text
stringlengths
5
261k
id
stringlengths
16
106
metadata
dict
__index_level_0__
int64
0
266
<jupyter_start><jupyter_text>Knowledge distillation recipes**Author:** [Sayak Paul](https://twitter.com/RisingSayak)**Date created:** 2021/08/01**Last modified:** 2021/08/01**Description:** Training better student models via knowledge distillation with function matching. IntroductionKnowledge distillation ([Hinton et al.](https://arxiv.org/abs/1503.02531)) is a techniquethat enables us to compress larger models into smaller ones. This allows us to reap thebenefits of high performing larger models, while reducing storage and memory costs andachieving higher inference speed:* Smaller models -> smaller memory footprint* Reduced complexity -> fewer floating-point operations (FLOPs)In [Knowledge distillation: A good teacher is patient and consistent](https://arxiv.org/abs/2106.05237),Beyer et al. investigate various existing setups for performing knowledge distillationand show that all of them lead to sub-optimal performance. Due to this,practitioners often settle for other alternatives (quantization, pruning, weightclustering, etc.) when developing production systems that are resource-constrained.Beyer et al. investigate how we can improve the student models that come outof the knowledge distillation process and always match the performance oftheir teacher models. In this example, we will study the recipes introduced by them, usingthe [Flowers102 dataset](https://www.robots.ox.ac.uk/~vgg/data/flowers/102/). As areference, with these recipes, the authors were able to produce a ResNet50 model thatachieves 82.8% accuracy on the ImageNet-1k dataset.In case you need a refresher on knowledge distillation and want to study how it isimplemented in Keras, you can refer to[this example](https://keras.io/examples/vision/knowledge_distillation/).You can also follow[this example](https://keras.io/examples/vision/consistency_training/)that shows an extension of knowledge distillation applied to consistency training.To follow this example, you will need TensorFlow 2.5 or higher as well as TensorFlow Addons,which can be installed using the command below:<jupyter_code>!!pip install -q tensorflow-addons<jupyter_output><empty_output><jupyter_text>Imports<jupyter_code>from tensorflow import keras import tensorflow_addons as tfa import tensorflow as tf import matplotlib.pyplot as plt import numpy as np import tensorflow_datasets as tfds tfds.disable_progress_bar()<jupyter_output><empty_output><jupyter_text>Hyperparameters and contants<jupyter_code>AUTO = tf.data.AUTOTUNE # Used to dynamically adjust parallelism. BATCH_SIZE = 64 # Comes from Table 4 and "Training setup" section. TEMPERATURE = 10 # Used to soften the logits before they go to softmax. INIT_LR = 0.003 # Initial learning rate that will be decayed over the training period. WEIGHT_DECAY = 0.001 # Used for regularization. CLIP_THRESHOLD = 1.0 # Used for clipping the gradients by L2-norm. # We will first resize the training images to a bigger size and then we will take # random crops of a lower size. BIGGER = 160 RESIZE = 128<jupyter_output><empty_output><jupyter_text>Load the Flowers102 dataset<jupyter_code>train_ds, validation_ds, test_ds = tfds.load( "oxford_flowers102", split=["train", "validation", "test"], as_supervised=True ) print(f"Number of training examples: {train_ds.cardinality()}.") print( f"Number of validation examples: {validation_ds.cardinality()}." ) print(f"Number of test examples: {test_ds.cardinality()}.")<jupyter_output><empty_output><jupyter_text>Teacher modelAs is common with any distillation technique, it's important to first train awell-performing teacher model which is usually larger than the subsequent student model.The authors distill a BiT ResNet152x2 model (teacher) into a BiT ResNet50 model(student).BiT stands for Big Transfer and was introduced in[Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370).BiT variants of ResNets use Group Normalization ([Wu et al.](https://arxiv.org/abs/1803.08494))and Weight Standardization ([Qiao et al.](https://arxiv.org/abs/1903.10520v2))in place of Batch Normalization ([Ioffe et al.](https://arxiv.org/abs/1502.03167)).In order to limit the time it takes to run this example, we will be using a BiTResNet101x3 already trained on the Flowers102 dataset. You can refer to[this notebook](https://github.com/sayakpaul/FunMatch-Distillation/blob/main/train_bit.ipynb)to learn more about the training process. This model reaches 98.18% accuracy on thetest set of Flowers102.The model weights are hosted on Kaggle as a dataset.To download the weights, follow these steps:1. Create an account on Kaggle [here](https://www.kaggle.com).2. Go to the "Account" tab of your [user profile](https://www.kaggle.com/account).3. Select "Create API Token". This will trigger the download of `kaggle.json`, a filecontaining your API credentials.4. From that JSON file, copy your Kaggle username and API key.Now run the following:```pythonimport osos.environ["KAGGLE_USERNAME"] = "" TODO: enter your Kaggle user name hereos.environ["KAGGLE_KEY"] = "" TODO: enter your Kaggle key here```Once the environment variables are set, run:```shell$ kaggle datasets download -d spsayakpaul/bitresnet101x3flowers102$ unzip -qq bitresnet101x3flowers102.zip```This should generate a folder named `T-r101x3-128` which is essentially a teacher[`SavedModel`](https://www.tensorflow.org/guide/saved_model).<jupyter_code>import os os.environ["KAGGLE_USERNAME"] = "" # TODO: enter your Kaggle user name here os.environ["KAGGLE_KEY"] = "" # TODO: enter your Kaggle API key here !!kaggle datasets download -d spsayakpaul/bitresnet101x3flowers102 !!unzip -qq bitresnet101x3flowers102.zip # Since the teacher model is not going to be trained further we make # it non-trainable. teacher_model = keras.models.load_model( "/home/jupyter/keras-io/examples/keras_recipes/T-r101x3-128" ) teacher_model.trainable = False teacher_model.summary()<jupyter_output><empty_output><jupyter_text>The "function matching" recipeTo train a high-quality student model, the authors propose the following changes to thestudent training workflow:* Use an aggressive variant of MixUp ([Zhang et al.](https://arxiv.org/abs/1710.09412)).This is done by sampling the `alpha` parameter from a uniform distribution instead of abeta distribution. MixUp is used here in order to help the student model capture thefunction underlying the teacher model. MixUp linearly interpolates between differentsamples across the data manifold. So the rationale here is if the student is trained tofit that it should be able to match the teacher model better. To incorporate moreinvariance MixUp is coupled with "Inception-style" cropping([Szegedy et al.](https://arxiv.org/abs/1409.4842)). This is where the"function matching" term makes its way in the[original paper](https://arxiv.org/abs/2106.05237).* Unlike other works ([Noisy Student Training](https://arxiv.org/abs/1911.04252) forexample), both the teacher and student models receive the same copy of an image, which ismixed up and randomly cropped. By providing the same inputs to both the models, theauthors make the teacher consistent with the student.* With MixUp, we are essentially introducing a strong form of regularization whentraining the student. As such, it should be trained for arelatively long period of time (1000 epochs at least). Since the student is trained withstrong regularization, the risk of overfitting due to a longer trainingschedule are also mitigated.In summary, one needs to be consistent and patient while training the student model. Data input pipeline<jupyter_code>def mixup(images, labels): alpha = tf.random.uniform([], 0, 1) mixedup_images = alpha * images + (1 - alpha) * tf.reverse(images, axis=[0]) # The labels do not matter here since they are NOT used during # training. return mixedup_images, labels def preprocess_image(image, label, train=True): image = tf.cast(image, tf.float32) / 255.0 if train: image = tf.image.resize(image, (BIGGER, BIGGER)) image = tf.image.random_crop(image, (RESIZE, RESIZE, 3)) image = tf.image.random_flip_left_right(image) else: # Central fraction amount is from here: # https://git.io/J8Kda. image = tf.image.central_crop(image, central_fraction=0.875) image = tf.image.resize(image, (RESIZE, RESIZE)) return image, label def prepare_dataset(dataset, train=True, batch_size=BATCH_SIZE): if train: dataset = dataset.map(preprocess_image, num_parallel_calls=AUTO) dataset = dataset.shuffle(BATCH_SIZE * 10) else: dataset = dataset.map( lambda x, y: (preprocess_image(x, y, train)), num_parallel_calls=AUTO ) dataset = dataset.batch(batch_size) if train: dataset = dataset.map(mixup, num_parallel_calls=AUTO) dataset = dataset.prefetch(AUTO) return dataset<jupyter_output><empty_output><jupyter_text>Note that for brevity, we used mild crops for the training set but in practice"Inception-style" preprocessing should be applied. You can refer to[this script](https://github.com/sayakpaul/FunMatch-Distillation/blob/main/crop_resize.py)for a closer implementation. Also, _**the ground-truth labels are not used fortraining the student.**_<jupyter_code>train_ds = prepare_dataset(train_ds, True) validation_ds = prepare_dataset(validation_ds, False) test_ds = prepare_dataset(test_ds, False)<jupyter_output><empty_output><jupyter_text>Visualization<jupyter_code>sample_images, _ = next(iter(train_ds)) plt.figure(figsize=(10, 10)) for n in range(25): ax = plt.subplot(5, 5, n + 1) plt.imshow(sample_images[n].numpy()) plt.axis("off") plt.show()<jupyter_output><empty_output><jupyter_text>Student modelFor the purpose of this example, we will use the standard ResNet50V2([He et al.](https://arxiv.org/abs/1603.05027)).<jupyter_code>def get_resnetv2(): resnet_v2 = keras.applications.ResNet50V2( weights=None, input_shape=(RESIZE, RESIZE, 3), classes=102, classifier_activation="linear", ) return resnet_v2 get_resnetv2().count_params()<jupyter_output><empty_output><jupyter_text>Compared to the teacher model, this model has 358 Million fewer parameters. Distillation utilityWe will reuse some code from[this example](https://keras.io/examples/vision/knowledge_distillation/)on knowledge distillation.<jupyter_code>class Distiller(tf.keras.Model): def __init__(self, student, teacher): super().__init__() self.student = student self.teacher = teacher self.loss_tracker = keras.metrics.Mean(name="distillation_loss") @property def metrics(self): metrics = super().metrics metrics.append(self.loss_tracker) return metrics def compile( self, optimizer, metrics, distillation_loss_fn, temperature=TEMPERATURE, ): super().compile(optimizer=optimizer, metrics=metrics) self.distillation_loss_fn = distillation_loss_fn self.temperature = temperature def train_step(self, data): # Unpack data x, _ = data # Forward pass of teacher teacher_predictions = self.teacher(x, training=False) with tf.GradientTape() as tape: # Forward pass of student student_predictions = self.student(x, training=True) # Compute loss distillation_loss = self.distillation_loss_fn( tf.nn.softmax(teacher_predictions / self.temperature, axis=1), tf.nn.softmax(student_predictions / self.temperature, axis=1), ) # Compute gradients trainable_vars = self.student.trainable_variables gradients = tape.gradient(distillation_loss, trainable_vars) # Update weights self.optimizer.apply_gradients(zip(gradients, trainable_vars)) # Report progress self.loss_tracker.update_state(distillation_loss) return {"distillation_loss": self.loss_tracker.result()} def test_step(self, data): # Unpack data x, y = data # Forward passes teacher_predictions = self.teacher(x, training=False) student_predictions = self.student(x, training=False) # Calculate the loss distillation_loss = self.distillation_loss_fn( tf.nn.softmax(teacher_predictions / self.temperature, axis=1), tf.nn.softmax(student_predictions / self.temperature, axis=1), ) # Report progress self.loss_tracker.update_state(distillation_loss) self.compiled_metrics.update_state(y, student_predictions) results = {m.name: m.result() for m in self.metrics} return results<jupyter_output><empty_output><jupyter_text>Learning rate scheduleA warmup cosine learning rate schedule is used in the paper. This schedule is alsotypical for many pre-training methods especially for computer vision.<jupyter_code># Some code is taken from: # https://www.kaggle.com/ashusma/training-rfcx-tensorflow-tpu-effnet-b2. class WarmUpCosine(keras.optimizers.schedules.LearningRateSchedule): def __init__( self, learning_rate_base, total_steps, warmup_learning_rate, warmup_steps ): super().__init__() self.learning_rate_base = learning_rate_base self.total_steps = total_steps self.warmup_learning_rate = warmup_learning_rate self.warmup_steps = warmup_steps self.pi = tf.constant(np.pi) def __call__(self, step): if self.total_steps < self.warmup_steps: raise ValueError("Total_steps must be larger or equal to warmup_steps.") cos_annealed_lr = tf.cos( self.pi * (tf.cast(step, tf.float32) - self.warmup_steps) / float(self.total_steps - self.warmup_steps) ) learning_rate = 0.5 * self.learning_rate_base * (1 + cos_annealed_lr) if self.warmup_steps > 0: if self.learning_rate_base < self.warmup_learning_rate: raise ValueError( "Learning_rate_base must be larger or equal to " "warmup_learning_rate." ) slope = ( self.learning_rate_base - self.warmup_learning_rate ) / self.warmup_steps warmup_rate = slope * tf.cast(step, tf.float32) + self.warmup_learning_rate learning_rate = tf.where( step < self.warmup_steps, warmup_rate, learning_rate ) return tf.where( step > self.total_steps, 0.0, learning_rate, name="learning_rate" )<jupyter_output><empty_output><jupyter_text>We can now plot a a graph of learning rates generated using this schedule.<jupyter_code>ARTIFICIAL_EPOCHS = 1000 ARTIFICIAL_BATCH_SIZE = 512 DATASET_NUM_TRAIN_EXAMPLES = 1020 TOTAL_STEPS = int( DATASET_NUM_TRAIN_EXAMPLES / ARTIFICIAL_BATCH_SIZE * ARTIFICIAL_EPOCHS ) scheduled_lrs = WarmUpCosine( learning_rate_base=INIT_LR, total_steps=TOTAL_STEPS, warmup_learning_rate=0.0, warmup_steps=1500, ) lrs = [scheduled_lrs(step) for step in range(TOTAL_STEPS)] plt.plot(lrs) plt.xlabel("Step", fontsize=14) plt.ylabel("LR", fontsize=14) plt.show()<jupyter_output><empty_output><jupyter_text>The original paper uses at least 1000 epochs and a batch size of 512 to perform"function matching". The objective of this example is to present a workflow toimplement the recipe and not to demonstrate the results when they are applied at full scale.However, these recipes will transfer to the original settings from the paper. Pleaserefer to [this repository](https://github.com/sayakpaul/FunMatch-Distillation) if you areinterested in finding out more. Training<jupyter_code>optimizer = tfa.optimizers.AdamW( weight_decay=WEIGHT_DECAY, learning_rate=scheduled_lrs, clipnorm=CLIP_THRESHOLD ) student_model = get_resnetv2() distiller = Distiller(student=student_model, teacher=teacher_model) distiller.compile( optimizer, metrics=[keras.metrics.SparseCategoricalAccuracy()], distillation_loss_fn=keras.losses.KLDivergence(), temperature=TEMPERATURE, ) history = distiller.fit( train_ds, steps_per_epoch=int(np.ceil(DATASET_NUM_TRAIN_EXAMPLES / BATCH_SIZE)), validation_data=validation_ds, epochs=30, # This should be at least 1000. ) student = distiller.student student_model.compile(metrics=["accuracy"]) _, top1_accuracy = student.evaluate(test_ds) print(f"Top-1 accuracy on the test set: {round(top1_accuracy * 100, 2)}%")<jupyter_output><empty_output><jupyter_text>ResultsWith just 30 epochs of training, the results are nowhere near expected.This is where the benefits of patience aka a longer training schedulewill come into play. Let's investigate what the model trained for 1000 epochs can do.<jupyter_code>!# Download the pre-trained weights. !!wget https://git.io/JBO3Y -O S-r50x1-128-1000.tar.gz !!tar xf S-r50x1-128-1000.tar.gz pretrained_student = keras.models.load_model("S-r50x1-128-1000") pretrained_student.summary()<jupyter_output><empty_output><jupyter_text>This model exactly follows what the authors have used in their student models. This iswhy the model summary is a bit different.<jupyter_code>_, top1_accuracy = pretrained_student.evaluate(test_ds) print(f"Top-1 accuracy on the test set: {round(top1_accuracy * 100, 2)}%")<jupyter_output><empty_output>
keras-io/examples/keras_recipes/ipynb/better_knowledge_distillation.ipynb/0
{ "file_path": "keras-io/examples/keras_recipes/ipynb/better_knowledge_distillation.ipynb", "repo_id": "keras-io", "token_count": 6101 }
89
""" Title: Packaging Keras models for wide distribution using Functional Subclassing Author: Martin Görner Date created: 2023-12-13 Last modified: 2023-12-13 Description: When sharing your deep learning models, package them using the Functional Subclassing pattern. Accelerator: GPU """ """ ## Introduction Keras is the ideal framework for sharing your cutting-edge deep learning models, in a library of pre-trained (or not) models. Millions of ML engineers are fluent in the familiar Keras API, making your models accessible to a global community, whatever their preferred backend (Jax, PyTorch or TensorFlow). One of the benefits of the Keras API is that it lets users programmatically inspect or edit a model, a feature that is necessary when creating new architectures or workflows based on a pre-trained model. When distributing models, the Keras team recommends packaging them using the **Functional Subclassing** pattern. Models implemented in this way combine two benefits: * They can be instantiated in the normal pythonic way:<br/> `model = model_collection_xyz.AmazingModel()` * They are Keras functional models which means that they have a programmatically accessible graph of layers, for introspection or model surgery. This guide explains [how to use](#functional-subclassing-model) the Functional Subclassing pattern, and showcases its benefits for [programmatic model introspection](#model-introspection) and [model surgery](#model-surgery). It also shows two other best practices for sharable Keras models: [configuring models](#unconstrained-inputs) for the widest range of supported inputs, for example images of various sizes, and [using dictionary inputs](#model-with-dictionary-inputs) for clarity in more complex models. """ """ ## Setup """ import keras import tensorflow as tf # only for tf.data print("Keras version", keras.version()) print("Keras is running on", keras.config.backend()) """ ## Dataset Let's load an MNIST dataset so that we have something to train with. """ # tf.data is a great API for putting together a data stream. # It works wether you use the TensorFlow, PyTorch or Jax backend, # as long as you use it in the data stream only and not inside of a model. BATCH_SIZE = 256 (x_train, train_labels), (x_test, test_labels) = keras.datasets.mnist.load_data() train_data = tf.data.Dataset.from_tensor_slices((x_train, train_labels)) train_data = train_data.map( lambda x, y: (tf.expand_dims(x, axis=-1), y) ) # 1-channel monochrome train_data = train_data.batch(BATCH_SIZE) train_data = train_data.cache() train_data = train_data.shuffle(5000, reshuffle_each_iteration=True) train_data = train_data.repeat() test_data = tf.data.Dataset.from_tensor_slices((x_test, test_labels)) test_data = test_data.map( lambda x, y: (tf.expand_dims(x, axis=-1), y) ) # 1-channel monochrome test_data = test_data.batch(10000) test_data = test_data.cache() STEPS_PER_EPOCH = len(train_labels) // BATCH_SIZE EPOCHS = 5 """ ## Functional Subclassing Model The model is wrapped in a class so that end users can instantiate it normally by calling the constructor `MnistModel()` rather than calling a factory function. """ class MnistModel(keras.Model): def __init__(self, **kwargs): # Keras Functional model definition. This could have used Sequential as # well. Sequential is just syntactic sugar for simple functional models. # 1-channel monochrome input inputs = keras.layers.Input(shape=(None, None, 1), dtype="uint8") # pixel format conversion from uint8 to float32 y = keras.layers.Rescaling(1 / 255.0)(inputs) # 3 convolutional layers y = keras.layers.Conv2D( filters=16, kernel_size=3, padding="same", activation="relu" )(y) y = keras.layers.Conv2D( filters=32, kernel_size=6, padding="same", activation="relu", strides=2 )(y) y = keras.layers.Conv2D( filters=48, kernel_size=6, padding="same", activation="relu", strides=2 )(y) # 2 dense layers y = keras.layers.GlobalAveragePooling2D()(y) y = keras.layers.Dense(48, activation="relu")(y) y = keras.layers.Dropout(0.4)(y) outputs = keras.layers.Dense( 10, activation="softmax", name="classification_head" # 10 classes )(y) # A Keras Functional model is created by calling keras.Model(inputs, outputs) super().__init__(inputs=inputs, outputs=outputs, **kwargs) """ Let's instantiate and train this model. """ model = MnistModel() model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["sparse_categorical_accuracy"], ) history = model.fit( train_data, steps_per_epoch=STEPS_PER_EPOCH, epochs=EPOCHS, validation_data=test_data, ) """ ## Unconstrained inputs Notice, in the model definition above, that the input is specified with undefined dimensions: `Input(shape=(None, None, 1)` This allows the model to accept any image size as an input. However, this only works if the loosely defined shape can be propagated through all the layers and still determine the size of all weights. * So if you have a model architecture that can handle different input sizes with the same weights (like here), then your users will be able to instantiate it without parameters:<br/> `model = MnistModel()` * If on the other hand, the model must provision different weights for different input sizes, you will have to ask your users to specify the size in the constructor:<br/> `model = ModelXYZ(input_size=...)` """ """ ## Model introspection Keras maintains a programmatically accessible graph of layers for every model. It can be used for introspection and is accessed through the `model.layers` or `layer.layers` attribute. The utility function `model.summary()` also uses this mechanism internally. """ model = MnistModel() # Model summary works model.summary() # Recursively walking the layer graph works as well def walk_layers(layer): if hasattr(layer, "layers"): for layer in layer.layers: walk_layers(layer) else: print(layer.name) print("\nWalking model layers:\n") walk_layers(model) """ ## Model surgery End users might want to instantiate the model from your library but modify it before use. Functional models have a programmatically accessible graph of layers. Edits are possible by slicing and splicing the graph and creating a new functional model. The alternative is to fork the model code and make the modifications but that forces users to then maintain their fork indefinitely. Example: instantiate the model but change the classification head to do a binary classification, "0" or "not 0", instead of the original 10-way digits classification. """ model = MnistModel() input = model.input # cut before the classification head y = model.get_layer("classification_head").input # add a new classification head output = keras.layers.Dense( 1, # single class for binary classification activation="sigmoid", name="binary_classification_head", )(y) # create a new functional model binary_model = keras.Model(input, output) binary_model.summary() """ We can now train the new model as a binary classifier. """ # new dataset with 0 / 1 labels (1 = digit '0', 0 = all other digits) bin_train_data = train_data.map( lambda x, y: (x, tf.cast(tf.math.equal(y, tf.zeros_like(y)), dtype=tf.uint8)) ) bin_test_data = test_data.map( lambda x, y: (x, tf.cast(tf.math.equal(y, tf.zeros_like(y)), dtype=tf.uint8)) ) # appropriate loss and metric for binary classification binary_model.compile( optimizer="adam", loss="binary_crossentropy", metrics=["binary_accuracy"] ) history = binary_model.fit( bin_train_data, steps_per_epoch=STEPS_PER_EPOCH, epochs=EPOCHS, validation_data=bin_test_data, ) """ ## Model with dictionary inputs In more complex models, with multiple inputs, structuring the inputs as a dictionary can improve readability and usability. This is straightforward to do with a functional model: """ class MnistDictModel(keras.Model): def __init__(self, **kwargs): # # The input is a dictionary # inputs = { "image": keras.layers.Input( shape=(None, None, 1), # 1-channel monochrome dtype="uint8", name="image", ) } # pixel format conversion from uint8 to float32 y = keras.layers.Rescaling(1 / 255.0)(inputs["image"]) # 3 conv layers y = keras.layers.Conv2D( filters=16, kernel_size=3, padding="same", activation="relu" )(y) y = keras.layers.Conv2D( filters=32, kernel_size=6, padding="same", activation="relu", strides=2 )(y) y = keras.layers.Conv2D( filters=48, kernel_size=6, padding="same", activation="relu", strides=2 )(y) # 2 dense layers y = keras.layers.GlobalAveragePooling2D()(y) y = keras.layers.Dense(48, activation="relu")(y) y = keras.layers.Dropout(0.4)(y) outputs = keras.layers.Dense( 10, activation="softmax", name="classification_head" # 10 classes )(y) # A Keras Functional model is created by calling keras.Model(inputs, outputs) super().__init__(inputs=inputs, outputs=outputs, **kwargs) """ We can now train the model on inputs structured as a dictionary. """ model = MnistDictModel() # reformat the dataset as a dictionary dict_train_data = train_data.map(lambda x, y: ({"image": x}, y)) dict_test_data = test_data.map(lambda x, y: ({"image": x}, y)) model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["sparse_categorical_accuracy"], ) history = model.fit( dict_train_data, steps_per_epoch=STEPS_PER_EPOCH, epochs=EPOCHS, validation_data=dict_test_data, )
keras-io/examples/keras_recipes/packaging_keras_models_for_wide_distribution.py/0
{ "file_path": "keras-io/examples/keras_recipes/packaging_keras_models_for_wide_distribution.py", "repo_id": "keras-io", "token_count": 3507 }
90
<jupyter_start><jupyter_text>Question Answering with Hugging Face Transformers**Author:** Matthew Carrigan and Merve Noyan**Date created:** 13/01/2022**Last modified:** 13/01/2022**Description:** Question answering implementation using Keras and Hugging Face Transformers. Introduction to Question AnsweringQuestion answering is a common NLP task with several variants. In some variants, the taskis multiple-choice:A list of possible answers are supplied with each question, and the model simply needs toreturn a probability distribution over the options. A more challenging variant ofquestion answering, which is more applicable to real-life tasks, is when the options arenot provided. Instead, the model is given an input document -- called context -- and aquestion about the document, and it must extract the span of text in the document thatcontains the answer. In this case, the model is not computing a probability distributionover answers, but two probability distributions over the tokens in the document text,representing the start and end of the span containing the answer. This variant is called"extractive question answering".Extractive question answering is a very challenging NLP task, and the dataset sizerequired to train such a model from scratch when the questions and answers are naturallanguage is prohibitively huge. As a result, question answering (like almost all NLPtasks) benefits enormously from starting from a strong pretrained foundation model -starting from a strong pretrained language model can reduce the dataset size required toreach a given accuracy by multiple orders of magnitude, enabling you to reach very strongperformance with surprisingly reasonable datasets.Starting with a pretrained model adds difficulties, though - where do you get the modelfrom? How do you ensure that your input data is preprocessed and tokenized the same wayas the original model? How do you modify the model to add an output head that matchesyour task of interest?In this example, we'll show you how to load a model from the Hugging Face[🤗Transformers](https://github.com/huggingface/transformers) library to tackle thischallenge. We'll also load a benchmark question answering dataset from the[🤗Datasets](https://github.com/huggingface/datasets) library - this is another open-sourcerepository containing a wide range of datasets across many modalities, from NLP to visionand beyond. Note, though, that there is no requirement that these libraries must be usedwith each other. If you want to train a model from[🤗Transformers](https://github.com/huggingface/transformers) on your own data, or you wantto load data from [🤗 Datasets](https://github.com/huggingface/datasets) and train yourown entirely unrelated models with it, that is of course possible (and highlyencouraged!)  Installing the requirements<jupyter_code>!pip install git+https://github.com/huggingface/transformers.git !pip install datasets !pip install huggingface-hub<jupyter_output><empty_output><jupyter_text>Loading the dataset We will use the [🤗 Datasets](https://github.com/huggingface/datasets) library to downloadthe SQUAD question answering dataset using `load_dataset()`.<jupyter_code>from datasets import load_dataset datasets = load_dataset("squad")<jupyter_output><empty_output><jupyter_text>The `datasets` object itself is a`DatasetDict`, which contains one key for the training, validation and test set. We can seethe training, validation and test sets all have a column for the context, the questionand the answers to those questions. To access an actual element, you need to select asplit first, then give an index. We can see the answers are indicated by their startposition in the text and their full text, which is a substring of the context as wementioned above. Let's take a look at what a single training example looks like.<jupyter_code>print(datasets["train"][0])<jupyter_output><empty_output><jupyter_text>Preprocessing the training data Before we can feed those texts to our model, we need to preprocess them. This is done bya 🤗 Transformers `Tokenizer` which will (as the name indicates) tokenize the inputs(including converting the tokens to their corresponding IDs in the pretrained vocabulary)and put it in a format the model expects, as well as generate the other inputs that modelrequires.To do all of this, we instantiate our tokenizer with the `AutoTokenizer.from_pretrained`method, which will ensure:- We get a tokenizer that corresponds to the model architecture we want to use.- We download the vocabulary used when pretraining this specific checkpoint.That vocabulary will be cached, so it's not downloaded again the next time we run thecell.The `from_pretrained()` method expects the name of a model. If you're unsure which model topick, don't panic! The list of models to choose from can be bewildering, but in generalthere is a simple tradeoff: Larger models are slower and consume more memory, but usuallyyield slightly better final accuracies after fine-tuning. For this example, we havechosen the (relatively) lightweight `"distilbert"`, a smaller, distilled version of thefamous BERT language model. If you absolutely must have the highest possible accuracy foran important task, though, and you have the GPU memory (and free time) to handle it, youmay prefer to use a larger model, such as `"roberta-large"`. Newer and even larger modelsthan `"roberta"` exist in [🤗 Transformers](https://github.com/huggingface/transformers),but we leave the task of finding and training them as an exercise to readers who areeither particularly masochistic or have 40GB of VRAM to throw around.<jupyter_code>from transformers import AutoTokenizer model_checkpoint = "distilbert-base-cased" tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)<jupyter_output><empty_output><jupyter_text>Depending on the model you selected, you will see different keys in the dictionaryreturned by the cell above. They don't matter much for what we're doing here (just knowthey are required by the model we will instantiate later), but you can learn more aboutthem in [this tutorial](https://huggingface.co/transformers/preprocessing.html) if you'reinterested.One specific issue for the preprocessing in question answering is how to deal with verylong documents. We usually truncate them in other tasks, when they are longer than themodel maximum sentence length, but here, removing part of the the context might result inlosing the answer we are looking for. To deal with this, we will allow one (long) examplein our dataset to give several input features, each of length shorter than the maximumlength of the model (or the one we set as a hyper-parameter). Also, just in case theanswer lies at the point we split a long context, we allow some overlap between thefeatures we generate controlled by the hyper-parameter `doc_stride`.If we simply truncate with a fixed size (`max_length`), we will lose information. We want toavoid truncating the question, and instead only truncate the context to ensure the taskremains solvable. To do that, we'll set `truncation` to `"only_second"`, so that only thesecond sequence (the context) in each pair is truncated. To get the list of featurescapped by the maximum length, we need to set `return_overflowing_tokens` to True and passthe `doc_stride` to `stride`. To see which feature of the original context contain theanswer, we can return `"offset_mapping"`.<jupyter_code>max_length = 384 # The maximum length of a feature (question and context) doc_stride = ( 128 # The authorized overlap between two part of the context when splitting ) # it is needed.<jupyter_output><empty_output><jupyter_text>In the case of impossible answers (the answer is in another feature given by an examplewith a long context), we set the cls index for both the start and end position. We couldalso simply discard those examples from the training set if the flag`allow_impossible_answers` is `False`. Since the preprocessing is already complex enoughas it is, we've kept is simple for this part.<jupyter_code>def prepare_train_features(examples): # Tokenize our examples with truncation and padding, but keep the overflows using a # stride. This results in one example possible giving several features when a context is long, # each of those features having a context that overlaps a bit the context of the previous # feature. examples["question"] = [q.lstrip() for q in examples["question"]] examples["context"] = [c.lstrip() for c in examples["context"]] tokenized_examples = tokenizer( examples["question"], examples["context"], truncation="only_second", max_length=max_length, stride=doc_stride, return_overflowing_tokens=True, return_offsets_mapping=True, padding="max_length", ) # Since one example might give us several features if it has a long context, we need a # map from a feature to its corresponding example. This key gives us just that. sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping") # The offset mappings will give us a map from token to character position in the original # context. This will help us compute the start_positions and end_positions. offset_mapping = tokenized_examples.pop("offset_mapping") # Let's label those examples! tokenized_examples["start_positions"] = [] tokenized_examples["end_positions"] = [] for i, offsets in enumerate(offset_mapping): # We will label impossible answers with the index of the CLS token. input_ids = tokenized_examples["input_ids"][i] cls_index = input_ids.index(tokenizer.cls_token_id) # Grab the sequence corresponding to that example (to know what is the context and what # is the question). sequence_ids = tokenized_examples.sequence_ids(i) # One example can give several spans, this is the index of the example containing this # span of text. sample_index = sample_mapping[i] answers = examples["answers"][sample_index] # If no answers are given, set the cls_index as answer. if len(answers["answer_start"]) == 0: tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) else: # Start/end character index of the answer in the text. start_char = answers["answer_start"][0] end_char = start_char + len(answers["text"][0]) # Start token index of the current span in the text. token_start_index = 0 while sequence_ids[token_start_index] != 1: token_start_index += 1 # End token index of the current span in the text. token_end_index = len(input_ids) - 1 while sequence_ids[token_end_index] != 1: token_end_index -= 1 # Detect if the answer is out of the span (in which case this feature is labeled with the # CLS index). if not ( offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char ): tokenized_examples["start_positions"].append(cls_index) tokenized_examples["end_positions"].append(cls_index) else: # Otherwise move the token_start_index and token_end_index to the two ends of the # answer. # Note: we could go after the last offset if the answer is the last word (edge # case). while ( token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char ): token_start_index += 1 tokenized_examples["start_positions"].append(token_start_index - 1) while offsets[token_end_index][1] >= end_char: token_end_index -= 1 tokenized_examples["end_positions"].append(token_end_index + 1) return tokenized_examples<jupyter_output><empty_output><jupyter_text>To apply this function on all the sentences (or pairs of sentences) in our dataset, wejust use the `map()` method of our `Dataset` object, which will apply the function on allthe elements of.We'll use `batched=True` to encode the texts in batches together. This is to leverage thefull benefit of the fast tokenizer we loaded earlier, which will use multi-threading totreat the texts in a batch concurrently. We also use the `remove_columns` argument toremove the columns that existed before tokenization was applied - this ensures that theonly features remaining are the ones we actually want to pass to our model.<jupyter_code>tokenized_datasets = datasets.map( prepare_train_features, batched=True, remove_columns=datasets["train"].column_names, num_proc=3, )<jupyter_output><empty_output><jupyter_text>Even better, the results are automatically cached by the 🤗 Datasets library to avoidspending time on this step the next time you run your notebook. The 🤗 Datasets library isnormally smart enough to detect when the function you pass to map has changed (and thusrequires to not use the cache data). For instance, it will properly detect if you changethe task in the first cell and rerun the notebook. 🤗 Datasets warns you when it usescached files, you can pass `load_from_cache_file=False` in the call to `map()` to not usethe cached files and force the preprocessing to be applied again.Because all our data has been padded or truncated to the same length, and it is not toolarge, we can now simply convert it to a dict of numpy arrays, ready for training.Although we will not use it here, 🤗 Datasets have a `to_tf_dataset()` helper methoddesigned to assist you when the data cannot be easily converted to arrays, such as whenit has variable sequence lengths, or is too large to fit in memory. This method wraps a`tf.data.Dataset` around the underlying 🤗 Dataset, streaming samples from the underlyingdataset and batching them on the fly, thus minimizing wasted memory and computation fromunnecessary padding. If your use-case requires it, please see the[docs](https://huggingface.co/docs/transformers/custom_datasetsfinetune-with-tensorflow)on to_tf_dataset and data collator for an example. If not, feel free to follow this exampleand simply convert to dicts!<jupyter_code>train_set = tokenized_datasets["train"].with_format("numpy")[ : ] # Load the whole dataset as a dict of numpy arrays validation_set = tokenized_datasets["validation"].with_format("numpy")[:]<jupyter_output><empty_output><jupyter_text>Fine-tuning the model That was a lot of work! But now that our data is ready, everything is going to run verysmoothly. First, we download the pretrained model and fine-tune it. Since our task isquestion answering, we use the `TFAutoModelForQuestionAnswering` class. Like with thetokenizer, the `from_pretrained()` method will download and cache the model for us:<jupyter_code>from transformers import TFAutoModelForQuestionAnswering model = TFAutoModelForQuestionAnswering.from_pretrained(model_checkpoint)<jupyter_output><empty_output><jupyter_text>The warning is telling us we are throwing away some weights and newly initializing someothers. Don't panic! This is absolutely normal. Recall that models like BERT andDistilbert are trained on a **language modeling** task, but we're loading the model asa `TFAutoModelForQuestionAnswering`, which means we want the model to perform a**question answering** task. This change requires the final output layer or "head" to beremoved and replaced with a new head suited for the new task. The `from_pretrained`method will handle all of this for us, and the warning is there simply to remind us thatsome model surgery has been performed, and that the model will not generate usefulpredictions until the newly-initialized layers have been fine-tuned on some data.Next, we can create an optimizer and specify a loss function. You can usually getslightly better performance by using learning rate decay and decoupled weight decay, butfor the purposes of this example the standard `Adam` optimizer will work fine. Note,however, that when fine-tuning a pretrained transformer model you will generally want touse a low learning rate! We find the best results are obtained with values in the range1e-5 to 1e-4, and training may completely diverge at the default Adam learning rate of 1e-3.<jupyter_code>import tensorflow as tf from tensorflow import keras optimizer = keras.optimizers.Adam(learning_rate=5e-5)<jupyter_output><empty_output><jupyter_text>And now we just compile and fit the model. As a convenience, all 🤗 Transformers modelscome with a default loss which matches their output head, although you're of course freeto use your own. Because the built-in loss is computed internally during the forwardpass, when using it you may find that some Keras metrics misbehave or give unexpectedoutputs. This is an area of very active development in 🤗 Transformers, though, sohopefully we'll have a good solution to that issue soon!For now, though, let's use the built-in loss without any metrics. To get the built-inloss, simply leave out the `loss` argument to `compile`.<jupyter_code># Optionally uncomment the next line for float16 training keras.mixed_precision.set_global_policy("mixed_float16") model.compile(optimizer=optimizer)<jupyter_output><empty_output><jupyter_text>And now we can train our model. Note that we're not passing separate labels - the labelsare keys in the input dict, to make them visible to the model during the forward pass soit can compute the built-in loss.<jupyter_code>model.fit(train_set, validation_data=validation_set, epochs=1)<jupyter_output><empty_output><jupyter_text>And we're done! Let's give it a try, using some text from the keras.io frontpage:<jupyter_code>context = """Keras is an API designed for human beings, not machines. Keras follows best practices for reducing cognitive load: it offers consistent & simple APIs, it minimizes the number of user actions required for common use cases, and it provides clear & actionable error messages. It also has extensive documentation and developer guides. """ question = "What is Keras?" inputs = tokenizer([context], [question], return_tensors="np") outputs = model(inputs) start_position = tf.argmax(outputs.start_logits, axis=1) end_position = tf.argmax(outputs.end_logits, axis=1) print(int(start_position), int(end_position[0]))<jupyter_output><empty_output><jupyter_text>Looks like our model thinks the answer is the span from tokens 1 to 12 (inclusive). Noprizes for guessing which tokens those are!<jupyter_code>answer = inputs["input_ids"][0, int(start_position) : int(end_position) + 1] print(answer)<jupyter_output><empty_output><jupyter_text>And now we can use the `tokenizer.decode()` method to turn those token IDs back into text:<jupyter_code>print(tokenizer.decode(answer))<jupyter_output><empty_output>
keras-io/examples/nlp/ipynb/question_answering.ipynb/0
{ "file_path": "keras-io/examples/nlp/ipynb/question_answering.ipynb", "repo_id": "keras-io", "token_count": 5535 }
91
# Data Parallel Training with KerasNLP and tf.distribute **Author:** Anshuman Mishra<br> **Date created:** 2023/07/07<br> **Last modified:** 2023/07/07<br> **Description:** Data Parallel training with KerasNLP and tf.distribute. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/nlp/ipynb/data_parallel_training_with_keras_nlp.ipynb) <span class="k-dot">•</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/examples/nlp/data_parallel_training_with_keras_nlp.py) --- ## Introduction Distributed training is a technique used to train deep learning models on multiple devices or machines simultaneously. It helps to reduce training time and allows for training larger models with more data. KerasNLP is a library that provides tools and utilities for natural language processing tasks, including distributed training. In this tutorial, we will use KerasNLP to train a BERT-based masked language model (MLM) on the wikitext-2 dataset (a 2 million word dataset of wikipedia articles). The MLM task involves predicting the masked words in a sentence, which helps the model learn contextual representations of words. This guide focuses on data parallelism, in particular synchronous data parallelism, where each accelerator (a GPU or TPU) holds a complete replica of the model, and sees a different partial batch of the input data. Partial gradients are computed on each device, aggregated, and used to compute a global gradient update. Specifically, this guide teaches you how to use the `tf.distribute` API to train Keras models on multiple GPUs, with minimal changes to your code, in the following two setups: - On multiple GPUs (typically 2 to 8) installed on a single machine (single host, multi-device training). This is the most common setup for researchers and small-scale industry workflows. - On a cluster of many machines, each hosting one or multiple GPUs (multi-worker distributed training). This is a good setup for large-scale industry workflows, e.g. training high-resolution text summarization models on billion word datasets on 20-100 GPUs. ```python !pip install -q --upgrade keras-nlp !pip install -q --upgrade keras # Upgrade to Keras 3. ``` --- ## Imports ```python import os os.environ["KERAS_BACKEND"] = "tensorflow" import tensorflow as tf import keras import keras_nlp ``` Before we start any training, let's configure our single GPU to show up as two logical devices. When you are training with two or more phsyical GPUs, this is totally uncessary. This is just a trick to show real distributed training on the default colab GPU runtime, which has only one GPU available. ```python !nvidia-smi --query-gpu=memory.total --format=csv,noheader ``` ```python physical_devices = tf.config.list_physical_devices("GPU") tf.config.set_logical_device_configuration( physical_devices[0], [ tf.config.LogicalDeviceConfiguration(memory_limit=15360 // 2), tf.config.LogicalDeviceConfiguration(memory_limit=15360 // 2), ], ) logical_devices = tf.config.list_logical_devices("GPU") logical_devices EPOCHS = 3 ``` <div class="k-default-codeblock"> ``` 24576 MiB ``` </div> To do single-host, multi-device synchronous training with a Keras model, you would use the `tf.distribute.MirroredStrategy` API. Here's how it works: - Instantiate a `MirroredStrategy`, optionally configuring which specific devices you want to use (by default the strategy will use all GPUs available). - Use the strategy object to open a scope, and within this scope, create all the Keras objects you need that contain variables. Typically, that means **creating & compiling the model** inside the distribution scope. - Train the model via `fit()` as usual. ```python strategy = tf.distribute.MirroredStrategy() print(f"Number of devices: {strategy.num_replicas_in_sync}") ``` <div class="k-default-codeblock"> ``` INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1') Number of devices: 2 ``` </div> Base batch size and learning rate ```python base_batch_size = 32 base_learning_rate = 1e-4 ``` Calculate scaled batch size and learning rate ```python scaled_batch_size = base_batch_size * strategy.num_replicas_in_sync scaled_learning_rate = base_learning_rate * strategy.num_replicas_in_sync ``` Now, we need to download and preprocess the wikitext-2 dataset. This dataset will be used for pretraining the BERT model. We will filter out short lines to ensure that the data has enough context for training. ```python keras.utils.get_file( origin="https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip", extract=True, ) wiki_dir = os.path.expanduser("~/.keras/datasets/wikitext-2/") # Load wikitext-103 and filter out short lines. wiki_train_ds = ( tf.data.TextLineDataset( wiki_dir + "wiki.train.tokens", ) .filter(lambda x: tf.strings.length(x) > 100) .shuffle(buffer_size=500) .batch(scaled_batch_size) .cache() .prefetch(tf.data.AUTOTUNE) ) wiki_val_ds = ( tf.data.TextLineDataset(wiki_dir + "wiki.valid.tokens") .filter(lambda x: tf.strings.length(x) > 100) .shuffle(buffer_size=500) .batch(scaled_batch_size) .cache() .prefetch(tf.data.AUTOTUNE) ) wiki_test_ds = ( tf.data.TextLineDataset(wiki_dir + "wiki.test.tokens") .filter(lambda x: tf.strings.length(x) > 100) .shuffle(buffer_size=500) .batch(scaled_batch_size) .cache() .prefetch(tf.data.AUTOTUNE) ) ``` In the above code, we download the wikitext-2 dataset and extract it. Then, we define three datasets: wiki_train_ds, wiki_val_ds, and wiki_test_ds. These datasets are filtered to remove short lines and are batched for efficient training. It's a common practice to use a decayed learning rate in NLP training/tuning. We'll use `PolynomialDecay` schedule here. ```python total_training_steps = sum(1 for _ in wiki_train_ds.as_numpy_iterator()) * EPOCHS lr_schedule = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=scaled_learning_rate, decay_steps=total_training_steps, end_learning_rate=0.0, ) class PrintLR(tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs=None): print( f"\nLearning rate for epoch {epoch + 1} is {model_dist.optimizer.learning_rate.numpy()}" ) ``` Let's also make a callback to TensorBoard, this will enable visualization of different metrics while we train the model in later part of this tutorial. We put all the callbacks together as follows: ```python callbacks = [ tf.keras.callbacks.TensorBoard(log_dir="./logs"), PrintLR(), ] print(tf.config.list_physical_devices("GPU")) ``` <div class="k-default-codeblock"> ``` [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')] ``` </div> With the datasets prepared, we now initialize and compile our model and optimizer within the `strategy.scope()`: ```python with strategy.scope(): # Everything that creates variables should be under the strategy scope. # In general this is only model construction & `compile()`. model_dist = keras_nlp.models.BertMaskedLM.from_preset("bert_tiny_en_uncased") # This line just sets pooled_dense layer as non-trainiable, we do this to avoid # warnings of this layer being unused model_dist.get_layer("bert_backbone").get_layer("pooled_dense").trainable = False model_dist.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=tf.keras.optimizers.AdamW(learning_rate=scaled_learning_rate), weighted_metrics=[keras.metrics.SparseCategoricalAccuracy()], jit_compile=False, ) model_dist.fit( wiki_train_ds, validation_data=wiki_val_ds, epochs=EPOCHS, callbacks=callbacks ) ``` <div class="k-default-codeblock"> ``` Epoch 1/3 Learning rate for epoch 1 is 0.00019999999494757503 239/239 ━━━━━━━━━━━━━━━━━━━━ 43s 136ms/step - loss: 3.7009 - sparse_categorical_accuracy: 0.1499 - val_loss: 1.1509 - val_sparse_categorical_accuracy: 0.3485 Epoch 2/3 239/239 ━━━━━━━━━━━━━━━━━━━━ 0s 122ms/step - loss: 2.6094 - sparse_categorical_accuracy: 0.5284 Learning rate for epoch 2 is 0.00019999999494757503 239/239 ━━━━━━━━━━━━━━━━━━━━ 32s 133ms/step - loss: 2.6038 - sparse_categorical_accuracy: 0.5274 - val_loss: 0.9812 - val_sparse_categorical_accuracy: 0.4006 Epoch 3/3 239/239 ━━━━━━━━━━━━━━━━━━━━ 0s 123ms/step - loss: 2.3564 - sparse_categorical_accuracy: 0.6053 Learning rate for epoch 3 is 0.00019999999494757503 239/239 ━━━━━━━━━━━━━━━━━━━━ 32s 134ms/step - loss: 2.3514 - sparse_categorical_accuracy: 0.6040 - val_loss: 0.9213 - val_sparse_categorical_accuracy: 0.4230 ``` </div> After fitting our model under the scope, we evaluate it normally! ```python model_dist.evaluate(wiki_test_ds) ``` <div class="k-default-codeblock"> ``` 29/29 ━━━━━━━━━━━━━━━━━━━━ 3s 60ms/step - loss: 1.9197 - sparse_categorical_accuracy: 0.8527 [0.9470901489257812, 0.4373602867126465] ``` </div> For distributed training across multiple machines (as opposed to training that only leverages multiple devices on a single machine), there are two distribution strategies you could use: `MultiWorkerMirroredStrategy` and `ParameterServerStrategy`: - `tf.distribute.MultiWorkerMirroredStrategy` implements a synchronous CPU/GPU multi-worker solution to work with Keras-style model building and training loop, using synchronous reduction of gradients across the replicas. - `tf.distribute.experimental.ParameterServerStrategy` implements an asynchronous CPU/GPU multi-worker solution, where the parameters are stored on parameter servers, and workers update the gradients to parameter servers asynchronously. ### Further reading 1. [TensorFlow distributed training guide](https://www.tensorflow.org/guide/distributed_training) 2. [Tutorial on multi-worker training with Keras](https://www.tensorflow.org/tutorials/distribute/multi_worker_with_keras) 3. [MirroredStrategy docs](https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy) 4. [MultiWorkerMirroredStrategy docs](https://www.tensorflow.org/api_docs/python/tf/distribute/experimental/MultiWorkerMirroredStrategy) 5. [Distributed training in tf.keras with Weights & Biases](https://towardsdatascience.com/distributed-training-in-tf-keras-with-w-b-ccf021f9322e)
keras-io/examples/nlp/md/data_parallel_training_with_keras_nlp.md/0
{ "file_path": "keras-io/examples/nlp/md/data_parallel_training_with_keras_nlp.md", "repo_id": "keras-io", "token_count": 3631 }
92
# Semantic Similarity with KerasNLP **Author:** [Anshuman Mishra](https://github.com/shivance/)<br> **Date created:** 2023/02/25<br> **Last modified:** 2023/02/25<br> **Description:** Use pretrained models from KerasNLP for the Semantic Similarity Task. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/nlp/ipynb/semantic_similarity_with_keras_nlp.ipynb) <span class="k-dot">•</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/examples/nlp/semantic_similarity_with_keras_nlp.py) --- ## Introduction Semantic similarity refers to the task of determining the degree of similarity between two sentences in terms of their meaning. We already saw in [this](https://keras.io/examples/nlp/semantic_similarity_with_bert/) example how to use SNLI (Stanford Natural Language Inference) corpus to predict sentence semantic similarity with the HuggingFace Transformers library. In this tutorial we will learn how to use [KerasNLP](https://keras.io/keras_nlp/), an extension of the core Keras API, for the same task. Furthermore, we will discover how KerasNLP effectively reduces boilerplate code and simplifies the process of building and utilizing models. For more information on KerasNLP, please refer to [KerasNLP's official documentation](https://keras.io/keras_nlp/). This guide is broken down into the following parts: 1. *Setup*, task definition, and establishing a baseline. 2. *Establishing baseline* with BERT. 3. *Saving and Reloading* the model. 4. *Performing inference* with the model. 5 *Improving accuracy* with RoBERTa --- ## Setup The following guide uses [Keras Core](https://keras.io/keras_core/) to work in any of `tensorflow`, `jax` or `torch`. Support for Keras Core is baked into KerasNLP, simply change the `KERAS_BACKEND` environment variable below to change the backend you would like to use. We select the `jax` backend below, which will give us a particularly fast train step below. ```python !pip install -q --upgrade keras-nlp !pip install -q --upgrade keras # Upgrade to Keras 3. ``` ```python import numpy as np import tensorflow as tf import keras import keras_nlp import tensorflow_datasets as tfds ``` <div class="k-default-codeblock"> ``` ``` </div> To load the SNLI dataset, we use the tensorflow-datasets library, which contains over 550,000 samples in total. However, to ensure that this example runs quickly, we use only 20% of the training samples. --- ## Overview of SNLI Dataset Every sample in the dataset contains three components: `hypothesis`, `premise`, and `label`. epresents the original caption provided to the author of the pair, while the hypothesis refers to the hypothesis caption created by the author of the pair. The label is assigned by annotators to indicate the similarity between the two sentences. The dataset contains three possible similarity label values: Contradiction, Entailment, and Neutral. Contradiction represents completely dissimilar sentences, while Entailment denotes similar meaning sentences. Lastly, Neutral refers to sentences where no clear similarity or dissimilarity can be established between them. ```python snli_train = tfds.load("snli", split="train[:20%]") snli_val = tfds.load("snli", split="validation") snli_test = tfds.load("snli", split="test") # Here's an example of how our training samples look like, where we randomly select # four samples: sample = snli_test.batch(4).take(1).get_single_element() sample ``` <div class="k-default-codeblock"> ``` {'hypothesis': <tf.Tensor: shape=(4,), dtype=string, numpy= array([b'A girl is entertaining on stage', b'A group of people posing in front of a body of water.', b"The group of people aren't inide of the building.", b'The people are taking a carriage ride.'], dtype=object)>, 'label': <tf.Tensor: shape=(4,), dtype=int64, numpy=array([0, 0, 0, 0])>, 'premise': <tf.Tensor: shape=(4,), dtype=string, numpy= array([b'A girl in a blue leotard hula hoops on a stage with balloon shapes in the background.', b'A group of people taking pictures on a walkway in front of a large body of water.', b'Many people standing outside of a place talking to each other in front of a building that has a sign that says "HI-POINTE."', b'Three people are riding a carriage pulled by four horses.'], dtype=object)>} ``` </div> ### Preprocessing In our dataset, we have identified that some samples have missing or incorrectly labeled data, which is denoted by a value of -1. To ensure the accuracy and reliability of our model, we simply filter out these samples from our dataset. ```python def filter_labels(sample): return sample["label"] >= 0 ``` Here's a utility function that splits the example into an `(x, y)` tuple that is suitable for `model.fit()`. By default, `keras_nlp.models.BertClassifier` will tokenize and pack together raw strings using a `"[SEP]"` token during training. Therefore, this label splitting is all the data preparation that we need to perform. ```python def split_labels(sample): x = (sample["hypothesis"], sample["premise"]) y = sample["label"] return x, y train_ds = ( snli_train.filter(filter_labels) .map(split_labels, num_parallel_calls=tf.data.AUTOTUNE) .batch(16) ) val_ds = ( snli_val.filter(filter_labels) .map(split_labels, num_parallel_calls=tf.data.AUTOTUNE) .batch(16) ) test_ds = ( snli_test.filter(filter_labels) .map(split_labels, num_parallel_calls=tf.data.AUTOTUNE) .batch(16) ) ``` --- ## Establishing baseline with BERT. We use the BERT model from KerasNLP to establish a baseline for our semantic similarity task. The `keras_nlp.models.BertClassifier` class attaches a classification head to the BERT Backbone, mapping the backbone outputs to a logit output suitable for a classification task. This significantly reduces the need for custom code. KerasNLP models have built-in tokenization capabilities that handle tokenization by default based on the selected model. However, users can also use custom preprocessing techniques as per their specific needs. If we pass a tuple as input, the model will tokenize all the strings and concatenate them with a `"[SEP]"` separator. We use this model with pretrained weights, and we can use the `from_preset()` method to use our own preprocessor. For the SNLI dataset, we set `num_classes` to 3. ```python bert_classifier = keras_nlp.models.BertClassifier.from_preset( "bert_tiny_en_uncased", num_classes=3 ) ``` Please note that the BERT Tiny model has only 4,386,307 trainable parameters. KerasNLP task models come with compilation defaults. We can now train the model we just instantiated by calling the `fit()` method. ```python bert_classifier.fit(train_ds, validation_data=val_ds, epochs=1) ``` <div class="k-default-codeblock"> ``` 6867/6867 ━━━━━━━━━━━━━━━━━━━━ 61s 8ms/step - loss: 0.8732 - sparse_categorical_accuracy: 0.5864 - val_loss: 0.5900 - val_sparse_categorical_accuracy: 0.7602 <keras.src.callbacks.history.History at 0x7f4660171fc0> ``` </div> Our BERT classifier achieved an accuracy of around 76% on the validation split. Now, let's evaluate its performance on the test split. ### Evaluate the performance of the trained model on test data. ```python bert_classifier.evaluate(test_ds) ``` <div class="k-default-codeblock"> ``` 614/614 ━━━━━━━━━━━━━━━━━━━━ 2s 3ms/step - loss: 0.5815 - sparse_categorical_accuracy: 0.7628 [0.5895748734474182, 0.7618078589439392] ``` </div> Our baseline BERT model achieved a similar accuracy of around 76% on the test split. Now, let's try to improve its performance by recompiling the model with a slightly higher learning rate. ```python bert_classifier = keras_nlp.models.BertClassifier.from_preset( "bert_tiny_en_uncased", num_classes=3 ) bert_classifier.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=keras.optimizers.Adam(5e-5), metrics=["accuracy"], ) bert_classifier.fit(train_ds, validation_data=val_ds, epochs=1) bert_classifier.evaluate(test_ds) ``` <div class="k-default-codeblock"> ``` 6867/6867 ━━━━━━━━━━━━━━━━━━━━ 59s 8ms/step - accuracy: 0.6007 - loss: 0.8636 - val_accuracy: 0.7648 - val_loss: 0.5800 614/614 ━━━━━━━━━━━━━━━━━━━━ 2s 3ms/step - accuracy: 0.7700 - loss: 0.5692 [0.578984260559082, 0.7686278820037842] ``` </div> Just tweaking the learning rate alone was not enough to boost performance, which stayed right around 76%. Let's try again, but this time with `keras.optimizers.AdamW`, and a learning rate schedule. ```python class TriangularSchedule(keras.optimizers.schedules.LearningRateSchedule): """Linear ramp up for `warmup` steps, then linear decay to zero at `total` steps.""" def __init__(self, rate, warmup, total): self.rate = rate self.warmup = warmup self.total = total def get_config(self): config = {"rate": self.rate, "warmup": self.warmup, "total": self.total} return config def __call__(self, step): step = keras.ops.cast(step, dtype="float32") rate = keras.ops.cast(self.rate, dtype="float32") warmup = keras.ops.cast(self.warmup, dtype="float32") total = keras.ops.cast(self.total, dtype="float32") warmup_rate = rate * step / self.warmup cooldown_rate = rate * (total - step) / (total - warmup) triangular_rate = keras.ops.minimum(warmup_rate, cooldown_rate) return keras.ops.maximum(triangular_rate, 0.0) bert_classifier = keras_nlp.models.BertClassifier.from_preset( "bert_tiny_en_uncased", num_classes=3 ) # Get the total count of training batches. # This requires walking the dataset to filter all -1 labels. epochs = 3 total_steps = sum(1 for _ in train_ds.as_numpy_iterator()) * epochs warmup_steps = int(total_steps * 0.2) bert_classifier.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=keras.optimizers.AdamW( TriangularSchedule(1e-4, warmup_steps, total_steps) ), metrics=["accuracy"], ) bert_classifier.fit(train_ds, validation_data=val_ds, epochs=epochs) ``` <div class="k-default-codeblock"> ``` Epoch 1/3 6867/6867 ━━━━━━━━━━━━━━━━━━━━ 59s 8ms/step - accuracy: 0.5457 - loss: 0.9317 - val_accuracy: 0.7633 - val_loss: 0.5825 Epoch 2/3 6867/6867 ━━━━━━━━━━━━━━━━━━━━ 55s 8ms/step - accuracy: 0.7291 - loss: 0.6515 - val_accuracy: 0.7809 - val_loss: 0.5399 Epoch 3/3 6867/6867 ━━━━━━━━━━━━━━━━━━━━ 55s 8ms/step - accuracy: 0.7708 - loss: 0.5695 - val_accuracy: 0.7918 - val_loss: 0.5214 <keras.src.callbacks.history.History at 0x7f45645b3370> ``` </div> Success! With the learning rate scheduler and the `AdamW` optimizer, our validation accuracy improved to around 79%. Now, let's evaluate our final model on the test set and see how it performs. ```python bert_classifier.evaluate(test_ds) ``` <div class="k-default-codeblock"> ``` 614/614 ━━━━━━━━━━━━━━━━━━━━ 2s 3ms/step - accuracy: 0.7956 - loss: 0.5128 [0.5245093703269958, 0.7890879511833191] ``` </div> Our Tiny BERT model achieved an accuracy of approximately 79% on the test set with the use of a learning rate scheduler. This is a significant improvement over our previous results. Fine-tuning a pretrained BERT model can be a powerful tool in natural language processing tasks, and even a small model like Tiny BERT can achieve impressive results. Let's save our model for now and move on to learning how to perform inference with it. --- ## Save and Reload the model ```python bert_classifier.save("bert_classifier.keras") restored_model = keras.models.load_model("bert_classifier.keras") restored_model.evaluate(test_ds) ``` <div class="k-default-codeblock"> ``` 614/614 ━━━━━━━━━━━━━━━━━━━━ 2s 3ms/step - loss: 0.5128 - sparse_categorical_accuracy: 0.7956 [0.5245093703269958, 0.7890879511833191] ``` </div> --- ## Performing inference with the model. Let's see how to perform inference with KerasNLP models ```python # Convert to Hypothesis-Premise pair, for forward pass through model sample = (sample["hypothesis"], sample["premise"]) sample ``` <div class="k-default-codeblock"> ``` (<tf.Tensor: shape=(4,), dtype=string, numpy= array([b'A girl is entertaining on stage', b'A group of people posing in front of a body of water.', b"The group of people aren't inide of the building.", b'The people are taking a carriage ride.'], dtype=object)>, <tf.Tensor: shape=(4,), dtype=string, numpy= array([b'A girl in a blue leotard hula hoops on a stage with balloon shapes in the background.', b'A group of people taking pictures on a walkway in front of a large body of water.', b'Many people standing outside of a place talking to each other in front of a building that has a sign that says "HI-POINTE."', b'Three people are riding a carriage pulled by four horses.'], dtype=object)>) ``` </div> The default preprocessor in KerasNLP models handles input tokenization automatically, so we don't need to perform tokenization explicitly. ```python predictions = bert_classifier.predict(sample) def softmax(x): return np.exp(x) / np.exp(x).sum(axis=0) # Get the class predictions with maximum probabilities predictions = softmax(predictions) ``` <div class="k-default-codeblock"> ``` 1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 711ms/step ``` </div> --- ## Improving accuracy with RoBERTa Now that we have established a baseline, we can attempt to improve our results by experimenting with different models. Thanks to KerasNLP, fine-tuning a RoBERTa checkpoint on the same dataset is easy with just a few lines of code. ```python # Inittializing a RoBERTa from preset roberta_classifier = keras_nlp.models.RobertaClassifier.from_preset( "roberta_base_en", num_classes=3 ) roberta_classifier.fit(train_ds, validation_data=val_ds, epochs=1) roberta_classifier.evaluate(test_ds) ``` <div class="k-default-codeblock"> ``` 6867/6867 ━━━━━━━━━━━━━━━━━━━━ 2049s 297ms/step - loss: 0.5509 - sparse_categorical_accuracy: 0.7740 - val_loss: 0.3292 - val_sparse_categorical_accuracy: 0.8789 614/614 ━━━━━━━━━━━━━━━━━━━━ 56s 88ms/step - loss: 0.3307 - sparse_categorical_accuracy: 0.8784 [0.33771008253097534, 0.874796450138092] ``` </div> The RoBERTa base model has significantly more trainable parameters than the BERT Tiny model, with almost 30 times as many at 124,645,635 parameters. As a result, it took approximately 1.5 hours to train on a P100 GPU. However, the performance improvement was substantial, with accuracy increasing to 88% on both the validation and test splits. With RoBERTa, we were able to fit a maximum batch size of 16 on our P100 GPU. Despite using a different model, the steps to perform inference with RoBERTa are the same as with BERT! ```python predictions = roberta_classifier.predict(sample) print(tf.math.argmax(predictions, axis=1).numpy()) ``` <div class="k-default-codeblock"> ``` 1/1 ━━━━━━━━━━━━━━━━━━━━ 4s 4s/step [0 0 0 0] ``` </div> We hope this tutorial has been helpful in demonstrating the ease and effectiveness of using KerasNLP and BERT for semantic similarity tasks. Throughout this tutorial, we demonstrated how to use a pretrained BERT model to establish a baseline and improve performance by training a larger RoBERTa model using just a few lines of code. The KerasNLP toolbox provides a range of modular building blocks for preprocessing text, including pretrained state-of-the-art models and low-level Transformer Encoder layers. We believe that this makes experimenting with natural language solutions more accessible and efficient.
keras-io/examples/nlp/md/semantic_similarity_with_keras_nlp.md/0
{ "file_path": "keras-io/examples/nlp/md/semantic_similarity_with_keras_nlp.md", "repo_id": "keras-io", "token_count": 5462 }
93
<jupyter_start><jupyter_text>Actor Critic Method**Author:** [Apoorv Nandan](https://twitter.com/NandanApoorv)**Date created:** 2020/05/13**Last modified:** 2020/05/13**Description:** Implement Actor Critic Method in CartPole environment. IntroductionThis script shows an implementation of Actor Critic method on CartPole-V0 environment. Actor Critic MethodAs an agent takes actions and moves through an environment, it learns to mapthe observed state of the environment to two possible outputs:1. Recommended action: A probability value for each action in the action space. The part of the agent responsible for this output is called the **actor**.2. Estimated rewards in the future: Sum of all rewards it expects to receive in the future. The part of the agent responsible for this output is the **critic**.Agent and Critic learn to perform their tasks, such that the recommended actionsfrom the actor maximize the rewards. CartPole-V0A pole is attached to a cart placed on a frictionless track. The agent has to applyforce to move the cart. It is rewarded for every time step the poleremains upright. The agent, therefore, must learn to keep the pole from falling over. References- [CartPole](http://www.derongliu.org/adp/adp-cdrom/Barto1983.pdf)- [Actor Critic Method](https://hal.inria.fr/hal-00840470/document) Setup<jupyter_code>import gym import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers # Configuration parameters for the whole setup seed = 42 gamma = 0.99 # Discount factor for past rewards max_steps_per_episode = 10000 env = gym.make("CartPole-v0") # Create the environment env.seed(seed) eps = np.finfo(np.float32).eps.item() # Smallest number such that 1.0 + eps != 1.0<jupyter_output><empty_output><jupyter_text>Implement Actor Critic networkThis network learns two functions:1. Actor: This takes as input the state of our environment and returns aprobability value for each action in its action space.2. Critic: This takes as input the state of our environment and returnsan estimate of total rewards in the future.In our implementation, they share the initial layer.<jupyter_code>num_inputs = 4 num_actions = 2 num_hidden = 128 inputs = layers.Input(shape=(num_inputs,)) common = layers.Dense(num_hidden, activation="relu")(inputs) action = layers.Dense(num_actions, activation="softmax")(common) critic = layers.Dense(1)(common) model = keras.Model(inputs=inputs, outputs=[action, critic])<jupyter_output><empty_output><jupyter_text>Train<jupyter_code>optimizer = keras.optimizers.Adam(learning_rate=0.01) huber_loss = keras.losses.Huber() action_probs_history = [] critic_value_history = [] rewards_history = [] running_reward = 0 episode_count = 0 while True: # Run until solved state = env.reset() episode_reward = 0 with tf.GradientTape() as tape: for timestep in range(1, max_steps_per_episode): # env.render(); Adding this line would show the attempts # of the agent in a pop up window. state = tf.convert_to_tensor(state) state = tf.expand_dims(state, 0) # Predict action probabilities and estimated future rewards # from environment state action_probs, critic_value = model(state) critic_value_history.append(critic_value[0, 0]) # Sample action from action probability distribution action = np.random.choice(num_actions, p=np.squeeze(action_probs)) action_probs_history.append(tf.math.log(action_probs[0, action])) # Apply the sampled action in our environment state, reward, done, _ = env.step(action) rewards_history.append(reward) episode_reward += reward if done: break # Update running reward to check condition for solving running_reward = 0.05 * episode_reward + (1 - 0.05) * running_reward # Calculate expected value from rewards # - At each timestep what was the total reward received after that timestep # - Rewards in the past are discounted by multiplying them with gamma # - These are the labels for our critic returns = [] discounted_sum = 0 for r in rewards_history[::-1]: discounted_sum = r + gamma * discounted_sum returns.insert(0, discounted_sum) # Normalize returns = np.array(returns) returns = (returns - np.mean(returns)) / (np.std(returns) + eps) returns = returns.tolist() # Calculating loss values to update our network history = zip(action_probs_history, critic_value_history, returns) actor_losses = [] critic_losses = [] for log_prob, value, ret in history: # At this point in history, the critic estimated that we would get a # total reward = `value` in the future. We took an action with log probability # of `log_prob` and ended up recieving a total reward = `ret`. # The actor must be updated so that it predicts an action that leads to # high rewards (compared to critic's estimate) with high probability. diff = ret - value actor_losses.append(-log_prob * diff) # actor loss # The critic must be updated so that it predicts a better estimate of # the future rewards. critic_losses.append( huber_loss(tf.expand_dims(value, 0), tf.expand_dims(ret, 0)) ) # Backpropagation loss_value = sum(actor_losses) + sum(critic_losses) grads = tape.gradient(loss_value, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) # Clear the loss and reward history action_probs_history.clear() critic_value_history.clear() rewards_history.clear() # Log details episode_count += 1 if episode_count % 10 == 0: template = "running reward: {:.2f} at episode {}" print(template.format(running_reward, episode_count)) if running_reward > 195: # Condition to consider the task solved print("Solved at episode {}!".format(episode_count)) break<jupyter_output><empty_output>
keras-io/examples/rl/ipynb/actor_critic_cartpole.ipynb/0
{ "file_path": "keras-io/examples/rl/ipynb/actor_critic_cartpole.ipynb", "repo_id": "keras-io", "token_count": 2253 }
94
# Structured data learning with Wide, Deep, and Cross networks **Author:** [Khalid Salama](https://www.linkedin.com/in/khalid-salama-24403144/)<br> **Date created:** 2020/12/31<br> **Last modified:** 2021/05/05<br> **Description:** Using Wide & Deep and Deep & Cross networks for structured data classification. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/structured_data/ipynb/wide_deep_cross_networks.ipynb) <span class="k-dot">•</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/examples/structured_data/wide_deep_cross_networks.py) --- ## Introduction This example demonstrates how to do structured data classification using the two modeling techniques: 1. [Wide & Deep](https://ai.googleblog.com/2016/06/wide-deep-learning-better-together-with.html) models 2. [Deep & Cross](https://arxiv.org/abs/1708.05123) models Note that this example should be run with TensorFlow 2.5 or higher. --- ## The dataset This example uses the [Covertype](https://archive.ics.uci.edu/ml/datasets/covertype) dataset from the UCI Machine Learning Repository. The task is to predict forest cover type from cartographic variables. The dataset includes 506,011 instances with 12 input features: 10 numerical features and 2 categorical features. Each instance is categorized into 1 of 7 classes. --- ## Setup ```python import os # Only the TensorFlow backend supports string inputs. os.environ["KERAS_BACKEND"] = "tensorflow" import math import numpy as np import pandas as pd from tensorflow import data as tf_data import keras from keras import layers ``` --- ## Prepare the data First, let's load the dataset from the UCI Machine Learning Repository into a Pandas DataFrame: ```python data_url = ( "https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.data.gz" ) raw_data = pd.read_csv(data_url, header=None) print(f"Dataset shape: {raw_data.shape}") raw_data.head() ``` <div class="k-default-codeblock"> ``` Dataset shape: (581012, 55) ``` </div> <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } <div class="k-default-codeblock"> ``` .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } ``` </div> </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th>7</th> <th>8</th> <th>9</th> <th>...</th> <th>45</th> <th>46</th> <th>47</th> <th>48</th> <th>49</th> <th>50</th> <th>51</th> <th>52</th> <th>53</th> <th>54</th> </tr> </thead> <tbody> <tr> <th>0</th> <td>2596</td> <td>51</td> <td>3</td> <td>258</td> <td>0</td> <td>510</td> <td>221</td> <td>232</td> <td>148</td> <td>6279</td> <td>...</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>5</td> </tr> <tr> <th>1</th> <td>2590</td> <td>56</td> <td>2</td> <td>212</td> <td>-6</td> <td>390</td> <td>220</td> <td>235</td> <td>151</td> <td>6225</td> <td>...</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>5</td> </tr> <tr> <th>2</th> <td>2804</td> <td>139</td> <td>9</td> <td>268</td> <td>65</td> <td>3180</td> <td>234</td> <td>238</td> <td>135</td> <td>6121</td> <td>...</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>2</td> </tr> <tr> <th>3</th> <td>2785</td> <td>155</td> <td>18</td> <td>242</td> <td>118</td> <td>3090</td> <td>238</td> <td>238</td> <td>122</td> <td>6211</td> <td>...</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>2</td> </tr> <tr> <th>4</th> <td>2595</td> <td>45</td> <td>2</td> <td>153</td> <td>-1</td> <td>391</td> <td>220</td> <td>234</td> <td>150</td> <td>6172</td> <td>...</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>5</td> </tr> </tbody> </table> <p>5 rows × 55 columns</p> </div> The two categorical features in the dataset are binary-encoded. We will convert this dataset representation to the typical representation, where each categorical feature is represented as a single integer value. ```python soil_type_values = [f"soil_type_{idx+1}" for idx in range(40)] wilderness_area_values = [f"area_type_{idx+1}" for idx in range(4)] soil_type = raw_data.loc[:, 14:53].apply( lambda x: soil_type_values[0::1][x.to_numpy().nonzero()[0][0]], axis=1 ) wilderness_area = raw_data.loc[:, 10:13].apply( lambda x: wilderness_area_values[0::1][x.to_numpy().nonzero()[0][0]], axis=1 ) CSV_HEADER = [ "Elevation", "Aspect", "Slope", "Horizontal_Distance_To_Hydrology", "Vertical_Distance_To_Hydrology", "Horizontal_Distance_To_Roadways", "Hillshade_9am", "Hillshade_Noon", "Hillshade_3pm", "Horizontal_Distance_To_Fire_Points", "Wilderness_Area", "Soil_Type", "Cover_Type", ] data = pd.concat( [raw_data.loc[:, 0:9], wilderness_area, soil_type, raw_data.loc[:, 54]], axis=1, ignore_index=True, ) data.columns = CSV_HEADER # Convert the target label indices into a range from 0 to 6 (there are 7 labels in total). data["Cover_Type"] = data["Cover_Type"] - 1 print(f"Dataset shape: {data.shape}") data.head().T ``` <div class="k-default-codeblock"> ``` Dataset shape: (581012, 13) ``` </div> <div> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } <div class="k-default-codeblock"> ``` .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } ``` </div> </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> </tr> </thead> <tbody> <tr> <th>Elevation</th> <td>2596</td> <td>2590</td> <td>2804</td> <td>2785</td> <td>2595</td> </tr> <tr> <th>Aspect</th> <td>51</td> <td>56</td> <td>139</td> <td>155</td> <td>45</td> </tr> <tr> <th>Slope</th> <td>3</td> <td>2</td> <td>9</td> <td>18</td> <td>2</td> </tr> <tr> <th>Horizontal_Distance_To_Hydrology</th> <td>258</td> <td>212</td> <td>268</td> <td>242</td> <td>153</td> </tr> <tr> <th>Vertical_Distance_To_Hydrology</th> <td>0</td> <td>-6</td> <td>65</td> <td>118</td> <td>-1</td> </tr> <tr> <th>Horizontal_Distance_To_Roadways</th> <td>510</td> <td>390</td> <td>3180</td> <td>3090</td> <td>391</td> </tr> <tr> <th>Hillshade_9am</th> <td>221</td> <td>220</td> <td>234</td> <td>238</td> <td>220</td> </tr> <tr> <th>Hillshade_Noon</th> <td>232</td> <td>235</td> <td>238</td> <td>238</td> <td>234</td> </tr> <tr> <th>Hillshade_3pm</th> <td>148</td> <td>151</td> <td>135</td> <td>122</td> <td>150</td> </tr> <tr> <th>Horizontal_Distance_To_Fire_Points</th> <td>6279</td> <td>6225</td> <td>6121</td> <td>6211</td> <td>6172</td> </tr> <tr> <th>Wilderness_Area</th> <td>area_type_1</td> <td>area_type_1</td> <td>area_type_1</td> <td>area_type_1</td> <td>area_type_1</td> </tr> <tr> <th>Soil_Type</th> <td>soil_type_29</td> <td>soil_type_29</td> <td>soil_type_12</td> <td>soil_type_30</td> <td>soil_type_29</td> </tr> <tr> <th>Cover_Type</th> <td>4</td> <td>4</td> <td>1</td> <td>1</td> <td>4</td> </tr> </tbody> </table> </div> The shape of the DataFrame shows there are 13 columns per sample (12 for the features and 1 for the target label). Let's split the data into training (85%) and test (15%) sets. ```python train_splits = [] test_splits = [] for _, group_data in data.groupby("Cover_Type"): random_selection = np.random.rand(len(group_data.index)) <= 0.85 train_splits.append(group_data[random_selection]) test_splits.append(group_data[~random_selection]) train_data = pd.concat(train_splits).sample(frac=1).reset_index(drop=True) test_data = pd.concat(test_splits).sample(frac=1).reset_index(drop=True) print(f"Train split size: {len(train_data.index)}") print(f"Test split size: {len(test_data.index)}") ``` <div class="k-default-codeblock"> ``` Train split size: 493323 Test split size: 87689 ``` </div> Next, store the training and test data in separate CSV files. ```python train_data_file = "train_data.csv" test_data_file = "test_data.csv" train_data.to_csv(train_data_file, index=False) test_data.to_csv(test_data_file, index=False) ``` --- ## Define dataset metadata Here, we define the metadata of the dataset that will be useful for reading and parsing the data into input features, and encoding the input features with respect to their types. ```python TARGET_FEATURE_NAME = "Cover_Type" TARGET_FEATURE_LABELS = ["0", "1", "2", "3", "4", "5", "6"] NUMERIC_FEATURE_NAMES = [ "Aspect", "Elevation", "Hillshade_3pm", "Hillshade_9am", "Hillshade_Noon", "Horizontal_Distance_To_Fire_Points", "Horizontal_Distance_To_Hydrology", "Horizontal_Distance_To_Roadways", "Slope", "Vertical_Distance_To_Hydrology", ] CATEGORICAL_FEATURES_WITH_VOCABULARY = { "Soil_Type": list(data["Soil_Type"].unique()), "Wilderness_Area": list(data["Wilderness_Area"].unique()), } CATEGORICAL_FEATURE_NAMES = list(CATEGORICAL_FEATURES_WITH_VOCABULARY.keys()) FEATURE_NAMES = NUMERIC_FEATURE_NAMES + CATEGORICAL_FEATURE_NAMES COLUMN_DEFAULTS = [ [0] if feature_name in NUMERIC_FEATURE_NAMES + [TARGET_FEATURE_NAME] else ["NA"] for feature_name in CSV_HEADER ] NUM_CLASSES = len(TARGET_FEATURE_LABELS) ``` --- ## Experiment setup Next, let's define an input function that reads and parses the file, then converts features and labels into a[`tf.data.Dataset`](https://www.tensorflow.org/guide/datasets) for training or evaluation. ```python def get_dataset_from_csv(csv_file_path, batch_size, shuffle=False): dataset = tf_data.experimental.make_csv_dataset( csv_file_path, batch_size=batch_size, column_names=CSV_HEADER, column_defaults=COLUMN_DEFAULTS, label_name=TARGET_FEATURE_NAME, num_epochs=1, header=True, shuffle=shuffle, ) return dataset.cache() ``` Here we configure the parameters and implement the procedure for running a training and evaluation experiment given a model. ```python learning_rate = 0.001 dropout_rate = 0.1 batch_size = 265 num_epochs = 50 hidden_units = [32, 32] def run_experiment(model): model.compile( optimizer=keras.optimizers.Adam(learning_rate=learning_rate), loss=keras.losses.SparseCategoricalCrossentropy(), metrics=[keras.metrics.SparseCategoricalAccuracy()], ) train_dataset = get_dataset_from_csv(train_data_file, batch_size, shuffle=True) test_dataset = get_dataset_from_csv(test_data_file, batch_size) print("Start training the model...") history = model.fit(train_dataset, epochs=num_epochs) print("Model training finished") _, accuracy = model.evaluate(test_dataset, verbose=0) print(f"Test accuracy: {round(accuracy * 100, 2)}%") ``` --- ## Create model inputs Now, define the inputs for the models as a dictionary, where the key is the feature name, and the value is a `keras.layers.Input` tensor with the corresponding feature shape and data type. ```python def create_model_inputs(): inputs = {} for feature_name in FEATURE_NAMES: if feature_name in NUMERIC_FEATURE_NAMES: inputs[feature_name] = layers.Input( name=feature_name, shape=(), dtype="float32" ) else: inputs[feature_name] = layers.Input( name=feature_name, shape=(), dtype="string" ) return inputs ``` --- ## Encode features We create two representations of our input features: sparse and dense: 1. In the **sparse** representation, the categorical features are encoded with one-hot encoding using the `CategoryEncoding` layer. This representation can be useful for the model to *memorize* particular feature values to make certain predictions. 2. In the **dense** representation, the categorical features are encoded with low-dimensional embeddings using the `Embedding` layer. This representation helps the model to *generalize* well to unseen feature combinations. ```python def encode_inputs(inputs, use_embedding=False): encoded_features = [] for feature_name in inputs: if feature_name in CATEGORICAL_FEATURE_NAMES: vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[feature_name] # Create a lookup to convert string values to an integer indices. # Since we are not using a mask token nor expecting any out of vocabulary # (oov) token, we set mask_token to None and num_oov_indices to 0. lookup = layers.StringLookup( vocabulary=vocabulary, mask_token=None, num_oov_indices=0, output_mode="int" if use_embedding else "binary", ) if use_embedding: # Convert the string input values into integer indices. encoded_feature = lookup(inputs[feature_name]) embedding_dims = int(math.sqrt(len(vocabulary))) # Create an embedding layer with the specified dimensions. embedding = layers.Embedding( input_dim=len(vocabulary), output_dim=embedding_dims ) # Convert the index values to embedding representations. encoded_feature = embedding(encoded_feature) else: # Convert the string input values into a one hot encoding. encoded_feature = lookup( keras.ops.expand_dims(inputs[feature_name], -1) ) else: # Use the numerical features as-is. encoded_feature = keras.ops.expand_dims(inputs[feature_name], -1) encoded_features.append(encoded_feature) all_features = layers.concatenate(encoded_features) return all_features ``` --- ## Experiment 1: a baseline model In the first experiment, let's create a multi-layer feed-forward network, where the categorical features are one-hot encoded. ```python def create_baseline_model(): inputs = create_model_inputs() features = encode_inputs(inputs) for units in hidden_units: features = layers.Dense(units)(features) features = layers.BatchNormalization()(features) features = layers.ReLU()(features) features = layers.Dropout(dropout_rate)(features) outputs = layers.Dense(units=NUM_CLASSES, activation="softmax")(features) model = keras.Model(inputs=inputs, outputs=outputs) return model baseline_model = create_baseline_model() keras.utils.plot_model(baseline_model, show_shapes=True, rankdir="LR") ``` <div class="k-default-codeblock"> ``` /Users/fchollet/Library/Python/3.10/lib/python/site-packages/numpy/core/numeric.py:2468: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison return bool(asarray(a1 == a2).all()) ``` </div> ![png](/img/examples/structured_data/wide_deep_cross_networks/wide_deep_cross_networks_24_1.png) Let's run it: ```python run_experiment(baseline_model) ``` <div class="k-default-codeblock"> ``` Start training the model... Epoch 1/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 6s 3ms/step - loss: 1.0713 - sparse_categorical_accuracy: 0.5634 Epoch 2/50 179/1862 ━━━━━━━━━━━━━━━━━━━━ 1s 848us/step - loss: 0.7473 - sparse_categorical_accuracy: 0.6840 /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/contextlib.py:153: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset. self.gen.throw(typ, value, traceback) 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 904us/step - loss: 0.7386 - sparse_categorical_accuracy: 0.6866 Epoch 3/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 909us/step - loss: 0.7135 - sparse_categorical_accuracy: 0.6958 Epoch 4/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 878us/step - loss: 0.6975 - sparse_categorical_accuracy: 0.7051 Epoch 5/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 941us/step - loss: 0.6876 - sparse_categorical_accuracy: 0.7089 Epoch 6/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 936us/step - loss: 0.6848 - sparse_categorical_accuracy: 0.7106 Epoch 7/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 934us/step - loss: 0.7165 - sparse_categorical_accuracy: 0.6969 Epoch 8/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 924us/step - loss: 0.6979 - sparse_categorical_accuracy: 0.7053 Epoch 9/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 967us/step - loss: 0.6913 - sparse_categorical_accuracy: 0.7088 Epoch 10/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 975us/step - loss: 0.6807 - sparse_categorical_accuracy: 0.7124 Epoch 11/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 987us/step - loss: 0.6829 - sparse_categorical_accuracy: 0.7110 Epoch 12/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 917us/step - loss: 0.6823 - sparse_categorical_accuracy: 0.7109 Epoch 13/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 879us/step - loss: 0.6658 - sparse_categorical_accuracy: 0.7175 Epoch 14/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 948us/step - loss: 0.6677 - sparse_categorical_accuracy: 0.7170 Epoch 15/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 866us/step - loss: 0.6695 - sparse_categorical_accuracy: 0.7130 Epoch 16/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 860us/step - loss: 0.6847 - sparse_categorical_accuracy: 0.7074 Epoch 17/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 853us/step - loss: 0.6660 - sparse_categorical_accuracy: 0.7174 Epoch 18/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 855us/step - loss: 0.6620 - sparse_categorical_accuracy: 0.7184 Epoch 19/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 900us/step - loss: 0.6642 - sparse_categorical_accuracy: 0.7163 Epoch 20/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 969us/step - loss: 0.6614 - sparse_categorical_accuracy: 0.7167 Epoch 21/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 988us/step - loss: 0.6560 - sparse_categorical_accuracy: 0.7199 Epoch 22/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 969us/step - loss: 0.6559 - sparse_categorical_accuracy: 0.7201 Epoch 23/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 868us/step - loss: 0.6514 - sparse_categorical_accuracy: 0.7217 Epoch 24/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 925us/step - loss: 0.6509 - sparse_categorical_accuracy: 0.7222 Epoch 25/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 879us/step - loss: 0.6464 - sparse_categorical_accuracy: 0.7233 Epoch 26/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 898us/step - loss: 0.6442 - sparse_categorical_accuracy: 0.7237 Epoch 27/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 842us/step - loss: 0.6476 - sparse_categorical_accuracy: 0.7210 Epoch 28/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 815us/step - loss: 0.6427 - sparse_categorical_accuracy: 0.7247 Epoch 29/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 837us/step - loss: 0.6414 - sparse_categorical_accuracy: 0.7244 Epoch 30/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 865us/step - loss: 0.6408 - sparse_categorical_accuracy: 0.7256 Epoch 31/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 845us/step - loss: 0.6378 - sparse_categorical_accuracy: 0.7269 Epoch 32/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 842us/step - loss: 0.6432 - sparse_categorical_accuracy: 0.7235 Epoch 33/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 905us/step - loss: 0.6482 - sparse_categorical_accuracy: 0.7226 Epoch 34/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.6586 - sparse_categorical_accuracy: 0.7191 Epoch 35/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 958us/step - loss: 0.6511 - sparse_categorical_accuracy: 0.7215 Epoch 36/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 910us/step - loss: 0.6571 - sparse_categorical_accuracy: 0.7217 Epoch 37/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 897us/step - loss: 0.6451 - sparse_categorical_accuracy: 0.7253 Epoch 38/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 846us/step - loss: 0.6455 - sparse_categorical_accuracy: 0.7254 Epoch 39/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 907us/step - loss: 0.6722 - sparse_categorical_accuracy: 0.7131 Epoch 40/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1000us/step - loss: 0.6393 - sparse_categorical_accuracy: 0.7282 Epoch 41/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 872us/step - loss: 0.6804 - sparse_categorical_accuracy: 0.7078 Epoch 42/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 884us/step - loss: 0.6657 - sparse_categorical_accuracy: 0.7135 Epoch 43/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 960us/step - loss: 0.6557 - sparse_categorical_accuracy: 0.7180 Epoch 44/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 870us/step - loss: 0.6671 - sparse_categorical_accuracy: 0.7115 Epoch 45/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 871us/step - loss: 0.6730 - sparse_categorical_accuracy: 0.7069 Epoch 46/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 875us/step - loss: 0.6669 - sparse_categorical_accuracy: 0.7105 Epoch 47/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 847us/step - loss: 0.6634 - sparse_categorical_accuracy: 0.7129 Epoch 48/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 846us/step - loss: 0.6625 - sparse_categorical_accuracy: 0.7137 Epoch 49/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 824us/step - loss: 0.6596 - sparse_categorical_accuracy: 0.7146 Epoch 50/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 833us/step - loss: 0.6714 - sparse_categorical_accuracy: 0.7106 Model training finished Test accuracy: 69.5% ``` </div> The baseline linear model achieves ~76% test accuracy. --- ## Experiment 2: Wide & Deep model In the second experiment, we create a Wide & Deep model. The wide part of the model a linear model, while the deep part of the model is a multi-layer feed-forward network. Use the sparse representation of the input features in the wide part of the model and the dense representation of the input features for the deep part of the model. Note that every input features contributes to both parts of the model with different representations. ```python def create_wide_and_deep_model(): inputs = create_model_inputs() wide = encode_inputs(inputs) wide = layers.BatchNormalization()(wide) deep = encode_inputs(inputs, use_embedding=True) for units in hidden_units: deep = layers.Dense(units)(deep) deep = layers.BatchNormalization()(deep) deep = layers.ReLU()(deep) deep = layers.Dropout(dropout_rate)(deep) merged = layers.concatenate([wide, deep]) outputs = layers.Dense(units=NUM_CLASSES, activation="softmax")(merged) model = keras.Model(inputs=inputs, outputs=outputs) return model wide_and_deep_model = create_wide_and_deep_model() keras.utils.plot_model(wide_and_deep_model, show_shapes=True, rankdir="LR") ``` <div class="k-default-codeblock"> ``` /Users/fchollet/Library/Python/3.10/lib/python/site-packages/numpy/core/numeric.py:2468: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison return bool(asarray(a1 == a2).all()) ``` </div> ![png](/img/examples/structured_data/wide_deep_cross_networks/wide_deep_cross_networks_29_1.png) Let's run it: ```python run_experiment(wide_and_deep_model) ``` <div class="k-default-codeblock"> ``` Start training the model... Epoch 1/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 5s 2ms/step - loss: 0.8979 - sparse_categorical_accuracy: 0.6386 Epoch 2/50 128/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.6317 - sparse_categorical_accuracy: 0.7302 /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/contextlib.py:153: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset. self.gen.throw(typ, value, traceback) 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.6290 - sparse_categorical_accuracy: 0.7295 Epoch 3/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.6130 - sparse_categorical_accuracy: 0.7350 Epoch 4/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.6029 - sparse_categorical_accuracy: 0.7397 Epoch 5/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 3s 1ms/step - loss: 0.6010 - sparse_categorical_accuracy: 0.7397 Epoch 6/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5924 - sparse_categorical_accuracy: 0.7445 Epoch 7/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5917 - sparse_categorical_accuracy: 0.7442 Epoch 8/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5945 - sparse_categorical_accuracy: 0.7438 Epoch 9/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5933 - sparse_categorical_accuracy: 0.7443 Epoch 10/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5862 - sparse_categorical_accuracy: 0.7481 Epoch 11/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5809 - sparse_categorical_accuracy: 0.7507 Epoch 12/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5777 - sparse_categorical_accuracy: 0.7519 Epoch 13/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5736 - sparse_categorical_accuracy: 0.7534 Epoch 14/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5716 - sparse_categorical_accuracy: 0.7545 Epoch 15/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5736 - sparse_categorical_accuracy: 0.7537 Epoch 16/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5712 - sparse_categorical_accuracy: 0.7559 Epoch 17/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5683 - sparse_categorical_accuracy: 0.7564 Epoch 18/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5666 - sparse_categorical_accuracy: 0.7569 Epoch 19/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5652 - sparse_categorical_accuracy: 0.7575 Epoch 20/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5634 - sparse_categorical_accuracy: 0.7583 Epoch 21/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5677 - sparse_categorical_accuracy: 0.7563 Epoch 22/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5651 - sparse_categorical_accuracy: 0.7578 Epoch 23/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5628 - sparse_categorical_accuracy: 0.7586 Epoch 24/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5619 - sparse_categorical_accuracy: 0.7593 Epoch 25/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5603 - sparse_categorical_accuracy: 0.7589 Epoch 26/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5644 - sparse_categorical_accuracy: 0.7585 Epoch 27/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5592 - sparse_categorical_accuracy: 0.7604 Epoch 28/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5571 - sparse_categorical_accuracy: 0.7616 Epoch 29/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5556 - sparse_categorical_accuracy: 0.7629 Epoch 30/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5538 - sparse_categorical_accuracy: 0.7640 Epoch 31/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5535 - sparse_categorical_accuracy: 0.7635 Epoch 32/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5521 - sparse_categorical_accuracy: 0.7645 Epoch 33/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5505 - sparse_categorical_accuracy: 0.7648 Epoch 34/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5494 - sparse_categorical_accuracy: 0.7657 Epoch 35/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5496 - sparse_categorical_accuracy: 0.7660 Epoch 36/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5488 - sparse_categorical_accuracy: 0.7673 Epoch 37/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5471 - sparse_categorical_accuracy: 0.7668 Epoch 38/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5474 - sparse_categorical_accuracy: 0.7673 Epoch 39/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5457 - sparse_categorical_accuracy: 0.7674 Epoch 40/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5452 - sparse_categorical_accuracy: 0.7689 Epoch 41/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5448 - sparse_categorical_accuracy: 0.7679 Epoch 42/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 3s 1ms/step - loss: 0.5442 - sparse_categorical_accuracy: 0.7692 Epoch 43/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5436 - sparse_categorical_accuracy: 0.7701 Epoch 44/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5419 - sparse_categorical_accuracy: 0.7706 Epoch 45/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5432 - sparse_categorical_accuracy: 0.7691 Epoch 46/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5406 - sparse_categorical_accuracy: 0.7708 Epoch 47/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5412 - sparse_categorical_accuracy: 0.7701 Epoch 48/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5400 - sparse_categorical_accuracy: 0.7701 Epoch 49/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5416 - sparse_categorical_accuracy: 0.7699 Epoch 50/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5403 - sparse_categorical_accuracy: 0.7701 Model training finished Test accuracy: 79.04% ``` </div> The wide and deep model achieves ~79% test accuracy. --- ## Experiment 3: Deep & Cross model In the third experiment, we create a Deep & Cross model. The deep part of this model is the same as the deep part created in the previous experiment. The key idea of the cross part is to apply explicit feature crossing in an efficient way, where the degree of cross features grows with layer depth. ```python def create_deep_and_cross_model(): inputs = create_model_inputs() x0 = encode_inputs(inputs, use_embedding=True) cross = x0 for _ in hidden_units: units = cross.shape[-1] x = layers.Dense(units)(cross) cross = x0 * x + cross cross = layers.BatchNormalization()(cross) deep = x0 for units in hidden_units: deep = layers.Dense(units)(deep) deep = layers.BatchNormalization()(deep) deep = layers.ReLU()(deep) deep = layers.Dropout(dropout_rate)(deep) merged = layers.concatenate([cross, deep]) outputs = layers.Dense(units=NUM_CLASSES, activation="softmax")(merged) model = keras.Model(inputs=inputs, outputs=outputs) return model deep_and_cross_model = create_deep_and_cross_model() keras.utils.plot_model(deep_and_cross_model, show_shapes=True, rankdir="LR") ``` <div class="k-default-codeblock"> ``` /Users/fchollet/Library/Python/3.10/lib/python/site-packages/numpy/core/numeric.py:2468: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison return bool(asarray(a1 == a2).all()) ``` </div> ![png](/img/examples/structured_data/wide_deep_cross_networks/wide_deep_cross_networks_34_1.png) Let's run it: ```python run_experiment(deep_and_cross_model) ``` <div class="k-default-codeblock"> ``` Start training the model... Epoch 1/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 5s 2ms/step - loss: 0.9221 - sparse_categorical_accuracy: 0.6235 Epoch 2/50 116/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.6388 - sparse_categorical_accuracy: 0.7257 /Library/Frameworks/Python.framework/Versions/3.10/lib/python3.10/contextlib.py:153: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset. self.gen.throw(typ, value, traceback) 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 3s 2ms/step - loss: 0.6271 - sparse_categorical_accuracy: 0.7316 Epoch 3/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 3s 1ms/step - loss: 0.6023 - sparse_categorical_accuracy: 0.7403 Epoch 4/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5896 - sparse_categorical_accuracy: 0.7453 Epoch 5/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5899 - sparse_categorical_accuracy: 0.7438 Epoch 6/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5960 - sparse_categorical_accuracy: 0.7421 Epoch 7/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5813 - sparse_categorical_accuracy: 0.7481 Epoch 8/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5748 - sparse_categorical_accuracy: 0.7500 Epoch 9/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5743 - sparse_categorical_accuracy: 0.7502 Epoch 10/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5739 - sparse_categorical_accuracy: 0.7506 Epoch 11/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5673 - sparse_categorical_accuracy: 0.7540 Epoch 12/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5649 - sparse_categorical_accuracy: 0.7561 Epoch 13/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 3s 1ms/step - loss: 0.5651 - sparse_categorical_accuracy: 0.7548 Epoch 14/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5618 - sparse_categorical_accuracy: 0.7563 Epoch 15/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5599 - sparse_categorical_accuracy: 0.7571 Epoch 16/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5568 - sparse_categorical_accuracy: 0.7585 Epoch 17/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5556 - sparse_categorical_accuracy: 0.7592 Epoch 18/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5544 - sparse_categorical_accuracy: 0.7595 Epoch 19/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5533 - sparse_categorical_accuracy: 0.7603 Epoch 20/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5532 - sparse_categorical_accuracy: 0.7597 Epoch 21/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5531 - sparse_categorical_accuracy: 0.7602 Epoch 22/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5516 - sparse_categorical_accuracy: 0.7608 Epoch 23/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 3s 1ms/step - loss: 0.5503 - sparse_categorical_accuracy: 0.7611 Epoch 24/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5492 - sparse_categorical_accuracy: 0.7619 Epoch 25/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5482 - sparse_categorical_accuracy: 0.7623 Epoch 26/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5464 - sparse_categorical_accuracy: 0.7635 Epoch 27/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5483 - sparse_categorical_accuracy: 0.7625 Epoch 28/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 3s 1ms/step - loss: 0.5654 - sparse_categorical_accuracy: 0.7555 Epoch 29/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5545 - sparse_categorical_accuracy: 0.7593 Epoch 30/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5512 - sparse_categorical_accuracy: 0.7603 Epoch 31/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5493 - sparse_categorical_accuracy: 0.7616 Epoch 32/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5485 - sparse_categorical_accuracy: 0.7627 Epoch 33/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5593 - sparse_categorical_accuracy: 0.7588 Epoch 34/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5536 - sparse_categorical_accuracy: 0.7608 Epoch 35/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5537 - sparse_categorical_accuracy: 0.7612 Epoch 36/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5518 - sparse_categorical_accuracy: 0.7621 Epoch 37/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5502 - sparse_categorical_accuracy: 0.7618 Epoch 38/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5537 - sparse_categorical_accuracy: 0.7597 Epoch 39/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5526 - sparse_categorical_accuracy: 0.7609 Epoch 40/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5508 - sparse_categorical_accuracy: 0.7608 Epoch 41/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5495 - sparse_categorical_accuracy: 0.7613 Epoch 42/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 3s 1ms/step - loss: 0.5478 - sparse_categorical_accuracy: 0.7625 Epoch 43/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5471 - sparse_categorical_accuracy: 0.7629 Epoch 44/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5462 - sparse_categorical_accuracy: 0.7640 Epoch 45/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5458 - sparse_categorical_accuracy: 0.7633 Epoch 46/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5466 - sparse_categorical_accuracy: 0.7635 Epoch 47/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5492 - sparse_categorical_accuracy: 0.7633 Epoch 48/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5474 - sparse_categorical_accuracy: 0.7639 Epoch 49/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5452 - sparse_categorical_accuracy: 0.7645 Epoch 50/50 1862/1862 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - loss: 0.5446 - sparse_categorical_accuracy: 0.7663 Model training finished Test accuracy: 77.98% ``` </div> The deep and cross model achieves ~81% test accuracy. --- ## Conclusion You can use Keras Preprocessing Layers to easily handle categorical features with different encoding mechanisms, including one-hot encoding and feature embedding. In addition, different model architectures — like wide, deep, and cross networks — have different advantages, with respect to different dataset properties. You can explore using them independently or combining them to achieve the best result for your dataset.
