text
stringlengths
5
261k
id
stringlengths
16
106
metadata
dict
__index_level_0__
int64
0
266
"""JSON utilities for legacy saving formats (h5 and SavedModel)""" import collections import enum import functools import json import numpy as np from keras.legacy.saving import serialization from keras.saving import serialization_lib from keras.utils.module_utils import tensorflow as tf _EXTENSION_TYPE_SPEC = "_EXTENSION_TYPE_SPEC" class Encoder(json.JSONEncoder): """JSON encoder and decoder that handles TensorShapes and tuples.""" def default(self, obj): """Encodes objects for types that aren't handled by the default encoder.""" if tf.available and isinstance(obj, tf.TensorShape): items = obj.as_list() if obj.rank is not None else None return {"class_name": "TensorShape", "items": items} return get_json_type(obj) def encode(self, obj): return super().encode(_encode_tuple(obj)) def _encode_tuple(x): if isinstance(x, tuple): return { "class_name": "__tuple__", "items": tuple(_encode_tuple(i) for i in x), } elif isinstance(x, list): return [_encode_tuple(i) for i in x] elif isinstance(x, dict): return {key: _encode_tuple(value) for key, value in x.items()} else: return x def decode(json_string): return json.loads(json_string, object_hook=_decode_helper) def decode_and_deserialize( json_string, module_objects=None, custom_objects=None ): """Decodes the JSON and deserializes any Keras objects found in the dict.""" return json.loads( json_string, object_hook=functools.partial( _decode_helper, deserialize=True, module_objects=module_objects, custom_objects=custom_objects, ), ) def _decode_helper( obj, deserialize=False, module_objects=None, custom_objects=None ): """A decoding helper that is TF-object aware. Args: obj: A decoded dictionary that may represent an object. deserialize: Boolean. When True, deserializes any Keras objects found in `obj`. Defaults to `False`. module_objects: A dictionary of built-in objects to look the name up in. Generally, `module_objects` is provided by midlevel library implementers. custom_objects: A dictionary of custom objects to look the name up in. Generally, `custom_objects` is provided by the end user. Returns: The decoded object. """ if isinstance(obj, dict) and "class_name" in obj: if tf.available: if obj["class_name"] == "TensorShape": return tf.TensorShape(obj["items"]) elif obj["class_name"] == "TypeSpec": from tensorflow.python.framework import type_spec_registry return type_spec_registry.lookup(obj["type_spec"])._deserialize( _decode_helper(obj["serialized"]) ) elif obj["class_name"] == "CompositeTensor": spec = obj["spec"] tensors = [] for dtype, tensor in obj["tensors"]: tensors.append( tf.constant(tensor, dtype=tf.dtypes.as_dtype(dtype)) ) return tf.nest.pack_sequence_as( _decode_helper(spec), tensors, expand_composites=True ) if obj["class_name"] == "__tuple__": return tuple(_decode_helper(i) for i in obj["items"]) elif obj["class_name"] == "__ellipsis__": return Ellipsis elif deserialize and "__passive_serialization__" in obj: # __passive_serialization__ is added by the JSON encoder when # encoding an object that has a `get_config()` method. try: if ( "module" not in obj ): # TODO(nkovela): Add TF SavedModel scope return serialization.deserialize_keras_object( obj, module_objects=module_objects, custom_objects=custom_objects, ) else: return serialization_lib.deserialize_keras_object( obj, module_objects=module_objects, custom_objects=custom_objects, ) except ValueError: pass elif obj["class_name"] == "__bytes__": return obj["value"].encode("utf-8") return obj def get_json_type(obj): """Serializes any object to a JSON-serializable structure. Args: obj: the object to serialize Returns: JSON-serializable structure representing `obj`. Raises: TypeError: if `obj` cannot be serialized. """ # if obj is a serializable Keras class instance # e.g. optimizer, layer if hasattr(obj, "get_config"): # TODO(nkovela): Replace with legacy serialization serialized = serialization.serialize_keras_object(obj) serialized["__passive_serialization__"] = True return serialized # if obj is any numpy type if type(obj).__module__ == np.__name__: if isinstance(obj, np.ndarray): return obj.tolist() else: return obj.item() # misc functions (e.g. loss function) if callable(obj): return obj.__name__ # if obj is a python 'type' if type(obj).__name__ == type.__name__: return obj.__name__ if tf.available and isinstance(obj, tf.compat.v1.Dimension): return obj.value if tf.available and isinstance(obj, tf.TensorShape): return obj.as_list() if tf.available and isinstance(obj, tf.DType): return obj.name if isinstance(obj, collections.abc.Mapping): return dict(obj) if obj is Ellipsis: return {"class_name": "__ellipsis__"} # if isinstance(obj, wrapt.ObjectProxy): # return obj.__wrapped__ if tf.available and isinstance(obj, tf.TypeSpec): from tensorflow.python.framework import type_spec_registry try: type_spec_name = type_spec_registry.get_name(type(obj)) return { "class_name": "TypeSpec", "type_spec": type_spec_name, "serialized": obj._serialize(), } except ValueError: raise ValueError( f"Unable to serialize {obj} to JSON, because the TypeSpec " f"class {type(obj)} has not been registered." ) if tf.available and isinstance(obj, tf.__internal__.CompositeTensor): spec = tf.type_spec_from_value(obj) tensors = [] for tensor in tf.nest.flatten(obj, expand_composites=True): tensors.append((tensor.dtype.name, tensor.numpy().tolist())) return { "class_name": "CompositeTensor", "spec": get_json_type(spec), "tensors": tensors, } if isinstance(obj, enum.Enum): return obj.value if isinstance(obj, bytes): return {"class_name": "__bytes__", "value": obj.decode("utf-8")} raise TypeError( f"Unable to serialize {obj} to JSON. Unrecognized type {type(obj)}." )
keras/keras/legacy/saving/json_utils.py/0
{ "file_path": "keras/keras/legacy/saving/json_utils.py", "repo_id": "keras", "token_count": 3352 }
182
import json import numpy as np import pytest from absl import logging from absl.testing import parameterized from keras import layers from keras import metrics from keras import models from keras import ops from keras import testing from keras.metrics import metrics_utils class FalsePositivesTest(testing.TestCase): def test_config(self): fp_obj = metrics.FalsePositives(name="my_fp", thresholds=[0.4, 0.9]) self.assertEqual(fp_obj.name, "my_fp") self.assertLen(fp_obj.variables, 1) self.assertEqual(fp_obj.thresholds, [0.4, 0.9]) # Check save and restore config fp_obj2 = metrics.FalsePositives.from_config(fp_obj.get_config()) self.assertEqual(fp_obj2.name, "my_fp") self.assertLen(fp_obj2.variables, 1) self.assertEqual(fp_obj2.thresholds, [0.4, 0.9]) def test_unweighted(self): fp_obj = metrics.FalsePositives() y_true = np.array( ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) ) y_pred = np.array( ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) ) fp_obj.update_state(y_true, y_pred) self.assertAllClose(7.0, fp_obj.result()) def test_weighted(self): fp_obj = metrics.FalsePositives() y_true = np.array( ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) ) y_pred = np.array( ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) ) sample_weight = np.array((1.0, 1.5, 2.0, 2.5)) result = fp_obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose(14.0, result) def test_unweighted_with_thresholds(self): fp_obj = metrics.FalsePositives(thresholds=[0.15, 0.5, 0.85]) y_pred = np.array( ( (0.9, 0.2, 0.8, 0.1), (0.2, 0.9, 0.7, 0.6), (0.1, 0.2, 0.4, 0.3), (0, 1, 0.7, 0.3), ) ) y_true = np.array( ((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 1)) ) fp_obj.update_state(y_true, y_pred) self.assertAllClose([7.0, 4.0, 2.0], fp_obj.result()) def test_weighted_with_thresholds(self): fp_obj = metrics.FalsePositives(thresholds=[0.15, 0.5, 0.85]) y_pred = np.array( ( (0.9, 0.2, 0.8, 0.1), (0.2, 0.9, 0.7, 0.6), (0.1, 0.2, 0.4, 0.3), (0, 1, 0.7, 0.3), ) ) y_true = np.array( ((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 1)) ) sample_weight = ( (1.0, 2.0, 3.0, 5.0), (7.0, 11.0, 13.0, 17.0), (19.0, 23.0, 29.0, 31.0), (5.0, 15.0, 10.0, 0), ) result = fp_obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose([125.0, 42.0, 12.0], result) def test_threshold_limit(self): with self.assertRaisesRegex( ValueError, r"Threshold values must be in \[0, 1\]. Received: \[-1, 2\]", ): metrics.FalsePositives(thresholds=[-1, 0.5, 2]) with self.assertRaisesRegex( ValueError, r"Threshold values must be in \[0, 1\]. Received: \[None\]", ): metrics.FalsePositives(thresholds=[None]) class FalseNegativesTest(testing.TestCase): def test_config(self): fn_obj = metrics.FalseNegatives(name="my_fn", thresholds=[0.4, 0.9]) self.assertEqual(fn_obj.name, "my_fn") self.assertLen(fn_obj.variables, 1) self.assertEqual(fn_obj.thresholds, [0.4, 0.9]) # Check save and restore config fn_obj2 = metrics.FalseNegatives.from_config(fn_obj.get_config()) self.assertEqual(fn_obj2.name, "my_fn") self.assertLen(fn_obj2.variables, 1) self.assertEqual(fn_obj2.thresholds, [0.4, 0.9]) def test_unweighted(self): fn_obj = metrics.FalseNegatives() y_true = np.array( ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) ) y_pred = np.array( ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) ) fn_obj.update_state(y_true, y_pred) self.assertAllClose(3.0, fn_obj.result()) def test_weighted(self): fn_obj = metrics.FalseNegatives() y_true = np.array( ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) ) y_pred = np.array( ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) ) sample_weight = np.array((1.0, 1.5, 2.0, 2.5)) result = fn_obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose(5.0, result) def test_unweighted_with_thresholds(self): fn_obj = metrics.FalseNegatives(thresholds=[0.15, 0.5, 0.85]) y_pred = np.array( ( (0.9, 0.2, 0.8, 0.1), (0.2, 0.9, 0.7, 0.6), (0.1, 0.2, 0.4, 0.3), (0, 1, 0.7, 0.3), ) ) y_true = np.array( ((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 1)) ) fn_obj.update_state(y_true, y_pred) self.assertAllClose([1.0, 4.0, 6.0], fn_obj.result()) def test_weighted_with_thresholds(self): fn_obj = metrics.FalseNegatives(thresholds=[0.15, 0.5, 0.85]) y_pred = np.array( ( (0.9, 0.2, 0.8, 0.1), (0.2, 0.9, 0.7, 0.6), (0.1, 0.2, 0.4, 0.3), (0, 1, 0.7, 0.3), ) ) y_true = np.array( ((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 1)) ) sample_weight = ((3.0,), (5.0,), (7.0,), (4.0,)) result = fn_obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose([4.0, 16.0, 23.0], result) def test_threshold_limit(self): with self.assertRaisesRegex( ValueError, r"Threshold values must be in \[0, 1\]. Received: \[-1, 2\]", ): metrics.FalseNegatives(thresholds=[-1, 0.5, 2]) with self.assertRaisesRegex( ValueError, r"Threshold values must be in \[0, 1\]. Received: \[None\]", ): metrics.FalseNegatives(thresholds=[None]) class TrueNegativesTest(testing.TestCase): def test_config(self): tn_obj = metrics.TrueNegatives(name="my_tn", thresholds=[0.4, 0.9]) self.assertEqual(tn_obj.name, "my_tn") self.assertLen(tn_obj.variables, 1) self.assertEqual(tn_obj.thresholds, [0.4, 0.9]) # Check save and restore config tn_obj2 = metrics.TrueNegatives.from_config(tn_obj.get_config()) self.assertEqual(tn_obj2.name, "my_tn") self.assertLen(tn_obj2.variables, 1) self.assertEqual(tn_obj2.thresholds, [0.4, 0.9]) def test_unweighted(self): tn_obj = metrics.TrueNegatives() y_true = np.array( ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) ) y_pred = np.array( ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) ) tn_obj.update_state(y_true, y_pred) self.assertAllClose(3.0, tn_obj.result()) def test_weighted(self): tn_obj = metrics.TrueNegatives() y_true = np.array( ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) ) y_pred = np.array( ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) ) sample_weight = np.array((1.0, 1.5, 2.0, 2.5)) result = tn_obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose(4.0, result) def test_unweighted_with_thresholds(self): tn_obj = metrics.TrueNegatives(thresholds=[0.15, 0.5, 0.85]) y_pred = np.array( ( (0.9, 0.2, 0.8, 0.1), (0.2, 0.9, 0.7, 0.6), (0.1, 0.2, 0.4, 0.3), (0, 1, 0.7, 0.3), ) ) y_true = np.array( ((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 1)) ) tn_obj.update_state(y_true, y_pred) self.assertAllClose([2.0, 5.0, 7.0], tn_obj.result()) def test_weighted_with_thresholds(self): tn_obj = metrics.TrueNegatives(thresholds=[0.15, 0.5, 0.85]) y_pred = np.array( ( (0.9, 0.2, 0.8, 0.1), (0.2, 0.9, 0.7, 0.6), (0.1, 0.2, 0.4, 0.3), (0, 1, 0.7, 0.3), ) ) y_true = np.array( ((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 1)) ) sample_weight = ((0.0, 2.0, 3.0, 5.0),) result = tn_obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose([5.0, 15.0, 23.0], result) def test_threshold_limit(self): with self.assertRaisesRegex( ValueError, r"Threshold values must be in \[0, 1\]. Received: \[-1, 2\]", ): metrics.TrueNegatives(thresholds=[-1, 0.5, 2]) with self.assertRaisesRegex( ValueError, r"Threshold values must be in \[0, 1\]. Received: \[None\]", ): metrics.TrueNegatives(thresholds=[None]) class TruePositiveTest(testing.TestCase): def test_config(self): tp_obj = metrics.TruePositives(name="my_tp", thresholds=[0.4, 0.9]) self.assertEqual(tp_obj.name, "my_tp") self.assertLen(tp_obj.variables, 1) self.assertEqual(tp_obj.thresholds, [0.4, 0.9]) # Check save and restore config tp_obj2 = metrics.TruePositives.from_config(tp_obj.get_config()) self.assertEqual(tp_obj2.name, "my_tp") self.assertLen(tp_obj2.variables, 1) self.assertEqual(tp_obj2.thresholds, [0.4, 0.9]) def test_unweighted(self): tp_obj = metrics.TruePositives() y_true = np.array( ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) ) y_pred = np.array( ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) ) tp_obj.update_state(y_true, y_pred) self.assertAllClose(7.0, tp_obj.result()) def test_weighted(self): tp_obj = metrics.TruePositives() y_true = np.array( ((0, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (0, 0, 0, 0, 1)) ) y_pred = np.array( ((0, 0, 1, 1, 0), (1, 1, 1, 1, 1), (0, 1, 0, 1, 0), (1, 1, 1, 1, 1)) ) sample_weight = np.array((1.0, 1.5, 2.0, 2.5)) result = tp_obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose(12.0, result) def test_unweighted_with_thresholds(self): tp_obj = metrics.TruePositives(thresholds=[0.15, 0.5, 0.85]) y_pred = np.array( ( (0.9, 0.2, 0.8, 0.1), (0.2, 0.9, 0.7, 0.6), (0.1, 0.2, 0.4, 0.3), (0, 1, 0.7, 0.3), ) ) y_true = np.array( ((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 1)) ) tp_obj.update_state(y_true, y_pred) self.assertAllClose([6.0, 3.0, 1.0], tp_obj.result()) def test_weighted_with_thresholds(self): tp_obj = metrics.TruePositives(thresholds=[0.15, 0.5, 0.85]) y_pred = np.array( ( (0.9, 0.2, 0.8, 0.1), (0.2, 0.9, 0.7, 0.6), (0.1, 0.2, 0.4, 0.3), (0, 1, 0.7, 0.3), ) ) y_true = np.array( ((0, 1, 1, 0), (1, 0, 0, 0), (0, 0, 0, 0), (1, 1, 1, 1)) ) sample_weight = 37.0 result = tp_obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose([222.0, 111.0, 37.0], result) def test_threshold_limit(self): with self.assertRaisesRegex( ValueError, r"Threshold values must be in \[0, 1\]. Received: \[-1, 2\]", ): metrics.TruePositives(thresholds=[-1, 0.5, 2]) with self.assertRaisesRegex( ValueError, r"Threshold values must be in \[0, 1\]. Received: \[None\]", ): metrics.TruePositives(thresholds=[None]) class PrecisionTest(testing.TestCase): def test_config(self): p_obj = metrics.Precision( name="my_precision", thresholds=[0.4, 0.9], top_k=15, class_id=12 ) self.assertEqual(p_obj.name, "my_precision") self.assertLen(p_obj.variables, 2) self.assertEqual( [v.name for v in p_obj.variables], ["true_positives", "false_positives"], ) self.assertEqual(p_obj.thresholds, [0.4, 0.9]) self.assertEqual(p_obj.top_k, 15) self.assertEqual(p_obj.class_id, 12) # Check save and restore config p_obj2 = metrics.Precision.from_config(p_obj.get_config()) self.assertEqual(p_obj2.name, "my_precision") self.assertLen(p_obj2.variables, 2) self.assertEqual(p_obj2.thresholds, [0.4, 0.9]) self.assertEqual(p_obj2.top_k, 15) self.assertEqual(p_obj2.class_id, 12) def test_unweighted(self): p_obj = metrics.Precision() y_pred = np.array([1, 0, 1, 0]) y_true = np.array([0, 1, 1, 0]) result = p_obj(y_true, y_pred) self.assertAlmostEqual(0.5, result) def test_unweighted_all_incorrect(self): p_obj = metrics.Precision(thresholds=[0.5]) inputs = np.random.randint(0, 2, size=(100, 1)) y_pred = np.array(inputs) y_true = np.array(1 - inputs) result = p_obj(y_true, y_pred) self.assertAlmostEqual(0, result) def test_weighted(self): p_obj = metrics.Precision() y_pred = np.array([[1, 0, 1, 0], [1, 0, 1, 0]]) y_true = np.array([[0, 1, 1, 0], [1, 0, 0, 1]]) result = p_obj( y_true, y_pred, sample_weight=np.array([[1, 2, 3, 4], [4, 3, 2, 1]]), ) weighted_tp = 3.0 + 4.0 weighted_positives = (1.0 + 3.0) + (4.0 + 2.0) expected_precision = weighted_tp / weighted_positives self.assertAlmostEqual(expected_precision, result) def test_div_by_zero(self): p_obj = metrics.Precision() y_pred = np.array([0, 0, 0, 0]) y_true = np.array([0, 0, 0, 0]) result = p_obj(y_true, y_pred) self.assertEqual(0, result) def test_unweighted_with_threshold(self): p_obj = metrics.Precision(thresholds=[0.5, 0.7]) y_pred = np.array([1, 0, 0.6, 0]) y_true = np.array([0, 1, 1, 0]) result = p_obj(y_true, y_pred) self.assertAlmostEqual([0.5, 0.0], result, 0) def test_weighted_with_threshold(self): p_obj = metrics.Precision(thresholds=[0.5, 1.0]) y_true = np.array([[0, 1], [1, 0]]) y_pred = np.array([[1, 0], [0.6, 0]], dtype="float32") weights = np.array([[4, 0], [3, 1]], dtype="float32") result = p_obj(y_true, y_pred, sample_weight=weights) weighted_tp = 0 + 3.0 weighted_positives = (0 + 3.0) + (4.0 + 0.0) expected_precision = weighted_tp / weighted_positives self.assertAlmostEqual([expected_precision, 0], result, 1e-3) def test_multiple_updates(self): p_obj = metrics.Precision(thresholds=[0.5, 1.0]) y_true = np.array([[0, 1], [1, 0]]) y_pred = np.array([[1, 0], [0.6, 0]], dtype="float32") weights = np.array([[4, 0], [3, 1]], dtype="float32") for _ in range(2): p_obj.update_state(y_true, y_pred, sample_weight=weights) weighted_tp = (0 + 3.0) + (0 + 3.0) weighted_positives = ((0 + 3.0) + (4.0 + 0.0)) + ( (0 + 3.0) + (4.0 + 0.0) ) expected_precision = weighted_tp / weighted_positives self.assertAlmostEqual([expected_precision, 0], p_obj.result(), 1e-3) def test_unweighted_top_k(self): p_obj = metrics.Precision(top_k=3) y_pred = np.array([0.2, 0.1, 0.5, 0, 0.2]) y_true = np.array([0, 1, 1, 0, 0]) result = p_obj(y_true, y_pred) self.assertAlmostEqual(1.0 / 3, result) def test_weighted_top_k(self): p_obj = metrics.Precision(top_k=3) y_pred1 = np.array([[0.2, 0.1, 0.4, 0, 0.2]]) y_true1 = np.array([[0, 1, 1, 0, 1]]) p_obj(y_true1, y_pred1, sample_weight=np.array([[1, 4, 2, 3, 5]])) y_pred2 = np.array([0.2, 0.6, 0.4, 0.2, 0.2]) y_true2 = np.array([1, 0, 1, 1, 1]) result = p_obj(y_true2, y_pred2, sample_weight=np.array(3)) tp = (2 + 5) + (3 + 3) predicted_positives = (1 + 2 + 5) + (3 + 3 + 3) expected_precision = tp / predicted_positives self.assertAlmostEqual(expected_precision, result) def test_unweighted_class_id_should_throw_error_1d(self): p_obj = metrics.Precision(class_id=2) y_pred = np.array([0.2, 0.1, 0.6, 0, 0.2]) y_true = np.array([0, 1, 1, 0, 0]) with self.assertRaisesRegex( ValueError, r"When class_id is provided, y_pred must be a 2D array " r"with shape \(num_samples, num_classes\), found shape:.*", ): p_obj(y_true, y_pred) def test_unweighted_class_id_multiclass(self): p_obj = metrics.Precision(class_id=1) y_pred = np.array( [ [0.1, 0.2, 0.7], [0.5, 0.3, 0.2], [0.2, 0.6, 0.2], [0.7, 0.2, 0.1], [0.1, 0.1, 0.8], ] ) y_true = np.array( [ [0.0, 0.0, 1.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 1.0], ] ) result = p_obj(y_true, y_pred) self.assertAlmostEqual(1.0, result) self.assertAlmostEqual(1.0, p_obj.true_positives) self.assertAlmostEqual(0.0, p_obj.false_positives) def test_unweighted_top_k_and_threshold(self): p_obj = metrics.Precision(thresholds=0.7, top_k=2) y_pred = np.array([0.2, 0.8, 0.6, 0, 0.2]) y_true = np.array([0, 1, 1, 0, 1]) result = p_obj(y_true, y_pred) self.assertAlmostEqual(1, result) self.assertAlmostEqual(1, p_obj.true_positives) self.assertAlmostEqual(0, p_obj.false_positives) class RecallTest(testing.TestCase): def test_config(self): r_obj = metrics.Recall( name="my_recall", thresholds=[0.4, 0.9], top_k=15, class_id=12 ) self.assertEqual(r_obj.name, "my_recall") self.assertLen(r_obj.variables, 2) self.assertEqual( [v.name for v in r_obj.variables], ["true_positives", "false_negatives"], ) self.assertEqual(r_obj.thresholds, [0.4, 0.9]) self.assertEqual(r_obj.top_k, 15) self.assertEqual(r_obj.class_id, 12) # Check save and restore config r_obj2 = metrics.Recall.from_config(r_obj.get_config()) self.assertEqual(r_obj2.name, "my_recall") self.assertLen(r_obj2.variables, 2) self.assertEqual(r_obj2.thresholds, [0.4, 0.9]) self.assertEqual(r_obj2.top_k, 15) self.assertEqual(r_obj2.class_id, 12) def test_unweighted(self): r_obj = metrics.Recall() y_pred = np.array([1, 0, 1, 0]) y_true = np.array([0, 1, 1, 0]) self.assertAlmostEqual(0.5, r_obj(y_true, y_pred)) def test_unweighted_all_incorrect(self): r_obj = metrics.Recall(thresholds=[0.5]) inputs = np.random.randint(0, 2, size=(100, 1)) y_pred = np.array(inputs) y_true = np.array(1 - inputs) self.assertAlmostEqual(0, r_obj(y_true, y_pred)) def test_weighted(self): r_obj = metrics.Recall() y_pred = np.array([[1, 0, 1, 0], [0, 1, 0, 1]]) y_true = np.array([[0, 1, 1, 0], [1, 0, 0, 1]]) result = r_obj( y_true, y_pred, sample_weight=np.array([[1, 2, 3, 4], [4, 3, 2, 1]]), ) weighted_tp = 3.0 + 1.0 weighted_t = (2.0 + 3.0) + (4.0 + 1.0) expected_recall = weighted_tp / weighted_t self.assertAlmostEqual(expected_recall, result) def test_div_by_zero(self): r_obj = metrics.Recall() y_pred = np.array([0, 0, 0, 0]) y_true = np.array([0, 0, 0, 0]) self.assertEqual(0, r_obj(y_true, y_pred)) def test_unweighted_with_threshold(self): r_obj = metrics.Recall(thresholds=[0.5, 0.7]) y_pred = np.array([1, 0, 0.6, 0]) y_true = np.array([0, 1, 1, 0]) self.assertAllClose([0.5, 0.0], r_obj(y_true, y_pred), 0) def test_weighted_with_threshold(self): r_obj = metrics.Recall(thresholds=[0.5, 1.0]) y_true = np.array([[0, 1], [1, 0]]) y_pred = np.array([[1, 0], [0.6, 0]], dtype="float32") weights = np.array([[1, 4], [3, 2]], dtype="float32") result = r_obj(y_true, y_pred, sample_weight=weights) weighted_tp = 0 + 3.0 weighted_positives = (0 + 3.0) + (4.0 + 0.0) expected_recall = weighted_tp / weighted_positives self.assertAllClose([expected_recall, 0], result, 1e-3) def test_multiple_updates(self): r_obj = metrics.Recall(thresholds=[0.5, 1.0]) y_true = np.array([[0, 1], [1, 0]]) y_pred = np.array([[1, 0], [0.6, 0]], dtype="float32") weights = np.array([[1, 4], [3, 2]], dtype="float32") for _ in range(2): r_obj.update_state(y_true, y_pred, sample_weight=weights) weighted_tp = (0 + 3.0) + (0 + 3.0) weighted_positives = ((0 + 3.0) + (4.0 + 0.0)) + ( (0 + 3.0) + (4.0 + 0.0) ) expected_recall = weighted_tp / weighted_positives self.assertAllClose([expected_recall, 0], r_obj.result(), 1e-3) def test_unweighted_top_k(self): r_obj = metrics.Recall(top_k=3) y_pred = np.array([0.2, 0.1, 0.5, 0, 0.2]) y_true = np.array([0, 1, 1, 0, 0]) self.assertAlmostEqual(0.5, r_obj(y_true, y_pred)) def test_weighted_top_k(self): r_obj = metrics.Recall(top_k=3) y_pred1 = np.array([[0.2, 0.1, 0.4, 0, 0.2]]) y_true1 = np.array([[0, 1, 1, 0, 1]]) r_obj(y_true1, y_pred1, sample_weight=np.array([[1, 4, 2, 3, 5]])) y_pred2 = np.array([0.2, 0.6, 0.4, 0.2, 0.2]) y_true2 = np.array([1, 0, 1, 1, 1]) result = r_obj(y_true2, y_pred2, sample_weight=np.array(3)) tp = (2 + 5) + (3 + 3) positives = (4 + 2 + 5) + (3 + 3 + 3 + 3) expected_recall = tp / positives self.assertAlmostEqual(expected_recall, result) def test_unweighted_class_id_should_throw_error_1d(self): r_obj = metrics.Recall(class_id=2) y_pred = np.array([0.2, 0.1, 0.6, 0, 0.2]) y_true = np.array([0, 1, 1, 0, 0]) with self.assertRaisesRegex( ValueError, r"When class_id is provided, y_pred must be a 2D array " r"with shape \(num_samples, num_classes\), found shape:.*", ): r_obj(y_true, y_pred) def test_unweighted_class_id_multiclass(self): r_obj = metrics.Recall(class_id=1) y_pred = np.array( [ [0.1, 0.2, 0.7], [0.5, 0.3, 0.2], [0.2, 0.6, 0.2], [0.7, 0.2, 0.1], [0.1, 0.1, 0.8], ] ) y_true = np.array( [ [0.0, 0.0, 1.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0], [0.0, 0.0, 1.0], ] ) result = r_obj(y_true, y_pred) self.assertAlmostEqual(1.0, result) self.assertAlmostEqual(1.0, r_obj.true_positives) self.assertAlmostEqual(0.0, r_obj.false_negatives) def test_unweighted_top_k_and_threshold(self): r_obj = metrics.Recall(thresholds=0.7, top_k=2) y_pred = np.array([0.2, 0.8, 0.6, 0, 0.2]) y_true = np.array([1, 1, 1, 0, 1]) self.assertAlmostEqual(0.25, r_obj(y_true, y_pred)) self.assertAlmostEqual(1, r_obj.true_positives) self.assertAlmostEqual(3, r_obj.false_negatives) class SensitivityAtSpecificityTest(testing.TestCase, parameterized.TestCase): def test_config(self): s_obj = metrics.SensitivityAtSpecificity( 0.4, num_thresholds=100, class_id=12, name="sensitivity_at_specificity_1", ) self.assertEqual(s_obj.name, "sensitivity_at_specificity_1") self.assertLen(s_obj.variables, 4) self.assertEqual(s_obj.specificity, 0.4) self.assertEqual(s_obj.num_thresholds, 100) self.assertEqual(s_obj.class_id, 12) # Check save and restore config s_obj2 = metrics.SensitivityAtSpecificity.from_config( s_obj.get_config() ) self.assertEqual(s_obj2.name, "sensitivity_at_specificity_1") self.assertLen(s_obj2.variables, 4) self.assertEqual(s_obj2.specificity, 0.4) self.assertEqual(s_obj2.num_thresholds, 100) self.assertEqual(s_obj.class_id, 12) def test_unweighted_all_correct(self): s_obj = metrics.SensitivityAtSpecificity(0.7) inputs = np.random.randint(0, 2, size=(100, 1)) y_pred = np.array(inputs, dtype="float32") y_true = np.array(inputs) self.assertAlmostEqual(1, s_obj(y_true, y_pred)) def test_unweighted_high_specificity(self): s_obj = metrics.SensitivityAtSpecificity(0.8) pred_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.1, 0.45, 0.5, 0.8, 0.9] label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] y_pred = np.array(pred_values, dtype="float32") y_true = np.array(label_values) self.assertAlmostEqual(0.8, s_obj(y_true, y_pred)) def test_unweighted_low_specificity(self): s_obj = metrics.SensitivityAtSpecificity(0.4) pred_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.01, 0.02, 0.25, 0.26, 0.26] label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] y_pred = np.array(pred_values, dtype="float32") y_true = np.array(label_values) self.assertAlmostEqual(0.6, s_obj(y_true, y_pred)) def test_unweighted_class_id(self): s_obj = metrics.SpecificityAtSensitivity(0.4, class_id=2) pred_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.01, 0.02, 0.25, 0.26, 0.26] label_values = [0, 0, 0, 0, 0, 2, 2, 2, 2, 2] y_pred = ops.transpose(np.array([pred_values] * 3)) y_true = ops.one_hot(np.array(label_values), num_classes=3) self.assertAlmostEqual(0.6, s_obj(y_true, y_pred)) @parameterized.parameters(["bool", "int32", "float32"]) def test_weighted(self, label_dtype): s_obj = metrics.SensitivityAtSpecificity(0.4) pred_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.01, 0.02, 0.25, 0.26, 0.26] label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] weight_values = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] y_pred = np.array(pred_values, dtype="float32") y_true = ops.cast(label_values, dtype=label_dtype) weights = np.array(weight_values) result = s_obj(y_true, y_pred, sample_weight=weights) self.assertAlmostEqual(0.675, result) def test_invalid_specificity(self): with self.assertRaisesRegex( ValueError, r"`specificity` must be in the range \[0, 1\]." ): metrics.SensitivityAtSpecificity(-1) def test_invalid_num_thresholds(self): with self.assertRaisesRegex( ValueError, "Argument `num_thresholds` must be an integer > 0" ): metrics.SensitivityAtSpecificity(0.4, num_thresholds=-1) class SpecificityAtSensitivityTest(testing.TestCase, parameterized.TestCase): def test_config(self): s_obj = metrics.SpecificityAtSensitivity( 0.4, num_thresholds=100, class_id=12, name="specificity_at_sensitivity_1", ) self.assertEqual(s_obj.name, "specificity_at_sensitivity_1") self.assertLen(s_obj.variables, 4) self.assertEqual(s_obj.sensitivity, 0.4) self.assertEqual(s_obj.num_thresholds, 100) self.assertEqual(s_obj.class_id, 12) # Check save and restore config s_obj2 = metrics.SpecificityAtSensitivity.from_config( s_obj.get_config() ) self.assertEqual(s_obj2.name, "specificity_at_sensitivity_1") self.assertLen(s_obj2.variables, 4) self.assertEqual(s_obj2.sensitivity, 0.4) self.assertEqual(s_obj2.num_thresholds, 100) self.assertEqual(s_obj.class_id, 12) def test_unweighted_all_correct(self): s_obj = metrics.SpecificityAtSensitivity(0.7) inputs = np.random.randint(0, 2, size=(100, 1)) y_pred = np.array(inputs, dtype="float32") y_true = np.array(inputs) self.assertAlmostEqual(1, s_obj(y_true, y_pred)) def test_unweighted_high_sensitivity(self): s_obj = metrics.SpecificityAtSensitivity(1.0) pred_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.01, 0.02, 0.25, 0.26, 0.26] label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] y_pred = np.array(pred_values, dtype="float32") y_true = np.array(label_values) self.assertAlmostEqual(0.2, s_obj(y_true, y_pred)) def test_unweighted_low_sensitivity(self): s_obj = metrics.SpecificityAtSensitivity(0.4) pred_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.01, 0.02, 0.25, 0.26, 0.26] label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] y_pred = np.array(pred_values, dtype="float32") y_true = np.array(label_values) self.assertAlmostEqual(0.6, s_obj(y_true, y_pred)) def test_unweighted_class_id(self): s_obj = metrics.SpecificityAtSensitivity(0.4, class_id=2) pred_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.01, 0.02, 0.25, 0.26, 0.26] label_values = [0, 0, 0, 0, 0, 2, 2, 2, 2, 2] y_pred = ops.transpose(np.array([pred_values] * 3)) y_true = ops.one_hot(np.array(label_values), num_classes=3) self.assertAlmostEqual(0.6, s_obj(y_true, y_pred)) @parameterized.parameters(["bool", "int32", "float32"]) def test_weighted(self, label_dtype): s_obj = metrics.SpecificityAtSensitivity(0.4) pred_values = [0.0, 0.1, 0.2, 0.3, 0.4, 0.01, 0.02, 0.25, 0.26, 0.26] label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] weight_values = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] y_pred = np.array(pred_values, dtype="float32") y_true = ops.cast(label_values, dtype=label_dtype) weights = np.array(weight_values) result = s_obj(y_true, y_pred, sample_weight=weights) self.assertAlmostEqual(0.4, result) def test_invalid_sensitivity(self): with self.assertRaisesRegex( ValueError, r"`sensitivity` must be in the range \[0, 1\]." ): metrics.SpecificityAtSensitivity(-1) def test_invalid_num_thresholds(self): with self.assertRaisesRegex( ValueError, "Argument `num_thresholds` must be an integer > 0" ): metrics.SpecificityAtSensitivity(0.4, num_thresholds=-1) class PrecisionAtRecallTest(testing.TestCase, parameterized.TestCase): def test_config(self): s_obj = metrics.PrecisionAtRecall( 0.4, num_thresholds=100, class_id=12, name="precision_at_recall_1" ) self.assertEqual(s_obj.name, "precision_at_recall_1") self.assertLen(s_obj.variables, 4) self.assertEqual(s_obj.recall, 0.4) self.assertEqual(s_obj.num_thresholds, 100) self.assertEqual(s_obj.class_id, 12) # Check save and restore config s_obj2 = metrics.PrecisionAtRecall.from_config(s_obj.get_config()) self.assertEqual(s_obj2.name, "precision_at_recall_1") self.assertLen(s_obj2.variables, 4) self.assertEqual(s_obj2.recall, 0.4) self.assertEqual(s_obj2.num_thresholds, 100) self.assertEqual(s_obj.class_id, 12) def test_unweighted_all_correct(self): s_obj = metrics.PrecisionAtRecall(0.7) inputs = np.random.randint(0, 2, size=(100, 1)) y_pred = np.array(inputs, dtype="float32") y_true = np.array(inputs) self.assertAlmostEqual(1, s_obj(y_true, y_pred)) def test_unweighted_high_recall(self): s_obj = metrics.PrecisionAtRecall(0.8) pred_values = [0.0, 0.1, 0.2, 0.5, 0.6, 0.2, 0.5, 0.6, 0.8, 0.9] label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] y_pred = np.array(pred_values, dtype="float32") y_true = np.array(label_values) # For 0.5 < decision threshold < 0.6. self.assertAlmostEqual(2.0 / 3, s_obj(y_true, y_pred)) def test_unweighted_low_recall(self): s_obj = metrics.PrecisionAtRecall(0.6) pred_values = [0.0, 0.1, 0.2, 0.5, 0.6, 0.2, 0.5, 0.6, 0.8, 0.9] label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] y_pred = np.array(pred_values, dtype="float32") y_true = np.array(label_values) # For 0.2 < decision threshold < 0.5. self.assertAlmostEqual(0.75, s_obj(y_true, y_pred)) def test_unweighted_class_id(self): s_obj = metrics.PrecisionAtRecall(0.6, class_id=2) pred_values = [0.0, 0.1, 0.2, 0.5, 0.6, 0.2, 0.5, 0.6, 0.8, 0.9] label_values = [0, 0, 0, 0, 0, 2, 2, 2, 2, 2] y_pred = ops.transpose(np.array([pred_values] * 3)) y_true = ops.one_hot(np.array(label_values), num_classes=3) # For 0.2 < decision threshold < 0.5. self.assertAlmostEqual(0.75, s_obj(y_true, y_pred)) @parameterized.parameters(["bool", "int32", "float32"]) def test_weighted(self, label_dtype): s_obj = metrics.PrecisionAtRecall(7.0 / 8) pred_values = [0.0, 0.1, 0.2, 0.5, 0.6, 0.2, 0.5, 0.6, 0.8, 0.9] label_values = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] weight_values = [2, 1, 2, 1, 2, 1, 2, 2, 1, 2] y_pred = np.array(pred_values, dtype="float32") y_true = ops.cast(label_values, dtype=label_dtype) weights = np.array(weight_values) result = s_obj(y_true, y_pred, sample_weight=weights) # For 0.0 < decision threshold < 0.2. self.assertAlmostEqual(0.7, result) def test_invalid_sensitivity(self): with self.assertRaisesRegex( ValueError, r"`recall` must be in the range \[0, 1\]." ): metrics.PrecisionAtRecall(-1) def test_invalid_num_thresholds(self): with self.assertRaisesRegex( ValueError, "Argument `num_thresholds` must be an integer > 0" ): metrics.PrecisionAtRecall(0.4, num_thresholds=-1) class RecallAtPrecisionTest(testing.TestCase, parameterized.TestCase): def test_config(self): s_obj = metrics.RecallAtPrecision( 0.4, num_thresholds=100, class_id=12, name="recall_at_precision_1" ) self.assertEqual(s_obj.name, "recall_at_precision_1") self.assertLen(s_obj.variables, 4) self.assertEqual(s_obj.precision, 0.4) self.assertEqual(s_obj.num_thresholds, 100) self.assertEqual(s_obj.class_id, 12) # Check save and restore config s_obj2 = metrics.RecallAtPrecision.from_config(s_obj.get_config()) self.assertEqual(s_obj2.name, "recall_at_precision_1") self.assertLen(s_obj2.variables, 4) self.assertEqual(s_obj2.precision, 0.4) self.assertEqual(s_obj2.num_thresholds, 100) self.assertEqual(s_obj.class_id, 12) def test_unweighted_all_correct(self): s_obj = metrics.RecallAtPrecision(0.7) inputs = np.random.randint(0, 2, size=(100, 1)) y_pred = np.array(inputs, dtype="float32") y_true = np.array(inputs) self.assertAlmostEqual(1, s_obj(y_true, y_pred)) def test_unweighted_high_precision(self): s_obj = metrics.RecallAtPrecision(0.75) pred_values = [ 0.05, 0.1, 0.2, 0.3, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.9, 0.95, ] label_values = [0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1] # precisions: [1/2, 6/11, 1/2, 5/9, 5/8, 5/7, 2/3, 3/5, 3/5, 2/3, 1/2, # 1]. # recalls: [1, 1, 5/6, 5/6, 5/6, 5/6, 2/3, 1/2, 1/2, 1/3, 1/6, # 1/6]. y_pred = np.array(pred_values, dtype="float32") y_true = np.array(label_values) # The precision 0.75 can be reached at thresholds 0.4<=t<0.45. self.assertAlmostEqual(0.5, s_obj(y_true, y_pred)) def test_unweighted_low_precision(self): s_obj = metrics.RecallAtPrecision(2.0 / 3) pred_values = [ 0.05, 0.1, 0.2, 0.3, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.9, 0.95, ] label_values = [0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1] # precisions: [1/2, 6/11, 1/2, 5/9, 5/8, 5/7, 2/3, 3/5, 3/5, 2/3, 1/2, # 1]. # recalls: [1, 1, 5/6, 5/6, 5/6, 5/6, 2/3, 1/2, 1/2, 1/3, 1/6, # 1/6]. y_pred = np.array(pred_values, dtype="float32") y_true = np.array(label_values) # The precision 5/7 can be reached at thresholds 00.3<=t<0.35. self.assertAlmostEqual(5.0 / 6, s_obj(y_true, y_pred)) def test_unweighted_class_id(self): s_obj = metrics.RecallAtPrecision(2.0 / 3, class_id=2) pred_values = [ 0.05, 0.1, 0.2, 0.3, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.9, 0.95, ] label_values = [0, 2, 0, 0, 0, 2, 2, 0, 2, 2, 0, 2] # precisions: [1/2, 6/11, 1/2, 5/9, 5/8, 5/7, 2/3, 3/5, 3/5, 2/3, 1/2, # 1]. # recalls: [1, 1, 5/6, 5/6, 5/6, 5/6, 2/3, 1/2, 1/2, 1/3, 1/6, # 1/6]. y_pred = ops.transpose(np.array([pred_values] * 3)) y_true = ops.one_hot(np.array(label_values), num_classes=3) # The precision 5/7 can be reached at thresholds 00.3<=t<0.35. self.assertAlmostEqual(5.0 / 6, s_obj(y_true, y_pred)) @parameterized.parameters(["bool", "int32", "float32"]) def test_weighted(self, label_dtype): s_obj = metrics.RecallAtPrecision(0.75) pred_values = [0.1, 0.2, 0.3, 0.5, 0.6, 0.9, 0.9] label_values = [0, 1, 0, 0, 0, 1, 1] weight_values = [1, 2, 1, 2, 1, 2, 1] y_pred = np.array(pred_values, dtype="float32") y_true = ops.cast(label_values, dtype=label_dtype) weights = np.array(weight_values) result = s_obj(y_true, y_pred, sample_weight=weights) self.assertAlmostEqual(0.6, result) def test_unachievable_precision(self): s_obj = metrics.RecallAtPrecision(2.0 / 3) pred_values = [0.1, 0.2, 0.3, 0.9] label_values = [1, 1, 0, 0] y_pred = np.array(pred_values, dtype="float32") y_true = np.array(label_values) # The highest possible precision is 1/2 which is below the required # value, expect 0 recall. self.assertAlmostEqual(0, s_obj(y_true, y_pred)) def test_invalid_sensitivity(self): with self.assertRaisesRegex( ValueError, r"`precision` must be in the range \[0, 1\]." ): metrics.RecallAtPrecision(-1) def test_invalid_num_thresholds(self): with self.assertRaisesRegex( ValueError, "Argument `num_thresholds` must be an integer > 0" ): metrics.RecallAtPrecision(0.4, num_thresholds=-1) @pytest.mark.requires_trainable_backend def test_end_to_end(self): # Test for https://github.com/keras-team/keras/issues/718 model = models.Sequential( [ layers.Input((1,)), layers.Dense(1), ] ) model.compile( optimizer="rmsprop", loss="mse", metrics=[metrics.Precision()] ) model.fit(np.ones((5, 1)), np.ones((5, 1))) class AUCTest(testing.TestCase): def setUp(self): self.num_thresholds = 3 self.y_pred = np.array([0, 0.5, 0.3, 0.9], dtype="float32") self.y_pred_multi_label = np.array( [[0.0, 0.4], [0.5, 0.7], [0.3, 0.2], [0.9, 0.3]], dtype="float32" ) epsilon = 1e-12 self.y_pred_logits = -ops.log(1.0 / (self.y_pred + epsilon) - 1.0) self.y_true = np.array([0, 0, 1, 1]) self.y_true_multi_label = np.array([[0, 0], [1, 1], [1, 1], [1, 0]]) self.sample_weight = [1, 2, 3, 4] # threshold values are [0 - 1e-7, 0.5, 1 + 1e-7] # y_pred when threshold = 0 - 1e-7 : [1, 1, 1, 1] # y_pred when threshold = 0.5 : [0, 0, 0, 1] # y_pred when threshold = 1 + 1e-7 : [0, 0, 0, 0] # without sample_weight: # tp = np.sum([[0, 0, 1, 1], [0, 0, 0, 1], [0, 0, 0, 0]], axis=1) # fp = np.sum([[1, 1, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], axis=1) # fn = np.sum([[0, 0, 0, 0], [0, 0, 1, 0], [0, 0, 1, 1]], axis=1) # tn = np.sum([[0, 0, 0, 0], [1, 1, 0, 0], [1, 1, 0, 0]], axis=1) # tp = [2, 1, 0], fp = [2, 0, 0], fn = [0, 1, 2], tn = [0, 2, 2] # with sample_weight: # tp = np.sum([[0, 0, 3, 4], [0, 0, 0, 4], [0, 0, 0, 0]], axis=1) # fp = np.sum([[1, 2, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], axis=1) # fn = np.sum([[0, 0, 0, 0], [0, 0, 3, 0], [0, 0, 3, 4]], axis=1) # tn = np.sum([[0, 0, 0, 0], [1, 2, 0, 0], [1, 2, 0, 0]], axis=1) # tp = [7, 4, 0], fp = [3, 0, 0], fn = [0, 3, 7], tn = [0, 3, 3] def test_config(self): auc_obj = metrics.AUC( num_thresholds=100, curve="PR", summation_method="majoring", name="auc_1", dtype="float64", multi_label=True, num_labels=2, from_logits=True, ) auc_obj.update_state(self.y_true_multi_label, self.y_pred_multi_label) self.assertEqual(auc_obj.name, "auc_1") self.assertEqual(auc_obj._dtype, "float64") self.assertLen(auc_obj.variables, 4) self.assertEqual(auc_obj.num_thresholds, 100) self.assertEqual(auc_obj.curve, metrics_utils.AUCCurve.PR) self.assertEqual( auc_obj.summation_method, metrics_utils.AUCSummationMethod.MAJORING ) self.assertTrue(auc_obj.multi_label) self.assertEqual(auc_obj.num_labels, 2) self.assertTrue(auc_obj._from_logits) old_config = auc_obj.get_config() self.assertNotIn("thresholds", old_config) self.assertDictEqual(old_config, json.loads(json.dumps(old_config))) # Check save and restore config. auc_obj2 = metrics.AUC.from_config(auc_obj.get_config()) auc_obj2.update_state(self.y_true_multi_label, self.y_pred_multi_label) self.assertEqual(auc_obj2.name, "auc_1") self.assertLen(auc_obj2.variables, 4) self.assertEqual(auc_obj2.num_thresholds, 100) self.assertEqual(auc_obj2.curve, metrics_utils.AUCCurve.PR) self.assertEqual( auc_obj2.summation_method, metrics_utils.AUCSummationMethod.MAJORING ) self.assertTrue(auc_obj2.multi_label) self.assertEqual(auc_obj2.num_labels, 2) self.assertTrue(auc_obj2._from_logits) new_config = auc_obj2.get_config() self.assertNotIn("thresholds", new_config) self.assertDictEqual(old_config, new_config) self.assertAllClose(auc_obj.thresholds, auc_obj2.thresholds) def test_config_manual_thresholds(self): auc_obj = metrics.AUC( num_thresholds=None, curve="PR", summation_method="majoring", name="auc_1", thresholds=[0.3, 0.5], ) auc_obj.update_state(self.y_true, self.y_pred) self.assertEqual(auc_obj.name, "auc_1") self.assertLen(auc_obj.variables, 4) self.assertEqual(auc_obj.num_thresholds, 4) self.assertAllClose(auc_obj.thresholds, [0.0, 0.3, 0.5, 1.0]) self.assertEqual(auc_obj.curve, metrics_utils.AUCCurve.PR) self.assertEqual( auc_obj.summation_method, metrics_utils.AUCSummationMethod.MAJORING ) old_config = auc_obj.get_config() self.assertDictEqual(old_config, json.loads(json.dumps(old_config))) # Check save and restore config. auc_obj2 = metrics.AUC.from_config(auc_obj.get_config()) auc_obj2.update_state(self.y_true, self.y_pred) self.assertEqual(auc_obj2.name, "auc_1") self.assertLen(auc_obj2.variables, 4) self.assertEqual(auc_obj2.num_thresholds, 4) self.assertEqual(auc_obj2.curve, metrics_utils.AUCCurve.PR) self.assertEqual( auc_obj2.summation_method, metrics_utils.AUCSummationMethod.MAJORING ) new_config = auc_obj2.get_config() self.assertDictEqual(old_config, new_config) self.assertAllClose(auc_obj.thresholds, auc_obj2.thresholds) def test_unweighted_all_correct(self): auc_obj = metrics.AUC() self.assertEqual(auc_obj(self.y_true, self.y_true), 1) def test_unweighted(self): auc_obj = metrics.AUC(num_thresholds=self.num_thresholds) result = auc_obj(self.y_true, self.y_pred) # tp = [2, 1, 0], fp = [2, 0, 0], fn = [0, 1, 2], tn = [0, 2, 2] # recall = [2/2, 1/(1+1), 0] = [1, 0.5, 0] # fp_rate = [2/2, 0, 0] = [1, 0, 0] # heights = [(1 + 0.5)/2, (0.5 + 0)/2] = [0.75, 0.25] # widths = [(1 - 0), (0 - 0)] = [1, 0] expected_result = 0.75 * 1 + 0.25 * 0 self.assertAllClose(result, expected_result, 1e-3) def test_unweighted_from_logits(self): auc_obj = metrics.AUC( num_thresholds=self.num_thresholds, from_logits=True ) result = auc_obj(self.y_true, self.y_pred_logits) # tp = [2, 1, 0], fp = [2, 0, 0], fn = [0, 1, 2], tn = [0, 2, 2] # recall = [2/2, 1/(1+1), 0] = [1, 0.5, 0] # fp_rate = [2/2, 0, 0] = [1, 0, 0] # heights = [(1 + 0.5)/2, (0.5 + 0)/2] = [0.75, 0.25] # widths = [(1 - 0), (0 - 0)] = [1, 0] expected_result = 0.75 * 1 + 0.25 * 0 self.assertAllClose(result, expected_result, 1e-3) def test_manual_thresholds(self): # Verify that when specified, thresholds are used instead of # num_thresholds. auc_obj = metrics.AUC(num_thresholds=2, thresholds=[0.5]) self.assertEqual(auc_obj.num_thresholds, 3) self.assertAllClose(auc_obj.thresholds, [0.0, 0.5, 1.0]) result = auc_obj(self.y_true, self.y_pred) # tp = [2, 1, 0], fp = [2, 0, 0], fn = [0, 1, 2], tn = [0, 2, 2] # recall = [2/2, 1/(1+1), 0] = [1, 0.5, 0] # fp_rate = [2/2, 0, 0] = [1, 0, 0] # heights = [(1 + 0.5)/2, (0.5 + 0)/2] = [0.75, 0.25] # widths = [(1 - 0), (0 - 0)] = [1, 0] expected_result = 0.75 * 1 + 0.25 * 0 self.assertAllClose(result, expected_result, 1e-3) def test_weighted_roc_interpolation(self): auc_obj = metrics.AUC(num_thresholds=self.num_thresholds) result = auc_obj( self.y_true, self.y_pred, sample_weight=self.sample_weight ) # tp = [7, 4, 0], fp = [3, 0, 0], fn = [0, 3, 7], tn = [0, 3, 3] # recall = [7/7, 4/(4+3), 0] = [1, 0.571, 0] # fp_rate = [3/3, 0, 0] = [1, 0, 0] # heights = [(1 + 0.571)/2, (0.571 + 0)/2] = [0.7855, 0.2855] # widths = [(1 - 0), (0 - 0)] = [1, 0] expected_result = 0.7855 * 1 + 0.2855 * 0 self.assertAllClose(result, expected_result, 1e-3) def test_weighted_roc_majoring(self): auc_obj = metrics.AUC( num_thresholds=self.num_thresholds, summation_method="majoring" ) result = auc_obj( self.y_true, self.y_pred, sample_weight=self.sample_weight ) # tp = [7, 4, 0], fp = [3, 0, 0], fn = [0, 3, 7], tn = [0, 3, 3] # recall = [7/7, 4/(4+3), 0] = [1, 0.571, 0] # fp_rate = [3/3, 0, 0] = [1, 0, 0] # heights = [max(1, 0.571), max(0.571, 0)] = [1, 0.571] # widths = [(1 - 0), (0 - 0)] = [1, 0] expected_result = 1 * 1 + 0.571 * 0 self.assertAllClose(result, expected_result, 1e-3) def test_weighted_roc_minoring(self): auc_obj = metrics.AUC( num_thresholds=self.num_thresholds, summation_method="minoring" ) result = auc_obj( self.y_true, self.y_pred, sample_weight=self.sample_weight ) # tp = [7, 4, 0], fp = [3, 0, 0], fn = [0, 3, 7], tn = [0, 3, 3] # recall = [7/7, 4/(4+3), 0] = [1, 0.571, 0] # fp_rate = [3/3, 0, 0] = [1, 0, 0] # heights = [min(1, 0.571), min(0.571, 0)] = [0.571, 0] # widths = [(1 - 0), (0 - 0)] = [1, 0] expected_result = 0.571 * 1 + 0 * 0 self.assertAllClose(result, expected_result, 1e-3) def test_weighted_pr_majoring(self): auc_obj = metrics.AUC( num_thresholds=self.num_thresholds, curve="PR", summation_method="majoring", ) result = auc_obj( self.y_true, self.y_pred, sample_weight=self.sample_weight ) # tp = [7, 4, 0], fp = [3, 0, 0], fn = [0, 3, 7], tn = [0, 3, 3] # precision = [7/(7+3), 4/4, 0] = [0.7, 1, 0] # recall = [7/7, 4/(4+3), 0] = [1, 0.571, 0] # heights = [max(0.7, 1), max(1, 0)] = [1, 1] # widths = [(1 - 0.571), (0.571 - 0)] = [0.429, 0.571] expected_result = 1 * 0.429 + 1 * 0.571 self.assertAllClose(result, expected_result, 1e-3) def test_weighted_pr_minoring(self): auc_obj = metrics.AUC( num_thresholds=self.num_thresholds, curve="PR", summation_method="minoring", ) result = auc_obj( self.y_true, self.y_pred, sample_weight=self.sample_weight ) # tp = [7, 4, 0], fp = [3, 0, 0], fn = [0, 3, 7], tn = [0, 3, 3] # precision = [7/(7+3), 4/4, 0] = [0.7, 1, 0] # recall = [7/7, 4/(4+3), 0] = [1, 0.571, 0] # heights = [min(0.7, 1), min(1, 0)] = [0.7, 0] # widths = [(1 - 0.571), (0.571 - 0)] = [0.429, 0.571] expected_result = 0.7 * 0.429 + 0 * 0.571 self.assertAllClose(result, expected_result, 1e-3) def test_weighted_pr_interpolation(self): auc_obj = metrics.AUC(num_thresholds=self.num_thresholds, curve="PR") result = auc_obj( self.y_true, self.y_pred, sample_weight=self.sample_weight ) # auc = (slope / Total Pos) * [dTP - intercept * log(Pb/Pa)] # tp = [7, 4, 0], fp = [3, 0, 0], fn = [0, 3, 7], tn = [0, 3, 3] # P = tp + fp = [10, 4, 0] # dTP = [7-4, 4-0] = [3, 4] # dP = [10-4, 4-0] = [6, 4] # slope = dTP/dP = [0.5, 1] # intercept = (TPa+(slope*Pa) = [(4 - 0.5*4), (0 - 1*0)] = [2, 0] # (Pb/Pa) = (Pb/Pa) if Pb > 0 AND Pa > 0 else 1 = [10/4, 4/0] = [2.5, 1] # auc * TotalPos = [(0.5 * (3 + 2 * log(2.5))), (1 * (4 + 0))] # = [2.416, 4] # auc = [2.416, 4]/(tp[1:]+fn[1:]) expected_result = 2.416 / 7 + 4 / 7 self.assertAllClose(result, expected_result, 1e-3) def test_weighted_pr_interpolation_negative_weights(self): auc_obj = metrics.AUC(num_thresholds=self.num_thresholds, curve="PR") sample_weight = [-1, -2, -3, -4] result = auc_obj(self.y_true, self.y_pred, sample_weight=sample_weight) # Divisor in auc formula is max(tp[1:]+fn[1:], 0), which is all zeros # because the all values in tp and fn are negative, divide_no_nan will # produce all zeros. self.assertAllClose(result, 0.0, 1e-3) def test_invalid_num_thresholds(self): with self.assertRaisesRegex( ValueError, "Argument `num_thresholds` must be an integer > 1" ): metrics.AUC(num_thresholds=-1) with self.assertRaisesRegex( ValueError, "Argument `num_thresholds` must be an integer > 1." ): metrics.AUC(num_thresholds=1) def test_invalid_curve(self): with self.assertRaisesRegex( ValueError, 'Invalid AUC curve value: "Invalid".' ): metrics.AUC(curve="Invalid") def test_invalid_summation_method(self): with self.assertRaisesRegex( ValueError, 'Invalid AUC summation method value: "Invalid".' ): metrics.AUC(summation_method="Invalid") def test_extra_dims(self): try: from scipy import special logits = special.expit( -np.array( [ [[-10.0, 10.0, -10.0], [10.0, -10.0, 10.0]], [[-12.0, 12.0, -12.0], [12.0, -12.0, 12.0]], ], dtype=np.float32, ) ) labels = np.array( [[[1, 0, 0], [1, 0, 0]], [[0, 1, 1], [0, 1, 1]]], dtype=np.int64 ) auc_obj = metrics.AUC() result = auc_obj(labels, logits) self.assertEqual(result, 0.5) except ImportError as e: logging.warning(f"Cannot test special functions: {str(e)}") class MultiAUCTest(testing.TestCase): def setUp(self): self.num_thresholds = 5 self.y_pred = np.array( [[0, 0.5, 0.3, 0.9], [0.1, 0.2, 0.3, 0.4]], dtype="float32" ).T epsilon = 1e-12 self.y_pred_logits = -ops.log(1.0 / (self.y_pred + epsilon) - 1.0) self.y_true_good = np.array([[0, 0, 1, 1], [0, 0, 1, 1]]).T self.y_true_bad = np.array([[0, 0, 1, 1], [1, 1, 0, 0]]).T self.sample_weight = [1, 2, 3, 4] # threshold values are [0 - 1e-7, 0.25, 0.5, 0.75, 1 + 1e-7] # y_pred when threshold = 0 - 1e-7 : [[1, 1, 1, 1], [1, 1, 1, 1]] # y_pred when threshold = 0.25 : [[0, 1, 1, 1], [0, 0, 1, 1]] # y_pred when threshold = 0.5 : [[0, 0, 0, 1], [0, 0, 0, 0]] # y_pred when threshold = 0.75 : [[0, 0, 0, 1], [0, 0, 0, 0]] # y_pred when threshold = 1 + 1e-7 : [[0, 0, 0, 0], [0, 0, 0, 0]] # for y_true_good, over thresholds: # tp = [[2, 2, 1, 1, 0], [2, 2, 0, 0, 0]] # fp = [[2, 1, 0, 0 , 0], [2, 0, 0 ,0, 0]] # fn = [[0, 0, 1, 1, 2], [0, 0, 2, 2, 2]] # tn = [[0, 1, 2, 2, 2], [0, 2, 2, 2, 2]] # tpr = [[1, 1, 0.5, 0.5, 0], [1, 1, 0, 0, 0]] # fpr = [[1, 0.5, 0, 0, 0], [1, 0, 0, 0, 0]] # for y_true_bad: # tp = [[2, 2, 1, 1, 0], [2, 0, 0, 0, 0]] # fp = [[2, 1, 0, 0 , 0], [2, 2, 0 ,0, 0]] # fn = [[0, 0, 1, 1, 2], [0, 2, 2, 2, 2]] # tn = [[0, 1, 2, 2, 2], [0, 0, 2, 2, 2]] # tpr = [[1, 1, 0.5, 0.5, 0], [1, 0, 0, 0, 0]] # fpr = [[1, 0.5, 0, 0, 0], [1, 1, 0, 0, 0]] # for y_true_good with sample_weights: # tp = [[7, 7, 4, 4, 0], [7, 7, 0, 0, 0]] # fp = [[3, 2, 0, 0, 0], [3, 0, 0, 0, 0]] # fn = [[0, 0, 3, 3, 7], [0, 0, 7, 7, 7]] # tn = [[0, 1, 3, 3, 3], [0, 3, 3, 3, 3]] # tpr = [[1, 1, 0.57, 0.57, 0], [1, 1, 0, 0, 0]] # fpr = [[1, 0.67, 0, 0, 0], [1, 0, 0, 0, 0]] def test_unweighted_all_correct(self): auc_obj = metrics.AUC(multi_label=True) result = auc_obj(self.y_true_good, self.y_true_good) self.assertEqual(result, 1) def test_unweighted_all_correct_flat(self): auc_obj = metrics.AUC(multi_label=False) result = auc_obj(self.y_true_good, self.y_true_good) self.assertEqual(result, 1) def test_unweighted(self): auc_obj = metrics.AUC( num_thresholds=self.num_thresholds, multi_label=True ) result = auc_obj(self.y_true_good, self.y_pred) # tpr = [[1, 1, 0.5, 0.5, 0], [1, 1, 0, 0, 0]] # fpr = [[1, 0.5, 0, 0, 0], [1, 0, 0, 0, 0]] expected_result = (0.875 + 1.0) / 2.0 self.assertAllClose(result, expected_result, 1e-3) def test_unweighted_from_logits(self): auc_obj = metrics.AUC( num_thresholds=self.num_thresholds, multi_label=True, from_logits=True, ) result = auc_obj(self.y_true_good, self.y_pred_logits) # tpr = [[1, 1, 0.5, 0.5, 0], [1, 1, 0, 0, 0]] # fpr = [[1, 0.5, 0, 0, 0], [1, 0, 0, 0, 0]] expected_result = (0.875 + 1.0) / 2.0 self.assertAllClose(result, expected_result, 1e-3) def test_sample_weight_flat(self): auc_obj = metrics.AUC( num_thresholds=self.num_thresholds, multi_label=False ) result = auc_obj( self.y_true_good, self.y_pred, sample_weight=[1, 2, 3, 4] ) # tpr = [1, 1, 0.2857, 0.2857, 0] # fpr = [1, 0.3333, 0, 0, 0] expected_result = 1.0 - (0.3333 * (1.0 - 0.2857) / 2.0) self.assertAllClose(result, expected_result, 1e-3) def test_full_sample_weight_flat(self): auc_obj = metrics.AUC( num_thresholds=self.num_thresholds, multi_label=False ) sw = np.arange(4 * 2) sw = sw.reshape(4, 2) result = auc_obj(self.y_true_good, self.y_pred, sample_weight=sw) # tpr = [1, 1, 0.2727, 0.2727, 0] # fpr = [1, 0.3333, 0, 0, 0] expected_result = 1.0 - (0.3333 * (1.0 - 0.2727) / 2.0) self.assertAllClose(result, expected_result, 1e-3) def test_label_weights(self): auc_obj = metrics.AUC( num_thresholds=self.num_thresholds, multi_label=True, label_weights=[0.75, 0.25], ) result = auc_obj(self.y_true_good, self.y_pred) # tpr = [[1, 1, 0.5, 0.5, 0], [1, 1, 0, 0, 0]] # fpr = [[1, 0.5, 0, 0, 0], [1, 0, 0, 0, 0]] expected_result = (0.875 * 0.75 + 1.0 * 0.25) / (0.75 + 0.25) self.assertAllClose(result, expected_result, 1e-3) def test_label_weights_flat(self): auc_obj = metrics.AUC( num_thresholds=self.num_thresholds, multi_label=False, label_weights=[0.75, 0.25], ) result = auc_obj(self.y_true_good, self.y_pred) # tpr = [1, 1, 0.375, 0.375, 0] # fpr = [1, 0.375, 0, 0, 0] expected_result = 1.0 - ((1.0 - 0.375) * 0.375 / 2.0) self.assertAllClose(result, expected_result, 1e-2) def test_unweighted_flat(self): auc_obj = metrics.AUC( num_thresholds=self.num_thresholds, multi_label=False ) result = auc_obj(self.y_true_good, self.y_pred) # tp = [4, 4, 1, 1, 0] # fp = [4, 1, 0, 0, 0] # fn = [0, 0, 3, 3, 4] # tn = [0, 3, 4, 4, 4] # tpr = [1, 1, 0.25, 0.25, 0] # fpr = [1, 0.25, 0, 0, 0] expected_result = 1.0 - (3.0 / 32.0) self.assertAllClose(result, expected_result, 1e-3) def test_unweighted_flat_from_logits(self): auc_obj = metrics.AUC( num_thresholds=self.num_thresholds, multi_label=False, from_logits=True, ) result = auc_obj(self.y_true_good, self.y_pred_logits) # tp = [4, 4, 1, 1, 0] # fp = [4, 1, 0, 0, 0] # fn = [0, 0, 3, 3, 4] # tn = [0, 3, 4, 4, 4] # tpr = [1, 1, 0.25, 0.25, 0] # fpr = [1, 0.25, 0, 0, 0] expected_result = 1.0 - (3.0 / 32.0) self.assertAllClose(result, expected_result, 1e-3) def test_manual_thresholds(self): # Verify that when specified, thresholds are used instead of # num_thresholds. auc_obj = metrics.AUC( num_thresholds=2, thresholds=[0.5], multi_label=True ) self.assertEqual(auc_obj.num_thresholds, 3) self.assertAllClose(auc_obj.thresholds, [0.0, 0.5, 1.0]) result = auc_obj(self.y_true_good, self.y_pred) # tp = [[2, 1, 0], [2, 0, 0]] # fp = [2, 0, 0], [2, 0, 0]] # fn = [[0, 1, 2], [0, 2, 2]] # tn = [[0, 2, 2], [0, 2, 2]] # tpr = [[1, 0.5, 0], [1, 0, 0]] # fpr = [[1, 0, 0], [1, 0, 0]] # auc by slice = [0.75, 0.5] expected_result = (0.75 + 0.5) / 2.0 self.assertAllClose(result, expected_result, 1e-3) def test_weighted_roc_interpolation(self): auc_obj = metrics.AUC( num_thresholds=self.num_thresholds, multi_label=True ) result = auc_obj( self.y_true_good, self.y_pred, sample_weight=self.sample_weight ) # tpr = [[1, 1, 0.57, 0.57, 0], [1, 1, 0, 0, 0]] # fpr = [[1, 0.67, 0, 0, 0], [1, 0, 0, 0, 0]] expected_result = 1.0 - 0.5 * 0.43 * 0.67 self.assertAllClose(result, expected_result, 1e-1) def test_pr_interpolation_unweighted(self): auc_obj = metrics.AUC( num_thresholds=self.num_thresholds, curve="PR", multi_label=True ) good_result = auc_obj(self.y_true_good, self.y_pred) with self.subTest(name="good"): # PR AUCs are 0.917 and 1.0 respectively self.assertAllClose(good_result, (0.91667 + 1.0) / 2.0, 1e-1) bad_result = auc_obj(self.y_true_bad, self.y_pred) with self.subTest(name="bad"): # PR AUCs are 0.917 and 0.5 respectively self.assertAllClose(bad_result, (0.91667 + 0.5) / 2.0, 1e-1) def test_pr_interpolation(self): auc_obj = metrics.AUC( num_thresholds=self.num_thresholds, curve="PR", multi_label=True ) good_result = auc_obj( self.y_true_good, self.y_pred, sample_weight=self.sample_weight ) # PR AUCs are 0.939 and 1.0 respectively self.assertAllClose(good_result, (0.939 + 1.0) / 2.0, 1e-1) @pytest.mark.requires_trainable_backend def test_keras_model_compiles(self): inputs = layers.Input(shape=(10,), batch_size=1) output = layers.Dense(3, activation="sigmoid")(inputs) model = models.Model(inputs=inputs, outputs=output) model.compile( optimizer="adam", loss="binary_crossentropy", metrics=[metrics.AUC(multi_label=True)], ) def test_reset_state(self): auc_obj = metrics.AUC( num_thresholds=self.num_thresholds, multi_label=True ) auc_obj(self.y_true_good, self.y_pred) auc_obj.reset_state() self.assertAllClose(auc_obj.true_positives, np.zeros((5, 2)))
keras/keras/metrics/confusion_metrics_test.py/0
{ "file_path": "keras/keras/metrics/confusion_metrics_test.py", "repo_id": "keras", "token_count": 34634 }
183
from keras.models.functional import Functional from keras.models.model import Model from keras.models.sequential import Sequential
keras/keras/models/__init__.py/0
{ "file_path": "keras/keras/models/__init__.py", "repo_id": "keras", "token_count": 32 }
184
from keras import backend from keras import ops from keras.api_export import keras_export from keras.backend import KerasTensor from keras.backend import any_symbolic_tensors from keras.ops.operation import Operation from keras.ops.operation_utils import compute_conv_output_shape class Resize(Operation): def __init__( self, size, interpolation="bilinear", antialias=False, data_format="channels_last", ): super().__init__() self.size = tuple(size) self.interpolation = interpolation self.antialias = antialias self.data_format = data_format def call(self, image): return backend.image.resize( image, self.size, interpolation=self.interpolation, antialias=self.antialias, data_format=self.data_format, ) def compute_output_spec(self, image): if len(image.shape) == 3: return KerasTensor( self.size + (image.shape[-1],), dtype=image.dtype ) elif len(image.shape) == 4: if self.data_format == "channels_last": return KerasTensor( (image.shape[0],) + self.size + (image.shape[-1],), dtype=image.dtype, ) else: return KerasTensor( (image.shape[0], image.shape[1]) + self.size, dtype=image.dtype, ) raise ValueError( "Invalid input rank: expected rank 3 (single image) " "or rank 4 (batch of images). Received input with shape: " f"image.shape={image.shape}" ) @keras_export("keras.ops.image.resize") def resize( image, size, interpolation="bilinear", antialias=False, data_format="channels_last", ): """Resize images to size using the specified interpolation method. Args: image: Input image or batch of images. Must be 3D or 4D. size: Size of output image in `(height, width)` format. interpolation: Interpolation method. Available methods are `"nearest"`, `"bilinear"`, and `"bicubic"`. Defaults to `"bilinear"`. antialias: Whether to use an antialiasing filter when downsampling an image. Defaults to `False`. data_format: string, either `"channels_last"` or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, height, width, channels)` while `"channels_first"` corresponds to inputs with shape `(batch, channels, height, weight)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be `"channels_last"`. Returns: Resized image or batch of images. Examples: >>> x = np.random.random((2, 4, 4, 3)) # batch of 2 RGB images >>> y = keras.ops.image.resize(x, (2, 2)) >>> y.shape (2, 2, 2, 3) >>> x = np.random.random((4, 4, 3)) # single RGB image >>> y = keras.ops.image.resize(x, (2, 2)) >>> y.shape (2, 2, 3) >>> x = np.random.random((2, 3, 4, 4)) # batch of 2 RGB images >>> y = keras.ops.image.resize(x, (2, 2), ... data_format="channels_first") >>> y.shape (2, 3, 2, 2) """ if any_symbolic_tensors((image,)): return Resize( size, interpolation=interpolation, antialias=antialias, data_format=data_format, ).symbolic_call(image) return backend.image.resize( image, size, interpolation=interpolation, antialias=antialias, data_format=data_format, ) class AffineTransform(Operation): def __init__( self, interpolation="bilinear", fill_mode="constant", fill_value=0, data_format="channels_last", ): super().__init__() self.interpolation = interpolation self.fill_mode = fill_mode self.fill_value = fill_value self.data_format = data_format def call(self, image, transform): return backend.image.affine_transform( image, transform, interpolation=self.interpolation, fill_mode=self.fill_mode, fill_value=self.fill_value, data_format=self.data_format, ) def compute_output_spec(self, image, transform): if len(image.shape) not in (3, 4): raise ValueError( "Invalid image rank: expected rank 3 (single image) " "or rank 4 (batch of images). Received input with shape: " f"image.shape={image.shape}" ) if len(transform.shape) not in (1, 2): raise ValueError( "Invalid transform rank: expected rank 1 (single transform) " "or rank 2 (batch of transforms). Received input with shape: " f"transform.shape={transform.shape}" ) return KerasTensor(image.shape, dtype=image.dtype) @keras_export("keras.ops.image.affine_transform") def affine_transform( image, transform, interpolation="bilinear", fill_mode="constant", fill_value=0, data_format="channels_last", ): """Applies the given transform(s) to the image(s). Args: image: Input image or batch of images. Must be 3D or 4D. transform: Projective transform matrix/matrices. A vector of length 8 or tensor of size N x 8. If one row of transform is `[a0, a1, a2, b0, b1, b2, c0, c1]`, then it maps the output point `(x, y)` to a transformed input point `(x', y') = ((a0 x + a1 y + a2) / k, (b0 x + b1 y + b2) / k)`, where `k = c0 x + c1 y + 1`. The transform is inverted compared to the transform mapping input points to output points. Note that gradients are not backpropagated into transformation parameters. Note that `c0` and `c1` are only effective when using TensorFlow backend and will be considered as `0` when using other backends. interpolation: Interpolation method. Available methods are `"nearest"`, and `"bilinear"`. Defaults to `"bilinear"`. fill_mode: Points outside the boundaries of the input are filled according to the given mode. Available methods are `"constant"`, `"nearest"`, `"wrap"` and `"reflect"`. Defaults to `"constant"`. - `"reflect"`: `(d c b a | a b c d | d c b a)` The input is extended by reflecting about the edge of the last pixel. - `"constant"`: `(k k k k | a b c d | k k k k)` The input is extended by filling all values beyond the edge with the same constant value k specified by `fill_value`. - `"wrap"`: `(a b c d | a b c d | a b c d)` The input is extended by wrapping around to the opposite edge. - `"nearest"`: `(a a a a | a b c d | d d d d)` The input is extended by the nearest pixel. fill_value: Value used for points outside the boundaries of the input if `fill_mode="constant"`. Defaults to `0`. data_format: string, either `"channels_last"` or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, height, width, channels)` while `"channels_first"` corresponds to inputs with shape `(batch, channels, height, weight)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be `"channels_last"`. Returns: Applied affine transform image or batch of images. Examples: >>> x = np.random.random((2, 64, 80, 3)) # batch of 2 RGB images >>> transform = np.array( ... [ ... [1.5, 0, -20, 0, 1.5, -16, 0, 0], # zoom ... [1, 0, -20, 0, 1, -16, 0, 0], # translation ... ] ... ) >>> y = keras.ops.image.affine_transform(x, transform) >>> y.shape (2, 64, 80, 3) >>> x = np.random.random((64, 80, 3)) # single RGB image >>> transform = np.array([1.0, 0.5, -20, 0.5, 1.0, -16, 0, 0]) # shear >>> y = keras.ops.image.affine_transform(x, transform) >>> y.shape (64, 80, 3) >>> x = np.random.random((2, 3, 64, 80)) # batch of 2 RGB images >>> transform = np.array( ... [ ... [1.5, 0, -20, 0, 1.5, -16, 0, 0], # zoom ... [1, 0, -20, 0, 1, -16, 0, 0], # translation ... ] ... ) >>> y = keras.ops.image.affine_transform(x, transform, ... data_format="channels_first") >>> y.shape (2, 3, 64, 80) """ if any_symbolic_tensors((image, transform)): return AffineTransform( interpolation=interpolation, fill_mode=fill_mode, fill_value=fill_value, data_format=data_format, ).symbolic_call(image, transform) return backend.image.affine_transform( image, transform, interpolation=interpolation, fill_mode=fill_mode, fill_value=fill_value, data_format=data_format, ) class ExtractPatches(Operation): def __init__( self, size, strides=None, dilation_rate=1, padding="valid", data_format="channels_last", ): super().__init__() if isinstance(size, int): size = (size, size) self.size = size self.strides = strides self.dilation_rate = dilation_rate self.padding = padding self.data_format = data_format def call(self, image): return _extract_patches( image=image, size=self.size, strides=self.strides, dilation_rate=self.dilation_rate, padding=self.padding, data_format=self.data_format, ) def compute_output_spec(self, image): image_shape = image.shape if not self.strides: strides = (self.size[0], self.size[1]) if self.data_format == "channels_last": channels_in = image.shape[-1] else: channels_in = image.shape[-3] if len(image.shape) == 3: image_shape = (1,) + image_shape filters = self.size[0] * self.size[1] * channels_in kernel_size = (self.size[0], self.size[1]) out_shape = compute_conv_output_shape( image_shape, filters, kernel_size, strides=strides, padding=self.padding, data_format=self.data_format, dilation_rate=self.dilation_rate, ) if len(image.shape) == 3: out_shape = out_shape[1:] return KerasTensor(shape=out_shape, dtype=image.dtype) @keras_export("keras.ops.image.extract_patches") def extract_patches( image, size, strides=None, dilation_rate=1, padding="valid", data_format="channels_last", ): """Extracts patches from the image(s). Args: image: Input image or batch of images. Must be 3D or 4D. size: Patch size int or tuple (patch_height, patch_widht) strides: strides along height and width. If not specified, or if `None`, it defaults to the same value as `size`. dilation_rate: This is the input stride, specifying how far two consecutive patch samples are in the input. For value other than 1, strides must be 1. NOTE: `strides > 1` is not supported in conjunction with `dilation_rate > 1` padding: The type of padding algorithm to use: `"same"` or `"valid"`. data_format: string, either `"channels_last"` or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, height, width, channels)` while `"channels_first"` corresponds to inputs with shape `(batch, channels, height, weight)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be `"channels_last"`. Returns: Extracted patches 3D (if not batched) or 4D (if batched) Examples: >>> image = np.random.random( ... (2, 20, 20, 3) ... ).astype("float32") # batch of 2 RGB images >>> patches = keras.ops.image.extract_patches(image, (5, 5)) >>> patches.shape (2, 4, 4, 75) >>> image = np.random.random((20, 20, 3)).astype("float32") # 1 RGB image >>> patches = keras.ops.image.extract_patches(image, (3, 3), (1, 1)) >>> patches.shape (18, 18, 27) """ if any_symbolic_tensors((image,)): return ExtractPatches( size=size, strides=strides, dilation_rate=dilation_rate, padding=padding, data_format=data_format, ).symbolic_call(image) return _extract_patches( image, size, strides, dilation_rate, padding, data_format=data_format ) def _extract_patches( image, size, strides=None, dilation_rate=1, padding="valid", data_format="channels_last", ): if isinstance(size, int): patch_h = patch_w = size elif len(size) == 2: patch_h, patch_w = size[0], size[1] else: raise TypeError( "Invalid `size` argument. Expected an " f"int or a tuple of length 2. Received: size={size}" ) if data_format == "channels_last": channels_in = image.shape[-1] elif data_format == "channels_first": channels_in = image.shape[-3] if not strides: strides = size out_dim = patch_h * patch_w * channels_in kernel = backend.numpy.eye(out_dim) kernel = backend.numpy.reshape( kernel, (patch_h, patch_w, channels_in, out_dim) ) _unbatched = False if len(image.shape) == 3: _unbatched = True image = backend.numpy.expand_dims(image, axis=0) patches = backend.nn.conv( inputs=image, kernel=kernel, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, ) if _unbatched: patches = backend.numpy.squeeze(patches, axis=0) return patches class MapCoordinates(Operation): def __init__(self, order, fill_mode="constant", fill_value=0): super().__init__() self.order = order self.fill_mode = fill_mode self.fill_value = fill_value def call(self, image, coordinates): return backend.image.map_coordinates( image, coordinates, order=self.order, fill_mode=self.fill_mode, fill_value=self.fill_value, ) def compute_output_spec(self, image, coordinates): if coordinates.shape[0] != len(image.shape): raise ValueError( "First dim of `coordinates` must be the same as the rank of " "`image`. " f"Received image with shape: {image.shape} and coordinate " f"leading dim of {coordinates.shape[0]}" ) if len(coordinates.shape) < 2: raise ValueError( "Invalid coordinates rank: expected at least rank 2." f" Received input with shape: {coordinates.shape}" ) return KerasTensor(coordinates.shape[1:], dtype=image.dtype) @keras_export("keras.ops.image.map_coordinates") def map_coordinates( input, coordinates, order, fill_mode="constant", fill_value=0 ): """Map the input array to new coordinates by interpolation.. Note that interpolation near boundaries differs from the scipy function, because we fixed an outstanding bug [scipy/issues/2640](https://github.com/scipy/scipy/issues/2640). Args: input: The input array. coordinates: The coordinates at which input is evaluated. order: The order of the spline interpolation. The order must be `0` or `1`. `0` indicates the nearest neighbor and `1` indicates the linear interpolation. fill_mode: Points outside the boundaries of the input are filled according to the given mode. Available methods are `"constant"`, `"nearest"`, `"wrap"` and `"mirror"` and `"reflect"`. Defaults to `"constant"`. - `"constant"`: `(k k k k | a b c d | k k k k)` The input is extended by filling all values beyond the edge with the same constant value k specified by `fill_value`. - `"nearest"`: `(a a a a | a b c d | d d d d)` The input is extended by the nearest pixel. - `"wrap"`: `(a b c d | a b c d | a b c d)` The input is extended by wrapping around to the opposite edge. - `"mirror"`: `(c d c b | a b c d | c b a b)` The input is extended by mirroring about the edge. - `"reflect"`: `(d c b a | a b c d | d c b a)` The input is extended by reflecting about the edge of the last pixel. fill_value: Value used for points outside the boundaries of the input if `fill_mode="constant"`. Defaults to `0`. Returns: Output image or batch of images. """ if any_symbolic_tensors((input, coordinates)): return MapCoordinates( order, fill_mode, fill_value, ).symbolic_call(input, coordinates) return backend.image.map_coordinates( input, coordinates, order, fill_mode, fill_value, ) class PadImages(Operation): def __init__( self, top_padding, bottom_padding, left_padding, right_padding, target_height, target_width, ): super().__init__() self.top_padding = top_padding self.bottom_padding = bottom_padding self.left_padding = left_padding self.right_padding = right_padding self.target_height = target_height self.target_width = target_width def call(self, images): return _pad_images( images, self.top_padding, self.bottom_padding, self.left_padding, self.right_padding, self.target_height, self.target_width, ) def compute_output_spec(self, images): images_shape = ops.shape(images) if self.target_height is None: height_axis = 0 if len(images_shape) == 3 else 1 self.target_height = ( self.top_padding + images_shape[height_axis] + self.bottom_padding ) if self.target_width is None: width_axis = 0 if len(images_shape) == 3 else 2 self.target_width = ( self.left_padding + images_shape[width_axis] + self.right_padding ) out_shape = ( images_shape[0], self.target_height, self.target_width, images_shape[-1], ) if len(images_shape) == 3: out_shape = out_shape[1:] return KerasTensor( shape=out_shape, dtype=images.dtype, ) @keras_export("keras.ops.image.pad_images") def pad_images( images, top_padding=None, left_padding=None, target_height=None, target_width=None, bottom_padding=None, right_padding=None, ): """Pad `images` with zeros to the specified `height` and `width`. Args: images: 4D Tensor of shape `(batch, height, width, channels)` or 3D Tensor of shape `(height, width, channels)`. top_padding: Number of rows of zeros to add on top. bottom_padding: Number of rows of zeros to add at the bottom. left_padding: Number of columns of zeros to add on the left. right_padding: Number of columns of zeros to add on the right. target_height: Height of output images. target_width: Width of output images. Returns: If `images` were 4D, a 4D float Tensor of shape `(batch, target_height, target_width, channels)` If `images` were 3D, a 3D float Tensor of shape `(target_height, target_width, channels)` Example: >>> images = np.random.random((15, 25, 3)) >>> padded_images = keras.ops.image.pad_images( ... images, 2, 3, target_height=20, target_width=30 ... ) >>> padded_images.shape (20, 30, 3) >>> batch_images = np.random.random((2, 15, 25, 3)) >>> padded_batch = keras.ops.image.pad_images( ... batch_images, 2, 3, target_height=20, target_width=30 ... ) >>> padded_batch.shape (2, 20, 30, 3)""" if any_symbolic_tensors((images,)): return PadImages( top_padding, bottom_padding, left_padding, right_padding, target_height, target_width, ).symbolic_call(images) return _pad_images( images, top_padding, bottom_padding, left_padding, right_padding, target_height, target_width, ) def _pad_images( images, top_padding, bottom_padding, left_padding, right_padding, target_height, target_width, ): images = backend.convert_to_tensor(images) is_batch = True images_shape = ops.shape(images) if len(images_shape) == 3: is_batch = False images = backend.numpy.expand_dims(images, 0) elif len(images_shape) != 4: raise ValueError( f"Invalid shape for argument `images`: " "it must have rank 3 or 4. " f"Received: images.shape={images_shape}" ) batch, height, width, depth = ops.shape(images) if [top_padding, bottom_padding, target_height].count(None) != 1: raise ValueError( "Must specify exactly two of " "top_padding, bottom_padding, target_height. " f"Received: top_padding={top_padding}, " f"bottom_padding={bottom_padding}, " f"target_height={target_height}" ) if [left_padding, right_padding, target_width].count(None) != 1: raise ValueError( "Must specify exactly two of " "left_padding, right_padding, target_width. " f"Received: left_padding={left_padding}, " f"right_padding={right_padding}, " f"target_width={target_width}" ) if top_padding is None: top_padding = target_height - bottom_padding - height if bottom_padding is None: bottom_padding = target_height - top_padding - height if left_padding is None: left_padding = target_width - right_padding - width if right_padding is None: right_padding = target_width - left_padding - width if top_padding < 0: raise ValueError( "top_padding must be >= 0. " f"Received: top_padding={top_padding}" ) if left_padding < 0: raise ValueError( "left_padding must be >= 0. " f"Received: left_padding={left_padding}" ) if right_padding < 0: raise ValueError( "right_padding must be >= 0. " f"Received: right_padding={right_padding}" ) if bottom_padding < 0: raise ValueError( "bottom_padding must be >= 0. " f"Received: bottom_padding={bottom_padding}" ) paddings = backend.numpy.reshape( backend.numpy.stack( [ 0, 0, top_padding, bottom_padding, left_padding, right_padding, 0, 0, ] ), [4, 2], ) padded = backend.numpy.pad(images, paddings) if target_height is None: target_height = top_padding + height + bottom_padding if target_width is None: target_width = left_padding + width + right_padding padded_shape = [batch, target_height, target_width, depth] padded = backend.numpy.reshape(padded, padded_shape) if not is_batch: padded = backend.numpy.squeeze(padded, axis=[0]) return padded class CropImages(Operation): def __init__( self, top_cropping, bottom_cropping, left_cropping, right_cropping, target_height, target_width, ): super().__init__() self.top_cropping = top_cropping self.bottom_cropping = bottom_cropping self.left_cropping = left_cropping self.right_cropping = right_cropping self.target_height = target_height self.target_width = target_width def call(self, images): return _crop_images( images, self.top_cropping, self.bottom_cropping, self.left_cropping, self.right_cropping, self.target_height, self.target_width, ) def compute_output_spec(self, images): images_shape = ops.shape(images) out_shape = ( images_shape[0], self.target_height, self.target_width, images_shape[-1], ) if self.target_height is None: height_axis = 0 if len(images_shape) == 3 else 1 self.target_height = ( self.top_cropping - images_shape[height_axis] - self.bottom_cropping ) if self.target_width is None: width_axis = 0 if len(images_shape) == 3 else 2 self.target_width = ( self.left_cropping - images_shape[width_axis] - self.right_cropping ) out_shape = ( images_shape[0], self.target_height, self.target_width, images_shape[-1], ) if len(images_shape) == 3: out_shape = out_shape[1:] return KerasTensor( shape=out_shape, dtype=images.dtype, ) @keras_export("keras.ops.image.crop_images") def crop_images( images, top_cropping=None, left_cropping=None, target_height=None, target_width=None, bottom_cropping=None, right_cropping=None, ): """Crop `images` to a specified `height` and `width`. Args: images: 4-D batch of images of shape `(batch, height, width, channels)` or 3-D single image of shape `(height, width, channels)`. top_cropping: Number of columns to crop from the top. bottom_cropping: Number of columns to crop from the bottom. left_cropping: Number of columns to crop from the left. right_cropping: Number of columns to crop from the right. target_height: Height of the output images. target_width: Width of the output images. Returns: If `images` were 4D, a 4D float Tensor of shape `(batch, target_height, target_width, channels)` If `images` were 3D, a 3D float Tensor of shape `(target_height, target_width, channels)` Example: >>> images = np.reshape(np.arange(1, 28, dtype="float32"), [3, 3, 3]) >>> images[:,:,0] # print the first channel of the images array([[ 1., 4., 7.], [10., 13., 16.], [19., 22., 25.]], dtype=float32) >>> cropped_images = keras.image.crop_images(images, 0, 0, 2, 2) >>> cropped_images[:,:,0] # print the first channel of the cropped images array([[ 1., 4.], [10., 13.]], dtype=float32)""" if any_symbolic_tensors((images,)): return CropImages( top_cropping, bottom_cropping, left_cropping, right_cropping, target_height, target_width, ).symbolic_call(images) return _crop_images( images, top_cropping, bottom_cropping, left_cropping, right_cropping, target_height, target_width, ) def _crop_images( images, top_cropping, bottom_cropping, left_cropping, right_cropping, target_height, target_width, ): images = backend.convert_to_tensor(images) is_batch = True images_shape = ops.shape(images) if len(images_shape) == 3: is_batch = False images = backend.numpy.expand_dims(images, 0) elif len(images_shape) != 4: raise ValueError( f"Invalid shape for argument `images`: " "it must have rank 3 or 4. " f"Received: images.shape={images_shape}" ) batch, height, width, depth = ops.shape(images) if [top_cropping, bottom_cropping, target_height].count(None) != 1: raise ValueError( "Must specify exactly two of " "top_cropping, bottom_cropping, target_height. " f"Received: top_cropping={top_cropping}, " f"bottom_cropping={bottom_cropping}, " f"target_height={target_height}" ) if [left_cropping, right_cropping, target_width].count(None) != 1: raise ValueError( "Must specify exactly two of " "left_cropping, right_cropping, target_width. " f"Received: left_cropping={left_cropping}, " f"right_cropping={right_cropping}, " f"target_width={target_width}" ) if top_cropping is None: top_cropping = height - target_height - bottom_cropping if target_height is None: target_height = height - bottom_cropping - top_cropping if left_cropping is None: left_cropping = width - target_width - right_cropping if target_width is None: target_width = width - right_cropping - left_cropping if top_cropping < 0: raise ValueError( "top_cropping must be >= 0. " f"Received: top_cropping={top_cropping}" ) if target_height < 0: raise ValueError( "target_height must be >= 0. " f"Received: target_height={target_height}" ) if left_cropping < 0: raise ValueError( "left_cropping must be >= 0. " f"Received: left_cropping={left_cropping}" ) if target_width < 0: raise ValueError( "target_width must be >= 0. " f"Received: target_width={target_width}" ) cropped = ops.slice( images, backend.numpy.stack([0, top_cropping, left_cropping, 0]), backend.numpy.stack([batch, target_height, target_width, depth]), ) cropped_shape = [batch, target_height, target_width, depth] cropped = backend.numpy.reshape(cropped, cropped_shape) if not is_batch: cropped = backend.numpy.squeeze(cropped, axis=[0]) return cropped
keras/keras/ops/image.py/0
{ "file_path": "keras/keras/ops/image.py", "repo_id": "keras", "token_count": 14592 }
185
import tree from keras.backend import KerasTensor class SymbolicArguments: def __init__(self, *args, **kwargs): self.args = tree.map_structure(lambda x: x, args) self.kwargs = tree.map_structure(lambda x: x, kwargs) self._flat_arguments = tree.flatten((self.args, self.kwargs)) # Used to avoid expensive `tree` operations in the most common case. if ( not self.kwargs and len(self.args) == 1 and isinstance(self.args[0], KerasTensor) ): self._single_positional_tensor = self.args[0] else: self._single_positional_tensor = None self.keras_tensors = [] for arg in self._flat_arguments: if isinstance(arg, KerasTensor): self.keras_tensors.append(arg) def convert(self, conversion_fn): args = tree.map_structure(conversion_fn, self.args) kwargs = tree.map_structure(conversion_fn, self.kwargs) return args, kwargs def fill_in(self, tensor_dict): """Maps KerasTensors to computed values using `tensor_dict`. `tensor_dict` maps `KerasTensor` instances to their current values. """ if self._single_positional_tensor is not None: # Performance optimization for most common case. # Approx. 70x faster. return (tensor_dict[id(self._single_positional_tensor)],), {} def switch_fn(x): if isinstance(x, KerasTensor): val = tensor_dict.get(id(x), None) if val is not None: return val return x return self.convert(switch_fn)
keras/keras/ops/symbolic_arguments.py/0
{ "file_path": "keras/keras/ops/symbolic_arguments.py", "repo_id": "keras", "token_count": 783 }
186
from keras import initializers from keras import ops from keras.api_export import keras_export from keras.optimizers import optimizer @keras_export(["keras.optimizers.Ftrl"]) class Ftrl(optimizer.Optimizer): r"""Optimizer that implements the FTRL algorithm. "Follow The Regularized Leader" (FTRL) is an optimization algorithm developed at Google for click-through rate prediction in the early 2010s. It is most suitable for shallow models with large and sparse feature spaces. The algorithm is described by [McMahan et al., 2013](https://research.google.com/pubs/archive/41159.pdf). The Keras version has support for both online L2 regularization (the L2 regularization described in the paper above) and shrinkage-type L2 regularization (which is the addition of an L2 penalty to the loss function). Initialization: ```python n = 0 sigma = 0 z = 0 ``` Update rule for one variable `w`: ```python prev_n = n n = n + g ** 2 sigma = (n ** -lr_power - prev_n ** -lr_power) / lr z = z + g - sigma * w if abs(z) < lambda_1: w = 0 else: w = (sgn(z) * lambda_1 - z) / ((beta + sqrt(n)) / alpha + lambda_2) ``` Notation: - `lr` is the learning rate - `g` is the gradient for the variable - `lambda_1` is the L1 regularization strength - `lambda_2` is the L2 regularization strength - `lr_power` is the power to scale n. Check the documentation for the `l2_shrinkage_regularization_strength` parameter for more details when shrinkage is enabled, in which case gradient is replaced with a gradient with shrinkage. Args: learning_rate: A float, a `keras.optimizers.schedules.LearningRateSchedule` instance, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to `0.001`. learning_rate_power: A float value, must be less or equal to zero. Controls how the learning rate decreases during training. Use zero for a fixed learning rate. initial_accumulator_value: The starting value for accumulators. Only zero or positive values are allowed. l1_regularization_strength: A float value, must be greater than or equal to zero. Defaults to `0.0`. l2_regularization_strength: A float value, must be greater than or equal to zero. Defaults to `0.0`. l2_shrinkage_regularization_strength: A float value, must be greater than or equal to zero. This differs from L2 above in that the L2 above is a stabilization penalty, whereas this L2 shrinkage is a magnitude penalty. When input is sparse shrinkage will only happen on the active weights. beta: A float value, representing the beta value from the paper. Defaults to `0.0`. {{base_optimizer_keyword_args}} """ def __init__( self, learning_rate=0.001, learning_rate_power=-0.5, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0, l2_shrinkage_regularization_strength=0.0, beta=0.0, weight_decay=None, clipnorm=None, clipvalue=None, global_clipnorm=None, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=None, name="ftrl", **kwargs, ): super().__init__( learning_rate=learning_rate, name=name, weight_decay=weight_decay, clipnorm=clipnorm, clipvalue=clipvalue, global_clipnorm=global_clipnorm, use_ema=use_ema, ema_momentum=ema_momentum, ema_overwrite_frequency=ema_overwrite_frequency, **kwargs, ) if initial_accumulator_value < 0.0: raise ValueError( "`initial_accumulator_value` needs to be positive or zero. " "Received: initial_accumulator_value=" f"{initial_accumulator_value}." ) if learning_rate_power > 0.0: raise ValueError( "`learning_rate_power` needs to be negative or zero. Received: " f"learning_rate_power={learning_rate_power}." ) if l1_regularization_strength < 0.0: raise ValueError( "`l1_regularization_strength` needs to be positive or zero. " "Received: l1_regularization_strength=" f"{l1_regularization_strength}." ) if l2_regularization_strength < 0.0: raise ValueError( "`l2_regularization_strength` needs to be positive or zero. " "Received: l2_regularization_strength=" f"{l2_regularization_strength}." ) if l2_shrinkage_regularization_strength < 0.0: raise ValueError( "`l2_shrinkage_regularization_strength` needs to be positive " "or zero. Received: l2_shrinkage_regularization_strength" f"={l2_shrinkage_regularization_strength}." ) self.learning_rate_power = learning_rate_power self.initial_accumulator_value = initial_accumulator_value self.l1_regularization_strength = l1_regularization_strength self.l2_regularization_strength = l2_regularization_strength self.l2_shrinkage_regularization_strength = ( l2_shrinkage_regularization_strength ) self.beta = beta def build(self, var_list): """Initialize optimizer variables. Args: var_list: list of model variables to build Ftrl variables on. """ if self.built: return super().build(var_list) self._accumulators = [] self._linears = [] for var in var_list: self._accumulators.append( self.add_variable( shape=var.shape, dtype=var.dtype, name="accumulator", initializer=initializers.Constant( self.initial_accumulator_value, ), ) ) self._linears.append( self.add_variable_from_reference( reference_variable=var, name="linear" ) ) def update_step(self, gradient, variable, learning_rate): """Update step given gradient and the associated model variable.""" lr = ops.cast(learning_rate, variable.dtype) gradient = ops.cast(gradient, variable.dtype) accum = self._accumulators[self._get_variable_index(variable)] linear = self._linears[self._get_variable_index(variable)] lr_power = self.learning_rate_power l2_reg = self.l2_regularization_strength l2_reg = l2_reg + self.beta / (2.0 * lr) grad_to_use = ops.add( gradient, ops.multiply( 2 * self.l2_shrinkage_regularization_strength, variable ), ) new_accum = ops.add(accum, ops.square(gradient)) self.assign_add( linear, ops.subtract( grad_to_use, ops.multiply( ops.divide( ops.subtract( ops.power(new_accum, -lr_power), ops.power(accum, -lr_power), ), lr, ), variable, ), ), ) quadratic = ops.add( ops.divide(ops.power(new_accum, (-lr_power)), lr), 2 * l2_reg ) linear_clipped = ops.clip( linear, -self.l1_regularization_strength, self.l1_regularization_strength, ) self.assign( variable, ops.divide(ops.subtract(linear_clipped, linear), quadratic), ) self.assign(accum, new_accum) def get_config(self): config = super().get_config() config.update( { "learning_rate_power": self.learning_rate_power, "initial_accumulator_value": self.initial_accumulator_value, "l1_regularization_strength": self.l1_regularization_strength, "l2_regularization_strength": self.l2_regularization_strength, "l2_shrinkage_regularization_strength": self.l2_shrinkage_regularization_strength, # noqa: E501 "beta": self.beta, } ) return config Ftrl.__doc__ = Ftrl.__doc__.replace( "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args )
