2_sp.gl_sne_cat) sne_hosts, sne_sys_cat = dc2_sp.sprinkle_sne() len(sne_hosts) ###Output _____no_output_____ ###Markdown Look at some properties of the matched host galaxies and SNe ###Code plt.hist(sne_hosts['gal_type']) plt.xlabel('Host Galaxy Type') plt.ylabel('Galaxy Counts') plt.hist(sne_hosts['redshift']) plt.xlabel('Host Galaxy Redshift') plt.ylabel('Galaxy Counts') # Check distribution of times SNe appears plt.hist(sne_sys_cat['t0']) plt.xlabel('MJD of First SNe image t0') plt.ylabel('Count') # Check distribution of times SNe appears plt.hist(np.log10(sne_sys_cat['x0'])) plt.xlabel('Log(SNe Salt-2 X0 parameter)') plt.ylabel('Count') sne_sys_cat.head() sne_hosts.columns sne_sys_cat.columns sne_orig = pd.read_hdf('../data/glsne_cosmoDC2_v1.1.4.h5', key='image') sne_orig.head(10) sne_host_orig = pd.read_hdf('../data/glsne_cosmoDC2_v1.1.4.h5', key='system') sne_host_orig sne_host_orig.columns sne_host_orig[['snx', 'sny', 'host_x', 'host_y']] dc2_sp.output_lensed_sne_truth(sne_hosts, sne_sys_cat, 'example_sne_truth.db', id_offset=2000) dc2_sp.output_host_galaxy_truth(agn_hosts, agn_sys_cat, sne_hosts, sne_sys_cat, 'example_host_truth.db') dc2_sp.output_lensed_agn_truth(agn_hosts, agn_sys_cat, 'example_agn_truth.db', id_offset=0) ###Output _____no_output_____
methods/transformers/examples/movement-pruning/Saving_PruneBERT.ipynb
###Markdown Saving PruneBERTThis notebook aims at showcasing how we can leverage standard tools to save (and load) an extremely sparse model fine-pruned with [movement pruning](https://arxiv.org/abs/2005.07683) (or any other unstructured pruning mehtod).In this example, we used BERT (base-uncased, but the procedure described here is not specific to BERT and can be applied to a large variety of models.We first obtain an extremely sparse model by fine-pruning with movement pruning on SQuAD v1.1. We then used the following combination of standard tools:- We reduce the precision of the model with Int8 dynamic quantization using [PyTorch implementation](https://pytorch.org/tutorials/intermediate/dynamic_quantization_bert_tutorial.html). We only quantized the Fully Connected Layers.- Sparse quantized matrices are converted into the [Compressed Sparse Row format](https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html).- We use HDF5 with `gzip` compression to store the weights.We experiment with a question answering model with only 6% of total remaining weights in the encoder (previously obtained with movement pruning). **We are able to reduce the memory size of the encoder from 340MB (original dense BERT) to 11MB**, which fits on a [91' floppy disk](https://en.wikipedia.org/wiki/Floptical)!*Note: this notebook is compatible with `torch>=1.5.0` If you are using, `torch==1.4.0`, please refer to [this previous version of the notebook](https://github.com/huggingface/transformers/commit/b11386e158e86e62d4041eabd86d044cd1695737).* ###Code # Includes import h5py import os import json from collections import OrderedDict from scipy import sparse import numpy as np import torch from torch import nn from transformers import * os.chdir('../../') ###Output _____no_output_____ ###Markdown Saving Dynamic quantization induces little or no loss of performance while significantly reducing the memory footprint. ###Code # Load fine-pruned model and quantize the model model = BertForQuestionAnswering.from_pretrained("huggingface/prunebert-base-uncased-6-finepruned-w-distil-squad") model.to('cpu') quantized_model = torch.quantization.quantize_dynamic( model=model, qconfig_spec = { torch.nn.Linear : torch.quantization.default_dynamic_qconfig, }, dtype=torch.qint8, ) # print(quantized_model) qtz_st = quantized_model.state_dict() # Saving the original (encoder + classifier) in the standard torch.save format dense_st = {name: param for name, param in model.state_dict().items() if "embedding" not in name and "pooler" not in name} torch.save(dense_st, 'dbg/dense_squad.pt',) dense_mb_size = os.path.getsize("dbg/dense_squad.pt") # Elementary representation: we decompose the quantized tensors into (scale, zero_point, int_repr). # See https://pytorch.org/docs/stable/quantization.html # We further leverage the fact that int_repr is sparse matrix to optimize the storage: we decompose int_repr into # its CSR representation (data, indptr, indices). elementary_qtz_st = {} for name, param in qtz_st.items(): if "dtype" not in name and param.is_quantized: print("Decompose quantization for", name) # We need to extract the scale, the zero_point and the int_repr for the quantized tensor and modules scale = param.q_scale() # torch.tensor(1,) - float32 zero_point = param.q_zero_point() # torch.tensor(1,) - int32 elementary_qtz_st[f"{name}.scale"] = scale elementary_qtz_st[f"{name}.zero_point"] = zero_point # We assume the int_repr is sparse and compute its CSR representation # Only the FCs in the encoder are actually sparse int_repr = param.int_repr() # torch.tensor(nb_rows, nb_columns) - int8 int_repr_cs = sparse.csr_matrix(int_repr) # scipy.sparse.csr.csr_matrix elementary_qtz_st[f"{name}.int_repr.data"] = int_repr_cs.data # np.array int8 elementary_qtz_st[f"{name}.int_repr.indptr"] = int_repr_cs.indptr # np.array int32 assert max(int_repr_cs.indices) < 65535 # If not, we shall fall back to int32 elementary_qtz_st[f"{name}.int_repr.indices"] = np.uint16(int_repr_cs.indices) # np.array uint16 elementary_qtz_st[f"{name}.int_repr.shape"] = int_repr_cs.shape # tuple(int, int) else: elementary_qtz_st[name] = param # Create mapping from torch.dtype to string description (we could also used an int8 instead of string) str_2_dtype = {"qint8": torch.qint8} dtype_2_str = {torch.qint8: "qint8"} # Saving the pruned (encoder + classifier) in the standard torch.save format dense_optimized_st = {name: param for name, param in elementary_qtz_st.items() if "embedding" not in name and "pooler" not in name} torch.save(dense_optimized_st, 'dbg/dense_squad_optimized.pt',) print("Encoder Size (MB) - Sparse & Quantized - `torch.save`:", round(os.path.getsize("dbg/dense_squad_optimized.pt")/1e6, 2)) # Save the decomposed state_dict with an HDF5 file # Saving only the encoder + QA Head with h5py.File('dbg/squad_sparse.h5','w') as hf: for name, param in elementary_qtz_st.items(): if "embedding" in name: print(f"Skip {name}") continue if "pooler" in name: print(f"Skip {name}") continue if type(param) == torch.Tensor: if param.numel() == 1: # module scale # module zero_point hf.attrs[name] = param continue if param.requires_grad: # LayerNorm param = param.detach().numpy() hf.create_dataset(name, data=param, compression="gzip", compression_opts=9) elif type(param) == float or type(param) == int or type(param) == tuple: # float - tensor _packed_params.weight.scale # int - tensor _packed_params.weight.zero_point # tuple - tensor _packed_params.weight.shape hf.attrs[name] = param elif type(param) == torch.dtype: # dtype - tensor _packed_params.dtype hf.attrs[name] = dtype_2_str[param] else: hf.create_dataset(name, data=param, compression="gzip", compression_opts=9) with open('dbg/metadata.json', 'w') as f: f.write(json.dumps(qtz_st._metadata)) size = os.path.getsize("dbg/squad_sparse.h5") + os.path.getsize("dbg/metadata.json") print("") print("Encoder Size (MB) - Dense: ", round(dense_mb_size/1e6, 2)) print("Encoder Size (MB) - Sparse & Quantized:", round(size/1e6, 2)) # Save the decomposed state_dict to HDF5 storage # Save everything in the architecutre (embedding + encoder + QA Head) with h5py.File('dbg/squad_sparse_with_embs.h5','w') as hf: for name, param in elementary_qtz_st.items(): # if "embedding" in name: # print(f"Skip {name}") # continue # if "pooler" in name: # print(f"Skip {name}") # continue if type(param) == torch.Tensor: if param.numel() == 1: # module scale # module zero_point hf.attrs[name] = param continue if param.requires_grad: # LayerNorm param = param.detach().numpy() hf.create_dataset(name, data=param, compression="gzip", compression_opts=9) elif type(param) == float or type(param) == int or type(param) == tuple: # float - tensor _packed_params.weight.scale # int - tensor _packed_params.weight.zero_point # tuple - tensor _packed_params.weight.shape hf.attrs[name] = param elif type(param) == torch.dtype: # dtype - tensor _packed_params.dtype hf.attrs[name] = dtype_2_str[param] else: hf.create_dataset(name, data=param, compression="gzip", compression_opts=9) with open('dbg/metadata.json', 'w') as f: f.write(json.dumps(qtz_st._metadata)) size = os.path.getsize("dbg/squad_sparse_with_embs.h5") + os.path.getsize("dbg/metadata.json") print('\nSize (MB):', round(size/1e6, 2)) ###Output Size (MB): 99.41 ###Markdown Loading ###Code # Reconstruct the elementary state dict reconstructed_elementary_qtz_st = {} hf = h5py.File('dbg/squad_sparse_with_embs.h5','r') for attr_name, attr_param in hf.attrs.items(): if 'shape' in attr_name: attr_param = tuple(attr_param) elif ".scale" in attr_name: if "_packed_params" in attr_name: attr_param = float(attr_param) else: attr_param = torch.tensor(attr_param) elif ".zero_point" in attr_name: if "_packed_params" in attr_name: attr_param = int(attr_param) else: attr_param = torch.tensor(attr_param) elif ".dtype" in attr_name: attr_param = str_2_dtype[attr_param] reconstructed_elementary_qtz_st[attr_name] = attr_param # print(f"Unpack {attr_name}") # Get the tensors/arrays for data_name, data_param in hf.items(): if "LayerNorm" in data_name or "_packed_params.bias" in data_name: reconstructed_elementary_qtz_st[data_name] = torch.from_numpy(np.array(data_param)) elif "embedding" in data_name: reconstructed_elementary_qtz_st[data_name] = torch.from_numpy(np.array(data_param)) else: # _packed_params.weight.int_repr.data, _packed_params.weight.int_repr.indices and _packed_params.weight.int_repr.indptr data_param = np.array(data_param) if "indices" in data_name: data_param = np.array(data_param, dtype=np.int32) reconstructed_elementary_qtz_st[data_name] = data_param # print(f"Unpack {data_name}") hf.close() # Sanity checks for name, param in reconstructed_elementary_qtz_st.items(): assert name in elementary_qtz_st for name, param in elementary_qtz_st.items(): assert name in reconstructed_elementary_qtz_st, name for name, param in reconstructed_elementary_qtz_st.items(): assert type(param) == type(elementary_qtz_st[name]), name if type(param) == torch.Tensor: assert torch.all(torch.eq(param, elementary_qtz_st[name])), name elif type(param) == np.ndarray: assert (param == elementary_qtz_st[name]).all(), name else: assert param == elementary_qtz_st[name], name # Re-assemble the sparse int_repr from the CSR format reconstructed_qtz_st = {} for name, param in reconstructed_elementary_qtz_st.items(): if "weight.int_repr.indptr" in name: prefix_ = name[:-16] data = reconstructed_elementary_qtz_st[f"{prefix_}.int_repr.data"] indptr = reconstructed_elementary_qtz_st[f"{prefix_}.int_repr.indptr"] indices = reconstructed_elementary_qtz_st[f"{prefix_}.int_repr.indices"] shape = reconstructed_elementary_qtz_st[f"{prefix_}.int_repr.shape"] int_repr = sparse.csr_matrix(arg1=(data, indices, indptr), shape=shape) int_repr = torch.tensor(int_repr.todense()) scale = reconstructed_elementary_qtz_st[f"{prefix_}.scale"] zero_point = reconstructed_elementary_qtz_st[f"{prefix_}.zero_point"] weight = torch._make_per_tensor_quantized_tensor(int_repr, scale, zero_point) reconstructed_qtz_st[f"{prefix_}"] = weight elif "int_repr.data" in name or "int_repr.shape" in name or "int_repr.indices" in name or \ "weight.scale" in name or "weight.zero_point" in name: continue else: reconstructed_qtz_st[name] = param # Sanity checks for name, param in reconstructed_qtz_st.items(): assert name in qtz_st for name, param in qtz_st.items(): assert name in reconstructed_qtz_st, name for name, param in reconstructed_qtz_st.items(): assert type(param) == type(qtz_st[name]), name if type(param) == torch.Tensor: assert torch.all(torch.eq(param, qtz_st[name])), name elif type(param) == np.ndarray: assert (param == qtz_st[name]).all(), name else: assert param == qtz_st[name], name ###Output _____no_output_____ ###Markdown Sanity checks ###Code # Load the re-constructed state dict into a model dummy_model = BertForQuestionAnswering.from_pretrained('bert-base-uncased') dummy_model.to('cpu') reconstructed_qtz_model = torch.quantization.quantize_dynamic( model=dummy_model, qconfig_spec = None, dtype=torch.qint8, ) reconstructed_qtz_st = OrderedDict(reconstructed_qtz_st) with open('dbg/metadata.json', 'r') as read_file: metadata = json.loads(read_file.read()) reconstructed_qtz_st._metadata = metadata reconstructed_qtz_model.load_state_dict(reconstructed_qtz_st) # Sanity checks on the infernce N = 32 for _ in range(25): inputs = torch.randint(low=0, high=30000, size=(N, 128)) mask = torch.ones(size=(N, 128)) y_reconstructed = reconstructed_qtz_model(input_ids=inputs, attention_mask=mask)[0] y = quantized_model(input_ids=inputs, attention_mask=mask)[0] assert torch.all(torch.eq(y, y_reconstructed)) print("Sanity check passed") ###Output Sanity check passed
Model_Attempts/Twelfth_Try_Model.ipynb
###Markdown King County Dataset Linear Regression Model 12 Adjustments for this model: Start with getting rid of 'id', 'zipcode', 'lat', 'long' Then deal with the NaN's in 'view', 'yr_renovated', 'waterfront', and 'sqft_basement' Change "?" in 'sqft_basement', change it to a float. Take care of outlier in 'bedrooms', Are there outliers in theres? 'sqft_living','sqft_lot', 'sqft_living15', 'sqft_lot15' Deal with the 'date' feature? - I still don't know how! Bin categorical data: 'view', 'grade', 'sqft_basement', 'yr_renovated', 'waterfront', 'condition' Lot Transform right skewed data: 'sqft_above', 'sqft_living','sqft_lot', 'sqft_living15', 'sqft_lot15' Max/Min: None. Standardization: 'sqft_above', 'sqft_living','sqft_lot','sqft_living15', 'sqft_lot15' ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline data = pd.read_csv("kc_house_data.csv") data.head() # This time I'm going to try to not adjust the original, just a new series called king_features king_features = pd.read_csv("kc_house_data.csv") data.describe() king_features.describe() ###Output _____no_output_____ ###Markdown Missing Data ###Code # Change "?" in 'sqft_basement' to '0'; king_features.sqft_basement = king_features.sqft_basement.replace(to_replace = '?', value = '0') # Account for missing data in 'waterfront', 'view', 'yr_renovated'; king_features.waterfront.fillna(value=king_features.waterfront.median(), inplace = True) king_features.view.fillna(value=king_features.view.median(), inplace = True) king_features.yr_renovated.fillna(value=king_features.yr_renovated.median(), inplace = True) king_features.sqft_basement.fillna(value=king_features.sqft_basement.median(), inplace = True) # Change outlier '33' to '3' in 'bedrooms'; king_features.at[15856,'bedrooms'] = 3 # Change 'date' feature to float; Still not working! import datetime as dt king_features['date'] = pd.to_datetime(king_features.date) # Look at 'date' object. king_features.date.hist() # Other code to try; Still not working! # Change 'date' feature to float; #import datetime as dt #Run this code first and then change it! #data["date"] = pd.to_datetime(data["date"], format = "%m/%d/%Y") # I want day first, but it won't work this way. #data["date"] = pd.to_datetime(data["date"], format = "%d/%m/%Y") # Change 'sqft_basement' from an object to a float: king_features['sqft_basement'] = king_features['sqft_basement'].astype(float) king_features = king_features.drop(["id"], axis=1) # Before data.bathrooms.hist() king_features.bathrooms.mean() king_features.bathrooms.std()*4 + king_features.bathrooms.mean() king_features = king_features[king_features.bathrooms < 6] # After king_features.bathrooms.hist() # Before data.bedrooms.hist() king_features.bedrooms.mean() king_features.bedrooms.mean()+king_features.bedrooms.std()*4 king_features = king_features[king_features.bedrooms < 7] # After king_features.bedrooms.hist() # Before data.sqft_living.hist() king_features.sqft_living.mean() king_features.sqft_living.mean()+king_features.sqft_living.std()*4 len(king_features.loc[king_features["sqft_living"] > 5664]) king_features = king_features[king_features.sqft_living < 5664] # After king_features.sqft_living.hist() # Before data.sqft_lot.hist() king_features.sqft_lot.mean() king_features.sqft_lot.mean()+king_features.sqft_lot.std()*4 # Number of homes that have more than a 1 acre lot or 43560 sqft. len(king_features.loc[king_features["sqft_lot"] > 178007]) king_features = king_features[king_features.sqft_lot < 178007] # After king_features.sqft_lot.hist() # Before data.sqft_above.hist() king_features.sqft_above.mean() king_features.sqft_above.mean()+king_features.sqft_above.std()*4 # This number is different than the length of the data, because I've been cleaning it! len(king_features.loc[king_features["sqft_above"] > 4882]) king_features = king_features[king_features.sqft_above < 4882] king_features.sqft_above.hist() king_features.yr_built.unique() # Left skewed. king_features.yr_built.hist() # Huge gap between data. Just like 'sqft_basement' data.yr_renovated.hist() # Before data.sqft_living15.hist() king_features.sqft_living15.mean()+king_features.sqft_living15.std()*4 len(king_features.loc[king_features["sqft_living15"] > 4628]) # Let's get rid of the outliers king_features = king_features[king_features.sqft_living15 < 4628] king_features.sqft_living15.hist() data.sqft_lot15.hist() king_features.sqft_lot15.mean()+king_features.sqft_lot15.std()*4 len(king_features.loc[king_features["sqft_lot15"] > 77806]) # Let's get rid of the outliers king_features = king_features[king_features.sqft_lot15 < 77806] # After king_features.sqft_lot15.hist() data.grade.hist() king_features.grade.describe() king_features.describe() # Create bins for 'yr_renovated' based on the values observed. 4 values will result in 3 bins bins_A = [0, 1900, 2000, 2020] bins_yr_renovated = pd.cut(king_features['yr_renovated'], bins_A) bins_yr_renovated = bins_yr_renovated.cat.as_ordered() yr_renovated_dummy = pd.get_dummies(bins_yr_renovated, prefix="yr-ren", drop_first=True) king_features = king_features.drop(["yr_renovated"], axis=1) king_features = pd.concat([king_features, yr_renovated_dummy], axis=1) # Create bins for 'sqft_basement' based on the values observed. 3 values will result in 2 bins bins_B = [0, 100, 5000] bins_sqft_basement = pd.cut(king_features['sqft_basement'], bins_B) bins_sqft_basement = bins_sqft_basement.cat.as_ordered() sqft_basement_dummy = pd.get_dummies(bins_sqft_basement, prefix="sqft_base", drop_first=True) king_features = king_features.drop(["sqft_basement"], axis=1) king_features = pd.concat([king_features, sqft_basement_dummy], axis=1) # Create bins for 'view' based on the values observed. 3 values will result in 2 bins bins_C = [0, 2, 4] bins_view = pd.cut(king_features['view'], bins_C) bins_view = bins_view.cat.as_ordered() view_dummy = pd.get_dummies(bins_view, prefix="new_view", drop_first=True) king_features = king_features.drop(["view"], axis=1) king_features = pd.concat([king_features, view_dummy], axis=1) # Create bins for 'grade' based on the values observed. 3 values will result in 2 bins bins_D = [0, 8, 13] bins_grade = pd.cut(king_features['grade'], bins_D) bins_grade = bins_grade.cat.as_ordered() grade_dummy = pd.get_dummies(bins_grade, prefix="new_grade", drop_first=True) king_features = king_features.drop(["grade"], axis=1) king_features = pd.concat([king_features, grade_dummy], axis=1) # Create bins for 'waterfront' based on the values observed. 3 values will result in 2 bins bins_E = [0, 0.5, 1] bins_waterfront = pd.cut(king_features['waterfront'], bins_E) bins_waterfront = bins_waterfront.cat.as_ordered() waterfront_dummy = pd.get_dummies(bins_waterfront, prefix="new_waterfront", drop_first=True) king_features = king_features.drop(["waterfront"], axis=1) king_features = pd.concat([king_features, waterfront_dummy], axis=1) # Create bins for 'condition' based on the values observed. 4 values will result in 3 bins bins_G = [0, 3, 4, 5] bins_condition = pd.cut(king_features['condition'], bins_G) bins_condition = bins_condition.cat.as_ordered() condition_dummy = pd.get_dummies(bins_condition, prefix="new_condition", drop_first=True) king_features = king_features.drop(["condition"], axis=1) king_features = pd.concat([king_features, condition_dummy], axis=1) ###Output _____no_output_____ ###Markdown Log Transformation: These features have right skewed histograms'sqft_above', 'sqft_lot', 'sqft_living', 'sqft_living15', 'sqft_lot15' ###Code # Perform log transformation logabove = np.log(king_features["sqft_above"]) loglot = np.log(king_features["sqft_lot"]) logliving = np.log(king_features["sqft_living"]) loglivingnear = np.log(king_features["sqft_living15"]) loglotnear = np.log(king_features["sqft_lot15"]) # Switch the Standardization into the original data king_features["sqft_above"] = (logabove-np.mean(logabove))/np.sqrt(np.var(logabove)) king_features["sqft_lot"] = (loglot-np.mean(loglot))/np.sqrt(np.var(loglot)) king_features["sqft_living"] = (logliving-np.mean(logliving))/np.sqrt(np.var(logliving)) king_features["sqft_living15"] = (loglivingnear-np.mean(loglivingnear))/np.sqrt(np.var(loglivingnear)) king_features["sqft_lot15"] = (loglotnear-np.mean(loglotnear))/(np.sqrt(np.var(loglotnear))) ###Output _____no_output_____ ###Markdown Check the histograms of the log transformed/standardization: ###Code ax1 = plt.subplot(2, 2, 1) king_features.sqft_above.hist(ax=ax1) ax1.set_title("sqft_above") ax2 = plt.subplot(2, 2, 2) king_features.sqft_living.hist(ax=ax2) ax2.set_title('sqft_living') ax3 = plt.subplot(2, 2, 3) king_features.sqft_living15.hist(ax=ax3) ax3.set_title("sqft_living15") ax4 = plt.subplot(2, 2, 4) king_features.sqft_lot15.hist(ax=ax4) ax4.set_title('sqft_lot15') king_features.info() king_features = king_features.drop(['yr-ren_(1900, 2000]'], axis=1) # "ValueError: The indices for endog and exog are not aligned" - if I use both 'data' and 'king_features' #data.reindex(king_features.index) y = pd.DataFrame(king_features, columns = ['price']) X = king_features.drop(['price','date', 'floors', 'sqft_lot'], axis=1) import statsmodels.api as sm model = sm.OLS(y,X).fit() model.summary() # Perform a train-test split from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y) # A brief preview of our train test split print(len(X_train), len(X_test), len(y_train), len(y_test)) # Apply your model to the train set from sklearn.linear_model import LinearRegression linreg = LinearRegression() linreg.fit(X_train, y_train) LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False) # Calculate predictions on training and test sets y_hat_train = linreg.predict(X_train) y_hat_test = linreg.predict(X_test) # Calculate training and test residuals train_residuals = y_hat_train - y_train test_residuals = y_hat_test - y_test #Calculate the Mean Squared Error (MSE) from sklearn.metrics import mean_squared_error train_mse = mean_squared_error(y_train, y_hat_train) test_mse = mean_squared_error(y_test, y_hat_test) print('Train Mean Squarred Error:', train_mse) print('Test Mean Squarred Error:', test_mse) #Evaluate the effect of train-test split import random random.seed(8) train_err = [] test_err = [] t_sizes = list(range(5,100,5)) for t_size in t_sizes: temp_train_err = [] temp_test_err = [] for i in range(100): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=t_size/100) linreg.fit(X_train, y_train) y_hat_train = linreg.predict(X_train) y_hat_test = linreg.predict(X_test) temp_train_err.append(mean_squared_error(y_train, y_hat_train)) temp_test_err.append(mean_squared_error(y_test, y_hat_test)) train_err.append(np.mean(temp_train_err)) test_err.append(np.mean(temp_test_err)) plt.scatter(t_sizes, train_err, label='Training Error') plt.scatter(t_sizes, test_err, label='Testing Error') plt.legend() from sklearn.metrics import mean_squared_error from sklearn.model_selection import cross_val_score cv_5_results = np.mean(cross_val_score(linreg, X, y, cv=5, scoring='neg_mean_squared_error')) cv_5_results ###Output _____no_output_____
dholecenter.ipynb
###Markdown mmdholecenterHole center misalignment in PCB. DescriptionThe input image is a binary image of a gear. The opening top-hat is used to detect the gear teeth. Finally, the teeth detected are labeled. ###Code import numpy as np from PIL import Image import ia870 as ia import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown ReadingThe image of the PCB is read. ###Code a_pil = Image.open('data/pcbholes.tif').convert('L') a = np.array (a_pil) a = a.astype('bool') (fig, axes) = plt.subplots(nrows=1, ncols=1,figsize=(5, 5)) axes.set_title('a') axes.imshow(a, cmap='gray') axes.axis('off') ###Output _____no_output_____ ###Markdown  First, find center of the pads.Use the close hole function to remove the holes. Note that one hole is open. This is not considered in this experiment. The regional maxima of the distance transform gives the radius of the largest disk inside the pad. We are interested only in radius larger than 20 pixels. ###Code b = ia.iaclohole(a) d = ia.iadist(b,ia.iasecross(),'EUCLIDEAN') e = ia.iaregmax(d,ia.iasebox()) f = ia.iathreshad(d, np.uint16(20)) # radius larger than 20 pixels g = ia.iaintersec(e,f) h = ia.iablob(ia.ialabel(g,ia.iasebox()),'CENTROID') # pad center (fig, axes) = plt.subplots(nrows=1, ncols=2,figsize=(10, 5)) axes[0].set_title('b') axes[0].imshow(b, cmap='gray') axes[0].axis('off') axes[1].set_title('b, h') axes[1].imshow(ia.iagshow(b, ia.iadil(h)).transpose(1, 2, 0)) axes[1].axis('off') ###Output _____no_output_____ ###Markdown Find the center of the holesThe holes are given by the difference of the pad image from the original image. Repeat the same procedure to find the center of the pads to find now the center of the holes. ###Code i = ia.iasubm(b,a) j = ia.iadist(i,ia.iasecross(),'EUCLIDEAN') k = ia.iaregmax(j,ia.iasebox()) l = ia.iablob(ia.ialabel(k,ia.iasebox()),'CENTROID') # hole center (fig, axes) = plt.subplots(nrows=2, ncols=2,figsize=(10, 5)) axes[0][0].set_title('i') axes[0][0].imshow(ia.iagshow(i).transpose(1, 2, 0)) axes[0][0].axis('off') axes[0][1].set_title('j') axes[0][1].imshow(d, cmap='gray') axes[0][1].axis('off') axes[1][0].set_title('k') axes[1][0].imshow(ia.iagshow(ia.iadil(k)).transpose(1, 2, 0)) axes[1][0].axis('off') axes[1][1].set_title('i, l') axes[1][1].imshow(ia.iagshow(i, ia.iadil(l)).transpose(1, 2, 0)) axes[1][1].axis('off') ###Output _____no_output_____ ###Markdown Show the eccentricityFirst both centers (pads and holes) are displayed together. Then the actual misalignment is computed using the distance from one point to the other. ###Code m = ia.iadist(ia.ianeg(l),ia.iasecross(),'EUCLIDEAN'); n = ia.iaintersec(ia.iagray(h),np.uint8(m)); [x,y]=np.nonzero(n); v = n[np.nonzero(n)] print (x, y, v) #fprintf('displacement of %d at (%d,%d)\n',[double(v)';x';y']); #displacement of 3 at (44,89) #displacement of 6 at (154,188) #displacement of 8 at (45,192) (fig, axes) = plt.subplots(nrows=1, ncols=2,figsize=(10, 5)) axes[0].set_title('a, h, l') axes[0].imshow(ia.iagshow(a, h, l).transpose(1, 2, 0)) axes[0].axis('off') axes[1].set_title('n, a') axes[1].imshow(ia.iagshow(n, a).transpose(1, 2, 0)) axes[1].axis('off') ###Output [ 43 44 153] [ 88 191 187] [3 8 6] ###Markdown Find the narrowest region around the holesFirst, the thinning to compute the skeleton of the PCB image, then remove iteratively all the end points of the skeleton so just the skeleton loop around the holes remains. Find the minimum distance of these loops to the border and display their location. ###Code o=ia.iathin(a) p=ia.iathin(o,ia.iaendpoints()) q = ia.iadist(a,ia.iasecross(),'EUCLIDEAN') r = ia.iagrain(ia.ialabel(p,ia.iasebox()),q,'min') # minimum s = ia.iagrain(ia.ialabel(p,ia.iasebox()),q,'min','data'); # minimum t = ia.iaintersec(ia.iacmp(r,'==',q),a); print (2*s+1) #fprintf('Minimum distance: %d pixels\n',2*double(s)+1); #Minimum distance: 7 pixels #Minimum distance: 3 pixels #Minimum distance: 7 pixels (fig, axes) = plt.subplots(nrows=1, ncols=2,figsize=(10, 5)) axes[0].set_title('a, p') axes[0].imshow(ia.iagshow(a, p).transpose(1, 2, 0)) axes[0].axis('off') axes[1].set_title('a, t') axes[1].imshow(ia.iagshow(a, ia.iadil(t)).transpose(1, 2, 0)) axes[1].axis('off') ###Output [7. 7. 3.]