keras-io/examples/structured_data/md/wide_deep_cross_networks.md/0
{ "file_path": "keras-io/examples/structured_data/md/wide_deep_cross_networks.md", "repo_id": "keras-io", "token_count": 18811 }
95
<jupyter_start><jupyter_text>Electroencephalogram Signal Classification for action identification**Author:** [Suvaditya Mukherjee](https://github.com/suvadityamuk)**Date created:** 2022/11/03**Last modified:** 2022/11/05**Description:** Training a Convolutional model to classify EEG signals produced by exposure to certain stimuli. IntroductionThe following example explores how we can make a Convolution-based Neural Network toperform classification on Electroencephalogram signals captured when subjects wereexposed to different stimuli.We train a model from scratch since such signal-classification models are fairly scarcein pre-trained format.The data we use is sourced from the UC Berkeley-Biosense Lab where the data was collectedfrom 15 subjects at the same time.Our process is as follows:- Load the [UC Berkeley-Biosense Synchronized Brainwave Dataset](https://www.kaggle.com/datasets/berkeley-biosense/synchronized-brainwave-dataset)- Visualize random samples from the data- Pre-process, collate and scale the data to finally make a `tf.data.Dataset`- Prepare class weights in order to tackle major imbalances- Create a Conv1D and Dense-based model to perform classification- Define callbacks and hyperparameters- Train the model- Plot metrics from History and perform evaluationThis example needs the following external dependencies (Gdown, Scikit-learn, Pandas,Numpy, Matplotlib). You can install it via the following commands.Gdown is an external package used to download large files from Google Drive. To knowmore, you can refer to its [PyPi page here](https://pypi.org/project/gdown) Setup and Data DownloadsFirst, lets install our dependencies:<jupyter_code>!pip install gdown -q !pip install sklearn -q !pip install pandas -q !pip install numpy -q !pip install matplotlib -q<jupyter_output><empty_output><jupyter_text>Next, lets download our dataset.The gdown package makes it easy to download the data from Google Drive:<jupyter_code>!gdown 1V5B7Bt6aJm0UHbR7cRKBEK8jx7lYPVuX !# gdown will download eeg-data.csv onto the local drive for use. Total size of !# eeg-data.csv is 105.7 MB import pandas as pd import matplotlib.pyplot as plt import json import numpy as np import keras from keras import layers import tensorflow as tf from sklearn import preprocessing, model_selection import random QUALITY_THRESHOLD = 128 BATCH_SIZE = 64 SHUFFLE_BUFFER_SIZE = BATCH_SIZE * 2<jupyter_output><empty_output><jupyter_text>Read data from `eeg-data.csv`We use the Pandas library to read the `eeg-data.csv` file and display the first 5 rowsusing the `.head()` command<jupyter_code>eeg = pd.read_csv("eeg-data.csv")<jupyter_output><empty_output><jupyter_text>We remove unlabeled samples from our dataset as they do not contribute to the model. Wealso perform a `.drop()` operation on the columns that are not required for training datapreparation<jupyter_code>unlabeled_eeg = eeg[eeg["label"] == "unlabeled"] eeg = eeg.loc[eeg["label"] != "unlabeled"] eeg = eeg.loc[eeg["label"] != "everyone paired"] eeg.drop( [ "indra_time", "Unnamed: 0", "browser_latency", "reading_time", "attention_esense", "meditation_esense", "updatedAt", "createdAt", ], axis=1, inplace=True, ) eeg.reset_index(drop=True, inplace=True) eeg.head()<jupyter_output><empty_output><jupyter_text>In the data, the samples recorded are given a score from 0 to 128 based on howwell-calibrated the sensor was (0 being best, 200 being worst). We filter the valuesbased on an arbitrary cutoff limit of 128.<jupyter_code>def convert_string_data_to_values(value_string): str_list = json.loads(value_string) return str_list eeg["raw_values"] = eeg["raw_values"].apply(convert_string_data_to_values) eeg = eeg.loc[eeg["signal_quality"] < QUALITY_THRESHOLD] eeg.head()<jupyter_output><empty_output><jupyter_text>Visualize one random sample from the data We visualize one sample from the data to understand how the stimulus-induced signal lookslike<jupyter_code>def view_eeg_plot(idx): data = eeg.loc[idx, "raw_values"] plt.plot(data) plt.title(f"Sample random plot") plt.show() view_eeg_plot(7)<jupyter_output><empty_output><jupyter_text>Pre-process and collate data There are a total of 67 different labels present in the data, where there are numberedsub-labels. We collate them under a single label as per their numbering and replace themin the data itself. Following this process, we perform simple Label encoding to get themin an integer format.<jupyter_code>print("Before replacing labels") print(eeg["label"].unique(), "\n") print(len(eeg["label"].unique()), "\n") eeg.replace( { "label": { "blink1": "blink", "blink2": "blink", "blink3": "blink", "blink4": "blink", "blink5": "blink", "math1": "math", "math2": "math", "math3": "math", "math4": "math", "math5": "math", "math6": "math", "math7": "math", "math8": "math", "math9": "math", "math10": "math", "math11": "math", "math12": "math", "thinkOfItems-ver1": "thinkOfItems", "thinkOfItems-ver2": "thinkOfItems", "video-ver1": "video", "video-ver2": "video", "thinkOfItemsInstruction-ver1": "thinkOfItemsInstruction", "thinkOfItemsInstruction-ver2": "thinkOfItemsInstruction", "colorRound1-1": "colorRound1", "colorRound1-2": "colorRound1", "colorRound1-3": "colorRound1", "colorRound1-4": "colorRound1", "colorRound1-5": "colorRound1", "colorRound1-6": "colorRound1", "colorRound2-1": "colorRound2", "colorRound2-2": "colorRound2", "colorRound2-3": "colorRound2", "colorRound2-4": "colorRound2", "colorRound2-5": "colorRound2", "colorRound2-6": "colorRound2", "colorRound3-1": "colorRound3", "colorRound3-2": "colorRound3", "colorRound3-3": "colorRound3", "colorRound3-4": "colorRound3", "colorRound3-5": "colorRound3", "colorRound3-6": "colorRound3", "colorRound4-1": "colorRound4", "colorRound4-2": "colorRound4", "colorRound4-3": "colorRound4", "colorRound4-4": "colorRound4", "colorRound4-5": "colorRound4", "colorRound4-6": "colorRound4", "colorRound5-1": "colorRound5", "colorRound5-2": "colorRound5", "colorRound5-3": "colorRound5", "colorRound5-4": "colorRound5", "colorRound5-5": "colorRound5", "colorRound5-6": "colorRound5", "colorInstruction1": "colorInstruction", "colorInstruction2": "colorInstruction", "readyRound1": "readyRound", "readyRound2": "readyRound", "readyRound3": "readyRound", "readyRound4": "readyRound", "readyRound5": "readyRound", "colorRound1": "colorRound", "colorRound2": "colorRound", "colorRound3": "colorRound", "colorRound4": "colorRound", "colorRound5": "colorRound", } }, inplace=True, ) print("After replacing labels") print(eeg["label"].unique()) print(len(eeg["label"].unique())) le = preprocessing.LabelEncoder() # Generates a look-up table le.fit(eeg["label"]) eeg["label"] = le.transform(eeg["label"])<jupyter_output><empty_output><jupyter_text>We extract the number of unique classes present in the data<jupyter_code>num_classes = len(eeg["label"].unique()) print(num_classes)<jupyter_output><empty_output><jupyter_text>We now visualize the number of samples present in each class using a Bar plot.<jupyter_code>plt.bar(range(num_classes), eeg["label"].value_counts()) plt.title("Number of samples per class") plt.show()<jupyter_output><empty_output><jupyter_text>Scale and split data We perform a simple Min-Max scaling to bring the value-range between 0 and 1. We do notuse Standard Scaling as the data does not follow a Gaussian distribution.<jupyter_code>scaler = preprocessing.MinMaxScaler() series_list = [ scaler.fit_transform(np.asarray(i).reshape(-1, 1)) for i in eeg["raw_values"] ] labels_list = [i for i in eeg["label"]]<jupyter_output><empty_output><jupyter_text>We now create a Train-test split with a 15% holdout set. Following this, we reshape thedata to create a sequence of length 512. We also convert the labels from their currentlabel-encoded form to a one-hot encoding to enable use of several different`keras.metrics` functions.<jupyter_code>x_train, x_test, y_train, y_test = model_selection.train_test_split( series_list, labels_list, test_size=0.15, random_state=42, shuffle=True ) print( f"Length of x_train : {len(x_train)}\nLength of x_test : {len(x_test)}\nLength of y_train : {len(y_train)}\nLength of y_test : {len(y_test)}" ) x_train = np.asarray(x_train).astype(np.float32).reshape(-1, 512, 1) y_train = np.asarray(y_train).astype(np.float32).reshape(-1, 1) y_train = keras.utils.to_categorical(y_train) x_test = np.asarray(x_test).astype(np.float32).reshape(-1, 512, 1) y_test = np.asarray(y_test).astype(np.float32).reshape(-1, 1) y_test = keras.utils.to_categorical(y_test)<jupyter_output><empty_output><jupyter_text>Prepare `tf.data.Dataset` We now create a `tf.data.Dataset` from this data to prepare it for training. We alsoshuffle and batch the data for use later.<jupyter_code>train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)) train_dataset = train_dataset.shuffle(SHUFFLE_BUFFER_SIZE).batch(BATCH_SIZE) test_dataset = test_dataset.batch(BATCH_SIZE)<jupyter_output><empty_output><jupyter_text>Make Class Weights using Naive method As we can see from the plot of number of samples per class, the dataset is imbalanced.Hence, we **calculate weights for each class** to make sure that the model is trained ina fair manner without preference to any specific class due to greater number of samples.We use a naive method to calculate these weights, finding an **inverse proportion** ofeach class and using that as the weight.<jupyter_code>vals_dict = {} for i in eeg["label"]: if i in vals_dict.keys(): vals_dict[i] += 1 else: vals_dict[i] = 1 total = sum(vals_dict.values()) # Formula used - Naive method where # weight = 1 - (no. of samples present / total no. of samples) # So more the samples, lower the weight weight_dict = {k: (1 - (v / total)) for k, v in vals_dict.items()} print(weight_dict)<jupyter_output><empty_output><jupyter_text>Define simple function to plot all the metrics present in a `keras.callbacks.History`object<jupyter_code>def plot_history_metrics(history: keras.callbacks.History): total_plots = len(history.history) cols = total_plots // 2 rows = total_plots // cols if total_plots % cols != 0: rows += 1 pos = range(1, total_plots + 1) plt.figure(figsize=(15, 10)) for i, (key, value) in enumerate(history.history.items()): plt.subplot(rows, cols, pos[i]) plt.plot(range(len(value)), value) plt.title(str(key)) plt.show()<jupyter_output><empty_output><jupyter_text>Define function to generate Convolutional model<jupyter_code>def create_model(): input_layer = keras.Input(shape=(512, 1)) x = layers.Conv1D( filters=32, kernel_size=3, strides=2, activation="relu", padding="same" )(input_layer) x = layers.BatchNormalization()(x) x = layers.Conv1D( filters=64, kernel_size=3, strides=2, activation="relu", padding="same" )(x) x = layers.BatchNormalization()(x) x = layers.Conv1D( filters=128, kernel_size=5, strides=2, activation="relu", padding="same" )(x) x = layers.BatchNormalization()(x) x = layers.Conv1D( filters=256, kernel_size=5, strides=2, activation="relu", padding="same" )(x) x = layers.BatchNormalization()(x) x = layers.Conv1D( filters=512, kernel_size=7, strides=2, activation="relu", padding="same" )(x) x = layers.BatchNormalization()(x) x = layers.Conv1D( filters=1024, kernel_size=7, strides=2, activation="relu", padding="same", )(x) x = layers.BatchNormalization()(x) x = layers.Dropout(0.2)(x) x = layers.Flatten()(x) x = layers.Dense(4096, activation="relu")(x) x = layers.Dropout(0.2)(x) x = layers.Dense( 2048, activation="relu", kernel_regularizer=keras.regularizers.L2() )(x) x = layers.Dropout(0.2)(x) x = layers.Dense( 1024, activation="relu", kernel_regularizer=keras.regularizers.L2() )(x) x = layers.Dropout(0.2)(x) x = layers.Dense( 128, activation="relu", kernel_regularizer=keras.regularizers.L2() )(x) output_layer = layers.Dense(num_classes, activation="softmax")(x) return keras.Model(inputs=input_layer, outputs=output_layer)<jupyter_output><empty_output><jupyter_text>Get Model summary<jupyter_code>conv_model = create_model() conv_model.summary()<jupyter_output><empty_output><jupyter_text>Define callbacks, optimizer, loss and metrics We set the number of epochs at 30 after performing extensive experimentation. It was seenthat this was the optimal number, after performing Early-Stopping analysis as well.We define a Model Checkpoint callback to make sure that we only get the best modelweights.We also define a ReduceLROnPlateau as there were several cases found duringexperimentation where the loss stagnated after a certain point. On the other hand, adirect LRScheduler was found to be too aggressive in its decay.<jupyter_code>epochs = 30 callbacks = [ keras.callbacks.ModelCheckpoint( "best_model.keras", save_best_only=True, monitor="loss" ), keras.callbacks.ReduceLROnPlateau( monitor="val_top_k_categorical_accuracy", factor=0.2, patience=2, min_lr=0.000001, ), ] optimizer = keras.optimizers.Adam(amsgrad=True, learning_rate=0.001) loss = keras.losses.CategoricalCrossentropy()<jupyter_output><empty_output><jupyter_text>Compile model and call `model.fit()` We use the `Adam` optimizer since it is commonly considered the best choice forpreliminary training, and was found to be the best optimizer.We use `CategoricalCrossentropy` as the loss as our labels are in a one-hot-encoded form.We define the `TopKCategoricalAccuracy(k=3)`, `AUC`, `Precision` and `Recall` metrics tofurther aid in understanding the model better.<jupyter_code>conv_model.compile( optimizer=optimizer, loss=loss, metrics=[ keras.metrics.TopKCategoricalAccuracy(k=3), keras.metrics.AUC(), keras.metrics.Precision(), keras.metrics.Recall(), ], ) conv_model_history = conv_model.fit( train_dataset, epochs=epochs, callbacks=callbacks, validation_data=test_dataset, class_weight=weight_dict, )<jupyter_output><empty_output><jupyter_text>Visualize model metrics during training We use the function defined above to see model metrics during training.<jupyter_code>plot_history_metrics(conv_model_history)<jupyter_output><empty_output><jupyter_text>Evaluate model on test data<jupyter_code>loss, accuracy, auc, precision, recall = conv_model.evaluate(test_dataset) print(f"Loss : {loss}") print(f"Top 3 Categorical Accuracy : {accuracy}") print(f"Area under the Curve (ROC) : {auc}") print(f"Precision : {precision}") print(f"Recall : {recall}") def view_evaluated_eeg_plots(model): start_index = random.randint(10, len(eeg)) end_index = start_index + 11 data = eeg.loc[start_index:end_index, "raw_values"] data_array = [scaler.fit_transform(np.asarray(i).reshape(-1, 1)) for i in data] data_array = [np.asarray(data_array).astype(np.float32).reshape(-1, 512, 1)] original_labels = eeg.loc[start_index:end_index, "label"] predicted_labels = np.argmax(model.predict(data_array, verbose=0), axis=1) original_labels = [ le.inverse_transform(np.array(label).reshape(-1))[0] for label in original_labels ] predicted_labels = [ le.inverse_transform(np.array(label).reshape(-1))[0] for label in predicted_labels ] total_plots = 12 cols = total_plots // 3 rows = total_plots // cols if total_plots % cols != 0: rows += 1 pos = range(1, total_plots + 1) fig = plt.figure(figsize=(20, 10)) for i, (plot_data, og_label, pred_label) in enumerate( zip(data, original_labels, predicted_labels) ): plt.subplot(rows, cols, pos[i]) plt.plot(plot_data) plt.title(f"Actual Label : {og_label}\nPredicted Label : {pred_label}") fig.subplots_adjust(hspace=0.5) plt.show() view_evaluated_eeg_plots(conv_model)<jupyter_output><empty_output>
keras-io/examples/timeseries/ipynb/eeg_signal_classification.ipynb/0
{ "file_path": "keras-io/examples/timeseries/ipynb/eeg_signal_classification.ipynb", "repo_id": "keras-io", "token_count": 6757 }
96
""" Title: Image Classification using Global Context Vision Transformer Author: Md Awsafur Rahman Date created: 2023/10/30 Last modified: 2023/10/30 Description: Implementation and fine-tuning of Global Context Vision Transformer for image classification. Accelerator: GPU """ """ # Setup """ """shell pip install --upgrade keras_cv tensorflow pip install --upgrade keras """ import keras from keras_cv.layers import DropPath from keras import ops from keras import layers import tensorflow as tf # only for dataloader import tensorflow_datasets as tfds # for flower dataset from skimage.data import chelsea import matplotlib.pyplot as plt import numpy as np """ ## Introduction In this notebook, we will utilize multi-backend Keras 3.0 to implement the [**GCViT: Global Context Vision Transformer**](https://arxiv.org/abs/2206.09959) paper, presented at ICML 2023 by A Hatamizadeh et al. The, we will fine-tune the model on the Flower dataset for image classification task, leveraging the official ImageNet pre-trained weights. A highlight of this notebook is its compatibility with multiple backends: TensorFlow, PyTorch, and JAX, showcasing the true potential of multi-backend Keras. """ """ ## Motivation > **Note:** In this section we'll learn about the backstory of GCViT and try to understand why it is proposed. * During recent years, **Transformers** have achieved dominance in **Natural Language Processing (NLP)** tasks and with the **self-attention** mechanism which allows for capturing both long and short-range information. * Following this trend, **Vision Transformer (ViT)** proposed to utilize image patches as tokens in a gigantic architecture similar to encoder of the original Transformer. * Despite the historic dominance of **Convolutional Neural Network (CNN)** in computer vision, **ViT-based** models have shown **SOTA or competitive performance** in various computer vision tasks. <img src="https://raw.githubusercontent.com/awsaf49/gcvit-tf/main/image/vit_gif.gif" width=600> * However, **quadratic [`O(n^2)`] computational complexity** of self-attention and **lack of multi-scale information** makes it difficult for **ViT** to be considered as general-purpose architecture for Compute Vision tasks like **segmentation and object detection** where it requires **dense prediction at the pixel level**. * Swin Transformer has attempted to address the issues of **ViT** by proposing **multi-resolution/hierarchical** architectures in which the self-attention is computed in **local windows** and cross-window connections such as **window shifting** are used for modeling the interactions across different regions. But the **limited receptive field of local windows** can not capture long-range information, and cross-window-connection schemes such as **window-shifting only cover a small neighborhood** in the vicinity of each window. Also, it lacks **inductive-bias** that encourages certain translation invariance is still preferable for general-purpose visual modeling, particularly for the dense prediction tasks of object detection and semantic segmentation. <img src="https://raw.githubusercontent.com/awsaf49/gcvit-tf/main/image/swin_vs_vit.JPG" width=400> <img src="https://raw.githubusercontent.com/awsaf49/gcvit-tf/main/image/shifted_window.JPG" width=400> <img src="https://raw.githubusercontent.com/awsaf49/gcvit-tf/main/image/swin_arch.JPG" width=800> * To address above limitations, **Global Context (GC) ViT** network is proposed. """ """ ## Architecture Let's have a quick **overview** of our key components, 1. `Stem/PatchEmbed:` A stem/patchify layer processes images at the network’s beginning. For this network, it creates **patches/tokens** and converts them into **embeddings**. 2. `Level:` It is the repetitive building block that extracts features using different blocks. 3. `Global Token Gen./FeatureExtraction:` It generates **global tokens/patches** with **Depthwise-CNN**, **SqueezeAndExcitation (Squeeze-Excitation)**, **CNN** and **MaxPooling**. So basically it's a Feature Extractor. 4. `Block:` It is the repetitive module that applies attention to the features and projects them to a certain dimension. 1. `Local-MSA:` Local Multi head Self Attention. 2. `Global-MSA:` Global Multi head Self Attention. 3. `MLP:` Linear layer that projects a vector to another dimension. 5. `Downsample/ReduceSize:` It is very similar to **Global Token Gen.** module except it uses **CNN** instead of **MaxPooling** to downsample with additional **Layer Normalization** modules. 6. `Head:` It is the module responsible for the classification task. 1. `Pooling:` It converts `N x 2D` features to `N x 1D` features. 2. `Classifier:` It processes `N x 1D` features to make a decision about class. I've annotated the architecture figure to make it easier to digest, <img src="https://raw.githubusercontent.com/awsaf49/gcvit-tf/main/image/arch_annot.png"> """ """ ### Unit Blocks > **Note:** This blocks are used to build other modules throughout the paper. Most of the blocks are either borrowed from other work or modified version old work. 1. `SqueezeAndExcitation`: **Squeeze-Excitation (SE)** aka **Bottleneck** module acts sd kind of **channel attention**. It consits of **AvgPooling**, **Dense/FullyConnected (FC)/Linear** , **GELU** and **Sigmoid** module. <img src="https://raw.githubusercontent.com/awsaf49/gcvit-tf/main/image/se_annot.png" width=400> 2. `Fused-MBConv:` This is similar to the one used in **EfficientNetV2**. It uses **Depthwise-Conv**, **GELU**, **SqueezeAndExcitation**, **Conv**, to extract feature with a resiudal connection. Note that, no new module is declared for this one, we simply applied corresponding modules directly. <img src="https://raw.githubusercontent.com/awsaf49/gcvit-tf/main/image/fmb_annot.png" width=350> 3. `ReduceSize`: It is a **CNN** based **downsample** module which abvobe mentioned `Fused-MBConv` module to extract feature, **Strided Conv** to simultaneously reduce spatial dimension and increse channelwise dimention of the features and finally **LayerNormalization** module to normalize features. In the paper/figure this module is referred as **downsample** module. I think it is mention worthy that **SwniTransformer** used `PatchMerging` module instead of `ReduceSize` to reduce the spatial dimention and increase channelwise dimension which uses **fully-connected/dense/linear** module. According to the **GCViT** paper, one of the purposes of using `ReduceSize` is to add inductive bias through **CNN** module. <img src="https://raw.githubusercontent.com/awsaf49/gcvit-tf/main/image/down_annot.png" width=300> 4. `MLP:` This is our very own **Multi Layer Perceptron** module. This a feed-forward/fully-connected/linear module which simply projects input to an arbitary dimension. """ class SqueezeAndExcitation(layers.Layer): """Squeeze and excitation block. Args: output_dim: output features dimension, if `None` use same dim as input. expansion: expansion ratio. """ def __init__(self, output_dim=None, expansion=0.25, **kwargs): super().__init__(**kwargs) self.expansion = expansion self.output_dim = output_dim def build(self, input_shape): inp = input_shape[-1] self.output_dim = self.output_dim or inp self.avg_pool = layers.GlobalAvgPool2D(keepdims=True, name="avg_pool") self.fc = [ layers.Dense(int(inp * self.expansion), use_bias=False, name="fc_0"), layers.Activation("gelu", name="fc_1"), layers.Dense(self.output_dim, use_bias=False, name="fc_2"), layers.Activation("sigmoid", name="fc_3"), ] super().build(input_shape) def call(self, inputs, **kwargs): x = self.avg_pool(inputs) for layer in self.fc: x = layer(x) return x * inputs class ReduceSize(layers.Layer): """Down-sampling block. Args: keepdims: if False spatial dim is reduced and channel dim is increased """ def __init__(self, keepdims=False, **kwargs): super().__init__(**kwargs) self.keepdims = keepdims def build(self, input_shape): embed_dim = input_shape[-1] dim_out = embed_dim if self.keepdims else 2 * embed_dim self.pad1 = layers.ZeroPadding2D(1, name="pad1") self.pad2 = layers.ZeroPadding2D(1, name="pad2") self.conv = [ layers.DepthwiseConv2D( kernel_size=3, strides=1, padding="valid", use_bias=False, name="conv_0" ), layers.Activation("gelu", name="conv_1"), SqueezeAndExcitation(name="conv_2"), layers.Conv2D( embed_dim, kernel_size=1, strides=1, padding="valid", use_bias=False, name="conv_3", ), ] self.reduction = layers.Conv2D( dim_out, kernel_size=3, strides=2, padding="valid", use_bias=False, name="reduction", ) self.norm1 = layers.LayerNormalization( -1, 1e-05, name="norm1" ) # eps like PyTorch self.norm2 = layers.LayerNormalization(-1, 1e-05, name="norm2") def call(self, inputs, **kwargs): x = self.norm1(inputs) xr = self.pad1(x) for layer in self.conv: xr = layer(xr) x = x + xr x = self.pad2(x) x = self.reduction(x) x = self.norm2(x) return x class MLP(layers.Layer): """Multi-Layer Perceptron (MLP) block. Args: hidden_features: hidden features dimension. out_features: output features dimension. activation: activation function. dropout: dropout rate. """ def __init__( self, hidden_features=None, out_features=None, activation="gelu", dropout=0.0, **kwargs, ): super().__init__(**kwargs) self.hidden_features = hidden_features self.out_features = out_features self.activation = activation self.dropout = dropout def build(self, input_shape): self.in_features = input_shape[-1] self.hidden_features = self.hidden_features or self.in_features self.out_features = self.out_features or self.in_features self.fc1 = layers.Dense(self.hidden_features, name="fc1") self.act = layers.Activation(self.activation, name="act") self.fc2 = layers.Dense(self.out_features, name="fc2") self.drop1 = layers.Dropout(self.dropout, name="drop1") self.drop2 = layers.Dropout(self.dropout, name="drop2") def call(self, inputs, **kwargs): x = self.fc1(inputs) x = self.act(x) x = self.drop1(x) x = self.fc2(x) x = self.drop2(x) return x """ ### Stem > **Notes**: In the code, this module is referred to as **PatchEmbed** but on paper, it is referred to as **Stem**. In the model, we have first used `patch_embed` module. Let's try to understand this module. As we can see from the `call` method, 1. This module first **pads** input 2. Then uses **convolutions** to extract patches with embeddings. 3. Finally, uses `ReduceSize` module to first extract features with **convolution** but neither reduces spatial dimension nor increases spatial dimension. 4. One important point to notice, unlike **ViT** or **SwinTransformer**, **GCViT** creates **overlapping patches**. We can notice that from the code, `Conv2D(self.embed_dim, kernel_size=3, strides=2, name='proj')`. If we wanted **non-overlapping** patches then we would've used the same `kernel_size` and `stride`. 5. This module reduces the spatial dimension of input by `4x`. > Summary: image → padding → convolution → (feature_extract + downsample) """ class PatchEmbed(layers.Layer): """Patch embedding block. Args: embed_dim: feature size dimension. """ def __init__(self, embed_dim, **kwargs): super().__init__(**kwargs) self.embed_dim = embed_dim def build(self, input_shape): self.pad = layers.ZeroPadding2D(1, name="pad") self.proj = layers.Conv2D(self.embed_dim, 3, 2, name="proj") self.conv_down = ReduceSize(keepdims=True, name="conv_down") def call(self, inputs, **kwargs): x = self.pad(inputs) x = self.proj(x) x = self.conv_down(x) return x """ ### Global Token Gen. > **Notes:** It is one of the two **CNN** modules that is used to imppose inductive bias. As we can see from above cell, in the `level` we have first used `to_q_global/Global Token Gen./FeatureExtraction`. Let's try to understand how it works, * This module is series of `FeatureExtract` module, according to paper we need to repeat this module `K` times, where `K = log2(H/h)`, `H = feature_map_height`, `W = feature_map_width`. * `FeatureExtraction:` This layer is very similar to `ReduceSize` module except it uses **MaxPooling** module to reduce the dimension, it doesn't increse feature dimension (channelsie) and it doesn't uses **LayerNormalizaton**. This module is used to in `Generate Token Gen.` module repeatedly to generte **global tokens** for **global-context-attention**. * One important point to notice from the figure is that, **global tokens** is shared across the whole image which means we use only **one global window** for **all local tokens** in a image. This makes the computation very efficient. * For input feature map with shape `(B, H, W, C)`, we'll get output shape `(B, h, w, C)`. If we copy these global tokens for total `M` local windows in an image where, `M = (H x W)/(h x w) = num_window`, then output shape: `(B * M, h, w, C)`." > Summary: This module is used to `resize` the image to fit window. <img src="https://raw.githubusercontent.com/awsaf49/gcvit-tf/main/image/global_token_annot.png" width=800> """ class FeatureExtraction(layers.Layer): """Feature extraction block. Args: keepdims: bool argument for maintaining the resolution. """ def __init__(self, keepdims=False, **kwargs): super().__init__(**kwargs) self.keepdims = keepdims def build(self, input_shape): embed_dim = input_shape[-1] self.pad1 = layers.ZeroPadding2D(1, name="pad1") self.pad2 = layers.ZeroPadding2D(1, name="pad2") self.conv = [ layers.DepthwiseConv2D(3, 1, use_bias=False, name="conv_0"), layers.Activation("gelu", name="conv_1"), SqueezeAndExcitation(name="conv_2"), layers.Conv2D(embed_dim, 1, 1, use_bias=False, name="conv_3"), ] if not self.keepdims: self.pool = layers.MaxPool2D(3, 2, name="pool") super().build(input_shape) def call(self, inputs, **kwargs): x = inputs xr = self.pad1(x) for layer in self.conv: xr = layer(xr) x = x + xr if not self.keepdims: x = self.pool(self.pad2(x)) return x class GlobalQueryGenerator(layers.Layer): """Global query generator. Args: keepdims: to keep the dimension of FeatureExtraction layer. For instance, repeating log(56/7) = 3 blocks, with input window dimension 56 and output window dimension 7 at down-sampling ratio 2. Please check Fig.5 of GC ViT paper for details. """ def __init__(self, keepdims=False, **kwargs): super().__init__(**kwargs) self.keepdims = keepdims def build(self, input_shape): self.to_q_global = [ FeatureExtraction(keepdims, name=f"to_q_global_{i}") for i, keepdims in enumerate(self.keepdims) ] super().build(input_shape) def call(self, inputs, **kwargs): x = inputs for layer in self.to_q_global: x = layer(x) return x """ ### Attention > **Notes:** This is the core contribution of the paper. As we can see from the `call` method, 1. `WindowAttention` module applies both **local** and **global** window attention depending on `global_query` parameter. 2. First it converts input features into `query, key, value` for local attention and `key, value` for global attention. For global attention, it takes global query from `Global Token Gen.`. One thing to notice from the code is that we divide the **features or embed_dim** among all the **heads of Transformer** to reduce the computation. `qkv = tf.reshape(qkv, [B_, N, self.qkv_size, self.num_heads, C // self.num_heads])` 3. Before sending query, key and value for attention, **global token** goes through an important process. Same global tokens or one global window gets copied for all the local windows to increase efficiency. `q_global = tf.repeat(q_global, repeats=B_//B, axis=0)`, here `B_//B` means `num_windows` in a image. 4. Then simply applies `local-window-self-attention` or `global-window-attention` depending on `global_query` parameter. One thing to notice from the code is that we are adding **relative-positional-embedding** with the **attention mask** instead of the **patch embedding**. `attn = attn + relative_position_bias[tf.newaxis,]` <img src="https://raw.githubusercontent.com/awsaf49/gcvit-tf/main/image/lvg_msa.PNG" width=800> 5. Now, let's think for a bit and try to understand what is happening here. Let's focus on the figure below. We can see from the left, that in the **local-attention** the **query is local** and it's **limited to the local window** (red square border) hence we don't have access to long-range information. But on the right that due to **global query** we're now **not limited to local-windows** (blue square border) and we have access to long-range information. <img src="https://raw.githubusercontent.com/awsaf49/gcvit-tf/main/image/lvg_arch.PNG" width=800> 6. In **ViT** we compare (attention) image-tokens with image-tokens, in **SwinTransformer** we compare window-tokens with window-tokens but in **GCViT** we compare image-tokens with window-tokens. But now you may ask, how can compare(attention) image-tokens with window-tokens even after image-tokens have larger dimensions than window-tokens? (from above figure image-tokens have shape `(1, 8, 8, 3)` and window-tokens have shape `(1, 4, 4, 3)`). Yes, you are right we can't directly compare them hence we resize image-tokens to fit window-tokens with `Global Token Gen./FeatureExtraction` **CNN** module. The following table should give you a clear comparison, | Model | Query Tokens | Key-Value Tokens | Attention Type | Attention Coverage | |------------------|-----------------|-------------------|---------------------------|--------------------| | ViT | image | image | self-attention | global | | SwinTransformer | window | window | self-attention | local | | **GCViT** | **resized-image** | **window** | **image-window attention** | **global** | """ class WindowAttention(layers.Layer): """Local window attention. This implementation was proposed by [Liu et al., 2021](https://arxiv.org/abs/2103.14030) in SwinTransformer. Args: window_size: window size. num_heads: number of attention head. global_query: if the input contains global_query qkv_bias: bool argument for query, key, value learnable bias. qk_scale: bool argument to scaling query, key. attention_dropout: attention dropout rate. projection_dropout: output dropout rate. """ def __init__( self, window_size, num_heads, global_query, qkv_bias=True, qk_scale=None, attention_dropout=0.0, projection_dropout=0.0, **kwargs, ): super().__init__(**kwargs) window_size = (window_size, window_size) self.window_size = window_size self.num_heads = num_heads self.global_query = global_query self.qkv_bias = qkv_bias self.qk_scale = qk_scale self.attention_dropout = attention_dropout self.projection_dropout = projection_dropout def build(self, input_shape): embed_dim = input_shape[0][-1] head_dim = embed_dim // self.num_heads self.scale = self.qk_scale or head_dim**-0.5 self.qkv_size = 3 - int(self.global_query) self.qkv = layers.Dense( embed_dim * self.qkv_size, use_bias=self.qkv_bias, name="qkv" ) self.relative_position_bias_table = self.add_weight( name="relative_position_bias_table", shape=[ (2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1), self.num_heads, ], initializer=keras.initializers.TruncatedNormal(stddev=0.02), trainable=True, dtype=self.dtype, ) self.attn_drop = layers.Dropout(self.attention_dropout, name="attn_drop") self.proj = layers.Dense(embed_dim, name="proj") self.proj_drop = layers.Dropout(self.projection_dropout, name="proj_drop") self.softmax = layers.Activation("softmax", name="softmax") super().build(input_shape) def get_relative_position_index(self): coords_h = ops.arange(self.window_size[0]) coords_w = ops.arange(self.window_size[1]) coords = ops.stack(ops.meshgrid(coords_h, coords_w, indexing="ij"), axis=0) coords_flatten = ops.reshape(coords, [2, -1]) relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] relative_coords = ops.transpose(relative_coords, axes=[1, 2, 0]) relative_coords_xx = relative_coords[:, :, 0] + self.window_size[0] - 1 relative_coords_yy = relative_coords[:, :, 1] + self.window_size[1] - 1 relative_coords_xx = relative_coords_xx * (2 * self.window_size[1] - 1) relative_position_index = relative_coords_xx + relative_coords_yy return relative_position_index def call(self, inputs, **kwargs): if self.global_query: inputs, q_global = inputs B = ops.shape(q_global)[0] # B, N, C else: inputs = inputs[0] B_, N, C = ops.shape(inputs) # B*num_window, num_tokens, channels qkv = self.qkv(inputs) qkv = ops.reshape( qkv, [B_, N, self.qkv_size, self.num_heads, C // self.num_heads] ) qkv = ops.transpose(qkv, [2, 0, 3, 1, 4]) if self.global_query: k, v = ops.split( qkv, indices_or_sections=2, axis=0 ) # for unknown shame num=None will throw error q_global = ops.repeat( q_global, repeats=B_ // B, axis=0 ) # num_windows = B_//B => q_global same for all windows in a img q = ops.reshape(q_global, [B_, N, self.num_heads, C // self.num_heads]) q = ops.transpose(q, axes=[0, 2, 1, 3]) else: q, k, v = ops.split(qkv, indices_or_sections=3, axis=0) q = ops.squeeze(q, axis=0) k = ops.squeeze(k, axis=0) v = ops.squeeze(v, axis=0) q = q * self.scale attn = q @ ops.transpose(k, axes=[0, 1, 3, 2]) relative_position_bias = ops.take( self.relative_position_bias_table, ops.reshape(self.get_relative_position_index(), [-1]), ) relative_position_bias = ops.reshape( relative_position_bias, [ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1, ], ) relative_position_bias = ops.transpose(relative_position_bias, axes=[2, 0, 1]) attn = attn + relative_position_bias[None,] attn = self.softmax(attn) attn = self.attn_drop(attn) x = ops.transpose((attn @ v), axes=[0, 2, 1, 3]) x = ops.reshape(x, [B_, N, C]) x = self.proj_drop(self.proj(x)) return x """ ### Block > **Notes:** This module doesn't have any Convolutional module. In the `level` second module that we have used is `block`. Let's try to understand how it works. As we can see from the `call` method, 1. `Block` module takes either only feature_maps for local attention or additional global query for global attention. 2. Before sending feature maps for attention, this module converts **batch feature maps** to **batch windows** as we'll be applying **Window Attention**. 3. Then we send batch **batch windows** for attention. 4. After attention has been applied we revert **batch windows** to **batch feature maps**. 5. Before sending the attention to applied features for output, this module applies **Stochastic Depth** regularization in the residual connection. Also, before applying **Stochastic Depth** it rescales the input with trainable parameters. Note that, this **Stochastic Depth** block hasn't been shown in the figure of the paper. <img src="https://raw.githubusercontent.com/awsaf49/gcvit-tf/main/image/block2.JPG" width=400> ### Window In the `block` module, we have created **windows** before and after applying attention. Let's try to understand how we're creating windows, * Following module converts feature maps `(B, H, W, C)` to stacked windows `(B x H/h x W/w, h, w, C)` → `(num_windows_batch, window_size, window_size, channel)` * This module uses `reshape` & `transpose` to create these windows out of image instead of iterating over them. """ class Block(layers.Layer): """GCViT block. Args: window_size: window size. num_heads: number of attention head. global_query: apply global window attention mlp_ratio: MLP ratio. qkv_bias: bool argument for query, key, value learnable bias. qk_scale: bool argument to scaling query, key. drop: dropout rate. attention_dropout: attention dropout rate. path_drop: drop path rate. activation: activation function. layer_scale: layer scaling coefficient. """ def __init__( self, window_size, num_heads, global_query, mlp_ratio=4.0, qkv_bias=True, qk_scale=None, dropout=0.0, attention_dropout=0.0, path_drop=0.0, activation="gelu", layer_scale=None, **kwargs, ): super().__init__(**kwargs) self.window_size = window_size self.num_heads = num_heads self.global_query = global_query self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.qk_scale = qk_scale self.dropout = dropout self.attention_dropout = attention_dropout self.path_drop = path_drop self.activation = activation self.layer_scale = layer_scale def build(self, input_shape): B, H, W, C = input_shape[0] self.norm1 = layers.LayerNormalization(-1, 1e-05, name="norm1") self.attn = WindowAttention( window_size=self.window_size, num_heads=self.num_heads, global_query=self.global_query, qkv_bias=self.qkv_bias, qk_scale=self.qk_scale, attention_dropout=self.attention_dropout, projection_dropout=self.dropout, name="attn", ) self.drop_path1 = DropPath(self.path_drop) self.drop_path2 = DropPath(self.path_drop) self.norm2 = layers.LayerNormalization(-1, 1e-05, name="norm2") self.mlp = MLP( hidden_features=int(C * self.mlp_ratio), dropout=self.dropout, activation=self.activation, name="mlp", ) if self.layer_scale is not None: self.gamma1 = self.add_weight( name="gamma1", shape=[C], initializer=keras.initializers.Constant(self.layer_scale), trainable=True, dtype=self.dtype, ) self.gamma2 = self.add_weight( name="gamma2", shape=[C], initializer=keras.initializers.Constant(self.layer_scale), trainable=True, dtype=self.dtype, ) else: self.gamma1 = 1.0 self.gamma2 = 1.0 self.num_windows = int(H // self.window_size) * int(W // self.window_size) super().build(input_shape) def call(self, inputs, **kwargs): if self.global_query: inputs, q_global = inputs else: inputs = inputs[0] B, H, W, C = ops.shape(inputs) x = self.norm1(inputs) # create windows and concat them in batch axis x = self.window_partition(x, self.window_size) # (B_, win_h, win_w, C) # flatten patch x = ops.reshape(x, [-1, self.window_size * self.window_size, C]) # attention if self.global_query: x = self.attn([x, q_global]) else: x = self.attn([x]) # reverse window partition x = self.window_reverse(x, self.window_size, H, W, C) # FFN x = inputs + self.drop_path1(x * self.gamma1) x = x + self.drop_path2(self.gamma2 * self.mlp(self.norm2(x))) return x def window_partition(self, x, window_size): """ Args: x: (B, H, W, C) window_size: window size Returns: local window features (num_windows*B, window_size, window_size, C) """ B, H, W, C = ops.shape(x) x = ops.reshape( x, [ -1, H // window_size, window_size, W // window_size, window_size, C, ], ) x = ops.transpose(x, axes=[0, 1, 3, 2, 4, 5]) windows = ops.reshape(x, [-1, window_size, window_size, C]) return windows def window_reverse(self, windows, window_size, H, W, C): """ Args: windows: local window features (num_windows*B, window_size, window_size, C) window_size: Window size H: Height of image W: Width of image C: Channel of image Returns: x: (B, H, W, C) """ x = ops.reshape( windows, [ -1, H // window_size, W // window_size, window_size, window_size, C, ], ) x = ops.transpose(x, axes=[0, 1, 3, 2, 4, 5]) x = ops.reshape(x, [-1, H, W, C]) return x """ ### Level > **Note:** This module has both Transformer and CNN modules. In the model, the second module that we have used is `level`. Let's try to understand this module. As we can see from the `call` method, 1. First it creates **global_token** with a series of `FeatureExtraction` modules. As we'll see later that `FeatureExtraction` is nothing but a simple **CNN** based module. 2. Then it uses series of`Block` modules to apply **local or global window attention** depending on depth level. 3. Finally, it uses `ReduceSize` to reduce the dimension of **contextualized features**. > Summary: feature_map → global_token → local/global window attention → dowsample <img src="https://raw.githubusercontent.com/awsaf49/gcvit-tf/main/image/level.png" width=400> """ class Level(layers.Layer): """GCViT level. Args: depth: number of layers in each stage. num_heads: number of heads in each stage. window_size: window size in each stage. keepdims: dims to keep in FeatureExtraction. downsample: bool argument for down-sampling. mlp_ratio: MLP ratio. qkv_bias: bool argument for query, key, value learnable bias. qk_scale: bool argument to scaling query, key. drop: dropout rate. attention_dropout: attention dropout rate. path_drop: drop path rate. layer_scale: layer scaling coefficient. """ def __init__( self, depth, num_heads, window_size, keepdims, downsample=True, mlp_ratio=4.0, qkv_bias=True, qk_scale=None, dropout=0.0, attention_dropout=0.0, path_drop=0.0, layer_scale=None, **kwargs, ): super().__init__(**kwargs) self.depth = depth self.num_heads = num_heads self.window_size = window_size self.keepdims = keepdims self.downsample = downsample self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.qk_scale = qk_scale self.dropout = dropout self.attention_dropout = attention_dropout self.path_drop = path_drop self.layer_scale = layer_scale def build(self, input_shape): path_drop = ( [self.path_drop] * self.depth if not isinstance(self.path_drop, list) else self.path_drop ) self.blocks = [ Block( window_size=self.window_size, num_heads=self.num_heads, global_query=bool(i % 2), mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, qk_scale=self.qk_scale, dropout=self.dropout, attention_dropout=self.attention_dropout, path_drop=path_drop[i], layer_scale=self.layer_scale, name=f"blocks_{i}", ) for i in range(self.depth) ] self.down = ReduceSize(keepdims=False, name="downsample") self.q_global_gen = GlobalQueryGenerator(self.keepdims, name="q_global_gen") super().build(input_shape) def call(self, inputs, **kwargs): x = inputs q_global = self.q_global_gen(x) # shape: (B, win_size, win_size, C) for i, blk in enumerate(self.blocks): if i % 2: x = blk([x, q_global]) # shape: (B, H, W, C) else: x = blk([x]) # shape: (B, H, W, C) if self.downsample: x = self.down(x) # shape: (B, H//2, W//2, 2*C) return x """ ### Model Let's directly jump to the model. As we can see from the `call` method, 1. It creates patch embeddings from an image. This layer doesn't flattens these embeddings which means output of this module will be `(batch, height/window_size, width/window_size, embed_dim)` instead of `(batch, height x width/window_size^2, embed_dim)`. 2. Then it applies `Dropout` module which randomly sets input units to 0. 3. It passes these embeddings to series of `Level` modules which we are calling `level` where, 1. Global token is generated 1. Both local & global attention is applied 1. Finally downsample is applied. 4. So, output after `n` number of **levels**, shape: `(batch, width/window_size x 2^{n-1}, width/window_size x 2^{n-1}, embed_dim x 2^{n-1})`. In the last layer, paper doesn't use **downsample** and increase **channels**. 5. Output of above layer is normalized using `LayerNormalization` module. 6. In the head, 2D features are converted to 1D features with `Pooling` module. Output shape after this module is `(batch, embed_dim x 2^{n-1})` 7. Finally, pooled features are sent to `Dense/Linear` module for classification. > Sumamry: image → (patchs + embedding) → dropout → (attention + feature extraction) → normalizaion → pooling → classify """ class GCViT(keras.Model): """GCViT model. Args: window_size: window size in each stage. embed_dim: feature size dimension. depths: number of layers in each stage. num_heads: number of heads in each stage. drop_rate: dropout rate. mlp_ratio: MLP ratio. qkv_bias: bool argument for query, key, value learnable bias. qk_scale: bool argument to scaling query, key. attention_dropout: attention dropout rate. path_drop: drop path rate. layer_scale: layer scaling coefficient. num_classes: number of classes. head_activation: activation function for head. """ def __init__( self, window_size, embed_dim, depths, num_heads, drop_rate=0.0, mlp_ratio=3.0, qkv_bias=True, qk_scale=None, attention_dropout=0.0, path_drop=0.1, layer_scale=None, num_classes=1000, head_activation="softmax", **kwargs, ): super().__init__(**kwargs) self.window_size = window_size self.embed_dim = embed_dim self.depths = depths self.num_heads = num_heads self.drop_rate = drop_rate self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.qk_scale = qk_scale self.attention_dropout = attention_dropout self.path_drop = path_drop self.layer_scale = layer_scale self.num_classes = num_classes self.head_activation = head_activation self.patch_embed = PatchEmbed(embed_dim=embed_dim, name="patch_embed") self.pos_drop = layers.Dropout(drop_rate, name="pos_drop") path_drops = np.linspace(0.0, path_drop, sum(depths)) keepdims = [(0, 0, 0), (0, 0), (1,), (1,)] self.levels = [] for i in range(len(depths)): path_drop = path_drops[sum(depths[:i]) : sum(depths[: i + 1])].tolist() level = Level( depth=depths[i], num_heads=num_heads[i], window_size=window_size[i], keepdims=keepdims[i], downsample=(i < len(depths) - 1), mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, dropout=drop_rate, attention_dropout=attention_dropout, path_drop=path_drop, layer_scale=layer_scale, name=f"levels_{i}", ) self.levels.append(level) self.norm = layers.LayerNormalization(axis=-1, epsilon=1e-05, name="norm") self.pool = layers.GlobalAvgPool2D(name="pool") self.head = layers.Dense(num_classes, name="head", activation=head_activation) def build(self, input_shape): super().build(input_shape) self.built = True def call(self, inputs, **kwargs): x = self.patch_embed(inputs) # shape: (B, H, W, C) x = self.pos_drop(x) for level in self.levels: x = level(x) # shape: (B, H_, W_, C_) x = self.norm(x) x = self.pool(x) # shape: (B, C__) x = self.head(x) return x def build_graph(self, input_shape=(224, 224, 3)): """ ref: https://www.kaggle.com/code/ipythonx/tf-hybrid-efficientnet-swin-transformer-gradcam """ x = keras.Input(shape=input_shape) return keras.Model(inputs=[x], outputs=self.call(x), name=self.name) def summary(self, input_shape=(224, 224, 3)): return self.build_graph(input_shape).summary() """ ## Build Model * Let's build a complete model with all the modules that we've explained above. We'll build **GCViT-XXTiny** model with the configuration mentioned in the paper. * Also we'll load the ported official **pre-trained** weights and try for some predictions. """ # Model Configs config = { "window_size": (7, 7, 14, 7), "embed_dim": 64, "depths": (2, 2, 6, 2), "num_heads": (2, 4, 8, 16), "mlp_ratio": 3.0, "path_drop": 0.2, } ckpt_link = ( "https://github.com/awsaf49/gcvit-tf/releases/download/v1.1.6/gcvitxxtiny.keras" ) # Build Model model = GCViT(**config) inp = ops.array(np.random.uniform(size=(1, 224, 224, 3))) out = model(inp) # Load Weights ckpt_path = keras.utils.get_file(ckpt_link.split("/")[-1], ckpt_link) model.load_weights(ckpt_path) # Summary model.summary((224, 224, 3)) """ ## Sanity check for Pre-Trained Weights """ img = keras.applications.imagenet_utils.preprocess_input( chelsea(), mode="torch" ) # Chelsea the cat img = ops.image.resize(img, (224, 224))[None,] # resize & create batch pred = model(img) pred_dec = keras.applications.imagenet_utils.decode_predictions(pred)[0] print("\n# Image:") plt.figure(figsize=(6, 6)) plt.imshow(chelsea()) plt.show() print() print("# Prediction (Top 5):") for i in range(5): print("{:<12} : {:0.2f}".format(pred_dec[i][1], pred_dec[i][2])) """ # Fine-tune **GCViT** Model In the following cells, we will fine-tune **GCViT** model on Flower Dataset which consists `104` classes. """ """ ### Configs """ # Model IMAGE_SIZE = (224, 224) # Hyper Params BATCH_SIZE = 32 EPOCHS = 5 # Dataset CLASSES = [ "dandelion", "daisy", "tulips", "sunflowers", "roses", ] # don't change the order # Other constants MEAN = 255 * np.array([0.485, 0.456, 0.406], dtype="float32") # imagenet mean STD = 255 * np.array([0.229, 0.224, 0.225], dtype="float32") # imagenet std AUTO = tf.data.AUTOTUNE """ ## Data Loader """ def make_dataset(dataset: tf.data.Dataset, train: bool, image_size: int = IMAGE_SIZE): def preprocess(image, label): # for training, do augmentation if train: if tf.random.uniform(shape=[]) > 0.5: image = tf.image.flip_left_right(image) image = tf.image.resize(image, size=image_size, method="bicubic") image = (image - MEAN) / STD # normalization return image, label if train: dataset = dataset.shuffle(BATCH_SIZE * 10) return dataset.map(preprocess, AUTO).batch(BATCH_SIZE).prefetch(AUTO) """ ### Flower Dataset """ train_dataset, val_dataset = tfds.load( "tf_flowers", split=["train[:90%]", "train[90%:]"], as_supervised=True, try_gcs=False, # gcs_path is necessary for tpu, ) train_dataset = make_dataset(train_dataset, True) val_dataset = make_dataset(val_dataset, False) """ ### Re-Build Model for Flower Dataset """ # Re-Build Model model = GCViT(**config, num_classes=104) inp = ops.array(np.random.uniform(size=(1, 224, 224, 3))) out = model(inp) # Load Weights ckpt_path = keras.utils.get_file(ckpt_link.split("/")[-1], ckpt_link) model.load_weights(ckpt_path, skip_mismatch=True) model.compile( loss="sparse_categorical_crossentropy", optimizer="adam", metrics=["accuracy"] ) """ ### Training """ history = model.fit( train_dataset, validation_data=val_dataset, epochs=EPOCHS, verbose=1 ) """ ## Reference * [gcvit-tf - A Python library for GCViT with TF2.0](https://github.com/awsaf49/gcvit-tf) * [gcvit - Official codebase for GCViT](https://github.com/NVlabs/GCVit) """
keras-io/examples/vision/image_classification_using_global_context_vision_transformer.py/0
{ "file_path": "keras-io/examples/vision/image_classification_using_global_context_vision_transformer.py", "repo_id": "keras-io", "token_count": 18120 }
97
<jupyter_start><jupyter_text>Gradient Centralization for Better Training Performance**Author:** [Rishit Dagli](https://github.com/Rishit-dagli)**Date created:** 06/18/21**Last modified:** 07/25/23**Description:** Implement Gradient Centralization to improve training performance of DNNs. IntroductionThis example implements [Gradient Centralization](https://arxiv.org/abs/2004.01461), anew optimization technique for Deep Neural Networks by Yong et al., and demonstrates iton Laurence Moroney's [Horses or HumansDataset](https://www.tensorflow.org/datasets/catalog/horses_or_humans). GradientCentralization can both speedup training process and improve the final generalizationperformance of DNNs. It operates directly on gradients by centralizing the gradientvectors to have zero mean. Gradient Centralization morever improves the Lipschitzness ofthe loss function and its gradient so that the training process becomes more efficientand stable.This example requires `tensorflow_datasets` which can be installed with this command:```pip install tensorflow-datasets``` Setup<jupyter_code>from time import time import keras from keras import layers from keras.optimizers import RMSprop from keras import ops from tensorflow import data as tf_data import tensorflow_datasets as tfds<jupyter_output><empty_output><jupyter_text>Prepare the dataFor this example, we will be using the [Horses or Humansdataset](https://www.tensorflow.org/datasets/catalog/horses_or_humans).<jupyter_code>num_classes = 2 input_shape = (300, 300, 3) dataset_name = "horses_or_humans" batch_size = 128 AUTOTUNE = tf_data.AUTOTUNE (train_ds, test_ds), metadata = tfds.load( name=dataset_name, split=[tfds.Split.TRAIN, tfds.Split.TEST], with_info=True, as_supervised=True, ) print(f"Image shape: {metadata.features['image'].shape}") print(f"Training images: {metadata.splits['train'].num_examples}") print(f"Test images: {metadata.splits['test'].num_examples}")<jupyter_output><empty_output><jupyter_text>Use Data AugmentationWe will rescale the data to `[0, 1]` and perform simple augmentations to our data.<jupyter_code>rescale = layers.Rescaling(1.0 / 255) data_augmentation = [ layers.RandomFlip("horizontal_and_vertical"), layers.RandomRotation(0.3), layers.RandomZoom(0.2), ] # Helper to apply augmentation def apply_aug(x): for aug in data_augmentation: x = aug(x) return x def prepare(ds, shuffle=False, augment=False): # Rescale dataset ds = ds.map(lambda x, y: (rescale(x), y), num_parallel_calls=AUTOTUNE) if shuffle: ds = ds.shuffle(1024) # Batch dataset ds = ds.batch(batch_size) # Use data augmentation only on the training set if augment: ds = ds.map( lambda x, y: (apply_aug(x), y), num_parallel_calls=AUTOTUNE, ) # Use buffered prefecting return ds.prefetch(buffer_size=AUTOTUNE)<jupyter_output><empty_output><jupyter_text>Rescale and augment the data<jupyter_code>train_ds = prepare(train_ds, shuffle=True, augment=True) test_ds = prepare(test_ds)<jupyter_output><empty_output><jupyter_text>Define a modelIn this section we will define a Convolutional neural network.<jupyter_code>model = keras.Sequential( [ layers.Input(shape=input_shape), layers.Conv2D(16, (3, 3), activation="relu"), layers.MaxPooling2D(2, 2), layers.Conv2D(32, (3, 3), activation="relu"), layers.Dropout(0.5), layers.MaxPooling2D(2, 2), layers.Conv2D(64, (3, 3), activation="relu"), layers.Dropout(0.5), layers.MaxPooling2D(2, 2), layers.Conv2D(64, (3, 3), activation="relu"), layers.MaxPooling2D(2, 2), layers.Conv2D(64, (3, 3), activation="relu"), layers.MaxPooling2D(2, 2), layers.Flatten(), layers.Dropout(0.5), layers.Dense(512, activation="relu"), layers.Dense(1, activation="sigmoid"), ] )<jupyter_output><empty_output><jupyter_text>Implement Gradient CentralizationWe will nowsubclass the `RMSProp` optimizer class modifying the`keras.optimizers.Optimizer.get_gradients()` method where we now implement GradientCentralization. On a high level the idea is that let us say we obtain our gradientsthrough back propogation for a Dense or Convolution layer we then compute the mean of thecolumn vectors of the weight matrix, and then remove the mean from each column vector.The experiments in [this paper](https://arxiv.org/abs/2004.01461) on variousapplications, including general image classification, fine-grained image classification,detection and segmentation and Person ReID demonstrate that GC can consistently improvethe performance of DNN learning.Also, for simplicity at the moment we are not implementing gradient cliiping functionality,however this quite easy to implement.At the moment we are just creating a subclass for the `RMSProp` optimizerhowever you could easily reproduce this for any other optimizer or on a customoptimizer in the same way. We will be using this class in the later section whenwe train a model with Gradient Centralization.<jupyter_code>class GCRMSprop(RMSprop): def get_gradients(self, loss, params): # We here just provide a modified get_gradients() function since we are # trying to just compute the centralized gradients. grads = [] gradients = super().get_gradients() for grad in gradients: grad_len = len(grad.shape) if grad_len > 1: axis = list(range(grad_len - 1)) grad -= ops.mean(grad, axis=axis, keep_dims=True) grads.append(grad) return grads optimizer = GCRMSprop(learning_rate=1e-4)<jupyter_output><empty_output><jupyter_text>Training utilitiesWe will also create a callback which allows us to easily measure the total training timeand the time taken for each epoch since we are interested in comparing the effect ofGradient Centralization on the model we built above.<jupyter_code>class TimeHistory(keras.callbacks.Callback): def on_train_begin(self, logs={}): self.times = [] def on_epoch_begin(self, batch, logs={}): self.epoch_time_start = time() def on_epoch_end(self, batch, logs={}): self.times.append(time() - self.epoch_time_start)<jupyter_output><empty_output><jupyter_text>Train the model without GCWe now train the model we built earlier without Gradient Centralization which we cancompare to the training performance of the model trained with Gradient Centralization.<jupyter_code>time_callback_no_gc = TimeHistory() model.compile( loss="binary_crossentropy", optimizer=RMSprop(learning_rate=1e-4), metrics=["accuracy"], ) model.summary()<jupyter_output><empty_output><jupyter_text>We also save the history since we later want to compare our model trained with and nottrained with Gradient Centralization<jupyter_code>history_no_gc = model.fit( train_ds, epochs=10, verbose=1, callbacks=[time_callback_no_gc] )<jupyter_output><empty_output><jupyter_text>Train the model with GCWe will now train the same model, this time using Gradient Centralization,notice our optimizer is the one using Gradient Centralization this time.<jupyter_code>time_callback_gc = TimeHistory() model.compile(loss="binary_crossentropy", optimizer=optimizer, metrics=["accuracy"]) model.summary() history_gc = model.fit(train_ds, epochs=10, verbose=1, callbacks=[time_callback_gc])<jupyter_output><empty_output><jupyter_text>Comparing performance<jupyter_code>print("Not using Gradient Centralization") print(f"Loss: {history_no_gc.history['loss'][-1]}") print(f"Accuracy: {history_no_gc.history['accuracy'][-1]}") print(f"Training Time: {sum(time_callback_no_gc.times)}") print("Using Gradient Centralization") print(f"Loss: {history_gc.history['loss'][-1]}") print(f"Accuracy: {history_gc.history['accuracy'][-1]}") print(f"Training Time: {sum(time_callback_gc.times)}")<jupyter_output><empty_output>
keras-io/examples/vision/ipynb/gradient_centralization.ipynb/0
{ "file_path": "keras-io/examples/vision/ipynb/gradient_centralization.ipynb", "repo_id": "keras-io", "token_count": 2793 }
98
<jupyter_start><jupyter_text>MixUp augmentation for image classification**Author:** [Sayak Paul](https://twitter.com/RisingSayak)**Date created:** 2021/03/06**Last modified:** 2023/07/24**Description:** Data augmentation using the mixup technique for image classification. Introduction _mixup_ is a *domain-agnostic* data augmentation technique proposed in [mixup: Beyond Empirical Risk Minimization](https://arxiv.org/abs/1710.09412)by Zhang et al. It's implemented with the following formulas:(Note that the lambda values are values with the [0, 1] range and are sampled from the[Beta distribution](https://en.wikipedia.org/wiki/Beta_distribution).)The technique is quite systematically named. We are literally mixing up the features andtheir corresponding labels. Implementation-wise it's simple. Neural networks are proneto [memorizing corrupt labels](https://arxiv.org/abs/1611.03530). mixup relaxes this bycombining different features with one another (same happens for the labels too) so thata network does not get overconfident about the relationship between the features andtheir labels.mixup is specifically useful when we are not sure about selecting a set of augmentationtransforms for a given dataset, medical imaging datasets, for example. mixup can beextended to a variety of data modalities such as computer vision, naturallanguageprocessing, speech, and so on. Setup<jupyter_code>import os os.environ["KERAS_BACKEND"] = "tensorflow" import numpy as np import keras import matplotlib.pyplot as plt from keras import layers # TF imports related to tf.data preprocessing from tensorflow import data as tf_data from tensorflow import image as tf_image from tensorflow.random import gamma as tf_random_gamma<jupyter_output><empty_output><jupyter_text>Prepare the datasetIn this example, we will be using the [FashionMNIST](https://github.com/zalandoresearch/fashion-mnist) dataset. But this same recipe canbe used for other classification datasets as well.<jupyter_code>(x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data() x_train = x_train.astype("float32") / 255.0 x_train = np.reshape(x_train, (-1, 28, 28, 1)) y_train = keras.ops.one_hot(y_train, 10) x_test = x_test.astype("float32") / 255.0 x_test = np.reshape(x_test, (-1, 28, 28, 1)) y_test = keras.ops.one_hot(y_test, 10)<jupyter_output><empty_output><jupyter_text>Define hyperparameters<jupyter_code>AUTO = tf_data.AUTOTUNE BATCH_SIZE = 64 EPOCHS = 10<jupyter_output><empty_output><jupyter_text>Convert the data into TensorFlow `Dataset` objects<jupyter_code># Put aside a few samples to create our validation set val_samples = 2000 x_val, y_val = x_train[:val_samples], y_train[:val_samples] new_x_train, new_y_train = x_train[val_samples:], y_train[val_samples:] train_ds_one = ( tf_data.Dataset.from_tensor_slices((new_x_train, new_y_train)) .shuffle(BATCH_SIZE * 100) .batch(BATCH_SIZE) ) train_ds_two = ( tf_data.Dataset.from_tensor_slices((new_x_train, new_y_train)) .shuffle(BATCH_SIZE * 100) .batch(BATCH_SIZE) ) # Because we will be mixing up the images and their corresponding labels, we will be # combining two shuffled datasets from the same training data. train_ds = tf_data.Dataset.zip((train_ds_one, train_ds_two)) val_ds = tf_data.Dataset.from_tensor_slices((x_val, y_val)).batch(BATCH_SIZE) test_ds = tf_data.Dataset.from_tensor_slices((x_test, y_test)).batch(BATCH_SIZE)<jupyter_output><empty_output><jupyter_text>Define the mixup technique functionTo perform the mixup routine, we create new virtual datasets using the training data fromthe same dataset, and apply a lambda value within the [0, 1] range sampled from a [Beta distribution](https://en.wikipedia.org/wiki/Beta_distribution)— such that, for example, `new_x = lambda * x1 + (1 - lambda) * x2` (where`x1` and `x2` are images) and the same equation is applied to the labels as well.<jupyter_code>def sample_beta_distribution(size, concentration_0=0.2, concentration_1=0.2): gamma_1_sample = tf_random_gamma(shape=[size], alpha=concentration_1) gamma_2_sample = tf_random_gamma(shape=[size], alpha=concentration_0) return gamma_1_sample / (gamma_1_sample + gamma_2_sample) def mix_up(ds_one, ds_two, alpha=0.2): # Unpack two datasets images_one, labels_one = ds_one images_two, labels_two = ds_two batch_size = keras.ops.shape(images_one)[0] # Sample lambda and reshape it to do the mixup l = sample_beta_distribution(batch_size, alpha, alpha) x_l = keras.ops.reshape(l, (batch_size, 1, 1, 1)) y_l = keras.ops.reshape(l, (batch_size, 1)) # Perform mixup on both images and labels by combining a pair of images/labels # (one from each dataset) into one image/label images = images_one * x_l + images_two * (1 - x_l) labels = labels_one * y_l + labels_two * (1 - y_l) return (images, labels)<jupyter_output><empty_output><jupyter_text>**Note** that here , we are combining two images to create a single one. Theoretically,we can combine as many we want but that comes at an increased computation cost. Incertain cases, it may not help improve the performance as well. Visualize the new augmented dataset<jupyter_code># First create the new dataset using our `mix_up` utility train_ds_mu = train_ds.map( lambda ds_one, ds_two: mix_up(ds_one, ds_two, alpha=0.2), num_parallel_calls=AUTO, ) # Let's preview 9 samples from the dataset sample_images, sample_labels = next(iter(train_ds_mu)) plt.figure(figsize=(10, 10)) for i, (image, label) in enumerate(zip(sample_images[:9], sample_labels[:9])): ax = plt.subplot(3, 3, i + 1) plt.imshow(image.numpy().squeeze()) print(label.numpy().tolist()) plt.axis("off")<jupyter_output><empty_output><jupyter_text>Model building<jupyter_code>def get_training_model(): model = keras.Sequential( [ layers.Input(shape=(28, 28, 1)), layers.Conv2D(16, (5, 5), activation="relu"), layers.MaxPooling2D(pool_size=(2, 2)), layers.Conv2D(32, (5, 5), activation="relu"), layers.MaxPooling2D(pool_size=(2, 2)), layers.Dropout(0.2), layers.GlobalAveragePooling2D(), layers.Dense(128, activation="relu"), layers.Dense(10, activation="softmax"), ] ) return model<jupyter_output><empty_output><jupyter_text>For the sake of reproducibility, we serialize the initial random weights of our shallownetwork.<jupyter_code>initial_model = get_training_model() initial_model.save_weights("initial_weights.weights.h5")<jupyter_output><empty_output><jupyter_text>1. Train the model with the mixed up dataset<jupyter_code>model = get_training_model() model.load_weights("initial_weights.weights.h5") model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) model.fit(train_ds_mu, validation_data=val_ds, epochs=EPOCHS) _, test_acc = model.evaluate(test_ds) print("Test accuracy: {:.2f}%".format(test_acc * 100))<jupyter_output><empty_output><jupyter_text>2. Train the model *without* the mixed up dataset<jupyter_code>model = get_training_model() model.load_weights("initial_weights.weights.h5") model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"]) # Notice that we are NOT using the mixed up dataset here model.fit(train_ds_one, validation_data=val_ds, epochs=EPOCHS) _, test_acc = model.evaluate(test_ds) print("Test accuracy: {:.2f}%".format(test_acc * 100))<jupyter_output><empty_output>
keras-io/examples/vision/ipynb/mixup.ipynb/0
{ "file_path": "keras-io/examples/vision/ipynb/mixup.ipynb", "repo_id": "keras-io", "token_count": 2679 }
99
<jupyter_start><jupyter_text>Video Classification with Transformers**Author:** [Sayak Paul](https://twitter.com/RisingSayak)**Date created:** 2021/06/08**Last modified:** 2023/22/07**Description:** Training a video classifier with hybrid transformers. This example is a follow-up to the[Video Classification with a CNN-RNN Architecture](https://keras.io/examples/vision/video_classification/)example. This time, we will be using a Transformer-based model([Vaswani et al.](https://arxiv.org/abs/1706.03762)) to classify videos. You can follow[this book chapter](https://livebook.manning.com/book/deep-learning-with-python-second-edition/chapter-11)in case you need an introduction to Transformers (with code). After reading thisexample, you will know how to develop hybrid Transformer-based models for videoclassification that operate on CNN feature maps.<jupyter_code>!pip install -q git+https://github.com/tensorflow/docs<jupyter_output><empty_output><jupyter_text>Data collectionAs done in the [predecessor](https://keras.io/examples/vision/video_classification/) tothis example, we will be using a subsampled version of the[UCF101 dataset](https://www.crcv.ucf.edu/data/UCF101.php),a well-known benchmark dataset. In case you want to operate on a larger subsample oreven the entire dataset, please refer to[this notebook](https://colab.research.google.com/github/sayakpaul/Action-Recognition-in-TensorFlow/blob/main/Data_Preparation_UCF101.ipynb).<jupyter_code>!wget -q https://github.com/sayakpaul/Action-Recognition-in-TensorFlow/releases/download/v1.0.0/ucf101_top5.tar.gz !tar -xf ucf101_top5.tar.gz<jupyter_output><empty_output><jupyter_text>Setup<jupyter_code>import os import keras from keras import layers from keras.applications.densenet import DenseNet121 from tensorflow_docs.vis import embed import matplotlib.pyplot as plt import pandas as pd import numpy as np import imageio import cv2<jupyter_output><empty_output><jupyter_text>Define hyperparameters<jupyter_code>MAX_SEQ_LENGTH = 20 NUM_FEATURES = 1024 IMG_SIZE = 128 EPOCHS = 5<jupyter_output><empty_output><jupyter_text>Data preparationWe will mostly be following the same data preparation steps in this example, except forthe following changes:* We reduce the image size to 128x128 instead of 224x224 to speed up computation.* Instead of using a pre-trained [InceptionV3](https://arxiv.org/abs/1512.00567) network,we use a pre-trained[DenseNet121](http://openaccess.thecvf.com/content_cvpr_2017/papers/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.pdf)for feature extraction.* We directly pad shorter videos to length `MAX_SEQ_LENGTH`.First, let's load up the[DataFrames](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html).<jupyter_code>train_df = pd.read_csv("train.csv") test_df = pd.read_csv("test.csv") print(f"Total videos for training: {len(train_df)}") print(f"Total videos for testing: {len(test_df)}") center_crop_layer = layers.CenterCrop(IMG_SIZE, IMG_SIZE) def crop_center(frame): cropped = center_crop_layer(frame[None, ...]) cropped = keras.ops.convert_to_numpy(cropped) cropped = keras.ops.squeeze(cropped) return cropped # Following method is modified from this tutorial: # https://www.tensorflow.org/hub/tutorials/action_recognition_with_tf_hub def load_video(path, max_frames=0, offload_to_cpu=False): cap = cv2.VideoCapture(path) frames = [] try: while True: ret, frame = cap.read() if not ret: break frame = frame[:, :, [2, 1, 0]] frame = crop_center(frame) if offload_to_cpu and keras.backend.backend() == "torch": frame = frame.to("cpu") frames.append(frame) if len(frames) == max_frames: break finally: cap.release() if offload_to_cpu and keras.backend.backend() == "torch": return np.array([frame.to("cpu").numpy() for frame in frames]) return np.array(frames) def build_feature_extractor(): feature_extractor = DenseNet121( weights="imagenet", include_top=False, pooling="avg", input_shape=(IMG_SIZE, IMG_SIZE, 3), ) preprocess_input = keras.applications.densenet.preprocess_input inputs = keras.Input((IMG_SIZE, IMG_SIZE, 3)) preprocessed = preprocess_input(inputs) outputs = feature_extractor(preprocessed) return keras.Model(inputs, outputs, name="feature_extractor") feature_extractor = build_feature_extractor() # Label preprocessing with StringLookup. label_processor = keras.layers.StringLookup( num_oov_indices=0, vocabulary=np.unique(train_df["tag"]), mask_token=None ) print(label_processor.get_vocabulary()) def prepare_all_videos(df, root_dir): num_samples = len(df) video_paths = df["video_name"].values.tolist() labels = df["tag"].values labels = label_processor(labels[..., None]).numpy() # `frame_features` are what we will feed to our sequence model. frame_features = np.zeros( shape=(num_samples, MAX_SEQ_LENGTH, NUM_FEATURES), dtype="float32" ) # For each video. for idx, path in enumerate(video_paths): # Gather all its frames and add a batch dimension. frames = load_video(os.path.join(root_dir, path)) # Pad shorter videos. if len(frames) < MAX_SEQ_LENGTH: diff = MAX_SEQ_LENGTH - len(frames) padding = np.zeros((diff, IMG_SIZE, IMG_SIZE, 3)) frames = np.concatenate(frames, padding) frames = frames[None, ...] # Initialize placeholder to store the features of the current video. temp_frame_features = np.zeros( shape=(1, MAX_SEQ_LENGTH, NUM_FEATURES), dtype="float32" ) # Extract features from the frames of the current video. for i, batch in enumerate(frames): video_length = batch.shape[0] length = min(MAX_SEQ_LENGTH, video_length) for j in range(length): if np.mean(batch[j, :]) > 0.0: temp_frame_features[i, j, :] = feature_extractor.predict( batch[None, j, :] ) else: temp_frame_features[i, j, :] = 0.0 frame_features[idx,] = temp_frame_features.squeeze() return frame_features, labels<jupyter_output><empty_output><jupyter_text>Calling `prepare_all_videos()` on `train_df` and `test_df` takes ~20 minutes tocomplete. For this reason, to save time, here we download already preprocessed NumPy arrays:<jupyter_code>!!wget -q https://git.io/JZmf4 -O top5_data_prepared.tar.gz !!tar -xf top5_data_prepared.tar.gz train_data, train_labels = np.load("train_data.npy"), np.load("train_labels.npy") test_data, test_labels = np.load("test_data.npy"), np.load("test_labels.npy") print(f"Frame features in train set: {train_data.shape}")<jupyter_output><empty_output><jupyter_text>Building the Transformer-based modelWe will be building on top of the code shared in[this book chapter](https://livebook.manning.com/book/deep-learning-with-python-second-edition/chapter-11) of[Deep Learning with Python (Second ed.)](https://www.manning.com/books/deep-learning-with-python)by François Chollet.First, self-attention layers that form the basic blocks of a Transformer areorder-agnostic. Since videos are ordered sequences of frames, we need ourTransformer model to take into account order information.We do this via **positional encoding**.We simply embed the positions of the frames present inside videos with an[`Embedding` layer](https://keras.io/api/layers/core_layers/embedding). We thenadd these positional embeddings to the precomputed CNN feature maps.<jupyter_code>class PositionalEmbedding(layers.Layer): def __init__(self, sequence_length, output_dim, **kwargs): super().__init__(**kwargs) self.position_embeddings = layers.Embedding( input_dim=sequence_length, output_dim=output_dim ) self.sequence_length = sequence_length self.output_dim = output_dim def build(self, input_shape): self.position_embeddings.build(input_shape) def call(self, inputs): # The inputs are of shape: `(batch_size, frames, num_features)` inputs = keras.ops.cast(inputs, self.compute_dtype) length = keras.ops.shape(inputs)[1] positions = keras.ops.arange(start=0, stop=length, step=1) embedded_positions = self.position_embeddings(positions) return inputs + embedded_positions<jupyter_output><empty_output><jupyter_text>Now, we can create a subclassed layer for the Transformer.<jupyter_code>class TransformerEncoder(layers.Layer): def __init__(self, embed_dim, dense_dim, num_heads, **kwargs): super().__init__(**kwargs) self.embed_dim = embed_dim self.dense_dim = dense_dim self.num_heads = num_heads self.attention = layers.MultiHeadAttention( num_heads=num_heads, key_dim=embed_dim, dropout=0.3 ) self.dense_proj = keras.Sequential( [ layers.Dense(dense_dim, activation=keras.activations.gelu), layers.Dense(embed_dim), ] ) self.layernorm_1 = layers.LayerNormalization() self.layernorm_2 = layers.LayerNormalization() def call(self, inputs, mask=None): attention_output = self.attention(inputs, inputs, attention_mask=mask) proj_input = self.layernorm_1(inputs + attention_output) proj_output = self.dense_proj(proj_input) return self.layernorm_2(proj_input + proj_output)<jupyter_output><empty_output><jupyter_text>Utility functions for training<jupyter_code>def get_compiled_model(shape): sequence_length = MAX_SEQ_LENGTH embed_dim = NUM_FEATURES dense_dim = 4 num_heads = 1 classes = len(label_processor.get_vocabulary()) inputs = keras.Input(shape=shape) x = PositionalEmbedding( sequence_length, embed_dim, name="frame_position_embedding" )(inputs) x = TransformerEncoder(embed_dim, dense_dim, num_heads, name="transformer_layer")(x) x = layers.GlobalMaxPooling1D()(x) x = layers.Dropout(0.5)(x) outputs = layers.Dense(classes, activation="softmax")(x) model = keras.Model(inputs, outputs) model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) return model def run_experiment(): filepath = "/tmp/video_classifier.weights.h5" checkpoint = keras.callbacks.ModelCheckpoint( filepath, save_weights_only=True, save_best_only=True, verbose=1 ) model = get_compiled_model(train_data.shape[1:]) history = model.fit( train_data, train_labels, validation_split=0.15, epochs=EPOCHS, callbacks=[checkpoint], ) model.load_weights(filepath) _, accuracy = model.evaluate(test_data, test_labels) print(f"Test accuracy: {round(accuracy * 100, 2)}%") return model<jupyter_output><empty_output><jupyter_text>Model training and inference<jupyter_code>trained_model = run_experiment()<jupyter_output><empty_output><jupyter_text>**Note**: This model has ~4.23 Million parameters, which is way more than the sequencemodel (99918 parameters) we used in the prequel of this example. This kind ofTransformer model works best with a larger dataset and a longer pre-training schedule.<jupyter_code>def prepare_single_video(frames): frame_features = np.zeros(shape=(1, MAX_SEQ_LENGTH, NUM_FEATURES), dtype="float32") # Pad shorter videos. if len(frames) < MAX_SEQ_LENGTH: diff = MAX_SEQ_LENGTH - len(frames) padding = np.zeros((diff, IMG_SIZE, IMG_SIZE, 3)) frames = np.concatenate(frames, padding) frames = frames[None, ...] # Extract features from the frames of the current video. for i, batch in enumerate(frames): video_length = batch.shape[0] length = min(MAX_SEQ_LENGTH, video_length) for j in range(length): if np.mean(batch[j, :]) > 0.0: frame_features[i, j, :] = feature_extractor.predict(batch[None, j, :]) else: frame_features[i, j, :] = 0.0 return frame_features def predict_action(path): class_vocab = label_processor.get_vocabulary() frames = load_video(os.path.join("test", path), offload_to_cpu=True) frame_features = prepare_single_video(frames) probabilities = trained_model.predict(frame_features)[0] plot_x_axis, plot_y_axis = [], [] for i in np.argsort(probabilities)[::-1]: plot_x_axis.append(class_vocab[i]) plot_y_axis.append(probabilities[i]) print(f" {class_vocab[i]}: {probabilities[i] * 100:5.2f}%") plt.bar(plot_x_axis, plot_y_axis, label=plot_x_axis) plt.xlabel("class_label") plt.xlabel("Probability") plt.show() return frames # This utility is for visualization. # Referenced from: # https://www.tensorflow.org/hub/tutorials/action_recognition_with_tf_hub def to_gif(images): converted_images = images.astype(np.uint8) imageio.mimsave("animation.gif", converted_images, fps=10) return embed.embed_file("animation.gif") test_video = np.random.choice(test_df["video_name"].values.tolist()) print(f"Test video path: {test_video}") test_frames = predict_action(test_video) to_gif(test_frames[:MAX_SEQ_LENGTH])<jupyter_output><empty_output>
keras-io/examples/vision/ipynb/video_transformers.ipynb/0
{ "file_path": "keras-io/examples/vision/ipynb/video_transformers.ipynb", "repo_id": "keras-io", "token_count": 5325 }
100
# Using the Forward-Forward Algorithm for Image Classification **Author:** [Suvaditya Mukherjee](https://twitter.com/halcyonrayes)<br> **Date created:** 2023/01/08<br> **Last modified:** 2023/01/08<br> **Description:** Training a Dense-layer model using the Forward-Forward algorithm. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/vision/ipynb/forwardforward.ipynb) <span class="k-dot">•</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/examples/vision/forwardforward.py) --- ## Introduction The following example explores how to use the Forward-Forward algorithm to perform training instead of the traditionally-used method of backpropagation, as proposed by Hinton in [The Forward-Forward Algorithm: Some Preliminary Investigations](https://www.cs.toronto.edu/~hinton/FFA13.pdf) (2022). The concept was inspired by the understanding behind [Boltzmann Machines](http://www.cs.toronto.edu/~fritz/absps/dbm.pdf). Backpropagation involves calculating the difference between actual and predicted output via a cost function to adjust network weights. On the other hand, the FF Algorithm suggests the analogy of neurons which get "excited" based on looking at a certain recognized combination of an image and its correct corresponding label. This method takes certain inspiration from the biological learning process that occurs in the cortex. A significant advantage that this method brings is the fact that backpropagation through the network does not need to be performed anymore, and that weight updates are local to the layer itself. As this is yet still an experimental method, it does not yield state-of-the-art results. But with proper tuning, it is supposed to come close to the same. Through this example, we will examine a process that allows us to implement the Forward-Forward algorithm within the layers themselves, instead of the traditional method of relying on the global loss functions and optimizers. The tutorial is structured as follows: - Perform necessary imports - Load the [MNIST dataset](http://yann.lecun.com/exdb/mnist/) - Visualize Random samples from the MNIST dataset - Define a `FFDense` Layer to override `call` and implement a custom `forwardforward` method which performs weight updates. - Define a `FFNetwork` Layer to override `train_step`, `predict` and implement 2 custom functions for per-sample prediction and overlaying labels - Convert MNIST from `NumPy` arrays to `tf.data.Dataset` - Fit the network - Visualize results - Perform inference on test samples As this example requires the customization of certain core functions with `keras.layers.Layer` and `keras.models.Model`, refer to the following resources for a primer on how to do so: - [Customizing what happens in `model.fit()`](https://www.tensorflow.org/guide/keras/customizing_what_happens_in_fit) - [Making new Layers and Models via subclassing](https://www.tensorflow.org/guide/keras/custom_layers_and_models) --- ## Setup imports ```python import tensorflow as tf from tensorflow import keras import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score import random from tensorflow.compiler.tf2xla.python import xla ``` --- ## Load the dataset and visualize the data We use the `keras.datasets.mnist.load_data()` utility to directly pull the MNIST dataset in the form of `NumPy` arrays. We then arrange it in the form of the train and test splits. Following loading the dataset, we select 4 random samples from within the training set and visualize them using `matplotlib.pyplot`. ```python (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() print("4 Random Training samples and labels") idx1, idx2, idx3, idx4 = random.sample(range(0, x_train.shape[0]), 4) img1 = (x_train[idx1], y_train[idx1]) img2 = (x_train[idx2], y_train[idx2]) img3 = (x_train[idx3], y_train[idx3]) img4 = (x_train[idx4], y_train[idx4]) imgs = [img1, img2, img3, img4] plt.figure(figsize=(10, 10)) for idx, item in enumerate(imgs): image, label = item[0], item[1] plt.subplot(2, 2, idx + 1) plt.imshow(image, cmap="gray") plt.title(f"Label : {label}") plt.show() ``` <div class="k-default-codeblock"> ``` Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz 11490434/11490434 [==============================] - 0s 0us/step 4 Random Training samples and labels ``` </div> ![png](/img/examples/vision/forwardforward/forwardforward_5_1.png) --- ## Define `FFDense` custom layer In this custom layer, we have a base `keras.layers.Dense` object which acts as the base `Dense` layer within. Since weight updates will happen within the layer itself, we add an `keras.optimizers.Optimizer` object that is accepted from the user. Here, we use `Adam` as our optimizer with a rather higher learning rate of `0.03`. Following the algorithm's specifics, we must set a `threshold` parameter that will be used to make the positive-negative decision in each prediction. This is set to a default of 2.0. As the epochs are localized to the layer itself, we also set a `num_epochs` parameter (defaults to 50). We override the `call` method in order to perform a normalization over the complete input space followed by running it through the base `Dense` layer as would happen in a normal `Dense` layer call. We implement the Forward-Forward algorithm which accepts 2 kinds of input tensors, each representing the positive and negative samples respectively. We write a custom training loop here with the use of `tf.GradientTape()`, within which we calculate a loss per sample by taking the distance of the prediction from the threshold to understand the error and taking its mean to get a `mean_loss` metric. With the help of `tf.GradientTape()` we calculate the gradient updates for the trainable base `Dense` layer and apply them using the layer's local optimizer. Finally, we return the `call` result as the `Dense` results of the positive and negative samples while also returning the last `mean_loss` metric and all the loss values over a certain all-epoch run. ```python class FFDense(keras.layers.Layer): """ A custom ForwardForward-enabled Dense layer. It has an implementation of the Forward-Forward network internally for use. This layer must be used in conjunction with the `FFNetwork` model. """ def __init__( self, units, optimizer, loss_metric, num_epochs=50, use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, **kwargs, ): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=units, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, ) self.relu = keras.layers.ReLU() self.optimizer = optimizer self.loss_metric = loss_metric self.threshold = 1.5 self.num_epochs = num_epochs # We perform a normalization step before we run the input through the Dense # layer. def call(self, x): x_norm = tf.norm(x, ord=2, axis=1, keepdims=True) x_norm = x_norm + 1e-4 x_dir = x / x_norm res = self.dense(x_dir) return self.relu(res) # The Forward-Forward algorithm is below. We first perform the Dense-layer # operation and then get a Mean Square value for all positive and negative # samples respectively. # The custom loss function finds the distance between the Mean-squared # result and the threshold value we set (a hyperparameter) that will define # whether the prediction is positive or negative in nature. Once the loss is # calculated, we get a mean across the entire batch combined and perform a # gradient calculation and optimization step. This does not technically # qualify as backpropagation since there is no gradient being # sent to any previous layer and is completely local in nature. def forward_forward(self, x_pos, x_neg): for i in range(self.num_epochs): with tf.GradientTape() as tape: g_pos = tf.math.reduce_mean(tf.math.pow(self.call(x_pos), 2), 1) g_neg = tf.math.reduce_mean(tf.math.pow(self.call(x_neg), 2), 1) loss = tf.math.log( 1 + tf.math.exp( tf.concat([-g_pos + self.threshold, g_neg - self.threshold], 0) ) ) mean_loss = tf.cast(tf.math.reduce_mean(loss), tf.float32) self.loss_metric.update_state([mean_loss]) gradients = tape.gradient(mean_loss, self.dense.trainable_weights) self.optimizer.apply_gradients(zip(gradients, self.dense.trainable_weights)) return ( tf.stop_gradient(self.call(x_pos)), tf.stop_gradient(self.call(x_neg)), self.loss_metric.result(), ) ``` --- ## Define the `FFNetwork` Custom Model With our custom layer defined, we also need to override the `train_step` method and define a custom `keras.models.Model` that works with our `FFDense` layer. For this algorithm, we must 'embed' the labels onto the original image. To do so, we exploit the structure of MNIST images where the top-left 10 pixels are always zeros. We use that as a label space in order to visually one-hot-encode the labels within the image itself. This action is performed by the `overlay_y_on_x` function. We break down the prediction function with a per-sample prediction function which is then called over the entire test set by the overriden `predict()` function. The prediction is performed here with the help of measuring the `excitation` of the neurons per layer for each image. This is then summed over all layers to calculate a network-wide 'goodness score'. The label with the highest 'goodness score' is then chosen as the sample prediction. The `train_step` function is overriden to act as the main controlling loop for running training on each layer as per the number of epochs per layer. ```python class FFNetwork(keras.Model): """ A `keras.Model` that supports a `FFDense` network creation. This model can work for any kind of classification task. It has an internal implementation with some details specific to the MNIST dataset which can be changed as per the use-case. """ # Since each layer runs gradient-calculation and optimization locally, each # layer has its own optimizer that we pass. As a standard choice, we pass # the `Adam` optimizer with a default learning rate of 0.03 as that was # found to be the best rate after experimentation. # Loss is tracked using `loss_var` and `loss_count` variables. # Use legacy optimizer for Layer Optimizer to fix issue # https://github.com/keras-team/keras-io/issues/1241 def __init__( self, dims, layer_optimizer=keras.optimizers.legacy.Adam(learning_rate=0.03), **kwargs, ): super().__init__(**kwargs) self.layer_optimizer = layer_optimizer self.loss_var = tf.Variable(0.0, trainable=False, dtype=tf.float32) self.loss_count = tf.Variable(0.0, trainable=False, dtype=tf.float32) self.layer_list = [keras.Input(shape=(dims[0],))] for d in range(len(dims) - 1): self.layer_list += [ FFDense( dims[d + 1], optimizer=self.layer_optimizer, loss_metric=keras.metrics.Mean(), ) ] # This function makes a dynamic change to the image wherein the labels are # put on top of the original image (for this example, as MNIST has 10 # unique labels, we take the top-left corner's first 10 pixels). This # function returns the original data tensor with the first 10 pixels being # a pixel-based one-hot representation of the labels. @tf.function(reduce_retracing=True) def overlay_y_on_x(self, data): X_sample, y_sample = data max_sample = tf.reduce_max(X_sample, axis=0, keepdims=True) max_sample = tf.cast(max_sample, dtype=tf.float64) X_zeros = tf.zeros([10], dtype=tf.float64) X_update = xla.dynamic_update_slice(X_zeros, max_sample, [y_sample]) X_sample = xla.dynamic_update_slice(X_sample, X_update, [0]) return X_sample, y_sample # A custom `predict_one_sample` performs predictions by passing the images # through the network, measures the results produced by each layer (i.e. # how high/low the output values are with respect to the set threshold for # each label) and then simply finding the label with the highest values. # In such a case, the images are tested for their 'goodness' with all # labels. @tf.function(reduce_retracing=True) def predict_one_sample(self, x): goodness_per_label = [] x = tf.reshape(x, [tf.shape(x)[0] * tf.shape(x)[1]]) for label in range(10): h, label = self.overlay_y_on_x(data=(x, label)) h = tf.reshape(h, [-1, tf.shape(h)[0]]) goodness = [] for layer_idx in range(1, len(self.layer_list)): layer = self.layer_list[layer_idx] h = layer(h) goodness += [tf.math.reduce_mean(tf.math.pow(h, 2), 1)] goodness_per_label += [ tf.expand_dims(tf.reduce_sum(goodness, keepdims=True), 1) ] goodness_per_label = tf.concat(goodness_per_label, 1) return tf.cast(tf.argmax(goodness_per_label, 1), tf.float64) def predict(self, data): x = data preds = list() preds = tf.map_fn(fn=self.predict_one_sample, elems=x) return np.asarray(preds, dtype=int) # This custom `train_step` function overrides the internal `train_step` # implementation. We take all the input image tensors, flatten them and # subsequently produce positive and negative samples on the images. # A positive sample is an image that has the right label encoded on it with # the `overlay_y_on_x` function. A negative sample is an image that has an # erroneous label present on it. # With the samples ready, we pass them through each `FFLayer` and perform # the Forward-Forward computation on it. The returned loss is the final # loss value over all the layers. @tf.function(jit_compile=True) def train_step(self, data): x, y = data # Flatten op x = tf.reshape(x, [-1, tf.shape(x)[1] * tf.shape(x)[2]]) x_pos, y = tf.map_fn(fn=self.overlay_y_on_x, elems=(x, y)) random_y = tf.random.shuffle(y) x_neg, y = tf.map_fn(fn=self.overlay_y_on_x, elems=(x, random_y)) h_pos, h_neg = x_pos, x_neg for idx, layer in enumerate(self.layers): if isinstance(layer, FFDense): print(f"Training layer {idx+1} now : ") h_pos, h_neg, loss = layer.forward_forward(h_pos, h_neg) self.loss_var.assign_add(loss) self.loss_count.assign_add(1.0) else: print(f"Passing layer {idx+1} now : ") x = layer(x) mean_res = tf.math.divide(self.loss_var, self.loss_count) return {"FinalLoss": mean_res} ``` --- ## Convert MNIST `NumPy` arrays to `tf.data.Dataset` We now perform some preliminary processing on the `NumPy` arrays and then convert them into the `tf.data.Dataset` format which allows for optimized loading. ```python x_train = x_train.astype(float) / 255 x_test = x_test.astype(float) / 255 y_train = y_train.astype(int) y_test = y_test.astype(int) train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)) train_dataset = train_dataset.batch(60000) test_dataset = test_dataset.batch(10000) ``` --- ## Fit the network and visualize results Having performed all previous set-up, we are now going to run `model.fit()` and run 250 model epochs, which will perform 50*250 epochs on each layer. We get to see the plotted loss curve as each layer is trained. ```python model = FFNetwork(dims=[784, 500, 500]) model.compile( optimizer=keras.optimizers.Adam(learning_rate=0.03), loss="mse", jit_compile=True, metrics=[keras.metrics.Mean()], ) epochs = 250 history = model.fit(train_dataset, epochs=epochs) ``` <div class="k-default-codeblock"> ``` Epoch 1/250 Training layer 1 now : Training layer 2 now : Training layer 1 now : Training layer 2 now : 1/1 [==============================] - 72s 72s/step - FinalLoss: 0.7279 Epoch 2/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.7082 Epoch 3/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.7031 Epoch 4/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.6806 Epoch 5/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.6564 Epoch 6/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.6333 Epoch 7/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.6126 Epoch 8/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.5946 Epoch 9/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.5786 Epoch 10/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.5644 Epoch 11/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.5518 Epoch 12/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.5405 Epoch 13/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.5301 Epoch 14/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.5207 Epoch 15/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.5122 Epoch 16/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.5044 Epoch 17/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4972 Epoch 18/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4906 Epoch 19/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4845 Epoch 20/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4787 Epoch 21/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4734 Epoch 22/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4685 Epoch 23/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4639 Epoch 24/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4596 Epoch 25/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4555 Epoch 26/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4516 Epoch 27/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4479 Epoch 28/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4445 Epoch 29/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4411 Epoch 30/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4380 Epoch 31/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4350 Epoch 32/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4322 Epoch 33/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4295 Epoch 34/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4269 Epoch 35/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4245 Epoch 36/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4222 Epoch 37/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4199 Epoch 38/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4178 Epoch 39/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4157 Epoch 40/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4136 Epoch 41/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4117 Epoch 42/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4098 Epoch 43/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4079 Epoch 44/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4062 Epoch 45/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4045 Epoch 46/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4028 Epoch 47/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.4012 Epoch 48/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3996 Epoch 49/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3982 Epoch 50/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3967 Epoch 51/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3952 Epoch 52/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3938 Epoch 53/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3925 Epoch 54/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3912 Epoch 55/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3899 Epoch 56/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3886 Epoch 57/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3874 Epoch 58/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3862 Epoch 59/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3851 Epoch 60/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3840 Epoch 61/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3829 Epoch 62/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3818 Epoch 63/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3807 Epoch 64/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3797 Epoch 65/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3787 Epoch 66/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3777 Epoch 67/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3767 Epoch 68/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3758 Epoch 69/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3748 Epoch 70/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3739 Epoch 71/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3730 Epoch 72/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3721 Epoch 73/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3712 Epoch 74/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3704 Epoch 75/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3695 Epoch 76/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3688 Epoch 77/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3680 Epoch 78/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3671 Epoch 79/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3664 Epoch 80/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3656 Epoch 81/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3648 Epoch 82/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3641 Epoch 83/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3634 Epoch 84/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3627 Epoch 85/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3620 Epoch 86/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3613 Epoch 87/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3606 Epoch 88/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3599 Epoch 89/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3593 Epoch 90/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3586 Epoch 91/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3580 Epoch 92/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3574 Epoch 93/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3568 Epoch 94/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3561 Epoch 95/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3555 Epoch 96/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3549 Epoch 97/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3544 Epoch 98/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3538 Epoch 99/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3532 Epoch 100/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3526 Epoch 101/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3521 Epoch 102/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3515 Epoch 103/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3510 Epoch 104/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3505 Epoch 105/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3499 Epoch 106/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3494 Epoch 107/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3489 Epoch 108/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3484 Epoch 109/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3478 Epoch 110/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3474 Epoch 111/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3468 Epoch 112/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3464 Epoch 113/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3459 Epoch 114/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3454 Epoch 115/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3450 Epoch 116/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3445 Epoch 117/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3440 Epoch 118/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3436 Epoch 119/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3432 Epoch 120/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3427 Epoch 121/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3423 Epoch 122/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3419 Epoch 123/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3414 Epoch 124/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3410 Epoch 125/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3406 Epoch 126/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3402 Epoch 127/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3398 Epoch 128/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3394 Epoch 129/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3390 Epoch 130/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3386 Epoch 131/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3382 Epoch 132/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3378 Epoch 133/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3375 Epoch 134/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3371 Epoch 135/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3368 Epoch 136/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3364 Epoch 137/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3360 Epoch 138/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3357 Epoch 139/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3353 Epoch 140/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3350 Epoch 141/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3346 Epoch 142/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3343 Epoch 143/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3339 Epoch 144/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3336 Epoch 145/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3333 Epoch 146/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3329 Epoch 147/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3326 Epoch 148/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3323 Epoch 149/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3320 Epoch 150/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3317 Epoch 151/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3313 Epoch 152/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3310 Epoch 153/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3307 Epoch 154/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3304 Epoch 155/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3302 Epoch 156/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3299 Epoch 157/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3296 Epoch 158/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3293 Epoch 159/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3290 Epoch 160/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3287 Epoch 161/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3284 Epoch 162/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3281 Epoch 163/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3279 Epoch 164/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3276 Epoch 165/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3273 Epoch 166/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3270 Epoch 167/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3268 Epoch 168/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3265 Epoch 169/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3262 Epoch 170/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3260 Epoch 171/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3257 Epoch 172/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3255 Epoch 173/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3252 Epoch 174/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3250 Epoch 175/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3247 Epoch 176/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3244 Epoch 177/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3242 Epoch 178/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3240 Epoch 179/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3237 Epoch 180/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3235 Epoch 181/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3232 Epoch 182/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3230 Epoch 183/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3228 Epoch 184/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3225 Epoch 185/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3223 Epoch 186/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3221 Epoch 187/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3219 Epoch 188/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3216 Epoch 189/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3214 Epoch 190/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3212 Epoch 191/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3210 Epoch 192/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3208 Epoch 193/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3205 Epoch 194/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3203 Epoch 195/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3201 Epoch 196/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3199 Epoch 197/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3197 Epoch 198/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3195 Epoch 199/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3193 Epoch 200/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3191 Epoch 201/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3189 Epoch 202/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3187 Epoch 203/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3185 Epoch 204/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3183 Epoch 205/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3181 Epoch 206/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3179 Epoch 207/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3177 Epoch 208/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3175 Epoch 209/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3174 Epoch 210/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3172 Epoch 211/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3170 Epoch 212/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3168 Epoch 213/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3166 Epoch 214/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3165 Epoch 215/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3163 Epoch 216/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3161 Epoch 217/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3159 Epoch 218/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3157 Epoch 219/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3155 Epoch 220/250 1/1 [==============================] - 5s 5s/step - FinalLoss: 0.3154 Epoch 221/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3152 Epoch 222/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3150 Epoch 223/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3148 Epoch 224/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3147 Epoch 225/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3145 Epoch 226/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3143 Epoch 227/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3142 Epoch 228/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3140 Epoch 229/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3139 Epoch 230/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3137 Epoch 231/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3135 Epoch 232/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3134 Epoch 233/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3132 Epoch 234/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3131 Epoch 235/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3129 Epoch 236/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3127 Epoch 237/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3126 Epoch 238/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3124 Epoch 239/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3123 Epoch 240/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3121 Epoch 241/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3120 Epoch 242/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3118 Epoch 243/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3117 Epoch 244/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3116 Epoch 245/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3114 Epoch 246/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3113 Epoch 247/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3111 Epoch 248/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3110 Epoch 249/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3108 Epoch 250/250 1/1 [==============================] - 6s 6s/step - FinalLoss: 0.3107 ``` </div> --- ## Perform inference and testing Having trained the model to a large extent, we now see how it performs on the test set. We calculate the Accuracy Score to understand the results closely. ```python preds = model.predict(tf.convert_to_tensor(x_test)) preds = preds.reshape((preds.shape[0], preds.shape[1])) results = accuracy_score(preds, y_test) print(f"Test Accuracy score : {results*100}%") plt.plot(range(len(history.history["FinalLoss"])), history.history["FinalLoss"]) plt.title("Loss over training") plt.show() ``` <div class="k-default-codeblock"> ``` Test Accuracy score : 97.64% ``` </div> ![png](/img/examples/vision/forwardforward/forwardforward_15_1.png) --- ## Conclusion This example has hereby demonstrated how the Forward-Forward algorithm works using the TensorFlow and Keras packages. While the investigation results presented by Prof. Hinton in their paper are currently still limited to smaller models and datasets like MNIST and Fashion-MNIST, subsequent results on larger models like LLMs are expected in future papers. Through the paper, Prof. Hinton has reported results of 1.36% test accuracy error with a 2000-units, 4 hidden-layer, fully-connected network run over 60 epochs (while mentioning that backpropagation takes only 20 epochs to achieve similar performance). Another run of doubling the learning rate and training for 40 epochs yields a slightly worse error rate of 1.46% The current example does not yield state-of-the-art results. But with proper tuning of the Learning Rate, model architecture (number of units in `Dense` layers, kernel activations, initializations, regularization etc.), the results can be improved to match the claims of the paper.
keras-io/examples/vision/md/forwardforward.md/0
{ "file_path": "keras-io/examples/vision/md/forwardforward.md", "repo_id": "keras-io", "token_count": 14508 }
101
""" Title: MobileViT: A mobile-friendly Transformer-based model for image classification Author: [Sayak Paul](https://twitter.com/RisingSayak) Date created: 2021/10/20 Last modified: 2024/02/11 Description: MobileViT for image classification with combined benefits of convolutions and Transformers. Accelerator: GPU """ """ ## Introduction In this example, we implement the MobileViT architecture ([Mehta et al.](https://arxiv.org/abs/2110.02178)), which combines the benefits of Transformers ([Vaswani et al.](https://arxiv.org/abs/1706.03762)) and convolutions. With Transformers, we can capture long-range dependencies that result in global representations. With convolutions, we can capture spatial relationships that model locality. Besides combining the properties of Transformers and convolutions, the authors introduce MobileViT as a general-purpose mobile-friendly backbone for different image recognition tasks. Their findings suggest that, performance-wise, MobileViT is better than other models with the same or higher complexity ([MobileNetV3](https://arxiv.org/abs/1905.02244), for example), while being efficient on mobile devices. Note: This example should be run with Tensorflow 2.13 and higher. """ """ ## Imports """ import os import tensorflow as tf os.environ["KERAS_BACKEND"] = "tensorflow" import keras from keras import layers from keras import backend import tensorflow_datasets as tfds tfds.disable_progress_bar() """ ## Hyperparameters """ # Values are from table 4. patch_size = 4 # 2x2, for the Transformer blocks. image_size = 256 expansion_factor = 2 # expansion factor for the MobileNetV2 blocks. """ ## MobileViT utilities The MobileViT architecture is comprised of the following blocks: * Strided 3x3 convolutions that process the input image. * [MobileNetV2](https://arxiv.org/abs/1801.04381)-style inverted residual blocks for downsampling the resolution of the intermediate feature maps. * MobileViT blocks that combine the benefits of Transformers and convolutions. It is presented in the figure below (taken from the [original paper](https://arxiv.org/abs/2110.02178)): ![](https://i.imgur.com/mANnhI7.png) """ def conv_block(x, filters=16, kernel_size=3, strides=2): conv_layer = layers.Conv2D( filters, kernel_size, strides=strides, activation=keras.activations.swish, padding="same", ) return conv_layer(x) # Reference: https://github.com/keras-team/keras/blob/e3858739d178fe16a0c77ce7fab88b0be6dbbdc7/keras/applications/imagenet_utils.py#L413C17-L435 def correct_pad(inputs, kernel_size): img_dim = 2 if backend.image_data_format() == "channels_first" else 1 input_size = inputs.shape[img_dim : (img_dim + 2)] if isinstance(kernel_size, int): kernel_size = (kernel_size, kernel_size) if input_size[0] is None: adjust = (1, 1) else: adjust = (1 - input_size[0] % 2, 1 - input_size[1] % 2) correct = (kernel_size[0] // 2, kernel_size[1] // 2) return ( (correct[0] - adjust[0], correct[0]), (correct[1] - adjust[1], correct[1]), ) # Reference: https://git.io/JKgtC def inverted_residual_block(x, expanded_channels, output_channels, strides=1): m = layers.Conv2D(expanded_channels, 1, padding="same", use_bias=False)(x) m = layers.BatchNormalization()(m) m = keras.activations.swish(m) if strides == 2: m = layers.ZeroPadding2D(padding=correct_pad(m, 3))(m) m = layers.DepthwiseConv2D( 3, strides=strides, padding="same" if strides == 1 else "valid", use_bias=False )(m) m = layers.BatchNormalization()(m) m = keras.activations.swish(m) m = layers.Conv2D(output_channels, 1, padding="same", use_bias=False)(m) m = layers.BatchNormalization()(m) if keras.ops.equal(x.shape[-1], output_channels) and strides == 1: return layers.Add()([m, x]) return m # Reference: # https://keras.io/examples/vision/image_classification_with_vision_transformer/ def mlp(x, hidden_units, dropout_rate): for units in hidden_units: x = layers.Dense(units, activation=keras.activations.swish)(x) x = layers.Dropout(dropout_rate)(x) return x def transformer_block(x, transformer_layers, projection_dim, num_heads=2): for _ in range(transformer_layers): # Layer normalization 1. x1 = layers.LayerNormalization(epsilon=1e-6)(x) # Create a multi-head attention layer. attention_output = layers.MultiHeadAttention( num_heads=num_heads, key_dim=projection_dim, dropout=0.1 )(x1, x1) # Skip connection 1. x2 = layers.Add()([attention_output, x]) # Layer normalization 2. x3 = layers.LayerNormalization(epsilon=1e-6)(x2) # MLP. x3 = mlp( x3, hidden_units=[x.shape[-1] * 2, x.shape[-1]], dropout_rate=0.1, ) # Skip connection 2. x = layers.Add()([x3, x2]) return x def mobilevit_block(x, num_blocks, projection_dim, strides=1): # Local projection with convolutions. local_features = conv_block(x, filters=projection_dim, strides=strides) local_features = conv_block( local_features, filters=projection_dim, kernel_size=1, strides=strides ) # Unfold into patches and then pass through Transformers. num_patches = int((local_features.shape[1] * local_features.shape[2]) / patch_size) non_overlapping_patches = layers.Reshape((patch_size, num_patches, projection_dim))( local_features ) global_features = transformer_block( non_overlapping_patches, num_blocks, projection_dim ) # Fold into conv-like feature-maps. folded_feature_map = layers.Reshape((*local_features.shape[1:-1], projection_dim))( global_features ) # Apply point-wise conv -> concatenate with the input features. folded_feature_map = conv_block( folded_feature_map, filters=x.shape[-1], kernel_size=1, strides=strides ) local_global_features = layers.Concatenate(axis=-1)([x, folded_feature_map]) # Fuse the local and global features using a convoluion layer. local_global_features = conv_block( local_global_features, filters=projection_dim, strides=strides ) return local_global_features """ **More on the MobileViT block**: * First, the feature representations (A) go through convolution blocks that capture local relationships. The expected shape of a single entry here would be `(h, w, num_channels)`. * Then they get unfolded into another vector with shape `(p, n, num_channels)`, where `p` is the area of a small patch, and `n` is `(h * w) / p`. So, we end up with `n` non-overlapping patches. * This unfolded vector is then passed through a Tranformer block that captures global relationships between the patches. * The output vector (B) is again folded into a vector of shape `(h, w, num_channels)` resembling a feature map coming out of convolutions. Vectors A and B are then passed through two more convolutional layers to fuse the local and global representations. Notice how the spatial resolution of the final vector remains unchanged at this point. The authors also present an explanation of how the MobileViT block resembles a convolution block of a CNN. For more details, please refer to the original paper. """ """ Next, we combine these blocks together and implement the MobileViT architecture (XXS variant). The following figure (taken from the original paper) presents a schematic representation of the architecture: ![](https://i.ibb.co/sRbVRBN/image.png) """ def create_mobilevit(num_classes=5): inputs = keras.Input((image_size, image_size, 3)) x = layers.Rescaling(scale=1.0 / 255)(inputs) # Initial conv-stem -> MV2 block. x = conv_block(x, filters=16) x = inverted_residual_block( x, expanded_channels=16 * expansion_factor, output_channels=16 ) # Downsampling with MV2 block. x = inverted_residual_block( x, expanded_channels=16 * expansion_factor, output_channels=24, strides=2 ) x = inverted_residual_block( x, expanded_channels=24 * expansion_factor, output_channels=24 ) x = inverted_residual_block( x, expanded_channels=24 * expansion_factor, output_channels=24 ) # First MV2 -> MobileViT block. x = inverted_residual_block( x, expanded_channels=24 * expansion_factor, output_channels=48, strides=2 ) x = mobilevit_block(x, num_blocks=2, projection_dim=64) # Second MV2 -> MobileViT block. x = inverted_residual_block( x, expanded_channels=64 * expansion_factor, output_channels=64, strides=2 ) x = mobilevit_block(x, num_blocks=4, projection_dim=80) # Third MV2 -> MobileViT block. x = inverted_residual_block( x, expanded_channels=80 * expansion_factor, output_channels=80, strides=2 ) x = mobilevit_block(x, num_blocks=3, projection_dim=96) x = conv_block(x, filters=320, kernel_size=1, strides=1) # Classification head. x = layers.GlobalAvgPool2D()(x) outputs = layers.Dense(num_classes, activation="softmax")(x) return keras.Model(inputs, outputs) mobilevit_xxs = create_mobilevit() mobilevit_xxs.summary() """ ## Dataset preparation We will be using the [`tf_flowers`](https://www.tensorflow.org/datasets/catalog/tf_flowers) dataset to demonstrate the model. Unlike other Transformer-based architectures, MobileViT uses a simple augmentation pipeline primarily because it has the properties of a CNN. """ batch_size = 64 auto = tf.data.AUTOTUNE resize_bigger = 280 num_classes = 5 def preprocess_dataset(is_training=True): def _pp(image, label): if is_training: # Resize to a bigger spatial resolution and take the random # crops. image = tf.image.resize(image, (resize_bigger, resize_bigger)) image = tf.image.random_crop(image, (image_size, image_size, 3)) image = tf.image.random_flip_left_right(image) else: image = tf.image.resize(image, (image_size, image_size)) label = tf.one_hot(label, depth=num_classes) return image, label return _pp def prepare_dataset(dataset, is_training=True): if is_training: dataset = dataset.shuffle(batch_size * 10) dataset = dataset.map(preprocess_dataset(is_training), num_parallel_calls=auto) return dataset.batch(batch_size).prefetch(auto) """ The authors use a multi-scale data sampler to help the model learn representations of varied scales. In this example, we discard this part. """ """ ## Load and prepare the dataset """ train_dataset, val_dataset = tfds.load( "tf_flowers", split=["train[:90%]", "train[90%:]"], as_supervised=True ) num_train = train_dataset.cardinality() num_val = val_dataset.cardinality() print(f"Number of training examples: {num_train}") print(f"Number of validation examples: {num_val}") train_dataset = prepare_dataset(train_dataset, is_training=True) val_dataset = prepare_dataset(val_dataset, is_training=False) """ ## Train a MobileViT (XXS) model """ learning_rate = 0.002 label_smoothing_factor = 0.1 epochs = 30 optimizer = keras.optimizers.Adam(learning_rate=learning_rate) loss_fn = keras.losses.CategoricalCrossentropy(label_smoothing=label_smoothing_factor) def run_experiment(epochs=epochs): mobilevit_xxs = create_mobilevit(num_classes=num_classes) mobilevit_xxs.compile(optimizer=optimizer, loss=loss_fn, metrics=["accuracy"]) # When using `save_weights_only=True` in `ModelCheckpoint`, the filepath provided must end in `.weights.h5` checkpoint_filepath = "/tmp/checkpoint.weights.h5" checkpoint_callback = keras.callbacks.ModelCheckpoint( checkpoint_filepath, monitor="val_accuracy", save_best_only=True, save_weights_only=True, ) mobilevit_xxs.fit( train_dataset, validation_data=val_dataset, epochs=epochs, callbacks=[checkpoint_callback], ) mobilevit_xxs.load_weights(checkpoint_filepath) _, accuracy = mobilevit_xxs.evaluate(val_dataset) print(f"Validation accuracy: {round(accuracy * 100, 2)}%") return mobilevit_xxs mobilevit_xxs = run_experiment() """ ## Results and TFLite conversion With about one million parameters, getting to ~85% top-1 accuracy on 256x256 resolution is a strong result. This MobileViT mobile is fully compatible with TensorFlow Lite (TFLite) and can be converted with the following code: """ # Serialize the model as a SavedModel. tf.saved_model.save(mobilevit_xxs, "mobilevit_xxs") # Convert to TFLite. This form of quantization is called # post-training dynamic-range quantization in TFLite. converter = tf.lite.TFLiteConverter.from_saved_model("mobilevit_xxs") converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.target_spec.supported_ops = [ tf.lite.OpsSet.TFLITE_BUILTINS, # Enable TensorFlow Lite ops. tf.lite.OpsSet.SELECT_TF_OPS, # Enable TensorFlow ops. ] tflite_model = converter.convert() open("mobilevit_xxs.tflite", "wb").write(tflite_model) """ To learn more about different quantization recipes available in TFLite and running inference with TFLite models, check out [this official resource](https://www.tensorflow.org/lite/performance/post_training_quantization). You can use the trained model hosted on [Hugging Face Hub](https://huggingface.co/keras-io/mobile-vit-xxs) and try the demo on [Hugging Face Spaces](https://huggingface.co/spaces/keras-io/Flowers-Classification-MobileViT). """
keras-io/examples/vision/mobilevit.py/0
{ "file_path": "keras-io/examples/vision/mobilevit.py", "repo_id": "keras-io", "token_count": 5004 }
102
""" Title: Semantic segmentation with SegFormer and Hugging Face Transformers Author: [Sayak Paul](https://twitter.com/RisingSayak) Date created: 2023/01/25 Last modified: 2023/01/29 Description: Fine-tuning a SegFormer model variant for semantic segmentation. Accelerator: GPU """ """ ## Introduction In this example, we show how to fine-tune a SegFormer model variant to do semantic segmentation on a custom dataset. Semantic segmentation is the task of assigning a category to each and every pixel of an image. SegFormer was proposed in [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203). SegFormer uses a hierarchical Transformer architecture (called "Mix Transformer") as its encoder and a lightweight decoder for segmentation. As a result, it yields state-of-the-art performance on semantic segmentation while being more efficient than existing models. For more details, check out the original paper. ![segformer-arch](https://i.imgur.com/BsrVwYe.png) We leverage [Hugging Face Transformers](https://github.com/huggingface/transformers) to load a pretrained SegFormer checkpoint and fine-tune it on a custom dataset. **Note:** this example reuses code from the following sources: * [Official tutorial on segmentation from the TensorFlow team](https://www.tensorflow.org/tutorials/images/segmentation) * [Hugging Face Task guide on segmentation](https://huggingface.co/docs/transformers/main/en/tasks/semantic_segmentation) To run this example, we need to install the `transformers` library: """ """shell pip install transformers -q """ """ ## Load the data We use the [Oxford-IIIT Pets](https://www.robots.ox.ac.uk/~vgg/data/pets/) dataset for this example. We leverage `tensorflow_datasets` to load the dataset. """ import tensorflow_datasets as tfds dataset, info = tfds.load("oxford_iiit_pet:3.*.*", with_info=True) """ ## Prepare the datasets For preparing the datasets for training and evaluation, we: * Normalize the images with the mean and standard deviation used during pre-training SegFormer. * Subtract 1 from the segmentation masks so that the pixel values start from 0. * Resize the images. * Transpose the images such that they are in `"channels_first"` format. This is to make them compatible with the SegFormer model from Hugging Face Transformers. """ import tensorflow as tf from tensorflow.keras import backend image_size = 512 mean = tf.constant([0.485, 0.456, 0.406]) std = tf.constant([0.229, 0.224, 0.225]) def normalize(input_image, input_mask): input_image = tf.image.convert_image_dtype(input_image, tf.float32) input_image = (input_image - mean) / tf.maximum(std, backend.epsilon()) input_mask -= 1 return input_image, input_mask def load_image(datapoint): input_image = tf.image.resize(datapoint["image"], (image_size, image_size)) input_mask = tf.image.resize( datapoint["segmentation_mask"], (image_size, image_size), method="bilinear", ) input_image, input_mask = normalize(input_image, input_mask) input_image = tf.transpose(input_image, (2, 0, 1)) return {"pixel_values": input_image, "labels": tf.squeeze(input_mask)} """ We now use the above utilities to prepare `tf.data.Dataset` objects including `prefetch()` for performance. Change the `batch_size` to match the size of the GPU memory on the GPU that you're using for training. """ auto = tf.data.AUTOTUNE batch_size = 4 train_ds = ( dataset["train"] .cache() .shuffle(batch_size * 10) .map(load_image, num_parallel_calls=auto) .batch(batch_size) .prefetch(auto) ) test_ds = ( dataset["test"] .map(load_image, num_parallel_calls=auto) .batch(batch_size) .prefetch(auto) ) """ We can check the shapes of the input images and their segmentation maps: """ print(train_ds.element_spec) """ ## Visualize dataset """ import matplotlib.pyplot as plt def display(display_list): plt.figure(figsize=(15, 15)) title = ["Input Image", "True Mask", "Predicted Mask"] for i in range(len(display_list)): plt.subplot(1, len(display_list), i + 1) plt.title(title[i]) plt.imshow(tf.keras.utils.array_to_img(display_list[i])) plt.axis("off") plt.show() for samples in train_ds.take(2): sample_image, sample_mask = samples["pixel_values"][0], samples["labels"][0] sample_image = tf.transpose(sample_image, (1, 2, 0)) sample_mask = tf.expand_dims(sample_mask, -1) display([sample_image, sample_mask]) """ ## Load a pretrained SegFormer checkpoint We now load a pretrained SegFormer model variant from Hugging Face Transformers. The SegFormer model comes in different variants dubbed as **MiT-B0** to **MiT-B5**. You can find these checkpoints [here](https://huggingface.co/models?pipeline_tag=image-segmentation&sort=downloads&search=segformer). We load the smallest variant Mix-B0, which produces a good trade-off between inference efficiency and predictive performance. """ from transformers import TFSegformerForSemanticSegmentation model_checkpoint = "nvidia/mit-b0" id2label = {0: "outer", 1: "inner", 2: "border"} label2id = {label: id for id, label in id2label.items()} num_labels = len(id2label) model = TFSegformerForSemanticSegmentation.from_pretrained( model_checkpoint, num_labels=num_labels, id2label=id2label, label2id=label2id, ignore_mismatched_sizes=True, ) """ The warning is telling us that we're throwing away some weights and newly initializing some others. Don't panic! This is absolutely normal. Since we're using a custom dataset which has a different set of semantic class labels than the pre-training dataset, [`TFSegformerForSemanticSegmentation`](https://huggingface.co/docs/transformers/model_doc/segformer#transformers.TFSegformerForSemanticSegmentation) is initializing a new decoder head. We can now initialize an optimizer and compile the model with it. """ """ ## Compile the model """ lr = 0.00006 optimizer = tf.keras.optimizers.Adam(learning_rate=lr) model.compile(optimizer=optimizer) """ Notice that we are not using any loss function for compiling the model. This is because the forward pass of the model [implements](https://github.com/huggingface/transformers/blob/820c46a707ddd033975bc3b0549eea200e64c7da/src/transformers/models/segformer/modeling_tf_segformer.py#L873) the loss computation part when we provide labels alongside the input images. After computing the loss, the model returned a structured `dataclass` object which is then used to guide the training process. With the compiled model, we can proceed and call `fit()` on it to begin the fine-tuning process! """ """ ## Prediction callback to monitor training progress It helps us to visualize some sample predictions when the model is being fine-tuned, thereby helping us to monitor the progress of the model. This callback is inspired from [this tutorial](https://www.tensorflow.org/tutorials/images/segmentation). """ from IPython.display import clear_output def create_mask(pred_mask): pred_mask = tf.math.argmax(pred_mask, axis=1) pred_mask = tf.expand_dims(pred_mask, -1) return pred_mask[0] def show_predictions(dataset=None, num=1): if dataset: for sample in dataset.take(num): images, masks = sample["pixel_values"], sample["labels"] masks = tf.expand_dims(masks, -1) pred_masks = model.predict(images).logits images = tf.transpose(images, (0, 2, 3, 1)) display([images[0], masks[0], create_mask(pred_masks)]) else: display( [ sample_image, sample_mask, create_mask(model.predict(tf.expand_dims(sample_image, 0))), ] ) class DisplayCallback(tf.keras.callbacks.Callback): def __init__(self, dataset, **kwargs): super().__init__(**kwargs) self.dataset = dataset def on_epoch_end(self, epoch, logs=None): clear_output(wait=True) show_predictions(self.dataset) print("\nSample Prediction after epoch {}\n".format(epoch + 1)) """ ## Train model """ # Increase the number of epochs if the results are not of expected quality. epochs = 5 history = model.fit( train_ds, validation_data=test_ds, callbacks=[DisplayCallback(test_ds)], epochs=epochs, ) """ ## Inference We perform inference on a few samples from the test set. """ show_predictions(test_ds, 5) """ ## Conclusion In this example, we learned how to fine-tune a SegFormer model variant on a custom dataset for semantic segmentation. In the interest of brevity, the example was kept short. However, there are a couple of things, you can further try out: * Incorporate data augmentation to potentially improve the results. * Use a larger SegFormer model checkpoint to see how the results are affected. * Push the fine-tuned model to the Hugging Face for sharing with the community easily. You can do so just by doing `model.push_to_hub("your-username/your-awesome-model")`. And then you can load the model by doing `TFSegformerForSemanticSegmentation.from_pretrained("your-username/your-awesome-model"`). [Here](https://github.com/huggingface/notebooks/blob/main/examples/semantic_segmentation-tf.ipynb) is an end-to-end example if you're looking for a reference. * If you'd rather push the model checkpoints to the Hub as the model is being fine-tuned you can instead use the `PushToHubCallback` Keras callback. [Here](https://gist.github.com/sayakpaul/f474ffb01f0cdcc8ba239357965c3bca) is an example. [Here](https://huggingface.co/sayakpaul/mit-b0-finetuned-pets) is an example of a model repository that was created using this callback. """
keras-io/examples/vision/segformer.py/0
{ "file_path": "keras-io/examples/vision/segformer.py", "repo_id": "keras-io", "token_count": 3315 }
103
<jupyter_start><jupyter_text>Getting started with KerasTuner**Authors:** Luca Invernizzi, James Long, Francois Chollet, Tom O'Malley, Haifeng Jin**Date created:** 2019/05/31**Last modified:** 2021/10/27**Description:** The basics of using KerasTuner to tune model hyperparameters.<jupyter_code>!pip install keras-tuner -q<jupyter_output><empty_output><jupyter_text>IntroductionKerasTuner is a general-purpose hyperparameter tuning library. It has strongintegration with Keras workflows, but it isn't limited to them: you could useit to tune scikit-learn models, or anything else. In this tutorial, you willsee how to tune model architecture, training process, and data preprocessingsteps with KerasTuner. Let's start from a simple example. Tune the model architectureThe first thing we need to do is writing a function, which returns a compiledKeras model. It takes an argument `hp` for defining the hyperparameters whilebuilding the model. Define the search spaceIn the following code example, we define a Keras model with two `Dense` layers.We want to tune the number of units in the first `Dense` layer. We just definean integer hyperparameter with `hp.Int('units', min_value=32, max_value=512, step=32)`,whose range is from 32 to 512 inclusive. When sampling from it, the minimumstep for walking through the interval is 32.<jupyter_code>import keras from keras import layers def build_model(hp): model = keras.Sequential() model.add(layers.Flatten()) model.add( layers.Dense( # Define the hyperparameter. units=hp.Int("units", min_value=32, max_value=512, step=32), activation="relu", ) ) model.add(layers.Dense(10, activation="softmax")) model.compile( optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"], ) return model<jupyter_output><empty_output><jupyter_text>You can quickly test if the model builds successfully.<jupyter_code>import keras_tuner build_model(keras_tuner.HyperParameters())<jupyter_output><empty_output><jupyter_text>There are many other types of hyperparameters as well. We can define multiplehyperparameters in the function. In the following code, we tune whether touse a `Dropout` layer with `hp.Boolean()`, tune which activation function touse with `hp.Choice()`, tune the learning rate of the optimizer with`hp.Float()`.<jupyter_code>def build_model(hp): model = keras.Sequential() model.add(layers.Flatten()) model.add( layers.Dense( # Tune number of units. units=hp.Int("units", min_value=32, max_value=512, step=32), # Tune the activation function to use. activation=hp.Choice("activation", ["relu", "tanh"]), ) ) # Tune whether to use dropout. if hp.Boolean("dropout"): model.add(layers.Dropout(rate=0.25)) model.add(layers.Dense(10, activation="softmax")) # Define the optimizer learning rate as a hyperparameter. learning_rate = hp.Float("lr", min_value=1e-4, max_value=1e-2, sampling="log") model.compile( optimizer=keras.optimizers.Adam(learning_rate=learning_rate), loss="categorical_crossentropy", metrics=["accuracy"], ) return model build_model(keras_tuner.HyperParameters())<jupyter_output><empty_output><jupyter_text>As shown below, the hyperparameters are actual values. In fact, they are justfunctions returning actual values. For example, `hp.Int()` returns an `int`value. Therefore, you can put them into variables, for loops, or ifconditions.<jupyter_code>hp = keras_tuner.HyperParameters() print(hp.Int("units", min_value=32, max_value=512, step=32))<jupyter_output><empty_output><jupyter_text>You can also define the hyperparameters in advance and keep your Keras code ina separate function.<jupyter_code>def call_existing_code(units, activation, dropout, lr): model = keras.Sequential() model.add(layers.Flatten()) model.add(layers.Dense(units=units, activation=activation)) if dropout: model.add(layers.Dropout(rate=0.25)) model.add(layers.Dense(10, activation="softmax")) model.compile( optimizer=keras.optimizers.Adam(learning_rate=lr), loss="categorical_crossentropy", metrics=["accuracy"], ) return model def build_model(hp): units = hp.Int("units", min_value=32, max_value=512, step=32) activation = hp.Choice("activation", ["relu", "tanh"]) dropout = hp.Boolean("dropout") lr = hp.Float("lr", min_value=1e-4, max_value=1e-2, sampling="log") # call existing model-building code with the hyperparameter values. model = call_existing_code( units=units, activation=activation, dropout=dropout, lr=lr ) return model build_model(keras_tuner.HyperParameters())<jupyter_output><empty_output><jupyter_text>Each of the hyperparameters is uniquely identified by its name (the firstargument). To tune the number of units in different `Dense` layers separatelyas different hyperparameters, we give them different names as `f"units_{i}"`.Notably, this is also an example of creating conditional hyperparameters.There are many hyperparameters specifying the number of units in the `Dense`layers. The number of such hyperparameters is decided by the number of layers,which is also a hyperparameter. Therefore, the total number of hyperparametersused may be different from trial to trial. Some hyperparameter is only usedwhen a certain condition is satisfied. For example, `units_3` is only usedwhen `num_layers` is larger than 3. With KerasTuner, you can easily definesuch hyperparameters dynamically while creating the model.<jupyter_code>def build_model(hp): model = keras.Sequential() model.add(layers.Flatten()) # Tune the number of layers. for i in range(hp.Int("num_layers", 1, 3)): model.add( layers.Dense( # Tune number of units separately. units=hp.Int(f"units_{i}", min_value=32, max_value=512, step=32), activation=hp.Choice("activation", ["relu", "tanh"]), ) ) if hp.Boolean("dropout"): model.add(layers.Dropout(rate=0.25)) model.add(layers.Dense(10, activation="softmax")) learning_rate = hp.Float("lr", min_value=1e-4, max_value=1e-2, sampling="log") model.compile( optimizer=keras.optimizers.Adam(learning_rate=learning_rate), loss="categorical_crossentropy", metrics=["accuracy"], ) return model build_model(keras_tuner.HyperParameters())<jupyter_output><empty_output><jupyter_text>Start the searchAfter defining the search space, we need to select a tuner class to run thesearch. You may choose from `RandomSearch`, `BayesianOptimization` and`Hyperband`, which correspond to different tuning algorithms. Here we use`RandomSearch` as an example.To initialize the tuner, we need to specify several arguments in the initializer.* `hypermodel`. The model-building function, which is `build_model` in our case.* `objective`. The name of the objective to optimize (whether to minimize ormaximize is automatically inferred for built-in metrics). We will introduce howto use custom metrics later in this tutorial.* `max_trials`. The total number of trials to run during the search.* `executions_per_trial`. The number of models that should be built and fit foreach trial. Different trials have different hyperparameter values. Theexecutions within the same trial have the same hyperparameter values. Thepurpose of having multiple executions per trial is to reduce results varianceand therefore be able to more accurately assess the performance of a model. Ifyou want to get results faster, you could set `executions_per_trial=1` (singleround of training for each model configuration).* `overwrite`. Control whether to overwrite the previous results in the samedirectory or resume the previous search instead. Here we set `overwrite=True`to start a new search and ignore any previous results.* `directory`. A path to a directory for storing the search results.* `project_name`. The name of the sub-directory in the `directory`.<jupyter_code>tuner = keras_tuner.RandomSearch( hypermodel=build_model, objective="val_accuracy", max_trials=3, executions_per_trial=2, overwrite=True, directory="my_dir", project_name="helloworld", )<jupyter_output><empty_output><jupyter_text>You can print a summary of the search space:<jupyter_code>tuner.search_space_summary()<jupyter_output><empty_output><jupyter_text>Before starting the search, let's prepare the MNIST dataset.<jupyter_code>import keras import numpy as np (x, y), (x_test, y_test) = keras.datasets.mnist.load_data() x_train = x[:-10000] x_val = x[-10000:] y_train = y[:-10000] y_val = y[-10000:] x_train = np.expand_dims(x_train, -1).astype("float32") / 255.0 x_val = np.expand_dims(x_val, -1).astype("float32") / 255.0 x_test = np.expand_dims(x_test, -1).astype("float32") / 255.0 num_classes = 10 y_train = keras.utils.to_categorical(y_train, num_classes) y_val = keras.utils.to_categorical(y_val, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes)<jupyter_output><empty_output><jupyter_text>Then, start the search for the best hyperparameter configuration.All the arguments passed to `search` is passed to `model.fit()` in eachexecution. Remember to pass `validation_data` to evaluate the model.<jupyter_code>tuner.search(x_train, y_train, epochs=2, validation_data=(x_val, y_val))<jupyter_output><empty_output><jupyter_text>During the `search`, the model-building function is called with differenthyperparameter values in different trial. In each trial, the tuner wouldgenerate a new set of hyperparameter values to build the model. The model isthen fit and evaluated. The metrics are recorded. The tuner progressivelyexplores the space and finally finds a good set of hyperparameter values. Query the resultsWhen search is over, you can retrieve the best model(s). The model is saved atits best performing epoch evaluated on the `validation_data`.<jupyter_code># Get the top 2 models. models = tuner.get_best_models(num_models=2) best_model = models[0] best_model.summary()<jupyter_output><empty_output><jupyter_text>You can also print a summary of the search results.<jupyter_code>tuner.results_summary()<jupyter_output><empty_output><jupyter_text>You will find detailed logs, checkpoints, etc, in the folder`my_dir/helloworld`, i.e. `directory/project_name`.You can also visualize the tuning results using TensorBoard and HParams plugin.For more information, please following[this link](https://keras.io/guides/keras_tuner/visualize_tuning/). Retrain the modelIf you want to train the model with the entire dataset, you may retrieve thebest hyperparameters and retrain the model by yourself.<jupyter_code># Get the top 2 hyperparameters. best_hps = tuner.get_best_hyperparameters(5) # Build the model with the best hp. model = build_model(best_hps[0]) # Fit with the entire dataset. x_all = np.concatenate((x_train, x_val)) y_all = np.concatenate((y_train, y_val)) model.fit(x=x_all, y=y_all, epochs=1)<jupyter_output><empty_output><jupyter_text>Tune model trainingTo tune the model building process, we need to subclass the `HyperModel` class,which also makes it easy to share and reuse hypermodels.We need to override `HyperModel.build()` and `HyperModel.fit()` to tune themodel building and training process respectively. A `HyperModel.build()`method is the same as the model-building function, which creates a Keras modelusing the hyperparameters and returns it.In `HyperModel.fit()`, you can access the model returned by`HyperModel.build()`,`hp` and all the arguments passed to `search()`. You needto train the model and return the training history.In the following code, we will tune the `shuffle` argument in `model.fit()`.It is generally not needed to tune the number of epochs because a built-incallback is passed to `model.fit()` to save the model at its best epochevaluated by the `validation_data`.> **Note**: The `**kwargs` should always be passed to `model.fit()` because itcontains the callbacks for model saving and tensorboard plugins.<jupyter_code>class MyHyperModel(keras_tuner.HyperModel): def build(self, hp): model = keras.Sequential() model.add(layers.Flatten()) model.add( layers.Dense( units=hp.Int("units", min_value=32, max_value=512, step=32), activation="relu", ) ) model.add(layers.Dense(10, activation="softmax")) model.compile( optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"], ) return model def fit(self, hp, model, *args, **kwargs): return model.fit( *args, # Tune whether to shuffle the data in each epoch. shuffle=hp.Boolean("shuffle"), **kwargs, )<jupyter_output><empty_output><jupyter_text>Again, we can do a quick check to see if the code works correctly.<jupyter_code>hp = keras_tuner.HyperParameters() hypermodel = MyHyperModel() model = hypermodel.build(hp) hypermodel.fit(hp, model, np.random.rand(100, 28, 28), np.random.rand(100, 10))<jupyter_output><empty_output><jupyter_text>Tune data preprocessingTo tune data preprocessing, we just add an additional step in`HyperModel.fit()`, where we can access the dataset from the arguments. In thefollowing code, we tune whether to normalize the data before training themodel. This time we explicitly put `x` and `y` in the function signaturebecause we need to use them.<jupyter_code>class MyHyperModel(keras_tuner.HyperModel): def build(self, hp): model = keras.Sequential() model.add(layers.Flatten()) model.add( layers.Dense( units=hp.Int("units", min_value=32, max_value=512, step=32), activation="relu", ) ) model.add(layers.Dense(10, activation="softmax")) model.compile( optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"], ) return model def fit(self, hp, model, x, y, **kwargs): if hp.Boolean("normalize"): x = layers.Normalization()(x) return model.fit( x, y, # Tune whether to shuffle the data in each epoch. shuffle=hp.Boolean("shuffle"), **kwargs, ) hp = keras_tuner.HyperParameters() hypermodel = MyHyperModel() model = hypermodel.build(hp) hypermodel.fit(hp, model, np.random.rand(100, 28, 28), np.random.rand(100, 10))<jupyter_output><empty_output><jupyter_text>If a hyperparameter is used both in `build()` and `fit()`, you can define it in`build()` and use `hp.get(hp_name)` to retrieve it in `fit()`. We use theimage size as an example. It is both used as the input shape in `build()`, andused by data prerprocessing step to crop the images in `fit()`.<jupyter_code>class MyHyperModel(keras_tuner.HyperModel): def build(self, hp): image_size = hp.Int("image_size", 10, 28) inputs = keras.Input(shape=(image_size, image_size)) outputs = layers.Flatten()(inputs) outputs = layers.Dense( units=hp.Int("units", min_value=32, max_value=512, step=32), activation="relu", )(outputs) outputs = layers.Dense(10, activation="softmax")(outputs) model = keras.Model(inputs, outputs) model.compile( optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"], ) return model def fit(self, hp, model, x, y, validation_data=None, **kwargs): if hp.Boolean("normalize"): x = layers.Normalization()(x) image_size = hp.get("image_size") cropped_x = x[:, :image_size, :image_size, :] if validation_data: x_val, y_val = validation_data cropped_x_val = x_val[:, :image_size, :image_size, :] validation_data = (cropped_x_val, y_val) return model.fit( cropped_x, y, # Tune whether to shuffle the data in each epoch. shuffle=hp.Boolean("shuffle"), validation_data=validation_data, **kwargs, ) tuner = keras_tuner.RandomSearch( MyHyperModel(), objective="val_accuracy", max_trials=3, overwrite=True, directory="my_dir", project_name="tune_hypermodel", ) tuner.search(x_train, y_train, epochs=2, validation_data=(x_val, y_val))<jupyter_output><empty_output><jupyter_text>Retrain the modelUsing `HyperModel` also allows you to retrain the best model by yourself.<jupyter_code>hypermodel = MyHyperModel() best_hp = tuner.get_best_hyperparameters()[0] model = hypermodel.build(best_hp) hypermodel.fit(best_hp, model, x_all, y_all, epochs=1)<jupyter_output><empty_output><jupyter_text>Specify the tuning objectiveIn all previous examples, we all just used validation accuracy(`"val_accuracy"`) as the tuning objective to select the best model. Actually,you can use any metric as the objective. The most commonly used metric is`"val_loss"`, which is the validation loss. Built-in metric as the objectiveThere are many other built-in metrics in Keras you can use as the objective.Here is [a list of the built-in metrics](https://keras.io/api/metrics/).To use a built-in metric as the objective, you need to follow these steps:* Compile the model with the the built-in metric. For example, you want to use`MeanAbsoluteError()`. You need to compile the model with`metrics=[MeanAbsoluteError()]`. You may also use its name string instead:`metrics=["mean_absolute_error"]`. The name string of the metric is alwaysthe snake case of the class name.* Identify the objective name string. The name string of the objective isalways in the format of `f"val_{metric_name_string}"`. For example, theobjective name string of mean squared error evaluated on the validation datashould be `"val_mean_absolute_error"`.* Wrap it into `keras_tuner.Objective`. We usually need to wrap the objectiveinto a `keras_tuner.Objective` object to specify the direction to optimize theobjective. For example, we want to minimize the mean squared error, we can use`keras_tuner.Objective("val_mean_absolute_error", "min")`. The direction shouldbe either `"min"` or `"max"`.* Pass the wrapped objective to the tuner.You can see the following barebone code example.<jupyter_code>def build_regressor(hp): model = keras.Sequential( [ layers.Dense(units=hp.Int("units", 32, 128, 32), activation="relu"), layers.Dense(units=1), ] ) model.compile( optimizer="adam", loss="mean_squared_error", # Objective is one of the metrics. metrics=[keras.metrics.MeanAbsoluteError()], ) return model tuner = keras_tuner.RandomSearch( hypermodel=build_regressor, # The objective name and direction. # Name is the f"val_{snake_case_metric_class_name}". objective=keras_tuner.Objective("val_mean_absolute_error", direction="min"), max_trials=3, overwrite=True, directory="my_dir", project_name="built_in_metrics", ) tuner.search( x=np.random.rand(100, 10), y=np.random.rand(100, 1), validation_data=(np.random.rand(20, 10), np.random.rand(20, 1)), ) tuner.results_summary()<jupyter_output><empty_output><jupyter_text>Custom metric as the objectiveYou may implement your own metric and use it as the hyperparameter searchobjective. Here, we use mean squared error (MSE) as an example. First, weimplement the MSE metric by subclassing `keras.metrics.Metric`. Remember togive a name to your metric using the `name` argument of `super().__init__()`,which will be used later. Note: MSE is actully a build-in metric, which can beimported with `keras.metrics.MeanSquaredError`. This is just an example to showhow to use a custom metric as the hyperparameter search objective.For more information about implementing custom metrics, please see [thistutorial](https://keras.io/api/metrics/creating-custom-metrics). If you wouldlike a metric with a different function signature than `update_state(y_true,y_pred, sample_weight)`, you can override the `train_step()` method of yourmodel following [thistutorial](https://keras.io/guides/customizing_what_happens_in_fit/going-lowerlevel).<jupyter_code>from keras import ops class CustomMetric(keras.metrics.Metric): def __init__(self, **kwargs): # Specify the name of the metric as "custom_metric". super().__init__(name="custom_metric", **kwargs) self.sum = self.add_weight(name="sum", initializer="zeros") self.count = self.add_weight(name="count", dtype="int32", initializer="zeros") def update_state(self, y_true, y_pred, sample_weight=None): values = ops.square(y_true - y_pred) count = ops.shape(y_true)[0] if sample_weight is not None: sample_weight = ops.cast(sample_weight, self.dtype) values *= sample_weight count *= sample_weight self.sum.assign_add(ops.sum(values)) self.count.assign_add(count) def result(self): return self.sum / ops.cast(self.count, "float32") def reset_states(self): self.sum.assign(0) self.count.assign(0)<jupyter_output><empty_output><jupyter_text>Run the search with the custom objective.<jupyter_code>def build_regressor(hp): model = keras.Sequential( [ layers.Dense(units=hp.Int("units", 32, 128, 32), activation="relu"), layers.Dense(units=1), ] ) model.compile( optimizer="adam", loss="mean_squared_error", # Put custom metric into the metrics. metrics=[CustomMetric()], ) return model tuner = keras_tuner.RandomSearch( hypermodel=build_regressor, # Specify the name and direction of the objective. objective=keras_tuner.Objective("val_custom_metric", direction="min"), max_trials=3, overwrite=True, directory="my_dir", project_name="custom_metrics", ) tuner.search( x=np.random.rand(100, 10), y=np.random.rand(100, 1), validation_data=(np.random.rand(20, 10), np.random.rand(20, 1)), ) tuner.results_summary()<jupyter_output><empty_output><jupyter_text>If your custom objective is hard to put into a custom metric, you can alsoevaluate the model by yourself in `HyperModel.fit()` and return the objectivevalue. The objective value would be minimized by default. In this case, youdon't need to specify the `objective` when initializing the tuner. However, inthis case, the metric value will not be tracked in the Keras logs by onlyKerasTuner logs. Therefore, these values would not be displayed by anyTensorBoard view using the Keras metrics.<jupyter_code>class HyperRegressor(keras_tuner.HyperModel): def build(self, hp): model = keras.Sequential( [ layers.Dense(units=hp.Int("units", 32, 128, 32), activation="relu"), layers.Dense(units=1), ] ) model.compile( optimizer="adam", loss="mean_squared_error", ) return model def fit(self, hp, model, x, y, validation_data, **kwargs): model.fit(x, y, **kwargs) x_val, y_val = validation_data y_pred = model.predict(x_val) # Return a single float to minimize. return np.mean(np.abs(y_pred - y_val)) tuner = keras_tuner.RandomSearch( hypermodel=HyperRegressor(), # No objective to specify. # Objective is the return value of `HyperModel.fit()`. max_trials=3, overwrite=True, directory="my_dir", project_name="custom_eval", ) tuner.search( x=np.random.rand(100, 10), y=np.random.rand(100, 1), validation_data=(np.random.rand(20, 10), np.random.rand(20, 1)), ) tuner.results_summary()<jupyter_output><empty_output><jupyter_text>If you have multiple metrics to track in KerasTuner, but only use one of themas the objective, you can return a dictionary, whose keys are the metric namesand the values are the metrics values, for example, return `{"metric_a": 1.0,"metric_b", 2.0}`. Use one of the keys as the objective name, for example,`keras_tuner.Objective("metric_a", "min")`.<jupyter_code>class HyperRegressor(keras_tuner.HyperModel): def build(self, hp): model = keras.Sequential( [ layers.Dense(units=hp.Int("units", 32, 128, 32), activation="relu"), layers.Dense(units=1), ] ) model.compile( optimizer="adam", loss="mean_squared_error", ) return model def fit(self, hp, model, x, y, validation_data, **kwargs): model.fit(x, y, **kwargs) x_val, y_val = validation_data y_pred = model.predict(x_val) # Return a dictionary of metrics for KerasTuner to track. return { "metric_a": -np.mean(np.abs(y_pred - y_val)), "metric_b": np.mean(np.square(y_pred - y_val)), } tuner = keras_tuner.RandomSearch( hypermodel=HyperRegressor(), # Objective is one of the keys. # Maximize the negative MAE, equivalent to minimize MAE. objective=keras_tuner.Objective("metric_a", "max"), max_trials=3, overwrite=True, directory="my_dir", project_name="custom_eval_dict", ) tuner.search( x=np.random.rand(100, 10), y=np.random.rand(100, 1), validation_data=(np.random.rand(20, 10), np.random.rand(20, 1)), ) tuner.results_summary()<jupyter_output><empty_output><jupyter_text>Tune end-to-end workflowsIn some cases, it is hard to align your code into build and fit functions. Youcan also keep your end-to-end workflow in one place by overriding`Tuner.run_trial()`, which gives you full control of a trial. You can see itas a black-box optimizer for anything. Tune any functionFor example, you can find a value of `x`, which minimizes `f(x)=x*x+1`. In thefollowing code, we just define `x` as a hyperparameter, and return `f(x)` asthe objective value. The `hypermodel` and `objective` argument for initializingthe tuner can be omitted.<jupyter_code>class MyTuner(keras_tuner.RandomSearch): def run_trial(self, trial, *args, **kwargs): # Get the hp from trial. hp = trial.hyperparameters # Define "x" as a hyperparameter. x = hp.Float("x", min_value=-1.0, max_value=1.0) # Return the objective value to minimize. return x * x + 1 tuner = MyTuner( # No hypermodel or objective specified. max_trials=20, overwrite=True, directory="my_dir", project_name="tune_anything", ) # No need to pass anything to search() # unless you use them in run_trial(). tuner.search() print(tuner.get_best_hyperparameters()[0].get("x"))<jupyter_output><empty_output><jupyter_text>Keep Keras code separateYou can keep all your Keras code unchanged and use KerasTuner to tune it. Itis useful if you cannot modify the Keras code for some reason.It also gives you more flexibility. You don't have to separate the modelbuilding and training code apart. However, this workflow would not help yousave the model or connect with the TensorBoard plugins.To save the model, you can use `trial.trial_id`, which is a string to uniquelyidentify a trial, to construct different paths to save the models fromdifferent trials.<jupyter_code>import os def keras_code(units, optimizer, saving_path): # Build model model = keras.Sequential( [ layers.Dense(units=units, activation="relu"), layers.Dense(units=1), ] ) model.compile( optimizer=optimizer, loss="mean_squared_error", ) # Prepare data x_train = np.random.rand(100, 10) y_train = np.random.rand(100, 1) x_val = np.random.rand(20, 10) y_val = np.random.rand(20, 1) # Train & eval model model.fit(x_train, y_train) # Save model model.save(saving_path) # Return a single float as the objective value. # You may also return a dictionary # of {metric_name: metric_value}. y_pred = model.predict(x_val) return np.mean(np.abs(y_pred - y_val)) class MyTuner(keras_tuner.RandomSearch): def run_trial(self, trial, **kwargs): hp = trial.hyperparameters return keras_code( units=hp.Int("units", 32, 128, 32), optimizer=hp.Choice("optimizer", ["adam", "adadelta"]), saving_path=os.path.join("/tmp", f"{trial.trial_id}.keras"), ) tuner = MyTuner( max_trials=3, overwrite=True, directory="my_dir", project_name="keep_code_separate", ) tuner.search() # Retraining the model best_hp = tuner.get_best_hyperparameters()[0] keras_code(**best_hp.values, saving_path="/tmp/best_model.keras")<jupyter_output><empty_output><jupyter_text>KerasTuner includes pre-made tunable applications: HyperResNet and HyperXceptionThese are ready-to-use hypermodels for computer vision.They come pre-compiled with `loss="categorical_crossentropy"` and`metrics=["accuracy"]`.<jupyter_code>from keras_tuner.applications import HyperResNet hypermodel = HyperResNet(input_shape=(28, 28, 1), classes=10) tuner = keras_tuner.RandomSearch( hypermodel, objective="val_accuracy", max_trials=2, overwrite=True, directory="my_dir", project_name="built_in_hypermodel", )<jupyter_output><empty_output>
keras-io/guides/ipynb/keras_tuner/getting_started.ipynb/0
{ "file_path": "keras-io/guides/ipynb/keras_tuner/getting_started.ipynb", "repo_id": "keras-io", "token_count": 10855 }
104
""" Title: Getting started with KerasTuner Authors: Luca Invernizzi, James Long, Francois Chollet, Tom O'Malley, Haifeng Jin Date created: 2019/05/31 Last modified: 2021/10/27 Description: The basics of using KerasTuner to tune model hyperparameters. Accelerator: GPU """ """shell pip install keras-tuner -q """ """ ## Introduction KerasTuner is a general-purpose hyperparameter tuning library. It has strong integration with Keras workflows, but it isn't limited to them: you could use it to tune scikit-learn models, or anything else. In this tutorial, you will see how to tune model architecture, training process, and data preprocessing steps with KerasTuner. Let's start from a simple example. ## Tune the model architecture The first thing we need to do is writing a function, which returns a compiled Keras model. It takes an argument `hp` for defining the hyperparameters while building the model. ### Define the search space In the following code example, we define a Keras model with two `Dense` layers. We want to tune the number of units in the first `Dense` layer. We just define an integer hyperparameter with `hp.Int('units', min_value=32, max_value=512, step=32)`, whose range is from 32 to 512 inclusive. When sampling from it, the minimum step for walking through the interval is 32. """ import keras from keras import layers def build_model(hp): model = keras.Sequential() model.add(layers.Flatten()) model.add( layers.Dense( # Define the hyperparameter. units=hp.Int("units", min_value=32, max_value=512, step=32), activation="relu", ) ) model.add(layers.Dense(10, activation="softmax")) model.compile( optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"], ) return model """ You can quickly test if the model builds successfully. """ import keras_tuner build_model(keras_tuner.HyperParameters()) """ There are many other types of hyperparameters as well. We can define multiple hyperparameters in the function. In the following code, we tune whether to use a `Dropout` layer with `hp.Boolean()`, tune which activation function to use with `hp.Choice()`, tune the learning rate of the optimizer with `hp.Float()`. """ def build_model(hp): model = keras.Sequential() model.add(layers.Flatten()) model.add( layers.Dense( # Tune number of units. units=hp.Int("units", min_value=32, max_value=512, step=32), # Tune the activation function to use. activation=hp.Choice("activation", ["relu", "tanh"]), ) ) # Tune whether to use dropout. if hp.Boolean("dropout"): model.add(layers.Dropout(rate=0.25)) model.add(layers.Dense(10, activation="softmax")) # Define the optimizer learning rate as a hyperparameter. learning_rate = hp.Float("lr", min_value=1e-4, max_value=1e-2, sampling="log") model.compile( optimizer=keras.optimizers.Adam(learning_rate=learning_rate), loss="categorical_crossentropy", metrics=["accuracy"], ) return model build_model(keras_tuner.HyperParameters()) """ As shown below, the hyperparameters are actual values. In fact, they are just functions returning actual values. For example, `hp.Int()` returns an `int` value. Therefore, you can put them into variables, for loops, or if conditions. """ hp = keras_tuner.HyperParameters() print(hp.Int("units", min_value=32, max_value=512, step=32)) """ You can also define the hyperparameters in advance and keep your Keras code in a separate function. """ def call_existing_code(units, activation, dropout, lr): model = keras.Sequential() model.add(layers.Flatten()) model.add(layers.Dense(units=units, activation=activation)) if dropout: model.add(layers.Dropout(rate=0.25)) model.add(layers.Dense(10, activation="softmax")) model.compile( optimizer=keras.optimizers.Adam(learning_rate=lr), loss="categorical_crossentropy", metrics=["accuracy"], ) return model def build_model(hp): units = hp.Int("units", min_value=32, max_value=512, step=32) activation = hp.Choice("activation", ["relu", "tanh"]) dropout = hp.Boolean("dropout") lr = hp.Float("lr", min_value=1e-4, max_value=1e-2, sampling="log") # call existing model-building code with the hyperparameter values. model = call_existing_code( units=units, activation=activation, dropout=dropout, lr=lr ) return model build_model(keras_tuner.HyperParameters()) """ Each of the hyperparameters is uniquely identified by its name (the first argument). To tune the number of units in different `Dense` layers separately as different hyperparameters, we give them different names as `f"units_{i}"`. Notably, this is also an example of creating conditional hyperparameters. There are many hyperparameters specifying the number of units in the `Dense` layers. The number of such hyperparameters is decided by the number of layers, which is also a hyperparameter. Therefore, the total number of hyperparameters used may be different from trial to trial. Some hyperparameter is only used when a certain condition is satisfied. For example, `units_3` is only used when `num_layers` is larger than 3. With KerasTuner, you can easily define such hyperparameters dynamically while creating the model. """ def build_model(hp): model = keras.Sequential() model.add(layers.Flatten()) # Tune the number of layers. for i in range(hp.Int("num_layers", 1, 3)): model.add( layers.Dense( # Tune number of units separately. units=hp.Int(f"units_{i}", min_value=32, max_value=512, step=32), activation=hp.Choice("activation", ["relu", "tanh"]), ) ) if hp.Boolean("dropout"): model.add(layers.Dropout(rate=0.25)) model.add(layers.Dense(10, activation="softmax")) learning_rate = hp.Float("lr", min_value=1e-4, max_value=1e-2, sampling="log") model.compile( optimizer=keras.optimizers.Adam(learning_rate=learning_rate), loss="categorical_crossentropy", metrics=["accuracy"], ) return model build_model(keras_tuner.HyperParameters()) """ ### Start the search After defining the search space, we need to select a tuner class to run the search. You may choose from `RandomSearch`, `BayesianOptimization` and `Hyperband`, which correspond to different tuning algorithms. Here we use `RandomSearch` as an example. To initialize the tuner, we need to specify several arguments in the initializer. * `hypermodel`. The model-building function, which is `build_model` in our case. * `objective`. The name of the objective to optimize (whether to minimize or maximize is automatically inferred for built-in metrics). We will introduce how to use custom metrics later in this tutorial. * `max_trials`. The total number of trials to run during the search. * `executions_per_trial`. The number of models that should be built and fit for each trial. Different trials have different hyperparameter values. The executions within the same trial have the same hyperparameter values. The purpose of having multiple executions per trial is to reduce results variance and therefore be able to more accurately assess the performance of a model. If you want to get results faster, you could set `executions_per_trial=1` (single round of training for each model configuration). * `overwrite`. Control whether to overwrite the previous results in the same directory or resume the previous search instead. Here we set `overwrite=True` to start a new search and ignore any previous results. * `directory`. A path to a directory for storing the search results. * `project_name`. The name of the sub-directory in the `directory`. """ tuner = keras_tuner.RandomSearch( hypermodel=build_model, objective="val_accuracy", max_trials=3, executions_per_trial=2, overwrite=True, directory="my_dir", project_name="helloworld", ) """ You can print a summary of the search space: """ tuner.search_space_summary() """ Before starting the search, let's prepare the MNIST dataset. """ import keras import numpy as np (x, y), (x_test, y_test) = keras.datasets.mnist.load_data() x_train = x[:-10000] x_val = x[-10000:] y_train = y[:-10000] y_val = y[-10000:] x_train = np.expand_dims(x_train, -1).astype("float32") / 255.0 x_val = np.expand_dims(x_val, -1).astype("float32") / 255.0 x_test = np.expand_dims(x_test, -1).astype("float32") / 255.0 num_classes = 10 y_train = keras.utils.to_categorical(y_train, num_classes) y_val = keras.utils.to_categorical(y_val, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) """ Then, start the search for the best hyperparameter configuration. All the arguments passed to `search` is passed to `model.fit()` in each execution. Remember to pass `validation_data` to evaluate the model. """ tuner.search(x_train, y_train, epochs=2, validation_data=(x_val, y_val)) """ During the `search`, the model-building function is called with different hyperparameter values in different trial. In each trial, the tuner would generate a new set of hyperparameter values to build the model. The model is then fit and evaluated. The metrics are recorded. The tuner progressively explores the space and finally finds a good set of hyperparameter values. ### Query the results When search is over, you can retrieve the best model(s). The model is saved at its best performing epoch evaluated on the `validation_data`. """ # Get the top 2 models. models = tuner.get_best_models(num_models=2) best_model = models[0] best_model.summary() """ You can also print a summary of the search results. """ tuner.results_summary() """ You will find detailed logs, checkpoints, etc, in the folder `my_dir/helloworld`, i.e. `directory/project_name`. You can also visualize the tuning results using TensorBoard and HParams plugin. For more information, please following [this link](https://keras.io/guides/keras_tuner/visualize_tuning/). ### Retrain the model If you want to train the model with the entire dataset, you may retrieve the best hyperparameters and retrain the model by yourself. """ # Get the top 2 hyperparameters. best_hps = tuner.get_best_hyperparameters(5) # Build the model with the best hp. model = build_model(best_hps[0]) # Fit with the entire dataset. x_all = np.concatenate((x_train, x_val)) y_all = np.concatenate((y_train, y_val)) model.fit(x=x_all, y=y_all, epochs=1) """ ## Tune model training To tune the model building process, we need to subclass the `HyperModel` class, which also makes it easy to share and reuse hypermodels. We need to override `HyperModel.build()` and `HyperModel.fit()` to tune the model building and training process respectively. A `HyperModel.build()` method is the same as the model-building function, which creates a Keras model using the hyperparameters and returns it. In `HyperModel.fit()`, you can access the model returned by `HyperModel.build()`,`hp` and all the arguments passed to `search()`. You need to train the model and return the training history. In the following code, we will tune the `shuffle` argument in `model.fit()`. It is generally not needed to tune the number of epochs because a built-in callback is passed to `model.fit()` to save the model at its best epoch evaluated by the `validation_data`. > **Note**: The `**kwargs` should always be passed to `model.fit()` because it contains the callbacks for model saving and tensorboard plugins. """ class MyHyperModel(keras_tuner.HyperModel): def build(self, hp): model = keras.Sequential() model.add(layers.Flatten()) model.add( layers.Dense( units=hp.Int("units", min_value=32, max_value=512, step=32), activation="relu", ) ) model.add(layers.Dense(10, activation="softmax")) model.compile( optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"], ) return model def fit(self, hp, model, *args, **kwargs): return model.fit( *args, # Tune whether to shuffle the data in each epoch. shuffle=hp.Boolean("shuffle"), **kwargs, ) """ Again, we can do a quick check to see if the code works correctly. """ hp = keras_tuner.HyperParameters() hypermodel = MyHyperModel() model = hypermodel.build(hp) hypermodel.fit(hp, model, np.random.rand(100, 28, 28), np.random.rand(100, 10)) """ ## Tune data preprocessing To tune data preprocessing, we just add an additional step in `HyperModel.fit()`, where we can access the dataset from the arguments. In the following code, we tune whether to normalize the data before training the model. This time we explicitly put `x` and `y` in the function signature because we need to use them. """ class MyHyperModel(keras_tuner.HyperModel): def build(self, hp): model = keras.Sequential() model.add(layers.Flatten()) model.add( layers.Dense( units=hp.Int("units", min_value=32, max_value=512, step=32), activation="relu", ) ) model.add(layers.Dense(10, activation="softmax")) model.compile( optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"], ) return model def fit(self, hp, model, x, y, **kwargs): if hp.Boolean("normalize"): x = layers.Normalization()(x) return model.fit( x, y, # Tune whether to shuffle the data in each epoch. shuffle=hp.Boolean("shuffle"), **kwargs, ) hp = keras_tuner.HyperParameters() hypermodel = MyHyperModel() model = hypermodel.build(hp) hypermodel.fit(hp, model, np.random.rand(100, 28, 28), np.random.rand(100, 10)) """ If a hyperparameter is used both in `build()` and `fit()`, you can define it in `build()` and use `hp.get(hp_name)` to retrieve it in `fit()`. We use the image size as an example. It is both used as the input shape in `build()`, and used by data prerprocessing step to crop the images in `fit()`. """ class MyHyperModel(keras_tuner.HyperModel): def build(self, hp): image_size = hp.Int("image_size", 10, 28) inputs = keras.Input(shape=(image_size, image_size)) outputs = layers.Flatten()(inputs) outputs = layers.Dense( units=hp.Int("units", min_value=32, max_value=512, step=32), activation="relu", )(outputs) outputs = layers.Dense(10, activation="softmax")(outputs) model = keras.Model(inputs, outputs) model.compile( optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"], ) return model def fit(self, hp, model, x, y, validation_data=None, **kwargs): if hp.Boolean("normalize"): x = layers.Normalization()(x) image_size = hp.get("image_size") cropped_x = x[:, :image_size, :image_size, :] if validation_data: x_val, y_val = validation_data cropped_x_val = x_val[:, :image_size, :image_size, :] validation_data = (cropped_x_val, y_val) return model.fit( cropped_x, y, # Tune whether to shuffle the data in each epoch. shuffle=hp.Boolean("shuffle"), validation_data=validation_data, **kwargs, ) tuner = keras_tuner.RandomSearch( MyHyperModel(), objective="val_accuracy", max_trials=3, overwrite=True, directory="my_dir", project_name="tune_hypermodel", ) tuner.search(x_train, y_train, epochs=2, validation_data=(x_val, y_val)) """ ### Retrain the model Using `HyperModel` also allows you to retrain the best model by yourself. """ hypermodel = MyHyperModel() best_hp = tuner.get_best_hyperparameters()[0] model = hypermodel.build(best_hp) hypermodel.fit(best_hp, model, x_all, y_all, epochs=1) """ ## Specify the tuning objective In all previous examples, we all just used validation accuracy (`"val_accuracy"`) as the tuning objective to select the best model. Actually, you can use any metric as the objective. The most commonly used metric is `"val_loss"`, which is the validation loss. ### Built-in metric as the objective There are many other built-in metrics in Keras you can use as the objective. Here is [a list of the built-in metrics](https://keras.io/api/metrics/). To use a built-in metric as the objective, you need to follow these steps: * Compile the model with the the built-in metric. For example, you want to use `MeanAbsoluteError()`. You need to compile the model with `metrics=[MeanAbsoluteError()]`. You may also use its name string instead: `metrics=["mean_absolute_error"]`. The name string of the metric is always the snake case of the class name. * Identify the objective name string. The name string of the objective is always in the format of `f"val_{metric_name_string}"`. For example, the objective name string of mean squared error evaluated on the validation data should be `"val_mean_absolute_error"`. * Wrap it into `keras_tuner.Objective`. We usually need to wrap the objective into a `keras_tuner.Objective` object to specify the direction to optimize the objective. For example, we want to minimize the mean squared error, we can use `keras_tuner.Objective("val_mean_absolute_error", "min")`. The direction should be either `"min"` or `"max"`. * Pass the wrapped objective to the tuner. You can see the following barebone code example. """ def build_regressor(hp): model = keras.Sequential( [ layers.Dense(units=hp.Int("units", 32, 128, 32), activation="relu"), layers.Dense(units=1), ] ) model.compile( optimizer="adam", loss="mean_squared_error", # Objective is one of the metrics. metrics=[keras.metrics.MeanAbsoluteError()], ) return model tuner = keras_tuner.RandomSearch( hypermodel=build_regressor, # The objective name and direction. # Name is the f"val_{snake_case_metric_class_name}". objective=keras_tuner.Objective("val_mean_absolute_error", direction="min"), max_trials=3, overwrite=True, directory="my_dir", project_name="built_in_metrics", ) tuner.search( x=np.random.rand(100, 10), y=np.random.rand(100, 1), validation_data=(np.random.rand(20, 10), np.random.rand(20, 1)), ) tuner.results_summary() """ ### Custom metric as the objective You may implement your own metric and use it as the hyperparameter search objective. Here, we use mean squared error (MSE) as an example. First, we implement the MSE metric by subclassing `keras.metrics.Metric`. Remember to give a name to your metric using the `name` argument of `super().__init__()`, which will be used later. Note: MSE is actually a build-in metric, which can be imported with `keras.metrics.MeanSquaredError`. This is just an example to show how to use a custom metric as the hyperparameter search objective. For more information about implementing custom metrics, please see [this tutorial](https://keras.io/api/metrics/#creating-custom-metrics). If you would like a metric with a different function signature than `update_state(y_true, y_pred, sample_weight)`, you can override the `train_step()` method of your model following [this tutorial](https://keras.io/guides/customizing_what_happens_in_fit/#going-lowerlevel). """ from keras import ops class CustomMetric(keras.metrics.Metric): def __init__(self, **kwargs): # Specify the name of the metric as "custom_metric". super().__init__(name="custom_metric", **kwargs) self.sum = self.add_weight(name="sum", initializer="zeros") self.count = self.add_weight(name="count", dtype="int32", initializer="zeros") def update_state(self, y_true, y_pred, sample_weight=None): values = ops.square(y_true - y_pred) count = ops.shape(y_true)[0] if sample_weight is not None: sample_weight = ops.cast(sample_weight, self.dtype) values *= sample_weight count *= sample_weight self.sum.assign_add(ops.sum(values)) self.count.assign_add(count) def result(self): return self.sum / ops.cast(self.count, "float32") def reset_states(self): self.sum.assign(0) self.count.assign(0) """ Run the search with the custom objective. """ def build_regressor(hp): model = keras.Sequential( [ layers.Dense(units=hp.Int("units", 32, 128, 32), activation="relu"), layers.Dense(units=1), ] ) model.compile( optimizer="adam", loss="mean_squared_error", # Put custom metric into the metrics. metrics=[CustomMetric()], ) return model tuner = keras_tuner.RandomSearch( hypermodel=build_regressor, # Specify the name and direction of the objective. objective=keras_tuner.Objective("val_custom_metric", direction="min"), max_trials=3, overwrite=True, directory="my_dir", project_name="custom_metrics", ) tuner.search( x=np.random.rand(100, 10), y=np.random.rand(100, 1), validation_data=(np.random.rand(20, 10), np.random.rand(20, 1)), ) tuner.results_summary() """ If your custom objective is hard to put into a custom metric, you can also evaluate the model by yourself in `HyperModel.fit()` and return the objective value. The objective value would be minimized by default. In this case, you don't need to specify the `objective` when initializing the tuner. However, in this case, the metric value will not be tracked in the Keras logs by only KerasTuner logs. Therefore, these values would not be displayed by any TensorBoard view using the Keras metrics. """ class HyperRegressor(keras_tuner.HyperModel): def build(self, hp): model = keras.Sequential( [ layers.Dense(units=hp.Int("units", 32, 128, 32), activation="relu"), layers.Dense(units=1), ] ) model.compile( optimizer="adam", loss="mean_squared_error", ) return model def fit(self, hp, model, x, y, validation_data, **kwargs): model.fit(x, y, **kwargs) x_val, y_val = validation_data y_pred = model.predict(x_val) # Return a single float to minimize. return np.mean(np.abs(y_pred - y_val)) tuner = keras_tuner.RandomSearch( hypermodel=HyperRegressor(), # No objective to specify. # Objective is the return value of `HyperModel.fit()`. max_trials=3, overwrite=True, directory="my_dir", project_name="custom_eval", ) tuner.search( x=np.random.rand(100, 10), y=np.random.rand(100, 1), validation_data=(np.random.rand(20, 10), np.random.rand(20, 1)), ) tuner.results_summary() """ If you have multiple metrics to track in KerasTuner, but only use one of them as the objective, you can return a dictionary, whose keys are the metric names and the values are the metrics values, for example, return `{"metric_a": 1.0, "metric_b", 2.0}`. Use one of the keys as the objective name, for example, `keras_tuner.Objective("metric_a", "min")`. """ class HyperRegressor(keras_tuner.HyperModel): def build(self, hp): model = keras.Sequential( [ layers.Dense(units=hp.Int("units", 32, 128, 32), activation="relu"), layers.Dense(units=1), ] ) model.compile( optimizer="adam", loss="mean_squared_error", ) return model def fit(self, hp, model, x, y, validation_data, **kwargs): model.fit(x, y, **kwargs) x_val, y_val = validation_data y_pred = model.predict(x_val) # Return a dictionary of metrics for KerasTuner to track. return { "metric_a": -np.mean(np.abs(y_pred - y_val)), "metric_b": np.mean(np.square(y_pred - y_val)), } tuner = keras_tuner.RandomSearch( hypermodel=HyperRegressor(), # Objective is one of the keys. # Maximize the negative MAE, equivalent to minimize MAE. objective=keras_tuner.Objective("metric_a", "max"), max_trials=3, overwrite=True, directory="my_dir", project_name="custom_eval_dict", ) tuner.search( x=np.random.rand(100, 10), y=np.random.rand(100, 1), validation_data=(np.random.rand(20, 10), np.random.rand(20, 1)), ) tuner.results_summary() """ ## Tune end-to-end workflows In some cases, it is hard to align your code into build and fit functions. You can also keep your end-to-end workflow in one place by overriding `Tuner.run_trial()`, which gives you full control of a trial. You can see it as a black-box optimizer for anything. ### Tune any function For example, you can find a value of `x`, which minimizes `f(x)=x*x+1`. In the following code, we just define `x` as a hyperparameter, and return `f(x)` as the objective value. The `hypermodel` and `objective` argument for initializing the tuner can be omitted. """ class MyTuner(keras_tuner.RandomSearch): def run_trial(self, trial, *args, **kwargs): # Get the hp from trial. hp = trial.hyperparameters # Define "x" as a hyperparameter. x = hp.Float("x", min_value=-1.0, max_value=1.0) # Return the objective value to minimize. return x * x + 1 tuner = MyTuner( # No hypermodel or objective specified. max_trials=20, overwrite=True, directory="my_dir", project_name="tune_anything", ) # No need to pass anything to search() # unless you use them in run_trial(). tuner.search() print(tuner.get_best_hyperparameters()[0].get("x")) """ ### Keep Keras code separate You can keep all your Keras code unchanged and use KerasTuner to tune it. It is useful if you cannot modify the Keras code for some reason. It also gives you more flexibility. You don't have to separate the model building and training code apart. However, this workflow would not help you save the model or connect with the TensorBoard plugins. To save the model, you can use `trial.trial_id`, which is a string to uniquely identify a trial, to construct different paths to save the models from different trials. """ import os def keras_code(units, optimizer, saving_path): # Build model model = keras.Sequential( [ layers.Dense(units=units, activation="relu"), layers.Dense(units=1), ] ) model.compile( optimizer=optimizer, loss="mean_squared_error", ) # Prepare data x_train = np.random.rand(100, 10) y_train = np.random.rand(100, 1) x_val = np.random.rand(20, 10) y_val = np.random.rand(20, 1) # Train & eval model model.fit(x_train, y_train) # Save model model.save(saving_path) # Return a single float as the objective value. # You may also return a dictionary # of {metric_name: metric_value}. y_pred = model.predict(x_val) return np.mean(np.abs(y_pred - y_val)) class MyTuner(keras_tuner.RandomSearch): def run_trial(self, trial, **kwargs): hp = trial.hyperparameters return keras_code( units=hp.Int("units", 32, 128, 32), optimizer=hp.Choice("optimizer", ["adam", "adadelta"]), saving_path=os.path.join("/tmp", f"{trial.trial_id}.keras"), ) tuner = MyTuner( max_trials=3, overwrite=True, directory="my_dir", project_name="keep_code_separate", ) tuner.search() # Retraining the model best_hp = tuner.get_best_hyperparameters()[0] keras_code(**best_hp.values, saving_path="/tmp/best_model.keras") """ ## KerasTuner includes pre-made tunable applications: HyperResNet and HyperXception These are ready-to-use hypermodels for computer vision. They come pre-compiled with `loss="categorical_crossentropy"` and `metrics=["accuracy"]`. """ from keras_tuner.applications import HyperResNet hypermodel = HyperResNet(input_shape=(28, 28, 1), classes=10) tuner = keras_tuner.RandomSearch( hypermodel, objective="val_accuracy", max_trials=2, overwrite=True, directory="my_dir", project_name="built_in_hypermodel", )
keras-io/guides/keras_tuner/getting_started.py/0
{ "file_path": "keras-io/guides/keras_tuner/getting_started.py", "repo_id": "keras-io", "token_count": 10573 }
105
# Introduction to Keras for Researchers **Author:** [fchollet](https://twitter.com/fchollet)<br> **Date created:** 2020/04/01<br> **Last modified:** 2020/10/02<br> **Description:** Everything you need to know to use Keras & TensorFlow for deep learning research. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/guides/ipynb/intro_to_keras_for_researchers.ipynb) <span class="k-dot">•</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/guides/intro_to_keras_for_researchers.py) --- ## Setup ```python import tensorflow as tf import keras ``` --- ## Introduction Are you a machine learning researcher? Do you publish at NeurIPS and push the state-of-the-art in CV and NLP? This guide will serve as your first introduction to core Keras & TensorFlow API concepts. In this guide, you will learn about: - Tensors, variables, and gradients in TensorFlow - Creating layers by subclassing the `Layer` class - Writing low-level training loops - Tracking losses created by layers via the `add_loss()` method - Tracking metrics in a low-level training loop - Speeding up execution with a compiled `tf.function` - Executing layers in training or inference mode - The Keras Functional API You will also see the Keras API in action in two end-to-end research examples: a Variational Autoencoder, and a Hypernetwork. --- ## Tensors TensorFlow is an infrastructure layer for differentiable programming. At its heart, it's a framework for manipulating N-dimensional arrays (tensors), much like NumPy. However, there are three key differences between NumPy and TensorFlow: - TensorFlow can leverage hardware accelerators such as GPUs and TPUs. - TensorFlow can automatically compute the gradient of arbitrary differentiable tensor expressions. - TensorFlow computation can be distributed to large numbers of devices on a single machine, and large number of machines (potentially with multiple devices each). Let's take a look at the object that is at the core of TensorFlow: the Tensor. Here's a constant tensor: ```python x = tf.constant([[5, 2], [1, 3]]) print(x) ``` <div class="k-default-codeblock"> ``` tf.Tensor( [[5 2] [1 3]], shape=(2, 2), dtype=int32) ``` </div> You can get its value as a NumPy array by calling `.numpy()`: ```python x.numpy() ``` <div class="k-default-codeblock"> ``` array([[5, 2], [1, 3]], dtype=int32) ``` </div> Much like a NumPy array, it features the attributes `dtype` and `shape`: ```python print("dtype:", x.dtype) print("shape:", x.shape) ``` <div class="k-default-codeblock"> ``` dtype: <dtype: 'int32'> shape: (2, 2) ``` </div> A common way to create constant tensors is via `tf.ones` and `tf.zeros` (just like `np.ones` and `np.zeros`): ```python print(tf.ones(shape=(2, 1))) print(tf.zeros(shape=(2, 1))) ``` <div class="k-default-codeblock"> ``` tf.Tensor( [[1.] [1.]], shape=(2, 1), dtype=float32) tf.Tensor( [[0.] [0.]], shape=(2, 1), dtype=float32) ``` </div> You can also create random constant tensors: ```python x = tf.random.normal(shape=(2, 2), mean=0.0, stddev=1.0) x = tf.random.uniform(shape=(2, 2), minval=0, maxval=10, dtype="int32") ``` --- ## Variables Variables are special tensors used to store mutable state (such as the weights of a neural network). You create a `Variable` using some initial value: ```python initial_value = tf.random.normal(shape=(2, 2)) a = tf.Variable(initial_value) print(a) ``` <div class="k-default-codeblock"> ``` <tf.Variable 'Variable:0' shape=(2, 2) dtype=float32, numpy= array([[ 0.11058521, 0.55781174], [-0.7643957 , -2.106184 ]], dtype=float32)> ``` </div> You update the value of a `Variable` by using the methods `.assign(value)`, `.assign_add(increment)`, or `.assign_sub(decrement)`: ```python new_value = tf.random.normal(shape=(2, 2)) a.assign(new_value) for i in range(2): for j in range(2): assert a[i, j] == new_value[i, j] added_value = tf.random.normal(shape=(2, 2)) a.assign_add(added_value) for i in range(2): for j in range(2): assert a[i, j] == new_value[i, j] + added_value[i, j] ``` --- ## Doing math in TensorFlow If you've used NumPy, doing math in TensorFlow will look very familiar. The main difference is that your TensorFlow code can run on GPU and TPU. ```python a = tf.random.normal(shape=(2, 2)) b = tf.random.normal(shape=(2, 2)) c = a + b d = tf.square(c) e = tf.exp(d) ``` --- ## Gradients Here's another big difference with NumPy: you can automatically retrieve the gradient of any differentiable expression. Just open a `GradientTape`, start "watching" a tensor via `tape.watch()`, and compose a differentiable expression using this tensor as input: ```python a = tf.random.normal(shape=(2, 2)) b = tf.random.normal(shape=(2, 2)) with tf.GradientTape() as tape: tape.watch(a) # Start recording the history of operations applied to `a` c = tf.sqrt(tf.square(a) + tf.square(b)) # Do some math using `a` # What's the gradient of `c` with respect to `a`? dc_da = tape.gradient(c, a) print(dc_da) ``` <div class="k-default-codeblock"> ``` tf.Tensor( [[0.6567579 0.4763136] [0.9858142 0.3558683]], shape=(2, 2), dtype=float32) ``` </div> By default, variables are watched automatically, so you don't need to manually `watch` them: ```python a = tf.Variable(a) with tf.GradientTape() as tape: c = tf.sqrt(tf.square(a) + tf.square(b)) dc_da = tape.gradient(c, a) print(dc_da) ``` <div class="k-default-codeblock"> ``` tf.Tensor( [[0.6567579 0.4763136] [0.9858142 0.3558683]], shape=(2, 2), dtype=float32) ``` </div> Note that you can compute higher-order derivatives by nesting tapes: ```python with tf.GradientTape() as outer_tape: with tf.GradientTape() as tape: c = tf.sqrt(tf.square(a) + tf.square(b)) dc_da = tape.gradient(c, a) d2c_da2 = outer_tape.gradient(dc_da, a) print(d2c_da2) ``` <div class="k-default-codeblock"> ``` tf.Tensor( [[1.4240768 0.9168595 ] [0.02550167 1.5579035 ]], shape=(2, 2), dtype=float32) ``` </div> --- ## Keras layers While TensorFlow is an **infrastructure layer for differentiable programming**, dealing with tensors, variables, and gradients, Keras is a **user interface for deep learning**, dealing with layers, models, optimizers, loss functions, metrics, and more. Keras serves as the high-level API for TensorFlow: Keras is what makes TensorFlow simple and productive. The `Layer` class is the fundamental abstraction in Keras. A `Layer` encapsulates a state (weights) and some computation (defined in the call method). A simple layer looks like this. The `self.add_weight()` method gives you a shortcut for creating weights: ```python class Linear(keras.layers.Layer): """y = w.x + b""" def __init__(self, units=32, input_dim=32): super().__init__() self.w = self.add_weight( shape=(input_dim, units), initializer="random_normal", trainable=True ) self.b = self.add_weight(shape=(units,), initializer="zeros", trainable=True) def call(self, inputs): return tf.matmul(inputs, self.w) + self.b ``` You would use a `Layer` instance much like a Python function: ```python # Instantiate our layer. linear_layer = Linear(units=4, input_dim=2) # The layer can be treated as a function. # Here we call it on some data. y = linear_layer(tf.ones((2, 2))) assert y.shape == (2, 4) ``` The weight variables (created in `__init__`) are automatically tracked under the `weights` property: ```python assert linear_layer.weights == [linear_layer.w, linear_layer.b] ``` You have many built-in layers available, from `Dense` to `Conv2D` to `LSTM` to fancier ones like `Conv3DTranspose` or `ConvLSTM2D`. Be smart about reusing built-in functionality. --- ## Layer weight creation in `build(input_shape)` It's often a good idea to defer weight creation to the `build()` method, so that you don't need to specify the input dim/shape at layer construction time: ```python class Linear(keras.layers.Layer): """y = w.x + b""" def __init__(self, units=32): super().__init__() self.units = units def build(self, input_shape): self.w = self.add_weight( shape=(input_shape[-1], self.units), initializer="random_normal", trainable=True, ) self.b = self.add_weight( shape=(self.units,), initializer="random_normal", trainable=True ) def call(self, inputs): return tf.matmul(inputs, self.w) + self.b # Instantiate our layer. linear_layer = Linear(4) # This will also call `build(input_shape)` and create the weights. y = linear_layer(tf.ones((2, 2))) ``` --- ## Layer gradients You can automatically retrieve the gradients of the weights of a layer by calling it inside a `GradientTape`. Using these gradients, you can update the weights of the layer, either manually, or using an optimizer object. Of course, you can modify the gradients before using them, if you need to. ```python # Prepare a dataset. (x_train, y_train), _ = keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (x_train.reshape(60000, 784).astype("float32") / 255, y_train) ) dataset = dataset.shuffle(buffer_size=1024).batch(64) # Instantiate our linear layer (defined above) with 10 units. linear_layer = Linear(10) # Instantiate a logistic loss function that expects integer targets. loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True) # Instantiate an optimizer. optimizer = keras.optimizers.SGD(learning_rate=1e-3) # Iterate over the batches of the dataset. for step, (x, y) in enumerate(dataset): # Open a GradientTape. with tf.GradientTape() as tape: # Forward pass. logits = linear_layer(x) # Loss value for this batch. loss = loss_fn(y, logits) # Get gradients of the loss wrt the weights. gradients = tape.gradient(loss, linear_layer.trainable_weights) # Update the weights of our linear layer. optimizer.apply_gradients(zip(gradients, linear_layer.trainable_weights)) # Logging. if step % 100 == 0: print("Step:", step, "Loss:", float(loss)) ``` <div class="k-default-codeblock"> ``` Step: 0 Loss: 2.4040849208831787 Step: 100 Loss: 2.2059175968170166 Step: 200 Loss: 2.1891114711761475 Step: 300 Loss: 2.0599637031555176 Step: 400 Loss: 2.021326780319214 Step: 500 Loss: 1.9289535284042358 Step: 600 Loss: 1.758760929107666 Step: 700 Loss: 1.7004988193511963 Step: 800 Loss: 1.7745165824890137 Step: 900 Loss: 1.6547822952270508 ``` </div> --- ## Trainable and non-trainable weights Weights created by layers can be either trainable or non-trainable. They're exposed in `trainable_weights` and `non_trainable_weights` respectively. Here's a layer with a non-trainable weight: ```python class ComputeSum(keras.layers.Layer): """Returns the sum of the inputs.""" def __init__(self, input_dim): super().__init__() # Create a non-trainable weight. self.total = self.add_weight( initializer="zeros", shape=(input_dim,), trainable=False ) def call(self, inputs): self.total.assign_add(tf.reduce_sum(inputs, axis=0)) return self.total my_sum = ComputeSum(2) x = tf.ones((2, 2)) y = my_sum(x) print(y.numpy()) # [2. 2.] y = my_sum(x) print(y.numpy()) # [4. 4.] assert my_sum.weights == [my_sum.total] assert my_sum.non_trainable_weights == [my_sum.total] assert my_sum.trainable_weights == [] ``` <div class="k-default-codeblock"> ``` [2. 2.] [4. 4.] ``` </div> --- ## Layers that own layers Layers can be recursively nested to create bigger computation blocks. Each layer will track the weights of its sublayers (both trainable and non-trainable). ```python # Let's reuse the Linear class # with a `build` method that we defined above. class MLP(keras.layers.Layer): """Simple stack of Linear layers.""" def __init__(self): super().__init__() self.linear_1 = Linear(32) self.linear_2 = Linear(32) self.linear_3 = Linear(10) def call(self, inputs): x = self.linear_1(inputs) x = tf.nn.relu(x) x = self.linear_2(x) x = tf.nn.relu(x) return self.linear_3(x) mlp = MLP() # The first call to the `mlp` object will create the weights. y = mlp(tf.ones(shape=(3, 64))) # Weights are recursively tracked. assert len(mlp.weights) == 6 ``` Note that our manually-created MLP above is equivalent to the following built-in option: ```python mlp = keras.Sequential( [ keras.layers.Dense(32, activation=tf.nn.relu), keras.layers.Dense(32, activation=tf.nn.relu), keras.layers.Dense(10), ] ) ``` --- ## Tracking losses created by layers Layers can create losses during the forward pass via the `add_loss()` method. This is especially useful for regularization losses. The losses created by sublayers are recursively tracked by the parent layers. Here's a layer that creates an activity regularization loss: ```python class ActivityRegularization(keras.layers.Layer): """Layer that creates an activity sparsity regularization loss.""" def __init__(self, rate=1e-2): super().__init__() self.rate = rate def call(self, inputs): # We use `add_loss` to create a regularization loss # that depends on the inputs. self.add_loss(self.rate * tf.reduce_sum(inputs)) return inputs ``` Any model incorporating this layer will track this regularization loss: ```python # Let's use the loss layer in a MLP block. class SparseMLP(keras.layers.Layer): """Stack of Linear layers with a sparsity regularization loss.""" def __init__(self): super().__init__() self.linear_1 = Linear(32) self.regularization = ActivityRegularization(1e-2) self.linear_3 = Linear(10) def call(self, inputs): x = self.linear_1(inputs) x = tf.nn.relu(x) x = self.regularization(x) return self.linear_3(x) mlp = SparseMLP() y = mlp(tf.ones((10, 10))) print(mlp.losses) # List containing one float32 scalar ``` <div class="k-default-codeblock"> ``` [<tf.Tensor: shape=(), dtype=float32, numpy=0.24654198>] ``` </div> These losses are cleared by the top-level layer at the start of each forward pass -- they don't accumulate. `layer.losses` always contains only the losses created during the last forward pass. You would typically use these losses by summing them before computing your gradients when writing a training loop. ```python # Losses correspond to the *last* forward pass. mlp = SparseMLP() mlp(tf.ones((10, 10))) assert len(mlp.losses) == 1 mlp(tf.ones((10, 10))) assert len(mlp.losses) == 1 # No accumulation. # Let's demonstrate how to use these losses in a training loop. # Prepare a dataset. (x_train, y_train), _ = keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (x_train.reshape(60000, 784).astype("float32") / 255, y_train) ) dataset = dataset.shuffle(buffer_size=1024).batch(64) # A new MLP. mlp = SparseMLP() # Loss and optimizer. loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True) optimizer = keras.optimizers.SGD(learning_rate=1e-3) for step, (x, y) in enumerate(dataset): with tf.GradientTape() as tape: # Forward pass. logits = mlp(x) # External loss value for this batch. loss = loss_fn(y, logits) # Add the losses created during the forward pass. loss += sum(mlp.losses) # Get gradients of the loss wrt the weights. gradients = tape.gradient(loss, mlp.trainable_weights) # Update the weights of our linear layer. optimizer.apply_gradients(zip(gradients, mlp.trainable_weights)) # Logging. if step % 100 == 0: print("Step:", step, "Loss:", float(loss)) ``` <div class="k-default-codeblock"> ``` Step: 0 Loss: 5.629672050476074 Step: 100 Loss: 2.6190948486328125 Step: 200 Loss: 2.4041364192962646 Step: 300 Loss: 2.385746479034424 Step: 400 Loss: 2.3336474895477295 Step: 500 Loss: 2.3487167358398438 Step: 600 Loss: 2.3277230262756348 Step: 700 Loss: 2.3347654342651367 Step: 800 Loss: 2.318131446838379 Step: 900 Loss: 2.313291549682617 ``` </div> --- ## Keeping track of training metrics Keras offers a broad range of built-in metrics, like `keras.metrics.AUC` or `keras.metrics.PrecisionAtRecall`. It's also easy to create your own metrics in a few lines of code. To use a metric in a custom training loop, you would: - Instantiate the metric object, e.g. `metric = keras.metrics.AUC()` - Call its `metric.update_state(targets, predictions)` method for each batch of data - Query its result via `metric.result()` - Reset the metric's state at the end of an epoch or at the start of an evaluation via `metric.reset_state()` Here's a simple example: ```python # Instantiate a metric object accuracy = keras.metrics.SparseCategoricalAccuracy() # Prepare our layer, loss, and optimizer. model = keras.Sequential( [ keras.layers.Dense(32, activation="relu"), keras.layers.Dense(32, activation="relu"), keras.layers.Dense(10), ] ) loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True) optimizer = keras.optimizers.Adam(learning_rate=1e-3) for epoch in range(2): # Iterate over the batches of a dataset. for step, (x, y) in enumerate(dataset): with tf.GradientTape() as tape: logits = model(x) # Compute the loss value for this batch. loss_value = loss_fn(y, logits) # Update the state of the `accuracy` metric. accuracy.update_state(y, logits) # Update the weights of the model to minimize the loss value. gradients = tape.gradient(loss_value, model.trainable_weights) optimizer.apply_gradients(zip(gradients, model.trainable_weights)) # Logging the current accuracy value so far. if step % 200 == 0: print("Epoch:", epoch, "Step:", step) print("Total running accuracy so far: %.3f" % accuracy.result()) # Reset the metric's state at the end of an epoch accuracy.reset_state() ``` <div class="k-default-codeblock"> ``` Epoch: 0 Step: 0 Total running accuracy so far: 0.047 Epoch: 0 Step: 200 Total running accuracy so far: 0.751 Epoch: 0 Step: 400 Total running accuracy so far: 0.826 Epoch: 0 Step: 600 Total running accuracy so far: 0.856 Epoch: 0 Step: 800 Total running accuracy so far: 0.872 Epoch: 1 Step: 0 Total running accuracy so far: 0.891 Epoch: 1 Step: 200 Total running accuracy so far: 0.936 Epoch: 1 Step: 400 Total running accuracy so far: 0.939 Epoch: 1 Step: 600 Total running accuracy so far: 0.940 Epoch: 1 Step: 800 Total running accuracy so far: 0.941 ``` </div> You can also define your own metrics by subclassing `keras.metrics.Metric`. You need to override the three functions called above: - Override `update_state()` to update the statistic values. - Override `result()` to return the metric value. - Override `reset_state()` to reset the metric to its initial state. Here is an example where we implement the F1-score metric (with support for sample weighting). ```python class F1Score(keras.metrics.Metric): def __init__(self, name="f1_score", dtype="float32", threshold=0.5, **kwargs): super().__init__(name=name, dtype=dtype, **kwargs) self.threshold = 0.5 self.true_positives = self.add_weight( name="tp", dtype=dtype, initializer="zeros" ) self.false_positives = self.add_weight( name="fp", dtype=dtype, initializer="zeros" ) self.false_negatives = self.add_weight( name="fn", dtype=dtype, initializer="zeros" ) def update_state(self, y_true, y_pred, sample_weight=None): y_pred = tf.math.greater_equal(y_pred, self.threshold) y_true = tf.cast(y_true, tf.bool) y_pred = tf.cast(y_pred, tf.bool) true_positives = tf.cast(y_true & y_pred, self.dtype) false_positives = tf.cast(~y_true & y_pred, self.dtype) false_negatives = tf.cast(y_true & ~y_pred, self.dtype) if sample_weight is not None: sample_weight = tf.cast(sample_weight, self.dtype) true_positives *= sample_weight false_positives *= sample_weight false_negatives *= sample_weight self.true_positives.assign_add(tf.reduce_sum(true_positives)) self.false_positives.assign_add(tf.reduce_sum(false_positives)) self.false_negatives.assign_add(tf.reduce_sum(false_negatives)) def result(self): precision = self.true_positives / (self.true_positives + self.false_positives) recall = self.true_positives / (self.true_positives + self.false_negatives) return precision * recall * 2.0 / (precision + recall) def reset_state(self): self.true_positives.assign(0) self.false_positives.assign(0) self.false_negatives.assign(0) ``` Let's test-drive it: ```python m = F1Score() m.update_state([0, 1, 0, 0], [0.3, 0.5, 0.8, 0.9]) print("Intermediate result:", float(m.result())) m.update_state([1, 1, 1, 1], [0.1, 0.7, 0.6, 0.0]) print("Final result:", float(m.result())) ``` <div class="k-default-codeblock"> ``` Intermediate result: 0.5 Final result: 0.6000000238418579 ``` </div> --- ## Compiled functions Running eagerly is great for debugging, but you will get better performance by compiling your computation into static graphs. Static graphs are a researcher's best friends. You can compile any function by wrapping it in a `tf.function` decorator. ```python # Prepare our layer, loss, and optimizer. model = keras.Sequential( [ keras.layers.Dense(32, activation="relu"), keras.layers.Dense(32, activation="relu"), keras.layers.Dense(10), ] ) loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True) optimizer = keras.optimizers.Adam(learning_rate=1e-3) # Create a training step function. @tf.function # Make it fast. def train_on_batch(x, y): with tf.GradientTape() as tape: logits = model(x) loss = loss_fn(y, logits) gradients = tape.gradient(loss, model.trainable_weights) optimizer.apply_gradients(zip(gradients, model.trainable_weights)) return loss # Prepare a dataset. (x_train, y_train), _ = keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (x_train.reshape(60000, 784).astype("float32") / 255, y_train) ) dataset = dataset.shuffle(buffer_size=1024).batch(64) for step, (x, y) in enumerate(dataset): loss = train_on_batch(x, y) if step % 100 == 0: print("Step:", step, "Loss:", float(loss)) ``` <div class="k-default-codeblock"> ``` Step: 0 Loss: 2.3094160556793213 Step: 100 Loss: 0.53387850522995 Step: 200 Loss: 0.3349820375442505 Step: 300 Loss: 0.23337996006011963 Step: 400 Loss: 0.304066926240921 Step: 500 Loss: 0.180154949426651 Step: 600 Loss: 0.4450702667236328 Step: 700 Loss: 0.16045540571212769 Step: 800 Loss: 0.27985841035842896 Step: 900 Loss: 0.19074323773384094 ``` </div> --- ## Training mode & inference mode Some layers, in particular the `BatchNormalization` layer and the `Dropout` layer, have different behaviors during training and inference. For such layers, it is standard practice to expose a `training` (boolean) argument in the `call` method. By exposing this argument in `call`, you enable the built-in training and evaluation loops (e.g. fit) to correctly use the layer in training and inference modes. ```python class Dropout(keras.layers.Layer): def __init__(self, rate): super().__init__() self.rate = rate def call(self, inputs, training=None): if training: return tf.nn.dropout(inputs, rate=self.rate) return inputs class MLPWithDropout(keras.layers.Layer): def __init__(self): super().__init__() self.linear_1 = Linear(32) self.dropout = Dropout(0.5) self.linear_3 = Linear(10) def call(self, inputs, training=None): x = self.linear_1(inputs) x = tf.nn.relu(x) x = self.dropout(x, training=training) return self.linear_3(x) mlp = MLPWithDropout() y_train = mlp(tf.ones((2, 2)), training=True) y_test = mlp(tf.ones((2, 2)), training=False) ``` --- ## The Functional API for model-building To build deep learning models, you don't have to use object-oriented programming all the time. All layers we've seen so far can also be composed functionally, like this (we call it the "Functional API"): ```python # We use an `Input` object to describe the shape and dtype of the inputs. # This is the deep learning equivalent of *declaring a type*. # The shape argument is per-sample; it does not include the batch size. # The functional API focused on defining per-sample transformations. # The model we create will automatically batch the per-sample transformations, # so that it can be called on batches of data. inputs = keras.Input(shape=(16,), dtype="float32") # We call layers on these "type" objects # and they return updated types (new shapes/dtypes). x = Linear(32)(inputs) # We are reusing the Linear layer we defined earlier. x = Dropout(0.5)(x) # We are reusing the Dropout layer we defined earlier. outputs = Linear(10)(x) # A functional `Model` can be defined by specifying inputs and outputs. # A model is itself a layer like any other. model = keras.Model(inputs, outputs) # A functional model already has weights, before being called on any data. # That's because we defined its input shape in advance (in `Input`). assert len(model.weights) == 4 # Let's call our model on some data, for fun. y = model(tf.ones((2, 16))) assert y.shape == (2, 10) # You can pass a `training` argument in `__call__` # (it will get passed down to the Dropout layer). y = model(tf.ones((2, 16)), training=True) ``` The Functional API tends to be more concise than subclassing, and provides a few other advantages (generally the same advantages that functional, typed languages provide over untyped OO development). However, it can only be used to define DAGs of layers -- recursive networks should be defined as Layer subclasses instead. Learn more about the Functional API [here](/guides/functional_api/). In your research workflows, you may often find yourself mix-and-matching OO models and Functional models. Note that the `Model` class also features built-in training & evaluation loops: `fit()`, `predict()` and `evaluate()` (configured via the `compile()` method). These built-in functions give you access to the following built-in training infrastructure features: * [Callbacks](/api/callbacks/). You can leverage built-in callbacks for early-stopping, model checkpointing, and monitoring training with TensorBoard. You can also [implement custom callbacks](/guides/writing_your_own_callbacks/) if needed. * [Distributed training](https://keras.io/guides/distributed_training/). You can easily scale up your training to multiple GPUs, TPU, or even multiple machines with the `tf.distribute` API -- with no changes to your code. * [Step fusing](https://keras.io/api/models/model_training_apis/#compile-method). With the `steps_per_execution` argument in `Model.compile()`, you can process multiple batches in a single `tf.function` call, which greatly improves device utilization on TPUs. We won't go into the details, but we provide a simple code example below. It leverages the built-in training infrastructure to implement the MNIST example above. ```python inputs = keras.Input(shape=(784,), dtype="float32") x = keras.layers.Dense(32, activation="relu")(inputs) x = keras.layers.Dense(32, activation="relu")(x) outputs = keras.layers.Dense(10)(x) model = keras.Model(inputs, outputs) # Specify the loss, optimizer, and metrics with `compile()`. model.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=keras.optimizers.Adam(learning_rate=1e-3), metrics=[keras.metrics.SparseCategoricalAccuracy()], ) # Train the model with the dataset for 2 epochs. model.fit(dataset, epochs=2) model.predict(dataset) model.evaluate(dataset) ``` <div class="k-default-codeblock"> ``` Epoch 1/2 938/938 [==============================] - 2s 1ms/step - loss: 0.3988 - sparse_categorical_accuracy: 0.8862 Epoch 2/2 938/938 [==============================] - 1s 1ms/step - loss: 0.1866 - sparse_categorical_accuracy: 0.9461 938/938 [==============================] - 1s 803us/step 938/938 [==============================] - 1s 903us/step - loss: 0.1536 - sparse_categorical_accuracy: 0.9543 [0.15355238318443298, 0.9542833566665649] ``` </div> You can always subclass the `Model` class (it works exactly like subclassing `Layer`) if you want to leverage built-in training loops for your OO models. Just override the `Model.train_step()` to customize what happens in `fit()` while retaining support for the built-in infrastructure features outlined above -- callbacks, zero-code distribution support, and step fusing support. You may also override `test_step()` to customize what happens in `evaluate()`, and override `predict_step()` to customize what happens in `predict()`. For more information, please refer to [this guide](https://keras.io/guides/customizing_what_happens_in_fit/). ```python class CustomModel(keras.Model): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.loss_tracker = keras.metrics.Mean(name="loss") self.accuracy = keras.metrics.SparseCategoricalAccuracy() self.loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True) self.optimizer = keras.optimizers.Adam(learning_rate=1e-3) def train_step(self, data): # Unpack the data. Its structure depends on your model and # on what you pass to `fit()`. x, y = data with tf.GradientTape() as tape: y_pred = self(x, training=True) # Forward pass loss = self.loss_fn(y, y_pred) gradients = tape.gradient(loss, self.trainable_weights) self.optimizer.apply_gradients(zip(gradients, self.trainable_weights)) # Update metrics (includes the metric that tracks the loss) self.loss_tracker.update_state(loss) self.accuracy.update_state(y, y_pred) # Return a dict mapping metric names to current value return {"loss": self.loss_tracker.result(), "accuracy": self.accuracy.result()} @property def metrics(self): # We list our `Metric` objects here so that `reset_states()` can be # called automatically at the start of each epoch. return [self.loss_tracker, self.accuracy] inputs = keras.Input(shape=(784,), dtype="float32") x = keras.layers.Dense(32, activation="relu")(inputs) x = keras.layers.Dense(32, activation="relu")(x) outputs = keras.layers.Dense(10)(x) model = CustomModel(inputs, outputs) model.compile() model.fit(dataset, epochs=2) ``` <div class="k-default-codeblock"> ``` Epoch 1/2 938/938 [==============================] - 1s 1ms/step - loss: 0.3952 - accuracy: 0.8208 Epoch 2/2 938/938 [==============================] - 1s 1ms/step - loss: 0.2055 - accuracy: 0.9364 <keras.src.callbacks.History at 0x7f12882deb10> ``` </div> --- ## End-to-end experiment example 1: variational autoencoders. Here are some of the things you've learned so far: - A `Layer` encapsulates a state (created in `__init__` or `build`) and some computation (defined in `call`). - Layers can be recursively nested to create new, bigger computation blocks. - You can easily write highly hackable training loops by opening a `GradientTape`, calling your model inside the tape's scope, then retrieving gradients and applying them via an optimizer. - You can speed up your training loops using the `@tf.function` decorator. - Layers can create and track losses (typically regularization losses) via `self.add_loss()`. Let's put all of these things together into an end-to-end example: we're going to implement a Variational AutoEncoder (VAE). We'll train it on MNIST digits. Our VAE will be a subclass of `Layer`, built as a nested composition of layers that subclass `Layer`. It will feature a regularization loss (KL divergence). Below is our model definition. First, we have an `Encoder` class, which uses a `Sampling` layer to map a MNIST digit to a latent-space triplet `(z_mean, z_log_var, z)`. ```python from tensorflow.keras import layers class Sampling(layers.Layer): """Uses (z_mean, z_log_var) to sample z, the vector encoding a digit.""" def call(self, inputs): z_mean, z_log_var = inputs batch = tf.shape(z_mean)[0] dim = tf.shape(z_mean)[1] epsilon = keras.backend.random_normal(shape=(batch, dim)) return z_mean + tf.exp(0.5 * z_log_var) * epsilon class Encoder(layers.Layer): """Maps MNIST digits to a triplet (z_mean, z_log_var, z).""" def __init__(self, latent_dim=32, intermediate_dim=64, **kwargs): super().__init__(**kwargs) self.dense_proj = layers.Dense(intermediate_dim, activation=tf.nn.relu) self.dense_mean = layers.Dense(latent_dim) self.dense_log_var = layers.Dense(latent_dim) self.sampling = Sampling() def call(self, inputs): x = self.dense_proj(inputs) z_mean = self.dense_mean(x) z_log_var = self.dense_log_var(x) z = self.sampling((z_mean, z_log_var)) return z_mean, z_log_var, z ``` Next, we have a `Decoder` class, which maps the probabilistic latent space coordinates back to a MNIST digit. ```python class Decoder(layers.Layer): """Converts z, the encoded digit vector, back into a readable digit.""" def __init__(self, original_dim, intermediate_dim=64, **kwargs): super().__init__(**kwargs) self.dense_proj = layers.Dense(intermediate_dim, activation=tf.nn.relu) self.dense_output = layers.Dense(original_dim, activation=tf.nn.sigmoid) def call(self, inputs): x = self.dense_proj(inputs) return self.dense_output(x) ``` Finally, our `VariationalAutoEncoder` composes together an encoder and a decoder, and creates a KL divergence regularization loss via `add_loss()`. ```python class VariationalAutoEncoder(layers.Layer): """Combines the encoder and decoder into an end-to-end model for training.""" def __init__(self, original_dim, intermediate_dim=64, latent_dim=32, **kwargs): super().__init__(**kwargs) self.original_dim = original_dim self.encoder = Encoder(latent_dim=latent_dim, intermediate_dim=intermediate_dim) self.decoder = Decoder(original_dim, intermediate_dim=intermediate_dim) def call(self, inputs): z_mean, z_log_var, z = self.encoder(inputs) reconstructed = self.decoder(z) # Add KL divergence regularization loss. kl_loss = -0.5 * tf.reduce_mean( z_log_var - tf.square(z_mean) - tf.exp(z_log_var) + 1 ) self.add_loss(kl_loss) return reconstructed ``` Now, let's write a training loop. Our training step is decorated with a `@tf.function` to compile into a super fast graph function. ```python # Our model. vae = VariationalAutoEncoder(original_dim=784, intermediate_dim=64, latent_dim=32) # Loss and optimizer. loss_fn = keras.losses.MeanSquaredError() optimizer = keras.optimizers.Adam(learning_rate=1e-3) # Prepare a dataset. (x_train, _), _ = keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( x_train.reshape(60000, 784).astype("float32") / 255 ) dataset = dataset.shuffle(buffer_size=1024).batch(32) @tf.function def training_step(x): with tf.GradientTape() as tape: reconstructed = vae(x) # Compute input reconstruction. # Compute loss. loss = loss_fn(x, reconstructed) loss += sum(vae.losses) # Add KLD term. # Update the weights of the VAE. grads = tape.gradient(loss, vae.trainable_weights) optimizer.apply_gradients(zip(grads, vae.trainable_weights)) return loss losses = [] # Keep track of the losses over time. for step, x in enumerate(dataset): loss = training_step(x) # Logging. losses.append(float(loss)) if step % 100 == 0: print("Step:", step, "Loss:", sum(losses) / len(losses)) # Stop after 1000 steps. # Training the model to convergence is left # as an exercise to the reader. if step >= 1000: break ``` <div class="k-default-codeblock"> ``` Step: 0 Loss: 0.327964723110199 Step: 100 Loss: 0.1264294325420172 Step: 200 Loss: 0.10020137063009822 Step: 300 Loss: 0.08990733624989804 Step: 400 Loss: 0.0848350128962512 Step: 500 Loss: 0.081730601152855 Step: 600 Loss: 0.07928250531066278 Step: 700 Loss: 0.07791465763720058 Step: 800 Loss: 0.07670121117217116 Step: 900 Loss: 0.07572131670937025 Step: 1000 Loss: 0.07478016477960212 ``` </div> As you can see, building and training this type of model in Keras is quick and painless. --- ## End-to-end experiment example 2: hypernetworks. Let's take a look at another kind of research experiment: hypernetworks. The idea is to use a small deep neural network (the hypernetwork) to generate the weights for a larger network (the main network). Let's implement a really trivial hypernetwork: we'll use a small 2-layer network to generate the weights of a larger 3-layer network. ```python import numpy as np input_dim = 784 classes = 10 # This is the main network we'll actually use to predict labels. main_network = keras.Sequential( [ keras.layers.Dense(64, activation=tf.nn.relu), keras.layers.Dense(classes), ] ) # It doesn't need to create its own weights, so let's mark its layers # as already built. That way, calling `main_network` won't create new variables. for layer in main_network.layers: layer.built = True # This is the number of weight coefficients to generate. Each layer in the # main network requires output_dim * input_dim + output_dim coefficients. num_weights_to_generate = (classes * 64 + classes) + (64 * input_dim + 64) # This is the hypernetwork that generates the weights of the `main_network` above. hypernetwork = keras.Sequential( [ keras.layers.Dense(16, activation=tf.nn.relu), keras.layers.Dense(num_weights_to_generate, activation=tf.nn.sigmoid), ] ) ``` This is our training loop. For each batch of data: - We use `hypernetwork` to generate an array of weight coefficients, `weights_pred` - We reshape these coefficients into kernel & bias tensors for the `main_network` - We run the forward pass of the `main_network` to compute the actual MNIST predictions - We run backprop through the weights of the `hypernetwork` to minimize the final classification loss ```python # Loss and optimizer. loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True) optimizer = keras.optimizers.Adam(learning_rate=1e-4) # Prepare a dataset. (x_train, y_train), _ = keras.datasets.mnist.load_data() dataset = tf.data.Dataset.from_tensor_slices( (x_train.reshape(60000, 784).astype("float32") / 255, y_train) ) # We'll use a batch size of 1 for this experiment. dataset = dataset.shuffle(buffer_size=1024).batch(1) @tf.function def train_step(x, y): with tf.GradientTape() as tape: # Predict weights for the outer model. weights_pred = hypernetwork(x) # Reshape them to the expected shapes for w and b for the outer model. # Layer 0 kernel. start_index = 0 w0_shape = (input_dim, 64) w0_coeffs = weights_pred[:, start_index : start_index + np.prod(w0_shape)] w0 = tf.reshape(w0_coeffs, w0_shape) start_index += np.prod(w0_shape) # Layer 0 bias. b0_shape = (64,) b0_coeffs = weights_pred[:, start_index : start_index + np.prod(b0_shape)] b0 = tf.reshape(b0_coeffs, b0_shape) start_index += np.prod(b0_shape) # Layer 1 kernel. w1_shape = (64, classes) w1_coeffs = weights_pred[:, start_index : start_index + np.prod(w1_shape)] w1 = tf.reshape(w1_coeffs, w1_shape) start_index += np.prod(w1_shape) # Layer 1 bias. b1_shape = (classes,) b1_coeffs = weights_pred[:, start_index : start_index + np.prod(b1_shape)] b1 = tf.reshape(b1_coeffs, b1_shape) start_index += np.prod(b1_shape) # Set the weight predictions as the weight variables on the outer model. main_network.layers[0].kernel = w0 main_network.layers[0].bias = b0 main_network.layers[1].kernel = w1 main_network.layers[1].bias = b1 # Inference on the outer model. preds = main_network(x) loss = loss_fn(y, preds) # Train only inner model. grads = tape.gradient(loss, hypernetwork.trainable_weights) optimizer.apply_gradients(zip(grads, hypernetwork.trainable_weights)) return loss losses = [] # Keep track of the losses over time. for step, (x, y) in enumerate(dataset): loss = train_step(x, y) # Logging. losses.append(float(loss)) if step % 100 == 0: print("Step:", step, "Loss:", sum(losses) / len(losses)) # Stop after 1000 steps. # Training the model to convergence is left # as an exercise to the reader. if step >= 1000: break ``` <div class="k-default-codeblock"> ``` Step: 0 Loss: 1.2556400299072266 Step: 100 Loss: 2.5476599238296544 Step: 200 Loss: 2.1573401512346457 Step: 300 Loss: 1.918845683104201 Step: 400 Loss: 1.8333103110458693 Step: 500 Loss: 1.7798502995807328 Step: 600 Loss: 1.6786754470412841 Step: 700 Loss: 1.603073729164222 Step: 800 Loss: 1.532632532587611 Step: 900 Loss: 1.499125787840248 Step: 1000 Loss: 1.4645580406379608 ``` </div> Implementing arbitrary research ideas with Keras is straightforward and highly productive. Imagine trying out 25 ideas per day (20 minutes per experiment on average)! Keras has been designed to go from idea to results as fast as possible, because we believe this is the key to doing great research. We hope you enjoyed this quick introduction. Let us know what you build with Keras!
