text
stringlengths
5
261k
id
stringlengths
16
106
metadata
dict
__index_level_0__
int64
0
266
if [ "$#" -ne 4 ]; then echo USAGE: ./process_weights.sh WEIGHTS_PATH OUTPUT_WEIGHTS_PATH MODEL_NAME GCS_PATH exit 1 fi WEIGHTS=$1 OUTPUT_WEIGHTS=$2 MODEL=$3 GCS_PATH=$4 python3 remove_top.py --weights_path=$WEIGHTS --output_weights_path=$OUTPUT_WEIGHTS --model_name=$MODEL echo With top: $GCS_PATH/$WEIGHTS echo With top checksum: $(shasum -a 256 $WEIGHTS) echo Without top: $GCS_PATH/$OUTPUT_WEIGHTS echo Without top checksum: $(shasum -a 256 $OUTPUT_WEIGHTS) gsutil cp $WEIGHTS $GCS_PATH/ gsutil cp $OUTPUT_WEIGHTS $GCS_PATH/ gsutil acl ch -u AllUsers:R $GCS_PATH/$WEIGHTS gsutil acl ch -u AllUsers:R $GCS_PATH/$OUTPUT_WEIGHTS
keras-cv/shell/weights/process_backbone_weights.sh/0
{ "file_path": "keras-cv/shell/weights/process_backbone_weights.sh", "repo_id": "keras-cv", "token_count": 258 }
76
## ๆดปๆ€งๅŒ–้–ขๆ•ฐใฎไฝฟใ„ๆ–น ๆดปๆ€งๅŒ–้–ขๆ•ฐใฏ`Activation`ใƒฌใ‚คใƒคใƒผ๏ผŒใพใŸใฏๅ…จใฆใฎใƒ•ใ‚ฉใƒฏใƒผใƒ‰ใƒฌใ‚คใƒคใƒผใงไฝฟใˆใ‚‹ๅผ•ๆ•ฐ`activation`ใงๅˆฉ็”จใงใใพใ™๏ผŽ ```python from keras.layers.core import Activation, Dense model.add(Dense(64)) model.add(Activation('tanh')) ``` ไธŠใฎใ‚ณใƒผใƒ‰ใฏไปฅไธ‹ใจ็ญ‰ไพกใงใ™๏ผš ```python model.add(Dense(64, activation='tanh')) ``` ่ฆ็ด ใ”ใจใซ้ฉ็”จใงใใ‚‹TensorFlow/Theano/CNTK้–ขๆ•ฐใ‚’ๆดปๆ€งๅŒ–้–ขๆ•ฐใซๆธกใ™ใ“ใจใ‚‚ใงใใพใ™: ```python from keras import backend as K def tanh(x): return K.tanh(x) model.add(Dense(64, activation=tanh)) model.add(Activation(tanh)) ``` ## ๅˆฉ็”จๅฏ่ƒฝใชๆดปๆ€งๅŒ–้–ขๆ•ฐ ### softmax ```python softmax(x, axis=-1) ``` Softmax้–ขๆ•ฐ __ๅผ•ๆ•ฐ__ - __x__: ใƒ†ใƒณใ‚ฝใƒซ๏ผŽ - __axis__: ๆ•ดๆ•ฐ๏ผŽใฉใฎ่ปธใซsoftmaxใฎๆญฃ่ฆๅŒ–ใ‚’ใ™ใ‚‹ใ‹๏ผŽ __ๆˆปใ‚Šๅ€ค__ ใƒ†ใƒณใ‚ฝใƒซ๏ผŽsoftmaxๅค‰ๆ›ใฎๅ‡บๅŠ›๏ผŽ __Raises__ - __ValueError__: `dim(x) == 1`ใฎใจใ๏ผŽ --- ### elu ```python elu(x, alpha=1.0) ``` --- ### selu ```python selu(x) ``` Scaled Exponential Linear Unit. (Klambauer et al., 2017) __ๅผ•ๆ•ฐ__ - __x__: ๆดปๆ€งๅŒ–้–ขๆ•ฐใ‚’้ฉ็”จใ™ใ‚‹ใƒ†ใƒณใ‚ฝใƒซใ‹ๅค‰ๆ•ฐ๏ผŽ __ๅ‚่€ƒๆ–‡็Œฎ__ - [Self-Normalizing Neural Networks](https://arxiv.org/abs/1706.02515) --- ### softplus ```python softplus(x) ``` --- ### softsign ```python softsign(x) ``` --- ### relu ```python relu(x, alpha=0.0, max_value=None) ``` --- ### tanh ```python tanh(x) ``` --- ### sigmoid ```python sigmoid(x) ``` --- ### hard_sigmoid ```python hard_sigmoid(x) ``` --- ### linear ```python linear ``` --- ## ใ‚ˆใ‚Š้ซ˜ๅบฆใชๆดปๆ€งๅŒ–้–ขๆ•ฐ ๅ˜็ด”ใชTensorFlow/Theano/CNTK้–ขๆ•ฐใ‚ˆใ‚Šใ‚‚้ซ˜ๅบฆใชๆดปๆ€งๅŒ–้–ขๆ•ฐ (ไพ‹: ็Šถๆ…‹ใ‚’ๆŒใฆใ‚‹learnable activations) ใฏ๏ผŒ[Advanced Activation layers](layers/advanced-activations.md)ใจใ—ใฆๅˆฉ็”จๅฏ่ƒฝใงใ™๏ผŽ ใ“ใ‚Œใ‚‰ใฏ๏ผŒ`keras.layers.advanced_activations`ใƒขใ‚ธใƒฅใƒผใƒซใซใ‚ใ‚Š๏ผŒ`PReLU`ใ‚„`LeakyReLU`ใŒๅซใพใ‚Œใพใ™๏ผŽ
keras-docs-ja/sources/activations.md/0
{ "file_path": "keras-docs-ja/sources/activations.md", "repo_id": "keras-docs-ja", "token_count": 972 }
77
<span style="float:right;">[[source]](https://github.com/keras-team/keras/blob/master/keras/layers/embeddings.py#L11)</span> ### Embedding ```python keras.layers.embeddings.Embedding(input_dim, output_dim, embeddings_initializer='uniform', embeddings_regularizer=None, activity_regularizer=None, embeddings_constraint=None, mask_zero=False, input_length=None) ``` ๆญฃใฎๆ•ดๆ•ฐ๏ผˆใ‚คใƒณใƒ‡ใƒƒใ‚ฏใ‚น๏ผ‰ใ‚’ๅ›บๅฎšๆฌกๅ…ƒใฎๅฏ†ใƒ™ใ‚ฏใƒˆใƒซใซๅค‰ๆ›ใ—ใพใ™๏ผŽ ไพ‹๏ผ‰[[4], [20]] -> [[0.25, 0.1], [0.6, -0.2]] ใ“ใฎใƒฌใ‚คใƒคใƒผใฏใƒขใƒ‡ใƒซใฎๆœ€ๅˆใฎใƒฌใ‚คใƒคใƒผใจใ—ใฆใฎใฟๅˆฉ็”จใงใใพใ™๏ผŽ __ไพ‹__ ```python model = Sequential() model.add(Embedding(1000, 64, input_length=10)) # the model will take as input an integer matrix of size (batch, input_length). # the largest integer (i.e. word index) in the input should be no larger than 999 (vocabulary size). # now model.output_shape == (None, 10, 64), where None is the batch dimension. input_array = np.random.randint(1000, size=(32, 10)) model.compile('rmsprop', 'mse') output_array = model.predict(input_array) assert output_array.shape == (32, 10, 64) ``` __ๅผ•ๆ•ฐ__ - __input_dim__: ๆญฃใฎๆ•ดๆ•ฐ๏ผŽ่ชžๅฝ™ๆ•ฐ๏ผŽๅ…ฅๅŠ›ใƒ‡ใƒผใ‚ฟใฎๆœ€ๅคงใ‚คใƒณใƒ‡ใƒƒใ‚ฏใ‚น + 1๏ผŽ - __output_dim__: 0ไปฅไธŠใฎๆ•ดๆ•ฐ๏ผŽๅฏ†ใชembeddingsใฎๆฌกๅ…ƒๆ•ฐ๏ผŽ - __embeddings_initializer__: `embeddings`่กŒๅˆ—ใฎ[Initializers](../initializers.md)๏ผŽ - __embeddings_regularizer__: `embeddings`่กŒๅˆ—ใซ้ฉ็”จใ™ใ‚‹[Regularizers](../regularizers.md)๏ผŽ - __embeddings_constraint__: `embeddings`่กŒๅˆ—ใซ้ฉ็”จใ™ใ‚‹[Constraints](../constraints.md)๏ผŽ - __mask_zero__: ็œŸ็†ๅ€ค๏ผŽๅ…ฅๅŠ›ใฎ0ใ‚’ใƒ‘ใƒ‡ใ‚ฃใƒณใ‚ฐใฎใŸใ‚ใฎ็‰นๅˆฅๅ€คใจใ—ใฆๆ‰ฑใ†ใ‹ใฉใ†ใ‹๏ผŽ ใ“ใ‚Œใฏๅ…ฅๅŠ›ใฎ็ณปๅˆ—้•ทใŒๅฏๅค‰้•ทใจใชใ‚Šใ†ใ‚‹ๅค‰ๆ•ฐใ‚’ๅ…ฅๅŠ›ใซใ‚‚ใค[Recurrentใƒฌใ‚คใƒคใƒผ](recurrent.md)ใซๅฏพใ—ใฆๆœ‰ๅŠนใงใ™๏ผŽ ใ“ใฎๅผ•ๆ•ฐใŒ`True`ใฎใจใ๏ผŒไปฅ้™ใฎใƒฌใ‚คใƒคใƒผใฏๅ…จใฆใ“ใฎใƒžใ‚นใ‚ฏใ‚’ใ‚ตใƒใƒผใƒˆใ™ใ‚‹ๅฟ…่ฆใŒใ‚ใ‚Š๏ผŒ ใใ†ใ—ใชใ‘ใ‚Œใฐ๏ผŒไพ‹ๅค–ใŒ่ตทใใพใ™๏ผŽ mask_zeroใŒTrueใฎใจใ๏ผŒindex 0ใฏ่ชžๅฝ™ใฎไธญใงไฝฟใˆใพใ›ใ‚“๏ผˆinput_dim ใฏ`่ชžๅฝ™ๆ•ฐ+1`ใจ็ญ‰ใ—ใใชใ‚‹ในใใงใ™๏ผ‰๏ผŽ - __input_length__: ๅ…ฅๅŠ›ใฎ็ณปๅˆ—้•ท๏ผˆๅฎšๆ•ฐ๏ผ‰๏ผŽ ใ“ใฎๅผ•ๆ•ฐใฏใ“ใฎใƒฌใ‚คใƒคใƒผใฎๅพŒใซ`Flatten`ใ‹ใ‚‰`Dense`ใƒฌใ‚คใƒคใƒผใธๆŽฅ็ถšใ™ใ‚‹้š›ใซๅฟ…่ฆใงใ™ (ใ“ใ‚ŒใŒใชใ„ใจ๏ผŒdenseใฎๅ‡บๅŠ›ใฎshapeใ‚’่จˆ็ฎ—ใงใใพใ›ใ‚“)๏ผŽ __ๅ…ฅๅŠ›ใฎshape__ shapeใŒ`(batch_size, sequence_length)`ใฎ2้šŽใƒ†ใƒณใ‚ฝใƒซ๏ผŽ __ๅ‡บๅŠ›ใฎshape__ shapeใŒ`(batch_size, sequence_length, output_dim)`ใฎ3้šŽใƒ†ใƒณใ‚ฝใƒซ๏ผŽ __ๅ‚่€ƒๆ–‡็Œฎ__ - [A Theoretically Grounded Application of Dropout in Recurrent Neural Networks](http://arxiv.org/abs/1512.05287)
keras-docs-ja/sources/layers/embeddings.md/0
{ "file_path": "keras-docs-ja/sources/layers/embeddings.md", "repo_id": "keras-docs-ja", "token_count": 1185 }
78
## TimeseriesGenerator ```python keras.preprocessing.sequence.TimeseriesGenerator(data, targets, length, sampling_rate=1, stride=1, start_index=0, end_index=None, shuffle=False, reverse=False, batch_size=128) ``` ๆ™‚็ณปๅˆ—ใƒ‡ใƒผใ‚ฟใฎใƒ‡ใƒผใ‚ฟใฎใƒใƒƒใƒใ‚’็”Ÿๆˆใ™ใ‚‹ใŸใ‚ใฎใƒฆใƒผใƒ†ใ‚ฃใƒชใƒ†ใ‚ฃใ‚ฏใƒฉใ‚น๏ผŽ ใ“ใฎใ‚ฏใƒฉใ‚นใฏ่จ“็ทดใ‚„่ฉ•ไพกใฎใŸใ‚ใฎใƒใƒƒใƒใ‚’็”Ÿๆˆใ™ใ‚‹ใŸใ‚ใซ๏ผŒใ‚นใƒˆใƒฉใ‚คใƒ‰ใ‚„ๅฑฅๆญดใฎ้•ทใ•็ญ‰ใฎใ‚ˆใ†ใชๆ™‚็ณปๅˆ—ใƒ‡ใƒผใ‚ฟใจใจใ‚‚ใซ๏ผŒ็ญ‰้–“้š”ใซ้›†ใ‚ใ‚‰ใ‚ŒใŸใƒ‡ใƒผใ‚ฟ็‚นใฎใ‚ทใƒผใ‚ฑใƒณใ‚นใ‚’ๅ–ใ‚Š่พผใฟใพใ™๏ผŽ __ๅผ•ๆ•ฐ__ - __data__: ้€ฃ็ถš็š„ใชใƒ‡ใƒผใ‚ฟ็‚น๏ผˆใ‚ฟใ‚คใƒ ใ‚นใƒ†ใƒƒใƒ—๏ผ‰ใ‚’ๅซใ‚“ใ ใƒชใ‚นใƒˆใ‚„Numpy้…ๅˆ—ใฎใ‚ˆใ†ใชใ‚คใƒณใƒ‡ใƒƒใ‚ฏใ‚นๅฏ่ƒฝใชใ‚ธใ‚งใƒใƒฌใƒผใ‚ฟ๏ผŽใ“ใฎใƒ‡ใƒผใ‚ฟใฏ2ๆฌกๅ…ƒใงใ‚ใ‚‹ๅฟ…่ฆใŒใ‚ใ‚Š๏ผŒ่ปธ0ใฏๆ™‚้–“ใฎๆฌกๅ…ƒใงใ‚ใ‚‹ไบ‹ใŒๆœŸๅพ…ใ•ใ‚Œใพใ™๏ผŽ - __targets__: ใƒ‡ใƒผใ‚ฟใฎไธญใงใ‚ฟใ‚คใƒ ใ‚นใƒ†ใƒƒใƒ—ใซๅฏพๅฟœใ™ใ‚‹ใ‚ฟใƒผใ‚ฒใƒƒใƒˆ๏ผŽใƒ‡ใƒผใ‚ฟใจๅŒใ˜้•ทใ•ใงใ‚ใ‚‹ๅฟ…่ฆใŒใ‚ใ‚Šใพใ™๏ผŽ - __length__: ๏ผˆใ‚ฟใ‚คใƒ ใ‚นใƒ†ใƒƒใƒ—ๆ•ฐใซใŠใ„ใฆ๏ผ‰ๅ‡บๅŠ›ใ‚ทใƒผใ‚ฑใƒณใ‚นใฎ้•ทใ•๏ผŽ - __sampling_rate__: ใ‚ทใƒผใ‚ฑใƒณใ‚นๅ†…ใง้€ฃ็ถšใ—ใŸ็‹ฌ็ซ‹ใฎๆœŸ้–“๏ผŽใƒฌใƒผใƒˆ`r`ใซใ‚ˆใฃใฆๆฑบใพใ‚‹ใ‚ฟใ‚คใƒ ใ‚นใƒ†ใƒƒใƒ—`data[i]`, `data[i-r]`, ... `data[i - length]`ใฏใ‚ตใƒณใƒ—ใƒซใฎใ‚ทใƒผใ‚ฑใƒณใ‚น็”Ÿๆˆใซไฝฟใ‚ใ‚Œใพใ™๏ผŽ - __stride__: ้€ฃ็ถšใ—ใŸๅ‡บๅŠ›ใ‚ทใƒผใ‚ฑใƒณใ‚นใฎ็ฏ„ๅ›ฒ๏ผŽ้€ฃ็ถšใ—ใŸๅ‡บๅŠ›ใ‚ตใƒณใƒ—ใƒซใฏใ‚นใƒˆใƒฉใ‚คใƒ‰`s`ใฎๅ€คใซใ‚ˆใฃใฆๆฑบใพใ‚‹`data[i]`, `data[i+s]`, `data[i+2*s]`ใชใฉใ‹ใ‚‰ๅ‡บๆฅใฆใ„ใพใ™๏ผŽ - __start_index__, __end_index__: `start_index`ใ‚ˆใ‚Šๅ‰ใพใŸใฏ`end_index`ใ‚ˆใ‚ŠๅพŒใฎใƒ‡ใƒผใ‚ฟ็‚นใฏๅ‡บๅŠ›ใ‚ทใƒผใ‚ฑใƒณใ‚นใงใฏไฝฟใ‚ใ‚Œใพใ›ใ‚“๏ผŽใ“ใ‚Œใฏใƒ†ใ‚นใƒˆใ‚„ๆคœ่จผใฎใŸใ‚ใซใƒ‡ใƒผใ‚ฟใฎไธ€้ƒจใ‚’ไบˆ็ด„ใ™ใ‚‹ใฎใซไพฟๅˆฉใงใ™๏ผŽ - __shuffle__: ๅ‡บๅŠ›ใ‚ตใƒณใƒ—ใƒซใ‚’ใ‚ทใƒฃใƒƒใƒ•ใƒซใ™ใ‚‹ใ‹๏ผŒๆ™‚็ณปๅˆ—้ †ใซใ™ใ‚‹ใ‹ - __reverse__: ็œŸ็†ๅ€ค๏ผš`true`ใชใ‚‰ๅ„ๅ‡บๅŠ›ใ‚ตใƒณใƒ—ใƒซใซใŠใ‘ใ‚‹ใ‚ฟใ‚คใƒ ใ‚นใƒ†ใƒƒใƒ—ใŒ้€†้ †ใซใชใ‚Šใพใ™๏ผŽ - __batch_size__: ๅ„ใƒใƒƒใƒใซใŠใ‘ใ‚‹ๆ™‚็ณปๅˆ—ใ‚ตใƒณใƒ—ใƒซๆ•ฐ๏ผˆใŠใใ‚‰ใๆœ€ๅพŒใฎ1ใคใ‚’้™คใใพใ™๏ผ‰๏ผŽ __ๆˆปใ‚Šๅ€ค__ [Sequence](/utils/#sequence)ใ‚คใƒณใ‚นใ‚ฟใƒณใ‚น๏ผŽ __ไพ‹__ ```python from keras.preprocessing.sequence import TimeseriesGenerator import numpy as np data = np.array([[i] for i in range(50)]) targets = np.array([[i] for i in range(50)]) data_gen = TimeseriesGenerator(data, targets, length=10, sampling_rate=2, batch_size=2) assert len(data_gen) == 20 batch_0 = data_gen[0] x, y = batch_0 assert np.array_equal(x, np.array([[[0], [2], [4], [6], [8]], [[1], [3], [5], [7], [9]]])) assert np.array_equal(y, np.array([[10], [11]])) ``` --- ## pad_sequences ```python pad_sequences(sequences, maxlen=None, dtype='int32', padding='pre', truncating='pre', value=0.0) ``` ใ‚ทใƒผใ‚ฑใƒณใ‚นใ‚’ๅŒใ˜้•ทใ•ใซใชใ‚‹ใ‚ˆใ†ใซ่ฉฐใ‚ใพใ™๏ผŽ `num_samples` ใ‚ทใƒผใ‚ฑใƒณใ‚นใ‹ใ‚‰ๆง‹ๆˆใ•ใ‚Œใ‚‹ใƒชใ‚นใƒˆ๏ผˆใ‚นใ‚ซใƒฉใฎใƒชใ‚นใƒˆ๏ผ‰ใ‚’shapeใŒ`(num_samples, num_timesteps)`ใฎ2ๆฌกๅ…ƒใฎNumpy ้…ๅˆ—ใซๅค‰ๆ›ใ—ใพใ™๏ผŽ`num_timesteps`ใฏ`maxlen`ๅผ•ๆ•ฐใŒไธŽใˆใ‚‰ใ‚Œใ‚Œใฐ`maxlen`ใซ๏ผŒไธŽใˆใ‚‰ใ‚Œใชใ‘ใ‚Œใฐๆœ€ๅคงใฎใ‚ทใƒผใ‚ฑใƒณใ‚น้•ทใซใชใ‚Šใพใ™๏ผŽ `num_timesteps`ใ‚ˆใ‚Š็Ÿญใ„ใ‚ทใƒผใ‚ฑใƒณใ‚นใฏ๏ผŒ`value`ใงใƒ‘ใƒ‡ใ‚ฃใƒณใ‚ฐใ•ใ‚Œใพใ™๏ผŽ `num_timesteps`ใ‚ˆใ‚Š้•ทใ„ใ‚ทใƒผใ‚ฑใƒณใ‚นใฏ๏ผŒๆŒ‡ๅฎšใ•ใ‚ŒใŸ้•ทใ•ใซๅˆ‡ใ‚Š่ฉฐใ‚ใ‚‰ใ‚Œใพใ™๏ผŽ ใƒ‘ใƒ‡ใ‚ฃใƒณใ‚ฐใจๅˆ‡ใ‚Š่ฉฐใ‚ใฎไฝ็ฝฎใฏใใ‚Œใžใ‚Œ`padding`ใจ`truncating`ใซใ‚ˆใฃใฆๆฑบใ‚ใ‚‰ใ‚Œใพใ™๏ผŽ pre-paddingใŒใƒ‡ใƒ•ใ‚ฉใƒซใƒˆใงใ™๏ผŽ __ๅผ•ๆ•ฐ__ - __sequences__: ใƒชใ‚นใƒˆใฎใƒชใ‚นใƒˆ๏ผŒๅ„่ฆ็ด ใฏใใ‚Œใžใ‚Œใ‚ทใƒผใ‚ฑใƒณใ‚นใงใ™๏ผŽ - __maxlen__: ๆ•ดๆ•ฐ๏ผŒใ‚ทใƒผใ‚ฑใƒณใ‚นใฎๆœ€ๅคง้•ท๏ผŽ - __dtype__: ๅ‡บๅŠ›ใ‚ทใƒผใ‚ฑใƒณใ‚นใฎๅž‹๏ผŽ - __padding__: ๆ–‡ๅญ—ๅˆ—๏ผŒ'pre'ใพใŸใฏ'post'๏ผŽๅ„ใ‚ทใƒผใ‚ฑใƒณใ‚นใฎๅ‰ๅพŒใฉใกใ‚‰ใ‚’ๅŸ‹ใ‚ใ‚‹ใ‹๏ผŽ - __truncating__: ๆ–‡ๅญ—ๅˆ—๏ผŒ'pre'ใพใŸใฏ'post'๏ผŽ`maxlen`ใ‚ˆใ‚Š้•ทใ„ใ‚ทใƒผใ‚ฑใƒณใ‚นใฎๅ‰ๅพŒใฉใกใ‚‰ใ‚’ๅˆ‡ใ‚Š่ฉฐใ‚ใ‚‹ใ‹๏ผŽ - __value__: ๆตฎๅ‹•ๅฐๆ•ฐ็‚นๆ•ฐ๏ผŽใƒ‘ใƒ‡ใ‚ฃใƒณใ‚ฐใ™ใ‚‹ๅ€ค๏ผŽ __ๆˆปใ‚Šๅ€ค__ - __x__: shapeใŒ`(len(sequences), maxlen)`ใฎNumpy้…ๅˆ—๏ผŽ __Raises__ - __ValueError__: `truncating`ใ‚„`padding`ใŒ็„กๅŠนใชๅ€คใฎๅ ดๅˆ๏ผŒใพใŸใฏ`sequences`ใฎใ‚จใƒณใƒˆใƒชใŒ็„กๅŠนใชshapeใฎๅ ดๅˆ๏ผŽ --- ## skipgrams ```python skipgrams(sequence, vocabulary_size, window_size=4, negative_samples=1.0, shuffle=True, categorical=False, sampling_table=None, seed=None) ``` skipgramใฎๅ˜่ชžใƒšใ‚ขใ‚’็”Ÿๆˆใ—ใพใ™๏ผŽ ใ“ใฎ้–ขๆ•ฐใฏๅ˜่ชžใ‚คใƒณใƒ‡ใƒƒใ‚ฏใ‚นใฎใ‚ทใƒผใ‚ฑใƒณใ‚น๏ผˆๆ•ดๆ•ฐใฎใƒชใ‚นใƒˆ๏ผ‰ใ‚’ไปฅไธ‹ใฎๅฝขๅผใฎๅ˜่ชžใฎใ‚ฟใƒ—ใƒซใซๅค‰ๆ›ใ—ใพใ™: - ๏ผˆๅ˜่ชž, ๅŒใ˜ๆ–‡่„ˆใงๅ‡บ็พใ™ใ‚‹ๅ˜่ชž๏ผ‰, 1ใฎใƒฉใƒ™ใƒซ ๏ผˆๆญฃไพ‹๏ผ‰๏ผŽ - ๏ผˆๅ˜่ชž, ่ชžๅฝ™ไธญใฎใƒฉใƒณใƒ€ใƒ ใชๅ˜่ชž๏ผ‰, 0ใฎใƒฉใƒ™ใƒซ ๏ผˆ่ฒ ไพ‹๏ผ‰๏ผŽ Skipgramใฎ่ฉณ็ดฐใฏMikolovใ‚‰ใฎ่ซ–ๆ–‡ใ‚’ๅ‚็…งใ—ใฆใใ ใ•ใ„: [Efficient Estimation of Word Representations in Vector Space](http://arxiv.org/pdf/1301.3781v3.pdf) __ๅผ•ๆ•ฐ__ - __sequence__: ๅ˜่ชžใฎใ‚ทใƒผใ‚ฑใƒณใ‚น๏ผˆๆ–‡๏ผ‰ใง๏ผŒๅ˜่ชžใ‚คใƒณใƒ‡ใƒƒใ‚ฏใ‚น๏ผˆๆ•ดๆ•ฐ๏ผ‰ใฎใƒชใ‚นใƒˆใจใ—ใฆใ‚จใƒณใ‚ณใƒผใƒ‰ใ•ใ‚ŒใŸใ‚‚ใฎ๏ผŽ`sampling_table`ใ‚’ไฝฟใ†ๅ ดๅˆ๏ผŒๅ˜่ชžใ‚คใƒณใƒ‡ใƒƒใ‚ฏใ‚นใฏๅ‚็…งใ™ใ‚‹ใƒ‡ใƒผใ‚ฟใ‚ปใƒƒใƒˆใฎไธญใงๅ˜่ชžใฎใƒฉใƒณใ‚ฏใซใ‚ใฃใŸใƒฉใƒณใ‚ฏใงใ‚ใ‚‹ไบ‹ใŒๆœŸๅพ…ใ•ใ‚Œใพใ™๏ผˆไพ‹ใˆใฐ10ใฏ10็•ช็›ฎใซ็‹‚ๅ–œใ™ใ‚‹ใƒˆใƒผใ‚ฏใƒณใซใ‚จใƒณใ‚ณใƒผใƒ‰ใ•ใ‚Œใพใ™๏ผ‰๏ผŽใ‚คใƒณใƒ‡ใƒƒใ‚ฏใ‚น0ใฏ็„กๆ„ๅ‘ณใช่ชžใ‚’ๆœŸๅพ…ใ•ใ‚Œ๏ผŒใ‚นใ‚ญใƒƒใƒ—ใ•ใ‚Œใพใ™๏ผŽ - __vocabulary_size__: ๆ•ดๆ•ฐ๏ผŽๅฏ่ƒฝใชๅ˜่ชžใ‚คใƒณใƒ‡ใƒƒใ‚ฏใ‚นใฎๆœ€ๅคงๅ€ค+1๏ผŽ - __window_size__: ๆ•ดๆ•ฐ๏ผŽใ‚ตใƒณใƒ—ใƒชใƒณใ‚ฐใ™ใ‚‹ใ‚ฆใ‚ฃใƒณใƒ‰ใ‚ฆใฎใ‚ตใ‚คใ‚บ๏ผˆๆŠ€่ก“็š„ใซใฏๅŠๅˆ†ใฎใ‚ฆใ‚ฃใƒณใƒ‰ใ‚ฆ๏ผ‰๏ผŽๅ˜่ชž`w_i`ใฎใ‚ฆใ‚ฃใƒณใƒ‰ใ‚ฆใฏ`[i - window_size, i + window_size+1]`ใซใชใ‚Šใพใ™๏ผŽ - __negative_samples__: 0ไปฅไธŠใฎๆตฎๅ‹•ๅฐๆ•ฐ็‚นๆ•ฐ๏ผŽ0ใฏใƒใ‚ฌใƒ†ใ‚ฃใƒ–ใ‚ตใƒณใƒ—ใƒซๆ•ฐใŒ0ใซใชใ‚Šใพใ™๏ผŽ1ใฏใƒใ‚ฌใƒ†ใ‚ฃใƒ–ใ‚ตใƒณใƒ—ใƒซๆ•ฐใŒใƒใ‚ธใƒ†ใ‚ฃใƒ–ใ‚ตใƒณใƒ—ใƒซใจๅŒใ˜ๆ•ฐใซใชใ‚Šใพใ™๏ผŽ - __shuffle__: ๅ˜่ชžใฎ็ต„ใ‚’ๅค‰ใˆใ‚‹ๅ‰ใซใ‚ทใƒฃใƒƒใƒ•ใƒซใ™ใ‚‹ใ‹ใฉใ†ใ‹๏ผŽ - __categorical__: ็œŸ็†ๅ€ค๏ผŽFalseใชใ‚‰ใƒฉใƒ™ใƒซใฏๆ•ดๆ•ฐ๏ผˆไพ‹ใˆใฐ`[0, 1, 1 .. ]`๏ผ‰ใซใชใ‚Š๏ผŒ`True`ใชใ‚‰ใ‚ซใƒ†ใ‚ดใƒชใ‚ซใƒซ๏ผŒไพ‹ใˆใฐ`[[1,0],[0,1],[0,1] .. ]`ใซใชใ‚Šใพใ™๏ผŽ - __sampling_table__: ใ‚ตใ‚คใ‚บใŒ`vocabulary_size`ใฎ1ๆฌกๅ…ƒ้…ๅˆ—๏ผŽใ‚จใƒณใƒˆใƒชiใฏใ‚คใƒณใƒ‡ใƒƒใ‚ฏใ‚นiใ‚’ๆŒใคๅ˜่ชž๏ผˆใƒ‡ใƒผใ‚ฟใ‚ปใƒƒใƒˆไธญใงi็•ช็›ฎใซ้ ปๅ‡บใ™ใ‚‹ๅ˜่ชžใ‚’ๆƒณๅฎšใ—ใพใ™๏ผ‰ใฎใ‚ตใƒณใƒ—ใƒชใƒณใ‚ฐ็ขบ็އใงใ™๏ผŽ - __seed__: ใƒฉใƒณใƒ€ใƒ ใ‚ทใƒผใƒ‰๏ผŽ __ๆˆปใ‚Šๅ€ค__ couples, labels: `couples`ใฏๆ•ดๆ•ฐใฎใƒšใ‚ข๏ผŒ`labels`ใฏ0ใ‹1ใฎใ„ใšใ‚Œใ‹ใงใ™๏ผŽ __ๆณจๆ„__ ๆ…ฃไพ‹ใซใ‚ˆใ‚Š๏ผŒ่ชžๅฝ™ใฎไธญใงใ‚คใƒณใƒ‡ใƒƒใ‚ฏใ‚นใŒ0ใฎใ‚‚ใฎใฏๅ˜่ชžใงใฏใชใ๏ผŒใ‚นใ‚ญใƒƒใƒ—ใ•ใ‚Œใพใ™๏ผŽ --- ## make_sampling_table ```python make_sampling_table(size, sampling_factor=1e-05) ``` ใƒฏใƒผใƒ‰ใƒฉใƒณใ‚ฏใƒ™ใƒผใ‚นใฎ็ขบ็އ็š„ใชใ‚ตใƒณใƒ—ใƒชใƒณใ‚ฐใƒ†ใƒผใƒ–ใƒซใ‚’็”Ÿๆˆใ—ใพใ™๏ผŽ `skipgrams`ใฎ`sampling_table`ๅผ•ๆ•ฐใ‚’็”Ÿๆˆใ™ใ‚‹ใŸใ‚ใซๅˆฉ็”จใ—ใพใ™๏ผŽ`sampling_table[i]`ใฏใƒ‡ใƒผใ‚ฟใ‚ปใƒƒใƒˆไธญใงi็•ช็›ฎใซ้ ปๅ‡บใ™ใ‚‹ๅ˜่ชžใ‚’ใ‚ตใƒณใƒ—ใƒชใƒณใ‚ฐใ™ใ‚‹็ขบ็އใงใ™๏ผˆใƒใƒฉใƒณใ‚นใ‚’ไฟใคใŸใ‚ใซ๏ผŒ้ ปๅ‡บ่ชžใฏใ“ใ‚Œใ‚ˆใ‚ŠไฝŽใ„้ ปๅบฆใงใ‚ตใƒณใƒ—ใƒชใƒณใ‚ฐใ•ใ‚Œใพใ™๏ผ‰๏ผŽ ใ‚ตใƒณใƒ—ใƒชใƒณใ‚ฐใฎ็ขบ็އใฏword2vecใงไฝฟใ‚ใ‚Œใ‚‹ใ‚ตใƒณใƒ—ใƒชใƒณใ‚ฐๅˆ†ๅธƒใซๅพ“ใฃใฆ็”Ÿๆˆใ•ใ‚Œใพใ™๏ผš `p(word) = min(1, sqrt(word_frequency / sampling_factor) / (word_frequency / sampling_factor))` ้ ปๅบฆ๏ผˆ้ †ไฝ๏ผ‰ใฎๆ•ฐๅ€ค่ฟ‘ไผผใ‚’ๅพ—ใ‚‹๏ผˆs=1ใฎ๏ผ‰ใ‚ธใƒƒใƒ—ใฎๆณ•ๅ‰‡ใซๅ˜่ชžใฎ้ ปๅบฆใ‚‚ๅพ“ใฃใฆใ„ใ‚‹ใจไปฎๅฎšใ—ใฆใ„ใพใ™๏ผŽ `frequency(rank) ~ 1/(rank * (log(rank) + gamma) + 1/2 - 1/(12*rank))` ใฎ`gamma`ใฏใ‚ชใ‚คใƒฉใƒผใƒปใƒžใ‚นใ‚ฑใƒญใƒผใƒ‹ๅฎšๆ•ฐใงใ™๏ผŽ __ๅผ•ๆ•ฐ__ - __size__: ๆ•ดๆ•ฐ๏ผŒใ‚ตใƒณใƒ—ใƒชใƒณใ‚ฐๅฏ่ƒฝใช่ชžๅฝ™ๆ•ฐ๏ผŽ - __sampling_factor__: word2vecใฎๅผใซใŠใ‘ใ‚‹ใ‚ตใƒณใƒ—ใƒชใƒณใ‚ฐๅ› ๅญ๏ผŽ __ๆˆปใ‚Šๅ€ค__ ้•ทใ•ใŒ`size`ใฎ1ๆฌกๅ…ƒใฎNumpy้…ๅˆ—ใง๏ผŒi็•ช็›ฎใฎ่ฆ็ด ใฏใƒฉใƒณใ‚ฏiใฎใƒฏใƒผใƒ‰ใŒใ‚ตใƒณใƒ—ใƒชใƒณใ‚ฐใ•ใ‚Œใ‚‹็ขบ็އใงใ™๏ผŽ
keras-docs-ja/sources/preprocessing/sequence.md/0
{ "file_path": "keras-docs-ja/sources/preprocessing/sequence.md", "repo_id": "keras-docs-ja", "token_count": 3875 }
79
# Keras ์ธต์— ๊ด€ํ•˜์—ฌ Keras์˜ ๋ชจ๋“  ์ธต๋“ค์€ ์•„๋ž˜์˜ ๋ฉ”์†Œ๋“œ๋“ค์„ ๊ณตํ†ต์ ์œผ๋กœ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. - `layer.get_weights()`: NumPyํ˜• ๋ฐฐ์—ด์˜ ๋ฆฌ์ŠคํŠธ ํ˜•ํƒœ๋กœ ํ•ด๋‹น ์ธต์˜ ๊ฐ€์ค‘์น˜๋“ค์„ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค. - `layer.set_weights(weights)`: NumPyํ˜• ๋ฐฐ์—ด์˜ ๋ฆฌ์ŠคํŠธ๋กœ๋ถ€ํ„ฐ ํ•ด๋‹น ์ธต์˜ ๊ฐ€์ค‘์น˜๋“ค์„ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค (`get_weights`์˜ ์ถœ๋ ฅ๊ณผ ๋™์ผํ•œ ํฌ๊ธฐ๋ฅผ ๊ฐ€์ ธ์•ผ ํ•ฉ๋‹ˆ๋‹ค). - `layer.get_config()`: ํ•ด๋‹น ์ธต์˜ ์„ค์ •์ด ์ €์žฅ๋œ ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค. ๋ชจ๋“  ์ธต์€ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์„ค์ • ๋‚ด์šฉ์œผ๋กœ๋ถ€ํ„ฐ ๋‹ค์‹œ ์ธ์Šคํ„ด์Šคํ™” ๋  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ```python layer = Dense(32) config = layer.get_config() reconstructed_layer = Dense.from_config(config) ``` ๋˜๋Š” ```python from keras import layers config = layer.get_config() layer = layers.deserialize({'class_name': layer.__class__.__name__, 'config': config}) ``` ๋งŒ์•ฝ ์–ด๋–ค ์ธต์ด ๋‹จ ํ•˜๋‚˜์˜ ๋…ธ๋“œ๋งŒ์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๋ฉด (์ฆ‰, ๊ณต์œ ๋œ ์ธต์ด ์•„๋‹Œ ๊ฒฝ์šฐ), ์ž…๋ ฅ ํ…์„œ, ์ถœ๋ ฅ ํ…์„œ, ์ž…๋ ฅ ํฌ๊ธฐ ๋ฐ ์ถœ๋ ฅ ํฌ๊ธฐ๋ฅผ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ์–ป์–ด์˜ฌ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. - `layer.input` - `layer.output` - `layer.input_shape` - `layer.output_shape` ๋งŒ์•ฝ ํ•ด๋‹น ์ธต์ด ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๋…ธ๋“œ๋“ค์„ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค๋ฉด ([๋…ธ๋“œ์™€ ๊ณต์œ ๋œ ์ธต์˜ ๊ฐœ๋…](/getting-started/functional-api-guide/#the-concept-of-layer-node) ์ฐธ์กฐ), ๋‹ค์Œ์˜ ๋ฉ”์†Œ๋“œ๋“ค์„ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. - `layer.get_input_at(node_index)` - `layer.get_output_at(node_index)` - `layer.get_input_shape_at(node_index)` - `layer.get_output_shape_at(node_index)`
keras-docs-ko/sources/layers/about-keras-layers.md/0
{ "file_path": "keras-docs-ko/sources/layers/about-keras-layers.md", "repo_id": "keras-docs-ko", "token_count": 1050 }
80
# Model ํด๋ž˜์Šค API ํ•จ์ˆ˜ํ˜•<sub>Functional</sub> API๋ฅผ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ๋ฐฉ์‹์œผ๋กœ ์ž…์ถœ๋ ฅ ํ…์„œ๋ฅผ ์ง€์ •ํ•˜์—ฌ `Model` ์ธ์Šคํ„ด์Šค๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ```python from keras.models import Model from keras.layers import Input, Dense a = Input(shape=(32,)) b = Dense(32)(a) model = Model(inputs=a, outputs=b) ``` `a`๋กœ๋ถ€ํ„ฐ `b`๋ฅผ ์‚ฐ์ถœํ•˜๋Š”๋ฐ ํ•„์š”ํ•œ ๋ชจ๋“  ์ธต์„ ์ด ๋ชจ๋ธ์— ๋‹ด์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ ๋‹ค์ค‘ ์ž…๋ ฅ ํ˜น์€ ๋‹ค์ค‘ ์ถœ๋ ฅ ๋ชจ๋ธ์˜ ๊ฒฝ์šฐ ์ž…์ถœ๋ ฅ ๋Œ€์ƒ์„ ๋ฆฌ์ŠคํŠธ๋กœ ๋ฌถ์–ด์„œ ์ง€์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ```python model = Model(inputs=[a1, a2], outputs=[b1, b2, b3]) ``` ๋ณด๋‹ค ์ž์„ธํ•œ `Model` ํ™œ์šฉ๋ฒ•์€ [์ผ€๋ผ์Šค ํ•จ์ˆ˜ํ˜• API ์‹œ์ž‘ํ•˜๊ธฐ](/getting-started/functional-api-guide)๋ฅผ ์ฐธ์กฐํ•˜์‹ญ์‹œ์˜ค. ## Model ๋ฉ”์†Œ๋“œ ### compile ```python compile(optimizer, loss=None, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, target_tensors=None) ``` ํ•™์Šต์‹œํ‚ฌ ๋ชจ๋ธ์„ ๊ตฌ์„ฑํ•ฉ๋‹ˆ๋‹ค. __์ธ์ž__ - __optimizer__: ํ•™์Šต์— ์‚ฌ์šฉํ•  ์ตœ์ ํ™” ํ•จ์ˆ˜<sub>optimizer</sub>๋ฅผ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. ์ผ€๋ผ์Šค๊ฐ€ ์ œ๊ณตํ•˜๋Š” ์ตœ์ ํ™” ํ•จ์ˆ˜์˜ ์ด๋ฆ„ ๋ฌธ์ž์—ด<sub>string</sub> ๋˜๋Š” ๊ฐœ๋ณ„ ์ตœ์ ํ™” ํ•จ์ˆ˜์˜ ์ธ์Šคํ„ด์Šค๋ฅผ ์ž…๋ ฅํ•ฉ๋‹ˆ๋‹ค. ์ž์„ธํ•œ ์‚ฌํ•ญ์€ [์ตœ์ ํ™” ํ•จ์ˆ˜](/optimizers)๋ฅผ ์ฐธ๊ณ ํ•˜์‹ญ์‹œ์˜ค. - __loss__: ํ•™์Šต์— ์‚ฌ์šฉํ•  ์†์‹ค ํ•จ์ˆ˜<sub>loss function</sub>๋ฅผ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. ์ผ€๋ผ์Šค๊ฐ€ ์ œ๊ณตํ•˜๋Š” ์†์‹ค ํ•จ์ˆ˜์˜ ์ด๋ฆ„ ๋ฌธ์ž์—ด ๋˜๋Š” ๊ฐœ๋ณ„ ์†์‹ค ํ•จ์ˆ˜์˜ ์ธ์Šคํ„ด์Šค๋ฅผ ์ž…๋ ฅํ•ฉ๋‹ˆ๋‹ค. ์ž์„ธํ•œ ์‚ฌํ•ญ์€ [์†์‹ค ํ•จ์ˆ˜](/losses)์„ ์ฐธ๊ณ  ํ•˜์‹ญ์‹œ์˜ค. ๋ชจ๋ธ์ด ๋‹ค์ค‘์˜ ๊ฒฐ๊ณผ<sub>output</sub>๋ฅผ ์ถœ๋ ฅํ•˜๋Š” ๊ฒฝ์šฐ, ์†์‹ค ํ•จ์ˆ˜๋ฅผ ๋ฆฌ์ŠคํŠธ ๋˜๋Š” ๋”•์…”๋„ˆ๋ฆฌ ํ˜•ํƒœ๋กœ ์ž…๋ ฅํ•˜์—ฌ ๊ฒฐ๊ณผ์˜ ์ข…๋ฅ˜๋ณ„๋กœ ์„œ๋กœ ๋‹ค๋ฅธ ์†์‹ค ํ•จ์ˆ˜๋ฅผ ์ ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ๊ฒฝ์šฐ ๋ชจ๋ธ์ด ์ตœ์†Œํ™”ํ•  ์†์‹ค๊ฐ’์€ ๋ชจ๋“  ์†์‹ค ํ•จ์ˆ˜๋ณ„ ๊ฒฐ๊ณผ๊ฐ’์˜ ํ•ฉ์ด ๋ฉ๋‹ˆ๋‹ค. - __metrics__: ํ•™์Šต ๋ฐ ํ‰๊ฐ€ ๊ณผ์ •์—์„œ ์‚ฌ์šฉํ•  ํ‰๊ฐ€ ์ง€ํ‘œ<sub>metric</sub>์˜ ๋ฆฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ๊ฐ€์žฅ ๋นˆ๋ฒˆํžˆ ์‚ฌ์šฉํ•˜๋Š” ์ง€ํ‘œ๋Š” ์ •ํ™•๋„`metrics=['accuracy']`์ž…๋‹ˆ๋‹ค. ๋ชจ๋ธ์ด ๋‹ค์ค‘์˜ ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•˜๋Š” ๊ฒฝ์šฐ, ๊ฐ ๊ฒฐ๊ณผ์— ์„œ๋กœ ๋‹ค๋ฅธ ์ง€ํ‘œ๋ฅผ ํŠน์ •ํ•˜๋ ค๋ฉด `metrics={'output_a': 'accuracy', 'output_b': ['accuracy', 'mse']}`์™€ ๊ฐ™์€ ํ˜•์‹์˜ ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ ์ž…๋ ฅํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ ์ถœ๋ ฅ ๊ฒฐ๊ณผ์˜ ๊ฐœ์ˆ˜์™€ ๊ฐ™์€ ๊ธธ์ด์˜ ๋ฆฌ์ŠคํŠธ๋ฅผ ์ „๋‹ฌํ•˜๋Š” ํ˜•์‹์œผ๋กœ๋„ ์ง€์ •ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค(์˜ˆ: `metrics=[['accuracy'], ['accuracy', 'mse']]` ํ˜น์€ `metrics=['accuracy', ['accuracy', 'mse']]`). - __loss_weights__: ๋ชจ๋ธ์ด ๋‹ค์ค‘์˜ ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•˜๋Š” ๊ฒฝ์šฐ ๊ฐ๊ฐ์˜ ์†์‹ค๊ฐ’์ด ์ „์ฒด ์†์‹ค๊ฐ’์— ๋ฏธ์น˜๋Š” ์˜ํ–ฅ์„ ์กฐ์ •ํ•˜๊ธฐ ์œ„ํ•œ ๊ณ„์ˆ˜๋ฅผ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค. ๋ชจ๋ธ์ด ์ตœ์†Œํ™”ํ•  ์†์‹ค๊ฐ’์€ ๊ฐ๊ฐ `loss_weights` ๋งŒํผ์˜ ๊ฐ€์ค‘์น˜๊ฐ€ ๊ณฑํ•ด์ง„ ๊ฐœ๋ณ„ ์†์‹ค๊ฐ’์˜ ํ•ฉ์ž…๋‹ˆ๋‹ค. `float`ํ˜•์‹์˜ ์Šค์นผ๋ผ ๊ฐ’์œผ๋กœ ์ด๋ฃจ์–ด์ง„ ๋ฆฌ์ŠคํŠธ ๋˜๋Š” ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ ์ž…๋ ฅ๋ฐ›์Šต๋‹ˆ๋‹ค. ๋ฆฌ์ŠคํŠธ์ผ ๊ฒฝ์šฐ ๋ชจ๋ธ์˜ ๊ฒฐ๊ณผ์™€ ์ˆœ์„œ์— ๋งž๊ฒŒ 1:1๋กœ ๋‚˜์—ด๋˜์–ด์•ผ ํ•˜๋ฉฐ, ๋”•์…”๋„ˆ๋ฆฌ์˜ ๊ฒฝ์šฐ ๊ฒฐ๊ณผ๊ฐ’์˜ ๋ฌธ์ž์—ด ์ด๋ฆ„์„ `key`๋กœ, ์ ์šฉํ•  ๊ฐ€์ค‘์น˜์˜ ์Šค์นผ๋ผ ๊ฐ’์„ `value`๋กœ ์ง€์ •ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. - __sample_weight_mode__: `fit` ๋ฉ”์†Œ๋“œ์˜ `sample_weight`์ธ์ž๋Š” ๋ชจ๋ธ์˜ ํ•™์Šต๊ณผ์ •์—์„œ ์†์‹ค์„ ๊ณ„์‚ฐํ•  ๋•Œ ์ž…๋ ฅ๋œ ํ›ˆ๋ จ<sub>train</sub> ์„ธํŠธ์˜ ํ‘œ๋ณธ<sub>sample</sub>๋“ค ๊ฐ๊ฐ์— ๋ณ„๋„์˜ ๊ฐ€์ค‘์น˜๋ฅผ ๋ถ€์—ฌํ•˜๋Š” ์—ญํ• ์„ ํ•ฉ๋‹ˆ๋‹ค. ์ด๋•Œ ๋ถ€์—ฌํ•  ๊ฐ€์ค‘์น˜๊ฐ€ 2D(์‹œ๊ณ„์—ด) ํ˜•ํƒœ๋ผ๋ฉด `compile`๋ฉ”์†Œ๋“œ์˜ `sample_weight_mode`๋ฅผ `"temporal"`๋กœ ์„ค์ •ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ๋ณธ๊ฐ’์€ 1D ํ˜•ํƒœ์ธ `None`์ž…๋‹ˆ๋‹ค. ๋ชจ๋ธ์ด ๋‹ค์ค‘์˜ ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•˜๋Š” ๊ฒฝ์šฐ ๋”•์…”๋„ˆ๋ฆฌ ํ˜น์€ ๋ฆฌ์ŠคํŠธ์˜ ํ˜•ํƒœ๋กœ ์ž…๋ ฅํ•˜์—ฌ ๊ฐ ๊ฒฐ๊ณผ๋งˆ๋‹ค ์„œ๋กœ ๋‹ค๋ฅธ `sample_weight_mode`๋ฅผ ์ ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. - __weighted_metrics__: ํ•™์Šต ๋ฐ ์‹œํ—˜<sub>test</sub> ๊ณผ์ •์—์„œ `sample_weight`๋‚˜ `class_weight`๋ฅผ ์ ์šฉํ•  ํ‰๊ฐ€ ์ง€ํ‘œ๋“ค์„ ๋ฆฌ์ŠคํŠธ ํ˜•์‹์œผ๋กœ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. `sample_weight`์™€ `class_weight`์— ๋Œ€ํ•ด์„œ๋Š” `fit`๋ฉ”์†Œ๋“œ์˜ ์ธ์ž ํ•ญ๋ชฉ์„ ์ฐธ๊ณ ํ•˜์‹ญ์‹œ์˜ค. - __target_tensors__: ๊ธฐ๋ณธ์ ์œผ๋กœ ์ผ€๋ผ์Šค๋Š” ํ•™์Šต ๊ณผ์ •์—์„œ ์™ธ๋ถ€๋กœ๋ถ€ํ„ฐ ๋ชฉํ‘œ๊ฐ’<sub>target</sub>์„ ์ž…๋ ฅ๋ฐ›์•„ ์ €์žฅํ•  ๊ณต๊ฐ„์ธ ํ”Œ๋ ˆ์ด์Šคํ™€๋”<sub>placeholder</sub>๋ฅผ ๋ฏธ๋ฆฌ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ๋งŒ์•ฝ ํ”Œ๋ ˆ์ด์Šคํ™€๋”๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๋Œ€์‹  ํŠน์ •ํ•œ ํ…์„œ๋ฅผ ๋ชฉํ‘œ๊ฐ’์œผ๋กœ ์‚ฌ์šฉํ•˜๊ณ ์ž ํ•œ๋‹ค๋ฉด `target_tensors`์ธ์ž๋ฅผ ํ†ตํ•ด ์ง์ ‘ ์ง€์ •ํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ํ•™์Šต๊ณผ์ •์—์„œ ์™ธ๋ถ€๋กœ๋ถ€ํ„ฐ NumPy ๋ฐ์ดํ„ฐ๋ฅผ ๋ชฉํ‘œ๊ฐ’์œผ๋กœ ์ž…๋ ฅ๋ฐ›์ง€ ์•Š๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ๋‹จ์ผ ๊ฒฐ๊ณผ ๋ชจ๋ธ์ผ ๊ฒฝ์šฐ ํ•˜๋‚˜์˜ ํ…์„œ๋ฅผ, ๋‹ค์ค‘ ๋ชจ๋ธ์˜ ๊ฒฝ์šฐ๋Š” ํ…์„œ์˜ ๋ฆฌ์ŠคํŠธ ๋˜๋Š” ๊ฒฐ๊ณผ๊ฐ’์˜ ๋ฌธ์ž์—ด ์ด๋ฆ„์„ `key`๋กœ, ํ…์„œ๋ฅผ `value`๋กœ ์ง€์ •ํ•œ ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ `target_tensors`๋กœ ์ž…๋ ฅ๋ฐ›์Šต๋‹ˆ๋‹ค. - __**kwargs__: Theano/CNTK ๋ฐฑ์—”๋“œ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ ์ด ์ธ์ž๋Š” `K.function`์— ์ „๋‹ฌ๋ฉ๋‹ˆ๋‹ค. TensorFlow ๋ฐฑ์—”๋“œ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ, ์ธ์ž๊ฐ€ `tf.Session.run`์— ์ „๋‹ฌ๋ฉ๋‹ˆ๋‹ค. __์˜ค๋ฅ˜__ - __ValueError__: `optimizer`, `loss`, `metrics` ํ˜น์€ `sample_weight_mode`์˜ ์ธ์ž๊ฐ€ ์ž˜๋ชป๋œ ๊ฒฝ์šฐ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. ---- ### fit ```python fit(x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_freq=1, max_queue_size=10, workers=1, use_multiprocessing=False) ``` ์ „์ฒด ๋ฐ์ดํ„ฐ์…‹์„ ์ •ํ•ด์ง„ ํšŸ์ˆ˜๋งŒํผ ๋ฐ˜๋ณตํ•˜์—ฌ ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ต๋‹ˆ๋‹ค. __์ธ์ž__ - __x__: ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ข…๋ฅ˜๊ฐ€ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. - NumPy ๋ฐฐ์—ด<sub>array</sub> ๋˜๋Š” ๋ฐฐ์—ด๊ณผ ๊ฐ™์€ ํ˜•์‹์˜ ๋ฐ์ดํ„ฐ. ๋‹ค์ค‘ ์ž…๋ ฅ์˜ ๊ฒฝ์šฐ ๋ฐฐ์—ด์˜ ๋ฆฌ์ŠคํŠธ. - ๋ชจ๋ธ์ด ์ด๋ฆ„์ด ์ง€์ •๋œ ์ž…๋ ฅ๊ฐ’์„ ๋ฐ›๋Š” ๊ฒฝ์šฐ ์ด๋ฆ„๊ณผ ๋ฐฐ์—ด/ํ…์„œ๊ฐ€ `key`์™€ `value`๋กœ ์—ฐ๊ฒฐ๋œ ๋”•์…”๋„ˆ๋ฆฌ. - ํŒŒ์ด์ฌ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋˜๋Š” `keras.utils.Sequence` ์ธ์Šคํ„ด์Šค๋กœ `(inputs, targets)` ํ˜น์€ `(inputs, targets, sample weights)`๋ฅผ ๋ฐ˜ํ™˜ํ•˜๋Š” ๊ฒƒ. - ํ”„๋ ˆ์ž„์›Œํฌ(์˜ˆ: TensorFlow)๋ฅผ ํ†ตํ•ด ์ด๋ฏธ ์ •์˜๋œ ํ…์„œ๋ฅผ ์ž…๋ ฅ๋ฐ›๋Š” ๊ฒฝ์šฐ `None`(๊ธฐ๋ณธ๊ฐ’). - __y__: ๋ชฉํ‘œ ๋ฐ์ดํ„ฐ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ข…๋ฅ˜๊ฐ€ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. - NumPy ๋ฐฐ์—ด ๋˜๋Š” ๋ฐฐ์—ด๊ณผ ๊ฐ™์€ ํ˜•์‹์˜ ๋ฐ์ดํ„ฐ. ๋‹ค์ค‘์˜ ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•˜๋Š” ๊ฒฝ์šฐ ๋ฐฐ์—ด์˜ ๋ฆฌ์ŠคํŠธ. - ํ”„๋ ˆ์ž„์›Œํฌ(์˜ˆ: TensorFlow)๋ฅผ ํ†ตํ•ด ์ด๋ฏธ ์ •์˜๋œ ํ…์„œ๋ฅผ ์ž…๋ ฅ๋ฐ›๋Š” ๊ฒฝ์šฐ `None`(๊ธฐ๋ณธ๊ฐ’). - ๊ฒฐ๊ณผ๊ฐ’์˜ ์ด๋ฆ„์ด ์ง€์ •๋˜์–ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด๋ฆ„๊ณผ ๋ฐฐ์—ด/ํ…์„œ๊ฐ€ `key`์™€ `value`๋กœ ์—ฐ๊ฒฐ๋œ ๋”•์…”๋„ˆ๋ฆฌ. - ๋งŒ์•ฝ `x`์—์„œ ํŒŒ์ด์ฌ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋˜๋Š” `keras.utils.Sequence` ์ธ์Šคํ„ด์Šค๋ฅผ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ๋ชฉํ‘œ๊ฐ’์ด `x`์™€ ํ•จ๊ป˜ ์ž…๋ ฅ๋˜๋ฏ€๋กœ ๋ณ„๋„์˜ `y`์ž…๋ ฅ์€ ๋ถˆํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. - __batch_size__: `int` ํ˜น์€ `None`. ์†์‹ค๋กœ๋ถ€ํ„ฐ ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ๊ตฌํ•˜๊ณ  ๊ฐ€์ค‘์น˜๋ฅผ ์—…๋ฐ์ดํŠธํ•˜๋Š” ๊ณผ์ • ํ•œ ๋ฒˆ์— ์‚ฌ์šฉํ•  ํ‘œ๋ณธ์˜ ๊ฐœ์ˆ˜์ž…๋‹ˆ๋‹ค. ๋”ฐ๋กœ ์ •ํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ `batch_size`๋Š” ๊ธฐ๋ณธ๊ฐ’์ธ 32๊ฐ€ ๋ฉ๋‹ˆ๋‹ค. ๋ณ„๋„์˜ ์‹ฌ๋ณผ๋ฆญ ํ…์„œ๋‚˜ ์ œ๋„ค๋ ˆ์ดํ„ฐ, ํ˜น์€ `Sequence` ์ธ์Šคํ„ด์Šค๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ›๋Š” ๊ฒฝ์šฐ ์ธ์Šคํ„ด์Šค๊ฐ€ ์ž๋™์œผ๋กœ ๋ฐฐ์น˜๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ณ„๋„์˜ `batch_size`๋ฅผ ์ง€์ •ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. - __epochs__: `int`. ๋ชจ๋ธ์— ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ํ•™์Šต์‹œํ‚ฌ ํšŸ์ˆ˜์ž…๋‹ˆ๋‹ค. ํ•œ ๋ฒˆ์˜ ์—ํญ์€ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋กœ ์ฃผ์–ด์ง„ ๋ชจ๋“  `x`์™€ `y`๋ฅผ ๊ฐ 1ํšŒ์”ฉ ํ•™์Šต์‹œํ‚ค๋Š” ๊ฒƒ์„ ๋œปํ•ฉ๋‹ˆ๋‹ค. ํšŸ์ˆ˜์˜ ์ธ๋ฑ์Šค๊ฐ€ `epochs`๋กœ ์ฃผ์–ด์ง„ ๊ฐ’์— ๋„๋‹ฌํ•  ๋•Œ๊นŒ์ง€ ํ•™์Šต์ด ๋ฐ˜๋ณต๋˜๋„๋ก ๋˜์–ด์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋งŒ์•ฝ ์‹œ์ž‘ ํšŒ์ฐจ๋ฅผ ์ง€์ •ํ•˜๋Š” `initial_epoch` ์ธ์ž์™€ ๊ฐ™์ด ์“ฐ์ด๋Š” ๊ฒฝ์šฐ `epochs`๋Š” ์ „์ฒด ํšŸ์ˆ˜๊ฐ€ ์•„๋‹Œ "๋งˆ์ง€๋ง‰ ํšŒ์ฐจ"์˜ ์ˆœ๋ฒˆ์„ ๋œปํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. - __verbose__: `int`. `0`, `1`, ํ˜น์€ `2`. ํ•™์Šต ์ค‘ ์ง„ํ–‰ ์ •๋ณด์˜ ํ™”๋ฉด ์ถœ๋ ฅ ์—ฌ๋ถ€๋ฅผ ์„ค์ •ํ•˜๋Š” ์ธ์ž์ž…๋‹ˆ๋‹ค. `0`์€ ํ‘œ์‹œ ์—†์Œ, `1`์€ ์ง„ํ–‰ ํ‘œ์‹œ์ค„<sub>progress bar</sub> ์ถœ๋ ฅ, `2`๋Š” ์—ํญ๋‹น ํ•œ ์ค„์”ฉ ์ถœ๋ ฅ์„ ๋œปํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ๋ณธ๊ฐ’์€ `1`์ž…๋‹ˆ๋‹ค. - __callbacks__: `keras.callbacks.Callback` ์ธ์Šคํ„ด์Šค์˜ ๋ฆฌ์ŠคํŠธ. ํ•™์Šต๊ณผ ๊ฒ€์ฆ ๊ณผ์ •์—์„œ ์ ์šฉํ•  ์ฝœ๋ฐฑ์˜ ๋ฆฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ž์„ธํ•œ ์‚ฌํ•ญ์€ [์ฝœ๋ฐฑ](/callbacks)์„ ์ฐธ์กฐํ•˜์‹ญ์‹œ์˜ค. - __validation_split__: 0๊ณผ 1์‚ฌ์ด์˜ `float`. ์ž…๋ ฅํ•œ `x`์™€ `y` ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์˜ ๋งˆ์ง€๋ง‰๋ถ€ํ„ฐ ์ง€์ •๋œ ๋น„์œจ๋งŒํผ์˜ ํ‘œ๋ณธ์„ ๋ถ„๋ฆฌํ•˜์—ฌ ๊ฒ€์ฆ<sub>validation</sub> ๋ฐ์ดํ„ฐ๋ฅผ ๋งŒ๋“ญ๋‹ˆ๋‹ค. ์ด ๊ณผ์ •์€ ๋ฐ์ดํ„ฐ๋ฅผ ๋’ค์„ž๊ธฐ ์ „์— ์‹คํ–‰๋ฉ๋‹ˆ๋‹ค. ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ๋Š” ํ•™์Šต์— ์‚ฌ์šฉ๋˜์ง€ ์•Š์œผ๋ฉฐ ๊ฐ ์—ํญ์ด ๋๋‚  ๋•Œ๋งˆ๋‹ค ๊ฒ€์ฆ ์†์‹ค๊ณผ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ๊ตฌํ•˜๋Š”๋ฐ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. `x`๊ฐ€ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ํ˜น์€ `Sequence`์ธ ๊ฒฝ์šฐ์—๋Š” ์ง€์›๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. - __validation_data__: ๋งค ์—ํญ์ด ๋๋‚  ๋•Œ๋งˆ๋‹ค ์†์‹ค ๋ฐ ํ‰๊ฐ€์ง€ํ‘œ๋ฅผ ์ธก์ •ํ•  ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ๋ฅผ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ๋Š” ์˜ค์ง ์ธก์ •์—๋งŒ ํ™œ์šฉ๋˜๋ฉฐ ํ•™์Šต์—๋Š” ์‚ฌ์šฉ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. `validation_split`์ธ์ž์™€ ๊ฐ™์ด ์ง€์ •๋  ๊ฒฝ์šฐ `validation_split`์ธ์ž๋ฅผ ๋ฌด์‹œํ•˜๊ณ  ์ ์šฉ๋ฉ๋‹ˆ๋‹ค. `validation_data`๋กœ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ข…๋ฅ˜๊ฐ€ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. - NumPy ๋ฐฐ์—ด ๋˜๋Š” ํ…์„œ๋กœ ์ด๋ฃจ์–ด์ง„ `(x_val, y_val)` ํŠœํ”Œ. - NumPy ๋ฐฐ์—ด๋กœ ์ด๋ฃจ์–ด์ง„ `(x_val, y_val, val_sample_weights)` ํŠœํ”Œ. - ์œ„์™€ ๊ฐ™์ด ํŠœํ”Œ์„ ์ž…๋ ฅํ•˜๋Š” ๊ฒฝ์šฐ์—๋Š” `batch_size`๋„ ๊ฐ™์ด ๋ช…์‹œํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. - ๋ฐ์ดํ„ฐ ์„ธํŠธ ๋˜๋Š” ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์ดํ„ฐ๋ ˆ์ดํ„ฐ. ์ด ๊ฒฝ์šฐ `validation_steps`๋ฅผ ๊ฐ™์ด ๋ช…์‹œํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. - __shuffle__: `bool` ๋˜๋Š” ๋ฌธ์ž์—ด `'batch'`. ๋ถˆ๋ฆฌ์–ธ ์ž…๋ ฅ์˜ ๊ฒฝ์šฐ ๊ฐ ์—ํญ์„ ์‹œ์ž‘ํ•˜๊ธฐ ์ „์— ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋ฅผ ๋’ค์„ž์„์ง€๋ฅผ ๊ฒฐ์ •ํ•ฉ๋‹ˆ๋‹ค. `'batch'`์˜ ๊ฒฝ์šฐ HDF5 ๋ฐ์ดํ„ฐ์˜ ์ œ์•ฝ์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•œ ์„ค์ •์œผ๋กœ ๊ฐ ๋ฐฐ์น˜ ํฌ๊ธฐ ์•ˆ์—์„œ ๋ฐ์ดํ„ฐ๋ฅผ ๋’ค์„ž์Šต๋‹ˆ๋‹ค. `steps_per_epoch`๊ฐ’์ด `None`์ด ์•„๋‹Œ ๊ฒฝ์šฐ `shuffle`์ธ์ž๋Š” ๋ฌดํšจํ™”๋ฉ๋‹ˆ๋‹ค. - __class_weight__: ํ•„์š”ํ•œ ๊ฒฝ์šฐ์—๋งŒ ์‚ฌ์šฉํ•˜๋Š” ์ธ์ž๋กœ, ๊ฐ ํด๋ž˜์Šค ์ธ๋ฑ์Šค๋ฅผ `key`๋กœ, ๊ฐ€์ค‘์น˜๋ฅผ `value`๋กœ ๊ฐ–๋Š” ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ ์ž…๋ ฅํ•ฉ๋‹ˆ๋‹ค. ์ธ๋ฑ์Šค๋Š” ์ •์ˆ˜, ๊ฐ€์ค‘์น˜๋Š” ๋ถ€๋™์†Œ์ˆ˜์  ๊ฐ’์„ ๊ฐ–์Šต๋‹ˆ๋‹ค. ์ฃผ๋กœ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์˜ ํด๋ž˜์Šค ๋ถ„ํฌ๊ฐ€ ๋ถˆ๊ท ํ˜•ํ•  ๋•Œ ์ด๋ฅผ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉํ•˜๋ฉฐ, ์†์‹ค ๊ณ„์‚ฐ ๊ณผ์ •์—์„œ ํ‘œ๋ณธ ์ˆ˜๊ฐ€ ๋” ์ ์€ ํด๋ž˜์Šค์˜ ์˜ํ–ฅ์„ ๊ฐ€์ค‘์น˜๋ฅผ ํ†ตํ•ด ๋Œ์–ด์˜ฌ๋ฆฝ๋‹ˆ๋‹ค. ํ•™์Šต ๊ณผ์ •์—์„œ๋งŒ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. - __sample_weight__: ํŠน์ •ํ•œ ํ›ˆ๋ จ ํ‘œ๋ณธ์ด ์†์‹ค ํ•จ์ˆ˜์—์„œ ๋” ํฐ ์˜ํ–ฅ์„ ์ฃผ๋„๋ก ํ•˜๊ณ ์ž ํ•  ๊ฒฝ์šฐ์— ์‚ฌ์šฉํ•˜๋Š” ์ธ์ž์ž…๋‹ˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ํ‘œ๋ณธ๊ณผ ๋™์ผํ•œ ๊ธธ์ด์˜ 1D NumPy ๋ฐฐ์—ด์„, ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์˜ ๊ฒฝ์šฐ `(samples, sequence_length)`๋กœ ์ด๋ฃจ์–ด์ง„ 2D ๋ฐฐ์—ด์„ ์ž…๋ ฅํ•˜์—ฌ ์†์‹ค ๊ฐ€์ค‘์น˜์™€ ํ‘œ๋ณธ์ด 1:1๋กœ ์ง์ง€์–ด์ง€๊ฒŒ๋” ํ•ฉ๋‹ˆ๋‹ค. 2D ๋ฐฐ์—ด์„ ์ž…๋ ฅํ•˜๋Š” ๊ฒฝ์šฐ ๋ฐ˜๋“œ์‹œ `compile()` ๋‹จ๊ณ„์—์„œ `sample_weight_mode="temporal"`๋กœ ์ง€์ •ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. `x`๊ฐ€ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋˜๋Š” `Sequence`์ธ์Šคํ„ด์Šค์ธ ๊ฒฝ์šฐ๋Š” ์†์‹ค ๊ฐ€์ค‘์น˜๋ฅผ `sample_weight`์ธ์ž ๋Œ€์‹  `x`์˜ ์„ธ ๋ฒˆ์งธ ๊ตฌ์„ฑ์š”์†Œ๋กœ ์ž…๋ ฅํ•ด์•ผ ์ ์šฉ๋ฉ๋‹ˆ๋‹ค. - __initial_epoch__: `int`. ํŠน์ •ํ•œ ์—ํญ์—์„œ ํ•™์Šต์„ ์‹œ์ž‘ํ•˜๋„๋ก ์‹œ์ž‘ ํšŒ์ฐจ๋ฅผ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. ์ด์ „์˜ ํ•™์Šต์„ ์ด์–ด์„œ ํ•  ๋•Œ ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค. - __steps_per_epoch__: `int` ํ˜น์€ `None`. 1ํšŒ์˜ ์—ํญ์„ ์ด๋ฃจ๋Š” ๋ฐฐ์น˜์˜ ๊ฐœ์ˆ˜๋ฅผ ์ •์˜ํ•˜๋ฉฐ ๊ธฐ๋ณธ๊ฐ’์€ `None`์ž…๋‹ˆ๋‹ค. ํ”„๋ ˆ์ž„์›Œํฌ์—์„œ ์ด๋ฏธ ์ •์˜๋œ ํ…์„œ(์˜ˆ: TensorFlow ๋ฐ์ดํ„ฐ ํ…์„œ)๋ฅผ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋กœ ์‚ฌ์šฉํ•  ๋•Œ `None`์„ ์ง€์ •ํ•˜๋ฉด ์ž๋™์œผ๋กœ ๋ฐ์ดํ„ฐ์˜ ํ‘œ๋ณธ ์ˆ˜๋ฅผ ๋ฐฐ์น˜ ํฌ๊ธฐ๋กœ ๋‚˜๋ˆ„์–ด ์˜ฌ๋ฆผํ•œ ๊ฐ’์„ ๊ฐ–๊ฒŒ ๋˜๋ฉฐ, ๊ฐ’์„ ๊ตฌํ•  ์ˆ˜ ์—†๋Š” ๊ฒฝ์šฐ `1`์ด ๋ฉ๋‹ˆ๋‹ค. - __validation_steps__: ๋‹ค์Œ์˜ ๋‘ ๊ฐ€์ง€ ๊ฒฝ์šฐ์— ํ•œํ•ด์„œ ์œ ํšจํ•œ ์ธ์ž์ž…๋‹ˆ๋‹ค. - `steps_per_epoch`๊ฐ’์ด ํŠน์ •๋œ ๊ฒฝ์šฐ, ๋งค ์—ํญ์˜ ๊ฒ€์ฆ์— ์‚ฌ์šฉ๋  ๋ฐฐ์น˜์˜ ๊ฐœ์ˆ˜๋ฅผ ํŠน์ •ํ•ฉ๋‹ˆ๋‹ค. - `validation_data`๋ฅผ ์‚ฌ์šฉํ•˜๋ฉฐ ์ด์— ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ํ˜•์‹์˜ ๊ฐ’์„ ์ž…๋ ฅํ•  ๊ฒฝ์šฐ, ๋งค ์—ํญ์˜ ๊ฒ€์ฆ์— ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด ์ œ๋„ˆ๋ ˆ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์ƒ์„ฑํ•  ๋ฐฐ์น˜์˜ ๊ฐœ์ˆ˜๋ฅผ ํŠน์ •ํ•ฉ๋‹ˆ๋‹ค. - __validation_freq__: ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ๊ฐ€ ์žˆ์„ ๊ฒฝ์šฐ์— ํ•œํ•ด ์œ ํšจํ•œ ์ธ์ž์ž…๋‹ˆ๋‹ค. ์ •์ˆ˜ ๋˜๋Š” ๋ฆฌ์ŠคํŠธ/ํŠœํ”Œ/์„ธํŠธ ํƒ€์ž…์˜ ์ž…๋ ฅ์„ ๋ฐ›์Šต๋‹ˆ๋‹ค. ์ •์ˆ˜ ์ž…๋ ฅ์˜ ๊ฒฝ์šฐ ๋ช‡ ํšŒ์˜ ์—ํญ๋งˆ๋‹ค 1ํšŒ ๊ฒ€์ฆํ• ์ง€๋ฅผ ์ •ํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ์ปจ๋Œ€ `validation_freq=2`์˜ ๊ฒฝ์šฐ ๋งค 2ํšŒ ์—ํญ๋งˆ๋‹ค 1ํšŒ ๊ฒ€์ฆํ•ฉ๋‹ˆ๋‹ค. ๋งŒ์•ฝ ๋ฆฌ์ŠคํŠธ๋‚˜ ํŠœํ”Œ, ์„ธํŠธ ํ˜•ํƒœ๋กœ ์ž…๋ ฅ๋œ ๊ฒฝ์šฐ ์ž…๋ ฅ๊ฐ’ ์•ˆ์— ์ง€์ •๋œ ํšŒ์ฐจ์— ํ•œํ•ด ๊ฒ€์ฆ์„ ์‹คํ–‰ํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด `validation_freq=[1, 2, 10]`์˜ ๊ฒฝ์šฐ 1, 2, 10๋ฒˆ์งธ ์—ํญ์—์„œ ๊ฒ€์ฆํ•ฉ๋‹ˆ๋‹ค. - __max_queue_size__: `int`. ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๊ฐ€ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋˜๋Š” `keras.utils.Sequence` ์ธ์Šคํ„ด์Šค์ผ ๋•Œ๋งŒ ์œ ํšจํ•ฉ๋‹ˆ๋‹ค. ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋Œ€๊ธฐ์—ด<sub>queue</sub>์˜ ์ตœ๋Œ€ ํฌ๊ธฐ๋ฅผ ์ง€์ •ํ•˜๋ฉฐ, ๋ฏธ์ •์ธ ๊ฒฝ์šฐ ๊ธฐ๋ณธ๊ฐ’ `10`์ด ์ ์šฉ๋ฉ๋‹ˆ๋‹ค. - __workers__: `int`. ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๊ฐ€ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋˜๋Š” `keras.utils.Sequence` ์ธ์Šคํ„ด์Šค์ผ ๋•Œ๋งŒ ์œ ํšจํ•ฉ๋‹ˆ๋‹ค. ํ”„๋กœ์„ธ์Šค ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์ค‘ ์Šค๋ ˆ๋”ฉ์„ ํ•  ๋•Œ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ์ž‘๋™์— ์‚ฌ์šฉํ•  ํ”„๋กœ์„ธ์Šค์˜ ์ตœ๋Œ€ ๊ฐœ์ˆ˜๋ฅผ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ๋ณธ๊ฐ’์€ `1`์ด๋ฉฐ, `0`์„ ์ž…๋ ฅํ•  ๊ฒฝ์šฐ ๋ฉ”์ธ ์Šค๋ ˆ๋“œ์—์„œ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ๋ฅผ ์ž‘๋™์‹œํ‚ต๋‹ˆ๋‹ค. - __use_multiprocessing__: `bool`. ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๊ฐ€ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋˜๋Š” `keras.utils.Sequence` ์ธ์Šคํ„ด์Šค์ผ ๋•Œ๋งŒ ์œ ํšจํ•ฉ๋‹ˆ๋‹ค. `True`์ธ ๊ฒฝ์šฐ ํ”„๋กœ์„ธ์Šค ๊ธฐ๋ฐ˜ ๋‹ค์ค‘ ์Šค๋ ˆ๋”ฉ์„ ์‚ฌ์šฉํ•˜๋ฉฐ ๊ธฐ๋ณธ๊ฐ’์€ `False`์ž…๋‹ˆ๋‹ค. ์ด ์„ค์ •์„ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ์—์„œ ๊ฐ์ฒด ์ง๋ ฌํ™”<sub>pickle</sub>๊ฐ€ ๋ถˆ๊ฐ€๋Šฅํ•œ ์ธ์ž๋“ค์€ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋„๋ก ํ•ฉ๋‹ˆ๋‹ค (๋ฉ€ํ‹ฐํ”„๋กœ์„ธ์‹ฑ ๊ณผ์ •์—์„œ ์ž์‹ ํ”„๋กœ์„ธ์Šค๋กœ ์ „๋‹ฌ๋˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค). - __**kwargs__: ์ด์ „ ๋ฒ„์ „๊ณผ์˜ ํ˜ธํ™˜์„ฑ์„ ์œ„ํ•ด ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. __๋ฐ˜ํ™˜๊ฐ’__ `History` ๊ฐ์ฒด๋ฅผ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค. `History.history` ์†์„ฑ<sub>attribute</sub>์€ ๊ฐ ์—ํญ๋งˆ๋‹ค ๊ณ„์‚ฐ๋œ ํ•™์Šต ์†์‹ค ๋ฐ ํ‰๊ฐ€ ์ง€ํ‘œ๊ฐ€ ์ˆœ์„œ๋Œ€๋กœ ๊ธฐ๋ก๋œ ๊ฐ’์ž…๋‹ˆ๋‹ค. ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ๋ฅผ ์ ์šฉํ•œ ๊ฒฝ์šฐ ํ•ด๋‹น ์†์‹ค ๋ฐ ์ง€ํ‘œ๋„ ํ•จ๊ป˜ ๊ธฐ๋ก๋ฉ๋‹ˆ๋‹ค. __์˜ค๋ฅ˜__ - __RuntimeError__: ๋ชจ๋ธ์ด ์ปดํŒŒ์ผ๋˜์ง€ ์•Š์€ ๊ฒฝ์šฐ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. - __ValueError__: ๋ชจ๋ธ์— ์ •์˜๋œ ์ž…๋ ฅ๊ณผ ์‹ค์ œ ์ž…๋ ฅ์ด ์ผ์น˜ํ•˜์ง€ ์•Š์„ ๊ฒฝ์šฐ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. ---- ### evaluate ```python evaluate(x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None, callbacks=None, max_queue_size=10, workers=1, use_multiprocessing=False) ``` ์‹œํ—˜ ๋ชจ๋“œ์—์„œ ๋ชจ๋ธ์˜ ์†์‹ค ๋ฐ ํ‰๊ฐ€ ์ง€ํ‘œ ๊ฐ’์„ ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ๊ณ„์‚ฐ์€ ๋ฐฐ์น˜ ๋‹จ์œ„๋กœ ์‹คํ–‰๋ฉ๋‹ˆ๋‹ค. __์ธ์ž__ - __x__: ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ข…๋ฅ˜๊ฐ€ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. - NumPy ๋ฐฐ์—ด ๋˜๋Š” ๋ฐฐ์—ด๊ณผ ๊ฐ™์€ ํ˜•์‹์˜ ๋ฐ์ดํ„ฐ. ๋‹ค์ค‘ ์ž…๋ ฅ์˜ ๊ฒฝ์šฐ ๋ฐฐ์—ด์˜ ๋ฆฌ์ŠคํŠธ. - ๋ชจ๋ธ์ด ์ด๋ฆ„์ด ์ง€์ •๋œ ์ž…๋ ฅ๊ฐ’์„ ๋ฐ›๋Š” ๊ฒฝ์šฐ ์ด๋ฆ„๊ณผ ๋ฐฐ์—ด/ํ…์„œ๊ฐ€ `key`์™€ `value`๋กœ ์—ฐ๊ฒฐ๋œ ๋”•์…”๋„ˆ๋ฆฌ. - ํŒŒ์ด์ฌ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋˜๋Š” `keras.utils.Sequence` ์ธ์Šคํ„ด์Šค๋กœ `(inputs, targets)` ํ˜น์€ `(inputs, targets, sample weights)`๋ฅผ ๋ฐ˜ํ™˜ํ•˜๋Š” ๊ฒƒ. - ํ”„๋ ˆ์ž„์›Œํฌ(์˜ˆ: TensorFlow)๋ฅผ ํ†ตํ•ด ์ด๋ฏธ ์ •์˜๋œ ํ…์„œ๋ฅผ ์ž…๋ ฅ๋ฐ›๋Š” ๊ฒฝ์šฐ `None`(๊ธฐ๋ณธ๊ฐ’). - __y__: ๋ชฉํ‘œ ๋ฐ์ดํ„ฐ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ข…๋ฅ˜๊ฐ€ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. - NumPy ๋ฐฐ์—ด ๋˜๋Š” ๋ฐฐ์—ด๊ณผ ๊ฐ™์€ ํ˜•์‹์˜ ๋ฐ์ดํ„ฐ. ๋‹ค์ค‘์˜ ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•˜๋Š” ๊ฒฝ์šฐ ๋ฐฐ์—ด์˜ ๋ฆฌ์ŠคํŠธ. - ํ”„๋ ˆ์ž„์›Œํฌ(์˜ˆ: TensorFlow)๋ฅผ ํ†ตํ•ด ์ด๋ฏธ ์ •์˜๋œ ํ…์„œ๋ฅผ ์ž…๋ ฅ๋ฐ›๋Š” ๊ฒฝ์šฐ `None`(๊ธฐ๋ณธ๊ฐ’). - ๊ฒฐ๊ณผ๊ฐ’์˜ ์ด๋ฆ„์ด ์ง€์ •๋˜์–ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ด๋ฆ„๊ณผ ๋ฐฐ์—ด/ํ…์„œ๊ฐ€ `key`์™€ `value`๋กœ ์—ฐ๊ฒฐ๋œ ๋”•์…”๋„ˆ๋ฆฌ. - ๋งŒ์•ฝ `x`์—์„œ ํŒŒ์ด์ฌ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋˜๋Š” `keras.utils.Sequence` ์ธ์Šคํ„ด์Šค๋ฅผ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ๋ชฉํ‘œ๊ฐ’์ด `x`์™€ ํ•จ๊ป˜ ์ž…๋ ฅ๋˜๋ฏ€๋กœ ๋ณ„๋„์˜ `y`์ž…๋ ฅ์€ ๋ถˆํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. - __batch_size__: `int` ํ˜น์€ `None`. ํ•œ ๋ฒˆ์— ํ‰๊ฐ€๋  ํ‘œ๋ณธ์˜ ๊ฐœ์ˆ˜์ž…๋‹ˆ๋‹ค. ๋”ฐ๋กœ ์ •ํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ `batch_size`๋Š” ๊ธฐ๋ณธ๊ฐ’์ธ 32๊ฐ€ ๋ฉ๋‹ˆ๋‹ค. ๋ณ„๋„์˜ ์‹ฌ๋ณผ๋ฆญ ํ…์„œ๋‚˜ ์ œ๋„ค๋ ˆ์ดํ„ฐ, ํ˜น์€ `Sequence` ์ธ์Šคํ„ด์Šค๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ›๋Š” ๊ฒฝ์šฐ ์ธ์Šคํ„ด์Šค๊ฐ€ ์ž๋™์œผ๋กœ ๋ฐฐ์น˜๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ณ„๋„์˜ `batch_size`๋ฅผ ์ง€์ •ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. - __verbose__: `0` ๋˜๋Š” `1`. ์ง„ํ–‰ ์ •๋ณด์˜ ํ™”๋ฉด ์ถœ๋ ฅ ์—ฌ๋ถ€๋ฅผ ์„ค์ •ํ•˜๋Š” ์ธ์ž์ž…๋‹ˆ๋‹ค. `0`์€ ํ‘œ์‹œ ์—†์Œ, `1`์€ ์ง„ํ–‰ ํ‘œ์‹œ์ค„ ์ถœ๋ ฅ์„ ๋œปํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ๋ณธ๊ฐ’์€ `1`์ž…๋‹ˆ๋‹ค. - __sample_weight__: ํŠน์ •ํ•œ ์‹œํ—˜ ํ‘œ๋ณธ์ด ์†์‹ค ํ•จ์ˆ˜์—์„œ ๋” ํฐ ์˜ํ–ฅ์„ ์ฃผ๋„๋ก ํ•˜๊ณ ์ž ํ•  ๊ฒฝ์šฐ์— ์‚ฌ์šฉํ•˜๋Š” ์ธ์ž์ž…๋‹ˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ํ‘œ๋ณธ๊ณผ ๋™์ผํ•œ ๊ธธ์ด์˜ 1D NumPy ๋ฐฐ์—ด์„, ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์˜ ๊ฒฝ์šฐ `(samples, sequence_length)`๋กœ ์ด๋ฃจ์–ด์ง„ 2D ๋ฐฐ์—ด์„ ์ž…๋ ฅํ•˜์—ฌ ์†์‹ค ๊ฐ€์ค‘์น˜์™€ ํ‘œ๋ณธ์ด 1:1๋กœ ์ง์ง€์–ด์ง€๊ฒŒ๋” ํ•ฉ๋‹ˆ๋‹ค. 2D ๋ฐฐ์—ด์„ ์ž…๋ ฅํ•˜๋Š” ๊ฒฝ์šฐ ๋ฐ˜๋“œ์‹œ `compile()` ๋‹จ๊ณ„์—์„œ `sample_weight_mode="temporal"`๋กœ ์ง€์ •ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. - __steps__: `int` ํ˜น์€ `None`. ํ‰๊ฐ€๋ฅผ ์™„๋ฃŒํ•˜๊ธฐ๊นŒ์ง€์˜ ๋‹จ๊ณ„(๋ฐฐ์น˜) ๊ฐœ์ˆ˜๋ฅผ ์ •ํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ๋ณธ๊ฐ’์€ `None`์œผ๋กœ, ์ด ๊ฒฝ์šฐ ๊ณ ๋ ค๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. - __callbacks__: `keras.callbacks.Callback` ์ธ์Šคํ„ด์Šค์˜ ๋ฆฌ์ŠคํŠธ. ํ‰๊ฐ€ ๊ณผ์ •์—์„œ ์ ์šฉํ•  ์ฝœ๋ฐฑ์˜ ๋ฆฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. [์ฝœ๋ฐฑ](/callbacks)์„ ์ฐธ์กฐํ•˜์‹ญ์‹œ์˜ค. - __max_queue_size__: `int`. ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๊ฐ€ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋˜๋Š” `keras.utils.Sequence` ์ธ์Šคํ„ด์Šค์ผ ๋•Œ๋งŒ ์œ ํšจํ•ฉ๋‹ˆ๋‹ค. ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋Œ€๊ธฐ์—ด์˜ ์ตœ๋Œ€ ํฌ๊ธฐ๋ฅผ ์ง€์ •ํ•˜๋ฉฐ, ๋ฏธ์ •์ธ ๊ฒฝ์šฐ ๊ธฐ๋ณธ๊ฐ’ `10`์ด ์ ์šฉ๋ฉ๋‹ˆ๋‹ค. - __workers__: `int`. ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๊ฐ€ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋˜๋Š” `keras.utils.Sequence` ์ธ์Šคํ„ด์Šค์ผ ๋•Œ๋งŒ ์œ ํšจํ•ฉ๋‹ˆ๋‹ค. ํ”„๋กœ์„ธ์Šค ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์ค‘ ์Šค๋ ˆ๋”ฉ์„ ํ•  ๋•Œ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ์ž‘๋™์— ์‚ฌ์šฉํ•  ํ”„๋กœ์„ธ์Šค์˜ ์ตœ๋Œ€ ๊ฐœ์ˆ˜๋ฅผ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ๋ณธ๊ฐ’์€ `1`์ด๋ฉฐ, `0`์„ ์ž…๋ ฅํ•  ๊ฒฝ์šฐ ๋ฉ”์ธ ์Šค๋ ˆ๋“œ์—์„œ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ๋ฅผ ์ž‘๋™์‹œํ‚ต๋‹ˆ๋‹ค. - __use_multiprocessing__: `bool`. ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๊ฐ€ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋˜๋Š” `keras.utils.Sequence` ์ธ์Šคํ„ด์Šค์ผ ๋•Œ๋งŒ ์œ ํšจํ•ฉ๋‹ˆ๋‹ค. `True`์ธ ๊ฒฝ์šฐ ํ”„๋กœ์„ธ์Šค ๊ธฐ๋ฐ˜ ๋‹ค์ค‘ ์Šค๋ ˆ๋”ฉ์„ ์‚ฌ์šฉํ•˜๋ฉฐ ๊ธฐ๋ณธ๊ฐ’์€ `False`์ž…๋‹ˆ๋‹ค. ์ด ์„ค์ •์„ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ์—์„œ ๊ฐ์ฒด ์ง๋ ฌํ™”๊ฐ€ ๋ถˆ๊ฐ€๋Šฅํ•œ ์ธ์ž๋“ค์€ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋„๋ก ํ•ฉ๋‹ˆ๋‹ค (๋ฉ€ํ‹ฐํ”„๋กœ์„ธ์‹ฑ ๊ณผ์ •์—์„œ ์ž์‹ ํ”„๋กœ์„ธ์Šค๋กœ ์ „๋‹ฌ๋˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค). __๋ฐ˜ํ™˜๊ฐ’__ ์ ์šฉํ•  ๋ชจ๋ธ์ด ๋‹จ์ผํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•˜๋ฉฐ ๋ณ„๋„์˜ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ ์‹œํ—˜ ์†์‹ค์˜ ์Šค์นผ๋ผ ๊ฐ’์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์ค‘์˜ ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•˜๋Š” ๋ชจ๋ธ์ด๊ฑฐ๋‚˜ ์—ฌ๋Ÿฌ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ ์Šค์นผ๋ผ ๊ฐ’์˜ ๋ฆฌ์ŠคํŠธ๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. `model.metrics_names` ์†์„ฑ์€ ๊ฐ ์Šค์นผ๋ผ ๊ฒฐ๊ณผ๊ฐ’์— ํ• ๋‹น๋œ ์ด๋ฆ„์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. __์˜ค๋ฅ˜__ - __ValueError__: ์ž˜๋ชป๋œ ์ธ์ž ์ „๋‹ฌ์‹œ์— ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. ---- ### predict ```python predict(x, batch_size=None, verbose=0, steps=None, callbacks=None, max_queue_size=10, workers=1, use_multiprocessing=False) ``` ๋ชจ๋ธ์— ํ‘œ๋ณธ์„ ์ž…๋ ฅํ•˜์—ฌ ์˜ˆ์ธก๊ฐ’์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ๊ณ„์‚ฐ์€ ๋ฐฐ์น˜ ๋‹จ์œ„๋กœ ์‹คํ–‰๋ฉ๋‹ˆ๋‹ค. __์ธ์ž__ - __x__: ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๋กœ ๋‹ค์Œ๊ณผ ๊ฐ™์€ ์ข…๋ฅ˜๊ฐ€ ๊ฐ€๋Šฅํ•ฉ๋‹ˆ๋‹ค. - NumPy ๋ฐฐ์—ด ๋˜๋Š” ๋ฐฐ์—ด๊ณผ ๊ฐ™์€ ํ˜•์‹์˜ ๋ฐ์ดํ„ฐ. ๋‹ค์ค‘ ์ž…๋ ฅ์˜ ๊ฒฝ์šฐ ๋ฐฐ์—ด์˜ ๋ฆฌ์ŠคํŠธ. - ๋ชจ๋ธ์ด ์ด๋ฆ„์ด ์ง€์ •๋œ ์ž…๋ ฅ๊ฐ’์„ ๋ฐ›๋Š” ๊ฒฝ์šฐ ์ด๋ฆ„๊ณผ ๋ฐฐ์—ด/ํ…์„œ๊ฐ€ `key`์™€ `value`๋กœ ์—ฐ๊ฒฐ๋œ ๋”•์…”๋„ˆ๋ฆฌ. - ํŒŒ์ด์ฌ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋˜๋Š” `keras.utils.Sequence` ์ธ์Šคํ„ด์Šค๋กœ `(inputs, targets)` ํ˜น์€ `(inputs, targets, sample weights)`๋ฅผ ๋ฐ˜ํ™˜ํ•˜๋Š” ๊ฒƒ. - ํ”„๋ ˆ์ž„์›Œํฌ(์˜ˆ: TensorFlow)๋ฅผ ํ†ตํ•ด ์ด๋ฏธ ์ •์˜๋œ ํ…์„œ๋ฅผ ์ž…๋ ฅ๋ฐ›๋Š” ๊ฒฝ์šฐ `None`(๊ธฐ๋ณธ๊ฐ’). - __batch_size__: `int` ํ˜น์€ `None`. ํ•œ ๋ฒˆ์— ์˜ˆ์ธก๋  ํ‘œ๋ณธ์˜ ๊ฐœ์ˆ˜์ž…๋‹ˆ๋‹ค. ๋”ฐ๋กœ ์ •ํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ `batch_size`๋Š” ๊ธฐ๋ณธ๊ฐ’์ธ 32๊ฐ€ ๋ฉ๋‹ˆ๋‹ค. ๋ณ„๋„์˜ ์‹ฌ๋ณผ๋ฆญ ํ…์„œ๋‚˜ ์ œ๋„ค๋ ˆ์ดํ„ฐ, ํ˜น์€ `Sequence` ์ธ์Šคํ„ด์Šค๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ›๋Š” ๊ฒฝ์šฐ ์ธ์Šคํ„ด์Šค๊ฐ€ ์ž๋™์œผ๋กœ ๋ฐฐ์น˜๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋ณ„๋„์˜ `batch_size`๋ฅผ ์ง€์ •ํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. - __verbose__: `0` ๋˜๋Š” `1`. ์ง„ํ–‰ ์ •๋ณด์˜ ํ™”๋ฉด ์ถœ๋ ฅ ์—ฌ๋ถ€๋ฅผ ์„ค์ •ํ•˜๋Š” ์ธ์ž์ž…๋‹ˆ๋‹ค. `0`์€ ํ‘œ์‹œ ์—†์Œ, `1`์€ ์ง„ํ–‰ ํ‘œ์‹œ์ค„ ์ถœ๋ ฅ์„ ๋œปํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ๋ณธ๊ฐ’์€ `1`์ž…๋‹ˆ๋‹ค. - __steps__: `int` ํ˜น์€ `None`. ์˜ˆ์ธก์„ ์™„๋ฃŒํ•˜๊ธฐ๊นŒ์ง€์˜ ๋‹จ๊ณ„(๋ฐฐ์น˜) ๊ฐœ์ˆ˜๋ฅผ ์ •ํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ๋ณธ๊ฐ’์€ `None`์œผ๋กœ, ์ด ๊ฒฝ์šฐ ๊ณ ๋ ค๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. - __callbacks__: `keras.callbacks.Callback` ์ธ์Šคํ„ด์Šค์˜ ๋ฆฌ์ŠคํŠธ. ์˜ˆ์ธก ๊ณผ์ •์—์„œ ์ ์šฉํ•  ์ฝœ๋ฐฑ์˜ ๋ฆฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. [์ฝœ๋ฐฑ](/callbacks)์„ ์ฐธ์กฐํ•˜์‹ญ์‹œ์˜ค. - __max_queue_size__: `int`. ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๊ฐ€ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋˜๋Š” `keras.utils.Sequence` ์ธ์Šคํ„ด์Šค์ผ ๋•Œ๋งŒ ์œ ํšจํ•ฉ๋‹ˆ๋‹ค. ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋Œ€๊ธฐ์—ด์˜ ์ตœ๋Œ€ ํฌ๊ธฐ๋ฅผ ์ง€์ •ํ•˜๋ฉฐ, ๋ฏธ์ •์ธ ๊ฒฝ์šฐ ๊ธฐ๋ณธ๊ฐ’ `10`์ด ์ ์šฉ๋ฉ๋‹ˆ๋‹ค. - __workers__: `int`. ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๊ฐ€ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋˜๋Š” `keras.utils.Sequence` ์ธ์Šคํ„ด์Šค์ผ ๋•Œ๋งŒ ์œ ํšจํ•ฉ๋‹ˆ๋‹ค. ํ”„๋กœ์„ธ์Šค ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์ค‘ ์Šค๋ ˆ๋”ฉ์„ ํ•  ๋•Œ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ์ž‘๋™์— ์‚ฌ์šฉํ•  ํ”„๋กœ์„ธ์Šค์˜ ์ตœ๋Œ€ ๊ฐœ์ˆ˜๋ฅผ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ๋ณธ๊ฐ’์€ `1`์ด๋ฉฐ, `0`์„ ์ž…๋ ฅํ•  ๊ฒฝ์šฐ ๋ฉ”์ธ ์Šค๋ ˆ๋“œ์—์„œ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ๋ฅผ ์ž‘๋™์‹œํ‚ต๋‹ˆ๋‹ค. - __use_multiprocessing__: `bool`. ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๊ฐ€ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋˜๋Š” `keras.utils.Sequence` ์ธ์Šคํ„ด์Šค์ผ ๋•Œ๋งŒ ์œ ํšจํ•ฉ๋‹ˆ๋‹ค. `True`์ธ ๊ฒฝ์šฐ ํ”„๋กœ์„ธ์Šค ๊ธฐ๋ฐ˜ ๋‹ค์ค‘ ์Šค๋ ˆ๋”ฉ์„ ์‚ฌ์šฉํ•˜๋ฉฐ ๊ธฐ๋ณธ๊ฐ’์€ `False`์ž…๋‹ˆ๋‹ค. ์ด ์„ค์ •์„ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ์—์„œ ๊ฐ์ฒด ์ง๋ ฌํ™”๊ฐ€ ๋ถˆ๊ฐ€๋Šฅํ•œ ์ธ์ž๋“ค์€ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋„๋ก ํ•ฉ๋‹ˆ๋‹ค (๋ฉ€ํ‹ฐํ”„๋กœ์„ธ์‹ฑ ๊ณผ์ •์—์„œ ์ž์‹ ํ”„๋กœ์„ธ์Šค๋กœ ์ „๋‹ฌ๋˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค). __๋ฐ˜ํ™˜๊ฐ’__ ์˜ˆ์ธก๊ฐ’์˜ NumPy ๋ฐฐ์—ด. __์˜ค๋ฅ˜__ - __ValueError__: ๋ชจ๋ธ์— ์ •์˜๋œ ์ž…๋ ฅ๊ณผ ์‹ค์ œ ์ž…๋ ฅ์ด ์ผ์น˜ํ•˜์ง€ ์•Š์„ ๊ฒฝ์šฐ, ๋˜๋Š” ์ƒํƒœ ์ €์žฅ ๋ชจ๋ธ<sub>stateful model</sub>์„ ์‚ฌ์šฉํ•˜์—ฌ ์˜ˆ์ธกํ•  ๋•Œ ์ž…๋ ฅํ•œ ํ‘œ๋ณธ์˜ ๊ฐœ์ˆ˜๊ฐ€ ๋ฐฐ์น˜ ํฌ๊ธฐ์˜ ๋ฐฐ์ˆ˜๊ฐ€ ์•„๋‹Œ ๊ฒฝ์šฐ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. ---- ### train_on_batch ```python train_on_batch(x, y, sample_weight=None, class_weight=None, reset_metrics=True) ``` ํ•˜๋‚˜์˜ ๋ฐ์ดํ„ฐ ๋ฐฐ์น˜์— ๋Œ€ํ•ด์„œ ๊ทธ๋ž˜๋””์–ธํŠธ๋ฅผ ํ•œ ๋ฒˆ ์ ์šฉํ•ฉ๋‹ˆ๋‹ค. __์ธ์ž__ - __x__: ๊ธฐ๋ณธ์ ์œผ๋กœ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์˜ NumPy ๋ฐฐ์—ด์„, ๋ชจ๋ธ์ด ๋‹ค์ค‘ ์ž…๋ ฅ์„ ๋ฐ›๋Š” ๊ฒฝ์šฐ NumPy ๋ฐฐ์—ด์˜ ๋ฆฌ์ŠคํŠธ๋ฅผ ์ž…๋ ฅํ•ฉ๋‹ˆ๋‹ค. ๋ชจ๋ธ์˜ ๋ชจ๋“  ์ž…๋ ฅ์— ์ด๋ฆ„์ด ๋ฐฐ์ •๋œ ๊ฒฝ์šฐ ์ž…๋ ฅ๊ฐ’ ์ด๋ฆ„์„ `key`๋กœ, NumPy ๋ฐฐ์—ด์„ `value`๋กœ ๋ฌถ์€ ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ ์ž…๋ ฅํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. - __y__: ๊ธฐ๋ณธ์ ์œผ๋กœ ๋ชฉํ‘œ ๋ฐ์ดํ„ฐ์˜ NumPy ๋ฐฐ์—ด์„, ๋ชจ๋ธ์ด ๋‹ค์ค‘์˜ ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•˜๋Š” ๊ฒฝ์šฐ NumPy ๋ฐฐ์—ด์˜ ๋ฆฌ์ŠคํŠธ๋ฅผ ์ž…๋ ฅํ•ฉ๋‹ˆ๋‹ค. ๋ชจ๋ธ์˜ ๋ชจ๋“  ๊ฒฐ๊ณผ์— ์ด๋ฆ„์ด ๋ฐฐ์ •๋œ ๊ฒฝ์šฐ ๊ฒฐ๊ณผ๊ฐ’ ์ด๋ฆ„์„ `key`๋กœ, NumPy ๋ฐฐ์—ด์„ `value`๋กœ ๋ฌถ์€ ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ ์ž…๋ ฅํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. - __sample_weight__: ํŠน์ •ํ•œ ํ›ˆ๋ จ ํ‘œ๋ณธ์ด ์†์‹ค ํ•จ์ˆ˜์—์„œ ๋” ํฐ ์˜ํ–ฅ์„ ์ฃผ๋„๋ก ํ•˜๊ณ ์ž ํ•  ๊ฒฝ์šฐ์— ์‚ฌ์šฉํ•˜๋Š” ์ธ์ž์ž…๋‹ˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ํ‘œ๋ณธ๊ณผ ๋™์ผํ•œ ๊ธธ์ด์˜ 1D NumPy ๋ฐฐ์—ด์„, ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์˜ ๊ฒฝ์šฐ `(samples, sequence_length)`๋กœ ์ด๋ฃจ์–ด์ง„ 2D ๋ฐฐ์—ด์„ ์ž…๋ ฅํ•˜์—ฌ ์†์‹ค ๊ฐ€์ค‘์น˜์™€ ํ‘œ๋ณธ์ด 1:1๋กœ ์ง์ง€์–ด์ง€๊ฒŒ๋” ํ•ฉ๋‹ˆ๋‹ค. 2D ๋ฐฐ์—ด์„ ์ž…๋ ฅํ•˜๋Š” ๊ฒฝ์šฐ ๋ฐ˜๋“œ์‹œ `compile()` ๋‹จ๊ณ„์—์„œ `sample_weight_mode="temporal"`๋กœ ์ง€์ •ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. `x`๊ฐ€ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋˜๋Š” `Sequence`์ธ์Šคํ„ด์Šค์ธ ๊ฒฝ์šฐ๋Š” ์†์‹ค ๊ฐ€์ค‘์น˜๋ฅผ `sample_weight`์ธ์ž ๋Œ€์‹  `x`์˜ ์„ธ ๋ฒˆ์งธ ๊ตฌ์„ฑ์š”์†Œ๋กœ ์ž…๋ ฅํ•ด์•ผ ์ ์šฉ๋ฉ๋‹ˆ๋‹ค. - __class_weight__: ํ•„์š”ํ•œ ๊ฒฝ์šฐ์—๋งŒ ์‚ฌ์šฉํ•˜๋Š” ์ธ์ž๋กœ, ๊ฐ ํด๋ž˜์Šค ์ธ๋ฑ์Šค๋ฅผ `key`๋กœ, ๊ฐ€์ค‘์น˜๋ฅผ `value`๋กœ ๊ฐ–๋Š” ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ ์ž…๋ ฅํ•ฉ๋‹ˆ๋‹ค. ์ธ๋ฑ์Šค๋Š” ์ •์ˆ˜, ๊ฐ€์ค‘์น˜๋Š” ๋ถ€๋™์†Œ์ˆ˜์  ๊ฐ’์„ ๊ฐ–์Šต๋‹ˆ๋‹ค. ์ฃผ๋กœ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์˜ ํด๋ž˜์Šค ๋ถ„ํฌ๊ฐ€ ๋ถˆ๊ท ํ˜•ํ•  ๋•Œ ์ด๋ฅผ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉํ•˜๋ฉฐ, ์†์‹ค ๊ณ„์‚ฐ ๊ณผ์ •์—์„œ ํ‘œ๋ณธ ์ˆ˜๊ฐ€ ๋” ์ ์€ ํด๋ž˜์Šค์˜ ์˜ํ–ฅ์„ ๊ฐ€์ค‘์น˜๋ฅผ ํ†ตํ•ด ๋Œ์–ด์˜ฌ๋ฆฝ๋‹ˆ๋‹ค. ํ•™์Šต ๊ณผ์ •์—์„œ๋งŒ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. - __reset_metrics__: `True`์ธ ๊ฒฝ์šฐ ์˜ค์ง ํ•ด๋‹น๋˜๋Š” ํ•˜๋‚˜์˜ ๋ฐฐ์น˜๋งŒ์„ ๊ณ ๋ คํ•œ ํ‰๊ฐ€ ์ง€ํ‘œ๊ฐ€ ์ƒ์„ฑ๋ฉ๋‹ˆ๋‹ค. `False`์ธ ๊ฒฝ์šฐ ํ‰๊ฐ€ ์ง€ํ‘œ๋Š” ์ดํ›„์— ์ž…๋ ฅ๋  ๋‹ค๋ฅธ ๋ฐฐ์น˜๋“ค๊นŒ์ง€ ๋ˆ„์ ๋ฉ๋‹ˆ๋‹ค. __๋ฐ˜ํ™˜๊ฐ’__ ์ ์šฉํ•  ๋ชจ๋ธ์ด ๋‹จ์ผํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•˜๋ฉฐ ๋ณ„๋„์˜ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ ํ›ˆ๋ จ ์†์‹ค์˜ ์Šค์นผ๋ผ ๊ฐ’์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์ค‘์˜ ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•˜๋Š” ๋ชจ๋ธ์ด๊ฑฐ๋‚˜ ์—ฌ๋Ÿฌ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ ์Šค์นผ๋ผ ๊ฐ’์˜ ๋ฆฌ์ŠคํŠธ๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. `model.metrics_names` ์†์„ฑ์€ ๊ฐ ์Šค์นผ๋ผ ๊ฒฐ๊ณผ๊ฐ’์— ํ• ๋‹น๋œ ์ด๋ฆ„์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ---- ### test_on_batch ```python test_on_batch(x, y, sample_weight=None, reset_metrics=True) ``` ํ•˜๋‚˜์˜ ํ‘œ๋ณธ ๋ฐฐ์น˜์— ๋Œ€ํ•ด์„œ ๋ชจ๋ธ์„ ํ…Œ์ŠคํŠธํ•ฉ๋‹ˆ๋‹ค. __์ธ์ž__ - __x__: ๊ธฐ๋ณธ์ ์œผ๋กœ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์˜ NumPy ๋ฐฐ์—ด์„, ๋ชจ๋ธ์ด ๋‹ค์ค‘ ์ž…๋ ฅ์„ ๋ฐ›๋Š” ๊ฒฝ์šฐ NumPy ๋ฐฐ์—ด์˜ ๋ฆฌ์ŠคํŠธ๋ฅผ ์ž…๋ ฅํ•ฉ๋‹ˆ๋‹ค. ๋ชจ๋ธ์˜ ๋ชจ๋“  ์ž…๋ ฅ์— ์ด๋ฆ„์ด ๋ฐฐ์ •๋œ ๊ฒฝ์šฐ ์ž…๋ ฅ๊ฐ’ ์ด๋ฆ„์„ `key`๋กœ, NumPy ๋ฐฐ์—ด์„ `value`๋กœ ๋ฌถ์€ ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ ์ž…๋ ฅํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. - __y__: ๊ธฐ๋ณธ์ ์œผ๋กœ ๋ชฉํ‘œ ๋ฐ์ดํ„ฐ์˜ NumPy ๋ฐฐ์—ด์„, ๋ชจ๋ธ์ด ๋‹ค์ค‘์˜ ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•˜๋Š” ๊ฒฝ์šฐ NumPy ๋ฐฐ์—ด์˜ ๋ฆฌ์ŠคํŠธ๋ฅผ ์ž…๋ ฅํ•ฉ๋‹ˆ๋‹ค. ๋ชจ๋ธ์˜ ๋ชจ๋“  ๊ฒฐ๊ณผ์— ์ด๋ฆ„์ด ๋ฐฐ์ •๋œ ๊ฒฝ์šฐ ๊ฒฐ๊ณผ๊ฐ’ ์ด๋ฆ„์„ `key`๋กœ, NumPy ๋ฐฐ์—ด์„ `value`๋กœ ๋ฌถ์€ ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ ์ž…๋ ฅํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. - __sample_weight__: ํŠน์ •ํ•œ ํ›ˆ๋ จ ํ‘œ๋ณธ์ด ์†์‹ค ํ•จ์ˆ˜์—์„œ ๋” ํฐ ์˜ํ–ฅ์„ ์ฃผ๋„๋ก ํ•˜๊ณ ์ž ํ•  ๊ฒฝ์šฐ์— ์‚ฌ์šฉํ•˜๋Š” ์ธ์ž์ž…๋‹ˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ํ‘œ๋ณธ๊ณผ ๋™์ผํ•œ ๊ธธ์ด์˜ 1D NumPy ๋ฐฐ์—ด์„, ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์˜ ๊ฒฝ์šฐ `(samples, sequence_length)`๋กœ ์ด๋ฃจ์–ด์ง„ 2D ๋ฐฐ์—ด์„ ์ž…๋ ฅํ•˜์—ฌ ์†์‹ค ๊ฐ€์ค‘์น˜์™€ ํ‘œ๋ณธ์ด 1:1๋กœ ์ง์ง€์–ด์ง€๊ฒŒ๋” ํ•ฉ๋‹ˆ๋‹ค. 2D ๋ฐฐ์—ด์„ ์ž…๋ ฅํ•˜๋Š” ๊ฒฝ์šฐ ๋ฐ˜๋“œ์‹œ `compile()` ๋‹จ๊ณ„์—์„œ `sample_weight_mode="temporal"`๋กœ ์ง€์ •ํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. `x`๊ฐ€ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋˜๋Š” `Sequence`์ธ์Šคํ„ด์Šค์ธ ๊ฒฝ์šฐ๋Š” ์†์‹ค ๊ฐ€์ค‘์น˜๋ฅผ `sample_weight`์ธ์ž ๋Œ€์‹  `x`์˜ ์„ธ ๋ฒˆ์งธ ๊ตฌ์„ฑ์š”์†Œ๋กœ ์ž…๋ ฅํ•ด์•ผ ์ ์šฉ๋ฉ๋‹ˆ๋‹ค. - __reset_metrics__: `True`์ธ ๊ฒฝ์šฐ ์˜ค์ง ํ•ด๋‹น๋˜๋Š” ํ•˜๋‚˜์˜ ๋ฐฐ์น˜๋งŒ์„ ๊ณ ๋ คํ•œ ํ‰๊ฐ€ ์ง€ํ‘œ๊ฐ€ ์ƒ์„ฑ๋ฉ๋‹ˆ๋‹ค. `False`์ธ ๊ฒฝ์šฐ ํ‰๊ฐ€ ์ง€ํ‘œ๋Š” ์ดํ›„์— ์ž…๋ ฅ๋  ๋‹ค๋ฅธ ๋ฐฐ์น˜๋“ค๊นŒ์ง€ ๋ˆ„์ ๋ฉ๋‹ˆ๋‹ค. __๋ฐ˜ํ™˜๊ฐ’__ ์ ์šฉํ•  ๋ชจ๋ธ์ด ๋‹จ์ผํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•˜๋ฉฐ ๋ณ„๋„์˜ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ ์‹œํ—˜ ์†์‹ค์˜ ์Šค์นผ๋ผ ๊ฐ’์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์ค‘์˜ ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•˜๋Š” ๋ชจ๋ธ์ด๊ฑฐ๋‚˜ ์—ฌ๋Ÿฌ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ ์Šค์นผ๋ผ ๊ฐ’์˜ ๋ฆฌ์ŠคํŠธ๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. `model.metrics_names` ์†์„ฑ์€ ๊ฐ ์Šค์นผ๋ผ ๊ฒฐ๊ณผ๊ฐ’์— ํ• ๋‹น๋œ ์ด๋ฆ„์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. ---- ### predict_on_batch ```python predict_on_batch(x) ``` ํ•˜๋‚˜์˜ ํ‘œ๋ณธ ๋ฐฐ์น˜์— ๋Œ€ํ•œ ์˜ˆ์ธก๊ฐ’์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. __์ธ์ž__ - __x__: NumPy ๋ฐฐ์—ด๋กœ ์ด๋ฃจ์–ด์ง„ ์ž…๋ ฅ ํ‘œ๋ณธ. __๋ฐ˜ํ™˜๊ฐ’__ ์˜ˆ์ธก๊ฐ’์˜ NumPy ๋ฐฐ์—ด. ---- ### fit_generator ```python fit_generator(generator, steps_per_epoch=None, epochs=1, verbose=1, callbacks=None, validation_data=None, validation_steps=None, validation_freq=1, class_weight=None, max_queue_size=10, workers=1, use_multiprocessing=False, shuffle=True, initial_epoch=0) ``` ํŒŒ์ด์ฌ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋˜๋Š” `Sequence` ์ธ์Šคํ„ด์Šค์—์„œ ์ƒ์„ฑ๋œ ๋ฐ์ดํ„ฐ์˜ ๋ฐฐ์น˜๋ณ„๋กœ ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ต๋‹ˆ๋‹ค. ์—ฐ์‚ฐ ํšจ์œจ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ์ œ๋„ˆ๋ ˆ์ดํ„ฐ๋Š” ๋ชจ๋ธ๊ณผ ๋ณ‘๋ ฌ๋กœ ์ž‘๋™ํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด GPU๋กœ ๋ชจ๋ธ์„ ํ•™์Šต์‹œํ‚ค๋Š” ๋™์‹œ์— CPU๋กœ ์‹ค์‹œ๊ฐ„ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•<sub>data augmentation</sub>์„ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋˜ํ•œ `keras.utils.Sequence`๋ฅผ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ํ‘œ๋ณธ์˜ ์ˆœ์„œ๊ฐ€ ์œ ์ง€๋จ์€ ๋ฌผ๋ก , `use_multiprocessing=True`์ธ ๊ฒฝ์šฐ์—๋„ ๋งค ์—ํญ๋‹น ์ž…๋ ฅ์ด ํ•œ ๋ฒˆ๋งŒ ๊ณ„์‚ฐ๋˜๋„๋ก ๋ณด์žฅ๋ฉ๋‹ˆ๋‹ค. __์ธ์ž__ - __generator__: ํŒŒ์ด์ฌ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ํ˜น์€ `Sequence`(`keras.utils.Sequence`)๊ฐ์ฒด<sub>object</sub>์ž…๋‹ˆ๋‹ค. `Sequence` ๊ฐ์ฒด๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ ๋ฉ€ํ‹ฐํ”„๋กœ์„ธ์‹ฑ ์ ์šฉ์‹œ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๊ฐ€ ์ค‘๋ณต ์‚ฌ์šฉ๋˜๋Š” ๋ฌธ์ œ๋ฅผ ํ”ผํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. `generator`๋Š” ๋ฐ˜๋“œ์‹œ ๋‹ค์Œ ์ค‘ ํ•˜๋‚˜์˜ ๊ฐ’์„ ์ƒ์„ฑํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. - `(inputs, targets)` ํŠœํ”Œ - `(inputs, targets, sample_weights)` ํŠœํ”Œ. ๋งค๋ฒˆ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ๊ฐ€ ์ƒ์„ฑํ•˜๋Š” ํŠœํ”Œ์˜ ๊ฐ’๋“ค์€ ๊ฐ๊ฐ ํ•˜๋‚˜์˜ ๋ฐฐ์น˜๊ฐ€ ๋ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ํŠœํ”Œ์— ํฌํ•จ๋œ ๋ฐฐ์—ด๋“ค์€ ๋ชจ๋‘ ๊ฐ™์€ ๊ธธ์ด๋ฅผ ๊ฐ€์ ธ์•ผ ํ•ฉ๋‹ˆ๋‹ค. ๋ฌผ๋ก  ๋ฐฐ์น˜๊ฐ€ ๋‹ค๋ฅธ ๊ฒฝ์šฐ ๊ธธ์ด๋„ ๋‹ฌ๋ผ์งˆ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์˜ˆ์ปจ๋Œ€, ์ „์ฒด ํ‘œ๋ณธ ์ˆ˜๊ฐ€ ๋ฐฐ์น˜ ํฌ๊ธฐ๋กœ ๋”ฑ ๋‚˜๋ˆ„์–ด์ง€์ง€ ์•Š๋Š” ๊ฒฝ์šฐ ๋งˆ์ง€๋ง‰ ๋ฐฐ์น˜์˜ ๊ธธ์ด๋Š” ๋‹ค๋ฅธ ๋ฐฐ์น˜๋“ค๋ณด๋‹ค ์งง์€ ๊ฒƒ๊ณผ ๊ฐ™์Šต๋‹ˆ๋‹ค. ์ œ๋„ˆ๋ ˆ์ดํ„ฐ๋Š” ์ฃผ์–ด์ง„ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฌดํ•œ์ • ๋ฐ˜๋ณต ์ถ”์ถœํ•˜๋Š” ๊ฒƒ์ด์–ด์•ผ ํ•˜๋ฉฐ, ๋ชจ๋ธ์ด `steps_per_epoch`๋กœ ์ง€์ •๋œ ๊ฐœ์ˆ˜์˜ ๋ฐฐ์น˜๋ฅผ ์ฒ˜๋ฆฌํ•  ๋•Œ 1ํšŒ์˜ ์—ํญ์ด ๋๋‚˜๋Š” ๊ฒƒ์œผ๋กœ ๊ฐ„์ฃผ๋ฉ๋‹ˆ๋‹ค. - __steps_per_epoch__: `int`. 1ํšŒ ์—ํญ์„ ๋งˆ์น˜๊ณ  ๋‹ค์Œ ์—ํญ์„ ์‹œ์ž‘ํ•  ๋•Œ๊นŒ์ง€ `generator`๋กœ๋ถ€ํ„ฐ ์ƒ์„ฑํ•  ๋ฐฐ์น˜์˜ ๊ฐœ์ˆ˜๋ฅผ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ `ceil(num_samples / batch_size)`, ์ฆ‰ ์ „์ฒด ํ‘œ๋ณธ์˜ ์ˆ˜๋ฅผ ๋ฐฐ์น˜ ํฌ๊ธฐ๋กœ ๋‚˜๋ˆ„์–ด ์˜ฌ๋ฆผํ•œ ๊ฐ’๊ณผ ๊ฐ™์•„์•ผ ํ•ฉ๋‹ˆ๋‹ค. `Sequence` ์ธ์Šคํ„ด์Šค๋ฅผ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›๋Š” ๊ฒฝ์šฐ์— ํ•œํ•ด `steps_per_epoch`๋ฅผ ์ง€์ •ํ•˜์ง€ ์•Š์œผ๋ฉด ์ž๋™์œผ๋กœ `len(generator)`๊ฐ’์„ ์ทจํ•ฉ๋‹ˆ๋‹ค. - __epochs__: `int`. ๋ชจ๋ธ์— ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ํ•™์Šต์‹œํ‚ฌ ํšŸ์ˆ˜์ž…๋‹ˆ๋‹ค. ํ•œ ๋ฒˆ์˜ ์—ํญ์€ `steps_per_epoch`๋กœ ์ •์˜๋œ ๋ฐ์ดํ„ฐ ์ „์ฒด๋ฅผ 1ํšŒ ํ•™์Šต์‹œํ‚ค๋Š” ๊ฒƒ์„ ๋œปํ•ฉ๋‹ˆ๋‹ค. ํšŸ์ˆ˜์˜ ์ธ๋ฑ์Šค๊ฐ€ `epochs`๋กœ ์ฃผ์–ด์ง„ ๊ฐ’์— ๋„๋‹ฌํ•  ๋•Œ๊นŒ์ง€ ํ•™์Šต์ด ๋ฐ˜๋ณต๋˜๋„๋ก ๋˜์–ด์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๋งŒ์•ฝ ์‹œ์ž‘ ํšŒ์ฐจ๋ฅผ ์ง€์ •ํ•˜๋Š” `initial_epoch` ์ธ์ž์™€ ๊ฐ™์ด ์“ฐ์ด๋Š” ๊ฒฝ์šฐ `epochs`๋Š” ์ „์ฒด ํšŸ์ˆ˜๊ฐ€ ์•„๋‹Œ "๋งˆ์ง€๋ง‰ ํšŒ์ฐจ"์˜ ์ˆœ๋ฒˆ์„ ๋œปํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. - __verbose__: `int`. `0`, `1`, ํ˜น์€ `2`. ํ•™์Šต ์ค‘ ์ง„ํ–‰ ์ •๋ณด์˜ ํ™”๋ฉด ์ถœ๋ ฅ ์—ฌ๋ถ€๋ฅผ ์„ค์ •ํ•˜๋Š” ์ธ์ž์ž…๋‹ˆ๋‹ค. `0`์€ ํ‘œ์‹œ ์—†์Œ, `1`์€ ์ง„ํ–‰ ํ‘œ์‹œ์ค„ ์ถœ๋ ฅ, `2`๋Š” ์—ํญ๋‹น ํ•œ ์ค„์”ฉ ์ถœ๋ ฅ์„ ๋œปํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ๋ณธ๊ฐ’์€ `1`์ž…๋‹ˆ๋‹ค. - __callbacks__: `keras.callbacks.Callback` ์ธ์Šคํ„ด์Šค์˜ ๋ฆฌ์ŠคํŠธ. ํ•™์Šต ๊ณผ์ •์—์„œ ์ ์šฉํ•  ์ฝœ๋ฐฑ์˜ ๋ฆฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. ์ž์„ธํ•œ ์‚ฌํ•ญ์€ [์ฝœ๋ฐฑ](/callbacks)์„ ์ฐธ์กฐํ•˜์‹ญ์‹œ์˜ค. - __validation_data__: ๋‹ค์Œ ์ค‘ ํ•˜๋‚˜์˜ ํ˜•ํƒœ๋ฅผ ์ทจํ•ฉ๋‹ˆ๋‹ค. - ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋˜๋Š” ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ์šฉ `Sequence` ๊ฐ์ฒด. - `(x_val, y_val)` ํŠœํ”Œ. - `(x_val, y_val, val_sample_weights)` ํŠœํ”Œ. ๋งคํšŒ์˜ ํ•™์Šต ์—ํญ์ด ๋๋‚  ๋•Œ๋งˆ๋‹ค ์ž…๋ ฅ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๊ฒ€์ฆ ์†์‹ค ๋ฐ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ํ•™์Šต์—๋Š” ์‚ฌ์šฉ๋˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค. - __validation_steps__: `validation_data`๊ฐ€ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ํ˜•์‹์˜ ๊ฐ’์„ ์ž…๋ ฅํ•  ๊ฒฝ์šฐ์—๋งŒ ์œ ํšจํ•œ ์ธ์ž์ž…๋‹ˆ๋‹ค. ๋งค ์—ํญ์˜ ๊ฒ€์ฆ์— ์‚ฌ์šฉํ•˜๊ธฐ ์œ„ํ•ด ์ œ๋„ˆ๋ ˆ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์ƒ์„ฑํ•  ๋ฐฐ์น˜์˜ ๊ฐœ์ˆ˜๋ฅผ ํŠน์ •ํ•ฉ๋‹ˆ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ๊ฒ€์ฆ ์„ธํŠธ์˜ ํ‘œ๋ณธ ๊ฐœ์ˆ˜๋ฅผ ๋ฐฐ์น˜ ํฌ๊ธฐ๋กœ ๋‚˜๋ˆ„์–ด ์˜ฌ๋ฆผํ•œ ๊ฐ’๊ณผ ๊ฐ™์•„์•ผ ํ•ฉ๋‹ˆ๋‹ค. `Sequence` ์ธ์Šคํ„ด์Šค๋ฅผ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›๋Š” ๊ฒฝ์šฐ์— ํ•œํ•ด `steps_per_epoch`๋ฅผ ์ง€์ •ํ•˜์ง€ ์•Š์œผ๋ฉด ์ž๋™์œผ๋กœ `len(validation_data)`๊ฐ’์„ ์ทจํ•ฉ๋‹ˆ๋‹ค. - __validation_freq__: ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ๊ฐ€ ์žˆ์„ ๊ฒฝ์šฐ์— ํ•œํ•ด ์œ ํšจํ•œ ์ธ์ž์ž…๋‹ˆ๋‹ค. ์ •์ˆ˜ ๋˜๋Š” ๋ฆฌ์ŠคํŠธ/ํŠœํ”Œ/์„ธํŠธ ํƒ€์ž…์˜ ์ž…๋ ฅ์„ ๋ฐ›์Šต๋‹ˆ๋‹ค. ์ •์ˆ˜ ์ž…๋ ฅ์˜ ๊ฒฝ์šฐ ๋ช‡ ํšŒ์˜ ์—ํญ๋งˆ๋‹ค 1ํšŒ ๊ฒ€์ฆํ• ์ง€๋ฅผ ์ •ํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ์ปจ๋Œ€ `validation_freq=2`์˜ ๊ฒฝ์šฐ ๋งค 2ํšŒ ์—ํญ๋งˆ๋‹ค 1ํšŒ ๊ฒ€์ฆํ•ฉ๋‹ˆ๋‹ค. ๋งŒ์•ฝ ๋ฆฌ์ŠคํŠธ๋‚˜ ํŠœํ”Œ, ์„ธํŠธ ํ˜•ํƒœ๋กœ ์ž…๋ ฅ๋œ ๊ฒฝ์šฐ ์ž…๋ ฅ๊ฐ’ ์•ˆ์— ์ง€์ •๋œ ํšŒ์ฐจ์— ํ•œํ•ด ๊ฒ€์ฆ์„ ์‹คํ–‰ํ•ฉ๋‹ˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด `validation_freq=[1, 2, 10]`์˜ ๊ฒฝ์šฐ 1, 2, 10๋ฒˆ์งธ ์—ํญ์—์„œ ๊ฒ€์ฆํ•ฉ๋‹ˆ๋‹ค. - __class_weight__: ํ•„์š”ํ•œ ๊ฒฝ์šฐ์—๋งŒ ์‚ฌ์šฉํ•˜๋Š” ์ธ์ž๋กœ, ๊ฐ ํด๋ž˜์Šค ์ธ๋ฑ์Šค๋ฅผ `key`๋กœ, ๊ฐ€์ค‘์น˜๋ฅผ `value`๋กœ ๊ฐ–๋Š” ๋”•์…”๋„ˆ๋ฆฌ๋ฅผ ์ž…๋ ฅํ•ฉ๋‹ˆ๋‹ค. ์ธ๋ฑ์Šค๋Š” ์ •์ˆ˜, ๊ฐ€์ค‘์น˜๋Š” ๋ถ€๋™์†Œ์ˆ˜์  ๊ฐ’์„ ๊ฐ–์Šต๋‹ˆ๋‹ค. ์ฃผ๋กœ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์˜ ํด๋ž˜์Šค ๋ถ„ํฌ๊ฐ€ ๋ถˆ๊ท ํ˜•ํ•  ๋•Œ ์ด๋ฅผ ์™„ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉํ•˜๋ฉฐ, ์†์‹ค ๊ณ„์‚ฐ ๊ณผ์ •์—์„œ ํ‘œ๋ณธ ์ˆ˜๊ฐ€ ๋” ์ ์€ ํด๋ž˜์Šค์˜ ์˜ํ–ฅ์„ ๊ฐ€์ค‘์น˜๋ฅผ ํ†ตํ•ด ๋Œ์–ด์˜ฌ๋ฆฝ๋‹ˆ๋‹ค. ํ•™์Šต ๊ณผ์ •์—์„œ๋งŒ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. - __max_queue_size__: `int`. ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋Œ€๊ธฐ์—ด์˜ ์ตœ๋Œ€ ํฌ๊ธฐ๋ฅผ ์ง€์ •ํ•˜๋ฉฐ, ๋ฏธ์ •์ธ ๊ฒฝ์šฐ ๊ธฐ๋ณธ๊ฐ’ `10`์ด ์ ์šฉ๋ฉ๋‹ˆ๋‹ค. - __workers__: `int`. ํ”„๋กœ์„ธ์Šค ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์ค‘ ์Šค๋ ˆ๋”ฉ์„ ํ•  ๋•Œ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ์ž‘๋™์— ์‚ฌ์šฉํ•  ํ”„๋กœ์„ธ์Šค์˜ ์ตœ๋Œ€ ๊ฐœ์ˆ˜๋ฅผ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ๋ณธ๊ฐ’์€ `1`์ด๋ฉฐ, `0`์„ ์ž…๋ ฅํ•  ๊ฒฝ์šฐ ๋ฉ”์ธ ์Šค๋ ˆ๋“œ์—์„œ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ๋ฅผ ์ž‘๋™์‹œํ‚ต๋‹ˆ๋‹ค. - __use_multiprocessing__: `bool`. `True`์ธ ๊ฒฝ์šฐ ํ”„๋กœ์„ธ์Šค ๊ธฐ๋ฐ˜ ๋‹ค์ค‘ ์Šค๋ ˆ๋”ฉ์„ ์‚ฌ์šฉํ•˜๋ฉฐ ๊ธฐ๋ณธ๊ฐ’์€ `False`์ž…๋‹ˆ๋‹ค. ์ด ์„ค์ •์„ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ์—์„œ ๊ฐ์ฒด ์ง๋ ฌํ™”๊ฐ€ ๋ถˆ๊ฐ€๋Šฅํ•œ ์ธ์ž๋“ค์€ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋„๋ก ํ•ฉ๋‹ˆ๋‹ค (๋ฉ€ํ‹ฐํ”„๋กœ์„ธ์‹ฑ ๊ณผ์ •์—์„œ ์ž์‹ ํ”„๋กœ์„ธ์Šค๋กœ ์ „๋‹ฌ๋˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค). - __shuffle__: `bool`. `Sequence`์ธ์Šคํ„ด์Šค ์ž…๋ ฅ์„ ๋ฐ›์„ ๋•Œ์—๋งŒ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค. ๊ฐ ์—ํญ์„ ์‹œ์ž‘ํ•˜๊ธฐ ์ „์— ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ๋ฅผ ๋’ค์„ž์„์ง€๋ฅผ ๊ฒฐ์ •ํ•ฉ๋‹ˆ๋‹ค. `steps_per_epoch`๊ฐ’์ด `None`์ด ์•„๋‹Œ ๊ฒฝ์šฐ `shuffle`์ธ์ž๋Š” ๋ฌดํšจํ™”๋ฉ๋‹ˆ๋‹ค. - __initial_epoch__: `int`. ํŠน์ •ํ•œ ์—ํญ์—์„œ ํ•™์Šต์„ ์‹œ์ž‘ํ•˜๋„๋ก ์‹œ์ž‘ ํšŒ์ฐจ๋ฅผ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. ์ด์ „์˜ ํ•™์Šต์„ ์ด์–ด์„œ ํ•  ๋•Œ ์œ ์šฉํ•ฉ๋‹ˆ๋‹ค. __๋ฐ˜ํ™˜๊ฐ’__ `History` ๊ฐ์ฒด๋ฅผ ๋ฐ˜ํ™˜ํ•ฉ๋‹ˆ๋‹ค. `History.history` ์†์„ฑ์€ ๊ฐ ์—ํญ๋งˆ๋‹ค ๊ณ„์‚ฐ๋œ ํ•™์Šต ์†์‹ค ๋ฐ ํ‰๊ฐ€ ์ง€ํ‘œ๊ฐ€ ์ˆœ์„œ๋Œ€๋กœ ๊ธฐ๋ก๋œ ๊ฐ’์ž…๋‹ˆ๋‹ค. ๊ฒ€์ฆ ๋ฐ์ดํ„ฐ๋ฅผ ์ ์šฉํ•œ ๊ฒฝ์šฐ ํ•ด๋‹น ์†์‹ค ๋ฐ ์ง€ํ‘œ๋„ ํ•จ๊ป˜ ๊ธฐ๋ก๋ฉ๋‹ˆ๋‹ค. __์˜ค๋ฅ˜__ - __ValueError__: ์ œ๋„ˆ๋ ˆ์ดํ„ฐ๊ฐ€ ์œ ํšจํ•˜์ง€ ์•Š์€ ํ˜•์‹์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋งŒ๋“ค์–ด ๋‚ด๋Š” ๊ฒฝ์šฐ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. __์˜ˆ์‹œ__ ```python def generate_arrays_from_file(path): while True: with open(path) as f: for line in f: # ํŒŒ์ผ์˜ ๊ฐ ๋ผ์ธ์œผ๋กœ๋ถ€ํ„ฐ # ์ž…๋ ฅ ๋ฐ์ดํ„ฐ์™€ ๋ ˆ์ด๋ธ”์˜ NumPy ๋ฐฐ์—ด์„ ๋งŒ๋“ญ๋‹ˆ๋‹ค x1, x2, y = process_line(line) yield ({'input_1': x1, 'input_2': x2}, {'output': y}) model.fit_generator(generate_arrays_from_file('/my_file.txt'), steps_per_epoch=10000, epochs=10) ``` ---- ### evaluate_generator ```python evaluate_generator(generator, steps=None, callbacks=None, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=0) ``` ์ œ๋„ˆ๋ ˆ์ดํ„ฐ์—์„œ ์ƒ์„ฑํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋ชจ๋ธ์„ ํ‰๊ฐ€ํ•ฉ๋‹ˆ๋‹ค. ์ œ๋„ˆ๋ ˆ์ดํ„ฐ๋Š” `test_on_batch`๊ฐ€ ์š”๊ตฌํ•˜๋Š” ๊ฒƒ๊ณผ ๋™์ผํ•œ ์ข…๋ฅ˜์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์ด์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. __์ธ์ž__ - __generator__: `(inputs, targets)` ํŠœํ”Œ ๋˜๋Š” `(inputs, targets, sample_weights)` ํŠœํ”Œ์„ ์ƒ์„ฑํ•˜๋Š” ํŒŒ์ด์ฌ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ํ˜น์€ `Sequence`(`keras.utils.Sequence`)์ธ์Šคํ„ด์Šค์ž…๋‹ˆ๋‹ค. `Sequence`์ธ์Šคํ„ด์Šค๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ ๋ฉ€ํ‹ฐํ”„๋กœ์„ธ์‹ฑ ์ ์šฉ์‹œ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๊ฐ€ ์ค‘๋ณต ์‚ฌ์šฉ๋˜๋Š” ๋ฌธ์ œ๋ฅผ ํ”ผํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. - __steps__: ํ‰๊ฐ€๋ฅผ ๋งˆ์น˜๊ธฐ ์ „๊นŒ์ง€ `generator`๋กœ๋ถ€ํ„ฐ ์ƒ์„ฑํ•  ๋ฐฐ์น˜์˜ ๊ฐœ์ˆ˜๋ฅผ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. `Sequence` ์ธ์Šคํ„ด์Šค๋ฅผ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›๋Š” ๊ฒฝ์šฐ์— ํ•œํ•ด `steps`๋ฅผ ์ง€์ •ํ•˜์ง€ ์•Š์œผ๋ฉด ์ž๋™์œผ๋กœ `len(generator)`๊ฐ’์„ ์ทจํ•ฉ๋‹ˆ๋‹ค. - __callbacks__: `keras.callbacks.Callback` ์ธ์Šคํ„ด์Šค์˜ ๋ฆฌ์ŠคํŠธ. ํ‰๊ฐ€ ๊ณผ์ •์—์„œ ์ ์šฉํ•  ์ฝœ๋ฐฑ์˜ ๋ฆฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. [์ฝœ๋ฐฑ](/callbacks)์„ ์ฐธ์กฐํ•˜์‹ญ์‹œ์˜ค. - __max_queue_size__: `int`. ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋Œ€๊ธฐ์—ด์˜ ์ตœ๋Œ€ ํฌ๊ธฐ๋ฅผ ์ง€์ •ํ•˜๋ฉฐ, ๋ฏธ์ •์ธ ๊ฒฝ์šฐ ๊ธฐ๋ณธ๊ฐ’ `10`์ด ์ ์šฉ๋ฉ๋‹ˆ๋‹ค. - __workers__: `int`. ํ”„๋กœ์„ธ์Šค ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์ค‘ ์Šค๋ ˆ๋”ฉ์„ ํ•  ๋•Œ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ์ž‘๋™์— ์‚ฌ์šฉํ•  ํ”„๋กœ์„ธ์Šค์˜ ์ตœ๋Œ€ ๊ฐœ์ˆ˜๋ฅผ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ๋ณธ๊ฐ’์€ `1`์ด๋ฉฐ, `0`์„ ์ž…๋ ฅํ•  ๊ฒฝ์šฐ ๋ฉ”์ธ ์Šค๋ ˆ๋“œ์—์„œ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ๋ฅผ ์ž‘๋™์‹œํ‚ต๋‹ˆ๋‹ค. - __use_multiprocessing__: `bool`. ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๊ฐ€ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋˜๋Š” `keras.utils.Sequence` ์ธ์Šคํ„ด์Šค์ผ ๋•Œ๋งŒ ์œ ํšจํ•ฉ๋‹ˆ๋‹ค. `True`์ธ ๊ฒฝ์šฐ ํ”„๋กœ์„ธ์Šค ๊ธฐ๋ฐ˜ ๋‹ค์ค‘ ์Šค๋ ˆ๋”ฉ์„ ์‚ฌ์šฉํ•˜๋ฉฐ ๊ธฐ๋ณธ๊ฐ’์€ `False`์ž…๋‹ˆ๋‹ค. ์ด ์„ค์ •์„ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ์—์„œ ๊ฐ์ฒด ์ง๋ ฌํ™”๊ฐ€ ๋ถˆ๊ฐ€๋Šฅํ•œ ์ธ์ž๋“ค์€ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋„๋ก ํ•ฉ๋‹ˆ๋‹ค (๋ฉ€ํ‹ฐํ”„๋กœ์„ธ์‹ฑ ๊ณผ์ •์—์„œ ์ž์‹ ํ”„๋กœ์„ธ์Šค๋กœ ์ „๋‹ฌ๋˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค). - __verbose__: `0` ๋˜๋Š” `1`. ์ง„ํ–‰ ์ •๋ณด์˜ ํ™”๋ฉด ์ถœ๋ ฅ ์—ฌ๋ถ€๋ฅผ ์„ค์ •ํ•˜๋Š” ์ธ์ž์ž…๋‹ˆ๋‹ค. `0`์€ ํ‘œ์‹œ ์—†์Œ, `1`์€ ์ง„ํ–‰ ํ‘œ์‹œ์ค„ ์ถœ๋ ฅ์„ ๋œปํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ๋ณธ๊ฐ’์€ `1`์ž…๋‹ˆ๋‹ค. __๋ฐ˜ํ™˜๊ฐ’__ ์ ์šฉํ•  ๋ชจ๋ธ์ด ๋‹จ์ผํ•œ ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•˜๋ฉฐ ๋ณ„๋„์˜ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ ์‹œํ—˜ ์†์‹ค์˜ ์Šค์นผ๋ผ ๊ฐ’์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์ค‘์˜ ๊ฒฐ๊ณผ๋ฅผ ์ถœ๋ ฅํ•˜๋Š” ๋ชจ๋ธ์ด๊ฑฐ๋‚˜ ์—ฌ๋Ÿฌ ํ‰๊ฐ€ ์ง€ํ‘œ๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ ์Šค์นผ๋ผ ๊ฐ’์˜ ๋ฆฌ์ŠคํŠธ๋ฅผ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. `model.metrics_names` ์†์„ฑ์€ ๊ฐ ์Šค์นผ๋ผ ๊ฒฐ๊ณผ๊ฐ’์— ํ• ๋‹น๋œ ์ด๋ฆ„์„ ๋ณด์—ฌ์ค๋‹ˆ๋‹ค. __์˜ค๋ฅ˜__ - __ValueError__: ์ œ๋„ˆ๋ ˆ์ดํ„ฐ๊ฐ€ ์œ ํšจํ•˜์ง€ ์•Š์€ ํ˜•์‹์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋งŒ๋“ค์–ด ๋‚ด๋Š” ๊ฒฝ์šฐ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. ---- ### predict_generator ```python predict_generator(generator, steps=None, callbacks=None, max_queue_size=10, workers=1, use_multiprocessing=False, verbose=0) ``` ์ œ๋„ˆ๋ ˆ์ดํ„ฐ์—์„œ ์ƒ์„ฑํ•œ ํ‘œ๋ณธ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์˜ˆ์ธก๊ฐ’์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ์ œ๋„ˆ๋ ˆ์ดํ„ฐ๋Š” `predict_on_batch`๊ฐ€ ์š”๊ตฌํ•˜๋Š” ๊ฒƒ๊ณผ ๋™์ผํ•œ ์ข…๋ฅ˜์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์ด์–ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. __์ธ์ˆ˜__ - __generator__: ํ‘œ๋ณธ ๋ฐ์ดํ„ฐ์˜ ๋ฐฐ์น˜๋ฅผ ์ƒ์„ฑํ•˜๋Š” ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ํ˜น์€ `Sequence`(`keras.utils.Sequence`)์ธ์Šคํ„ด์Šค์ž…๋‹ˆ๋‹ค. `Sequence`์ธ์Šคํ„ด์Šค๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ ๋ฉ€ํ‹ฐํ”„๋กœ์„ธ์‹ฑ ์ ์šฉ์‹œ ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๊ฐ€ ์ค‘๋ณต ์‚ฌ์šฉ๋˜๋Š” ๋ฌธ์ œ๋ฅผ ํ”ผํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. - __steps__: ์˜ˆ์ธก์„ ๋งˆ์น˜๊ธฐ ์ „๊นŒ์ง€ `generator`๋กœ๋ถ€ํ„ฐ ์ƒ์„ฑํ•  ๋ฐฐ์น˜์˜ ๊ฐœ์ˆ˜๋ฅผ ์ง€์ •ํ•ฉ๋‹ˆ๋‹ค. `Sequence` ์ธ์Šคํ„ด์Šค๋ฅผ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›๋Š” ๊ฒฝ์šฐ์— ํ•œํ•ด `steps`๋ฅผ ์ง€์ •ํ•˜์ง€ ์•Š์œผ๋ฉด ์ž๋™์œผ๋กœ `len(generator)`๊ฐ’์„ ์ทจํ•ฉ๋‹ˆ๋‹ค. - __callbacks__: `keras.callbacks.Callback` ์ธ์Šคํ„ด์Šค์˜ ๋ฆฌ์ŠคํŠธ. ์˜ˆ์ธก ๊ณผ์ •์—์„œ ์ ์šฉํ•  ์ฝœ๋ฐฑ์˜ ๋ฆฌ์ŠคํŠธ์ž…๋‹ˆ๋‹ค. [์ฝœ๋ฐฑ](/callbacks)์„ ์ฐธ์กฐํ•˜์‹ญ์‹œ์˜ค. - __max_queue_size__: `int`. ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋Œ€๊ธฐ์—ด์˜ ์ตœ๋Œ€ ํฌ๊ธฐ๋ฅผ ์ง€์ •ํ•˜๋ฉฐ, ๋ฏธ์ •์ธ ๊ฒฝ์šฐ ๊ธฐ๋ณธ๊ฐ’ `10`์ด ์ ์šฉ๋ฉ๋‹ˆ๋‹ค. - __workers__: `int`. ํ”„๋กœ์„ธ์Šค ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์ค‘ ์Šค๋ ˆ๋”ฉ์„ ํ•  ๋•Œ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ์ž‘๋™์— ์‚ฌ์šฉํ•  ํ”„๋กœ์„ธ์Šค์˜ ์ตœ๋Œ€ ๊ฐœ์ˆ˜๋ฅผ ์„ค์ •ํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ๋ณธ๊ฐ’์€ `1`์ด๋ฉฐ, `0`์„ ์ž…๋ ฅํ•  ๊ฒฝ์šฐ ๋ฉ”์ธ ์Šค๋ ˆ๋“œ์—์„œ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ๋ฅผ ์ž‘๋™์‹œํ‚ต๋‹ˆ๋‹ค. - __use_multiprocessing__: `bool`. ์ž…๋ ฅ ๋ฐ์ดํ„ฐ๊ฐ€ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ ๋˜๋Š” `keras.utils.Sequence` ์ธ์Šคํ„ด์Šค์ผ ๋•Œ๋งŒ ์œ ํšจํ•ฉ๋‹ˆ๋‹ค. `True`์ธ ๊ฒฝ์šฐ ํ”„๋กœ์„ธ์Šค ๊ธฐ๋ฐ˜ ๋‹ค์ค‘ ์Šค๋ ˆ๋”ฉ์„ ์‚ฌ์šฉํ•˜๋ฉฐ ๊ธฐ๋ณธ๊ฐ’์€ `False`์ž…๋‹ˆ๋‹ค. ์ด ์„ค์ •์„ ์‚ฌ์šฉํ•  ๊ฒฝ์šฐ ์ œ๋„ˆ๋ ˆ์ดํ„ฐ์—์„œ ๊ฐ์ฒด ์ง๋ ฌํ™”๊ฐ€ ๋ถˆ๊ฐ€๋Šฅํ•œ ์ธ์ž๋“ค์€ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋„๋ก ํ•ฉ๋‹ˆ๋‹ค (๋ฉ€ํ‹ฐํ”„๋กœ์„ธ์‹ฑ ๊ณผ์ •์—์„œ ์ž์‹ ํ”„๋กœ์„ธ์Šค๋กœ ์ „๋‹ฌ๋˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค). - __verbose__: `0` ๋˜๋Š” `1`. ์ง„ํ–‰ ์ •๋ณด์˜ ํ™”๋ฉด ์ถœ๋ ฅ ์—ฌ๋ถ€๋ฅผ ์„ค์ •ํ•˜๋Š” ์ธ์ž์ž…๋‹ˆ๋‹ค. `0`์€ ํ‘œ์‹œ ์—†์Œ, `1`์€ ์ง„ํ–‰ ํ‘œ์‹œ์ค„ ์ถœ๋ ฅ์„ ๋œปํ•ฉ๋‹ˆ๋‹ค. ๊ธฐ๋ณธ๊ฐ’์€ `1`์ž…๋‹ˆ๋‹ค. __๋ฐ˜ํ™˜๊ฐ’__ ์˜ˆ์ธก ๊ฐ’์˜ NumPy ๋ฐฐ์—ด. __์˜ค๋ฅ˜__ - __ValueError__: ์ œ๋„ˆ๋ ˆ์ดํ„ฐ๊ฐ€ ์œ ํšจํ•˜์ง€ ์•Š์€ ํ˜•์‹์˜ ๋ฐ์ดํ„ฐ๋ฅผ ๋งŒ๋“ค์–ด ๋‚ด๋Š” ๊ฒฝ์šฐ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค. ---- ### get_layer ```python get_layer(name=None, index=None) ``` ์ธต<sub>layer</sub>์˜ (๊ณ ์œ ํ•œ) ์ด๋ฆ„, ํ˜น์€ ์ธ๋ฑ์Šค๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ํ•ด๋‹น ์ธต์„ ๊ฐ€์ ธ์˜ต๋‹ˆ๋‹ค. `name`๊ณผ `index`๊ฐ€ ๋ชจ๋‘ ์ œ๊ณต๋˜๋Š” ๊ฒฝ์šฐ, `index`๊ฐ€ ์šฐ์„  ์ˆœ์œ„๋ฅผ ๊ฐ–์Šต๋‹ˆ๋‹ค. ์ธ๋ฑ์Šค๋Š” (์ƒํ–ฅ์‹) ๋„ˆ๋น„ ์šฐ์„  ๊ทธ๋ž˜ํ”„ ํƒ์ƒ‰<sub>(bottom-up) horizontal graph traversal</sub> ์ˆœ์„œ๋ฅผ ๋”ฐ๋ฆ…๋‹ˆ๋‹ค. __์ธ์ž__ - __name__: `str`. ์ธต์˜ ์ด๋ฆ„์ž…๋‹ˆ๋‹ค. - __index__: `int`. ์ธต์˜ ์ธ๋ฑ์Šค์ž…๋‹ˆ๋‹ค. __๋ฐ˜ํ™˜๊ฐ’__ ์ธต ์ธ์Šคํ„ด์Šค. __์˜ค๋ฅ˜__ - __ValueError__: ์ธต์˜ ์ด๋ฆ„์ด๋‚˜ ์ธ๋ฑ์Šค๊ฐ€ ์œ ํšจํ•˜์ง€ ์•Š์€ ๊ฒฝ์šฐ ๋ฐœ์ƒํ•ฉ๋‹ˆ๋‹ค.