Preprocessing/Mini_Project_3.ipynb
###Markdown ###Code from google.colab import drive drive.mount("/content/drive/") import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches import pandas as pd import seaborn as sns import math sns.set() data_raw = pd.read_csv(r"/content/drive/MyDrive/Colab Notebooks/NFLRush.csv") data_raw.head() data_raw.shape data_raw.columns data_raw["Yards"] len(data_raw[data_raw["PlayId"] == 20181115001638]) specific_play = data_raw[data_raw["PlayId"] == 20181115001638] """ 1. The features YardLine, Quarter, and PossessionTeam among others tell us important information about this play. 2. The features DisplayName, JerseyNumber, and Dir among others tell us information about each player on the field. """ three_players_box = data_raw[data_raw["DefendersInTheBox"] == 3] data_raw[data_raw["DefendersInTheBox"] == 3].value_counts("PlayId").shape[0] len(three_players_box), len(three_players_box["PlayId"].unique()), (len(three_players_box) / len(data_raw) * 100) """ We know that there are 22 players per play, and 396 players showed up in our query, therefore 396 / 22 = 18 unique plays should show up. Approx. 0.00077% of plays have three players in the box, therefore it is quite uncommon. """ michael_thomas = data_raw[data_raw["DisplayName"] == "Michael Thomas"] len(michael_thomas["GameId"].unique()) # people with the name Michael Thomas played 50 NFL games michael_thomas_players = michael_thomas["NflId"].unique() michael_thomas_players # there are 2 michael thomas's in the dataset! mt1 = michael_thomas[michael_thomas["NflId"] == michael_thomas_players[0]] mt2 = michael_thomas[michael_thomas["NflId"] == michael_thomas_players[1]] len(mt1["GameId"].unique()), len(mt2["GameId"].unique()) # since 32 + 19 = 51, it appears like both of them must have played in the same game! print(data_raw[data_raw["DisplayName"] == "Michael Thomas"].groupby(["NflId"])["GameId"].value_counts()) print(data_raw[data_raw["DisplayName"] == "Michael Thomas"].groupby(["NflId", "GameId"])["PlayId"].count()) data_raw.columns data_raw.groupby(["Stadium", "Season"])["PlayId"].count() data_raw["WindDirection"].unique() sns.distplot(data_raw["Yards"], kde=True) data_raw["Yards"].describe() """ The distribution looks to be skewed, as one of the tails of the graph is significantly larger than the other. Most of the values lie between 0 and approx. 10 yards, which makes sense if you know the game of football and rushing. I could not see the max yard gain from the graph alone, so I used the describe function above and the max yard gain appears to be 99 yards. """ sns.boxplot(x = "Yards", data = data_raw) """ In comparison to the distribution plot, the boxplot shows the volume of plays that resulted in a gain of 20+ yards, whereas in the distribution plot, I nearly assumed that the amount of such plays were near 0 due to the line being nearly close to the origin. When I did a basic boolean filter command to filter the number of plays that resulted in greater than a 50 yard gain, I got 1518 plays. Something that could be potentially misleading about a boxplot is that is the majority of the datapoints take up a minimal amount of space. The box in the plot represents the 25th - 75th percentile of datapoints, yet takes up far fewer space than the supposed "outliers" despite representing far more datapoints. """ sns.distplot(data_raw["Y"], kde=True) sns.distplot(data_raw["Humidity"], kde=True) sns.distplot(data_raw["A"], kde=True) """ What occured in the graph of "Y" is explainable if you understand the game of football. We can see in the graph that there is a global maximum around Y = 27 (approx), with local maximums at Y = 10 and Y = 43 (approx). The maximum and minumum values for Y are 53.3 and 0, respectively. In every football play, there is generally a cluster of players in the midddle of the field (approx. Y = 27), with recievers and cornerbacks lined up at the edges of the fields (Y = 10 and Y = 43). This explains the local and global maximums that we saw in the graph. """ sns.regplot(x="YardLine", y="Yards", data=data_raw, ci = None) """ If you add up the YardLine value and the Yards value for all points all the diagonal line, you will always get 100. This is because these are all plays that resulted in a touchdown. """ sns.boxplot(x=data_raw["Season"], y=data_raw["Humidity"]) """ I'm assuming the goal for this part was to examine the relationship between the seasons and humidity during those seasons. Based off this goal, I would say the bivariate boxplot is useful for examining this relationship. We can see that the humidity values in 2018 are higher than 2017, with boxplot ranges that are approx. 5 degrees higher. """ sns.violinplot(x="Season", y="Humidity", data=data_raw) """ The one feature that violin plots have that boxplots do not have is that violin plots show the probability that a datapoint will take on a certain value through the thickness. The violin plot shows that the difference between the medians of 2017 and 2018 is 4-5 degrees, but it does not appear to be as drastic as the difference shown in the box plots. The two describe cells below back up these claims. """ data_raw[data_raw["Season"] == 2017]["Humidity"].describe() data_raw[data_raw["Season"] == 2018]["Humidity"].describe() sns.scatterplot(x="Down", y="Yards", data=data_raw) # interesting that plays on fourth down do not yield as many yards sns.scatterplot(x="Humidity", y="Yards", hue="Season", data=data_raw) sns.scatterplot(x="Humidity", y="Yards", data=data_raw) sns.scatterplot(x="Stadium", y="Yards", data=data_raw) """ Humidity and Stadium don't affect yard gain for the most part. Therefore, these features would not be useful to the model. Since the yards feature is continous, I would assume we would first start by using a Logistic Regression model to predict. A good model would have coefficients for features such as Humidity and Stadium that don't impact yard gain. """ ###Output _____no_output_____
craftworks-pm/.ipynb_checkpoints/1 - Predictive Maintenance - Modeling-checkpoint.ipynb
###Markdown Model buildingTry to build a model that is able to predict the machine status. ###Code import numpy as np import pandas as pd from matplotlib import pyplot as plt import seaborn as sns %matplotlib inline plt.rcParams['figure.figsize'] = [15, 5] from pandas import HDFStore from sklearn.utils import shuffle from sklearn.metrics import classification_report, confusion_matrix ###Output _____no_output_____ ###Markdown DataThe data is already pre processed (resampled, standardized, NAN filtered, split)The independed variable (column 'machine_state') has four states, beeing strongly unvalanced.States:* NORMAL* RECOVERING* FAILING* AFTERMATH* BROKEN ###Code hdf = HDFStore('data/preprocessed.h5') training = hdf['training'] validation = hdf['validation'] testing = hdf['testing'] training.head(5) xColumns = list(training.columns[training.columns.str.contains('sensor_')]) xColumns += ['hour'] yColumns = 'machine_status' xTrain, yTrain = training[xColumns], training[yColumns] xVal, yVal = validation[xColumns], validation[yColumns] xTest, yTest = testing[xColumns], testing[yColumns] xTest.shape yTest.shape xTrain.head(5) [df.value_counts() for df in [yTrain, yVal, yTest]] ###Output _____no_output_____ ###Markdown 1. Data preprocessing and balancing classesDo a new pre processing where we sample from the normal and the failing data by simply randomly selecting a point in time X and get data from X-N:X. ###Code from IPython.core.debugger import set_trace as st def sampleByIndex(X, Y, N, state, newYValue, sequence_length='30min', index_masking='30min', seed=42): """ Generate a numpy array containing N sequences sampled the given dataset (X and Y). As input only a subset of the data is used for which Y == state. Note: The index_masking is used in order to make sure that sampling is not trying to generate sequences that go beyond the start of the dataset Parameters ---------- X, Y : pd.Dataframe The dataframe containing depended and independed variables state : Y state of the data to consider newYValue : Value of the generated Y data sequence_length : str Pandas Timestamp string defining sequence length index_masking : str Mask the beginning of the dataset seed : int define seed for sampling process Returns ------- np.array : (N, seq_length, nFeatures) X sequences np.array : N Y """ np.random.seed(seed) Ymasked = Y.loc[Y.index[0] + pd.Timedelta(index_masking):] Iend = np.random.choice(Ymasked[Ymasked == state].index, N) Istart = Iend - pd.Timedelta(sequence_length) sequences = [] for start, end in zip(Istart, Iend): try: sequences.append(X[start:end].values) except Exception as e: print('Some error with %s:%s' % (s, e) ) sequences = np.array(sequences) newY = np.ones(sequences.shape[0]) * newYValue return sequences, newY def createSequenceWithSampling(X, Y, N, seed=42): xseq0, yseq0 = sampleByIndex(X, Y, N, 'NORMAL', 0, seed=seed) xseq1, yseq1 = sampleByIndex(X, Y, N, 'FAILING', 1, seed=seed) xseq = np.concatenate((xseq0, xseq1)) yseq = np.concatenate((yseq0, yseq1)) xseq = shuffle(xseq, random_state=seed) yseq = shuffle(yseq, random_state=seed) return xseq, yseq xTrainSeq, yTrainSeq = createSequenceWithSampling(xTrain, yTrain, 1000) xValidSeq, yValidSeq = createSequenceWithSampling(xVal, yVal, 200) xTestSeq, yTestSeq = createSequenceWithSampling(xTest, yTest, 100) xTrainSeq.shape ###Output _____no_output_____ ###Markdown Old data preprocessingPerform a class balancing by generating sequences of the FAILING class through a sliding window of over the FAILING data segment. ###Code SEQUENCE_LENGTH = 5 NFEATURES=xTrain.shape[1] def toSequence(X, Y, sequence_length, balance_classes=False, seed=None): normal = X[Y == 'NORMAL'] failing = X[Y == 'FAILING'] x_normal_ = [] windows = np.arange(0, normal.shape[0], step=sequence_length) for start, stop in zip(windows[0:-1], windows[1:]): x_normal_.append(normal[start:stop].values) x_normal_ = np.array(x_normal_) y_normal_ = np.zeros(x_normal_.shape[0]) #y_normal_ = np.repeat(np.array([1, 0])[None, :], x_normal_.shape[0], axis=0) #print('# Normal samples: %d' % x_normal_.shape[0]) x_failing_ = [] for start, stop in zip(range(0, failing.shape[0]-sequence_length), range(sequence_length, failing.shape[0])): x_failing_.append(failing[start:stop].values) x_failing_ = np.array(x_failing_) y_failing_ = np.ones(x_failing_.shape[0]) #y_failing_ = np.repeat(np.array([0, 1])[None, :], x_failing_.shape[0], axis=0) #print('# Failing samples: %d' % x_failing_.shape[0]) if balance_classes: # Sample with replacement from the failing dataset np.random.seed(seed) rnd_elements = np.random.randint(0, x_failing_.shape[0], x_normal_.shape[0]) x_failing_ext = x_failing_[rnd_elements] y_failing_ext = np.ones(x_failing_ext.shape[0]) #y_failing_ext = np.repeat(np.array([0, 1])[None, :], x_failing_ext.shape[0], axis=0) x_failing_ = x_failing_ext y_failing_ = y_failing_ext #return x_normal_, x_failing_ # Join and shuffle the data X_ = np.concatenate((x_normal_, x_failing_)) Y_ = np.concatenate((y_normal_, y_failing_)) # Now shuffle the array no have no artificats during training X_ = shuffle(X_, random_state=seed) Y_ = shuffle(Y_, random_state=seed) return X_, Y_ xTrain_, yTrain_ = toSequence(xTrain, yTrain, 6, balance_classes=True, seed=100) xVal_, yVal_ = toSequence(xVal, yVal, 6, balance_classes=True, seed=100) xTest_, yTest_ = toSequence(xTest, yTest, 6, balance_classes=True, seed=100) ###Output _____no_output_____ ###Markdown 2. Model evaluation toolkitBuild a set of tools to evaluate model training progression and performance ###Code from sklearn.metrics import precision_score, recall_score, accuracy_score, f1_score def score_results(yTrue, yPred, scores = {'precision': precision_score, 'recall': recall_score, 'accuracy': accuracy_score, 'f1': f1_score} ): return {n: fu(yTrue, yPred) for n, fu in scores.items()} def plot_acc(history, title="Model Accuracy", ax=None): if ax is None: fig, ax = plt.subplots(nrows=1, ncols=1) ax.plot(history.history['acc']) ax.plot(history.history['val_acc']) ax.set_title(title) ax.set_ylabel('Accuracy') ax.set_xlabel('Epoch') ax.legend(['Train', 'Val'], loc='upper left') def plot_loss(history, title="Model Loss", ax=None): if ax is None: fig, ax = plt.subplots(nrows=1, ncols=1) ax.plot(history.history['loss']) ax.plot(history.history['val_loss']) ax.set_title(title) ax.set_ylabel('Loss') ax.set_xlabel('Epoch') ax.legend(['Train', 'Val'], loc='upper right') def plot_training(history): fig, axs = plt.subplots(nrows=1, ncols=2) plot_acc(history=history, ax=axs[0]) plot_loss(history=history, ax=axs[1]) fig.suptitle('Training Progress') from sklearn.metrics import roc_curve from sklearn.metrics import roc_auc_score from matplotlib import pyplot as plt def plot_ROC(yTest, yPred, ax=None): ns_probs = [0] * len(yPred) ns_auc = roc_auc_score(yTest, ns_probs) pre_auc = roc_auc_score(yTest, yPred) # calculate roc curves ns_fpr, ns_tpr, _ = roc_curve(yTest, ns_probs) lr_fpr, lr_tpr, thrds = roc_curve(yTest, yPred) # Calculate metrices acc = [] prec = [] reca = [] f1 = [] for th in thrds: tn, fp, fn, tp = confusion_matrix(yTest, yPred > th).ravel() acc.append((tp+tn)/(tn+fp+fn+tp)) prec.append(tp/(tp+fp)) reca.append(tp/(tp+fn)) f1.append((2*prec[-1]*reca[-1])/(prec[-1]+reca[-1])) bThreshold = thrds[np.nanargmax(f1)] if ax is None: fig, ax = plt.subplots(nrows=1, ncols=1) # plot the roc curve for the model ax.plot(ns_fpr, ns_tpr, linestyle='--', label='Random') ax.plot(lr_fpr, lr_tpr, marker='.', label='Model') #plt.plot(lr_fpr, acc, marker='o', label='accuracy') #plt.plot(lr_fpr, f1, marker='o', label='F1') ax.set_xlabel('False Positive Rate') ax.set_ylabel('True Positive Rate') # show the legend ax.legend() ax.set_title("ROC Curve\nAUC=%.3f, F1 Peak@Threshold %.3f" % (pre_auc, bThreshold)) # summarize scores #print('Random: ROC AUC=%.3f' % (ns_auc)) #print('\nModel: ROC AUC=%.3f' % (pre_auc)) #print('\nF1 peak at threshold: %.3f' %(bThreshold)) return pre_auc, bThreshold, (lr_fpr, lr_tpr, f1) def plot_confusion_matrix(yTrue, yPred, title='Confusion matrix', display_labels=['NORMAL', 'FAILING'], cmap=plt.cm.Blues, normalize=False, ax=None): cm = confusion_matrix(yTrue, yPred) if normalize: cm = cm / cm.sum() if ax is None: fig, ax = plt.subplots(nrows=1, ncols=1) else: fig=ax.get_figure() ax.imshow(cm, interpolation='nearest', cmap=cmap) ax.set_title(title) #fig.colorbar() tick_marks = np.arange(len(display_labels)) ax.set_xticks(tick_marks) ax.set_yticks(tick_marks) ax.set_xticklabels(display_labels, rotation=45) ax.set_yticklabels(display_labels) for (j,i),label in np.ndenumerate(cm): ax.text(i,j,cm[i, j],ha='center',va='center') fig.tight_layout() ax.set_ylabel('True label') ax.set_xlabel('Predicted label') def show_analysis(yTest, yPred): """ Plot a ROC curve, and use the threshold that produces the highest F1 score to plot a confusion matrix """ fig, axs = plt.subplots(nrows=1, ncols=2) auc, bT, _ = plot_ROC(yTest, yPred, ax=axs[0]) plot_confusion_matrix(yTest, yPred>bT, ax=axs[1]) ###Output _____no_output_____ ###Markdown 3.1 LSTM Sequence modelUse an LSTM model with a sequence of the sensor values ###Code from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM from keras.layers import Dropout from keras.layers.embeddings import Embedding from keras.preprocessing import sequence from keras.regularizers import l1, l2 from keras.callbacks import EarlyStopping import keras SEQUENCE_LENGTH = xTrainSeq.shape[1] NFEATURES=xTrainSeq.shape[2] # From: https://machinelearningmastery.com/how-to-develop-rnn-models-for-human-activity-recognition-time-series-classification/ model = Sequential() model.add(LSTM(50, input_shape=(SEQUENCE_LENGTH,NFEATURES))) #model.add(Dropout(0.5)) model.add(Dense(20, activation='relu')) model.add(Dense(10, activation='relu')) model.add(Dense(1, activation='sigmoid')) adam = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, amsgrad=False) model.compile(loss='binary_crossentropy', optimizer=adam, metrics=['accuracy']) %time history = model.fit(xTrainSeq, yTrainSeq, epochs=10, batch_size=64, verbose=1, validation_data=(xValidSeq, yValidSeq)) plot_training(history) yPred = model.predict(xTestSeq) show_analysis(yTestSeq, yPred) ###Output /Users/manuel.pasieka/anaconda3/envs/py3/lib/python3.6/site-packages/ipykernel_launcher.py:59: RuntimeWarning: invalid value encountered in long_scalars /Users/manuel.pasieka/anaconda3/envs/py3/lib/python3.6/site-packages/ipykernel_launcher.py:61: RuntimeWarning: invalid value encountered in double_scalars ###Markdown 3.2 Regularized LSTMAdd regularization and early stopping ###Code model = Sequential() model.add(LSTM(50, input_shape=(SEQUENCE_LENGTH,NFEATURES))) model.add(Dense(20, activation='relu', kernel_regularizer=l2(0.01))) model.add(Dropout(0.5)) model.add(Dense(10, activation='relu', kernel_regularizer=l2(0.01))) model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid', kernel_regularizer=l2(0.01))) adam = keras.optimizers.Adam(lr=0.0005, beta_1=0.9, beta_2=0.999, amsgrad=False) model.compile(loss='binary_crossentropy', optimizer=adam, metrics=['accuracy']) es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=2) %time history = model.fit(xTrainSeq, yTrainSeq, epochs=10, batch_size=64, verbose=1, validation_data=(xValidSeq, yValidSeq), callbacks=[es]) plot_training(history) yPred = model.predict(xTestSeq) show_analysis(yTestSeq, yPred) ###Output /Users/manuel.pasieka/anaconda3/envs/py3/lib/python3.6/site-packages/ipykernel_launcher.py:59: RuntimeWarning: invalid value encountered in long_scalars /Users/manuel.pasieka/anaconda3/envs/py3/lib/python3.6/site-packages/ipykernel_launcher.py:61: RuntimeWarning: invalid value encountered in double_scalars ###Markdown 3.3 Some fancy Convoluation sequence modelAll stolen fromhttps://machinelearningmastery.com/how-to-develop-rnn-models-for-human-activity-recognition-time-series-classification/ ###Code from keras.layers import TimeDistributed from keras.layers.convolutional import Conv1D from keras.layers.convolutional import MaxPooling1D from keras.layers import Flatten from keras.regularizers import l1 # define model verbose, epochs, batch_size = 0, 25, 128 n_timesteps, n_features, n_outputs = xTrainSeq.shape[1], xTrainSeq.shape[2], yTrainSeq[0] # define model model = Sequential() model.add(Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(n_timesteps,n_features), activity_regularizer=l1(0.0005))) model.add(Conv1D(filters=32, kernel_size=3, activation='relu', activity_regularizer=l1(0.0005))) model.add(Dropout(0.5)) model.add(MaxPooling1D(pool_size=2)) #model.add(Flatten()) model.add(LSTM(100, activity_regularizer=l1(0.01))) model.add(Dropout(0.5)) model.add(Dense(100, activation='relu', activity_regularizer=l1(0.01))) model.add(Dropout(0.5)) model.add(Dense(20, activation='relu', activity_regularizer=l1(0.01))) model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) es = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=2) %time history = model.fit(xTrainSeq, yTrainSeq, epochs=20, batch_size=64, verbose=1, validation_data=(xValidSeq, yValidSeq), callbacks=[es]) plot_training(history) yPred = model.predict(xTestSeq) show_analysis(yTestSeq, yPred) yPred ###Output _____no_output_____
C1-Introduction to Data Science in Python/Assignments/Week2/Assignment+2.ipynb
###Markdown ---_You are currently looking at **version 1.2** of this notebook. To download notebooks and datafiles, as well as get help on Jupyter notebooks in the Coursera platform, visit the [Jupyter Notebook FAQ](https://www.coursera.org/learn/python-data-analysis/resources/0dhYG) course resource._--- Assignment 2 - Pandas IntroductionAll questions are weighted the same in this assignment. Part 1The following code loads the olympics dataset (olympics.csv), which was derrived from the Wikipedia entry on [All Time Olympic Games Medals](https://en.wikipedia.org/wiki/All-time_Olympic_Games_medal_table), and does some basic data cleaning. The columns are organized as of Summer games, Summer medals, of Winter games, Winter medals, total number of games, total of medals. Use this dataset to answer the questions below. ###Code import pandas as pd df = pd.read_csv('olympics.csv', index_col=0, skiprows=1) for col in df.columns: if col[:2]=='01': df.rename(columns={col:'Gold'+col[4:]}, inplace=True) if col[:2]=='02': df.rename(columns={col:'Silver'+col[4:]}, inplace=True) if col[:2]=='03': df.rename(columns={col:'Bronze'+col[4:]}, inplace=True) if col[:1]=='№': df.rename(columns={col:'#'+col[1:]}, inplace=True) names_ids = df.index.str.split('\s\(') # split the index by '(' df.index = names_ids.str[0] # the [0] element is the country name (new index) df['ID'] = names_ids.str[1].str[:3] # the [1] element is the abbreviation or ID (take first 3 characters from that) df = df.drop('Totals') df.head() ###Output _____no_output_____ ###Markdown Question 0 (Example)What is the first country in df?*This function should return a Series.* ###Code # You should write your whole answer within the function provided. The autograder will call # this function and compare the return value against the correct solution value def answer_zero(): # This function returns the row for Afghanistan, which is a Series object. The assignment # question description will tell you the general format the autograder is expecting return df.iloc[0] # You can examine what your function returns by calling it in the cell. If you have questions # about the assignment formats, check out the discussion forums for any FAQs answer_zero() ###Output _____no_output_____ ###Markdown Question 1Which country has won the most gold medals in summer games?*This function should return a single string value.* ###Code def answer_one(): mostgold = df['Gold'].idxmax() return str(mostgold) answer_one() ###Output _____no_output_____ ###Markdown Question 2Which country had the biggest difference between their summer and winter gold medal counts?*This function should return a single string value.* ###Code def answer_two(): dfcopy = df.copy() bigdiff = dfcopy['Gold']-dfcopy['Gold.1'] country = bigdiff.idxmax() return str(country) answer_two() ###Output _____no_output_____ ###Markdown Question 3Which country has the biggest difference between their summer gold medal counts and winter gold medal counts relative to their total gold medal count? $$\frac{Summer~Gold - Winter~Gold}{Total~Gold}$$Only include countries that have won at least 1 gold in both summer and winter.*This function should return a single string value.* ###Code def answer_three(): dfcopy = df.copy() atleast1gold = df[(dfcopy['Gold'] > 0) & (dfcopy['Gold.1'] > 0)] bigdiff = atleast1gold['Gold']-atleast1gold['Gold.1'] totalgold = atleast1gold['Gold'] + atleast1gold['Gold.1'] reldiff = bigdiff/totalgold country = reldiff.idxmax() return str(country) answer_three() ###Output _____no_output_____ ###Markdown Question 4Write a function that creates a Series called "Points" which is a weighted value where each gold medal (`Gold.2`) counts for 3 points, silver medals (`Silver.2`) for 2 points, and bronze medals (`Bronze.2`) for 1 point. The function should return only the column (a Series object) which you created, with the country names as indices.*This function should return a Series named `Points` of length 146* ###Code def answer_four(): dfcopy = df.copy() weightedsum = dfcopy['Gold.2'] * 3 + dfcopy['Silver.2'] * 2 + dfcopy['Bronze.2'] * 1 dfcopy['Points'] = weightedsum return pd.Series(dfcopy['Points']) answer_four() ###Output _____no_output_____ ###Markdown Part 2For the next set of questions, we will be using census data from the [United States Census Bureau](http://www.census.gov). Counties are political and geographic subdivisions of states in the United States. This dataset contains population data for counties and states in the US from 2010 to 2015. [See this document](https://www2.census.gov/programs-surveys/popest/technical-documentation/file-layouts/2010-2015/co-est2015-alldata.pdf) for a description of the variable names.The census dataset (census.csv) should be loaded as census_df. Answer questions using this as appropriate. Question 5Which state has the most counties in it? (hint: consider the sumlevel key carefully! You'll need this for future questions too...)*This function should return a single string value.* ###Code census_df = pd.read_csv('census.csv') census_df.head() def answer_five(): counties = census_df.groupby(['STNAME'])['COUNTY'].count() mostcounties = counties.idxmax() return str(mostcounties) answer_five() ###Output _____no_output_____ ###Markdown Question 6**Only looking at the three most populous counties for each state**, what are the three most populous states (in order of highest population to lowest population)? Use `CENSUS2010POP`.*This function should return a list of string values.* ###Code def answer_six(): countysum = census_df[census_df['SUMLEV'] == 50] countyorder = countysum.sort_values(by='CENSUS2010POP', ascending=False).groupby('STNAME').head(3) popstates = countyorder.groupby('STNAME').sum().sort_values(by='CENSUS2010POP', ascending=False).head(3) return popstates.index.tolist() answer_six() ###Output _____no_output_____ ###Markdown Question 7Which county has had the largest absolute change in population within the period 2010-2015? (Hint: population values are stored in columns POPESTIMATE2010 through POPESTIMATE2015, you need to consider all six columns.)e.g. If County Population in the 5 year period is 100, 120, 80, 105, 100, 130, then its largest change in the period would be |130-80| = 50.*This function should return a single string value.* ###Code def answer_seven(): census_dfc = census_df.copy() census_dfc['POPLO'] = census_dfc.loc[:,'POPESTIMATE2010':'POPESTIMATE2015'].min(axis=1) census_dfc['POPHI']= census_dfc.loc[:,'POPESTIMATE2010':'POPESTIMATE2015'].max(axis=1) census_dfc['POPDIFF'] = (census_dfc['POPHI'] - census_dfc['POPLO']) census_dfc.set_index('CTYNAME', inplace=True) return census_dfc['POPDIFF'].idxmax() answer_seven() ###Output _____no_output_____ ###Markdown Question 8In this datafile, the United States is broken up into four regions using the "REGION" column. Create a query that finds the counties that belong to regions 1 or 2, whose name starts with 'Washington', and whose POPESTIMATE2015 was greater than their POPESTIMATE 2014.*This function should return a 5x2 DataFrame with the columns = ['STNAME', 'CTYNAME'] and the same index ID as the census_df (sorted ascending by index).* ###Code def answer_eight(): result = census_df[((census_df['REGION'] == 1) | (census_df['REGION'] == 2)) & (census_df['CTYNAME'] == 'Washington County') & (census_df['POPESTIMATE2015'] > census_df['POPESTIMATE2014'])][['STNAME','CTYNAME']] return result answer_eight() ###Output _____no_output_____
Notebooks/NLP classificar clube de acordo o titulo da postagem .ipynb
###Markdown **NLP Classificar clube pelo título da postagem**Usando ferramentas de NLP criei um classificador para saber se o título da postagem é referente ao Flamengo ou Corinthians.> **Descrição e dataset (retirado do kaggle)**> > Este conjunto de dados tem como objetivo fornecer uma amostra de dados do mundo real cobrindo um período de tempo razoável. Contém uma coluna com o nome do clube, que pode ser considerado uma classe. > > **Link**: > [https://www.kaggle.com/lgmoneda/ge-soccer-clubs-news/](https://www.kaggle.com/lgmoneda/ge-soccer-clubs-news/) ###Code # Importando bibliotecas import pandas as pd import seaborn as sns import nltk from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.model_selection import train_test_split from sklearn.svm import LinearSVC from sklearn import metrics # carregando dataset file = 'https://raw.githubusercontent.com/CidOSJr/data-science-portfolio/master/datasets/clubs_news.csv' df = pd.read_csv(file) df.head() df.shape # Verificar a quantidade de postagens por clube: (df['club'].value_counts() / df.shape[0]) * 100 sns.countplot(data=df, x='club') # Criar uma nova coluna para fazer o pre-processamento df['desc'] = df['title'].copy() df[['title', 'desc']].head(20) # pre-processamentos de dados df['desc'] = df['desc'].\ str.replace(r'[,.;:?!]+', '', regex=True).\ str.replace(r'[/<>()|\-\$%#@\'\""]+', '', regex=True).\ str.replace(r'[0-9]+', '', regex=True).copy() # instanciando as stop words, que são palavras que não alteram o sentido do texto stopwords = nltk.corpus.stopwords.words('portuguese') # instanciar CountVectorizer para tokenizar e converter o texto em uma matriz binaria, # parametros: strip_accents (remover acentos), lowercase (texto em caixa baixa), # strip_accents (remover acentos), # lowercase (texto em caixa baixa) e # stop_words cvt = CountVectorizer( strip_accents='ascii', lowercase=True, stop_words=stopwords ) X_cvt = cvt.fit_transform(df['desc']) # visualizar matriz binaria criada print(X_cvt.toarray()) # normalizar tfi = TfidfTransformer(use_idf=True) X_tfi = tfi.fit_transform(X_cvt) # dividi o dataset em treino e teste X_train, X_test, y_train, y_test = train_test_split( X_tfi, df['club'], test_size=0.2 ) # instanciar o algoritmo clf = LinearSVC().fit(X_train, y_train) y_pred = clf.predict(X_test) # testar simples para saber a accurácia do modelo; print(metrics.accuracy_score(y_test, y_pred)) ###Output 0.9364799294221438 ###Markdown Hora de testar o classicador ###Code texto_ge = 'O Som do Jogo: final sem torcida cria um Dérbi como você nunca viu; assista' def novo_titulo(titulo): novo_cvt = cvt.transform(pd.Series(titulo)) novo_tfi = tfi.transform(novo_cvt) clube = clf.predict(novo_tfi)[0] return clube novo_titulo(texto_ge) ###Output _____no_output_____
secao18 - K Nearest Neighbors(KNN)/aula88_KNN.ipynb
###Markdown **Precisamos fazer normalização quando trabalhamos com KNN (Sem a normalização ele vai se basear apenas nos caras que são maiores e vai desconsiderar os outros parâmetros, ele não vai ter variações tão relevantes) ** ###Code scaler = StandardScaler() scaler.fit(df.drop('TARGET CLASS', axis=1)) df_normalizado = scaler.transform(df.drop('TARGET CLASS', axis=1)) # Novo df que recebe os dados normalizados df_normalizado df_param = pd.DataFrame(df_normalizado, columns=df.columns[:-1]) df_param.head() ###Output _____no_output_____ ###Markdown Agara vamos utilizar os dados para fazer o modelo ML usando o KNN ###Code # Os valores de X serão os dados normalizados, já a de y será apenas a coluna que terá os dados que queremos fazer a precição X_train, X_test, y_train, y_test = train_test_split(df_param, df['TARGET CLASS'], test_size=0.3) knn = KNeighborsClassifier(n_neighbors=1) knn.fit(X_train, y_train) predictions = knn.predict(X_test) print(classification_report(y_test, predictions)) print(confusion_matrix(y_test, predictions)) # Método Cotovelo error_rate = [] for i in range(1, 40): knn = KNeighborsClassifier(n_neighbors=i) knn.fit(X_train, y_train) predictions = knn.predict(X_test) error_rate.append(np.mean(predictions!=y_test)) plt.figure(figsize=(14, 8)) plt.plot(range(1, 40), error_rate, color='blue', linestyle='dashed', marker='o') plt.xlabel('K') plt.ylabel('Taxa de erro') knn1 = KNeighborsClassifier(n_neighbors=20) knn1.fit(X_train, y_train) predictions1 = knn1.predict(X_test) print(classification_report(y_test, predictions1)) knn2 = KNeighborsClassifier(n_neighbors=30) knn2.fit(X_train, y_train) predictions2 = knn2.predict(X_test) print(classification_report(y_test, predictions2)) tn, fp, fn, tp = confusion_matrix(y_test, predictions2).ravel() tn, fp, fn, tp ###Output _____no_output_____
cylinder/cylgrid0_sst_iddes_matula_03_Re3p6M/plotForcesReDiff.ipynb
###Markdown Plot forces for flow past cylinder grid0 case Compare differences with Reynolds number ###Code %%capture import sys sys.path.insert(1, '../utilities') import litCdData import numpy as np import matplotlib.pyplot as plt ## Some needed functions for postprocessing def concatforces(filelist): """ Concatenate all the data in a list of files given by filelist, without overlaps in time """ for ifile, file in enumerate(filelist): dat=np.loadtxt(file, skiprows=1) if ifile==0: alldat = dat else: lastt = alldat[-1,0] # Get the last time filt = dat[:,0]>lastt gooddat = dat[filt,:] alldat = np.vstack((alldat, gooddat)) return alldat # Calculate time average def timeaverage(time, f, t1, t2): filt = ((time[:] >= t1) & (time[:] <= t2)) # Filtered time t = time[filt] # The total time dt = np.amax(t) - np.amin(t) # Filtered field filtf = f[filt] # Compute the time average as an integral avg = np.trapz(filtf, x=t, axis=0) / dt return avg def tukeyWindow(N, params={'alpha':0.1}): """ The Tukey window see https://en.wikipedia.org/wiki/Window_function#Tukey_window """ alpha = params['alpha'] w = np.zeros(N) L = N+1 for n in np.arange(0, int(N//2) + 1): if ((0 <= n) and (n < 0.5*alpha*L)): w[n] = 0.5*(1.0 - np.cos(2*np.pi*n/(alpha*L))) elif ((0.5*alpha*L <= n) and (n <= N/2)): w[n] = 1.0 else: print("Something wrong happened at n = ",n) if (n != 0): w[N-n] = w[n] return w # FFT's a signal, returns 1-sided frequency and spectra def getFFT(t, y, normalize=False, window=True): """ FFT's a signal, returns 1-sided frequency and spectra """ n = len(y) k = np.arange(n) dt = np.mean(np.diff(t)) frq = k/(n*dt) if window: w = tukeyWindow(n) else: w = 1.0 if normalize: L = len(y) else: L = 1.0 FFTy = np.fft.fft(w*y)/L # Take the one sided version of it freq = frq[range(int(n//2))] FFTy = FFTy[range(int(n//2))] return freq, FFTy # Basic problem parameters D = 6 # Cylinder diameter U = 20 # Freestream velocity Lspan = 24 # Spanwise length A = D*Lspan # frontal area rho = 1.225 # density Q = 0.5*rho*U*U # Dynamic head vis = 1.8375e-5 # viscosity ReNum = rho*U*D/vis # Reynolds number #avgt = [160.0, 260.0] # Average times saveinfo = False alldata = [] # Label, Filenames averaging times runlist = [['Re=8.0M', ['../cylgrid0_sst_iddes_matula_01/forces86m.dat'], [150, 600], {'vis':1.8375e-5}], ['Re=3.6M', ['forces36m.dat'], [300, 800], {'vis':4.0833333333333334e-05}], ] alldata = [] for run in runlist: forcedat = concatforces(run[1]) t = forcedat[:,0]*U/D # Non-dimensional time alldata.append([run[0], t, forcedat, run[2], run[3]]) #print(alldata) print('%30s %10s %10s'%("Case", "avgCd", "avgCl")) for run in alldata: label = run[0] t = run[1] forcedat = run[2] avgt = run[3] Cd = (forcedat[:,1]+forcedat[:,4])/(Q*A) Cl = (forcedat[:,2]+forcedat[:,5])/(Q*A) # Calculate averaged Cp, Cd avgCd = timeaverage(t, Cd, avgt[0], avgt[1]) avgCl = timeaverage(t, Cl, avgt[0], avgt[1]) print('%30s %10f %10f'%(label, avgCd, avgCl)) #print("Avg Cd = %f"%avgCd) #%print("Avg Cl = %f"%avgCl) ###Output Case avgCd avgCl Re=8.0M 0.363020 0.004059 Re=3.6M 0.455503 0.002967 ###Markdown Plot Lift and Drag coefficients ###Code plt.rc('font', size=16) plt.figure(figsize=(10,8)) for run in alldata: label = run[0] t = run[1] forcedat = run[2] avgt = run[3] Cd = (forcedat[:,1]+forcedat[:,4])/(Q*A) Cl = (forcedat[:,2]+forcedat[:,5])/(Q*A) # Calculate averaged Cp, Cd avgCd = timeaverage(t, Cd, avgt[0], avgt[1]) avgCl = timeaverage(t, Cl, avgt[0], avgt[1]) #print('%30s %f %f'%(label, avgCd, avgCl)) plt.plot(t,Cd, label=label) plt.hlines(avgCd, np.min(t), np.max(t), linestyles='dashed', linewidth=1) plt.xlabel(r'Non-dimensional time $t U_{\infty}/D$'); plt.legend() plt.ylabel('$C_D$') plt.title('Drag coefficient $C_D$'); plt.figure(figsize=(10,8)) for run in alldata: label = run[0] t = run[1] forcedat = run[2] avgt = run[3] Cd = (forcedat[:,1]+forcedat[:,4])/(Q*A) Cl = (forcedat[:,2]+forcedat[:,5])/(Q*A) # Calculate averaged Cp, Cd avgCd = timeaverage(t, Cd, avgt[0], avgt[1]) avgCl = timeaverage(t, Cl, avgt[0], avgt[1]) plt.plot(t,Cl, label=label) plt.hlines(avgCl, np.min(t), np.max(t), linestyles='dashed', linewidth=1) plt.xlabel(r'Non-dimensional time $t U_{\infty}/D$'); plt.ylabel('$C_l$') plt.title('Lift coefficient $C_l$'); plt.legend() ###Output _____no_output_____ ###Markdown Plot Spectra ###Code plt.figure(figsize=(10,8)) for run in alldata: label = run[0] t = run[1] forcedat = run[2] avgt = run[3] filt = ((t[:] >= avgt[0]) & (t[:] <= avgt[1])) tfiltered = t[filt]*D/U Cd = (forcedat[:,1]+forcedat[:,4])/(Q*A) Cl = (forcedat[:,2]+forcedat[:,5])/(Q*A) Cdfiltered = Cd[filt] Clfiltered = Cl[filt] f, Cdspectra = getFFT(tfiltered, Cdfiltered, normalize=True) f, Clspectra = getFFT(tfiltered, Clfiltered, normalize=True) plt.loglog(f*D/U, abs(Clspectra), label='Cl '+label) plt.axvline(0.37, linestyle='--', color='gray') plt.xlim([1E-2,2]); plt.ylim([1E-8, 1E-1]); plt.xlabel(r'$f*D/U_\infty$'); plt.ylabel(r'$|\hat{C}_{l,d}|$') plt.legend() ###Output _____no_output_____ ###Markdown Plot Cd versus Reynolds number ###Code plt.figure(figsize=(10,8)) litCdData.plotEXP() litCdData.plotCFD() for run in alldata: label = run[0] t = run[1] forcedat = run[2] avgt = run[3] dict = run[4] Cd = (forcedat[:,1]+forcedat[:,4])/(Q*A) Cl = (forcedat[:,2]+forcedat[:,5])/(Q*A) # Calculate averaged Cp, Cd avgCd = timeaverage(t, Cd, avgt[0], avgt[1]) avgCl = timeaverage(t, Cl, avgt[0], avgt[1]) vis = dict['vis'] ReNum = rho*U*D/vis plt.semilogx(ReNum, avgCd, '*', ms=10, label='Nalu SST-IDDES '+label) plt.grid() plt.legend(fontsize=10) plt.xlabel(r'Reynolds number Re'); plt.ylabel('$C_D$') plt.title('Drag coefficient $C_D$'); # Write the YAML file these averaged quantities import yaml if saveinfo: savedict={'Re':float(ReNum), 'avgCd':float(avgCd), 'avgCl':float(avgCl)} f=open('istats.yaml','w') f.write('# Averaged quantities from %f to %f\n'%(avgt[0], avgt[1])) f.write('# Grid: grid0\n') f.write(yaml.dump(savedict, default_flow_style=False)) f.close() ###Output _____no_output_____
notebooks/dataset-projections/transcriptome-macosko2015-retina/macosko2015-PCA-tsne.ipynb
###Markdown Choose GPU (this may not be needed on your computer) ###Code %env CUDA_DEVICE_ORDER=PCI_BUS_ID %env CUDA_VISIBLE_DEVICES='' ###Output env: CUDA_DEVICE_ORDER=PCI_BUS_ID env: CUDA_VISIBLE_DEVICES='' ###Markdown load packages ###Code from tfumap.umap import tfUMAP import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from tqdm.autonotebook import tqdm import umap import pandas as pd ###Output _____no_output_____ ###Markdown Load dataset ###Code from tfumap.paths import ensure_dir, MODEL_DIR, DATA_DIR #dataset_address = 'http://file.biolab.si/opentsne/macosko_2015.pkl.gz' # https://opentsne.readthedocs.io/en/latest/examples/01_simple_usage/01_simple_usage.html # also see https://github.com/berenslab/rna-seq-tsne/blob/master/umi-datasets.ipynb import gzip import pickle with gzip.open(DATA_DIR / 'macosko_2015.pkl.gz', "rb") as f: data = pickle.load(f) x = data["pca_50"] y = data["CellType1"].astype(str) print("Data set contains %d samples with %d features" % x.shape) from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(x, y, test_size=.1, random_state=42) np.shape(X_train) n_valid = 10000 X_valid = X_train[-n_valid:] Y_valid = Y_train[-n_valid:] X_train = X_train[:-n_valid] Y_train = Y_train[:-n_valid] X_train_flat = X_train from sklearn.preprocessing import OrdinalEncoder enc = OrdinalEncoder() Y_train = enc.fit_transform([[i] for i in Y_train]).flatten() ###Output _____no_output_____ ###Markdown Train PCA model ###Code from sklearn.decomposition import PCA pca = PCA(n_components=2) z = pca.fit_transform(X_train_flat) ###Output _____no_output_____ ###Markdown plot output ###Code fig, ax = plt.subplots( figsize=(8, 8)) sc = ax.scatter( z[:, 0], z[:, 1], c=Y_train.astype(int)[:len(z)], cmap="tab10", s=0.1, alpha=0.5, rasterized=True, ) ax.axis('equal') ax.set_title("PCA embedding", fontsize=20) plt.colorbar(sc, ax=ax); ###Output _____no_output_____ ###Markdown Save model ###Code import os import pickle from tfumap.paths import ensure_dir, MODEL_DIR output_dir = MODEL_DIR/'projections'/ 'macosko2015' / 'PCA' ensure_dir(output_dir) with open(os.path.join(output_dir, "model.pkl"), "wb") as output: pickle.dump(pca, output, pickle.HIGHEST_PROTOCOL) np.save(output_dir / 'z.npy', z) ###Output _____no_output_____ ###Markdown tsne ###Code from openTSNE import TSNE tsne = TSNE( n_components = 2 ) embedding_train = tsne.fit(X_train_flat) z = np.array(embedding_train) fig, ax = plt.subplots( figsize=(8, 8)) sc = ax.scatter( z[:, 0], z[:, 1], c=Y_train.astype(int)[:len(z)], cmap="tab10", s=0.1, alpha=0.5, rasterized=True, ) ax.axis('equal') ax.set_title("PCA embedding", fontsize=20) plt.colorbar(sc, ax=ax); ###Output _____no_output_____ ###Markdown save model ###Code import os import pickle from tfumap.paths import ensure_dir, MODEL_DIR output_dir = MODEL_DIR/'projections'/ 'macosko2015' / 'TSNE' ensure_dir(output_dir) with open(os.path.join(output_dir, "model.pkl"), "wb") as output: pickle.dump(pca, output, pickle.HIGHEST_PROTOCOL) np.save(output_dir / 'z.npy', z) ###Output _____no_output_____
interactive_raceFullModel2.ipynb