keras-io/guides/md/intro_to_keras_for_researchers.md/0
{ "file_path": "keras-io/guides/md/intro_to_keras_for_researchers.md", "repo_id": "keras-io", "token_count": 15927 }
106
# Tailor the search space **Authors:** Luca Invernizzi, James Long, Francois Chollet, Tom O'Malley, Haifeng Jin<br> **Date created:** 2019/05/31<br> **Last modified:** 2021/10/27<br> **Description:** Tune a subset of the hyperparameters without changing the hypermodel. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/guides/ipynb/keras_tuner/tailor_the_search_space.ipynb) <span class="k-dot">•</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/guides/keras_tuner/tailor_the_search_space.py) ```python !pip install keras-tuner -q ``` In this guide, we will show how to tailor the search space without changing the `HyperModel` code directly. For example, you can only tune some of the hyperparameters and keep the rest fixed, or you can override the compile arguments, like `optimizer`, `loss`, and `metrics`. --- ## The default value of a hyperparameter Before we tailor the search space, it is important to know that every hyperparameter has a default value. This default value is used as the hyperparameter value when not tuning it during our tailoring the search space. Whenever you register a hyperparameter, you can use the `default` argument to specify a default value: ```python hp.Int("units", min_value=32, max_value=128, step=32, default=64) ``` If you don't, hyperparameters always have a default default (for `Int`, it is equal to `min_value`). In the following model-building function, we specified the default value for the `units` hyperparameter as 64. ```python import keras from keras import layers import keras_tuner import numpy as np def build_model(hp): model = keras.Sequential() model.add(layers.Flatten()) model.add( layers.Dense( units=hp.Int("units", min_value=32, max_value=128, step=32, default=64) ) ) if hp.Boolean("dropout"): model.add(layers.Dropout(rate=0.25)) model.add(layers.Dense(units=10, activation="softmax")) model.compile( optimizer=keras.optimizers.Adam( learning_rate=hp.Choice("learning_rate", values=[1e-2, 1e-3, 1e-4]) ), loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) return model ``` We will reuse this search space in the rest of the tutorial by overriding the hyperparameters without defining a new search space. --- ## Search a few and fix the rest If you have an existing hypermodel, and you want to search over only a few hyperparameters, and keep the rest fixed, you don't have to change the code in the model-building function or the `HyperModel`. You can pass a `HyperParameters` to the `hyperparameters` argument to the tuner constructor with all the hyperparameters you want to tune. Specify `tune_new_entries=False` to prevent it from tuning other hyperparameters, the default value of which would be used. In the following example, we only tune the `learning_rate` hyperparameter, and changed its type and value ranges. ```python hp = keras_tuner.HyperParameters() # This will override the `learning_rate` parameter with your # own selection of choices hp.Float("learning_rate", min_value=1e-4, max_value=1e-2, sampling="log") tuner = keras_tuner.RandomSearch( hypermodel=build_model, hyperparameters=hp, # Prevents unlisted parameters from being tuned tune_new_entries=False, objective="val_accuracy", max_trials=3, overwrite=True, directory="my_dir", project_name="search_a_few", ) # Generate random data x_train = np.random.rand(100, 28, 28, 1) y_train = np.random.randint(0, 10, (100, 1)) x_val = np.random.rand(20, 28, 28, 1) y_val = np.random.randint(0, 10, (20, 1)) # Run the search tuner.search(x_train, y_train, epochs=1, validation_data=(x_val, y_val)) ``` <div class="k-default-codeblock"> ``` Trial 3 Complete [00h 00m 01s] val_accuracy: 0.20000000298023224 ``` </div> <div class="k-default-codeblock"> ``` Best val_accuracy So Far: 0.25 Total elapsed time: 00h 00m 03s ``` </div> If you summarize the search space, you will see only one hyperparameter. ```python tuner.search_space_summary() ``` <div class="k-default-codeblock"> ``` Search space summary Default search space size: 1 learning_rate (Float) {'default': 0.0001, 'conditions': [], 'min_value': 0.0001, 'max_value': 0.01, 'step': None, 'sampling': 'log'} ``` </div> --- ## Fix a few and tune the rest In the example above we showed how to tune only a few hyperparameters and keep the rest fixed. You can also do the reverse: only fix a few hyperparameters and tune all the rest. In the following example, we fixed the value of the `learning_rate` hyperparameter. Pass a `hyperparameters` argument with a `Fixed` entry (or any number of `Fixed` entries). Also remember to specify `tune_new_entries=True`, which allows us to tune the rest of the hyperparameters. ```python hp = keras_tuner.HyperParameters() hp.Fixed("learning_rate", value=1e-4) tuner = keras_tuner.RandomSearch( build_model, hyperparameters=hp, tune_new_entries=True, objective="val_accuracy", max_trials=3, overwrite=True, directory="my_dir", project_name="fix_a_few", ) tuner.search(x_train, y_train, epochs=1, validation_data=(x_val, y_val)) ``` <div class="k-default-codeblock"> ``` Trial 3 Complete [00h 00m 01s] val_accuracy: 0.15000000596046448 ``` </div> <div class="k-default-codeblock"> ``` Best val_accuracy So Far: 0.15000000596046448 Total elapsed time: 00h 00m 03s ``` </div> If you summarize the search space, you will see the `learning_rate` is marked as fixed, and the rest of the hyperparameters are being tuned. ```python tuner.search_space_summary() ``` <div class="k-default-codeblock"> ``` Search space summary Default search space size: 3 learning_rate (Fixed) {'conditions': [], 'value': 0.0001} units (Int) {'default': 64, 'conditions': [], 'min_value': 32, 'max_value': 128, 'step': 32, 'sampling': 'linear'} dropout (Boolean) {'default': False, 'conditions': []} ``` </div> --- ## Overriding compilation arguments If you have a hypermodel for which you want to change the existing optimizer, loss, or metrics, you can do so by passing these arguments to the tuner constructor: ```python tuner = keras_tuner.RandomSearch( build_model, optimizer=keras.optimizers.Adam(1e-3), loss="mse", metrics=[ "sparse_categorical_crossentropy", ], objective="val_loss", max_trials=3, overwrite=True, directory="my_dir", project_name="override_compile", ) tuner.search(x_train, y_train, epochs=1, validation_data=(x_val, y_val)) ``` <div class="k-default-codeblock"> ``` Trial 3 Complete [00h 00m 01s] val_loss: 29.39796257019043 ``` </div> <div class="k-default-codeblock"> ``` Best val_loss So Far: 29.39630699157715 Total elapsed time: 00h 00m 04s ``` </div> If you get the best model, you can see the loss function has changed to MSE. ```python tuner.get_best_models()[0].loss ``` <div class="k-default-codeblock"> ``` /usr/local/python/3.10.13/lib/python3.10/site-packages/keras/src/saving/saving_lib.py:388: UserWarning: Skipping variable loading for optimizer 'adam', because it has 2 variables whereas the saved optimizer has 10 variables. trackable.load_own_variables(weights_store.get(inner_path)) 'mse' ``` </div> --- ## Tailor the search space of pre-build HyperModels You can also use these techniques with the pre-build models in KerasTuner, like `HyperResNet` or `HyperXception`. However, to see what hyperparameters are in these pre-build `HyperModel`s, you will have to read the source code. In the following example, we only tune the `learning_rate` of `HyperXception` and fixed all the rest of the hyperparameters. Because the default loss of `HyperXception` is `categorical_crossentropy`, which expect the labels to be one-hot encoded, which doesn't match our raw integer label data, we need to change it by overriding the `loss` in the compile args to `sparse_categorical_crossentropy`. ```python hypermodel = keras_tuner.applications.HyperXception(input_shape=(28, 28, 1), classes=10) hp = keras_tuner.HyperParameters() # This will override the `learning_rate` parameter with your # own selection of choices hp.Choice("learning_rate", values=[1e-2, 1e-3, 1e-4]) tuner = keras_tuner.RandomSearch( hypermodel, hyperparameters=hp, # Prevents unlisted parameters from being tuned tune_new_entries=False, # Override the loss. loss="sparse_categorical_crossentropy", metrics=["accuracy"], objective="val_accuracy", max_trials=3, overwrite=True, directory="my_dir", project_name="helloworld", ) # Run the search tuner.search(x_train, y_train, epochs=1, validation_data=(x_val, y_val)) tuner.search_space_summary() ``` <div class="k-default-codeblock"> ``` Trial 3 Complete [00h 00m 19s] val_accuracy: 0.15000000596046448 ``` </div> <div class="k-default-codeblock"> ``` Best val_accuracy So Far: 0.20000000298023224 Total elapsed time: 00h 00m 58s Search space summary Default search space size: 1 learning_rate (Choice) {'default': 0.01, 'conditions': [], 'values': [0.01, 0.001, 0.0001], 'ordered': True} ``` </div>
keras-io/guides/md/keras_tuner/tailor_the_search_space.md/0
{ "file_path": "keras-io/guides/md/keras_tuner/tailor_the_search_space.md", "repo_id": "keras-io", "token_count": 3317 }
107
<meta http-equiv="refresh" content="0; URL='https://keras.io/api/keras_nlp/modeling_layers/sine_position_encoding/'" />
keras-io/redirects/api/keras_nlp/layers/sine_position_encoding/index.html/0
{ "file_path": "keras-io/redirects/api/keras_nlp/layers/sine_position_encoding/index.html", "repo_id": "keras-io", "token_count": 49 }
108
<meta http-equiv="refresh" content="0; URL='https://keras.io/examples/vision/nl_image_search/'" />
keras-io/redirects/examples/nlp/nl_image_search/index.html/0
{ "file_path": "keras-io/redirects/examples/nlp/nl_image_search/index.html", "repo_id": "keras-io", "token_count": 38 }
109
<meta http-equiv="refresh" content="0; URL='https://keras.io/api/layers/regularization_layers/'" />
keras-io/redirects/layers/noise/index.html/0
{ "file_path": "keras-io/redirects/layers/noise/index.html", "repo_id": "keras-io", "token_count": 38 }
110
<meta http-equiv="refresh" content="0; URL='https://keras.io/api/layers/regularizers/'" />
keras-io/redirects/regularizers/index.html/0
{ "file_path": "keras-io/redirects/regularizers/index.html", "repo_id": "keras-io", "token_count": 35 }
111
from guides_master import GUIDES_MASTER from examples_master import EXAMPLES_MASTER from api_master import API_MASTER from keras2_api_master import KERAS2_API_MASTER MASTER = { "path": "/", "title": "Keras: the Python Deep Learning library", "children": [ { "path": "about", "title": "About Keras", }, { "path": "getting_started/", "title": "Getting started", "children": [ { "path": "intro_to_keras_for_engineers", "title": "Introduction to Keras for engineers", }, { "path": "ecosystem", "title": "The Keras ecosystem", }, { "path": "faq", "title": "Frequently Asked Questions", "outline": False, }, ], }, GUIDES_MASTER, API_MASTER, KERAS2_API_MASTER, EXAMPLES_MASTER, { "path": "keras_tuner/", "title": "KerasTuner: Hyperparameter Tuning", }, { "path": "keras_cv/", "title": "KerasCV: Computer Vision Workflows", }, { "path": "keras_nlp/", "title": "KerasNLP: Natural Language Workflows", }, ], }
keras-io/scripts/master.py/0
{ "file_path": "keras-io/scripts/master.py", "repo_id": "keras-io", "token_count": 817 }
112
# KerasCV Metrics KerasCV metrics are `keras.metrics.Metric` subclasses for computer vision specific use cases. See also the [*COCO* metrics usage guide](https://keras.io/guides/keras_cv/coco_metrics/). {{toc}}
keras-io/templates/api/keras_cv/metrics/index.md/0
{ "file_path": "keras-io/templates/api/keras_cv/metrics/index.md", "repo_id": "keras-io", "token_count": 75 }
113
# Layer activation functions ## Usage of activations Activations can either be used through an `Activation` layer, or through the `activation` argument supported by all forward layers: ```python model.add(layers.Dense(64, activation=activations.relu)) ``` This is equivalent to: ```python from keras import layers from keras import activations model.add(layers.Dense(64)) model.add(layers.Activation(activations.relu)) ``` All built-in activations may also be passed via their string identifier: ```python model.add(layers.Dense(64, activation='relu')) ``` --- ## Available activations {{autogenerated}} --- ## Creating custom activations You can also use a callable as an activation (in this case it should take a tensor and return a tensor of the same shape and dtype): ```python model.add(layers.Dense(64, activation=keras.ops.tanh)) ``` --- ## About "advanced activation" layers Activations that are more complex than a simple function (eg. learnable activations, which maintain a state) are available as [Advanced Activation layers](/api/layers/activation_layers/).
keras-io/templates/api/layers/activations.md/0
{ "file_path": "keras-io/templates/api/layers/activations.md", "repo_id": "keras-io", "token_count": 327 }
114
# KerasNLP <a class="github-button" href="https://github.com/keras-team/keras-nlp" data-size="large" data-show-count="true" aria-label="Star keras-team/keras-nlp on GitHub">Star</a> KerasNLP is a natural language processing library that works natively with TensorFlow, JAX, or PyTorch. Built on Keras 3, these models, layers, metrics, and tokenizers can be trained and serialized in any framework and re-used in another without costly migrations. KerasNLP supports users through their entire development cycle. Our workflows are built from modular components that have state-of-the-art preset weights when used out-of-the-box and are easily customizable when more control is needed. This library is an extension of the core Keras API; all high-level modules are [`Layers`](/api/layers/) or [`Models`](/api/models/) that receive that same level of polish as core Keras. If you are familiar with Keras, congratulations! You already understand most of KerasNLP. See our [Getting Started guide](/guides/keras_nlp/getting_started) to start learning our API. We welcome [contributions](https://github.com/keras-team/keras-nlp/blob/master/CONTRIBUTING.md). --- ## Quick links * [KerasNLP API reference](/api/keras_nlp/) * [KerasNLP on GitHub](https://github.com/keras-team/keras-nlp) * [List of available pre-trained models](/api/keras_nlp/models/) ## Guides * [Getting Started with KerasNLP](/guides/keras_nlp/getting_started/) * [Pretraining a Transformer from scratch](/guides/keras_nlp/transformer_pretraining/) ## Examples * [GPT-2 text generation](/examples/generative/gpt2_text_generation_with_kerasnlp/) * [Parameter-efficient fine-tuning of GPT-2 with LoRA](/examples/nlp/parameter_efficient_finetuning_of_gpt2_with_lora/) * [Semantic Similarity](/examples/nlp/semantic_similarity_with_keras_nlp/) * [Sentence embeddings using Siamese RoBERTa-networks](/examples/nlp/sentence_embeddings_with_sbert/) * [Data Parallel Training with tf.distribute](/examples/nlp/data_parallel_training_with_keras_nlp/) * [English-to-Spanish translation](/examples/nlp/neural_machine_translation_with_keras_nlp/) * [GPT text generation from scratch](/examples/generative/text_generation_gpt/) * [Text Classification using FNet](/examples/nlp/fnet_classification_with_keras_nlp/) --- ## Installation KerasNLP supports both Keras 2 and Keras 3. We recommend Keras 3 for all new users, as it enables using KerasNLP models and layers with JAX, TensorFlow and PyTorch. ### Keras 2 Installation To install the latest KerasNLP release with Keras 2, simply run: ``` pip install --upgrade keras-nlp ``` ### Keras 3 Installation There are currently two ways to install Keras 3 with KerasNLP. To install the stable versions of KerasNLP and Keras 3, you should install Keras 3 **after** installing KerasNLP. This is a temporary step while TensorFlow is pinned to Keras 2, and will no longer be necessary after TensorFlow 2.16. ``` pip install --upgrade keras-nlp pip install --upgrade keras ``` To install the latest nightly changes for both KerasNLP and Keras, you can use our nightly package. ``` pip install --upgrade keras-nlp-nightly ``` **Note:** Keras 3 will not function with TensorFlow 2.14 or earlier. See [Getting started with Keras](/getting_started/) for more information on installing Keras generally and compatibility with different frameworks. --- ## Quickstart Fine-tune BERT on a small sentiment analysis task using the [`keras_nlp.models`](/api/keras_nlp/models/) API: ```python import os os.environ["KERAS_BACKEND"] = "tensorflow" # Or "jax" or "torch"! import keras_nlp import tensorflow_datasets as tfds imdb_train, imdb_test = tfds.load( "imdb_reviews", split=["train", "test"], as_supervised=True, batch_size=16, ) # Load a BERT model. classifier = keras_nlp.models.BertClassifier.from_preset( "bert_base_en_uncased", num_classes=2, ) # Fine-tune on IMDb movie reviews. classifier.fit(imdb_train, validation_data=imdb_test) # Predict two new examples. classifier.predict(["What an amazing movie!", "A total waste of my time."]) ``` --- ## Compatibility We follow [Semantic Versioning](https://semver.org/), and plan to provide backwards compatibility guarantees both for code and saved models built with our components. While we continue with pre-release `0.y.z` development, we may break compatibility at any time and APIs should not be consider stable. ## Disclaimer KerasNLP provides access to pre-trained models via the `keras_nlp.models` API. These pre-trained models are provided on an "as is" basis, without warranties or conditions of any kind. The following underlying models are provided by third parties, and subject to separate licenses: BART, DeBERTa, DistilBERT, GPT-2, OPT, RoBERTa, Whisper, and XLM-RoBERTa. ## Citing KerasNLP If KerasNLP helps your research, we appreciate your citations. Here is the BibTeX entry: ```bibtex @misc{kerasnlp2022, title={KerasNLP}, author={Watson, Matthew, and Qian, Chen, and Bischof, Jonathan and Chollet, Fran\c{c}ois and others}, year={2022}, howpublished={\url{https://github.com/keras-team/keras-nlp}}, } ```
keras-io/templates/keras_nlp/index.md/0
{ "file_path": "keras-io/templates/keras_nlp/index.md", "repo_id": "keras-io", "token_count": 1688 }
115
# KerasNLP Benchmarks This directory houses a collection of scripts for benchmarking APIs and utility functions which KerasNLP provides. ## Text Generation For benchmarking text generation functions, the following command can be run from the root of the repository: ```sh python3 ./keras_nlp/benchmarks/text_generation.py ``` On running this script on Google Colab (with 3090 GPU, and TensorFlow 2.11.0), the following results were obtained: | **Decoding Strategy** | **Graph Mode (sec)** | **Graph Mode with XLA (sec)** | |:---------------------: |:--------------------: |:-----------------------------: | | Greedy Search | 470.23 | 61.79 | | Beam Search | 530.13 | 189.61 | | Top-k Search | 374.05 | 62.87 | | Top-p Search | 401.97 | 260.31 | To change the configuration, say, for example, number of layers in the transformer model used for inference, the user can modify the config dictionaries given at the top of the script. ## Sentiment Analysis For benchmarking classification models, the following command can be run from the root of the repository: ```sh python3 keras_nlp/benchmarks/sentiment_analysis.py \ --model="BertClassifier" \ --preset="bert_small_en_uncased" \ --learning_rate=5e-5 \ --num_epochs=5 \ --batch_size=32 --mixed_precision_policy="mixed_float16" ``` flag `--model` specifies the model name, and `--preset` specifies the preset under testing. `--preset` could be None, while `--model` is required. Other flags are common training flags. This script outputs: - validation accuracy for each epoch. - testing accuracy after training is done. - total elapsed time (in seconds).
keras-nlp/benchmarks/README.md/0
{ "file_path": "keras-nlp/benchmarks/README.md", "repo_id": "keras-nlp", "token_count": 705 }
116
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import keras_nlp.layers.modeling.transformer_layer_utils as utils from keras_nlp.backend import ops from keras_nlp.backend import random from keras_nlp.tests.test_case import TestCase class TransformerLayerUtilsTest(TestCase): def test_compute_causal_mask(self): mask = utils.compute_causal_mask(1, 2, 2) self.assertAllEqual(mask, [[[1, 0], [1, 1]]]) def test_merge_padding_and_attention_mask(self): padding_mask = ops.array([[1, 1, 0]]) attention_mask = ops.array([[[0, 0, 1], [0, 1, 0], [1, 0, 0]]]) inputs = random.uniform(shape=[1, 3, 2]) merged_mask = utils.merge_padding_and_attention_mask( inputs, padding_mask, attention_mask, ) self.assertAllEqual(merged_mask, [[[0, 0, 0], [0, 1, 0], [1, 0, 0]]]) def test_bad_mask_shapes(self): with self.assertRaises(ValueError): padding_mask = ops.array([[[1, 1, 0], [1, 0, 0]]]) attention_mask = ops.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]]) inputs = random.uniform(shape=[1, 3, 2]) utils.merge_padding_and_attention_mask( inputs, padding_mask, attention_mask, ) with self.assertRaises(ValueError): padding_mask = ops.array([[1, 1, 0]]) attention_mask = ops.array([[0, 0, 1], [1, 0, 0]]) inputs = random.uniform(shape=[1, 3, 2]) utils.merge_padding_and_attention_mask( inputs, padding_mask, attention_mask, )
keras-nlp/keras_nlp/layers/modeling/transformer_layer_utils_test.py/0
{ "file_path": "keras-nlp/keras_nlp/layers/modeling/transformer_layer_utils_test.py", "repo_id": "keras-nlp", "token_count": 976 }
117
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from keras_nlp.api_export import keras_nlp_export from keras_nlp.backend import keras from keras_nlp.utils.tensor_utils import is_float_dtype @keras_nlp_export("keras_nlp.metrics.EditDistance") class EditDistance(keras.metrics.Metric): """Edit Distance metric. This class implements the edit distance metric, sometimes called Levenshtein Distance, as a `keras.metrics.Metric`. Essentially, edit distance is the least number of operations required to convert one string to another, where an operation can be one of substitution, deletion or insertion. By default, this metric will compute the normalized score, where the unnormalized edit distance score is divided by the number of tokens in the reference text. This class can be used to compute character error rate (CER) and word error rate (WER). You simply have to pass the appropriate tokenized text, and set `normalize` to True. Note on input shapes: `y_true` and `y_pred` can either be tensors of rank 1 or ragged tensors of rank 2. These tensors contain tokenized text. Args: normalize: bool. If True, the computed number of operations (substitutions + deletions + insertions) across all samples is divided by the aggregate number of tokens in all reference texts. If False, number of operations are calculated for every sample, and averaged over all the samples. dtype: string or tf.dtypes.Dtype. Precision of metric computation. If not specified, it defaults to `"float32"`. name: string. Name of the metric instance. **kwargs: Other keyword arguments. References: - [Morris et al.](https://www.researchgate.net/publication/221478089) Examples: Various Input Types. Single-level Python list. >>> edit_distance = keras_nlp.metrics.EditDistance() >>> y_true = "the tiny little cat was found under the big funny bed".split() >>> y_pred = "the cat was found under the bed".split() >>> edit_distance(y_true, y_pred) <tf.Tensor: shape=(), dtype=float32, numpy=0.36363637> Nested Python list. >>> edit_distance = keras_nlp.metrics.EditDistance() >>> y_true = [ ... "the tiny little cat was found under the big funny bed".split(), ... "it is sunny today".split(), ... ] >>> y_pred = [ ... "the cat was found under the bed".split(), ... "it is sunny but with a hint of cloud cover".split(), ... ] >>> edit_distance(y_true, y_pred) <tf.Tensor: shape=(), dtype=float32, numpy=0.73333335> """ def __init__( self, normalize=True, dtype="float32", name="edit_distance", **kwargs, ): super().__init__(name=name, dtype=dtype, **kwargs) if not is_float_dtype(dtype): raise ValueError( "`dtype` must be a floating point type. " f"Received: dtype={dtype}" ) self.normalize = normalize self._aggregate_unnormalized_edit_distance = self.add_weight( shape=(), initializer="zeros", dtype=self.dtype, name="aggregate_unnormalized_edit_distance", ) if normalize: self._aggregate_reference_length = self.add_weight( shape=(), initializer="zeros", dtype=self.dtype, name="aggregate_reference_length", ) else: self._number_of_samples = self.add_weight( shape=(), initializer="zeros", dtype=self.dtype, name="number_of_samples", ) def update_state(self, y_true, y_pred, sample_weight=None): def validate_and_fix_rank(inputs, tensor_name): if not isinstance(inputs, (tf.Tensor, tf.RaggedTensor)): inputs = tf.ragged.constant(inputs) if inputs.shape.rank == 1: return tf.RaggedTensor.from_tensor(inputs[tf.newaxis]) elif inputs.shape.rank == 2: return inputs else: raise ValueError( f"{tensor_name} must be of rank 1 or 2. " f"Found rank: {inputs.shape.rank}" ) y_true = validate_and_fix_rank(y_true, "y_true") y_pred = validate_and_fix_rank(y_pred, "y_pred") if self.normalize: self._aggregate_reference_length.assign_add( tf.cast(tf.size(y_true.flat_values), dtype=self.dtype) ) def calculate_edit_distance(args): reference, hypothesis = args reference = tf.sparse.from_dense([reference]) hypothesis = tf.sparse.from_dense([hypothesis]) edit_distance = tf.squeeze( tf.edit_distance( hypothesis=hypothesis, truth=reference, normalize=False, ) ) self._aggregate_unnormalized_edit_distance.assign_add( tf.cast(edit_distance, dtype=self.dtype) ) if not self.normalize: self._number_of_samples.assign_add(tf.cast(1, dtype=self.dtype)) return 0 _ = tf.map_fn( fn=calculate_edit_distance, elems=(y_true, y_pred), fn_output_signature="int8", ) def result(self): if self.normalize: if self._aggregate_reference_length == 0: return 0.0 return ( self._aggregate_unnormalized_edit_distance / self._aggregate_reference_length ) if self._number_of_samples == 0: return 0.0 return ( self._aggregate_unnormalized_edit_distance / self._number_of_samples ) def reset_state(self): self._aggregate_unnormalized_edit_distance.assign(0.0) if self.normalize: self._aggregate_reference_length.assign(0.0) else: self._number_of_samples.assign(0.0) def get_config(self): config = super().get_config() config.update({"normalize": self.normalize}) return config
keras-nlp/keras_nlp/metrics/edit_distance.py/0
{ "file_path": "keras-nlp/keras_nlp/metrics/edit_distance.py", "repo_id": "keras-nlp", "token_count": 3060 }
118
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import tensorflow as tf from absl import logging from keras_nlp.api_export import keras_nlp_export from keras_nlp.backend import ops from keras_nlp.models.bart.bart_preprocessor import BartPreprocessor from keras_nlp.models.bart.bart_presets import backbone_presets from keras_nlp.utils.keras_utils import ( convert_inputs_to_list_of_tensor_segments, ) from keras_nlp.utils.keras_utils import pack_x_y_sample_weight from keras_nlp.utils.python_utils import classproperty @keras_nlp_export("keras_nlp.models.BartSeq2SeqLMPreprocessor") class BartSeq2SeqLMPreprocessor(BartPreprocessor): """BART Seq2Seq LM preprocessor. This layer is used as preprocessor for seq2seq tasks using the BART model. This class subclasses `keras_nlp.models.BartPreprocessor` and keeps most of its functionality. It has two changes from the superclass: 1. Sets the `y` (label) and `sample_weights` fields by shifting the decoder input sequence one step towards the left. Both these fields are inferred internally, and any passed values will be ignored. 2. Drops the last token from the decoder input sequence as it does not have a successor. Args: tokenizer: A `keras_nlp.models.BartTokenizer` instance. encoder_sequence_length: The length of the packed encoder inputs. decoder_sequence_length: The length of the packed decoder inputs. Call arguments: x: A dictionary with `encoder_text` and `decoder_text` as its keys. Each value in the dictionary should be a tensor of single string sequences. Inputs may be batched or unbatched. Raw python inputs will be converted to tensors. y: Label data. Should always be `None` as the layer generates labels by shifting the decoder input sequence one step to the left. sample_weight: Label weights. Should always be `None` as the layer generates label weights by shifting the padding mask one step to the left. Examples: Directly calling the layer on data ```python preprocessor = keras_nlp.models.BartPreprocessor.from_preset("bart_base_en") # Preprocess unbatched inputs. inputs = { "encoder_text": "The fox was sleeping.", "decoder_text": "The fox was awake." } preprocessor(inputs) # Preprocess batched inputs. inputs = { "encoder_text": ["The fox was sleeping.", "The lion was quiet."], "decoder_text": ["The fox was awake.", "The lion was roaring."] } preprocessor(inputs) # Custom vocabulary. vocab = { "<s>": 0, "<pad>": 1, "</s>": 2, "Ġafter": 5, "noon": 6, "Ġsun": 7, } merges = ["Ġ a", "Ġ s", "Ġ n", "e r", "n o", "o n", "Ġs u", "Ġa f", "no on"] merges += ["Ġsu n", "Ġaf t", "Ġaft er"] tokenizer = keras_nlp.models.BartTokenizer( vocabulary=vocab, merges=merges, ) preprocessor = keras_nlp.models.BartPreprocessor( tokenizer=tokenizer, encoder_sequence_length=20, decoder_sequence_length=10, ) inputs = { "encoder_text": "The fox was sleeping.", "decoder_text": "The fox was awake." } preprocessor(inputs) ``` Mapping with `tf.data.Dataset`. ```python preprocessor = keras_nlp.models.BartPreprocessor.from_preset("bart_base_en") # Map single sentences. features = { "encoder_text": tf.constant( ["The fox was sleeping.", "The lion was quiet."] ), "decoder_text": tf.constant( ["The fox was awake.", "The lion was roaring."] ) } ds = tf.data.Dataset.from_tensor_slices(features) ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE) ``` """ def call( self, x, y=None, sample_weight=None, *, encoder_sequence_length=None, decoder_sequence_length=None, # `sequence_length` is an alias for `decoder_sequence_length` sequence_length=None, ): if y is not None or sample_weight is not None: logging.warning( "`BartSeq2SeqLMPreprocessor` infers `y` and `sample_weight` " "from the provided input data, i.e., `x`. However, non-`None`" "values have been passed for `y` or `sample_weight` or both. " "These values will be ignored." ) if encoder_sequence_length is None: encoder_sequence_length = self.encoder_sequence_length decoder_sequence_length = decoder_sequence_length or sequence_length if decoder_sequence_length is None: decoder_sequence_length = self.decoder_sequence_length x = super().call( x, encoder_sequence_length=encoder_sequence_length, decoder_sequence_length=decoder_sequence_length + 1, ) decoder_token_ids = x.pop("decoder_token_ids") decoder_padding_mask = x.pop("decoder_padding_mask") # The last token does not have a next token. Hence, we truncate it. x = { **x, "decoder_token_ids": decoder_token_ids[..., :-1], "decoder_padding_mask": decoder_padding_mask[..., :-1], } # Target `y` will be the decoder input sequence shifted one step to the # left (i.e., the next token). y = decoder_token_ids[..., 1:] sample_weight = decoder_padding_mask[..., 1:] return pack_x_y_sample_weight(x, y, sample_weight) def generate_preprocess( self, x, *, encoder_sequence_length=None, # `sequence_length` is an alias for `decoder_sequence_length` decoder_sequence_length=None, sequence_length=None, ): """Convert encoder and decoder input strings to integer token inputs for generation. Similar to calling the layer for training, this method takes in a dict containing `"encoder_text"` and `"decoder_text"`, with strings or tensor strings for values, tokenizes and packs the input, and computes a padding mask masking all inputs not filled in with a padded value. Unlike calling the layer for training, this method does not compute labels and will never append a tokenizer.end_token_id to the end of the decoder sequence (as generation is expected to continue at the end of the inputted decoder prompt). """ if not self.built: self.build(None) if isinstance(x, dict): encoder_text = x["encoder_text"] decoder_text = x["decoder_text"] else: encoder_text = x # Initialize empty prompt for the decoder. decoder_text = tf.fill((tf.shape(encoder_text)[0],), "") if encoder_sequence_length is None: encoder_sequence_length = self.encoder_sequence_length decoder_sequence_length = decoder_sequence_length or sequence_length if decoder_sequence_length is None: decoder_sequence_length = self.decoder_sequence_length # Tokenize and pack the encoder inputs. # TODO: Remove `[0]` once we have shifted to `MultiSegmentPacker`. encoder_text = convert_inputs_to_list_of_tensor_segments(encoder_text)[ 0 ] encoder_token_ids = self.tokenizer(encoder_text) encoder_token_ids, encoder_padding_mask = self.encoder_packer( encoder_token_ids, sequence_length=encoder_sequence_length, ) # Tokenize and pack the decoder inputs. decoder_text = convert_inputs_to_list_of_tensor_segments(decoder_text)[ 0 ] decoder_token_ids = self.tokenizer(decoder_text) decoder_token_ids, decoder_padding_mask = self.decoder_packer( decoder_token_ids, sequence_length=decoder_sequence_length, add_end_value=False, ) return { "encoder_token_ids": encoder_token_ids, "encoder_padding_mask": encoder_padding_mask, "decoder_token_ids": decoder_token_ids, "decoder_padding_mask": decoder_padding_mask, } def generate_postprocess( self, x, ): """Convert integer token output to strings for generation. This method reverses `generate_preprocess()`, by first removing all padding and start/end tokens, and then converting the integer sequence back to a string. """ if not self.built: self.build(None) decoder_token_ids, decoder_padding_mask = ( x["decoder_token_ids"], x["decoder_padding_mask"], ) decoder_token_ids = ops.convert_to_numpy(decoder_token_ids) decoder_padding_mask = ops.convert_to_numpy(decoder_padding_mask) # Strip any special tokens during detokenization, i.e., the start and # end markers. In the future, we could make this configurable. decoder_padding_mask = ( decoder_padding_mask & (decoder_token_ids != self.tokenizer.end_token_id) & (decoder_token_ids != self.tokenizer.start_token_id) ) decoder_token_ids = tf.ragged.boolean_mask( decoder_token_ids, decoder_padding_mask ) return self.tokenizer.detokenize(decoder_token_ids) @classproperty def presets(cls): return copy.deepcopy(backbone_presets)
keras-nlp/keras_nlp/models/bart/bart_seq_2_seq_lm_preprocessor.py/0
{ "file_path": "keras-nlp/keras_nlp/models/bart/bart_seq_2_seq_lm_preprocessor.py", "repo_id": "keras-nlp", "token_count": 4257 }
119
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BERT model preset configurations.""" backbone_presets = { "bert_tiny_en_uncased": { "metadata": { "description": ( "2-layer BERT model where all input is lowercased. " "Trained on English Wikipedia + BooksCorpus." ), "params": 4385920, "official_name": "BERT", "path": "bert", "model_card": "https://github.com/google-research/bert/blob/master/README.md", }, "kaggle_handle": "kaggle://keras/bert/keras/bert_tiny_en_uncased/2", }, "bert_small_en_uncased": { "metadata": { "description": ( "4-layer BERT model where all input is lowercased. " "Trained on English Wikipedia + BooksCorpus." ), "params": 28763648, "official_name": "BERT", "path": "bert", "model_card": "https://github.com/google-research/bert/blob/master/README.md", }, "kaggle_handle": "kaggle://keras/bert/keras/bert_small_en_uncased/2", }, "bert_medium_en_uncased": { "metadata": { "description": ( "8-layer BERT model where all input is lowercased. " "Trained on English Wikipedia + BooksCorpus." ), "params": 41373184, "official_name": "BERT", "path": "bert", "model_card": "https://github.com/google-research/bert/blob/master/README.md", }, "kaggle_handle": "kaggle://keras/bert/keras/bert_medium_en_uncased/2", }, "bert_base_en_uncased": { "metadata": { "description": ( "12-layer BERT model where all input is lowercased. " "Trained on English Wikipedia + BooksCorpus." ), "params": 109482240, "official_name": "BERT", "path": "bert", "model_card": "https://github.com/google-research/bert/blob/master/README.md", }, "kaggle_handle": "kaggle://keras/bert/keras/bert_base_en_uncased/2", }, "bert_base_en": { "metadata": { "description": ( "12-layer BERT model where case is maintained. " "Trained on English Wikipedia + BooksCorpus." ), "params": 108310272, "official_name": "BERT", "path": "bert", "model_card": "https://github.com/google-research/bert/blob/master/README.md", }, "kaggle_handle": "kaggle://keras/bert/keras/bert_base_en/2", }, "bert_base_zh": { "metadata": { "description": ( "12-layer BERT model. Trained on Chinese Wikipedia." ), "params": 102267648, "official_name": "BERT", "path": "bert", "model_card": "https://github.com/google-research/bert/blob/master/README.md", }, "kaggle_handle": "kaggle://keras/bert/keras/bert_base_zh/2", }, "bert_base_multi": { "metadata": { "description": ( "12-layer BERT model where case is maintained. Trained on trained on Wikipedias of 104 languages" ), "params": 177853440, "official_name": "BERT", "path": "bert", "model_card": "https://github.com/google-research/bert/blob/master/README.md", }, "kaggle_handle": "kaggle://keras/bert/keras/bert_base_multi/2", }, "bert_large_en_uncased": { "metadata": { "description": ( "24-layer BERT model where all input is lowercased. " "Trained on English Wikipedia + BooksCorpus." ), "params": 335141888, "official_name": "BERT", "path": "bert", "model_card": "https://github.com/google-research/bert/blob/master/README.md", }, "kaggle_handle": "kaggle://keras/bert/keras/bert_large_en_uncased/2", }, "bert_large_en": { "metadata": { "description": ( "24-layer BERT model where case is maintained. " "Trained on English Wikipedia + BooksCorpus." ), "params": 333579264, "official_name": "BERT", "path": "bert", "model_card": "https://github.com/google-research/bert/blob/master/README.md", }, "kaggle_handle": "kaggle://keras/bert/keras/bert_large_en/2", }, } classifier_presets = { "bert_tiny_en_uncased_sst2": { "metadata": { "description": ( "The bert_tiny_en_uncased backbone model fine-tuned on the SST-2 sentiment analysis dataset." ), "params": 4385920, "official_name": "BERT", "path": "bert", "model_card": "https://github.com/google-research/bert/blob/master/README.md", }, "kaggle_handle": "kaggle://keras/bert/keras/bert_tiny_en_uncased_sst2/3", } }
keras-nlp/keras_nlp/models/bert/bert_presets.py/0
{ "file_path": "keras-nlp/keras_nlp/models/bert/bert_presets.py", "repo_id": "keras-nlp", "token_count": 2765 }
120
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from keras_nlp.api_export import keras_nlp_export from keras_nlp.backend import keras from keras_nlp.layers.modeling.reversible_embedding import ReversibleEmbedding from keras_nlp.models.backbone import Backbone from keras_nlp.models.deberta_v3.deberta_v3_presets import backbone_presets from keras_nlp.models.deberta_v3.disentangled_attention_encoder import ( DisentangledAttentionEncoder, ) from keras_nlp.models.deberta_v3.relative_embedding import RelativeEmbedding from keras_nlp.utils.python_utils import classproperty def deberta_kernel_initializer(stddev=0.02): return keras.initializers.TruncatedNormal(stddev=stddev) @keras_nlp_export("keras_nlp.models.DebertaV3Backbone") class DebertaV3Backbone(Backbone): """DeBERTa encoder network. This network implements a bi-directional Transformer-based encoder as described in ["DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing"](https://arxiv.org/abs/2111.09543). It includes the embedding lookups and transformer layers, but does not include the enhanced masked decoding head used during pretraining. The default constructor gives a fully customizable, randomly initialized DeBERTa encoder with any number of layers, heads, and embedding dimensions. To load preset architectures and weights, use the `from_preset` constructor. Note: `DebertaV3Backbone` has a performance issue on TPUs, and we recommend other models for TPU training and inference. Disclaimer: Pre-trained models are provided on an "as is" basis, without warranties or conditions of any kind. The underlying model is provided by a third party and subject to a separate license, available [here](https://github.com/microsoft/DeBERTa). Args: vocabulary_size: int. The size of the token vocabulary. num_layers: int. The number of transformer layers. num_heads: int. The number of attention heads for each transformer. The hidden size must be divisible by the number of attention heads. hidden_dim: int. The size of the transformer encoding layer. intermediate_dim: int. The output dimension of the first Dense layer in a two-layer feedforward network for each transformer. dropout: float. Dropout probability for the DeBERTa model. max_sequence_length: int. The maximum sequence length this encoder can consume. The sequence length of the input must be less than `max_sequence_length`. bucket_size: int. The size of the relative position buckets. Generally equal to `max_sequence_length // 2`. dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use for model computations and weights. Note that some computations, such as softmax and layer normalization, will always be done at float32 precision regardless of dtype. Example: ```python input_data = { "token_ids": np.ones(shape=(1, 12), dtype="int32"), "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]), } # Pretrained DeBERTa encoder. model = keras_nlp.models.DebertaV3Backbone.from_preset( "deberta_v3_base_en", ) model(input_data) # Randomly initialized DeBERTa encoder with custom config model = keras_nlp.models.DebertaV3Backbone( vocabulary_size=128100, num_layers=12, num_heads=6, hidden_dim=384, intermediate_dim=1536, max_sequence_length=512, bucket_size=256, ) # Call the model on the input data. model(input_data) ``` """ def __init__( self, vocabulary_size, num_layers, num_heads, hidden_dim, intermediate_dim, dropout=0.1, max_sequence_length=512, bucket_size=256, dtype=None, **kwargs, ): # === Layers === self.token_embedding = ReversibleEmbedding( input_dim=vocabulary_size, output_dim=hidden_dim, embeddings_initializer=deberta_kernel_initializer(), dtype=dtype, name="token_embedding", ) self.embeddings_layer_norm = keras.layers.LayerNormalization( epsilon=1e-7, dtype=dtype, name="embeddings_layer_norm", ) self.embeddings_dropout = keras.layers.Dropout( dropout, dtype=dtype, name="embeddings_dropout", ) self.relative_embeddings = RelativeEmbedding( hidden_dim=hidden_dim, bucket_size=bucket_size, layer_norm_epsilon=1e-7, kernel_initializer=deberta_kernel_initializer(), dtype=dtype, name="rel_embedding", ) self.transformer_layers = [] for i in range(num_layers): layer = DisentangledAttentionEncoder( num_heads=num_heads, intermediate_dim=intermediate_dim, max_position_embeddings=max_sequence_length, bucket_size=bucket_size, dropout=dropout, activation=keras.activations.gelu, layer_norm_epsilon=1e-7, kernel_initializer=deberta_kernel_initializer(), dtype=dtype, name=f"disentangled_attention_encoder_layer_{i}", ) self.transformer_layers.append(layer) # === Functional Model === token_id_input = keras.Input( shape=(None,), dtype="int32", name="token_ids" ) padding_mask_input = keras.Input( shape=(None,), dtype="int32", name="padding_mask" ) x = self.token_embedding(token_id_input) x = self.embeddings_layer_norm(x) x = self.embeddings_dropout(x) rel_embeddings = self.relative_embeddings(x) for transformer_layer in self.transformer_layers: x = transformer_layer( x, rel_embeddings=rel_embeddings, padding_mask=padding_mask_input, ) super().__init__( inputs={ "token_ids": token_id_input, "padding_mask": padding_mask_input, }, outputs=x, **kwargs, ) # === Config === self.vocabulary_size = vocabulary_size self.num_layers = num_layers self.num_heads = num_heads self.hidden_dim = hidden_dim self.intermediate_dim = intermediate_dim self.dropout = dropout self.max_sequence_length = max_sequence_length self.bucket_size = bucket_size self.start_token_index = 0 def get_config(self): config = super().get_config() config.update( { "vocabulary_size": self.vocabulary_size, "num_layers": self.num_layers, "num_heads": self.num_heads, "hidden_dim": self.hidden_dim, "intermediate_dim": self.intermediate_dim, "dropout": self.dropout, "max_sequence_length": self.max_sequence_length, "bucket_size": self.bucket_size, } ) return config @classproperty def presets(cls): return copy.deepcopy(backbone_presets)
keras-nlp/keras_nlp/models/deberta_v3/deberta_v3_backbone.py/0
{ "file_path": "keras-nlp/keras_nlp/models/deberta_v3/deberta_v3_backbone.py", "repo_id": "keras-nlp", "token_count": 3496 }
121
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from keras_nlp.backend import ops from keras_nlp.models.electra.electra_backbone import ElectraBackbone from keras_nlp.tests.test_case import TestCase class ElectraBackboneTest(TestCase): def setUp(self): self.init_kwargs = { "vocab_size": 10, "num_layers": 2, "num_heads": 2, "hidden_dim": 2, "embedding_dim": 2, "intermediate_dim": 4, "max_sequence_length": 5, } self.input_data = { "token_ids": ops.ones((2, 5), dtype="int32"), "segment_ids": ops.zeros((2, 5), dtype="int32"), "padding_mask": ops.ones((2, 5), dtype="int32"), } def test_backbone_basics(self): self.run_backbone_test( cls=ElectraBackbone, init_kwargs=self.init_kwargs, input_data=self.input_data, expected_output_shape={ "sequence_output": (2, 5, 2), "pooled_output": (2, 2), }, ) @pytest.mark.large def test_saved_model(self): self.run_model_saving_test( cls=ElectraBackbone, init_kwargs=self.init_kwargs, input_data=self.input_data, )
keras-nlp/keras_nlp/models/electra/electra_backbone_test.py/0
{ "file_path": "keras-nlp/keras_nlp/models/electra/electra_backbone_test.py", "repo_id": "keras-nlp", "token_count": 826 }
122
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest from keras_nlp.models.f_net.f_net_tokenizer import FNetTokenizer from keras_nlp.tests.test_case import TestCase class FNetTokenizerTest(TestCase): def setUp(self): self.init_kwargs = { # Generated using create_f_net_test_proto.py "proto": os.path.join( self.get_test_data_dir(), "f_net_test_vocab.spm" ) } self.input_data = ["the quick brown fox", "the earth is round"] def test_tokenizer_basics(self): self.run_preprocessing_layer_test( cls=FNetTokenizer, init_kwargs=self.init_kwargs, input_data=self.input_data, expected_output=[[5, 10, 6, 8], [5, 7, 9, 11]], ) def test_errors_missing_special_tokens(self): with self.assertRaises(ValueError): FNetTokenizer( # Generated using create_no_special_token_proto.py proto=os.path.join( self.get_test_data_dir(), "no_special_token_vocab.spm" ) ) @pytest.mark.large def test_smallest_preset(self): self.run_preset_test( cls=FNetTokenizer, preset="f_net_base_en", input_data=["The quick brown fox."], expected_output=[[97, 1467, 5187, 26, 2521, 16678]], ) @pytest.mark.extra_large def test_all_presets(self): for preset in FNetTokenizer.presets: self.run_preset_test( cls=FNetTokenizer, preset=preset, input_data=self.input_data, )
keras-nlp/keras_nlp/models/f_net/f_net_tokenizer_test.py/0
{ "file_path": "keras-nlp/keras_nlp/models/f_net/f_net_tokenizer_test.py", "repo_id": "keras-nlp", "token_count": 1008 }
123
# Copyright 2024 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from keras_nlp.backend import keras from keras_nlp.backend import ops class RMSNormalization(keras.layers.Layer): def __init__(self, epsilon=1e-6, **kwargs): super().__init__(**kwargs) self.epsilon = epsilon def build(self, input_shape): self.scale = self.add_weight( name="scale", trainable=True, shape=(input_shape[-1],), initializer="zeros", ) self.built = True def call(self, x): # Always compute normalization in float32. x = ops.cast(x, "float32") scale = ops.cast(self.scale, "float32") var = ops.mean(ops.square(x), axis=-1, keepdims=True) normed_inputs = x * ops.reciprocal(ops.sqrt(var + 1e-06)) normed_inputs = normed_inputs * (1 + scale) return ops.cast(normed_inputs, self.compute_dtype)
keras-nlp/keras_nlp/models/gemma/rms_normalization.py/0
{ "file_path": "keras-nlp/keras_nlp/models/gemma/rms_normalization.py", "repo_id": "keras-nlp", "token_count": 565 }
124
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from keras_nlp.api_export import keras_nlp_export from keras_nlp.backend import keras from keras_nlp.layers.modeling.reversible_embedding import ReversibleEmbedding from keras_nlp.models.backbone import Backbone from keras_nlp.models.gpt_neo_x.gpt_neo_x_decoder import GPTNeoXDecoder from keras_nlp.utils.keras_utils import gelu_approximate def _gpt_neo_x_kernel_initializer(stddev=0.02): return keras.initializers.RandomNormal(stddev=stddev) @keras_nlp_export("keras_nlp.models.GPTNeoXBackbone") class GPTNeoXBackbone(Backbone): """GPT-NeoX core network with hyperparameters. This network implements a Transformer-based decoder network, Generative Pretrained Transformer-Neo-X (GPTNeoX), as described in ["GPT-NeoX-20B: An Open-Source Autoregressive Language Model"](https://arxiv.org/abs/2204.06745). It includes the embedding lookups and transformer layers. The default constructor gives a fully customizable, randomly initialized GPT-NeoX model with any number of layers, heads, and embedding dimensions. Disclaimer: Pre-trained models are provided on an "as is" basis, without warranties or conditions of any kind. The underlying model is provided by a third party and subject to a separate license, available [here](https://github.com/EleutherAI/gpt-neox/). Args: vocabulary_size: int. The size of the token vocabulary. num_layers: int. The number of transformer layers. num_heads: int. The number of attention heads for each transformer. The hidden size must be divisible by the number of attention heads. hidden_dim: int. The size of the transformer encoding and pooler layers. intermediate_dim: int. The output dimension of the first Dense layer in a two-layer feedforward network for each transformer. dropout: float. Dropout probability for the Transformer encoder. layer_norm_epsilon: float. a value added to the denominator for numerical stability. rotary_max_wavelength: int. The maximum angular wavelength of the sine/cosine curves, for rotary embeddings. rotary_percentage: float. The percentage by which query, key, value matrices are to be rotated max_sequence_length: int. The maximum sequence length that this encoder can consume. If `None`, `max_sequence_length` uses the value from sequence length. This determines the variable shape for positional embeddings. dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use for model computations and weights. Note that some computations, such as softmax and layer normalization, will always be done at float32 precision regardless of dtype. """ def __init__( self, vocabulary_size, num_layers, num_heads, hidden_dim, intermediate_dim, dropout=0.0, rotary_percentage=0.25, rotary_max_wavelength=10000, layer_norm_epsilon=1e-5, max_sequence_length=512, dtype=None, **kwargs, ): # === Layers === self.token_embedding = ReversibleEmbedding( input_dim=vocabulary_size, output_dim=hidden_dim, embeddings_initializer=_gpt_neo_x_kernel_initializer(stddev=0.01), dtype=dtype, name="token_embedding", ) self.embeddings_dropout = keras.layers.Dropout( dropout, dtype=dtype, name="embeddings_dropout", ) self.transformer_layers = [] for i in range(num_layers): layer = GPTNeoXDecoder( intermediate_dim=intermediate_dim, num_heads=num_heads, dropout=dropout, max_sequence_length=max_sequence_length, rotary_percentage=rotary_percentage, rotary_max_wavelength=rotary_max_wavelength, layer_norm_epsilon=layer_norm_epsilon, activation=gelu_approximate, kernel_initializer=_gpt_neo_x_kernel_initializer(stddev=0.02), dtype=dtype, name=f"transformer_layer_{i}", ) self.transformer_layers.append(layer) self.layer_norm = keras.layers.LayerNormalization( axis=-1, epsilon=layer_norm_epsilon, dtype=dtype, name="layer_norm", ) # === Functional Model === token_id_input = keras.Input( shape=(None,), dtype="int32", name="token_ids" ) padding_mask_input = keras.Input( shape=(None,), dtype="int32", name="padding_mask" ) # Embed tokens. x = self.token_embedding(token_id_input) x = self.embeddings_dropout(x) for transformer_layer in self.transformer_layers: x = transformer_layer(x, decoder_padding_mask=padding_mask_input) sequence_output = self.layer_norm(x) super().__init__( inputs={ "token_ids": token_id_input, "padding_mask": padding_mask_input, }, outputs=sequence_output, **kwargs, ) # === Config === self.vocabulary_size = vocabulary_size self.num_layers = num_layers self.num_heads = num_heads self.hidden_dim = hidden_dim self.intermediate_dim = intermediate_dim self.dropout = dropout self.rotary_percentage = rotary_percentage self.rotary_max_wavelength = rotary_max_wavelength self.max_sequence_length = max_sequence_length self.layer_norm_epsilon = layer_norm_epsilon def get_config(self): config = super().get_config() config.update( { "vocabulary_size": self.vocabulary_size, "num_layers": self.num_layers, "num_heads": self.num_heads, "hidden_dim": self.hidden_dim, "intermediate_dim": self.intermediate_dim, "dropout": self.dropout, "rotary_percentage": self.rotary_percentage, "rotary_max_wavelength": self.rotary_max_wavelength, "max_sequence_length": self.max_sequence_length, "layer_norm_epsilon": self.layer_norm_epsilon, } ) return config
keras-nlp/keras_nlp/models/gpt_neo_x/gpt_neo_x_backbone.py/0
{ "file_path": "keras-nlp/keras_nlp/models/gpt_neo_x/gpt_neo_x_backbone.py", "repo_id": "keras-nlp", "token_count": 3081 }
125
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest from keras_nlp.models.mistral.mistral_tokenizer import MistralTokenizer from keras_nlp.tests.test_case import TestCase class MistralTokenizerTest(TestCase): def setUp(self): self.init_kwargs = { # Generated using create_mistral_test_proto.py "proto": os.path.join( self.get_test_data_dir(), "mistral_test_vocab.spm" ) } self.input_data = ["the quick brown fox", "the earth is round"] def test_tokenizer_basics(self): self.run_preprocessing_layer_test( cls=MistralTokenizer, init_kwargs=self.init_kwargs, input_data=self.input_data, expected_output=[[3, 8, 4, 6], [3, 5, 7, 9]], ) def test_errors_missing_special_tokens(self): with self.assertRaises(ValueError): MistralTokenizer( # Generated using create_no_special_token_proto.py proto=os.path.join( self.get_test_data_dir(), "no_special_token_vocab.spm" ) ) @pytest.mark.large def test_smallest_preset(self): self.run_preset_test( cls=MistralTokenizer, preset="mistral_7b_en", input_data=["The quick brown fox."], expected_output=[[415, 2936, 9060, 285, 1142, 28723]], ) @pytest.mark.extra_large def test_all_presets(self): for preset in MistralTokenizer.presets: self.run_preset_test( cls=MistralTokenizer, preset=preset, input_data=self.input_data, )
keras-nlp/keras_nlp/models/mistral/mistral_tokenizer_test.py/0
{ "file_path": "keras-nlp/keras_nlp/models/mistral/mistral_tokenizer_test.py", "repo_id": "keras-nlp", "token_count": 1004 }
126
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from keras_nlp.api_export import keras_nlp_export from keras_nlp.backend import keras from keras_nlp.layers.modeling.token_and_position_embedding import ( TokenAndPositionEmbedding, ) from keras_nlp.layers.modeling.transformer_encoder import TransformerEncoder from keras_nlp.models.backbone import Backbone from keras_nlp.models.roberta.roberta_presets import backbone_presets from keras_nlp.utils.python_utils import classproperty def roberta_kernel_initializer(stddev=0.02): return keras.initializers.TruncatedNormal(stddev=stddev) @keras_nlp_export("keras_nlp.models.RobertaBackbone") class RobertaBackbone(Backbone): """A RoBERTa encoder network. This network implements a bi-directional Transformer-based encoder as described in ["RoBERTa: A Robustly Optimized BERT Pretraining Approach"](https://arxiv.org/abs/1907.11692). It includes the embedding lookups and transformer layers, but does not include the masked language model head used during pretraining. The default constructor gives a fully customizable, randomly initialized RoBERTa encoder with any number of layers, heads, and embedding dimensions. To load preset architectures and weights, use the `from_preset()` constructor. Disclaimer: Pre-trained models are provided on an "as is" basis, without warranties or conditions of any kind. The underlying model is provided by a third party and subject to a separate license, available [here](https://github.com/facebookresearch/fairseq). Args: vocabulary_size: int. The size of the token vocabulary. num_layers: int. The number of transformer layers. num_heads: int. The number of attention heads for each transformer. The hidden size must be divisible by the number of attention heads. hidden_dim: int. The size of the transformer encoding layer. intermediate_dim: int. The output dimension of the first Dense layer in a two-layer feedforward network for each transformer. dropout: float. Dropout probability for the Transformer encoder. max_sequence_length: int. The maximum sequence length this encoder can consume. The sequence length of the input must be less than `max_sequence_length` default value. This determines the variable shape for positional embeddings. dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use for model computations and weights. Note that some computations, such as softmax and layer normalization, will always be done at float32 precision regardless of dtype. Examples: ```python input_data = { "token_ids": np.ones(shape=(1, 12), dtype="int32"), "padding_mask": np.array( [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], shape=(1, 12)), } # Pretrained RoBERTa encoder model = keras_nlp.models.RobertaBackbone.from_preset("roberta_base_en") model(input_data) # Randomly initialized RoBERTa model with custom config model = keras_nlp.models.RobertaBackbone( vocabulary_size=50265, num_layers=4, num_heads=4, hidden_dim=256, intermediate_dim=512, max_sequence_length=128, ) model(input_data) ``` """ def __init__( self, vocabulary_size, num_layers, num_heads, hidden_dim, intermediate_dim, dropout=0.1, max_sequence_length=512, dtype=None, **kwargs, ): # === Layers === self.embeddings = TokenAndPositionEmbedding( vocabulary_size=vocabulary_size, sequence_length=max_sequence_length, embedding_dim=hidden_dim, embeddings_initializer=roberta_kernel_initializer(), dtype=dtype, name="embeddings", ) self.token_embedding = self.embeddings.token_embedding self.embeddings_layer_norm = keras.layers.LayerNormalization( axis=-1, epsilon=1e-5, # Original paper uses this epsilon value dtype=dtype, name="embeddings_layer_norm", ) self.embeddings_dropout = keras.layers.Dropout( dropout, dtype=dtype, name="embeddings_dropout", ) self.transformer_layers = [] for i in range(num_layers): layer = TransformerEncoder( num_heads=num_heads, intermediate_dim=intermediate_dim, activation="gelu", dropout=dropout, layer_norm_epsilon=1e-5, kernel_initializer=roberta_kernel_initializer(), dtype=dtype, name=f"transformer_layer_{i}", ) self.transformer_layers.append(layer) # === Functional Model === token_id_input = keras.Input( shape=(None,), dtype="int32", name="token_ids" ) padding_mask_input = keras.Input( shape=(None,), dtype="int32", name="padding_mask" ) x = self.embeddings(token_id_input) x = self.embeddings_layer_norm(x) x = self.embeddings_dropout(x) for transformer_layer in self.transformer_layers: x = transformer_layer(x, padding_mask=padding_mask_input) super().__init__( inputs={ "token_ids": token_id_input, "padding_mask": padding_mask_input, }, outputs=x, **kwargs, ) # === Config === self.vocabulary_size = vocabulary_size self.num_layers = num_layers self.num_heads = num_heads self.hidden_dim = hidden_dim self.intermediate_dim = intermediate_dim self.dropout = dropout self.max_sequence_length = max_sequence_length self.start_token_index = 0 def get_config(self): config = super().get_config() config.update( { "vocabulary_size": self.vocabulary_size, "num_layers": self.num_layers, "num_heads": self.num_heads, "hidden_dim": self.hidden_dim, "intermediate_dim": self.intermediate_dim, "dropout": self.dropout, "max_sequence_length": self.max_sequence_length, } ) return config @classproperty def presets(cls): return copy.deepcopy(backbone_presets)
keras-nlp/keras_nlp/models/roberta/roberta_backbone.py/0
{ "file_path": "keras-nlp/keras_nlp/models/roberta/roberta_backbone.py", "repo_id": "keras-nlp", "token_count": 3022 }
127
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from absl import logging from keras_nlp.api_export import keras_nlp_export from keras_nlp.backend import keras from keras_nlp.layers.preprocessing.start_end_packer import StartEndPacker from keras_nlp.models.preprocessor import Preprocessor from keras_nlp.models.whisper.whisper_audio_feature_extractor import ( WhisperAudioFeatureExtractor, ) from keras_nlp.models.whisper.whisper_presets import backbone_presets from keras_nlp.models.whisper.whisper_tokenizer import WhisperTokenizer from keras_nlp.utils.keras_utils import ( convert_inputs_to_list_of_tensor_segments, ) from keras_nlp.utils.keras_utils import pack_x_y_sample_weight from keras_nlp.utils.python_utils import classproperty @keras_nlp_export("keras_nlp.models.WhisperPreprocessor") class WhisperPreprocessor(Preprocessor): """A Whisper preprocessing layer which handles audio and text input. This preprocessing layer will do three things: 1. Compute the log-mel spectrogram of the audio tensor inputs using `audio_feature_extractor`. 2. Tokenize decoder inputs using the `tokenizer`. 2. Add the appropriate special tokens - `"<|startoftranscript|>", task token, language token, `"<|endoftext|>"`, etc. 3. Construct a dictionary with keys `"encoder_features"`, `"decoder_token_ids"`, `"decoder_padding_mask"` that can be passed directly to a Whisper model. Args: tokenizer: A `keras_nlp.models.WhisperTokenizer` instance. audio_feature_extractor: A `keras_nlp.models.WhisperAudioFeatureExtractor` instance or `None`. If `None` a feature extractor with default parameters will be created. decoder_sequence_length: The length of the packed decoder inputs. language: string, language token. Should only be passed if your tokenizer is multilingual. task: string, task name. One of `"transcribe"`, `"translate"`. Should only be passed if your tokenizer is multilingual. no_timestamps: bool. If True, `"<|no_timestamps|>"` will be added as a special token to your input. Call arguments: x: A dictionary with `"encoder_audio"` and `"decoder_text"` as its keys. `"encoder_audio"` should correspond to the input audio tensor. `"decoder_text"` should be a tensor of single string sequences. Inputs may be batched or unbatched. Raw python inputs will be converted to tensors. y: Any label data. Will be passed through unaltered. sample_weight: Any label weight data. Will be passed through unaltered. Examples: Directly calling the layer on data. ```python preprocessor = keras_nlp.models.WhisperPreprocessor.from_preset( "whisper_tiny_en", ) # Preprocess unbatched inputs. input_data = { "encoder_audio": tf.ones((200,)), "decoder_text": "The quick brown fox jumped.", } preprocessor(input_data) # Preprocess batched inputs. input_data = { "encoder_audio": tf.ones((2, 200)), "decoder_text": ["The quick brown fox jumped.", "Call me Ishmael."], } preprocessor(input_data) # Custom audio feature extractor and vocabulary. audio_feature_extractor = keras_nlp.models.WhisperAudioFeatureExtractor( num_mels=80, num_fft_bins=400, stride=100, sampling_rate=100, max_audio_length=5, ) features = ["a quick fox.", "a fox quick."] vocab = {"<|endoftext|>": 0, "a": 4, "Ġquick": 5, "Ġfox": 6} merges = ["Ġ q", "u i", "c k", "ui ck", "Ġq uick"] merges += ["Ġ f", "o x", "Ġf ox"] special_tokens = { "<|startoftranscript|>": 9, "<|endoftext|>": 10, "<|notimestamps|>": 11, "<|transcribe|>": 12, "<|translate|>": 13, } tokenizer = keras_nlp.models.WhisperTokenizer( vocabulary=vocab, merges=merges, special_tokens=special_tokens, ) preprocessor = keras_nlp.models.WhisperPreprocessor( audio_feature_extractor=audio_feature_extractor, tokenizer=tokenizer, ) input_data = { "encoder_audio": tf.ones((200,)), "decoder_text": "The quick brown fox jumped.", } preprocessor(input_data) ``` Mapping with `tf.data.Dataset`. ```python preprocessor = keras_nlp.models.WhisperPreprocessor.from_preset( "whisper_tiny_en") # Map labeled single sentences. features = { "encoder_audio": tf.ones((2, 200)), "decoder_text": ["The quick brown fox jumped.", "Call me Ishmael."], } labels = tf.constant(["True", "False"]) ds = tf.data.Dataset.from_tensor_slices((features, labels)) ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE) # Map unlabeled single sentences. features = { "encoder_audio": tf.ones((2, 200)), "decoder_text": ["The quick brown fox jumped.", "Call me Ishmael."], } ds = tf.data.Dataset.from_tensor_slices(features) ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE) ``` """ def __init__( self, tokenizer, audio_feature_extractor=None, decoder_sequence_length=448, language=None, task=None, no_timestamps=True, **kwargs, ): super().__init__(**kwargs) if audio_feature_extractor is None: audio_feature_extractor = WhisperAudioFeatureExtractor() self.audio_feature_extractor = audio_feature_extractor self.tokenizer = tokenizer self.decoder_packer = None self.decoder_sequence_length = decoder_sequence_length self.language = language self.task = task self.no_timestamps = no_timestamps def build(self, input_shape): # Defer packer creation to `build()` so that we can be sure tokenizer # assets have loaded when restoring a saved model. # Create list of tokens to be prepended to decoder inputs. bos_tokens = [self.tokenizer.bos_token_id] if self.tokenizer.language_tokens is not None: if ( self.language is None or self.language not in self.tokenizer.language_tokens ): raise ValueError( "You must pass a non-None value for `language` when using " "a multilingual tokenizer. The value must be one of " f'{",".join(self.tokenizer.language_tokens.keys())}. ' f"Received: language={self.language}." ) if self.task is None or self.task not in [ "transcribe", "translate", ]: raise ValueError( "You must pass a non-None value for `task` when using " "a multilingual tokenizer. The value must be one of " '`"transcribe"`, `"translate"`. ' f"Received: task={self.task}." ) bos_tokens += [self.tokenizer.language_tokens[self.language]] if self.task == "transcribe": bos_tokens += [self.tokenizer.special_tokens["<|transcribe|>"]] elif self.task == "translate": bos_tokens += [self.tokenizer.special_tokens["<|translate|>"]] else: if self.language is not None: logging.info( "`tokenizer` is monolingual, and `language` has a " "non-`None` value. Setting `language` to `None`." ) self.language = None if self.task is not None: logging.info( "`tokenizer` is monolingual, and `task` has a " "non-`None` value. Setting `task` to `None`." ) self.task = None if self.no_timestamps: bos_tokens += [self.tokenizer.no_timestamps_token_id] # TODO: Use `MultiSegmentPacker` instead of `StartEndPacker` once we # want to move to multi-segment packing and have improved # `MultiSegmentPacker`'s performance. self.decoder_packer = StartEndPacker( start_value=bos_tokens, end_value=self.tokenizer.eos_token_id, pad_value=self.tokenizer.pad_token_id, sequence_length=self.decoder_sequence_length, return_padding_mask=True, ) def call(self, x, y=None, sample_weight=None, decoder_sequence_length=None): if not ( isinstance(x, dict) and ["encoder_audio", "decoder_text"] == list(x.keys()) ): raise ValueError( '`x` must be a dictionary, containing the keys `"encoder_audio"`' f' and `"decoder_text"`. Received x={x}.' ) encoder_audio = x["encoder_audio"] decoder_text = x["decoder_text"] encoder_audio = convert_inputs_to_list_of_tensor_segments(encoder_audio) decoder_text = convert_inputs_to_list_of_tensor_segments(decoder_text) if len(encoder_audio) > 1 or len(decoder_text) > 1: raise ValueError( '`WhisperPreprocessor` requires both `"encoder_audio"` and ' f'`"decoder_text"` to contain only one segment, but received ' f"{len(encoder_audio)} and {len(decoder_text)}, respectively." ) encoder_features = self.audio_feature_extractor(encoder_audio[0]) decoder_sequence_length = ( decoder_sequence_length or self.decoder_sequence_length ) decoder_inputs = self.tokenizer(decoder_text[0]) decoder_token_ids, decoder_padding_mask = self.decoder_packer( decoder_inputs, sequence_length=decoder_sequence_length, ) x = { "encoder_features": encoder_features, "decoder_token_ids": decoder_token_ids, "decoder_padding_mask": decoder_padding_mask, } return pack_x_y_sample_weight(x, y, sample_weight) def get_config(self): config = super().get_config() config.update( { "audio_feature_extractor": keras.layers.serialize( self.audio_feature_extractor ), "decoder_sequence_length": self.decoder_sequence_length, "language": self.language, "task": self.task, "no_timestamps": self.no_timestamps, } ) return config @classmethod def from_config(cls, config): if "tokenizer" in config and isinstance(config["tokenizer"], dict): config["tokenizer"] = keras.layers.deserialize(config["tokenizer"]) if "audio_feature_extractor" in config and isinstance( config["audio_feature_extractor"], dict ): config["audio_feature_extractor"] = keras.layers.deserialize( config["audio_feature_extractor"] ) return cls(**config) @property def decoder_sequence_length(self): """The padded length of decoder input sequences.""" return self._decoder_sequence_length @decoder_sequence_length.setter def decoder_sequence_length(self, value): self._decoder_sequence_length = value if self.decoder_packer is not None: self.decoder_packer.sequence_length = value @property def sequence_length(self): """Alias for `decoder_sequence_length`.""" return self.decoder_sequence_length @sequence_length.setter def sequence_length(self, value): self.decoder_sequence_length = value @classproperty def audio_feature_extractor_cls(cls): return WhisperAudioFeatureExtractor @classproperty def tokenizer_cls(cls): return WhisperTokenizer @classproperty def presets(cls): return copy.deepcopy(backbone_presets)
keras-nlp/keras_nlp/models/whisper/whisper_preprocessor.py/0
{ "file_path": "keras-nlp/keras_nlp/models/whisper/whisper_preprocessor.py", "repo_id": "keras-nlp", "token_count": 5597 }
128
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from keras_nlp.api_export import keras_nlp_export from keras_nlp.backend import ops from keras_nlp.backend import random from keras_nlp.samplers.sampler import Sampler @keras_nlp_export("keras_nlp.samplers.RandomSampler") class RandomSampler(Sampler): """Random Sampler class. This sampler implements random sampling. Briefly, random sampler randomly selects a token from the entire distribution of the tokens, with selection chance determined by the probability of each token. Args: seed: int. The random seed. Defaults to `None`. Call arguments: {{call_args}} Examples: ```python causal_lm = keras_nlp.models.GPT2CausalLM.from_preset("gpt2_base_en") # Pass by name to compile. causal_lm.compile(sampler="random") causal_lm.generate(["Keras is a"]) # Pass by object to compile. sampler = keras_nlp.samplers.RandomSampler(temperature=0.7) causal_lm.compile(sampler=sampler) causal_lm.generate(["Keras is a"]) ``` """ def __init__( self, seed=None, **kwargs, ): super().__init__(**kwargs) self.seed = seed self.seed_generator = random.SeedGenerator(seed) def get_next_token(self, probabilities): # Sample the next token from the probability distribution. next_token_id = random.categorical( ops.log(probabilities), 1, seed=self.seed_generator, dtype="int32", ) return ops.squeeze(next_token_id, axis=-1) def get_config(self): config = super().get_config() config.update( { "seed": self.seed, } ) return config
keras-nlp/keras_nlp/samplers/random_sampler.py/0
{ "file_path": "keras-nlp/keras_nlp/samplers/random_sampler.py", "repo_id": "keras-nlp", "token_count": 911 }
129
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import tensorflow as tf try: import sentencepiece as spm except ImportError: spm = None from keras_nlp.api_export import keras_nlp_export @keras_nlp_export("keras_nlp.tokenizers.compute_sentence_piece_proto") def compute_sentence_piece_proto( data, vocabulary_size, model_type="unigram", proto_output_file=None, lowercase=False, ): r"""A utility to train a SentencePiece vocabulary. Trains a SentencePiece vocabulary from an input dataset or a list of filenames. If `data` is a list of filenames, the file format is required to be plain text files, and the text will be read in line by line during training. Args: data: A `tf.data.Dataset`, or a list of filenames. vocabulary_size: int. The maximum size of a vocabulary to be trained. model_type: str. The model algorithm must be one of `"unigram"`, `"bpe"`, `"word"` or `"char"`. Defaults to `"unigram"`. proto_output_file: str. If provided it will be used as model_file which is passed to model_writer. If `None`, the model_file will be `io.BytesIO` object. Defaults to `None`. lowercase: bool. If True, the input text will be lowercased before tokenization. Defaults to `False`. Returns: A `bytes` object with a serialized SentencePiece proto or `None` if proto_output_file if provided. Examples: Basic Usage (from Dataset). >>> inputs = tf.data.Dataset.from_tensor_slices(["Drifting Along"]) >>> proto = keras_nlp.tokenizers.compute_sentence_piece_proto(inputs, vocabulary_size=15) >>> tokenizer = keras_nlp.tokenizers.SentencePieceTokenizer(proto=proto) >>> outputs = inputs.map(tokenizer) >>> for output in outputs: ... print(output) tf.Tensor([ 4 8 12 5 9 14 5 6 13 4 7 10 11 6 13], shape=(15,), dtype=int32) Basic Usage (with files). ``` python with open("test.txt", "w+") as f: f.write("Drifting Along\n") inputs = ["test.txt"] proto = keras_nlp.tokenizers.compute_sentence_piece_proto( inputs, vocabulary_size=15, proto_output_file="model.spm") tokenizer = keras_nlp.tokenizers.SentencePieceTokenizer(proto="model.spm") ds = tf.data.Dataset.from_tensor_slices(["the quick brown fox."]) ds = ds.map(tokenizer) ``` Usage with lowercase >>> inputs = tf.data.Dataset.from_tensor_slices(["Drifting Along"]) >>> proto = keras_nlp.tokenizers.compute_sentence_piece_proto( ... inputs, vocabulary_size=15, lowercase=True) >>> tokenizer = keras_nlp.tokenizers.SentencePieceTokenizer(proto=proto) >>> outputs = inputs.map(tokenizer) >>> for output in outputs: ... print(output) tf.Tensor([ 4 8 12 5 9 14 5 6 13 4 7 10 11 6 13], shape=(15,), dtype=int32) """ if spm is None: raise ImportError( f"{compute_sentence_piece_proto.__name__} requires the " "`sentencepiece` package. Please install it with " "`pip install sentencepiece`." ) if not isinstance(data, (list, tuple, tf.data.Dataset)): raise ValueError( "The `data` argument must be either `tf.data.Dataset` or `tuple` or `list`. " f"Received: type(data)={type(data)}." ) if model_type not in ["unigram", "bpe", "word", "char"]: raise ValueError( "The `model_type` argument must be one of `unigram`, `bpe`, `word`" f"or `char`. Received: model_type={model_type}." ) model_writer = ( open(proto_output_file, "wb") if proto_output_file else io.BytesIO() ) is_dataset = isinstance(data, tf.data.Dataset) if is_dataset: spm.SentencePieceTrainer.train( sentence_iterator=data.as_numpy_iterator(), model_writer=model_writer, vocab_size=vocabulary_size, model_type=model_type, normalization_rule_name="nmt_nfkc_cf" if lowercase else "nmt_nfkc", pad_id=0, unk_id=1, bos_id=2, eos_id=3, ) else: spm.SentencePieceTrainer.train( input=data, model_writer=model_writer, vocab_size=vocabulary_size, model_type=model_type, normalization_rule_name="nmt_nfkc_cf" if lowercase else "nmt_nfkc", pad_id=0, unk_id=1, bos_id=2, eos_id=3, ) if proto_output_file: model_writer.close() else: return model_writer.getvalue()
keras-nlp/keras_nlp/tokenizers/sentence_piece_tokenizer_trainer.py/0
{ "file_path": "keras-nlp/keras_nlp/tokenizers/sentence_piece_tokenizer_trainer.py", "repo_id": "keras-nlp", "token_count": 2231 }
130
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import pytest from absl.testing import parameterized from keras_nlp.models.albert.albert_classifier import AlbertClassifier from keras_nlp.models.backbone import Backbone from keras_nlp.models.bert.bert_classifier import BertClassifier from keras_nlp.models.roberta.roberta_classifier import RobertaClassifier from keras_nlp.models.task import Task from keras_nlp.tests.test_case import TestCase from keras_nlp.utils.preset_utils import check_preset_class from keras_nlp.utils.preset_utils import load_from_preset from keras_nlp.utils.preset_utils import save_to_preset class PresetUtilsTest(TestCase): @parameterized.parameters( (AlbertClassifier, "albert_base_en_uncased", "sentencepiece"), (RobertaClassifier, "roberta_base_en", "bytepair"), (BertClassifier, "bert_tiny_en_uncased", "wordpiece"), ) @pytest.mark.keras_3_only @pytest.mark.large def test_preset_saving(self, cls, preset_name, tokenizer_type): save_dir = self.get_temp_dir() model = cls.from_preset(preset_name, num_classes=2) save_to_preset(model, save_dir) if tokenizer_type == "bytepair": vocab_filename = "assets/tokenizer/vocabulary.json" expected_assets = [ "assets/tokenizer/vocabulary.json", "assets/tokenizer/merges.txt", ] elif tokenizer_type == "sentencepiece": vocab_filename = "assets/tokenizer/vocabulary.spm" expected_assets = ["assets/tokenizer/vocabulary.spm"] else: vocab_filename = "assets/tokenizer/vocabulary.txt" expected_assets = ["assets/tokenizer/vocabulary.txt"] # Check existence of files self.assertTrue(os.path.exists(os.path.join(save_dir, vocab_filename))) self.assertTrue(os.path.exists(os.path.join(save_dir, "config.json"))) self.assertTrue( os.path.exists(os.path.join(save_dir, "model.weights.h5")) ) self.assertTrue(os.path.exists(os.path.join(save_dir, "metadata.json"))) # Check the model config (`config.json`) config_json = open(os.path.join(save_dir, "config.json"), "r").read() self.assertTrue( "build_config" not in config_json ) # Test on raw json to include nested keys self.assertTrue( "compile_config" not in config_json ) # Test on raw json to include nested keys config = json.loads(config_json) self.assertEqual(set(config["assets"]), set(expected_assets)) self.assertEqual(config["weights"], "model.weights.h5") # Try loading the model from preset directory self.assertEqual(cls, check_preset_class(save_dir, cls)) self.assertEqual(cls, check_preset_class(save_dir, Task)) with self.assertRaises(ValueError): # Preset is a subclass of Task, not Backbone. check_preset_class(save_dir, Backbone) # Try loading the model from preset directory restored_model = load_from_preset(save_dir) train_data = ( ["the quick brown fox.", "the slow brown fox."], # Features. ) model_input_data = model.preprocessor(*train_data) restored_model_input_data = restored_model.preprocessor(*train_data) # Check that saved vocab is equal to the original preset vocab self.assertAllClose(model_input_data, restored_model_input_data) # Check model outputs self.assertAllEqual( model(model_input_data), restored_model(restored_model_input_data) ) def test_preset_errors(self): with self.assertRaisesRegex(ValueError, "must be a string"): AlbertClassifier.from_preset(AlbertClassifier) with self.assertRaisesRegex(ValueError, "Unknown preset identifier"): AlbertClassifier.from_preset("snaggle://bort/bort/bort")
keras-nlp/keras_nlp/utils/preset_utils_test.py/0
{ "file_path": "keras-nlp/keras_nlp/utils/preset_utils_test.py", "repo_id": "keras-nlp", "token_count": 1805 }
131
#!/bin/bash -e base_dir=$(dirname $(dirname $0)) targets="${base_dir}/*.py ${base_dir}/examples/ ${base_dir}/keras_nlp/ ${base_dir}/tools/" isort --sp "${base_dir}/pyproject.toml" ${targets} black --config "${base_dir}/pyproject.toml" ${targets} for i in $(find ${targets} -name '*.py'); do if ! grep -q Copyright $i; then echo $i cat shell/copyright.txt $i >$i.new && mv $i.new $i fi done flake8 --config "${base_dir}/setup.cfg" ${targets}
keras-nlp/shell/format.sh/0
{ "file_path": "keras-nlp/shell/format.sh", "repo_id": "keras-nlp", "token_count": 203 }
132
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os os.environ["KERAS_BACKEND"] = "torch" os.environ["CUDA_VISIBLE_DEVICES"] = "-1" import huggingface_hub # noqa: E402 import numpy as np # noqa: E402 import torch # noqa: E402 import transformers # noqa: E402 from absl import app # noqa: E402 from absl import flags # noqa: E402 import keras_nlp # noqa: E402 from keras_nlp.models import BloomBackbone # noqa: E402 from keras_nlp.models import BloomTokenizer # noqa: E402 FLAGS = flags.FLAGS PRESET_MAP = { "bloom_560m_multi": "bigscience/bloom-560m", "bloom_1.1b_multi": "bigscience/bloom-1b1", "bloom_1.7b_multi": "bigscience/bloom-1b7", "bloom_3b_multi": "bigscience/bloom-3b", "bloom_7b_multi": "bigscience/bloom-7b1", "bloom_176b_multi": "bigscience/bloom", } EXTRACT_DIR = "./model" flags.DEFINE_string( "preset", None, f'Must be one of {",".join(PRESET_MAP.keys())}' ) flags.mark_flag_as_required("preset") def download_hf_model(hf_model_name): hf_model_dir = huggingface_hub.snapshot_download( repo_id=hf_model_name, allow_patterns=["*.json", "*.bin"], ignore_patterns=["onnx/*"], local_dir=EXTRACT_DIR, ) return hf_model_dir def convert_model(hf_model): # get huggingface model configuration. hf_config = hf_model.config.to_dict() kwargs = {} kwargs["vocabulary_size"] = hf_config["vocab_size"] kwargs["num_layers"] = hf_config["n_layer"] kwargs["num_heads"] = hf_config["n_head"] kwargs["hidden_dim"] = hf_config["hidden_size"] kwargs["intermediate_dim"] = hf_config["hidden_size"] * 4 kwargs["dropout"] = hf_config["hidden_dropout"] kwargs["layer_norm_epsilon"] = hf_config["layer_norm_epsilon"] return BloomBackbone(**kwargs) def convert_tokenizer(hf_model_dir): tokenizer_file_path = os.path.join(hf_model_dir, "tokenizer.json") with open(tokenizer_file_path) as tokenizer_file: hf_tokenizer = json.load(tokenizer_file) vocab = hf_tokenizer["model"]["vocab"] merges = hf_tokenizer["model"]["merges"] return BloomTokenizer(vocabulary=vocab, merges=merges) def convert_weights(keras_model, hf_model): hidden_dim = keras_model.hidden_dim num_heads = keras_model.num_heads head_dim = hidden_dim // num_heads num_layers = keras_model.num_layers # get huggingface model weights. hf_wts = hf_model.state_dict() # assign huggingface weights to the keras model. # Embedding layer. keras_model.get_layer("token_embedding").embeddings.assign( hf_wts["word_embeddings.weight"] ) # LayerNorm. keras_model.get_layer("token_embedding_layernorm").gamma.assign( hf_wts["word_embeddings_layernorm.weight"] ) keras_model.get_layer("token_embedding_layernorm").beta.assign( hf_wts["word_embeddings_layernorm.bias"] ) keras_model.get_layer("final_layernorm").gamma.assign(hf_wts["ln_f.weight"]) keras_model.get_layer("final_layernorm").beta.assign(hf_wts["ln_f.bias"]) # Decoder layers. for i in range(num_layers): decoder_layer = keras_model.get_layer(f"transformer_layer_{i}") # LayrNorm. decoder_layer._pre_attention_layernorm.gamma.assign( hf_wts[f"h.{i}.input_layernorm.weight"] ) decoder_layer._pre_attention_layernorm.beta.assign( hf_wts[f"h.{i}.input_layernorm.bias"] ) decoder_layer._post_attention_layernorm.gamma.assign( hf_wts[f"h.{i}.post_attention_layernorm.weight"] ) decoder_layer._post_attention_layernorm.beta.assign( hf_wts[f"h.{i}.post_attention_layernorm.bias"] ) # Attention layer. attention_layer = decoder_layer._self_attention_layer fused_qkv_kernal = hf_wts[ f"h.{i}.self_attention.query_key_value.weight" ].T fused_qkv_kernal = fused_qkv_kernal.view( hidden_dim, num_heads, 3, head_dim ) query_kernal = fused_qkv_kernal[..., 0, :] key_kernal = fused_qkv_kernal[..., 1, :] value_kernl = fused_qkv_kernal[..., 2, :] fused_qkv_bais = hf_wts[f"h.{i}.self_attention.query_key_value.bias"] fused_qkv_bais = fused_qkv_bais.view(num_heads, 3, head_dim) query_bais = fused_qkv_bais[:, 0, :] key_bais = fused_qkv_bais[:, 1, :] value_bais = fused_qkv_bais[:, 2, :] attention_layer._query_dense.kernel.assign(query_kernal) attention_layer._query_dense.bias.assign(query_bais) attention_layer._key_dense.kernel.assign(key_kernal) attention_layer._key_dense.bias.assign(key_bais) attention_layer._value_dense.kernel.assign(value_kernl) attention_layer._value_dense.bias.assign(value_bais) attention_layer._output_dense.kernel.assign( hf_wts[f"h.{i}.self_attention.dense.weight"].T ) attention_layer._output_dense.bias.assign( hf_wts[f"h.{i}.self_attention.dense.bias"] ) # mlp. decoder_layer._mlp_intermediate_dense.kernel.assign( hf_wts[f"h.{i}.mlp.dense_h_to_4h.weight"].T ) decoder_layer._mlp_intermediate_dense.bias.assign( hf_wts[f"h.{i}.mlp.dense_h_to_4h.bias"] ) decoder_layer._mlp_output_dense.kernel.assign( hf_wts[f"h.{i}.mlp.dense_4h_to_h.weight"].T ) decoder_layer._mlp_output_dense.bias.assign( hf_wts[f"h.{i}.mlp.dense_4h_to_h.bias"] ) def validate_output( hf_model, keras_model, hf_tokenizer, keras_tokenizer, ): input_str = ["the quick brown fox ran, galloped and jumped."] # KerasNLP token_ids = torch.tensor(keras_tokenizer(input_str)) padding_mask = token_ids != 3 keras_model_input = { "token_ids": token_ids, "padding_mask": padding_mask, } keras_model_outputs = keras_model.predict(keras_model_input) hf_model_input = hf_tokenizer(input_str, return_tensors="pt") hf_model_outputs = hf_model(**hf_model_input).last_hidden_state hf_model_outputs = hf_model_outputs.detach().numpy() # Comparing the outputs. print("🔶 KerasNLP output:", keras_model_outputs[0, 0, :10]) print("🔶 HF output:", hf_model_outputs[0, 0, :10]) print("🔶 Difference:", np.mean(keras_model_outputs - hf_model_outputs)) def main(_): preset = FLAGS.preset assert ( preset in PRESET_MAP.keys() ), f'Invalid preset {preset}. Must be one of {",".join(PRESET_MAP.keys())}' print(f"✅ Coverting {preset}") hf_model_name = PRESET_MAP[preset] hf_model_dir = download_hf_model(hf_model_name) print("✅ Huggingface model downloaded from hub") hf_model = transformers.BloomModel.from_pretrained(hf_model_dir) hf_tokenizer = transformers.BloomTokenizerFast.from_pretrained(hf_model_dir) print("✅ Huggingface model loaded") keras_model = convert_model(hf_model) keras_tokenizer = convert_tokenizer(hf_model_dir) print("✅ Keras model loaded") convert_weights(keras_model, hf_model) print("✅ Weights converted") validate_output( hf_model, keras_model, hf_tokenizer, keras_tokenizer, ) print("✅ Numerics validated") keras_nlp.src.utils.preset_utils.save_to_preset(keras_model, preset) keras_nlp.src.utils.preset_utils.save_to_preset( keras_tokenizer, preset, config_filename="tokenizer.json" ) print("✅ Preset saved") if __name__ == "__main__": app.run(main)
keras-nlp/tools/checkpoint_conversion/convert_bloom_checkpoints.py/0
{ "file_path": "keras-nlp/tools/checkpoint_conversion/convert_bloom_checkpoints.py", "repo_id": "keras-nlp", "token_count": 3734 }
133
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Small utility script to count parameters in our preset checkpoints. Usage: python tools/count_preset_params.py python tools/count_preset_params.py --model BertBackbone python tools/count_preset_params.py --preset bert_base_multi """ import inspect from absl import app from absl import flags from keras.utils.layer_utils import count_params from tensorflow import keras import keras_nlp FLAGS = flags.FLAGS flags.DEFINE_string("model", None, "The name of a model, e.g. BertBackbone.") flags.DEFINE_string( "preset", None, "The name of a preset, e.g. bert_base_multi." ) def main(_): for name, symbol in keras_nlp.models.__dict__.items(): if inspect.isclass(symbol) and issubclass(symbol, keras.Model): if FLAGS.model and name != FLAGS.model: continue if not hasattr(symbol, "from_preset"): continue for preset in symbol.presets: if FLAGS.preset and preset != FLAGS.preset: continue model = symbol.from_preset(preset) params = count_params(model.weights) print(f"{name} {preset} {params}") if __name__ == "__main__": app.run(main)
keras-nlp/tools/count_preset_params.py/0
{ "file_path": "keras-nlp/tools/count_preset_params.py", "repo_id": "keras-nlp", "token_count": 672 }
134
# -*- coding: utf-8 -*- """Utilities for preprocessing sequence data. """ import json import random import numpy as np def pad_sequences(sequences, maxlen=None, dtype='int32', padding='pre', truncating='pre', value=0.): """Pads sequences to the same length. This function transforms a list of `num_samples` sequences (lists of integers) into a 2D Numpy array of shape `(num_samples, num_timesteps)`. `num_timesteps` is either the `maxlen` argument if provided, or the length of the longest sequence otherwise. Sequences that are shorter than `num_timesteps` are padded with `value` at the beginning or the end if padding='post. Sequences longer than `num_timesteps` are truncated so that they fit the desired length. The position where padding or truncation happens is determined by the arguments `padding` and `truncating`, respectively. Pre-padding is the default. # Arguments sequences: List of lists, where each element is a sequence. maxlen: Int, maximum length of all sequences. dtype: Type of the output sequences. To pad sequences with variable length strings, you can use `object`. padding: String, 'pre' or 'post': pad either before or after each sequence. truncating: String, 'pre' or 'post': remove values from sequences larger than `maxlen`, either at the beginning or at the end of the sequences. value: Float or String, padding value. # Returns x: Numpy array with shape `(len(sequences), maxlen)` # Raises ValueError: In case of invalid values for `truncating` or `padding`, or in case of invalid shape for a `sequences` entry. """ if not hasattr(sequences, '__len__'): raise ValueError('`sequences` must be iterable.') num_samples = len(sequences) lengths = [] sample_shape = () flag = True # take the sample shape from the first non empty sequence # checking for consistency in the main loop below. for x in sequences: try: lengths.append(len(x)) if flag and len(x): sample_shape = np.asarray(x).shape[1:] flag = False except TypeError: raise ValueError('`sequences` must be a list of iterables. ' 'Found non-iterable: ' + str(x)) if maxlen is None: maxlen = np.max(lengths) is_dtype_str = np.issubdtype(dtype, np.str_) or np.issubdtype(dtype, np.unicode_) if isinstance(value, str) and dtype != object and not is_dtype_str: raise ValueError("`dtype` {} is not compatible with `value`'s type: {}\n" "You should set `dtype=object` for variable length strings." .format(dtype, type(value))) x = np.full((num_samples, maxlen) + sample_shape, value, dtype=dtype) for idx, s in enumerate(sequences): if not len(s): continue # empty list/array was found if truncating == 'pre': trunc = s[-maxlen:] elif truncating == 'post': trunc = s[:maxlen] else: raise ValueError('Truncating type "%s" ' 'not understood' % truncating) # check `trunc` has expected shape trunc = np.asarray(trunc, dtype=dtype) if trunc.shape[1:] != sample_shape: raise ValueError('Shape of sample %s of sequence at position %s ' 'is different from expected shape %s' % (trunc.shape[1:], idx, sample_shape)) if padding == 'post': x[idx, :len(trunc)] = trunc elif padding == 'pre': x[idx, -len(trunc):] = trunc else: raise ValueError('Padding type "%s" not understood' % padding) return x def make_sampling_table(size, sampling_factor=1e-5): """Generates a word rank-based probabilistic sampling table. Used for generating the `sampling_table` argument for `skipgrams`. `sampling_table[i]` is the probability of sampling the word i-th most common word in a dataset (more common words should be sampled less frequently, for balance). The sampling probabilities are generated according to the sampling distribution used in word2vec: ``` p(word) = (min(1, sqrt(word_frequency / sampling_factor) / (word_frequency / sampling_factor))) ``` We assume that the word frequencies follow Zipf's law (s=1) to derive a numerical approximation of frequency(rank): `frequency(rank) ~ 1/(rank * (log(rank) + gamma) + 1/2 - 1/(12*rank))` where `gamma` is the Euler-Mascheroni constant. # Arguments size: Int, number of possible words to sample. sampling_factor: The sampling factor in the word2vec formula. # Returns A 1D Numpy array of length `size` where the ith entry is the probability that a word of rank i should be sampled. """ gamma = 0.577 rank = np.arange(size) rank[0] = 1 inv_fq = rank * (np.log(rank) + gamma) + 0.5 - 1. / (12. * rank) f = sampling_factor * inv_fq return np.minimum(1., f / np.sqrt(f)) def skipgrams(sequence, vocabulary_size, window_size=4, negative_samples=1., shuffle=True, categorical=False, sampling_table=None, seed=None): """Generates skipgram word pairs. This function transforms a sequence of word indexes (list of integers) into tuples of words of the form: - (word, word in the same window), with label 1 (positive samples). - (word, random word from the vocabulary), with label 0 (negative samples). Read more about Skipgram in this gnomic paper by Mikolov et al.: [Efficient Estimation of Word Representations in Vector Space](http://arxiv.org/pdf/1301.3781v3.pdf) # Arguments sequence: A word sequence (sentence), encoded as a list of word indices (integers). If using a `sampling_table`, word indices are expected to match the rank of the words in a reference dataset (e.g. 10 would encode the 10-th most frequently occurring token). Note that index 0 is expected to be a non-word and will be skipped. vocabulary_size: Int, maximum possible word index + 1 window_size: Int, size of sampling windows (technically half-window). The window of a word `w_i` will be `[i - window_size, i + window_size+1]`. negative_samples: Float >= 0. 0 for no negative (i.e. random) samples. 1 for same number as positive samples. shuffle: Whether to shuffle the word couples before returning them. categorical: bool. if False, labels will be integers (eg. `[0, 1, 1 .. ]`), if `True`, labels will be categorical, e.g. `[[1,0],[0,1],[0,1] .. ]`. sampling_table: 1D array of size `vocabulary_size` where the entry i encodes the probability to sample a word of rank i. seed: Random seed. # Returns couples, labels: where `couples` are int pairs and `labels` are either 0 or 1. # Note By convention, index 0 in the vocabulary is a non-word and will be skipped. """ couples = [] labels = [] for i, wi in enumerate(sequence): if not wi: continue if sampling_table is not None: if sampling_table[wi] < random.random(): continue window_start = max(0, i - window_size) window_end = min(len(sequence), i + window_size + 1) for j in range(window_start, window_end): if j != i: wj = sequence[j] if not wj: continue couples.append([wi, wj]) if categorical: labels.append([0, 1]) else: labels.append(1) if negative_samples > 0: num_negative_samples = int(len(labels) * negative_samples) words = [c[0] for c in couples] random.shuffle(words) couples += [[words[i % len(words)], random.randint(1, vocabulary_size - 1)] for i in range(num_negative_samples)] if categorical: labels += [[1, 0]] * num_negative_samples else: labels += [0] * num_negative_samples if shuffle: if seed is None: seed = random.randint(0, 10e6) random.seed(seed) random.shuffle(couples) random.seed(seed) random.shuffle(labels) return couples, labels def _remove_long_seq(maxlen, seq, label): """Removes sequences that exceed the maximum length. # Arguments maxlen: Int, maximum length of the output sequences. seq: List of lists, where each sublist is a sequence. label: List where each element is an integer. # Returns new_seq, new_label: shortened lists for `seq` and `label`. """ new_seq, new_label = [], [] for x, y in zip(seq, label): if len(x) < maxlen: new_seq.append(x) new_label.append(y) return new_seq, new_label class TimeseriesGenerator(object): """Utility class for generating batches of temporal data. This class takes in a sequence of data-points gathered at equal intervals, along with time series parameters such as stride, length of history, etc., to produce batches for training/validation. # Arguments data: Indexable generator (such as list or Numpy array) containing consecutive data points (timesteps). The data should be at 2D, and axis 0 is expected to be the time dimension. targets: Targets corresponding to timesteps in `data`. It should have same length as `data`. length: Length of the output sequences (in number of timesteps). sampling_rate: Period between successive individual timesteps within sequences. For rate `r`, timesteps `data[i]`, `data[i-r]`, ... `data[i - length]` are used for create a sample sequence. stride: Period between successive output sequences. For stride `s`, consecutive output samples would be centered around `data[i]`, `data[i+s]`, `data[i+2*s]`, etc. start_index: Data points earlier than `start_index` will not be used in the output sequences. This is useful to reserve part of the data for test or validation. end_index: Data points later than `end_index` will not be used in the output sequences. This is useful to reserve part of the data for test or validation. shuffle: Whether to shuffle output samples, or instead draw them in chronological order. reverse: Boolean: if `true`, timesteps in each output sample will be in reverse chronological order. batch_size: Number of timeseries samples in each batch (except maybe the last one). # Returns A [Sequence](/utils/#sequence) instance. # Examples ```python from keras.preprocessing.sequence import TimeseriesGenerator import numpy as np data = np.array([[i] for i in range(50)]) targets = np.array([[i] for i in range(50)]) data_gen = TimeseriesGenerator(data, targets, length=10, sampling_rate=2, batch_size=2) assert len(data_gen) == 20 batch_0 = data_gen[0] x, y = batch_0 assert np.array_equal(x, np.array([[[0], [2], [4], [6], [8]], [[1], [3], [5], [7], [9]]])) assert np.array_equal(y, np.array([[10], [11]])) ``` """ def __init__(self, data, targets, length, sampling_rate=1, stride=1, start_index=0, end_index=None, shuffle=False, reverse=False, batch_size=128): if len(data) != len(targets): raise ValueError('Data and targets have to be' + ' of same length. ' 'Data length is {}'.format(len(data)) + ' while target length is {}'.format(len(targets))) self.data = data self.targets = targets self.length = length self.sampling_rate = sampling_rate self.stride = stride self.start_index = start_index + length if end_index is None: end_index = len(data) - 1 self.end_index = end_index self.shuffle = shuffle self.reverse = reverse self.batch_size = batch_size if self.start_index > self.end_index: raise ValueError('`start_index+length=%i > end_index=%i` ' 'is disallowed, as no part of the sequence ' 'would be left to be used as current step.' % (self.start_index, self.end_index)) def __len__(self): return (self.end_index - self.start_index + self.batch_size * self.stride) // (self.batch_size * self.stride) def __getitem__(self, index): if self.shuffle: rows = np.random.randint( self.start_index, self.end_index + 1, size=self.batch_size) else: i = self.start_index + self.batch_size * self.stride * index rows = np.arange(i, min(i + self.batch_size * self.stride, self.end_index + 1), self.stride) samples = np.array([self.data[row - self.length:row:self.sampling_rate] for row in rows]) targets = np.array([self.targets[row] for row in rows]) if self.reverse: return samples[:, ::-1, ...], targets return samples, targets def get_config(self): '''Returns the TimeseriesGenerator configuration as Python dictionary. # Returns A Python dictionary with the TimeseriesGenerator configuration. ''' data = self.data if type(self.data).__module__ == np.__name__: data = self.data.tolist() try: json_data = json.dumps(data) except TypeError: raise TypeError('Data not JSON Serializable:', data) targets = self.targets if type(self.targets).__module__ == np.__name__: targets = self.targets.tolist() try: json_targets = json.dumps(targets) except TypeError: raise TypeError('Targets not JSON Serializable:', targets) return { 'data': json_data, 'targets': json_targets, 'length': self.length, 'sampling_rate': self.sampling_rate, 'stride': self.stride, 'start_index': self.start_index, 'end_index': self.end_index, 'shuffle': self.shuffle, 'reverse': self.reverse, 'batch_size': self.batch_size } def to_json(self, **kwargs): """Returns a JSON string containing the timeseries generator configuration. To load a generator from a JSON string, use `keras.preprocessing.sequence.timeseries_generator_from_json(json_string)`. # Arguments **kwargs: Additional keyword arguments to be passed to `json.dumps()`. # Returns A JSON string containing the tokenizer configuration. """ config = self.get_config() timeseries_generator_config = { 'class_name': self.__class__.__name__, 'config': config } return json.dumps(timeseries_generator_config, **kwargs) def timeseries_generator_from_json(json_string): """Parses a JSON timeseries generator configuration file and returns a timeseries generator instance. # Arguments json_string: JSON string encoding a timeseries generator configuration. # Returns A Keras TimeseriesGenerator instance """ full_config = json.loads(json_string) config = full_config.get('config') data = json.loads(config.pop('data')) config['data'] = data targets = json.loads(config.pop('targets')) config['targets'] = targets return TimeseriesGenerator(**config)
keras-preprocessing/keras_preprocessing/sequence.py/0
{ "file_path": "keras-preprocessing/keras_preprocessing/sequence.py", "repo_id": "keras-preprocessing", "token_count": 7185 }
135
<meta http-equiv="refresh" content="0; URL='https://keras.io/keras_tuner/'" />
keras-tuner/docs/site/index.html/0
{ "file_path": "keras-tuner/docs/site/index.html", "repo_id": "keras-tuner", "token_count": 32 }
136
# Copyright 2019 The KerasTuner Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob as built_in_glob import os import shutil from keras_tuner.backend import config if config.backend() == "tensorflow": import tensorflow as tf else: tf = None def exists(path): if tf is None: return os.path.exists(path) return tf.io.gfile.exists(path) def rmtree(path): if tf is None: return shutil.rmtree(path) return tf.io.gfile.rmtree(path) def File(filename, mode): if tf is None: file = open(filename, mode) else: file = tf.io.gfile.GFile(filename, mode) return file def glob(path): if tf is None: return built_in_glob.glob(path) return tf.io.gfile.glob(path) def makedirs(path): if tf is None: return os.makedirs(path, exist_ok=True) return tf.io.gfile.makedirs(path) # The following code is forked from Keras: # https://github.com/keras-team/keras/blob/master/keras/distribute/distributed_file_utils.py """Utilities that help manage directory path in distributed settings. In multi-worker training, the need to write a file to distributed file location often requires only one copy done by one worker despite many workers that are involved in training. The option to only perform saving by chief is not feasible for a couple of reasons: 1) Chief and workers may each contain a client that runs the same piece of code and it's preferred not to make any distinction between the code run by chief and other workers, and 2) saving of model or model's related information may require SyncOnRead variables to be read, which needs the cooperation of all workers to perform all-reduce. This set of utility is used so that only one copy is written to the needed directory, by supplying a temporary write directory path for workers that don't need to save, and removing the temporary directory once file writing is done. Example usage: ``` # Before using a directory to write file to. self.log_write_dir = write_dirpath(self.log_dir, get_distribution_strategy()) # Now `self.log_write_dir` can be safely used to write file to. ... # After the file is written to the directory. remove_temp_dirpath(self.log_dir, get_distribution_strategy()) ``` Experimental. API is subject to change. """ def _get_base_dirpath(strategy): task_id = strategy.extended._task_id # pylint: disable=protected-access return f"workertemp_{str(task_id)}" def _is_temp_dir(dirpath, strategy): return dirpath.endswith(_get_base_dirpath(strategy)) def _get_temp_dir(dirpath, strategy): if _is_temp_dir(dirpath, strategy): temp_dir = dirpath else: temp_dir = os.path.join(dirpath, _get_base_dirpath(strategy)) tf.io.gfile.makedirs(temp_dir) return temp_dir def write_dirpath(dirpath, strategy): """Returns the writing dir that should be used to save file distributedly. `dirpath` would be created if it doesn't exist. Args: dirpath: Original dirpath that would be used without distribution. strategy: The tf.distribute strategy object currently used. Returns: The writing dir path that should be used to save with distribution. """ if tf is None: return if strategy is None: # Infer strategy if not given. strategy = tf.distribute.get_strategy() if strategy is None: # If strategy is still not available, this is not in distributed # training. Fallback to original dirpath. return dirpath if ( not strategy.extended._in_multi_worker_mode() ): # pylint: disable=protected-access return dirpath if strategy.extended.should_checkpoint: return dirpath # If this worker is not chief and hence should not save file, save it to a # temporary directory to be removed later. return _get_temp_dir(dirpath, strategy) def remove_temp_dirpath(dirpath, strategy): """Removes the temp path after writing is finished. Args: dirpath: Original dirpath that would be used without distribution, or the temporary dirpath used with distribution. strategy: The tf.distribute strategy object currently used. """ if tf is None: return if strategy is None: # Infer strategy if not given. strategy = tf.distribute.get_strategy() if strategy is None: # If strategy is still not available, this is not in distributed # training. Fallback to no-op. return # TODO(anjalisridhar): Consider removing the check for multi worker mode # since it is redundant when used with the should_checkpoint property. if ( strategy.extended._in_multi_worker_mode() and not strategy.extended.should_checkpoint ): # If this worker is not chief and hence should not save file, remove # the temporary directory. tf.io.gfile.rmtree(_get_temp_dir(dirpath, strategy)) def write_filepath(filepath, strategy): """Returns the writing file path to be used to save file distributedly. Directory to contain `filepath` would be created if it doesn't exist. Args: filepath: Original filepath that would be used without distribution. strategy: The tf.distribute strategy object currently used. Returns: The writing filepath that should be used to save file with distribution. """ if tf is None: return dirpath = os.path.dirname(filepath) base = os.path.basename(filepath) return os.path.join(write_dirpath(dirpath, strategy), base) def remove_temp_dir_with_filepath(filepath, strategy): """Removes the temp path for file after writing is finished. Args: filepath: Original filepath that would be used without distribution, or the temporary filepath used with distribution. strategy: The tf.distribute strategy object currently used. """ if tf is None: return remove_temp_dirpath(os.path.dirname(filepath), strategy)
keras-tuner/keras_tuner/backend/io.py/0
{ "file_path": "keras-tuner/keras_tuner/backend/io.py", "repo_id": "keras-tuner", "token_count": 2201 }
137
# Copyright 2019 The KerasTuner Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. "HyperParameters logic." import abc import six from keras_tuner import protos from keras_tuner import utils @six.add_metaclass(abc.ABCMeta) class Condition: """Abstract condition for a conditional hyperparameter. Subclasses of this object can be passed to a `HyperParameter` to specify that this condition must be met for the hyperparameter to be active for the `Trial`. """ @abc.abstractmethod def is_active(self, values): """Whether this condition should be considered active. Determines whether this condition is true for the current `Trial`. Args: values: Dict. The active values for this `Trial`. Keys are the names of the hyperparameters. Returns: A boolean value of whether the condition is true. """ raise NotImplementedError("Must be implemented in subclasses.") @abc.abstractmethod def __eq__(self, other): raise NotImplementedError("Must be implemented in subclasses.") @abc.abstractmethod def get_config(self): raise NotImplementedError("Must be implemented in subclasses.") @classmethod def from_config(cls, config): return cls(**config) # pytype: disable=not-instantiable @classmethod def from_proto(cls, proto): kind = proto.WhichOneof("kind") if kind == "parent": parent = getattr(proto, kind) name = parent.name values = parent.values values = [getattr(v, v.WhichOneof("kind")) for v in values] return Parent(name=name, values=values) raise ValueError(f"Unrecognized condition of type: {kind}") class Parent(Condition): """Condition checking a `HyperParameter`'s value is in a list of values. It specifies a condition that a `HyperParameter`'s value is in a list of values. It can be used as the condition to activate another `HyperParameter` for the `Trial`. Example: ```python a = Choice('model', ['linear', 'dnn']) condition = Parent(name='model', value=['dnn']) b = Int('num_layers', 5, 10, conditions=[condition]) ``` Args: name: A string, the name of the `HyperParameter` to use in the condition. values: A list of values of the `HyperParameter` to activate the condition. """ def __init__(self, name, values): self.name = name # Standardize on str, int, float, bool. values = utils.to_list(values) first_val = values[0] if isinstance(first_val, six.string_types): values = [str(v) for v in values] elif isinstance(first_val, bool): # Bool check needs to be before integer check to prevent bool falls # into integer condition. pass elif isinstance(first_val, six.integer_types): values = [int(v) for v in values] elif not isinstance(first_val, float): raise TypeError( "Can contain only `int`, `float`, `str`, or " "`bool`, found values: " + str(values) + "with " "types: " + str(type(first_val)) ) self.values = values def is_active(self, values): return self.name in values and values[self.name] in self.values def __eq__(self, other): return ( isinstance(other, Parent) and other.name == self.name and other.values == self.values ) def get_config(self): return {"name": self.name, "values": self.values} def to_proto(self): print(self.values[0]) if isinstance(self.values[0], six.string_types): values = [ protos.get_proto().Value(string_value=v) for v in self.values ] elif isinstance(self.values[0], bool): values = [ protos.get_proto().Value(boolean_value=v) for v in self.values ] elif isinstance(self.values[0], six.integer_types): values = [ protos.get_proto().Value(int_value=v) for v in self.values ] else: values = [ protos.get_proto().Value(float_value=v) for v in self.values ] return protos.get_proto().Condition( parent=protos.get_proto().Condition.Parent( name=self.name, values=values ) ) OBJECTS = ( Condition, Parent, ) ALL_CLASSES = {cls.__name__: cls for cls in OBJECTS} def deserialize(config): return utils.deserialize_keras_object(config, module_objects=ALL_CLASSES) def serialize(obj): return utils.serialize_keras_object(obj)
keras-tuner/keras_tuner/engine/conditions.py/0
{ "file_path": "keras-tuner/keras_tuner/engine/conditions.py", "repo_id": "keras-tuner", "token_count": 2181 }
138
# Copyright 2019 The KerasTuner Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from keras_tuner import protos def sampling_from_proto(sampling): if sampling == protos.get_proto().Sampling.LINEAR: return "linear" if sampling == protos.get_proto().Sampling.LOG: return "log" if sampling == protos.get_proto().Sampling.REVERSE_LOG: return "reverse_log" raise ValueError( "Expected sampling to be one of predefined proto values. " f"Received: '{sampling}'." ) def sampling_to_proto(sampling): if sampling == "linear": return protos.get_proto().Sampling.LINEAR if sampling == "log": return protos.get_proto().Sampling.LOG if sampling == "reverse_log": return protos.get_proto().Sampling.REVERSE_LOG raise ValueError( "Expected sampling to be 'linear', 'log', or 'reverse_log'. " f"Received: '{sampling}'." ) def prob_to_index(prob, n_index): """Convert cumulative probability to 0-based index in the given range.""" ele_prob = 1 / n_index index = int(math.floor(prob / ele_prob)) # Can happen when `prob` is very close to 1. if index == n_index: index -= 1 return index def index_to_prob(index, n_index): """Convert 0-based index in the given range to cumulative probability.""" ele_prob = 1 / n_index # Center the value in its probability bucket. return (index + 0.5) * ele_prob
keras-tuner/keras_tuner/engine/hyperparameters/hp_utils.py/0
{ "file_path": "keras-tuner/keras_tuner/engine/hyperparameters/hp_utils.py", "repo_id": "keras-tuner", "token_count": 705 }
139