keras-docs-ko/sources/models/model.md/0
{ "file_path": "keras-docs-ko/sources/models/model.md", "repo_id": "keras-docs-ko", "token_count": 31237 }
81
# ๆœฌ็คบไพ‹ๆผ”็คบไบ†ๅฆ‚ไฝ•ไธบ Keras ็ผ–ๅ†™่‡ชๅฎšไน‰็ฝ‘็ปœๅฑ‚ใ€‚ ๆˆ‘ไปฌๆž„ๅปบไบ†ไธ€ไธช็งฐไธบ 'Antirectifier' ็š„่‡ชๅฎšไน‰ๆฟ€ๆดปๅฑ‚๏ผŒ่ฏฅๅฑ‚ๅฏไปฅไฟฎๆ”น้€š่ฟ‡ๅฎƒ็š„ๅผ ้‡็š„ๅฝข็Šถใ€‚ ๆˆ‘ไปฌ้œ€่ฆๆŒ‡ๅฎšไธคไธชๆ–นๆณ•: `compute_output_shape` ๅ’Œ `call`ใ€‚ ๆณจๆ„๏ผŒ็›ธๅŒ็š„็ป“ๆžœไนŸๅฏไปฅ้€š่ฟ‡ Lambda ๅฑ‚ๅ–ๅพ—ใ€‚ ๆˆ‘ไปฌ็š„่‡ชๅฎšไน‰ๅฑ‚ๆ˜ฏไฝฟ็”จ Keras ๅŽ็ซฏ (`K`) ไธญ็š„ๅŸบๅ…ƒ็ผ–ๅ†™็š„๏ผŒๅ› ่€Œไปฃ็ ๅฏไปฅๅœจ TensorFlow ๅ’Œ Theano ไธŠ่ฟ่กŒใ€‚ ```python from __future__ import print_function import keras from keras.models import Sequential from keras import layers from keras.datasets import mnist from keras import backend as K class Antirectifier(layers.Layer): '''่ฟ™ๆ˜ฏๆ ทๆœฌ็บง็š„ L2 ๆ ‡ๅ‡†ๅŒ–ไธŽ่พ“ๅ…ฅ็š„ๆญฃ่ดŸ้ƒจๅˆ†ไธฒ่”็š„็ป„ๅˆใ€‚ ็ป“ๆžœๆ˜ฏไธคๅ€ไบŽ่พ“ๅ…ฅๆ ทๆœฌ็š„ๆ ทๆœฌๅผ ้‡ใ€‚ ๅฎƒๅฏไปฅ็”จไบŽๆ›ฟไปฃ ReLUใ€‚ # ่พ“ๅ…ฅๅฐบๅฏธ 2D ๅผ ้‡๏ผŒๅฐบๅฏธไธบ (samples, n) # ่พ“ๅ‡บๅฐบๅฏธ 2D ๅผ ้‡๏ผŒๅฐบๅฏธไธบ (samples, 2*n) # ็†่ฎบไพๆฎ ๅœจๅบ”็”จ ReLU ๆ—ถ๏ผŒๅ‡่ฎพๅ…ˆๅ‰่พ“ๅ‡บ็š„ๅˆ†ๅธƒๆŽฅ่ฟ‘ไบŽ 0 ็š„ไธญๅฟƒ๏ผŒ ้‚ฃไนˆๅฐ†ไธขๅผƒไธ€ๅŠ็š„่พ“ๅ…ฅใ€‚่ฟ™ๆ˜ฏ้žๅธธไฝŽๆ•ˆ็š„ใ€‚ Antirectifier ๅ…่ฎธๅƒ ReLU ไธ€ๆ ท่ฟ”ๅ›žๅ…จๆญฃ่พ“ๅ‡บ๏ผŒ่€Œไธไผšไธขๅผƒไปปไฝ•ๆ•ฐๆฎใ€‚ ๅœจ MNIST ไธŠ่ฟ›่กŒ็š„ๆต‹่ฏ•่กจๆ˜Ž๏ผŒAntirectifier ๅฏไปฅ่ฎญ็ปƒๅ‚ๆ•ฐๅฐ‘ไธคๅ€ไฝ†ๅ…ท ๆœ‰ไธŽๅŸบไบŽ ReLU ็š„็ญ‰ๆ•ˆ็ฝ‘็ปœ็›ธๅฝ“็š„ๅˆ†็ฑป็ฒพๅบฆ็š„็ฝ‘็ปœใ€‚ ''' def compute_output_shape(self, input_shape): shape = list(input_shape) assert len(shape) == 2 # ไป…ๅฏน 2D ๅผ ้‡ๆœ‰ๆ•ˆ shape[-1] *= 2 return tuple(shape) def call(self, inputs): inputs -= K.mean(inputs, axis=1, keepdims=True) inputs = K.l2_normalize(inputs, axis=1) pos = K.relu(inputs) neg = K.relu(-inputs) return K.concatenate([pos, neg], axis=1) # ๅ…จๅฑ€ๅ‚ๆ•ฐ batch_size = 128 num_classes = 10 epochs = 40 # ๅˆ‡ๅˆ†ไธบ่ฎญ็ปƒๅ’Œๆต‹่ฏ•็š„ๆ•ฐๆฎ (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(60000, 784) x_test = x_test.reshape(10000, 784) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') # ๅฐ†็ฑปๅ‘้‡่ฝฌๅŒ–ไธบไบŒ่ฟ›ๅˆถ็ฑป็Ÿฉ้˜ต y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) # ๆž„ๅปบๆจกๅž‹ model = Sequential() model.add(layers.Dense(256, input_shape=(784,))) model.add(Antirectifier()) model.add(layers.Dropout(0.1)) model.add(layers.Dense(256)) model.add(Antirectifier()) model.add(layers.Dropout(0.1)) model.add(layers.Dense(num_classes)) model.add(layers.Activation('softmax')) # ็ผ–่ฏ‘ๆจกๅž‹ model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['accuracy']) # ่ฎญ็ปƒๆจกๅž‹ model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test)) # ๆŽฅไธ‹ๆฅ๏ผŒไธŽๅ…ทๆœ‰ 2 ๅ€ๅคง็š„ๅฏ†้›†ๅฑ‚ # ๅ’Œ ReLU ็š„็ญ‰ๆ•ˆ็ฝ‘็ปœ่ฟ›่กŒๆฏ”่พƒ ```
keras-docs-zh/sources/examples/antirectifier.md/0
{ "file_path": "keras-docs-zh/sources/examples/antirectifier.md", "repo_id": "keras-docs-zh", "token_count": 1748 }
82
# Keras ๅบๅˆ—ๅˆฐๅบๅˆ—ๆจกๅž‹็คบไพ‹๏ผˆๅญ—็ฌฆ็บง๏ผ‰ใ€‚ ่ฏฅ่„šๆœฌๆผ”็คบไบ†ๅฆ‚ไฝ•ๅฎž็ŽฐๅŸบๆœฌ็š„ๅญ—็ฌฆ็บงๅบๅˆ—ๅˆฐๅบๅˆ—ๆจกๅž‹ใ€‚ ๆˆ‘ไปฌๅฐ†ๅ…ถ็”จไบŽๅฐ†่‹ฑๆ–‡็Ÿญๅฅ้€ไธชๅญ—็ฌฆ็ฟป่ฏ‘ๆˆๆณ•่ฏญ็Ÿญๅฅใ€‚ ่ฏทๆณจๆ„๏ผŒ่ฟ›่กŒๅญ—็ฌฆ็บงๆœบๅ™จ็ฟป่ฏ‘ๆ˜ฏ้žๅธธไธๅฏปๅธธ็š„๏ผŒๅ› ไธบๅœจๆญค้ข†ๅŸŸไธญ่ฏ็บงๆจกๅž‹ๆ›ดไธบๅธธ่งใ€‚ **็ฎ—ๆณ•ๆ€ป็ป“** - ๆˆ‘ไปฌไปŽไธ€ไธช้ข†ๅŸŸ็š„่พ“ๅ…ฅๅบๅˆ—๏ผˆไพ‹ๅฆ‚่‹ฑ่ฏญๅฅๅญ๏ผ‰ๅ’Œๅฆไธ€ไธช้ข†ๅŸŸ็š„ๅฏนๅบ”็›ฎๆ ‡ๅบๅˆ—๏ผˆไพ‹ๅฆ‚ๆณ•่ฏญๅฅๅญ๏ผ‰ๅผ€ๅง‹๏ผ› - ็ผ–็ ๅ™จ LSTM ๅฐ†่พ“ๅ…ฅๅบๅˆ—ๅ˜ๆขไธบ 2 ไธช็Šถๆ€ๅ‘้‡๏ผˆๆˆ‘ไปฌไฟ็•™ๆœ€ๅŽ็š„ LSTM ็Šถๆ€ๅนถไธขๅผƒ่พ“ๅ‡บ๏ผ‰๏ผ› - ๅฏน่งฃ็ ๅ™จ LSTM ่ฟ›่กŒ่ฎญ็ปƒ๏ผŒไปฅๅฐ†็›ฎๆ ‡ๅบๅˆ—่ฝฌๆขไธบ็›ธๅŒๅบๅˆ—๏ผŒไฝ†ไปฅๅŽๅฐ†ๅ็งปไธ€ไธชๆ—ถ้—ดๆญฅ๏ผŒๅœจ่ฟ™็งๆƒ…ๅ†ตไธ‹๏ผŒ่ฏฅ่ฎญ็ปƒ่ฟ‡็จ‹็งฐไธบ "ๆ•™ๅธˆๅผบๅˆถ"ใ€‚ ๅฎƒไฝฟ็”จ็ผ–็ ๅ™จ็š„่พ“ๅ‡บใ€‚ๅฎž้™…ไธŠ๏ผŒ่งฃ็ ๅ™จไผšๆ นๆฎ่พ“ๅ…ฅๅบๅˆ—๏ผŒๆ นๆฎ็ป™ๅฎš็š„ `targets[...t]` ๆฅๅญฆไน ็”Ÿๆˆ `target[t+1...]`ใ€‚ - ๅœจๆŽจ็†ๆจกๅผไธ‹๏ผŒๅฝ“ๆˆ‘ไปฌๆƒณ่งฃ็ ๆœช็Ÿฅ็š„่พ“ๅ…ฅๅบๅˆ—ๆ—ถ๏ผŒๆˆ‘ไปฌ๏ผš - ๅฏน่พ“ๅ…ฅๅบๅˆ—่ฟ›่กŒ็ผ–็ ๏ผ› - ไปŽๅคงๅฐไธบ1็š„็›ฎๆ ‡ๅบๅˆ—ๅผ€ๅง‹๏ผˆไป…ๆ˜ฏๅบๅˆ—ๅผ€ๅง‹ๅญ—็ฌฆ๏ผ‰๏ผ› - ๅฐ†่พ“ๅ…ฅๅบๅˆ—ๅ’Œ 1 ไธชๅญ—็ฌฆ็š„็›ฎๆ ‡ๅบๅˆ—้ฆˆ้€ๅˆฐ่งฃ็ ๅ™จ๏ผŒไปฅ็”Ÿๆˆไธ‹ไธ€ไธชๅญ—็ฌฆ็š„้ข„ๆต‹๏ผ› - ไฝฟ็”จ่ฟ™ไบ›้ข„ๆต‹ๆฅ้‡‡ๆ ทไธ‹ไธ€ไธชๅญ—็ฌฆ๏ผˆๆˆ‘ไปฌไป…ไฝฟ็”จ argmax๏ผ‰; - ๅฐ†้‡‡ๆ ท็š„ๅญ—็ฌฆ้™„ๅŠ ๅˆฐ็›ฎๆ ‡ๅบๅˆ—๏ผ› - ้‡ๅค็›ดๅˆฐๆˆ‘ไปฌ่พพๅˆฐๅญ—็ฌฆๆ•ฐ้™ๅˆถใ€‚ **ๆ•ฐๆฎไธ‹่ฝฝ** [English to French sentence pairs. ](http://www.manythings.org/anki/fra-eng.zip) [Lots of neat sentence pairs datasets. ](http://www.manythings.org/anki/) **ๅ‚่€ƒ** - [Sequence to Sequence Learning with Neural Networks ](https://arxiv.org/abs/1409.3215) - [Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation ](https://arxiv.org/abs/1406.1078) ```python from __future__ import print_function from keras.models import Model from keras.layers import Input, LSTM, Dense import numpy as np batch_size = 64 # ่ฎญ็ปƒๆ‰นๆฌกๅคงๅฐใ€‚ epochs = 100 # ่ฎญ็ปƒ่ฟญไปฃ่ฝฎๆฌกใ€‚ latent_dim = 256 # ็ผ–็ ็ฉบ้—ด้šๅฑ‚็ปดๅบฆใ€‚ num_samples = 10000 # ่ฎญ็ปƒๆ ทๆœฌๆ•ฐใ€‚ # ็ฃ็›˜ๆ•ฐๆฎๆ–‡ไปถ่ทฏๅพ„ใ€‚ data_path = 'fra-eng/fra.txt' # ๅ‘้‡ๅŒ–ๆ•ฐๆฎใ€‚ input_texts = [] target_texts = [] input_characters = set() target_characters = set() with open(data_path, 'r', encoding='utf-8') as f: lines = f.read().split('\n') for line in lines[: min(num_samples, len(lines) - 1)]: input_text, target_text = line.split('\t') # ๆˆ‘ไปฌไฝฟ็”จ "tab" ไฝœไธบ "่ตทๅง‹ๅบๅˆ—" ๅญ—็ฌฆ๏ผŒ # ๅฏนไบŽ็›ฎๆ ‡๏ผŒไฝฟ็”จ "\n" ไฝœไธบ "็ปˆๆญขๅบๅˆ—" ๅญ—็ฌฆใ€‚ target_text = '\t' + target_text + '\n' input_texts.append(input_text) target_texts.append(target_text) for char in input_text: if char not in input_characters: input_characters.add(char) for char in target_text: if char not in target_characters: target_characters.add(char) input_characters = sorted(list(input_characters)) target_characters = sorted(list(target_characters)) num_encoder_tokens = len(input_characters) num_decoder_tokens = len(target_characters) max_encoder_seq_length = max([len(txt) for txt in input_texts]) max_decoder_seq_length = max([len(txt) for txt in target_texts]) print('Number of samples:', len(input_texts)) print('Number of unique input tokens:', num_encoder_tokens) print('Number of unique output tokens:', num_decoder_tokens) print('Max sequence length for inputs:', max_encoder_seq_length) print('Max sequence length for outputs:', max_decoder_seq_length) input_token_index = dict( [(char, i) for i, char in enumerate(input_characters)]) target_token_index = dict( [(char, i) for i, char in enumerate(target_characters)]) encoder_input_data = np.zeros( (len(input_texts), max_encoder_seq_length, num_encoder_tokens), dtype='float32') decoder_input_data = np.zeros( (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype='float32') decoder_target_data = np.zeros( (len(input_texts), max_decoder_seq_length, num_decoder_tokens), dtype='float32') for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)): for t, char in enumerate(input_text): encoder_input_data[i, t, input_token_index[char]] = 1. encoder_input_data[i, t + 1:, input_token_index[' ']] = 1. for t, char in enumerate(target_text): # decoder_target_data ้ข†ๅ…ˆ decoder_input_data by ไธ€ไธชๆ—ถ้—ดๆญฅใ€‚ decoder_input_data[i, t, target_token_index[char]] = 1. if t > 0: # decoder_target_data ๅฐ†ๆๅ‰ไธ€ไธชๆ—ถ้—ดๆญฅ๏ผŒๅนถไธ”ๅฐ†ไธๅŒ…ๅซๅผ€ๅง‹ๅญ—็ฌฆใ€‚ decoder_target_data[i, t - 1, target_token_index[char]] = 1. decoder_input_data[i, t + 1:, target_token_index[' ']] = 1. decoder_target_data[i, t:, target_token_index[' ']] = 1. # ๅฎšไน‰่พ“ๅ…ฅๅบๅˆ—ๅนถๅค„็†ๅฎƒใ€‚ encoder_inputs = Input(shape=(None, num_encoder_tokens)) encoder = LSTM(latent_dim, return_state=True) encoder_outputs, state_h, state_c = encoder(encoder_inputs) # ๆˆ‘ไปฌๆŠ›ๅผƒ `encoder_outputs`๏ผŒๅชไฟ็•™็Šถๆ€ใ€‚ encoder_states = [state_h, state_c] # ไฝฟ็”จ `encoder_states` ไฝœไธบๅˆๅง‹็Šถๆ€ๆฅ่ฎพ็ฝฎ่งฃ็ ๅ™จใ€‚ decoder_inputs = Input(shape=(None, num_decoder_tokens)) # ๆˆ‘ไปฌๅฐ†่งฃ็ ๅ™จ่ฎพ็ฝฎไธบ่ฟ”ๅ›žๅฎŒๆ•ด็š„่พ“ๅ‡บๅบๅˆ—๏ผŒๅนถ่ฟ”ๅ›žๅ†…้ƒจ็Šถๆ€ใ€‚ # ๆˆ‘ไปฌไธๅœจ่ฎญ็ปƒๆจกๅž‹ไธญไฝฟ็”จ่ฟ”ๅ›ž็Šถๆ€๏ผŒไฝ†ๅฐ†ๅœจๆŽจ็†ไธญไฝฟ็”จๅฎƒไปฌใ€‚ decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True) decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states) decoder_dense = Dense(num_decoder_tokens, activation='softmax') decoder_outputs = decoder_dense(decoder_outputs) # ๅฎšไน‰ๆจกๅž‹๏ผŒๅฐ† `encoder_input_data` & `decoder_input_data` ่ฝฌๆขไธบ `decoder_target_data` model = Model([encoder_inputs, decoder_inputs], decoder_outputs) # ๆ‰ง่กŒ่ฎญ็ปƒ model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) model.fit([encoder_input_data, decoder_input_data], decoder_target_data, batch_size=batch_size, epochs=epochs, validation_split=0.2) # ไฟๅญ˜ๆจกๅž‹ model.save('s2s.h5') # ๆŽฅไธ‹ๆฅ: ๆŽจ็†ๆจกๅผ (้‡‡ๆ ท)ใ€‚ # ่ฟ™ๆ˜ฏๆผ”ไน ๏ผš # 1) ็ผ–็ ่พ“ๅ…ฅๅนถๆฃ€็ดขๅˆๅง‹่งฃ็ ๅ™จ็Šถๆ€ # 2) ไปฅ่ฏฅๅˆๅง‹็Šถๆ€ๅ’Œ "ๅบๅˆ—ๅผ€ๅง‹" token ไธบ็›ฎๆ ‡่ฟ่กŒ่งฃ็ ๅ™จ็š„ไธ€ๆญฅใ€‚ ่พ“ๅ‡บๅฐ†ๆ˜ฏไธ‹ไธ€ไธช็›ฎๆ ‡ tokenใ€‚ # 3) ้‡ๅคๅฝ“ๅ‰็›ฎๆ ‡ token ๅ’Œๅฝ“ๅ‰็Šถๆ€ # ๅฎšไน‰้‡‡ๆ ทๆจกๅž‹ encoder_model = Model(encoder_inputs, encoder_states) decoder_state_input_h = Input(shape=(latent_dim,)) decoder_state_input_c = Input(shape=(latent_dim,)) decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c] decoder_outputs, state_h, state_c = decoder_lstm( decoder_inputs, initial_state=decoder_states_inputs) decoder_states = [state_h, state_c] decoder_outputs = decoder_dense(decoder_outputs) decoder_model = Model( [decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states) # ๅๅ‘ๆŸฅ่ฏข token ็ดขๅผ•ๅฏๅฐ†ๅบๅˆ—่งฃ็ ๅ›žๅฏ่ฏป็š„ๅ†…ๅฎนใ€‚ reverse_input_char_index = dict( (i, char) for char, i in input_token_index.items()) reverse_target_char_index = dict( (i, char) for char, i in target_token_index.items()) def decode_sequence(input_seq): # ๅฐ†่พ“ๅ…ฅ็ผ–็ ไธบ็Šถๆ€ๅ‘้‡ใ€‚ states_value = encoder_model.predict(input_seq) # ็”Ÿๆˆ้•ฟๅบฆไธบ 1 ็š„็ฉบ็›ฎๆ ‡ๅบๅˆ—ใ€‚ target_seq = np.zeros((1, 1, num_decoder_tokens)) # ็”จ่ตทๅง‹ๅญ—็ฌฆๅกซๅ……็›ฎๆ ‡ๅบๅˆ—็š„็ฌฌไธ€ไธชๅญ—็ฌฆใ€‚ target_seq[0, 0, target_token_index['\t']] = 1. # ไธ€ๆ‰นๅบๅˆ—็š„้‡‡ๆ ทๅพช็Žฏ # (ไธบไบ†็ฎ€ๅŒ–๏ผŒ่ฟ™้‡Œๆˆ‘ไปฌๅ‡่ฎพไธ€ๆ‰นๅคงๅฐไธบ 1)ใ€‚ stop_condition = False decoded_sentence = '' while not stop_condition: output_tokens, h, c = decoder_model.predict( [target_seq] + states_value) # ้‡‡ๆ ทไธ€ไธช token sampled_token_index = np.argmax(output_tokens[0, -1, :]) sampled_char = reverse_target_char_index[sampled_token_index] decoded_sentence += sampled_char # ้€€ๅ‡บๆกไปถ๏ผš่พพๅˆฐๆœ€ๅคง้•ฟๅบฆๆˆ–ๆ‰พๅˆฐๅœๆญข็ฌฆใ€‚ if (sampled_char == '\n' or len(decoded_sentence) > max_decoder_seq_length): stop_condition = True # ๆ›ดๆ–ฐ็›ฎๆ ‡ๅบๅˆ—๏ผˆ้•ฟๅบฆไธบ 1๏ผ‰ใ€‚ target_seq = np.zeros((1, 1, num_decoder_tokens)) target_seq[0, 0, sampled_token_index] = 1. # ๆ›ดๆ–ฐ็Šถๆ€ states_value = [h, c] return decoded_sentence for seq_index in range(100): # ๆŠฝๅ–ไธ€ไธชๅบๅˆ—๏ผˆ่ฎญ็ปƒ้›†็š„ไธ€้ƒจๅˆ†๏ผ‰่ฟ›่กŒ่งฃ็ ใ€‚ input_seq = encoder_input_data[seq_index: seq_index + 1] decoded_sentence = decode_sequence(input_seq) print('-') print('Input sentence:', input_texts[seq_index]) print('Decoded sentence:', decoded_sentence) ```
keras-docs-zh/sources/examples/lstm_seq2seq.md/0
{ "file_path": "keras-docs-zh/sources/examples/lstm_seq2seq.md", "repo_id": "keras-docs-zh", "token_count": 4553 }
83
# Keras ็ฅž็ป้ฃŽๆ ผ่ฝฌๆขใ€‚ ไฝฟ็”จไปฅไธ‹ๅ‘ฝไปค่ฟ่กŒ่„šๆœฌ๏ผš ``` python neural_style_transfer.py path_to_your_base_image.jpg path_to_your_reference.jpg prefix_for_results ``` ไพ‹ๅฆ‚๏ผš ``` python neural_style_transfer.py img/tuebingen.jpg img/starry_night.jpg results/my_result ``` ๅฏ้€‰ๅ‚ๆ•ฐ๏ผš ``` --iter: ่ฆๆŒ‡ๅฎš่ฟ›่กŒๆ ทๅผ่ฝฌ็งป็š„่ฟญไปฃๆฌกๆ•ฐ๏ผˆ้ป˜่ฎคไธบ 10๏ผ‰ --content_weight: ๅ†…ๅฎนๆŸๅคฑ็š„ๆƒ้‡๏ผˆ้ป˜่ฎคไธบ 0.025๏ผ‰ --style_weight: ่ต‹ไบˆๆ ทๅผๆŸๅคฑ็š„ๆƒ้‡๏ผˆ้ป˜่ฎคไธบ 1.0๏ผ‰ --tv_weight: ่ต‹ไบˆๆ€ปๅ˜ๅŒ–ๆŸๅคฑ็š„ๆƒ้‡๏ผˆ้ป˜่ฎคไธบ 1.0๏ผ‰ ``` ไธบไบ†ๆ้ซ˜้€Ÿๅบฆ๏ผŒๆœ€ๅฅฝๅœจ GPU ไธŠ่ฟ่กŒๆญค่„šๆœฌใ€‚ ็คบไพ‹็ป“ๆžœ: https://twitter.com/fchollet/status/686631033085677568 # ่ฏฆๆƒ… ๆ ทๅผ่ฝฌๆขๅŒ…ๆ‹ฌ็”Ÿๆˆๅ…ทๆœ‰ไธŽๅŸบๆœฌๅ›พๅƒ็›ธๅŒ็š„ "ๅ†…ๅฎน"๏ผŒไฝ†ๅ…ทๆœ‰ไธๅŒๅ›พ็‰‡๏ผˆ้€šๅธธๆ˜ฏ่‰บๆœฏ็š„๏ผ‰็š„ "ๆ ทๅผ" ็š„ๅ›พๅƒใ€‚ ่ฟ™ๆ˜ฏ้€š่ฟ‡ไผ˜ๅŒ–ๅ…ทๆœ‰ 3 ไธชๆˆๅˆ†็š„ๆŸๅคฑๅ‡ฝๆ•ฐๆฅๅฎž็Žฐ็š„๏ผšๆ ทๅผๆŸๅคฑ๏ผŒๅ†…ๅฎนๆŸๅคฑๅ’Œๆ€ปๅ˜ๅŒ–ๆŸๅคฑ๏ผš - ๆ€ปๅ˜ๅŒ–ๆŸๅคฑๅœจ็ป„ๅˆๅ›พๅƒ็š„ๅƒ็ด ไน‹้—ดๅผบๅŠ ไบ†ๅฑ€้ƒจ็ฉบ้—ด่ฟž็ปญๆ€ง๏ผŒไฝฟๅ…ถๅ…ทๆœ‰่ง†่ง‰่ฟž่ดฏๆ€งใ€‚ - ๆ ทๅผๆŸๅคฑๆ˜ฏๆทฑๅบฆๅญฆไน ็š„ๆ นๆบ-ไฝฟ็”จๆทฑๅบฆๅท็งฏ็ฅž็ป็ฝ‘็ปœๅฎšไน‰ๆทฑๅบฆๅญฆไน ใ€‚ ็ฒพ็กฎๅœฐ๏ผŒๅฎƒๅŒ…ๆ‹ฌไปŽๅท็งฏ็ฝ‘็ปœ็š„ไธๅŒๅฑ‚๏ผˆๅœจ ImageNet ไธŠ่ฎญ็ปƒ๏ผ‰ๆๅ–็š„ๅŸบ็ก€ๅ›พๅƒ่กจ็คบ ๅฝขๅผๅ’Œๆ ทๅผๅ‚่€ƒๅ›พๅƒ่กจ็คบๅฝขๅผ็š„ Gram ็Ÿฉ้˜ตไน‹้—ด็š„ L2 ่ท็ฆปไน‹ๅ’Œใ€‚ ๆ€ปไฝ“ๆ€่ทฏๆ˜ฏๅœจไธๅŒ็š„็ฉบ้—ดๆฏ”ไพ‹๏ผˆ็›ธๅฝ“ๅคง็š„ๆฏ”ไพ‹-็”ฑๆ‰€่€ƒ่™‘็š„ๅ›พๅฑ‚็š„ๆทฑๅบฆๅฎšไน‰๏ผ‰ไธŠๆ•่Žท้ขœ่‰ฒ/็บน็†ไฟกๆฏใ€‚ - ๅ†…ๅฎนๆŸๅคฑๆ˜ฏๅŸบ็ก€ๅ›พๅƒ๏ผˆไปŽ่พƒๆทฑๅฑ‚ๆๅ–๏ผ‰็š„็‰นๅพไธŽ็ป„ๅˆๅ›พๅƒ็š„็‰นๅพไน‹้—ด็š„ L2 ่ท็ฆป๏ผŒไปŽ่€Œไฝฟ็”Ÿๆˆ็š„ๅ›พๅƒ่ถณๅคŸๆŽฅ่ฟ‘ๅŽŸๅง‹ๅ›พๅƒใ€‚ # ๅ‚่€ƒๆ–‡็Œฎ - [A Neural Algorithm of Artistic Style](http://arxiv.org/abs/1508.06576) ```python from __future__ import print_function from keras.preprocessing.image import load_img, save_img, img_to_array import numpy as np from scipy.optimize import fmin_l_bfgs_b import time import argparse from keras.applications import vgg19 from keras import backend as K parser = argparse.ArgumentParser(description='Neural style transfer with Keras.') parser.add_argument('base_image_path', metavar='base', type=str, help='Path to the image to transform.') parser.add_argument('style_reference_image_path', metavar='ref', type=str, help='Path to the style reference image.') parser.add_argument('result_prefix', metavar='res_prefix', type=str, help='Prefix for the saved results.') parser.add_argument('--iter', type=int, default=10, required=False, help='Number of iterations to run.') parser.add_argument('--content_weight', type=float, default=0.025, required=False, help='Content weight.') parser.add_argument('--style_weight', type=float, default=1.0, required=False, help='Style weight.') parser.add_argument('--tv_weight', type=float, default=1.0, required=False, help='Total Variation weight.') args = parser.parse_args() base_image_path = args.base_image_path style_reference_image_path = args.style_reference_image_path result_prefix = args.result_prefix iterations = args.iter # ่ฟ™ไบ›ๆ˜ฏไธๅŒๆŸๅคฑๆˆๅˆ†็š„ๆƒ้‡ total_variation_weight = args.tv_weight style_weight = args.style_weight content_weight = args.content_weight # ็”Ÿๆˆๅ›พ็‰‡็š„ๅฐบๅฏธใ€‚ width, height = load_img(base_image_path).size img_nrows = 400 img_ncols = int(width * img_nrows / height) # util ๅ‡ฝๆ•ฐๅฏๅฐ†ๅ›พ็‰‡ๆ‰“ๅผ€๏ผŒ่ฐƒๆ•ดๅคงๅฐๅนถๅฐ†ๅ…ถๆ ผๅผๅŒ–ไธบ้€‚ๅฝ“็š„ๅผ ้‡ def preprocess_image(image_path): img = load_img(image_path, target_size=(img_nrows, img_ncols)) img = img_to_array(img) img = np.expand_dims(img, axis=0) img = vgg19.preprocess_input(img) return img # util ๅ‡ฝๆ•ฐๅฐ†ๅผ ้‡่ฝฌๆขไธบๆœ‰ๆ•ˆๅ›พๅƒ def deprocess_image(x): if K.image_data_format() == 'channels_first': x = x.reshape((3, img_nrows, img_ncols)) x = x.transpose((1, 2, 0)) else: x = x.reshape((img_nrows, img_ncols, 3)) # ้€š่ฟ‡ๅนณๅ‡ๅƒ็ด ๅŽป้™ค้›ถไธญๅฟƒ x[:, :, 0] += 103.939 x[:, :, 1] += 116.779 x[:, :, 2] += 123.68 # 'BGR'->'RGB' x = x[:, :, ::-1] x = np.clip(x, 0, 255).astype('uint8') return x # ๅพ—ๅˆฐๆˆ‘ไปฌๅ›พๅƒ็š„ๅผ ้‡่กจ็คบ base_image = K.variable(preprocess_image(base_image_path)) style_reference_image = K.variable(preprocess_image(style_reference_image_path)) # ่ฟ™ๅฐ†ๅŒ…ๅซๆˆ‘ไปฌ็”Ÿๆˆ็š„ๅ›พๅƒ if K.image_data_format() == 'channels_first': combination_image = K.placeholder((1, 3, img_nrows, img_ncols)) else: combination_image = K.placeholder((1, img_nrows, img_ncols, 3)) # ๅฐ† 3 ๅผ ๅ›พๅƒๅˆๅนถไธบไธ€ไธช Keras ๅผ ้‡ input_tensor = K.concatenate([base_image, style_reference_image, combination_image], axis=0) # ไปฅๆˆ‘ไปฌ็š„ 3 ๅผ ๅ›พๅƒไธบ่พ“ๅ…ฅๆž„ๅปบ VGG19 ็ฝ‘็ปœ # ่ฏฅๆจกๅž‹ๅฐ†ๅŠ ่ฝฝ้ข„่ฎญ็ปƒ็š„ ImageNet ๆƒ้‡ model = vgg19.VGG19(input_tensor=input_tensor, weights='imagenet', include_top=False) print('Model loaded.') # ่Žทๅ–ๆฏไธช "ๅ…ณ้”ฎ" ๅฑ‚็š„็ฌฆๅท่พ“ๅ‡บ๏ผˆๆˆ‘ไปฌไธบๅฎƒไปฌๆŒ‡ๅฎšไบ†ๅ”ฏไธ€็š„ๅ็งฐ๏ผ‰ใ€‚ outputs_dict = dict([(layer.name, layer.output) for layer in model.layers]) # ่ฎก็ฎ—็ฅž็ป้ฃŽๆ ผๆŸๅคฑ # ้ฆ–ๅ…ˆ๏ผŒๆˆ‘ไปฌ้œ€่ฆๅฎšไน‰ 4 ไธช util ๅ‡ฝๆ•ฐ # ๅ›พๅƒๅผ ้‡็š„ gram ็Ÿฉ้˜ต๏ผˆๆŒ‰็‰นๅพ้‡็š„ๅค–้ƒจไน˜็งฏ๏ผ‰ def gram_matrix(x): assert K.ndim(x) == 3 if K.image_data_format() == 'channels_first': features = K.batch_flatten(x) else: features = K.batch_flatten(K.permute_dimensions(x, (2, 0, 1))) gram = K.dot(features, K.transpose(features)) return gram # "ๆ ทๅผๆŸๅคฑ" ็”จไบŽๅœจ็”Ÿๆˆ็š„ๅ›พๅƒไธญไฟๆŒๅ‚่€ƒๅ›พๅƒ็š„ๆ ทๅผใ€‚ # ๅฎƒๅŸบไบŽๆฅ่‡ชๆ ทๅผๅ‚่€ƒๅ›พๅƒๅ’Œ็”Ÿๆˆ็š„ๅ›พๅƒ็š„็‰นๅพๅ›พ็š„ gram ็Ÿฉ้˜ต๏ผˆๆ•่Žทๆ ทๅผ๏ผ‰ def style_loss(style, combination): assert K.ndim(style) == 3 assert K.ndim(combination) == 3 S = gram_matrix(style) C = gram_matrix(combination) channels = 3 size = img_nrows * img_ncols return K.sum(K.square(S - C)) / (4.0 * (channels ** 2) * (size ** 2)) # ่พ…ๅŠฉๆŸๅคฑๅ‡ฝๆ•ฐ๏ผŒ็”จไบŽๅœจ็”Ÿๆˆ็š„ๅ›พๅƒไธญ็ปดๆŒๅŸบๆœฌๅ›พๅƒ็š„ "ๅ†…ๅฎน" def content_loss(base, combination): return K.sum(K.square(combination - base)) # ็ฌฌ 3 ไธชๆŸๅคฑๅ‡ฝๆ•ฐ๏ผŒๆ€ปๅ˜ๅŒ–ๆŸๅคฑ๏ผŒๆ—จๅœจไฝฟ็”Ÿๆˆ็š„ๅ›พๅƒไฟๆŒๅฑ€้ƒจ่ฟž่ดฏ def total_variation_loss(x): assert K.ndim(x) == 4 if K.image_data_format() == 'channels_first': a = K.square( x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, 1:, :img_ncols - 1]) b = K.square( x[:, :, :img_nrows - 1, :img_ncols - 1] - x[:, :, :img_nrows - 1, 1:]) else: a = K.square( x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, 1:, :img_ncols - 1, :]) b = K.square( x[:, :img_nrows - 1, :img_ncols - 1, :] - x[:, :img_nrows - 1, 1:, :]) return K.sum(K.pow(a + b, 1.25)) # ๅฐ†่ฟ™ไบ›ๆŸๅคฑๅ‡ฝๆ•ฐ็ป„ๅˆๆˆๅ•ไธชๆ ‡้‡ loss = K.variable(0.0) layer_features = outputs_dict['block5_conv2'] base_image_features = layer_features[0, :, :, :] combination_features = layer_features[2, :, :, :] loss = loss + content_weight * content_loss(base_image_features, combination_features) feature_layers = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1'] for layer_name in feature_layers: layer_features = outputs_dict[layer_name] style_reference_features = layer_features[1, :, :, :] combination_features = layer_features[2, :, :, :] sl = style_loss(style_reference_features, combination_features) loss = loss + (style_weight / len(feature_layers)) * sl loss = loss + total_variation_weight * total_variation_loss(combination_image) # ่Žทๅพ—ๆŸๅคฑๅŽ็”Ÿๆˆๅ›พๅƒ็š„ๆขฏๅบฆ grads = K.gradients(loss, combination_image) outputs = [loss] if isinstance(grads, (list, tuple)): outputs += grads else: outputs.append(grads) f_outputs = K.function([combination_image], outputs) def eval_loss_and_grads(x): if K.image_data_format() == 'channels_first': x = x.reshape((1, 3, img_nrows, img_ncols)) else: x = x.reshape((1, img_nrows, img_ncols, 3)) outs = f_outputs([x]) loss_value = outs[0] if len(outs[1:]) == 1: grad_values = outs[1].flatten().astype('float64') else: grad_values = np.array(outs[1:]).flatten().astype('float64') return loss_value, grad_values # ่ฏฅ Evaluator ็ฑปๅฏไปฅ้€š่ฟ‡ไธคไธชๅ•็‹ฌ็š„ๅ‡ฝๆ•ฐ "loss" ๅ’Œ "grads" ๆฅไธ€ๆฌก่ฎก็ฎ—ๆŸๅคฑๅ’Œๆขฏๅบฆ๏ผŒๅŒๆ—ถๆฃ€็ดขๅฎƒไปฌใ€‚ # ่ฟ™ๆ ทๅšๆ˜ฏๅ› ไธบ scipy.optimize ้œ€่ฆไฝฟ็”จๆŸ่€—ๅ’Œๆขฏๅบฆ็š„ๅ•็‹ฌๅ‡ฝๆ•ฐ๏ผŒไฝ†ๆ˜ฏๅˆ†ๅˆซ่ฎก็ฎ—ๅฎƒไปฌๅฐ†ๆ•ˆ็އไฝŽไธ‹ใ€‚ class Evaluator(object): def __init__(self): self.loss_value = None self.grads_values = None def loss(self, x): assert self.loss_value is None loss_value, grad_values = eval_loss_and_grads(x) self.loss_value = loss_value self.grad_values = grad_values return self.loss_value def grads(self, x): assert self.loss_value is not None grad_values = np.copy(self.grad_values) self.loss_value = None self.grad_values = None return grad_values evaluator = Evaluator() # ๅฏน็”Ÿๆˆ็š„ๅ›พๅƒ็š„ๅƒ็ด ่ฟ›่กŒๅŸบไบŽ Scipy ็š„ไผ˜ๅŒ–๏ผˆL-BFGS๏ผ‰๏ผŒไปฅๆœ€ๅคง็จ‹ๅบฆๅœฐๅ‡ๅฐ‘็ฅž็ปๆ ทๅผๆŸๅคฑ x = preprocess_image(base_image_path) for i in range(iterations): print('Start of iteration', i) start_time = time.time() x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x.flatten(), fprime=evaluator.grads, maxfun=20) print('Current loss value:', min_val) # ไฟๅญ˜ๅฝ“ๅ‰็”Ÿๆˆ็š„ๅ›พๅƒ img = deprocess_image(x.copy()) fname = result_prefix + '_at_iteration_%d.png' % i save_img(fname, img) end_time = time.time() print('Image saved as', fname) print('Iteration %d completed in %ds' % (i, end_time - start_time)) ```
keras-docs-zh/sources/examples/neural_style_transfer.md/0
{ "file_path": "keras-docs-zh/sources/examples/neural_style_transfer.md", "repo_id": "keras-docs-zh", "token_count": 5188 }
84
## ๆŸๅคฑๅ‡ฝๆ•ฐ็š„ไฝฟ็”จ ๆŸๅคฑๅ‡ฝๆ•ฐ๏ผˆๆˆ–็งฐ็›ฎๆ ‡ๅ‡ฝๆ•ฐใ€ไผ˜ๅŒ–่ฏ„ๅˆ†ๅ‡ฝๆ•ฐ๏ผ‰ๆ˜ฏ็ผ–่ฏ‘ๆจกๅž‹ๆ—ถๆ‰€้œ€็š„ไธคไธชๅ‚ๆ•ฐไน‹ไธ€๏ผš ```python model.compile(loss='mean_squared_error', optimizer='sgd') ``` ```python from keras import losses model.compile(loss=losses.mean_squared_error, optimizer='sgd') ``` ไฝ ๅฏไปฅไผ ้€’ไธ€ไธช็Žฐๆœ‰็š„ๆŸๅคฑๅ‡ฝๆ•ฐๅ๏ผŒๆˆ–่€…ไธ€ไธช TensorFlow/Theano ็ฌฆๅทๅ‡ฝๆ•ฐใ€‚ ่ฏฅ็ฌฆๅทๅ‡ฝๆ•ฐไธบๆฏไธชๆ•ฐๆฎ็‚น่ฟ”ๅ›žไธ€ไธชๆ ‡้‡๏ผŒๆœ‰ไปฅไธ‹ไธคไธชๅ‚ๆ•ฐ: - __y_true__: ็œŸๅฎžๆ ‡็ญพใ€‚TensorFlow/Theano ๅผ ้‡ใ€‚ - __y_pred__: ้ข„ๆต‹ๅ€ผใ€‚TensorFlow/Theano ๅผ ้‡๏ผŒๅ…ถ shape ไธŽ y_true ็›ธๅŒใ€‚ ๅฎž้™…็š„ไผ˜ๅŒ–็›ฎๆ ‡ๆ˜ฏๆ‰€ๆœ‰ๆ•ฐๆฎ็‚น็š„่พ“ๅ‡บๆ•ฐ็ป„็š„ๅนณๅ‡ๅ€ผใ€‚ ๆœ‰ๅ…ณ่ฟ™ไบ›ๅ‡ฝๆ•ฐ็š„ๅ‡ ไธชไพ‹ๅญ๏ผŒ่ฏทๆŸฅ็œ‹ [losses source](https://github.com/keras-team/keras/blob/master/keras/losses.py)ใ€‚ ## ๅฏ็”จๆŸๅคฑๅ‡ฝๆ•ฐ ### mean_squared_error ```python keras.losses.mean_squared_error(y_true, y_pred) ``` ---- ### mean_absolute_error ```python eras.losses.mean_absolute_error(y_true, y_pred) ``` ---- ### mean_absolute_percentage_error ```python keras.losses.mean_absolute_percentage_error(y_true, y_pred) ``` ---- ### mean_squared_logarithmic_error ```python keras.losses.mean_squared_logarithmic_error(y_true, y_pred) ``` ---- ### squared_hinge ```python keras.losses.squared_hinge(y_true, y_pred) ``` ---- ### hinge ```python keras.losses.hinge(y_true, y_pred) ``` ---- ### categorical_hinge ```python keras.losses.categorical_hinge(y_true, y_pred) ``` ---- ### logcosh ```python keras.losses.logcosh(y_true, y_pred) ``` ้ข„ๆต‹่ฏฏๅทฎ็š„ๅŒๆ›ฒไฝ™ๅผฆ็š„ๅฏนๆ•ฐใ€‚ ๅฏนไบŽๅฐ็š„ `x`๏ผŒ`log(cosh(x))` ่ฟ‘ไผผ็ญ‰ไบŽ `(x ** 2) / 2`ใ€‚ๅฏนไบŽๅคง็š„ `x`๏ผŒ่ฟ‘ไผผไบŽ `abs(x) - log(2)`ใ€‚่ฟ™่กจ็คบ 'logcosh' ไธŽๅ‡ๆ–น่ฏฏๅทฎๅคง่‡ด็›ธๅŒ๏ผŒไฝ†ๆ˜ฏไธไผšๅ—ๅˆฐๅถๅฐ”็–ฏ็‹‚็š„้”™่ฏฏ้ข„ๆต‹็š„ๅผบ็ƒˆๅฝฑๅ“ใ€‚ __ๅ‚ๆ•ฐ__ - __y_true__: ็›ฎๆ ‡็œŸๅฎžๅ€ผ็š„ๅผ ้‡ใ€‚ - __y_pred__: ็›ฎๆ ‡้ข„ๆต‹ๅ€ผ็š„ๅผ ้‡ใ€‚ __่ฟ”ๅ›ž__ ๆฏไธชๆ ทๆœฌ้ƒฝๆœ‰ไธ€ไธชๆ ‡้‡ๆŸๅคฑ็š„ๅผ ้‡ใ€‚ ---- ### huber_loss ```python keras.losses.huber_loss(y_true, y_pred, delta=1.0) ``` --- ### categorical_crossentropy ```python keras.losses.categorical_crossentropy(y_true, y_pred, from_logits=False, label_smoothing=0) ``` ---- ### sparse_categorical_crossentropy ```python keras.losses.sparse_categorical_crossentropy(y_true, y_pred, from_logits=False, axis=-1) ``` ---- ### binary_crossentropy ```python keras.losses.binary_crossentropy(y_true, y_pred, from_logits=False, label_smoothing=0) ``` ---- ### kullback_leibler_divergence ```python keras.losses.kullback_leibler_divergence(y_true, y_pred) ``` ---- ### poisson ```python keras.losses.poisson(y_true, y_pred) ``` ---- ### cosine_proximity ```python keras.losses.cosine_proximity(y_true, y_pred, axis=-1) ``` --- ### is_categorical_crossentropy ```python keras.losses.is_categorical_crossentropy(loss) ``` ---- **ๆณจๆ„**: ๅฝ“ไฝฟ็”จ `categorical_crossentropy` ๆŸๅคฑๆ—ถ๏ผŒไฝ ็š„็›ฎๆ ‡ๅ€ผๅบ”่ฏฅๆ˜ฏๅˆ†็ฑปๆ ผๅผ (ๅณ๏ผŒๅฆ‚ๆžœไฝ ๆœ‰ 10 ไธช็ฑป๏ผŒๆฏไธชๆ ทๆœฌ็š„็›ฎๆ ‡ๅ€ผๅบ”่ฏฅๆ˜ฏไธ€ไธช 10 ็ปด็š„ๅ‘้‡๏ผŒ่ฟ™ไธชๅ‘้‡้™คไบ†่กจ็คบ็ฑปๅˆซ็š„้‚ฃไธช็ดขๅผ•ไธบ 1๏ผŒๅ…ถไป–ๅ‡ไธบ 0)ใ€‚ ไธบไบ†ๅฐ† *ๆ•ดๆ•ฐ็›ฎๆ ‡ๅ€ผ* ่ฝฌๆขไธบ *ๅˆ†็ฑป็›ฎๆ ‡ๅ€ผ*๏ผŒไฝ ๅฏไปฅไฝฟ็”จ Keras ๅฎž็”จๅ‡ฝๆ•ฐ `to_categorical`๏ผš ```python from keras.utils.np_utils import to_categorical categorical_labels = to_categorical(int_labels, num_classes=None) ``` ๅฝ“ไฝฟ็”จ sparse_categorical_crossentropy ๆŸๅคฑๆ—ถ๏ผŒไฝ ็š„็›ฎๆ ‡ๅบ”่ฏฅๆ˜ฏๆ•ดๆ•ฐใ€‚ๅฆ‚ๆžœไฝ ๆ˜ฏ็ฑปๅˆซ็›ฎๆ ‡๏ผŒๅบ”่ฏฅไฝฟ็”จ categorical_crossentropyใ€‚ categorical_crossentropy ๆ˜ฏๅคš็ฑปๅฏนๆ•ฐๆŸๅคฑ็š„ๅฆไธ€็งๅฝขๅผใ€‚
keras-docs-zh/sources/losses.md/0
{ "file_path": "keras-docs-zh/sources/losses.md", "repo_id": "keras-docs-zh", "token_count": 1896 }
85
""" Title: Text Generation using FNet Author: [Darshan Deshpande](https://twitter.com/getdarshan) Date created: 2021/10/05 Last modified: 2021/10/05 Description: FNet transformer for text generation in Keras. Accelerator: GPU """ """ ## Introduction The original transformer implementation (Vaswani et al., 2017) was one of the major breakthroughs in Natural Language Processing, giving rise to important architectures such BERT and GPT. However, the drawback of these architectures is that the self-attention mechanism they use is computationally expensive. The FNet architecture proposes to replace this self-attention attention with a leaner mechanism: a Fourier transformation-based linear mixer for input tokens. The FNet model was able to achieve 92-97% of BERT's accuracy while training 80% faster on GPUs and almost 70% faster on TPUs. This type of design provides an efficient and small model size, leading to faster inference times. In this example, we will implement and train this architecture on the Cornell Movie Dialog corpus to show the applicability of this model to text generation. """ """ ## Imports """ import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers import os # Defining hyperparameters VOCAB_SIZE = 8192 MAX_SAMPLES = 50000 BUFFER_SIZE = 20000 MAX_LENGTH = 40 EMBED_DIM = 256 LATENT_DIM = 512 NUM_HEADS = 8 BATCH_SIZE = 64 """ ## Loading data We will be using the Cornell Dialog Corpus. We will parse the movie conversations into questions and answers sets. """ path_to_zip = keras.utils.get_file( "cornell_movie_dialogs.zip", origin="http://www.cs.cornell.edu/~cristian/data/cornell_movie_dialogs_corpus.zip", extract=True, ) path_to_dataset = os.path.join( os.path.dirname(path_to_zip), "cornell movie-dialogs corpus" ) path_to_movie_lines = os.path.join(path_to_dataset, "movie_lines.txt") path_to_movie_conversations = os.path.join(path_to_dataset, "movie_conversations.txt") def load_conversations(): # Helper function for loading the conversation splits id2line = {} with open(path_to_movie_lines, errors="ignore") as file: lines = file.readlines() for line in lines: parts = line.replace("\n", "").split(" +++$+++ ") id2line[parts[0]] = parts[4] inputs, outputs = [], [] with open(path_to_movie_conversations, "r") as file: lines = file.readlines() for line in lines: parts = line.replace("\n", "").split(" +++$+++ ") # get conversation in a list of line ID conversation = [line[1:-1] for line in parts[3][1:-1].split(", ")] for i in range(len(conversation) - 1): inputs.append(id2line[conversation[i]]) outputs.append(id2line[conversation[i + 1]]) if len(inputs) >= MAX_SAMPLES: return inputs, outputs return inputs, outputs questions, answers = load_conversations() # Splitting training and validation sets train_dataset = tf.data.Dataset.from_tensor_slices((questions[:40000], answers[:40000])) val_dataset = tf.data.Dataset.from_tensor_slices((questions[40000:], answers[40000:])) """ ### Preprocessing and Tokenization """ def preprocess_text(sentence): sentence = tf.strings.lower(sentence) # Adding a space between the punctuation and the last word to allow better tokenization sentence = tf.strings.regex_replace(sentence, r"([?.!,])", r" \1 ") # Replacing multiple continuous spaces with a single space sentence = tf.strings.regex_replace(sentence, r"\s\s+", " ") # Replacing non english words with spaces sentence = tf.strings.regex_replace(sentence, r"[^a-z?.!,]+", " ") sentence = tf.strings.strip(sentence) sentence = tf.strings.join(["[start]", sentence, "[end]"], separator=" ") return sentence vectorizer = layers.TextVectorization( VOCAB_SIZE, standardize=preprocess_text, output_mode="int", output_sequence_length=MAX_LENGTH, ) # We will adapt the vectorizer to both the questions and answers # This dataset is batched to parallelize and speed up the process vectorizer.adapt(tf.data.Dataset.from_tensor_slices((questions + answers)).batch(128)) """ ### Tokenizing and padding sentences using `TextVectorization` """ def vectorize_text(inputs, outputs): inputs, outputs = vectorizer(inputs), vectorizer(outputs) # One extra padding token to the right to match the output shape outputs = tf.pad(outputs, [[0, 1]]) return ( {"encoder_inputs": inputs, "decoder_inputs": outputs[:-1]}, {"outputs": outputs[1:]}, ) train_dataset = train_dataset.map(vectorize_text, num_parallel_calls=tf.data.AUTOTUNE) val_dataset = val_dataset.map(vectorize_text, num_parallel_calls=tf.data.AUTOTUNE) train_dataset = ( train_dataset.cache() .shuffle(BUFFER_SIZE) .batch(BATCH_SIZE) .prefetch(tf.data.AUTOTUNE) ) val_dataset = val_dataset.cache().batch(BATCH_SIZE).prefetch(tf.data.AUTOTUNE) """ ## Creating the FNet Encoder The FNet paper proposes a replacement for the standard attention mechanism used by the Transformer architecture (Vaswani et al., 2017). ![Architecture](https://i.imgur.com/rLg47qU.png) The outputs of the FFT layer are complex numbers. To avoid dealing with complex layers, only the real part (the magnitude) is extracted. The dense layers that follow the Fourier transformation act as convolutions applied on the frequency domain. """ class FNetEncoder(layers.Layer): def __init__(self, embed_dim, dense_dim, **kwargs): super().__init__(**kwargs) self.embed_dim = embed_dim self.dense_dim = dense_dim self.dense_proj = keras.Sequential( [ layers.Dense(dense_dim, activation="relu"), layers.Dense(embed_dim), ] ) self.layernorm_1 = layers.LayerNormalization() self.layernorm_2 = layers.LayerNormalization() def call(self, inputs): # Casting the inputs to complex64 inp_complex = tf.cast(inputs, tf.complex64) # Projecting the inputs to the frequency domain using FFT2D and # extracting the real part of the output fft = tf.math.real(tf.signal.fft2d(inp_complex)) proj_input = self.layernorm_1(inputs + fft) proj_output = self.dense_proj(proj_input) return self.layernorm_2(proj_input + proj_output) """ ## Creating the Decoder The decoder architecture remains the same as the one proposed by (Vaswani et al., 2017) in the original transformer architecture, consisting of an embedding, positional encoding, two masked multi-head attention layers and finally the dense output layers. The architecture that follows is taken from [Deep Learning with Python, second edition, chapter 11](https://www.manning.com/books/deep-learning-with-python-second-edition). """ class PositionalEmbedding(layers.Layer): def __init__(self, sequence_length, vocab_size, embed_dim, **kwargs): super().__init__(**kwargs) self.token_embeddings = layers.Embedding( input_dim=vocab_size, output_dim=embed_dim ) self.position_embeddings = layers.Embedding( input_dim=sequence_length, output_dim=embed_dim ) self.sequence_length = sequence_length self.vocab_size = vocab_size self.embed_dim = embed_dim def call(self, inputs): length = tf.shape(inputs)[-1] positions = tf.range(start=0, limit=length, delta=1) embedded_tokens = self.token_embeddings(inputs) embedded_positions = self.position_embeddings(positions) return embedded_tokens + embedded_positions def compute_mask(self, inputs, mask=None): return tf.math.not_equal(inputs, 0) class FNetDecoder(layers.Layer): def __init__(self, embed_dim, latent_dim, num_heads, **kwargs): super().__init__(**kwargs) self.embed_dim = embed_dim self.latent_dim = latent_dim self.num_heads = num_heads self.attention_1 = layers.MultiHeadAttention( num_heads=num_heads, key_dim=embed_dim ) self.attention_2 = layers.MultiHeadAttention( num_heads=num_heads, key_dim=embed_dim ) self.dense_proj = keras.Sequential( [ layers.Dense(latent_dim, activation="relu"), layers.Dense(embed_dim), ] ) self.layernorm_1 = layers.LayerNormalization() self.layernorm_2 = layers.LayerNormalization() self.layernorm_3 = layers.LayerNormalization() self.supports_masking = True def call(self, inputs, encoder_outputs, mask=None): causal_mask = self.get_causal_attention_mask(inputs) if mask is not None: padding_mask = tf.cast(mask[:, tf.newaxis, :], dtype="int32") padding_mask = tf.minimum(padding_mask, causal_mask) attention_output_1 = self.attention_1( query=inputs, value=inputs, key=inputs, attention_mask=causal_mask ) out_1 = self.layernorm_1(inputs + attention_output_1) attention_output_2 = self.attention_2( query=out_1, value=encoder_outputs, key=encoder_outputs, attention_mask=padding_mask, ) out_2 = self.layernorm_2(out_1 + attention_output_2) proj_output = self.dense_proj(out_2) return self.layernorm_3(out_2 + proj_output) def get_causal_attention_mask(self, inputs): input_shape = tf.shape(inputs) batch_size, sequence_length = input_shape[0], input_shape[1] i = tf.range(sequence_length)[:, tf.newaxis] j = tf.range(sequence_length) mask = tf.cast(i >= j, dtype="int32") mask = tf.reshape(mask, (1, input_shape[1], input_shape[1])) mult = tf.concat( [tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)], axis=0, ) return tf.tile(mask, mult) def create_model(): encoder_inputs = keras.Input(shape=(None,), dtype="int32", name="encoder_inputs") x = PositionalEmbedding(MAX_LENGTH, VOCAB_SIZE, EMBED_DIM)(encoder_inputs) encoder_outputs = FNetEncoder(EMBED_DIM, LATENT_DIM)(x) encoder = keras.Model(encoder_inputs, encoder_outputs) decoder_inputs = keras.Input(shape=(None,), dtype="int32", name="decoder_inputs") encoded_seq_inputs = keras.Input( shape=(None, EMBED_DIM), name="decoder_state_inputs" ) x = PositionalEmbedding(MAX_LENGTH, VOCAB_SIZE, EMBED_DIM)(decoder_inputs) x = FNetDecoder(EMBED_DIM, LATENT_DIM, NUM_HEADS)(x, encoded_seq_inputs) x = layers.Dropout(0.5)(x) decoder_outputs = layers.Dense(VOCAB_SIZE, activation="softmax")(x) decoder = keras.Model( [decoder_inputs, encoded_seq_inputs], decoder_outputs, name="outputs" ) decoder_outputs = decoder([decoder_inputs, encoder_outputs]) fnet = keras.Model([encoder_inputs, decoder_inputs], decoder_outputs, name="fnet") return fnet """ ## Creating and Training the model """ fnet = create_model() fnet.compile("adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]) """ Here, the `epochs` parameter is set to a single epoch, but in practice the model will take around **20-30 epochs** of training to start outputting comprehensible sentences. Although accuracy is not a good measure for this task, we will use it just to get a hint of the improvement of the network. """ fnet.fit(train_dataset, epochs=1, validation_data=val_dataset) """ ## Performing inference """ VOCAB = vectorizer.get_vocabulary() def decode_sentence(input_sentence): # Mapping the input sentence to tokens and adding start and end tokens tokenized_input_sentence = vectorizer( tf.constant("[start] " + preprocess_text(input_sentence) + " [end]") ) # Initializing the initial sentence consisting of only the start token. tokenized_target_sentence = tf.expand_dims(VOCAB.index("[start]"), 0) decoded_sentence = "" for i in range(MAX_LENGTH): # Get the predictions predictions = fnet.predict( { "encoder_inputs": tf.expand_dims(tokenized_input_sentence, 0), "decoder_inputs": tf.expand_dims( tf.pad( tokenized_target_sentence, [[0, MAX_LENGTH - tf.shape(tokenized_target_sentence)[0]]], ), 0, ), } ) # Calculating the token with maximum probability and getting the corresponding word sampled_token_index = tf.argmax(predictions[0, i, :]) sampled_token = VOCAB[sampled_token_index.numpy()] # If sampled token is the end token then stop generating and return the sentence if tf.equal(sampled_token_index, VOCAB.index("[end]")): break decoded_sentence += sampled_token + " " tokenized_target_sentence = tf.concat( [tokenized_target_sentence, [sampled_token_index]], 0 ) return decoded_sentence decode_sentence("Where have you been all this time?") """ ## Conclusion This example shows how to train and perform inference using the FNet model. For getting insight into the architecture or for further reading, you can refer to: 1. [FNet: Mixing Tokens with Fourier Transforms](https://arxiv.org/abs/2105.03824v3) (Lee-Thorp et al., 2021) 2. [Attention Is All You Need](https://arxiv.org/abs/1706.03762v5) (Vaswani et al., 2017) Thanks to Franรงois Chollet for his Keras example on [English-to-Spanish translation with a sequence-to-sequence Transformer](https://keras.io/examples/nlp/neural_machine_translation_with_transformer/) from which the decoder implementation was extracted. """
keras-io/examples/generative/text_generation_fnet.py/0
{ "file_path": "keras-io/examples/generative/text_generation_fnet.py", "repo_id": "keras-io", "token_count": 5469 }
86
""" Title: Knowledge distillation recipes Author: [Sayak Paul](https://twitter.com/RisingSayak) Date created: 2021/08/01 Last modified: 2021/08/01 Description: Training better student models via knowledge distillation with function matching. Accelerator: GPU """ """ ## Introduction Knowledge distillation ([Hinton et al.](https://arxiv.org/abs/1503.02531)) is a technique that enables us to compress larger models into smaller ones. This allows us to reap the benefits of high performing larger models, while reducing storage and memory costs and achieving higher inference speed: * Smaller models -> smaller memory footprint * Reduced complexity -> fewer floating-point operations (FLOPs) In [Knowledge distillation: A good teacher is patient and consistent](https://arxiv.org/abs/2106.05237), Beyer et al. investigate various existing setups for performing knowledge distillation and show that all of them lead to sub-optimal performance. Due to this, practitioners often settle for other alternatives (quantization, pruning, weight clustering, etc.) when developing production systems that are resource-constrained. Beyer et al. investigate how we can improve the student models that come out of the knowledge distillation process and always match the performance of their teacher models. In this example, we will study the recipes introduced by them, using the [Flowers102 dataset](https://www.robots.ox.ac.uk/~vgg/data/flowers/102/). As a reference, with these recipes, the authors were able to produce a ResNet50 model that achieves 82.8% accuracy on the ImageNet-1k dataset. In case you need a refresher on knowledge distillation and want to study how it is implemented in Keras, you can refer to [this example](https://keras.io/examples/vision/knowledge_distillation/). You can also follow [this example](https://keras.io/examples/vision/consistency_training/) that shows an extension of knowledge distillation applied to consistency training. """ """ ## Imports """ import os os.environ["KERAS_BACKEND"] = "tensorflow" import keras import tensorflow as tf import matplotlib.pyplot as plt import numpy as np import tensorflow_datasets as tfds tfds.disable_progress_bar() """ ## Hyperparameters and contants """ AUTO = tf.data.AUTOTUNE # Used to dynamically adjust parallelism. BATCH_SIZE = 64 # Comes from Table 4 and "Training setup" section. TEMPERATURE = 10 # Used to soften the logits before they go to softmax. INIT_LR = 0.003 # Initial learning rate that will be decayed over the training period. WEIGHT_DECAY = 0.001 # Used for regularization. CLIP_THRESHOLD = 1.0 # Used for clipping the gradients by L2-norm. # We will first resize the training images to a bigger size and then we will take # random crops of a lower size. BIGGER = 160 RESIZE = 128 """ ## Load the Flowers102 dataset """ train_ds, validation_ds, test_ds = tfds.load( "oxford_flowers102", split=["train", "validation", "test"], as_supervised=True ) print(f"Number of training examples: {train_ds.cardinality()}.") print(f"Number of validation examples: {validation_ds.cardinality()}.") print(f"Number of test examples: {test_ds.cardinality()}.") """ ## Teacher model As is common with any distillation technique, it's important to first train a well-performing teacher model which is usually larger than the subsequent student model. The authors distill a BiT ResNet152x2 model (teacher) into a BiT ResNet50 model (student). BiT stands for Big Transfer and was introduced in [Big Transfer (BiT): General Visual Representation Learning](https://arxiv.org/abs/1912.11370). BiT variants of ResNets use Group Normalization ([Wu et al.](https://arxiv.org/abs/1803.08494)) and Weight Standardization ([Qiao et al.](https://arxiv.org/abs/1903.10520v2)) in place of Batch Normalization ([Ioffe et al.](https://arxiv.org/abs/1502.03167)). In order to limit the time it takes to run this example, we will be using a BiT ResNet101x3 already trained on the Flowers102 dataset. You can refer to [this notebook](https://github.com/sayakpaul/FunMatch-Distillation/blob/main/train_bit.ipynb) to learn more about the training process. This model reaches 98.18% accuracy on the test set of Flowers102. The model weights are hosted on Kaggle as a dataset. To download the weights, follow these steps: 1. Create an account on Kaggle [here](https://www.kaggle.com). 2. Go to the "Account" tab of your [user profile](https://www.kaggle.com/account). 3. Select "Create API Token". This will trigger the download of `kaggle.json`, a file containing your API credentials. 4. From that JSON file, copy your Kaggle username and API key. Now run the following: ```python import os os.environ["KAGGLE_USERNAME"] = "" # TODO: enter your Kaggle user name here os.environ["KAGGLE_KEY"] = "" # TODO: enter your Kaggle key here ``` Once the environment variables are set, run: ```shell $ kaggle datasets download -d spsayakpaul/bitresnet101x3flowers102 $ unzip -qq bitresnet101x3flowers102.zip ``` This should generate a folder named `T-r101x3-128` which is essentially a teacher [`SavedModel`](https://www.tensorflow.org/guide/saved_model). """ os.environ["KAGGLE_USERNAME"] = "" # TODO: enter your Kaggle user name here os.environ["KAGGLE_KEY"] = "" # TODO: enter your Kaggle API key here """shell !kaggle datasets download -d spsayakpaul/bitresnet101x3flowers102 """ """shell !unzip -qq bitresnet101x3flowers102.zip """ # Since the teacher model is not going to be trained further we make # it non-trainable. teacher_model = keras.layers.TFSMLayer( "/home/jupyter/keras-io/examples/keras_recipes/T-r101x3-128" ) teacher_model.trainable = False """ ## The "function matching" recipe To train a high-quality student model, the authors propose the following changes to the student training workflow: * Use an aggressive variant of MixUp ([Zhang et al.](https://arxiv.org/abs/1710.09412)). This is done by sampling the `alpha` parameter from a uniform distribution instead of a beta distribution. MixUp is used here in order to help the student model capture the function underlying the teacher model. MixUp linearly interpolates between different samples across the data manifold. So the rationale here is if the student is trained to fit that it should be able to match the teacher model better. To incorporate more invariance MixUp is coupled with "Inception-style" cropping ([Szegedy et al.](https://arxiv.org/abs/1409.4842)). This is where the "function matching" term makes its way in the [original paper](https://arxiv.org/abs/2106.05237). * Unlike other works ([Noisy Student Training](https://arxiv.org/abs/1911.04252) for example), both the teacher and student models receive the same copy of an image, which is mixed up and randomly cropped. By providing the same inputs to both the models, the authors make the teacher consistent with the student. * With MixUp, we are essentially introducing a strong form of regularization when training the student. As such, it should be trained for a relatively long period of time (1000 epochs at least). Since the student is trained with strong regularization, the risk of overfitting due to a longer training schedule are also mitigated. In summary, one needs to be consistent and patient while training the student model. """ """ ## Data input pipeline """ def mixup(images, labels): alpha = tf.random.uniform([], 0, 1) mixedup_images = alpha * images + (1 - alpha) * tf.reverse(images, axis=[0]) # The labels do not matter here since they are NOT used during # training. return mixedup_images, labels def preprocess_image(image, label, train=True): image = tf.cast(image, tf.float32) / 255.0 if train: image = tf.image.resize(image, (BIGGER, BIGGER)) image = tf.image.random_crop(image, (RESIZE, RESIZE, 3)) image = tf.image.random_flip_left_right(image) else: # Central fraction amount is from here: # https://git.io/J8Kda. image = tf.image.central_crop(image, central_fraction=0.875) image = tf.image.resize(image, (RESIZE, RESIZE)) return image, label def prepare_dataset(dataset, train=True, batch_size=BATCH_SIZE): if train: dataset = dataset.map(preprocess_image, num_parallel_calls=AUTO) dataset = dataset.shuffle(BATCH_SIZE * 10) else: dataset = dataset.map( lambda x, y: (preprocess_image(x, y, train)), num_parallel_calls=AUTO ) dataset = dataset.batch(batch_size) if train: dataset = dataset.map(mixup, num_parallel_calls=AUTO) dataset = dataset.prefetch(AUTO) return dataset """ Note that for brevity, we used mild crops for the training set but in practice "Inception-style" preprocessing should be applied. You can refer to [this script](https://github.com/sayakpaul/FunMatch-Distillation/blob/main/crop_resize.py) for a closer implementation. Also, _**the ground-truth labels are not used for training the student.**_ """ train_ds = prepare_dataset(train_ds, True) validation_ds = prepare_dataset(validation_ds, False) test_ds = prepare_dataset(test_ds, False) """ ## Visualization """ sample_images, _ = next(iter(train_ds)) plt.figure(figsize=(10, 10)) for n in range(25): ax = plt.subplot(5, 5, n + 1) plt.imshow(sample_images[n].numpy()) plt.axis("off") plt.show() """ ## Student model For the purpose of this example, we will use the standard ResNet50V2 ([He et al.](https://arxiv.org/abs/1603.05027)). """ def get_resnetv2(): resnet_v2 = keras.applications.ResNet50V2( weights=None, input_shape=(RESIZE, RESIZE, 3), classes=102, classifier_activation="linear", ) return resnet_v2 get_resnetv2().count_params() """ Compared to the teacher model, this model has 358 Million fewer parameters. """ """ ## Distillation utility We will reuse some code from [this example](https://keras.io/examples/vision/knowledge_distillation/) on knowledge distillation. """ class Distiller(tf.keras.Model): def __init__(self, student, teacher): super().__init__() self.student = student self.teacher = teacher self.loss_tracker = keras.metrics.Mean(name="distillation_loss") @property def metrics(self): metrics = super().metrics metrics.append(self.loss_tracker) return metrics def compile( self, optimizer, metrics, distillation_loss_fn, temperature=TEMPERATURE, ): super().compile(optimizer=optimizer, metrics=metrics) self.distillation_loss_fn = distillation_loss_fn self.temperature = temperature def train_step(self, data): # Unpack data x, _ = data # Forward pass of teacher teacher_predictions = self.teacher(x, training=False) with tf.GradientTape() as tape: # Forward pass of student student_predictions = self.student(x, training=True) # Compute loss distillation_loss = self.distillation_loss_fn( tf.nn.softmax(teacher_predictions / self.temperature, axis=1), tf.nn.softmax(student_predictions / self.temperature, axis=1), ) # Compute gradients trainable_vars = self.student.trainable_variables gradients = tape.gradient(distillation_loss, trainable_vars) # Update weights self.optimizer.apply_gradients(zip(gradients, trainable_vars)) # Report progress self.loss_tracker.update_state(distillation_loss) return {"distillation_loss": self.loss_tracker.result()} def test_step(self, data): # Unpack data x, y = data # Forward passes teacher_predictions = self.teacher(x, training=False) student_predictions = self.student(x, training=False) # Calculate the loss distillation_loss = self.distillation_loss_fn( tf.nn.softmax(teacher_predictions / self.temperature, axis=1), tf.nn.softmax(student_predictions / self.temperature, axis=1), ) # Report progress self.loss_tracker.update_state(distillation_loss) self.compiled_metrics.update_state(y, student_predictions) results = {m.name: m.result() for m in self.metrics} return results """ ## Learning rate schedule A warmup cosine learning rate schedule is used in the paper. This schedule is also typical for many pre-training methods especially for computer vision. """ # Some code is taken from: # https://www.kaggle.com/ashusma/training-rfcx-tensorflow-tpu-effnet-b2. class WarmUpCosine(keras.optimizers.schedules.LearningRateSchedule): def __init__( self, learning_rate_base, total_steps, warmup_learning_rate, warmup_steps ): super().__init__() self.learning_rate_base = learning_rate_base self.total_steps = total_steps self.warmup_learning_rate = warmup_learning_rate self.warmup_steps = warmup_steps self.pi = tf.constant(np.pi) def __call__(self, step): if self.total_steps < self.warmup_steps: raise ValueError("Total_steps must be larger or equal to warmup_steps.") cos_annealed_lr = tf.cos( self.pi * (tf.cast(step, tf.float32) - self.warmup_steps) / float(self.total_steps - self.warmup_steps) ) learning_rate = 0.5 * self.learning_rate_base * (1 + cos_annealed_lr) if self.warmup_steps > 0: if self.learning_rate_base < self.warmup_learning_rate: raise ValueError( "Learning_rate_base must be larger or equal to " "warmup_learning_rate." ) slope = ( self.learning_rate_base - self.warmup_learning_rate ) / self.warmup_steps warmup_rate = slope * tf.cast(step, tf.float32) + self.warmup_learning_rate learning_rate = tf.where( step < self.warmup_steps, warmup_rate, learning_rate ) return tf.where( step > self.total_steps, 0.0, learning_rate, name="learning_rate" ) """ We can now plot a a graph of learning rates generated using this schedule. """ ARTIFICIAL_EPOCHS = 1000 ARTIFICIAL_BATCH_SIZE = 512 DATASET_NUM_TRAIN_EXAMPLES = 1020 TOTAL_STEPS = int( DATASET_NUM_TRAIN_EXAMPLES / ARTIFICIAL_BATCH_SIZE * ARTIFICIAL_EPOCHS ) scheduled_lrs = WarmUpCosine( learning_rate_base=INIT_LR, total_steps=TOTAL_STEPS, warmup_learning_rate=0.0, warmup_steps=1500, ) lrs = [scheduled_lrs(step) for step in range(TOTAL_STEPS)] plt.plot(lrs) plt.xlabel("Step", fontsize=14) plt.ylabel("LR", fontsize=14) plt.show() """ The original paper uses at least 1000 epochs and a batch size of 512 to perform "function matching". The objective of this example is to present a workflow to implement the recipe and not to demonstrate the results when they are applied at full scale. However, these recipes will transfer to the original settings from the paper. Please refer to [this repository](https://github.com/sayakpaul/FunMatch-Distillation) if you are interested in finding out more. """ """ ## Training """ optimizer = keras.optimizers.AdamW( weight_decay=WEIGHT_DECAY, learning_rate=scheduled_lrs, clipnorm=CLIP_THRESHOLD ) student_model = get_resnetv2() distiller = Distiller(student=student_model, teacher=teacher_model) distiller.compile( optimizer, metrics=[keras.metrics.SparseCategoricalAccuracy()], distillation_loss_fn=keras.losses.KLDivergence(), temperature=TEMPERATURE, ) history = distiller.fit( train_ds, steps_per_epoch=int(np.ceil(DATASET_NUM_TRAIN_EXAMPLES / BATCH_SIZE)), validation_data=validation_ds, epochs=30, # This should be at least 1000. ) student = distiller.student student_model.compile(metrics=["accuracy"]) _, top1_accuracy = student.evaluate(test_ds) print(f"Top-1 accuracy on the test set: {round(top1_accuracy * 100, 2)}%") """ ## Results With just 30 epochs of training, the results are nowhere near expected. This is where the benefits of patience aka a longer training schedule will come into play. Let's investigate what the model trained for 1000 epochs can do. """ """shell # Download the pre-trained weights. !wget https://git.io/JBO3Y -O S-r50x1-128-1000.tar.gz !tar xf S-r50x1-128-1000.tar.gz """ pretrained_student = keras.layers.TFSMLayer("S-r50x1-128-1000") """ This model exactly follows what the authors have used in their student models. """ _, top1_accuracy = pretrained_student.evaluate(test_ds) print(f"Top-1 accuracy on the test set: {round(top1_accuracy * 100, 2)}%") """ With 100000 epochs of training, this same model leads to a top-1 accuracy of 95.54%. There are a number of important ablations studies presented in the paper that show the effectiveness of these recipes compared to the prior art. So if you are skeptical about these recipes, definitely consult the paper. """ """ ## Note on training for longer With TPU-based hardware infrastructure, we can train the model for 1000 epochs faster. This does not even require adding a lot of changes to this codebase. You are encouraged to check [this repository](https://github.com/sayakpaul/FunMatch-Distillation) as it presents TPU-compatible training workflows for these recipes and can be run on [Kaggle Kernel](https://www.kaggle.com/kernels) leveraging their free TPU v3-8 hardware. """
keras-io/examples/keras_recipes/better_knowledge_distillation.py/0
{ "file_path": "keras-io/examples/keras_recipes/better_knowledge_distillation.py", "repo_id": "keras-io", "token_count": 6141 }
87
<jupyter_start><jupyter_text>Reproducibility in Keras Models**Author:** [Frightera](https://github.com/Frightera)**Date created:** 2023/05/05**Last modified:** 2023/05/05**Description:** Demonstration of random weight initialization and reproducibility in Keras models. IntroductionThis example demonstrates how to control randomness in Keras models. Sometimesyou may want to reproduce the exact same results across runs, for experimentationpurposes or to debug a problem. Setup<jupyter_code>import json import numpy as np import tensorflow as tf import keras from keras import layers from keras import initializers # Set the seed using keras.utils.set_random_seed. This will set: # 1) `numpy` seed # 2) backend random seed # 3) `python` random seed keras.utils.set_random_seed(812) # If using TensorFlow, this will make GPU ops as deterministic as possible, # but it will affect the overall performance, so be mindful of that. tf.config.experimental.enable_op_determinism()<jupyter_output><empty_output><jupyter_text>Weight initialization in KerasMost of the layers in Keras have `kernel_initializer` and `bias_initializer`parameters. These parameters allow you to specify the strategy used forinitializing the weights of layer variables. The following built-in initializersare available as part of `keras.initializers`:<jupyter_code>initializers_list = [ initializers.RandomNormal, initializers.RandomUniform, initializers.TruncatedNormal, initializers.VarianceScaling, initializers.GlorotNormal, initializers.GlorotUniform, initializers.HeNormal, initializers.HeUniform, initializers.LecunNormal, initializers.LecunUniform, initializers.Orthogonal, ]<jupyter_output><empty_output><jupyter_text>In a reproducible model, the weights of the model should be initialized withsame values in subsequent runs. First, we'll check how initializers behave whenthey are called multiple times with same `seed` value.<jupyter_code>for initializer in initializers_list: print(f"Running {initializer}") for iteration in range(2): # In order to get same results across multiple runs from an initializer, # you can specify a seed value. result = float(initializer(seed=42)(shape=(1, 1))) print(f"\tIteration --> {iteration} // Result --> {result}") print("\n")<jupyter_output><empty_output><jupyter_text>Now, let's inspect how two different initializer objects behave when they arehave the same seed value.<jupyter_code># Setting the seed value for an initializer will cause two different objects # to produce same results. glorot_normal_1 = keras.initializers.GlorotNormal(seed=42) glorot_normal_2 = keras.initializers.GlorotNormal(seed=42) input_dim, neurons = 3, 5 # Call two different objects with same shape result_1 = glorot_normal_1(shape=(input_dim, neurons)) result_2 = glorot_normal_2(shape=(input_dim, neurons)) # Check if the results are equal. equal = np.allclose(result_1, result_2) print(f"Are the results equal? {equal}")<jupyter_output><empty_output><jupyter_text>If the seed value is not set (or different seed values are used), two differentobjects will produce different results. Since the random seed is set at the beginningof the notebook, the results will be same in the sequential runs. This is relatedto the `keras.utils.set_random_seed`.<jupyter_code>glorot_normal_3 = keras.initializers.GlorotNormal() glorot_normal_4 = keras.initializers.GlorotNormal() # Let's call the initializer. result_3 = glorot_normal_3(shape=(input_dim, neurons)) # Call the second initializer. result_4 = glorot_normal_4(shape=(input_dim, neurons)) equal = np.allclose(result_3, result_4) print(f"Are the results equal? {equal}")<jupyter_output><empty_output><jupyter_text>`result_3` and `result_4` will be different, but when you run the notebookagain, `result_3` will have identical values to the ones in the previous run.Same goes for `result_4`. Reproducibility in model training processIf you want to reproduce the results of a model training process, you need tocontrol the randomness sources during the training process. In order to show arealistic example, this section utilizes `tf.data` using parallel map and shuffleoperations.In order to start, let's create a simple function which returns the historyobject of the Keras model.<jupyter_code>def train_model(train_data: tf.data.Dataset, test_data: tf.data.Dataset) -> dict: model = keras.Sequential( [ layers.Conv2D(32, (3, 3), activation="relu"), layers.MaxPooling2D((2, 2)), layers.Dropout(0.2), layers.Conv2D(32, (3, 3), activation="relu"), layers.MaxPooling2D((2, 2)), layers.Dropout(0.2), layers.Conv2D(32, (3, 3), activation="relu"), layers.GlobalAveragePooling2D(), layers.Dense(64, activation="relu"), layers.Dropout(0.2), layers.Dense(10, activation="softmax"), ] ) model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] ) # model.fit has a `shuffle` parameter which has a default value of `True`. # If you are using array-like objects, this will shuffle the data before # training. This argument is ignored when `x` is a generator or # `tf.data.Dataset`. history = model.fit(train_data, epochs=2, validation_data=test_data) print(f"Model accuracy on test data: {model.evaluate(test_data)[1] * 100:.2f}%") return history.history # Load the MNIST dataset (train_images, train_labels), ( test_images, test_labels, ) = keras.datasets.mnist.load_data() # Construct tf.data.Dataset objects train_ds = tf.data.Dataset.from_tensor_slices((train_images, train_labels)) test_ds = tf.data.Dataset.from_tensor_slices((test_images, test_labels))<jupyter_output><empty_output><jupyter_text>Remember we called `tf.config.experimental.enable_op_determinism()` at thebeginning of the function. This makes the `tf.data` operations deterministic.However, making `tf.data` operations deterministic comes with a performancecost. If you want to learn more about it, please check this[official guide](https://www.tensorflow.org/api_docs/python/tf/config/experimental/enable_op_determinismdeterminism_and_tfdata).Small summary what's going on here. Models have `kernel_initializer` and`bias_initializer` parameters. Since we set random seeds using`keras.utils.set_random_seed` in the beginning of the notebook, the initializerswill produce same results in the sequential runs. Additionally, TensorFlowoperations have now become deterministic. Frequently, you will be utilizing GPUsthat have thousands of hardware threads which causes non-deterministic behaviorto occur.<jupyter_code>def prepare_dataset(image, label): # Cast and normalize the image image = tf.cast(image, tf.float32) / 255.0 # Expand the channel dimension image = tf.expand_dims(image, axis=-1) # Resize the image image = tf.image.resize(image, (32, 32)) return image, label<jupyter_output><empty_output><jupyter_text>`tf.data.Dataset` objects have a `shuffle` method which shuffles the data.This method has a `buffer_size` parameter which controls the size of thebuffer. If you set this value to `len(train_images)`, the whole dataset willbe shuffled. If the buffer size is equal to the length of the dataset,then the elements will be shuffled in a completely random order.Main drawback of setting the buffer size to the length of the dataset is thatfilling the buffer can take a while depending on the size of the dataset.Here is a small summary of what's going on here:1) The `shuffle()` method creates a buffer of the specified size.2) The elements of the dataset are randomly shuffled and placed into the buffer.3) The elements of the buffer are then returned in a random order.Since `tf.config.experimental.enable_op_determinism()` is enabled and we setrandom seeds using `keras.utils.set_random_seed` in the beginning of thenotebook, the `shuffle()` method will produce same results in the sequentialruns.<jupyter_code># Prepare the datasets, batch-map --> vectorized operations train_data = ( train_ds.shuffle(buffer_size=len(train_images)) .batch(batch_size=64) .map(prepare_dataset, num_parallel_calls=tf.data.AUTOTUNE) .prefetch(buffer_size=tf.data.AUTOTUNE) ) test_data = ( test_ds.batch(batch_size=64) .map(prepare_dataset, num_parallel_calls=tf.data.AUTOTUNE) .prefetch(buffer_size=tf.data.AUTOTUNE) )<jupyter_output><empty_output><jupyter_text>Train the model for the first time.<jupyter_code>history = train_model(train_data, test_data)<jupyter_output><empty_output><jupyter_text>Let's save our results into a JSON file, and restart the kernel. Afterrestarting the kernel, we should see the same results as the previous run,this includes metrics and loss values both on the training and test data.<jupyter_code># Save the history object into a json file with open("history.json", "w") as fp: json.dump(history, fp)<jupyter_output><empty_output><jupyter_text>Do not run the cell above in order not to overwrite the results. Execute themodel training cell again and compare the results.<jupyter_code>with open("history.json", "r") as fp: history_loaded = json.load(fp)<jupyter_output><empty_output><jupyter_text>Compare the results one by one. You will see that they are equal.<jupyter_code>for key in history.keys(): for i in range(len(history[key])): if not np.allclose(history[key][i], history_loaded[key][i]): print(f"{key} not equal")<jupyter_output><empty_output>
keras-io/examples/keras_recipes/ipynb/reproducibility_recipes.ipynb/0
{ "file_path": "keras-io/examples/keras_recipes/ipynb/reproducibility_recipes.ipynb", "repo_id": "keras-io", "token_count": 3132 }
88
# Packaging Keras models for wide distribution using Functional Subclassing **Author:** Martin Gรถrner<br> **Date created:** 2023-12-13<br> **Last modified:** 2023-12-13<br> **Description:** When sharing your deep learning models, package them using the Functional Subclassing pattern. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/keras_recipes/ipynb/packaging_keras_models_for_wide_distribution.ipynb) <span class="k-dot">โ€ข</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/examples/keras_recipes/packaging_keras_models_for_wide_distribution.py) --- ## Introduction Keras is the ideal framework for sharing your cutting-edge deep learning models, in a library of pre-trained (or not) models. Millions of ML engineers are fluent in the familiar Keras API, making your models accessible to a global community, whatever their preferred backend (Jax, PyTorch or TensorFlow). One of the benefits of the Keras API is that it lets users programmatically inspect or edit a model, a feature that is necessary when creating new architectures or workflows based on a pre-trained model. When distributing models, the Keras team recommends packaging them using the **Functional Subclassing** pattern. Models implemented in this way combine two benefits: * They can be instantiated in the normal pythonic way:<br/> `model = model_collection_xyz.AmazingModel()` * They are Keras functional models which means that they have a programmatically accessible graph of layers, for introspection or model surgery. This guide explains [how to use](#functional-subclassing-model) the Functional Subclassing pattern, and showcases its benefits for [programmatic model introspection](#model-introspection) and [model surgery](#model-surgery). It also shows two other best practices for sharable Keras models: [configuring models](#unconstrained-inputs) for the widest range of supported inputs, for example images of various sizes, and [using dictionary inputs](#model-with-dictionary-inputs) for clarity in more complex models. --- ## Setup ```python import keras import tensorflow as tf # only for tf.data print("Keras version", keras.version()) print("Keras is running on", keras.config.backend()) ``` <div class="k-default-codeblock"> ``` Keras version 3.0.1 Keras is running on tensorflow ``` </div> --- ## Dataset Let's load an MNIST dataset so that we have something to train with. ```python # tf.data is a great API for putting together a data stream. # It works wether you use the TensorFlow, PyTorch or Jax backend, # as long as you use it in the data stream only and not inside of a model. BATCH_SIZE = 256 (x_train, train_labels), (x_test, test_labels) = keras.datasets.mnist.load_data() train_data = tf.data.Dataset.from_tensor_slices((x_train, train_labels)) train_data = train_data.map( lambda x, y: (tf.expand_dims(x, axis=-1), y) ) # 1-channel monochrome train_data = train_data.batch(BATCH_SIZE) train_data = train_data.cache() train_data = train_data.shuffle(5000, reshuffle_each_iteration=True) train_data = train_data.repeat() test_data = tf.data.Dataset.from_tensor_slices((x_test, test_labels)) test_data = test_data.map( lambda x, y: (tf.expand_dims(x, axis=-1), y) ) # 1-channel monochrome test_data = test_data.batch(10000) test_data = test_data.cache() STEPS_PER_EPOCH = len(train_labels) // BATCH_SIZE EPOCHS = 5 ``` --- ## Functional Subclassing Model The model is wrapped in a class so that end users can instantiate it normally by calling the constructor `MnistModel()` rather than calling a factory function. ```python class MnistModel(keras.Model): def __init__(self, **kwargs): # Keras Functional model definition. This could have used Sequential as # well. Sequential is just syntactic sugar for simple functional models. # 1-channel monochrome input inputs = keras.layers.Input(shape=(None, None, 1), dtype="uint8") # pixel format conversion from uint8 to float32 y = keras.layers.Rescaling(1 / 255.0)(inputs) # 3 convolutional layers y = keras.layers.Conv2D( filters=16, kernel_size=3, padding="same", activation="relu" )(y) y = keras.layers.Conv2D( filters=32, kernel_size=6, padding="same", activation="relu", strides=2 )(y) y = keras.layers.Conv2D( filters=48, kernel_size=6, padding="same", activation="relu", strides=2 )(y) # 2 dense layers y = keras.layers.GlobalAveragePooling2D()(y) y = keras.layers.Dense(48, activation="relu")(y) y = keras.layers.Dropout(0.4)(y) outputs = keras.layers.Dense( 10, activation="softmax", name="classification_head" # 10 classes )(y) # A Keras Functional model is created by calling keras.Model(inputs, outputs) super().__init__(inputs=inputs, outputs=outputs, **kwargs) ``` Let's instantiate and train this model. ```python model = MnistModel() model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["sparse_categorical_accuracy"], ) history = model.fit( train_data, steps_per_epoch=STEPS_PER_EPOCH, epochs=EPOCHS, validation_data=test_data, ) ``` <div class="k-default-codeblock"> ``` Epoch 1/5 234/234 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 9s 33ms/step - loss: 1.8916 - sparse_categorical_accuracy: 0.2933 - val_loss: 0.4278 - val_sparse_categorical_accuracy: 0.8864 Epoch 2/5 234/234 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 7s 31ms/step - loss: 0.5723 - sparse_categorical_accuracy: 0.8201 - val_loss: 0.2703 - val_sparse_categorical_accuracy: 0.9248 Epoch 3/5 234/234 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 7s 31ms/step - loss: 0.4063 - sparse_categorical_accuracy: 0.8772 - val_loss: 0.2010 - val_sparse_categorical_accuracy: 0.9400 Epoch 4/5 234/234 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 7s 31ms/step - loss: 0.3391 - sparse_categorical_accuracy: 0.8996 - val_loss: 0.1869 - val_sparse_categorical_accuracy: 0.9427 Epoch 5/5 234/234 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 7s 31ms/step - loss: 0.2989 - sparse_categorical_accuracy: 0.9120 - val_loss: 0.1513 - val_sparse_categorical_accuracy: 0.9557 ``` </div> --- ## Unconstrained inputs Notice, in the model definition above, that the input is specified with undefined dimensions: `Input(shape=(None, None, 1)` This allows the model to accept any image size as an input. However, this only works if the loosely defined shape can be propagated through all the layers and still determine the size of all weights. * So if you have a model architecture that can handle different input sizes with the same weights (like here), then your users will be able to instantiate it without parameters:<br/> `model = MnistModel()` * If on the other hand, the model must provision different weights for different input sizes, you will have to ask your users to specify the size in the constructor:<br/> `model = ModelXYZ(input_size=...)` --- ## Model introspection Keras maintains a programmatically accessible graph of layers for every model. It can be used for introspection and is accessed through the `model.layers` or `layer.layers` attribute. The utility function `model.summary()` also uses this mechanism internally. ```python model = MnistModel() # Model summary works model.summary() # Recursively walking the layer graph works as well def walk_layers(layer): if hasattr(layer, "layers"): for layer in layer.layers: walk_layers(layer) else: print(layer.name) print("\nWalking model layers:\n") walk_layers(model) ``` <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold">Model: "mnist_model_1"</span> </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace">โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“ โ”ƒ<span style="font-weight: bold"> Layer (type) </span>โ”ƒ<span style="font-weight: bold"> Output Shape </span>โ”ƒ<span style="font-weight: bold"> Param # </span>โ”ƒ โ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ โ”‚ input_layer_1 (<span style="color: #0087ff; text-decoration-color: #0087ff">InputLayer</span>) โ”‚ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">1</span>) โ”‚ <span style="color: #00af00; text-decoration-color: #00af00">0</span> โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ rescaling_1 (<span style="color: #0087ff; text-decoration-color: #0087ff">Rescaling</span>) โ”‚ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">1</span>) โ”‚ <span style="color: #00af00; text-decoration-color: #00af00">0</span> โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ conv2d_3 (<span style="color: #0087ff; text-decoration-color: #0087ff">Conv2D</span>) โ”‚ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">16</span>) โ”‚ <span style="color: #00af00; text-decoration-color: #00af00">160</span> โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ conv2d_4 (<span style="color: #0087ff; text-decoration-color: #0087ff">Conv2D</span>) โ”‚ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">32</span>) โ”‚ <span style="color: #00af00; text-decoration-color: #00af00">18,464</span> โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ conv2d_5 (<span style="color: #0087ff; text-decoration-color: #0087ff">Conv2D</span>) โ”‚ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">48</span>) โ”‚ <span style="color: #00af00; text-decoration-color: #00af00">55,344</span> โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ global_average_pooling2d_1 โ”‚ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">48</span>) โ”‚ <span style="color: #00af00; text-decoration-color: #00af00">0</span> โ”‚ โ”‚ (<span style="color: #0087ff; text-decoration-color: #0087ff">GlobalAveragePooling2D</span>) โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ dense_1 (<span style="color: #0087ff; text-decoration-color: #0087ff">Dense</span>) โ”‚ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">48</span>) โ”‚ <span style="color: #00af00; text-decoration-color: #00af00">2,352</span> โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ dropout_1 (<span style="color: #0087ff; text-decoration-color: #0087ff">Dropout</span>) โ”‚ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">48</span>) โ”‚ <span style="color: #00af00; text-decoration-color: #00af00">0</span> โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ classification_head (<span style="color: #0087ff; text-decoration-color: #0087ff">Dense</span>) โ”‚ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">10</span>) โ”‚ <span style="color: #00af00; text-decoration-color: #00af00">490</span> โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold"> Total params: </span><span style="color: #00af00; text-decoration-color: #00af00">76,810</span> (300.04 KB) </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold"> Trainable params: </span><span style="color: #00af00; text-decoration-color: #00af00">76,810</span> (300.04 KB) </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold"> Non-trainable params: </span><span style="color: #00af00; text-decoration-color: #00af00">0</span> (0.00 B) </pre> <div class="k-default-codeblock"> ``` Walking model layers: ``` </div> <div class="k-default-codeblock"> ``` input_layer_1 rescaling_1 conv2d_3 conv2d_4 conv2d_5 global_average_pooling2d_1 dense_1 dropout_1 classification_head ``` </div> --- ## Model surgery End users might want to instantiate the model from your library but modify it before use. Functional models have a programmatically accessible graph of layers. Edits are possible by slicing and splicing the graph and creating a new functional model. The alternative is to fork the model code and make the modifications but that forces users to then maintain their fork indefinitely. Example: instantiate the model but change the classification head to do a binary classification, "0" or "not 0", instead of the original 10-way digits classification. ```python model = MnistModel() input = model.input # cut before the classification head y = model.get_layer("classification_head").input # add a new classification head output = keras.layers.Dense( 1, # single class for binary classification activation="sigmoid", name="binary_classification_head", )(y) # create a new functional model binary_model = keras.Model(input, output) binary_model.summary() ``` <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold">Model: "functional_1"</span> </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace">โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“ โ”ƒ<span style="font-weight: bold"> Layer (type) </span>โ”ƒ<span style="font-weight: bold"> Output Shape </span>โ”ƒ<span style="font-weight: bold"> Param # </span>โ”ƒ โ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ โ”‚ input_layer_2 (<span style="color: #0087ff; text-decoration-color: #0087ff">InputLayer</span>) โ”‚ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">1</span>) โ”‚ <span style="color: #00af00; text-decoration-color: #00af00">0</span> โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ rescaling_2 (<span style="color: #0087ff; text-decoration-color: #0087ff">Rescaling</span>) โ”‚ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">1</span>) โ”‚ <span style="color: #00af00; text-decoration-color: #00af00">0</span> โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ conv2d_6 (<span style="color: #0087ff; text-decoration-color: #0087ff">Conv2D</span>) โ”‚ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">16</span>) โ”‚ <span style="color: #00af00; text-decoration-color: #00af00">160</span> โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ conv2d_7 (<span style="color: #0087ff; text-decoration-color: #0087ff">Conv2D</span>) โ”‚ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">32</span>) โ”‚ <span style="color: #00af00; text-decoration-color: #00af00">18,464</span> โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ conv2d_8 (<span style="color: #0087ff; text-decoration-color: #0087ff">Conv2D</span>) โ”‚ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">48</span>) โ”‚ <span style="color: #00af00; text-decoration-color: #00af00">55,344</span> โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ global_average_pooling2d_2 โ”‚ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">48</span>) โ”‚ <span style="color: #00af00; text-decoration-color: #00af00">0</span> โ”‚ โ”‚ (<span style="color: #0087ff; text-decoration-color: #0087ff">GlobalAveragePooling2D</span>) โ”‚ โ”‚ โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ dense_2 (<span style="color: #0087ff; text-decoration-color: #0087ff">Dense</span>) โ”‚ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">48</span>) โ”‚ <span style="color: #00af00; text-decoration-color: #00af00">2,352</span> โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ dropout_2 (<span style="color: #0087ff; text-decoration-color: #0087ff">Dropout</span>) โ”‚ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">48</span>) โ”‚ <span style="color: #00af00; text-decoration-color: #00af00">0</span> โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ binary_classification_head โ”‚ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">1</span>) โ”‚ <span style="color: #00af00; text-decoration-color: #00af00">49</span> โ”‚ โ”‚ (<span style="color: #0087ff; text-decoration-color: #0087ff">Dense</span>) โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold"> Total params: </span><span style="color: #00af00; text-decoration-color: #00af00">76,369</span> (298.32 KB) </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold"> Trainable params: </span><span style="color: #00af00; text-decoration-color: #00af00">76,369</span> (298.32 KB) </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold"> Non-trainable params: </span><span style="color: #00af00; text-decoration-color: #00af00">0</span> (0.00 B) </pre> We can now train the new model as a binary classifier. ```python # new dataset with 0 / 1 labels (1 = digit '0', 0 = all other digits) bin_train_data = train_data.map( lambda x, y: (x, tf.cast(tf.math.equal(y, tf.zeros_like(y)), dtype=tf.uint8)) ) bin_test_data = test_data.map( lambda x, y: (x, tf.cast(tf.math.equal(y, tf.zeros_like(y)), dtype=tf.uint8)) ) # appropriate loss and metric for binary classification binary_model.compile( optimizer="adam", loss="binary_crossentropy", metrics=["binary_accuracy"] ) history = binary_model.fit( bin_train_data, steps_per_epoch=STEPS_PER_EPOCH, epochs=EPOCHS, validation_data=bin_test_data, ) ``` <div class="k-default-codeblock"> ``` Epoch 1/5 234/234 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 9s 33ms/step - binary_accuracy: 0.8926 - loss: 0.3635 - val_binary_accuracy: 0.9235 - val_loss: 0.1777 Epoch 2/5 234/234 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 7s 31ms/step - binary_accuracy: 0.9411 - loss: 0.1620 - val_binary_accuracy: 0.9766 - val_loss: 0.0748 Epoch 3/5 234/234 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 7s 31ms/step - binary_accuracy: 0.9751 - loss: 0.0794 - val_binary_accuracy: 0.9884 - val_loss: 0.0414 Epoch 4/5 234/234 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 7s 31ms/step - binary_accuracy: 0.9848 - loss: 0.0480 - val_binary_accuracy: 0.9915 - val_loss: 0.0292 Epoch 5/5 234/234 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 7s 31ms/step - binary_accuracy: 0.9910 - loss: 0.0326 - val_binary_accuracy: 0.9917 - val_loss: 0.0286 ``` </div> --- ## Model with dictionary inputs In more complex models, with multiple inputs, structuring the inputs as a dictionary can improve readability and usability. This is straightforward to do with a functional model: ```python class MnistDictModel(keras.Model): def __init__(self, **kwargs): # # The input is a dictionary # inputs = { "image": keras.layers.Input( shape=(None, None, 1), # 1-channel monochrome dtype="uint8", name="image", ) } # pixel format conversion from uint8 to float32 y = keras.layers.Rescaling(1 / 255.0)(inputs["image"]) # 3 conv layers y = keras.layers.Conv2D( filters=16, kernel_size=3, padding="same", activation="relu" )(y) y = keras.layers.Conv2D( filters=32, kernel_size=6, padding="same", activation="relu", strides=2 )(y) y = keras.layers.Conv2D( filters=48, kernel_size=6, padding="same", activation="relu", strides=2 )(y) # 2 dense layers y = keras.layers.GlobalAveragePooling2D()(y) y = keras.layers.Dense(48, activation="relu")(y) y = keras.layers.Dropout(0.4)(y) outputs = keras.layers.Dense( 10, activation="softmax", name="classification_head" # 10 classes )(y) # A Keras Functional model is created by calling keras.Model(inputs, outputs) super().__init__(inputs=inputs, outputs=outputs, **kwargs) ``` We can now train the model on inputs structured as a dictionary. ```python model = MnistDictModel() # reformat the dataset as a dictionary dict_train_data = train_data.map(lambda x, y: ({"image": x}, y)) dict_test_data = test_data.map(lambda x, y: ({"image": x}, y)) model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["sparse_categorical_accuracy"], ) history = model.fit( dict_train_data, steps_per_epoch=STEPS_PER_EPOCH, epochs=EPOCHS, validation_data=dict_test_data, ) ``` <div class="k-default-codeblock"> ``` Epoch 1/5 234/234 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 9s 34ms/step - loss: 1.8702 - sparse_categorical_accuracy: 0.3175 - val_loss: 0.4505 - val_sparse_categorical_accuracy: 0.8779 Epoch 2/5 234/234 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 8s 32ms/step - loss: 0.5991 - sparse_categorical_accuracy: 0.8131 - val_loss: 0.2582 - val_sparse_categorical_accuracy: 0.9245 Epoch 3/5 234/234 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 7s 32ms/step - loss: 0.3916 - sparse_categorical_accuracy: 0.8846 - val_loss: 0.1938 - val_sparse_categorical_accuracy: 0.9422 Epoch 4/5 234/234 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 8s 33ms/step - loss: 0.3109 - sparse_categorical_accuracy: 0.9089 - val_loss: 0.1450 - val_sparse_categorical_accuracy: 0.9566 Epoch 5/5 234/234 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 8s 32ms/step - loss: 0.2775 - sparse_categorical_accuracy: 0.9197 - val_loss: 0.1316 - val_sparse_categorical_accuracy: 0.9608 ``` </div>
keras-io/examples/keras_recipes/md/packaging_keras_models_for_wide_distribution.md/0
{ "file_path": "keras-io/examples/keras_recipes/md/packaging_keras_models_for_wide_distribution.md", "repo_id": "keras-io", "token_count": 10407 }
89
<jupyter_start><jupyter_text>Training a language model from scratch with ๐Ÿค— Transformers and TPUs**Authors:** [Matthew Carrigan](https://twitter.com/carrigmat), [Sayak Paul](https://twitter.com/RisingSayak)**Date created:** 2023/05/21**Last modified:** 2023/05/21**Description:** Train a masked language model on TPUs using ๐Ÿค— Transformers. IntroductionIn this example, we cover how to train a masked language model using TensorFlow,[๐Ÿค— Transformers](https://huggingface.co/transformers/index),and TPUs.TPU training is a useful skill to have: TPU pods are high-performance and extremelyscalable, making it easy to train models at any scale from a few tens of millions ofparameters up to truly enormous sizes: Google's PaLM model(over 500 billion parameters!) was trained entirely on TPU pods.We've previously written a[**tutorial**](https://huggingface.co/docs/transformers/main/perf_train_tpu_tf)and a[**Colab example**](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb)showing small-scale TPU training with TensorFlow and introducing the core concepts youneed to understand to get your model working on TPU. However, our Colab example doesn'tcontain all the steps needed to train a language model from scratch such astraining the tokenizer. So, we wanted to provide a consolidated example ofwalking you through every critical step involved there.As in our Colab example, we're taking advantage of TensorFlow's very clean TPU supportvia XLA and `TPUStrategy`. We'll also be benefiting from the fact that the majority ofthe TensorFlow models in ๐Ÿค— Transformers are fully[XLA-compatible](https://huggingface.co/blog/tf-xla-generate).So surprisingly, little work is needed to get them to run on TPU.This example is designed to be **scalable** and much closer to a realistic training run-- although we only use a BERT-sized model by default, the code could be expanded to amuch larger model and a much more powerful TPU pod slice by changing a few configurationoptions.The following diagram gives you a pictorial overview of the steps involved in training alanguage model with ๐Ÿค— Transformers using TensorFlow and TPUs:*(Contents of this example overlap with[this blog post](https://huggingface.co/blog/tf_tpu)).* DataWe use the[WikiText dataset (v1)](https://huggingface.co/datasets/wikitext).You can head over to the[dataset page on the Hugging Face Hub](https://huggingface.co/datasets/wikitext)to explore the dataset.Since the dataset is already available on the Hub in a compatible format, we can easilyload and interact with it using[๐Ÿค— datasets](https://hf.co/docs/datasets).However, training a language model from scratch also requires a separatetokenizer training step. We skip that part in this example for brevity, but,here's a gist of what we can do to train a tokenizer from scratch:- Load the `train` split of the WikiText using ๐Ÿค— datasets.- Leverage[๐Ÿค— tokenizers](https://huggingface.co/docs/tokenizers/index)to train a[**Unigram model**](https://huggingface.co/course/chapter6/7?fw=pt).- Upload the trained tokenizer on the Hub.You can find the tokenizer trainingcode[**here**](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling-tputraining-a-tokenizer)and the tokenizer[**here**](https://huggingface.co/tf-tpu/unigram-tokenizer-wikitext).This script also allows you to run it with[**any compatible dataset**](https://huggingface.co/datasets?task_ids=task_ids:language-modeling)from the Hub. Tokenizing the data and creating TFRecordsOnce the tokenizer is trained, we can use it on all the dataset splits(`train`, `validation`, and `test` in this case) and create TFRecord shards out of them.Having the data splits spread across multiple TFRecord shards helps with massivelyparallel processing as opposed to having each split in single TFRecord files.We tokenize the samples individually. We then take a batch of samples, concatenate themtogether, and split them into several chunks of a fixed size (128 in our case). We followthis strategy rather than tokenizing a batch of samples with a fixed length to avoidaggressively discarding text content (because of truncation).We then take these tokenized samples in batches and serialize those batches as multipleTFRecord shards, where the total dataset length and individual shard size determine thenumber of shards. Finally, these shards are pushed to a[Google Cloud Storage (GCS) bucket](https://cloud.google.com/storage/docs/json_api/v1/buckets).If you're using a TPU node for training, then the data needs to be streamed from a GCSbucket since the node host memory is very small. But for TPU VMs, we can use datasetslocally or even attach persistent storage to those VMs. Since TPU nodes (which is what wehave in a Colab) are still quite heavily used, we based our example on using a GCS bucketfor data storage.You can see all of this in code in[this script](https://github.com/huggingface/transformers/blob/main/examples/tensorflow/language-modeling-tpu/prepare_tfrecord_shards.py).For convenience, we have also hosted the resultant TFRecord shards in[this repository](https://huggingface.co/datasets/tf-tpu/wikitext-v1-tfrecords)on the Hub.Once the data is tokenized and serialized into TFRecord shards, we can proceed towardtraining. Training Setup and importsLet's start by installing ๐Ÿค— Transformers.<jupyter_code>!pip install transformers -q<jupyter_output><empty_output><jupyter_text>Then, let's import the modules we need.<jupyter_code>import os import re import tensorflow as tf import transformers<jupyter_output><empty_output><jupyter_text>Initialize TPUs Then let's connect to our TPU and determine the distribution strategy:<jupyter_code>tpu = tf.distribute.cluster_resolver.TPUClusterResolver() tf.config.experimental_connect_to_cluster(tpu) tf.tpu.experimental.initialize_tpu_system(tpu) strategy = tf.distribute.TPUStrategy(tpu) print(f"Available number of replicas: {strategy.num_replicas_in_sync}")<jupyter_output><empty_output><jupyter_text>We then load the tokenizer. For more details on the tokenizer, check out[its repository](https://huggingface.co/tf-tpu/unigram-tokenizer-wikitext).For the model, we use RoBERTa (the base variant), introduced in[this paper](https://arxiv.org/abs/1907.11692). Initialize the tokenizer<jupyter_code>tokenizer = "tf-tpu/unigram-tokenizer-wikitext" pretrained_model_config = "roberta-base" tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer) config = transformers.AutoConfig.from_pretrained(pretrained_model_config) config.vocab_size = tokenizer.vocab_size<jupyter_output><empty_output><jupyter_text>Prepare the datasets We now load the TFRecord shards of the WikiText dataset (which the Hugging Face teamprepared beforehand for this example):<jupyter_code>train_dataset_path = "gs://tf-tpu-training-resources/train" eval_dataset_path = "gs://tf-tpu-training-resources/validation" training_records = tf.io.gfile.glob(os.path.join(train_dataset_path, "*.tfrecord")) eval_records = tf.io.gfile.glob(os.path.join(eval_dataset_path, "*.tfrecord"))<jupyter_output><empty_output><jupyter_text>Now, we will write a utility to count the number of training samples we have. We need toknow this value in order properly initialize our optimizer later:<jupyter_code>def count_samples(file_list): num_samples = 0 for file in file_list: filename = file.split("/")[-1] sample_count = re.search(r"-\d+-(\d+)\.tfrecord", filename).group(1) sample_count = int(sample_count) num_samples += sample_count return num_samples num_train_samples = count_samples(training_records) print(f"Number of total training samples: {num_train_samples}")<jupyter_output><empty_output><jupyter_text>Let's now prepare our datasets for training and evaluation. We start by writing ourutilities. First, we need to be able to decode the TFRecords:<jupyter_code>max_sequence_length = 512 def decode_fn(example): features = { "input_ids": tf.io.FixedLenFeature( dtype=tf.int64, shape=(max_sequence_length,) ), "attention_mask": tf.io.FixedLenFeature( dtype=tf.int64, shape=(max_sequence_length,) ), } return tf.io.parse_single_example(example, features)<jupyter_output><empty_output><jupyter_text>Here, `max_sequence_length` needs to be the same as the one used during preparing theTFRecord shards.Refer to[this script](https://github.com/huggingface/transformers/blob/main/examples/tensorflow/language-modeling-tpu/prepare_tfrecord_shards.py)for more details.Next up, we have our masking utility that is responsible for masking parts of the inputsand preparing labels for the masked language model to learn from. We leverage the[`DataCollatorForLanguageModeling`](https://huggingface.co/docs/transformers/v4.29.1/en/main_classes/data_collatortransformers.DataCollatorForLanguageModeling)for this purpose.<jupyter_code># We use a standard masking probability of 0.15. `mlm_probability` denotes # probability with which we mask the input tokens in a sequence. mlm_probability = 0.15 data_collator = transformers.DataCollatorForLanguageModeling( tokenizer=tokenizer, mlm_probability=mlm_probability, mlm=True, return_tensors="tf" ) def mask_with_collator(batch): special_tokens_mask = ( ~tf.cast(batch["attention_mask"], tf.bool) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) batch["input_ids"], batch["labels"] = data_collator.tf_mask_tokens( batch["input_ids"], vocab_size=len(tokenizer), mask_token_id=tokenizer.mask_token_id, special_tokens_mask=special_tokens_mask, ) return batch<jupyter_output><empty_output><jupyter_text>And now is the time to write the final data preparation utility to put it all together ina `tf.data.Dataset` object:<jupyter_code>auto = tf.data.AUTOTUNE shuffle_buffer_size = 2**18 def prepare_dataset( records, decode_fn, mask_fn, batch_size, shuffle, shuffle_buffer_size=None ): num_samples = count_samples(records) dataset = tf.data.Dataset.from_tensor_slices(records) if shuffle: dataset = dataset.shuffle(len(dataset)) dataset = tf.data.TFRecordDataset(dataset, num_parallel_reads=auto) # TF can't infer the total sample count because it doesn't read # all the records yet, so we assert it here. dataset = dataset.apply(tf.data.experimental.assert_cardinality(num_samples)) dataset = dataset.map(decode_fn, num_parallel_calls=auto) if shuffle: assert shuffle_buffer_size is not None dataset = dataset.shuffle(shuffle_buffer_size) dataset = dataset.batch(batch_size, drop_remainder=True) dataset = dataset.map(mask_fn, num_parallel_calls=auto) dataset = dataset.prefetch(auto) return dataset<jupyter_output><empty_output><jupyter_text>Let's prepare our datasets with these utilities:<jupyter_code>per_replica_batch_size = 16 # Change as needed. batch_size = per_replica_batch_size * strategy.num_replicas_in_sync shuffle_buffer_size = 2**18 # Default corresponds to a 1GB buffer for seq_len 512 train_dataset = prepare_dataset( training_records, decode_fn=decode_fn, mask_fn=mask_with_collator, batch_size=batch_size, shuffle=True, shuffle_buffer_size=shuffle_buffer_size, ) eval_dataset = prepare_dataset( eval_records, decode_fn=decode_fn, mask_fn=mask_with_collator, batch_size=batch_size, shuffle=False, )<jupyter_output><empty_output><jupyter_text>Let's now investigate how a single batch of dataset looks like.<jupyter_code>single_batch = next(iter(train_dataset)) print(single_batch.keys())<jupyter_output><empty_output><jupyter_text>* `input_ids` denotes the tokenized versions of the input samples containing the masktokens as well.* `attention_mask` denotes the mask to be used when performing attention operations.* `labels` denotes the actual values of masked tokens the model is supposed to learn from.<jupyter_code>for k in single_batch: if k == "input_ids": input_ids = single_batch[k] print(f"Input shape: {input_ids.shape}") if k == "labels": labels = single_batch[k] print(f"Label shape: {labels.shape}")<jupyter_output><empty_output><jupyter_text>Now, we can leverage our `tokenizer` to investigate the values of the tokens. Let's startwith `input_ids`:<jupyter_code>idx = 0 print("Taking the first sample:\n") print(tokenizer.decode(input_ids[idx].numpy()))<jupyter_output><empty_output><jupyter_text>As expected, the decoded tokens contain the special tokens including the mask tokens aswell. Let's now investigate the mask tokens:<jupyter_code># Taking the first 30 tokens of the first sequence. print(labels[0].numpy()[:30])<jupyter_output><empty_output><jupyter_text>Here, `-100` means that the corresponding tokens in the `input_ids` are NOT masked andnon `-100` values denote the actual values of the masked tokens. Initialize the mode and and the optimizer With the datasets prepared, we now initialize and compile our model and optimizer withinthe `strategy.scope()`:<jupyter_code># For this example, we keep this value to 10. But for a realistic run, start with 500. num_epochs = 10 steps_per_epoch = num_train_samples // ( per_replica_batch_size * strategy.num_replicas_in_sync ) total_train_steps = steps_per_epoch * num_epochs learning_rate = 0.0001 weight_decay_rate = 1e-3 with strategy.scope(): model = transformers.TFAutoModelForMaskedLM.from_config(config) model( model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built optimizer, schedule = transformers.create_optimizer( num_train_steps=total_train_steps, num_warmup_steps=total_train_steps // 20, init_lr=learning_rate, weight_decay_rate=weight_decay_rate, ) model.compile(optimizer=optimizer, metrics=["accuracy"])<jupyter_output><empty_output><jupyter_text>A couple of things to note here:* The[`create_optimizer()`](https://huggingface.co/docs/transformers/main_classes/optimizer_schedulestransformers.create_optimizer)function creates an Adam optimizer with a learning rate schedule using a warmup phasefollowed by a linear decay. Since we're using weight decay here, under the hood,`create_optimizer()` instantiates[the right variant of Adam](https://github.com/huggingface/transformers/blob/118e9810687dd713b6be07af79e80eeb1d916908/src/transformers/optimization_tf.pyL172)to enable weight decay.* While compiling the model, we're NOT using any `loss` argument. This is becausethe TensorFlow models internally compute the loss when expected labels are provided.Based on the model type and the labels being used, `transformers` will automaticallyinfer the loss to use. Start training! Next, we set up a handy callback to push the intermediate training checkpoints to theHugging Face Hub. To be able to operationalize this callback, we need to log in to ourHugging Face account (if you don't have one, you create one[here](https://huggingface.co/join) for free). Execute the code below for logging in:```pythonfrom huggingface_hub import notebook_loginnotebook_login()``` Let's now define the[`PushToHubCallback`](https://huggingface.co/docs/transformers/main_classes/keras_callbackstransformers.PushToHubCallback):<jupyter_code>hub_model_id = output_dir = "masked-lm-tpu" callbacks = [] callbacks.append( transformers.PushToHubCallback( output_dir=output_dir, hub_model_id=hub_model_id, tokenizer=tokenizer ) )<jupyter_output><empty_output><jupyter_text>And now, we're ready to chug the TPUs:<jupyter_code># In the interest of the runtime of this example, # we limit the number of batches to just 2. model.fit( train_dataset.take(2), validation_data=eval_dataset.take(2), epochs=num_epochs, callbacks=callbacks, ) # After training we also serialize the final model. model.save_pretrained(output_dir)<jupyter_output><empty_output><jupyter_text>Once your training is complete, you can easily perform inference like so:<jupyter_code>from transformers import pipeline # Replace your `model_id` here. # Here, we're using a model that the Hugging Face team trained for longer. model_id = "tf-tpu/roberta-base-epochs-500-no-wd" unmasker = pipeline("fill-mask", model=model_id, framework="tf") print(unmasker("Goal of my life is to [MASK]."))<jupyter_output><empty_output>
keras-io/examples/nlp/ipynb/mlm_training_tpus.ipynb/0
{ "file_path": "keras-io/examples/nlp/ipynb/mlm_training_tpus.ipynb", "repo_id": "keras-io", "token_count": 5307 }
90
<jupyter_start><jupyter_text>Text classification with Switch Transformer**Author:** [Khalid Salama](https://www.linkedin.com/in/khalid-salama-24403144/)**Date created:** 2020/05/10**Last modified:** 2021/02/15**Description:** Implement a Switch Transformer for text classification. IntroductionThis example demonstrates the implementation of the[Switch Transformer](https://arxiv.org/abs/2101.03961) model for textclassification.The Switch Transformer replaces the feedforward network (FFN) layer in the standardTransformer with a Mixture of Expert (MoE) routing layer, where each expert operatesindependently on the tokens in the sequence. This allows increasing the model size withoutincreasing the computation needed to process each example.Note that, for training the Switch Transformer efficiently, data and model parallelismneed to be applied, so that expert modules can run simultaneously, each on its own accelerator.While the implementation described in the paper uses the[TensorFlow Mesh](https://github.com/tensorflow/mesh) framework for distributed training,this example presents a simple, non-distributed implementation of the Switch Transformermodel for demonstration purposes. Setup<jupyter_code>import keras from keras import ops from keras import layers<jupyter_output><empty_output><jupyter_text>Download and prepare dataset<jupyter_code>vocab_size = 20000 # Only consider the top 20k words num_tokens_per_example = 200 # Only consider the first 200 words of each movie review (x_train, y_train), (x_val, y_val) = keras.datasets.imdb.load_data(num_words=vocab_size) print(len(x_train), "Training sequences") print(len(x_val), "Validation sequences") x_train = keras.utils.pad_sequences(x_train, maxlen=num_tokens_per_example) x_val = keras.utils.pad_sequences(x_val, maxlen=num_tokens_per_example)<jupyter_output><empty_output><jupyter_text>Define hyperparameters<jupyter_code>embed_dim = 32 # Embedding size for each token. num_heads = 2 # Number of attention heads ff_dim = 32 # Hidden layer size in feedforward network. num_experts = 10 # Number of experts used in the Switch Transformer. batch_size = 50 # Batch size. learning_rate = 0.001 # Learning rate. dropout_rate = 0.25 # Dropout rate. num_epochs = 3 # Number of epochs. num_tokens_per_batch = ( batch_size * num_tokens_per_example ) # Total number of tokens per batch. print(f"Number of tokens per batch: {num_tokens_per_batch}")<jupyter_output><empty_output><jupyter_text>Implement token & position embedding layerIt consists of two seperate embedding layers, one for tokens, one for token index (positions).<jupyter_code>class TokenAndPositionEmbedding(layers.Layer): def __init__(self, maxlen, vocab_size, embed_dim): super().__init__() self.token_emb = layers.Embedding(input_dim=vocab_size, output_dim=embed_dim) self.pos_emb = layers.Embedding(input_dim=maxlen, output_dim=embed_dim) def call(self, x): maxlen = ops.shape(x)[-1] positions = ops.arange(start=0, stop=maxlen, step=1) positions = self.pos_emb(positions) x = self.token_emb(x) return x + positions<jupyter_output><empty_output><jupyter_text>Implement the feedforward networkThis is used as the Mixture of Experts in the Switch Transformer.<jupyter_code>def create_feedforward_network(ff_dim, embed_dim, name=None): return keras.Sequential( [layers.Dense(ff_dim, activation="relu"), layers.Dense(embed_dim)], name=name )<jupyter_output><empty_output><jupyter_text>Implement the load-balanced lossThis is an auxiliary loss to encourage a balanced load across experts.<jupyter_code>def load_balanced_loss(router_probs, expert_mask): # router_probs [tokens_per_batch, num_experts] is the probability assigned for # each expert per token. expert_mask [tokens_per_batch, num_experts] contains # the expert with the highest router probability in oneโˆ’hot format. num_experts = ops.shape(expert_mask)[-1] # Get the fraction of tokens routed to each expert. # density is a vector of length num experts that sums to 1. density = ops.mean(expert_mask, axis=0) # Get fraction of probability mass assigned to each expert from the router # across all tokens. density_proxy is a vector of length num experts that sums to 1. density_proxy = ops.mean(router_probs, axis=0) # Want both vectors to have uniform allocation (1/num experts) across all # num_expert elements. The two vectors will be pushed towards uniform allocation # when the dot product is minimized. loss = ops.mean(density_proxy * density) * ops.cast((num_experts**2), "float32") return loss<jupyter_output><empty_output><jupyter_text>Implement the router as a layer<jupyter_code>class Router(layers.Layer): def __init__(self, num_experts, expert_capacity): self.num_experts = num_experts self.route = layers.Dense(units=num_experts) self.expert_capacity = expert_capacity super().__init__() def call(self, inputs, training=False): # inputs shape: [tokens_per_batch, embed_dim] # router_logits shape: [tokens_per_batch, num_experts] router_logits = self.route(inputs) if training: # Add noise for exploration across experts. router_logits += keras.random.uniform( shape=router_logits.shape, minval=0.9, maxval=1.1 ) # Probabilities for each token of what expert it should be sent to. router_probs = keras.activations.softmax(router_logits, axis=-1) # Get the topโˆ’1 expert for each token. expert_gate is the topโˆ’1 probability # from the router for each token. expert_index is what expert each token # is going to be routed to. expert_gate, expert_index = ops.top_k(router_probs, k=1) # expert_mask shape: [tokens_per_batch, num_experts] expert_mask = ops.one_hot(expert_index, self.num_experts) # Compute load balancing loss. aux_loss = load_balanced_loss(router_probs, expert_mask) self.add_loss(aux_loss) # Experts have a fixed capacity, ensure we do not exceed it. Construct # the batch indices, to each expert, with position in expert make sure that # not more that expert capacity examples can be routed to each expert. position_in_expert = ops.cast( ops.cumsum(expert_mask, axis=0) * expert_mask, "int32" ) # Keep only tokens that fit within expert capacity. expert_mask *= ops.cast( ops.less(ops.cast(position_in_expert, "int32"), self.expert_capacity), "float32", ) expert_mask_flat = ops.sum(expert_mask, axis=-1) # Mask out the experts that have overflowed the expert capacity. expert_gate *= expert_mask_flat # Combine expert outputs and scaling with router probability. # combine_tensor shape: [tokens_per_batch, num_experts, expert_capacity] combined_tensor = ops.expand_dims( expert_gate * expert_mask_flat * ops.squeeze(ops.one_hot(expert_index, self.num_experts), 1), -1, ) * ops.squeeze(ops.one_hot(position_in_expert, self.expert_capacity), 1) # Create binary dispatch_tensor [tokens_per_batch, num_experts, expert_capacity] # that is 1 if the token gets routed to the corresponding expert. dispatch_tensor = ops.cast(combined_tensor, "float32") return dispatch_tensor, combined_tensor<jupyter_output><empty_output><jupyter_text>Implement a Switch layer<jupyter_code>class Switch(layers.Layer): def __init__( self, num_experts, embed_dim, ff_dim, num_tokens_per_batch, capacity_factor=1 ): self.num_experts = num_experts self.embed_dim = embed_dim self.experts = [ create_feedforward_network(ff_dim, embed_dim) for _ in range(num_experts) ] self.expert_capacity = num_tokens_per_batch // self.num_experts self.router = Router(self.num_experts, self.expert_capacity) super().__init__() def call(self, inputs): batch_size = ops.shape(inputs)[0] num_tokens_per_example = ops.shape(inputs)[1] # inputs shape: [num_tokens_per_batch, embed_dim] inputs = ops.reshape(inputs, [num_tokens_per_batch, self.embed_dim]) # dispatch_tensor shape: [expert_capacity, num_experts, tokens_per_batch] # combine_tensor shape: [tokens_per_batch, num_experts, expert_capacity] dispatch_tensor, combine_tensor = self.router(inputs) # expert_inputs shape: [num_experts, expert_capacity, embed_dim] expert_inputs = ops.einsum("ab,acd->cdb", inputs, dispatch_tensor) expert_inputs = ops.reshape( expert_inputs, [self.num_experts, self.expert_capacity, self.embed_dim] ) # Dispatch to experts expert_input_list = ops.unstack(expert_inputs, axis=0) expert_output_list = [ self.experts[idx](expert_input) for idx, expert_input in enumerate(expert_input_list) ] # expert_outputs shape: [expert_capacity, num_experts, embed_dim] expert_outputs = ops.stack(expert_output_list, axis=1) # expert_outputs_combined shape: [tokens_per_batch, embed_dim] expert_outputs_combined = ops.einsum( "abc,xba->xc", expert_outputs, combine_tensor ) # output shape: [batch_size, num_tokens_per_example, embed_dim] outputs = ops.reshape( expert_outputs_combined, [batch_size, num_tokens_per_example, self.embed_dim], ) return outputs<jupyter_output><empty_output><jupyter_text>Implement a Transformer block layer<jupyter_code>class TransformerBlock(layers.Layer): def __init__(self, embed_dim, num_heads, ffn, dropout_rate=0.1): super().__init__() self.att = layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim) # The ffn can be either a standard feedforward network or a switch # layer with a Mixture of Experts. self.ffn = ffn self.layernorm1 = layers.LayerNormalization(epsilon=1e-6) self.layernorm2 = layers.LayerNormalization(epsilon=1e-6) self.dropout1 = layers.Dropout(dropout_rate) self.dropout2 = layers.Dropout(dropout_rate) def call(self, inputs, training=False): attn_output = self.att(inputs, inputs) attn_output = self.dropout1(attn_output, training=training) out1 = self.layernorm1(inputs + attn_output) ffn_output = self.ffn(out1) ffn_output = self.dropout2(ffn_output, training=training) return self.layernorm2(out1 + ffn_output)<jupyter_output><empty_output><jupyter_text>Implement the classifierThe `TransformerBlock` layer outputs one vector for each time step of our input sequence.Here, we take the mean across all time steps and use a feedforward network on topof it to classify text.<jupyter_code>def create_classifier(): switch = Switch(num_experts, embed_dim, ff_dim, num_tokens_per_batch) transformer_block = TransformerBlock(embed_dim // num_heads, num_heads, switch) inputs = layers.Input(shape=(num_tokens_per_example,)) embedding_layer = TokenAndPositionEmbedding( num_tokens_per_example, vocab_size, embed_dim ) x = embedding_layer(inputs) x = transformer_block(x) x = layers.GlobalAveragePooling1D()(x) x = layers.Dropout(dropout_rate)(x) x = layers.Dense(ff_dim, activation="relu")(x) x = layers.Dropout(dropout_rate)(x) outputs = layers.Dense(2, activation="softmax")(x) classifier = keras.Model(inputs=inputs, outputs=outputs) return classifier<jupyter_output><empty_output><jupyter_text>Train and evaluate the model<jupyter_code>def run_experiment(classifier): classifier.compile( optimizer=keras.optimizers.Adam(learning_rate), loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) history = classifier.fit( x_train, y_train, batch_size=batch_size, epochs=num_epochs, validation_data=(x_val, y_val), ) return history classifier = create_classifier() run_experiment(classifier)<jupyter_output><empty_output>
keras-io/examples/nlp/ipynb/text_classification_with_switch_transformer.ipynb/0
{ "file_path": "keras-io/examples/nlp/ipynb/text_classification_with_switch_transformer.ipynb", "repo_id": "keras-io", "token_count": 4732 }
91