###Markdown Full Interaction Race Model including a subset of trials with weaker inhibition ###Code import numpy import random import matplotlib.pyplot as plt import pandas %matplotlib inline # original matlab code #function [meanrtgo,presp] = interactiverace #rng('shuffle'); params={'mugo':.2, 'mustopstrong': .8, 'mustopweak':.0001, 'threshold':60, 'nondecisiongo':50, 'nondecisionstop':50, 'ssds':[1,50,100,150, 200,250, 300, 350, 400, 450, 500,3000], 'nreps':50000, 'maxtime':1000, 'betastop':.4, 'betago':.0000001, 'proportionweak':.15} def interactiverace(params): stopsave = [] gosave = [] rtgosave = [] meanrtgo = numpy.zeros(len(params['ssds'])) presp = numpy.zeros(len(params['ssds'])); for irep in range(params['nreps']): for j,ssd in enumerate(params['ssds']): stopsignaldelay = ssd goaccumulator = 0 stopaccumulator = 0 rtgo = 0 itime = 0 if random.uniform(0,1) < params['proportionweak']: mustop = params['mustopweak'] # mustopVar = numpy.random.normal()*.008 else: mustop = params['mustopstrong'] # mustopVar = numpy.random.normal() while itime < params['maxtime'] and rtgo == 0: # single trial itime = itime + 1 if itime < stopsignaldelay + params['nondecisionstop']: inhibition = 0 else: inhibition = params['betastop'] if mustop == params['mustopweak']: stopaccumulator = stopaccumulator + mustop + numpy.random.normal()*.008 - params['betago']*goaccumulator else: stopaccumulator = stopaccumulator + mustop + numpy.random.normal() - params['betago']*goaccumulator stopsave.append(stopaccumulator) #print(stopaccumulator) if itime >= params['nondecisiongo']: goaccumulator = goaccumulator + params['mugo'] - inhibition*stopaccumulator + numpy.random.normal() gosave.append(goaccumulator) if goaccumulator > params['threshold']: if rtgo == 0: rtgo = itime; meanrtgo[j] += rtgo; rtgosave.append(rtgo) if rtgo > 0: presp[j] += 1; for ssd in range(len(params['ssds'])): if presp[ssd] > 0: meanrtgo[ssd] = meanrtgo[ssd]/presp[ssd]; presp[ssd] = presp[ssd]/params['nreps']; return(meanrtgo,presp,gosave,stopsave,rtgosave) meanrtgo,presp,gosave,stopsave,rtgosave=interactiverace(params) #df=pandas.DataFrame({'gosave':gosave,'stopsave':stopsave}) print(meanrtgo) print(presp) plt.figure(figsize=(10,5)) plt.subplot(1,2,1) plt.plot(params['ssds'][:11],meanrtgo[:11] - meanrtgo[11]) plt.plot([params['ssds'][0],params['ssds'][10]],[0,0],'k:') plt.xlabel('Stop signal delay') plt.ylabel('Violation (Stop Failure RT - No-Stop RT)') plt.subplot(1,2,2) plt.plot(params['ssds'][:11],presp[:11]) plt.xlabel('Stop signal delay') plt.ylabel('Probability of responding') plt.axis([params['ssds'][0],params['ssds'][10],0,1]) ###Output _____no_output_____
tricks/3_compute_dist_NA.ipynb
###Markdown How to compute pairwise distance when having missing value? ###Code import pandas as pd import numpy as np from sklearn.metrics import pairwise_distances from sklearn.metrics.pairwise import nan_euclidean_distances from scipy.spatial.distance import squareform, pdist ###Output _____no_output_____ ###Markdown The easist way, when we are free of NA, I'd like to use pdist function ###Code a = np.random.randn(3,5) a # pdist will return a dense distance matrix pdist(a) ###Output _____no_output_____ ###Markdown you can convert to a square distance matrixsquareform(pdist(a)) What if we have NA value? ###Code # if you want to know more about NA value, refer to trick 2 jupyter notebook in the same folder a[1,3] = np.nan a # np.nan (a float object) will be converted to np.float64 type(a[1,3]) ###Output _____no_output_____ ###Markdown Theoretically, sklearn pairwise distance should be able to do that, there is a force_all_finite argument. ###Code pairwise_distances(X=a) ###Output _____no_output_____ ###Markdown You see, It doesn't work, because the missing value has to be in the form of np.inf, np.nan and pd.NA What is the workaround? ###Code # first using nan_euclidean_distances to compute test = nan_euclidean_distances(X=a,Y=a) test # make sure it is sysmetric test_sym = np.tril(test) + np.tril(test,k=-1).T test_sym # make sure the main diagonal is 0 np.fill_diagonal(test_sym,0) test_sym # convert to dense distance matrix using squareform squareform(test_sym) ###Output _____no_output_____
notebooks/20-03-30_troubleshooting-mm-basic-plot.ipynb
###Markdown troubleshooting bisc plot for Michaelis-Menten equation on Bokehtroubleshooting getting the first plot up and running: just a simple set of Michaelis-Menten data that can have the Vmax and Km changed interactively ###Code # import libraries import os import sys import numpy as np import matplotlib.pyplot as plt from bokeh.layouts import row, column from bokeh.models import CustomJS, Slider, Label from bokeh.plotting import figure, output_file, show, ColumnDataSource from bokeh.io import output_notebook root_dir = os.path.join(os.getcwd(), '..') sys.path.append(root_dir) from pharmaplot import mm # generate some fake data and make sure it looks ok x = np.logspace(-3, 2, num=500) y = mm.michaelis_menten(x, 100, 10) plt.plot(x,y) # set to display in notebook as opposed to making an html output_notebook() ## generate bokeh plot using the above data # set up source data and plot lines that will vary source = ColumnDataSource(data=dict(x=x, y=y)) plot = figure(y_range=(0, 200), plot_width=600, plot_height=400, x_axis_label='[S]: substrate concentration (μM)', y_axis_label='initial velocity (μM/s)', title='Michaelis-Menten Kinetics') plot.line('x', 'y', source=source, line_width=3, line_alpha=0.6, color='black') # set up static line and annotations plot.line(x, y, line_width=5, color='blue', line_alpha=0.3) mytext = Label(x=50, y=70, text='Km = 10 (μM), Vmax = 100 (μM/s)', text_color="blue", text_alpha=0.5) plot.add_layout(mytext) # set up java script callback function to make plot interactive vmax_slider = Slider(start=0.1, end=200, value=100, step=1, title="Vmax (μM/s)") km_slider = Slider(start=1, end=100, value=10, step=1, title="Km (μM)") callback = CustomJS(args=dict(source=source, vmax=vmax_slider, km=km_slider), code=""" const data = source.data; const VMAX = vmax.value; const KM = km.value; const x = data['x'] const y = data['y'] for (var i = 0; i < x.length; i++) { y[i] = (VMAX*x[i])/(KM+x[i]); } source.change.emit(); """) # add sliders to plot and display vmax_slider.js_on_change('value', callback) km_slider.js_on_change('value', callback) layout = row( plot, column(vmax_slider, km_slider), ) #output_file("mm.html", title="mm.py example") show(layout) ###Output _____no_output_____
study2/0_highlevel/2_0_1_mnist_keras_sequential.ipynb
###Markdown 0-1. Keras Tensorflow 2.0 (Google Tensorflow Team) - Tensorflow 2.0에서는 Keras를 Tensorflow와 보다 강력하게 인테그레이팅 하는 것을 목표로 함 - Estimator은 Tensorflow 2.0에 포함되나, Keras로 작성한 뒤, model_to_estimator()을 이용할 것을 권장 Keras란? - 구글의 Francois Chollet 개발 / 유지보수 - 다양한 프레임워크 위에서 수행가능한 고수준 라이브러리 (MXNet, DL4J, Tensorflow, Microsoft Cognitive Toolkit, Theano) - 현재 Tensorflow에는 tf.keras로 모듈화 되어있으며, 점점 긴밀하게 인테그레이팅하여 내재화 예정 Keras의 사용자 입장에서의 장점 - Model객체를 통하여 간편하고 쉽게 아키텍처 설계 / 학습 및 인퍼런스 수행 가능 Keras의 사용자 입장에서의 단점 - 커스터마이징이 어려움 (특히 loss function) - 현재 버전(1.12)의 Tensorflow 환경에서는 아직 이질적인 서드파티 라이브러리로서의 느낌이 강함(긴밀도 떨어짐) Keras를 쓰는 방법 1. Sequential 2. Functional 3. Subclassing Model Sequential이란? - sequential 모델 객체를 먼저 생성한 뒤, 여기에 layers를 붙여나가는 구조 - keras의 모델 구성 방법 중 가장 고수준 - 기본적이고 범용적인 모델에 가까울 경우 이용 용이 - 복잡한 모델에는 적합하지 않음 ###Code import tensorflow as tf ###Output _____no_output_____ ###Markdown 0-1-1. 모델 변수 정의 - 고수준 layers(tf.layers 혹은 tf.keras.layers)의 Dense(FC)층은 output node의 수만으로 정의 가능하기에 아래와 같이 쉽게 모델변수 작성 가능 ###Code mnist_hidden_dim = [512, 128] ###Output _____no_output_____ ###Markdown 0-1-2. 시퀀스 모델 객체 생성 ###Code model = tf.keras.Sequential() ###Output _____no_output_____ ###Markdown 0-1-3. 모델 레이어 시퀀스 구성[batch_size, 28, 28]$\rightarrow$ Flatten $\rightarrow$ [batch_size, 784]$\rightarrow$ Dense(784, 512) $\rightarrow$ relu $\rightarrow$ [batch_size, 512]$\rightarrow$ Dropout $\rightarrow$ Dense(512, 128) $\rightarrow$ relu $\rightarrow$ [batch_size, 128] $\rightarrow$ Dropout $\rightarrow$ Dense(128, 10) $\rightarrow$ softmax $\rightarrow$ [batch_size, 10] ###Code model.add(tf.keras.layers.Flatten()) for units in mnist_hidden_dim: model.add(tf.keras.layers.Dense(units, activation=tf.nn.relu)) model.add(tf.keras.layers.Dropout(0.1)) model.add(tf.keras.layers.Dense(10, activation=tf.nn.softmax)) ###Output _____no_output_____ ###Markdown 0-1-4. 시퀀스 구성 완료 후 컴파일 - optimizer : 최적화 방법 지정 - loss : 로스 함수 지정 - "sparse_categorical_crossentropy" : one-hot encoding을 하지 않아도 자동으로 해 주는 loss - metrics : training / evaluating시 판단의 근거로 삼을 메트릭 지정 ###Code model.compile( optimizer=tf.train.AdamOptimizer(1e-3), loss=tf.keras.losses.sparse_categorical_crossentropy, metrics=['accuracy']) ###Output _____no_output_____ ###Markdown 0-1-5. 데이터 추출 - tensorflow.examples.tutorials.mnist는 deprecated - 많은 예제가 아직 위의 코드를 이용하고 있는데, keras의 데이터추출이 쉽고 편함 ###Code (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data() x_train = x_train / 255. x_test = x_test / 255. ###Output _____no_output_____ ###Markdown 0-1-6. 학습 - Sequential 모델 객체의 fit 메서드를 통해 데이터를 배치로 자르고, 셔플링하는 과정까지 한번에 가능 - 그러나, tensorflow.data.Dataset의 적극적 활용을 권장 ###Code model.fit(x_train, y_train, epochs=5, batch_size=100, verbose=1) ###Output _____no_output_____ ###Markdown 0-1-7. 평가 - Sequential 모델 객체의 evaluate 메서드를 통해 테스트 데이터셋 평가 ###Code print(model.evaluate(x_test, y_test)) ###Output _____no_output_____
04_02_auto_ml_1.ipynb
###Markdown Automated ML ###Code COLAB = True if COLAB: # !sudo apt-get install git-lfs && git lfs install !rm -rf dl-projects !git clone https://github.com/mengwangk/dl-projects !cd dl-projects && ls if COLAB: !cp dl-projects/utils* . !cp dl-projects/preprocess* . %reload_ext autoreload %autoreload 2 %matplotlib inline import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import scipy.stats as ss import math import matplotlib from scipy import stats from collections import Counter from pathlib import Path plt.style.use('fivethirtyeight') sns.set(style="ticks") # Automated feature engineering import featuretools as ft # Machine learning from sklearn.pipeline import Pipeline from sklearn.preprocessing import Imputer, MinMaxScaler, StandardScaler from sklearn.metrics import precision_score, recall_score, f1_score, roc_auc_score, precision_recall_curve, roc_curve from sklearn.model_selection import train_test_split, cross_val_score from sklearn.ensemble import RandomForestClassifier from IPython.display import display from utils import * from preprocess import * # The Answer to the Ultimate Question of Life, the Universe, and Everything. np.random.seed(42) %aimport ###Output Modules to reload: all-except-skipped Modules to skip: ###Markdown Preparation ###Code if COLAB: DATASET_PATH = Path("dl-projects/datasets") else: DATASET_PATH = Path("datasets") DATASET = DATASET_PATH/"4D.zip" data = format_tabular(DATASET) data.info() data.tail(10) data['NumberId'] = data['LuckyNo'] data.tail(10) data.describe() plt.figure(figsize=(20,6)) sns.boxplot(x='NumberId', y='PrizeType',data=data) plt.xticks(rotation=90) plt.title('Draw') print(data[data['NumberId']==1760]) ###Output DrawNo DrawDate PrizeType LuckyNo NumberId 6007 66894 1994-01-05 ConsolationNo10 1760 1760 12089 93295 1995-09-10 SpecialNo10 1760 1760 33221 185101 2001-06-09 ConsolationNo6 1760 1760 41325 220403 2003-08-10 SpecialNo4 1760 1760 56402 286007 2007-06-24 ConsolationNo3 1760 1760 67267 333210 2010-04-10 SpecialNo2 1760 1760 70041 345310 2010-12-19 ConsolationNo3 1760 1760 72759 357111 2011-08-21 ConsolationNo7 1760 1760 75155 367512 2012-03-20 SpecialNo10 1760 1760 88140 424015 2015-05-17 ConsolationNo10 1760 1760 88193 424215 2015-05-23 ConsolationNo8 1760 1760 94840 453117 2017-01-04 ConsolationNo8 1760 1760 ###Markdown Exploration ###Code def ecdf(data): x = np.sort(data) y = np.arange(1, len(x) + 1) / len(x) return x, y ###Output _____no_output_____ ###Markdown Making Labels ###Code data['TotalStrike'] = 1 data.head(10) def make_cutoffs(start_date, end_date, threshold=0): # Find numbers exist before start date number_pool = data[data['DrawDate'] < start_date]['NumberId'].unique() tmp = pd.DataFrame({'NumberId': number_pool}) # For numbers in the number pool, find their strike count between the start and end dates strike_counts = data[(data['NumberId'].isin(number_pool)) & (data['DrawDate'] >= start_date) & (data['DrawDate']< end_date) ].groupby('NumberId')['TotalStrike'].count().reset_index() number_of_draws = data[ (data['DrawDate'] >= start_date) & (data['DrawDate']< end_date)]['DrawDate'].nunique() # display(strike_counts) # print(number_of_draws) # Merge with all the number ids to record all customers who existed before start date strike_counts = strike_counts.merge(tmp, on='NumberId', how='right') # Set the total for any numbers who did not strike in the timeframe equal to 0 strike_counts['TotalStrike'] = strike_counts['TotalStrike'].fillna(0) # Label is based on the threshold strike_counts['Label'] = (strike_counts['TotalStrike'] > threshold).astype(int) # The cutoff time is the start date strike_counts['cutoff_time'] = pd.to_datetime(start_date) strike_counts = strike_counts[['NumberId', 'cutoff_time', 'TotalStrike', 'Label']] #display(strike_counts[strike_counts['Label']==1].nunique()) #display(strike_counts.sort_values(by='TotalStrike', ascending=False)) return number_of_draws, strike_counts number_of_draws, may_2015 = make_cutoffs(pd.datetime(2015, 5, 1), pd.datetime(2015, 6, 1)) #display(len(may_2015)) #display(may_2015[may_2015['Label']==1].nunique()) may_2015[(may_2015['Label']==1) & (may_2015['TotalStrike']==2)].sort_values(by='TotalStrike', ascending=False).head() may_2015['Label'].value_counts().plot.bar() plt.title('Label Distribution for May') CUT_OFF_YEAR=pd.datetime(2014, 1, 1) ## Loop through each month starting from CUT_OFF_YEAR from dateutil.relativedelta import relativedelta # print(data['DrawDate'].max()) max_year_month = data['DrawDate'].max() - relativedelta(months=1) + relativedelta(day=31) print(f"Max month year: {max_year_month}") start_year_month = CUT_OFF_YEAR months_data = [] total_draws = 0 while start_year_month < max_year_month: start_date = start_year_month end_date = start_date + relativedelta(months=1) start_year_month = start_year_month + relativedelta(months=1) #print(f"Labels from {start_date} to {end_date}") draw_count, month_data = make_cutoffs(start_date, end_date) total_draws = total_draws + draw_count months_data.append(month_data) print(f"Total draws: {total_draws}") print(f"Total draws: {data[(data['DrawDate'] >= CUT_OFF_YEAR) & (data['DrawDate'] <= max_year_month)]['DrawDate'].nunique()}") print(f"Total months:{len(months_data)}") print(f"Total records count: {sum([len(l) for l in months_data])}") print([len(l) for l in months_data]) labels = pd.concat(months_data) labels.to_csv(DATASET_PATH/'labels.csv') labels.describe() # plot_labels = labels.copy() # plot_labels['month'] = plot_labels['cutoff_time'].dt.month # plt.figure(figsize = (12, 6)) # sns.boxplot(x = 'month', y = 'TotalStrike', # data = plot_labels[(plot_labels['TotalStrike'] > 0)]); # plt.title('Distribution by Month'); labels[(labels['NumberId'] == 9016) & (labels['Label'] > 0)] labels.loc[labels['NumberId'] == 9016].set_index('cutoff_time')['TotalStrike'].plot(figsize = (6, 4), linewidth = 3) plt.xlabel('Date', size = 16); plt.ylabel('Total Strike', size = 16); plt.title('Draw', size = 20); plt.xticks(size = 16); plt.yticks(size = 16); ###Output _____no_output_____ ###Markdown Automated Feature Engineering ###Code es = ft.EntitySet(id="Lotto Results") # Add the entire data table as an entity es.entity_from_dataframe("Results", dataframe=data, index="results_index", time_index = 'DrawDate') es['Results'] es.normalize_entity(new_entity_id="Numbers", base_entity_id="Results", index="NumberId", ) es es['Numbers'].df.head(24) es['Results'].df.head(24) len(es['Results'].df) ###Output _____no_output_____ ###Markdown Deep Feature Synthesis ###Code # feature_matrix, feature_names = ft.dfs(entityset=es, target_entity='Numbers', # cutoff_time = labels, verbose = 2, # cutoff_time_in_index = True, # chunk_size = len(labels), n_jobs = 1, # max_depth = 1) feature_matrix, feature_names = ft.dfs(entityset=es, target_entity='Numbers', agg_primitives = ['std', 'max', 'min', 'mode', 'mean', 'skew', 'last', 'avg_time_between'], trans_primitives = ['cum_sum', 'cum_mean', 'day', 'month', 'hour', 'weekend'], cutoff_time = labels, verbose = 1, cutoff_time_in_index = True, chunk_size = len(labels), n_jobs = 1, max_depth = 2) len(feature_matrix.columns), feature_matrix.columns len(feature_matrix) feature_matrix.head().T feature_matrix.shape feature_matrix[(feature_matrix['NumberId']==0) & (feature_matrix['Label']==1)].head(10) ###Output _____no_output_____ ###Markdown Correlations ###Code feature_matrix = pd.get_dummies(feature_matrix).reset_index() feature_matrix.shape feature_matrix.head() corrs = feature_matrix.corr().sort_values('TotalStrike') corrs['TotalStrike'].head() corrs['TotalStrike'].dropna().tail(10) g = sns.FacetGrid(feature_matrix[(feature_matrix['SUM(Results.DrawNo)'] > 0)], hue = 'Label', size = 4, aspect = 3) g.map(sns.kdeplot, 'SUM(Results.DrawNo)') g.add_legend(); plt.title('Distribution of Results Total by Label'); feature_matrix['month'] = feature_matrix['time'].dt.month feature_matrix['year'] = feature_matrix['time'].dt.year feature_matrix.info() feature_matrix.head() ###Output _____no_output_____ ###Markdown Save feature matrix ###Code #if COLAB: # feature_matrix.to_csv(DATASET_PATH/'feature_matrix.csv', index=False) # feature_matrix.to_pickle(DATASET_PATH/'feature_matrix.pkl') ###Output _____no_output_____ ###Markdown Save the datahttps://towardsdatascience.com/downloading-datasets-into-google-drive-via-google-colab-bcb1b30b0166 ###Code if COLAB: #!cd dl-projects && git config --global user.email '[email protected]' #!cd dl-projects && git config --global user.name 'mengwangk' #!cd dl-projects && git add -A && git commit -m 'Updated from colab' from google.colab import drive drive.mount('/content/gdrive') GDRIVE_DATASET_FOLDER = Path('gdrive/My Drive/datasets/') #!ls /content/gdrive/My\ Drive/ feature_matrix.to_csv(GDRIVE_DATASET_FOLDER/'feature_matrix_2.csv', index=False) feature_matrix.to_pickle(GDRIVE_DATASET_FOLDER/'feature_matrix_2.pkl') #if COLAB: # !cd dl-projects && git remote rm origin && git remote add origin https://mengwangk:[email protected]/mengwangk/dl-projects.git && git push -u origin master # from google.colab import files # files.download(DATASET_PATH/'feature_matrix.csv') if COLAB: !cd gdrive/"My Drive"/datasets/ && ls -l --block-size=M ###Output total 1151M -rw------- 1 root root 407M Dec 30 05:01 feature_matrix_2.csv -rw------- 1 root root 428M Dec 30 05:01 feature_matrix_2.pkl -rw------- 1 root root 141M Dec 27 08:27 feature_matrix.csv -rw------- 1 root root 176M Dec 27 08:28 feature_matrix.pkl
sktime/forecasting/prob_metric_integration.ipynb
###Markdown Probabilistic metric integrationAfter developing probabilistic metrics in 2232 need to ensure they are compatible with useful features such as grid search for model parameters. There are two key problems that need to be solved for this:1. proba metrics take in the output of `predict_quantile` or `predict_interval` (or `predict_proba`) where normal metrics just take predict. This means we need to change what predictions are used inside the grid search.2. Some probabilistic metrics have their own hyperparameters. For example the quantile used in a pinball loss. Currently this is inferred from the data inputted, however for a grid search we will need to somehow tell it what quantile to produce. To solve 1. could either create some `set_default` function which determines what the forecaster implements for predict (_predict, _predict_quantile or _predict_interval) or use tags inside the grid search evaluation that retrieves the type of metric being used and calls the corresponding predict function.To solve 2. we could do a small refactor to the probabilistic metrics, where we specify the hyperprameter(s) we want and it retrieves the correct data from the input (and raises an error if it isn't there). This will allow it to require a specific quantile but reduces flexibility as a user will have to instantiate a new metric class for each different set of quantiles they want to evaluate. ###Code # Basic imports import warnings warnings.simplefilter(action="ignore", category=FutureWarning) import numpy as np import pandas as pd # Prep data/forecaster from sktime.datasets import load_airline from sktime.forecasting.model_selection import temporal_train_test_split from sktime.forecasting.theta import ThetaForecaster y = np.log1p(load_airline()) y_train, y_test = temporal_train_test_split(y) fh = np.arange(len(y_test)) + 1 f = ThetaForecaster(sp=12) f.fit(y_train) y_pred = f.predict(fh=fh) q_pred = f.predict_quantiles(fh=fh, alpha=0.5) i_pred = f.predict_interval(fh=fh) q_pred.head() i_pred.head() # Define probabilistic metric from sktime.performance_metrics.forecasting.probabilistic import PinballLoss loss = PinballLoss() loss(y_test, q_pred) from sktime.forecasting.model_evaluation import evaluate from sktime.forecasting.model_selection import ( ExpandingWindowSplitter, ForecastingGridSearchCV, ) cv = ExpandingWindowSplitter( initial_window=24, step_length=12, fh=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] ) param_grid = {"sp": [6, 12]} gcv = ForecastingGridSearchCV(f, cv, param_grid, scoring=loss) gcv.fit(y_test) ###Output _____no_output_____ ###Markdown The ForecastingGridSearchCV relies on `sktime.forecasting.model_evaluation.evaluate` to evaluate metric scores, hence this is what we will need to change to allow it to work. It also has it's own `score()` function which could also be changed but this isn't used in fitting. ###Code evaluate(f, cv, y_test, scoring=loss) ###Output _____no_output_____ ###Markdown If we naively substitute the normal loss for a quantile loss we get an input error (as expected).We will first try changing the evaluate function. ###Code import time from sklearn.base import clone from sktime.forecasting.base import ForecastingHorizon from sktime.utils.validation.forecasting import ( check_cv, check_fh, check_scoring, check_X, ) from sktime.utils.validation.series import check_series def evaluate( forecaster, cv, y, X=None, strategy="refit", scoring=None, fit_params=None, return_data=False, ): """Evaluate forecaster using timeseries cross-validation. Parameters ---------- forecaster : sktime.forecaster Any forecaster cv : Temporal cross-validation splitter Splitter of how to split the data into test data and train data y : pd.Series Target time series to which to fit the forecaster. X : pd.DataFrame, default=None Exogenous variables strategy : {"refit", "update"} Must be "refit" or "update". The strategy defines whether the `forecaster` is only fitted on the first train window data and then updated, or always refitted. scoring : subclass of sktime.performance_metrics.BaseMetric, default=None. Used to get a score function that takes y_pred and y_test arguments and accept y_train as keyword argument. If None, then uses scoring = MeanAbsolutePercentageError(symmetric=True). fit_params : dict, default=None Parameters passed to the `fit` call of the forecaster. return_data : bool, default=False Returns three additional columns in the DataFrame, by default False. The cells of the columns contain each a pd.Series for y_train, y_pred, y_test. Returns ------- pd.DataFrame DataFrame that contains several columns with information regarding each refit/update and prediction of the forecaster. """ _check_strategy(strategy) cv = check_cv(cv, enforce_start_with_window=True) scoring = check_scoring(scoring) y = check_series( y, enforce_univariate=forecaster.get_tag("scitype:y") == "univariate", enforce_multivariate=forecaster.get_tag("scitype:y") == "multivariate", ) X = check_X(X) fit_params = {} if fit_params is None else fit_params # Define score name. score_name = "test_" + scoring.name # Initialize dataframe. results = pd.DataFrame() # Run temporal cross-validation. for i, (train, test) in enumerate(cv.split(y)): # split data y_train, y_test, X_train, X_test = _split(y, X, train, test, cv.fh) # create forecasting horizon fh = ForecastingHorizon(y_test.index, is_relative=False) # fit/update start_fit = time.perf_counter() if i == 0 or strategy == "refit": forecaster = clone(forecaster) forecaster.fit(y_train, X_train, fh=fh, **fit_params) else: # if strategy == "update": forecaster.update(y_train, X_train) fit_time = time.perf_counter() - start_fit # predict start_pred = time.perf_counter() if scoring.get_tag("scitype:y_pred") == "pred_quantiles": y_pred = forecaster.predict_quantiles(fh, X=X_test, **fit_params) else: y_pred = forecaster.predict(fh, X=X_test) pred_time = time.perf_counter() - start_pred # score score = scoring(y_test, y_pred, y_train=y_train) # save results results = results.append( { score_name: score, "fit_time": fit_time, "pred_time": pred_time, "len_train_window": len(y_train), "cutoff": forecaster.cutoff, "y_train": y_train if return_data else np.nan, "y_test": y_test if return_data else np.nan, "y_pred": y_pred if return_data else np.nan, }, ignore_index=True, ) # post-processing of results if not return_data: results = results.drop(columns=["y_train", "y_test", "y_pred"]) results["len_train_window"] = results["len_train_window"].astype(int) return results def _split(y, X, train, test, fh): """Split y and X for given train and test set indices.""" y_train = y.iloc[train] y_test = y.iloc[test] cutoff = y_train.index[-1] fh = check_fh(fh) fh = fh.to_relative(cutoff) if X is not None: X_train = X.iloc[train, :] # We need to expand test indices to a full range, since some forecasters # require the full range of exogenous values. test = np.arange(test[0] - fh.min(), test[-1]) + 1 X_test = X.iloc[test, :] else: X_train = None X_test = None return y_train, y_test, X_train, X_test def _check_strategy(strategy): """Assert strategy value. Parameters ---------- strategy : str strategy of how to evaluate a forecaster Raises ------ ValueError If strategy value is not in expected values, raise error. """ valid_strategies = ("refit", "update") if strategy not in valid_strategies: raise ValueError(f"`strategy` must be one of {valid_strategies}") evaluate(f, cv, y_test, scoring=loss) ###Output 0.05 0.95 0 0.008705 0.007918
01-k8s/Explore_Kubernetes_Cluster.ipynb
###Markdown `kubectl` Kubernetes CLI Within your namespace: ###Code !kubectl get pods !kubectl describe pod [add name of your pod] !kubectl logs [add name of your pod]-0 -c [add name of your pod] ###Output _____no_output_____
ipynb/04/df_series_arrays.ipynb
###Markdown We have now come across three important structures that Python uses to store and access data:* arrays* data frames* seriesHere we stop to go back over the differences between these structures, and how to convert between them. Data frames We start by loading a data frame from a Comma Separated Value file (CSVfile).The data file we will load is a table with average scores across all professors teachinga particular academic discipline.See the [array indexing page](../03/array_indexing) for more detail.Each row in this table corresponds to one *discipline*. Each column corresponds to a different *rating*.If you are running on your laptop, you should downloadthe [rate_my_course.csv](https://matthew-brett.github.io/cfd2019/data/rate_my_course.csv)file to the same directory as this notebook. ###Code # Load the Numpy library, rename to "np" import numpy as np # Load the Pandas data science library, rename to "pd" import pandas as pd # Read the file. courses = pd.read_csv('rate_my_course.csv') # Show the first five rows. courses.head() ###Output _____no_output_____ ###Markdown The `pd.read_csv` function returned this table in a structure called a *data frame*. ###Code type(courses) ###Output _____no_output_____ ###Markdown The data frame is a two-dimensional structure. It has rows, and columns. We can see the number of rows and columns with: ###Code courses.shape ###Output _____no_output_____ ###Markdown This means there are 75 rows. In this case, each row corresponds to one discpline.There are 6 columns. In this case, each column corresponds to a different student rating. Passing the data frame to the Python `len` function shows us the number of rows: ###Code len(courses) ###Output _____no_output_____ ###Markdown Indexing into data frames There are two simple ways of indexing into data frames.We index into a data frame to get a subset of of the data.To index into anything, we can give the name of thing - in this case `courses` - followed by an opening square bracket `[`, followed by something to specify which subset of the data we want, followed by a closing square bracket `]`.The two simple ways of indexing into a data frame are:* Indexing with a string to get a column.* Indexing with a Boolean sequence to get a subset of the rows. When we index with a string, the string should be a column name: ###Code easiness = courses['Easiness'] ###Output _____no_output_____ ###Markdown The result is a *series*: ###Code type(easiness) ###Output _____no_output_____ ###Markdown The Series is a structure that holds the data for a single column. ###Code easiness ###Output _____no_output_____ ###Markdown We will come back to the Series soon.Notice that, if your string specifying the column name does not match a column name exactly, you will get a long error. This gives you some practice in reading long error messages - skip to the end first, you will often see the most helpful information there. ###Code # The exact column name starts with capital E courses['easiness'] ###Output _____no_output_____ ###Markdown You have just seen indexing into the data frame with a string to get the data for one column.The other simple way of indexing into a data frame is with a Boolean sequence.A Boolean sequence is a sequence of values, all of which are either True or False. Examples of sequences are series and arrays. For example, imagine we only wanted to look at courses with an easiness rating of greater than 3.25.We first make the Boolean sequence, by asking the question `> 3.25` of the values in the "Easiness" column, like this: ###Code is_easy = easiness > 3.25 ###Output _____no_output_____ ###Markdown This is a series that has True and False values: ###Code type(is_easy) is_easy ###Output _____no_output_____ ###Markdown It has True values where the corresponding row had an "Easiness" score greater than 3.25, and False values where the corresponding row had an "Easiness" score of less than or equal to 3.25. We can index into the data frame with this Boolean series.When we do this, we ask the data frame to give us a new version of itself, that only has the rows where there was a True value in the Boolean series: ###Code easy_courses = courses[is_easy] ###Output _____no_output_____ ###Markdown The result is a data frame: ###Code type(easy_courses) ###Output _____no_output_____ ###Markdown The data frame contains only the rows where the "Easiness" score is greater than 3.25: ###Code easy_courses ###Output _____no_output_____ ###Markdown The way this works can be easier to see when we use a smaller data frame.Here we take the first eight rows from the data frame, by using the `head` method.The `head` method can take an argument, which is the number of rows we want. ###Code first_8 = courses.head(8) ###Output _____no_output_____ ###Markdown The result is a new data frame: ###Code type(first_8) first_8 ###Output _____no_output_____ ###Markdown We index into the new data frame with a string, to get the "Easiness" column: ###Code easiness_first_8 = first_8["Easiness"] easiness_first_8 ###Output _____no_output_____ ###Markdown This Boolean series has True where the "Easiness" score is greater than 3.25, and False otherwise: ###Code is_easy_first_8 = easiness_first_8 > 3.25 is_easy_first_8 ###Output _____no_output_____ ###Markdown We index into the `first_8` data frame with this Boolean series, to select the rows where `is_easy_first_8` has True, and throw away the rows where it has False. ###Code easy_first_8 = first_8[is_easy_first_8] easy_first_8 ###Output _____no_output_____ ###Markdown Oh dear, Psychology looks pretty easy. Series and array The series, as you have seen, is the structure that Pandas uses to store the data from a column: ###Code first_8 easiness_first_8 = first_8["Easiness"] easiness_first_8 ###Output _____no_output_____ ###Markdown You can index into a series, but this indexing is powerful and sophisticated, so we will not use that for now.For now, you can convert the series to an array, like this: ###Code easi_8 = np.array(easiness_first_8) easi_8 ###Output _____no_output_____ ###Markdown Then you can use the usual [array indexing](../03/array_indexing) to get the values you want: ###Code # The first value easi_8[0] # The first five values easi_8[:5] ###Output _____no_output_____ ###Markdown You can think of a data frame as sequence of columns, where each column is series.Here I take two columns from the data frame, as series: ###Code disciplines = first_8['Discipline'] disciplines clarity = first_8['Clarity'] clarity ###Output _____no_output_____ ###Markdown I can make a new data frame by inserting these two columns: ###Code # A new data frame thinner_courses = pd.DataFrame() thinner_courses['Discipline'] = disciplines thinner_courses['Clarity'] = clarity thinner_courses ###Output _____no_output_____
taller_marketing_alberto.ipynb
###Markdown Predicción de adherimiento a campañas de marketing (clasificación) Alberto Mario Ceballos [email protected] Universidad Nacional de Colombia, Sede Medellín Facultad de Minas Medellín, Colombia DESCRIPCIÓN DEL PROBLEMA Las campañas de marketing constituyen una estrategia típica para maximizar los beneficios de las organizaciones. Algunas compañías hacen uso de marketing directo, contactando a los clientes (usualmente por medio de llamadas) para ofrecerles ciertos beneficios y convencerlos de suscribirse a distintos tipos de planes. Muchas organizaciones grandes y medianas centralizan sus interacciones con los clientes en centros de contacto desde los cuales se contacta a los clientes. Este tipo de marketing es considerado 'telemarketing', e incurre un gran costo en las organizaciones debido a la cantidad de personal que deben mantener en dichas tareas y el impacto que puede tener en la relación con el cliente debido a la intrusividad. Debido a esto, muchas organizaciones buscan optimizar la decisión de si llamar o no a un cliente dado. En el caso del banco portugués de la que se extrajeron los datos en los que se basa este trabajo, el objetivo era determinar si un cliente se suscribiría o no a un depósito a término fijo (CDT). Debido a la gran cantidad de variables a tener en cuenta, determinar cuando un cliente se suscribirá al CDT es complicado, pero dicha problemática era clave para el banco ya que el país se encontraba en época de recesión. Fuente : *[Moro et al., 2014] S. Moro, P. Cortez and P. Rita. A Data-Driven Approach to Predict the Success of Bank Telemarketing. Decision Support Systems, Elsevier, 62:22-31, June 2014* DESCRIPCIÓN DEL PROBLEMA DESDE LOS DATOSLos datos utilizados fueron seleccionados del repositorio en línea UCI. Se trata de una base de datos para clasificación para determinar la adhesión o no de clientes a depósitos a término como resultado de campañas de marketing. La base de datos fue proporcionada por Moro et al. en 2014, y es resultado de un estudio real hecho con datos de un banco portugués.En el repositorio se encuentran varios conjuntos de datos, en todas estas los datos están ordenados por fecha (Mayo 2008-Nov. 2010). La diferencia consiste en el número de atributos y la cantidad de registros. Para el propósito de este informe, se escoge el conjunto bank-additional-full.csv que incluye 41188 datos con 20 atributos y la variable respuesta y.Cabe anotar que problemas de decisión como éste son NP-hard, sin embargo, para el banco era aceptable cierto margen de error ya que realizó más de 40000 llamadas durante el período evaluado, lo cual es consecuencia de la situación de recesión en la que se encontraba el país y la necesidad del banco de recibir dinero de sus clientes. Atributos del cliente: 1. age: Edad del cliente (numérico) 2. job: Tipo de trabajo del cliente (catégorico: "admin.","blue-collar", "entrepreneur", "housemaid","management", "retired","self-employed", "services","student","technician","unemployed","unknown"). 3. marital: Estado civil del cliente (catégorico: "divorced","married","single","unknown"; nota: "divorced" significa divorciado o viudo). 4. education: Nivel educativo más alto del cliente (catégorico: "basic.4y","basic.6y","basic.9y","high.school","illiterate","professional.course","university.degree","unknown"). 5. default: ¿Tiene créditos en mora? (catégorico: "no","yes","unknown"). 6. housing: ¿Tiene préstamos para vivienda? (catégorico: "no","yes","unknown"). 7. loan: ¿Tiene préstamos personales? (catégorico: "no","yes","unknown"). Atributos de la último llamada en la campaña de marketing actual: 8. contact: Tipo de medio de comunicación para contacto (catégorico: "cellular","telephone"). 9. month: Últímo mes de contacto en el año (catégorico: "mar", ..., "nov", "dec"). No se hacen llamadas en enero ni marzo. 10. day_of_week: Último día de la semana en el que se hizo llamada (catégorico: "mon","tue","wed","thu","fri"). 11. duration: Duración de la última llamada, en segundos (numérico). Nota: Este atributo afecta en gran medida la salida (ej. si duración = 0, entonces y = 'no'). Sin embargo, la duración no se conoce antes de realizar una llamada. Además, al terminar la llamada se conoce el resultado de y. Por tanto, este atributo debe ser descartado si se tiene la intención de tener un modelo predictivo realista. Otros atributos: 12. campaign: Número de llamadas realizadas durante esta campaña para el cliente (numérico, incluye la última llamada) 13. pdays: Número de días que han pasado después de que el cliente fuese contactado por última vez (numérico; 999 significa que no se contactó previamente al cliente). 14. previous: Número de llamadas realizadas antes de esta campaña para el cliente (numérico). 15. poutcome: Resultado de la anterior campaña de marketing (catégorico: "failure", "nonexistent", "success"). Atributos de contexto social y económico: 16. emp.var.rate: Tasa de variación de empleo - indicador trimestral (numérico). 17. cons.price.idx: Índice de precios del consumidor - indicador mensual (numérico). 18. cons.conf.idx: Índice de confianza del consumidor - indicador mensual (numérico). 19. euribor3m: Tasa euribor de 3 meses - indicador diario (numérico). 20. nr.employed: Número de empleados - indicador trimestral (numérico). Variable de salida (objetivo): 21. y: ¿El cliente se suscribió a un depósito a término? (binaria: "yes","no"). Datos de atributo faltante: -. Existen valores faltantes en varios atributos categóricos, codificados con la etiqueta "unknown". Estos pueden ser tratados como una clase por sí misma, o tratados con técnicas de imputación. PASOS DE LA IMPLEMENTACIÓN* Exploración descriptiva de los datos.* Primera iteración del preprocesamiento.* Primera iteración del modelado.* Conclusiones de la primera iteración.* Segunda iteración del preprocesamiento.* Segunda iteración del modelado.* Conclusiones de la segunda iteración* Tercera iteración del preprocesamiento.* Tercera iteración del modelado.* Conclusiones finales. LIBRERIASA continuación se importan las librerias necesarias y se definen algunas funciones para la realización del trabajo: ###Code %matplotlib inline ## ## Se ignoran advertencias ## import warnings as ws ws.filterwarnings("ignore") import math import pandas as pd import numpy as np from sklearn.preprocessing import Imputer from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.metrics import roc_auc_score from sklearn.metrics import cohen_kappa_score, make_scorer from sklearn.model_selection import GridSearchCV from sklearn.model_selection import StratifiedShuffleSplit from sklearn import preprocessing from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.neural_network import MLPClassifier import seaborn as sns from matplotlib import pyplot import statsmodels.formula.api as smf import statsmodels.stats.multicomp as multi import statsmodels.api as sm import time as tm from imblearn.over_sampling import SMOTE from imblearn.combine import SMOTEENN def magnify(): return [dict(selector="th", props=[("font-size", "8pt")]), dict(selector="td", props=[('padding', "0em 0em")]), dict(selector="th:hover", props=[("font-size", "12pt")]), dict(selector="tr:hover td:hover", props=[('max-width', '200px'), ('font-size', '12pt')]) ] # mapa de correlación def correl(correlacion): cmap=sns.diverging_palette(5, 250, as_cmap=True) return (correlacion.style.background_gradient(cmap, axis=1)\ .set_properties(**{'max-width': '80px', 'font-size': '10pt', 'fmt': '0.1'})\ .set_caption("Hover to magnify")\ .set_precision(2)\ .set_table_styles(magnify())) ###Output _____no_output_____ ###Markdown ANALISIS DESCRIPTIVOEn esta sección se realiza un análisis descriptivo de las distintas variables. Lectura de los datos y eliminación de variables según el ámbito del problemaSe hace la lectura de los datos con la función read_csv de la librería pandas. Se trabaja con la versión 'additional-full' de los datos del banco.Se elimina la variable 'duration' para obtener un modelo predictivo más realista.Se convierte la variable de salida en binaria, para facilitar algunos calculos. ###Code def lectura(): df_orig = pd.read_csv('bank-additional-full.csv', sep=";") del(df_orig['duration']) df_orig.y = df_orig.y.apply(lambda x: 1 if x=='yes' else 0) return df_orig df_orig = lectura() df_orig.head() df_orig.