# Copyright 2019 The KerasTuner Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from io import StringIO from unittest.mock import patch import numpy as np import pytest from tensorboard.plugins.hparams import api as hparams_api import keras_tuner from keras_tuner import errors from keras_tuner.backend import config from keras_tuner.backend import keras from keras_tuner.engine import tuner as tuner_module INPUT_DIM = 2 NUM_CLASSES = 3 NUM_SAMPLES = 64 TRAIN_INPUTS = np.random.random(size=(NUM_SAMPLES, INPUT_DIM)) TRAIN_TARGETS = np.random.randint(0, NUM_CLASSES, size=(NUM_SAMPLES, 1)) VAL_INPUTS = np.random.random(size=(NUM_SAMPLES, INPUT_DIM)) VAL_TARGETS = np.random.randint(0, NUM_CLASSES, size=(NUM_SAMPLES, 1)) def build_model(hp): inputs = keras.Input(shape=(INPUT_DIM,)) x = inputs for i in range(hp.Int("num_layers", 1, 4)): x = keras.layers.Dense( units=hp.Int(f"units_{str(i)}", 5, 9, 1, default=6), activation="relu", )(x) outputs = keras.layers.Dense(NUM_CLASSES, activation="softmax")(x) model = keras.Model(inputs, outputs) model.compile( optimizer=keras.optimizers.Adam( hp.Choice("learning_rate", [1e-2, 1e-3, 1e-4]) ), loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) return model class MockModel(keras.Model): def __init__(self, full_history): super().__init__() self.full_history = full_history self.callbacks = [] self.optimizer = True def call_callbacks(self, callbacks, method_name, *args, **kwargs): for callback in callbacks: method = getattr(callback, method_name) method(*args, **kwargs) def on_epoch_begin(self, epoch): for callback in self.callbacks: callback.on_epoch_begin(epoch, logs=None) def on_epoch_end(self, epoch): logs = {"loss": np.average(self.full_history[epoch])} for callback in self.callbacks: callback.on_epoch_end(epoch, logs=logs) def on_batch_begin(self, epoch, batch): for callback in self.callbacks: callback.on_batch_begin(batch, logs=None) def on_batch_end(self, epoch, batch): logs = {"loss": self.full_history[epoch][batch]} for callback in self.callbacks: callback.on_batch_end(epoch, logs=logs) def fit(self, *args, **kwargs): self.callbacks = kwargs["callbacks"] for callback in self.callbacks: callback.set_model(self) for epoch in range(len(self.full_history)): self.on_epoch_begin(epoch) for batch in range(len(self.full_history[epoch])): self.on_batch_begin(epoch, batch) self.on_batch_end(epoch, batch) self.on_epoch_end(epoch) history = keras.callbacks.History() history.history = { "loss": [ np.average(epoch_values) for epoch_values in self.full_history ] } return history def save_weights(self, fname, **kwargs): pass def get_config(self): return {} class MockHyperModel(keras_tuner.HyperModel): mode_0 = [[10, 9, 8], [7, 6, 5], [4, 3, 2]] mode_1 = [[13, 13, 13], [12, 12, 12], [11, 11, 11]] def __init__(self): # The first call to `build` in tuner __init__ # will reset this to 0 self.mode_0_execution_count = -1 def build(self, hp): if hp.Choice("mode", [0, 1]) == 0: return MockModel(self.mode_0) return MockModel(self.mode_1) def build_subclass_model(hp): class MyModel(keras.Model): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.layer = keras.layers.Dense(NUM_CLASSES, activation="softmax") def build(self, input_shape): self.layer.build(input_shape) super().build(input_shape) def call(self, x): x = x + hp.Float("bias", 0, 10) return self.layer(x) # Currently necessary, because we save the model. # Note that this model is not written w/ best practices, # because the hp.Float value of the best model cannot be # inferred from `get_config()`. The best practice is to pass # HPs as __init__ arguments to subclass Layers and Models. def get_config(self): return {} model = MyModel() model.compile( optimizer=keras.optimizers.Adam( hp.Choice("learning_rate", [1e-2, 1e-3, 1e-4]) ), loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) return model class ExampleHyperModel(keras_tuner.HyperModel): def build(self, hp): inputs = keras.Input(shape=(INPUT_DIM,)) x = inputs for i in range(hp.Int("num_layers", 1, 4)): x = keras.layers.Dense( units=hp.Int(f"units_{str(i)}", 5, 9, 1, default=6), activation="relu", )(x) outputs = keras.layers.Dense(NUM_CLASSES, activation="softmax")(x) model = keras.Model(inputs, outputs) model.compile( optimizer=keras.optimizers.Adam( hp.Choice("learning_rate", [1e-2, 1e-3, 1e-4]) ), loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) return model def fit(self, hp, model, *args, **kwargs): return model.fit(*args, shuffle=hp.Boolean("shuffle"), **kwargs) def test_basic_tuner_attributes(tmp_path): tuner = keras_tuner.tuners.RandomSearch( build_model, objective="val_accuracy", max_trials=2, executions_per_trial=3, directory=tmp_path, ) assert tuner.oracle.objective.name == "val_accuracy" assert tuner.oracle.max_trials == 2 assert tuner.executions_per_trial == 3 assert tuner.directory == tmp_path assert tuner.hypermodel.__class__.__name__ == "DefaultHyperModel" assert len(tuner.oracle.hyperparameters.space) == 3 # default search space assert len(tuner.oracle.hyperparameters.values) == 3 # default search space tuner.search_space_summary() tuner.search( x=TRAIN_INPUTS, y=TRAIN_TARGETS, epochs=2, validation_data=(VAL_INPUTS, VAL_TARGETS), ) tuner.results_summary() assert len(tuner.oracle.trials) == 2 assert os.path.exists(os.path.join(str(tmp_path), "untitled_project")) def test_multi_objective(tmp_path): tuner = keras_tuner.tuners.RandomSearch( build_model, objective=["val_accuracy", "val_loss"], max_trials=2, executions_per_trial=3, directory=tmp_path, ) assert tuner.oracle.objective.name == "multi_objective" tuner.search_space_summary() tuner.search( x=TRAIN_INPUTS, y=TRAIN_TARGETS, epochs=2, validation_data=(VAL_INPUTS, VAL_TARGETS), ) tuner.results_summary() def test_no_hypermodel_with_objective(tmp_path): class MyTuner(keras_tuner.tuners.RandomSearch): def run_trial(self, trial, *args, **kwargs): hp = trial.hyperparameters return {"val_loss": hp.Float("value", 0, 10)} tuner = MyTuner( objective="val_loss", max_trials=2, directory=tmp_path, ) tuner.search() assert len(tuner.oracle.trials) == 2 def test_no_objective_with_hypermodel(tmp_path): class MyHyperModel(ExampleHyperModel): def fit(self, hp, model, *args, **kwargs): return hp.Float("value", 0, 10) tuner = keras_tuner.tuners.RandomSearch( hypermodel=MyHyperModel(), max_trials=2, executions_per_trial=3, directory=tmp_path, ) tuner.search() assert len(tuner.oracle.trials) == 2 def test_no_hypermodel_no_objective(tmp_path): class MyTuner(keras_tuner.tuners.RandomSearch): def run_trial(self, trial, *args, **kwargs): hp = trial.hyperparameters return hp.Float("value", 0, 10) tuner = MyTuner( objective="val_loss", max_trials=2, directory=tmp_path, ) tuner.search() assert len(tuner.oracle.trials) == 2 def test_no_hypermodel_without_override_run_trial_error(tmp_path): with pytest.raises(ValueError, match="Received `hypermodel=None`"): keras_tuner.tuners.RandomSearch( max_trials=2, executions_per_trial=3, directory=tmp_path, ) def test_fit_return_string(tmp_path): class MyHyperModel(ExampleHyperModel): def fit(self, hp, model, *args, **kwargs): return hp.Choice("value", ["a", "b"]) tuner = keras_tuner.tuners.RandomSearch( objective="val_loss", hypermodel=MyHyperModel(), max_trials=2, executions_per_trial=3, directory=tmp_path, ) with pytest.raises(TypeError, match="HyperModel\.fit\(\) to be one of"): tuner.search() def test_run_trial_return_string(tmp_path): class MyTuner(keras_tuner.tuners.RandomSearch): def run_trial(self, trial, **kwargs): return trial.hyperparameters.Choice("value", ["a", "b"]) tuner = MyTuner( objective="val_loss", max_trials=2, executions_per_trial=3, directory=tmp_path, ) with pytest.raises(TypeError, match="Tuner\.run_trial\(\) to be one of"): tuner.search() def test_no_objective_fit_return_not_float(tmp_path): class MyHyperModel(ExampleHyperModel): def fit(self, hp, model, *args, **kwargs): return {"val_loss": hp.Float("value", 0, 10)} tuner = keras_tuner.tuners.RandomSearch( hypermodel=MyHyperModel(), max_trials=2, executions_per_trial=3, directory=tmp_path, ) with pytest.raises( TypeError, match="HyperModel\.fit\(\) to be a single float" ): tuner.search() def test_no_objective_run_trial_return_not_float(tmp_path): class MyTuner(keras_tuner.tuners.RandomSearch): def run_trial(self, trial, **kwargs): return {"val_loss": trial.hyperparameters.Float("value", 0, 10)} tuner = MyTuner( max_trials=2, executions_per_trial=3, directory=tmp_path, ) with pytest.raises( TypeError, match="Tuner\.run_trial\(\) to be a single float" ): tuner.search() def test_callbacks_in_fit_kwargs(tmp_path): tuner = keras_tuner.tuners.RandomSearch( build_model, objective="val_accuracy", max_trials=2, executions_per_trial=3, directory=tmp_path, ) with patch.object( tuner, "_build_and_fit_model", wraps=tuner._build_and_fit_model ) as mock_build_and_fit_model: tuner.search( x=TRAIN_INPUTS, y=TRAIN_TARGETS, epochs=2, validation_data=(VAL_INPUTS, VAL_TARGETS), callbacks=[ keras.callbacks.EarlyStopping(), keras.callbacks.TensorBoard(tmp_path), ], ) assert len(tuner.oracle.trials) == 2 callback_class_names = [ x.__class__.__name__ for x in mock_build_and_fit_model.call_args[1]["callbacks"] ] assert { "EarlyStopping", "TensorBoard", "TunerCallback", "SaveBestEpoch", }.issubset( set(callback_class_names), ) def test_hypermodel_with_dynamic_space(tmp_path): hypermodel = ExampleHyperModel() tuner = keras_tuner.tuners.RandomSearch( hypermodel, objective="val_accuracy", max_trials=2, executions_per_trial=3, directory=tmp_path, ) assert tuner.hypermodel == hypermodel tuner.search_space_summary() tuner.search( x=TRAIN_INPUTS, y=TRAIN_TARGETS, epochs=2, validation_data=(VAL_INPUTS, VAL_TARGETS), ) tuner.results_summary() assert len(tuner.oracle.trials) == 2 tuner.oracle.hyperparameters.get("shuffle") def test_override_compile(tmp_path): class MyHyperModel(ExampleHyperModel): def fit(self, hp, model, *args, **kwargs): history = super().fit(hp, model, *args, **kwargs) assert model.optimizer.__class__.__name__ == "RMSprop" assert model.loss == "mse" assert len(model.metrics) >= 2 assert model.metrics[-2].__class__.__name__ in ( "mean_squared_error", "Mean", ) assert model.metrics[-1].__class__.__name__ in ( "sparse_categorical_accuracy", "CompileMetrics", ) return history tuner = keras_tuner.tuners.RandomSearch( MyHyperModel(), objective="val_mse", max_trials=2, executions_per_trial=1, metrics=["mse", "accuracy"], loss="mse", optimizer="rmsprop", directory=tmp_path, ) assert tuner.oracle.objective.name == "val_mse" assert tuner.optimizer == "rmsprop" assert tuner.loss == "mse" assert tuner.metrics == ["mse", "accuracy"] tuner.search_space_summary() tuner.search( x=TRAIN_INPUTS, y=TRAIN_TARGETS, epochs=2, validation_data=(VAL_INPUTS, VAL_TARGETS), ) tuner.results_summary() model = tuner.get_best_models()[0] assert model.loss == "mse" def test_override_optimizer_with_actual_optimizer_object(tmp_path): tuner = keras_tuner.tuners.RandomSearch( build_model, objective="val_loss", max_trials=4, optimizer=keras.optimizers.Adam(0.01), directory=tmp_path, ) tuner.search( x=TRAIN_INPUTS, y=TRAIN_TARGETS, epochs=2, validation_data=(VAL_INPUTS, VAL_TARGETS), ) def test_static_space(tmp_path): def build_model_static(hp): inputs = keras.Input(shape=(INPUT_DIM,)) x = inputs for i in range(hp.get("num_layers")): x = keras.layers.Dense( units=hp.get(f"units_{str(i)}"), activation="relu" )(x) outputs = keras.layers.Dense(NUM_CLASSES, activation="softmax")(x) model = keras.Model(inputs, outputs) model.compile( optimizer=keras.optimizers.Adam(hp.get("learning_rate")), loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) return model hp = keras_tuner.HyperParameters() hp.Int("num_layers", 1, 3, 1, default=2) hp.Int("units_0", 4, 6, 1, default=5) hp.Int("units_1", 4, 6, 1, default=5) hp.Int("units_2", 4, 6, 1, default=5) hp.Choice("learning_rate", [0.01, 0.001]) tuner = keras_tuner.tuners.RandomSearch( build_model_static, objective="val_accuracy", max_trials=4, directory=tmp_path, hyperparameters=hp, allow_new_entries=False, ) assert tuner.oracle.hyperparameters == hp tuner.search( x=TRAIN_INPUTS, y=TRAIN_TARGETS, epochs=2, validation_data=(VAL_INPUTS, VAL_TARGETS), ) assert len(tuner.oracle.trials) == 4 def test_static_space_errors(tmp_path): def build_model_static(hp): inputs = keras.Input(shape=(INPUT_DIM,)) x = inputs for i in range(hp.get("num_layers")): x = keras.layers.Dense( units=hp.get(f"units_{str(i)}"), activation="relu" )(x) outputs = keras.layers.Dense(NUM_CLASSES, activation="softmax")(x) model = keras.Model(inputs, outputs) model.compile( optimizer=keras.optimizers.Adam( hp.Float("learning_rate", 1e-5, 1e-2) ), loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) return model hp = keras_tuner.HyperParameters() hp.Int("num_layers", 1, 3, 1, default=2) hp.Int("units_0", 4, 6, 1, default=5) hp.Int("units_1", 4, 6, 1, default=5) with pytest.raises(RuntimeError, match="`allow_new_entries` is `False`"): tuner = keras_tuner.tuners.RandomSearch( build_model_static, objective="val_accuracy", max_trials=2, directory=tmp_path, hyperparameters=hp, allow_new_entries=False, ) tuner.search( x=TRAIN_INPUTS, y=TRAIN_TARGETS, epochs=2, validation_data=(VAL_INPUTS, VAL_TARGETS), ) def build_model_static_invalid(hp): inputs = keras.Input(shape=(INPUT_DIM,)) x = inputs for i in range(hp.get("num_layers")): x = keras.layers.Dense( units=hp.get(f"units_{str(i)}"), activation="relu" )(x) outputs = keras.layers.Dense(NUM_CLASSES, activation="softmax")(x) model = keras.Model(inputs, outputs) model.compile( optimizer=keras.optimizers.Adam( hp.Float("learning_rate", 0.001, 0.008, 0.001) ), loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) return model with pytest.raises(RuntimeError, match="`allow_new_entries` is `False`"): tuner = keras_tuner.tuners.RandomSearch( build_model_static_invalid, objective="val_accuracy", max_trials=2, directory=tmp_path, hyperparameters=hp, allow_new_entries=False, ) tuner.search( x=TRAIN_INPUTS, y=TRAIN_TARGETS, epochs=2, validation_data=(VAL_INPUTS, VAL_TARGETS), ) def test_restricted_space_using_defaults(tmp_path): hp = keras_tuner.HyperParameters() hp.Int("num_layers", 1, 5, 1, default=2) hp.Choice("learning_rate", [0.01, 0.001, 0.0001]) tuner = keras_tuner.tuners.RandomSearch( build_model, objective="val_accuracy", max_trials=4, directory=tmp_path, hyperparameters=hp, allow_new_entries=True, tune_new_entries=False, ) assert len(tuner.oracle.hyperparameters.space) == 2 new_lr = [ p for p in tuner.oracle.hyperparameters.space if p.name == "learning_rate" ][0] assert new_lr.values == [0.01, 0.001, 0.0001] tuner.search( x=TRAIN_INPUTS, y=TRAIN_TARGETS, epochs=1, validation_data=(VAL_INPUTS, VAL_TARGETS), ) assert len(tuner.oracle.trials) == 4 assert len(tuner.oracle.hyperparameters.space) == 2 # Nothing added for trial in tuner.oracle.trials.values(): # Trials get default values but don't pass these on to the oracle. assert len(trial.hyperparameters.space) >= 2 def test_restricted_space_with_custom_defaults(tmp_path): hp = keras_tuner.HyperParameters() hp.Int("num_layers", 1, 3, 1, default=2) hp.Choice("learning_rate", [0.01, 0.001, 0.0001]) hp.Fixed("units_0", 4) hp.Fixed("units_1", 3) tuner = keras_tuner.tuners.RandomSearch( build_model, objective="val_accuracy", max_trials=4, directory=tmp_path, hyperparameters=hp, allow_new_entries=True, tune_new_entries=False, ) assert len(tuner.oracle.hyperparameters.space) == 4 tuner.search( x=TRAIN_INPUTS, y=TRAIN_TARGETS, epochs=1, validation_data=(VAL_INPUTS, VAL_TARGETS), ) assert len(tuner.oracle.trials) == 4 def test_reparameterized_space(tmp_path): hp = keras_tuner.HyperParameters() hp.Int("num_layers", 1, 3, 1, default=3) hp.Choice("learning_rate", [0.01, 0.001, 0.0001]) tuner = keras_tuner.tuners.RandomSearch( build_model, seed=1337, objective="val_accuracy", max_trials=4, directory=tmp_path, hyperparameters=hp, allow_new_entries=True, tune_new_entries=True, ) # Initial build model adds to the space. assert len(tuner.oracle.hyperparameters.space) == 5 tuner.search( x=TRAIN_INPUTS, y=TRAIN_TARGETS, epochs=1, validation_data=(VAL_INPUTS, VAL_TARGETS), ) assert len(tuner.oracle.trials) == 4 assert len(tuner.oracle.hyperparameters.space) == 5 def test_get_best_models(tmp_path): tuner = keras_tuner.tuners.RandomSearch( build_model, objective="val_accuracy", max_trials=4, directory=tmp_path ) tuner.search( x=TRAIN_INPUTS, y=TRAIN_TARGETS, epochs=2, validation_data=(VAL_INPUTS, VAL_TARGETS), ) models = tuner.get_best_models(2) assert len(models) == 2 assert isinstance(models[0], keras.Model) assert isinstance(models[1], keras.Model) def test_saving_and_reloading(tmp_path): tuner = keras_tuner.tuners.RandomSearch( build_model, objective="val_accuracy", max_trials=4, executions_per_trial=2, directory=tmp_path, ) tuner.search( x=TRAIN_INPUTS, y=TRAIN_TARGETS, epochs=2, validation_data=(VAL_INPUTS, VAL_TARGETS), ) new_tuner = keras_tuner.tuners.RandomSearch( build_model, objective="val_accuracy", max_trials=4, executions_per_trial=2, directory=tmp_path, ) new_tuner.reload() assert len(new_tuner.oracle.trials) == 4 new_tuner.search( x=TRAIN_INPUTS, y=TRAIN_TARGETS, epochs=2, validation_data=(VAL_INPUTS, VAL_TARGETS), ) def test_subclass_model(tmp_path): tuner = keras_tuner.tuners.RandomSearch( build_subclass_model, objective="val_accuracy", max_trials=2, directory=tmp_path, ) tuner.search_space_summary() tuner.search( x=TRAIN_INPUTS, y=TRAIN_TARGETS, epochs=2, validation_data=(VAL_INPUTS, VAL_TARGETS), ) tuner.results_summary() assert len(tuner.oracle.trials) == 2 def test_subclass_model_loading(tmp_path): tuner = keras_tuner.tuners.RandomSearch( build_subclass_model, objective="val_accuracy", max_trials=2, directory=tmp_path, ) tuner.search_space_summary() tuner.search( x=TRAIN_INPUTS, y=TRAIN_TARGETS, epochs=2, validation_data=(VAL_INPUTS, VAL_TARGETS), ) best_trial_score = tuner.oracle.get_best_trials()[0].score best_model = tuner.get_best_models()[0] best_model_score = best_model.evaluate(VAL_INPUTS, VAL_TARGETS)[1] assert best_model_score == best_trial_score def test_update_trial(tmp_path): # Test stop the oracle in update_trial. class MyOracle(keras_tuner.Oracle): def populate_space(self, _): values = { p.name: p.random_sample() for p in self.hyperparameters.space } return {"values": values, "status": "RUNNING"} def update_trial(self, trial_id, metrics, step=0): super().update_trial(trial_id, metrics, step) trial = self.trials[trial_id] trial.status = "STOPPED" return trial.status my_oracle = MyOracle(objective="val_accuracy", max_trials=2) tuner = keras_tuner.Tuner( oracle=my_oracle, hypermodel=build_model, directory=tmp_path ) tuner.search( x=TRAIN_INPUTS, y=TRAIN_TARGETS, epochs=5, validation_data=(VAL_INPUTS, VAL_TARGETS), ) assert len(my_oracle.trials) == 2 for trial in my_oracle.trials.values(): # Test that early stopping worked. assert len(trial.metrics.get_history("val_accuracy")) == 1 @pytest.mark.skipif( config.multi_backend(), reason="The test is too slow.", ) def test_tunable_false_hypermodel(tmp_path): def build_model(hp): input_shape = (256, 256, 3) inputs = keras.Input(shape=input_shape) with hp.name_scope("xception"): # Tune the pooling of Xception by supplying the search space # beforehand. hp.Choice("pooling", ["avg", "max"]) xception = keras_tuner.applications.HyperXception( include_top=False, input_shape=input_shape, tunable=False ).build(hp) x = xception(inputs) x = keras.layers.Dense( hp.Int("hidden_units", 50, 100, step=10), activation="relu" )(x) outputs = keras.layers.Dense(NUM_CLASSES, activation="softmax")(x) model = keras.Model(inputs, outputs) optimizer = keras.optimizers.get( hp.Choice("optimizer", ["adam", "sgd"]) ) optimizer.learning_rate = hp.Float( "learning_rate", 1e-4, 1e-2, sampling="log" ) model.compile(optimizer, loss="sparse_categorical_crossentropy") return model tuner = keras_tuner.RandomSearch( objective="val_loss", hypermodel=build_model, max_trials=4, directory=tmp_path, ) x = np.random.random(size=(2, 256, 256, 3)) y = np.random.randint(0, NUM_CLASSES, size=(2,)) tuner.search(x, y, validation_data=(x, y), batch_size=2) hps = tuner.oracle.get_space() assert "xception/pooling" in hps assert "hidden_units" in hps assert "optimizer" in hps assert "learning_rate" in hps # Make sure no HPs from building xception were added. assert len(hps.space) == 4 def test_get_best_hyperparameters(tmp_path): hp1 = keras_tuner.HyperParameters() hp1.Fixed("a", 1) trial1 = keras_tuner.engine.trial.Trial(hyperparameters=hp1) trial1.status = "COMPLETED" trial1.score = 10 hp2 = keras_tuner.HyperParameters() hp2.Fixed("a", 2) trial2 = keras_tuner.engine.trial.Trial(hyperparameters=hp2) trial2.status = "COMPLETED" trial2.score = 9 tuner = keras_tuner.RandomSearch( objective="val_accuracy", hypermodel=build_model, max_trials=2, directory=tmp_path, ) tuner.oracle.trials = {trial1.trial_id: trial1, trial2.trial_id: trial2} hps = tuner.get_best_hyperparameters()[0] assert hps["a"] == 1 def test_reloading_error_message(tmp_path): shared_dir = tmp_path tuner = keras_tuner.tuners.RandomSearch( build_model, objective="val_accuracy", max_trials=2, executions_per_trial=3, directory=shared_dir, ) tuner.search( x=TRAIN_INPUTS, y=TRAIN_TARGETS, epochs=2, validation_data=(VAL_INPUTS, VAL_TARGETS), ) with pytest.raises(RuntimeError, match="pass `overwrite=True`"): keras_tuner.tuners.BayesianOptimization( build_model, objective="val_accuracy", max_trials=2, executions_per_trial=3, directory=shared_dir, ) def test_search_logging_verbosity(tmp_path): tuner = keras_tuner.tuners.RandomSearch( build_model, objective="val_accuracy", max_trials=2, executions_per_trial=3, directory=tmp_path, ) with patch("sys.stdout", new=StringIO()) as output: tuner.search( x=TRAIN_INPUTS, y=TRAIN_TARGETS, epochs=2, validation_data=(VAL_INPUTS, VAL_TARGETS), verbose=0, ) assert output.getvalue().strip() == "" @pytest.mark.skipif( keras_tuner.backend.config.backend() != "tensorflow", reason="KerasTuner can only use TensorBoard with TensorFlow backend.", ) def test_convert_hyperparams_to_hparams(): def _check_hparams_equal(hp1, hp2): assert ( hparams_api.hparams_pb(hp1, start_time_secs=0).SerializeToString() == hparams_api.hparams_pb( hp2, start_time_secs=0 ).SerializeToString() ) hps = keras_tuner.engine.hyperparameters.HyperParameters() hps.Choice("learning_rate", [1e-4, 1e-3, 1e-2]) hparams = keras_tuner.engine.tuner_utils.convert_hyperparams_to_hparams( hps, hparams_api ) _check_hparams_equal( hparams, { hparams_api.HParam( "learning_rate", hparams_api.Discrete([1e-4, 1e-3, 1e-2]) ): 1e-4 }, ) hps = keras_tuner.engine.hyperparameters.HyperParameters() hps.Int("units", min_value=2, max_value=16) hparams = keras_tuner.engine.tuner_utils.convert_hyperparams_to_hparams( hps, hparams_api ) _check_hparams_equal( hparams, {hparams_api.HParam("units", hparams_api.IntInterval(2, 16)): 2}, ) hps = keras_tuner.engine.hyperparameters.HyperParameters() hps.Int("units", min_value=32, max_value=128, step=32) hparams = keras_tuner.engine.tuner_utils.convert_hyperparams_to_hparams( hps, hparams_api ) _check_hparams_equal( hparams, { hparams_api.HParam( "units", hparams_api.Discrete([32, 64, 96, 128]) ): 32 }, ) hps = keras_tuner.engine.hyperparameters.HyperParameters() hps.Float("learning_rate", min_value=0.5, max_value=1.25, step=0.25) hparams = keras_tuner.engine.tuner_utils.convert_hyperparams_to_hparams( hps, hparams_api ) _check_hparams_equal( hparams, { hparams_api.HParam( "learning_rate", hparams_api.Discrete([0.5, 0.75, 1.0, 1.25]) ): 0.5 }, ) hps = keras_tuner.engine.hyperparameters.HyperParameters() hps.Float("learning_rate", min_value=1e-4, max_value=1e-1) hparams = keras_tuner.engine.tuner_utils.convert_hyperparams_to_hparams( hps, hparams_api ) _check_hparams_equal( hparams, { hparams_api.HParam( "learning_rate", hparams_api.RealInterval(1e-4, 1e-1) ): 1e-4 }, ) hps = keras_tuner.engine.hyperparameters.HyperParameters() hps.Float("theta", min_value=0.0, max_value=1.57) hps.Float("r", min_value=0.0, max_value=1.0) hparams = keras_tuner.engine.tuner_utils.convert_hyperparams_to_hparams( hps, hparams_api ) expected_hparams = { hparams_api.HParam("theta", hparams_api.RealInterval(0.0, 1.57)): 0.0, hparams_api.HParam("r", hparams_api.RealInterval(0.0, 1.0)): 0.0, } hparams_repr_list = [repr(hparams[x]) for x in hparams.keys()] expected_hparams_repr_list = [ repr(expected_hparams[x]) for x in expected_hparams ] assert sorted(hparams_repr_list) == sorted(expected_hparams_repr_list) hps = keras_tuner.engine.hyperparameters.HyperParameters() hps.Boolean("has_beta") hparams = keras_tuner.engine.tuner_utils.convert_hyperparams_to_hparams( hps, hparams_api ) _check_hparams_equal( hparams, { hparams_api.HParam( "has_beta", hparams_api.Discrete([True, False]) ): False }, ) hps = keras_tuner.engine.hyperparameters.HyperParameters() hps.Fixed("beta", 0.1) hparams = keras_tuner.engine.tuner_utils.convert_hyperparams_to_hparams( hps, hparams_api ) _check_hparams_equal( hparams, {hparams_api.HParam("beta", hparams_api.Discrete([0.1])): 0.1} ) hps = keras_tuner.engine.hyperparameters.HyperParameters() hps.Fixed("type", "WIDE_AND_DEEP") hparams = keras_tuner.engine.tuner_utils.convert_hyperparams_to_hparams( hps, hparams_api ) _check_hparams_equal( hparams, { hparams_api.HParam( "type", hparams_api.Discrete(["WIDE_AND_DEEP"]) ): "WIDE_AND_DEEP" }, ) hps = keras_tuner.engine.hyperparameters.HyperParameters() hps.Fixed("condition", True) hparams = keras_tuner.engine.tuner_utils.convert_hyperparams_to_hparams( hps, hparams_api ) _check_hparams_equal( hparams, {hparams_api.HParam("condition", hparams_api.Discrete([True])): True}, ) hps = keras_tuner.engine.hyperparameters.HyperParameters() hps.Fixed("num_layers", 2) hparams = keras_tuner.engine.tuner_utils.convert_hyperparams_to_hparams( hps, hparams_api ) _check_hparams_equal( hparams, {hparams_api.HParam("num_layers", hparams_api.Discrete([2])): 2}, ) def test_tuning_correctness(tmp_path): tuner = keras_tuner.Tuner( oracle=keras_tuner.tuners.randomsearch.RandomSearchOracle( objective="loss", max_trials=2, seed=1337 ), hypermodel=MockHyperModel(), directory=tmp_path, ) tuner.search() assert len(tuner.oracle.trials) == 2 m0_epochs = [float(np.average(x)) for x in MockHyperModel.mode_0] m1_epochs = [float(np.average(x)) for x in MockHyperModel.mode_1] # Score tracking correctness first_trial, second_trial = sorted( tuner.oracle.trials.values(), key=lambda t: t.score ) assert first_trial.score == min(m0_epochs) assert second_trial.score == min(m1_epochs) assert tuner.oracle.get_best_trials(1)[0].trial_id == first_trial.trial_id def assert_found_best_score( tmp_path, hypermodel, tuner_class=keras_tuner.Tuner ): tuner = tuner_class( oracle=keras_tuner.tuners.randomsearch.RandomSearchOracle( objective="loss", max_trials=2, seed=1337 ), hypermodel=hypermodel, directory=tmp_path, ) tuner.search(callbacks=[]) assert tuner.oracle.get_best_trials(1)[0].score == 3.0 def test_hypermodel_fit_return_a_dict(tmp_path): class MyHyperModel(MockHyperModel): def fit(self, hp, model, *args, **kwargs): history = super().fit(hp, model, *args, **kwargs) return { "loss": min(history.history["loss"]), "other_metric": np.random.rand(), } assert_found_best_score(tmp_path, MyHyperModel()) def test_hypermodel_fit_return_a_float(tmp_path): class MyHyperModel(MockHyperModel): def fit(self, hp, model, *args, **kwargs): history = super().fit(hp, model, *args, **kwargs) return min(history.history["loss"]) assert_found_best_score(tmp_path, MyHyperModel()) def test_hypermodel_fit_return_an_int(tmp_path): class MyHyperModel(MockHyperModel): def fit(self, hp, model, *args, **kwargs): history = super().fit(hp, model, *args, **kwargs) return int(min(history.history["loss"])) assert_found_best_score(tmp_path, MyHyperModel()) def test_run_trial_return_none_without_update_trial(tmp_path): class MyTuner(keras_tuner.Tuner): def run_trial(self, trial, *fit_args, **fit_kwargs): self.hypermodel.build(trial.hyperparameters).fit( *fit_args, **fit_kwargs ) with pytest.raises( errors.FatalTypeError, match="Did you forget", ): assert_found_best_score(tmp_path, MockHyperModel(), MyTuner) def test_run_trial_return_none_with_update_trial(tmp_path): class MyTuner(keras_tuner.Tuner): def run_trial(self, trial, *fit_args, **fit_kwargs): history = self.hypermodel.build(trial.hyperparameters).fit( *fit_args, **fit_kwargs ) self.oracle.update_trial( trial.trial_id, {"loss": min(history.history["loss"])} ) with pytest.deprecated_call(match="Please remove the call"): assert_found_best_score(tmp_path, MockHyperModel(), MyTuner) def test_run_trial_return_history(tmp_path): class MyTuner(keras_tuner.Tuner): def run_trial(self, trial, *fit_args, **fit_kwargs): return self.hypermodel.build(trial.hyperparameters).fit( *fit_args, **fit_kwargs ) assert_found_best_score(tmp_path, MockHyperModel(), MyTuner) def test_run_trial_return_a_dict(tmp_path): class MyTuner(keras_tuner.Tuner): def run_trial(self, trial, *fit_args, **fit_kwargs): history = self.hypermodel.build(trial.hyperparameters).fit( *fit_args, **fit_kwargs ) return {"loss": min(history.history["loss"])} assert_found_best_score(tmp_path, MockHyperModel(), MyTuner) def test_run_trial_return_a_float(tmp_path): class MyTuner(keras_tuner.Tuner): def run_trial(self, trial, *fit_args, **fit_kwargs): history = self.hypermodel.build(trial.hyperparameters).fit( *fit_args, **fit_kwargs ) return min(history.history["loss"]) assert_found_best_score(tmp_path, MockHyperModel(), MyTuner) def test_run_trial_return_float_list(tmp_path): class MyTuner(keras_tuner.Tuner): def run_trial(self, trial, *fit_args, **fit_kwargs): ret = [] for _ in range(3): history = self.hypermodel.build(trial.hyperparameters).fit( *fit_args, **fit_kwargs ) ret.append(min(history.history["loss"])) return ret assert_found_best_score(tmp_path, MockHyperModel(), MyTuner) def test_tuner_errors(tmp_path): # invalid oracle with pytest.raises( ValueError, match="Expected `oracle` argument to be an instance of `Oracle`", ): tuner_module.Tuner( oracle="invalid", hypermodel=build_model, directory=tmp_path ) # invalid hypermodel with pytest.raises( ValueError, match="`hypermodel` argument should be either" ): tuner_module.Tuner( oracle=keras_tuner.tuners.randomsearch.RandomSearchOracle( objective="val_accuracy", max_trials=3 ), hypermodel="build_model", directory=tmp_path, ) # oversize model with pytest.raises(RuntimeError, match="Oversized model"): tuner = tuner_module.Tuner( oracle=keras_tuner.tuners.randomsearch.RandomSearchOracle( objective="val_accuracy", max_trials=3 ), hypermodel=build_model, max_model_size=4, directory=tmp_path, ) tuner.search( TRAIN_INPUTS, TRAIN_TARGETS, validation_data=(VAL_INPUTS, VAL_TARGETS), ) # TODO: test no optimizer def test_metric_direction_inferred_from_objective(tmp_path): oracle = keras_tuner.tuners.randomsearch.RandomSearchOracle( objective=keras_tuner.Objective("a", "max"), max_trials=1 ) oracle._set_project_dir(tmp_path, "untitled_project") trial = oracle.create_trial("tuner0") oracle.update_trial(trial.trial_id, {"a": 1}) trial = oracle.get_trial(trial.trial_id) assert trial.metrics.get_direction("a") == "max" oracle = keras_tuner.tuners.randomsearch.RandomSearchOracle( objective=keras_tuner.Objective("a", "min"), max_trials=1 ) oracle._set_project_dir(tmp_path, "untitled_project2") trial = oracle.create_trial("tuner0") oracle.update_trial(trial.trial_id, {"a": 1}) trial = oracle.get_trial(trial.trial_id) assert trial.metrics.get_direction("a") == "min" def test_overwrite_true(tmp_path): tuner = keras_tuner.tuners.RandomSearch( hypermodel=build_model, objective="val_accuracy", max_trials=2, directory=tmp_path, ) tuner.search( TRAIN_INPUTS, TRAIN_TARGETS, validation_data=(VAL_INPUTS, VAL_TARGETS) ) assert len(tuner.oracle.trials) == 2 new_tuner = keras_tuner.tuners.RandomSearch( hypermodel=build_model, objective="val_accuracy", max_trials=2, directory=tmp_path, overwrite=True, ) assert len(new_tuner.oracle.trials) == 0 def test_correct_display_trial_number(tmp_path): tuner = keras_tuner.tuners.RandomSearch( hypermodel=build_model, objective="val_accuracy", max_trials=2, directory=tmp_path, ) tuner.search( TRAIN_INPUTS, TRAIN_TARGETS, validation_data=(VAL_INPUTS, VAL_TARGETS) ) new_tuner = keras_tuner.tuners.RandomSearch( hypermodel=build_model, objective="val_accuracy", max_trials=6, directory=tmp_path, overwrite=False, ) new_tuner.search( TRAIN_INPUTS, TRAIN_TARGETS, validation_data=(VAL_INPUTS, VAL_TARGETS) ) new_tuner.oracle._display.trial_number.items() assert len(new_tuner.oracle.trials) == max( new_tuner.oracle._display.trial_number.values() ) def test_error_on_unknown_objective_direction(tmp_path): with pytest.raises( ValueError, match="Could not infer optimization direction" ): keras_tuner.tuners.RandomSearch( hypermodel=build_model, objective="custom_metric", max_trials=2, directory=tmp_path, ) def test_callbacks_run_each_execution(tmp_path): callback_instances = set() class LoggingCallback(keras.callbacks.Callback): def on_train_begin(self, logs): callback_instances.add(id(self)) logging_callback = LoggingCallback() tuner = keras_tuner.tuners.RandomSearch( hypermodel=build_model, objective="val_accuracy", max_trials=2, executions_per_trial=3, directory=tmp_path, ) tuner.search( TRAIN_INPUTS, TRAIN_TARGETS, validation_data=(VAL_INPUTS, VAL_TARGETS), callbacks=[logging_callback], ) # Unknown reason cause the callback to run 5 times sometime. # Make 5 & 6 both pass the test before found the reason. assert len(callback_instances) in {5, 6} def test_build_and_fit_model(tmp_path): class MyTuner(keras_tuner.tuners.RandomSearch): def _build_and_fit_model(self, trial, *args, **kwargs): self.was_called = True return super()._build_and_fit_model(trial, *args, **kwargs) tuner = MyTuner( hypermodel=build_model, objective="val_accuracy", max_trials=2, executions_per_trial=3, directory=tmp_path, ) tuner.run_trial( tuner.oracle.create_trial("tuner0"), TRAIN_INPUTS, TRAIN_TARGETS, validation_data=(VAL_INPUTS, VAL_TARGETS), ) assert tuner.was_called def test_build_and_fit_model_in_tuner(tmp_path): class MyTuner(tuner_module.Tuner): def _build_and_fit_model(self, trial, *args, **kwargs): self.was_called = True return super()._build_and_fit_model(trial, *args, **kwargs) tuner = MyTuner( oracle=keras_tuner.tuners.randomsearch.RandomSearchOracle( objective="val_loss", max_trials=2, ), hypermodel=build_model, directory=tmp_path, ) tuner.run_trial( tuner.oracle.create_trial("tuner0"), TRAIN_INPUTS, TRAIN_TARGETS, validation_data=(VAL_INPUTS, VAL_TARGETS), ) assert tuner.was_called def test_init_build_all_hps_in_all_conditions(tmp_path): class ConditionalHyperModel(MockHyperModel): def build(self, hp): model_type = hp.Choice("model_type", ["cnn", "mlp"]) with hp.conditional_scope("model_type", ["cnn"]): if model_type == "cnn": sub_cnn = hp.Choice("sub_cnn", ["a", "b"]) with hp.conditional_scope("sub_cnn", ["a"]): if sub_cnn == "a": hp.Int("n_filters_a", 2, 4) with hp.conditional_scope("sub_cnn", ["b"]): if sub_cnn == "b": hp.Int("n_filters_b", 6, 8) with hp.conditional_scope("model_type", ["mlp"]): if model_type == "mlp": sub_mlp = hp.Choice("sub_mlp", ["a", "b"]) with hp.conditional_scope("sub_mlp", ["a"]): if sub_mlp == "a": hp.Int("n_units_a", 2, 4) with hp.conditional_scope("sub_mlp", ["b"]): if sub_mlp == "b": hp.Int("n_units_b", 6, 8) more_block = hp.Boolean("more_block", default=False) with hp.conditional_scope("more_block", [True]): if more_block: hp.Int("new_block_hp", 1, 3) return super().build(hp) def name_in_hp(name, hp): return any(name == single_hp.name for single_hp in hp.space) class MyTuner(tuner_module.Tuner): def _populate_initial_space(self): super()._populate_initial_space() hp = self.oracle.hyperparameters assert name_in_hp("model_type", hp) assert name_in_hp("sub_cnn", hp) assert name_in_hp("n_filters_a", hp) assert name_in_hp("n_filters_b", hp) assert name_in_hp("sub_mlp", hp) assert name_in_hp("n_units_a", hp) assert name_in_hp("n_units_b", hp) assert name_in_hp("more_block", hp) assert name_in_hp("new_block_hp", hp) MyTuner( oracle=keras_tuner.tuners.randomsearch.RandomSearchOracle( objective="loss", max_trials=2, seed=1337 ), hypermodel=ConditionalHyperModel(), directory=tmp_path, ) def test_populate_initial_space_with_hp_parent_arg(tmp_path): def build_model(hp): hp.Boolean("parent", default=True) hp.Boolean( "child", parent_name="parent", parent_values=[False], ) return keras.Sequential() keras_tuner.RandomSearch( build_model, objective="val_accuracy", directory=tmp_path, max_trials=1, ) def test_populate_initial_space_with_declare_hp(tmp_path): class MyHyperModel(keras_tuner.HyperModel): def declare_hyperparameters(self, hp): hp.Boolean("bool") def build(self, hp): return keras.Sequential() keras_tuner.RandomSearch( MyHyperModel(), objective="val_accuracy", directory=tmp_path, max_trials=1, ) def test_build_did_not_return_keras_model(tmp_path): tuner = keras_tuner.tuners.RandomSearch( hypermodel=lambda hp: None, objective="val_accuracy", directory=tmp_path, ) with pytest.raises( errors.FatalTypeError, match="Expected the model-building function", ): tuner.search() def test_callback_cannot_be_deep_copied(tmp_path): tuner = keras_tuner.tuners.RandomSearch( hypermodel=lambda hp: keras.Sequential(), objective="val_accuracy", directory=tmp_path, ) with pytest.raises( errors.FatalValueError, match="All callbacks used during a search should be deep-copyable", ): tuner.search(callbacks=[keras_tuner])
keras-tuner/keras_tuner/engine/tuner_test.py/0
{ "file_path": "keras-tuner/keras_tuner/engine/tuner_test.py", "repo_id": "keras-tuner", "token_count": 22946 }
140
# Copyright 2019 The KerasTuner Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. "Basic random search tuner." from keras_tuner.api_export import keras_tuner_export from keras_tuner.engine import oracle as oracle_module from keras_tuner.engine import trial as trial_module from keras_tuner.engine import tuner as tuner_module @keras_tuner_export("keras_tuner.oracles.RandomSearchOracle") class RandomSearchOracle(oracle_module.Oracle): """Random search oracle. Args: objective: A string, `keras_tuner.Objective` instance, or a list of `keras_tuner.Objective`s and strings. If a string, the direction of the optimization (min or max) will be inferred. If a list of `keras_tuner.Objective`, we will minimize the sum of all the objectives to minimize subtracting the sum of all the objectives to maximize. The `objective` argument is optional when `Tuner.run_trial()` or `HyperModel.fit()` returns a single float as the objective to minimize. max_trials: Integer, the total number of trials (model configurations) to test at most. Note that the oracle may interrupt the search before `max_trial` models have been tested if the search space has been exhausted. Defaults to 10. seed: Optional integer, the random seed. hyperparameters: Optional `HyperParameters` instance. Can be used to override (or register in advance) hyperparameters in the search space. tune_new_entries: Boolean, whether hyperparameter entries that are requested by the hypermodel but that were not specified in `hyperparameters` should be added to the search space, or not. If not, then the default value for these parameters will be used. Defaults to True. allow_new_entries: Boolean, whether the hypermodel is allowed to request hyperparameter entries not listed in `hyperparameters`. Defaults to True. max_retries_per_trial: Integer. Defaults to 0. The maximum number of times to retry a `Trial` if the trial crashed or the results are invalid. max_consecutive_failed_trials: Integer. Defaults to 3. The maximum number of consecutive failed `Trial`s. When this number is reached, the search will be stopped. A `Trial` is marked as failed when none of the retries succeeded. """ def __init__( self, objective=None, max_trials=10, seed=None, hyperparameters=None, allow_new_entries=True, tune_new_entries=True, max_retries_per_trial=0, max_consecutive_failed_trials=3, ): super().__init__( objective=objective, max_trials=max_trials, hyperparameters=hyperparameters, tune_new_entries=tune_new_entries, allow_new_entries=allow_new_entries, seed=seed, max_retries_per_trial=max_retries_per_trial, max_consecutive_failed_trials=max_consecutive_failed_trials, ) def populate_space(self, trial_id): """Fill the hyperparameter space with values. Args: trial_id: A string, the ID for this Trial. Returns: A dictionary with keys "values" and "status", where "values" is a mapping of parameter names to suggested values, and "status" should be one of "RUNNING" (the trial can start normally), "IDLE" (the oracle is waiting on something and cannot create a trial), or "STOPPED" (the oracle has finished searching and no new trial should be created). """ values = self._random_values() if values is None: return {"status": trial_module.TrialStatus.STOPPED, "values": None} return {"status": trial_module.TrialStatus.RUNNING, "values": values} @keras_tuner_export( ["keras_tuner.RandomSearch", "keras_tuner.tuners.RandomSearch"] ) class RandomSearch(tuner_module.Tuner): """Random search tuner. Args: hypermodel: Instance of `HyperModel` class (or callable that takes hyperparameters and returns a Model instance). It is optional when `Tuner.run_trial()` is overridden and does not use `self.hypermodel`. objective: A string, `keras_tuner.Objective` instance, or a list of `keras_tuner.Objective`s and strings. If a string, the direction of the optimization (min or max) will be inferred. If a list of `keras_tuner.Objective`, we will minimize the sum of all the objectives to minimize subtracting the sum of all the objectives to maximize. The `objective` argument is optional when `Tuner.run_trial()` or `HyperModel.fit()` returns a single float as the objective to minimize. max_trials: Integer, the total number of trials (model configurations) to test at most. Note that the oracle may interrupt the search before `max_trial` models have been tested if the search space has been exhausted. Defaults to 10. seed: Optional integer, the random seed. hyperparameters: Optional `HyperParameters` instance. Can be used to override (or register in advance) hyperparameters in the search space. tune_new_entries: Boolean, whether hyperparameter entries that are requested by the hypermodel but that were not specified in `hyperparameters` should be added to the search space, or not. If not, then the default value for these parameters will be used. Defaults to True. allow_new_entries: Boolean, whether the hypermodel is allowed to request hyperparameter entries not listed in `hyperparameters`. Defaults to True. max_retries_per_trial: Integer. Defaults to 0. The maximum number of times to retry a `Trial` if the trial crashed or the results are invalid. max_consecutive_failed_trials: Integer. Defaults to 3. The maximum number of consecutive failed `Trial`s. When this number is reached, the search will be stopped. A `Trial` is marked as failed when none of the retries succeeded. **kwargs: Keyword arguments relevant to all `Tuner` subclasses. Please see the docstring for `Tuner`. """ def __init__( self, hypermodel=None, objective=None, max_trials=10, seed=None, hyperparameters=None, tune_new_entries=True, allow_new_entries=True, max_retries_per_trial=0, max_consecutive_failed_trials=3, **kwargs ): self.seed = seed oracle = RandomSearchOracle( objective=objective, max_trials=max_trials, seed=seed, hyperparameters=hyperparameters, tune_new_entries=tune_new_entries, allow_new_entries=allow_new_entries, max_retries_per_trial=max_retries_per_trial, max_consecutive_failed_trials=max_consecutive_failed_trials, ) super().__init__(oracle, hypermodel, **kwargs)
keras-tuner/keras_tuner/tuners/randomsearch.py/0
{ "file_path": "keras-tuner/keras_tuner/tuners/randomsearch.py", "repo_id": "keras-tuner", "token_count": 3140 }
141
# Rebuilding rebuilding the gPRC protos python -m grpc_tools.protoc --python_out=. --grpc_python_out=. --proto_path=. keras_tuner/protos/keras_tuner.proto python -m grpc_tools.protoc --python_out=. --grpc_python_out=. --proto_path=. keras_tuner/protos/service.proto
keras-tuner/shell/grpc.sh/0
{ "file_path": "keras-tuner/shell/grpc.sh", "repo_id": "keras-tuner", "token_count": 107 }
142
import os # When using jax.experimental.enable_x64 in unit test, we want to keep the # default dtype with 32 bits, aligning it with Keras's default. os.environ["JAX_DEFAULT_DTYPE_BITS"] = "32" try: # When using torch and tensorflow, torch needs to be imported first, # otherwise it will segfault upon import. This should force the torch # import to happen first for all tests. import torch # noqa: F401 except ImportError: pass import pytest # noqa: E402 from keras.backend import backend # noqa: E402 def pytest_configure(config): config.addinivalue_line( "markers", "requires_trainable_backend: mark test for trainable backend only", ) def pytest_collection_modifyitems(config, items): requires_trainable_backend = pytest.mark.skipif( backend() == "numpy", reason="Trainer not implemented for NumPy backend.", ) for item in items: if "requires_trainable_backend" in item.keywords: item.add_marker(requires_trainable_backend)
keras/conftest.py/0
{ "file_path": "keras/conftest.py", "repo_id": "keras", "token_count": 376 }
143
from keras import activations from keras import applications from keras import backend from keras import constraints from keras import datasets from keras import initializers from keras import layers from keras import models from keras import ops from keras import optimizers from keras import regularizers from keras import utils from keras.backend import KerasTensor from keras.layers import Input from keras.layers import Layer from keras.models import Functional from keras.models import Model from keras.models import Sequential from keras.version import __version__
keras/keras/__init__.py/0
{ "file_path": "keras/keras/__init__.py", "repo_id": "keras", "token_count": 142 }
144
from keras.backend.common import global_state from keras.testing import test_case from keras.utils.naming import auto_name class GlobalStateTest(test_case.TestCase): def test_clear_session(self): name0 = auto_name("somename") self.assertEqual(name0, "somename") name1 = auto_name("somename") self.assertEqual(name1, "somename_1") global_state.clear_session() name0 = auto_name("somename") self.assertEqual(name0, "somename")
keras/keras/backend/common/global_state_test.py/0
{ "file_path": "keras/keras/backend/common/global_state_test.py", "repo_id": "keras", "token_count": 204 }
145
class JaxLayer: pass
keras/keras/backend/jax/layer.py/0
{ "file_path": "keras/keras/backend/jax/layer.py", "repo_id": "keras", "token_count": 11 }
146
import jax import numpy as np from jax import lax from jax import numpy as jnp from keras.backend import standardize_data_format from keras.backend import standardize_dtype from keras.backend.common.backend_utils import ( compute_conv_transpose_padding_args_for_jax, ) from keras.backend.config import epsilon from keras.backend.numpy.core import cast from keras.backend.numpy.core import convert_to_tensor from keras.backend.numpy.core import is_tensor from keras.utils.module_utils import scipy def relu(x): x = convert_to_tensor(x) return np.maximum(x, np.array(0.0, x.dtype)) def relu6(x): x = convert_to_tensor(x) # np.clip incorrectly promote bfloat16 to float32, so we replace it with # np.minimum and np.maximum here return np.minimum( np.maximum(x, np.array(0.0, x.dtype)), np.array(6.0, x.dtype) ) def sigmoid(x): x = convert_to_tensor(x) return np.array(1.0, x.dtype) / (np.array(1.0, x.dtype) + np.exp(-x)) def tanh(x): return np.tanh(x) def softplus(x): x = convert_to_tensor(x) return np.logaddexp(x, np.array(0.0, x.dtype)) def softsign(x): x = convert_to_tensor(x) return x / (np.array(1.0, x.dtype) + np.abs(x)) def silu(x): x = convert_to_tensor(x) return x * sigmoid(x) def log_sigmoid(x): x = convert_to_tensor(x) return -softplus(-x) def leaky_relu(x, negative_slope=0.2): x = convert_to_tensor(x) return np.maximum(x, np.array(negative_slope, x.dtype) * x) def hard_sigmoid(x): # python numbers will be promoted to float64 by np, so it's neccessary to # first convert the python numbers to np scalars x = x / np.array(6.0, x.dtype) + np.array(0.5, x.dtype) return np.where( x <= 0.0, np.array(0.0, x.dtype), np.where(x >= 1.0, np.array(1.0, x.dtype), x), ) def hard_silu(x): return x * hard_sigmoid(x) def elu(x, alpha=1.0): x = convert_to_tensor(x) return np.where( x >= np.array(0.0, x.dtype), x, np.array(alpha, x.dtype) * np.expm1(x) ) def selu( x, alpha=1.6732632423543772848170429916717, scale=1.0507009873554804934193349852946, ): x = convert_to_tensor(x) return np.array(scale, x.dtype) * elu(x, alpha) def gelu(x, approximate=True): x = convert_to_tensor(x) # followd by JAX's implementation if approximate: sqrt_2_over_pi = np.sqrt(2 / np.pi).astype(x.dtype) cdf = np.array(0.5, x.dtype) * ( np.array(1.0, x.dtype) + np.tanh( sqrt_2_over_pi * (x + np.array(0.044715, x.dtype) * (x**3).astype(x.dtype)) ) ) return x * cdf else: sqrt_2 = np.sqrt(2).astype(x.dtype) return ( x * (scipy.special.erf(x / sqrt_2) + 1).astype(x.dtype) / np.array(2, x.dtype) ) def softmax(x, axis=None): exp_x = np.exp(x - np.max(x, axis=axis, keepdims=True)) return exp_x / np.sum(exp_x, axis=axis, keepdims=True) def log_softmax(x, axis=None): max_x = np.max(x, axis=axis, keepdims=True) logsumexp = np.log(np.exp(x - max_x).sum(axis=axis, keepdims=True)) return x - max_x - logsumexp def _convert_to_spatial_operand( x, num_spatial_dims, data_format="channels_last", include_batch_and_channels=True, ): # Helper function that converts an operand to a spatial operand. x = (x,) * num_spatial_dims if isinstance(x, int) else x if not include_batch_and_channels: return x if data_format == "channels_last": x = (1,) + x + (1,) else: x = (1,) + (1,) + x return x def _pool( inputs, initial_value, reduce_fn, pool_size, strides=None, padding="valid", ): """Helper function to define pooling functions. Args: inputs: input data of shape `N+2`. initial_value: the initial value for the reduction. reduce_fn: a reduce function of the form `(T, T) -> T`. pool_size: a sequence of `N` integers, representing the window size to reduce over. strides: a sequence of `N` integers, representing the inter-window strides (default: `(1, ..., 1)`). padding: either the string `same` or `valid`. Returns: The output of the reduction for each window slice. """ if padding not in ("same", "valid"): raise ValueError( f"Invalid padding '{padding}', must be 'same' or 'valid'." ) padding = padding.upper() return np.array( lax.reduce_window( inputs, initial_value, reduce_fn, pool_size, strides, padding, ) ) def max_pool( inputs, pool_size, strides=None, padding="valid", data_format=None, ): data_format = standardize_data_format(data_format) num_spatial_dims = inputs.ndim - 2 pool_size = _convert_to_spatial_operand( pool_size, num_spatial_dims, data_format ) strides = pool_size if strides is None else strides strides = _convert_to_spatial_operand( strides, num_spatial_dims, data_format ) return _pool(inputs, -jnp.inf, lax.max, pool_size, strides, padding) def average_pool( inputs, pool_size, strides, padding, data_format=None, ): data_format = standardize_data_format(data_format) num_spatial_dims = inputs.ndim - 2 pool_size = _convert_to_spatial_operand( pool_size, num_spatial_dims, data_format ) strides = pool_size if strides is None else strides strides = _convert_to_spatial_operand( strides, num_spatial_dims, data_format ) pooled = _pool(inputs, 0.0, lax.add, pool_size, strides, padding) if padding == "valid": # Avoid the extra reduce_window. return pooled / np.prod(pool_size) else: # Count the number of valid entries at each input point, then use that # for computing average. Assumes that any two arrays of same shape will # be padded the same. Avoid broadcasting on axis where pooling is # skipped. shape = [ (a if b != 1 else 1) for (a, b) in zip(inputs.shape, pool_size) ] window_counts = _pool( jnp.ones(shape, inputs.dtype), 0.0, lax.add, pool_size, strides, padding, ) return pooled / window_counts def _convert_to_lax_conv_dimension_numbers( num_spatial_dims, data_format="channels_last", transpose=False, ): """Create a `lax.ConvDimensionNumbers` for the given inputs.""" num_dims = num_spatial_dims + 2 if data_format == "channels_last": spatial_dims = tuple(range(1, num_dims - 1)) inputs_dn = (0, num_dims - 1) + spatial_dims else: spatial_dims = tuple(range(2, num_dims)) inputs_dn = (0, 1) + spatial_dims if transpose: kernel_dn = (num_dims - 2, num_dims - 1) + tuple(range(num_dims - 2)) else: kernel_dn = (num_dims - 1, num_dims - 2) + tuple(range(num_dims - 2)) return lax.ConvDimensionNumbers( lhs_spec=inputs_dn, rhs_spec=kernel_dn, out_spec=inputs_dn ) def conv( inputs, kernel, strides=1, padding="valid", data_format=None, dilation_rate=1, ): data_format = standardize_data_format(data_format) num_spatial_dims = inputs.ndim - 2 dimension_numbers = _convert_to_lax_conv_dimension_numbers( num_spatial_dims, data_format, transpose=False, ) strides = _convert_to_spatial_operand( strides, num_spatial_dims, data_format, include_batch_and_channels=False, ) dilation_rate = _convert_to_spatial_operand( dilation_rate, num_spatial_dims, data_format, include_batch_and_channels=False, ) if data_format == "channels_last": channels = inputs.shape[-1] else: channels = inputs.shape[1] kernel_in_channels = kernel.shape[-2] if channels % kernel_in_channels > 0: raise ValueError( "The number of input channels must be evenly divisible by " f"kernel's in_channels. Received input channels {channels} and " f"kernel in_channels {kernel_in_channels}. " ) feature_group_count = channels // kernel_in_channels return np.array( jax.lax.conv_general_dilated( inputs, kernel if is_tensor(kernel) else kernel.numpy(), strides, padding, rhs_dilation=dilation_rate, dimension_numbers=dimension_numbers, feature_group_count=feature_group_count, ) ) def depthwise_conv( inputs, kernel, strides=1, padding="valid", data_format=None, dilation_rate=1, ): data_format = standardize_data_format(data_format) num_spatial_dims = inputs.ndim - 2 dimension_numbers = _convert_to_lax_conv_dimension_numbers( num_spatial_dims, data_format, transpose=False, ) strides = _convert_to_spatial_operand( strides, num_spatial_dims, data_format, include_batch_and_channels=False, ) dilation_rate = _convert_to_spatial_operand( dilation_rate, num_spatial_dims, data_format, include_batch_and_channels=False, ) feature_group_count = ( inputs.shape[-1] if data_format == "channels_last" else inputs.shape[1] ) kernel = jnp.reshape( kernel if is_tensor(kernel) else kernel.numpy(), kernel.shape[:-2] + (1, feature_group_count * kernel.shape[-1]), ) return np.array( jax.lax.conv_general_dilated( inputs, kernel, strides, padding, rhs_dilation=dilation_rate, dimension_numbers=dimension_numbers, feature_group_count=feature_group_count, ) ) def separable_conv( inputs, depthwise_kernel, pointwise_kernel, strides=1, padding="valid", data_format=None, dilation_rate=1, ): data_format = standardize_data_format(data_format) depthwise_conv_output = depthwise_conv( inputs, depthwise_kernel, strides, padding, data_format, dilation_rate, ) return conv( depthwise_conv_output, pointwise_kernel, strides=1, padding="valid", data_format=data_format, dilation_rate=dilation_rate, ) def conv_transpose( inputs, kernel, strides=1, padding="valid", output_padding=None, data_format=None, dilation_rate=1, ): data_format = standardize_data_format(data_format) num_spatial_dims = inputs.ndim - 2 padding_values = compute_conv_transpose_padding_args_for_jax( input_shape=inputs.shape, kernel_shape=kernel.shape, strides=strides, padding=padding, output_padding=output_padding, dilation_rate=dilation_rate, ) dimension_numbers = _convert_to_lax_conv_dimension_numbers( num_spatial_dims, data_format, transpose=False, ) strides = _convert_to_spatial_operand( strides, num_spatial_dims, data_format, include_batch_and_channels=False, ) dilation_rate = _convert_to_spatial_operand( dilation_rate, num_spatial_dims, data_format, include_batch_and_channels=False, ) return np.array( jax.lax.conv_transpose( inputs, kernel if is_tensor(kernel) else kernel.numpy(), strides, padding=padding_values, rhs_dilation=dilation_rate, dimension_numbers=dimension_numbers, transpose_kernel=True, ) ) def one_hot(x, num_classes, axis=-1, dtype="float32"): x = convert_to_tensor(x) input_shape = x.shape # Shrink the last dimension if the shape is (..., 1). if input_shape and input_shape[-1] == 1 and len(input_shape) > 1: input_shape = tuple(input_shape[:-1]) x = x.reshape(-1) if not num_classes: num_classes = np.max(x) + 1 batch_size = x.shape[0] categorical = np.zeros((batch_size, num_classes), dtype=dtype) valid_indices = x >= 0 categorical[np.arange(batch_size)[valid_indices], x[valid_indices]] = 1 # First, reshape the array with the extra dimension at the end output_shape = input_shape + (num_classes,) categorical = np.reshape(categorical, output_shape) # Then, move this new dimension to the right place (according to axis) if axis != -1: categorical = np.moveaxis(categorical, -1, axis) return categorical def multi_hot(x, num_classes, axis=-1, dtype="float32"): x = convert_to_tensor(x) reduction_axis = 1 if len(x.shape) > 1 else 0 outputs = np.max( one_hot(cast(x, "int32"), num_classes, axis=axis, dtype=dtype), axis=reduction_axis, ) return outputs def categorical_crossentropy(target, output, from_logits=False, axis=-1): target = np.array(target) output = np.array(output) if target.shape != output.shape: raise ValueError( "Arguments `target` and `output` must have the same shape. " "Received: " f"target.shape={target.shape}, output.shape={output.shape}" ) if len(target.shape) < 1: raise ValueError( "Arguments `target` and `output` must be at least rank 1. " "Received: " f"target.shape={target.shape}, output.shape={output.shape}" ) if from_logits: log_prob = log_softmax(output, axis=axis) else: output = output / np.sum(output, axis, keepdims=True) output = np.clip(output, epsilon(), 1.0 - epsilon()) log_prob = np.log(output) return -np.sum(target * log_prob, axis=axis) def sparse_categorical_crossentropy(target, output, from_logits=False, axis=-1): target = np.array(target, dtype="int32") output = np.array(output) if len(target.shape) == len(output.shape) and target.shape[-1] == 1: target = np.squeeze(target, axis=-1) if len(output.shape) < 1: raise ValueError( "Argument `output` must be at least rank 1. " "Received: " f"output.shape={output.shape}" ) if target.shape != output.shape[:-1]: raise ValueError( "Arguments `target` and `output` must have the same shape " "up until the last dimension: " f"target.shape={target.shape}, output.shape={output.shape}" ) if from_logits: log_prob = log_softmax(output, axis=axis) else: output = output / np.sum(output, axis, keepdims=True) output = np.clip(output, epsilon(), 1.0 - epsilon()) log_prob = np.log(output) target = one_hot(target, output.shape[axis], axis=axis) return -np.sum(target * log_prob, axis=axis) def binary_crossentropy(target, output, from_logits=False): target = np.array(target) output = np.array(output) if target.shape != output.shape: raise ValueError( "Arguments `target` and `output` must have the same shape. " "Received: " f"target.shape={target.shape}, output.shape={output.shape}" ) if from_logits: output = sigmoid(output) output = np.clip(output, epsilon(), 1.0 - epsilon()) bce = target * np.log(output) bce += (1.0 - target) * np.log(1.0 - output) return -bce def moments(x, axes, keepdims=False, synchronized=False): if synchronized: raise NotImplementedError( "Argument synchronized=True is not supported with NumPy." ) axes = tuple(axes) if isinstance(axes, list) else axes # The dynamic range of float16 is too limited for statistics. As a # workaround, we simply perform the operations on float32 and convert back # to float16 need_cast = False ori_dtype = standardize_dtype(x.dtype) if ori_dtype == "float16": need_cast = True x = cast(x, "float32") mean = np.mean(x, axes, keepdims=True) # The variance is computed using $Var = E[|x|^2] - |E[x]|^2$, It is faster # but less numerically stable. variance = np.mean(np.square(x), axis=axes, keepdims=True) - np.square(mean) if not keepdims: mean = np.squeeze(mean, axes) variance = np.squeeze(variance, axes) if need_cast: # avoid overflow and underflow when casting from float16 to float32 mean = np.clip(mean, np.finfo(np.float16).min, np.finfo(np.float16).max) variance = np.clip( variance, np.finfo(np.float16).min, np.finfo(np.float16).max ) mean = cast(mean, ori_dtype) variance = cast(variance, ori_dtype) return mean, variance def batch_normalization( x, mean, variance, axis, offset=None, scale=None, epsilon=1e-3 ): shape = [1] * len(x.shape) shape[axis] = mean.shape[0] mean = np.reshape(mean, shape) variance = np.reshape(variance, shape) inv = 1.0 / np.sqrt(variance + epsilon) if scale is not None: scale = np.reshape(scale, shape) inv = inv * scale res = -mean * inv if offset is not None: offset = np.reshape(offset, shape) res = res + offset return x * inv + res
keras/keras/backend/numpy/nn.py/0
{ "file_path": "keras/keras/backend/numpy/nn.py", "repo_id": "keras", "token_count": 8042 }
147
import tensorflow as tf from keras import backend from keras.backend.common import KerasVariable from keras.optimizers import base_optimizer class TFOptimizer(base_optimizer.BaseOptimizer): """A class for Tensorflow specific optimizer logic. The major behavior change for this class is for tf.distribute. It will override methods from base Keras core Optimizer, which provide distribute specific functionality, e.g. variable creation, loss reduction, etc. """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._distribution_strategy = tf.distribute.get_strategy() def add_variable_from_reference( self, reference_variable, name=None, initializer="zeros" ): if isinstance(reference_variable, backend.Variable): colocate_var = reference_variable.value else: colocate_var = reference_variable with self._distribution_strategy.extended.colocate_vars_with( colocate_var ): return super().add_variable_from_reference( reference_variable, name=name, initializer=initializer ) def stateless_apply(self, optimizer_variables, grads, trainable_variables): # This is mainly due to the interaction with tf.distribute.Strategy, # which requires tf.Variable as the inputs for most of its APIs. raise ValueError( "stateless_apply is not supported with the TensorFlow backend " "(as it is incompatible with tf.distribute)." ) def assign_add(self, variable, value): if isinstance(variable, KerasVariable): variable = variable.value value = tf.cast(value, variable.dtype) if isinstance(value, tf.IndexedSlices): variable.scatter_add(value) else: variable.assign_add(value) def assign_sub(self, variable, value): if isinstance(variable, KerasVariable): variable = variable.value value = tf.cast(value, variable.dtype) if isinstance(value, tf.IndexedSlices): variable.scatter_sub(value) else: variable.assign_sub(value) def _var_key(self, variable): if isinstance(variable, backend.Variable): variable = variable.value # Convert to tf.Variable if hasattr(variable, "_distributed_container"): variable = variable._distributed_container() elif ( isinstance(variable, tf.__internal__.CompositeTensor) and hasattr(variable, "handle") and hasattr(variable.handle, "_distributed_container") ): # For ResourceVariables, the _distributed_container attribute # is added to their handle tensors. variable = variable.handle._distributed_container() return variable._unique_id def _apply_weight_decay(self, variables): if self.weight_decay is None: return def distributed_apply_weight_decay(distribution, variables, **kwargs): def weight_decay_fn(variable): if self._use_weight_decay(variable): lr = tf.cast(self.learning_rate, variable.dtype) wd = tf.cast(self.weight_decay, variable.dtype) variable.assign_sub(variable * wd * lr) for variable in variables: if isinstance(variable, backend.Variable): variable = variable.value # Convert to tf.Variable distribution.extended.update( variable, weight_decay_fn, group=False ) tf.__internal__.distribute.interim.maybe_merge_call( distributed_apply_weight_decay, self._distribution_strategy, variables, ) def _backend_update_step(self, grads, trainable_variables, learning_rate): trainable_variables = [ v.value if isinstance(v, backend.Variable) else v for v in trainable_variables ] tf.__internal__.distribute.interim.maybe_merge_call( self._distributed_tf_update_step, self._distribution_strategy, list(zip(grads, trainable_variables)), learning_rate, ) def _distributed_tf_update_step( self, distribution, grads_and_vars, learning_rate ): def apply_grad_to_update_var(var, grad): return self.update_step(grad, var, learning_rate) for grad, var in grads_and_vars: distribution.extended.update( var, apply_grad_to_update_var, args=(grad,), group=False ) def _overwrite_model_variables_with_average_value( self, trainable_variables ): """Overwrite model variables with their moving average values. This function overwrites variables on each device. Args: var_list: list of model variables. """ trainable_variables = [ v.value if isinstance(v, backend.Variable) else v for v in trainable_variables ] # Override model variable by the stored average value on all devices. for var, average_var in zip( trainable_variables, self._model_variables_moving_average ): self._distribution_strategy.extended.update( var, lambda a, b: a.assign(b), args=(average_var,) ) def _backend_increment_gradient_accumulators(self, grads): def update_accumulator(var, grad): var.assign(var + grad) accumulators = [v.value for v in self._accumulated_gradients] def _distributed_tf_increment_grad_acc( distribution, grads, accumulators ): for grad, var in zip(grads, accumulators): distribution.extended.update( var, update_accumulator, args=(grad,), group=False ) tf.__internal__.distribute.interim.maybe_merge_call( _distributed_tf_increment_grad_acc, self._distribution_strategy, grads, accumulators, ) def _clip_by_norm(self, values, axes=None): # We need to use TF-specific OP to support the case, # when `values` are `tf.IndexedSlices`. return tf.clip_by_norm(values, self.clipnorm, axes)
keras/keras/backend/tensorflow/optimizer.py/0
{ "file_path": "keras/keras/backend/tensorflow/optimizer.py", "repo_id": "keras", "token_count": 2803 }
148
import numpy as np from keras import backend from keras import constraints from keras import testing def get_example_array(): np.random.seed(3537) example_array = np.random.random((100, 100)) * 100.0 - 50.0 example_array[0, 0] = 0.0 # Possible edge case return example_array class ConstraintsTest(testing.TestCase): def test_max_norm(self): constraint_fn = constraints.MaxNorm(2.0) x = np.array([[0, 0, 0], [1.0, 0, 0], [3, 0, 0], [3, 3, 3]]).T target = np.array( [ [0, 0, 0], [1.0, 0, 0], [2.0, 0, 0], [2.0 / np.sqrt(3), 2.0 / np.sqrt(3), 2.0 / np.sqrt(3)], ] ).T output = constraint_fn(x) self.assertAllClose(target, output) def test_non_neg(self): constraint_fn = constraints.NonNeg() output = constraint_fn(get_example_array()) output = backend.convert_to_numpy(output) self.assertTrue((np.min(output, axis=1) >= 0.0).all()) def test_unit_norm(self): constraint_fn = constraints.UnitNorm() output = constraint_fn(get_example_array()) output = backend.convert_to_numpy(output) l2 = np.sqrt(np.sum(np.square(output), axis=0)) self.assertAllClose(l2, 1.0) def test_min_max_norm(self): constraint_fn = constraints.MinMaxNorm(min_value=0.2, max_value=0.5) output = constraint_fn(get_example_array()) output = backend.convert_to_numpy(output) l2 = np.sqrt(np.sum(np.square(output), axis=0)) self.assertFalse(l2[l2 < 0.2]) self.assertFalse(l2[l2 > 0.5 + 1e-6]) def test_get_method(self): obj = constraints.get("unit_norm") self.assertTrue(obj, constraints.UnitNorm) obj = constraints.get(None) self.assertEqual(obj, None) with self.assertRaises(ValueError): constraints.get("typo") def test_default_constraint_call(self): constraint_fn = constraints.Constraint() x = np.array([1.0, 2.0, 3.0]) output = constraint_fn(x) self.assertAllClose(x, output) def test_constraint_get_config(self): constraint_fn = constraints.Constraint() config = constraint_fn.get_config() self.assertEqual(config, {}) def test_constraint_from_config(self): constraint_fn = constraints.Constraint() config = constraint_fn.get_config() recreated_constraint_fn = constraints.Constraint.from_config(config) self.assertIsInstance(recreated_constraint_fn, constraints.Constraint) def test_max_norm_get_config(self): constraint_fn = constraints.MaxNorm(max_value=3.0, axis=1) config = constraint_fn.get_config() expected_config = {"max_value": 3.0, "axis": 1} self.assertEqual(config, expected_config) def test_unit_norm_get_config(self): constraint_fn = constraints.UnitNorm(axis=1) config = constraint_fn.get_config() expected_config = {"axis": 1} self.assertEqual(config, expected_config) def test_min_max_norm_get_config(self): constraint_fn = constraints.MinMaxNorm( min_value=0.5, max_value=2.0, rate=0.7, axis=1 ) config = constraint_fn.get_config() expected_config = { "min_value": 0.5, "max_value": 2.0, "rate": 0.7, "axis": 1, } self.assertEqual(config, expected_config)
keras/keras/constraints/constraints_test.py/0
{ "file_path": "keras/keras/constraints/constraints_test.py", "repo_id": "keras", "token_count": 1623 }
149
from keras.dtype_policies.dtype_policy import DTypePolicy from keras.dtype_policies.dtype_policy import dtype_policy from keras.dtype_policies.dtype_policy import set_dtype_policy from keras.testing import test_case class DTypePolicyTest(test_case.TestCase): def test_initialization_valid_name(self): """Test initialization with a valid name.""" policy = DTypePolicy("mixed_float16") self.assertEqual(policy.compute_dtype, "float16") self.assertEqual(policy.variable_dtype, "float32") def test_initialization_invalid_name(self): """Test initialization with an invalid name.""" with self.assertRaisesRegex(ValueError, "Cannot convert"): DTypePolicy("invalid_name") def test_initialization_non_string_name(self): """Test initialization with a non-string name.""" with self.assertRaisesRegex(TypeError, "'name' must be a string"): DTypePolicy(123) def test_properties_mixed_float16(self): """Test properties for 'mixed_float16'.""" policy = DTypePolicy("mixed_float16") self.assertEqual(policy.compute_dtype, "float16") self.assertEqual(policy.variable_dtype, "float32") def test_properties_mixed_bfloat16(self): """Test properties for 'mixed_bfloat16'.""" policy = DTypePolicy("mixed_bfloat16") self.assertEqual(policy.compute_dtype, "bfloat16") self.assertEqual(policy.variable_dtype, "float32") def test_initialization_with_invalid_name_behaviour(self): """Test initialization behavior with an invalid name.""" with self.assertRaisesRegex(ValueError, "Cannot convert"): DTypePolicy("invalid_name") def test_properties(self): """Test variable_dtype, compute_dtype, and name properties.""" policy = DTypePolicy("mixed_float16") self.assertEqual(policy.variable_dtype, "float32") self.assertEqual(policy.compute_dtype, "float16") self.assertEqual(policy.name, "mixed_float16") def test_repr(self): """Test __repr__ method.""" policy = DTypePolicy("mixed_float16") self.assertEqual(repr(policy), '<DTypePolicy "mixed_float16">') def test_get_config_from_config(self): """Test get_config and from_config methods.""" policy = DTypePolicy("mixed_float16") config = policy.get_config() self.assertEqual(config, {"name": "mixed_float16"}) new_policy = DTypePolicy.from_config(config) self.assertEqual(new_policy.name, "mixed_float16") class DTypePolicyGlobalFunctionsTest(test_case.TestCase): def setUp(self): """Reset the global dtype policy before each test.""" set_dtype_policy("float32") def test_set_dtype_policy_valid_string(self): """Test set_dtype_policy with a valid string.""" set_dtype_policy("mixed_float16") policy = dtype_policy() self.assertEqual(policy.name, "mixed_float16") def test_set_dtype_policy_valid_policy(self): """Test set_dtype_policy with a valid DTypePolicy object.""" policy_obj = DTypePolicy("mixed_float16") set_dtype_policy(policy_obj) policy = dtype_policy() self.assertEqual(policy.name, "mixed_float16") def test_set_dtype_policy_invalid(self): """Test set_dtype_policy with an invalid input.""" with self.assertRaisesRegex(ValueError, "Invalid `policy` argument"): set_dtype_policy(12345) def test_dtype_policy_default(self): """Test dtype_policy default value.""" policy = dtype_policy() self.assertEqual(policy.name, "float32") class DTypePolicyEdgeCasesTest(test_case.TestCase): def test_empty_name(self): """Test initialization with an empty name.""" with self.assertRaisesRegex(ValueError, "Cannot convert"): DTypePolicy("") def test_special_character_name(self): """Test initialization with special characters in the name.""" with self.assertRaisesRegex(ValueError, "Cannot convert"): DTypePolicy("@mixed_float16!") def test_very_long_name(self): """Test initialization with a very long name.""" with self.assertRaisesRegex(ValueError, "Cannot convert"): DTypePolicy("mixed_float16" * 100) def test_almost_valid_name(self): """Test initialization with a name close to a valid one.""" with self.assertRaisesRegex(ValueError, "Cannot convert"): DTypePolicy("mixed_float15") class DTypePolicyGlobalFunctionsEdgeCasesTest(test_case.TestCase): def setUp(self): """Reset the global dtype policy before each test.""" set_dtype_policy("float32") def test_set_policy_multiple_times(self): """Test setting the policy multiple times in a row.""" set_dtype_policy("mixed_float16") policy = dtype_policy() self.assertEqual(policy.name, "mixed_float16") set_dtype_policy("float32") policy = dtype_policy() self.assertEqual(policy.name, "float32") def test_set_policy_none(self): """Test setting the policy to None.""" with self.assertRaisesRegex(ValueError, "Invalid `policy` argument"): set_dtype_policy(None)
keras/keras/dtype_policies/dtype_policy_test.py/0
{ "file_path": "keras/keras/dtype_policies/dtype_policy_test.py", "repo_id": "keras", "token_count": 2132 }
150
import os import numpy as np import pytest from absl.testing import parameterized from keras import backend from keras import constraints from keras import initializers from keras import layers from keras import models from keras import saving from keras import testing class MultiHeadAttentionTest(testing.TestCase, parameterized.TestCase): def test_basics(self): self.run_layer_test( layers.MultiHeadAttention, init_kwargs={ "num_heads": 2, "key_dim": 2, }, input_shape={"query_shape": (2, 8, 16), "value_shape": (2, 4, 16)}, expected_output_shape=(2, 8, 16), expected_num_trainable_weights=8, expected_num_non_trainable_weights=0, expected_num_seed_generators=0, expected_num_losses=0, supports_masking=True, run_training_check=False, ) self.run_layer_test( layers.MultiHeadAttention, init_kwargs={ "num_heads": 2, "key_dim": 2, "value_dim": 4, "use_bias": False, "dropout": 0.5, }, input_shape={"query_shape": (2, 8, 16), "value_shape": (2, 4, 16)}, expected_output_shape=(2, 8, 16), expected_num_trainable_weights=4, expected_num_non_trainable_weights=0, expected_num_seed_generators=0, expected_num_losses=0, supports_masking=True, run_training_check=False, ) @parameterized.named_parameters( ("4d_inputs_1freebatch_mask2", (3, 4), (3, 2), (4, 2), (2,)), ("4d_inputs_1freebatch_mask3", (3, 4), (3, 2), (3, 4, 2), (2,)), ("4d_inputs_1freebatch_mask4", (3, 4), (3, 2), (3, 2, 4, 2), (2,)), ("4d_inputs_2d_attention", (3, 4), (3, 2), (3, 4, 3, 2), (1, 2)), ("5d_inputs_2d_attention", (5, 3, 4), (5, 3, 2), (3, 4, 3, 2), (2, 3)), ( "5d_inputs_2d_attention_fullmask", (5, 3, 4), (5, 3, 2), (5, 3, 4, 3, 2), (2, 3), ), ) def test_high_dim_attention( self, q_dims, v_dims, mask_dims, attention_axes ): batch_size, hidden_size = 3, 8 query_shape = (batch_size,) + q_dims + (hidden_size,) value_shape = (batch_size,) + v_dims + (hidden_size,) self.run_layer_test( layers.MultiHeadAttention, init_kwargs={ "num_heads": 2, "key_dim": 2, "attention_axes": attention_axes, }, input_shape={ "query_shape": query_shape, "value_shape": value_shape, }, expected_output_shape=query_shape, expected_num_trainable_weights=8, expected_num_non_trainable_weights=0, expected_num_seed_generators=0, expected_num_losses=0, supports_masking=True, run_training_check=False, ) @parameterized.named_parameters( ("without_key_same_proj", (4, 8), (2, 8), None, None), ("with_key_same_proj", (4, 8), (2, 8), (2, 3), None), ("wihtout_key_different_proj", (4, 8), (2, 8), None, (3, 4)), ("with_key_different_proj", (4, 8), (2, 8), (2, 3), (1, 5)), ("high_dim_same_proj", (4, 2, 3, 8), (1, 1, 5, 8), (1, 1, 5, 2), None), ( "high_dim_different_proj", (4, 2, 3, 8), (1, 1, 5, 8), (1, 1, 5, 2), (3, 2), ), ) def test_compute_output_shape( self, query_dims, value_dims, key_dims, output_shape ): """Test computed shape is equal to the layer output's shape.""" layer = layers.MultiHeadAttention( num_heads=2, key_dim=2, value_dim=2, output_shape=output_shape, ) batch_size = 7 query_shape = (batch_size,) + query_dims value_shape = (batch_size,) + value_dims key_shape = (batch_size,) + key_dims if key_dims else None query = np.ones(query_shape) value = np.ones(value_shape) key = np.ones(key_shape) if key_shape else None output = layer(query=query, value=value, key=key) comp_output_shape = layer.compute_output_shape( query_shape, value_shape, key_shape ) self.assertEqual(output.shape, comp_output_shape) @parameterized.named_parameters( ("query_value_dim_mismatch", (2, 4, 8), (2, 2, 7), 2), ("key_value_dim_mismatch", (2, 4, 8), (2, 2, 8), (2, 1, 7)), ( "key_value_dim_mismatch_high_dim", (2, 4, 2, 3, 8), (2, 1, 1, 5, 8), (2, 1, 15, 5, 2), ), ) def test_shape_mismatch_error(self, query_shape, value_shape, key_shape): """Test dimension mismatches""" layer = layers.MultiHeadAttention( num_heads=4, key_dim=2, value_dim=2, ) with self.assertRaisesRegex(ValueError, r"must be equal"): layer.compute_output_shape(query_shape, value_shape, key_shape) def test_initializer(self): # Test with a specified initializer. layer = layers.MultiHeadAttention( num_heads=12, key_dim=64, kernel_initializer=initializers.TruncatedNormal(stddev=0.02), ) layer.build((2, 4, 8), (2, 4, 8)) # Make sure the sub layers have different kernel init value. self.assertNotAllClose( layer._query_dense.kernel, layer._key_dense.kernel, ) self.assertNotAllClose( layer._query_dense.kernel, layer._value_dense.kernel, ) self.assertNotAllClose( layer._query_dense.kernel, layer._output_dense.kernel, ) @pytest.mark.skipif( backend.backend() == "numpy", reason="Numpy backend does not support masking.", ) def test_query_mask_propagation(self): """Test automatic propagation of the query's mask.""" layer = layers.MultiHeadAttention(num_heads=2, key_dim=2) self.assertTrue(layer.supports_masking) query = np.array([[1, 2, 3, 0, 0], [3, 3, 1, 1, 2], [1, 0, 0, 0, 0]]) masked_query = layers.Embedding(4, 8, mask_zero=True)(query) value = np.random.normal(size=(3, 3, 8)) output = layer(query=masked_query, value=value) self.assertAllClose(masked_query._keras_mask, output._keras_mask) @parameterized.named_parameters(("causal", True), ("not_causal", 0)) @pytest.mark.skipif( backend.backend() == "numpy", reason="Numpy backend does not support masking.", ) def test_masking(self, use_causal_mask): """Test that the value and causal masks are taken into account.""" layer = layers.MultiHeadAttention(num_heads=2, key_dim=2) query = np.array([[1, 2, 3, 0, 0], [3, 3, 1, 1, 2], [1, 0, 0, 0, 0]]) masked_query = layers.Embedding(4, 8, mask_zero=True)(query) value = np.array([[5, 4, 0], [3, 0, 0], [2, 1, 1]]) masked_value = layers.Embedding(6, 8, mask_zero=True)(value) output = layer( query=masked_query, value=masked_value, use_causal_mask=use_causal_mask, ) mask = np.array( [[[1, 1, 0]] * 3 + [[0, 0, 0]] * 2] + [[[1, 0, 0]] * 5] + [[[1, 1, 1]] + [[0, 0, 0]] * 4] ).astype(bool) if use_causal_mask: mask = mask & np.array( [[[1, 0, 0], [1, 1, 0]] + [[1, 1, 1]] * 3] ).astype(bool) del masked_query._keras_mask del masked_value._keras_mask output_with_manual_mask = layer( query=masked_query, value=masked_value, attention_mask=mask ) self.assertAllClose(output, output_with_manual_mask) def test_correctness(self): query = np.array([[[1.0, 0.0], [0.0, 1.0]]]) key = np.array([[[0.0, 1.0], [1.0, 0.0]]]) value = np.array([[[1.0, 2.0], [3.0, 4.0]]]) # Setup layer. num_heads = 2 key_dim = 2 layer = layers.MultiHeadAttention( num_heads=num_heads, key_dim=key_dim, ) layer.build(query.shape, key.shape, value.shape) # Set layer weights. kernel = np.identity(key_dim) # To get an identity kernel we need to add a head dim and repeat on it. kernel = np.repeat(kernel[:, np.newaxis, :], num_heads, axis=1) # Zeros for all biases. bias = np.zeros((2, 2)) output_bias = np.zeros((2,)) layer.set_weights([kernel, bias] * 3 + [kernel, output_bias]) # Call layer and assert output. output, scores = layer( query=query, value=value, key=key, return_attention_scores=True, ) self.assertAllClose(output, [[[5.679, 5.679], [4.32, 4.32]]], atol=1e-3) self.assertAllClose( scores, [[[[0.33, 0.67], [0.67, 0.33]], [[0.33, 0.67], [0.67, 0.33]]]], atol=1e-3, ) def test_mha_constraints(self): query = np.array([[[1.0, 0.0], [0.0, 1.0]]]) key = np.array([[[0.0, 1.0], [1.0, 0.0]]]) value = np.array([[[1.0, 2.0], [3.0, 4.0]]]) num_heads = 2 key_dim = 2 layer = layers.MultiHeadAttention( num_heads=num_heads, key_dim=key_dim, kernel_constraint="non_neg", ) layer.build(query.shape, key.shape, value.shape) self.assertIsInstance( layer._query_dense.kernel.constraint, constraints.NonNeg ) self.assertIsInstance( layer._value_dense.kernel.constraint, constraints.NonNeg ) self.assertIsInstance( layer._key_dense.kernel.constraint, constraints.NonNeg ) layer = layers.MultiHeadAttention( num_heads=num_heads, key_dim=key_dim, bias_constraint="non_neg", ) layer.build(query.shape, key.shape, value.shape) self.assertIsInstance( layer._query_dense.bias.constraint, constraints.NonNeg ) self.assertIsInstance( layer._value_dense.bias.constraint, constraints.NonNeg ) self.assertIsInstance( layer._key_dense.bias.constraint, constraints.NonNeg ) @pytest.mark.requires_trainable_backend def test_lora(self): query = np.array([[[1.0, 0.0], [0.0, 1.0]]]) key = np.array([[[0.0, 1.0], [1.0, 0.0]]]) value = np.array([[[1.0, 2.0], [3.0, 4.0]]]) layer = layers.MultiHeadAttention( num_heads=3, key_dim=8, use_bias=False, ) layer.build(query.shape, key.shape, value.shape) layer.query_dense.enable_lora(2) layer.key_dense.enable_lora(2) layer.value_dense.enable_lora(2) self.assertLen(layer.trainable_variables, 7) self.assertLen(layer.non_trainable_variables, 3) # Try eager call x = { "query": query, "key": key, "value": value, } y = np.random.random((1, 2, 2)) _ = layer(**x) # Try calling fit() inputs = { "query": layers.Input((2, 2)), "key": layers.Input((2, 2)), "value": layers.Input((2, 2)), } outputs = layer(inputs["query"], inputs["key"], inputs["value"]) model = models.Model(inputs, outputs) model.compile(optimizer="sgd", loss="mse") model.fit(x, y) # Try saving and reloading the model temp_filepath = os.path.join(self.get_temp_dir(), "lora_model.keras") model.save(temp_filepath) new_model = saving.load_model(temp_filepath) self.assertAllClose(model.predict(x), new_model.predict(x)) # Try saving and reloading the model's weights only temp_filepath = os.path.join( self.get_temp_dir(), "lora_model.weights.h5" ) model.save_weights(temp_filepath) # Load the file into a fresh, non-lora model inputs = { "query": layers.Input((2, 2)), "key": layers.Input((2, 2)), "value": layers.Input((2, 2)), } outputs = layers.MultiHeadAttention( num_heads=3, key_dim=8, use_bias=False, )(inputs["query"], inputs["key"], inputs["value"]) new_model = models.Model(inputs, outputs) new_model.load_weights(temp_filepath) self.assertAllClose(model.predict(x), new_model.predict(x)) # Try loading a normal checkpoint into a lora model new_model.save_weights(temp_filepath) model.load_weights(temp_filepath) self.assertAllClose(model.predict(x), new_model.predict(x))
keras/keras/layers/attention/multi_head_attention_test.py/0
{ "file_path": "keras/keras/layers/attention/multi_head_attention_test.py", "repo_id": "keras", "token_count": 6778 }
151
import numpy as np from absl.testing import parameterized from keras import backend from keras import layers from keras import testing class ZeroPadding2DTest(testing.TestCase, parameterized.TestCase): @parameterized.named_parameters( ("channels_first", "channels_first"), ("channels_last", "channels_last") ) def test_zero_padding_2d(self, data_format): inputs = np.random.rand(1, 2, 3, 4) outputs = layers.ZeroPadding2D( padding=((1, 2), (3, 4)), data_format=data_format )(inputs) if data_format == "channels_first": for index in [0, -1, -2]: self.assertAllClose(outputs[:, :, index, :], 0.0) for index in [0, 1, 2, -1, -2, -3, -4]: self.assertAllClose(outputs[:, :, :, index], 0.0) self.assertAllClose(outputs[:, :, 1:-2, 3:-4], inputs) else: for index in [0, -1, -2]: self.assertAllClose(outputs[:, index, :, :], 0.0) for index in [0, 1, 2, -1, -2, -3, -4]: self.assertAllClose(outputs[:, :, index, :], 0.0) self.assertAllClose(outputs[:, 1:-2, 3:-4, :], inputs) @parameterized.product( ( {"padding": ((2, 2), (2, 2))}, # 2 tuples {"padding": (2, 2)}, # 1 tuple {"padding": 2}, # 1 int ), ( {"data_format": "channels_first"}, {"data_format": "channels_last"}, ), ) def test_zero_padding_2d_with_same_padding(self, padding, data_format): inputs = np.random.rand(1, 2, 3, 4) outputs = layers.ZeroPadding2D( padding=padding, data_format=data_format )(inputs) if data_format == "channels_first": for index in [0, 1, -1, -2]: self.assertAllClose(outputs[:, :, index, :], 0.0) self.assertAllClose(outputs[:, :, :, index], 0.0) self.assertAllClose(outputs[:, :, 2:-2, 2:-2], inputs) else: for index in [0, 1, -1, -2]: self.assertAllClose(outputs[:, index, :, :], 0.0) self.assertAllClose(outputs[:, :, index, :], 0.0) self.assertAllClose(outputs[:, 2:-2, 2:-2, :], inputs) def test_zero_padding_2d_with_dynamic_spatial_dim(self): if backend.config.image_data_format() == "channels_last": input_layer = layers.Input(batch_shape=(1, 2, None, 4)) else: input_layer = layers.Input(batch_shape=(1, 4, 2, None)) padded = layers.ZeroPadding2D(((1, 2), (3, 4)))(input_layer) if backend.config.image_data_format() == "channels_last": self.assertEqual(padded.shape, (1, 5, None, 4)) else: self.assertEqual(padded.shape, (1, 4, 5, None)) def test_zero_padding_2d_errors_if_padding_argument_invalid(self): with self.assertRaises(ValueError): layers.ZeroPadding2D(padding=(1,)) with self.assertRaises(ValueError): layers.ZeroPadding2D(padding=(1, 2, 3)) with self.assertRaises(ValueError): layers.ZeroPadding2D(padding="1") with self.assertRaises(ValueError): layers.ZeroPadding2D(padding=((1, 2), (3, 4, 5))) with self.assertRaises(ValueError): layers.ZeroPadding2D(padding=((1, 2), (3, -4))) with self.assertRaises(ValueError): layers.ZeroPadding2D(padding=((1, 2), "3"))
keras/keras/layers/reshaping/zero_padding2d_test.py/0
{ "file_path": "keras/keras/layers/reshaping/zero_padding2d_test.py", "repo_id": "keras", "token_count": 1711 }
152
# from keras.ops.numpy import Matmul, matmul # from keras.ops.numpy import Add, add # from keras.ops.numpy import Multiply, multiply from keras.backend import cast from keras.backend import cond from keras.backend import is_tensor from keras.backend import name_scope from keras.backend import random from keras.ops import image from keras.ops import operation_utils from keras.ops.core import * # noqa: F403 from keras.ops.linalg import * # noqa: F403 from keras.ops.math import * # noqa: F403 from keras.ops.nn import * # noqa: F403 from keras.ops.numpy import * # noqa: F403
keras/keras/ops/__init__.py/0
{ "file_path": "keras/keras/ops/__init__.py", "repo_id": "keras", "token_count": 205 }
153
import contextlib import functools import itertools import math import numpy as np import pytest from absl.testing import parameterized import keras from keras import backend from keras import testing from keras.backend.common import standardize_dtype from keras.backend.common.keras_tensor import KerasTensor from keras.backend.common.variables import ALLOWED_DTYPES from keras.ops import numpy as knp from keras.testing.test_utils import named_product class NumpyTwoInputOpsDynamicShapeTest(testing.TestCase): def test_add(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.add(x, y).shape, (2, 3)) def test_subtract(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.subtract(x, y).shape, (2, 3)) def test_multiply(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.multiply(x, y).shape, (2, 3)) def test_matmul(self): x = KerasTensor((None, 3, 4)) y = KerasTensor((3, None, 4, 5)) self.assertEqual(knp.matmul(x, y).shape, (3, None, 3, 5)) def test_power(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.power(x, y).shape, (2, 3)) def test_divide(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.divide(x, y).shape, (2, 3)) def test_divide_no_nan(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.divide_no_nan(x, y).shape, (2, 3)) def test_true_divide(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.true_divide(x, y).shape, (2, 3)) def test_append(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.append(x, y).shape, (None,)) def test_arctan2(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.arctan2(x, y).shape, (2, 3)) def test_cross(self): x1 = KerasTensor((2, 3, 3)) x2 = KerasTensor((1, 3, 2)) y = KerasTensor((None, 1, 2)) self.assertEqual(knp.cross(x1, y).shape, (2, 3, 3)) self.assertEqual(knp.cross(x2, y).shape, (None, 3)) def test_einsum(self): x = KerasTensor((None, 3)) y = KerasTensor((3, 4)) self.assertEqual(knp.einsum("ij,jk->ik", x, y).shape, (None, 4)) self.assertEqual(knp.einsum("ij,jk->ikj", x, y).shape, (None, 4, 3)) self.assertEqual(knp.einsum("ii", x).shape, ()) self.assertEqual(knp.einsum(",ij", 5, x).shape, (None, 3)) x = KerasTensor((None, 3, 4)) y = KerasTensor((None, 4, 5)) z = KerasTensor((1, 1, 1, 9)) self.assertEqual(knp.einsum("ijk,jkl->li", x, y).shape, (5, None)) self.assertEqual(knp.einsum("ijk,jkl->lij", x, y).shape, (5, None, 3)) self.assertEqual( knp.einsum("...,...j->...j", x, y).shape, (None, 3, 4, 5) ) self.assertEqual( knp.einsum("i...,...j->i...j", x, y).shape, (None, 3, 4, 5) ) self.assertEqual(knp.einsum("i...,...j", x, y).shape, (3, 4, None, 5)) self.assertEqual( knp.einsum("i...,...j,...k", x, y, z).shape, (1, 3, 4, None, 5, 9) ) self.assertEqual( knp.einsum("mij,ijk,...", x, y, z).shape, (1, 1, 1, 9, 5, None) ) with self.assertRaises(ValueError): x = KerasTensor((None, 3)) y = KerasTensor((3, 4)) knp.einsum("ijk,jk->ik", x, y) def test_full_like(self): x = KerasTensor((None, 3)) self.assertEqual(knp.full_like(x, KerasTensor((1, 3))).shape, (None, 3)) x = KerasTensor((None, 3, 3)) self.assertEqual(knp.full_like(x, 2).shape, (None, 3, 3)) def test_greater(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.greater(x, y).shape, (2, 3)) def test_greater_equal(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.greater_equal(x, y).shape, (2, 3)) def test_isclose(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.isclose(x, y).shape, (2, 3)) def test_less(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.less(x, y).shape, (2, 3)) def test_less_equal(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.less_equal(x, y).shape, (2, 3)) def test_linspace(self): start = KerasTensor((None, 3, 4)) stop = KerasTensor((2, 3, 4)) self.assertEqual( knp.linspace(start, stop, 10, axis=1).shape, (2, 10, 3, 4) ) start = KerasTensor((None, 3)) stop = 2 self.assertEqual( knp.linspace(start, stop, 10, axis=1).shape, (None, 10, 3) ) def test_logical_and(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.logical_and(x, y).shape, (2, 3)) def test_logical_or(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.logical_or(x, y).shape, (2, 3)) def test_logspace(self): start = KerasTensor((None, 3, 4)) stop = KerasTensor((2, 3, 4)) self.assertEqual( knp.logspace(start, stop, 10, axis=1).shape, (2, 10, 3, 4) ) start = KerasTensor((None, 3)) stop = 2 self.assertEqual( knp.logspace(start, stop, 10, axis=1).shape, (None, 10, 3) ) def test_maximum(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.maximum(x, y).shape, (2, 3)) def test_minimum(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.minimum(x, y).shape, (2, 3)) def test_mod(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.mod(x, y).shape, (2, 3)) def test_not_equal(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.not_equal(x, y).shape, (2, 3)) def test_outer(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.outer(x, y).shape, (None, None)) def test_quantile(self): x = KerasTensor((None, 3)) # q as scalar q = KerasTensor(()) self.assertEqual(knp.quantile(x, q).shape, ()) # q as 1D tensor q = KerasTensor((2,)) self.assertEqual(knp.quantile(x, q).shape, (2,)) self.assertEqual(knp.quantile(x, q, axis=1).shape, (2, None)) self.assertEqual( knp.quantile(x, q, axis=1, keepdims=True).shape, (2, None, 1), ) def test_take(self): x = KerasTensor((None, 3)) self.assertEqual(knp.take(x, 1).shape, ()) self.assertEqual(knp.take(x, [1, 2]).shape, (2,)) self.assertEqual( knp.take(x, [[1, 2], [1, 2]], axis=1).shape, (None, 2, 2) ) x = KerasTensor((None, 3, 3)) self.assertEqual(knp.take(x, 1, axis=1).shape, (None, 3)) self.assertEqual(knp.take(x, [1, 2]).shape, (2,)) self.assertEqual( knp.take(x, [[1, 2], [1, 2]], axis=1).shape, (None, 2, 2, 3) ) # test with negative axis self.assertEqual(knp.take(x, 1, axis=-2).shape, (None, 3)) # test with multi-dimensional indices x = KerasTensor((None, 3, None, 5)) indices = KerasTensor((6, 7)) self.assertEqual(knp.take(x, indices, axis=2).shape, (None, 3, 6, 7, 5)) def test_take_along_axis(self): x = KerasTensor((None, 3)) indices = KerasTensor((1, 3)) self.assertEqual(knp.take_along_axis(x, indices, axis=0).shape, (1, 3)) self.assertEqual( knp.take_along_axis(x, indices, axis=1).shape, (None, 3) ) x = KerasTensor((None, 3, 3)) indices = KerasTensor((1, 3, None)) self.assertEqual( knp.take_along_axis(x, indices, axis=1).shape, (None, 3, 3) ) def test_tensordot(self): x = KerasTensor((None, 3, 4)) y = KerasTensor((3, 4)) self.assertEqual(knp.tensordot(x, y, axes=1).shape, (None, 3, 4)) self.assertEqual(knp.tensordot(x, y, axes=[[0, 1], [1, 0]]).shape, (4,)) def test_vdot(self): x = KerasTensor((None, 3)) y = KerasTensor((None, 3)) self.assertEqual(knp.vdot(x, y).shape, ()) x = KerasTensor((None, 3, 3)) y = KerasTensor((None, 3, 3)) self.assertEqual(knp.vdot(x, y).shape, ()) def test_where(self): condition = KerasTensor((2, None, 1)) x = KerasTensor((None, 1)) y = KerasTensor((None, 3)) self.assertEqual(knp.where(condition, x, y).shape, (2, None, 3)) self.assertEqual(knp.where(condition).shape, (2, None, 1)) def test_floor_divide(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.floor_divide(x, y).shape, (2, 3)) def test_xor(self): x = KerasTensor((None, 3)) y = KerasTensor((2, None)) self.assertEqual(knp.logical_xor(x, y).shape, (2, 3)) def test_shape_equal_basic_equality(self): x = KerasTensor((3, 4)).shape y = KerasTensor((3, 4)).shape self.assertTrue(knp.shape_equal(x, y)) y = KerasTensor((3, 5)).shape self.assertFalse(knp.shape_equal(x, y)) def test_shape_equal_allow_none(self): x = KerasTensor((3, 4, None)).shape y = KerasTensor((3, 4, 5)).shape self.assertTrue(knp.shape_equal(x, y, allow_none=True)) self.assertFalse(knp.shape_equal(x, y, allow_none=False)) def test_shape_equal_different_shape_lengths(self): x = KerasTensor((3, 4)).shape y = KerasTensor((3, 4, 5)).shape self.assertFalse(knp.shape_equal(x, y)) def test_shape_equal_ignore_axes(self): x = KerasTensor((3, 4, 5)).shape y = KerasTensor((3, 6, 5)).shape self.assertTrue(knp.shape_equal(x, y, axis=1)) y = KerasTensor((3, 6, 7)).shape self.assertTrue(knp.shape_equal(x, y, axis=(1, 2))) self.assertFalse(knp.shape_equal(x, y, axis=1)) def test_shape_equal_only_none(self): x = KerasTensor((None, None)).shape y = KerasTensor((5, 6)).shape self.assertTrue(knp.shape_equal(x, y, allow_none=True)) def test_shape_equal_axis_as_list(self): x = KerasTensor((3, 4, 5)).shape y = KerasTensor((3, 6, 5)).shape self.assertTrue(knp.shape_equal(x, y, axis=[1])) def test_shape_non_equal_with_negative_axis(self): x = KerasTensor((3, 4, 5)).shape y = KerasTensor((3, 4, 6)).shape self.assertFalse(knp.shape_equal(x, y, axis=-2)) def test_shape_equal_with_negative_axis(self): x = KerasTensor((3, 4, 5)).shape y = KerasTensor((3, 4, 5)).shape self.assertTrue(knp.shape_equal(x, y, axis=-1)) def test_shape_equal_zeros(self): x = KerasTensor((0, 4)).shape y = KerasTensor((0, 4)).shape self.assertTrue(knp.shape_equal(x, y)) y = KerasTensor((0, 5)).shape self.assertFalse(knp.shape_equal(x, y)) def test_broadcast_shapes_conversion_to_list(self): shape1 = KerasTensor((1, 2)).shape shape2 = KerasTensor((3, 1)).shape expected_output = [3, 2] self.assertEqual(knp.broadcast_shapes(shape1, shape2), expected_output) def test_broadcast_shapes_shape1_longer_than_shape2(self): shape1 = KerasTensor((5, 3, 2)).shape shape2 = KerasTensor((1, 3)).shape with self.assertRaisesRegex(ValueError, "Cannot broadcast shape"): knp.broadcast_shapes(shape1, shape2) def test_broadcast_shapes_shape2_longer_than_shape1(self): shape1 = KerasTensor((5, 3)).shape shape2 = KerasTensor((2, 5, 3)).shape expected_output = [2, 5, 3] self.assertEqual(knp.broadcast_shapes(shape1, shape2), expected_output) def test_broadcast_shapes_broadcasting_shape1_is_1(self): shape1 = KerasTensor((1, 3)).shape shape2 = KerasTensor((5, 1)).shape expected_output = [5, 3] self.assertEqual(knp.broadcast_shapes(shape1, shape2), expected_output) def test_broadcast_shapes_broadcasting_shape1_is_none(self): shape1 = KerasTensor((None, 3)).shape shape2 = KerasTensor((5, 1)).shape expected_output = [5, 3] self.assertEqual(knp.broadcast_shapes(shape1, shape2), expected_output) shape1 = KerasTensor((None, 3)).shape shape2 = KerasTensor((5, 3)).shape expected_output = [5, 3] self.assertEqual(knp.broadcast_shapes(shape1, shape2), expected_output) def test_broadcast_shapes_broadcasting_shape2_conditions(self): shape1 = KerasTensor((5, 3, 2)).shape shape2 = KerasTensor((1, 3, 2)).shape expected_output = [5, 3, 2] self.assertEqual(knp.broadcast_shapes(shape1, shape2), expected_output) shape1 = KerasTensor((5, 3, 2)).shape shape2 = KerasTensor((1, None, 2)).shape expected_output = [5, 3, 2] self.assertEqual(knp.broadcast_shapes(shape1, shape2), expected_output) class NumpyTwoInputOpsStaticShapeTest(testing.TestCase): def test_add(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.add(x, y).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.add(x, y) def test_subtract(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.subtract(x, y).shape, (2, 3)) x = KerasTensor((2, 3)) self.assertEqual(knp.subtract(x, 2).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.subtract(x, y) def test_multiply(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.multiply(x, y).shape, (2, 3)) x = KerasTensor((2, 3)) self.assertEqual(knp.multiply(x, 2).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.multiply(x, y) def test_matmul(self): x = KerasTensor((2, 3)) y = KerasTensor((3, 2)) self.assertEqual(knp.matmul(x, y).shape, (2, 2)) with self.assertRaises(ValueError): x = KerasTensor((3, 4)) y = KerasTensor((2, 3, 4)) knp.matmul(x, y) def test_matmul_sparse(self): x = KerasTensor((2, 3), sparse=True) y = KerasTensor((3, 2)) result = knp.matmul(x, y) self.assertEqual(result.shape, (2, 2)) x = KerasTensor((2, 3)) y = KerasTensor((3, 2), sparse=True) result = knp.matmul(x, y) self.assertEqual(result.shape, (2, 2)) x = KerasTensor((2, 3), sparse=True) y = KerasTensor((3, 2), sparse=True) result = knp.matmul(x, y) self.assertEqual(result.shape, (2, 2)) self.assertTrue(result.sparse) def test_power(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.power(x, y).shape, (2, 3)) x = KerasTensor((2, 3)) self.assertEqual(knp.power(x, 2).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.power(x, y) def test_divide(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.divide(x, y).shape, (2, 3)) x = KerasTensor((2, 3)) self.assertEqual(knp.divide(x, 2).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.divide(x, y) def test_divide_no_nan(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.divide_no_nan(x, y).shape, (2, 3)) x = KerasTensor((2, 3)) self.assertEqual(knp.divide_no_nan(x, 2).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.divide_no_nan(x, y) def test_true_divide(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.true_divide(x, y).shape, (2, 3)) x = KerasTensor((2, 3)) self.assertEqual(knp.true_divide(x, 2).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.true_divide(x, y) def test_append(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.append(x, y).shape, (12,)) x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.append(x, y, axis=0).shape, (4, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.append(x, y, axis=2) def test_arctan2(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.arctan2(x, y).shape, (2, 3)) x = KerasTensor((2, 3)) self.assertEqual(knp.arctan2(x, 2).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.arctan2(x, y) def test_cross(self): x1 = KerasTensor((2, 3, 3)) x2 = KerasTensor((1, 3, 2)) y1 = KerasTensor((2, 3, 3)) y2 = KerasTensor((2, 3, 2)) self.assertEqual(knp.cross(x1, y1).shape, (2, 3, 3)) self.assertEqual(knp.cross(x2, y2).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.cross(x, y) with self.assertRaises(ValueError): x = KerasTensor((4, 3, 3)) y = KerasTensor((2, 3, 3)) knp.cross(x, y) def test_einsum(self): x = KerasTensor((2, 3)) y = KerasTensor((3, 4)) self.assertEqual(knp.einsum("ij,jk->ik", x, y).shape, (2, 4)) self.assertEqual(knp.einsum("ij,jk->ikj", x, y).shape, (2, 4, 3)) self.assertEqual(knp.einsum("ii", x).shape, ()) self.assertEqual(knp.einsum(",ij", 5, x).shape, (2, 3)) x = KerasTensor((2, 3, 4)) y = KerasTensor((3, 4, 5)) z = KerasTensor((1, 1, 1, 9)) self.assertEqual(knp.einsum("ijk,jkl->li", x, y).shape, (5, 2)) self.assertEqual(knp.einsum("ijk,jkl->lij", x, y).shape, (5, 2, 3)) self.assertEqual(knp.einsum("...,...j->...j", x, y).shape, (2, 3, 4, 5)) self.assertEqual( knp.einsum("i...,...j->i...j", x, y).shape, (2, 3, 4, 5) ) self.assertEqual(knp.einsum("i...,...j", x, y).shape, (3, 4, 2, 5)) self.assertEqual(knp.einsum("i...,...j", x, y).shape, (3, 4, 2, 5)) self.assertEqual( knp.einsum("i...,...j,...k", x, y, z).shape, (1, 3, 4, 2, 5, 9) ) self.assertEqual( knp.einsum("mij,ijk,...", x, y, z).shape, (1, 1, 1, 9, 5, 2) ) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((3, 4)) knp.einsum("ijk,jk->ik", x, y) def test_full_like(self): x = KerasTensor((2, 3)) self.assertEqual(knp.full_like(x, 2).shape, (2, 3)) def test_greater(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.greater(x, y).shape, (2, 3)) x = KerasTensor((2, 3)) self.assertEqual(knp.greater(x, 2).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.greater(x, y) def test_greater_equal(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.greater_equal(x, y).shape, (2, 3)) x = KerasTensor((2, 3)) self.assertEqual(knp.greater_equal(x, 2).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.greater_equal(x, y) def test_isclose(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.isclose(x, y).shape, (2, 3)) x = KerasTensor((2, 3)) self.assertEqual(knp.isclose(x, 2).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.isclose(x, y) def test_less(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.less(x, y).shape, (2, 3)) x = KerasTensor((2, 3)) self.assertEqual(knp.less(x, 2).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.less(x, y) def test_less_equal(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.less_equal(x, y).shape, (2, 3)) x = KerasTensor((2, 3)) self.assertEqual(knp.less_equal(x, 2).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.less_equal(x, y) def test_linspace(self): start = KerasTensor((2, 3, 4)) stop = KerasTensor((2, 3, 4)) self.assertEqual(knp.linspace(start, stop, 10).shape, (10, 2, 3, 4)) with self.assertRaises(ValueError): start = KerasTensor((2, 3)) stop = KerasTensor((2, 3, 4)) knp.linspace(start, stop) def test_logical_and(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.logical_and(x, y).shape, (2, 3)) x = KerasTensor((2, 3)) self.assertEqual(knp.logical_and(x, 2).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.logical_and(x, y) def test_logical_or(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.logical_or(x, y).shape, (2, 3)) x = KerasTensor((2, 3)) self.assertEqual(knp.logical_or(x, 2).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.logical_or(x, y) def test_logspace(self): start = KerasTensor((2, 3, 4)) stop = KerasTensor((2, 3, 4)) self.assertEqual(knp.logspace(start, stop, 10).shape, (10, 2, 3, 4)) with self.assertRaises(ValueError): start = KerasTensor((2, 3)) stop = KerasTensor((2, 3, 4)) knp.logspace(start, stop) def test_maximum(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.maximum(x, y).shape, (2, 3)) x = KerasTensor((2, 3)) self.assertEqual(knp.maximum(x, 2).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.maximum(x, y) def test_minimum(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.minimum(x, y).shape, (2, 3)) x = KerasTensor((2, 3)) self.assertEqual(knp.minimum(x, 2).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.minimum(x, y) def test_mod(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.mod(x, y).shape, (2, 3)) x = KerasTensor((2, 3)) self.assertEqual(knp.mod(x, 2).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.mod(x, y) def test_not_equal(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.not_equal(x, y).shape, (2, 3)) x = KerasTensor((2, 3)) self.assertEqual(knp.not_equal(x, 2).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.not_equal(x, y) def test_outer(self): x = KerasTensor((3,)) y = KerasTensor((4,)) self.assertEqual(knp.outer(x, y).shape, (3, 4)) x = KerasTensor((2, 3)) y = KerasTensor((4, 5)) self.assertEqual(knp.outer(x, y).shape, (6, 20)) x = KerasTensor((2, 3)) self.assertEqual(knp.outer(x, 2).shape, (6, 1)) def test_quantile(self): x = KerasTensor((3, 3)) # q as scalar q = KerasTensor(()) self.assertEqual(knp.quantile(x, q).shape, ()) # q as 1D tensor q = KerasTensor((2,)) self.assertEqual(knp.quantile(x, q).shape, (2,)) self.assertEqual(knp.quantile(x, q, axis=1).shape, (2, 3)) self.assertEqual( knp.quantile(x, q, axis=1, keepdims=True).shape, (2, 3, 1), ) def test_take(self): x = KerasTensor((2, 3)) self.assertEqual(knp.take(x, 1).shape, ()) self.assertEqual(knp.take(x, [1, 2]).shape, (2,)) self.assertEqual(knp.take(x, [[1, 2], [1, 2]], axis=1).shape, (2, 2, 2)) # test with multi-dimensional indices x = KerasTensor((2, 3, 4, 5)) indices = KerasTensor((6, 7)) self.assertEqual(knp.take(x, indices, axis=2).shape, (2, 3, 6, 7, 5)) def test_take_along_axis(self): x = KerasTensor((2, 3)) indices = KerasTensor((1, 3)) self.assertEqual(knp.take_along_axis(x, indices, axis=0).shape, (1, 3)) self.assertEqual(knp.take_along_axis(x, indices, axis=1).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) indices = KerasTensor((1, 4)) knp.take_along_axis(x, indices, axis=0) def test_tensordot(self): x = KerasTensor((2, 3, 3)) y = KerasTensor((3, 3, 4)) self.assertEqual(knp.tensordot(x, y, axes=1).shape, (2, 3, 3, 4)) self.assertEqual(knp.tensordot(x, y, axes=2).shape, (2, 4)) self.assertEqual( knp.tensordot(x, y, axes=[[1, 2], [0, 1]]).shape, (2, 4) ) def test_vdot(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.vdot(x, y).shape, ()) def test_where(self): condition = KerasTensor((2, 3)) x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.where(condition, x, y).shape, (2, 3)) self.assertAllEqual(knp.where(condition).shape, (2, 3)) def test_floor_divide(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.floor_divide(x, y).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.floor_divide(x, y) def test_xor(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.logical_xor(x, y).shape, (2, 3)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) knp.logical_xor(x, y) def test_digitize(self): x = KerasTensor((2, 3)) bins = KerasTensor((3,)) self.assertEqual(knp.digitize(x, bins).shape, (2, 3)) self.assertTrue(knp.digitize(x, bins).dtype == "int32") with self.assertRaises(ValueError): x = KerasTensor((2, 3)) bins = KerasTensor((2, 3, 4)) knp.digitize(x, bins) class NumpyOneInputOpsDynamicShapeTest(testing.TestCase): def test_mean(self): x = KerasTensor((None, 3)) self.assertEqual(knp.mean(x).shape, ()) x = KerasTensor((None, 3, 3)) self.assertEqual(knp.mean(x, axis=1).shape, (None, 3)) self.assertEqual(knp.mean(x, axis=1, keepdims=True).shape, (None, 1, 3)) def test_all(self): x = KerasTensor((None, 3)) self.assertEqual(knp.all(x).shape, ()) x = KerasTensor((None, 3, 3)) self.assertEqual(knp.all(x, axis=1).shape, (None, 3)) self.assertEqual(knp.all(x, axis=1, keepdims=True).shape, (None, 1, 3)) def test_any(self): x = KerasTensor((None, 3)) self.assertEqual(knp.any(x).shape, ()) x = KerasTensor((None, 3, 3)) self.assertEqual(knp.any(x, axis=1).shape, (None, 3)) self.assertEqual(knp.any(x, axis=1, keepdims=True).shape, (None, 1, 3)) def test_var(self): x = KerasTensor((None, 3)) self.assertEqual(knp.var(x).shape, ()) x = KerasTensor((None, 3, 3)) self.assertEqual(knp.var(x, axis=1).shape, (None, 3)) self.assertEqual(knp.var(x, axis=1, keepdims=True).shape, (None, 1, 3)) def test_sum(self): x = KerasTensor((None, 3)) self.assertEqual(knp.sum(x).shape, ()) x = KerasTensor((None, 3, 3)) self.assertEqual(knp.sum(x, axis=1).shape, (None, 3)) self.assertEqual(knp.sum(x, axis=1, keepdims=True).shape, (None, 1, 3)) def test_amax(self): x = KerasTensor((None, 3)) self.assertEqual(knp.amax(x).shape, ()) x = KerasTensor((None, 3, 3)) self.assertEqual(knp.amax(x, axis=1).shape, (None, 3)) self.assertEqual(knp.amax(x, axis=1, keepdims=True).shape, (None, 1, 3)) def test_amin(self): x = KerasTensor((None, 3)) self.assertEqual(knp.amin(x).shape, ()) x = KerasTensor((None, 3, 3)) self.assertEqual(knp.amin(x, axis=1).shape, (None, 3)) self.assertEqual(knp.amin(x, axis=1, keepdims=True).shape, (None, 1, 3)) def test_square(self): x = KerasTensor((None, 3)) self.assertEqual(knp.square(x).shape, (None, 3)) def test_negative(self): x = KerasTensor((None, 3)) self.assertEqual(knp.negative(x).shape, (None, 3)) def test_abs(self): x = KerasTensor((None, 3)) self.assertEqual(knp.abs(x).shape, (None, 3)) def test_absolute(self): x = KerasTensor((None, 3)) self.assertEqual(knp.absolute(x).shape, (None, 3)) def test_squeeze(self): x = KerasTensor((None, 1)) self.assertEqual(knp.squeeze(x).shape, (None,)) self.assertEqual(knp.squeeze(x, axis=1).shape, (None,)) with self.assertRaises(ValueError): x = KerasTensor((None, 1)) knp.squeeze(x, axis=0) def test_transpose(self): x = KerasTensor((None, 3)) self.assertEqual(knp.transpose(x).shape, (3, None)) x = KerasTensor((None, 3, 3)) self.assertEqual(knp.transpose(x, (2, 0, 1)).shape, (3, None, 3)) def test_arccos(self): x = KerasTensor((None, 3)) self.assertEqual(knp.arccos(x).shape, (None, 3)) def test_arccosh(self): x = KerasTensor((None, 3)) self.assertEqual(knp.arccosh(x).shape, (None, 3)) def test_arcsin(self): x = KerasTensor((None, 3)) self.assertEqual(knp.arcsin(x).shape, (None, 3)) def test_arcsinh(self): x = KerasTensor((None, 3)) self.assertEqual(knp.arcsinh(x).shape, (None, 3)) def test_arctan(self): x = KerasTensor((None, 3)) self.assertEqual(knp.arctan(x).shape, (None, 3)) def test_arctanh(self): x = KerasTensor((None, 3)) self.assertEqual(knp.arctanh(x).shape, (None, 3)) def test_argmax(self): x = KerasTensor((None, 3)) self.assertEqual(knp.argmax(x).shape, ()) x = KerasTensor((None, 3, 3)) self.assertEqual(knp.argmax(x, axis=1).shape, (None, 3)) def test_argmin(self): x = KerasTensor((None, 3)) self.assertEqual(knp.argmin(x).shape, ()) x = KerasTensor((None, 3, 3)) self.assertEqual(knp.argmin(x, axis=1).shape, (None, 3)) def test_argsort(self): x = KerasTensor((None, 3)) self.assertEqual(knp.argsort(x).shape, (None, 3)) x = KerasTensor((None, 3, 3)) self.assertEqual(knp.argsort(x, axis=1).shape, (None, 3, 3)) def test_array(self): x = KerasTensor((None, 3)) self.assertEqual(knp.array(x).shape, (None, 3)) def test_average(self): x = KerasTensor((None, 3)) weights = KerasTensor((None, 3)) self.assertEqual(knp.average(x, weights=weights).shape, ()) x = KerasTensor((None, 3)) weights = KerasTensor((3,)) self.assertEqual(knp.average(x, axis=1, weights=weights).shape, (None,)) x = KerasTensor((None, 3, 3)) self.assertEqual(knp.average(x, axis=1).shape, (None, 3)) with self.assertRaises(ValueError): x = KerasTensor((None, 3, 3)) weights = KerasTensor((None, 4)) knp.average(x, weights=weights) def test_broadcast_to(self): x = KerasTensor((None, 3)) self.assertEqual(knp.broadcast_to(x, (2, 3, 3)).shape, (2, 3, 3)) with self.assertRaises(ValueError): x = KerasTensor((3, 3)) knp.broadcast_to(x, (2, 2, 3)) def test_ceil(self): x = KerasTensor((None, 3)) self.assertEqual(knp.ceil(x).shape, (None, 3)) def test_clip(self): x = KerasTensor((None, 3)) self.assertEqual(knp.clip(x, 1, 2).shape, (None, 3)) def test_concatenate(self): x = KerasTensor((None, 3)) y = KerasTensor((None, 3)) self.assertEqual( knp.concatenate( [x, y], ).shape, (None, 3), ) self.assertEqual(knp.concatenate([x, y], axis=1).shape, (None, 6)) with self.assertRaises(ValueError): self.assertEqual(knp.concatenate([x, y], axis=None).shape, (None,)) with self.assertRaises(ValueError): x = KerasTensor((None, 3, 5)) y = KerasTensor((None, 4, 6)) knp.concatenate([x, y], axis=1) def test_concatenate_sparse(self): x = KerasTensor((2, 3), sparse=True) y = KerasTensor((2, 3)) result = knp.concatenate([x, y], axis=1) self.assertEqual(result.shape, (2, 6)) self.assertFalse(result.sparse) x = KerasTensor((2, 3)) y = KerasTensor((2, 3), sparse=True) result = knp.concatenate([x, y], axis=1) self.assertEqual(result.shape, (2, 6)) self.assertFalse(result.sparse) x = KerasTensor((2, 3), sparse=True) y = KerasTensor((2, 3), sparse=True) result = knp.concatenate([x, y], axis=1) self.assertEqual(result.shape, (2, 6)) self.assertTrue(result.sparse) def test_conjugate(self): x = KerasTensor((None, 3)) self.assertEqual(knp.conjugate(x).shape, (None, 3)) def test_conj(self): x = KerasTensor((None, 3)) self.assertEqual(knp.conj(x).shape, (None, 3)) def test_copy(self): x = KerasTensor((None, 3)) self.assertEqual(knp.copy(x).shape, (None, 3)) def test_cos(self): x = KerasTensor((None, 3)) self.assertEqual(knp.cos(x).shape, (None, 3)) def test_cosh(self): x = KerasTensor((None, 3)) self.assertEqual(knp.cosh(x).shape, (None, 3)) def test_count_nonzero(self): x = KerasTensor((None, 3)) self.assertEqual(knp.count_nonzero(x).shape, ()) x = KerasTensor((None, 3, 3)) self.assertEqual(knp.count_nonzero(x, axis=1).shape, (None, 3)) def test_cumprod(self): x = KerasTensor((None, 3)) self.assertEqual(knp.cumprod(x).shape, (None,)) x = KerasTensor((None, 3, 3)) self.assertEqual(knp.cumprod(x, axis=1).shape, (None, 3, 3)) def test_cumsum(self): x = KerasTensor((None, 3)) self.assertEqual(knp.cumsum(x).shape, (None,)) x = KerasTensor((None, 3, 3)) self.assertEqual(knp.cumsum(x, axis=1).shape, (None, 3, 3)) def test_diag(self): x = KerasTensor((None, 3)) self.assertEqual(knp.diag(x).shape, (None,)) self.assertEqual(knp.diag(x, k=3).shape, (None,)) with self.assertRaises(ValueError): x = KerasTensor((2, 3, 4)) knp.diag(x) def test_diagonal(self): x = KerasTensor((None, 3, 3)) self.assertEqual(knp.diagonal(x).shape, (3, None)) def test_diff(self): x = KerasTensor((None, 3)) self.assertEqual(knp.diff(x).shape, (None, 2)) self.assertEqual(knp.diff(x, n=2).shape, (None, 1)) self.assertEqual(knp.diff(x, n=3).shape, (None, 0)) self.assertEqual(knp.diff(x, n=4).shape, (None, 0)) self.assertEqual(knp.diff(x, axis=0).shape, (None, 3)) self.assertEqual(knp.diff(x, n=2, axis=0).shape, (None, 3)) def test_dot(self): x = KerasTensor((None, 3)) y = KerasTensor((3, 2)) z = KerasTensor((None, None, 2)) self.assertEqual(knp.dot(x, y).shape, (None, 2)) self.assertEqual(knp.dot(x, 2).shape, (None, 3)) self.assertEqual(knp.dot(x, z).shape, (None, None, 2)) x = KerasTensor((None,)) y = KerasTensor((5,)) self.assertEqual(knp.dot(x, y).shape, ()) def test_exp(self): x = KerasTensor((None, 3)) self.assertEqual(knp.exp(x).shape, (None, 3)) def test_expand_dims(self): x = KerasTensor((None, 3)) self.assertEqual(knp.expand_dims(x, -1).shape, (None, 3, 1)) self.assertEqual(knp.expand_dims(x, 0).shape, (1, None, 3)) self.assertEqual(knp.expand_dims(x, 1).shape, (None, 1, 3)) self.assertEqual(knp.expand_dims(x, -2).shape, (None, 1, 3)) def test_expm1(self): x = KerasTensor((None, 3)) self.assertEqual(knp.expm1(x).shape, (None, 3)) def test_flip(self): x = KerasTensor((None, 3)) self.assertEqual(knp.flip(x).shape, (None, 3)) def test_floor(self): x = KerasTensor((None, 3)) self.assertEqual(knp.floor(x).shape, (None, 3)) def test_get_item(self): x = KerasTensor((None, 5, 16)) # Simple slice. sliced = knp.get_item(x, 5) self.assertEqual(sliced.shape, (5, 16)) # Ellipsis slice. sliced = knp.get_item(x, np.s_[..., -1]) self.assertEqual(sliced.shape, (None, 5)) # `newaxis` slice. sliced = knp.get_item(x, np.s_[:, np.newaxis, ...]) self.assertEqual(sliced.shape, (None, 1, 5, 16)) # Strided slice. sliced = knp.get_item(x, np.s_[:5, 3:, 3:12:2]) self.assertEqual(sliced.shape, (None, 2, 5)) # Error states. with self.assertRaises(ValueError): sliced = knp.get_item(x, np.s_[:, 17, :]) with self.assertRaises(ValueError): sliced = knp.get_item(x, np.s_[..., 5, ...]) with self.assertRaises(ValueError): sliced = knp.get_item(x, np.s_[:, :, :, :]) def test_hstack(self): x = KerasTensor((None, 3)) y = KerasTensor((None, 3)) self.assertEqual(knp.hstack([x, y]).shape, (None, 6)) x = KerasTensor((None, 3)) y = KerasTensor((None, None)) self.assertEqual(knp.hstack([x, y]).shape, (None, None)) def test_imag(self): x = KerasTensor((None, 3)) self.assertEqual(knp.imag(x).shape, (None, 3)) def test_isfinite(self): x = KerasTensor((None, 3)) self.assertEqual(knp.isfinite(x).shape, (None, 3)) def test_isinf(self): x = KerasTensor((None, 3)) self.assertEqual(knp.isinf(x).shape, (None, 3)) def test_isnan(self): x = KerasTensor((None, 3)) self.assertEqual(knp.isnan(x).shape, (None, 3)) def test_log(self): x = KerasTensor((None, 3)) self.assertEqual(knp.log(x).shape, (None, 3)) def test_log10(self): x = KerasTensor((None, 3)) self.assertEqual(knp.log10(x).shape, (None, 3)) def test_log1p(self): x = KerasTensor((None, 3)) self.assertEqual(knp.log1p(x).shape, (None, 3)) def test_log2(self): x = KerasTensor((None, 3)) self.assertEqual(knp.log2(x).shape, (None, 3)) def test_logaddexp(self): x = KerasTensor((None, 3)) self.assertEqual(knp.logaddexp(x, x).shape, (None, 3)) def test_logical_not(self): x = KerasTensor((None, 3)) self.assertEqual(knp.logical_not(x).shape, (None, 3)) def test_max(self): x = KerasTensor((None, 3)) self.assertEqual(knp.max(x).shape, ()) def test_median(self): x = KerasTensor((None, 3)) self.assertEqual(knp.median(x).shape, ()) x = KerasTensor((None, 3, 3)) self.assertEqual(knp.median(x, axis=1).shape, (None, 3)) self.assertEqual( knp.median(x, axis=1, keepdims=True).shape, (None, 1, 3) ) def test_meshgrid(self): x = KerasTensor((None, 3)) y = KerasTensor((None, 3)) self.assertEqual(knp.meshgrid(x, y)[0].shape, (None, None)) self.assertEqual(knp.meshgrid(x, y)[1].shape, (None, None)) with self.assertRaises(ValueError): knp.meshgrid(x, y, indexing="kk") def test_moveaxis(self): x = KerasTensor((None, 3, 4, 5)) self.assertEqual(knp.moveaxis(x, 0, -1).shape, (3, 4, 5, None)) self.assertEqual(knp.moveaxis(x, -1, 0).shape, (5, None, 3, 4)) self.assertEqual( knp.moveaxis(x, [0, 1], [-1, -2]).shape, (4, 5, 3, None) ) self.assertEqual(knp.moveaxis(x, [0, 1], [1, 0]).shape, (3, None, 4, 5)) self.assertEqual( knp.moveaxis(x, [0, 1], [-2, -1]).shape, (4, 5, None, 3) ) def test_ndim(self): x = KerasTensor((None, 3)) self.assertEqual(knp.ndim(x).shape, (2,)) def test_ones_like(self): x = KerasTensor((None, 3)) self.assertEqual(knp.ones_like(x).shape, (None, 3)) self.assertEqual(knp.ones_like(x).dtype, x.dtype) def test_zeros_like(self): x = KerasTensor((None, 3)) self.assertEqual(knp.zeros_like(x).shape, (None, 3)) self.assertEqual(knp.zeros_like(x).dtype, x.dtype) def test_pad(self): x = KerasTensor((None, 3)) self.assertEqual(knp.pad(x, 1).shape, (None, 5)) self.assertEqual(knp.pad(x, (1, 2)).shape, (None, 6)) self.assertEqual(knp.pad(x, ((1, 2), (3, 4))).shape, (None, 10)) x = KerasTensor((None, 3, 3)) self.assertEqual(knp.pad(x, 1).shape, (None, 5, 5)) self.assertEqual(knp.pad(x, (1, 2)).shape, (None, 6, 6)) self.assertEqual( knp.pad(x, ((1, 2), (3, 4), (5, 6))).shape, (None, 10, 14) ) def test_prod(self): x = KerasTensor((None, 3)) self.assertEqual(knp.prod(x).shape, ()) self.assertEqual(knp.prod(x, axis=0).shape, (3,)) self.assertEqual(knp.prod(x, axis=1, keepdims=True).shape, (None, 1)) def test_ravel(self): x = KerasTensor((None, 3)) self.assertEqual(knp.ravel(x).shape, (None,)) def test_real(self): x = KerasTensor((None, 3)) self.assertEqual(knp.real(x).shape, (None, 3)) def test_reciprocal(self): x = KerasTensor((None, 3)) self.assertEqual(knp.reciprocal(x).shape, (None, 3)) def test_repeat(self): x = KerasTensor((None, 3)) self.assertEqual(knp.repeat(x, 2).shape, (None,)) self.assertEqual(knp.repeat(x, 3, axis=1).shape, (None, 9)) self.assertEqual(knp.repeat(x, [1, 2], axis=0).shape, (3, 3)) self.assertEqual(knp.repeat(x, 2, axis=0).shape, (None, 3)) def test_reshape(self): x = KerasTensor((None, 3)) self.assertEqual(knp.reshape(x, (3, 2)).shape, (3, 2)) self.assertEqual(knp.reshape(x, (3, -1)).shape, (3, None)) def test_roll(self): x = KerasTensor((None, 3)) self.assertEqual(knp.roll(x, 1).shape, (None, 3)) self.assertEqual(knp.roll(x, 1, axis=1).shape, (None, 3)) self.assertEqual(knp.roll(x, 1, axis=0).shape, (None, 3)) def test_round(self): x = KerasTensor((None, 3)) self.assertEqual(knp.round(x).shape, (None, 3)) def test_sign(self): x = KerasTensor((None, 3)) self.assertEqual(knp.sign(x).shape, (None, 3)) def test_sin(self): x = KerasTensor((None, 3)) self.assertEqual(knp.sin(x).shape, (None, 3)) def test_sinh(self): x = KerasTensor((None, 3)) self.assertEqual(knp.sinh(x).shape, (None, 3)) def test_size(self): x = KerasTensor((None, 3)) self.assertEqual(knp.size(x).shape, ()) def test_sort(self): x = KerasTensor((None, 3)) self.assertEqual(knp.sort(x).shape, (None, 3)) self.assertEqual(knp.sort(x, axis=1).shape, (None, 3)) self.assertEqual(knp.sort(x, axis=0).shape, (None, 3)) def test_split(self): x = KerasTensor((None, 3, 3)) self.assertEqual(knp.split(x, 2)[0].shape, (None, 3, 3)) self.assertEqual(knp.split(x, 3, axis=1)[0].shape, (None, 1, 3)) self.assertEqual(len(knp.split(x, [1, 3], axis=1)), 3) self.assertEqual(knp.split(x, [1, 3], axis=1)[0].shape, (None, 1, 3)) self.assertEqual(knp.split(x, [1, 3], axis=1)[1].shape, (None, 2, 3)) self.assertEqual(knp.split(x, [1, 3], axis=1)[2].shape, (None, 0, 3)) def test_sqrt(self): x = KerasTensor((None, 3)) self.assertEqual(knp.sqrt(x).shape, (None, 3)) def test_stack(self): x = KerasTensor((None, 3)) y = KerasTensor((None, 3)) self.assertEqual(knp.stack([x, y]).shape, (2, None, 3)) self.assertEqual(knp.stack([x, y], axis=-1).shape, (None, 3, 2)) def test_std(self): x = KerasTensor((None, 3)) self.assertEqual(knp.std(x).shape, ()) x = KerasTensor((None, 3, 3)) self.assertEqual(knp.std(x, axis=1).shape, (None, 3)) self.assertEqual(knp.std(x, axis=1, keepdims=True).shape, (None, 1, 3)) def test_swapaxes(self): x = KerasTensor((None, 3)) self.assertEqual(knp.swapaxes(x, 0, 1).shape, (3, None)) def test_tan(self): x = KerasTensor((None, 3)) self.assertEqual(knp.tan(x).shape, (None, 3)) def test_tanh(self): x = KerasTensor((None, 3)) self.assertEqual(knp.tanh(x).shape, (None, 3)) def test_tile(self): x = KerasTensor((None, 3)) self.assertEqual(knp.tile(x, [2]).shape, (None, 6)) self.assertEqual(knp.tile(x, [1, 2]).shape, (None, 6)) self.assertEqual(knp.tile(x, [2, 1, 2]).shape, (2, None, 6)) def test_trace(self): x = KerasTensor((None, 3, None, 5)) self.assertEqual(knp.trace(x).shape, (None, 5)) self.assertEqual(knp.trace(x, axis1=2, axis2=3).shape, (None, 3)) def test_tril(self): x = KerasTensor((None, 3, None, 5)) self.assertEqual(knp.tril(x).shape, (None, 3, None, 5)) self.assertEqual(knp.tril(x, k=1).shape, (None, 3, None, 5)) self.assertEqual(knp.tril(x, k=-1).shape, (None, 3, None, 5)) def test_triu(self): x = KerasTensor((None, 3, None, 5)) self.assertEqual(knp.triu(x).shape, (None, 3, None, 5)) self.assertEqual(knp.triu(x, k=1).shape, (None, 3, None, 5)) self.assertEqual(knp.triu(x, k=-1).shape, (None, 3, None, 5)) def test_vstack(self): x = KerasTensor((None, 3)) y = KerasTensor((None, 3)) self.assertEqual(knp.vstack([x, y]).shape, (None, 3)) x = KerasTensor((None, 3)) y = KerasTensor((None, None)) self.assertEqual(knp.vstack([x, y]).shape, (None, 3)) class NumpyOneInputOpsStaticShapeTest(testing.TestCase): def test_mean(self): x = KerasTensor((2, 3)) self.assertEqual(knp.mean(x).shape, ()) def test_all(self): x = KerasTensor((2, 3)) self.assertEqual(knp.all(x).shape, ()) def test_any(self): x = KerasTensor((2, 3)) self.assertEqual(knp.any(x).shape, ()) def test_var(self): x = KerasTensor((2, 3)) self.assertEqual(knp.var(x).shape, ()) def test_sum(self): x = KerasTensor((2, 3)) self.assertEqual(knp.sum(x).shape, ()) def test_amax(self): x = KerasTensor((2, 3)) self.assertEqual(knp.amax(x).shape, ()) def test_amin(self): x = KerasTensor((2, 3)) self.assertEqual(knp.amin(x).shape, ()) def test_square(self): x = KerasTensor((2, 3)) self.assertEqual(knp.square(x).shape, (2, 3)) def test_negative(self): x = KerasTensor((2, 3)) self.assertEqual(knp.negative(x).shape, (2, 3)) def test_abs(self): x = KerasTensor((2, 3)) self.assertEqual(knp.abs(x).shape, (2, 3)) def test_absolute(self): x = KerasTensor((2, 3)) self.assertEqual(knp.absolute(x).shape, (2, 3)) def test_squeeze(self): x = KerasTensor((2, 3)) self.assertEqual(knp.squeeze(x).shape, (2, 3)) x = KerasTensor((2, 1, 3)) self.assertEqual(knp.squeeze(x).shape, (2, 3)) self.assertEqual(knp.squeeze(x, axis=1).shape, (2, 3)) self.assertEqual(knp.squeeze(x, axis=-2).shape, (2, 3)) with self.assertRaises(ValueError): knp.squeeze(x, axis=0) def test_transpose(self): x = KerasTensor((2, 3)) self.assertEqual(knp.transpose(x).shape, (3, 2)) def test_arccos(self): x = KerasTensor((2, 3)) self.assertEqual(knp.arccos(x).shape, (2, 3)) def test_arccosh(self): x = KerasTensor((2, 3)) self.assertEqual(knp.arccosh(x).shape, (2, 3)) def test_arcsin(self): x = KerasTensor((2, 3)) self.assertEqual(knp.arcsin(x).shape, (2, 3)) def test_arcsinh(self): x = KerasTensor((2, 3)) self.assertEqual(knp.arcsinh(x).shape, (2, 3)) def test_arctan(self): x = KerasTensor((2, 3)) self.assertEqual(knp.arctan(x).shape, (2, 3)) def test_arctanh(self): x = KerasTensor((2, 3)) self.assertEqual(knp.arctanh(x).shape, (2, 3)) def test_argmax(self): x = KerasTensor((2, 3)) self.assertEqual(knp.argmax(x).shape, ()) def test_argmin(self): x = KerasTensor((2, 3)) self.assertEqual(knp.argmin(x).shape, ()) def test_argsort(self): x = KerasTensor((2, 3)) self.assertEqual(knp.argsort(x).shape, (2, 3)) self.assertEqual(knp.argsort(x, axis=None).shape, (6,)) def test_array(self): x = KerasTensor((2, 3)) self.assertEqual(knp.array(x).shape, (2, 3)) def test_average(self): x = KerasTensor((2, 3)) self.assertEqual(knp.average(x).shape, ()) def test_broadcast_to(self): x = KerasTensor((2, 3)) self.assertEqual(knp.broadcast_to(x, (2, 2, 3)).shape, (2, 2, 3)) with self.assertRaises(ValueError): x = KerasTensor((3, 3)) knp.broadcast_to(x, (2, 2, 3)) def test_ceil(self): x = KerasTensor((2, 3)) self.assertEqual(knp.ceil(x).shape, (2, 3)) def test_clip(self): x = KerasTensor((2, 3)) self.assertEqual(knp.clip(x, 1, 2).shape, (2, 3)) def test_concatenate(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.concatenate([x, y]).shape, (4, 3)) self.assertEqual(knp.concatenate([x, y], axis=1).shape, (2, 6)) with self.assertRaises(ValueError): self.assertEqual(knp.concatenate([x, y], axis=None).shape, (None,)) def test_conjugate(self): x = KerasTensor((2, 3)) self.assertEqual(knp.conjugate(x).shape, (2, 3)) def test_conj(self): x = KerasTensor((2, 3)) self.assertEqual(knp.conj(x).shape, (2, 3)) def test_copy(self): x = KerasTensor((2, 3)) self.assertEqual(knp.copy(x).shape, (2, 3)) def test_cos(self): x = KerasTensor((2, 3)) self.assertEqual(knp.cos(x).shape, (2, 3)) def test_cosh(self): x = KerasTensor((2, 3)) self.assertEqual(knp.cosh(x).shape, (2, 3)) def test_count_nonzero(self): x = KerasTensor((2, 3)) self.assertEqual(knp.count_nonzero(x).shape, ()) def test_cumprod(self): x = KerasTensor((2, 3)) self.assertEqual(knp.cumprod(x).shape, (6,)) def test_cumsum(self): x = KerasTensor((2, 3)) self.assertEqual(knp.cumsum(x).shape, (6,)) def test_diag(self): x = KerasTensor((3,)) self.assertEqual(knp.diag(x).shape, (3, 3)) self.assertEqual(knp.diag(x, k=3).shape, (6, 6)) self.assertEqual(knp.diag(x, k=-2).shape, (5, 5)) x = KerasTensor((3, 5)) self.assertEqual(knp.diag(x).shape, (3,)) self.assertEqual(knp.diag(x, k=3).shape, (2,)) self.assertEqual(knp.diag(x, k=-2).shape, (1,)) with self.assertRaises(ValueError): x = KerasTensor((2, 3, 4)) knp.diag(x) def test_diagonal(self): x = KerasTensor((3, 3)) self.assertEqual(knp.diagonal(x).shape, (3,)) self.assertEqual(knp.diagonal(x, offset=1).shape, (2,)) x = KerasTensor((3, 5, 5)) self.assertEqual(knp.diagonal(x).shape, (5, 3)) with self.assertRaises(ValueError): x = KerasTensor((3,)) knp.diagonal(x) def test_diff(self): x = KerasTensor((2, 3)) self.assertEqual(knp.diff(x).shape, (2, 2)) self.assertEqual(knp.diff(x, n=2).shape, (2, 1)) self.assertEqual(knp.diff(x, n=3).shape, (2, 0)) self.assertEqual(knp.diff(x, n=4).shape, (2, 0)) self.assertEqual(knp.diff(x, axis=0).shape, (1, 3)) self.assertEqual(knp.diff(x, n=2, axis=0).shape, (0, 3)) self.assertEqual(knp.diff(x, n=3, axis=0).shape, (0, 3)) def test_dot(self): x = KerasTensor((2, 3)) y = KerasTensor((3, 2)) z = KerasTensor((4, 3, 2)) self.assertEqual(knp.dot(x, y).shape, (2, 2)) self.assertEqual(knp.dot(x, 2).shape, (2, 3)) self.assertEqual(knp.dot(x, z).shape, (2, 4, 2)) x = KerasTensor((5,)) y = KerasTensor((5,)) self.assertEqual(knp.dot(x, y).shape, ()) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) knp.dot(x, y) def test_exp(self): x = KerasTensor((2, 3)) self.assertEqual(knp.exp(x).shape, (2, 3)) def test_expand_dims(self): x = KerasTensor((2, 3, 4)) self.assertEqual(knp.expand_dims(x, 0).shape, (1, 2, 3, 4)) self.assertEqual(knp.expand_dims(x, 1).shape, (2, 1, 3, 4)) self.assertEqual(knp.expand_dims(x, -2).shape, (2, 3, 1, 4)) def test_expm1(self): x = KerasTensor((2, 3)) self.assertEqual(knp.expm1(x).shape, (2, 3)) def test_flip(self): x = KerasTensor((2, 3)) self.assertEqual(knp.flip(x).shape, (2, 3)) def test_floor(self): x = KerasTensor((2, 3)) self.assertEqual(knp.floor(x).shape, (2, 3)) def test_get_item(self): x = KerasTensor((2, 3)) self.assertEqual(knp.get_item(x, 1).shape, (3,)) x = KerasTensor((5, 3, 2)) self.assertEqual(knp.get_item(x, 3).shape, (3, 2)) x = KerasTensor( [ 2, ] ) self.assertEqual(knp.get_item(x, 0).shape, ()) def test_hstack(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.hstack([x, y]).shape, (2, 6)) def test_imag(self): x = KerasTensor((2, 3)) self.assertEqual(knp.imag(x).shape, (2, 3)) def test_isfinite(self): x = KerasTensor((2, 3)) self.assertEqual(knp.isfinite(x).shape, (2, 3)) def test_isinf(self): x = KerasTensor((2, 3)) self.assertEqual(knp.isinf(x).shape, (2, 3)) def test_isnan(self): x = KerasTensor((2, 3)) self.assertEqual(knp.isnan(x).shape, (2, 3)) def test_log(self): x = KerasTensor((2, 3)) self.assertEqual(knp.log(x).shape, (2, 3)) def test_log10(self): x = KerasTensor((2, 3)) self.assertEqual(knp.log10(x).shape, (2, 3)) def test_log1p(self): x = KerasTensor((2, 3)) self.assertEqual(knp.log1p(x).shape, (2, 3)) def test_log2(self): x = KerasTensor((2, 3)) self.assertEqual(knp.log2(x).shape, (2, 3)) def test_logaddexp(self): x = KerasTensor((2, 3)) self.assertEqual(knp.logaddexp(x, x).shape, (2, 3)) def test_logical_not(self): x = KerasTensor((2, 3)) self.assertEqual(knp.logical_not(x).shape, (2, 3)) def test_max(self): x = KerasTensor((2, 3)) self.assertEqual(knp.max(x).shape, ()) def test_median(self): x = KerasTensor((2, 3)) self.assertEqual(knp.median(x).shape, ()) x = KerasTensor((2, 3, 3)) self.assertEqual(knp.median(x, axis=1).shape, (2, 3)) self.assertEqual(knp.median(x, axis=1, keepdims=True).shape, (2, 1, 3)) def test_meshgrid(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3, 4)) z = KerasTensor((2, 3, 4, 5)) self.assertEqual(knp.meshgrid(x, y)[0].shape, (24, 6)) self.assertEqual(knp.meshgrid(x, y)[1].shape, (24, 6)) self.assertEqual(knp.meshgrid(x, y, indexing="ij")[0].shape, (6, 24)) self.assertEqual( knp.meshgrid(x, y, z, indexing="ij")[0].shape, (6, 24, 120) ) with self.assertRaises(ValueError): knp.meshgrid(x, y, indexing="kk") def test_moveaxis(self): x = KerasTensor((2, 3, 4, 5)) self.assertEqual(knp.moveaxis(x, 0, -1).shape, (3, 4, 5, 2)) self.assertEqual(knp.moveaxis(x, -1, 0).shape, (5, 2, 3, 4)) self.assertEqual(knp.moveaxis(x, [0, 1], [-1, -2]).shape, (4, 5, 3, 2)) self.assertEqual(knp.moveaxis(x, [0, 1], [1, 0]).shape, (3, 2, 4, 5)) self.assertEqual(knp.moveaxis(x, [0, 1], [-2, -1]).shape, (4, 5, 2, 3)) def test_ndim(self): x = KerasTensor((2, 3)) self.assertEqual(knp.ndim(x).shape, (2,)) def test_ones_like(self): x = KerasTensor((2, 3)) self.assertEqual(knp.ones_like(x).shape, (2, 3)) self.assertEqual(knp.ones_like(x).dtype, x.dtype) def test_zeros_like(self): x = KerasTensor((2, 3)) self.assertEqual(knp.zeros_like(x).shape, (2, 3)) self.assertEqual(knp.zeros_like(x).dtype, x.dtype) def test_pad(self): x = KerasTensor((2, 3)) self.assertEqual(knp.pad(x, 1).shape, (4, 5)) self.assertEqual(knp.pad(x, (1, 2)).shape, (5, 6)) self.assertEqual(knp.pad(x, ((1, 2), (3, 4))).shape, (5, 10)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) knp.pad(x, ((1, 2), (3, 4), (5, 6))) def test_prod(self): x = KerasTensor((2, 3)) self.assertEqual(knp.prod(x).shape, ()) self.assertEqual(knp.prod(x, axis=0).shape, (3,)) self.assertEqual(knp.prod(x, axis=1).shape, (2,)) def test_ravel(self): x = KerasTensor((2, 3)) self.assertEqual(knp.ravel(x).shape, (6,)) def test_real(self): x = KerasTensor((2, 3)) self.assertEqual(knp.real(x).shape, (2, 3)) def test_reciprocal(self): x = KerasTensor((2, 3)) self.assertEqual(knp.reciprocal(x).shape, (2, 3)) def test_repeat(self): x = KerasTensor((2, 3)) self.assertEqual(knp.repeat(x, 2).shape, (12,)) self.assertEqual(knp.repeat(x, 3, axis=1).shape, (2, 9)) self.assertEqual(knp.repeat(x, [1, 2], axis=0).shape, (3, 3)) def test_reshape(self): x = KerasTensor((2, 3)) self.assertEqual(knp.reshape(x, (3, 2)).shape, (3, 2)) self.assertEqual(knp.reshape(x, (3, -1)).shape, (3, 