keras/keras/optimizers/ftrl.py/0
{ "file_path": "keras/keras/optimizers/ftrl.py", "repo_id": "keras", "token_count": 4232 }
187
from keras import ops from keras.api_export import keras_export from keras.optimizers import optimizer @keras_export("keras.optimizers.SGD") class SGD(optimizer.Optimizer): """Gradient descent (with momentum) optimizer. Update rule for parameter `w` with gradient `g` when `momentum` is 0: ```python w = w - learning_rate * g ``` Update rule when `momentum` is larger than 0: ```python velocity = momentum * velocity - learning_rate * g w = w + velocity ``` When `nesterov=True`, this rule becomes: ```python velocity = momentum * velocity - learning_rate * g w = w + momentum * velocity - learning_rate * g ``` Args: learning_rate: A float, a `keras.optimizers.schedules.LearningRateSchedule` instance, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to `0.01`. momentum: float hyperparameter >= 0 that accelerates gradient descent in the relevant direction and dampens oscillations. 0 is vanilla gradient descent. Defaults to `0.0`. nesterov: boolean. Whether to apply Nesterov momentum. Defaults to `False`. {{base_optimizer_keyword_args}} """ def __init__( self, learning_rate=0.01, momentum=0.0, nesterov=False, weight_decay=None, clipnorm=None, clipvalue=None, global_clipnorm=None, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=None, name="SGD", **kwargs, ): super().__init__( learning_rate=learning_rate, name=name, weight_decay=weight_decay, clipnorm=clipnorm, clipvalue=clipvalue, global_clipnorm=global_clipnorm, use_ema=use_ema, ema_momentum=ema_momentum, ema_overwrite_frequency=ema_overwrite_frequency, **kwargs, ) if not isinstance(momentum, float) or momentum < 0 or momentum > 1: raise ValueError("`momentum` must be a float between [0, 1].") self.momentum = momentum self.nesterov = nesterov def build(self, variables): """Initialize optimizer variables. SGD optimizer has one variable `momentums`, only set if `self.momentum` is not 0. Args: var_list: list of model variables to build SGD variables on. """ if self.built: return super().build(variables) self.momentums = [] if self.momentum != 0: for variable in variables: self.momentums.append( self.add_variable_from_reference( reference_variable=variable, name="momentum" ) ) def update_step(self, gradient, variable, learning_rate): """Update step given gradient and the associated model variable.""" learning_rate = ops.cast(learning_rate, variable.dtype) gradient = ops.cast(gradient, variable.dtype) m = None if self.momentum != 0: m = self.momentums[self._get_variable_index(variable)] if m is not None: momentum = ops.cast(self.momentum, variable.dtype) self.assign( m, ops.subtract( ops.multiply(m, momentum), ops.multiply(gradient, learning_rate), ), ) if self.nesterov: self.assign_add( variable, ops.subtract( ops.multiply(m, momentum), ops.multiply(gradient, learning_rate), ), ) else: self.assign_add(variable, m) else: self.assign_sub(variable, ops.multiply(gradient, learning_rate)) def get_config(self): config = super().get_config() config.update( { "momentum": self.momentum, "nesterov": self.nesterov, } ) return config SGD.__doc__ = SGD.__doc__.replace( "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args )
keras/keras/optimizers/sgd.py/0
{ "file_path": "keras/keras/optimizers/sgd.py", "repo_id": "keras", "token_count": 2131 }
188
"""Python-based idempotent model-saving functionality.""" import datetime import io import json import tempfile import warnings import zipfile import ml_dtypes import numpy as np from keras import backend from keras.backend.common import global_state from keras.layers.layer import Layer from keras.losses.loss import Loss from keras.metrics.metric import Metric from keras.optimizers.optimizer import Optimizer from keras.saving.serialization_lib import ObjectSharingScope from keras.saving.serialization_lib import deserialize_keras_object from keras.saving.serialization_lib import serialize_keras_object from keras.trainers.compile_utils import CompileMetrics from keras.utils import file_utils from keras.utils import naming from keras.version import __version__ as keras_version try: import h5py except ImportError: h5py = None _CONFIG_FILENAME = "config.json" _METADATA_FILENAME = "metadata.json" _VARS_FNAME = "model.weights" # Will become e.g. "model.weights.h5" _ASSETS_DIRNAME = "assets" def save_model(model, filepath, weights_format="h5"): """Save a zip-archive representing a Keras model to the given filepath. The zip-based archive contains the following structure: - JSON-based configuration file (config.json): Records of model, layer, and other trackables' configuration. - H5-based trackable state files, found in respective directories, such as model/states.npz, model/dense_layer/states.npz, etc. - Metadata file. The states of Keras trackables (layers, optimizers, loss, and metrics) are automatically saved as long as they can be discovered through the attributes returned by `dir(Model)`. Typically, the state includes the variables associated with the trackable, but some specially purposed layers may contain more such as the vocabularies stored in the hashmaps. The trackables define how their states are saved by exposing `save_state()` and `load_state()` APIs. For the case of layer states, the variables will be visited as long as they are either 1) referenced via layer attributes, or 2) referenced via a container (list, tuple, or dict), and the container is referenced via a layer attribute. """ filepath = str(filepath) if not filepath.endswith(".keras"): raise ValueError( "Invalid `filepath` argument: expected a `.keras` extension. " f"Received: filepath={filepath}" ) if weights_format == "h5" and h5py is None: raise ImportError("h5py must be installed in order to save a model.") if not model.built: warnings.warn( "You are saving a model that has not yet been built. " "It might not contain any weights yet. " "Consider building the model first by calling it " "on some data.", stacklevel=2, ) with ObjectSharingScope(): serialized_model_dict = serialize_keras_object(model) config_json = json.dumps(serialized_model_dict) metadata_json = json.dumps( { "keras_version": keras_version, "date_saved": datetime.datetime.now().strftime("%Y-%m-%d@%H:%M:%S"), } ) if file_utils.is_remote_path(filepath): # Remote path. Zip to local memory byte io and copy to remote zip_filepath = io.BytesIO() else: zip_filepath = filepath with zipfile.ZipFile(zip_filepath, "w") as zf: with zf.open(_METADATA_FILENAME, "w") as f: f.write(metadata_json.encode()) with zf.open(_CONFIG_FILENAME, "w") as f: f.write(config_json.encode()) if weights_format == "h5": weights_store = H5IOStore(_VARS_FNAME + ".h5", archive=zf, mode="w") elif weights_format == "npz": weights_store = NpzIOStore( _VARS_FNAME + ".npz", archive=zf, mode="w" ) else: raise ValueError( "Unknown `weights_format` argument. " "Expected 'h5' or 'npz'. " f"Received: weights_format={weights_format}" ) asset_store = DiskIOStore(_ASSETS_DIRNAME, archive=zf, mode="w") _save_state( model, weights_store=weights_store, assets_store=asset_store, inner_path="", visited_trackables=set(), ) weights_store.close() asset_store.close() if file_utils.is_remote_path(filepath): with file_utils.File(filepath, "wb") as f: f.write(zip_filepath.getvalue()) def load_model(filepath, custom_objects=None, compile=True, safe_mode=True): """Load a zip archive representing a Keras model.""" filepath = str(filepath) if not filepath.endswith(".keras"): raise ValueError( "Invalid filename: expected a `.keras` extension. " f"Received: filepath={filepath}" ) with file_utils.File(filepath, mode="r+b") as gfile_handle, zipfile.ZipFile( gfile_handle, "r" ) as zf: with zf.open(_CONFIG_FILENAME, "r") as f: config_json = f.read() # Note: we should NOT use a custom JSON decoder. Anything that # needs custom decoding must be handled in deserialize_keras_object. config_dict = json.loads(config_json) if not compile: # Disable compilation config_dict["compile_config"] = None # Construct the model from the configuration file in the archive. with ObjectSharingScope(): model = deserialize_keras_object( config_dict, custom_objects, safe_mode=safe_mode ) all_filenames = zf.namelist() if _VARS_FNAME + ".h5" in all_filenames: weights_store = H5IOStore(_VARS_FNAME + ".h5", archive=zf, mode="r") elif _VARS_FNAME + ".npz" in all_filenames: weights_store = NpzIOStore( _VARS_FNAME + ".npz", archive=zf, mode="r" ) else: raise ValueError( f"Expected a {_VARS_FNAME}.h5 or {_VARS_FNAME}.npz file." ) if len(all_filenames) > 3: asset_store = DiskIOStore(_ASSETS_DIRNAME, archive=zf, mode="r") else: asset_store = None failed_trackables = set() error_msgs = {} _load_state( model, weights_store=weights_store, assets_store=asset_store, inner_path="", visited_trackables=set(), failed_trackables=failed_trackables, error_msgs=error_msgs, ) weights_store.close() if asset_store: asset_store.close() if failed_trackables: _raise_loading_failure(error_msgs) return model def save_weights_only(model, filepath): """Save only the weights of a model to a target filepath (.weights.h5). Note: only supports h5 for now. """ # TODO: if h5 filepath is remote, create the file in a temporary directory # then upload it filepath = str(filepath) if not filepath.endswith(".weights.h5"): raise ValueError( "Invalid `filepath` argument: expected a `.weights.h5` extension. " f"Received: filepath={filepath}" ) weights_store = H5IOStore(filepath, mode="w") _save_state( model, weights_store=weights_store, assets_store=None, inner_path="", visited_trackables=set(), ) weights_store.close() def load_weights_only(model, filepath, skip_mismatch=False): """Load the weights of a model from a filepath (.keras or .weights.h5). Note: only supports h5 for now. """ temp_dir = None archive = None filepath = str(filepath) if filepath.endswith(".weights.h5"): # TODO: download file if h5 filepath is remote weights_store = H5IOStore(filepath, mode="r") elif filepath.endswith(".keras"): archive = zipfile.ZipFile(filepath, "r") weights_store = H5IOStore( _VARS_FNAME + ".h5", archive=archive, mode="r" ) failed_trackables = set() error_msgs = {} _load_state( model, weights_store=weights_store, assets_store=None, inner_path="", skip_mismatch=skip_mismatch, visited_trackables=set(), failed_trackables=failed_trackables, error_msgs=error_msgs, ) weights_store.close() if temp_dir and file_utils.exists(temp_dir): file_utils.rmtree(temp_dir) if archive: archive.close() if failed_trackables: _raise_loading_failure(error_msgs, warn_only=skip_mismatch) def _raise_loading_failure(error_msgs, warn_only=False): first_key = list(error_msgs.keys())[0] ex_trackable, ex_error = error_msgs[first_key] msg = ( f"A total of {len(error_msgs)} objects could not " "be loaded. Example error message for " f"object {ex_trackable}:\n\n" f"{ex_error}\n\n" "List of objects that could not be loaded:\n" f"{[x[0] for x in error_msgs.values()]}" ) if warn_only: warnings.warn(msg) else: raise ValueError(msg) def _write_to_zip_recursively(zipfile_to_save, system_path, zip_path): if not file_utils.isdir(system_path): zipfile_to_save.write(system_path, zip_path) else: for file_name in file_utils.listdir(system_path): system_file_path = file_utils.join(system_path, file_name).replace( "\\", "/" ) zip_file_path = file_utils.join(zip_path, file_name).replace( "\\", "/" ) _write_to_zip_recursively( zipfile_to_save, system_file_path, zip_file_path ) def _name_key(name): """Make sure that private attributes are visited last.""" if name.startswith("_"): return "~" + name return name def _walk_trackable(trackable): from keras.models import Functional from keras.models import Sequential if isinstance(trackable, Sequential): obj_type = "Sequential" elif isinstance(trackable, Functional): obj_type = "Functional" elif isinstance(trackable, Layer): obj_type = "Layer" elif isinstance(trackable, Optimizer): obj_type = "Optimizer" elif isinstance(trackable, Metric): obj_type = "Metric" elif isinstance(trackable, Loss): obj_type = "Loss" else: raise ValueError(f"Invalid obj_type: {obj_type}") attr_skiplist = get_attr_skiplist(obj_type) # Save all layers directly tracked by Sequential and Functional first. # This helps avoid ordering concerns for subclassed Sequential or Functional # models with extra attributes--the internal Keras state take precedence. if obj_type in ("Sequential", "Functional"): yield "layers", trackable.layers for child_attr in sorted(dir(trackable), key=lambda x: _name_key(x)): if child_attr.startswith("__") or child_attr in attr_skiplist: continue try: child_obj = getattr(trackable, child_attr) except Exception: # Avoid raising the exception when visiting the attributes. continue yield child_attr, child_obj def _save_state( trackable, weights_store, assets_store, inner_path, visited_trackables, ): # If the trackable has already been saved, skip it. if id(trackable) in visited_trackables: return if hasattr(trackable, "save_own_variables") and weights_store: trackable.save_own_variables(weights_store.make(inner_path)) if hasattr(trackable, "save_assets") and assets_store: trackable.save_assets(assets_store.make(inner_path)) visited_trackables.add(id(trackable)) # Recursively save state of children trackables (layers, optimizers, etc.) for child_attr, child_obj in _walk_trackable(trackable): if _is_keras_trackable(child_obj): _save_state( child_obj, weights_store, assets_store, inner_path=file_utils.join(inner_path, child_attr).replace( "\\", "/" ), visited_trackables=visited_trackables, ) elif isinstance(child_obj, (list, dict, tuple, set)): _save_container_state( child_obj, weights_store, assets_store, inner_path=file_utils.join(inner_path, child_attr).replace( "\\", "/" ), visited_trackables=visited_trackables, ) def _load_state( trackable, weights_store, assets_store, inner_path, skip_mismatch=False, visited_trackables=None, failed_trackables=None, error_msgs=None, ): if visited_trackables and id(trackable) in visited_trackables: return failure = False if hasattr(trackable, "load_own_variables") and weights_store: if skip_mismatch or failed_trackables is not None: try: trackable.load_own_variables(weights_store.get(inner_path)) except Exception as e: failed_trackables.add(id(trackable)) error_msgs[id(trackable)] = trackable, e failure = True else: trackable.load_own_variables(weights_store.get(inner_path)) if hasattr(trackable, "load_assets") and assets_store: if skip_mismatch or failed_trackables is not None: try: trackable.load_assets(assets_store.get(inner_path)) except Exception as e: failed_trackables.add(id(trackable)) error_msgs[id(trackable)] = trackable, e failure = True else: trackable.load_assets(assets_store.get(inner_path)) if failed_trackables is not None: currently_failed = len(failed_trackables) else: currently_failed = 0 # Recursively load states for Keras trackables such as layers/optimizers. for child_attr, child_obj in _walk_trackable(trackable): if _is_keras_trackable(child_obj): _load_state( child_obj, weights_store, assets_store, inner_path=file_utils.join(inner_path, child_attr).replace( "\\", "/" ), skip_mismatch=skip_mismatch, visited_trackables=visited_trackables, failed_trackables=failed_trackables, error_msgs=error_msgs, ) elif isinstance(child_obj, (list, dict, tuple, set)): _load_container_state( child_obj, weights_store, assets_store, inner_path=file_utils.join(inner_path, child_attr).replace( "\\", "/" ), skip_mismatch=skip_mismatch, visited_trackables=visited_trackables, failed_trackables=failed_trackables, error_msgs=error_msgs, ) if failed_trackables is not None: newly_failed = len(failed_trackables) - currently_failed else: newly_failed = 0 if not failure: if visited_trackables is not None and newly_failed <= 0: visited_trackables.add(id(trackable)) if id(trackable) in failed_trackables: failed_trackables.remove(id(trackable)) error_msgs.pop(id(trackable)) def _save_container_state( container, weights_store, assets_store, inner_path, visited_trackables ): used_names = {} if isinstance(container, dict): container = list(container.values()) for trackable in container: if _is_keras_trackable(trackable): # Do NOT address the trackable via `trackable.name`, since # names are usually autogenerated and thus not reproducible # (i.e. they may vary across two instances of the same model). name = naming.to_snake_case(trackable.__class__.__name__) if name in used_names: used_names[name] += 1 name = f"{name}_{used_names[name]}" else: used_names[name] = 0 _save_state( trackable, weights_store, assets_store, inner_path=file_utils.join(inner_path, name).replace("\\", "/"), visited_trackables=visited_trackables, ) def _load_container_state( container, weights_store, assets_store, inner_path, skip_mismatch, visited_trackables, failed_trackables, error_msgs, ): used_names = {} if isinstance(container, dict): container = list(container.values()) for trackable in container: if _is_keras_trackable(trackable): name = naming.to_snake_case(trackable.__class__.__name__) if name in used_names: used_names[name] += 1 name = f"{name}_{used_names[name]}" else: used_names[name] = 0 _load_state( trackable, weights_store, assets_store, inner_path=file_utils.join(inner_path, name).replace("\\", "/"), skip_mismatch=skip_mismatch, visited_trackables=visited_trackables, failed_trackables=failed_trackables, error_msgs=error_msgs, ) class DiskIOStore: """Asset store backed by disk storage. If `archive` is specified, then `root_path` refers to the filename inside the archive. If `archive` is not specified, then `root_path` refers to the full path of the target directory. """ def __init__(self, root_path, archive=None, mode=None): self.mode = mode self.root_path = root_path self.archive = archive self.tmp_dir = None if self.archive: self.tmp_dir = get_temp_dir() if self.mode == "r": self.archive.extractall(path=self.tmp_dir) self.working_dir = file_utils.join( self.tmp_dir, self.root_path ).replace("\\", "/") if self.mode == "w": file_utils.makedirs(self.working_dir) else: if mode == "r": self.working_dir = root_path else: self.tmp_dir = get_temp_dir() self.working_dir = file_utils.join( self.tmp_dir, self.root_path ).replace("\\", "/") file_utils.makedirs(self.working_dir) def make(self, path): if not path: return self.working_dir path = file_utils.join(self.working_dir, path).replace("\\", "/") if not file_utils.exists(path): file_utils.makedirs(path) return path def get(self, path): if not path: return self.working_dir path = file_utils.join(self.working_dir, path).replace("\\", "/") if file_utils.exists(path): return path return None def close(self): if self.mode == "w" and self.archive: _write_to_zip_recursively( self.archive, self.working_dir, self.root_path ) if self.tmp_dir and file_utils.exists(self.tmp_dir): file_utils.rmtree(self.tmp_dir) class H5IOStore: def __init__(self, root_path, archive=None, mode="r"): """Numerical variable store backed by HDF5. If `archive` is specified, then `root_path` refers to the filename inside the archive. If `archive` is not specified, then `root_path` refers to the path of the h5 file on disk. """ self.root_path = root_path self.mode = mode self.archive = archive self.io_file = None if self.archive: if self.mode == "w": self.io_file = io.BytesIO() else: self.io_file = self.archive.open(self.root_path, "r") self.h5_file = h5py.File(self.io_file, mode=self.mode) else: self.h5_file = h5py.File(root_path, mode=self.mode) def make(self, path): return H5Entry(self.h5_file, path, mode="w") def get(self, path): return H5Entry(self.h5_file, path, mode="r") def close(self): self.h5_file.close() if self.mode == "w" and self.archive: self.archive.writestr(self.root_path, self.io_file.getvalue()) if self.io_file: self.io_file.close() class H5Entry: """Leaf entry in a H5IOStore.""" def __init__(self, h5_file, path, mode): self.h5_file = h5_file self.path = path self.mode = mode if mode == "w": if not path: self.group = self.h5_file.create_group("vars") else: self.group = self.h5_file.create_group(self.path).create_group( "vars" ) else: found = False if not path: self.group = self.h5_file["vars"] found = True elif path in self.h5_file and "vars" in self.h5_file[path]: self.group = self.h5_file[path]["vars"] found = True else: # No hit. # Fix for 2.13 compatibility if "_layer_checkpoint_dependencies" in self.h5_file: path = path.replace( "layers", "_layer_checkpoint_dependencies" ) self.path = path if path in self.h5_file and "vars" in self.h5_file[path]: self.group = self.h5_file[path]["vars"] found = True if not found: self.group = {} def __len__(self): return self.group.__len__() def keys(self): return self.group.keys() def items(self): return self.group.items() def values(self): return self.group.values() def __setitem__(self, key, value): if self.mode != "w": raise ValueError("Setting a value is only allowed in write mode.") value = backend.convert_to_numpy(value) if backend.standardize_dtype(value.dtype) == "bfloat16": ds = self.group.create_dataset(key, data=value) ds.attrs["dtype"] = "bfloat16" else: self.group[key] = value def __getitem__(self, name): value = self.group[name] if "dtype" in value.attrs and value.attrs["dtype"] == "bfloat16": value = np.array(value, dtype=ml_dtypes.bfloat16) return value class NpzIOStore: def __init__(self, root_path, archive=None, mode="r"): """Numerical variable store backed by NumPy.savez/load. If `archive` is specified, then `root_path` refers to the filename inside the archive. If `archive` is not specified, then `root_path` refers to the path of the npz file on disk. """ self.root_path = root_path self.mode = mode self.archive = archive if mode == "w": self.contents = {} else: if self.archive: self.f = archive.open(root_path, mode="r") else: self.f = open(root_path, mode="rb") self.contents = np.load(self.f, allow_pickle=True) def make(self, path): if not path: self.contents["__root__"] = {} return self.contents["__root__"] self.contents[path] = {} return self.contents[path] def get(self, path): if not path: if "__root__" in self.contents: return dict(self.contents["__root__"]) return {} if path in self.contents: return self.contents[path].tolist() return {} def close(self): if self.mode == "w": if self.archive: self.f = self.archive.open( self.root_path, mode="w", force_zip64=True ) else: self.f = open(self.root_path, mode="wb") np.savez(self.f, **self.contents) self.f.close() def get_temp_dir(): temp_dir = tempfile.mkdtemp() testfile = tempfile.TemporaryFile(dir=temp_dir) testfile.close() return temp_dir def get_attr_skiplist(obj_type): skiplist = global_state.get_global_attribute( f"saving_attr_skiplist_{obj_type}", None ) if skiplist is not None: return skiplist skiplist = [ "_self_unconditional_dependency_names", ] if obj_type == "Layer": ref_obj = Layer() skiplist += dir(ref_obj) elif obj_type == "Functional": ref_obj = Layer() skiplist += dir(ref_obj) + ["operations", "_operations"] elif obj_type == "Sequential": ref_obj = Layer() skiplist += dir(ref_obj) + ["_functional"] elif obj_type == "Metric": ref_obj_a = Metric() ref_obj_b = CompileMetrics([], []) skiplist += dir(ref_obj_a) + dir(ref_obj_b) elif obj_type == "Optimizer": ref_obj = Optimizer(1.0) skiplist += dir(ref_obj) skiplist.remove("variables") elif obj_type == "Loss": ref_obj = Loss() skiplist += dir(ref_obj) else: raise ValueError(f"Invalid obj_type: {obj_type}") global_state.set_global_attribute( f"saving_attr_skiplist_{obj_type}", skiplist ) return skiplist def _is_keras_trackable(obj): return isinstance( obj, ( Layer, Optimizer, Metric, Loss, ), )
keras/keras/saving/saving_lib.py/0
{ "file_path": "keras/keras/saving/saving_lib.py", "repo_id": "keras", "token_count": 12304 }
189
import itertools import numpy as np import tree from keras import backend from keras.trainers.data_adapters import data_adapter_utils from keras.trainers.data_adapters.data_adapter import DataAdapter class GeneratorDataAdapter(DataAdapter): """Adapter for Python generators.""" def __init__(self, generator): first_batch, generator = peek_and_restore(generator) self.generator = generator self._first_batch = first_batch self._output_signature = None if not isinstance(first_batch, tuple): raise ValueError( "When passing a Python generator to a Keras model, " "the generator must return a tuple, either " "(input,) or (inputs, targets) or " "(inputs, targets, sample_weights). " f"Received: {first_batch}" ) def _set_tf_output_signature(self): from keras.utils.module_utils import tensorflow as tf def get_tensor_spec(x): shape = x.shape if len(shape) < 1: raise ValueError( "When passing a Python generator to a Keras model, " "the arrays returned by the generator " "must be at least rank 1. Received: " f"{x} of rank {len(x.shape)}" ) shape = list(shape) shape[0] = None # The batch size is not guaranteed to be static. dtype = backend.standardize_dtype(x.dtype) if isinstance(x, tf.RaggedTensor): return tf.RaggedTensorSpec(shape=shape, dtype=dtype) if ( isinstance(x, tf.SparseTensor) or is_scipy_sparse(x) or is_jax_sparse(x) ): return tf.SparseTensorSpec(shape=shape, dtype=dtype) else: return tf.TensorSpec(shape=shape, dtype=dtype) self._output_signature = tree.map_structure( get_tensor_spec, self._first_batch ) def get_numpy_iterator(self): return data_adapter_utils.get_numpy_iterator(self.generator) def get_jax_iterator(self): from keras.backend.jax.core import convert_to_tensor def convert_to_jax(x): if is_scipy_sparse(x): return scipy_sparse_to_jax_sparse(x) elif is_tf_sparse(x): return tf_sparse_to_jax_sparse(x) return convert_to_tensor(x) for batch in self.generator: yield tree.map_structure(convert_to_jax, batch) def get_tf_dataset(self): from keras.utils.module_utils import tensorflow as tf def convert_to_tf(x): if is_scipy_sparse(x): x = scipy_sparse_to_tf_sparse(x) elif is_jax_sparse(x): x = jax_sparse_to_tf_sparse(x) return x def get_tf_iterator(): for batch in self.generator: batch = tree.map_structure(convert_to_tf, batch) yield batch if self._output_signature is None: self._set_tf_output_signature() ds = tf.data.Dataset.from_generator( get_tf_iterator, output_signature=self._output_signature, ) ds = ds.prefetch(tf.data.AUTOTUNE) return ds def get_torch_dataloader(self): return data_adapter_utils.get_torch_dataloader(self.generator) @property def num_batches(self): return None @property def batch_size(self): return None def peek_and_restore(generator): element = next(generator) return element, itertools.chain([element], generator) def is_scipy_sparse(x): return x.__class__.__module__.startswith("scipy.sparse") and hasattr( x, "tocoo" ) def is_tf_sparse(x): return ( x.__class__.__name__ == "SparseTensor" and x.__class__.__module__.startswith("tensorflow") ) def is_jax_sparse(x): return x.__class__.__module__.startswith("jax.experimental.sparse") def scipy_sparse_to_tf_sparse(x): from keras.utils.module_utils import tensorflow as tf coo = x.tocoo() indices = np.concatenate( (np.expand_dims(coo.row, 1), np.expand_dims(coo.col, 1)), axis=1, ) return tf.SparseTensor(indices, coo.data, coo.shape) def scipy_sparse_to_jax_sparse(x): import jax.experimental.sparse as jax_sparse coo = x.tocoo() indices = np.concatenate( (np.expand_dims(coo.row, 1), np.expand_dims(coo.col, 1)), axis=1, ) return jax_sparse.BCOO((coo.data, indices), shape=coo.shape) def tf_sparse_to_jax_sparse(x): import jax.experimental.sparse as jax_sparse from keras.backend.tensorflow.core import convert_to_numpy values = convert_to_numpy(x.values) indices = convert_to_numpy(x.indices) return jax_sparse.BCOO((values, indices), shape=x.shape) def jax_sparse_to_tf_sparse(x): from keras.utils.module_utils import tensorflow as tf return tf.SparseTensor(x.indices, x.data, x.shape)
keras/keras/trainers/data_adapters/generator_data_adapter.py/0
{ "file_path": "keras/keras/trainers/data_adapters/generator_data_adapter.py", "repo_id": "keras", "token_count": 2492 }
190
import sys from keras import backend as backend_module from keras.backend.common import global_state def in_tf_graph(): if global_state.get_global_attribute("in_tf_graph_scope", False): return True if "tensorflow" in sys.modules: from keras.utils.module_utils import tensorflow as tf return not tf.executing_eagerly() return False def convert_tf_tensor(outputs, dtype=None): if backend_module.backend() != "tensorflow" and not in_tf_graph(): outputs = backend_module.convert_to_tensor(outputs, dtype=dtype) return outputs class TFGraphScope: def __init__(self): self._original_value = global_state.get_global_attribute( "in_tf_graph_scope", False ) def __enter__(self): global_state.set_global_attribute("in_tf_graph_scope", True) def __exit__(self, *args, **kwargs): global_state.set_global_attribute( "in_tf_graph_scope", self._original_value ) class DynamicBackend: """A class that can be used to switch from one backend to another. Usage: ```python backend = DynamicBackend("tensorflow") y = backend.square(tf.constant(...)) backend.set_backend("jax") y = backend.square(jax.numpy.array(...)) ``` Args: backend: Initial backend to use (string). """ def __init__(self, backend=None): self._backend = backend or backend_module.backend() def set_backend(self, backend): self._backend = backend def reset(self): self._backend = backend_module.backend() def __getattr__(self, name): if self._backend == "tensorflow": from keras.backend import tensorflow as tf_backend return getattr(tf_backend, name) if self._backend == "jax": from keras.backend import jax as jax_backend return getattr(jax_backend, name) if self._backend == "torch": from keras.backend import torch as torch_backend return getattr(torch_backend, name) if self._backend == "numpy": # TODO (ariG23498): # The import `from keras.backend import numpy as numpy_backend` # is not working. This is a temporary fix. # The import is redirected to `keras.backend.numpy.numpy.py` from keras import backend as numpy_backend return getattr(numpy_backend, name)
keras/keras/utils/backend_utils.py/0
{ "file_path": "keras/keras/utils/backend_utils.py", "repo_id": "keras", "token_count": 1024 }
191
import importlib class LazyModule: def __init__(self, name, pip_name=None): self.name = name pip_name = pip_name or name self.pip_name = pip_name self.module = None self._available = None @property def available(self): if self._available is None: try: self.initialize() self._available = True except ImportError: self._available = False return self._available def initialize(self): try: self.module = importlib.import_module(self.name) except ImportError: raise ImportError( f"This requires the {self.name} module. " f"You can install it via `pip install {self.pip_name}`" ) def __getattr__(self, name): if name == "_api_export_path": raise AttributeError if self.module is None: self.initialize() return getattr(self.module, name) tensorflow = LazyModule("tensorflow") gfile = LazyModule("tensorflow.io.gfile", pip_name="tensorflow") tensorflow_io = LazyModule("tensorflow_io") scipy = LazyModule("scipy")
keras/keras/utils/module_utils.py/0
{ "file_path": "keras/keras/utils/module_utils.py", "repo_id": "keras", "token_count": 559 }
192
import numpy as np from keras.api_export import keras_export from keras.utils import dataset_utils from keras.utils.module_utils import tensorflow as tf @keras_export( [ "keras.utils.text_dataset_from_directory", "keras.preprocessing.text_dataset_from_directory", ] ) def text_dataset_from_directory( directory, labels="inferred", label_mode="int", class_names=None, batch_size=32, max_length=None, shuffle=True, seed=None, validation_split=None, subset=None, follow_links=False, ): """Generates a `tf.data.Dataset` from text files in a directory. If your directory structure is: ``` main_directory/ ...class_a/ ......a_text_1.txt ......a_text_2.txt ...class_b/ ......b_text_1.txt ......b_text_2.txt ``` Then calling `text_dataset_from_directory(main_directory, labels='inferred')` will return a `tf.data.Dataset` that yields batches of texts from the subdirectories `class_a` and `class_b`, together with labels 0 and 1 (0 corresponding to `class_a` and 1 corresponding to `class_b`). Only `.txt` files are supported at this time. Args: directory: Directory where the data is located. If `labels` is `"inferred"`, it should contain subdirectories, each containing text files for a class. Otherwise, the directory structure is ignored. labels: Either `"inferred"` (labels are generated from the directory structure), `None` (no labels), or a list/tuple of integer labels of the same size as the number of text files found in the directory. Labels should be sorted according to the alphanumeric order of the text file paths (obtained via `os.walk(directory)` in Python). label_mode: String describing the encoding of `labels`. Options are: - `"int"`: means that the labels are encoded as integers (e.g. for `sparse_categorical_crossentropy` loss). - `"categorical"` means that the labels are encoded as a categorical vector (e.g. for `categorical_crossentropy` loss). - `"binary"` means that the labels (there can be only 2) are encoded as `float32` scalars with values 0 or 1 (e.g. for `binary_crossentropy`). - `None` (no labels). class_names: Only valid if `"labels"` is `"inferred"`. This is the explicit list of class names (must match names of subdirectories). Used to control the order of the classes (otherwise alphanumerical order is used). batch_size: Size of the batches of data. Defaults to 32. If `None`, the data will not be batched (the dataset will yield individual samples). max_length: Maximum size of a text string. Texts longer than this will be truncated to `max_length`. shuffle: Whether to shuffle the data. Defaults to `True`. If set to `False`, sorts the data in alphanumeric order. seed: Optional random seed for shuffling and transformations. validation_split: Optional float between 0 and 1, fraction of data to reserve for validation. subset: Subset of the data to return. One of `"training"`, `"validation"` or `"both"`. Only used if `validation_split` is set. When `subset="both"`, the utility returns a tuple of two datasets (the training and validation datasets respectively). follow_links: Whether to visits subdirectories pointed to by symlinks. Defaults to `False`. Returns: A `tf.data.Dataset` object. - If `label_mode` is `None`, it yields `string` tensors of shape `(batch_size,)`, containing the contents of a batch of text files. - Otherwise, it yields a tuple `(texts, labels)`, where `texts` has shape `(batch_size,)` and `labels` follows the format described below. Rules regarding labels format: - if `label_mode` is `int`, the labels are an `int32` tensor of shape `(batch_size,)`. - if `label_mode` is `binary`, the labels are a `float32` tensor of 1s and 0s of shape `(batch_size, 1)`. - if `label_mode` is `categorical`, the labels are a `float32` tensor of shape `(batch_size, num_classes)`, representing a one-hot encoding of the class index. """ if labels not in ("inferred", None): if not isinstance(labels, (list, tuple)): raise ValueError( "`labels` argument should be a list/tuple of integer labels, " "of the same size as the number of text files in the target " "directory. If you wish to infer the labels from the " "subdirectory names in the target directory, " 'pass `labels="inferred"`. ' "If you wish to get a dataset that only contains text samples " f"(no labels), pass `labels=None`. Received: labels={labels}" ) if class_names: raise ValueError( "You can only pass `class_names` if " f'`labels="inferred"`. Received: labels={labels}, and ' f"class_names={class_names}" ) if label_mode not in {"int", "categorical", "binary", None}: raise ValueError( '`label_mode` argument must be one of "int", ' '"categorical", "binary", ' f"or None. Received: label_mode={label_mode}" ) if labels is None or label_mode is None: labels = None label_mode = None dataset_utils.check_validation_split_arg( validation_split, subset, shuffle, seed ) if seed is None: seed = np.random.randint(1e6) file_paths, labels, class_names = dataset_utils.index_directory( directory, labels, formats=(".txt",), class_names=class_names, shuffle=shuffle, seed=seed, follow_links=follow_links, ) if label_mode == "binary" and len(class_names) != 2: raise ValueError( 'When passing `label_mode="binary"`, there must be exactly 2 ' f"class_names. Received: class_names={class_names}" ) if subset == "both": ( file_paths_train, labels_train, ) = dataset_utils.get_training_or_validation_split( file_paths, labels, validation_split, "training" ) ( file_paths_val, labels_val, ) = dataset_utils.get_training_or_validation_split( file_paths, labels, validation_split, "validation" ) if not file_paths_train: raise ValueError( f"No training text files found in directory {directory}. " "Allowed format: .txt" ) if not file_paths_val: raise ValueError( f"No validation text files found in directory {directory}. " "Allowed format: .txt" ) train_dataset = paths_and_labels_to_dataset( file_paths=file_paths_train, labels=labels_train, label_mode=label_mode, num_classes=len(class_names) if class_names else 0, max_length=max_length, ) val_dataset = paths_and_labels_to_dataset( file_paths=file_paths_val, labels=labels_val, label_mode=label_mode, num_classes=len(class_names) if class_names else 0, max_length=max_length, ) train_dataset = train_dataset.prefetch(tf.data.AUTOTUNE) val_dataset = val_dataset.prefetch(tf.data.AUTOTUNE) if batch_size is not None: if shuffle: # Shuffle locally at each iteration train_dataset = train_dataset.shuffle( buffer_size=batch_size * 8, seed=seed ) train_dataset = train_dataset.batch(batch_size) val_dataset = val_dataset.batch(batch_size) else: if shuffle: train_dataset = train_dataset.shuffle( buffer_size=1024, seed=seed ) # Users may need to reference `class_names`. train_dataset.class_names = class_names val_dataset.class_names = class_names dataset = [train_dataset, val_dataset] else: file_paths, labels = dataset_utils.get_training_or_validation_split( file_paths, labels, validation_split, subset ) if not file_paths: raise ValueError( f"No text files found in directory {directory}. " "Allowed format: .txt" ) dataset = paths_and_labels_to_dataset( file_paths=file_paths, labels=labels, label_mode=label_mode, num_classes=len(class_names) if class_names else 0, max_length=max_length, ) dataset = dataset.prefetch(tf.data.AUTOTUNE) if batch_size is not None: if shuffle: # Shuffle locally at each iteration dataset = dataset.shuffle(buffer_size=batch_size * 8, seed=seed) dataset = dataset.batch(batch_size) else: if shuffle: dataset = dataset.shuffle(buffer_size=1024, seed=seed) # Users may need to reference `class_names`. dataset.class_names = class_names return dataset def paths_and_labels_to_dataset( file_paths, labels, label_mode, num_classes, max_length ): """Constructs a dataset of text strings and labels.""" path_ds = tf.data.Dataset.from_tensor_slices(file_paths) string_ds = path_ds.map( lambda x: path_to_string_content(x, max_length), num_parallel_calls=tf.data.AUTOTUNE, ) if label_mode: label_ds = dataset_utils.labels_to_dataset( labels, label_mode, num_classes ) string_ds = tf.data.Dataset.zip((string_ds, label_ds)) return string_ds def path_to_string_content(path, max_length): txt = tf.io.read_file(path) if max_length is not None: txt = tf.strings.substr(txt, 0, max_length) return txt
keras/keras/utils/text_dataset_utils.py/0
{ "file_path": "keras/keras/utils/text_dataset_utils.py", "repo_id": "keras", "token_count": 4671 }
193