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 41188 entries, 0 to 41187 Data columns (total 20 columns): age 41188 non-null int64 job 41188 non-null object marital 41188 non-null object education 41188 non-null object default 41188 non-null object housing 41188 non-null object loan 41188 non-null object contact 41188 non-null object month 41188 non-null object day_of_week 41188 non-null object campaign 41188 non-null int64 pdays 41188 non-null int64 previous 41188 non-null int64 poutcome 41188 non-null object emp.var.rate 41188 non-null float64 cons.price.idx 41188 non-null float64 cons.conf.idx 41188 non-null float64 euribor3m 41188 non-null float64 nr.employed 41188 non-null float64 y 41188 non-null int64 dtypes: float64(5), int64(5), object(10) memory usage: 6.3+ MB ###Markdown Linea base y distribución de datos según si el cliente se ha suscrito a un déposito a términoUna revisión de los datos muestra que el 88.9% de los datos pertenecen a la clase 0 (NO). Esto indica que la línea base puede ser un 89% de precisión. Sin embargo, dato que los datos fueron muestreados en época de recesión, puede ser aceptable una precisión ligeramente menor a ese valor si se maximiza la precisión al clasificar a los clientes que sí se suscribirán a un depósito a término fijo.Este enfoque es similar al que emplean los creadores del conjunto de datos en https://pdfs.semanticscholar.org/cab8/6052882d126d43f72108c6cb41b295cc8a9e.pdf , así que se decide usar los resultados obtenidos por estos con su mejor caso de aplicación como línea base. Dichos resultados describen un 81% de precisión en la predicción de la clase NO y un 65% de precisión para la clase SI, con una precisión general del 75%. ###Code df_orig.y.value_counts() sns.countplot(x='y', data=df_orig, palette='hls') pyplot.show() ###Output _____no_output_____ ###Markdown Listado de etiquetas ###Code labels = list(df_orig.columns.values) print(labels) ###Output ['age', 'job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'day_of_week', 'campaign', 'pdays', 'previous', 'poutcome', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed', 'y'] ###Markdown Descripción de las variables categóricasEn la siguiente sección se hace un análisis descriptivo de las variables categóricas según la distribución de sus valores. ###Code cat_labels = ['job','marital','education', 'month','day_of_week', 'default','housing','poutcome', 'loan','contact'] df_orig[cat_labels].describe() cat_labels_plot1 = ['job','education', 'month'] order_education = ['illiterate', 'basic.4y', 'basic.6y', 'basic.9y', 'high.school', 'university.degree', 'professional.course','unknown'] order_month = ['mar','apr','may','jun','jul','aug','sep','oct','nov','dec'] fig = pyplot.figure(figsize=(14, 12)) ax1 = pyplot.subplot(3, 1, 1) sns.countplot(x="job", data=df_orig, ax = ax1) ax2 = pyplot.subplot(3, 1, 2) sns.countplot(x="education", data=df_orig, ax = ax2, order = order_education) ax2 = pyplot.subplot(3, 1, 3) sns.countplot(x="month", data=df_orig, ax = ax2, order = order_month) pyplot.show() cat_labels_plot2 = [label for label in cat_labels if label not in cat_labels_plot1] fig = pyplot.figure(figsize=(15, 20)) fig_size = (4,2) axes = [] for i in range(0, len(cat_labels_plot2)): axes.append(pyplot.subplot(*fig_size,i+1)) sns.countplot(x=cat_labels_plot2[i], data=df_orig, ax=axes[i]) pyplot.show() ###Output _____no_output_____ ###Markdown Descripción de las variables numéricasPara mayor facilidad del manejo de las variables numéricas, se almacena un arreglo con las mismas.Observando las variables numéricas se puede observar que existe una desviación estándar considerable en la variable pdays, en contraste con las otras variables. ###Code num_labels = ['age', 'campaign', 'pdays','previous','emp.var.rate', 'cons.price.idx','cons.conf.idx', 'euribor3m', 'nr.employed'] df_orig[num_labels].describe() ###Output _____no_output_____ ###Markdown Se muestran gráficos de densidad de las variables numéricas. ###Code df_orig.plot(kind='density', subplots=True, layout=(17,3), sharex=False, figsize=(15,35)) pyplot.show() ###Output _____no_output_____ ###Markdown Escalado preliminar de variables númericasSe realiza un escalado preliminar de las variables numéricas para facilitar su análisis. Aunque en primera instancia se sugiere que hay una dispersión muy grande en varias de las variables, una revisión de la literatura y de las variables como tales muestra que para algunas de ellas es un comportamiento normal. ###Code mm_scaler = preprocessing.MinMaxScaler() df_scaled = df_orig.copy() df_scaled[num_labels] = mm_scaler.fit_transform(df_scaled[num_labels]) df_scaled.describe() ###Output _____no_output_____ ###Markdown Visualización de box-plot para encontrar valores dispersos ###Code fig, ax = pyplot.subplots(figsize=(20,10)) sns.boxplot(ax = ax, data=df_scaled[num_labels]) pyplot.show() ###Output _____no_output_____ ###Markdown Análisis de la variable AGE. ###Code df_orig.age.describe() def map_ages(x): lower = math.floor(x/10) upper = lower + 1 return str(lower)+"0-"+str(upper)+"0" df_y_age = df_orig.copy() df_y_age['age'] = df_y_age['age'].apply(lambda x: map_ages(x)) df_y_age = df_y_age.groupby(['age', 'y'])['y'].count().unstack() df_y_age.plot(kind = 'bar',figsize=(20,5), log=False) pyplot.show() df_y_age.plot(kind = 'bar',figsize=(20,5), log=True) pyplot.show() ###Output _____no_output_____ ###Markdown Análisis de la variable CAMPAIGN. ###Code df_orig.campaign.describe() limit = 18 def map_campaign(x, limit): if(x < limit): x = x else: x = 999 return int(x) df_y_campaign = df_orig.copy() df_y_campaign['campaign'] = df_y_campaign['campaign'].apply(lambda x: map_campaign(x, limit)) df_y_campaign = df_y_campaign.groupby(['campaign', 'y'])['y'].count().unstack() df_y_campaign.plot(kind = 'bar',figsize=(25,5), log=True) pyplot.show() ###Output _____no_output_____ ###Markdown Análisis de la variable PDAYS ###Code df_orig.pdays.describe() df_y_pdays = df_orig.groupby(['pdays', 'y'])['y'].count().unstack() df_y_pdays.plot(kind = 'bar',figsize=(25,5), log=True) pyplot.show() ###Output _____no_output_____ ###Markdown Análisis de la variable PREVIOUS ###Code df_orig.previous.describe() df_y_pre = df_orig.groupby(['previous', 'y'])['y'].count().unstack() df_y_pre.plot(kind = 'bar',figsize=(25,5), log=False) pyplot.show() df_y_pre.plot(kind = 'bar',figsize=(25,5), log=True) pyplot.show() ###Output _____no_output_____ ###Markdown Análisis de la variable EMP.VAR.RATE ###Code df_orig['emp.var.rate'].describe() ###Output _____no_output_____ ###Markdown Análisis de la variable CONS.PRICE.IDX ###Code df_orig['cons.price.idx'].describe() ###Output _____no_output_____ ###Markdown Análisis de la variable CONS.CONF.IDX ###Code df_orig['cons.conf.idx'].describe() ###Output _____no_output_____ ###Markdown Análisis de la variable EURIBOR3M ###Code df_orig['euribor3m'].describe() ###Output _____no_output_____ ###Markdown Análisis de la variable NR.EMPLOYED ###Code df_orig['nr.employed'].describe() ###Output _____no_output_____ ###Markdown Correlación ###Code df_scaled_numy = df_scaled.copy() #df_scaled.corr() #arbol de regresiones correl(df_scaled_numy.corr()) ###Output _____no_output_____ ###Markdown Se puede observar en la matriz de correlación que las variables emp.var.rate y euribor3m, nr.employed y euribor3m, emp.var.rate y euribor3m están fuertemente correlacionadas, y que hay aparentemente poco impacto de las variables campaign y cons.conf.idx sobre la respuesta. Esta consideración, sin embargo, no es tenida en cuenta ya que en la descripción de los datos y el paper relacionado se afirma que las tres variables tienen un impacto positivo en la predicción. Resumen de los problemas detectados durante el análisis.* Los datos numéricos están en escalas demasiado diferentes y existen outliers, es por tanto necesario estandarizarlos.* Hay poco balanceo entre clases, más del 85% de los datos pertenecen a una clase.* Es necesario convertir varias de las variables categóricas en dummies.* Algunas variables categóricas tienen datos faltantes, imputarlos reduciría la cantidad de variables dummy.El impacto de la correlación entre variables y su uso como posible criterio de eliminación de parámetros se descarta por la alta complejidad de cómputo que implican las otras tareas. Primera iteración del preprocesamientoSe propone realizar una primera iteración del algoritmo considerando las siguientes tareas de preprocesamiento:1. Conversión de variables categóricas a dummies.2. Partición del conjunto de datos.3. Estandarización de valores numéricos. Conversión de variables categóricas a dummiesSe convierten las variables categóricas a dummies en primera instancia para evitar que la ausencia de categorías (ej. si en el conjunto de prueba no queda ningún valor de una variable categórica) genere problemas de diferencia dimensional. ###Code df_dummied = pd.get_dummies(df_orig, columns = cat_labels, sparse = True) new_labels = list(df_dummied.columns.values) print("Atributos catégoricos: ", cat_labels) print("\nNuevos atributos: ", new_labels) ###Output Atributos catégoricos: ['job', 'marital', 'education', 'month', 'day_of_week', 'default', 'housing', 'poutcome', 'loan', 'contact'] Nuevos atributos: ['age', 'campaign', 'pdays', 'previous', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed', 'y', 'job_admin.', 'job_blue-collar', 'job_entrepreneur', 'job_housemaid', 'job_management', 'job_retired', 'job_self-employed', 'job_services', 'job_student', 'job_technician', 'job_unemployed', 'job_unknown', 'marital_divorced', 'marital_married', 'marital_single', 'marital_unknown', 'education_basic.4y', 'education_basic.6y', 'education_basic.9y', 'education_high.school', 'education_illiterate', 'education_professional.course', 'education_university.degree', 'education_unknown', 'month_apr', 'month_aug', 'month_dec', 'month_jul', 'month_jun', 'month_mar', 'month_may', 'month_nov', 'month_oct', 'month_sep', 'day_of_week_fri', 'day_of_week_mon', 'day_of_week_thu', 'day_of_week_tue', 'day_of_week_wed', 'default_no', 'default_unknown', 'default_yes', 'housing_no', 'housing_unknown', 'housing_yes', 'poutcome_failure', 'poutcome_nonexistent', 'poutcome_success', 'loan_no', 'loan_unknown', 'loan_yes', 'contact_cellular', 'contact_telephone'] ###Markdown Partición del conjunto de datosSe particiona el conjunto de datos entre entrenamiento (80%) y prueba (20%), con un enfoque estratificado para mantener la distribución original. ###Code def get_partitions(df_orig, splits = 1, test_size = 0.3, random_state = 42): split = StratifiedShuffleSplit(n_splits=1, test_size = 0.3, random_state=42) for train_index, test_index in split.split(df_orig, df_orig["y"]): df_train = df_orig.loc[train_index] df_test = df_orig.loc[test_index] return (df_train, df_test) (df_train, df_test) = get_partitions(df_dummied, 1, 0.3) X_train = df_train.copy() y_train = X_train.y del(X_train['y']) X_test = df_test.copy() y_test = X_test.y del(X_test['y']) X_test.head() X_train.columns.values ###Output _____no_output_____ ###Markdown Estandarización de valores numéricosSe hace estandarización de los valores numéricos para reducir el impacto de los outliers. Se guardan los parámetros de escalado en la variable scaler para uso posterior con el conjunto de prueba. ###Code print("\nAtributos numéricos: ", num_labels) scaler = preprocessing.StandardScaler() scaler = scaler.fit(X_train[num_labels]) X_train.loc[:,num_labels] = scaler.transform(X_train[num_labels]) X_test.loc[:, num_labels] = scaler.transform(X_test[num_labels]) ###Output _____no_output_____ ###Markdown MODELADO Y GENERALIDADESEn la etapa de modelado se prueban 4 modelos:* K-Vecinos Cercanos:La clasificación por K-Vecinos cercanos consiste en asignar clases a los objetos según el voto mayoritario de sus vecinos, siendo la clase asignada la más común entre sus k vecinos más cercanos. El valor K es un entero positivo, usualmente pequeño. Si k vale 1 entonces el objeto es asignado a la clase de un único vecino más cercano. Se pueden usar distintas métricas de distancia para este algoritmo, aunque la más común es la euclidiana.* Regresión Logística:La regresión logística, al igual que la regresión lineal, computa una suma ponderada de los atributos de entrada (más un término de bias=), pero en vez de calcular la salida directamente como la regresión lineal, emplea el resultado de la función sigmoidea, que tiene como salida valores entre 0 y 1. Debido a esto, la regresión logística puede ser usada para problemas de clasificación. Una vez se tiene la probabilidad estimada de que una instancia x pertenezca a la clase positiva, el problema de clasificación se resume a asignarle 1 si el valor calculado es mayor o igual a 0.5 o 0 si es menor a 0.5.* Bosques de Clasificación:Los bosques de clasificación son algoritmos versátiles de aprendizaje de máquina que pueden lelvar a cabo tareas de clasificación. Los árboles de regresión modelan el problema de predicción en forma de un árbol en el que cada nodo representa una regla de clasificación determinada según los datos de entrenamiento. El enfoque de los bosques de clasificación consiste en agregar n predictores (árboles) y realizar la clasificación como una votación en la que la clase más popular entre los predictores entrenados es elegida. Este método suele ser mucho más costoso que entrenar un único árbol, pero incrementa considerablemente la precisión de dicha tarea.* Perceptrón Multicapa (Red Neuronal): Criterios de medición:Debido al gran desbalanceo entre clases (de una relación casi 10 a 1), medidas como la precisión no pueden ser utilizadas. En su lugar, se emplean dos medidas más robustas al desbalanceo.* Kappa: Kappa es una medición de calidad de clasificación binaria. Cuando dos variables binarias son intentos de dos individuos de medir lo mismo, se puede usar el coeficiente de Kappa como medida de la concordancia entre los dos, esta medición toma valores entre 0 y 1. Un valor de 1 indica un acuerod casi perfecto, mientras que valores menores a 1 indican poco concordancia. A continuación se puede ver la interpretación del coeficiente de kappa, proporcionada en la página 404 de Altman DG. Practical Statistics for Medical Research. (1991) London England: Chapman and Hall. Concordancia pobre = Menos que 0.20 Concordancia aceptable = 0.20 a 0.40 Concordanciauedo moderada = 0.40 a 0.60 Buena concordancia = 0.60 a 0.80 Muy buena concordancia = 0.80 a 1.00* ROC: La región bajo la curva es una representación de la sensibilidad frente a la especificidad para un sistema clasificador binario según se varía el umbral de discriminación. Al igual que el coeficiente Kappa, es una métrica muy útil para determinar si un modelo clasifica correctamente instancias de las distintas clases objetivo. Los valores que puede tomar esta métrica oscilan entre 0.5 y 1, dónde 1 indica una clasificación perfecta. ###Code #Funciones generales. def GridSearchCVwithReport( X_train, y_train, X_test, y_test, classifier, tuned_params, scores, folds): """Aplica la función GridSearchCV, genera un reporte detallado y retorna los mejores modelos generados para cada score recibido.""" start = tm.time() clfs = [] for score in scores: print() print("Parámetros ajustados del score: %s" % score) print() clf = GridSearchCV(classifier, tuned_params, score, cv= folds, n_jobs = 1) clf.fit(X_train, y_train) print("Mejores parámetros encontrados:") print(clf.best_params_) print() #Predicción con datos de prueba para validar metricas y_pred = clf.predict(X_test) print("-->Reporte de clasificación detallado<--") print() print("Matriz de confusión: ") print(confusion_matrix(y_test, y_pred)) print() print(classification_report(y_test, y_pred, digits = 5)) print() print("Coeficiente de kappa: ") print(cohen_kappa_score(y_test,y_pred)) print("Puntaje ROC_AUC: ") print(roc_auc_score(y_test,y_pred)) print() clfs.append(clf) end = tm.time() print("Tiempo total de ejecución (segundos): %.2f" % (end - start)) return clfs class GeneralImputer(Imputer): """Se crea una clase Imputer generalizada para imputar datos categóricos.""" def __init__(self, **kwargs): Imputer.__init__(self, **kwargs) def fit(self, X, y=None): if self.strategy == 'most_frequent': self.fills = pd.DataFrame(X).mode(axis=0).squeeze() self.statistics_ = self.fills.values return self else: return Imputer.fit(self, X, y=y) def transform(self, X): if hasattr(self, 'fills'): return pd.DataFrame(X).fillna(self.fills).values.astype(str) else: return Imputer.transform(self, X) #https://stackoverflow.com/questions/25239958/impute-categorical-missing-values-in-scikit-learn # Se crea un scorer kappa para guiar la selección de parámetros. kappa_scorer = make_scorer(cohen_kappa_score) ###Output _____no_output_____ ###Markdown Primera iteración de modelamientoPara la primera iteración se prueban los métodos con la función GridSearchCV ajustada para mostrar un reporte más detallado. Para cada método se tienen en cuenta distintos parámetros que se ajustan junto con la realización de 5 ejecuciones de validación cruzada por configuración. Asimismo, se guarda el tiempo de ejecución de los algoritmos para verificar la rapidez de cada uno de los métodos. K Nearest Neighbors ###Code tuned_params = [{'n_neighbors': [15,20,25,30,35,40] }] scores = [kappa_scorer,'roc_auc'] folds = 5 knn1_cv = GridSearchCVwithReport(X_train, y_train, X_test, y_test, KNeighborsClassifier(), tuned_params, scores, folds) knn1_time = 4670.87/ (6*2*5) "Tiempo de ejecución promedio: " + str(knn1_time)+" segundos." ###Output _____no_output_____ ###Markdown Regresión Logística ###Code tuned_params = [{'penalty': ['l1','l2'], 'C': [0.001,0.01,0.1,1,10,100,1000] }] scores = [kappa_scorer,'roc_auc'] folds = 5 lg1_cv = GridSearchCVwithReport(X_train, y_train, X_test, y_test, LogisticRegression(), tuned_params, scores, folds) #Tiempo de ejecución promedio (seg): lg1_time = ((159.84/ (2*7*2*5))) "Tiempo de ejecución promedio: " + str(lg1_time) +" segundos." ###Output _____no_output_____ ###Markdown Bosques de clasificación ###Code tuned_params = { "n_estimators" : [10,30, 50], "max_features" : ["auto", "sqrt", "log2"], "min_samples_split" : [2,4,8,10,12,20], "bootstrap" : [True, False] } scores = [kappa_scorer,'roc_auc'] folds = 5 rf1 = GridSearchCVwithReport(X_train, y_train, X_test, y_test, RandomForestClassifier(), tuned_params, scores, folds) rf1_time = ((1180.41/ (3*3*5*2*2*5))) "Tiempo de ejecución promedio: " + str(rf1_time) +" segundos." tuned_params={ 'learning_rate': ["invscaling","adaptive"], 'hidden_layer_sizes': [(15),(20),(15,15),(20,20)], 'alpha': [ 0.01, 0.001, 0.0001], 'activation': ["tanh", "logistic"], 'solver': ['adam'] } scores = [kappa_scorer,'roc_auc'] folds = 5 mlp2 = GridSearchCVwithReport(X_train2, y_train2, X_test2, y_test2, MLPClassifier(), tuned_params, scores, folds) mlp1_time = ((1265.26/ (2*4*3*2*1*2*5))) "Tiempo de ejecución promedio: " + str(mlp1_time) +" segundos." fig = pyplot.figure(figsize=(20, 20)) pd_times = pd.DataFrame({'times':[knn1_time, lg1_time, rf1_time, mlp1_time], 'labels': ['KNN', 'LR', 'RF', 'MLP'], }) ax1 = pyplot.subplot(2, 3, 1) ax1 = sns.barplot(y = 'times1', x='labels', data = pd_times1, ax = ax1) ax1.set_title("Segundos de ejecución promedio") ax1.set_xlabel("Método") ax1.set_ylabel("Segundos") pd_true_positives = pd.DataFrame({'true_positives':[19.5, 21.6, 27.8, 24, 65], 'labels': ['KNN', 'LR', 'RF', 'MLP', 'Moro et al.'], }) ax2 = pyplot.subplot(2, 3, 2) sns.barplot(y = 'true_positives', x='labels', data = pd_true_positives, ax = ax2) ax2.set_title("Tasa de Verdaderos Positivos (TP)") ax2.set_xlabel("Método") ax2.set_ylabel("%") pd_kappa = pd.DataFrame({'kappa':[0.27, 0.3, 0.33, 0.31], 'labels': ['KNN', 'LR', 'RF', 'MLP'], }) ax3 = pyplot.subplot(2, 3, 3) sns.barplot(y = 'kappa', x='labels', data = pd_kappa, ax = ax3) ax3.set_title("Coeficiente kappa") ax3.set_xlabel("Método") ax3.set_ylabel("Kappa") pd_roc = pd.DataFrame({'roc':[0.59, 0.6, 0.63, 0.61], 'labels': ['KNN', 'LR', 'RF', 'MLP'], }) ax4 = pyplot.subplot(2, 3, 4) sns.barplot(y = 'roc', x='labels', data = pd_roc, ax = ax4) ax4.set_title("Área bajo la curva") ax4.set_xlabel("Método") ax4.set_ylabel("ROC") pd_tn = pd.DataFrame({'tn':[98.8, 99, 97.7, 98.5, 81], 'labels': ['KNN', 'LR', 'RF', 'MLP', 'Moro et al.'], }) ax5 = pyplot.subplot(2, 3, 5) sns.barplot(y = 'tn', x='labels', data = pd_tn, ax = ax5) ax5.set_title("Tasa de Verdaderos Negativos (TN)") ax5.set_xlabel("Método") ax5.set_ylabel("%") #ax2 = pyplot.subplot(2, 2, 3) #pyplot.show() pyplot.show() ###Output _____no_output_____ ###Markdown Conclusiones de la primera iteraciónLos resultados obtenidos no fueron excesivamente positivos, la metodología KNN incide en unos tiempos de ejecución bastante altos (se intuye que puede ser un problema de la implementación y no del método) sin tener una precisión destacable, muy por debajo del resto de metodologías. Se detecta sin embargo que el valor de K que mejores resultados arroja es 15, con el que se clasifican correctamente solo el 19.5% de los datos en los que el cliente acepta el depósito y el 98.8% de los que no aceptaron. Los valores de kappa y area bajo la curva respectivamente fueron 0.27 y 0.59, lo cual no es muy eficiente.Aunque la regresión logística clasifica exitosamente más del 99% de clientes que no aceptaron el depósito, tan solo logra clasificar correctamente al 21.6% de los que sí lo aceptaron, lo que es de poca utilidad para la organización. Esto se ve reflejado en el kappa de 0.3 y el área bajo la curva de 0.61 que indican que no se obtiene una gran precisión para todas las clases. Es, sin embargo, el método de más rápido entrenamiento, ligeramente por encima de los bosques aleatorios. Los valores óptimos de este algoritmo fueron C = 100 y penalización tipo l2. Los bosques aleatorios sacrifican algo de precisión en la clasificación de clientes que no aceptaron el depósito (N) con un 97.7%, pero clasifican exitosamente al 27.8% de los clientes que aceptaron hacer un depósito a término fijo (S), lo que se mide como un kappa de 0.33 y una ROC de 0.63. Los mejores resultados se obtuvieron al ajustar bootstrap como Falso, el valor de características máximas como automático, el mínimo de muestras por división en 8 y el número de estimadores en 30.Las redes neuronales perceptrón multicapa logran una tasa de Verdaderos Positivos ligeramente superior a la de la regresión logistica (24%) pero inferior a la de los árboles de clasificación. En cuanto a Verdaderos Negativos, su precisión es del 98.5%, lo que lo ubica muy cerca de los otros modelos. En general podemos usar los coeficientes de kappa y el área bajo la curva ROC, que son 0.31 y 0.61. En cuanto a tiempos de ejecución, las RN MLP tienen un tiempo promedio por encima de la regresión logística y los bosques aleatorios. Los mejores parámetors encontrados fueron función de acivación tangente hiperbólica, alpha 0.0001, dos capas de neuronas ocultas de 15 neuronas cada una, tasa de aprendizaje adaptativa y solver adam.La regresión logística es el método más preciso en cuanto a Verdaderos Negativos (99% de clientes), aunque en general los cuantro métodos no son muy eficientes para detectar Verdaderos Positivos lo cual resulta de poca utilidad considerando la línea base establecida anteriormente. Se intuye que el uso de variables dummy, aunque ayuda a clasificar datos categóricos con algoritmos que no los soportan en principio, incrementa considerablemente la dimensionalidad de los mismos y dificulta la clasificación, resultando en tiempos de ejecución mucho más altos. Debe considerarse en primera instancia reducir la cantidad de parámetros categóricos con base en el conocimiento del problema. Segunda iteración del preprocesamientoSe propone realizar la segunda iteración considerando las siguientes tareas de preprocesamiento:1. Reducción de atributos categóricos.2. Partición del conjunto de datos.3. Conversión de variables categóricas a dummies.4. Estandarización de valores numéricos. ###Code print(cat_labels) ###Output ['job', 'marital', 'education', 'month', 'day_of_week', 'default', 'housing', 'poutcome', 'loan', 'contact'] ###Markdown Atributos categóricos irreducibles:El día de la semana y el mes, debido a sus características, no pueden reducirse. Lo mismo aplica para el atributo trabajo y poutcome. Atributos categóricos reducibles que se decide no reducir:El atributo default tiene tan solo 3 datos con 'si', por lo que la proporción de datos con desconocido se vuelve demasiado grande como para despreciarla. Atributos directamente binarizablesEl atributo 'contact' tiene únicamente dos valores, por tanto, puede convertirse en un valor binario directamente. Atributos catégoricos reducibles que deben imputarse en primer lugar.Para los atributos educación, marital, housing y loan se puede reducir la dimensionalidad haciendo imputación. Para esto se emplea la metodología de imputación por moda, teniendo en cuenta que en estos cuatro atributos la cantidad de valores faltantes es reducida.En el caso de la educación, una vez eliminados los datos faltantes, se hace un mapeo a enteros: 'illiterate': 0 'basic.4y': 1 'basic.6y': 2 'basic.9y': 3 'high.school': 4 'university.degree': 5 'professional.course': 6 ###Code def education_map(x): education_dict = { 'illiterate':0, 'basic.4y':1, 'basic.6y': 2, 'basic.9y': 3, 'high.school':4, 'university.degree':5, 'professional.course':6 } return education_dict[x] #Preprocesamiento df_it2 = df_orig.copy() df_it2.contact = df_it2.contact.apply(lambda x: 0 if x == 'cellular' else 1) labels_with_unknowns = ['marital', 'housing', 'loan', 'education'] df_it2[labels_with_unknowns] = df_it2[labels_with_unknowns].replace('unknown', np.NaN) imputer = GeneralImputer(strategy='most_frequent') imputer.fit(df_it2[labels_with_unknowns]) df_it2[labels_with_unknowns] = imputer.transform(df_it2[labels_with_unknowns]) df_it2['education'] = df_it2['education'].apply(lambda x: education_map(x)) df_it2['housing'] = df_it2['housing'] .apply(lambda x: 1 if x == 'yes' else 0) df_it2['loan'] = df_it2['loan'] .apply(lambda x: 1 if x == 'yes' else 0) #Adicion de dummies. dummy_cat_labels = ['job','marital','month','day_of_week','default', 'poutcome'] df_it2_dummied = pd.get_dummies(df_it2, columns = dummy_cat_labels, sparse = True, drop_first = True) #Partición (df_train2, df_test2) = get_partitions(df_it2_dummied, 1, 0.3) new_labels = list(df_it2_dummied.columns.values) X_train2 = df_train2.copy() y_train2 = X_train2.y del(X_train2['y']) X_test2 = df_test2.copy() y_test2 = X_test2.y del(X_test2['y']) #Escalamiento con nueva variable numerica num_labels2 = num_labels + ['education'] scaler = preprocessing.MinMaxScaler() scaler = scaler.fit(X_train2[num_labels2]) X_train2.loc[:,num_labels2] = scaler.transform(X_train2[num_labels2]) X_test2.loc[:, num_labels2] = scaler.transform(X_test2[num_labels2]) print(len(new_labels)) ###Output 44 ###Markdown Con las modificaciones realizadas se logra reducir la cantidad de etiquetas a 44 (43 sin la respuesta). Segunda iteración de modelamiento: K Nearest Neighbors ###Code tuned_params = [{'n_neighbors': [15,20,25,30,35,40] }] scores = [kappa_scorer,'roc_auc'] folds = 5 knn2 = GridSearchCVwithReport(X_train2, y_train2, X_test2, y_test2, KNeighborsClassifier(), tuned_params, scores, folds) #Tiempo de ejecución promedio (seg): knn2_time = ((2298.99/ (6*2*5))) "Tiempo de ejecución promedio: " + str(knn2_time) +" segundos." ###Output _____no_output_____ ###Markdown Regresión Logística ###Code #[[10832 133] #[ 1081 311]] tuned_params = [{'penalty': ['l1','l2'], 'C': [0.001,0.01,0.1,1,10,100,1000] }] scores = [kappa_scorer,'roc_auc'] folds = 5 lg2 = GridSearchCVwithReport(X_train2, y_train2, X_test2, y_test2, LogisticRegression(), tuned_params, scores, folds) lg2_time = ((172.01/ (2*8*2*5))) "Tiempo de ejecución promedio: " + str(lg2_time) +" segundos." ###Output _____no_output_____ ###Markdown Random Forest ###Code tuned_params = { "n_estimators" : [10,30, 50], "max_features" : ["auto", "sqrt", "log2"], "min_samples_split" : [2,4,8,10,12,20], "bootstrap" : [True, False] } scores = [kappa_scorer,'roc_auc'] folds = 5 rf2 = GridSearchCVwithReport(X_train2, y_train2, X_test2, y_test2, RandomForestClassifier(), tuned_params, scores, folds) rf2_time = ((851.24/ (9*12*10))) "Tiempo de ejecución promedio: " + str(rf2_time) +" segundos." ###Output _____no_output_____ ###Markdown Red Neuronal Perceptrón Multicapa ###Code tuned_params={ 'learning_rate': ["invscaling","adaptive"], 'hidden_layer_sizes': [(15),(20),(15,15),(20,20)], 'alpha': [ 0.1,0.01, 0.001, 0.0001], 'activation': ["identity","tanh","relu", "logistic"], 'solver': ['adam'] } scores = [kappa_scorer,'roc_auc'] folds = 5 mlp2 = GridSearchCVwithReport(X_train2, y_train2, X_test2, y_test2, MLPClassifier(), tuned_params, scores, folds) mlp2_time = ((2944.89/ (2*4*4*4*1*2*5))) "Tiempo de ejecución promedio: " + str(rf2_time) +" segundos." fig = pyplot.figure(figsize=(20, 20)) pd_times = pd.DataFrame({'times':[knn2_time, lg2_time, rf2_time, mlp2_time], 'labels': ['KNN', 'LR', 'RF', 'MLP'], }) ax1 = pyplot.subplot(2, 3, 1) ax1 = sns.barplot(y = 'times', x='labels', data = pd_times, ax = ax1) ax1.set_title("Segundos de ejecución promedio") ax1.set_xlabel("Método") ax1.set_ylabel("Segundos") pd_true_positives = pd.DataFrame({'true_positives':[21.9,22.2 , 27.7 , 24.2, 65], 'labels': ['KNN', 'LR', 'RF', 'MLP', 'Moro et al.'], }) ax2 = pyplot.subplot(2, 3, 2) sns.barplot(y = 'true_positives', x='labels', data = pd_true_positives, ax = ax2) ax2.set_title("Porcentaje de verdaderos positivos") ax2.set_xlabel("Método") ax2.set_ylabel("%") pd_kappa = pd.DataFrame({'kappa':[0.28, 0.3, 0.34, 0.32], 'labels': ['KNN', 'LR', 'RF', 'MLP'], }) ax3 = pyplot.subplot(2, 3, 3) sns.barplot(y = 'kappa', x='labels', data = pd_kappa, ax = ax3) ax3.set_title("Coeficiente kappa") ax3.set_xlabel("Método") ax3.set_ylabel("Kappa") pd_roc = pd.DataFrame({'roc':[0.6, 0.61, 0.63, 0.61], 'labels': ['KNN', 'LR', 'RF', 'MLP'], }) ax4 = pyplot.subplot(2, 3, 4) sns.barplot(y = 'roc', x='labels', data = pd_roc, ax = ax4) ax4.set_title("Área bajo la curva") ax4.set_xlabel("Método") ax4.set_ylabel("ROC") pd_tn = pd.DataFrame({'tn':[98.5, 98.7, 97.7, 98.5, 81], 'labels': ['KNN', 'LR', 'RF', 'MLP', 'Moro et al.'], }) ax5 = pyplot.subplot(2, 3, 5) sns.barplot(y = 'tn', x='labels', data = pd_tn, ax = ax5) ax5.set_title("Tasa de Verdaderos Negativos (TP)") ax5.set_xlabel("Método") ax5.set_ylabel("%") #ax2 = pyplot.subplot(2, 2, 3) #pyplot.show() pyplot.show() ###Output _____no_output_____ ###Markdown Conclusiones de la segunda iteración del modelamientoAl hacer reducción de caracterísicas con base en el cómputo de valores faltantes y aplicando una regla numérica al atributo educación, se pueden notar ligeras mejoras en la clasificación. Asimismo, hay una mejora notoria en los tiempos de ejecución de los algoritmos. La metodología KNN sigue ubicándose como la de peor rendimiento con una tasa de TP del 22% y una tasa de TN del 98.3%, con kappa de 0.28 y ROC de 0.6. Se mantienen el mismo hiperparámetro k = 15, y la reducción de dimensionalidad tiene un impacto considerable en el tiempo de ejecución, reduciéndolo a un promedio de 37 segundos.La regresión logística pasa a clasificar correctamente un 22.3% de las instancias de Sí, una mejora mínima ante una reducción al 98.7% de Verdaderos Negativos, aunque el impacto en la métrica ROC es positivo, aumentando esta a 0.61. Los tiempos de ejecución se reducen a 1.07 segundos, lo cual indica que el algoritmo de regresión logística no es tan sensible a altas cantidades de atributos como los otros. En este caso, los hiperparámetros óptimos fueron C = 1000 y penalización tipo l1.Los bosques aleatorios mantienen la mejor tasa de Verdaderos Positivos, el mejor kappa y la mejor área bajo la curva, con un 27.7%, 0.34 y 0.64 respectivamente. La tasa de TN se mantuvo en 97.7%, lo que a grandes rasgos indica que no hay mayor mejora además del tiempo de ejecución, que pasa a 0.78 segundos por ejecución lo cual indica el alto impacto de la cantidad de atributos en el rendimiento del algoritmo. Los hiperparámetros óptimos fueron los mismos que en la anterior iteración, excepto por las muestras mínimas que se ajustaron a 12 y el número de estimadores ideal que fue 50.Las redes neuronales mantienen un desempeño muy similar al anterior, con un 24.2% de Tasa TP y 98.5% de tasa FP, con kappa 0.32 y ROC de 0.61. Se encontraron los mismos hiperparámetros ideales excepto por el valor de alpha, que pasó de 0.0001 a 0.01, y las capas que se definieron como dos capas ocultas de 20 neuronas cada una. El método, en todo caso, se consolida entre los bosques de clasificación y la regresión logística.En esta iteración no se aprecia una mejora apreciable en la tasa de Verdaderos Positivos, sin embargo, fue posible observar el impacto de la dimensionalidad de los conjuntos de datos sobre los tiempos de ejecución, y como ligeras modificaciones en los atributos categóricos pueden ayudar a reducir la dimensionalidad, resultando en algunos casos en un incremento de la precisión. Por otra parte, se ve como la regresión logística sigue siendo la que mejor clasifica los Verdaderos Negativos, mientras que la tarea de clasificación de Verdaderos Positivos la lleva a cabo más eficientemente los bosques de clasificación. KNN, en contraste, falla en ambos casos, y las Redes Neuronales se ubican en un punto medo entre la Regresión Logística y los Árboles de Clasificación. Tercera iteración del preprocesamientoEsta iteración es similar a la anterior, pero al intuirse que la baja tasa de TP puede deberse al desbalanceo, se aplica balanceo de clases antes de estandarizar los valores numéricos.1. Reducción de atributos categóricos.2. Partición del conjunto de datos.3. Conversión de variables categóricas a dummies.4. Estandarización de valores numéricos.5. Balanceo de clases mediante la metodología mixta de oversampling y downsampling SMOTEENN. ###Code df_it3 = df_orig.copy() df_it3.contact = df_it3.contact.apply(lambda x: 0 if x == 'cellular' else 1) df_it3.contact.describe() labels_with_unknowns = ['marital', 'housing', 'loan', 'education'] df_it3[labels_with_unknowns] = df_it3[labels_with_unknowns].replace('unknown', np.NaN) imputer = GeneralImputer(strategy='most_frequent') imputer.fit(df_it3[labels_with_unknowns]) df_it3[labels_with_unknowns] = imputer.transform(df_it3[labels_with_unknowns]) df_it3['education'] = df_it3['education'].apply(lambda x: education_map(x)) df_it3['housing'] = df_it3['housing'] .apply(lambda x: 1 if x == 'yes' else 0) df_it3['loan'] = df_it3['loan'] .apply(lambda x: 1 if x == 'yes' else 0) dummy_cat_labels = ['job','marital','month','day_of_week','default', 'poutcome'] df_it3_dummied = pd.get_dummies(df_it3, columns = dummy_cat_labels, sparse = True, drop_first = True) (df_train3, df_test3) = get_partitions(df_it3_dummied, 1, 0.3) new_labels = list(df_it3_dummied.columns.values) X_train3 = df_train3.copy() y_train3 = X_train3.y del(X_train3['y']) X_test3 = df_test3.copy() y_test3 = X_test3.y del(X_test3['y']) num_labels3 = num_labels + ['education'] scaler = preprocessing.MinMaxScaler() scaler = scaler.fit(X_train3[num_labels3]) X_train3.loc[:,num_labels3] = scaler.transform(X_train3[num_labels3]) X_test3.loc[:, num_labels3] = scaler.transform(X_test3[num_labels3]) X_resampled3, y_resampled3 = SMOTE().fit_sample(X_train3, y_train3) X_resampled3 = pd.DataFrame(X_resampled3) X_resampled3.columns = X_train3.columns X_resampled3.describe() X_resampled3, y_resampled3 = SMOTE().fit_sample(X_train3, y_train3) X_resampled3 = pd.DataFrame(X_resampled3) X_resampled3.columns = X_train3.columns X_resampled3.describe() ###Output _____no_output_____ ###Markdown Tercera iteración del modelamiento K Nearest Neighbors ###Code tuned_params = [{'n_neighbors': [15,20,25,30,35,40] }] scores = [kappa_scorer,'roc_auc'] folds = 5 knn3 = GridSearchCVwithReport(X_train3, y_train3, X_test3, y_test3, KNeighborsClassifier(), tuned_params, scores, folds) knn3_time = ((2311.85/ (6*2*5))) "Tiempo de ejecución promedio: " + str(knn3_time) +" segundos." ###Output _____no_output_____ ###Markdown Regresión Logística ###Code tuned_params = [{'penalty': ['l1','l2'], 'C': [0.001,0.01,0.1,1,10,100,1000] }] scores = [kappa_scorer,'roc_auc'] folds = 5 lg3 = GridSearchCVwithReport(X_resampled3, y_resampled3, X_test3, y_test3, LogisticRegression(), tuned_params, scores, folds) lg3_time = ((586.72/ (2*7*2*5))) "Tiempo de ejecución promedio: " + str(lg3_time) +" segundos." ###Output _____no_output_____ ###Markdown Random Forest ###Code tuned_params = { "n_estimators" : [10,30, 50], "max_features" : ["auto", "sqrt", "log2"], "min_samples_split" : [2,4,8,10,12,20], "bootstrap" : [True, False] } scores = [kappa_scorer,'roc_auc'] folds = 5 rf3 = GridSearchCVwithReport(X_resampled3, y_resampled3, X_test3, y_test3, RandomForestClassifier(), tuned_params, scores, folds) rf3_time = ((1923.14/ (3*3*6*2*5*2))) "Tiempo de ejecución promedio: " + str(rf3_time) +" segundos." ###Output _____no_output_____ ###Markdown Red Neuronal Perceptrón Multicapa ###Code tuned_params={ 'learning_rate': ["invscaling","adaptive", "constant"], 'hidden_layer_sizes': [(10),(15),(20),(10,10),(15,15),(15,10),(20,20)], 'alpha': [1, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001], 'activation': ["identity","tanh","relu", "logistic"], 'solver': ['lbfgs','adam','sgd'] } scores = [kappa_scorer,'roc_auc'] folds = 5 mlp3 = GridSearchCVwithReport(X_resampled3, y_resampled3, X_test3, y_test3, MLPClassifier(), tuned_params, scores, folds) mlp3_time = ((98786.25/ (3*7*7*4*3*2*5))) "Tiempo de ejecución promedio: " + str(mlp3_time) +" segundos." fig = pyplot.figure(figsize=(20, 20)) pd_times = pd.DataFrame({'times':[knn3_time, lg3_time, rf3_time, mlp3_time], 'labels': ['KNN', 'LR', 'RF', 'MLP'], }) ax1 = pyplot.subplot(2, 3, 1) ax1 = sns.barplot(y = 'times', x='labels', data = pd_times, ax = ax1) ax1.set_title("Segundos de ejecución promedio") ax1.set_xlabel("Método") ax1.set_ylabel("Segundos") pd_true_positives = pd.DataFrame({'true_positives':[21.9,66.3 , 35 , 58, 65], 'labels': ['KNN', 'LR', 'RF', 'MLP', 'Moro et al.'], }) ax2 = pyplot.subplot(2, 3, 2) sns.barplot(y = 'true_positives', x='labels', data = pd_true_positives, ax = ax2) ax2.set_title("Porcentaje de verdaderos positivos") ax2.set_xlabel("Método") ax2.set_ylabel("%") pd_kappa = pd.DataFrame({'kappa':[0.28, 0.36, 0.36, 0.31], 'labels': ['KNN', 'LR', 'RF', 'MLP'], }) ax3 = pyplot.subplot(2, 3, 3) sns.barplot(y = 'kappa', x='labels', data = pd_kappa, ax = ax3) ax3.set_title("Coeficiente kappa") ax3.set_xlabel("Método") ax3.set_ylabel("Kappa") pd_roc = pd.DataFrame({'roc':[0.6, 0.75, 0.66, 0.71], 'labels': ['KNN', 'LR', 'RF', 'MLP'], }) ax4 = pyplot.subplot(2, 3, 4) sns.barplot(y = 'roc', x='labels', data = pd_roc, ax = ax4) ax4.set_title("Área bajo la curva") ax4.set_xlabel("Método") ax4.set_ylabel("ROC") pd_tn = pd.DataFrame({'tn':[98.3, 83.4, 95.8, 84.2, 81], 'labels': ['KNN', 'LR', 'RF', 'MLP', 'Moro et al.'], }) ax5 = pyplot.subplot(2, 3, 5) sns.barplot(y = 'tn', x='labels', data = pd_tn, ax = ax5) ax5.set_title("Tasa de Verdaderos Negativos (TP)") ax5.set_xlabel("Método") ax5.set_ylabel("%") ###Output _____no_output_____
notebooks/grupo1/Aprendizaje supervisado.ipynb