2)) self.assertEqual(knp.reshape(x, (6,)).shape, (6,)) self.assertEqual(knp.reshape(x, (-1,)).shape, (6,)) def test_roll(self): x = KerasTensor((2, 3)) self.assertEqual(knp.roll(x, 1).shape, (2, 3)) self.assertEqual(knp.roll(x, 1, axis=1).shape, (2, 3)) self.assertEqual(knp.roll(x, 1, axis=0).shape, (2, 3)) def test_round(self): x = KerasTensor((2, 3)) self.assertEqual(knp.round(x).shape, (2, 3)) def test_sign(self): x = KerasTensor((2, 3)) self.assertEqual(knp.sign(x).shape, (2, 3)) def test_sin(self): x = KerasTensor((2, 3)) self.assertEqual(knp.sin(x).shape, (2, 3)) def test_sinh(self): x = KerasTensor((2, 3)) self.assertEqual(knp.sinh(x).shape, (2, 3)) def test_size(self): x = KerasTensor((2, 3)) self.assertEqual(knp.size(x).shape, ()) def test_sort(self): x = KerasTensor((2, 3)) self.assertEqual(knp.sort(x).shape, (2, 3)) self.assertEqual(knp.sort(x, axis=1).shape, (2, 3)) self.assertEqual(knp.sort(x, axis=0).shape, (2, 3)) def test_split(self): x = KerasTensor((2, 3)) self.assertEqual(len(knp.split(x, 2)), 2) self.assertEqual(knp.split(x, 2)[0].shape, (1, 3)) self.assertEqual(knp.split(x, 3, axis=1)[0].shape, (2, 1)) self.assertEqual(len(knp.split(x, [1, 3], axis=1)), 3) self.assertEqual(knp.split(x, [1, 3], axis=1)[0].shape, (2, 1)) self.assertEqual(knp.split(x, [1, 3], axis=1)[1].shape, (2, 2)) self.assertEqual(knp.split(x, [1, 3], axis=1)[2].shape, (2, 0)) with self.assertRaises(ValueError): knp.split(x, 2, axis=1) def test_sqrt(self): x = KerasTensor((2, 3)) self.assertEqual(knp.sqrt(x).shape, (2, 3)) def test_stack(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.stack([x, y]).shape, (2, 2, 3)) self.assertEqual(knp.stack([x, y], axis=-1).shape, (2, 3, 2)) with self.assertRaises(ValueError): x = KerasTensor((2, 3)) y = KerasTensor((3, 3)) knp.stack([x, y]) def test_std(self): x = KerasTensor((2, 3)) self.assertEqual(knp.std(x).shape, ()) def test_swapaxes(self): x = KerasTensor((2, 3)) self.assertEqual(knp.swapaxes(x, 0, 1).shape, (3, 2)) def test_tan(self): x = KerasTensor((2, 3)) self.assertEqual(knp.tan(x).shape, (2, 3)) def test_tanh(self): x = KerasTensor((2, 3)) self.assertEqual(knp.tanh(x).shape, (2, 3)) def test_tile(self): x = KerasTensor((2, 3)) self.assertEqual(knp.tile(x, [2]).shape, (2, 6)) self.assertEqual(knp.tile(x, [1, 2]).shape, (2, 6)) self.assertEqual(knp.tile(x, [2, 1, 2]).shape, (2, 2, 6)) def test_trace(self): x = KerasTensor((2, 3, 4, 5)) self.assertEqual(knp.trace(x).shape, (4, 5)) self.assertEqual(knp.trace(x, axis1=2, axis2=3).shape, (2, 3)) def test_tril(self): x = KerasTensor((2, 3, 4, 5)) self.assertEqual(knp.tril(x).shape, (2, 3, 4, 5)) self.assertEqual(knp.tril(x, k=1).shape, (2, 3, 4, 5)) self.assertEqual(knp.tril(x, k=-1).shape, (2, 3, 4, 5)) def test_triu(self): x = KerasTensor((2, 3, 4, 5)) self.assertEqual(knp.triu(x).shape, (2, 3, 4, 5)) self.assertEqual(knp.triu(x, k=1).shape, (2, 3, 4, 5)) self.assertEqual(knp.triu(x, k=-1).shape, (2, 3, 4, 5)) def test_vstack(self): x = KerasTensor((2, 3)) y = KerasTensor((2, 3)) self.assertEqual(knp.vstack([x, y]).shape, (4, 3)) class NumpyTwoInputOpsCorretnessTest(testing.TestCase, parameterized.TestCase): def test_add(self): x = np.array([[1, 2, 3], [3, 2, 1]]) y = np.array([[4, 5, 6], [3, 2, 1]]) z = np.array([[[1, 2, 3], [3, 2, 1]]]) self.assertAllClose(knp.add(x, y), np.add(x, y)) self.assertAllClose(knp.add(x, z), np.add(x, z)) self.assertAllClose(knp.Add()(x, y), np.add(x, y)) self.assertAllClose(knp.Add()(x, z), np.add(x, z)) def test_subtract(self): x = np.array([[1, 2, 3], [3, 2, 1]]) y = np.array([[4, 5, 6], [3, 2, 1]]) z = np.array([[[1, 2, 3], [3, 2, 1]]]) self.assertAllClose(knp.subtract(x, y), np.subtract(x, y)) self.assertAllClose(knp.subtract(x, z), np.subtract(x, z)) self.assertAllClose(knp.Subtract()(x, y), np.subtract(x, y)) self.assertAllClose(knp.Subtract()(x, z), np.subtract(x, z)) def test_multiply(self): x = np.array([[1, 2, 3], [3, 2, 1]]) y = np.array([[4, 5, 6], [3, 2, 1]]) z = np.array([[[1, 2, 3], [3, 2, 1]]]) self.assertAllClose(knp.multiply(x, y), np.multiply(x, y)) self.assertAllClose(knp.multiply(x, z), np.multiply(x, z)) self.assertAllClose(knp.Multiply()(x, y), np.multiply(x, y)) self.assertAllClose(knp.Multiply()(x, z), np.multiply(x, z)) def test_matmul(self): x = np.ones([2, 3, 4, 5]) y = np.ones([2, 3, 5, 6]) z = np.ones([5, 6]) p = np.ones([4]) self.assertAllClose(knp.matmul(x, y), np.matmul(x, y)) self.assertAllClose(knp.matmul(x, z), np.matmul(x, z)) self.assertAllClose(knp.matmul(p, x), np.matmul(p, x)) self.assertAllClose(knp.Matmul()(x, y), np.matmul(x, y)) self.assertAllClose(knp.Matmul()(x, z), np.matmul(x, z)) self.assertAllClose(knp.Matmul()(p, x), np.matmul(p, x)) @parameterized.named_parameters( named_product( ( { "testcase_name": "rank2", "x_shape": (5, 3), "y_shape": (3, 4), }, { "testcase_name": "rank3", "x_shape": (2, 5, 3), "y_shape": (2, 3, 4), }, { "testcase_name": "rank4", "x_shape": (2, 2, 5, 3), "y_shape": (2, 2, 3, 4), }, ), dtype=["float16", "float32", "float64", "int32"], x_sparse=[False, True], y_sparse=[False, True], ) ) @pytest.mark.skipif( not backend.SUPPORTS_SPARSE_TENSORS, reason="Backend does not support sparse tensors.", ) def test_matmul_sparse(self, dtype, x_shape, y_shape, x_sparse, y_sparse): if backend.backend() == "tensorflow": import tensorflow as tf if x_sparse and y_sparse and dtype in ("float16", "int32"): pytest.skip( f"Sparse sparse matmul unsupported for {dtype}" " with TensorFlow backend" ) dense_to_sparse = tf.sparse.from_dense sparse_class = tf.SparseTensor elif backend.backend() == "jax": import jax.experimental.sparse as jax_sparse dense_to_sparse = functools.partial( jax_sparse.BCOO.fromdense, n_batch=len(x_shape) - 2 ) sparse_class = jax_sparse.JAXSparse rng = np.random.default_rng(0) x = x_np = (4 * rng.standard_normal(x_shape)).astype(dtype) if x_sparse: x_np = np.multiply(x_np, rng.random(x_shape) < 0.7) x = dense_to_sparse(x_np) y = y_np = (4 * rng.standard_normal(y_shape)).astype(dtype) if y_sparse: y_np = np.multiply(y_np, rng.random(y_shape) < 0.7) y = dense_to_sparse(y_np) atol = 0.1 if dtype == "float16" else 1e-4 self.assertAllClose(knp.matmul(x, y), np.matmul(x_np, y_np), atol=atol) if x_sparse and y_sparse: self.assertIsInstance(knp.matmul(x, y), sparse_class) def test_power(self): x = np.array([[1, 2, 3], [3, 2, 1]]) y = np.array([[4, 5, 6], [3, 2, 1]]) z = np.array([[[1, 2, 3], [3, 2, 1]]]) self.assertAllClose(knp.power(x, y), np.power(x, y)) self.assertAllClose(knp.power(x, z), np.power(x, z)) self.assertAllClose(knp.Power()(x, y), np.power(x, y)) self.assertAllClose(knp.Power()(x, z), np.power(x, z)) def test_divide(self): x = np.array([[1, 2, 3], [3, 2, 1]]) y = np.array([[4, 5, 6], [3, 2, 1]]) z = np.array([[[1, 2, 3], [3, 2, 1]]]) self.assertAllClose(knp.divide(x, y), np.divide(x, y)) self.assertAllClose(knp.divide(x, z), np.divide(x, z)) self.assertAllClose(knp.Divide()(x, y), np.divide(x, y)) self.assertAllClose(knp.Divide()(x, z), np.divide(x, z)) def test_divide_no_nan(self): x = np.array( [[2, 1, 0], [np.inf, -np.inf, np.nan], [np.inf, -np.inf, np.nan]] ) y = np.array([[2, 0, 0], [0, 0, 0], [3, 2, 1]]) expected_result = np.array( [[1, 0, 0], [0, 0, 0], [np.inf, -np.inf, np.nan]] ) self.assertAllClose(knp.divide_no_nan(x, y), expected_result) self.assertAllClose(knp.DivideNoNan()(x, y), expected_result) def test_true_divide(self): x = np.array([[1, 2, 3], [3, 2, 1]]) y = np.array([[4, 5, 6], [3, 2, 1]]) z = np.array([[[1, 2, 3], [3, 2, 1]]]) self.assertAllClose(knp.true_divide(x, y), np.true_divide(x, y)) self.assertAllClose(knp.true_divide(x, z), np.true_divide(x, z)) self.assertAllClose(knp.TrueDivide()(x, y), np.true_divide(x, y)) self.assertAllClose(knp.TrueDivide()(x, z), np.true_divide(x, z)) def test_append(self): x = np.array([[1, 2, 3], [3, 2, 1]]) y = np.array([[4, 5, 6], [3, 2, 1]]) z = np.array([[[1, 2, 3], [3, 2, 1]], [[4, 5, 6], [3, 2, 1]]]) self.assertAllClose(knp.append(x, y), np.append(x, y)) self.assertAllClose(knp.append(x, y, axis=1), np.append(x, y, axis=1)) self.assertAllClose(knp.append(x, z), np.append(x, z)) self.assertAllClose(knp.Append()(x, y), np.append(x, y)) self.assertAllClose(knp.Append(axis=1)(x, y), np.append(x, y, axis=1)) self.assertAllClose(knp.Append()(x, z), np.append(x, z)) def test_arctan2(self): x = np.array([[1.0, 2.0, 3.0], [3.0, 2.0, 1.0]]) y = np.array([[4.0, 5.0, 6.0], [3.0, 2.0, 1.0]]) self.assertAllClose(knp.arctan2(x, y), np.arctan2(x, y)) self.assertAllClose(knp.Arctan2()(x, y), np.arctan2(x, y)) def test_cross(self): x1 = np.ones([2, 1, 4, 3]) x2 = np.ones([2, 1, 4, 2]) y1 = np.ones([2, 1, 4, 3]) y2 = np.ones([1, 5, 4, 3]) y3 = np.ones([1, 5, 4, 2]) self.assertAllClose(knp.cross(x1, y1), np.cross(x1, y1)) self.assertAllClose(knp.cross(x1, y2), np.cross(x1, y2)) if backend.backend() != "torch": # API divergence between `torch.cross` and `np.cross` # `torch.cross` only allows dim 3, `np.cross` allows dim 2 or 3 self.assertAllClose(knp.cross(x1, y3), np.cross(x1, y3)) self.assertAllClose(knp.cross(x2, y3), np.cross(x2, y3)) self.assertAllClose(knp.Cross()(x1, y1), np.cross(x1, y1)) self.assertAllClose(knp.Cross()(x1, y2), np.cross(x1, y2)) if backend.backend() != "torch": # API divergence between `torch.cross` and `np.cross` # `torch.cross` only allows dim 3, `np.cross` allows dim 2 or 3 self.assertAllClose(knp.Cross()(x1, y3), np.cross(x1, y3)) self.assertAllClose(knp.Cross()(x2, y3), np.cross(x2, y3)) def test_einsum(self): x = np.arange(24).reshape([2, 3, 4]).astype("float32") y = np.arange(24).reshape([2, 4, 3]).astype("float32") self.assertAllClose( knp.einsum("ijk,lkj->il", x, y), np.einsum("ijk,lkj->il", x, y), ) self.assertAllClose( knp.einsum("ijk,ikj->i", x, y), np.einsum("ijk,ikj->i", x, y), ) self.assertAllClose( knp.einsum("i...,j...k->...ijk", x, y), np.einsum("i..., j...k->...ijk", x, y), ) self.assertAllClose(knp.einsum(",ijk", 5, y), np.einsum(",ijk", 5, y)) self.assertAllClose( knp.Einsum("ijk,lkj->il")(x, y), np.einsum("ijk,lkj->il", x, y), ) self.assertAllClose( knp.Einsum("ijk,ikj->i")(x, y), np.einsum("ijk,ikj->i", x, y), ) self.assertAllClose( knp.Einsum("i...,j...k->...ijk")(x, y), np.einsum("i...,j...k->...ijk", x, y), ) self.assertAllClose(knp.Einsum(",ijk")(5, y), np.einsum(",ijk", 5, y)) def test_full_like(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.full_like(x, 2), np.full_like(x, 2)) self.assertAllClose( knp.full_like(x, 2, dtype="float32"), np.full_like(x, 2, dtype="float32"), ) self.assertAllClose( knp.full_like(x, np.ones([2, 3])), np.full_like(x, np.ones([2, 3])), ) self.assertAllClose(knp.FullLike()(x, 2), np.full_like(x, 2)) self.assertAllClose( knp.FullLike()(x, 2, dtype="float32"), np.full_like(x, 2, dtype="float32"), ) self.assertAllClose( knp.FullLike()(x, np.ones([2, 3])), np.full_like(x, np.ones([2, 3])), ) def test_greater(self): x = np.array([[1, 2, 3], [3, 2, 1]]) y = np.array([[4, 5, 6], [3, 2, 1]]) self.assertAllClose(knp.greater(x, y), np.greater(x, y)) self.assertAllClose(knp.greater(x, 2), np.greater(x, 2)) self.assertAllClose(knp.greater(2, x), np.greater(2, x)) self.assertAllClose(knp.Greater()(x, y), np.greater(x, y)) self.assertAllClose(knp.Greater()(x, 2), np.greater(x, 2)) self.assertAllClose(knp.Greater()(2, x), np.greater(2, x)) def test_greater_equal(self): x = np.array([[1, 2, 3], [3, 2, 1]]) y = np.array([[4, 5, 6], [3, 2, 1]]) self.assertAllClose( knp.greater_equal(x, y), np.greater_equal(x, y), ) self.assertAllClose( knp.greater_equal(x, 2), np.greater_equal(x, 2), ) self.assertAllClose( knp.greater_equal(2, x), np.greater_equal(2, x), ) self.assertAllClose( knp.GreaterEqual()(x, y), np.greater_equal(x, y), ) self.assertAllClose( knp.GreaterEqual()(x, 2), np.greater_equal(x, 2), ) self.assertAllClose( knp.GreaterEqual()(2, x), np.greater_equal(2, x), ) def test_isclose(self): x = np.array([[1, 2, 3], [3, 2, 1]]) y = np.array([[4, 5, 6], [3, 2, 1]]) self.assertAllClose(knp.isclose(x, y), np.isclose(x, y)) self.assertAllClose(knp.isclose(x, 2), np.isclose(x, 2)) self.assertAllClose(knp.isclose(2, x), np.isclose(2, x)) self.assertAllClose(knp.Isclose()(x, y), np.isclose(x, y)) self.assertAllClose(knp.Isclose()(x, 2), np.isclose(x, 2)) self.assertAllClose(knp.Isclose()(2, x), np.isclose(2, x)) def test_less(self): x = np.array([[1, 2, 3], [3, 2, 1]]) y = np.array([[4, 5, 6], [3, 2, 1]]) self.assertAllClose(knp.less(x, y), np.less(x, y)) self.assertAllClose(knp.less(x, 2), np.less(x, 2)) self.assertAllClose(knp.less(2, x), np.less(2, x)) self.assertAllClose(knp.Less()(x, y), np.less(x, y)) self.assertAllClose(knp.Less()(x, 2), np.less(x, 2)) self.assertAllClose(knp.Less()(2, x), np.less(2, x)) def test_less_equal(self): x = np.array([[1, 2, 3], [3, 2, 1]]) y = np.array([[4, 5, 6], [3, 2, 1]]) self.assertAllClose(knp.less_equal(x, y), np.less_equal(x, y)) self.assertAllClose(knp.less_equal(x, 2), np.less_equal(x, 2)) self.assertAllClose(knp.less_equal(2, x), np.less_equal(2, x)) self.assertAllClose(knp.LessEqual()(x, y), np.less_equal(x, y)) self.assertAllClose(knp.LessEqual()(x, 2), np.less_equal(x, 2)) self.assertAllClose(knp.LessEqual()(2, x), np.less_equal(2, x)) def test_linspace(self): self.assertAllClose(knp.linspace(0, 10, 5), np.linspace(0, 10, 5)) self.assertAllClose( knp.linspace(0, 10, 5, endpoint=False), np.linspace(0, 10, 5, endpoint=False), ) self.assertAllClose(knp.Linspace(num=5)(0, 10), np.linspace(0, 10, 5)) self.assertAllClose( knp.Linspace(num=5, endpoint=False)(0, 10), np.linspace(0, 10, 5, endpoint=False), ) start = np.zeros([2, 3, 4]) stop = np.ones([2, 3, 4]) self.assertAllClose( knp.linspace(start, stop, 5, retstep=True)[0], np.linspace(start, stop, 5, retstep=True)[0], ) self.assertAllClose( backend.convert_to_numpy( knp.linspace(start, stop, 5, endpoint=False, retstep=True)[0] ), np.linspace(start, stop, 5, endpoint=False, retstep=True)[0], ) self.assertAllClose( backend.convert_to_numpy( knp.linspace( start, stop, 5, endpoint=False, retstep=True, dtype="int32" )[0] ), np.linspace( start, stop, 5, endpoint=False, retstep=True, dtype="int32" )[0], ) self.assertAllClose( knp.Linspace(5, retstep=True)(start, stop)[0], np.linspace(start, stop, 5, retstep=True)[0], ) self.assertAllClose( backend.convert_to_numpy( knp.Linspace(5, endpoint=False, retstep=True)(start, stop)[0] ), np.linspace(start, stop, 5, endpoint=False, retstep=True)[0], ) self.assertAllClose( backend.convert_to_numpy( knp.Linspace(5, endpoint=False, retstep=True, dtype="int32")( start, stop )[0] ), np.linspace( start, stop, 5, endpoint=False, retstep=True, dtype="int32" )[0], ) def test_logical_and(self): x = np.array([[True, False], [True, True]]) y = np.array([[False, False], [True, False]]) self.assertAllClose(knp.logical_and(x, y), np.logical_and(x, y)) self.assertAllClose(knp.logical_and(x, True), np.logical_and(x, True)) self.assertAllClose(knp.logical_and(True, x), np.logical_and(True, x)) self.assertAllClose(knp.LogicalAnd()(x, y), np.logical_and(x, y)) self.assertAllClose(knp.LogicalAnd()(x, True), np.logical_and(x, True)) self.assertAllClose(knp.LogicalAnd()(True, x), np.logical_and(True, x)) def test_logical_or(self): x = np.array([[True, False], [True, True]]) y = np.array([[False, False], [True, False]]) self.assertAllClose(knp.logical_or(x, y), np.logical_or(x, y)) self.assertAllClose(knp.logical_or(x, True), np.logical_or(x, True)) self.assertAllClose(knp.logical_or(True, x), np.logical_or(True, x)) self.assertAllClose(knp.LogicalOr()(x, y), np.logical_or(x, y)) self.assertAllClose(knp.LogicalOr()(x, True), np.logical_or(x, True)) self.assertAllClose(knp.LogicalOr()(True, x), np.logical_or(True, x)) def test_logspace(self): self.assertAllClose(knp.logspace(0, 10, 5), np.logspace(0, 10, 5)) self.assertAllClose( knp.logspace(0, 10, 5, endpoint=False), np.logspace(0, 10, 5, endpoint=False), ) self.assertAllClose(knp.Logspace(num=5)(0, 10), np.logspace(0, 10, 5)) self.assertAllClose( knp.Logspace(num=5, endpoint=False)(0, 10), np.logspace(0, 10, 5, endpoint=False), ) start = np.zeros([2, 3, 4]) stop = np.ones([2, 3, 4]) self.assertAllClose( knp.logspace(start, stop, 5, base=10), np.logspace(start, stop, 5, base=10), ) self.assertAllClose( knp.logspace(start, stop, 5, endpoint=False, base=10), np.logspace(start, stop, 5, endpoint=False, base=10), ) self.assertAllClose( knp.Logspace(5, base=10)(start, stop), np.logspace(start, stop, 5, base=10), ) self.assertAllClose( knp.Logspace(5, endpoint=False, base=10)(start, stop), np.logspace(start, stop, 5, endpoint=False, base=10), ) def test_maximum(self): x = np.array([[1, 2], [3, 4]]) y = np.array([[5, 6], [7, 8]]) self.assertAllClose(knp.maximum(x, y), np.maximum(x, y)) self.assertAllClose(knp.maximum(x, 1), np.maximum(x, 1)) self.assertAllClose(knp.maximum(1, x), np.maximum(1, x)) self.assertAllClose(knp.Maximum()(x, y), np.maximum(x, y)) self.assertAllClose(knp.Maximum()(x, 1), np.maximum(x, 1)) self.assertAllClose(knp.Maximum()(1, x), np.maximum(1, x)) def test_minimum(self): x = np.array([[1, 2], [3, 4]]) y = np.array([[5, 6], [7, 8]]) self.assertAllClose(knp.minimum(x, y), np.minimum(x, y)) self.assertAllClose(knp.minimum(x, 1), np.minimum(x, 1)) self.assertAllClose(knp.minimum(1, x), np.minimum(1, x)) self.assertAllClose(knp.Minimum()(x, y), np.minimum(x, y)) self.assertAllClose(knp.Minimum()(x, 1), np.minimum(x, 1)) self.assertAllClose(knp.Minimum()(1, x), np.minimum(1, x)) def test_mod(self): x = np.array([[1, 2], [3, 4]]) y = np.array([[5, 6], [7, 8]]) self.assertAllClose(knp.mod(x, y), np.mod(x, y)) self.assertAllClose(knp.mod(x, 1), np.mod(x, 1)) self.assertAllClose(knp.mod(1, x), np.mod(1, x)) self.assertAllClose(knp.Mod()(x, y), np.mod(x, y)) self.assertAllClose(knp.Mod()(x, 1), np.mod(x, 1)) self.assertAllClose(knp.Mod()(1, x), np.mod(1, x)) def test_not_equal(self): x = np.array([[1, 2], [3, 4]]) y = np.array([[5, 6], [7, 8]]) self.assertAllClose(knp.not_equal(x, y), np.not_equal(x, y)) self.assertAllClose(knp.not_equal(x, 1), np.not_equal(x, 1)) self.assertAllClose(knp.not_equal(1, x), np.not_equal(1, x)) self.assertAllClose(knp.NotEqual()(x, y), np.not_equal(x, y)) self.assertAllClose(knp.NotEqual()(x, 1), np.not_equal(x, 1)) self.assertAllClose(knp.NotEqual()(1, x), np.not_equal(1, x)) def test_outer(self): x = np.array([1, 2, 3]) y = np.array([4, 5, 6]) self.assertAllClose(knp.outer(x, y), np.outer(x, y)) self.assertAllClose(knp.Outer()(x, y), np.outer(x, y)) x = np.ones([2, 3, 4]) y = np.ones([2, 3, 4, 5, 6]) self.assertAllClose(knp.outer(x, y), np.outer(x, y)) self.assertAllClose(knp.Outer()(x, y), np.outer(x, y)) def test_quantile(self): x = np.arange(24).reshape([2, 3, 4]).astype("float32") # q as scalar q = np.array(0.5, dtype="float32") self.assertAllClose(knp.quantile(x, q), np.quantile(x, q)) self.assertAllClose( knp.quantile(x, q, keepdims=True), np.quantile(x, q, keepdims=True) ) # q as 1D tensor q = np.array([0.5, 1.0], dtype="float32") self.assertAllClose(knp.quantile(x, q), np.quantile(x, q)) self.assertAllClose( knp.quantile(x, q, keepdims=True), np.quantile(x, q, keepdims=True) ) self.assertAllClose( knp.quantile(x, q, axis=1), np.quantile(x, q, axis=1) ) self.assertAllClose( knp.quantile(x, q, axis=1, keepdims=True), np.quantile(x, q, axis=1, keepdims=True), ) # multiple axes self.assertAllClose( knp.quantile(x, q, axis=(1, 2)), np.quantile(x, q, axis=(1, 2)) ) # test all supported methods q = np.array([0.501, 1.0], dtype="float32") for method in ["linear", "lower", "higher", "midpoint", "nearest"]: self.assertAllClose( knp.quantile(x, q, method=method), np.quantile(x, q, method=method), ) self.assertAllClose( knp.quantile(x, q, axis=1, method=method), np.quantile(x, q, axis=1, method=method), ) def test_take(self): x = np.arange(24).reshape([1, 2, 3, 4]) indices = np.array([0, 1]) self.assertAllClose(knp.take(x, indices), np.take(x, indices)) self.assertAllClose(knp.take(x, 0), np.take(x, 0)) self.assertAllClose(knp.take(x, 0, axis=1), np.take(x, 0, axis=1)) self.assertAllClose(knp.Take()(x, indices), np.take(x, indices)) self.assertAllClose(knp.Take()(x, 0), np.take(x, 0)) self.assertAllClose(knp.Take(axis=1)(x, 0), np.take(x, 0, axis=1)) # test with multi-dimensional indices rng = np.random.default_rng(0) x = rng.standard_normal((2, 3, 4, 5)) indices = rng.integers(0, 4, (6, 7)) self.assertAllClose( knp.take(x, indices, axis=2), np.take(x, indices, axis=2), ) # test with negative axis self.assertAllClose( knp.take(x, indices, axis=-2), np.take(x, indices, axis=-2), ) # test with axis=None & x.ndim=2 x = np.array(([1, 2], [3, 4])) indices = np.array([2, 3]) self.assertAllClose( knp.take(x, indices, axis=None), np.take(x, indices, axis=None) ) @parameterized.named_parameters( named_product( [ {"testcase_name": "axis_none", "axis": None}, {"testcase_name": "axis_0", "axis": 0}, {"testcase_name": "axis_1", "axis": 1}, {"testcase_name": "axis_minus1", "axis": -1}, ], dtype=[ "float16", "float32", "float64", "uint8", "int8", "int16", "int32", ], ) ) @pytest.mark.skipif( not backend.SUPPORTS_SPARSE_TENSORS, reason="Backend does not support sparse tensors.", ) def test_take_sparse(self, dtype, axis): rng = np.random.default_rng(0) x = (4 * rng.standard_normal((3, 4, 5))).astype(dtype) if backend.backend() == "tensorflow": import tensorflow as tf indices = tf.SparseTensor([[0, 0], [1, 2]], [1, 2], (2, 3)) elif backend.backend() == "jax": import jax.experimental.sparse as jax_sparse indices = jax_sparse.BCOO(([1, 2], [[0, 0], [1, 2]]), shape=(2, 3)) self.assertAllClose( knp.take(x, indices, axis=axis), np.take(x, backend.convert_to_numpy(indices), axis=axis), ) def test_take_along_axis(self): x = np.arange(24).reshape([1, 2, 3, 4]) indices = np.ones([1, 4, 1, 1], dtype=np.int32) self.assertAllClose( knp.take_along_axis(x, indices, axis=1), np.take_along_axis(x, indices, axis=1), ) self.assertAllClose( knp.TakeAlongAxis(axis=1)(x, indices), np.take_along_axis(x, indices, axis=1), ) x = np.arange(12).reshape([1, 1, 3, 4]) indices = np.ones([1, 4, 1, 1], dtype=np.int32) self.assertAllClose( knp.take_along_axis(x, indices, axis=2), np.take_along_axis(x, indices, axis=2), ) self.assertAllClose( knp.TakeAlongAxis(axis=2)(x, indices), np.take_along_axis(x, indices, axis=2), ) def test_tensordot(self): x = np.arange(24).reshape([1, 2, 3, 4]).astype("float32") y = np.arange(24).reshape([3, 4, 1, 2]).astype("float32") self.assertAllClose( knp.tensordot(x, y, axes=2), np.tensordot(x, y, axes=2) ) self.assertAllClose( knp.tensordot(x, y, axes=([0, 1], [2, 3])), np.tensordot(x, y, axes=([0, 1], [2, 3])), ) self.assertAllClose( knp.Tensordot(axes=2)(x, y), np.tensordot(x, y, axes=2), ) self.assertAllClose( knp.Tensordot(axes=([0, 1], [2, 3]))(x, y), np.tensordot(x, y, axes=([0, 1], [2, 3])), ) self.assertAllClose( knp.Tensordot(axes=[0, 2])(x, y), np.tensordot(x, y, axes=[0, 2]), ) def test_vdot(self): x = np.array([1.0, 2.0, 3.0]) y = np.array([4.0, 5.0, 6.0]) self.assertAllClose(knp.vdot(x, y), np.vdot(x, y)) self.assertAllClose(knp.Vdot()(x, y), np.vdot(x, y)) def test_where(self): x = np.array([1, 2, 3]) y = np.array([4, 5, 6]) self.assertAllClose(knp.where(x > 1, x, y), np.where(x > 1, x, y)) self.assertAllClose(knp.Where()(x > 1, x, y), np.where(x > 1, x, y)) self.assertAllClose(knp.where(x > 1), np.where(x > 1)) self.assertAllClose(knp.Where()(x > 1), np.where(x > 1)) with self.assertRaisesRegexp( ValueError, "`x1` and `x2` either both should be `None`" ): knp.where(x > 1, x, None) def test_digitize(self): x = np.array([0.0, 1.0, 3.0, 1.6]) bins = np.array([0.0, 3.0, 4.5, 7.0]) self.assertAllClose(knp.digitize(x, bins), np.digitize(x, bins)) self.assertAllClose(knp.Digitize()(x, bins), np.digitize(x, bins)) self.assertTrue( standardize_dtype(knp.digitize(x, bins).dtype) == "int32" ) self.assertTrue( standardize_dtype(knp.Digitize()(x, bins).dtype) == "int32" ) x = np.array([0.2, 6.4, 3.0, 1.6]) bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0]) self.assertAllClose(knp.digitize(x, bins), np.digitize(x, bins)) self.assertAllClose(knp.Digitize()(x, bins), np.digitize(x, bins)) self.assertTrue( standardize_dtype(knp.digitize(x, bins).dtype) == "int32" ) self.assertTrue( standardize_dtype(knp.Digitize()(x, bins).dtype) == "int32" ) x = np.array([1, 4, 10, 15]) bins = np.array([4, 10, 14, 15]) self.assertAllClose(knp.digitize(x, bins), np.digitize(x, bins)) self.assertAllClose(knp.Digitize()(x, bins), np.digitize(x, bins)) self.assertTrue( standardize_dtype(knp.digitize(x, bins).dtype) == "int32" ) self.assertTrue( standardize_dtype(knp.Digitize()(x, bins).dtype) == "int32" ) class NumpyOneInputOpsCorrectnessTest(testing.TestCase, parameterized.TestCase): def test_mean(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.mean(x), np.mean(x)) self.assertAllClose(knp.mean(x, axis=()), np.mean(x, axis=())) self.assertAllClose(knp.mean(x, axis=1), np.mean(x, axis=1)) self.assertAllClose(knp.mean(x, axis=(1,)), np.mean(x, axis=(1,))) self.assertAllClose( knp.mean(x, axis=1, keepdims=True), np.mean(x, axis=1, keepdims=True), ) self.assertAllClose(knp.Mean()(x), np.mean(x)) self.assertAllClose(knp.Mean(axis=1)(x), np.mean(x, axis=1)) self.assertAllClose( knp.Mean(axis=1, keepdims=True)(x), np.mean(x, axis=1, keepdims=True), ) # test overflow x = np.array([65504, 65504, 65504], dtype="float16") self.assertAllClose(knp.mean(x), np.mean(x)) def test_all(self): x = np.array([[True, False, True], [True, True, True]]) self.assertAllClose(knp.all(x), np.all(x)) self.assertAllClose(knp.all(x, axis=()), np.all(x, axis=())) self.assertAllClose(knp.all(x, axis=1), np.all(x, axis=1)) self.assertAllClose(knp.all(x, axis=(1,)), np.all(x, axis=(1,))) self.assertAllClose( knp.all(x, axis=1, keepdims=True), np.all(x, axis=1, keepdims=True), ) self.assertAllClose(knp.All()(x), np.all(x)) self.assertAllClose(knp.All(axis=1)(x), np.all(x, axis=1)) self.assertAllClose( knp.All(axis=1, keepdims=True)(x), np.all(x, axis=1, keepdims=True), ) def test_any(self): x = np.array([[True, False, True], [True, True, True]]) self.assertAllClose(knp.any(x), np.any(x)) self.assertAllClose(knp.any(x, axis=()), np.any(x, axis=())) self.assertAllClose(knp.any(x, axis=1), np.any(x, axis=1)) self.assertAllClose(knp.any(x, axis=(1,)), np.any(x, axis=(1,))) self.assertAllClose( knp.any(x, axis=1, keepdims=True), np.any(x, axis=1, keepdims=True), ) self.assertAllClose(knp.Any()(x), np.any(x)) self.assertAllClose(knp.Any(axis=1)(x), np.any(x, axis=1)) self.assertAllClose( knp.Any(axis=1, keepdims=True)(x), np.any(x, axis=1, keepdims=True), ) def test_var(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.var(x), np.var(x)) self.assertAllClose(knp.var(x, axis=()), np.var(x, axis=())) self.assertAllClose(knp.var(x, axis=1), np.var(x, axis=1)) self.assertAllClose(knp.var(x, axis=(1,)), np.var(x, axis=(1,))) self.assertAllClose( knp.var(x, axis=1, keepdims=True), np.var(x, axis=1, keepdims=True), ) self.assertAllClose(knp.Var()(x), np.var(x)) self.assertAllClose(knp.Var(axis=1)(x), np.var(x, axis=1)) self.assertAllClose( knp.Var(axis=1, keepdims=True)(x), np.var(x, axis=1, keepdims=True), ) def test_sum(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.sum(x), np.sum(x)) self.assertAllClose(knp.sum(x, axis=()), np.sum(x, axis=())) self.assertAllClose(knp.sum(x, axis=1), np.sum(x, axis=1)) self.assertAllClose(knp.sum(x, axis=(1,)), np.sum(x, axis=(1,))) self.assertAllClose( knp.sum(x, axis=1, keepdims=True), np.sum(x, axis=1, keepdims=True), ) self.assertAllClose(knp.Sum()(x), np.sum(x)) self.assertAllClose(knp.Sum(axis=1)(x), np.sum(x, axis=1)) self.assertAllClose( knp.Sum(axis=1, keepdims=True)(x), np.sum(x, axis=1, keepdims=True), ) def test_amax(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.amax(x), np.amax(x)) self.assertAllClose(knp.amax(x, axis=()), np.amax(x, axis=())) self.assertAllClose(knp.amax(x, axis=1), np.amax(x, axis=1)) self.assertAllClose(knp.amax(x, axis=(1,)), np.amax(x, axis=(1,))) self.assertAllClose( knp.amax(x, axis=1, keepdims=True), np.amax(x, axis=1, keepdims=True), ) self.assertAllClose(knp.Amax()(x), np.amax(x)) self.assertAllClose(knp.Amax(axis=1)(x), np.amax(x, axis=1)) self.assertAllClose( knp.Amax(axis=1, keepdims=True)(x), np.amax(x, axis=1, keepdims=True), ) def test_amin(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.amin(x), np.amin(x)) self.assertAllClose(knp.amin(x, axis=()), np.amin(x, axis=())) self.assertAllClose(knp.amin(x, axis=1), np.amin(x, axis=1)) self.assertAllClose(knp.amin(x, axis=(1,)), np.amin(x, axis=(1,))) self.assertAllClose( knp.amin(x, axis=1, keepdims=True), np.amin(x, axis=1, keepdims=True), ) self.assertAllClose(knp.Amin()(x), np.amin(x)) self.assertAllClose(knp.Amin(axis=1)(x), np.amin(x, axis=1)) self.assertAllClose( knp.Amin(axis=1, keepdims=True)(x), np.amin(x, axis=1, keepdims=True), ) def test_square(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.square(x), np.square(x)) self.assertAllClose(knp.Square()(x), np.square(x)) def test_negative(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.negative(x), np.negative(x)) self.assertAllClose(knp.Negative()(x), np.negative(x)) def test_abs(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.abs(x), np.abs(x)) self.assertAllClose(knp.Abs()(x), np.abs(x)) def test_absolute(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.absolute(x), np.absolute(x)) self.assertAllClose(knp.Absolute()(x), np.absolute(x)) def test_squeeze(self): x = np.ones([1, 3, 1, 5]) self.assertAllClose(knp.squeeze(x), np.squeeze(x)) self.assertAllClose(knp.squeeze(x, axis=0), np.squeeze(x, axis=0)) self.assertAllClose(knp.Squeeze()(x), np.squeeze(x)) self.assertAllClose(knp.Squeeze(axis=0)(x), np.squeeze(x, axis=0)) def test_transpose(self): x = np.ones([1, 2, 3, 4, 5]) self.assertAllClose(knp.transpose(x), np.transpose(x)) self.assertAllClose( knp.transpose(x, axes=(1, 0, 3, 2, 4)), np.transpose(x, axes=(1, 0, 3, 2, 4)), ) self.assertAllClose(knp.Transpose()(x), np.transpose(x)) self.assertAllClose( knp.Transpose(axes=(1, 0, 3, 2, 4))(x), np.transpose(x, axes=(1, 0, 3, 2, 4)), ) def test_arccos(self): x = np.array([[1, 0.5, -0.7], [0.9, 0.2, -1]]) self.assertAllClose(knp.arccos(x), np.arccos(x)) self.assertAllClose(knp.Arccos()(x), np.arccos(x)) def test_arccosh(self): x = np.array([[1, 0.5, -0.7], [0.9, 0.2, -1]]) self.assertAllClose(knp.arccosh(x), np.arccosh(x)) self.assertAllClose(knp.Arccosh()(x), np.arccosh(x)) def test_arcsin(self): x = np.array([[1, 0.5, -0.7], [0.9, 0.2, -1]]) self.assertAllClose(knp.arcsin(x), np.arcsin(x)) self.assertAllClose(knp.Arcsin()(x), np.arcsin(x)) def test_arcsinh(self): x = np.array([[1, 0.5, -0.7], [0.9, 0.2, -1]]) self.assertAllClose(knp.arcsinh(x), np.arcsinh(x)) self.assertAllClose(knp.Arcsinh()(x), np.arcsinh(x)) def test_arctan(self): x = np.array([[1, 0.5, -0.7], [0.9, 0.2, -1]]) self.assertAllClose(knp.arctan(x), np.arctan(x)) self.assertAllClose(knp.Arctan()(x), np.arctan(x)) def test_arctanh(self): x = np.array([[1, 0.5, -0.7], [0.9, 0.2, -1]]) self.assertAllClose(knp.arctanh(x), np.arctanh(x)) self.assertAllClose(knp.Arctanh()(x), np.arctanh(x)) def test_argmax(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.argmax(x), np.argmax(x)) self.assertAllClose(knp.argmax(x, axis=1), np.argmax(x, axis=1)) self.assertAllClose(knp.Argmax()(x), np.argmax(x)) self.assertAllClose(knp.Argmax(axis=1)(x), np.argmax(x, axis=1)) def test_argmin(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.argmin(x), np.argmin(x)) self.assertAllClose(knp.argmin(x, axis=1), np.argmin(x, axis=1)) self.assertAllClose(knp.Argmin()(x), np.argmin(x)) self.assertAllClose(knp.Argmin(axis=1)(x), np.argmin(x, axis=1)) def test_argsort(self): x = np.array([[1, 2, 3], [4, 5, 6]]) self.assertAllClose(knp.argsort(x), np.argsort(x)) self.assertAllClose(knp.argsort(x, axis=1), np.argsort(x, axis=1)) self.assertAllClose(knp.argsort(x, axis=None), np.argsort(x, axis=None)) self.assertAllClose(knp.Argsort()(x), np.argsort(x)) self.assertAllClose(knp.Argsort(axis=1)(x), np.argsort(x, axis=1)) self.assertAllClose(knp.Argsort(axis=None)(x), np.argsort(x, axis=None)) x = np.array(1) # rank == 0 self.assertAllClose(knp.argsort(x), np.argsort(x)) self.assertAllClose(knp.Argsort()(x), np.argsort(x)) def test_array(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.array(x), np.array(x)) self.assertAllClose(knp.Array()(x), np.array(x)) self.assertTrue(backend.is_tensor(knp.array(x))) self.assertTrue(backend.is_tensor(knp.Array()(x))) # Check dtype convertion. x = [[1, 0, 1], [1, 1, 0]] output = knp.array(x, dtype="int32") self.assertEqual(standardize_dtype(output.dtype), "int32") x = [[1, 0, 1], [1, 1, 0]] output = knp.array(x, dtype="float32") self.assertEqual(standardize_dtype(output.dtype), "float32") x = [[1, 0, 1], [1, 1, 0]] output = knp.array(x, dtype="bool") self.assertEqual(standardize_dtype(output.dtype), "bool") def test_average(self): x = np.array([[1, 2, 3], [3, 2, 1]]) weights = np.ones([2, 3]) weights_1d = np.ones([3]) self.assertAllClose(knp.average(x), np.average(x)) self.assertAllClose(knp.average(x, axis=()), np.average(x, axis=())) self.assertAllClose(knp.average(x, axis=1), np.average(x, axis=1)) self.assertAllClose(knp.average(x, axis=(1,)), np.average(x, axis=(1,))) self.assertAllClose( knp.average(x, axis=1, weights=weights), np.average(x, axis=1, weights=weights), ) self.assertAllClose( knp.average(x, axis=1, weights=weights_1d), np.average(x, axis=1, weights=weights_1d), ) self.assertAllClose(knp.Average()(x), np.average(x)) self.assertAllClose(knp.Average(axis=1)(x), np.average(x, axis=1)) self.assertAllClose( knp.Average(axis=1)(x, weights=weights), np.average(x, axis=1, weights=weights), ) self.assertAllClose( knp.Average(axis=1)(x, weights=weights_1d), np.average(x, axis=1, weights=weights_1d), ) def test_bincount(self): if backend.backend() == "tensorflow": import tensorflow as tf if tf.test.is_gpu_available(): self.skipTest("bincount does not work in tensorflow gpu") x = np.array([1, 1, 2, 3, 2, 4, 4, 5]) weights = np.array([0, 0, 3, 2, 1, 1, 4, 2]) minlength = 3 self.assertAllClose( knp.bincount(x, weights=weights, minlength=minlength), np.bincount(x, weights=weights, minlength=minlength), ) self.assertAllClose( knp.Bincount(weights=weights, minlength=minlength)(x), np.bincount(x, weights=weights, minlength=minlength), ) x = np.array([[1, 1, 2, 3, 2, 4, 4, 5]]) weights = np.array([[0, 0, 3, 2, 1, 1, 4, 2]]) expected_output = np.array([[0, 0, 4, 2, 5, 2]]) self.assertAllClose( knp.bincount(x, weights=weights, minlength=minlength), expected_output, ) self.assertAllClose( knp.Bincount(weights=weights, minlength=minlength)(x), expected_output, ) # test with weights=None expected_output = np.array([[0, 2, 2, 1, 2, 1]]) self.assertAllClose( knp.Bincount(weights=None, minlength=minlength)(x), expected_output, ) def test_broadcast_to(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose( knp.broadcast_to(x, [2, 2, 3]), np.broadcast_to(x, [2, 2, 3]), ) self.assertAllClose( knp.BroadcastTo([2, 2, 3])(x), np.broadcast_to(x, [2, 2, 3]), ) def test_ceil(self): x = np.array([[1.2, 2.1, -2.5], [2.4, -11.9, -5.5]]) self.assertAllClose(knp.ceil(x), np.ceil(x)) self.assertAllClose(knp.Ceil()(x), np.ceil(x)) def test_clip(self): x = np.array([[1.2, 2.1, -2.5], [2.4, -11.9, -5.5]]) self.assertAllClose(knp.clip(x, -2, 2), np.clip(x, -2, 2)) self.assertAllClose(knp.clip(x, -2, 2), np.clip(x, -2, 2)) self.assertAllClose(knp.Clip(0, 1)(x), np.clip(x, 0, 1)) self.assertAllClose(knp.Clip(0, 1)(x), np.clip(x, 0, 1)) def test_concatenate(self): x = np.array([[1, 2, 3], [3, 2, 1]]) y = np.array([[4, 5, 6], [6, 5, 4]]) z = np.array([[7, 8, 9], [9, 8, 7]]) self.assertAllClose( knp.concatenate([x, y], axis=0), np.concatenate([x, y], axis=0), ) self.assertAllClose( knp.concatenate([x, y, z], axis=0), np.concatenate([x, y, z], axis=0), ) self.assertAllClose( knp.concatenate([x, y], axis=1), np.concatenate([x, y], axis=1), ) self.assertAllClose( knp.Concatenate(axis=0)([x, y]), np.concatenate([x, y], axis=0), ) self.assertAllClose( knp.Concatenate(axis=0)([x, y, z]), np.concatenate([x, y, z], axis=0), ) self.assertAllClose( knp.Concatenate(axis=1)([x, y]), np.concatenate([x, y], axis=1), ) @parameterized.named_parameters( [ {"testcase_name": "axis_0", "axis": 0}, {"testcase_name": "axis_1", "axis": 1}, ] ) @pytest.mark.skipif( not backend.SUPPORTS_SPARSE_TENSORS, reason="Backend does not support sparse tensors.", ) def test_concatenate_sparse(self, axis): if backend.backend() == "tensorflow": import tensorflow as tf x = tf.SparseTensor([[0, 0], [1, 2]], [1.0, 2.0], (2, 3)) y = tf.SparseTensor([[0, 0], [1, 1]], [4.0, 5.0], (2, 3)) sparse_class = tf.SparseTensor elif backend.backend() == "jax": import jax.experimental.sparse as jax_sparse x = jax_sparse.BCOO(([1.0, 2.0], [[0, 0], [1, 2]]), shape=(2, 3)) y = jax_sparse.BCOO(([4.0, 5.0], [[0, 0], [1, 1]]), shape=(2, 3)) sparse_class = jax_sparse.JAXSparse x_np = backend.convert_to_numpy(x) y_np = backend.convert_to_numpy(y) z = np.random.rand(2, 3).astype("float32") self.assertAllClose( knp.concatenate([x, z], axis=axis), np.concatenate([x_np, z], axis=axis), ) self.assertAllClose( knp.concatenate([z, x], axis=axis), np.concatenate([z, x_np], axis=axis), ) self.assertAllClose( knp.concatenate([x, y], axis=axis), np.concatenate([x_np, y_np], axis=axis), ) self.assertAllClose( knp.Concatenate(axis=axis)([x, z]), np.concatenate([x_np, z], axis=axis), ) self.assertAllClose( knp.Concatenate(axis=axis)([z, x]), np.concatenate([z, x_np], axis=axis), ) self.assertAllClose( knp.Concatenate(axis=axis)([x, y]), np.concatenate([x_np, y_np], axis=axis), ) self.assertIsInstance(knp.concatenate([x, y], axis=axis), sparse_class) self.assertIsInstance(knp.Concatenate(axis=axis)([x, y]), sparse_class) def test_conjugate(self): x = np.array([[1 + 2j, 2 + 3j], [3 + 4j, 4 + 5j]]) self.assertAllClose(knp.conjugate(x), np.conjugate(x)) self.assertAllClose(knp.Conjugate()(x), np.conjugate(x)) def test_conj(self): x = np.array([[1 + 2j, 2 + 3j], [3 + 4j, 4 + 5j]]) self.assertAllClose(knp.conj(x), np.conj(x)) self.assertAllClose(knp.Conj()(x), np.conj(x)) def test_copy(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.copy(x), np.copy(x)) self.assertAllClose(knp.Copy()(x), np.copy(x)) def test_cos(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.cos(x), np.cos(x)) self.assertAllClose(knp.Cos()(x), np.cos(x)) def test_cosh(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.cosh(x), np.cosh(x)) self.assertAllClose(knp.Cosh()(x), np.cosh(x)) def test_count_nonzero(self): x = np.array([[0, 2, 3], [3, 2, 0]]) self.assertAllClose(knp.count_nonzero(x), np.count_nonzero(x)) self.assertAllClose( knp.count_nonzero(x, axis=()), np.count_nonzero(x, axis=()) ) self.assertAllClose( knp.count_nonzero(x, axis=1), np.count_nonzero(x, axis=1), ) self.assertAllClose( knp.count_nonzero(x, axis=(1,)), np.count_nonzero(x, axis=(1,)), ) self.assertAllClose( knp.CountNonzero()(x), np.count_nonzero(x), ) self.assertAllClose( knp.CountNonzero(axis=1)(x), np.count_nonzero(x, axis=1), ) @parameterized.product( axis=[None, 0, 1, -1], dtype=[None, "int32", "float32"], ) def test_cumprod(self, axis, dtype): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose( knp.cumprod(x, axis=axis, dtype=dtype), np.cumprod(x, axis=axis, dtype=dtype or x.dtype), ) self.assertAllClose( knp.Cumprod(axis=axis, dtype=dtype)(x), np.cumprod(x, axis=axis, dtype=dtype or x.dtype), ) @parameterized.product( axis=[None, 0, 1, -1], dtype=[None, "int32", "float32"], ) def test_cumsum(self, axis, dtype): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose( knp.cumsum(x, axis=axis, dtype=dtype), np.cumsum(x, axis=axis, dtype=dtype or x.dtype), ) self.assertAllClose( knp.Cumsum(axis=axis, dtype=dtype)(x), np.cumsum(x, axis=axis, dtype=dtype or x.dtype), ) def test_diag(self): x = np.array([1, 2, 3]) self.assertAllClose(knp.diag(x), np.diag(x)) self.assertAllClose(knp.diag(x, k=1), np.diag(x, k=1)) self.assertAllClose(knp.diag(x, k=-1), np.diag(x, k=-1)) self.assertAllClose(knp.Diag()(x), np.diag(x)) self.assertAllClose(knp.Diag(k=1)(x), np.diag(x, k=1)) self.assertAllClose(knp.Diag(k=-1)(x), np.diag(x, k=-1)) x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.diag(x), np.diag(x)) self.assertAllClose(knp.diag(x, k=1), np.diag(x, k=1)) self.assertAllClose(knp.diag(x, k=-1), np.diag(x, k=-1)) self.assertAllClose(knp.Diag()(x), np.diag(x)) self.assertAllClose(knp.Diag(k=1)(x), np.diag(x, k=1)) self.assertAllClose(knp.Diag(k=-1)(x), np.diag(x, k=-1)) def test_diagonal(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.diagonal(x), np.diagonal(x)) self.assertAllClose( knp.diagonal(x, offset=1), np.diagonal(x, offset=1), ) self.assertAllClose( knp.diagonal(x, offset=-1), np.diagonal(x, offset=-1) ) self.assertAllClose(knp.Diagonal()(x), np.diagonal(x)) self.assertAllClose(knp.Diagonal(offset=1)(x), np.diagonal(x, offset=1)) self.assertAllClose( knp.Diagonal(offset=-1)(x), np.diagonal(x, offset=-1) ) x = np.ones([2, 3, 4, 5]) self.assertAllClose(knp.diagonal(x), np.diagonal(x)) self.assertAllClose( knp.diagonal(x, offset=1, axis1=2, axis2=3), np.diagonal(x, offset=1, axis1=2, axis2=3), ) self.assertAllClose( knp.diagonal(x, offset=-1, axis1=2, axis2=3), np.diagonal(x, offset=-1, axis1=2, axis2=3), ) def test_diff(self): x = np.array([1, 2, 4, 7, 0]) self.assertAllClose(knp.diff(x), np.diff(x)) self.assertAllClose(knp.diff(x, n=2), np.diff(x, n=2)) self.assertAllClose(knp.diff(x, n=3), np.diff(x, n=3)) x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]]) self.assertAllClose(knp.diff(x), np.diff(x)) self.assertAllClose(knp.diff(x, axis=0), np.diff(x, axis=0)) self.assertAllClose(knp.diff(x, n=2, axis=0), np.diff(x, n=2, axis=0)) self.assertAllClose(knp.diff(x, n=2, axis=1), np.diff(x, n=2, axis=1)) def test_dot(self): x = np.arange(24).reshape([2, 3, 4]).astype("float32") y = np.arange(12).reshape([4, 3]).astype("float32") z = np.arange(4).astype("float32") self.assertAllClose(knp.dot(x, y), np.dot(x, y)) self.assertAllClose(knp.dot(x, z), np.dot(x, z)) self.assertAllClose(knp.dot(x, 2), np.dot(x, 2)) self.assertAllClose(knp.Dot()(x, y), np.dot(x, y)) self.assertAllClose(knp.Dot()(x, z), np.dot(x, z)) self.assertAllClose(knp.Dot()(x, 2), np.dot(x, 2)) def test_exp(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.exp(x), np.exp(x)) self.assertAllClose(knp.Exp()(x), np.exp(x)) def test_expand_dims(self): x = np.ones([2, 3, 4]) self.assertAllClose(knp.expand_dims(x, 0), np.expand_dims(x, 0)) self.assertAllClose(knp.expand_dims(x, 1), np.expand_dims(x, 1)) self.assertAllClose(knp.expand_dims(x, -2), np.expand_dims(x, -2)) self.assertAllClose(knp.ExpandDims(0)(x), np.expand_dims(x, 0)) self.assertAllClose(knp.ExpandDims(1)(x), np.expand_dims(x, 1)) self.assertAllClose(knp.ExpandDims(-2)(x), np.expand_dims(x, -2)) def test_expm1(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.expm1(x), np.expm1(x)) self.assertAllClose(knp.Expm1()(x), np.expm1(x)) def test_flip(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.flip(x), np.flip(x)) self.assertAllClose(knp.flip(x, 0), np.flip(x, 0)) self.assertAllClose(knp.flip(x, 1), np.flip(x, 1)) self.assertAllClose(knp.Flip()(x), np.flip(x)) self.assertAllClose(knp.Flip(0)(x), np.flip(x, 0)) self.assertAllClose(knp.Flip(1)(x), np.flip(x, 1)) def test_floor(self): x = np.array([[1.1, 2.2, -3.3], [3.3, 2.2, -1.1]]) self.assertAllClose(knp.floor(x), np.floor(x)) self.assertAllClose(knp.Floor()(x), np.floor(x)) def test_hstack(self): x = np.array([[1, 2, 3], [3, 2, 1]]) y = np.array([[4, 5, 6], [6, 5, 4]]) self.assertAllClose(knp.hstack([x, y]), np.hstack([x, y])) self.assertAllClose(knp.Hstack()([x, y]), np.hstack([x, y])) x = np.ones([2, 3, 4]) y = np.ones([2, 5, 4]) self.assertAllClose(knp.hstack([x, y]), np.hstack([x, y])) self.assertAllClose(knp.Hstack()([x, y]), np.hstack([x, y])) def test_imag(self): x = np.array([[1 + 1j, 2 + 2j, 3 + 3j], [3 + 3j, 2 + 2j, 1 + 1j]]) self.assertAllClose(knp.imag(x), np.imag(x)) self.assertAllClose(knp.Imag()(x), np.imag(x)) def test_isfinite(self): x = np.array([[1, 2, np.inf], [np.nan, np.nan, np.nan]]) self.assertAllClose(knp.isfinite(x), np.isfinite(x)) self.assertAllClose(knp.Isfinite()(x), np.isfinite(x)) # TODO: fix and reenable def DISABLED_test_isinf(self): x = np.array([[1, 2, np.inf], [np.nan, np.nan, np.nan]]) self.assertAllClose(knp.isinf(x), np.isinf(x)) self.assertAllClose(knp.Isinf()(x), np.isinf(x)) def test_isnan(self): x = np.array([[1, 2, np.inf], [np.nan, np.nan, np.nan]]) self.assertAllClose(knp.isnan(x), np.isnan(x)) self.assertAllClose(knp.Isnan()(x), np.isnan(x)) def test_log(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.log(x), np.log(x)) self.assertAllClose(knp.Log()(x), np.log(x)) def test_log10(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.log10(x), np.log10(x)) self.assertAllClose(knp.Log10()(x), np.log10(x)) def test_log1p(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.log1p(x), np.log1p(x)) self.assertAllClose(knp.Log1p()(x), np.log1p(x)) def test_log2(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.log2(x), np.log2(x)) self.assertAllClose(knp.Log2()(x), np.log2(x)) def test_logaddexp(self): x = np.array([[1, 2, 3], [3, 2, 1]]) y = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.logaddexp(x, y), np.logaddexp(x, y)) self.assertAllClose(knp.Logaddexp()(x, y), np.logaddexp(x, y)) def test_logical_not(self): x = np.array([[True, False], [False, True]]) self.assertAllClose(knp.logical_not(x), np.logical_not(x)) self.assertAllClose(knp.LogicalNot()(x), np.logical_not(x)) def test_max(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.max(x), np.max(x)) self.assertAllClose(knp.Max()(x), np.max(x)) self.assertAllClose(knp.max(x, 0), np.max(x, 0)) self.assertAllClose(knp.Max(0)(x), np.max(x, 0)) self.assertAllClose(knp.max(x, 1), np.max(x, 1)) self.assertAllClose(knp.Max(1)(x), np.max(x, 1)) # test max with initial self.assertAllClose(knp.max(x, initial=4), 4) # test empty tensor x = np.array([[]]) self.assertAllClose(knp.max(x, initial=1), np.max(x, initial=1)) self.assertAllClose( knp.max(x, initial=1, keepdims=True), np.max(x, initial=1, keepdims=True), ) def test_min(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.min(x), np.min(x)) self.assertAllClose(knp.Min()(x), np.min(x)) self.assertAllClose(knp.min(x, axis=(0, 1)), np.min(x, (0, 1))) self.assertAllClose(knp.Min((0, 1))(x), np.min(x, (0, 1))) self.assertAllClose(knp.min(x, axis=()), np.min(x, axis=())) self.assertAllClose(knp.Min(())(x), np.min(x, axis=())) self.assertAllClose(knp.min(x, 0), np.min(x, 0)) self.assertAllClose(knp.Min(0)(x), np.min(x, 0)) self.assertAllClose(knp.min(x, 1), np.min(x, 1)) self.assertAllClose(knp.Min(1)(x), np.min(x, 1)) # test min with initial self.assertAllClose(knp.min(x, initial=0), 0) # test empty tensor x = np.array([[]]) self.assertAllClose(knp.min(x, initial=1), np.min(x, initial=1)) self.assertAllClose( knp.min(x, initial=1, keepdims=True), np.min(x, initial=1, keepdims=True), ) def test_median(self): x = np.array([[1, 2, 3], [3, 2, 1]]).astype("float32") self.assertAllClose(knp.median(x), np.median(x)) self.assertAllClose( knp.median(x, keepdims=True), np.median(x, keepdims=True) ) self.assertAllClose(knp.median(x, axis=1), np.median(x, axis=1)) self.assertAllClose(knp.median(x, axis=(1,)), np.median(x, axis=(1,))) self.assertAllClose( knp.median(x, axis=1, keepdims=True), np.median(x, axis=1, keepdims=True), ) self.assertAllClose(knp.Median()(x), np.median(x)) self.assertAllClose(knp.Median(axis=1)(x), np.median(x, axis=1)) self.assertAllClose( knp.Median(axis=1, keepdims=True)(x), np.median(x, axis=1, keepdims=True), ) def test_meshgrid(self): x = np.array([1, 2, 3]) y = np.array([4, 5, 6]) z = np.array([7, 8, 9]) self.assertAllClose(knp.meshgrid(x, y), np.meshgrid(x, y)) self.assertAllClose(knp.meshgrid(x, z), np.meshgrid(x, z)) self.assertAllClose( knp.meshgrid(x, y, z, indexing="ij"), np.meshgrid(x, y, z, indexing="ij"), ) self.assertAllClose(knp.Meshgrid()(x, y), np.meshgrid(x, y)) self.assertAllClose(knp.Meshgrid()(x, z), np.meshgrid(x, z)) self.assertAllClose( knp.Meshgrid(indexing="ij")(x, y, z), np.meshgrid(x, y, z, indexing="ij"), ) if backend.backend() == "tensorflow": # Arguments to `jax.numpy.meshgrid` must be 1D now. x = np.ones([1, 2, 3]) y = np.ones([4, 5, 6, 6]) z = np.ones([7, 8]) self.assertAllClose(knp.meshgrid(x, y), np.meshgrid(x, y)) self.assertAllClose(knp.meshgrid(x, z), np.meshgrid(x, z)) self.assertAllClose( knp.meshgrid(x, y, z, indexing="ij"), np.meshgrid(x, y, z, indexing="ij"), ) self.assertAllClose(knp.Meshgrid()(x, y), np.meshgrid(x, y)) self.assertAllClose(knp.Meshgrid()(x, z), np.meshgrid(x, z)) self.assertAllClose( knp.Meshgrid(indexing="ij")(x, y, z), np.meshgrid(x, y, z, indexing="ij"), ) def test_moveaxis(self): x = np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) self.assertAllClose(knp.moveaxis(x, 0, -1), np.moveaxis(x, 0, -1)) self.assertAllClose(knp.moveaxis(x, -1, 0), np.moveaxis(x, -1, 0)) self.assertAllClose( knp.moveaxis(x, (0, 1), (1, 0)), np.moveaxis(x, (0, 1), (1, 0)), ) self.assertAllClose( knp.moveaxis(x, [0, 1, 2], [2, 0, 1]), np.moveaxis(x, [0, 1, 2], [2, 0, 1]), ) self.assertAllClose(knp.Moveaxis(-1, 0)(x), np.moveaxis(x, -1, 0)) self.assertAllClose( knp.Moveaxis((0, 1), (1, 0))(x), np.moveaxis(x, (0, 1), (1, 0)), ) self.assertAllClose( knp.Moveaxis([0, 1, 2], [2, 0, 1])(x), np.moveaxis(x, [0, 1, 2], [2, 0, 1]), ) def test_ndim(self): x = np.array([1, 2, 3]) self.assertEqual(knp.ndim(x), np.ndim(x)) self.assertEqual(knp.Ndim()(x), np.ndim(x)) def test_nonzero(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.nonzero(x), np.nonzero(x)) self.assertAllClose(knp.Nonzero()(x), np.nonzero(x)) def test_ones_like(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.ones_like(x), np.ones_like(x)) self.assertAllClose(knp.OnesLike()(x), np.ones_like(x)) @parameterized.named_parameters( named_product( dtype=[ "float16", "float32", "float64", "uint8", "int8", "int16", "int32", ], mode=["constant", "reflect", "symmetric"], constant_values=[None, 0, 2], ) ) def test_pad(self, dtype, mode, constant_values): # 2D x = np.ones([2, 3], dtype=dtype) pad_width = ((1, 1), (1, 1)) if mode != "constant": if constant_values is not None: with self.assertRaisesRegex( ValueError, "Argument `constant_values` can only be " "provided when `mode == 'constant'`", ): knp.pad( x, pad_width, mode=mode, constant_values=constant_values ) return # constant_values is None kwargs = {} else: # mode is constant kwargs = {"constant_values": constant_values or 0} self.assertAllClose( knp.pad(x, pad_width, mode=mode, constant_values=constant_values), np.pad(x, pad_width, mode=mode, **kwargs), ) self.assertAllClose( knp.Pad(pad_width, mode=mode)(x, constant_values=constant_values), np.pad(x, pad_width, mode=mode, **kwargs), ) # 5D (pad last 3D) x = np.ones([2, 3, 4, 5, 6], dtype=dtype) pad_width = ((0, 0), (0, 0), (2, 3), (1, 1), (1, 1)) self.assertAllClose( knp.pad(x, pad_width, mode=mode, constant_values=constant_values), np.pad(x, pad_width, mode=mode, **kwargs), ) self.assertAllClose( knp.Pad(pad_width, mode=mode)(x, constant_values=constant_values), np.pad(x, pad_width, mode=mode, **kwargs), ) # 5D (pad arbitrary dimensions) if backend.backend() == "torch" and mode != "constant": self.skipTest( "reflect and symmetric padding for arbitary dimensions are not " "supported by torch" ) x = np.ones([2, 3, 4, 5, 6], dtype=dtype) pad_width = ((1, 1), (2, 1), (3, 2), (4, 3), (5, 4)) self.assertAllClose( knp.pad(x, pad_width, mode=mode, constant_values=constant_values), np.pad(x, pad_width, mode=mode, **kwargs), ) self.assertAllClose( knp.Pad(pad_width, mode=mode)(x, constant_values=constant_values), np.pad(x, pad_width, mode=mode, **kwargs), ) def test_prod(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.prod(x), np.prod(x)) self.assertAllClose(knp.prod(x, axis=()), np.prod(x, axis=())) self.assertAllClose(knp.prod(x, axis=1), np.prod(x, axis=1)) self.assertAllClose(knp.prod(x, axis=(1,)), np.prod(x, axis=(1,))) self.assertAllClose( knp.prod(x, axis=1, keepdims=True), np.prod(x, axis=1, keepdims=True), ) self.assertAllClose(knp.Prod()(x), np.prod(x)) self.assertAllClose(knp.Prod(axis=1)(x), np.prod(x, axis=1)) self.assertAllClose( knp.Prod(axis=1, keepdims=True)(x), np.prod(x, axis=1, keepdims=True), ) def test_ravel(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.ravel(x), np.ravel(x)) self.assertAllClose(knp.Ravel()(x), np.ravel(x)) def test_real(self): x = np.array([[1, 2, 3 - 3j], [3, 2, 1 + 5j]]) self.assertAllClose(knp.real(x), np.real(x)) self.assertAllClose(knp.Real()(x), np.real(x)) def test_reciprocal(self): x = np.array([[1.0, 2.0, 3.0], [3.0, 2.0, 1.0]]) self.assertAllClose(knp.reciprocal(x), np.reciprocal(x)) self.assertAllClose(knp.Reciprocal()(x), np.reciprocal(x)) def test_repeat(self): x = np.array([[1, 2], [3, 4]]) self.assertAllClose(knp.repeat(x, 2), np.repeat(x, 2)) self.assertAllClose(knp.repeat(x, 3, axis=1), np.repeat(x, 3, axis=1)) self.assertAllClose( knp.repeat(x, np.array([1, 2]), axis=-1), np.repeat(x, np.array([1, 2]), axis=-1), ) self.assertAllClose(knp.Repeat(2)(x), np.repeat(x, 2)) self.assertAllClose(knp.Repeat(3, axis=1)(x), np.repeat(x, 3, axis=1)) self.assertAllClose( knp.Repeat(np.array([1, 2]), axis=0)(x), np.repeat(x, np.array([1, 2]), axis=0), ) def test_reshape(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.reshape(x, [3, 2]), np.reshape(x, [3, 2])) self.assertAllClose(knp.Reshape([3, 2])(x), np.reshape(x, [3, 2])) self.assertAllClose(knp.Reshape(-1)(x), np.reshape(x, -1)) def test_roll(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.roll(x, 1), np.roll(x, 1)) self.assertAllClose(knp.roll(x, 1, axis=1), np.roll(x, 1, axis=1)) self.assertAllClose(knp.roll(x, -1, axis=0), np.roll(x, -1, axis=0)) self.assertAllClose(knp.Roll(1)(x), np.roll(x, 1)) self.assertAllClose(knp.Roll(1, axis=1)(x), np.roll(x, 1, axis=1)) self.assertAllClose(knp.Roll(-1, axis=0)(x), np.roll(x, -1, axis=0)) def test_round(self): x = np.array([[1.1, 2.5, 3.9], [3.2, 2.3, 1.8]]) self.assertAllClose(knp.round(x), np.round(x)) self.assertAllClose(knp.Round()(x), np.round(x)) def test_sign(self): x = np.array([[1, -2, 3], [-3, 2, -1]]) self.assertAllClose(knp.sign(x), np.sign(x)) self.assertAllClose(knp.Sign()(x), np.sign(x)) def test_sin(self): x = np.array([[1, -2, 3], [-3, 2, -1]]) self.assertAllClose(knp.sin(x), np.sin(x)) self.assertAllClose(knp.Sin()(x), np.sin(x)) def test_sinh(self): x = np.array([[1, -2, 3], [-3, 2, -1]]) self.assertAllClose(knp.sinh(x), np.sinh(x)) self.assertAllClose(knp.Sinh()(x), np.sinh(x)) def test_size(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.size(x), np.size(x)) self.assertAllClose(knp.Size()(x), np.size(x)) def test_sort(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.sort(x), np.sort(x)) self.assertAllClose(knp.Sort()(x), np.sort(x)) self.assertAllClose(knp.sort(x, axis=0), np.sort(x, axis=0)) self.assertAllClose(knp.Sort(axis=0)(x), np.sort(x, axis=0)) def test_split(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.split(x, 2), np.split(x, 2)) self.assertAllClose(knp.Split(2)(x), np.split(x, 2)) self.assertAllClose( knp.split(x, [1, 2], axis=1), np.split(x, [1, 2], axis=1), ) self.assertAllClose( knp.Split([1, 2], axis=1)(x), np.split(x, [1, 2], axis=1), ) # test invalid indices_or_sections with self.assertRaises(Exception): knp.split(x, 3) # test zero dimension x = np.ones(shape=(0,)) self.assertEqual(len(knp.split(x, 2)), 2) self.assertEqual(len(knp.Split(2)(x)), 2) # test indices_or_sections as tensor x = knp.array([[1, 2, 3], [3, 2, 1]]) indices_or_sections = knp.array([1, 2]) x_np = np.array([[1, 2, 3], [3, 2, 1]]) indices_or_sections_np = np.array([1, 2]) self.assertAllClose( knp.split(x, indices_or_sections, axis=1), np.split(x_np, indices_or_sections_np, axis=1), ) @pytest.mark.skipif( backend.backend() != "tensorflow", reason="Only test tensorflow backend", ) def test_split_with_jit_in_tf(self): import tensorflow as tf x = knp.array([[1, 2, 3], [3, 2, 1]]) indices = knp.array([1, 2]) x_np = np.array([[1, 2, 3], [3, 2, 1]]) indices_np = np.array([1, 2]) @tf.function(jit_compile=True) def fn(x, indices, axis): return knp.split(x, indices, axis=axis) self.assertAllClose( fn(x, indices, axis=1), np.split(x_np, indices_np, axis=1), ) def test_sqrt(self): x = np.array([[1, 4, 9], [16, 25, 36]], dtype="float32") ref_y = np.sqrt(x) y = knp.sqrt(x) self.assertEqual(standardize_dtype(y.dtype), "float32") self.assertAllClose(y, ref_y) y = knp.Sqrt()(x) self.assertEqual(standardize_dtype(y.dtype), "float32") self.assertAllClose(y, ref_y) @pytest.mark.skipif( backend.backend() == "jax", reason="JAX does not support float64." ) def test_sqrt_float64(self): x = np.array([[1, 4, 9], [16, 25, 36]], dtype="float64") ref_y = np.sqrt(x) y = knp.sqrt(x) self.assertEqual(standardize_dtype(y.dtype), "float64") self.assertAllClose(y, ref_y) y = knp.Sqrt()(x) self.assertEqual(standardize_dtype(y.dtype), "float64") self.assertAllClose(y, ref_y) def test_sqrt_int32(self): x = np.array([[1, 4, 9], [16, 25, 36]], dtype="int32") ref_y = np.sqrt(x) y = knp.sqrt(x) self.assertEqual(standardize_dtype(y.dtype), "float32") self.assertAllClose(y, ref_y) y = knp.Sqrt()(x) self.assertEqual(standardize_dtype(y.dtype), "float32") self.assertAllClose(y, ref_y) def test_stack(self): x = np.array([[1, 2, 3], [3, 2, 1]]) y = np.array([[4, 5, 6], [6, 5, 4]]) self.assertAllClose(knp.stack([x, y]), np.stack([x, y])) self.assertAllClose(knp.stack([x, y], axis=1), np.stack([x, y], axis=1)) self.assertAllClose(knp.Stack()([x, y]), np.stack([x, y])) self.assertAllClose(knp.Stack(axis=1)([x, y]), np.stack([x, y], axis=1)) def test_std(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.std(x), np.std(x)) self.assertAllClose(knp.std(x, axis=1), np.std(x, axis=1)) self.assertAllClose( knp.std(x, axis=1, keepdims=True), np.std(x, axis=1, keepdims=True), ) self.assertAllClose(knp.Std()(x), np.std(x)) self.assertAllClose(knp.Std(axis=1)(x), np.std(x, axis=1)) self.assertAllClose( knp.Std(axis=1, keepdims=True)(x), np.std(x, axis=1, keepdims=True), ) def test_swapaxes(self): x = np.arange(24).reshape([1, 2, 3, 4]) self.assertAllClose( knp.swapaxes(x, 0, 1), np.swapaxes(x, 0, 1), ) self.assertAllClose( knp.Swapaxes(0, 1)(x), np.swapaxes(x, 0, 1), ) def test_tan(self): x = np.array([[1, -2, 3], [-3, 2, -1]]) self.assertAllClose(knp.tan(x), np.tan(x)) self.assertAllClose(knp.Tan()(x), np.tan(x)) def test_tanh(self): x = np.array([[1, -2, 3], [-3, 2, -1]]) self.assertAllClose(knp.tanh(x), np.tanh(x)) self.assertAllClose(knp.Tanh()(x), np.tanh(x)) def test_tile(self): x = np.array([[1, 2, 3], [3, 2, 1]]) self.assertAllClose(knp.tile(x, [2, 3]), np.tile(x, [2, 3])) self.assertAllClose(knp.Tile([2, 3])(x), np.tile(x, [2, 3])) def test_trace(self): x = np.arange(24).reshape([1, 2, 3, 4]) self.assertAllClose(knp.trace(x), np.trace(x)) self.assertAllClose( knp.trace(x, axis1=2, axis2=3), np.trace(x, axis1=2, axis2=3), ) self.assertAllClose( knp.Trace(axis1=2, axis2=3)(x), np.trace(x, axis1=2, axis2=3), ) def test_tril(self): x = np.arange(24).reshape([1, 2, 3, 4]) self.assertAllClose(knp.tril(x), np.tril(x)) self.assertAllClose(knp.tril(x, -1), np.tril(x, -1)) self.assertAllClose(knp.Tril(-1)(x), np.tril(x, -1)) x = np.ones([5, 5]) self.assertAllClose(knp.tril(x), np.tril(x)) self.assertAllClose(knp.tril(x, -1), np.tril(x, -1)) self.assertAllClose(knp.Tril(-1)(x), np.tril(x, -1)) def test_tril_in_layer(self): # https://github.com/keras-team/keras/issues/18890 x = keras.Input((None, 3)) y1 = keras.layers.Lambda( lambda x: keras.ops.tril( keras.ops.ones((keras.ops.shape(x)[1], keras.ops.shape(x)[1])) ) )(x) y2 = keras.layers.Lambda( lambda x: keras.ops.tril( keras.ops.ones((keras.ops.shape(x)[1], keras.ops.shape(x)[1])), k=-1, ) )(x) model = keras.Model(x, [y1, y2]) result = model(np.ones((1, 2, 3), "float32")) self.assertAllClose( result, [np.tril(np.ones((2, 2))), np.tril(np.ones((2, 2)), k=-1)] ) def test_triu(self): x = np.arange(24).reshape([1, 2, 3, 4]) self.assertAllClose(knp.triu(x), np.triu(x)) self.assertAllClose(knp.triu(x, -1), np.triu(x, -1)) self.assertAllClose(knp.Triu(-1)(x), np.triu(x, -1)) x = np.ones([5, 5]) self.assertAllClose(knp.triu(x), np.triu(x)) self.assertAllClose(knp.triu(x, -1), np.triu(x, -1)) self.assertAllClose(knp.Triu(-1)(x), np.triu(x, -1)) def test_triu_in_layer(self): # https://github.com/keras-team/keras/issues/18890 x = keras.Input((None, 3)) y1 = keras.layers.Lambda( lambda x: keras.ops.triu( keras.ops.ones((keras.ops.shape(x)[1], keras.ops.shape(x)[1])) ) )(x) y2 = keras.layers.Lambda( lambda x: keras.ops.triu( keras.ops.ones((keras.ops.shape(x)[1], keras.ops.shape(x)[1])), k=-1, ) )(x) model = keras.Model(x, [y1, y2]) result = model(np.ones((1, 2, 3), "float32")) self.assertAllClose( result, [np.triu(np.ones((2, 2))), np.triu(np.ones((2, 2)), k=-1)] ) def test_vstack(self): x = np.array([[1, 2, 3], [3, 2, 1]]) y = np.array([[4, 5, 6], [6, 5, 4]]) self.assertAllClose(knp.vstack([x, y]), np.vstack([x, y])) self.assertAllClose(knp.Vstack()([x, y]), np.vstack([x, y])) def test_floor_divide(self): x = np.array([[1, 2, 3], [3, 2, 1]]) y = np.array([[4, 5, 6], [3, 2, 1]]) z = np.array([[[1, 2, 3], [3, 2, 1]]]) self.assertAllClose(knp.floor_divide(x, y), np.floor_divide(x, y)) self.assertAllClose(knp.floor_divide(x, z), np.floor_divide(x, z)) self.assertAllClose(knp.FloorDivide()(x, y), np.floor_divide(x, y)) self.assertAllClose(knp.FloorDivide()(x, z), np.floor_divide(x, z)) def test_xor(self): x = np.array([[True, False], [True, True]]) y = np.array([[False, False], [True, False]]) self.assertAllClose(knp.logical_xor(x, y), np.logical_xor(x, y)) self.assertAllClose(knp.logical_xor(x, True), np.logical_xor(x, True)) self.assertAllClose(knp.logical_xor(True, x), np.logical_xor(True, x)) self.assertAllClose(knp.LogicalXor()(x, y), np.logical_xor(x, y)) self.assertAllClose(knp.LogicalXor()(x, True), np.logical_xor(x, True)) self.assertAllClose(knp.LogicalXor()(True, x), np.logical_xor(True, x)) class NumpyArrayCreateOpsCorrectnessTest(testing.TestCase): def test_ones(self): self.assertAllClose(knp.ones([2, 3]), np.ones([2, 3])) self.assertAllClose(knp.Ones()([2, 3]), np.ones([2, 3])) def test_zeros(self): self.assertAllClose(knp.zeros([2, 3]), np.zeros([2, 3])) self.assertAllClose(knp.Zeros()([2, 3]), np.zeros([2, 3])) def test_eye(self): self.assertAllClose(knp.eye(3), np.eye(3)) self.assertAllClose(knp.eye(3, 4), np.eye(3, 4)) self.assertAllClose(knp.eye(3, 4, 1), np.eye(3, 4, 1)) self.assertAllClose(knp.Eye()(3), np.eye(3)) self.assertAllClose(knp.Eye()(3, 4), np.eye(3, 4)) self.assertAllClose(knp.Eye()(3, 4, 1), np.eye(3, 4, 1)) def test_arange(self): self.assertAllClose(knp.arange(3), np.arange(3)) self.assertAllClose(knp.arange(3, 7), np.arange(3, 7)) self.assertAllClose(knp.arange(3, 7, 2), np.arange(3, 7, 2)) self.assertAllClose(knp.Arange()(3), np.arange(3)) self.assertAllClose(knp.Arange()(3, 7), np.arange(3, 7)) self.assertAllClose(knp.Arange()(3, 7, 2), np.arange(3, 7, 2)) self.assertEqual(standardize_dtype(knp.arange(3).dtype), "int32") with pytest.warns(None) as record: knp.arange(3, dtype="int") self.assertEqual(len(record), 0) def test_full(self): self.assertAllClose(knp.full([2, 3], 0), np.full([2, 3], 0)) self.assertAllClose(knp.full([2, 3], 0.1), np.full([2, 3], 0.1)) self.assertAllClose( knp.full([2, 3], np.array([1, 4, 5])), np.full([2, 3], np.array([1, 4, 5])), ) self.assertAllClose(knp.Full()([2, 3], 0), np.full([2, 3], 0)) self.assertAllClose(knp.Full()([2, 3], 0.1), np.full([2, 3], 0.1)) self.assertAllClose( knp.Full()([2, 3], np.array([1, 4, 5])), np.full([2, 3], np.array([1, 4, 5])), ) def test_identity(self): self.assertAllClose(knp.identity(3), np.identity(3)) self.assertAllClose(knp.Identity()(3), np.identity(3)) def test_tri(self): self.assertAllClose(knp.tri(3), np.tri(3)) self.assertAllClose(knp.tri(3, 4), np.tri(3, 4)) self.assertAllClose(knp.tri(3, 4, 1), np.tri(3, 4, 1)) self.assertAllClose(knp.Tri()(3), np.tri(3)) self.assertAllClose(knp.Tri()(3, 4), np.tri(3, 4)) self.assertAllClose(knp.Tri()(3, 4, 1), np.tri(3, 4, 1)) def create_sparse_tensor(x, indices_from=None, start=0, delta=2): if indices_from is not None: indices = indices_from.indices else: size = math.prod(x.shape) flat_indices = np.arange(start, size, delta) indices = np.stack(np.where(np.ones_like(x)), axis=1)[flat_indices] if backend.backend() == "tensorflow": import tensorflow as tf return tf.SparseTensor(indices, tf.gather_nd(x, indices), x.shape) elif backend.backend() == "jax": import jax import jax.experimental.sparse as jax_sparse values = x[tuple(jax.numpy.moveaxis(indices, -1, 0))] return jax_sparse.BCOO((values, indices), shape=x.shape) def create_indexed_slices(x, indices_from=None, start=0, delta=2): indices = np.arange(start, x.shape[0], delta) if backend.backend() == "tensorflow": import tensorflow as tf if indices_from is not None: indices = indices_from.indices return tf.IndexedSlices(tf.gather(x, indices), indices, x.shape) elif backend.backend() == "jax": import jax import jax.experimental.sparse as jax_sparse if indices_from is not None: indices = indices_from.indices else: indices = jax.numpy.expand_dims(indices, axis=1) values = jax.numpy.take(x, jax.numpy.squeeze(indices, axis=1), axis=0) return jax_sparse.BCOO((values, indices), shape=x.shape) def get_sparseness_combinations(dense_to_sparse_fn): x = np.array([[1, 2, 3], [3, 2, 1]]) y = np.array([[4, 5, 6], [3, 2, 1]]) scalar = backend.convert_to_tensor(2) x_sp = dense_to_sparse_fn(x) y_sp = dense_to_sparse_fn(y, indices_from=x_sp) x_sp_sup = dense_to_sparse_fn(x, start=0, delta=1) y_sp_dis = dense_to_sparse_fn(y, start=1) y_sp_sup = dense_to_sparse_fn(y, start=0, delta=1) x = backend.convert_to_tensor(x) y = backend.convert_to_tensor(y) return [ {"testcase_name": "sparse_dense", "x": x_sp, "y": y}, {"testcase_name": "dense_sparse", "x": x, "y": y_sp}, {"testcase_name": "sparse_scalar", "x": x_sp, "y": scalar}, {"testcase_name": "scalar_sparse", "x": scalar, "y": y_sp}, {"testcase_name": "sparse_sparse_same", "x": x_sp, "y": y_sp}, {"testcase_name": "sparse_sparse_disjoint", "x": x_sp, "y": y_sp_dis}, {"testcase_name": "sparse_sparse_superset", "x": x_sp, "y": y_sp_sup}, {"testcase_name": "sparse_sparse_subset", "x": x_sp_sup, "y": y_sp}, ] def sparseness(x): if isinstance(x, KerasTensor): return "sparse" if x.sparse else "dense" elif x.__class__.__name__ == "BCOO": if x.n_dense > 0: return "slices" else: return "sparse" elif x.__class__.__name__ == "SparseTensor": return "sparse" elif x.__class__.__name__ == "IndexedSlices": return "slices" elif not hasattr(x, "shape") or not x.shape: return "scalar" else: return "dense" def union_sparseness(x1, x2): x1_sparseness = sparseness(x1) x2_sparseness = sparseness(x2) if any(s in ("scalar", "dense") for s in (x1_sparseness, x2_sparseness)): return "dense" if x1_sparseness != x2_sparseness: raise ValueError(f"Illegal combination of operands: {x1} {x2}") return x1_sparseness def intersection_sparseness(x1, x2): x1_sparseness = sparseness(x1) x2_sparseness = sparseness(x2) if x1_sparseness == "scalar": return x2_sparseness if x2_sparseness in ("scalar", "dense"): return x1_sparseness if x1_sparseness == "dense": return x2_sparseness if x1_sparseness != x2_sparseness: raise ValueError(f"Illegal combination of operands: {x1} {x2}") return x1_sparseness def division_sparseness(x1, x2): x1_sparseness = sparseness(x1) x2_sparseness = sparseness(x2) if x2_sparseness in ("sparse", "slices"): return "dense" return "dense" if x1_sparseness == "scalar" else x1_sparseness def snake_to_pascal_case(name): return "".join(w.capitalize() for w in name.split("_")) @pytest.mark.skipif( not backend.SUPPORTS_SPARSE_TENSORS, reason="Backend does not support sparse tensors.", ) class SparseTest(testing.TestCase, parameterized.TestCase): DTYPES = ["int32", "float32"] DENSIFYING_UNARY_OPS = [ "arccos", "arccosh", "cos", "cosh", "exp", "isfinite", "log", "log10", "log2", "reciprocal", ] DENSIFYING_UNARY_OPS_TESTS = [ { "testcase_name": op, "op_function": getattr(knp, op), "op_class": getattr(knp, op.capitalize()), "np_op": getattr(np, op), } for op in DENSIFYING_UNARY_OPS ] ELEMENTWISE_UNARY_OPS = [ "abs", "absolute", "arcsin", "arcsinh", "arctan", "arctanh", "ceil", "conj", "conjugate", "copy", "expm1", "floor", "imag", "log1p", "negative", "real", "round", "sign", "sin", "sinh", "sqrt", "square", "tan", "tanh", ] ELEMENTWISE_UNARY_OPS_TESTS = [ { "testcase_name": op, "op_function": getattr(knp, op), "op_class": getattr(knp, snake_to_pascal_case(op)), "np_op": getattr(np, op), } for op in ELEMENTWISE_UNARY_OPS ] OTHER_UNARY_OPS_TESTS = [ { "testcase_name": "_".join([op, testcase_name]), "op_function": getattr(knp, op), "op_class": getattr(knp, snake_to_pascal_case(op)), "np_op": getattr(np, op), "op_kwargs": op_kwargs, "input_shape": input_shape, } for op, testcase_name, op_kwargs, input_shape in [ ("mean", "none", {"axis": None}, (4, 2, 3)), ("mean", "none_k", {"axis": None, "keepdims": True}, (4, 2, 3)), ("mean", "empty", {"axis": ()}, (4, 2, 3)), ("mean", "empty_k", {"axis": (), "keepdims": True}, (4, 2, 3)), ("mean", "0", {"axis": 0}, (4, 2, 3)), ("mean", "0_k", {"axis": 0, "keepdims": True}, (4, 2, 3)), ("mean", "1", {"axis": 1}, (4, 2, 3)), ("mean", "1_k", {"axis": 1, "keepdims": True}, (4, 2, 3)), ("mean", "01", {"axis": (0, 1)}, (4, 2, 3)), ("mean", "01_k", {"axis": (0, 1), "keepdims": True}, (4, 2, 3)), ("mean", "02", {"axis": (1, 2)}, (4, 2, 3)), ("mean", "02_k", {"axis": (1, 2), "keepdims": True}, (4, 2, 3)), ("mean", "all", {"axis": (0, 1, 2)}, (4, 2, 3)), ("mean", "all_k", {"axis": (0, 1, 2), "keepdims": True}, (4, 2, 3)), ("expand_dims", "zero", {"axis": 0}, (2, 3)), ("expand_dims", "one", {"axis": 1}, (2, 3)), ("expand_dims", "minus_two", {"axis": -2}, (2, 3)), ("reshape", "basic", {"newshape": (4, 3, 2)}, (4, 2, 3)), ("reshape", "minus_one", {"newshape": (4, 3, -1)}, (4, 2, 3)), ("reshape", "fewer_dims", {"newshape": (4, 6)}, (4, 2, 3)), ("squeeze", "no_axis_no_op", {}, (2, 3)), ("squeeze", "one", {"axis": 1}, (2, 1, 3)), ("squeeze", "minus_two", {"axis": -2}, (2, 1, 3)), ("squeeze", "no_axis", {}, (2, 1, 3)), ("transpose", "no_axes", {}, (1, 2, 3, 4)), ("transpose", "axes", {"axes": (0, 3, 2, 1)}, (1, 2, 3, 4)), ] ] BINARY_OPS = [ ("add", union_sparseness), ("subtract", union_sparseness), ("maximum", union_sparseness), ("minimum", union_sparseness), ("multiply", intersection_sparseness), ("divide", division_sparseness), ("true_divide", division_sparseness), ] BINARY_OPS_TESTS = [ { "testcase_name": op, "op_function": getattr(knp, op), "op_class": getattr(knp, snake_to_pascal_case(op)), "np_op": getattr(np, op), "op_sparseness": op_sparseness, } for op, op_sparseness in BINARY_OPS ] def assertSameSparseness(self, x, y): self.assertEquals(sparseness(x), sparseness(y)) def assertSparseness(self, x, expected_sparseness): self.assertEquals(sparseness(x), expected_sparseness) @parameterized.named_parameters(ELEMENTWISE_UNARY_OPS_TESTS) def test_elementwise_unary_symbolic_static_shape( self, op_function, op_class, np_op ): x = KerasTensor([2, 3], sparse=True) self.assertEqual(op_function(x).shape, (2, 3)) self.assertTrue(op_function(x).sparse) self.assertEqual(op_class()(x).shape, (2, 3)) self.assertTrue(op_class()(x).sparse) @parameterized.named_parameters(ELEMENTWISE_UNARY_OPS_TESTS) def test_elementwise_unary_symbolic_dynamic_shape( self, op_function, op_class, np_op ): x = KerasTensor([None, 3], sparse=True) self.assertEqual(op_function(x).shape, (None, 3)) self.assertTrue(op_function(x).sparse) self.assertEqual(op_class()(x).shape, (None, 3)) self.assertTrue(op_class()(x).sparse) @parameterized.named_parameters(OTHER_UNARY_OPS_TESTS) def test_other_unary_symbolic_static_shape( self, op_function, op_class, np_op, op_kwargs, input_shape ): expected_shape = op_function( KerasTensor(input_shape), **op_kwargs ).shape x = KerasTensor(input_shape, sparse=True) self.assertEqual(op_function(x, **op_kwargs).shape, expected_shape) self.assertTrue(op_function(x, **op_kwargs).sparse) self.assertEqual(op_class(**op_kwargs)(x).shape, expected_shape) self.assertTrue(op_class(**op_kwargs)(x).sparse) @parameterized.named_parameters(OTHER_UNARY_OPS_TESTS) def test_other_unary_symbolic_dynamic_shape( self, op_function, op_class, np_op, op_kwargs, input_shape ): input_shape = (None,) + input_shape[1:] expected_shape = op_function( KerasTensor(input_shape), **op_kwargs ).shape x = KerasTensor(input_shape, sparse=True) self.assertEqual(op_function(x, **op_kwargs).shape, expected_shape) self.assertTrue(op_function(x, **op_kwargs).sparse) self.assertEqual(op_class(**op_kwargs)(x).shape, expected_shape) self.assertTrue(op_class(**op_kwargs)(x).sparse) @parameterized.named_parameters(DENSIFYING_UNARY_OPS_TESTS) def test_densifying_unary_sparse_correctness( self, op_function, op_class, np_op ): x = np.array([[1, 0.5, -0.7], [0.9, 0.2, -1]]) x = create_sparse_tensor(x) x_np = backend.convert_to_numpy(x) self.assertAllClose(op_function(x), np_op(x_np)) self.assertAllClose(op_class()(x), np_op(x_np)) @parameterized.named_parameters(DENSIFYING_UNARY_OPS_TESTS) def test_densifying_unary_indexed_slices_correctness( self, op_function, op_class, np_op ): x = np.array([[1, 0.5, -0.7], [0.9, 0.2, -1]]) x = create_indexed_slices(x) x_np = backend.convert_to_numpy(x) self.assertAllClose(op_function(x), np_op(x_np)) self.assertAllClose(op_class()(x), np_op(x_np)) @parameterized.named_parameters(ELEMENTWISE_UNARY_OPS_TESTS) def test_elementwise_unary_sparse_correctness( self, op_function, op_class, np_op ): if op_function.__name__ in ("conj", "conjugate", "imag", "real"): x = np.array([[1 + 1j, 2 + 2j, 3 + 3j], [3 + 3j, 2 + 2j, 1 + 1j]]) else: x = np.array([[1, 0.5, -0.7], [0.9, 0.2, -1]]) x = create_sparse_tensor(x) x_np = backend.convert_to_numpy(x) self.assertAllClose(op_function(x), np_op(x_np)) self.assertSameSparseness(op_function(x), x) self.assertAllClose(op_class()(x), np_op(x_np)) self.assertSameSparseness(op_class()(x), x) @parameterized.named_parameters(ELEMENTWISE_UNARY_OPS_TESTS) def test_elementwise_unary_indexed_slices_correctness( self, op_function, op_class, np_op ): if op_function.__name__ in ("conj", "conjugate", "imag", "real"): x = np.array([[1 + 1j, 2 + 2j, 3 + 3j], [3 + 3j, 2 + 2j, 1 + 1j]]) else: x = np.array([[1, 0.5, -0.7], [0.9, 0.2, -1]]) x = create_indexed_slices(x) x_np = backend.convert_to_numpy(x) self.assertAllClose(op_function(x), np_op(x_np)) self.assertSameSparseness(op_function(x), x) self.assertAllClose(op_class()(x), np_op(x_np)) self.assertSameSparseness(op_class()(x), x) @parameterized.named_parameters(OTHER_UNARY_OPS_TESTS) def test_other_unary_symbolic_sparse_correctness( self, op_function, op_class, np_op, op_kwargs, input_shape ): x = np.random.random(input_shape) if op_function is knp.mean: x = create_indexed_slices(x) else: x = create_sparse_tensor(x) x_np = backend.convert_to_numpy(x) self.assertAllClose( op_function(x, **op_kwargs), np_op(x_np, **op_kwargs) ) self.assertAllClose(op_class(**op_kwargs)(x), np_op(x_np, **op_kwargs)) # Reduction operations have complex and backend dependent rules about # when the result is sparse and it is dense. if op_function is not knp.mean: self.assertSameSparseness(op_function(x, **op_kwargs), x) self.assertSameSparseness(op_class(**op_kwargs)(x), x) @parameterized.named_parameters( named_product( BINARY_OPS_TESTS, x_sparse=[True, False], y_sparse=[True, False] ) ) def test_binary_symbolic_static_shape( self, x_sparse, y_sparse, op_function, op_class, np_op, op_sparseness ): x = KerasTensor([2, 3], sparse=x_sparse) y = KerasTensor([2, 3], sparse=y_sparse) self.assertEqual(op_function(x, y).shape, (2, 3)) self.assertSparseness(op_function(x, y), op_sparseness(x, y)) self.assertEqual(op_class()(x, y).shape, (2, 3)) self.assertSparseness(op_class()(x, y), op_sparseness(x, y)) @parameterized.named_parameters( named_product( BINARY_OPS_TESTS, x_sparse=[True, False], y_sparse=[True, False] ) ) def test_binary_symbolic_dynamic_shape( self, x_sparse, y_sparse, op_function, op_class, np_op, op_sparseness ): x = KerasTensor([None, 3], sparse=x_sparse) y = KerasTensor([2, None], sparse=y_sparse) self.assertEqual(op_function(x, y).shape, (2, 3)) self.assertSparseness(op_function(x, y), op_sparseness(x, y)) self.assertEqual(op_class()(x, y).shape, (2, 3)) self.assertSparseness(op_class()(x, y), op_sparseness(x, y)) @parameterized.named_parameters( named_product( BINARY_OPS_TESTS, get_sparseness_combinations(create_sparse_tensor), dtype=DTYPES, ) ) def test_binary_correctness_sparse_tensor( self, x, y, op_function, op_class, np_op, op_sparseness, dtype ): x = backend.cast(x, dtype) y = backend.cast(y, dtype) expected_result = np_op( backend.convert_to_numpy(x), backend.convert_to_numpy(y) ) self.assertAllClose(op_function(x, y), expected_result) self.assertSparseness(op_function(x, y), op_sparseness(x, y)) self.assertAllClose(op_class()(x, y), expected_result) self.assertSparseness(op_class()(x, y), op_sparseness(x, y)) @parameterized.named_parameters( named_product( BINARY_OPS_TESTS, get_sparseness_combinations(create_indexed_slices), dtype=DTYPES, ) ) def test_binary_correctness_indexed_slices( self, x, y, op_function, op_class, np_op, op_sparseness, dtype ): x = backend.cast(x, dtype) y = backend.cast(y, dtype) expected_result = np_op( backend.convert_to_numpy(x), backend.convert_to_numpy(y) ) self.assertAllClose(op_function(x, y), expected_result) self.assertSparseness(op_function(x, y), op_sparseness(x, y)) self.assertAllClose(op_class()(x, y), expected_result) self.assertSparseness(op_class()(x, y), op_sparseness(x, y)) @parameterized.named_parameters( named_product( sparse_type=["sparse_tensor", "indexed_slices"], dtype=["int32", "float32"], ) ) def test_divide_with_zeros_nans(self, sparse_type, dtype): x = backend.convert_to_tensor([[0, 2, 3], [3, 2, 1]], dtype=dtype) if sparse_type == "indexed_slices": x = create_indexed_slices(x, start=0, delta=2) else: x = create_sparse_tensor(x, start=0, delta=2) if dtype.startswith("int"): y = [[0, 0, 3], [0, 0, 1]] else: y = [[np.nan, np.nan, 3], [0, 0, 1]] y = backend.convert_to_tensor(y, dtype=dtype) expected_result = np.divide( backend.convert_to_numpy(x), backend.convert_to_numpy(y) ) self.assertAllClose(knp.divide(x, y), expected_result) self.assertAllClose(knp.Divide()(x, y), expected_result) class NumpyDtypeTest(testing.TestCase, parameterized.TestCase): """Test the dtype to verify that the behavior matches JAX.""" # TODO: Using uint64 will lead to weak type promotion (`float`), # resulting in different behavior between JAX and Keras. Currently, we # are skipping the test for uint64 ALL_DTYPES = [ x for x in ALLOWED_DTYPES if x not in ["string", "uint64"] ] + [None] INT_DTYPES = [x for x in ALLOWED_DTYPES if "int" in x and x != "uint64"] FLOAT_DTYPES = [x for x in ALLOWED_DTYPES if "float" in x] if backend.backend() == "torch": # TODO: torch doesn't support uint16, uint32 and uint64 ALL_DTYPES = [ x for x in ALL_DTYPES if x not in ["uint16", "uint32", "uint64"] ] INT_DTYPES = [ x for x in INT_DTYPES if x not in ["uint16", "uint32", "uint64"] ] def setUp(self): from jax.experimental import enable_x64 self.jax_enable_x64 = enable_x64() self.jax_enable_x64.__enter__() return super().setUp() def tearDown(self) -> None: self.jax_enable_x64.__exit__(None, None, None) return super().tearDown() @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_add(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((1,), dtype=dtype1) x2 = knp.ones((1,), dtype=dtype2) x1_jax = jnp.ones((1,), dtype=dtype1) x2_jax = jnp.ones((1,), dtype=dtype2) expected_dtype = standardize_dtype(jnp.add(x1_jax, x2_jax).dtype) self.assertEqual( standardize_dtype(knp.add(x1, x2).dtype), expected_dtype, ) self.assertEqual( standardize_dtype(knp.Add().symbolic_call(x1, x2).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_add_python_types(self, dtype): import jax.experimental import jax.numpy as jnp # We have to disable x64 for jax since jnp.add doesn't respect # JAX_DEFAULT_DTYPE_BITS=32 in `./conftest.py`. We also need to downcast # the expected dtype from 64 bit to 32 bit when using jax backend. with jax.experimental.disable_x64(): x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) # python int expected_dtype = standardize_dtype(jnp.add(x_jax, 1).dtype) if dtype == "float64": expected_dtype = "float64" elif dtype == "int64": expected_dtype = "int64" if backend.backend() == "jax": expected_dtype = expected_dtype.replace("64", "32") self.assertEqual( standardize_dtype(knp.add(x, 1).dtype), expected_dtype ) self.assertEqual( knp.Add().symbolic_call(x, 1).dtype, expected_dtype ) # python float expected_dtype = standardize_dtype(jnp.add(x_jax, 1.0).dtype) if dtype == "float64": expected_dtype = "float64" if backend.backend() == "jax": expected_dtype = expected_dtype.replace("64", "32") self.assertEqual( standardize_dtype(knp.add(x, 1.0).dtype), expected_dtype ) self.assertEqual( knp.Add().symbolic_call(x, 1.0).dtype, expected_dtype ) @parameterized.named_parameters(named_product(dtype=INT_DTYPES)) def test_bincount(self, dtype): import jax.numpy as jnp if backend.backend() == "tensorflow": import tensorflow as tf if tf.test.is_gpu_available(): self.skipTest("bincount does not work in tensorflow gpu") x = np.array([1, 1, 2, 3, 2, 4, 4, 5], dtype=dtype) weights = np.array([0, 0, 3, 2, 1, 1, 4, 2], dtype=dtype) minlength = 3 self.assertEqual( standardize_dtype( knp.bincount(x, weights=weights, minlength=minlength).dtype ), standardize_dtype( jnp.bincount(x, weights=weights, minlength=minlength).dtype ), ) self.assertEqual( knp.Bincount(weights=weights, minlength=minlength) .symbolic_call(x) .dtype, standardize_dtype( jnp.bincount(x, weights=weights, minlength=minlength).dtype ), ) # test float32 weights weights = np.array([0, 0, 3, 2, 1, 1, 4, 2], dtype="float32") self.assertEqual( standardize_dtype(knp.bincount(x, weights=weights).dtype), standardize_dtype(jnp.bincount(x, weights=weights).dtype), ) self.assertEqual( knp.Bincount(weights=weights).symbolic_call(x).dtype, standardize_dtype(jnp.bincount(x, weights=weights).dtype), ) # test float16 weights weights = np.array([0, 0, 3, 2, 1, 1, 4, 2], dtype="float16") self.assertEqual( standardize_dtype(knp.bincount(x, weights=weights).dtype), standardize_dtype(jnp.bincount(x, weights=weights).dtype), ) self.assertEqual( knp.Bincount(weights=weights).symbolic_call(x).dtype, standardize_dtype(jnp.bincount(x, weights=weights).dtype), ) # test weights=None self.assertEqual( standardize_dtype(knp.bincount(x).dtype), standardize_dtype(jnp.bincount(x).dtype), ) self.assertEqual( knp.Bincount().symbolic_call(x).dtype, standardize_dtype(jnp.bincount(x).dtype), ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_subtract(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes if dtype1 == "bool" and dtype2 == "bool": self.skipTest("subtract does not support bool") x1 = knp.ones((1,), dtype=dtype1) x2 = knp.ones((1,), dtype=dtype2) x1_jax = jnp.ones((1,), dtype=dtype1) x2_jax = jnp.ones((1,), dtype=dtype2) expected_dtype = standardize_dtype(jnp.subtract(x1_jax, x2_jax).dtype) self.assertEqual( standardize_dtype(knp.subtract(x1, x2).dtype), expected_dtype ) self.assertEqual( knp.Subtract().symbolic_call(x1, x2).dtype, expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_subtract_python_types(self, dtype): import jax.experimental import jax.numpy as jnp # We have to disable x64 for jax since jnp.subtract doesn't respect # JAX_DEFAULT_DTYPE_BITS=32 in `./conftest.py`. We also need to downcast # the expected dtype from 64 bit to 32 bit when using jax backend. with jax.experimental.disable_x64(): x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) # python int expected_dtype = standardize_dtype(jnp.subtract(x_jax, 1).dtype) if dtype == "float64": expected_dtype = "float64" elif dtype == "int64": expected_dtype = "int64" if backend.backend() == "jax": expected_dtype = expected_dtype.replace("64", "32") self.assertEqual( standardize_dtype(knp.subtract(x, 1).dtype), expected_dtype ) self.assertEqual( knp.Subtract().symbolic_call(x, 1).dtype, expected_dtype ) # python float expected_dtype = standardize_dtype(jnp.subtract(x_jax, 1.0).dtype) if dtype == "float64": expected_dtype = "float64" if backend.backend() == "jax": expected_dtype = expected_dtype.replace("64", "32") self.assertEqual( standardize_dtype(knp.subtract(x, 1.0).dtype), expected_dtype ) self.assertEqual( knp.Subtract().symbolic_call(x, 1.0).dtype, expected_dtype ) @parameterized.named_parameters( named_product( dtypes=list(itertools.combinations(ALL_DTYPES, 2)) + [("int8", "int8")] ) ) def test_matmul(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes # The shape of the matrix needs to meet the requirements of # torch._int_mm to test hardware-accelerated matmul x1 = knp.ones((17, 16), dtype=dtype1) x2 = knp.ones((16, 8), dtype=dtype2) x1_jax = jnp.ones((17, 16), dtype=dtype1) x2_jax = jnp.ones((16, 8), dtype=dtype2) if dtype1 == "int8" and dtype2 == "int8": preferred_element_type = "int32" else: preferred_element_type = None expected_dtype = standardize_dtype( jnp.matmul( x1_jax, x2_jax, preferred_element_type=preferred_element_type ).dtype ) self.assertEqual( standardize_dtype(knp.matmul(x1, x2).dtype), expected_dtype ) self.assertEqual( knp.Matmul().symbolic_call(x1, x2).dtype, expected_dtype ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_multiply(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((1,), dtype=dtype1) x2 = knp.ones((1,), dtype=dtype2) x1_jax = jnp.ones((1,), dtype=dtype1) x2_jax = jnp.ones((1,), dtype=dtype2) expected_dtype = standardize_dtype(jnp.multiply(x1_jax, x2_jax).dtype) self.assertEqual( standardize_dtype(knp.multiply(x1, x2).dtype), expected_dtype ) self.assertEqual( knp.Multiply().symbolic_call(x1, x2).dtype, expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_multiply_python_types(self, dtype): import jax.experimental import jax.numpy as jnp # We have to disable x64 for jax since jnp.multiply doesn't respect # JAX_DEFAULT_DTYPE_BITS=32 in `./conftest.py`. We also need to downcast # the expected dtype from 64 bit to 32 bit when using jax backend. with jax.experimental.disable_x64(): x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) # python int expected_dtype = standardize_dtype(jnp.multiply(x_jax, 1).dtype) if dtype == "float64": expected_dtype = "float64" elif dtype == "int64": expected_dtype = "int64" if backend.backend() == "jax": expected_dtype = expected_dtype.replace("64", "32") self.assertEqual( standardize_dtype(knp.multiply(x, 1).dtype), expected_dtype ) self.assertEqual( knp.Multiply().symbolic_call(x, 1).dtype, expected_dtype ) # python float expected_dtype = standardize_dtype(jnp.multiply(x_jax, 1.0).dtype) if dtype == "float64": expected_dtype = "float64" if backend.backend() == "jax": expected_dtype = expected_dtype.replace("64", "32") self.assertEqual( standardize_dtype(knp.multiply(x, 1.0).dtype), expected_dtype ) self.assertEqual( knp.Multiply().symbolic_call(x, 1.0).dtype, expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_mean(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.mean(x_jax).dtype) if dtype == "int64": expected_dtype = "float32" self.assertEqual(standardize_dtype(knp.mean(x).dtype), expected_dtype) self.assertEqual(knp.Mean().symbolic_call(x).dtype, expected_dtype) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_max(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.max(x_jax).dtype) self.assertEqual(standardize_dtype(knp.max(x).dtype), expected_dtype) self.assertEqual(knp.Max().symbolic_call(x).dtype, expected_dtype) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_ones(self, dtype): import jax.numpy as jnp expected_dtype = standardize_dtype(jnp.ones([2, 3], dtype=dtype).dtype) self.assertEqual( standardize_dtype(knp.ones([2, 3], dtype=dtype).dtype), expected_dtype, ) self.assertEqual( standardize_dtype( knp.Ones().symbolic_call([2, 3], dtype=dtype).dtype ), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_zeros(self, dtype): import jax.numpy as jnp expected_dtype = standardize_dtype(jnp.zeros([2, 3], dtype=dtype).dtype) self.assertEqual( standardize_dtype(knp.zeros([2, 3], dtype=dtype).dtype), expected_dtype, ) self.assertEqual( standardize_dtype( knp.Zeros().symbolic_call([2, 3], dtype=dtype).dtype ), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_absolute(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.absolute(x_jax).dtype) self.assertEqual( standardize_dtype(knp.absolute(x).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Absolute().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_all(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.all(x_jax).dtype) self.assertEqual(standardize_dtype(knp.all(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.All().symbolic_call(x).dtype), expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_amax(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.amax(x_jax).dtype) self.assertEqual(standardize_dtype(knp.amax(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Amax().symbolic_call(x).dtype), expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_amin(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.amin(x_jax).dtype) self.assertEqual(standardize_dtype(knp.amin(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Amin().symbolic_call(x).dtype), expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_any(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.any(x_jax).dtype) self.assertEqual(standardize_dtype(knp.any(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Any().symbolic_call(x).dtype), expected_dtype ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_append(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((1,), dtype=dtype1) x2 = knp.ones((1,), dtype=dtype2) x1_jax = jnp.ones((1,), dtype=dtype1) x2_jax = jnp.ones((1,), dtype=dtype2) expected_dtype = standardize_dtype(jnp.append(x1_jax, x2_jax).dtype) self.assertEqual( standardize_dtype(knp.append(x1, x2).dtype), expected_dtype ) self.assertEqual( knp.Append().symbolic_call(x1, x2).dtype, expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_argmax(self, dtype): import jax.numpy as jnp if dtype == "bool": value = [[True, False, True], [False, True, False]] else: value = [[1, 2, 3], [3, 2, 1]] x = knp.array(value, dtype=dtype) x_jax = jnp.array(value, dtype=dtype) expected_dtype = standardize_dtype(jnp.argmax(x_jax).dtype) self.assertEqual(standardize_dtype(knp.argmax(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Argmax().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_argmin(self, dtype): import jax.numpy as jnp if dtype == "bool": value = [[True, False, True], [False, True, False]] else: value = [[1, 2, 3], [3, 2, 1]] x = knp.array(value, dtype=dtype) x_jax = jnp.array(value, dtype=dtype) expected_dtype = standardize_dtype(jnp.argmin(x_jax).dtype) self.assertEqual(standardize_dtype(knp.argmin(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Argmin().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_argsort(self, dtype): import jax.numpy as jnp if dtype == "bool": value = [[True, False, True], [False, True, False]] else: value = [[1, 2, 3], [4, 5, 6]] x = knp.array(value, dtype=dtype) x_jax = jnp.array(value, dtype=dtype) expected_dtype = standardize_dtype(jnp.argsort(x_jax).dtype) self.assertEqual( standardize_dtype(knp.argsort(x).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Argsort().symbolic_call(x).dtype), expected_dtype, ) @parameterized.parameters( (10, None, 1, None), (0, 10, 1, None), (0, 10, 0.5, None), (10.0, None, 1, None), (0, 10.0, 1, None), (0.0, 10, 1, None), (10, None, 1, "float32"), (10, None, 1, "int32"), (10, None, 1, "int16"), (10, None, 1, "float16"), ) def test_arange(self, start, stop, step, dtype): import jax.numpy as jnp expected_dtype = standardize_dtype( jnp.arange(start, stop, step, dtype).dtype ) self.assertEqual( standardize_dtype(knp.arange(start, stop, step, dtype).dtype), expected_dtype, ) self.assertEqual( standardize_dtype( knp.Arange().symbolic_call(start, stop, step, dtype).dtype ), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_arccos(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.arccos(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual(standardize_dtype(knp.arccos(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Arccos().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_arccosh(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.arccosh(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual( standardize_dtype(knp.arccosh(x).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Arccosh().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_arcsin(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.arcsin(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual(standardize_dtype(knp.arcsin(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Arcsin().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_arcsinh(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.arcsinh(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual( standardize_dtype(knp.arcsinh(x).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Arcsinh().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_arctan(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.arctan(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual(standardize_dtype(knp.arctan(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Arctan().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_arctan2(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((1,), dtype=dtype1) x2 = knp.ones((1,), dtype=dtype2) x1_jax = jnp.ones((1,), dtype=dtype1) x2_jax = jnp.ones((1,), dtype=dtype2) expected_dtype = standardize_dtype(jnp.arctan2(x1_jax, x2_jax).dtype) if dtype1 is not None and "float" not in dtype1: if dtype2 is not None and "float" not in dtype2: if "int64" in (dtype1, dtype2) or "uint32" in (dtype1, dtype2): expected_dtype = backend.floatx() self.assertEqual( standardize_dtype(knp.arctan2(x1, x2).dtype), expected_dtype ) self.assertEqual( knp.Arctan2().symbolic_call(x1, x2).dtype, expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_arctanh(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.arctanh(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual( standardize_dtype(knp.arctanh(x).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Arctanh().symbolic_call(x).dtype), expected_dtype, ) @parameterized.parameters( (bool(0), "bool"), (int(0), "int32"), (float(0), backend.floatx()), ([False, True, False], "bool"), ([1, 2, 3], "int32"), ([1.0, 2.0, 3.0], backend.floatx()), ([1, 2.0, 3], backend.floatx()), ([[False], [True], [False]], "bool"), ([[1], [2], [3]], "int32"), ([[1], [2.0], [3]], backend.floatx()), *[ (np.array(0, dtype=dtype), dtype) for dtype in ALL_DTYPES if dtype is not None ], ) def test_array(self, x, expected_dtype): # We have to disable x64 for jax backend since jnp.array doesn't respect # JAX_DEFAULT_DTYPE_BITS=32 in `./conftest.py`. We also need to downcast # the expected dtype from 64 bit to 32 bit. if backend.backend() == "jax": import jax.experimental jax_disable_x64 = jax.experimental.disable_x64() expected_dtype = expected_dtype.replace("64", "32") else: jax_disable_x64 = contextlib.nullcontext() with jax_disable_x64: self.assertEqual( standardize_dtype(knp.array(x).dtype), expected_dtype ) # TODO: support the assertion of knp.Array @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_average(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((1,), dtype=dtype1) x2 = knp.ones((1,), dtype=dtype2) x1_jax = jnp.ones((1,), dtype=dtype1) x2_jax = jnp.ones((1,), dtype=dtype2) expected_dtype = standardize_dtype( jnp.average(x1_jax, weights=x2_jax).dtype ) if dtype1 is not None and "float" not in dtype1: if dtype2 is not None and "float" not in dtype2: if "int64" in (dtype1, dtype2) or "uint32" in (dtype1, dtype2): expected_dtype = backend.floatx() self.assertEqual( standardize_dtype(knp.average(x1, weights=x2).dtype), expected_dtype ) self.assertEqual( knp.Average().symbolic_call(x1, weights=x2).dtype, expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_broadcast_to(self, dtype): import jax.numpy as jnp x = knp.ones((3,), dtype=dtype) x_jax = jnp.ones((3,), dtype=dtype) expected_dtype = standardize_dtype( jnp.broadcast_to(x_jax, (3, 3)).dtype ) self.assertEqual( standardize_dtype(knp.broadcast_to(x, (3, 3)).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.BroadcastTo((3, 3)).symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_ceil(self, dtype): import jax.numpy as jnp if dtype is None: dtype = backend.floatx() if dtype == "bool": value = [[True, False, True], [True, False, True]] elif "int" in dtype: value = [[1, 2, 2], [2, 11, 5]] else: value = [[1.2, 2.1, 2.5], [2.4, 11.9, 5.5]] x = knp.array(value, dtype=dtype) x_jax = jnp.array(value, dtype=dtype) expected_dtype = standardize_dtype(jnp.ceil(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual(standardize_dtype(knp.ceil(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Ceil().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_clip(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.clip(x_jax, -2, 2).dtype) if dtype == "bool": expected_dtype = "int32" self.assertEqual( standardize_dtype(knp.clip(x, -2, 2).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Clip(-2, 2).symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_concatenate(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((1,), dtype=dtype1) x2 = knp.ones((1,), dtype=dtype2) x1_jax = jnp.ones((1,), dtype=dtype1) x2_jax = jnp.ones((1,), dtype=dtype2) expected_dtype = standardize_dtype( jnp.concatenate([x1_jax, x2_jax]).dtype ) self.assertEqual( standardize_dtype(knp.concatenate([x1, x2]).dtype), expected_dtype ) self.assertEqual( knp.Concatenate().symbolic_call([x1, x2]).dtype, expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_cos(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.cos(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual(standardize_dtype(knp.cos(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Cos().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_cosh(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.cosh(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual(standardize_dtype(knp.cosh(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Cosh().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_copy(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.copy(x_jax).dtype) self.assertEqual(standardize_dtype(knp.copy(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Copy().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_count_nonzero(self, dtype): x = knp.ones((1,), dtype=dtype) expected_dtype = "int32" self.assertEqual( standardize_dtype(knp.count_nonzero(x).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.CountNonzero().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_cross(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((1, 1, 3), dtype=dtype1) x2 = knp.ones((1, 1, 3), dtype=dtype2) x1_jax = jnp.ones((1, 1, 3), dtype=dtype1) x2_jax = jnp.ones((1, 1, 3), dtype=dtype2) expected_dtype = standardize_dtype(jnp.cross(x1_jax, x2_jax).dtype) self.assertEqual( standardize_dtype(knp.cross(x1, x2).dtype), expected_dtype ) self.assertEqual( knp.Cross().symbolic_call(x1, x2).dtype, expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_cumprod(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.cumprod(x_jax).dtype) self.assertEqual( standardize_dtype(knp.cumprod(x).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Cumprod().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_cumsum(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.cumsum(x_jax).dtype) self.assertEqual(standardize_dtype(knp.cumsum(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Cumsum().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_diag(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.diag(x_jax).dtype) self.assertEqual(standardize_dtype(knp.diag(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Diag().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_diagonal(self, dtype): import jax.numpy as jnp x = knp.ones((1, 1, 1), dtype=dtype) x_jax = jnp.ones((1, 1, 1), dtype=dtype) expected_dtype = standardize_dtype(jnp.diagonal(x_jax).dtype) self.assertEqual( standardize_dtype(knp.diagonal(x).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Diagonal().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_diff(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.diff(x_jax).dtype) self.assertEqual(standardize_dtype(knp.diff(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Diff().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_digitize(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) bins = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) x_bins = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.digitize(x_jax, x_bins).dtype) self.assertEqual( standardize_dtype(knp.digitize(x, bins).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Digitize().symbolic_call(x, bins).dtype), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_divide(self, dtypes): import jax.experimental import jax.numpy as jnp # We have to disable x64 for jax since jnp.divide doesn't respect # JAX_DEFAULT_DTYPE_BITS=32 in `./conftest.py`. We also need to downcast # the expected dtype from 64 bit to 32 bit when using jax backend. with jax.experimental.disable_x64(): dtype1, dtype2 = dtypes x1 = knp.ones((1,), dtype=dtype1) x2 = knp.ones((1,), dtype=dtype2) x1_jax = jnp.ones((1,), dtype=dtype1) x2_jax = jnp.ones((1,), dtype=dtype2) expected_dtype = standardize_dtype(jnp.divide(x1_jax, x2_jax).dtype) if "float64" in (dtype1, dtype2): expected_dtype = "float64" if backend.backend() == "jax": expected_dtype = expected_dtype.replace("64", "32") self.assertEqual( standardize_dtype(knp.divide(x1, x2).dtype), expected_dtype ) self.assertEqual( knp.Divide().symbolic_call(x1, x2).dtype, expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_divide_python_types(self, dtype): import jax.experimental import jax.numpy as jnp # We have to disable x64 for jax since jnp.divide doesn't respect # JAX_DEFAULT_DTYPE_BITS=32 in `./conftest.py`. We also need to downcast # the expected dtype from 64 bit to 32 bit when using jax backend. with jax.experimental.disable_x64(): x = knp.ones((), dtype=dtype) x_jax = jnp.ones((), dtype=dtype) # python int expected_dtype = standardize_dtype(jnp.divide(x_jax, 1).dtype) if dtype == "float64": expected_dtype = "float64" if backend.backend() == "jax": expected_dtype = expected_dtype.replace("64", "32") self.assertEqual( standardize_dtype(knp.divide(x, 1).dtype), expected_dtype ) self.assertEqual( knp.Divide().symbolic_call(x, 1).dtype, expected_dtype ) # python float expected_dtype = standardize_dtype(jnp.divide(x_jax, 1.0).dtype) if dtype == "float64": expected_dtype = "float64" if backend.backend() == "jax": expected_dtype = expected_dtype.replace("64", "32") self.assertEqual( standardize_dtype(knp.divide(x, 1.0).dtype), expected_dtype ) self.assertEqual( knp.Divide().symbolic_call(x, 1.0).dtype, expected_dtype ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_dot(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((2, 3, 4), dtype=dtype1) x2 = knp.ones((4, 3), dtype=dtype2) x1_jax = jnp.ones((2, 3, 4), dtype=dtype1) x2_jax = jnp.ones((4, 3), dtype=dtype2) expected_dtype = standardize_dtype(jnp.dot(x1_jax, x2_jax).dtype) self.assertEqual( standardize_dtype(knp.dot(x1, x2).dtype), expected_dtype ) self.assertEqual(knp.Dot().symbolic_call(x1, x2).dtype, expected_dtype) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_einsum(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((1, 1, 1), dtype=dtype1) x2 = knp.ones((1, 1, 1), dtype=dtype2) x1_jax = jnp.ones((1, 1, 1), dtype=dtype1) x2_jax = jnp.ones((1, 1, 1), dtype=dtype2) subscripts = "ijk,lkj->il" expected_dtype = standardize_dtype( jnp.einsum(subscripts, x1_jax, x2_jax).dtype ) self.assertEqual( standardize_dtype(knp.einsum(subscripts, x1, x2).dtype), expected_dtype, ) self.assertEqual( standardize_dtype( knp.Einsum(subscripts).symbolic_call(x1, x2).dtype ), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_empty(self, dtype): import jax.numpy as jnp expected_dtype = standardize_dtype(jnp.empty([2, 3], dtype=dtype).dtype) self.assertEqual( standardize_dtype(knp.empty([2, 3], dtype=dtype).dtype), expected_dtype, ) self.assertEqual( standardize_dtype( knp.Empty().symbolic_call([2, 3], dtype=dtype).dtype ), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_equal(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((), dtype=dtype1) x2 = knp.ones((), dtype=dtype2) x1_jax = jnp.ones((), dtype=dtype1) x2_jax = jnp.ones((), dtype=dtype2) expected_dtype = standardize_dtype(jnp.equal(x1_jax, x2_jax).dtype) self.assertEqual( standardize_dtype(knp.equal(x1, x2).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Equal().symbolic_call(x1, x2).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_exp(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.exp(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual(standardize_dtype(knp.exp(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Exp().symbolic_call(x).dtype), expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_expand_dims(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.expand_dims(x_jax, -1).dtype) self.assertEqual( standardize_dtype(knp.expand_dims(x, -1).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.ExpandDims(-1).symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_expm1(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.expm1(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual(standardize_dtype(knp.expm1(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Expm1().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_eye(self, dtype): import jax.numpy as jnp expected_dtype = standardize_dtype(jnp.eye(3, dtype=dtype).dtype) self.assertEqual( standardize_dtype(knp.eye(3, dtype=dtype).dtype), expected_dtype, ) self.assertEqual( standardize_dtype(knp.Eye().symbolic_call(3, dtype=dtype).dtype), expected_dtype, ) expected_dtype = standardize_dtype(jnp.eye(3, 4, 1, dtype=dtype).dtype) self.assertEqual( standardize_dtype(knp.eye(3, 4, 1, dtype=dtype).dtype), expected_dtype, ) self.assertEqual( standardize_dtype( knp.Eye().symbolic_call(3, 4, 1, dtype=dtype).dtype ), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_flip(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.flip(x_jax, -1).dtype) self.assertEqual( standardize_dtype(knp.flip(x, -1).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Flip(-1).symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_floor(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.floor(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual(standardize_dtype(knp.floor(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Floor().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_floor_divide(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((), dtype=dtype1) x2 = knp.ones((), dtype=dtype2) x1_jax = jnp.ones((), dtype=dtype1) x2_jax = jnp.ones((), dtype=dtype2) expected_dtype = standardize_dtype( jnp.floor_divide(x1_jax, x2_jax).dtype ) self.assertEqual( standardize_dtype(knp.floor_divide(x1, x2).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.FloorDivide().symbolic_call(x1, x2).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_floor_divide_python_types(self, dtype): import jax.experimental import jax.numpy as jnp # We have to disable x64 for jax since jnp.floor_divide doesn't respect # JAX_DEFAULT_DTYPE_BITS=32 in `./conftest.py`. We also need to downcast # the expected dtype from 64 bit to 32 bit when using jax backend. with jax.experimental.disable_x64(): x = knp.ones((), dtype=dtype) x_jax = jnp.ones((), dtype=dtype) # python int expected_dtype = standardize_dtype(jnp.floor_divide(x_jax, 1).dtype) if dtype == "float64": expected_dtype = "float64" elif dtype == "int64": expected_dtype = "int64" if backend.backend() == "jax": expected_dtype = expected_dtype.replace("64", "32") self.assertEqual( standardize_dtype(knp.floor_divide(x, 1).dtype), expected_dtype ) self.assertEqual( knp.FloorDivide().symbolic_call(x, 1).dtype, expected_dtype ) # python float expected_dtype = standardize_dtype( jnp.floor_divide(x_jax, 1.0).dtype ) if dtype == "float64": expected_dtype = "float64" if backend.backend() == "jax": expected_dtype = expected_dtype.replace("64", "32") self.assertEqual( standardize_dtype(knp.floor_divide(x, 1.0).dtype), expected_dtype, ) self.assertEqual( knp.FloorDivide().symbolic_call(x, 1.0).dtype, expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_full(self, dtype): import jax.numpy as jnp expected_dtype = standardize_dtype(jnp.full((), 0, dtype=dtype).dtype) if dtype is None: expected_dtype = backend.floatx() self.assertEqual( standardize_dtype(knp.full((), 0, dtype=dtype).dtype), expected_dtype, ) self.assertEqual( standardize_dtype( knp.Full().symbolic_call((), 0, dtype=dtype).dtype ), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_full_like(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.full_like(x_jax, 0).dtype) self.assertEqual( standardize_dtype(knp.full_like(x, 0).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.FullLike().symbolic_call(x, 0).dtype), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_greater(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((), dtype=dtype1) x2 = knp.ones((), dtype=dtype2) x1_jax = jnp.ones((), dtype=dtype1) x2_jax = jnp.ones((), dtype=dtype2) expected_dtype = standardize_dtype(jnp.greater(x1_jax, x2_jax).dtype) self.assertEqual( standardize_dtype(knp.greater(x1, x2).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Greater().symbolic_call(x1, x2).dtype), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_greater_equal(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((), dtype=dtype1) x2 = knp.ones((), dtype=dtype2) x1_jax = jnp.ones((), dtype=dtype1) x2_jax = jnp.ones((), dtype=dtype2) expected_dtype = standardize_dtype( jnp.greater_equal(x1_jax, x2_jax).dtype ) self.assertEqual( standardize_dtype(knp.greater_equal(x1, x2).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.GreaterEqual().symbolic_call(x1, x2).dtype), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_hstack(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((1, 1), dtype=dtype1) x2 = knp.ones((1, 1), dtype=dtype2) x1_jax = jnp.ones((1, 1), dtype=dtype1) x2_jax = jnp.ones((1, 1), dtype=dtype2) expected_dtype = standardize_dtype(jnp.hstack([x1_jax, x2_jax]).dtype) self.assertEqual( standardize_dtype(knp.hstack([x1, x2]).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Hstack().symbolic_call([x1, x2]).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_identity(self, dtype): import jax.numpy as jnp expected_dtype = standardize_dtype(jnp.identity(3, dtype=dtype).dtype) self.assertEqual( standardize_dtype(knp.identity(3, dtype=dtype).dtype), expected_dtype, ) self.assertEqual( standardize_dtype( knp.Identity().symbolic_call(3, dtype=dtype).dtype ), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_isclose(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((), dtype=dtype1) x2 = knp.ones((), dtype=dtype2) x1_jax = jnp.ones((), dtype=dtype1) x2_jax = jnp.ones((), dtype=dtype2) expected_dtype = standardize_dtype(jnp.isclose(x1_jax, x2_jax).dtype) self.assertEqual( standardize_dtype(knp.isclose(x1, x2).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Isclose().symbolic_call(x1, x2).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_isfinite(self, dtype): import jax.numpy as jnp x = knp.ones((), dtype=dtype) x_jax = jnp.ones((), dtype=dtype) expected_dtype = standardize_dtype(jnp.isfinite(x_jax).dtype) self.assertEqual( standardize_dtype(knp.isfinite(x).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Isfinite().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_isinf(self, dtype): import jax.numpy as jnp x = knp.ones((), dtype=dtype) x_jax = jnp.ones((), dtype=dtype) expected_dtype = standardize_dtype(jnp.isinf(x_jax).dtype) self.assertEqual(standardize_dtype(knp.isinf(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Isinf().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_isnan(self, dtype): import jax.numpy as jnp x = knp.ones((), dtype=dtype) x_jax = jnp.ones((), dtype=dtype) expected_dtype = standardize_dtype(jnp.isnan(x_jax).dtype) self.assertEqual(standardize_dtype(knp.isnan(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Isnan().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_less(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((), dtype=dtype1) x2 = knp.ones((), dtype=dtype2) x1_jax = jnp.ones((), dtype=dtype1) x2_jax = jnp.ones((), dtype=dtype2) expected_dtype = standardize_dtype(jnp.less(x1_jax, x2_jax).dtype) self.assertEqual( standardize_dtype(knp.less(x1, x2).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Less().symbolic_call(x1, x2).dtype), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_less_equal(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((), dtype=dtype1) x2 = knp.ones((), dtype=dtype2) x1_jax = jnp.ones((), dtype=dtype1) x2_jax = jnp.ones((), dtype=dtype2) expected_dtype = standardize_dtype(jnp.less_equal(x1_jax, x2_jax).dtype) self.assertEqual( standardize_dtype(knp.less_equal(x1, x2).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.LessEqual().symbolic_call(x1, x2).dtype), expected_dtype, ) @parameterized.named_parameters( named_product( start_and_stop=[ [0, 10], [0.5, 10.5], [np.array([0, 1], "int32"), np.array([10, 20], "int32")], [np.array([0, 1], "float32"), np.array([10, 20], "float32")], ], num=[0, 1, 5], dtype=FLOAT_DTYPES + [None], ) ) def test_linspace(self, start_and_stop, num, dtype): import jax.numpy as jnp start, stop = start_and_stop expected_dtype = standardize_dtype( jnp.linspace(start, stop, num, dtype=dtype).dtype ) self.assertEqual( standardize_dtype( knp.linspace(start, stop, num, dtype=dtype).dtype ), expected_dtype, ) self.assertEqual( standardize_dtype( knp.Linspace(num, dtype=dtype).symbolic_call(start, stop).dtype ), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_log(self, dtype): import jax.numpy as jnp x = knp.ones((3, 3), dtype=dtype) x_jax = jnp.ones((3, 3), dtype=dtype) expected_dtype = standardize_dtype(jnp.log(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual(standardize_dtype(knp.log(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Log().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_log10(self, dtype): import jax.numpy as jnp x = knp.ones((3, 3), dtype=dtype) x_jax = jnp.ones((3, 3), dtype=dtype) expected_dtype = standardize_dtype(jnp.log10(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual(standardize_dtype(knp.log10(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Log10().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_log1p(self, dtype): import jax.numpy as jnp x = knp.ones((3, 3), dtype=dtype) x_jax = jnp.ones((3, 3), dtype=dtype) expected_dtype = standardize_dtype(jnp.log1p(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual(standardize_dtype(knp.log1p(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Log1p().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_log2(self, dtype): import jax.numpy as jnp x = knp.ones((3, 3), dtype=dtype) x_jax = jnp.ones((3, 3), dtype=dtype) expected_dtype = standardize_dtype(jnp.log2(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual(standardize_dtype(knp.log2(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Log2().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_logaddexp(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((3, 3), dtype=dtype1) x2 = knp.ones((3, 3), dtype=dtype2) x1_jax = jnp.ones((3, 3), dtype=dtype1) x2_jax = jnp.ones((3, 3), dtype=dtype2) expected_dtype = standardize_dtype(jnp.logaddexp(x1_jax, x2_jax).dtype) # jnp.logaddexp will promote "int64" and "uint32" to "float64" # force the promotion to `backend.floatx()` if dtype1 is not None and "float" not in dtype1: if dtype2 is not None and "float" not in dtype2: if "int64" in (dtype1, dtype2) or "uint32" in (dtype1, dtype2): expected_dtype = backend.floatx() self.assertEqual( standardize_dtype(knp.logaddexp(x1, x2).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Logaddexp().symbolic_call(x1, x2).dtype), expected_dtype, ) @parameterized.named_parameters( named_product( start_and_stop=[ [0, 10], [0.5, 10.5], [np.array([0, 1], "int32"), np.array([10, 20], "int32")], [np.array([0, 1], "float32"), np.array([10, 20], "float32")], ], num=[0, 1, 5], dtype=FLOAT_DTYPES + [None], ) ) def test_logspace(self, start_and_stop, num, dtype): import jax.numpy as jnp start, stop = start_and_stop expected_dtype = standardize_dtype( jnp.logspace(start, stop, num, dtype=dtype).dtype ) self.assertEqual( standardize_dtype( knp.logspace(start, stop, num, dtype=dtype).dtype ), expected_dtype, ) self.assertEqual( standardize_dtype( knp.Logspace(num, dtype=dtype).symbolic_call(start, stop).dtype ), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_logical_and(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((), dtype=dtype1) x2 = knp.ones((), dtype=dtype2) x1_jax = jnp.ones((), dtype=dtype1) x2_jax = jnp.ones((), dtype=dtype2) expected_dtype = standardize_dtype( jnp.logical_and(x1_jax, x2_jax).dtype ) self.assertEqual( standardize_dtype(knp.logical_and(x1, x2).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.LogicalAnd().symbolic_call(x1, x2).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_logical_not(self, dtype): import jax.numpy as jnp x = knp.ones((), dtype=dtype) x_jax = jnp.ones((), dtype=dtype) expected_dtype = standardize_dtype(jnp.logical_not(x_jax).dtype) self.assertEqual( standardize_dtype(knp.logical_not(x).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.LogicalNot().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_logical_or(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((), dtype=dtype1) x2 = knp.ones((), dtype=dtype2) x1_jax = jnp.ones((), dtype=dtype1) x2_jax = jnp.ones((), dtype=dtype2) expected_dtype = standardize_dtype(jnp.logical_or(x1_jax, x2_jax).dtype) self.assertEqual( standardize_dtype(knp.logical_or(x1, x2).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.LogicalOr().symbolic_call(x1, x2).dtype), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_logical_xor(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((), dtype=dtype1) x2 = knp.ones((), dtype=dtype2) x1_jax = jnp.ones((), dtype=dtype1) x2_jax = jnp.ones((), dtype=dtype2) expected_dtype = standardize_dtype( jnp.logical_xor(x1_jax, x2_jax).dtype ) self.assertEqual( standardize_dtype(knp.logical_xor(x1, x2).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.LogicalXor().symbolic_call(x1, x2).dtype), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_maximum(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((), dtype=dtype1) x2 = knp.ones((), dtype=dtype2) x1_jax = jnp.ones((), dtype=dtype1) x2_jax = jnp.ones((), dtype=dtype2) expected_dtype = standardize_dtype(jnp.maximum(x1_jax, x2_jax).dtype) self.assertEqual( standardize_dtype(knp.maximum(x1, x2).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Maximum().symbolic_call(x1, x2).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_maximum_python_types(self, dtype): import jax.experimental import jax.numpy as jnp # We have to disable x64 for jax since jnp.maximum doesn't respect # JAX_DEFAULT_DTYPE_BITS=32 in `./conftest.py`. with jax.experimental.disable_x64(): x = knp.ones((), dtype=dtype) x_jax = jnp.ones((), dtype=dtype) # python int expected_dtype = standardize_dtype(jnp.maximum(x_jax, 1).dtype) if dtype == "float64": expected_dtype = "float64" elif dtype == "int64": expected_dtype = "int64" if backend.backend() == "jax": expected_dtype = expected_dtype.replace("64", "32") self.assertEqual( standardize_dtype(knp.maximum(x, 1).dtype), expected_dtype ) self.assertEqual( knp.Maximum().symbolic_call(x, 1).dtype, expected_dtype ) # python float expected_dtype = standardize_dtype(jnp.maximum(x_jax, 1.0).dtype) if dtype == "float64": expected_dtype = "float64" if backend.backend() == "jax": expected_dtype = expected_dtype.replace("64", "32") self.assertEqual( standardize_dtype(knp.maximum(x, 1.0).dtype), expected_dtype ) self.assertEqual( knp.Maximum().symbolic_call(x, 1.0).dtype, expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_median(self, dtype): import jax.numpy as jnp x = knp.ones((3, 3), dtype=dtype) x_jax = jnp.ones((3, 3), dtype=dtype) expected_dtype = standardize_dtype(jnp.median(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual(standardize_dtype(knp.median(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Median().symbolic_call(x).dtype), expected_dtype, ) self.assertEqual( standardize_dtype(knp.median(x, axis=1).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Median(axis=1).symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_meshgrid(self, dtype): import jax.numpy as jnp if dtype == "bool": self.skipTest("meshgrid doesn't support bool dtype") elif dtype is None: dtype = backend.floatx() x = knp.array([1, 2, 3], dtype=dtype) y = knp.array([4, 5, 6], dtype=dtype) x_jax = jnp.array([1, 2, 3], dtype=dtype) y_jax = jnp.array([4, 5, 6], dtype=dtype) expected_dtype = standardize_dtype(jnp.meshgrid(x_jax, y_jax)[0].dtype) self.assertEqual( standardize_dtype(knp.meshgrid(x, y)[0].dtype), expected_dtype ) self.assertEqual( knp.Meshgrid().symbolic_call(x, y)[0].dtype, expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_min(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.min(x_jax).dtype) self.assertEqual(standardize_dtype(knp.min(x).dtype), expected_dtype) self.assertEqual(knp.Min().symbolic_call(x).dtype, expected_dtype) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_minimum(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((), dtype=dtype1) x2 = knp.ones((), dtype=dtype2) x1_jax = jnp.ones((), dtype=dtype1) x2_jax = jnp.ones((), dtype=dtype2) expected_dtype = standardize_dtype(jnp.minimum(x1_jax, x2_jax).dtype) self.assertEqual( standardize_dtype(knp.minimum(x1, x2).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Minimum().symbolic_call(x1, x2).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_minimum_python_types(self, dtype): import jax.experimental import jax.numpy as jnp # We have to disable x64 for jax since jnp.minimum doesn't respect # JAX_DEFAULT_DTYPE_BITS=32 in `./conftest.py`. with jax.experimental.disable_x64(): x = knp.ones((), dtype=dtype) x_jax = jnp.ones((), dtype=dtype) # python int expected_dtype = standardize_dtype(jnp.minimum(x_jax, 1).dtype) if dtype == "float64": expected_dtype = "float64" elif dtype == "int64": expected_dtype = "int64" if backend.backend() == "jax": expected_dtype = expected_dtype.replace("64", "32") self.assertEqual( standardize_dtype(knp.minimum(x, 1).dtype), expected_dtype ) self.assertEqual( knp.Minimum().symbolic_call(x, 1).dtype, expected_dtype ) # python float expected_dtype = standardize_dtype(jnp.minimum(x_jax, 1.0).dtype) if dtype == "float64": expected_dtype = "float64" if backend.backend() == "jax": expected_dtype = expected_dtype.replace("64", "32") self.assertEqual( standardize_dtype(knp.minimum(x, 1.0).dtype), expected_dtype ) self.assertEqual( knp.Minimum().symbolic_call(x, 1.0).dtype, expected_dtype ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_mod(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((), dtype=dtype1) x2 = knp.ones((), dtype=dtype2) x1_jax = jnp.ones((), dtype=dtype1) x2_jax = jnp.ones((), dtype=dtype2) expected_dtype = standardize_dtype(jnp.mod(x1_jax, x2_jax).dtype) self.assertEqual( standardize_dtype(knp.mod(x1, x2).