# Multimodal entailment **Author:** [Sayak Paul](https://twitter.com/RisingSayak)<br> **Date created:** 2021/08/08<br> **Last modified:** 2021/08/15<br> **Description:** Training a multimodal model for predicting entailment. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/nlp/ipynb/multimodal_entailment.ipynb) <span class="k-dot">โ€ข</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/examples/nlp/multimodal_entailment.py) --- ## Introduction In this example, we will build and train a model for predicting multimodal entailment. We will be using the [multimodal entailment dataset](https://github.com/google-research-datasets/recognizing-multimodal-entailment) recently introduced by Google Research. ### What is multimodal entailment? On social media platforms, to audit and moderate content we may want to find answers to the following questions in near real-time: * Does a given piece of information contradict the other? * Does a given piece of information imply the other? In NLP, this task is called analyzing _textual entailment_. However, that's only when the information comes from text content. In practice, it's often the case the information available comes not just from text content, but from a multimodal combination of text, images, audio, video, etc. _Multimodal entailment_ is simply the extension of textual entailment to a variety of new input modalities. ### Requirements This example requires TensorFlow 2.5 or higher. In addition, TensorFlow Hub and TensorFlow Text are required for the BERT model ([Devlin et al.](https://arxiv.org/abs/1810.04805)). These libraries can be installed using the following command: ```python !pip install -q tensorflow_text ``` --- ## Imports ```python from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import pandas as pd import numpy as np import os import tensorflow as tf import tensorflow_hub as hub import tensorflow_text as text from tensorflow import keras ``` --- ## Define a label map ```python label_map = {"Contradictory": 0, "Implies": 1, "NoEntailment": 2} ``` --- ## Collect the dataset The original dataset is available [here](https://github.com/google-research-datasets/recognizing-multimodal-entailment). It comes with URLs of images which are hosted on Twitter's photo storage system called the [Photo Blob Storage (PBS for short)](https://blog.twitter.com/engineering/en_us/a/2012/blobstore-twitter-s-in-house-photo-storage-system). We will be working with the downloaded images along with additional data that comes with the original dataset. Thanks to [Nilabhra Roy Chowdhury](https://de.linkedin.com/in/nilabhraroychowdhury) who worked on preparing the image data. ```python image_base_path = keras.utils.get_file( "tweet_images", "https://github.com/sayakpaul/Multimodal-Entailment-Baseline/releases/download/v1.0.0/tweet_images.tar.gz", untar=True, ) ``` --- ## Read the dataset and apply basic preprocessing ```python df = pd.read_csv( "https://github.com/sayakpaul/Multimodal-Entailment-Baseline/raw/main/csvs/tweets.csv" ) df.sample(10) ``` <div style="overflow-x: scroll; width: 100%;"> <style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; } <div class="k-default-codeblock"> ``` .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; } ``` </div> </style> <table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>id_1</th> <th>text_1</th> <th>image_1</th> <th>id_2</th> <th>text_2</th> <th>image_2</th> <th>label</th> </tr> </thead> <tbody> <tr> <th>291</th> <td>1330800194863190016</td> <td>#KLM1167 (B738): #AMS (Amsterdam) to #HEL (Van...</td> <td>http://pbs.twimg.com/media/EnfzuZAW4AE236p.png</td> <td>1378695438480588802</td> <td>#CKK205 (B77L): #PVG (Shanghai) to #AMS (Amste...</td> <td>http://pbs.twimg.com/media/EyIcMexXEAE6gia.png</td> <td>NoEntailment</td> </tr> <tr> <th>37</th> <td>1366581728312057856</td> <td>Friends, interested all go to have a look!\n@j...</td> <td>http://pbs.twimg.com/media/EvcS1v4UcAEEXPO.jpg</td> <td>1373810535066570759</td> <td>Friends, interested all go to have a look!\n@f...</td> <td>http://pbs.twimg.com/media/ExDBZqwVIAQ4LWk.jpg</td> <td>Contradictory</td> </tr> <tr> <th>315</th> <td>1352551603258052608</td> <td>#WINk Drops I have earned today๐Ÿš€\n\nToday:1/22...</td> <td>http://pbs.twimg.com/media/EsTdcLLVcAIiFKT.jpg</td> <td>1354636016234098688</td> <td>#WINk Drops I have earned todayโ˜€\n\nToday:1/28...</td> <td>http://pbs.twimg.com/media/EsyhK-qU0AgfMAH.jpg</td> <td>NoEntailment</td> </tr> <tr> <th>761</th> <td>1379795999493853189</td> <td>#buythedip Ready to FLY even HIGHER #pennysto...</td> <td>http://pbs.twimg.com/media/EyYFJCzWgAMfTrT.jpg</td> <td>1380190250144792576</td> <td>#buythedip Ready to FLY even HIGHER #pennysto...</td> <td>http://pbs.twimg.com/media/Eydrt0ZXAAMmbfv.jpg</td> <td>NoEntailment</td> </tr> <tr> <th>146</th> <td>1340185132293099523</td> <td>I know sometimes I am weird to you.\n\nBecause...</td> <td>http://pbs.twimg.com/media/EplLRriWwAAJ2AE.jpg</td> <td>1359755419883814913</td> <td>I put my sword down and get on my knees to swe...</td> <td>http://pbs.twimg.com/media/Et7SWWeWYAICK-c.jpg</td> <td>NoEntailment</td> </tr> <tr> <th>1351</th> <td>1381256604926967813</td> <td>Finally completed the skin rendering. Will sta...</td> <td>http://pbs.twimg.com/media/Eys1j7NVIAgF-YF.jpg</td> <td>1381630932092784641</td> <td>Hair rendering. Will finish the hair by tomorr...</td> <td>http://pbs.twimg.com/media/EyyKAoaUUAElm-e.jpg</td> <td>NoEntailment</td> </tr> <tr> <th>368</th> <td>1371883298805403649</td> <td>๐Ÿ“‰ $LINK Number of Receiving Addresses (7d MA) ...</td> <td>http://pbs.twimg.com/media/EwnoltOWEAAS4mG.jpg</td> <td>1373216720974979072</td> <td>๐Ÿ“‰ $LINK Number of Receiving Addresses (7d MA) ...</td> <td>http://pbs.twimg.com/media/Ew6lVGYXEAE6Ugi.jpg</td> <td>NoEntailment</td> </tr> <tr> <th>1112</th> <td>1377679115159887873</td> <td>April is National Distracted Driving Awareness...</td> <td>http://pbs.twimg.com/media/Ex5_u7UVIAARjQ2.jpg</td> <td>1379075258448281608</td> <td>April is Distracted Driving Awareness Month. ...</td> <td>http://pbs.twimg.com/media/EyN1YjpWUAMc5ak.jpg</td> <td>NoEntailment</td> </tr> <tr> <th>264</th> <td>1330727515741167619</td> <td>โ™ฅ๏ธVerse Of The Dayโ™ฅ๏ธ\n.\n#VerseOfTheDay #Quran...</td> <td>http://pbs.twimg.com/media/EnexnydXIAYuI11.jpg</td> <td>1332623263495819264</td> <td>โ™ฅ๏ธVerse Of The Dayโ™ฅ๏ธ\n.\n#VerseOfTheDay #Quran...</td> <td>http://pbs.twimg.com/media/En5ty1VXUAATALP.jpg</td> <td>NoEntailment</td> </tr> <tr> <th>865</th> <td>1377784616275296261</td> <td>No white picket fence can keep us in. #TBT 200...</td> <td>http://pbs.twimg.com/media/Ex7fzouWQAITAq8.jpg</td> <td>1380175915804672012</td> <td>Sometimes you just need to change your altitud...</td> <td>http://pbs.twimg.com/media/EydernQXIAk2g5v.jpg</td> <td>NoEntailment</td> </tr> </tbody> </table> </div> The columns we are interested in are the following: * `text_1` * `image_1` * `text_2` * `image_2` * `label` The entailment task is formulated as the following: ***Given the pairs of (`text_1`, `image_1`) and (`text_2`, `image_2`) do they entail (or not entail or contradict) each other?*** We have the images already downloaded. `image_1` is downloaded as `id1` as its filename and `image2` is downloaded as `id2` as its filename. In the next step, we will add two more columns to `df` - filepaths of `image_1`s and `image_2`s. ```python images_one_paths = [] images_two_paths = [] for idx in range(len(df)): current_row = df.iloc[idx] id_1 = current_row["id_1"] id_2 = current_row["id_2"] extentsion_one = current_row["image_1"].split(".")[-1] extentsion_two = current_row["image_2"].split(".")[-1] image_one_path = os.path.join(image_base_path, str(id_1) + f".{extentsion_one}") image_two_path = os.path.join(image_base_path, str(id_2) + f".{extentsion_two}") images_one_paths.append(image_one_path) images_two_paths.append(image_two_path) df["image_1_path"] = images_one_paths df["image_2_path"] = images_two_paths # Create another column containing the integer ids of # the string labels. df["label_idx"] = df["label"].apply(lambda x: label_map[x]) ``` --- ## Dataset visualization ```python def visualize(idx): current_row = df.iloc[idx] image_1 = plt.imread(current_row["image_1_path"]) image_2 = plt.imread(current_row["image_2_path"]) text_1 = current_row["text_1"] text_2 = current_row["text_2"] label = current_row["label"] plt.subplot(1, 2, 1) plt.imshow(image_1) plt.axis("off") plt.title("Image One") plt.subplot(1, 2, 2) plt.imshow(image_1) plt.axis("off") plt.title("Image Two") plt.show() print(f"Text one: {text_1}") print(f"Text two: {text_2}") print(f"Label: {label}") random_idx = np.random.choice(len(df)) visualize(random_idx) random_idx = np.random.choice(len(df)) visualize(random_idx) ``` ![png](/img/examples/nlp/multimodal_entailment/multimodal_entailment_14_0.png) <div class="k-default-codeblock"> ``` Text one: Friends, interested all go to have a look! @ThePartyGoddess @OurLadyAngels @BJsWholesale @Richard_Jeni @FashionLavidaG @RapaRooski @DMVTHING @DeMarcoReports @LobidaFo @DeMarcoMorgan https://t.co/cStULl7y7G Text two: Friends, interested all go to have a look! @smittyses @CYosabel @crum_7 @CrumDarrell @ElymalikU @jenloarn @SoCodiePrevost @roblowry82 @Crummy_14 @CSchmelzenbach https://t.co/IZphLTNzgl Label: Contradictory ``` </div> ![png](/img/examples/nlp/multimodal_entailment/multimodal_entailment_14_2.png) <div class="k-default-codeblock"> ``` Text one: ๐Ÿ‘Ÿ KICK OFF @ MARDEN SPORTS COMPLEX ``` </div> <div class="k-default-codeblock"> ``` We're underway in the Round 6 opener! ``` </div> <div class="k-default-codeblock"> ``` ๐Ÿ“บ: @Foxtel, @kayosports ๐Ÿ“ฑ: My Football Live app https://t.co/wHSpvQaoGC ``` </div> <div class="k-default-codeblock"> ``` #WLeague #ADLvMVC #AUFC #MVFC https://t.co/3Smp8KXm8W Text two: ๐Ÿ‘Ÿ KICK OFF @ MARSDEN SPORTS COMPLEX ``` </div> <div class="k-default-codeblock"> ``` We're underway in sunny Adelaide! ``` </div> <div class="k-default-codeblock"> ``` ๐Ÿ“บ: @Foxtel, @kayosports ๐Ÿ“ฑ: My Football Live app https://t.co/wHSpvQaoGC ``` </div> <div class="k-default-codeblock"> ``` #ADLvCBR #WLeague #AUFC #UnitedAlways https://t.co/fG1PyLQXM4 Label: NoEntailment ``` </div> --- ## Train/test split The dataset suffers from [class imbalance problem](https://developers.google.com/machine-learning/glossary#class-imbalanced-dataset). We can confirm that in the following cell. ```python df["label"].value_counts() ``` <div class="k-default-codeblock"> ``` NoEntailment 1182 Implies 109 Contradictory 109 Name: label, dtype: int64 ``` </div> To account for that we will go for a stratified split. ```python # 10% for test train_df, test_df = train_test_split( df, test_size=0.1, stratify=df["label"].values, random_state=42 ) # 5% for validation train_df, val_df = train_test_split( train_df, test_size=0.05, stratify=train_df["label"].values, random_state=42 ) print(f"Total training examples: {len(train_df)}") print(f"Total validation examples: {len(val_df)}") print(f"Total test examples: {len(test_df)}") ``` <div class="k-default-codeblock"> ``` Total training examples: 1197 Total validation examples: 63 Total test examples: 140 ``` </div> --- ## Data input pipeline TensorFlow Hub provides [variety of BERT family of models](https://www.tensorflow.org/text/tutorials/bert_glue#loading_models_from_tensorflow_hub). Each of those models comes with a corresponding preprocessing layer. You can learn more about these models and their preprocessing layers from [this resource](https://www.tensorflow.org/text/tutorials/bert_glue#loading_models_from_tensorflow_hub). To keep the runtime of this example relatively short, we will use a smaller variant of the original BERT model. ```python # Define TF Hub paths to the BERT encoder and its preprocessor bert_model_path = ( "https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-256_A-4/1" ) bert_preprocess_path = "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3" ``` Our text preprocessing code mostly comes from [this tutorial](https://www.tensorflow.org/text/tutorials/bert_glue). You are highly encouraged to check out the tutorial to learn more about the input preprocessing. ```python def make_bert_preprocessing_model(sentence_features, seq_length=128): """Returns Model mapping string features to BERT inputs. Args: sentence_features: A list with the names of string-valued features. seq_length: An integer that defines the sequence length of BERT inputs. Returns: A Keras Model that can be called on a list or dict of string Tensors (with the order or names, resp., given by sentence_features) and returns a dict of tensors for input to BERT. """ input_segments = [ tf.keras.layers.Input(shape=(), dtype=tf.string, name=ft) for ft in sentence_features ] # Tokenize the text to word pieces. bert_preprocess = hub.load(bert_preprocess_path) tokenizer = hub.KerasLayer(bert_preprocess.tokenize, name="tokenizer") segments = [tokenizer(s) for s in input_segments] # Optional: Trim segments in a smart way to fit seq_length. # Simple cases (like this example) can skip this step and let # the next step apply a default truncation to approximately equal lengths. truncated_segments = segments # Pack inputs. The details (start/end token ids, dict of output tensors) # are model-dependent, so this gets loaded from the SavedModel. packer = hub.KerasLayer( bert_preprocess.bert_pack_inputs, arguments=dict(seq_length=seq_length), name="packer", ) model_inputs = packer(truncated_segments) return keras.Model(input_segments, model_inputs) bert_preprocess_model = make_bert_preprocessing_model(["text_1", "text_2"]) keras.utils.plot_model(bert_preprocess_model, show_shapes=True, show_dtype=True) ``` ![png](/img/examples/nlp/multimodal_entailment/multimodal_entailment_22_0.png) ### Run the preprocessor on a sample input ```python idx = np.random.choice(len(train_df)) row = train_df.iloc[idx] sample_text_1, sample_text_2 = row["text_1"], row["text_2"] print(f"Text 1: {sample_text_1}") print(f"Text 2: {sample_text_2}") test_text = [np.array([sample_text_1]), np.array([sample_text_2])] text_preprocessed = bert_preprocess_model(test_text) print("Keys : ", list(text_preprocessed.keys())) print("Shape Word Ids : ", text_preprocessed["input_word_ids"].shape) print("Word Ids : ", text_preprocessed["input_word_ids"][0, :16]) print("Shape Mask : ", text_preprocessed["input_mask"].shape) print("Input Mask : ", text_preprocessed["input_mask"][0, :16]) print("Shape Type Ids : ", text_preprocessed["input_type_ids"].shape) print("Type Ids : ", text_preprocessed["input_type_ids"][0, :16]) ``` <div class="k-default-codeblock"> ``` Text 1: Renewables met 97% of Scotland's electricity demand in 2020!!!! https://t.co/wi5c9UFAUF https://t.co/arcuBgh0BP Text 2: Renewables met 97% of Scotland's electricity demand in 2020 https://t.co/SrhyqPnIkU https://t.co/LORgvTM7Sn Keys : ['input_mask', 'input_word_ids', 'input_type_ids'] Shape Word Ids : (1, 128) Word Ids : tf.Tensor( [ 101 13918 2015 2777 5989 1003 1997 3885 1005 1055 6451 5157 1999 12609 999 999], shape=(16,), dtype=int32) Shape Mask : (1, 128) Input Mask : tf.Tensor([1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1], shape=(16,), dtype=int32) Shape Type Ids : (1, 128) Type Ids : tf.Tensor([0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0], shape=(16,), dtype=int32) ``` </div> We will now create `tf.data.Dataset` objects from the dataframes. Note that the text inputs will be preprocessed as a part of the data input pipeline. But the preprocessing modules can also be a part of their corresponding BERT models. This helps reduce the training/serving skew and lets our models operate with raw text inputs. Follow [this tutorial](https://www.tensorflow.org/text/tutorials/classify_text_with_bert) to learn more about how to incorporate the preprocessing modules directly inside the models. ```python def dataframe_to_dataset(dataframe): columns = ["image_1_path", "image_2_path", "text_1", "text_2", "label_idx"] dataframe = dataframe[columns].copy() labels = dataframe.pop("label_idx") ds = tf.data.Dataset.from_tensor_slices((dict(dataframe), labels)) ds = ds.shuffle(buffer_size=len(dataframe)) return ds ``` ### Preprocessing utilities ```python resize = (128, 128) bert_input_features = ["input_word_ids", "input_type_ids", "input_mask"] def preprocess_image(image_path): extension = tf.strings.split(image_path)[-1] image = tf.io.read_file(image_path) if extension == b"jpg": image = tf.image.decode_jpeg(image, 3) else: image = tf.image.decode_png(image, 3) image = tf.image.resize(image, resize) return image def preprocess_text(text_1, text_2): text_1 = tf.convert_to_tensor([text_1]) text_2 = tf.convert_to_tensor([text_2]) output = bert_preprocess_model([text_1, text_2]) output = {feature: tf.squeeze(output[feature]) for feature in bert_input_features} return output def preprocess_text_and_image(sample): image_1 = preprocess_image(sample["image_1_path"]) image_2 = preprocess_image(sample["image_2_path"]) text = preprocess_text(sample["text_1"], sample["text_2"]) return {"image_1": image_1, "image_2": image_2, "text": text} ``` ### Create the final datasets ```python batch_size = 32 auto = tf.data.AUTOTUNE def prepare_dataset(dataframe, training=True): ds = dataframe_to_dataset(dataframe) if training: ds = ds.shuffle(len(train_df)) ds = ds.map(lambda x, y: (preprocess_text_and_image(x), y)).cache() ds = ds.batch(batch_size).prefetch(auto) return ds train_ds = prepare_dataset(train_df) validation_ds = prepare_dataset(val_df, False) test_ds = prepare_dataset(test_df, False) ``` --- ## Model building utilities Our final model will accept two images along with their text counterparts. While the images will be directly fed to the model the text inputs will first be preprocessed and then will make it into the model. Below is a visual illustration of this approach: ![](https://github.com/sayakpaul/Multimodal-Entailment-Baseline/raw/main/figures/brief_architecture.png) The model consists of the following elements: * A standalone encoder for the images. We will use a [ResNet50V2](https://arxiv.org/abs/1603.05027) pre-trained on the ImageNet-1k dataset for this. * A standalone encoder for the images. A pre-trained BERT will be used for this. After extracting the individual embeddings, they will be projected in an identical space. Finally, their projections will be concatenated and be fed to the final classification layer. This is a multi-class classification problem involving the following classes: * NoEntailment * Implies * Contradictory `project_embeddings()`, `create_vision_encoder()`, and `create_text_encoder()` utilities are referred from [this example](https://keras.io/examples/nlp/nl_image_search/). Projection utilities ```python def project_embeddings( embeddings, num_projection_layers, projection_dims, dropout_rate ): projected_embeddings = keras.layers.Dense(units=projection_dims)(embeddings) for _ in range(num_projection_layers): x = tf.nn.gelu(projected_embeddings) x = keras.layers.Dense(projection_dims)(x) x = keras.layers.Dropout(dropout_rate)(x) x = keras.layers.Add()([projected_embeddings, x]) projected_embeddings = keras.layers.LayerNormalization()(x) return projected_embeddings ``` Vision encoder utilities ```python def create_vision_encoder( num_projection_layers, projection_dims, dropout_rate, trainable=False ): # Load the pre-trained ResNet50V2 model to be used as the base encoder. resnet_v2 = keras.applications.ResNet50V2( include_top=False, weights="imagenet", pooling="avg" ) # Set the trainability of the base encoder. for layer in resnet_v2.layers: layer.trainable = trainable # Receive the images as inputs. image_1 = keras.Input(shape=(128, 128, 3), name="image_1") image_2 = keras.Input(shape=(128, 128, 3), name="image_2") # Preprocess the input image. preprocessed_1 = keras.applications.resnet_v2.preprocess_input(image_1) preprocessed_2 = keras.applications.resnet_v2.preprocess_input(image_2) # Generate the embeddings for the images using the resnet_v2 model # concatenate them. embeddings_1 = resnet_v2(preprocessed_1) embeddings_2 = resnet_v2(preprocessed_2) embeddings = keras.layers.Concatenate()([embeddings_1, embeddings_2]) # Project the embeddings produced by the model. outputs = project_embeddings( embeddings, num_projection_layers, projection_dims, dropout_rate ) # Create the vision encoder model. return keras.Model([image_1, image_2], outputs, name="vision_encoder") ``` Text encoder utilities ```python def create_text_encoder( num_projection_layers, projection_dims, dropout_rate, trainable=False ): # Load the pre-trained BERT model to be used as the base encoder. bert = hub.KerasLayer(bert_model_path, name="bert",) # Set the trainability of the base encoder. bert.trainable = trainable # Receive the text as inputs. bert_input_features = ["input_type_ids", "input_mask", "input_word_ids"] inputs = { feature: keras.Input(shape=(128,), dtype=tf.int32, name=feature) for feature in bert_input_features } # Generate embeddings for the preprocessed text using the BERT model. embeddings = bert(inputs)["pooled_output"] # Project the embeddings produced by the model. outputs = project_embeddings( embeddings, num_projection_layers, projection_dims, dropout_rate ) # Create the text encoder model. return keras.Model(inputs, outputs, name="text_encoder") ``` Multimodal model utilities ```python def create_multimodal_model( num_projection_layers=1, projection_dims=256, dropout_rate=0.1, vision_trainable=False, text_trainable=False, ): # Receive the images as inputs. image_1 = keras.Input(shape=(128, 128, 3), name="image_1") image_2 = keras.Input(shape=(128, 128, 3), name="image_2") # Receive the text as inputs. bert_input_features = ["input_type_ids", "input_mask", "input_word_ids"] text_inputs = { feature: keras.Input(shape=(128,), dtype=tf.int32, name=feature) for feature in bert_input_features } # Create the encoders. vision_encoder = create_vision_encoder( num_projection_layers, projection_dims, dropout_rate, vision_trainable ) text_encoder = create_text_encoder( num_projection_layers, projection_dims, dropout_rate, text_trainable ) # Fetch the embedding projections. vision_projections = vision_encoder([image_1, image_2]) text_projections = text_encoder(text_inputs) # Concatenate the projections and pass through the classification layer. concatenated = keras.layers.Concatenate()([vision_projections, text_projections]) outputs = keras.layers.Dense(3, activation="softmax")(concatenated) return keras.Model([image_1, image_2, text_inputs], outputs) multimodal_model = create_multimodal_model() keras.utils.plot_model(multimodal_model, show_shapes=True) ``` ![png](/img/examples/nlp/multimodal_entailment/multimodal_entailment_39_0.png) You can inspect the structure of the individual encoders as well by setting the `expand_nested` argument of `plot_model()` to `True`. You are encouraged to play with the different hyperparameters involved in building this model and observe how the final performance is affected. --- ## Compile and train the model ```python multimodal_model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics="accuracy" ) history = multimodal_model.fit(train_ds, validation_data=validation_ds, epochs=10) ``` <div class="k-default-codeblock"> ``` Epoch 1/10 38/38 [==============================] - 49s 789ms/step - loss: 1.0014 - accuracy: 0.8229 - val_loss: 0.5514 - val_accuracy: 0.8571 Epoch 2/10 38/38 [==============================] - 3s 90ms/step - loss: 0.4019 - accuracy: 0.8814 - val_loss: 0.5866 - val_accuracy: 0.8571 Epoch 3/10 38/38 [==============================] - 3s 90ms/step - loss: 0.3557 - accuracy: 0.8897 - val_loss: 0.5929 - val_accuracy: 0.8571 Epoch 4/10 38/38 [==============================] - 3s 91ms/step - loss: 0.2877 - accuracy: 0.9006 - val_loss: 0.6272 - val_accuracy: 0.8571 Epoch 5/10 38/38 [==============================] - 3s 91ms/step - loss: 0.1796 - accuracy: 0.9398 - val_loss: 0.8545 - val_accuracy: 0.8254 Epoch 6/10 38/38 [==============================] - 3s 91ms/step - loss: 0.1292 - accuracy: 0.9566 - val_loss: 1.2276 - val_accuracy: 0.8413 Epoch 7/10 38/38 [==============================] - 3s 91ms/step - loss: 0.1015 - accuracy: 0.9666 - val_loss: 1.2914 - val_accuracy: 0.7778 Epoch 8/10 38/38 [==============================] - 3s 92ms/step - loss: 0.1253 - accuracy: 0.9524 - val_loss: 1.1944 - val_accuracy: 0.8413 Epoch 9/10 38/38 [==============================] - 3s 92ms/step - loss: 0.3064 - accuracy: 0.9131 - val_loss: 1.2162 - val_accuracy: 0.8095 Epoch 10/10 38/38 [==============================] - 3s 92ms/step - loss: 0.2212 - accuracy: 0.9248 - val_loss: 1.1080 - val_accuracy: 0.8413 ``` </div> --- ## Evaluate the model ```python _, acc = multimodal_model.evaluate(test_ds) print(f"Accuracy on the test set: {round(acc * 100, 2)}%.") ``` <div class="k-default-codeblock"> ``` 5/5 [==============================] - 6s 1s/step - loss: 0.8390 - accuracy: 0.8429 Accuracy on the test set: 84.29%. ``` </div> --- ## Additional notes regarding training **Incorporating regularization**: The training logs suggest that the model is starting to overfit and may have benefitted from regularization. Dropout ([Srivastava et al.](https://jmlr.org/papers/v15/srivastava14a.html)) is a simple yet powerful regularization technique that we can use in our model. But how should we apply it here? We could always introduce Dropout (`keras.layers.Dropout`) in between different layers of the model. But here is another recipe. Our model expects inputs from two different data modalities. What if either of the modalities is not present during inference? To account for this, we can introduce Dropout to the individual projections just before they get concatenated: ```python vision_projections = keras.layers.Dropout(rate)(vision_projections) text_projections = keras.layers.Dropout(rate)(text_projections) concatenated = keras.layers.Concatenate()([vision_projections, text_projections]) ``` **Attending to what matters**: Do all parts of the images correspond equally to their textual counterparts? It's likely not the case. To make our model only focus on the most important bits of the images that relate well to their corresponding textual parts we can use "cross-attention": ```python # Embeddings. vision_projections = vision_encoder([image_1, image_2]) text_projections = text_encoder(text_inputs) # Cross-attention (Luong-style). query_value_attention_seq = keras.layers.Attention(use_scale=True, dropout=0.2)( [vision_projections, text_projections] ) # Concatenate. concatenated = keras.layers.Concatenate()([vision_projections, text_projections]) contextual = keras.layers.Concatenate()([concatenated, query_value_attention_seq]) ``` To see this in action, refer to [this notebook](https://github.com/sayakpaul/Multimodal-Entailment-Baseline/blob/main/multimodal_entailment_attn.ipynb). **Handling class imbalance**: The dataset suffers from class imbalance. Investigating the confusion matrix of the above model reveals that it performs poorly on the minority classes. If we had used a weighted loss then the training would have been more guided. You can check out [this notebook](https://github.com/sayakpaul/Multimodal-Entailment-Baseline/blob/main/multimodal_entailment.ipynb) that takes class-imbalance into account during model training. **Using only text inputs**: Also, what if we had only incorporated text inputs for the entailment task? Because of the nature of the text inputs encountered on social media platforms, text inputs alone would have hurt the final performance. Under a similar training setup, by only using text inputs we get to 67.14% top-1 accuracy on the same test set. Refer to [this notebook](https://github.com/sayakpaul/Multimodal-Entailment-Baseline/blob/main/text_entailment.ipynb) for details. Finally, here is a table comparing different approaches taken for the entailment task: | Type | Standard<br>Cross-entropy | Loss-weighted<br>Cross-entropy | Focal Loss | |:---: |:---: |:---: |:---: | | Multimodal | 77.86% | 67.86% | 86.43% | | Only text | 67.14% | 11.43% | 37.86% | You can check out [this repository](https://git.io/JR0HU) to learn more about how the experiments were conducted to obtain these numbers. --- ## Final remarks * The architecture we used in this example is too large for the number of data points available for training. It's going to benefit from more data. * We used a smaller variant of the original BERT model. Chances are high that with a larger variant, this performance will be improved. TensorFlow Hub [provides](https://www.tensorflow.org/text/tutorials/bert_glue#loading_models_from_tensorflow_hub) a number of different BERT models that you can experiment with. * We kept the pre-trained models frozen. Fine-tuning them on the multimodal entailment task would could resulted in better performance. * We built a simple baseline model for the multimodal entailment task. There are various approaches that have been proposed to tackle the entailment problem. [This presentation deck](https://docs.google.com/presentation/d/1mAB31BCmqzfedreNZYn4hsKPFmgHA9Kxz219DzyRY3c/edit?usp=sharing) from the [Recognizing Multimodal Entailment](https://multimodal-entailment.github.io/) tutorial provides a comprehensive overview. You can use the trained model hosted on [Hugging Face Hub](https://huggingface.co/keras-io/multimodal-entailment) and try the demo on [Hugging Face Spaces](https://huggingface.co/spaces/keras-io/multimodal_entailment)
keras-io/examples/nlp/md/multimodal_entailment.md/0
{ "file_path": "keras-io/examples/nlp/md/multimodal_entailment.md", "repo_id": "keras-io", "token_count": 12262 }
92
# Text Extraction with BERT **Author:** [Apoorv Nandan](https://twitter.com/NandanApoorv)<br> **Date created:** 2020/05/23<br> **Last modified:** 2020/05/23<br> <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/nlp/ipynb/text_extraction_with_bert.ipynb) <span class="k-dot">โ€ข</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/examples/nlp/text_extraction_with_bert.py) **Description:** Fine tune pretrained BERT from HuggingFace Transformers on SQuAD. --- ## Introduction This demonstration uses SQuAD (Stanford Question-Answering Dataset). In SQuAD, an input consists of a question, and a paragraph for context. The goal is to find the span of text in the paragraph that answers the question. We evaluate our performance on this data with the "Exact Match" metric, which measures the percentage of predictions that exactly match any one of the ground-truth answers. We fine-tune a BERT model to perform this task as follows: 1. Feed the context and the question as inputs to BERT. 2. Take two vectors S and T with dimensions equal to that of hidden states in BERT. 3. Compute the probability of each token being the start and end of the answer span. The probability of a token being the start of the answer is given by a dot product between S and the representation of the token in the last layer of BERT, followed by a softmax over all tokens. The probability of a token being the end of the answer is computed similarly with the vector T. 4. Fine-tune BERT and learn S and T along the way. **References:** - [BERT](https://arxiv.org/pdf/1810.04805.pdf) - [SQuAD](https://arxiv.org/abs/1606.05250) ## Setup ```python import os import re import json import string import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tokenizers import BertWordPieceTokenizer from transformers import BertTokenizer, TFBertModel, BertConfig max_len = 384 configuration = BertConfig() # default parameters and configuration for BERT ``` --- ## Set-up BERT tokenizer ```python # Save the slow pretrained tokenizer slow_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") save_path = "bert_base_uncased/" if not os.path.exists(save_path): os.makedirs(save_path) slow_tokenizer.save_pretrained(save_path) # Load the fast tokenizer from saved file tokenizer = BertWordPieceTokenizer("bert_base_uncased/vocab.txt", lowercase=True) ``` --- ## Load the data ```python train_data_url = "https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v1.1.json" train_path = keras.utils.get_file("train.json", train_data_url) eval_data_url = "https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v1.1.json" eval_path = keras.utils.get_file("eval.json", eval_data_url) ``` --- ## Preprocess the data 1. Go through the JSON file and store every record as a `SquadExample` object. 2. Go through each `SquadExample` and create `x_train, y_train, x_eval, y_eval`. ```python class SquadExample: def __init__(self, question, context, start_char_idx, answer_text, all_answers): self.question = question self.context = context self.start_char_idx = start_char_idx self.answer_text = answer_text self.all_answers = all_answers self.skip = False def preprocess(self): context = self.context question = self.question answer_text = self.answer_text start_char_idx = self.start_char_idx # Clean context, answer and question context = " ".join(str(context).split()) question = " ".join(str(question).split()) answer = " ".join(str(answer_text).split()) # Find end character index of answer in context end_char_idx = start_char_idx + len(answer) if end_char_idx >= len(context): self.skip = True return # Mark the character indexes in context that are in answer is_char_in_ans = [0] * len(context) for idx in range(start_char_idx, end_char_idx): is_char_in_ans[idx] = 1 # Tokenize context tokenized_context = tokenizer.encode(context) # Find tokens that were created from answer characters ans_token_idx = [] for idx, (start, end) in enumerate(tokenized_context.offsets): if sum(is_char_in_ans[start:end]) > 0: ans_token_idx.append(idx) if len(ans_token_idx) == 0: self.skip = True return # Find start and end token index for tokens from answer start_token_idx = ans_token_idx[0] end_token_idx = ans_token_idx[-1] # Tokenize question tokenized_question = tokenizer.encode(question) # Create inputs input_ids = tokenized_context.ids + tokenized_question.ids[1:] token_type_ids = [0] * len(tokenized_context.ids) + [1] * len( tokenized_question.ids[1:] ) attention_mask = [1] * len(input_ids) # Pad and create attention masks. # Skip if truncation is needed padding_length = max_len - len(input_ids) if padding_length > 0: # pad input_ids = input_ids + ([0] * padding_length) attention_mask = attention_mask + ([0] * padding_length) token_type_ids = token_type_ids + ([0] * padding_length) elif padding_length < 0: # skip self.skip = True return self.input_ids = input_ids self.token_type_ids = token_type_ids self.attention_mask = attention_mask self.start_token_idx = start_token_idx self.end_token_idx = end_token_idx self.context_token_to_char = tokenized_context.offsets with open(train_path) as f: raw_train_data = json.load(f) with open(eval_path) as f: raw_eval_data = json.load(f) def create_squad_examples(raw_data): squad_examples = [] for item in raw_data["data"]: for para in item["paragraphs"]: context = para["context"] for qa in para["qas"]: question = qa["question"] answer_text = qa["answers"][0]["text"] all_answers = [_["text"] for _ in qa["answers"]] start_char_idx = qa["answers"][0]["answer_start"] squad_eg = SquadExample( question, context, start_char_idx, answer_text, all_answers ) squad_eg.preprocess() squad_examples.append(squad_eg) return squad_examples def create_inputs_targets(squad_examples): dataset_dict = { "input_ids": [], "token_type_ids": [], "attention_mask": [], "start_token_idx": [], "end_token_idx": [], } for item in squad_examples: if item.skip == False: for key in dataset_dict: dataset_dict[key].append(getattr(item, key)) for key in dataset_dict: dataset_dict[key] = np.array(dataset_dict[key]) x = [ dataset_dict["input_ids"], dataset_dict["token_type_ids"], dataset_dict["attention_mask"], ] y = [dataset_dict["start_token_idx"], dataset_dict["end_token_idx"]] return x, y train_squad_examples = create_squad_examples(raw_train_data) x_train, y_train = create_inputs_targets(train_squad_examples) print(f"{len(train_squad_examples)} training points created.") eval_squad_examples = create_squad_examples(raw_eval_data) x_eval, y_eval = create_inputs_targets(eval_squad_examples) print(f"{len(eval_squad_examples)} evaluation points created.") ``` <div class="k-default-codeblock"> ``` 87599 training points created. 10570 evaluation points created. ``` </div> Create the Question-Answering Model using BERT and Functional API ```python def create_model(): ## BERT encoder encoder = TFBertModel.from_pretrained("bert-base-uncased") ## QA Model input_ids = layers.Input(shape=(max_len,), dtype=tf.int32) token_type_ids = layers.Input(shape=(max_len,), dtype=tf.int32) attention_mask = layers.Input(shape=(max_len,), dtype=tf.int32) embedding = encoder( input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask )[0] start_logits = layers.Dense(1, name="start_logit", use_bias=False)(embedding) start_logits = layers.Flatten()(start_logits) end_logits = layers.Dense(1, name="end_logit", use_bias=False)(embedding) end_logits = layers.Flatten()(end_logits) start_probs = layers.Activation(keras.activations.softmax)(start_logits) end_probs = layers.Activation(keras.activations.softmax)(end_logits) model = keras.Model( inputs=[input_ids, token_type_ids, attention_mask], outputs=[start_probs, end_probs], ) loss = keras.losses.SparseCategoricalCrossentropy(from_logits=False) optimizer = keras.optimizers.Adam(lr=5e-5) model.compile(optimizer=optimizer, loss=[loss, loss]) return model ``` This code should preferably be run on Google Colab TPU runtime. With Colab TPUs, each epoch will take 5-6 minutes. ```python use_tpu = True if use_tpu: # Create distribution strategy tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect() strategy = tf.distribute.TPUStrategy(tpu) # Create model with strategy.scope(): model = create_model() else: model = create_model() model.summary() ``` <div class="k-default-codeblock"> ``` INFO:absl:Entering into master device scope: /job:worker/replica:0/task:0/device:CPU:0 INFO:tensorflow:Initializing the TPU system: grpc://10.48.159.170:8470 INFO:tensorflow:Clearing out eager caches INFO:tensorflow:Finished initializing TPU system. INFO:tensorflow:Found TPU system: INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 Model: "model" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_1 (InputLayer) [(None, 384)] 0 __________________________________________________________________________________________________ input_3 (InputLayer) [(None, 384)] 0 __________________________________________________________________________________________________ input_2 (InputLayer) [(None, 384)] 0 __________________________________________________________________________________________________ tf_bert_model (TFBertModel) ((None, 384, 768), ( 109482240 input_1[0][0] __________________________________________________________________________________________________ start_logit (Dense) (None, 384, 1) 768 tf_bert_model[0][0] __________________________________________________________________________________________________ end_logit (Dense) (None, 384, 1) 768 tf_bert_model[0][0] __________________________________________________________________________________________________ flatten (Flatten) (None, 384) 0 start_logit[0][0] __________________________________________________________________________________________________ flatten_1 (Flatten) (None, 384) 0 end_logit[0][0] __________________________________________________________________________________________________ activation_7 (Activation) (None, 384) 0 flatten[0][0] __________________________________________________________________________________________________ activation_8 (Activation) (None, 384) 0 flatten_1[0][0] ================================================================================================== Total params: 109,483,776 Trainable params: 109,483,776 Non-trainable params: 0 __________________________________________________________________________________________________ ``` </div> --- ## Create evaluation Callback This callback will compute the exact match score using the validation data after every epoch. ```python def normalize_text(text): text = text.lower() # Remove punctuations exclude = set(string.punctuation) text = "".join(ch for ch in text if ch not in exclude) # Remove articles regex = re.compile(r"\b(a|an|the)\b", re.UNICODE) text = re.sub(regex, " ", text) # Remove extra white space text = " ".join(text.split()) return text class ExactMatch(keras.callbacks.Callback): """ Each `SquadExample` object contains the character level offsets for each token in its input paragraph. We use them to get back the span of text corresponding to the tokens between our predicted start and end tokens. All the ground-truth answers are also present in each `SquadExample` object. We calculate the percentage of data points where the span of text obtained from model predictions matches one of the ground-truth answers. """ def __init__(self, x_eval, y_eval): self.x_eval = x_eval self.y_eval = y_eval def on_epoch_end(self, epoch, logs=None): pred_start, pred_end = self.model.predict(self.x_eval) count = 0 eval_examples_no_skip = [_ for _ in eval_squad_examples if _.skip == False] for idx, (start, end) in enumerate(zip(pred_start, pred_end)): squad_eg = eval_examples_no_skip[idx] offsets = squad_eg.context_token_to_char start = np.argmax(start) end = np.argmax(end) if start >= len(offsets): continue pred_char_start = offsets[start][0] if end < len(offsets): pred_char_end = offsets[end][1] pred_ans = squad_eg.context[pred_char_start:pred_char_end] else: pred_ans = squad_eg.context[pred_char_start:] normalized_pred_ans = normalize_text(pred_ans) normalized_true_ans = [normalize_text(_) for _ in squad_eg.all_answers] if normalized_pred_ans in normalized_true_ans: count += 1 acc = count / len(self.y_eval[0]) print(f"\nepoch={epoch+1}, exact match score={acc:.2f}") ``` --- ## Train and Evaluate ```python exact_match_callback = ExactMatch(x_eval, y_eval) model.fit( x_train, y_train, epochs=1, # For demonstration, 3 epochs are recommended verbose=2, batch_size=64, callbacks=[exact_match_callback], ) ``` <div class="k-default-codeblock"> ``` epoch=1, exact match score=0.78 1346/1346 - 350s - activation_7_loss: 1.3488 - loss: 2.5905 - activation_8_loss: 1.2417 <tensorflow.python.keras.callbacks.History at 0x7fc78b4458d0> ``` </div>
keras-io/examples/nlp/md/text_extraction_with_bert.md/0
{ "file_path": "keras-io/examples/nlp/md/text_extraction_with_bert.md", "repo_id": "keras-io", "token_count": 6093 }
93
""" Title: Abstractive Summarization with Hugging Face Transformers Author: Sreyan Ghosh Date created: 2022/07/04 Last modified: 2022/08/28 Description: Training T5 using Hugging Face Transformers for Abstractive Summarization. Accelerator: GPU """ """ ## Introduction Automatic summarization is one of the central problems in Natural Language Processing (NLP). It poses several challenges relating to language understanding (e.g. identifying important content) and generation (e.g. aggregating and rewording the identified content into a summary). In this tutorial, we tackle the single-document summarization task with an abstractive modeling approach. The primary idea here is to generate a short, single-sentence news summary answering the question โ€œWhat is the news article about?โ€. This approach to summarization is also known as *Abstractive Summarization* and has seen growing interest among researchers in various disciplines. Following prior work, we aim to tackle this problem using a sequence-to-sequence model. [Text-to-Text Transfer Transformer (`T5`)](https://arxiv.org/abs/1910.10683) is a [Transformer-based](https://arxiv.org/abs/1706.03762) model built on the encoder-decoder architecture, pretrained on a multi-task mixture of unsupervised and supervised tasks where each task is converted into a text-to-text format. T5 shows impressive results in a variety of sequence-to-sequence (sequence in this notebook refers to text) like summarization, translation, etc. In this notebook, we will fine-tune the pretrained T5 on the Abstractive Summarization task using Hugging Face Transformers on the `XSum` dataset loaded from Hugging Face Datasets. """ """ ## Setup """ """ ### Installing the requirements """ """shell !pip install transformers==4.20.0 !pip install keras_nlp==0.3.0 !pip install datasets !pip install huggingface-hub !pip install nltk !pip install rouge-score """ """ ### Importing the necessary libraries """ import os import logging import nltk import numpy as np import tensorflow as tf from tensorflow import keras # Only log error messages tf.get_logger().setLevel(logging.ERROR) os.environ["TOKENIZERS_PARALLELISM"] = "false" """ ### Define certain variables """ # The percentage of the dataset you want to split as train and test TRAIN_TEST_SPLIT = 0.1 MAX_INPUT_LENGTH = 1024 # Maximum length of the input to the model MIN_TARGET_LENGTH = 5 # Minimum length of the output by the model MAX_TARGET_LENGTH = 128 # Maximum length of the output by the model BATCH_SIZE = 8 # Batch-size for training our model LEARNING_RATE = 2e-5 # Learning-rate for training our model MAX_EPOCHS = 1 # Maximum number of epochs we will train the model for # This notebook is built on the t5-small checkpoint from the Hugging Face Model Hub MODEL_CHECKPOINT = "t5-small" """ ## Load the dataset We will now download the [Extreme Summarization (XSum)](https://arxiv.org/abs/1808.08745). The dataset consists of BBC articles and accompanying single sentence summaries. Specifically, each article is prefaced with an introductory sentence (aka summary) which is professionally written, typically by the author of the article. That dataset has 226,711 articles divided into training (90%, 204,045), validation (5%, 11,332), and test (5%, 11,334) sets. Following much of literature, we use the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metric to evaluate our sequence-to-sequence abstrative summarization approach. We will use the [Hugging Face Datasets](https://github.com/huggingface/datasets) library to download the data we need to use for training and evaluation. This can be easily done with the `load_dataset` function. """ from datasets import load_dataset raw_datasets = load_dataset("xsum", split="train") """ The dataset has the following fields: - **document**: the original BBC article to be summarized - **summary**: the single sentence summary of the BBC article - **id**: ID of the document-summary pair """ print(raw_datasets) """ We will now see how the data looks like: """ print(raw_datasets[0]) """ For the sake of demonstrating the workflow, in this notebook we will only take small stratified balanced splits (10%) of the train as our training and test sets. We can easily split the dataset using the `train_test_split` method which expects the split size and the name of the column relative to which you want to stratify. """ raw_datasets = raw_datasets.train_test_split( train_size=TRAIN_TEST_SPLIT, test_size=TRAIN_TEST_SPLIT ) """ ## Data Pre-processing Before we can feed those texts to our model, we need to pre-process them and get them ready for the task. This is done by a Hugging Face Transformers `Tokenizer` which will tokenize the inputs (including converting the tokens to their corresponding IDs in the pretrained vocabulary) and put it in a format the model expects, as well as generate the other inputs that model requires. The `from_pretrained()` method expects the name of a model from the Hugging Face Model Hub. This is exactly similar to MODEL_CHECKPOINT declared earlier and we will just pass that. """ from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained(MODEL_CHECKPOINT) """ If you are using one of the five T5 checkpoints we have to prefix the inputs with "summarize:" (the model can also translate and it needs the prefix to know which task it has to perform). """ if MODEL_CHECKPOINT in ["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b"]: prefix = "summarize: " else: prefix = "" """ We will write a simple function that helps us in the pre-processing that is compatible with Hugging Face Datasets. To summarize, our pre-processing function should: - Tokenize the text dataset (input and targets) into it's corresponding token ids that will be used for embedding look-up in BERT - Add the prefix to the tokens - Create additional inputs for the model like `token_type_ids`, `attention_mask`, etc. """ def preprocess_function(examples): inputs = [prefix + doc for doc in examples["document"]] model_inputs = tokenizer(inputs, max_length=MAX_INPUT_LENGTH, truncation=True) # Setup the tokenizer for targets with tokenizer.as_target_tokenizer(): labels = tokenizer( examples["summary"], max_length=MAX_TARGET_LENGTH, truncation=True ) model_inputs["labels"] = labels["input_ids"] return model_inputs """ To apply this function on all the pairs of sentences in our dataset, we just use the `map` method of our `dataset` object we created earlier. This will apply the function on all the elements of all the splits in `dataset`, so our training and testing data will be preprocessed in one single command. """ tokenized_datasets = raw_datasets.map(preprocess_function, batched=True) """ ## Defining the model Now we can download the pretrained model and fine-tune it. Since our task is sequence-to-sequence (both the input and output are text sequences), we use the `TFAutoModelForSeq2SeqLM` class from the Hugging Face Transformers library. Like with the tokenizer, the `from_pretrained` method will download and cache the model for us. The `from_pretrained()` method expects the name of a model from the Hugging Face Model Hub. As mentioned earlier, we will use the `t5-small` model checkpoint. """ from transformers import TFAutoModelForSeq2SeqLM, DataCollatorForSeq2Seq model = TFAutoModelForSeq2SeqLM.from_pretrained(MODEL_CHECKPOINT) """ For training Sequence to Sequence models, we need a special kind of data collator, which will not only pad the inputs to the maximum length in the batch, but also the labels. Thus, we use the `DataCollatorForSeq2Seq` provided by the Hugging Face Transformers library on our dataset. The `return_tensors='tf'` ensures that we get `tf.Tensor` objects back. """ from transformers import DataCollatorForSeq2Seq data_collator = DataCollatorForSeq2Seq(tokenizer, model=model, return_tensors="tf") """ Next we define our training and testing sets with which we will train our model. Again, Hugging Face Datasets provides us with the `to_tf_dataset` method which will help us integrate our dataset with the `collator` defined above. The method expects certain parameters: - **columns**: the columns which will serve as our independant variables - **batch_size**: our batch size for training - **shuffle**: whether we want to shuffle our dataset - **collate_fn**: our collator function Additionally, we also define a relatively smaller `generation_dataset` to calculate `ROUGE` scores on the fly while training. """ train_dataset = tokenized_datasets["train"].to_tf_dataset( batch_size=BATCH_SIZE, columns=["input_ids", "attention_mask", "labels"], shuffle=True, collate_fn=data_collator, ) test_dataset = tokenized_datasets["test"].to_tf_dataset( batch_size=BATCH_SIZE, columns=["input_ids", "attention_mask", "labels"], shuffle=False, collate_fn=data_collator, ) generation_dataset = ( tokenized_datasets["test"] .shuffle() .select(list(range(200))) .to_tf_dataset( batch_size=BATCH_SIZE, columns=["input_ids", "attention_mask", "labels"], shuffle=False, collate_fn=data_collator, ) ) """ ## Building and Compiling the the model Now we will define our optimizer and compile the model. The loss calculation is handled internally and so we need not worry about that! """ optimizer = keras.optimizers.Adam(learning_rate=LEARNING_RATE) model.compile(optimizer=optimizer) """ ## Training and Evaluating the model To evaluate our model on-the-fly while training, we will define `metric_fn` which will calculate the `ROUGE` score between the groud-truth and predictions. """ import keras_nlp rouge_l = keras_nlp.metrics.RougeL() def metric_fn(eval_predictions): predictions, labels = eval_predictions decoded_predictions = tokenizer.batch_decode(predictions, skip_special_tokens=True) for label in labels: label[label < 0] = tokenizer.pad_token_id # Replace masked label tokens decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) result = rouge_l(decoded_labels, decoded_predictions) # We will print only the F1 score, you can use other aggregation metrics as well result = {"RougeL": result["f1_score"]} return result """ Now we can finally start training our model! """ from transformers.keras_callbacks import KerasMetricCallback metric_callback = KerasMetricCallback( metric_fn, eval_dataset=generation_dataset, predict_with_generate=True ) callbacks = [metric_callback] # For now we will use our test set as our validation_data model.fit( train_dataset, validation_data=test_dataset, epochs=MAX_EPOCHS, callbacks=callbacks ) """ For best results, we recommend training the model for atleast 5 epochs on the entire training dataset! """ """ ## Inference Now we will try to infer the model we trained on an arbitary article. To do so, we will use the `pipeline` method from Hugging Face Transformers. Hugging Face Transformers provides us with a variety of pipelines to choose from. For our task, we use the `summarization` pipeline. The `pipeline` method takes in the trained model and tokenizer as arguments. The `framework="tf"` argument ensures that you are passing a model that was trained with TF. """ from transformers import pipeline summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, framework="tf") summarizer( raw_datasets["test"][0]["document"], min_length=MIN_TARGET_LENGTH, max_length=MAX_TARGET_LENGTH, ) """ Now you can push this model to Hugging Face Model Hub and also share it with with all your friends, family, favorite pets: they can all load it with the identifier `"your-username/the-name-you-picked"` so for instance: ```python model.push_to_hub("transformers-qa", organization="keras-io") tokenizer.push_to_hub("transformers-qa", organization="keras-io") ``` And after you push your model this is how you can load it in the future! ```python from transformers import TFAutoModelForSeq2SeqLM model = TFAutoModelForSeq2SeqLM.from_pretrained("your-username/my-awesome-model") ``` """
keras-io/examples/nlp/t5_hf_summarization.py/0
{ "file_path": "keras-io/examples/nlp/t5_hf_summarization.py", "repo_id": "keras-io", "token_count": 3699 }
94
# Classification with Gated Residual and Variable Selection Networks **Author:** [Khalid Salama](https://www.linkedin.com/in/khalid-salama-24403144/)<br> **Date created:** 2021/02/10<br> **Last modified:** 2021/02/10<br> **Description:** Using Gated Residual and Variable Selection Networks for income level prediction. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/structured_data/ipynb/classification_with_grn_and_vsn.ipynb) <span class="k-dot">โ€ข</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/examples/structured_data/classification_with_grn_and_vsn.py) --- ## Introduction This example demonstrates the use of Gated Residual Networks (GRN) and Variable Selection Networks (VSN), proposed by Bryan Lim et al. in [Temporal Fusion Transformers (TFT) for Interpretable Multi-horizon Time Series Forecasting](https://arxiv.org/abs/1912.09363), for structured data classification. GRNs give the flexibility to the model to apply non-linear processing only where needed. VSNs allow the model to softly remove any unnecessary noisy inputs which could negatively impact performance. Together, those techniques help improving the learning capacity of deep neural network models. Note that this example implements only the GRN and VSN components described in in the paper, rather than the whole TFT model, as GRN and VSN can be useful on their own for structured data learning tasks. To run the code you need to use TensorFlow 2.3 or higher. --- ## The dataset This example uses the [United States Census Income Dataset](https://archive.ics.uci.edu/ml/datasets/Census-Income+%28KDD%29) provided by the [UC Irvine Machine Learning Repository](https://archive.ics.uci.edu/ml/index.php). The task is binary classification to determine whether a person makes over 50K a year. The dataset includes ~300K instances with 41 input features: 7 numerical features and 34 categorical features. --- ## Setup ```python import math import numpy as np import pandas as pd import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers ``` --- ## Prepare the data First we load the data from the UCI Machine Learning Repository into a Pandas DataFrame. ```python # Column names. CSV_HEADER = [ "age", "class_of_worker", "detailed_industry_recode", "detailed_occupation_recode", "education", "wage_per_hour", "enroll_in_edu_inst_last_wk", "marital_stat", "major_industry_code", "major_occupation_code", "race", "hispanic_origin", "sex", "member_of_a_labor_union", "reason_for_unemployment", "full_or_part_time_employment_stat", "capital_gains", "capital_losses", "dividends_from_stocks", "tax_filer_stat", "region_of_previous_residence", "state_of_previous_residence", "detailed_household_and_family_stat", "detailed_household_summary_in_household", "instance_weight", "migration_code-change_in_msa", "migration_code-change_in_reg", "migration_code-move_within_reg", "live_in_this_house_1_year_ago", "migration_prev_res_in_sunbelt", "num_persons_worked_for_employer", "family_members_under_18", "country_of_birth_father", "country_of_birth_mother", "country_of_birth_self", "citizenship", "own_business_or_self_employed", "fill_inc_questionnaire_for_veterans_admin", "veterans_benefits", "weeks_worked_in_year", "year", "income_level", ] data_url = "https://archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/census-income.data.gz" data = pd.read_csv(data_url, header=None, names=CSV_HEADER) test_data_url = "https://archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/census-income.test.gz" test_data = pd.read_csv(test_data_url, header=None, names=CSV_HEADER) print(f"Data shape: {data.shape}") print(f"Test data shape: {test_data.shape}") ``` <div class="k-default-codeblock"> ``` Data shape: (199523, 42) Test data shape: (99762, 42) ``` </div> We convert the target column from string to integer. ```python data["income_level"] = data["income_level"].apply( lambda x: 0 if x == " - 50000." else 1 ) test_data["income_level"] = test_data["income_level"].apply( lambda x: 0 if x == " - 50000." else 1 ) ``` Then, We split the dataset into train and validation sets. ```python random_selection = np.random.rand(len(data.index)) <= 0.85 train_data = data[random_selection] valid_data = data[~random_selection] ``` Finally we store the train and test data splits locally to CSV files. ```python train_data_file = "train_data.csv" valid_data_file = "valid_data.csv" test_data_file = "test_data.csv" train_data.to_csv(train_data_file, index=False, header=False) valid_data.to_csv(valid_data_file, index=False, header=False) test_data.to_csv(test_data_file, index=False, header=False) ``` --- ## Define dataset metadata Here, we define the metadata of the dataset that will be useful for reading and parsing the data into input features, and encoding the input features with respect to their types. ```python # Target feature name. TARGET_FEATURE_NAME = "income_level" # Weight column name. WEIGHT_COLUMN_NAME = "instance_weight" # Numeric feature names. NUMERIC_FEATURE_NAMES = [ "age", "wage_per_hour", "capital_gains", "capital_losses", "dividends_from_stocks", "num_persons_worked_for_employer", "weeks_worked_in_year", ] # Categorical features and their vocabulary lists. # Note that we add 'v=' as a prefix to all categorical feature values to make # sure that they are treated as strings. CATEGORICAL_FEATURES_WITH_VOCABULARY = { feature_name: sorted([str(value) for value in list(data[feature_name].unique())]) for feature_name in CSV_HEADER if feature_name not in list(NUMERIC_FEATURE_NAMES + [WEIGHT_COLUMN_NAME, TARGET_FEATURE_NAME]) } # All features names. FEATURE_NAMES = NUMERIC_FEATURE_NAMES + list( CATEGORICAL_FEATURES_WITH_VOCABULARY.keys() ) # Feature default values. COLUMN_DEFAULTS = [ [0.0] if feature_name in NUMERIC_FEATURE_NAMES + [TARGET_FEATURE_NAME, WEIGHT_COLUMN_NAME] else ["NA"] for feature_name in CSV_HEADER ] ``` --- ## Create a `tf.data.Dataset` for training and evaluation We create an input function to read and parse the file, and convert features and labels into a [`tf.data.Dataset`](https://www.tensorflow.org/guide/datasets) for training and evaluation. ```python from tensorflow.keras.layers import StringLookup def process(features, target): for feature_name in features: if feature_name in CATEGORICAL_FEATURES_WITH_VOCABULARY: # Cast categorical feature values to string. features[feature_name] = tf.cast(features[feature_name], tf.dtypes.string) # Get the instance weight. weight = features.pop(WEIGHT_COLUMN_NAME) return features, target, weight def get_dataset_from_csv(csv_file_path, shuffle=False, batch_size=128): dataset = tf.data.experimental.make_csv_dataset( csv_file_path, batch_size=batch_size, column_names=CSV_HEADER, column_defaults=COLUMN_DEFAULTS, label_name=TARGET_FEATURE_NAME, num_epochs=1, header=False, shuffle=shuffle, ).map(process) return dataset ``` --- ## Create model inputs ```python def create_model_inputs(): inputs = {} for feature_name in FEATURE_NAMES: if feature_name in NUMERIC_FEATURE_NAMES: inputs[feature_name] = layers.Input( name=feature_name, shape=(), dtype=tf.float32 ) else: inputs[feature_name] = layers.Input( name=feature_name, shape=(), dtype=tf.string ) return inputs ``` --- ## Encode input features For categorical features, we encode them using `layers.Embedding` using the `encoding_size` as the embedding dimensions. For the numerical features, we apply linear transformation using `layers.Dense` to project each feature into `encoding_size`-dimensional vector. Thus, all the encoded features will have the same dimensionality. ```python def encode_inputs(inputs, encoding_size): encoded_features = [] for feature_name in inputs: if feature_name in CATEGORICAL_FEATURES_WITH_VOCABULARY: vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[feature_name] # Create a lookup to convert a string values to an integer indices. # Since we are not using a mask token nor expecting any out of vocabulary # (oov) token, we set mask_token to None and num_oov_indices to 0. index = StringLookup( vocabulary=vocabulary, mask_token=None, num_oov_indices=0 ) # Convert the string input values into integer indices. value_index = index(inputs[feature_name]) # Create an embedding layer with the specified dimensions embedding_ecoder = layers.Embedding( input_dim=len(vocabulary), output_dim=encoding_size ) # Convert the index values to embedding representations. encoded_feature = embedding_ecoder(value_index) else: # Project the numeric feature to encoding_size using linear transformation. encoded_feature = tf.expand_dims(inputs[feature_name], -1) encoded_feature = layers.Dense(units=encoding_size)(encoded_feature) encoded_features.append(encoded_feature) return encoded_features ``` --- ## Implement the Gated Linear Unit [Gated Linear Units (GLUs)](https://arxiv.org/abs/1612.08083) provide the flexibility to suppress input that are not relevant for a given task. ```python class GatedLinearUnit(layers.Layer): def __init__(self, units): super().__init__() self.linear = layers.Dense(units) self.sigmoid = layers.Dense(units, activation="sigmoid") def call(self, inputs): return self.linear(inputs) * self.sigmoid(inputs) ``` --- ## Implement the Gated Residual Network The Gated Residual Network (GRN) works as follows: 1. Applies the nonlinear ELU transformation to the inputs. 2. Applies linear transformation followed by dropout. 4. Applies GLU and adds the original inputs to the output of the GLU to perform skip (residual) connection. 6. Applies layer normalization and produces the output. ```python class GatedResidualNetwork(layers.Layer): def __init__(self, units, dropout_rate): super().__init__() self.units = units self.elu_dense = layers.Dense(units, activation="elu") self.linear_dense = layers.Dense(units) self.dropout = layers.Dropout(dropout_rate) self.gated_linear_unit = GatedLinearUnit(units) self.layer_norm = layers.LayerNormalization() self.project = layers.Dense(units) def call(self, inputs): x = self.elu_dense(inputs) x = self.linear_dense(x) x = self.dropout(x) if inputs.shape[-1] != self.units: inputs = self.project(inputs) x = inputs + self.gated_linear_unit(x) x = self.layer_norm(x) return x ``` --- ## Implement the Variable Selection Network The Variable Selection Network (VSN) works as follows: 1. Applies a GRN to each feature individually. 2. Applies a GRN on the concatenation of all the features, followed by a softmax to produce feature weights. 3. Produces a weighted sum of the output of the individual GRN. Note that the output of the VSN is [batch_size, encoding_size], regardless of the number of the input features. ```python class VariableSelection(layers.Layer): def __init__(self, num_features, units, dropout_rate): super().__init__() self.grns = list() # Create a GRN for each feature independently for idx in range(num_features): grn = GatedResidualNetwork(units, dropout_rate) self.grns.append(grn) # Create a GRN for the concatenation of all the features self.grn_concat = GatedResidualNetwork(units, dropout_rate) self.softmax = layers.Dense(units=num_features, activation="softmax") def call(self, inputs): v = layers.concatenate(inputs) v = self.grn_concat(v) v = tf.expand_dims(self.softmax(v), axis=-1) x = [] for idx, input in enumerate(inputs): x.append(self.grns[idx](input)) x = tf.stack(x, axis=1) outputs = tf.squeeze(tf.matmul(v, x, transpose_a=True), axis=1) return outputs ``` --- ## Create Gated Residual and Variable Selection Networks model ```python def create_model(encoding_size): inputs = create_model_inputs() feature_list = encode_inputs(inputs, encoding_size) num_features = len(feature_list) features = VariableSelection(num_features, encoding_size, dropout_rate)( feature_list ) outputs = layers.Dense(units=1, activation="sigmoid")(features) model = keras.Model(inputs=inputs, outputs=outputs) return model ``` --- ## Compile, train, and evaluate the model ```python learning_rate = 0.001 dropout_rate = 0.15 batch_size = 265 num_epochs = 20 encoding_size = 16 model = create_model(encoding_size) model.compile( optimizer=keras.optimizers.Adam(learning_rate=learning_rate), loss=keras.losses.BinaryCrossentropy(), metrics=[keras.metrics.BinaryAccuracy(name="accuracy")], ) # Create an early stopping callback. early_stopping = tf.keras.callbacks.EarlyStopping( monitor="val_loss", patience=5, restore_best_weights=True ) print("Start training the model...") train_dataset = get_dataset_from_csv( train_data_file, shuffle=True, batch_size=batch_size ) valid_dataset = get_dataset_from_csv(valid_data_file, batch_size=batch_size) model.fit( train_dataset, epochs=num_epochs, validation_data=valid_dataset, callbacks=[early_stopping], ) print("Model training finished.") print("Evaluating model performance...") test_dataset = get_dataset_from_csv(test_data_file, batch_size=batch_size) _, accuracy = model.evaluate(test_dataset) print(f"Test accuracy: {round(accuracy * 100, 2)}%") ``` <div class="k-default-codeblock"> ``` Start training the model... Epoch 1/20 640/640 [==============================] - 31s 29ms/step - loss: 253.8570 - accuracy: 0.9468 - val_loss: 229.4024 - val_accuracy: 0.9495 Epoch 2/20 640/640 [==============================] - 17s 25ms/step - loss: 229.9359 - accuracy: 0.9497 - val_loss: 223.4970 - val_accuracy: 0.9505 Epoch 3/20 640/640 [==============================] - 17s 25ms/step - loss: 225.5644 - accuracy: 0.9504 - val_loss: 222.0078 - val_accuracy: 0.9515 Epoch 4/20 640/640 [==============================] - 16s 25ms/step - loss: 222.2086 - accuracy: 0.9512 - val_loss: 218.2707 - val_accuracy: 0.9522 Epoch 5/20 640/640 [==============================] - 17s 25ms/step - loss: 218.0359 - accuracy: 0.9523 - val_loss: 217.3721 - val_accuracy: 0.9528 Epoch 6/20 640/640 [==============================] - 17s 26ms/step - loss: 214.8348 - accuracy: 0.9529 - val_loss: 210.3546 - val_accuracy: 0.9543 Epoch 7/20 640/640 [==============================] - 17s 26ms/step - loss: 213.0984 - accuracy: 0.9534 - val_loss: 210.2881 - val_accuracy: 0.9544 Epoch 8/20 640/640 [==============================] - 17s 26ms/step - loss: 211.6379 - accuracy: 0.9538 - val_loss: 209.3327 - val_accuracy: 0.9550 Epoch 9/20 640/640 [==============================] - 17s 26ms/step - loss: 210.7283 - accuracy: 0.9541 - val_loss: 209.5862 - val_accuracy: 0.9543 Epoch 10/20 640/640 [==============================] - 17s 26ms/step - loss: 209.9062 - accuracy: 0.9538 - val_loss: 210.1662 - val_accuracy: 0.9537 Epoch 11/20 640/640 [==============================] - 16s 25ms/step - loss: 209.6323 - accuracy: 0.9540 - val_loss: 207.9528 - val_accuracy: 0.9552 Epoch 12/20 640/640 [==============================] - 16s 25ms/step - loss: 208.7843 - accuracy: 0.9544 - val_loss: 207.5303 - val_accuracy: 0.9550 Epoch 13/20 640/640 [==============================] - 21s 32ms/step - loss: 207.9983 - accuracy: 0.9544 - val_loss: 206.8800 - val_accuracy: 0.9557 Epoch 14/20 640/640 [==============================] - 18s 28ms/step - loss: 207.2104 - accuracy: 0.9544 - val_loss: 216.0859 - val_accuracy: 0.9535 Epoch 15/20 640/640 [==============================] - 16s 25ms/step - loss: 207.2254 - accuracy: 0.9543 - val_loss: 206.7765 - val_accuracy: 0.9555 Epoch 16/20 640/640 [==============================] - 16s 25ms/step - loss: 206.6704 - accuracy: 0.9546 - val_loss: 206.7508 - val_accuracy: 0.9560 Epoch 17/20 640/640 [==============================] - 19s 30ms/step - loss: 206.1322 - accuracy: 0.9545 - val_loss: 205.9638 - val_accuracy: 0.9562 Epoch 18/20 640/640 [==============================] - 21s 31ms/step - loss: 205.4764 - accuracy: 0.9545 - val_loss: 206.0258 - val_accuracy: 0.9561 Epoch 19/20 640/640 [==============================] - 16s 25ms/step - loss: 204.3614 - accuracy: 0.9550 - val_loss: 207.1424 - val_accuracy: 0.9560 Epoch 20/20 640/640 [==============================] - 16s 25ms/step - loss: 203.9543 - accuracy: 0.9550 - val_loss: 206.4697 - val_accuracy: 0.9554 Model training finished. Evaluating model performance... 377/377 [==============================] - 4s 11ms/step - loss: 204.5099 - accuracy: 0.9547 Test accuracy: 95.47% ``` </div> You should achieve more than 95% accuracy on the test set. To increase the learning capacity of the model, you can try increasing the `encoding_size` value, or stacking multiple GRN layers on top of the VSN layer. This may require to also increase the `dropout_rate` value to avoid overfitting. **Example available on HuggingFace** | Trained Model | Demo | | :--: | :--: | | [![Generic badge](https://img.shields.io/badge/%F0%9F%A4%97%20Model-Classification%20With%20GRN%20%26%20VSN-red)](https://huggingface.co/keras-io/structured-data-classification-grn-vsn) | [![Generic badge](https://img.shields.io/badge/%F0%9F%A4%97%20Space-Classification%20With%20GRN%20%26%20VSN-red)](https://huggingface.co/spaces/keras-io/structured-data-classification-grn-vsn) |
keras-io/examples/structured_data/md/classification_with_grn_and_vsn.md/0
{ "file_path": "keras-io/examples/structured_data/md/classification_with_grn_and_vsn.md", "repo_id": "keras-io", "token_count": 6884 }
95
""" Title: Electroencephalogram Signal Classification for action identification Author: [Suvaditya Mukherjee](https://github.com/suvadityamuk) Date created: 2022/11/03 Last modified: 2022/11/05 Description: Training a Convolutional model to classify EEG signals produced by exposure to certain stimuli. Accelerator: GPU """ """ ## Introduction The following example explores how we can make a Convolution-based Neural Network to perform classification on Electroencephalogram signals captured when subjects were exposed to different stimuli. We train a model from scratch since such signal-classification models are fairly scarce in pre-trained format. The data we use is sourced from the UC Berkeley-Biosense Lab where the data was collected from 15 subjects at the same time. Our process is as follows: - Load the [UC Berkeley-Biosense Synchronized Brainwave Dataset](https://www.kaggle.com/datasets/berkeley-biosense/synchronized-brainwave-dataset) - Visualize random samples from the data - Pre-process, collate and scale the data to finally make a `tf.data.Dataset` - Prepare class weights in order to tackle major imbalances - Create a Conv1D and Dense-based model to perform classification - Define callbacks and hyperparameters - Train the model - Plot metrics from History and perform evaluation This example needs the following external dependencies (Gdown, Scikit-learn, Pandas, Numpy, Matplotlib). You can install it via the following commands. Gdown is an external package used to download large files from Google Drive. To know more, you can refer to its [PyPi page here](https://pypi.org/project/gdown) """ """ ## Setup and Data Downloads First, lets install our dependencies: """ """shell pip install gdown -q pip install scikit-learn -q pip install pandas -q pip install numpy -q pip install matplotlib -q """ """ Next, lets download our dataset. The gdown package makes it easy to download the data from Google Drive: """ """shell gdown 1V5B7Bt6aJm0UHbR7cRKBEK8jx7lYPVuX # gdown will download eeg-data.csv onto the local drive for use. Total size of # eeg-data.csv is 105.7 MB """ import pandas as pd import matplotlib.pyplot as plt import json import numpy as np import keras from keras import layers import tensorflow as tf from sklearn import preprocessing, model_selection import random QUALITY_THRESHOLD = 128 BATCH_SIZE = 64 SHUFFLE_BUFFER_SIZE = BATCH_SIZE * 2 """ ## Read data from `eeg-data.csv` We use the Pandas library to read the `eeg-data.csv` file and display the first 5 rows using the `.head()` command """ eeg = pd.read_csv("eeg-data.csv") """ We remove unlabeled samples from our dataset as they do not contribute to the model. We also perform a `.drop()` operation on the columns that are not required for training data preparation """ unlabeled_eeg = eeg[eeg["label"] == "unlabeled"] eeg = eeg.loc[eeg["label"] != "unlabeled"] eeg = eeg.loc[eeg["label"] != "everyone paired"] eeg.drop( [ "indra_time", "Unnamed: 0", "browser_latency", "reading_time", "attention_esense", "meditation_esense", "updatedAt", "createdAt", ], axis=1, inplace=True, ) eeg.reset_index(drop=True, inplace=True) eeg.head() """ In the data, the samples recorded are given a score from 0 to 128 based on how well-calibrated the sensor was (0 being best, 200 being worst). We filter the values based on an arbitrary cutoff limit of 128. """ def convert_string_data_to_values(value_string): str_list = json.loads(value_string) return str_list eeg["raw_values"] = eeg["raw_values"].apply(convert_string_data_to_values) eeg = eeg.loc[eeg["signal_quality"] < QUALITY_THRESHOLD] eeg.head() """ ## Visualize one random sample from the data """ """ We visualize one sample from the data to understand how the stimulus-induced signal looks like """ def view_eeg_plot(idx): data = eeg.loc[idx, "raw_values"] plt.plot(data) plt.title(f"Sample random plot") plt.show() view_eeg_plot(7) """ ## Pre-process and collate data """ """ There are a total of 67 different labels present in the data, where there are numbered sub-labels. We collate them under a single label as per their numbering and replace them in the data itself. Following this process, we perform simple Label encoding to get them in an integer format. """ print("Before replacing labels") print(eeg["label"].unique(), "\n") print(len(eeg["label"].unique()), "\n") eeg.replace( { "label": { "blink1": "blink", "blink2": "blink", "blink3": "blink", "blink4": "blink", "blink5": "blink", "math1": "math", "math2": "math", "math3": "math", "math4": "math", "math5": "math", "math6": "math", "math7": "math", "math8": "math", "math9": "math", "math10": "math", "math11": "math", "math12": "math", "thinkOfItems-ver1": "thinkOfItems", "thinkOfItems-ver2": "thinkOfItems", "video-ver1": "video", "video-ver2": "video", "thinkOfItemsInstruction-ver1": "thinkOfItemsInstruction", "thinkOfItemsInstruction-ver2": "thinkOfItemsInstruction", "colorRound1-1": "colorRound1", "colorRound1-2": "colorRound1", "colorRound1-3": "colorRound1", "colorRound1-4": "colorRound1", "colorRound1-5": "colorRound1", "colorRound1-6": "colorRound1", "colorRound2-1": "colorRound2", "colorRound2-2": "colorRound2", "colorRound2-3": "colorRound2", "colorRound2-4": "colorRound2", "colorRound2-5": "colorRound2", "colorRound2-6": "colorRound2", "colorRound3-1": "colorRound3", "colorRound3-2": "colorRound3", "colorRound3-3": "colorRound3", "colorRound3-4": "colorRound3", "colorRound3-5": "colorRound3", "colorRound3-6": "colorRound3", "colorRound4-1": "colorRound4", "colorRound4-2": "colorRound4", "colorRound4-3": "colorRound4", "colorRound4-4": "colorRound4", "colorRound4-5": "colorRound4", "colorRound4-6": "colorRound4", "colorRound5-1": "colorRound5", "colorRound5-2": "colorRound5", "colorRound5-3": "colorRound5", "colorRound5-4": "colorRound5", "colorRound5-5": "colorRound5", "colorRound5-6": "colorRound5", "colorInstruction1": "colorInstruction", "colorInstruction2": "colorInstruction", "readyRound1": "readyRound", "readyRound2": "readyRound", "readyRound3": "readyRound", "readyRound4": "readyRound", "readyRound5": "readyRound", "colorRound1": "colorRound", "colorRound2": "colorRound", "colorRound3": "colorRound", "colorRound4": "colorRound", "colorRound5": "colorRound", } }, inplace=True, ) print("After replacing labels") print(eeg["label"].unique()) print(len(eeg["label"].unique())) le = preprocessing.LabelEncoder() # Generates a look-up table le.fit(eeg["label"]) eeg["label"] = le.transform(eeg["label"]) """ We extract the number of unique classes present in the data """ num_classes = len(eeg["label"].unique()) print(num_classes) """ We now visualize the number of samples present in each class using a Bar plot. """ plt.bar(range(num_classes), eeg["label"].value_counts()) plt.title("Number of samples per class") plt.show() """ ## Scale and split data """ """ We perform a simple Min-Max scaling to bring the value-range between 0 and 1. We do not use Standard Scaling as the data does not follow a Gaussian distribution. """ scaler = preprocessing.MinMaxScaler() series_list = [ scaler.fit_transform(np.asarray(i).reshape(-1, 1)) for i in eeg["raw_values"] ] labels_list = [i for i in eeg["label"]] """ We now create a Train-test split with a 15% holdout set. Following this, we reshape the data to create a sequence of length 512. We also convert the labels from their current label-encoded form to a one-hot encoding to enable use of several different `keras.metrics` functions. """ x_train, x_test, y_train, y_test = model_selection.train_test_split( series_list, labels_list, test_size=0.15, random_state=42, shuffle=True ) print( f"Length of x_train : {len(x_train)}\nLength of x_test : {len(x_test)}\nLength of y_train : {len(y_train)}\nLength of y_test : {len(y_test)}" ) x_train = np.asarray(x_train).astype(np.float32).reshape(-1, 512, 1) y_train = np.asarray(y_train).astype(np.float32).reshape(-1, 1) y_train = keras.utils.to_categorical(y_train) x_test = np.asarray(x_test).astype(np.float32).reshape(-1, 512, 1) y_test = np.asarray(y_test).astype(np.float32).reshape(-1, 1) y_test = keras.utils.to_categorical(y_test) """ ## Prepare `tf.data.Dataset` """ """ We now create a `tf.data.Dataset` from this data to prepare it for training. We also shuffle and batch the data for use later. """ train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)) train_dataset = train_dataset.shuffle(SHUFFLE_BUFFER_SIZE).batch(BATCH_SIZE) test_dataset = test_dataset.batch(BATCH_SIZE) """ ## Make Class Weights using Naive method """ """ As we can see from the plot of number of samples per class, the dataset is imbalanced. Hence, we **calculate weights for each class** to make sure that the model is trained in a fair manner without preference to any specific class due to greater number of samples. We use a naive method to calculate these weights, finding an **inverse proportion** of each class and using that as the weight. """ vals_dict = {} for i in eeg["label"]: if i in vals_dict.keys(): vals_dict[i] += 1 else: vals_dict[i] = 1 total = sum(vals_dict.values()) # Formula used - Naive method where # weight = 1 - (no. of samples present / total no. of samples) # So more the samples, lower the weight weight_dict = {k: (1 - (v / total)) for k, v in vals_dict.items()} print(weight_dict) """ ## Define simple function to plot all the metrics present in a `keras.callbacks.History` object """ def plot_history_metrics(history: keras.callbacks.History): total_plots = len(history.history) cols = total_plots // 2 rows = total_plots // cols if total_plots % cols != 0: rows += 1 pos = range(1, total_plots + 1) plt.figure(figsize=(15, 10)) for i, (key, value) in enumerate(history.history.items()): plt.subplot(rows, cols, pos[i]) plt.plot(range(len(value)), value) plt.title(str(key)) plt.show() """ ## Define function to generate Convolutional model """ def create_model(): input_layer = keras.Input(shape=(512, 1)) x = layers.Conv1D( filters=32, kernel_size=3, strides=2, activation="relu", padding="same" )(input_layer) x = layers.BatchNormalization()(x) x = layers.Conv1D( filters=64, kernel_size=3, strides=2, activation="relu", padding="same" )(x) x = layers.BatchNormalization()(x) x = layers.Conv1D( filters=128, kernel_size=5, strides=2, activation="relu", padding="same" )(x) x = layers.BatchNormalization()(x) x = layers.Conv1D( filters=256, kernel_size=5, strides=2, activation="relu", padding="same" )(x) x = layers.BatchNormalization()(x) x = layers.Conv1D( filters=512, kernel_size=7, strides=2, activation="relu", padding="same" )(x) x = layers.BatchNormalization()(x) x = layers.Conv1D( filters=1024, kernel_size=7, strides=2, activation="relu", padding="same", )(x) x = layers.BatchNormalization()(x) x = layers.Dropout(0.2)(x) x = layers.Flatten()(x) x = layers.Dense(4096, activation="relu")(x) x = layers.Dropout(0.2)(x) x = layers.Dense( 2048, activation="relu", kernel_regularizer=keras.regularizers.L2() )(x) x = layers.Dropout(0.2)(x) x = layers.Dense( 1024, activation="relu", kernel_regularizer=keras.regularizers.L2() )(x) x = layers.Dropout(0.2)(x) x = layers.Dense( 128, activation="relu", kernel_regularizer=keras.regularizers.L2() )(x) output_layer = layers.Dense(num_classes, activation="softmax")(x) return keras.Model(inputs=input_layer, outputs=output_layer) """ ## Get Model summary """ conv_model = create_model() conv_model.summary() """ ## Define callbacks, optimizer, loss and metrics """ """ We set the number of epochs at 30 after performing extensive experimentation. It was seen that this was the optimal number, after performing Early-Stopping analysis as well. We define a Model Checkpoint callback to make sure that we only get the best model weights. We also define a ReduceLROnPlateau as there were several cases found during experimentation where the loss stagnated after a certain point. On the other hand, a direct LRScheduler was found to be too aggressive in its decay. """ epochs = 30 callbacks = [ keras.callbacks.ModelCheckpoint( "best_model.keras", save_best_only=True, monitor="loss" ), keras.callbacks.ReduceLROnPlateau( monitor="val_top_k_categorical_accuracy", factor=0.2, patience=2, min_lr=0.000001, ), ] optimizer = keras.optimizers.Adam(amsgrad=True, learning_rate=0.001) loss = keras.losses.CategoricalCrossentropy() """ ## Compile model and call `model.fit()` """ """ We use the `Adam` optimizer since it is commonly considered the best choice for preliminary training, and was found to be the best optimizer. We use `CategoricalCrossentropy` as the loss as our labels are in a one-hot-encoded form. We define the `TopKCategoricalAccuracy(k=3)`, `AUC`, `Precision` and `Recall` metrics to further aid in understanding the model better. """ conv_model.compile( optimizer=optimizer, loss=loss, metrics=[ keras.metrics.TopKCategoricalAccuracy(k=3), keras.metrics.AUC(), keras.metrics.Precision(), keras.metrics.Recall(), ], ) conv_model_history = conv_model.fit( train_dataset, epochs=epochs, callbacks=callbacks, validation_data=test_dataset, class_weight=weight_dict, ) """ ## Visualize model metrics during training """ """ We use the function defined above to see model metrics during training. """ plot_history_metrics(conv_model_history) """ ## Evaluate model on test data """ loss, accuracy, auc, precision, recall = conv_model.evaluate(test_dataset) print(f"Loss : {loss}") print(f"Top 3 Categorical Accuracy : {accuracy}") print(f"Area under the Curve (ROC) : {auc}") print(f"Precision : {precision}") print(f"Recall : {recall}") def view_evaluated_eeg_plots(model): start_index = random.randint(10, len(eeg)) end_index = start_index + 11 data = eeg.loc[start_index:end_index, "raw_values"] data_array = [scaler.fit_transform(np.asarray(i).reshape(-1, 1)) for i in data] data_array = [np.asarray(data_array).astype(np.float32).reshape(-1, 512, 1)] original_labels = eeg.loc[start_index:end_index, "label"] predicted_labels = np.argmax(model.predict(data_array, verbose=0), axis=1) original_labels = [ le.inverse_transform(np.array(label).reshape(-1))[0] for label in original_labels ] predicted_labels = [ le.inverse_transform(np.array(label).reshape(-1))[0] for label in predicted_labels ] total_plots = 12 cols = total_plots // 3 rows = total_plots // cols if total_plots % cols != 0: rows += 1 pos = range(1, total_plots + 1) fig = plt.figure(figsize=(20, 10)) for i, (plot_data, og_label, pred_label) in enumerate( zip(data, original_labels, predicted_labels) ): plt.subplot(rows, cols, pos[i]) plt.plot(plot_data) plt.title(f"Actual Label : {og_label}\nPredicted Label : {pred_label}") fig.subplots_adjust(hspace=0.5) plt.show() view_evaluated_eeg_plots(conv_model)
keras-io/examples/timeseries/eeg_signal_classification.py/0
{ "file_path": "keras-io/examples/timeseries/eeg_signal_classification.py", "repo_id": "keras-io", "token_count": 6517 }
96
<jupyter_start><jupyter_text>Timeseries forecasting for weather prediction**Authors:** [Prabhanshu Attri](https://prabhanshu.com/github), [Yashika Sharma](https://github.com/yashika51), [Kristi Takach](https://github.com/ktakattack), [Falak Shah](https://github.com/falaktheoptimist)**Date created:** 2020/06/23**Last modified:** 2023/11/22**Description:** This notebook demonstrates how to do timeseries forecasting using a LSTM model. Setup<jupyter_code>import pandas as pd import matplotlib.pyplot as plt import keras<jupyter_output><empty_output><jupyter_text>Climate Data Time-SeriesWe will be using Jena Climate dataset recorded by the[Max Planck Institute for Biogeochemistry](https://www.bgc-jena.mpg.de/wetter/).The dataset consists of 14 features such as temperature, pressure, humidity etc, recorded once per10 minutes.**Location**: Weather Station, Max Planck Institute for Biogeochemistryin Jena, Germany**Time-frame Considered**: Jan 10, 2009 - December 31, 2016The table below shows the column names, their value formats, and their description.Index| Features |Format |Description-----|---------------|-------------------|-----------------------1 |Date Time |01.01.2009 00:10:00|Date-time reference2 |p (mbar) |996.52 |The pascal SI derived unit of pressure used to quantify internal pressure. Meteorological reports typically state atmospheric pressure in millibars.3 |T (degC) |-8.02 |Temperature in Celsius4 |Tpot (K) |265.4 |Temperature in Kelvin5 |Tdew (degC) |-8.9 |Temperature in Celsius relative to humidity. Dew Point is a measure of the absolute amount of water in the air, the DP is the temperature at which the air cannot hold all the moisture in it and water condenses.6 |rh (%) |93.3 |Relative Humidity is a measure of how saturated the air is with water vapor, the %RH determines the amount of water contained within collection objects.7 |VPmax (mbar) |3.33 |Saturation vapor pressure8 |VPact (mbar) |3.11 |Vapor pressure9 |VPdef (mbar) |0.22 |Vapor pressure deficit10 |sh (g/kg) |1.94 |Specific humidity11 |H2OC (mmol/mol)|3.12 |Water vapor concentration12 |rho (g/m ** 3) |1307.75 |Airtight13 |wv (m/s) |1.03 |Wind speed14 |max. wv (m/s) |1.75 |Maximum wind speed15 |wd (deg) |152.3 |Wind direction in degrees<jupyter_code>from zipfile import ZipFile uri = "https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip" zip_path = keras.utils.get_file(origin=uri, fname="jena_climate_2009_2016.csv.zip") zip_file = ZipFile(zip_path) zip_file.extractall() csv_path = "jena_climate_2009_2016.csv" df = pd.read_csv(csv_path)<jupyter_output><empty_output><jupyter_text>Raw Data VisualizationTo give us a sense of the data we are working with, each feature has been plotted below.This shows the distinct pattern of each feature over the time period from 2009 to 2016.It also shows where anomalies are present, which will be addressed during normalization.<jupyter_code>titles = [ "Pressure", "Temperature", "Temperature in Kelvin", "Temperature (dew point)", "Relative Humidity", "Saturation vapor pressure", "Vapor pressure", "Vapor pressure deficit", "Specific humidity", "Water vapor concentration", "Airtight", "Wind speed", "Maximum wind speed", "Wind direction in degrees", ] feature_keys = [ "p (mbar)", "T (degC)", "Tpot (K)", "Tdew (degC)", "rh (%)", "VPmax (mbar)", "VPact (mbar)", "VPdef (mbar)", "sh (g/kg)", "H2OC (mmol/mol)", "rho (g/m**3)", "wv (m/s)", "max. wv (m/s)", "wd (deg)", ] colors = [ "blue", "orange", "green", "red", "purple", "brown", "pink", "gray", "olive", "cyan", ] date_time_key = "Date Time" def show_raw_visualization(data): time_data = data[date_time_key] fig, axes = plt.subplots( nrows=7, ncols=2, figsize=(15, 20), dpi=80, facecolor="w", edgecolor="k" ) for i in range(len(feature_keys)): key = feature_keys[i] c = colors[i % (len(colors))] t_data = data[key] t_data.index = time_data t_data.head() ax = t_data.plot( ax=axes[i // 2, i % 2], color=c, title="{} - {}".format(titles[i], key), rot=25, ) ax.legend([titles[i]]) plt.tight_layout() show_raw_visualization(df)<jupyter_output><empty_output><jupyter_text>Data PreprocessingHere we are picking ~300,000 data points for training. Observation is recorded every10 mins, that means 6 times per hour. We will resample one point per hour since nodrastic change is expected within 60 minutes. We do this via the `sampling_rate`argument in `timeseries_dataset_from_array` utility.We are tracking data from past 720 timestamps (720/6=120 hours). This data will beused to predict the temperature after 72 timestamps (72/6=12 hours).Since every feature has values withvarying ranges, we do normalization to confine feature values to a range of `[0, 1]` beforetraining a neural network.We do this by subtracting the mean and dividing by the standard deviation of each feature.71.5 % of the data will be used to train the model, i.e. 300,693 rows. `split_fraction` canbe changed to alter this percentage.The model is shown data for first 5 days i.e. 720 observations, that are sampled everyhour. The temperature after 72 (12 hours * 6 observation per hour) observation will beused as a label.<jupyter_code>split_fraction = 0.715 train_split = int(split_fraction * int(df.shape[0])) step = 6 past = 720 future = 72 learning_rate = 0.001 batch_size = 256 epochs = 10 def normalize(data, train_split): data_mean = data[:train_split].mean(axis=0) data_std = data[:train_split].std(axis=0) return (data - data_mean) / data_std<jupyter_output><empty_output><jupyter_text>We can see from the correlation heatmap, few parameters like Relative Humidity andSpecific Humidity are redundant. Hence we will be using select features, not all.<jupyter_code>print( "The selected parameters are:", ", ".join([titles[i] for i in [0, 1, 5, 7, 8, 10, 11]]), ) selected_features = [feature_keys[i] for i in [0, 1, 5, 7, 8, 10, 11]] features = df[selected_features] features.index = df[date_time_key] features.head() features = normalize(features.values, train_split) features = pd.DataFrame(features) features.head() train_data = features.loc[0 : train_split - 1] val_data = features.loc[train_split:]<jupyter_output><empty_output><jupyter_text>Training datasetThe training dataset labels starts from the 792nd observation (720 + 72).<jupyter_code>start = past + future end = start + train_split x_train = train_data[[i for i in range(7)]].values y_train = features.iloc[start:end][[1]] sequence_length = int(past / step)<jupyter_output><empty_output><jupyter_text>The `timeseries_dataset_from_array` function takes in a sequence of data-points gathered atequal intervals, along with time series parameters such as length of thesequences/windows, spacing between two sequence/windows, etc., to produce batches ofsub-timeseries inputs and targets sampled from the main timeseries.<jupyter_code>dataset_train = keras.preprocessing.timeseries_dataset_from_array( x_train, y_train, sequence_length=sequence_length, sampling_rate=step, batch_size=batch_size, )<jupyter_output><empty_output><jupyter_text>Validation datasetThe validation dataset must not contain the last 792 rows as we won't have label data forthose records, hence 792 must be subtracted from the end of the data.The validation label dataset must start from 792 after train_split, hence we must addpast + future (792) to label_start.<jupyter_code>x_end = len(val_data) - past - future label_start = train_split + past + future x_val = val_data.iloc[:x_end][[i for i in range(7)]].values y_val = features.iloc[label_start:][[1]] dataset_val = keras.preprocessing.timeseries_dataset_from_array( x_val, y_val, sequence_length=sequence_length, sampling_rate=step, batch_size=batch_size, ) for batch in dataset_train.take(1): inputs, targets = batch print("Input shape:", inputs.numpy().shape) print("Target shape:", targets.numpy().shape)<jupyter_output><empty_output><jupyter_text>Training<jupyter_code>inputs = keras.layers.Input(shape=(inputs.shape[1], inputs.shape[2])) lstm_out = keras.layers.LSTM(32)(inputs) outputs = keras.layers.Dense(1)(lstm_out) model = keras.Model(inputs=inputs, outputs=outputs) model.compile(optimizer=keras.optimizers.Adam(learning_rate=learning_rate), loss="mse") model.summary()<jupyter_output><empty_output><jupyter_text>We'll use the `ModelCheckpoint` callback to regularly save checkpoints, andthe `EarlyStopping` callback to interrupt training when the validation lossis not longer improving.<jupyter_code>path_checkpoint = "model_checkpoint.weights.h5" es_callback = keras.callbacks.EarlyStopping(monitor="val_loss", min_delta=0, patience=5) modelckpt_callback = keras.callbacks.ModelCheckpoint( monitor="val_loss", filepath=path_checkpoint, verbose=1, save_weights_only=True, save_best_only=True, ) history = model.fit( dataset_train, epochs=epochs, validation_data=dataset_val, callbacks=[es_callback, modelckpt_callback], )<jupyter_output><empty_output><jupyter_text>We can visualize the loss with the function below. After one point, the loss stopsdecreasing.<jupyter_code>def visualize_loss(history, title): loss = history.history["loss"] val_loss = history.history["val_loss"] epochs = range(len(loss)) plt.figure() plt.plot(epochs, loss, "b", label="Training loss") plt.plot(epochs, val_loss, "r", label="Validation loss") plt.title(title) plt.xlabel("Epochs") plt.ylabel("Loss") plt.legend() plt.show() visualize_loss(history, "Training and Validation Loss")<jupyter_output><empty_output><jupyter_text>PredictionThe trained model above is now able to make predictions for 5 sets of values fromvalidation set.<jupyter_code>def show_plot(plot_data, delta, title): labels = ["History", "True Future", "Model Prediction"] marker = [".-", "rx", "go"] time_steps = list(range(-(plot_data[0].shape[0]), 0)) if delta: future = delta else: future = 0 plt.title(title) for i, val in enumerate(plot_data): if i: plt.plot(future, plot_data[i], marker[i], markersize=10, label=labels[i]) else: plt.plot(time_steps, plot_data[i].flatten(), marker[i], label=labels[i]) plt.legend() plt.xlim([time_steps[0], (future + 5) * 2]) plt.xlabel("Time-Step") plt.show() return for x, y in dataset_val.take(5): show_plot( [x[0][:, 1].numpy(), y[0].numpy(), model.predict(x)[0]], 12, "Single Step Prediction", )<jupyter_output><empty_output>
keras-io/examples/timeseries/ipynb/timeseries_weather_forecasting.ipynb/0
{ "file_path": "keras-io/examples/timeseries/ipynb/timeseries_weather_forecasting.ipynb", "repo_id": "keras-io", "token_count": 4202 }
97
""" Title: Convolutional autoencoder for image denoising Author: [Santiago L. Valdarrama](https://twitter.com/svpino) Date created: 2021/03/01 Last modified: 2021/03/01 Description: How to train a deep convolutional autoencoder for image denoising. Accelerator: GPU """ """ ## Introduction This example demonstrates how to implement a deep convolutional autoencoder for image denoising, mapping noisy digits images from the MNIST dataset to clean digits images. This implementation is based on an original blog post titled [Building Autoencoders in Keras](https://blog.keras.io/building-autoencoders-in-keras.html) by [Franรงois Chollet](https://twitter.com/fchollet). """ """ ## Setup """ import numpy as np import matplotlib.pyplot as plt from keras import layers from keras.datasets import mnist from keras.models import Model def preprocess(array): """Normalizes the supplied array and reshapes it.""" array = array.astype("float32") / 255.0 array = np.reshape(array, (len(array), 28, 28, 1)) return array def noise(array): """Adds random noise to each image in the supplied array.""" noise_factor = 0.4 noisy_array = array + noise_factor * np.random.normal( loc=0.0, scale=1.0, size=array.shape ) return np.clip(noisy_array, 0.0, 1.0) def display(array1, array2): """Displays ten random images from each array.""" n = 10 indices = np.random.randint(len(array1), size=n) images1 = array1[indices, :] images2 = array2[indices, :] plt.figure(figsize=(20, 4)) for i, (image1, image2) in enumerate(zip(images1, images2)): ax = plt.subplot(2, n, i + 1) plt.imshow(image1.reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax = plt.subplot(2, n, i + 1 + n) plt.imshow(image2.reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show() """ ## Prepare the data """ # Since we only need images from the dataset to encode and decode, we # won't use the labels. (train_data, _), (test_data, _) = mnist.load_data() # Normalize and reshape the data train_data = preprocess(train_data) test_data = preprocess(test_data) # Create a copy of the data with added noise noisy_train_data = noise(train_data) noisy_test_data = noise(test_data) # Display the train data and a version of it with added noise display(train_data, noisy_train_data) """ ## Build the autoencoder We are going to use the Functional API to build our convolutional autoencoder. """ input = layers.Input(shape=(28, 28, 1)) # Encoder x = layers.Conv2D(32, (3, 3), activation="relu", padding="same")(input) x = layers.MaxPooling2D((2, 2), padding="same")(x) x = layers.Conv2D(32, (3, 3), activation="relu", padding="same")(x) x = layers.MaxPooling2D((2, 2), padding="same")(x) # Decoder x = layers.Conv2DTranspose(32, (3, 3), strides=2, activation="relu", padding="same")(x) x = layers.Conv2DTranspose(32, (3, 3), strides=2, activation="relu", padding="same")(x) x = layers.Conv2D(1, (3, 3), activation="sigmoid", padding="same")(x) # Autoencoder autoencoder = Model(input, x) autoencoder.compile(optimizer="adam", loss="binary_crossentropy") autoencoder.summary() """ Now we can train our autoencoder using `train_data` as both our input data and target. Notice we are setting up the validation data using the same format. """ autoencoder.fit( x=train_data, y=train_data, epochs=50, batch_size=128, shuffle=True, validation_data=(test_data, test_data), ) """ Let's predict on our test dataset and display the original image together with the prediction from our autoencoder. Notice how the predictions are pretty close to the original images, although not quite the same. """ predictions = autoencoder.predict(test_data) display(test_data, predictions) """ Now that we know that our autoencoder works, let's retrain it using the noisy data as our input and the clean data as our target. We want our autoencoder to learn how to denoise the images. """ autoencoder.fit( x=noisy_train_data, y=train_data, epochs=100, batch_size=128, shuffle=True, validation_data=(noisy_test_data, test_data), ) """ Let's now predict on the noisy data and display the results of our autoencoder. Notice how the autoencoder does an amazing job at removing the noise from the input images. """ predictions = autoencoder.predict(noisy_test_data) display(noisy_test_data, predictions)
keras-io/examples/vision/autoencoder.py/0
{ "file_path": "keras-io/examples/vision/autoencoder.py", "repo_id": "keras-io", "token_count": 1660 }
98
""" Title: FixRes: Fixing train-test resolution discrepancy Author: [Sayak Paul](https://twitter.com/RisingSayak) Date created: 2021/10/08 Last modified: 2021/10/10 Description: Mitigating resolution discrepancy between training and test sets. Accelerator: GPU """ """ ## Introduction It is a common practice to use the same input image resolution while training and testing vision models. However, as investigated in [Fixing the train-test resolution discrepancy](https://arxiv.org/abs/1906.06423) (Touvron et al.), this practice leads to suboptimal performance. Data augmentation is an indispensable part of the training process of deep neural networks. For vision models, we typically use random resized crops during training and center crops during inference. This introduces a discrepancy in the object sizes seen during training and inference. As shown by Touvron et al., if we can fix this discrepancy, we can significantly boost model performance. In this example, we implement the **FixRes** techniques introduced by Touvron et al. to fix this discrepancy. """ """ ## Imports """ import keras from keras import layers import tensorflow as tf # just for image processing and pipeline import tensorflow_datasets as tfds tfds.disable_progress_bar() import matplotlib.pyplot as plt """ ## Load the `tf_flowers` dataset """ train_dataset, val_dataset = tfds.load( "tf_flowers", split=["train[:90%]", "train[90%:]"], as_supervised=True ) num_train = train_dataset.cardinality() num_val = val_dataset.cardinality() print(f"Number of training examples: {num_train}") print(f"Number of validation examples: {num_val}") """ ## Data preprocessing utilities """ """ We create three datasets: 1. A dataset with a smaller resolution - 128x128. 2. Two datasets with a larger resolution - 224x224. We will apply different augmentation transforms to the larger-resolution datasets. The idea of FixRes is to first train a model on a smaller resolution dataset and then fine-tune it on a larger resolution dataset. This simple yet effective recipe leads to non-trivial performance improvements. Please refer to the [original paper](https://arxiv.org/abs/1906.06423) for results. """ # Reference: https://github.com/facebookresearch/FixRes/blob/main/transforms_v2.py. batch_size = 32 auto = tf.data.AUTOTUNE smaller_size = 128 bigger_size = 224 size_for_resizing = int((bigger_size / smaller_size) * bigger_size) central_crop_layer = layers.CenterCrop(bigger_size, bigger_size) def preprocess_initial(train, image_size): """Initial preprocessing function for training on smaller resolution. For training, do random_horizontal_flip -> random_crop. For validation, just resize. No color-jittering has been used. """ def _pp(image, label, train): if train: channels = image.shape[-1] begin, size, _ = tf.image.sample_distorted_bounding_box( tf.shape(image), tf.zeros([0, 0, 4], tf.float32), area_range=(0.05, 1.0), min_object_covered=0, use_image_if_no_bounding_boxes=True, ) image = tf.slice(image, begin, size) image.set_shape([None, None, channels]) image = tf.image.resize(image, [image_size, image_size]) image = tf.image.random_flip_left_right(image) else: image = tf.image.resize(image, [image_size, image_size]) return image, label return _pp def preprocess_finetune(image, label, train): """Preprocessing function for fine-tuning on a higher resolution. For training, resize to a bigger resolution to maintain the ratio -> random_horizontal_flip -> center_crop. For validation, do the same without any horizontal flipping. No color-jittering has been used. """ image = tf.image.resize(image, [size_for_resizing, size_for_resizing]) if train: image = tf.image.random_flip_left_right(image) image = central_crop_layer(image[None, ...])[0] return image, label def make_dataset( dataset: tf.data.Dataset, train: bool, image_size: int = smaller_size, fixres: bool = True, num_parallel_calls=auto, ): if image_size not in [smaller_size, bigger_size]: raise ValueError(f"{image_size} resolution is not supported.") # Determine which preprocessing function we are using. if image_size == smaller_size: preprocess_func = preprocess_initial(train, image_size) elif not fixres and image_size == bigger_size: preprocess_func = preprocess_initial(train, image_size) else: preprocess_func = preprocess_finetune dataset = dataset.map( lambda x, y: preprocess_func(x, y, train), num_parallel_calls=num_parallel_calls, ) dataset = dataset.batch(batch_size) if train: dataset = dataset.shuffle(batch_size * 10) return dataset.prefetch(num_parallel_calls) """ Notice how the augmentation transforms vary for the kind of dataset we are preparing. """ """ ## Prepare datasets """ initial_train_dataset = make_dataset(train_dataset, train=True, image_size=smaller_size) initial_val_dataset = make_dataset(val_dataset, train=False, image_size=smaller_size) finetune_train_dataset = make_dataset(train_dataset, train=True, image_size=bigger_size) finetune_val_dataset = make_dataset(val_dataset, train=False, image_size=bigger_size) vanilla_train_dataset = make_dataset( train_dataset, train=True, image_size=bigger_size, fixres=False ) vanilla_val_dataset = make_dataset( val_dataset, train=False, image_size=bigger_size, fixres=False ) """ ## Visualize the datasets """ def visualize_dataset(batch_images): plt.figure(figsize=(10, 10)) for n in range(25): ax = plt.subplot(5, 5, n + 1) plt.imshow(batch_images[n].numpy().astype("int")) plt.axis("off") plt.show() print(f"Batch shape: {batch_images.shape}.") # Smaller resolution. initial_sample_images, _ = next(iter(initial_train_dataset)) visualize_dataset(initial_sample_images) # Bigger resolution, only for fine-tuning. finetune_sample_images, _ = next(iter(finetune_train_dataset)) visualize_dataset(finetune_sample_images) # Bigger resolution, with the same augmentation transforms as # the smaller resolution dataset. vanilla_sample_images, _ = next(iter(vanilla_train_dataset)) visualize_dataset(vanilla_sample_images) """ ## Model training utilities We train multiple variants of ResNet50V2 ([He et al.](https://arxiv.org/abs/1603.05027)): 1. On the smaller resolution dataset (128x128). It will be trained from scratch. 2. Then fine-tune the model from 1 on the larger resolution (224x224) dataset. 3. Train another ResNet50V2 from scratch on the larger resolution dataset. As a reminder, the larger resolution datasets differ in terms of their augmentation transforms. """ def get_training_model(num_classes=5): inputs = layers.Input((None, None, 3)) resnet_base = keras.applications.ResNet50V2( include_top=False, weights=None, pooling="avg" ) resnet_base.trainable = True x = layers.Rescaling(scale=1.0 / 127.5, offset=-1)(inputs) x = resnet_base(x) outputs = layers.Dense(num_classes, activation="softmax")(x) return keras.Model(inputs, outputs) def train_and_evaluate( model, train_ds, val_ds, epochs, learning_rate=1e-3, use_early_stopping=False, ): optimizer = keras.optimizers.Adam(learning_rate=learning_rate) model.compile( optimizer=optimizer, loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) if use_early_stopping: es_callback = keras.callbacks.EarlyStopping(patience=5) callbacks = [es_callback] else: callbacks = None model.fit( train_ds, validation_data=val_ds, epochs=epochs, callbacks=callbacks, ) _, accuracy = model.evaluate(val_ds) print(f"Top-1 accuracy on the validation set: {accuracy*100:.2f}%.") return model """ ## Experiment 1: Train on 128x128 and then fine-tune on 224x224 """ epochs = 30 smaller_res_model = get_training_model() smaller_res_model = train_and_evaluate( smaller_res_model, initial_train_dataset, initial_val_dataset, epochs ) """ ### Freeze all the layers except for the final Batch Normalization layer For fine-tuning, we train only two layers: * The final Batch Normalization ([Ioffe et al.](https://arxiv.org/abs/1502.03167)) layer. * The classification layer. We are unfreezing the final Batch Normalization layer to compensate for the change in activation statistics before the global average pooling layer. As shown in [the paper](https://arxiv.org/abs/1906.06423), unfreezing the final Batch Normalization layer is enough. For a comprehensive guide on fine-tuning models in Keras, refer to [this tutorial](https://keras.io/guides/transfer_learning/). """ for layer in smaller_res_model.layers[2].layers: layer.trainable = False smaller_res_model.layers[2].get_layer("post_bn").trainable = True epochs = 10 # Use a lower learning rate during fine-tuning. bigger_res_model = train_and_evaluate( smaller_res_model, finetune_train_dataset, finetune_val_dataset, epochs, learning_rate=1e-4, ) """ ## Experiment 2: Train a model on 224x224 resolution from scratch Now, we train another model from scratch on the larger resolution dataset. Recall that the augmentation transforms used in this dataset are different from before. """ epochs = 30 vanilla_bigger_res_model = get_training_model() vanilla_bigger_res_model = train_and_evaluate( vanilla_bigger_res_model, vanilla_train_dataset, vanilla_val_dataset, epochs ) """ As we can notice from the above cells, FixRes leads to a better performance. Another advantage of FixRes is the improved total training time and reduction in GPU memory usage. FixRes is model-agnostic, you can use it on any image classification model to potentially boost performance. You can find more results [here](https://tensorboard.dev/experiment/BQOg28w0TlmvuJYeqsVntw) that were gathered by running the same code with different random seeds. """
keras-io/examples/vision/fixres.py/0
{ "file_path": "keras-io/examples/vision/fixres.py", "repo_id": "keras-io", "token_count": 3636 }
99
<jupyter_start><jupyter_text>Image classification with Vision Transformer**Author:** [Khalid Salama](https://www.linkedin.com/in/khalid-salama-24403144/)**Date created:** 2021/01/18**Last modified:** 2021/01/18**Description:** Implementing the Vision Transformer (ViT) model for image classification. IntroductionThis example implements the [Vision Transformer (ViT)](https://arxiv.org/abs/2010.11929)model by Alexey Dosovitskiy et al. for image classification,and demonstrates it on the CIFAR-100 dataset.The ViT model applies the Transformer architecture with self-attention to sequences ofimage patches, without using convolution layers. Setup<jupyter_code>import os os.environ["KERAS_BACKEND"] = "jax" # @param ["tensorflow", "jax", "torch"] import keras from keras import layers from keras import ops import numpy as np import matplotlib.pyplot as plt<jupyter_output><empty_output><jupyter_text>Prepare the data<jupyter_code>num_classes = 100 input_shape = (32, 32, 3) (x_train, y_train), (x_test, y_test) = keras.datasets.cifar100.load_data() print(f"x_train shape: {x_train.shape} - y_train shape: {y_train.shape}") print(f"x_test shape: {x_test.shape} - y_test shape: {y_test.shape}")<jupyter_output><empty_output><jupyter_text>Configure the hyperparameters<jupyter_code>learning_rate = 0.001 weight_decay = 0.0001 batch_size = 256 num_epochs = 10 # For real training, use num_epochs=100. 10 is a test value image_size = 72 # We'll resize input images to this size patch_size = 6 # Size of the patches to be extract from the input images num_patches = (image_size // patch_size) ** 2 projection_dim = 64 num_heads = 4 transformer_units = [ projection_dim * 2, projection_dim, ] # Size of the transformer layers transformer_layers = 8 mlp_head_units = [ 2048, 1024, ] # Size of the dense layers of the final classifier<jupyter_output><empty_output><jupyter_text>Use data augmentation<jupyter_code>data_augmentation = keras.Sequential( [ layers.Normalization(), layers.Resizing(image_size, image_size), layers.RandomFlip("horizontal"), layers.RandomRotation(factor=0.02), layers.RandomZoom(height_factor=0.2, width_factor=0.2), ], name="data_augmentation", ) # Compute the mean and the variance of the training data for normalization. data_augmentation.layers[0].adapt(x_train)<jupyter_output><empty_output><jupyter_text>Implement multilayer perceptron (MLP)<jupyter_code>def mlp(x, hidden_units, dropout_rate): for units in hidden_units: x = layers.Dense(units, activation=keras.activations.gelu)(x) x = layers.Dropout(dropout_rate)(x) return x<jupyter_output><empty_output><jupyter_text>Implement patch creation as a layer<jupyter_code>class Patches(layers.Layer): def __init__(self, patch_size): super().__init__() self.patch_size = patch_size def call(self, images): input_shape = ops.shape(images) batch_size = input_shape[0] height = input_shape[1] width = input_shape[2] channels = input_shape[3] num_patches_h = height // self.patch_size num_patches_w = width // self.patch_size patches = keras.ops.image.extract_patches(images, size=self.patch_size) patches = ops.reshape( patches, ( batch_size, num_patches_h * num_patches_w, self.patch_size * self.patch_size * channels, ), ) return patches def get_config(self): config = super().get_config() config.update({"patch_size": self.patch_size}) return config<jupyter_output><empty_output><jupyter_text>Let's display patches for a sample image<jupyter_code>plt.figure(figsize=(4, 4)) image = x_train[np.random.choice(range(x_train.shape[0]))] plt.imshow(image.astype("uint8")) plt.axis("off") resized_image = ops.image.resize( ops.convert_to_tensor([image]), size=(image_size, image_size) ) patches = Patches(patch_size)(resized_image) print(f"Image size: {image_size} X {image_size}") print(f"Patch size: {patch_size} X {patch_size}") print(f"Patches per image: {patches.shape[1]}") print(f"Elements per patch: {patches.shape[-1]}") n = int(np.sqrt(patches.shape[1])) plt.figure(figsize=(4, 4)) for i, patch in enumerate(patches[0]): ax = plt.subplot(n, n, i + 1) patch_img = ops.reshape(patch, (patch_size, patch_size, 3)) plt.imshow(ops.convert_to_numpy(patch_img).astype("uint8")) plt.axis("off")<jupyter_output><empty_output><jupyter_text>Implement the patch encoding layerThe `PatchEncoder` layer will linearly transform a patch by projecting it into avector of size `projection_dim`. In addition, it adds a learnable positionembedding to the projected vector.<jupyter_code>class PatchEncoder(layers.Layer): def __init__(self, num_patches, projection_dim): super().__init__() self.num_patches = num_patches self.projection = layers.Dense(units=projection_dim) self.position_embedding = layers.Embedding( input_dim=num_patches, output_dim=projection_dim ) def call(self, patch): positions = ops.expand_dims( ops.arange(start=0, stop=self.num_patches, step=1), axis=0 ) projected_patches = self.projection(patch) encoded = projected_patches + self.position_embedding(positions) return encoded def get_config(self): config = super().get_config() config.update({"num_patches": self.num_patches}) return config<jupyter_output><empty_output><jupyter_text>Build the ViT modelThe ViT model consists of multiple Transformer blocks,which use the `layers.MultiHeadAttention` layer as a self-attention mechanismapplied to the sequence of patches. The Transformer blocks produce a`[batch_size, num_patches, projection_dim]` tensor, which is processed via anclassifier head with softmax to produce the final class probabilities output.Unlike the technique described in the [paper](https://arxiv.org/abs/2010.11929),which prepends a learnable embedding to the sequence of encoded patches to serveas the image representation, all the outputs of the final Transformer block arereshaped with `layers.Flatten()` and used as the imagerepresentation input to the classifier head.Note that the `layers.GlobalAveragePooling1D` layercould also be used instead to aggregate the outputs of the Transformer block,especially when the number of patches and the projection dimensions are large.<jupyter_code>def create_vit_classifier(): inputs = keras.Input(shape=input_shape) # Augment data. augmented = data_augmentation(inputs) # Create patches. patches = Patches(patch_size)(augmented) # Encode patches. encoded_patches = PatchEncoder(num_patches, projection_dim)(patches) # Create multiple layers of the Transformer block. for _ in range(transformer_layers): # Layer normalization 1. x1 = layers.LayerNormalization(epsilon=1e-6)(encoded_patches) # Create a multi-head attention layer. attention_output = layers.MultiHeadAttention( num_heads=num_heads, key_dim=projection_dim, dropout=0.1 )(x1, x1) # Skip connection 1. x2 = layers.Add()([attention_output, encoded_patches]) # Layer normalization 2. x3 = layers.LayerNormalization(epsilon=1e-6)(x2) # MLP. x3 = mlp(x3, hidden_units=transformer_units, dropout_rate=0.1) # Skip connection 2. encoded_patches = layers.Add()([x3, x2]) # Create a [batch_size, projection_dim] tensor. representation = layers.LayerNormalization(epsilon=1e-6)(encoded_patches) representation = layers.Flatten()(representation) representation = layers.Dropout(0.5)(representation) # Add MLP. features = mlp(representation, hidden_units=mlp_head_units, dropout_rate=0.5) # Classify outputs. logits = layers.Dense(num_classes)(features) # Create the Keras model. model = keras.Model(inputs=inputs, outputs=logits) return model<jupyter_output><empty_output><jupyter_text>Compile, train, and evaluate the mode<jupyter_code>def run_experiment(model): optimizer = keras.optimizers.AdamW( learning_rate=learning_rate, weight_decay=weight_decay ) model.compile( optimizer=optimizer, loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=[ keras.metrics.SparseCategoricalAccuracy(name="accuracy"), keras.metrics.SparseTopKCategoricalAccuracy(5, name="top-5-accuracy"), ], ) checkpoint_filepath = "/tmp/checkpoint.weights.h5" checkpoint_callback = keras.callbacks.ModelCheckpoint( checkpoint_filepath, monitor="val_accuracy", save_best_only=True, save_weights_only=True, ) history = model.fit( x=x_train, y=y_train, batch_size=batch_size, epochs=num_epochs, validation_split=0.1, callbacks=[checkpoint_callback], ) model.load_weights(checkpoint_filepath) _, accuracy, top_5_accuracy = model.evaluate(x_test, y_test) print(f"Test accuracy: {round(accuracy * 100, 2)}%") print(f"Test top 5 accuracy: {round(top_5_accuracy * 100, 2)}%") return history vit_classifier = create_vit_classifier() history = run_experiment(vit_classifier) def plot_history(item): plt.plot(history.history[item], label=item) plt.plot(history.history["val_" + item], label="val_" + item) plt.xlabel("Epochs") plt.ylabel(item) plt.title("Train and Validation {} Over Epochs".format(item), fontsize=14) plt.legend() plt.grid() plt.show() plot_history("loss") plot_history("top-5-accuracy")<jupyter_output><empty_output>
keras-io/examples/vision/ipynb/image_classification_with_vision_transformer.ipynb/0
{ "file_path": "keras-io/examples/vision/ipynb/image_classification_with_vision_transformer.ipynb", "repo_id": "keras-io", "token_count": 3819 }
100