# Description: # Contains the TF-Keras API (internal TensorFlow version). # Placeholder: load unaliased py_library load("@org_keras//tf_keras:tf_keras.bzl", "tf_py_test") # copybara:uncomment_begin(google-only) # load("//tools/build_defs/license:license.bzl", "license") # copybara:uncomment_end package( # copybara:uncomment default_applicable_licenses = [":license"], default_visibility = [":friends"], licenses = ["notice"], ) # TF-Keras code that doesn't live in core TF-Keras directory, but still # need to directly access the keras code. # We shouldn't add any client side package to this list. package_group( name = "friends", packages = ["//tf_keras/..."], ) exports_files(["LICENSE"]) config_setting( name = "no_keras_py_deps", define_values = {"no_keras_py_deps": "true"}, visibility = ["//visibility:public"], ) py_library( name = "tf_keras", srcs = [ "__init__.py", ], srcs_version = "PY3", deps = [ ":backend", ":engine", "//:expect_h5py_installed", "//:expect_numpy_installed", "//:expect_pydot_installed", "//:expect_scipy_installed", "//:expect_tensorflow_installed", "//:expect_yaml_installed", "//tf_keras/applications", "//tf_keras/datasets", "//tf_keras/distribute", "//tf_keras/estimator", "//tf_keras/feature_column", "//tf_keras/layers", "//tf_keras/layers/rnn:legacy_cell_wrappers", "//tf_keras/layers/rnn:legacy_cells", "//tf_keras/legacy_tf_layers:layers", "//tf_keras/mixed_precision:mixed_precision_experimental", "//tf_keras/models", "//tf_keras/optimizers", "//tf_keras/premade_models", "//tf_keras/preprocessing", "//tf_keras/saving", "//tf_keras/testing_infra:keras_doctest_lib", "//tf_keras/testing_infra:test_utils", # For keras.__internal__ API "//tf_keras/utils", ], ) py_library( name = "backend", srcs = ["backend.py"], srcs_version = "PY3", deps = [ ":backend_config", "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras/distribute:distribute_coordinator_utils", "//tf_keras/engine:keras_tensor", "//tf_keras/utils:control_flow_util", "//tf_keras/utils:object_identity", "//tf_keras/utils:tf_contextlib", "//tf_keras/utils:tf_inspect", ], ) py_library( name = "backend_config", srcs = ["backend_config.py"], srcs_version = "PY3", deps = [ "//:expect_tensorflow_installed", ], ) # TODO(scottzhu): Cleanup this target and point all the user to keras/engine. py_library( name = "engine", srcs = [ "//tf_keras/metrics", "//tf_keras/models", ], srcs_version = "PY3", deps = [ "//tf_keras/engine", ], ) py_library( name = "activations", srcs = [ "activations.py", ], srcs_version = "PY3", deps = [ ":backend", "//tf_keras/layers/activation", "//tf_keras/utils:engine_utils", ], ) # TODO(scottzhu): Cleanup this target and point all the user to keras/engine. py_library( name = "base_layer", srcs = [], srcs_version = "PY3", deps = [ "//tf_keras/engine:base_layer", ], ) py_library( name = "callbacks", srcs = [ "callbacks.py", ], srcs_version = "PY3", deps = [ ":backend", "//:expect_tensorboard_installed", "//:expect_tensorflow_installed", "//tf_keras/distribute:distributed_file_utils", "//tf_keras/distribute:worker_training_state", "//tf_keras/protobuf:projector_config_proto_py_pb2", "//tf_keras/utils:engine_utils", "//tf_keras/utils:mode_keys", "//tf_keras/utils:timed_threads", ], ) py_library( name = "callbacks_v1", srcs = [ "callbacks_v1.py", ], srcs_version = "PY3", deps = [ ":backend", "//:expect_tensorboard_installed", "//:expect_tensorflow_installed", "//tf_keras/utils:engine_utils", ], ) py_library( name = "constraints", srcs = [ "constraints.py", ], srcs_version = "PY3", deps = [ ":backend", "//tf_keras/utils:engine_utils", ], ) py_library( name = "losses", srcs = [ "losses.py", ], srcs_version = "PY3", deps = [ ":backend", "//:expect_tensorflow_installed", "//tf_keras/saving:saving_lib", "//tf_keras/utils:engine_utils", "//tf_keras/utils:generic_utils", "//tf_keras/utils:tf_utils", ], ) py_library( name = "regularizers", srcs = [ "regularizers.py", ], srcs_version = "PY3", deps = [ ":backend", "//tf_keras/utils:engine_utils", ], ) # Internally urllib.request.urlretrieve library requires Google # SSL context to be provided to work in python 3. This isn't needed in OSS. # copybara:uncomment_begin(google-only) # py_library( # name = "url_utils", # srcs = ["google/url_utils.py"], # srcs_version = "PY3", # deps = ["//pyglib/contrib/google_ssl"], # ) # copybara:uncomment_end # Some tf.distribute related feature requires detecting platform. # Internally we'd like to recognize Borg, which is not needed in OSS. # copybara:uncomment_begin(google-only) # py_library( # name = "distribute_utils", # srcs = ["google/distribute_utils.py"], # deps = [ # "//:expect_six_installed", # "//:expect_tensorflow_installed", # "//third_party/py/requests", # ], # ) # copybara:uncomment_end tf_py_test( name = "activations_test", size = "small", srcs = ["activations_test.py"], python_version = "PY3", deps = [ ":activations", ":backend", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_scipy_installed", "//:expect_tensorflow_installed", "//tf_keras/layers", "//tf_keras/layers/activation", "//tf_keras/layers/core", "//tf_keras/testing_infra:test_combinations", ], ) tf_py_test( name = "constraints_test", size = "small", srcs = ["constraints_test.py"], python_version = "PY3", deps = [ ":backend", ":constraints", "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras/testing_infra:test_combinations", ], ) tf_py_test( name = "regularizers_test", size = "medium", srcs = ["regularizers_test.py"], python_version = "PY3", deps = [ ":tf_keras", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_tensorflow_installed", "//tf_keras/testing_infra:test_combinations", ], ) tf_py_test( name = "losses_test", size = "small", srcs = ["losses_test.py"], python_version = "PY3", shard_count = 4, tags = [ "noasan", # b/186128525 ], deps = [ ":backend", ":losses", "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras/testing_infra:test_combinations", "//tf_keras/utils:engine_utils", ], ) tf_py_test( name = "callbacks_test", size = "medium", srcs = ["callbacks_test.py"], python_version = "PY3", shard_count = 6, tags = [ "no_pip", # TODO(b/276923757) "no_tfrt", # TODO(b/179690526) "notsan", ], deps = [ ":tf_keras", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras/testing_infra:test_combinations", ], ) tf_py_test( name = "callbacks_v1_test", size = "medium", srcs = ["callbacks_v1_test.py"], python_version = "PY3", tags = [ "nomac", # Using profiler causes segfault in MacOS runs. "notsan", ], deps = [ ":callbacks", ":callbacks_v1", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras/engine", "//tf_keras/layers", "//tf_keras/testing_infra:test_combinations", "//tf_keras/testing_infra:test_utils", "//tf_keras/utils:np_utils", ], ) tf_py_test( name = "backend_test", size = "medium", srcs = ["backend_test.py"], python_version = "PY3", shard_count = 4, deps = [ ":backend", ":engine", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_scipy_installed", "//:expect_tensorflow_installed", "//tf_keras/testing_infra:test_combinations", ], ) tf_py_test( name = "backend_config_test", size = "medium", srcs = ["backend_config_test.py"], python_version = "PY3", deps = [ ":backend", ":backend_config", "//:expect_tensorflow_installed", "//tf_keras/testing_infra:test_combinations", ], ) # copybara:uncomment_begin(google-only) # tf_py_test( # name = "url_utils_test", # srcs = ["google/url_utils_test.py"], # python_version = "PY3", # deps = [ # ":url_utils", # "//:expect_tensorflow_installed", # "//testing/pymocks:matchers", # ], # ) # # tf_py_test( # name = "distribute_utils_test", # srcs = ["google/distribute_utils_test.py"], # python_version = "PY3", # deps = [ # ":distribute_utils", # "//:expect_tensorflow_installed", # "//testing/pymocks:matchers", # "//tf_keras/distribute", # ], # ) # # license( # name = "license", # package_name = "tf_keras", # ) # copybara:uncomment_end
tf-keras/tf_keras/BUILD/0
{ "file_path": "tf-keras/tf_keras/BUILD", "repo_id": "tf-keras", "token_count": 4912 }
194
# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ConvNeXt models for TF-Keras. References: - [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) (CVPR 2022) """ import numpy as np import tensorflow.compat.v2 as tf from tf_keras import backend from tf_keras import initializers from tf_keras import layers from tf_keras import utils from tf_keras.applications import imagenet_utils from tf_keras.engine import sequential from tf_keras.engine import training as training_lib # isort: off from tensorflow.python.util.tf_export import keras_export BASE_WEIGHTS_PATH = ( "https://storage.googleapis.com/tensorflow/keras-applications/convnext/" ) WEIGHTS_HASHES = { "convnext_tiny": ( "8ae6e78ce2933352b1ef4008e6dd2f17bc40771563877d156bc6426c7cf503ff", "d547c096cabd03329d7be5562c5e14798aa39ed24b474157cef5e85ab9e49ef1", ), "convnext_small": ( "ce1277d8f1ee5a0ef0e171469089c18f5233860ceaf9b168049cb9263fd7483c", "6fc8009faa2f00c1c1dfce59feea9b0745eb260a7dd11bee65c8e20843da6eab", ), "convnext_base": ( "52cbb006d3dadd03f6e095a8ca1aca47aecdd75acb4bc74bce1f5c695d0086e6", "40a20c5548a5e9202f69735ecc06c990e6b7c9d2de39f0361e27baeb24cb7c45", ), "convnext_large": ( "070c5ed9ed289581e477741d3b34beffa920db8cf590899d6d2c67fba2a198a6", "96f02b6f0753d4f543261bc9d09bed650f24dd6bc02ddde3066135b63d23a1cd", ), "convnext_xlarge": ( "c1f5ccab661354fc3a79a10fa99af82f0fbf10ec65cb894a3ae0815f17a889ee", "de3f8a54174130e0cecdc71583354753d557fcf1f4487331558e2a16ba0cfe05", ), } MODEL_CONFIGS = { "tiny": { "depths": [3, 3, 9, 3], "projection_dims": [96, 192, 384, 768], "default_size": 224, }, "small": { "depths": [3, 3, 27, 3], "projection_dims": [96, 192, 384, 768], "default_size": 224, }, "base": { "depths": [3, 3, 27, 3], "projection_dims": [128, 256, 512, 1024], "default_size": 224, }, "large": { "depths": [3, 3, 27, 3], "projection_dims": [192, 384, 768, 1536], "default_size": 224, }, "xlarge": { "depths": [3, 3, 27, 3], "projection_dims": [256, 512, 1024, 2048], "default_size": 224, }, } BASE_DOCSTRING = """Instantiates the {name} architecture. References: - [A ConvNet for the 2020s](https://arxiv.org/abs/2201.03545) (CVPR 2022) For image classification use cases, see [this page for detailed examples]( https://keras.io/api/applications/#usage-examples-for-image-classification-models). For transfer learning use cases, make sure to read the [guide to transfer learning & fine-tuning]( https://keras.io/guides/transfer_learning/). The `base`, `large`, and `xlarge` models were first pre-trained on the ImageNet-21k dataset and then fine-tuned on the ImageNet-1k dataset. The pre-trained parameters of the models were assembled from the [official repository](https://github.com/facebookresearch/ConvNeXt). To get a sense of how these parameters were converted to TF-Keras compatible parameters, please refer to [this repository](https://github.com/sayakpaul/keras-convnext-conversion). Note: Each TF-Keras Application expects a specific kind of input preprocessing. For ConvNeXt, preprocessing is included in the model using a `Normalization` layer. ConvNeXt models expect their inputs to be float or uint8 tensors of pixels with values in the [0-255] range. When calling the `summary()` method after instantiating a ConvNeXt model, prefer setting the `expand_nested` argument `summary()` to `True` to better investigate the instantiated model. Args: include_top: Whether to include the fully-connected layer at the top of the network. Defaults to `True`. weights: One of `None` (random initialization), `"imagenet"` (pre-training on ImageNet-1k), or the path to the weights file to be loaded. Defaults to `"imagenet"`. input_tensor: Optional TF-Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: Optional shape tuple, only to be specified if `include_top` is False. It should have exactly 3 inputs channels. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. Defaults to `None`. classes: Optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. 1000 is how many ImageNet classes there are. Defaults to `1000`. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. When loading pretrained weights, `classifier_activation` can only be `None` or `"softmax"`. Defaults to `"softmax"`. Returns: A `keras.Model` instance. """ class StochasticDepth(layers.Layer): """Stochastic Depth module. It performs batch-wise dropping rather than sample-wise. In libraries like `timm`, it's similar to `DropPath` layers that drops residual paths sample-wise. References: - https://github.com/rwightman/pytorch-image-models Args: drop_path_rate (float): Probability of dropping paths. Should be within [0, 1]. Returns: Tensor either with the residual path dropped or kept. """ def __init__(self, drop_path_rate, **kwargs): super().__init__(**kwargs) self.drop_path_rate = drop_path_rate def call(self, x, training=None): if training: keep_prob = 1 - self.drop_path_rate shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1) random_tensor = keep_prob + tf.random.uniform(shape, 0, 1) random_tensor = tf.floor(random_tensor) return (x / keep_prob) * random_tensor return x def get_config(self): config = super().get_config() config.update({"drop_path_rate": self.drop_path_rate}) return config class LayerScale(layers.Layer): """Layer scale module. References: - https://arxiv.org/abs/2103.17239 Args: init_values (float): Initial value for layer scale. Should be within [0, 1]. projection_dim (int): Projection dimensionality. Returns: Tensor multiplied to the scale. """ def __init__(self, init_values, projection_dim, **kwargs): super().__init__(**kwargs) self.init_values = init_values self.projection_dim = projection_dim def build(self, input_shape): self.gamma = self.add_weight( name="gamma", shape=(self.projection_dim,), initializer=initializers.Constant(self.init_values), trainable=True, ) def call(self, x): return x * self.gamma def get_config(self): config = super().get_config() config.update( { "init_values": self.init_values, "projection_dim": self.projection_dim, } ) return config def ConvNeXtBlock( projection_dim, drop_path_rate=0.0, layer_scale_init_value=1e-6, name=None ): """ConvNeXt block. References: - https://arxiv.org/abs/2201.03545 - https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py Notes: In the original ConvNeXt implementation (linked above), the authors use `Dense` layers for pointwise convolutions for increased efficiency. Following that, this implementation also uses the same. Args: projection_dim (int): Number of filters for convolution layers. In the ConvNeXt paper, this is referred to as projection dimension. drop_path_rate (float): Probability of dropping paths. Should be within [0, 1]. layer_scale_init_value (float): Layer scale value. Should be a small float number. name: name to path to the keras layer. Returns: A function representing a ConvNeXtBlock block. """ if name is None: name = "prestem" + str(backend.get_uid("prestem")) def apply(inputs): x = inputs x = layers.Conv2D( filters=projection_dim, kernel_size=7, padding="same", groups=projection_dim, name=name + "_depthwise_conv", )(x) x = layers.LayerNormalization(epsilon=1e-6, name=name + "_layernorm")(x) x = layers.Dense(4 * projection_dim, name=name + "_pointwise_conv_1")(x) x = layers.Activation("gelu", name=name + "_gelu")(x) x = layers.Dense(projection_dim, name=name + "_pointwise_conv_2")(x) if layer_scale_init_value is not None: x = LayerScale( layer_scale_init_value, projection_dim, name=name + "_layer_scale", )(x) if drop_path_rate: layer = StochasticDepth( drop_path_rate, name=name + "_stochastic_depth" ) else: layer = layers.Activation("linear", name=name + "_identity") return inputs + layer(x) return apply def PreStem(name=None): """Normalizes inputs with ImageNet-1k mean and std. Args: name (str): Name prefix. Returns: A presemt function. """ if name is None: name = "prestem" + str(backend.get_uid("prestem")) def apply(x): x = layers.Normalization( mean=[0.485 * 255, 0.456 * 255, 0.406 * 255], variance=[ (0.229 * 255) ** 2, (0.224 * 255) ** 2, (0.225 * 255) ** 2, ], name=name + "_prestem_normalization", )(x) return x return apply def Head(num_classes=1000, classifier_activation=None, name=None): """Implementation of classification head of ConvNeXt. Args: num_classes: number of classes for Dense layer classifier_activation: activation function for the Dense layer name: name prefix Returns: Classification head function. """ if name is None: name = str(backend.get_uid("head")) def apply(x): x = layers.GlobalAveragePooling2D(name=name + "_head_gap")(x) x = layers.LayerNormalization( epsilon=1e-6, name=name + "_head_layernorm" )(x) x = layers.Dense( num_classes, activation=classifier_activation, name=name + "_head_dense", )(x) return x return apply def ConvNeXt( depths, projection_dims, drop_path_rate=0.0, layer_scale_init_value=1e-6, default_size=224, model_name="convnext", include_preprocessing=True, include_top=True, weights=None, input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation="softmax", ): """Instantiates ConvNeXt architecture given specific configuration. Args: depths: An iterable containing depths for each individual stages. projection_dims: An iterable containing output number of channels of each individual stages. drop_path_rate: Stochastic depth probability. If 0.0, then stochastic depth won't be used. layer_scale_init_value: Layer scale coefficient. If 0.0, layer scaling won't be used. default_size: Default input image size. model_name: An optional name for the model. include_preprocessing: boolean denoting whther to include preprocessing in the model. When `weights="imagenet"` this should be always set to True. But for other models (e.g., randomly initialized) users should set it to False and apply preprocessing to data accordingly. include_top: Boolean denoting whether to include classification head to the model. weights: one of `None` (random initialization), `"imagenet"` (pre-training on ImageNet-1k), or the path to the weights file to be loaded. input_tensor: optional TF-Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False. It should have exactly 3 inputs channels. pooling: optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. Returns: A `keras.Model` instance. Raises: ValueError: in case of invalid argument for `weights`, or invalid input shape. ValueError: if `classifier_activation` is not `softmax`, or `None` when using a pretrained top layer. ValueError: if `include_top` is True but `num_classes` is not 1000 when using ImageNet. """ if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)): raise ValueError( "The `weights` argument should be either " "`None` (random initialization), `imagenet` " "(pre-training on ImageNet), " "or the path to the weights file to be loaded." ) if weights == "imagenet" and include_top and classes != 1000: raise ValueError( "If using `weights` as `'imagenet'` with `include_top`" " as true, `classes` should be 1000" ) # Determine proper input shape. input_shape = imagenet_utils.obtain_input_shape( input_shape, default_size=default_size, min_size=32, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights, ) if input_tensor is None: img_input = layers.Input(shape=input_shape) else: if not backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor if input_tensor is not None: inputs = utils.layer_utils.get_source_inputs(input_tensor)[0] else: inputs = img_input x = inputs if include_preprocessing: channel_axis = ( 3 if backend.image_data_format() == "channels_last" else 1 ) num_channels = input_shape[channel_axis - 1] if num_channels == 3: x = PreStem(name=model_name)(x) # Stem block. stem = sequential.Sequential( [ layers.Conv2D( projection_dims[0], kernel_size=4, strides=4, name=model_name + "_stem_conv", ), layers.LayerNormalization( epsilon=1e-6, name=model_name + "_stem_layernorm" ), ], name=model_name + "_stem", ) # Downsampling blocks. downsample_layers = [] downsample_layers.append(stem) num_downsample_layers = 3 for i in range(num_downsample_layers): downsample_layer = sequential.Sequential( [ layers.LayerNormalization( epsilon=1e-6, name=model_name + "_downsampling_layernorm_" + str(i), ), layers.Conv2D( projection_dims[i + 1], kernel_size=2, strides=2, name=model_name + "_downsampling_conv_" + str(i), ), ], name=model_name + "_downsampling_block_" + str(i), ) downsample_layers.append(downsample_layer) # Stochastic depth schedule. # This is referred from the original ConvNeXt codebase: # https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py#L86 depth_drop_rates = [ float(x) for x in np.linspace(0.0, drop_path_rate, sum(depths)) ] # First apply downsampling blocks and then apply ConvNeXt stages. cur = 0 num_convnext_blocks = 4 for i in range(num_convnext_blocks): x = downsample_layers[i](x) for j in range(depths[i]): x = ConvNeXtBlock( projection_dim=projection_dims[i], drop_path_rate=depth_drop_rates[cur + j], layer_scale_init_value=layer_scale_init_value, name=model_name + f"_stage_{i}_block_{j}", )(x) cur += depths[i] if include_top: imagenet_utils.validate_activation(classifier_activation, weights) x = Head( num_classes=classes, classifier_activation=classifier_activation, name=model_name, )(x) else: if pooling == "avg": x = layers.GlobalAveragePooling2D()(x) elif pooling == "max": x = layers.GlobalMaxPooling2D()(x) x = layers.LayerNormalization(epsilon=1e-6)(x) model = training_lib.Model(inputs=inputs, outputs=x, name=model_name) # Load weights. if weights == "imagenet": if include_top: file_suffix = ".h5" file_hash = WEIGHTS_HASHES[model_name][0] else: file_suffix = "_notop.h5" file_hash = WEIGHTS_HASHES[model_name][1] file_name = model_name + file_suffix weights_path = utils.data_utils.get_file( file_name, BASE_WEIGHTS_PATH + file_name, cache_subdir="models", file_hash=file_hash, ) model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model ## Instantiating variants ## @keras_export( "keras.applications.convnext.ConvNeXtTiny", "keras.applications.ConvNeXtTiny", ) def ConvNeXtTiny( model_name="convnext_tiny", include_top=True, include_preprocessing=True, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation="softmax", ): return ConvNeXt( depths=MODEL_CONFIGS["tiny"]["depths"], projection_dims=MODEL_CONFIGS["tiny"]["projection_dims"], drop_path_rate=0.0, layer_scale_init_value=1e-6, default_size=MODEL_CONFIGS["tiny"]["default_size"], model_name=model_name, include_top=include_top, include_preprocessing=include_preprocessing, weights=weights, input_tensor=input_tensor, input_shape=input_shape, pooling=pooling, classes=classes, classifier_activation=classifier_activation, ) @keras_export( "keras.applications.convnext.ConvNeXtSmall", "keras.applications.ConvNeXtSmall", ) def ConvNeXtSmall( model_name="convnext_small", include_top=True, include_preprocessing=True, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation="softmax", ): return ConvNeXt( depths=MODEL_CONFIGS["small"]["depths"], projection_dims=MODEL_CONFIGS["small"]["projection_dims"], drop_path_rate=0.0, layer_scale_init_value=1e-6, default_size=MODEL_CONFIGS["small"]["default_size"], model_name=model_name, include_top=include_top, include_preprocessing=include_preprocessing, weights=weights, input_tensor=input_tensor, input_shape=input_shape, pooling=pooling, classes=classes, classifier_activation=classifier_activation, ) @keras_export( "keras.applications.convnext.ConvNeXtBase", "keras.applications.ConvNeXtBase", ) def ConvNeXtBase( model_name="convnext_base", include_top=True, include_preprocessing=True, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation="softmax", ): return ConvNeXt( depths=MODEL_CONFIGS["base"]["depths"], projection_dims=MODEL_CONFIGS["base"]["projection_dims"], drop_path_rate=0.0, layer_scale_init_value=1e-6, default_size=MODEL_CONFIGS["base"]["default_size"], model_name=model_name, include_top=include_top, include_preprocessing=include_preprocessing, weights=weights, input_tensor=input_tensor, input_shape=input_shape, pooling=pooling, classes=classes, classifier_activation=classifier_activation, ) @keras_export( "keras.applications.convnext.ConvNeXtLarge", "keras.applications.ConvNeXtLarge", ) def ConvNeXtLarge( model_name="convnext_large", include_top=True, include_preprocessing=True, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation="softmax", ): return ConvNeXt( depths=MODEL_CONFIGS["large"]["depths"], projection_dims=MODEL_CONFIGS["large"]["projection_dims"], drop_path_rate=0.0, layer_scale_init_value=1e-6, default_size=MODEL_CONFIGS["large"]["default_size"], model_name=model_name, include_top=include_top, include_preprocessing=include_preprocessing, weights=weights, input_tensor=input_tensor, input_shape=input_shape, pooling=pooling, classes=classes, classifier_activation=classifier_activation, ) @keras_export( "keras.applications.convnext.ConvNeXtXLarge", "keras.applications.ConvNeXtXLarge", ) def ConvNeXtXLarge( model_name="convnext_xlarge", include_top=True, include_preprocessing=True, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation="softmax", ): return ConvNeXt( depths=MODEL_CONFIGS["xlarge"]["depths"], projection_dims=MODEL_CONFIGS["xlarge"]["projection_dims"], drop_path_rate=0.0, layer_scale_init_value=1e-6, default_size=MODEL_CONFIGS["xlarge"]["default_size"], model_name=model_name, include_top=include_top, include_preprocessing=include_preprocessing, weights=weights, input_tensor=input_tensor, input_shape=input_shape, pooling=pooling, classes=classes, classifier_activation=classifier_activation, ) ConvNeXtTiny.__doc__ = BASE_DOCSTRING.format(name="ConvNeXtTiny") ConvNeXtSmall.__doc__ = BASE_DOCSTRING.format(name="ConvNeXtSmall") ConvNeXtBase.__doc__ = BASE_DOCSTRING.format(name="ConvNeXtBase") ConvNeXtLarge.__doc__ = BASE_DOCSTRING.format(name="ConvNeXtLarge") ConvNeXtXLarge.__doc__ = BASE_DOCSTRING.format(name="ConvNeXtXLarge") @keras_export("keras.applications.convnext.preprocess_input") def preprocess_input(x, data_format=None): """A placeholder method for backward compatibility. The preprocessing logic has been included in the convnext model implementation. Users are no longer required to call this method to normalize the input data. This method does nothing and only kept as a placeholder to align the API surface between old and new version of model. Args: x: A floating point `numpy.array` or a `tf.Tensor`. data_format: Optional data format of the image tensor/array. `None` means the global setting `tf.keras.backend.image_data_format()` is used (unless you changed it, it uses "channels_last"). Defaults to `None`. Returns: Unchanged `numpy.array` or `tf.Tensor`. """ return x @keras_export("keras.applications.convnext.decode_predictions") def decode_predictions(preds, top=5): return imagenet_utils.decode_predictions(preds, top=top) decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
tf-keras/tf_keras/applications/convnext.py/0
{ "file_path": "tf-keras/tf_keras/applications/convnext.py", "repo_id": "tf-keras", "token_count": 11031 }
195
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """VGG16 model for TF-Keras. Reference: - [Very Deep Convolutional Networks for Large-Scale Image Recognition] (https://arxiv.org/abs/1409.1556) (ICLR 2015) """ import tensorflow.compat.v2 as tf from tf_keras import backend from tf_keras.applications import imagenet_utils from tf_keras.engine import training from tf_keras.layers import VersionAwareLayers from tf_keras.utils import data_utils from tf_keras.utils import layer_utils # isort: off from tensorflow.python.util.tf_export import keras_export WEIGHTS_PATH = ( "https://storage.googleapis.com/tensorflow/keras-applications/" "vgg16/vgg16_weights_tf_dim_ordering_tf_kernels.h5" ) WEIGHTS_PATH_NO_TOP = ( "https://storage.googleapis.com/tensorflow/" "keras-applications/vgg16/" "vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5" ) layers = VersionAwareLayers() @keras_export("keras.applications.vgg16.VGG16", "keras.applications.VGG16") def VGG16( include_top=True, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation="softmax", ): """Instantiates the VGG16 model. Reference: - [Very Deep Convolutional Networks for Large-Scale Image Recognition]( https://arxiv.org/abs/1409.1556) (ICLR 2015) For image classification use cases, see [this page for detailed examples]( https://keras.io/api/applications/#usage-examples-for-image-classification-models). For transfer learning use cases, make sure to read the [guide to transfer learning & fine-tuning]( https://keras.io/guides/transfer_learning/). The default input size for this model is 224x224. Note: each TF-Keras Application expects a specific kind of input preprocessing. For VGG16, call `tf.keras.applications.vgg16.preprocess_input` on your inputs before passing them to the model. `vgg16.preprocess_input` will convert the input images from RGB to BGR, then will zero-center each color channel with respect to the ImageNet dataset, without scaling. Args: include_top: whether to include the 3 fully-connected layers at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional TF-Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or `(3, 224, 224)` (with `channels_first` data format). It should have exactly 3 input channels, and width and height should be no smaller than 32. E.g. `(200, 200, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. When loading pretrained weights, `classifier_activation` can only be `None` or `"softmax"`. Returns: A `keras.Model` instance. """ if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)): raise ValueError( "The `weights` argument should be either " "`None` (random initialization), `imagenet` " "(pre-training on ImageNet), " "or the path to the weights file to be loaded. Received: " f"weights={weights}" ) if weights == "imagenet" and include_top and classes != 1000: raise ValueError( 'If using `weights` as `"imagenet"` with `include_top` ' "as true, `classes` should be 1000. " f"Received `classes={classes}`" ) # Determine proper input shape input_shape = imagenet_utils.obtain_input_shape( input_shape, default_size=224, min_size=32, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights, ) if input_tensor is None: img_input = layers.Input(shape=input_shape) else: if not backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor # Block 1 x = layers.Conv2D( 64, (3, 3), activation="relu", padding="same", name="block1_conv1" )(img_input) x = layers.Conv2D( 64, (3, 3), activation="relu", padding="same", name="block1_conv2" )(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block1_pool")(x) # Block 2 x = layers.Conv2D( 128, (3, 3), activation="relu", padding="same", name="block2_conv1" )(x) x = layers.Conv2D( 128, (3, 3), activation="relu", padding="same", name="block2_conv2" )(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block2_pool")(x) # Block 3 x = layers.Conv2D( 256, (3, 3), activation="relu", padding="same", name="block3_conv1" )(x) x = layers.Conv2D( 256, (3, 3), activation="relu", padding="same", name="block3_conv2" )(x) x = layers.Conv2D( 256, (3, 3), activation="relu", padding="same", name="block3_conv3" )(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block3_pool")(x) # Block 4 x = layers.Conv2D( 512, (3, 3), activation="relu", padding="same", name="block4_conv1" )(x) x = layers.Conv2D( 512, (3, 3), activation="relu", padding="same", name="block4_conv2" )(x) x = layers.Conv2D( 512, (3, 3), activation="relu", padding="same", name="block4_conv3" )(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block4_pool")(x) # Block 5 x = layers.Conv2D( 512, (3, 3), activation="relu", padding="same", name="block5_conv1" )(x) x = layers.Conv2D( 512, (3, 3), activation="relu", padding="same", name="block5_conv2" )(x) x = layers.Conv2D( 512, (3, 3), activation="relu", padding="same", name="block5_conv3" )(x) x = layers.MaxPooling2D((2, 2), strides=(2, 2), name="block5_pool")(x) if include_top: # Classification block x = layers.Flatten(name="flatten")(x) x = layers.Dense(4096, activation="relu", name="fc1")(x) x = layers.Dense(4096, activation="relu", name="fc2")(x) imagenet_utils.validate_activation(classifier_activation, weights) x = layers.Dense( classes, activation=classifier_activation, name="predictions" )(x) else: if pooling == "avg": x = layers.GlobalAveragePooling2D()(x) elif pooling == "max": x = layers.GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = layer_utils.get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = training.Model(inputs, x, name="vgg16") # Load weights. if weights == "imagenet": if include_top: weights_path = data_utils.get_file( "vgg16_weights_tf_dim_ordering_tf_kernels.h5", WEIGHTS_PATH, cache_subdir="models", file_hash="64373286793e3c8b2b4e3219cbf3544b", ) else: weights_path = data_utils.get_file( "vgg16_weights_tf_dim_ordering_tf_kernels_notop.h5", WEIGHTS_PATH_NO_TOP, cache_subdir="models", file_hash="6d6bbae143d832006294945121d1f1fc", ) model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model @keras_export("keras.applications.vgg16.preprocess_input") def preprocess_input(x, data_format=None): return imagenet_utils.preprocess_input( x, data_format=data_format, mode="caffe" ) @keras_export("keras.applications.vgg16.decode_predictions") def decode_predictions(preds, top=5): return imagenet_utils.decode_predictions(preds, top=top) preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format( mode="", ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_CAFFE, error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC, ) decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
tf-keras/tf_keras/applications/vgg16.py/0
{ "file_path": "tf-keras/tf_keras/applications/vgg16.py", "repo_id": "tf-keras", "token_count": 4285 }
196
# Benchmarks for keras model examples - [Benchmarks for keras model examples](#benchmarks-for-keras-model-examples) - [Keras benchmarks](#keras-benchmarks) - [Available models](#available-models) - [Computer Vision examples](#computer-vision-examples) - [Text & Sequence examples](#text--sequence-examples) - [Other examples](#other-examples) - [Available benchmark results](#available-benchmark-results) - [Cifar10 CNN benchmark](#cifar10-cnn-benchmark) - [MNIST Conv benchmark](#mnist-conv-benchmark) - [MNIST Hierarchical RNN (HRNN) benchmark](#mnist-hierarchical-rnn-hrnn-benchmark) - [Bidirectional LSTM benchmark](#bidirectional-lstm-benchmark) - [Text classification with transformer benchmark](#text-classification-with-transformer-benchmark) - [MLP benchmark](#mlp-benchmark) - [Antirectifier benchmark](#antirectifier-benchmark) - [IRNN benchmark](#irnn-benchmark) - [Install Bazel](#install-bazel) - [Run benchmarks](#run-benchmarks) - [Add new benchmarks](#add-new-benchmarks) - [Troubleshooting](#troubleshooting) ## TF-Keras benchmarks These are benchmark tests running on keras models: models from [keras/examples](https://github.com/keras-team/tf-keras/tree/master/examples). Benchmarks in the current folder (`https://github.com/keras-team/tf-keras/blob/master/tf_keras/benchmarks/keras_examples_benchmarks`) use Keras [built-in dataset](https://keras.io/api/datasets/). In addition, these benchmarks support different [distribution strategies](https://www.tensorflow.org/guide/distributed_training) on multiple GPUs. ### Available models These examples are implemented by Functional API and Sequential API. #### Computer Vision examples - [cifar10_cnn_benchmark_test.py](https://github.com/keras-team/tf-keras/blob/master/tf_keras/benchmarks/keras_examples_benchmarks/cifar10_cnn_benchmark_test.py): Simple CNN on CIFAR10 image dataset. - [mnist_conv_benchmark_test.py](https://github.com/keras-team/tf-keras/blob/master/tf_keras/benchmarks/keras_examples_benchmarks/mnist_conv_benchmark_test.py): Simple Convnet that achieves ~99% test accuracy on MNIST. - [mnist_hierarchical_rnn_benchmark_test.py](https://github.com/keras-team/tf-keras/blob/master/tf_keras/benchmarks/keras_examples_benchmarks/mnist_hierarchical_rnn_benchmark_test.py): Hierarchical RNN (HRNN) to classify MNIST digits. #### Text & Sequence examples - [Bidirectional_lstm_benchmark_test.py](https://github.com/keras-team/tf-keras/blob/master/tf_keras/benchmarks/keras_examples_benchmarks/bidirectional_lstm_benchmark_test.py): 2-layer bidirectional LSTM on IMDB movie review dataset. - [text_classification_transformer_benchmark_test.py](https://github.com/keras-team/tf-keras/blob/master/tf_keras/benchmarks/keras_examples_benchmarks/text_classification_transformer_benchmark_test.py): Text classification with custom transformer block. - [reuters_mlp_benchmark_test.py](https://github.com/keras-team/tf-keras/blob/master/tf_keras/benchmarks/keras_examples_benchmarks/reuters_mlp_benchmark_test.py): Simple MLP on Reuters newswire topic classification dataset. #### Other examples - [antirectifier_benchmark_test.py](https://github.com/keras-team/tf-keras/blob/master/tf_keras/benchmarks/keras_examples_benchmarks/antirectifier_benchmark_test.py): Simple custom layer example. - [mnist_irnn_benchmark_test.py](https://github.com/keras-team/tf-keras/blob/master/tf_keras/benchmarks/keras_examples_benchmarks/mnist_irnn_benchmark_test.py):Reproduction of the IRNN experiment with pixel-by-pixel sequential MNIST in ["A Simple Way to Initialize Recurrent Networks of Rectified Linear Units"](https://arxiv.org/abs/1504.00941) by Le et al. ### Available benchmark results The listed benchmark results are obtained by running on Google Cloud Platform (GCP) with the following setup: </br> - GPU: 2 x Tesla V100</br> - OS: Ubuntu 18.04 </br> - CPU: 8 x vCPUs, 30 GB memory </br> - CUDA: 10.1 </br> - Bazel: 3.1.0 </br> If you want to run benchmark tests on GPU, please make sure you already installed CUDA and other dependencies by following the instructions from the [official tutorial](https://www.tensorflow.org/install/gpu) for GPU support.</br> Metrics for following benchmarks:</br> - Batch_size: Number of samples per batch of computation.</br> - Wall_time: Total time to run benchmark test in seconds.</br> - Avg_epoch_time: Average time for each epoch.</br> - Exp_per_sec: Examples per second. The number of examples processed in one second.</br> - Distribution_Strategy: The [distribution strategies](https://www.tensorflow.org/guide/distributed_training) used in the benchmark. </br> #### Cifar10 CNN benchmark | Batch_size | Wall_time | Avg_epoch_time | Exp_per_sec | Distribution_Strategy :---: | :--------: | :-------: | :------------: | :---------: | :-------------------: CPU | 256 | 1393.4896 | 3.21 | 15397.69 | `off` GPU:2 | 256 | 76.49 | 2.59 | 18758.01 | `mirrored` #### MNIST Conv benchmark | Batch_size | Wall_time | Avg_epoch_time | Exp_per_sec | Distribution_Strategy :---: | :--------: | :-------: | :------------: | :---------: | :-------------------: CPU | 256 | 196.52 | 12.19 | 4915.26 | `off` GPU:2 | 256 | 24.5794 | 1.21 | 47899.32 | `mirrored` #### MNIST Hierarchical RNN (HRNN) benchmark | Batch_size | Wall_time | Avg_epoch_time | Exp_per_sec | Distribution_Strategy :---: | :--------: | :-------: | :------------: | :---------: | :-------------------: CPU | 256 | 654.05 | 218.68 | 274.24 | `off` GPU:2 | 256 | 20.77 | 3.73 | 15088.06 | `mirrored` #### Bidirectional LSTM benchmark | Batch_size | Wall_time | Avg_epoch_time | Exp_per_sec | Distribution_Strategy :---: | :--------: | :-------: | :------------: | :---------: | :-------------------: CPU | 512 | 225.57 | 72.55 | 344.70 | `off` GPU:2 | 512 | 23.54 | 3.23 | 7532.53 | `mirrored` #### Text classification with transformer benchmark | Batch_size | Wall_time | Avg_epoch_time | Exp_per_sec | Distribution_Strategy :---: | :--------: | :-------: | :------------: | :---------: | :-------------------: CPU | 512 | 109.22 | 35.93 | 698.10 | `off` GPU:2 | 512 | 9.28 | 0.83 | 26567.54 | `mirrored` #### MLP benchmark | Batch_size | Wall_time | Avg_epoch_time | Exp_per_sec | Distribution_Strategy :---: | :--------: | :-------: | :------------: | :---------: | :-------------------: CPU | 128 | 3.76 | 0.54 | 17678.54 | `off` GPU:2 | 128 | 5.91 | 0.30 | 25435.14 | `mirrored` #### Antirectifier benchmark | Batch_size | Wall_time | Avg_epoch_time | Exp_per_sec | Distribution_Strategy :---: | :--------: | :-------: | :------------: | :---------: | :-------------------: CPU | 512 | 6.77 | 1.79 | 30916.39 | `off` GPU:2 | 512 | 6.81 | 0.66 | 66563.17 | `mirrored` #### IRNN benchmark | Batch_size | Wall_time | Avg_epoch_time | Exp_per_sec | Distribution_Strategy :---: | :--------: | :-------: | :------------: | :---------: | :-------------------: CPU | 1024 | 213.00 | 69.01 | 868.08 | `off` GPU:2 | 1024 | 92.71 | 29.12 | 2042.94 | `mirrored` **Note**: For the small models, running on GPU might be even slower than CPU. The potential reason is, training small models is not computation dominant, and there might be some overhead on model replication and data sharding with distributed training on GPUs. ## Install Bazel This step can be skipped if Bazel is already installed. </br> [Bazel](https://bazel.build/) is used to build targets based on BUILD files. It will take a while for the first time because it will compile all dependencies from your BUILD file. For the next time, Bazel will use the cache and it’ll be much faster. For Ubuntu OS, please use the following steps for Bazel installation. For other platforms, you may follow the corresponding guide for the installation. 1. Add bazel as package source ```shell sudo apt install curl gnupg ``` ```shell curl https://bazel.build/bazel-release.pub.gpg | sudo apt-key add - ``` ```shell echo "deb [arch=amd64] https://storage.googleapis.com/bazel-apt stable jdk1.8" | sudo tee /etc/apt/sources.list.d/bazel.list ``` Before we install the bazel, We should take a look for a bazel version that can build the specific tensorflow version, you can check it from [here](https://www.tensorflow.org/install/source#tested_build_configurations). In addition, you can follow the instructions from [Bazel website](https://docs.bazel.build/versions/3.4.0/install.html). 2. Install Bazel ```shell sudo apt update && sudo apt install bazel-`version` ``` ## Run benchmarks To run benchmarks in [keras/benchmarks](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/python/tf_keras/benchmarks), please take the following steps: 1. Pull the latest tensorflow repo from GitHub. 2. Install the Bazel tool which works with tensorflow, please take a look for the [Install bazel](#install-bazel) section. 3. To run benchmarks with Bazel, use the `--benchmarks=.` flags to specify the benchmarks to run. - To run all benchmarks on CPU ```shell bazel run -c opt benchmark_test -- --benchmarks=. ``` - To run all benchmarks on GPU ```shell bazel run run --config=cuda -c opt --copt="-mavx" benchmarks_test -- --benchmarks=. ``` - To run a subset of benchmarks using `--benchmarks` flag, `--benchmarks`: the list of benchmarks to run. The specified value is interpreted as a regular expression and any benchmarks whose name contains a partial match to the regular expression is executed. e.g. `--benchmarks=".*lstm*."`, will run all lstm layer related benchmarks. ## Add new benchmarks To add a new benchmark, please take the following steps: 1. Create your own benchmark test file, `xxxx_benchmark_test.py`. 2. Import `benchmark_util` to measure and track performance if needed. 3. Create class which inherits from `tf.test.Benchmark` 4. Define and load dataset in `__init__` method. 5. Design and create a model in `_build_model` method. 6. Define the benchmark_xxx method to measure the performance of benchmarks with different hyper parameters, such as `batch_size`, `run_iters`, `distribution_strategy` and etc. You can check examples from [here](https://github.com/keras-team/tf-keras/blob/master/tf_keras/benchmarks/keras_examples_benchmarks/bidirectional_lstm_benchmark_test.py#L60). 7. Add the benchmark target to the [BUILD](https://github.com/keras-team/tf-keras/blob/master/tf_keras/benchmarks/BUILD) file. ## Troubleshooting 1. tensorflow.python.framework.errors_impl.InternalError: CUDA runtime implicit initialization on GPU:0 failed. Status: device kernel image is invalid - Make sure CUDA is installed on your machine. - Pull the latest tensorflow repo and run the `./configure` in the root folder of tensorflow. It will help you to create the configuration file which shows your local environment. Please check [this post](https://www.tensorflow.org/install/source#configure_the_build) for more details.