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Mod().symbolic_call(x1, x2).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_moveaxis(self, dtype): import jax.numpy as jnp x = knp.ones((1, 1, 1), dtype=dtype) x_jax = jnp.ones((1, 1, 1), dtype=dtype) expected_dtype = standardize_dtype(jnp.moveaxis(x_jax, -2, -1).dtype) self.assertEqual( standardize_dtype(knp.moveaxis(x, -2, -1).dtype), expected_dtype ) self.assertEqual( knp.Moveaxis(-2, -1).symbolic_call(x).dtype, expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_nan_to_num(self, dtype): import jax.numpy as jnp x = knp.ones((), dtype=dtype) x_jax = jnp.ones((), dtype=dtype) expected_dtype = standardize_dtype(jnp.nan_to_num(x_jax).dtype) self.assertEqual( standardize_dtype(knp.nan_to_num(x).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.NanToNum().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_nonzero(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.nonzero(x_jax)[0].dtype) self.assertEqual( standardize_dtype(knp.nonzero(x)[0].dtype), expected_dtype ) # TODO: verify Nonzero @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_not_equal(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((), dtype=dtype1) x2 = knp.ones((), dtype=dtype2) x1_jax = jnp.ones((), dtype=dtype1) x2_jax = jnp.ones((), dtype=dtype2) expected_dtype = standardize_dtype(jnp.not_equal(x1_jax, x2_jax).dtype) self.assertEqual( standardize_dtype(knp.not_equal(x1, x2).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.NotEqual().symbolic_call(x1, x2).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_ones_like(self, dtype): import jax.numpy as jnp x = knp.ones((), dtype=dtype) x_jax = jnp.ones((), dtype=dtype) expected_dtype = standardize_dtype(jnp.ones_like(x_jax).dtype) self.assertEqual( standardize_dtype(knp.ones_like(x).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.OnesLike().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_outer(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((1, 2), dtype=dtype1) x2 = knp.ones((3, 4), dtype=dtype2) x1_jax = jnp.ones((1, 2), dtype=dtype1) x2_jax = jnp.ones((3, 4), dtype=dtype2) expected_dtype = standardize_dtype(jnp.outer(x1_jax, x2_jax).dtype) self.assertEqual( standardize_dtype(knp.outer(x1, x2).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Outer().symbolic_call(x1, x2).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_pad(self, dtype): import jax.numpy as jnp x = knp.ones((2, 2, 2, 2), dtype=dtype) x_jax = jnp.ones((2, 2, 2, 2), dtype=dtype) pad_width = ((0, 0), (1, 1), (1, 1), (1, 1)) for mode in ("constant", "symmetric", "reflect"): expected_dtype = standardize_dtype( jnp.pad(x_jax, pad_width, mode).dtype ) self.assertEqual( standardize_dtype(knp.pad(x, pad_width, mode).dtype), expected_dtype, ) self.assertEqual( standardize_dtype( knp.Pad(pad_width, mode).symbolic_call(x).dtype ), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_power(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x = knp.ones((1,), dtype=dtype1) power = knp.ones((1,), dtype2) x_jax = jnp.ones((1,), dtype=dtype1) power_jax = jnp.ones((1,), dtype2) expected_dtype = standardize_dtype(jnp.power(x_jax, power_jax).dtype) self.assertEqual( standardize_dtype(knp.power(x, power).dtype), expected_dtype, ) self.assertEqual( standardize_dtype(knp.Power().symbolic_call(x, power).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_power_python_types(self, dtype): import jax.experimental import jax.numpy as jnp # We have to disable x64 for jax since jnp.power doesn't respect # JAX_DEFAULT_DTYPE_BITS=32 in `./conftest.py`. We also need to downcast # the expected dtype from 64 bit to 32 bit when using jax backend. with jax.experimental.disable_x64(): x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) # python int expected_dtype = standardize_dtype(jnp.power(x_jax, 1).dtype) if dtype == "float64": expected_dtype = "float64" elif dtype == "int64": expected_dtype = "int64" if backend.backend() == "jax": expected_dtype = expected_dtype.replace("64", "32") self.assertEqual( standardize_dtype(knp.power(x, 1).dtype), expected_dtype ) self.assertEqual( knp.Power().symbolic_call(x, 1).dtype, expected_dtype ) # python float expected_dtype = standardize_dtype(jnp.power(x_jax, 1.0).dtype) if dtype == "float64": expected_dtype = "float64" if backend.backend() == "jax": expected_dtype = expected_dtype.replace("64", "32") self.assertEqual( standardize_dtype(knp.power(x, 1.0).dtype), expected_dtype ) self.assertEqual( knp.Power().symbolic_call(x, 1.0).dtype, expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_prod(self, dtype): import jax.numpy as jnp x = knp.ones((1, 1, 1), dtype=dtype) x_jax = jnp.ones((1, 1, 1), dtype=dtype) expected_dtype = standardize_dtype(jnp.prod(x_jax).dtype) # TODO: torch doesn't support uint32 if backend.backend() == "torch" and expected_dtype == "uint32": expected_dtype = "int32" self.assertEqual( standardize_dtype(knp.prod(x).dtype), expected_dtype, ) self.assertEqual( standardize_dtype(knp.Prod().symbolic_call(x).dtype), expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_quantile(self, dtype): import jax.numpy as jnp x = knp.ones((3,), dtype=dtype) x_jax = jnp.ones((3,), dtype=dtype) expected_dtype = standardize_dtype(jnp.quantile(x_jax, 0.5).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual( standardize_dtype(knp.quantile(x, 0.5).dtype), expected_dtype, ) self.assertEqual( standardize_dtype(knp.Quantile().symbolic_call(x, 0.5).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_ravel(self, dtype): import jax.numpy as jnp x = knp.ones((), dtype=dtype) x_jax = jnp.ones((), dtype=dtype) expected_dtype = standardize_dtype(jnp.ravel(x_jax).dtype) self.assertEqual( standardize_dtype(knp.ravel(x).dtype), expected_dtype, ) self.assertEqual( standardize_dtype(knp.Ravel().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_repeat(self, dtype): import jax.numpy as jnp x = knp.ones((1, 1), dtype=dtype) x_jax = jnp.ones((1, 1), dtype=dtype) expected_dtype = standardize_dtype(jnp.repeat(x_jax, 2).dtype) self.assertEqual( standardize_dtype(knp.repeat(x, 2).dtype), expected_dtype, ) self.assertEqual( standardize_dtype(knp.Repeat(2).symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_reshape(self, dtype): import jax.numpy as jnp x = knp.ones((1, 1), dtype=dtype) x_jax = jnp.ones((1, 1), dtype=dtype) expected_dtype = standardize_dtype(jnp.reshape(x_jax, [1]).dtype) self.assertEqual( standardize_dtype(knp.reshape(x, [1]).dtype), expected_dtype, ) self.assertEqual( standardize_dtype(knp.Reshape([1]).symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_roll(self, dtype): import jax.numpy as jnp x = knp.ones((5,), dtype=dtype) x_jax = jnp.ones((5,), dtype=dtype) expected_dtype = standardize_dtype(jnp.roll(x_jax, 2).dtype) self.assertEqual( standardize_dtype(knp.roll(x, 2).dtype), expected_dtype, ) self.assertEqual( standardize_dtype(knp.Roll(2).symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_round(self, dtype): import jax.numpy as jnp if dtype == "bool": self.skipTest("round doesn't support bool dtype") x = knp.ones((), dtype=dtype) x_jax = jnp.ones((), dtype=dtype) expected_dtype = standardize_dtype(jnp.round(x_jax).dtype) self.assertEqual( standardize_dtype(knp.round(x).dtype), expected_dtype, ) self.assertEqual( standardize_dtype(knp.Round().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_sign(self, dtype): import jax.numpy as jnp if dtype == "bool": self.skipTest("sign doesn't support bool dtype") x = knp.ones((), dtype=dtype) x_jax = jnp.ones((), dtype=dtype) expected_dtype = standardize_dtype(jnp.sign(x_jax).dtype) self.assertEqual( standardize_dtype(knp.sign(x).dtype), expected_dtype, ) self.assertEqual( standardize_dtype(knp.Sign().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_sin(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.sin(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual(standardize_dtype(knp.sin(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Sin().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_sinh(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.sinh(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual(standardize_dtype(knp.sinh(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Sinh().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_sort(self, dtype): import jax.numpy as jnp x = knp.ones((2,), dtype=dtype) x_jax = jnp.ones((2,), dtype=dtype) expected_dtype = standardize_dtype(jnp.sort(x_jax).dtype) self.assertEqual( standardize_dtype(knp.sort(x).dtype), expected_dtype, ) self.assertEqual( standardize_dtype(knp.Sort().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_split(self, dtype): import jax.numpy as jnp x = knp.ones((1, 2), dtype=dtype) x_jax = jnp.ones((1, 2), dtype=dtype) expected_dtype = standardize_dtype(jnp.split(x_jax, 2, -1)[0].dtype) self.assertEqual( standardize_dtype(knp.split(x, 2, -1)[0].dtype), expected_dtype, ) self.assertEqual( standardize_dtype(knp.Split(2, -1).symbolic_call(x)[0].dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_sqrt(self, dtype): import jax.numpy as jnp x1 = knp.ones((1,), dtype=dtype) x1_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.sqrt(x1_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual(standardize_dtype(knp.sqrt(x1).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Sqrt().symbolic_call(x1).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_square(self, dtype): import jax.numpy as jnp x = knp.ones((), dtype=dtype) x_jax = jnp.ones((), dtype=dtype) expected_dtype = standardize_dtype(jnp.square(x_jax).dtype) self.assertEqual( standardize_dtype(knp.square(x).dtype), expected_dtype, ) self.assertEqual( standardize_dtype(knp.Square().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_squeeze(self, dtype): import jax.numpy as jnp x = knp.ones((1, 1), dtype=dtype) x_jax = jnp.ones((1, 1), dtype=dtype) expected_dtype = standardize_dtype(jnp.squeeze(x_jax).dtype) self.assertEqual( standardize_dtype(knp.squeeze(x).dtype), expected_dtype, ) self.assertEqual( standardize_dtype(knp.Squeeze().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_stack(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((1,), dtype=dtype1) x2 = knp.ones((1,), dtype=dtype2) x1_jax = jnp.ones((1,), dtype=dtype1) x2_jax = jnp.ones((1,), dtype=dtype2) expected_dtype = standardize_dtype(jnp.stack([x1_jax, x2_jax]).dtype) self.assertEqual( standardize_dtype(knp.stack([x1, x2]).dtype), expected_dtype ) self.assertEqual( knp.Stack().symbolic_call([x1, x2]).dtype, expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_std(self, dtype): import jax.numpy as jnp x = knp.ones((), dtype=dtype) x_jax = jnp.ones((), dtype=dtype) expected_dtype = standardize_dtype(jnp.std(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual( standardize_dtype(knp.std(x).dtype), expected_dtype, ) self.assertEqual( standardize_dtype(knp.Std().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_sum(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.sum(x_jax).dtype) # TODO: torch doesn't support uint32 if backend.backend() == "torch" and expected_dtype == "uint32": expected_dtype = "int32" self.assertEqual(standardize_dtype(knp.sum(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Sum().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_swapaxes(self, dtype): import jax.numpy as jnp x = knp.ones((1, 1), dtype=dtype) x_jax = jnp.ones((1, 1), dtype=dtype) expected_dtype = standardize_dtype(jnp.swapaxes(x_jax, -1, -2).dtype) self.assertEqual( standardize_dtype(knp.swapaxes(x, -1, -2).dtype), expected_dtype, ) self.assertEqual( standardize_dtype(knp.Swapaxes(-1, -2).symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_take(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.take(x_jax, 0).dtype) self.assertEqual( standardize_dtype(knp.take(x, 0).dtype), expected_dtype, ) self.assertEqual( standardize_dtype(knp.Take().symbolic_call(x, 0).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_take_along_axis(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) indices = knp.zeros((1,), dtype="int32") x_jax = jnp.ones((1,), dtype=dtype) indices_jax = jnp.zeros((1,), dtype="int32") expected_dtype = standardize_dtype( jnp.take_along_axis(x_jax, indices_jax, 0).dtype ) self.assertEqual( standardize_dtype(knp.take_along_axis(x, indices, 0).dtype), expected_dtype, ) self.assertEqual( standardize_dtype( knp.TakeAlongAxis(0).symbolic_call(x, indices).dtype ), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_tan(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.tan(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual(standardize_dtype(knp.tan(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Tan().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_tanh(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.tanh(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual(standardize_dtype(knp.tanh(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Tanh().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_tensordot(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((1, 1), dtype=dtype1) x2 = knp.ones((1, 1), dtype=dtype2) x1_jax = jnp.ones((1, 1), dtype=dtype1) x2_jax = jnp.ones((1, 1), dtype=dtype2) expected_dtype = standardize_dtype( jnp.tensordot(x1_jax, x2_jax, 2).dtype ) self.assertEqual( standardize_dtype(knp.tensordot(x1, x2, 2).dtype), expected_dtype ) self.assertEqual( knp.Tensordot(2).symbolic_call(x1, x2).dtype, expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_tile(self, dtype): import jax.numpy as jnp x = knp.ones((1,), dtype=dtype) x_jax = jnp.ones((1,), dtype=dtype) expected_dtype = standardize_dtype(jnp.tile(x_jax, [1]).dtype) self.assertEqual( standardize_dtype(knp.tile(x, [1]).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Tile([1]).symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_trace(self, dtype): import jax.experimental import jax.numpy as jnp # We have to disable x64 for jax since jnp.true_divide doesn't respect # JAX_DEFAULT_DTYPE_BITS=32 in `./conftest.py`. We also need to downcast # the expected dtype from 64 bit to 32 bit when using jax backend. with jax.experimental.disable_x64(): x = knp.ones((1, 1, 1), dtype=dtype) x_jax = jnp.ones((1, 1, 1), dtype=dtype) expected_dtype = standardize_dtype(jnp.trace(x_jax).dtype) # jnp.trace is buggy with bool. We set the expected_dtype to int32 # for bool inputs if dtype == "bool": expected_dtype = "int32" elif dtype == "float64": expected_dtype = "float64" elif dtype == "int64": expected_dtype = "int64" if backend.backend() == "jax": expected_dtype = expected_dtype.replace("64", "32") self.assertEqual( standardize_dtype(knp.trace(x).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Trace().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_transpose(self, dtype): import jax.numpy as jnp x = knp.ones((1, 1), dtype=dtype) x_jax = jnp.ones((1, 1), dtype=dtype) expected_dtype = standardize_dtype(jnp.transpose(x_jax, [1, 0]).dtype) self.assertEqual( standardize_dtype(knp.transpose(x, [1, 0]).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Transpose([1, 0]).symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_tri(self, dtype): import jax.numpy as jnp expected_dtype = standardize_dtype(jnp.tri(3, dtype=dtype).dtype) self.assertEqual( standardize_dtype(knp.tri(3, dtype=dtype).dtype), expected_dtype, ) self.assertEqual( standardize_dtype(knp.Tri().symbolic_call(3, dtype=dtype).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_tril(self, dtype): import jax.numpy as jnp x = knp.ones((1, 1), dtype=dtype) x_jax = jnp.ones((1, 1), dtype=dtype) expected_dtype = standardize_dtype(jnp.tril(x_jax, 0).dtype) self.assertEqual( standardize_dtype(knp.tril(x, 0).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Tril(0).symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_triu(self, dtype): import jax.numpy as jnp x = knp.ones((1, 1), dtype=dtype) x_jax = jnp.ones((1, 1), dtype=dtype) expected_dtype = standardize_dtype(jnp.triu(x_jax, 0).dtype) self.assertEqual( standardize_dtype(knp.triu(x, 0).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.Triu(0).symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_true_divide(self, dtypes): import jax.experimental import jax.numpy as jnp # We have to disable x64 for jax since jnp.true_divide doesn't respect # JAX_DEFAULT_DTYPE_BITS=32 in `./conftest.py`. We also need to downcast # the expected dtype from 64 bit to 32 bit when using jax backend. with jax.experimental.disable_x64(): dtype1, dtype2 = dtypes x1 = knp.ones((1,), dtype=dtype1) x2 = knp.ones((1,), dtype=dtype2) x1_jax = jnp.ones((1,), dtype=dtype1) x2_jax = jnp.ones((1,), dtype=dtype2) expected_dtype = standardize_dtype( jnp.true_divide(x1_jax, x2_jax).dtype ) if "float64" in (dtype1, dtype2): expected_dtype = "float64" if backend.backend() == "jax": expected_dtype = expected_dtype.replace("64", "32") self.assertEqual( standardize_dtype(knp.true_divide(x1, x2).dtype), expected_dtype ) self.assertEqual( knp.TrueDivide().symbolic_call(x1, x2).dtype, expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_var(self, dtype): import jax.numpy as jnp x = knp.ones((2,), dtype=dtype) x_jax = jnp.ones((2,), dtype=dtype) expected_dtype = standardize_dtype(jnp.var(x_jax).dtype) if dtype == "int64": expected_dtype = backend.floatx() self.assertEqual(standardize_dtype(knp.var(x).dtype), expected_dtype) self.assertEqual( standardize_dtype(knp.Var().symbolic_call(x).dtype), expected_dtype, ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_vdot(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((1,), dtype=dtype1) x2 = knp.ones((1,), dtype=dtype2) x1_jax = jnp.ones((1,), dtype=dtype1) x2_jax = jnp.ones((1,), dtype=dtype2) expected_dtype = standardize_dtype(jnp.vdot(x1_jax, x2_jax).dtype) self.assertEqual( standardize_dtype(knp.vdot(x1, x2).dtype), expected_dtype ) self.assertEqual(knp.Vdot().symbolic_call(x1, x2).dtype, expected_dtype) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_vstack(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes x1 = knp.ones((1,), dtype=dtype1) x2 = knp.ones((1,), dtype=dtype2) x1_jax = jnp.ones((1,), dtype=dtype1) x2_jax = jnp.ones((1,), dtype=dtype2) expected_dtype = standardize_dtype(jnp.vstack([x1_jax, x2_jax]).dtype) self.assertEqual( standardize_dtype(knp.vstack([x1, x2]).dtype), expected_dtype ) self.assertEqual( knp.Vstack().symbolic_call([x1, x2]).dtype, expected_dtype ) @parameterized.named_parameters( named_product(dtypes=itertools.combinations(ALL_DTYPES, 2)) ) def test_where(self, dtypes): import jax.numpy as jnp dtype1, dtype2 = dtypes condition = knp.ones((10,), dtype="bool") x1 = knp.ones((10,), dtype=dtype1) x2 = knp.ones((10,), dtype=dtype2) condition_jax = jnp.ones((10,), dtype="bool") x1_jax = jnp.ones((10,), dtype=dtype1) x2_jax = jnp.ones((10,), dtype=dtype2) expected_dtype = standardize_dtype( jnp.where(condition_jax, x1_jax, x2_jax).dtype ) self.assertEqual( standardize_dtype(knp.where(condition, x1, x2).dtype), expected_dtype, ) self.assertEqual( knp.Where().symbolic_call(condition, x1, x2).dtype, expected_dtype ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_where_python_types(self, dtype): import jax.experimental import jax.numpy as jnp # We have to disable x64 for jax since jnp.power doesn't respect # JAX_DEFAULT_DTYPE_BITS=32 in `./conftest.py`. We also need to downcast # the expected dtype from 64 bit to 32 bit when using jax backend. with jax.experimental.disable_x64(): condition = knp.ones((10,), dtype="bool") x = knp.ones((10,), dtype=dtype) condition_jax = jnp.ones((10,), dtype="bool") x_jax = jnp.ones((10,), dtype=dtype) # python int expected_dtype = standardize_dtype( jnp.where(condition_jax, x_jax, 1).dtype ) if dtype == "float64": expected_dtype = "float64" elif dtype == "int64": expected_dtype = "int64" if backend.backend() == "jax": expected_dtype = expected_dtype.replace("64", "32") self.assertEqual( standardize_dtype(knp.where(condition, x, 1).dtype), expected_dtype, ) self.assertEqual( knp.Where().symbolic_call(condition, x, 1).dtype, expected_dtype ) # python float expected_dtype = standardize_dtype( jnp.where(condition_jax, x_jax, 1.0).dtype ) if dtype == "float64": expected_dtype = "float64" if backend.backend() == "jax": expected_dtype = expected_dtype.replace("64", "32") self.assertEqual( standardize_dtype(knp.where(condition, x, 1.0).dtype), expected_dtype, ) self.assertEqual( knp.Where().symbolic_call(condition, x, 1.0).dtype, expected_dtype, ) @parameterized.named_parameters(named_product(dtype=ALL_DTYPES)) def test_zeros_like(self, dtype): import jax.numpy as jnp x = knp.ones((), dtype=dtype) x_jax = jnp.ones((), dtype=dtype) expected_dtype = standardize_dtype(jnp.ones_like(x_jax).dtype) self.assertEqual( standardize_dtype(knp.zeros_like(x).dtype), expected_dtype ) self.assertEqual( standardize_dtype(knp.ZerosLike().symbolic_call(x).dtype), expected_dtype, )
keras/keras/ops/numpy_test.py/0
{ "file_path": "keras/keras/ops/numpy_test.py", "repo_id": "keras", "token_count": 138768 }
154
from keras.saving.object_registration import CustomObjectScope from keras.saving.object_registration import custom_object_scope from keras.saving.object_registration import get_custom_objects from keras.saving.object_registration import get_registered_name from keras.saving.object_registration import get_registered_object from keras.saving.object_registration import register_keras_serializable from keras.saving.saving_api import load_model from keras.saving.serialization_lib import deserialize_keras_object from keras.saving.serialization_lib import serialize_keras_object
keras/keras/saving/__init__.py/0
{ "file_path": "keras/keras/saving/__init__.py", "repo_id": "keras", "token_count": 155 }
155
import types from keras.distribution import distribution_lib from keras.trainers.data_adapters import array_data_adapter from keras.trainers.data_adapters import py_dataset_adapter from keras.trainers.data_adapters.array_data_adapter import ArrayDataAdapter from keras.trainers.data_adapters.generator_data_adapter import ( GeneratorDataAdapter, ) from keras.trainers.data_adapters.py_dataset_adapter import PyDatasetAdapter from keras.trainers.data_adapters.tf_dataset_adapter import TFDatasetAdapter from keras.trainers.data_adapters.torch_data_loader_adapter import ( TorchDataLoaderAdapter, ) def get_data_adapter( x, y=None, sample_weight=None, batch_size=None, steps_per_epoch=None, shuffle=False, class_weight=None, ): # Check for multi-process/worker distribution. Since only tf.dataset # is supported at the moment, we will raise error if the inputs fail # the type check distribution = distribution_lib.distribution() if getattr(distribution, "_is_multi_process", False) and not is_tf_dataset( x ): raise ValueError( "When using multi-worker distribution, the data must be provided " f"as a `tf.data.Dataset` instance. Received: type(x)={type(x)}." ) if array_data_adapter.can_convert_arrays((x, y, sample_weight)): return ArrayDataAdapter( x, y, sample_weight=sample_weight, class_weight=class_weight, shuffle=shuffle, batch_size=batch_size, steps=steps_per_epoch, ) elif is_tf_dataset(x): # Unsupported args: y, sample_weight, shuffle if y is not None: raise_unsupported_arg("y", "the targets", "tf.data.Dataset") if sample_weight is not None: raise_unsupported_arg( "sample_weights", "the sample weights", "tf.data.Dataset" ) return TFDatasetAdapter( x, class_weight=class_weight, distribution=distribution ) # TODO: should we warn or not? # warnings.warn( # "`shuffle=True` was passed, but will be ignored since the " # "data `x` was provided as a tf.data.Dataset. The Dataset is " # "expected to already be shuffled " # "(via `.shuffle(tf.data.AUTOTUNE)`)" # ) elif isinstance(x, py_dataset_adapter.PyDataset): if y is not None: raise_unsupported_arg("y", "the targets", "PyDataset") if sample_weight is not None: raise_unsupported_arg( "sample_weights", "the sample weights", "PyDataset" ) return PyDatasetAdapter(x, class_weight=class_weight, shuffle=shuffle) elif is_torch_dataloader(x): if y is not None: raise_unsupported_arg("y", "the targets", "torch DataLoader") if sample_weight is not None: raise_unsupported_arg( "sample_weights", "the sample weights", "torch DataLoader" ) if class_weight is not None: raise ValueError( "Argument `class_weight` is not supported for torch " f"DataLoader inputs. Received: class_weight={class_weight}" ) return TorchDataLoaderAdapter(x) # TODO: should we warn or not? # warnings.warn( # "`shuffle=True` was passed, but will be ignored since the " # "data `x` was provided as a torch DataLoader. The DataLoader " # "is expected to already be shuffled." # ) elif isinstance(x, types.GeneratorType): if y is not None: raise_unsupported_arg("y", "the targets", "PyDataset") if sample_weight is not None: raise_unsupported_arg( "sample_weights", "the sample weights", "PyDataset" ) if class_weight is not None: raise ValueError( "Argument `class_weight` is not supported for Python " f"generator inputs. Received: class_weight={class_weight}" ) return GeneratorDataAdapter(x) # TODO: should we warn or not? # warnings.warn( # "`shuffle=True` was passed, but will be ignored since the " # "data `x` was provided as a generator. The generator " # "is expected to yield already-shuffled data." # ) else: raise ValueError(f"Unrecognized data type: x={x} (of type {type(x)})") def raise_unsupported_arg(arg_name, arg_description, input_type): raise ValueError( f"When providing `x` as a {input_type}, `{arg_name}` " f"should not be passed. Instead, {arg_description} should " f"be included as part of the {input_type}." ) def is_tf_dataset(x): if hasattr(x, "__class__"): for parent in x.__class__.__mro__: if parent.__name__ in ( "DatasetV2", "DistributedDataset", ) and "tensorflow.python." in str(parent.__module__): return True return False def is_torch_dataloader(x): if hasattr(x, "__class__"): for parent in x.__class__.__mro__: if parent.__name__ == "DataLoader" and "torch.utils.data" in str( parent.__module__ ): return True return False
keras/keras/trainers/data_adapters/__init__.py/0
{ "file_path": "keras/keras/trainers/data_adapters/__init__.py", "repo_id": "keras", "token_count": 2443 }
156
from unittest import mock import numpy as np import pytest from absl.testing import parameterized import keras from keras import backend from keras import initializers from keras import layers from keras import losses from keras import metrics from keras import models from keras import ops from keras import optimizers from keras import testing from keras.callbacks.callback import Callback from keras.optimizers.rmsprop import RMSprop from keras.testing.test_utils import named_product if backend.backend() == "jax": from keras.backend.jax.trainer import JAXTrainer as Trainer elif backend.backend() == "torch": from keras.backend.torch.trainer import TorchTrainer as Trainer elif backend.backend() == "tensorflow": from keras.backend.tensorflow.trainer import TensorFlowTrainer as Trainer elif backend.backend() == "numpy": from keras.backend.numpy.trainer import NumpyTrainer as Trainer else: raise ImportError(f"Invalid backend: {backend.backend()}") # A model is just a layer mixed in with a Trainer. class ExampleModel(Trainer, layers.Dense): def __init__(self, units): layers.Dense.__init__( self, units=units, use_bias=False, kernel_initializer=initializers.Ones(), ) Trainer.__init__(self) class StructModel(Trainer, layers.Layer): def __init__(self, units): layers.Layer.__init__(self) Trainer.__init__(self) self.dense_1 = layers.Dense( units, use_bias=False, kernel_initializer=initializers.Ones(), ) self.dense_2 = layers.Dense( units, use_bias=False, kernel_initializer=initializers.Ones(), ) def call(self, x): return { "y_one": self.dense_1(x["x_one"]), "y_two": self.dense_2(x["x_two"]), } class ListModel(Trainer, layers.Layer): def __init__(self, units): layers.Layer.__init__(self) Trainer.__init__(self) self.dense_1 = layers.Dense( units, use_bias=False, kernel_initializer=initializers.Ones(), ) self.dense_2 = layers.Dense( units, use_bias=False, kernel_initializer=initializers.Ones(), ) def call(self, x): assert isinstance(x, (list, tuple)) return self.dense_1(x[0]) + self.dense_2(x[1]) class TrainingTestingLayer(Trainer, layers.Layer): def __init__(self, **kwargs): layers.Layer.__init__(self, **kwargs) Trainer.__init__(self) def call(self, x, training=False): if training: return x return x * 0 def sparse_generator(generator_type): if generator_type == "scipy": import scipy for _ in range(4): x = scipy.sparse.random(2, 4, density=0.25, dtype="float32") y = np.random.rand(2, 3).astype("float32") yield x, y elif generator_type == "tf": import tensorflow as tf for _ in range(4): x = tf.random.uniform((2, 4), dtype="float32") x = tf.sparse.from_dense(tf.nn.dropout(x, 0.25)) y = tf.random.uniform((2, 3), dtype="float32") yield x, y elif generator_type == "jax": import jax import jax.experimental.sparse as jax_sparse for _ in range(4): seed = jax.random.PRNGKey(0) x = jax_sparse.random_bcoo(seed, (2, 4), dtype="float32", nse=0.25) y = jax.random.uniform(seed, (2, 3), dtype="float32") yield x, y else: raise ValueError(f"Invalid generator type {generator_type}") class TestTrainer(testing.TestCase, parameterized.TestCase): @pytest.mark.requires_trainable_backend def test_metric_tracking(self): class ModelWithMetric(Trainer, layers.Dense): def __init__(self, units): layers.Dense.__init__( self, units=units, use_bias=False, kernel_initializer=initializers.Ones(), ) Trainer.__init__(self) self.my_metric = metrics.MeanSquaredError(name="my_metric") model = ModelWithMetric(units=3) model.compile( optimizer=optimizers.SGD(), loss=losses.MeanSquaredError(), metrics=[metrics.MeanSquaredError()], ) x = np.ones((2, 4)) y = np.zeros((2, 3)) # Fit the model to make sure compile_metrics are built model.fit(x, y, batch_size=2, epochs=1) # The model should have 3 metrics: loss_tracker, compile_metrics, # my_metric. self.assertEqual(len(model.metrics), 3) self.assertEqual(model.metrics[0], model._loss_tracker) self.assertEqual(model.metrics[1], model.my_metric) self.assertEqual(model.metrics[2], model._compile_metrics) # All metrics should have their weights created self.assertEqual(len(model._loss_tracker.variables), 2) self.assertEqual(len(model._compile_metrics.variables), 2) self.assertEqual(len(model.my_metric.variables), 2) # And those weights are tracked at the model level self.assertEqual(len(model.metrics_variables), 6) self.assertLen(model.non_trainable_variables, 0) # Models with only weighted_metrics should have the same 3 metrics model_weighted = ModelWithMetric(units=3) model_weighted.compile( optimizer=optimizers.SGD(), loss=losses.MeanSquaredError(), weighted_metrics=[metrics.MeanSquaredError()], ) model_weighted.fit( x, y, batch_size=2, epochs=1, sample_weight=np.ones(2), ) self.assertEqual(len(model_weighted.metrics), 3) @pytest.mark.skipif( backend.backend() != "torch", reason="torch backend runs in eager mode for jit_compile='auto'", ) def test_compile_eager_vs_jit_torch(self): model = ExampleModel(units=3) model.compile(jit_compile="auto") # torch trainer en/disables torch.compile only based on the value of # model.jit_compile (not model.run_eagerly) self.assertFalse(model.run_eagerly) self.assertFalse(model.jit_compile) @parameterized.named_parameters( [ ("eager", True, False, False), ("graph_fn", False, False, False), ("jit", False, True, False), ("steps_per_epoch_eager", True, False, True), ("steps_per_epoch_graph_fn", False, False, True), ("steps_per_epoch_jit", False, True, True), ] ) @pytest.mark.requires_trainable_backend def test_fit_flow(self, run_eagerly, jit_compile, use_steps_per_epoch): if not run_eagerly and not jit_compile and use_steps_per_epoch: if backend.backend() == "tensorflow": self.skipTest( "TODO: Graph mode without XLA in TF backend leads to " "unexpected logs, need further checks." ) model = ExampleModel(units=3) epochs = 3 batch_size = 20 steps_per_epoch = 7 dataset_size = batch_size * (steps_per_epoch - 2) x = np.ones((dataset_size, 4)) y = np.zeros((dataset_size, 3)) model.compile( optimizer=optimizers.SGD(), loss=losses.MeanSquaredError(), metrics=[metrics.MeanSquaredError()], run_eagerly=run_eagerly, jit_compile=jit_compile, ) history = model.fit( x, y, batch_size=batch_size, steps_per_epoch=steps_per_epoch if use_steps_per_epoch else None, epochs=epochs, ) history = history.history self.assertIn("loss", history) self.assertIn("mean_squared_error", history) self.assertAllClose( history["mean_squared_error"], [14.402393, 10.991339, 8.388159], atol=6.1051628e-1, ) @parameterized.named_parameters( [ ("eager", True, False, False), ("graph_fn", False, False, False), ("jit", False, True, False), ("steps_per_epoch_eager", True, False, True), ("steps_per_epoch_graph_fn", False, False, True), ("steps_per_epoch_jit", False, True, True), ] ) @pytest.mark.requires_trainable_backend def test_fit_with_val_split( self, run_eagerly, jit_compile, use_steps_per_epoch ): if not run_eagerly and not jit_compile and use_steps_per_epoch: if backend.backend() == "tensorflow": self.skipTest( "TODO: Graph mode without XLA in TF backend leads to " "unexpected logs, need further checks." ) model = ExampleModel(units=3) epochs = 3 batch_size = 20 steps_per_epoch = 7 dataset_size = batch_size * (steps_per_epoch - 2) x = np.ones((dataset_size, 4)) y = np.zeros((dataset_size, 3)) model.compile( optimizer=optimizers.SGD(), loss=losses.MeanSquaredError(), metrics=[metrics.MeanSquaredError()], run_eagerly=run_eagerly, jit_compile=jit_compile, ) history = model.fit( x, y, batch_size=batch_size, steps_per_epoch=steps_per_epoch if use_steps_per_epoch else None, epochs=epochs, validation_split=0.2, ) history = history.history self.assertIn("loss", history) self.assertIn("val_loss", history) # Test with backend-native tensors. x = ops.ones((dataset_size, 4)) y = ops.zeros((dataset_size, 3)) history = model.fit( x, y, batch_size=batch_size, steps_per_epoch=steps_per_epoch if use_steps_per_epoch else None, epochs=epochs, validation_split=0.2, ) history = history.history self.assertIn("loss", history) self.assertIn("val_loss", history) @parameterized.named_parameters( named_product( generator_type=["tf", "jax", "scipy"], mode=["eager", "graph"] ) ) @pytest.mark.skipif( not backend.SUPPORTS_SPARSE_TENSORS, reason="Backend does not support sparse tensors.", ) def test_fit_sparse(self, generator_type, mode): model = ExampleModel(units=3) optimizer = optimizers.Adagrad() model.compile( optimizer=optimizer, loss=losses.MeanSquaredError(), metrics=[metrics.MeanSquaredError()], run_eagerly=(mode == "eager"), jit_compile=False, ) dataset = sparse_generator(generator_type) sparse_variable_updates = False def mock_optimizer_assign(variable, value): nonlocal sparse_variable_updates if value.__class__.__name__ == "IndexedSlices": sparse_variable_updates = True with mock.patch.object( optimizer, "assign_sub", autospec=True ) as optimizer_assign_sub: optimizer_assign_sub.side_effect = mock_optimizer_assign model.fit(dataset) # JAX does not produce sparse gradients the way we use it. if backend.backend() != "jax": # Verify tensors did not get densified along the way. self.assertTrue(sparse_variable_updates) @parameterized.named_parameters( [ ("eager", True, False), ("graph_fn", False, False), ("jit", False, True), ] ) def test_evaluate_flow(self, run_eagerly, jit_compile): model = ExampleModel(units=3) x = np.ones((100, 4)) y = np.zeros((100, 3)) batch_size = 16 model.compile( optimizer=optimizers.SGD(), loss=losses.MeanSquaredError(), metrics=[metrics.MeanSquaredError()], run_eagerly=run_eagerly, jit_compile=jit_compile, ) output = model.evaluate(x, y, batch_size=batch_size) self.assertAllClose(output, [16.0, 16.0]) output = model.evaluate(x, y, batch_size=batch_size, return_dict=True) self.assertIsInstance(output, dict) self.assertIn("loss", output) self.assertIn("mean_squared_error", output) self.assertAllClose(output["mean_squared_error"], 16.0) @parameterized.named_parameters( named_product( generator_type=["tf", "jax", "scipy"], mode=["eager", "graph"] ) ) @pytest.mark.skipif( not backend.SUPPORTS_SPARSE_TENSORS, reason="Backend does not support sparse tensors.", ) def test_evaluate_sparse(self, generator_type, mode): model = ExampleModel(units=3) model.compile( optimizer=optimizers.Adagrad(), loss=losses.MeanSquaredError(), metrics=[metrics.MeanSquaredError()], run_eagerly=(mode == "eager"), jit_compile=False, ) dataset = sparse_generator(generator_type) model.evaluate(dataset) @parameterized.named_parameters( [ ("eager", True, False), ("graph_fn", False, False), ("jit", False, True), ] ) def test_predict_flow(self, run_eagerly, jit_compile): # Test basic example model = ExampleModel(units=3) model.run_eagerly = run_eagerly model.jit_compile = jit_compile x = np.ones((100, 4)) batch_size = 16 outputs = model.predict(x, batch_size=batch_size) self.assertAllClose(outputs, 4 * np.ones((100, 3))) @parameterized.named_parameters( [ ("eager", True, False), ("graph_fn", False, False), ("jit", False, True), ] ) def test_predict_flow_struct(self, run_eagerly, jit_compile): # Test with input/output structs model = StructModel(units=3) model.run_eagerly = run_eagerly model.jit_compile = jit_compile x = { "x_one": np.ones((100, 4)), "x_two": np.ones((100, 4)), } batch_size = 16 outputs = model.predict(x, batch_size=batch_size) self.assertIsInstance(outputs, dict) self.assertEqual(len(outputs), 2) self.assertAllClose(outputs["y_one"], 4 * np.ones((100, 3))) self.assertAllClose(outputs["y_two"], 4 * np.ones((100, 3))) @parameterized.named_parameters( named_product( generator_type=["tf", "jax", "scipy"], mode=["eager", "graph"] ) ) @pytest.mark.skipif( not backend.SUPPORTS_SPARSE_TENSORS, reason="Backend does not support sparse tensors.", ) def test_predict_sparse(self, generator_type, mode): model = ExampleModel(units=3) model.compile( optimizer=optimizers.Adagrad(), loss=losses.MeanSquaredError(), metrics=[metrics.MeanSquaredError()], run_eagerly=(mode == "eager"), jit_compile=False, ) dataset = sparse_generator(generator_type) model.predict(dataset) @pytest.mark.skipif( backend.backend() != "jax", reason="Memory optimization is only implemented in JAX", ) def test_fit_eval_flow_for_jax_model_weights(self): model = ExampleModel(units=3) epochs = 3 batch_size = 20 steps_per_epoch = 7 dataset_size = batch_size * (steps_per_epoch - 2) x = np.ones((dataset_size, 4)) y = np.zeros((dataset_size, 3)) class ModelWeightCheck(Callback): def __init__(self): super().__init__() # Note that we access model via self._model since self.model # will trigger a sync of the jax training state back to the model. def on_train_batch_end(self, batch, logs=None): for v in self._model.trainable_variables: assert v._value is None for v in self._model.non_trainable_variables: assert v._value is None for v in self._model.optimizer.variables: assert v._value is None for v in self._model.metrics_variables: assert v._value is None def on_test_batch_end(self, batch, logs=None): for v in self._model.non_trainable_variables: assert v._value is None for v in self._model.metrics_variables: assert v._value is None model.compile( optimizer=optimizers.SGD(), loss=losses.MeanSquaredError(), metrics=[metrics.MeanSquaredError()], ) model.fit( x, y, batch_size=batch_size, steps_per_epoch=steps_per_epoch, epochs=epochs, callbacks=[ModelWeightCheck()], ) model.evaluate( x, y, batch_size=batch_size, callbacks=[ModelWeightCheck()], ) @pytest.mark.requires_trainable_backend @pytest.mark.skipif( backend.backend() == "torch", reason="`steps_per_execution` not implemented for torch yet", ) def test_steps_per_execution_steps_count(self): class StepCount(Callback): def __init__(self): super().__init__() self.count = 0 self.batches = [0, 3, 6] def on_batch_begin(self, batch, logs=None): assert batch == self.batches[self.count] self.count += 1 x = np.ones((100, 4)) y = np.ones((100, 1)) batch_size = 16 model = ExampleModel(units=1) model.compile( loss="mse", optimizer="adam", steps_per_execution=3, jit_compile=True, # TODO: fails in eager? ) step_count = StepCount() model.fit(x=x, y=y, batch_size=16, callbacks=[step_count], verbose=0) self.assertEqual(step_count.count, 3) model_2 = ExampleModel(units=1) model_2.compile(loss="mse", optimizer="adam", steps_per_execution=1) model_2.fit(x=x, y=y, batch_size=batch_size, verbose=0) self.assertAllClose(model.get_weights(), model_2.get_weights()) self.assertAllClose( model.predict(x, batch_size=batch_size), model_2.predict(x, batch_size=batch_size), ) self.assertAllClose(model.evaluate(x, y), model_2.evaluate(x, y)) @pytest.mark.skipif( backend.backend() == "torch", reason="`steps_per_execution` not implemented for torch yet", ) def test_steps_per_execution_steps_count_without_training(self): class StepCount(Callback): def __init__(self): super().__init__() self.test_count = 0 self.predict_count = 0 self.batches = [0, 3, 6] def on_test_batch_begin(self, batch, logs=None): assert batch == self.batches[self.test_count] self.test_count += 1 def on_predict_batch_begin(self, batch, logs=None): assert batch == self.batches[self.predict_count] self.predict_count += 1 x = np.ones((100, 4)) y = np.ones((100, 1)) batch_size = 16 model = ExampleModel(units=1) model.compile(loss="mse", steps_per_execution=3) step_count = StepCount() model.predict(x, batch_size=batch_size, callbacks=[step_count]) self.assertEqual(step_count.predict_count, 3) model.evaluate(x, y, batch_size=batch_size, callbacks=[step_count]) self.assertEqual(step_count.test_count, 3) @pytest.mark.requires_trainable_backend def test_adds_loss_scaling_optimizer(self): model = TrainingTestingLayer(dtype="mixed_float16") model.compile(optimizer="rmsprop", loss="mse") x = np.ones((128, 1)) y = np.zeros((128, 1)) model.fit(x, y, batch_size=32) self.assertIsInstance(model.optimizer, optimizers.LossScaleOptimizer) model = TrainingTestingLayer(dtype="mixed_float16") model.compile(optimizer="rmsprop", loss="mse", auto_scale_loss=False) x = np.ones((128, 1)) y = np.zeros((128, 1)) model.fit(x, y, batch_size=32) self.assertIsInstance(model.optimizer, RMSprop) model = TrainingTestingLayer(dtype="mixed_bfloat16") model.compile(optimizer="rmsprop", loss="mse") x = np.ones((128, 1)) y = np.zeros((128, 1)) model.fit(x, y, batch_size=32) self.assertIsInstance(model.optimizer, RMSprop) @pytest.mark.requires_trainable_backend @pytest.mark.skipif( backend.backend() == "torch", reason="half precision unsupported on torch CPU.", ) def test_loss_scaling_prevents_underflow(self): class DeepModel(Trainer, layers.Layer): def __init__(self): layers.Layer.__init__(self, dtype="mixed_float16") Trainer.__init__(self) self.layers = [] for _ in range(15): # Sigmoid has a small gradient, will eventually underflow. self.layers.append( layers.Dense( 1, use_bias=False, kernel_initializer="ones", activation="sigmoid", dtype="mixed_float16", ) ) def call(self, x): for layer in self.layers: x = layer(x) return x loss = losses.MeanSquaredError() # Blow up any gradient updates, so underflow is obvious. optimizer = optimizers.SGD(learning_rate=1e9) model = DeepModel() model.compile(optimizer, loss=loss, auto_scale_loss=False) model.fit(np.ones((1, 1)), np.ones((1, 1)), batch_size=1) first_kernel = model.layers[0].kernel # Without autoscaling, the first dense will not update. self.assertEqual(first_kernel, np.ones_like(first_kernel)) # Blow up any gradient updates, so underflow is obvious. optimizer = optimizers.SGD(learning_rate=1e9) model = DeepModel() model.compile(optimizer, loss=loss, auto_scale_loss=True) model.fit(np.ones((1, 1)), np.ones((1, 1)), batch_size=1) first_kernel = model.layers[0].kernel # With autoscaling, the first dense will update. self.assertNotEqual(first_kernel, np.ones_like(first_kernel)) @pytest.mark.requires_trainable_backend def test_training_arg(self): model = TrainingTestingLayer() model.compile(optimizer="rmsprop", loss="mse") x = np.ones((128, 1)) y = np.zeros((128, 1)) history = model.fit(x, y, batch_size=32) self.assertAllClose(history.history["loss"], [1.0]) val_loss = model.evaluate(x, y, batch_size=32) self.assertAllClose(val_loss, 0.0) preds = model.predict(x) self.assertAllClose(preds, np.zeros((128, 1))) @parameterized.named_parameters( [ ("eager", True, False), ("graph_fn", False, False), ("jit", False, True), ] ) @pytest.mark.requires_trainable_backend def test_on_batch_methods(self, run_eagerly, jit_compile): model = ExampleModel(units=3) x = np.ones((100, 4)) y = np.zeros((100, 3)) sw = np.arange(100).reshape((100,)).astype("float32") / 50.0 model.compile( optimizer=optimizers.SGD(), loss=losses.MeanSquaredError(), metrics=[metrics.MeanSquaredError()], run_eagerly=run_eagerly, jit_compile=jit_compile, ) logs = model.train_on_batch(x, y) self.assertIsInstance(logs, list) self.assertEqual(len(logs), 2) self.assertAlmostEqual(logs[0], 16.0) logs = model.train_on_batch(x, y, return_dict=True) self.assertIsInstance(logs, dict) self.assertEqual(len(logs), 2) self.assertAlmostEqual(logs["loss"], 15.579) logs = model.test_on_batch(x, y) self.assertIsInstance(logs, list) self.assertEqual(len(logs), 2) self.assertAlmostEqual(logs[0], 15.173) logs = model.test_on_batch(x, y, return_dict=True) self.assertIsInstance(logs, dict) self.assertEqual(len(logs), 2) self.assertAlmostEqual(logs["loss"], 14.97) output = model.predict_on_batch(x) self.assertIsInstance(output, np.ndarray) self.assertAllClose(output[0], np.array([3.789511, 3.789511, 3.789511])) # With sample weights logs = model.train_on_batch(x, y, sw) self.assertAlmostEqual(logs[0], 14.819) logs = model.test_on_batch(x, y, sw) self.assertAlmostEqual(logs[0], 14.595) output = model.predict_on_batch(x) self.assertAllClose(output[0], np.array([3.689468, 3.689468, 3.689468])) # With class weights logs = model.train_on_batch(x, y, class_weight={1: 0.3, 0: 0.2}) self.assertAlmostEqual(logs[0], 12.899) @parameterized.named_parameters( [ ("eager", True, False), ("graph_fn", False, False), ("jit", False, True), ] ) def test_on_batch_methods_without_training(self, run_eagerly, jit_compile): model = ExampleModel(units=3) x = np.ones((100, 4)) y = np.zeros((100, 3)) model.compile( loss=losses.MeanSquaredError(), metrics=[metrics.MeanSquaredError()], run_eagerly=run_eagerly, jit_compile=jit_compile, ) output = model.predict_on_batch(x) self.assertIsInstance(output, np.ndarray) self.assertAllClose(output[0], np.array([4.0, 4.0, 4.0])) logs = model.test_on_batch(x, y) self.assertIsInstance(logs, list) self.assertEqual(len(logs), 2) self.assertAlmostEqual(logs[0], 16.0) logs = model.test_on_batch(x, y, return_dict=True) self.assertIsInstance(logs, dict) self.assertEqual(len(logs), 2) self.assertAlmostEqual(logs["loss"], 16.0) def test_nested_input_predict(self): # https://github.com/keras-team/keras/issues/325 class TupleInputModel(keras.Model): def call(self, inputs): a, b = inputs return a + b model = TupleInputModel() x1, x2 = np.random.rand(2, 3, 4) out = model.predict((x1, x2)) self.assertEqual(out.shape, (3, 4)) class DictInputModel(keras.Model): def call(self, inputs): return inputs["a"] + inputs["b"] model = DictInputModel() x1, x2 = np.random.rand(2, 3, 4) out = model.predict({"a": x1, "b": x2}) self.assertEqual(out.shape, (3, 4)) @pytest.mark.requires_trainable_backend def test_for_eval_epoch_iterator(self): model = ExampleModel(units=3) model.compile( optimizer="adam", loss="mse", metrics=["mean_absolute_error"] ) x = np.ones((16, 4)) y = np.zeros((16, 3)) x_test = np.ones((16, 4)) y_test = np.zeros((16, 3)) model.fit( x, y, batch_size=4, validation_data=(x_test, y_test), ) assert getattr(model, "_eval_epoch_iterator", None) is None # Try model.fit with reshaped validation_data # This will throw an exception which is intended try: model.fit( x, y, batch_size=4, validation_data=( x_test.reshape((-1, 16, 4)), y_test.reshape((-1, 16, 3)), ), ) except: pass # Try model.fit with correct validation_data this should work. # After successful training `_eval_epoch_iterator` should be None model.fit( x, y, batch_size=4, validation_data=(x_test, y_test), ) assert getattr(model, "_eval_epoch_iterator", None) is None @pytest.mark.requires_trainable_backend def test_callback_methods_keys(self): class CustomCallback(Callback): def on_train_begin(self, logs=None): keys = sorted(list(logs.keys())) assert keys == [] def on_train_end(self, logs=None): keys = sorted(list(logs.keys())) assert keys == [ "loss", "mean_absolute_error", "val_loss", "val_mean_absolute_error", ] def on_epoch_begin(self, epoch, logs=None): keys = sorted(list(logs.keys())) assert keys == [] def on_epoch_end(self, epoch, logs=None): keys = sorted(list(logs.keys())) assert keys == [ "loss", "mean_absolute_error", "val_loss", "val_mean_absolute_error", ] def on_test_begin(self, logs=None): keys = sorted(list(logs.keys())) assert keys == [] def on_test_end(self, logs=None): keys = sorted(list(logs.keys())) assert keys == ["loss", "mean_absolute_error"] def on_predict_begin(self, logs=None): keys = sorted(list(logs.keys())) assert keys == [] def on_predict_end(self, logs=None): keys = sorted(list(logs.keys())) assert keys == [] def on_train_batch_begin(self, batch, logs=None): keys = sorted(list(logs.keys())) assert keys == [] def on_train_batch_end(self, batch, logs=None): keys = sorted(list(logs.keys())) assert keys == ["loss", "mean_absolute_error"] def on_test_batch_begin(self, batch, logs=None): keys = sorted(list(logs.keys())) assert keys == [] def on_test_batch_end(self, batch, logs=None): keys = sorted(list(logs.keys())) assert keys == ["loss", "mean_absolute_error"] def on_predict_batch_begin(self, batch, logs=None): keys = sorted(list(logs.keys())) assert keys == [] def on_predict_batch_end(self, batch, logs=None): keys = sorted(list(logs.keys())) assert keys == ["outputs"] model = ExampleModel(units=3) model.compile( optimizer="adam", loss="mse", metrics=["mean_absolute_error"] ) x = np.ones((16, 4)) y = np.zeros((16, 3)) x_test = np.ones((16, 4)) y_test = np.zeros((16, 3)) model.fit( x, y, callbacks=[CustomCallback()], batch_size=4, validation_data=(x_test, y_test), ) model.evaluate(x_test, y_test, batch_size=4) model.predict(x_test, batch_size=4) @pytest.mark.requires_trainable_backend def test_internal_only_loss(self): class LossLayer(layers.Layer): def call(self, x): self.add_loss(ops.sum(x)) return x model = keras.Sequential( [ layers.Dense(2), LossLayer(), layers.Dense(1), ] ) model.compile(optimizer="adam") x = np.ones((16, 2)) y = np.zeros((16, 1)) model.fit(x, y, batch_size=4) def get_layer(self): class ExampleLayer(keras.Layer): def call(self, x): return x * 2 return ExampleLayer def get_model(self): class ExampleModel(keras.Model): def call(self, x): return x * 2 return ExampleModel def get_functional(self): ExampleLayer = self.get_layer() class ExampleFunctional(keras.Functional): def __init__(self, input_shape=(None,)): inputs = keras.Input(input_shape) outputs = ExampleLayer()(inputs) super().__init__(inputs=inputs, outputs=outputs) return ExampleFunctional @parameterized.named_parameters( [ { "testcase_name": "model", "model_class": "get_model", }, { "testcase_name": "layer", "model_class": "get_layer", }, { "testcase_name": "functional", "model_class": "get_functional", }, ] ) @pytest.mark.requires_trainable_backend @pytest.mark.skipif( keras.backend.backend() != "tensorflow", reason="Only tensorflow supports raggeds", ) def test_trainer_with_raggeds(self, model_class): from keras.utils.module_utils import tensorflow as tf def loss_fn(y, y_pred, sample_weight=None): return 0 model = getattr(self, model_class)()() x = tf.ragged.constant([[1], [2, 3]]) # test forward pass y = model(x) self.assertEqual(type(y), tf.RaggedTensor) # test training if model_class in ["get_model", "get_functional"]: model.compile(optimizer="adam", loss=loss_fn) model.fit(x, x) y = model.predict(x) self.assertEqual(type(y), tf.RaggedTensor) # test if everything works with the sequential model model = keras.Sequential([model]) model.compile(optimizer="adam", loss=loss_fn) model.fit(x, x) y = model.predict(x) self.assertEqual(type(y), tf.RaggedTensor) def test_predict_dropout(self): # Test that `predict` with a dropout op # has nondeterministic behavior across batches. inputs = layers.Input((20,)) outputs = layers.Dropout(0.5, seed=1337)(inputs, training=True) model = keras.Model(inputs, outputs) out1 = model.predict(np.ones((4, 20)), batch_size=2) self.assertGreater(5, np.sum(np.abs(out1[:2, :] - out1[2:4, :]))) out2 = model.predict_on_batch(np.ones((2, 20))) out3 = model.predict_on_batch(np.ones((2, 20))) self.assertGreater(5, np.sum(np.abs(out2 - out3))) @pytest.mark.requires_trainable_backend def test_recompile(self): model = ExampleModel(units=3) model.compile( optimizer="sgd", loss="mse", metrics=["mean_squared_error"] ) history_1 = model.fit(np.ones((3, 2)), np.ones((3, 3))).history eval_out_1 = model.evaluate( np.ones((3, 2)), np.ones((3, 3)), return_dict=True ) model.compile( optimizer="sgd", loss="mse", metrics=["mean_absolute_error"] ) history_2 = model.fit(np.ones((3, 2)), np.ones((3, 3))).history eval_out_2 = model.evaluate( np.ones((3, 2)), np.ones((3, 3)), return_dict=True ) self.assertEqual( sorted(list(history_1.keys())), ["loss", "mean_squared_error"] ) self.assertEqual( sorted(list(eval_out_1.keys())), ["loss", "mean_squared_error"] ) self.assertEqual( sorted(list(history_2.keys())), ["loss", "mean_absolute_error"] ) self.assertEqual( sorted(list(eval_out_2.keys())), ["loss", "mean_absolute_error"] ) @pytest.mark.requires_trainable_backend def test_nested_inputs(self): model = ListModel(units=2) out = model([np.ones((3, 2)), np.ones((3, 3))]) self.assertEqual(tuple(out.shape), (3, 2)) model.compile(optimizer="sgd", loss="mse", metrics=["mse"]) history = model.fit( [np.ones((3, 2)), np.ones((3, 3))], np.ones((3, 2)) ).history self.assertAllClose(history["loss"], 16.0) train_out = model.train_on_batch( [np.ones((3, 2)), np.ones((3, 3))], np.ones((3, 2)) ) self.assertAllClose(train_out[0], 15.2200) eval_out = model.evaluate( [np.ones((3, 2)), np.ones((3, 3))], np.ones((3, 2)) ) self.assertAllClose(eval_out[0], 13.0321) eval_out = model.test_on_batch( [np.ones((3, 2)), np.ones((3, 3))], np.ones((3, 2)) ) self.assertAllClose(eval_out[0], 13.0321) predict_out = model.predict([np.ones((3, 2)), np.ones((3, 3))]) self.assertEqual(predict_out.shape, (3, 2)) predict_out = model.predict_on_batch([np.ones((3, 2)), np.ones((3, 3))]) self.assertEqual(predict_out.shape, (3, 2)) @pytest.mark.requires_trainable_backend def test_validation_data_infinite_generator(self): # Test that you can pass an infinite generator to `validation_data` # arg of fit() as well as a `validation_steps` argument and that # validation only runs for the correct number of steps. model = ExampleModel(units=3) model.compile(optimizer="sgd", loss="mse", metrics=["mse"]) class Recorder(keras.callbacks.Callback): def __init__(self): self.train_counter = 0 self.val_counter = 0 def on_train_batch_end(self, *args, **kwargs): self.train_counter += 1 def on_test_batch_end(self, *args, **kwargs): self.val_counter += 1 def infinite_gen(): while True: yield np.ones((2, 2)), np.ones((2, 3)) recorder = Recorder() model.fit( infinite_gen(), validation_data=infinite_gen(), steps_per_epoch=3, validation_steps=4, epochs=1, shuffle=False, callbacks=[recorder], ) self.assertEqual(recorder.train_counter, 3) self.assertEqual(recorder.val_counter, 4) @parameterized.named_parameters( [ ("fit", "fit", "training", "train"), ("evaluate", "evaluate", "evaluating", "test"), ("predict", "predict", "predicting", "predict"), ] ) @pytest.mark.requires_trainable_backend def test_stop_loop(self, method, method_gerund, on_end_name): model = ExampleModel(units=3) model.compile(optimizer="sgd", loss="mse", metrics=["mse"]) class Stopper(keras.callbacks.Callback): def __init__(self, stop_count): self.stop_count = stop_count self.counter = 0 setattr(self, f"on_{on_end_name}_batch_end", self.batch_end) def batch_end(self, *args, **kwargs): self.counter += 1 if self.counter == self.stop_count: setattr(self.model, f"stop_{method_gerund}", True) def infinite_gen(): while True: x = np.ones((2, 2)) y = np.ones((2, 3)) yield (x,) if method == "predict" else (x, y) stop_count = 5 stopper = Stopper(stop_count) getattr(model, method)( infinite_gen(), callbacks=[stopper], ) self.assertEqual(stopper.counter, stop_count) @pytest.mark.requires_trainable_backend def test_constraints_are_applied(self): model = models.Sequential( [layers.Dense(2, kernel_constraint="non_neg")] ) x = np.ones((2, 3)) y = np.ones((2, 2)) model.compile(optimizer="rmsprop", loss="mse") model.fit(x, y) self.assertGreaterEqual( np.min(backend.convert_to_numpy(model.layers[0].kernel)), 0.0 ) @pytest.mark.requires_trainable_backend def test_rng_updated_during_predict(self): class TestTimeDropout(layers.Layer): def __init__(self): super().__init__() self.random_generator = keras.random.SeedGenerator() def call(self, x): return keras.random.dropout( x, rate=0.5, seed=self.random_generator ) inputs = layers.Input((20,)) outputs = TestTimeDropout()(inputs) model = keras.Model(inputs, outputs) model.compile(optimizer="rmsprop", loss="mse") x = np.ones((32, 20)) out_1 = model.predict(x) out_2 = model.predict(x) self.assertGreater(np.mean(np.abs(out_1 - out_2)), 0.01) @pytest.mark.requires_trainable_backend def test_callbacks_can_update_state_at_batch_boundary(self): class CounterModel(keras.Model): def __init__(self): super().__init__() self.train_counter = self.add_weight( shape=(), initializer="zeros", ) self.test_counter = self.add_weight( shape=(), initializer="zeros", ) self.predict_counter = self.add_weight( shape=(), initializer="zeros", ) self.dense = layers.Dense(3) def call(self, x): return self.dense(x) class CounterCallback(keras.callbacks.Callback): def __init__(self): self.eager_call_counter_train = 0 self.eager_call_counter_test = 0 self.eager_call_counter_predict = 0 def on_train_batch_end(self, *args, **kwargs): self.model.train_counter.assign_add(1) self.eager_call_counter_train += 1 def on_test_batch_end(self, *args, **kwargs): self.model.test_counter.assign_add(1) self.eager_call_counter_test += 1 def on_predict_batch_end(self, *args, **kwargs): self.model.predict_counter.assign_add(1) self.eager_call_counter_predict += 1 model = CounterModel() model.compile( optimizer="sgd", loss="mse", metrics=["mse"], run_eagerly=True ) cbk = CounterCallback() model.fit( np.ones((4, 3)), np.ones((4, 3)), callbacks=[cbk], epochs=3, batch_size=1, verbose=0, validation_data=(np.ones((2, 3)), np.ones((2, 3))), ) self.assertAlmostEqual(cbk.eager_call_counter_train, 12) self.assertAlmostEqual(model.train_counter.numpy(), 12) self.assertAlmostEqual(cbk.eager_call_counter_test, 6) self.assertAlmostEqual(model.test_counter.numpy(), 6) model.predict( np.ones((4, 3)), callbacks=[cbk], batch_size=1, ) self.assertAlmostEqual(cbk.eager_call_counter_predict, 4) self.assertAlmostEqual(model.predict_counter.numpy(), 4)
keras/keras/trainers/trainer_test.py/0
{ "file_path": "keras/keras/trainers/trainer_test.py", "repo_id": "keras", "token_count": 22208 }
157
"""Script to create (and optionally install) a `.whl` archive for Keras 3. Usage: 1. Create a `.whl` file in `dist/`: ``` python3 pip_build.py ``` 2. Also install the new package immediately after: ``` python3 pip_build.py --install ``` """ import argparse import datetime import glob import os import pathlib import shutil import namex # Needed because importing torch after TF causes the runtime to crash import torch # noqa: F401 package = "keras" build_directory = "tmp_build_dir" dist_directory = "dist" to_copy = ["setup.py", "README.md"] def ignore_files(_, filenames): return [f for f in filenames if f.endswith("_test.py")] def copy_source_to_build_directory(root_path): # Copy sources (`keras/` directory and setup files) to build # directory os.chdir(root_path) os.mkdir(build_directory) shutil.copytree( package, os.path.join(build_directory, package), ignore=ignore_files ) for fname in to_copy: shutil.copy(fname, os.path.join(f"{build_directory}", fname)) os.chdir(build_directory) def run_namex_conversion(): # Restructure the codebase so that source files live in `keras/src` namex.convert_codebase(package, code_directory="src") # Generate API __init__.py files in `keras/` namex.generate_api_files(package, code_directory="src", verbose=True) def create_legacy_directory(): # Make keras/_tf_keras/ by copying keras/ tf_keras_dirpath_parent = os.path.join(package, "_tf_keras") tf_keras_dirpath = os.path.join(tf_keras_dirpath_parent, "keras") os.makedirs(tf_keras_dirpath) with open(os.path.join(tf_keras_dirpath_parent, "__init__.py"), "w") as f: f.write("from keras._tf_keras import keras\n") with open(os.path.join(package, "__init__.py")) as f: init_file = f.read() init_file = init_file.replace( "from keras import _legacy", "from keras import _tf_keras", ) with open(os.path.join(package, "__init__.py"), "w") as f: f.write(init_file) with open(os.path.join(tf_keras_dirpath, "__init__.py"), "w") as f: f.write(init_file) for dirname in os.listdir(package): dirpath = os.path.join(package, dirname) if os.path.isdir(dirpath) and dirname not in ( "_legacy", "_tf_keras", "src", ): shutil.copytree( dirpath, os.path.join(tf_keras_dirpath, dirname), ignore=ignore_files, ) # Copy keras/_legacy/ file contents to keras/_tf_keras/keras legacy_submodules = [ path[:-3] for path in os.listdir(os.path.join(package, "src", "legacy")) if path.endswith(".py") ] legacy_submodules += [ path for path in os.listdir(os.path.join(package, "src", "legacy")) if os.path.isdir(os.path.join(package, "src", "legacy", path)) ] for root, _, fnames in os.walk(os.path.join(package, "_legacy")): for fname in fnames: if fname.endswith(".py"): legacy_fpath = os.path.join(root, fname) tf_keras_root = root.replace("/_legacy", "/_tf_keras/keras") core_api_fpath = os.path.join( root.replace("/_legacy", ""), fname ) if not os.path.exists(tf_keras_root): os.makedirs(tf_keras_root) tf_keras_fpath = os.path.join(tf_keras_root, fname) with open(legacy_fpath) as f: legacy_contents = f.read() legacy_contents = legacy_contents.replace( "keras._legacy", "keras._tf_keras.keras" ) if os.path.exists(core_api_fpath): with open(core_api_fpath) as f: core_api_contents = f.read() core_api_contents = core_api_contents.replace( "from keras import _tf_keras\n", "" ) for legacy_submodule in legacy_submodules: core_api_contents = core_api_contents.replace( f"from keras import {legacy_submodule}\n", "", ) core_api_contents = core_api_contents.replace( f"keras.{legacy_submodule}", f"keras._tf_keras.keras.{legacy_submodule}", ) legacy_contents = core_api_contents + "\n" + legacy_contents with open(tf_keras_fpath, "w") as f: f.write(legacy_contents) # Delete keras/_legacy/ shutil.rmtree(os.path.join(package, "_legacy")) def export_version_string(version, is_nightly=False, rc_index=None): """Export Version and Package Name.""" if is_nightly: date = datetime.datetime.now() version += f".dev{date.strftime('%Y%m%d%H')}" # Replaces `name="keras"` string in `setup.py` with `keras-nightly` with open("setup.py") as f: setup_contents = f.read() with open("setup.py", "w") as f: setup_contents = setup_contents.replace( 'name="keras"', 'name="keras-nightly"' ) f.write(setup_contents) elif rc_index is not None: version += "rc" + str(rc_index) # Make sure to export the __version__ string with open(os.path.join(package, "__init__.py")) as f: init_contents = f.read() with open(os.path.join(package, "__init__.py"), "w") as f: f.write(init_contents + "\n\n" + f'__version__ = "{version}"\n') def build_and_save_output(root_path, __version__): # Build the package os.system("python3 -m build") # Save the dist files generated by the build process os.chdir(root_path) if not os.path.exists(dist_directory): os.mkdir(dist_directory) for fpath in glob.glob( os.path.join(build_directory, dist_directory, "*.*") ): shutil.copy(fpath, dist_directory) # Find the .whl file path whl_path = None for fname in os.listdir(dist_directory): if __version__ in fname and fname.endswith(".whl"): whl_path = os.path.abspath(os.path.join(dist_directory, fname)) if whl_path: print(f"Build successful. Wheel file available at {whl_path}") else: print("Build failed.") return whl_path def build(root_path, is_nightly=False, rc_index=None): if os.path.exists(build_directory): raise ValueError(f"Directory already exists: {build_directory}") try: copy_source_to_build_directory(root_path) run_namex_conversion() create_legacy_directory() from keras.src.version import __version__ # noqa: E402 export_version_string(__version__, is_nightly, rc_index) return build_and_save_output(root_path, __version__) finally: # Clean up: remove the build directory (no longer needed) shutil.rmtree(build_directory) def install_whl(whl_fpath): print(f"Installing wheel file: {whl_fpath}") os.system(f"pip3 install {whl_fpath} --force-reinstall --no-dependencies") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--install", action="store_true", help="Whether to install the generated wheel file.", ) parser.add_argument( "--nightly", action="store_true", help="Whether to generate nightly wheel file.", ) parser.add_argument( "--rc", type=int, help="Specify `[0-9] when generating RC wheels.", ) args = parser.parse_args() root_path = pathlib.Path(__file__).parent.resolve() whl_path = build(root_path, args.nightly, args.rc) if whl_path and args.install: install_whl(whl_path)
keras/pip_build.py/0
{ "file_path": "keras/pip_build.py", "repo_id": "keras", "token_count": 3788 }
158
"""Build the TF-Keras pip package. The steps are as follows: 0. Run bazel build in TF-Keras root directory to obtain protobuf Python files. 1. Create a temporary build directory (e.g. `/tmp/keras_build`) 2. Copy the TF-Keras codebase to it (to `/tmp/keras_build/tf_keras/src`) and rewrite internal imports so that they refer to `keras.src` rather than just `keras`. 3. Also copy `setup.py` to the build directory. 4. List and import every file in codebase (in `/tmp/keras_build/tf_keras/src`), so we can inspect the symbols the codebase contains. 5. Use the annotations left by the `keras_export` decorator to filter the symbols that should be exported, as well as their export path (default one and v1 one). 6. Use this information to generate `__init__.py` files in `tmp/keras_build/tf_keras/`. 7. Run the setup script to write out build artifacts to `tmp/keras_build/dist`. 8. Copy the artifacts out. This is what should be uploaded to PyPI. This script borrows heavily from Namex (https://github.com/fchollet/namex). Notes: * This script should be run on the TF-Keras codebase as obtained from GitHub (OSS-facing), not the Google-internal one. The files are expect to be already converted to their public form. * This script only targets Linux x86 64. It could be adapted to MacOS relatively easily by changing requirements.txt and the bazel build script. * This script should be run from an environment that has all TF-Keras dependencies installed. Note that their specific version is not important; the only thing that matters is that we should be able to import the TF-Keras codebase in its current state (so we can perform step 4). If you install the dependencies used by the latest TF-nightly you should be good. """ import argparse import datetime import glob import importlib import inspect import os import pathlib import shutil import subprocess import sys import tempfile PACKAGE_NAME = "tf_keras" DIST_DIRNAME = "dist" SRC_DIRNAME = "src" TMP_BUILD_DIRNAME = "keras_build" TMP_TEST_DIRNAME = "keras_test" VERBOSE = True INIT_FILE_HEADER = """AUTOGENERATED. DO NOT EDIT.""" # These are symbols that have export issues and that we skip for now. SYMBOLS_TO_SKIP = ["layer_test"] def copy_keras_codebase(source_dir, target_dir): disallowed = [ "tools", "integration_test", ] def ignore(path, names): to_ignore = [] for name in names: if name.endswith("_test.py"): to_ignore.append(name) elif name in disallowed: to_ignore.append(name) return to_ignore shutil.copytree(source_dir, target_dir, ignore=ignore) def convert_keras_imports(src_directory): def _convert_line(line): if ( "import tf_keras.protobuf" in line or "from tf_keras.protobuf" in line ): return line # Imports starting from `root_name`. if line.strip() == f"import {PACKAGE_NAME}": line = line.replace( f"import {PACKAGE_NAME}", f"import {PACKAGE_NAME}.{SRC_DIRNAME} as {PACKAGE_NAME}", ) return line line = line.replace( f"import {PACKAGE_NAME}.", f"import {PACKAGE_NAME}.{SRC_DIRNAME}.", ) line = line.replace( f"from {PACKAGE_NAME}.", f"from {PACKAGE_NAME}.{SRC_DIRNAME}.", ) line = line.replace( f"from {PACKAGE_NAME} import", f"from {PACKAGE_NAME}.{SRC_DIRNAME} import", ) # Convert `import tf_keras as keras` into `import tf_keras.src as keras` line = line.replace( f"import {PACKAGE_NAME} as ", f"import {PACKAGE_NAME}.{SRC_DIRNAME} as ", ) # A way to catch LazyLoader calls. Hacky. line = line.replace( 'globals(), "tf_keras.', 'globals(), "tf_keras.src.' ) return line for root, _, files in os.walk(src_directory): for fname in files: if fname.endswith(".py") and not fname.endswith("_pb2.py"): fpath = os.path.join(root, fname) if VERBOSE: print(f"...processing {fpath}") with open(fpath) as f: contents = f.read() lines = contents.split("\n") in_string = False new_lines = [] for line in lines: if line.strip().startswith('"""') or line.strip().endswith( '"""' ): if line.count('"') % 2 == 1: in_string = not in_string else: line = _convert_line(line) new_lines.append(line) with open(fpath, "w") as f: f.write("\n".join(new_lines) + "\n") def generate_keras_api_files(package_directory, src_directory): if VERBOSE: print("# Compiling codebase entry points.") codebase_walk_entry_points = [] for root, _, files in os.walk(src_directory): for fname in files: parts = root.split("/") parts = parts[parts.index("tf_keras") :] base_entry_point = ".".join(parts) if fname == "__init__.py": codebase_walk_entry_points.append(base_entry_point) elif fname.endswith(".py") and not fname.endswith("_test.py"): module_name = fname[:-3] codebase_walk_entry_points.append( base_entry_point + "." + module_name ) # Import all Python modules found in the code directory. modules = [] sys.path.insert(0, os.getcwd()) for entry_point in codebase_walk_entry_points: if VERBOSE: print(f"Load entry point: {entry_point}") mod = importlib.import_module(entry_point, package=".") modules.append(mod) if VERBOSE: print("# Compiling list of symbols to export.") # Populate list of all symbols to register. all_symbols = set() processed = set() from tensorflow.python.util import tf_decorator for module in modules: for name in dir(module): if name in SYMBOLS_TO_SKIP: continue symbol = getattr(module, name) # Get the real symbol behind any TF decorator try: _, symbol = tf_decorator.unwrap(symbol) except ModuleNotFoundError: # unwrap will not work on a ModuleSpec (which can't be # an API symbol anyway) continue # Skip if already seen if id(symbol) in processed: continue processed.add(id(symbol)) try: if not hasattr(symbol, "_keras_api_names"): continue except: # noqa: E722 if VERBOSE: print( f"[!] Could not inspect symbol '{name}' from {module}." ) continue # If the symbol is a non-registered subclass of # a registered symbol, skip it. skip = False def has_same_metadata(a, b): if ( hasattr(a, "_keras_api_names") and hasattr(b, "_keras_api_names") and a._keras_api_names == b._keras_api_names and a._keras_api_names_v1 == b._keras_api_names_v1 ): return True return False try: classes = inspect.getmro(symbol) if len(classes) >= 2: parents = classes[1:] for p in parents: if has_same_metadata(p, symbol): skip = True except AttributeError: # getmro will error out on a non-class # (in which case there can be no subclassing issues). pass if not skip: all_symbols.add(symbol) # Generate __init__ files content. if VERBOSE: print("# Processing export path data for each symbol.") init_files_content = grab_symbol_metadata(all_symbols, is_v1=False) init_files_content_v1 = grab_symbol_metadata(all_symbols, is_v1=True) if VERBOSE: print("# Writing out API files.") write_out_api_files( init_files_content, target_dir=pathlib.Path(package_directory).parent.resolve(), ) v1_path = os.path.join(package_directory, "api", "_v1") v2_path = os.path.join(package_directory, "api", "_v2") write_out_api_files( init_files_content, target_dir=v2_path, root_offset=["api", "_v2", "keras"], ) write_out_api_files( init_files_content_v1, target_dir=v1_path, root_offset=["api", "_v1", "keras"], ) # Add missing __init__ files in api dirs. with open(os.path.join(package_directory, "api", "__init__.py"), "w"): pass with open(os.path.join(v1_path, "__init__.py"), "w"): pass with open(os.path.join(v2_path, "__init__.py"), "w"): pass def grab_symbol_metadata(all_symbols, is_v1=False): # init_files_content is a dict mapping a directory path to a list of # symbol metadata entries to populate the __init__ file for the directory. # Each entry is a dict with keys 'symbol' and 'export_name'. init_files_content = {} for symbol in all_symbols: if VERBOSE: print(f"...processing symbol '{symbol.__name__}'") if is_v1: api_names = symbol._keras_api_names_v1 else: api_names = symbol._keras_api_names for export_path in api_names: export_modules = export_path.split(".") export_name = export_modules[-1] parent_path = os.path.join(*export_modules[:-1]) if parent_path not in init_files_content: init_files_content[parent_path] = [] init_files_content[parent_path].append( {"symbol": symbol, "export_name": export_name} ) for i in range(1, len(export_modules[:-1])): intermediate_path = os.path.join(*export_modules[:i]) if intermediate_path not in init_files_content: init_files_content[intermediate_path] = [] init_files_content[intermediate_path].append( { "module": export_modules[i], "location": ".".join(export_modules[:i]), } ) return init_files_content def write_out_api_files(init_files_content, target_dir, root_offset=None): # Go over init_files_content, make dirs, # create __init__.py file, populate file with public symbol imports. root_offset = root_offset or [] for path, contents in init_files_content.items(): # Use`tf_keras.<module>` format. module_path = path if path.startswith("keras"): module_path = "tf_" + module_path # Change pathnames from keras/layers -> tf_keras/layers unless # root_offset is explitly provided for API generation. if path.startswith("keras") and not root_offset: path = "tf_" + path os.makedirs(os.path.join(target_dir, path), exist_ok=True) init_file_lines = [] modules_included = set() for symbol_metadata in contents: if "symbol" in symbol_metadata: symbol = symbol_metadata["symbol"] name = symbol_metadata["export_name"] if name == symbol.__name__: init_file_lines.append( f"from {symbol.__module__} import {symbol.__name__}" ) else: init_file_lines.append( f"from {symbol.__module__} " f"import {symbol.__name__} as {name}" ) elif "module" in symbol_metadata: if symbol_metadata["module"] not in modules_included: parts = module_path.split("/") parts = [parts[0]] + root_offset + parts[1:] module_location = ".".join(parts) init_file_lines.append( f"from {module_location} " f"import {symbol_metadata['module']}" ) modules_included.add(symbol_metadata["module"]) init_path = os.path.join(target_dir, path, "__init__.py") if VERBOSE: print(f"...writing {init_path}") init_file_lines = sorted(init_file_lines) with open(init_path, "w") as f: contents = ( f'"""{INIT_FILE_HEADER}"""\n\n' + "\n".join(init_file_lines) + "\n" ) f.write(contents) def build_pip_package( keras_root_directory, build_directory, package_directory, src_directory, dist_directory, is_nightly=False, rc=None, ): # Build TF-Keras with Bazel to get the protobuf .py files os.chdir(keras_root_directory) os.system(f"sh {os.path.join('tf_keras', 'tools', 'bazel_build.sh')}") os.chdir(build_directory) # Copy sources (`keras/` directory and setup files) to build directory copy_keras_codebase( os.path.join(keras_root_directory, "tf_keras"), src_directory ) shutil.copy( os.path.join(keras_root_directory, "oss_setup.py"), os.path.join(build_directory, "setup.py"), ) # Add blank __init__.py file at package root # to make the package directory importable. with open(os.path.join(package_directory, "__init__.py"), "w") as f: pass # Move protobuf .py files to package root. shutil.rmtree(os.path.join(src_directory, "protobuf")) shutil.move( os.path.join(keras_root_directory, "bazel-bin", "tf_keras", "protobuf"), package_directory, ) # Add blank __init__.py file in protobuf dir. with open( os.path.join(package_directory, "protobuf", "__init__.py"), "w" ) as f: pass # Convert imports from `tf_keras.xyz` to `tf_keras.src.xyz`. convert_keras_imports(src_directory) # Generate API __init__.py files in `tf_keras/` generate_keras_api_files(package_directory, src_directory) # Make sure to export the __version__ string version = getattr( importlib.import_module("tf_keras.src", package="."), "__version__" ) if is_nightly: date = datetime.datetime.now() version += f".dev{date.strftime('%Y%m%d%H')}" elif rc: version += rc with open(os.path.join(package_directory, "__init__.py")) as f: init_contents = f.read() with open(os.path.join(package_directory, "__init__.py"), "w") as f: f.write(init_contents + "\n\n" + f'__version__ = "{version}"\n') # Insert {{PACKAGE}} and {{VERSION}} strings in setup.py if is_nightly: package = PACKAGE_NAME + "-nightly" else: package = PACKAGE_NAME with open(os.path.join(build_directory, "setup.py")) as f: setup_contents = f.read() with open(os.path.join(build_directory, "setup.py"), "w") as f: setup_contents = setup_contents.replace("{{VERSION}}", version) setup_contents = setup_contents.replace("{{PACKAGE}}", package) f.write(setup_contents) # Build the package os.system("python3 -m build") # Save the dist files generated by the build process saved_filenames = [] for filename in glob.glob(os.path.join(build_directory, "dist", "*.*")): if VERBOSE: print(f"Saving build artifact {filename}") shutil.copy(filename, dist_directory) saved_filenames.append(filename) if VERBOSE: print(f"Saved artifacts to {dist_directory}") return saved_filenames, version def test_wheel(wheel_path, expected_version, requirements_path): test_directory = os.path.join(tempfile.gettempdir(), TMP_TEST_DIRNAME) os.mkdir(test_directory) os.chdir(test_directory) symbols_to_check = [ "tf_keras.layers", "tf_keras.Input", "tf_keras.__internal__", "tf_keras.experimental", ] checks = ";".join(symbols_to_check) # Uninstall `keras-nightly` after installing requirements # otherwise both will register `experimentalOptimizer` and test will fail. # Skip install deps for `tf_keras` as TensorFlow installed from requirements script = ( "#!/bin/bash\n" "virtualenv kenv\n" f"source {os.path.join('kenv', 'bin', 'activate')}\n" f"pip3 install -r {requirements_path}\n" "pip3 uninstall -y keras-nightly\n" f"pip3 install {wheel_path} --force-reinstall --no-deps\n" f"python3 -c 'import tf_keras;{checks};print(tf_keras.__version__)'\n" ) try: # Check version is correct output = subprocess.check_output(script.encode(), shell=True) output = output.decode().rstrip().split("\n")[-1].strip() if not output == expected_version: raise ValueError( "Incorrect version; expected " f"{expected_version} but received {output}" ) finally: shutil.rmtree(test_directory) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--nightly", action="store_true", help="Whether this is for the `keras-nightly` package.", ) parser.add_argument( "--RC", type=str, help="Whether this is for the release candidate.", ) args = parser.parse_args() is_nightly = args.nightly rc = args.RC build_directory = os.path.join(tempfile.gettempdir(), TMP_BUILD_DIRNAME) keras_root_directory = pathlib.Path(__file__).parent.resolve() dist_directory = os.path.join(keras_root_directory, DIST_DIRNAME) package_directory = os.path.join(build_directory, PACKAGE_NAME) src_directory = os.path.join(build_directory, PACKAGE_NAME, SRC_DIRNAME) if VERBOSE: print( "Using:\n" f"build_directory={build_directory}\n" f"keras_root_directory={keras_root_directory}\n" f"dist_directory={dist_directory}\n" f"package_directory={package_directory}\n" f"src_directory={src_directory}\n" f"is_nightly={is_nightly}\n" f"rc={rc}" ) if os.path.exists(build_directory): raise ValueError(f"Directory already exists: {build_directory}") os.mkdir(build_directory) os.mkdir(package_directory) if not os.path.exists(dist_directory): os.mkdir(dist_directory) try: saved_filenames, version = build_pip_package( keras_root_directory, build_directory, package_directory, src_directory, dist_directory, is_nightly, rc, ) wheel_filename = [f for f in saved_filenames if f.endswith(".whl")][0] if VERBOSE: print("Testing wheel artifact.") test_wheel( wheel_path=os.path.join(dist_directory, wheel_filename), expected_version=version, requirements_path=os.path.join( keras_root_directory, "requirements.txt" ), ) if VERBOSE: print("Test successful.") finally: # Clean up: remove the build directory (no longer needed) if VERBOSE: print(f"Deleting temp build directory at {build_directory}...") shutil.rmtree(build_directory)
tf-keras/pip_build.py/0
{ "file_path": "tf-keras/pip_build.py", "repo_id": "tf-keras", "token_count": 9392 }
159
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # ============================================================================== """Keras API compatibility tests. This test ensures all changes to the public API of TF-Keras are intended. If this test fails, it means a change has been made to the public API. Backwards incompatible changes are not allowed. You can run the test with "--update_goldens" flag set to "True" to update goldens when making changes to the public TF-Keras python API. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os import re import sys import six import tensorflow as tf # isort: off from google.protobuf import message from google.protobuf import text_format from tensorflow.python.lib.io import file_io from tensorflow.tools.api.lib import api_objects_pb2 from tensorflow.tools.api.lib import ( python_object_to_proto_visitor, ) from tensorflow.tools.common import public_api from tensorflow.tools.common import traverse # FLAGS defined at the bottom: FLAGS = None # DEFINE_boolean, update_goldens, default False: _UPDATE_GOLDENS_HELP = """ Update stored golden files if API is updated. WARNING: All API changes have to be authorized by TensorFlow leads. """ # DEFINE_boolean, verbose_diffs, default True: _VERBOSE_DIFFS_HELP = """ If set to true, print line by line diffs on all libraries. If set to false, only print which libraries have differences. """ # Initialized with _InitPathConstants function below. _API_GOLDEN_FOLDER_V1 = None _API_GOLDEN_FOLDER_V2 = None def _InitPathConstants(): global _API_GOLDEN_FOLDER_V1 global _API_GOLDEN_FOLDER_V2 root_golden_path_v2 = os.path.join( tf.compat.v1.resource_loader.get_data_files_path(), "..", "golden", "v2", "tensorflow.keras.pbtxt", ) if FLAGS.update_goldens: root_golden_path_v2 = os.path.realpath(root_golden_path_v2) # Get API directories based on the root golden file. This way # we make sure to resolve symbolic links before creating new files. _API_GOLDEN_FOLDER_V2 = os.path.dirname(root_golden_path_v2) _API_GOLDEN_FOLDER_V1 = os.path.normpath( os.path.join(_API_GOLDEN_FOLDER_V2, "..", "v1") ) _TEST_README_FILE = os.path.join( tf.compat.v1.resource_loader.get_data_files_path(), "README.txt" ) _UPDATE_WARNING_FILE = os.path.join( tf.compat.v1.resource_loader.get_data_files_path(), "API_UPDATE_WARNING.txt" ) def _KeyToFilePath(key, api_version): """From a given key, construct a filepath. Filepath will be inside golden folder for api_version. Args: key: a string used to determine the file path api_version: a number indicating the tensorflow API version, e.g. 1 or 2. Returns: A string of file path to the pbtxt file which describes the public API """ def _ReplaceCapsWithDash(matchobj): match = matchobj.group(0) return f"-{match.lower()}" case_insensitive_key = re.sub( "([A-Z]{1})", _ReplaceCapsWithDash, six.ensure_str(key) ) api_folder = ( _API_GOLDEN_FOLDER_V2 if api_version == 2 else _API_GOLDEN_FOLDER_V1 ) return os.path.join(api_folder, f"{case_insensitive_key}.pbtxt") def _FileNameToKey(filename): """From a given filename, construct a key we use for api objects.""" def _ReplaceDashWithCaps(matchobj): match = matchobj.group(0) return match[1].upper() base_filename = os.path.basename(filename) base_filename_without_ext = os.path.splitext(base_filename)[0] api_object_key = re.sub( "((-[a-z]){1})", _ReplaceDashWithCaps, six.ensure_str(base_filename_without_ext), ) return api_object_key def _VerifyNoSubclassOfMessageVisitor(path, parent, unused_children): """A Visitor that crashes on subclasses of generated proto classes.""" # If the traversed object is a proto Message class if not (isinstance(parent, type) and issubclass(parent, message.Message)): return if parent is message.Message: return # Check that it is a direct subclass of Message. if message.Message not in parent.__bases__: raise NotImplementedError( "Object tf.%s is a subclass of a generated proto Message. " "They are not yet supported by the API tools." % path ) def _FilterGoldenProtoDict(golden_proto_dict, omit_golden_symbols_map): """Filter out golden proto dict symbols that should be omitted.""" if not omit_golden_symbols_map: return golden_proto_dict filtered_proto_dict = dict(golden_proto_dict) for key, symbol_list in six.iteritems(omit_golden_symbols_map): api_object = api_objects_pb2.TFAPIObject() api_object.CopyFrom(filtered_proto_dict[key]) filtered_proto_dict[key] = api_object module_or_class = None if api_object.HasField("tf_module"): module_or_class = api_object.tf_module elif api_object.HasField("tf_class"): module_or_class = api_object.tf_class if module_or_class is not None: for members in ( module_or_class.member, module_or_class.member_method, ): filtered_members = [ m for m in members if m.name not in symbol_list ] # Two steps because protobuf repeated fields disallow slice # assignment. del members[:] members.extend(filtered_members) return filtered_proto_dict class ApiCompatibilityTest(tf.test.TestCase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._update_golden_warning = file_io.read_file_to_string( _UPDATE_WARNING_FILE ) self._test_readme_message = file_io.read_file_to_string( _TEST_README_FILE ) def _AssertProtoDictEquals( self, expected_dict, actual_dict, verbose=False, update_goldens=False, additional_missing_object_message="", api_version=2, ): """Diff given dicts of protobufs and report differences a readable way. Args: expected_dict: a dict of TFAPIObject protos constructed from golden files. actual_dict: a ict of TFAPIObject protos constructed by reading from the TF package linked to the test. verbose: Whether to log the full diffs, or simply report which files were different. update_goldens: Whether to update goldens when there are diffs found. additional_missing_object_message: Message to print when a symbol is missing. api_version: TensorFlow API version to test. """ diffs = [] verbose_diffs = [] expected_keys = set(expected_dict.keys()) actual_keys = set(actual_dict.keys()) only_in_expected = expected_keys - actual_keys only_in_actual = actual_keys - expected_keys all_keys = expected_keys | actual_keys # This will be populated below. updated_keys = [] for key in all_keys: diff_message = "" verbose_diff_message = "" # First check if the key is not found in one or the other. if key in only_in_expected: diff_message = ( "Object %s expected but not found (removed). %s" % (key, additional_missing_object_message) ) verbose_diff_message = diff_message elif key in only_in_actual: diff_message = f"New object {key} found (added)." verbose_diff_message = diff_message else: # Do not truncate diff self.maxDiff = None # Now we can run an actual proto diff. try: self.assertProtoEquals(expected_dict[key], actual_dict[key]) except AssertionError as e: updated_keys.append(key) diff_message = f"Change detected in python object: {key}." verbose_diff_message = str(e) # All difference cases covered above. If any difference found, add # to the list. if diff_message: diffs.append(diff_message) verbose_diffs.append(verbose_diff_message) # If diffs are found, handle them based on flags. if diffs: diff_count = len(diffs) tf.compat.v1.logging.error(self._test_readme_message) tf.compat.v1.logging.error( "%d differences found between API and golden.", diff_count ) if update_goldens: # Write files if requested. tf.compat.v1.logging.warning(self._update_golden_warning) # If the keys are only in expected, some objects are deleted. # Remove files. for key in only_in_expected: filepath = _KeyToFilePath(key, api_version) tf.io.gfile.remove(filepath) # If the files are only in actual (current library), these are # new modules. Write them to files. Also record all updates in # files. for key in only_in_actual | set(updated_keys): filepath = _KeyToFilePath(key, api_version) file_io.write_string_to_file( filepath, text_format.MessageToString(actual_dict[key]) ) else: # Include the actual differences to help debugging. for d, verbose_d in zip(diffs, verbose_diffs): tf.compat.v1.logging.error(" %s", d) tf.compat.v1.logging.error(" %s", verbose_d) # Fail if we cannot fix the test by updating goldens. self.fail( "%d differences found between API and golden." % diff_count ) else: tf.compat.v1.logging.info( "No differences found between API and golden." ) def _checkBackwardsCompatibility( self, root, golden_file_patterns, api_version, additional_private_map=None, omit_golden_symbols_map=None, ): # Extract all API stuff. visitor = python_object_to_proto_visitor.PythonObjectToProtoVisitor( default_path="tensorflow.keras" ) public_api_visitor = public_api.PublicAPIVisitor(visitor) if additional_private_map: public_api_visitor.private_map.update(additional_private_map) public_api_visitor.set_root_name("tf.keras") traverse.traverse(root, public_api_visitor) proto_dict = visitor.GetProtos() # Read all golden files. golden_file_list = tf.compat.v1.gfile.Glob(golden_file_patterns) def _ReadFileToProto(filename): """Read a filename, create a protobuf from its contents.""" ret_val = api_objects_pb2.TFAPIObject() text_format.Merge(file_io.read_file_to_string(filename), ret_val) return ret_val golden_proto_dict = { _FileNameToKey(filename): _ReadFileToProto(filename) for filename in golden_file_list } golden_proto_dict = _FilterGoldenProtoDict( golden_proto_dict, omit_golden_symbols_map ) # Diff them. Do not fail if called with update. # If the test is run to update goldens, only report diffs but do not # fail. self._AssertProtoDictEquals( golden_proto_dict, proto_dict, verbose=FLAGS.verbose_diffs, update_goldens=FLAGS.update_goldens, api_version=api_version, ) def testAPIBackwardsCompatibility(self): api_version = 1 if hasattr(tf, "_major_api_version") and tf._major_api_version == 2: api_version = 2 golden_file_patterns = [ os.path.join( tf.compat.v1.resource_loader.get_root_dir_with_all_resources(), _KeyToFilePath("*", api_version), ) ] self._checkBackwardsCompatibility( tf.keras, golden_file_patterns, api_version, # Skip compat.v1 and compat.v2 since they are validated # in separate tests. additional_private_map={"tf.compat": ["v1", "v2"]}, omit_golden_symbols_map={}, ) def testAPIBackwardsCompatibilityV1(self): api_version = 1 golden_file_patterns = os.path.join( tf.compat.v1.resource_loader.get_root_dir_with_all_resources(), _KeyToFilePath("*", api_version), ) self._checkBackwardsCompatibility( tf.compat.v1.keras, golden_file_patterns, api_version, additional_private_map={ "tf": ["pywrap_tensorflow"], "tf.compat": ["v1", "v2"], }, omit_golden_symbols_map={}, ) def testAPIBackwardsCompatibilityV2(self): api_version = 2 golden_file_patterns = [ os.path.join( tf.compat.v1.resource_loader.get_root_dir_with_all_resources(), _KeyToFilePath("*", api_version), ) ] self._checkBackwardsCompatibility( tf.compat.v2.keras, golden_file_patterns, api_version, additional_private_map={"tf.compat": ["v1", "v2"]}, omit_golden_symbols_map={}, ) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--update_goldens", type=bool, default=False, help=_UPDATE_GOLDENS_HELP ) parser.add_argument( "--verbose_diffs", type=bool, default=True, help=_VERBOSE_DIFFS_HELP ) FLAGS, unparsed = parser.parse_known_args() _InitPathConstants() # Now update argv, so that unittest library does not get confused. sys.argv = [sys.argv[0]] + unparsed tf.test.main()
tf-keras/tf_keras/api/tests/api_compatibility_test.py/0
{ "file_path": "tf-keras/tf_keras/api/tests/api_compatibility_test.py", "repo_id": "tf-keras", "token_count": 6723 }
160
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for benchmark utitilies.""" import tensorflow.compat.v2 as tf import tf_keras as keras from tf_keras.benchmarks import benchmark_util class BenchmarkUtilTest(tf.test.TestCase): def test_get_benchmark_name(self): name = "benchmark_layer_call__Conv2D_small_shape" expected = ["Conv2D", "small", "shape"] out = benchmark_util.get_benchmark_name(name) self.assertAllEqual(out, expected) def test_generate_benchmark_params_cpu_gpu(self): adam_opt = keras.optimizers.Adam() sgd_opt = keras.optimizers.SGD() params = [ ("Adam", adam_opt, 10), ("SGD", sgd_opt, 10), ] expected = [ ("Adam_CPU", adam_opt, 10), ("SGD_CPU", sgd_opt, 10), ("Adam_GPU", adam_opt, 10), ("SGD_GPU", sgd_opt, 10), ] out = benchmark_util.generate_benchmark_params_cpu_gpu(params) self.assertAllEqual(out, expected) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/benchmarks/benchmark_util_test.py/0
{ "file_path": "tf-keras/tf_keras/benchmarks/benchmark_util_test.py", "repo_id": "tf-keras", "token_count": 644 }
161
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Benchmarks on TF-Keras layers.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import numpy as np import tensorflow.compat.v2 as tf import tf_keras as keras from tf_keras.benchmarks import benchmark_util from tf_keras.benchmarks.layer_benchmarks import layer_benchmarks_test_base def _get_metadata(name): return { "model_name": "ideal_layers", "parameters": name[1] + "_shape", } def _get_layer_args(layer_cls, layer_args): # To make benchmark parameters compatible with GPU platform. if layer_cls is keras.layers.Bidirectional: return {"layer": keras.layers.LSTM(1)} return layer_args def _get_input_data(inputs): if "input_shape" in inputs: return tf.ones(inputs["input_shape"]) elif "input" in inputs: return inputs["input"] else: raise ValueError( "Please specify either `input_shape` or `input`" "for the benchmark test" ) def _layer_call_backward(layer, x): with tf.GradientTape() as tape: y = layer(x) loss = tf.reduce_mean(y**2) _ = tape.gradient(loss, layer.trainable_variables) CORE_LAYERS = [ ( "Dense_small_shape", keras.layers.Dense, {"units": 32, "activation": "relu"}, {"input_shape": (1, 16)}, 100, ), ( "Activation_small_shape", keras.layers.Activation, {"activation": "relu"}, {"input_shape": (1, 4)}, 100, ), ( "Embedding_small_shape", keras.layers.Embedding, {"input_dim": 1, "output_dim": 1, "input_length": 1}, {"input": np.random.randint(1, size=(1, 1))}, 100, ), ( "Embedding_normal_shape", keras.layers.Embedding, {"input_dim": 1000, "output_dim": 64, "input_length": 10}, {"input": np.random.randint(1000, size=(32, 10))}, 100, ), ( "Masking_small_shape", keras.layers.Masking, {"mask_value": 1}, {"input_shape": (1, 1)}, 100, ), ( "Lambda_small_shape", keras.layers.Lambda, {"function": lambda x: x**2}, {"input_shape": (1, 1)}, 100, ), ( "Flatten_small_shape", keras.layers.Flatten, {}, {"input_shape": (1, 1)}, 100, ), ] CONV_LAYERS = [ ( "Conv1D_small_shape", keras.layers.Conv1D, {"filters": 1, "kernel_size": 1, "activation": "relu"}, {"input_shape": (1, 1, 1)}, 100, ), ( "Conv2D_small_shape", keras.layers.Conv2D, {"filters": 1, "kernel_size": 1, "activation": "relu"}, {"input_shape": (1, 1, 1, 1)}, 100, ), ( "Conv2D_normal_shape", keras.layers.Conv2D, {"filters": 1, "kernel_size": 1, "activation": "relu"}, {"input_shape": (64, 28, 28, 3)}, 100, ), ( "Conv3D_small_shape", keras.layers.Conv3D, {"filters": 1, "kernel_size": 1, "activation": "relu"}, {"input_shape": (1, 1, 1, 1, 1)}, 100, ), ( "Conv1DTranspose_small_shape", keras.layers.Conv1DTranspose, {"filters": 1, "kernel_size": 1, "activation": "relu"}, {"input_shape": (1, 1, 1)}, 100, ), ( "Conv2DTranspose_small_shape", keras.layers.Conv2DTranspose, {"filters": 1, "kernel_size": 1, "activation": "relu"}, {"input_shape": (1, 1, 1, 1)}, 100, ), ( "Conv3DTranspose_small_shape", keras.layers.Conv3DTranspose, {"filters": 1, "kernel_size": 1, "activation": "relu"}, {"input_shape": (1, 1, 1, 1, 1)}, 100, ), ( "SeparableConv1D_small_shape", keras.layers.SeparableConv1D, {"filters": 1, "kernel_size": 1, "activation": "relu"}, {"input_shape": (1, 1, 1)}, 100, ), ( "SeparableConv2D_small_shape", keras.layers.SeparableConv2D, {"filters": 1, "kernel_size": 1, "activation": "relu"}, {"input_shape": (1, 1, 1, 1)}, 100, ), ( "DepthwiseConv2D_small_shape", keras.layers.DepthwiseConv2D, {"kernel_size": 1, "activation": "relu"}, {"input_shape": (1, 1, 1, 1)}, 100, ), ] RECURRENT_LAYERS = [ ( "LSTM_small_shape", keras.layers.LSTM, {"units": 1}, {"input_shape": (1, 1, 1)}, 100, ), ( "LSTM_normal_shape", keras.layers.LSTM, {"units": 4}, {"input_shape": (32, 10, 8)}, 100, ), ( "GRU_small_shape", keras.layers.GRU, {"units": 1}, {"input_shape": (1, 1, 1)}, 100, ), ( "SimpleRNN_small_shape", keras.layers.SimpleRNN, {"units": 1}, {"input_shape": (1, 1, 1)}, 100, ), ( "TimeDistributed_small_shape", keras.layers.TimeDistributed, {"layer": keras.layers.Conv2D(1, 1)}, {"input_shape": (1, 1, 1, 1, 1)}, 100, ), ( "Bidirectional_small_shape", keras.layers.Bidirectional, {}, {"input_shape": (1, 1, 1)}, 100, ), ( "ConvLSTM2D_small_shape", keras.layers.ConvLSTM2D, {"filters": 1, "kernel_size": 1, "activation": "relu"}, {"input_shape": (1, 1, 1, 1, 1)}, 100, ), ( "RNN_small_shape", keras.layers.RNN, {"cell": keras.layers.LSTMCell(1)}, {"input_shape": (1, 1, 1)}, 100, ), ] NORMALIZATION_LAYERS = [ ( "BatchNormalization_small_shape", keras.layers.BatchNormalization, {"axis": -1}, {"input_shape": (1, 1, 1)}, 100, ), ( "LayerNormalization_small_shape", keras.layers.LayerNormalization, {"axis": -1}, {"input_shape": (1, 1, 1)}, 100, ), ] REGULARIZATION_LAYERS = [ ( "Dropout_small_shape", keras.layers.Dropout, {"rate": 0.2}, {"input_shape": (1, 1, 1)}, 100, ), ( "SpatialDropout1D_small_shape", keras.layers.SpatialDropout1D, {"rate": 0.2}, {"input_shape": (1, 1, 1)}, 100, ), ( "SpatialDropout2D_small_shape", keras.layers.SpatialDropout2D, {"rate": 0.2}, {"input_shape": (1, 1, 1, 1)}, 100, ), ( "SpatialDropout3D_small_shape", keras.layers.SpatialDropout3D, {"rate": 0.2}, {"input_shape": (1, 1, 1, 1, 1)}, 100, ), ( "GaussianDropout_small_shape", keras.layers.GaussianDropout, {"rate": 0.2}, {"input_shape": (1, 1, 1)}, 100, ), ( "GaussianNoise_small_shape", keras.layers.GaussianNoise, {"stddev": 0.1}, {"input_shape": (1, 1, 1)}, 100, ), ( "ActivityRegularization_small_shape", keras.layers.ActivityRegularization, {"l1": 0.3}, {"input_shape": (1, 1, 1)}, 100, ), ( "AlphaDropout_small_shape", keras.layers.AlphaDropout, {"rate": 0.2}, {"input_shape": (1, 1, 1)}, 100, ), ] ATTENSION_LAYERS = [ ( "Attention_small_shape", keras.layers.Attention, {"use_scale": False}, {"input": [np.ones((1, 1, 1)), np.ones((1, 1, 1))]}, 100, ), ( "AdditiveAttention_small_shape", keras.layers.AdditiveAttention, {"use_scale": True}, {"input": [np.ones((1, 1, 1)), np.ones((1, 1, 1))]}, 100, ), ] POOLING_LAYERS = [ ( "MaxPooling1D_small_shape", keras.layers.MaxPooling1D, {"pool_size": 1, "strides": 1}, {"input_shape": (1, 1, 1)}, 100, ), ( "MaxPooling2D_small_shape", keras.layers.MaxPooling2D, {"pool_size": 1, "strides": 1}, {"input_shape": (1, 1, 1, 1)}, 100, ), ( "MaxPooling3D_small_shape", keras.layers.MaxPooling3D, {"pool_size": 1, "strides": 1}, {"input_shape": (1, 1, 1, 1, 1)}, 100, ), ( "AveragePooling1D_small_shape", keras.layers.AveragePooling1D, {"pool_size": 1, "strides": 1}, {"input_shape": (1, 1, 1)}, 100, ), ( "AveragePooling2D_small_shape", keras.layers.AveragePooling2D, {"pool_size": 1, "strides": 1}, {"input_shape": (1, 1, 1, 1)}, 100, ), ( "AveragePooling3D_small_shape", keras.layers.AveragePooling3D, {"pool_size": 1, "strides": 1}, {"input_shape": (1, 1, 1, 1, 1)}, 100, ), ( "GlobalMaxPooling1D_small_shape", keras.layers.GlobalMaxPooling1D, {}, {"input_shape": (1, 1, 1)}, 100, ), ( "GlobalMaxPooling2D_small_shape", keras.layers.GlobalMaxPooling2D, {}, {"input_shape": (1, 1, 1, 1)}, 100, ), ( "GlobalMaxPooling3D_small_shape", keras.layers.GlobalMaxPooling3D, {}, {"input_shape": (1, 1, 1, 1, 1)}, 100, ), ( "GlobalAveragePooling1D_small_shape", keras.layers.GlobalAveragePooling1D, {}, {"input_shape": (1, 1, 1)}, 100, ), ( "GlobalAveragePooling2D_small_shape", keras.layers.GlobalAveragePooling2D, {}, {"input_shape": (1, 1, 1, 1)}, 100, ), ( "GlobalAveragePooling3D_small_shape", keras.layers.GlobalAveragePooling3D, {}, {"input_shape": (1, 1, 1, 1, 1)}, 100, ), ] class KerasLayerBenchmarks( layer_benchmarks_test_base.LayerBenchmarksBase, metaclass=tf.__internal__.test.ParameterizedBenchmark, ): # The parameter of each layer benchmark is a tuple, and the first one is # the benchmark name. It must follow the convention of # "{layer_name}_{small|normal|large}_shape" to make it compatible with # `self.report_benchmark()` method. _benchmark_parameters = benchmark_util.generate_benchmark_params_cpu_gpu( CORE_LAYERS + CONV_LAYERS + RECURRENT_LAYERS + NORMALIZATION_LAYERS + REGULARIZATION_LAYERS + ATTENSION_LAYERS + POOLING_LAYERS ) def benchmark_layer_call(self, layer_cls, layer_args, inputs, num_iters): layer = layer_cls(**_get_layer_args(layer_cls, layer_args)) x = _get_input_data(inputs) fn = functools.partial(layer, x) name = benchmark_util.get_benchmark_name(self._get_name()) metadata = {"implementation": name[0] + ".layer.call"} metadata.update(_get_metadata(name)) self.run_report(fn, num_iters, metadata) def benchmark_layer_call_with_function( self, layer_cls, layer_args, inputs, num_iters ): layer = layer_cls(**_get_layer_args(layer_cls, layer_args)) x = _get_input_data(inputs) layer.call = tf.function(layer.call) fn = functools.partial(layer, x) name = benchmark_util.get_benchmark_name(self._get_name()) metadata = {"implementation": name[0] + ".layer.call.function"} metadata.update(_get_metadata(name)) self.run_report(fn, num_iters, metadata) def benchmark_layer_call_with_xla( self, layer_cls, layer_args, inputs, num_iters ): name = benchmark_util.get_benchmark_name(self._get_name()) # TODO(b/173461426) if layer_cls is keras.layers.Embedding and name[-1] == "GPU": return layer = layer_cls(**_get_layer_args(layer_cls, layer_args)) x = _get_input_data(inputs) layer.call = tf.function(layer.call, jit_compile=True) fn = functools.partial(layer, x) metadata = {"implementation": name[0] + ".layer.call.xla"} metadata.update(_get_metadata(name)) self.run_report(fn, num_iters, metadata) def benchmark_layer_call_backward( self, layer_cls, layer_args, inputs, num_iters ): layer = layer_cls(**_get_layer_args(layer_cls, layer_args)) x = _get_input_data(inputs) fn = functools.partial(_layer_call_backward, layer, x) name = benchmark_util.get_benchmark_name(self._get_name()) metadata = {"implementation": name[0] + ".layer.call.backward"} metadata.update(_get_metadata(name)) self.run_report(fn, num_iters, metadata) def benchmark_layer_call_backward_with_function( self, layer_cls, layer_args, inputs, num_iters ): layer = layer_cls(**_get_layer_args(layer_cls, layer_args)) x = _get_input_data(inputs) layer.call = tf.function(layer.call) fn = functools.partial(_layer_call_backward, layer, x) name = benchmark_util.get_benchmark_name(self._get_name()) metadata = {"implementation": name[0] + ".layer.call.backward.function"} metadata.update(_get_metadata(name)) self.run_report(fn, num_iters, metadata) def benchmark_layer_call_backward_with_xla( self, layer_cls, layer_args, inputs, num_iters ): name = benchmark_util.get_benchmark_name(self._get_name()) # TODO(b/153480400) if layer_cls in [ keras.layers.LSTM, keras.layers.Bidirectional, keras.layers.ConvLSTM2D, keras.layers.GRU, keras.layers.RNN, keras.layers.SimpleRNN, ]: return # TODO(b/173461426) if layer_cls is keras.layers.Embedding and name[-1] == "GPU": return layer = layer_cls(**_get_layer_args(layer_cls, layer_args)) x = _get_input_data(inputs) layer.call = tf.function(layer.call, jit_compile=True) fn = functools.partial(_layer_call_backward, layer, x) metadata = {"implementation": name[0] + ".layer.call.backward.xla"} metadata.update(_get_metadata(name)) self.run_report(fn, num_iters, metadata) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/benchmarks/layer_benchmarks/layer_benchmarks_test.py/0
{ "file_path": "tf-keras/tf_keras/benchmarks/layer_benchmarks/layer_benchmarks_test.py", "repo_id": "tf-keras", "token_count": 7585 }
162
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for distributed_file_utils.""" import os import tensorflow.compat.v2 as tf from tf_keras.distribute import distributed_file_utils class DistributedFileUtilsTest(tf.test.TestCase): class MockedExtended: pass class MockedChiefStrategy: def __init__(self): self.extended = DistributedFileUtilsTest.MockedExtended() self.extended._in_multi_worker_mode = lambda: True self.extended.should_checkpoint = True class MockedWorkerStrategy: def __init__(self): self.extended = DistributedFileUtilsTest.MockedExtended() self.extended._in_multi_worker_mode = lambda: True self.extended.should_checkpoint = False self.extended._task_id = 3 class MockedSingleWorkerStrategy: def __init__(self): self.extended = DistributedFileUtilsTest.MockedExtended() self.extended._in_multi_worker_mode = lambda: False def _write_dummy_file(self, file_to_write): with open(file_to_write, "w") as f: f.write("foo bar") def testChiefWriteDirAndFilePath(self): dirpath = self.get_temp_dir() filepath = os.path.join(dirpath, "foo.bar") strategy = DistributedFileUtilsTest.MockedChiefStrategy() self.assertEqual( distributed_file_utils.write_filepath(filepath, strategy), filepath ) self.assertEqual( distributed_file_utils.write_dirpath(dirpath, strategy), dirpath ) def testWorkerWriteDirAndFilePath(self): dirpath = self.get_temp_dir() filepath = os.path.join(dirpath, "foo.bar") strategy = DistributedFileUtilsTest.MockedWorkerStrategy() self.assertEqual( distributed_file_utils.write_filepath(filepath, strategy), os.path.join(dirpath, "workertemp_3", "foo.bar"), ) self.assertEqual( distributed_file_utils.write_dirpath(dirpath, strategy), os.path.join(dirpath, "workertemp_3"), ) def testChiefDoesNotRemoveDirAndFilePath(self): temp_dir = self.get_temp_dir() strategy = DistributedFileUtilsTest.MockedChiefStrategy() dir_to_write = distributed_file_utils.write_dirpath(temp_dir, strategy) file_to_write = os.path.join(dir_to_write, "tmp") self.assertFalse(os.path.exists(file_to_write)) self._write_dummy_file(file_to_write) self.assertTrue(os.path.exists(file_to_write)) distributed_file_utils.remove_temp_dir_with_filepath( file_to_write, strategy ) self.assertTrue(os.path.exists(file_to_write)) def testWorkerDoesRemoveFilePath(self): temp_dir = self.get_temp_dir() strategy = DistributedFileUtilsTest.MockedWorkerStrategy() dir_to_write = distributed_file_utils.write_dirpath(temp_dir, strategy) file_to_write = os.path.join(dir_to_write, "tmp") self.assertFalse(os.path.exists(file_to_write)) self._write_dummy_file(file_to_write) self.assertTrue(os.path.exists(file_to_write)) distributed_file_utils.remove_temp_dir_with_filepath( file_to_write, strategy ) self.assertFalse(os.path.exists(file_to_write)) def testWorkerDoesRemoveDirPath(self): temp_dir = self.get_temp_dir() strategy = DistributedFileUtilsTest.MockedWorkerStrategy() dir_to_write = distributed_file_utils.write_dirpath(temp_dir, strategy) file_to_write = os.path.join(dir_to_write, "tmp") self.assertFalse(os.path.exists(file_to_write)) self._write_dummy_file(file_to_write) self.assertTrue(os.path.exists(file_to_write)) distributed_file_utils.remove_temp_dirpath(temp_dir, strategy) self.assertFalse(os.path.exists(file_to_write)) self.assertFalse(os.path.exists(os.path.dirname(file_to_write))) def testMultipleRemoveOrigDirPathIsFine(self): temp_dir = self.get_temp_dir() strategy = DistributedFileUtilsTest.MockedWorkerStrategy() dir_to_write = distributed_file_utils.write_dirpath(temp_dir, strategy) file_to_write = os.path.join(dir_to_write, "tmp") self._write_dummy_file(file_to_write) distributed_file_utils.remove_temp_dirpath(temp_dir, strategy) distributed_file_utils.remove_temp_dirpath(temp_dir, strategy) distributed_file_utils.remove_temp_dirpath(temp_dir, strategy) def testMultipleRemoveDirToWritePathIsFine(self): temp_dir = self.get_temp_dir() strategy = DistributedFileUtilsTest.MockedWorkerStrategy() dir_to_write = distributed_file_utils.write_dirpath(temp_dir, strategy) file_to_write = os.path.join(dir_to_write, "tmp") self._write_dummy_file(file_to_write) distributed_file_utils.remove_temp_dirpath(dir_to_write, strategy) distributed_file_utils.remove_temp_dirpath(dir_to_write, strategy) distributed_file_utils.remove_temp_dirpath(dir_to_write, strategy) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/distribute/distributed_file_utils_test.py/0
{ "file_path": "tf-keras/tf_keras/distribute/distributed_file_utils_test.py", "repo_id": "tf-keras", "token_count": 2365 }
163
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for running legacy optimizer code with DistributionStrategy.""" import numpy import tensorflow.compat.v2 as tf from absl.testing import parameterized from tf_keras.distribute import optimizer_combinations from tf_keras.distribute.test_example import batchnorm_example from tf_keras.distribute.test_example import minimize_loss_example from tf_keras.layers import core from tf_keras.optimizers.legacy import optimizer_v2 VAR_MAP_V1 = { "GradientDescent": ("dense/kernel", "dense/bias"), "Adagrad": ( "dense/kernel/Adagrad", "dense/kernel", "dense/bias/Adagrad", "dense/bias", ), "Ftrl": ( "dense/kernel/Ftrl", "dense/kernel", "dense/bias/Ftrl", "dense/bias", "dense/kernel/Ftrl_1", "dense/bias/Ftrl_1", ), "RMSProp": ( "dense/kernel", "dense/bias/RMSProp", "dense/bias/RMSProp_1", "dense/bias", "dense/kernel/RMSProp_1", "dense/kernel/RMSProp", ), } VAR_MAP_V2 = { "SGD": ( "dense/bias", "SGD/learning_rate", "SGD/decay", "SGD/iter", "dense/kernel", "SGD/momentum", ), "Adagrad": ( "Adagrad/iter", "dense/bias", "dense/kernel", "Adagrad/learning_rate", "Adagrad/decay", "Adagrad/dense/kernel/accumulator", "Adagrad/dense/bias/accumulator", ), } class MinimizeLossStepTest(tf.test.TestCase, parameterized.TestCase): def _get_iterator(self, strategy, input_fn): iterator = strategy.make_input_fn_iterator(lambda _: input_fn()) self.evaluate(iterator.initializer) return iterator @tf.__internal__.distribute.combinations.generate( tf.__internal__.test.combinations.times( optimizer_combinations.distributions_and_v1_optimizers(), tf.__internal__.test.combinations.combine( mode=["graph"], use_callable_loss=[True, False] ) + tf.__internal__.test.combinations.combine( mode=["eager"], use_callable_loss=[True] ), ) + tf.__internal__.test.combinations.times( optimizer_combinations.distributions_and_v2_optimizers(), tf.__internal__.test.combinations.combine( mode=["graph", "eager"], use_callable_loss=[True] ), ) + tf.__internal__.test.combinations.combine( distribution=[tf.__internal__.distribute.combinations.tpu_strategy], optimizer_fn=optimizer_combinations.optimizers_v2, mode=["graph"], use_callable_loss=[True], ) + tf.__internal__.test.combinations.combine( distribution=[tf.__internal__.distribute.combinations.tpu_strategy], optimizer_fn=optimizer_combinations.optimizers_v1, mode=["graph"], use_callable_loss=[True, False], ) ) def testTrainNetwork(self, distribution, optimizer_fn, use_callable_loss): with distribution.scope(): optimizer = optimizer_fn() model_fn, dataset_fn, layer = minimize_loss_example( optimizer, use_bias=True, use_callable_loss=use_callable_loss ) def step_fn(ctx, inputs): del ctx # Unused return distribution.group( distribution.extended.call_for_each_replica( model_fn, args=(inputs,) ) ) iterator = self._get_iterator(distribution, dataset_fn) def run_step(): return distribution.extended.experimental_run_steps_on_iterator( step_fn, iterator, iterations=2 ).run_op if not tf.executing_eagerly(): with self.cached_session() as sess: run_step = sess.make_callable(run_step()) self.evaluate(tf.compat.v1.global_variables_initializer()) weights, biases = [], [] for _ in range(5): run_step() weights.append(self.evaluate(layer.kernel)) biases.append(self.evaluate(layer.bias)) error = abs( numpy.add(numpy.squeeze(weights), numpy.squeeze(biases)) - 1 ) is_not_increasing = all(y <= x for x, y in zip(error, error[1:])) self.assertTrue(is_not_increasing) @tf.__internal__.distribute.combinations.generate( tf.__internal__.test.combinations.times( optimizer_combinations.distributions_and_v1_optimizers(), tf.__internal__.test.combinations.combine( mode=["graph"], use_callable_loss=[True, False] ) + tf.__internal__.test.combinations.combine( mode=["eager"], use_callable_loss=[True] ), ) + tf.__internal__.test.combinations.times( optimizer_combinations.distributions_and_v2_optimizers(), tf.__internal__.test.combinations.combine( mode=["graph", "eager"], use_callable_loss=[True] ), ) ) def testTrainNetworkByCallForEachReplica( self, distribution, optimizer_fn, use_callable_loss ): with distribution.scope(): optimizer = optimizer_fn() model_fn, dataset_fn, layer = minimize_loss_example( optimizer, use_bias=True, use_callable_loss=use_callable_loss ) iterator = self._get_iterator(distribution, dataset_fn) def run_step(): return distribution.group( distribution.extended.call_for_each_replica( model_fn, args=(iterator.get_next(),) ) ) if not tf.executing_eagerly(): with self.cached_session() as sess: run_step = sess.make_callable(run_step()) self.evaluate(tf.compat.v1.global_variables_initializer()) weights, biases = [], [] for _ in range(10): run_step() weights.append(self.evaluate(layer.kernel)) biases.append(self.evaluate(layer.bias)) error = abs( numpy.add(numpy.squeeze(weights), numpy.squeeze(biases)) - 1 ) is_not_increasing = all(y <= x for x, y in zip(error, error[1:])) self.assertTrue(is_not_increasing) @tf.__internal__.distribute.combinations.generate( tf.__internal__.test.combinations.times( optimizer_combinations.distributions_and_v1_and_v2_optimizers(), tf.__internal__.test.combinations.combine(mode=["graph", "eager"]), ) + tf.__internal__.test.combinations.combine( distribution=[tf.__internal__.distribute.combinations.tpu_strategy], optimizer_fn=optimizer_combinations.optimizers_v1_and_v2, mode=["graph"], ) ) def testOptimizerInsideModelFn(self, distribution, optimizer_fn): if ( not tf.executing_eagerly() and tf.compat.v1.control_flow_v2_enabled() ): self.skipTest("b/138751864") created_variables = [] trainable_variables = [] def appending_creator(next_creator, **kwargs): v = next_creator(**kwargs) # Skip the StateVar created in the tf.random.Generator, which is # used by keras initializers. if "StateVar" in v.name: return v created_variables.append(v.name) if "trainable" in kwargs and kwargs["trainable"]: trainable_variables.append(v.name) return v # Creator scope needs to be set before it's used inside # `distribution.scope`. with tf.variable_creator_scope(appending_creator), distribution.scope(): optimizer = optimizer_fn() model_fn, dataset_fn, _ = minimize_loss_example( optimizer, use_bias=True, use_callable_loss=True ) def step_fn(ctx, inputs): del ctx # Unused return distribution.group( distribution.extended.call_for_each_replica( model_fn, args=(inputs,) ) ) iterator = self._get_iterator(distribution, dataset_fn) def run_step(): return distribution.extended.experimental_run_steps_on_iterator( step_fn, iterator, iterations=1 ).run_op if not tf.executing_eagerly(): with self.cached_session() as sess: run_step = sess.make_callable(run_step()) self.evaluate(tf.compat.v1.global_variables_initializer()) run_step() def get_expected_variables(num_parameter_devices): name = optimizer._name if isinstance(optimizer, optimizer_v2.OptimizerV2): variables = VAR_MAP_V2[name] else: variables = VAR_MAP_V1[name] extended_variables = [ v + f"/replica_{replica}" for v in variables for replica in range(1, num_parameter_devices) ] variables = list(variables) + extended_variables return set(v + ":0" for v in variables) self.assertEqual( get_expected_variables( len(distribution.extended.parameter_devices) ), set(created_variables), ) @tf.__internal__.distribute.combinations.generate( tf.__internal__.test.combinations.times( tf.__internal__.test.combinations.combine( momentum=[0.8, 0.9, 0.99], renorm=[False, True] ), tf.__internal__.test.combinations.times( optimizer_combinations.distributions_and_v1_and_v2_optimizers(), tf.__internal__.test.combinations.combine( mode=["graph", "eager"], # TODO(isaprykin): Allow False here. Currently subsequent # replicas will re-execute UPDATE_OPS of previous replicas. update_ops_in_cross_replica_mode=[True], ), ) + tf.__internal__.test.combinations.combine( distribution=[ tf.__internal__.distribute.combinations.tpu_strategy ], optimizer_fn=optimizer_combinations.optimizers_v1_and_v2, mode=["graph"], update_ops_in_cross_replica_mode=[False], ), ) ) def testTrainNetworkWithBatchNorm( self, distribution, optimizer_fn, momentum, renorm, update_ops_in_cross_replica_mode, ): """Verifies that moving mean updates are reduced across replicas.""" with distribution.scope(): num_replicas = distribution.num_replicas_in_sync model_fn, dataset_fn, batchnorm = batchnorm_example( optimizer_fn, batch_per_epoch=num_replicas, momentum=momentum, renorm=renorm, update_ops_in_replica_mode=not update_ops_in_cross_replica_mode, ) def step_fn(ctx, inputs): del ctx # Unused fetches = distribution.experimental_local_results( distribution.extended.call_for_each_replica( model_fn, args=(inputs,) ) ) if update_ops_in_cross_replica_mode: fetches += tuple( tf.compat.v1.get_collection( tf.compat.v1.GraphKeys.UPDATE_OPS ) ) return tf.group(fetches) iterator = self._get_iterator(distribution, dataset_fn) def run_step(): return distribution.extended.experimental_run_steps_on_iterator( step_fn, iterator, iterations=1 ).run_op if not tf.executing_eagerly(): with self.cached_session() as sess: run_step = sess.make_callable(run_step()) self.evaluate(tf.compat.v1.global_variables_initializer()) expected_moving_means = [0.0] * 8 def averaged_batch_mean(i): # Each batch has shape [16, 8] where the ith element in jth list # is (8 * j + i + replica_id * 100). So the batch mean in each # replica is (60 + i + replica_id * 100). So here comes its # batch mean over all replicas: return 60.0 + i + (num_replicas - 1.0) / 2.0 * 100.0 for _ in range(10): run_step() moving_means = self.evaluate(batchnorm.moving_mean) # We make sure that the moving_mean is updated as if the sample # mean is calculated over all replicas. for i, expected_moving_mean in enumerate(expected_moving_means): expected_moving_means[i] -= ( expected_moving_mean - averaged_batch_mean(i) ) * (1.0 - momentum) self.assertNear( expected_moving_means[i], moving_means[i], 0.0001 ) @tf.__internal__.distribute.combinations.generate( tf.__internal__.test.combinations.times( tf.__internal__.test.combinations.combine( loss_reduction=[ tf.compat.v1.losses.Reduction.SUM, tf.compat.v1.losses.Reduction.MEAN, tf.compat.v1.losses.Reduction.SUM_OVER_BATCH_SIZE, tf.compat.v1.losses.Reduction.SUM_OVER_NONZERO_WEIGHTS, ] ), tf.__internal__.test.combinations.times( tf.__internal__.test.combinations.combine( distribution=[ tf.__internal__.distribute.combinations.one_device_strategy, # noqa: E501 tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 tf.__internal__.distribute.combinations.mirrored_strategy_with_two_gpus, # noqa: E501 tf.__internal__.distribute.combinations.mirrored_strategy_with_two_gpus_no_merge_call, # noqa: E501 ] ), tf.__internal__.test.combinations.times( tf.__internal__.test.combinations.combine( optimizer_fn=optimizer_combinations.gradient_descent_optimizer_v1_fn # noqa: E501 ), tf.__internal__.test.combinations.combine( mode=["graph"], use_callable_loss=[True, False] ) + tf.__internal__.test.combinations.combine( mode=["eager"], use_callable_loss=[True] ), ) + tf.__internal__.test.combinations.times( tf.__internal__.test.combinations.combine( optimizer_fn=optimizer_combinations.gradient_descent_optimizer_keras_v2_fn # noqa: E501 ), tf.__internal__.test.combinations.combine( mode=["graph", "eager"], use_callable_loss=[True] ), ), ) + tf.__internal__.test.combinations.combine( distribution=[ tf.__internal__.distribute.combinations.tpu_strategy ], optimizer_fn=optimizer_combinations.gradient_descent_optimizer_v1_fn, # noqa: E501 mode=["graph"], use_callable_loss=[True, False], ) + tf.__internal__.test.combinations.combine( distribution=[ tf.__internal__.distribute.combinations.tpu_strategy ], optimizer_fn=optimizer_combinations.gradient_descent_optimizer_keras_v2_fn, # noqa: E501 mode=["graph"], use_callable_loss=[True], ), ) ) def testMeanVsSum( self, distribution, optimizer_fn, loss_reduction, use_callable_loss ): with distribution.scope(): all_vars = [] def model_fn(inputs): x, y = inputs w = tf.compat.v1.get_variable("w", initializer=[[2.0]]) all_vars.append(w) def loss_fn(): # Use fixed initialization to make the steps deterministic. predict = tf.matmul(x, w) loss = tf.compat.v1.losses.mean_squared_error( y, predict, reduction=loss_reduction ) if loss_reduction == tf.compat.v1.losses.Reduction.SUM: return loss return loss / distribution.num_replicas_in_sync optimizer = ( optimizer_fn() ) # GradientDescent with 0.2 learning rate if isinstance(optimizer, optimizer_v2.OptimizerV2): return optimizer.minimize(loss_fn, [w]) else: if use_callable_loss: return optimizer.minimize(loss_fn) else: return optimizer.minimize(loss_fn()) def dataset_fn(): features = tf.data.Dataset.from_tensors([[2.0], [7.0]]) labels = tf.data.Dataset.from_tensors([[6.0], [21.0]]) return tf.data.Dataset.zip((features, labels)).repeat() def step_fn(ctx, inputs): del ctx # Unused return distribution.group( distribution.extended.call_for_each_replica( model_fn, args=(inputs,) ) ) iterator = self._get_iterator(distribution, dataset_fn) def run_step(): return distribution.extended.experimental_run_steps_on_iterator( step_fn, iterator, iterations=1 ).run_op if not tf.executing_eagerly(): with self.cached_session() as sess: run_step = sess.make_callable(run_step()) self.evaluate(tf.compat.v1.global_variables_initializer()) run_step() v = all_vars[0] self.assertTrue(all(v is vi for vi in all_vars[1:])) weight = numpy.squeeze(self.evaluate(v)) # Our model is: # predict = x * w # loss = (predict - y)^2 # dloss/dpredict = 2*(predict - y) # dloss/dw = 2 * x^T @ (predict - y) # For our batch size of 2, assuming sum loss reduction: # x = [2, 7] # y = [6, 21] # w_initial = 2 # predict = [4, 14] # predict - y = [-2, -7] # dloss/dw = 2 <[2, 7], [-2, -7]> = - 2(4 + 49) = -106 # So unreplicated the update to w with lr=0.001 is -0.2 * -106 = # 0.106 with sum loss reduction, or 0.053 with mean. if loss_reduction == tf.compat.v1.losses.Reduction.SUM: # Note that the "distribution.num_replicas_in_sync" factor will # go away once we split the input across replicas, instead of # pulling a complete batch of input per replica. self.assertNear( weight, 2 + 0.106 * distribution.num_replicas_in_sync, 0.0001, ) else: # One of the mean loss reductions. self.assertNear(weight, 2 + 0.053, 0.0001) @tf.__internal__.distribute.combinations.generate( tf.__internal__.test.combinations.times( optimizer_combinations.distributions_and_v1_and_v2_optimizers(), tf.__internal__.test.combinations.combine(mode=["graph", "eager"]), tf.__internal__.test.combinations.combine(is_tpu=[False]), ) + tf.__internal__.test.combinations.combine( distribution=[tf.__internal__.distribute.combinations.tpu_strategy], optimizer_fn=optimizer_combinations.optimizers_v1_and_v2, mode=["graph"], is_tpu=[True], ) ) def testRunStepsWithOutputContext(self, distribution, optimizer_fn, is_tpu): with distribution.scope(): def dataset_fn(): dataset = tf.data.Dataset.from_tensors([[1.0]]).repeat() # TODO(priyag): batch with drop_remainder=True causes shapes to # be fully defined for TPU. Remove this when XLA supports # dynamic shapes. return dataset.batch(batch_size=1, drop_remainder=True) optimizer = optimizer_fn() layer = core.Dense(1, use_bias=True) key1 = "foo" value1 = "bar" def model_fn(output_context, x): """A very simple model written by the user.""" def loss_fn(): y = tf.reshape(layer(x), []) - tf.constant(1.0) return y * y if isinstance(optimizer, optimizer_v2.OptimizerV2): train_op = optimizer.minimize( loss_fn, lambda: layer.trainable_variables ) else: train_op = optimizer.minimize(loss_fn) loss = loss_fn() output_context.set_last_step_output( name="replica_loss_reduced", output=loss, reduce_op=tf.distribute.ReduceOp.MEAN, ) output_context.set_non_tensor_output(key1, value1) return (train_op, loss) def step_fn(output_context, inputs): (train_op, loss) = distribution.extended.call_for_each_replica( model_fn, args=(output_context, inputs) ) output_context.set_last_step_output( name="cross_replica_loss_reduced", output=loss, reduce_op=tf.distribute.ReduceOp.MEAN, ) output_context.set_last_step_output( name="cross_replica_loss_not_reduced", output=loss ) return distribution.group(train_op) iterator = self._get_iterator(distribution, dataset_fn) def run_step(): initial_loss = lambda: tf.constant(1e7) # Initial values corresponding to reduced losses are just single # tensors. But for non reduced losses, we need to have initial # values that are of the same structure as non reduced losses. # In MirroredStrategy, this will be a list of losses, in # TPUStrategy it will be single tensor. Using # `call_for_each_replica` followed by # `experimental_local_results` gives us the desired initial # value structure. not_reduced = distribution.experimental_local_results( distribution.extended.call_for_each_replica(initial_loss) ) initial_loop_values = { "replica_loss_reduced": initial_loss(), "cross_replica_loss_reduced": initial_loss(), "cross_replica_loss_not_reduced": not_reduced, } ctx = distribution.extended.experimental_run_steps_on_iterator( step_fn, iterator, iterations=2, initial_loop_values=initial_loop_values, ) self.assertEqual({key1: (value1,)}, ctx.non_tensor_outputs) self._verify_loss_output( initial_loss(), loss_output=ctx.last_step_outputs["replica_loss_reduced"], reduced=True, distribution=distribution, ) self._verify_loss_output( initial_loss(), loss_output=ctx.last_step_outputs[ "cross_replica_loss_reduced" ], reduced=True, distribution=distribution, ) self._verify_loss_output( initial_loss(), loss_output=ctx.last_step_outputs[ "cross_replica_loss_not_reduced" ], reduced=False, distribution=distribution, ) return ( ctx.run_op, ctx.last_step_outputs["replica_loss_reduced"], ) if not tf.executing_eagerly(): with self.cached_session() as sess: run_step = sess.make_callable(run_step()) self.evaluate(tf.compat.v1.global_variables_initializer()) weights, biases = [], [] for _ in range(5): run_step() weights.append(self.evaluate(layer.kernel)) biases.append(self.evaluate(layer.bias)) error = abs( numpy.add(numpy.squeeze(weights), numpy.squeeze(biases)) - 1 ) error_is_not_increasing = all( y <= x for x, y in zip(error, error[1:]) ) self.assertTrue(error_is_not_increasing) def _verify_loss_output( self, initial_loss, loss_output, reduced, distribution ): if not reduced: self.assertLen( distribution.experimental_local_results(loss_output), distribution.num_replicas_in_sync, ) loss_tensor = distribution.reduce( tf.distribute.ReduceOp.MEAN, loss_output, axis=None ) else: unwrapped_output = distribution.experimental_local_results( loss_output ) self.assertLen(unwrapped_output, 1) loss_tensor = unwrapped_output[0] self.assertEqual(initial_loss.dtype, loss_tensor.dtype) self.assertEqual(initial_loss.shape, loss_tensor.shape) @tf.__internal__.distribute.combinations.generate( optimizer_combinations.distributions_and_v2_optimizers() ) def test_empty_var_list(self, distribution, optimizer_fn): opt = optimizer_fn() with distribution.scope(): def run_fn(): opt.minimize(lambda: tf.constant(1.0), []) opt.apply_gradients([]) distribution.run(run_fn) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/distribute/minimize_loss_test.py/0