<jupyter_start><jupyter_text>Natural language image search with a Dual Encoder**Author:** [Khalid Salama](https://www.linkedin.com/in/khalid-salama-24403144/)**Date created:** 2021/01/30**Last modified:** 2021/01/30**Description:** Implementation of a dual encoder model for retrieving images that match natural language queries. IntroductionThe example demonstrates how to build a dual encoder (also known as two-tower) neural networkmodel to search for images using natural language. The model is inspired bythe [CLIP](https://openai.com/blog/clip/)approach, introduced by Alec Radford et al. The idea is to train a vision encoder and a textencoder jointly to project the representation of images and their captions into the same embeddingspace, such that the caption embeddings are located near the embeddings of the images they describe.This example requires TensorFlow 2.4 or higher.In addition, [TensorFlow Hub](https://www.tensorflow.org/hub)and [TensorFlow Text](https://www.tensorflow.org/tutorials/tensorflow_text/intro)are required for the BERT model, and [TensorFlow Addons](https://www.tensorflow.org/addons)is required for the AdamW optimizer. These libraries can be installed using thefollowing command:```pythonpip install -q -U tensorflow-hub tensorflow-text tensorflow-addons``` Setup<jupyter_code>import os import collections import json import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers import tensorflow_hub as hub import tensorflow_text as text import tensorflow_addons as tfa import matplotlib.pyplot as plt import matplotlib.image as mpimg from tqdm import tqdm # Suppressing tf.hub warnings tf.get_logger().setLevel("ERROR")<jupyter_output><empty_output><jupyter_text>Prepare the dataWe will use the [MS-COCO](https://cocodataset.org/home) dataset to train ourdual encoder model. MS-COCO contains over 82,000 images, each of which has at least5 different caption annotations. The dataset is usually used for[image captioning](https://www.tensorflow.org/tutorials/text/image_captioning)tasks, but we can repurpose the image-caption pairs to train our dual encodermodel for image search.Download and extract the dataFirst, let's download the dataset, which consists of two compressed folders:one with images, and the otherโ€”with associated image captions.Note that the compressed images folder is 13GB in size.<jupyter_code>root_dir = "datasets" annotations_dir = os.path.join(root_dir, "annotations") images_dir = os.path.join(root_dir, "train2014") tfrecords_dir = os.path.join(root_dir, "tfrecords") annotation_file = os.path.join(annotations_dir, "captions_train2014.json") # Download caption annotation files if not os.path.exists(annotations_dir): annotation_zip = tf.keras.utils.get_file( "captions.zip", cache_dir=os.path.abspath("."), origin="http://images.cocodataset.org/annotations/annotations_trainval2014.zip", extract=True, ) os.remove(annotation_zip) # Download image files if not os.path.exists(images_dir): image_zip = tf.keras.utils.get_file( "train2014.zip", cache_dir=os.path.abspath("."), origin="http://images.cocodataset.org/zips/train2014.zip", extract=True, ) os.remove(image_zip) print("Dataset is downloaded and extracted successfully.") with open(annotation_file, "r") as f: annotations = json.load(f)["annotations"] image_path_to_caption = collections.defaultdict(list) for element in annotations: caption = f"{element['caption'].lower().rstrip('.')}" image_path = images_dir + "/COCO_train2014_" + "%012d.jpg" % (element["image_id"]) image_path_to_caption[image_path].append(caption) image_paths = list(image_path_to_caption.keys()) print(f"Number of images: {len(image_paths)}")<jupyter_output><empty_output><jupyter_text>Process and save the data to TFRecord filesYou can change the `sample_size` parameter to control many image-caption pairswill be used for training the dual encoder model.In this example we set `train_size` to 30,000 images,which is about 35% of the dataset. We use 2 captions for eachimage, thus producing 60,000 image-caption pairs. The size of the training setaffects the quality of the produced encoders, but more examples would lead tolonger training time.<jupyter_code>train_size = 30000 valid_size = 5000 captions_per_image = 2 images_per_file = 2000 train_image_paths = image_paths[:train_size] num_train_files = int(np.ceil(train_size / images_per_file)) train_files_prefix = os.path.join(tfrecords_dir, "train") valid_image_paths = image_paths[-valid_size:] num_valid_files = int(np.ceil(valid_size / images_per_file)) valid_files_prefix = os.path.join(tfrecords_dir, "valid") tf.io.gfile.makedirs(tfrecords_dir) def bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def create_example(image_path, caption): feature = { "caption": bytes_feature(caption.encode()), "raw_image": bytes_feature(tf.io.read_file(image_path).numpy()), } return tf.train.Example(features=tf.train.Features(feature=feature)) def write_tfrecords(file_name, image_paths): caption_list = [] image_path_list = [] for image_path in image_paths: captions = image_path_to_caption[image_path][:captions_per_image] caption_list.extend(captions) image_path_list.extend([image_path] * len(captions)) with tf.io.TFRecordWriter(file_name) as writer: for example_idx in range(len(image_path_list)): example = create_example( image_path_list[example_idx], caption_list[example_idx] ) writer.write(example.SerializeToString()) return example_idx + 1 def write_data(image_paths, num_files, files_prefix): example_counter = 0 for file_idx in tqdm(range(num_files)): file_name = files_prefix + "-%02d.tfrecord" % (file_idx) start_idx = images_per_file * file_idx end_idx = start_idx + images_per_file example_counter += write_tfrecords(file_name, image_paths[start_idx:end_idx]) return example_counter train_example_count = write_data(train_image_paths, num_train_files, train_files_prefix) print(f"{train_example_count} training examples were written to tfrecord files.") valid_example_count = write_data(valid_image_paths, num_valid_files, valid_files_prefix) print(f"{valid_example_count} evaluation examples were written to tfrecord files.")<jupyter_output><empty_output><jupyter_text>Create `tf.data.Dataset` for training and evaluation<jupyter_code>feature_description = { "caption": tf.io.FixedLenFeature([], tf.string), "raw_image": tf.io.FixedLenFeature([], tf.string), } def read_example(example): features = tf.io.parse_single_example(example, feature_description) raw_image = features.pop("raw_image") features["image"] = tf.image.resize( tf.image.decode_jpeg(raw_image, channels=3), size=(299, 299) ) return features def get_dataset(file_pattern, batch_size): return ( tf.data.TFRecordDataset(tf.data.Dataset.list_files(file_pattern)) .map( read_example, num_parallel_calls=tf.data.AUTOTUNE, deterministic=False, ) .shuffle(batch_size * 10) .prefetch(buffer_size=tf.data.AUTOTUNE) .batch(batch_size) )<jupyter_output><empty_output><jupyter_text>Implement the projection headThe projection head is used to transform the image and the text embeddings tothe same embedding space with the same dimensionality.<jupyter_code>def project_embeddings( embeddings, num_projection_layers, projection_dims, dropout_rate ): projected_embeddings = layers.Dense(units=projection_dims)(embeddings) for _ in range(num_projection_layers): x = tf.nn.gelu(projected_embeddings) x = layers.Dense(projection_dims)(x) x = layers.Dropout(dropout_rate)(x) x = layers.Add()([projected_embeddings, x]) projected_embeddings = layers.LayerNormalization()(x) return projected_embeddings<jupyter_output><empty_output><jupyter_text>Implement the vision encoderIn this example, we use [Xception](https://keras.io/api/applications/xception/)from [Keras Applications](https://keras.io/api/applications/) as the base for thevision encoder.<jupyter_code>def create_vision_encoder( num_projection_layers, projection_dims, dropout_rate, trainable=False ): # Load the pre-trained Xception model to be used as the base encoder. xception = keras.applications.Xception( include_top=False, weights="imagenet", pooling="avg" ) # Set the trainability of the base encoder. for layer in xception.layers: layer.trainable = trainable # Receive the images as inputs. inputs = layers.Input(shape=(299, 299, 3), name="image_input") # Preprocess the input image. xception_input = tf.keras.applications.xception.preprocess_input(inputs) # Generate the embeddings for the images using the xception model. embeddings = xception(xception_input) # Project the embeddings produced by the model. outputs = project_embeddings( embeddings, num_projection_layers, projection_dims, dropout_rate ) # Create the vision encoder model. return keras.Model(inputs, outputs, name="vision_encoder")<jupyter_output><empty_output><jupyter_text>Implement the text encoderWe use [BERT](https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-12_H-256_A-4/1)from [TensorFlow Hub](https://tfhub.dev) as the text encoder<jupyter_code>def create_text_encoder( num_projection_layers, projection_dims, dropout_rate, trainable=False ): # Load the BERT preprocessing module. preprocess = hub.KerasLayer( "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/2", name="text_preprocessing", ) # Load the pre-trained BERT model to be used as the base encoder. bert = hub.KerasLayer( "https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-4_H-512_A-8/1", "bert", ) # Set the trainability of the base encoder. bert.trainable = trainable # Receive the text as inputs. inputs = layers.Input(shape=(), dtype=tf.string, name="text_input") # Preprocess the text. bert_inputs = preprocess(inputs) # Generate embeddings for the preprocessed text using the BERT model. embeddings = bert(bert_inputs)["pooled_output"] # Project the embeddings produced by the model. outputs = project_embeddings( embeddings, num_projection_layers, projection_dims, dropout_rate ) # Create the text encoder model. return keras.Model(inputs, outputs, name="text_encoder")<jupyter_output><empty_output><jupyter_text>Implement the dual encoderTo calculate the loss, we compute the pairwise dot-product similarity betweeneach `caption_i` and `images_j` in the batch as the predictions.The target similarity between `caption_i` and `image_j` is computed asthe average of the (dot-product similarity between `caption_i` and `caption_j`)and (the dot-product similarity between `image_i` and `image_j`).Then, we use crossentropy to compute the loss between the targets and the predictions.<jupyter_code>class DualEncoder(keras.Model): def __init__(self, text_encoder, image_encoder, temperature=1.0, **kwargs): super().__init__(**kwargs) self.text_encoder = text_encoder self.image_encoder = image_encoder self.temperature = temperature self.loss_tracker = keras.metrics.Mean(name="loss") @property def metrics(self): return [self.loss_tracker] def call(self, features, training=False): # Place each encoder on a separate GPU (if available). # TF will fallback on available devices if there are fewer than 2 GPUs. with tf.device("/gpu:0"): # Get the embeddings for the captions. caption_embeddings = text_encoder(features["caption"], training=training) with tf.device("/gpu:1"): # Get the embeddings for the images. image_embeddings = vision_encoder(features["image"], training=training) return caption_embeddings, image_embeddings def compute_loss(self, caption_embeddings, image_embeddings): # logits[i][j] is the dot_similarity(caption_i, image_j). logits = ( tf.matmul(caption_embeddings, image_embeddings, transpose_b=True) / self.temperature ) # images_similarity[i][j] is the dot_similarity(image_i, image_j). images_similarity = tf.matmul( image_embeddings, image_embeddings, transpose_b=True ) # captions_similarity[i][j] is the dot_similarity(caption_i, caption_j). captions_similarity = tf.matmul( caption_embeddings, caption_embeddings, transpose_b=True ) # targets[i][j] = avarage dot_similarity(caption_i, caption_j) and dot_similarity(image_i, image_j). targets = keras.activations.softmax( (captions_similarity + images_similarity) / (2 * self.temperature) ) # Compute the loss for the captions using crossentropy captions_loss = keras.losses.categorical_crossentropy( y_true=targets, y_pred=logits, from_logits=True ) # Compute the loss for the images using crossentropy images_loss = keras.losses.categorical_crossentropy( y_true=tf.transpose(targets), y_pred=tf.transpose(logits), from_logits=True ) # Return the mean of the loss over the batch. return (captions_loss + images_loss) / 2 def train_step(self, features): with tf.GradientTape() as tape: # Forward pass caption_embeddings, image_embeddings = self(features, training=True) loss = self.compute_loss(caption_embeddings, image_embeddings) # Backward pass gradients = tape.gradient(loss, self.trainable_variables) self.optimizer.apply_gradients(zip(gradients, self.trainable_variables)) # Monitor loss self.loss_tracker.update_state(loss) return {"loss": self.loss_tracker.result()} def test_step(self, features): caption_embeddings, image_embeddings = self(features, training=False) loss = self.compute_loss(caption_embeddings, image_embeddings) self.loss_tracker.update_state(loss) return {"loss": self.loss_tracker.result()}<jupyter_output><empty_output><jupyter_text>Train the dual encoder modelIn this experiment, we freeze the base encoders for text and images, and make onlythe projection head trainable.<jupyter_code>num_epochs = 5 # In practice, train for at least 30 epochs batch_size = 256 vision_encoder = create_vision_encoder( num_projection_layers=1, projection_dims=256, dropout_rate=0.1 ) text_encoder = create_text_encoder( num_projection_layers=1, projection_dims=256, dropout_rate=0.1 ) dual_encoder = DualEncoder(text_encoder, vision_encoder, temperature=0.05) dual_encoder.compile( optimizer=tfa.optimizers.AdamW(learning_rate=0.001, weight_decay=0.001) )<jupyter_output><empty_output><jupyter_text>Note that training the model with 60,000 image-caption pairs, with a batch size of 256,takes around 12 minutes per epoch using a V100 GPU accelerator. If 2 GPUs are available,the epoch takes around 8 minutes.<jupyter_code>print(f"Number of GPUs: {len(tf.config.list_physical_devices('GPU'))}") print(f"Number of examples (caption-image pairs): {train_example_count}") print(f"Batch size: {batch_size}") print(f"Steps per epoch: {int(np.ceil(train_example_count / batch_size))}") train_dataset = get_dataset(os.path.join(tfrecords_dir, "train-*.tfrecord"), batch_size) valid_dataset = get_dataset(os.path.join(tfrecords_dir, "valid-*.tfrecord"), batch_size) # Create a learning rate scheduler callback. reduce_lr = keras.callbacks.ReduceLROnPlateau( monitor="val_loss", factor=0.2, patience=3 ) # Create an early stopping callback. early_stopping = tf.keras.callbacks.EarlyStopping( monitor="val_loss", patience=5, restore_best_weights=True ) history = dual_encoder.fit( train_dataset, epochs=num_epochs, validation_data=valid_dataset, callbacks=[reduce_lr, early_stopping], ) print("Training completed. Saving vision and text encoders...") vision_encoder.save("vision_encoder") text_encoder.save("text_encoder") print("Models are saved.")<jupyter_output><empty_output><jupyter_text>Plotting the training loss:<jupyter_code>plt.plot(history.history["loss"]) plt.plot(history.history["val_loss"]) plt.ylabel("Loss") plt.xlabel("Epoch") plt.legend(["train", "valid"], loc="upper right") plt.show()<jupyter_output><empty_output><jupyter_text>Search for images using natural language queriesWe can then retrieve images corresponding to natural language queries viathe following steps:1. Generate embeddings for the images by feeding them into the `vision_encoder`.2. Feed the natural language query to the `text_encoder` to generate a query embedding.3. Compute the similarity between the query embedding and the image embeddingsin the index to retrieve the indices of the top matches.4. Look up the paths of the top matching images to display them.Note that, after training the `dual encoder`, only the fine-tuned `vision_encoder`and `text_encoder` models will be used, while the `dual_encoder` model will be discarded. Generate embeddings for the imagesWe load the images and feed them into the `vision_encoder` to generate their embeddings.In large scale systems, this step is performed using a parallel data processing framework,such as [Apache Spark](https://spark.apache.org) or [Apache Beam](https://beam.apache.org).Generating the image embeddings may take several minutes.<jupyter_code>print("Loading vision and text encoders...") vision_encoder = keras.models.load_model("vision_encoder") text_encoder = keras.models.load_model("text_encoder") print("Models are loaded.") def read_image(image_path): image_array = tf.image.decode_jpeg(tf.io.read_file(image_path), channels=3) return tf.image.resize(image_array, (299, 299)) print(f"Generating embeddings for {len(image_paths)} images...") image_embeddings = vision_encoder.predict( tf.data.Dataset.from_tensor_slices(image_paths).map(read_image).batch(batch_size), verbose=1, ) print(f"Image embeddings shape: {image_embeddings.shape}.")<jupyter_output><empty_output><jupyter_text>Retrieve relevant imagesIn this example, we use exact matching by computing the dot product similaritybetween the input query embedding and the image embeddings, and retrieve the top kmatches. However, *approximate* similarity matching, using frameworks like[ScaNN](https://github.com/google-research/google-research/tree/master/scann),[Annoy](https://github.com/spotify/annoy), or [Faiss](https://github.com/facebookresearch/faiss)is preferred in real-time use cases to scale with a large number of images.<jupyter_code>def find_matches(image_embeddings, queries, k=9, normalize=True): # Get the embedding for the query. query_embedding = text_encoder(tf.convert_to_tensor(queries)) # Normalize the query and the image embeddings. if normalize: image_embeddings = tf.math.l2_normalize(image_embeddings, axis=1) query_embedding = tf.math.l2_normalize(query_embedding, axis=1) # Compute the dot product between the query and the image embeddings. dot_similarity = tf.matmul(query_embedding, image_embeddings, transpose_b=True) # Retrieve top k indices. results = tf.math.top_k(dot_similarity, k).indices.numpy() # Return matching image paths. return [[image_paths[idx] for idx in indices] for indices in results]<jupyter_output><empty_output><jupyter_text>Set the `query` variable to the type of images you want to search for.Try things like: 'a plate of healthy food','a woman wearing a hat is walking down a sidewalk','a bird sits near to the water', or 'wild animals are standing in a field'.<jupyter_code>query = "a family standing next to the ocean on a sandy beach with a surf board" matches = find_matches(image_embeddings, [query], normalize=True)[0] plt.figure(figsize=(20, 20)) for i in range(9): ax = plt.subplot(3, 3, i + 1) plt.imshow(mpimg.imread(matches[i])) plt.axis("off")<jupyter_output><empty_output><jupyter_text>Evaluate the retrieval qualityTo evaluate the dual encoder model, we use the captions as queries.We use the out-of-training-sample images and captions to evaluate the retrieval quality,using top k accuracy. A true prediction is counted if, for a given caption, its associated imageis retrieved within the top k matches.<jupyter_code>def compute_top_k_accuracy(image_paths, k=100): hits = 0 num_batches = int(np.ceil(len(image_paths) / batch_size)) for idx in tqdm(range(num_batches)): start_idx = idx * batch_size end_idx = start_idx + batch_size current_image_paths = image_paths[start_idx:end_idx] queries = [ image_path_to_caption[image_path][0] for image_path in current_image_paths ] result = find_matches(image_embeddings, queries, k) hits += sum( [ image_path in matches for (image_path, matches) in list(zip(current_image_paths, result)) ] ) return hits / len(image_paths) print("Scoring training data...") train_accuracy = compute_top_k_accuracy(train_image_paths) print(f"Train accuracy: {round(train_accuracy * 100, 3)}%") print("Scoring evaluation data...") eval_accuracy = compute_top_k_accuracy(image_paths[train_size:]) print(f"Eval accuracy: {round(eval_accuracy * 100, 3)}%")<jupyter_output><empty_output>
keras-io/examples/vision/ipynb/nl_image_search.ipynb/0
{ "file_path": "keras-io/examples/vision/ipynb/nl_image_search.ipynb", "repo_id": "keras-io", "token_count": 7940 }
101
<jupyter_start><jupyter_text>Zero-DCE for low-light image enhancement**Author:** [Soumik Rakshit](http://github.com/soumik12345)**Date created:** 2021/09/18**Last modified:** 2023/07/15**Description:** Implementing Zero-Reference Deep Curve Estimation for low-light image enhancement. Introduction**Zero-Reference Deep Curve Estimation** or **Zero-DCE** formulates low-light imageenhancement as the task of estimating an image-specific[*tonal curve*](https://en.wikipedia.org/wiki/Curve_(tonality)) with a deep neural network.In this example, we train a lightweight deep network, **DCE-Net**, to estimatepixel-wise and high-order tonal curves for dynamic range adjustment of a given image.Zero-DCE takes a low-light image as input and produces high-order tonal curves as its output.These curves are then used for pixel-wise adjustment on the dynamic range of the input toobtain an enhanced image. The curve estimation process is done in such a way that it maintainsthe range of the enhanced image and preserves the contrast of neighboring pixels. Thiscurve estimation is inspired by curves adjustment used in photo editing software such asAdobe Photoshop where users can adjust points throughout an imageโ€™s tonal range.Zero-DCE is appealing because of its relaxed assumptions with regard to reference images:it does not require any input/output image pairs during training.This is achieved through a set of carefully formulated non-reference loss functions,which implicitly measure the enhancement quality and guide the training of the network. References- [Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement](https://arxiv.org/abs/2001.06826)- [Curves adjustment in Adobe Photoshop](https://helpx.adobe.com/photoshop/using/curves-adjustment.html) Downloading LOLDatasetThe **LoL Dataset** has been created for low-light image enhancement. It provides 485images for training and 15 for testing. Each image pair in the dataset consists of alow-light input image and its corresponding well-exposed reference image.<jupyter_code>import os os.environ["KERAS_BACKEND"] = "tensorflow" import random import numpy as np from glob import glob from PIL import Image, ImageOps import matplotlib.pyplot as plt import keras from keras import layers import tensorflow as tf !wget https://huggingface.co/datasets/geekyrakshit/LoL-Dataset/resolve/main/lol_dataset.zip !unzip -q lol_dataset.zip && rm lol_dataset.zip<jupyter_output><empty_output><jupyter_text>Creating a TensorFlow DatasetWe use 300 low-light images from the LoL Dataset training set for training, and we usethe remaining 185 low-light images for validation. We resize the images to size `256 x256` to be used for both training and validation. Note that in order to train the DCE-Net,we will not require the corresponding enhanced images.<jupyter_code>IMAGE_SIZE = 256 BATCH_SIZE = 16 MAX_TRAIN_IMAGES = 400 def load_data(image_path): image = tf.io.read_file(image_path) image = tf.image.decode_png(image, channels=3) image = tf.image.resize(images=image, size=[IMAGE_SIZE, IMAGE_SIZE]) image = image / 255.0 return image def data_generator(low_light_images): dataset = tf.data.Dataset.from_tensor_slices((low_light_images)) dataset = dataset.map(load_data, num_parallel_calls=tf.data.AUTOTUNE) dataset = dataset.batch(BATCH_SIZE, drop_remainder=True) return dataset train_low_light_images = sorted(glob("./lol_dataset/our485/low/*"))[:MAX_TRAIN_IMAGES] val_low_light_images = sorted(glob("./lol_dataset/our485/low/*"))[MAX_TRAIN_IMAGES:] test_low_light_images = sorted(glob("./lol_dataset/eval15/low/*")) train_dataset = data_generator(train_low_light_images) val_dataset = data_generator(val_low_light_images) print("Train Dataset:", train_dataset) print("Validation Dataset:", val_dataset)<jupyter_output><empty_output><jupyter_text>The Zero-DCE FrameworkThe goal of DCE-Net is to estimate a set of best-fitting light-enhancement curves(LE-curves) given an input image. The framework then maps all pixels of the inputโ€™s RGBchannels by applying the curves iteratively to obtain the final enhanced image. Understanding light-enhancement curvesA ligh-enhancement curve is a kind of curve that can map a low-light imageto its enhanced version automatically,where the self-adaptive curve parameters are solely dependent on the input image.When designing such a curve, three objectives should be taken into account:- Each pixel value of the enhanced image should be in the normalized range `[0,1]`, in order toavoid information loss induced by overflow truncation.- It should be monotonous, to preserve the contrast between neighboring pixels.- The shape of this curve should be as simple as possible,and the curve should be differentiable to allow backpropagation.The light-enhancement curve is separately applied to three RGB channels instead of solely on theillumination channel. The three-channel adjustment can better preserve the inherent color and reducethe risk of over-saturation. DCE-NetThe DCE-Net is a lightweight deep neural network that learns the mapping between an inputimage and its best-fitting curve parameter maps. The input to the DCE-Net is a low-lightimage while the outputs are a set of pixel-wise curve parameter maps for correspondinghigher-order curves. It is a plain CNN of seven convolutional layers with symmetricalconcatenation. Each layer consists of 32 convolutional kernels of size 3ร—3 and stride 1followed by the ReLU activation function. The last convolutional layer is followed by theTanh activation function, which produces 24 parameter maps for 8 iterations, where eachiteration requires three curve parameter maps for the three channels.<jupyter_code>def build_dce_net(): input_img = keras.Input(shape=[None, None, 3]) conv1 = layers.Conv2D( 32, (3, 3), strides=(1, 1), activation="relu", padding="same" )(input_img) conv2 = layers.Conv2D( 32, (3, 3), strides=(1, 1), activation="relu", padding="same" )(conv1) conv3 = layers.Conv2D( 32, (3, 3), strides=(1, 1), activation="relu", padding="same" )(conv2) conv4 = layers.Conv2D( 32, (3, 3), strides=(1, 1), activation="relu", padding="same" )(conv3) int_con1 = layers.Concatenate(axis=-1)([conv4, conv3]) conv5 = layers.Conv2D( 32, (3, 3), strides=(1, 1), activation="relu", padding="same" )(int_con1) int_con2 = layers.Concatenate(axis=-1)([conv5, conv2]) conv6 = layers.Conv2D( 32, (3, 3), strides=(1, 1), activation="relu", padding="same" )(int_con2) int_con3 = layers.Concatenate(axis=-1)([conv6, conv1]) x_r = layers.Conv2D(24, (3, 3), strides=(1, 1), activation="tanh", padding="same")( int_con3 ) return keras.Model(inputs=input_img, outputs=x_r)<jupyter_output><empty_output><jupyter_text>Loss functionsTo enable zero-reference learning in DCE-Net, we use a set of differentiablezero-reference losses that allow us to evaluate the quality of enhanced images. Color constancy lossThe *color constancy loss* is used to correct the potential color deviations in theenhanced image.<jupyter_code>def color_constancy_loss(x): mean_rgb = tf.reduce_mean(x, axis=(1, 2), keepdims=True) mr, mg, mb = ( mean_rgb[:, :, :, 0], mean_rgb[:, :, :, 1], mean_rgb[:, :, :, 2], ) d_rg = tf.square(mr - mg) d_rb = tf.square(mr - mb) d_gb = tf.square(mb - mg) return tf.sqrt(tf.square(d_rg) + tf.square(d_rb) + tf.square(d_gb))<jupyter_output><empty_output><jupyter_text>Exposure lossTo restrain under-/over-exposed regions, we use the *exposure control loss*.It measures the distance between the average intensity value of a local regionand a preset well-exposedness level (set to `0.6`).<jupyter_code>def exposure_loss(x, mean_val=0.6): x = tf.reduce_mean(x, axis=3, keepdims=True) mean = tf.nn.avg_pool2d(x, ksize=16, strides=16, padding="VALID") return tf.reduce_mean(tf.square(mean - mean_val))<jupyter_output><empty_output><jupyter_text>Illumination smoothness lossTo preserve the monotonicity relations between neighboring pixels, the*illumination smoothness loss* is added to each curve parameter map.<jupyter_code>def illumination_smoothness_loss(x): batch_size = tf.shape(x)[0] h_x = tf.shape(x)[1] w_x = tf.shape(x)[2] count_h = (tf.shape(x)[2] - 1) * tf.shape(x)[3] count_w = tf.shape(x)[2] * (tf.shape(x)[3] - 1) h_tv = tf.reduce_sum(tf.square((x[:, 1:, :, :] - x[:, : h_x - 1, :, :]))) w_tv = tf.reduce_sum(tf.square((x[:, :, 1:, :] - x[:, :, : w_x - 1, :]))) batch_size = tf.cast(batch_size, dtype=tf.float32) count_h = tf.cast(count_h, dtype=tf.float32) count_w = tf.cast(count_w, dtype=tf.float32) return 2 * (h_tv / count_h + w_tv / count_w) / batch_size<jupyter_output><empty_output><jupyter_text>Spatial consistency lossThe *spatial consistency loss* encourages spatial coherence of the enhanced image bypreserving the contrast between neighboring regions across the input image and its enhanced version.<jupyter_code>class SpatialConsistencyLoss(keras.losses.Loss): def __init__(self, **kwargs): super().__init__(reduction="none") self.left_kernel = tf.constant( [[[[0, 0, 0]], [[-1, 1, 0]], [[0, 0, 0]]]], dtype=tf.float32 ) self.right_kernel = tf.constant( [[[[0, 0, 0]], [[0, 1, -1]], [[0, 0, 0]]]], dtype=tf.float32 ) self.up_kernel = tf.constant( [[[[0, -1, 0]], [[0, 1, 0]], [[0, 0, 0]]]], dtype=tf.float32 ) self.down_kernel = tf.constant( [[[[0, 0, 0]], [[0, 1, 0]], [[0, -1, 0]]]], dtype=tf.float32 ) def call(self, y_true, y_pred): original_mean = tf.reduce_mean(y_true, 3, keepdims=True) enhanced_mean = tf.reduce_mean(y_pred, 3, keepdims=True) original_pool = tf.nn.avg_pool2d( original_mean, ksize=4, strides=4, padding="VALID" ) enhanced_pool = tf.nn.avg_pool2d( enhanced_mean, ksize=4, strides=4, padding="VALID" ) d_original_left = tf.nn.conv2d( original_pool, self.left_kernel, strides=[1, 1, 1, 1], padding="SAME", ) d_original_right = tf.nn.conv2d( original_pool, self.right_kernel, strides=[1, 1, 1, 1], padding="SAME", ) d_original_up = tf.nn.conv2d( original_pool, self.up_kernel, strides=[1, 1, 1, 1], padding="SAME" ) d_original_down = tf.nn.conv2d( original_pool, self.down_kernel, strides=[1, 1, 1, 1], padding="SAME", ) d_enhanced_left = tf.nn.conv2d( enhanced_pool, self.left_kernel, strides=[1, 1, 1, 1], padding="SAME", ) d_enhanced_right = tf.nn.conv2d( enhanced_pool, self.right_kernel, strides=[1, 1, 1, 1], padding="SAME", ) d_enhanced_up = tf.nn.conv2d( enhanced_pool, self.up_kernel, strides=[1, 1, 1, 1], padding="SAME" ) d_enhanced_down = tf.nn.conv2d( enhanced_pool, self.down_kernel, strides=[1, 1, 1, 1], padding="SAME", ) d_left = tf.square(d_original_left - d_enhanced_left) d_right = tf.square(d_original_right - d_enhanced_right) d_up = tf.square(d_original_up - d_enhanced_up) d_down = tf.square(d_original_down - d_enhanced_down) return d_left + d_right + d_up + d_down<jupyter_output><empty_output><jupyter_text>Deep curve estimation modelWe implement the Zero-DCE framework as a Keras subclassed model.<jupyter_code>class ZeroDCE(keras.Model): def __init__(self, **kwargs): super().__init__(**kwargs) self.dce_model = build_dce_net() def compile(self, learning_rate, **kwargs): super().compile(**kwargs) self.optimizer = keras.optimizers.Adam(learning_rate=learning_rate) self.spatial_constancy_loss = SpatialConsistencyLoss(reduction="none") self.total_loss_tracker = keras.metrics.Mean(name="total_loss") self.illumination_smoothness_loss_tracker = keras.metrics.Mean( name="illumination_smoothness_loss" ) self.spatial_constancy_loss_tracker = keras.metrics.Mean( name="spatial_constancy_loss" ) self.color_constancy_loss_tracker = keras.metrics.Mean( name="color_constancy_loss" ) self.exposure_loss_tracker = keras.metrics.Mean(name="exposure_loss") @property def metrics(self): return [ self.total_loss_tracker, self.illumination_smoothness_loss_tracker, self.spatial_constancy_loss_tracker, self.color_constancy_loss_tracker, self.exposure_loss_tracker, ] def get_enhanced_image(self, data, output): r1 = output[:, :, :, :3] r2 = output[:, :, :, 3:6] r3 = output[:, :, :, 6:9] r4 = output[:, :, :, 9:12] r5 = output[:, :, :, 12:15] r6 = output[:, :, :, 15:18] r7 = output[:, :, :, 18:21] r8 = output[:, :, :, 21:24] x = data + r1 * (tf.square(data) - data) x = x + r2 * (tf.square(x) - x) x = x + r3 * (tf.square(x) - x) enhanced_image = x + r4 * (tf.square(x) - x) x = enhanced_image + r5 * (tf.square(enhanced_image) - enhanced_image) x = x + r6 * (tf.square(x) - x) x = x + r7 * (tf.square(x) - x) enhanced_image = x + r8 * (tf.square(x) - x) return enhanced_image def call(self, data): dce_net_output = self.dce_model(data) return self.get_enhanced_image(data, dce_net_output) def compute_losses(self, data, output): enhanced_image = self.get_enhanced_image(data, output) loss_illumination = 200 * illumination_smoothness_loss(output) loss_spatial_constancy = tf.reduce_mean( self.spatial_constancy_loss(enhanced_image, data) ) loss_color_constancy = 5 * tf.reduce_mean(color_constancy_loss(enhanced_image)) loss_exposure = 10 * tf.reduce_mean(exposure_loss(enhanced_image)) total_loss = ( loss_illumination + loss_spatial_constancy + loss_color_constancy + loss_exposure ) return { "total_loss": total_loss, "illumination_smoothness_loss": loss_illumination, "spatial_constancy_loss": loss_spatial_constancy, "color_constancy_loss": loss_color_constancy, "exposure_loss": loss_exposure, } def train_step(self, data): with tf.GradientTape() as tape: output = self.dce_model(data) losses = self.compute_losses(data, output) gradients = tape.gradient( losses["total_loss"], self.dce_model.trainable_weights ) self.optimizer.apply_gradients(zip(gradients, self.dce_model.trainable_weights)) self.total_loss_tracker.update_state(losses["total_loss"]) self.illumination_smoothness_loss_tracker.update_state( losses["illumination_smoothness_loss"] ) self.spatial_constancy_loss_tracker.update_state( losses["spatial_constancy_loss"] ) self.color_constancy_loss_tracker.update_state(losses["color_constancy_loss"]) self.exposure_loss_tracker.update_state(losses["exposure_loss"]) return {metric.name: metric.result() for metric in self.metrics} def test_step(self, data): output = self.dce_model(data) losses = self.compute_losses(data, output) self.total_loss_tracker.update_state(losses["total_loss"]) self.illumination_smoothness_loss_tracker.update_state( losses["illumination_smoothness_loss"] ) self.spatial_constancy_loss_tracker.update_state( losses["spatial_constancy_loss"] ) self.color_constancy_loss_tracker.update_state(losses["color_constancy_loss"]) self.exposure_loss_tracker.update_state(losses["exposure_loss"]) return {metric.name: metric.result() for metric in self.metrics} def save_weights(self, filepath, overwrite=True, save_format=None, options=None): """While saving the weights, we simply save the weights of the DCE-Net""" self.dce_model.save_weights( filepath, overwrite=overwrite, save_format=save_format, options=options, ) def load_weights(self, filepath, by_name=False, skip_mismatch=False, options=None): """While loading the weights, we simply load the weights of the DCE-Net""" self.dce_model.load_weights( filepath=filepath, by_name=by_name, skip_mismatch=skip_mismatch, options=options, )<jupyter_output><empty_output><jupyter_text>Training<jupyter_code>zero_dce_model = ZeroDCE() zero_dce_model.compile(learning_rate=1e-4) history = zero_dce_model.fit(train_dataset, validation_data=val_dataset, epochs=100) def plot_result(item): plt.plot(history.history[item], label=item) plt.plot(history.history["val_" + item], label="val_" + item) plt.xlabel("Epochs") plt.ylabel(item) plt.title("Train and Validation {} Over Epochs".format(item), fontsize=14) plt.legend() plt.grid() plt.show() plot_result("total_loss") plot_result("illumination_smoothness_loss") plot_result("spatial_constancy_loss") plot_result("color_constancy_loss") plot_result("exposure_loss")<jupyter_output><empty_output><jupyter_text>Inference<jupyter_code>def plot_results(images, titles, figure_size=(12, 12)): fig = plt.figure(figsize=figure_size) for i in range(len(images)): fig.add_subplot(1, len(images), i + 1).set_title(titles[i]) _ = plt.imshow(images[i]) plt.axis("off") plt.show() def infer(original_image): image = keras.utils.img_to_array(original_image) image = image.astype("float32") / 255.0 image = np.expand_dims(image, axis=0) output_image = zero_dce_model(image) output_image = tf.cast((output_image[0, :, :, :] * 255), dtype=np.uint8) output_image = Image.fromarray(output_image.numpy()) return output_image<jupyter_output><empty_output><jupyter_text>Inference on test imagesWe compare the test images from LOLDataset enhanced by MIRNet with images enhanced viathe `PIL.ImageOps.autocontrast()` function.You can use the trained model hosted on [Hugging Face Hub](https://huggingface.co/keras-io/low-light-image-enhancement)and try the demo on [Hugging Face Spaces](https://huggingface.co/spaces/keras-io/low-light-image-enhancement).<jupyter_code>for val_image_file in test_low_light_images: original_image = Image.open(val_image_file) enhanced_image = infer(original_image) plot_results( [original_image, ImageOps.autocontrast(original_image), enhanced_image], ["Original", "PIL Autocontrast", "Enhanced"], (20, 12), )<jupyter_output><empty_output>
keras-io/examples/vision/ipynb/zero_dce.ipynb/0
{ "file_path": "keras-io/examples/vision/ipynb/zero_dce.ipynb", "repo_id": "keras-io", "token_count": 7844 }
102
# Next-Frame Video Prediction with Convolutional LSTMs **Author:** [Amogh Joshi](https://github.com/amogh7joshi)<br> **Date created:** 2021/06/02<br> **Last modified:** 2023/11/10<br> **Description:** How to build and train a convolutional LSTM model for next-frame video prediction. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/vision/ipynb/conv_lstm.ipynb) <span class="k-dot">โ€ข</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/examples/vision/conv_lstm.py) --- ## Introduction The [Convolutional LSTM](https://papers.nips.cc/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf) architectures bring together time series processing and computer vision by introducing a convolutional recurrent cell in a LSTM layer. In this example, we will explore the Convolutional LSTM model in an application to next-frame prediction, the process of predicting what video frames come next given a series of past frames. --- ## Setup ```python import numpy as np import matplotlib.pyplot as plt import keras from keras import layers import io import imageio from IPython.display import Image, display from ipywidgets import widgets, Layout, HBox ``` --- ## Dataset Construction For this example, we will be using the [Moving MNIST](http://www.cs.toronto.edu/~nitish/unsupervised_video/) dataset. We will download the dataset and then construct and preprocess training and validation sets. For next-frame prediction, our model will be using a previous frame, which we'll call `f_n`, to predict a new frame, called `f_(n + 1)`. To allow the model to create these predictions, we'll need to process the data such that we have "shifted" inputs and outputs, where the input data is frame `x_n`, being used to predict frame `y_(n + 1)`. ```python # Download and load the dataset. fpath = keras.utils.get_file( "moving_mnist.npy", "http://www.cs.toronto.edu/~nitish/unsupervised_video/mnist_test_seq.npy", ) dataset = np.load(fpath) # Swap the axes representing the number of frames and number of data samples. dataset = np.swapaxes(dataset, 0, 1) # We'll pick out 1000 of the 10000 total examples and use those. dataset = dataset[:1000, ...] # Add a channel dimension since the images are grayscale. dataset = np.expand_dims(dataset, axis=-1) # Split into train and validation sets using indexing to optimize memory. indexes = np.arange(dataset.shape[0]) np.random.shuffle(indexes) train_index = indexes[: int(0.9 * dataset.shape[0])] val_index = indexes[int(0.9 * dataset.shape[0]) :] train_dataset = dataset[train_index] val_dataset = dataset[val_index] # Normalize the data to the 0-1 range. train_dataset = train_dataset / 255 val_dataset = val_dataset / 255 # We'll define a helper function to shift the frames, where # `x` is frames 0 to n - 1, and `y` is frames 1 to n. def create_shifted_frames(data): x = data[:, 0 : data.shape[1] - 1, :, :] y = data[:, 1 : data.shape[1], :, :] return x, y # Apply the processing function to the datasets. x_train, y_train = create_shifted_frames(train_dataset) x_val, y_val = create_shifted_frames(val_dataset) # Inspect the dataset. print("Training Dataset Shapes: " + str(x_train.shape) + ", " + str(y_train.shape)) print("Validation Dataset Shapes: " + str(x_val.shape) + ", " + str(y_val.shape)) ``` <div class="k-default-codeblock"> ``` Downloading data from http://www.cs.toronto.edu/~nitish/unsupervised_video/mnist_test_seq.npy 819200096/819200096 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 116s 0us/step Training Dataset Shapes: (900, 19, 64, 64, 1), (900, 19, 64, 64, 1) Validation Dataset Shapes: (100, 19, 64, 64, 1), (100, 19, 64, 64, 1) ``` </div> --- ## Data Visualization Our data consists of sequences of frames, each of which are used to predict the upcoming frame. Let's take a look at some of these sequential frames. ```python # Construct a figure on which we will visualize the images. fig, axes = plt.subplots(4, 5, figsize=(10, 8)) # Plot each of the sequential images for one random data example. data_choice = np.random.choice(range(len(train_dataset)), size=1)[0] for idx, ax in enumerate(axes.flat): ax.imshow(np.squeeze(train_dataset[data_choice][idx]), cmap="gray") ax.set_title(f"Frame {idx + 1}") ax.axis("off") # Print information and display the figure. print(f"Displaying frames for example {data_choice}.") plt.show() ``` <div class="k-default-codeblock"> ``` Displaying frames for example 95. ``` </div> ![png](/img/examples/vision/conv_lstm/conv_lstm_7_1.png) --- ## Model Construction To build a Convolutional LSTM model, we will use the `ConvLSTM2D` layer, which will accept inputs of shape `(batch_size, num_frames, width, height, channels)`, and return a prediction movie of the same shape. ```python # Construct the input layer with no definite frame size. inp = layers.Input(shape=(None, *x_train.shape[2:])) # We will construct 3 `ConvLSTM2D` layers with batch normalization, # followed by a `Conv3D` layer for the spatiotemporal outputs. x = layers.ConvLSTM2D( filters=64, kernel_size=(5, 5), padding="same", return_sequences=True, activation="relu", )(inp) x = layers.BatchNormalization()(x) x = layers.ConvLSTM2D( filters=64, kernel_size=(3, 3), padding="same", return_sequences=True, activation="relu", )(x) x = layers.BatchNormalization()(x) x = layers.ConvLSTM2D( filters=64, kernel_size=(1, 1), padding="same", return_sequences=True, activation="relu", )(x) x = layers.Conv3D( filters=1, kernel_size=(3, 3, 3), activation="sigmoid", padding="same" )(x) # Next, we will build the complete model and compile it. model = keras.models.Model(inp, x) model.compile( loss=keras.losses.binary_crossentropy, optimizer=keras.optimizers.Adam(), ) ``` --- ## Model Training With our model and data constructed, we can now train the model. ```python # Define some callbacks to improve training. early_stopping = keras.callbacks.EarlyStopping(monitor="val_loss", patience=10) reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor="val_loss", patience=5) # Define modifiable training hyperparameters. epochs = 20 batch_size = 5 # Fit the model to the training data. model.fit( x_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(x_val, y_val), callbacks=[early_stopping, reduce_lr], ) ``` <div class="k-default-codeblock"> ``` Epoch 1/20 180/180 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 50s 226ms/step - loss: 0.1510 - val_loss: 0.2966 - learning_rate: 0.0010 Epoch 2/20 180/180 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 40s 219ms/step - loss: 0.0287 - val_loss: 0.1766 - learning_rate: 0.0010 Epoch 3/20 180/180 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 40s 219ms/step - loss: 0.0269 - val_loss: 0.0661 - learning_rate: 0.0010 Epoch 4/20 180/180 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 40s 219ms/step - loss: 0.0264 - val_loss: 0.0279 - learning_rate: 0.0010 Epoch 5/20 180/180 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 40s 219ms/step - loss: 0.0258 - val_loss: 0.0254 - learning_rate: 0.0010 Epoch 6/20 180/180 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 40s 219ms/step - loss: 0.0256 - val_loss: 0.0253 - learning_rate: 0.0010 Epoch 7/20 180/180 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 40s 219ms/step - loss: 0.0251 - val_loss: 0.0248 - learning_rate: 0.0010 Epoch 8/20 180/180 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 40s 219ms/step - loss: 0.0251 - val_loss: 0.0251 - learning_rate: 0.0010 Epoch 9/20 180/180 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 40s 219ms/step - loss: 0.0247 - val_loss: 0.0243 - learning_rate: 0.0010 Epoch 10/20 180/180 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 40s 219ms/step - loss: 0.0246 - val_loss: 0.0246 - learning_rate: 0.0010 Epoch 11/20 180/180 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 40s 219ms/step - loss: 0.0245 - val_loss: 0.0247 - learning_rate: 0.0010 Epoch 12/20 180/180 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 40s 219ms/step - loss: 0.0241 - val_loss: 0.0243 - learning_rate: 0.0010 Epoch 13/20 180/180 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 40s 219ms/step - loss: 0.0244 - val_loss: 0.0245 - learning_rate: 0.0010 Epoch 14/20 180/180 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 40s 219ms/step - loss: 0.0241 - val_loss: 0.0241 - learning_rate: 0.0010 Epoch 15/20 180/180 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 40s 219ms/step - loss: 0.0243 - val_loss: 0.0241 - learning_rate: 0.0010 Epoch 16/20 180/180 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 40s 219ms/step - loss: 0.0242 - val_loss: 0.0242 - learning_rate: 0.0010 Epoch 17/20 180/180 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 40s 219ms/step - loss: 0.0240 - val_loss: 0.0240 - learning_rate: 0.0010 Epoch 18/20 180/180 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 40s 219ms/step - loss: 0.0240 - val_loss: 0.0243 - learning_rate: 0.0010 Epoch 19/20 180/180 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 40s 219ms/step - loss: 0.0240 - val_loss: 0.0244 - learning_rate: 0.0010 Epoch 20/20 180/180 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 40s 219ms/step - loss: 0.0237 - val_loss: 0.0238 - learning_rate: 1.0000e-04 <keras.src.callbacks.history.History at 0x7ff294f9c340> ``` </div> --- ## Frame Prediction Visualizations With our model now constructed and trained, we can generate some example frame predictions based on a new video. We'll pick a random example from the validation set and then choose the first ten frames from them. From there, we can allow the model to predict 10 new frames, which we can compare to the ground truth frame predictions. ```python # Select a random example from the validation dataset. example = val_dataset[np.random.choice(range(len(val_dataset)), size=1)[0]] # Pick the first/last ten frames from the example. frames = example[:10, ...] original_frames = example[10:, ...] # Predict a new set of 10 frames. for _ in range(10): # Extract the model's prediction and post-process it. new_prediction = model.predict(np.expand_dims(frames, axis=0)) new_prediction = np.squeeze(new_prediction, axis=0) predicted_frame = np.expand_dims(new_prediction[-1, ...], axis=0) # Extend the set of prediction frames. frames = np.concatenate((frames, predicted_frame), axis=0) # Construct a figure for the original and new frames. fig, axes = plt.subplots(2, 10, figsize=(20, 4)) # Plot the original frames. for idx, ax in enumerate(axes[0]): ax.imshow(np.squeeze(original_frames[idx]), cmap="gray") ax.set_title(f"Frame {idx + 11}") ax.axis("off") # Plot the new frames. new_frames = frames[10:, ...] for idx, ax in enumerate(axes[1]): ax.imshow(np.squeeze(new_frames[idx]), cmap="gray") ax.set_title(f"Frame {idx + 11}") ax.axis("off") # Display the figure. plt.show() ``` <div class="k-default-codeblock"> ``` 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 2s 2s/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 1s 800ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 1s 805ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 1s 790ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 1s 821ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 1s 824ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 1s 928ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 1s 813ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 1s 810ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 1s 814ms/step ``` </div> ![png](/img/examples/vision/conv_lstm/conv_lstm_13_1.png) --- ## Predicted Videos Finally, we'll pick a few examples from the validation set and construct some GIFs with them to see the model's predicted videos. You can use the trained model hosted on [Hugging Face Hub](https://huggingface.co/keras-io/conv-lstm) and try the demo on [Hugging Face Spaces](https://huggingface.co/spaces/keras-io/conv-lstm). ```python # Select a few random examples from the dataset. examples = val_dataset[np.random.choice(range(len(val_dataset)), size=5)] # Iterate over the examples and predict the frames. predicted_videos = [] for example in examples: # Pick the first/last ten frames from the example. frames = example[:10, ...] original_frames = example[10:, ...] new_predictions = np.zeros(shape=(10, *frames[0].shape)) # Predict a new set of 10 frames. for i in range(10): # Extract the model's prediction and post-process it. frames = example[: 10 + i + 1, ...] new_prediction = model.predict(np.expand_dims(frames, axis=0)) new_prediction = np.squeeze(new_prediction, axis=0) predicted_frame = np.expand_dims(new_prediction[-1, ...], axis=0) # Extend the set of prediction frames. new_predictions[i] = predicted_frame # Create and save GIFs for each of the ground truth/prediction images. for frame_set in [original_frames, new_predictions]: # Construct a GIF from the selected video frames. current_frames = np.squeeze(frame_set) current_frames = current_frames[..., np.newaxis] * np.ones(3) current_frames = (current_frames * 255).astype(np.uint8) current_frames = list(current_frames) # Construct a GIF from the frames. with io.BytesIO() as gif: imageio.mimsave(gif, current_frames, "GIF", duration=200) predicted_videos.append(gif.getvalue()) # Display the videos. print(" Truth\tPrediction") for i in range(0, len(predicted_videos), 2): # Construct and display an `HBox` with the ground truth and prediction. box = HBox( [ widgets.Image(value=predicted_videos[i]), widgets.Image(value=predicted_videos[i + 1]), ] ) display(box) ``` <div class="k-default-codeblock"> ``` 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 6ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 5ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 5ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 5ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 6ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 6ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 8ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 7ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 7ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 1s 790ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 5ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 5ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 5ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 5ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 6ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 6ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 7ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 7ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 8ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 8ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 6ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 6ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 5ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 6ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 6ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 6ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 7ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 7ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 7ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 8ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 6ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 5ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 6ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 6ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 7ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 8ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 6ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 7ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 7ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 9ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 5ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 5ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 5ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 5ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 6ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 6ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 6ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 7ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 8ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 10ms/step Truth Prediction HBox(children=(Image(value=b'GIF89a@\x00@\x00\x87\x00\x00\xff\xff\xff\xfe\xfe\xfe\xfd\xfd\xfd\xfc\xfc\xfc\xf8\โ€ฆ HBox(children=(Image(value=b'GIF89a@\x00@\x00\x86\x00\x00\xff\xff\xff\xfd\xfd\xfd\xfc\xfc\xfc\xfb\xfb\xfb\xf4\โ€ฆ HBox(children=(Image(value=b'GIF89a@\x00@\x00\x86\x00\x00\xff\xff\xff\xfe\xfe\xfe\xfd\xfd\xfd\xfc\xfc\xfc\xfb\โ€ฆ HBox(children=(Image(value=b'GIF89a@\x00@\x00\x86\x00\x00\xff\xff\xff\xfe\xfe\xfe\xfd\xfd\xfd\xfc\xfc\xfc\xfb\โ€ฆ HBox(children=(Image(value=b'GIF89a@\x00@\x00\x86\x00\x00\xff\xff\xff\xfd\xfd\xfd\xfc\xfc\xfc\xf9\xf9\xf9\xf7\โ€ฆ ``` </div>
keras-io/examples/vision/md/conv_lstm.md/0
{ "file_path": "keras-io/examples/vision/md/conv_lstm.md", "repo_id": "keras-io", "token_count": 7353 }
103
# MobileViT: A mobile-friendly Transformer-based model for image classification **Author:** [Sayak Paul](https://twitter.com/RisingSayak)<br> **Date created:** 2021/10/20<br> **Last modified:** 2024/02/11<br> **Description:** MobileViT for image classification with combined benefits of convolutions and Transformers. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/vision/ipynb/mobilevit.ipynb) <span class="k-dot">โ€ข</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/examples/vision/mobilevit.py) --- ## Introduction In this example, we implement the MobileViT architecture ([Mehta et al.](https://arxiv.org/abs/2110.02178)), which combines the benefits of Transformers ([Vaswani et al.](https://arxiv.org/abs/1706.03762)) and convolutions. With Transformers, we can capture long-range dependencies that result in global representations. With convolutions, we can capture spatial relationships that model locality. Besides combining the properties of Transformers and convolutions, the authors introduce MobileViT as a general-purpose mobile-friendly backbone for different image recognition tasks. Their findings suggest that, performance-wise, MobileViT is better than other models with the same or higher complexity ([MobileNetV3](https://arxiv.org/abs/1905.02244), for example), while being efficient on mobile devices. Note: This example should be run with Tensorflow 2.13 and higher. --- ## Imports ```python import os import tensorflow as tf os.environ["KERAS_BACKEND"] = "tensorflow" import keras from keras import layers from keras import backend import tensorflow_datasets as tfds tfds.disable_progress_bar() ``` --- ## Hyperparameters ```python # Values are from table 4. patch_size = 4 # 2x2, for the Transformer blocks. image_size = 256 expansion_factor = 2 # expansion factor for the MobileNetV2 blocks. ``` --- ## MobileViT utilities The MobileViT architecture is comprised of the following blocks: * Strided 3x3 convolutions that process the input image. * [MobileNetV2](https://arxiv.org/abs/1801.04381)-style inverted residual blocks for downsampling the resolution of the intermediate feature maps. * MobileViT blocks that combine the benefits of Transformers and convolutions. It is presented in the figure below (taken from the [original paper](https://arxiv.org/abs/2110.02178)): ![](https://i.imgur.com/mANnhI7.png) ```python def conv_block(x, filters=16, kernel_size=3, strides=2): conv_layer = layers.Conv2D( filters, kernel_size, strides=strides, activation=keras.activations.swish, padding="same", ) return conv_layer(x) # Reference: https://github.com/keras-team/keras/blob/e3858739d178fe16a0c77ce7fab88b0be6dbbdc7/keras/applications/imagenet_utils.py#L413C17-L435 def correct_pad(inputs, kernel_size): img_dim = 2 if backend.image_data_format() == "channels_first" else 1 input_size = inputs.shape[img_dim : (img_dim + 2)] if isinstance(kernel_size, int): kernel_size = (kernel_size, kernel_size) if input_size[0] is None: adjust = (1, 1) else: adjust = (1 - input_size[0] % 2, 1 - input_size[1] % 2) correct = (kernel_size[0] // 2, kernel_size[1] // 2) return ( (correct[0] - adjust[0], correct[0]), (correct[1] - adjust[1], correct[1]), ) # Reference: https://git.io/JKgtC def inverted_residual_block(x, expanded_channels, output_channels, strides=1): m = layers.Conv2D(expanded_channels, 1, padding="same", use_bias=False)(x) m = layers.BatchNormalization()(m) m = keras.activations.swish(m) if strides == 2: m = layers.ZeroPadding2D(padding=correct_pad(m, 3))(m) m = layers.DepthwiseConv2D( 3, strides=strides, padding="same" if strides == 1 else "valid", use_bias=False )(m) m = layers.BatchNormalization()(m) m = keras.activations.swish(m) m = layers.Conv2D(output_channels, 1, padding="same", use_bias=False)(m) m = layers.BatchNormalization()(m) if keras.ops.equal(x.shape[-1], output_channels) and strides == 1: return layers.Add()([m, x]) return m # Reference: # https://keras.io/examples/vision/image_classification_with_vision_transformer/ def mlp(x, hidden_units, dropout_rate): for units in hidden_units: x = layers.Dense(units, activation=keras.activations.swish)(x) x = layers.Dropout(dropout_rate)(x) return x def transformer_block(x, transformer_layers, projection_dim, num_heads=2): for _ in range(transformer_layers): # Layer normalization 1. x1 = layers.LayerNormalization(epsilon=1e-6)(x) # Create a multi-head attention layer. attention_output = layers.MultiHeadAttention( num_heads=num_heads, key_dim=projection_dim, dropout=0.1 )(x1, x1) # Skip connection 1. x2 = layers.Add()([attention_output, x]) # Layer normalization 2. x3 = layers.LayerNormalization(epsilon=1e-6)(x2) # MLP. x3 = mlp( x3, hidden_units=[x.shape[-1] * 2, x.shape[-1]], dropout_rate=0.1, ) # Skip connection 2. x = layers.Add()([x3, x2]) return x def mobilevit_block(x, num_blocks, projection_dim, strides=1): # Local projection with convolutions. local_features = conv_block(x, filters=projection_dim, strides=strides) local_features = conv_block( local_features, filters=projection_dim, kernel_size=1, strides=strides ) # Unfold into patches and then pass through Transformers. num_patches = int((local_features.shape[1] * local_features.shape[2]) / patch_size) non_overlapping_patches = layers.Reshape((patch_size, num_patches, projection_dim))( local_features ) global_features = transformer_block( non_overlapping_patches, num_blocks, projection_dim ) # Fold into conv-like feature-maps. folded_feature_map = layers.Reshape((*local_features.shape[1:-1], projection_dim))( global_features ) # Apply point-wise conv -> concatenate with the input features. folded_feature_map = conv_block( folded_feature_map, filters=x.shape[-1], kernel_size=1, strides=strides ) local_global_features = layers.Concatenate(axis=-1)([x, folded_feature_map]) # Fuse the local and global features using a convoluion layer. local_global_features = conv_block( local_global_features, filters=projection_dim, strides=strides ) return local_global_features ``` **More on the MobileViT block**: * First, the feature representations (A) go through convolution blocks that capture local relationships. The expected shape of a single entry here would be `(h, w, num_channels)`. * Then they get unfolded into another vector with shape `(p, n, num_channels)`, where `p` is the area of a small patch, and `n` is `(h * w) / p`. So, we end up with `n` non-overlapping patches. * This unfolded vector is then passed through a Tranformer block that captures global relationships between the patches. * The output vector (B) is again folded into a vector of shape `(h, w, num_channels)` resembling a feature map coming out of convolutions. Vectors A and B are then passed through two more convolutional layers to fuse the local and global representations. Notice how the spatial resolution of the final vector remains unchanged at this point. The authors also present an explanation of how the MobileViT block resembles a convolution block of a CNN. For more details, please refer to the original paper. Next, we combine these blocks together and implement the MobileViT architecture (XXS variant). The following figure (taken from the original paper) presents a schematic representation of the architecture: ![](https://i.ibb.co/sRbVRBN/image.png) ```python def create_mobilevit(num_classes=5): inputs = keras.Input((image_size, image_size, 3)) x = layers.Rescaling(scale=1.0 / 255)(inputs) # Initial conv-stem -> MV2 block. x = conv_block(x, filters=16) x = inverted_residual_block( x, expanded_channels=16 * expansion_factor, output_channels=16 ) # Downsampling with MV2 block. x = inverted_residual_block( x, expanded_channels=16 * expansion_factor, output_channels=24, strides=2 ) x = inverted_residual_block( x, expanded_channels=24 * expansion_factor, output_channels=24 ) x = inverted_residual_block( x, expanded_channels=24 * expansion_factor, output_channels=24 ) # First MV2 -> MobileViT block. x = inverted_residual_block( x, expanded_channels=24 * expansion_factor, output_channels=48, strides=2 ) x = mobilevit_block(x, num_blocks=2, projection_dim=64) # Second MV2 -> MobileViT block. x = inverted_residual_block( x, expanded_channels=64 * expansion_factor, output_channels=64, strides=2 ) x = mobilevit_block(x, num_blocks=4, projection_dim=80) # Third MV2 -> MobileViT block. x = inverted_residual_block( x, expanded_channels=80 * expansion_factor, output_channels=80, strides=2 ) x = mobilevit_block(x, num_blocks=3, projection_dim=96) x = conv_block(x, filters=320, kernel_size=1, strides=1) # Classification head. x = layers.GlobalAvgPool2D()(x) outputs = layers.Dense(num_classes, activation="softmax")(x) return keras.Model(inputs, outputs) mobilevit_xxs = create_mobilevit() mobilevit_xxs.summary() ``` <div class="k-default-codeblock"> ``` Model: "model" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_1 (InputLayer) [(None, 256, 256, 3) 0 __________________________________________________________________________________________________ rescaling (Rescaling) (None, 256, 256, 3) 0 input_1[0][0] __________________________________________________________________________________________________ conv2d (Conv2D) (None, 128, 128, 16) 448 rescaling[0][0] __________________________________________________________________________________________________ conv2d_1 (Conv2D) (None, 128, 128, 32) 512 conv2d[0][0] __________________________________________________________________________________________________ batch_normalization (BatchNorma (None, 128, 128, 32) 128 conv2d_1[0][0] __________________________________________________________________________________________________ tf.nn.silu (TFOpLambda) (None, 128, 128, 32) 0 batch_normalization[0][0] __________________________________________________________________________________________________ depthwise_conv2d (DepthwiseConv (None, 128, 128, 32) 288 tf.nn.silu[0][0] __________________________________________________________________________________________________ batch_normalization_1 (BatchNor (None, 128, 128, 32) 128 depthwise_conv2d[0][0] __________________________________________________________________________________________________ tf.nn.silu_1 (TFOpLambda) (None, 128, 128, 32) 0 batch_normalization_1[0][0] __________________________________________________________________________________________________ conv2d_2 (Conv2D) (None, 128, 128, 16) 512 tf.nn.silu_1[0][0] __________________________________________________________________________________________________ batch_normalization_2 (BatchNor (None, 128, 128, 16) 64 conv2d_2[0][0] __________________________________________________________________________________________________ add (Add) (None, 128, 128, 16) 0 batch_normalization_2[0][0] conv2d[0][0] __________________________________________________________________________________________________ conv2d_3 (Conv2D) (None, 128, 128, 32) 512 add[0][0] __________________________________________________________________________________________________ batch_normalization_3 (BatchNor (None, 128, 128, 32) 128 conv2d_3[0][0] __________________________________________________________________________________________________ tf.nn.silu_2 (TFOpLambda) (None, 128, 128, 32) 0 batch_normalization_3[0][0] __________________________________________________________________________________________________ zero_padding2d (ZeroPadding2D) (None, 129, 129, 32) 0 tf.nn.silu_2[0][0] __________________________________________________________________________________________________ depthwise_conv2d_1 (DepthwiseCo (None, 64, 64, 32) 288 zero_padding2d[0][0] __________________________________________________________________________________________________ batch_normalization_4 (BatchNor (None, 64, 64, 32) 128 depthwise_conv2d_1[0][0] __________________________________________________________________________________________________ tf.nn.silu_3 (TFOpLambda) (None, 64, 64, 32) 0 batch_normalization_4[0][0] __________________________________________________________________________________________________ conv2d_4 (Conv2D) (None, 64, 64, 24) 768 tf.nn.silu_3[0][0] __________________________________________________________________________________________________ batch_normalization_5 (BatchNor (None, 64, 64, 24) 96 conv2d_4[0][0] __________________________________________________________________________________________________ conv2d_5 (Conv2D) (None, 64, 64, 48) 1152 batch_normalization_5[0][0] __________________________________________________________________________________________________ batch_normalization_6 (BatchNor (None, 64, 64, 48) 192 conv2d_5[0][0] __________________________________________________________________________________________________ tf.nn.silu_4 (TFOpLambda) (None, 64, 64, 48) 0 batch_normalization_6[0][0] __________________________________________________________________________________________________ depthwise_conv2d_2 (DepthwiseCo (None, 64, 64, 48) 432 tf.nn.silu_4[0][0] __________________________________________________________________________________________________ batch_normalization_7 (BatchNor (None, 64, 64, 48) 192 depthwise_conv2d_2[0][0] __________________________________________________________________________________________________ tf.nn.silu_5 (TFOpLambda) (None, 64, 64, 48) 0 batch_normalization_7[0][0] __________________________________________________________________________________________________ conv2d_6 (Conv2D) (None, 64, 64, 24) 1152 tf.nn.silu_5[0][0] __________________________________________________________________________________________________ batch_normalization_8 (BatchNor (None, 64, 64, 24) 96 conv2d_6[0][0] __________________________________________________________________________________________________ add_1 (Add) (None, 64, 64, 24) 0 batch_normalization_8[0][0] batch_normalization_5[0][0] __________________________________________________________________________________________________ conv2d_7 (Conv2D) (None, 64, 64, 48) 1152 add_1[0][0] __________________________________________________________________________________________________ batch_normalization_9 (BatchNor (None, 64, 64, 48) 192 conv2d_7[0][0] __________________________________________________________________________________________________ tf.nn.silu_6 (TFOpLambda) (None, 64, 64, 48) 0 batch_normalization_9[0][0] __________________________________________________________________________________________________ depthwise_conv2d_3 (DepthwiseCo (None, 64, 64, 48) 432 tf.nn.silu_6[0][0] __________________________________________________________________________________________________ batch_normalization_10 (BatchNo (None, 64, 64, 48) 192 depthwise_conv2d_3[0][0] __________________________________________________________________________________________________ tf.nn.silu_7 (TFOpLambda) (None, 64, 64, 48) 0 batch_normalization_10[0][0] __________________________________________________________________________________________________ conv2d_8 (Conv2D) (None, 64, 64, 24) 1152 tf.nn.silu_7[0][0] __________________________________________________________________________________________________ batch_normalization_11 (BatchNo (None, 64, 64, 24) 96 conv2d_8[0][0] __________________________________________________________________________________________________ add_2 (Add) (None, 64, 64, 24) 0 batch_normalization_11[0][0] add_1[0][0] __________________________________________________________________________________________________ conv2d_9 (Conv2D) (None, 64, 64, 48) 1152 add_2[0][0] __________________________________________________________________________________________________ batch_normalization_12 (BatchNo (None, 64, 64, 48) 192 conv2d_9[0][0] __________________________________________________________________________________________________ tf.nn.silu_8 (TFOpLambda) (None, 64, 64, 48) 0 batch_normalization_12[0][0] __________________________________________________________________________________________________ zero_padding2d_1 (ZeroPadding2D (None, 65, 65, 48) 0 tf.nn.silu_8[0][0] __________________________________________________________________________________________________ depthwise_conv2d_4 (DepthwiseCo (None, 32, 32, 48) 432 zero_padding2d_1[0][0] __________________________________________________________________________________________________ batch_normalization_13 (BatchNo (None, 32, 32, 48) 192 depthwise_conv2d_4[0][0] __________________________________________________________________________________________________ tf.nn.silu_9 (TFOpLambda) (None, 32, 32, 48) 0 batch_normalization_13[0][0] __________________________________________________________________________________________________ conv2d_10 (Conv2D) (None, 32, 32, 48) 2304 tf.nn.silu_9[0][0] __________________________________________________________________________________________________ batch_normalization_14 (BatchNo (None, 32, 32, 48) 192 conv2d_10[0][0] __________________________________________________________________________________________________ conv2d_11 (Conv2D) (None, 32, 32, 64) 27712 batch_normalization_14[0][0] __________________________________________________________________________________________________ conv2d_12 (Conv2D) (None, 32, 32, 64) 4160 conv2d_11[0][0] __________________________________________________________________________________________________ reshape (Reshape) (None, 4, 256, 64) 0 conv2d_12[0][0] __________________________________________________________________________________________________ layer_normalization (LayerNorma (None, 4, 256, 64) 128 reshape[0][0] __________________________________________________________________________________________________ multi_head_attention (MultiHead (None, 4, 256, 64) 33216 layer_normalization[0][0] layer_normalization[0][0] __________________________________________________________________________________________________ add_3 (Add) (None, 4, 256, 64) 0 multi_head_attention[0][0] reshape[0][0] __________________________________________________________________________________________________ layer_normalization_1 (LayerNor (None, 4, 256, 64) 128 add_3[0][0] __________________________________________________________________________________________________ dense (Dense) (None, 4, 256, 128) 8320 layer_normalization_1[0][0] __________________________________________________________________________________________________ dropout (Dropout) (None, 4, 256, 128) 0 dense[0][0] __________________________________________________________________________________________________ dense_1 (Dense) (None, 4, 256, 64) 8256 dropout[0][0] __________________________________________________________________________________________________ dropout_1 (Dropout) (None, 4, 256, 64) 0 dense_1[0][0] __________________________________________________________________________________________________ add_4 (Add) (None, 4, 256, 64) 0 dropout_1[0][0] add_3[0][0] __________________________________________________________________________________________________ layer_normalization_2 (LayerNor (None, 4, 256, 64) 128 add_4[0][0] __________________________________________________________________________________________________ multi_head_attention_1 (MultiHe (None, 4, 256, 64) 33216 layer_normalization_2[0][0] layer_normalization_2[0][0] __________________________________________________________________________________________________ add_5 (Add) (None, 4, 256, 64) 0 multi_head_attention_1[0][0] add_4[0][0] __________________________________________________________________________________________________ layer_normalization_3 (LayerNor (None, 4, 256, 64) 128 add_5[0][0] __________________________________________________________________________________________________ dense_2 (Dense) (None, 4, 256, 128) 8320 layer_normalization_3[0][0] __________________________________________________________________________________________________ dropout_2 (Dropout) (None, 4, 256, 128) 0 dense_2[0][0] __________________________________________________________________________________________________ dense_3 (Dense) (None, 4, 256, 64) 8256 dropout_2[0][0] __________________________________________________________________________________________________ dropout_3 (Dropout) (None, 4, 256, 64) 0 dense_3[0][0] __________________________________________________________________________________________________ add_6 (Add) (None, 4, 256, 64) 0 dropout_3[0][0] add_5[0][0] __________________________________________________________________________________________________ reshape_1 (Reshape) (None, 32, 32, 64) 0 add_6[0][0] __________________________________________________________________________________________________ conv2d_13 (Conv2D) (None, 32, 32, 48) 3120 reshape_1[0][0] __________________________________________________________________________________________________ concatenate (Concatenate) (None, 32, 32, 96) 0 batch_normalization_14[0][0] conv2d_13[0][0] __________________________________________________________________________________________________ conv2d_14 (Conv2D) (None, 32, 32, 64) 55360 concatenate[0][0] __________________________________________________________________________________________________ conv2d_15 (Conv2D) (None, 32, 32, 128) 8192 conv2d_14[0][0] __________________________________________________________________________________________________ batch_normalization_15 (BatchNo (None, 32, 32, 128) 512 conv2d_15[0][0] __________________________________________________________________________________________________ tf.nn.silu_10 (TFOpLambda) (None, 32, 32, 128) 0 batch_normalization_15[0][0] __________________________________________________________________________________________________ zero_padding2d_2 (ZeroPadding2D (None, 33, 33, 128) 0 tf.nn.silu_10[0][0] __________________________________________________________________________________________________ depthwise_conv2d_5 (DepthwiseCo (None, 16, 16, 128) 1152 zero_padding2d_2[0][0] __________________________________________________________________________________________________ batch_normalization_16 (BatchNo (None, 16, 16, 128) 512 depthwise_conv2d_5[0][0] __________________________________________________________________________________________________ tf.nn.silu_11 (TFOpLambda) (None, 16, 16, 128) 0 batch_normalization_16[0][0] __________________________________________________________________________________________________ conv2d_16 (Conv2D) (None, 16, 16, 64) 8192 tf.nn.silu_11[0][0] __________________________________________________________________________________________________ batch_normalization_17 (BatchNo (None, 16, 16, 64) 256 conv2d_16[0][0] __________________________________________________________________________________________________ conv2d_17 (Conv2D) (None, 16, 16, 80) 46160 batch_normalization_17[0][0] __________________________________________________________________________________________________ conv2d_18 (Conv2D) (None, 16, 16, 80) 6480 conv2d_17[0][0] __________________________________________________________________________________________________ reshape_2 (Reshape) (None, 4, 64, 80) 0 conv2d_18[0][0] __________________________________________________________________________________________________ layer_normalization_4 (LayerNor (None, 4, 64, 80) 160 reshape_2[0][0] __________________________________________________________________________________________________ multi_head_attention_2 (MultiHe (None, 4, 64, 80) 51760 layer_normalization_4[0][0] layer_normalization_4[0][0] __________________________________________________________________________________________________ add_7 (Add) (None, 4, 64, 80) 0 multi_head_attention_2[0][0] reshape_2[0][0] __________________________________________________________________________________________________ layer_normalization_5 (LayerNor (None, 4, 64, 80) 160 add_7[0][0] __________________________________________________________________________________________________ dense_4 (Dense) (None, 4, 64, 160) 12960 layer_normalization_5[0][0] __________________________________________________________________________________________________ dropout_4 (Dropout) (None, 4, 64, 160) 0 dense_4[0][0] __________________________________________________________________________________________________ dense_5 (Dense) (None, 4, 64, 80) 12880 dropout_4[0][0] __________________________________________________________________________________________________ dropout_5 (Dropout) (None, 4, 64, 80) 0 dense_5[0][0] __________________________________________________________________________________________________ add_8 (Add) (None, 4, 64, 80) 0 dropout_5[0][0] add_7[0][0] __________________________________________________________________________________________________ layer_normalization_6 (LayerNor (None, 4, 64, 80) 160 add_8[0][0] __________________________________________________________________________________________________ multi_head_attention_3 (MultiHe (None, 4, 64, 80) 51760 layer_normalization_6[0][0] layer_normalization_6[0][0] __________________________________________________________________________________________________ add_9 (Add) (None, 4, 64, 80) 0 multi_head_attention_3[0][0] add_8[0][0] __________________________________________________________________________________________________ layer_normalization_7 (LayerNor (None, 4, 64, 80) 160 add_9[0][0] __________________________________________________________________________________________________ dense_6 (Dense) (None, 4, 64, 160) 12960 layer_normalization_7[0][0] __________________________________________________________________________________________________ dropout_6 (Dropout) (None, 4, 64, 160) 0 dense_6[0][0] __________________________________________________________________________________________________ dense_7 (Dense) (None, 4, 64, 80) 12880 dropout_6[0][0] __________________________________________________________________________________________________ dropout_7 (Dropout) (None, 4, 64, 80) 0 dense_7[0][0] __________________________________________________________________________________________________ add_10 (Add) (None, 4, 64, 80) 0 dropout_7[0][0] add_9[0][0] __________________________________________________________________________________________________ layer_normalization_8 (LayerNor (None, 4, 64, 80) 160 add_10[0][0] __________________________________________________________________________________________________ multi_head_attention_4 (MultiHe (None, 4, 64, 80) 51760 layer_normalization_8[0][0] layer_normalization_8[0][0] __________________________________________________________________________________________________ add_11 (Add) (None, 4, 64, 80) 0 multi_head_attention_4[0][0] add_10[0][0] __________________________________________________________________________________________________ layer_normalization_9 (LayerNor (None, 4, 64, 80) 160 add_11[0][0] __________________________________________________________________________________________________ dense_8 (Dense) (None, 4, 64, 160) 12960 layer_normalization_9[0][0] __________________________________________________________________________________________________ dropout_8 (Dropout) (None, 4, 64, 160) 0 dense_8[0][0] __________________________________________________________________________________________________ dense_9 (Dense) (None, 4, 64, 80) 12880 dropout_8[0][0] __________________________________________________________________________________________________ dropout_9 (Dropout) (None, 4, 64, 80) 0 dense_9[0][0] __________________________________________________________________________________________________ add_12 (Add) (None, 4, 64, 80) 0 dropout_9[0][0] add_11[0][0] __________________________________________________________________________________________________ layer_normalization_10 (LayerNo (None, 4, 64, 80) 160 add_12[0][0] __________________________________________________________________________________________________ multi_head_attention_5 (MultiHe (None, 4, 64, 80) 51760 layer_normalization_10[0][0] layer_normalization_10[0][0] __________________________________________________________________________________________________ add_13 (Add) (None, 4, 64, 80) 0 multi_head_attention_5[0][0] add_12[0][0] __________________________________________________________________________________________________ layer_normalization_11 (LayerNo (None, 4, 64, 80) 160 add_13[0][0] __________________________________________________________________________________________________ dense_10 (Dense) (None, 4, 64, 160) 12960 layer_normalization_11[0][0] __________________________________________________________________________________________________ dropout_10 (Dropout) (None, 4, 64, 160) 0 dense_10[0][0] __________________________________________________________________________________________________ dense_11 (Dense) (None, 4, 64, 80) 12880 dropout_10[0][0] __________________________________________________________________________________________________ dropout_11 (Dropout) (None, 4, 64, 80) 0 dense_11[0][0] __________________________________________________________________________________________________ add_14 (Add) (None, 4, 64, 80) 0 dropout_11[0][0] add_13[0][0] __________________________________________________________________________________________________ reshape_3 (Reshape) (None, 16, 16, 80) 0 add_14[0][0] __________________________________________________________________________________________________ conv2d_19 (Conv2D) (None, 16, 16, 64) 5184 reshape_3[0][0] __________________________________________________________________________________________________ concatenate_1 (Concatenate) (None, 16, 16, 128) 0 batch_normalization_17[0][0] conv2d_19[0][0] __________________________________________________________________________________________________ conv2d_20 (Conv2D) (None, 16, 16, 80) 92240 concatenate_1[0][0] __________________________________________________________________________________________________ conv2d_21 (Conv2D) (None, 16, 16, 160) 12800 conv2d_20[0][0] __________________________________________________________________________________________________ batch_normalization_18 (BatchNo (None, 16, 16, 160) 640 conv2d_21[0][0] __________________________________________________________________________________________________ tf.nn.silu_12 (TFOpLambda) (None, 16, 16, 160) 0 batch_normalization_18[0][0] __________________________________________________________________________________________________ zero_padding2d_3 (ZeroPadding2D (None, 17, 17, 160) 0 tf.nn.silu_12[0][0] __________________________________________________________________________________________________ depthwise_conv2d_6 (DepthwiseCo (None, 8, 8, 160) 1440 zero_padding2d_3[0][0] __________________________________________________________________________________________________ batch_normalization_19 (BatchNo (None, 8, 8, 160) 640 depthwise_conv2d_6[0][0] __________________________________________________________________________________________________ tf.nn.silu_13 (TFOpLambda) (None, 8, 8, 160) 0 batch_normalization_19[0][0] __________________________________________________________________________________________________ conv2d_22 (Conv2D) (None, 8, 8, 80) 12800 tf.nn.silu_13[0][0] __________________________________________________________________________________________________ batch_normalization_20 (BatchNo (None, 8, 8, 80) 320 conv2d_22[0][0] __________________________________________________________________________________________________ conv2d_23 (Conv2D) (None, 8, 8, 96) 69216 batch_normalization_20[0][0] __________________________________________________________________________________________________ conv2d_24 (Conv2D) (None, 8, 8, 96) 9312 conv2d_23[0][0] __________________________________________________________________________________________________ reshape_4 (Reshape) (None, 4, 16, 96) 0 conv2d_24[0][0] __________________________________________________________________________________________________ layer_normalization_12 (LayerNo (None, 4, 16, 96) 192 reshape_4[0][0] __________________________________________________________________________________________________ multi_head_attention_6 (MultiHe (None, 4, 16, 96) 74400 layer_normalization_12[0][0] layer_normalization_12[0][0] __________________________________________________________________________________________________ add_15 (Add) (None, 4, 16, 96) 0 multi_head_attention_6[0][0] reshape_4[0][0] __________________________________________________________________________________________________ layer_normalization_13 (LayerNo (None, 4, 16, 96) 192 add_15[0][0] __________________________________________________________________________________________________ dense_12 (Dense) (None, 4, 16, 192) 18624 layer_normalization_13[0][0] __________________________________________________________________________________________________ dropout_12 (Dropout) (None, 4, 16, 192) 0 dense_12[0][0] __________________________________________________________________________________________________ dense_13 (Dense) (None, 4, 16, 96) 18528 dropout_12[0][0] __________________________________________________________________________________________________ dropout_13 (Dropout) (None, 4, 16, 96) 0 dense_13[0][0] __________________________________________________________________________________________________ add_16 (Add) (None, 4, 16, 96) 0 dropout_13[0][0] add_15[0][0] __________________________________________________________________________________________________ layer_normalization_14 (LayerNo (None, 4, 16, 96) 192 add_16[0][0] __________________________________________________________________________________________________ multi_head_attention_7 (MultiHe (None, 4, 16, 96) 74400 layer_normalization_14[0][0] layer_normalization_14[0][0] __________________________________________________________________________________________________ add_17 (Add) (None, 4, 16, 96) 0 multi_head_attention_7[0][0] add_16[0][0] __________________________________________________________________________________________________ layer_normalization_15 (LayerNo (None, 4, 16, 96) 192 add_17[0][0] __________________________________________________________________________________________________ dense_14 (Dense) (None, 4, 16, 192) 18624 layer_normalization_15[0][0] __________________________________________________________________________________________________ dropout_14 (Dropout) (None, 4, 16, 192) 0 dense_14[0][0] __________________________________________________________________________________________________ dense_15 (Dense) (None, 4, 16, 96) 18528 dropout_14[0][0] __________________________________________________________________________________________________ dropout_15 (Dropout) (None, 4, 16, 96) 0 dense_15[0][0] __________________________________________________________________________________________________ add_18 (Add) (None, 4, 16, 96) 0 dropout_15[0][0] add_17[0][0] __________________________________________________________________________________________________ layer_normalization_16 (LayerNo (None, 4, 16, 96) 192 add_18[0][0] __________________________________________________________________________________________________ multi_head_attention_8 (MultiHe (None, 4, 16, 96) 74400 layer_normalization_16[0][0] layer_normalization_16[0][0] __________________________________________________________________________________________________ add_19 (Add) (None, 4, 16, 96) 0 multi_head_attention_8[0][0] add_18[0][0] __________________________________________________________________________________________________ layer_normalization_17 (LayerNo (None, 4, 16, 96) 192 add_19[0][0] __________________________________________________________________________________________________ dense_16 (Dense) (None, 4, 16, 192) 18624 layer_normalization_17[0][0] __________________________________________________________________________________________________ dropout_16 (Dropout) (None, 4, 16, 192) 0 dense_16[0][0] __________________________________________________________________________________________________ dense_17 (Dense) (None, 4, 16, 96) 18528 dropout_16[0][0] __________________________________________________________________________________________________ dropout_17 (Dropout) (None, 4, 16, 96) 0 dense_17[0][0] __________________________________________________________________________________________________ add_20 (Add) (None, 4, 16, 96) 0 dropout_17[0][0] add_19[0][0] __________________________________________________________________________________________________ reshape_5 (Reshape) (None, 8, 8, 96) 0 add_20[0][0] __________________________________________________________________________________________________ conv2d_25 (Conv2D) (None, 8, 8, 80) 7760 reshape_5[0][0] __________________________________________________________________________________________________ concatenate_2 (Concatenate) (None, 8, 8, 160) 0 batch_normalization_20[0][0] conv2d_25[0][0] __________________________________________________________________________________________________ conv2d_26 (Conv2D) (None, 8, 8, 96) 138336 concatenate_2[0][0] __________________________________________________________________________________________________ conv2d_27 (Conv2D) (None, 8, 8, 320) 31040 conv2d_26[0][0] __________________________________________________________________________________________________ global_average_pooling2d (Globa (None, 320) 0 conv2d_27[0][0] __________________________________________________________________________________________________ dense_18 (Dense) (None, 5) 1605 global_average_pooling2d[0][0] ================================================================================================== Total params: 1,307,621 Trainable params: 1,305,077 Non-trainable params: 2,544 __________________________________________________________________________________________________ --- ## Dataset preparation We will be using the [`tf_flowers`](https://www.tensorflow.org/datasets/catalog/tf_flowers) dataset to demonstrate the model. Unlike other Transformer-based architectures, MobileViT uses a simple augmentation pipeline primarily because it has the properties of a CNN. ```python batch_size = 64 auto = tf.data.AUTOTUNE resize_bigger = 280 num_classes = 5 def preprocess_dataset(is_training=True): def _pp(image, label): if is_training: # Resize to a bigger spatial resolution and take the random # crops. image = tf.image.resize(image, (resize_bigger, resize_bigger)) image = tf.image.random_crop(image, (image_size, image_size, 3)) image = tf.image.random_flip_left_right(image) else: image = tf.image.resize(image, (image_size, image_size)) label = tf.one_hot(label, depth=num_classes) return image, label return _pp def prepare_dataset(dataset, is_training=True): if is_training: dataset = dataset.shuffle(batch_size * 10) dataset = dataset.map(preprocess_dataset(is_training), num_parallel_calls=auto) return dataset.batch(batch_size).prefetch(auto) ``` The authors use a multi-scale data sampler to help the model learn representations of varied scales. In this example, we discard this part. --- ## Load and prepare the dataset ```python train_dataset, val_dataset = tfds.load( "tf_flowers", split=["train[:90%]", "train[90%:]"], as_supervised=True ) num_train = train_dataset.cardinality() num_val = val_dataset.cardinality() print(f"Number of training examples: {num_train}") print(f"Number of validation examples: {num_val}") train_dataset = prepare_dataset(train_dataset, is_training=True) val_dataset = prepare_dataset(val_dataset, is_training=False) ``` <div class="k-default-codeblock"> ``` Number of training examples: 3303 Number of validation examples: 367 ``` </div> --- ## Train a MobileViT (XXS) model ```python learning_rate = 0.002 label_smoothing_factor = 0.1 epochs = 30 optimizer = keras.optimizers.Adam(learning_rate=learning_rate) loss_fn = keras.losses.CategoricalCrossentropy(label_smoothing=label_smoothing_factor) def run_experiment(epochs=epochs): mobilevit_xxs = create_mobilevit(num_classes=num_classes) mobilevit_xxs.compile(optimizer=optimizer, loss=loss_fn, metrics=["accuracy"]) # When using `save_weights_only=True` in `ModelCheckpoint`, the filepath provided must end in `.weights.h5` checkpoint_filepath = "/tmp/checkpoint.weights.h5" checkpoint_callback = keras.callbacks.ModelCheckpoint( checkpoint_filepath, monitor="val_accuracy", save_best_only=True, save_weights_only=True, ) mobilevit_xxs.fit( train_dataset, validation_data=val_dataset, epochs=epochs, callbacks=[checkpoint_callback], ) mobilevit_xxs.load_weights(checkpoint_filepath) _, accuracy = mobilevit_xxs.evaluate(val_dataset) print(f"Validation accuracy: {round(accuracy * 100, 2)}%") return mobilevit_xxs mobilevit_xxs = run_experiment() ``` <div class="k-default-codeblock"> ``` Epoch 1/30 52/52 [==============================] - 47s 459ms/step - loss: 1.3397 - accuracy: 0.4832 - val_loss: 1.7250 - val_accuracy: 0.1662 Epoch 2/30 52/52 [==============================] - 21s 404ms/step - loss: 1.1167 - accuracy: 0.6210 - val_loss: 1.9844 - val_accuracy: 0.1907 Epoch 3/30 52/52 [==============================] - 21s 403ms/step - loss: 1.0217 - accuracy: 0.6709 - val_loss: 1.8187 - val_accuracy: 0.1907 Epoch 4/30 52/52 [==============================] - 21s 409ms/step - loss: 0.9682 - accuracy: 0.7048 - val_loss: 2.0329 - val_accuracy: 0.1907 Epoch 5/30 52/52 [==============================] - 21s 408ms/step - loss: 0.9552 - accuracy: 0.7196 - val_loss: 2.1150 - val_accuracy: 0.1907 Epoch 6/30 52/52 [==============================] - 21s 407ms/step - loss: 0.9186 - accuracy: 0.7318 - val_loss: 2.9713 - val_accuracy: 0.1907 Epoch 7/30 52/52 [==============================] - 21s 407ms/step - loss: 0.8986 - accuracy: 0.7457 - val_loss: 3.2062 - val_accuracy: 0.1907 Epoch 8/30 52/52 [==============================] - 21s 408ms/step - loss: 0.8831 - accuracy: 0.7542 - val_loss: 3.8631 - val_accuracy: 0.1907 Epoch 9/30 52/52 [==============================] - 21s 408ms/step - loss: 0.8433 - accuracy: 0.7714 - val_loss: 1.8029 - val_accuracy: 0.3542 Epoch 10/30 52/52 [==============================] - 21s 408ms/step - loss: 0.8489 - accuracy: 0.7763 - val_loss: 1.7920 - val_accuracy: 0.4796 Epoch 11/30 52/52 [==============================] - 21s 409ms/step - loss: 0.8256 - accuracy: 0.7884 - val_loss: 1.4992 - val_accuracy: 0.5477 Epoch 12/30 52/52 [==============================] - 21s 407ms/step - loss: 0.7859 - accuracy: 0.8123 - val_loss: 0.9236 - val_accuracy: 0.7330 Epoch 13/30 52/52 [==============================] - 21s 409ms/step - loss: 0.7702 - accuracy: 0.8159 - val_loss: 0.8059 - val_accuracy: 0.8011 Epoch 14/30 52/52 [==============================] - 21s 403ms/step - loss: 0.7670 - accuracy: 0.8153 - val_loss: 1.1535 - val_accuracy: 0.7084 Epoch 15/30 52/52 [==============================] - 21s 408ms/step - loss: 0.7332 - accuracy: 0.8344 - val_loss: 0.7746 - val_accuracy: 0.8147 Epoch 16/30 52/52 [==============================] - 21s 404ms/step - loss: 0.7284 - accuracy: 0.8335 - val_loss: 1.0342 - val_accuracy: 0.7330 Epoch 17/30 52/52 [==============================] - 21s 409ms/step - loss: 0.7484 - accuracy: 0.8262 - val_loss: 1.0523 - val_accuracy: 0.7112 Epoch 18/30 52/52 [==============================] - 21s 408ms/step - loss: 0.7209 - accuracy: 0.8450 - val_loss: 0.8146 - val_accuracy: 0.8174 Epoch 19/30 52/52 [==============================] - 21s 409ms/step - loss: 0.7141 - accuracy: 0.8435 - val_loss: 0.8016 - val_accuracy: 0.7875 Epoch 20/30 52/52 [==============================] - 21s 410ms/step - loss: 0.7075 - accuracy: 0.8435 - val_loss: 0.9352 - val_accuracy: 0.7439 Epoch 21/30 52/52 [==============================] - 21s 406ms/step - loss: 0.7066 - accuracy: 0.8504 - val_loss: 1.0171 - val_accuracy: 0.7139 Epoch 22/30 52/52 [==============================] - 21s 405ms/step - loss: 0.6913 - accuracy: 0.8532 - val_loss: 0.7059 - val_accuracy: 0.8610 Epoch 23/30 52/52 [==============================] - 21s 408ms/step - loss: 0.6681 - accuracy: 0.8671 - val_loss: 0.8007 - val_accuracy: 0.8147 Epoch 24/30 52/52 [==============================] - 21s 409ms/step - loss: 0.6636 - accuracy: 0.8747 - val_loss: 0.9490 - val_accuracy: 0.7302 Epoch 25/30 52/52 [==============================] - 21s 408ms/step - loss: 0.6637 - accuracy: 0.8722 - val_loss: 0.6913 - val_accuracy: 0.8556 Epoch 26/30 52/52 [==============================] - 21s 406ms/step - loss: 0.6443 - accuracy: 0.8837 - val_loss: 1.0483 - val_accuracy: 0.7139 Epoch 27/30 52/52 [==============================] - 21s 407ms/step - loss: 0.6555 - accuracy: 0.8695 - val_loss: 0.9448 - val_accuracy: 0.7602 Epoch 28/30 52/52 [==============================] - 21s 409ms/step - loss: 0.6409 - accuracy: 0.8807 - val_loss: 0.9337 - val_accuracy: 0.7302 Epoch 29/30 52/52 [==============================] - 21s 408ms/step - loss: 0.6300 - accuracy: 0.8910 - val_loss: 0.7461 - val_accuracy: 0.8256 Epoch 30/30 52/52 [==============================] - 21s 408ms/step - loss: 0.6093 - accuracy: 0.8968 - val_loss: 0.8651 - val_accuracy: 0.7766 6/6 [==============================] - 0s 65ms/step - loss: 0.7059 - accuracy: 0.8610 Validation accuracy: 86.1% ``` </div> --- ## Results and TFLite conversion With about one million parameters, getting to ~85% top-1 accuracy on 256x256 resolution is a strong result. This MobileViT mobile is fully compatible with TensorFlow Lite (TFLite) and can be converted with the following code: ```python # Serialize the model as a SavedModel. tf.saved_model.save(mobilevit_xxs, "mobilevit_xxs") # Convert to TFLite. This form of quantization is called # post-training dynamic-range quantization in TFLite. converter = tf.lite.TFLiteConverter.from_saved_model("mobilevit_xxs") converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.target_spec.supported_ops = [ tf.lite.OpsSet.TFLITE_BUILTINS, # Enable TensorFlow Lite ops. tf.lite.OpsSet.SELECT_TF_OPS, # Enable TensorFlow ops. ] tflite_model = converter.convert() open("mobilevit_xxs.tflite", "wb").write(tflite_model) ``` To learn more about different quantization recipes available in TFLite and running inference with TFLite models, check out [this official resource](https://www.tensorflow.org/lite/performance/post_training_quantization). You can use the trained model hosted on [Hugging Face Hub](https://huggingface.co/keras-io/mobile-vit-xxs) and try the demo on [Hugging Face Spaces](https://huggingface.co/spaces/keras-io/Flowers-Classification-MobileViT).
keras-io/examples/vision/md/mobilevit.md/0
{ "file_path": "keras-io/examples/vision/md/mobilevit.md", "repo_id": "keras-io", "token_count": 21755 }
104
# Semantic segmentation with SegFormer and Hugging Face Transformers **Author:** [Sayak Paul](https://twitter.com/RisingSayak)<br> **Date created:** 2023/01/25<br> **Last modified:** 2023/01/29<br> **Description:** Fine-tuning a SegFormer model variant for semantic segmentation. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/vision/ipynb/segformer.ipynb) <span class="k-dot">โ€ข</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/examples/vision/segformer.py) --- ## Introduction In this example, we show how to fine-tune a SegFormer model variant to do semantic segmentation on a custom dataset. Semantic segmentation is the task of assigning a category to each and every pixel of an image. SegFormer was proposed in [SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers](https://arxiv.org/abs/2105.15203). SegFormer uses a hierarchical Transformer architecture (called "Mix Transformer") as its encoder and a lightweight decoder for segmentation. As a result, it yields state-of-the-art performance on semantic segmentation while being more efficient than existing models. For more details, check out the original paper. ![segformer-arch](https://i.imgur.com/BsrVwYe.png) We leverage [Hugging Face Transformers](https://github.com/huggingface/transformers) to load a pretrained SegFormer checkpoint and fine-tune it on a custom dataset. **Note:** this example reuses code from the following sources: * [Official tutorial on segmentation from the TensorFlow team](https://www.tensorflow.org/tutorials/images/segmentation) * [Hugging Face Task guide on segmentation](https://huggingface.co/docs/transformers/main/en/tasks/semantic_segmentation) To run this example, we need to install the `transformers` library: ```python !!pip install transformers -q ``` <div class="k-default-codeblock"> ``` [] ``` </div> --- ## Load the data We use the [Oxford-IIIT Pets](https://www.robots.ox.ac.uk/~vgg/data/pets/) dataset for this example. We leverage `tensorflow_datasets` to load the dataset. ```python import tensorflow_datasets as tfds dataset, info = tfds.load("oxford_iiit_pet:3.*.*", with_info=True) ``` <div class="k-default-codeblock"> ``` /opt/conda/lib/python3.7/site-packages/tensorflow_io/python/ops/__init__.py:98: UserWarning: unable to load libtensorflow_io_plugins.so: unable to open file: libtensorflow_io_plugins.so, from paths: ['/opt/conda/lib/python3.7/site-packages/tensorflow_io/python/ops/libtensorflow_io_plugins.so'] caused by: ['/opt/conda/lib/python3.7/site-packages/tensorflow_io/python/ops/libtensorflow_io_plugins.so: undefined symbol: _ZN3tsl5mutexC1Ev'] warnings.warn(f"unable to load libtensorflow_io_plugins.so: {e}") /opt/conda/lib/python3.7/site-packages/tensorflow_io/python/ops/__init__.py:104: UserWarning: file system plugins are not loaded: unable to open file: libtensorflow_io.so, from paths: ['/opt/conda/lib/python3.7/site-packages/tensorflow_io/python/ops/libtensorflow_io.so'] caused by: ['/opt/conda/lib/python3.7/site-packages/tensorflow_io/python/ops/libtensorflow_io.so: undefined symbol: _ZNK10tensorflow4data11DatasetBase8FinalizeEPNS_15OpKernelContextESt8functionIFN3tsl8StatusOrISt10unique_ptrIS1_NS5_4core15RefCountDeleterEEEEvEE'] warnings.warn(f"file system plugins are not loaded: {e}") ``` </div> --- ## Prepare the datasets For preparing the datasets for training and evaluation, we: * Normalize the images with the mean and standard deviation used during pre-training SegFormer. * Subtract 1 from the segmentation masks so that the pixel values start from 0. * Resize the images. * Transpose the images such that they are in `"channels_first"` format. This is to make them compatible with the SegFormer model from Hugging Face Transformers. ```python import tensorflow as tf from tensorflow.keras import backend image_size = 512 mean = tf.constant([0.485, 0.456, 0.406]) std = tf.constant([0.229, 0.224, 0.225]) def normalize(input_image, input_mask): input_image = tf.image.convert_image_dtype(input_image, tf.float32) input_image = (input_image - mean) / tf.maximum(std, backend.epsilon()) input_mask -= 1 return input_image, input_mask def load_image(datapoint): input_image = tf.image.resize(datapoint["image"], (image_size, image_size)) input_mask = tf.image.resize( datapoint["segmentation_mask"], (image_size, image_size), method="bilinear", ) input_image, input_mask = normalize(input_image, input_mask) input_image = tf.transpose(input_image, (2, 0, 1)) return {"pixel_values": input_image, "labels": tf.squeeze(input_mask)} ``` We now use the above utilities to prepare `tf.data.Dataset` objects including `prefetch()` for performance. Change the `batch_size` to match the size of the GPU memory on the GPU that you're using for training. ```python auto = tf.data.AUTOTUNE batch_size = 4 train_ds = ( dataset["train"] .cache() .shuffle(batch_size * 10) .map(load_image, num_parallel_calls=auto) .batch(batch_size) .prefetch(auto) ) test_ds = ( dataset["test"] .map(load_image, num_parallel_calls=auto) .batch(batch_size) .prefetch(auto) ) ``` We can check the shapes of the input images and their segmentation maps: ```python print(train_ds.element_spec) ``` <div class="k-default-codeblock"> ``` {'pixel_values': TensorSpec(shape=(None, 3, 512, 512), dtype=tf.float32, name=None), 'labels': TensorSpec(shape=(None, 512, 512), dtype=tf.float32, name=None)} ``` </div> --- ## Visualize dataset ```python import matplotlib.pyplot as plt def display(display_list): plt.figure(figsize=(15, 15)) title = ["Input Image", "True Mask", "Predicted Mask"] for i in range(len(display_list)): plt.subplot(1, len(display_list), i + 1) plt.title(title[i]) plt.imshow(tf.keras.utils.array_to_img(display_list[i])) plt.axis("off") plt.show() for samples in train_ds.take(2): sample_image, sample_mask = samples["pixel_values"][0], samples["labels"][0] sample_image = tf.transpose(sample_image, (1, 2, 0)) sample_mask = tf.expand_dims(sample_mask, -1) display([sample_image, sample_mask]) ``` ![png](/img/examples/vision/segformer/segformer_12_0.png) ![png](/img/examples/vision/segformer/segformer_12_1.png) --- ## Load a pretrained SegFormer checkpoint We now load a pretrained SegFormer model variant from Hugging Face Transformers. The SegFormer model comes in different variants dubbed as **MiT-B0** to **MiT-B5**. You can find these checkpoints [here](https://huggingface.co/models?pipeline_tag=image-segmentation&sort=downloads&search=segformer). We load the smallest variant Mix-B0, which produces a good trade-off between inference efficiency and predictive performance. ```python from transformers import TFSegformerForSemanticSegmentation model_checkpoint = "nvidia/mit-b0" id2label = {0: "outer", 1: "inner", 2: "border"} label2id = {label: id for id, label in id2label.items()} num_labels = len(id2label) model = TFSegformerForSemanticSegmentation.from_pretrained( model_checkpoint, num_labels=num_labels, id2label=id2label, label2id=label2id, ignore_mismatched_sizes=True, ) ``` <div class="k-default-codeblock"> ``` WARNING:tensorflow:5 out of the last 5 calls to <function Conv._jit_compiled_convolution_op at 0x7fa8cc1139e0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. WARNING:tensorflow:5 out of the last 5 calls to <function Conv._jit_compiled_convolution_op at 0x7fa8cc1139e0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. WARNING:tensorflow:6 out of the last 6 calls to <function Conv._jit_compiled_convolution_op at 0x7fa8bde37440> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. WARNING:tensorflow:6 out of the last 6 calls to <function Conv._jit_compiled_convolution_op at 0x7fa8bde37440> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details. Some layers from the model checkpoint at nvidia/mit-b0 were not used when initializing TFSegformerForSemanticSegmentation: ['classifier'] - This IS expected if you are initializing TFSegformerForSemanticSegmentation from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model). - This IS NOT expected if you are initializing TFSegformerForSemanticSegmentation from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model). Some layers of TFSegformerForSemanticSegmentation were not initialized from the model checkpoint at nvidia/mit-b0 and are newly initialized: ['decode_head'] You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. ``` </div> The warning is telling us that we're throwing away some weights and newly initializing some others. Don't panic! This is absolutely normal. Since we're using a custom dataset which has a different set of semantic class labels than the pre-training dataset, [`TFSegformerForSemanticSegmentation`](https://huggingface.co/docs/transformers/model_doc/segformer#transformers.TFSegformerForSemanticSegmentation) is initializing a new decoder head. We can now initialize an optimizer and compile the model with it. --- ## Compile the model ```python lr = 0.00006 optimizer = tf.keras.optimizers.Adam(learning_rate=lr) model.compile(optimizer=optimizer) ``` <div class="k-default-codeblock"> ``` No loss specified in compile() - the model's internal loss computation will be used as the loss. Don't panic - this is a common way to train TensorFlow models in Transformers! To disable this behaviour please pass a loss argument, or explicitly pass `loss=None` if you do not want your model to compute a loss. ``` </div> Notice that we are not using any loss function for compiling the model. This is because the forward pass of the model [implements](https://github.com/huggingface/transformers/blob/820c46a707ddd033975bc3b0549eea200e64c7da/src/transformers/models/segformer/modeling_tf_segformer.py#L873) the loss computation part when we provide labels alongside the input images. After computing the loss, the model returned a structured `dataclass` object which is then used to guide the training process. With the compiled model, we can proceed and call `fit()` on it to begin the fine-tuning process! --- ## Prediction callback to monitor training progress It helps us to visualize some sample predictions when the model is being fine-tuned, thereby helping us to monitor the progress of the model. This callback is inspired from [this tutorial](https://www.tensorflow.org/tutorials/images/segmentation). ```python from IPython.display import clear_output def create_mask(pred_mask): pred_mask = tf.math.argmax(pred_mask, axis=1) pred_mask = tf.expand_dims(pred_mask, -1) return pred_mask[0] def show_predictions(dataset=None, num=1): if dataset: for sample in dataset.take(num): images, masks = sample["pixel_values"], sample["labels"] masks = tf.expand_dims(masks, -1) pred_masks = model.predict(images).logits images = tf.transpose(images, (0, 2, 3, 1)) display([images[0], masks[0], create_mask(pred_masks)]) else: display( [ sample_image, sample_mask, create_mask(model.predict(tf.expand_dims(sample_image, 0))), ] ) class DisplayCallback(tf.keras.callbacks.Callback): def __init__(self, dataset, **kwargs): super().__init__(**kwargs) self.dataset = dataset def on_epoch_end(self, epoch, logs=None): clear_output(wait=True) show_predictions(self.dataset) print("\nSample Prediction after epoch {}\n".format(epoch + 1)) ``` --- ## Train model ```python # Increase the number of epochs if the results are not of expected quality. epochs = 5 history = model.fit( train_ds, validation_data=test_ds, callbacks=[DisplayCallback(test_ds)], epochs=epochs, ) ``` <div class="k-default-codeblock"> ``` 1/1 [==============================] - 0s 54ms/step ``` </div> ![png](/img/examples/vision/segformer/segformer_22_1.png) <div class="k-default-codeblock"> ``` Sample Prediction after epoch 5 ``` </div> <div class="k-default-codeblock"> ``` 920/920 [==============================] - 89s 97ms/step - loss: 0.1742 - val_loss: 0.1927 ``` </div> --- ## Inference We perform inference on a few samples from the test set. ```python show_predictions(test_ds, 5) ``` <div class="k-default-codeblock"> ``` 1/1 [==============================] - 0s 54ms/step ``` </div> ![png](/img/examples/vision/segformer/segformer_24_1.png) <div class="k-default-codeblock"> ``` 1/1 [==============================] - 0s 54ms/step ``` </div> ![png](/img/examples/vision/segformer/segformer_24_3.png) <div class="k-default-codeblock"> ``` 1/1 [==============================] - 0s 53ms/step ``` </div> ![png](/img/examples/vision/segformer/segformer_24_5.png) <div class="k-default-codeblock"> ``` 1/1 [==============================] - 0s 53ms/step ``` </div> ![png](/img/examples/vision/segformer/segformer_24_7.png) <div class="k-default-codeblock"> ``` 1/1 [==============================] - 0s 53ms/step ``` </div> ![png](/img/examples/vision/segformer/segformer_24_9.png) --- ## Conclusion In this example, we learned how to fine-tune a SegFormer model variant on a custom dataset for semantic segmentation. In the interest of brevity, the example was kept short. However, there are a couple of things, you can further try out: * Incorporate data augmentation to potentially improve the results. * Use a larger SegFormer model checkpoint to see how the results are affected. * Push the fine-tuned model to the Hugging Face for sharing with the community easily. You can do so just by doing `model.push_to_hub("your-username/your-awesome-model")`. And then you can load the model by doing `TFSegformerForSemanticSegmentation.from_pretrained("your-username/your-awesome-model"`). [Here](https://github.com/huggingface/notebooks/blob/main/examples/semantic_segmentation-tf.ipynb) is an end-to-end example if you're looking for a reference. * If you'd rather push the model checkpoints to the Hub as the model is being fine-tuned you can instead use the `PushToHubCallback` Keras callback. [Here](https://gist.github.com/sayakpaul/f474ffb01f0cdcc8ba239357965c3bca) is an example. [Here](https://huggingface.co/sayakpaul/mit-b0-finetuned-pets) is an example of a model repository that was created using this callback.