tf-keras/tf_keras/benchmarks/keras_examples_benchmarks/README.md/0
{ "file_path": "tf-keras/tf_keras/benchmarks/keras_examples_benchmarks/README.md", "repo_id": "tf-keras", "token_count": 4330 }
197
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Memory profile on TF-Keras model. To add a new model for memory profile: 1. Create the model. 2. Decorate it with `@memory_profiler.profile`. 3. Add the model function to the dict `models`. """ import numpy as np from absl import app from absl import flags from absl import logging import tf_keras as keras try: import memory_profiler except ImportError: memory_profiler = None FLAGS = flags.FLAGS flags.DEFINE_string("model", None, "The model to run memory profiler.") def main(_): @memory_profiler.profile def _imdb_lstm_model(): """LSTM model.""" x_train = np.random.randint(0, 1999, size=(2500, 100)) y_train = np.random.random((2500, 1)) # IMDB LSTM model. model = keras.Sequential() model.add(keras.layers.Embedding(20000, 128)) model.add(keras.layers.LSTM(128, dropout=0.2, recurrent_dropout=0.2)) model.add(keras.layers.Dense(1, activation="sigmoid")) model.compile("sgd", "mse") # Warm up the model with one epoch. model.fit(x_train, y_train, batch_size=512, epochs=3) # Add the model for memory profile. models = { "lstm": _imdb_lstm_model, } if FLAGS.model in models: logging.info("Run memory profile on %s.", FLAGS.model) run_model = models[FLAGS.model] run_model() else: logging.info("The model does not exist. Please verify the model name.") if __name__ == "__main__": flags.mark_flags_as_required(["model"]) if memory_profiler: app.run(main)
tf-keras/tf_keras/benchmarks/model_memory_profile.py/0
{ "file_path": "tf-keras/tf_keras/benchmarks/model_memory_profile.py", "repo_id": "tf-keras", "token_count": 809 }
198
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Constraints: functions that impose constraints on weight values.""" import warnings import tensorflow.compat.v2 as tf from tf_keras import backend from tf_keras.saving.legacy import serialization as legacy_serialization from tf_keras.saving.serialization_lib import deserialize_keras_object from tf_keras.saving.serialization_lib import serialize_keras_object # isort: off from tensorflow.python.util.tf_export import keras_export from tensorflow.tools.docs import doc_controls @keras_export("keras.constraints.Constraint") class Constraint: """Base class for weight constraints. A `Constraint` instance works like a stateless function. Users who subclass this class should override the `__call__` method, which takes a single weight parameter and return a projected version of that parameter (e.g. normalized or clipped). Constraints can be used with various Keras layers via the `kernel_constraint` or `bias_constraint` arguments. Here's a simple example of a non-negative weight constraint: >>> class NonNegative(tf.keras.constraints.Constraint): ... ... def __call__(self, w): ... return w * tf.cast(tf.math.greater_equal(w, 0.), w.dtype) >>> weight = tf.constant((-1.0, 1.0)) >>> NonNegative()(weight) <tf.Tensor: shape=(2,), dtype=float32, numpy=array([0., 1.], dtype=float32)> >>> tf.keras.layers.Dense(4, kernel_constraint=NonNegative()) """ def __call__(self, w): """Applies the constraint to the input weight variable. By default, the inputs weight variable is not modified. Users should override this method to implement their own projection function. Args: w: Input weight variable. Returns: Projected variable (by default, returns unmodified inputs). """ return w def get_config(self): """Returns a Python dict of the object config. A constraint config is a Python dictionary (JSON-serializable) that can be used to reinstantiate the same object. Returns: Python dict containing the configuration of the constraint object. """ return {} @classmethod def from_config(cls, config): """Instantiates a weight constraint from a configuration dictionary. Example: ```python constraint = UnitNorm() config = constraint.get_config() constraint = UnitNorm.from_config(config) ``` Args: config: A Python dictionary, the output of `get_config`. Returns: A `tf.keras.constraints.Constraint` instance. """ return cls(**config) @keras_export("keras.constraints.MaxNorm", "keras.constraints.max_norm") class MaxNorm(Constraint): """MaxNorm weight constraint. Constrains the weights incident to each hidden unit to have a norm less than or equal to a desired value. Also available via the shortcut function `tf.keras.constraints.max_norm`. Args: max_value: the maximum norm value for the incoming weights. axis: integer, axis along which to calculate weight norms. For instance, in a `Dense` layer the weight matrix has shape `(input_dim, output_dim)`, set `axis` to `0` to constrain each weight vector of length `(input_dim,)`. In a `Conv2D` layer with `data_format="channels_last"`, the weight tensor has shape `(rows, cols, input_depth, output_depth)`, set `axis` to `[0, 1, 2]` to constrain the weights of each filter tensor of size `(rows, cols, input_depth)`. """ def __init__(self, max_value=2, axis=0): self.max_value = max_value self.axis = axis @doc_controls.do_not_generate_docs def __call__(self, w): norms = backend.sqrt( tf.reduce_sum(tf.square(w), axis=self.axis, keepdims=True) ) desired = backend.clip(norms, 0, self.max_value) return w * (desired / (backend.epsilon() + norms)) @doc_controls.do_not_generate_docs def get_config(self): return {"max_value": self.max_value, "axis": self.axis} @keras_export("keras.constraints.NonNeg", "keras.constraints.non_neg") class NonNeg(Constraint): """Constrains the weights to be non-negative. Also available via the shortcut function `tf.keras.constraints.non_neg`. """ def __call__(self, w): return w * tf.cast(tf.greater_equal(w, 0.0), backend.floatx()) @keras_export("keras.constraints.UnitNorm", "keras.constraints.unit_norm") class UnitNorm(Constraint): """Constrains the weights incident to each hidden unit to have unit norm. Also available via the shortcut function `tf.keras.constraints.unit_norm`. Args: axis: integer, axis along which to calculate weight norms. For instance, in a `Dense` layer the weight matrix has shape `(input_dim, output_dim)`, set `axis` to `0` to constrain each weight vector of length `(input_dim,)`. In a `Conv2D` layer with `data_format="channels_last"`, the weight tensor has shape `(rows, cols, input_depth, output_depth)`, set `axis` to `[0, 1, 2]` to constrain the weights of each filter tensor of size `(rows, cols, input_depth)`. """ def __init__(self, axis=0): self.axis = axis @doc_controls.do_not_generate_docs def __call__(self, w): return w / ( backend.epsilon() + backend.sqrt( tf.reduce_sum(tf.square(w), axis=self.axis, keepdims=True) ) ) @doc_controls.do_not_generate_docs def get_config(self): return {"axis": self.axis} @keras_export("keras.constraints.MinMaxNorm", "keras.constraints.min_max_norm") class MinMaxNorm(Constraint): """MinMaxNorm weight constraint. Constrains the weights incident to each hidden unit to have the norm between a lower bound and an upper bound. Also available via the shortcut function `tf.keras.constraints.min_max_norm`. Args: min_value: the minimum norm for the incoming weights. max_value: the maximum norm for the incoming weights. rate: rate for enforcing the constraint: weights will be rescaled to yield `(1 - rate) * norm + rate * norm.clip(min_value, max_value)`. Effectively, this means that rate=1.0 stands for strict enforcement of the constraint, while rate<1.0 means that weights will be rescaled at each step to slowly move towards a value inside the desired interval. axis: integer, axis along which to calculate weight norms. For instance, in a `Dense` layer the weight matrix has shape `(input_dim, output_dim)`, set `axis` to `0` to constrain each weight vector of length `(input_dim,)`. In a `Conv2D` layer with `data_format="channels_last"`, the weight tensor has shape `(rows, cols, input_depth, output_depth)`, set `axis` to `[0, 1, 2]` to constrain the weights of each filter tensor of size `(rows, cols, input_depth)`. """ def __init__(self, min_value=0.0, max_value=1.0, rate=1.0, axis=0): self.min_value = min_value self.max_value = max_value self.rate = rate self.axis = axis @doc_controls.do_not_generate_docs def __call__(self, w): norms = backend.sqrt( tf.reduce_sum(tf.square(w), axis=self.axis, keepdims=True) ) desired = ( self.rate * backend.clip(norms, self.min_value, self.max_value) + (1 - self.rate) * norms ) return w * (desired / (backend.epsilon() + norms)) @doc_controls.do_not_generate_docs def get_config(self): return { "min_value": self.min_value, "max_value": self.max_value, "rate": self.rate, "axis": self.axis, } @keras_export( "keras.constraints.RadialConstraint", "keras.constraints.radial_constraint" ) class RadialConstraint(Constraint): """Constrains `Conv2D` kernel weights to be the same for each radius. Also available via the shortcut function `tf.keras.constraints.radial_constraint`. For example, the desired output for the following 4-by-4 kernel: ``` kernel = [[v_00, v_01, v_02, v_03], [v_10, v_11, v_12, v_13], [v_20, v_21, v_22, v_23], [v_30, v_31, v_32, v_33]] ``` is this:: ``` kernel = [[v_11, v_11, v_11, v_11], [v_11, v_33, v_33, v_11], [v_11, v_33, v_33, v_11], [v_11, v_11, v_11, v_11]] ``` This constraint can be applied to any `Conv2D` layer version, including `Conv2DTranspose` and `SeparableConv2D`, and with either `"channels_last"` or `"channels_first"` data format. The method assumes the weight tensor is of shape `(rows, cols, input_depth, output_depth)`. """ @doc_controls.do_not_generate_docs def __call__(self, w): w_shape = w.shape if w_shape.rank is None or w_shape.rank != 4: raise ValueError( "The weight tensor must have rank 4. " f"Received weight tensor with shape: {w_shape}" ) height, width, channels, kernels = w_shape w = backend.reshape(w, (height, width, channels * kernels)) # TODO(cpeter): Switch map_fn for a faster tf.vectorized_map once # backend.switch is supported. w = backend.map_fn( self._kernel_constraint, backend.stack(tf.unstack(w, axis=-1), axis=0), ) return backend.reshape( backend.stack(tf.unstack(w, axis=0), axis=-1), (height, width, channels, kernels), ) def _kernel_constraint(self, kernel): """Radially constraints a kernel with shape (height, width, channels).""" padding = backend.constant([[1, 1], [1, 1]], dtype="int32") kernel_shape = backend.shape(kernel)[0] start = backend.cast(kernel_shape / 2, "int32") kernel_new = backend.switch( backend.cast(tf.math.floormod(kernel_shape, 2), "bool"), lambda: kernel[start - 1 : start, start - 1 : start], lambda: kernel[start - 1 : start, start - 1 : start] + backend.zeros((2, 2), dtype=kernel.dtype), ) index = backend.switch( backend.cast(tf.math.floormod(kernel_shape, 2), "bool"), lambda: backend.constant(0, dtype="int32"), lambda: backend.constant(1, dtype="int32"), ) while_condition = lambda index, *args: backend.less(index, start) def body_fn(i, array): return i + 1, tf.pad( array, padding, constant_values=kernel[start + i, start + i] ) _, kernel_new = tf.compat.v1.while_loop( while_condition, body_fn, [index, kernel_new], shape_invariants=[index.get_shape(), tf.TensorShape([None, None])], ) return kernel_new # Aliases. max_norm = MaxNorm non_neg = NonNeg unit_norm = UnitNorm min_max_norm = MinMaxNorm radial_constraint = RadialConstraint # Legacy aliases. maxnorm = max_norm nonneg = non_neg unitnorm = unit_norm @keras_export("keras.constraints.serialize") def serialize(constraint, use_legacy_format=False): if constraint is None: return None if not isinstance(constraint, Constraint): warnings.warn( "The `keras.constraints.serialize()` API should only be used for " "objects of type `keras.constraints.Constraint`. Found an instance " f"of type {type(constraint)}, which may lead to improper " "serialization." ) if use_legacy_format: return legacy_serialization.serialize_keras_object(constraint) return serialize_keras_object(constraint) @keras_export("keras.constraints.deserialize") def deserialize(config, custom_objects=None, use_legacy_format=False): if use_legacy_format: return legacy_serialization.deserialize_keras_object( config, module_objects=globals(), custom_objects=custom_objects, printable_module_name="constraint", ) return deserialize_keras_object( config, module_objects=globals(), custom_objects=custom_objects, printable_module_name="constraint", ) @keras_export("keras.constraints.get") def get(identifier): """Retrieves a TF-Keras constraint function.""" if identifier is None: return None if isinstance(identifier, dict): use_legacy_format = "module" not in identifier return deserialize(identifier, use_legacy_format=use_legacy_format) elif isinstance(identifier, str): config = {"class_name": str(identifier), "config": {}} return get(config) elif callable(identifier): return identifier else: raise ValueError( f"Could not interpret constraint function identifier: {identifier}" )
tf-keras/tf_keras/constraints.py/0
{ "file_path": "tf-keras/tf_keras/constraints.py", "repo_id": "tf-keras", "token_count": 5758 }
199
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for CollectiveAllReduceStrategy.""" import tensorflow.compat.v2 as tf from absl.testing import parameterized from tf_keras import layers from tf_keras.engine import training from tf_keras.optimizers.legacy import ( gradient_descent as gradient_descent_keras, ) from tf_keras.testing_infra import test_utils @test_utils.run_v2_only @tf.__internal__.distribute.combinations.generate( tf.__internal__.test.combinations.combine( strategy=[ tf.__internal__.distribute.combinations.multi_worker_mirrored_2x1_cpu, # noqa: E501 tf.__internal__.distribute.combinations.multi_worker_mirrored_2x1_gpu, # noqa: E501 ], mode=["eager"], ) ) class MultiWorkerMirroredStrategyTest(tf.test.TestCase, parameterized.TestCase): def testFitWithoutStepsPerEpochPartialBatch(self, strategy): def _model_fn(): x = layers.Input(shape=(1,), name="input") y = layers.Dense(1, name="dense")(x) model = training.Model(x, y) return model def _get_dataset(): inputs = tf.expand_dims(tf.constant(range(10)), axis=1) targets = tf.expand_dims(tf.constant(range(10)), axis=1) # Make global batch size 12 for 2 replicas and a non-repeated # dataset with 10 elements so that we have partial batch dataset = tf.data.Dataset.from_tensor_slices( (inputs, targets) ).batch(12, drop_remainder=False) return dataset with strategy.scope(): optimizer_fn = gradient_descent_keras.SGD optimizer = optimizer_fn(0.001) model = _model_fn() loss = "mse" metrics = ["mae"] model.compile(optimizer, loss, metrics=metrics) dataset = _get_dataset() kernel_before = model.get_weights()[0][0] model.fit(dataset, epochs=10) kernel_after = model.get_weights()[0][0] self.assertNotEqual(kernel_before, kernel_after) self.assertGreater(abs(kernel_before - 1), abs(kernel_after - 1)) if __name__ == "__main__": tf.__internal__.distribute.multi_process_runner.test_main()
tf-keras/tf_keras/distribute/collective_all_reduce_strategy_test.py/0
{ "file_path": "tf-keras/tf_keras/distribute/collective_all_reduce_strategy_test.py", "repo_id": "tf-keras", "token_count": 1139 }
200
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Correctness tests for tf.keras DNN model using DistributionStrategy.""" import numpy as np import tensorflow.compat.v2 as tf import tf_keras as keras from tf_keras import backend from tf_keras.distribute import keras_correctness_test_base from tf_keras.distribute import strategy_combinations from tf_keras.optimizers.legacy import ( gradient_descent as gradient_descent_keras, ) from tf_keras.testing_infra import test_utils def all_strategy_combinations_with_eager_and_graph_modes(): return tf.__internal__.test.combinations.combine( distribution=strategy_combinations.all_strategies, mode=["graph", "eager"], ) + tf.__internal__.test.combinations.combine( distribution=strategy_combinations.multi_worker_mirrored_strategies, mode="eager", ) def all_strategy_combinations_with_graph_mode(): return tf.__internal__.test.combinations.combine( distribution=keras_correctness_test_base.all_strategies, mode=["graph"] ) def is_default_strategy(strategy): with strategy.scope(): return not tf.distribute.has_strategy() @test_utils.run_all_without_tensor_float_32( "Uses Dense layers, which call matmul" ) class TestDistributionStrategyDnnCorrectness( keras_correctness_test_base.TestDistributionStrategyCorrectnessBase ): def get_model( self, initial_weights=None, distribution=None, input_shapes=None ): with keras_correctness_test_base.MaybeDistributionScope(distribution): # We add few non-linear layers to make it non-trivial. model = keras.Sequential() model.add( keras.layers.Dense(10, activation="relu", input_shape=(1,)) ) model.add( keras.layers.Dense( 10, activation="relu", kernel_regularizer=keras.regularizers.l2(1e-4), ) ) model.add(keras.layers.Dense(10, activation="relu")) model.add(keras.layers.Dense(1)) if initial_weights: model.set_weights(initial_weights) model.compile( loss=keras.losses.mean_squared_error, optimizer=gradient_descent_keras.SGD(0.05), metrics=["mse"], ) return model def get_data(self): x_train = np.random.rand(9984, 1).astype("float32") y_train = 3 * x_train x_predict = np.array([[1.0], [2.0], [3.0], [4.0]], dtype=np.float32) return x_train, y_train, x_predict def get_data_with_partial_last_batch(self): x_train = np.random.rand(10000, 1).astype("float32") y_train = 3 * x_train x_eval = np.random.rand(10000, 1).astype("float32") y_eval = 3 * x_eval x_predict = np.array([[1.0], [2.0], [3.0], [4.0]], dtype=np.float32) return x_train, y_train, x_eval, y_eval, x_predict def get_data_with_partial_last_batch_eval(self): x_train = np.random.rand(9984, 1).astype("float32") y_train = 3 * x_train x_eval = np.random.rand(10000, 1).astype("float32") y_eval = 3 * x_eval x_predict = np.array([[1.0], [2.0], [3.0], [4.0]], dtype=np.float32) return x_train, y_train, x_eval, y_eval, x_predict @tf.__internal__.distribute.combinations.generate( keras_correctness_test_base.all_strategy_and_input_config_combinations() + keras_correctness_test_base.multi_worker_mirrored_eager() ) def test_dnn_correctness( self, distribution, use_numpy, use_validation_data ): self.run_correctness_test(distribution, use_numpy, use_validation_data) @tf.__internal__.distribute.combinations.generate( keras_correctness_test_base.test_combinations_with_tpu_strategies_graph() # noqa: E501 + keras_correctness_test_base.multi_worker_mirrored_eager() ) def test_dnn_correctness_with_partial_last_batch_eval( self, distribution, use_numpy, use_validation_data ): self.run_correctness_test( distribution, use_numpy, use_validation_data, partial_last_batch="eval", ) @tf.__internal__.distribute.combinations.generate( keras_correctness_test_base.strategy_minus_tpu_and_input_config_combinations_eager() # noqa: E501 + keras_correctness_test_base.multi_worker_mirrored_eager() ) def test_dnn_correctness_with_partial_last_batch( self, distribution, use_numpy, use_validation_data ): distribution.extended.experimental_enable_get_next_as_optional = True self.run_correctness_test( distribution, use_numpy, use_validation_data, partial_last_batch="train_and_eval", training_epochs=1, ) @tf.__internal__.distribute.combinations.generate( all_strategy_combinations_with_graph_mode() ) def test_dnn_with_dynamic_learning_rate(self, distribution): self.run_dynamic_lr_test(distribution) class TestDistributionStrategyDnnMetricCorrectness( keras_correctness_test_base.TestDistributionStrategyCorrectnessBase ): def get_model(self, distribution=None, input_shapes=None): with distribution.scope(): model = keras.Sequential() model.add( keras.layers.Dense( 1, input_shape=(1,), kernel_initializer="ones" ) ) model.compile( loss=keras.losses.mean_squared_error, optimizer=gradient_descent_keras.SGD(0.05), metrics=[keras.metrics.BinaryAccuracy()], ) return model def run_metric_correctness_test(self, distribution): with self.cached_session(): self.set_up_test_config() x_train, y_train, _ = self.get_data() model = self.get_model(distribution=distribution) batch_size = 64 batch_size = keras_correctness_test_base.get_batch_size( batch_size, distribution ) train_dataset = tf.data.Dataset.from_tensor_slices( (x_train, y_train) ) train_dataset = keras_correctness_test_base.batch_wrapper( train_dataset, batch_size ) history = model.fit(x=train_dataset, epochs=2, steps_per_epoch=10) self.assertEqual(history.history["binary_accuracy"], [1.0, 1.0]) @tf.__internal__.distribute.combinations.generate( all_strategy_combinations_with_eager_and_graph_modes() ) def test_simple_dnn_metric_correctness(self, distribution): self.run_metric_correctness_test(distribution) class TestDistributionStrategyDnnMetricEvalCorrectness( keras_correctness_test_base.TestDistributionStrategyCorrectnessBase ): def get_model(self, distribution=None, input_shapes=None): with distribution.scope(): model = keras.Sequential() model.add( keras.layers.Dense( 3, activation="relu", input_dim=4, kernel_initializer="ones" ) ) model.add( keras.layers.Dense( 1, activation="sigmoid", kernel_initializer="ones" ) ) model.compile( loss="mae", metrics=["accuracy", keras.metrics.BinaryAccuracy()], optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.001), ) return model def run_eval_metrics_correctness_test(self, distribution): with self.cached_session(): self.set_up_test_config() model = self.get_model(distribution=distribution) # verify correctness of stateful and stateless metrics. x = np.ones((100, 4)).astype("float32") y = np.ones((100, 1)).astype("float32") dataset = tf.data.Dataset.from_tensor_slices((x, y)).repeat() dataset = keras_correctness_test_base.batch_wrapper(dataset, 4) outs = model.evaluate(dataset, steps=10) self.assertEqual(outs[1], 1.0) self.assertEqual(outs[2], 1.0) y = np.zeros((100, 1)).astype("float32") dataset = tf.data.Dataset.from_tensor_slices((x, y)).repeat() dataset = keras_correctness_test_base.batch_wrapper(dataset, 4) outs = model.evaluate(dataset, steps=10) self.assertEqual(outs[1], 0.0) self.assertEqual(outs[2], 0.0) @tf.__internal__.distribute.combinations.generate( all_strategy_combinations_with_eager_and_graph_modes() ) def test_identity_model_metric_eval_correctness(self, distribution): self.run_eval_metrics_correctness_test(distribution) class SubclassedModel(keras.Model): def __init__(self, initial_weights, input_shapes): super().__init__() self.dense1 = keras.layers.Dense( 10, activation="relu", input_shape=(1,) ) self.dense2 = keras.layers.Dense( 10, activation="relu", kernel_regularizer=keras.regularizers.l2(1e-4), ) self.dense3 = keras.layers.Dense(10, activation="relu") self.dense4 = keras.layers.Dense(1) if input_shapes: self.build(input_shapes) else: # This covers cases when the input is DatasetV1Adapter. self.build((None, 1)) if initial_weights: self.set_weights(initial_weights) def call(self, inputs): x = self.dense1(inputs) x = self.dense2(x) x = self.dense3(x) return self.dense4(x) @test_utils.run_all_without_tensor_float_32( "Uses Dense layers, which call matmul" ) class TestDistributionStrategyDnnCorrectnessWithSubclassedModel( TestDistributionStrategyDnnCorrectness ): def get_model( self, initial_weights=None, distribution=None, input_shapes=None ): with keras_correctness_test_base.MaybeDistributionScope(distribution): model = SubclassedModel(initial_weights, input_shapes) model.compile( loss=keras.losses.mean_squared_error, optimizer=gradient_descent_keras.SGD(0.05), metrics=["mse"], ) return model @tf.__internal__.distribute.combinations.generate( keras_correctness_test_base.all_strategy_and_input_config_combinations() + keras_correctness_test_base.multi_worker_mirrored_eager() ) def test_dnn_correctness( self, distribution, use_numpy, use_validation_data ): if (tf.executing_eagerly()) or is_default_strategy(distribution): self.run_correctness_test( distribution, use_numpy, use_validation_data ) elif ( backend.is_tpu_strategy(distribution) and not tf.executing_eagerly() ): with self.assertRaisesRegex( ValueError, "Expected `model` argument to be a functional `Model` " "instance, but got a subclassed model instead.", ): self.run_correctness_test( distribution, use_numpy, use_validation_data ) else: with self.assertRaisesRegex( ValueError, "We currently do not support distribution strategy with a " "`Sequential` model that is created without `input_shape`/" "`input_dim` set in its first layer or a subclassed model.", ): self.run_correctness_test( distribution, use_numpy, use_validation_data ) @tf.__internal__.distribute.combinations.generate( all_strategy_combinations_with_graph_mode() ) def test_dnn_with_dynamic_learning_rate(self, distribution): if ( tf.executing_eagerly() and not backend.is_tpu_strategy(distribution) ) or is_default_strategy(distribution): self.run_dynamic_lr_test(distribution) elif backend.is_tpu_strategy(distribution): with self.assertRaisesRegex( ValueError, "Expected `model` argument to be a functional `Model` " "instance, but got a subclassed model instead.", ): self.run_dynamic_lr_test(distribution) else: with self.assertRaisesRegex( ValueError, "We currently do not support distribution strategy with a " "`Sequential` model that is created without `input_shape`/" "`input_dim` set in its first layer or a subclassed model.", ): self.run_dynamic_lr_test(distribution) @tf.__internal__.distribute.combinations.generate( keras_correctness_test_base.test_combinations_with_tpu_strategies_graph() # noqa: E501 ) def test_dnn_correctness_with_partial_last_batch_eval( self, distribution, use_numpy, use_validation_data ): with self.assertRaisesRegex( ValueError, "Expected `model` argument to be a functional `Model` instance, " "but got a subclassed model instead.", ): self.run_correctness_test( distribution, use_numpy, use_validation_data, partial_last_batch="eval", ) if __name__ == "__main__": tf.__internal__.distribute.multi_process_runner.test_main()
tf-keras/tf_keras/distribute/keras_dnn_correctness_test.py/0
{ "file_path": "tf-keras/tf_keras/distribute/keras_dnn_correctness_test.py", "repo_id": "tf-keras", "token_count": 6706 }
201
# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for utils.""" import numpy as np import tensorflow.compat.v2 as tf from absl.testing import parameterized from tf_keras import layers from tf_keras.dtensor import dtensor_api as dtensor from tf_keras.dtensor import test_util from tf_keras.dtensor import utils class UtilsTest(test_util.DTensorBaseTest): def setUp(self): super().setUp() global_ids = test_util.create_device_ids_array((2, 2)) local_device_ids = np.ravel(global_ids).tolist() mesh_dict = { "CPU": dtensor.Mesh( ["X", "Y"], global_ids, local_device_ids, test_util.create_device_list((2, 2), "CPU"), ) } self.mesh = self.configTestMesh(mesh_dict) self.layout = dtensor.Layout.replicated(self.mesh, rank=1) @parameterized.named_parameters( ("Dense", layers.Dense, {"units": 4}, ["kernel_layout", "bias_layout"]), ( "Conv2D", layers.Conv2D, {"filters": 2, "kernel_size": 3}, ["kernel_layout", "bias_layout"], ), ( "BatchNorm", layers.BatchNormalization, {}, [ "beta_layout", "gamma_layout", "moving_mean_layout", "moving_variance_layout", ], ), ( "Embedding", layers.Embedding, {"input_dim": 100, "output_dim": 20}, ["embeddings_layout"], ), (" PReLU", layers.PReLU, {}, ["alpha_layout"]), ( "SeparableConv2D", layers.SeparableConv2D, {"filters": 2, "kernel_size": 3}, ["depthwise_layout", "pointwise_layout", "bias_layout"], ), # TODO(scottzhu): Probably add more coverage for all the layers. ) def test_all_layout_decorator(self, layer_cls, init_args, layout_args): layer_cls.__init__ = utils.allow_initializer_layout(layer_cls.__init__) # Make sure we don't set the layout attribute if the init kwargs is not # provided. layer = layer_cls(**init_args) for layout_arg in layout_args: self.assertFalse(hasattr(layer, layout_arg)) layout_kwargs = {k: self.layout for k in layout_args} init_args.update(layout_kwargs) layer = layer_cls(**init_args) for layout_arg in layout_args: self.assertEqual(getattr(layer, layout_arg), self.layout) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/dtensor/utils_test.py/0
{ "file_path": "tf-keras/tf_keras/dtensor/utils_test.py", "repo_id": "tf-keras", "token_count": 1460 }
202
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests specific to deferred-build `Sequential` models.""" import os import unittest import numpy as np import tensorflow.compat.v2 as tf import tf_keras as keras from tf_keras.testing_infra import test_combinations from tf_keras.testing_infra import test_utils try: import h5py except ImportError: h5py = None @test_utils.run_v2_only class TestDeferredSequential(test_combinations.TestCase): @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_build_behavior(self): # Test graph network creation after __call__ model = get_model() model(np.random.random((2, 6))) self.assertLen(model.weights, 4) self.assertTrue(model._is_graph_network) self.assertLen(model.inputs, 1) self.assertLen(model.outputs, 1) self.assertEqual(model.inputs[0].shape.as_list(), [2, 6]) self.assertEqual(model.outputs[0].shape.as_list(), [2, 2]) # Test effect of new __call__ with a different shape model(np.random.random((3, 6))) self.assertLen(model.inputs, 1) self.assertLen(model.outputs, 1) self.assertEqual(model.inputs[0].shape.as_list(), [None, 6]) self.assertEqual(model.outputs[0].shape.as_list(), [None, 2]) model(np.random.random((4, 6))) self.assertLen(model.inputs, 1) self.assertLen(model.outputs, 1) self.assertEqual(model.inputs[0].shape.as_list(), [None, 6]) self.assertEqual(model.outputs[0].shape.as_list(), [None, 2]) # Test graph network creation after build model = get_model() model.build((None, 6)) self.assertLen(model.weights, 4) self.assertTrue(model._is_graph_network) self.assertLen(model.inputs, 1) self.assertLen(model.outputs, 1) self.assertEqual(model.inputs[0].shape.as_list(), [None, 6]) self.assertEqual(model.outputs[0].shape.as_list(), [None, 2]) # Test graph network creation after compile/fit model = get_model() model.compile( loss="mse", optimizer="rmsprop", metrics=[keras.metrics.CategoricalAccuracy()], run_eagerly=test_utils.should_run_eagerly(), ) model.fit(np.zeros((2, 6)), np.zeros((2, 2))) self.assertLen(model.weights, 4) self.assertTrue(model._is_graph_network) self.assertLen(model.inputs, 1) self.assertLen(model.outputs, 1) # Inconsistency here: with eager `fit`, the model is built with shape # (2, 6), but with graph function `fit`, it is built with shape `(None, # 6)`. This is likely due to our assumption "the batch size should be # dynamic" at the level of `Model`. TODO(fchollet): investigate and # resolve. self.assertEqual(model.inputs[0].shape.as_list()[-1], 6) self.assertEqual(model.outputs[0].shape.as_list()[-1], 2) @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_add_and_pop(self): model = get_model() model.build((None, 6)) self.assertTrue(model.built) self.assertTrue(model._is_graph_network) self.assertLen(model.layers, 3) self.assertLen(model.weights, 4) model.pop() self.assertTrue(model.built) self.assertTrue(model._is_graph_network) self.assertLen(model.layers, 2) self.assertLen(model.weights, 2) model.add(keras.layers.Dense(2)) self.assertTrue(model.built) self.assertTrue(model._is_graph_network) self.assertLen(model.layers, 3) self.assertLen(model.weights, 4) @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_feature_extraction(self): # This tests layer connectivity reset when rebuilding model = get_model() model(np.random.random((3, 6))) # First build model(np.random.random((4, 6))) # Triggers a rebuild # Classic feature extractor pattern extractor = keras.Model( inputs=model.inputs, outputs=[layer.output for layer in model.layers], ) # Check that inputs and outputs are connected _ = extractor(np.random.random((4, 6))) @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_saving_keras_v3(self): model = get_model() model(np.random.random((3, 6))) # Build model path = os.path.join(self.get_temp_dir(), "model_path.keras") model.save(path) new_model = keras.models.load_model(path) model_layers = model._flatten_layers(include_self=True, recursive=False) new_model_layers = new_model._flatten_layers( include_self=True, recursive=False ) for layer1, layer2 in zip(model_layers, new_model_layers): self.assertEqual(layer1.name, layer2.name) for w1, w2 in zip(layer1.weights, layer2.weights): self.assertAllClose(w1, w2) @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_saving_savedmodel(self): model = get_model() model(np.random.random((3, 6))) # Build model path = os.path.join(self.get_temp_dir(), "model_path") model.save(path) new_model = keras.models.load_model(path) model_layers = model._flatten_layers(include_self=True, recursive=False) new_model_layers = new_model._flatten_layers( include_self=True, recursive=False ) for layer1, layer2 in zip(model_layers, new_model_layers): self.assertEqual(layer1.name, layer2.name) for w1, w2 in zip(layer1.weights, layer2.weights): self.assertAllClose(w1, w2) @unittest.skipIf(h5py is None, "Test requires h5py") @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_saving_h5(self): path = os.path.join(self.get_temp_dir(), "model_path.h5") model = get_model() model(np.random.random((3, 6))) # Build model path = os.path.join(self.get_temp_dir(), "model_path.h5") model.save(path) new_model = keras.models.load_model(path) model_layers = model._flatten_layers(include_self=True, recursive=False) new_model_layers = new_model._flatten_layers( include_self=True, recursive=False ) for layer1, layer2 in zip(model_layers, new_model_layers): self.assertEqual(layer1.name, layer2.name) for w1, w2 in zip(layer1.weights, layer2.weights): self.assertAllClose(w1, w2) @test_combinations.run_all_keras_modes def test_shared_layer(self): # This tests that preexisting layer connectivity is preserved # when auto-building graph networks shared_layer = keras.layers.Dense(2) m1 = keras.Sequential([shared_layer]) m1(np.random.random((3, 6))) m2 = keras.Sequential([shared_layer]) m2(np.random.random((3, 6))) # Nesting case shared_layer = keras.layers.Dense(2) m1 = keras.Sequential([shared_layer]) m2 = keras.Sequential([shared_layer, m1]) m2(np.random.random((3, 2))) @test_combinations.run_all_keras_modes def test_loss_layer(self): class LossLayer(keras.layers.Layer): def call(self, inputs): self.add_loss(tf.reduce_sum(inputs)) return inputs # Test loss layer alone model = keras.Sequential([LossLayer()]) model.compile("rmsprop", run_eagerly=test_utils.should_run_eagerly()) loss = model.train_on_batch(np.ones((2, 2))) self.assertAllClose(loss, 4.0) model(np.random.random((4, 2))) # Triggers a rebuild loss = model.train_on_batch(np.ones((1, 2))) self.assertAllClose(loss, 2.0) # Test loss layer combined with another layer model = keras.Sequential( [keras.layers.Dense(1, kernel_initializer="ones"), LossLayer()] ) model.compile("rmsprop", run_eagerly=test_utils.should_run_eagerly()) loss = model.train_on_batch(np.ones((2, 2))) self.assertAllClose(loss, 4.0) model(np.random.random((4, 2))) # Triggers a rebuild loss = model.train_on_batch(np.ones((1, 2))) self.assertLess(loss, 2.0) # Test loss layer combined with external loss model = keras.Sequential( [keras.layers.Dense(1, kernel_initializer="ones"), LossLayer()] ) model.compile( "rmsprop", "mse", run_eagerly=test_utils.should_run_eagerly() ) loss = model.train_on_batch(np.ones((2, 2)), np.ones((2, 2))) model(np.random.random((4, 2))) # Triggers a rebuild loss = model.train_on_batch(np.ones((1, 2)), np.ones((1, 2))) def get_model(): model = keras.models.Sequential() model.add(keras.layers.Dense(2, name="first_layer")) model.add(keras.layers.Dropout(0.3, name="dp")) model.add(keras.layers.Dense(2, name="last_layer")) return model if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/engine/deferred_sequential_test.py/0
{ "file_path": "tf-keras/tf_keras/engine/deferred_sequential_test.py", "repo_id": "tf-keras", "token_count": 4307 }
203
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Training-related utilities.""" import abc import atexit import collections import functools import multiprocessing.pool import threading import time import numpy as np import tensorflow.compat.v2 as tf from tf_keras import backend from tf_keras import callbacks as cbks from tf_keras import losses from tf_keras import metrics as metrics_module from tf_keras.utils import data_utils from tf_keras.utils import generic_utils from tf_keras.utils import losses_utils from tf_keras.utils import tf_inspect # isort: off from tensorflow.python.platform import tf_logging as logging def is_composite_or_composite_value(tensor): """Returns true if 'tensor' is a CompositeTensor or a CT Value object.""" # TODO(b/125094323): This should be isinstance(CompositeTensor) or # isinstance(CompositeTensorValue) once we support that. return isinstance( tensor, ( tf.__internal__.CompositeTensor, tf.compat.v1.SparseTensorValue, tf.compat.v1.ragged.RaggedTensorValue, ), ) class Aggregator(object, metaclass=abc.ABCMeta): """Abstract base class used to aggregate batch-level outputs of a loop. Attributes: use_steps: Whether the loop is using `step` or `batch_size`. num_samples: Total number of samples: `batch_size * num_batches`. steps: Total number of steps. batch_size: Batch size. It is used for validation checks between inputs and outputs. results: What to return at the end of the aggregation loop. """ def __init__( self, use_steps, num_samples=None, steps=None, batch_size=None ): self.use_steps = use_steps self.num_samples = num_samples self.steps = steps self.batch_size = batch_size self.results = [] @abc.abstractmethod def create(self, batch_outs): """Creates the initial results from the first batch outputs. Args: batch_outs: A list of batch-level outputs. """ raise NotImplementedError("Must be implemented in subclasses.") @abc.abstractmethod def aggregate(self, batch_outs, batch_start=None, batch_end=None): """Aggregates batch-level results into total results. Args: batch_outs: A list of batch-level outputs. batch_start: The start index of this batch. Always `None` if `use_steps` is `True`. batch_end: The end index of this batch. Always `None` if `use_steps` is `True`. """ raise NotImplementedError("Must be implemented in subclasses.") @abc.abstractmethod def finalize(self): """Prepares the total results to be returned.""" raise NotImplementedError("Must be implemented in subclasses.") class MetricsAggregator(Aggregator): """Aggregator that calculates loss and metrics info. Attributes: use_steps: Whether the loop is using `step` or `batch_size`. num_samples: Total number of samples: `batch_size*num_batches`. steps: Total number of steps, ie number of times to iterate over a dataset to cover all samples. """ def __init__(self, use_steps, num_samples=None, steps=None): super().__init__( use_steps=use_steps, num_samples=num_samples, steps=steps, batch_size=None, ) def create(self, batch_outs): self.results = [0.0] * len(batch_outs) def aggregate(self, batch_outs, batch_start=None, batch_end=None): # Loss. if self.use_steps: self.results[0] += batch_outs[0] else: self.results[0] += batch_outs[0] * (batch_end - batch_start) # Metrics (always stateful, just grab current values.) self.results[1:] = batch_outs[1:] def finalize(self): if not self.results: raise ValueError("Empty training data.") self.results[0] /= self.num_samples or self.steps def _append_sparse_tensor_value(target, to_append): """Append sparse tensor value objects.""" # Make sure the sparse tensors are of the same size (except for the 0th # dim). if len(target.dense_shape) != len(to_append.dense_shape): raise RuntimeError( "Unable to concatenate %s and %s. The inner dense shapes do not " "have the same number of dimensions (%s vs %s)" % (target, to_append, target.dense_shape, to_append.dense_shape) ) if target.dense_shape[1:] != to_append.dense_shape[1:]: raise RuntimeError( "Unable to concatenate %s and %s. The inner dense shapes do not " "match inner dimensions (%s vs %s)" % ( target, to_append, target.dense_shape[1:], to_append.dense_shape[1:], ) ) # Add the to_append indices to target, updating the 0th value, and keeping # track of the maximum so we know the final dense_shape of this tensor. base_dim0_value = target.dense_shape[0] max_dim0_value = target.dense_shape[0] new_indices = target.indices for index in to_append.indices: # Here, we iterate through the sparse indices of the tensor to append. # For each index, we update its zeroth value (the batch index) by adding # the number of batch items in the tensor we are appending to (so an # index of [0, 0, 1] for a value that is being appended to a tensor with # 0th dim size 3 would become [3, 0, 1].) index[0] += base_dim0_value max_dim0_value = max(max_dim0_value, index[0]) new_indices = np.append(new_indices, [index], axis=0) # Extend the values array to contain all of the appended values. These will # be in the same order as the indices added above. new_values = np.concatenate((target.values, to_append.values), axis=0) # Create a new dense shape by replacing the value for the 0th dimension # with the new max dim0 value. new_dense_shape = list(target.dense_shape) new_dense_shape[0] = max_dim0_value + 1 new_dense_shape = tuple(new_dense_shape) return tf.compat.v1.SparseTensorValue( indices=new_indices, values=new_values, dense_shape=new_dense_shape ) def _append_ragged_tensor_value(target, to_append): """Append ragged tensor value objects.""" # Make sure the ragged tensors are of the same size (save for the 0th dim). if len(target.shape) != len(to_append.shape): raise RuntimeError(f"Unable to concatenate {target} and {to_append}") if target.shape[1:] != to_append.shape[1:]: raise RuntimeError(f"Unable to concatenate {target} and {to_append}") adjusted_row_splits = to_append.row_splits[1:] + target.row_splits[-1] new_row_splits = np.append(target.row_splits, adjusted_row_splits) if isinstance(target.values, tf.compat.v1.ragged.RaggedTensorValue): new_values = _append_ragged_tensor_value( target.values, to_append.values ) else: new_values = np.concatenate((target.values, to_append.values), axis=0) return tf.compat.v1.ragged.RaggedTensorValue(new_values, new_row_splits) def _append_composite_tensor(target, to_append): """Helper function to append composite tensors to each other in the 0 axis. In order to support batching within a fit/evaluate/predict call, we need to be able to aggregate within a CompositeTensor. Unfortunately, the CT API currently does not make this easy - especially in V1 mode, where we're working with CompositeTensor Value objects that have no connection with the CompositeTensors that created them. Args: target: CompositeTensor or CompositeTensor value object that will be appended to. to_append: CompositeTensor or CompositeTensor value object to append to. 'target'. Returns: A CompositeTensor or CompositeTensor value object. Raises: RuntimeError: if concatenation is not possible. """ if type(target) is not type(to_append): raise RuntimeError( f"Unable to concatenate {type(target)} and {type(to_append)}" ) # Perform type-specific concatenation. # TODO(b/125094323): This should be replaced by a simple call to # target.append() that should work on all of the below classes. # If we're seeing a CompositeTensor here, we know it's because we're in # Eager mode (or else we'd have evaluated the CT to a CT Value object # already). Therefore, it's safe to call concat() on it without evaluating # the result any further. If not - that is, if we're seeing a # SparseTensorValue or a RaggedTensorValue - we need to hand-update it # since we're outside of the graph anyways. if isinstance(target, tf.SparseTensor): # We need to invoke the sparse version of concatenate here - tf.concat # won't work. return tf.compat.v1.sparse_concat(sp_inputs=[target, to_append], axis=0) elif isinstance(target, tf.RaggedTensor): return tf.concat([target, to_append], axis=0) elif isinstance(target, tf.compat.v1.SparseTensorValue): return _append_sparse_tensor_value(target, to_append) elif isinstance(target, tf.compat.v1.ragged.RaggedTensorValue): return _append_ragged_tensor_value(target, to_append) else: raise RuntimeError( f"Attempted to concatenate unsupported object {type(target)}." ) class ConcatAggregator(Aggregator): """Combine tensor-likes which cannot be merged on the fly. This class expects to aggregate a single tensor-like rather than a nested structure of tensor-likes. """ def __init__(self, batch_size): self.composite = None super().