{ "file_path": "tf-keras/tf_keras/distribute/minimize_loss_test.py", "repo_id": "tf-keras", "token_count": 14890 }
164
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A simple functional keras model with one layer.""" import numpy as np import tensorflow.compat.v2 as tf import tf_keras as keras from tf_keras.distribute import model_collection_base from tf_keras.optimizers.legacy import gradient_descent _BATCH_SIZE = 10 def _get_data_for_simple_models(): x_train = tf.constant(np.random.rand(1000, 3), dtype=tf.float32) y_train = tf.constant(np.random.rand(1000, 5), dtype=tf.float32) x_predict = tf.constant(np.random.rand(1000, 3), dtype=tf.float32) return x_train, y_train, x_predict class SimpleFunctionalModel(model_collection_base.ModelAndInput): """A simple functional model and its inputs.""" def get_model(self, **kwargs): output_name = "output_1" x = keras.layers.Input(shape=(3,), dtype=tf.float32) y = keras.layers.Dense(5, dtype=tf.float32, name=output_name)(x) model = keras.Model(inputs=x, outputs=y) optimizer = gradient_descent.SGD(learning_rate=0.001) model.compile(loss="mse", metrics=["mae"], optimizer=optimizer) return model def get_data(self): return _get_data_for_simple_models() def get_batch_size(self): return _BATCH_SIZE class SimpleSequentialModel(model_collection_base.ModelAndInput): """A simple sequential model and its inputs.""" def get_model(self, **kwargs): output_name = "output_1" model = keras.Sequential() y = keras.layers.Dense( 5, dtype=tf.float32, name=output_name, input_dim=3 ) model.add(y) optimizer = gradient_descent.SGD(learning_rate=0.001) model.compile(loss="mse", metrics=["mae"], optimizer=optimizer) return model def get_data(self): return _get_data_for_simple_models() def get_batch_size(self): return _BATCH_SIZE class _SimpleModel(keras.Model): def __init__(self): super().__init__() self._dense_layer = keras.layers.Dense(5, dtype=tf.float32) def call(self, inputs): return self._dense_layer(inputs) class SimpleSubclassModel(model_collection_base.ModelAndInput): """A simple subclass model and its data.""" def get_model(self, **kwargs): model = _SimpleModel() optimizer = gradient_descent.SGD(learning_rate=0.001) model.compile( loss="mse", metrics=["mae"], cloning=False, optimizer=optimizer ) return model def get_data(self): return _get_data_for_simple_models() def get_batch_size(self): return _BATCH_SIZE class _SimpleModule(tf.Module): def __init__(self): self.v = tf.Variable(3.0) @tf.function def __call__(self, x): return self.v * x class SimpleTFModuleModel(model_collection_base.ModelAndInput): """A simple model based on tf.Module and its data.""" def get_model(self, **kwargs): model = _SimpleModule() return model def get_data(self): return _get_data_for_simple_models() def get_batch_size(self): return _BATCH_SIZE
tf-keras/tf_keras/distribute/simple_models.py/0
{ "file_path": "tf-keras/tf_keras/distribute/simple_models.py", "repo_id": "tf-keras", "token_count": 1452 }
165
# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for initializers.""" import os import numpy as np import tensorflow.compat.v2 as tf from absl.testing import parameterized from tf_keras import backend from tf_keras import layers from tf_keras import losses from tf_keras import models from tf_keras.dtensor import dtensor_api as dtensor from tf_keras.dtensor import layout_map from tf_keras.dtensor import test_util from tf_keras.optimizers import adadelta from tf_keras.optimizers import adagrad from tf_keras.optimizers import adam from tf_keras.optimizers import adamw from tf_keras.optimizers import rmsprop from tf_keras.optimizers import sgd class OptimizersTest(test_util.DTensorBaseTest): def setUp(self): super().setUp() global_ids = test_util.create_device_ids_array((2, 2)) local_device_ids = np.ravel(global_ids).tolist() mesh_dict = { "CPU": dtensor.Mesh( ["X", "Y"], global_ids, local_device_ids, test_util.create_device_list((2, 2), "CPU"), ) } self.mesh = self.configTestMesh(mesh_dict) def test_add_variable_from_reference(self): optimizer = adam.Adam(mesh=self.mesh) variable_init_value = tf.ones([4, 4], dtype=tf.float32) variable_init_value = dtensor.copy_to_mesh( variable_init_value, layout=dtensor.Layout.replicated(self.mesh, rank=2), ) model_variable = dtensor.DVariable( variable_init_value, trainable=True, name="tmp" ) state_variable = optimizer.add_variable_from_reference( model_variable, "test" ) self.assertEqual(state_variable._shared_name, "test/tmp") self.assertAllClose(self.evaluate(state_variable), tf.zeros([4, 4])) # Make sure the variable contains the correct layout info self.assertEqual(state_variable.layout, model_variable.layout) def test_build_index_dict(self): optimizer = adam.Adam(mesh=self.mesh) variable_init_value = tf.ones(shape=(), dtype=tf.float32) variable_init_value = dtensor.copy_to_mesh( variable_init_value, layout=dtensor.Layout.replicated(self.mesh, rank=0), ) var_list = [ dtensor.DVariable(variable_init_value, name=f"var{i}") for i in range(10) ] optimizer._build_index_dict(var_list) self.assertEqual( optimizer._index_dict[optimizer._var_key(var_list[7])], 7 ) def test_aggregate_gradients_noop(self): optimizer = adam.Adam(mesh=self.mesh) variable_init_value = tf.ones(shape=(), dtype=tf.float32) model_variable = dtensor.DVariable( variable_init_value, trainable=True, layout=dtensor.Layout.replicated(self.mesh, rank=0), ) grads = tf.ones_like(variable_init_value) grad_and_var = zip([grads], [model_variable]) result = optimizer.aggregate_gradients(grad_and_var) self.assertEqual(result, grad_and_var) @parameterized.named_parameters( ( "Adadelta", adadelta.Adadelta, {}, [ "Adadelta/accumulated_grad/Variable", "Adadelta/accumulated_delta_var/Variable", "iteration", ], ), ( "Adam", adam.Adam, {"amsgrad": True}, [ "Adam/m/Variable", "Adam/v/Variable", "Adam/vhat/Variable", "iteration", ], ), ( "AdamW", adamw.AdamW, {"amsgrad": True}, [ "AdamW/m/Variable", "AdamW/v/Variable", "AdamW/vhat/Variable", "iteration", ], ), ( "Adagrad", adagrad.Adagrad, {}, ["Adagrad/accumulator/Variable", "iteration"], ), ( "RMSprop", rmsprop.RMSprop, {"momentum": 0.1, "centered": True}, [ "RMSprop/velocity/Variable", "RMSprop/momentum/Variable", "RMSprop/average_gradient/Variable", "iteration", ], ), ( "SGD", sgd.SGD, {"momentum": 0.1}, ["SGD/m/Variable", "iteration"], ), ) def test_apply_gradients( self, optimizer_cls, init_args, expect_variable_names ): optimizer = optimizer_cls(mesh=self.mesh, **init_args) self.assertEqual(self.evaluate(optimizer.iterations), 0) self.assertEqual( optimizer.iterations.layout, dtensor.Layout.replicated(self.mesh, rank=0), ) variable_init_value = tf.ones([4, 4], dtype=tf.float32) variable_init_value = dtensor.copy_to_mesh( variable_init_value, layout=dtensor.Layout.replicated(self.mesh, rank=2), ) model_variable = dtensor.DVariable(variable_init_value, trainable=True) grads = tf.ones_like(variable_init_value) optimizer.apply_gradients(zip([grads], [model_variable])) optimizer_variables = optimizer.variables self.assertEqual(self.evaluate(optimizer.iterations), 1) all_names = [var._shared_name for var in optimizer_variables] self.assertCountEqual(all_names, expect_variable_names) def test_embedding_lookup_backward_path(self): # See b/265441685 for more context. backend.enable_tf_random_generator() os.environ[ "DTENSOR_ENABLE_REPLICATED_SPMD_AS_DEFAULT_TF.RESOURCESCATTERADD" ] = "1" # Build a small functional model with embedding layer, it contains # tf.gather ops which will trigger the _deduplicate_sparse_grad() code # path. tf.unique op will have a shape mismatch issue for dtensor. batch_size = 16 seq_length = 10 vocab_size = 100 output_size = 8 def produce_data(): inputs = tf.random.uniform( maxval=vocab_size, shape=(batch_size, seq_length), dtype=tf.int32, ) label = tf.random.uniform( maxval=output_size, shape=(batch_size,), dtype=tf.int32 ) inputs = dtensor.copy_to_mesh( inputs, layout=dtensor.Layout.replicated(self.mesh, rank=2) ) inputs = dtensor.relayout( inputs, dtensor.Layout.batch_sharded(self.mesh, "X", 2) ) label = dtensor.copy_to_mesh( label, layout=dtensor.Layout.replicated(self.mesh, rank=1) ) label = dtensor.relayout( label, dtensor.Layout.batch_sharded(self.mesh, "X", 1) ) return inputs, label with layout_map.LayoutMap(self.mesh).scope(): inputs = layers.Input(shape=(seq_length,)) x = layers.Embedding(vocab_size, 64)(inputs) x = layers.GlobalAveragePooling1D()(x) preds = layers.Dense(output_size, activation="softmax")(x) model = models.Model(inputs, preds) optimizer = adam.Adam(mesh=self.mesh) @tf.function def train_func(model, inputs, label, optimizer): with tf.GradientTape() as tape: output = model(inputs) loss = losses.sparse_categorical_crossentropy(label, output) optimizer.minimize(loss, model.variables, tape) return loss # The error only happens across the batch, where the value of # tf.unique are different. input1, label1 = produce_data() train_func(model, input1, label1, optimizer) input2, label2 = produce_data() train_func(model, input2, label2, optimizer) # Assert nothing here, and expect the train_func can run properly with # different inputs. if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/dtensor/optimizers_test.py/0
{ "file_path": "tf-keras/tf_keras/dtensor/optimizers_test.py", "repo_id": "tf-keras", "token_count": 4255 }
166
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for compile utitilies.""" import tensorflow.compat.v2 as tf from tf_keras import backend from tf_keras import losses as losses_mod from tf_keras import metrics as metrics_mod from tf_keras.engine import compile_utils from tf_keras.testing_infra import test_combinations class LossesContainerTest(test_combinations.TestCase): def test_single_loss(self): loss_container = compile_utils.LossesContainer("mse") y_t, y_p = tf.ones((10, 5)), tf.zeros((10, 5)) total_loss = loss_container(y_t, y_p) self.assertTrue(loss_container._built) self.assertLen(loss_container._losses, 1) self.assertIsInstance(total_loss, tf.Tensor) self.assertEqual(total_loss.numpy(), 1.0) self.assertLen(loss_container.metrics, 1) loss_metric = loss_container.metrics[0] self.assertEqual(loss_metric.name, "loss") self.assertEqual(loss_metric.result().numpy(), 1.0) loss_container.reset_state() self.assertEqual(loss_metric.result().numpy(), 0.0) def test_loss_list(self): loss_container = compile_utils.LossesContainer(["mse", "mae"], [1, 0.5]) y_t = [tf.ones((10, 1)), tf.zeros((10, 1))] y_p = [tf.ones((10, 1)), tf.ones((10, 1))] sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) total_loss = loss_container(y_t, y_p, sample_weight=sw) self.assertEqual(loss_container._output_names, ["output_1", "output_2"]) self.assertLen(loss_container._losses, 2) self.assertEqual(total_loss.numpy(), 0.25) loss_metric = loss_container.metrics[0] self.assertEqual(loss_metric.name, "loss") self.assertEqual(loss_metric.result().numpy(), 0.25) output_1_metric = loss_container.metrics[1] self.assertEqual(output_1_metric.name, "output_1_loss") self.assertEqual(output_1_metric.result().numpy(), 0) output_2_metric = loss_container.metrics[2] self.assertEqual(output_2_metric.name, "output_2_loss") self.assertEqual(output_2_metric.result().numpy(), 0.5) loss_container.reset_state() self.assertEqual(loss_metric.result().numpy(), 0) self.assertEqual(output_1_metric.result().numpy(), 0) self.assertEqual(output_2_metric.result().numpy(), 0) def test_loss_dict(self): loss_container = compile_utils.LossesContainer( {"out1": "mse", "out2": "mae"}, {"out1": 1, "out2": 0.5} ) y_t = {"out1": tf.ones((10, 1)), "out2": tf.zeros((10, 1))} y_p = {"out1": tf.ones((10, 1)), "out2": tf.ones((10, 1))} sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) total_loss = loss_container(y_t, y_p, sample_weight=sw) self.assertLen(loss_container._losses, 2) self.assertIsInstance(total_loss, tf.Tensor) self.assertEqual(total_loss.numpy(), 0.25) self.assertLen(loss_container.metrics, 3) loss_metric = loss_container.metrics[0] self.assertEqual(loss_metric.name, "loss") self.assertEqual(loss_metric.result().numpy(), 0.25) out1_metric = loss_container.metrics[1] self.assertEqual(out1_metric.name, "out1_loss") self.assertEqual(out1_metric.result().numpy(), 0) out2_metric = loss_container.metrics[2] self.assertEqual(out2_metric.name, "out2_loss") self.assertEqual(out2_metric.result().numpy(), 0.5) loss_container.reset_state() self.assertEqual(loss_metric.result().numpy(), 0) self.assertEqual(out1_metric.result().numpy(), 0) self.assertEqual(out2_metric.result().numpy(), 0) def test_loss_partial_dict_with_output_names(self): loss_container = compile_utils.LossesContainer( {"out2": "mae"}, {"out2": 1.0}, output_names=["out1", "out2"] ) y_t = [tf.ones((10, 1)), tf.zeros((10, 1))] y_p = [tf.ones((10, 1)), tf.ones((10, 1))] sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) total_loss = loss_container(y_t, y_p, sample_weight=sw) self.assertEqual(total_loss.numpy(), 0.5) self.assertLen(loss_container.metrics, 2) loss_metric = loss_container.metrics[0] self.assertEqual(loss_metric.name, "loss") self.assertEqual(loss_metric.result().numpy(), 0.5) out2_metric = loss_container.metrics[1] self.assertEqual(out2_metric.name, "out2_loss") self.assertEqual(out2_metric.result().numpy(), 0.5) def test_loss_dict_with_nones(self): loss_container = compile_utils.LossesContainer( {"out1": None, "out2": "mae"} ) y_t = {"out1": tf.ones((10, 1)), "out2": tf.zeros((10, 1))} y_p = {"out1": tf.ones((10, 1)), "out2": tf.ones((10, 1))} sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) total_loss = loss_container(y_t, y_p, sample_weight=sw) self.assertIsInstance(total_loss, tf.Tensor) self.assertEqual(total_loss.numpy(), 0.5) self.assertLen(loss_container.metrics, 2) loss_metric = loss_container.metrics[0] self.assertEqual(loss_metric.name, "loss") self.assertEqual(loss_metric.result().numpy(), 0.5) out2_metric = loss_container.metrics[1] self.assertEqual(out2_metric.name, "out2_loss") self.assertEqual(out2_metric.result().numpy(), 0.5) def test_nested_structure(self): loss_container = compile_utils.LossesContainer( {"b": ["mse", None], "a": "mae"}, loss_weights={"b": [0.5, 0], "a": 1}, ) y_t = { "b": [tf.ones((10, 1)), tf.zeros((10, 1))], "a": tf.zeros((10, 1)), } y_p = { "b": [tf.zeros((10, 1)), tf.zeros((10, 1))], "a": tf.ones((10, 1)), } sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) total_loss = loss_container(y_t, y_p, sample_weight=sw) self.assertIsInstance(total_loss, tf.Tensor) self.assertEqual(total_loss.numpy(), 0.75) self.assertLen(loss_container.metrics, 3) loss_metric = loss_container.metrics[0] self.assertEqual(loss_metric.name, "loss") self.assertEqual(loss_metric.result().numpy(), 0.75) a_metric = loss_container.metrics[1] self.assertEqual(a_metric.name, "a_loss") self.assertEqual(a_metric.result().numpy(), 0.5) b_1_metric = loss_container.metrics[2] self.assertEqual(b_1_metric.name, "b_1_loss") self.assertEqual(b_1_metric.result().numpy(), 0.5) def test_no_input_mutation(self): loss = {"a": "mae"} loss_container = compile_utils.LossesContainer(loss) y_t = {"a": tf.zeros((10, 1))} y_p = {"a": tf.ones((10, 1)), "b": tf.zeros((10, 1))} sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) total_loss = loss_container(y_t, y_p, sample_weight=sw) self.assertIsInstance(total_loss, tf.Tensor) self.assertEqual(total_loss.numpy(), 0.5) self.assertLen(loss, 1) def test_broadcast_single_loss(self): loss_container = compile_utils.LossesContainer("mse") y_t = [tf.ones((10, 1)), tf.zeros((10, 1))] y_p = [tf.ones((10, 1)), tf.ones((10, 1))] sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) total_loss = loss_container(y_t, y_p, sample_weight=sw) self.assertEqual(total_loss.numpy(), 0.5) self.assertLen(loss_container.metrics, 3) loss_metric = loss_container.metrics[0] self.assertEqual(loss_metric.name, "loss") self.assertEqual(loss_metric.result().numpy(), 0.5) output_1_metric = loss_container.metrics[1] self.assertEqual(output_1_metric.name, "output_1_loss") self.assertEqual(output_1_metric.result().numpy(), 0.0) output_2_metric = loss_container.metrics[2] self.assertEqual(output_2_metric.name, "output_2_loss") self.assertEqual(output_2_metric.result().numpy(), 0.5) def test_missing_label_with_no_loss(self): # It's ok to exclude a label if that label has no # losses or metrics associated with it. loss_container = compile_utils.LossesContainer( {"output1": "mse", "output3": "mae"} ) y_p = { "output1": tf.convert_to_tensor([[0], [1], [2]]), "output2": tf.convert_to_tensor([[3], [4], [5]]), "output3": tf.convert_to_tensor([[6], [7], [8]]), } y_t = { "output1": tf.convert_to_tensor([[1], [2], [3]]), "output3": tf.convert_to_tensor([[4], [5], [6]]), } total_loss = loss_container(y_t, y_p) self.assertEqual(total_loss.numpy(), 3.0) self.assertLen(loss_container.metrics, 3) loss_metric = loss_container.metrics[0] self.assertEqual(loss_metric.name, "loss") self.assertEqual(loss_metric.result().numpy(), 3.0) output_1_metric = loss_container.metrics[1] self.assertEqual(output_1_metric.name, "output1_loss") self.assertEqual(output_1_metric.result().numpy(), 1.0) output_3_metric = loss_container.metrics[2] self.assertEqual(output_3_metric.name, "output3_loss") self.assertEqual(output_3_metric.result().numpy(), 2.0) def test_mismatched_dtypes(self): y_t = tf.constant([1, 9, 2, -5], shape=(2, 2)) y_p = tf.constant([4, 8, 12, 8], shape=(2, 2), dtype=tf.float32) def my_mae(labels, preds): self.assertEqual(labels.dtype, tf.int32) self.assertEqual(preds.dtype, tf.float32) labels = tf.cast(labels, preds.dtype) return backend.mean(tf.abs(preds - labels), axis=-1) loss_container = compile_utils.LossesContainer(my_mae) total_loss = loss_container(y_t, y_p) self.assertEqual(total_loss.dtype, tf.float32) def test_integer_dtypes(self): y_t = tf.constant([1, 9, 2, -5], shape=(2, 2)) y_p = tf.constant([4, 8, 12, 8], shape=(2, 2), dtype=tf.int64) def my_mae(labels, preds): self.assertEqual(labels.dtype, tf.int64) self.assertEqual(preds.dtype, tf.int64) return backend.mean(tf.abs(preds - labels), axis=-1) loss_container = compile_utils.LossesContainer(my_mae) total_loss = loss_container(y_t, y_p) self.assertEqual(total_loss.dtype, tf.int64) def test_float_dtypes(self): y_t = tf.constant([1, 9, 2, -5], shape=(2, 2), dtype=tf.float32) y_p = tf.constant([4, 8, 12, 8], shape=(2, 2), dtype=tf.float64) def my_mae(labels, preds): self.assertEqual(labels.dtype, tf.float64) self.assertEqual(preds.dtype, tf.float64) return backend.mean(tf.abs(preds - labels), axis=-1) loss_container = compile_utils.LossesContainer(my_mae) total_loss = loss_container(y_t, y_p) self.assertIsInstance(total_loss, tf.Tensor) self.assertEqual(total_loss.dtype, tf.float64) @test_combinations.generate( test_combinations.combine( input_type=["dense", "masked", "ragged"], reduction=["auto", "sum"], use_sample_weights=[True, False], ), ) def test_loss_consistency(self, input_type, reduction, use_sample_weights): y_p = tf.ragged.constant( [[[1], [1], [1]], [[1], [1]]], dtype=tf.float32 ) y_t = tf.ragged.constant( [[[1], [0], [0]], [[1], [1]]], dtype=tf.float32 ) if input_type == "masked": mask = tf.ones_like(y_p).to_tensor() y_p = y_p.to_tensor() y_t = y_t.to_tensor() y_p._keras_mask = mask elif input_type == "dense": y_p = y_p.to_tensor() y_t = y_t.to_tensor() if input_type == "dense": count = 6 else: count = 5 if use_sample_weights: wrong = 4 maybe_sample_weight = { "sample_weight": tf.constant([[2], [1]], dtype=tf.float32) } else: wrong = 2 maybe_sample_weight = {} expected = wrong if reduction != "sum": expected /= count loss_obj = losses_mod.MeanAbsoluteError(reduction=reduction) result = loss_obj(y_t, y_p, **maybe_sample_weight) self.assertAlmostEqual(result.numpy(), expected) container = compile_utils.LossesContainer(loss_obj) container_result = container(y_t, y_p, **maybe_sample_weight) self.assertAlmostEqual(container_result.numpy(), expected) def test_loss_masking(self): loss_container = compile_utils.LossesContainer("mae") y_p = tf.constant([[[1], [1]], [[0], [0]]], dtype=tf.float32) y_t = tf.constant([[[1], [1]], [[1], [1]]], dtype=tf.float32) # Reduction is "sum_over_batch_size" that's not the literal batch size, # but the number of elements being summed: The number of valid # emlements. So since the mask has two valid items, the number of # elements is 2. y_p._keras_mask = tf.constant([[1, 0], [1, 0]], dtype=tf.float32) total_loss = loss_container(y_t, y_p) self.assertAlmostEqual(total_loss.numpy(), 0.5) # sum over num valid self.assertLen(loss_container.metrics, 1) loss_metric = loss_container.metrics[0] self.assertEqual(loss_metric.name, "loss") self.assertAlmostEqual(loss_metric.result().numpy(), 0.5) def test_loss_sample_weight(self): loss_container = compile_utils.LossesContainer("mae") y_p = tf.constant([[[1], [1]], [[0], [0]]], dtype=tf.float32) y_t = tf.constant([[[1], [1]], [[1], [1]]], dtype=tf.float32) sw = tf.constant([[0.2, 0.3], [0.5, 0]], dtype=tf.float32) total_loss = loss_container(y_t, y_p, sample_weight=sw) # (0 * .2 + 0 * .3 + 1 * .5 + 1 * 0) / 4 self.assertAlmostEqual(total_loss.numpy(), 0.125) self.assertLen(loss_container.metrics, 1) loss_metric = loss_container.metrics[0] self.assertEqual(loss_metric.name, "loss") self.assertAlmostEqual(loss_metric.result().numpy(), 0.125) def test_loss_masking_sample_weight(self): loss_container = compile_utils.LossesContainer("mae") y_p = tf.constant([[[1], [1]], [[0], [0]]], dtype=tf.float32) y_t = tf.constant([[[1], [1]], [[1], [1]]], dtype=tf.float32) sw = tf.constant([[0.2, 0.3], [0.5, 0]], dtype=tf.float32) y_p._keras_mask = tf.constant([[1, 0], [1, 0]], dtype=tf.float32) total_loss = loss_container(y_t, y_p, sample_weight=sw) # (0 * .2 + 1 * .5) / 2 self.assertAlmostEqual(total_loss.numpy(), 0.25) # sum over num valid self.assertLen(loss_container.metrics, 1) loss_metric = loss_container.metrics[0] self.assertEqual(loss_metric.name, "loss") self.assertAlmostEqual(loss_metric.result().numpy(), 0.25) def test_custom_loss_callables(self): def custom_loss_fn(y_true, y_pred): return tf.reduce_sum(y_true - y_pred) class CustomLossClass: def __call__(self, y_true, y_pred): return tf.reduce_sum(y_true - y_pred) loss_container = compile_utils.LossesContainer( [custom_loss_fn, CustomLossClass()] ) y_t, y_p = tf.ones((10, 5)), tf.zeros((10, 5)) loss_container(y_t, y_p) self.assertEqual(loss_container._losses[0].name, "custom_loss_fn") self.assertEqual(loss_container._losses[1].name, "custom_loss_class") def test_ragged_tensor_output(self): """Ensure ragged tensors can be passed as targets and predictions.""" def custom_loss_fn(y_true, y_pred): """MSE supports RaggedTensors directly.""" return losses_mod.mse(y_true, y_pred) class CustomLossClass(losses_mod.Loss): """User defined loss func must implement RaggedTensor support.""" def call(self, y_true, y_pred): losses = tf.ragged.map_flat_values( tf.math.squared_difference, y_true, y_pred ) return tf.reduce_mean(losses) loss_container = compile_utils.LossesContainer( [custom_loss_fn, CustomLossClass()] ) v_t = tf.constant([[3.0, 4.0], [1.0, 2.0], [3.0, 5.0]]) v_p = tf.constant([[3.1, 4.0], [1.0, 2.0], [3.0, 5.0]]) y_t = tf.expand_dims(tf.RaggedTensor.from_row_splits(v_t, [0, 2, 3]), 0) y_p = tf.expand_dims(tf.RaggedTensor.from_row_splits(v_p, [0, 2, 3]), 0) total_loss = loss_container(y_t, y_p) self.assertIsInstance(total_loss, tf.Tensor) self.assertEqual(loss_container._losses[0].name, "custom_loss_fn") class MetricsContainerTest(test_combinations.TestCase): def test_single_metric(self): metric_container = compile_utils.MetricsContainer("mse") y_t, y_p = tf.ones((10, 5)), tf.zeros((10, 5)) metric_container.update_state(y_t, y_p) self.assertLen(metric_container.metrics, 1) metric = metric_container.metrics[0] self.assertEqual(metric.name, "mse") self.assertEqual(metric.result().numpy(), 1.0) metric_container.reset_state() self.assertEqual(metric.result().numpy(), 0.0) def test_list_of_metrics_one_output(self): metric_container = compile_utils.MetricsContainer(["mse", "mae"]) y_t, y_p = 2 * tf.ones((10, 5)), tf.zeros((10, 5)) metric_container.update_state(y_t, y_p) self.assertLen(metric_container.metrics, 2) mse_metric = metric_container.metrics[0] self.assertEqual(mse_metric.name, "mse") self.assertEqual(mse_metric.result().numpy(), 4.0) mae_metric = metric_container.metrics[1] self.assertEqual(mae_metric.name, "mae") self.assertEqual(mae_metric.result().numpy(), 2.0) metric_container.reset_state() self.assertEqual(mse_metric.result().numpy(), 0.0) self.assertEqual(mae_metric.result().numpy(), 0.0) def test_list_of_metrics_list_of_outputs(self): metric_container = compile_utils.MetricsContainer( metrics=["mse", "mae"], # Should broadcast to both outputs. weighted_metrics=["accuracy"], ) # Should broadcast to both outputs. y_t = [tf.ones((10, 1)), tf.zeros((10, 1))] y_p = [tf.ones((10, 1)), 2 * tf.ones((10, 1))] sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) metric_container.update_state(y_t, y_p, sample_weight=sw) self.assertLen(metric_container.metrics, 6) mse_metric = metric_container.metrics[0] self.assertEqual(mse_metric.name, "output_1_mse") self.assertEqual(mse_metric.result().numpy(), 0.0) mse_metric = metric_container.metrics[1] self.assertEqual(mse_metric.name, "output_1_mae") self.assertEqual(mse_metric.result().numpy(), 0.0) acc_metric_1 = metric_container.metrics[2] self.assertEqual(acc_metric_1.name, "output_1_accuracy") self.assertEqual(acc_metric_1.result().numpy(), 1.0) self.assertEqual(acc_metric_1._fn, metrics_mod.binary_accuracy) mae_metric = metric_container.metrics[3] self.assertEqual(mae_metric.name, "output_2_mse") self.assertEqual(mae_metric.result().numpy(), 4.0) mae_metric = metric_container.metrics[4] self.assertEqual(mae_metric.name, "output_2_mae") self.assertEqual(mae_metric.result().numpy(), 2.0) acc_metric_2 = metric_container.metrics[5] self.assertEqual(acc_metric_2.name, "output_2_accuracy") self.assertEqual(acc_metric_2.result().numpy(), 0.0) self.assertEqual(acc_metric_2._fn, metrics_mod.binary_accuracy) weighted_metrics = metric_container.weighted_metrics self.assertLen(weighted_metrics, 2) self.assertEqual(weighted_metrics[0].name, "output_1_accuracy") self.assertEqual(weighted_metrics[1].name, "output_2_accuracy") unweighted_metrics = metric_container.unweighted_metrics self.assertLen(unweighted_metrics, 4) self.assertEqual(unweighted_metrics[0].name, "output_1_mse") self.assertEqual(unweighted_metrics[1].name, "output_1_mae") self.assertEqual(unweighted_metrics[2].name, "output_2_mse") self.assertEqual(unweighted_metrics[3].name, "output_2_mae") def test_metric_dict(self): metric_container = compile_utils.MetricsContainer( metrics={"out1": "mse", "out2": "mae"}, weighted_metrics={"out1": "mse", "out2": "mae"}, ) y_t = {"out1": tf.ones((10, 1)), "out2": tf.zeros((10, 1))} y_p = {"out1": tf.ones((10, 1)), "out2": 2 * tf.ones((10, 1))} sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) metric_container.update_state(y_t, y_p, sample_weight=sw) mse_metric = metric_container.metrics[0] self.assertEqual(mse_metric.name, "out1_mse") self.assertEqual(mse_metric.result().numpy(), 0.0) weighted_mse_metric = metric_container.metrics[1] self.assertEqual(weighted_mse_metric.name, "out1_weighted_mse") self.assertEqual(weighted_mse_metric.result().numpy(), 0.0) mae_metric = metric_container.metrics[2] self.assertEqual(mae_metric.name, "out2_mae") self.assertEqual(mae_metric.result().numpy(), 2.0) weighted_mae_metric = metric_container.metrics[3] self.assertEqual(weighted_mae_metric.name, "out2_weighted_mae") self.assertEqual(weighted_mae_metric.result().numpy(), 2.0) metric_container.reset_state() self.assertEqual(mse_metric.result().numpy(), 0.0) self.assertEqual(weighted_mse_metric.result().numpy(), 0.0) self.assertEqual(mae_metric.result().numpy(), 0.0) self.assertEqual(weighted_mae_metric.result().numpy(), 0.0) def test_metric_partial_dict_with_output_names(self): metric_container = compile_utils.MetricsContainer( {"out2": "mae"}, output_names=["out1", "out2"] ) y_t = [tf.ones((10, 1)), tf.zeros((10, 1))] y_p = [tf.ones((10, 1)), tf.ones((10, 1))] sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) metric_container.update_state(y_t, y_p, sample_weight=sw) self.assertLen(metric_container.metrics, 1) mae_metric = metric_container.metrics[0] self.assertEqual(mae_metric.name, "out2_mae") self.assertEqual(mae_metric.result().numpy(), 1.0) def test_metric_partial_dict_with_nones(self): metric_container = compile_utils.MetricsContainer( {"out1": None, "out2": "mae"} ) y_t = {"out1": tf.ones((10, 1)), "out2": tf.zeros((10, 1))} y_p = {"out1": tf.ones((10, 1)), "out2": tf.ones((10, 1))} sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) metric_container.update_state(y_t, y_p, sample_weight=sw) self.assertLen(metric_container.metrics, 1) mae_metric = metric_container.metrics[0] self.assertEqual(mae_metric.name, "out2_mae") self.assertEqual(mae_metric.result().numpy(), 1.0) def test_nested_structure(self): metric_container = compile_utils.MetricsContainer( metrics={"b": ["mse", None], "a": "mae"}, weighted_metrics={"b": [None, None], "a": "mse"}, ) y_t = { "b": [2 * tf.ones((10, 1)), tf.zeros((10, 1))], "a": tf.zeros((10, 1)), } y_p = { "b": [tf.zeros((10, 1)), tf.zeros((10, 1))], "a": tf.ones((10, 1)), } sw = tf.convert_to_tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1]) metric_container.update_state(y_t, y_p, sample_weight=sw) self.assertLen(metric_container.metrics, 3) a_mae_metric = metric_container.metrics[0] self.assertEqual(a_mae_metric.name, "a_mae") self.assertEqual(a_mae_metric.result().numpy(), 1.0) weighted_a_mae_metric = metric_container.metrics[1] self.assertEqual(weighted_a_mae_metric.name, "a_mse") self.assertEqual(weighted_a_mae_metric.result().numpy(), 1.0) b_1_mse_metric = metric_container.metrics[2] self.assertEqual(b_1_mse_metric.name, "b_1_mse") self.assertEqual(b_1_mse_metric.result().numpy(), 4.0) def test_no_input_mutation(self): metric = {"a": "mae"} metric_container = compile_utils.MetricsContainer(metric) y_t = {"a": tf.zeros((10, 1))} y_p = {"a": tf.ones((10, 1)), "b": tf.zeros((10, 1))} metric_container.update_state(y_t, y_p) self.assertLen(metric, 1) mae_metric = metric_container.metrics[0] self.assertEqual(mae_metric.result().numpy(), 1.0) def test_crossentropy(self): metric_container = compile_utils.MetricsContainer("crossentropy") y_t, y_p = tf.ones((10, 1)), tf.ones((10, 1)) metric_container.update_state(y_t, y_p) self.assertEqual( metric_container.metrics[0]._fn, metrics_mod.binary_crossentropy ) metric_container = compile_utils.MetricsContainer("crossentropy") y_t, y_p = tf.ones((10, 1)), tf.ones((10, 20)) self.assertEqual(y_p.shape.as_list()[-1], 20) metric_container.update_state(y_t, y_p) self.assertEqual( metric_container.metrics[0]._fn, metrics_mod.sparse_categorical_crossentropy, ) metric_container = compile_utils.MetricsContainer("crossentropy") y_t, y_p = tf.ones((10, 20)), tf.ones((10, 20)) metric_container.update_state(y_t, y_p) self.assertEqual( metric_container.metrics[0]._fn, metrics_mod.categorical_crossentropy, ) def test_accuracy(self): metric_container = compile_utils.MetricsContainer("accuracy") y_t, y_p = tf.ones((10, 1)), tf.ones((10, 1)) metric_container.update_state(y_t, y_p) self.assertEqual( metric_container.metrics[0]._fn, metrics_mod.binary_accuracy ) metric_container = compile_utils.MetricsContainer("Accuracy") y_t, y_p = tf.ones((10, 1)), tf.ones((10, 1)) metric_container.update_state(y_t, y_p) self.assertEqual( metric_container.metrics[0]._fn, metrics_mod.binary_accuracy ) metric_container = compile_utils.MetricsContainer("accuracy") y_t, y_p = tf.ones((10, 1)), tf.ones((10, 20)) self.assertEqual(y_p.shape.as_list()[-1], 20) metric_container.update_state(y_t, y_p) self.assertEqual( metric_container.metrics[0]._fn, metrics_mod.sparse_categorical_accuracy, ) metric_container = compile_utils.MetricsContainer("accuracy") y_t, y_p = tf.ones((10, 20)), tf.ones((10, 20)) metric_container.update_state(y_t, y_p) self.assertEqual( metric_container.metrics[0]._fn, metrics_mod.categorical_accuracy ) def test_metric_weighting(self): metric_container = compile_utils.MetricsContainer( metrics=["mae"], weighted_metrics=["mae"] ) y_t = tf.convert_to_tensor([[0], [3], [0]]) y_p = tf.convert_to_tensor([[0], [0], [0]]) sw = tf.convert_to_tensor([[1], [0], [1]]) metric_container.update_state(y_t, y_p, sample_weight=sw) self.assertLen(metric_container.metrics, 2) mae_metric = metric_container.metrics[0] self.assertEqual(mae_metric.name, "mae") self.assertEqual(mae_metric.result().numpy(), 1.0) weighted_mae_metric = metric_container.metrics[1] self.assertEqual(weighted_mae_metric.name, "weighted_mae") self.assertEqual(weighted_mae_metric.result().numpy(), 0.0) def test_broadcast_metrics_to_dict(self): metric_container = compile_utils.MetricsContainer(metrics=["mae"]) y_p = {"output": tf.convert_to_tensor([[0], [1], [2]])} y_t = {"output": tf.convert_to_tensor([[1], [2], [3]])} metric_container.update_state(y_t, y_p) mae_metric = metric_container.metrics[0] self.assertEqual(mae_metric.name, "mae") self.assertEqual(mae_metric.result().numpy(), 1.0) def test_broadcast_metrics_to_dict_with_output_names(self): metric_container = compile_utils.MetricsContainer( metrics=["mae"], output_names=["output"] ) y_p = tf.convert_to_tensor([[0], [1], [2]]) y_t = {"output": tf.convert_to_tensor([[1], [2], [3]])} metric_container.update_state(y_t, y_p) mae_metric = metric_container.metrics[0] self.assertEqual(mae_metric.name, "mae") self.assertEqual(mae_metric.result().numpy(), 1.0) def test_missing_label_with_no_metrics(self): # It's ok to exclude a label if that label has no # losses or metrics associated with it. metric_container = compile_utils.MetricsContainer( metrics={"output1": "mae", "output3": "mse"} ) y_p = { "output1": tf.convert_to_tensor([[0], [1], [2]]), "output2": tf.convert_to_tensor([[3], [4], [5]]), "output3": tf.convert_to_tensor([[6], [7], [8]]), } y_t = { "output1": tf.convert_to_tensor([[1], [2], [3]]), "output3": tf.convert_to_tensor([[4], [5], [6]]), } metric_container.update_state(y_t, y_p) self.assertLen(metric_container.metrics, 2) mae_metric = metric_container.metrics[0] self.assertEqual(mae_metric.name, "output1_mae") self.assertEqual(mae_metric.result().numpy(), 1.0) mse_metric = metric_container.metrics[1] self.assertEqual(mse_metric.name, "output3_mse") self.assertEqual(mse_metric.result().numpy(), 4.0) def test_metrics_masking(self): metrics_container = compile_utils.MetricsContainer( metrics=["mae"], weighted_metrics=["mse"] ) y_p = tf.constant([[[1], [1]], [[0], [0]]], dtype=tf.float32) y_t = tf.constant([[[1], [1]], [[1], [1]]], dtype=tf.float32) y_p._keras_mask = tf.constant([[1, 1], [0, 0]], dtype=tf.float32) metrics_container.update_state(y_t, y_p) self.assertLen(metrics_container.metrics, 2) mae_metric = metrics_container.metrics[0] self.assertEqual(mae_metric.name, "mae") self.assertAlmostEqual(mae_metric.result().numpy(), 0) weighted_mae_metric = metrics_container.metrics[1] self.assertEqual(weighted_mae_metric.name, "mse") self.assertAlmostEqual(weighted_mae_metric.result().numpy(), 0) def test_metrics_sample_weight(self): metrics_container = compile_utils.MetricsContainer( metrics=["mae"], weighted_metrics=["mse"] ) y_p = tf.constant([[[1], [1]], [[0], [1]]], dtype=tf.float32) y_t = tf.constant([[[1], [1]], [[1], [1]]], dtype=tf.float32) sw = tf.constant([[0.2, 0.3], [0.5, 0]], dtype=tf.float32) metrics_container.update_state(y_t, y_p, sample_weight=sw) self.assertLen(metrics_container.metrics, 2) mae_metric = metrics_container.metrics[0] self.assertEqual(mae_metric.name, "mae") self.assertAlmostEqual(mae_metric.result().numpy(), 0.25) # 1 / 4 weighted_mae_metric = metrics_container.metrics[1] self.assertEqual(weighted_mae_metric.name, "mse") self.assertAlmostEqual( weighted_mae_metric.result().numpy(), 0.5 ) # .5 / 1 def test_metrics_masking_sample_weight(self): metrics_container = compile_utils.MetricsContainer( metrics=["mae"], weighted_metrics=["mse"] ) y_p = tf.constant([[[1], [1]], [[0], [1]]], dtype=tf.float32) y_t = tf.constant([[[1], [1]], [[1], [1]]], dtype=tf.float32) sw = tf.constant([[0.3, 0.2], [0.2, 0.3]], dtype=tf.float32) y_p._keras_mask = tf.constant([[1, 0], [1, 0]], dtype=tf.float32) metrics_container.update_state(y_t, y_p, sample_weight=sw) self.assertLen(metrics_container.metrics, 2) mae_metric = metrics_container.metrics[0] self.assertEqual(mae_metric.name, "mae") self.assertAlmostEqual(mae_metric.result().numpy(), 0.5) # 1 / .5 weighted_mae_metric = metrics_container.metrics[1] self.assertEqual(weighted_mae_metric.name, "mse") self.assertAlmostEqual(weighted_mae_metric.result().numpy(), 0.2 / 0.5) def test_loss_class_as_metric_with_distribution(self): distribution = tf.distribute.OneDeviceStrategy("/device:CPU:0") with distribution.scope(): metric_container = compile_utils.MetricsContainer( losses_mod.MeanSquaredError() ) y_t, y_p = tf.ones((10, 5)), tf.zeros((10, 5)) metric_container.update_state(y_t, y_p) self.assertLen(metric_container.metrics, 1) metric = metric_container.metrics[0] self.assertEqual(metric.name, "mean_squared_error") self.assertEqual(metric.result().numpy(), 1.0) def test_custom_metric_callables(self): def custom_metric_fn(y_true, y_pred): return tf.reduce_sum(y_true - y_pred) class CustomMetricClass: def __call__(self, y_true, y_pred): return tf.reduce_sum(y_true - y_pred) metric_container = compile_utils.MetricsContainer( [custom_metric_fn, CustomMetricClass()] ) y_t, y_p = tf.ones((10, 5)), tf.zeros((10, 5)) metric_container.update_state(y_t, y_p) self.assertEqual(metric_container.metrics[0].name, "custom_metric_fn") self.assertEqual( metric_container.metrics[1].name, "custom_metric_class" ) def test_reset_state_existing_metric_before_built(self): metric = metrics_mod.Mean() metric.update_state([2.0, 4.0]) self.assertEqual(metric.result().numpy(), 3.0) metric_container = compile_utils.MetricsContainer(metric) metric_container.reset_state() self.assertEqual(metric.result().numpy(), 0.0) def test_duplicated_metric_instance(self): mean_obj = metrics_mod.Mean() metric = mean_obj with self.assertRaisesRegex(ValueError, "Found duplicated metrics"): compile_utils.MetricsContainer( metrics=metric, weighted_metrics=metric ) # duplicated string should be fine metric = "acc" compile_utils.MetricsContainer(metrics=metric, weighted_metrics=metric) # complicated structure metric = [mean_obj, "acc"] weighted_metric = {"output1": mean_obj, "output2": "acc"} with self.assertRaisesRegex(ValueError, "Found duplicated metrics"): compile_utils.MetricsContainer( metrics=metric, weighted_metrics=weighted_metric ) if __name__ == "__main__": tf.compat.v1.enable_eager_execution() tf.test.main()
tf-keras/tf_keras/engine/compile_utils_test.py/0
{ "file_path": "tf-keras/tf_keras/engine/compile_utils_test.py", "repo_id": "tf-keras", "token_count": 17385 }
167
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """InputSpec tests.""" import tensorflow.compat.v2 as tf from absl.testing import parameterized from tf_keras import layers from tf_keras.engine import keras_tensor from tf_keras.engine import training from tf_keras.testing_infra import test_combinations from tf_keras.testing_infra import test_utils class CustomTypeSpec(tf.TypeSpec): """Stubbed-out custom type spec, for testing.""" def __init__(self, shape, dtype): self.shape = tf.TensorShape(shape) self.dtype = tf.dtypes.as_dtype(dtype) # Stub implementations for all the TypeSpec methods: value_type = None _to_components = lambda self, value: None _from_components = lambda self, components: None _component_specs = property(lambda self: None) _serialize = lambda self: (self.shape, self.dtype) class CustomTypeSpec2(CustomTypeSpec): """Adds a with_shape method to CustomTypeSpec.""" def with_shape(self, new_shape): return CustomTypeSpec2(new_shape, self.dtype) @test_utils.run_v2_only class KerasTensorTest(test_combinations.TestCase): def test_repr_and_string(self): kt = keras_tensor.KerasTensor( type_spec=tf.TensorSpec(shape=(1, 2, 3), dtype=tf.float32) ) expected_str = ( "KerasTensor(type_spec=TensorSpec(shape=(1, 2, 3), " "dtype=tf.float32, name=None))" ) expected_repr = "<KerasTensor: shape=(1, 2, 3) dtype=float32>" self.assertEqual(expected_str, str(kt)) self.assertEqual(expected_repr, repr(kt)) kt = keras_tensor.KerasTensor( type_spec=tf.TensorSpec(shape=(2,), dtype=tf.int32), inferred_value=[2, 3], ) expected_str = ( "KerasTensor(type_spec=TensorSpec(shape=(2,), " "dtype=tf.int32, name=None), inferred_value=[2, 3])" ) expected_repr = ( "<KerasTensor: shape=(2,) dtype=int32 inferred_value=[2, 3]>" ) self.assertEqual(expected_str, str(kt)) self.assertEqual(expected_repr, repr(kt)) kt = keras_tensor.KerasTensor( type_spec=tf.SparseTensorSpec(shape=(1, 2, 3), dtype=tf.float32) ) expected_str = ( "KerasTensor(type_spec=SparseTensorSpec(" "TensorShape([1, 2, 3]), tf.float32))" ) expected_repr = ( "<KerasTensor: type_spec=SparseTensorSpec(" "TensorShape([1, 2, 3]), tf.float32)>" ) self.assertEqual(expected_str, str(kt)) self.assertEqual(expected_repr, repr(kt)) inp = layers.Input(shape=(3, 5)) kt = layers.Dense(10)(inp) expected_str = ( "KerasTensor(type_spec=TensorSpec(shape=(None, 3, 10), " "dtype=tf.float32, name=None), name='dense/BiasAdd:0', " "description=\"created by layer 'dense'\")" ) expected_repr = ( "<KerasTensor: shape=(None, 3, 10) dtype=float32 (created " "by layer 'dense')>" ) self.assertEqual(expected_str, str(kt)) self.assertEqual(expected_repr, repr(kt)) kt = tf.reshape(kt, shape=(3, 5, 2)) expected_str = ( "KerasTensor(type_spec=TensorSpec(shape=(3, 5, 2), " "dtype=tf.float32, name=None), name='tf.reshape/Reshape:0', " "description=\"created by layer 'tf.reshape'\")" ) expected_repr = ( "<KerasTensor: shape=(3, 5, 2) dtype=float32 (created " "by layer 'tf.reshape')>" ) self.assertEqual(expected_str, str(kt)) self.assertEqual(expected_repr, repr(kt)) kts = tf.unstack(kt) for i in range(3): expected_str = ( "KerasTensor(type_spec=TensorSpec(shape=(5, 2), " "dtype=tf.float32, name=None), name='tf.unstack/unstack:%s', " "description=\"created by layer 'tf.unstack'\")" % (i,) ) expected_repr = ( "<KerasTensor: shape=(5, 2) dtype=float32 " "(created by layer 'tf.unstack')>" ) self.assertEqual(expected_str, str(kts[i])) self.assertEqual(expected_repr, repr(kts[i])) @parameterized.parameters( {"property_name": "values"}, {"property_name": "indices"}, {"property_name": "dense_shape"}, ) def test_sparse_instance_property(self, property_name): inp = layers.Input(shape=[3], sparse=True) out = getattr(inp, property_name) model = training.Model(inp, out) x = tf.SparseTensor( [[0, 0], [0, 1], [1, 1], [1, 2]], [1, 2, 3, 4], [2, 3] ) expected_property = getattr(x, property_name) self.assertAllEqual(model(x), expected_property) # Test that it works with serialization and deserialization as well model_config = model.get_config() model2 = training.Model.from_config(model_config) self.assertAllEqual(model2(x), expected_property) @parameterized.parameters( [ (tf.TensorSpec([2, 3], tf.int32), [2, 3]), (tf.RaggedTensorSpec([2, None]), [2, None]), (tf.SparseTensorSpec([8]), [8]), (CustomTypeSpec([3, 8], tf.int32), [3, 8]), ] ) def test_shape(self, spec, expected_shape): kt = keras_tensor.KerasTensor(spec) self.assertEqual(kt.shape.as_list(), expected_shape) @parameterized.parameters( [ (tf.TensorSpec([8, 3], tf.int32), [8, 3], [8, 3]), (tf.TensorSpec([None, 3], tf.int32), [8, 3], [8, 3]), (tf.TensorSpec([8, 3], tf.int32), [None, 3], [8, 3]), (tf.TensorSpec(None, tf.int32), [8, 3], [8, 3]), (tf.TensorSpec(None, tf.int32), [8, None], [8, None]), (tf.TensorSpec(None, tf.int32), None, None), (tf.RaggedTensorSpec([2, None, None]), [2, None, 5], [2, None, 5]), (tf.SparseTensorSpec([8]), [8], [8]), (CustomTypeSpec2([3, None], tf.int32), [3, 8], [3, 8]), ] ) def test_set_shape(self, spec, new_shape, expected_shape): kt = keras_tensor.KerasTensor(spec) kt.set_shape(new_shape) if expected_shape is None: self.assertIsNone(kt.type_spec.shape.rank) else: self.assertEqual(kt.type_spec.shape.as_list(), expected_shape) self.assertTrue(kt.type_spec.is_compatible_with(spec)) @parameterized.parameters( [ (layers.Input(shape=[3, 4], batch_size=7), tf.reshape), (layers.Input(shape=[3, 4], ragged=True, batch_size=7), tf.reshape), ( layers.Input(shape=[3, 4], sparse=True, batch_size=7), tf.sparse.reshape, ), ] ) def test_reshape(self, inp, reshape_op): out = reshape_op(inp, shape=[7, 4, 3]) self.assertEqual(out.type_spec.shape.as_list(), [7, 4, 3]) def test_set_shape_error(self): spec = CustomTypeSpec([3, None], tf.int32) kt = keras_tensor.KerasTensor(spec) with self.assertRaisesRegex( ValueError, "Keras requires TypeSpec to have a `with_shape` method" ): kt.set_shape([3, 3]) def test_set_shape_equals_expected_shape(self): # Tests b/203201161: DenseSpec has both a _shape and a _shape_tuple # field, and we need to be sure both get updated. kt = keras_tensor.KerasTensor(tf.TensorSpec([8, None], tf.int32)) kt.set_shape([8, 3]) self.assertEqual(kt.type_spec, tf.TensorSpec([8, 3], tf.int32)) def test_type_spec_with_shape_equals_expected_shape(self): # Tests b/203201161: DenseSpec has both a _shape and a _shape_tuple # field, and we need to be sure both get updated. spec1 = tf.TensorSpec([8, None], tf.int32) spec2 = keras_tensor.type_spec_with_shape(spec1, [8, 3]) expected = tf.TensorSpec([8, 3], tf.int32) self.assertEqual(spec2, expected) def test_missing_shape_error(self): spec = CustomTypeSpec(None, tf.int32) del spec.shape with self.assertRaisesRegex( ValueError, "KerasTensor only supports TypeSpecs that have a shape field; .*", ): keras_tensor.KerasTensor(spec) def test_wrong_shape_type_error(self): spec = CustomTypeSpec(None, tf.int32) spec.shape = "foo" with self.assertRaisesRegex( TypeError, "KerasTensor requires that wrapped TypeSpec's shape is a " "TensorShape; .*", ): keras_tensor.KerasTensor(spec) def test_missing_dtype_error(self): spec = CustomTypeSpec(None, tf.int32) del spec.dtype kt = keras_tensor.KerasTensor(spec) with self.assertRaisesRegex( AttributeError, "KerasTensor wraps TypeSpec .* which does not have a dtype.", ): kt.dtype def test_wrong_dtype_type_error(self): spec = CustomTypeSpec(None, tf.int32) spec.dtype = "foo" kt = keras_tensor.KerasTensor(spec) with self.assertRaisesRegex( TypeError, "KerasTensor requires that wrapped TypeSpec's dtype is a DType; .*", ): kt.dtype def test_from_tensor_mask_tensor_is_none(self): tensor = tf.constant([1.0]) kt = keras_tensor.keras_tensor_from_tensor(tensor) self.assertIsNone(getattr(kt, "_keras_mask", None)) def test_from_tensor_mask_tensor_is_not_none(self): tensor = tf.constant([1.0]) tensor._keras_mask = tf.constant([1.0]) kt = keras_tensor.keras_tensor_from_tensor(tensor) self.assertIsInstance(kt._keras_mask, keras_tensor.KerasTensor) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/engine/keras_tensor_test.py/0
{ "file_path": "tf-keras/tf_keras/engine/keras_tensor_test.py", "repo_id": "tf-keras", "token_count": 5025 }
168
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Part of TF-Keras training engine related to Python generators of array data. """ import functools import math import numpy as np import tensorflow.compat.v2 as tf from tf_keras import backend from tf_keras import callbacks as cbks from tf_keras.engine import training_utils from tf_keras.engine import training_utils_v1 from tf_keras.utils import data_utils from tf_keras.utils import generic_utils from tf_keras.utils.mode_keys import ModeKeys # isort: off from tensorflow.python.platform import tf_logging as logging def model_iteration( model, data, steps_per_epoch=None, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, validation_freq=1, class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=False, shuffle=False, initial_epoch=0, mode=ModeKeys.TRAIN, batch_size=None, steps_name="steps", **kwargs, ): """Loop function for arrays of data with modes TRAIN/TEST/PREDICT. Args: model: TF-Keras Model instance. data: Either a tuple of NumPy/Tensor inputs (i.e. `(x,)` or `(x, y)` or `(x, y, sample_weights)`) or a generator or `keras.utils.data_utils.Sequence` object or Eager Iterator or Dataset. steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. Ignored with the default value of `None`. epochs: Number of times to iterate over the data. verbose: 0, 1, or 2. Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch. Note that the progress bar is not particularly useful when logged to a file, so verbose=2 is recommended when not running interactively (eg, in a production environment). callbacks: List of callbacks to be called during training. validation_data: Either a tuple of NumPy/Tensor inputs (i.e. `(x,)` or `(x, y)` or `(x, y, sample_weights)`) or a generator or `keras.utils.data_utils.Sequence` object or Eager Iterator or Dataset. validation_steps: Total number of steps (batches of samples) before declaring validation finished. validation_freq: Only relevant if validation data is provided. Integer or `collections.abc.Container` instance (e.g. list, tuple, etc.). If an integer, specifies how many training epochs to run before a new validation run is performed, e.g. `validation_freq=2` runs validation every 2 epochs. If a Container, specifies the epochs on which to run validation, e.g. `validation_freq=[1, 2, 10]` runs validation at the end of the 1st, 2nd, and 10th epochs. class_weight: Dictionary mapping class indices to a weight for the class. max_queue_size: Integer. Maximum size for the generator queue. If unspecified, `max_queue_size` will default to 10. workers: Integer. Maximum number of processes to spin up when using process-based threading. If unspecified, `workers` will default to 1. If 0, will execute the generator on the main thread. use_multiprocessing: Boolean. If `True`, use process-based threading. If unspecified, `use_multiprocessing` will default to `False`. Note that because this implementation relies on multiprocessing, you should not pass non-pickleable arguments to the generator as they can't be passed easily to children processes. shuffle: Boolean. Whether to shuffle the order of the batches at the beginning of each epoch. Only used with instances of `Sequence` (`keras.utils.Sequence`). Has no effect when `steps_per_epoch` is not `None`. initial_epoch: Epoch at which to start training (useful for resuming a previous training run). mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT. batch_size: Integer batch size or None if unknown. Will only be used if `data` is in NumPy/Tensor format. steps_name: The string name of the steps argument, either `steps`, `validation_steps`, or `steps_per_epoch`. Only used for error message formatting. **kwargs: Additional arguments for backwards compatibility. `steps` is accepted as an alias for `steps_per_epoch`. Returns: - In TRAIN mode: `History` object. - In TEST mode: Evaluation metrics. - In PREDICT mode: Outputs of the Model called on inputs. Raises: ValueError: in case of invalid arguments. """ if "steps" in kwargs: steps_per_epoch = kwargs["steps"] # Determine the number of steps per epoch and whether we should reset the # dataset at the end of each epoch. reset_dataset_after_each_epoch = False original_dataset = None is_dataset = isinstance(data, (tf.data.Dataset, tf.compat.v1.data.Dataset)) if is_dataset: original_dataset = data if steps_per_epoch is None: reset_dataset_after_each_epoch = True steps_per_epoch = training_utils_v1.infer_steps_for_dataset( model, data, steps_per_epoch, epochs=epochs, steps_name=steps_name, ) # Convert to a format that supports `next(generator)`. generator, steps_per_epoch = convert_to_generator_like( data, steps_per_epoch=steps_per_epoch, batch_size=batch_size, epochs=epochs - initial_epoch, shuffle=shuffle, ) do_validation = validation_data is not None is_sequence = isinstance(generator, data_utils.Sequence) _validate_arguments( is_sequence, is_dataset, use_multiprocessing, workers, steps_per_epoch, validation_data, validation_steps, mode, kwargs, ) batch_function = _make_execution_function( model, mode, class_weight=class_weight ) # Create the queue for the generator. enqueuer = None if not is_dataset: generator, enqueuer = _make_enqueued_generator( generator, workers=workers, use_multiprocessing=use_multiprocessing, max_queue_size=max_queue_size, shuffle=shuffle, ) num_samples_or_steps, use_steps = _get_num_samples_or_steps( data, steps_per_epoch ) count_mode = "steps" if use_steps else "samples" callbacks = cbks.configure_callbacks( callbacks, model, do_validation=do_validation, epochs=epochs, steps_per_epoch=steps_per_epoch, batch_size=batch_size, samples=num_samples_or_steps, count_mode=count_mode, verbose=verbose, mode=mode, ) if mode == ModeKeys.PREDICT: aggregator = training_utils_v1.OutputsAggregator( True, steps=steps_per_epoch ) else: aggregator = training_utils_v1.MetricsAggregator( True, steps=steps_per_epoch ) should_set_learning_phase = tf.executing_eagerly() and model.run_eagerly if should_set_learning_phase: learning_phase_scope = backend.eager_learning_phase_scope( 1 if mode == ModeKeys.TRAIN else 0 ) learning_phase_scope.__enter__() callbacks.model.stop_training = False callbacks._call_begin_hook(mode) initial_epoch = model._maybe_load_initial_epoch_from_ckpt( initial_epoch, mode ) for epoch in range(initial_epoch, epochs): if callbacks.model.stop_training: break # Setup work for each epoch. model.reset_metrics() epoch_logs = {} if mode == ModeKeys.TRAIN: callbacks.on_epoch_begin(epoch, epoch_logs) if steps_per_epoch is None: # Loop over dataset until `OutOfRangeError` is raised. target_steps = np.inf else: # Loop over dataset for the specified number of steps. target_steps = steps_per_epoch step = 0 while step < target_steps: batch_data = _get_next_batch(generator) if batch_data is None: if is_dataset: # The dataset passed by the user ran out of batches. Now we # know the cardinality of the dataset. If steps_per_epoch # was specified, then running out of data is unexpected, so # we stop training and inform the user. if steps_per_epoch: callbacks.model.stop_training = True logging.warning( "Your dataset ran out of data; interrupting " "training. Make sure that your dataset can " "generate at least `%s * epochs` batches (in " "this case, %d batches). You may need to use " "the repeat() function when building your dataset." % (steps_name, steps_per_epoch * epochs) ) elif step > 0: steps_per_epoch = step aggregator.steps = steps_per_epoch else: # We ran out of batches while the user passed an iterator # (legacy). callbacks.model.stop_training = True logging.warning( "Your dataset iterator ran out of data; " "interrupting training. Make sure that your iterator " "can generate at least `%s * epochs` " "batches (in this case, %d batches). You may need to" "use the repeat() function when building your " "dataset." % (steps_name, steps_per_epoch * epochs) ) break # `batch_size` used for validation data if validation # data is NumPy/EagerTensors. batch_size = int(tf.nest.flatten(batch_data)[0].shape[0]) # Callbacks batch begin. batch_logs = {"batch": step, "size": batch_size} callbacks._call_batch_hook(mode, "begin", step, batch_logs) is_deferred = not model._is_compiled batch_outs = batch_function(*batch_data) if not isinstance(batch_outs, list): batch_outs = [batch_outs] if step == 0: aggregator.create(batch_outs) if is_deferred: # Set callbacks params. We do this here when model is # compiled only in the first iteration of this loop # (deferred build scenario). cbks.set_callback_parameters( callbacks, model, do_validation=do_validation, batch_size=batch_size, epochs=epochs, steps_per_epoch=steps_per_epoch, samples=num_samples_or_steps, verbose=verbose, mode=mode, ) # Aggregate results. aggregator.aggregate(batch_outs) # Callbacks batch end. batch_logs = callbacks.make_logs( model, batch_logs, batch_outs, mode ) callbacks._call_batch_hook(mode, "end", step, batch_logs) step += 1 if callbacks.model.stop_training: break aggregator.finalize() results = aggregator.results epoch_logs = callbacks.make_logs(model, epoch_logs, results, mode) if len(results) == 1: results = results[0] # Run the test loop every epoch during training. if ( do_validation and training_utils_v1.should_run_validation(validation_freq, epoch) and not callbacks.model.stop_training ): val_results = model_iteration( model, validation_data, steps_per_epoch=validation_steps, batch_size=batch_size, class_weight=class_weight, workers=workers, use_multiprocessing=use_multiprocessing, max_queue_size=max_queue_size, callbacks=callbacks, verbose=verbose, mode=ModeKeys.TEST, steps_name="validation_steps", ) if not isinstance(val_results, list): val_results = [val_results] epoch_logs = callbacks.make_logs( model, epoch_logs, val_results, mode, prefix="val_" ) if mode == ModeKeys.TRAIN: # Epochs only apply to `fit`. callbacks.on_epoch_end(epoch, epoch_logs) # Recreate dataset iterator for the next epoch. if reset_dataset_after_each_epoch and epoch < epochs - 1: generator = tf.compat.v1.data.make_one_shot_iterator( original_dataset ) model._successful_loop_finish = True callbacks._call_end_hook(mode) if enqueuer is not None: enqueuer.stop() if should_set_learning_phase: learning_phase_scope.__exit__(None, None, None) if mode == ModeKeys.TRAIN: return model.history return results # Maintain compatibility with the existing names. fit_generator = functools.partial(model_iteration, mode=ModeKeys.TRAIN) evaluate_generator = functools.partial( model_iteration, mode=ModeKeys.TEST, shuffle=False ) predict_generator = functools.partial( model_iteration, mode=ModeKeys.PREDICT, shuffle=False ) def _get_next_batch(generator): """Retrieves the next batch of input data.""" try: generator_output = next(generator) except (StopIteration, tf.errors.OutOfRangeError): return None if not isinstance(generator_output, tuple): # Always wrap in a tuple. generator_output = (generator_output,) if len(generator_output) not in [1, 2, 3]: raise ValueError( "Output of generator should be a tuple of 1 or 2 or 3 " "elements: (input,) or (input, target) or " "(input, target, sample_weights). Received {}".format( generator_output ) ) return generator_output def _validate_arguments( is_sequence, is_dataset, use_multiprocessing, workers, steps_per_epoch, validation_data, validation_steps, mode, kwargs, ): """Raises errors if arguments are invalid. Args: is_sequence: Boolean, whether data is a `keras.utils.data_utils.Sequence` instance. is_dataset: Boolean, whether data is a dataset instance. use_multiprocessing: Boolean. If `True`, use process-based threading. If unspecified, `use_multiprocessing` will default to `False`. Note that because this implementation relies on multiprocessing, you should not pass non-pickleable arguments to the generator as they can't be passed easily to children processes. workers: Integer. Maximum number of processes to spin up when using process-based threading. If unspecified, `workers` will default to 1. If 0, will execute the generator on the main thread. steps_per_epoch: Total number of steps (batches of samples) before declaring one epoch finished and starting the next epoch. Ignored with the default value of `None`. validation_data: Either a tuple of NumPy/Tensor inputs (i.e. `(x,)` or `(x, y)` or `(x, y, sample_weights)`) or a generator or `keras.utils.data_utils.Sequence` object or Eager Iterator or Dataset. validation_steps: Total number of steps (batches of samples) before declaring validation finished. mode: One of ModeKeys.TRAIN/ModeKeys.TEST/ModeKeys.PREDICT. kwargs: Additional arguments for backwards compatibility. Raises: ValueError: If `steps_per_epoch` or `validation_steps` are not passed for data types that require them, or if unrecognized keyword arguments are passed. """ if not is_sequence and use_multiprocessing and workers > 1: logging.warning( UserWarning( "Using a generator with `use_multiprocessing=True`" " and multiple workers may duplicate your data." " Please consider using the `keras.utils.Sequence`" " class." ) ) if steps_per_epoch is None and not is_dataset: arg_name = "steps_per_epoch" if mode == ModeKeys.TRAIN else "steps" raise ValueError( f"Please specify the number of steps via the `{arg_name}` argument." ) val_gen = data_utils.is_generator_or_sequence( validation_data ) or isinstance(validation_data, tf.data.Iterator) if ( val_gen and not isinstance(validation_data, data_utils.Sequence) and not validation_steps ): raise ValueError("Please specify the `validation_steps` argument.") if any(k != "steps" for k in kwargs): raise ValueError( f"Invalid arguments passed: {[k for k in kwargs if k != 'steps']}" ) def convert_to_generator_like( data, batch_size=None, steps_per_epoch=None, epochs=1, shuffle=False ): """Make a generator out of NumPy or EagerTensor inputs. Args: data: Either a generator or `keras.utils.data_utils.Sequence` object or `Dataset`, `Iterator`, or a {1,2,3}-tuple of NumPy arrays or EagerTensors. If a tuple, the elements represent `(x, y, sample_weights)` and may be `None` or `[None]`. batch_size: Used when creating a generator out of tuples of NumPy arrays or EagerTensors. steps_per_epoch: Steps of the generator to run each epoch. If `None` the number of steps will be read from the data (for `keras.utils.data_utils.Sequence` types). epochs: Total number of epochs to run. shuffle: Whether the data should be shuffled. Returns: - Generator, `keras.utils.data_utils.Sequence`, or `Iterator`. Raises: - ValueError: If `batch_size` is not provided for NumPy or EagerTensor inputs. """ if isinstance(data, tuple): # Scrub `Nones` that might have been passed for `targets`, # `sample_weights`. data = tuple( ele for ele in data if not all(e is None for e in tf.nest.flatten(ele)) ) if data_utils.is_generator_or_sequence(data) or isinstance( data, tf.data.Iterator ): if isinstance(data, data_utils.Sequence): if steps_per_epoch is None: steps_per_epoch = len(data) return data, steps_per_epoch if isinstance(data, tf.data.Dataset): return tf.compat.v1.data.make_one_shot_iterator(data), steps_per_epoch # Create generator from NumPy or EagerTensor Input. num_samples = int(tf.nest.flatten(data)[0].shape[0]) if batch_size is None: raise ValueError( "When passing input data as arrays, do not specify " "`steps_per_epoch`/`steps` argument. " "Please use `batch_size` instead." ) steps_per_epoch = int(math.ceil(num_samples / batch_size)) def _gen(data): """Makes a generator out of a structure of NumPy/EagerTensors.""" index_array = np.arange(num_samples) for _ in range(epochs): if shuffle: np.random.shuffle(index_array) batches = generic_utils.make_batches(num_samples, batch_size) for batch_start, batch_end in batches: batch_ids = index_array[batch_start:batch_end] flat_batch_data = training_utils.slice_arrays( tf.nest.flatten(data), batch_ids, contiguous=(not shuffle) ) yield tf.nest.pack_sequence_as(data, flat_batch_data) return _gen(data), steps_per_epoch def _make_enqueued_generator( generator, workers=1, use_multiprocessing=False, max_queue_size=10, shuffle=False, ): """Create a buffered queue of next elements of the generator.""" is_sequence = isinstance(generator, data_utils.Sequence) enqueuer = None if workers > 0: if is_sequence: enqueuer = data_utils.OrderedEnqueuer( generator, use_multiprocessing=use_multiprocessing, shuffle=shuffle, ) else: enqueuer = data_utils.GeneratorEnqueuer( generator, use_multiprocessing=use_multiprocessing ) enqueuer.start(workers=workers, max_queue_size=max_queue_size) output_generator = enqueuer.get() else: if is_sequence: output_generator = data_utils.iter_sequence_infinite(generator) else: output_generator = generator return output_generator, enqueuer def _make_execution_function(model, mode, class_weight=None): """Makes function to run one step of model execution.""" if mode == ModeKeys.TRAIN: f = functools.partial(model.train_on_batch, class_weight=class_weight) elif mode == ModeKeys.TEST: f = model.test_on_batch else: # Match signature of other modes to allow # 1, 2, or 3-tuples from generator def predict_on_batch(x, y=None, sample_weights=None): return model.predict_on_batch(x) f = predict_on_batch # Maintain stateful metrics across batch-level calls. if mode != ModeKeys.PREDICT: f = functools.partial(f, reset_metrics=False) return f def _get_num_samples_or_steps(data, steps_per_epoch): """Returns number of samples or steps, and whether to use steps count mode.""" flat_inputs = tf.nest.flatten(data) if hasattr(flat_inputs[0], "shape"): return int(flat_inputs[0].shape[0]), False return steps_per_epoch, True class GeneratorOrSequenceTrainingLoop(training_utils_v1.TrainingLoop): """Generator-like. Input is Python generator, or Sequence object. The difference between this class and `GeneratorLikeTrainingFunction` is that this class only handles inputs that with x, y and sample_weight fused into one param. """ def fit( self, model, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_freq=1, max_queue_size=10, workers=1, use_multiprocessing=False, ): model._validate_or_infer_batch_size(batch_size, steps_per_epoch, x) training_utils_v1.check_generator_arguments( y, sample_weight, validation_split=validation_split ) return fit_generator( model, x, steps_per_epoch=steps_per_epoch, epochs=epochs, verbose=verbose, callbacks=callbacks, validation_data=validation_data, validation_steps=validation_steps, validation_freq=validation_freq, class_weight=class_weight, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, shuffle=shuffle, initial_epoch=initial_epoch, steps_name="steps_per_epoch", ) def evaluate( self, model, x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None, callbacks=None, max_queue_size=10, workers=1, use_multiprocessing=False, ): model._validate_or_infer_batch_size(batch_size, steps, x) training_utils_v1.check_generator_arguments(y, sample_weight) return evaluate_generator( model, x, steps=steps, verbose=verbose, callbacks=callbacks, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, ) def predict( self, model, x, batch_size=None, verbose=0, steps=None, callbacks=None, max_queue_size=10, workers=1, use_multiprocessing=False, ): model._validate_or_infer_batch_size(batch_size, steps, x) return predict_generator( model, x, steps=steps, verbose=verbose, callbacks=callbacks, max_queue_size=max_queue_size, workers=workers, use_multiprocessing=use_multiprocessing, ) class EagerDatasetOrIteratorTrainingLoop(training_utils_v1.TrainingLoop): """A non-distributed Dataset or iterator in eager execution.""" def fit( self, model, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_freq=1, **kwargs, ): model._validate_or_infer_batch_size(batch_size, steps_per_epoch, x) # Make sure that y, sample_weights, validation_split are not passed. training_utils_v1.validate_dataset_input( x, y, sample_weight, validation_split ) if ( isinstance(x, (tf.compat.v1.data.Dataset, tf.data.Dataset)) and shuffle ): training_utils_v1.verify_dataset_shuffled(x) return fit_generator( model, x, steps_per_epoch=steps_per_epoch, epochs=epochs, verbose=verbose, callbacks=callbacks, validation_data=validation_data, validation_steps=validation_steps, validation_freq=validation_freq, class_weight=class_weight, workers=0, shuffle=shuffle, initial_epoch=initial_epoch, steps_name="steps_per_epoch", ) def evaluate( self, model, x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None, callbacks=None, **kwargs, ): model._validate_or_infer_batch_size(batch_size, steps, x) # Make sure that y, sample_weights, validation_split are not passed. training_utils_v1.validate_dataset_input(x, y, sample_weight) return evaluate_generator( model, x, steps=steps, verbose=verbose, workers=0, callbacks=callbacks, ) def predict( self, model, x, batch_size=None, verbose=0, steps=None, callbacks=None, **kwargs, ): model._validate_or_infer_batch_size(batch_size, steps, x) return predict_generator( model, x, steps=steps, verbose=verbose, workers=0, callbacks=callbacks, ) class GeneratorLikeTrainingLoop(training_utils_v1.TrainingLoop): """TrainingLoop that handle inputs like python generator. This is the default handler for most of the input data types, includes symbolic tensors or Numpy array-like, Datasets and iterators in graph mode (since they generate symbolic tensors). This Function is used to handle model with `run_eagerly` = True. """ def fit( self, model, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_freq=1, **kwargs, ): batch_size = model._validate_or_infer_batch_size( batch_size, steps_per_epoch, x ) x, y, sample_weights = model._standardize_user_data( x, y, sample_weight=sample_weight, class_weight=class_weight, batch_size=batch_size, check_steps=True, steps_name="steps_per_epoch", steps=steps_per_epoch, validation_split=validation_split, shuffle=shuffle, ) if validation_data: validation_data = model._prepare_validation_data( validation_data, batch_size, validation_steps ) elif validation_split and 0.0 < validation_split < 1.0: ( x, y, sample_weights, val_x, val_y, val_sample_weights, ) = training_utils_v1.split_training_and_validation_data( x, y, sample_weights, validation_split ) validation_data = (val_x, val_y, val_sample_weights) else: if validation_steps: raise ValueError( "`validation_steps` should not be specified if " "`validation_data` is None." ) return fit_generator( model, (x, y, sample_weights), steps_per_epoch=steps_per_epoch, batch_size=batch_size, epochs=epochs, verbose=verbose, callbacks=callbacks, validation_data=validation_data, validation_steps=validation_steps, validation_freq=validation_freq, workers=0, shuffle=shuffle, initial_epoch=initial_epoch, steps_name="steps_per_epoch", ) def evaluate( self, model, x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None, callbacks=None, **kwargs, ): batch_size = model._validate_or_infer_batch_size(batch_size, steps, x) x, y, sample_weights = model._standardize_user_data( x, y, sample_weight=sample_weight, batch_size=batch_size, check_steps=True, steps_name="steps", steps=steps, ) return evaluate_generator( model, (x, y, sample_weights), steps=steps, batch_size=batch_size, verbose=verbose, workers=0, callbacks=callbacks, ) def predict( self, model, x, batch_size=None, verbose=0, steps=None, callbacks=None, **kwargs, ): batch_size = model._validate_or_infer_batch_size(batch_size, steps, x) x, _, _ = model._standardize_user_data( x, check_steps=True, steps_name="steps", steps=steps ) return predict_generator( model, x, steps=steps, batch_size=batch_size, verbose=verbose, workers=0, callbacks=callbacks, )
tf-keras/tf_keras/engine/training_generator_v1.py/0
{ "file_path": "tf-keras/tf_keras/engine/training_generator_v1.py", "repo_id": "tf-keras", "token_count": 15423 }
169
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """This API defines FeatureColumn abstraction.""" # This file was originally under tf/python/feature_column, and was moved to # TF-Keras package to remove the reverse dependency from TF to TF-Keras. from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import re import tensorflow.compat.v2 as tf from tf_keras.engine.base_layer import Layer from tf_keras.saving import serialization_lib class _BaseFeaturesLayer(Layer): """Base class for DenseFeatures and SequenceFeatures. Defines common methods and helpers. Args: feature_columns: An iterable containing the FeatureColumns to use as inputs to your model. expected_column_type: Expected class for provided feature columns. trainable: Boolean, whether the layer's variables will be updated via gradient descent during training. name: Name to give to the DenseFeatures. **kwargs: Keyword arguments to construct a layer. Raises: ValueError: if an item in `feature_columns` doesn't match `expected_column_type`. """ def __init__( self, feature_columns, expected_column_type, trainable, name, partitioner=None, **kwargs ): super().__init__(name=name, trainable=trainable, **kwargs) self._feature_columns = _normalize_feature_columns(feature_columns) self._state_manager = tf.__internal__.feature_column.StateManager( self, self.trainable ) self._partitioner = partitioner for column in self._feature_columns: if not isinstance(column, expected_column_type): raise ValueError( "Items of feature_columns must be a {}. " "You can wrap a categorical column with an " "embedding_column or indicator_column. Given: {}".format( expected_column_type, column ) ) def build(self, _): for column in self._feature_columns: with tf.compat.v1.variable_scope( self.name, partitioner=self._partitioner ): with tf.compat.v1.variable_scope( _sanitize_column_name_for_variable_scope(column.name) ): column.create_state(self._state_manager) super().build(None) def _output_shape(self, input_shape, num_elements): """Computes expected output shape of the dense tensor of the layer. Args: input_shape: Tensor or array with batch shape. num_elements: Size of the last dimension of the output. Returns: Tuple with output shape. """ raise NotImplementedError("Calling an abstract method.") def compute_output_shape(self, input_shape): total_elements = 0 for column in self._feature_columns: total_elements += column.variable_shape.num_elements() return self._target_shape(input_shape, total_elements) def _process_dense_tensor(self, column, tensor): """Reshapes the dense tensor output of a column based on expected shape. Args: column: A DenseColumn or SequenceDenseColumn object. tensor: A dense tensor obtained from the same column. Returns: Reshaped dense tensor. """ num_elements = column.variable_shape.num_elements() target_shape = self._target_shape(tf.shape(tensor), num_elements) return tf.reshape(tensor, shape=target_shape) def _verify_and_concat_tensors(self, output_tensors): """Verifies and concatenates the dense output of several columns.""" _verify_static_batch_size_equality( output_tensors, self._feature_columns ) return tf.concat(output_tensors, -1) def get_config(self): column_configs = [ tf.__internal__.feature_column.serialize_feature_column(fc) for fc in self._feature_columns ] config = {"feature_columns": column_configs} config["partitioner"] = serialization_lib.serialize_keras_object( self._partitioner ) base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config, custom_objects=None): config_cp = config.copy() columns_by_name = {} config_cp["feature_columns"] = [ tf.__internal__.feature_column.deserialize_feature_column( c, custom_objects, columns_by_name ) for c in config["feature_columns"] ] config_cp["partitioner"] = serialization_lib.deserialize_keras_object( config["partitioner"], custom_objects ) return cls(**config_cp) def _sanitize_column_name_for_variable_scope(name): """Sanitizes user-provided feature names for use as variable scopes.""" invalid_char = re.compile("[^A-Za-z0-9_.\\-]") return invalid_char.sub("_", name) def _verify_static_batch_size_equality(tensors, columns): """Verify equality between static batch sizes. Args: tensors: iterable of input tensors. columns: Corresponding feature columns. Raises: ValueError: in case of mismatched batch sizes. """ expected_batch_size = None for i in range(0, len(tensors)): # bath_size is a Dimension object. batch_size = tf.compat.v1.Dimension( tf.compat.dimension_value(tensors[i].shape[0]) ) if batch_size.value is not None: if expected_batch_size is None: bath_size_column_index = i expected_batch_size = batch_size elif not expected_batch_size.is_compatible_with(batch_size): raise ValueError( "Batch size (first dimension) of each feature must be " "same. Batch size of columns ({}, {}): ({}, {})".format( columns[bath_size_column_index].name, columns[i].name, expected_batch_size, batch_size, ) ) def _normalize_feature_columns(feature_columns): """Normalizes the `feature_columns` input. This method converts the `feature_columns` to list type as best as it can. In addition, verifies the type and other parts of feature_columns, required by downstream library. Args: feature_columns: The raw feature columns, usually passed by users. Returns: The normalized feature column list. Raises: ValueError: for any invalid inputs, such as empty, duplicated names, etc. """ if isinstance( feature_columns, tf.__internal__.feature_column.FeatureColumn ): feature_columns = [feature_columns] if isinstance(feature_columns, collections.abc.Iterator): feature_columns = list(feature_columns) if isinstance(feature_columns, dict): raise ValueError("Expected feature_columns to be iterable, found dict.") for column in feature_columns: if not isinstance(column, tf.__internal__.feature_column.FeatureColumn): raise ValueError( "Items of feature_columns must be a FeatureColumn. " "Given (type {}): {}.".format(type(column), column) ) if not feature_columns: raise ValueError("feature_columns must not be empty.") name_to_column = {} for column in feature_columns: if column.name in name_to_column: raise ValueError( "Duplicate feature column name found for columns: {} " "and {}. This usually means that these columns refer to " "same base feature. Either one must be discarded or a " "duplicated but renamed item must be inserted in " "features dict.".format(column, name_to_column[column.name]) ) name_to_column[column.name] = column return sorted(feature_columns, key=lambda x: x.name)
tf-keras/tf_keras/feature_column/base_feature_layer.py/0
{ "file_path": "tf-keras/tf_keras/feature_column/base_feature_layer.py", "repo_id": "tf-keras", "token_count": 3644 }
170
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests that Custom Training Loop docs match actual behavior. The tutorial at https://www.tensorflow.org/tutorials/distribute/custom_training, defined at https://github.com/tensorflow/docs/blob/master/site/en/tutorials/distribute/custom_training.ipynb makes several statements about * ways to reduce loss terms to the actual training loss, and * how they compare to the built-in behavior of TF-Keras Model.fit(). This test verifies that these statements match the actual behavior, under a variety of distribution strategies. """ import numpy as np import tensorflow.compat.v2 as tf from absl.testing import parameterized from tf_keras.distribute import strategy_combinations def make_compute_loss_fn(variant, loss_object, GLOBAL_BATCH_SIZE): """Returns the `compute_loss()` function as defined in the tutorial.""" if variant == "basic": # The basic form of the loss function, shown verbatim in the tutorial. def compute_loss(labels, predictions, model_losses): per_example_loss = loss_object(labels, predictions) loss = tf.nn.compute_average_loss(per_example_loss) if model_losses: loss += tf.nn.scale_regularization_loss(tf.add_n(model_losses)) return loss elif variant == "fixed_batch_size": # The variant that adds a fixed `global_batch_size=` arg # (described but not shown verbatim). def compute_loss(labels, predictions, model_losses): per_example_loss = loss_object(labels, predictions) loss = tf.nn.compute_average_loss( per_example_loss, global_batch_size=GLOBAL_BATCH_SIZE ) if model_losses: loss += tf.nn.scale_regularization_loss(tf.add_n(model_losses)) return loss elif variant == "balanced": # The variant that scales the loss to balance out varying batch sizes # (described but not shown verbatim). def compute_loss(labels, predictions, model_losses): per_example_loss = loss_object(labels, predictions) loss = tf.nn.compute_average_loss(per_example_loss) if model_losses: loss += tf.nn.scale_regularization_loss(tf.add_n(model_losses)) observed_global_batch_size = ( tf.distribute.get_strategy().num_replicas_in_sync * tf.shape(per_example_loss)[0] ) loss *= tf.math.divide( tf.cast(observed_global_batch_size, tf.float32), tf.cast(GLOBAL_BATCH_SIZE, tf.float32), ) return loss else: raise ValueError(f"Unknown {variant=}") return compute_loss def create_dataset(global_batch_size): """Creates the dataset for ImpliedExampleWeightsTest. It contains two batches: the first has full size, the second just 1 element. The i-th element `(x,y)` has model input `x = onehot(i)` and label `y = 0`. """ n = global_batch_size + 1 ds = tf.data.Dataset.from_tensor_slices((tf.eye(n), tf.zeros([n, 1]))) ds = ds.batch(global_batch_size) return ds def create_model(n): """Creates the model for ImpliedExampleWeightsTest. The model has three trainable weights of interest, all initialized to 1.0: * "predicting/kernel:0" of shape [n, 1] maps a one-hot encoded input to the model output. When used with the MeanAbsoluteError loss, an input onehot(i) produces a gradient onehot(i) for this weight, subject to the training loop's loss reduction across examples. * "activity_regularized/kernel:0" of shape [n, 1] has an activity regularizer loss in the model so that input onehot(i) produces a gradient of 1/batch_size * onehot(i) for this weight. * "weight_regularized:0" of shape [1] has a weight regularizer loss in the model that produces a gradient of 1 for this weight, independent of batch size. """ inputs = tf.keras.Input(shape=(n,), name="inputs") predicting = tf.keras.layers.Dense( 1, use_bias=False, kernel_initializer="ones", name="predicting" ) activity_regularized = tf.keras.layers.Dense( 1, use_bias=False, kernel_initializer="ones", activity_regularizer=tf.keras.regularizers.L1(l1=1.0), name="activity_regularized", ) weight_regularized = tf.keras.layers.Dense( 1, kernel_initializer="zeros", bias_initializer="ones", bias_regularizer=tf.keras.regularizers.L1(l1=1.0), name="weight_regularized", ) # Make outputs = predicting(inputs), depending on the other Layers as well. add = tf.keras.layers.Add(name="add") multiply = tf.keras.layers.Multiply(name="multiply") outputs = add( [ predicting(inputs), multiply( [np.array([[0.0]], np.float32), activity_regularized(inputs)] ), multiply( [np.array([[0.0]], np.float32), weight_regularized(inputs)] ), ] ) model = tf.keras.Model(inputs, outputs) return model def create_loss(**kwargs): """Returns the loss to be used with the model from create_model().""" return tf.keras.losses.MeanAbsoluteError(**kwargs) def create_optimizer(learning_rate): """Returns the optimizer that applies gradients in the most obvious way.""" return tf.keras.optimizers.SGD(learning_rate) def get_expected_example_weights( ctl_variant, *, local_batch_size, num_replicas_in_sync ): """Returns the weights that examples have in the gradient updates seen.""" global_batch_size = local_batch_size * num_replicas_in_sync n = global_batch_size + 1 num_batches = 2 expected = dict( # Examples in a full batch receive the expected gradient weight, # independent of the CTL variant. example_prediction_fullbatch=1.0, example_activity_fullbatch=1.0, ) if ctl_variant == "basic": # In the basic variant of the CTL, when a batch of size 1 hits a # replica, the singleton example receives the weight that is # normally spread evenly across the local_batch_size. expected["example_prediction_singleton"] = local_batch_size expected["example_activity_singleton"] = local_batch_size # Weight regularization applies equally in each batch, # irrespective of its size. expected["total_weight_regularization"] = num_batches elif ctl_variant == "fixed_batch_size": # In the CTL variant that fixes GLOBAL_BATCH_SIZE for the reduction # of prediction losses, the weight of a singleton example is # reverted to normal for prediction, but activity and weight # regularization behaves as in the "basic" variant. expected["example_prediction_singleton"] = 1.0 expected["example_activity_singleton"] = local_batch_size expected["total_weight_regularization"] = num_batches elif ctl_variant == "balanced": # The CTL variant that corrects both prediction and regularization # losses for the batch size achieves equal weights of examples # both for the prediction and for an activity regularizer expected["example_prediction_singleton"] = 1.0 expected["example_activity_singleton"] = 1.0 # Weight regularization, in sync with the other loss terms, # applies proportional to the number of examples. expected["total_weight_regularization"] = n / global_batch_size return expected class MaybeStrategyScope: """Provides a context allowing no distribution strategy.""" def __init__(self, strategy): self._strategy = strategy self._scope = None def __enter__(self): if self._strategy: self._scope = self._strategy.scope() self._scope.__enter__() def __exit__(self, exc_type, value, traceback): if self._strategy: self._scope.__exit__(exc_type, value, traceback) self._scope = None class ImpliedExampleWeightsTest(tf.test.TestCase, parameterized.TestCase): """Tests weights of loss terms depending on batch size and training loop.""" @tf.__internal__.distribute.combinations.generate( tf.__internal__.test.combinations.combine( strategy=strategy_combinations.all_strategies + strategy_combinations.multiworker_strategies + [None], ctl_variant=["basic", "fixed_batch_size", "balanced"], ) ) def test_ctl(self, strategy, ctl_variant): """Tests a variant of the CTL under a distribution strategy.""" if strategy is None: num_replicas_in_sync = 1 else: num_replicas_in_sync = strategy.num_replicas_in_sync local_batch_size = 2 # For a full batch; greater than 1. global_batch_size = local_batch_size * num_replicas_in_sync ds = create_dataset(global_batch_size) if strategy is not None: ds = strategy.experimental_distribute_dataset(ds) n = global_batch_size + 1 learning_rate = 0.01 with MaybeStrategyScope(strategy): model = create_model(n) loss_object = create_loss(reduction=tf.keras.losses.Reduction.NONE) compute_loss = make_compute_loss_fn( ctl_variant, loss_object, global_batch_size ) optimizer = create_optimizer(learning_rate) def train_step(inputs): x, labels = inputs with tf.GradientTape() as tape: predictions = model(x, training=True) loss = compute_loss(labels, predictions, model.losses) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients( zip(gradients, model.trainable_variables) ) return loss @tf.function def wrapped_train_step(inputs): if strategy is None: return train_step(inputs) else: per_replica_losses = strategy.run( train_step, args=(inputs,) ) return strategy.reduce( tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None, ) num_epochs = 1 num_batches = 0 for epoch in range(num_epochs): total_loss = 0.0 for x in ds: total_loss += wrapped_train_step(x) num_batches += 1 train_loss = total_loss / num_batches self.assertTrue(tf.math.is_finite(train_loss).numpy()) self.assertEqual(num_batches, 2) expected = get_expected_example_weights( ctl_variant, local_batch_size=local_batch_size, num_replicas_in_sync=num_replicas_in_sync, ) self.assert_implied_example_weights( model, **expected, rtol=1e-6 if strategy is None else 1e-4, learning_rate=learning_rate, global_batch_size=global_batch_size, ) @tf.__internal__.distribute.combinations.generate( tf.__internal__.test.combinations.combine( strategy=strategy_combinations.all_strategies + strategy_combinations.multiworker_strategies + [None], ) ) def test_fit(self, strategy): """Tests Model.fit().""" if strategy is None: num_replicas_in_sync = 1 else: num_replicas_in_sync = strategy.num_replicas_in_sync local_batch_size = 2 # For a full batch; greater than 1. global_batch_size = local_batch_size * num_replicas_in_sync ds = create_dataset(global_batch_size) n = global_batch_size + 1 learning_rate = 0.01 with MaybeStrategyScope(strategy): model = create_model(n) model.compile( optimizer=create_optimizer(learning_rate), loss=create_loss() ) epochs = 1 steps_per_epoch = 2 model.fit(ds, epochs=epochs, steps_per_epoch=steps_per_epoch) expected = get_expected_example_weights( ctl_variant="basic", # The tutorial claims this consistency! local_batch_size=local_batch_size, num_replicas_in_sync=num_replicas_in_sync, ) self.assert_implied_example_weights( model, **expected, rtol=1e-6 if strategy is None else 1e-4, learning_rate=learning_rate, global_batch_size=global_batch_size, ) def assert_implied_example_weights( self, model, *, learning_rate, global_batch_size, rtol, example_prediction_fullbatch, example_prediction_singleton, example_activity_fullbatch, example_activity_singleton, total_weight_regularization, ): """Checks model.weights for the expected effects of training.""" model_weights = { v.name: self._get_var_value(v).numpy() for v in model.trainable_variables } # The total weight received by each one-hot example in the prediction # loss is the change of its corresponding weight from the initial # value 1, adjusted for the expected averaging by global_batch_size and # scaling by SGD's learning_rate. predicting_kernel = model_weights["predicting/kernel:0"] example_prediction_weights = ( (1.0 - predicting_kernel) / learning_rate * global_batch_size ) # There was one full batch of examples, followed by a singleton. self.assertEqual(predicting_kernel.shape, (global_batch_size + 1, 1)) # Check the examples in the full batch. actual_example_prediction_fullbatch = self.reduce_assert_equal( example_prediction_weights[:-1, 0] ) self.assertAllClose( example_prediction_fullbatch, actual_example_prediction_fullbatch, rtol=rtol, ) # Check the singleton example after the full batch. actual_example_prediction_singleton = example_prediction_weights[-1, 0] self.assertAllClose( example_prediction_singleton, actual_example_prediction_singleton, rtol=rtol, ) # Analogous to predictions, check weights for acticity regularization. activity_regularized_kernel = model_weights[ "activity_regularized/kernel:0" ] example_activity_weights = ( (1.0 - activity_regularized_kernel) / learning_rate * global_batch_size ) self.assertEqual( activity_regularized_kernel.shape, (global_batch_size + 1, 1) ) actual_example_activity_fullbatch = self.reduce_assert_equal( example_activity_weights[:-1, 0] ) self.assertAllClose( example_activity_fullbatch, actual_example_activity_fullbatch, rtol=rtol, ) actual_example_activity_singleton = example_activity_weights[-1, 0] self.assertAllClose( example_activity_singleton, actual_example_activity_singleton, rtol=rtol, ) # The total weight of weight regularization is the change of this # (otherwise unused) bias term from its initial value 1, # adjusted for the expected scaling by SGD's learning_rate. actual_total_weight_reguarization = ( 1.0 - model_weights["weight_regularized/bias:0"][0] ) / learning_rate self.assertAllClose( total_weight_regularization, actual_total_weight_reguarization, rtol=rtol, ) def reduce_assert_equal(self, x): """Returns first element of x and asserts all others are equal.""" result = x[0] for i, value in enumerate(x[1:]): self.assertAllEqual(result, value, msg=f"at position {i=}") return result def _get_var_value(self, var): """Returns the (unique) value of a (possibly distributed) Variable.""" if hasattr(var, "values"): # Distributed. result = self.reduce_assert_equal([v.value() for v in var.values]) else: result = var.value() return result if __name__ == "__main__": tf.__internal__.distribute.multi_process_runner.test_main()
tf-keras/tf_keras/integration_test/ctl_tutorial_test.py/0
{ "file_path": "tf-keras/tf_keras/integration_test/ctl_tutorial_test.py", "repo_id": "tf-keras", "token_count": 7533 }
171
"""Model that incorporates a set of edge case development patterns. """ import tensorflow as tf from tensorflow import keras from tf_keras.integration_test.models.input_spec import InputSpec INPUT_DIM = 32 NUM_CLASSES = 5 def get_data_spec(batch_size): return ( InputSpec((batch_size, INPUT_DIM)), InputSpec((batch_size, NUM_CLASSES)), ) def get_input_preprocessor(): return None class LinearA(keras.layers.Layer): """Standard custom layer with 2 call() inputs.""" def __init__(self, units=32, input_dim=32): super().__init__() self.w = self.add_weight( shape=(input_dim, units), initializer="random_normal", trainable=True, ) self.b = self.add_weight( shape=(units,), initializer="zeros", trainable=True ) def call(self, inputs_1, inputs_2): return ( tf.matmul(inputs_1, self.w) + tf.matmul(inputs_2, self.w) + self.b ) class LinearB(keras.layers.Layer): """Layer that tracks weights in a dict attribute that gets updated later.""" def __init__(self, units=32, input_dim=32, **kwargs): super().__init__(**kwargs) w_init = tf.random_normal_initializer() b_init = tf.zeros_initializer() self.state = { "kernel": tf.Variable( initial_value=w_init(shape=(input_dim, units), dtype="float32"), trainable=True, name="kernel", ) } self.state["bias"] = tf.Variable( initial_value=b_init(shape=(units,), dtype="float32"), trainable=True, name="bias", ) def call(self, inputs): return tf.matmul(inputs, self.state["kernel"]) + self.state["bias"] class LinearC(keras.layers.Layer): """Layer that creates weights in call().""" def __init__(self, units=32, input_dim=32, **kwargs): super().__init__(**kwargs) self._custom_built = False self.units = units self.input_dim = input_dim def call(self, inputs): if not self._custom_built: self.w = self.add_weight( shape=(self.input_dim, self.units), initializer="random_normal", trainable=True, ) self.b = self.add_weight( shape=(self.units,), initializer="zeros", trainable=True ) self._custom_built = True return tf.matmul(inputs, self.w) + self.b class BatchNorm(keras.layers.Layer): """Layer with different training/test behavior and non-trainable updates.""" def __init__( self, scale=True, center=True, epsilon=1e-6, momentum=0.9, **kwargs ): super().__init__(**kwargs) self.scale = scale self.center = center self.epsilon = epsilon self.momentum = momentum def build(self, input_shape): self.var = self.add_weight( shape=[input_shape[1]], initializer="ones", trainable=False ) self.mean = self.add_weight( shape=[input_shape[1]], initializer="zeros", trainable=False ) self.gamma = self.add_weight(shape=[input_shape[1]], initializer="ones") self.beta = self.add_weight(shape=[input_shape[1]], initializer="zeros") def call(self, inputs, training=False): if training: mean, var = tf.nn.moments(inputs, axes=[0]) outputs = (inputs - mean) / (var + self.epsilon) self.var.assign(self.var * self.momentum + var * 0.1) self.mean.assign(self.mean * self.momentum + mean * 0.1) else: outputs = (inputs - self.mean) / (self.var + self.epsilon) if self.scale: outputs *= self.gamma if self.center: outputs += self.beta return outputs class FunctionalSubclassModel(keras.Model): def __init__(self, **kwargs): inputs = keras.Input((INPUT_DIM,)) x = inputs x = LinearA(32, INPUT_DIM)(x, x) x = LinearB(32, 32)(x) x = LinearC(32, 32)(x) x = BatchNorm()(x) outputs = keras.layers.Dense(NUM_CLASSES, activation="softmax")(x) super().__init__(inputs, outputs, **kwargs) def get_model( build=False, compile=False, jit_compile=False, include_preprocessing=True ): model = FunctionalSubclassModel() if compile: model.compile("rmsprop", "mse", jit_compile=jit_compile) return model def get_custom_objects(): return { "LinearA": LinearA, "LinearB": LinearB, "LinearC": LinearC, "BatchNorm": BatchNorm, }
tf-keras/tf_keras/integration_test/models/edge_case_model.py/0
{ "file_path": "tf-keras/tf_keras/integration_test/models/edge_case_model.py", "repo_id": "tf-keras", "token_count": 2183 }
172
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for ClusterCoordinator and TF-Keras models.""" import multiprocessing import os import random import tempfile import numpy as np import portpicker import tensorflow.compat.v2 as tf from absl.testing import parameterized from tf_keras.testing_infra import test_utils # These vocabularies usually come from TFT or a Beam pipeline. FEATURE_VOCAB = [ "avenger", "ironman", "batman", "hulk", "spiderman", "kingkong", "wonder_woman", ] LABEL_VOCAB = ["yes", "no"] def create_in_process_cluster(num_workers, num_ps): """Creates and starts local servers and returns the cluster_resolver.""" worker_ports = [portpicker.pick_unused_port() for _ in range(num_workers)] ps_ports = [portpicker.pick_unused_port() for _ in range(num_ps)] cluster_dict = {} cluster_dict["worker"] = [f"localhost:{port}" for port in worker_ports] if num_ps > 0: cluster_dict["ps"] = [f"localhost:{port}" for port in ps_ports] cluster_spec = tf.train.ClusterSpec(cluster_dict) # Workers need some inter_ops threads to work properly. worker_config = tf.compat.v1.ConfigProto() if multiprocessing.cpu_count() < num_workers + 1: worker_config.inter_op_parallelism_threads = num_workers + 1 for i in range(num_workers): tf.distribute.Server( cluster_spec, job_name="worker", task_index=i, config=worker_config, protocol="grpc", ) for i in range(num_ps): tf.distribute.Server( cluster_spec, job_name="ps", task_index=i, protocol="grpc" ) return cluster_spec @test_utils.run_v2_only class KPLTest(tf.test.TestCase, parameterized.TestCase): def setUp(self): super().setUp() cluster_spec = create_in_process_cluster(num_workers=3, num_ps=2) cluster_resolver = tf.distribute.cluster_resolver.SimpleClusterResolver( cluster_spec, rpc_layer="grpc" ) self.strategy = tf.distribute.experimental.ParameterServerStrategy( cluster_resolver ) self.coordinator = ( tf.distribute.experimental.coordinator.ClusterCoordinator( self.strategy ) ) def define_kpls_for_training(self, use_adapt): # Define KPLs under strategy's scope. Right now, if they have look up # tables, they will be created on the client. Their variables will be # created on PS. Ideally they should be cached on each worker since they # will not be changed in a training step. if use_adapt: feature_lookup_layer = tf.keras.layers.StringLookup( num_oov_indices=1 ) feature_lookup_layer.adapt(FEATURE_VOCAB) label_lookup_layer = tf.keras.layers.StringLookup( num_oov_indices=0, mask_token=None ) label_lookup_layer.adapt(LABEL_VOCAB) else: # Do vocab shuffling. shuffled_vocab = FEATURE_VOCAB.copy() random.shuffle(shuffled_vocab) feature_lookup_layer = tf.keras.layers.StringLookup( vocabulary=shuffled_vocab, num_oov_indices=1 ) label_lookup_layer = tf.keras.layers.StringLookup( vocabulary=LABEL_VOCAB, num_oov_indices=0, mask_token=None ) raw_feature_input = tf.keras.Input( shape=(3,), dtype=tf.string, name="feature", ragged=True ) feature_id_input = feature_lookup_layer(raw_feature_input) # Model creates variables as well. feature_ps = tf.keras.Model( {"features": raw_feature_input}, feature_id_input ) raw_label_input = tf.keras.Input( shape=(1,), dtype=tf.string, name="label" ) label_id_input = label_lookup_layer(raw_label_input) label_ps = tf.keras.Model({"label": raw_label_input}, label_id_input) return feature_ps, label_ps def define_reverse_lookup_layer(self): # Only needed for serving. label_inverse_lookup_layer = tf.keras.layers.StringLookup( num_oov_indices=0, mask_token=None, vocabulary=LABEL_VOCAB, invert=True, ) return label_inverse_lookup_layer @tf.__internal__.distribute.combinations.generate( tf.__internal__.test.combinations.combine( mode=["eager"], use_adapt=[True, False], test_training_with_loaded=[True, False], # TODO(b/1949359300): `load_for_serving_under_strategy=True` flakily # times out. load_for_serving_under_strategy=[False], ) ) def testTrainAndLoadAndServe( self, use_adapt, test_training_with_loaded, load_for_serving_under_strategy, ): # test_training_with_loaded=False tests distributed training with newly # constructed KPL, while test_training_with_loaded=True tests # distributed training with a loaded KPL which was created under # strategy scope as well. # # load_for_serving_under_strategy test serving with a model loaded # under distribution strategy or not. with self.coordinator.strategy.scope(): feature_ps, label_ps = self.define_kpls_for_training(use_adapt) if test_training_with_loaded: saved_kpl_dir = tempfile.mkdtemp(dir=self.get_temp_dir()) feature_ps_dir = os.path.join(saved_kpl_dir, "feature") label_ps_dir = os.path.join(saved_kpl_dir, "label") feature_ps.save(feature_ps_dir) label_ps.save(label_ps_dir) del feature_ps, label_ps feature_ps = tf.keras.models.load_model(feature_ps_dir) label_ps = tf.keras.models.load_model(label_ps_dir) def dataset_fn(): def feature_and_label_gen(): while True: features = random.sample(FEATURE_VOCAB, 3) label = ["yes"] if "avenger" in features else ["no"] yield {"features": features, "label": label} # The dataset will be created on the coordinator. raw_dataset = ( tf.data.Dataset.from_generator( feature_and_label_gen, output_signature={ "features": tf.TensorSpec([3], tf.string), "label": tf.TensorSpec([1], tf.string), }, ) .shuffle(100) .batch(32) ) train_dataset = raw_dataset.map( lambda x: ( {"features": feature_ps(x["features"])}, label_ps(x["label"]), ) ) return train_dataset # Create the model. The input needs to be compatible with KPLs. model_input = tf.keras.Input( shape=(3,), dtype=tf.int64, name="model_input" ) # input_dim includes a mask token and an oov token. emb_output = tf.keras.layers.Embedding( input_dim=len(FEATURE_VOCAB) + 2, output_dim=20 )(model_input) emb_output = tf.reduce_mean(emb_output, axis=1) dense_output = tf.keras.layers.Dense(units=1, activation="sigmoid")( emb_output ) model = tf.keras.Model({"features": model_input}, dense_output) optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.1) accuracy = tf.keras.metrics.Accuracy() @tf.function def worker_fn(iterator): def replica_fn(iterator): batch_data, labels = next(iterator) with tf.GradientTape() as tape: pred = model(batch_data, training=True) loss = tf.nn.compute_average_loss( tf.keras.losses.BinaryCrossentropy( reduction=tf.keras.losses.Reduction.NONE )(labels, pred) ) gradients = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients( zip(gradients, model.trainable_variables) ) actual_pred = tf.cast(tf.greater(pred, 0.5), tf.int64) accuracy.update_state(labels, actual_pred) self.coordinator.strategy.run(replica_fn, args=(iterator,)) distributed_dataset = self.coordinator.create_per_worker_dataset( dataset_fn ) distributed_iterator = iter(distributed_dataset) for _ in range(4): accuracy.reset_state() for _ in range(7): self.coordinator.schedule( worker_fn, args=(distributed_iterator,) ) self.coordinator.join() self.assertGreater(accuracy.result().numpy(), 0.5) # Create a saved model. model.feature_ps = feature_ps model.label_ps = label_ps model.label_inverse_lookup_layer = self.define_reverse_lookup_layer() def create_serving_signature(model): @tf.function def serve_fn(raw_features): raw_features = tf.expand_dims(raw_features, axis=0) transformed_features = model.feature_ps(raw_features) outputs = model(transformed_features) outputs = tf.squeeze(outputs, axis=0) outputs = tf.cast(tf.greater(outputs, 0.5), tf.int64) decoded_outputs = model.label_inverse_lookup_layer(outputs) return tf.squeeze(decoded_outputs, axis=0) # serving does NOT have batch dimension return serve_fn.get_concrete_function( tf.TensorSpec(shape=(3), dtype=tf.string, name="example") ) serving_fn = create_serving_signature(model) saved_model_dir = tempfile.mkdtemp(dir=self.get_temp_dir()) model.save(saved_model_dir, signatures={"serving_default": serving_fn}) if load_for_serving_under_strategy: with self.coordinator.strategy.scope(): loaded_serving_fn = tf.keras.models.load_model( saved_model_dir ).signatures["serving_default"] outputs = [] for _ in range(7): outputs.append( self.coordinator.schedule( loaded_serving_fn, args=(tf.constant(["avenger", "ironman", "avenger"]),), ) ) self.coordinator.join() for prediction0 in outputs: self.assertIn( prediction0._get_values()["output_0"], ("yes", "no") ) else: loaded_serving_fn = tf.keras.models.load_model( saved_model_dir ).signatures["serving_default"] # check the result w/ and w/o avenger. prediction0 = loaded_serving_fn( tf.constant(["avenger", "ironman", "avenger"]) )["output_0"] self.assertIn(prediction0, ("yes", "no")) prediction1 = loaded_serving_fn( tf.constant(["ironman", "ironman", "unknown"]) )["output_0"] self.assertIn(prediction1, ("yes", "no")) @test_utils.run_v2_only class KPLCreatedInDatasetsFromFunctionTest( tf.test.TestCase, parameterized.TestCase ): def setUp(self): super().setUp() cluster_spec = create_in_process_cluster(num_workers=3, num_ps=2) cluster_resolver = tf.distribute.cluster_resolver.SimpleClusterResolver( cluster_spec, rpc_layer="grpc" ) self.strategy = tf.distribute.experimental.ParameterServerStrategy( cluster_resolver ) self.coordinator = ( tf.distribute.experimental.coordinator.ClusterCoordinator( self.strategy ) ) def testKPLCreatedInDatasetsFromFunction(self): filepath = os.path.join(self.get_temp_dir(), "vocab") with open(filepath, "w") as f: f.write("\n".join(["earth", "wind", "and", "fire"])) def per_worker_dataset_fn(): def dataset_fn(input_context): del input_context lookup_layer = tf.keras.layers.StringLookup( num_oov_indices=1, vocabulary=filepath ) x = np.array( [ ["earth", "wind", "and", "fire"], ["fire", "and", "earth", "michigan"], ] ) y = np.array([0, 1]) map_fn = lambda x, y: (lookup_layer(x), y) return ( tf.data.Dataset.from_tensor_slices((x, y)) .shuffle(10) .repeat() .batch(2) .map(map_fn) ) return self.coordinator.strategy.distribute_datasets_from_function( dataset_fn ) per_worker_distribute_dataset = ( self.coordinator.create_per_worker_dataset(per_worker_dataset_fn) ) per_worker_iter = iter(per_worker_distribute_dataset) @tf.function def worker_fn(iterator): def replica_fn(data): return data return self.coordinator.strategy.run( replica_fn, args=(next(iterator),) ) result = [] for _ in range(10): result.append( self.coordinator.schedule(worker_fn, args=(per_worker_iter,)) ) self.coordinator.join() if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/integration_test/parameter_server_keras_preprocessing_test.py/0
{ "file_path": "tf-keras/tf_keras/integration_test/parameter_server_keras_preprocessing_test.py", "repo_id": "tf-keras", "token_count": 7376 }
173
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Thresholded Rectified Linear Unit activation layer.""" import tensorflow.compat.v2 as tf from tf_keras import backend from tf_keras.engine.base_layer import Layer from tf_keras.utils import tf_utils # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export("keras.layers.ThresholdedReLU") class ThresholdedReLU(Layer): """Thresholded Rectified Linear Unit. It follows: ``` f(x) = x for x > theta f(x) = 0 otherwise` ``` Input shape: Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. Output shape: Same shape as the input. Args: theta: Float >= 0. Threshold location of activation. """ def __init__(self, theta=1.0, **kwargs): super().__init__(**kwargs) if theta is None: raise ValueError( "Theta of a Thresholded ReLU layer cannot be None, expecting a " f"float. Received: {theta}" ) if theta < 0: raise ValueError( "The theta value of a Thresholded ReLU layer " f"should be >=0. Received: {theta}" ) self.supports_masking = True self.theta = backend.cast_to_floatx(theta) def call(self, inputs): dtype = self.compute_dtype return inputs * tf.cast(tf.greater(inputs, self.theta), dtype) def get_config(self): config = {"theta": float(self.theta)} base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @tf_utils.shape_type_conversion def compute_output_shape(self, input_shape): return input_shape
tf-keras/tf_keras/layers/activation/thresholded_relu.py/0
{ "file_path": "tf-keras/tf_keras/layers/activation/thresholded_relu.py", "repo_id": "tf-keras", "token_count": 935 }
174
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keras abstract base layer for separable nD convolution.""" import tensorflow.compat.v2 as tf from tf_keras import activations from tf_keras import constraints from tf_keras import initializers from tf_keras import regularizers from tf_keras.engine.input_spec import InputSpec from tf_keras.layers.convolutional.base_conv import Conv class SeparableConv(Conv): """Abstract base layer for separable nD convolution. This layer performs a depthwise convolution that acts separately on channels, followed by a pointwise convolution that mixes channels. If `use_bias` is True and a bias initializer is provided, it adds a bias vector to the output. It then optionally applies an activation function to produce the final output. Args: rank: An integer, the rank of the convolution, e.g. "2" for 2D convolution. filters: Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). kernel_size: A tuple or list of integers specifying the spatial dimensions of the filters. Can be a single integer to specify the same value for all spatial dimensions. strides: A tuple or list of integers specifying the strides of the convolution. Can be a single integer to specify the same value for all spatial dimensions. Specifying any `stride` value != 1 is incompatible with specifying any `dilation_rate` value != 1. padding: One of `"valid"` or `"same"` (case-insensitive). `"valid"` means no padding. `"same"` results in padding with zeros evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch_size, ..., channels)` while `channels_first` corresponds to inputs with shape `(batch_size, channels, ...)`. dilation_rate: An integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1. depth_multiplier: The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to `num_filters_in * depth_multiplier`. activation: Activation function to use. If you don't specify anything, no activation is applied (see `keras.activations`). use_bias: Boolean, whether the layer uses a bias. depthwise_initializer: An initializer for the depthwise convolution kernel (see `keras.initializers`). If None, then the default initializer ('glorot_uniform') will be used. pointwise_initializer: An initializer for the pointwise convolution kernel (see `keras.initializers`). If None, then the default initializer ('glorot_uniform') will be used. bias_initializer: An initializer for the bias vector. If None, the default initializer ('zeros') will be used (see `keras.initializers`). depthwise_regularizer: Optional regularizer for the depthwise convolution kernel. pointwise_regularizer: Optional regularizer for the pointwise convolution kernel. bias_regularizer: Optional regularizer for the bias vector. activity_regularizer: Optional regularizer function for the output. depthwise_constraint: Optional projection function to be applied to the depthwise kernel after being updated by an `Optimizer` (e.g. used for norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. pointwise_constraint: Optional projection function to be applied to the pointwise kernel after being updated by an `Optimizer`. bias_constraint: Optional projection function to be applied to the bias after being updated by an `Optimizer`. trainable: Boolean, if `True` the weights of this layer will be marked as trainable (and listed in `layer.trainable_weights`). """ def __init__( self, rank, filters, kernel_size, strides=1, padding="valid", data_format=None, dilation_rate=1, depth_multiplier=1, activation=None, use_bias=True, depthwise_initializer="glorot_uniform", pointwise_initializer="glorot_uniform", bias_initializer="zeros", depthwise_regularizer=None, pointwise_regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs, ): super().__init__( rank=rank, filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activations.get(activation), use_bias=use_bias, bias_initializer=initializers.get(bias_initializer), bias_regularizer=regularizers.get(bias_regularizer), activity_regularizer=regularizers.get(activity_regularizer), bias_constraint=bias_constraint, trainable=trainable, name=name, **kwargs, ) self.depth_multiplier = depth_multiplier self.depthwise_initializer = initializers.get(depthwise_initializer) self.pointwise_initializer = initializers.get(pointwise_initializer) self.depthwise_regularizer = regularizers.get(depthwise_regularizer) self.pointwise_regularizer = regularizers.get(pointwise_regularizer) self.depthwise_constraint = constraints.get(depthwise_constraint) self.pointwise_constraint = constraints.get(pointwise_constraint) def build(self, input_shape): input_shape = tf.TensorShape(input_shape) channel_axis = self._get_channel_axis() if input_shape.dims[channel_axis].value is None: raise ValueError( "The channel dimension of the inputs should be defined. " f"The input_shape received is {input_shape}, " f"where axis {channel_axis} (0-based) " "is the channel dimension, which found to be `None`." ) input_dim = int(input_shape[channel_axis]) self.input_spec = InputSpec( ndim=self.rank + 2, axes={channel_axis: input_dim} ) depthwise_kernel_shape = self.kernel_size + ( input_dim, self.depth_multiplier, ) pointwise_kernel_shape = (1,) * self.rank + ( self.depth_multiplier * input_dim, self.filters, ) self.depthwise_kernel = self.add_weight( name="depthwise_kernel", shape=depthwise_kernel_shape, initializer=self.depthwise_initializer, regularizer=self.depthwise_regularizer, constraint=self.depthwise_constraint, trainable=True, dtype=self.dtype, ) self.pointwise_kernel = self.add_weight( name="pointwise_kernel", shape=pointwise_kernel_shape, initializer=self.pointwise_initializer, regularizer=self.pointwise_regularizer, constraint=self.pointwise_constraint, trainable=True, dtype=self.dtype, ) if self.use_bias: self.bias = self.add_weight( name="bias", shape=(self.filters,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, trainable=True, dtype=self.dtype, ) else: self.bias = None self.built = True def call(self, inputs): raise NotImplementedError def get_config(self): config = { "filters": self.filters, "kernel_size": self.kernel_size, "strides": self.strides, "padding": self.padding, "data_format": self.data_format, "depth_multiplier": self.depth_multiplier, "dilation_rate": self.dilation_rate, "activation": activations.serialize(self.activation), "use_bias": self.use_bias, "depthwise_initializer": initializers.serialize( self.depthwise_initializer ), "pointwise_initializer": initializers.serialize( self.pointwise_initializer ), "bias_initializer": initializers.serialize(self.bias_initializer), "depthwise_regularizer": regularizers.serialize( self.depthwise_regularizer ), "pointwise_regularizer": regularizers.serialize( self.pointwise_regularizer ), "bias_regularizer": regularizers.serialize(self.bias_regularizer), "activity_regularizer": regularizers.serialize( self.activity_regularizer ), "depthwise_constraint": constraints.serialize( self.depthwise_constraint ), "pointwise_constraint": constraints.serialize( self.pointwise_constraint ), "bias_constraint": constraints.serialize(self.bias_constraint), } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))
tf-keras/tf_keras/layers/convolutional/base_separable_conv.py/0
{ "file_path": "tf-keras/tf_keras/layers/convolutional/base_separable_conv.py", "repo_id": "tf-keras", "token_count": 4417 }
175
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Core TF-Keras layers.""" from tf_keras.layers.core.activation import Activation from tf_keras.layers.core.dense import Dense from tf_keras.layers.core.einsum_dense import EinsumDense from tf_keras.layers.core.embedding import Embedding from tf_keras.layers.core.identity import Identity from tf_keras.layers.core.lambda_layer import Lambda from tf_keras.layers.core.masking import Masking # Required by third_party/py/tensorflow_gnn/tf_keras/keras_tensors.py from tf_keras.layers.core.tf_op_layer import ClassMethod from tf_keras.layers.core.tf_op_layer import InstanceMethod from tf_keras.layers.core.tf_op_layer import InstanceProperty from tf_keras.layers.core.tf_op_layer import SlicingOpLambda from tf_keras.layers.core.tf_op_layer import TFOpLambda from tf_keras.layers.core.tf_op_layer import _delegate_method from tf_keras.layers.core.tf_op_layer import _delegate_property # Regularization layers imported for backwards namespace compatibility from tf_keras.layers.regularization.activity_regularization import ( ActivityRegularization, ) from tf_keras.layers.regularization.dropout import Dropout from tf_keras.layers.regularization.spatial_dropout1d import SpatialDropout1D from tf_keras.layers.regularization.spatial_dropout2d import SpatialDropout2D from tf_keras.layers.regularization.spatial_dropout3d import SpatialDropout3D # Reshaping layers imported for backwards namespace compatibility from tf_keras.layers.reshaping.flatten import Flatten from tf_keras.layers.reshaping.permute import Permute from tf_keras.layers.reshaping.repeat_vector import RepeatVector from tf_keras.layers.reshaping.reshape import Reshape
tf-keras/tf_keras/layers/core/__init__.py/0
{ "file_path": "tf-keras/tf_keras/layers/core/__init__.py", "repo_id": "tf-keras", "token_count": 713 }
176