keras-io/examples/vision/md/segformer.md/0
{ "file_path": "keras-io/examples/vision/md/segformer.md", "repo_id": "keras-io", "token_count": 5803 }
105
# Video Vision Transformer **Author:** [Aritra Roy Gosthipaty](https://twitter.com/ariG23498), [Ayush Thakur](https://twitter.com/ayushthakur0) (equal contribution)<br> **Date created:** 2022/01/12<br> **Last modified:** 2024/01/15<br> **Description:** A Transformer-based architecture for video classification. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/examples/vision/ipynb/vivit.ipynb) <span class="k-dot">โ€ข</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/examples/vision/vivit.py) --- ## Introduction Videos are sequences of images. Let's assume you have an image representation model (CNN, ViT, etc.) and a sequence model (RNN, LSTM, etc.) at hand. We ask you to tweak the model for video classification. The simplest approach would be to apply the image model to individual frames, use the sequence model to learn sequences of image features, then apply a classification head on the learned sequence representation. The Keras example [Video Classification with a CNN-RNN Architecture](https://keras.io/examples/vision/video_classification/) explains this approach in detail. Alernatively, you can also build a hybrid Transformer-based model for video classification as shown in the Keras example [Video Classification with Transformers](https://keras.io/examples/vision/video_transformers/). In this example, we minimally implement [ViViT: A Video Vision Transformer](https://arxiv.org/abs/2103.15691) by Arnab et al., a **pure Transformer-based** model for video classification. The authors propose a novel embedding scheme and a number of Transformer variants to model video clips. We implement the embedding scheme and one of the variants of the Transformer architecture, for simplicity. This example requires `medmnist` package, which can be installed by running the code cell below. ```python !pip install -qq medmnist ``` --- ## Imports ```python import os import io import imageio import medmnist import ipywidgets import numpy as np import tensorflow as tf # for data preprocessing only import keras from keras import layers, ops # Setting seed for reproducibility SEED = 42 os.environ["TF_CUDNN_DETERMINISTIC"] = "1" keras.utils.set_random_seed(SEED) ``` --- ## Hyperparameters The hyperparameters are chosen via hyperparameter search. You can learn more about the process in the "conclusion" section. ```python # DATA DATASET_NAME = "organmnist3d" BATCH_SIZE = 32 AUTO = tf.data.AUTOTUNE INPUT_SHAPE = (28, 28, 28, 1) NUM_CLASSES = 11 # OPTIMIZER LEARNING_RATE = 1e-4 WEIGHT_DECAY = 1e-5 # TRAINING EPOCHS = 60 # TUBELET EMBEDDING PATCH_SIZE = (8, 8, 8) NUM_PATCHES = (INPUT_SHAPE[0] // PATCH_SIZE[0]) ** 2 # ViViT ARCHITECTURE LAYER_NORM_EPS = 1e-6 PROJECTION_DIM = 128 NUM_HEADS = 8 NUM_LAYERS = 8 ``` --- ## Dataset For our example we use the [MedMNIST v2: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification](https://medmnist.com/) dataset. The videos are lightweight and easy to train on. ```python def download_and_prepare_dataset(data_info: dict): """Utility function to download the dataset. Arguments: data_info (dict): Dataset metadata. """ data_path = keras.utils.get_file(origin=data_info["url"], md5_hash=data_info["MD5"]) with np.load(data_path) as data: # Get videos train_videos = data["train_images"] valid_videos = data["val_images"] test_videos = data["test_images"] # Get labels train_labels = data["train_labels"].flatten() valid_labels = data["val_labels"].flatten() test_labels = data["test_labels"].flatten() return ( (train_videos, train_labels), (valid_videos, valid_labels), (test_videos, test_labels), ) # Get the metadata of the dataset info = medmnist.INFO[DATASET_NAME] # Get the dataset prepared_dataset = download_and_prepare_dataset(info) (train_videos, train_labels) = prepared_dataset[0] (valid_videos, valid_labels) = prepared_dataset[1] (test_videos, test_labels) = prepared_dataset[2] ``` ### `tf.data` pipeline ```python def preprocess(frames: tf.Tensor, label: tf.Tensor): """Preprocess the frames tensors and parse the labels.""" # Preprocess images frames = tf.image.convert_image_dtype( frames[ ..., tf.newaxis ], # The new axis is to help for further processing with Conv3D layers tf.float32, ) # Parse label label = tf.cast(label, tf.float32) return frames, label def prepare_dataloader( videos: np.ndarray, labels: np.ndarray, loader_type: str = "train", batch_size: int = BATCH_SIZE, ): """Utility function to prepare the dataloader.""" dataset = tf.data.Dataset.from_tensor_slices((videos, labels)) if loader_type == "train": dataset = dataset.shuffle(BATCH_SIZE * 2) dataloader = ( dataset.map(preprocess, num_parallel_calls=tf.data.AUTOTUNE) .batch(batch_size) .prefetch(tf.data.AUTOTUNE) ) return dataloader trainloader = prepare_dataloader(train_videos, train_labels, "train") validloader = prepare_dataloader(valid_videos, valid_labels, "valid") testloader = prepare_dataloader(test_videos, test_labels, "test") ``` --- ## Tubelet Embedding In ViTs, an image is divided into patches, which are then spatially flattened, a process known as tokenization. For a video, one can repeat this process for individual frames. **Uniform frame sampling** as suggested by the authors is a tokenization scheme in which we sample frames from the video clip and perform simple ViT tokenization. | ![uniform frame sampling](https://i.imgur.com/aaPyLPX.png) | | :--: | | Uniform Frame Sampling [Source](https://arxiv.org/abs/2103.15691) | **Tubelet Embedding** is different in terms of capturing temporal information from the video. First, we extract volumes from the video -- these volumes contain patches of the frame and the temporal information as well. The volumes are then flattened to build video tokens. | ![tubelet embedding](https://i.imgur.com/9G7QTfV.png) | | :--: | | Tubelet Embedding [Source](https://arxiv.org/abs/2103.15691) | ```python class TubeletEmbedding(layers.Layer): def __init__(self, embed_dim, patch_size, **kwargs): super().__init__(**kwargs) self.projection = layers.Conv3D( filters=embed_dim, kernel_size=patch_size, strides=patch_size, padding="VALID", ) self.flatten = layers.Reshape(target_shape=(-1, embed_dim)) def call(self, videos): projected_patches = self.projection(videos) flattened_patches = self.flatten(projected_patches) return flattened_patches ``` --- ## Positional Embedding This layer adds positional information to the encoded video tokens. ```python class PositionalEncoder(layers.Layer): def __init__(self, embed_dim, **kwargs): super().__init__(**kwargs) self.embed_dim = embed_dim def build(self, input_shape): _, num_tokens, _ = input_shape self.position_embedding = layers.Embedding( input_dim=num_tokens, output_dim=self.embed_dim ) self.positions = ops.arange(0, num_tokens, 1) def call(self, encoded_tokens): # Encode the positions and add it to the encoded tokens encoded_positions = self.position_embedding(self.positions) encoded_tokens = encoded_tokens + encoded_positions return encoded_tokens ``` --- ## Video Vision Transformer The authors suggest 4 variants of Vision Transformer: - Spatio-temporal attention - Factorized encoder - Factorized self-attention - Factorized dot-product attention In this example, we will implement the **Spatio-temporal attention** model for simplicity. The following code snippet is heavily inspired from [Image classification with Vision Transformer](https://keras.io/examples/vision/image_classification_with_vision_transformer/). One can also refer to the [official repository of ViViT](https://github.com/google-research/scenic/tree/main/scenic/projects/vivit) which contains all the variants, implemented in JAX. ```python def create_vivit_classifier( tubelet_embedder, positional_encoder, input_shape=INPUT_SHAPE, transformer_layers=NUM_LAYERS, num_heads=NUM_HEADS, embed_dim=PROJECTION_DIM, layer_norm_eps=LAYER_NORM_EPS, num_classes=NUM_CLASSES, ): # Get the input layer inputs = layers.Input(shape=input_shape) # Create patches. patches = tubelet_embedder(inputs) # Encode patches. encoded_patches = positional_encoder(patches) # Create multiple layers of the Transformer block. for _ in range(transformer_layers): # Layer normalization and MHSA x1 = layers.LayerNormalization(epsilon=1e-6)(encoded_patches) attention_output = layers.MultiHeadAttention( num_heads=num_heads, key_dim=embed_dim // num_heads, dropout=0.1 )(x1, x1) # Skip connection x2 = layers.Add()([attention_output, encoded_patches]) # Layer Normalization and MLP x3 = layers.LayerNormalization(epsilon=1e-6)(x2) x3 = keras.Sequential( [ layers.Dense(units=embed_dim * 4, activation=ops.gelu), layers.Dense(units=embed_dim, activation=ops.gelu), ] )(x3) # Skip connection encoded_patches = layers.Add()([x3, x2]) # Layer normalization and Global average pooling. representation = layers.LayerNormalization(epsilon=layer_norm_eps)(encoded_patches) representation = layers.GlobalAvgPool1D()(representation) # Classify outputs. outputs = layers.Dense(units=num_classes, activation="softmax")(representation) # Create the Keras model. model = keras.Model(inputs=inputs, outputs=outputs) return model ``` --- ## Train ```python def run_experiment(): # Initialize model model = create_vivit_classifier( tubelet_embedder=TubeletEmbedding( embed_dim=PROJECTION_DIM, patch_size=PATCH_SIZE ), positional_encoder=PositionalEncoder(embed_dim=PROJECTION_DIM), ) # Compile the model with the optimizer, loss function # and the metrics. optimizer = keras.optimizers.Adam(learning_rate=LEARNING_RATE) model.compile( optimizer=optimizer, loss="sparse_categorical_crossentropy", metrics=[ keras.metrics.SparseCategoricalAccuracy(name="accuracy"), keras.metrics.SparseTopKCategoricalAccuracy(5, name="top-5-accuracy"), ], ) # Train the model. _ = model.fit(trainloader, epochs=EPOCHS, validation_data=validloader) _, accuracy, top_5_accuracy = model.evaluate(testloader) print(f"Test accuracy: {round(accuracy * 100, 2)}%") print(f"Test top 5 accuracy: {round(top_5_accuracy * 100, 2)}%") return model model = run_experiment() ``` ``` Test accuracy: 76.72% Test top 5 accuracy: 97.54% ``` </div> --- ## Inference ```python NUM_SAMPLES_VIZ = 25 testsamples, labels = next(iter(testloader)) testsamples, labels = testsamples[:NUM_SAMPLES_VIZ], labels[:NUM_SAMPLES_VIZ] ground_truths = [] preds = [] videos = [] for i, (testsample, label) in enumerate(zip(testsamples, labels)): # Generate gif testsample = np.reshape(testsample.numpy(), (-1, 28, 28)) with io.BytesIO() as gif: imageio.mimsave(gif, (testsample * 255).astype("uint8"), "GIF", fps=5) videos.append(gif.getvalue()) # Get model prediction output = model.predict(ops.expand_dims(testsample, axis=0))[0] pred = np.argmax(output, axis=0) ground_truths.append(label.numpy().astype("int")) preds.append(pred) def make_box_for_grid(image_widget, fit): """Make a VBox to hold caption/image for demonstrating option_fit values. Source: https://ipywidgets.readthedocs.io/en/latest/examples/Widget%20Styling.html """ # Make the caption if fit is not None: fit_str = "'{}'".format(fit) else: fit_str = str(fit) h = ipywidgets.HTML(value="" + str(fit_str) + "") # Make the green box with the image widget inside it boxb = ipywidgets.widgets.Box() boxb.children = [image_widget] # Compose into a vertical box vb = ipywidgets.widgets.VBox() vb.layout.align_items = "center" vb.children = [h, boxb] return vb boxes = [] for i in range(NUM_SAMPLES_VIZ): ib = ipywidgets.widgets.Image(value=videos[i], width=100, height=100) true_class = info["label"][str(ground_truths[i])] pred_class = info["label"][str(preds[i])] caption = f"T: {true_class} | P: {pred_class}" boxes.append(make_box_for_grid(ib, caption)) ipywidgets.widgets.GridBox( boxes, layout=ipywidgets.widgets.Layout(grid_template_columns="repeat(5, 200px)") ) ``` --- ## Final thoughts With a vanilla implementation, we achieve ~79-80% Top-1 accuracy on the test dataset. The hyperparameters used in this tutorial were finalized by running a hyperparameter search using [W&B Sweeps](https://docs.wandb.ai/guides/sweeps). You can find out our sweeps result [here](https://wandb.ai/minimal-implementations/vivit/sweeps/66fp0lhz) and our quick analysis of the results [here](https://wandb.ai/minimal-implementations/vivit/reports/Hyperparameter-Tuning-Analysis--VmlldzoxNDEwNzcx). For further improvement, you could look into the following: - Using data augmentation for videos. - Using a better regularization scheme for training. - Apply different variants of the transformer model as in the paper. We would like to thank [Anurag Arnab](https://anuragarnab.github.io/) (first author of ViViT) for helpful discussion. We are grateful to [Weights and Biases](https://wandb.ai/site) program for helping with GPU credits. You can use the trained model hosted on [Hugging Face Hub](https://huggingface.co/keras-io/video-vision-transformer) and try the demo on [Hugging Face Spaces](https://huggingface.co/spaces/keras-io/video-vision-transformer-CT).
keras-io/examples/vision/md/vivit.md/0
{ "file_path": "keras-io/examples/vision/md/vivit.md", "repo_id": "keras-io", "token_count": 5346 }
106
""" Title: Self-supervised contrastive learning with SimSiam Author: [Sayak Paul](https://twitter.com/RisingSayak) Date created: 2021/03/19 Last modified: 2023/12/29 Description: Implementation of a self-supervised learning method for computer vision. Accelerator: GPU """ """ Self-supervised learning (SSL) is an interesting branch of study in the field of representation learning. SSL systems try to formulate a supervised signal from a corpus of unlabeled data points. An example is we train a deep neural network to predict the next word from a given set of words. In literature, these tasks are known as *pretext tasks* or *auxiliary tasks*. If we [train such a network](https://arxiv.org/abs/1801.06146) on a huge dataset (such as the [Wikipedia text corpus](https://www.corpusdata.org/wikipedia.asp)) it learns very effective representations that transfer well to downstream tasks. Language models like [BERT](https://arxiv.org/abs/1810.04805), [GPT-3](https://arxiv.org/abs/2005.14165), [ELMo](https://allennlp.org/elmo) all benefit from this. Much like the language models we can train computer vision models using similar approaches. To make things work in computer vision, we need to formulate the learning tasks such that the underlying model (a deep neural network) is able to make sense of the semantic information present in vision data. One such task is to a model to _contrast_ between two different versions of the same image. The hope is that in this way the model will have learn representations where the similar images are grouped as together possible while the dissimilar images are further away. In this example, we will be implementing one such system called **SimSiam** proposed in [Exploring Simple Siamese Representation Learning](https://arxiv.org/abs/2011.10566). It is implemented as the following: 1. We create two different versions of the same dataset with a stochastic data augmentation pipeline. Note that the random initialization seed needs to be the same during create these versions. 2. We take a ResNet without any classification head (**backbone**) and we add a shallow fully-connected network (**projection head**) on top of it. Collectively, this is known as the **encoder**. 3. We pass the output of the encoder through a **predictor** which is again a shallow fully-connected network having an [AutoEncoder](https://en.wikipedia.org/wiki/Autoencoder) like structure. 4. We then train our encoder to maximize the cosine similarity between the two different versions of our dataset. """ """ ## Setup """ import os os.environ["KERAS_BACKEND"] = "tensorflow" import keras import keras_cv from keras import ops from keras import layers from keras import regularizers import tensorflow as tf import matplotlib.pyplot as plt import numpy as np """ ## Define hyperparameters """ AUTO = tf.data.AUTOTUNE BATCH_SIZE = 128 EPOCHS = 5 CROP_TO = 32 SEED = 26 PROJECT_DIM = 2048 LATENT_DIM = 512 WEIGHT_DECAY = 0.0005 """ ## Load the CIFAR-10 dataset """ (x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data() print(f"Total training examples: {len(x_train)}") print(f"Total test examples: {len(x_test)}") """ ## Defining our data augmentation pipeline As studied in [SimCLR](https://arxiv.org/abs/2002.05709) having the right data augmentation pipeline is critical for SSL systems to work effectively in computer vision. Two particular augmentation transforms that seem to matter the most are: 1.) Random resized crops and 2.) Color distortions. Most of the other SSL systems for computer vision (such as [BYOL](https://arxiv.org/abs/2006.07733), [MoCoV2](https://arxiv.org/abs/2003.04297), [SwAV](https://arxiv.org/abs/2006.09882), etc.) include these in their training pipelines. """ strength = [0.4, 0.4, 0.3, 0.1] random_flip = layers.RandomFlip(mode="horizontal_and_vertical") random_crop = layers.RandomCrop(CROP_TO, CROP_TO) random_brightness = layers.RandomBrightness(0.8 * strength[0]) random_contrast = layers.RandomContrast((1 - 0.8 * strength[1], 1 + 0.8 * strength[1])) random_saturation = keras_cv.layers.RandomSaturation( (0.5 - 0.8 * strength[2], 0.5 + 0.8 * strength[2]) ) random_hue = keras_cv.layers.RandomHue(0.2 * strength[3], [0, 255]) grayscale = keras_cv.layers.Grayscale() def flip_random_crop(image): # With random crops we also apply horizontal flipping. image = random_flip(image) image = random_crop(image) return image def color_jitter(x): x = random_brightness(x) x = random_contrast(x) x = random_saturation(x) x = random_hue(x) # Affine transformations can disturb the natural range of # RGB images, hence this is needed. x = ops.clip(x, 0, 255) return x def color_drop(x): x = grayscale(x) x = ops.tile(x, [1, 1, 3]) return x def random_apply(func, x, p): if keras.random.uniform([], minval=0, maxval=1) < p: return func(x) else: return x def custom_augment(image): # As discussed in the SimCLR paper, the series of augmentation # transformations (except for random crops) need to be applied # randomly to impose translational invariance. image = flip_random_crop(image) image = random_apply(color_jitter, image, p=0.8) image = random_apply(color_drop, image, p=0.2) return image """ It should be noted that an augmentation pipeline is generally dependent on various properties of the dataset we are dealing with. For example, if images in the dataset are heavily object-centric then taking random crops with a very high probability may hurt the training performance. Let's now apply our augmentation pipeline to our dataset and visualize a few outputs. """ """ ## Convert the data into TensorFlow `Dataset` objects Here we create two different versions of our dataset *without* any ground-truth labels. """ ssl_ds_one = tf.data.Dataset.from_tensor_slices(x_train) ssl_ds_one = ( ssl_ds_one.shuffle(1024, seed=SEED) .map(custom_augment, num_parallel_calls=AUTO) .batch(BATCH_SIZE) .prefetch(AUTO) ) ssl_ds_two = tf.data.Dataset.from_tensor_slices(x_train) ssl_ds_two = ( ssl_ds_two.shuffle(1024, seed=SEED) .map(custom_augment, num_parallel_calls=AUTO) .batch(BATCH_SIZE) .prefetch(AUTO) ) # We then zip both of these datasets. ssl_ds = tf.data.Dataset.zip((ssl_ds_one, ssl_ds_two)) # Visualize a few augmented images. sample_images_one = next(iter(ssl_ds_one)) plt.figure(figsize=(10, 10)) for n in range(25): ax = plt.subplot(5, 5, n + 1) plt.imshow(sample_images_one[n].numpy().astype("int")) plt.axis("off") plt.show() # Ensure that the different versions of the dataset actually contain # identical images. sample_images_two = next(iter(ssl_ds_two)) plt.figure(figsize=(10, 10)) for n in range(25): ax = plt.subplot(5, 5, n + 1) plt.imshow(sample_images_two[n].numpy().astype("int")) plt.axis("off") plt.show() """ Notice that the images in `samples_images_one` and `sample_images_two` are essentially the same but are augmented differently. """ """ ## Defining the encoder and the predictor We use an implementation of ResNet20 that is specifically configured for the CIFAR10 dataset. The code is taken from the [keras-idiomatic-programmer](https://github.com/GoogleCloudPlatform/keras-idiomatic-programmer/blob/master/zoo/resnet/resnet_cifar10_v2.py) repository. The hyperparameters of these architectures have been referred from Section 3 and Appendix A of [the original paper](https://arxiv.org/abs/2011.10566). """ """shell wget -q https://git.io/JYx2x -O resnet_cifar10_v2.py """ import resnet_cifar10_v2 N = 2 DEPTH = N * 9 + 2 NUM_BLOCKS = ((DEPTH - 2) // 9) - 1 def get_encoder(): # Input and backbone. inputs = layers.Input((CROP_TO, CROP_TO, 3)) x = layers.Rescaling(scale=1.0 / 127.5, offset=-1)(inputs) x = resnet_cifar10_v2.stem(x) x = resnet_cifar10_v2.learner(x, NUM_BLOCKS) x = layers.GlobalAveragePooling2D(name="backbone_pool")(x) # Projection head. x = layers.Dense( PROJECT_DIM, use_bias=False, kernel_regularizer=regularizers.l2(WEIGHT_DECAY) )(x) x = layers.BatchNormalization()(x) x = layers.ReLU()(x) x = layers.Dense( PROJECT_DIM, use_bias=False, kernel_regularizer=regularizers.l2(WEIGHT_DECAY) )(x) outputs = layers.BatchNormalization()(x) return keras.Model(inputs, outputs, name="encoder") def get_predictor(): model = keras.Sequential( [ # Note the AutoEncoder-like structure. layers.Input((PROJECT_DIM,)), layers.Dense( LATENT_DIM, use_bias=False, kernel_regularizer=regularizers.l2(WEIGHT_DECAY), ), layers.ReLU(), layers.BatchNormalization(), layers.Dense(PROJECT_DIM), ], name="predictor", ) return model """ ## Defining the (pre-)training loop One of the main reasons behind training networks with these kinds of approaches is to utilize the learned representations for downstream tasks like classification. This is why this particular training phase is also referred to as _pre-training_. We start by defining the loss function. """ def compute_loss(p, z): # The authors of SimSiam emphasize the impact of # the `stop_gradient` operator in the paper as it # has an important role in the overall optimization. z = ops.stop_gradient(z) p = keras.utils.normalize(p, axis=1, order=2) z = keras.utils.normalize(z, axis=1, order=2) # Negative cosine similarity (minimizing this is # equivalent to maximizing the similarity). return -ops.mean(ops.sum((p * z), axis=1)) """ We then define our training loop by overriding the `train_step()` function of the `keras.Model` class. """ class SimSiam(keras.Model): def __init__(self, encoder, predictor): super().__init__() self.encoder = encoder self.predictor = predictor self.loss_tracker = keras.metrics.Mean(name="loss") @property def metrics(self): return [self.loss_tracker] def train_step(self, data): # Unpack the data. ds_one, ds_two = data # Forward pass through the encoder and predictor. with tf.GradientTape() as tape: z1, z2 = self.encoder(ds_one), self.encoder(ds_two) p1, p2 = self.predictor(z1), self.predictor(z2) # Note that here we are enforcing the network to match # the representations of two differently augmented batches # of data. loss = compute_loss(p1, z2) / 2 + compute_loss(p2, z1) / 2 # Compute gradients and update the parameters. learnable_params = ( self.encoder.trainable_variables + self.predictor.trainable_variables ) gradients = tape.gradient(loss, learnable_params) self.optimizer.apply_gradients(zip(gradients, learnable_params)) # Monitor loss. self.loss_tracker.update_state(loss) return {"loss": self.loss_tracker.result()} """ ## Pre-training our networks In the interest of this example, we will train the model for only 5 epochs. In reality, this should at least be 100 epochs. """ # Create a cosine decay learning scheduler. num_training_samples = len(x_train) steps = EPOCHS * (num_training_samples // BATCH_SIZE) lr_decayed_fn = keras.optimizers.schedules.CosineDecay( initial_learning_rate=0.03, decay_steps=steps ) # Create an early stopping callback. early_stopping = keras.callbacks.EarlyStopping( monitor="loss", patience=5, restore_best_weights=True ) # Compile model and start training. simsiam = SimSiam(get_encoder(), get_predictor()) simsiam.compile(optimizer=keras.optimizers.SGD(lr_decayed_fn, momentum=0.6)) history = simsiam.fit(ssl_ds, epochs=EPOCHS, callbacks=[early_stopping]) # Visualize the training progress of the model. plt.plot(history.history["loss"]) plt.grid() plt.title("Negative Cosine Similairty") plt.show() """ If your solution gets very close to -1 (minimum value of our loss) very quickly with a different dataset and a different backbone architecture that is likely because of *representation collapse*. It is a phenomenon where the encoder yields similar output for all the images. In that case additional hyperparameter tuning is required especially in the following areas: * Strength of the color distortions and their probabilities. * Learning rate and its schedule. * Architecture of both the backbone and their projection head. """ """ ## Evaluating our SSL method The most popularly used method to evaluate a SSL method in computer vision (or any other pre-training method as such) is to learn a linear classifier on the frozen features of the trained backbone model (in this case it is ResNet20) and evaluate the classifier on unseen images. Other methods include [fine-tuning](https://keras.io/guides/transfer_learning/) on the source dataset or even a target dataset with 5% or 10% labels present. Practically, we can use the backbone model for any downstream task such as semantic segmentation, object detection, and so on where the backbone models are usually pre-trained with *pure supervised learning*. """ # We first create labeled `Dataset` objects. train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)) test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)) # Then we shuffle, batch, and prefetch this dataset for performance. We # also apply random resized crops as an augmentation but only to the # training set. train_ds = ( train_ds.shuffle(1024) .map(lambda x, y: (flip_random_crop(x), y), num_parallel_calls=AUTO) .batch(BATCH_SIZE) .prefetch(AUTO) ) test_ds = test_ds.batch(BATCH_SIZE).prefetch(AUTO) # Extract the backbone ResNet20. backbone = keras.Model( simsiam.encoder.input, simsiam.encoder.get_layer("backbone_pool").output ) # We then create our linear classifier and train it. backbone.trainable = False inputs = layers.Input((CROP_TO, CROP_TO, 3)) x = backbone(inputs, training=False) outputs = layers.Dense(10, activation="softmax")(x) linear_model = keras.Model(inputs, outputs, name="linear_model") # Compile model and start training. linear_model.compile( loss="sparse_categorical_crossentropy", metrics=["accuracy"], optimizer=keras.optimizers.SGD(lr_decayed_fn, momentum=0.9), ) history = linear_model.fit( train_ds, validation_data=test_ds, epochs=EPOCHS, callbacks=[early_stopping] ) _, test_acc = linear_model.evaluate(test_ds) print("Test accuracy: {:.2f}%".format(test_acc * 100)) """ ## Notes * More data and longer pre-training schedule benefit SSL in general. * SSL is particularly very helpful when you do not have access to very limited *labeled* training data but you can manage to build a large corpus of unlabeled data. Recently, using an SSL method called [SwAV](https://arxiv.org/abs/2006.09882), a group of researchers at Facebook trained a [RegNet](https://arxiv.org/abs/2006.09882) on 2 Billion images. They were able to achieve downstream performance very close to those achieved by pure supervised pre-training. For some downstream tasks, their method even outperformed the supervised counterparts. You can check out [their paper](https://arxiv.org/pdf/2103.01988.pdf) to know the details. * If you are interested to understand why contrastive SSL helps networks learn meaningful representations, you can check out the following resources: * [Self-supervised learning: The dark matter of intelligence](https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/) * [Understanding self-supervised learning using controlled datasets with known structure](https://sslneuips20.github.io/files/CameraReadys%203-77/64/CameraReady/Understanding_self_supervised_learning.pdf) """
keras-io/examples/vision/simsiam.py/0
{ "file_path": "keras-io/examples/vision/simsiam.py", "repo_id": "keras-io", "token_count": 5443 }
107
""" Title: Working with preprocessing layers Authors: Francois Chollet, Mark Omernick Date created: 2020/07/25 Last modified: 2021/04/23 Description: Overview of how to leverage preprocessing layers to create end-to-end models. Accelerator: GPU """ """ ## Keras preprocessing The Keras preprocessing layers API allows developers to build Keras-native input processing pipelines. These input processing pipelines can be used as independent preprocessing code in non-Keras workflows, combined directly with Keras models, and exported as part of a Keras SavedModel. With Keras preprocessing layers, you can build and export models that are truly end-to-end: models that accept raw images or raw structured data as input; models that handle feature normalization or feature value indexing on their own. """ """ ## Available preprocessing ### Text preprocessing - `tf.keras.layers.TextVectorization`: turns raw strings into an encoded representation that can be read by an `Embedding` layer or `Dense` layer. ### Numerical features preprocessing - `tf.keras.layers.Normalization`: performs feature-wise normalization of input features. - `tf.keras.layers.Discretization`: turns continuous numerical features into integer categorical features. ### Categorical features preprocessing - `tf.keras.layers.CategoryEncoding`: turns integer categorical features into one-hot, multi-hot, or count dense representations. - `tf.keras.layers.Hashing`: performs categorical feature hashing, also known as the "hashing trick". - `tf.keras.layers.StringLookup`: turns string categorical values into an encoded representation that can be read by an `Embedding` layer or `Dense` layer. - `tf.keras.layers.IntegerLookup`: turns integer categorical values into an encoded representation that can be read by an `Embedding` layer or `Dense` layer. ### Image preprocessing These layers are for standardizing the inputs of an image model. - `tf.keras.layers.Resizing`: resizes a batch of images to a target size. - `tf.keras.layers.Rescaling`: rescales and offsets the values of a batch of images (e.g. go from inputs in the `[0, 255]` range to inputs in the `[0, 1]` range. - `tf.keras.layers.CenterCrop`: returns a center crop of a batch of images. ### Image data augmentation These layers apply random augmentation transforms to a batch of images. They are only active during training. - `tf.keras.layers.RandomCrop` - `tf.keras.layers.RandomFlip` - `tf.keras.layers.RandomTranslation` - `tf.keras.layers.RandomRotation` - `tf.keras.layers.RandomZoom` - `tf.keras.layers.RandomContrast` """ """ ## The `adapt()` method Some preprocessing layers have an internal state that can be computed based on a sample of the training data. The list of stateful preprocessing layers is: - `TextVectorization`: holds a mapping between string tokens and integer indices - `StringLookup` and `IntegerLookup`: hold a mapping between input values and integer indices. - `Normalization`: holds the mean and standard deviation of the features. - `Discretization`: holds information about value bucket boundaries. Crucially, these layers are **non-trainable**. Their state is not set during training; it must be set **before training**, either by initializing them from a precomputed constant, or by "adapting" them on data. You set the state of a preprocessing layer by exposing it to training data, via the `adapt()` method: """ import numpy as np import tensorflow as tf import keras from keras import layers data = np.array( [ [0.1, 0.2, 0.3], [0.8, 0.9, 1.0], [1.5, 1.6, 1.7], ] ) layer = layers.Normalization() layer.adapt(data) normalized_data = layer(data) print("Features mean: %.2f" % (normalized_data.numpy().mean())) print("Features std: %.2f" % (normalized_data.numpy().std())) """ The `adapt()` method takes either a Numpy array or a `tf.data.Dataset` object. In the case of `StringLookup` and `TextVectorization`, you can also pass a list of strings: """ data = [ "ฮพฮตแฟ–ฮฝแพฝ, แผฆ ฯ„ฮฟฮน ฮผแฝฒฮฝ แฝ„ฮฝฮตฮนฯฮฟฮน แผ€ฮผฮฎฯ‡ฮฑฮฝฮฟฮน แผ€ฮบฯฮนฯ„ฯŒฮผฯ…ฮธฮฟฮน", "ฮณฮฏฮณฮฝฮฟฮฝฯ„แพฝ, ฮฟแฝฮดฮญ ฯ„ฮน ฯ€ฮฌฮฝฯ„ฮฑ ฯ„ฮตฮปฮตฮฏฮตฯ„ฮฑฮน แผ€ฮฝฮธฯฯŽฯ€ฮฟฮนฯƒฮน.", "ฮดฮฟฮนฮฑแฝถ ฮณฮฌฯ ฯ„ฮต ฯ€ฯฮปฮฑฮน แผ€ฮผฮตฮฝฮทฮฝแฟถฮฝ ฮตแผฐฯƒแฝถฮฝ แฝ€ฮฝฮตฮฏฯฯ‰ฮฝ:", "ฮฑแผฑ ฮผแฝฒฮฝ ฮณแฝฐฯ ฮบฮตฯฮฌฮตฯƒฯƒฮน ฯ„ฮตฯ„ฮตฯฯ‡ฮฑฯ„ฮฑฮน, ฮฑแผฑ ฮดแพฝ แผฮปฮญฯ†ฮฑฮฝฯ„ฮน:", "ฯ„แฟถฮฝ ฮฟแผณ ฮผฮญฮฝ ฮบแพฝ แผ”ฮปฮธฯ‰ฯƒฮน ฮดฮนแฝฐ ฯ€ฯฮนฯƒฯ„ฮฟแฟฆ แผฮปฮญฯ†ฮฑฮฝฯ„ฮฟฯ‚,", "ฮฟแผต แฟฅแพฝ แผฮปฮตฯ†ฮฑฮฏฯฮฟฮฝฯ„ฮฑฮน, แผ”ฯ€ฮตแพฝ แผ€ฮบฯฮฌฮฑฮฝฯ„ฮฑ ฯ†ฮญฯฮฟฮฝฯ„ฮตฯ‚:", "ฮฟแผฑ ฮดแฝฒ ฮดฮนแฝฐ ฮพฮตฯƒฯ„แฟถฮฝ ฮบฮตฯฮฌฯ‰ฮฝ แผ”ฮปฮธฯ‰ฯƒฮน ฮธฯฯฮฑฮถฮต,", "ฮฟแผต แฟฅแพฝ แผ”ฯ„ฯ…ฮผฮฑ ฮบฯฮฑฮฏฮฝฮฟฯ…ฯƒฮน, ฮฒฯฮฟฯ„แฟถฮฝ แฝ…ฯ„ฮต ฮบฮญฮฝ ฯ„ฮนฯ‚ แผดฮดฮทฯ„ฮฑฮน.", ] layer = layers.TextVectorization() layer.adapt(data) vectorized_text = layer(data) print(vectorized_text) """ In addition, adaptable layers always expose an option to directly set state via constructor arguments or weight assignment. If the intended state values are known at layer construction time, or are calculated outside of the `adapt()` call, they can be set without relying on the layer's internal computation. For instance, if external vocabulary files for the `TextVectorization`, `StringLookup`, or `IntegerLookup` layers already exist, those can be loaded directly into the lookup tables by passing a path to the vocabulary file in the layer's constructor arguments. Here's an example where you instantiate a `StringLookup` layer with precomputed vocabulary: """ vocab = ["a", "b", "c", "d"] data = tf.constant([["a", "c", "d"], ["d", "z", "b"]]) layer = layers.StringLookup(vocabulary=vocab) vectorized_data = layer(data) print(vectorized_data) """ ## Preprocessing data before the model or inside the model There are two ways you could be using preprocessing layers: **Option 1:** Make them part of the model, like this: ```python inputs = keras.Input(shape=input_shape) x = preprocessing_layer(inputs) outputs = rest_of_the_model(x) model = keras.Model(inputs, outputs) ``` With this option, preprocessing will happen on device, synchronously with the rest of the model execution, meaning that it will benefit from GPU acceleration. If you're training on a GPU, this is the best option for the `Normalization` layer, and for all image preprocessing and data augmentation layers. **Option 2:** apply it to your `tf.data.Dataset`, so as to obtain a dataset that yields batches of preprocessed data, like this: ```python dataset = dataset.map(lambda x, y: (preprocessing_layer(x), y)) ``` With this option, your preprocessing will happen on a CPU, asynchronously, and will be buffered before going into the model. In addition, if you call `dataset.prefetch(tf.data.AUTOTUNE)` on your dataset, the preprocessing will happen efficiently in parallel with training: ```python dataset = dataset.map(lambda x, y: (preprocessing_layer(x), y)) dataset = dataset.prefetch(tf.data.AUTOTUNE) model.fit(dataset, ...) ``` This is the best option for `TextVectorization`, and all structured data preprocessing layers. It can also be a good option if you're training on a CPU and you use image preprocessing layers. Note that the `TextVectorization` layer can only be executed on a CPU, as it is mostly a dictionary lookup operation. Therefore, if you are training your model on a GPU or a TPU, you should put the `TextVectorization` layer in the `tf.data` pipeline to get the best performance. **When running on a TPU, you should always place preprocessing layers in the `tf.data` pipeline** (with the exception of `Normalization` and `Rescaling`, which run fine on a TPU and are commonly used as the first layer in an image model). """ """ ## Benefits of doing preprocessing inside the model at inference time Even if you go with option 2, you may later want to export an inference-only end-to-end model that will include the preprocessing layers. The key benefit to doing this is that **it makes your model portable** and it **helps reduce the [training/serving skew](https://developers.google.com/machine-learning/guides/rules-of-ml#training-serving_skew)**. When all data preprocessing is part of the model, other people can load and use your model without having to be aware of how each feature is expected to be encoded & normalized. Your inference model will be able to process raw images or raw structured data, and will not require users of the model to be aware of the details of e.g. the tokenization scheme used for text, the indexing scheme used for categorical features, whether image pixel values are normalized to `[-1, +1]` or to `[0, 1]`, etc. This is especially powerful if you're exporting your model to another runtime, such as TensorFlow.js: you won't have to reimplement your preprocessing pipeline in JavaScript. If you initially put your preprocessing layers in your `tf.data` pipeline, you can export an inference model that packages the preprocessing. Simply instantiate a new model that chains your preprocessing layers and your training model: ```python inputs = keras.Input(shape=input_shape) x = preprocessing_layer(inputs) outputs = training_model(x) inference_model = keras.Model(inputs, outputs) ``` """ """ ## Preprocessing during multi-worker training Preprocessing layers are compatible with the [tf.distribute](https://www.tensorflow.org/api_docs/python/tf/distribute) API for running training across multiple machines. In general, preprocessing layers should be placed inside a `tf.distribute.Strategy.scope()` and called either inside or before the model as discussed above. ```python with strategy.scope(): inputs = keras.Input(shape=input_shape) preprocessing_layer = tf.keras.layers.Hashing(10) dense_layer = tf.keras.layers.Dense(16) ``` For more details, refer to the _Data preprocessing_ section of the [Distributed input](https://www.tensorflow.org/tutorials/distribute/input) tutorial. """ """ ## Quick recipes ### Image data augmentation Note that image data augmentation layers are only active during training (similarly to the `Dropout` layer). """ from tensorflow import keras from tensorflow.keras import layers # Create a data augmentation stage with horizontal flipping, rotations, zooms data_augmentation = keras.Sequential( [ layers.RandomFlip("horizontal"), layers.RandomRotation(0.1), layers.RandomZoom(0.1), ] ) # Load some data (x_train, y_train), _ = keras.datasets.cifar10.load_data() input_shape = x_train.shape[1:] classes = 10 # Create a tf.data pipeline of augmented images (and their labels) train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) train_dataset = train_dataset.batch(16).map(lambda x, y: (data_augmentation(x), y)) # Create a model and train it on the augmented image data inputs = keras.Input(shape=input_shape) x = layers.Rescaling(1.0 / 255)(inputs) # Rescale inputs outputs = keras.applications.ResNet50( # Add the rest of the model weights=None, input_shape=input_shape, classes=classes )(x) model = keras.Model(inputs, outputs) model.compile(optimizer="rmsprop", loss="sparse_categorical_crossentropy") model.fit(train_dataset, steps_per_epoch=5) """ You can see a similar setup in action in the example [image classification from scratch](https://keras.io/examples/vision/image_classification_from_scratch/). """ """ ### Normalizing numerical features """ # Load some data (x_train, y_train), _ = keras.datasets.cifar10.load_data() x_train = x_train.reshape((len(x_train), -1)) input_shape = x_train.shape[1:] classes = 10 # Create a Normalization layer and set its internal state using the training data normalizer = layers.Normalization() normalizer.adapt(x_train) # Create a model that include the normalization layer inputs = keras.Input(shape=input_shape) x = normalizer(inputs) outputs = layers.Dense(classes, activation="softmax")(x) model = keras.Model(inputs, outputs) # Train the model model.compile(optimizer="adam", loss="sparse_categorical_crossentropy") model.fit(x_train, y_train) """ ### Encoding string categorical features via one-hot encoding """ # Define some toy data data = tf.constant([["a"], ["b"], ["c"], ["b"], ["c"], ["a"]]) # Use StringLookup to build an index of the feature values and encode output. lookup = layers.StringLookup(output_mode="one_hot") lookup.adapt(data) # Convert new test data (which includes unknown feature values) test_data = tf.constant([["a"], ["b"], ["c"], ["d"], ["e"], [""]]) encoded_data = lookup(test_data) print(encoded_data) """ Note that, here, index 0 is reserved for out-of-vocabulary values (values that were not seen during `adapt()`). You can see the `StringLookup` in action in the [Structured data classification from scratch](https://keras.io/examples/structured_data/structured_data_classification_from_scratch/) example. """ """ ### Encoding integer categorical features via one-hot encoding """ # Define some toy data data = tf.constant([[10], [20], [20], [10], [30], [0]]) # Use IntegerLookup to build an index of the feature values and encode output. lookup = layers.IntegerLookup(output_mode="one_hot") lookup.adapt(data) # Convert new test data (which includes unknown feature values) test_data = tf.constant([[10], [10], [20], [50], [60], [0]]) encoded_data = lookup(test_data) print(encoded_data) """ Note that index 0 is reserved for missing values (which you should specify as the value 0), and index 1 is reserved for out-of-vocabulary values (values that were not seen during `adapt()`). You can configure this by using the `mask_token` and `oov_token` constructor arguments of `IntegerLookup`. You can see the `IntegerLookup` in action in the example [structured data classification from scratch](https://keras.io/examples/structured_data/structured_data_classification_from_scratch/). """ """ ### Applying the hashing trick to an integer categorical feature If you have a categorical feature that can take many different values (on the order of 10e3 or higher), where each value only appears a few times in the data, it becomes impractical and ineffective to index and one-hot encode the feature values. Instead, it can be a good idea to apply the "hashing trick": hash the values to a vector of fixed size. This keeps the size of the feature space manageable, and removes the need for explicit indexing. """ # Sample data: 10,000 random integers with values between 0 and 100,000 data = np.random.randint(0, 100000, size=(10000, 1)) # Use the Hashing layer to hash the values to the range [0, 64] hasher = layers.Hashing(num_bins=64, salt=1337) # Use the CategoryEncoding layer to multi-hot encode the hashed values encoder = layers.CategoryEncoding(num_tokens=64, output_mode="multi_hot") encoded_data = encoder(hasher(data)) print(encoded_data.shape) """ ### Encoding text as a sequence of token indices This is how you should preprocess text to be passed to an `Embedding` layer. """ # Define some text data to adapt the layer adapt_data = tf.constant( [ "The Brain is wider than the Sky", "For put them side by side", "The one the other will contain", "With ease and You beside", ] ) # Create a TextVectorization layer text_vectorizer = layers.TextVectorization(output_mode="int") # Index the vocabulary via `adapt()` text_vectorizer.adapt(adapt_data) # Try out the layer print( "Encoded text:\n", text_vectorizer(["The Brain is deeper than the sea"]).numpy(), ) # Create a simple model inputs = keras.Input(shape=(None,), dtype="int64") x = layers.Embedding(input_dim=text_vectorizer.vocabulary_size(), output_dim=16)(inputs) x = layers.GRU(8)(x) outputs = layers.Dense(1)(x) model = keras.Model(inputs, outputs) # Create a labeled dataset (which includes unknown tokens) train_dataset = tf.data.Dataset.from_tensor_slices( (["The Brain is deeper than the sea", "for if they are held Blue to Blue"], [1, 0]) ) # Preprocess the string inputs, turning them into int sequences train_dataset = train_dataset.batch(2).map(lambda x, y: (text_vectorizer(x), y)) # Train the model on the int sequences print("\nTraining model...") model.compile(optimizer="rmsprop", loss="mse") model.fit(train_dataset) # For inference, you can export a model that accepts strings as input inputs = keras.Input(shape=(1,), dtype="string") x = text_vectorizer(inputs) outputs = model(x) end_to_end_model = keras.Model(inputs, outputs) # Call the end-to-end model on test data (which includes unknown tokens) print("\nCalling end-to-end model on test string...") test_data = tf.constant(["The one the other will absorb"]) test_output = end_to_end_model(test_data) print("Model output:", test_output) """ You can see the `TextVectorization` layer in action, combined with an `Embedding` mode, in the example [text classification from scratch](https://keras.io/examples/nlp/text_classification_from_scratch/). Note that when training such a model, for best performance, you should always use the `TextVectorization` layer as part of the input pipeline. """ """ ### Encoding text as a dense matrix of N-grams with multi-hot encoding This is how you should preprocess text to be passed to a `Dense` layer. """ # Define some text data to adapt the layer adapt_data = tf.constant( [ "The Brain is wider than the Sky", "For put them side by side", "The one the other will contain", "With ease and You beside", ] ) # Instantiate TextVectorization with "multi_hot" output_mode # and ngrams=2 (index all bigrams) text_vectorizer = layers.TextVectorization(output_mode="multi_hot", ngrams=2) # Index the bigrams via `adapt()` text_vectorizer.adapt(adapt_data) # Try out the layer print( "Encoded text:\n", text_vectorizer(["The Brain is deeper than the sea"]).numpy(), ) # Create a simple model inputs = keras.Input(shape=(text_vectorizer.vocabulary_size(),)) outputs = layers.Dense(1)(inputs) model = keras.Model(inputs, outputs) # Create a labeled dataset (which includes unknown tokens) train_dataset = tf.data.Dataset.from_tensor_slices( (["The Brain is deeper than the sea", "for if they are held Blue to Blue"], [1, 0]) ) # Preprocess the string inputs, turning them into int sequences train_dataset = train_dataset.batch(2).map(lambda x, y: (text_vectorizer(x), y)) # Train the model on the int sequences print("\nTraining model...") model.compile(optimizer="rmsprop", loss="mse") model.fit(train_dataset) # For inference, you can export a model that accepts strings as input inputs = keras.Input(shape=(1,), dtype="string") x = text_vectorizer(inputs) outputs = model(x) end_to_end_model = keras.Model(inputs, outputs) # Call the end-to-end model on test data (which includes unknown tokens) print("\nCalling end-to-end model on test string...") test_data = tf.constant(["The one the other will absorb"]) test_output = end_to_end_model(test_data) print("Model output:", test_output) """ ### Encoding text as a dense matrix of N-grams with TF-IDF weighting This is an alternative way of preprocessing text before passing it to a `Dense` layer. """ # Define some text data to adapt the layer adapt_data = tf.constant( [ "The Brain is wider than the Sky", "For put them side by side", "The one the other will contain", "With ease and You beside", ] ) # Instantiate TextVectorization with "tf-idf" output_mode # (multi-hot with TF-IDF weighting) and ngrams=2 (index all bigrams) text_vectorizer = layers.TextVectorization(output_mode="tf-idf", ngrams=2) # Index the bigrams and learn the TF-IDF weights via `adapt()` text_vectorizer.adapt(adapt_data) # Try out the layer print( "Encoded text:\n", text_vectorizer(["The Brain is deeper than the sea"]).numpy(), ) # Create a simple model inputs = keras.Input(shape=(text_vectorizer.vocabulary_size(),)) outputs = layers.Dense(1)(inputs) model = keras.Model(inputs, outputs) # Create a labeled dataset (which includes unknown tokens) train_dataset = tf.data.Dataset.from_tensor_slices( (["The Brain is deeper than the sea", "for if they are held Blue to Blue"], [1, 0]) ) # Preprocess the string inputs, turning them into int sequences train_dataset = train_dataset.batch(2).map(lambda x, y: (text_vectorizer(x), y)) # Train the model on the int sequences print("\nTraining model...") model.compile(optimizer="rmsprop", loss="mse") model.fit(train_dataset) # For inference, you can export a model that accepts strings as input inputs = keras.Input(shape=(1,), dtype="string") x = text_vectorizer(inputs) outputs = model(x) end_to_end_model = keras.Model(inputs, outputs) # Call the end-to-end model on test data (which includes unknown tokens) print("\nCalling end-to-end model on test string...") test_data = tf.constant(["The one the other will absorb"]) test_output = end_to_end_model(test_data) print("Model output:", test_output) """ ## Important gotchas ### Working with lookup layers with very large vocabularies You may find yourself working with a very large vocabulary in a `TextVectorization`, a `StringLookup` layer, or an `IntegerLookup` layer. Typically, a vocabulary larger than 500MB would be considered "very large". In such a case, for best performance, you should avoid using `adapt()`. Instead, pre-compute your vocabulary in advance (you could use Apache Beam or TF Transform for this) and store it in a file. Then load the vocabulary into the layer at construction time by passing the file path as the `vocabulary` argument. ### Using lookup layers on a TPU pod or with `ParameterServerStrategy`. There is an outstanding issue that causes performance to degrade when using a `TextVectorization`, `StringLookup`, or `IntegerLookup` layer while training on a TPU pod or on multiple machines via `ParameterServerStrategy`. This is slated to be fixed in TensorFlow 2.7. """
keras-io/guides/_preprocessing_layers.py/0
{ "file_path": "keras-io/guides/_preprocessing_layers.py", "repo_id": "keras-io", "token_count": 6969 }
108
<jupyter_start><jupyter_text>Customizing Saving and Serialization**Author:** Neel Kovelamudi**Date created:** 2023/03/15**Last modified:** 2023/03/15**Description:** A more advanced guide on customizing saving for your layers and models. IntroductionThis guide covers advanced methods that can be customized in Keras saving. For mostusers, the methods outlined in the primary[Serialize, save, and export guide](https://keras.io/guides/serialization_and_saving)are sufficient. APIsWe will cover the following APIs:- `save_assets()` and `load_assets()`- `save_own_variables()` and `load_own_variables()`- `get_build_config()` and `build_from_config()`- `get_compile_config()` and `compile_from_config()`When restoring a model, these get executed in the following order:- `build_from_config()`- `compile_from_config()`- `load_own_variables()`- `load_assets()` Setup<jupyter_code>import os import numpy as np import keras<jupyter_output><empty_output><jupyter_text>State saving customizationThese methods determine how the state of your model's layers is saved when calling`model.save()`. You can override them to take full control of the state saving process. `save_own_variables()` and `load_own_variables()`These methods save and load the state variables of the layer when `model.save()` and`keras.models.load_model()` are called, respectively. By default, the state variablessaved and loaded are the weights of the layer (both trainable and non-trainable). Here isthe default implementation of `save_own_variables()`:```pythondef save_own_variables(self, store): all_vars = self._trainable_weights + self._non_trainable_weights for i, v in enumerate(all_vars): store[f"{i}"] = v.numpy()```The store used by these methods is a dictionary that can be populated with the layervariables. Let's take a look at an example customizing this.**Example:**<jupyter_code>@keras.utils.register_keras_serializable(package="my_custom_package") class LayerWithCustomVariable(keras.layers.Dense): def __init__(self, units, **kwargs): super().__init__(units, **kwargs) self.my_variable = keras.Variable( np.random.random((units,)), name="my_variable", dtype="float32" ) def save_own_variables(self, store): super().save_own_variables(store) # Stores the value of the variable upon saving store["variables"] = self.my_variable.numpy() def load_own_variables(self, store): # Assigns the value of the variable upon loading self.my_variable.assign(store["variables"]) # Load the remaining weights for i, v in enumerate(self.weights): v.assign(store[f"{i}"]) # Note: You must specify how all variables (including layer weights) # are loaded in `load_own_variables.` def call(self, inputs): dense_out = super().call(inputs) return dense_out + self.my_variable model = keras.Sequential([LayerWithCustomVariable(1)]) ref_input = np.random.random((8, 10)) ref_output = np.random.random((8, 10)) model.compile(optimizer="adam", loss="mean_squared_error") model.fit(ref_input, ref_output) model.save("custom_vars_model.keras") restored_model = keras.models.load_model("custom_vars_model.keras") np.testing.assert_allclose( model.layers[0].my_variable.numpy(), restored_model.layers[0].my_variable.numpy(), )<jupyter_output><empty_output><jupyter_text>`save_assets()` and `load_assets()`These methods can be added to your model class definition to store and load anyadditional information that your model needs.For example, NLP domain layers such as TextVectorization layers and IndexLookup layersmay need to store their associated vocabulary (or lookup table) in a text file uponsaving.Let's take at the basics of this workflow with a simple file `assets.txt`.**Example:**<jupyter_code>@keras.saving.register_keras_serializable(package="my_custom_package") class LayerWithCustomAssets(keras.layers.Dense): def __init__(self, vocab=None, *args, **kwargs): super().__init__(*args, **kwargs) self.vocab = vocab def save_assets(self, inner_path): # Writes the vocab (sentence) to text file at save time. with open(os.path.join(inner_path, "vocabulary.txt"), "w") as f: f.write(self.vocab) def load_assets(self, inner_path): # Reads the vocab (sentence) from text file at load time. with open(os.path.join(inner_path, "vocabulary.txt"), "r") as f: text = f.read() self.vocab = text.replace("<unk>", "little") model = keras.Sequential( [LayerWithCustomAssets(vocab="Mary had a <unk> lamb.", units=5)] ) x = np.random.random((10, 10)) y = model(x) model.save("custom_assets_model.keras") restored_model = keras.models.load_model("custom_assets_model.keras") np.testing.assert_string_equal( restored_model.layers[0].vocab, "Mary had a little lamb." )<jupyter_output><empty_output><jupyter_text>`build` and `compile` saving customization `get_build_config()` and `build_from_config()`These methods work together to save the layer's built states and restore them uponloading.By default, this only includes a build config dictionary with the layer's input shape,but overriding these methods can be used to include further Variables and Lookup Tablesthat can be useful to restore for your built model.**Example:**<jupyter_code>@keras.saving.register_keras_serializable(package="my_custom_package") class LayerWithCustomBuild(keras.layers.Layer): def __init__(self, units=32, **kwargs): super().__init__(**kwargs) self.units = units def call(self, inputs): return keras.ops.matmul(inputs, self.w) + self.b def get_config(self): return dict(units=self.units, **super().get_config()) def build(self, input_shape, layer_init): # Note the overriding of `build()` to add an extra argument. # Therefore, we will need to manually call build with `layer_init` argument # before the first execution of `call()`. super().build(input_shape) self._input_shape = input_shape self.w = self.add_weight( shape=(input_shape[-1], self.units), initializer=layer_init, trainable=True, ) self.b = self.add_weight( shape=(self.units,), initializer=layer_init, trainable=True, ) self.layer_init = layer_init def get_build_config(self): build_config = { "layer_init": self.layer_init, "input_shape": self._input_shape, } # Stores our initializer for `build()` return build_config def build_from_config(self, config): # Calls `build()` with the parameters at loading time self.build(config["input_shape"], config["layer_init"]) custom_layer = LayerWithCustomBuild(units=16) custom_layer.build(input_shape=(8,), layer_init="random_normal") model = keras.Sequential( [ custom_layer, keras.layers.Dense(1, activation="sigmoid"), ] ) x = np.random.random((16, 8)) y = model(x) model.save("custom_build_model.keras") restored_model = keras.models.load_model("custom_build_model.keras") np.testing.assert_equal(restored_model.layers[0].layer_init, "random_normal") np.testing.assert_equal(restored_model.built, True)<jupyter_output><empty_output><jupyter_text>`get_compile_config()` and `compile_from_config()`These methods work together to save the information with which the model was compiled(optimizers, losses, etc.) and restore and re-compile the model with this information.Overriding these methods can be useful for compiling the restored model with customoptimizers, custom losses, etc., as these will need to be deserialized prior to calling`model.compile` in `compile_from_config()`.Let's take a look at an example of this.**Example:**<jupyter_code>@keras.saving.register_keras_serializable(package="my_custom_package") def small_square_sum_loss(y_true, y_pred): loss = keras.ops.square(y_pred - y_true) loss = loss / 10.0 loss = keras.ops.sum(loss, axis=1) return loss @keras.saving.register_keras_serializable(package="my_custom_package") def mean_pred(y_true, y_pred): return keras.ops.mean(y_pred) @keras.saving.register_keras_serializable(package="my_custom_package") class ModelWithCustomCompile(keras.Model): def __init__(self, **kwargs): super().__init__(**kwargs) self.dense1 = keras.layers.Dense(8, activation="relu") self.dense2 = keras.layers.Dense(4, activation="softmax") def call(self, inputs): x = self.dense1(inputs) return self.dense2(x) def compile(self, optimizer, loss_fn, metrics): super().compile(optimizer=optimizer, loss=loss_fn, metrics=metrics) self.model_optimizer = optimizer self.loss_fn = loss_fn self.loss_metrics = metrics def get_compile_config(self): # These parameters will be serialized at saving time. return { "model_optimizer": self.model_optimizer, "loss_fn": self.loss_fn, "metric": self.loss_metrics, } def compile_from_config(self, config): # Deserializes the compile parameters (important, since many are custom) optimizer = keras.utils.deserialize_keras_object(config["model_optimizer"]) loss_fn = keras.utils.deserialize_keras_object(config["loss_fn"]) metrics = keras.utils.deserialize_keras_object(config["metric"]) # Calls compile with the deserialized parameters self.compile(optimizer=optimizer, loss_fn=loss_fn, metrics=metrics) model = ModelWithCustomCompile() model.compile( optimizer="SGD", loss_fn=small_square_sum_loss, metrics=["accuracy", mean_pred] ) x = np.random.random((4, 8)) y = np.random.random((4,)) model.fit(x, y) model.save("custom_compile_model.keras") restored_model = keras.models.load_model("custom_compile_model.keras") np.testing.assert_equal(model.model_optimizer, restored_model.model_optimizer) np.testing.assert_equal(model.loss_fn, restored_model.loss_fn) np.testing.assert_equal(model.loss_metrics, restored_model.loss_metrics)<jupyter_output><empty_output>
keras-io/guides/ipynb/customizing_saving_and_serialization.ipynb/0
{ "file_path": "keras-io/guides/ipynb/customizing_saving_and_serialization.ipynb", "repo_id": "keras-io", "token_count": 3757 }
109
<jupyter_start><jupyter_text>The Functional API**Author:** [fchollet](https://twitter.com/fchollet)**Date created:** 2019/03/01**Last modified:** 2023/06/25**Description:** Complete guide to the functional API. Setup<jupyter_code>import numpy as np import keras from keras import layers from keras import ops<jupyter_output><empty_output><jupyter_text>IntroductionThe Keras *functional API* is a way to create models that are more flexiblethan the `keras.Sequential` API. The functional API can handle modelswith non-linear topology, shared layers, and even multiple inputs or outputs.The main idea is that a deep learning model is usuallya directed acyclic graph (DAG) of layers.So the functional API is a way to build *graphs of layers*.Consider the following model:```(input: 784-dimensional vectors) โ†ง[Dense (64 units, relu activation)] โ†ง[Dense (64 units, relu activation)] โ†ง[Dense (10 units, softmax activation)] โ†ง(output: logits of a probability distribution over 10 classes)```This is a basic graph with three layers.To build this model using the functional API, start by creating an input node:<jupyter_code>inputs = keras.Input(shape=(784,))<jupyter_output><empty_output><jupyter_text>The shape of the data is set as a 784-dimensional vector.The batch size is always omitted since only the shape of each sample is specified.If, for example, you have an image input with a shape of `(32, 32, 3)`,you would use:<jupyter_code># Just for demonstration purposes. img_inputs = keras.Input(shape=(32, 32, 3))<jupyter_output><empty_output><jupyter_text>The `inputs` that is returned contains information about the shape and `dtype`of the input data that you feed to your model.Here's the shape:<jupyter_code>inputs.shape<jupyter_output><empty_output><jupyter_text>Here's the dtype:<jupyter_code>inputs.dtype<jupyter_output><empty_output><jupyter_text>You create a new node in the graph of layers by calling a layer on this `inputs`object:<jupyter_code>dense = layers.Dense(64, activation="relu") x = dense(inputs)<jupyter_output><empty_output><jupyter_text>The "layer call" action is like drawing an arrow from "inputs" to this layeryou created.You're "passing" the inputs to the `dense` layer, and you get `x` as the output.Let's add a few more layers to the graph of layers:<jupyter_code>x = layers.Dense(64, activation="relu")(x) outputs = layers.Dense(10)(x)<jupyter_output><empty_output><jupyter_text>At this point, you can create a `Model` by specifying its inputs and outputsin the graph of layers:<jupyter_code>model = keras.Model(inputs=inputs, outputs=outputs, name="mnist_model")<jupyter_output><empty_output><jupyter_text>Let's check out what the model summary looks like:<jupyter_code>model.summary()<jupyter_output><empty_output><jupyter_text>You can also plot the model as a graph:<jupyter_code>keras.utils.plot_model(model, "my_first_model.png")<jupyter_output><empty_output><jupyter_text>And, optionally, display the input and output shapes of each layerin the plotted graph:<jupyter_code>keras.utils.plot_model(model, "my_first_model_with_shape_info.png", show_shapes=True)<jupyter_output><empty_output><jupyter_text>This figure and the code are almost identical. In the code version,the connection arrows are replaced by the call operation.A "graph of layers" is an intuitive mental image for a deep learning model,and the functional API is a way to create models that closely mirrors this. Training, evaluation, and inferenceTraining, evaluation, and inference work exactly in the same way for modelsbuilt using the functional API as for `Sequential` models.The `Model` class offers a built-in training loop (the `fit()` method)and a built-in evaluation loop (the `evaluate()` method). Notethat you can easily customize these loops to implement your own training routines.See also the guides on customizing what happens in `fit()`:- [Writing a custom train step with TensorFlow](/guides/custom_train_step_in_tensorflow/)- [Writing a custom train step with JAX](/guides/custom_train_step_in_jax/)- [Writing a custom train step with PyTorch](/guides/custom_train_step_in_torch/)Here, load the MNIST image data, reshape it into vectors,fit the model on the data (while monitoring performance on a validation split),then evaluate the model on the test data:<jupyter_code>(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() x_train = x_train.reshape(60000, 784).astype("float32") / 255 x_test = x_test.reshape(10000, 784).astype("float32") / 255 model.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=keras.optimizers.RMSprop(), metrics=["accuracy"], ) history = model.fit(x_train, y_train, batch_size=64, epochs=2, validation_split=0.2) test_scores = model.evaluate(x_test, y_test, verbose=2) print("Test loss:", test_scores[0]) print("Test accuracy:", test_scores[1])<jupyter_output><empty_output><jupyter_text>For further reading, see the[training and evaluation](/guides/training_with_built_in_methods/) guide. Save and serializeSaving the model and serialization work the same way for models built usingthe functional API as they do for `Sequential` models. The standard wayto save a functional model is to call `model.save()`to save the entire model as a single file. You can later recreate the same modelfrom this file, even if the code that built the model is no longer available.This saved file includes the:- model architecture- model weight values (that were learned during training)- model training config, if any (as passed to `compile()`)- optimizer and its state, if any (to restart training where you left off)<jupyter_code>model.save("my_model.keras") del model # Recreate the exact same model purely from the file: model = keras.models.load_model("my_model.keras")<jupyter_output><empty_output><jupyter_text>For details, read the model [serialization & saving]( /guides/serialization_and_saving/) guide. Use the same graph of layers to define multiple modelsIn the functional API, models are created by specifying their inputsand outputs in a graph of layers. That means that a singlegraph of layers can be used to generate multiple models.In the example below, you use the same stack of layers to instantiate two models:an `encoder` model that turns image inputs into 16-dimensional vectors,and an end-to-end `autoencoder` model for training.<jupyter_code>encoder_input = keras.Input(shape=(28, 28, 1), name="img") x = layers.Conv2D(16, 3, activation="relu")(encoder_input) x = layers.Conv2D(32, 3, activation="relu")(x) x = layers.MaxPooling2D(3)(x) x = layers.Conv2D(32, 3, activation="relu")(x) x = layers.Conv2D(16, 3, activation="relu")(x) encoder_output = layers.GlobalMaxPooling2D()(x) encoder = keras.Model(encoder_input, encoder_output, name="encoder") encoder.summary() x = layers.Reshape((4, 4, 1))(encoder_output) x = layers.Conv2DTranspose(16, 3, activation="relu")(x) x = layers.Conv2DTranspose(32, 3, activation="relu")(x) x = layers.UpSampling2D(3)(x) x = layers.Conv2DTranspose(16, 3, activation="relu")(x) decoder_output = layers.Conv2DTranspose(1, 3, activation="relu")(x) autoencoder = keras.Model(encoder_input, decoder_output, name="autoencoder") autoencoder.summary()<jupyter_output><empty_output><jupyter_text>Here, the decoding architecture is strictly symmetricalto the encoding architecture, so the output shape is the same asthe input shape `(28, 28, 1)`.The reverse of a `Conv2D` layer is a `Conv2DTranspose` layer,and the reverse of a `MaxPooling2D` layer is an `UpSampling2D` layer. All models are callable, just like layersYou can treat any model as if it were a layer by invoking it on an `Input` oron the output of another layer. By calling a model you aren't just reusingthe architecture of the model, you're also reusing its weights.To see this in action, here's a different take on the autoencoder example thatcreates an encoder model, a decoder model, and chains them in two callsto obtain the autoencoder model:<jupyter_code>encoder_input = keras.Input(shape=(28, 28, 1), name="original_img") x = layers.Conv2D(16, 3, activation="relu")(encoder_input) x = layers.Conv2D(32, 3, activation="relu")(x) x = layers.MaxPooling2D(3)(x) x = layers.Conv2D(32, 3, activation="relu")(x) x = layers.Conv2D(16, 3, activation="relu")(x) encoder_output = layers.GlobalMaxPooling2D()(x) encoder = keras.Model(encoder_input, encoder_output, name="encoder") encoder.summary() decoder_input = keras.Input(shape=(16,), name="encoded_img") x = layers.Reshape((4, 4, 1))(decoder_input) x = layers.Conv2DTranspose(16, 3, activation="relu")(x) x = layers.Conv2DTranspose(32, 3, activation="relu")(x) x = layers.UpSampling2D(3)(x) x = layers.Conv2DTranspose(16, 3, activation="relu")(x) decoder_output = layers.Conv2DTranspose(1, 3, activation="relu")(x) decoder = keras.Model(decoder_input, decoder_output, name="decoder") decoder.summary() autoencoder_input = keras.Input(shape=(28, 28, 1), name="img") encoded_img = encoder(autoencoder_input) decoded_img = decoder(encoded_img) autoencoder = keras.Model(autoencoder_input, decoded_img, name="autoencoder") autoencoder.summary()<jupyter_output><empty_output><jupyter_text>As you can see, the model can be nested: a model can contain sub-models(since a model is just like a layer).A common use case for model nesting is *ensembling*.For example, here's how to ensemble a set of models into a single modelthat averages their predictions:<jupyter_code>def get_model(): inputs = keras.Input(shape=(128,)) outputs = layers.Dense(1)(inputs) return keras.Model(inputs, outputs) model1 = get_model() model2 = get_model() model3 = get_model() inputs = keras.Input(shape=(128,)) y1 = model1(inputs) y2 = model2(inputs) y3 = model3(inputs) outputs = layers.average([y1, y2, y3]) ensemble_model = keras.Model(inputs=inputs, outputs=outputs)<jupyter_output><empty_output><jupyter_text>Manipulate complex graph topologies Models with multiple inputs and outputsThe functional API makes it easy to manipulate multiple inputs and outputs.This cannot be handled with the `Sequential` API.For example, if you're building a system for ranking customer issue tickets bypriority and routing them to the correct department,then the model will have three inputs:- the title of the ticket (text input),- the text body of the ticket (text input), and- any tags added by the user (categorical input)This model will have two outputs:- the priority score between 0 and 1 (scalar sigmoid output), and- the department that should handle the ticket (softmax outputover the set of departments).You can build this model in a few lines with the functional API:<jupyter_code>num_tags = 12 # Number of unique issue tags num_words = 10000 # Size of vocabulary obtained when preprocessing text data num_departments = 4 # Number of departments for predictions title_input = keras.Input( shape=(None,), name="title" ) # Variable-length sequence of ints body_input = keras.Input(shape=(None,), name="body") # Variable-length sequence of ints tags_input = keras.Input( shape=(num_tags,), name="tags" ) # Binary vectors of size `num_tags` # Embed each word in the title into a 64-dimensional vector title_features = layers.Embedding(num_words, 64)(title_input) # Embed each word in the text into a 64-dimensional vector body_features = layers.Embedding(num_words, 64)(body_input) # Reduce sequence of embedded words in the title into a single 128-dimensional vector title_features = layers.LSTM(128)(title_features) # Reduce sequence of embedded words in the body into a single 32-dimensional vector body_features = layers.LSTM(32)(body_features) # Merge all available features into a single large vector via concatenation x = layers.concatenate([title_features, body_features, tags_input]) # Stick a logistic regression for priority prediction on top of the features priority_pred = layers.Dense(1, name="priority")(x) # Stick a department classifier on top of the features department_pred = layers.Dense(num_departments, name="department")(x) # Instantiate an end-to-end model predicting both priority and department model = keras.Model( inputs=[title_input, body_input, tags_input], outputs={"priority": priority_pred, "department": department_pred}, )<jupyter_output><empty_output><jupyter_text>Now plot the model:<jupyter_code>keras.utils.plot_model(model, "multi_input_and_output_model.png", show_shapes=True)<jupyter_output><empty_output><jupyter_text>When compiling this model, you can assign different losses to each output.You can even assign different weights to each loss -- to modulatetheir contribution to the total training loss.<jupyter_code>model.compile( optimizer=keras.optimizers.RMSprop(1e-3), loss=[ keras.losses.BinaryCrossentropy(from_logits=True), keras.losses.CategoricalCrossentropy(from_logits=True), ], loss_weights=[1.0, 0.2], )<jupyter_output><empty_output><jupyter_text>Since the output layers have different names, you could also specifythe losses and loss weights with the corresponding layer names:<jupyter_code>model.compile( optimizer=keras.optimizers.RMSprop(1e-3), loss={ "priority": keras.losses.BinaryCrossentropy(from_logits=True), "department": keras.losses.CategoricalCrossentropy(from_logits=True), }, loss_weights={"priority": 1.0, "department": 0.2}, )<jupyter_output><empty_output><jupyter_text>Train the model by passing lists of NumPy arrays of inputs and targets:<jupyter_code># Dummy input data title_data = np.random.randint(num_words, size=(1280, 10)) body_data = np.random.randint(num_words, size=(1280, 100)) tags_data = np.random.randint(2, size=(1280, num_tags)).astype("float32") # Dummy target data priority_targets = np.random.random(size=(1280, 1)) dept_targets = np.random.randint(2, size=(1280, num_departments)) model.fit( {"title": title_data, "body": body_data, "tags": tags_data}, {"priority": priority_targets, "department": dept_targets}, epochs=2, batch_size=32, )<jupyter_output><empty_output><jupyter_text>When calling fit with a `Dataset` object, it should yield either atuple of lists like `([title_data, body_data, tags_data], [priority_targets, dept_targets])`or a tuple of dictionaries like`({'title': title_data, 'body': body_data, 'tags': tags_data}, {'priority': priority_targets, 'department': dept_targets})`.For more detailed explanation, refer to the[training and evaluation](/guides/training_with_built_in_methods/) guide. A toy ResNet modelIn addition to models with multiple inputs and outputs,the functional API makes it easy to manipulate non-linear connectivitytopologies -- these are models with layers that are not connected sequentially,which the `Sequential` API cannot handle.A common use case for this is residual connections.Let's build a toy ResNet model for CIFAR10 to demonstrate this:<jupyter_code>inputs = keras.Input(shape=(32, 32, 3), name="img") x = layers.Conv2D(32, 3, activation="relu")(inputs) x = layers.Conv2D(64, 3, activation="relu")(x) block_1_output = layers.MaxPooling2D(3)(x) x = layers.Conv2D(64, 3, activation="relu", padding="same")(block_1_output) x = layers.Conv2D(64, 3, activation="relu", padding="same")(x) block_2_output = layers.add([x, block_1_output]) x = layers.Conv2D(64, 3, activation="relu", padding="same")(block_2_output) x = layers.Conv2D(64, 3, activation="relu", padding="same")(x) block_3_output = layers.add([x, block_2_output]) x = layers.Conv2D(64, 3, activation="relu")(block_3_output) x = layers.GlobalAveragePooling2D()(x) x = layers.Dense(256, activation="relu")(x) x = layers.Dropout(0.5)(x) outputs = layers.Dense(10)(x) model = keras.Model(inputs, outputs, name="toy_resnet") model.summary()<jupyter_output><empty_output><jupyter_text>Plot the model:<jupyter_code>keras.utils.plot_model(model, "mini_resnet.png", show_shapes=True)<jupyter_output><empty_output><jupyter_text>Now train the model:<jupyter_code>(x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data() x_train = x_train.astype("float32") / 255.0 x_test = x_test.astype("float32") / 255.0 y_train = keras.utils.to_categorical(y_train, 10) y_test = keras.utils.to_categorical(y_test, 10) model.compile( optimizer=keras.optimizers.RMSprop(1e-3), loss=keras.losses.CategoricalCrossentropy(from_logits=True), metrics=["acc"], ) # We restrict the data to the first 1000 samples so as to limit execution time # on Colab. Try to train on the entire dataset until convergence! model.fit( x_train[:1000], y_train[:1000], batch_size=64, epochs=1, validation_split=0.2, )<jupyter_output><empty_output><jupyter_text>Shared layersAnother good use for the functional API are models that use *shared layers*.Shared layers are layer instances that are reused multiple times in the same model --they learn features that correspond to multiple paths in the graph-of-layers.Shared layers are often used to encode inputs from similar spaces(say, two different pieces of text that feature similar vocabulary).They enable sharing of information across these different inputs,and they make it possible to train such a model on less data.If a given word is seen in one of the inputs,that will benefit the processing of all inputs that pass through the shared layer.To share a layer in the functional API, call the same layer instance multiple times.For instance, here's an `Embedding` layer shared across two different text inputs:<jupyter_code># Embedding for 1000 unique words mapped to 128-dimensional vectors shared_embedding = layers.Embedding(1000, 128) # Variable-length sequence of integers text_input_a = keras.Input(shape=(None,), dtype="int32") # Variable-length sequence of integers text_input_b = keras.Input(shape=(None,), dtype="int32") # Reuse the same layer to encode both inputs encoded_input_a = shared_embedding(text_input_a) encoded_input_b = shared_embedding(text_input_b)<jupyter_output><empty_output><jupyter_text>Extract and reuse nodes in the graph of layersBecause the graph of layers you are manipulating is a static data structure,it can be accessed and inspected. And this is how you are able to plotfunctional models as images.This also means that you can access the activations of intermediate layers("nodes" in the graph) and reuse them elsewhere --which is very useful for something like feature extraction.Let's look at an example. This is a VGG19 model with weights pretrained on ImageNet:<jupyter_code>vgg19 = keras.applications.VGG19()<jupyter_output><empty_output><jupyter_text>And these are the intermediate activations of the model,obtained by querying the graph data structure:<jupyter_code>features_list = [layer.output for layer in vgg19.layers]<jupyter_output><empty_output><jupyter_text>Use these features to create a new feature-extraction model that returnsthe values of the intermediate layer activations:<jupyter_code>feat_extraction_model = keras.Model(inputs=vgg19.input, outputs=features_list) img = np.random.random((1, 224, 224, 3)).astype("float32") extracted_features = feat_extraction_model(img)<jupyter_output><empty_output><jupyter_text>This comes in handy for tasks like[neural style transfer](https://keras.io/examples/generative/neural_style_transfer/),among other things. Extend the API using custom layers`keras` includes a wide range of built-in layers, for example:- Convolutional layers: `Conv1D`, `Conv2D`, `Conv3D`, `Conv2DTranspose`- Pooling layers: `MaxPooling1D`, `MaxPooling2D`, `MaxPooling3D`, `AveragePooling1D`- RNN layers: `GRU`, `LSTM`, `ConvLSTM2D`- `BatchNormalization`, `Dropout`, `Embedding`, etc.But if you don't find what you need, it's easy to extend the API by creatingyour own layers. All layers subclass the `Layer` class and implement:- `call` method, that specifies the computation done by the layer.- `build` method, that creates the weights of the layer (this is just a styleconvention since you can create weights in `__init__`, as well).To learn more about creating layers from scratch, read[custom layers and models](/guides/making_new_layers_and_models_via_subclassing) guide.The following is a basic implementation of `keras.layers.Dense`:<jupyter_code>class CustomDense(layers.Layer): def __init__(self, units=32): super().__init__() self.units = units def build(self, input_shape): self.w = self.add_weight( shape=(input_shape[-1], self.units), initializer="random_normal", trainable=True, ) self.b = self.add_weight( shape=(self.units,), initializer="random_normal", trainable=True ) def call(self, inputs): return ops.matmul(inputs, self.w) + self.b inputs = keras.Input((4,)) outputs = CustomDense(10)(inputs) model = keras.Model(inputs, outputs)<jupyter_output><empty_output><jupyter_text>For serialization support in your custom layer, define a `get_config()`method that returns the constructor arguments of the layer instance:<jupyter_code>class CustomDense(layers.Layer): def __init__(self, units=32): super().__init__() self.units = units def build(self, input_shape): self.w = self.add_weight( shape=(input_shape[-1], self.units), initializer="random_normal", trainable=True, ) self.b = self.add_weight( shape=(self.units,), initializer="random_normal", trainable=True ) def call(self, inputs): return ops.matmul(inputs, self.w) + self.b def get_config(self): return {"units": self.units} inputs = keras.Input((4,)) outputs = CustomDense(10)(inputs) model = keras.Model(inputs, outputs) config = model.get_config() new_model = keras.Model.from_config(config, custom_objects={"CustomDense": CustomDense})<jupyter_output><empty_output><jupyter_text>Optionally, implement the class method `from_config(cls, config)` which is usedwhen recreating a layer instance given its config dictionary.The default implementation of `from_config` is:```pythondef from_config(cls, config): return cls(**config)``` When to use the functional APIShould you use the Keras functional API to create a new model,or just subclass the `Model` class directly? In general, the functional APIis higher-level, easier and safer, and has a number offeatures that subclassed models do not support.However, model subclassing provides greater flexibility when building modelsthat are not easily expressible as directed acyclic graphs of layers.For example, you could not implement a Tree-RNN with the functional APIand would have to subclass `Model` directly.For an in-depth look at the differences between the functional API andmodel subclassing, read[What are Symbolic and Imperative APIs in TensorFlow 2.0?](https://blog.tensorflow.org/2019/01/what-are-symbolic-and-imperative-apis.html). Functional API strengths:The following properties are also true for Sequential models(which are also data structures), but are not true for subclassed models(which are Python bytecode, not data structures). Less verboseThere is no `super().__init__(...)`, no `def call(self, ...):`, etc.Compare:```pythoninputs = keras.Input(shape=(32,))x = layers.Dense(64, activation='relu')(inputs)outputs = layers.Dense(10)(x)mlp = keras.Model(inputs, outputs)```With the subclassed version:```pythonclass MLP(keras.Model): def __init__(self, **kwargs): super().__init__(**kwargs) self.dense_1 = layers.Dense(64, activation='relu') self.dense_2 = layers.Dense(10) def call(self, inputs): x = self.dense_1(inputs) return self.dense_2(x) Instantiate the model.mlp = MLP() Necessary to create the model's state. The model doesn't have a state until it's called at least once._ = mlp(ops.zeros((1, 32)))``` Model validation while defining its connectivity graphIn the functional API, the input specification (shape and dtype) is createdin advance (using `Input`). Every time you call a layer,the layer checks that the specification passed to it matches its assumptions,and it will raise a helpful error message if not.This guarantees that any model you can build with the functional API will run.All debugging -- other than convergence-related debugging --happens statically during the model construction and not at execution time.This is similar to type checking in a compiler. A functional model is plottable and inspectableYou can plot the model as a graph, and you can easily access intermediate nodesin this graph. For example, to extract and reuse the activations of intermediatelayers (as seen in a previous example):```pythonfeatures_list = [layer.output for layer in vgg19.layers]feat_extraction_model = keras.Model(inputs=vgg19.input, outputs=features_list)``` A functional model can be serialized or clonedBecause a functional model is a data structure rather than a piece of code,it is safely serializable and can be saved as a single filethat allows you to recreate the exact same modelwithout having access to any of the original code.See the [serialization & saving guide](/guides/serialization_and_saving/).To serialize a subclassed model, it is necessary for the implementerto specify a `get_config()`and `from_config()` method at the model level. Functional API weakness: It does not support dynamic architecturesThe functional API treats models as DAGs of layers.This is true for most deep learning architectures, but not all -- for example,recursive networks or Tree RNNs do not follow this assumption and cannotbe implemented in the functional API. Mix-and-match API stylesChoosing between the functional API or Model subclassing isn't abinary decision that restricts you into one category of models.All models in the `keras` API can interact with each other, whether they're`Sequential` models, functional models, or subclassed models that are writtenfrom scratch.You can always use a functional model or `Sequential` modelas part of a subclassed model or layer:<jupyter_code>units = 32 timesteps = 10 input_dim = 5 # Define a Functional model inputs = keras.Input((None, units)) x = layers.GlobalAveragePooling1D()(inputs) outputs = layers.Dense(1)(x) model = keras.Model(inputs, outputs) class CustomRNN(layers.Layer): def __init__(self): super().__init__() self.units = units self.projection_1 = layers.Dense(units=units, activation="tanh") self.projection_2 = layers.Dense(units=units, activation="tanh") # Our previously-defined Functional model self.classifier = model def call(self, inputs): outputs = [] state = ops.zeros(shape=(inputs.shape[0], self.units)) for t in range(inputs.shape[1]): x = inputs[:, t, :] h = self.projection_1(x) y = h + self.projection_2(state) state = y outputs.append(y) features = ops.stack(outputs, axis=1) print(features.shape) return self.classifier(features) rnn_model = CustomRNN() _ = rnn_model(ops.zeros((1, timesteps, input_dim)))<jupyter_output><empty_output><jupyter_text>You can use any subclassed layer or model in the functional APIas long as it implements a `call` method that follows one of the following patterns:- `call(self, inputs, **kwargs)` --Where `inputs` is a tensor or a nested structure of tensors (e.g. a list of tensors),and where `**kwargs` are non-tensor arguments (non-inputs).- `call(self, inputs, training=None, **kwargs)` --Where `training` is a boolean indicating whether the layer should behavein training mode and inference mode.- `call(self, inputs, mask=None, **kwargs)` --Where `mask` is a boolean mask tensor (useful for RNNs, for instance).- `call(self, inputs, training=None, mask=None, **kwargs)` --Of course, you can have both masking and training-specific behavior at the same time.Additionally, if you implement the `get_config` method on your custom Layer or model,the functional models you create will still be serializable and cloneable.Here's a quick example of a custom RNN, written from scratch,being used in a functional model:<jupyter_code>units = 32 timesteps = 10 input_dim = 5 batch_size = 16 class CustomRNN(layers.Layer): def __init__(self): super().__init__() self.units = units self.projection_1 = layers.Dense(units=units, activation="tanh") self.projection_2 = layers.Dense(units=units, activation="tanh") self.classifier = layers.Dense(1) def call(self, inputs): outputs = [] state = ops.zeros(shape=(inputs.shape[0], self.units)) for t in range(inputs.shape[1]): x = inputs[:, t, :] h = self.projection_1(x) y = h + self.projection_2(state) state = y outputs.append(y) features = ops.stack(outputs, axis=1) return self.classifier(features) # Note that you specify a static batch size for the inputs with the `batch_shape` # arg, because the inner computation of `CustomRNN` requires a static batch size # (when you create the `state` zeros tensor). inputs = keras.Input(batch_shape=(batch_size, timesteps, input_dim)) x = layers.Conv1D(32, 3)(inputs) outputs = CustomRNN()(x) model = keras.Model(inputs, outputs) rnn_model = CustomRNN() _ = rnn_model(ops.zeros((1, 10, 5)))<jupyter_output><empty_output>
keras-io/guides/ipynb/keras_core/functional_api.ipynb/0
{ "file_path": "keras-io/guides/ipynb/keras_core/functional_api.ipynb", "repo_id": "keras-io", "token_count": 9516 }
110
<jupyter_start><jupyter_text>High-performance image generation using Stable Diffusion in KerasCV**Authors:** [fchollet](https://twitter.com/fchollet), [lukewood](https://twitter.com/luke_wood_ml), [divamgupta](https://github.com/divamgupta)**Date created:** 2022/09/25**Last modified:** 2022/09/25**Description:** Generate new images using KerasCV's Stable Diffusion model. OverviewIn this guide, we will show how to generate novel images based on a text prompt usingthe KerasCV implementation of [stability.ai](https://stability.ai/)'s text-to-image model,[Stable Diffusion](https://github.com/CompVis/stable-diffusion).Stable Diffusion is a powerful, open-source text-to-image generation model. While thereexist multiple open-source implementations that allow you to easily create images fromtextual prompts, KerasCV's offers a few distinct advantages.These include [XLA compilation](https://www.tensorflow.org/xla) and[mixed precision](https://www.tensorflow.org/guide/mixed_precision) support,which together achieve state-of-the-art generation speed.In this guide, we will explore KerasCV's Stable Diffusion implementation, show how to usethese powerful performance boosts, and explore the performance benefitsthat they offer.**Note:** To run this guide on the `torch` backend, please set `jit_compile=False`everywhere. XLA compilation for Stable Diffusion does not currently work withtorch.To get started, let's install a few dependencies and sort out some imports:<jupyter_code>!pip install -q --upgrade keras-cv !pip install -q --upgrade keras # Upgrade to Keras 3. import time import keras_cv import keras import matplotlib.pyplot as plt<jupyter_output><empty_output><jupyter_text>IntroductionUnlike most tutorials, where we first explain a topic then show how to implement it,with text-to-image generation it is easier to show instead of tell.Check out the power of `keras_cv.models.StableDiffusion()`.First, we construct a model:<jupyter_code>model = keras_cv.models.StableDiffusion( img_width=512, img_height=512, jit_compile=False )<jupyter_output><empty_output><jupyter_text>Next, we give it a prompt:<jupyter_code>images = model.text_to_image("photograph of an astronaut riding a horse", batch_size=3) def plot_images(images): plt.figure(figsize=(20, 20)) for i in range(len(images)): ax = plt.subplot(1, len(images), i + 1) plt.imshow(images[i]) plt.axis("off") plot_images(images)<jupyter_output><empty_output><jupyter_text>Pretty incredible!But that's not all this model can do. Let's try a more complex prompt:<jupyter_code>images = model.text_to_image( "cute magical flying dog, fantasy art, " "golden color, high quality, highly detailed, elegant, sharp focus, " "concept art, character concepts, digital painting, mystery, adventure", batch_size=3, ) plot_images(images)<jupyter_output><empty_output><jupyter_text>The possibilities are literally endless (or at least extend to the boundaries ofStable Diffusion's latent manifold). Wait, how does this even work?Unlike what you might expect at this point, Stable Diffusion doesn't actually run on magic.It's a kind of "latent diffusion model". Let's dig into what that means.You may be familiar with the idea of _super-resolution_:it's possible to train a deep learning model to _denoise_ an input image -- and thereby turn it into a higher-resolutionversion. The deep learning model doesn't do this by magically recovering the information that's missing from the noisy, low-resolutioninput -- rather, the model uses its training data distribution to hallucinate the visual details that would be most likelygiven the input. To learn more about super-resolution, you can check out the following Keras.io tutorials:- [Image Super-Resolution using an Efficient Sub-Pixel CNN](https://keras.io/examples/vision/super_resolution_sub_pixel/)- [Enhanced Deep Residual Networks for single-image super-resolution](https://keras.io/examples/vision/edsr/)When you push this idea to the limit, you may start asking -- what if we just run such a model on pure noise?The model would then "denoise the noise" and start hallucinating a brand new image. By repeating the process multipletimes, you can get turn a small patch of noise into an increasingly clear and high-resolution artificial picture.This is the key idea of latent diffusion, proposed in[High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) in 2020.To understand diffusion in depth, you can check the Keras.io tutorial[Denoising Diffusion Implicit Models](https://keras.io/examples/generative/ddim/).Now, to go from latent diffusion to a text-to-image system,you still need to add one key feature: the ability to control the generated visual contents via prompt keywords.This is done via "conditioning", a classic deep learning technique which consists of concatenating to thenoise patch a vector that represents a bit of text, then training the model on a dataset of {image: caption} pairs.This gives rise to the Stable Diffusion architecture. Stable Diffusion consists of three parts:- A text encoder, which turns your prompt into a latent vector.- A diffusion model, which repeatedly "denoises" a 64x64 latent image patch.- A decoder, which turns the final 64x64 latent patch into a higher-resolution 512x512 image.First, your text prompt gets projected into a latent vector space by the text encoder,which is simply a pretrained, frozen language model. Then that prompt vector is concatenatedto a randomly generated noise patch, which is repeatedly "denoised" by the diffusion model over a seriesof "steps" (the more steps you run the clearer and nicer your image will be -- the default value is 50 steps).Finally, the 64x64 latent image is sent through the decoder to properly render it in high resolution.All-in-all, it's a pretty simple system -- the Keras implementationfits in four files that represent less than 500 lines of code in total:- [text_encoder.py](https://github.com/keras-team/keras-cv/blob/master/keras_cv/models/stable_diffusion/text_encoder.py): 87 LOC- [diffusion_model.py](https://github.com/keras-team/keras-cv/blob/master/keras_cv/models/stable_diffusion/diffusion_model.py): 181 LOC- [decoder.py](https://github.com/keras-team/keras-cv/blob/master/keras_cv/models/stable_diffusion/decoder.py): 86 LOC- [stable_diffusion.py](https://github.com/keras-team/keras-cv/blob/master/keras_cv/models/stable_diffusion/stable_diffusion.py): 106 LOCBut this relatively simple system starts looking like magic once you train on billions of pictures and their captions.As Feynman said about the universe: _"It's not complicated, it's just a lot of it!"_ Perks of KerasCVWith several implementations of Stable Diffusion publicly available why should you use`keras_cv.models.StableDiffusion`?Aside from the easy-to-use API, KerasCV's Stable Diffusion model comeswith some powerful advantages, including:- Graph mode execution- XLA compilation through `jit_compile=True`- Support for mixed precision computationWhen these are combined, the KerasCV Stable Diffusion model runs orders of magnitudefaster than naive implementations. This section shows how to enable all of thesefeatures, and the resulting performance gain yielded from using them.For the purposes of comparison, we ran benchmarks comparing the runtime of the[HuggingFace diffusers](https://github.com/huggingface/diffusers) implementation ofStable Diffusion against the KerasCV implementation.Both implementations were tasked to generate 3 images with a step count of 50 for eachimage. In this benchmark, we used a Tesla T4 GPU.[All of our benchmarks are open source on GitHub, and may be re-run on Colab toreproduce the results.](https://github.com/LukeWood/stable-diffusion-performance-benchmarks)The results from the benchmark are displayed in the table below:| GPU | Model | Runtime ||------------|------------------------|-----------|| Tesla T4 | KerasCV (Warm Start) | **28.97s**|| Tesla T4 | diffusers (Warm Start) | 41.33s || Tesla V100 | KerasCV (Warm Start) | **12.45** || Tesla V100 | diffusers (Warm Start) | 12.72 |30% improvement in execution time on the Tesla T4!. While the improvement is much loweron the V100, we generally expect the results of the benchmark to consistently favor the KerasCVacross all NVIDIA GPUs.For the sake of completeness, both cold-start and warm-start generation times arereported. Cold-start execution time includes the one-time cost of model creation and compilation,and is therefore negligible in a production environment (where you would reuse the same model instancemany times). Regardless, here are the cold-start numbers:| GPU | Model | Runtime ||------------|------------------------|---------|| Tesla T4 | KerasCV (Cold Start) | 83.47s || Tesla T4 | diffusers (Cold Start) | 46.27s || Tesla V100 | KerasCV (Cold Start) | 76.43 || Tesla V100 | diffusers (Cold Start) | 13.90 |While the runtime results from running this guide may vary, in our testing the KerasCVimplementation of Stable Diffusion is significantly faster than its PyTorch counterpart.This may be largely attributed to XLA compilation.**Note: The performance benefits of each optimization can varysignificantly between hardware setups.**To get started, let's first benchmark our unoptimized model:<jupyter_code>benchmark_result = [] start = time.time() images = model.text_to_image( "A cute otter in a rainbow whirlpool holding shells, watercolor", batch_size=3, ) end = time.time() benchmark_result.append(["Standard", end - start]) plot_images(images) print(f"Standard model: {(end - start):.2f} seconds") keras.backend.clear_session() # Clear session to preserve memory.<jupyter_output><empty_output><jupyter_text>Mixed precision"Mixed precision" consists of performing computation using `float16`precision, while storing weights in the `float32` format.This is done to take advantage of the fact that `float16` operations are backed bysignificantly faster kernels than their `float32` counterparts on modern NVIDIA GPUs.Enabling mixed precision computation in Keras(and therefore for `keras_cv.models.StableDiffusion`) is as simple as calling:<jupyter_code>keras.mixed_precision.set_global_policy("mixed_float16")<jupyter_output><empty_output><jupyter_text>That's all. Out of the box - it just works.<jupyter_code>model = keras_cv.models.StableDiffusion(jit_compile=False) print("Compute dtype:", model.diffusion_model.compute_dtype) print( "Variable dtype:", model.diffusion_model.variable_dtype, )<jupyter_output><empty_output><jupyter_text>As you can see, the model constructed above now uses mixed precision computation;leveraging the speed of `float16` operations for computation, while storing variablesin `float32` precision.<jupyter_code># Warm up model to run graph tracing before benchmarking. model.text_to_image("warming up the model", batch_size=3) start = time.time() images = model.text_to_image( "a cute magical flying dog, fantasy art, " "golden color, high quality, highly detailed, elegant, sharp focus, " "concept art, character concepts, digital painting, mystery, adventure", batch_size=3, ) end = time.time() benchmark_result.append(["Mixed Precision", end - start]) plot_images(images) print(f"Mixed precision model: {(end - start):.2f} seconds") keras.backend.clear_session()<jupyter_output><empty_output><jupyter_text>XLA CompilationTensorFlow and JAX come with the[XLA: Accelerated Linear Algebra](https://www.tensorflow.org/xla) compiler built-in.`keras_cv.models.StableDiffusion` supports a `jit_compile` argument out of the box.Setting this argument to `True` enables XLA compilation, resulting in a significantspeed-up.Let's use this below:<jupyter_code># Set back to the default for benchmarking purposes. keras.mixed_precision.set_global_policy("float32") model = keras_cv.models.StableDiffusion(jit_compile=True) # Before we benchmark the model, we run inference once to make sure the TensorFlow # graph has already been traced. images = model.text_to_image("An avocado armchair", batch_size=3) plot_images(images)<jupyter_output><empty_output><jupyter_text>Let's benchmark our XLA model:<jupyter_code>start = time.time() images = model.text_to_image( "A cute otter in a rainbow whirlpool holding shells, watercolor", batch_size=3, ) end = time.time() benchmark_result.append(["XLA", end - start]) plot_images(images) print(f"With XLA: {(end - start):.2f} seconds") keras.backend.clear_session()<jupyter_output><empty_output><jupyter_text>On an A100 GPU, we get about a 2x speedup. Fantastic! Putting it all togetherSo, how do you assemble the world's most performant stable diffusion inferencepipeline (as of September 2022).With these two lines of code:<jupyter_code>keras.mixed_precision.set_global_policy("mixed_float16") model = keras_cv.models.StableDiffusion(jit_compile=True)<jupyter_output><empty_output><jupyter_text>And to use it...<jupyter_code># Let's make sure to warm up the model images = model.text_to_image( "Teddy bears conducting machine learning research", batch_size=3, ) plot_images(images)<jupyter_output><empty_output><jupyter_text>Exactly how fast is it?Let's find out!<jupyter_code>start = time.time() images = model.text_to_image( "A mysterious dark stranger visits the great pyramids of egypt, " "high quality, highly detailed, elegant, sharp focus, " "concept art, character concepts, digital painting", batch_size=3, ) end = time.time() benchmark_result.append(["XLA + Mixed Precision", end - start]) plot_images(images) print(f"XLA + mixed precision: {(end - start):.2f} seconds")<jupyter_output><empty_output><jupyter_text>Let's check out the results:<jupyter_code>print("{:<22} {:<22}".format("Model", "Runtime")) for result in benchmark_result: name, runtime = result print("{:<22} {:<22}".format(name, runtime))<jupyter_output><empty_output>
keras-io/guides/ipynb/keras_cv/generate_images_with_stable_diffusion.ipynb/0
{ "file_path": "keras-io/guides/ipynb/keras_cv/generate_images_with_stable_diffusion.ipynb", "repo_id": "keras-io", "token_count": 4062 }
111
# Object Detection with KerasCV **Author:** [lukewood](https://twitter.com/luke_wood_ml), Ian Stenbit, Tirth Patel<br> **Date created:** 2023/04/08<br> **Last modified:** 2023/08/10<br> **Description:** Train an object detection model with KerasCV. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/guides/ipynb/keras_cv/object_detection_keras_cv.ipynb) <span class="k-dot">โ€ข</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/guides/keras_cv/object_detection_keras_cv.py) KerasCV offers a complete set of production grade APIs to solve object detection problems. These APIs include object-detection-specific data augmentation techniques, Keras native COCO metrics, bounding box format conversion utilities, visualization tools, pretrained object detection models, and everything you need to train your own state of the art object detection models! Let's give KerasCV's object detection API a spin. ```python !pip install -q --upgrade keras-cv !pip install -q --upgrade keras # Upgrade to Keras 3. ``` ```python import os os.environ["KERAS_BACKEND"] = "jax" # @param ["tensorflow", "jax", "torch"] from tensorflow import data as tf_data import tensorflow_datasets as tfds import keras import keras_cv import numpy as np from keras_cv import bounding_box import os from keras_cv import visualization import tqdm ``` --- ## Object detection introduction Object detection is the process of identifying, classifying, and localizing objects within a given image. Typically, your inputs are images, and your labels are bounding boxes with optional class labels. Object detection can be thought of as an extension of classification, however instead of one class label for the image, you must detect and localize an arbitrary number of classes. **For example:** <img width="300" src="https://i.imgur.com/8xSEbQD.png"> The data for the above image may look something like this: ```python image = [height, width, 3] bounding_boxes = { "classes": [0], # 0 is an arbitrary class ID representing "cat" "boxes": [[0.25, 0.4, .15, .1]] # bounding box is in "rel_xywh" format # so 0.25 represents the start of the bounding box 25% of # the way across the image. # The .15 represents that the width is 15% of the image width. } ``` Since the inception of [*You Only Look Once*](https://arxiv.org/abs/1506.02640) (aka YOLO), object detection has primarily been solved using deep learning. Most deep learning architectures do this by cleverly framing the object detection problem as a combination of many small classification problems and many regression problems. More specifically, this is done by generating many anchor boxes of varying shapes and sizes across the input images and assigning them each a class label, as well as `x`, `y`, `width` and `height` offsets. The model is trained to predict the class labels of each box, as well as the `x`, `y`, `width`, and `height` offsets of each box that is predicted to be an object. **Visualization of some sample anchor boxes**: <img width="400" src="https://i.imgur.com/cJIuiK9.jpg"> Objection detection is a technically complex problem but luckily we offer a bulletproof approach to getting great results. Let's do this! --- ## Perform detections with a pretrained model ![](https://storage.googleapis.com/keras-nlp/getting_started_guide/prof_keras_beginner.png) The highest level API in the KerasCV Object Detection API is the `keras_cv.models` API. This API includes fully pretrained object detection models, such as `keras_cv.models.YOLOV8Detector`. Let's get started by constructing a YOLOV8Detector pretrained on the `pascalvoc` dataset. ```python pretrained_model = keras_cv.models.YOLOV8Detector.from_preset( "yolo_v8_m_pascalvoc", bounding_box_format="xywh" ) ``` Notice the `bounding_box_format` argument? Recall in the section above, the format of bounding boxes: ``` bounding_boxes = { "classes": [num_boxes], "boxes": [num_boxes, 4] } ``` This argument describes *exactly* what format the values in the `"boxes"` field of the label dictionary take in your pipeline. For example, a box in `xywh` format with its top left corner at the coordinates (100, 100) with a width of 55 and a height of 70 would be represented by: ``` [100, 100, 55, 75] ``` or equivalently in `xyxy` format: ``` [100, 100, 155, 175] ``` While this may seem simple, it is a critical piece of the KerasCV object detection API! Every component that processes bounding boxes requires a `bounding_box_format` argument. You can read more about KerasCV bounding box formats [in the API docs](https://keras.io/api/keras_cv/bounding_box/formats/). This is done because there is no one correct format for bounding boxes! Components in different pipelines expect different formats, and so by requiring them to be specified we ensure that our components remain readable, reusable, and clear. Box format conversion bugs are perhaps the most common bug surface in object detection pipelines - by requiring this parameter we mitigate against these bugs (especially when combining code from many sources). Next let's load an image: ```python filepath = keras.utils.get_file(origin="https://i.imgur.com/gCNcJJI.jpg") image = keras.utils.load_img(filepath) image = np.array(image) visualization.plot_image_gallery( np.array([image]), value_range=(0, 255), rows=1, cols=1, scale=5, ) ``` ![png](/img/guides/object_detection_keras_cv/object_detection_keras_cv_8_0.png) ![png](/img/guides/object_detection_keras_cv/object_detection_keras_cv_8_1.png) To use the `YOLOV8Detector` architecture with a ResNet50 backbone, you'll need to resize your image to a size that is divisible by 64. This is to ensure compatibility with the number of downscaling operations done by the convolution layers in the ResNet. If the resize operation distorts the input's aspect ratio, the model will perform signficantly poorer. For the pretrained `"yolo_v8_m_pascalvoc"` preset we are using, the final `MeanAveragePrecision` on the `pascalvoc/2012` evaluation set drops to `0.15` from `0.38` when using a naive resizing operation. Additionally, if you crop to preserve the aspect ratio as you do in classification your model may entirely miss some bounding boxes. As such, when running inference on an object detection model we recommend the use of padding to the desired size, while resizing the longest size to match the aspect ratio. KerasCV makes resizing properly easy; simply pass `pad_to_aspect_ratio=True` to a `keras_cv.layers.Resizing` layer. This can be implemented in one line of code: ```python inference_resizing = keras_cv.layers.Resizing( 640, 640, pad_to_aspect_ratio=True, bounding_box_format="xywh" ) ``` This can be used as our inference preprocessing pipeline: ```python image_batch = inference_resizing([image]) ``` `keras_cv.visualization.plot_bounding_box_gallery()` supports a `class_mapping` parameter to highlight what class each box was assigned to. Let's assemble a class mapping now. ```python class_ids = [ "Aeroplane", "Bicycle", "Bird", "Boat", "Bottle", "Bus", "Car", "Cat", "Chair", "Cow", "Dining Table", "Dog", "Horse", "Motorbike", "Person", "Potted Plant", "Sheep", "Sofa", "Train", "Tvmonitor", "Total", ] class_mapping = dict(zip(range(len(class_ids)), class_ids)) ``` Just like any other `keras.Model` you can predict bounding boxes using the `model.predict()` API. ```python y_pred = pretrained_model.predict(image_batch) # y_pred is a bounding box Tensor: # {"classes": ..., boxes": ...} visualization.plot_bounding_box_gallery( image_batch, value_range=(0, 255), rows=1, cols=1, y_pred=y_pred, scale=5, font_scale=0.7, bounding_box_format="xywh", class_mapping=class_mapping, ) ``` <div class="k-default-codeblock"> ``` 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 11s 11s/step ``` </div> ![png](/img/guides/object_detection_keras_cv/object_detection_keras_cv_16_1.png) ![png](/img/guides/object_detection_keras_cv/object_detection_keras_cv_16_2.png) In order to support this easy and intuitive inference workflow, KerasCV performs non-max suppression inside of the `YOLOV8Detector` class. Non-max suppression is a traditional computing algorithm that solves the problem of a model detecting multiple boxes for the same object. Non-max suppression is a highly configurable algorithm, and in most cases you will want to customize the settings of your model's non-max suppression operation. This can be done by overriding to the `prediction_decoder` argument. To show this concept off, let's temporarily disable non-max suppression on our YOLOV8Detector. This can be done by writing to the `prediction_decoder` attribute. ```python # The following NonMaxSuppression layer is equivalent to disabling the operation prediction_decoder = keras_cv.layers.NonMaxSuppression( bounding_box_format="xywh", from_logits=True, iou_threshold=1.0, confidence_threshold=0.0, ) pretrained_model = keras_cv.models.YOLOV8Detector.from_preset( "yolo_v8_m_pascalvoc", bounding_box_format="xywh", prediction_decoder=prediction_decoder, ) y_pred = pretrained_model.predict(image_batch) visualization.plot_bounding_box_gallery( image_batch, value_range=(0, 255), rows=1, cols=1, y_pred=y_pred, scale=5, font_scale=0.7, bounding_box_format="xywh", class_mapping=class_mapping, ) ``` <div class="k-default-codeblock"> ``` 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 5s 5s/step ``` </div> ![png](/img/guides/object_detection_keras_cv/object_detection_keras_cv_18_1.png) ![png](/img/guides/object_detection_keras_cv/object_detection_keras_cv_18_2.png) Next, let's re-configure `keras_cv.layers.NonMaxSuppression` for our use case! In this case, we will tune the `iou_threshold` to `0.2`, and the `confidence_threshold` to `0.7`. Raising the `confidence_threshold` will cause the model to only output boxes that have a higher confidence score. `iou_threshold` controls the threshold of intersection over union (IoU) that two boxes must have in order for one to be pruned out. [More information on these parameters may be found in the TensorFlow API docs](https://www.tensorflow.org/api_docs/python/tf/image/combined_non_max_suppression) ```python prediction_decoder = keras_cv.layers.NonMaxSuppression( bounding_box_format="xywh", from_logits=True, # Decrease the required threshold to make predictions get pruned out iou_threshold=0.2, # Tune confidence threshold for predictions to pass NMS confidence_threshold=0.7, ) pretrained_model = keras_cv.models.YOLOV8Detector.from_preset( "yolo_v8_m_pascalvoc", bounding_box_format="xywh", prediction_decoder=prediction_decoder, ) y_pred = pretrained_model.predict(image_batch) visualization.plot_bounding_box_gallery( image_batch, value_range=(0, 255), rows=1, cols=1, y_pred=y_pred, scale=5, font_scale=0.7, bounding_box_format="xywh", class_mapping=class_mapping, ) ``` <div class="k-default-codeblock"> ``` 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 5s 5s/step ``` </div> ![png](/img/guides/object_detection_keras_cv/object_detection_keras_cv_20_1.png) ![png](/img/guides/object_detection_keras_cv/object_detection_keras_cv_20_2.png) That looks a lot better! --- ## Train a custom object detection model ![](https://storage.googleapis.com/keras-nlp/getting_started_guide/prof_keras_advanced.png) Whether you're an object detection amateur or a well seasoned veteran, assembling an object detection pipeline from scratch is a massive undertaking. Luckily, all KerasCV object detection APIs are built as modular components. Whether you need a complete pipeline, just an object detection model, or even just a conversion utility to transform your boxes from `xywh` format to `xyxy`, KerasCV has you covered. In this guide, we'll assemble a full training pipeline for a KerasCV object detection model. This includes data loading, augmentation, metric evaluation, and inference! To get started, let's sort out all of our imports and define global configuration parameters. ```python BATCH_SIZE = 4 ``` --- ## Data loading To get started, let's discuss data loading and bounding box formatting. KerasCV has a predefined format for bounding boxes. To comply with this, you should package your bounding boxes into a dictionary matching the specification below: ``` bounding_boxes = { # num_boxes may be a Ragged dimension 'boxes': Tensor(shape=[batch, num_boxes, 4]), 'classes': Tensor(shape=[batch, num_boxes]) } ``` `bounding_boxes['boxes']` contains the coordinates of your bounding box in a KerasCV supported `bounding_box_format`. KerasCV requires a `bounding_box_format` argument in all components that process bounding boxes. This is done to maximize your ability to plug and play individual components into their object detection pipelines, as well as to make code self-documenting across object detection pipelines. To match the KerasCV API style, it is recommended that when writing a custom data loader, you also support a `bounding_box_format` argument. This makes it clear to those invoking your data loader what format the bounding boxes are in. In this example, we format our boxes to `xywh` format. For example: ```python train_ds, ds_info = your_data_loader.load( split='train', bounding_box_format='xywh', batch_size=8 ) ``` This clearly yields bounding boxes in the format `xywh`. You can read more about KerasCV bounding box formats [in the API docs](https://keras.io/api/keras_cv/bounding_box/formats/). Our data comes loaded into the format `{"images": images, "bounding_boxes": bounding_boxes}`. This format is supported in all KerasCV preprocessing components. Let's load some data and verify that the data looks as we expect it to. ```python def visualize_dataset(inputs, value_range, rows, cols, bounding_box_format): inputs = next(iter(inputs.take(1))) images, bounding_boxes = inputs["images"], inputs["bounding_boxes"] visualization.plot_bounding_box_gallery( images, value_range=value_range, rows=rows, cols=cols, y_true=bounding_boxes, scale=5, font_scale=0.7, bounding_box_format=bounding_box_format, class_mapping=class_mapping, ) def unpackage_raw_tfds_inputs(inputs, bounding_box_format): image = inputs["image"] boxes = keras_cv.bounding_box.convert_format( inputs["objects"]["bbox"], images=image, source="rel_yxyx", target=bounding_box_format, ) bounding_boxes = { "classes": inputs["objects"]["label"], "boxes": boxes, } return {"images": image, "bounding_boxes": bounding_boxes} def load_pascal_voc(split, dataset, bounding_box_format): ds = tfds.load(dataset, split=split, with_info=False, shuffle_files=True) ds = ds.map( lambda x: unpackage_raw_tfds_inputs(x, bounding_box_format=bounding_box_format), num_parallel_calls=tf_data.AUTOTUNE, ) return ds train_ds = load_pascal_voc( split="train", dataset="voc/2007", bounding_box_format="xywh" ) eval_ds = load_pascal_voc(split="test", dataset="voc/2007", bounding_box_format="xywh") train_ds = train_ds.shuffle(BATCH_SIZE * 4) ``` Next, let's batch our data. In KerasCV object detection tasks it is recommended that users use ragged batches of inputs. This is due to the fact that images may be of different sizes in PascalVOC, as well as the fact that there may be different numbers of bounding boxes per image. To construct a ragged dataset in a `tf.data` pipeline, you can use the `ragged_batch()` method. ```python train_ds = train_ds.ragged_batch(BATCH_SIZE, drop_remainder=True) eval_ds = eval_ds.ragged_batch(BATCH_SIZE, drop_remainder=True) ``` Let's make sure our dataset is following the format KerasCV expects. By using the `visualize_dataset()` function, you can visually verify that your data is in the format that KerasCV expects. If the bounding boxes are not visible or are visible in the wrong locations that is a sign that your data is mis-formatted. ```python visualize_dataset( train_ds, bounding_box_format="xywh", value_range=(0, 255), rows=2, cols=2 ) ``` ![png](/img/guides/object_detection_keras_cv/object_detection_keras_cv_28_0.png) And for the eval set: ```python visualize_dataset( eval_ds, bounding_box_format="xywh", value_range=(0, 255), rows=2, cols=2, # If you are not running your experiment on a local machine, you can also # make `visualize_dataset()` dump the plot to a file using `path`: # path="eval.png" ) ``` ![png](/img/guides/object_detection_keras_cv/object_detection_keras_cv_30_0.png) Looks like everything is structured as expected. Now we can move on to constructing our data augmentation pipeline. --- ## Data augmentation One of the most challenging tasks when constructing object detection pipelines is data augmentation. Image augmentation techniques must be aware of the underlying bounding boxes, and must update them accordingly. Luckily, KerasCV natively supports bounding box augmentation with its extensive library of [data augmentation layers](https://keras.io/api/keras_cv/layers/preprocessing/). The code below loads the Pascal VOC dataset, and performs on-the-fly, bounding-box-friendly data augmentation inside a `tf.data` pipeline. ```python augmenters = [ keras_cv.layers.RandomFlip(mode="horizontal", bounding_box_format="xywh"), keras_cv.layers.JitteredResize( target_size=(640, 640), scale_factor=(0.75, 1.3), bounding_box_format="xywh" ), ] def create_augmenter_fn(augmenters): def augmenter_fn(inputs): for augmenter in augmenters: inputs = augmenter(inputs) return inputs return augmenter_fn augmenter_fn = create_augmenter_fn(augmenters) train_ds = train_ds.map(augmenter_fn, num_parallel_calls=tf_data.AUTOTUNE) visualize_dataset( train_ds, bounding_box_format="xywh", value_range=(0, 255), rows=2, cols=2 ) ``` ![png](/img/guides/object_detection_keras_cv/object_detection_keras_cv_32_0.png) Great! We now have a bounding-box-friendly data augmentation pipeline. Let's format our evaluation dataset to match. Instead of using `JitteredResize`, let's use the deterministic `keras_cv.layers.Resizing()` layer. ```python inference_resizing = keras_cv.layers.Resizing( 640, 640, bounding_box_format="xywh", pad_to_aspect_ratio=True ) eval_ds = eval_ds.map(inference_resizing, num_parallel_calls=tf_data.AUTOTUNE) ``` Due to the fact that the resize operation differs between the train dataset, which uses `JitteredResize()` to resize images, and the inference dataset, which uses `layers.Resizing(pad_to_aspect_ratio=True)`, it is good practice to visualize both datasets: ```python visualize_dataset( eval_ds, bounding_box_format="xywh", value_range=(0, 255), rows=2, cols=2 ) ``` ![png](/img/guides/object_detection_keras_cv/object_detection_keras_cv_36_0.png) Finally, let's unpackage our inputs from the preprocessing dictionary, and prepare to feed the inputs into our model. In order to be TPU compatible, bounding box Tensors need to be `Dense` instead of `Ragged`. ```python def dict_to_tuple(inputs): return inputs["images"], bounding_box.to_dense( inputs["bounding_boxes"], max_boxes=32 ) train_ds = train_ds.map(dict_to_tuple, num_parallel_calls=tf_data.AUTOTUNE) eval_ds = eval_ds.map(dict_to_tuple, num_parallel_calls=tf_data.AUTOTUNE) train_ds = train_ds.prefetch(tf_data.AUTOTUNE) eval_ds = eval_ds.prefetch(tf_data.AUTOTUNE) ``` ### Optimizer In this guide, we use a standard SGD optimizer and rely on the [`keras.callbacks.ReduceLROnPlateau`](https://keras.io/api/callbacks/reduce_lr_on_plateau/) callback to reduce the learning rate. You will always want to include a `global_clipnorm` when training object detection models. This is to remedy exploding gradient problems that frequently occur when training object detection models. ```python base_lr = 0.005 # including a global_clipnorm is extremely important in object detection tasks optimizer = keras.optimizers.SGD( learning_rate=base_lr, momentum=0.9, global_clipnorm=10.0 ) ``` To achieve the best results on your dataset, you'll likely want to hand craft a `PiecewiseConstantDecay` learning rate schedule. While `PiecewiseConstantDecay` schedules tend to perform better, they don't translate between problems. ### Loss functions You may not be familiar with the `"ciou"` loss. While not common in other models, this loss is sometimes used in the object detection world. In short, ["Complete IoU"](https://arxiv.org/abs/1911.08287) is a flavour of the Intersection over Union loss and is used due to its convergence properties. In KerasCV, you can use this loss simply by passing the string `"ciou"` to `compile()`. We also use standard binary crossentropy loss for the class head. ```python pretrained_model.compile( classification_loss="binary_crossentropy", box_loss="ciou", ) ``` ### Metric evaluation The most popular object detection metrics are COCO metrics, which were published alongside the MSCOCO dataset. KerasCV provides an easy-to-use suite of COCO metrics under the `keras_cv.callbacks.PyCOCOCallback` symbol. Note that we use a Keras callback instead of a Keras metric to compute COCO metrics. This is because computing COCO metrics requires storing all of a model's predictions for the entire evaluation dataset in memory at once, which is impractical to do during training time. ```python coco_metrics_callback = keras_cv.callbacks.PyCOCOCallback( eval_ds.take(20), bounding_box_format="xywh" ) ``` Our data pipeline is now complete! We can now move on to model creation and training. --- ## Model creation Next, let's use the KerasCV API to construct an untrained YOLOV8Detector model. In this tutorial we use a pretrained ResNet50 backbone from the imagenet dataset. KerasCV makes it easy to construct a `YOLOV8Detector` with any of the KerasCV backbones. Simply use one of the presets for the architecture you'd like! For example: ```python model = keras_cv.models.YOLOV8Detector.from_preset( "resnet50_imagenet", # For more info on supported bounding box formats, visit # https://keras.io/api/keras_cv/bounding_box/ bounding_box_format="xywh", num_classes=20, ) ``` That is all it takes to construct a KerasCV YOLOv8. The YOLOv8 accepts tuples of dense image Tensors and bounding box dictionaries to `fit()` and `train_on_batch()` This matches what we have constructed in our input pipeline above. --- ## Training our model All that is left to do is train our model. KerasCV object detection models follow the standard Keras workflow, leveraging `compile()` and `fit()`. Let's compile our model: ```python model.compile( classification_loss="binary_crossentropy", box_loss="ciou", optimizer=optimizer, ) ``` If you want to fully train the model, remove `.take(20)` from all dataset references (below and in the initialization of the metrics callback). ```python model.fit( train_ds.take(20), # Run for 10-35~ epochs to achieve good scores. epochs=1, callbacks=[coco_metrics_callback], ) ``` <div class="k-default-codeblock"> ``` 20/20 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 7s 59ms/step creating index... index created! creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=0.16s). Accumulating evaluation results... DONE (t=0.07s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.002 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.002 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.002 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.002 20/20 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 73s 681ms/step - loss: 9221.7988 - val_AP: 3.1673e-05 - val_AP50: 2.1886e-04 - val_AP75: 0.0000e+00 - val_APs: 0.0000e+00 - val_APm: 0.0000e+00 - val_APl: 3.1673e-05 - val_ARmax1: 0.0016 - val_ARmax10: 0.0021 - val_ARmax100: 0.0021 - val_ARs: 0.0000e+00 - val_ARm: 0.0000e+00 - val_ARl: 0.0021 <keras.src.callbacks.history.History at 0x7fb23010a850> ``` </div> --- ## Inference and plotting results KerasCV makes object detection inference simple. `model.predict(images)` returns a tensor of bounding boxes. By default, `YOLOV8Detector.predict()` will perform a non max suppression operation for you. In this section, we will use a `keras_cv` provided preset: ```python model = keras_cv.models.YOLOV8Detector.from_preset( "yolo_v8_m_pascalvoc", bounding_box_format="xywh" ) ``` Next, for convenience we construct a dataset with larger batches: ```python visualization_ds = eval_ds.unbatch() visualization_ds = visualization_ds.ragged_batch(16) visualization_ds = visualization_ds.shuffle(8) ``` Let's create a simple function to plot our inferences: ```python def visualize_detections(model, dataset, bounding_box_format): images, y_true = next(iter(dataset.take(1))) y_pred = model.predict(images) visualization.plot_bounding_box_gallery( images, value_range=(0, 255), bounding_box_format=bounding_box_format, y_true=y_true, y_pred=y_pred, scale=4, rows=2, cols=2, show=True, font_scale=0.7, class_mapping=class_mapping, ) ``` You may need to configure your NonMaxSuppression operation to achieve visually appealing results. ```python model.prediction_decoder = keras_cv.layers.NonMaxSuppression( bounding_box_format="xywh", from_logits=True, iou_threshold=0.5, confidence_threshold=0.75, ) visualize_detections(model, dataset=visualization_ds, bounding_box_format="xywh") ``` <div class="k-default-codeblock"> ``` 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 16s 16s/step ``` </div> ![png](/img/guides/object_detection_keras_cv/object_detection_keras_cv_60_1.png) Awesome! One final helpful pattern to be aware of is to visualize detections in a `keras.callbacks.Callback` to monitor training : ```python class VisualizeDetections(keras.callbacks.Callback): def on_epoch_end(self, epoch, logs): visualize_detections( self.model, bounding_box_format="xywh", dataset=visualization_ds ) ``` --- ## Takeaways and next steps KerasCV makes it easy to construct state-of-the-art object detection pipelines. In this guide, we started off by writing a data loader using the KerasCV bounding box specification. Following this, we assembled a production grade data augmentation pipeline using KerasCV preprocessing layers in <50 lines of code. KerasCV object detection components can be used independently, but also have deep integration with each other. KerasCV makes authoring production grade bounding box augmentation, model training, visualization, and metric evaluation easy. Some follow up exercises for the reader: - add additional augmentation techniques to improve model performance - tune the hyperparameters and data augmentation used to produce high quality results - train an object detection model on your own dataset One last fun code snippet to showcase the power of KerasCV's API! ```python stable_diffusion = keras_cv.models.StableDiffusionV2(512, 512) images = stable_diffusion.text_to_image( prompt="A zoomed out photograph of a cool looking cat. The cat stands in a beautiful forest", negative_prompt="unrealistic, bad looking, malformed", batch_size=4, seed=1231, ) encoded_predictions = model(images) y_pred = model.decode_predictions(encoded_predictions, images) visualization.plot_bounding_box_gallery( images, value_range=(0, 255), y_pred=y_pred, rows=2, cols=2, scale=5, font_scale=0.7, bounding_box_format="xywh", class_mapping=class_mapping, ) ``` <div class="k-default-codeblock"> ``` By using this model checkpoint, you acknowledge that its usage is subject to the terms of the CreativeML Open RAIL++-M license at https://github.com/Stability-AI/stablediffusion/blob/main/LICENSE-MODEL 50/50 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 47s 356ms/step ``` </div> ![png](/img/guides/object_detection_keras_cv/object_detection_keras_cv_64_1.png) ![png](/img/guides/object_detection_keras_cv/object_detection_keras_cv_64_2.png)
keras-io/guides/md/keras_cv/object_detection_keras_cv.md/0
{ "file_path": "keras-io/guides/md/keras_cv/object_detection_keras_cv.md", "repo_id": "keras-io", "token_count": 10387 }
112
# Save, serialize, and export models **Authors:** Neel Kovelamudi, Francois Chollet<br> **Date created:** 2023/06/14<br> **Last modified:** 2023/06/30<br> **Description:** Complete guide to saving, serializing, and exporting models. <img class="k-inline-icon" src="https://colab.research.google.com/img/colab_favicon.ico"/> [**View in Colab**](https://colab.research.google.com/github/keras-team/keras-io/blob/master/guides/ipynb/serialization_and_saving.ipynb) <span class="k-dot">โ€ข</span><img class="k-inline-icon" src="https://github.com/favicon.ico"/> [**GitHub source**](https://github.com/keras-team/keras-io/blob/master/guides/serialization_and_saving.py) --- ## Introduction A Keras model consists of multiple components: - The architecture, or configuration, which specifies what layers the model contain, and how they're connected. - A set of weights values (the "state of the model"). - An optimizer (defined by compiling the model). - A set of losses and metrics (defined by compiling the model). The Keras API saves all of these pieces together in a unified format, marked by the `.keras` extension. This is a zip archive consisting of the following: - A JSON-based configuration file (config.json): Records of model, layer, and other trackables' configuration. - A H5-based state file, such as `model.weights.h5` (for the whole model), with directory keys for layers and their weights. - A metadata file in JSON, storing things such as the current Keras version. Let's take a look at how this works. --- ## How to save and load a model If you only have 10 seconds to read this guide, here's what you need to know. **Saving a Keras model:** ```python model = ... # Get model (Sequential, Functional Model, or Model subclass) model.save('path/to/location.keras') # The file needs to end with the .keras extension ``` **Loading the model back:** ```python model = keras.models.load_model('path/to/location.keras') ``` Now, let's look at the details. --- ## Setup ```python import numpy as np import keras from keras import ops ``` --- ## Saving This section is about saving an entire model to a single file. The file will include: - The model's architecture/config - The model's weight values (which were learned during training) - The model's compilation information (if `compile()` was called) - The optimizer and its state, if any (this enables you to restart training where you left) #### APIs You can save a model with `model.save()` or `keras.models.save_model()` (which is equivalent). You can load it back with `keras.models.load_model()`. The only supported format in Keras 3 is the "Keras v3" format, which uses the `.keras` extension. **Example:** ```python def get_model(): # Create a simple model. inputs = keras.Input(shape=(32,)) outputs = keras.layers.Dense(1)(inputs) model = keras.Model(inputs, outputs) model.compile(optimizer=keras.optimizers.Adam(), loss="mean_squared_error") return model model = get_model() # Train the model. test_input = np.random.random((128, 32)) test_target = np.random.random((128, 1)) model.fit(test_input, test_target) # Calling `save('my_model.keras')` creates a zip archive `my_model.keras`. model.save("my_model.keras") # It can be used to reconstruct the model identically. reconstructed_model = keras.models.load_model("my_model.keras") # Let's check: np.testing.assert_allclose( model.predict(test_input), reconstructed_model.predict(test_input) ) ``` <div class="k-default-codeblock"> ``` 4/4 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 8ms/step - loss: 0.4232 4/4 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 281us/step 4/4 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 373us/step ``` </div> ### Custom objects This section covers the basic workflows for handling custom layers, functions, and models in Keras saving and reloading. When saving a model that includes custom objects, such as a subclassed Layer, you **must** define a `get_config()` method on the object class. If the arguments passed to the constructor (`__init__()` method) of the custom object aren't Python objects (anything other than base types like ints, strings, etc.), then you **must** also explicitly deserialize these arguments in the `from_config()` class method. Like this: ```python class CustomLayer(keras.layers.Layer): def __init__(self, sublayer, **kwargs): super().__init__(**kwargs) self.sublayer = layer def call(self, x): return self.sublayer(x) def get_config(self): base_config = super().get_config() config = { "sublayer": keras.saving.serialize_keras_object(self.sublayer), } return {**base_config, **config} @classmethod def from_config(cls, config): sublayer_config = config.pop("sublayer") sublayer = keras.saving.deserialize_keras_object(sublayer_config) return cls(sublayer, **config) ``` Please see the [Defining the config methods section](#config_methods) for more details and examples. The saved `.keras` file is lightweight and does not store the Python code for custom objects. Therefore, to reload the model, `load_model` requires access to the definition of any custom objects used through one of the following methods: 1. Registering custom objects **(preferred)**, 2. Passing custom objects directly when loading, or 3. Using a custom object scope Below are examples of each workflow: #### Registering custom objects (**preferred**) This is the preferred method, as custom object registration greatly simplifies saving and loading code. Adding the `@keras.saving.register_keras_serializable` decorator to the class definition of a custom object registers the object globally in a master list, allowing Keras to recognize the object when loading the model. Let's create a custom model involving both a custom layer and a custom activation function to demonstrate this. **Example:** ```python # Clear all previously registered custom objects keras.saving.get_custom_objects().clear() # Upon registration, you can optionally specify a package or a name. # If left blank, the package defaults to `Custom` and the name defaults to # the class name. @keras.saving.register_keras_serializable(package="MyLayers") class CustomLayer(keras.layers.Layer): def __init__(self, factor): super().__init__() self.factor = factor def call(self, x): return x * self.factor def get_config(self): return {"factor": self.factor} @keras.saving.register_keras_serializable(package="my_package", name="custom_fn") def custom_fn(x): return x**2 # Create the model. def get_model(): inputs = keras.Input(shape=(4,)) mid = CustomLayer(0.5)(inputs) outputs = keras.layers.Dense(1, activation=custom_fn)(mid) model = keras.Model(inputs, outputs) model.compile(optimizer="rmsprop", loss="mean_squared_error") return model # Train the model. def train_model(model): input = np.random.random((4, 4)) target = np.random.random((4, 1)) model.fit(input, target) return model test_input = np.random.random((4, 4)) test_target = np.random.random((4, 1)) model = get_model() model = train_model(model) model.save("custom_model.keras") # Now, we can simply load without worrying about our custom objects. reconstructed_model = keras.models.load_model("custom_model.keras") # Let's check: np.testing.assert_allclose( model.predict(test_input), reconstructed_model.predict(test_input) ) ``` <div class="k-default-codeblock"> ``` 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 46ms/step - loss: 0.2571 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 11ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 12ms/step ``` </div> #### Passing custom objects to `load_model()` ```python model = get_model() model = train_model(model) # Calling `save('my_model.keras')` creates a zip archive `my_model.keras`. model.save("custom_model.keras") # Upon loading, pass a dict containing the custom objects used in the # `custom_objects` argument of `keras.models.load_model()`. reconstructed_model = keras.models.load_model( "custom_model.keras", custom_objects={"CustomLayer": CustomLayer, "custom_fn": custom_fn}, ) # Let's check: np.testing.assert_allclose( model.predict(test_input), reconstructed_model.predict(test_input) ) ``` <div class="k-default-codeblock"> ``` 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 37ms/step - loss: 0.0535 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 12ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 12ms/step ``` </div> #### Using a custom object scope Any code within the custom object scope will be able to recognize the custom objects passed to the scope argument. Therefore, loading the model within the scope will allow the loading of our custom objects. **Example:** ```python model = get_model() model = train_model(model) model.save("custom_model.keras") # Pass the custom objects dictionary to a custom object scope and place # the `keras.models.load_model()` call within the scope. custom_objects = {"CustomLayer": CustomLayer, "custom_fn": custom_fn} with keras.saving.custom_object_scope(custom_objects): reconstructed_model = keras.models.load_model("custom_model.keras") # Let's check: np.testing.assert_allclose( model.predict(test_input), reconstructed_model.predict(test_input) ) ``` <div class="k-default-codeblock"> ``` 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 40ms/step - loss: 0.0868 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 11ms/step 1/1 โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ” 0s 11ms/step ``` </div> ### Model serialization This section is about saving only the model's configuration, without its state. The model's configuration (or architecture) specifies what layers the model contains, and how these layers are connected. If you have the configuration of a model, then the model can be created with a freshly initialized state (no weights or compilation information). #### APIs The following serialization APIs are available: - `keras.models.clone_model(model)`: make a (randomly initialized) copy of a model. - `get_config()` and `cls.from_config()`: retrieve the configuration of a layer or model, and recreate a model instance from its config, respectively. - `keras.models.model_to_json()` and `keras.models.model_from_json()`: similar, but as JSON strings. - `keras.saving.serialize_keras_object()`: retrieve the configuration any arbitrary Keras object. - `keras.saving.deserialize_keras_object()`: recreate an object instance from its configuration. #### In-memory model cloning You can do in-memory cloning of a model via `keras.models.clone_model()`. This is equivalent to getting the config then recreating the model from its config (so it does not preserve compilation information or layer weights values). **Example:** ```python new_model = keras.models.clone_model(model) ``` #### `get_config()` and `from_config()` Calling `model.get_config()` or `layer.get_config()` will return a Python dict containing the configuration of the model or layer, respectively. You should define `get_config()` to contain arguments needed for the `__init__()` method of the model or layer. At loading time, the `from_config(config)` method will then call `__init__()` with these arguments to reconstruct the model or layer. **Layer example:** ```python layer = keras.layers.Dense(3, activation="relu") layer_config = layer.get_config() print(layer_config) ``` <div class="k-default-codeblock"> ``` {'name': 'dense_4', 'trainable': True, 'dtype': 'float32', 'units': 3, 'activation': 'relu', 'use_bias': True, 'kernel_initializer': {'module': 'keras.src.initializers.random_initializers', 'class_name': 'GlorotUniform', 'config': {'seed': None}, 'registered_name': 'GlorotUniform'}, 'bias_initializer': {'module': 'keras.src.initializers.constant_initializers', 'class_name': 'Zeros', 'config': {}, 'registered_name': 'Zeros'}, 'kernel_regularizer': None, 'bias_regularizer': None, 'kernel_constraint': None, 'bias_constraint': None} ``` </div> Now let's reconstruct the layer using the `from_config()` method: ```python new_layer = keras.layers.Dense.from_config(layer_config) ``` **Sequential model example:** ```python model = keras.Sequential([keras.Input((32,)), keras.layers.Dense(1)]) config = model.get_config() new_model = keras.Sequential.from_config(config) ``` **Functional model example:** ```python inputs = keras.Input((32,)) outputs = keras.layers.Dense(1)(inputs) model = keras.Model(inputs, outputs) config = model.get_config() new_model = keras.Model.from_config(config) ``` #### `to_json()` and `keras.models.model_from_json()` This is similar to `get_config` / `from_config`, except it turns the model into a JSON string, which can then be loaded without the original model class. It is also specific to models, it isn't meant for layers. **Example:** ```python model = keras.Sequential([keras.Input((32,)), keras.layers.Dense(1)]) json_config = model.to_json() new_model = keras.models.model_from_json(json_config) ``` #### Arbitrary object serialization and deserialization The `keras.saving.serialize_keras_object()` and `keras.saving.deserialize_keras_object()` APIs are general-purpose APIs that can be used to serialize or deserialize any Keras object and any custom object. It is at the foundation of saving model architecture and is behind all `serialize()`/`deserialize()` calls in keras. **Example**: ```python my_reg = keras.regularizers.L1(0.005) config = keras.saving.serialize_keras_object(my_reg) print(config) ``` <div class="k-default-codeblock"> ``` {'module': 'keras.src.regularizers.regularizers', 'class_name': 'L1', 'config': {'l1': 0.004999999888241291}, 'registered_name': 'L1'} ``` </div> Note the serialization format containing all the necessary information for proper reconstruction: - `module` containing the name of the Keras module or other identifying module the object comes from - `class_name` containing the name of the object's class. - `config` with all the information needed to reconstruct the object - `registered_name` for custom objects. See [here](#custom_object_serialization). Now we can reconstruct the regularizer. ```python new_reg = keras.saving.deserialize_keras_object(config) ``` ### Model weights saving You can choose to only save & load a model's weights. This can be useful if: - You only need the model for inference: in this case you won't need to restart training, so you don't need the compilation information or optimizer state. - You are doing transfer learning: in this case you will be training a new model reusing the state of a prior model, so you don't need the compilation information of the prior model. #### APIs for in-memory weight transfer Weights can be copied between different objects by using `get_weights()` and `set_weights()`: * `keras.layers.Layer.get_weights()`: Returns a list of NumPy arrays of weight values. * `keras.layers.Layer.set_weights(weights)`: Sets the model weights to the values provided (as NumPy arrays). Examples: ***Transferring weights from one layer to another, in memory*** ```python def create_layer(): layer = keras.layers.Dense(64, activation="relu", name="dense_2") layer.build((None, 784)) return layer layer_1 = create_layer() layer_2 = create_layer() # Copy weights from layer 1 to layer 2 layer_2.set_weights(layer_1.get_weights()) ``` ***Transferring weights from one model to another model with a compatible architecture, in memory*** ```python # Create a simple functional model inputs = keras.Input(shape=(784,), name="digits") x = keras.layers.Dense(64, activation="relu", name="dense_1")(inputs) x = keras.layers.Dense(64, activation="relu", name="dense_2")(x) outputs = keras.layers.Dense(10, name="predictions")(x) functional_model = keras.Model(inputs=inputs, outputs=outputs, name="3_layer_mlp") # Define a subclassed model with the same architecture class SubclassedModel(keras.Model): def __init__(self, output_dim, name=None): super().__init__(name=name) self.output_dim = output_dim self.dense_1 = keras.layers.Dense(64, activation="relu", name="dense_1") self.dense_2 = keras.layers.Dense(64, activation="relu", name="dense_2") self.dense_3 = keras.layers.Dense(output_dim, name="predictions") def call(self, inputs): x = self.dense_1(inputs) x = self.dense_2(x) x = self.dense_3(x) return x def get_config(self): return {"output_dim": self.output_dim, "name": self.name} subclassed_model = SubclassedModel(10) # Call the subclassed model once to create the weights. subclassed_model(np.ones((1, 784))) # Copy weights from functional_model to subclassed_model. subclassed_model.set_weights(functional_model.get_weights()) assert len(functional_model.weights) == len(subclassed_model.weights) for a, b in zip(functional_model.weights, subclassed_model.weights): np.testing.assert_allclose(a.numpy(), b.numpy()) ``` ***The case of stateless layers*** Because stateless layers do not change the order or number of weights, models can have compatible architectures even if there are extra/missing stateless layers. ```python inputs = keras.Input(shape=(784,), name="digits") x = keras.layers.Dense(64, activation="relu", name="dense_1")(inputs) x = keras.layers.Dense(64, activation="relu", name="dense_2")(x) outputs = keras.layers.Dense(10, name="predictions")(x) functional_model = keras.Model(inputs=inputs, outputs=outputs, name="3_layer_mlp") inputs = keras.Input(shape=(784,), name="digits") x = keras.layers.Dense(64, activation="relu", name="dense_1")(inputs) x = keras.layers.Dense(64, activation="relu", name="dense_2")(x) # Add a dropout layer, which does not contain any weights. x = keras.layers.Dropout(0.5)(x) outputs = keras.layers.Dense(10, name="predictions")(x) functional_model_with_dropout = keras.Model( inputs=inputs, outputs=outputs, name="3_layer_mlp" ) functional_model_with_dropout.set_weights(functional_model.get_weights()) ``` #### APIs for saving weights to disk & loading them back Weights can be saved to disk by calling `model.save_weights(filepath)`. The filename should end in `.weights.h5`. **Example:** ```python # Runnable example sequential_model = keras.Sequential( [ keras.Input(shape=(784,), name="digits"), keras.layers.Dense(64, activation="relu", name="dense_1"), keras.layers.Dense(64, activation="relu", name="dense_2"), keras.layers.Dense(10, name="predictions"), ] ) sequential_model.save_weights("my_model.weights.h5") sequential_model.load_weights("my_model.weights.h5") ``` Note that changing `layer.trainable` may result in a different `layer.weights` ordering when the model contains nested layers. ```python class NestedDenseLayer(keras.layers.Layer): def __init__(self, units, name=None): super().__init__(name=name) self.dense_1 = keras.layers.Dense(units, name="dense_1") self.dense_2 = keras.layers.Dense(units, name="dense_2") def call(self, inputs): return self.dense_2(self.dense_1(inputs)) nested_model = keras.Sequential([keras.Input((784,)), NestedDenseLayer(10, "nested")]) variable_names = [v.name for v in nested_model.weights] print("variables: {}".format(variable_names)) print("\nChanging trainable status of one of the nested layers...") nested_model.get_layer("nested").dense_1.trainable = False variable_names_2 = [v.name for v in nested_model.weights] print("\nvariables: {}".format(variable_names_2)) print("variable ordering changed:", variable_names != variable_names_2) ``` <div class="k-default-codeblock"> ``` variables: ['kernel', 'bias', 'kernel', 'bias'] ``` </div> <div class="k-default-codeblock"> ``` Changing trainable status of one of the nested layers... ``` </div> <div class="k-default-codeblock"> ``` variables: ['kernel', 'bias', 'kernel', 'bias'] variable ordering changed: False ``` </div> ##### **Transfer learning example** When loading pretrained weights from a weights file, it is recommended to load the weights into the original checkpointed model, and then extract the desired weights/layers into a new model. **Example:** ```python def create_functional_model(): inputs = keras.Input(shape=(784,), name="digits") x = keras.layers.Dense(64, activation="relu", name="dense_1")(inputs) x = keras.layers.Dense(64, activation="relu", name="dense_2")(x) outputs = keras.layers.Dense(10, name="predictions")(x) return keras.Model(inputs=inputs, outputs=outputs, name="3_layer_mlp") functional_model = create_functional_model() functional_model.save_weights("pretrained.weights.h5") # In a separate program: pretrained_model = create_functional_model() pretrained_model.load_weights("pretrained.weights.h5") # Create a new model by extracting layers from the original model: extracted_layers = pretrained_model.layers[:-1] extracted_layers.append(keras.layers.Dense(5, name="dense_3")) model = keras.Sequential(extracted_layers) model.summary() ``` <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold">Model: "sequential_4"</span> </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace">โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“ โ”ƒ<span style="font-weight: bold"> Layer (type) </span>โ”ƒ<span style="font-weight: bold"> Output Shape </span>โ”ƒ<span style="font-weight: bold"> Param # </span>โ”ƒ โ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ โ”‚ dense_1 (<span style="color: #0087ff; text-decoration-color: #0087ff">Dense</span>) โ”‚ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">64</span>) โ”‚ <span style="color: #00af00; text-decoration-color: #00af00">50,240</span> โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ dense_2 (<span style="color: #0087ff; text-decoration-color: #0087ff">Dense</span>) โ”‚ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">64</span>) โ”‚ <span style="color: #00af00; text-decoration-color: #00af00">4,160</span> โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ dense_3 (<span style="color: #0087ff; text-decoration-color: #0087ff">Dense</span>) โ”‚ (<span style="color: #00d7ff; text-decoration-color: #00d7ff">None</span>, <span style="color: #00af00; text-decoration-color: #00af00">5</span>) โ”‚ <span style="color: #00af00; text-decoration-color: #00af00">325</span> โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold"> Total params: </span><span style="color: #00af00; text-decoration-color: #00af00">54,725</span> (213.77 KB) </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold"> Trainable params: </span><span style="color: #00af00; text-decoration-color: #00af00">54,725</span> (213.77 KB) </pre> <pre style="white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace"><span style="font-weight: bold"> Non-trainable params: </span><span style="color: #00af00; text-decoration-color: #00af00">0</span> (0.00 B) </pre> ### Appendix: Handling custom objects <a name="config_methods"></a> #### Defining the config methods Specifications: * `get_config()` should return a JSON-serializable dictionary in order to be compatible with the Keras architecture- and model-saving APIs. * `from_config(config)` (a `classmethod`) should return a new layer or model object that is created from the config. The default implementation returns `cls(**config)`. **NOTE**: If all your constructor arguments are already serializable, e.g. strings and ints, or non-custom Keras objects, overriding `from_config` is not necessary. However, for more complex objects such as layers or models passed to `__init__`, deserialization must be handled explicitly either in `__init__` itself or overriding the `from_config()` method. **Example:** ```python @keras.saving.register_keras_serializable(package="MyLayers", name="KernelMult") class MyDense(keras.layers.Layer): def __init__( self, units, *, kernel_regularizer=None, kernel_initializer=None, nested_model=None, **kwargs ): super().__init__(**kwargs) self.hidden_units = units self.kernel_regularizer = kernel_regularizer self.kernel_initializer = kernel_initializer self.nested_model = nested_model def get_config(self): config = super().get_config() # Update the config with the custom layer's parameters config.update( { "units": self.hidden_units, "kernel_regularizer": self.kernel_regularizer, "kernel_initializer": self.kernel_initializer, "nested_model": self.nested_model, } ) return config def build(self, input_shape): input_units = input_shape[-1] self.kernel = self.add_weight( name="kernel", shape=(input_units, self.hidden_units), regularizer=self.kernel_regularizer, initializer=self.kernel_initializer, ) def call(self, inputs): return ops.matmul(inputs, self.kernel) layer = MyDense(units=16, kernel_regularizer="l1", kernel_initializer="ones") layer3 = MyDense(units=64, nested_model=layer) config = keras.layers.serialize(layer3) print(config) new_layer = keras.layers.deserialize(config) print(new_layer) ``` <div class="k-default-codeblock"> ``` {'module': None, 'class_name': 'MyDense', 'config': {'name': 'my_dense_1', 'trainable': True, 'dtype': 'float32', 'units': 64, 'kernel_regularizer': None, 'kernel_initializer': None, 'nested_model': {'module': None, 'class_name': 'MyDense', 'config': {'name': 'my_dense', 'trainable': True, 'dtype': 'float32', 'units': 16, 'kernel_regularizer': 'l1', 'kernel_initializer': 'ones', 'nested_model': None}, 'registered_name': 'MyLayers>KernelMult'}}, 'registered_name': 'MyLayers>KernelMult'} <MyDense name=my_dense_1, built=False> ``` </div> Note that overriding `from_config` is unnecessary above for `MyDense` because `hidden_units`, `kernel_initializer`, and `kernel_regularizer` are ints, strings, and a built-in Keras object, respectively. This means that the default `from_config` implementation of `cls(**config)` will work as intended. For more complex objects, such as layers and models passed to `__init__`, for example, you must explicitly deserialize these objects. Let's take a look at an example of a model where a `from_config` override is necessary. **Example:** <a name="registration_example"></a> ```python @keras.saving.register_keras_serializable(package="ComplexModels") class CustomModel(keras.layers.Layer): def __init__(self, first_layer, second_layer=None, **kwargs): super().__init__(**kwargs) self.first_layer = first_layer if second_layer is not None: self.second_layer = second_layer else: self.second_layer = keras.layers.Dense(8) def get_config(self): config = super().get_config() config.update( { "first_layer": self.first_layer, "second_layer": self.second_layer, } ) return config @classmethod def from_config(cls, config): # Note that you can also use `keras.saving.deserialize_keras_object` here config["first_layer"] = keras.layers.deserialize(config["first_layer"]) config["second_layer"] = keras.layers.deserialize(config["second_layer"]) return cls(**config) def call(self, inputs): return self.first_layer(self.second_layer(inputs)) # Let's make our first layer the custom layer from the previous example (MyDense) inputs = keras.Input((32,)) outputs = CustomModel(first_layer=layer)(inputs) model = keras.Model(inputs, outputs) config = model.get_config() new_model = keras.Model.from_config(config) ``` <a name="custom_object_serialization"></a> #### How custom objects are serialized The serialization format has a special key for custom objects registered via `@keras.saving.register_keras_serializable`. This `registered_name` key allows for easy retrieval at loading/deserialization time while also allowing users to add custom naming. Let's take a look at the config from serializing the custom layer `MyDense` we defined above. **Example**: ```python layer = MyDense( units=16, kernel_regularizer=keras.regularizers.L1L2(l1=1e-5, l2=1e-4), kernel_initializer="ones", ) config = keras.layers.serialize(layer) print(config) ``` <div class="k-default-codeblock"> ``` {'module': None, 'class_name': 'MyDense', 'config': {'name': 'my_dense_2', 'trainable': True, 'dtype': 'float32', 'units': 16, 'kernel_regularizer': {'module': 'keras.src.regularizers.regularizers', 'class_name': 'L1L2', 'config': {'l1': 1e-05, 'l2': 0.0001}, 'registered_name': 'L1L2'}, 'kernel_initializer': 'ones', 'nested_model': None}, 'registered_name': 'MyLayers>KernelMult'} ``` </div> As shown, the `registered_name` key contains the lookup information for the Keras master list, including the package `MyLayers` and the custom name `KernelMult` that we gave in the `@keras.saving.register_keras_serializable` decorator. Take a look again at the custom class definition/registration [here](#registration_example). Note that the `class_name` key contains the original name of the class, allowing for proper re-initialization in `from_config`. Additionally, note that the `module` key is `None` since this is a custom object.