__init__( use_steps=True, num_samples=None, steps=None, batch_size=batch_size ) def create(self, batch_element): self.composite = is_composite_or_composite_value(batch_element) def aggregate(self, batch_element, batch_start=None, batch_end=None): # TODO(psv): Add num_samples check here to detect when output batch # #samples is < batch size and != input batch #samples. if self.batch_size and self.batch_size < batch_element.shape[0]: raise ValueError( "Mismatch between expected batch size and model output batch " "size. Output shape = {}, " "expected output shape = shape {}".format( batch_element.shape, (self.batch_size,) + batch_element.shape[1:], ) ) self.results.append(batch_element) def finalize(self): # Special case of single batch inference which skips a copy. if len(self.results) == 1: self.results = self.results[0] elif self.composite: # TODO(taylorrobie): efficiently concatenate. results = self.results[0] for r in self.results[1:]: results = _append_composite_tensor(results, r) self.results = results else: self.results = np.concatenate(self.results, axis=0) _COPY_THREADS = 4 _COPY_POOL = None def get_copy_pool(): """Shared threadpool for copying arrays. Pool instantiation takes ~ 2ms, so a singleton pool is used rather than creating a pool per SliceAggregator. Returns: The global copy threadpool. """ global _COPY_POOL if _COPY_POOL is None: _COPY_POOL = multiprocessing.pool.ThreadPool(_COPY_THREADS) atexit.register(_COPY_POOL.close) return _COPY_POOL class SliceAggregator(Aggregator): """Combine arrays where the final size is known. This class expects to aggregate a single tensor-like rather than a nested structure of tensor-likes. NumPy copies are an operation that threads handle quite well because all of the heavy lifting is in c and does not need the GIL. Moreover, we can perform lock-free writes to the same buffer in multiple threads because the nature of result aggregation guarantees that either the indices are disjoint or the aggregator will throw an exception in finalize. Moreover, because aggregation is performed on the slowest varying dimension, assignments for a given batch will write to contiguous blocks of memory, further minimizing contention. There is, however, some scheduling and context switching overhead which will offset the gains from pipelining the slice assignment. Below a given threshold it is faster to simply assign in the main thread rather than enqueue the assignment in a side thread. The exact threshold will vary from system to system, but the time is not very sensitive to the exact transition so a value of 2 ** 14 was chosen which should be reasonable on most systems. """ _BINARY_SIZE_THRESHOLD = 2**14 _MAX_COPY_SECONDS = 300 def __init__(self, num_samples, batch_size): self._async_copies = [] self._pool = get_copy_pool() self._errors = [] super().__init__( use_steps=False, num_samples=num_samples, steps=None, batch_size=batch_size, ) def create(self, batch_element): # This step does not need to be pipelined because NumPy empty array # initialization is effectively instantaneous. shape = (self.num_samples,) + batch_element.shape[1:] dtype = batch_element.dtype self.results = np.empty(shape=shape, dtype=dtype) def aggregate(self, batch_element, batch_start, batch_end): # Fail early. if self._errors: raise self._errors[0] # In the special case of single batch inference, no copy is needed. if batch_end - batch_start == self.num_samples: if self.num_samples != batch_element.shape[0]: raise ValueError( "Mismatch between expected batch size and model " "output batch size. Output shape = {}, " "expected output shape = shape {}".format( batch_element.shape, self.results.shape ) ) self.results = batch_element return # This is an approximate threshold, so we don't need to consider the # number of bytes per element. num_elements = np.prod(batch_element.shape) if num_elements < self._BINARY_SIZE_THRESHOLD: self.results[batch_start:batch_end] = batch_element else: is_finished = threading.Event() self._pool.apply_async( self._slice_assign, args=(batch_element, batch_start, batch_end, is_finished), ) self._async_copies.append(is_finished) def _slice_assign(self, batch_element, batch_start, batch_end, is_finished): """Legacy utility method to slice input arrays.""" try: self.results[batch_start:batch_end] = batch_element except Exception as e: # `_slice_assign` should only be called in threads and exceptions # raised in threads do not carry over to the main thread. So instead # we perform a a broad catch in the thread and then store the # exception to be re-raised in the main thread. self._errors.append(e) finally: is_finished.set() def finalize(self): start_time = time.time() for is_finished in self._async_copies: timeout = max( [0.0, self._MAX_COPY_SECONDS - (time.time() - start_time)] ) if not is_finished.wait(timeout): raise ValueError("Timed out waiting for copy to complete.") if self._errors: raise self._errors[0] class OutputsAggregator(Aggregator): """Aggregator that concatenates outputs.""" _structure = None def create(self, batch_outs): # SparseTensorValue is a named tuple which nest will flatten, so we need # to guard it to properly handle the structure. self._structure = tf.__internal__.nest.get_traverse_shallow_structure( lambda x: not is_composite_or_composite_value(x), batch_outs ) batch_outs = tf.__internal__.nest.flatten_up_to( self._structure, batch_outs ) for batch_element in batch_outs: if is_composite_or_composite_value(batch_element): # If the output is not a ndarray, it will be either a composite # tensor or a composite tensor's Value object. In either case, # we can't allocate an array to hold the object - we'll handle # it later. self.results.append(ConcatAggregator(self.batch_size)) elif isinstance(batch_element, np.ndarray): self.results.append( ( ConcatAggregator(self.batch_size) if self.use_steps else SliceAggregator(self.num_samples, self.batch_size) ) ) else: # This is not a ndarray, a CompositeTensor, or a # CompositeTensorValue. Fail fast rather than trying to # concatenate it. raise RuntimeError( "Attempted to aggregate unsupported object {}.".format( batch_element ) ) self.results[-1].create(batch_element) def aggregate(self, batch_outs, batch_start=None, batch_end=None): batch_outs = tf.__internal__.nest.flatten_up_to( self._structure, batch_outs ) for batch_element, result in zip(batch_outs, self.results): result.aggregate(batch_element, batch_start, batch_end) def finalize(self): for result in self.results: result.finalize() self.results = [i.results for i in self.results] self.results = tf.nest.pack_sequence_as(self._structure, self.results) def get_progbar(model, count_mode, include_metrics=True): """Get Progbar.""" if include_metrics: stateful_metric_names = getattr(model, "metrics_names", None) if stateful_metric_names: stateful_metric_names = stateful_metric_names[1:] # Exclude `loss` else: stateful_metric_names = None return cbks.ProgbarLogger( count_mode, stateful_metrics=stateful_metric_names ) def check_num_samples(ins, batch_size=None, steps=None, steps_name="steps"): """Determine the number of samples provided for training and evaluation. The number of samples is not defined when running with `steps`, in which case the number of samples is set to `None`. Args: ins: List of tensors to be fed to the TF-Keras function. batch_size: Integer batch size or `None` if not defined. steps: Total number of steps (batches of samples) before declaring `_predict_loop` finished. Ignored with the default value of `None`. steps_name: The public API's parameter name for `steps`. Raises: ValueError: when `steps` is `None` and the attribute `ins.shape` does not exist. Also raises ValueError when `steps` is not `None` and `batch_size` is not `None` because they are mutually exclusive. Returns: When steps is `None`, returns the number of samples to be processed based on the size of the first dimension of the first input numpy array. When steps is not `None` and `batch_size` is `None`, returns `None`. """ if steps is not None and batch_size is not None: raise ValueError( "If " + steps_name + " is set, the `batch_size` must be None." ) if check_steps_argument(ins, steps, steps_name): return None if hasattr(ins[0], "shape"): return int(ins[0].shape[0]) return None # Edge case where ins == [static_learning_phase] def standardize_single_array(x, expected_shape=None): """Expand data of shape (x,) to (x, 1), unless len(expected_shape)==1.""" if x is None: return None if is_composite_or_composite_value(x): return x if isinstance(x, int): raise ValueError( f"Expected an array data type but received an integer: {x}" ) if ( x.shape is not None and len(x.shape) == 1 and (expected_shape is None or len(expected_shape) != 1) ): if tf.is_tensor(x): x = tf.compat.v1.expand_dims(x, axis=1) else: x = np.expand_dims(x, 1) return x def get_composite_shape(tensor): """Returns the shape of the passed composite tensor.""" if isinstance(tensor, tf.compat.v1.SparseTensorValue): # SparseTensorValues use a 'dense_shape' attribute return tensor.dense_shape else: return tensor.shape def standardize_input_data( data, names, shapes=None, check_batch_axis=True, exception_prefix="" ): """Normalizes inputs and targets provided by users. Users may pass data as a list of arrays, dictionary of arrays, or as a single array. We normalize this to an ordered list of arrays (same order as `names`), while checking that the provided arrays have shapes that match the network's expectations. Args: data: User-provided input data (polymorphic). names: List of expected array names. shapes: Optional list of expected array shapes. check_batch_axis: Boolean; whether to check that the batch axis of the arrays matches the expected value found in `shapes`. exception_prefix: String prefix used for exception formatting. Returns: List of standardized input arrays (one array per model input). Raises: ValueError: in case of improperly formatted user-provided data. """ try: data_len = len(data) except TypeError: # For instance if data is `None` or a symbolic Tensor. data_len = None if not names: if data_len and not isinstance(data, dict): raise ValueError( "Error when checking model " + exception_prefix + ": expected no data, but got:", data, ) return [] if data is None: return [None for _ in range(len(names))] if isinstance(data, dict): try: data = [ data[x].values if data[x].__class__.__name__ == "DataFrame" else data[x] for x in names ] except KeyError as e: raise ValueError( 'No data provided for "' + e.args[0] + '". Need data for each key in: ' + str(names) ) elif isinstance(data, (list, tuple)): if isinstance(data[0], (list, tuple)): data = [np.asarray(d) for d in data] elif len(names) == 1 and isinstance(data[0], (float, int)): data = [np.asarray(data)] else: data = [ x.values if x.__class__.__name__ == "DataFrame" else x for x in data ] else: data = data.values if data.__class__.__name__ == "DataFrame" else data data = [data] if shapes is not None: data = [ standardize_single_array(x, shape) for (x, shape) in zip(data, shapes) ] else: data = [standardize_single_array(x) for x in data] if len(data) != len(names): if data and hasattr(data[0], "shape"): raise ValueError( "Error when checking model " + exception_prefix + ": the list of Numpy arrays that you are passing to " "your model is not the size the model expected. " "Expected to see " + str(len(names)) + " array(s), " + "for inputs " + str(names) + " but instead got the following list of " + str(len(data)) + " arrays: " + str(data)[:200] + "..." ) elif len(names) > 1: raise ValueError( "Error when checking model " + exception_prefix + ": you are passing a list as input to your model, " "but the model expects a list of " + str(len(names)) + " Numpy arrays instead. The list you passed was: " + str(data)[:200] ) elif len(data) == 1 and not hasattr(data[0], "shape"): raise TypeError( "Error when checking model " + exception_prefix + ": data should be a Numpy array, or list/dict of " "Numpy arrays. Found: " + str(data)[:200] + "..." ) elif len(names) == 1: data = [np.asarray(data)] # Check shapes compatibility. if shapes: for i in range(len(names)): if shapes[i] is not None: if tf.is_tensor(data[i]): tensorshape = data[i].shape if not tensorshape: continue data_shape = tuple(tensorshape.as_list()) elif is_composite_or_composite_value(data[i]): tensorshape = get_composite_shape(data[i]) data_shape = tuple(tensorshape.as_list()) else: data_shape = data[i].shape shape = shapes[i] if len(data_shape) != len(shape): raise ValueError( "Error when checking " + exception_prefix + ": expected " + names[i] + " to have " + str(len(shape)) + " dimensions, but got array with shape " + str(data_shape) ) if not check_batch_axis: data_shape = data_shape[1:] shape = shape[1:] for dim, ref_dim in zip(data_shape, shape): if ( ref_dim != dim and ref_dim is not None and dim is not None ): raise ValueError( "Error when checking " + exception_prefix + ": expected " + names[i] + " to have shape " + str(shape) + " but got array with shape " + str(data_shape) ) return data def standardize_sample_or_class_weights(x_weight, output_names, weight_type): """Maps `sample_weight` or `class_weight` to model outputs. Args: x_weight: User-provided `sample_weight` or `class_weight` argument. output_names: List of output names (strings) in the model. weight_type: A string used purely for exception printing. Returns: A list of `sample_weight` or `class_weight` where there are exactly one element per model output. Raises: ValueError: In case of invalid user-provided argument. """ if x_weight is None or ( isinstance(x_weight, (list, tuple)) and len(x_weight) == 0 ): return [None for _ in output_names] if len(output_names) == 1: if isinstance(x_weight, (list, tuple)) and len(x_weight) == 1: return x_weight if isinstance(x_weight, dict) and output_names[0] in x_weight: return [x_weight[output_names[0]]] else: return [x_weight] if isinstance(x_weight, (list, tuple)): if len(x_weight) != len(output_names): raise ValueError( "Provided `" + weight_type + "` was a list of " + str(len(x_weight)) + " elements, but the model has " + str(len(output_names)) + " outputs. You should provide one `" + weight_type + "`array per model output." ) return x_weight if isinstance(x_weight, collections.abc.Mapping): generic_utils.check_for_unexpected_keys( weight_type, x_weight, output_names ) x_weights = [] for name in output_names: x_weights.append(x_weight.get(name)) return x_weights else: raise TypeError( "The model has multiple outputs, so `" + weight_type + "` should be either a list or a dict. Provided `" + weight_type + "` type not understood: " + str(x_weight) ) def standardize_class_weights(class_weight, output_names): return standardize_sample_or_class_weights( class_weight, output_names, "class_weight" ) def standardize_sample_weights(sample_weight, output_names): return standardize_sample_or_class_weights( sample_weight, output_names, "sample_weight" ) def check_array_lengths(inputs, targets, weights=None): """Does user input validation for numpy arrays. Args: inputs: list of Numpy arrays of inputs. targets: list of Numpy arrays of targets. weights: list of Numpy arrays of sample weights. Raises: ValueError: in case of incorrectly formatted data. """ def is_tensor_or_composite_tensor(x): return tf.is_tensor(x) or is_composite_or_composite_value(x) def set_of_lengths(x): # Returns a set with the variation between # different shapes, with None => 0 if x is None: return {} else: return set( [ y.shape[0] for y in x if y is not None and not is_tensor_or_composite_tensor(y) ] ) set_x = set_of_lengths(inputs) set_y = set_of_lengths(targets) set_w = set_of_lengths(weights) if len(set_x) > 1: raise ValueError( "All input arrays (x) should have " "the same number of samples. Got array shapes: " + str([x.shape for x in inputs]) ) if len(set_y) > 1: raise ValueError( "All target arrays (y) should have " "the same number of samples. Got array shapes: " + str([y.shape for y in targets]) ) if set_x and set_y and list(set_x)[0] != list(set_y)[0]: raise ValueError( "Input arrays should have " "the same number of samples as target arrays. " "Found " + str(list(set_x)[0]) + " input samples and " + str(list(set_y)[0]) + " target samples." ) if len(set_w) > 1: raise ValueError( "All sample_weight arrays should have " "the same number of samples. Got array shapes: " + str([w.shape for w in weights]) ) if set_y and set_w and list(set_y)[0] != list(set_w)[0]: raise ValueError( "Sample_weight arrays should have " "the same number of samples as target arrays. Got " + str(list(set_y)[0]) + " input samples and " + str(list(set_w)[0]) + " target samples." ) def check_loss_and_target_compatibility(targets, loss_fns, output_shapes): """Does validation on the compatibility of targets and loss functions. This helps prevent users from using loss functions incorrectly. This check is purely for UX purposes. Args: targets: list of Numpy arrays of targets. loss_fns: list of loss functions. output_shapes: list of shapes of model outputs. Raises: ValueError: if a loss function or target array is incompatible with an output. """ key_loss_fns = { losses.mean_squared_error, losses.binary_crossentropy, losses.categorical_crossentropy, } key_loss_classes = ( losses.MeanSquaredError, losses.BinaryCrossentropy, losses.CategoricalCrossentropy, ) for y, loss, shape in zip(targets, loss_fns, output_shapes): if y is None or loss is None or tf.is_tensor(y): continue if losses.is_categorical_crossentropy(loss): if y.shape[-1] == 1: raise ValueError( "You are passing a target array of shape " + str(y.shape) + " while using as loss `categorical_crossentropy`. " "`categorical_crossentropy` expects " "targets to be binary matrices (1s and 0s) " "of shape (samples, classes). " "If your targets are integer classes, " "you can convert them to the expected format via:\n" "```\n" "from tf_keras.utils import to_categorical\n" "y_binary = to_categorical(y_int)\n" "```\n" "\n" "Alternatively, you can use the loss function " "`sparse_categorical_crossentropy` instead, " "which does expect integer targets." ) is_loss_wrapper = isinstance(loss, losses.LossFunctionWrapper) if isinstance(loss, key_loss_classes) or ( is_loss_wrapper and (loss.fn in key_loss_fns) ): for target_dim, out_dim in zip(y.shape[1:], shape[1:]): if out_dim is not None and target_dim != out_dim: loss_name = loss.name if loss_name is None: loss_type = loss.fn if is_loss_wrapper else type(loss) loss_name = loss_type.__name__ raise ValueError( "A target array with shape " + str(y.shape) + " was passed for an output of shape " + str(shape) + " while using as loss `" + loss_name + "`. " "This loss expects targets to have the same shape " "as the output." ) def collect_per_output_metric_info( metrics, output_names, output_shapes, loss_fns, from_serialized=False, is_weighted=False, ): """Maps metric names and functions to model outputs. Args: metrics: a list or a list of lists or a dict of metric functions. output_names: a list of the names (strings) of model outputs. output_shapes: a list of the shapes (strings) of model outputs. loss_fns: a list of the loss functions corresponding to the model outputs. from_serialized: whether the model the metrics are being sourced from is being initialized from a serialized format. is_weighted: Boolean indicating whether the given metrics are weighted. Returns: A list (one entry per model output) of dicts. For instance, if the model has 2 outputs, and for the first output we want to compute "binary_accuracy" and "binary_crossentropy", and just "binary_accuracy" for the second output, the list would look like: `[{ 'acc': binary_accuracy(), 'ce': binary_crossentropy(), }, { 'acc': binary_accuracy(), }]` Raises: TypeError: if an incorrect type is passed for the `metrics` argument. """ if not metrics: return [{} for _ in output_names] if isinstance(metrics, list): any_sub_list = any(isinstance(m, list) for m in metrics) if any_sub_list: if len(metrics) != len(output_names): raise ValueError( "When passing a list of lists as `metrics`, " "it should have one entry per model output. " "The model has " + str(len(output_names)) + " outputs, but you passed metrics=" + str(metrics) ) # User has provided a list of len = len(outputs). nested_metrics = [generic_utils.to_list(m) for m in metrics] else: # If it is a single list we then apply all metrics to all outputs. if len(output_names) > 1: nested_metrics = [] for _ in output_names: nested_metrics.append( [metrics_module.clone_metric(m) for m in metrics] ) else: nested_metrics = [metrics] elif isinstance(metrics, collections.abc.Mapping): generic_utils.check_for_unexpected_keys( "metrics", metrics, output_names ) nested_metrics = [] for name in output_names: output_metrics = generic_utils.to_list(metrics.get(name, [])) nested_metrics.append(output_metrics) else: raise TypeError( "Type of `metrics` argument not understood. " "Expected a list or dictionary, found: " + str(metrics) ) per_output_metrics = [] for i, metrics in enumerate(nested_metrics): metrics_dict = collections.OrderedDict() for metric in metrics: metric_name = get_metric_name(metric, is_weighted) metric_fn = get_metric_function( metric, output_shape=output_shapes[i], loss_fn=loss_fns[i] ) metric_fn._from_serialized = from_serialized # If the metric function is not stateful, we create a stateful # version. if not isinstance(metric_fn, metrics_module.Metric): metric_fn = metrics_module.MeanMetricWrapper( metric_fn, name=metric_name ) # If the metric is being revived from something stateless, such # as a string (e.g. "accuracy"), we may need to later reapply # transformations such as renaming. metric_fn._from_serialized = False metrics_dict[metric_name] = metric_fn per_output_metrics.append(metrics_dict) return per_output_metrics def batch_shuffle(index_array, batch_size): """Shuffles an array in a batch-wise fashion. Useful for shuffling HDF5 arrays (where one cannot access arbitrary indices). Args: index_array: array of indices to be shuffled. batch_size: integer. Returns: The `index_array` array, shuffled in a batch-wise fashion. """ batch_count = int(len(index_array) / batch_size) # to reshape we need to be cleanly divisible by batch size # we stash extra items and reappend them after shuffling last_batch = index_array[batch_count * batch_size :] index_array = index_array[: batch_count * batch_size] index_array = index_array.reshape((batch_count, batch_size)) np.random.shuffle(index_array) index_array = index_array.flatten() return np.append(index_array, last_batch) def standardize_weights( y, sample_weight=None, class_weight=None, sample_weight_mode=None ): """Performs sample weight validation and standardization. Everything gets normalized to a single sample-wise (or timestep-wise) weight array. If both `sample_weight` and `class_weight` are provided, the weights are multiplied. Args: y: Numpy array or Tensor of model targets to be weighted. sample_weight: User-provided `sample_weight` argument. class_weight: User-provided `class_weight` argument. sample_weight_mode: One of `None` or `"temporal"`. `"temporal"` indicated that we expect 2D weight data that will be applied to the last 2 dimensions of the targets (i.e. we are weighting timesteps, not samples). Returns: A numpy array of target weights, one entry per sample to weight. Raises: ValueError: In case of invalid user-provided arguments. """ # Iterator may return sample_weight as 1-tuple if isinstance(sample_weight, tuple): sample_weight = sample_weight[0] if sample_weight_mode is not None and sample_weight_mode != "samplewise": if sample_weight_mode != "temporal": raise ValueError( '"sample_weight_mode should be None or "temporal". Found: ' + str(sample_weight_mode) ) if len(y.shape) < 3: raise ValueError( "Found a sample_weight array for an input with shape " + str(y.shape) + ". " "Timestep-wise sample weighting (use of " 'sample_weight_mode="temporal") is restricted to ' "outputs that are at least 3D, i.e. that have " "a time dimension." ) if sample_weight is not None and len(sample_weight.shape) != 2: raise ValueError( "Found a sample_weight array with shape " + str(sample_weight.shape) + ". " "In order to use timestep-wise sample weighting, " "you should pass a 2D sample_weight array." ) else: if sample_weight is not None and len(sample_weight.shape) != 1: raise ValueError( "Found a sample_weight array with shape {}. In order to " "use timestep-wise sample weights, you should specify " 'sample_weight_mode="temporal" in compile(); founssd "{}" ' "instead. If you just mean to use sample-wise weights, " "make sure your sample_weight array is 1D.".format( sample_weight.shape, sample_weight_mode ) ) if sample_weight is not None: if len(sample_weight.shape) > len(y.shape): raise ValueError( "Found a sample_weight with shape" + str(sample_weight.shape) + ".Expected sample_weight with rank less than or equal to " + str(len(y.shape)) ) if ( not tf.is_tensor(sample_weight) and y.shape[: sample_weight.ndim] != sample_weight.shape ): raise ValueError( "Found a sample_weight array with shape " + str(sample_weight.shape) + " for an input with shape " + str(y.shape) + ". sample_weight cannot be broadcast." ) # Class weights applied per-sample. class_sample_weight = None if isinstance(class_weight, dict): if len(y.shape) > 2: raise ValueError( "`class_weight` not supported for 3+ dimensional targets." ) if tf.is_tensor(y): # Few classes are expected, so densifying is reasonable. keys = np.array(sorted(class_weight.keys())) values = np.array([class_weight[i] for i in keys]) weight_vector = np.zeros(np.max(keys) + 1) weight_vector[:] = np.nan weight_vector[keys] = values y_classes = tf.__internal__.smart_cond.smart_cond( len(y.shape.as_list()) == 2 and backend.shape(y)[1] > 1, lambda: backend.argmax(y, axis=1), lambda: tf.cast(backend.reshape(y, (-1,)), tf.int64), ) class_sample_weight = tf.compat.v1.gather(weight_vector, y_classes) tf.debugging.check_numerics( class_sample_weight, "Invalid classes or class weights detected. NaN values " "indicate that an appropriate class weight could not be " "determined.", ) class_sample_weight = tf.cast(class_sample_weight, backend.floatx()) if sample_weight is not None: sample_weight = tf.cast( tf.convert_to_tensor(sample_weight), backend.floatx() ) else: y_classes = y if len(y.shape) == 2: if y.shape[1] > 1: y_classes = np.argmax(y, axis=1) elif y.shape[1] == 1: y_classes = np.reshape(y, y.shape[0]) class_sample_weight = np.asarray( [class_weight[cls] for cls in y_classes if cls in class_weight] ) if len(class_sample_weight) != len(y_classes): # subtract the sets to pick all missing classes existing_classes = set(y_classes) existing_class_weight = set(class_weight.keys()) raise ValueError( "`class_weight` must contain all classes in the data." " The classes %s exist in the data but not in " "`class_weight`." % (existing_classes - existing_class_weight) ) if class_sample_weight is not None and sample_weight is not None: # Multiply weights if both are provided. return class_sample_weight * sample_weight if sample_weight is not None: return sample_weight if class_sample_weight is not None: return class_sample_weight return None def has_symbolic_tensors(ls): if tf.executing_eagerly(): return False return has_tensors(ls) def has_tensors(ls): """Returns true if `ls` contains tensors.""" # Note: at some point in time ragged tensors didn't count as tensors, so # this returned false for ragged tensors. Making this return true fails some # tests which would then require a steps_per_epoch argument. if isinstance(ls, (list, tuple)): return any( tf.is_tensor(v) and not isinstance(v, tf.RaggedTensor) for v in ls ) if isinstance(ls, dict): return any( tf.is_tensor(v) and not isinstance(v, tf.RaggedTensor) for _, v in ls.items() ) return tf.is_tensor(ls) and not isinstance(ls, tf.RaggedTensor) def get_metric_name(metric, weighted=False): """Returns the name corresponding to the given metric input. Args: metric: Metric function name or reference. weighted: Boolean indicating if the given metric is weighted. Returns: The metric name. """ if tf.__internal__.tf2.enabled(): # We keep the string that the user has set in compile as the metric # name. if isinstance(metric, str): return metric metric = metrics_module.get(metric) return metric.name if hasattr(metric, "name") else metric.__name__ else: metric_name_prefix = "weighted_" if weighted else "" if metric in ("accuracy", "acc", "crossentropy", "ce"): if metric in ("accuracy", "acc"): suffix = "acc" elif metric in ("crossentropy", "ce"): suffix = "ce" else: metric_fn = metrics_module.get(metric) # Get metric name as string if hasattr(metric_fn, "name"): suffix = metric_fn.name else: suffix = metric_fn.__name__ metric_name = metric_name_prefix + suffix return metric_name def get_metric_function(metric, output_shape=None, loss_fn=None): """Returns the metric function corresponding to the given metric input. Args: metric: Metric function name or reference. output_shape: The shape of the output that this metric will be calculated for. loss_fn: The loss function used. Returns: The metric function. """ if metric not in ["accuracy", "acc", "crossentropy", "ce"]: return metrics_module.get(metric) is_sparse_categorical_crossentropy = isinstance( loss_fn, losses.SparseCategoricalCrossentropy ) or ( isinstance(loss_fn, losses.LossFunctionWrapper) and loss_fn.fn == losses.sparse_categorical_crossentropy ) is_binary_crossentropy = isinstance(loss_fn, losses.BinaryCrossentropy) or ( isinstance(loss_fn, losses.LossFunctionWrapper) and loss_fn.fn == losses.binary_crossentropy ) if metric in ["accuracy", "acc"]: if output_shape[-1] == 1 or is_binary_crossentropy: return metrics_module.binary_accuracy elif is_sparse_categorical_crossentropy: return metrics_module.sparse_categorical_accuracy # If the output_shape[-1] is not 1, then we know output is # `categorical`. We assume it is sparse categorical only if loss is # explicitly given as sparse categorical crossentropy loss. return metrics_module.categorical_accuracy else: if output_shape[-1] == 1 or is_binary_crossentropy: return metrics_module.binary_crossentropy elif is_sparse_categorical_crossentropy: return metrics_module.sparse_categorical_crossentropy return metrics_module.categorical_crossentropy def call_metric_function( metric_fn, y_true, y_pred=None, weights=None, mask=None ): """Invokes metric function and returns the metric result tensor.""" if mask is not None: mask = tf.cast(mask, y_pred.dtype) if weights is None: # Use mask as sample weight. weights = mask else: # Update dimensions of weights to match with mask. weights = tf.cast(weights, dtype=y_pred.dtype) mask, _, weights = losses_utils.squeeze_or_expand_dimensions( mask, sample_weight=weights ) weights *= mask if y_pred is not None: return metric_fn(y_true, y_pred, sample_weight=weights) # `Mean` metric only takes a single value. return metric_fn(y_true, sample_weight=weights) def get_loss_function(loss): """Returns the loss corresponding to the loss input in `compile` API.""" if loss is None or isinstance(loss, losses.Loss): return loss if tf_inspect.isclass(loss) and issubclass(loss, losses.Loss): # It is not safe to assume that the loss takes no constructor arguments. raise ValueError( "Received uninstantiated Loss class: {}\n" "Please call loss classes " "before passing them to Model.compile.".format(loss) ) # Deserialize loss configuration, if needed. if isinstance(loss, collections.abc.Mapping): loss = losses.get(loss) # Custom callable class. if callable(loss) and not hasattr(loss, "__name__"): return loss # Wrap loss function with signature `(y_true, y_pred, **kwargs)` # in `LossFunctionWrapper` class. loss_fn = losses.get(loss) # For losses which are given as strings/functions in the compile API, # we always set the loss reduction type to be `SUM_OVER_BATCH_SIZE` # (both in distribution strategy context and otherwise). return losses.LossFunctionWrapper( loss_fn, name=loss_fn.__name__, reduction=losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE, ) def validate_dataset_input(x, y, sample_weight, validation_split=None): """Validates user input arguments when a dataset iterator is passed. Args: x: Input data. A `tf.data` dataset or iterator. y: Target data. It could be either Numpy array(s) or TensorFlow tensor(s). Expected to be `None` when `x` is a dataset iterator. sample_weight: An optional sample-weight array passed by the user to weight the importance of each sample in `x`. Expected to be `None` when `x` is a dataset iterator validation_split: Float between 0 and 1. Fraction of the training data to be used as validation data. Expected to be `None` when `x` is a dataset iterator. Raises: ValueError: if argument `y` or `sample_weight` or `validation_split` are provided by user. """ if y is not None: raise ValueError( "You passed a dataset or dataset iterator (%s) as " "input `x` to your model. In that case, you should " "not specify a target (`y`) argument, since the dataset " "or dataset iterator generates both input data and " "target data. " "Received: %s" % (x, y) ) if sample_weight is not None: raise ValueError( "`sample_weight` argument is not supported when input " "`x` is a dataset or a dataset iterator. Instead, you" "can provide sample_weight as the third element of your" "dataset, i.e. (inputs, targets, sample_weight). " "Received: x=%s, sample_weight=%s" % (x, sample_weight) ) if validation_split is not None and validation_split != 0.0: raise ValueError( "`validation_split` argument is not supported when " "input `x` is a dataset or a dataset iterator. " "Received: x=%s, validation_split=%f" % (x, validation_split) ) def validate_input_types(inp, orig_inp, allow_dict=True, field_name="inputs"): """Helper function to validate either inputs or targets.""" if isinstance(inp, (list, tuple)): if not all(isinstance(v, np.ndarray) or tf.is_tensor(v) for v in inp): raise ValueError( "Please provide as model inputs either a single array or a " f"list of arrays. You passed: {field_name}={str(orig_inp)}" ) elif isinstance(inp, dict): if not allow_dict: raise ValueError( f"You cannot pass a dictionary as model {field_name}." ) elif not isinstance(inp, np.ndarray) and not tf.is_tensor(inp): raise ValueError( "Please provide as model inputs either a single array or a list of " "arrays. You passed: {}={}".format(field_name, orig_inp) ) def check_generator_arguments( y=None, sample_weight=None, validation_split=None ): """Validates arguments passed when using a generator.""" if y is not None: raise ValueError( "`y` argument is not supported when data is" "a generator or Sequence instance. Instead pass targets" " as the second element of the generator." ) if sample_weight is not None: raise ValueError( "`sample_weight` argument is not supported when data is" "a generator or Sequence instance. Instead pass sample" " weights as the third element of the generator." ) if validation_split: raise ValueError( "If your data is in the form of a Python generator, " "you cannot use `validation_split`." ) def check_steps_argument(input_data, steps, steps_name): """Validates `steps` argument based on input data's type. The cases when `steps` value must be provided are when 1. input data passed is an iterator. 2. model was built on top of symbolic tensors, input data is not required and is `None`. 3. input data passed is a symbolic tensor. Args: input_data: Input data. Can be Numpy array(s) or TensorFlow tensor(s) or tf.data.Dataset iterator or `None`. steps: Integer or `None`. Total number of steps (batches of samples) to execute. steps_name: The public API's parameter name for `steps`. Returns: boolean, True if `steps` argument is required, else False. Raises: ValueError: if `steps` argument is required for given input data type but not provided. """ is_x_iterator = isinstance( input_data, (tf.compat.v1.data.Iterator, tf.data.Iterator) ) if ( input_data is None or is_x_iterator or has_symbolic_tensors(input_data) or (isinstance(input_data, list) and not input_data) ): if steps is None: input_type_str = ( "a Dataset iterator" if is_x_iterator else "data tensors" ) raise ValueError( "When using {input_type} as input to a model, you should" " specify the `{steps_name}` argument.".format( input_type=input_type_str, steps_name=steps_name ) ) return True if isinstance(input_data, (tf.compat.v1.data.Dataset, tf.data.Dataset)): return True if steps is not None: list_types = (np.ndarray, list, tuple) if isinstance(input_data, list_types) or ( isinstance(input_data, dict) and any(isinstance(v, list_types) for v in input_data.values()) ): logging.warning( "When passing input data as arrays, do not specify " "`steps_per_epoch`/`steps` argument. " "Please use `batch_size` instead." ) return False def cast_single_tensor(x, dtype=None): if isinstance(x, np.ndarray): x = tf.convert_to_tensor(x) dtype = dtype or backend.floatx() if x.dtype.is_floating: return tf.cast(x, dtype=dtype) return x def cast_if_floating_dtype_and_mismatch(targets, outputs): """Returns target data tensors using correct datatype. Checks that each target and output pair are the same datatype. If not, casts the target to the output's datatype. Args: targets: tensor or list of targets. outputs: tensor or list of outputs. Returns: Targets in appropriate datatype. """ if tf.is_tensor(targets): # There is one target, so output[0] should be the only output. return cast_single_tensor(targets, dtype=outputs[0].dtype) new_targets = [] for target, out in zip(targets, outputs): if isinstance(target, np.ndarray): target = tf.convert_to_tensor(target) if target.dtype != out.dtype: new_targets.append(cast_single_tensor(target, dtype=out.dtype)) else: new_targets.append(target) return new_targets def cast_if_floating_dtype(x, dtype=None): """Casts the given data tensors to the default floating point type. Casts only if the input is already a floating point type. Args: x: tensor or list/tuple of tensors. dtype: The dtype to which Tensors should be cast. Returns: Converted input. """ return tf.nest.map_structure( functools.partial(cast_single_tensor, dtype=dtype), x ) def cast_to_model_input_dtypes(x, model): """Casts the given data tensors to the dtypes of the model inputs. Args: x: tensor or list/tuple of tensors. model: The model. Returns: Converted input. Each tensor is casted to the corresponding input in `model.inputs`. """ input_dtypes = tf.nest.map_structure(lambda t: t.dtype, model.inputs) return tf.nest.map_structure(tf.cast, x, input_dtypes) def prepare_sample_weight_modes(training_endpoints, sample_weight_mode): """Prepares sample weight modes for the model. Args: training_endpoints: List of model _TrainingEndpoints. sample_weight_mode: sample weight mode user input passed from compile API. Raises: ValueError: In case of invalid `sample_weight_mode` input. """ if isinstance(sample_weight_mode, collections.abc.Mapping): generic_utils.check_for_unexpected_keys( "sample_weight_mode", sample_weight_mode, [e.output_name for e in training_endpoints], ) for end_point in training_endpoints: if not end_point.should_skip_target_weights(): if end_point.output_name not in sample_weight_mode: raise ValueError( "Output " + end_point.output_name + "missing from `_sample_weight_modes` dictionary" ) else: end_point.sample_weight_mode = sample_weight_mode.get( end_point.output_name ) elif isinstance(sample_weight_mode, (list, tuple)): if len(sample_weight_mode) != len(training_endpoints): raise ValueError( "When passing a list as sample_weight_mode, " "it should have one entry per model output. " "The model has " + str(len(training_endpoints)) + " outputs, but you passed " + str(len(sample_weight_mode)) + "_sample_weight_modes." ) for mode, endpoint in zip(sample_weight_mode, training_endpoints): if not endpoint.should_skip_target_weights(): endpoint.sample_weight_mode = mode else: for endpoint in training_endpoints: if not endpoint.should_skip_target_weights(): endpoint.sample_weight_mode = sample_weight_mode def prepare_loss_functions(loss, output_names): """Converts loss to a list of loss functions. Args: loss: String (name of objective function), objective function or `tf.keras.losses.Loss` instance. See `tf.keras.losses`. If the model has multiple outputs, you can use a different loss on each output by passing a dictionary or a list of losses. The loss value that will be minimized by the model will then be the sum of all individual losses. output_names: List of model output names. Returns: A list of loss objective functions. Raises: ValueError: If loss is a dict with keys not in model output names, or if loss is a list with len not equal to model outputs. """ if isinstance(loss, collections.abc.Mapping): generic_utils.check_for_unexpected_keys("loss", loss, output_names) loss_functions = [] for name in output_names: if name not in loss: logging.warning( "Output {0} missing from loss dictionary. We assume " "this was done on purpose. The fit and evaluate APIs will " f"not be expecting any data to be passed to {name}." ) loss_functions.append(get_loss_function(loss.get(name, None))) elif isinstance(loss, str): loss_functions = [get_loss_function(loss) for _ in output_names] elif isinstance(loss, collections.abc.Sequence): if len(loss) != len(output_names): raise ValueError( "When passing a list as loss, it should have one entry " "per model outputs. The model has {} outputs, but you " "passed loss={}".format(len(output_names), loss) ) loss_functions = tf.nest.map_structure(get_loss_function, loss) else: loss_functions = [ get_loss_function(loss) for _ in range(len(output_names)) ] return loss_functions def prepare_loss_weights(training_endpoints, loss_weights=None): """Converts loss weights to a list of loss weights. The result loss weights will be populated on the training endpoint. Args: training_endpoints: List of model training endpoints. loss_weights: Optional list or dictionary specifying scalar coefficients (Python floats) to weight the loss contributions of different model outputs. The loss value that will be minimized by the model will then be the *weighted sum* of all individual losses, weighted by the `loss_weights` coefficients. If a list, it is expected to have a 1:1 mapping to the model's outputs. If a dict, it is expected to map output names (strings) to scalar coefficients. Raises: ValueError: If loss weight is a dict with key not in model output names, or if loss is a list with len not equal to model outputs. """ if loss_weights is None: for e in training_endpoints: e.loss_weight = 1.0 elif isinstance(loss_weights, collections.abc.Mapping): generic_utils.check_for_unexpected_keys( "loss_weights", loss_weights, [e.output_name for e in training_endpoints], ) for e in training_endpoints: e.loss_weight = loss_weights.get(e.output_name, 1.0) elif isinstance(loss_weights, list): if len(loss_weights) != len(training_endpoints): raise ValueError( "When passing a list as loss_weights, " "it should have one entry per model output. " "The model has " + str(len(training_endpoints)) + " outputs, but you passed loss_weights=" + str(loss_weights) ) for w, e in zip(loss_weights, training_endpoints): e.loss_weight = w else: raise TypeError( "Could not interpret loss_weights argument: " + str(loss_weights) + " - expected a list of dicts." ) # TODO(rohanj): This is a hack to get around not depending on feature_column and # create a cyclical dependency. Figure out a cleaner solution def is_feature_layer(layer): """Returns whether `layer` is a FeatureLayer or not.""" return getattr(layer, "_is_feature_layer", False) def is_eager_dataset_or_iterator(data): return tf.executing_eagerly() and isinstance( data, (tf.compat.v1.data.Dataset, tf.data.Dataset, tf.data.Iterator) ) def get_dataset_graph_def(dataset): if tf.executing_eagerly(): graph_def_str = dataset._as_serialized_graph().numpy() else: graph_def_str = backend.get_value(dataset._as_serialized_graph()) return tf.compat.v1.GraphDef().FromString(graph_def_str) def verify_dataset_shuffled(x): """Verifies that the dataset is shuffled. Args: x: Dataset passed as an input to the model. Returns: boolean, whether the input dataset is shuffled or not. """ assert isinstance(x, tf.data.Dataset) graph_def = get_dataset_graph_def(x) for node in graph_def.node: if node.op.startswith("ShuffleDataset"): return True # Also check graph_def.library.function for ds.interleave or ds.flat_map for function in graph_def.library.function: for node in function.node_def: if node.op.startswith("ShuffleDataset"): return True logging.warning( "Expected a shuffled dataset but input dataset `x` is " "not shuffled. Please invoke `shuffle()` on input dataset." ) return False def is_dataset_or_iterator(data): return isinstance( data, ( tf.compat.v1.data.Dataset, tf.data.Dataset, tf.compat.v1.data.Iterator, tf.data.Iterator, ), ) def get_iterator(dataset): """Create and initialize an iterator from a dataset.""" if tf.executing_eagerly(): iterator = tf.compat.v1.data.make_one_shot_iterator(dataset) else: iterator = tf.compat.v1.data.make_initializable_iterator(dataset) initialize_iterator(iterator) return iterator def initialize_iterator(iterator): if not tf.executing_eagerly(): init_op = iterator.initializer backend.get_session((init_op,)).run(init_op) def extract_tensors_from_dataset(dataset): """Extract tuple of tensors `inputs, targets, sample_weight` from a dataset. Args: dataset: Dataset instance. Returns: Tuple of tensors `x, y, weights`. `y` and `weights` entry may be None. """ iterator = get_iterator(dataset) inputs, targets, sample_weight = unpack_iterator_input(iterator) return inputs, targets, sample_weight def unpack_iterator_input(iterator): """Convert a dataset iterator to a tuple of tensors `x, y, sample_weights`. Args: iterator: Instance of a dataset iterator. Returns: Tuple of tensors `x, y, weights`. `y` and `weights` entry may be None. """ try: next_element = iterator.get_next() except tf.errors.OutOfRangeError: raise RuntimeError( "Your dataset iterator ran out of data; " "Make sure that your dataset can generate " "required number of samples." ) if isinstance(next_element, (list, tuple)): if len(next_element) not in [2, 3]: raise ValueError( "Please provide model inputs as a list or tuple of 2 or 3 " "elements: (input, target) or (input, target, sample_weights) " "Received %s" % next_element ) if len(next_element) == 2: x, y = next_element weights = None else: x, y, weights = next_element else: x = next_element y = None weights = None return x, y, weights def infer_steps_for_dataset( model, dataset, steps, epochs=1, steps_name="steps" ): """Infers steps_per_epoch