###Markdown Procesamiento de los datos1. Levantamos el dataframe con los datos ya preparados ###Code import pandas as pd df = pd.read_parquet("/home/mpccolorado/movimientos_curados4.parquet") import warnings warnings.filterwarnings('ignore') pd.set_option('display.max_columns', None) # or 1000. pd.set_option('display.max_rows', None) # or 1000. pd.set_option('display.max_colwidth', None) # or 199. ###Output _____no_output_____ ###Markdown Transformamos la columna mes-añoHacemos un DictVectorizer de la columna 'mes-año' porque nos resulta importante dejar el mes en el estudio ###Code from sklearn import feature_extraction import numpy as np def get_dataframe_with_mes_año(dataframe): df_copy = dataframe.copy() feature_cols = ['mes-año'] features = list(df_copy[feature_cols].T.to_dict().values()) vectorizer = feature_extraction.DictVectorizer(sparse=False) feature_matrix = vectorizer.fit_transform(features) feature_names = vectorizer.get_feature_names() df_copy.drop('mes-año', axis=1, inplace=True) matriz_densa_completa = np.hstack([feature_matrix, df_copy.values]) return pd.DataFrame(data=matriz_densa_completa, columns=feature_names + df_copy.columns.values.tolist()) ###Output _____no_output_____ ###Markdown EscaladoAgrupamos las columnas relacionadas en distintos arrays: ###Code meses_features = [ 'mes-año=2020-07','mes-año=2020-08','mes-año=2020-09','mes-año=2020-10','mes-año=2020-11','mes-año=2020-12', 'mes-año=2021-01','mes-año=2021-02','mes-año=2021-03','mes-año=2021-04','mes-año=2021-05' ] edad_features = [ 'rango_edad=(17, 27]','rango_edad=(27, 37]','rango_edad=(37, 47]','rango_edad=(47, 57]','rango_edad=(57, 67]', 'rango_edad=(67, 77]','rango_edad=(77, 109]' ] estado_civil_features = [ 'estado_civil_descripcion=Casadoa','estado_civil_descripcion=Divorciadoa', 'estado_civil_descripcion=Separacion de hecho','estado_civil_descripcion=Sin Datos', 'estado_civil_descripcion=Solteroa','estado_civil_descripcion=Viudoa' ] sexo_features = [ 'sexo_descripcion=Hombre','sexo_descripcion=Mujer' ] provincia_features = [ 'provincia=BUENOS AIRES','provincia=CAPITAL FEDERAL','provincia=CATAMARCA','provincia=CHACO', 'provincia=CHUBUT','provincia=CORDOBA','provincia=CORRIENTES','provincia=ENTRE RIOS', 'provincia=FORMOSA','provincia=JUJUY','provincia=LA PAMPA','provincia=LA RIOJA', 'provincia=MENDOZA','provincia=MISIONES','provincia=NEUQUEN','provincia=RIO NEGRO', 'provincia=SALTA','provincia=SAN JUAN','provincia=SAN LUIS','provincia=SANTA CRUZ', 'provincia=SANTA FE','provincia=SGO. DEL ESTERO','provincia=TIERRA DEL FUEGO','provincia=TUCUMAN' ] antig_features = [ 'rango_antig=(-1, 4]','rango_antig=(14, 19]','rango_antig=(19, 24]','rango_antig=(24, 32]', 'rango_antig=(4, 9]','rango_antig=(9, 14]' ] cargo_features = [ 'cargo_cat=F','cargo_cat=I','cargo_cat=PEONEMBARCADOS','cargo_cat=PORTEROCONSERJ','cargo_cat=PROFESTECNICO', 'cargo_cat=RD','cargo_cat=RDO','cargo_cat=SD','cargo_cat=VENDEDORPROMOT' ] nivel_estudio_features = [ 'nivel_estudio_descripcion_histo=PRIMARIOS','nivel_estudio_descripcion_histo=SECUNDARIOS', 'nivel_estudio_descripcion_histo=TERCIARIOS','nivel_estudio_descripcion_histo=UNIVERSITARIOS' ] vivienda_features = [ 'rel_vivienda_descripcion_histo=Otros','rel_vivienda_descripcion_histo=Propia' ] producto_features = [ 'producto_naranja_movimiento=AV','producto_naranja_movimiento=AX','producto_naranja_movimiento=EX', 'producto_naranja_movimiento=MC','producto_naranja_movimiento=PC','producto_naranja_movimiento=PL', 'producto_naranja_movimiento=PN','producto_naranja_movimiento=PP','producto_naranja_movimiento=SM', 'producto_naranja_movimiento=TA','producto_naranja_movimiento=VI','producto_naranja_movimiento=ZE' ] tipo_producto_features = [ 'tipo_producto_tarjeta_movimiento=0','tipo_producto_tarjeta_movimiento=3','tipo_producto_tarjeta_movimiento=99' ] debito_features = [ 'marca_debito_automatico=0','marca_debito_automatico=1' ] cat_comercio_features = [ 'cat_comercio=0','cat_comercio=1','cat_comercio=2','cat_comercio=3','cat_comercio=4', 'cat_comercio=5','cat_comercio=6','cat_comercio=7','cat_comercio=8','cat_comercio=9' ] plan_features = [ 'plan_movimiento=1','plan_movimiento=10','plan_movimiento=11','plan_movimiento=12','plan_movimiento=2', 'plan_movimiento=3','plan_movimiento=4','plan_movimiento=5','plan_movimiento=6','plan_movimiento=8', 'plan_movimiento=9' ] target_feature = ['monto_normalizado'] ###Output _____no_output_____ ###Markdown Escalado 1Creamos distintos objetos para escalar los datos de acuerdo a su tipo y de acuerdo a su grupo ###Code from sklearn.compose import ColumnTransformer from sklearn.preprocessing import StandardScaler producto_scaler = StandardScaler() tipo_producto_scaler = StandardScaler() debito_scaler = StandardScaler() cat_comercio_scaler = StandardScaler() plan_scaler = StandardScaler() preprocessor1 = ColumnTransformer( transformers=[ ('meses', 'passthrough', meses_features), ('edad', 'passthrough', edad_features), ('estado_civil', 'passthrough', estado_civil_features), ('sexo', 'passthrough', sexo_features), ('provincia', 'passthrough', provincia_features), ('antig', 'passthrough', antig_features), ('cargo', 'passthrough', cargo_features), ('nivel_estudio', 'passthrough', nivel_estudio_features), ('vivienda', 'passthrough', vivienda_features), ('producto', producto_scaler, producto_features), ('tipo_producto', tipo_producto_scaler, tipo_producto_features), ('debito', debito_scaler, debito_features), ('cat_comercio', cat_comercio_scaler, cat_comercio_features), ('plan', plan_scaler, plan_features) ] ) ###Output _____no_output_____ ###Markdown Escalado 2Escalaremos todos los features numéricos usando el mismo escalador. ###Code from sklearn.compose import ColumnTransformer from sklearn.preprocessing import StandardScaler standard_scaler = StandardScaler() preprocessor2 = ColumnTransformer( transformers=[ ('meses', 'passthrough', meses_features), ('edad', 'passthrough', edad_features), ('estado_civil', 'passthrough', estado_civil_features), ('sexo', 'passthrough', sexo_features), ('provincia', 'passthrough', provincia_features), ('antig', 'passthrough', antig_features), ('cargo', 'passthrough', cargo_features), ('nivel_estudio', 'passthrough', nivel_estudio_features), ('vivienda', 'passthrough', vivienda_features), ('numeric_features', standard_scaler, producto_features + tipo_producto_features + debito_features + cat_comercio_features + plan_features) ] ) ###Output _____no_output_____ ###Markdown **Queda pendiente probar escalando el target** --- Regresión ###Code df_reg = df.copy() df_reg.drop(['dni'], axis=1, inplace=True) df_reg = get_dataframe_with_mes_año(df_reg) ###Output _____no_output_____ ###Markdown Funciones de error ###Code from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error def evaluate_errors(model, X_train, X_test, y_train, y_test, description): y_train_pred = model.predict(X_train) y_test_pred = model.predict(X_test) (train_error_MSE, test_error_MSE) = evaluate_MSE(y_train, y_train_pred, y_test, y_test_pred) (train_error_RMSE, test_error_RMSE) = evaluate_RMSE(y_train, y_train_pred, y_test, y_test_pred) (train_error_MAE, test_error_MAE) = evaluate_MAE(y_train, y_train_pred, y_test, y_test_pred) errors = pd.DataFrame(data=[], columns=['description', 'train_error_MAE', 'test_error_MAE']) errors = errors.append( { 'description': description, 'train_error_MSE': train_error_MSE, 'test_error_MSE': test_error_MSE, 'train_error_RMSE': train_error_RMSE, 'test_error_RMSE': test_error_RMSE, 'train_error_MAE': train_error_MAE, 'test_error_MAE': test_error_MAE }, ignore_index=True) return errors def evaluate_MSE(y_train, y_train_pred, y_test, y_test_pred): train_error = mean_squared_error(y_train, y_train_pred) test_error = mean_squared_error(y_test, y_test_pred) #print(f'Train error MSE: {train_error}, Test error MSE: {test_error}') return (train_error, test_error) def evaluate_RMSE(y_train, y_train_pred, y_test, y_test_pred): train_error = np.sqrt(mean_squared_error(y_train, y_train_pred)) test_error = np.sqrt(mean_squared_error(y_test, y_test_pred)) #print(f'Train error RMSE {train_error.round(3)}, Test error RMSE {test_error.round(3)}') return (train_error, test_error) def evaluate_MAE(y_train, y_train_pred, y_test, y_test_pred): train_error = mean_absolute_error(y_train, y_train_pred) test_error = mean_absolute_error(y_test, y_test_pred) #print(f'Train error MAE {train_error.round(3)}, Test error MAE {test_error.round(3)}') return (train_error, test_error) ###Output _____no_output_____ ###Markdown División de los datos ###Code from sklearn.model_selection import train_test_split # División entre instancias y etiquetas X, y = df_reg.drop('monto_normalizado', axis=1), df_reg.monto_normalizado # División entre entrenamiento y evaluación X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) ###Output _____no_output_____ ###Markdown Función para simplificar el procesamientoPara poder evaluar los distintos algoritmos, primero sin ningún tipo de escalado y luego con los preprocesadores de escalado 1 y 2 ###Code from sklearn.pipeline import Pipeline def execute_models(regressor, grid_search=None, feature_selection=None): (errors1, model1) = execute_pipe(regressor, grid_search, None, feature_selection, 'no preprocessor') (errors2, model2) = execute_pipe(regressor, grid_search, preprocessor1, feature_selection, 'preprocessor 1') (errors3, model3) = execute_pipe(regressor, grid_search, preprocessor2, feature_selection, 'preprocessor 2') return ( errors1.append(errors2).append(errors3), model1, model2, model3 ) def execute_pipe(regressor, grid_search, preprocessor, feature_selection, description): pipes = [] if preprocessor: pipes.append(('preprocessor', preprocessor)) if feature_selection: pipes.append(('feature_selection', feature_selection)) pipes.append(('regressor', regressor)) pipe = Pipeline(pipes) if grid_search: model = grid_search(pipe) else: model = pipe model.fit(X_train, y_train) errors = evaluate_errors(model, X_train, X_test, y_train, y_test, description) return (errors, model) ###Output _____no_output_____ ###Markdown ------ Linear SVR Default ###Code from sklearn.svm import LinearSVR from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split (errors_svr, svr1, svr2, svr3) = execute_models( regressor = LinearSVR(random_state=0, tol=1e-5) ) errors_svr ###Output _____no_output_____ ###Markdown Grid Search ###Code from sklearn.model_selection import RandomizedSearchCV param_grid = { 'regressor__epsilon': [0.1, 0.01, 0.0001,0.001], 'regressor__tol': [1e-3, 1e-4, 1e-5, 1e-6], 'regressor__C': [1, 2, 0.01, 0.001, 0.0001], 'regressor__loss': ['epsilon_insensitive', 'squared_epsilon_insensitive'] } (errors_grid_svr, svr_grid_1, svr_grid_2, svr_grid_3) = execute_models( regressor = LinearSVR(random_state=0), grid_search = lambda pipe: RandomizedSearchCV(pipe, param_grid, scoring='neg_mean_squared_error',cv=5, n_iter=40) ) errors_grid_svr ###Output _____no_output_____ ###Markdown ConclusionesEl mejor resultado lo obtuvimos con el modelo **"Linear SVR - Grid Search"** (svr_grid_1) ###Code svr_grid_1.best_params_ svr_model = svr_grid_1 ###Output _____no_output_____ ###Markdown ------ SGDRegressor Default ###Code from sklearn.linear_model import SGDRegressor from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler (errors_sgd, sgd1, sgd2, sgd3) = execute_models( regressor = SGDRegressor(random_state=0, max_iter=1000, tol=1e-3) ) errors_sgd ###Output _____no_output_____ ###Markdown Grid Search ###Code param_grid = { 'regressor__loss': ['squared_error', 'huber', 'epsilon_insensitive', 'squared_epsilon_insensitive'], 'regressor__penalty': ['l2', 'l1', 'elasticnet'], 'regressor__alpha': [0.1, 0.01, 0.001, 0.0001], 'regressor__tol': [1e-3, 1e-4, 1e-5, 1e-6], 'regressor__epsilon': [0.1, 0.01, 0.0001,0.001] } (errors_grid_sgd, sgd_grid_1, sgd_grid_2, sgd_grid_3) = execute_models( regressor = SGDRegressor(random_state=0, max_iter=1000, tol=1e-3), grid_search = lambda pipe: RandomizedSearchCV(pipe, param_grid, scoring='neg_mean_squared_error',cv=5, n_iter=40) ) errors_grid_sgd ###Output _____no_output_____ ###Markdown ConclusionesEl mejor resultado lo obtuvimos con el modelo **SGDRegressor - Grid Search** (sgd_grid_1) ###Code sgd_grid_1.best_params_ sgd_model = sgd_grid_1 ###Output _____no_output_____ ###Markdown --- KNeighborsRegressor Default ###Code from sklearn.neighbors import KNeighborsRegressor (errors_knn, knn1, knn2, knn3) = execute_models( regressor = KNeighborsRegressor(n_neighbors=2) ) errors_knn ###Output _____no_output_____ ###Markdown GridSearch ###Code param_grid = { 'regressor__n_neighbors': [4,5,6,7,8], 'regressor__weights': ['uniform', 'distance'], 'regressor__algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute'], 'regressor__p': [1,2] } (errors_grid_knn, knn_grid_1, knn_grid_2, knn_grid_3) = execute_models( regressor = KNeighborsRegressor(), grid_search = lambda pipe: RandomizedSearchCV(pipe, param_grid, scoring='neg_mean_squared_error',cv=5, n_iter=40) ) errors_grid_knn ###Output _____no_output_____ ###Markdown ConclusionesObtuvimos los mejores resultados con el modelo **KNeighborsRegressor - Grid Search - processor 1** (knn_grid_2) ###Code knn_model = knn_grid_2 ###Output _____no_output_____ ###Markdown --- GaussianProcessRegressor Default ###Code from sklearn.gaussian_process import GaussianProcessRegressor (errors_gpr, gpr1, gpr2, gpr3) = execute_models( regressor = GaussianProcessRegressor(random_state=0) ) errors_gpr ###Output _____no_output_____ ###Markdown Search Grid ###Code from sklearn.gaussian_process.kernels import ConstantKernel, RBF, RationalQuadratic, ExpSineSquared ker_rbf = ConstantKernel(1.0, constant_value_bounds="fixed") * RBF(1.0, length_scale_bounds="fixed") ker_rq = ConstantKernel(1.0, constant_value_bounds="fixed") * RationalQuadratic(alpha=0.1, length_scale=1) ker_expsine = ConstantKernel(1.0, constant_value_bounds="fixed") * ExpSineSquared(1.0, 5.0, periodicity_bounds=(1e-2, 1e1)) kernel_list = [ker_rbf, ker_rq, ker_expsine] param_grid = {"regressor__kernel": kernel_list, "regressor__alpha": [0.1]} (errors_grid_gpr, gpr_grid_1, gpr_grid_2, gpr_grid_3) = execute_models( regressor = GaussianProcessRegressor(random_state=0), grid_search = lambda pipe: RandomizedSearchCV(pipe, param_grid, scoring='neg_mean_squared_error',cv=5, n_iter=40) ) errors_grid_gpr ###Output _____no_output_____ ###Markdown ConclusionesObtuvimos los mejores resultados con el modelo **GaussianProcessRegressor - Grid Search - processor1** (gpr_grid_2) ###Code gpr_grid_2.best_params_ gpr_model = gpr_grid_2 ###Output _____no_output_____ ###Markdown --- XGBRegressor Default ###Code from xgboost import XGBRegressor from sklearn.feature_selection import SelectFromModel (errors_xgb, xgb1, xgb2, xgb3) = execute_models( regressor = XGBRegressor(random_state=0), feature_selection = SelectFromModel(LinearSVR(random_state=0)) ) errors_xgb ###Output _____no_output_____ ###Markdown Grid Search ###Code param_grid = {'regressor__n_estimators': [80, 90, 100, 110, 120, 130, 250], 'regressor__reg_alpha': [0, 0.1, 3, 5, 10, 15], 'regressor__booster' : ['gbtree', 'gblinear','dart']} (errors_grid_xgb, xgb_grid_1, xgb_grid_2, xgb_grid_3) = execute_models( regressor = XGBRegressor(random_state=0), feature_selection = SelectFromModel(LinearSVR(random_state=0)), grid_search = lambda pipe: RandomizedSearchCV(pipe, param_grid, scoring='neg_mean_squared_error',cv=5) ) errors_grid_xgb ###Output _____no_output_____ ###Markdown ConclusionesLos mejores resultados los obtuvimos con el modelo de **GridSearch que usa el preprocessor 1** (xgb_grid_2) ###Code xgb_grid_2.best_params_ xgb_model = xgb_grid_2 ###Output _____no_output_____ ###Markdown --- VotingRegressor Default ###Code from sklearn.linear_model import LinearRegression from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import VotingRegressor r1 = LinearRegression() r2 = RandomForestRegressor(n_estimators=10, random_state=1) er = VotingRegressor([('lr', r1), ('rf', r2)]) (errors_vot, vot1, vot2, vot3) = execute_models( regressor = er ) errors_vot ###Output _____no_output_____ ###Markdown Grid Search ###Code from sklearn.model_selection import GridSearchCV regressor = VotingRegressor([ ('svr_cv', svr_model.best_estimator_), ('sgd_cv', sgd_model.best_estimator_), ('knn_cv', knn_model.best_estimator_), ('gpr_cv', gpr_model.best_estimator_), ('xgb_cv', xgb_model.best_estimator_) ]) (errors_grid_vot, vot1, vot2, vot3) = execute_models( regressor = regressor, feature_selection = SelectFromModel(LinearSVR(random_state=0)), grid_search = lambda pipe: GridSearchCV(pipe, param_grid, scoring='neg_mean_squared_error',cv=5) ) errors_grid_vot ###Output _____no_output_____ ###Markdown Conclusiones Conclusiones de Regresión* El algoritmo que mejor resultado nos dió fue knn utilizando RandomizedSearchCV con un error MAE en el set de training de 2.4 y de 10198 para el set de test.* Quizás los resultados mejoren si en vez de utilizar rangos para la edad y para la antigüedad utilizáramos los datos como vienen.* Lo mismo podríamos hacer de utilizar el mes como un número en vez de hacer el OneHotEncoding para definir cada mes como columna, quizás al tener menos features los resultados mejoren.* Otra hipótesis es que el número de filas con respecto a la cantidad de features no es el adecuado, quizás necesitaríamos muchos más datos para conseguir resultados más satisfactorios. ###Code errors_grid_knn errors_gpr ###Output _____no_output_____ ###Markdown Clasificación Creamos una columna para identificar si el monto se ha incrementado un 10% con respecto al mes pasado ###Code df_clas = df.copy() df_clas.loc[0,'incremento_monto'] = 0 for i in range(1, len(df_clas)): dni_anterior = df_clas.loc[i-1, 'dni'] monto_mes_anterior = df_clas.loc[i-1, 'monto_normalizado'] dni_actual = df_clas.loc[i, 'dni'] monto_mes_actual = df_clas.loc[i, 'monto_normalizado'] if dni_anterior != dni_actual: df_clas.loc[i,'incremento_monto'] = 0 else: df_clas.loc[i,'incremento_monto'] = 1 if monto_mes_actual >= (monto_mes_anterior * 1.1) else 0 #Chequeo con exito df_clas[df_clas['dni']=='000f0b73ebfa002a79a0642b82e87919904'][['dni', 'mes-año', 'monto_normalizado', 'incremento_monto']] ###Output _____no_output_____ ###Markdown Eliminamos la columna dni: ###Code df_clas.drop(['dni'], axis=1, inplace=True) df_clas.head() ###Output _____no_output_____ ###Markdown Agregamos las columnas de mes-año: ###Code df_clas = get_dataframe_with_mes_año(df_clas) ###Output _____no_output_____ ###Markdown Separamos los sets de entrenamiento y validación: ###Code from sklearn.model_selection import train_test_split # División entre instancias y etiquetas X, y = df_clas.drop('incremento_monto', axis=1), df_clas.incremento_monto # División entre entrenamiento y evaluación X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) ###Output _____no_output_____ ###Markdown RandomForestClassifier ###Code from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier(max_depth=2, random_state=0) clf.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Métricas y Matríz de Confusión ###Code from sklearn.metrics import classification_report, confusion_matrix, plot_confusion_matrix y_train_pred = clf.predict(X_train) print(classification_report(y_train, y_train_pred)) y_test_pred = clf.predict(X_test) print(classification_report(y_test, y_test_pred)) import matplotlib.pyplot as plt plt.figure() plot_confusion_matrix(estimator= clf, X=X_train, y_true=y_train, normalize='true', cmap='Blues').ax_ \ .set_title('Random Forest') plt.figure() plot_confusion_matrix(estimator= clf, X=X_test, y_true=y_test, normalize='true', cmap='Blues').ax_ \ .set_title('Random Forest') ###Output _____no_output_____ ###Markdown XGBClassifier ###Code from xgboost import XGBClassifier clf = XGBClassifier(max_depth=2, random_state=0) model = Pipeline([ ('feature_selection', SelectFromModel(LinearSVR(random_state=0))), ('cla', clf) ]) model.fit(X_train, y_train) y_train_pred = model.predict(X_train) print(classification_report(y_train, y_train_pred)) y_test_pred = model.predict(X_test) print(classification_report(y_test, y_test_pred)) plt.figure() plot_confusion_matrix(estimator= model, X=X_train, y_true=y_train, normalize='true', cmap='Blues').ax_ \ .set_title('Random Forest') plt.figure() plot_confusion_matrix(estimator= model, X=X_test, y_true=y_test, normalize='true', cmap='Blues').ax_ \ .set_title('Random Forest') ###Output _____no_output_____
02_analisis_y_curacion/notebooks/.ipynb_checkpoints/1. Importando los datos-checkpoint.ipynb
###Markdown 1.1. Verificar que no hay problemas en la importación ###Code # modules we'll use import pandas as pd ###Output _____no_output_____ ###Markdown Veamos de importar datos de proyectos de Kickstarter la plataforma de Crowdsourcing ###Code kickstarter_2016 = pd.read_csv("../input/kickstarter-projects/ks-projects-201612.csv") ###Output _____no_output_____ ###Markdown Por defecto Pandas falla si hay errores para leer datos https://pandas.pydata.org/pandas-docs/stable/io.htmlerror-handling ###Code kickstarter_2018 = pd.read_csv("../input/kickstarter-projects/ks-projects-201801.csv") ###Output _____no_output_____ ###Markdown Veamos los datos cargados en el dataframe ###Code kickstarter_2018 ###Output _____no_output_____ ###Markdown Por defecto solo vemos los valores al comienzo o al final del archivo.Tomemos una muestra al azar para ver valores más dispersos ###Code # set seed for reproducibility import numpy as np np.random.seed(0) kickstarter_2018.sample(5) ###Output _____no_output_____ ###Markdown No se observa a simple vista ningún problema. Veamos la descripción del dataset si se corresponde con lo levantado https://www.kaggle.com/kemical/kickstarter-projects/data ###Code pd.DataFrame([["ID", "No description provided", "Numeric"], ["name", "No description provided", "String"], ["category", "No description provided", "String"], ["main_category", "No description provided", "String"], ["currency", "No description provided", "String"], ["deadline", "No description provided", "DateTime"], ["goal", "Goal amount in project currency", "Numeric"], ["launched", "No description provided", "DateTime"], ["pledged", "Pledged amount in the project currency", "Numeric"], ["state", "No description provided", "String"], ["backers", "No description provided", "Numeric"], ["country", "No description provided", "String"], ["usd pledged", "Pledged amount in USD (conversion made by KS)", "Numeric"], ["usd_pledged_real", "Pledged amount in USD (conversion made by fixer.io api)", "Numeric"], ["usd_goal_real", "Goal amount in USD", "Numeric"]], columns=["Field name","Field description", "Type"]) kickstarter_2018.dtypes ###Output _____no_output_____ ###Markdown Los campos object generalmente son String, entonces parece que no reconoció como fechas en **deadline** y **launched** :( Veamos los datos un resumen de los datos ###Code kickstarter_2018.describe() ###Output _____no_output_____ ###Markdown Por defecto se ven los datos numéricos, veamos el resto. ###Code kickstarter_2018.describe(include=['object']) ###Output _____no_output_____ ###Markdown Operemos un cacho sobre los datos de lanzamiento ###Code kickstarter_2018['launched'].min() ###Output _____no_output_____ ###Markdown Parece funcionar, pero ahora calculemos el rango de fechas de los proyectos ###Code kickstarter_2018['launched'].max() - kickstarter_2018['launched'].min() ###Output _____no_output_____ ###Markdown Indiquemos que columnas son fechas como indica la [documentación](https://pandas.pydata.org/pandas-docs/stable/io.htmldatetime-handling) ###Code kickstarter_2018 = pd.read_csv("../input/kickstarter-projects/ks-projects-201801.csv", parse_dates=["deadline","launched"]) kickstarter_2018.dtypes ###Output _____no_output_____ ###Markdown Ahora vemos que esas columnas fueron reconocidas como fechasVeamos la misma muestra de nuevo ###Code kickstarter_2018.sample(5) ###Output _____no_output_____ ###Markdown Y veamos el resumen de los datos ###Code kickstarter_2018.describe(include='all') ###Output _____no_output_____ ###Markdown Podemos ver que tenemos primero y último en el resumen de las columnas de fechas.Ahora deberíamos poder calcular el rango de fechas de lanzamietos ###Code kickstarter_2018['launched'].max() - kickstarter_2018['launched'].min() ###Output _____no_output_____ ###Markdown 1.2. Asegurar de tener ids/claves únicas Chequear que no hay datos duplicados ###Code kickstarter_2018.shape kickstarter_2018 = pd.read_csv("../input/kickstarter-projects/ks-projects-201801.csv", parse_dates=["deadline","launched"], index_col=['ID']) kickstarter_2018 kickstarter_2018.shape kickstarter_2018[kickstarter_2018.duplicated()] csv='1,2\n3,3\n1,3' print(csv) from io import StringIO df = pd.read_csv(StringIO(csv), names=['id','value'], index_col='id') df df[df.duplicated()] df[df.index.duplicated( keep=False)] kickstarter_2018[kickstarter_2018.index.duplicated()] ###Output _____no_output_____ ###Markdown 1.3. Despersonalizar datos y guardarlos en un nuevo archivo Estrategias de Google API https://cloud.google.com/dlp/docs/deidentify-sensitive-data:* **Replacement**: Replaces each input value with a given value.* **Redaction**: Redacts a value by removing it.* **Mask with character**: Masks a string either fully or partially by replacing a given number of characters with a specified fixed character.* **Pseudonymization by replacing input value with cryptographic hash**: Replaces input values with a 32-byte hexadecimal string generated using a given data encryption key.* **Obfuscation of dates**: Shifts dates by a random number of days, with the option to be consistent for the same context.* **Pseudonymization by replacing with cryptographic format preserving token**: Replaces an input value with a “token,” or surrogate value, of the same length using format-preserving encryption (FPE) with the FFX mode of operation.* **Bucket values based on fixed size ranges**: Masks input values by replacing them with “buckets,” or ranges within which the input value falls.* **Bucket values based on custom size ranges**: Buckets input values based on user-configurable ranges and replacement values.* **Replace with infoType**: Replaces an input value with the name of its infoType.* **Extract time data**: Extracts or preserves a portion of Date, Timestamp, and TimeOfDay values. ###Code from hashlib import md5 kickstarter_2018['name'].apply(md5) def hashit(val): return md5(val.encode('utf-8')) kickstarter_2018['name'].apply(hashit) def hashit(val): try: return md5(val.encode('utf-8')) except Exception as e: print(val, type(val)) raise(e) kickstarter_2018['name'].apply(hashit) def hashit(val): if isinstance(val, float): return str(val) return md5(val.encode('utf-8')).hexdigest() kickstarter_2018['name'].apply(hashit) ###Output _____no_output_____ ###Markdown 1.4. Nunca modificar los datos crudos u originales ###Code kickstarter_2018.to_csv("../input/kickstarter-projects/ks-projects-201801-for-pandas.csv") ###Output _____no_output_____
ARMA MODEL/Time series bit coin.ipynb
###Markdown Calculate what the highest and lowest opening prices were for the stock in this period. ###Code p = dict['dataset']['data'] z= [x[1] for x in p] res=[] for val in z: if val!= None: res.append(val) print("The maximum opening value in 2016 & 2020 was " + str(max(res))) print("The minimum opening value in 2016 & 2020 was " + str(min(res))) #load python packages import os import pandas as pd import datetime import seaborn as sns import matplotlib.pyplot as plt import numpy as np %matplotlib inline import pandas as pd import numpy as np import itertools from statsmodels.tsa.stattools import adfuller from statsmodels.graphics.tsaplots import plot_acf, plot_pacf from statsmodels.tsa.arima_model import ARMA import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler from datetime import datetime, timedelta from tqdm import tqdm_notebook as tqdm plt.style.use('bmh') url = 'https://www.quandl.com/api/v3/datasets/BCHAIN/MKPRU.csv?api_key=Lq43ztbiWJ73CJUDPiye&start_date=2016-01-01&end_date=2020-4-29' df= pd.read_csv( url ,index_col = None) df.head() df.tail() #Cleaning data df.columns= ['DATE' ,'PRICE'] df.head() #Covert into Datatime df['DATE'] = pd.to_datetime(df['DATE']) df.head() df.set_index('DATE',inplace =True) df.head() df.describe() ###Output _____no_output_____ ###Markdown Visualize the Data ###Code import statsmodels.api as sm from statsmodels.tsa.stattools import acf from statsmodels.tsa.stattools import pacf from statsmodels.tsa.seasonal import seasonal_decompose df.plot(figsize=(17,8), title='Closing Prices') plt.xlabel('year') plt.ylabel("Price in USD") plt.show() decomposition = seasonal_decompose(df.PRICE, model='additive',period = 120) fig = plt.figure() fig = decomposition.plot() fig.set_size_inches(15, 8) print(decomposition.trend) print(decomposition.seasonal) print(decomposition.resid) ### Testing For Stationarity from statsmodels.tsa.stattools import adfuller test_result=adfuller(df['PRICE']) #Ho: It is non stationary #H1: It is stationary def adfuller_test(PRICE): result=adfuller(PRICE) labels = ['ADF Test Statistic','p-value','#Lags Used','Number of Observations Used'] for value,label in zip(result,labels): print(label+' : '+str(value) ) if result[1] <= 0.05: print("strong evidence against the null hypothesis(Ho), reject the null hypothesis. Data has no unit root and is stationary") else: print("weak evidence against null hypothesis, time series has a unit root, indicating it is non-stationary ") adfuller_test(df['PRICE']) ###Output ADF Test Statistic : -1.6304421695829747 p-value : 0.4672592724496129 #Lags Used : 24 Number of Observations Used : 1556 weak evidence against null hypothesis, time series has a unit root, indicating it is non-stationary ###Markdown Differencing ###Code df['Price Difference'] = df['PRICE'] - df['PRICE'].shift(1) df['PRICE'].shift(1) df.head() ## Again test dickey fuller test adfuller_test(df['Price Difference'].dropna()) df['Price Difference'].plot(figsize=(16,4), title="Daily Changes in Closing Price") plt.ylabel("Change in USD") plt.show() fig = plt.figure(figsize=(12,8)) ax1 = fig.add_subplot(211) fig = sm.graphics.tsa.plot_acf(df['Price Difference'].iloc[13:], lags=40, ax=ax1) ax2 = fig.add_subplot(212) fig = sm.graphics.tsa.plot_pacf(df['Price Difference'].iloc[13:], lags=40, ax=ax2) ###Output _____no_output_____ ###Markdown Auto Regressive Model¶ ###Code from pandas.tools.plotting import autocorrelation_plot autocorrelation_plot(df['PRICE']) plt.show() ###Output _____no_output_____
PyTorch Exercises FASHION-MNIST/.ipynb_checkpoints/Part 2 - Neural Networks in PyTorch (Solution)-checkpoint.ipynb
###Markdown Neural networks with PyTorchDeep learning networks tend to be massive with dozens or hundreds of layers, that's where the term "deep" comes from. You can build one of these deep networks using only weight matrices as we did in the previous notebook, but in general it's very cumbersome and difficult to implement. PyTorch has a nice module `nn` that provides a nice way to efficiently build large neural networks. ###Code # Import necessary packages %matplotlib inline %config InlineBackend.figure_format = 'retina' import numpy as np import torch import helper import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Now we're going to build a larger network that can solve a (formerly) difficult problem, identifying text in an image. Here we'll use the MNIST dataset which consists of greyscale handwritten digits. Each image is 28x28 pixels, you can see a sample belowOur goal is to build a neural network that can take one of these images and predict the digit in the image.First up, we need to get our dataset. This is provided through the `torchvision` package. The code below will download the MNIST dataset, then create training and test datasets for us. Don't worry too much about the details here, you'll learn more about this later. ###Code ### Run this cell from torchvision import datasets, transforms # Define a transform to normalize the data transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)), ]) # Download and load the training data trainset = datasets.MNIST('~/.pytorch/MNIST_data/', download=True, train=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True) ###Output _____no_output_____ ###Markdown We have the training data loaded into `trainloader` and we make that an iterator with `iter(trainloader)`. Later, we'll use this to loop through the dataset for training, like```pythonfor image, label in trainloader: do things with images and labels```You'll notice I created the `trainloader` with a batch size of 64, and `shuffle=True`. The batch size is the number of images we get in one iteration from the data loader and pass through our network, often called a *batch*. And `shuffle=True` tells it to shuffle the dataset every time we start going through the data loader again. But here I'm just grabbing the first batch so we can check out the data. We can see below that `images` is just a tensor with size `(64, 1, 28, 28)`. So, 64 images per batch, 1 color channel, and 28x28 images. ###Code dataiter = iter(trainloader) images, labels = dataiter.next() print(type(images)) print(images.shape) print(labels.shape) ###Output <class 'torch.Tensor'> torch.Size([64, 1, 28, 28]) torch.Size([64]) ###Markdown This is what one of the images looks like. ###Code plt.imshow(images[1].numpy().squeeze(), cmap='Greys_r'); ###Output _____no_output_____ ###Markdown First, let's try to build a simple network for this dataset using weight matrices and matrix multiplications. Then, we'll see how to do it using PyTorch's `nn` module which provides a much more convenient and powerful method for defining network architectures.The networks you've seen so far are called *fully-connected* or *dense* networks. Each unit in one layer is connected to each unit in the next layer. In fully-connected networks, the input to each layer must be a one-dimensional vector (which can be stacked into a 2D tensor as a batch of multiple examples). However, our images are 28x28 2D tensors, so we need to convert them into 1D vectors. Thinking about sizes, we need to convert the batch of images with shape `(64, 1, 28, 28)` to a have a shape of `(64, 784)`, 784 is 28 times 28. This is typically called *flattening*, we flattened the 2D images into 1D vectors.Previously you built a network with one output unit. Here we need 10 output units, one for each digit. We want our network to predict the digit shown in an image, so what we'll do is calculate probabilities that the image is of any one digit or class. This ends up being a discrete probability distribution over the classes (digits) that tells us the most likely class for the image. That means we need 10 output units for the 10 classes (digits). We'll see how to convert the network output into a probability distribution next.> **Exercise:** Flatten the batch of images `images`. Then build a multi-layer network with 784 input units, 256 hidden units, and 10 output units using random tensors for the weights and biases. For now, use a sigmoid activation for the hidden layer. Leave the output layer without an activation, we'll add one that gives us a probability distribution next. ###Code ## Solution def activation(x): return 1/(1+torch.exp(-x)) # Flatten the input images inputs = images.view(images.shape[0], -1) # Create parameters w1 = torch.randn(784, 256) b1 = torch.randn(256) w2 = torch.randn(256, 10) b2 = torch.randn(10) h = activation(torch.mm(inputs, w1) + b1) out = torch.mm(h, w2) + b2 ###Output _____no_output_____ ###Markdown Now we have 10 outputs for our network. We want to pass in an image to our network and get out a probability distribution over the classes that tells us the likely class(es) the image belongs to. Something that looks like this:Here we see that the probability for each class is roughly the same. This is representing an untrained network, it hasn't seen any data yet so it just returns a uniform distribution with equal probabilities for each class.To calculate this probability distribution, we often use the [**softmax** function](https://en.wikipedia.org/wiki/Softmax_function). Mathematically this looks like$$\Large \sigma(x_i) = \cfrac{e^{x_i}}{\sum_k^K{e^{x_k}}}$$What this does is squish each input $x_i$ between 0 and 1 and normalizes the values to give you a proper probability distribution where the probabilites sum up to one.> **Exercise:** Implement a function `softmax` that performs the softmax calculation and returns probability distributions for each example in the batch. Note that you'll need to pay attention to the shapes when doing this. If you have a tensor `a` with shape `(64, 10)` and a tensor `b` with shape `(64,)`, doing `a/b` will give you an error because PyTorch will try to do the division across the columns (called broadcasting) but you'll get a size mismatch. The way to think about this is for each of the 64 examples, you only want to divide by one value, the sum in the denominator. So you need `b` to have a shape of `(64, 1)`. This way PyTorch will divide the 10 values in each row of `a` by the one value in each row of `b`. Pay attention to how you take the sum as well. You'll need to define the `dim` keyword in `torch.sum`. Setting `dim=0` takes the sum across the rows while `dim=1` takes the sum across the columns. ###Code ## Solution def softmax(x): return torch.exp(x)/torch.sum(torch.exp(x), dim=1).view(-1, 1) probabilities = softmax(out) # Does it have the right shape? Should be (64, 10) print(probabilities.shape) # Does it sum to 1? print(probabilities.sum(dim=1)) ###Output torch.Size([64, 10]) tensor([ 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000]) ###Markdown Building networks with PyTorchPyTorch provides a module `nn` that makes building networks much simpler. Here I'll show you how to build the same one as above with 784 inputs, 256 hidden units, 10 output units and a softmax output. ###Code from torch import nn class Network(nn.Module): def __init__(self): super().__init__() # Inputs to hidden layer linear transformation self.hidden = nn.Linear(784, 256) # Output layer, 10 units - one for each digit self.output = nn.Linear(256, 10) # Define sigmoid activation and softmax output self.sigmoid = nn.Sigmoid() self.softmax = nn.Softmax(dim=1) def forward(self, x): # Pass the input tensor through each of our operations x = self.hidden(x) x = self.sigmoid(x) x = self.output(x) x = self.softmax(x) return x ###Output _____no_output_____ ###Markdown Let's go through this bit by bit.```pythonclass Network(nn.Module):```Here we're inheriting from `nn.Module`. Combined with `super().__init__()` this creates a class that tracks the architecture and provides a lot of useful methods and attributes. It is mandatory to inherit from `nn.Module` when you're creating a class for your network. The name of the class itself can be anything.```pythonself.hidden = nn.Linear(784, 256)```This line creates a module for a linear transformation, $x\mathbf{W} + b$, with 784 inputs and 256 outputs and assigns it to `self.hidden`. The module automatically creates the weight and bias tensors which we'll use in the `forward` method. You can access the weight and bias tensors once the network (`net`) is created with `net.hidden.weight` and `net.hidden.bias`.```pythonself.output = nn.Linear(256, 10)```Similarly, this creates another linear transformation with 256 inputs and 10 outputs.```pythonself.sigmoid = nn.Sigmoid()self.softmax = nn.Softmax(dim=1)```Here I defined operations for the sigmoid activation and softmax output. Setting `dim=1` in `nn.Softmax(dim=1)` calculates softmax across the columns.```pythondef forward(self, x):```PyTorch networks created with `nn.Module` must have a `forward` method defined. It takes in a tensor `x` and passes it through the operations you defined in the `__init__` method.```pythonx = self.hidden(x)x = self.sigmoid(x)x = self.output(x)x = self.softmax(x)```Here the input tensor `x` is passed through each operation a reassigned to `x`. We can see that the input tensor goes through the hidden layer, then a sigmoid function, then the output layer, and finally the softmax function. It doesn't matter what you name the variables here, as long as the inputs and outputs of the operations match the network architecture you want to build. The order in which you define things in the `__init__` method doesn't matter, but you'll need to sequence the operations correctly in the `forward` method.Now we can create a `Network` object. ###Code # Create the network and look at it's text representation model = Network() model ###Output _____no_output_____ ###Markdown You can define the network somewhat more concisely and clearly using the `torch.nn.functional` module. This is the most common way you'll see networks defined as many operations are simple element-wise functions. We normally import this module as `F`, `import torch.nn.functional as F`. ###Code import torch.nn.functional as F class Network(nn.Module): def __init__(self): super().__init__() # Inputs to hidden layer linear transformation self.hidden = nn.Linear(784, 256) # Output layer, 10 units - one for each digit self.output = nn.Linear(256, 10) def forward(self, x): # Hidden layer with sigmoid activation x = F.sigmoid(self.hidden(x)) # Output layer with softmax activation x = F.softmax(self.output(x), dim=1) return x ###Output _____no_output_____ ###Markdown Activation functionsSo far we've only been looking at the softmax activation, but in general any function can be used as an activation function. The only requirement is that for a network to approximate a non-linear function, the activation functions must be non-linear. Here are a few more examples of common activation functions: Tanh (hyperbolic tangent), and ReLU (rectified linear unit).In practice, the ReLU function is used almost exclusively as the activation function for hidden layers. Your Turn to Build a Network> **Exercise:** Create a network with 784 input units, a hidden layer with 128 units and a ReLU activation, then a hidden layer with 64 units and a ReLU activation, and finally an output layer with a softmax activation as shown above. You can use a ReLU activation with the `nn.ReLU` module or `F.relu` function. ###Code ## Solution class Network(nn.Module): def __init__(self): super().__init__() # Defining the layers, 128, 64, 10 units each self.fc1 = nn.Linear(784, 128) self.fc2 = nn.Linear(128, 64) # Output layer, 10 units - one for each digit self.fc3 = nn.Linear(64, 10) def forward(self, x): ''' Forward pass through the network, returns the output logits ''' x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) x = F.softmax(x, dim=1) return x model = Network() model ###Output _____no_output_____ ###Markdown Initializing weights and biasesThe weights and such are automatically initialized for you, but it's possible to customize how they are initialized. The weights and biases are tensors attached to the layer you defined, you can get them with `model.fc1.weight` for instance. ###Code print(model.fc1.weight) print(model.fc1.bias) ###Output Parameter containing: tensor([[-2.3278e-02, -1.2170e-03, -1.1882e-02, ..., 3.3567e-02, 4.4827e-03, 1.4840e-02], [ 4.8464e-03, 1.9844e-02, 3.9791e-03, ..., -2.6048e-02, -3.5558e-02, -2.2386e-02], [-1.9664e-02, 8.1722e-03, 2.6729e-02, ..., -1.5122e-02, 2.7632e-02, -1.9567e-02], ..., [-3.3571e-02, -2.9686e-02, -2.1387e-02, ..., 3.0770e-02, 1.0800e-02, -6.5941e-03], [ 2.9749e-02, 1.2849e-02, 2.7320e-02, ..., -1.9899e-02, 2.7131e-02, 2.2082e-02], [ 1.3992e-02, -2.1520e-02, 3.1907e-02, ..., 2.2435e-02, 1.1370e-02, 2.1568e-02]]) Parameter containing: tensor(1.00000e-02 * [-1.3222, 2.4094, -2.1571, 3.2237, 2.5302, -1.1515, 2.6382, -2.3426, -3.5689, -1.0724, -2.8842, -2.9667, -0.5022, 1.1381, 1.2849, 3.0731, -2.0207, -2.3282, 0.3168, -2.8098, -1.0740, -1.8273, 1.8692, 2.9404, 0.1783, 0.9391, -0.7085, -1.2522, -2.7769, 0.0916, -1.4283, -0.3267, -1.6876, -1.8580, -2.8724, -3.5512, 3.2155, 1.5532, 0.8836, -1.2911, 1.5735, -3.0478, -1.3089, -2.2117, 1.5162, -0.8055, -1.3307, -2.4267, -1.2665, 0.8666, -2.2325, -0.4797, -0.5448, -0.6612, -0.6022, 2.6399, 1.4673, -1.5417, -2.9492, -2.7507, 0.6157, -0.0681, -0.8171, -0.3554, -0.8225, 3.3906, 3.3509, -1.4484, 3.5124, -2.6519, 0.9721, -2.5068, -3.4962, 3.4743, 1.1525, -2.7555, -3.1673, 2.2906, 2.5914, 1.5992, -1.2859, -0.5682, 2.1488, -2.0631, 2.6281, -2.4639, 2.2622, 2.3632, -0.1979, 0.7160, 1.7594, 0.0761, -2.8886, -3.5467, 2.7691, 0.8280, -2.2398, -1.4602, -1.3475, -1.4738, 0.6338, 3.2811, -3.0628, 2.7044, 1.2775, 2.8856, -3.3938, 2.7056, 0.5826, -0.6286, 1.2381, 0.7316, -2.4725, -1.2958, -3.1543, -0.8584, 0.5517, 2.8176, 0.0947, -1.6849, -1.4968, 3.1039, 1.7680, 1.1803, -1.4402, 2.5710, -3.3057, 1.9027]) ###Markdown For custom initialization, we want to modify these tensors in place. These are actually autograd *Variables*, so we need to get back the actual tensors with `model.fc1.weight.data`. Once we have the tensors, we can fill them with zeros (for biases) or random normal values. ###Code # Set biases to all zeros model.fc1.bias.data.fill_(0) # sample from random normal with standard dev = 0.01 model.fc1.weight.data.normal_(std=0.01) ###Output _____no_output_____ ###Markdown Forward passNow that we have a network, let's see what happens when we pass in an image. ###Code # Grab some data dataiter = iter(trainloader) images, labels = dataiter.next() # Resize images into a 1D vector, new shape is (batch size, color channels, image pixels) images.resize_(64, 1, 784) # or images.resize_(images.shape[0], 1, 784) to automatically get batch size # Forward pass through the network img_idx = 0 ps = model.forward(images[img_idx,:]) img = images[img_idx] helper.view_classify(img.view(1, 28, 28), ps) ###Output _____no_output_____ ###Markdown As you can see above, our network has basically no idea what this digit is. It's because we haven't trained it yet, all the weights are random! Using `nn.Sequential`PyTorch provides a convenient way to build networks like this where a tensor is passed sequentially through operations, `nn.Sequential` ([documentation](https://pytorch.org/docs/master/nn.htmltorch.nn.Sequential)). Using this to build the equivalent network: ###Code # Hyperparameters for our network input_size = 784 hidden_sizes = [128, 64] output_size = 10 # Build a feed-forward network model = nn.Sequential(nn.Linear(input_size, hidden_sizes[0]), nn.ReLU(), nn.Linear(hidden_sizes[0], hidden_sizes[1]), nn.ReLU(), nn.Linear(hidden_sizes[1], output_size), nn.Softmax(dim=1)) print(model) # Forward pass through the network and display output images, labels = next(iter(trainloader)) images.resize_(images.shape[0], 1, 784) ps = model.forward(images[0,:]) helper.view_classify(images[0].view(1, 28, 28), ps) ###Output Sequential( (0): Linear(in_features=784, out_features=128, bias=True) (1): ReLU() (2): Linear(in_features=128, out_features=64, bias=True) (3): ReLU() (4): Linear(in_features=64, out_features=10, bias=True) (5): Softmax() ) ###Markdown The operations are availble by passing in the appropriate index. For example, if you want to get first Linear operation and look at the weights, you'd use `model[0]`. ###Code print(model[0]) model[0].weight ###Output Linear(in_features=784, out_features=128, bias=True) ###Markdown You can also pass in an `OrderedDict` to name the individual layers and operations, instead of using incremental integers. Note that dictionary keys must be unique, so _each operation must have a different name_. ###Code from collections import OrderedDict model = nn.Sequential(OrderedDict([ ('fc1', nn.Linear(input_size, hidden_sizes[0])), ('relu1', nn.ReLU()), ('fc2', nn.Linear(hidden_sizes[0], hidden_sizes[1])), ('relu2', nn.ReLU()), ('output', nn.Linear(hidden_sizes[1], output_size)), ('softmax', nn.Softmax(dim=1))])) model ###Output _____no_output_____ ###Markdown Now you can access layers either by integer or the name ###Code print(model[0]) print(model.fc1) ###Output Linear(in_features=784, out_features=128, bias=True) Linear(in_features=784, out_features=128, bias=True)