keras-io/guides/md/serialization_and_saving.md/0
{ "file_path": "keras-io/guides/md/serialization_and_saving.md", "repo_id": "keras-io", "token_count": 10788 }
113
""" Title: Writing a training loop from scratch in TensorFlow Author: [fchollet](https://twitter.com/fchollet) Date created: 2019/03/01 Last modified: 2023/06/25 Description: Writing low-level training & evaluation loops in TensorFlow. Accelerator: None """ """ ## Setup """ import time import os # This guide can only be run with the TensorFlow backend. os.environ["KERAS_BACKEND"] = "tensorflow" import tensorflow as tf import keras import numpy as np """ ## Introduction Keras provides default training and evaluation loops, `fit()` and `evaluate()`. Their usage is covered in the guide [Training & evaluation with the built-in methods](/guides/training_with_built_in_methods/). If you want to customize the learning algorithm of your model while still leveraging the convenience of `fit()` (for instance, to train a GAN using `fit()`), you can subclass the `Model` class and implement your own `train_step()` method, which is called repeatedly during `fit()`. Now, if you want very low-level control over training & evaluation, you should write your own training & evaluation loops from scratch. This is what this guide is about. """ """ ## A first end-to-end example Let's consider a simple MNIST model: """ def get_model(): inputs = keras.Input(shape=(784,), name="digits") x1 = keras.layers.Dense(64, activation="relu")(inputs) x2 = keras.layers.Dense(64, activation="relu")(x1) outputs = keras.layers.Dense(10, name="predictions")(x2) model = keras.Model(inputs=inputs, outputs=outputs) return model model = get_model() """ Let's train it using mini-batch gradient with a custom training loop. First, we're going to need an optimizer, a loss function, and a dataset: """ # Instantiate an optimizer. optimizer = keras.optimizers.Adam(learning_rate=1e-3) # Instantiate a loss function. loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True) # Prepare the training dataset. batch_size = 32 (x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data() x_train = np.reshape(x_train, (-1, 784)) x_test = np.reshape(x_test, (-1, 784)) # Reserve 10,000 samples for validation. x_val = x_train[-10000:] y_val = y_train[-10000:] x_train = x_train[:-10000] y_train = y_train[:-10000] # Prepare the training dataset. train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)) train_dataset = train_dataset.shuffle(buffer_size=1024).batch(batch_size) # Prepare the validation dataset. val_dataset = tf.data.Dataset.from_tensor_slices((x_val, y_val)) val_dataset = val_dataset.batch(batch_size) """ Calling a model inside a `GradientTape` scope enables you to retrieve the gradients of the trainable weights of the layer with respect to a loss value. Using an optimizer instance, you can use these gradients to update these variables (which you can retrieve using `model.trainable_weights`). Here's our training loop, step by step: - We open a `for` loop that iterates over epochs - For each epoch, we open a `for` loop that iterates over the dataset, in batches - For each batch, we open a `GradientTape()` scope - Inside this scope, we call the model (forward pass) and compute the loss - Outside the scope, we retrieve the gradients of the weights of the model with regard to the loss - Finally, we use the optimizer to update the weights of the model based on the gradients """ epochs = 3 for epoch in range(epochs): print(f"\nStart of epoch {epoch}") # Iterate over the batches of the dataset. for step, (x_batch_train, y_batch_train) in enumerate(train_dataset): # Open a GradientTape to record the operations run # during the forward pass, which enables auto-differentiation. with tf.GradientTape() as tape: # Run the forward pass of the layer. # The operations that the layer applies # to its inputs are going to be recorded # on the GradientTape. logits = model(x_batch_train, training=True) # Logits for this minibatch # Compute the loss value for this minibatch. loss_value = loss_fn(y_batch_train, logits) # Use the gradient tape to automatically retrieve # the gradients of the trainable variables with respect to the loss. grads = tape.gradient(loss_value, model.trainable_weights) # Run one step of gradient descent by updating # the value of the variables to minimize the loss. optimizer.apply(grads, model.trainable_weights) # Log every 100 batches. if step % 100 == 0: print( f"Training loss (for 1 batch) at step {step}: {float(loss_value):.4f}" ) print(f"Seen so far: {(step + 1) * batch_size} samples") """ ## Low-level handling of metrics Let's add metrics monitoring to this basic loop. You can readily reuse the built-in metrics (or custom ones you wrote) in such training loops written from scratch. Here's the flow: - Instantiate the metric at the start of the loop - Call `metric.update_state()` after each batch - Call `metric.result()` when you need to display the current value of the metric - Call `metric.reset_state()` when you need to clear the state of the metric (typically at the end of an epoch) Let's use this knowledge to compute `SparseCategoricalAccuracy` on training and validation data at the end of each epoch: """ # Get a fresh model model = get_model() # Instantiate an optimizer to train the model. optimizer = keras.optimizers.Adam(learning_rate=1e-3) # Instantiate a loss function. loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True) # Prepare the metrics. train_acc_metric = keras.metrics.SparseCategoricalAccuracy() val_acc_metric = keras.metrics.SparseCategoricalAccuracy() """ Here's our training & evaluation loop: """ epochs = 2 for epoch in range(epochs): print(f"\nStart of epoch {epoch}") start_time = time.time() # Iterate over the batches of the dataset. for step, (x_batch_train, y_batch_train) in enumerate(train_dataset): with tf.GradientTape() as tape: logits = model(x_batch_train, training=True) loss_value = loss_fn(y_batch_train, logits) grads = tape.gradient(loss_value, model.trainable_weights) optimizer.apply(grads, model.trainable_weights) # Update training metric. train_acc_metric.update_state(y_batch_train, logits) # Log every 100 batches. if step % 100 == 0: print( f"Training loss (for 1 batch) at step {step}: {float(loss_value):.4f}" ) print(f"Seen so far: {(step + 1) * batch_size} samples") # Display metrics at the end of each epoch. train_acc = train_acc_metric.result() print(f"Training acc over epoch: {float(train_acc):.4f}") # Reset training metrics at the end of each epoch train_acc_metric.reset_state() # Run a validation loop at the end of each epoch. for x_batch_val, y_batch_val in val_dataset: val_logits = model(x_batch_val, training=False) # Update val metrics val_acc_metric.update_state(y_batch_val, val_logits) val_acc = val_acc_metric.result() val_acc_metric.reset_state() print(f"Validation acc: {float(val_acc):.4f}") print(f"Time taken: {time.time() - start_time:.2f}s") """ ## Speeding-up your training step with `tf.function` The default runtime in TensorFlow is eager execution. As such, our training loop above executes eagerly. This is great for debugging, but graph compilation has a definite performance advantage. Describing your computation as a static graph enables the framework to apply global performance optimizations. This is impossible when the framework is constrained to greedily execute one operation after another, with no knowledge of what comes next. You can compile into a static graph any function that takes tensors as input. Just add a `@tf.function` decorator on it, like this: """ @tf.function def train_step(x, y): with tf.GradientTape() as tape: logits = model(x, training=True) loss_value = loss_fn(y, logits) grads = tape.gradient(loss_value, model.trainable_weights) optimizer.apply(grads, model.trainable_weights) train_acc_metric.update_state(y, logits) return loss_value """ Let's do the same with the evaluation step: """ @tf.function def test_step(x, y): val_logits = model(x, training=False) val_acc_metric.update_state(y, val_logits) """ Now, let's re-run our training loop with this compiled training step: """ epochs = 2 for epoch in range(epochs): print(f"\nStart of epoch {epoch}") start_time = time.time() # Iterate over the batches of the dataset. for step, (x_batch_train, y_batch_train) in enumerate(train_dataset): loss_value = train_step(x_batch_train, y_batch_train) # Log every 100 batches. if step % 100 == 0: print( f"Training loss (for 1 batch) at step {step}: {float(loss_value):.4f}" ) print(f"Seen so far: {(step + 1) * batch_size} samples") # Display metrics at the end of each epoch. train_acc = train_acc_metric.result() print(f"Training acc over epoch: {float(train_acc):.4f}") # Reset training metrics at the end of each epoch train_acc_metric.reset_state() # Run a validation loop at the end of each epoch. for x_batch_val, y_batch_val in val_dataset: test_step(x_batch_val, y_batch_val) val_acc = val_acc_metric.result() val_acc_metric.reset_state() print(f"Validation acc: {float(val_acc):.4f}") print(f"Time taken: {time.time() - start_time:.2f}s") """ Much faster, isn't it? """ """ ## Low-level handling of losses tracked by the model Layers & models recursively track any losses created during the forward pass by layers that call `self.add_loss(value)`. The resulting list of scalar loss values are available via the property `model.losses` at the end of the forward pass. If you want to be using these loss components, you should sum them and add them to the main loss in your training step. Consider this layer, that creates an activity regularization loss: """ class ActivityRegularizationLayer(keras.layers.Layer): def call(self, inputs): self.add_loss(1e-2 * tf.reduce_sum(inputs)) return inputs """ Let's build a really simple model that uses it: """ inputs = keras.Input(shape=(784,), name="digits") x = keras.layers.Dense(64, activation="relu")(inputs) # Insert activity regularization as a layer x = ActivityRegularizationLayer()(x) x = keras.layers.Dense(64, activation="relu")(x) outputs = keras.layers.Dense(10, name="predictions")(x) model = keras.Model(inputs=inputs, outputs=outputs) """ Here's what our training step should look like now: """ @tf.function def train_step(x, y): with tf.GradientTape() as tape: logits = model(x, training=True) loss_value = loss_fn(y, logits) # Add any extra losses created during the forward pass. loss_value += sum(model.losses) grads = tape.gradient(loss_value, model.trainable_weights) optimizer.apply(grads, model.trainable_weights) train_acc_metric.update_state(y, logits) return loss_value """ ## Summary Now you know everything there is to know about using built-in training loops and writing your own from scratch. To conclude, here's a simple end-to-end example that ties together everything you've learned in this guide: a DCGAN trained on MNIST digits. """ """ ## End-to-end example: a GAN training loop from scratch You may be familiar with Generative Adversarial Networks (GANs). GANs can generate new images that look almost real, by learning the latent distribution of a training dataset of images (the "latent space" of the images). A GAN is made of two parts: a "generator" model that maps points in the latent space to points in image space, a "discriminator" model, a classifier that can tell the difference between real images (from the training dataset) and fake images (the output of the generator network). A GAN training loop looks like this: 1) Train the discriminator. - Sample a batch of random points in the latent space. - Turn the points into fake images via the "generator" model. - Get a batch of real images and combine them with the generated images. - Train the "discriminator" model to classify generated vs. real images. 2) Train the generator. - Sample random points in the latent space. - Turn the points into fake images via the "generator" network. - Get a batch of real images and combine them with the generated images. - Train the "generator" model to "fool" the discriminator and classify the fake images as real. For a much more detailed overview of how GANs works, see [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python). Let's implement this training loop. First, create the discriminator meant to classify fake vs real digits: """ discriminator = keras.Sequential( [ keras.Input(shape=(28, 28, 1)), keras.layers.Conv2D(64, (3, 3), strides=(2, 2), padding="same"), keras.layers.LeakyReLU(negative_slope=0.2), keras.layers.Conv2D(128, (3, 3), strides=(2, 2), padding="same"), keras.layers.LeakyReLU(negative_slope=0.2), keras.layers.GlobalMaxPooling2D(), keras.layers.Dense(1), ], name="discriminator", ) discriminator.summary() """ Then let's create a generator network, that turns latent vectors into outputs of shape `(28, 28, 1)` (representing MNIST digits): """ latent_dim = 128 generator = keras.Sequential( [ keras.Input(shape=(latent_dim,)), # We want to generate 128 coefficients to reshape into a 7x7x128 map keras.layers.Dense(7 * 7 * 128), keras.layers.LeakyReLU(negative_slope=0.2), keras.layers.Reshape((7, 7, 128)), keras.layers.Conv2DTranspose(128, (4, 4), strides=(2, 2), padding="same"), keras.layers.LeakyReLU(negative_slope=0.2), keras.layers.Conv2DTranspose(128, (4, 4), strides=(2, 2), padding="same"), keras.layers.LeakyReLU(negative_slope=0.2), keras.layers.Conv2D(1, (7, 7), padding="same", activation="sigmoid"), ], name="generator", ) """ Here's the key bit: the training loop. As you can see it is quite straightforward. The training step function only takes 17 lines. """ # Instantiate one optimizer for the discriminator and another for the generator. d_optimizer = keras.optimizers.Adam(learning_rate=0.0003) g_optimizer = keras.optimizers.Adam(learning_rate=0.0004) # Instantiate a loss function. loss_fn = keras.losses.BinaryCrossentropy(from_logits=True) @tf.function def train_step(real_images): # Sample random points in the latent space random_latent_vectors = tf.random.normal(shape=(batch_size, latent_dim)) # Decode them to fake images generated_images = generator(random_latent_vectors) # Combine them with real images combined_images = tf.concat([generated_images, real_images], axis=0) # Assemble labels discriminating real from fake images labels = tf.concat( [tf.ones((batch_size, 1)), tf.zeros((real_images.shape[0], 1))], axis=0 ) # Add random noise to the labels - important trick! labels += 0.05 * tf.random.uniform(labels.shape) # Train the discriminator with tf.GradientTape() as tape: predictions = discriminator(combined_images) d_loss = loss_fn(labels, predictions) grads = tape.gradient(d_loss, discriminator.trainable_weights) d_optimizer.apply(grads, discriminator.trainable_weights) # Sample random points in the latent space random_latent_vectors = tf.random.normal(shape=(batch_size, latent_dim)) # Assemble labels that say "all real images" misleading_labels = tf.zeros((batch_size, 1)) # Train the generator (note that we should *not* update the weights # of the discriminator)! with tf.GradientTape() as tape: predictions = discriminator(generator(random_latent_vectors)) g_loss = loss_fn(misleading_labels, predictions) grads = tape.gradient(g_loss, generator.trainable_weights) g_optimizer.apply(grads, generator.trainable_weights) return d_loss, g_loss, generated_images """ Let's train our GAN, by repeatedly calling `train_step` on batches of images. Since our discriminator and generator are convnets, you're going to want to run this code on a GPU. """ # Prepare the dataset. We use both the training & test MNIST digits. batch_size = 64 (x_train, _), (x_test, _) = keras.datasets.mnist.load_data() all_digits = np.concatenate([x_train, x_test]) all_digits = all_digits.astype("float32") / 255.0 all_digits = np.reshape(all_digits, (-1, 28, 28, 1)) dataset = tf.data.Dataset.from_tensor_slices(all_digits) dataset = dataset.shuffle(buffer_size=1024).batch(batch_size) epochs = 1 # In practice you need at least 20 epochs to generate nice digits. save_dir = "./" for epoch in range(epochs): print(f"\nStart epoch {epoch}") for step, real_images in enumerate(dataset): # Train the discriminator & generator on one batch of real images. d_loss, g_loss, generated_images = train_step(real_images) # Logging. if step % 100 == 0: # Print metrics print(f"discriminator loss at step {step}: {d_loss:.2f}") print(f"adversarial loss at step {step}: {g_loss:.2f}") # Save one generated image img = keras.utils.array_to_img(generated_images[0] * 255.0, scale=False) img.save(os.path.join(save_dir, f"generated_img_{step}.png")) # To limit execution time we stop after 10 steps. # Remove the lines below to actually train the model! if step > 10: break """ That's it! You'll get nice-looking fake MNIST digits after just ~30s of training on the Colab GPU. """
keras-io/guides/writing_a_custom_training_loop_in_tensorflow.py/0
{ "file_path": "keras-io/guides/writing_a_custom_training_loop_in_tensorflow.py", "repo_id": "keras-io", "token_count": 6399 }
114
<meta http-equiv="refresh" content="0; URL='https://keras.io/api/data_loading/'" />
keras-io/redirects/api/preprocessing/index.html/0
{ "file_path": "keras-io/redirects/api/preprocessing/index.html", "repo_id": "keras-io", "token_count": 33 }
115
<meta http-equiv="refresh" content="0; URL='https://keras.io/guides/sequential_model/'" />
keras-io/redirects/getting-started/sequential-model-guide/index.html/0
{ "file_path": "keras-io/redirects/getting-started/sequential-model-guide/index.html", "repo_id": "keras-io", "token_count": 35 }
116
<meta http-equiv="refresh" content="0; URL='https://keras.io/api/losses/'" />
keras-io/redirects/losses/index.html/0
{ "file_path": "keras-io/redirects/losses/index.html", "repo_id": "keras-io", "token_count": 32 }
117
from kt_api_master import KT_API_MASTER from cv_api_master import CV_API_MASTER from nlp_api_master import NLP_API_MASTER API_MASTER = { "path": "api/", "title": "Keras 3 API documentation", "toc": True, "children": [ { "path": "models/", "title": "Models API", "toc": True, "children": [ { "path": "model", "title": "The Model class", "generate": [ "keras.Model", "keras.Model.summary", "keras.Model.get_layer", ], }, { "path": "sequential", "title": "The Sequential class", "generate": [ "keras.Sequential", "keras.Sequential.add", "keras.Sequential.pop", ], }, { "path": "model_training_apis", "title": "Model training APIs", "generate": [ "keras.Model.compile", "keras.Model.fit", "keras.Model.evaluate", "keras.Model.predict", "keras.Model.train_on_batch", "keras.Model.test_on_batch", "keras.Model.predict_on_batch", ], }, { "path": "model_saving_apis/", "title": "Saving & serialization", "toc": True, "children": [ { "path": "model_saving_and_loading", "title": "Whole model saving & loading", "generate": [ "keras.Model.save", "keras.saving.save_model", "keras.saving.load_model", ], }, { "path": "weights_saving_and_loading", "title": "Weights-only saving & loading", "generate": [ "keras.Model.save_weights", "keras.Model.load_weights", ], }, { "path": "model_config_serialization", "title": "Model config serialization", "generate": [ "keras.Model.get_config", "keras.Model.from_config", "keras.models.clone_model", ], }, { "path": "export", "title": "Model export for inference", "generate": [ "keras.export.ExportArchive", ], }, { "path": "serialization_utils", "title": "Serialization utilities", "generate": [ "keras.saving.serialize_keras_object", "keras.saving.deserialize_keras_object", "keras.saving.custom_object_scope", "keras.saving.get_custom_objects", "keras.saving.register_keras_serializable", ], }, ], }, ], }, { "path": "layers/", "title": "Layers API", "toc": True, "children": [ { "path": "base_layer", "title": "The base Layer class", "generate": [ "keras.layers.Layer", "keras.layers.Layer.weights", "keras.layers.Layer.trainable_weights", "keras.layers.Layer.non_trainable_weights", "keras.layers.Layer.add_weight", "keras.layers.Layer.trainable", "keras.layers.Layer.get_weights", "keras.layers.Layer.set_weights", "keras.Model.get_config", "keras.layers.Layer.add_loss", "keras.layers.Layer.losses", ], }, { "path": "activations", "title": "Layer activations", "generate": [ "keras.activations.relu", "keras.activations.sigmoid", "keras.activations.softmax", "keras.activations.softplus", "keras.activations.softsign", "keras.activations.tanh", "keras.activations.selu", "keras.activations.elu", "keras.activations.exponential", "keras.activations.leaky_relu", "keras.activations.relu6", "keras.activations.silu", "keras.activations.hard_silu", "keras.activations.gelu", "keras.activations.hard_sigmoid", "keras.activations.linear", "keras.activations.mish", "keras.activations.log_softmax", ], }, { "path": "initializers", "title": "Layer weight initializers", "generate": [ "keras.initializers.RandomNormal", "keras.initializers.RandomUniform", "keras.initializers.TruncatedNormal", "keras.initializers.Zeros", "keras.initializers.Ones", "keras.initializers.GlorotNormal", "keras.initializers.GlorotUniform", "keras.initializers.HeNormal", "keras.initializers.HeUniform", "keras.initializers.Orthogonal", "keras.initializers.Constant", "keras.initializers.VarianceScaling", "keras.initializers.LecunNormal", "keras.initializers.LecunUniform", "keras.initializers.IdentityInitializer", ], }, { "path": "regularizers", "title": "Layer weight regularizers", "generate": [ "keras.regularizers.Regularizer", "keras.regularizers.L1", "keras.regularizers.L2", "keras.regularizers.L1L2", "keras.regularizers.OrthogonalRegularizer", ], }, { "path": "constraints", "title": "Layer weight constraints", "generate": [ "keras.constraints.Constraint", "keras.constraints.MaxNorm", "keras.constraints.MinMaxNorm", "keras.constraints.NonNeg", "keras.constraints.UnitNorm", ], }, { "path": "core_layers/", "title": "Core layers", "toc": True, "children": [ { "path": "input", "title": "Input object", "generate": ["keras.Input"], }, { "path": "input_spec", "title": "InputSpec object", "generate": ["keras.InputSpec"], }, { "path": "dense", "title": "Dense layer", "generate": ["keras.layers.Dense"], }, { "path": "einsum_dense", "title": "EinsumDense layer", "generate": ["keras.layers.EinsumDense"], }, { "path": "activation", "title": "Activation layer", "generate": ["keras.layers.Activation"], }, { "path": "embedding", "title": "Embedding layer", "generate": ["keras.layers.Embedding"], }, { "path": "masking", "title": "Masking layer", "generate": ["keras.layers.Masking"], }, { "path": "lambda", "title": "Lambda layer", "generate": ["keras.layers.Lambda"], }, { "path": "identity", "title": "Identity layer", "generate": ["keras.layers.Identity"], }, ], }, { "path": "convolution_layers/", "title": "Convolution layers", "toc": True, "children": [ { "path": "convolution1d", "title": "Conv1D layer", "generate": ["keras.layers.Conv1D"], }, { "path": "convolution2d", "title": "Conv2D layer", "generate": ["keras.layers.Conv2D"], }, { "path": "convolution3d", "title": "Conv3D layer", "generate": ["keras.layers.Conv3D"], }, { "path": "separable_convolution1d", "title": "SeparableConv1D layer", "generate": ["keras.layers.SeparableConv1D"], }, { "path": "separable_convolution2d", "title": "SeparableConv2D layer", "generate": ["keras.layers.SeparableConv2D"], }, { "path": "depthwise_convolution1d", "title": "DepthwiseConv1D layer", "generate": ["keras.layers.DepthwiseConv1D"], }, { "path": "depthwise_convolution2d", "title": "DepthwiseConv2D layer", "generate": ["keras.layers.DepthwiseConv2D"], }, { "path": "convolution1d_transpose", "title": "Conv1DTranspose layer", "generate": ["keras.layers.Conv1DTranspose"], }, { "path": "convolution2d_transpose", "title": "Conv2DTranspose layer", "generate": ["keras.layers.Conv2DTranspose"], }, { "path": "convolution3d_transpose", "title": "Conv3DTranspose layer", "generate": ["keras.layers.Conv3DTranspose"], }, ], }, { "path": "pooling_layers/", "title": "Pooling layers", "toc": True, "children": [ { "path": "max_pooling1d", "title": "MaxPooling1D layer", "generate": ["keras.layers.MaxPooling1D"], }, { "path": "max_pooling2d", "title": "MaxPooling2D layer", "generate": ["keras.layers.MaxPooling2D"], }, { "path": "max_pooling3d", "title": "MaxPooling3D layer", "generate": ["keras.layers.MaxPooling3D"], }, { "path": "average_pooling1d", "title": "AveragePooling1D layer", "generate": ["keras.layers.AveragePooling1D"], }, { "path": "average_pooling2d", "title": "AveragePooling2D layer", "generate": ["keras.layers.AveragePooling2D"], }, { "path": "average_pooling3d", "title": "AveragePooling3D layer", "generate": ["keras.layers.AveragePooling3D"], }, { "path": "global_max_pooling1d", "title": "GlobalMaxPooling1D layer", "generate": ["keras.layers.GlobalMaxPooling1D"], }, { "path": "global_max_pooling2d", "title": "GlobalMaxPooling2D layer", "generate": ["keras.layers.GlobalMaxPooling2D"], }, { "path": "global_max_pooling3d", "title": "GlobalMaxPooling3D layer", "generate": ["keras.layers.GlobalMaxPooling3D"], }, { "path": "global_average_pooling1d", "title": "GlobalAveragePooling1D layer", "generate": ["keras.layers.GlobalAveragePooling1D"], }, { "path": "global_average_pooling2d", "title": "GlobalAveragePooling2D layer", "generate": ["keras.layers.GlobalAveragePooling2D"], }, { "path": "global_average_pooling3d", "title": "GlobalAveragePooling3D layer", "generate": ["keras.layers.GlobalAveragePooling3D"], }, ], }, { "path": "recurrent_layers/", "title": "Recurrent layers", "toc": True, "children": [ { "path": "lstm", "title": "LSTM layer", "generate": ["keras.layers.LSTM"], }, { "path": "lstm_cell", "title": "LSTM cell layer", "generate": ["keras.layers.LSTMCell"], }, { "path": "gru", "title": "GRU layer", "generate": ["keras.layers.GRU"], }, { "path": "gru_cell", "title": "GRU Cell layer", "generate": ["keras.layers.GRUCell"], }, { "path": "simple_rnn", "title": "SimpleRNN layer", "generate": ["keras.layers.SimpleRNN"], }, { "path": "time_distributed", "title": "TimeDistributed layer", "generate": ["keras.layers.TimeDistributed"], }, { "path": "bidirectional", "title": "Bidirectional layer", "generate": ["keras.layers.Bidirectional"], }, { "path": "conv_lstm1d", "title": "ConvLSTM1D layer", "generate": ["keras.layers.ConvLSTM1D"], }, { "path": "conv_lstm2d", "title": "ConvLSTM2D layer", "generate": ["keras.layers.ConvLSTM2D"], }, { "path": "conv_lstm3d", "title": "ConvLSTM3D layer", "generate": ["keras.layers.ConvLSTM3D"], }, { "path": "rnn", "title": "Base RNN layer", "generate": ["keras.layers.RNN"], }, { "path": "simple_rnn_cell", "title": "Simple RNN cell layer", "generate": ["keras.layers.SimpleRNNCell"], }, { "path": "stacked_rnn_cell", "title": "Stacked RNN cell layer", "generate": ["keras.layers.StackedRNNCells"], }, ], }, { "path": "preprocessing_layers/", "title": "Preprocessing layers", "toc": True, "children": [ { "path": "text/", "title": "Text preprocessing", "toc": True, "children": [ { "path": "text_vectorization", "title": "TextVectorization layer", "generate": ["keras.layers.TextVectorization"], }, ], }, { "path": "numerical/", "title": "Numerical features preprocessing layers", "toc": True, "children": [ { "path": "normalization", "title": "Normalization layer", "generate": ["keras.layers.Normalization"], }, { "path": "spectral_normalization", "title": "Spectral Normalization layer", "generate": ["keras.layers.SpectralNormalization"], }, { "path": "discretization", "title": "Discretization layer", "generate": ["keras.layers.Discretization"], }, ], }, { "path": "categorical/", "title": "Categorical features preprocessing layers", "toc": True, "children": [ { "path": "category_encoding", "title": "CategoryEncoding layer", "generate": ["keras.layers.CategoryEncoding"], }, { "path": "hashing", "title": "Hashing layer", "generate": ["keras.layers.Hashing"], }, { "path": "hashed_crossing", "title": "HashedCrossing layer", "generate": ["keras.layers.HashedCrossing"], }, { "path": "string_lookup", "title": "StringLookup layer", "generate": ["keras.layers.StringLookup"], }, { "path": "integer_lookup", "title": "IntegerLookup layer", "generate": ["keras.layers.IntegerLookup"], }, ], }, { "path": "image_preprocessing/", "title": "Image preprocessing layers", "toc": True, "children": [ { "path": "resizing", "title": "Resizing layer", "generate": ["keras.layers.Resizing"], }, { "path": "rescaling", "title": "Rescaling layer", "generate": ["keras.layers.Rescaling"], }, { "path": "center_crop", "title": "CenterCrop layer", "generate": ["keras.layers.CenterCrop"], }, ], }, { "path": "image_augmentation/", "title": "Image augmentation layers", "toc": True, "children": [ { "path": "random_crop", "title": "RandomCrop layer", "generate": ["keras.layers.RandomCrop"], }, { "path": "random_flip", "title": "RandomFlip layer", "generate": ["keras.layers.RandomFlip"], }, { "path": "random_translation", "title": "RandomTranslation layer", "generate": ["keras.layers.RandomTranslation"], }, { "path": "random_rotation", "title": "RandomRotation layer", "generate": ["keras.layers.RandomRotation"], }, { "path": "random_zoom", "title": "RandomZoom layer", "generate": ["keras.layers.RandomZoom"], }, { "path": "random_contrast", "title": "RandomContrast layer", "generate": ["keras.layers.RandomContrast"], }, { "path": "random_brightness", "title": "RandomBrightness layer", "generate": ["keras.layers.RandomBrightness"], }, ], }, ], }, { "path": "normalization_layers/", "title": "Normalization layers", "toc": True, "children": [ { "path": "batch_normalization", "title": "BatchNormalization layer", "generate": ["keras.layers.BatchNormalization"], }, { "path": "layer_normalization", "title": "LayerNormalization layer", "generate": ["keras.layers.LayerNormalization"], }, { "path": "unit_normalization", "title": "UnitNormalization layer", "generate": ["keras.layers.UnitNormalization"], }, { "path": "group_normalization", "title": "GroupNormalization layer", "generate": ["keras.layers.GroupNormalization"], }, ], }, { "path": "regularization_layers/", "title": "Regularization layers", "toc": True, "children": [ { "path": "dropout", "title": "Dropout layer", "generate": ["keras.layers.Dropout"], }, { "path": "spatial_dropout1d", "title": "SpatialDropout1D layer", "generate": ["keras.layers.SpatialDropout1D"], }, { "path": "spatial_dropout2d", "title": "SpatialDropout2D layer", "generate": ["keras.layers.SpatialDropout2D"], }, { "path": "spatial_dropout3d", "title": "SpatialDropout3D layer", "generate": ["keras.layers.SpatialDropout3D"], }, { "path": "gaussian_dropout", "title": "GaussianDropout layer", "generate": ["keras.layers.GaussianDropout"], }, { "path": "alpha_dropout", "title": "AlphaDropout layer", "generate": ["keras.layers.AlphaDropout"], }, { "path": "gaussian_noise", "title": "GaussianNoise layer", "generate": ["keras.layers.GaussianNoise"], }, { "path": "activity_regularization", "title": "ActivityRegularization layer", "generate": ["keras.layers.ActivityRegularization"], }, ], }, { "path": "attention_layers/", "title": "Attention layers", "toc": True, "children": [ { "path": "group_query_attention", "title": "GroupQueryAttention", "generate": ["keras.layers.GroupQueryAttention"], }, { "path": "multi_head_attention", "title": "MultiHeadAttention layer", "generate": ["keras.layers.MultiHeadAttention"], }, { "path": "attention", "title": "Attention layer", "generate": ["keras.layers.Attention"], }, { "path": "additive_attention", "title": "AdditiveAttention layer", "generate": ["keras.layers.AdditiveAttention"], }, ], }, { "path": "reshaping_layers/", "title": "Reshaping layers", "toc": True, "children": [ { "path": "reshape", "title": "Reshape layer", "generate": ["keras.layers.Reshape"], }, { "path": "flatten", "title": "Flatten layer", "generate": ["keras.layers.Flatten"], }, { "path": "repeat_vector", "title": "RepeatVector layer", "generate": ["keras.layers.RepeatVector"], }, { "path": "permute", "title": "Permute layer", "generate": ["keras.layers.Permute"], }, { "path": "cropping1d", "title": "Cropping1D layer", "generate": ["keras.layers.Cropping1D"], }, { "path": "cropping2d", "title": "Cropping2D layer", "generate": ["keras.layers.Cropping2D"], }, { "path": "cropping3d", "title": "Cropping3D layer", "generate": ["keras.layers.Cropping3D"], }, { "path": "up_sampling1d", "title": "UpSampling1D layer", "generate": ["keras.layers.UpSampling1D"], }, { "path": "up_sampling2d", "title": "UpSampling2D layer", "generate": ["keras.layers.UpSampling2D"], }, { "path": "up_sampling3d", "title": "UpSampling3D layer", "generate": ["keras.layers.UpSampling3D"], }, { "path": "zero_padding1d", "title": "ZeroPadding1D layer", "generate": ["keras.layers.ZeroPadding1D"], }, { "path": "zero_padding2d", "title": "ZeroPadding2D layer", "generate": ["keras.layers.ZeroPadding2D"], }, { "path": "zero_padding3d", "title": "ZeroPadding3D layer", "generate": ["keras.layers.ZeroPadding3D"], }, ], }, { "path": "merging_layers/", "title": "Merging layers", "toc": True, "children": [ { "path": "concatenate", "title": "Concatenate layer", "generate": ["keras.layers.Concatenate"], }, { "path": "average", "title": "Average layer", "generate": ["keras.layers.Average"], }, { "path": "maximum", "title": "Maximum layer", "generate": ["keras.layers.Maximum"], }, { "path": "minimum", "title": "Minimum layer", "generate": ["keras.layers.Minimum"], }, { "path": "add", "title": "Add layer", "generate": ["keras.layers.Add"], }, { "path": "subtract", "title": "Subtract layer", "generate": ["keras.layers.Subtract"], }, { "path": "multiply", "title": "Multiply layer", "generate": ["keras.layers.Multiply"], }, { "path": "dot", "title": "Dot layer", "generate": ["keras.layers.Dot"], }, ], }, { "path": "activation_layers/", "title": "Activation layers", "toc": True, "children": [ { "path": "relu", "title": "ReLU layer", "generate": ["keras.layers.ReLU"], }, { "path": "softmax", "title": "Softmax layer", "generate": ["keras.layers.Softmax"], }, { "path": "leaky_relu", "title": "LeakyReLU layer", "generate": ["keras.layers.LeakyReLU"], }, { "path": "prelu", "title": "PReLU layer", "generate": ["keras.layers.PReLU"], }, { "path": "elu", "title": "ELU layer", "generate": ["keras.layers.ELU"], }, ], }, { "path": "backend_specific_layers/", "title": "Backend-specific layers", "toc": True, "children": [ { "path": "torch_module_wrapper", "title": "TorchModuleWrapper layer", "generate": ["keras.layers.TorchModuleWrapper"], }, { "path": "tfsm_layer", "title": "Tensorflow SavedModel layer", "generate": ["keras.layers.TFSMLayer"], }, ], }, ], }, { "path": "callbacks/", "title": "Callbacks API", "toc": True, "children": [ { "path": "base_callback", "title": "Base Callback class", "generate": ["keras.callbacks.Callback"], }, { "path": "model_checkpoint", "title": "ModelCheckpoint", "generate": ["keras.callbacks.ModelCheckpoint"], }, { "path": "backup_and_restore", "title": "BackupAndRestore", "generate": ["keras.callbacks.BackupAndRestore"], }, { "path": "tensorboard", "title": "TensorBoard", "generate": ["keras.callbacks.TensorBoard"], }, { "path": "early_stopping", "title": "EarlyStopping", "generate": ["keras.callbacks.EarlyStopping"], }, { "path": "learning_rate_scheduler", "title": "LearningRateScheduler", "generate": ["keras.callbacks.LearningRateScheduler"], }, { "path": "reduce_lr_on_plateau", "title": "ReduceLROnPlateau", "generate": ["keras.callbacks.ReduceLROnPlateau"], }, { "path": "remote_monitor", "title": "RemoteMonitor", "generate": ["keras.callbacks.RemoteMonitor"], }, { "path": "lambda_callback", "title": "LambdaCallback", "generate": ["keras.callbacks.LambdaCallback"], }, { "path": "terminate_on_nan", "title": "TerminateOnNaN", "generate": ["keras.callbacks.TerminateOnNaN"], }, { "path": "csv_logger", "title": "CSVLogger", "generate": ["keras.callbacks.CSVLogger"], }, { "path": "progbar_logger", "title": "ProgbarLogger", "generate": ["keras.callbacks.ProgbarLogger"], }, { "path": "swap_ema_weights", "title": "SwapEMAWeights", "generate": ["keras.callbacks.SwapEMAWeights"], }, ], }, { "path": "ops/", # TODO: improve "title": "Ops API", "toc": True, "children": [ { "path": "numpy/", "title": "NumPy ops", "generate": [ "keras.ops.absolute", "keras.ops.add", "keras.ops.all", "keras.ops.amax", "keras.ops.amin", "keras.ops.any", "keras.ops.append", "keras.ops.arange", "keras.ops.arccos", "keras.ops.arccosh", "keras.ops.arcsin", "keras.ops.arcsinh", "keras.ops.arctan", "keras.ops.arctan2", "keras.ops.arctanh", "keras.ops.argmax", "keras.ops.argmin", "keras.ops.argsort", "keras.ops.array", "keras.ops.average", "keras.ops.bincount", "keras.ops.broadcast_to", "keras.ops.ceil", "keras.ops.clip", "keras.ops.concatenate", "keras.ops.conj", "keras.ops.conjugate", "keras.ops.copy", "keras.ops.cos", "keras.ops.cosh", "keras.ops.count_nonzero", "keras.ops.cross", "keras.ops.cumprod", "keras.ops.cumsum", "keras.ops.diag", "keras.ops.diagonal", "keras.ops.diff", "keras.ops.digitize", "keras.ops.divide", "keras.ops.divide_no_nan", "keras.ops.dot", "keras.ops.einsum", "keras.ops.empty", "keras.ops.equal", "keras.ops.exp", "keras.ops.expand_dims", "keras.ops.expm1", "keras.ops.eye", "keras.ops.flip", "keras.ops.floor", "keras.ops.floor_divide", "keras.ops.full", "keras.ops.full_like", "keras.ops.get_item", "keras.ops.greater", "keras.ops.greater_equal", "keras.ops.hstack", "keras.ops.identity", "keras.ops.imag", "keras.ops.isclose", "keras.ops.isfinite", "keras.ops.isinf", "keras.ops.isnan", "keras.ops.less", "keras.ops.less_equal", "keras.ops.linspace", "keras.ops.log", "keras.ops.log10", "keras.ops.log1p", "keras.ops.log2", "keras.ops.logaddexp", "keras.ops.logical_and", "keras.ops.logical_not", "keras.ops.logical_or", "keras.ops.logical_xor", "keras.ops.logspace", "keras.ops.matmul", "keras.ops.max", "keras.ops.maximum", "keras.ops.mean", "keras.ops.median", "keras.ops.meshgrid", "keras.ops.min", "keras.ops.minimum", "keras.ops.mod", "keras.ops.moveaxis", "keras.ops.multiply", "keras.ops.nan_to_num", "keras.ops.ndim", "keras.ops.negative", "keras.ops.nonzero", "keras.ops.norm", "keras.ops.not_equal", "keras.ops.ones", "keras.ops.ones_like", "keras.ops.outer", "keras.ops.pad", "keras.ops.power", "keras.ops.prod", "keras.ops.quantile", "keras.ops.ravel", "keras.ops.real", "keras.ops.reciprocal", "keras.ops.repeat", "keras.ops.reshape", "keras.ops.roll", "keras.ops.round", "keras.ops.sign", "keras.ops.sin", "keras.ops.sinh", "keras.ops.size", "keras.ops.sort", "keras.ops.split", "keras.ops.sqrt", "keras.ops.square", "keras.ops.squeeze", "keras.ops.stack", "keras.ops.std", "keras.ops.subtract", "keras.ops.sum", "keras.ops.swapaxes", "keras.ops.take", "keras.ops.take_along_axis", "keras.ops.tan", "keras.ops.tanh", "keras.ops.tensordot", "keras.ops.tile", "keras.ops.trace", "keras.ops.transpose", "keras.ops.tri", "keras.ops.tril", "keras.ops.triu", "keras.ops.true_divide", "keras.ops.var", "keras.ops.vdot", "keras.ops.vstack", "keras.ops.where", "keras.ops.zeros", "keras.ops.zeros_like", ], }, { "path": "nn/", "title": "NN ops", "generate": [ "keras.ops.average_pool", "keras.ops.batch_normalization", "keras.ops.binary_crossentropy", "keras.ops.categorical_crossentropy", "keras.ops.conv", "keras.ops.conv_transpose", "keras.ops.depthwise_conv", "keras.ops.elu", "keras.ops.gelu", "keras.ops.hard_sigmoid", "keras.ops.leaky_relu", "keras.ops.log_sigmoid", "keras.ops.log_softmax", "keras.ops.max_pool", "keras.ops.moments", "keras.ops.multi_hot", "keras.ops.one_hot", "keras.ops.relu", "keras.ops.relu6", "keras.ops.selu", "keras.ops.separable_conv", "keras.ops.sigmoid", "keras.ops.silu", "keras.ops.hard_silu", "keras.ops.softmax", "keras.ops.softplus", "keras.ops.softsign", "keras.ops.sparse_categorical_crossentropy", "keras.ops.swish", "keras.ops.hard_swish", ], }, { "path": "linalg/", "title": "Linear algebra ops", "generate": [ "keras.ops.cholesky", "keras.ops.det", "keras.ops.eig", "keras.ops.inv", "keras.ops.lu_factor", "keras.ops.norm", "keras.ops.qr", "keras.ops.solve", "keras.ops.solve_triangular", "keras.ops.svd", ], }, { "path": "core/", "title": "Core ops", "generate": [ "keras.ops.cast", "keras.ops.cond", "keras.ops.convert_to_numpy", "keras.ops.convert_to_tensor", "keras.ops.erf", "keras.ops.erfinv", "keras.ops.extract_sequences", "keras.ops.fori_loop", "keras.ops.in_top_k", "keras.ops.is_tensor", "keras.ops.logsumexp", "keras.ops.rsqrt", "keras.ops.scatter", "keras.ops.scatter_update", "keras.ops.segment_max", "keras.ops.segment_sum", "keras.ops.shape", "keras.ops.slice", "keras.ops.slice_update", "keras.ops.stop_gradient", "keras.ops.top_k", "keras.ops.unstack", "keras.ops.vectorized_map", "keras.ops.while_loop", ], }, { "path": "image/", "title": "Image ops", "generate": [ "keras.ops.image.affine_transform", "keras.ops.image.extract_patches", "keras.ops.image.map_coordinates", "keras.ops.image.pad_images", "keras.ops.image.resize", ], }, { "path": "fft/", "title": "FFT ops", "generate": [ "keras.ops.fft", "keras.ops.fft2", "keras.ops.rfft", "keras.ops.stft", "keras.ops.irfft", "keras.ops.istft", ], }, ], }, { "path": "optimizers/", "title": "Optimizers", "toc": True, "generate": [ "keras.optimizers.Optimizer", "keras.optimizers.Optimizer.apply_gradients", "keras.optimizers.Optimizer.variables", ], "children": [ { "path": "sgd", "title": "SGD", "generate": ["keras.optimizers.SGD"], }, { "path": "rmsprop", "title": "RMSprop", "generate": ["keras.optimizers.RMSprop"], }, { "path": "adam", "title": "Adam", "generate": ["keras.optimizers.Adam"], }, { "path": "adamw", "title": "AdamW", "generate": ["keras.optimizers.AdamW"], }, { "path": "adadelta", "title": "Adadelta", "generate": ["keras.optimizers.Adadelta"], }, { "path": "adagrad", "title": "Adagrad", "generate": ["keras.optimizers.Adagrad"], }, { "path": "adamax", "title": "Adamax", "generate": ["keras.optimizers.Adamax"], }, { "path": "adafactor", "title": "Adafactor", "generate": ["keras.optimizers.Adafactor"], }, { "path": "Nadam", "title": "Nadam", "generate": ["keras.optimizers.Nadam"], }, { "path": "ftrl", "title": "Ftrl", "generate": ["keras.optimizers.Ftrl"], }, { "path": "lion", "title": "Lion", "generate": ["keras.optimizers.Lion"], }, { "path": "loss_scale_optimizer", "title": "Loss Scale Optimizer", "generate": ["keras.optimizers.LossScaleOptimizer"], }, { "path": "learning_rate_schedules/", "title": "Learning rate schedules API", "toc": True, "skip_from_toc": True, "children": [ { "path": "learning_rate_schedule", "title": "LearningRateSchedule", "generate": [ "keras.optimizers.schedules.LearningRateSchedule" ], }, { "path": "exponential_decay", "title": "ExponentialDecay", "generate": ["keras.optimizers.schedules.ExponentialDecay"], }, { "path": "piecewise_constant_decay", "title": "PiecewiseConstantDecay", "generate": [ "keras.optimizers.schedules.PiecewiseConstantDecay" ], }, { "path": "polynomial_decay", "title": "PolynomialDecay", "generate": ["keras.optimizers.schedules.PolynomialDecay"], }, { "path": "inverse_time_decay", "title": "InverseTimeDecay", "generate": ["keras.optimizers.schedules.InverseTimeDecay"], }, { "path": "cosine_decay", "title": "CosineDecay", "generate": ["keras.optimizers.schedules.CosineDecay"], }, { "path": "cosine_decay_restarts", "title": "CosineDecayRestarts", "generate": [ "keras.optimizers.schedules.CosineDecayRestarts" ], }, ], }, ], }, { "path": "metrics/", "title": "Metrics", "toc": True, "children": [ { "path": "base_metric", "title": "Base Metric class", "generate": [ "keras.metrics.Metric", ], }, { "path": "accuracy_metrics", "title": "Accuracy metrics", "generate": [ "keras.metrics.Accuracy", "keras.metrics.BinaryAccuracy", "keras.metrics.CategoricalAccuracy", "keras.metrics.SparseCategoricalAccuracy", "keras.metrics.TopKCategoricalAccuracy", "keras.metrics.SparseTopKCategoricalAccuracy", ], }, { "path": "probabilistic_metrics", "title": "Probabilistic metrics", "generate": [ "keras.metrics.BinaryCrossentropy", "keras.metrics.CategoricalCrossentropy", "keras.metrics.SparseCategoricalCrossentropy", "keras.metrics.KLDivergence", "keras.metrics.Poisson", ], }, { "path": "regression_metrics", "title": "Regression metrics", "generate": [ "keras.metrics.MeanSquaredError", "keras.metrics.RootMeanSquaredError", "keras.metrics.MeanAbsoluteError", "keras.metrics.MeanAbsolutePercentageError", "keras.metrics.MeanSquaredLogarithmicError", "keras.metrics.CosineSimilarity", "keras.metrics.LogCoshError", "keras.metrics.R2Score", ], }, { "path": "classification_metrics", "title": "Classification metrics based on True/False positives & negatives", "generate": [ "keras.metrics.AUC", "keras.metrics.Precision", "keras.metrics.Recall", "keras.metrics.TruePositives", "keras.metrics.TrueNegatives", "keras.metrics.FalsePositives", "keras.metrics.FalseNegatives", "keras.metrics.PrecisionAtRecall", "keras.metrics.RecallAtPrecision", "keras.metrics.SensitivityAtSpecificity", "keras.metrics.SpecificityAtSensitivity", "keras.metrics.F1Score", "keras.metrics.FBetaScore", ], }, { "path": "segmentation_metrics", "title": "Image segmentation metrics", "generate": [ "keras.metrics.IoU", "keras.metrics.BinaryIoU", "keras.metrics.OneHotIoU", "keras.metrics.OneHotMeanIoU", "keras.metrics.MeanIoU", ], }, { "path": "hinge_metrics", "title": 'Hinge metrics for "maximum-margin" classification', "generate": [ "keras.metrics.Hinge", "keras.metrics.SquaredHinge", "keras.metrics.CategoricalHinge", ], }, { "path": "metrics_wrappers", "title": "Metric wrappers and reduction metrics", "generate": [ "keras.metrics.MeanMetricWrapper", "keras.metrics.Mean", "keras.metrics.Sum", ], }, ], }, { "path": "losses/", "title": "Losses", "toc": True, "children": [ { "path": "probabilistic_losses", "title": "Probabilistic losses", "generate": [ "keras.losses.BinaryCrossentropy", "keras.losses.BinaryFocalCrossentropy", "keras.losses.CategoricalCrossentropy", "keras.losses.CategoricalFocalCrossentropy", "keras.losses.SparseCategoricalCrossentropy", "keras.losses.Poisson", "keras.losses.binary_crossentropy", "keras.losses.categorical_crossentropy", "keras.losses.sparse_categorical_crossentropy", "keras.losses.poisson", "keras.losses.KLDivergence", "keras.losses.kl_divergence", "keras.losses.CTC", ], }, { "path": "regression_losses", "title": "Regression losses", "generate": [ "keras.losses.MeanSquaredError", "keras.losses.MeanAbsoluteError", "keras.losses.MeanAbsolutePercentageError", "keras.losses.MeanSquaredLogarithmicError", "keras.losses.CosineSimilarity", "keras.losses.mean_squared_error", "keras.losses.mean_absolute_error", "keras.losses.mean_absolute_percentage_error", "keras.losses.mean_squared_logarithmic_error", "keras.losses.cosine_similarity", "keras.losses.Huber", "keras.losses.huber", "keras.losses.LogCosh", "keras.losses.log_cosh", ], }, { "path": "hinge_losses", "title": 'Hinge losses for "maximum-margin" classification', "generate": [ "keras.losses.Hinge", "keras.losses.SquaredHinge", "keras.losses.CategoricalHinge", "keras.losses.hinge", "keras.losses.squared_hinge", "keras.losses.categorical_hinge", ], }, ], }, { "path": "data_loading/", "title": "Data loading", "toc": True, "children": [ { "path": "image", "title": "Image data loading", "generate": [ "keras.utils.image_dataset_from_directory", "keras.utils.load_img", "keras.utils.img_to_array", "keras.utils.save_img", "keras.utils.array_to_img", ], }, { "path": "timeseries", "title": "Timeseries data loading", "generate": [ "keras.utils.timeseries_dataset_from_array", "keras.utils.pad_sequences", # LEGACY ], }, { "path": "text", "title": "Text data loading", "generate": [ "keras.utils.text_dataset_from_directory", ], }, { "path": "audio", "title": "Audio data loading", "generate": [ "keras.utils.audio_dataset_from_directory", ], }, ], }, { "path": "datasets/", "title": "Built-in small datasets", "toc": True, "children": [ { "path": "mnist", "title": "MNIST digits classification dataset", "generate": ["keras.datasets.mnist.load_data"], }, { "path": "cifar10", "title": "CIFAR10 small images classification dataset", "generate": ["keras.datasets.cifar10.load_data"], }, { "path": "cifar100", "title": "CIFAR100 small images classification dataset", "generate": ["keras.datasets.cifar100.load_data"], }, { "path": "imdb", "title": "IMDB movie review sentiment classification dataset", "generate": [ "keras.datasets.imdb.load_data", "keras.datasets.imdb.get_word_index", ], }, { "path": "reuters", "title": "Reuters newswire classification dataset", "generate": [ "keras.datasets.reuters.load_data", "keras.datasets.reuters.get_word_index", ], }, { "path": "fashion_mnist", "title": "Fashion MNIST dataset, an alternative to MNIST", "generate": ["keras.datasets.fashion_mnist.load_data"], }, { "path": "california_housing", "title": "California Housing price regression dataset", "generate": ["keras.datasets.california_housing.load_data"], }, ], }, { "path": "applications/", "title": "Keras Applications", "children": [ { "path": "xception", "title": "Xception", "generate": ["keras.applications.Xception"], }, { "path": "efficientnet", "title": "EfficientNet B0 to B7", "generate": [ "keras.applications.EfficientNetB0", "keras.applications.EfficientNetB1", "keras.applications.EfficientNetB2", "keras.applications.EfficientNetB3", "keras.applications.EfficientNetB4", "keras.applications.EfficientNetB5", "keras.applications.EfficientNetB6", "keras.applications.EfficientNetB7", ], }, { "path": "efficientnet_v2", "title": "EfficientNetV2 B0 to B3 and S, M, L", "generate": [ "keras.applications.EfficientNetV2B0", "keras.applications.EfficientNetV2B1", "keras.applications.EfficientNetV2B2", "keras.applications.EfficientNetV2B3", "keras.applications.EfficientNetV2S", "keras.applications.EfficientNetV2M", "keras.applications.EfficientNetV2L", ], }, { "path": "convnext", "title": "ConvNeXt Tiny, Small, Base, Large, XLarge", "generate": [ "keras.applications.ConvNeXtTiny", "keras.applications.ConvNeXtSmall", "keras.applications.ConvNeXtBase", "keras.applications.ConvNeXtLarge", "keras.applications.ConvNeXtXLarge", ], }, { "path": "vgg", "title": "VGG16 and VGG19", "generate": [ "keras.applications.VGG16", "keras.applications.VGG19", ], }, { "path": "resnet", "title": "ResNet and ResNetV2", "generate": [ "keras.applications.ResNet50", "keras.applications.ResNet101", "keras.applications.ResNet152", "keras.applications.ResNet50V2", "keras.applications.ResNet101V2", "keras.applications.ResNet152V2", ], }, { "path": "mobilenet", "title": "MobileNet, MobileNetV2, and MobileNetV3", "generate": [ "keras.applications.MobileNet", "keras.applications.MobileNetV2", "keras.applications.MobileNetV3Small", "keras.applications.MobileNetV3Large", ], }, { "path": "densenet", "title": "DenseNet", "generate": [ "keras.applications.DenseNet121", "keras.applications.DenseNet169", "keras.applications.DenseNet201", ], }, { "path": "nasnet", "title": "NasNetLarge and NasNetMobile", "generate": [ "keras.applications.NASNetLarge", "keras.applications.NASNetMobile", ], }, { "path": "inceptionv3", "title": "InceptionV3", "generate": [ "keras.applications.InceptionV3", ], }, { "path": "inceptionresnetv2", "title": "InceptionResNetV2", "generate": [ "keras.applications.InceptionResNetV2", ], }, ], }, { "path": "mixed_precision/", "title": "Mixed precision", "toc": True, "children": [ { "path": "policy", "title": "Mixed precision policy API", "generate": [ "keras.mixed_precision.DTypePolicy", "keras.mixed_precision.dtype_policy", "keras.mixed_precision.set_dtype_policy", ], }, ], }, { "path": "distribution/", "title": "Multi-device distribution", "toc": True, "children": [ { "path": "layout_map", "title": "LayoutMap API", "generate": [ "keras.distribution.LayoutMap", "keras.distribution.DeviceMesh", "keras.distribution.TensorLayout", "keras.distribution.distribute_tensor", ], }, { "path": "data_parallel", "title": "DataParallel API", "generate": [ "keras.distribution.DataParallel", ], }, { "path": "model_parallel", "title": "ModelParallel API", "generate": [ "keras.distribution.ModelParallel", ], }, { "path": "model_parallel", "title": "ModelParallel API", "generate": [ "keras.distribution.ModelParallel", ], }, { "path": "distribution_utils", "title": "Distribution utilities", "generate": [ "keras.distribution.set_distribution", "keras.distribution.distribution", "keras.distribution.list_devices", "keras.distribution.initialize", ], }, ], }, { "path": "random/", "title": "RNG API", "toc": True, "children": [ { "path": "seed_generator", "title": "SeedGenerator class", "generate": ["keras.random.SeedGenerator"], }, { "path": "random_ops", "title": "Random operations", "generate": [ "keras.random.categorical", "keras.random.dropout", "keras.random.gamma", "keras.random.normal", "keras.random.randint", "keras.random.shuffle", "keras.random.truncated_normal", "keras.random.uniform", ], }, ], }, { "path": "utils/", "title": "Utilities", "toc": True, "children": [ { "path": "model_plotting_utils", "title": "Model plotting utilities", "generate": [ "keras.utils.plot_model", "keras.utils.model_to_dot", ], }, { "path": "feature_space", "title": "Structured data preprocessing utilities", "generate": [ "keras.utils.FeatureSpace", ], }, { "path": "tensor_utils", "title": "Tensor utilities", "generate": [ "keras.utils.get_source_inputs", "keras.utils.is_keras_tensor", # "keras.backend.standardize_dtype", # TODO: enable later # "keras.backend.is_float_dtype", # "keras.backend.is_int_dtype", ], }, { "path": "python_utils", "title": "Python & NumPy utilities", "generate": [ "keras.utils.set_random_seed", "keras.utils.split_dataset", "keras.utils.pack_x_y_sample_weight", "keras.utils.get_file", "keras.utils.Progbar", "keras.utils.PyDataset", "keras.utils.to_categorical", "keras.utils.normalize", ], }, { "path": "config_utils", "title": "Keras configuration utilities", "generate": [ "keras.version", "keras.utils.clear_session", "keras.config.enable_traceback_filtering", "keras.config.disable_traceback_filtering", "keras.config.is_traceback_filtering_enabled", "keras.config.enable_interactive_logging", "keras.config.disable_interactive_logging", "keras.config.is_interactive_logging_enabled", "keras.config.enable_unsafe_deserialization", "keras.config.floatx", "keras.config.set_floatx", "keras.config.image_data_format", "keras.config.set_image_data_format", "keras.config.epsilon", "keras.config.set_epsilon", "keras.config.backend", ], }, ], }, KT_API_MASTER, CV_API_MASTER, NLP_API_MASTER, ], }
keras-io/scripts/api_master.py/0
{ "file_path": "keras-io/scripts/api_master.py", "repo_id": "keras-io", "token_count": 54606 }
118
"""Script to upload post-build `site/` contents to GCS. Prerequisite steps: ``` gcloud auth login gcloud config set project keras-io ``` The site can be previewed at http://keras.io.storage.googleapis.com/index.html NOTE that when previewing through the storage.googleapis.com URL, there is no redirect to `index.html` or `404.html`; you'd have to navigate directly to these pages. From the docs: ``` The MainPageSuffix and NotFoundPage website configurations are only used for requests that come to Cloud Storage through a CNAME or A redirect. For example, a request to www.example.com shows the index page, but an equivalent request to storage.googleapis.com/www.example.com does not. ``` After upload, you may need to invalidate the CDN cache. """ import os import pathlib bucket = "keras.io" # Bucket under `keras-io` project scripts_path = pathlib.Path(os.path.dirname(__file__)) base_path = scripts_path.parent site_path = base_path / "site" site_dir = site_path.absolute() os.system(f"gsutil -m rsync -R {site_dir} gs://{bucket}")
keras-io/scripts/upload_to_gcs.py/0
{ "file_path": "keras-io/scripts/upload_to_gcs.py", "repo_id": "keras-io", "token_count": 331 }
119
# DistilBERT Models, tokenizers, and preprocessing layers for DistilBERT, as described in ["DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter"](https://arxiv.org/abs/1910.01108). For a full list of available **presets**, see the [models page](/api/keras_nlp/models). {{toc}}
keras-io/templates/api/keras_nlp/models/distil_bert/index.md/0
{ "file_path": "keras-io/templates/api/keras_nlp/models/distil_bert/index.md", "repo_id": "keras-io", "token_count": 102 }
120
# Losses The purpose of loss functions is to compute the quantity that a model should seek to minimize during training. ## Available losses Note that all losses are available both via a class handle and via a function handle. The class handles enable you to pass configuration arguments to the constructor (e.g. `loss_fn = CategoricalCrossentropy(from_logits=True)`), and they perform reduction by default when used in a standalone way (see details below). {{toc}} --- ## Usage of losses with `compile()` & `fit()` A loss function is one of the two arguments required for compiling a Keras model: ```python import keras from keras import layers model = keras.Sequential() model.add(layers.Dense(64, kernel_initializer='uniform', input_shape=(10,))) model.add(layers.Activation('softmax')) loss_fn = keras.losses.SparseCategoricalCrossentropy() model.compile(loss=loss_fn, optimizer='adam') ``` All built-in loss functions may also be passed via their string identifier: ```python # pass optimizer by name: default parameters will be used model.compile(loss='sparse_categorical_crossentropy', optimizer='adam') ``` Loss functions are typically created by instantiating a loss class (e.g. `keras.losses.SparseCategoricalCrossentropy`). All losses are also provided as function handles (e.g. `keras.losses.sparse_categorical_crossentropy`). Using classes enables you to pass configuration arguments at instantiation time, e.g.: ```python loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True) ``` --- ## Standalone usage of losses A loss is a callable with arguments `loss_fn(y_true, y_pred, sample_weight=None)`: - **y_true**: Ground truth values, of shape `(batch_size, d0, ... dN)`. For sparse loss functions, such as sparse categorical crossentropy, the shape should be `(batch_size, d0, ... dN-1)` - **y_pred**: The predicted values, of shape `(batch_size, d0, .. dN)`. - **sample_weight**: Optional `sample_weight` acts as reduction weighting coefficient for the per-sample losses. If a scalar is provided, then the loss is simply scaled by the given value. If `sample_weight` is a tensor of size `[batch_size]`, then the total loss for each sample of the batch is rescaled by the corresponding element in the `sample_weight` vector. If the shape of `sample_weight` is `(batch_size, d0, ... dN-1)` (or can be broadcasted to this shape), then each loss element of `y_pred` is scaled by the corresponding value of `sample_weight`. (Note on`dN-1`: all loss functions reduce by 1 dimension, usually `axis=-1`.) By default, loss functions return one scalar loss value per input sample, e.g. ``` >>> keras.losses.mean_squared_error(tf.ones((2, 2,)), tf.zeros((2, 2))) <tf.Tensor: shape=(2,), dtype=float32, numpy=array([1., 1.], dtype=float32)> ``` However, loss class instances feature a `reduction` constructor argument, which defaults to `"sum_over_batch_size"` (i.e. average). Allowable values are "sum_over_batch_size", "sum", and "none": - "sum_over_batch_size" means the loss instance will return the average of the per-sample losses in the batch. - "sum" means the loss instance will return the sum of the per-sample losses in the batch. - "none" means the loss instance will return the full array of per-sample losses. ``` >>> loss_fn = keras.losses.MeanSquaredError(reduction='sum_over_batch_size') >>> loss_fn(tf.ones((2, 2,)), tf.zeros((2, 2))) <tf.Tensor: shape=(), dtype=float32, numpy=1.0> ``` ``` >>> loss_fn = keras.losses.MeanSquaredError(reduction='sum') >>> loss_fn(tf.ones((2, 2,)), tf.zeros((2, 2))) <tf.Tensor: shape=(), dtype=float32, numpy=2.0> ``` ``` >>> loss_fn = keras.losses.MeanSquaredError(reduction='none') >>> loss_fn(tf.ones((2, 2,)), tf.zeros((2, 2))) <tf.Tensor: shape=(2,), dtype=float32, numpy=array([1., 1.], dtype=float32)> ``` Note that this is an important difference between loss functions like `keras.losses.mean_squared_error` and default loss class instances like `keras.losses.MeanSquaredError`: the function version does not perform reduction, but by default the class instance does. ``` >>> loss_fn = keras.losses.mean_squared_error >>> loss_fn(tf.ones((2, 2,)), tf.zeros((2, 2))) <tf.Tensor: shape=(2,), dtype=float32, numpy=array([1., 1.], dtype=float32)> ``` ``` >>> loss_fn = keras.losses.MeanSquaredError() >>> loss_fn(tf.ones((2, 2,)), tf.zeros((2, 2))) <tf.Tensor: shape=(), dtype=float32, numpy=1.0> ``` When using `fit()`, this difference is irrelevant since reduction is handled by the framework. Here's how you would use a loss class instance as part of a simple training loop: ```python loss_fn = keras.losses.CategoricalCrossentropy(from_logits=True) optimizer = keras.optimizers.Adam() # Iterate over the batches of a dataset. for x, y in dataset: with tf.GradientTape() as tape: logits = model(x) # Compute the loss value for this batch. loss_value = loss_fn(y, logits) # Update the weights of the model to minimize the loss value. gradients = tape.gradient(loss_value, model.trainable_weights) optimizer.apply_gradients(zip(gradients, model.trainable_weights)) ``` --- ## Creating custom losses Any callable with the signature `loss_fn(y_true, y_pred)` that returns an array of losses (one of sample in the input batch) can be passed to `compile()` as a loss. Note that sample weighting is automatically supported for any such loss. Here's a simple example: ```python from keras import ops def my_loss_fn(y_true, y_pred): squared_difference = ops.square(y_true - y_pred) return ops.mean(squared_difference, axis=-1) # Note the `axis=-1` model.compile(optimizer='adam', loss=my_loss_fn) ``` --- ## The `add_loss()` API Loss functions applied to the output of a model aren't the only way to create losses. When writing the `call` method of a custom layer or a subclassed model, you may want to compute scalar quantities that you want to minimize during training (e.g. regularization losses). You can use the `add_loss()` layer method to keep track of such loss terms. Here's an example of a layer that adds a sparsity regularization loss based on the L2 norm of the inputs: ```python from keras import ops class MyActivityRegularizer(keras.layers.Layer): """Layer that creates an activity sparsity regularization loss.""" def __init__(self, rate=1e-2): super().__init__() self.rate = rate def call(self, inputs): # We use `add_loss` to create a regularization loss # that depends on the inputs. self.add_loss(self.rate * ops.sum(ops.square(inputs))) return inputs ``` Loss values added via `add_loss` can be retrieved in the `.losses` list property of any `Layer` or `Model` (they are recursively retrieved from every underlying layer): ```python from keras import layers from keras import ops class SparseMLP(layers.Layer): """Stack of Linear layers with a sparsity regularization loss.""" def __init__(self, output_dim): super().__init__() self.dense_1 = layers.Dense(32, activation=ops.relu) self.regularization = MyActivityRegularizer(1e-2) self.dense_2 = layers.Dense(output_dim) def call(self, inputs): x = self.dense_1(inputs) x = self.regularization(x) return self.dense_2(x) mlp = SparseMLP(1) y = mlp(ops.ones((10, 10))) print(mlp.losses) # List containing one float32 scalar ``` These losses are cleared by the top-level layer at the start of each forward pass -- they don't accumulate. So `layer.losses` always contain only the losses created during the last forward pass. You would typically use these losses by summing them before computing your gradients when writing a training loop. ```python # Losses correspond to the *last* forward pass. mlp = SparseMLP(1) mlp(ops.ones((10, 10))) assert len(mlp.losses) == 1 mlp(ops.ones((10, 10))) assert len(mlp.losses) == 1 # No accumulation. ``` When using `model.fit()`, such loss terms are handled automatically. When writing a custom training loop, you should retrieve these terms by hand from `model.losses`, like this: ```python loss_fn = keras.losses.CategoricalCrossentropy(from_logits=True) optimizer = keras.optimizers.Adam() # Iterate over the batches of a dataset. for x, y in dataset: with tf.GradientTape() as tape: # Forward pass. logits = model(x) # Loss value for this batch. loss_value = loss_fn(y, logits) # Add extra loss terms to the loss value. loss_value += sum(model.losses) # Update the weights of the model to minimize the loss value. gradients = tape.gradient(loss_value, model.trainable_weights) optimizer.apply_gradients(zip(gradients, model.trainable_weights)) ``` See [the `add_loss()` documentation](/api/layers/base_layer/#add_loss-method) for more details.
keras-io/templates/api/losses/index.md/0
{ "file_path": "keras-io/templates/api/losses/index.md", "repo_id": "keras-io", "token_count": 2991 }
121
# Keras FAQ A list of frequently Asked Keras Questions. ## General questions - [How can I train a Keras model on multiple GPUs (on a single machine)?](#how-can-i-train-a-keras-model-on-multiple-gpus-on-a-single-machine) - [How can I train a Keras model on TPU?](#how-can-i-train-a-keras-model-on-tpu) - [Where is the Keras configuration file stored?](#where-is-the-keras-configuration-file-stored) - [How to do hyperparameter tuning with Keras?](#how-to-do-hyperparameter-tuning-with-keras) - [How can I obtain reproducible results using Keras during development?](#how-can-i-obtain-reproducible-results-using-keras-during-development) - [What are my options for saving models?](#what-are-my-options-for-saving-models) - [How can I install HDF5 or h5py to save my models?](#how-can-i-install-hdf5-or-h5py-to-save-my-models) - [How should I cite Keras?](#how-should-i-cite-keras) ## Training-related questions - [What do "sample", "batch", and "epoch" mean?](#what-do-sample-batch-and-epoch-mean) - [Why is my training loss much higher than my testing loss?](#why-is-my-training-loss-much-higher-than-my-testing-loss) - [How can I ensure my training run can recover from program interruptions?](#how-can-i-ensure-my-training-run-can-recover-from-program-interruptions) - [How can I interrupt training when the validation loss isn't decreasing anymore?](#how-can-i-interrupt-training-when-the-validation-loss-isnt-decreasing-anymore) - [How can I freeze layers and do fine-tuning?](#how-can-i-freeze-layers-and-do-finetuning) - [What's the difference between the `training` argument in `call()` and the `trainable` attribute?](#whats-the-difference-between-the-training-argument-in-call-and-the-trainable-attribute) - [In `fit()`, how is the validation split computed?](#in-fit-how-is-the-validation-split-computed) - [In `fit()`, is the data shuffled during training?](#in-fit-is-the-data-shuffled-during-training) - [What's the recommended way to monitor my metrics when training with `fit()`?](#whats-the-recommended-way-to-monitor-my-metrics-when-training-with-fit) - [What if I need to customize what `fit()` does?](#what-if-i-need-to-customize-what-fit-does) - [What's the difference between `Model` methods `predict()` and `__call__()`?](#whats-the-difference-between-model-methods-predict-and-call) ## Modeling-related questions - [How can I obtain the output of an intermediate layer (feature extraction)?](#how-can-i-obtain-the-output-of-an-intermediate-layer-feature-extraction) - [How can I use pre-trained models in Keras?](#how-can-i-use-pre-trained-models-in-keras) - [How can I use stateful RNNs?](#how-can-i-use-stateful-rnns) --- ## General questions ### How can I train a Keras model on multiple GPUs (on a single machine)? There are two ways to run a single model on multiple GPUs: **data parallelism** and **device parallelism**. Keras covers both. For data parallelism, Keras supports the built-in data parallel distribution APIs of JAX, TensorFlow, and PyTorch. See the following guides: - [Multi-GPU distributed training with JAX](/guides/distributed_training_with_jax/) - [Multi-GPU distributed training with TensorFlow](/guides/distributed_training_with_tensorflow/) - [Multi-GPU distributed training with PyTorch](/guides/distributed_training_with_torch/) For model parallelism, Keras has its own distribution API, which is currently only support by the JAX backend. See [the documentation for the `LayoutMap` API](/api/distribution/). --- ### How can I train a Keras model on TPU? TPUs are a fast & efficient hardware accelerator for deep learning that is publicly available on Google Cloud. You can use TPUs via Colab, Kaggle notebooks, and GCP Deep Learning VMs (provided the `TPU_NAME` environment variable is set on the VM). All Keras backends (JAX, TensorFlow, PyTorch) are supported on TPU, but we recommend JAX or TensorFlow in this case. **Using JAX:** When connected to a TPU runtime, just insert this code snippet before model construction: ```python import jax distribution = keras.distribution.DataParallel(devices=jax.devices()) keras.distribution.set_distribution(distribution) ``` **Using TensorFlow:** When connected to a TPU runtime, use `TPUClusterResolver` to detect the TPU. Then, create `TPUStrategy` and construct your model in the strategy scope: ```python try: tpu = tf.distribute.cluster_resolver.TPUClusterResolver.connect() print("Device:", tpu.master()) strategy = tf.distribute.TPUStrategy(tpu) except: strategy = tf.distribute.get_strategy() print("Number of replicas:", strategy.num_replicas_in_sync) with strategy.scope(): # Create your model here. ... ``` Importantly, you should: - Make sure you are able to read your data fast enough to keep the TPU utilized. - Consider running multiple steps of gradient descent per graph execution in order to keep the TPU utilized. You can do this via the `experimental_steps_per_execution` argument `compile()`. It will yield a significant speed up for small models. --- ### Where is the Keras configuration file stored? The default directory where all Keras data is stored is: `$HOME/.keras/` For instance, for me, on a MacBook Pro, it's `/Users/fchollet/.keras/`. Note that Windows users should replace `$HOME` with `%USERPROFILE%`. In case Keras cannot create the above directory (e.g. due to permission issues), `/tmp/.keras/` is used as a backup. The Keras configuration file is a JSON file stored at `$HOME/.keras/keras.json`. The default configuration file looks like this: ``` { "image_data_format": "channels_last", "epsilon": 1e-07, "floatx": "float32", "backend": "tensorflow" } ``` It contains the following fields: - The image data format to be used as default by image processing layers and utilities (either `channels_last` or `channels_first`). - The `epsilon` numerical fuzz factor to be used to prevent division by zero in some operations. - The default float data type. - The default backend. It can be one of `"jax"`, `"tensorflow"`, `"torch"`, or `"numpy"`. Likewise, cached dataset files, such as those downloaded with [`get_file()`](/utils/#get_file), are stored by default in `$HOME/.keras/datasets/`, and cached model weights files from Keras Applications are stored by default in `$HOME/.keras/models/`. --- ### How to do hyperparameter tuning with Keras? We recommend using [KerasTuner](https://keras.io/keras_tuner/). --- ### How can I obtain reproducible results using Keras during development? There are four sources of randomness to consider: 1. Keras itself (e.g. `keras.random` ops or random layers from `keras.layers`). 2. The current Keras backend (e.g. JAX, TensorFlow, or PyTorch). 3. The Python runtime. 4. The CUDA runtime. When running on a GPU, some operations have non-deterministic outputs. This is due to the fact that GPUs run many operations in parallel, so the order of execution is not always guaranteed. Due to the limited precision of floats, even adding several numbers together may give slightly different results depending on the order in which you add them. To make both Keras and the current backend framework deterministic, use this: ```python keras.utils.set_random_seed(1337) ``` To make Python deterministic, you need to set the `PYTHONHASHSEED` environment variable to `0` before the program starts (not within the program itself). This is necessary in Python 3.2.3 onwards to have reproducible behavior for certain hash-based operations (e.g., the item order in a set or a dict, see [Python's documentation](https://docs.python.org/3.7/using/cmdline.html#envvar-PYTHONHASHSEED)). To make the CUDA runtime deterministic: if using the TensorFlow backend, call `tf.config.experimental.enable_op_determinism`. Note that this will have a performance cost. What to do for other backends may vary -- check the documentation of your backend framework directly. --- ### What are my options for saving models? *Note: it is not recommended to use pickle or cPickle to save a Keras model.* **1) Whole-model saving (configuration + weights)** Whole-model saving means creating a file that will contain: - the architecture of the model, allowing you to re-create the model - the weights of the model - the training configuration (loss, optimizer) - the state of the optimizer, allowing you to resume training exactly where you left off. The default and recommended way to save a whole model is to just do: `model.save(your_file_path.keras)`. After saving a model in either format, you can reinstantiate it via `model = keras.models.load_model(your_file_path.keras)`. **Example:** ```python from keras.saving import load_model model.save('my_model.keras') del model # deletes the existing model # returns a compiled model # identical to the previous one model = load_model('my_model.keras') ``` **2) Weights-only saving** If you need to save the **weights of a model**, you can do so in HDF5 with the code below, using the file extension `.weights.h5`: ```python model.save_weights('my_model.weights.h5') ``` Assuming you have code for instantiating your model, you can then load the weights you saved into a model with the *same* architecture: ```python model.load_weights('my_model.weights.h5') ``` If you need to load the weights into a *different* architecture (with some layers in common), for instance for fine-tuning or transfer-learning, you can load them by *layer name*: ```python model.load_weights('my_model.weights.h5', by_name=True) ``` Example: ```python """ Assuming the original model looks like this: model = Sequential() model.add(Dense(2, input_dim=3, name='dense_1')) model.add(Dense(3, name='dense_2')) ... model.save_weights(fname) """ # new model model = Sequential() model.add(Dense(2, input_dim=3, name='dense_1')) # will be loaded model.add(Dense(10, name='new_dense')) # will not be loaded # load weights from the first model; will only affect the first layer, dense_1. model.load_weights(fname, by_name=True) ``` See also [How can I install HDF5 or h5py to save my models?](#how-can-i-install-hdf5-or-h5py-to-save-my-models) for instructions on how to install `h5py`. **3) Configuration-only saving (serialization)** If you only need to save the **architecture of a model**, and not its weights or its training configuration, you can do: ```python # save as JSON json_string = model.to_json() ``` The generated JSON file is human-readable and can be manually edited if needed. You can then build a fresh model from this data: ```python # model reconstruction from JSON: from keras.models import model_from_json model = model_from_json(json_string) ``` **4) Handling custom layers (or other custom objects) in saved models** If the model you want to load includes custom layers or other custom classes or functions, you can pass them to the loading mechanism via the `custom_objects` argument: ```python from keras.models import load_model # Assuming your model includes instance of an "AttentionLayer" class model = load_model('my_model.h5', custom_objects={'AttentionLayer': AttentionLayer}) ``` Alternatively, you can use a [custom object scope](https://keras.io/utils/#customobjectscope): ```python from keras.utils import CustomObjectScope with CustomObjectScope({'AttentionLayer': AttentionLayer}): model = load_model('my_model.h5') ``` Custom objects handling works the same way for `load_model` & `model_from_json`: ```python from keras.models import model_from_json model = model_from_json(json_string, custom_objects={'AttentionLayer': AttentionLayer}) ``` --- ### How can I install HDF5 or h5py to save my models? In order to save your Keras models as HDF5 files, Keras uses the h5py Python package. It is a dependency of Keras and should be installed by default. On Debian-based distributions, you will have to additionally install `libhdf5`: <div class="k-default-code-block"> ``` sudo apt-get install libhdf5-serial-dev ``` </div> If you are unsure if h5py is installed you can open a Python shell and load the module via ``` import h5py ``` If it imports without error it is installed, otherwise you can find [detailed installation instructions here](http://docs.h5py.org/en/latest/build.html). --- ### How should I cite Keras? Please cite Keras in your publications if it helps your research. Here is an example BibTeX entry: <code style="color: gray;"> @misc{chollet2015keras,<br> &nbsp;&nbsp;title={Keras},<br> &nbsp;&nbsp;author={Chollet, Fran\c{c}ois and others},<br> &nbsp;&nbsp;year={2015},<br> &nbsp;&nbsp;howpublished={\url{https://keras.io}},<br> } </code> --- ## Training-related questions ### What do "sample", "batch", and "epoch" mean? Below are some common definitions that are necessary to know and understand to correctly utilize Keras `fit()`: - **Sample**: one element of a dataset. For instance, one image is a **sample** in a convolutional network. One audio snippet is a **sample** for a speech recognition model. - **Batch**: a set of *N* samples. The samples in a **batch** are processed independently, in parallel. If training, a batch results in only one update to the model. A **batch** generally approximates the distribution of the input data better than a single input. The larger the batch, the better the approximation; however, it is also true that the batch will take longer to process and will still result in only one update. For inference (evaluate/predict), it is recommended to pick a batch size that is as large as you can afford without going out of memory (since larger batches will usually result in faster evaluation/prediction). - **Epoch**: an arbitrary cutoff, generally defined as "one pass over the entire dataset", used to separate training into distinct phases, which is useful for logging and periodic evaluation. When using `validation_data` or `validation_split` with the `fit` method of Keras models, evaluation will be run at the end of every **epoch**. Within Keras, there is the ability to add [callbacks](/api/callbacks/) specifically designed to be run at the end of an **epoch**. Examples of these are learning rate changes and model checkpointing (saving). --- ### Why is my training loss much higher than my testing loss? A Keras model has two modes: training and testing. Regularization mechanisms, such as Dropout and L1/L2 weight regularization, are turned off at testing time. They are reflected in the training time loss but not in the test time loss. Besides, the training loss that Keras displays is the average of the losses for each batch of training data, **over the current epoch**. Because your model is changing over time, the loss over the first batches of an epoch is generally higher than over the last batches. This can bring the epoch-wise average down. On the other hand, the testing loss for an epoch is computed using the model as it is at the end of the epoch, resulting in a lower loss. --- ### How can I ensure my training run can recover from program interruptions? To ensure the ability to recover from an interrupted training run at any time (fault tolerance), you should use a `keras.callbacks.BackupAndRestore` callback that regularly saves your training progress, including the epoch number and weights, to disk, and loads it the next time you call `Model.fit()`. ```python import numpy as np import keras class InterruptingCallback(keras.callbacks.Callback): """A callback to intentionally introduce interruption to training.""" def on_epoch_end(self, epoch, log=None): if epoch == 15: raise RuntimeError('Interruption') model = keras.Sequential([keras.layers.Dense(10)]) optimizer = keras.optimizers.SGD() model.compile(optimizer, loss="mse") x = np.random.random((24, 10)) y = np.random.random((24,)) backup_callback = keras.callbacks.experimental.BackupAndRestore( backup_dir='/tmp/backup') try: model.fit(x, y, epochs=20, steps_per_epoch=5, callbacks=[backup_callback, InterruptingCallback()]) except RuntimeError: print('***Handling interruption***') # This continues at the epoch where it left off. model.fit(x, y, epochs=20, steps_per_epoch=5, callbacks=[backup_callback]) ``` Find out more in the [callbacks documentation](/api/callbacks/). --- ### How can I interrupt training when the validation loss isn't decreasing anymore? You can use an `EarlyStopping` callback: ```python from keras.callbacks import EarlyStopping early_stopping = EarlyStopping(monitor='val_loss', patience=2) model.fit(x, y, validation_split=0.2, callbacks=[early_stopping]) ``` Find out more in the [callbacks documentation](/api/callbacks/). --- ### How can I freeze layers and do fine-tuning? **Setting the `trainable` attribute** All layers & models have a `layer.trainable` boolean attribute: ```shell >>> layer = Dense(3) >>> layer.trainable True ``` On all layers & models, the `trainable` attribute can be set (to True or False). When set to `False`, the `layer.trainable_weights` attribute is empty: ```python >>> layer = Dense(3) >>> layer.build(input_shape=(None, 3)) # Create the weights of the layer >>> layer.trainable True >>> layer.trainable_weights [<KerasVariable shape=(3, 3), dtype=float32, path=dense/kernel>, <KerasVariable shape=(3,), dtype=float32, path=dense/bias>] >>> layer.trainable = False >>> layer.trainable_weights [] ``` Setting the `trainable` attribute on a layer recursively sets it on all children layers (contents of `self.layers`). **1) When training with `fit()`:** To do fine-tuning with `fit()`, you would: - Instantiate a base model and load pre-trained weights - Freeze that base model - Add trainable layers on top - Call `compile()` and `fit()` Like this: ```python model = Sequential([ ResNet50Base(input_shape=(32, 32, 3), weights='pretrained'), Dense(10), ]) model.layers[0].trainable = False # Freeze ResNet50Base. assert model.layers[0].trainable_weights == [] # ResNet50Base has no trainable weights. assert len(model.trainable_weights) == 2 # Just the bias & kernel of the Dense layer. model.compile(...) model.fit(...) # Train Dense while excluding ResNet50Base. ``` You can follow a similar workflow with the Functional API or the model subclassing API. Make sure to call `compile()` *after* changing the value of `trainable` in order for your changes to be taken into account. Calling `compile()` will freeze the state of the training step of the model. **2) When using a custom training loop:** When writing a training loop, make sure to only update weights that are part of `model.trainable_weights` (and not all `model.weights`). Here's a simple TensorFlow example: ```python model = Sequential([ ResNet50Base(input_shape=(32, 32, 3), weights='pretrained'), Dense(10), ]) model.layers[0].trainable = False # Freeze ResNet50Base. # Iterate over the batches of a dataset. for inputs, targets in dataset: # Open a GradientTape. with tf.GradientTape() as tape: # Forward pass. predictions = model(inputs) # Compute the loss value for this batch. loss_value = loss_fn(targets, predictions) # Get gradients of loss wrt the *trainable* weights. gradients = tape.gradient(loss_value, model.trainable_weights) # Update the weights of the model. optimizer.apply_gradients(zip(gradients, model.trainable_weights)) ``` **Interaction between `trainable` and `compile()`** Calling `compile()` on a model is meant to "freeze" the behavior of that model. This implies that the `trainable` attribute values at the time the model is compiled should be preserved throughout the lifetime of that model, until `compile` is called again. Hence, if you change `trainable`, make sure to call `compile()` again on your model for your changes to be taken into account. For instance, if two models A & B share some layers, and: - Model A gets compiled - The `trainable` attribute value on the shared layers is changed - Model B is compiled Then model A and B are using different `trainable` values for the shared layers. This mechanism is critical for most existing GAN implementations, which do: ```python discriminator.compile(...) # the weights of `discriminator` should be updated when `discriminator` is trained discriminator.trainable = False gan.compile(...) # `discriminator` is a submodel of `gan`, which should not be updated when `gan` is trained ``` --- ### What's the difference between the `training` argument in `call()` and the `trainable` attribute? `training` is a boolean argument in `call` that determines whether the call should be run in inference mode or training mode. For example, in training mode, a `Dropout` layer applies random dropout and rescales the output. In inference mode, the same layer does nothing. Example: ```python y = Dropout(0.5)(x, training=True) # Applies dropout at training time *and* inference time ``` `trainable` is a boolean layer attribute that determines the trainable weights of the layer should be updated to minimize the loss during training. If `layer.trainable` is set to `False`, then `layer.trainable_weights` will always be an empty list. Example: ```python model = Sequential([ ResNet50Base(input_shape=(32, 32, 3), weights='pretrained'), Dense(10), ]) model.layers[0].trainable = False # Freeze ResNet50Base. assert model.layers[0].trainable_weights == [] # ResNet50Base has no trainable weights. assert len(model.trainable_weights) == 2 # Just the bias & kernel of the Dense layer. model.compile(...) model.fit(...) # Train Dense while excluding ResNet50Base. ``` As you can see, "inference mode vs training mode" and "layer weight trainability" are two very different concepts. You could imagine the following: a dropout layer where the scaling factor is learned during training, via backpropagation. Let's name it `AutoScaleDropout`. This layer would have simultaneously a trainable state, and a different behavior in inference and training. Because the `trainable` attribute and the `training` call argument are independent, you can do the following: ```python layer = AutoScaleDropout(0.5) # Applies dropout at training time *and* inference time # *and* learns the scaling factor during training y = layer(x, training=True) assert len(layer.trainable_weights) == 1 ``` ```python # Applies dropout at training time *and* inference time # with a *frozen* scaling factor layer = AutoScaleDropout(0.5) layer.trainable = False y = layer(x, training=True) ``` ***Special case of the `BatchNormalization` layer*** For a `BatchNormalization` layer, setting `bn.trainable = False` will also make its `training` call argument default to `False`, meaning that the layer will no update its state during training. This behavior only applies for `BatchNormalization`. For every other layer, weight trainability and "inference vs training mode" remain independent. --- ### In `fit()`, how is the validation split computed? If you set the `validation_split` argument in `model.fit` to e.g. 0.1, then the validation data used will be the *last 10%* of the data. If you set it to 0.25, it will be the last 25% of the data, etc. Note that the data isn't shuffled before extracting the validation split, so the validation is literally just the *last* x% of samples in the input you passed. The same validation set is used for all epochs (within the same call to `fit`). Note that the `validation_split` option is only available if your data is passed as Numpy arrays (not `tf.data.Datasets`, which are not indexable). --- ### In `fit()`, is the data shuffled during training? If you pass your data as NumPy arrays and if the `shuffle` argument in `model.fit()` is set to `True` (which is the default), the training data will be globally randomly shuffled at each epoch. If you pass your data as a `tf.data.Dataset` object and if the `shuffle` argument in `model.fit()` is set to `True`, the dataset will be locally shuffled (buffered shuffling). When using `tf.data.Dataset` objects, prefer shuffling your data beforehand (e.g. by calling `dataset = dataset.shuffle(buffer_size)`) so as to be in control of the buffer size. Validation data is never shuffled. --- ### What's the recommended way to monitor my metrics when training with `fit()`? Loss values and metric values are reported via the default progress bar displayed by calls to `fit()`. However, staring at changing ascii numbers in a console is not an optimal metric-monitoring experience. We recommend the use of [TensorBoard](https://www.tensorflow.org/tensorboard), which will display nice-looking graphs of your training and validation metrics, regularly updated during training, which you can access from your browser. You can use TensorBoard with `fit()` via the [`TensorBoard` callback](/api/callbacks/tensorboard/). --- ### What if I need to customize what `fit()` does? You have two options: **1) Subclass the `Model` class and override the `train_step` (and `test_step`) methods** This is a better option if you want to use custom update rules but still want to leverage the functionality provided by `fit()`, such as callbacks, efficient step fusing, etc. Note that this pattern does not prevent you from building models with the Functional API, in which case you will use the class you created to instantiate the model with the `inputs` and `outputs`. Same goes for Sequential models, in which case you will subclass `keras.Sequential` and override its `train_step` instead of `keras.Model`. See the following guides: - [Writing a custom train step in JAX](/guides/custom_train_step_in_jax/) - [Writing a custom train step in TensorFlow](/guides/custom_train_step_in_tensorflow/) - [Writing a custom train step in PyTorch](/guides/custom_train_step_in_torch/) **2) Write a low-level custom training loop** This is a good option if you want to be in control of every last little detail -- though it can be somewhat verbose. See the following guides: - [Writing a custom training loop in JAX](/guides/writing_a_custom_training_loop_in_jax/) - [Writing a custom training loop in TensorFlow](/guides/writing_a_custom_training_loop_in_tensorflow/) - [Writing a custom training loop in PyTorch](/guides/writing_a_custom_training_loop_in_torch/) --- ### What's the difference between `Model` methods `predict()` and `__call__()`? Let's answer with an extract from [Deep Learning with Python, Second Edition](https://www.manning.com/books/deep-learning-with-python-second-edition?a_aid=keras): > Both `y = model.predict(x)` and `y = model(x)` (where `x` is an array of input data) > mean "run the model on `x` and retrieve the output `y`." Yet they aren't exactly > the same thing. > `predict()` loops over the data in batches > (in fact, you can specify the batch size via `predict(x, batch_size=64)`), > and it extracts the NumPy value of the outputs. It's schematically equivalent to this: ```python def predict(x): y_batches = [] for x_batch in get_batches(x): y_batch = model(x).numpy() y_batches.append(y_batch) return np.concatenate(y_batches) ``` > This means that `predict()` calls can scale to very large arrays. Meanwhile, > `model(x)` happens in-memory and doesn't scale. > On the other hand, `predict()` is not differentiable: you cannot retrieve its gradient > if you call it in a `GradientTape` scope. > You should use `model(x)` when you need to retrieve the gradients of the model call, > and you should use `predict()` if you just need the output value. In other words, > always use `predict()` unless you're in the middle of writing a low-level gradient > descent loop (as we are now). --- ## Modeling-related questions ### How can I obtain the output of an intermediate layer (feature extraction)? In the Functional API and Sequential API, if a layer has been called exactly once, you can retrieve its output via `layer.output` and its input via `layer.input`. This enables you do quickly instantiate feature-extraction models, like this one: ```python import keras from keras import layers model = Sequential([ layers.Conv2D(32, 3, activation='relu'), layers.Conv2D(32, 3, activation='relu'), layers.MaxPooling2D(2), layers.Conv2D(32, 3, activation='relu'), layers.Conv2D(32, 3, activation='relu'), layers.GlobalMaxPooling2D(), layers.Dense(10), ]) extractor = keras.Model(inputs=model.inputs, outputs=[layer.output for layer in model.layers]) features = extractor(data) ``` Naturally, this is not possible with models that are subclasses of `Model` that override `call`. Here's another example: instantiating a `Model` that returns the output of a specific named layer: ```python model = ... # create the original model layer_name = 'my_layer' intermediate_layer_model = keras.Model(inputs=model.input, outputs=model.get_layer(layer_name).output) intermediate_output = intermediate_layer_model(data) ``` --- ### How can I use pre-trained models in Keras? You could leverage the [models available in `keras.applications`](/api/applications/), or the models available in [KerasCV](/keras_cv/) and [KerasNLP](/keras_nlp/). --- ### How can I use stateful RNNs? Making a RNN stateful means that the states for the samples of each batch will be reused as initial states for the samples in the next batch. When using stateful RNNs, it is therefore assumed that: - all batches have the same number of samples - If `x1` and `x2` are successive batches of samples, then `x2[i]` is the follow-up sequence to `x1[i]`, for every `i`. To use statefulness in RNNs, you need to: - explicitly specify the batch size you are using, by passing a `batch_size` argument to the first layer in your model. E.g. `batch_size=32` for a 32-samples batch of sequences of 10 timesteps with 16 features per timestep. - set `stateful=True` in your RNN layer(s). - specify `shuffle=False` when calling `fit()`. To reset the states accumulated: - use `model.reset_states()` to reset the states of all layers in the model - use `layer.reset_states()` to reset the states of a specific stateful RNN layer Example: ```python import keras from keras import layers import numpy as np x = np.random.random((32, 21, 16)) # this is our input data, of shape (32, 21, 16) # we will feed it to our model in sequences of length 10 model = keras.Sequential() model.add(layers.LSTM(32, input_shape=(10, 16), batch_size=32, stateful=True)) model.add(layers.Dense(16, activation='softmax')) model.compile(optimizer='rmsprop', loss='categorical_crossentropy') # we train the network to predict the 11th timestep given the first 10: model.train_on_batch(x[:, :10, :], np.reshape(x[:, 10, :], (32, 16))) # the state of the network has changed. We can feed the follow-up sequences: model.train_on_batch(x[:, 10:20, :], np.reshape(x[:, 20, :], (32, 16))) # let's reset the states of the LSTM layer: model.reset_states() # another way to do it in this case: model.layers[0].reset_states() ``` Note that the methods `predict`, `fit`, `train_on_batch`, etc. will *all* update the states of the stateful layers in a model. This allows you to do not only stateful training, but also stateful prediction. ---
keras-io/templates/getting_started/faq.md/0
{ "file_path": "keras-io/templates/getting_started/faq.md", "repo_id": "keras-io", "token_count": 9443 }
122
body { font-family: 'Open Sans', sans-serif; } h1, h2, h3, h4, h5, h6 { font-family: 'Open Sans', sans-serif; font-weight: bold; } header.masthead { position: relative; background-size: cover; padding-top: 8rem; padding-bottom: 8rem; } b { font-weight: 400; font-style: italic; } header.masthead .overlay { position: absolute; height: 100%; width: 100%; top: 0; left: 0; opacity: 0.3; } @media (min-width: 768px) { header.masthead { padding-top: 4rem; padding-bottom: 4rem; } header.masthead h1 { font-size: 2.2rem; } } a { color: #d00000; } a:hover { color: #ff0000; } .smooth-white-bg a { color: #d00000; } .smooth-black-bg a { color: #ff6666; } .btn { margin-top: 1rem; margin-bottom: 1rem; } .btn-primary { color: #fff !important; background-color: #d00000; border-color: #8a0000; } .btn-primary:hover { color: #fff; background-color: #ff0000; border-color: #8a0000; } .btn-primary:focus, .btn-primary.focus { box-shadow: 0 0 0 0.2rem rgba(38, 143, 255, 0.5); } .btn-primary.disabled, .btn-primary:disabled { color: #fff; background-color: #d00000; border-color: #8a0000; } .btn-primary:not(:disabled):not(.disabled):active, .btn-primary:not(:disabled):not(.disabled).active, .show > .btn-primary.dropdown-toggle { color: #fff; background-color: #ff0000; border-color: #8a0000; } .btn-primary:not(:disabled):not(.disabled):active:focus, .btn-primary:not(:disabled):not(.disabled).active:focus, .show > .btn-primary.dropdown-toggle:focus { box-shadow: 0 0 0 0.2rem rgba(38, 143, 255, 0.5); } .btn-secondary { background-color: white; color: #3f3f3f; border-color: #bbb; } .btn-secondary:hover { color: #3f3f3f; background-color: #f0f0f0; border-color: #bbb; } .btn-secondary:focus, .btn-secondary.focus { box-shadow: 0 0 0 0.2rem rgba(130, 138, 145, 0.5); } .btn-secondary.disabled, .btn-secondary:disabled { color: #3f3f3f; background-color: #f0f0f0; border-color: #bbb; } .btn-secondary:not(:disabled):not(.disabled):active, .btn-secondary:not(:disabled):not(.disabled).active, .show > .btn-secondary.dropdown-toggle { color: #3f3f3f; background-color: #f0f0f0; border-color: #bbb; } .btn-secondary:not(:disabled):not(.disabled):active:focus, .btn-secondary:not(:disabled):not(.disabled).active:focus, .show > .btn-secondary.dropdown-toggle:focus { box-shadow: 0 0 0 0.2rem rgba(130, 138, 145, 0.5); } .logo { width: 28rem; max-width: 100%; margin-bottom: 2rem; } .smooth-black-bg { background-image: linear-gradient(to right, black, #3f3f3f, #3f3f3f, black); color: white; } .smooth-white-bg { background-image: linear-gradient(to right, #e6e6e6, white, white, #e6e6e6); color: #3f3f3f; } .showcase .showcase-text { padding: 3rem; } .showcase .showcase-img { min-height: 20rem; background-size: cover; } @media (min-width: 768px) { .showcase .showcase-text { padding: 4rem; } } .lead { font-size: 1.2rem; font-weight: 100; } .testimonials { padding-top: 4rem; padding-bottom: 4rem; } .testimonials .testimonial-item { max-width: 18rem; } .testimonials .testimonial-item img { max-width: 12rem; box-shadow: 0px 5px 5px 0px #adb5bd; } .quote-content { font-style: italic; } .quote-title { font-size: 1rem; } .quote-name { font-size: 1.2rem; font-weight: bold; } .testimonial-item h5 { margin-top: 1em; } footer { float: left; width: 100%; padding: 1em; border-top: solid 1px #bbb; } .bottom-border { border-bottom: solid 0.7em black; } #announcement-box { text-shadow: 1px 2px black; font-size: 2.2rem; } #announcement-link { font-size: 2.7rem; }
keras-io/theme/css/landing.css/0
{ "file_path": "keras-io/theme/css/landing.css", "repo_id": "keras-io", "token_count": 1590 }
123
FROM mcr.microsoft.com/vscode/devcontainers/python:3.9 COPY setup.sh /setup.sh
keras-nlp/.devcontainer/Dockerfile/0
{ "file_path": "keras-nlp/.devcontainer/Dockerfile", "repo_id": "keras-nlp", "token_count": 34 }
124
# API Design Guide Before reading this document, please read the [Keras API design guidelines](https://github.com/keras-team/governance/blob/master/keras_api_design_guidelines.md). Below are some design considerations specific to KerasNLP. ## Philosophy - **Let user needs be our compass.** Any modular building block that NLP practitioners need is in scope, whether it's data loading, augmentation, model building, evaluation metrics, or visualization utils. - **Be resolutely high-level.** Even if something is easy to do by hand in 5 lines, package it as a one liner. - **Balance ease of use and flexibility.** Simple things should be easy, and arbitrarily advanced use cases should be possible. There should always be a "we need to go deeper" path available to our most expert users. - **Grow as a platform and as a community.** KerasNLP development should be driven by the community, with feature and release planning happening in the open on GitHub. ## Avoid new dependencies The core dependencies of KerasNLP are Keras, NumPy, TensorFlow, and [Tensorflow Text](https://www.tensorflow.org/text). We strive to keep KerasNLP as self-contained as possible, and avoid adding dependencies to projects (for example NLTK or spaCy) for text preprocessing. In rare cases, particularly with tokenizers and metrics, we may need to add an external dependency for compatibility with the "canonical" implementation of a certain technique. In these cases, avoid adding a new package dependency, and add installation instructions for the specific symbol: ```python try: import rouge_score except ImportError: rouge_score = None class Rouge(keras.metrics.Metric): def __init__(self): if rouge_score is None: raise ImportError( "ROUGE metric requires the `rouge_score` package." "Please install it with `pip install rouge_score`." ) ``` Additionally, to ensure that unit tests don't fail, please add the corresponding library to the `extras_require["tests"]` list in `setup.py`. ## Keep computation inside TensorFlow graph Our layers, metrics, and tokenizers should be fast and efficient, which means running inside the [TensorFlow graph](https://www.tensorflow.org/guide/intro_to_graphs) whenever possible. This means you should be able to wrap annotate a function calling a layer, metric or loss with `@tf.function` without running into issues. [tf.strings](https://www.tensorflow.org/api_docs/python/tf/strings) and [tf.text](https://www.tensorflow.org/text/api_docs/python/text) provides a large surface on TensorFlow operations that manipulate strings. If an low-level (c++) operation we need is missing, we should add it in collaboration with core TensorFlow or TensorFlow Text. KerasNLP is a python-only library. We should also strive to keep computation XLA compilable wherever possible (e.g. `tf.function(jit_compile=True)`). For trainable modeling components this is particularly important due to the performance gains offered by XLA. For preprocessing and postprocessing, XLA compilation is not a requirement. ## Support tf.data for text preprocessing and augmentation In general, our preprocessing tools should be runnable inside a [tf.data](https://www.tensorflow.org/guide/data) pipeline, and any augmentation to training data should be dynamic (runnable on the fly during training rather than precomputed). We should design our preprocessing workflows with tf.data in mind, and support both batched and unbatched data as input to preprocessing layers. ## Prioritize multi-lingual support We strive to keep KerasNLP a friendly and useful library for speakers of all languages. In general, prefer designing workflows that are language agnostic, and do not involve logic (e.g. stemming) that need to be rewritten per-language. It is OK for new workflows to not come with of the box support for all languages in a first release, but a design that does not include a plan for multi-lingual support will be rejected.