needed to loop through a dataset. Args: model: TF-Keras model instance. dataset: Input data of type tf.data.Dataset. steps: Number of steps to draw from the dataset (may be None if unknown). epochs: Number of times to iterate over the dataset. steps_name: The string name of the steps argument, either `steps`, `validation_steps`, or `steps_per_epoch`. Only used for error message formatting. Returns: Integer or `None`. Inferred number of steps to loop through the dataset. `None` is returned if 1) the size of the dataset is unknown and `steps` was not specified, or 2) this is multi-worker training and auto sharding is enabled. Raises: ValueError: In case of invalid argument values. """ assert isinstance(dataset, tf.data.Dataset) if model._in_multi_worker_mode() and ( dataset.options().experimental_distribute.auto_shard_policy != tf.data.experimental.AutoShardPolicy.OFF ): # If the dataset would be auto-sharded, we should not infer a local # steps_per_epoch due to the possible imbalanced sharding between # workers. return None size = backend.get_value(tf.data.experimental.cardinality(dataset)) if size == tf.data.experimental.INFINITE_CARDINALITY and steps is None: raise ValueError( "When passing an infinitely repeating dataset, you " "must specify the `%s` argument." % (steps_name,) ) if size >= 0: if steps is not None and steps * epochs > size: if epochs > 1: raise ValueError( "The dataset you passed contains %s batches, but you " "passed `epochs=%s` and `%s=%s`, which is a total of " "%s steps. We cannot draw that many steps from this " "dataset. We suggest to set `%s=%s`." % ( size, epochs, steps_name, steps, steps * epochs, steps_name, size // epochs, ) ) else: raise ValueError( "The dataset you passed contains %s batches, but you " "passed `%s=%s`. We cannot draw that many steps from " "this dataset. We suggest to set `%s=%s`." % (size, steps_name, steps, steps_name, size) ) if steps is None: if size >= 0: return size return None return steps class ModelInputs: """Encapsulates model inputs. Allows for transforming model inputs while keeping the same structure. """ def __init__(self, inputs): self._inputs = inputs self._is_dict = isinstance(self._inputs, dict) self._is_single_input = not isinstance( self._inputs, (list, tuple, dict) ) self._flattened_inputs = [] self._input_names = [] if self._is_dict: for k in sorted(self._inputs.keys()): self._flattened_inputs.append(self._inputs[k]) self._input_names.append(k) else: self._flattened_inputs = tf.nest.flatten(self._inputs) self._input_names = [ "input_%d" % (i + 1) for i in range(len(self._flattened_inputs)) ] def get_input_names(self): """Returns keys to name inputs by. In case inputs provided were a list, tuple or single entry, we make up a key 'input_%d'. For dictionary case, we return a sorted list of keys. """ return self._input_names def get_symbolic_inputs(self, return_single_as_list=False): """Returns inputs to be set as self.inputs for a model.""" # TODO(karmel): There is a side-effect here where what you get # with as_list and as_dict depends on whether you have called this # method first, since it modifies in place. for i, (k, v) in enumerate( zip(self._input_names, self._flattened_inputs) ): if isinstance(v, (list, float, int)): v = np.asarray(v) if v.ndim == 1: v = np.expand_dims(v, 1) if isinstance(v, np.ndarray): # We fix the placeholder shape except the batch size. # This is suboptimal, but it is the best we can do with the info # we have. The user should call # `model._set_inputs(placeholders)` to specify custom # placeholders if the need arises. shape = (None,) + tuple(v.shape[1:]) if shape == (None,): shape = (None, 1) dtype = tf.as_dtype(v.dtype) if dtype.is_floating: dtype = backend.floatx() v = backend.placeholder(shape=shape, name=k, dtype=dtype) elif isinstance(v, tf.TensorSpec): shape = (None,) + tuple(v.shape.as_list()[1:]) if shape == (None,): shape = (None, 1) v = backend.placeholder(shape=shape, name=k, dtype=v.dtype) self._flattened_inputs[i] = v if self._is_dict: return dict(zip(self._input_names, self._flattened_inputs)) if self._is_single_input and not return_single_as_list: return self._flattened_inputs[0] return self._flattened_inputs def as_dict(self): """An iterable over a dictionary version of inputs.""" for k, v in zip(self._input_names, self._flattened_inputs): yield k, v def as_list(self): """Returning the inputs as a list.""" return self._flattened_inputs # Allow use of methods not exposed to the user. def generic_output_names(outputs_list): return ["output_%d" % (i + 1) for i in range(len(outputs_list))] def should_run_validation(validation_freq, epoch): """Checks if validation should be run this epoch. Args: validation_freq: Integer or list. If an integer, specifies how many training epochs to run before a new validation run is performed. If a list, specifies the epochs on which to run validation. epoch: Integer, the number of the training epoch just completed. Returns: Bool, True if validation should be run. Raises: ValueError: if `validation_freq` is an Integer and less than 1, or if it is neither an Integer nor a Sequence. """ # `epoch` is 0-indexed internally but 1-indexed in the public API. one_indexed_epoch = epoch + 1 if isinstance(validation_freq, int): if validation_freq < 1: raise ValueError("`validation_freq` can not be less than 1.") return one_indexed_epoch % validation_freq == 0 if not isinstance(validation_freq, collections.abc.Container): raise ValueError( "`validation_freq` must be an Integer or " "`collections.abc.Container` (e.g. list, tuple, etc.)" ) return one_indexed_epoch in validation_freq def split_training_and_validation_data(x, y, sample_weights, validation_split): """Split input data into train/eval section based on validation_split.""" if has_symbolic_tensors(x): raise ValueError( "If your data is in the form of symbolic tensors, " "you cannot use `validation_split`." ) if hasattr(x[0], "shape"): split_at = int(x[0].shape[0] * (1.0 - validation_split)) else: split_at = int(len(x[0]) * (1.0 - validation_split)) x, val_x = ( generic_utils.slice_arrays(x, 0, split_at), generic_utils.slice_arrays(x, split_at), ) y, val_y = ( generic_utils.slice_arrays(y, 0, split_at), generic_utils.slice_arrays(y, split_at), ) if sample_weights: sample_weights, val_sample_weights = ( generic_utils.slice_arrays(sample_weights, 0, split_at), generic_utils.slice_arrays(sample_weights, split_at), ) else: val_sample_weights = None return x, y, sample_weights, val_x, val_y, val_sample_weights def unpack_validation_data(validation_data, raise_if_ambiguous=True): """Unpack validation data based input type. The validation data is not touched if its dataset or dataset iterator. For other type of input (Numpy or tensor), it will be unpacked into tuple of 3 which is x, y and sample weights. Args: validation_data: dataset, dataset iterator, or numpy, tensor tuple. raise_if_ambiguous: boolean on whether to fail if validation_data cannot be parsed. Otherwise simply return validation_data, None, None and defer the decision to the caller. Returns: tuple of 3, (x, y, sample_weights) for numpy and tensor input. """ if isinstance( validation_data, ( tf.compat.v1.data.Iterator, tf.data.Iterator, tf.data.Dataset, data_utils.Sequence, ), ) or not hasattr(validation_data, "__len__"): val_x = validation_data val_y = None val_sample_weight = None elif len(validation_data) == 2: try: ( val_x, val_y, ) = validation_data val_sample_weight = None except ValueError: val_x, val_y, val_sample_weight = validation_data, None, None elif len(validation_data) == 3: try: ( val_x, val_y, val_sample_weight, ) = validation_data except ValueError: val_x, val_y, val_sample_weight = validation_data, None, None else: if raise_if_ambiguous: raise ValueError( "When passing a `validation_data` argument, " "it must contain either 2 items (x_val, y_val), " "or 3 items (x_val, y_val, val_sample_weights), " "or alternatively it could be a dataset or a " "dataset or a dataset iterator. " "However we received `validation_data=%s`" % validation_data ) val_x, val_y, val_sample_weight = validation_data, None, None return val_x, val_y, val_sample_weight class TrainingLoop: """TrainingLoop is a wrapper class around the training logic. This class is trying to encapsulate the different logic of fit/eval/predict with regard to different data input and model condition. Note that TrainingLoop is stateless, which means it doesn't contain any internal field and can be reused with different model and inputs. """ def fit( self, model, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_freq=1, **kwargs, ): """Train the model with the inputs and targets.""" raise NotImplementedError() def evaluate( self, model, x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None, callbacks=None, **kwargs, ): """Returns the loss value & metrics values for the model in test mode.""" raise NotImplementedError() def predict( self, model, x, batch_size=None, verbose=0, steps=None, callbacks=None, **kwargs, ): raise NotImplementedError()
tf-keras/tf_keras/engine/training_utils_v1.py/0
{ "file_path": "tf-keras/tf_keras/engine/training_utils_v1.py", "repo_id": "tf-keras", "token_count": 36707 }
204
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """This API defines FeatureColumn for sequential input. NOTE: This API is a work in progress and will likely be changing frequently. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v2 as tf from tf_keras import backend from tf_keras.feature_column import base_feature_layer as kfc # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export("keras.experimental.SequenceFeatures") class SequenceFeatures(kfc._BaseFeaturesLayer): """A layer for sequence input. All `feature_columns` must be sequence dense columns with the same `sequence_length`. The output of this method can be fed into sequence networks, such as RNN. The output of this method is a 3D `Tensor` of shape `[batch_size, T, D]`. `T` is the maximum sequence length for this batch, which could differ from batch to batch. If multiple `feature_columns` are given with `Di` `num_elements` each, their outputs are concatenated. So, the final `Tensor` has shape `[batch_size, T, D0 + D1 + ... + Dn]`. Example: ```python import tensorflow as tf # Behavior of some cells or feature columns may depend on whether we are in # training or inference mode, e.g. applying dropout. training = True rating = tf.feature_column.sequence_numeric_column('rating') watches = tf.feature_column.sequence_categorical_column_with_identity( 'watches', num_buckets=1000) watches_embedding = tf.feature_column.embedding_column(watches, dimension=10) columns = [rating, watches_embedding] features = { 'rating': tf.sparse.from_dense([[1.0,1.1, 0, 0, 0], [2.0,2.1,2.2, 2.3, 2.5]]), 'watches': tf.sparse.from_dense([[2, 85, 0, 0, 0],[33,78, 2, 73, 1]]) } sequence_input_layer = tf.keras.experimental.SequenceFeatures(columns) sequence_input, sequence_length = sequence_input_layer( features, training=training) sequence_length_mask = tf.sequence_mask(sequence_length) hidden_size = 32 rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size) rnn_layer = tf.keras.layers.RNN(rnn_cell) outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask) ``` """ def __init__(self, feature_columns, trainable=True, name=None, **kwargs): """ "Constructs a SequenceFeatures layer. Args: feature_columns: An iterable of dense sequence columns. Valid columns are - `embedding_column` that wraps a `sequence_categorical_column_with_*` - `sequence_numeric_column`. trainable: Boolean, whether the layer's variables will be updated via gradient descent during training. name: Name to give to the SequenceFeatures. **kwargs: Keyword arguments to construct a layer. Raises: ValueError: If any of the `feature_columns` is not a `SequenceDenseColumn`. """ super().__init__( feature_columns=feature_columns, trainable=trainable, name=name, expected_column_type=tf.__internal__.feature_column.SequenceDenseColumn, # noqa: E501 **kwargs ) @property def _is_feature_layer(self): return True def _target_shape(self, input_shape, total_elements): return (input_shape[0], input_shape[1], total_elements) def call(self, features, training=None): """Returns sequence input corresponding to the `feature_columns`. Args: features: A dict mapping keys to tensors. training: Python boolean or None, indicating whether to the layer is being run in training mode. This argument is passed to the call method of any `FeatureColumn` that takes a `training` argument. For example, if a `FeatureColumn` performed dropout, the column could expose a `training` argument to control whether the dropout should be applied. If `None`, becomes `tf.keras.backend.learning_phase()`. Defaults to `None`. Returns: An `(input_layer, sequence_length)` tuple where: - input_layer: A float `Tensor` of shape `[batch_size, T, D]`. `T` is the maximum sequence length for this batch, which could differ from batch to batch. `D` is the sum of `num_elements` for all `feature_columns`. - sequence_length: An int `Tensor` of shape `[batch_size]`. The sequence length for each example. Raises: ValueError: If features are not a dictionary. """ if not isinstance(features, dict): raise ValueError( "We expected a dictionary here. Instead we got: ", features ) if training is None: training = backend.learning_phase() transformation_cache = ( tf.__internal__.feature_column.FeatureTransformationCache(features) ) output_tensors = [] sequence_lengths = [] for column in self._feature_columns: with backend.name_scope(column.name): try: ( dense_tensor, sequence_length, ) = column.get_sequence_dense_tensor( transformation_cache, self._state_manager, training=training, ) except TypeError: ( dense_tensor, sequence_length, ) = column.get_sequence_dense_tensor( transformation_cache, self._state_manager ) # Flattens the final dimension to produce a 3D Tensor. output_tensors.append( self._process_dense_tensor(column, dense_tensor) ) sequence_lengths.append(sequence_length) # Check and process sequence lengths. kfc._verify_static_batch_size_equality( sequence_lengths, self._feature_columns ) sequence_length = _assert_all_equal_and_return(sequence_lengths) return self._verify_and_concat_tensors(output_tensors), sequence_length def _assert_all_equal_and_return(tensors, name=None): """Asserts that all tensors are equal and returns the first one.""" with backend.name_scope(name or "assert_all_equal"): if len(tensors) == 1: return tensors[0] assert_equal_ops = [] for t in tensors[1:]: assert_equal_ops.append(tf.compat.v1.assert_equal(tensors[0], t)) with tf.control_dependencies(assert_equal_ops): return tf.identity(tensors[0])
tf-keras/tf_keras/feature_column/sequence_feature_column.py/0
{ "file_path": "tf-keras/tf_keras/feature_column/sequence_feature_column.py", "repo_id": "tf-keras", "token_count": 3204 }
205
"""Test Model.fit across a diverse range of models.""" import tensorflow.compat.v2 as tf from absl.testing import parameterized from tf_keras.integration_test.models import bert from tf_keras.integration_test.models import dcgan from tf_keras.integration_test.models import edge_case_model from tf_keras.integration_test.models import efficientnet_v2 from tf_keras.integration_test.models import input_spec from tf_keras.integration_test.models import low_level_model from tf_keras.integration_test.models import mini_unet from tf_keras.integration_test.models import mini_xception from tf_keras.integration_test.models import retinanet from tf_keras.integration_test.models import structured_data_classification from tf_keras.integration_test.models import text_classification from tf_keras.integration_test.models import timeseries_forecasting from tf_keras.integration_test.models import vae from tf_keras.testing_infra import test_combinations from tf_keras.testing_infra import test_utils # from tf_keras.integration_test.models import ctc_speech_rnn # from tf_keras.integration_test.models import translation def get_dataset(data_specs, batch_size): values = tf.nest.map_structure(input_spec.spec_to_value, data_specs) dataset = ( tf.data.Dataset.from_tensor_slices(values) .prefetch(batch_size * 2) .batch(batch_size) ) return dataset @test_utils.run_v2_only class FitTest(test_combinations.TestCase): @parameterized.named_parameters( ("bert", bert), # ("ctc_speech_rnn", ctc_speech_rnn), # Buggy? ("dcgan", dcgan), ("edge_case_model", edge_case_model), ("efficientnet_v2", efficientnet_v2), ("low_level_model", low_level_model), ("mini_unet", mini_unet), ("mini_xception", mini_xception), ("retinanet", retinanet), ("structured_data_classification", structured_data_classification), ("text_classification", text_classification), ("timeseries_forecasting", timeseries_forecasting), # ("translation", translation), # Buggy? ("vae", vae), ) def test_fit_on_all_models_with_sync_preprocessing(self, module): batch_size = 4 data_specs = module.get_data_spec(batch_size * 3) dataset = get_dataset(data_specs, batch_size) model = module.get_model( build=True, compile=True, jit_compile=False, include_preprocessing=True, ) model.fit(dataset, epochs=1) @parameterized.named_parameters( ("bert", bert), # ("ctc_speech_rnn", ctc_speech_rnn), # Buggy? ("dcgan", dcgan), ("edge_case_model", edge_case_model), ("efficientnet_v2", efficientnet_v2), ("low_level_model", low_level_model), # ("mini_unet", mini_unet), # Not XLA compatible b/c of UpSampling2D ("mini_xception", mini_xception), # ("retinanet", retinanet), # Not XLA compatible b/c of UpSampling2D ("structured_data_classification", structured_data_classification), ("text_classification", text_classification), ("timeseries_forecasting", timeseries_forecasting), # ("translation", translation), # Buggy? ("vae", vae), ) def test_fit_on_all_models_with_async_preprocessing_and_xla(self, module): batch_size = 4 data_specs = module.get_data_spec(batch_size * 3) dataset = get_dataset(data_specs, batch_size) preprocessor = module.get_input_preprocessor() if preprocessor is not None: dataset = dataset.map(lambda x, y: (preprocessor(x), y)) model = module.get_model( build=True, compile=True, jit_compile=True, include_preprocessing=False, ) model.fit(dataset, epochs=1) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/integration_test/fit_test.py/0
{ "file_path": "tf-keras/tf_keras/integration_test/fit_test.py", "repo_id": "tf-keras", "token_count": 1629 }
206
"""Mini-Xception classification model. Adapted from https://keras.io/examples/vision/image_classification_from_scratch/ """ from tensorflow import keras from tf_keras.integration_test.models.input_spec import InputSpec IMG_SIZE = (120, 120) def get_data_spec(batch_size): return ( InputSpec((batch_size,) + IMG_SIZE + (3,)), InputSpec((batch_size, 1), dtype="int32", range=[0, 2]), ) def get_input_preprocessor(): return keras.Sequential( [ keras.layers.RandomFlip(), keras.layers.RandomRotation(0.2), keras.layers.RandomZoom(0.2), keras.layers.Rescaling(1.0 / 255), ] ) def get_model( build=False, compile=False, jit_compile=False, include_preprocessing=True ): inputs = keras.Input(shape=IMG_SIZE + (3,)) if include_preprocessing: x = get_input_preprocessor()(inputs) else: x = inputs x = keras.layers.Conv2D(32, 3, strides=2, padding="same")(x) x = keras.layers.BatchNormalization()(x) x = keras.layers.Activation("relu")(x) x = keras.layers.Conv2D(64, 3, padding="same")(x) x = keras.layers.BatchNormalization()(x) x = keras.layers.Activation("relu")(x) previous_block_activation = x for size in [128, 256, 512, 728]: x = keras.layers.Activation("relu")(x) x = keras.layers.SeparableConv2D(size, 3, padding="same")(x) x = keras.layers.BatchNormalization()(x) x = keras.layers.Activation("relu")(x) x = keras.layers.SeparableConv2D(size, 3, padding="same")(x) x = keras.layers.BatchNormalization()(x) x = keras.layers.MaxPooling2D(3, strides=2, padding="same")(x) residual = keras.layers.Conv2D(size, 1, strides=2, padding="same")( previous_block_activation ) x = keras.layers.add([x, residual]) previous_block_activation = x x = keras.layers.SeparableConv2D(1024, 3, padding="same")(x) x = keras.layers.BatchNormalization()(x) x = keras.layers.Activation("relu")(x) x = keras.layers.GlobalAveragePooling2D()(x) x = keras.layers.Dropout(0.5)(x) outputs = keras.layers.Dense(1, activation="sigmoid")(x) model = keras.Model(inputs, outputs) if compile: model.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"], jit_compile=jit_compile, ) return model def get_custom_objects(): return {}
tf-keras/tf_keras/integration_test/models/mini_xception.py/0
{ "file_path": "tf-keras/tf_keras/integration_test/models/mini_xception.py", "repo_id": "tf-keras", "token_count": 1164 }
207
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Common utilities for our TF-Keras preprocessing integration tests.""" import os import tensorflow.compat.v2 as tf preprocessing = tf.keras.layers BATCH_SIZE = 64 DS_SIZE = BATCH_SIZE * 16 STEPS = DS_SIZE / BATCH_SIZE VOCAB_SIZE = 100 def make_dataset(): """Make a simple structured dataset. The dataset contains three feature columns. - float_col: an unnormalized numeric column. - int_col: an column of integer IDs. - string_col: a column of fixed vocabulary terms. Returns: The dataset. """ tf.random.set_seed(197011) floats = tf.random.uniform((DS_SIZE, 1), maxval=10, dtype="float32") # Generate a 100 unique integer values, but over a wide range to showcase a # common use case for IntegerLookup. ints = tf.random.uniform((DS_SIZE, 1), maxval=VOCAB_SIZE, dtype="int64") ints = ints * 1000 # Use a fixed vocabulary of strings from 0 to 99, to showcase loading a # vocabulary from a file. strings = tf.random.uniform((DS_SIZE, 1), maxval=VOCAB_SIZE, dtype="int64") strings = tf.strings.as_string(strings) features = {"float_col": floats, "int_col": ints, "string_col": strings} # Random binary label. labels = tf.random.uniform((DS_SIZE, 1), maxval=2, dtype="int64") ds = tf.data.Dataset.from_tensor_slices((features, labels)) return ds def make_preprocessing_model(file_dir): """Make a standalone preprocessing model.""" # The name of our keras.Input should match the column name in the dataset. float_in = tf.keras.Input(shape=(1,), dtype="float32", name="float_col") int_in = tf.keras.Input(shape=(1,), dtype="int64", name="int_col") string_in = tf.keras.Input(shape=(1,), dtype="string", name="string_col") # We need to batch a dataset before adapting. ds = make_dataset().batch(BATCH_SIZE) # Normalize floats by adapting the mean and variance of the input. normalization = preprocessing.Normalization() normalization.adapt(ds.map(lambda features, labels: features["float_col"])) float_out = normalization(float_in) # Lookup ints by adapting a vocab of integer IDs. int_lookup = preprocessing.IntegerLookup() int_lookup.adapt(ds.map(lambda features, labels: features["int_col"])) int_out = int_lookup(int_in) # Lookup strings from a fixed file based vocabulary. string_vocab = list(str(i) for i in range(VOCAB_SIZE)) vocab_file = os.path.join(file_dir, "vocab_file.txt") with open(vocab_file, "w") as f: f.write("\n".join(string_vocab)) string_lookup = preprocessing.StringLookup(vocabulary=vocab_file) string_out = string_lookup(string_in) return tf.keras.Model( inputs=(float_in, int_in, string_in), outputs=(float_out, int_out, string_out), ) def make_training_model(): """Make a trainable model for the preprocessed inputs.""" float_in = tf.keras.Input(shape=(1,), dtype="float32", name="float_col") # After preprocessing, both the string and int column are integer ready for # embedding. int_in = tf.keras.Input(shape=(1,), dtype="int64", name="int_col") string_in = tf.keras.Input(shape=(1,), dtype="int64", name="string_col") # Feed the lookup layers into an embedding. int_embedding = tf.keras.layers.Embedding(VOCAB_SIZE + 1, 8, input_length=1) int_out = int_embedding(int_in) int_out = tf.keras.layers.Flatten()(int_out) string_embedding = tf.keras.layers.Embedding( VOCAB_SIZE + 1, 8, input_length=1 ) string_out = string_embedding(string_in) string_out = tf.keras.layers.Flatten()(string_out) # Concatenate outputs. concatate = tf.keras.layers.Concatenate() # Feed our preprocessed inputs into a simple MLP. x = concatate((float_in, int_out, string_out)) x = tf.keras.layers.Dense(32, activation="relu")(x) x = tf.keras.layers.Dense(32, activation="relu")(x) outputs = tf.keras.layers.Dense(1, activation="softmax")(x) return tf.keras.Model(inputs=(float_in, int_in, string_in), outputs=outputs)
tf-keras/tf_keras/integration_test/preprocessing_test_utils.py/0
{ "file_path": "tf-keras/tf_keras/integration_test/preprocessing_test_utils.py", "repo_id": "tf-keras", "token_count": 1711 }
208
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests AdditiveAttention layer.""" import numpy as np import tensorflow.compat.v2 as tf from absl.testing import parameterized import tf_keras as keras from tf_keras.mixed_precision import policy from tf_keras.testing_infra import test_combinations from tf_keras.testing_infra import test_utils @test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) class AdditiveAttentionTest(tf.test.TestCase, parameterized.TestCase): def test_calculate_scores_one_dim(self): # Query tensor of shape [1, 1, 1] q = np.array([[[1.1]]], dtype=np.float32) # Key tensor of shape [1, 1, 1] k = np.array([[[1.6]]], dtype=np.float32) attention_layer = keras.layers.AdditiveAttention() attention_layer.build(input_shape=([1, 1, 1], [1, 1, 1])) # Scale tensor of shape [1] attention_layer.scale = np.array([[[0.5]]], dtype=np.float32) actual = attention_layer._calculate_scores(query=q, key=k) # Expected tensor of shape [1, 1, 1]. # expected000 = 0.5 * tanh(1.1 + 1.6) = 0.49550372683 expected = np.array([[[0.49550372683]]], dtype=np.float32) self.assertAllClose(expected, actual) def test_calculate_scores_multi_dim(self): # Query tensor of shape [1, 2, 4] q = np.array( [[[1.0, 1.1, 1.2, 1.3], [2.0, 2.1, 2.2, 2.3]]], dtype=np.float32 ) # Key tensor of shape [1, 3, 4] k = np.array( [ [ [1.5, 1.6, 1.7, 1.8], [2.5, 2.6, 2.7, 2.8], [3.5, 3.6, 3.7, 3.8], ] ], dtype=np.float32, ) attention_layer = keras.layers.AdditiveAttention() attention_layer.build(input_shape=([1, 2, 4], [1, 3, 4])) # Scale tensor of shape [4] attention_layer.scale = np.array( [[[0.5, 0.6, 0.7, 0.8]]], dtype=np.float32 ) actual = attention_layer._calculate_scores(query=q, key=k) # expected000 = 0.5*tanh(1.+1.5) + 0.6*tanh(1.1+1.6) + \ # 0.7*tanh(1.2+1.7) + 0.8*tanh(1.3+1.8) = 2.58044532581 # expected001 = 0.5*tanh(1.+2.5) + 0.6*tanh(1.1+2.6) + \ # 0.7*tanh(1.2+2.7) + 0.8*tanh(1.3+2.8) = 2.59734317449 # expected002 = 0.5*tanh(1.+3.5) + 0.6*tanh(1.1+3.6) + \ # 0.7*tanh(1.2+3.7) + 0.8*tanh(1.3+3.8) = 2.59964024652 # expected010 = 0.5*tanh(2.+1.5) + 0.6*tanh(2.1+1.6) + \ # 0.7*tanh(2.2+1.7) + 0.8*tanh(2.3+1.8) = 2.59734317449 # expected011 = 0.5*tanh(2.+2.5) + 0.6*tanh(2.1+2.6) + \ # 0.7*tanh(2.2+2.7) + 0.8*tanh(2.3+2.8) = 2.59964024652 # expected012 = 0.5*tanh(2.+3.5) + 0.6*tanh(2.1+3.6) + \ # 0.7*tanh(2.2+3.7) + 0.8*tanh(2.3+3.8) = 2.59995130916 expected = np.array( [ [ [2.58044532581, 2.59734317449, 2.59964024652], [2.59734317449, 2.59964024652, 2.59995130916], ] ], dtype=np.float32, ) self.assertAllClose(expected, actual) def test_calculate_scores_one_dim_batch_size_two(self): # Query tensor of shape [2, 1, 1] q = np.array([[[1.1]], [[2.1]]], dtype=np.float32) # Key tensor of shape [2, 1, 1] k = np.array([[[1.6]], [[2.6]]], dtype=np.float32) attention_layer = keras.layers.AdditiveAttention() attention_layer.build(input_shape=([2, 1, 1], [2, 1, 1])) # Scale tensor of shape [1] attention_layer.scale = np.array([[[0.5]]], dtype=np.float32) actual = attention_layer._calculate_scores(query=q, key=k) # Expected tensor of shape [2, 1, 1]. # expected000 = 0.5 * tanh(1.1 + 1.6) = 0.49550372683 # expected100 = 0.5 * tanh(2.1 + 2.6) = 0.49991728277 expected = np.array( [[[0.49550372683]], [[0.49991728277]]], dtype=np.float32 ) self.assertAllClose(expected, actual) def test_shape(self): # Query tensor of shape [1, 2, 4] q = np.array( [[[1.0, 1.1, 1.2, 1.3], [2.0, 2.1, 2.2, 2.3]]], dtype=np.float32 ) # Value tensor of shape [1, 3, 4] v = np.array( [ [ [1.5, 1.6, 1.7, 1.8], [2.5, 2.6, 2.7, 2.8], [3.5, 3.6, 3.7, 3.8], ] ], dtype=np.float32, ) # Value mask tensor of shape [1, 3] v_mask = np.array([[True, True, False]], dtype=np.bool_) attention_layer = keras.layers.AdditiveAttention() actual = attention_layer([q, v], mask=[None, v_mask]) expected_shape = [1, 2, 4] self.assertAllEqual(expected_shape, tf.shape(actual)) def test_shape_no_scale(self): # Query tensor of shape [1, 2, 4] q = np.array( [[[1.0, 1.1, 1.2, 1.3], [2.0, 2.1, 2.2, 2.3]]], dtype=np.float32 ) # Value tensor of shape [1, 3, 4] v = np.array( [ [ [1.5, 1.6, 1.7, 1.8], [2.5, 2.6, 2.7, 2.8], [3.5, 3.6, 3.7, 3.8], ] ], dtype=np.float32, ) # Value mask tensor of shape [1, 3] v_mask = np.array([[True, True, False]], dtype=np.bool_) attention_layer = keras.layers.AdditiveAttention(use_scale=False) actual = attention_layer([q, v], mask=[None, v_mask]) expected_shape = [1, 2, 4] self.assertAllEqual(expected_shape, tf.shape(actual)) def test_shape_with_key(self): # Query tensor of shape [1, 2, 4] q = np.array( [[[1.0, 1.1, 1.2, 1.3], [2.0, 2.1, 2.2, 2.3]]], dtype=np.float32 ) # Value tensor of shape [1, 3, 4] v = np.array( [ [ [1.5, 1.6, 1.7, 1.8], [2.5, 2.6, 2.7, 2.8], [3.5, 3.6, 3.7, 3.8], ] ], dtype=np.float32, ) # Key tensor of shape [1, 3, 4] k = np.array( [ [ [1.5, 1.6, 1.7, 1.8], [2.5, 2.6, 2.7, 2.8], [3.5, 3.6, 3.7, 3.8], ] ], dtype=np.float32, ) # Value mask tensor of shape [1, 3] v_mask = np.array([[True, True, False]], dtype=np.bool_) attention_layer = keras.layers.AdditiveAttention() actual = attention_layer([q, v, k], mask=[None, v_mask]) expected_shape = [1, 2, 4] self.assertAllEqual(expected_shape, tf.shape(actual)) def test_multi_dim(self): # Query tensor of shape [1, 1, 1] q = np.array([[[1.1]]], dtype=np.float32) # Value tensor of shape [1, 3, 1] v = np.array([[[1.6], [0.7], [-0.8]]], dtype=np.float32) # Value mask tensor of shape [1, 3] v_mask = np.array([[True, True, False]], dtype=np.bool_) attention_layer = keras.layers.AdditiveAttention() attention_layer.build(input_shape=([1, 1, 1], [1, 3, 1])) # Scale tensor of shape [1] attention_layer.scale = np.array([[[0.5]]], dtype=np.float32) actual = attention_layer([q, v], mask=[None, v_mask]) # Expected scores of shape [1, 1, 3] # scores = [[[0.5 * tanh(1.1 + 1.6), # 0.5 * tanh(1.1 + 0.7), # 0.5 * tanh(1.1 - 0.8)]]] # = [[[0.49550372683, 0.47340300642, 0.14565630622]]] # Expected attention distribution = softmax(scores) with zeros in # positions where v_mask == False. # => attention_distribution000 # = exp(0.49550372683)/(exp(0.49550372683) + exp(0.47340300642)) # = 0.50552495521 # attention_distribution001 # = exp(0.47340300642)/(exp(0.49550372683) + exp(0.47340300642)) # = 0.49447504478 # attention_distribution002 = 0 # # Expected tensor of shape [1, 1, 1]. # expected000 = 0.50552495521 * 1.6 + 0.49447504478 * 0.7 - 0 * 0.8 # = 1.15497245968 expected = np.array([[[1.15497245968]]], dtype=np.float32) self.assertAllClose(expected, actual) def test_multi_dim_with_key(self): # Query tensor of shape [1, 1, 1] q = np.array([[[1.1]]], dtype=np.float32) # Value tensor of shape [1, 3, 1] v = np.array([[[0.5], [0.8], [-0.3]]], dtype=np.float32) # Key tensor of shape [1, 3, 1] k = np.array([[[1.6], [0.7], [-0.8]]], dtype=np.float32) # Value mask tensor of shape [1, 3] v_mask = np.array([[True, True, False]], dtype=np.bool_) attention_layer = keras.layers.AdditiveAttention() attention_layer.build(input_shape=([1, 1, 1], [1, 3, 1])) # Scale tensor of shape [1] attention_layer.scale = np.array([[[0.5]]], dtype=np.float32) actual = attention_layer([q, v, k], mask=[None, v_mask]) # Expected scores of shape [1, 1, 3] # scores = [[[0.5 * tanh(1.1 + 1.6), # 0.5 * tanh(1.1 + 0.7), # 0.5 * tanh(1.1 - 0.8)]]] # = [[[0.49550372683, 0.47340300642, 0.14565630622]]] # Expected attention distribution = softmax(scores) with zeros in # positions where v_mask == False. # => attention_distribution000 # = exp(0.49550372683)/(exp(0.49550372683) + exp(0.47340300642)) # = 0.50552495521 # attention_distribution001 # = exp(0.47340300642)/(exp(0.49550372683) + exp(0.47340300642)) # = 0.49447504478 # attention_distribution002 = 0 # # Expected tensor of shape [1, 1, 1]. # expected000 = 0.50552495521 * 0.5 + 0.49447504478 * 0.8 - 0 * 0.3 # = 0.64834251342 expected = np.array([[[0.64834251342]]], dtype=np.float32) self.assertAllClose(expected, actual) def test_multi_dim_with_query_mask(self): # Query tensor of shape [1, 2, 1] q = np.array([[[1.1], [-0.5]]], dtype=np.float32) # Value tensor of shape [1, 3, 1] v = np.array([[[1.6], [0.7], [-0.8]]], dtype=np.float32) # Query mask tensor of shape [1, 2] q_mask = np.array([[True, False]], dtype=np.bool_) # Value mask tensor of shape [1, 3] v_mask = np.array([[True, True, False]], dtype=np.bool_) attention_layer = keras.layers.AdditiveAttention() attention_layer.build(input_shape=([1, 1, 1], [1, 3, 1])) # Scale tensor of shape [1] attention_layer.scale = np.array([[[0.5]]], dtype=np.float32) actual = attention_layer([q, v], mask=[q_mask, v_mask]) # Expected scores of shape [1, 2, 3] # scores = [[[0.5 * tanh(1.1 + 1.6), # 0.5 * tanh(1.1 + 0.7), # 0.5 * tanh(1.1 - 0.8)], # [0.5 * tanh(-0.5 + 1.6), # 0.5 * tanh(-0.5 + 0.7), # 0.5 * tanh(-0.5 - 0.8)]]] # = [[[0.49550372683, 0.47340300642, 0.14565630622], # [0.40024951088, 0.09868766011, -0.43086157965]]] # Expected attention distribution = softmax(scores) with zeros in # positions where v_mask == False. # => attention_distribution000 # = exp(0.49550372683)/(exp(0.49550372683) + exp(0.47340300642)) # = 0.50552495521 # attention_distribution001 # = exp(0.47340300642)/(exp(0.49550372683) + exp(0.47340300642)) # = 0.49447504478 # attention_distribution002 = 0 # => attention_distribution010 # = exp(0.40024951088)/(exp(0.40024951088) + exp(0.09868766011)) # = 0.57482427975 # attention_distribution011 # = exp(0.09868766011)/(exp(0.40024951088) + exp(0.09868766011)) # = 0.42517572025 # attention_distribution012 = 0 # # Expected tensor of shape [1, 2, 1] with zeros where q_mask == False. # expected000 = 0.50552495521 * 1.6 + 0.49447504478 * 0.7 - 0 * 0.8 # = 1.15497245968 # expected000 = 0 expected = np.array([[[1.15497245968], [0.0]]], dtype=np.float32) self.assertAllClose(expected, actual) def test_serialization(self): # Test serialization with use_scale layer = keras.layers.AdditiveAttention(use_scale=True) config = keras.layers.serialize(layer) new_layer = keras.layers.deserialize(config) self.assertEqual(new_layer.use_scale, True) config = layer.get_config() new_layer = keras.layers.AdditiveAttention.from_config(config) self.assertEqual(new_layer.use_scale, True) @test_utils.enable_v2_dtype_behavior def test_mixed_float16_policy(self): # Test case for GitHub issue: # https://github.com/tensorflow/tensorflow/issues/46064 with policy.policy_scope("mixed_float16"): q = tf.cast(tf.random.uniform((2, 3, 4), seed=1), "float16") v = tf.cast(tf.random.uniform((2, 3, 4), seed=2), "float16") k = tf.cast(tf.random.uniform((2, 3, 4), seed=3), "float16") layer = keras.layers.AdditiveAttention() _ = layer([q, v, k], use_causal_mask=True) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/layers/attention/additive_attention_test.py/0
{ "file_path": "tf-keras/tf_keras/layers/attention/additive_attention_test.py", "repo_id": "tf-keras", "token_count": 7680 }
209
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keras 3D convolution layer.""" from tf_keras import activations from tf_keras import constraints from tf_keras import initializers from tf_keras import regularizers from tf_keras.dtensor import utils from tf_keras.layers.convolutional.base_conv import Conv # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export("keras.layers.Conv3D", "keras.layers.Convolution3D") class Conv3D(Conv): """3D convolution layer (e.g. spatial convolution over volumes). This layer creates a convolution kernel that is convolved with the layer input to produce a tensor of outputs. If `use_bias` is True, a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well. When using this layer as the first layer in a model, provide the keyword argument `input_shape` (tuple of integers or `None`, does not include the sample axis), e.g. `input_shape=(128, 128, 128, 1)` for 128x128x128 volumes with a single channel, in `data_format="channels_last"`. Examples: >>> # The inputs are 28x28x28 volumes with a single channel, and the >>> # batch size is 4 >>> input_shape =(4, 28, 28, 28, 1) >>> x = tf.random.normal(input_shape) >>> y = tf.keras.layers.Conv3D( ... 2, 3, activation='relu', input_shape=input_shape[1:])(x) >>> print(y.shape) (4, 26, 26, 26, 2) >>> # With extended batch shape [4, 7], e.g. a batch of 4 videos of >>> # 3D frames, with 7 frames per video. >>> input_shape = (4, 7, 28, 28, 28, 1) >>> x = tf.random.normal(input_shape) >>> y = tf.keras.layers.Conv3D( ... 2, 3, activation='relu', input_shape=input_shape[2:])(x) >>> print(y.shape) (4, 7, 26, 26, 26, 2) Args: filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution). kernel_size: An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window. Can be a single integer to specify the same value for all spatial dimensions. strides: An integer or tuple/list of 3 integers, specifying the strides of the convolution along each spatial dimension. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. padding: one of `"valid"` or `"same"` (case-insensitive). `"valid"` means no padding. `"same"` results in padding with zeros evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `batch_shape + (spatial_dim1, spatial_dim2, spatial_dim3, channels)` while `channels_first` corresponds to inputs with shape `batch_shape + (channels, spatial_dim1, spatial_dim2, spatial_dim3)`. When unspecified, uses `image_data_format` value found in your TF-Keras config file at `~/.keras/keras.json` (if exists) else 'channels_last'. Note that the `channels_first` format is currently not supported by TensorFlow on CPU. Defaults to 'channels_last'. dilation_rate: an integer or tuple/list of 3 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any stride value != 1. groups: A positive integer specifying the number of groups in which the input is split along the channel axis. Each group is convolved separately with `filters / groups` filters. The output is the concatenation of all the `groups` results along the channel axis. Input channels and `filters` must both be divisible by `groups`. activation: Activation function to use. If you don't specify anything, no activation is applied (see `keras.activations`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix (see `keras.initializers`). Defaults to 'glorot_uniform'. bias_initializer: Initializer for the bias vector (see `keras.initializers`). Defaults to 'zeros'. kernel_regularizer: Regularizer function applied to the `kernel` weights matrix (see `keras.regularizers`). bias_regularizer: Regularizer function applied to the bias vector (see `keras.regularizers`). activity_regularizer: Regularizer function applied to the output of the layer (its "activation") (see `keras.regularizers`). kernel_constraint: Constraint function applied to the kernel matrix (see `keras.constraints`). bias_constraint: Constraint function applied to the bias vector (see `keras.constraints`). Input shape: 5+D tensor with shape: `batch_shape + (channels, conv_dim1, conv_dim2, conv_dim3)` if data_format='channels_first' or 5+D tensor with shape: `batch_shape + (conv_dim1, conv_dim2, conv_dim3, channels)` if data_format='channels_last'. Output shape: 5+D tensor with shape: `batch_shape + (filters, new_conv_dim1, new_conv_dim2, new_conv_dim3)` if data_format='channels_first' or 5+D tensor with shape: `batch_shape + (new_conv_dim1, new_conv_dim2, new_conv_dim3, filters)` if data_format='channels_last'. `new_conv_dim1`, `new_conv_dim2` and `new_conv_dim3` values might have changed due to padding. Returns: A tensor of rank 5+ representing `activation(conv3d(inputs, kernel) + bias)`. Raises: ValueError: if `padding` is "causal". ValueError: when both `strides > 1` and `dilation_rate > 1`. """ @utils.allow_initializer_layout def __init__( self, filters, kernel_size, strides=(1, 1, 1), padding="valid", data_format=None, dilation_rate=(1, 1, 1), groups=1, activation=None, use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs ): super().__init__( rank=3, filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, groups=groups, activation=activations.get(activation), use_bias=use_bias, kernel_initializer=initializers.get(kernel_initializer), bias_initializer=initializers.get(bias_initializer), kernel_regularizer=regularizers.get(kernel_regularizer), bias_regularizer=regularizers.get(bias_regularizer), activity_regularizer=regularizers.get(activity_regularizer), kernel_constraint=constraints.get(kernel_constraint), bias_constraint=constraints.get(bias_constraint), **kwargs ) # Alias Convolution3D = Conv3D
tf-keras/tf_keras/layers/convolutional/conv3d.py/0
{ "file_path": "tf-keras/tf_keras/layers/convolutional/conv3d.py", "repo_id": "tf-keras", "token_count": 3080 }
210