notebooks/model-with-prophet.ipynb
###Markdown GrammarSome definitions:- `time series` : self-explanatory, i.e. the TimeSeries object- `horizon` : the duration to predict after the last value of the time series- `frequency`: the number of values per unit of time. Usually, the frequency is given in Pandas offset aliases (https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.htmloffset-aliases)``` horizon |-------------------------|- - - - - -| ||||||||||||| time series frequency``` --- Univariate PredictionTo create a univariate prediction, let's populate a time series with weather data. ###Code # Data Loading my_series = pd.read_csv("../data/bbdata-weather/4652.csv") my_series = pd.DataFrame(data=my_series["value"].values, index=pd.to_datetime(my_series["timestamp"]).values) my_series.index = my_series.index.round("S") # Create TimeSeries ts = ta.TimeSeries(my_series)["2018-01-01":"2018-06-01"] ts = ts.resample("min", method="pad").group_by("min") ts.plot() ## Model Creation m = ta.models.Prophet() ## Fit the univariate time series m.fit(ts) # Predict 5 days after the data's last time stamp Y_hat = m.predict('5 days') Y_hat.plot() ###Output _____no_output_____ ###Markdown Multivariate PredictionTo create a multivariate prediction, let's populate a time series dataset with a temperature and luminosity values. ###Code # Temperature ts_1 = pd.read_csv("../data/bbdata-weather/4652.csv") ts_1 = pd.DataFrame(data=ts_1["value"].values, index=pd.to_datetime(ts_1["timestamp"]).values) ts_1.index = ts_1.index.round("S") ts_1 = ta.TimeSeries(ts_1) # Luminosity ts_2 = pd.read_csv("../data/bbdata-weather/4914.csv") ts_2 = pd.DataFrame(data=ts_2["value"].values, index=pd.to_datetime(ts_2["timestamp"]).values) ts_2.index = ts_2.index.round("S") ts_2 = ta.TimeSeries(ts_2) # Create the TSD tsd = ta.TimeSeriesDataset([ts_1, ts_2]) ###Output _____no_output_____ ###Markdown Preprocess data so that it is clean and full ###Code tsd = tsd.resample("min", method="pad").group_by("min").regularize("][") ###Output _____no_output_____ ###Markdown Select a data subset ###Code tsd = tsd["2017-01":"2017-03"] ###Output _____no_output_____ ###Markdown Split in train/test set ###Code X_train, X_test = tsd.split_at("2017-02-28") ###Output _____no_output_____ ###Markdown Create and fit models ###Code m = ta.models.Prophet() m.fit(X_train, 0) ###Output _____no_output_____ ###Markdown Predict the values with the test set ###Code ts = m.predict(X_test) ###Output _____no_output_____ ###Markdown See the prediction ###Code ts.plot() ts["2017-03-01":"2017-03-04"].plot() ts["2017-03-01 06:00":"2017-03-01 20:00"].plot() ###Output _____no_output_____ ###Markdown Predict the values with the test set ###Code ts = m.predict(X_test) ###Output _____no_output_____ ###Markdown See the prediction ###Code ts.plot() ts["2017-03-01":"2017-03-04"].plot() ts["2017-03-01 06:00":"2017-03-01 20:00"].plot() ###Output _____no_output_____ ###Markdown Predict the values with the test set ###Code ts = m.predict(X_test) ###Output _____no_output_____ ###Markdown See the prediction ###Code ts.plot() ts["2017-03-01":"2017-03-04"].plot() ts["2017-03-01 06:00":"2017-03-01 20:00"].plot() ###Output _____no_output_____
renaming/renaming.ipynb
###Markdown Renaming- IPC522-time-random_num-preset-weather-image_num ###Code import urllib.request import re def getWeather(date, stn = "112"): year = date[:4] mm = date[4:6] dd = date[6:] # print(year, mm, dd) # url = "https://www.weather.go.kr/w/obs-climate/land/past-obs/obs-by-day.do?stn=" + stn + "&yy=" + year + "&mm=" + mm + "&obs=1" url = "https://web.kma.go.kr/weather/climate/past_cal.jsp?stn=" + stn + "&yy=" + year + "&mm=" + mm + "&obs=1&x=24&y=9" # https://www.weather.go.kr/weather/climate/past_cal.jsp?stn=112&yy=2021&mm=07&obs=1&x=24&y=9 ##2107 lines = [] f = urllib.request.urlopen(url) r = f.read() f.close() r2 = r.decode('euc-kr', 'ignore') lines = r2.split('\n') regex = '.*<td class="align_left">평균기온:(.*?)<br \/>최고기온:(.*?)<br \/>최저기온:(.*?)<br \/>평균운량:(.*?)<br \/>일강수량:(.*?)<br \/><\/td>' dict_month = {} day = 1 dd = int(dd) for l in lines: if not '평균기온' in l: continue l = l.replace("℃", "") l_reg = re.match(regex, l) if not l_reg: continue dict_day = {'cloud':0, 'rain':0} data_cloud = l_reg.groups()[3] # 평균운량 data_rain = l_reg.groups()[4] # 일강수량 dict_day['cloud'] = data_cloud # 평균운량 dict_day['rain'] = data_rain.replace("-", "0").replace("mm", "") # 일강수량 if day == dd: dict_month[dd] = dict_day day = day + 1 for (day, dict_day) in dict_month.items(): # print ("{0}{1}{2}, cloud : {3}, rain : {4} ".format(year, mm.zfill(2), str(day).zfill(2), dict_day['cloud'], dict_day['rain'])) _date = year + mm.zfill(2) + str(day).zfill(2) # print(mm) # print(day) # print(_date) _cloud = dict_day['cloud'] _rain = dict_day['rain'] return _date, _cloud, _rain def get_weather(time): date, cloud, rain = getWeather(time) if float(cloud) <= 5. and float(rain) == 0.: weather = 'sunny' elif float(rain) != 0.: weather = 'rainy' elif float(cloud) > 5. and float(rain) == 0.: weather = 'foggy' return weather import os import glob import pandas as pd import numpy as np filename = 'wrong_preset_in_ours' df = pd.read_excel(f'before/{filename}.xlsx') df.head() df['time'] = df['before'].apply(lambda x: x.split('_')[1]) df['random_num'] = -1 df['weather'] = -1 df['image_num'] = -1 df['new_filename'] = -1 # df = df[['before', 'start_point', 'time', 'random_num', 'preset', 'weather', 'image_num', 'new_filename']] df = df[['before', 'time', 'random_num', 'preset', 'weather', 'image_num', 'new_filename']] df.head() ###Output _____no_output_____ ###Markdown - IPC522-time-random_num-preset-weather-image_num ###Code id_list = df['time'].unique().tolist() for i, time in enumerate(id_list): data_len = len(df.loc[df['time'] == time]) df.loc[df['time'] == time, 'random_num'] = str(i).zfill(3) df.loc[df['time'] == time, 'weather'] = get_weather(str(time)[:8]) df.loc[df['time'] == time, 'image_num'] = range(data_len) df.loc[df['time'] == time, 'image_num'] = df.loc[df['time'] == time, 'image_num'].astype(str).str.zfill(5) df.loc[df['time'] == time, 'preset'] = df.loc[df['time'] == time, 'preset'].astype(str).str.zfill(2) df.loc[df['time'] == time, 'preset'] = df.loc[df['time'] == time, 'preset'].astype(str).apply(lambda x: 'p'+x) df cols = ['time', 'random_num', 'preset', 'weather', 'image_num'] df['new_filename'] = df[cols].apply(lambda x: '_'.join(x.values.astype(str)), axis=1) df['new_filename'] = 'IPC522_' + df['new_filename'].astype(str) + '.jpg' df.drop(['random_num', 'weather', 'image_num'], inplace=True, axis=1) df df.to_csv(f'after/{filename}_renamed.csv', index=False) df ###Output _____no_output_____ ###Markdown filename 바꾸기 ###Code import os import glob import shutil import pandas as pd renamed_list = os.listdir('after') df_renamed = pd.concat([df_renamed1, df_renamed2]) df_renamed base_url = 'S:/public_data/segmentation/wrong_preset_in_ours/' target_url = 'S:/public_data/segmentation/second_inspector_renamed/' image_list = glob.glob(base_url + '/*') basename_list = [os.path.basename(img) for img in image_list] len(basename_list) df_renamed['target_filename'] = df_renamed['new_filename'].apply(lambda x: target_url+x) df_renamed['filename'] = df_renamed.before.apply(lambda x: base_url+x) df_renamed df_renamed['target_filename'].iloc[4] for before, after in zip(df_renamed['filename'], df_renamed['target_filename']): shutil.copy(before, after) ###Output _____no_output_____
3_model_training.ipynb
###Markdown Part 3 - Training (aka *fine-tuning*) a Transformer modelIn this part we will finally train our very own Transformers model. We saw that the zer-shot model didn't produce great results, and that's probably because the model was trained on summarising news articles, not academic papers. These lines of code are typical setup for Sagemaker, we require them for training jobs: https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html ###Code import sagemaker sess = sagemaker.Session() role = sagemaker.get_execution_role() bucket = sess.default_bucket() print(f"IAM role arn used for running training: {role}") print(f"S3 bucket used for storing artifacts: {sess.default_bucket()}") ###Output _____no_output_____ ###Markdown We are in the great position that we don't have to write our own training script. Instead we will use a script from the transformers library in Github: https://github.com/huggingface/transformers/blob/v4.6.1/examples/pytorch/summarization/run_summarization.py ###Code git_config = {'repo': 'https://github.com/huggingface/transformers.git','branch': 'v4.6.1'} ###Output _____no_output_____ ###Markdown These rae the parameters for training, and this is one of the most important levers we can leverage once we are in the experimentation phase. Changing these parameters can influence the model performance and there will be a component of trial & error to find the best model. Also check out https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning.html for automated hyperparameter tuning. ###Code # hyperparameters, which are passed into the training job hyperparameters={'per_device_train_batch_size': 4, 'per_device_eval_batch_size': 4, 'model_name_or_path': 'sshleifer/distilbart-cnn-12-6', 'train_file': '/opt/ml/input/data/datasets/train.csv', 'validation_file': '/opt/ml/input/data/datasets/val.csv', 'do_train': True, 'do_eval': True, 'do_predict': False, 'predict_with_generate': True, 'output_dir': '/opt/ml/model', 'num_train_epochs': 3, 'learning_rate': 5e-5, 'seed': 7, 'fp16': True, 'val_max_target_length': 20, 'text_column': 'text', 'summary_column': 'summary', } # configuration for running training on smdistributed Data Parallel distribution = {'smdistributed':{'dataparallel':{ 'enabled': True }}} from sagemaker.huggingface import HuggingFace # create the Estimator huggingface_estimator = HuggingFace( entry_point='run_summarization.py', source_dir='./examples/pytorch/summarization', git_config=git_config, instance_type='ml.p3.16xlarge', instance_count=2, transformers_version='4.6', pytorch_version='1.7', py_version='py36', role=role, hyperparameters=hyperparameters, distribution=distribution, ) ###Output _____no_output_____ ###Markdown This will kick off the training job which should take around 1 hour. There is also the option to use distributed training with more instances, see here:https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html. Running this training with 2 distributed instances should take ~40 minutes. ###Code huggingface_estimator.fit({'datasets':f's3://{bucket}/summarization/data/'}, wait=False) ###Output _____no_output_____ ###Markdown Part 3 - Training (aka *fine-tuning*) a Transformer modelIn this part we will finally train our very own Transformers model. We saw that the zero-shot model didn't produce great results, and that's probably because the model was trained on summarising news articles, not academic papers. These lines of code are typical setup for Sagemaker, we require them for training jobs: https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-training.html ###Code import sagemaker bucket = sagemaker.Session().default_bucket() region = sagemaker.Session().boto_region_name # the "get_execution_role()" method doesn't work when running a notebook locally and using the API. # see the explanation in "0b_data_prep_reviews_corrected.ipynb" for an explanation and how to get # the proper variable # role = sagemaker.get_execution_role() role = 'arn:aws:iam::595714217589:role/service-role/AmazonSageMaker-ExecutionRole-20220331T161122' print(f"IAM role arn used for running training: {role}") print(f"S3 bucket used for storing artifacts: {bucket}") ###Output IAM role arn used for running training: arn:aws:iam::595714217589:role/service-role/AmazonSageMaker-ExecutionRole-20220331T161122 S3 bucket used for storing artifacts: sagemaker-us-east-1-595714217589 ###Markdown We are in the great position that we don't have to write our own training script. Instead we will use a script from the transformers library in Github: https://github.com/huggingface/transformers/blob/v4.6.1/examples/pytorch/summarization/run_summarization.py ###Code git_config = {'repo': 'https://github.com/huggingface/transformers.git','branch': 'v4.6.1'} ###Output _____no_output_____ ###Markdown These are the parameters for training, and this is one of the most important levers we can leverage once we are in the experimentation phase. Changing these parameters can influence the model performance and there will be a component of trial & error to find the best model. Also check out https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning.html for automated hyperparameter tuning. ###Code # see his article for why the paths to the data are the way they are # hyperparameters, which are passed into the training job - original version hyperparameters={'per_device_train_batch_size': 4, 'per_device_eval_batch_size': 4, 'model_name_or_path': 'sshleifer/distilbart-cnn-12-6', 'train_file': '/opt/ml/input/data/datasets/train.csv', 'validation_file': '/opt/ml/input/data/datasets/val.csv', 'do_train': True, 'do_eval': True, 'do_predict': False, 'predict_with_generate': True, 'output_dir': '/opt/ml/model', 'num_train_epochs': 3, 'learning_rate': 5e-5, 'seed': 7, 'fp16': True, 'val_max_target_length': 20, 'text_column': 'text', 'summary_column': 'summary', } # configuration for running training on smdistributed Data Parallel distribution = {'smdistributed':{'dataparallel':{ 'enabled': True }}} from sagemaker.huggingface import HuggingFace # create the Estimator huggingface_estimator = HuggingFace( entry_point='run_summarization.py', source_dir='./examples/pytorch/summarization', git_config=git_config, instance_type='ml.p3.16xlarge', instance_count=2, transformers_version='4.6', pytorch_version='1.7', py_version='py36', role=role, hyperparameters=hyperparameters, distribution=distribution, ) ###Output _____no_output_____ ###Markdown This will kick off the training job which should take around 1 hour. There is also the option to use distributed training with more instances, see here:https://docs.aws.amazon.com/sagemaker/latest/dg/distributed-training.html. Running this training with 2 distributed instances should take ~40 minutes. ###Code huggingface_estimator.fit({'datasets':f's3://{bucket}/summarization/data/'}, wait=False) ###Output Cloning into '/var/folders/87/33lmw8sj3sbc1fnxmv660t480000gn/T/tmpwaykeo03'... Note: switching to 'v4.6.1'. You are in 'detached HEAD' state. You can look around, make experimental changes and commit them, and you can discard any commits you make in this state without impacting any branches by switching back to a branch. If you want to create a new branch to retain commits you create, you may do so (now or later) by using -c with the switch command. Example: git switch -c <new-branch-name> Or undo this operation with: git switch - Turn off this advice by setting config variable advice.detachedHead to false HEAD is now at fb27b276e Release: v4.6.1
March/Week12/78.ipynb
###Markdown 在重复数组中寻找唯一的元素[![Author](https://img.shields.io/badge/Author-%40mjd507-important?style=social&logo=GitHub)](https://github.com/mjd507)[![WeChat Channel](https://img.shields.io/badge/Wechat-Daily%20Problem-important?style=social&logo=WeChat)](https://mp.weixin.qq.com/s/p6BglIy8iy0Y3Z_hw3BRTA)![Logo](img/Day78-1.png)   给定一组整数数组`arr`,其中所有数字都出现了两次,仅有额外1个数字只出现了一次。请找到这个数。  其中,你的解决方案需要限制在$O(n)$时间复杂度和$O(1)$空间复杂度内。 用例说明```pythonIn[1]: arr = [7, 3, 5, 5, 4, 3, 4, 8, 8]Out[1]: 7``` ###Code class Solution(object): def findSingle(self, nums: list) -> int: result = 0 for item in nums: result = item ^ result return result print(Solution().findSingle([1, 1, 3, 4, 4, 5, 6, 5, 6])) ###Output 3
FluentPython/Chapter06_dp_1class_func.ipynb
###Markdown 使用一等函数实现设计模式python可以使用经典的23个设计模式中的7个左右的模式。其他模式并不适合动态语言。 "策略"模式 经典"策略"模式三部分组成:- 上下文 order- 策略 Promotion- 具体策略 FidelityPromo BulkItemPromo LargeOrderPromo ###Code from abc import ABC, abstractmethod from collections import namedtuple Customer = namedtuple('Customer','name fidelity') class LineItem: '''每种产品信息,产品名,数量,单价等''' def __init__(self, product, quantity, price): self.product = product self.quantity = quantity self.price = price def total(self): return self.price * self.quantity class Order: '''账单''' def __init__(self, customer, cart, promotion=None): self.customer = customer self.cart = list(cart) self.promotion = promotion def total(self): if not hasattr(self, '__total'): self.__total = sum(item.total() for item in self.cart) return self.__total def due(self): if self.promotion is None: discount = 0.0 else: discount = self.promotion.discount(order = self) return self.total() - discount def __repr__(self): fm = "<Order total:{:.2f} due:{:.2f}>" return fm.format(self.total(),self.due()) class Promotion(ABC): '''策略,抽象基类''' @abstractmethod def discount(self, order): '''返回折扣金额(正值)''' class FidelityPromo(Promotion): '''满1000积分提供5%的折扣''' def discount(self, order): return order.total() * 0.05 if order.customer.fidelity >= 1000.0 else 0.0 class BulkItemPromo(Promotion): '''单个商品数量为20或以上时提供10%的折扣''' def discount(self, order): d = 0.0 for item in order.cart: if item.quantity >= 20 : d += item.total() * 0.1 return d class LargeOrderPromo(Promotion): '''订单中达到或超过10种商品时提供7%的折扣''' def discount(self, order): distinct_item = { item.product for item in order.cart } #使用了集,集内不能有重复元素 if len(distinct_item) >= 10 : return order.total() * 0.07 return 0.0 joe = Customer('John Doe', 0) ann = Customer('Ann Smith', 1100) cart = [LineItem('banana', 4, 0.5), LineItem('apple', 10,1.5), LineItem('watermelon', 5, 5.0)] Order(joe, cart, FidelityPromo()) #记得类作为参数时需要加括号! Order(ann, cart, FidelityPromo()) banana_cart = [ LineItem('banana', 30, 0.5), LineItem('apple', 10, 1.5)] Order(joe, banana_cart, BulkItemPromo()) long_order = [LineItem(str(item_code), 1, 1.0) for item_code in range(10)] Order(joe, long_order, LargeOrderPromo()) Order(joe, cart, LargeOrderPromo()) ###Output _____no_output_____ ###Markdown 使用函数来实现“策略”模式上面的策略类都只有一个函数,而且实例化后也没有变量,仅从作用上来看就是一个函数。下面我们用函数来实现上面的策略,会发现我们并不需要创建一个抽象类了。 ###Code from collections import namedtuple Customer = namedtuple('Customer','name fidelity') class LineItem: '''每种产品信息,产品名,数量,单价等''' def __init__(self, product, quantity, price): self.product = product self.quantity = quantity self.price = price def total(self): return self.price * self.quantity class Order: '''账单''' def __init__(self, customer, cart, promotion=None): self.customer = customer self.cart = list(cart) self.promotion = promotion def total(self): if not hasattr(self, '__total'): self.__total = sum(item.total() for item in self.cart) return self.__total def due(self): if self.promotion is None: discount = 0.0 else: discount = self.promotion(order = self) # 此处promotion变量已经是一个函数了,直接执行括号运算符就行了。 return self.total() - discount def __repr__(self): fm = "<Order total:{:.2f} due:{:.2f}>" return fm.format(self.total(),self.due()) # 我们也不需要创建抽象类父类了。 def fidelity_promo(order): '''满1000积分提供5%的折扣''' return order.total() * 0.05 if order.customer.fidelity >= 1000.0 else 0.0 def bulkitem_promo(order): '''单个商品数量为20或以上时提供10%的折扣''' d = 0.0 for item in order.cart: if item.quantity >= 20 : d += item.total() * 0.1 return d def largeorder_promo(order): '''订单中达到或超过10种商品时提供7%的折扣''' distinct_item = { item.product for item in order.cart } #使用了集,集内不能有重复元素 if len(distinct_item) >= 10 : return order.total() * 0.07 return 0.0 ###Output _____no_output_____ ###Markdown 用上面的例子来测试一下 ###Code joe = Customer('John Doe', 0) ann = Customer('Ann Smith', 1100) cart = [LineItem('banana', 4, 0.5), LineItem('apple', 10,1.5), LineItem('watermelon', 5, 5.0)] Order(joe, cart, fidelity_promo) # 函数作为参数时不需要加括号() Order(ann, cart, fidelity_promo) banana_cart = [ LineItem('banana', 30, 0.5), LineItem('apple', 10, 1.5) ] Order(joe, banana_cart, bulkitem_promo) long_order = [LineItem(str(item_code), 1, 1.0) for item_code in range(10)] Order(joe, long_order, largeorder_promo) Order(joe, cart, largeorder_promo) ###Output _____no_output_____ ###Markdown 最佳策略函数两点:- 将函数看作一等对象- 如何自动获得模块中的所有促销函数 ###Code # ----------- 1 ----------- # 手动枚举 不推荐这种方法 # 将函数看作是一等对象 promo1 = [fidelity_promo, bulkitem_promo, largeorder_promo] # ----------- 2 ----------- # 使用globals()字典,返回当前模块的所有函数 promo2 = [globals()[name] for name in globals() if name.endswith('_promo') and name != 'best_promo'] # ----------- 3 ----------- # 使用模块内省来获得和inspect模块一同获得所有函数 # 首先需要将所有的策略函数都写在promotions模块里,然后使用import promotions来导入模块,然后使用inspect.getmembers()来获得所有函数 # import inspect # import promotions # promo3 = [ func for name, func in inspect.getmembers(promotions, inspect.isfunction)] # ----------- 4 ----------- # 使用装饰器也可以自动获得所有的打折策略函数,7章将会降到装饰器的使用。 def best_promo(order): ''' 返回最佳折扣方案 ''' return max(promo(order) for promo in promo2) # 测试最佳方案 joe = Customer('John Doe', 0) ann = Customer('Ann Smith', 1100) cart = [LineItem('banana', 4, 0.5), LineItem('apple', 10,1.5), LineItem('watermelon', 5, 5.0)] Order(ann, cart, best_promo) # 函数作为参数时不需要加括号() ###Output _____no_output_____
2.normalization/answers/1.flexique.ipynb
###Markdown Un lexique du françaisLa ressource *Flexique* est une base de données conçue pour étudier le système flexionnel du français. Elle est constituée de trois tables, réparties dans trois fichiers. Le fichier *nlexique.csv* recense 31 002 lexèmes pour 65 111 mots.Le code ci-dessous permet de charger tous les lexèmes et leurs représentations phonologiques dans une variable `lexemes` : ###Code import csv with open('../files/nlexique.csv') as csvfile: reader = csv.DictReader(csvfile) lexemes = [ (row['lexeme'], row['sg']) for row in reader ] ###Output _____no_output_____ ###Markdown La liste des lexèmes est alors interrogeable en appelant la variable `lexemes` : ###Code print(lexemes[:10]) ###Output _____no_output_____ ###Markdown **Remarque :** pour tous les exercices, vous tenterez de fournir une courte analyse de votre solution. ChargementAvant toute chose, chargez le module *re* : ###Code # your code here import re ###Output _____no_output_____ ###Markdown Vous êtes accro ?Recherchez dans la liste des lexèmes tous les termes qui commencent par *accro*. ###Code # your code here pattern = r'^accro.*' prog = re.compile(pattern) for lexeme, phon in lexemes: result = prog.match(lexeme) if result: print(result.group()) ###Output _____no_output_____ ###Markdown **Analyse :** Le métacaractère `ˆ` balise le début d’une ligne. Double doseÀ présent, effectuez une recherche qui liste tous les mots composés qui contiennent un tiret (*-*). ###Code # your code here pattern = r'[\w]+-[\w]+' prog = re.compile(pattern) for lexeme, phon in lexemes: result = prog.match(lexeme) if result: print(result.group()) ###Output _____no_output_____ ###Markdown **Analyse :** Les mots composés sont structurés en deux ensembles de caractères alphabétiquesséparés entre eux par un tiret. Rimera bien qui rimera le dernierEn dernier lieu, essayez de trouver les lexèmes qui rimeraient avec le mot *acabit*. ###Code # your code here pattern = r'.+bi$' prog = re.compile(pattern) for lexeme, phon in lexemes: result = prog.match(phon) if result: print(lexeme) ###Output _____no_output_____
Choosing the right hardware for OpenVino - Dev Cloud/Notebooks/Using IntelDevcloud.ipynb
###Markdown Exercise: Using Intel DevCloudNow that we've walked through the process of requesting a device on Intel's DevCloud and loading a model, you will have the opportunity to do this yourself with the addition of running inference on an image.In this exercise, you will do the following:1. Write a Python script to load a model and run inference 10 times on a CPU on Intel's DevCloud. * Calculate the time it takes to load the model. * Calculate the time it takes to run inference 10 times.2. Write a shell script to submit a job to Intel's DevCloud.3. Submit a job using `qsub` on the **IEI Tank-870** edge node with an **Intel Xeon E3 1268L v5**.4. Run `liveQStat` to view the status of your submitted job.5. Retrieve the results from your job.6. View the results.Click the **Exercise Overview** button below for a demonstration. Exercise Overview IMPORTANT: Set up paths so we can run Dev Cloud utilitiesYou *must* run this every time you enter a Workspace session. ###Code %env PATH=/opt/conda/bin:/opt/spark-2.4.3-bin-hadoop2.7/bin:/opt/conda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/opt/intel_devcloud_support import os import sys sys.path.insert(0, os.path.abspath('/opt/intel_devcloud_support')) sys.path.insert(0, os.path.abspath('/opt/intel')) ###Output _____no_output_____ ###Markdown The ModelWe will be using the `vehicle-license-plate-detection-barrier-0106` model for this exercise. Remember that to run a model on the CPU, we need to use `FP32` as the model precision.The model has already been downloaded for you in the `/data/models/intel` directory on Intel's DevCloud. We will be using the following filepath during the job submission in **Step 3**:> **/data/models/intel/vehicle-license-plate-detection-barrier-0106/FP32/vehicle-license-plate-detection-barrier-0106**We will be running inference on an image of a car. The path to the image is `/data/resources/car.png` Step 1: Creating a Python ScriptThe first step is to create a Python script that you can use to load the model and perform inference. We'll use the `%%writefile` magic to create a Python file called `inference_cpu_model.py`. In the next cell, you will need to complete the `TODO` items for this Python script.`TODO` items:1. Load the model2. Prepare the model for inference (create an input dictionary)3. Run inference 10 times in a loopIf you get stuck, you can click on the **Show Solution** button below for a walkthrough with the solution code. ###Code %%writefile inference_cpu_model.py import time import numpy as np import cv2 from openvino.inference_engine import IENetwork from openvino.inference_engine import IECore import argparse def main(args): model=args.model_path model_weights=model+'.bin' model_structure=model+'.xml' start=time.time() # TODO: Load the model model=IENetwork(model_structure, model_weights) core = IECore() net = core.load_network(network=model, device_name='CPU', num_requests=1) print(f"Time taken to load model = {time.time()-start} seconds") # Get the name of the input node input_name=next(iter(model.inputs)) # Reading and Preprocessing Image input_img=cv2.imread('/data/resources/car.png') input_img=cv2.resize(input_img, (300,300), interpolation = cv2.INTER_AREA) input_img=np.moveaxis(input_img, -1, 0) # TODO: Prepare the model for inference (create input dict etc.) input_dict={input_name:input_img} print(input_dict) start=time.time() for _ in range(10): # TODO: Run Inference in a Loop net.infer(input_dict) print(f"Time Taken to run 10 Infernce on CPU is = {time.time()-start} seconds") if __name__=='__main__': parser=argparse.ArgumentParser() parser.add_argument('--model_path', required=True) args=parser.parse_args() main(args) ###Output Overwriting inference_cpu_model.py ###Markdown Show Solution Step 2: Creating a Job Submission ScriptTo submit a job to the DevCloud, you'll need to create a shell script. Similar to the Python script above, we'll use the `%%writefile` magic command to create a shell script called `load_model_job.sh`. In the next cell, you will need to complete the `TODO` items for this shell script.`TODO` items:1. Create a `MODELPATH` variable and assign it the value of the first argument that will be passed to the shell script2. Call the Python script using the `MODELPATH` variable value as the command line argumentIf you get stuck, you can click on the **Show Solution** button below for a walkthrough with the solution code. ###Code %%writefile inference_cpu_model_job.sh #!/bin/bash exec 1>/output/stdout.log 2>/output/stderr.log mkdir -p /output #TODO: Create MODELPATH variable MODELPATH=$1 #TODO: Call the Python script python3 inference_cpu_model.py --model_path ${MODELPATH} cd /output tar zcvf output.tgz stdout.log stderr.log ###Output Overwriting inference_cpu_model_job.sh ###Markdown Show Solution Step 3: Submitting a Job to Intel's DevCloudIn the next cell, you will write your `!qsub` command to submit your job to Intel's DevCloud to load your model on the `Intel Xeon E3 1268L v5` CPU and run inference.Your `!qsub` command should take the following flags and arguments:1. The first argument should be the shell script filename2. `-d` flag - This argument should be `.`3. `-l` flag - This argument should request a **Tank-870** node using an **Intel Xeon E3 1268L v5** CPU. The default quantity is 1, so the **1** after `nodes` is optional.To get the queue label for this CPU, you can go to [this link](https://devcloud.intel.com/edge/get_started/devcloud/)4. `-F` flag - This argument should be the full path to the model. As a reminder, the model is located in `/data/models/intel`.**Note**: There is an optional flag, `-N`, you may see in a few exercises. This is an argument that only works on Intel's DevCloud that allows you to name your job submission. This argument doesn't work in Udacity's workspace integration with Intel's DevCloud.If you get stuck, you can click on the **Show Solution** button below for a walkthrough with the solution code. ###Code job_id_core = !qsub inference_cpu_model_job.sh -d . -l nodes=1:tank-870:e3-1268l-v5 -F "/data/models/intel/vehicle-license-plate-detection-barrier-0106/FP32/vehicle-license-plate-detection-barrier-0106" -N store_core print(job_id_core[0]) ###Output vMohGdy25Yr4vWw6Gu03XjRflYH3Vzha ###Markdown Show Solution Step 4: Running liveQStatRunning the `liveQStat` function, we can see the live status of our job. Running the this function will lock the cell and poll the job status 10 times. The cell is locked until this finishes polling 10 times or you can interrupt the kernel to stop it by pressing the stop button at the top: ![stop button](assets/interrupt_kernel.png)* `Q` status means our job is currently awaiting an available node* `R` status means our job is currently running on the requested node**Note**: In the demonstration, it is pointed out that `W` status means your job is done. This is no longer accurate. Once a job has finished running, it will no longer show in the list when running the `liveQStat` function.Click the **Running liveQStat** button below for a demonstration. Running liveQStat ###Code import liveQStat liveQStat.liveQStat() ###Output _____no_output_____ ###Markdown Step 5: Retrieving Output FilesIn this step, we'll be using the `getResults` function to retrieve our job's results. This function takes a few arguments.1. `job id` - This value is stored in the `job_id_core` variable we created during **Step 3**. Remember that this value is an array with a single string, so we access the string value using `job_id_core[0]`.2. `filename` - This value should match the filename of the compressed file we have in our `load_model_job.sh` shell script.3. `blocking` - This is an optional argument and is set to `False` by default. If this is set to `True`, the cell is locked while waiting for the results to come back. There is a status indicator showing the cell is waiting on results.**Note**: The `getResults` function is unique to Udacity's workspace integration with Intel's DevCloud. When working on Intel's DevCloud environment, your job's results are automatically retrieved and placed in your working directory.Click the **Retrieving Output Files** button below for a demonstration. Retrieving Output Files ###Code import get_results get_results.getResults(job_id_core[0], filename="output.tgz", blocking=True) ###Output getResults() is blocking until results of the job (id:vMohGdy25Yr4vWw6Gu03XjRflYH3Vzha) are ready. Please wait..........Success! output.tgz was downloaded in the same folder as this notebook. ###Markdown Step 6: View the OutputsIn this step, we unpack the compressed file using `!tar zxf` and read the contents of the log files by using the `!cat` command.`stdout.log` should contain the printout of the print statement in our Python script. ###Code !tar zxf output.tgz !cat stdout.log !cat stderr.log ###Output Unable to init server: Could not connect: Connection refused (sample image:17): Gtk-WARNING **: 09:21:13.498: cannot open display: tar: stdout.log: file changed as we read it
ssd300_demo.ipynb
###Markdown SSD 300 Demo ###Code import cv2 import time from keras import backend as K from keras.models import load_model from keras.preprocessing import image from keras.optimizers import Adam from imageio import imread import numpy as np from matplotlib import pyplot as plt from models.keras_ssd300 import ssd_300 from keras_loss_function.keras_ssd_loss import SSDLoss from keras_layers.keras_layer_AnchorBoxes import AnchorBoxes from keras_layers.keras_layer_DecodeDetections import DecodeDetections from keras_layers.keras_layer_DecodeDetectionsFast import DecodeDetectionsFast from keras_layers.keras_layer_L2Normalization import L2Normalization from ssd_encoder_decoder.ssd_output_decoder import decode_detections, decode_detections_fast from data_generator.object_detection_2d_data_generator import DataGenerator from data_generator.object_detection_2d_photometric_ops import ConvertTo3Channels from data_generator.object_detection_2d_geometric_ops import Resize from data_generator.object_detection_2d_misc_utils import apply_inverse_transforms # Prepare model img_height = 300 img_width = 300 K.clear_session() # Clear previous models from memory. model = ssd_300(image_size=(img_height, img_width, 3), n_classes=20, mode='inference', l2_regularization=0.0005, scales=[0.1, 0.2, 0.37, 0.54, 0.71, 0.88, 1.05], # The scales for MS COCO are [0.07, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05] aspect_ratios_per_layer=[[1.0, 2.0, 0.5], [1.0, 2.0, 0.5, 3.0, 1.0/3.0], [1.0, 2.0, 0.5, 3.0, 1.0/3.0], [1.0, 2.0, 0.5, 3.0, 1.0/3.0], [1.0, 2.0, 0.5], [1.0, 2.0, 0.5]], two_boxes_for_ar1=True, steps=[8, 16, 32, 64, 100, 300], offsets=[0.5, 0.5, 0.5, 0.5, 0.5, 0.5], clip_boxes=False, variances=[0.1, 0.1, 0.2, 0.2], normalize_coords=True, subtract_mean=[123, 117, 104], swap_channels=[2, 1, 0], confidence_thresh=0.5, iou_threshold=0.45, top_k=200, nms_max_output_size=400) # Load model weights_path = 'VGG_VOC0712Plus_SSD_300x300_ft_iter_160000.h5' model.load_weights(weights_path, by_name=True) adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0) ssd_loss = SSDLoss(neg_pos_ratio=3, alpha=1.0) model.compile(optimizer=adam, loss=ssd_loss.compute_loss) # Load image orig_images = [] # Store the images here. input_images = [] # Store resized versions of the images here. img_path = '/home/sahand/Projects/city/sydney1.jpg' orig_images.append(imread(img_path)) img = image.load_img(img_path, target_size=(img_height, img_width)) img = image.img_to_array(img) input_images.append(img) input_images = np.array(input_images) # Predict start = time.time() y_pred = model.predict(input_images) end = time.time() # Visualize confidence_threshold = 0.5 y_pred_thresh = [y_pred[k][y_pred[k,:,1] > confidence_threshold] for k in range(y_pred.shape[0])] np.set_printoptions(precision=2, suppress=True, linewidth=90) print("Predicted boxes:\n") print(' class conf xmin ymin xmax ymax') print(y_pred_thresh[0]) # Display the image and draw the predicted boxes onto it. # Set the colors for the bounding boxes colors = plt.cm.hsv(np.linspace(0, 1, 21)).tolist() classes = ['background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] print("Time : ",end - start) plt.figure(figsize=(20,12)) plt.imshow(orig_images[0]) current_axis = plt.gca() for box in y_pred_thresh[0]: # Transform the predicted bounding boxes for the 300x300 image to the original image dimensions. xmin = box[2] * orig_images[0].shape[1] / img_width ymin = box[3] * orig_images[0].shape[0] / img_height xmax = box[4] * orig_images[0].shape[1] / img_width ymax = box[5] * orig_images[0].shape[0] / img_height color = colors[int(box[0])] label = '{}: {:.2f}'.format(classes[int(box[0])], box[1]) current_axis.add_patch(plt.Rectangle((xmin, ymin), xmax-xmin, ymax-ymin, color=color, fill=False, linewidth=2)) current_axis.text(xmin, ymin, label, size='x-large', color='white', bbox={'facecolor':color, 'alpha':1.0}) ###Output Predicted boxes: class conf xmin ymin xmax ymax [[ 7. 1. 116.35 206.14 238.84 306.28] [ 7. 0.98 194.07 192.65 257.39 252.66] [ 7. 0.89 87.75 206.81 118.65 240.74] [ 7. 0.65 111.13 212.2 133.81 232.97] [ 7. 0.53 53.86 206.5 82.68 236.17]] Time : 3.988952159881592
remote_sensing/python/Local_Jupyter_NoteBooks/scratches_to_experiment/moving_10_day_window_2Yrs.ipynb