keras-nlp/API_DESIGN_GUIDE.md/0
{ "file_path": "keras-nlp/API_DESIGN_GUIDE.md", "repo_id": "keras-nlp", "token_count": 1110 }
125
# BERT with KerasNLP This example demonstrates how to train a Bidirectional Encoder Representations from Transformers (BERT) model end-to-end using the KerasNLP library. This README contains instructions on how to run pretraining directly from raw data, followed by finetuning and evaluation on the GLUE dataset. ## Quickly test out the code To exercise the code in this directory by training a tiny BERT model, you can run the following commands from the base directory of the repository. This can be useful to validate any code changes, but note that a useful BERT model would need to be trained for much longer on a much larger dataset. ```shell OUTPUT_DIR=~/bert_test_output DATA_URL=https://storage.googleapis.com/tensorflow/keras-nlp/examples/bert # Download example data. wget ${DATA_URL}/bert_vocab_uncased.txt -O $OUTPUT_DIR/bert_vocab_uncased.txt wget ${DATA_URL}/wiki_example_data.txt -O $OUTPUT_DIR/wiki_example_data.txt # Parse input data and split into sentences. python3 examples/tools/split_sentences.py \ --input_files $OUTPUT_DIR/wiki_example_data.txt \ --output_directory $OUTPUT_DIR/sentence-split-data # Preprocess input for pretraining. python3 examples/bert_pretraining/bert_create_pretraining_data.py \ --input_files $OUTPUT_DIR/sentence-split-data/ \ --vocab_file $OUTPUT_DIR/bert_vocab_uncased.txt \ --output_file $OUTPUT_DIR/pretraining-data/pretraining.tfrecord # Run pretraining for 100 train steps only. python3 examples/bert_pretraining/bert_pretrain.py \ --input_directory $OUTPUT_DIR/pretraining-data/ \ --vocab_file $OUTPUT_DIR/bert_vocab_uncased.txt \ --saved_model_output $OUTPUT_DIR/model/ \ --num_train_steps 100 ``` ## Installing dependencies This example needs a few extra dependencies to run (e.g. wikiextractor for using wikipedia downloads). You can install these into a KerasNLP development environment with: ```shell pip install -r "examples/bert_pretraining/requirements.txt" ``` ## Pretraining BERT Training a BERT model happens in two stages. First, the model is "pretrained" on a large corpus of input text. This is computationally expensive. After pretraining, the model can be "finetuned" on a downstream task with a much smaller amount of labeled data. ### Downloading pretraining data The GLUE pretraining data (Wikipedia + BooksCorpus) is fairly large. The raw input data takes roughly ~20GB of space, and after preprocessing, the full corpus will take ~400GB. The latest wikipedia dump can be downloaded [at this link](https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2), or via command line: ```shell curl -O https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2 ``` The dump can be extracted with the `wikiextractor` tool. ```shell python3 -m wikiextractor.WikiExtractor enwiki-latest-pages-articles.xml.bz2 ``` BooksCorpus is no longer hosted by [its creators](https://yknzhu.wixsite.com/mbweb), but you can find instructions for downloading or reproducing the corpus in [this repository](https://github.com/soskek/bookcorpus). We suggest the pre-made file downloads listed at the top of the README. Alternatively, you can forgo it entirely and pretrain solely on wikipedia. Preparing the pretraining data will happen in two stages. First, raw text needs to be split into lists of sentences per document. Second, this sentence split data needs to use to create training examples with both masked words and next sentence predictions. ### Splitting raw text into sentences Next, use `examples/tools/split_sentences.py` to process raw input files and split them into output files where each line contains a sentence, and a blank line marks the start of a new document. We need this for the next-sentence prediction task used by BERT. For example, if Wikipedia files are located in `~/datasets/wikipedia` and bookscorpus in `~/datasets/bookscorpus`, the following command will output sentence split documents to a configurable number of output file shards: ```shell python3 examples/tools/split_sentences.py \ --input_files ~/datasets/wikipedia,~/datasets/bookscorpus \ --output_directory ~/datasets/sentence-split-data ``` ### Computing a WordPiece vocabulary The easiest and best approach when training BERT is to use the official vocabularies from the original project, which have become somewhat standard. You can download the English uncased vocabulary [here](https://storage.googleapis.com/tensorflow/keras-nlp/examples/bert/bert_vocab_uncased.txt), or in your terminal run: ```shell curl -O https://storage.googleapis.com/tensorflow/keras-nlp/examples/bert/bert_vocab_uncased.txt ``` You can also use `examples/tools/train_word_piece_vocab.py` to train your own. ### Tokenize, mask, and combine sentences into training examples The ` bert_create_pretraining_data.py` script will take in a set of sentence split files, and set up training examples for the next sentence prediction and masked word tasks. The output of the script will be TFRecord files with a number of fields per example. Below shows a complete output example with the addition of a string `tokens` field for clarity. The actual script will only serialize the token ids to conserve disk space. ```python tokens: ['[CLS]', 'resin', '##s', 'are', 'today', '[MASK]', 'produced', 'by', 'ang', '##ios', '##per', '##ms', ',', 'and', 'tend', 'to', '[SEP]', '[MASK]', 'produced', 'a', '[MASK]', '[MASK]', 'of', 'resin', ',', 'which', '[MASK]', 'often', 'found', 'as', 'amber', '[SEP]'] input_ids: [101, 24604, 2015, 2024, 2651, 103, 2550, 2011, 17076, 10735, 4842, 5244, 1010, 1998, 7166, 2000, 102, 103, 2550, 1037, 103, 103, 1997, 24604, 1010, 2029, 103, 2411, 2179, 2004, 8994, 102] input_mask: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] segment_ids: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] masked_lm_positions: [5, 17, 20, 21, 26] masked_lm_ids: [2069, 3619, 2353, 2828, 2003] masked_lm_weights: [1.0, 1.0, 1.0, 1.0, 1.0] next_sentence_labels: [0] ``` In order to set up the next sentence prediction task, the script will load the entire input into memory. As such, it is recommended to run this script on a subset of the input data at a time. For example, you can run the script on each file shard in a directory with the following: ```shell for file in path/to/sentence-split-data/*; do output="path/to/pretraining-data/$(basename -- "$file" .txt).tfrecord" python3 examples/bert_pretraining/bert_create_pretraining_data.py \ --input_files ${file} \ --vocab_file bert_vocab_uncased.txt \ --output_file ${output} done ``` If enough memory is available, this could be further sped up by running this script multiple times in parallel. The following will take 3-4 hours on the entire dataset on an 8 core machine. ```shell NUM_JOBS=5 for file in path/to/sentence-split-data/*; do output="path/to/pretraining-data/$(basename -- "$file" .txt).tfrecord" echo python3 examples/bert_pretraining/bert_create_pretraining_data.py \ --input_files ${file} \ --vocab_file bert_vocab_uncased.txt \ --output_file ${output} done | parallel -j ${NUM_JOBS} ``` To preview a sample of generated data files, you can run the command below: ```shell python3 -c "from examples.utils.data_utils import preview_tfrecord; preview_tfrecord('path/to/tfrecord_file')" ``` ### Running BERT pretraining After preprocessing, we can run pretraining with the `bert_pretrain.py` script. This will train a model and save it to the `--saved_model_output` directory. If you are willing to train from data stored on google cloud storage bucket (GCS), you can do it by setting the file path to the URL of GCS bucket. For example, `--input_directory=gs://your-bucket-name/you-data-path`. You can also save models directly to GCS by the same approach. ```shell python3 examples/bert_pretraining/bert_pretrain.py \ --input_directory path/to/data/ \ --vocab_file path/to/bert_vocab_uncased.txt \ --model_size tiny \ --saved_model_output path/to/model/ ```
keras-nlp/examples/bert_pretraining/README.md/0
{ "file_path": "keras-nlp/examples/bert_pretraining/README.md", "repo_id": "keras-nlp", "token_count": 2780 }
126
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import tensorflow as tf from keras_nlp.backend import config as backend_config from keras_nlp.backend import keras def pytest_addoption(parser): parser.addoption( "--run_large", action="store_true", default=False, help="run large tests", ) parser.addoption( "--run_extra_large", action="store_true", default=False, help="run extra_large tests", ) parser.addoption( "--docstring_module", action="store", default="", help="restrict docs testing to modules whose name matches this flag", ) parser.addoption( "--check_gpu", action="store_true", default=False, help="fail if a gpu is not present", ) def pytest_configure(config): # Verify that device has GPU and detected by backend if config.getoption("--check_gpu"): found_gpu = False backend = backend_config.backend() if backend == "jax": import jax try: found_gpu = bool(jax.devices("gpu")) except RuntimeError: found_gpu = False elif backend == "tensorflow": found_gpu = bool(tf.config.list_logical_devices("GPU")) elif backend == "torch": import torch found_gpu = bool(torch.cuda.device_count()) if not found_gpu: pytest.fail(f"No GPUs discovered on the {backend} backend.") config.addinivalue_line( "markers", "large: mark test as being slow or requiring a network", ) config.addinivalue_line( "markers", "extra_large: mark test as being too large to run continuously", ) config.addinivalue_line( "markers", "tf_only: mark test as a tf only test", ) config.addinivalue_line( "markers", "keras_3_only: mark test as a keras 3 only test", ) def pytest_collection_modifyitems(config, items): run_extra_large_tests = config.getoption("--run_extra_large") # Run large tests for --run_extra_large or --run_large. run_large_tests = config.getoption("--run_large") or run_extra_large_tests # Messages to annotate skipped tests with. skip_large = pytest.mark.skipif( not run_large_tests, reason="need --run_large option to run", ) skip_extra_large = pytest.mark.skipif( not run_extra_large_tests, reason="need --run_extra_large option to run", ) tf_only = pytest.mark.skipif( not backend_config.backend() == "tensorflow", reason="tests only run on tf backend", ) keras_3_only = pytest.mark.skipif( not backend_config.keras_3(), reason="tests only run on with multi-backend keras", ) for item in items: if "large" in item.keywords: item.add_marker(skip_large) if "extra_large" in item.keywords: item.add_marker(skip_extra_large) if "tf_only" in item.keywords: item.add_marker(tf_only) if "keras_3_only" in item.keywords: item.add_marker(keras_3_only) # Disable traceback filtering for quicker debugging of tests failures. tf.debugging.disable_traceback_filtering() if backend_config.keras_3(): keras.config.disable_traceback_filtering()
keras-nlp/keras_nlp/conftest.py/0
{ "file_path": "keras-nlp/keras_nlp/conftest.py", "repo_id": "keras-nlp", "token_count": 1616 }
127
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from keras_nlp.backend import keras from keras_nlp.backend import ops from keras_nlp.backend import random from keras_nlp.layers.modeling.rotary_embedding import RotaryEmbedding from keras_nlp.tests.test_case import TestCase class RotaryEmbeddingTest(TestCase): def test_layer_behaviors(self): self.run_layer_test( cls=RotaryEmbedding, init_kwargs={ "max_wavelength": 1000, "scaling_factor": 2.0, "sequence_axis": 1, "feature_axis": -1, }, input_data=random.uniform(shape=(2, 4, 6)), expected_output_shape=(2, 4, 6), ) def test_layer_behaviors_4d(self): self.run_layer_test( cls=RotaryEmbedding, init_kwargs={ "max_wavelength": 1000, }, input_data=random.uniform(shape=(2, 8, 4, 6)), expected_output_shape=(2, 8, 4, 6), ) def test_dynamic_layer_output_shape(self): embedding_layer = RotaryEmbedding() hidden_size = 32 inputs = keras.Input(shape=(None, hidden_size)) outputs = embedding_layer(inputs) # When using dynamic positional encoding shapes, the output is expected # to be the same as the input shape in all dimensions but may be None. expected_output_shape = (None, None, hidden_size) self.assertEqual(expected_output_shape, outputs.shape) # do multi dimension before sequence length def test_multi_dimension_layer_output_shape(self): embedding_layer = RotaryEmbedding() seq_length = 100 hidden_size = 32 inputs = keras.Input(shape=(None, seq_length, hidden_size)) outputs = embedding_layer(inputs) # When using multiple dimensions before sequence length, the output is # expected to be the same as the input shape in all dimensions. expected_output_shape = (None, None, seq_length, hidden_size) self.assertEqual(expected_output_shape, outputs.shape) def test_output_correct_values(self): embedding_layer = RotaryEmbedding() model = keras.Sequential( [ keras.Input(shape=(4, 6)), embedding_layer, ] ) input = ops.ones(shape=[1, 4, 6]) output = model(input) # comapre position encoding values for position 0 and 3 expected_0 = [1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000] expected_3 = [-1.1311, 0.8515, 0.9935, -0.8489, 1.1291, 1.0064] self.assertAllClose(output[0, 0, :], expected_0, atol=0.01, rtol=0.01) self.assertAllClose(output[0, 3, :], expected_3, atol=0.01, rtol=0.01) def test_start_index(self): batch_size, seq_length, feature_size = 2, 3, 4 layer = RotaryEmbedding(seq_length) data = random.uniform(shape=(batch_size, seq_length, feature_size)) full_output = layer(data) sequential_output = ops.zeros((batch_size, seq_length, feature_size)) for i in range(seq_length): parial_output = layer(data[:, i : i + 1, :], start_index=i) sequential_output = ops.slice_update( sequential_output, (0, i, 0), parial_output ) self.assertAllClose(full_output, sequential_output) def test_permuted_axes(self): batch_size, seq_length, feature_size = 2, 3, 4 data = random.uniform(shape=(batch_size, seq_length, feature_size)) layer = RotaryEmbedding(seq_length) outputs = layer(data) permuted_data = ops.transpose(data, (0, 2, 1)) permuted_layer = RotaryEmbedding( seq_length, sequence_axis=-1, feature_axis=-2 ) permuted_outputs = permuted_layer(permuted_data) self.assertAllClose(outputs, ops.transpose(permuted_outputs, (0, 2, 1))) def test_float16_dtype(self): embedding_layer = RotaryEmbedding(dtype="float16") seq_length = 100 hidden_size = 32 inputs = keras.Input(shape=(seq_length, hidden_size)) outputs = embedding_layer(inputs) # output dtype for this layer should be float16. self.assertEqual(outputs.dtype, "float16")
keras-nlp/keras_nlp/layers/modeling/rotary_embedding_test.py/0
{ "file_path": "keras-nlp/keras_nlp/layers/modeling/rotary_embedding_test.py", "repo_id": "keras-nlp", "token_count": 2079 }
128
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf import tree from keras_nlp.backend import config from keras_nlp.backend import keras from keras_nlp.utils.tensor_utils import ( convert_to_backend_tensor_or_python_list, ) class PreprocessingLayer(keras.layers.Layer): """Preprocessing layer base class.""" def __init__(self, **kwargs): super().__init__(**kwargs) self._convert_input_args = False self._allow_non_tensor_positional_args = True # Most pre-preprocessing has no build. if not hasattr(self, "build"): self.built = True def get_build_config(self): return None def __call__(self, *args, **kwargs): # Always place on CPU for preprocessing, to avoid expensive back and # forth copies to GPU before the trainable model. with tf.device("cpu"): outputs = super().__call__(*args, **kwargs) # Jax and Torch lack native string and ragged types. # If we are running on those backends and not running with tf.data # (we are outside a tf.function), we covert all ragged and string # tensor to pythonic types. is_tf_backend = config.backend() == "tensorflow" is_in_tf_graph = not tf.executing_eagerly() if not is_tf_backend and not is_in_tf_graph: outputs = tree.map_structure( convert_to_backend_tensor_or_python_list, outputs ) return outputs
keras-nlp/keras_nlp/layers/preprocessing/preprocessing_layer.py/0
{ "file_path": "keras-nlp/keras_nlp/layers/preprocessing/preprocessing_layer.py", "repo_id": "keras-nlp", "token_count": 788 }
129
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from keras_nlp.metrics.rouge_l import RougeL from keras_nlp.tests.test_case import TestCase class RougeLTest(TestCase): def test_initialization(self): rouge = RougeL() result = rouge.result() self.assertDictEqual( result, {"precision": 0.0, "recall": 0.0, "f1_score": 0.0}, ) def test_string_input(self): rouge = RougeL(use_stemmer=False) y_true = "the tiny little cat was found under the big funny bed" y_pred = "the cat was under the bed" rouge_val = rouge(y_true, y_pred) self.assertAllClose( rouge_val, {"precision": 1.0, "recall": 0.545454, "f1_score": 0.705882}, ) def test_string_list_input(self): rouge = RougeL(use_stemmer=False) y_true = [ "the tiny little cat was found under the big funny bed", "i really love contributing to KerasNLP", ] y_pred = [ "the cat was under the bed", "i love contributing to KerasNLP", ] rouge_val = rouge(y_true, y_pred) self.assertAllClose( rouge_val, {"precision": 1.0, "recall": 0.689393, "f1_score": 0.807486}, ) def test_tensor_input(self): rouge = RougeL(use_stemmer=False) y_true = tf.constant( [ "the tiny little cat was found under the big funny bed", "i really love contributing to KerasNLP", ] ) y_pred = tf.constant( ["the cat was under the bed", "i love contributing to KerasNLP"] ) rouge_val = rouge(y_true, y_pred) self.assertAllClose( rouge_val, {"precision": 1.0, "recall": 0.689393, "f1_score": 0.807486}, ) def test_reset_state(self): rouge = RougeL() y_true = ["hey, this is great fun", "i love contributing to KerasNLP"] y_pred = [ "great fun indeed", "KerasNLP is awesome, i love contributing to it", ] rouge.update_state(y_true, y_pred) rouge_val = rouge.result() self.assertNotAllClose( rouge_val, {"precision": 0.0, "recall": 0.0, "f1_score": 0.0}, ) rouge.reset_state() rouge_val = rouge.result() self.assertDictEqual( rouge_val, {"precision": 0.0, "recall": 0.0, "f1_score": 0.0}, ) def test_update_state(self): rouge = RougeL() y_true_1 = [ "the tiny little cat was found under the big funny bed", "i really love contributing to KerasNLP", ] y_pred_1 = [ "the cat was under the bed", "i love contributing to KerasNLP", ] rouge.update_state(y_true_1, y_pred_1) rouge_val = rouge.result() self.assertAllClose( rouge_val, {"precision": 1.0, "recall": 0.689393, "f1_score": 0.807486}, ) y_true_2 = ["what is your favourite show"] y_pred_2 = ["my favourite show is silicon valley"] rouge.update_state(y_true_2, y_pred_2) rouge_val = rouge.result() self.assertAllClose( rouge_val, {"precision": 0.777777, "recall": 0.592929, "f1_score": 0.659536}, ) def test_get_config(self): rouge = RougeL( use_stemmer=True, dtype="float32", name="rouge_l_test", ) config = rouge.get_config() expected_config_subset = { "use_stemmer": True, } self.assertEqual(config, {**config, **expected_config_subset})
keras-nlp/keras_nlp/metrics/rouge_l_test.py/0
{ "file_path": "keras-nlp/keras_nlp/metrics/rouge_l_test.py", "repo_id": "keras-nlp", "token_count": 2087 }
130
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from keras_nlp.api_export import keras_nlp_export from keras_nlp.backend import keras from keras_nlp.layers.modeling.position_embedding import PositionEmbedding from keras_nlp.layers.modeling.reversible_embedding import ReversibleEmbedding from keras_nlp.layers.modeling.transformer_encoder import TransformerEncoder from keras_nlp.models.backbone import Backbone from keras_nlp.models.bert.bert_presets import backbone_presets from keras_nlp.utils.keras_utils import gelu_approximate from keras_nlp.utils.python_utils import classproperty def bert_kernel_initializer(stddev=0.02): return keras.initializers.TruncatedNormal(stddev=stddev) @keras_nlp_export("keras_nlp.models.BertBackbone") class BertBackbone(Backbone): """A BERT encoder network. This class implements a bi-directional Transformer-based encoder as described in ["BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding"](https://arxiv.org/abs/1810.04805). It includes the embedding lookups and transformer layers, but not the masked language model or next sentence prediction heads. The default constructor gives a fully customizable, randomly initialized BERT encoder with any number of layers, heads, and embedding dimensions. To load preset architectures and weights, use the `from_preset()` constructor. Disclaimer: Pre-trained models are provided on an "as is" basis, without warranties or conditions of any kind. Args: vocabulary_size: int. The size of the token vocabulary. num_layers: int. The number of transformer layers. num_heads: int. The number of attention heads for each transformer. The hidden size must be divisible by the number of attention heads. hidden_dim: int. The size of the transformer encoding and pooler layers. intermediate_dim: int. The output dimension of the first Dense layer in a two-layer feedforward network for each transformer. dropout: float. Dropout probability for the Transformer encoder. max_sequence_length: int. The maximum sequence length that this encoder can consume. If None, `max_sequence_length` uses the value from sequence length. This determines the variable shape for positional embeddings. num_segments: int. The number of types that the 'segment_ids' input can take. dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use for model computations and weights. Note that some computations, such as softmax and layer normalization, will always be done at float32 precision regardless of dtype. Examples: ```python input_data = { "token_ids": np.ones(shape=(1, 12), dtype="int32"), "segment_ids": np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]]), "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]), } # Pretrained BERT encoder. model = keras_nlp.models.BertBackbone.from_preset("bert_base_en_uncased") model(input_data) # Randomly initialized BERT encoder with a custom config. model = keras_nlp.models.BertBackbone( vocabulary_size=30552, num_layers=4, num_heads=4, hidden_dim=256, intermediate_dim=512, max_sequence_length=128, ) model(input_data) ``` """ def __init__( self, vocabulary_size, num_layers, num_heads, hidden_dim, intermediate_dim, dropout=0.1, max_sequence_length=512, num_segments=2, dtype=None, **kwargs, ): # === Layers === self.token_embedding = ReversibleEmbedding( input_dim=vocabulary_size, output_dim=hidden_dim, embeddings_initializer=bert_kernel_initializer(), dtype=dtype, name="token_embedding", ) self.position_embedding = PositionEmbedding( initializer=bert_kernel_initializer(), sequence_length=max_sequence_length, dtype=dtype, name="position_embedding", ) self.segment_embedding = keras.layers.Embedding( input_dim=num_segments, output_dim=hidden_dim, embeddings_initializer=bert_kernel_initializer(), dtype=dtype, name="segment_embedding", ) self.embeddings_add = keras.layers.Add( dtype=dtype, name="embeddings_add", ) self.embeddings_layer_norm = keras.layers.LayerNormalization( axis=-1, epsilon=1e-12, dtype=dtype, name="embeddings_layer_norm", ) self.embeddings_dropout = keras.layers.Dropout( dropout, dtype=dtype, name="embeddings_dropout", ) self.transformer_layers = [] for i in range(num_layers): layer = TransformerEncoder( num_heads=num_heads, intermediate_dim=intermediate_dim, activation=gelu_approximate, dropout=dropout, layer_norm_epsilon=1e-12, kernel_initializer=bert_kernel_initializer(), dtype=dtype, name=f"transformer_layer_{i}", ) self.transformer_layers.append(layer) self.pooled_dense = keras.layers.Dense( hidden_dim, kernel_initializer=bert_kernel_initializer(), activation="tanh", dtype=dtype, name="pooled_dense", ) # === Functional Model === token_id_input = keras.Input( shape=(None,), dtype="int32", name="token_ids" ) segment_id_input = keras.Input( shape=(None,), dtype="int32", name="segment_ids" ) padding_mask_input = keras.Input( shape=(None,), dtype="int32", name="padding_mask" ) # Embed tokens, positions, and segment ids. tokens = self.token_embedding(token_id_input) positions = self.position_embedding(tokens) segments = self.segment_embedding(segment_id_input) # Sum, normalize and apply dropout to embeddings. x = self.embeddings_add((tokens, positions, segments)) x = self.embeddings_layer_norm(x) x = self.embeddings_dropout(x) for transformer_layer in self.transformer_layers: x = transformer_layer(x, padding_mask=padding_mask_input) # Construct the two BERT outputs. The pooled output is a dense layer on # top of the [CLS] token. sequence_output = x cls_token_index = 0 pooled_output = self.pooled_dense(x[:, cls_token_index, :]) super().__init__( inputs={ "token_ids": token_id_input, "segment_ids": segment_id_input, "padding_mask": padding_mask_input, }, outputs={ "sequence_output": sequence_output, "pooled_output": pooled_output, }, **kwargs, ) # === Config === self.vocabulary_size = vocabulary_size self.num_layers = num_layers self.num_heads = num_heads self.hidden_dim = hidden_dim self.intermediate_dim = intermediate_dim self.dropout = dropout self.max_sequence_length = max_sequence_length self.num_segments = num_segments self.cls_token_index = cls_token_index def get_config(self): config = super().get_config() config.update( { "vocabulary_size": self.vocabulary_size, "num_layers": self.num_layers, "num_heads": self.num_heads, "hidden_dim": self.hidden_dim, "intermediate_dim": self.intermediate_dim, "dropout": self.dropout, "max_sequence_length": self.max_sequence_length, "num_segments": self.num_segments, } ) return config @classproperty def presets(cls): return copy.deepcopy(backbone_presets)
keras-nlp/keras_nlp/models/bert/bert_backbone.py/0
{ "file_path": "keras-nlp/keras_nlp/models/bert/bert_backbone.py", "repo_id": "keras-nlp", "token_count": 3906 }
131
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from keras_nlp.backend import ops from keras_nlp.models.bloom.bloom_backbone import BloomBackbone from keras_nlp.tests.test_case import TestCase class BloomBackboneTest(TestCase): def setUp(self): self.init_kwargs = { "vocabulary_size": 10, "num_layers": 2, "num_heads": 4, "hidden_dim": 8, "intermediate_dim": 32, "max_sequence_length": 10, } self.input_data = { "token_ids": ops.ones((2, 5), dtype="int32"), "padding_mask": ops.ones((2, 5), dtype="int32"), } def test_backbone_basics(self): self.run_backbone_test( cls=BloomBackbone, init_kwargs=self.init_kwargs, input_data=self.input_data, expected_output_shape=(2, 5, 8), ) @pytest.mark.large def test_saved_model(self): self.run_model_saving_test( cls=BloomBackbone, init_kwargs=self.init_kwargs, input_data=self.input_data, ) @pytest.mark.large def test_smallest_preset(self): self.run_preset_test( cls=BloomBackbone, preset="bloom_560m_multi", input_data={ "token_ids": ops.array([[101, 1996, 4248, 102]], dtype="int32"), "padding_mask": ops.ones((1, 4), dtype="int32"), }, expected_output_shape=(1, 4, 1024), # The forward pass from a preset should be stable! expected_partial_output=ops.array( [2.4394186, 1.4131186, -2.7810357, -6.330823, -1.0599766] ), ) @pytest.mark.extra_large def test_all_presets(self): for preset in BloomBackbone.presets: self.run_preset_test( cls=BloomBackbone, preset=preset, input_data=self.input_data, )
keras-nlp/keras_nlp/models/bloom/bloom_backbone_test.py/0
{ "file_path": "keras-nlp/keras_nlp/models/bloom/bloom_backbone_test.py", "repo_id": "keras-nlp", "token_count": 1187 }
132
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest from keras_nlp.models.deberta_v3.deberta_v3_masked_lm_preprocessor import ( DebertaV3MaskedLMPreprocessor, ) from keras_nlp.models.deberta_v3.deberta_v3_tokenizer import DebertaV3Tokenizer from keras_nlp.tests.test_case import TestCase class DebertaV3MaskedLMPreprocessorTest(TestCase): def setUp(self): self.tokenizer = DebertaV3Tokenizer( # Generated using create_deberta_v3_test_proto.py proto=os.path.join( self.get_test_data_dir(), "deberta_v3_test_vocab.spm" ) ) self.init_kwargs = { "tokenizer": self.tokenizer, # Simplify our testing by masking every available token. "mask_selection_rate": 1.0, "mask_token_rate": 1.0, "random_token_rate": 0.0, "mask_selection_length": 4, "sequence_length": 12, } self.input_data = ["the quick brown fox"] def test_preprocessor_basics(self): self.run_preprocessor_test( cls=DebertaV3MaskedLMPreprocessor, init_kwargs=self.init_kwargs, input_data=self.input_data, expected_output=( { "token_ids": [[1, 4, 4, 4, 4, 2, 0, 0, 0, 0, 0, 0]], "padding_mask": [[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]], "mask_positions": [[1, 2, 3, 4]], }, [[5, 10, 6, 8]], [[1.0, 1.0, 1.0, 1.0]], ), ) def test_no_masking_zero_rate(self): no_mask_preprocessor = DebertaV3MaskedLMPreprocessor( self.tokenizer, mask_selection_rate=0.0, mask_selection_length=4, sequence_length=12, ) input_data = ["the quick brown fox"] self.assertAllClose( no_mask_preprocessor(input_data), ( { "token_ids": [[1, 5, 10, 6, 8, 2, 0, 0, 0, 0, 0, 0]], "padding_mask": [[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]], "mask_positions": [[0, 0, 0, 0]], }, [[0, 0, 0, 0]], [[0.0, 0.0, 0.0, 0.0]], ), ) @pytest.mark.extra_large def test_all_presets(self): for preset in DebertaV3MaskedLMPreprocessor.presets: self.run_preset_test( cls=DebertaV3MaskedLMPreprocessor, preset=preset, input_data=self.input_data, )
keras-nlp/keras_nlp/models/deberta_v3/deberta_v3_masked_lm_preprocessor_test.py/0
{ "file_path": "keras-nlp/keras_nlp/models/deberta_v3/deberta_v3_masked_lm_preprocessor_test.py", "repo_id": "keras-nlp", "token_count": 1616 }
133
# Copyright 2022 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from keras_nlp.api_export import keras_nlp_export from keras_nlp.backend import keras from keras_nlp.models.f_net.f_net_backbone import FNetBackbone from keras_nlp.models.f_net.f_net_backbone import f_net_kernel_initializer from keras_nlp.models.f_net.f_net_preprocessor import FNetPreprocessor from keras_nlp.models.f_net.f_net_presets import backbone_presets from keras_nlp.models.task import Task from keras_nlp.utils.python_utils import classproperty @keras_nlp_export("keras_nlp.models.FNetClassifier") class FNetClassifier(Task): """An end-to-end f_net model for classification tasks. This model attaches a classification head to a `keras_nlp.model.FNetBackbone` instance, mapping from the backbone outputs to logits suitable for a classification task. For usage of this model with pre-trained weights, use the `from_preset()` constructor. This model can optionally be configured with a `preprocessor` layer, in which case it will automatically apply preprocessing to raw inputs during `fit()`, `predict()`, and `evaluate()`. This is done by default when creating the model with `from_preset()`. Disclaimer: Pre-trained models are provided on an "as is" basis, without warranties or conditions of any kind. Args: backbone: A `keras_nlp.models.FNetBackbone` instance. num_classes: int. Number of classes to predict. preprocessor: A `keras_nlp.models.FNetPreprocessor` or `None`. If `None`, this model will not apply preprocessing, and inputs should be preprocessed before calling the model. activation: Optional `str` or callable. The activation function to use on the model outputs. Set `activation="softmax"` to return output probabilities. Defaults to `None`. hidden_dim: int. The size of the pooler layer. dropout: float. The dropout probability value, applied after the dense layer. Examples: Raw string data. ```python features = ["The quick brown fox jumped.", "I forgot my homework."] labels = [0, 3] # Pretrained classifier. classifier = keras_nlp.models.FNetClassifier.from_preset( "f_net_base_en", num_classes=4, ) classifier.fit(x=features, y=labels, batch_size=2) classifier.predict(x=features, batch_size=2) # Re-compile (e.g., with a new learning rate). classifier.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=keras.optimizers.Adam(5e-5), jit_compile=True, ) # Access backbone programmatically (e.g., to change `trainable`). classifier.backbone.trainable = False # Fit again. classifier.fit(x=features, y=labels, batch_size=2) ``` Preprocessed integer data. ```python features = { "token_ids": np.ones(shape=(2, 12), dtype="int32"), "segment_ids": np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0]] * 2), } labels = [0, 3] # Pretrained classifier without preprocessing. classifier = keras_nlp.models.FNetClassifier.from_preset( "f_net_base_en", num_classes=4, preprocessor=None, ) classifier.fit(x=features, y=labels, batch_size=2) ``` """ def __init__( self, backbone, num_classes, preprocessor=None, activation=None, dropout=0.1, **kwargs, ): # === Layers === self.backbone = backbone self.preprocessor = preprocessor self.output_dropout = keras.layers.Dropout( dropout, dtype=backbone.dtype_policy, name="output_dropout", ) self.output_dense = keras.layers.Dense( num_classes, kernel_initializer=f_net_kernel_initializer(), activation=activation, dtype=backbone.dtype_policy, name="logits", ) # === Functional Model === inputs = backbone.input pooled = backbone(inputs)["pooled_output"] pooled = self.output_dropout(pooled) outputs = self.output_dense(pooled) super().__init__( inputs=inputs, outputs=outputs, **kwargs, ) # === Config === self.num_classes = num_classes self.activation = keras.activations.get(activation) self.dropout = dropout # === Default compilation === logit_output = self.activation == keras.activations.linear self.compile( loss=keras.losses.SparseCategoricalCrossentropy( from_logits=logit_output ), optimizer=keras.optimizers.Adam(5e-5), metrics=[keras.metrics.SparseCategoricalAccuracy()], jit_compile=True, ) def get_config(self): config = super().get_config() config.update( { "num_classes": self.num_classes, "dropout": self.dropout, "activation": keras.activations.serialize(self.activation), } ) return config @classproperty def backbone_cls(cls): return FNetBackbone @classproperty def preprocessor_cls(cls): return FNetPreprocessor @classproperty def presets(cls): return copy.deepcopy(backbone_presets)
keras-nlp/keras_nlp/models/f_net/f_net_classifier.py/0
{ "file_path": "keras-nlp/keras_nlp/models/f_net/f_net_classifier.py", "repo_id": "keras-nlp", "token_count": 2477 }
134
# Copyright 2024 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from absl import logging from keras_nlp.api_export import keras_nlp_export from keras_nlp.backend import ops from keras_nlp.models.gemma.gemma_preprocessor import GemmaPreprocessor from keras_nlp.utils.keras_utils import ( convert_inputs_to_list_of_tensor_segments, ) from keras_nlp.utils.keras_utils import pack_x_y_sample_weight @keras_nlp_export("keras_nlp.models.GemmaCausalLMPreprocessor") class GemmaCausalLMPreprocessor(GemmaPreprocessor): """Gemma Causal LM preprocessor. This preprocessing layer is meant for use with `keras_nlp.models.GemmaCausalLM`. By default, it will take in batches of strings, and return outputs in a `(x, y, sample_weight)` format, where the `y` label is the next token id in the `x` sequence. For use with generation, the layer also exposes two methods `generate_preprocess()` and `generate_postprocess()`. When this preprocessor is attached to a `keras_nlp.models.GemmaCausalLM` instance, these methods will be called implicitly in `generate()`. They can also be called standalone (e.g. to precompute preprocessing inputs for generation in a separate process). Args: tokenizer: A `keras_nlp.models.GemmaTokenizer` instance. sequence_length: The length of the packed inputs. add_start_token: If `True`, the preprocessor will prepend the tokenizer start token to each input sequence. add_end_token: If `True`, the preprocessor will append the tokenizer end token to each input sequence. Call arguments: x: A string, `tf.Tensor` or list of python strings. y: Label data. Should always be `None` as the layer generates labels. sample_weight: Label weights. Should always be `None` as the layer generates label weights. sequence_length: Pass to override the configured `sequence_length` of the layer. Examples: ```python # Load the preprocessor from a preset. preprocessor = keras_nlp.models.GemmaCausalLMPreprocessor.from_preset( "gemma_2b_en" ) # Tokenize and pack a single sentence. preprocessor("The quick brown fox jumped.") # Tokenize a batch of sentences. preprocessor(["The quick brown fox jumped.", "Call me Ishmael."]) # Apply tokenization to a `tf.data.Dataset`. features = tf.constant(["The quick brown fox.", "Call me Ishmael."]) ds = tf.data.Dataset.from_tensor_slices(features) ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE) # Prepare tokens for generation (no end token). preprocessor.generate_preprocess(["The quick brown fox jumped."]) # Map generation outputs back to strings. preprocessor.generate_postprocess({ 'token_ids': np.array([[2, 714, 4320, 8426, 25341, 32292, 235265, 0]]), 'padding_mask': np.array([[ 1, 1, 1, 1, 1, 1, 1, 0]]), }) ``` """ def call( self, x, y=None, sample_weight=None, sequence_length=None, ): if y is not None or sample_weight is not None: logging.warning( "`GemmaCausalLMPreprocessor` generates `y` and `sample_weight` " "based on your input data, but your data already contains `y` " "or `sample_weight`. Your `y` and `sample_weight` will be " "ignored." ) sequence_length = sequence_length or self.sequence_length x = convert_inputs_to_list_of_tensor_segments(x)[0] x = self.tokenizer(x) # Pad with one extra token to account for the truncation below. token_ids, padding_mask = self.packer( x, sequence_length=sequence_length + 1, add_start_value=self.add_start_token, add_end_value=self.add_end_token, ) # The last token does not have a next token, so we truncate it out. x = { "token_ids": token_ids[..., :-1], "padding_mask": padding_mask[..., :-1], } # Target `y` will be the next token. y, sample_weight = token_ids[..., 1:], padding_mask[..., 1:] return pack_x_y_sample_weight(x, y, sample_weight) def generate_preprocess( self, x, sequence_length=None, ): """Covert strings to integer token input for generation. Similar to calling the layer for training, this method takes in strings or tensor strings, tokenizes and packs the input, and computes a padding mask masking all inputs not filled in with a padded value. Unlike calling the layer for training, this method does not compute labels and will never append a `tokenizer.end_token_id` to the end of the sequence (as generation is expected to continue at the end of the inputted prompt). """ if not self.built: self.build(None) x = convert_inputs_to_list_of_tensor_segments(x)[0] x = self.tokenizer(x) token_ids, padding_mask = self.packer( x, sequence_length=sequence_length, add_end_value=False ) return { "token_ids": token_ids, "padding_mask": padding_mask, } def generate_postprocess( self, x, ): """Covert integer token output to strings for generation. This method reverses `generate_preprocess()`, by first removing all padding and start/end tokens, and then converting the integer sequence back to a string. """ if not self.built: self.build(None) token_ids, padding_mask = x["token_ids"], x["padding_mask"] token_ids = ops.convert_to_numpy(token_ids) mask = ops.convert_to_numpy(padding_mask) # Also strip any special tokens during detokenization (e.g. the start # and end markers). In the future we could make this configurable. mask = mask & (token_ids != self.tokenizer.start_token_id) mask = mask & (token_ids != self.tokenizer.pad_token_id) mask = mask & (token_ids != self.tokenizer.end_token_id) token_ids = tf.ragged.boolean_mask(token_ids, mask) return self.tokenizer.detokenize(token_ids)
keras-nlp/keras_nlp/models/gemma/gemma_causal_lm_preprocessor.py/0
{ "file_path": "keras-nlp/keras_nlp/models/gemma/gemma_causal_lm_preprocessor.py", "repo_id": "keras-nlp", "token_count": 2695 }
135
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from keras_nlp.backend import keras from keras_nlp.backend import ops from keras_nlp.layers.modeling.transformer_layer_utils import ( compute_causal_mask, ) from keras_nlp.layers.modeling.transformer_layer_utils import ( merge_padding_and_attention_mask, ) from keras_nlp.models.gpt_neo_x.gpt_neo_x_attention import GPTNeoXAttention from keras_nlp.utils.keras_utils import clone_initializer class GPTNeoXDecoder(keras.layers.Layer): """GPTNeoX decoder. This class follows the architecture of the GPT-NeoX decoder layer in the paper [GPT-NeoX-20B: An Open-Source Autoregressive Language Model](https://arxiv.org/abs/2204.06745). Users can instantiate multiple instances of this class to stack up a decoder. This layer will always apply a causal mask to the decoder attention layer. Args: intermediate_dim: int, the hidden size of feedforward network. num_heads: int, the number of heads for multi-head attention. dropout: float. the dropout value, shared by the multi-head attention and feedforward layers. activation: string or `keras.activations`. the activation function of feedforward network. layer_norm_epsilon: float. The epsilon value in layer normalization components. kernel_initializer: string or `keras.initializers` initializer. The kernel initializer for the dense and multi-head attention layers. bias_initializer: string or `keras.initializers` initializer. The bias initializer for the dense and multi-head attention layers. rotary_max_wavelength: int. The maximum angular wavelength of the sine/cosine curves, for rotary embeddings. rotary_percentage: float. The percentage by which query, key, value matrices are to be rotated. max_sequence_length: int. The maximum sequence length that this encoder can consume. If `None`, `max_sequence_length` uses the value from sequence length. This determines the variable shape for positional embeddings. name: string. The name of the layer. """ def __init__( self, intermediate_dim, num_heads, dropout=0.0, activation="relu", layer_norm_epsilon=1e-5, kernel_initializer="glorot_uniform", bias_initializer="zeros", rotary_percentage=0.25, rotary_max_wavelength=10000, max_sequence_length=512, **kwargs, ): super().__init__(**kwargs) self.intermediate_dim = intermediate_dim self.num_heads = num_heads self.dropout = dropout self.rotary_percentage = rotary_percentage self.rotary_max_wavelength = rotary_max_wavelength self.max_sequence_length = max_sequence_length self.activation = keras.activations.get(activation) self.layer_norm_epsilon = layer_norm_epsilon self.kernel_initializer = keras.initializers.get(kernel_initializer) self.bias_initializer = keras.initializers.get(bias_initializer) self.supports_masking = True self.rotary_percentage = rotary_percentage self._decoder_sequence_shape = None def build(self, decoder_sequence_shape): self._decoder_sequence_shape = decoder_sequence_shape hidden_dim = decoder_sequence_shape[-1] # Self attention layers. self._self_attention_layer = GPTNeoXAttention( num_heads=self.num_heads, hidden_dim=hidden_dim, dropout=self.dropout, rotary_percentage=self.rotary_percentage, rotary_max_wavelength=self.rotary_max_wavelength, max_sequence_length=self.max_sequence_length, kernel_initializer=clone_initializer(self.kernel_initializer), bias_initializer=clone_initializer(self.bias_initializer), dtype=self.dtype_policy, name="self_attention", ) self._self_attention_layer.build(decoder_sequence_shape) self._self_attention_layer_norm = keras.layers.LayerNormalization( epsilon=self.layer_norm_epsilon, dtype=self.dtype_policy, name="self_attention_layer_norm", ) self._self_attention_layer_norm.build(decoder_sequence_shape) self._self_attention_dropout = keras.layers.Dropout( rate=self.dropout, dtype=self.dtype_policy, name="self_attention_dropout", ) # Feedforward layers. self._feedforward_intermediate_dense = keras.layers.Dense( self.intermediate_dim, activation=self.activation, kernel_initializer=clone_initializer(self.kernel_initializer), bias_initializer=clone_initializer(self.bias_initializer), dtype=self.dtype_policy, name="feedforward_intermediate_dense", ) self._feedforward_intermediate_dense.build(decoder_sequence_shape) self._feedforward_output_dense = keras.layers.Dense( hidden_dim, kernel_initializer=clone_initializer(self.kernel_initializer), bias_initializer=clone_initializer(self.bias_initializer), dtype=self.dtype_policy, name="feedforward_output_dense", ) intermediate_shape = list(decoder_sequence_shape) intermediate_shape[-1] = self.intermediate_dim self._feedforward_output_dense.build(tuple(intermediate_shape)) self._feedforward_layer_norm = keras.layers.LayerNormalization( epsilon=self.layer_norm_epsilon, dtype=self.dtype_policy, name="feedforward_layer_norm", ) self._feedforward_layer_norm.build(decoder_sequence_shape) self._feedforward_dropout = keras.layers.Dropout( rate=self.dropout, dtype=self.dtype_policy, name="feedforward_dropout", ) self.built = True def call( self, decoder_sequence, decoder_padding_mask=None, decoder_attention_mask=None, self_attention_cache=None, self_attention_cache_update_index=None, ): self_attention_mask = self._compute_self_attention_mask( decoder_sequence=decoder_sequence, decoder_padding_mask=decoder_padding_mask, decoder_attention_mask=decoder_attention_mask, self_attention_cache=self_attention_cache, self_attention_cache_update_index=self_attention_cache_update_index, ) residual = decoder_sequence x = self._self_attention_layer_norm(decoder_sequence) # Self attention block. x, self_attention_cache = self._self_attention_layer( hidden_states=x, attention_mask=self_attention_mask, cache=self_attention_cache, cache_update_index=self_attention_cache_update_index, ) x = self._self_attention_dropout(x) attention_output = x x = self._feedforward_layer_norm(decoder_sequence) x = self._feedforward_intermediate_dense(x) x = self._feedforward_output_dense(x) feedforward_output = x x = feedforward_output + attention_output + residual if self_attention_cache is not None: return (x, self_attention_cache) else: return x def _compute_self_attention_mask( self, decoder_sequence, decoder_padding_mask, decoder_attention_mask, self_attention_cache=None, self_attention_cache_update_index=None, ): decoder_mask = merge_padding_and_attention_mask( decoder_sequence, decoder_padding_mask, decoder_attention_mask ) batch_size = ops.shape(decoder_sequence)[0] input_length = output_length = ops.shape(decoder_sequence)[1] # We need to handle a rectangular causal mask when doing cached # decoding. For generative inference, `decoder_sequence` will # generally be length 1, and `cache` will be the full generation length. if self_attention_cache is not None: input_length = ops.shape(self_attention_cache)[2] causal_mask = compute_causal_mask( batch_size, input_length, output_length, ( 0 if self_attention_cache_update_index is None else self_attention_cache_update_index ), ) return ( ops.minimum(decoder_mask, causal_mask) if decoder_mask is not None else causal_mask ) def get_config(self): config = super().get_config() config.update( { "intermediate_dim": self.intermediate_dim, "num_heads": self.num_heads, "dropout": self.dropout, "rotary_percentage": self.rotary_percentage, "rotary_max_wavelength": self.rotary_max_wavelength, "max_sequence_length": self.max_sequence_length, "activation": keras.activations.serialize(self.activation), "layer_norm_epsilon": self.layer_norm_epsilon, "kernel_initializer": keras.initializers.serialize( self.kernel_initializer ), "bias_initializer": keras.initializers.serialize( self.bias_initializer ), "decoder_sequence_shape": self._decoder_sequence_shape, } ) return config def compute_output_shape(self, decoder_sequence_shape): return decoder_sequence_shape
keras-nlp/keras_nlp/models/gpt_neo_x/gpt_neo_x_decoder.py/0
{ "file_path": "keras-nlp/keras_nlp/models/gpt_neo_x/gpt_neo_x_decoder.py", "repo_id": "keras-nlp", "token_count": 4534 }
136
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from keras_nlp.backend import ops from keras_nlp.models.mistral.mistral_backbone import MistralBackbone from keras_nlp.tests.test_case import TestCase class MistralBackboneTest(TestCase): def setUp(self): self.init_kwargs = { "vocabulary_size": 10, "num_layers": 2, "num_query_heads": 8, "num_key_value_heads": 4, "hidden_dim": 16, "intermediate_dim": 8, "sliding_window": 2, } self.input_data = { "token_ids": ops.ones((2, 5), dtype="int32"), "padding_mask": ops.ones((2, 5), dtype="int32"), } def test_backbone_basics(self): self.run_backbone_test( cls=MistralBackbone, init_kwargs=self.init_kwargs, input_data=self.input_data, expected_output_shape=(2, 5, 16), ) @pytest.mark.large def test_saved_model(self): self.run_model_saving_test( cls=MistralBackbone, init_kwargs=self.init_kwargs, input_data=self.input_data, ) def test_num_parameters(self): model = MistralBackbone(**self.init_kwargs) # Reference value calculated using the PyTorch model self.assertEqual(model.count_params(), 2704) @pytest.mark.extra_large def test_smallest_preset(self): self.run_preset_test( cls=MistralBackbone, preset="mistral_7b_en", input_data={ "token_ids": ops.array([[1, 1824, 349, 524, 11234, 28804]]), "padding_mask": ops.ones((1, 6), dtype="int32"), }, expected_output_shape=(1, 6, 4096), # The forward pass from a preset should be stable! # Reference values computed using PyTorch HF model. expected_partial_output=ops.array( [-1.6875, 0.5117, -1.7188, 2.3125, -0.0996] ), ) @pytest.mark.extra_large def test_all_presets(self): for preset in MistralBackbone.presets: self.run_preset_test( cls=MistralBackbone, preset=preset, input_data=self.input_data, )
keras-nlp/keras_nlp/models/mistral/mistral_backbone_test.py/0
{ "file_path": "keras-nlp/keras_nlp/models/mistral/mistral_backbone_test.py", "repo_id": "keras-nlp", "token_count": 1315 }
137
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from keras_nlp.models.roberta.roberta_masked_lm_preprocessor import ( RobertaMaskedLMPreprocessor, ) from keras_nlp.models.roberta.roberta_tokenizer import RobertaTokenizer from keras_nlp.tests.test_case import TestCase class RobertaMaskedLMPreprocessorTest(TestCase): def setUp(self): self.vocab = ["<s>", "<pad>", "</s>", "air", "ฤ air", "plane", "ฤ at"] self.vocab += ["port", "<mask>"] self.vocab = dict([(token, i) for i, token in enumerate(self.vocab)]) self.merges = ["ฤ  a", "ฤ  t", "ฤ  i", "ฤ  b", "a i", "p l", "n e"] self.merges += ["ฤ a t", "p o", "r t", "ฤ t h", "ai r", "pl a", "po rt"] self.merges += ["ฤ ai r", "ฤ a i", "pla ne"] self.tokenizer = RobertaTokenizer( vocabulary=self.vocab, merges=self.merges ) self.init_kwargs = { "tokenizer": self.tokenizer, # Simplify our testing by masking every available token. "mask_selection_rate": 1.0, "mask_token_rate": 1.0, "random_token_rate": 0.0, "mask_selection_length": 4, "sequence_length": 12, } self.input_data = [" airplane airport"] def test_preprocessor_basics(self): self.run_preprocessor_test( cls=RobertaMaskedLMPreprocessor, init_kwargs=self.init_kwargs, input_data=self.input_data, expected_output=( { "token_ids": [[0, 8, 8, 8, 8, 2, 1, 1, 1, 1, 1, 1]], "padding_mask": [[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]], "mask_positions": [[1, 2, 3, 4]], }, [[4, 5, 4, 7]], [[1.0, 1.0, 1.0, 1.0]], ), ) def test_no_masking_zero_rate(self): no_mask_preprocessor = RobertaMaskedLMPreprocessor( self.tokenizer, mask_selection_rate=0.0, mask_selection_length=4, sequence_length=12, ) input_data = [" airplane airport"] self.assertAllClose( no_mask_preprocessor(input_data), ( { "token_ids": [[0, 4, 5, 4, 7, 2, 1, 1, 1, 1, 1, 1]], "padding_mask": [[1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0]], "mask_positions": [[0, 0, 0, 0]], }, [[0, 0, 0, 0]], [[0.0, 0.0, 0.0, 0.0]], ), ) @pytest.mark.extra_large def test_all_presets(self): for preset in RobertaMaskedLMPreprocessor.presets: self.run_preset_test( cls=RobertaMaskedLMPreprocessor, preset=preset, input_data=self.input_data, )
keras-nlp/keras_nlp/models/roberta/roberta_masked_lm_preprocessor_test.py/0
{ "file_path": "keras-nlp/keras_nlp/models/roberta/roberta_masked_lm_preprocessor_test.py", "repo_id": "keras-nlp", "token_count": 1710 }
138
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from rich import console as rich_console from rich import markup from rich import table as rich_table from keras_nlp.backend import config from keras_nlp.backend import keras from keras_nlp.utils.keras_utils import print_msg from keras_nlp.utils.pipeline_model import PipelineModel from keras_nlp.utils.preset_utils import check_preset_class from keras_nlp.utils.preset_utils import load_from_preset from keras_nlp.utils.python_utils import classproperty from keras_nlp.utils.python_utils import format_docstring @keras.saving.register_keras_serializable(package="keras_nlp") class Task(PipelineModel): """Base class for Task models.""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._functional_layer_ids = set( id(layer) for layer in self._flatten_layers() ) self._initialized = True def __dir__(self): if config.keras_3(): return super().__dir__() # Temporary fixes for Keras 2 saving. This mimics the following PR for # older version of Keras: https://github.com/keras-team/keras/pull/18982 def filter_fn(attr): if attr in [ "_layer_checkpoint_dependencies", "transformer_layers", "encoder_transformer_layers", "decoder_transformer_layers", ]: return False return id(getattr(self, attr)) not in self._functional_layer_ids return filter(filter_fn, super().__dir__()) def _check_for_loss_mismatch(self, loss): """Check for a softmax/from_logits mismatch after compile. We cannot handle this in the general case, but we can handle this for the extremely common case of a single `SparseCategoricalCrossentropy` loss, and a `None` or `"softmax"` activation. """ # Only handle a single loss. if isinstance(loss, (dict, list, tuple)): return # Only handle tasks with activation. if not hasattr(self, "activation"): return loss = keras.losses.get(loss) activation = keras.activations.get(self.activation) if isinstance(loss, keras.losses.SparseCategoricalCrossentropy): from_logits = loss.get_config()["from_logits"] elif loss == keras.losses.sparse_categorical_crossentropy: from_logits = False else: # Only handle sparse categorical crossentropy. return softmax_output = activation == keras.activations.softmax logit_output = activation == keras.activations.linear if softmax_output and from_logits: raise ValueError( "The `loss` passed to `compile()` expects logit output, but " "the model is configured to output softmax probabilities " "(`activation='softmax'`). This will not converge! Pass " "`from_logits=False` to your loss, e.g. " "`loss=keras.losses.SparseCategoricalCrossentropy(from_logits=False)`. " ) if logit_output and not from_logits: raise ValueError( "The `loss` passed to `compile()` expects softmax probability " "output, but the model is configured to output logits " "(`activation=None`). This will not converge! Pass " "`from_logits=True` to your loss, e.g. " "`loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True)`. " ) def compile(self, optimizer="rmsprop", loss=None, **kwargs): # Temporarily disable jit compilation on torch. if config.backend() == "torch": kwargs["jit_compile"] = False self._check_for_loss_mismatch(loss) super().compile(optimizer=optimizer, loss=loss, **kwargs) def preprocess_samples(self, x, y=None, sample_weight=None): if self.preprocessor is not None: return self.preprocessor(x, y=y, sample_weight=sample_weight) else: return super().preprocess_samples(x, y, sample_weight) def __setattr__(self, name, value): # Work around setattr issues for Keras 2 and Keras 3 torch backend. # Since all our state is covered by functional model we can route # around custom setattr calls. is_property = isinstance(getattr(type(self), name, None), property) is_unitialized = not hasattr(self, "_initialized") is_torch = config.backend() == "torch" is_keras_2 = not config.keras_3() if is_torch and (is_property or is_unitialized): return object.__setattr__(self, name, value) if is_keras_2 and is_unitialized: return object.__setattr__(self, name, value) return super().__setattr__(name, value) @property def backbone(self): """A `keras.Model` instance providing the backbone sub-model.""" return self._backbone @backbone.setter def backbone(self, value): self._backbone = value @property def preprocessor(self): """A `keras.layers.Layer` instance used to preprocess inputs.""" return self._preprocessor @preprocessor.setter def preprocessor(self, value): self._preprocessor = value def get_config(self): # Don't chain to super here. The default `get_config()` for functional # models is nested and cannot be passed to our Task constructors. return { "backbone": keras.layers.serialize(self.backbone), "preprocessor": keras.layers.serialize(self.preprocessor), "name": self.name, } @classmethod def from_config(cls, config): # The default `from_config()` for functional models will return a # vanilla `keras.Model`. We override it to get a subclass instance back. if "backbone" in config and isinstance(config["backbone"], dict): config["backbone"] = keras.layers.deserialize(config["backbone"]) if "preprocessor" in config and isinstance( config["preprocessor"], dict ): config["preprocessor"] = keras.layers.deserialize( config["preprocessor"] ) return cls(**config) @classproperty def backbone_cls(cls): return None @classproperty def preprocessor_cls(cls): return None @classproperty def presets(cls): return {} @classmethod def from_preset( cls, preset, load_weights=True, **kwargs, ): """Instantiate {{model_task_name}} model from preset architecture and weights. Args: preset: string. Must be one of "{{preset_names}}". load_weights: Whether to load pre-trained weights into model. Defaults to `True`. Examples: ```python # Load architecture and weights from preset model = {{model_task_name}}.from_preset("{{example_preset_name}}") # Load randomly initialized model from preset architecture model = {{model_task_name}}.from_preset( "{{example_preset_name}}", load_weights=False ) ``` """ if "backbone" in kwargs: raise ValueError( "You cannot pass a `backbone` argument to the `from_preset` " f"method. Instead, call the {cls.__name__} default " "constructor with a `backbone` argument. " f"Received: backbone={kwargs['backbone']}." ) # We support short IDs for official presets, e.g. `"bert_base_en"`. # Map these to a Kaggle Models handle. if preset in cls.presets: preset = cls.presets[preset]["kaggle_handle"] preset_cls = check_preset_class(preset, (cls, cls.backbone_cls)) # Backbone case. if preset_cls == cls.backbone_cls: # Forward dtype to the backbone. config_overrides = {} if "dtype" in kwargs: config_overrides["dtype"] = kwargs.pop("dtype") backbone = load_from_preset( preset, load_weights=load_weights, config_overrides=config_overrides, ) if "preprocessor" in kwargs: preprocessor = kwargs.pop("preprocessor") else: tokenizer = load_from_preset( preset, config_file="tokenizer.json", ) preprocessor = cls.preprocessor_cls(tokenizer=tokenizer) return cls(backbone=backbone, preprocessor=preprocessor, **kwargs) # Task case. return load_from_preset( preset, load_weights=load_weights, config_overrides=kwargs, ) def __init_subclass__(cls, **kwargs): # Use __init_subclass__ to setup a correct docstring for from_preset. super().__init_subclass__(**kwargs) # If the subclass does not define `from_preset`, assign a wrapper so that # each class can have a distinct docstring. if "from_preset" not in cls.__dict__: def from_preset(calling_cls, *args, **kwargs): return super(cls, calling_cls).from_preset(*args, **kwargs) cls.from_preset = classmethod(from_preset) # Format and assign the docstring unless the subclass has overridden it. if cls.from_preset.__doc__ is None: cls.from_preset.__func__.__doc__ = Task.from_preset.__doc__ format_docstring( model_task_name=cls.__name__, example_preset_name=next(iter(cls.presets), ""), preset_names='", "'.join(cls.presets), )(cls.from_preset.__func__) @property def layers(self): # Remove preprocessor from layers so it does not show up in the summary. layers = super().layers if self.preprocessor and self.preprocessor in layers: layers.remove(self.preprocessor) return layers def summary( self, line_length=None, positions=None, print_fn=None, **kwargs, ): """Override `model.summary()` to show a preprocessor if set.""" # Compat fixes for tf.keras. if not hasattr(self, "compiled"): self.compiled = getattr(self.optimizer, "_is_compiled", False) if ( self.compiled and self.optimizer and not hasattr(self.optimizer, "built") ): self.optimizer.built = getattr(self.optimizer, "_built", False) # Below is copied from keras-core for now. # We should consider an API contract. line_length = line_length or 108 if not print_fn and not keras.utils.is_interactive_logging_enabled(): print_fn = print_msg def highlight_number(x): return f"[color(45)]{x}[/]" if x is None else f"[color(34)]{x}[/]" def highlight_symbol(x): return f"[color(33)]{x}[/]" def bold_text(x): return f"[bold]{x}[/]" if self.preprocessor: # Create a rich console for printing. Capture for non-interactive logging. if print_fn: console = rich_console.Console( highlight=False, force_terminal=False, color_system=None ) console.begin_capture() else: console = rich_console.Console(highlight=False) column_1 = rich_table.Column( "Tokenizer (type)", justify="left", width=int(0.5 * line_length), ) column_2 = rich_table.Column( "Vocab #", justify="right", width=int(0.5 * line_length), ) table = rich_table.Table( column_1, column_2, width=line_length, show_lines=True ) tokenizer = self.preprocessor.tokenizer tokenizer_name = markup.escape(tokenizer.name) tokenizer_class = highlight_symbol( markup.escape(tokenizer.__class__.__name__) ) table.add_row( f"{tokenizer_name} ({tokenizer_class})", highlight_number(f"{tokenizer.vocabulary_size():,}"), ) # Print the to the console. preprocessor_name = markup.escape(self.preprocessor.name) console.print(bold_text(f'Preprocessor: "{preprocessor_name}"')) console.print(table) # Output captured summary for non-interactive logging. if print_fn: print_fn(console.end_capture(), line_break=False) # Avoid `tf.keras.Model.summary()`, so the above output matches. if config.keras_3(): super().summary( line_length=line_length, positions=positions, print_fn=print_fn, **kwargs, ) else: import keras_core keras_core.Model.summary( self, line_length=line_length, positions=positions, print_fn=print_fn, **kwargs, )
keras-nlp/keras_nlp/models/task.py/0
{ "file_path": "keras-nlp/keras_nlp/models/task.py", "repo_id": "keras-nlp", "token_count": 6374 }
139
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from keras_nlp.api_export import keras_nlp_export from keras_nlp.models.roberta import roberta_backbone from keras_nlp.models.xlm_roberta.xlm_roberta_presets import backbone_presets from keras_nlp.utils.python_utils import classproperty @keras_nlp_export("keras_nlp.models.XLMRobertaBackbone") class XLMRobertaBackbone(roberta_backbone.RobertaBackbone): """An XLM-RoBERTa encoder network. This class implements a bi-directional Transformer-based encoder as described in ["Unsupervised Cross-lingual Representation Learning at Scale"](https://arxiv.org/abs/1911.02116). It includes the embedding lookups and transformer layers, but it does not include the masked language modeling head used during pretraining. The default constructor gives a fully customizable, randomly initialized RoBERTa encoder with any number of layers, heads, and embedding dimensions. To load preset architectures and weights, use the `from_preset()` constructor. Disclaimer: Pre-trained models are provided on an "as is" basis, without warranties or conditions of any kind. The underlying model is provided by a third party and subject to a separate license, available [here](https://github.com/facebookresearch/fairseq). Args: vocabulary_size: int. The size of the token vocabulary. num_layers: int. The number of transformer layers. num_heads: int. The number of attention heads for each transformer. The hidden size must be divisible by the number of attention heads. hidden_dim: int. The size of the transformer encoding layer. intermediate_dim: int. The output dimension of the first Dense layer in a two-layer feedforward network for each transformer. dropout: float. Dropout probability for the Transformer encoder. max_sequence_length: int. The maximum sequence length this encoder can consume. The sequence length of the input must be less than `max_sequence_length` default value. This determines the variable shape for positional embeddings. dtype: string or `keras.mixed_precision.DTypePolicy`. The dtype to use for model computations and weights. Note that some computations, such as softmax and layer normalization, will always be done at float32 precision regardless of dtype. Examples: ```python input_data = { "token_ids": np.ones(shape=(1, 12), dtype="int32"), "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]), } # Pretrained XLM-R encoder. model = keras_nlp.models.XLMRobertaBackbone.from_preset( "xlm_roberta_base_multi", ) model(input_data) # Randomly initialized XLM-R model with custom config. model = keras_nlp.models.XLMRobertaBackbone( vocabulary_size=250002, num_layers=4, num_heads=4, hidden_dim=256, intermediate_dim=512, max_sequence_length=128 ) model(input_data) ``` """ @classproperty def presets(cls): return copy.deepcopy(backbone_presets)
keras-nlp/keras_nlp/models/xlm_roberta/xlm_roberta_backbone.py/0
{ "file_path": "keras-nlp/keras_nlp/models/xlm_roberta/xlm_roberta_backbone.py", "repo_id": "keras-nlp", "token_count": 1283 }
140
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import tensorflow as tf from absl.testing import parameterized from keras_nlp.backend import ops from keras_nlp.samplers.top_k_sampler import TopKSampler from keras_nlp.tests.test_case import TestCase class TopKSamplerTest(TestCase): def setUp(self): super().setUp() # Use a simple alphabet of lowercase characters to [0, 26). self.int_lookup = {i: chr(i + ord("a")) for i in range(26)} self.char_lookup = {v: k for k, v in self.int_lookup.items()} self.batch_size = 1 self.length = 12 self.vocab_size = len(self.int_lookup) def next(prompt, cache, index): # Dummy hidden states. hidden_states = ops.ones([self.batch_size, 5]) # Return a distribution favoring the next char in cache. logits = ops.one_hot(cache[:, index], self.vocab_size) * 1e9 return logits, hidden_states, cache self.next = next self.sampler = TopKSampler(k=5, temperature=1.0) def join_as_string(self, x): x = ops.convert_to_numpy(x) return ["".join([self.int_lookup[i] for i in s]) for s in x] def test_stateless_call(self): def next(prompt, cache, index): # Dummy hidden states. hidden_states = ops.ones([self.batch_size, 5]) # Return a distribution favoring the first token in the vocab. logits = ( ops.one_hot( ops.zeros(self.batch_size, dtype="int32"), self.vocab_size, ) * 1e9 ) return logits, hidden_states, cache prompt = ops.full((self.batch_size, self.length), self.char_lookup["z"]) output = self.sampler( next=next, prompt=prompt, index=5, ) self.assertEqual(self.join_as_string(output), ["zzzzzaaaaaaa"]) def test_stateful_call(self): cache_chars = list("sequentially") cache = ops.array([[self.char_lookup[c] for c in cache_chars]]) prompt = ops.full((self.batch_size, self.length), self.char_lookup["z"]) output = self.sampler( next=self.next, prompt=prompt, cache=cache, ) self.assertEqual(self.join_as_string(output), ["sequentially"]) def test_early_stopping(self): cache_chars = list("sequentially") cache = ops.array([[self.char_lookup[c] for c in cache_chars]]) prompt = ops.full((self.batch_size, self.length), self.char_lookup["z"]) output = self.sampler( next=self.next, prompt=prompt, cache=cache, end_token_id=self.char_lookup["t"], ) self.assertEqual(self.join_as_string(output), ["sequentzzzzz"]) def test_outputs_in_top_k(self): def next(prompt, cache, index): # Dummy hidden states. hidden_states = ops.ones([self.batch_size, 5]) # Return a distribution where each id is progressively less likely. logits = ops.arange(self.vocab_size, 0, -1, dtype="float32") logits = ops.repeat(logits[None, :], self.batch_size, axis=0) return logits, hidden_states, cache prompt = ops.full((self.batch_size, self.length), self.char_lookup["z"]) output = self.sampler( next=next, prompt=prompt, ) output_ids = set(ops.convert_to_numpy(output[0])) self.assertContainsSubset(output_ids, range(5)) @parameterized.named_parameters( ("jit_compile_false", False), ("jit_compile_true", True) ) @pytest.mark.tf_only def test_compilation(self, jit_compile): cache_chars = list("sequentially") cache = ops.array([[self.char_lookup[c] for c in cache_chars]]) prompt = ops.full((self.batch_size, self.length), self.char_lookup["z"]) @tf.function(jit_compile=jit_compile) def generate(prompt, cache): return self.sampler(self.next, prompt=prompt, cache=cache) output = generate(prompt, cache) self.assertEqual(self.join_as_string(output), ["sequentially"])
keras-nlp/keras_nlp/samplers/top_k_sampler_test.py/0
{ "file_path": "keras-nlp/keras_nlp/samplers/top_k_sampler_test.py", "repo_id": "keras-nlp", "token_count": 2133 }
141
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Iterable from typing import List import tensorflow as tf from keras_nlp.api_export import keras_nlp_export from keras_nlp.tokenizers import tokenizer from keras_nlp.utils.preset_utils import check_preset_class from keras_nlp.utils.preset_utils import load_from_preset from keras_nlp.utils.python_utils import classproperty from keras_nlp.utils.python_utils import format_docstring from keras_nlp.utils.tensor_utils import assert_tf_text_installed from keras_nlp.utils.tensor_utils import convert_to_ragged_batch from keras_nlp.utils.tensor_utils import is_int_dtype from keras_nlp.utils.tensor_utils import is_string_dtype try: import tensorflow_text as tf_text except ImportError: tf_text = None VOCAB_FILENAME = "vocabulary.txt" # Matches whitespace and control characters. WHITESPACE_REGEX = r"|".join( [ r"\s", # Invisible control characters r"\p{Cc}", r"\p{Cf}", ] ) # Matches punctuation compatible with the original bert implementation. PUNCTUATION_REGEX = r"|".join( [ # Treat all non-letter/number ASCII as punctuation. # Characters such as "^", "$", and "`" are not in the Unicode # Punctuation class but we treat them as punctuation anyways. r"[!-/]", r"[:-@]", r"[\[-`]", r"[{-~]", # Unicode punctuation class. r"[\p{P}]", ] ) # Matches CJK characters. Obtained from # https://github.com/google-research/bert/blob/master/tokenization.py#L251. CJK_REGEX = r"|".join( [ r"[\x{4E00}-\x{9FFF}]", r"[\x{3400}-\x{4DBF}]", r"[\x{20000}-\x{2A6DF}]", r"[\x{2A700}-\x{2B73F}]", r"[\x{2B740}-\x{2B81F}]", r"[\x{2B820}-\x{2CEAF}]", r"[\x{F900}-\x{FAFF}]", r"[\x{2F800}-\x{2FA1F}]", ] ) # Matches both whitespace and punctuation. WHITESPACE_AND_PUNCTUATION_REGEX = r"|".join( [ WHITESPACE_REGEX, PUNCTUATION_REGEX, ] ) # Matches punctuation and CJK characters. PUNCTUATION_AND_CJK_REGEX = r"|".join( [ PUNCTUATION_REGEX, CJK_REGEX, ] ) # Matches whitespace, punctuation, and CJK characters. WHITESPACE_PUNCTUATION_AND_CJK_REGEX = r"|".join( [ WHITESPACE_AND_PUNCTUATION_REGEX, CJK_REGEX, ] ) def pretokenize( text, lowercase=False, strip_accents=True, split=True, split_on_cjk=True, ): """Helper function that takes in a dataset element and pretokenizes it. Args: text: `tf.Tensor` or `tf.RaggedTensor`. Input to be pretokenized. lowercase: bool. If True, the input text will be lowercased before tokenization. Defaults to `True`. strip_accents: bool. If `True`, all accent marks will be removed from text before tokenization. Defaults to `True`. split: bool. If `True`, input will be split on whitespace and punctuation marks, and all punctuation marks will be kept as tokens. If `False`, input should be split ("pre-tokenized") before calling the tokenizer, and passed as a dense or ragged tensor of whole words. Defaults to `True`. split_on_cjk: bool. If `True`, input will be split on CJK characters, i.e., Chinese, Japanese, Korean and Vietnamese characters (https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)). Note that this is applicable only when `split` is `True`. Defaults to `True`. Returns: A tensor containing the pre-processed and pre-tokenized `text`. """ # Check for correct types. if not is_string_dtype(text.dtype): raise ValueError( "The dataset elements in `data` must have string dtype. " f"Received: {text.dtype}." ) # Preprocess, lowercase, strip and split input data. if text.shape.rank == 0: text = tf.expand_dims(text, 0) if split_on_cjk and split: text = tf.strings.regex_replace(text, CJK_REGEX, r" \0 ") if lowercase: text = tf_text.case_fold_utf8(text) if strip_accents: # Normalize unicode to NFD, which splits out accent mark characters. text = tf_text.normalize_utf8(text, "NFD") # Remove the accent marks. text = tf.strings.regex_replace(text, r"\p{Mn}", "") if split: if split_on_cjk: split_pattern = WHITESPACE_PUNCTUATION_AND_CJK_REGEX keep_split_pattern = PUNCTUATION_AND_CJK_REGEX else: split_pattern = WHITESPACE_AND_PUNCTUATION_REGEX keep_split_pattern = PUNCTUATION_REGEX text = tf_text.regex_split( text, delim_regex_pattern=split_pattern, keep_delim_regex_pattern=keep_split_pattern, ) return text @keras_nlp_export("keras_nlp.tokenizers.WordPieceTokenizer") class WordPieceTokenizer(tokenizer.Tokenizer): """A WordPiece tokenizer layer. This layer provides an efficient, in graph, implementation of the WordPiece algorithm used by BERT and other models. To make this layer more useful out of the box, the layer will pre-tokenize the input, which will optionally lower-case, strip accents, and split the input on whitespace and punctuation. Each of these pre-tokenization steps is not reversible. The `detokenize` method will join words with a space, and will not invert `tokenize` exactly. If a more custom pre-tokenization step is desired, the layer can be configured to apply only the strict WordPiece algorithm by passing `lowercase=False`, `strip_accents=False` and `split=False`. In this case, inputs should be pre-split string tensors or ragged tensors. Tokenizer outputs can either be padded and truncated with a `sequence_length` argument, or left un-truncated. The exact output will depend on the rank of the input tensors. If input is a batch of strings (rank > 0): By default, the layer will output a `tf.RaggedTensor` where the last dimension of the output is ragged. If `sequence_length` is set, the layer will output a dense `tf.Tensor` where all inputs have been padded or truncated to `sequence_length`. If input is a scalar string (rank == 0): By default, the layer will output a dense `tf.Tensor` with static shape `[None]`. If `sequence_length` is set, the output will be a dense `tf.Tensor` of shape `[sequence_length]`. The output dtype can be controlled via the `dtype` argument, which should be either an integer or string type. Args: vocabulary: A list of strings or a string filename path. If passing a list, each element of the list should be a single WordPiece token string. If passing a filename, the file should be a plain text file containing a single WordPiece token per line. sequence_length: int. If set, the output will be converted to a dense tensor and padded/trimmed so all outputs are of sequence_length. lowercase: bool. If `True`, the input text will be lowercased before tokenization. Defaults to `False`. strip_accents: bool. If `True`, all accent marks will be removed from text before tokenization. Defaults to `False`. split: bool. If `True`, input will be split on whitespace and punctuation marks, and all punctuation marks will be kept as tokens. If `False`, input should be split ("pre-tokenized") before calling the tokenizer, and passed as a dense or ragged tensor of whole words. Defaults to `True`. split_on_cjk: bool. If True, input will be split on CJK characters, i.e., Chinese, Japanese, Korean and Vietnamese characters (https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)). Note that this is applicable only when `split` is True. Defaults to `True`. suffix_indicator: str. The characters prepended to a WordPiece to indicate that it is a suffix to another subword. E.g. "##ing". Defaults to `"##"`. oov_token: str. The string value to substitute for an unknown token. It must be included in the vocab. Defaults to `"[UNK]"`. References: - [Schuster and Nakajima, 2012](https://research.google/pubs/pub37842/) - [Song et al., 2020](https://arxiv.org/abs/2012.15524) Examples: Ragged outputs. >>> vocab = ["[UNK]", "the", "qu", "##ick", "br", "##own", "fox", "."] >>> inputs = "The quick brown fox." >>> tokenizer = keras_nlp.tokenizers.WordPieceTokenizer( ... vocabulary=vocab, ... lowercase=True, ... ) >>> outputs = tokenizer(inputs) >>> np.array(outputs) array([1, 2, 3, 4, 5, 6, 7], dtype=int32) Dense outputs. >>> vocab = ["[UNK]", "the", "qu", "##ick", "br", "##own", "fox", "."] >>> inputs = ["The quick brown fox."] >>> tokenizer = keras_nlp.tokenizers.WordPieceTokenizer( ... vocabulary=vocab, ... sequence_length=10, ... lowercase=True, ... ) >>> outputs = tokenizer(inputs) >>> np.array(outputs) array([[1, 2, 3, 4, 5, 6, 7, 0, 0, 0]], dtype=int32) String output. >>> vocab = ["[UNK]", "the", "qu", "##ick", "br", "##own", "fox", "."] >>> inputs = "The quick brown fox." >>> tokenizer = keras_nlp.tokenizers.WordPieceTokenizer( ... vocabulary=vocab, ... lowercase=True, ... dtype="string", ... ) >>> outputs = tokenizer(inputs) >>> np.array(outputs).astype("U") array(['the', 'qu', '##ick', 'br', '##own', 'fox', '.'], dtype='<U5') Detokenization. >>> vocab = ["[UNK]", "the", "qu", "##ick", "br", "##own", "fox", "."] >>> inputs = "The quick brown fox." >>> tokenizer = keras_nlp.tokenizers.WordPieceTokenizer( ... vocabulary=vocab, ... lowercase=True, ... ) >>> outputs = tokenizer.detokenize(tokenizer.tokenize(inputs)) >>> np.array(outputs).astype("U") array('the quick brown fox .', dtype='<U21') Custom splitting. >>> vocab = ["[UNK]", "the", "qu", "##ick", "br", "##own", "fox", "."] >>> inputs = "The$quick$brown$fox" >>> tokenizer = keras_nlp.tokenizers.WordPieceTokenizer( ... vocabulary=vocab, ... split=False, ... lowercase=True, ... dtype='string', ... ) >>> split_inputs = tf.strings.split(inputs, sep="$") >>> outputs = tokenizer(split_inputs) >>> np.array(outputs).astype("U") array(['the', 'qu', '##ick', 'br', '##own', 'fox'], dtype='<U5') """ def __init__( self, vocabulary=None, sequence_length: int = None, lowercase: bool = False, strip_accents: bool = False, split: bool = True, split_on_cjk: bool = True, suffix_indicator: str = "##", oov_token: str = "[UNK]", dtype="int32", **kwargs, ) -> None: assert_tf_text_installed(self.__class__.__name__) if not is_int_dtype(dtype) and not is_string_dtype(dtype): raise ValueError( "Output dtype must be an integer type or a string. " f"Received: dtype={dtype}" ) super().__init__(dtype=dtype, **kwargs) if oov_token is None: raise ValueError("`oov_token` cannot be None.") self.sequence_length = sequence_length self.lowercase = lowercase self.strip_accents = strip_accents self.split = split self.split_on_cjk = split_on_cjk self.suffix_indicator = suffix_indicator self.oov_token = oov_token self.set_vocabulary(vocabulary) def save_assets(self, dir_path): path = os.path.join(dir_path, VOCAB_FILENAME) with open(path, "w", encoding="utf-8") as file: for token in self.vocabulary: file.write(f"{token}\n") def load_assets(self, dir_path): path = os.path.join(dir_path, VOCAB_FILENAME) self.set_vocabulary(path) def set_vocabulary(self, vocabulary): """Set the tokenizer vocabulary to a file or list of strings.""" if vocabulary is None: self.vocabulary = None self._fast_word_piece = None return if isinstance(vocabulary, str): with open(vocabulary, "r", encoding="utf-8") as file: self.vocabulary = [line.rstrip() for line in file] elif isinstance(vocabulary, Iterable): # Make a defensive copy. self.vocabulary = list(vocabulary) else: raise ValueError( "Vocabulary must be an file path or list of terms. " f"Received: vocabulary={vocabulary}" ) if self.oov_token not in self.vocabulary: raise ValueError( f'Cannot find `oov_token="{self.oov_token}"` in the ' "vocabulary.\n" "You can either update the vocabulary to include " f'`"{self.oov_token}"`, or pass a different value for ' "the `oov_token` argument when creating the tokenizer." ) self._fast_word_piece = tf_text.FastWordpieceTokenizer( vocab=self.vocabulary, token_out_type=self.compute_dtype, suffix_indicator=self.suffix_indicator, unknown_token=self.oov_token, no_pretokenization=True, support_detokenization=True, ) def get_vocabulary(self) -> List[str]: """Get the tokenizer vocabulary as a list of strings tokens.""" self._check_vocabulary() return self.vocabulary def vocabulary_size(self) -> int: """Get the size of the tokenizer vocabulary.""" self._check_vocabulary() return len(self.vocabulary) def id_to_token(self, id: int) -> str: """Convert an integer id to a string token.""" self._check_vocabulary() if id >= self.vocabulary_size() or id < 0: raise ValueError( f"`id` must be in range [0, {self.vocabulary_size() - 1}]. " f"Received: {id}" ) return self.vocabulary[id] def token_to_id(self, token: str) -> int: """Convert a string token to an integer id.""" # This will be slow, but keep memory usage down compared to building a # . Assuming the main use case is looking up a few special tokens # early in the vocab, this should be fine. self._check_vocabulary() return self.vocabulary.index(token) def get_config(self): config = super().get_config() config.update( { "vocabulary": None, # Save vocabulary via an asset! "sequence_length": self.sequence_length, "lowercase": self.lowercase, "strip_accents": self.strip_accents, "split": self.split, "suffix_indicator": self.suffix_indicator, "oov_token": self.oov_token, } ) return config def _check_vocabulary(self): if self.vocabulary is None: raise ValueError( "No vocabulary has been set for WordPieceTokenizer. Make sure " "to pass a `vocabulary` argument when creating the layer." ) def tokenize(self, inputs): self._check_vocabulary() if not isinstance(inputs, (tf.Tensor, tf.RaggedTensor)): inputs = tf.convert_to_tensor(inputs) scalar_input = inputs.shape.rank == 0 inputs = pretokenize( inputs, self.lowercase, self.strip_accents, self.split, self.split_on_cjk, ) # Apply WordPiece and coerce shape for outputs. tokens = self._fast_word_piece.tokenize(inputs) # By default tf.text tokenizes text with two ragged dimensions (one for # split words and one for split subwords). We will collapse to a single # ragged dimension which is a better out of box default. tokens = tokens.merge_dims(-2, -1) # Convert to a dense output if `sequence_length` is set. if self.sequence_length: output_shape = tokens.shape.as_list() output_shape[-1] = self.sequence_length tokens = tokens.to_tensor(shape=output_shape) # Convert to a dense output if input in scalar if scalar_input: tokens = tf.squeeze(tokens, 0) tf.ensure_shape(tokens, shape=[self.sequence_length]) return tokens def detokenize(self, inputs): self._check_vocabulary() inputs, unbatched, _ = convert_to_ragged_batch(inputs) outputs = self._fast_word_piece.detokenize(inputs) if unbatched: outputs = tf.squeeze(outputs, 0) return outputs @classproperty def presets(cls): return {} @classmethod def from_preset( cls, preset, **kwargs, ): """Instantiate {{model_name}} tokenizer from preset vocabulary. Args: preset: string. Must be one of "{{preset_names}}". Examples: ```python # Load a preset tokenizer. tokenizer = {{model_name}}.from_preset("{{example_preset_name}}") # Tokenize some input. tokenizer("The quick brown fox tripped.") # Detokenize some input. tokenizer.detokenize([5, 6, 7, 8, 9]) ``` """ # We support short IDs for official presets, e.g. `"bert_base_en"`. # Map these to a Kaggle Models handle. if preset in cls.presets: preset = cls.presets[preset]["kaggle_handle"] config_file = "tokenizer.json" check_preset_class(preset, cls, config_file=config_file) return load_from_preset( preset, config_file=config_file, config_overrides=kwargs, ) def __init_subclass__(cls, **kwargs): # Use __init_subclass__ to setup a correct docstring for from_preset. super().__init_subclass__(**kwargs) # If the subclass does not define from_preset, assign a wrapper so that # each class can have a distinct docstring. if "from_preset" not in cls.__dict__: def from_preset(calling_cls, *args, **kwargs): return super(cls, calling_cls).from_preset(*args, **kwargs) cls.from_preset = classmethod(from_preset) # Format and assign the docstring unless the subclass has overridden it. if cls.from_preset.__doc__ is None: cls.from_preset.__func__.__doc__ = ( WordPieceTokenizer.from_preset.__doc__ ) format_docstring( model_name=cls.__name__, example_preset_name=next(iter(cls.presets), ""), preset_names='", "'.join(cls.presets), )(cls.from_preset.__func__)
keras-nlp/keras_nlp/tokenizers/word_piece_tokenizer.py/0
{ "file_path": "keras-nlp/keras_nlp/tokenizers/word_piece_tokenizer.py", "repo_id": "keras-nlp", "token_count": 8559 }
142
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Script to create (and optionally install) a `.whl` archive for KerasNLP. Usage: 1. Create a `.whl` file in `dist/`: ``` python3 pip_build.py ``` 2. Also install the new package immediately after: ``` python3 pip_build.py --install ``` """ import argparse import datetime import glob import os import pathlib import shutil import namex package = "keras_nlp" build_directory = "tmp_build_dir" dist_directory = "dist" to_copy = [ "setup.py", "setup.cfg", "README.md", ] def ignore_files(_, filenames): return [f for f in filenames if "_test" in f] def export_version_string(version, is_nightly=False): """Export Version and Package Name.""" if is_nightly: date = datetime.datetime.now() version += f".dev{date.strftime('%Y%m%d%H')}" # Replaces `name="keras-nlp"` in `setup.py` with `keras-nlp-nightly` with open("setup.py") as f: setup_contents = f.read() with open("setup.py", "w") as f: setup_contents = setup_contents.replace( 'name="keras-nlp"', 'name="keras-nlp-nightly"' ) setup_contents = setup_contents.replace( '"tensorflow-text', '"tf-nightly", "tensorflow-text-nightly' ) f.write(setup_contents) # Overwrite the version string with our package version. with open(os.path.join(package, "src", "version_utils.py")) as f: version_contents = f.readlines() with open(os.path.join(package, "src", "version_utils.py"), "w") as f: for line in version_contents: if line.startswith("__version__"): f.write(f'__version__ = "{version}"\n') else: f.write(line) # Make sure to export the __version__ string. with open(os.path.join(package, "__init__.py")) as f: init_contents = f.read() with open(os.path.join(package, "__init__.py"), "w") as f: f.write(init_contents) f.write("from keras_nlp.src.version_utils import __version__\n") def copy_source_to_build_directory(root_path): # Copy sources (`keras_nlp/` directory and setup files) to build dir os.chdir(root_path) os.mkdir(build_directory) shutil.copytree( package, os.path.join(build_directory, package), ignore=ignore_files ) for fname in to_copy: shutil.copy(fname, os.path.join(f"{build_directory}", fname)) os.chdir(build_directory) def run_namex_conversion(): # Restructure the codebase so that source files live in `keras_nlp/src` namex.convert_codebase(package, code_directory="src") # Generate API __init__.py files in `keras_nlp/` namex.generate_api_files(package, code_directory="src", verbose=True) def build_and_save_output(root_path, __version__): """Build the package.""" os.system("python3 -m build") # Save the dist files generated by the build process os.chdir(root_path) if not os.path.exists(dist_directory): os.mkdir(dist_directory) for fpath in glob.glob( os.path.join(build_directory, dist_directory, "*.*") ): shutil.copy(fpath, dist_directory) # Find the .whl file path whl_path = None for fname in os.listdir(dist_directory): if __version__ in fname and fname.endswith(".whl"): whl_path = os.path.abspath(os.path.join(dist_directory, fname)) if whl_path: print(f"Build successful. Wheel file available at {whl_path}") else: print("Build failed.") return whl_path def build(root_path, is_nightly=False): if os.path.exists(build_directory): raise ValueError(f"Directory already exists: {build_directory}") try: copy_source_to_build_directory(root_path) run_namex_conversion() # Make sure to export the __version__ string from keras_nlp.src import __version__ # noqa: E402 export_version_string(__version__, is_nightly) return build_and_save_output(root_path, __version__) finally: # Clean up: remove the build directory (no longer needed) shutil.rmtree(build_directory) def install_whl(whl_fpath): print("Installing wheel file.") os.system(f"pip3 install {whl_fpath} --force-reinstall --no-dependencies") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--install", action="store_true", help="Whether to install the generated wheel file.", ) parser.add_argument( "--nightly", action="store_true", help="Whether to generate nightly wheel file.", ) args = parser.parse_args() root_path = pathlib.Path(__file__).parent.resolve() whl_path = build(root_path, args.nightly) if whl_path and args.install: install_whl(whl_path)
keras-nlp/pip_build.py/0
{ "file_path": "keras-nlp/pip_build.py", "repo_id": "keras-nlp", "token_count": 2198 }
143
<jupyter_start><jupyter_text>Install deps<jupyter_code>!pip install git+https://github.com/jbischof/keras-nlp.git@bert_ckpt tensorflow tf-models-official --upgrade --quiet import json import keras_nlp import tensorflow as tf import tensorflow_models as tfm from tensorflow import keras TOKEN_TYPE = "uncased" MODEL_TYPE = "bert_base" MODEL_NAME = MODEL_TYPE + "_" + TOKEN_TYPE VOCAB_SIZE = 30522<jupyter_output><empty_output><jupyter_text>Load the model garden checkpoints and weights<jupyter_code># Model garden BERT paths. zip_path = f"""https://storage.googleapis.com/tf_model_garden/nlp/bert/v3/{TOKEN_TYPE}_L-12_H-768_A-12.tar.gz""" zip_file = keras.utils.get_file( f"""/content/{MODEL_NAME}""", zip_path, extract=True, archive_format="tar", ) !tar -xvf """{MODEL_NAME}""" # Model garden BERT paths. extract_dir = "/content/tmp/temp_dir/raw/" vocab_path = extract_dir + "vocab.txt" checkpoint_path = extract_dir + "bert_model.ckpt" config_path = extract_dir + "bert_config.json" vars = tf.train.list_variables(checkpoint_path) weights = {} for name, shape in vars: print(name, shape) weight = tf.train.load_variable(checkpoint_path, name) weights[name] = weight<jupyter_output>_CHECKPOINTABLE_OBJECT_GRAPH [] encoder/layer_with_weights-0/embeddings/.ATTRIBUTES/VARIABLE_VALUE [30522, 768] encoder/layer_with_weights-1/embeddings/.ATTRIBUTES/VARIABLE_VALUE [512, 768] encoder/layer_with_weights-10/_attention_layer/_key_dense/bias/.ATTRIBUTES/VARIABLE_VALUE [12, 64] encoder/layer_with_weights-10/_attention_layer/_key_dense/kernel/.ATTRIBUTES/VARIABLE_VALUE [768, 12, 64] encoder/layer_with_weights-10/_attention_layer/_query_dense/bias/.ATTRIBUTES/VARIABLE_VALUE [12, 64] encoder/layer_with_weights-10/_attention_layer/_query_dense/kernel/.ATTRIBUTES/VARIABLE_VALUE [768, 12, 64] encoder/layer_with_weights-10/_attention_layer/_value_dense/bias/.ATTRIBUTES/VARIABLE_VALUE [12, 64] encoder/layer_with_weights-10/_attention_layer/_value_dense/kernel/.ATTRIBUTES/VARIABLE_VALUE [768, 12, 64] encoder/layer_with_weights-10/_attention_layer_norm/beta/.ATTRIBUTES/VARIABLE_VALUE [768] encoder/layer_with_weights-10/_attention_layer_norm/gamma/.ATTRIBUTES/VARIABLE_VALUE [768] encode[...]<jupyter_text>Load BertBase model with KerasNLP.<jupyter_code>model = keras_nlp.models.BertBase(vocabulary_size=VOCAB_SIZE) model.summary()<jupyter_output>Model: "bert" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== token_ids (InputLayer) [(None, None)] 0 [] token_embedding (Embedding) (None, None, 768) 23440896 ['token_ids[0][0]'] segment_ids (InputLayer) [(None, None)] 0 [] position_embedding (PositionEm (None, None, 768) 393216 ['token_embedding[0][0]'] [...]<jupyter_text>Convert Weights<jupyter_code>model.get_layer("token_embedding").embeddings.assign( weights[ "encoder/layer_with_weights-0/embeddings/.ATTRIBUTES/VARIABLE_VALUE" ] ) model.get_layer("position_embedding").position_embeddings.assign( weights[ "encoder/layer_with_weights-1/embeddings/.ATTRIBUTES/VARIABLE_VALUE" ] ) model.get_layer("segment_embedding").embeddings.assign( weights[ "encoder/layer_with_weights-2/embeddings/.ATTRIBUTES/VARIABLE_VALUE" ] ) model.get_layer("embeddings_layer_norm").gamma.assign( weights["encoder/layer_with_weights-3/gamma/.ATTRIBUTES/VARIABLE_VALUE"] ) model.get_layer("embeddings_layer_norm").beta.assign( weights["encoder/layer_with_weights-3/beta/.ATTRIBUTES/VARIABLE_VALUE"] ) for i in range(model.num_layers): model.get_layer( f"transformer_layer_{i}" )._self_attention_layer._key_dense.kernel.assign( weights[ f"encoder/layer_with_weights-{i + 4}/_attention_layer/_key_dense/kernel/.ATTRIBUTES/VARIABLE_VALUE" ] ) model.get_layer( f"transformer_layer_{i}" )._self_attention_layer._key_dense.bias.assign( weights[ f"encoder/layer_with_weights-{i + 4}/_attention_layer/_key_dense/bias/.ATTRIBUTES/VARIABLE_VALUE" ] ) model.get_layer( f"transformer_layer_{i}" )._self_attention_layer._query_dense.kernel.assign( weights[ f"encoder/layer_with_weights-{i + 4}/_attention_layer/_query_dense/kernel/.ATTRIBUTES/VARIABLE_VALUE" ] ) model.get_layer( f"transformer_layer_{i}" )._self_attention_layer._query_dense.bias.assign( weights[ f"encoder/layer_with_weights-{i + 4}/_attention_layer/_query_dense/bias/.ATTRIBUTES/VARIABLE_VALUE" ] ) model.get_layer( f"transformer_layer_{i}" )._self_attention_layer._value_dense.kernel.assign( weights[ f"encoder/layer_with_weights-{i + 4}/_attention_layer/_value_dense/kernel/.ATTRIBUTES/VARIABLE_VALUE" ] ) model.get_layer( f"transformer_layer_{i}" )._self_attention_layer._value_dense.bias.assign( weights[ f"encoder/layer_with_weights-{i + 4}/_attention_layer/_value_dense/bias/.ATTRIBUTES/VARIABLE_VALUE" ] ) model.get_layer( f"transformer_layer_{i}" )._self_attention_layer._output_dense.kernel.assign( weights[ f"encoder/layer_with_weights-{i + 4}/_attention_output_dense/kernel/.ATTRIBUTES/VARIABLE_VALUE" ] ) model.get_layer( f"transformer_layer_{i}" )._self_attention_layer._output_dense.bias.assign( weights[ f"encoder/layer_with_weights-{i + 4}/_attention_output_dense/bias/.ATTRIBUTES/VARIABLE_VALUE" ] ) model.get_layer( f"transformer_layer_{i}" )._self_attention_layer_norm.gamma.assign( weights[ f"encoder/layer_with_weights-{i + 4}/_attention_layer_norm/gamma/.ATTRIBUTES/VARIABLE_VALUE" ] ) model.get_layer( f"transformer_layer_{i}" )._self_attention_layer_norm.beta.assign( weights[ f"encoder/layer_with_weights-{i + 4}/_attention_layer_norm/beta/.ATTRIBUTES/VARIABLE_VALUE" ] ) model.get_layer( f"transformer_layer_{i}" )._feedforward_intermediate_dense.kernel.assign( weights[ f"encoder/layer_with_weights-{i + 4}/_intermediate_dense/kernel/.ATTRIBUTES/VARIABLE_VALUE" ] ) model.get_layer( f"transformer_layer_{i}" )._feedforward_intermediate_dense.bias.assign( weights[ f"encoder/layer_with_weights-{i + 4}/_intermediate_dense/bias/.ATTRIBUTES/VARIABLE_VALUE" ] ) model.get_layer( f"transformer_layer_{i}" )._feedforward_output_dense.kernel.assign( weights[ f"encoder/layer_with_weights-{i + 4}/_output_dense/kernel/.ATTRIBUTES/VARIABLE_VALUE" ] ) model.get_layer( f"transformer_layer_{i}" )._feedforward_output_dense.bias.assign( weights[ f"encoder/layer_with_weights-{i + 4}/_output_dense/bias/.ATTRIBUTES/VARIABLE_VALUE" ] ) model.get_layer( f"transformer_layer_{i}" )._feedforward_layer_norm.gamma.assign( weights[ f"encoder/layer_with_weights-{i + 4}/_output_layer_norm/gamma/.ATTRIBUTES/VARIABLE_VALUE" ] ) model.get_layer( f"transformer_layer_{i}" )._feedforward_layer_norm.beta.assign( weights[ f"encoder/layer_with_weights-{i + 4}/_output_layer_norm/beta/.ATTRIBUTES/VARIABLE_VALUE" ] ) model.get_layer("pooled_dense").kernel.assign( weights["next_sentence..pooler_dense/kernel/.ATTRIBUTES/VARIABLE_VALUE"] ) model.get_layer("pooled_dense").bias.assign( weights["next_sentence..pooler_dense/bias/.ATTRIBUTES/VARIABLE_VALUE"] ) pass<jupyter_output><empty_output><jupyter_text>Compare Output<jupyter_code>def preprocess(x): tokenizer = keras_nlp.tokenizers.WordPieceTokenizer( vocabulary=vocab_path, ) packer = keras_nlp.layers.MultiSegmentPacker( sequence_length=model.max_sequence_length, start_value=tokenizer.token_to_id("[CLS]"), end_value=tokenizer.token_to_id("[SEP]"), ) return packer(tokenizer(x)) token_ids, segment_ids = preprocess(["the quick brown fox."]) encoder_config = tfm.nlp.encoders.EncoderConfig( type="bert", bert=json.load(tf.io.gfile.GFile(config_path)), ) mg_model = tfm.nlp.encoders.build_encoder(encoder_config) checkpoint = tf.train.Checkpoint(encoder=mg_model) checkpoint.read(checkpoint_path).assert_consumed() keras_nlp_output = model( { "token_ids": token_ids, "segment_ids": segment_ids, "padding_mask": token_ids != 0, } )["pooled_output"] mg_output = mg_model( { "input_word_ids": token_ids, "input_type_ids": segment_ids, "padding_mask": token_ids != 0, } )["pooled_output"] keras_nlp_output[0, 0:10] mg_output[0, 0:10] # Very close! Though not 100% exact. tf.reduce_mean(keras_nlp_output - mg_output) # Save BertBase checkpoint model.save_weights(f"""{MODEL_NAME}.h5""") model2 = keras_nlp.models.BertBase(vocabulary_size=VOCAB_SIZE) model2.load_weights(f"""{MODEL_NAME}.h5""") # Same output from loaded checkpoint keras_nlp_output2 = model2( { "token_ids": token_ids, "segment_ids": segment_ids, "padding_mask": token_ids != 0, } )["pooled_output"] tf.reduce_mean(keras_nlp_output - keras_nlp_output2) # Save vocab file as well vocab_info = tf.io.gfile.GFile(vocab_path).read() f = open("vocab.txt", "w") f.write(vocab_info) # Get MD5 of model !md5sum """{MODEL_NAME}.h5""" # Upload model to drive # from google.colab import drive # drive.mount('/content/drive') # Check uploaded model once added to repo model_cloud = keras_nlp.models.BertBase(weights=MODEL_NAME) # Same output from cloud model keras_nlp_output_cloud = model_cloud( { "token_ids": token_ids, "segment_ids": segment_ids, "padding_mask": token_ids != 0, } )["pooled_output"] tf.reduce_mean(keras_nlp_output - keras_nlp_output_cloud) keras_nlp_output_cloud[0, 0:10]<jupyter_output><empty_output>
keras-nlp/tools/checkpoint_conversion/bert_base_uncased.ipynb/0
{ "file_path": "keras-nlp/tools/checkpoint_conversion/bert_base_uncased.ipynb", "repo_id": "keras-nlp", "token_count": 5039 }
144
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch from transformers import AutoModel from keras_nlp.models.llama.llama_backbone import LlamaBackbone os.environ["KERAS_BACKEND"] = "torch" # from huggingface_hub import login # llama weights as of now are on request access # login(token='<your_huggingface_token') PRESET_NAME = "Llama-2-7b-hf" PRESET = "meta-llama/Llama-2-7b-hf" EXTRACT_DIR = "./{}" extract_dir = EXTRACT_DIR.format(PRESET_NAME) if not os.path.exists(extract_dir): os.makedirs(extract_dir) hf_model = AutoModel.from_pretrained(PRESET, use_auth_token=True) hf_config = hf_model.config.to_dict() hf_model.eval() hf_wts = hf_model.state_dict() cfg = {} cfg["vocabulary_size"] = hf_config["vocab_size"] cfg["num_layers"] = hf_config["num_hidden_layers"] cfg["num_heads"] = hf_config["num_attention_heads"] cfg["hidden_dim"] = hf_config["hidden_size"] cfg["intermediate_dim"] = hf_config["intermediate_size"] cfg["max_sequence_length"] = hf_config["max_position_embeddings"] cfg["rope_scaling_type"] = hf_config["rope_scaling"] cfg["layer_norm_epsilon"] = hf_config["rms_norm_eps"] cfg["num_key_value_heads"] = hf_config["num_key_value_heads"] keras_model = LlamaBackbone(**cfg) keras_model.get_layer("token_embedding").embeddings.assign( hf_wts["embed_tokens.weight"] ) for ilayer in range(cfg["num_layers"]): # attention layer keras_model.get_layer( f"transformer_layer_{ilayer}" )._self_attention_layer._query_dense.kernel.assign( hf_wts[f"layers.{ilayer}.self_attn.q_proj.weight"] .numpy() .T.reshape((cfg["hidden_dim"], cfg["num_heads"], -1)) ) keras_model.get_layer( f"transformer_layer_{ilayer}" )._self_attention_layer._key_dense.kernel.assign( hf_wts[f"layers.{ilayer}.self_attn.k_proj.weight"] .numpy() .T.reshape((cfg["hidden_dim"], cfg["num_key_value_heads"], -1)) ) keras_model.get_layer( f"transformer_layer_{ilayer}" )._self_attention_layer._value_dense.kernel.assign( hf_wts[f"layers.{ilayer}.self_attn.v_proj.weight"] .numpy() .T.reshape((cfg["hidden_dim"], cfg["num_key_value_heads"], -1)) ) keras_model.get_layer( f"transformer_layer_{ilayer}" )._self_attention_layer._output_dense.kernel.assign( hf_wts[f"layers.{ilayer}.self_attn.o_proj.weight"].numpy().T ) # MLP keras_model.get_layer( f"transformer_layer_{ilayer}" )._feedforward_intermediate_dense.kernel.assign( hf_wts[f"layers.{ilayer}.mlp.up_proj.weight"].numpy().T ) keras_model.get_layer( f"transformer_layer_{ilayer}" )._feedforward_gate_dense.kernel.assign( hf_wts[f"layers.{ilayer}.mlp.gate_proj.weight"].numpy().T ) keras_model.get_layer( f"transformer_layer_{ilayer}" )._feedforward_output_dense.kernel.assign( hf_wts[f"layers.{ilayer}.mlp.down_proj.weight"].numpy().T ) # LAYERNORM keras_model.get_layer( f"transformer_layer_{ilayer}" )._self_attention_layernorm.weight.assign( hf_wts[f"layers.{ilayer}.input_layernorm.weight"] ) keras_model.get_layer( f"transformer_layer_{ilayer}" )._feedforward_layernorm.weight.assign( hf_wts[f"layers.{ilayer}.post_attention_layernorm.weight"] ) keras_model.get_layer("layer_norm").gamma.assign(hf_wts["norm.weight"]) token_ids = [1, 2181, 8522, 338] padding_mask = [1, 1, 1, 1] keras_inputs = { "token_ids": torch.tensor([token_ids]), "padding_mask": torch.tensor([padding_mask]), } with torch.no_grad(): keras_outputs = keras_model(keras_inputs) print("Keras output = ", keras_outputs.numpy())
keras-nlp/tools/checkpoint_conversion/convert_llama_checkpoints.py/0
{ "file_path": "keras-nlp/tools/checkpoint_conversion/convert_llama_checkpoints.py", "repo_id": "keras-nlp", "token_count": 1841 }
145
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import keras_nlp # List directories of parsed Wikipedia articles and vocab sizes directories = [ "eswiki_parsed", "frwiki_parsed", "hiwiki_parsed", "arwiki_parsed", "ruwiki_parsed", "bnwiki_parsed", "idwiki_parsed", "ptwiki_parsed", ] vocab_sizes = [20000, 50000] identifier = "v1" # Runs the computation for directory in directories: for vocab_size in vocab_sizes: print(f"Running directory {directory} with vocab size {vocab_size}") files = [] for folder in os.listdir(directory): path = os.path.join(directory, folder) for file in os.listdir(path): if file[0] != ".": files.append(os.path.join(path, file)) if os.path.exists(f"{directory}_{vocab_size}_{identifier}.txt"): raise ValueError("already done.") start = time.time() keras_nlp.tokenizers.compute_word_piece_vocabulary( files, vocabulary_size=vocab_size, lowercase=False, strip_accents=False, vocabulary_output_file=f"{directory}_{vocab_size}_{identifier}.txt", ) end = time.time() print("Time taken:", end - start)
keras-nlp/tools/pretrained_tokenizers/word_piece_training_script.py/0
{ "file_path": "keras-nlp/tools/pretrained_tokenizers/word_piece_training_script.py", "repo_id": "keras-nlp", "token_count": 737 }
146
# Keras Preprocessing โš ๏ธ This GitHub repository is now deprecated -- all Keras Preprocessing symbols have moved into the core Keras [repository](https://github.com/keras-team/keras) and the TensorFlow [`pip` package](https://www.tensorflow.org/install). All code changes and discussion should move to the Keras repository. For users looking for a place to start preprocessing data, consult the [preprocessing layers guide](https://keras.io/guides/preprocessing_layers/) and refer to the [data loading utilities API](https://keras.io/api/data_loading/).
keras-preprocessing/README.md/0
{ "file_path": "keras-preprocessing/README.md", "repo_id": "keras-preprocessing", "token_count": 156 }
147
import os import shutil import tempfile import numpy as np import pytest from PIL import Image from keras_preprocessing.image import image_data_generator @pytest.fixture(scope='module') def all_test_images(): img_w = img_h = 20 rgb_images = [] rgba_images = [] gray_images = [] gray_images_16bit = [] gray_images_32bit = [] for n in range(8): bias = np.random.rand(img_w, img_h, 1) * 64 variance = np.random.rand(img_w, img_h, 1) * (255 - 64) # RGB imarray = np.random.rand(img_w, img_h, 3) * variance + bias im = Image.fromarray(imarray.astype('uint8')).convert('RGB') rgb_images.append(im) # RGBA imarray = np.random.rand(img_w, img_h, 4) * variance + bias im = Image.fromarray(imarray.astype('uint8')).convert('RGBA') rgba_images.append(im) # 8-bit grayscale imarray = np.random.rand(img_w, img_h, 1) * variance + bias im = Image.fromarray(imarray.astype('uint8').squeeze()).convert('L') gray_images.append(im) # 16-bit grayscale imarray = np.array( np.random.randint(-2147483648, 2147483647, (img_w, img_h)) ) im = Image.fromarray(imarray.astype('uint16')) gray_images_16bit.append(im) # 32-bit grayscale im = Image.fromarray(imarray.astype('uint32')) gray_images_32bit.append(im) return [rgb_images, rgba_images, gray_images, gray_images_16bit, gray_images_32bit] def test_directory_iterator(all_test_images, tmpdir): num_classes = 2 # create folders and subfolders paths = [] for cl in range(num_classes): class_directory = 'class-{}'.format(cl) classpaths = [ class_directory, os.path.join(class_directory, 'subfolder-1'), os.path.join(class_directory, 'subfolder-2'), os.path.join(class_directory, 'subfolder-1', 'sub-subfolder') ] for path in classpaths: tmpdir.join(path).mkdir() paths.append(classpaths) # save the images in the paths count = 0 filenames = [] for test_images in all_test_images: for im in test_images: # rotate image class im_class = count % num_classes # rotate subfolders classpaths = paths[im_class] filename = os.path.join( classpaths[count % len(classpaths)], 'image-{}.png'.format(count)) filenames.append(filename) im.save(str(tmpdir / filename)) count += 1 # create iterator generator = image_data_generator.ImageDataGenerator() dir_iterator = generator.flow_from_directory(str(tmpdir)) # check number of classes and images assert len(dir_iterator.class_indices) == num_classes assert len(dir_iterator.classes) == count assert set(dir_iterator.filenames) == set(filenames) # Test invalid use cases with pytest.raises(ValueError): generator.flow_from_directory(str(tmpdir), color_mode='cmyk') with pytest.raises(ValueError): generator.flow_from_directory(str(tmpdir), class_mode='output') def preprocessing_function(x): """This will fail if not provided by a Numpy array. Note: This is made to enforce backward compatibility. """ assert x.shape == (26, 26, 3) assert type(x) is np.ndarray return np.zeros_like(x) # Test usage as Sequence generator = image_data_generator.ImageDataGenerator( preprocessing_function=preprocessing_function) dir_seq = generator.flow_from_directory(str(tmpdir), target_size=(26, 26), color_mode='rgb', batch_size=3, class_mode='categorical') assert len(dir_seq) == np.ceil(count / 3.) x1, y1 = dir_seq[1] assert x1.shape == (3, 26, 26, 3) assert y1.shape == (3, num_classes) x1, y1 = dir_seq[5] assert (x1 == 0).all() with pytest.raises(ValueError): x1, y1 = dir_seq[14] # there are 40 images and batch size is 3 def test_directory_iterator_class_mode_input(all_test_images, tmpdir): tmpdir.join('class-1').mkdir() # save the images in the paths count = 0 for test_images in all_test_images: for im in test_images: filename = str( tmpdir / 'class-1' / 'image-{}.png'.format(count)) im.save(filename) count += 1 # create iterator generator = image_data_generator.ImageDataGenerator() dir_iterator = generator.flow_from_directory(str(tmpdir), class_mode='input') batch = next(dir_iterator) # check if input and output have the same shape assert(batch[0].shape == batch[1].shape) # check if the input and output images are not the same numpy array input_img = batch[0][0] output_img = batch[1][0] output_img[0][0][0] += 1 assert(input_img[0][0][0] != output_img[0][0][0]) @pytest.mark.parametrize('validation_split,num_training', [ (0.25, 30), (0.50, 20), (0.75, 10), ]) def test_directory_iterator_with_validation_split(all_test_images, validation_split, num_training): num_classes = 2 tmp_folder = tempfile.mkdtemp(prefix='test_images') # create folders and subfolders paths = [] for cl in range(num_classes): class_directory = 'class-{}'.format(cl) classpaths = [ class_directory, os.path.join(class_directory, 'subfolder-1'), os.path.join(class_directory, 'subfolder-2'), os.path.join(class_directory, 'subfolder-1', 'sub-subfolder') ] for path in classpaths: os.mkdir(os.path.join(tmp_folder, path)) paths.append(classpaths) # save the images in the paths count = 0 filenames = [] for test_images in all_test_images: for im in test_images: # rotate image class im_class = count % num_classes # rotate subfolders classpaths = paths[im_class] filename = os.path.join( classpaths[count % len(classpaths)], 'image-{}.png'.format(count)) filenames.append(filename) im.save(os.path.join(tmp_folder, filename)) count += 1 # create iterator generator = image_data_generator.ImageDataGenerator( validation_split=validation_split ) with pytest.raises(ValueError): generator.flow_from_directory(tmp_folder, subset='foo') train_iterator = generator.flow_from_directory(tmp_folder, subset='training') assert train_iterator.samples == num_training valid_iterator = generator.flow_from_directory(tmp_folder, subset='validation') assert valid_iterator.samples == count - num_training # check number of classes and images assert len(train_iterator.class_indices) == num_classes assert len(train_iterator.classes) == num_training assert len(set(train_iterator.filenames) & set(filenames)) == num_training shutil.rmtree(tmp_folder) if __name__ == '__main__': pytest.main([__file__])
keras-preprocessing/tests/image/directory_iterator_test.py/0
{ "file_path": "keras-preprocessing/tests/image/directory_iterator_test.py", "repo_id": "keras-preprocessing", "token_count": 3508 }
148
# Release v1.4.7 ## Bug fixes ## New features # Release v1.4.6 ## Bug fixes * When running in parallel, the chief may exit before some client ask for another trial, which informs the client to exit. Now, it is fixed. ## New features * Updated the dependency from `keras-core` to `keras` version 3 and above. Also support `keras` version 2 for backward compatibility. # Release v1.4.5 ## Bug fixes * When running in parallel, the client oracle used to wait forever when the chief oracle is not responding. Now, it is fixed. * When running in parallel, the client would call the chief after calling `oracle.end_trial()`, when the chief have already ended. Now, it is fixed. * When running in parallel, the chief used to start to block in `tuner.__init__()`. However, it makes more sense to block when calling `tuner.search()`. Now, it is fixed. * Could not do `from keras_tuner.engine.hypermodel import HyperModel`. It is now fixed. * Could not do `from keras_tuner.engine.hyperparameters import HyperParameters`. It is now fixed. * Could not do `from keras_tuner.engine.metrics_tracking import infer_metric_direction`. It is now fixed. * Could not do `from keras_tuner.engine.oracle import Objective`. It is now fixed. * Could not do `from keras_tuner.engine.oracle import Oracle`. It is now fixed. # Release v1.4.4 ## Bug fixes * Could not do `from keras_tuner.engine.hyperparameters import serialize`. It is now fixed. * Could not do `from keras_tuner.engine.hyperparameters import deserialize`. It is now fixed. * Could not do `from keras_tuner.engine.tuner import maybe_distribute`. It is now fixed. # Release v1.4.3 ## Bug fixes * Could not do `from keras_tuner.engine.tuner import Tuner`. It is now fixed. * When TensorFlow version is low, it would error out with keras models have no attributed called `get_build_config`. It is now fixed. # Release v1.4.2 ## Bug fixes * Could not do `from keras_tuner.engine import trial`. It is now fixed. # Release v1.4.1 ## Bug fixes * Could not do `from keras_tuner.engine import base_tuner`. It is now fixed. # Release v1.4.0 ## Breaking changes * All private APIs are hidden under `keras_tuner.src.*`. For example, if you use `keras_tuner.some_private_api`, it will now be `keras_tuner.src.some_private_api`. ## New features * Support Keras Core with multi-backend. # Release v1.3.5 ## Breaking changes * Removed TensorFlow from the required dependencies of KerasTuner. The user need to install TensorFlow either separately with KerasTuner or with `pip install keras_tuner[tensorflow]`. This change is because some people may want to use KerasTuner with `tensorflow-cpu` instead of `tensorflow`. ## Bug fixes * KerasTuner used to require protobuf version to be under 3.20. The limit is removed. Now, it support both protobuf 3 and 4. # Release v1.3.4 ## Bug fixes * If you have a protobuf version > 3.20, it would through an error when import KerasTuner. It is now fixed. # Release v1.3.3 ## Bug fixes * KerasTuner would install protobuf 3.19 with `protobuf<=3.20`. We want to install `3.20.3`, so we changed it to `protobuf<=3.20.3`. It is now fixed. # Release v1.3.2 ## Bug fixes * It use to install protobuf 4.22.1 if install with TensorFlow 2.12, which is not compatible with KerasTuner. We limited the version to <=3.20. Now it is fixed. # Release v1.3.1 ## Bug fixes * The `Tuner.results_summary()` did not print error messages for failed trials and did not display `Objective` information correctly. It is now fixed. * The `BayesianOptimization` would break when not specifying the `num_initial_points` and overriding `.run_trial()`. It is now fixed. * TensorFlow 2.12 would break because the different protobuf version. It is now fixed. # Release v1.3.0 ## Breaking changes * Removed `Logger` and `CloudLogger` and the related arguments in `BaseTuner.__init__(logger=...)`. * Removed `keras_tuner.oracles.BayesianOptimization`, `keras_tuner.oracles.Hyperband`, `keras_tuner.oracles.RandomSearch`, which were actually `Oracle`s instead of `Tuner`s. Please use`keras_tuner.oracles.BayesianOptimizationOracle`, `keras_tuner.oracles.HyperbandOracle`, `keras_tuner.oracles.RandomSearchOracle` instead. * Removed `keras_tuner.Sklearn`. Please use `keras_tuner.SklearnTuner` instead. ## New features * `keras_tuner.oracles.GridSearchOracle` is now available as a standalone `Oracle` to be used with custom tuners. # Release v1.2.1 ## Bug fixes * The resume feature (`overwrite=False`) would crash in 1.2.0. This is now fixed. # Release v1.2.0 ## Breaking changes * If you implemented your own `Tuner`, the old use case of reporting results with `Oracle.update_trial()` in `Tuner.run_trial()` is deprecated. Please return the metrics in `Tuner.run_trial()` instead. * If you implemented your own `Oracle` and overrided `Oracle.end_trial()`, you need to change the signature of the function from `Oracle.end_trial(trial.trial_id, trial.status)` to `Oracle.end_trial(trial)`. * The default value of the `step` argument in * `keras_tuner.HyperParameters.Int()` is changed to `None`, which was `1` before. No change in default behavior. * The default value of the `sampling` argument in `keras_tuner.HyperParameters.Int()` is changed to `"linear"`, which was `None` before. No change in default behavior. * The default value of the `sampling` argument in `keras_tuner.HyperParameters.Float()` is changed to `"linear"`, which was `None` before. No change in default behavior. * If you explicitly rely on protobuf values, the new protobuf bug fix may affect you. * Changed the mechanism of how a random sample is drawn for a hyperparameter. They now all start from a random value between 0 and 1, and convert the value to a random sample. ## New features * A new tuner is added, `keras_tuner.GridSearch`, which can exhaust all the possible hyperparameter combinations. * Better fault tolerance during the search. Added two new arguments to `Tuner` and `Oracle` initializers, `max_retries_per_trial` and `max_consecutive_failed_trials`. * You can now mark a `Trial` as failed by `raise keras_tuner.FailedTrialError("error message.")` in `HyperModel.build()`, `HyperModel.fit()`, or your model build function. * Provides better error messages for invalid configs for `Int` and `Float` type hyperparameters. * A decorator `@keras_tuner.synchronized` is added to decorate the methods in `Oracle` and its subclasses to synchronize the concurrent calls to ensure thread safety in parallel tuning. ## Bug fixes * Protobuf was not converting Boolean type hyperparameter correctly. This is now fixed. * Hyperband was not loading the weights correctly for half-trained models. This is now fixed. * `KeyError` may occur if using `hp.conditional_scope()`, or the `parent` argument for hyperparameters. This is now fixed. * `num_initial_points` of the `BayesianOptimization` should defaults to `3 * dimension`, but it defaults to 2. This is now fixed. * It would through an error when using a concrete Keras optimizer object to override the `HyperModel` compile arg. This is now fixed. * Workers might crash due to `Oracle` reloading when running in parallel. This is now fixed.
keras-tuner/RELEASE.md/0
{ "file_path": "keras-tuner/RELEASE.md", "repo_id": "keras-tuner", "token_count": 2231 }
149
# Copyright 2019 The KerasTuner Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from keras_tuner.api_export import keras_tuner_export from keras_tuner.backend import keras from keras_tuner.backend import ops from keras_tuner.backend import random from keras_tuner.backend.keras import layers from keras_tuner.engine import hypermodel # dict of functions that create layers for transforms. # Each function takes a factor (0 to 1) for the strength # of the transform. TRANSFORMS = { "translate_x": lambda x: layers.RandomTranslation(x, 0), "translate_y": lambda y: layers.RandomTranslation(0, y), "rotate": layers.RandomRotation, "contrast": layers.RandomContrast, } @keras.saving.register_keras_serializable(package="keras_tuner") class RandAugment(keras.layers.Layer): """A single RandAugment layer.""" def __init__(self, layers, factors): super().__init__() self.layers = layers self.factors = factors def call(self, inputs): x = inputs batch_size = ops.shape(x)[0] # selection tensor determines operation for each sample. selection = ops.cast( random.uniform((batch_size, 1, 1, 1), maxval=len(self.layers)), dtype="int32", ) for i, layer in enumerate(self.layers): factor = self.factors[i] if factor == 0: continue transform_layer = TRANSFORMS[layer](factor) x_trans = transform_layer(x) # For each sample, apply the transform if and only if # selection matches the transform index `i` x = ops.where(ops.equal(i, selection), x_trans, x) return x def compute_output_shape(self, input_shape): return input_shape @keras_tuner_export("keras_tuner.applications.HyperImageAugment") class HyperImageAugment(hypermodel.HyperModel): """A image augmentation hypermodel. The `HyperImageAugment` class searches for the best combination of image augmentation operations in Keras preprocessing layers. The input shape of the model should be (height, width, channels). The output of the model is of the same shape as the input. Args: input_shape: Optional shape tuple, e.g. `(256, 256, 3)`. input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. rotate: A number between [0, 1], a list of two numbers between [0, 1] or None. Configures the search space of the factor of random rotation transform in the augmentation. A factor is chosen for each trial. It sets maximum of clockwise and counterclockwise rotation in terms of fraction of pi, among all samples in the trial. Default is 0.5. When `rotate` is a single number, the search range is [0, `rotate`]. The transform is off when set to None. translate_x: A number between [0, 1], a list of two numbers between [0, 1] or None. Configures the search space of the factor of random horizontal translation transform in the augmentation. A factor is chosen for each trial. It sets maximum of horizontal translation in terms of ratio over the width among all samples in the trial. Default is 0.4. When `translate_x` is a single number, the search range is [0, `translate_x`]. The transform is off when set to None. translate_y: A number between [0, 1], a list of two numbers between [0, 1] or None. Configures the search space of the factor of random vertical translation transform in the augmentation. A factor is chosen for each trial. It sets maximum of vertical translation in terms of ratio over the height among all samples in the trial. Default is 0.4. When `translate_y` is a single number ,the search range is [0, `translate_y`]. The transform is off when set to None. contrast: A number between [0, 1], a list of two numbers between [0, 1] or None. Configures the search space of the factor of random contrast transform in the augmentation. A factor is chosen for each trial. It sets maximum ratio of contrast change among all samples in the trial. Default is 0.3. When `contrast` is a single number, the search rnage is [0, `contrast`]. The transform is off when set to None. augment_layers: None, int or list of two ints, controlling the number of augment applied. Default is 3. When `augment_layers` is 0, all transform are applied sequentially. When `augment_layers` is nonzero, or a list of two ints, a simple version of RandAugment(https://arxiv.org/abs/1909.13719) is used. A search space for 'augment_layers' is created to search [0, `augment_layers`], or between the two ints if a `augment_layers` is a list. For each trial, the hyperparameter 'augment_layers' determines number of layers of augment transforms are applied, each randomly picked from all available transform types with equal probability on each sample. **kwargs: Additional keyword arguments that apply to all hypermodels. See `keras_tuner.HyperModel`. Example: ```python hm_aug = HyperImageAugment(input_shape=(32, 32, 3), augment_layers=0, rotate=[0.2, 0.3], translate_x=0.1, translate_y=None, contrast=None) ``` Then the hypermodel `hm_aug` will search 'factor_rotate' between [0.2, 0.3] and 'factor_translate_x' between [0, 0.1]. These two augments are applied on all samples with factor picked per each trial. ```python hm_aug = HyperImageAugment(input_shape=(32, 32, 3), translate_x=0.5, translate_y=[0.2, 0.4] contrast=None) ``` Then the hypermodel `hm_aug` will search 'factor_rotate' between [0, 0.2], 'factor_translate_x' between [0, 0.5], 'factor_translate_y' between [0.2, 0.4]. It will use RandAugment, searching 'augment_layers' between [0, 3]. Each layer on each sample will be chosen from rotate, translate_x and translate_y. """ def __init__( self, input_shape=None, input_tensor=None, rotate=0.5, translate_x=0.4, translate_y=0.4, contrast=0.3, augment_layers=3, **kwargs, ): if input_shape is None and input_tensor is None: raise ValueError( "You must specify either `input_shape` or `input_tensor`." ) self.transforms = [] self._register_transform("rotate", rotate) self._register_transform("translate_x", translate_x) self._register_transform("translate_y", translate_y) self._register_transform("contrast", contrast) self.input_shape = input_shape self.input_tensor = input_tensor if augment_layers: self.model_name = "image_rand_augment" try: augment_layers_min = augment_layers[0] augment_layers_max = augment_layers[1] except TypeError: augment_layers_min = 0 augment_layers_max = augment_layers if not ( isinstance(augment_layers_min, int) and isinstance(augment_layers_max, int) ): raise ValueError( "Keyword argument `augment_layers` must be int, " f"but received {augment_layers}." ) self.augment_layers_min = augment_layers_min self.augment_layers_max = augment_layers_max else: # Separatedly tune and apply all augment transforms if # `randaug_count` is set to 0. self.model_name = "image_augment" super().__init__(**kwargs) def build(self, hp): if self.input_tensor is not None: inputs = keras.utils.get_source_inputs(self.input_tensor) x = self.input_tensor else: inputs = layers.Input(shape=self.input_shape) x = inputs if self.model_name == "image_rand_augment": x = self._build_randaug_layers(x, hp) else: x = self._build_fixedaug_layers(x, hp) model = keras.Model(inputs, x, name=self.model_name) return model def _build_randaug_layers(self, inputs, hp): augment_layers = hp.Int( "augment_layers", self.augment_layers_min, self.augment_layers_max, default=self.augment_layers_min, ) x = inputs for _ in range(augment_layers): factors = [] for i, (transform, (f_min, f_max)) in enumerate(self.transforms): # Factor for each transform is determined per each trial. factor = hp.Float( f"factor_{transform}", f_min, f_max, default=f_min ) factors.append(factor) x = RandAugment([layer for layer, _ in self.transforms], factors)(x) return x def _build_fixedaug_layers(self, inputs, hp): x = inputs for transform, (factor_min, factor_max) in self.transforms: transform_factor = hp.Float( f"factor_{transform}", factor_min, factor_max, step=0.05, default=factor_min, ) if transform_factor == 0: continue transform_layer = TRANSFORMS[transform](transform_factor) x = transform_layer(x) return x def _register_transform(self, transform_name, transform_params): """Register a transform and format parameters for tuning the transform. Args: transform_name: A string, the name of the transform. trnasform_params: A number between [0, 1], a list of two numbers between [0, 1] or None. If set to a single number x, the corresponding transform factor will be between [0, x]. If set to a list of 2 numbers [x, y], the factor will be between [x, y]. If set to None, the transform will be excluded. """ if not transform_params: return try: transform_factor_min = transform_params[0] transform_factor_max = transform_params[1] if len(transform_params) > 2: raise ValueError( "Length of keyword argument " f"{transform_name} must not exceed 2." ) except TypeError: transform_factor_min = 0 transform_factor_max = transform_params if not ( isinstance(transform_factor_max, (int, float)) and isinstance(transform_factor_min, (int, float)) ): raise ValueError( f"Keyword argument {transform_name} must be int " f"or float, but received {transform_params}." ) self.transforms.append( (transform_name, (transform_factor_min, transform_factor_max)) )
keras-tuner/keras_tuner/applications/augment.py/0
{ "file_path": "keras-tuner/keras_tuner/applications/augment.py", "repo_id": "keras-tuner", "token_count": 5296 }
150
# Copyright 2019 The KerasTuner Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from keras_tuner.engine import hyperparameters as hp_module def test_boolean(): # Test default default boolean = hp_module.Boolean("bool") assert boolean.default is False # Test default setting boolean = hp_module.Boolean("bool", default=True) assert boolean.default is True # Wrong default type with pytest.raises(ValueError, match="must be a Python boolean"): hp_module.Boolean("bool", default=None) # Test serialization boolean = hp_module.Boolean("bool", default=True) boolean = hp_module.Boolean.from_config(boolean.get_config()) assert boolean.default is True assert boolean.name == "bool" # Test random_sample assert boolean.random_sample() in {True, False} assert boolean.random_sample(123) == boolean.random_sample(123) assert {boolean.value_to_prob(True), boolean.value_to_prob(False)} == { 0.25, 0.75, } def test_boolean_repr(): assert repr(hp_module.Boolean("bool")) == repr(hp_module.Boolean("bool")) def test_boolean_values_property(): assert list(hp_module.Boolean("bool").values) == [True, False]
keras-tuner/keras_tuner/engine/hyperparameters/hp_types/boolean_hp_test.py/0
{ "file_path": "keras-tuner/keras_tuner/engine/hyperparameters/hp_types/boolean_hp_test.py", "repo_id": "keras-tuner", "token_count": 561 }
151
# Copyright 2019 The KerasTuner Authors # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import numpy as np import six from keras_tuner import protos from keras_tuner.api_export import keras_tuner_export from keras_tuner.backend import keras class MetricObservation: """Metric value at a given step of training across multiple executions. If the model is trained multiple times (multiple executions), KerasTuner records the value of each metric at each training step. These values are aggregated over multiple executions into a list where each value corresponds to one execution. Args: value: Float or a list of floats. The evaluated metric values. step: Int. The step of the evaluation, for example, the epoch number. """ def __init__(self, value, step): if not isinstance(value, list): value = [value] self.value = value self.step = step def append(self, value): if not isinstance(value, list): value = [value] self.value += value def mean(self): return np.mean(self.value) def get_config(self): return {"value": self.value, "step": self.step} @classmethod def from_config(cls, config): return cls(**config) def __eq__(self, other): return ( other.value == self.value and other.step == self.step if isinstance(other, MetricObservation) else False ) def __repr__(self): return f"MetricObservation(value={self.value}, step={self.step})" def to_proto(self): return protos.get_proto().MetricObservation( value=self.value, step=self.step ) @classmethod def from_proto(cls, proto): return cls(value=list(proto.value), step=proto.step) class MetricHistory: """Record of multiple executions of a single metric. It contains a collection of `MetricObservation` instances. Args: direction: String. The direction of the metric to optimize. The value should be "min" or "max". """ def __init__(self, direction="min"): if direction not in {"min", "max"}: raise ValueError( "`direction` should be one of " '{"min", "max"}, but got: %s' % (direction,) ) self.direction = direction # Mapping step to `MetricObservation`. self._observations = {} def update(self, value, step): if step in self._observations: self._observations[step].append(value) else: self._observations[step] = MetricObservation(value, step=step) def get_best_value(self): values = [obs.mean() for obs in self._observations.values()] if not values: return None return ( np.nanmin(values) if self.direction == "min" else np.nanmax(values) ) def get_best_step(self): best_value = self.get_best_value() if best_value is None: return None for obs in self._observations.values(): if obs.mean() == best_value: return obs.step def get_history(self): return sorted(self._observations.values(), key=lambda obs: obs.step) def set_history(self, observations): for obs in observations: self.update(obs.value, step=obs.step) def get_statistics(self): history = self.get_history() history_values = [obs.mean() for obs in history] return ( { "min": float(np.nanmin(history_values)), "max": float(np.nanmax(history_values)), "mean": float(np.nanmean(history_values)), "median": float(np.nanmedian(history_values)), "var": float(np.nanvar(history_values)), "std": float(np.nanstd(history_values)), } if len(history_values) else {} ) def get_last_value(self): history = self.get_history() if history: last_obs = history[-1] return last_obs.mean() else: return None def get_config(self): config = { "direction": self.direction, "observations": [obs.get_config() for obs in self.get_history()], } return config @classmethod def from_config(cls, config): instance = cls(config["direction"]) instance.set_history( [ MetricObservation.from_config(obs) for obs in config["observations"] ] ) return instance def to_proto(self): return protos.get_proto().MetricHistory( observations=[obs.to_proto() for obs in self.get_history()], maximize=self.direction == "max", ) @classmethod def from_proto(cls, proto): direction = "max" if proto.maximize else "min" instance = cls(direction) instance.set_history( [MetricObservation.from_proto(p) for p in proto.observations] ) return instance class MetricsTracker: """Record of the values of multiple executions of all metrics. It contains `MetricHistory` instances for the metrics. Args: metrics: List of strings of the names of the metrics. """ def __init__(self, metrics=None): # str -> MetricHistory self.metrics = {} self.register_metrics(metrics) def exists(self, name): return name in self.metrics def register_metrics(self, metrics=None): metrics = metrics or [] for metric in metrics: self.register(metric.name) def register(self, name, direction=None): if self.exists(name): raise ValueError(f"Metric already exists: {name}") if direction is None: direction = infer_metric_direction(name) if direction is None: # Objective direction is handled separately, but # non-objective direction defaults to min. direction = "min" self.metrics[name] = MetricHistory(direction) def update(self, name, value, step=0): value = float(value) if not self.exists(name): self.register(name) prev_best = self.metrics[name].get_best_value() self.metrics[name].update(value, step=step) new_best = self.metrics[name].get_best_value() improved = new_best != prev_best return improved def get_history(self, name): self._assert_exists(name) return self.metrics[name].get_history() def set_history(self, name, observations): if not self.exists(name): self.register(name) self.metrics[name].set_history(observations) def get_best_value(self, name): self._assert_exists(name) return self.metrics[name].get_best_value() def get_best_step(self, name): self._assert_exists(name) return self.metrics[name].get_best_step() def get_statistics(self, name): self._assert_exists(name) return self.metrics[name].get_statistics() def get_last_value(self, name): self._assert_exists(name) return self.metrics[name].get_last_value() def get_direction(self, name): self._assert_exists(name) return self.metrics[name].direction def get_config(self): return { "metrics": { name: metric_history.get_config() for name, metric_history in self.metrics.items() } } @classmethod def from_config(cls, config): instance = cls() instance.metrics = { name: MetricHistory.from_config(metric_history) for name, metric_history in config["metrics"].items() } return instance def to_proto(self): return protos.get_proto().MetricsTracker( metrics={ name: metric_history.to_proto() for name, metric_history in self.metrics.items() } ) @classmethod def from_proto(cls, proto): instance = cls() instance.metrics = { name: MetricHistory.from_proto(metric_history) for name, metric_history in proto.metrics.items() } return instance def _assert_exists(self, name): if name not in self.metrics: raise ValueError(f"Unknown metric: {name}") _MAX_METRICS = ( "Accuracy", "BinaryAccuracy", "CategoricalAccuracy", "SparseCategoricalAccuracy", "TopKCategoricalAccuracy", "SparseTopKCategoricalAccuracy", "TruePositives", "TrueNegatives", "Precision", "Recall", "AUC", "SensitivityAtSpecificity", "SpecificityAtSensitivity", ) _MAX_METRIC_FNS = ( "accuracy", "categorical_accuracy", "binary_accuracy", "sparse_categorical_accuracy", ) @keras_tuner_export( "keras_tuner.engine.metrics_tracking.infer_metric_direction", ) def infer_metric_direction(metric): # Handle str input and get canonical object. if isinstance(metric, six.string_types): metric_name = metric if metric_name.startswith("val_"): metric_name = metric_name.replace("val_", "", 1) if metric_name.startswith("weighted_"): metric_name = metric_name.replace("weighted_", "", 1) # Special-cases (from `keras/engine/training_utils.py`) if metric_name in {"loss", "crossentropy", "ce"}: return "min" elif metric_name == "acc": return "max" try: if ( "use_legacy_format" in inspect.getfullargspec(keras.metrics.deserialize).args ): metric = keras.metrics.deserialize( # pragma: no cover metric_name, use_legacy_format=True ) else: metric = keras.metrics.deserialize( # pragma: no cover metric_name ) except ValueError: try: if ( "use_legacy_format" in inspect.getfullargspec(keras.losses.deserialize).args ): metric = keras.losses.deserialize( # pragma: no cover metric_name, use_legacy_format=True ) else: metric = keras.losses.deserialize( # pragma: no cover metric_name ) except Exception: # Direction can't be inferred. return None # Metric class, Loss class, or function. if isinstance(metric, (keras.metrics.Metric, keras.losses.Loss)): name = metric.__class__.__name__ if name == "MeanMetricWrapper": name = metric._fn.__name__ # pragma: no cover elif isinstance(metric, str): name = metric else: name = metric.__name__ if name in _MAX_METRICS or name in _MAX_METRIC_FNS: return "max" elif hasattr(keras.metrics, name) or hasattr(keras.losses, name): return "min" # Direction can't be inferred. return None
keras-tuner/keras_tuner/engine/metrics_tracking.py/0
{ "file_path": "keras-tuner/keras_tuner/engine/metrics_tracking.py", "repo_id": "keras-tuner", "token_count": 5320 }
152
# Copyright 2019 The KerasTuner Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest def test_kerastuner_same_as_keras_tuner(): with pytest.deprecated_call(): import kerastuner from kerastuner.tuners import RandomSearch # noqa: F401 from kerastuner.tuners import BayesianOptimization # noqa: F401 from kerastuner.tuners import Hyperband # noqa: F401 from kerastuner.engine.base_tuner import BaseTuner # noqa: F401 from kerastuner.engine.conditions import Condition # noqa: F401 from kerastuner.engine.hypermodel import HyperModel # noqa: F401 from kerastuner.engine.hyperparameters import ( # noqa: F401 HyperParameter, ) from kerastuner.engine.hyperparameters import ( # noqa: F401 HyperParameters, ) from kerastuner.engine.metrics_tracking import ( # noqa: F401 MetricObservation, ) from kerastuner import Objective # noqa: F401 from kerastuner.engine.oracle import Oracle # noqa: F401 from kerastuner.engine.tuner import Tuner # noqa: F401 from kerastuner.engine.stateful import Stateful # noqa: F401 from kerastuner.engine.trial import Trial # noqa: F401 from kerastuner.engine.multi_execution_tuner import ( # noqa: F401 MultiExecutionTuner, ) from kerastuner.applications import HyperResNet # noqa: F401 from kerastuner.applications import HyperXception # noqa: F401 import keras_tuner attr1 = [attr for attr in dir(kerastuner) if not attr.startswith("__")] attr2 = [attr for attr in dir(keras_tuner) if not attr.startswith("__")] assert len(attr1) > 20 assert set(attr1) >= set(attr2)
keras-tuner/keras_tuner/integration_tests/legacy_import_test.py/0
{ "file_path": "keras-tuner/keras_tuner/integration_tests/legacy_import_test.py", "repo_id": "keras-tuner", "token_count": 860 }
153
# Keras 3: Deep Learning for Humans Keras 3 is a multi-backend deep learning framework, with support for TensorFlow, JAX, and PyTorch. ## Installation ### Install with pip Keras 3 is available on PyPI as `keras`. Note that Keras 2 remains available as the `tf-keras` package. 1. Install `keras`: ``` pip install keras --upgrade ``` 2. Install backend package(s). To use `keras`, you should also install the backend of choice: `tensorflow`, `jax`, or `torch`. Note that `tensorflow` is required for using certain Keras 3 features: certain preprocessing layers as well as `tf.data` pipelines. ### Local installation #### Minimal installation Keras 3 is compatible with Linux and MacOS systems. For Windows users, we recommend using WSL2 to run Keras. To install a local development version: 1. Install dependencies: ``` pip install -r requirements.txt ``` 2. Run installation command from the root directory. ``` python pip_build.py --install ``` #### Adding GPU support The `requirements.txt` file will install a CPU-only version of TensorFlow, JAX, and PyTorch. For GPU support, we also provide a separate `requirements-{backend}-cuda.txt` for TensorFlow, JAX, and PyTorch. These install all CUDA dependencies via `pip` and expect a NVIDIA driver to be pre-installed. We recommend a clean python environment for each backend to avoid CUDA version mismatches. As an example, here is how to create a Jax GPU environment with `conda`: ```shell conda create -y -n keras-jax python=3.10 conda activate keras-jax pip install -r requirements-jax-cuda.txt python pip_build.py --install ``` ## Configuring your backend You can export the environment variable `KERAS_BACKEND` or you can edit your local config file at `~/.keras/keras.json` to configure your backend. Available backend options are: `"tensorflow"`, `"jax"`, `"torch"`. Example: ``` export KERAS_BACKEND="jax" ``` In Colab, you can do: ```python import os os.environ["KERAS_BACKEND"] = "jax" import keras ``` **Note:** The backend must be configured before importing `keras`, and the backend cannot be changed after the package has been imported. ## Backwards compatibility Keras 3 is intended to work as a drop-in replacement for `tf.keras` (when using the TensorFlow backend). Just take your existing `tf.keras` code, make sure that your calls to `model.save()` are using the up-to-date `.keras` format, and you're done. If your `tf.keras` model does not include custom components, you can start running it on top of JAX or PyTorch immediately. If it does include custom components (e.g. custom layers or a custom `train_step()`), it is usually possible to convert it to a backend-agnostic implementation in just a few minutes. In addition, Keras models can consume datasets in any format, regardless of the backend you're using: you can train your models with your existing `tf.data.Dataset` pipelines or PyTorch `DataLoaders`. ## Why use Keras 3? - Run your high-level Keras workflows on top of any framework -- benefiting at will from the advantages of each framework, e.g. the scalability and performance of JAX or the production ecosystem options of TensorFlow. - Write custom components (e.g. layers, models, metrics) that you can use in low-level workflows in any framework. - You can take a Keras model and train it in a training loop written from scratch in native TF, JAX, or PyTorch. - You can take a Keras model and use it as part of a PyTorch-native `Module` or as part of a JAX-native model function. - Make your ML code future-proof by avoiding framework lock-in. - As a PyTorch user: get access to power and usability of Keras, at last! - As a JAX user: get access to a fully-featured, battle-tested, well-documented modeling and training library. Read more in the [Keras 3 release announcement](https://keras.io/keras_3/).