"""Test DynamicEmbeddingLayer.""" import numpy as np import tensorflow as tf from tf_keras import layers from tf_keras import models from tf_keras.callbacks import UpdateEmbeddingCallback from tf_keras.layers.experimental import dynamic_embedding from tf_keras.testing_infra import test_combinations from tf_keras.testing_infra import test_utils @test_utils.run_v2_only class DynamicEmbeddingTest(test_combinations.TestCase): def test_dynamic_embedding_layer(self): input_ = np.array([["a", "j", "c", "d", "e"]]) vocab = tf.constant(["a", "b", "c", "d", "e"]) eviction_policy = "LFU" # Define the layer layer = dynamic_embedding.DynamicEmbedding( input_dim=5, output_dim=2, input_length=5, eviction_policy=eviction_policy, initial_vocabulary=vocab, ) output = layer(input_) self.assertTrue( tf.reduce_all(tf.equal(tf.shape(output), tf.constant([1, 5, 2]))) ) self.assertTrue((layer.built)) self.assertTrue((layer.dynamic_lookup_layer.built)) self.assertTrue((layer.embedding_layer.built)) def test_model_save_load(self): train_data = np.array( [ ["a", "j", "c", "d", "e"], ["a", "h", "i", "j", "b"], ["i", "h", "c", "j", "e"], ] ) train_labels = np.array([0, 1, 2]) vocab = tf.constant(["a", "b", "c", "d", "e"]) eviction_policy = "LFU" # Define the model model = models.Sequential( [ dynamic_embedding.DynamicEmbedding( input_dim=5, output_dim=2, input_length=5, eviction_policy=eviction_policy, initial_vocabulary=vocab, name="dynamic_embedding", ), layers.Flatten(), layers.Dense(3, activation="softmax"), ] ) # Compile the model model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) model.fit( train_data, train_labels, epochs=10, batch_size=1, ) # Save the model to a temporary file filepath = self.create_tempdir() model.save(filepath) # Load the model from the temporary file reloaded_model = models.load_model(filepath) self.assertTrue( tf.reduce_all( tf.equal( model.get_layer( "dynamic_embedding" ).dynamic_lookup_layer.vocabulary.numpy(), reloaded_model.get_layer( "dynamic_embedding" ).dynamic_lookup_layer.vocabulary.numpy(), ) ) ) def test_dynamic_embedding_layer_with_callback(self): self.skipTest("copybara failing , b/306414657") # Generate dummy data train_data = np.array( [ ["a", "j", "c", "d", "e"], ["a", "h", "i", "j", "b"], ["i", "h", "c", "j", "e"], ] ) train_labels = np.array([0, 1, 2]) vocab = tf.constant(["a", "b", "c", "d", "e"]) eviction_policy = "LFU" # Define the model model = models.Sequential( [ dynamic_embedding.DynamicEmbedding( input_dim=5, output_dim=2, input_length=5, eviction_policy=eviction_policy, initial_vocabulary=vocab, ), layers.Flatten(), layers.Dense(3, activation="softmax"), ] ) # Compile the model model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) update_embedding_callback = UpdateEmbeddingCallback( model.layers[0], interval=2, ) with update_embedding_callback: result = model.fit( train_data, train_labels, epochs=100, batch_size=1, callbacks=[update_embedding_callback], ) # Assert model trains self.assertEqual(result.history["loss"][0] > 0, True) # assert vocab is updated in DynamicLookup self.assertTrue( tf.reduce_all( tf.not_equal( model.layers[0].dynamic_lookup_layer.vocabulary, vocab ) ) ) # assert embedding matrix size self.assertTrue( tf.reduce_all( tf.equal( tf.shape(model.layers[0].embedding_layer.embeddings), tf.constant([6, 2]), ) ) ) def test_embedding_matrix_update(self): # Generate dummy data train_data = np.array( [ ["a", "j", "c", "d", "e"], ["a", "h", "i", "j", "b"], ["i", "h", "c", "j", "e"], ] ) train_labels = np.array([0, 1, 2]) vocab = tf.constant(["a", "b", "c", "d", "e"]) eviction_policy = "LFU" # Define the model model = models.Sequential( [ dynamic_embedding.DynamicEmbedding( input_dim=5, output_dim=2, input_length=5, eviction_policy=eviction_policy, initial_vocabulary=vocab, ), layers.Flatten(), layers.Dense(3, activation="softmax"), ] ) # Compile the model model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) # freeze training of all layers for layer in model.layers: layer.trainable = False # define update_embedding_callback to update embedding matrix and # vocabulary update_embedding_callback = UpdateEmbeddingCallback( model.layers[0], interval=5, ) embedding_matrix_before = model.layers[0].embedding_layer.get_weights() with update_embedding_callback: model.fit( train_data, train_labels, epochs=100, batch_size=1, callbacks=[update_embedding_callback], ) # assert the UpdateEmbeddingCallback did modify the embedding matrix self.assertNotEqual( model.layers[0].embedding_layer.get_weights(), embedding_matrix_before, ) def test_get_vocabulary(self): # Generate dummy data train_data = np.array( [ ["a", "j", "c", "d", "e"], ["a", "h", "i", "j", "b"], ["i", "h", "c", "j", "e"], ] ) train_labels = np.array([0, 1, 2]) vocab = tf.constant(["a", "b", "c", "d", "e"]) eviction_policy = "LFU" # Define the model model = models.Sequential( [ dynamic_embedding.DynamicEmbedding( input_dim=5, output_dim=2, input_length=5, eviction_policy=eviction_policy, initial_vocabulary=vocab, ), layers.Flatten(), layers.Dense(3, activation="softmax"), ] ) model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) model.fit( train_data, train_labels, epochs=100, batch_size=1, ) vocabulary_output = model.layers[0].get_vocabulary() self.assertTrue( tf.reduce_all( tf.equal( vocabulary_output, vocab, ) ) ) def test_default_initial_vocabulary(self): train_data = np.array( [ ["a", "j", "c", "d", "e"], ["a", "h", "i", "j", "b"], ["i", "h", "c", "j", "e"], ] ) train_labels = np.array([0, 1, 2]) eviction_policy = "LFU" # Define the model model = models.Sequential( [ dynamic_embedding.DynamicEmbedding( input_dim=5, output_dim=2, input_length=5, eviction_policy=eviction_policy, initial_vocabulary=tf.string, name="dynamic_embedding", ), layers.Flatten(), layers.Dense(3, activation="softmax"), ] ) # Compile the model model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) model.fit( train_data, train_labels, epochs=10, batch_size=1, ) vocabulary_output = model.layers[0].get_vocabulary() self.assertEqual(vocabulary_output.dtype, tf.string) self.assertEqual(tf.shape(vocabulary_output)[0], 5) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/layers/experimental/dynamic_embedding_test.py/0
{ "file_path": "tf-keras/tf_keras/layers/experimental/dynamic_embedding_test.py", "repo_id": "tf-keras", "token_count": 5578 }
177
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Layer that averages several inputs.""" from tf_keras.layers.merging.base_merge import _Merge # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export("keras.layers.Average") class Average(_Merge): """Layer that averages a list of inputs element-wise. It takes as input a list of tensors, all of the same shape, and returns a single tensor (also of the same shape). Example: >>> x1 = np.ones((2, 2)) >>> x2 = np.zeros((2, 2)) >>> y = tf.keras.layers.Average()([x1, x2]) >>> y.numpy().tolist() [[0.5, 0.5], [0.5, 0.5]] Usage in a functional model: >>> input1 = tf.keras.layers.Input(shape=(16,)) >>> x1 = tf.keras.layers.Dense(8, activation='relu')(input1) >>> input2 = tf.keras.layers.Input(shape=(32,)) >>> x2 = tf.keras.layers.Dense(8, activation='relu')(input2) >>> avg = tf.keras.layers.Average()([x1, x2]) >>> out = tf.keras.layers.Dense(4)(avg) >>> model = tf.keras.models.Model(inputs=[input1, input2], outputs=out) Raises: ValueError: If there is a shape mismatch between the inputs and the shapes cannot be broadcasted to match. """ def _merge_function(self, inputs): output = inputs[0] for i in range(1, len(inputs)): output += inputs[i] return output / len(inputs) @keras_export("keras.layers.average") def average(inputs, **kwargs): """Functional interface to the `tf.keras.layers.Average` layer. Example: >>> x1 = np.ones((2, 2)) >>> x2 = np.zeros((2, 2)) >>> y = tf.keras.layers.Average()([x1, x2]) >>> y.numpy().tolist() [[0.5, 0.5], [0.5, 0.5]] Usage in a functional model: >>> input1 = tf.keras.layers.Input(shape=(16,)) >>> x1 = tf.keras.layers.Dense(8, activation='relu')(input1) >>> input2 = tf.keras.layers.Input(shape=(32,)) >>> x2 = tf.keras.layers.Dense(8, activation='relu')(input2) >>> avg = tf.keras.layers.Average()([x1, x2]) >>> out = tf.keras.layers.Dense(4)(avg) >>> model = tf.keras.models.Model(inputs=[input1, input2], outputs=out) Args: inputs: A list of input tensors. **kwargs: Standard layer keyword arguments. Returns: A tensor, the average of the inputs. Raises: ValueError: If there is a shape mismatch between the inputs and the shapes cannot be broadcasted to match. """ return Average(**kwargs)(inputs)
tf-keras/tf_keras/layers/merging/average.py/0
{ "file_path": "tf-keras/tf_keras/layers/merging/average.py", "repo_id": "tf-keras", "token_count": 1184 }
178
# Copyright 2022 The TF-Keras Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Group normalization layer""" import tensorflow.compat.v2 as tf from tf_keras import backend from tf_keras import constraints from tf_keras import initializers from tf_keras import regularizers from tf_keras.layers import InputSpec from tf_keras.layers import Layer from tf_keras.utils import tf_utils # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export("keras.layers.GroupNormalization", v1=[]) class GroupNormalization(Layer): """Group normalization layer. Group Normalization divides the channels into groups and computes within each group the mean and variance for normalization. Empirically, its accuracy is more stable than batch norm in a wide range of small batch sizes, if learning rate is adjusted linearly with batch sizes. Relation to Layer Normalization: If the number of groups is set to 1, then this operation becomes nearly identical to Layer Normalization (see Layer Normalization docs for details). Relation to Instance Normalization: If the number of groups is set to the input dimension (number of groups is equal to number of channels), then this operation becomes identical to Instance Normalization. Args: groups: Integer, the number of groups for Group Normalization. Can be in the range [1, N] where N is the input dimension. The input dimension must be divisible by the number of groups. Defaults to `32`. axis: Integer or List/Tuple. The axis or axes to normalize across. Typically, this is the features axis/axes. The left-out axes are typically the batch axis/axes. `-1` is the last dimension in the input. Defaults to `-1`. epsilon: Small float added to variance to avoid dividing by zero. Defaults to 1e-3 center: If True, add offset of `beta` to normalized tensor. If False, `beta` is ignored. Defaults to `True`. scale: If True, multiply by `gamma`. If False, `gamma` is not used. When the next layer is linear (also e.g. `nn.relu`), this can be disabled since the scaling will be done by the next layer. Defaults to `True`. beta_initializer: Initializer for the beta weight. Defaults to zeros. gamma_initializer: Initializer for the gamma weight. Defaults to ones. beta_regularizer: Optional regularizer for the beta weight. None by default. gamma_regularizer: Optional regularizer for the gamma weight. None by default. beta_constraint: Optional constraint for the beta weight. None by default. gamma_constraint: Optional constraint for the gamma weight. None by default. Input shape: Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. Output shape: Same shape as input. Call arguments: inputs: Input tensor (of any rank). mask: The mask parameter is a tensor that indicates the weight for each position in the input tensor when computing the mean and variance. Reference: - [Yuxin Wu & Kaiming He, 2018](https://arxiv.org/abs/1803.08494) """ def __init__( self, groups=32, axis=-1, epsilon=1e-3, center=True, scale=True, beta_initializer="zeros", gamma_initializer="ones", beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None, **kwargs, ): super().__init__(**kwargs) self.supports_masking = True self.groups = groups self.axis = axis self.epsilon = epsilon self.center = center self.scale = scale self.beta_initializer = initializers.get(beta_initializer) self.gamma_initializer = initializers.get(gamma_initializer) self.beta_regularizer = regularizers.get(beta_regularizer) self.gamma_regularizer = regularizers.get(gamma_regularizer) self.beta_constraint = constraints.get(beta_constraint) self.gamma_constraint = constraints.get(gamma_constraint) def build(self, input_shape): tf_utils.validate_axis(self.axis, input_shape) dim = input_shape[self.axis] if dim is None: raise ValueError( f"Axis {self.axis} of input tensor should have a defined " "dimension but the layer received an input with shape " f"{input_shape}." ) if self.groups == -1: self.groups = dim if dim < self.groups: raise ValueError( f"Number of groups ({self.groups}) cannot be more than the " f"number of channels ({dim})." ) if dim % self.groups != 0: raise ValueError( f"Number of groups ({self.groups}) must be a multiple " f"of the number of channels ({dim})." ) self.input_spec = InputSpec( ndim=len(input_shape), axes={self.axis: dim} ) if self.scale: self.gamma = self.add_weight( shape=(dim,), name="gamma", initializer=self.gamma_initializer, regularizer=self.gamma_regularizer, constraint=self.gamma_constraint, ) else: self.gamma = None if self.center: self.beta = self.add_weight( shape=(dim,), name="beta", initializer=self.beta_initializer, regularizer=self.beta_regularizer, constraint=self.beta_constraint, ) else: self.beta = None super().build(input_shape) def call(self, inputs, mask=None): input_shape = tf.shape(inputs) if mask is None: mask = tf.ones_like(inputs) else: # We broadcast before we group in case the mask does not have the # same shape as the input. mask = tf.broadcast_to(mask, input_shape) reshaped_inputs = self._reshape_into_groups(inputs) reshaped_mask = self._reshape_into_groups(mask) normalized_inputs = self._apply_normalization( reshaped_inputs=reshaped_inputs, input_shape=input_shape, reshaped_mask=reshaped_mask, ) return tf.reshape(normalized_inputs, input_shape) def _reshape_into_groups(self, inputs): input_shape = tf.shape(inputs) group_shape = [input_shape[i] for i in range(inputs.shape.rank)] group_shape[self.axis] = input_shape[self.axis] // self.groups group_shape.insert(self.axis, self.groups) group_shape = tf.stack(group_shape) reshaped_inputs = tf.reshape(inputs, group_shape) return reshaped_inputs def _apply_normalization( self, *, reshaped_inputs, reshaped_mask, input_shape, ): group_reduction_axes = list(range(1, reshaped_inputs.shape.rank)) axis = self.axis - 1 group_reduction_axes.pop(axis) mask_weights = tf.cast(reshaped_mask, reshaped_inputs.dtype) mean, variance = tf.nn.weighted_moments( reshaped_inputs, axes=group_reduction_axes, frequency_weights=mask_weights, keepdims=True, ) gamma, beta = self._get_reshaped_weights(input_shape) normalized_inputs = tf.nn.batch_normalization( reshaped_inputs, mean=mean, variance=variance, scale=gamma, offset=beta, variance_epsilon=self.epsilon, ) return normalized_inputs def _get_reshaped_weights(self, input_shape): broadcast_shape = self._create_broadcast_shape(input_shape) gamma = None beta = None if self.scale: gamma = tf.reshape(self.gamma, broadcast_shape) if self.center: beta = tf.reshape(self.beta, broadcast_shape) return gamma, beta def _create_broadcast_shape(self, input_shape): broadcast_shape = [1] * backend.int_shape(input_shape)[0] broadcast_shape[self.axis] = input_shape[self.axis] // self.groups broadcast_shape.insert(self.axis, self.groups) return broadcast_shape def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = { "groups": self.groups, "axis": self.axis, "epsilon": self.epsilon, "center": self.center, "scale": self.scale, "beta_initializer": initializers.serialize(self.beta_initializer), "gamma_initializer": initializers.serialize(self.gamma_initializer), "beta_regularizer": regularizers.serialize(self.beta_regularizer), "gamma_regularizer": regularizers.serialize(self.gamma_regularizer), "beta_constraint": constraints.serialize(self.beta_constraint), "gamma_constraint": constraints.serialize(self.gamma_constraint), } base_config = super().get_config() return {**base_config, **config}
tf-keras/tf_keras/layers/normalization/group_normalization.py/0
{ "file_path": "tf-keras/tf_keras/layers/normalization/group_normalization.py", "repo_id": "tf-keras", "token_count": 4133 }
179
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Private base class for global pooling 3D layers.""" import tensorflow.compat.v2 as tf from tf_keras.engine.base_layer import Layer from tf_keras.engine.input_spec import InputSpec from tf_keras.utils import conv_utils class GlobalPooling3D(Layer): """Abstract class for different global pooling 3D layers.""" def __init__(self, data_format=None, keepdims=False, **kwargs): super().__init__(**kwargs) self.data_format = conv_utils.normalize_data_format(data_format) self.input_spec = InputSpec(ndim=5) self.keepdims = keepdims def _validate_reduction_axis(self, input_shape, axes): for axis in axes: if input_shape[axis] == 0: raise ValueError( f"Incorrect input shape {input_shape} " f"with dimension 0 at reduction axis {axis}." ) def build(self, input_shape): input_shape = tf.TensorShape(input_shape).as_list() if self.data_format == "channels_last": self._validate_reduction_axis(input_shape, [1, 2, 3]) else: self._validate_reduction_axis(input_shape, [2, 3, 4]) def compute_output_shape(self, input_shape): input_shape = tf.TensorShape(input_shape).as_list() if self.data_format == "channels_last": if self.keepdims: return tf.TensorShape([input_shape[0], 1, 1, 1, input_shape[4]]) else: return tf.TensorShape([input_shape[0], input_shape[4]]) else: if self.keepdims: return tf.TensorShape([input_shape[0], input_shape[1], 1, 1, 1]) else: return tf.TensorShape([input_shape[0], input_shape[1]]) def call(self, inputs): raise NotImplementedError def get_config(self): config = {"data_format": self.data_format, "keepdims": self.keepdims} base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))
tf-keras/tf_keras/layers/pooling/base_global_pooling3d.py/0
{ "file_path": "tf-keras/tf_keras/layers/pooling/base_global_pooling3d.py", "repo_id": "tf-keras", "token_count": 1074 }
180
# Description: # Contains the TF-Keras preprocess layers (internal TensorFlow version). # Placeholder: load unaliased py_library load("@org_keras//tf_keras:tf_keras.bzl", "tf_py_test") # buildifier: disable=same-origin-load load("@org_keras//tf_keras:tf_keras.bzl", "cuda_py_test") load("@org_keras//tf_keras:tf_keras.bzl", "distribute_py_test") package( # copybara:uncomment default_applicable_licenses = ["//tf_keras:license"], default_visibility = [ "//tf_keras:friends", "//third_party/tensorflow/tools/pip_package:__pkg__", ], licenses = ["notice"], ) py_library( name = "preprocessing", srcs = [ "__init__.py", ], srcs_version = "PY3", deps = [ ":discretization", ":hashed_crossing", ":hashing", ":image_preprocessing", ":integer_lookup", ":normalization", ":preprocessing_stage", ":preprocessing_test_utils", ":string_lookup", ":text_vectorization", ], ) py_library( name = "discretization", srcs = [ "discretization.py", ], srcs_version = "PY3", deps = [ ":preprocessing_utils", "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras/engine", "//tf_keras/utils:tf_utils", ], ) py_library( name = "hashing", srcs = [ "hashing.py", ], srcs_version = "PY3", deps = [ "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras/engine", ], ) py_library( name = "hashed_crossing", srcs = [ "hashed_crossing.py", ], srcs_version = "PY3", deps = [ ":preprocessing_utils", "//:expect_tensorflow_installed", "//tf_keras:backend", "//tf_keras/engine:base_layer", "//tf_keras/engine:base_preprocessing_layer", "//tf_keras/utils:layer_utils", ], ) py_library( name = "image_preprocessing", srcs = [ "image_preprocessing.py", ], srcs_version = "PY3", deps = [ "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras:backend", "//tf_keras/engine", "//tf_keras/engine:input_spec", "//tf_keras/preprocessing:image", "//tf_keras/utils:image_utils", "//tf_keras/utils:tf_utils", ], ) py_library( name = "index_lookup", srcs = [ "index_lookup.py", ], srcs_version = "PY3", deps = [ ":category_encoding", ":preprocessing_utils", "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras:backend", "//tf_keras/engine", ], ) py_library( name = "normalization", srcs = [ "normalization.py", ], srcs_version = "PY3", deps = [ ":preprocessing_utils", "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras:backend", "//tf_keras/engine", ], ) py_library( name = "integer_lookup", srcs = [ "integer_lookup.py", ], srcs_version = "PY3", deps = [ ":index_lookup", "//:expect_tensorflow_installed", "//tf_keras/engine", ], ) py_library( name = "text_vectorization", srcs = [ "text_vectorization.py", ], srcs_version = "PY3", deps = [ ":category_encoding", ":preprocessing_utils", ":string_lookup", "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras:backend", "//tf_keras/engine", "//tf_keras/utils:layer_utils", "//tf_keras/utils:tf_utils", ], ) py_library( name = "category_encoding", srcs = [ "category_encoding.py", ], srcs_version = "PY3", deps = [ "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras:backend", "//tf_keras/engine", "//tf_keras/engine:input_spec", "//tf_keras/utils:layer_utils", ], ) py_library( name = "string_lookup", srcs = [ "string_lookup.py", ], srcs_version = "PY3", deps = [ ":index_lookup", "//:expect_tensorflow_installed", "//tf_keras/engine", ], ) py_library( name = "preprocessing_stage", srcs = [ "preprocessing_stage.py", ], srcs_version = "PY3", deps = [ "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras/engine", "//tf_keras/utils:tf_utils", ], ) py_library( name = "preprocessing_test_utils", srcs = ["preprocessing_test_utils.py"], srcs_version = "PY3", deps = [ "//:expect_numpy_installed", "//:expect_tensorflow_installed", ], ) py_library( name = "preprocessing_utils", srcs = ["preprocessing_utils.py"], srcs_version = "PY3", deps = [ "//:expect_numpy_installed", "//:expect_tensorflow_installed", ], ) tf_py_test( name = "preprocessing_utils_test", srcs = ["preprocessing_utils_test.py"], python_version = "PY3", deps = [ ":preprocessing_utils", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", "//tf_keras/utils:generic_utils", ], ) tf_py_test( name = "category_encoding_test", srcs = ["category_encoding_test.py"], python_version = "PY3", deps = [ ":category_encoding", ":preprocessing_test_utils", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", "//tf_keras/utils:generic_utils", ], ) distribute_py_test( name = "category_encoding_distribution_test", srcs = ["category_encoding_distribution_test.py"], disable_mlir_bridge = False, env = { "CUDA_MODULE_LOADING": "LAZY", }, main = "category_encoding_distribution_test.py", python_version = "PY3", shard_count = 4, tags = [ "multi_and_single_gpu", "no_oss", # b/189866692 "noguitar", # b/190034522 "nomultivm", # TODO(b/170502145) ], tpu_tags = [ "no_oss", # b/155502591 ], deps = [ ":category_encoding", ":preprocessing_test_utils", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras:backend", "//tf_keras/distribute:strategy_combinations", "//tf_keras/testing_infra:test_combinations", ], ) distribute_py_test( name = "image_preprocessing_distribution_test", srcs = ["image_preprocessing_distribution_test.py"], env = { "CUDA_MODULE_LOADING": "LAZY", }, main = "image_preprocessing_distribution_test.py", python_version = "PY3", shard_count = 4, tags = [ "multi_and_single_gpu", "nomultivm", # TODO(b/170502145) "notpu", # TODO(b/210148622) ], tpu_tags = [ "no_oss", "noguitar", # TODO(b/183957207) ], deps = [ ":image_preprocessing", ":preprocessing_test_utils", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/distribute:strategy_combinations", "//tf_keras/testing_infra:test_combinations", ], ) tf_py_test( name = "discretization_test", srcs = ["discretization_test.py"], python_version = "PY3", shard_count = 4, tags = ["no_rocm"], deps = [ ":discretization", ":preprocessing_test_utils", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", ], ) distribute_py_test( name = "discretization_distribution_test", srcs = ["discretization_distribution_test.py"], env = { "CUDA_MODULE_LOADING": "LAZY", }, main = "discretization_distribution_test.py", python_version = "PY3", shard_count = 4, tags = [ "multi_and_single_gpu", "no_oss", # TODO(b/189956080) "noguitar", # b/190034522 "nomultivm", # TODO(b/170502145) ], deps = [ ":discretization", ":preprocessing_test_utils", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/distribute:strategy_combinations", "//tf_keras/testing_infra:test_combinations", ], ) cuda_py_test( name = "hashing_test", srcs = ["hashing_test.py"], python_version = "PY3", shard_count = 4, deps = [ ":hashing", "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/engine", "//tf_keras/testing_infra:test_combinations", "//tf_keras/testing_infra:test_utils", ], ) distribute_py_test( name = "hashing_distribution_test", srcs = ["hashing_distribution_test.py"], disable_mlir_bridge = False, env = { "CUDA_MODULE_LOADING": "LAZY", }, main = "hashing_distribution_test.py", python_version = "PY3", shard_count = 4, tags = [ "multi_and_single_gpu", "nomultivm", # TODO(b/170502145) ], deps = [ ":hashing", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/distribute:strategy_combinations", "//tf_keras/testing_infra:test_combinations", ], ) tf_py_test( name = "hashed_crossing_test", srcs = ["hashed_crossing_test.py"], python_version = "PY3", shard_count = 4, deps = [ ":hashing", "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/engine", "//tf_keras/testing_infra:test_combinations", "//tf_keras/testing_infra:test_utils", ], ) tf_py_test( name = "index_lookup_test", srcs = ["index_lookup_test.py"], python_version = "PY3", shard_count = 4, tags = ["noasan"], # TODO(b/183961255) deps = [ ":index_lookup", ":preprocessing_test_utils", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", "//tf_keras/utils:generic_utils", ], ) distribute_py_test( name = "index_lookup_distribution_test", srcs = ["index_lookup_distribution_test.py"], disable_mlir_bridge = False, env = { "CUDA_MODULE_LOADING": "LAZY", }, main = "index_lookup_distribution_test.py", python_version = "PY3", shard_count = 4, tags = [ "multi_and_single_gpu", "nomultivm", # TODO(b/170502145) ], tpu_tags = ["no_oss"], deps = [ ":index_lookup", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/distribute:strategy_combinations", "//tf_keras/testing_infra:test_combinations", ], ) cuda_py_test( name = "image_preprocessing_test", srcs = ["image_preprocessing_test.py"], python_version = "PY3", shard_count = 4, tags = [ "no_windows", # TODO(b/184424727): Re-enable this. ], deps = [ ":image_preprocessing", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/engine", "//tf_keras/testing_infra:test_combinations", "//tf_keras/testing_infra:test_utils", "//tf_keras/utils:generic_utils", ], ) tf_py_test( name = "normalization_test", srcs = ["normalization_test.py"], python_version = "PY3", shard_count = 4, tags = [ "noasan", # TODO(b/337374867) fails with -fsanitize=null ], deps = [ ":normalization", ":preprocessing_test_utils", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", ], ) tf_py_test( name = "integer_lookup_test", srcs = ["integer_lookup_test.py"], python_version = "PY3", tags = ["noasan"], # TODO(b/183961255) deps = [ ":integer_lookup", ":preprocessing_test_utils", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", "//tf_keras/utils:generic_utils", ], ) distribute_py_test( name = "normalization_distribution_test", srcs = ["normalization_distribution_test.py"], env = { "CUDA_MODULE_LOADING": "LAZY", }, main = "normalization_distribution_test.py", python_version = "PY3", shard_count = 8, tags = [ "no_oss", "nomultivm", # TODO(b/170502145) ], deps = [ ":normalization", ":preprocessing_test_utils", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/distribute:strategy_combinations", "//tf_keras/testing_infra:test_combinations", ], ) tf_py_test( name = "text_vectorization_test", srcs = ["text_vectorization_test.py"], python_version = "PY3", shard_count = 4, deps = [ ":preprocessing_test_utils", ":text_vectorization", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", "//tf_keras/utils:generic_utils", ], ) distribute_py_test( name = "text_vectorization_distribution_test", srcs = ["text_vectorization_distribution_test.py"], disable_mlir_bridge = False, env = { "CUDA_MODULE_LOADING": "LAZY", }, main = "text_vectorization_distribution_test.py", python_version = "PY3", shard_count = 8, tags = [ "multi_and_single_gpu", "nomultivm", # TODO(b/170502145) ], tpu_tags = [ "no_oss", # b/155502591 ], deps = [ ":preprocessing_test_utils", ":text_vectorization", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/distribute:strategy_combinations", "//tf_keras/testing_infra:test_combinations", ], ) tf_py_test( name = "string_lookup_test", srcs = ["string_lookup_test.py"], python_version = "PY3", tags = [ "notsan", #b/168758821 ], deps = [ ":preprocessing_test_utils", ":string_lookup", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", "//tf_keras/utils:generic_utils", ], ) tf_py_test( name = "preprocessing_stage_test", srcs = ["preprocessing_stage_test.py"], python_version = "PY3", tags = ["no_windows"], # TODO(b/152991402) deps = [ ":preprocessing_stage", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", ], )
tf-keras/tf_keras/layers/preprocessing/BUILD/0
{ "file_path": "tf-keras/tf_keras/layers/preprocessing/BUILD", "repo_id": "tf-keras", "token_count": 7727 }
181
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for hashed crossing layer.""" import os import numpy as np import tensorflow.compat.v2 as tf from absl.testing import parameterized import tf_keras as keras from tf_keras.layers.preprocessing import hashed_crossing from tf_keras.layers.preprocessing import preprocessing_test_utils from tf_keras.testing_infra import test_combinations @test_combinations.run_all_keras_modes(always_skip_v1=True) class HashedCrossingTest(test_combinations.TestCase): @parameterized.named_parameters( ("python_value", lambda x: x), ("dense", tf.constant), ) def test_cross_scalars(self, data_fn): layer = hashed_crossing.HashedCrossing(num_bins=10) feat1 = data_fn("A") feat2 = data_fn(101) outputs = layer((feat1, feat2)) self.assertAllClose(outputs, 1) self.assertAllEqual(outputs.shape.as_list(), []) @parameterized.named_parameters( ("tuple", tuple), ("list", list), ("numpy", np.array), ("array_like", preprocessing_test_utils.ArrayLike), ("dense", tf.constant), ) def test_cross_batch_of_scalars_1d(self, data_fn): layer = hashed_crossing.HashedCrossing(num_bins=10) feat1 = data_fn(["A", "B", "A", "B", "A"]) feat2 = data_fn([101, 101, 101, 102, 102]) outputs = layer((feat1, feat2)) self.assertAllClose(outputs, [1, 4, 1, 6, 3]) self.assertAllEqual(outputs.shape.as_list(), [5]) @parameterized.named_parameters( ("tuple", tuple), ("list", list), ("numpy", np.array), ("array_like", preprocessing_test_utils.ArrayLike), ("dense", tf.constant), ) def test_cross_batch_of_scalars_2d(self, data_fn): layer = hashed_crossing.HashedCrossing(num_bins=10) feat1 = data_fn([["A"], ["B"], ["A"], ["B"], ["A"]]) feat2 = data_fn([[101], [101], [101], [102], [102]]) outputs = layer((feat1, feat2)) self.assertAllClose(outputs, [[1], [4], [1], [6], [3]]) self.assertAllEqual(outputs.shape.as_list(), [5, 1]) @parameterized.named_parameters( ("sparse", True), ("dense", False), ) def test_cross_one_hot_output(self, sparse): layer = hashed_crossing.HashedCrossing( num_bins=5, output_mode="one_hot", sparse=sparse ) feat1 = tf.constant([["A"], ["B"], ["A"], ["B"], ["A"]]) feat2 = tf.constant([[101], [101], [101], [102], [102]]) outputs = layer((feat1, feat2)) if sparse: outputs = tf.sparse.to_dense(outputs) self.assertAllClose( outputs, [ [0, 1, 0, 0, 0], [0, 0, 0, 0, 1], [0, 1, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 0, 1, 0], ], ) self.assertAllEqual(outputs.shape.as_list(), [5, 5]) def test_cross_output_dtype(self): layer = hashed_crossing.HashedCrossing(num_bins=2) self.assertAllEqual(layer(([1], [1])).dtype, tf.int64) layer = hashed_crossing.HashedCrossing(num_bins=2, dtype=tf.int32) self.assertAllEqual(layer(([1], [1])).dtype, tf.int32) layer = hashed_crossing.HashedCrossing( num_bins=2, output_mode="one_hot" ) self.assertAllEqual(layer(([1], [1])).dtype, tf.float32) layer = hashed_crossing.HashedCrossing( num_bins=2, output_mode="one_hot", dtype=tf.float64 ) self.assertAllEqual(layer(([1], [1])).dtype, tf.float64) def test_non_list_input_fails(self): with self.assertRaisesRegex(ValueError, "should be called on a list"): hashed_crossing.HashedCrossing(num_bins=10)(tf.constant(1)) def test_single_input_fails(self): with self.assertRaisesRegex(ValueError, "at least two inputs"): hashed_crossing.HashedCrossing(num_bins=10)([tf.constant(1)]) def test_sparse_input_fails(self): with self.assertRaisesRegex( ValueError, "inputs should be dense tensors" ): sparse_in = tf.sparse.from_dense(tf.constant([1])) hashed_crossing.HashedCrossing(num_bins=10)((sparse_in, sparse_in)) def test_float_input_fails(self): with self.assertRaisesRegex( ValueError, "should have an integer or string" ): hashed_crossing.HashedCrossing(num_bins=10)( (tf.constant([1.0]), tf.constant([1.0])) ) def test_upsupported_shape_input_fails(self): with self.assertRaisesRegex(ValueError, "inputs should have shape"): hashed_crossing.HashedCrossing(num_bins=10)( (tf.constant([[[1.0]]]), tf.constant([[[1.0]]])) ) def test_from_config(self): layer = hashed_crossing.HashedCrossing( num_bins=5, output_mode="one_hot", sparse=True ) cloned_layer = hashed_crossing.HashedCrossing.from_config( layer.get_config() ) feat1 = tf.constant([["A"], ["B"], ["A"], ["B"], ["A"]]) feat2 = tf.constant([[101], [101], [101], [102], [102]]) original_outputs = layer((feat1, feat2)) cloned_outputs = cloned_layer((feat1, feat2)) self.assertAllEqual( tf.sparse.to_dense(cloned_outputs), tf.sparse.to_dense(original_outputs), ) def test_saving_keras(self): string_in = keras.Input(shape=(1,), dtype=tf.string) int_in = keras.Input(shape=(1,), dtype=tf.int64) out = hashed_crossing.HashedCrossing(num_bins=10)((string_in, int_in)) model = keras.Model(inputs=(string_in, int_in), outputs=out) string_data = tf.constant([["A"], ["B"], ["A"], ["B"], ["A"]]) int_data = tf.constant([[101], [101], [101], [102], [102]]) expected_output = [[1], [4], [1], [6], [3]] output_data = model((string_data, int_data)) self.assertAllClose(output_data, expected_output) with self.subTest("savedmodel"): # Save the model to disk. output_path = os.path.join(self.get_temp_dir(), "saved_model") model.save(output_path, save_format="tf") loaded_model = keras.models.load_model( output_path, custom_objects={ "HashedCrossing": hashed_crossing.HashedCrossing }, ) # Validate correctness of the new model. new_output_data = loaded_model((string_data, int_data)) self.assertAllClose(new_output_data, expected_output) with self.subTest("keras_v3"): if not tf.__internal__.tf2.enabled(): self.skipTest( "TF2 must be enabled to use the new `.keras` saving." ) # Save the model to disk. output_path = os.path.join(self.get_temp_dir(), "model.keras") model.save(output_path, save_format="keras_v3") loaded_model = keras.models.load_model( output_path, custom_objects={ "HashedCrossing": hashed_crossing.HashedCrossing }, ) # Validate correctness of the new model. new_output_data = loaded_model((string_data, int_data)) self.assertAllClose(new_output_data, expected_output) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/layers/preprocessing/hashed_crossing_test.py/0
{ "file_path": "tf-keras/tf_keras/layers/preprocessing/hashed_crossing_test.py", "repo_id": "tf-keras", "token_count": 3820 }
182
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functional preprocessing stage tests.""" import time import numpy as np import tensorflow.compat.v2 as tf from tf_keras.engine import base_preprocessing_layer from tf_keras.engine.input_layer import Input from tf_keras.layers import convolutional from tf_keras.layers import core from tf_keras.layers import merging from tf_keras.layers.preprocessing import image_preprocessing from tf_keras.layers.preprocessing import normalization from tf_keras.layers.preprocessing import preprocessing_stage from tf_keras.layers.preprocessing import preprocessing_test_utils from tf_keras.testing_infra import test_combinations class PL(base_preprocessing_layer.PreprocessingLayer): def __init__(self, **kwargs): self.adapt_time = None self.adapt_count = 0 super().__init__(**kwargs) def adapt(self, data, reset_state=True): self.adapt_time = time.time() self.adapt_count += 1 def call(self, inputs): return inputs + 1 class PLMerge(PL): def call(self, inputs): return inputs[0] + inputs[1] class PLSplit(PL): def call(self, inputs): return inputs + 1, inputs - 1 @test_combinations.run_all_keras_modes(always_skip_v1=True) class PreprocessingStageTest( test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest ): def test_adapt_preprocessing_stage_with_single_input_output(self): x = Input(shape=(3,)) l0 = PL() y = l0(x) l1 = PL() z = l1(y) stage = preprocessing_stage.FunctionalPreprocessingStage(x, z) stage.compile() # Test with NumPy array one_array = np.ones((4, 3), dtype="float32") stage.adapt(one_array) self.assertEqual(l0.adapt_count, 1) self.assertEqual(l1.adapt_count, 1) self.assertLessEqual(l0.adapt_time, l1.adapt_time) # Check call z = stage(tf.ones((4, 3), dtype="float32")) self.assertAllClose(z, np.ones((4, 3), dtype="float32") + 2.0) # Test with dataset adapt_data = tf.data.Dataset.from_tensor_slices(one_array) adapt_data = adapt_data.batch(2) # 5 batches of 2 samples stage.adapt(adapt_data) self.assertEqual(l0.adapt_count, 2) self.assertEqual(l1.adapt_count, 2) self.assertLessEqual(l0.adapt_time, l1.adapt_time) # Test error with bad data with self.assertRaisesRegex(ValueError, "requires a "): stage.adapt(None) # Disallow calling fit with self.assertRaisesRegex(ValueError, "Preprocessing stage"): stage.fit(None) def test_adapt_preprocessing_stage_with_list_input(self): x0 = Input(shape=(3,)) x1 = Input(shape=(3,)) x2 = Input(shape=(3,)) l0 = PLMerge() y = l0([x0, x1]) l1 = PLMerge() y = l1([y, x2]) l2 = PLSplit() z, y = l2(y) stage = preprocessing_stage.FunctionalPreprocessingStage( [x0, x1, x2], [y, z] ) stage.compile() # Test with NumPy array one_array = np.ones((4, 3), dtype="float32") stage.adapt([one_array, one_array, one_array]) self.assertEqual(l0.adapt_count, 1) self.assertEqual(l1.adapt_count, 1) self.assertEqual(l2.adapt_count, 1) self.assertLessEqual(l0.adapt_time, l1.adapt_time) self.assertLessEqual(l1.adapt_time, l2.adapt_time) # Check call y, z = stage( [ tf.ones((4, 3), dtype="float32"), tf.ones((4, 3), dtype="float32"), tf.ones((4, 3), dtype="float32"), ] ) self.assertAllClose(y, np.ones((4, 3), dtype="float32") + 1.0) self.assertAllClose(z, np.ones((4, 3), dtype="float32") + 3.0) # Test with dataset adapt_data = tf.data.Dataset.from_tensor_slices( (one_array, one_array, one_array) ) adapt_data = adapt_data.batch(2) # 5 batches of 2 samples stage.adapt(adapt_data) self.assertEqual(l0.adapt_count, 2) self.assertEqual(l1.adapt_count, 2) self.assertEqual(l2.adapt_count, 2) self.assertLessEqual(l0.adapt_time, l1.adapt_time) self.assertLessEqual(l1.adapt_time, l2.adapt_time) # Test error with bad data with self.assertRaisesRegex(ValueError, "requires a "): stage.adapt(None) def test_adapt_preprocessing_stage_with_dict_input(self): x0 = Input(shape=(3,), name="x0") x1 = Input(shape=(4,), name="x1") x2 = Input(shape=(3, 5), name="x2") # dimension will mismatch if x1 incorrectly placed. x1_sum = core.Lambda( lambda x: tf.reduce_sum(x, axis=-1, keepdims=True) )(x1) x2_sum = core.Lambda(lambda x: tf.reduce_sum(x, axis=-1))(x2) l0 = PLMerge() y = l0([x0, x1_sum]) l1 = PLMerge() y = l1([y, x2_sum]) l2 = PLSplit() z, y = l2(y) stage = preprocessing_stage.FunctionalPreprocessingStage( {"x2": x2, "x0": x0, "x1": x1}, [y, z] ) stage.compile() # Test with dict of NumPy array one_array0 = np.ones((4, 3), dtype="float32") one_array1 = np.ones((4, 4), dtype="float32") one_array2 = np.ones((4, 3, 5), dtype="float32") adapt_data = {"x1": one_array1, "x0": one_array0, "x2": one_array2} stage.adapt(adapt_data) self.assertEqual(l0.adapt_count, 1) self.assertEqual(l1.adapt_count, 1) self.assertEqual(l2.adapt_count, 1) self.assertLessEqual(l0.adapt_time, l1.adapt_time) self.assertLessEqual(l1.adapt_time, l2.adapt_time) # Check call y, z = stage( { "x1": tf.constant(one_array1), "x2": tf.constant(one_array2), "x0": tf.constant(one_array0), } ) self.assertAllClose(y, np.zeros((4, 3), dtype="float32") + 9.0) self.assertAllClose(z, np.zeros((4, 3), dtype="float32") + 11.0) # Test with list of NumPy array adapt_data = [one_array0, one_array1, one_array2] stage.adapt(adapt_data) self.assertEqual(l0.adapt_count, 2) self.assertEqual(l1.adapt_count, 2) self.assertEqual(l2.adapt_count, 2) self.assertLessEqual(l0.adapt_time, l1.adapt_time) self.assertLessEqual(l1.adapt_time, l2.adapt_time) # Test with flattened dataset adapt_data = tf.data.Dataset.from_tensor_slices( (one_array0, one_array1, one_array2) ) adapt_data = adapt_data.batch(2) # 5 batches of 2 samples stage.adapt(adapt_data) self.assertEqual(l0.adapt_count, 3) self.assertEqual(l1.adapt_count, 3) self.assertEqual(l2.adapt_count, 3) self.assertLessEqual(l0.adapt_time, l1.adapt_time) self.assertLessEqual(l1.adapt_time, l2.adapt_time) # Test with dataset in dict shape adapt_data = tf.data.Dataset.from_tensor_slices( {"x0": one_array0, "x2": one_array2, "x1": one_array1} ) adapt_data = adapt_data.batch(2) # 5 batches of 2 samples stage.adapt(adapt_data) self.assertEqual(l0.adapt_count, 4) self.assertEqual(l1.adapt_count, 4) self.assertEqual(l2.adapt_count, 4) self.assertLessEqual(l0.adapt_time, l1.adapt_time) self.assertLessEqual(l1.adapt_time, l2.adapt_time) # Test error with bad data with self.assertRaisesRegex(ValueError, "requires a "): stage.adapt(None) def test_adapt_preprocessing_stage_with_dict_output(self): x = Input(shape=(3,), name="x") l0 = PLSplit() y0, y1 = l0(x) l1 = PLSplit() z0, z1 = l1(y0) stage = preprocessing_stage.FunctionalPreprocessingStage( {"x": x}, {"y1": y1, "z1": z1, "y0": y0, "z0": z0} ) stage.compile() # Test with NumPy array one_array = np.ones((4, 3), dtype="float32") adapt_data = {"x": one_array} stage.adapt(adapt_data) self.assertEqual(l0.adapt_count, 1) self.assertEqual(l1.adapt_count, 1) self.assertLessEqual(l0.adapt_time, l1.adapt_time) # Check call outputs = stage({"x": tf.constant(one_array)}) self.assertEqual(set(outputs.keys()), {"y0", "y1", "z0", "z1"}) self.assertAllClose( outputs["y0"], np.ones((4, 3), dtype="float32") + 1.0 ) self.assertAllClose( outputs["y1"], np.ones((4, 3), dtype="float32") - 1.0 ) self.assertAllClose( outputs["z0"], np.ones((4, 3), dtype="float32") + 2.0 ) self.assertAllClose(outputs["z1"], np.ones((4, 3), dtype="float32")) def test_preprocessing_stage_with_nested_input(self): # Test with NumPy array x0 = Input(shape=(3,)) x1 = Input(shape=(3,)) x2 = Input(shape=(3,)) l0 = PLMerge() y = l0([x0, x1]) l1 = PLMerge() y = l1([y, x2]) l2 = PLSplit() z, y = l2(y) stage = preprocessing_stage.FunctionalPreprocessingStage( [x0, [x1, x2]], [y, z] ) stage.compile() one_array = np.ones((4, 3), dtype="float32") stage.adapt([one_array, [one_array, one_array]]) self.assertEqual(l0.adapt_count, 1) self.assertEqual(l1.adapt_count, 1) self.assertEqual(l2.adapt_count, 1) self.assertLessEqual(l0.adapt_time, l1.adapt_time) self.assertLessEqual(l1.adapt_time, l2.adapt_time) # Check call y, z = stage( [ tf.ones((4, 3), dtype="float32"), [ tf.ones((4, 3), dtype="float32"), tf.ones((4, 3), dtype="float32"), ], ] ) self.assertAllClose(y, np.ones((4, 3), dtype="float32") + 1.0) self.assertAllClose(z, np.ones((4, 3), dtype="float32") + 3.0) # Test with dataset adapt_data = tf.data.Dataset.from_tensor_slices( (one_array, (one_array, one_array)) ) adapt_data = adapt_data.batch(2) # 5 batches of 2 samples stage.adapt(adapt_data) self.assertEqual(l0.adapt_count, 2) self.assertEqual(l1.adapt_count, 2) self.assertEqual(l2.adapt_count, 2) self.assertLessEqual(l0.adapt_time, l1.adapt_time) self.assertLessEqual(l1.adapt_time, l2.adapt_time) # Test error with bad data with self.assertRaisesRegex(ValueError, "requires a "): stage.adapt(None) def test_include_layers_with_dict_input(self): class PLMergeDict(PLMerge): def call(self, inputs): return inputs["a"] + inputs["b"] x0 = Input(shape=(3,)) x1 = Input(shape=(3,)) l0 = PLMergeDict() y = l0({"a": x0, "b": x1}) l1 = PLSplit() z, y = l1(y) stage = preprocessing_stage.FunctionalPreprocessingStage( [x0, x1], [y, z] ) stage.compile() one_array = np.ones((4, 3), dtype="float32") adapt_data = tf.data.Dataset.from_tensor_slices((one_array, one_array)) stage.adapt(adapt_data) self.assertEqual(l0.adapt_count, 1) self.assertEqual(l1.adapt_count, 1) self.assertLessEqual(l0.adapt_time, l1.adapt_time) # Check call y, z = stage( [tf.ones((4, 3), dtype="float32"), tf.ones((4, 3), dtype="float32")] ) self.assertAllClose(y, np.ones((4, 3), dtype="float32")) self.assertAllClose(z, np.ones((4, 3), dtype="float32") + 2.0) def test_include_layers_with_nested_input(self): class PLMergeNest(PLMerge): def call(self, inputs): a = inputs[0] b = inputs[1][0] c = inputs[1][1] return a + b + c x0 = Input(shape=(3,)) x1 = Input(shape=(3,)) x2 = Input(shape=(3,)) l0 = PLMergeNest() y = l0([x0, [x1, x2]]) stage = preprocessing_stage.FunctionalPreprocessingStage( [x0, x1, x2], y ) stage.compile() one_array = np.ones((4, 3), dtype="float32") adapt_data = tf.data.Dataset.from_tensor_slices((one_array,) * 3) stage.adapt(adapt_data) self.assertEqual(l0.adapt_count, 1) # Check call y = stage( [ tf.ones((4, 3), dtype="float32"), tf.ones((4, 3), dtype="float32"), tf.ones((4, 3), dtype="float32"), ] ) self.assertAllClose(y, np.ones((4, 3), dtype="float32") + 2.0) def test_mixing_preprocessing_and_regular_layers(self): x0 = Input(shape=(10, 10, 3)) x1 = Input(shape=(10, 10, 3)) x2 = Input(shape=(10, 10, 3)) y0 = merging.Add()([x0, x1]) y1 = image_preprocessing.CenterCrop(8, 8)(x2) y1 = convolutional.ZeroPadding2D(padding=1)(y1) z = merging.Add()([y0, y1]) z = normalization.Normalization()(z) z = convolutional.Conv2D(4, 3)(z) stage = preprocessing_stage.FunctionalPreprocessingStage( [x0, x1, x2], z ) data = [ np.ones((12, 10, 10, 3), dtype="float32"), np.ones((12, 10, 10, 3), dtype="float32"), np.ones((12, 10, 10, 3), dtype="float32"), ] stage.adapt(data) _ = stage(data) stage.compile("rmsprop", "mse") with self.assertRaisesRegex(ValueError, "Preprocessing stage"): stage.fit(data, np.ones((12, 8, 8, 4))) ds_x0 = tf.data.Dataset.from_tensor_slices(np.ones((12, 10, 10, 3))) ds_x1 = tf.data.Dataset.from_tensor_slices(np.ones((12, 10, 10, 3))) ds_x2 = tf.data.Dataset.from_tensor_slices(np.ones((12, 10, 10, 3))) ds_x = tf.data.Dataset.zip((ds_x0, ds_x1, ds_x2)) ds_y = tf.data.Dataset.from_tensor_slices(np.ones((12, 8, 8, 4))) dataset = tf.data.Dataset.zip((ds_x, ds_y)).batch(4) with self.assertRaisesRegex(ValueError, "Preprocessing stage"): stage.fit(dataset) _ = stage.evaluate(data, np.ones((12, 8, 8, 4))) _ = stage.predict(data) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/layers/preprocessing/preprocessing_stage_functional_test.py/0
{ "file_path": "tf-keras/tf_keras/layers/preprocessing/preprocessing_stage_functional_test.py", "repo_id": "tf-keras", "token_count": 7507 }
183
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains the Dropout layer.""" import numbers import tensorflow.compat.v2 as tf from tf_keras import backend from tf_keras.engine import base_layer from tf_keras.utils import control_flow_util # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export("keras.layers.Dropout") class Dropout(base_layer.BaseRandomLayer): """Applies Dropout to the input. The Dropout layer randomly sets input units to 0 with a frequency of `rate` at each step during training time, which helps prevent overfitting. Inputs not set to 0 are scaled up by 1/(1 - rate) such that the sum over all inputs is unchanged. Note that the Dropout layer only applies when `training` is set to True such that no values are dropped during inference. When using `model.fit`, `training` will be appropriately set to True automatically, and in other contexts, you can set the kwarg explicitly to True when calling the layer. (This is in contrast to setting `trainable=False` for a Dropout layer. `trainable` does not affect the layer's behavior, as Dropout does not have any variables/weights that can be frozen during training.) >>> tf.random.set_seed(0) >>> layer = tf.keras.layers.Dropout(.2, input_shape=(2,)) >>> data = np.arange(10).reshape(5, 2).astype(np.float32) >>> print(data) [[0. 1.] [2. 3.] [4. 5.] [6. 7.] [8. 9.]] >>> outputs = layer(data, training=True) >>> print(outputs) tf.Tensor( [[ 0. 1.25] [ 2.5 3.75] [ 5. 6.25] [ 7.5 8.75] [10. 0. ]], shape=(5, 2), dtype=float32) Args: rate: Float between 0 and 1. Fraction of the input units to drop. noise_shape: 1D integer tensor representing the shape of the binary dropout mask that will be multiplied with the input. For instance, if your inputs have shape `(batch_size, timesteps, features)` and you want the dropout mask to be the same for all timesteps, you can use `noise_shape=(batch_size, 1, features)`. seed: A Python integer to use as random seed. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding dropout) or in inference mode (doing nothing). """ def __init__(self, rate, noise_shape=None, seed=None, **kwargs): super().__init__(seed=seed, **kwargs) if isinstance(rate, (int, float)) and not 0 <= rate <= 1: raise ValueError( f"Invalid value {rate} received for " "`rate`, expected a value between 0 and 1." ) self.rate = rate self.noise_shape = noise_shape self.seed = seed self.supports_masking = True def _get_noise_shape(self, inputs): # Subclasses of `Dropout` may implement `_get_noise_shape(self, # inputs)`, which will override `self.noise_shape`, and allows for # custom noise shapes with dynamically sized inputs. if self.noise_shape is None: return None concrete_inputs_shape = tf.shape(inputs) noise_shape = [] for i, value in enumerate(self.noise_shape): noise_shape.append( concrete_inputs_shape[i] if value is None else value ) return tf.convert_to_tensor(noise_shape) def call(self, inputs, training=None): if isinstance(self.rate, numbers.Real) and self.rate == 0: return tf.identity(inputs) if training is None: training = backend.learning_phase() def dropped_inputs(): return self._random_generator.dropout( inputs, self.rate, noise_shape=self._get_noise_shape(inputs) ) output = control_flow_util.smart_cond( training, dropped_inputs, lambda: tf.identity(inputs) ) return output def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = { "rate": self.rate, "noise_shape": self.noise_shape, "seed": self.seed, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))
tf-keras/tf_keras/layers/regularization/dropout.py/0
{ "file_path": "tf-keras/tf_keras/layers/regularization/dropout.py", "repo_id": "tf-keras", "token_count": 1903 }
184
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains the flatten layer.""" import functools import operator import numpy as np import tensorflow.compat.v2 as tf from tf_keras.engine.base_layer import Layer from tf_keras.engine.input_spec import InputSpec from tf_keras.utils import conv_utils # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export("keras.layers.Flatten") class Flatten(Layer): """Flattens the input. Does not affect the batch size. Note: If inputs are shaped `(batch,)` without a feature axis, then flattening adds an extra channel dimension and output shape is `(batch, 1)`. Args: data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, ..., channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, ...)`. When unspecified, uses `image_data_format` value found in your TF-Keras config file at `~/.keras/keras.json` (if exists) else 'channels_last'. Defaults to 'channels_last'. Example: >>> model = tf.keras.Sequential() >>> model.add(tf.keras.layers.Conv2D(64, 3, 3, input_shape=(3, 32, 32))) >>> model.output_shape (None, 1, 10, 64) >>> model.add(Flatten()) >>> model.output_shape (None, 640) """ def __init__(self, data_format=None, **kwargs): super().__init__(**kwargs) self.data_format = conv_utils.normalize_data_format(data_format) self.input_spec = InputSpec(min_ndim=1) self._channels_first = self.data_format == "channels_first" def call(self, inputs): if self._channels_first: rank = inputs.shape.rank if rank and rank > 1: # Switch to channels-last format. permutation = [0] permutation.extend(range(2, rank)) permutation.append(1) inputs = tf.transpose(inputs, perm=permutation) if tf.executing_eagerly(): # Full static shape is guaranteed to be available. # Performance: Using `constant_op` is much faster than passing a # list. flattened_shape = tf.constant([inputs.shape[0], -1]) return tf.reshape(inputs, flattened_shape) else: input_shape = inputs.shape rank = input_shape.rank if rank == 1: return tf.expand_dims(inputs, axis=1) else: batch_dim = tf.compat.dimension_value(input_shape[0]) non_batch_dims = input_shape[1:] # Reshape in a way that preserves as much shape info as # possible. if non_batch_dims.is_fully_defined(): last_dim = int( functools.reduce(operator.mul, non_batch_dims) ) flattened_shape = tf.constant([-1, last_dim]) elif batch_dim is not None: flattened_shape = tf.constant([int(batch_dim), -1]) else: flattened_shape = [tf.shape(inputs)[0], -1] return tf.reshape(inputs, flattened_shape) def compute_output_shape(self, input_shape): input_shape = tf.TensorShape(input_shape).as_list() if not input_shape: output_shape = tf.TensorShape([1]) else: output_shape = [input_shape[0]] if np.all(input_shape[1:]): output_shape += [np.prod(input_shape[1:], dtype=int)] else: output_shape += [None] return tf.TensorShape(output_shape) def get_config(self): config = super().get_config() config.update({"data_format": self.data_format}) return config
tf-keras/tf_keras/layers/reshaping/flatten.py/0
{ "file_path": "tf-keras/tf_keras/layers/reshaping/flatten.py", "repo_id": "tf-keras", "token_count": 1939 }
185
# Description: # Contains the TF-Keras recurrent layers. # Placeholder: load unaliased py_library load("@org_keras//tf_keras:tf_keras.bzl", "cuda_py_test") # buildifier: disable=same-origin-load load("@org_keras//tf_keras:tf_keras.bzl", "tf_py_test") package( # copybara:uncomment default_applicable_licenses = ["//tf_keras:license"], default_visibility = [ "//tf_keras:friends", "//third_party/tensorflow_models/official/projects/residual_mobilenet/modeling/backbones:__pkg__", ], licenses = ["notice"], ) py_library( name = "rnn", srcs = ["__init__.py"], srcs_version = "PY3", deps = [ ":abstract_rnn_cell", ":base_rnn", ":base_wrapper", ":bidirectional", ":cell_wrappers", ":conv_lstm1d", ":conv_lstm2d", ":conv_lstm3d", ":cudnn_gru", ":cudnn_lstm", ":gru", ":gru_v1", ":lstm", ":lstm_v1", ":simple_rnn", ":stacked_rnn_cells", ":time_distributed", "//:expect_tensorflow_installed", ], ) py_library( name = "rnn_utils", srcs = ["rnn_utils.py"], srcs_version = "PY3", deps = [ "//:expect_tensorflow_installed", "//tf_keras/utils:control_flow_util", ], ) py_library( name = "abstract_rnn_cell", srcs = ["abstract_rnn_cell.py"], srcs_version = "PY3", deps = [ ":rnn_utils", "//tf_keras/engine:base_layer", ], ) py_library( name = "dropout_rnn_cell_mixin", srcs = ["dropout_rnn_cell_mixin.py"], srcs_version = "PY3", deps = [ "//:expect_tensorflow_installed", "//tf_keras:backend", ], ) py_library( name = "gru_lstm_utils", srcs = ["gru_lstm_utils.py"], srcs_version = "PY3", deps = [ "//:expect_tensorflow_installed", ], ) py_library( name = "gru", srcs = ["gru.py"], srcs_version = "PY3", deps = [ ":base_rnn", ":dropout_rnn_cell_mixin", ":gru_lstm_utils", ":rnn_utils", "//:expect_tensorflow_installed", "//tf_keras:activations", "//tf_keras:backend", "//tf_keras:constraints", "//tf_keras:regularizers", "//tf_keras/engine:base_layer", "//tf_keras/engine:input_spec", "//tf_keras/initializers", "//tf_keras/utils:tf_utils", ], ) py_library( name = "gru_v1", srcs = ["gru_v1.py"], srcs_version = "PY3", deps = [ ":base_rnn", ":gru", ":rnn_utils", "//tf_keras:activations", "//tf_keras:constraints", "//tf_keras:regularizers", "//tf_keras/engine:input_spec", "//tf_keras/initializers", ], ) py_library( name = "lstm", srcs = ["lstm.py"], srcs_version = "PY3", deps = [ ":base_rnn", ":dropout_rnn_cell_mixin", ":gru_lstm_utils", ":rnn_utils", "//:expect_tensorflow_installed", "//tf_keras:activations", "//tf_keras:backend", "//tf_keras:constraints", "//tf_keras:regularizers", "//tf_keras/engine:base_layer", "//tf_keras/engine:input_spec", "//tf_keras/initializers", "//tf_keras/utils:tf_utils", ], ) py_library( name = "lstm_v1", srcs = ["lstm_v1.py"], srcs_version = "PY3", deps = [ ":base_rnn", ":lstm", ":rnn_utils", "//tf_keras:activations", "//tf_keras:constraints", "//tf_keras:regularizers", "//tf_keras/engine:input_spec", "//tf_keras/initializers", ], ) py_library( name = "stacked_rnn_cells", srcs = ["stacked_rnn_cells.py"], srcs_version = "PY3", deps = [ ":rnn_utils", "//:expect_tensorflow_installed", "//tf_keras:backend", "//tf_keras/engine:base_layer", "//tf_keras/utils:generic_utils", "//tf_keras/utils:tf_utils", ], ) py_library( name = "base_rnn", srcs = ["base_rnn.py"], srcs_version = "PY3", deps = [ ":dropout_rnn_cell_mixin", ":rnn_utils", ":stacked_rnn_cells", "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras:backend", "//tf_keras/engine:base_layer", "//tf_keras/engine:input_spec", "//tf_keras/saving/legacy/saved_model", "//tf_keras/utils:generic_utils", ], ) py_library( name = "simple_rnn", srcs = ["simple_rnn.py"], srcs_version = "PY3", deps = [ ":base_rnn", ":dropout_rnn_cell_mixin", ":rnn_utils", "//:expect_tensorflow_installed", "//tf_keras:activations", "//tf_keras:backend", "//tf_keras:constraints", "//tf_keras:regularizers", "//tf_keras/engine:base_layer", "//tf_keras/engine:input_spec", "//tf_keras/initializers", "//tf_keras/utils:tf_utils", ], ) py_library( name = "base_conv_rnn", srcs = ["base_conv_rnn.py"], srcs_version = "PY3", deps = [ ":base_rnn", "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras:backend", "//tf_keras:base_layer", "//tf_keras/engine:input_spec", "//tf_keras/utils:engine_utils", "//tf_keras/utils:generic_utils", "//tf_keras/utils:tf_utils", ], ) py_library( name = "base_conv_lstm", srcs = ["base_conv_lstm.py"], srcs_version = "PY3", deps = [ ":base_conv_rnn", ":dropout_rnn_cell_mixin", "//:expect_tensorflow_installed", "//tf_keras:activations", "//tf_keras:backend", "//tf_keras:base_layer", "//tf_keras:constraints", "//tf_keras:regularizers", "//tf_keras/initializers", "//tf_keras/utils:engine_utils", ], ) py_library( name = "conv_lstm1d", srcs = ["conv_lstm1d.py"], srcs_version = "PY3", deps = [ ":base_conv_lstm", ], ) py_library( name = "conv_lstm2d", srcs = ["conv_lstm2d.py"], srcs_version = "PY3", deps = [ ":base_conv_lstm", ], ) py_library( name = "conv_lstm3d", srcs = ["conv_lstm3d.py"], srcs_version = "PY3", deps = [ ":base_conv_lstm", ], ) py_library( name = "base_cudnn_rnn", srcs = ["base_cudnn_rnn.py"], srcs_version = "PY3", deps = [ ":base_rnn", "//:expect_tensorflow_installed", "//tf_keras:backend", "//tf_keras/engine:input_spec", ], ) py_library( name = "cudnn_lstm", srcs = ["cudnn_lstm.py"], srcs_version = "PY3", deps = [ ":base_cudnn_rnn", ":gru_lstm_utils", "//:expect_tensorflow_installed", "//tf_keras:constraints", "//tf_keras:regularizers", "//tf_keras/initializers", ], ) py_library( name = "cudnn_gru", srcs = ["cudnn_gru.py"], srcs_version = "PY3", deps = [ ":base_cudnn_rnn", ":gru_lstm_utils", "//:expect_tensorflow_installed", "//tf_keras:constraints", "//tf_keras:regularizers", "//tf_keras/initializers", ], ) py_library( name = "cell_wrappers", srcs = ["cell_wrappers.py"], srcs_version = "PY3", deps = [ ":abstract_rnn_cell", ":lstm", "//:expect_tensorflow_installed", "//tf_keras/utils:generic_utils", "//tf_keras/utils:tf_inspect", ], ) py_library( name = "legacy_cell_wrappers", srcs = ["legacy_cell_wrappers.py"], srcs_version = "PY3", deps = [ ":cell_wrappers", ":legacy_cells", "//:expect_tensorflow_installed", ], ) py_library( name = "legacy_cells", srcs = ["legacy_cells.py"], srcs_version = "PY3", deps = [ "//:expect_tensorflow_installed", "//tf_keras:activations", "//tf_keras:backend", "//tf_keras/engine:base_layer_utils", "//tf_keras/engine:input_spec", "//tf_keras/initializers", "//tf_keras/legacy_tf_layers:layers_base", "//tf_keras/utils:tf_utils", ], ) py_library( name = "base_wrapper", srcs = ["base_wrapper.py"], srcs_version = "PY3", deps = [ "//tf_keras/engine:base_layer", "//tf_keras/utils:generic_utils", ], ) py_library( name = "bidirectional", srcs = ["bidirectional.py"], srcs_version = "PY3", deps = [ ":base_wrapper", ":rnn_utils", "//:expect_tensorflow_installed", "//tf_keras:backend", "//tf_keras/engine:base_layer", "//tf_keras/engine:input_spec", "//tf_keras/utils:generic_utils", "//tf_keras/utils:tf_inspect", "//tf_keras/utils:tf_utils", ], ) py_library( name = "time_distributed", srcs = ["time_distributed.py"], srcs_version = "PY3", deps = [ ":base_wrapper", "//:expect_tensorflow_installed", "//tf_keras:backend", "//tf_keras/engine:base_layer", "//tf_keras/engine:input_spec", "//tf_keras/utils:generic_utils", "//tf_keras/utils:layer_utils", "//tf_keras/utils:tf_utils", ], ) cuda_py_test( name = "gru_lstm_test", size = "medium", srcs = ["gru_lstm_test.py"], python_version = "PY3", shard_count = 2, tags = [ "no_oss", # TODO(b/277925387) ], deps = [ ":gru", ":lstm", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", "//tf_keras/testing_infra:test_utils", ], ) cuda_py_test( name = "gru_test", size = "medium", srcs = ["gru_test.py"], python_version = "PY3", shard_count = 12, tags = [ "no_oss", # TODO(b/277925387) ], deps = [ ":gru_lstm_utils", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", "//tf_keras/testing_infra:test_utils", "//tf_keras/utils:np_utils", ], ) tf_py_test( name = "gru_v1_test", size = "medium", srcs = ["gru_v1_test.py"], python_version = "PY3", shard_count = 4, tags = [ "notsan", # http://b/62136390 ], deps = [ ":gru", ":gru_v1", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", "//tf_keras/testing_infra:test_utils", "//tf_keras/utils:np_utils", ], ) cuda_py_test( name = "lstm_test", size = "medium", srcs = ["lstm_test.py"], python_version = "PY3", shard_count = 12, tags = [ "no_oss", "notsan", # TODO(b/170954246) ], deps = [ ":gru_lstm_utils", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", "//tf_keras/testing_infra:test_utils", "//tf_keras/utils:np_utils", ], ) tf_py_test( name = "lstm_v1_test", size = "medium", srcs = ["lstm_v1_test.py"], python_version = "PY3", shard_count = 4, tags = [ "noasan", # times out b/63678675 "notsan", # http://b/62189182 ], deps = [ ":lstm", ":lstm_v1", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", "//tf_keras/testing_infra:test_utils", "//tf_keras/utils:np_utils", ], ) tf_py_test( name = "base_rnn_test", size = "medium", srcs = ["base_rnn_test.py"], python_version = "PY3", shard_count = 12, tags = [ "notsan", # TODO(b/170870794) ], deps = [ ":gru", ":gru_v1", ":legacy_cells", ":lstm", ":lstm_v1", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/engine:base_layer_utils", "//tf_keras/testing_infra:test_combinations", "//tf_keras/testing_infra:test_utils", "//tf_keras/utils:generic_utils", ], ) tf_py_test( name = "simple_rnn_test", size = "medium", srcs = ["simple_rnn_test.py"], python_version = "PY3", shard_count = 4, tags = ["notsan"], deps = [ "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", "//tf_keras/testing_infra:test_utils", ], ) tf_py_test( name = "conv_lstm_test", size = "medium", srcs = ["conv_lstm_test.py"], python_version = "PY3", shard_count = 8, deps = [ "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", "//tf_keras/testing_infra:test_utils", ], ) cuda_py_test( name = "cudnn_test", size = "medium", srcs = ["cudnn_test.py"], python_version = "PY3", shard_count = 4, tags = [ "no_oss", # TODO(b/277925387) "no_windows_gpu", ], deps = [ "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/optimizers/legacy:optimizers", "//tf_keras/testing_infra:test_combinations", "//tf_keras/testing_infra:test_utils", ], ) tf_py_test( name = "cell_wrappers_test", size = "medium", srcs = ["cell_wrappers_test.py"], python_version = "PY3", shard_count = 4, tags = [ "notsan", ], deps = [ ":cell_wrappers", ":legacy_cells", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras/layers", "//tf_keras/legacy_tf_layers:layers_base", "//tf_keras/testing_infra:test_combinations", "//tf_keras/utils:generic_utils", ], ) tf_py_test( name = "legacy_cell_wrappers_test", size = "small", srcs = ["legacy_cell_wrappers_test.py"], python_version = "PY3", shard_count = 4, deps = [ ":legacy_cell_wrappers", ":legacy_cells", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_tensorflow_installed", "//tf_keras/testing_infra:test_combinations", ], ) tf_py_test( name = "base_wrapper_test", size = "small", srcs = ["base_wrapper_test.py"], python_version = "PY3", shard_count = 4, deps = [ "//:expect_absl_installed", # absl/testing:parameterized "//:expect_tensorflow_installed", "//tf_keras", ], ) tf_py_test( name = "bidirectional_test", size = "medium", srcs = ["bidirectional_test.py"], python_version = "PY3", shard_count = 12, tags = [ "noasan", # http://b/78599823 "notsan", ], deps = [ ":cell_wrappers", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/engine:base_layer_utils", "//tf_keras/layers/core", "//tf_keras/testing_infra:test_combinations", "//tf_keras/testing_infra:test_utils", "//tf_keras/utils:generic_utils", ], ) tf_py_test( name = "time_distributed_test", size = "medium", srcs = ["time_distributed_test.py"], python_version = "PY3", shard_count = 12, tags = [ "noasan", # http://b/78599823 "notsan", ], deps = [ "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", "//tf_keras/testing_infra:test_utils", ], )
tf-keras/tf_keras/layers/rnn/BUILD/0
{ "file_path": "tf-keras/tf_keras/layers/rnn/BUILD", "repo_id": "tf-keras", "token_count": 8913 }
186
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for LSTM layer.""" import copy import os import shutil import numpy as np import tensorflow.compat.v2 as tf from absl.testing import parameterized import tf_keras as keras from tf_keras.layers.rnn import gru_lstm_utils from tf_keras.testing_infra import test_combinations from tf_keras.testing_infra import test_utils from tf_keras.utils import np_utils # isort: off from tensorflow.core.protobuf import rewriter_config_pb2 from tensorflow.python.framework import ( test_util as tf_test_util, ) # Global config for grappler setting that is used for graph mode test. _rewrites = rewriter_config_pb2.RewriterConfig() _rewrites.implementation_selector = rewriter_config_pb2.RewriterConfig.ON _rewrites.min_graph_nodes = -1 _graph_options = tf.compat.v1.GraphOptions(rewrite_options=_rewrites) _config = tf.compat.v1.ConfigProto(graph_options=_graph_options) @test_combinations.run_all_keras_modes(config=_config) class LSTMGraphRewriteTest(test_combinations.TestCase): input_shape = 10 output_shape = 8 rnn_state_size = 8 timestep = 4 batch = 100 epoch = 1 @parameterized.named_parameters( ("non_tan_activation", "relu", "sigmoid", 0, False, True), ("non_sigmoid_recur_activation", "tanh", "relu", 0, False, True), ("use_recurrent_dropout", "tanh", "sigmoid", 0.1, False, True), ("unroll", "tanh", "sigmoid", 0, True, True), ("not_use_bias", "tanh", "sigmoid", 0, False, False), ) @test_utils.run_v2_only def test_could_use_defun_backend( self, activation, recurrent_activation, recurrent_dropout, unroll, use_bias, ): layer = keras.layers.LSTM( 1, activation=activation, recurrent_activation=recurrent_activation, recurrent_dropout=recurrent_dropout, unroll=unroll, use_bias=use_bias, ) self.assertFalse(layer._could_use_gpu_kernel) @test_utils.run_v2_only def test_use_on_default_activation_with_gpu_kernel(self): layer = keras.layers.LSTM(1, activation=tf.tanh) self.assertTrue(layer._could_use_gpu_kernel) layer = keras.layers.LSTM(1, recurrent_activation=tf.sigmoid) self.assertTrue(layer._could_use_gpu_kernel) def test_static_shape_inference_LSTM(self): # GitHub issue: 15165 timesteps = 3 embedding_dim = 4 units = 2 model = keras.models.Sequential() inputs = keras.layers.Dense( embedding_dim, input_shape=(timesteps, embedding_dim) ) model.add(inputs) layer = keras.layers.LSTM(units, return_sequences=True) model.add(layer) outputs = model.layers[-1].output self.assertEqual(outputs.shape.as_list(), [None, timesteps, units]) def test_dynamic_behavior_LSTM(self): num_samples = 2 timesteps = 3 embedding_dim = 4 units = 2 layer = keras.layers.LSTM(units, input_shape=(None, embedding_dim)) model = keras.models.Sequential() model.add(layer) model.compile(tf.compat.v1.train.GradientDescentOptimizer(0.001), "mse") x = np.random.random((num_samples, timesteps, embedding_dim)) y = np.random.random((num_samples, units)) model.train_on_batch(x, y) def test_stacking_LSTM(self): inputs = np.random.random((2, 3, 4)) targets = np.abs(np.random.random((2, 3, 5))) targets /= targets.sum(axis=-1, keepdims=True) model = keras.models.Sequential() model.add(keras.layers.LSTM(10, return_sequences=True, unroll=False)) model.add(keras.layers.LSTM(5, return_sequences=True, unroll=False)) model.compile( loss="categorical_crossentropy", optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), ) model.fit(inputs, targets, epochs=1, batch_size=2, verbose=1) def test_from_config_LSTM(self): layer_class = keras.layers.LSTM for stateful in (False, True): l1 = layer_class(units=1, stateful=stateful) l2 = layer_class.from_config(l1.get_config()) assert l1.get_config() == l2.get_config() def test_specify_initial_state_keras_tensor(self): num_states = 2 timesteps = 3 embedding_dim = 4 units = 3 num_samples = 2 # Test with TF-Keras tensor inputs = keras.Input((timesteps, embedding_dim)) initial_state = [keras.Input((units,)) for _ in range(num_states)] layer = keras.layers.LSTM(units) if len(initial_state) == 1: output = layer(inputs, initial_state=initial_state[0]) else: output = layer(inputs, initial_state=initial_state) self.assertTrue( any( initial_state[0] is t for t in layer._inbound_nodes[0].input_tensors ) ) model = keras.models.Model([inputs] + initial_state, output) model.compile( loss="categorical_crossentropy", optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), ) inputs = np.random.random((num_samples, timesteps, embedding_dim)) initial_state = [ np.random.random((num_samples, units)) for _ in range(num_states) ] targets = np.random.random((num_samples, units)) model.train_on_batch([inputs] + initial_state, targets) def test_specify_initial_state_non_keras_tensor(self): num_states = 2 timesteps = 3 embedding_dim = 4 units = 3 num_samples = 2 # Test with non-Keras tensor inputs = keras.Input((timesteps, embedding_dim)) initial_state = [ keras.backend.random_normal_variable((num_samples, units), 0, 1) for _ in range(num_states) ] layer = keras.layers.LSTM(units) output = layer(inputs, initial_state=initial_state) model = keras.models.Model(inputs, output) model.compile( loss="categorical_crossentropy", optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), ) inputs = np.random.random((num_samples, timesteps, embedding_dim)) targets = np.random.random((num_samples, units)) model.train_on_batch(inputs, targets) def test_reset_states_with_values(self): num_states = 2 timesteps = 3 embedding_dim = 4 units = 3 num_samples = 2 layer = keras.layers.LSTM(units, stateful=True) layer.build((num_samples, timesteps, embedding_dim)) initial_weight_count = len(layer.weights) layer.reset_states() assert len(layer.states) == num_states assert layer.states[0] is not None self.assertAllClose( keras.backend.eval(layer.states[0]), np.zeros(keras.backend.int_shape(layer.states[0])), atol=1e-4, ) state_shapes = [ keras.backend.int_shape(state) for state in layer.states ] values = [np.ones(shape) for shape in state_shapes] if len(values) == 1: values = values[0] layer.reset_states(values) self.assertAllClose( keras.backend.eval(layer.states[0]), np.ones(keras.backend.int_shape(layer.states[0])), atol=1e-4, ) # Test with invalid data with self.assertRaises(ValueError): layer.reset_states([1] * (len(layer.states) + 1)) self.assertEqual(initial_weight_count, len(layer.weights)) # Variables in "states" shouldn't show up in .weights layer.states = tf.nest.map_structure(tf.Variable, values) layer.reset_states() self.assertEqual(initial_weight_count, len(layer.weights)) def test_specify_state_with_masking(self): num_states = 2 timesteps = 3 embedding_dim = 4 units = 3 num_samples = 2 inputs = keras.Input((timesteps, embedding_dim)) _ = keras.layers.Masking()(inputs) initial_state = [keras.Input((units,)) for _ in range(num_states)] output = keras.layers.LSTM(units)(inputs, initial_state=initial_state) model = keras.models.Model([inputs] + initial_state, output) model.compile( loss="categorical_crossentropy", optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), ) inputs = np.random.random((num_samples, timesteps, embedding_dim)) initial_state = [ np.random.random((num_samples, units)) for _ in range(num_states) ] targets = np.random.random((num_samples, units)) model.train_on_batch([inputs] + initial_state, targets) @tf.test.disable_with_predicate( pred=tf.test.is_built_with_rocm, skip_message=( "Skipping as ROCm MIOpen does not support padded input yet." ), ) def test_return_state(self): num_states = 2 timesteps = 3 embedding_dim = 4 units = 3 num_samples = 2 inputs = keras.Input( batch_shape=(num_samples, timesteps, embedding_dim) ) masked = keras.layers.Masking()(inputs) layer = keras.layers.LSTM(units, return_state=True, stateful=True) outputs = layer(masked) state = outputs[1:] assert len(state) == num_states model = keras.models.Model(inputs, state[0]) inputs = np.random.random((num_samples, timesteps, embedding_dim)) state = model.predict(inputs) self.assertAllClose( keras.backend.eval(layer.states[0]), state, atol=1e-4 ) def test_state_reuse(self): timesteps = 3 embedding_dim = 4 units = 3 num_samples = 2 inputs = keras.Input( batch_shape=(num_samples, timesteps, embedding_dim) ) layer = keras.layers.LSTM( units, return_state=True, return_sequences=True ) outputs = layer(inputs) output, state = outputs[0], outputs[1:] output = keras.layers.LSTM(units)(output, initial_state=state) model = keras.models.Model(inputs, output) inputs = np.random.random((num_samples, timesteps, embedding_dim)) model.predict(inputs) def test_initial_states_as_other_inputs(self): timesteps = 3 embedding_dim = 4 units = 3 num_samples = 2 num_states = 2 layer_class = keras.layers.LSTM # Test with TF-Keras tensor main_inputs = keras.Input((timesteps, embedding_dim)) initial_state = [keras.Input((units,)) for _ in range(num_states)] inputs = [main_inputs] + initial_state layer = layer_class(units) output = layer(inputs) self.assertTrue( any( initial_state[0] is t for t in layer._inbound_nodes[0].input_tensors ) ) model = keras.models.Model(inputs, output) model.compile( loss="categorical_crossentropy", optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), ) main_inputs = np.random.random((num_samples, timesteps, embedding_dim)) initial_state = [ np.random.random((num_samples, units)) for _ in range(num_states) ] targets = np.random.random((num_samples, units)) model.train_on_batch([main_inputs] + initial_state, targets) @parameterized.named_parameters(("v0", 0), ("v1", 1), ("v2", 2)) @tf.test.disable_with_predicate( pred=tf.test.is_built_with_rocm, skip_message=( "Skipping as ROCm MIOpen does not support padded input yet." ), ) def test_implementation_mode_LSTM(self, implementation_mode): num_samples = 2 timesteps = 3 embedding_dim = 4 units = 2 test_utils.layer_test( keras.layers.LSTM, kwargs={"units": units, "implementation": implementation_mode}, input_shape=(num_samples, timesteps, embedding_dim), ) layer_class = keras.layers.LSTM k_constraint = keras.constraints.max_norm(0.01) r_constraint = keras.constraints.max_norm(0.01) b_constraint = keras.constraints.max_norm(0.01) layer = layer_class( 5, return_sequences=False, weights=None, input_shape=(None, embedding_dim), kernel_constraint=k_constraint, recurrent_constraint=r_constraint, bias_constraint=b_constraint, ) layer.build((None, None, embedding_dim)) self.assertEqual(layer.cell.kernel.constraint, k_constraint) self.assertEqual(layer.cell.recurrent_kernel.constraint, r_constraint) self.assertEqual(layer.cell.bias.constraint, b_constraint) layer_class = keras.layers.LSTM inputs = np.random.random((2, 3, 4)) targets = np.abs(np.random.random((2, 3, 5))) targets /= targets.sum(axis=-1, keepdims=True) model = keras.models.Sequential() model.add(keras.layers.Masking(input_shape=(3, 4))) model.add(layer_class(units=5, return_sequences=True, unroll=False)) model.compile( loss="categorical_crossentropy", optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), ) model.fit(inputs, targets, epochs=1, batch_size=2, verbose=1) @tf.test.disable_with_predicate( pred=tf.test.is_built_with_rocm, skip_message=( "Skipping as ROCm MIOpen does not support padded input yet." ), ) def test_masking_with_stacking_LSTM(self): inputs = np.random.random((2, 3, 4)) targets = np.abs(np.random.random((2, 3, 5))) targets /= targets.sum(axis=-1, keepdims=True) model = keras.models.Sequential() model.add(keras.layers.Masking(input_shape=(3, 4))) model.add(keras.layers.LSTM(10, return_sequences=True, unroll=False)) model.add(keras.layers.LSTM(5, return_sequences=True, unroll=False)) model.compile( loss="categorical_crossentropy", optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), ) model.fit(inputs, targets, epochs=1, batch_size=2, verbose=1) @parameterized.named_parameters( # test_name, use_bias, bias_initializer, activation ("normal", True, "zeros"), ("no_bias", False, "zeros"), ("random_bias", True, "random_uniform"), ) def test_lstm_model_save_load(self, use_bias, bias_initializer): temp_dir = self.get_temp_dir() self.addCleanup(shutil.rmtree, temp_dir) h5_path = os.path.join(temp_dir, "test.h5") batch = 10 timestep = 3 input_dim = 5 units = 2 x = np.random.random((batch, timestep, input_dim)) def build_model(): inputs = keras.layers.Input( shape=[timestep, input_dim], dtype=tf.float32 ) layer = keras.layers.LSTM( units, use_bias=use_bias, bias_initializer=bias_initializer ) output = layer(inputs) return keras.models.Model(inputs, output), layer model, layer = build_model() y_ref = model.predict(x) model.save_weights(h5_path) cloned_model, new_layer = build_model() cloned_model.load_weights(h5_path) y = cloned_model.predict(x) self.assertAllClose(y, y_ref) self.assertAllClose(layer.get_weights(), new_layer.get_weights()) def test_lstm_output_on_multiple_kernel(self): x_train = np.random.random( (self.batch, self.timestep, self.input_shape) ) inputs = keras.layers.Input( shape=[self.timestep, self.input_shape], dtype=tf.float32 ) with test_utils.device(should_use_gpu=False): layer = keras.layers.LSTM(self.rnn_state_size) output = layer(inputs) cpu_model = keras.models.Model(inputs, output) weights = cpu_model.get_weights() y_1 = cpu_model.predict(x_train) with test_utils.device(should_use_gpu=True): layer = keras.layers.LSTM(self.rnn_state_size) output = layer(inputs) gpu_model = keras.models.Model(inputs, output) gpu_model.set_weights(weights) y_2 = gpu_model.predict(x_train) self.assertAllClose(y_1, y_2) def test_return_sequences_LSTM(self): num_samples = 2 timesteps = 3 embedding_dim = 4 units = 2 test_utils.layer_test( keras.layers.LSTM, kwargs={"units": units, "return_sequences": True}, input_shape=(num_samples, timesteps, embedding_dim), ) @tf.test.disable_with_predicate( pred=tf.test.is_built_with_rocm, skip_message="Skipping as ROCm MIOpen does not support float64 yet.", ) @test_utils.run_v2_only def test_float64_LSTM(self): num_samples = 2 timesteps = 3 embedding_dim = 4 units = 2 test_utils.layer_test( keras.layers.LSTM, kwargs={ "units": units, "return_sequences": True, "dtype": "float64", }, input_shape=(num_samples, timesteps, embedding_dim), input_dtype="float64", ) def test_regularizers_LSTM(self): embedding_dim = 4 layer_class = keras.layers.LSTM layer = layer_class( 5, return_sequences=False, weights=None, input_shape=(None, embedding_dim), kernel_regularizer=keras.regularizers.l1(0.01), recurrent_regularizer=keras.regularizers.l1(0.01), bias_regularizer="l2", activity_regularizer="l1", ) layer.build((None, None, 2)) self.assertEqual(len(layer.losses), 3) x = keras.backend.variable(np.ones((2, 3, 2))) layer(x) if tf.executing_eagerly(): self.assertEqual(len(layer.losses), 4) else: self.assertEqual(len(layer.get_losses_for(x)), 1) @tf.test.disable_with_predicate( pred=tf.test.is_built_with_rocm, skip_message=( "Skipping as ROCm MIOpen does not support padded input yet." ), ) def test_statefulness_LSTM(self): num_samples = 2 timesteps = 3 embedding_dim = 4 units = 2 layer_class = keras.layers.LSTM model = keras.models.Sequential() model.add( keras.layers.Embedding( 4, embedding_dim, mask_zero=True, input_length=timesteps, batch_input_shape=(num_samples, timesteps), ) ) layer = layer_class( units, return_sequences=False, stateful=True, weights=None ) model.add(layer) model.compile( optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) out1 = model.predict(np.ones((num_samples, timesteps))) self.assertEqual(out1.shape, (num_samples, units)) # train once so that the states change model.train_on_batch( np.ones((num_samples, timesteps)), np.ones((num_samples, units)) ) out2 = model.predict(np.ones((num_samples, timesteps))) # if the state is not reset, output should be different self.assertNotEqual(out1.max(), out2.max()) # check that output changes after states are reset # (even though the model itself didn't change) layer.reset_states() out3 = model.predict(np.ones((num_samples, timesteps))) self.assertNotEqual(out2.max(), out3.max()) # check that container-level reset_states() works model.reset_states() out4 = model.predict(np.ones((num_samples, timesteps))) self.assertAllClose(out3, out4, atol=1e-5) # check that the call to `predict` updated the states out5 = model.predict(np.ones((num_samples, timesteps))) self.assertNotEqual(out4.max(), out5.max()) # Check masking layer.reset_states() left_padded_input = np.ones((num_samples, timesteps)) left_padded_input[0, :1] = 0 left_padded_input[1, :2] = 0 out6 = model.predict(left_padded_input) layer.reset_states() right_padded_input = np.ones((num_samples, timesteps)) right_padded_input[0, -1:] = 0 right_padded_input[1, -2:] = 0 out7 = model.predict(right_padded_input) layer.reset_states() mix_padded_input = np.ones((num_samples, timesteps)) mix_padded_input[0, 1] = 0 mix_padded_input[1, 0] = 0 mix_padded_input[1, 2] = 0 out8 = model.predict(mix_padded_input) self.assertAllClose(out7, out6, atol=1e-5) self.assertAllClose(out8, out7, atol=1e-5) def test_stateful_LSTM_training(self): # See b/123587692 for more context. vocab_size = 20 embedding_dim = 10 batch_size = 8 timestep = 12 units = 5 x = np.random.randint(0, vocab_size, size=(batch_size, timestep)) y = np.random.randint(0, vocab_size, size=(batch_size, timestep)) model = keras.Sequential( [ keras.layers.Embedding( vocab_size, embedding_dim, batch_input_shape=[batch_size, timestep], ), keras.layers.LSTM(units, return_sequences=True, stateful=True), keras.layers.Dense(vocab_size), ] ) model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", run_eagerly=test_utils.should_run_eagerly(), ) model.fit(x, y, epochs=1, shuffle=False) def test_dropout_LSTM(self): num_samples = 2 timesteps = 3 embedding_dim = 4 units = 2 test_utils.layer_test( keras.layers.LSTM, kwargs={"units": units, "dropout": 0.1, "recurrent_dropout": 0.1}, input_shape=(num_samples, timesteps, embedding_dim), ) def test_bidirectional(self): batch = 128 timestep = 20 vocab_size = 1000 model = keras.Sequential( [ keras.layers.Embedding(vocab_size, 64), keras.layers.Bidirectional( keras.layers.LSTM(64, return_sequences=True) ), keras.layers.Bidirectional(keras.layers.LSTM(32)), keras.layers.Dense(64, activation="relu"), keras.layers.Dense(1, activation="sigmoid"), ] ) model.compile( loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"] ) x = np.random.randint(0, vocab_size, size=(batch, timestep)) y = np.random.randint(0, 1, size=(batch)) model.fit(x, y, epochs=1, shuffle=False) model.evaluate(x, y) model.predict(x) @tf.test.disable_with_predicate( pred=tf.test.is_built_with_rocm, skip_message=( "Skipping as ROCm MIOpen does not support padded input yet." ), ) @test_utils.run_v2_only def test_explicit_device_with_go_backward_and_mask(self): batch_size = 8 timestep = 7 masksteps = 5 units = 4 inputs = np.random.randn(batch_size, timestep, units).astype(np.float32) mask = np.ones((batch_size, timestep)).astype(bool) mask[:, masksteps:] = 0 lstm_layer = keras.layers.LSTM( units, return_sequences=True, go_backwards=True ) with test_utils.device(should_use_gpu=True): outputs_masked = lstm_layer(inputs, mask=tf.constant(mask)) outputs_trimmed = lstm_layer(inputs[:, :masksteps]) self.assertAllClose(outputs_masked[:, -masksteps:], outputs_trimmed) @tf_test_util.enable_output_all_intermediates def test_v1_session_behavior(self): with tf.compat.v1.get_default_graph().as_default(): # See b/139132348 for more details. x = np.random.uniform(size=(100, 4, 8)) y = np.random.uniform(size=(100, 1)) dataset = ( tf.data.Dataset.from_tensor_slices((x, y)) .shuffle(100) .batch(32) ) inp = keras.layers.Input(shape=(4, 8)) layer = keras.layers.LSTM(1)(inp) layer = keras.layers.Dense(1)(layer) model = keras.models.Model(inp, layer) model.compile(loss="mse", optimizer="sgd") model.fit(dataset) def test_with_fully_masked_inputs(self): num_samples = 8 timestep = 5 embedding_dim = 4 vocab_size = 20 units = 2 inputs = np.random.randint(0, vocab_size, size=(num_samples, timestep)) # Set the first inputs to be fully zero. inputs[0, :] = 0.0 model = keras.models.Sequential() model.add( keras.layers.Embedding( vocab_size, embedding_dim, mask_zero=True, input_length=timestep, batch_input_shape=(num_samples, timestep), ) ) layer = keras.layers.LSTM(units) model.add(layer) model.compile( optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) # Make sure it doesn't crash with cudnn kernel. model.predict(inputs) # TODO (b/169895267): test with xla_gpu is disabled. def test_deepcopy(self): if not tf.executing_eagerly(): self.skipTest("v2-only test") original_layer = keras.layers.LSTM(5) copied_layer = copy.deepcopy(original_layer) self.assertEqual(copied_layer.units, 5) self.assertEqual( original_layer.get_config(), original_layer.get_config() ) # Copy layer before layer call on inputs without weight initialization. inputs = np.random.normal(size=[32, 10, 8]).astype(np.float32) original_layer = keras.layers.LSTM(4) copied_layer = copy.deepcopy(original_layer) outputs = original_layer(inputs) copied_outputs = copied_layer(inputs) self.assertNotAllClose( self.evaluate(outputs), self.evaluate(copied_outputs) ) # Copy layer after layer call on inputs with weight initialization. original_layer = keras.layers.LSTM(4) outputs = original_layer(inputs) copied_layer = copy.deepcopy(original_layer) copied_outputs = copied_layer(inputs) self.assertAllClose( self.evaluate(outputs), self.evaluate(copied_outputs) ) def _test_runtime_with_model(self, model): (x_train, y_train), _ = test_utils.get_test_data( train_samples=self.batch, test_samples=0, input_shape=(self.timestep, self.input_shape), num_classes=self.output_shape, ) y_train = np_utils.to_categorical(y_train, self.output_shape) model.compile( optimizer="sgd", loss=["categorical_crossentropy", None], run_eagerly=test_utils.should_run_eagerly(), ) existing_loss = 0 for _ in range(self.epoch): history = model.fit(x_train, y_train) loss_value = history.history["loss"][0] self.assertNotEqual(existing_loss, loss_value) existing_loss = loss_value _, runtime_value = model.predict(x_train) if not tf.sysconfig.get_build_info()["is_rocm_build"]: if tf.test.is_gpu_available(): self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_GPU) else: self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_CPU) @test_utils.run_v2_only def test_LSTM_runtime(self): layer = keras.layers.LSTM(self.rnn_state_size, return_runtime=True) inputs = keras.layers.Input( shape=[self.timestep, self.input_shape], dtype=tf.float32 ) outputs, runtime = layer(inputs) # Expand the runtime so that it is a 1D tensor instead of scalar. # TF model does not work with scalar model output, specially during # aggregation. runtime = keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=-1))( runtime ) model = keras.models.Model(inputs=inputs, outputs=[outputs, runtime]) self._test_runtime_with_model(model) @tf.test.disable_with_predicate( pred=tf.test.is_built_with_rocm, skip_message=( "Skipping as ROCm MIOpen does not support padded input yet." ), ) @test_utils.run_v2_only def test_LSTM_runtime_with_mask(self): # Masking will affect which backend is selected based on whether the # mask is strictly right padded. layer = keras.layers.LSTM(self.rnn_state_size, return_runtime=True) inputs = keras.layers.Input( shape=[self.timestep, self.input_shape], dtype=tf.float32 ) masked_inputs = keras.layers.Masking()(inputs) outputs, runtime = layer(masked_inputs) # Expand the runtime so that it is a 1D tensor instead of scalar. # TF model does not work with scalar model output, specially during # aggregation. runtime = keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=-1))( runtime ) model = keras.models.Model(inputs=inputs, outputs=[outputs, runtime]) (x_train, y_train), _ = test_utils.get_test_data( train_samples=self.batch, test_samples=0, input_shape=(self.timestep, self.input_shape), num_classes=self.output_shape, ) y_train = np_utils.to_categorical(y_train, self.output_shape) model.compile( optimizer="sgd", loss=["categorical_crossentropy", None], run_eagerly=test_utils.should_run_eagerly(), ) model.fit(x_train, y_train) # Verify unpadded data. _, runtime_value = model.predict(x_train) if tf.test.is_gpu_available(): self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_GPU) else: self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_CPU) # Update x/y to be right padded by setting the last timestep to 0 x_train[:, -1, :] = 0 y_train[:, -1] = 0 _, runtime_value = model.predict(x_train) if tf.test.is_gpu_available(): self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_GPU) else: self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_CPU) # Further update x/y to be mix padded (masks in the middle), and verify # only cpu kernel can be selected. x_train[:, -3, :] = 0 y_train[:, -3] = 0 _, runtime_value = model.predict(x_train) self.assertEqual(runtime_value[0], gru_lstm_utils.RUNTIME_CPU) @test_utils.run_v2_only def test_LSTM_runtime_with_cond(self): # This test is to demonstrate the graph rewrite of grappler plugin under # the condition that the function returns different number of internal # states. layer = keras.layers.LSTM(self.rnn_state_size, return_runtime=True) inputs = keras.layers.Input( shape=[self.timestep, self.input_shape], dtype=tf.float32 ) zeros = tf.zeros([self.batch, self.output_shape]) dummy_runtime = gru_lstm_utils.runtime(gru_lstm_utils.RUNTIME_UNKNOWN) a = tf.constant(0) b = tf.constant(1) # Will always run the lstm layer. outputs, runtime = tf.cond( tf.less(a, b), lambda: layer(inputs), lambda: (zeros, dummy_runtime) ) # Expand the runtime so that it is a 1D tensor instead of scalar. # TF model does not work with scalar model output, specially during # aggregation. runtime = keras.layers.Lambda(lambda x: tf.expand_dims(x, axis=-1))( runtime ) model = keras.models.Model(inputs=inputs, outputs=[outputs, runtime]) self._test_runtime_with_model(model) @test_combinations.run_all_keras_modes class LSTMLayerTest(test_combinations.TestCase): def test_return_sequences_LSTM(self): num_samples = 2 timesteps = 3 embedding_dim = 4 units = 2 test_utils.layer_test( keras.layers.LSTM, kwargs={"units": units, "return_sequences": True}, input_shape=(num_samples, timesteps, embedding_dim), ) @tf.test.disable_with_predicate( pred=tf.test.is_built_with_rocm, skip_message="Double type is yet not supported in ROCm", ) @test_utils.run_v2_only def test_float64_LSTM(self): num_samples = 2 timesteps = 3 embedding_dim = 4 units = 2 test_utils.layer_test( keras.layers.LSTM, kwargs={ "units": units, "return_sequences": True, "dtype": "float64", }, input_shape=(num_samples, timesteps, embedding_dim), input_dtype="float64", ) def test_static_shape_inference_LSTM(self): # GitHub issue: 15165 timesteps = 3 embedding_dim = 4 units = 2 model = keras.models.Sequential() inputs = keras.layers.Dense( embedding_dim, input_shape=(timesteps, embedding_dim) ) model.add(inputs) layer = keras.layers.LSTM(units, return_sequences=True) model.add(layer) outputs = model.layers[-1].output self.assertEqual(outputs.shape.as_list(), [None, timesteps, units]) def test_dynamic_behavior_LSTM(self): num_samples = 2 timesteps = 3 embedding_dim = 4 units = 2 layer = keras.layers.LSTM(units, input_shape=(None, embedding_dim)) model = keras.models.Sequential() model.add(layer) model.compile( "rmsprop", "mse", run_eagerly=test_utils.should_run_eagerly() ) x = np.random.random((num_samples, timesteps, embedding_dim)) y = np.random.random((num_samples, units)) model.train_on_batch(x, y) def test_dropout_LSTM(self): num_samples = 2 timesteps = 3 embedding_dim = 4 units = 2 test_utils.layer_test( keras.layers.LSTM, kwargs={"units": units, "dropout": 0.1, "recurrent_dropout": 0.1}, input_shape=(num_samples, timesteps, embedding_dim), ) def test_recurrent_dropout_with_implementation_restriction(self): layer = keras.layers.LSTM(2, recurrent_dropout=0.1, implementation=2) # The implementation is force to 1 due to the limit of # recurrent_dropout. self.assertEqual(layer.implementation, 1) @test_utils.run_v2_only def test_dropout_variable_name(self): layer = keras.layers.RNN( keras.layers.LSTMCell(2, dropout=0.1, force_generator=True) ) layer(np.random.random((2, 3, 4))) self.assertEqual( layer.cell._random_generator._generator._state_var.name, "rnn/lstm_cell/StateVar:0", ) layer = keras.layers.LSTM(2, dropout=0.1, force_generator=True) layer(np.random.random((2, 3, 4))) self.assertEqual( layer._random_generator._generator._state_var.name, "lstm/StateVar:0", ) @parameterized.parameters([0, 1, 2]) def test_implementation_mode_LSTM(self, implementation_mode): num_samples = 2 timesteps = 3 embedding_dim = 4 units = 2 test_utils.layer_test( keras.layers.LSTM, kwargs={"units": units, "implementation": implementation_mode}, input_shape=(num_samples, timesteps, embedding_dim), ) def test_constraints_LSTM(self): embedding_dim = 4 layer_class = keras.layers.LSTM k_constraint = keras.constraints.max_norm(0.01) r_constraint = keras.constraints.max_norm(0.01) b_constraint = keras.constraints.max_norm(0.01) layer = layer_class( 5, return_sequences=False, weights=None, input_shape=(None, embedding_dim), kernel_constraint=k_constraint, recurrent_constraint=r_constraint, bias_constraint=b_constraint, ) layer.build((None, None, embedding_dim)) self.assertEqual(layer.cell.kernel.constraint, k_constraint) self.assertEqual(layer.cell.recurrent_kernel.constraint, r_constraint) self.assertEqual(layer.cell.bias.constraint, b_constraint) @parameterized.parameters([True, False]) @tf.test.disable_with_predicate( pred=tf.test.is_built_with_rocm, skip_message="Skipping as ROCm MIOpen does not support padded input.", ) def test_with_masking_layer_LSTM(self, unroll): layer_class = keras.layers.LSTM inputs = np.random.random((2, 3, 4)) targets = np.abs(np.random.random((2, 3, 5))) targets /= targets.sum(axis=-1, keepdims=True) model = keras.models.Sequential() model.add(keras.layers.Masking(input_shape=(3, 4))) model.add(layer_class(units=5, return_sequences=True, unroll=unroll)) model.compile( loss="categorical_crossentropy", optimizer="rmsprop", run_eagerly=test_utils.should_run_eagerly(), ) model.fit(inputs, targets, epochs=1, batch_size=2, verbose=1) @parameterized.parameters([True, False]) def test_masking_with_stacking_LSTM(self, unroll): inputs = np.random.random((2, 3, 4)) targets = np.abs(np.random.random((2, 3, 5))) targets /= targets.sum(axis=-1, keepdims=True) model = keras.models.Sequential() model.add(keras.layers.Masking(input_shape=(3, 4))) lstm_cells = [keras.layers.LSTMCell(10), keras.layers.LSTMCell(5)] model.add( keras.layers.RNN(lstm_cells, return_sequences=True, unroll=unroll) ) model.compile( loss="categorical_crossentropy", optimizer="rmsprop", run_eagerly=test_utils.should_run_eagerly(), ) model.fit(inputs, targets, epochs=1, batch_size=2, verbose=1) def test_from_config_LSTM(self): layer_class = keras.layers.LSTM for stateful in (False, True): l1 = layer_class(units=1, stateful=stateful) l2 = layer_class.from_config(l1.get_config()) assert l1.get_config() == l2.get_config() def test_deep_copy_LSTM(self): cell = keras.layers.LSTMCell(5) copied_cell = copy.deepcopy(cell) self.assertEqual(copied_cell.units, 5) self.assertEqual(cell.get_config(), copied_cell.get_config()) def test_specify_initial_state_keras_tensor(self): num_states = 2 timesteps = 3 embedding_dim = 4 units = 3 num_samples = 2 # Test with TF-Keras tensor inputs = keras.Input((timesteps, embedding_dim)) initial_state = [keras.Input((units,)) for _ in range(num_states)] layer = keras.layers.LSTM(units) if len(initial_state) == 1: output = layer(inputs, initial_state=initial_state[0]) else: output = layer(inputs, initial_state=initial_state) self.assertTrue( any( initial_state[0] is t for t in layer._inbound_nodes[0].input_tensors ) ) model = keras.models.Model([inputs] + initial_state, output) model.compile( loss="categorical_crossentropy", optimizer=tf.compat.v1.train.AdamOptimizer(), run_eagerly=test_utils.should_run_eagerly(), ) inputs = np.random.random((num_samples, timesteps, embedding_dim)) initial_state = [ np.random.random((num_samples, units)) for _ in range(num_states) ] targets = np.random.random((num_samples, units)) model.train_on_batch([inputs] + initial_state, targets) def test_specify_initial_state_non_keras_tensor(self): num_states = 2 timesteps = 3 embedding_dim = 4 units = 3 num_samples = 2 # Test with non-Keras tensor inputs = keras.Input((timesteps, embedding_dim)) initial_state = [ keras.backend.random_normal_variable((num_samples, units), 0, 1) for _ in range(num_states) ] layer = keras.layers.LSTM(units) output = layer(inputs, initial_state=initial_state) model = keras.models.Model(inputs, output) model.compile( loss="categorical_crossentropy", optimizer=tf.compat.v1.train.AdamOptimizer(), run_eagerly=test_utils.should_run_eagerly(), ) inputs = np.random.random((num_samples, timesteps, embedding_dim)) targets = np.random.random((num_samples, units)) model.train_on_batch(inputs, targets) def test_reset_states_with_values(self): num_states = 2 timesteps = 3 embedding_dim = 4 units = 3 num_samples = 2 layer = keras.layers.LSTM(units, stateful=True) layer.build((num_samples, timesteps, embedding_dim)) layer.reset_states() assert len(layer.states) == num_states assert layer.states[0] is not None self.assertAllClose( keras.backend.eval(layer.states[0]), np.zeros(keras.backend.int_shape(layer.states[0])), atol=1e-4, ) state_shapes = [ keras.backend.int_shape(state) for state in layer.states ] values = [np.ones(shape) for shape in state_shapes] if len(values) == 1: values = values[0] layer.reset_states(values) self.assertAllClose( keras.backend.eval(layer.states[0]), np.ones(keras.backend.int_shape(layer.states[0])), atol=1e-4, ) # Test with invalid data with self.assertRaises(ValueError): layer.reset_states([1] * (len(layer.states) + 1)) def test_specify_state_with_masking(self): num_states = 2 timesteps = 3 embedding_dim = 4 units = 3 num_samples = 2 inputs = keras.Input((timesteps, embedding_dim)) _ = keras.layers.Masking()(inputs) initial_state = [keras.Input((units,)) for _ in range(num_states)] output = keras.layers.LSTM(units)(inputs, initial_state=initial_state) model = keras.models.Model([inputs] + initial_state, output) model.compile( loss="categorical_crossentropy", optimizer="rmsprop", run_eagerly=test_utils.should_run_eagerly(), ) inputs = np.random.random((num_samples, timesteps, embedding_dim)) initial_state = [ np.random.random((num_samples, units)) for _ in range(num_states) ] targets = np.random.random((num_samples, units)) model.train_on_batch([inputs] + initial_state, targets) def test_return_state(self): num_states = 2 timesteps = 3 embedding_dim = 4 units = 3 num_samples = 2 inputs = keras.Input( batch_shape=(num_samples, timesteps, embedding_dim) ) layer = keras.layers.LSTM(units, return_state=True, stateful=True) outputs = layer(inputs) state = outputs[1:] assert len(state) == num_states model = keras.models.Model(inputs, state[0]) inputs = np.random.random((num_samples, timesteps, embedding_dim)) state = model.predict(inputs) self.assertAllClose( keras.backend.eval(layer.states[0]), state, atol=1e-4 ) def test_state_reuse(self): timesteps = 3 embedding_dim = 4 units = 3 num_samples = 2 inputs = keras.Input( batch_shape=(num_samples, timesteps, embedding_dim) ) layer = keras.layers.LSTM( units, return_state=True, return_sequences=True ) outputs = layer(inputs) output, state = outputs[0], outputs[1:] output = keras.layers.LSTM(units)(output, initial_state=state) model = keras.models.Model(inputs, output) inputs = np.random.random((num_samples, timesteps, embedding_dim)) outputs = model.predict(inputs) def test_initial_states_as_other_inputs(self): timesteps = 3 embedding_dim = 4 units = 3 num_samples = 2 num_states = 2 layer_class = keras.layers.LSTM # Test with TF-Keras tensor main_inputs = keras.Input((timesteps, embedding_dim)) initial_state = [keras.Input((units,)) for _ in range(num_states)] inputs = [main_inputs] + initial_state layer = layer_class(units) output = layer(inputs) self.assertTrue( any( initial_state[0] is t for t in layer._inbound_nodes[0].input_tensors ) ) model = keras.models.Model(inputs, output) model.compile( loss="categorical_crossentropy", optimizer=tf.compat.v1.train.AdamOptimizer(), run_eagerly=test_utils.should_run_eagerly(), ) main_inputs = np.random.random((num_samples, timesteps, embedding_dim)) initial_state = [ np.random.random((num_samples, units)) for _ in range(num_states) ] targets = np.random.random((num_samples, units)) model.train_on_batch([main_inputs] + initial_state, targets) def test_regularizers_LSTM(self): embedding_dim = 4 layer_class = keras.layers.LSTM layer = layer_class( 5, return_sequences=False, weights=None, input_shape=(None, embedding_dim), kernel_regularizer=keras.regularizers.l1(0.01), recurrent_regularizer=keras.regularizers.l1(0.01), bias_regularizer="l2", activity_regularizer="l1", ) layer.build((None, None, 2)) self.assertEqual(len(layer.losses), 3) x = keras.backend.variable(np.ones((2, 3, 2))) layer(x) if tf.executing_eagerly(): self.assertEqual(len(layer.losses), 4) else: self.assertEqual(len(layer.get_losses_for(x)), 1) @tf.test.disable_with_predicate( pred=tf.test.is_built_with_rocm, skip_message="Skipping as ROCm MIOpen does not support padded input.", ) def test_statefulness_LSTM(self): num_samples = 2 timesteps = 3 embedding_dim = 4 units = 2 layer_class = keras.layers.LSTM model = keras.models.Sequential() model.add( keras.layers.Embedding( 4, embedding_dim, mask_zero=True, input_length=timesteps, batch_input_shape=(num_samples, timesteps), ) ) layer = layer_class( units, return_sequences=False, stateful=True, weights=None ) model.add(layer) model.compile( optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) out1 = model.predict(np.ones((num_samples, timesteps))) self.assertEqual(out1.shape, (num_samples, units)) # train once so that the states change model.train_on_batch( np.ones((num_samples, timesteps)), np.ones((num_samples, units)) ) out2 = model.predict(np.ones((num_samples, timesteps))) # if the state is not reset, output should be different self.assertNotEqual(out1.max(), out2.max()) # check that output changes after states are reset # (even though the model itself didn't change) layer.reset_states() out3 = model.predict(np.ones((num_samples, timesteps))) self.assertNotEqual(out2.max(), out3.max()) # check that container-level reset_states() works model.reset_states() out4 = model.predict(np.ones((num_samples, timesteps))) self.assertAllClose(out3, out4, atol=1e-5) # check that the call to `predict` updated the states out5 = model.predict(np.ones((num_samples, timesteps))) self.assertNotEqual(out4.max(), out5.max()) # Check masking layer.reset_states() left_padded_input = np.ones((num_samples, timesteps)) left_padded_input[0, :1] = 0 left_padded_input[1, :2] = 0 out6 = model.predict(left_padded_input) layer.reset_states() right_padded_input = np.ones((num_samples, timesteps)) right_padded_input[0, -1:] = 0 right_padded_input[1, -2:] = 0 out7 = model.predict(right_padded_input) self.assertAllClose(out7, out6, atol=1e-5) @test_utils.run_v2_only def test_cloned_weight_names(self): inp = keras.Input([None, 3]) rnn = keras.layers.LSTM(units=3) model = keras.Model(inp, rnn(inp)) clone = keras.models.clone_model(model) model_names = [x.name for x in model.weights] clone_names = [x.name for x in clone.weights] self.assertEqual(model_names, clone_names) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/layers/rnn/lstm_test.py/0
{ "file_path": "tf-keras/tf_keras/layers/rnn/lstm_test.py", "repo_id": "tf-keras", "token_count": 24910 }
187
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tf.layers.base.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import numpy as np import tensorflow.compat.v2 as tf from absl.testing import parameterized from tf_keras import backend from tf_keras.engine import base_layer as keras_base_layer from tf_keras.engine import input_spec from tf_keras.legacy_tf_layers import base as base_tf_layers from tf_keras.legacy_tf_layers import core as core_tf_layers from tf_keras.testing_infra import test_combinations class BaseLayerTest(tf.test.TestCase, parameterized.TestCase): @test_combinations.generate( test_combinations.combine(mode=["graph", "eager"]) ) def testLayerProperties(self): layer = base_tf_layers.Layer(name="my_layer") self.assertEqual(layer.variables, []) self.assertEqual(layer.trainable_variables, []) self.assertEqual(layer.non_trainable_variables, []) if not tf.executing_eagerly(): # updates, losses only supported in GRAPH mode self.assertEqual(layer.updates, []) self.assertEqual(layer.losses, []) self.assertEqual(layer.built, False) layer = base_tf_layers.Layer(name="my_layer", trainable=False) self.assertEqual(layer.trainable, False) # Assert that the layer was not instrumented as a TF-Keras layer self.assertFalse(layer._instrumented_keras_api) @test_combinations.generate( test_combinations.combine(mode=["graph", "eager"]) ) def testInt64Layer(self): layer = base_tf_layers.Layer(name="my_layer", dtype="int64") layer.add_weight("my_var", [2, 2]) self.assertEqual(layer.name, "my_layer") @test_combinations.generate( test_combinations.combine(mode=["graph", "eager"]) ) def testKerasStyleAddWeight(self): keras_layer = keras_base_layer.Layer(name="keras_layer") with backend.name_scope("foo"): keras_variable = keras_layer.add_weight( "my_var", [2, 2], initializer=tf.compat.v1.zeros_initializer() ) self.assertEqual(keras_variable.name, "foo/my_var:0") with backend.name_scope("baz"): old_style_layer = base_tf_layers.Layer(name="my_layer") # Test basic variable creation. variable = old_style_layer.add_weight( "my_var", [2, 2], initializer=tf.compat.v1.zeros_initializer() ) self.assertEqual(variable.name, "my_layer/my_var:0") with base_tf_layers.keras_style_scope(): layer = base_tf_layers.Layer(name="my_layer") # Assert that the layer was not instrumented as a TF-Keras layer self.assertFalse(layer._instrumented_keras_api) # Test basic variable creation. with backend.name_scope("bar"): variable = layer.add_weight( "my_var", [2, 2], initializer=tf.compat.v1.zeros_initializer() ) self.assertEqual(variable.name, "bar/my_var:0") @test_combinations.generate( test_combinations.combine(mode=["graph", "eager"]) ) def testAddWeight(self): layer = base_tf_layers.Layer(name="my_layer") # Test basic variable creation. variable = layer.add_weight( "my_var", [2, 2], initializer=tf.compat.v1.zeros_initializer() ) self.assertEqual(variable.name, "my_layer/my_var:0") self.assertEqual(layer.variables, [variable]) self.assertEqual(layer.trainable_variables, [variable]) self.assertEqual(layer.non_trainable_variables, []) if not tf.executing_eagerly(): self.assertEqual( layer.variables, tf.compat.v1.get_collection( tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES ), ) # Test non-trainable variable creation. # layer.add_variable should work even outside `build` and `call`. variable_2 = layer.add_weight( "non_trainable_var", [2, 2], initializer=tf.compat.v1.zeros_initializer(), trainable=False, ) self.assertEqual(layer.variables, [variable, variable_2]) self.assertEqual(layer.trainable_variables, [variable]) self.assertEqual(layer.non_trainable_variables, [variable_2]) if not tf.executing_eagerly(): self.assertEqual( len( tf.compat.v1.get_collection( tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES ) ), 1, ) regularizer = lambda x: tf.reduce_sum(x) * 1e-3 _ = layer.add_weight( "reg_var", [2, 2], initializer=tf.compat.v1.zeros_initializer(), regularizer=regularizer, ) self.assertEqual(len(layer.losses), 1) added_variable = [False] # Test that sync `ON_READ` variables are defaulted to be non-trainable. variable_3 = layer.add_weight( "sync_on_read_var", [2, 2], initializer=tf.compat.v1.zeros_initializer(), synchronization=tf.VariableSynchronization.ON_READ, aggregation=tf.compat.v1.VariableAggregation.SUM, ) self.assertEqual( layer.non_trainable_variables, [variable_2, variable_3] ) @tf.function def function_adds_weight(): if not added_variable[0]: layer.add_weight( "reg_var_from_function", [2, 2], initializer=tf.compat.v1.zeros_initializer(), regularizer=regularizer, ) added_variable[0] = True function_adds_weight() self.assertEqual(len(layer.losses), 2) def testInvalidTrainableSynchronizationCombination(self): layer = base_tf_layers.Layer(name="my_layer") with self.assertRaisesRegex( ValueError, "Synchronization value can be set to " "VariableSynchronization.ON_READ only for non-trainable variables. " "You have specified trainable=True and " "synchronization=VariableSynchronization.ON_READ.", ): _ = layer.add_weight( "v", [2, 2], initializer=tf.compat.v1.zeros_initializer(), synchronization=tf.VariableSynchronization.ON_READ, trainable=True, ) def testReusePartitionedVariablesAndRegularizers(self): with tf.Graph().as_default(): regularizer = lambda x: tf.reduce_sum(x) * 1e-3 partitioner = tf.compat.v1.fixed_size_partitioner(3) for reuse in [False, True]: with tf.compat.v1.variable_scope( tf.compat.v1.get_variable_scope(), partitioner=partitioner, reuse=reuse, ): layer = base_tf_layers.Layer(name="my_layer") _ = layer.add_weight( "reg_part_var", [4, 4], initializer=tf.compat.v1.zeros_initializer(), regularizer=regularizer, ) self.assertEqual( len( tf.compat.v1.get_collection( tf.compat.v1.GraphKeys.REGULARIZATION_LOSSES ) ), 3, ) @test_combinations.generate( test_combinations.combine(mode=["graph", "eager"]) ) def testCall(self): class MyLayer(base_tf_layers.Layer): def call(self, inputs): return tf.square(inputs) layer = MyLayer(name="my_layer") inputs = tf.random.uniform((5,), seed=1) outputs = layer(inputs) self.assertEqual(layer.built, True) if not tf.executing_eagerly(): # op is only supported in GRAPH mode self.assertEqual(outputs.op.name, "my_layer/Square") @test_combinations.generate( test_combinations.combine(mode=["graph", "eager"]) ) def testDeepCopy(self): class MyLayer(base_tf_layers.Layer): def call(self, inputs): return tf.square(inputs) layer = MyLayer(name="my_layer") layer._private_tensor = tf.random.uniform(()) inputs = tf.random.uniform((5,), seed=1) outputs = layer(inputs) self.assertEqual(layer.built, True) if not tf.executing_eagerly(): # op only supported in GRAPH mode. self.assertEqual(outputs.op.name, "my_layer/Square") layer_copy = copy.deepcopy(layer) self.assertEqual(layer_copy.name, layer.name) self.assertEqual(layer_copy._scope.name, layer._scope.name) self.assertEqual(layer_copy._private_tensor, layer._private_tensor) @test_combinations.generate( test_combinations.combine(mode=["graph", "eager"]) ) def testScopeNaming(self): class PrivateLayer(base_tf_layers.Layer): def call(self, inputs): return inputs inputs = tf.random.uniform((5,)) default_layer = PrivateLayer() _ = default_layer(inputs) self.assertEqual(default_layer._scope.name, "private_layer") default_layer1 = PrivateLayer() default_layer1(inputs) self.assertEqual(default_layer1._scope.name, "private_layer_1") my_layer = PrivateLayer(name="my_layer") my_layer(inputs) self.assertEqual(my_layer._scope.name, "my_layer") my_layer1 = PrivateLayer(name="my_layer") my_layer1(inputs) self.assertEqual(my_layer1._scope.name, "my_layer_1") my_layer2 = PrivateLayer(name="my_layer") my_layer2(inputs) self.assertEqual(my_layer2._scope.name, "my_layer_2") # Name scope shouldn't affect names. with backend.name_scope("some_name_scope"): default_layer2 = PrivateLayer() default_layer2(inputs) self.assertEqual(default_layer2._scope.name, "private_layer_2") my_layer3 = PrivateLayer(name="my_layer") my_layer3(inputs) self.assertEqual(my_layer3._scope.name, "my_layer_3") other_layer = PrivateLayer(name="other_layer") other_layer(inputs) self.assertEqual(other_layer._scope.name, "other_layer") # Variable scope gets added to scope names. with tf.compat.v1.variable_scope("var_scope"): default_layer_scoped = PrivateLayer() default_layer_scoped(inputs) self.assertEqual( default_layer_scoped._scope.name, "var_scope/private_layer" ) my_layer_scoped = PrivateLayer(name="my_layer") my_layer_scoped(inputs) self.assertEqual(my_layer_scoped._scope.name, "var_scope/my_layer") my_layer_scoped1 = PrivateLayer(name="my_layer") my_layer_scoped1(inputs) self.assertEqual( my_layer_scoped1._scope.name, "var_scope/my_layer_1" ) @test_combinations.generate( test_combinations.combine(mode=["graph", "eager"]) ) def testInputSpecNdimCheck(self): class CustomerLayer(base_tf_layers.Layer): def __init__(self): super().__init__() self.input_spec = input_spec.InputSpec(ndim=2) def call(self, inputs): return inputs layer = CustomerLayer() with self.assertRaisesRegex(ValueError, r"expected ndim=2"): layer(tf.constant([1])) # Note that we re-create the layer since in Eager mode, input spec # checks only happen on first call. # Works layer = CustomerLayer() layer(tf.constant([[1], [2]])) @test_combinations.generate( test_combinations.combine(mode=["graph", "eager"]) ) def testInputSpecMinNdimCheck(self): class CustomLayer(base_tf_layers.Layer): def __init__(self): super().__init__() self.input_spec = input_spec.InputSpec(min_ndim=2) def call(self, inputs): return inputs layer = CustomLayer() with self.assertRaisesRegex(ValueError, r"expected min_ndim=2"): layer(tf.constant([1])) # Works layer = CustomLayer() layer(tf.constant([[1], [2]])) layer = CustomLayer() layer(tf.constant([[[1], [2]]])) @test_combinations.generate( test_combinations.combine(mode=["graph", "eager"]) ) def testInputSpecMaxNdimCheck(self): class CustomerLayer(base_tf_layers.Layer): def __init__(self): super().__init__() self.input_spec = input_spec.InputSpec(max_ndim=2) def call(self, inputs): return inputs layer = CustomerLayer() with self.assertRaisesRegex(ValueError, r"expected max_ndim=2"): layer(tf.constant([[[1], [2]]])) # Works layer = CustomerLayer() layer(tf.constant([1])) layer = CustomerLayer() layer(tf.constant([[1], [2]])) @test_combinations.generate( test_combinations.combine(mode=["graph", "eager"]) ) def testInputSpecDtypeCheck(self): class CustomerLayer(base_tf_layers.Layer): def __init__(self): super().__init__() self.input_spec = input_spec.InputSpec(dtype="float32") def call(self, inputs): return inputs layer = CustomerLayer() with self.assertRaisesRegex(ValueError, r"expected dtype=float32"): layer(tf.constant(1, dtype=tf.int32)) # Works layer = CustomerLayer() layer(tf.constant(1.0, dtype=tf.float32)) @test_combinations.generate( test_combinations.combine(mode=["graph", "eager"]) ) def testInputSpecAxesCheck(self): class CustomerLayer(base_tf_layers.Layer): def __init__(self): super().__init__() self.input_spec = input_spec.InputSpec(axes={-1: 2}) def call(self, inputs): return inputs layer = CustomerLayer() with self.assertRaisesRegex(ValueError, r"expected axis"): layer(tf.constant([1, 2, 3])) # Works layer = CustomerLayer() layer(tf.constant([1, 2])) layer = CustomerLayer() layer(tf.constant([[1, 2], [3, 4], [5, 6]])) @test_combinations.generate( test_combinations.combine(mode=["graph", "eager"]) ) def testInputSpecShapeCheck(self): class CustomerLayer(base_tf_layers.Layer): def __init__(self): super().__init__() self.input_spec = input_spec.InputSpec(shape=(None, 3)) def call(self, inputs): return inputs layer = CustomerLayer() with self.assertRaisesRegex(ValueError, r"expected shape"): layer(tf.constant([[1, 2]])) # Works layer = CustomerLayer() layer(tf.constant([[1, 2, 3], [4, 5, 6]])) @test_combinations.generate( test_combinations.combine(mode=["graph", "eager"]) ) def testNoInputSpec(self): class CustomerLayer(base_tf_layers.Layer): def __init__(self): super().__init__() self.input_spec = None def call(self, inputs): return inputs layer = CustomerLayer() layer(tf.constant(1)) # Works if not tf.executing_eagerly(): layer(tf.compat.v1.placeholder("int32")) layer(tf.compat.v1.placeholder("int32", shape=(2, 3))) @test_combinations.generate( test_combinations.combine(mode=["graph", "eager"]) ) def test_count_params(self): dense = core_tf_layers.Dense(16) dense.build((None, 4)) self.assertEqual(dense.count_params(), 16 * 4 + 16) dense = core_tf_layers.Dense(16) with self.assertRaises(ValueError): dense.count_params() @test_combinations.generate( test_combinations.combine(mode=["graph", "eager"]) ) def testDictInputOutput(self): class DictLayer(base_tf_layers.Layer): def call(self, inputs): return {"l" + key: inputs[key] for key in inputs} layer = DictLayer() if tf.executing_eagerly(): i1 = tf.constant(3) i2 = tf.constant(4.0) result = layer({"abel": i1, "ogits": i2}) self.assertTrue(isinstance(result, dict)) self.assertEqual(set(["label", "logits"]), set(result.keys())) self.assertEqual(3, result["label"].numpy()) self.assertEqual(4.0, result["logits"].numpy()) else: i1 = tf.compat.v1.placeholder("int32") i2 = tf.compat.v1.placeholder("float32") result = layer({"abel": i1, "ogits": i2}) self.assertTrue(isinstance(result, dict)) self.assertEqual(set(["label", "logits"]), set(result.keys())) def testActivityRegularizer(self): with tf.Graph().as_default(): regularizer = tf.reduce_sum layer = base_tf_layers.Layer(activity_regularizer=regularizer) x = tf.compat.v1.placeholder("int32") layer(x) self.assertEqual(len(layer.get_losses_for(x)), 1) def testNameScopeIsConsistentWithVariableScope(self): # GitHub issue 13429. class MyLayer(base_tf_layers.Layer): def build(self, input_shape): self.my_var = self.add_weight("my_var", (), tf.float32) self.built = True def call(self, inputs): return tf.multiply(inputs, self.my_var, name="my_op") def _gen_layer(x, name=None): layer = MyLayer(name=name) out = layer(x) return layer, out # unnamed layer with tf.Graph().as_default(): x = tf.compat.v1.placeholder(tf.float32, (), "x") layer, op = _gen_layer(x) layer1, op1 = _gen_layer(op) layer2, op2 = _gen_layer(op1) self.assertEqual(layer.my_var.name, "my_layer/my_var:0") self.assertEqual(op.name, "my_layer/my_op:0") self.assertEqual(layer1.my_var.name, "my_layer_1/my_var:0") self.assertEqual(op1.name, "my_layer_1/my_op:0") self.assertEqual(layer2.my_var.name, "my_layer_2/my_var:0") self.assertEqual(op2.name, "my_layer_2/my_op:0") # name starts from zero with tf.Graph().as_default(): x = tf.compat.v1.placeholder(tf.float32, (), "x") layer, op = _gen_layer(x, name="name") layer1, op1 = _gen_layer(op, name="name_1") layer2, op2 = _gen_layer(op1, name="name_2") self.assertEqual(layer.my_var.name, "name/my_var:0") self.assertEqual(op.name, "name/my_op:0") self.assertEqual(layer1.my_var.name, "name_1/my_var:0") self.assertEqual(op1.name, "name_1/my_op:0") self.assertEqual(layer2.my_var.name, "name_2/my_var:0") self.assertEqual(op2.name, "name_2/my_op:0") # name starts from one with tf.Graph().as_default(): x = tf.compat.v1.placeholder(tf.float32, (), "x") layer, op = _gen_layer(x, name="name_1") layer1, op1 = _gen_layer(op, name="name_2") layer2, op2 = _gen_layer(op1, name="name_3") self.assertEqual(layer.my_var.name, "name_1/my_var:0") self.assertEqual(op.name, "name_1/my_op:0") self.assertEqual(layer1.my_var.name, "name_2/my_var:0") self.assertEqual(op1.name, "name_2/my_op:0") self.assertEqual(layer2.my_var.name, "name_3/my_var:0") self.assertEqual(op2.name, "name_3/my_op:0") def testVariablesAreLiftedFromFunctionBuildingGraphs(self): class MyLayer(base_tf_layers.Layer): def build(self, input_shape): self.my_var = self.add_weight("my_var", (), tf.float32) self.built = True def call(self, inputs): return inputs outer_graph = tf.compat.v1.get_default_graph() function_building_graph = tf.Graph() function_building_graph._building_function = True with outer_graph.as_default(): with function_building_graph.as_default(): layer = MyLayer() # Create a variable by invoking build through __call__ and # assert that it is both tracked and lifted into the outer # graph. inputs = tf.compat.v1.placeholder(tf.float32, (), "inputs") layer(inputs) self.assertEqual(len(layer.variables), 1) self.assertEqual(len(layer.trainable_variables), 1) self.assertEqual(layer.variables[0].graph, outer_graph) def testGetUpdateFor(self): class MyLayer(base_tf_layers.Layer): def build(self, input_shape): self.a = self.add_weight("a", (), tf.float32, trainable=False) self.b = self.add_weight("b", (), tf.float32, trainable=False) self.add_update( tf.compat.v1.assign_add(self.a, 1.0, name="b_update") ) self.built = True def call(self, inputs): self.add_update( tf.compat.v1.assign_add(self.a, inputs, name="a_update") ) return inputs + 1 with tf.Graph().as_default(): layer = MyLayer() inputs = tf.compat.v1.placeholder(tf.float32, (), "inputs") intermediate_inputs = inputs + 1 outputs = layer(intermediate_inputs) self.assertEqual(len(layer.updates), 2) self.assertEqual(len(layer.get_updates_for(None)), 1) self.assertEqual(len(layer.get_updates_for([inputs])), 1) self.assertEqual( len(layer.get_updates_for([intermediate_inputs])), 1 ) self.assertEqual(len(layer.get_updates_for([outputs])), 0) # Call same layer on new input, creating one more conditional update inputs = tf.compat.v1.placeholder(tf.float32, (), "inputs") intermediate_inputs = inputs + 1 outputs = layer(intermediate_inputs) self.assertEqual(len(layer.updates), 3) self.assertEqual(len(layer.get_updates_for(None)), 1) # Check that we are successfully filtering out irrelevant updates self.assertEqual(len(layer.get_updates_for([inputs])), 1) self.assertEqual( len(layer.get_updates_for([intermediate_inputs])), 1 ) self.assertEqual(len(layer.get_updates_for([outputs])), 0) def testGetLossesFor(self): class MyLayer(base_tf_layers.Layer): def build(self, input_shape): self.a = self.add_weight("a", (), tf.float32, trainable=False) self.b = self.add_weight("b", (), tf.float32, trainable=False) self.add_loss(self.a) self.built = True def call(self, inputs): self.add_loss(inputs, inputs=True) return inputs + 1 with tf.Graph().as_default(): layer = MyLayer() inputs = tf.compat.v1.placeholder(tf.float32, (), "inputs") intermediate_inputs = inputs + 1 outputs = layer(intermediate_inputs) self.assertEqual(len(layer.losses), 2) self.assertEqual(len(layer.get_losses_for(None)), 1) self.assertEqual(len(layer.get_losses_for([inputs])), 1) self.assertEqual( len(layer.get_losses_for([intermediate_inputs])), 1 ) self.assertEqual(len(layer.get_losses_for([outputs])), 0) # Call same layer on new input, creating one more conditional loss inputs = tf.compat.v1.placeholder(tf.float32, (), "inputs") intermediate_inputs = inputs + 1 outputs = layer(intermediate_inputs) self.assertEqual(len(layer.losses), 3) self.assertEqual(len(layer.get_losses_for(None)), 1) # Check that we are successfully filtering out irrelevant losses self.assertEqual(len(layer.get_losses_for([inputs])), 1) self.assertEqual( len(layer.get_losses_for([intermediate_inputs])), 1 ) self.assertEqual(len(layer.get_losses_for([outputs])), 0) class IdentityLayer(base_tf_layers.Layer): """A layer returns the identity of it's input.""" def call(self, inputs): return inputs @test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) class DTypeTest(tf.test.TestCase, parameterized.TestCase): def _const(self, dtype): return tf.constant(1, dtype=dtype) def test_dtype_inferred_from_input(self): # Test with Tensor input layer = IdentityLayer() self.assertIsNone(layer.dtype) layer(self._const("float64")) self.assertEqual(layer.dtype, "float64") # Test with Numpy input layer = IdentityLayer() self.assertIsNone(layer.dtype) layer(np.array(1.0, dtype="float64")) self.assertEqual(layer.dtype, "float64") # Test with integer input layer = IdentityLayer() self.assertIsNone(layer.dtype) layer(self._const("int32")) self.assertEqual(layer.dtype, "int32") # Test layer dtype doesn't change when passed a new dtype layer = IdentityLayer() self.assertIsNone(layer.dtype) layer(self._const("float64")) self.assertEqual(layer.dtype, "float64") layer(self._const("float16")) self.assertEqual(layer.dtype, "float64") # Test layer dtype inferred from first input layer = IdentityLayer() layer([self._const("float32"), self._const("float64")]) self.assertEqual(layer.dtype, "float32") def test_passing_dtype_to_constructor(self): layer = IdentityLayer(dtype="float64") layer(self._const("float32")) self.assertEqual(layer.dtype, "float64") layer = IdentityLayer(dtype="int32") layer(self._const("float32")) self.assertEqual(layer.dtype, "int32") layer = IdentityLayer(dtype=tf.float64) layer(self._const("float32")) self.assertEqual(layer.dtype, "float64") def test_inputs_not_casted(self): layer = IdentityLayer(dtype="float32") self.assertEqual(layer(self._const("float64")).dtype, "float64") if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/legacy_tf_layers/base_test.py/0
{ "file_path": "tf-keras/tf_keras/legacy_tf_layers/base_test.py", "repo_id": "tf-keras", "token_count": 13533 }
188