###Markdown This is scratch to do maximum in 10-days intervals. ###Code import csv import numpy as np import pandas as pd # import geopandas as gpd from IPython.display import Image # from shapely.geometry import Point, Polygon from math import factorial import scipy import scipy.signal import os, os.path from datetime import date import datetime import time from statsmodels.sandbox.regression.predstd import wls_prediction_std from sklearn.linear_model import LinearRegression from patsy import cr # from pprint import pprint import matplotlib.pyplot as plt import seaborn as sb import sys sys.path.append('/Users/hn/Documents/00_GitHub/Ag/remote_sensing/python/') import remote_sensing_core as rc import remote_sensing_core as rcp start_time = time.time() data_dir = "/Users/hn/Documents/01_research_data/" + \ "remote_sensing/01_NDVI_TS/00_Eastern_WA_withYear/2Years/" param_dir = "/Users/hn/Documents/00_GitHub/Ag/remote_sensing/parameters/" ###Output _____no_output_____ ###Markdown Parameters ###Code #################################################################################### ### ### Parameters ### #################################################################################### irrigated_only = 0 SF_year = 2017 indeks = "EVI" regular_window_size = 10 ###Output _____no_output_____ ###Markdown Read the data ###Code f_name = "Eastern_WA_" + str(SF_year) + "_70cloud_selectors.csv" a_df = pd.read_csv(data_dir + f_name, low_memory=False) ################################################################## ################################################################## #### #### plots has to be exact. So, we need #### to filter out NASS, and filter by last survey date #### ################################################################## ################################################################## a_df = a_df[a_df['county']== "Grant"] # Filter Grant # a_df = rc.filter_out_NASS(a_df) # Toss NASS # a_df = rc.filter_by_lastSurvey(a_df, year = SF_year) # filter by last survey date a_df['SF_year'] = SF_year ###Output _____no_output_____ ###Markdown Functions Get a field's data ###Code a_df.reset_index(drop=True, inplace=True) a_df_1 = a_df[a_df.ID == a_df.ID[0]] a_df_1.shape a_df_1 = rc.initial_clean_EVI(a_df_1) # a_df_1.sort_values(by=['system_start_time'], inplace=True) a_df_1.sort_values(by=['image_year', 'doy'], inplace=True) a_df_1 = rc.correct_timeColumns_dataTypes(a_df_1) a_df_1.reset_index(drop=True, inplace=True) print(a_df_1.shape) # a_df_1.head(2) a_df_1.system_start_time[0] A = rc.regularize_movingWindow_windowSteps_2Yrs(one_field_df = a_df_1, SF_yr=SF_year, idks=indeks, window_size=10) a_df_1.image_year.unique() A.shape print (a_field_df.shape) print (regular_df.shape) outName = "/Users/hn/Documents/01_research_data/remote_sensing/test_data/a_regularized_TS.csv" regularized_TS.to_csv(outName, index=False) ###Output _____no_output_____ ###Markdown Create Aeolus Enviornment, and see things works ###Code first_10_IDs = a_df.ID.unique()[:10] an_EE_TS = a_df[a_df.ID.isin(first_10_IDs) ] indeks = "EVI" county = "Grant" SF_year = 2017 regular_window_size = 10 ######################################################################################## an_EE_TS = an_EE_TS[an_EE_TS['county'] == county] # Filter Grant an_EE_TS['SF_year'] = SF_year ######################################################################################## # output_dir = "/data/hydro/users/Hossein/remote_sensing/02_Regularized_TS/" # os.makedirs(output_dir, exist_ok=True) ######################################################################################## if (indeks == "EVI"): an_EE_TS = rc.initial_clean_EVI(an_EE_TS) else: an_EE_TS = rc.initial_clean_NDVI(an_EE_TS) an_EE_TS.head(2) ### ### List of unique polygons ### polygon_list = an_EE_TS['ID'].unique() print(len(polygon_list)) ######################################################################################## ### ### initialize output data. all polygons in this case ### will have the same length. ### 9 steps in the first three months, followed by 36 points in the full year, ### 9 months in the last year ### reg_cols = ['ID', 'Acres', 'county', 'CropGrp', 'CropTyp', 'DataSrc', 'ExctAcr', 'IntlSrD', 'Irrigtn', 'LstSrvD', 'Notes', 'RtCrpTy', 'Shap_Ar', 'Shp_Lng', 'TRS', 'image_year', 'SF_year', 'doy', indeks] nrows = 54 * len(polygon_list) output_df = pd.DataFrame(data = None, index = np.arange(nrows), columns = reg_cols) ######################################################################################## counter = 0 for a_poly in polygon_list: if (counter): # % 100 == 0 print (counter) curr_field = an_EE_TS[an_EE_TS['ID']==a_poly].copy() ################################################################ # Sort by DoY (sanitary check) curr_field.sort_values(by=['image_year', 'doy'], inplace=True) curr_field = rc.correct_timeColumns_dataTypes(curr_field) curr_field.reset_index(drop=True, inplace=True) print ("print(curr_field.shape") print(curr_field.shape) print ("__________________________________________") ################################################################ regularized_TS = rc.regularize_movingWindow_windowSteps_18Months(curr_field, \ SF_yr = SF_year, \ idks = indeks, \ window_size = 10) print(regularized_TS.shape) ################################################################ row_pointer = 54 * counter output_df[row_pointer: row_pointer+54] = regularized_TS.values counter += 1 regularized_TS.values.shape output_df[row_pointer: row_pointer+54].shape row_pointer output_df.shape output_df.head(2) print (time.strftime('%Y-%m-%d', time.localtime(a_df_1.system_start_time.iloc[0]))) print (a_df_1.system_start_time.iloc[0]) print (time.strftime('%Y-%m-%d', time.localtime(a_df_1.system_start_time.iloc[0]))) print ("Convert Epoch to datetime format") print (datetime.datetime.fromtimestamp(a_df_1.system_start_time.iloc[0])) # Convert Epoch to DoY print ("___________________________________________") print ("") print ("Convert Epoch to DoY") print ( (datetime.datetime.fromtimestamp(a_df_1.system_start_time.iloc[0])).timetuple().tm_yday ) print ("___________________________________________") print ("") print ("difference number of days") print ((date(2003,11,22) - date(2002,10,20)).days) time.localtime(a_df_1.system_start_time.iloc[0]) # datetime.datetime(2016, 1, 1) + datetime.timedelta(275 - 1) # im_yr_sotred = a_df_1.copy() # epoch_sorted = a_df_1.copy() # im_yr_sotred.sort_values(by=['image_year', 'doy'], inplace=True) # epoch_sorted.sort_values(by=['system_start_time'], inplace=True) # epoch_sorted.to_csv (r'/Users/hn/Desktop/test/epoch_sorted.csv', index = True, header=True) # im_yr_sotred.to_csv (r'/Users/hn/Desktop/test/im_yr_sotred.csv', index = True, header=True) # a_df_1.to_csv (r'/Users/hn/Desktop/test/a_df_1.csv', index = True, header=True) ###Output _____no_output_____
basics/notebooks/Classification Tutorial.ipynb
###Markdown ```Created: 2019-09-22Author: Roy WildsUpdates2019-10-02: Added RF classifier2019-11-17: Cleaned up for push to github``` About this notebookThis notebook captures the typical steps involved in building a classifier using pandas and sklearn.It includes some data manipulation to create the classes to be used (the chosen dataset didn't have explicit labels). Data LoadingThis uses the amazon fire CSV file from Kaggle: https://www.kaggle.com/gustavomodelli/forest-fires-in-brazilIt's a nice dataset that has timestamps, categorical, and numerical features. Not overly complicated, but a nice starting point. ###Code import pandas as pd csvfile = '~/data/amazon.csv' df = pd.read_csv(csvfile, quotechar='"', encoding = "ISO-8859-1") #, parse_dates=[4] df.count() ###Output _____no_output_____ ###Markdown **Note** the presence of the correct encoding argument. Initial attempt to load the data file failed with a Unicode error (the data is from Brazil).Running a file command points us to the correct encoding:```$ file data/amazon.csv data/amazon.csv: ISO-8859 text, with CRLF line terminators``` ###Code df.sample(5) ###Output _____no_output_____ ###Markdown Data Manipulation ###Code df.dtypes ###Output _____no_output_____ ###Markdown Let's properly dtype the various columns, and going to provide the option to translate the "month" to English.Note we could have handled the date column during the `read_csv()` step by adding the `parse_dates` arg. ###Code df['date'] = pd.to_datetime(df['date']) df['state'] = df['state'].astype('category') df['month'] = df['month'].astype('category') df.dtypes portugese_months = list(df['month'].cat.categories) portugese_months.sort() # We sort so that the explicit ordering of english months here is correct! english_months = ['April','August','December','February','January','July','June','May','March','November','October','September'] translate_months = dict(zip(portugese_months,english_months)) translate_months df['month'].replace(translate_months, inplace=True) df['month'] = df['month'].astype('category') df.sample(5) ###Output _____no_output_____ ###Markdown Create ClassesYou may have noticed that we don't actually have any obvious labels! We could try predicting some of the categorical variables... For example, maybe you can predict the month based on the other columns (ignoring the `date` feature obviously).But, here I'm going to be simple with a 2-class problem: "Lots of Fires" (`high`) vs "Fewer Fires" (`low`). This will be determine by whether or not the number is more than 1 standard-deviation1 away from the mean for the particular `state, month` combination in the data. ###Code # There's probably a pandas way to do this cleverly using groupby and agg() # but I can't figure out all the reshaping required. states = list(df['state'].cat.categories) months = list(df['month'].cat.categories) import numpy as np df['class'] = 'low' # Start with everything 'low' nstd = 1 # Number of standard deviations to be considered 'high' for s in states: for m in months: mu = df[(df['state'] == s ) & (df['month'] == m)]['number'].mean() sigma = df[(df['state'] == s ) & (df['month'] == m)]['number'].std() # Wasn't able to get this working using pandas/groupby/etc. ops. Had to resort to a loop. # At least it's linear in the dataframe size. for index, row in df[(df['state'] == s ) & (df['month'] == m)].iterrows(): if row['number'] > mu+nstd*sigma: df.iloc[index,5] = 'high' # THIS IS BRITTLE. Relies on specific shape for "df". # #Failed attempts to do this more pythonically # print( (df['state'] == s ) & (df['month'] == m) & ( df['number'] > 0).describe() ) # df['class'] = np.where((df['state'] == s ) & (df['month'] == m) & ( (abs(df['number']-mu)/sigma)>0.01),'high','low') # df[(df['state'] == s ) & (df['month'] == m) & (abs(df['number']-mu)/sigma>0)]['class'] = 'high' ###Output _____no_output_____ ###Markdown Data ExplorationAlways good to understand the raw data before jumping into modeling. ###Code import matplotlib.pyplot as plt %matplotlib inline df.describe(include = 'all') #Plot the number of entries per state df.groupby(['state'])['number'].agg('count').plot(kind='bar') #Plot the total number of fires per state df.groupby(['state'])['number'].agg('sum').plot(kind='bar') #Plot the total number of fires per state, colouring the numbers that were determined to be class="high" #Not a terribly informational plot, but useful plotting technique in general. df.groupby(['state','class'])['number'].agg('sum').unstack().plot(kind='bar') ###Output _____no_output_____ ###Markdown ModelingGoing to build a model to predict the `class` from the `state` and `number` features.Need to convert the `state` categorical feature into features that can be consumed by LR or RF.An ordinal encoding doesn't make sense (there's no simple ordering of the states... maybe by latitude since that could be a sensible ordering for climate/weather, but skipping that for now).Will use one-hot encoding. ###Code # Simplest to make a copy and then deal with the one-hot encoding for the 'state' categorical columns. lrdf = df.copy() lrdf = pd.concat([df,pd.get_dummies(df['state'], prefix='state')],axis=1) # Drop the columns we don't need. lrdf.drop(['year'], axis=1, inplace=True) lrdf.drop(['state'], axis=1, inplace=True) lrdf.drop(['date'], axis=1, inplace=True) lrdf.drop(['month'], axis=1, inplace=True) lrdf.sample(5) data = lrdf labels = lrdf['class'] data.drop(['class'], axis=1, inplace=True) from sklearn.model_selection import train_test_split # Make train/test sets with a 30% test size. data_train, data_test, labels_train, labels_test = train_test_split(data, labels, test_size=0.3) labels_test.describe() ###Output _____no_output_____ ###Markdown Logistic Regression Model ###Code from sklearn.linear_model import LogisticRegression logreg = LogisticRegression() logreg.fit(data_train, labels_train) pred_test = logreg.predict(data_test) from sklearn.metrics import confusion_matrix m = confusion_matrix(labels_test, pred_test) # Assume that the class=='high' is the Positive Case (i.e. what we care about classifying) tp, fn, fp, tn = m.ravel() print(m) #print('tn = {}, fp = {}, fn = {}, tp = {}'.format(tn,fp,fn,tp)) print('Using class="high" as the positive prediction (i.e. a true prediction).') precision = tp/(tp+fp+0.) recall = tp/(tp+fn+0.) print('Precision = {:.2f} and Recall = {:.2f}'.format(precision,recall)) ###Output _____no_output_____ ###Markdown Varying ThresholdRather than using the default 0.5 threshold for determining if a prediction is `high` or not, we can vary a threshold from 0 to 1 to control the precision/recall tradeoff of the classifier. ###Code thetas = np.linspace(0.1,0.9,101) pred_test_probs = logreg.predict_proba(data_test) print(logreg.classes_) #So 1st col is probability of class='high' and 2nd col is probability of class='low' pred_test_probs[0:10,:] precision, recall = [], [] for theta in thetas: pred_test = np.where(pred_test_probs[:,0] >= theta, 'high','low') m = confusion_matrix(labels_test, pred_test) # Assume that the class=='high' is the Positive Case (i.e. what we care about classifying) tp, fn, fp, tn = m.ravel() precision.append(tp/(tp+fp+0.)) recall.append(tp/(tp+fn+0.)) logreg_thetas = pd.DataFrame() logreg_thetas['threshold']=thetas logreg_thetas['precision'] = precision logreg_thetas['recall'] = recall logreg_thetas.plot(x='threshold') ###Output _____no_output_____ ###Markdown The above plot is typical of the recall/threshold tradeoff. You get better precision (i.e. fewer mistakes) at the cost of missing more of the true (i.e. high) predictions (lower recall). Random Forest ###Code from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier(n_estimators=100, random_state=0) rf.fit(data_train,labels_train) pred_test = rf.predict(data_test) from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score m = confusion_matrix(labels_test, pred_test) # Assume that the class=='high' is the Positive Case (i.e. what we care about classifying) tp, fn, fp, tn = m.ravel() print(m) #print('tn = {}, fp = {}, fn = {}, tp = {}'.format(tn,fp,fn,tp)) print('Using class="high" as the positive prediction (i.e. a true prediction).') precision = tp/(tp+fp+0.) recall = tp/(tp+fn+0.) accuracy = accuracy_score(labels_test, pred_test) print('Precision = {:.2f} and Recall = {:.2f}'.format(precision,recall)) print('Accuracy = {:.2f}'.format(accuracy)) ###Output _____no_output_____ ###Markdown We see a great example of why Accuracy isn't a good metric when there's class imbalance.In our case, we've got roughly a 10 to 1 class imbalance and the model gets the class='low' right lots, but for the class='high' case we're not doing great. Varying Threshold ###Code thetas = np.linspace(0.1,0.9,101) pred_test_probs = rf.predict_proba(data_test) print(rf.classes_) #If not 'high', 'low' then ensure you change [:,0] to the correct column slice to use! precision, recall = [], [] for theta in thetas: pred_test = np.where(pred_test_probs[:,0] >= theta, 'high','low') m = confusion_matrix(labels_test, pred_test) # Assume that the class=='high' is the Positive Case (i.e. what we care about classifying) tp, fn, fp, tn = m.ravel() precision.append(tp/(tp+fp+0.)) recall.append(tp/(tp+fn+0.)) rf_thetas = pd.DataFrame() rf_thetas['threshold']=thetas rf_thetas['precision'] = precision rf_thetas['recall'] = recall rf_thetas.plot(x='threshold') ###Output _____no_output_____ ###Markdown Repeat RF but with k-fold Cross ValidationThus far have been using the test/train split with 33% for test. This section is to do k-fold Cross Validation in order to get an estimate on the errors for the model accuracy.Also an opportunity to have some error bars on our precision/recall plots! ###Code from sklearn.model_selection import KFold from sklearn.metrics import confusion_matrix import numpy as np # KFOLD just provides indexes, so we can just do it on the data (not labels) since they're the same size and share the same indices nfolds = 5 kf = KFold(n_splits=nfolds) kf.get_n_splits(data) # We are going to loop thru the KFOLDS and also through the different thresholds. # Yields a NTHRESHOLD rows x KFOLDS cols nthresholds = 21 thetas = np.linspace(0.1, 0.9, nthresholds) precision, recall = np.zeros(shape=(nthresholds, nfolds)), np.zeros(shape=(nthresholds, nfolds)) ifold = 0 for train_index, test_index in kf.split(data): data_train, data_test = data.iloc[train_index], data.iloc[test_index] labels_train, labels_test = labels.iloc[train_index], labels.iloc[test_index] rf = RandomForestClassifier(n_estimators=100, random_state=0) rf.fit(data_train,labels_train) pred_test_probs = rf.predict_proba(data_test) itheta = 0 for theta in thetas: pred_test = np.where(pred_test_probs[:,0] >= theta, 'high','low') m = confusion_matrix(labels_test, pred_test) # Assume that the class=='high' is the Positive Case (i.e. what we care about classifying) tp, fn, fp, tn = m.ravel() precision[itheta, ifold] = tp/(tp+fp+0.) recall[itheta, ifold] = tp/(tp+fn+0.) itheta += 1 ifold += 1 precision_errors = np.std(precision, axis=1) precision_line = np.mean(precision, axis=1) recall_errors = np.std(recall, axis=1) recall_line = np.mean(recall, axis=1) plt.title('Precision and Recall - 1 Std Dev shown') plt.xlabel('threshold') plt.ylabel('Precision/Recall') plt.errorbar(thetas, recall_line, yerr=recall_errors, c='red', capsize=3) plt.errorbar(thetas, precision_line, yerr=precision_errors, c='blue', capsize=3) ###Output _____no_output_____
saildrone-cloud-mur.ipynb
###Markdown this reads in the MUR SST from AWS PODAAC collocates it with all Saildrone cruises ###Code import sys import numpy as np import matplotlib.pyplot as plt import datetime as dt import xarray as xr import cartopy.crs as ccrs from scipy import spatial #sys.path.append('/home/jovyan/shared/users/cgentemann/notebooks/salinity/subroutines/') #from read_routines import read_all_usv, read_one_usv, add_coll_vars import warnings warnings.simplefilter('ignore') # filter some warning messages from glob import glob # these libraries help reading cloud data import fsspec import s3fs import requests import os warnings.simplefilter("ignore") # filter some warning messages xr.set_options(display_style="html",keep_attrs=True) # display dataset nicely ###Output _____no_output_____ ###Markdown Read in All Saildrone cruises downloaded from https://data.saildrone.com/data/sets- 2017 onwards, note that earlier data is going to lack insruments and be poorer data quality in general- For this code I want to develop a routine that reads in all the different datasets and creates a standardized set- It may work best to first read each of the files individually into a dictionary - then go through each dataset finding all variable names- I decided to put all SST into TEMP_CTD_MEAN and same for Salinity so there is a single variable name- this still preserves all the dataset information ###Code import os import sys sys.path.append(os.path.join(os.environ['HOME'],'shared','users','lib')) import ebdpy as ebd ebd.set_credentials(profile='esip-qhub') profile = 'esip-qhub' region = 'us-west-2' endpoint = f's3.{region}.amazonaws.com' ebd.set_credentials(profile=profile, region=region, endpoint=endpoint) worker_max = 30 client,cluster = ebd.start_dask_cluster(profile=profile,worker_max=worker_max, region=region, use_existing_cluster=True, adaptive_scaling=False, wait_for_cluster=False, environment='pangeo', worker_profile='Medium Worker', propagate_env=True) dir_data_pattern = '/home/jovyan/data/sss_collocations_orbital_norepeat/' dir_out = '/home/jovyan/data/sss_collocations_orbital_norepeat_mur/' files = glob(dir_data_pattern+'*.nc') for ifile,file in enumerate(files): ds = xr.open_dataset(file) ds.close() if any(v=='ob' for v in ds.dims.keys()): ds = ds.swap_dims({'ob':'time'}) #remove any duplicates in time, keep only first value _, index = np.unique(ds['time'], return_index=True) ds=ds.isel(time=index) name = file[52:-3] name = name.replace(" ", "_") name = name.replace("/", "_") if ifile==0: data_dict = {name:ds} else: data_dict[name]=ds print(name) ###Output _____no_output_____ ###Markdown Collocate MUR ###Code from earthdata import Auth auth = Auth().login() url = "https://archive.podaac.earthdata.nasa.gov/s3credentials" response = requests.get(url).json() %%time # set up read json_consolidated = "s3://esip-qhub-public/nasa/mur/murv41_consolidated_20211011.json" s_opts = {"requester_pays": True, "skip_instance_cache": True} r_opts = {"key": response["accessKeyId"],"secret": response["secretAccessKey"],"token": response["sessionToken"],"client_kwargs": {"region_name": "us-west-2"},} fs = fsspec.filesystem("reference",fo=json_consolidated, ref_storage_args=s_opts,remote_protocol="s3", remote_options=r_opts,simple_templates=True,) ds_sst = xr.open_dataset(fs.get_mapper(""), decode_times=False, engine="zarr", consolidated=False) ds_sst ###Output _____no_output_____ ###Markdown Collocate using .interp linear interpolation ###Code ds = ds_sst for iname,name in enumerate(data_dict): #if iname>3: # continue print(iname,name) ds_usv = data_dict[name] #create space for new data for var in ds_sst: ds_usv[var]=ds_usv.BARO_PRES_MEAN.copy(deep=True)*np.nan ds_usv[var].attrs=ds_sst[var].attrs ilen = len(ds_usv.time) for inc in range(0,ilen,100): i1,i2 = inc,inc+100 if i2>ilen: i2=ilen-1 #print(inc,inc+100) sub = ds_usv.isel(time=slice(i1,i2)) t1,t2=sub.time.min().data-np.timedelta64(1,'D'),sub.time.max().data+np.timedelta64(1,'D') x1,x2=sub.lon.min().data-.15,sub.lon.max().data+.15 y1,y2=sub.lat.min().data-.15,sub.lat.max().data+.15 #print(inc,t1,t2,x1,x2,y1,y2) ds_sat = ds_sst.sel(time=slice(t1,t2),lat=slice(y1,y2),lon=slice(x1,x2)) ds_sat['time']=np.asarray(ds_sat.time.data, "datetime64[ns]") ds_interp = ds_sat.interp(time=sub.time,lat=sub.lat,lon=sub.lon,method='linear',assume_sorted=False) #add saildrone data to interpolated sat data #add saildrone data to interpolated sat data ds_interp = ds_interp.reset_coords(names={'lat','lon'}) for var in ds_interp: ds_usv[var][i1:i2]=ds_interp[var] #output fout = dir_out+name+'_20211116.nc' ds_usv.to_netcdf(fout) print('output done, start new') for iname,name in enumerate(data_dict): fout = dir_out+name+'_20211116.nc' #ds_usv = xr.open_dataset(fout) #ds_usv.close() #ds_usv.analysed_sst.plot() #plt.show() #plt.clf() ###Output _____no_output_____ ###Markdown now gridded no repeat ###Code import sys import numpy as np import matplotlib.pyplot as plt import datetime as dt import xarray as xr import cartopy.crs as ccrs from scipy import spatial #sys.path.append('/home/jovyan/shared/users/cgentemann/notebooks/salinity/subroutines/') #from read_routines import read_all_usv, read_one_usv, add_coll_vars import warnings warnings.simplefilter('ignore') # filter some warning messages from glob import glob # these libraries help reading cloud data import fsspec import s3fs import requests import os warnings.simplefilter("ignore") # filter some warning messages xr.set_options(display_style="html",keep_attrs=True) # display dataset nicely import os import sys sys.path.append(os.path.join(os.environ['HOME'],'shared','users','lib')) import ebdpy as ebd ebd.set_credentials(profile='esip-qhub') profile = 'esip-qhub' region = 'us-west-2' endpoint = f's3.{region}.amazonaws.com' ebd.set_credentials(profile=profile, region=region, endpoint=endpoint) worker_max = 30 client,cluster = ebd.start_dask_cluster(profile=profile,worker_max=worker_max, region=region, use_existing_cluster=True, adaptive_scaling=False, wait_for_cluster=False, environment='pangeo', worker_profile='Medium Worker', propagate_env=True) from earthdata import Auth auth = Auth().login() url = "https://archive.podaac.earthdata.nasa.gov/s3credentials" response = requests.get(url).json() %%time # set up read json_consolidated = "s3://esip-qhub-public/nasa/mur/murv41_consolidated_20211011.json" s_opts = {"requester_pays": True, "skip_instance_cache": True} r_opts = {"key": response["accessKeyId"],"secret": response["secretAccessKey"],"token": response["sessionToken"],"client_kwargs": {"region_name": "us-west-2"},} fs = fsspec.filesystem("reference",fo=json_consolidated, ref_storage_args=s_opts,remote_protocol="s3", remote_options=r_opts,simple_templates=True,) ds_sst = xr.open_dataset(fs.get_mapper(""), decode_times=False, engine="zarr", consolidated=False) ds_sst dir_data_pattern = '/home/jovyan/data/sss_collocations_8day_nearest_norepeat/' dir_out = '/home/jovyan/data/sss_collocations_8day_nearest_norepeat_mur/' files = glob(dir_data_pattern+'*.nc') for ifile,file in enumerate(files): ds = xr.open_dataset(file) ds.close() if any(v=='ob' for v in ds.dims.keys()): ds = ds.swap_dims({'ob':'time'}) #remove any duplicates in time, keep only first value _, index = np.unique(ds['time'], return_index=True) ds=ds.isel(time=index) name = file[57:-3] name = name.replace(" ", "_") name = name.replace("/", "_") if ifile==0: data_dict = {name:ds} else: data_dict[name]=ds print(ifile,name) ds = ds_sst for iname,name in enumerate(data_dict): if iname<12: continue print(iname,name) ds_usv = data_dict[name] #create space for new data for var in ds_sst: ds_usv[var]=ds_usv.BARO_PRES_MEAN.copy(deep=True)*np.nan ds_usv[var].attrs=ds_sst[var].attrs ilen = len(ds_usv.time) for inc in range(0,ilen,5): #print(inc) i1,i2 = inc,inc+5 if i2>ilen: i2=ilen-1 if i1==i2: continue #print(inc,inc+101) sub = ds_usv.isel(time=slice(i1,i2)) t1,t2=sub.time.min().data-np.timedelta64(1,'D'),sub.time.max().data+np.timedelta64(1,'D') x1,x2=sub.lon.min().data-.15,sub.lon.max().data+.15 y1,y2=sub.lat.min().data-.15,sub.lat.max().data+.15 #print(inc,t1,t2,x1,x2,y1,y2) ds_sat = ds_sst.sel(time=slice(t1,t2),lat=slice(y1,y2),lon=slice(x1,x2)) ds_sat['time']=np.asarray(ds_sat.time.data, "datetime64[ns]") ds_interp = ds_sat.interp(time=sub.time,lat=sub.lat,lon=sub.lon,method='linear',assume_sorted=False) #add saildrone data to interpolated sat data #add saildrone data to interpolated sat data ds_interp = ds_interp.reset_coords(names={'lat','lon'}) for var in ds_interp: ds_usv[var][i1:i2]=ds_interp[var] #output fout = dir_out+name+'_20211116.nc' ds_usv.to_netcdf(fout) print('output done, start new') for iname,name in enumerate(data_dict): fout = dir_out+name+'_20211116.nc' ds_usv = xr.open_dataset(fout) ds_usv.close() print(iname,ds_usv.analysed_sst.mean().data) #plt.show() #plt.clf() ds_usv.analysed_sst.plot() ds_interp = ds_sat.interp(time=sub.time).load() #ds_interp = ds_interp.reset_coords(names={'lat','lon'}) #ds_interp.analysed_sst.plot() #ds_interp = ds_interp.drop('ob') ds_interp.analysed_sst[0,:,:].plot() ds_sst ds_sst.analysed_sst[5000,0:1000,18000:19000].plot() ds_sst.analysed_sst[5000,9000,18000] ###Output _____no_output_____ ###Markdown tricky bit here, .interp wasn't working- ds_sat is being read somewhere as "datetime64[us]" rather than "datetime64[ns]"- this is breaking the interpolation routine which expects "datetime64[ns]"- solution is to set ds_sat time to "datetime64[ns]" ###Code ds_sat.time data = np.asarray(ds_sat.time.data, "datetime64[ns]") ds_sat['time']=data tem2 = ds_sat.interp(time=ds_usv.time,lat=ds_usv.lat,lon=ds_usv.lon,method='linear',assume_sorted=False) #tem2 = ds_sat.sel(time=ds_sat.time[1],method='nearest')#,lat=ds_usv.lat[0],lon=ds_usv.lon[0],method='linear',assume_sorted=False) #tem2 = ds_sat.sel(time=ds_usv.time[0],tem2 = ds_sat.sel(time=ds_sat.time[1],method='nearest')#,lat=ds_usv.lat[0],lon=ds_usv.lon[0],method='linear',assume_sorted=False) #tem2 = ds_sat.sel(time=data[0],method='nearest')#,lat=ds_usv.lat[0],lon=ds_usv.lon[0],method='linear',assume_sorted=False) #lat=ds_usv.lat[0],lon=ds_usv.lon[0],method='nearest')#,method='linear',assume_sorted=False) tem2.analysed_sst.plot() tem2 = ds_sat.sel(time=sub.time,lat=sub.lat,lon=sub.lon,method='nearest') tem2.analysed_sst.plot() ###Output _____no_output_____
aas229_workshop/Lecture_Notebooks/gwcs/aas229_GWCS.ipynb
###Markdown Generalized World Coordinate System (GWCS) Why not FITS WCS? - Not flexible - No distortion handling - distortion paper never approved - only one correction per axis allowed- There's no way to represent discontiguous WCSs.- It has all the disadvantages of the FITS format, discussed in detail in Thomas, B., Jenness. T. et al. 2015, “The Future of Astronomical Data Formats I. Learning from FITS”. Astronomy & Computing, Volume 12, p. 133-145, arXiv e-print: 1502.00996. https://github.com/timj/aandc-fits GWCS Goals- Flexible - Combine transforms arbitrarily in an efficient way so that resampling is done as little as possible. - Execute subtransforms and their inverse. - Insert transforms in the WCS pipeline or change existing transforms. - Provide modular tools for managing WCS.- Extensible - It should be easy to write new transforms GWCS Data Model- A WCS pipeline is a list of steps executed in order - Each step defines a starting coordinate frame and the transform to the next frame in the pipeline. - The last step has no transform, only a frame which is the output frame of the total transform. - As a minimum a WCS object has an *input_frame* (defaults to "detector"), an *output_frame* and the transform between them.- The WCS has a domain attribute which defines the range of acceptable inputs. The domain is a list of dictionaries - one for each axis *{"lower": 5, "upper": 2048, "includes_lower": True, "includes_upper": False}* - The WCS object is written to file using the Advanced Scientific Data Format (ASDF). ASDF- It has a hierarchical metadata structure, made up of basic dynamic data types such as strings, numbers, lists and mappings.- It has human-readable metadata that can be edited directly in place in the file.- ASDF files have the version of the specification they were written to. This makes it possible to evolve the standard while retaining backwards compatibility.- It’s built on top of industry standards, such as YAML and JSON Schema- The structure of the data can be automatically validated using schema. ASDF and GWCS- The asdf package contains the schemas which define and validate GWCS.http://asdf-standard.readthedocs.io/en/latest/- The asdf package contains also the code which serializes GWCS to disk.http://asdf.readthedocs.io/en/latest/ Example of serializing an astropy.modeling model to a file. ###Code from asdf import AsdfFile import numpy as np from astropy.modeling import models # Create a 2D rotation model rotation = models.Rotation2D(angle=60) print(rotation) # Open an ASDF file object f = AsdfFile() # Every ASDF file object has an attribute, called "tree" # It is a dict like object which store theinformation in YAML format print(f.tree) f.tree['model'] = rotation f.write_to('rotation.asdf') #!less rotation.asdf ###Output _____no_output_____ ###Markdown GWCS and Astropy- Transforms in GWCS are instances of models in [astropy.modeling](http://docs.astropy.org/en/stable/modeling/index.html)- The celestial reference frames in gwcs.coordinate_frames are implemented in [astropy.coordinates](http://docs.astropy.org/en/stable/coordinates/index.html)- Units and unit conversion is implemented in [astropy.units](http://docs.astropy.org/en/stable/units/index.html) JWST and GWCSGWCS is the software used for managing the WCS of JWST observations.- The WCS is included in the JWST science files. It is saved in the FITS file as a separate extension with *EXTNAME=ASDF*.- The WCS includes all transforms from detector to a standard world coordinate system.- The WCS pipelines for different instrument modes include different intermediate coordinate frames.- WCS reference files are in ASDF format. Imaging - A Programmatic Example ###Code import numpy as np from astropy.modeling import models from astropy import units as u from astropy import coordinates as coord from asdf import AsdfFile from gwcs import wcs from gwcs import coordinate_frames as cf from gwcs import wcstools from gwcs import utils as gwutils ###Output _____no_output_____ ###Markdown First let's create two polynomil models to represent distoriton. ###Code polyx = models.Polynomial2D(4) polyx.parameters = np.random.randn(15) polyy = models.Polynomial2D(4) polyy.parameters = np.random.randn(15) distortion = (models.Mapping((0, 1, 0, 1)) | polyx & polyy).rename("distortion") f = AsdfFile() f.tree['model'] = distortion f.write_to('poly.asdf', all_array_storage='inline') #!less poly.asdf ###Output _____no_output_____ ###Markdown Next, create a compound transform comprised of offsets in x and y,followed by a rotation and scaling in x and y, followed by a tangent deprojection and a 3D sky rotation. ###Code undist2sky = (models.Shift(-10.5) & models.Shift(-13.2) | models.Rotation2D(0.0023) | \ models.Scale(.01) & models.Scale(.04) | models.Pix2Sky_TAN() | \ models.RotateNative2Celestial(5.6, -72.05, 180)).rename("undistorted2sky") ###Output _____no_output_____ ###Markdown Create three coordinate frames. ###Code detector_frame = cf.Frame2D(name="detector", axes_names=("x", "y"), unit=(u.pix, u.pix)) sky_frame = cf.CelestialFrame(name="icrs", reference_frame=coord.ICRS()) focal_frame = cf.Frame2D(name="focal_frame", unit=(u.arcsec, u.arcsec)) pipeline = [(detector_frame, distortion), (focal_frame, undist2sky), (sky_frame, None) ] wcsobj = wcs.WCS(pipeline) print(wcsobj) # Calling the WCS object like a function evaluates the transforms. ra, dec = wcsobj(500, 600) print(ra, dec) # Display the frames available in the WCS pipeline print(wcsobj.available_frames) wcsobj.input_frame wcsobj.output_frame # Because the output_frame is a CoordinateFrame object we can get as output # coordinates.SkyCoord objects. skycoord = wcsobj(1, 2, output="numericals_plus") print(skycoord) print(skycoord.transform_to('galactic')) print(wcsobj.output_frame.coordinates(ra, dec)) ###Output _____no_output_____ ###Markdown Methods for managing the transforms ###Code # It is possible to retrieve the transform between any # two coordinate frames in the WCS pipeline print(wcsobj.available_frames) det2focal = wcsobj.get_transform("detector", "focal_frame") fx, fy = det2focal(1, 2) print(fx, fy) # And we can see what the units are in focal_frame print(wcsobj.focal_frame.coordinates(fx, fy)) # It is also possible to replace a transform # Create a transforms which shifts in X and y new_det2focal = models.Shift(3) & models.Shift(12) # Replace the transform between "detector" and "v2v3" wcsobj.set_transform("detector", "focal_frame", new_det2focal) new_ra, new_dec = wcsobj(500, 600) print(ra, dec) print(new_ra, new_dec) # We can insert a transform in the pipeline just before or after a frame rotation = models.EulerAngleRotation(.1, 12, 180, axes_order="xyz") wcsobj.insert_transform("focal_frame", rotation) wcsobj.get_transform("detector", "focal_frame")(1, 2) ###Output _____no_output_____ ###Markdown Discontiguous transformsThere are cases when different WCS transforms apply to different regions of the same image.JWST observations with the IFUs, the NIRSpec MOS and fixed slits, the NIRISS SOSS and the WFSS,are all examlpes of discontiguos WCSs.GWCS manages this by packaging the transforms in a single WCS object.Individual WCSs are accessed using additional inputs. These non-coordinate inputs depend on the specific mode. For the NIRSpec fixed slits the input is the slit name, for the IFU - the slice number, for the MOS - the sltlet_id, for NIRISS SOSS - the spectral order. NIRSpec Fixed Slit Example This example was shown in the workshop, but the code for the jwst module may not be released yet ###Code from jwst import datamodels nrs_fs = "nrs1_assign_wcs.fits.gz" nrs = datamodels.ImageModel(nrs_fs) from jwst.assign_wcs import nirspec slits = nirspec.get_open_slits(nrs) print(slits[0]) slits = nirspec.get_open_slits(nrs) for s in slits: print(s) s0 = nirspec.nrs_wcs_set_input(nrs, "S200A1") print(s0.domain) s0.available_frames s0.output_frame x, y = wcstools.grid_from_domain(s0.domain) ra, dec, lam = s0(x, y) res = s0(1000, 200, output="numericals_plus") print(res) %matplotlib inline from matplotlib import pyplot as plt plt.imshow(lam, aspect='auto') plt.title("lambda, microns") plt.colorbar() ###Output _____no_output_____
uhecr_model/figures/verification/figures_TA_SBG_sims_cumul.ipynb
###Markdown Figures for comparison of arrival direction and joint modelsHere use the output from the `arrival_vs_joint` notebook to plot the figures shown in the paper.*This code is used to produce Figures 6, 7 and 8 (left panel) in Capel & Mortlock (2019).* ###Code %matplotlib inline import numpy as np import h5py import matplotlib as mpl from matplotlib import pyplot as plt import seaborn as sns from pandas import DataFrame from fancy import Data, Results from fancy.plotting import Corner from fancy.plotting.allskymap_cartopy import AllSkyMapCartopy as AllSkyMap from fancy.plotting.colours import * # to match paper style plt.style.use('minimalist') # Define output files source_type = "SBG_23" detector_type = "TA2015" sim_output_file = "../../output/{0}_sim_{1}_{2}_{3}_{4}_notightB.h5".format( "joint", source_type, detector_type, 19990308, "p") ###Output _____no_output_____ ###Markdown Figure 6The simulated data set and the Auger exposure. ###Code '''set detector and detector properties''' if detector_type == "TA2015": from fancy.detector.TA2015 import detector_params, Eth elif detector_type == "auger2014": from fancy.detector.auger2014 import detector_params, Eth elif detector_type == "auger2010": from fancy.detector.auger2010 import detector_params, Eth else: raise Exception("Undefined detector type!") from astropy.coordinates import SkyCoord from astropy import units as u from fancy.detector.exposure import m_dec from fancy.interfaces.stan import Direction ###Output _____no_output_____ ###Markdown Figure 7Comparison of the joint and arrival direction fits. ###Code seeds = [19990308, 16852056, 65492186, 9999999, 9953497] F_gmf = [] F_joint = [] F_arrival = [] for seed in seeds: # joint_gmf_output_file = "../../output/{0}_fit_{5}_{1}_{2}_{3}_{4}_{6}.h5".format( # "joint_gmf", "SBG_23", "TA2015", seed, "p", "sim", "joint_gmf") joint_output_file = "../../output/{0}_fit_{5}_{1}_{2}_{3}_{4}_{6}.h5".format( "joint", "SBG_23", "TA2015", seed, "p", "sim", "joint") arrival_output_file = "../../output/{0}_fit_{5}_{1}_{2}_{3}_{4}_{6}.h5".format( "arrival_direction", "SBG_23", "TA2015", seed, "p", "sim", "joint") # f_g = Results(joint_gmf_output_file).get_chain(['f'])['f'] f_j = Results(joint_output_file).get_chain(['f'])['f'] f_a = Results(arrival_output_file).get_chain(['f'])['f'] # F_gmf.append(f_g) F_joint.append(f_j) F_arrival.append(f_a) # f_gmf_avg = np.mean(np.array(F_gmf), axis=0) f_joint_avg = np.mean(np.array(F_joint), axis=0) f_arrival_avg = np.mean(np.array(F_arrival), axis=0) f_true = Results(sim_output_file).get_truths(['f'])['f'] fig, ax = plt.subplots() # fig.set_size_inches((6, 4)) # sns.distplot(f_gmf_avg, hist = False, # kde_kws = {'shade' : True, 'lw' : 2, 'zorder' : 0}, # color = grey, label = 'joint + gmf') sns.distplot(f_joint_avg, hist = False, kde_kws = {'shade' : True, 'lw' : 2, 'zorder' : 1}, color = purple, label = 'joint') sns.distplot(f_arrival_avg, hist = False, kde_kws = {'shade' : True, 'lw' : 2, 'zorder' : 0}, color = lightblue, label = 'arrival') ax.axvline(f_true, 0, 10, color = 'k', zorder = 3, lw = 2., alpha = 0.7) ax.set_xlim(0, 1) # ax.set_ylim(0, 10) ax.set_xlabel('$f$') ax.set_ylabel('$P(f | \hat{E}, \hat{\omega})$') ax.legend(loc="best") fig.savefig("dist_sims_cumul.png", bbox_inches="tight") ###Output _____no_output_____ ###Markdown Figure 8 (left panel) ###Code keys = ['F0', 'L', 'alpha', 'B', 'f'] chain_list = [] for seed in seeds: joint_gmf_output_file = "../../output/{0}_fit_{5}_{1}_{2}_{3}_{4}_{6}.h5".format( "joint_gmf", "SBG_23", "TA2015", seed, "p", "sim", "joint_gmf") # joint_output_file = "../../output/{0}_fit_{5}_{1}_{2}_{3}_{4}.h5".format( # "joint", "SBG_23", "TA2015", seed, "p", "sim") chain = Results(joint_gmf_output_file).get_chain(keys) # Convert form Stan units to plot units chain['F0'] = chain['F0'] / 1.0e3 # km^-2 yr^-1 chain['L'] = chain['L'] * 10 # 10^-38 yr^-1 chain_list.append(chain) chain_avgs = {key:0 for key in keys} for key in keys: chain_sum = 0 for i in range(len(seeds)): chain_sum += chain_list[i][key] chain_sum /= len(seeds) chain_avgs[key] = chain_sum chain_avgs # Get chains from joint fit and truths from simulation results_sim = Results(sim_output_file) # results_fit = Results(joint_gmf_output_file) # keys = ['F0', 'L', 'alpha', 'B', 'f'] # chain = results_fit.get_chain(keys) # # Convert form Stan units to plot units # chain['F0'] = chain['F0'] / 1.0e3 # km^-2 yr^-1 # chain['L'] = chain['L'] * 10 # 10^-38 yr^-1 truth_keys = ['F0', 'L', 'alpha', 'B', 'f'] truth = results_sim.get_truths(truth_keys) info_keys = ['Eth', 'Eth_sim'] info = results_sim.get_truths(info_keys) # Correct for different Eth in sim and fit # Also scale to plot units flux_scale = (info['Eth'] / info['Eth_sim'])**(1 - truth['alpha']) truth['F0'] = truth['F0'] * flux_scale # km^-2 yr^-1 truth['L'] = truth['L'][0] * flux_scale / 1.0e39 * 10 # 10^-38 yr^-1 labels = {} labels['L'] = r'$L$ / $10^{38}$ $\mathrm{yr}^{-1}$' labels['F0'] = r'$F_0$ / $\mathrm{km}^{-2} \ \mathrm{yr}^{-1}$' labels['B'] = r'$B$ / $\mathrm{nG}$' labels['alpha'] = r'$\alpha$' labels['f'] = r'$f$' params = np.column_stack([chain_avgs[key] for key in keys]) truths = [truth[key] for key in keys] # Make nicely labelled dict chain_for_df = {} for key in keys: chain_for_df[labels[key]] = chain_avgs[key] # Make ordered dataframe df = DataFrame(data = chain_for_df) df = df[[labels['F0'], labels['L'], labels['alpha'], labels['B'], labels['f']]] corner = Corner(df, truths, color=purple, contour_color=purple_contour) corner.save("corner_sims_cumul.png") ###Output _____no_output_____
lesson_notebooks/l5/beautifulsoup/children_tags_solution.ipynb
###Markdown TODO: Get The Children from the `` TagIn the cell below, print the contents and the number of children of the `` tag in the `sample2.html` file. Start by opening the `sample2.html` file and passing the open filehandle to the BeautifulSoup constructor using the `lxml` parser. Save the BeautifulSoup object returned by the constructor in a variable called `page_content`. Then access the `` tag and save the tag object in variable called `page_title`. Then use the `.contents` attribute to print the contents and the number of children of the `` tag. ###Code # Import BeautifulSoup from bs4 import BeautifulSoup # Open the HTML file and create a BeautifulSoup Object with open('./sample2.html') as f: page_content = BeautifulSoup(f, 'lxml') # Access the title tag page_title = page_content.head.title # Print the children of the title tag print(page_title.contents) # Print the number of children of the title tag print('\nThe <title> contains {} children'.format(len(page_title.contents))) ###Output ['AI For Trading'] The <title> contains 1 children ###Markdown TODO: Loop Through The Children The `` TagIn the cell below, print the children of the `` tag in the `sample2.html` file. Start by opening the `sample2.html` file and passing the open filehandle to the BeautifulSoup constructor using the `lxml` parser. Save the BeautifulSoup object returned by the constructor in a variable called `page_content`. Then create a loop that prints the children of the `` tag using the `.children` attribute. ###Code # Import BeautifulSoup from bs4 import BeautifulSoup # Open the HTML file and create a BeautifulSoup Object with open('./sample2.html') as f: page_content = BeautifulSoup(f, 'lxml') # Print the children of the head tag for child in page_content.head.title.children: print(child) ###Output AI For Trading ###Markdown TODO: Search For The `` TagIn the cell below, search for the `` tag only in the direct children of the `` tag in the `sample2.html` file. Start by opening the `sample2.html` file and passing the open filehandle to the BeautifulSoup constructor using the `lxml` parser. Save the BeautifulSoup object returned by the constructor in a variable called `page_content`. Then search the html tag's direct children for the `` tag using the `recursive=False` argument. Print the result using the `.prettify()` attribute. ###Code # Import BeautifulSoup from bs4 import BeautifulSoup # Open the HTML file and create a BeautifulSoup Object with open('./sample2.html') as f: page_content = BeautifulSoup(f, 'lxml') # Search the html tag's direct children for the head tag for tag in page_content.html.find_all('head', recursive = False): print(tag.prettify()) ###Output <head> <title> AI For Trading </title> <meta charset="utf-8"/> <link href="./teststyle.css" rel="stylesheet"/> <style> .h2style {background-color: tomato;color: white;padding: 10px;} </style> </head>