keras/README.md/0
{ "file_path": "keras/README.md", "repo_id": "keras", "token_count": 1119 }
154
import numpy as np from keras import backend from keras import ops from keras import testing from keras.backend.common.stateless_scope import StatelessScope class TestStatelessScope(testing.TestCase): def test_basic_flow(self): var1 = backend.Variable(np.zeros((2,))) var2 = backend.Variable(np.zeros((2,))) var_out = backend.Variable(np.zeros((2,))) value1 = ops.ones(shape=(2,)) value2 = ops.ones(shape=(2,)) with StatelessScope( state_mapping=[(var1, value1), (var2, value2)] ) as scope: out = var1 + var2 var_out.assign(out) var_out_value = var_out + 0.0 # Inside scope: new value is used. self.assertAllClose(var_out_value, 2 * np.ones((2,))) # Out of scope: old value is used. var_out_value = var_out + 0.0 self.assertAllClose(var_out_value, np.zeros((2,))) # Updates are tracked. var_out_value = scope.get_current_value(var_out) self.assertAllClose(var_out_value, 2 * np.ones((2,))) # Updates can be reapplied. var_out.assign(scope.get_current_value(var_out)) self.assertAllClose(var_out_value, 2 * np.ones((2,))) def test_invalid_key_in_state_mapping(self): # var1 = backend.Variable(np.zeros((2,))) invalid_key = "not_a_keras_variable" value1 = ops.ones(shape=(2,)) with self.assertRaisesRegex( ValueError, "all keys in argument `mapping` must be KerasVariable" ): StatelessScope(state_mapping=[(invalid_key, value1)]) def test_invalid_value_shape_in_state_mapping(self): var1 = backend.Variable(np.zeros((2,))) invalid_value = ops.ones(shape=(3,)) # Incorrect shape with self.assertRaisesRegex( ValueError, "all values in argument `mapping` must be tensors with" ): StatelessScope(state_mapping=[(var1, invalid_value)])
keras/keras/backend/common/stateless_scope_test.py/0
{ "file_path": "keras/keras/backend/common/stateless_scope_test.py", "repo_id": "keras", "token_count": 892 }
155
import jax from keras.backend.config import floatx from keras.random.seed_generator import SeedGenerator from keras.random.seed_generator import draw_seed from keras.random.seed_generator import make_default_seed def jax_draw_seed(seed): if isinstance(seed, jax.Array): return seed else: return draw_seed(seed) def normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None): dtype = dtype or floatx() seed = jax_draw_seed(seed) sample = jax.random.normal(seed, shape=shape, dtype=dtype) return sample * stddev + mean def uniform(shape, minval=0.0, maxval=1.0, dtype=None, seed=None): dtype = dtype or floatx() seed = jax_draw_seed(seed) return jax.random.uniform( seed, shape=shape, dtype=dtype, minval=minval, maxval=maxval ) def categorical(logits, num_samples, dtype="int32", seed=None): seed = jax_draw_seed(seed) output_shape = list(logits.shape) output_shape[1] = num_samples output_shape = tuple(output_shape) output = jax.random.categorical( seed, logits[..., None], shape=output_shape, axis=1 ) return output.astype(dtype) def randint(shape, minval, maxval, dtype="int32", seed=None): seed = jax_draw_seed(seed) return jax.random.randint( seed, shape=shape, dtype=dtype, minval=minval, maxval=maxval ) def truncated_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None): dtype = dtype or floatx() seed = jax_draw_seed(seed) sample = jax.random.truncated_normal( seed, shape=shape, lower=-2.0, upper=2.0, dtype=dtype ) return sample * stddev + mean def _get_concrete_noise_shape(inputs, noise_shape): if noise_shape is None: return inputs.shape concrete_inputs_shape = inputs.shape concrete_noise_shape = [] for i, value in enumerate(noise_shape): concrete_noise_shape.append( concrete_inputs_shape[i] if value is None else value ) return concrete_noise_shape def dropout(inputs, rate, noise_shape=None, seed=None): seed = jax_draw_seed(seed) keep_prob = 1.0 - rate # The `noise_shape` may contain `None` so we need to convert it # into a concrete shape before passing it on to jax. noise_shape = _get_concrete_noise_shape(inputs, noise_shape) mask = jax.random.bernoulli(seed, p=keep_prob, shape=noise_shape) mask = jax.numpy.broadcast_to(mask, inputs.shape) return jax.lax.select( mask, inputs / keep_prob, jax.numpy.zeros_like(inputs) ) def shuffle(x, axis=0, seed=None): seed = jax_draw_seed(seed) return jax.random.shuffle(seed, x, axis) def gamma(shape, alpha, dtype=None, seed=None): seed = jax_draw_seed(seed) dtype = dtype or floatx() return jax.random.gamma(seed, alpha, shape=shape, dtype=dtype) def binomial(shape, counts, probabilities, dtype=None, seed=None): dtype = dtype or floatx() seed = jax_draw_seed(seed) # jax doesn't accept python lists as arguments counts = jax.numpy.array(counts) probabilities = jax.numpy.array(probabilities) sample = jax.random.binomial( key=seed, n=counts, p=probabilities, shape=shape, dtype=dtype ) return sample def beta(shape, alpha, beta, dtype=None, seed=None): dtype = dtype or floatx() seed = jax_draw_seed(seed) # jax doesn't accept python lists as arguments alpha = jax.numpy.array(alpha) beta = jax.numpy.array(beta) sample = jax.random.beta( key=seed, a=alpha, b=beta, shape=shape, dtype=dtype ) return sample
keras/keras/backend/jax/random.py/0
{ "file_path": "keras/keras/backend/jax/random.py", "repo_id": "keras", "token_count": 1474 }
156
import types import numpy as np import tensorflow as tf from tensorflow.compiler.tf2xla.python.xla import dynamic_update_slice from keras.backend.common import KerasVariable from keras.backend.common import global_state from keras.backend.common import standardize_dtype from keras.backend.common.keras_tensor import KerasTensor from keras.backend.common.name_scope import name_scope as base_name_scope from keras.backend.common.stateless_scope import StatelessScope from keras.backend.common.stateless_scope import in_stateless_scope from keras.utils.naming import auto_name SUPPORTS_SPARSE_TENSORS = True class Variable( KerasVariable, tf.__internal__.types.Tensor, tf.__internal__.tracking.Trackable, ): _should_act_as_resource_variable = True @property def handle(self): return self.value.handle def _initialize(self, value): self._value = tf.Variable( value, dtype=self._dtype, trainable=self.trainable, name=self.name ) def _deferred_initialize(self): if self._value is not None: raise ValueError(f"Variable {self.path} is already initialized.") if in_stateless_scope(): raise ValueError( "You are attempting to initialize a variable " "while in a stateless scope. This is disallowed. " "Make sure that all variables are initialized " "before you start using your layer/model objects." ) with tf.init_scope(): value = self._initializer(self._shape, dtype=self._dtype) self._initialize(value) def _direct_assign(self, value): self._value.assign(tf.cast(value, self._value.dtype)) def _convert_to_tensor(self, value, dtype=None): return convert_to_tensor(value, dtype=dtype) def numpy(self): # noqa: F811 return self.value.numpy() @property def shape(self): return tf.TensorShape(super().shape) # Overload native accessor. def __tf_tensor__(self, dtype=None, name=None): return tf.convert_to_tensor(self.value, dtype=dtype, name=name) # Methods below are for SavedModel support @property def _shared_name(self): return self.value._shared_name def _serialize_to_tensors(self): try: return self.value._serialize_to_tensors() except NotImplementedError: return {"VARIABLE_VALUE": self.value} def _restore_from_tensors(self, restored_tensors): try: return self.value._restore_from_tensors(restored_tensors) except NotImplementedError: self.assign(restored_tensors["VARIABLE_VALUE"]) return self.value def _copy_trackable_to_cpu(self, object_map): self.value._copy_trackable_to_cpu(object_map) object_map[self] = tf.Variable(object_map[self.value]) def _export_to_saved_model_graph( self, object_map, tensor_map, options, **kwargs ): resource_list = self.value._export_to_saved_model_graph( object_map, tensor_map, options, **kwargs ) object_map[self] = tf.Variable(object_map[self.value]) return resource_list def _write_object_proto(self, proto, options): return self.value._write_object_proto(proto, options) def convert_to_tensor(x, dtype=None, sparse=None): if isinstance(x, tf.SparseTensor) and sparse is not None and not sparse: x_shape = x.shape x = tf.sparse.to_dense(x) x.set_shape(x_shape) if dtype is not None: dtype = standardize_dtype(dtype) if not tf.is_tensor(x): if dtype == "bool": # TensorFlow boolean conversion is stricter than other backends. # It does not allow ints. We convert without dtype and cast instead. x = tf.convert_to_tensor(x) return tf.cast(x, dtype) return tf.convert_to_tensor(x, dtype=dtype) elif dtype is not None: return tf.cast(x, dtype=dtype) else: return x def convert_to_numpy(x): if isinstance(x, tf.SparseTensor): x_shape = x.shape x = tf.sparse.to_dense(x) x.set_shape(x_shape) elif isinstance(x, tf.IndexedSlices): x = tf.convert_to_tensor(x) return np.asarray(x) def is_tensor(x): return tf.is_tensor(x) def shape(x): """Always return a tuple shape. `tf.shape` will return a `tf.Tensor`, which differs from the tuple return type on the torch and jax backends. We write our own method instead which always returns a tuple, with integer values when the shape is known, and tensor values when the shape is unknown (this is tf specific, as dynamic shapes do not apply in other backends). """ if isinstance(x, KerasTensor): return x.shape if not tf.is_tensor(x): x = tf.convert_to_tensor(x) dynamic = tf.shape(x) if x.shape == tf.TensorShape(None): raise ValueError( "All tensors passed to `ops.shape` must have a statically known " f"rank. Received: x={x} with unknown rank." ) static = x.shape.as_list() return tuple(dynamic[i] if s is None else s for i, s in enumerate(static)) def cast(x, dtype): dtype = standardize_dtype(dtype) return tf.cast(x, dtype=dtype) def compute_output_spec(fn, *args, **kwargs): with StatelessScope(): graph_name = auto_name("scratch_graph") with tf.__internal__.FuncGraph(graph_name).as_default(): def convert_keras_tensor_to_tf(x): if isinstance(x, KerasTensor): if x.sparse: return tf.compat.v1.sparse_placeholder( shape=x.shape, dtype=x.dtype ) else: return tf.compat.v1.placeholder( shape=x.shape, dtype=x.dtype ) if isinstance(x, types.FunctionType): def _fn(*x_args, **x_kwargs): out = x(*x_args, **x_kwargs) out = convert_keras_tensor_to_tf(out) return out return _fn return x args, kwargs = tf.nest.map_structure( convert_keras_tensor_to_tf, (args, kwargs) ) tf_out = fn(*args, **kwargs) def convert_tf_to_keras_tensor(x): if tf.is_tensor(x): return KerasTensor( x.shape, x.dtype, sparse=isinstance(x, tf.SparseTensor) ) return x output_spec = tf.nest.map_structure( convert_tf_to_keras_tensor, tf_out ) return output_spec def cond(pred, true_fn, false_fn): return tf.cond(pred, true_fn=true_fn, false_fn=false_fn) def vectorized_map(function, elements): return tf.vectorized_map(function, elements) def scatter(indices, values, shape): return tf.scatter_nd(indices, values, shape) def scatter_update(inputs, indices, updates): return tf.tensor_scatter_nd_update(inputs, indices, updates) def slice(inputs, start_indices, shape): return tf.slice(inputs, start_indices, shape) def slice_update(inputs, start_indices, updates): return dynamic_update_slice(inputs, updates, start_indices) def while_loop( cond, body, loop_vars, maximum_iterations=None, ): is_tuple = isinstance(loop_vars, (tuple, list)) loop_vars = tuple(loop_vars) if is_tuple else (loop_vars,) def _body(*args): outputs = body(*args) return tuple(outputs) if is_tuple else (outputs,) outputs = tf.while_loop( cond, _body, loop_vars, maximum_iterations=maximum_iterations, ) return outputs if is_tuple else outputs[0] def fori_loop(lower, upper, body_fun, init_val): return tf.while_loop( lambda i, val: i < upper, lambda i, val: (i + 1, body_fun(i, val)), (lower, init_val), )[1] def stop_gradient(variable): return tf.stop_gradient(variable) def unstack(x, num=None, axis=0): return tf.unstack(x, num=num, axis=axis) class name_scope(base_name_scope): def __init__(self, name, **kwargs): super().__init__(name, **kwargs) self._tf_name_scope = tf.name_scope(name) def __enter__(self): name_scope_stack = global_state.get_global_attribute( "name_scope_stack", default=[], set_to_default=True ) if self.deduplicate and name_scope_stack: parent_caller = name_scope_stack[-1].caller parent_name = name_scope_stack[-1].name if ( self.caller is not None and self.caller is parent_caller and self.name == parent_name ): return self name_scope_stack.append(self) self._pop_on_exit = True self._tf_name_scope.__enter__() return self def __exit__(self, *args, **kwargs): super().__exit__(*args, **kwargs) if self._pop_on_exit: self._tf_name_scope.__exit__(*args, **kwargs) def device_scope(device_name): return tf.device(device_name)
keras/keras/backend/tensorflow/core.py/0
{ "file_path": "keras/keras/backend/tensorflow/core.py", "repo_id": "keras", "token_count": 4304 }
157
import tensorflow as tf def start_trace(logdir): tf.profiler.experimental.start(logdir=logdir) def stop_trace(save): tf.profiler.experimental.stop(save=save)
keras/keras/backend/tensorflow/tensorboard.py/0
{ "file_path": "keras/keras/backend/tensorflow/tensorboard.py", "repo_id": "keras", "token_count": 64 }
158
import torch from keras import ops from keras import optimizers from keras.backend.torch.optimizers import torch_parallel_optimizer class Adam(torch_parallel_optimizer.TorchParallelOptimizer, optimizers.Adam): def _parallel_update_step( self, grads, variables, learning_rate, ): keras_variables = variables variables = [v.value for v in variables] dtype = variables[0].dtype lr = ops.cast(learning_rate, dtype) local_step = ops.cast(self.iterations + 1, dtype) beta_1_power = ops.power(ops.cast(self.beta_1, dtype), local_step) beta_2_power = ops.power(ops.cast(self.beta_2, dtype), local_step) alpha = lr * ops.sqrt(1 - beta_2_power) / (1 - beta_1_power) m_list = [ self._momentums[self._get_variable_index(variable)].value for variable in keras_variables ] v_list = [ self._velocities[self._get_variable_index(variable)].value for variable in keras_variables ] torch._foreach_mul_(m_list, self.beta_1) torch._foreach_add_(m_list, grads, alpha=1 - self.beta_1) torch._foreach_mul_(v_list, self.beta_2) torch._foreach_add_( v_list, torch._foreach_mul(grads, grads), alpha=1 - self.beta_2 ) if self.amsgrad: v_hat_list = [ self._velocity_hats[self._get_variable_index(variable)].value for variable in keras_variables ] torch._foreach_maximum_(v_hat_list, v_list) v_list = v_hat_list torch._foreach_add_( variables, torch._foreach_div( torch._foreach_mul(m_list, alpha), torch._foreach_add(torch._foreach_sqrt(v_list), self.epsilon), ), alpha=-1, )
keras/keras/backend/torch/optimizers/torch_adam.py/0
{ "file_path": "keras/keras/backend/torch/optimizers/torch_adam.py", "repo_id": "keras", "token_count": 933 }
159
import tree from keras.api_export import keras_export from keras.callbacks.callback import Callback from keras.callbacks.history import History from keras.callbacks.progbar_logger import ProgbarLogger @keras_export("keras.callbacks.CallbackList") class CallbackList(Callback): """Container abstracting a list of callbacks.""" def __init__( self, callbacks=None, add_history=False, add_progbar=False, model=None, **params, ): """Container for `Callback` instances. This object wraps a list of `Callback` instances, making it possible to call them all at once via a single endpoint (e.g. `callback_list.on_epoch_end(...)`). Args: callbacks: List of `Callback` instances. add_history: Whether a `History` callback should be added, if one does not already exist in the `callbacks` list. add_progbar: Whether a `ProgbarLogger` callback should be added, if one does not already exist in the `callbacks` list. model: The `Model` these callbacks are used with. **params: If provided, parameters will be passed to each `Callback` via `Callback.set_params`. """ self.callbacks = tree.flatten(callbacks) if callbacks else [] self._add_default_callbacks(add_history, add_progbar) if model: self.set_model(model) if params: self.set_params(params) def _add_default_callbacks(self, add_history, add_progbar): """Adds `Callback`s that are always present.""" self._progbar = None self._history = None for cb in self.callbacks: if isinstance(cb, ProgbarLogger): self._progbar = cb elif isinstance(cb, History): self._history = cb if self._history is None and add_history: self._history = History() self.callbacks.append(self._history) if self._progbar is None and add_progbar: self._progbar = ProgbarLogger() self.callbacks.append(self._progbar) def append(self, callback): self.callbacks.append(callback) def set_params(self, params): self.params = params for callback in self.callbacks: callback.set_params(params) def set_model(self, model): super().set_model(model) if self._history: model.history = self._history for callback in self.callbacks: callback.set_model(model) def on_batch_begin(self, batch, logs=None): logs = logs or {} for callback in self.callbacks: callback.on_batch_begin(batch, logs=logs) def on_batch_end(self, batch, logs=None): logs = logs or {} for callback in self.callbacks: callback.on_batch_end(batch, logs=logs) def on_epoch_begin(self, epoch, logs=None): logs = logs or {} for callback in self.callbacks: callback.on_epoch_begin(epoch, logs) def on_epoch_end(self, epoch, logs=None): logs = logs or {} for callback in self.callbacks: callback.on_epoch_end(epoch, logs) def on_train_batch_begin(self, batch, logs=None): logs = logs or {} for callback in self.callbacks: callback.on_train_batch_begin(batch, logs=logs) def on_train_batch_end(self, batch, logs=None): logs = logs or {} for callback in self.callbacks: callback.on_train_batch_end(batch, logs=logs) def on_test_batch_begin(self, batch, logs=None): logs = logs or {} for callback in self.callbacks: callback.on_test_batch_begin(batch, logs=logs) def on_test_batch_end(self, batch, logs=None): logs = logs or {} for callback in self.callbacks: callback.on_test_batch_end(batch, logs=logs) def on_predict_batch_begin(self, batch, logs=None): logs = logs or {} for callback in self.callbacks: callback.on_predict_batch_begin(batch, logs=logs) def on_predict_batch_end(self, batch, logs=None): logs = logs or {} for callback in self.callbacks: callback.on_predict_batch_end(batch, logs=logs) def on_train_begin(self, logs=None): logs = logs or {} for callback in self.callbacks: callback.on_train_begin(logs) def on_train_end(self, logs=None): logs = logs or {} for callback in self.callbacks: callback.on_train_end(logs) def on_test_begin(self, logs=None): logs = logs or {} for callback in self.callbacks: callback.on_test_begin(logs) def on_test_end(self, logs=None): logs = logs or {} for callback in self.callbacks: callback.on_test_end(logs) def on_predict_begin(self, logs=None): logs = logs or {} for callback in self.callbacks: callback.on_predict_begin(logs) def on_predict_end(self, logs=None): logs = logs or {} for callback in self.callbacks: callback.on_predict_end(logs)
keras/keras/callbacks/callback_list.py/0
{ "file_path": "keras/keras/callbacks/callback_list.py", "repo_id": "keras", "token_count": 2321 }
160
import json import warnings import numpy as np from keras.api_export import keras_export from keras.callbacks.callback import Callback try: import requests except ImportError: requests = None @keras_export("keras.callbacks.RemoteMonitor") class RemoteMonitor(Callback): """Callback used to stream events to a server. Requires the `requests` library. Events are sent to `root + '/publish/epoch/end/'` by default. Calls are HTTP POST, with a `data` argument which is a JSON-encoded dictionary of event data. If `send_as_json=True`, the content type of the request will be `"application/json"`. Otherwise the serialized JSON will be sent within a form. Args: root: String; root url of the target server. path: String; path relative to `root` to which the events will be sent. field: String; JSON field under which the data will be stored. The field is used only if the payload is sent within a form (i.e. send_as_json is set to False). headers: Dictionary; optional custom HTTP headers. send_as_json: Boolean; whether the request should be sent as `"application/json"`. """ def __init__( self, root="http://localhost:9000", path="/publish/epoch/end/", field="data", headers=None, send_as_json=False, ): super().__init__() self.root = root self.path = path self.field = field self.headers = headers self.send_as_json = send_as_json def on_epoch_end(self, epoch, logs=None): if requests is None: raise ImportError("RemoteMonitor requires the `requests` library.") logs = logs or {} send = {} send["epoch"] = epoch for k, v in logs.items(): # np.ndarray and np.generic are not scalar types # therefore we must unwrap their scalar values and # pass to the json-serializable dict 'send' if isinstance(v, (np.ndarray, np.generic)): send[k] = v.item() else: send[k] = v try: if self.send_as_json: requests.post( self.root + self.path, json=send, headers=self.headers ) else: requests.post( self.root + self.path, {self.field: json.dumps(send)}, headers=self.headers, ) except requests.exceptions.RequestException: warnings.warn( f"Could not reach RemoteMonitor root server at {self.root}", stacklevel=2, )
keras/keras/callbacks/remote_monitor.py/0
{ "file_path": "keras/keras/callbacks/remote_monitor.py", "repo_id": "keras", "token_count": 1213 }
161
import numpy as np from keras import backend from keras import initializers from keras import testing class ConstantInitializersTest(testing.TestCase): def test_zeros_initializer(self): shape = (3, 3) initializer = initializers.Zeros() values = initializer(shape=shape) self.assertEqual(values.shape, shape) np_values = backend.convert_to_numpy(values) self.assertAllClose(np_values, np.zeros(shape=shape)) self.run_class_serialization_test(initializer) def test_ones_initializer(self): shape = (3, 3) initializer = initializers.Ones() values = initializer(shape=shape) self.assertEqual(values.shape, shape) np_values = backend.convert_to_numpy(values) self.assertAllClose(np_values, np.ones(shape=shape)) self.run_class_serialization_test(initializer) def test_constant_initializer(self): shape = (3, 3) constant_value = 6.0 initializer = initializers.Constant(value=constant_value) values = initializer(shape=shape) self.assertEqual(values.shape, shape) np_values = backend.convert_to_numpy(values) self.assertAllClose( np_values, np.full(shape=shape, fill_value=constant_value) ) self.run_class_serialization_test(initializer) def test_constant_initializer_array_value(self): shape = (3, 3) constant_value = np.random.random((3, 3)) initializer = initializers.Constant(value=constant_value) values = initializer(shape=shape) self.assertEqual(values.shape, shape) np_values = backend.convert_to_numpy(values) self.assertAllClose( np_values, np.full(shape=shape, fill_value=constant_value) ) self.run_class_serialization_test(initializer) def test_identity_initializer(self): shape = (3, 3) gain = 2 initializer = initializers.Identity(gain=gain) values = initializer(shape=shape) self.assertEqual(values.shape, shape) np_values = backend.convert_to_numpy(values) self.assertAllClose(np_values, np.eye(*shape) * gain) self.run_class_serialization_test(initializer)
keras/keras/initializers/constant_initializers_test.py/0
{ "file_path": "keras/keras/initializers/constant_initializers_test.py", "repo_id": "keras", "token_count": 950 }
162
import os import numpy as np import pytest from keras import backend from keras import constraints from keras import layers from keras import models from keras import ops from keras import saving from keras import testing from keras.backend.common import keras_tensor class DenseTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_dense_basics(self): # 2D case, no bias. self.run_layer_test( layers.Dense, init_kwargs={ "units": 4, "activation": "relu", "kernel_initializer": "random_uniform", "bias_initializer": "ones", "use_bias": False, }, input_shape=(2, 3), expected_output_shape=(2, 4), expected_num_trainable_weights=1, expected_num_non_trainable_weights=0, expected_num_seed_generators=0, expected_num_losses=0, supports_masking=True, ) # 3D case, some regularizers. self.run_layer_test( layers.Dense, init_kwargs={ "units": 5, "activation": "sigmoid", "kernel_regularizer": "l2", "bias_regularizer": "l2", }, input_shape=(2, 3, 4), expected_output_shape=(2, 3, 5), expected_num_trainable_weights=2, expected_num_non_trainable_weights=0, expected_num_seed_generators=0, expected_num_losses=2, # we have 2 regularizers. supports_masking=True, ) def test_dense_correctness(self): # With bias and activation. layer = layers.Dense(units=2, activation="relu") layer.build((1, 2)) layer.set_weights( [ np.array([[1.0, -2.0], [3.0, -4.0]]), np.array([5.0, -6.0]), ] ) inputs = np.array( [[-1.0, 2.0]], ) self.assertAllClose(layer(inputs), [[10.0, 0.0]]) # Just a kernel matmul. layer = layers.Dense(units=2, use_bias=False) layer.build((1, 2)) layer.set_weights( [ np.array([[1.0, -2.0], [3.0, -4.0]]), ] ) inputs = np.array( [[-1.0, 2.0]], ) self.assertEqual(layer.bias, None) self.assertAllClose(layer(inputs), [[5.0, -6.0]]) def test_dense_errors(self): with self.assertRaisesRegex(ValueError, "incompatible with the layer"): layer = layers.Dense(units=2, activation="relu") layer(keras_tensor.KerasTensor((1, 2))) layer(keras_tensor.KerasTensor((1, 3))) @pytest.mark.skipif( not backend.SUPPORTS_SPARSE_TENSORS, reason="Backend does not support sparse tensors.", ) def test_dense_sparse(self): import tensorflow as tf self.run_layer_test( layers.Dense, init_kwargs={ "units": 4, }, input_shape=(2, 3), input_sparse=True, expected_output_shape=(2, 4), expected_num_trainable_weights=2, expected_num_non_trainable_weights=0, expected_num_seed_generators=0, expected_num_losses=0, ) inputs = 4 * backend.random.uniform((10, 10)) inputs = tf.sparse.from_dense(tf.nn.dropout(inputs, 0.8)) inputs = np.random.random((10, 10)).astype("float32") inputs = np.multiply(inputs, inputs >= 0.8) if backend.backend() == "tensorflow": import tensorflow as tf inputs = tf.sparse.from_dense(inputs) elif backend.backend() == "jax": import jax.experimental.sparse as jax_sparse inputs = jax_sparse.BCOO.fromdense(inputs) else: self.fail(f"Sparse is unsupported with backend {backend.backend()}") layer = layers.Dense(units=10) outputs = layer(inputs) # Verify the computation is the same as if it had been a dense tensor expected_outputs = ops.add( ops.matmul( backend.convert_to_tensor(inputs, sparse=False), layer.kernel ), layer.bias, ) self.assertAllClose(outputs, expected_outputs) # Verify the gradient is sparse if backend.backend() == "tensorflow": import tensorflow as tf with tf.GradientTape() as g: outputs = layer(inputs) self.assertIsInstance( g.gradient(outputs, layer.kernel), tf.IndexedSlices ) def test_dense_no_activation(self): layer = layers.Dense(units=2, use_bias=False, activation=None) layer.build((1, 2)) layer.set_weights( [ np.array([[1.0, -2.0], [3.0, -4.0]]), ] ) inputs = np.array( [[-1.0, 2.0]], ) self.assertEqual(layer.bias, None) self.assertAllClose(layer(inputs), [[5.0, -6.0]]) def test_dense_without_activation_set(self): layer = layers.Dense(units=2, use_bias=False) layer.build((1, 2)) layer.set_weights( [ np.array([[1.0, -2.0], [3.0, -4.0]]), ] ) layer.activation = None inputs = np.array( [[-1.0, 2.0]], ) self.assertEqual(layer.bias, None) self.assertAllClose(layer(inputs), [[5.0, -6.0]]) def test_dense_with_activation(self): layer = layers.Dense(units=2, use_bias=False, activation="relu") layer.build((1, 2)) layer.set_weights( [ np.array([[1.0, -2.0], [3.0, -4.0]]), ] ) inputs = np.array( [[-1.0, 2.0]], ) output = layer(inputs) expected_output = np.array([[5.0, 0.0]]) self.assertAllClose(output, expected_output) def test_dense_constraints(self): layer = layers.Dense(units=2, kernel_constraint="non_neg") layer.build((None, 2)) self.assertIsInstance(layer.kernel.constraint, constraints.NonNeg) layer = layers.Dense(units=2, bias_constraint="non_neg") layer.build((None, 2)) self.assertIsInstance(layer.bias.constraint, constraints.NonNeg) @pytest.mark.requires_trainable_backend def test_enable_lora(self): layer = layers.Dense(units=16) layer.build((None, 8)) layer.enable_lora(4) self.assertLen(layer.trainable_weights, 3) self.assertLen(layer.non_trainable_weights, 1) # Try eager call x = np.random.random((64, 8)) y = np.random.random((64, 16)) _ = layer(x[:2]) init_lora_a_kernel_value = layer.lora_kernel_a.numpy() init_lora_b_kernel_value = layer.lora_kernel_b.numpy() # Try calling fit() model = models.Sequential( [ layer, ] ) model.compile(optimizer="sgd", loss="mse") model.fit(x, y) final_lora_a_kernel_value = layer.lora_kernel_a.numpy() final_lora_b_kernel_value = layer.lora_kernel_b.numpy() diff_a = np.max( np.abs(init_lora_a_kernel_value - final_lora_a_kernel_value) ) diff_b = np.max( np.abs(init_lora_b_kernel_value - final_lora_b_kernel_value) ) self.assertGreater(diff_a, 0.0) self.assertGreater(diff_b, 0.0) # Try saving and reloading the model temp_filepath = os.path.join(self.get_temp_dir(), "lora_model.keras") model.save(temp_filepath) new_model = saving.load_model(temp_filepath) self.assertFalse(new_model.layers[0].lora_enabled) self.assertAllClose(model.predict(x), new_model.predict(x)) # Try saving and reloading the model's weights only temp_filepath = os.path.join( self.get_temp_dir(), "lora_model.weights.h5" ) model.save_weights(temp_filepath) # Load the file into a fresh, non-lora model new_model = models.Sequential( [ layers.Dense(units=16), ] ) new_model.build((None, 8)) new_model.load_weights(temp_filepath) self.assertAllClose(model.predict(x), new_model.predict(x)) # Try loading a normal checkpoint into a lora model new_model.save_weights(temp_filepath) model.load_weights(temp_filepath) self.assertAllClose(model.predict(x), new_model.predict(x)) @pytest.mark.requires_trainable_backend def test_lora_rank_argument(self): self.run_layer_test( layers.Dense, init_kwargs={ "units": 5, "activation": "sigmoid", "kernel_regularizer": "l2", "lora_rank": 2, }, input_shape=(2, 3, 4), expected_output_shape=(2, 3, 5), expected_num_trainable_weights=3, expected_num_non_trainable_weights=1, expected_num_seed_generators=0, expected_num_losses=2, # we have 2 regularizers. supports_masking=True, ) def test_enable_lora_with_kernel_constraint(self): layer = layers.Dense(units=2, kernel_constraint="max_norm") with self.assertRaisesRegex( ValueError, "incompatible with kernel constraints" ): layer.enable_lora(rank=2) def test_enable_lora_on_unbuilt_layer(self): layer = layers.Dense(units=2) with self.assertRaisesRegex( ValueError, "Cannot enable lora on a layer that isn't yet built" ): layer.enable_lora(rank=2) def test_enable_lora_when_already_enabled(self): layer = layers.Dense(units=2) layer.build((None, 2)) layer.enable_lora(rank=2) with self.assertRaisesRegex(ValueError, "lora is already enabled"): layer.enable_lora(rank=2)
keras/keras/layers/core/dense_test.py/0
{ "file_path": "keras/keras/layers/core/dense_test.py", "repo_id": "keras", "token_count": 5227 }
163
from keras import backend from keras import ops from keras.api_export import keras_export from keras.layers.input_spec import InputSpec from keras.layers.regularization.dropout import Dropout class BaseSpatialDropout(Dropout): def __init__(self, rate, seed=None, name=None, dtype=None): super().__init__(rate, seed=seed, name=name, dtype=dtype) def call(self, inputs, training=False): if training and self.rate > 0: return backend.random.dropout( inputs, self.rate, noise_shape=self._get_noise_shape(inputs), seed=self.seed_generator, ) return inputs def get_config(self): return { "rate": self.rate, "seed": self.seed, "name": self.name, "dtype": self.dtype, } @keras_export("keras.layers.SpatialDropout1D") class SpatialDropout1D(BaseSpatialDropout): """Spatial 1D version of Dropout. This layer performs the same function as Dropout, however, it drops entire 1D feature maps instead of individual elements. If adjacent frames within feature maps are strongly correlated (as is normally the case in early convolution layers) then regular dropout will not regularize the activations and will otherwise just result in an effective learning rate decrease. In this case, `SpatialDropout1D` will help promote independence between feature maps and should be used instead. Args: rate: Float between 0 and 1. Fraction of the input units to drop. Call arguments: inputs: A 3D tensor. training: Python boolean indicating whether the layer should behave in training mode (applying dropout) or in inference mode (pass-through). Input shape: 3D tensor with shape: `(samples, timesteps, channels)` Output shape: Same as input. Reference: - [Tompson et al., 2014](https://arxiv.org/abs/1411.4280) """ def __init__(self, rate, seed=None, name=None, dtype=None): super().__init__(rate, seed=seed, name=name, dtype=dtype) self.input_spec = InputSpec(ndim=3) def _get_noise_shape(self, inputs): input_shape = ops.shape(inputs) return (input_shape[0], 1, input_shape[2]) @keras_export("keras.layers.SpatialDropout2D") class SpatialDropout2D(BaseSpatialDropout): """Spatial 2D version of Dropout. This version performs the same function as Dropout, however, it drops entire 2D feature maps instead of individual elements. If adjacent pixels within feature maps are strongly correlated (as is normally the case in early convolution layers) then regular dropout will not regularize the activations and will otherwise just result in an effective learning rate decrease. In this case, `SpatialDropout2D` will help promote independence between feature maps and should be used instead. Args: rate: Float between 0 and 1. Fraction of the input units to drop. data_format: `"channels_first"` or `"channels_last"`. In `"channels_first"` mode, the channels dimension (the depth) is at index 1, in `"channels_last"` mode is it at index 3. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be `"channels_last"`. Call arguments: inputs: A 4D tensor. training: Python boolean indicating whether the layer should behave in training mode (applying dropout) or in inference mode (pass-through). Input shape: 4D tensor with shape: `(samples, channels, rows, cols)` if data_format='channels_first' or 4D tensor with shape: `(samples, rows, cols, channels)` if data_format='channels_last'. Output shape: Same as input. Reference: - [Tompson et al., 2014](https://arxiv.org/abs/1411.4280) """ def __init__( self, rate, data_format=None, seed=None, name=None, dtype=None ): super().__init__(rate, seed=seed, name=name, dtype=dtype) self.data_format = backend.standardize_data_format(data_format) self.input_spec = InputSpec(ndim=4) def _get_noise_shape(self, inputs): input_shape = ops.shape(inputs) if self.data_format == "channels_first": return (input_shape[0], input_shape[1], 1, 1) elif self.data_format == "channels_last": return (input_shape[0], 1, 1, input_shape[3]) def get_config(self): base_config = super().get_config() config = { "data_format": self.data_format, } return {**base_config, **config} @keras_export("keras.layers.SpatialDropout3D") class SpatialDropout3D(BaseSpatialDropout): """Spatial 3D version of Dropout. This version performs the same function as Dropout, however, it drops entire 3D feature maps instead of individual elements. If adjacent voxels within feature maps are strongly correlated (as is normally the case in early convolution layers) then regular dropout will not regularize the activations and will otherwise just result in an effective learning rate decrease. In this case, SpatialDropout3D will help promote independence between feature maps and should be used instead. Args: rate: Float between 0 and 1. Fraction of the input units to drop. data_format: `"channels_first"` or `"channels_last"`. In `"channels_first"` mode, the channels dimension (the depth) is at index 1, in `"channels_last"` mode is it at index 4. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be `"channels_last"`. Call arguments: inputs: A 5D tensor. training: Python boolean indicating whether the layer should behave in training mode (applying dropout) or in inference mode (pass-through). Input shape: 5D tensor with shape: `(samples, channels, dim1, dim2, dim3)` if data_format='channels_first' or 5D tensor with shape: `(samples, dim1, dim2, dim3, channels)` if data_format='channels_last'. Output shape: Same as input. Reference: - [Tompson et al., 2014](https://arxiv.org/abs/1411.4280) """ def __init__( self, rate, data_format=None, seed=None, name=None, dtype=None ): super().__init__(rate, seed=seed, name=name, dtype=dtype) self.data_format = backend.standardize_data_format(data_format) self.input_spec = InputSpec(ndim=5) def _get_noise_shape(self, inputs): input_shape = ops.shape(inputs) if self.data_format == "channels_first": return (input_shape[0], input_shape[1], 1, 1, 1) elif self.data_format == "channels_last": return (input_shape[0], 1, 1, 1, input_shape[4]) def get_config(self): base_config = super().get_config() config = { "data_format": self.data_format, } return {**base_config, **config}
keras/keras/layers/regularization/spatial_dropout.py/0
{ "file_path": "keras/keras/layers/regularization/spatial_dropout.py", "repo_id": "keras", "token_count": 2878 }
164
import pytest from absl.testing import parameterized from keras import backend from keras import layers from keras import testing from keras.backend.common.keras_tensor import KerasTensor class ReshapeTest(testing.TestCase, parameterized.TestCase): @parameterized.named_parameters( [ {"testcase_name": "dense", "sparse": False}, {"testcase_name": "sparse", "sparse": True}, ] ) @pytest.mark.requires_trainable_backend def test_reshape(self, sparse): if sparse and not backend.SUPPORTS_SPARSE_TENSORS: pytest.skip("Backend does not support sparse tensors.") self.run_layer_test( layers.Reshape, init_kwargs={"target_shape": (8, 1)}, input_shape=(3, 2, 4), input_sparse=sparse, expected_output_shape=(3, 8, 1), expected_output_sparse=sparse, run_training_check=not sparse, ) self.run_layer_test( layers.Reshape, init_kwargs={"target_shape": (8,)}, input_shape=(3, 2, 4), input_sparse=sparse, expected_output_shape=(3, 8), expected_output_sparse=sparse, run_training_check=not sparse, ) self.run_layer_test( layers.Reshape, init_kwargs={"target_shape": (2, 4)}, input_shape=(3, 8), input_sparse=sparse, expected_output_shape=(3, 2, 4), expected_output_sparse=sparse, run_training_check=not sparse, ) self.run_layer_test( layers.Reshape, init_kwargs={"target_shape": (-1, 1)}, input_shape=(3, 2, 4), input_sparse=sparse, expected_output_shape=(3, 8, 1), expected_output_sparse=sparse, run_training_check=not sparse, ) self.run_layer_test( layers.Reshape, init_kwargs={"target_shape": (1, -1)}, input_shape=(3, 2, 4), input_sparse=sparse, expected_output_shape=(3, 1, 8), expected_output_sparse=sparse, run_training_check=not sparse, ) self.run_layer_test( layers.Reshape, init_kwargs={"target_shape": (-1,)}, input_shape=(3, 2, 4), input_sparse=sparse, expected_output_shape=(3, 8), expected_output_sparse=sparse, run_training_check=not sparse, ) self.run_layer_test( layers.Reshape, init_kwargs={"target_shape": (2, -1)}, input_shape=(3, 2, 4), input_sparse=sparse, expected_output_shape=(3, 2, 4), expected_output_sparse=sparse, run_training_check=not sparse, ) def test_reshape_with_dynamic_batch_size(self): input_layer = layers.Input(shape=(2, 4)) reshaped = layers.Reshape((8,))(input_layer) self.assertEqual(reshaped.shape, (None, 8)) def test_reshape_with_dynamic_batch_size_and_minus_one(self): input = KerasTensor((None, 6, 4)) layer = layers.Reshape((-1, 8)) layer.build(input.shape) reshaped = backend.compute_output_spec(layer.__call__, input) self.assertEqual(reshaped.shape, (None, 3, 8)) def test_reshape_with_dynamic_dim_and_minus_one(self): input = KerasTensor((4, 6, None, 3)) layer = layers.Reshape((-1, 3)) layer.build(input.shape) reshaped = backend.compute_output_spec(layer.__call__, input) self.assertEqual(reshaped.shape, (4, None, 3)) def test_reshape_sets_static_shape(self): input_layer = layers.Input(batch_shape=(2, None)) reshaped = layers.Reshape((3, 5))(input_layer) # Also make sure the batch dim is not lost after reshape. self.assertEqual(reshaped.shape, (2, 3, 5))
keras/keras/layers/reshaping/reshape_test.py/0
{ "file_path": "keras/keras/layers/reshaping/reshape_test.py", "repo_id": "keras", "token_count": 1985 }
165
import tree from keras import activations from keras import backend from keras import constraints from keras import initializers from keras import ops from keras import regularizers from keras.layers.input_spec import InputSpec from keras.layers.layer import Layer from keras.layers.rnn.dropout_rnn_cell import DropoutRNNCell from keras.layers.rnn.rnn import RNN from keras.ops import operation_utils from keras.utils import argument_validation class ConvLSTMCell(Layer, DropoutRNNCell): """Cell class for the ConvLSTM layer. Args: rank: Integer, rank of the convolution, e.g. "2" for 2D convolutions. filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution). kernel_size: An integer or tuple/list of n integers, specifying the dimensions of the convolution window. strides: An integer or tuple/list of n integers, specifying the strides of the convolution. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. padding: One of `"valid"` or `"same"` (case-insensitive). `"valid"` means no padding. `"same"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. data_format: A string, one of `channels_last` (default) or `channels_first`. When unspecified, uses `image_data_format` value found in your Keras config file at `~/.keras/keras.json` (if exists) else 'channels_last'. Defaults to `'channels_last'`. dilation_rate: An integer or tuple/list of n integers, specifying the dilation rate to use for dilated convolution. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any `strides` value != 1. activation: Activation function. If `None`, no activation is applied. recurrent_activation: Activation function to use for the recurrent step. use_bias: Boolean, (default `True`), whether the layer should use a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. Default: `"glorot_uniform"`. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. Default: `"orthogonal"`. bias_initializer: Initializer for the bias vector. Default: `"zeros"`. unit_forget_bias: Boolean (default `True`). If `True`, add 1 to the bias of the forget gate at initialization. Setting it to `True` will also force `bias_initializer="zeros"`. This is recommended in [Jozefowicz et al.]( https://github.com/mlresearch/v37/blob/gh-pages/jozefowicz15.pdf) kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. Default: `None`. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. Default: `None`. bias_regularizer: Regularizer function applied to the bias vector. Default: `None`. activity_regularizer: Regularizer function applied to the output of the layer (its "activation"). Default: `None`. kernel_constraint: Constraint function applied to the `kernel` weights matrix. Default: `None`. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. Default: `None`. bias_constraint: Constraint function applied to the bias vector. Default: `None`. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0. seed: Random seed for dropout. Call arguments: inputs: A (2+ `rank`)D tensor. states: List of state tensors corresponding to the previous timestep. training: Python boolean indicating whether the layer should behave in training mode or in inference mode. Only relevant when `dropout` or `recurrent_dropout` is used. """ def __init__( self, rank, filters, kernel_size, strides=1, padding="valid", data_format=None, dilation_rate=1, activation="tanh", recurrent_activation="sigmoid", use_bias=True, kernel_initializer="glorot_uniform", recurrent_initializer="orthogonal", bias_initializer="zeros", unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, seed=None, **kwargs, ): super().__init__(**kwargs) self.seed = seed self.seed_generator = backend.random.SeedGenerator(seed=seed) self.rank = rank if self.rank > 3: raise ValueError( f"Rank {rank} convolutions are not currently " f"implemented. Received: rank={rank}" ) self.filters = filters self.kernel_size = argument_validation.standardize_tuple( kernel_size, self.rank, "kernel_size" ) self.strides = argument_validation.standardize_tuple( strides, self.rank, "strides", allow_zero=True ) self.padding = argument_validation.standardize_padding(padding) self.data_format = backend.standardize_data_format(data_format) self.dilation_rate = argument_validation.standardize_tuple( dilation_rate, self.rank, "dilation_rate" ) self.activation = activations.get(activation) self.recurrent_activation = activations.get(recurrent_activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.recurrent_initializer = initializers.get(recurrent_initializer) self.bias_initializer = initializers.get(bias_initializer) self.unit_forget_bias = unit_forget_bias self.kernel_regularizer = regularizers.get(kernel_regularizer) self.recurrent_regularizer = regularizers.get(recurrent_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.recurrent_constraint = constraints.get(recurrent_constraint) self.bias_constraint = constraints.get(bias_constraint) self.dropout = min(1.0, max(0.0, dropout)) self.recurrent_dropout = min(1.0, max(0.0, recurrent_dropout)) self.input_spec = InputSpec(ndim=rank + 2) self.state_size = -1 # Custom, defined in methods def build(self, inputs_shape, states_shape=None): if self.data_format == "channels_first": channel_axis = 1 self.spatial_dims = inputs_shape[2:] else: channel_axis = -1 self.spatial_dims = inputs_shape[1:-1] if None in self.spatial_dims: raise ValueError( "ConvLSTM layers only support static " "input shapes for the spatial dimension. " f"Received invalid input shape: input_shape={inputs_shape}" ) if inputs_shape[channel_axis] is None: raise ValueError( "The channel dimension of the inputs (last axis) should be " "defined. Found None. Full input shape received: " f"input_shape={inputs_shape}" ) self.input_spec = InputSpec( ndim=self.rank + 3, shape=(None,) + inputs_shape[1:] ) input_dim = inputs_shape[channel_axis] self.input_dim = input_dim self.kernel_shape = self.kernel_size + (input_dim, self.filters * 4) recurrent_kernel_shape = self.kernel_size + ( self.filters, self.filters * 4, ) self.kernel = self.add_weight( shape=self.kernel_shape, initializer=self.kernel_initializer, name="kernel", regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, ) self.recurrent_kernel = self.add_weight( shape=recurrent_kernel_shape, initializer=self.recurrent_initializer, name="recurrent_kernel", regularizer=self.recurrent_regularizer, constraint=self.recurrent_constraint, ) if self.use_bias: if self.unit_forget_bias: def bias_initializer(_, *args, **kwargs): return ops.concatenate( [ self.bias_initializer( (self.filters,), *args, **kwargs ), initializers.get("ones")( (self.filters,), *args, **kwargs ), self.bias_initializer( (self.filters * 2,), *args, **kwargs ), ] ) else: bias_initializer = self.bias_initializer self.bias = self.add_weight( shape=(self.filters * 4,), name="bias", initializer=bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, ) else: self.bias = None self.built = True def call(self, inputs, states, training=False): h_tm1 = states[0] # previous memory state c_tm1 = states[1] # previous carry state # dp_mask = self.get_dropout_mask(inputs) # rec_dp_mask = self.get_recurrent_dropout_mask(h_tm1) # if training and 0.0 < self.dropout < 1.0: # inputs *= dp_mask # if training and 0.0 < self.recurrent_dropout < 1.0: # h_tm1 *= rec_dp_mask inputs_i = inputs inputs_f = inputs inputs_c = inputs inputs_o = inputs h_tm1_i = h_tm1 h_tm1_f = h_tm1 h_tm1_c = h_tm1 h_tm1_o = h_tm1 (kernel_i, kernel_f, kernel_c, kernel_o) = ops.split( self.kernel, 4, axis=self.rank + 1 ) ( recurrent_kernel_i, recurrent_kernel_f, recurrent_kernel_c, recurrent_kernel_o, ) = ops.split(self.recurrent_kernel, 4, axis=self.rank + 1) if self.use_bias: bias_i, bias_f, bias_c, bias_o = ops.split(self.bias, 4) else: bias_i, bias_f, bias_c, bias_o = None, None, None, None x_i = self.input_conv(inputs_i, kernel_i, bias_i, padding=self.padding) x_f = self.input_conv(inputs_f, kernel_f, bias_f, padding=self.padding) x_c = self.input_conv(inputs_c, kernel_c, bias_c, padding=self.padding) x_o = self.input_conv(inputs_o, kernel_o, bias_o, padding=self.padding) h_i = self.recurrent_conv(h_tm1_i, recurrent_kernel_i) h_f = self.recurrent_conv(h_tm1_f, recurrent_kernel_f) h_c = self.recurrent_conv(h_tm1_c, recurrent_kernel_c) h_o = self.recurrent_conv(h_tm1_o, recurrent_kernel_o) i = self.recurrent_activation(x_i + h_i) f = self.recurrent_activation(x_f + h_f) c = f * c_tm1 + i * self.activation(x_c + h_c) o = self.recurrent_activation(x_o + h_o) h = o * self.activation(c) return h, [h, c] def compute_output_shape(self, inputs_shape, states_shape=None): conv_output_shape = operation_utils.compute_conv_output_shape( inputs_shape, self.filters, self.kernel_size, strides=self.strides, padding=self.padding, data_format=self.data_format, dilation_rate=self.dilation_rate, ) return conv_output_shape, [conv_output_shape, conv_output_shape] def get_initial_state(self, batch_size=None): if self.data_format == "channels_last": input_shape = (batch_size,) + self.spatial_dims + (self.input_dim,) else: input_shape = (batch_size, self.input_dim) + self.spatial_dims state_shape = self.compute_output_shape(input_shape)[0] return [ ops.zeros(state_shape, dtype=self.compute_dtype), ops.zeros(state_shape, dtype=self.compute_dtype), ] def input_conv(self, x, w, b=None, padding="valid"): conv_out = ops.conv( x, w, strides=self.strides, padding=padding, data_format=self.data_format, dilation_rate=self.dilation_rate, ) if b is not None: if self.data_format == "channels_last": bias_shape = (1,) * (self.rank + 1) + (self.filters,) else: bias_shape = (1, self.filters) + (1,) * self.rank bias = ops.reshape(b, bias_shape) conv_out += bias return conv_out def recurrent_conv(self, x, w): strides = argument_validation.standardize_tuple( 1, self.rank, "strides", allow_zero=True ) conv_out = ops.conv( x, w, strides=strides, padding="same", data_format=self.data_format ) return conv_out def get_config(self): config = { "filters": self.filters, "kernel_size": self.kernel_size, "strides": self.strides, "padding": self.padding, "data_format": self.data_format, "dilation_rate": self.dilation_rate, "activation": activations.serialize(self.activation), "recurrent_activation": activations.serialize( self.recurrent_activation ), "use_bias": self.use_bias, "kernel_initializer": initializers.serialize( self.kernel_initializer ), "recurrent_initializer": initializers.serialize( self.recurrent_initializer ), "bias_initializer": initializers.serialize(self.bias_initializer), "unit_forget_bias": self.unit_forget_bias, "kernel_regularizer": regularizers.serialize( self.kernel_regularizer ), "recurrent_regularizer": regularizers.serialize( self.recurrent_regularizer ), "bias_regularizer": regularizers.serialize(self.bias_regularizer), "kernel_constraint": constraints.serialize(self.kernel_constraint), "recurrent_constraint": constraints.serialize( self.recurrent_constraint ), "bias_constraint": constraints.serialize(self.bias_constraint), "dropout": self.dropout, "recurrent_dropout": self.recurrent_dropout, "seed": self.seed, } base_config = super().get_config() return {**base_config, **config} class ConvLSTM(RNN): """Abstract N-D Convolutional LSTM layer (used as implementation base). Similar to an LSTM layer, but the input transformations and recurrent transformations are both convolutional. Args: rank: Integer, rank of the convolution, e.g. "2" for 2D convolutions. filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution). kernel_size: An integer or tuple/list of n integers, specifying the dimensions of the convolution window. strides: An integer or tuple/list of n integers, specifying the strides of the convolution. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. padding: One of `"valid"` or `"same"` (case-insensitive). `"valid"` means no padding. `"same"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, time, ..., channels)` while `channels_first` corresponds to inputs with shape `(batch, time, channels, ...)`. When unspecified, uses `image_data_format` value found in your Keras config file at `~/.keras/keras.json` (if exists) else 'channels_last'. Defaults to `'channels_last'`. dilation_rate: An integer or tuple/list of n integers, specifying the dilation rate to use for dilated convolution. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any `strides` value != 1. activation: Activation function to use. By default hyperbolic tangent activation function is applied (`tanh(x)`). recurrent_activation: Activation function to use for the recurrent step. use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. bias_initializer: Initializer for the bias vector. unit_forget_bias: Boolean. If True, add 1 to the bias of the forget gate at initialization. Use in combination with `bias_initializer="zeros"`. This is recommended in [Jozefowicz et al., 2015]( http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf) kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. bias_regularizer: Regularizer function applied to the bias vector. activity_regularizer: Regularizer function applied to. kernel_constraint: Constraint function applied to the `kernel` weights matrix. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. bias_constraint: Constraint function applied to the bias vector. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. seed: Random seed for dropout. return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence. (default False) return_state: Boolean Whether to return the last state in addition to the output. (default False) go_backwards: Boolean (default False). If True, process the input sequence backwards. stateful: Boolean (default False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. """ def __init__( self, rank, filters, kernel_size, strides=1, padding="valid", data_format=None, dilation_rate=1, activation="tanh", recurrent_activation="sigmoid", use_bias=True, kernel_initializer="glorot_uniform", recurrent_initializer="orthogonal", bias_initializer="zeros", unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, seed=None, return_sequences=False, return_state=False, go_backwards=False, stateful=False, **kwargs, ): cell = ConvLSTMCell( rank=rank, filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, recurrent_activation=recurrent_activation, use_bias=use_bias, kernel_initializer=kernel_initializer, recurrent_initializer=recurrent_initializer, bias_initializer=bias_initializer, unit_forget_bias=unit_forget_bias, kernel_regularizer=kernel_regularizer, recurrent_regularizer=recurrent_regularizer, bias_regularizer=bias_regularizer, kernel_constraint=kernel_constraint, recurrent_constraint=recurrent_constraint, bias_constraint=bias_constraint, dropout=dropout, recurrent_dropout=recurrent_dropout, seed=seed, name="conv_lstm_cell", dtype=kwargs.get("dtype"), ) super().__init__( cell, return_sequences=return_sequences, return_state=return_state, go_backwards=go_backwards, stateful=stateful, **kwargs, ) self.input_spec = InputSpec(ndim=rank + 3) def call(self, sequences, initial_state=None, mask=None, training=False): return super().call( sequences, initial_state=initial_state, mask=mask, training=training ) def compute_output_shape(self, sequences_shape, initial_state_shape=None): batch_size = sequences_shape[0] steps = sequences_shape[1] step_shape = (batch_size,) + sequences_shape[2:] state_shape = self.cell.compute_output_shape(step_shape)[0][1:] if self.return_sequences: output_shape = ( batch_size, steps, ) + state_shape else: output_shape = (batch_size,) + state_shape if self.return_state: batched_state_shape = (batch_size,) + state_shape return output_shape, batched_state_shape, batched_state_shape return output_shape def compute_mask(self, _, mask): mask = tree.flatten(mask)[0] output_mask = mask if self.return_sequences else None if self.return_state: state_mask = [None, None] return [output_mask] + state_mask else: return output_mask @property def filters(self): return self.cell.filters @property def kernel_size(self): return self.cell.kernel_size @property def strides(self): return self.cell.strides @property def padding(self): return self.cell.padding @property def data_format(self): return self.cell.data_format @property def dilation_rate(self): return self.cell.dilation_rate @property def activation(self): return self.cell.activation @property def recurrent_activation(self): return self.cell.recurrent_activation @property def use_bias(self): return self.cell.use_bias @property def kernel_initializer(self): return self.cell.kernel_initializer @property def recurrent_initializer(self): return self.cell.recurrent_initializer @property def bias_initializer(self): return self.cell.bias_initializer @property def unit_forget_bias(self): return self.cell.unit_forget_bias @property def kernel_regularizer(self): return self.cell.kernel_regularizer @property def recurrent_regularizer(self): return self.cell.recurrent_regularizer @property def bias_regularizer(self): return self.cell.bias_regularizer @property def kernel_constraint(self): return self.cell.kernel_constraint @property def recurrent_constraint(self): return self.cell.recurrent_constraint @property def bias_constraint(self): return self.cell.bias_constraint @property def dropout(self): return self.cell.dropout @property def recurrent_dropout(self): return self.cell.recurrent_dropout def get_config(self): config = { "filters": self.filters, "kernel_size": self.kernel_size, "strides": self.strides, "padding": self.padding, "data_format": self.data_format, "dilation_rate": self.dilation_rate, "activation": activations.serialize(self.activation), "recurrent_activation": activations.serialize( self.recurrent_activation ), "use_bias": self.use_bias, "kernel_initializer": initializers.serialize( self.kernel_initializer ), "recurrent_initializer": initializers.serialize( self.recurrent_initializer ), "bias_initializer": initializers.serialize(self.bias_initializer), "unit_forget_bias": self.unit_forget_bias, "kernel_regularizer": regularizers.serialize( self.kernel_regularizer ), "recurrent_regularizer": regularizers.serialize( self.recurrent_regularizer ), "bias_regularizer": regularizers.serialize(self.bias_regularizer), "activity_regularizer": regularizers.serialize( self.activity_regularizer ), "kernel_constraint": constraints.serialize(self.kernel_constraint), "recurrent_constraint": constraints.serialize( self.recurrent_constraint ), "bias_constraint": constraints.serialize(self.bias_constraint), "dropout": self.dropout, "recurrent_dropout": self.recurrent_dropout, "seed": self.cell.seed, } base_config = super().get_config() del base_config["cell"] return {**base_config, **config} @classmethod def from_config(cls, config): return cls(**config)
keras/keras/layers/rnn/conv_lstm.py/0
{ "file_path": "keras/keras/layers/rnn/conv_lstm.py", "repo_id": "keras", "token_count": 12328 }
166
from keras import activations from keras import backend from keras import constraints from keras import initializers from keras import ops from keras import regularizers from keras.api_export import keras_export from keras.layers.input_spec import InputSpec from keras.layers.layer import Layer from keras.layers.rnn.dropout_rnn_cell import DropoutRNNCell from keras.layers.rnn.rnn import RNN @keras_export("keras.layers.SimpleRNNCell") class SimpleRNNCell(Layer, DropoutRNNCell): """Cell class for SimpleRNN. This class processes one step within the whole time sequence input, whereas `keras.layer.SimpleRNN` processes the whole sequence. Args: units: Positive integer, dimensionality of the output space. activation: Activation function to use. Default: hyperbolic tangent (`tanh`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, (default `True`), whether the layer should use a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. Default: `"glorot_uniform"`. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. Default: `"orthogonal"`. bias_initializer: Initializer for the bias vector. Default: `"zeros"`. kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. Default: `None`. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. Default: `None`. bias_regularizer: Regularizer function applied to the bias vector. Default: `None`. kernel_constraint: Constraint function applied to the `kernel` weights matrix. Default: `None`. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. Default: `None`. bias_constraint: Constraint function applied to the bias vector. Default: `None`. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0. seed: Random seed for dropout. Call arguments: sequence: A 2D tensor, with shape `(batch, features)`. states: A 2D tensor with shape `(batch, units)`, which is the state from the previous time step. training: Python boolean indicating whether the layer should behave in training mode or in inference mode. Only relevant when `dropout` or `recurrent_dropout` is used. Example: ```python inputs = np.random.random([32, 10, 8]).astype(np.float32) rnn = keras.layers.RNN(keras.layers.SimpleRNNCell(4)) output = rnn(inputs) # The output has shape `(32, 4)`. rnn = keras.layers.RNN( keras.layers.SimpleRNNCell(4), return_sequences=True, return_state=True ) # whole_sequence_output has shape `(32, 10, 4)`. # final_state has shape `(32, 4)`. whole_sequence_output, final_state = rnn(inputs) ``` """ def __init__( self, units, activation="tanh", use_bias=True, kernel_initializer="glorot_uniform", recurrent_initializer="orthogonal", bias_initializer="zeros", kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, seed=None, **kwargs, ): if units <= 0: raise ValueError( "Received an invalid value for argument `units`, " f"expected a positive integer, got {units}." ) super().__init__(**kwargs) self.seed = seed self.seed_generator = backend.random.SeedGenerator(seed) self.units = units self.activation = activations.get(activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.recurrent_initializer = initializers.get(recurrent_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.recurrent_regularizer = regularizers.get(recurrent_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.recurrent_constraint = constraints.get(recurrent_constraint) self.bias_constraint = constraints.get(bias_constraint) self.dropout = min(1.0, max(0.0, dropout)) self.recurrent_dropout = min(1.0, max(0.0, recurrent_dropout)) self.state_size = self.units self.output_size = self.units def build(self, input_shape): self.kernel = self.add_weight( shape=(input_shape[-1], self.units), name="kernel", initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, ) self.recurrent_kernel = self.add_weight( shape=(self.units, self.units), name="recurrent_kernel", initializer=self.recurrent_initializer, regularizer=self.recurrent_regularizer, constraint=self.recurrent_constraint, ) if self.use_bias: self.bias = self.add_weight( shape=(self.units,), name="bias", initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, ) else: self.bias = None self.built = True def call(self, sequence, states, training=False): prev_output = states[0] if isinstance(states, (list, tuple)) else states dp_mask = self.get_dropout_mask(sequence) rec_dp_mask = self.get_recurrent_dropout_mask(prev_output) if training and dp_mask is not None: sequence *= dp_mask h = ops.matmul(sequence, self.kernel) if self.bias is not None: h += self.bias if training and rec_dp_mask is not None: prev_output *= rec_dp_mask output = h + ops.matmul(prev_output, self.recurrent_kernel) if self.activation is not None: output = self.activation(output) new_state = [output] if isinstance(states, (list, tuple)) else output return output, new_state def get_initial_state(self, batch_size=None): return [ ops.zeros((batch_size, self.state_size), dtype=self.compute_dtype) ] def get_config(self): config = { "units": self.units, "activation": activations.serialize(self.activation), "use_bias": self.use_bias, "kernel_initializer": initializers.serialize( self.kernel_initializer ), "recurrent_initializer": initializers.serialize( self.recurrent_initializer ), "bias_initializer": initializers.serialize(self.bias_initializer), "kernel_regularizer": regularizers.serialize( self.kernel_regularizer ), "recurrent_regularizer": regularizers.serialize( self.recurrent_regularizer ), "bias_regularizer": regularizers.serialize(self.bias_regularizer), "kernel_constraint": constraints.serialize(self.kernel_constraint), "recurrent_constraint": constraints.serialize( self.recurrent_constraint ), "bias_constraint": constraints.serialize(self.bias_constraint), "dropout": self.dropout, "recurrent_dropout": self.recurrent_dropout, "seed": self.seed, } base_config = super().get_config() return {**base_config, **config} @keras_export("keras.layers.SimpleRNN") class SimpleRNN(RNN): """Fully-connected RNN where the output is to be fed back as the new input. Args: units: Positive integer, dimensionality of the output space. activation: Activation function to use. Default: hyperbolic tangent (`tanh`). If you pass None, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, (default `True`), whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. Default: `"glorot_uniform"`. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. Default: `"orthogonal"`. bias_initializer: Initializer for the bias vector. Default: `"zeros"`. kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. Default: `None`. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. Default: `None`. bias_regularizer: Regularizer function applied to the bias vector. Default: `None`. activity_regularizer: Regularizer function applied to the output of the layer (its "activation"). Default: `None`. kernel_constraint: Constraint function applied to the `kernel` weights matrix. Default: `None`. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. Default: `None`. bias_constraint: Constraint function applied to the bias vector. Default: `None`. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0. return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence. Default: `False`. return_state: Boolean. Whether to return the last state in addition to the output. Default: `False`. go_backwards: Boolean (default: `False`). If `True`, process the input sequence backwards and return the reversed sequence. stateful: Boolean (default: `False`). If `True`, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. unroll: Boolean (default: `False`). If `True`, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences. Call arguments: sequence: A 3D tensor, with shape `[batch, timesteps, feature]`. mask: Binary tensor of shape `[batch, timesteps]` indicating whether a given timestep should be masked. An individual `True` entry indicates that the corresponding timestep should be utilized, while a `False` entry indicates that the corresponding timestep should be ignored. training: Python boolean indicating whether the layer should behave in training mode or in inference mode. This argument is passed to the cell when calling it. This is only relevant if `dropout` or `recurrent_dropout` is used. initial_state: List of initial state tensors to be passed to the first call of the cell. Example: ```python inputs = np.random.random((32, 10, 8)) simple_rnn = keras.layers.SimpleRNN(4) output = simple_rnn(inputs) # The output has shape `(32, 4)`. simple_rnn = keras.layers.SimpleRNN( 4, return_sequences=True, return_state=True ) # whole_sequence_output has shape `(32, 10, 4)`. # final_state has shape `(32, 4)`. whole_sequence_output, final_state = simple_rnn(inputs) ``` """ def __init__( self, units, activation="tanh", use_bias=True, kernel_initializer="glorot_uniform", recurrent_initializer="orthogonal", bias_initializer="zeros", kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False, seed=None, **kwargs, ): cell = SimpleRNNCell( units, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, recurrent_initializer=recurrent_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, recurrent_regularizer=recurrent_regularizer, bias_regularizer=bias_regularizer, kernel_constraint=kernel_constraint, recurrent_constraint=recurrent_constraint, bias_constraint=bias_constraint, dropout=dropout, recurrent_dropout=recurrent_dropout, seed=seed, dtype=kwargs.get("dtype", None), trainable=kwargs.get("trainable", True), name="simple_rnn_cell", ) super().__init__( cell, return_sequences=return_sequences, return_state=return_state, go_backwards=go_backwards, stateful=stateful, unroll=unroll, **kwargs, ) self.input_spec = [InputSpec(ndim=3)] def call(self, sequences, initial_state=None, mask=None, training=False): return super().call( sequences, mask=mask, training=training, initial_state=initial_state ) @property def units(self): return self.cell.units @property def activation(self): return self.cell.activation @property def use_bias(self): return self.cell.use_bias @property def kernel_initializer(self): return self.cell.kernel_initializer @property def recurrent_initializer(self): return self.cell.recurrent_initializer @property def bias_initializer(self): return self.cell.bias_initializer @property def kernel_regularizer(self): return self.cell.kernel_regularizer @property def recurrent_regularizer(self): return self.cell.recurrent_regularizer @property def bias_regularizer(self): return self.cell.bias_regularizer @property def kernel_constraint(self): return self.cell.kernel_constraint @property def recurrent_constraint(self): return self.cell.recurrent_constraint @property def bias_constraint(self): return self.cell.bias_constraint @property def dropout(self): return self.cell.dropout @property def recurrent_dropout(self): return self.cell.recurrent_dropout def get_config(self): config = { "units": self.units, "activation": activations.serialize(self.activation), "use_bias": self.use_bias, "kernel_initializer": initializers.serialize( self.kernel_initializer ), "recurrent_initializer": initializers.serialize( self.recurrent_initializer ), "bias_initializer": initializers.serialize(self.bias_initializer), "kernel_regularizer": regularizers.serialize( self.kernel_regularizer ), "recurrent_regularizer": regularizers.serialize( self.recurrent_regularizer ), "bias_regularizer": regularizers.serialize(self.bias_regularizer), "activity_regularizer": regularizers.serialize( self.activity_regularizer ), "kernel_constraint": constraints.serialize(self.kernel_constraint), "recurrent_constraint": constraints.serialize( self.recurrent_constraint ), "bias_constraint": constraints.serialize(self.bias_constraint), "dropout": self.dropout, "recurrent_dropout": self.recurrent_dropout, } base_config = super().get_config() del base_config["cell"] return {**base_config, **config} @classmethod def from_config(cls, config): return cls(**config)
keras/keras/layers/rnn/simple_rnn.py/0
{ "file_path": "keras/keras/layers/rnn/simple_rnn.py", "repo_id": "keras", "token_count": 7513 }
167
import enum import pytest from keras import backend from keras import testing from keras.legacy.saving import json_utils if backend.backend() == "tensorflow": import tensorflow as tf class JsonUtilsTestAllBackends(testing.TestCase): def test_encode_decode_tuple(self): metadata = {"key1": (3, 5), "key2": [(1, (3, 4)), (1,)]} string = json_utils.Encoder().encode(metadata) loaded = json_utils.decode(string) self.assertEqual(set(loaded.keys()), {"key1", "key2"}) self.assertAllEqual(loaded["key1"], (3, 5)) self.assertAllEqual(loaded["key2"], [(1, (3, 4)), (1,)]) def test_encode_decode_enum(self): class Enum(enum.Enum): CLASS_A = "a" CLASS_B = "b" config = {"key": Enum.CLASS_A, "key2": Enum.CLASS_B} string = json_utils.Encoder().encode(config) loaded = json_utils.decode(string) self.assertAllEqual({"key": "a", "key2": "b"}, loaded) def test_encode_decode_bytes(self): b_string = b"abc" json_string = json_utils.Encoder().encode(b_string) loaded = json_utils.decode(json_string) self.assertAllEqual(b_string, loaded) @pytest.mark.skipif( backend.backend() != "tensorflow", reason="These JSON serialization tests are specific to TF components.", ) class JsonUtilsTestTF(testing.TestCase): def test_encode_decode_tensor_shape(self): metadata = { "key1": tf.TensorShape(None), "key2": [tf.TensorShape([None]), tf.TensorShape([3, None, 5])], } string = json_utils.Encoder().encode(metadata) loaded = json_utils.decode(string) self.assertEqual(set(loaded.keys()), {"key1", "key2"}) self.assertEqual(loaded["key1"].rank, None) self.assertAllEqual(loaded["key2"][0].as_list(), [None]) self.assertAllEqual(loaded["key2"][1].as_list(), [3, None, 5]) def test_encode_decode_type_spec(self): spec = tf.TensorSpec((1, 5), tf.float32) string = json_utils.Encoder().encode(spec) loaded = json_utils.decode(string) self.assertEqual(spec, loaded) invalid_type_spec = { "class_name": "TypeSpec", "type_spec": "Invalid Type", "serialized": None, } string = json_utils.Encoder().encode(invalid_type_spec) with self.assertRaisesRegexp( ValueError, "No TypeSpec has been registered" ): loaded = json_utils.decode(string) def test_encode_decode_ragged_tensor(self): x = tf.ragged.constant([[1.0, 2.0], [3.0]]) string = json_utils.Encoder().encode(x) loaded = json_utils.decode(string) self.assertAllClose(loaded.values, x.values) def test_encode_decode_extension_type_tensor(self): class MaskedTensor(tf.experimental.ExtensionType): __name__ = "MaskedTensor" values: tf.Tensor mask: tf.Tensor x = MaskedTensor( values=[[1, 2, 3], [4, 5, 6]], mask=[[True, True, False], [True, False, True]], ) string = json_utils.Encoder().encode(x) loaded = json_utils.decode(string) self.assertAllClose(loaded.values, x.values) self.assertAllClose(loaded.mask, x.mask)
keras/keras/legacy/saving/json_utils_test.py/0
{ "file_path": "keras/keras/legacy/saving/json_utils_test.py", "repo_id": "keras", "token_count": 1527 }
168
from keras import backend from keras import initializers from keras import ops from keras.api_export import keras_export from keras.metrics.metric import Metric @keras_export("keras.metrics.FBetaScore") class FBetaScore(Metric): """Computes F-Beta score. Formula: ```python b2 = beta ** 2 f_beta_score = (1 + b2) * (precision * recall) / (precision * b2 + recall) ``` This is the weighted harmonic mean of precision and recall. Its output range is `[0, 1]`. It works for both multi-class and multi-label classification. Args: average: Type of averaging to be performed across per-class results in the multi-class case. Acceptable values are `None`, `"micro"`, `"macro"` and `"weighted"`. Defaults to `None`. If `None`, no averaging is performed and `result()` will return the score for each class. If `"micro"`, compute metrics globally by counting the total true positives, false negatives and false positives. If `"macro"`, compute metrics for each label, and return their unweighted mean. This does not take label imbalance into account. If `"weighted"`, compute metrics for each label, and return their average weighted by support (the number of true instances for each label). This alters `"macro"` to account for label imbalance. It can result in an score that is not between precision and recall. beta: Determines the weight of given to recall in the harmonic mean between precision and recall (see pseudocode equation above). Defaults to `1`. threshold: Elements of `y_pred` greater than `threshold` are converted to be 1, and the rest 0. If `threshold` is `None`, the argmax of `y_pred` is converted to 1, and the rest to 0. name: Optional. String name of the metric instance. dtype: Optional. Data type of the metric result. Returns: F-Beta Score: float. Example: >>> metric = keras.metrics.FBetaScore(beta=2.0, threshold=0.5) >>> y_true = np.array([[1, 1, 1], ... [1, 0, 0], ... [1, 1, 0]], np.int32) >>> y_pred = np.array([[0.2, 0.6, 0.7], ... [0.2, 0.6, 0.6], ... [0.6, 0.8, 0.0]], np.float32) >>> metric.update_state(y_true, y_pred) >>> result = metric.result() >>> result [0.3846154 , 0.90909094, 0.8333334 ] """ def __init__( self, average=None, beta=1.0, threshold=None, name="fbeta_score", dtype=None, ): super().__init__(name=name, dtype=dtype) # Metric should be maximized during optimization. self._direction = "up" if average not in (None, "micro", "macro", "weighted"): raise ValueError( "Invalid `average` argument value. Expected one of: " "{None, 'micro', 'macro', 'weighted'}. " f"Received: average={average}" ) if not isinstance(beta, float): raise ValueError( "Invalid `beta` argument value. " "It should be a Python float. " f"Received: beta={beta} of type '{type(beta)}'" ) if beta <= 0.0: raise ValueError( "Invalid `beta` argument value. " "It should be > 0. " f"Received: beta={beta}" ) if threshold is not None: if not isinstance(threshold, float): raise ValueError( "Invalid `threshold` argument value. " "It should be a Python float. " f"Received: threshold={threshold} " f"of type '{type(threshold)}'" ) if threshold > 1.0 or threshold <= 0.0: raise ValueError( "Invalid `threshold` argument value. " "It should verify 0 < threshold <= 1. " f"Received: threshold={threshold}" ) self.average = average self.beta = beta self.threshold = threshold self.axis = None self._built = False if self.average != "micro": self.axis = 0 def _build(self, y_true_shape, y_pred_shape): if len(y_pred_shape) != 2 or len(y_true_shape) != 2: raise ValueError( "FBetaScore expects 2D inputs with shape " "(batch_size, output_dim). Received input " f"shapes: y_pred.shape={y_pred_shape} and " f"y_true.shape={y_true_shape}." ) if y_pred_shape[-1] is None or y_true_shape[-1] is None: raise ValueError( "FBetaScore expects 2D inputs with shape " "(batch_size, output_dim), with output_dim fully " "defined (not None). Received input " f"shapes: y_pred.shape={y_pred_shape} and " f"y_true.shape={y_true_shape}." ) num_classes = y_pred_shape[-1] if self.average != "micro": init_shape = (num_classes,) else: init_shape = () def _add_zeros_variable(name): return self.add_variable( name=name, shape=init_shape, initializer=initializers.Zeros(), dtype=self.dtype, ) self.true_positives = _add_zeros_variable("true_positives") self.false_positives = _add_zeros_variable("false_positives") self.false_negatives = _add_zeros_variable("false_negatives") self.intermediate_weights = _add_zeros_variable("intermediate_weights") self._built = True def update_state(self, y_true, y_pred, sample_weight=None): y_true = ops.convert_to_tensor(y_true, dtype=self.dtype) y_pred = ops.convert_to_tensor(y_pred, dtype=self.dtype) if not self._built: self._build(y_true.shape, y_pred.shape) if self.threshold is None: threshold = ops.max(y_pred, axis=-1, keepdims=True) # make sure [0, 0, 0] doesn't become [1, 1, 1] # Use abs(x) > eps, instead of x != 0 to check for zero y_pred = ops.logical_and( y_pred >= threshold, ops.abs(y_pred) > 1e-9 ) else: y_pred = y_pred > self.threshold y_pred = ops.cast(y_pred, dtype=self.dtype) y_true = ops.cast(y_true, dtype=self.dtype) if sample_weight is not None: sample_weight = ops.convert_to_tensor( sample_weight, dtype=self.dtype ) def _weighted_sum(val, sample_weight): if sample_weight is not None: val = ops.multiply(val, ops.expand_dims(sample_weight, 1)) return ops.sum(val, axis=self.axis) self.true_positives.assign( self.true_positives + _weighted_sum(y_pred * y_true, sample_weight) ) self.false_positives.assign( self.false_positives + _weighted_sum(y_pred * (1 - y_true), sample_weight) ) self.false_negatives.assign( self.false_negatives + _weighted_sum((1 - y_pred) * y_true, sample_weight) ) self.intermediate_weights.assign( self.intermediate_weights + _weighted_sum(y_true, sample_weight) ) def result(self): precision = ops.divide( self.true_positives, self.true_positives + self.false_positives + backend.epsilon(), ) recall = ops.divide( self.true_positives, self.true_positives + self.false_negatives + backend.epsilon(), ) precision = ops.convert_to_tensor(precision, dtype=self.dtype) recall = ops.convert_to_tensor(recall, dtype=self.dtype) mul_value = precision * recall add_value = ((self.beta**2) * precision) + recall mean = ops.divide(mul_value, add_value + backend.epsilon()) f1_score = mean * (1 + (self.beta**2)) if self.average == "weighted": weights = ops.divide( self.intermediate_weights, ops.sum(self.intermediate_weights) + backend.epsilon(), ) f1_score = ops.sum(f1_score * weights) elif self.average is not None: # [micro, macro] f1_score = ops.mean(f1_score) return f1_score def get_config(self): """Returns the serializable config of the metric.""" config = { "name": self.name, "dtype": self.dtype, "average": self.average, "beta": self.beta, "threshold": self.threshold, } base_config = super().get_config() return {**base_config, **config} def reset_state(self): for v in self.variables: v.assign(ops.zeros(v.shape, dtype=v.dtype)) @keras_export("keras.metrics.F1Score") class F1Score(FBetaScore): r"""Computes F-1 Score. Formula: ```python f1_score = 2 * (precision * recall) / (precision + recall) ``` This is the harmonic mean of precision and recall. Its output range is `[0, 1]`. It works for both multi-class and multi-label classification. Args: average: Type of averaging to be performed on data. Acceptable values are `None`, `"micro"`, `"macro"` and `"weighted"`. Defaults to `None`. If `None`, no averaging is performed and `result()` will return the score for each class. If `"micro"`, compute metrics globally by counting the total true positives, false negatives and false positives. If `"macro"`, compute metrics for each label, and return their unweighted mean. This does not take label imbalance into account. If `"weighted"`, compute metrics for each label, and return their average weighted by support (the number of true instances for each label). This alters `"macro"` to account for label imbalance. It can result in an score that is not between precision and recall. threshold: Elements of `y_pred` greater than `threshold` are converted to be 1, and the rest 0. If `threshold` is `None`, the argmax of `y_pred` is converted to 1, and the rest to 0. name: Optional. String name of the metric instance. dtype: Optional. Data type of the metric result. Returns: F-1 Score: float. Example: >>> metric = keras.metrics.F1Score(threshold=0.5) >>> y_true = np.array([[1, 1, 1], ... [1, 0, 0], ... [1, 1, 0]], np.int32) >>> y_pred = np.array([[0.2, 0.6, 0.7], ... [0.2, 0.6, 0.6], ... [0.6, 0.8, 0.0]], np.float32) >>> metric.update_state(y_true, y_pred) >>> result = metric.result() array([0.5 , 0.8 , 0.6666667], dtype=float32) """ def __init__( self, average=None, threshold=None, name="f1_score", dtype=None, ): super().__init__( average=average, beta=1.0, threshold=threshold, name=name, dtype=dtype, ) def get_config(self): base_config = super().get_config() del base_config["beta"] return base_config
keras/keras/metrics/f_score_metrics.py/0
{ "file_path": "keras/keras/metrics/f_score_metrics.py", "repo_id": "keras", "token_count": 5629 }
169
import tree from keras import testing from keras.backend import KerasTensor from keras.ops.symbolic_arguments import SymbolicArguments class SymbolicArgumentsTest(testing.TestCase): # Testing multiple args and empty kwargs def test_args(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) b = KerasTensor(shape=shape) args = SymbolicArguments( ( a, b, ), {}, ) self.assertEqual(args.keras_tensors, [a, b]) self.assertEqual(args._flat_arguments, [a, b]) self.assertEqual(args._single_positional_tensor, None) # Testing single arg and single position tensor def test_args_single_arg(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) args = SymbolicArguments((a)) self.assertEqual(args.keras_tensors, [a]) self.assertEqual(args._flat_arguments, [a]) self.assertEqual(len(args.kwargs), 0) self.assertEqual(isinstance(args.args[0], KerasTensor), True) self.assertEqual(args._single_positional_tensor, a) # Testing kwargs def test_kwargs(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) b = KerasTensor(shape=shape) c = KerasTensor(shape=shape) args = SymbolicArguments( ( a, b, ), {1: c}, ) self.assertEqual(args.keras_tensors, [a, b, c]) self.assertEqual(args._flat_arguments, [a, b, c]) self.assertEqual(args._single_positional_tensor, None) # Testing conversion function with args and kwargs def test_conversion_fn(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) b = KerasTensor(shape=shape) c = KerasTensor(shape=shape) sym_args = SymbolicArguments( ( a, b, ), {1: c}, ) (value, _) = sym_args.convert(lambda x: x**2) args1 = value[0][0] self.assertIsInstance(args1, KerasTensor) mapped_value = tree.map_structure(lambda x: x**2, a) self.assertEqual(mapped_value.shape, args1.shape) self.assertEqual(mapped_value.dtype, args1.dtype) # Testing fill in function with single args only def test_fill_in_single_arg(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) tensor_dict = {id(a): 3} sym_args = SymbolicArguments((a)) # Call the method to be tested result, _ = sym_args.fill_in(tensor_dict) self.assertEqual(result, (3,)) # Testing fill in function with multiple args def test_fill_in_multiple_arg(self): shape = (2, 3, 4) a = KerasTensor(shape=shape) b = KerasTensor(shape=shape) tensor_dict = {id(b): 2} sym_args = SymbolicArguments((a, b)) # Call the method to be tested result, _ = sym_args.fill_in(tensor_dict) self.assertEqual(result, ((a, 2),)) # Testing fill in function for args and kwargs def test_fill_in(self): shape1 = (2, 3, 4) shape2 = (3, 2, 4) a = KerasTensor(shape=shape1) b = KerasTensor(shape=shape2) c = KerasTensor(shape=shape2) dictionary = {id(a): 3, id(c): 2} sym_args = SymbolicArguments( ( a, b, ), {1: c}, ) (values, _) = sym_args.fill_in(dictionary) self.assertEqual(values, ((3, b), {1: 2}))
keras/keras/ops/symbolic_arguments_test.py/0
{ "file_path": "keras/keras/ops/symbolic_arguments_test.py", "repo_id": "keras", "token_count": 1817 }
170
# flake8: noqa import numpy as np from keras import backend from keras import testing from keras.optimizers.ftrl import Ftrl class FtrlTest(testing.TestCase): def test_config(self): optimizer = Ftrl( learning_rate=0.05, learning_rate_power=-0.2, initial_accumulator_value=0.4, l1_regularization_strength=0.05, l2_regularization_strength=0.15, l2_shrinkage_regularization_strength=0.01, beta=0.3, ) self.run_class_serialization_test(optimizer) def test_single_step(self): optimizer = Ftrl(learning_rate=0.5) grads = np.array([1.0, 6.0, 7.0, 2.0]) vars = backend.Variable([1.0, 2.0, 3.0, 4.0]) optimizer.apply_gradients(zip([grads], [vars])) self.assertAllClose( vars, [0.2218, 1.3954, 2.3651, 2.8814], rtol=1e-4, atol=1e-4 ) def test_correctness_with_golden(self): optimizer = Ftrl( learning_rate=0.05, learning_rate_power=-0.2, initial_accumulator_value=0.4, l1_regularization_strength=0.05, l2_regularization_strength=0.15, l2_shrinkage_regularization_strength=0.01, beta=0.3, ) x = backend.Variable(np.ones([10])) grads = np.arange(0.1, 1.1, 0.1) first_grads = np.full((10,), 0.01) # fmt: off golden = np.array( [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [-0.0034, -0.0077, -0.0118, -0.0157, -0.0194, -0.023, -0.0263, -0.0294, -0.0325, -0.0354], [-0.0078, -0.0162, -0.0242, -0.0317, -0.0387, -0.0454, -0.0516, -0.0575, -0.0631, -0.0685], [-0.0121, -0.0246, -0.0363, -0.0472, -0.0573, -0.0668, -0.0757, -0.0842, -0.0922, -0.0999], [-0.0164, -0.0328, -0.0481, -0.0623, -0.0753, -0.0875, -0.099, -0.1098, -0.1201, -0.1299]] ) # fmt: on optimizer.apply_gradients(zip([first_grads], [x])) for i in range(5): self.assertAllClose(x, golden[i], rtol=5e-4, atol=5e-4) optimizer.apply_gradients(zip([grads], [x])) def test_clip_norm(self): optimizer = Ftrl(clipnorm=1) grad = [np.array([100.0, 100.0])] clipped_grad = optimizer._clip_gradients(grad) self.assertAllClose(clipped_grad[0], [2**0.5 / 2, 2**0.5 / 2]) def test_clip_value(self): optimizer = Ftrl(clipvalue=1) grad = [np.array([100.0, 100.0])] clipped_grad = optimizer._clip_gradients(grad) self.assertAllClose(clipped_grad[0], [1.0, 1.0])
keras/keras/optimizers/ftrl_test.py/0
{ "file_path": "keras/keras/optimizers/ftrl_test.py", "repo_id": "keras", "token_count": 1463 }
171
# flake8: noqa import numpy as np from keras import backend from keras import ops from keras import testing from keras.optimizers.sgd import SGD class SGDTest(testing.TestCase): def test_config(self): optimizer = SGD( learning_rate=0.5, momentum=0.06, nesterov=True, weight_decay=0.004, ) self.run_class_serialization_test(optimizer) def test_single_step(self): optimizer = SGD(learning_rate=0.5) self.assertEqual(len(optimizer.variables), 2) grads = ops.array([1.0, 6.0, 7.0, 2.0]) vars = backend.Variable([1.0, 2.0, 3.0, 4.0]) optimizer.build([vars]) optimizer.apply_gradients(zip([grads], [vars])) self.assertAllClose(vars, [0.5, -1.0, -0.5, 3.0], rtol=1e-4, atol=1e-4) self.assertEqual(len(optimizer.variables), 2) self.assertEqual(optimizer.variables[0], 1) self.assertEqual(optimizer.variables[1], 0.5) def test_weight_decay(self): grads, var1, var2, var3 = ( ops.zeros(()), backend.Variable(2.0), backend.Variable(2.0, name="exclude"), backend.Variable(2.0), ) optimizer_1 = SGD(learning_rate=1.0, weight_decay=0.004) optimizer_1.apply_gradients(zip([grads], [var1])) optimizer_2 = SGD(learning_rate=1.0, weight_decay=0.004) optimizer_2.exclude_from_weight_decay(var_names=["exclude"]) optimizer_2.apply_gradients(zip([grads, grads], [var1, var2])) optimizer_3 = SGD(learning_rate=1.0, weight_decay=0.004) optimizer_3.exclude_from_weight_decay(var_list=[var3]) optimizer_3.apply_gradients(zip([grads, grads], [var1, var3])) self.assertAlmostEqual(var1.numpy(), 1.9760959, decimal=6) self.assertAlmostEqual(var2.numpy(), 2.0, decimal=6) self.assertAlmostEqual(var3.numpy(), 2.0, decimal=6) def test_correctness_with_golden(self): optimizer = SGD(nesterov=True) x = backend.Variable(np.ones([10])) grads = ops.arange(0.1, 1.1, 0.1) first_grads = ops.full((10,), 0.01) # fmt: off golden = np.array( [[0.9999, 0.9999, 0.9999, 0.9999, 0.9999, 0.9999, 0.9999, 0.9999, 0.9999, 0.9999], [0.9989, 0.9979, 0.9969, 0.9959, 0.9949, 0.9939, 0.9929, 0.9919, 0.9909, 0.9899], [0.9979, 0.9959, 0.9939, 0.9919, 0.9899, 0.9879, 0.9859, 0.9839, 0.9819, 0.9799], [0.9969, 0.9939, 0.9909, 0.9879, 0.9849, 0.9819, 0.9789, 0.9759, 0.9729, 0.9699], [0.9959, 0.9919, 0.9879, 0.9839, 0.9799, 0.9759, 0.9719, 0.9679, 0.9639, 0.9599]] ) # fmt: on optimizer.apply_gradients(zip([first_grads], [x])) for i in range(5): self.assertAllClose(x, golden[i], rtol=5e-4, atol=5e-4) optimizer.apply_gradients(zip([grads], [x])) def test_clip_norm(self): optimizer = SGD(clipnorm=1) grad = [np.array([100.0, 100.0])] clipped_grad = optimizer._clip_gradients(grad) self.assertAllClose(clipped_grad[0], [2**0.5 / 2, 2**0.5 / 2]) def test_clip_value(self): optimizer = SGD(clipvalue=1) grad = [np.array([100.0, 100.0])] clipped_grad = optimizer._clip_gradients(grad) self.assertAllClose(clipped_grad[0], [1.0, 1.0])
keras/keras/optimizers/sgd_test.py/0
{ "file_path": "keras/keras/optimizers/sgd_test.py", "repo_id": "keras", "token_count": 1778 }
172
"""Tests for Keras python-based idempotent saving functions.""" import json import os import warnings import zipfile from pathlib import Path from unittest import mock import numpy as np import pytest import keras from keras import ops from keras import testing from keras.saving import saving_lib @keras.saving.register_keras_serializable(package="my_custom_package") class MyDense(keras.layers.Layer): def __init__(self, units, **kwargs): super().__init__(**kwargs) self.units = units self.nested_layer = keras.layers.Dense(self.units, name="dense") def build(self, input_shape): self.additional_weights = [ self.add_weight( shape=(), name="my_additional_weight", initializer="ones", trainable=True, ), self.add_weight( shape=(), name="my_additional_weight_2", initializer="ones", trainable=True, ), ] self.weights_in_dict = { "my_weight": self.add_weight( shape=(), name="my_dict_weight", initializer="ones", trainable=True, ), } self.nested_layer.build(input_shape) def call(self, inputs): return self.nested_layer(inputs) def two(self): return 2 ASSETS_DATA = "These are my assets" VARIABLES_DATA = np.random.random((10,)) @keras.saving.register_keras_serializable(package="my_custom_package") class LayerWithCustomSaving(MyDense): def build(self, input_shape): self.assets = ASSETS_DATA self.stored_variables = VARIABLES_DATA return super().build(input_shape) def save_assets(self, inner_path): with open(os.path.join(inner_path, "assets.txt"), "w") as f: f.write(self.assets) def save_own_variables(self, store): store["variables"] = self.stored_variables def load_assets(self, inner_path): with open(os.path.join(inner_path, "assets.txt"), "r") as f: text = f.read() self.assets = text def load_own_variables(self, store): self.stored_variables = np.array(store["variables"]) @keras.saving.register_keras_serializable(package="my_custom_package") class CustomModelX(keras.Model): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.dense1 = MyDense(1, name="my_dense_1") self.dense2 = MyDense(1, name="my_dense_2") def call(self, inputs): out = self.dense1(inputs) return self.dense2(out) def one(self): return 1 @keras.saving.register_keras_serializable(package="my_custom_package") class ModelWithCustomSaving(keras.Model): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.custom_dense = LayerWithCustomSaving(1) def call(self, inputs): return self.custom_dense(inputs) @keras.saving.register_keras_serializable(package="my_custom_package") class CompileOverridingModel(keras.Model): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.dense1 = MyDense(1) def compile(self, *args, **kwargs): super().compile(*args, **kwargs) def call(self, inputs): return self.dense1(inputs) @keras.saving.register_keras_serializable(package="my_custom_package") class CompileOverridingSequential(keras.Sequential): def compile(self, *args, **kwargs): super().compile(*args, **kwargs) @keras.saving.register_keras_serializable(package="my_custom_package") class SubclassFunctional(keras.Model): """Subclassed functional identical to `_get_basic_functional_model`.""" def __init__(self, **kwargs): inputs = keras.Input(shape=(4,), batch_size=2) dense = keras.layers.Dense(1, name="first_dense") x = dense(inputs) outputs = keras.layers.Dense(1, name="second_dense")(x) super().__init__(inputs=inputs, outputs=outputs, **kwargs) # Attrs for layers in the functional graph should not affect saving self.layer_attr = dense @property def layer_property(self): # Properties for layers in the functional graph should not affect saving return self.layer_attr def get_config(self): return {} @classmethod def from_config(cls, config): return cls(**config) @keras.saving.register_keras_serializable(package="my_custom_package") def my_mean_squared_error(y_true, y_pred): """Identical to built-in `mean_squared_error`, but as a custom fn.""" return ops.mean(ops.square(y_pred - y_true), axis=-1) def _get_subclassed_model(compile=True): subclassed_model = CustomModelX(name="custom_model_x") if compile: subclassed_model.compile( optimizer="adam", loss=my_mean_squared_error, metrics=[keras.metrics.Hinge(), "mse"], ) return subclassed_model def _get_custom_sequential_model(compile=True): sequential_model = keras.Sequential( [MyDense(1), MyDense(1)], name="sequential" ) if compile: sequential_model.compile( optimizer="adam", loss=my_mean_squared_error, metrics=[keras.metrics.Hinge(), "mse"], ) return sequential_model def _get_basic_sequential_model(compile=True): sequential_model = keras.Sequential( [ keras.layers.Dense(1, name="dense_1"), keras.layers.Dense(1, name="dense_2"), ], name="sequential", ) if compile: sequential_model.compile( optimizer="adam", loss=my_mean_squared_error, metrics=[keras.metrics.Hinge(), "mse"], ) return sequential_model def _get_custom_functional_model(compile=True): inputs = keras.Input(shape=(4,), batch_size=2) x = MyDense(1, name="first_dense")(inputs) outputs = MyDense(1, name="second_dense")(x) functional_model = keras.Model(inputs, outputs) if compile: functional_model.compile( optimizer="adam", loss=my_mean_squared_error, metrics=[keras.metrics.Hinge(), "mse"], ) return functional_model def _get_basic_functional_model(compile=True): inputs = keras.Input(shape=(4,), batch_size=2) x = keras.layers.Dense(1, name="first_dense")(inputs) outputs = keras.layers.Dense(1, name="second_dense")(x) functional_model = keras.Model(inputs, outputs) if compile: functional_model.compile( optimizer="adam", loss=my_mean_squared_error, metrics=[keras.metrics.Hinge(), "mse"], ) return functional_model def _get_subclassed_functional_model(compile=True): functional_model = SubclassFunctional() if compile: functional_model.compile( optimizer="adam", loss=my_mean_squared_error, metrics=[keras.metrics.Hinge(), "mse"], ) return functional_model @pytest.mark.requires_trainable_backend class SavingTest(testing.TestCase): def _test_inference_after_instantiation(self, model): x_ref = np.random.random((2, 4)) y_ref = model(x_ref) temp_filepath = os.path.join(self.get_temp_dir(), "my_model.keras") model.save(temp_filepath) loaded_model = saving_lib.load_model(temp_filepath) self.assertFalse(model.compiled) for w_ref, w in zip(model.variables, loaded_model.variables): self.assertAllClose(w_ref, w) self.assertAllClose(y_ref, loaded_model(x_ref)) def test_inference_after_instantiation_subclassed(self): model = _get_subclassed_model(compile=False) self._test_inference_after_instantiation(model) def test_inference_after_instantiation_basic_sequential(self): model = _get_basic_sequential_model(compile=False) self._test_inference_after_instantiation(model) def test_inference_after_instantiation_basic_functional(self): model = _get_basic_functional_model(compile=False) self._test_inference_after_instantiation(model) def test_inference_after_instantiation_custom_sequential(self): model = _get_custom_sequential_model(compile=False) self._test_inference_after_instantiation(model) def test_inference_after_instantiation_custom_functional(self): model = _get_custom_functional_model(compile=False) self._test_inference_after_instantiation(model) def test_inference_after_instantiation_subclassed_functional(self): model = _get_subclassed_functional_model(compile=False) self._test_inference_after_instantiation(model) def _test_compile_preserved(self, model): x_ref = np.random.random((2, 4)) y_ref = np.random.random((2, 1)) model.fit(x_ref, y_ref) out_ref = model(x_ref) ref_metrics = model.evaluate(x_ref, y_ref) temp_filepath = os.path.join(self.get_temp_dir(), "my_model.keras") model.save(temp_filepath) loaded_model = saving_lib.load_model(temp_filepath) self.assertTrue(model.compiled) self.assertTrue(loaded_model.built) for w_ref, w in zip(model.variables, loaded_model.variables): self.assertAllClose(w_ref, w) self.assertAllClose(out_ref, loaded_model(x_ref)) self.assertEqual( model.optimizer.__class__, loaded_model.optimizer.__class__ ) self.assertEqual( model.optimizer.get_config(), loaded_model.optimizer.get_config() ) for w_ref, w in zip( model.optimizer.variables, loaded_model.optimizer.variables ): self.assertAllClose(w_ref, w) new_metrics = loaded_model.evaluate(x_ref, y_ref) for ref_m, m in zip(ref_metrics, new_metrics): self.assertAllClose(ref_m, m) def test_compile_preserved_subclassed(self): model = _get_subclassed_model(compile=True) self._test_compile_preserved(model) def test_compile_preserved_basic_sequential(self): model = _get_basic_sequential_model(compile=True) self._test_compile_preserved(model) def test_compile_preserved_custom_sequential(self): model = _get_custom_sequential_model(compile=True) self._test_compile_preserved(model) def test_compile_preserved_basic_functional(self): model = _get_basic_functional_model(compile=True) self._test_compile_preserved(model) def test_compile_preserved_custom_functional(self): model = _get_custom_functional_model(compile=True) self._test_compile_preserved(model) def test_compile_preserved_subclassed_functional(self): model = _get_subclassed_functional_model(compile=True) self._test_compile_preserved(model) def test_saving_preserve_unbuilt_state(self): temp_filepath = os.path.join(self.get_temp_dir(), "my_model.keras") subclassed_model = CustomModelX() subclassed_model.save(temp_filepath) loaded_model = saving_lib.load_model(temp_filepath) self.assertEqual(subclassed_model.compiled, loaded_model.compiled) self.assertFalse(subclassed_model.built) self.assertFalse(loaded_model.built) def test_saved_module_paths_and_class_names(self): temp_filepath = os.path.join(self.get_temp_dir(), "my_model.keras") subclassed_model = _get_subclassed_model() x = np.random.random((100, 32)) y = np.random.random((100, 1)) subclassed_model.fit(x, y, epochs=1) subclassed_model.save(temp_filepath) with zipfile.ZipFile(temp_filepath, "r") as z: with z.open(saving_lib._CONFIG_FILENAME, "r") as c: config_json = c.read() config_dict = json.loads(config_json) self.assertEqual( config_dict["registered_name"], "my_custom_package>CustomModelX" ) self.assertEqual( config_dict["compile_config"]["optimizer"], "adam", ) self.assertEqual( config_dict["compile_config"]["loss"]["config"], "my_mean_squared_error", ) def test_saving_custom_assets_and_variables(self): temp_filepath = os.path.join(self.get_temp_dir(), "my_model.keras") model = ModelWithCustomSaving() model.compile( optimizer="adam", loss="mse", ) x = np.random.random((100, 32)) y = np.random.random((100, 1)) model.fit(x, y, epochs=1) # Assert that the archive has not been saved. self.assertFalse(os.path.exists(temp_filepath)) model.save(temp_filepath) loaded_model = saving_lib.load_model(temp_filepath) self.assertEqual(loaded_model.custom_dense.assets, ASSETS_DATA) self.assertEqual( loaded_model.custom_dense.stored_variables.tolist(), VARIABLES_DATA.tolist(), ) def _test_compile_overridden_warnings(self, model_type): temp_filepath = os.path.join(self.get_temp_dir(), "my_model.keras") model = ( CompileOverridingModel() if model_type == "subclassed" else CompileOverridingSequential( [keras.layers.Embedding(4, 1), MyDense(1), MyDense(1)] ) ) model.compile("sgd", "mse") model.save(temp_filepath) with mock.patch.object(warnings, "warn") as mock_warn: saving_lib.load_model(temp_filepath) if not mock_warn.call_args_list: raise AssertionError("Did not warn.") self.assertIn( "`compile()` was not called as part of model loading " "because the model's `compile()` method is custom. ", mock_warn.call_args_list[0][0][0], ) def test_compile_overridden_warnings_sequential(self): self._test_compile_overridden_warnings("sequential") def test_compile_overridden_warnings_subclassed(self): self._test_compile_overridden_warnings("subclassed") def test_metadata(self): temp_filepath = Path( os.path.join(self.get_temp_dir(), "my_model.keras") ) model = CompileOverridingModel() model.save(temp_filepath) with zipfile.ZipFile(temp_filepath, "r") as z: with z.open(saving_lib._METADATA_FILENAME, "r") as c: metadata_json = c.read() metadata = json.loads(metadata_json) self.assertIn("keras_version", metadata) self.assertIn("date_saved", metadata) # def test_gfile_copy_local_called(self): # temp_filepath = Path( # os.path.join(self.get_temp_dir(), "my_model.keras") # ) # model = CompileOverridingModel() # with mock.patch( # "re.match", autospec=True # ) as mock_re_match, mock.patch( # "tensorflow.compat.v2.io.file_utils.copy", autospec=True # ) as mock_copy: # # Mock Remote Path check to true to test gfile copy logic # mock_re_match.return_value = True # model.save(temp_filepath) # mock_re_match.assert_called() # mock_copy.assert_called() # self.assertIn(str(temp_filepath), mock_re_match.call_args.args) # self.assertIn(str(temp_filepath), mock_copy.call_args.args) def test_save_load_weights_only(self): temp_filepath = Path( os.path.join(self.get_temp_dir(), "mymodel.weights.h5") ) model = _get_basic_functional_model() ref_input = np.random.random((2, 4)) ref_output = model.predict(ref_input) saving_lib.save_weights_only(model, temp_filepath) model = _get_basic_functional_model() saving_lib.load_weights_only(model, temp_filepath) self.assertAllClose(model.predict(ref_input), ref_output, atol=1e-6) # Test with Model method model = _get_basic_functional_model() model.load_weights(temp_filepath) self.assertAllClose(model.predict(ref_input), ref_output, atol=1e-6) def test_load_weights_only_with_keras_file(self): # Test loading weights from whole saved model temp_filepath = Path(os.path.join(self.get_temp_dir(), "mymodel.keras")) model = _get_basic_functional_model() ref_input = np.random.random((2, 4)) ref_output = model.predict(ref_input) saving_lib.save_model(model, temp_filepath) model = _get_basic_functional_model() saving_lib.load_weights_only(model, temp_filepath) self.assertAllClose(model.predict(ref_input), ref_output, atol=1e-6) # Test with Model method model = _get_basic_functional_model() model.load_weights(temp_filepath) self.assertAllClose(model.predict(ref_input), ref_output, atol=1e-6) def test_save_weights_subclassed_functional(self): # The subclassed and basic functional model should have the same # weights structure. temp_filepath = Path( os.path.join(self.get_temp_dir(), "mymodel.weights.h5") ) model = _get_basic_functional_model() ref_input = np.random.random((2, 4)) ref_output = model.predict(ref_input) # Test saving basic, loading subclassed. saving_lib.save_weights_only(model, temp_filepath) model = _get_subclassed_functional_model() saving_lib.load_weights_only(model, temp_filepath) self.assertAllClose(model.predict(ref_input), ref_output, atol=1e-6) # Test saving subclassed, loading basic. saving_lib.save_weights_only(model, temp_filepath) model = _get_basic_functional_model() saving_lib.load_weights_only(model, temp_filepath) self.assertAllClose(model.predict(ref_input), ref_output, atol=1e-6) def test_compile_arg(self): temp_filepath = os.path.join(self.get_temp_dir(), "mymodel.keras") model = _get_basic_functional_model() model.compile("sgd", "mse") model.fit(np.random.random((2, 4)), np.random.random((2, 1))) saving_lib.save_model(model, temp_filepath) model = saving_lib.load_model(temp_filepath) self.assertEqual(model.compiled, True) model = saving_lib.load_model(temp_filepath, compile=False) self.assertEqual(model.compiled, False) # def test_overwrite(self): # temp_filepath = os.path.join(self.get_temp_dir(), "mymodel.keras") # model = _get_basic_functional_model() # model.save(temp_filepath) # model.save(temp_filepath, overwrite=True) # with self.assertRaises(EOFError): # model.save(temp_filepath, overwrite=False) # temp_filepath = os.path.join( # self.get_temp_dir(), "mymodel.weights.h5" # ) # model = _get_basic_functional_model() # model.save_weights(temp_filepath) # model.save_weights(temp_filepath, overwrite=True) # with self.assertRaises(EOFError): # model.save_weights(temp_filepath, overwrite=False) def test_partial_load(self): temp_filepath = os.path.join(self.get_temp_dir(), "mymodel.keras") original_model = keras.Sequential( [ keras.Input(shape=(3,), batch_size=2), keras.layers.Dense(4), keras.layers.Dense(5), ] ) original_model.save(temp_filepath) # Test with a model that has a differently shaped layer new_model = keras.Sequential( [ keras.Input(shape=(3,), batch_size=2), keras.layers.Dense(4), keras.layers.Dense(6), ] ) new_layer_kernel_value = np.array(new_model.layers[1].kernel) with self.assertRaisesRegex(ValueError, "must match"): # Doesn't work by default new_model.load_weights(temp_filepath) # Now it works new_model.load_weights(temp_filepath, skip_mismatch=True) ref_weights = original_model.layers[0].get_weights() new_weights = new_model.layers[0].get_weights() self.assertEqual(len(ref_weights), len(new_weights)) for ref_w, w in zip(ref_weights, new_weights): self.assertAllClose(ref_w, w) self.assertAllClose( np.array(new_model.layers[1].kernel), new_layer_kernel_value ) # Test with a model that has a new layer at the end new_model = keras.Sequential( [ keras.Input(shape=(3,), batch_size=2), keras.layers.Dense(4), keras.layers.Dense(5), keras.layers.Dense(5), ] ) new_layer_kernel_value = np.array(new_model.layers[2].kernel) with self.assertRaisesRegex(ValueError, "received 0 variables"): # Doesn't work by default new_model.load_weights(temp_filepath) # Now it works new_model.load_weights(temp_filepath, skip_mismatch=True) for layer_index in [0, 1]: ref_weights = original_model.layers[layer_index].get_weights() new_weights = new_model.layers[layer_index].get_weights() self.assertEqual(len(ref_weights), len(new_weights)) for ref_w, w in zip(ref_weights, new_weights): self.assertAllClose(ref_w, w) self.assertAllClose( np.array(new_model.layers[2].kernel), new_layer_kernel_value ) @pytest.mark.requires_trainable_backend class SavingAPITest(testing.TestCase): def test_saving_api_errors(self): from keras.saving import saving_api model = _get_basic_functional_model() # Saving API errors temp_filepath = os.path.join(self.get_temp_dir(), "mymodel") with self.assertRaisesRegex(ValueError, "argument is deprecated"): saving_api.save_model(model, temp_filepath, save_format="keras") temp_filepath = os.path.join(self.get_temp_dir(), "mymodel.notkeras") with self.assertRaisesRegex(ValueError, "Invalid filepath extension"): saving_api.save_model(model, temp_filepath) temp_filepath = os.path.join(self.get_temp_dir(), "mymodel.keras") with self.assertRaisesRegex(ValueError, "are not supported"): saving_api.save_model(model, temp_filepath, invalid_arg="hello") # Loading API errors temp_filepath = os.path.join(self.get_temp_dir(), "non_existent.keras") with self.assertRaisesRegex( ValueError, "Please ensure the file is an accessible" ): _ = saving_api.load_model(temp_filepath) temp_filepath = os.path.join(self.get_temp_dir(), "my_saved_model") with self.assertRaisesRegex(ValueError, "File format not supported"): _ = saving_api.load_model(temp_filepath) def test_model_api_endpoint(self): temp_filepath = Path(os.path.join(self.get_temp_dir(), "mymodel.keras")) model = _get_basic_functional_model() ref_input = np.random.random((2, 4)) ref_output = model.predict(ref_input) model.save(temp_filepath) model = keras.saving.load_model(temp_filepath) self.assertAllClose(model.predict(ref_input), ref_output, atol=1e-6) def test_model_api_endpoint_h5(self): temp_filepath = Path(os.path.join(self.get_temp_dir(), "mymodel.h5")) model = _get_basic_functional_model() ref_input = np.random.random((2, 4)) ref_output = model.predict(ref_input) model.save(temp_filepath) model = keras.saving.load_model(temp_filepath) self.assertAllClose(model.predict(ref_input), ref_output, atol=1e-6) def test_model_api_errors(self): model = _get_basic_functional_model() # Saving API errors temp_filepath = os.path.join(self.get_temp_dir(), "mymodel") with self.assertRaisesRegex(ValueError, "argument is deprecated"): model.save(temp_filepath, save_format="keras") temp_filepath = os.path.join(self.get_temp_dir(), "mymodel.notkeras") with self.assertRaisesRegex(ValueError, "Invalid filepath extension"): model.save(temp_filepath) temp_filepath = os.path.join(self.get_temp_dir(), "mymodel.keras") with self.assertRaisesRegex(ValueError, "are not supported"): model.save(temp_filepath, invalid_arg="hello") def test_safe_mode(self): temp_filepath = os.path.join(self.get_temp_dir(), "unsafe_model.keras") model = keras.Sequential( [ keras.Input(shape=(3,)), keras.layers.Lambda(lambda x: x * 2), ] ) model.save(temp_filepath) with self.assertRaisesRegex(ValueError, "Deserializing it is unsafe"): model = saving_lib.load_model(temp_filepath) model = saving_lib.load_model(temp_filepath, safe_mode=False) def test_normalization_kpl(self): # With adapt temp_filepath = os.path.join(self.get_temp_dir(), "norm_model.keras") model = keras.Sequential( [ keras.Input(shape=(3,)), keras.layers.Normalization(), ] ) data = np.random.random((3, 3)) model.layers[0].adapt(data) ref_out = model(data) model.save(temp_filepath) model = saving_lib.load_model(temp_filepath) out = model(data) self.assertAllClose(ref_out, out, atol=1e-6) # Without adapt model = keras.Sequential( [ keras.Input(shape=(3,)), keras.layers.Normalization( mean=np.random.random((3,)), variance=np.random.random((3,)), ), ] ) ref_out = model(data) model.save(temp_filepath) model = saving_lib.load_model(temp_filepath) out = model(data) self.assertAllClose(ref_out, out, atol=1e-6) # This class is properly registered with a `get_config()` method. # However, since it does not subclass keras.layers.Layer, it lacks # `from_config()` for deserialization. @keras.saving.register_keras_serializable() class GrowthFactor: def __init__(self, factor): self.factor = factor def __call__(self, inputs): return inputs * self.factor def get_config(self): return {"factor": self.factor} @keras.saving.register_keras_serializable(package="Complex") class FactorLayer(keras.layers.Layer): def __init__(self, factor, **kwargs): super().__init__(**kwargs) self.factor = factor def call(self, x): return x * self.factor def get_config(self): return {"factor": self.factor} # This custom model does not explicitly deserialize the layers it includes # in its `get_config`. Explicit deserialization in a `from_config` override # or `__init__` is needed here, or an error will be thrown at loading time. @keras.saving.register_keras_serializable(package="Complex") class ComplexModel(keras.layers.Layer): def __init__(self, first_layer, second_layer=None, **kwargs): super().__init__(**kwargs) self.first_layer = first_layer if second_layer is not None: self.second_layer = second_layer else: self.second_layer = keras.layers.Dense(8) def get_config(self): config = super().get_config() config.update( { "first_layer": self.first_layer, "second_layer": self.second_layer, } ) return config def call(self, inputs): return self.first_layer(self.second_layer(inputs)) class SavingBattleTest(testing.TestCase): def test_custom_object_without_from_config(self): temp_filepath = os.path.join( self.get_temp_dir(), "custom_fn_model.keras" ) inputs = keras.Input(shape=(4, 4)) outputs = keras.layers.Dense(1, activation=GrowthFactor(0.5))(inputs) model = keras.Model(inputs, outputs) model.save(temp_filepath) with self.assertRaisesRegex( TypeError, "Unable to reconstruct an instance" ): _ = saving_lib.load_model(temp_filepath) def test_complex_model_without_explicit_deserialization(self): temp_filepath = os.path.join(self.get_temp_dir(), "complex_model.keras") inputs = keras.Input((32,)) outputs = ComplexModel(first_layer=FactorLayer(0.5))(inputs) model = keras.Model(inputs, outputs) model.save(temp_filepath) with self.assertRaisesRegex(TypeError, "are explicitly deserialized"): _ = saving_lib.load_model(temp_filepath) def test_redefinition_of_trackable(self): """Test that a trackable can be aliased under a new name.""" class NormalModel(keras.Model): def __init__(self): super().__init__() self.dense = keras.layers.Dense(3) def call(self, x): return self.dense(x) class WeirdModel(keras.Model): def __init__(self): super().__init__() # This property will be traversed first, # but "_dense" isn't in the saved file # generated by NormalModel. self.a_dense = keras.layers.Dense(3) @property def dense(self): return self.a_dense def call(self, x): return self.dense(x) temp_filepath = "normal_model.weights.h5" model_a = NormalModel() model_a(np.random.random((2, 2))) model_a.save_weights(temp_filepath) model_b = WeirdModel() model_b(np.random.random((2, 2))) model_b.load_weights(temp_filepath) self.assertAllClose( model_a.dense.kernel.numpy(), model_b.dense.kernel.numpy() )
keras/keras/saving/saving_lib_test.py/0
{ "file_path": "keras/keras/saving/saving_lib_test.py", "repo_id": "keras", "token_count": 13769 }
173
import math import jax import jax.experimental.sparse as jax_sparse import numpy as np import scipy import tensorflow as tf import torch from absl.testing import parameterized from jax import numpy as jnp from keras import testing from keras.testing.test_utils import named_product from keras.trainers.data_adapters import generator_data_adapter def example_generator(x, y, sample_weight=None, batch_size=32): def make(): for i in range(math.ceil(len(x) / batch_size)): low = i * batch_size high = min(low + batch_size, len(x)) batch_x = x[low:high] batch_y = y[low:high] if sample_weight is not None: yield batch_x, batch_y, sample_weight[low:high] else: yield batch_x, batch_y return make class GeneratorDataAdapterTest(testing.TestCase, parameterized.TestCase): @parameterized.named_parameters( named_product( [ {"testcase_name": "use_weight", "use_sample_weight": True}, {"testcase_name": "no_weight", "use_sample_weight": False}, ], generator_type=["np", "tf", "jax", "torch"], iterator_type=["np", "tf", "jax", "torch"], ) ) def test_basic_flow(self, use_sample_weight, generator_type, iterator_type): x = np.random.random((34, 4)).astype("float32") y = np.array([[i, i] for i in range(34)], dtype="float32") sw = np.random.random((34,)).astype("float32") if generator_type == "tf": x, y, sw = tf.constant(x), tf.constant(y), tf.constant(sw) elif generator_type == "jax": x, y, sw = jnp.array(x), jnp.array(y), jnp.array(sw) elif generator_type == "torch": x, y, sw = ( torch.as_tensor(x), torch.as_tensor(y), torch.as_tensor(sw), ) if not use_sample_weight: sw = None make_generator = example_generator( x, y, sample_weight=sw, batch_size=16, ) adapter = generator_data_adapter.GeneratorDataAdapter(make_generator()) if iterator_type == "np": it = adapter.get_numpy_iterator() expected_class = np.ndarray elif iterator_type == "tf": it = adapter.get_tf_dataset() expected_class = tf.Tensor elif iterator_type == "jax": it = adapter.get_jax_iterator() expected_class = jax.Array elif iterator_type == "torch": it = adapter.get_torch_dataloader() expected_class = torch.Tensor sample_order = [] for i, batch in enumerate(it): if use_sample_weight: self.assertEqual(len(batch), 3) bx, by, bsw = batch else: self.assertEqual(len(batch), 2) bx, by = batch self.assertIsInstance(bx, expected_class) self.assertIsInstance(by, expected_class) self.assertEqual(bx.dtype, by.dtype) self.assertContainsExactSubsequence(str(bx.dtype), "float32") if i < 2: self.assertEqual(bx.shape, (16, 4)) self.assertEqual(by.shape, (16, 2)) else: self.assertEqual(bx.shape, (2, 4)) self.assertEqual(by.shape, (2, 2)) if use_sample_weight: self.assertIsInstance(bsw, expected_class) for i in range(by.shape[0]): sample_order.append(by[i, 0]) self.assertAllClose(sample_order, list(range(34))) @parameterized.named_parameters( named_product( generator_type=["tf", "jax", "scipy"], iterator_type=["tf", "jax"] ) ) def test_scipy_sparse_tensors(self, generator_type, iterator_type): if generator_type == "tf": x = tf.SparseTensor([[0, 0], [1, 2]], [1.0, 2.0], (2, 4)) y = tf.SparseTensor([[0, 0], [1, 1]], [3.0, 4.0], (2, 2)) elif generator_type == "jax": x = jax_sparse.BCOO(([1.0, 2.0], [[0, 0], [1, 2]]), shape=(2, 4)) y = jax_sparse.BCOO(([3.0, 4.0], [[0, 0], [1, 1]]), shape=(2, 2)) elif generator_type == "scipy": x = scipy.sparse.coo_matrix(([1.0, 2.0], ([0, 1], [0, 2])), (2, 4)) y = scipy.sparse.coo_matrix(([3.0, 4.0], ([0, 1], [0, 1])), (2, 2)) def generate(): for _ in range(4): yield x, y adapter = generator_data_adapter.GeneratorDataAdapter(generate()) if iterator_type == "tf": it = adapter.get_tf_dataset() expected_class = tf.SparseTensor elif iterator_type == "jax": it = adapter.get_jax_iterator() expected_class = jax_sparse.BCOO for batch in it: self.assertEqual(len(batch), 2) bx, by = batch self.assertIsInstance(bx, expected_class) self.assertIsInstance(by, expected_class) self.assertEqual(bx.shape, (2, 4)) self.assertEqual(by.shape, (2, 2))
keras/keras/trainers/data_adapters/generator_data_adapter_test.py/0
{ "file_path": "keras/keras/trainers/data_adapters/generator_data_adapter_test.py", "repo_id": "keras", "token_count": 2683 }
174
import os def count_loc(directory, exclude=("_test",), extensions=(".py",), verbose=0): loc = 0 for root, _, fnames in os.walk(directory): skip = False for ex in exclude: if root.endswith(ex): skip = True if skip: continue for fname in fnames: skip = False for ext in extensions: if not fname.endswith(ext): skip = True break for ex in exclude: if fname.endswith(ex + ext): skip = True break if skip: continue fname = os.path.join(root, fname) if verbose: print(f"Count LoCs in {fname}") with open(fname) as f: lines = f.read().split("\n") string_open = False for line in lines: line = line.strip() if not line or line.startswith("#"): continue if not string_open: if not line.startswith('"""'): loc += 1 else: if not line.endswith('"""'): string_open = True else: if line.startswith('"""'): string_open = False return loc
keras/keras/utils/code_stats.py/0
{ "file_path": "keras/keras/utils/code_stats.py", "repo_id": "keras", "token_count": 876 }
175