summer/an introduction to ML.ipynb
###Markdown ASDRP Data Science Introduction ###Code #Import Python Libraries import numpy as np import scipy as sp import pandas as pd import matplotlib.pyplot as plt import seaborn as sns ###Output _____no_output_____ ###Markdown Pandas is a python package that deals mostly with : Series (1d homogeneous array) DataFrame (2d labeled heterogeneous array) Panel (general 3d array) ###Code # Example of creating Pandas series : myseries = pd.Series( np.random.randn(5) ) print(myseries) ###Output 0 -0.953803 1 0.668505 2 0.454627 3 -0.000543 4 0.267883 dtype: float64 ###Markdown We did not pass any index, so by default, it assigned the indexes ranging from 0 to len(data)-1 ###Code # View index values print(myseries.index) # Creating Pandas series with index: iseries = pd.Series( np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'] ) print(iseries) # View index values print(iseries.index) ###Output Index(['a', 'b', 'c', 'd', 'e'], dtype='object') ###Markdown Reading Salaries data to DataFrame ###Code df = pd.read_csv("https://raw.githubusercontent.com/philmui/algorithmic-bias-2019/master/data/salaries/Salaries.csv"); df.dtypes df.count() df.head() df.describe() ###Output _____no_output_____ ###Markdown GroupBy ###Code df_rank = df.groupby(["rank"]) df_rank.mean() #Calculate mean salary for each professor rank: df.groupby('rank')[['salary']].mean() ###Output _____no_output_____ ###Markdown Filtering ###Code #Calculate mean salary for each professor rank: df_sub = df[ df['salary'] > 120000 ] df_sub.head() #Select only those rows that contain female professors: df_f = df[ df['sex'] == 'Female' ] df_f.head() ###Output _____no_output_____ ###Markdown Slicing ###Code #Select column salary: df['salary'] #Select column salary: df[['rank','salary']] ###Output _____no_output_____ ###Markdown Row Selection ###Code #Select rows by their position: df[10:20] ###Output _____no_output_____ ###Markdown Sorting ###Code # Create a new data frame from the original sorted by the column Salary df_sorted = df.sort_values( by ='salary', ascending=1) df_sorted.head() df_sorted = df.sort_values( by =['service', 'salary'], ascending = [True, False]) df_sorted.head(10) ###Output _____no_output_____ ###Markdown Introduction to Exercises ###Code # Create a Series from dictionary data = {'pi': 3.1415, 'e': 2.71828} # dictionary print(data) s3 = pd.Series ( data ) print(s3) # reordering the elements s4 = pd.Series ( data, index = ['e', 'pi', 'tau']) print(s4) ###Output e 2.71828 pi 3.14150 tau NaN dtype: float64 ###Markdown NAN (non a number) - is used to specify a missing value in Pandas. ###Code # Creating a Pandas Series object from a single number: sone = pd.Series( 1, index = range(10), name='Ones') print(sone) # Many ways to "slice" Pandas series (series have zero-based index by default): print(myseries) myseries[3] # returns 4th element myseries[:2] # First 2 elements print( s1[ [2,1,0]]) # Elements out of order # Series can be used as ndarray: print("Median:" , myseries.median()) myseries[myseries > 0] # vector operations: np.exp(myseries) ###Output _____no_output_____
.ipynb_checkpoints/003set_jaccard-checkpoint.ipynb
###Markdown 使用set来 集合用来删除重复的值使用jaccard系数来计算2句话的相似度 ###Code #初始化2个句子 st_1 = "you are beautiful" st_2 = "you are a beauty" # 创建集合 st_1_words = set(st_1.split()) st_2_words = set(st_2.split()) # 每个集合的大小 c_st_1_words = len(st_1_words) c_st_2_words = len(st_2_words) # 两个集合共有的词 com_words = st_1_words.intersection(st_2_words) c_com_words = len(com_words) # 两个集合不重复的词 uniq_words = st_1_words.union(st_2_words) c_uniq_words = len(uniq_words) # 计算jaccard相似度 similarity = c_com_words/(1.0*c_uniq_words) # print the result print 'set1 is ',st_1_words print 'set2 is ',st_2_words print 'commen words count is ',c_com_words print 'unique words count is ',c_uniq_words print 'commen words is ',com_words print 'uniq words is ',uniq_words print 'Similarity is :',similarity ###Output set1 is set(['beautiful', 'you', 'are']) set2 is set(['a', 'you', 'are', 'beauty']) commen words count is 2 unique words count is 5 commen words is set(['you', 'are']) uniq words is set(['beautiful', 'a', 'are', 'beauty', 'you']) Similarity is : 0.4
Fruit_Vegetables_clas.ipynb
###Markdown AI达人创造营作业:水果蔬菜分类 解压数据集 ###Code !unzip -q -d data/ data/data104366/Fruit-Vegetables-Dataset.zip import matplotlib.pyplot as plt import PIL.Image as Image path = 'data/Fruit-Vegetables-Dataset/Banana/245_100.jpg' img = Image.open(path) plt.imshow(img) # 根据数组绘制图像 plt.show() # 显示图像 ###Output _____no_output_____ ###Markdown 数据处理 ###Code import os import re images_path = 'data/Fruit-Vegetables-Dataset' # 存放目录 txt_save_path = 'label_name.txt' # 生成txt文件 fw = open(txt_save_path, "w") # 读取函数,用来读取文件夹中的所有函数,输入参数是文件名 def read_directory(directory_name): i = 0 for filename in os.listdir(directory_name): # print(filename) # 仅仅是为了测试 fw.write(filename + '\t' + str(i) +'\n') # 打印成功信息 i = i + 1 read_directory(images_path) #传入所要读取文件夹路径 # 建立样本数据读取路径与样本标签之间的关系 import os import random data_list = [] # 用列表保存每个样本的读取路径和标签 # 构造标签字典 label_list = [] with open('label_name.txt') as f: for line in f: a, b = line.strip('\n').split('\t') label_list.append([a, b]) label_dic = dict(label_list) label_list_2 = [] with open('label_name.txt') as f: for line in f: a, b = line.strip('\n').split('\t') label_list.append([b, a]) # 获取img_trainA目录下所有子目录名称,保存到列表中 class_list = [] for i in os.listdir('data/Fruit-Vegetables-Dataset'): class_dir = os.path.join('data/Fruit-Vegetables-Dataset', i) if os.path.isdir(class_dir): class_list.append(i) # print(class_list) # 方法二 # class_list = os.listdir('img_trainA') # class_list.remove('label_name.txt') # print(class_list) for i in range(0,20): for each in class_list: for f in os.listdir('data/Fruit-Vegetables-Dataset/'+each): data_list.append(['data/Fruit-Vegetables-Dataset/'+ each +'/'+ f,label_dic[each]]) # 打乱文件顺序 random.shuffle(data_list) # 打印前十个,[样本读取路径,样本标签] print(data_list[0:10]) # 打印样本数量 print('样本数量是:{}'.format(len(data_list))) # 构造读取器与数据预处理 # 导入相关模块 import paddle from paddle.vision.transforms import Compose, ColorJitter, Resize, Transpose, Normalize from paddle.vision import transforms import cv2 import numpy as np from PIL import Image from paddle.io import Dataset # 数据预处理 def preprocess(img): transform = Compose([ # Resize(size=(100, 100)), # transforms.RandomHorizontalFlip(), # 水平翻转 # transforms.ColorJitter(0.05, 0.05, 0.05, 0.05), # transforms.RandomRotation(8), # 随机旋转 # transforms.RandomResizedCrop(size=(300,400), scale=(0.8, 1.0),), # 随机剪裁 # mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], data_format='HWC' Normalize(mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5], data_format='HWC'), Transpose() ]) img = transform(img).astype('float32') return img # 自定义收据读取器 class Reader(Dataset): def __init__(self, data, is_val=False): super().__init__() self.samples = data[-int(len(data)*0.2):] if is_val else data[:-int(len(data)*0.2)] def __getitem__(self, idx): # 处理图像 img_path = self.samples[idx][0] # 得到某样本路径 img = Image.open(img_path) if img.mode != 'RGB': img = img.convert('RGB') img = preprocess(img) # 数据预处理 # 处理标签 label = self.samples[idx][1] # 得到某样本的标签 label = np.array([label], dtype='int64') return img, label def __len__(self): # 返回每个epoch中的图片数量 return len(self.samples) # 生成训练数据集实例 train_dataset = Reader(data_list, is_val=False) # 生成测试数据集实例 eval_dataset = Reader(data_list, is_val=True) # 打印一个训练样本 print(train_dataset[88][0].shape) print(train_dataset[88][1]) ###Output (3, 100, 100) [79] ###Markdown 模型配置 ###Code # 定义模型 class MyNet(paddle.nn.Layer): def __init__(self): super(MyNet, self).__init__() self.layer = paddle.vision.models.vgg16(pretrained=True) self.fc1 = paddle.nn.Linear(1000, 500) self.fc2 = paddle.nn.Linear(500, 120) # 网络的前向计算过程 def forward(self, x): x = self.layer(x) x = self.fc1(x) x = self.fc2(x) return x # 模型配置 # 定义输入 input_define = paddle.static.InputSpec(shape=[-1,3,100,100], dtype='float32', name='img') label_define = paddle.static.InputSpec(shape=[-1,1], dtype='int64', name='label') # 实例化网络对象并定义优化器等 model = MyNet() model = paddle.Model(model, inputs=input_define, labels=label_define) # 封装模型 optimizer = paddle.optimizer.Adam(learning_rate=0.0003, parameters=model.parameters()) model.prepare(optimizer=optimizer, loss=paddle.nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy()) ###Output 100%|██████████| 817517/817517 [00:11<00:00, 72781.77it/s] ###Markdown 模型训练 ###Code model.fit(train_data=train_dataset, eval_data=eval_dataset, batch_size=8, epochs=10, save_dir='output', save_freq=5, log_freq=10, verbose=1 ) ###Output The loss value printed in the log is the current step, and the metric is the average value of previous steps. Epoch 1/10 ###Markdown 模型预测 ###Code # 加载模型 model.load('output/final') result = model.evaluate(eval_dataset, batch_size=128, verbose=1) print(result) result = model.predict(eval_dataset) print(len(result[0]), result[0][0].shape) # path = ' ' # img = Image.open(path) # plt.imshow(img) # 根据数组绘制图像 # plt.show() # 显示图像 # for i in range(len(result[0])): import matplotlib.pyplot as plt for i in range(0,4): img1 = eval_dataset[i][0] img1 = img1.transpose(1, 2, 0) plt.imshow(img1) # 根据数组绘制图像 plt.show() # 显示图像 # print(img1.shape, eval_dataset[i][1], result[0][i]) print(img1.shape, label_list_2[0][int(eval_dataset[i][1])]) ###Output _____no_output_____
docs/sbm_unmatched_test.ipynb
###Markdown A group-based testNext, we test bilateral symmetry by making an assumption that the left and the righthemispheres both come from a stochastic block model, which models the probabilityof any potential edge as a function of the groups that the source and target nodesare part of.For now, we use some broad cell type categorizations for each neuron to determine itsgroup. Alternatively, there are many methods for *estimating* these assignments togroups for each neuron, which we do not explore here. ###Code from pkg.utils import set_warnings set_warnings() import datetime import time import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from giskard.plot import rotate_labels from matplotlib.transforms import Bbox from myst_nb import glue as default_glue from pkg.data import load_network_palette, load_node_palette, load_unmatched from pkg.io import savefig from pkg.perturb import remove_edges from pkg.plot import set_theme from pkg.stats import stochastic_block_test from seaborn.utils import relative_luminance DISPLAY_FIGS = False FILENAME = "sbm_unmatched_test" def gluefig(name, fig, **kwargs): savefig(name, foldername=FILENAME, **kwargs) glue(name, fig, prefix="fig") if not DISPLAY_FIGS: plt.close() def glue(name, var, prefix=None): savename = f"{FILENAME}-{name}" if prefix is not None: savename = prefix + ":" + savename default_glue(savename, var, display=False) t0 = time.time() set_theme() rng = np.random.default_rng(8888) network_palette, NETWORK_KEY = load_network_palette() node_palette, NODE_KEY = load_node_palette() neutral_color = sns.color_palette("Set2")[2] GROUP_KEY = "simple_group" left_adj, left_nodes = load_unmatched(side="left") right_adj, right_nodes = load_unmatched(side="right") left_labels = left_nodes[GROUP_KEY].values right_labels = right_nodes[GROUP_KEY].values ###Output _____no_output_____ ###Markdown The stochastic block model (SBM)A [**stochastic block model (SBM)**](https://en.wikipedia.org/wiki/Stochastic_block_model)is a popular statistical model of networks. Put simply, this model treats theprobability of an edge occuring between node $i$ and node $j$ as purely a function ofthe *communities* or *groups* that node $i$ and $j$ belong to. Therefore, this modelis parameterized by: 1. An assignment of each node in the network to a group. Note that this assignment can be considered to be deterministic or random, depending on the specific framing of the model one wants to use. 2. A set of group-to-group connection probabilities```{admonition} MathLet $n$ be the number of nodes, and $K$ be the number of groups in an SBM. For anetwork $A$ sampled from an SBM:$$ A \sim SBM(B, \tau)$$We say that for all $(i,j), i \neq j$, with $i$ and $j$ both runningfrom $1 ... n$ the probability of edge $(i,j)$ occuring is:$$ P[A_{ij} = 1] = P_{ij} = B_{\tau_i, \tau_j} $$where $B \in [0,1]^{K \times K}$ is a matrix of group-to-group connectionprobabilities and $\tau \in \{1...K\}^n$ is a vector of node-to-group assignments.Note that here we are assuming $\tau$ is a fixed vector of assignments, though otherformuations of the SBM allow these assignments to themselves come from a categoricaldistribution.``` Testing under the SBM modelAssuming this model, there are a few ways that one could test for differences betweentwo networks. In our case, we are interested in comparing the group-to-groupconnection probability matrices, $B$, for the left and right hemispheres.````{admonition} MathWe are interested in testing:```{math}:label: sbm_unmatched_nullH_0: B^{(L)} = B^{(R)}, \quad H_A: B^{(L)} \neq B^{(R)}```````Rather than having to compare one proportion as in [](er_unmatched_test.ipynb), we arenow interedted in comparing all $K^2$ probabilities between the SBM models for theleft and right hemispheres.```{admonition} MathThe hypothesis test above can be decomposed into $K^2$ indpendent hypotheses.$B^{(L)}$and $B^{(R)}$ are both $K \times K$ matrices, where each element $b_{kl}$ representsthe probability of a connection from a neuron in group $k$ to one in group $l$. Wealso know that group $k$ for the left network corresponds with group $k$ for theright. In other words, the *groups* are matched. Thus, we are interested in testing,for $k, l$ both running from $1...K$:$$ H_0: B_{kl}^{(L)} = B_{kl}^{(R)},\quad H_A: B_{kl}^{(L)} \neq B_{kl}^{(R)}$$```Thus, we will use[Fisher's exact test](https://en.wikipedia.org/wiki/Fisher%27s_exact_test) tocompare each set of probabilities. To combine these multiple hypotheses into one, wewill use [Fisher's method](https://en.wikipedia.org/wiki/Fisher%27s_method) forcombining p-values to give us a p-value for the overall test. We also can look atthe p-values for each of the individual tests after correction for multiplecomparisons by the[Bonferroni-Holm method.](https://en.wikipedia.org/wiki/Holm%E2%80%93Bonferroni_method) For the current investigation, we focus on the case where $\tau$ is known ahead oftime, sometimes called the **A priori SBM**. We use some broad cell type labels whichwere described in the paper which published the data todefine the group assignments $\tau$. Here, we do not exploreestimating these assignments, though many techniques exist for doing so. We note thatthe results presented here could change depending on the group assignments which areused. We also do not consider tests which would compare the assignment vectors,$\tau$. {numref}`Figure {number} ` shows thenumber of neurons in each group in the group assignments $\tau$ for the left andthe right hemispheres. The number of neurons in each group is quite similar betweenthe two hemispheres. ###Code stat, pvalue, misc = stochastic_block_test( left_adj, right_adj, labels1=left_labels, labels2=right_labels, method="fisher" ) glue("uncorrected_pvalue", pvalue) n_tests = misc["n_tests"] glue("n_tests", n_tests) set_theme(font_scale=1) fig, ax = plt.subplots(1, 1, figsize=(10, 5)) group_counts_left = misc["group_counts1"] group_counts_right = misc["group_counts2"] for i in range(len(group_counts_left)): ax.bar(i - 0.17, group_counts_left[i], width=0.3, color=network_palette["Left"]) ax.bar(i + 0.17, group_counts_right[i], width=0.3, color=network_palette["Right"]) rotate_labels(ax) ax.set( ylabel="Count", xlabel="Group", xticks=np.arange(len(group_counts_left)) + 0.2, xticklabels=group_counts_left.index, ) gluefig("group_counts", fig) ###Output _____no_output_____ ###Markdown ```{glue:figure} fig:sbm_unmatched_test-group_counts:name: "fig:sbm_unmatched_test-group_counts"The number of neurons in each group in each hemisphere. Note the similarity betweenthe hemispheres.``` ###Code def plot_stochastic_block_test(misc, pvalue_vmin=None): # get values B1 = misc["probabilities1"] B2 = misc["probabilities2"] null_odds = misc["null_odds"] B2 = B2 * null_odds index = B1.index p_max = max(B1.values.max(), B2.values.max()) uncorrected_pvalues = misc["uncorrected_pvalues"] n_tests = misc["n_tests"] K = B1.shape[0] alpha = 0.05 hb_thresh = alpha / n_tests # set up plot pad = 2 width_ratios = [0.5, pad + 0.8, 10, pad - 0.4, 10, pad + 0.9, 10, 0.5] set_theme(font_scale=1.25) fig, axs = plt.subplots( 1, len(width_ratios), figsize=(30, 10), gridspec_kw=dict( width_ratios=width_ratios, ), ) left_col = 2 right_col = 4 pvalue_col = 6 heatmap_kws = dict( cmap="Blues", square=True, cbar=False, vmax=p_max, fmt="s", xticklabels=True ) # heatmap of left connection probabilities annot = np.full((K, K), "") annot[B1.values == 0] = 0 ax = axs[left_col] sns.heatmap(B1, ax=ax, annot=annot, **heatmap_kws) ax.set(ylabel="Source group", xlabel="Target group") ax.set_title(r"$\hat{B}$ left", fontsize="xx-large", color=network_palette["Left"]) # heatmap of right connection probabilities annot = np.full((K, K), "") annot[B2.values == 0] = 0 ax = axs[right_col] im = sns.heatmap(B2, ax=ax, annot=annot, **heatmap_kws) ax.set(ylabel="", xlabel="Target group") text = r"$\hat{B}$ right" if null_odds != 1: text = r"$c$" + text ax.set_title(text, fontsize="xx-large", color=network_palette["Right"]) # handle the colorbars # NOTE: did it this way cause the other options weren't playing nice with auto # constrain # layouts. def shrink_axis(ax, scale=0.7): pos = ax.get_position() mid = (pos.ymax + pos.ymin) / 2 height = pos.ymax - pos.ymin new_pos = Bbox( [ [pos.xmin, mid - scale * 0.5 * height], [pos.xmax, mid + scale * 0.5 * height], ] ) ax.set_position(new_pos) ax = axs[0] shrink_axis(ax, scale=0.5) _ = fig.colorbar( im.get_children()[0], cax=ax, fraction=1, shrink=1, ticklocation="left", ) # plot p-values ax = axs[pvalue_col] annot = np.full((K, K), "") annot[(B1.values == 0) & (B2.values == 0)] = "B" annot[(B1.values == 0) & (B2.values != 0)] = "L" annot[(B1.values != 0) & (B2.values == 0)] = "R" plot_pvalues = np.log10(uncorrected_pvalues) plot_pvalues[np.isnan(plot_pvalues)] = 0 im = sns.heatmap( plot_pvalues, ax=ax, annot=annot, cmap="RdBu", center=0, square=True, cbar=False, fmt="s", vmin=pvalue_vmin, ) ax.set(ylabel="", xlabel="Target group") ax.set(xticks=np.arange(K) + 0.5, xticklabels=index) ax.set_title(r"$log_{10}($p-value$)$", fontsize="xx-large") colors = im.get_children()[0].get_facecolors() significant = uncorrected_pvalues < hb_thresh # NOTE: the x's looked bad so I did this super hacky thing... pad = 0.2 for idx, (is_significant, color) in enumerate( zip(significant.values.ravel(), colors) ): if is_significant: i, j = np.unravel_index(idx, (K, K)) # REF: seaborn heatmap lum = relative_luminance(color) text_color = ".15" if lum > 0.408 else "w" xs = [j + pad, j + 1 - pad] ys = [i + pad, i + 1 - pad] ax.plot(xs, ys, color=text_color, linewidth=4) xs = [j + 1 - pad, j + pad] ys = [i + pad, i + 1 - pad] ax.plot(xs, ys, color=text_color, linewidth=4) # plot colorbar for the pvalue plot # NOTE: only did it this way for consistency with the other colorbar ax = axs[7] shrink_axis(ax, scale=0.5) _ = fig.colorbar( im.get_children()[0], cax=ax, fraction=1, shrink=1, ticklocation="right", ) fig.text(0.11, 0.85, "A)", fontweight="bold", fontsize=50) fig.text(0.63, 0.85, "B)", fontweight="bold", fontsize=50) # remove dummy axes for i in range(len(width_ratios)): if not axs[i].has_data(): axs[i].set_visible(False) return fig, axs fig, axs = plot_stochastic_block_test(misc) gluefig("sbm_uncorrected", fig) # need to save this for later for setting colorbar the same on other plot pvalue_vmin = np.log10(np.nanmin(misc["uncorrected_pvalues"].values)) ###Output _____no_output_____ ###Markdown Next, we run the test for bilateral symmetry under the stochastic block model.{numref}`Figure {number} ` shows both theestimated group-to-group probability matrices, $\hat{B}^{(L)}$ and $\hat{B}^{(R)}$,as well as the p-values from each test comparing each element of these matrices. Froma visual comparison of $\hat{B}^{(L)}$ and $\hat{B}^{(R)}${numref}`(Figure {number} A) `, we see thatthegroup-to-group connection probabilities are qualitatively similar. Note also that somegroup-to-group connection probabilities are zero, making it non-sensical to do acomparision of binomial proportions. We highlight these elements in the $\hat{B}$matrices with an explicit "0", noting that we did not run the corresponding test inthese cases.In {numref}`Figure {number} B `, we see thep-values from all {glue:text}`sbm_unmatched_test-n_tests` that were run. AfterBonferroni-Holm correction, 5 tests yield p-values less than 0.05, indicating thatwe reject the null hypothesis that those elements of the $\hat{B}$ matrices are thesame between the two hemispheres. We also combine all p-values using Fisher's method,which yields an overall p-value for the entire null hypothesis inEquation {eq}`sbm_unmatched_null` of{glue:text}`sbm_unmatched_test-uncorrected_pvalue:0.2e`.```{glue:figure} fig:sbm_unmatched_test-sbm_uncorrected:name: "fig:sbm_unmatched_test-sbm_uncorrected"Comparison of stochastic block model fits for the left and right hemispheres.**A)** The estimated group-to-group connection probabilities for the leftand right hemispheres appear qualitatively similar. Any estimatedprobabilities which are zero (i.e. no edge was present between a given pair ofcommunities) is indicated explicitly with a "0" in that cell of the matrix.**B)** The p-values for each hypothesis test between individual elements ofthe block probability matrices. In other words, each cell represents a test forwhether a given group-to-group connection probability is the same on the left and theright sides. "X" denotes a significant p-value after Bonferroni-Holm correction,with $\alpha=0.05$. "B" indicates that a test was not run since the estimatedprobabilitywas zero in that cell on both the left and right. "L" indicates this was the case onthe left only, and "R" that it was the case on the right only. These individualp-values were combined using Fisher's method, resulting in an overall p-value (for thenull hypothesis that the two group connection probability matrices are the same) of{glue:text}`sbm_unmatched_test-uncorrected_pvalue:0.2e`.``` Adjusting for a difference in densityFrom {numref}`Figure {number} `, we see thatwe have sufficient evidence to rejectthe null hypothesis of bilateral symmetry under this version of the SBM. However,we already saw in [](er_unmatched_test) that the overalldensities between the two networks are different. Could it be that this rejection ofthe null hypothesis under the SBM can be explained purely by this difference indensity? In other words, are the group-to-group connection probabilities on the rightsimply a "scaled up" version of those on the right, where each probability is scaledby the same amount?In {numref}`Figure {number} `,we plot the estimatedprobabilities on the left and the right hemispheres (i.e. each element of $\hat{B}$),aswell as the difference between them. While subtle, we note that there is a slighttendency for the left hemisphere estimated probability to be lower than thecorresponding one on the right. Specifically, we can also look at the group-to-groupconnection probabilities which were significantly different in{numref}`Figure {number} ` - these are plottedin {numref}`Figure {number} `. Notethat in every case, the estimated probability on the right is higher with that on theright. ###Code def plot_estimated_probabilities(misc): B1 = misc["probabilities1"] B2 = misc["probabilities2"] null_odds = misc["null_odds"] B2 = B2 * null_odds B1_ravel = B1.values.ravel() B2_ravel = B2.values.ravel() arange = np.arange(len(B1_ravel)) sum_ravel = B1_ravel + B2_ravel sort_inds = np.argsort(-sum_ravel) B1_ravel = B1_ravel[sort_inds] B2_ravel = B2_ravel[sort_inds] fig, axs = plt.subplots(2, 1, figsize=(10, 10), sharex=True) ax = axs[0] sns.scatterplot( x=arange, y=B1_ravel, color=network_palette["Left"], ax=ax, linewidth=0, s=15, alpha=0.5, ) sns.scatterplot( x=arange, y=B2_ravel, color=network_palette["Right"], ax=ax, linewidth=0, s=15, alpha=0.5, zorder=-1, ) ax.text( 0.7, 0.8, "Left", color=network_palette["Left"], transform=ax.transAxes, ) ax.text( 0.7, 0.7, "Right", color=network_palette["Right"], transform=ax.transAxes, ) ax.set_yscale("log") ax.set( ylabel="Estimated probability " + r"($\hat{p}$)", xticks=[], xlabel="Sorted group pairs", ) ax.spines["bottom"].set_visible(False) ax = axs[1] diff = B1_ravel - B2_ravel yscale = np.max(np.abs(diff)) yscale *= 1.05 sns.scatterplot( x=arange, y=diff, ax=ax, linewidth=0, s=25, color=neutral_color, alpha=1 ) ax.axhline(0, color="black", zorder=-1) ax.spines["bottom"].set_visible(False) ax.set( xticks=[], ylabel=r"$\hat{p}_{left} - \hat{p}_{right}$", xlabel="Sorted group pairs", ylim=(-yscale, yscale), ) n_greater = np.count_nonzero(diff > 0) n_total = len(diff) ax.text( 0.3, 0.8, f"Left connection stronger ({n_greater}/{n_total})", color=network_palette["Left"], transform=ax.transAxes, ) n_lesser = np.count_nonzero(diff < 0) ax.text( 0.3, 0.15, f"Right connection stronger ({n_lesser}/{n_total})", color=network_palette["Right"], transform=ax.transAxes, ) fig.text(0.02, 0.905, "A)", fontweight="bold", fontsize=30) fig.text(0.02, 0.49, "B)", fontweight="bold", fontsize=30) return fig, ax fig, ax = plot_estimated_probabilities(misc) gluefig("probs_uncorrected", fig) ###Output _____no_output_____ ###Markdown ```{glue:figure} fig:sbm_unmatched_test-probs_uncorrected:name: "fig:sbm_unmatched_test-probs_uncorrected"Comparison of estimated connection probabilities for the left and right hemispheres.**A)** The estimated group-to-group connection probabilities ($\hat{p}$), sorted bythe mean left/right connection probability. Note the very subtle tendency for theleft probability to be lower than the corresponding one on the right. **B)** Thedifferences between corresponding group-to-group connection probabilities($\hat{p}^{(L)} - \hat{p}^{(R)}$). The trend of the left connection probabilitiesbeing slightly smaller than the corresponding probability on the right is moreapparent here, as there are more negative than positive values.``` ###Code def plot_significant_probabilities(misc): B1 = misc["probabilities1"] B2 = misc["probabilities2"] null_odds = misc["null_odds"] B2 = B2 * null_odds index = B1.index uncorrected_pvalues = misc["uncorrected_pvalues"] n_tests = misc["n_tests"] alpha = 0.05 hb_thresh = alpha / n_tests significant = uncorrected_pvalues < hb_thresh row_inds, col_inds = np.nonzero(significant.values) rows = [] for row_ind, col_ind in zip(row_inds, col_inds): source = index[row_ind] target = index[col_ind] left_p = B1.loc[source, target] right_p = B2.loc[source, target] pair = source + r"$\rightarrow$" + target rows.append( { "source": source, "target": target, "p": left_p, "side": "Left", "pair": pair, } ) rows.append( { "source": source, "target": target, "p": right_p, "side": "Right", "pair": pair, } ) sig_data = pd.DataFrame(rows) fig, ax = plt.subplots(1, 1, figsize=(8, 6)) sns.pointplot( data=sig_data, y="p", x="pair", ax=ax, hue="side", dodge=True, join=False, palette=network_palette, ) ax.get_legend().set_title("Side") rotate_labels(ax) ax.set(xlabel="Group pair", ylabel="Connection probability") return fig, ax fig, ax = plot_significant_probabilities(misc) gluefig("significant_p_comparison", fig) ###Output _____no_output_____ ###Markdown ```{glue:figure} fig:sbm_unmatched_test-significant_p_comparison:name: "fig:sbm_unmatched_test-significant_p_comparison"Comparison of estimated group-to-group connection probabilities for the group-pairswhich were significantly different in{numref}`Figure {number} `.In each case, the connection probability on the right hemisphere is higher.``` These observations are consistent with the idea that perhaps the probabilitieson the right are a scaled up version of those on the right, for some global scaling.We can frame this question as a new null hypothesis:````{admonition} MathWith variables defined as in Equation {eq}`sbm_unmatched_null`, we can write our newnull hypothesis as:```{math}:label: sbm_unmatched_null_adjustedH_0: B^{(L)} = c B^{(R)}, \quad H_A: B^{(L)} \neq c B^{(R)}```where $c$ is the ratio of the densities, $c = \frac{p^{(L)}}{p^{(R)}}$.```` Correcting by subsampling edges for one networkOne naive (though quite intuitive) approach to adjust our test for a difference indensity is to simply make the densities of the two networks the same and then rerunourtest. To do so, we calculated the number of edge removals (from the right hemisphere)required to set the network densities roughly the same. We then randomly removedthat many edges from the right hemisphere network andthen re-ran the SBM test procedure above. We repeated this procedure{glue:text}`sbm_unmatched_test-n_resamples` times, resulting in a p-value for eachsubsampling of the right network.The distribution of p-values from this process isshown in {numref}`Figure {number} `. Whereasthe p-value for the original null hypothesis was{glue:text}`sbm_unmatched_test-uncorrected_pvalue:0.2e`, we see now that the p-valuesfrom our subsampled, density-adjusted test are around 0.8, indicating insufficientevidence to reject our density-adjusted null hypothesis of bilateral symmetry(Equation {eq}`sbm_unmatched_null_adjusted`). ###Code n_edges_left = np.count_nonzero(left_adj) n_edges_right = np.count_nonzero(right_adj) n_left = left_adj.shape[0] n_right = right_adj.shape[0] density_left = n_edges_left / (n_left ** 2) density_right = n_edges_right / (n_right ** 2) n_remove = int((density_right - density_left) * (n_right ** 2)) glue("density_left", density_left) glue("density_right", density_right) glue("n_remove", n_remove) rows = [] n_resamples = 25 glue("n_resamples", n_resamples) for i in range(n_resamples): subsampled_right_adj = remove_edges( right_adj, effect_size=n_remove, random_seed=rng ) stat, pvalue, misc = stochastic_block_test( left_adj, subsampled_right_adj, labels1=left_labels, labels2=right_labels, method="fisher", ) rows.append({"stat": stat, "pvalue": pvalue, "misc": misc, "resample": i}) resample_results = pd.DataFrame(rows) fig, ax = plt.subplots(1, 1, figsize=(8, 6)) sns.histplot(data=resample_results, x="pvalue", ax=ax) ax.set(xlabel="p-value", ylabel="", yticks=[]) ax.spines["left"].set_visible(False) mean_resample_pvalue = np.mean(resample_results["pvalue"]) median_resample_pvalue = np.median(resample_results["pvalue"]) gluefig("pvalues_corrected", fig) ###Output _____no_output_____ ###Markdown ```{glue:figure} fig:sbm_unmatched_test-pvalues_corrected:name: "fig:sbm_unmatched_test-pvalues_corrected"Histogram of p-values after a correction for network density. For the observednetworksthe left hemisphere has a density of{glue:text}`sbm_unmatched_test-density_left:0.4f`, and the righthemisphere hasa density of{glue:text}`sbm_unmatched_test-density_right:0.4f`. Here, we randomly removed exactly{glue:text}`sbm_unmatched_test-n_remove`edges from the right hemisphere network, which makes the density of the right networkmatch that of the left hemisphere network. Then, we re-ran the stochastic block modeltestingprocedure from {numref}`Figure {number} `.This entire processwas repeated {glue:text}`sbm_unmatched_test-n_resamples` times. The histogram aboveshows thedistributionof p-values for the overall test. Note that the p-values are no longer small,indicatingthat with this density correction, we now failed to reject our null hypothesis ofbilateral symmetry under the stochastic block model.``` An analytic approach to correcting for differences in densityInstead of randomly resetting the density of the right hemisphere network, we canactually modify the hypothesis we are testing for each element of the $\hat{B}$matrices to include this adjustment by some constant scale, $c$.```{admonition} MathFisher's exact test (usedabove to compare each element of the $\hat{B}$ matrices) tests the null hypotheses:$$H_0: B_{kl}^{(L)} = B_{kl}^{(R)}, \quad H_A: B_{kl}^{(L)} \neq B_{kl}^{(R)}$$for each $(k, l)$ pair, where $k$ and $l$ are the indices of the source and targetgroups, respectively.Instead, we can use a test of:$$H_0: B_{kl}^{(L)} = c B_{kl}^{(R)}, \quad H_A: B_{kl}^{(L)} \neq c B_{kl}^{(R)}$$In our case, $c$ is a constant that we fit to the entire right hemisphere network toset its density equal to the left, $c = \frac{p^{(L)}}{p_{(R)}}$A test for the adjusted null hypothesis above is given by using[Fisher's noncentral hypergeometric distribution](https://en.wikipedia.org/wiki/Fisher%27s_noncentral_hypergeometric_distribution)and applying a procedure much like that of the traditional Fisher's exact test.```More information about this test can be found in [](nhypergeom_sims). ###Code null_odds = density_left / density_right stat, pvalue, misc = stochastic_block_test( left_adj, right_adj, labels1=left_labels, labels2=right_labels, method="fisher", null_odds=null_odds, ) glue("corrected_pvalue", pvalue) fig, axs = plot_stochastic_block_test(misc, pvalue_vmin=pvalue_vmin) gluefig("sbm_corrected", fig) ###Output _____no_output_____ ###Markdown {numref}`Figure {number} ` shows the resultsof running the analytic version of the density-adjusted test based on Fisher'snoncentral hypergeometric distribution. Note that now only two group-to-groupprobability comparisons are significant after Bonferroni-Holm correction, and theoverall p-value for this test of Equation {eq}`sbm_unmatched_null_adjusted` is{glue:text}`sbm_unmatched_test-corrected_pvalue:0.2f`. ```{glue:figure} fig:sbm_unmatched_test-sbm_corrected:name: "fig:sbm_unmatched_test-sbm_corrected"Comparison of stochastic block model fits for the left and right hemispheres aftercorrecting for a difference in hemisphere density.**A)** The estimated group-to-group connection probabilities for the leftand right hemispheres, after the right hemisphere probabilities were scaled by adensity-adjusting constant, $c$. Any estimatedprobabilities which are zero (i.e. no edge was present between a given pair ofcommunities) is indicated explicitly with a "0" in that cell of the matrix.**B)** The p-values for each hypothesis test between individual elements ofthe block probability matrices. In other words, each cell represents a test forwhether a given group-to-group connection probability is the same on the left and theright sides. "X" denotes a significant p-value after Bonferroni-Holm correction,with $\alpha=0.05$. "B" indicates that a test was not run since the estimatedprobabilitywas zero in that cell on both the left and right. "L" indicates this was the case onthe left only, and "R" that it was the case on the right only. These individualp-values were combined using Fisher's method, resulting in an overall p-value (for thenull hypothesis that the two group connection probability matrices are the same afteradjustment by a density-normalizing constant, $c$) of{glue:text}`sbm_unmatched_test-corrected_pvalue:0.2f`.``` Taken together, these results suggest that for the unmatched networks, and using theknown cell type labels, we reject the null hypothesis of bilateral symmetry under theSBM (Equation {eq}`sbm_unmatched_null`), but fail to reject the null hypothesis ofbilateral symmetry under the SBM after a density adjustment (Equation{eq}`sbm_unmatched_null_adjusted`). Moreover, they highlight the insights that can be gained by considering multiple definitions of bilateral symmetry. ###Code elapsed = time.time() - t0 delta = datetime.timedelta(seconds=elapsed) ###Output _____no_output_____
13. Scikit-Learn, Statsmodel/05. statsmodels 패키지 소개.ipynb
###Markdown statsmodels 패키지 소개 statsmodels 는 통계 분석을 위한 Python 패키지다. statsmodels의 메인 웹사이트는 다음과 같다.* http://www.statsmodels.orgstatsmodels에서 제공하는 통계 분석 기능은 꽤 방대한 편이다. * 통계 (Statistics) * 각종 검정(test) 기능 * 커널 밀도 추정 * Generalized Method of Moments* 회귀 분석 (Linear Regression) * 선형 모형 (Linear Model) * 일반화 선형 모형 (Generalized Linear Model) * 강인 선형 모형 (Robust Linear Model) * 선형 혼합 효과 모형 (Linear Mixed Effects Model) * ANOVA (Analysis of Variance) * Discrete Dependent Variable (Logistic Regression 포함)* 시계열 분석 (Time Series Analysis) * ARMA/ARIMA Process * Vector ARMA Process 특히 선형 회귀분석의 경우 R-style 모형 기술을 가능하게 하는 patsy 패키지를 포함하고 있어 기존에 R을 사용하던 사람들도 쉽게 statsmodels를 쓸 수 있게 되었다.* https://patsy.readthedocs.org/en/latest/ statsmodels를 사용하여 선형 회귀 분석을 수행하는 간단한 예를 보인다. ###Code import statsmodels.api as sm import statsmodels.formula.api as smf # 데이터 로드 dat = sm.datasets.get_rdataset("Guerry", "HistData").data dat.tail() # 회귀 분석 results = smf.ols('Lottery ~ Literacy + np.log(Pop1831)', data=dat).fit() # 결과 출력 print(results.summary()) ###Output OLS Regression Results ============================================================================== Dep. Variable: Lottery R-squared: 0.348 Model: OLS Adj. R-squared: 0.333 Method: Least Squares F-statistic: 22.20 Date: Thu, 21 Apr 2016 Prob (F-statistic): 1.90e-08 Time: 03:20:40 Log-Likelihood: -379.82 No. Observations: 86 AIC: 765.6 Df Residuals: 83 BIC: 773.0 Df Model: 2 Covariance Type: nonrobust =================================================================================== coef std err t P>|t| [95.0% Conf. Int.] ----------------------------------------------------------------------------------- Intercept 246.4341 35.233 6.995 0.000 176.358 316.510 Literacy -0.4889 0.128 -3.832 0.000 -0.743 -0.235 np.log(Pop1831) -31.3114 5.977 -5.239 0.000 -43.199 -19.424 ============================================================================== Omnibus: 3.713 Durbin-Watson: 2.019 Prob(Omnibus): 0.156 Jarque-Bera (JB): 3.394 Skew: -0.487 Prob(JB): 0.183 Kurtosis: 3.003 Cond. No. 702. ============================================================================== Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
notebooks/testing/Supervised-Spectral-Unmixing.ipynb
###Markdown Supervised Spectral Unmixing with Landsat 8This code will walk through the workflow process of arthur-e's github repo example: https://github.com/arthur-e/unmixing/blob/master/docs/Example_Spatially_Adaptive_Spectral_Mixture_Analysis_SASMA.ipynbNOTE: This workflow requires cloning the above repo, activating your environment in the repo and `pip install -e`. This is a very large file, so be prepared! The remainder of this notebook will also require a stacked Landsat 8 scene (see Landsat8-cropped-and-stacked.ipynb) and pre-determined spectral signatures. In this example, I am using spectral signatures derived from an unsupervised classification using kmeans (see Kmean-Unsupervised-Classification.ipynb). ###Code # Import Packages import os from glob import glob import geopandas as gpd from shapely.geometry import box import numpy as np from matplotlib import pyplot as plt, cm from matplotlib.colors import ListedColormap import rasterio as rio from rasterio.mask import mask from rasterio.plot import plotting_extent import earthpy as et import earthpy.spatial as es import earthpy.plot as ep from unmixing.utils import as_array from unmixing.utils import binary_mask from unmixing.utils import subarray from unmixing.lsma import FCLSAbundanceMapper from unmixing.sasma import concat_endmember_arrays from unmixing.transform import mnf_rotation from unmixing.visualize import FeatureSpace %matplotlib inline # #######################NOT WORKING: INSISTING IT IS A .PY FILES############### # # Make ONAQ site info retrievable # %run ./kessb-NEON-scripts/data_grabber.ipynb # Set working directory and other key paths os.chdir(os.path.join(et.io.HOME, 'earth-analytics')) output_dir = os.path.join("data", "Landsat", "outputs") if os.path.isdir(output_dir) == False: os.mkdir(output_dir) stacked_image_path = os.path.join(output_dir, 'stacked_aoi.tif') unclassified_image_path = os.path.join(output_dir, 'classified_aoi.tif') ###Output _____no_output_____ ###Markdown Preparing unsupervised classification raster data ###Code # Import stacked aoi and plot NIR band stacked_arr, gt, wkt = as_array(stacked_image_path) preview_nir = stacked_arr[3,...] preview_nir[preview_nir == -9999] = 0 # Remap any NoData values to zero # Reconfigure the raster array so that the band axis is the third axis plt.figure(figsize = (10, 10)) plt.imshow(preview_nir, cmap = cm.YlGnBu_r) plt.show() # Transform image to Minimum Noise Fraction (MNF) #########PRIOR TO EXTRACTING ENDMEMBERS? NEED TO DO PRE-CLASSIFICATION??????######### mnf = mnf_rotation(lt5_detroit, nodata = -9999) # The MNF image is returned in HSI form (the transpose of our original raster array) plt.figure(figsize = (10, 10)) plt.imshow(mnf.T[0,...], cmap = cm.YlGnBu_r) plt.show() # Selecting endmembers from pre-defined spectral signatures pifs, gt0, wkt0 = as_array(unclassified_image_path) ########################ONLY REFLECTING SINGLE CLASS################################# # Create a color map for background (unclassified image used 7 classifiers) color_code_map = ListedColormap(['lightgray', 'green', 'red', 'blue', 'yellow', 'orange', 'black']) plt.figure(figsize = (5, 5)) plt.imshow(pifs[0,...], cmap = color_code_map) plt.show() ###Output _____no_output_____