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Keras-based einsum dense layer.""" import numpy as np import tensorflow.compat.v2 as tf from absl.testing import parameterized import tf_keras as keras from tf_keras.layers.core import einsum_dense from tf_keras.testing_infra import test_combinations from tf_keras.testing_infra import test_utils @test_combinations.run_all_keras_modes @parameterized.named_parameters( { "testcase_name": "_1d_end_weight", "equation": "ab,b->a", "bias_axes": None, "input_shape": (None, 32), "output_shape": [], "expected_weight_shape": [32], "expected_bias_shape": None, "expected_output_shape": (None,), }, { "testcase_name": "_2d_middle_weight", "equation": "ab,bc->ac", "bias_axes": None, "input_shape": (None, 32), "output_shape": (64), "expected_weight_shape": [32, 64], "expected_bias_shape": None, "expected_output_shape": (None, 64), }, { "testcase_name": "_3d_bert", "equation": "abc,cde->abde", "bias_axes": None, "input_shape": (None, 1, 2), "output_shape": (1, 3, 4), "expected_weight_shape": [2, 3, 4], "expected_bias_shape": None, "expected_output_shape": (None, 1, 3, 4), }, { "testcase_name": "_3d_3_bias", "equation": "abc,cde->abde", "bias_axes": "e", "input_shape": (None, 1, 2), "output_shape": (1, 3, 4), "expected_weight_shape": [2, 3, 4], "expected_bias_shape": [4], "expected_output_shape": (None, 1, 3, 4), }, { "testcase_name": "_3d_2_bias", "equation": "abc,cde->abde", "bias_axes": "d", "input_shape": (None, 1, 2), "output_shape": (1, 3, 4), "expected_weight_shape": [2, 3, 4], "expected_bias_shape": [3, 1], "expected_output_shape": (None, 1, 3, 4), }, { "testcase_name": "_3d_1_3_bias", "equation": "abc,cde->abde", "bias_axes": "be", "input_shape": (None, 7, 2), "output_shape": (7, 3, 4), "expected_weight_shape": [2, 3, 4], "expected_bias_shape": [7, 1, 4], "expected_output_shape": (None, 7, 3, 4), }, { "testcase_name": "_3d_bert_projection", "equation": "BFNH,NHD->BFD", "bias_axes": None, "input_shape": (None, 1, 2, 3), "output_shape": (1, 4), "expected_weight_shape": [2, 3, 4], "expected_bias_shape": None, "expected_output_shape": (None, 1, 4), }, { "testcase_name": "_2d_bert", "equation": "abc,cd->abd", "bias_axes": None, "input_shape": (None, 1, 2), "output_shape": (1, 4), "expected_weight_shape": [2, 4], "expected_bias_shape": None, "expected_output_shape": (None, 1, 4), }, { "testcase_name": "_embedding_1d", "equation": "i,d->id", "bias_axes": None, "input_shape": (None,), "output_shape": (2), "expected_weight_shape": [2], "expected_bias_shape": None, "expected_output_shape": (None, 2), }, { "testcase_name": "_xlnet_lm", "equation": "ibd,nd->ibn", "bias_axes": None, "input_shape": (None, None, 1), "output_shape": (None, 2), "expected_weight_shape": [2, 1], "expected_bias_shape": None, "expected_output_shape": (None, None, 2), }, { "testcase_name": "_2d_precast", "equation": "...b,bc->...c", "bias_axes": None, "input_shape": (None, 32), "output_shape": (64), "expected_weight_shape": [32, 64], "expected_bias_shape": None, "expected_output_shape": (None, 64), }, { "testcase_name": "_2d_precast_elided_input_used_in_output", "equation": "...bc,bc->...b", "bias_axes": None, "input_shape": (None, 32, 64), "output_shape": (32), "expected_weight_shape": [32, 64], "expected_bias_shape": None, "expected_output_shape": (None, 32), }, { "testcase_name": "_2d_precast_multiple_elided_dims", "equation": "...b,bc->...c", "bias_axes": None, "input_shape": (None, None, 32), "output_shape": (64), "expected_weight_shape": [32, 64], "expected_bias_shape": None, "expected_output_shape": (None, None, 64), }, { "testcase_name": "_3d_precast", "equation": "...c,cde->...de", "bias_axes": None, "input_shape": (None, 1, 2), "output_shape": (3, 4), "expected_weight_shape": [2, 3, 4], "expected_bias_shape": None, "expected_output_shape": (None, 1, 3, 4), }, { "testcase_name": "_3d_precast_3_bias", "equation": "...c,cde->...de", "bias_axes": "e", "input_shape": (None, 1, 2), "output_shape": (3, 4), "expected_weight_shape": [2, 3, 4], "expected_bias_shape": [4], "expected_output_shape": (None, 1, 3, 4), }, { "testcase_name": "_3d_precast_2_bias", "equation": "...c,cde->...de", "bias_axes": "d", "input_shape": (None, 1, 2), "output_shape": (3, 4), "expected_weight_shape": [2, 3, 4], "expected_bias_shape": [3, 1], "expected_output_shape": (None, 1, 3, 4), }, { "testcase_name": "_3d_precast_2_3_bias", "equation": "...c,cde->...de", "bias_axes": "de", "input_shape": (None, 1, 2), "output_shape": (3, 4), "expected_weight_shape": [2, 3, 4], "expected_bias_shape": [3, 4], "expected_output_shape": (None, 1, 3, 4), }, { "testcase_name": "_2d_postcast", "equation": "bc...,cd->bd...", "bias_axes": None, "input_shape": (None, 1, 2, 3), "output_shape": (4), "expected_weight_shape": [1, 4], "expected_bias_shape": None, "expected_output_shape": (None, 4, 2, 3), }, { "testcase_name": "_3d_postcast", "equation": "bc...,cde->bde...", "bias_axes": None, "input_shape": (None, 1, 2), "output_shape": (3, 4), "expected_weight_shape": [1, 3, 4], "expected_bias_shape": None, "expected_output_shape": (None, 3, 4, 2), }, { "testcase_name": "_3d_postcast_1_bias", "equation": "bc...,cde->bde...", "bias_axes": "d", "input_shape": (None, 1, 2), "output_shape": (3, 4), "expected_weight_shape": [1, 3, 4], "expected_bias_shape": [3, 1, 1], "expected_output_shape": (None, 3, 4, 2), }, { "testcase_name": "_3d_postcast_2_bias", "equation": "bc...,cde->bde...", "bias_axes": "e", "input_shape": (None, 1, 2), "output_shape": (3, 4), "expected_weight_shape": [1, 3, 4], "expected_bias_shape": [4, 1], "expected_output_shape": (None, 3, 4, 2), }, { "testcase_name": "_3d_postcast_1_2_bias", "equation": "bc...,cde->bde...", "bias_axes": "de", "input_shape": (None, 1, 2), "output_shape": (3, 4), "expected_weight_shape": [1, 3, 4], "expected_bias_shape": [3, 4, 1], "expected_output_shape": (None, 3, 4, 2), }, ) class TestEinsumDenseLayer(test_combinations.TestCase): def test_weight_shapes( self, equation, bias_axes, input_shape, output_shape, expected_weight_shape, expected_bias_shape, expected_output_shape, ): del expected_output_shape # Not used in this test. weight_shape, bias_shape, _ = einsum_dense._analyze_einsum_string( equation, bias_axes, input_shape, output_shape ) self.assertAllEqual(expected_weight_shape, weight_shape) self.assertAllEqual(expected_bias_shape, bias_shape) def test_layer_creation( self, equation, bias_axes, input_shape, output_shape, expected_weight_shape, expected_bias_shape, expected_output_shape, ): # TF-Keras elides the 0-dimension of the input shape when constructing # inputs. non_batch_input_shape = list(input_shape)[1:] input_tensor = keras.Input(shape=non_batch_input_shape) layer = einsum_dense.EinsumDense( equation=equation, output_shape=output_shape, bias_axes=bias_axes ) output_tensor = layer(input_tensor) self.assertAllEqual(expected_weight_shape, layer.kernel.shape.as_list()) if expected_bias_shape is None: self.assertIsNone(layer.bias) else: self.assertAllEqual(expected_bias_shape, layer.bias.shape.as_list()) self.assertAllEqual( expected_output_shape, output_tensor.shape.as_list() ) @test_combinations.run_all_keras_modes class TestEinsumLayerAPI(test_combinations.TestCase): def test_layer_api(self): input_data = np.array([[1.0, 2.0], [3.0, 4.0]]) kwargs = { "equation": "...b,bc->...c", "bias_axes": "c", "output_shape": 4, "bias_initializer": keras.initializers.constant(0.03), "kernel_initializer": keras.initializers.constant(0.5), "dtype": input_data.dtype, } expected_output = np.array( [[1.53, 1.53, 1.53, 1.53], [3.53, 3.53, 3.53, 3.53]] ) output_data = test_utils.layer_test( einsum_dense.EinsumDense, kwargs=kwargs, input_shape=(None, 2), input_data=input_data, ) self.assertAllClose(expected_output, output_data) def test_unspecified_bias_dim_fails(self): input_tensor = keras.Input(shape=(32,)) layer = einsum_dense.EinsumDense( equation="ab,bc->ac", output_shape=64, bias_axes="y" ) with self.assertRaisesRegex( ValueError, ".*is not part of the output spec.*" ): _ = layer(input_tensor) def test_incompatible_input_output_shape_fails(self): input_tensor = keras.Input(shape=(32, 64)) layer = einsum_dense.EinsumDense( equation="abc,cd->abd", output_shape=(10, 96) ) with self.assertRaisesRegex( ValueError, ".*Input shape and output shape do not match at shared " "dimension 'b'.*", ): _ = layer(input_tensor) def test_unspecified_output_dim_fails(self): input_tensor = keras.Input(shape=(32,)) layer = einsum_dense.EinsumDense(equation="ab,bc->cd", output_shape=64) with self.assertRaisesRegex( ValueError, ".*Dimension 'd' was specified in the output 'cd' but has " "no corresponding dim.*", ): _ = layer(input_tensor) def test_unspecified_weight_dim_fails(self): input_tensor = keras.Input(shape=(32,)) layer = einsum_dense.EinsumDense(equation="ab,zd->ad", output_shape=64) with self.assertRaisesRegex( ValueError, ".*Weight dimension 'z' did not have a match " ): _ = layer(input_tensor) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/layers/core/einsum_dense_test.py/0
{ "file_path": "tf-keras/tf_keras/layers/core/einsum_dense_test.py", "repo_id": "tf-keras", "token_count": 6058 }
211
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for kernelized.py.""" import functools import math import os import shutil import numpy as np import tensorflow.compat.v2 as tf from absl.testing import parameterized from tf_keras import backend as keras_backend from tf_keras import initializers from tf_keras.engine import base_layer_utils from tf_keras.engine import input_layer from tf_keras.engine import training from tf_keras.layers import kernelized as kernel_layers from tf_keras.saving.legacy import save from tf_keras.testing_infra import test_combinations from tf_keras.testing_infra import test_utils from tf_keras.utils import kernelized_utils # isort: off from tensorflow.python.framework import ( test_util as tf_test_utils, ) def _exact_gaussian(stddev): return functools.partial( kernelized_utils.exact_gaussian_kernel, stddev=stddev ) def _exact_laplacian(stddev): return functools.partial( kernelized_utils.exact_laplacian_kernel, stddev=stddev ) @test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) class RandomFourierFeaturesTest(tf.test.TestCase, parameterized.TestCase): def _assert_all_close(self, expected, actual, atol=0.001): if not tf.executing_eagerly(): with self.cached_session() as sess: keras_backend._initialize_variables(sess) self.assertAllClose(expected, actual, atol=atol) else: self.assertAllClose(expected, actual, atol=atol) @test_utils.run_v2_only def test_state_saving_and_loading(self): with self.cached_session(): input_data = np.random.random((1, 2)) rff_layer = kernel_layers.RandomFourierFeatures( output_dim=10, scale=3.0 ) inputs = input_layer.Input((2,)) outputs = rff_layer(inputs) model = training.Model(inputs, outputs) output_data = model.predict(input_data) temp_dir = self.get_temp_dir() self.addCleanup(shutil.rmtree, temp_dir) saved_model_dir = os.path.join(temp_dir, "rff_model") model.save(saved_model_dir) new_model = save.load_model(saved_model_dir) new_output_data = new_model.predict(input_data) self.assertAllClose(output_data, new_output_data, atol=1e-4) def test_invalid_output_dim(self): with self.assertRaisesRegex( ValueError, "`output_dim` should be a positive integer" ): _ = kernel_layers.RandomFourierFeatures(output_dim=-3, scale=2.0) def test_unsupported_kernel_type(self): with self.assertRaisesRegex( ValueError, "Unsupported `kernel_initializer`" ): _ = kernel_layers.RandomFourierFeatures( 3, "unsupported_kernel", stddev=2.0 ) def test_invalid_scale(self): with self.assertRaisesRegex( ValueError, "When provided, `scale` should be a positive float" ): _ = kernel_layers.RandomFourierFeatures(output_dim=10, scale=0.0) def test_invalid_input_shape(self): inputs = tf.random.uniform((3, 2, 4), seed=1) rff_layer = kernel_layers.RandomFourierFeatures( output_dim=10, scale=3.0 ) with self.assertRaisesRegex( ValueError, "The rank of the input tensor should be 2" ): _ = rff_layer(inputs) @parameterized.named_parameters( ("gaussian", "gaussian", 10.0, False), ("random", tf.compat.v1.random_uniform_initializer, 1.0, True), ) def test_random_features_properties(self, initializer, scale, trainable): rff_layer = kernel_layers.RandomFourierFeatures( output_dim=10, kernel_initializer=initializer, scale=scale, trainable=trainable, ) self.assertEqual(rff_layer.output_dim, 10) self.assertEqual(rff_layer.kernel_initializer, initializer) self.assertEqual(rff_layer.scale, scale) self.assertEqual(rff_layer.trainable, trainable) @parameterized.named_parameters( ("gaussian", "gaussian", False), ("laplacian", "laplacian", True), ("other", tf.compat.v1.ones_initializer, True), ) def test_call(self, initializer, trainable): rff_layer = kernel_layers.RandomFourierFeatures( output_dim=10, kernel_initializer=initializer, scale=1.0, trainable=trainable, name="random_fourier_features", ) inputs = tf.random.uniform((3, 2), seed=1) outputs = rff_layer(inputs) self.assertListEqual([3, 10], outputs.shape.as_list()) num_trainable_vars = 1 if trainable else 0 self.assertLen( rff_layer.non_trainable_variables, 3 - num_trainable_vars ) @tf_test_utils.assert_no_new_pyobjects_executing_eagerly() def test_no_eager_Leak(self): # Tests that repeatedly constructing and building a Layer does not leak # Python objects. inputs = tf.random.uniform((5, 4), seed=1) kernel_layers.RandomFourierFeatures(output_dim=4, name="rff")(inputs) kernel_layers.RandomFourierFeatures(output_dim=10, scale=2.0)(inputs) def test_output_shape(self): inputs = tf.random.uniform((3, 2), seed=1) rff_layer = kernel_layers.RandomFourierFeatures( output_dim=7, name="random_fourier_features", trainable=True ) outputs = rff_layer(inputs) self.assertEqual([3, 7], outputs.shape.as_list()) @parameterized.named_parameters( ("gaussian", "gaussian"), ("laplacian", "laplacian"), ("other", tf.compat.v1.random_uniform_initializer), ) def test_call_on_placeholder(self, initializer): with tf.Graph().as_default(): inputs = tf.compat.v1.placeholder( dtype=tf.float32, shape=[None, None] ) rff_layer = kernel_layers.RandomFourierFeatures( output_dim=5, kernel_initializer=initializer, name="random_fourier_features", ) with self.assertRaisesRegex( ValueError, "The last dimension of the input tensor should be defined", ): rff_layer(inputs) inputs = tf.compat.v1.placeholder(dtype=tf.float32, shape=[2, None]) rff_layer = kernel_layers.RandomFourierFeatures( output_dim=5, kernel_initializer=initializer, name="random_fourier_features", ) with self.assertRaisesRegex( ValueError, "The last dimension of the input tensor should be defined", ): rff_layer(inputs) inputs = tf.compat.v1.placeholder(dtype=tf.float32, shape=[None, 3]) rff_layer = kernel_layers.RandomFourierFeatures( output_dim=5, name="random_fourier_features" ) rff_layer(inputs) @parameterized.named_parameters( ("gaussian", 10, "gaussian", 2.0), ("laplacian", 5, "laplacian", None), ("other", 10, tf.compat.v1.ones_initializer, 1.0), ) def test_compute_output_shape(self, output_dim, initializer, scale): rff_layer = kernel_layers.RandomFourierFeatures( output_dim, initializer, scale=scale, name="rff" ) with self.assertRaises(ValueError): rff_layer.compute_output_shape(tf.TensorShape(None)) with self.assertRaises(ValueError): rff_layer.compute_output_shape(tf.TensorShape([])) with self.assertRaises(ValueError): rff_layer.compute_output_shape(tf.TensorShape([3])) with self.assertRaises(ValueError): rff_layer.compute_output_shape(tf.TensorShape([3, 2, 3])) with self.assertRaisesRegex( ValueError, "The last dimension of the input tensor should be defined", ): rff_layer.compute_output_shape(tf.TensorShape([3, None])) self.assertEqual( [None, output_dim], rff_layer.compute_output_shape((None, 3)).as_list(), ) self.assertEqual( [None, output_dim], rff_layer.compute_output_shape(tf.TensorShape([None, 2])).as_list(), ) self.assertEqual( [4, output_dim], rff_layer.compute_output_shape((4, 1)).as_list() ) @parameterized.named_parameters( ("gaussian", 10, "gaussian", 3.0, False), ("laplacian", 5, "laplacian", 5.5, True), ("other", 7, tf.compat.v1.random_uniform_initializer(), None, True), ) def test_get_config(self, output_dim, initializer, scale, trainable): rff_layer = kernel_layers.RandomFourierFeatures( output_dim, initializer, scale=scale, trainable=trainable, name="random_fourier_features", ) expected_initializer = initializer if not isinstance(initializer, str): expected_initializer = initializers.serialize(initializer) expected_dtype = ( "float32" if base_layer_utils.v2_dtype_behavior_enabled() else None ) expected_config = { "output_dim": output_dim, "kernel_initializer": expected_initializer, "scale": scale, "name": "random_fourier_features", "trainable": trainable, "dtype": expected_dtype, } self.assertLen(expected_config, len(rff_layer.get_config())) self.assertSameElements( list(expected_config.items()), list(rff_layer.get_config().items()) ) @parameterized.named_parameters( ("gaussian", 5, "gaussian", None, True), ("laplacian", 5, "laplacian", 5.5, False), ("other", 7, tf.compat.v1.ones_initializer(), 2.0, True), ) def test_from_config(self, output_dim, initializer, scale, trainable): model_config = { "output_dim": output_dim, "kernel_initializer": initializer, "scale": scale, "trainable": trainable, "name": "random_fourier_features", } rff_layer = kernel_layers.RandomFourierFeatures.from_config( model_config ) self.assertEqual(rff_layer.output_dim, output_dim) self.assertEqual(rff_layer.kernel_initializer, initializer) self.assertEqual(rff_layer.scale, scale) self.assertEqual(rff_layer.trainable, trainable) inputs = tf.random.uniform((3, 2), seed=1) outputs = rff_layer(inputs) self.assertListEqual([3, output_dim], outputs.shape.as_list()) num_trainable_vars = 1 if trainable else 0 self.assertLen(rff_layer.trainable_variables, num_trainable_vars) if trainable: self.assertEqual( "random_fourier_features/kernel_scale:0", rff_layer.trainable_variables[0].name, ) self.assertLen( rff_layer.non_trainable_variables, 3 - num_trainable_vars ) @parameterized.named_parameters( ("gaussian", 10, "gaussian", 3.0, True), ("laplacian", 5, "laplacian", 5.5, False), ("other", 10, tf.compat.v1.random_uniform_initializer(), None, True), ) def test_same_random_features_params_reused( self, output_dim, initializer, scale, trainable ): """Applying the layer on the same input twice gives the same output.""" rff_layer = kernel_layers.RandomFourierFeatures( output_dim=output_dim, kernel_initializer=initializer, scale=scale, trainable=trainable, name="random_fourier_features", ) inputs = tf.constant(np.random.uniform(low=-1.0, high=1.0, size=(2, 4))) output1 = rff_layer(inputs) output2 = rff_layer(inputs) self._assert_all_close(output1, output2) @parameterized.named_parameters( ("gaussian", "gaussian", 5.0), ("laplacian", "laplacian", 3.0), ("other", tf.compat.v1.random_uniform_initializer(), 5.0), ) def test_different_params_similar_approximation(self, initializer, scale): tf.compat.v1.set_random_seed(12345) rff_layer1 = kernel_layers.RandomFourierFeatures( output_dim=3000, kernel_initializer=initializer, scale=scale, name="rff1", ) rff_layer2 = kernel_layers.RandomFourierFeatures( output_dim=2000, kernel_initializer=initializer, scale=scale, name="rff2", ) # Two distinct inputs. x = tf.constant([[1.0, -1.0, 0.5]]) y = tf.constant([[-1.0, 1.0, 1.0]]) # Apply both layers to both inputs. output_x1 = math.sqrt(2.0 / 3000.0) * rff_layer1(x) output_y1 = math.sqrt(2.0 / 3000.0) * rff_layer1(y) output_x2 = math.sqrt(2.0 / 2000.0) * rff_layer2(x) output_y2 = math.sqrt(2.0 / 2000.0) * rff_layer2(y) # Compute the inner products of the outputs (on inputs x and y) for both # layers. For any fixed random features layer rff_layer, and inputs x, # y, rff_layer(x)^T * rff_layer(y) ~= K(x,y) up to a normalization # factor. approx_kernel1 = kernelized_utils.inner_product(output_x1, output_y1) approx_kernel2 = kernelized_utils.inner_product(output_x2, output_y2) self._assert_all_close(approx_kernel1, approx_kernel2, atol=0.08) @parameterized.named_parameters( ("gaussian", "gaussian", 5.0, _exact_gaussian(stddev=5.0)), ("laplacian", "laplacian", 20.0, _exact_laplacian(stddev=20.0)), ) def test_bad_kernel_approximation( self, initializer, scale, exact_kernel_fn ): """Approximation is bad when output dimension is small.""" # Two distinct inputs. x = tf.constant([[1.0, -1.0, 0.5]]) y = tf.constant([[-1.0, 1.0, 1.0]]) small_output_dim = 10 tf.compat.v1.set_random_seed(1234) # Initialize layer. rff_layer = kernel_layers.RandomFourierFeatures( output_dim=small_output_dim, kernel_initializer=initializer, scale=scale, name="random_fourier_features", ) # Apply layer to both inputs. output_x = math.sqrt(2.0 / small_output_dim) * rff_layer(x) output_y = math.sqrt(2.0 / small_output_dim) * rff_layer(y) # The inner products of the outputs (on inputs x and y) approximates the # real value of the RBF kernel but poorly since the output dimension of # the layer is small. exact_kernel_value = exact_kernel_fn(x, y) approx_kernel_value = kernelized_utils.inner_product(output_x, output_y) abs_error = tf.abs(exact_kernel_value - approx_kernel_value) if not tf.executing_eagerly(): with self.cached_session() as sess: keras_backend._initialize_variables(sess) abs_error_eval = sess.run([abs_error]) self.assertGreater(abs_error_eval[0][0], 0.01) self.assertLess(abs_error_eval[0][0], 0.5) else: self.assertGreater(abs_error, 0.01) self.assertLess(abs_error, 0.5) @parameterized.named_parameters( ("gaussian", "gaussian", 5.0, _exact_gaussian(stddev=5.0)), ("laplacian", "laplacian", 10.0, _exact_laplacian(stddev=10.0)), ) def test_good_kernel_approximation_multiple_inputs( self, initializer, scale, exact_kernel_fn ): # Parameters. input_dim = 5 output_dim = 2000 x_rows = 20 y_rows = 30 x = tf.constant( np.random.uniform(size=(x_rows, input_dim)), dtype=tf.float32 ) y = tf.constant( np.random.uniform(size=(y_rows, input_dim)), dtype=tf.float32 ) tf.compat.v1.set_random_seed(1234) rff_layer = kernel_layers.RandomFourierFeatures( output_dim=output_dim, kernel_initializer=initializer, scale=scale, name="random_fourier_features", ) # The shapes of output_x and output_y are (x_rows, output_dim) and # (y_rows, output_dim) respectively. output_x = math.sqrt(2.0 / output_dim) * rff_layer(x) output_y = math.sqrt(2.0 / output_dim) * rff_layer(y) approx_kernel_matrix = kernelized_utils.inner_product( output_x, output_y ) exact_kernel_matrix = exact_kernel_fn(x, y) self._assert_all_close( approx_kernel_matrix, exact_kernel_matrix, atol=0.05 ) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/layers/kernelized_test.py/0
{ "file_path": "tf-keras/tf_keras/layers/kernelized_test.py", "repo_id": "tf-keras", "token_count": 8254 }
212
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for merging layers.""" import numpy as np import tensorflow.compat.v2 as tf from absl.testing import parameterized import tf_keras as keras from tf_keras import backend from tf_keras.testing_infra import test_combinations from tf_keras.testing_infra import test_utils from tf_keras.utils import tf_inspect @test_combinations.run_all_keras_modes class MergingLayersTest(test_combinations.TestCase): def test_add(self): i1 = keras.layers.Input(shape=(4, 5)) i2 = keras.layers.Input(shape=(4, 5)) i3 = keras.layers.Input(shape=(4, 5)) add_layer = keras.layers.Add() o = add_layer([i1, i2, i3]) self.assertListEqual(o.shape.as_list(), [None, 4, 5]) model = keras.models.Model([i1, i2, i3], o) model.run_eagerly = test_utils.should_run_eagerly() x1 = np.random.random((2, 4, 5)) x2 = np.random.random((2, 4, 5)) x3 = np.random.random((2, 4, 5)) out = model.predict([x1, x2, x3]) self.assertEqual(out.shape, (2, 4, 5)) self.assertAllClose(out, x1 + x2 + x3, atol=1e-4) self.assertIsNone( add_layer.compute_mask([i1, i2, i3], [None, None, None]) ) self.assertTrue( np.all( backend.eval( add_layer.compute_mask( [i1, i2], [backend.variable(x1), backend.variable(x2)] ) ) ) ) with self.assertRaisesRegex(ValueError, "`mask` should be a list."): add_layer.compute_mask([i1, i2, i3], x1) with self.assertRaisesRegex(ValueError, "`inputs` should be a list."): add_layer.compute_mask(i1, [None, None, None]) with self.assertRaisesRegex( ValueError, " should have the same length." ): add_layer.compute_mask([i1, i2, i3], [None, None]) def test_subtract(self): i1 = keras.layers.Input(shape=(4, 5)) i2 = keras.layers.Input(shape=(4, 5)) i3 = keras.layers.Input(shape=(4, 5)) subtract_layer = keras.layers.Subtract() o = subtract_layer([i1, i2]) self.assertListEqual(o.shape.as_list(), [None, 4, 5]) model = keras.models.Model([i1, i2], o) model.run_eagerly = test_utils.should_run_eagerly() x1 = np.random.random((2, 4, 5)) x2 = np.random.random((2, 4, 5)) out = model.predict([x1, x2]) self.assertEqual(out.shape, (2, 4, 5)) self.assertAllClose(out, x1 - x2, atol=1e-4) self.assertIsNone(subtract_layer.compute_mask([i1, i2], [None, None])) self.assertTrue( np.all( backend.eval( subtract_layer.compute_mask( [i1, i2], [backend.variable(x1), backend.variable(x2)] ) ) ) ) with self.assertRaisesRegex(ValueError, "`mask` should be a list."): subtract_layer.compute_mask([i1, i2], x1) with self.assertRaisesRegex(ValueError, "`inputs` should be a list."): subtract_layer.compute_mask(i1, [None, None]) with self.assertRaisesRegex( ValueError, "layer should be called on exactly 2 inputs" ): subtract_layer([i1, i2, i3]) with self.assertRaisesRegex( ValueError, "layer should be called on exactly 2 inputs" ): subtract_layer([i1]) def test_multiply(self): i1 = keras.layers.Input(shape=(4, 5)) i2 = keras.layers.Input(shape=(4, 5)) i3 = keras.layers.Input(shape=(4, 5)) o = keras.layers.multiply([i1, i2, i3]) self.assertListEqual(o.shape.as_list(), [None, 4, 5]) model = keras.models.Model([i1, i2, i3], o) model.run_eagerly = test_utils.should_run_eagerly() x1 = np.random.random((2, 4, 5)) x2 = np.random.random((2, 4, 5)) x3 = np.random.random((2, 4, 5)) out = model.predict([x1, x2, x3]) self.assertEqual(out.shape, (2, 4, 5)) self.assertAllClose(out, x1 * x2 * x3, atol=1e-4) def test_average(self): i1 = keras.layers.Input(shape=(4, 5)) i2 = keras.layers.Input(shape=(4, 5)) o = keras.layers.average([i1, i2]) self.assertListEqual(o.shape.as_list(), [None, 4, 5]) model = keras.models.Model([i1, i2], o) model.run_eagerly = test_utils.should_run_eagerly() x1 = np.random.random((2, 4, 5)) x2 = np.random.random((2, 4, 5)) out = model.predict([x1, x2]) self.assertEqual(out.shape, (2, 4, 5)) self.assertAllClose(out, 0.5 * (x1 + x2), atol=1e-4) def test_maximum(self): i1 = keras.layers.Input(shape=(4, 5)) i2 = keras.layers.Input(shape=(4, 5)) o = keras.layers.maximum([i1, i2]) self.assertListEqual(o.shape.as_list(), [None, 4, 5]) model = keras.models.Model([i1, i2], o) model.run_eagerly = test_utils.should_run_eagerly() x1 = np.random.random((2, 4, 5)) x2 = np.random.random((2, 4, 5)) out = model.predict([x1, x2]) self.assertEqual(out.shape, (2, 4, 5)) self.assertAllClose(out, np.maximum(x1, x2), atol=1e-4) def test_minimum(self): i1 = keras.layers.Input(shape=(4, 5)) i2 = keras.layers.Input(shape=(4, 5)) o = keras.layers.minimum([i1, i2]) self.assertListEqual(o.shape.as_list(), [None, 4, 5]) model = keras.models.Model([i1, i2], o) model.run_eagerly = test_utils.should_run_eagerly() x1 = np.random.random((2, 4, 5)) x2 = np.random.random((2, 4, 5)) out = model.predict([x1, x2]) self.assertEqual(out.shape, (2, 4, 5)) self.assertAllClose(out, np.minimum(x1, x2), atol=1e-4) def test_concatenate(self): i1 = keras.layers.Input(shape=(4, 5)) i2 = keras.layers.Input(shape=(4, 5)) concat_layer = keras.layers.Concatenate(axis=1) o = concat_layer([i1, i2]) self.assertListEqual(o.shape.as_list(), [None, 8, 5]) model = keras.models.Model([i1, i2], o) model.run_eagerly = test_utils.should_run_eagerly() x1 = np.random.random((2, 4, 5)) x2 = np.random.random((2, 4, 5)) out = model.predict([x1, x2]) self.assertEqual(out.shape, (2, 8, 5)) self.assertAllClose(out, np.concatenate([x1, x2], axis=1), atol=1e-4) self.assertIsNone(concat_layer.compute_mask([i1, i2], [None, None])) self.assertTrue( np.all( backend.eval( concat_layer.compute_mask( [i1, i2], [backend.variable(x1), backend.variable(x2)] ) ) ) ) # Should work with unit-length input. unit_length_o = concat_layer([i1]) self.assertListEqual(unit_length_o.shape.as_list(), i1.shape.as_list()) with self.assertRaisesRegex(ValueError, "`mask` should be a list."): concat_layer.compute_mask([i1, i2], x1) with self.assertRaisesRegex(ValueError, "`inputs` should be a list."): concat_layer.compute_mask(i1, [None, None]) with self.assertRaisesRegex(ValueError, "should have the same length"): concat_layer.compute_mask([i1, i2], [None]) with self.assertRaisesRegex( ValueError, "layer should be called on a list of inputs" ): concat_layer(i1) def test_concatenate_numpy_inputs(self): if tf.executing_eagerly(): layer = keras.layers.Concatenate() x, y = np.ones((10, 10)), np.ones((10, 10)) self.assertAllEqual(np.ones((10, 20)), layer([x, y])) def test_dot(self): i1 = keras.layers.Input(shape=(4,)) i2 = keras.layers.Input(shape=(4,)) o = keras.layers.dot([i1, i2], axes=1) self.assertListEqual(o.shape.as_list(), [None, 1]) model = keras.models.Model([i1, i2], o) model.run_eagerly = test_utils.should_run_eagerly() _ = keras.layers.Dot(axes=1).get_config() x1 = np.random.random((2, 4)) x2 = np.random.random((2, 4)) out = model.predict([x1, x2]) self.assertEqual(out.shape, (2, 1)) expected = np.zeros((2, 1)) expected[0, 0] = np.dot(x1[0], x2[0]) expected[1, 0] = np.dot(x1[1], x2[1]) self.assertAllClose(out, expected, atol=1e-4) # Test with negative tuple of axes. o = keras.layers.dot([i1, i2], axes=(-1, -1)) self.assertListEqual(o.shape.as_list(), [None, 1]) model = keras.models.Model([i1, i2], o) model.run_eagerly = test_utils.should_run_eagerly() out = model.predict([x1, x2]) self.assertEqual(out.shape, (2, 1)) self.assertAllClose(out, expected, atol=1e-4) # test compute_output_shape layer = keras.layers.Dot(axes=-1) self.assertEqual(layer.compute_output_shape([(4, 5), (4, 5)]), (4, 1)) @parameterized.named_parameters( *test_utils.generate_combinations_with_testcase_name( layer=[ keras.layers.Add, keras.layers.Subtract, keras.layers.Multiply, keras.layers.Minimum, keras.layers.Maximum, keras.layers.Average, ] ) ) def test_merging_with_ragged_input(self, layer): ragged_data = tf.ragged.constant( [[1.0, 1.0, 1.0], [1.0, 1.0], [1.0, 1.0, 1.0, 1.0]], ragged_rank=1 ) dense_data = ragged_data.to_tensor() input1 = keras.Input(shape=(None,), ragged=True) input2 = keras.Input(shape=(None,), ragged=True) out = layer()([input1, input2]) model = keras.models.Model(inputs=[input1, input2], outputs=out) out_ragged = model.predict([ragged_data, ragged_data], steps=1) out_ragged = convert_ragged_tensor_value(out_ragged).to_tensor() input1 = keras.Input(shape=(None,)) input2 = keras.Input(shape=(None,)) out = layer()([input1, input2]) model = keras.models.Model(inputs=[input1, input2], outputs=out) out_dense = model.predict([dense_data, dense_data], steps=1) self.assertAllEqual(out_dense, out_ragged) def test_concatenate_with_ragged_input(self): ragged1 = tf.ragged.constant( [[1.0, 1.0], [1.0], [1.0, 1.0, 1.0]], ragged_rank=1 ) ragged2 = tf.ragged.constant( [[2.0, 2.0, 2.0], [2.0], [2.0, 2.0]], ragged_rank=1 ) expected_concatenated_ragged = tf.ragged.constant( [[1.0, 1.0, 2.0, 2.0, 2.0], [1.0, 2.0], [1.0, 1.0, 1.0, 2.0, 2.0]], ragged_rank=1, ) input1 = keras.Input(shape=(None,), ragged=True) input2 = keras.Input(shape=(None,), ragged=True) out = keras.layers.Concatenate(axis=1)([input1, input2]) model = keras.models.Model(inputs=[input1, input2], outputs=out) out_ragged = model.predict([ragged1, ragged2], steps=1) self.assertAllEqual(out_ragged, expected_concatenated_ragged) @parameterized.named_parameters( *test_utils.generate_combinations_with_testcase_name( layer=[ keras.layers.Add, keras.layers.Subtract, keras.layers.Multiply, keras.layers.Minimum, keras.layers.Maximum, keras.layers.Average, ] ) ) def test_merging_with_scalar_input(self, layer): x1 = np.array((1)) x2 = np.array((2)) out = layer()([x1, x2]) self.assertEqual(out.shape, ()) @parameterized.named_parameters( *test_utils.generate_combinations_with_testcase_name( layer=[ keras.layers.Add, keras.layers.add, keras.layers.Average, keras.layers.average, keras.layers.Concatenate, keras.layers.concatenate, keras.layers.Maximum, keras.layers.maximum, keras.layers.Minimum, keras.layers.minimum, keras.layers.Multiply, keras.layers.multiply, ] ) ) def test_single_element(self, layer): # Instantiate the Layer subclasses if tf_inspect.isclass(layer) and issubclass(layer, keras.layers.Layer): layer = layer() # Processing a single element list should behave as identity. i1 = keras.layers.Input(shape=(4, 5)) o = layer([i1]) self.assertListEqual(o.shape.as_list(), [None, 4, 5]) model = keras.models.Model(i1, o) model.run_eagerly = test_utils.should_run_eagerly() x1 = np.random.random((2, 4, 5)) out = model.predict(x1) self.assertEqual(out.shape, (2, 4, 5)) self.assertAllClose(out, x1) # A single element must be passed as a list, not by itself. with self.assertRaisesRegex(ValueError, "called on a list"): layer(i1) @test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) class MergingLayersTestNoExecution(tf.test.TestCase): def test_add_elementwise_errors(self): i1 = keras.layers.Input(shape=(4, 5)) i2 = keras.layers.Input(shape=(4, 6)) with self.assertRaises(ValueError): keras.layers.add([i1, i2]) with self.assertRaises(ValueError): keras.layers.add(i1) def test_concatenate_errors(self): i1 = keras.layers.Input(shape=(4, 5)) i2 = keras.layers.Input(shape=(3, 5)) with self.assertRaisesRegex(ValueError, "inputs with matching shapes"): keras.layers.concatenate([i1, i2], axis=-1) with self.assertRaisesRegex(ValueError, "called on a list"): keras.layers.concatenate(i1, axis=-1) def test_concatenate_with_partial_shape(self): i1 = keras.layers.Input(shape=(5,), batch_size=32) i2 = keras.layers.Input(shape=(5,)) i3 = keras.layers.Input(shape=(4, 5), batch_size=32) i4 = keras.layers.Input(shape=(None,), batch_size=64) i5 = keras.layers.Input(shape=(7,)) # Valid case since the i2 has a dynamic batch size. keras.layers.concatenate([i1, i2], axis=-1) # Different rank with self.assertRaisesRegex(ValueError, "inputs with matching shapes"): keras.layers.concatenate([i1, i3], axis=-1) # Valid case with partial dimension information keras.layers.concatenate([i1, i4], axis=0) keras.layers.concatenate([i2, i4], axis=0) keras.layers.concatenate([i2, i4], axis=1) keras.layers.concatenate([i1, i2, i4], axis=0) keras.layers.concatenate([i1, i5], axis=1) # Mismatch in batch dimension. with self.assertRaisesRegex(ValueError, "inputs with matching shapes"): keras.layers.concatenate([i1, i4], axis=-1) with self.assertRaisesRegex(ValueError, "inputs with matching shapes"): keras.layers.concatenate([i1, i2, i4], axis=-1) def test_dot_errors(self): i1 = keras.layers.Input(shape=(4, 5)) i2 = keras.layers.Input(shape=(4, 6)) i3 = keras.layers.Input(shape=(4, 6)) with self.assertRaises(ValueError): keras.layers.dot([i1, i2], axes=-1) with self.assertRaises(ValueError): keras.layers.dot(i1, axes=-1) with self.assertRaises(ValueError): keras.layers.dot([i1], axes=-1) with self.assertRaises(ValueError): keras.layers.dot([i1, i2, i3], axes=-1) with self.assertRaises(ValueError): dot = keras.layers.Dot(1) dot.compute_output_shape(1) def test_subtract(self): i1 = keras.layers.Input(shape=(4, 5)) i2 = keras.layers.Input(shape=(4, 5)) y = keras.layers.subtract([i1, i2]) self.assertEqual(y.shape.as_list(), [None, 4, 5]) # Test invalid use cases i1 = keras.layers.Input(shape=(4, 5)) i2 = keras.layers.Input(shape=(3, 5)) with self.assertRaises(ValueError): keras.layers.subtract([i1, i2]) with self.assertRaises(ValueError): keras.layers.subtract([i1, i1, i1]) def test_add_masking(self): i1 = keras.layers.Input(shape=(4, 5)) i2 = keras.layers.Input(shape=(4, 5)) m1 = keras.layers.Masking()(i1) layer = keras.layers.Add() o = layer([m1, i2]) self.assertListEqual(o.shape.as_list(), [None, 4, 5]) mask = layer.output_mask self.assertListEqual(mask.shape.as_list(), [None, 4]) def test_add_dynamic_shape(self): i1 = keras.Input(batch_shape=(4, None), dtype="float32") i2 = keras.Input(batch_shape=(4, 5), dtype="float32") layer = keras.layers.Add() o = layer([i1, i2]) self.assertListEqual(o.shape.as_list(), [4, 5]) def test_concatenate_masking(self): i1 = keras.layers.Input(shape=(4, 5)) i2 = keras.layers.Input(shape=(4, 5)) m1 = keras.layers.Masking()(i1) layer = keras.layers.Concatenate() o = layer([m1, i2]) self.assertListEqual(o.shape.as_list(), [None, 4, 10]) mask = layer.output_mask self.assertListEqual(mask.shape.as_list(), [None, 4]) def test_concatenate_sparse_shape(self): i1 = keras.layers.Input(shape=(1,), batch_size=2, sparse=True) i2 = keras.layers.Input(shape=(2,), batch_size=2, sparse=True) layer = keras.layers.Concatenate(axis=1) o = layer([i1, i2]) self.assertListEqual(o.shape.as_list(), [2, 3]) # Make sure it also respect None as the batch size i1 = keras.layers.Input(shape=(1,), sparse=True) i2 = keras.layers.Input(shape=(2,), sparse=True) layer = keras.layers.Concatenate(axis=1) o = layer([i1, i2]) self.assertListEqual(o.shape.as_list(), [None, 3]) def test_concatenate_user_changes_to_input_structure(self): a = keras.layers.Input(shape=(4, 5)) struct = [a, a] concat1 = keras.layers.Concatenate(1) b = concat1(struct) struct.append(b) concat2 = keras.layers.Concatenate(1) c = concat2(struct) # Checks that the append to `struct` doesn't affect `concat1`s # node data. self.assertLen(concat1.inbound_nodes[0].input_tensors, 2) self.assertLen(concat2.inbound_nodes[0].input_tensors, 3) keras.Model(a, c) # Ensure model can be built. def convert_ragged_tensor_value(inputs): if isinstance(inputs, tf.compat.v1.ragged.RaggedTensorValue): flat_values = tf.convert_to_tensor( value=inputs.flat_values, name="flat_values" ) return tf.RaggedTensor.from_nested_row_splits( flat_values, inputs.nested_row_splits, validate=False ) return inputs if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/layers/merging/merging_test.py/0
{ "file_path": "tf-keras/tf_keras/layers/merging/merging_test.py", "repo_id": "tf-keras", "token_count": 9965 }
213
# Copyright 2023 The TF-Keras Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import tensorflow as tf from absl.testing import parameterized import tf_keras as keras from tf_keras.testing_infra import test_combinations from tf_keras.testing_infra import test_utils class SpectralNormalizationTest(test_combinations.TestCase): @test_combinations.run_all_keras_modes def test_basic_spectralnorm(self): test_utils.layer_test( keras.layers.SpectralNormalization, kwargs={"layer": keras.layers.Dense(2), "input_shape": (3, 4)}, input_data=tf.random.uniform((10, 3, 4)), ) @test_combinations.run_all_keras_modes def test_from_to_config(self): base_layer = keras.layers.Dense(1) sn = keras.layers.SpectralNormalization(base_layer) config = sn.get_config() new_sn = keras.layers.SpectralNormalization.from_config(config) self.assertEqual(sn.power_iterations, new_sn.power_iterations) @test_combinations.run_all_keras_modes def test_save_load_model(self): base_layer = keras.layers.Dense(1) input_shape = [1] inputs = keras.layers.Input(shape=input_shape) sn_layer = keras.layers.SpectralNormalization(base_layer) model = keras.models.Sequential(layers=[inputs, sn_layer]) # initialize model model.predict(tf.random.uniform((2, 1))) with self.subTest("h5"): model.save("test.h5") new_model = keras.models.load_model("test.h5") self.assertEqual( model.layers[0].get_config(), new_model.layers[0].get_config() ) with self.subTest("savedmodel"): model.save("test") new_model = keras.models.load_model("test") self.assertEqual( model.layers[0].get_config(), new_model.layers[0].get_config() ) with self.subTest("keras_v3"): model.save("test.keras") new_model = keras.models.load_model("test.keras") self.assertEqual( model.layers[0].get_config(), new_model.layers[0].get_config() ) @test_combinations.run_all_keras_modes def test_normalization(self): inputs = keras.layers.Input(shape=[2, 2, 1]) base_layer = keras.layers.Conv2D( 1, (2, 2), kernel_initializer=tf.constant_initializer(value=2) ) sn_layer = keras.layers.SpectralNormalization(base_layer) model = keras.models.Sequential(layers=[inputs, sn_layer]) weights = tf.squeeze(model.layers[0].w.numpy()) # This wrapper normalizes weights by the maximum eigen value eigen_val, _ = tf.linalg.eig(weights) weights_normalized = weights / tf.reduce_max(eigen_val) for training in [False, True]: _ = model( tf.constant(tf.ones((1, 2, 2, 1), dtype=tf.float32)), training=training, ) if training: w = weights_normalized else: w = weights self.assertAllClose(w, tf.squeeze(model.layers[0].w.numpy())) @test_combinations.run_all_keras_modes def test_apply_layer(self): images = tf.ones((1, 2, 2, 1)) sn_wrapper = keras.layers.SpectralNormalization( keras.layers.Conv2D( 1, [2, 2], kernel_initializer=tf.constant_initializer(value=1) ), input_shape=(2, 2, 1), ) result = sn_wrapper(images, training=False) result_train = sn_wrapper(images, training=True) expected_output = tf.constant([[[[4.0]]]], dtype=tf.float32) self.assertAllClose(result, expected_output) # max eigen value of 2x2 matrix of ones is 2 self.assertAllClose(result_train, expected_output / 2) self.assertTrue(hasattr(sn_wrapper, "u")) @test_combinations.run_all_keras_modes def test_no_layer(self): images = tf.random.uniform((2, 4, 43)) with self.assertRaises(AssertionError): keras.layers.SpectralNormalization(images) @test_combinations.run_all_keras_modes def test_no_kernel(self): with self.assertRaises(AttributeError): keras.layers.SpectralNormalization( keras.layers.MaxPooling2D(2, 2) ).build((2, 2)) @parameterized.parameters( [ (lambda: keras.layers.Dense(2), [3, 2]), ( lambda: keras.layers.Conv2D(3, (2, 2), padding="same"), [4, 4, 3], ), (lambda: keras.layers.Embedding(2, 10), [2]), ], ) @test_combinations.run_all_keras_modes def test_model_build(self, base_layer_fn, input_shape): inputs = keras.layers.Input(shape=input_shape) base_layer = base_layer_fn() sn_layer = keras.layers.SpectralNormalization(base_layer) model = keras.models.Sequential(layers=[inputs, sn_layer]) model.build() self.assertTrue(hasattr(model.layers[0], "vector_u")) @parameterized.parameters( [ (lambda: keras.layers.Dense(2), [3, 2], [3, 2]), ( lambda: keras.layers.Conv2D(3, (2, 2), padding="same"), [4, 4, 3], [4, 4, 3], ), (lambda: keras.layers.Embedding(2, 10), [2], [2, 10]), ], ) @test_combinations.run_all_keras_modes def test_model_fit(self, base_layer_fn, input_shape, output_shape): inputs = keras.layers.Input(shape=input_shape) base_layer = base_layer_fn() sn_layer = keras.layers.SpectralNormalization(base_layer) model = keras.models.Sequential(layers=[inputs, sn_layer]) model.add(keras.layers.Activation("relu")) model.compile( optimizer=keras.optimizers.RMSprop(learning_rate=0.001), loss="mse", ) model.fit( tf.random.uniform((2, *input_shape)), tf.random.uniform((2, *output_shape)), epochs=3, batch_size=10, verbose=0, ) self.assertTrue(hasattr(model.layers[0], "vector_u"))
tf-keras/tf_keras/layers/normalization/spectral_normalization_test.py/0
{ "file_path": "tf-keras/tf_keras/layers/normalization/spectral_normalization_test.py", "repo_id": "tf-keras", "token_count": 3198 }
214
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Global average pooling 2D layer.""" from tf_keras import backend from tf_keras.layers.pooling.base_global_pooling2d import GlobalPooling2D # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export( "keras.layers.GlobalAveragePooling2D", "keras.layers.GlobalAvgPool2D" ) class GlobalAveragePooling2D(GlobalPooling2D): """Global average pooling operation for spatial data. Examples: >>> input_shape = (2, 4, 5, 3) >>> x = tf.random.normal(input_shape) >>> y = tf.keras.layers.GlobalAveragePooling2D()(x) >>> print(y.shape) (2, 3) Args: data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. When unspecified, uses `image_data_format` value found in your TF-Keras config file at `~/.keras/keras.json` (if exists) else 'channels_last'. Defaults to 'channels_last'. keepdims: A boolean, whether to keep the spatial dimensions or not. If `keepdims` is `False` (default), the rank of the tensor is reduced for spatial dimensions. If `keepdims` is `True`, the spatial dimensions are retained with length 1. The behavior is the same as for `tf.reduce_mean` or `np.mean`. Input shape: - If `data_format='channels_last'`: 4D tensor with shape `(batch_size, rows, cols, channels)`. - If `data_format='channels_first'`: 4D tensor with shape `(batch_size, channels, rows, cols)`. Output shape: - If `keepdims`=False: 2D tensor with shape `(batch_size, channels)`. - If `keepdims`=True: - If `data_format='channels_last'`: 4D tensor with shape `(batch_size, 1, 1, channels)` - If `data_format='channels_first'`: 4D tensor with shape `(batch_size, channels, 1, 1)` """ def call(self, inputs): if self.data_format == "channels_last": return backend.mean(inputs, axis=[1, 2], keepdims=self.keepdims) else: return backend.mean(inputs, axis=[2, 3], keepdims=self.keepdims) # Alias GlobalAvgPool2D = GlobalAveragePooling2D
tf-keras/tf_keras/layers/pooling/global_average_pooling2d.py/0
{ "file_path": "tf-keras/tf_keras/layers/pooling/global_average_pooling2d.py", "repo_id": "tf-keras", "token_count": 1171 }
215
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Benchmark for TF-Keras category_encoding preprocessing layer.""" import time import numpy as np import tensorflow.compat.v2 as tf import tf_keras as keras from tf_keras.layers.preprocessing import category_encoding class BenchmarkLayer(tf.test.Benchmark): """Benchmark the layer forward pass.""" def run_dataset_implementation( self, output_mode, batch_size, sequence_length, max_tokens ): input_t = keras.Input(shape=(sequence_length,), dtype=tf.int32) layer = category_encoding.CategoryEncoding( max_tokens=max_tokens, output_mode=output_mode ) _ = layer(input_t) num_repeats = 5 starts = [] ends = [] for _ in range(num_repeats): ds = tf.data.Dataset.from_tensor_slices( tf.random.uniform( [batch_size * 10, sequence_length], minval=0, maxval=max_tokens - 1, dtype=tf.int32, ) ) ds = ds.shuffle(batch_size * 100) ds = ds.batch(batch_size) num_batches = 5 ds = ds.take(num_batches) ds = ds.prefetch(num_batches) starts.append(time.time()) # Benchmarked code begins here. for i in ds: _ = layer(i) # Benchmarked code ends here. ends.append(time.time()) avg_time = np.mean(np.array(ends) - np.array(starts)) / num_batches name = "category_encoding|batch_%s|seq_length_%s|%s_max_tokens" % ( batch_size, sequence_length, max_tokens, ) self.report_benchmark(iters=num_repeats, wall_time=avg_time, name=name) def benchmark_vocab_size_by_batch(self): for batch in [32, 256, 2048]: for sequence_length in [10, 1000]: for num_tokens in [100, 1000, 20000]: self.run_dataset_implementation( output_mode="count", batch_size=batch, sequence_length=sequence_length, max_tokens=num_tokens, ) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/layers/preprocessing/benchmarks/category_encoding_benchmark.py/0
{ "file_path": "tf-keras/tf_keras/layers/preprocessing/benchmarks/category_encoding_benchmark.py", "repo_id": "tf-keras", "token_count": 1364 }
216
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Benchmark for TF-Keras text vectorization preprocessing layer's adapt method. """ import collections import itertools import random import string import time import numpy as np import tensorflow.compat.v2 as tf import tf_keras as keras from tf_keras.layers.preprocessing import index_lookup tf.compat.v1.enable_v2_behavior() # word_gen creates random sequences of ASCII letters (both lowercase and upper). # The number of unique strings is ~2,700. def word_gen(): for _ in itertools.count(1): yield "".join(random.choice(string.ascii_letters) for i in range(2)) def get_top_k(dataset, k): """Python implementation of vocabulary building using a defaultdict.""" counts = collections.defaultdict(int) for tensor in dataset: data = tensor.numpy() for element in data: counts[element] += 1 sorted_vocab = [ k for k, _ in sorted( counts.items(), key=lambda item: item[1], reverse=True ) ] if len(sorted_vocab) > k: sorted_vocab = sorted_vocab[:k] return sorted_vocab class BenchmarkAdapt(tf.test.Benchmark): """Benchmark adapt.""" def run_numpy_implementation(self, num_elements, batch_size, k): """Test the python implementation.""" ds = tf.data.Dataset.from_generator( word_gen, tf.string, tf.TensorShape([]) ) batched_ds = ds.take(num_elements).batch(batch_size) input_t = keras.Input(shape=(), dtype=tf.string) layer = index_lookup.IndexLookup( max_tokens=k, num_oov_indices=0, mask_token=None, oov_token="OOV", dtype=tf.string, ) _ = layer(input_t) num_repeats = 5 starts = [] ends = [] for _ in range(num_repeats): starts.append(time.time()) vocab = get_top_k(batched_ds, k) layer.set_vocabulary(vocab) ends.append(time.time()) avg_time = np.mean(np.array(ends) - np.array(starts)) return avg_time def bm_adapt_implementation(self, num_elements, batch_size, k): """Test the KPL adapt implementation.""" ds = tf.data.Dataset.from_generator( word_gen, tf.string, tf.TensorShape([]) ) batched_ds = ds.take(num_elements).batch(batch_size) input_t = keras.Input(shape=(), dtype=tf.string) layer = index_lookup.IndexLookup( max_tokens=k, num_oov_indices=0, mask_token=None, oov_token="OOV", dtype=tf.string, ) _ = layer(input_t) num_repeats = 5 starts = [] ends = [] for _ in range(num_repeats): starts.append(time.time()) layer.adapt(batched_ds) ends.append(time.time()) avg_time = np.mean(np.array(ends) - np.array(starts)) name = "index_lookup_adapt|%s_elements|vocab_size_%s|batch_%s" % ( num_elements, k, batch_size, ) baseline = self.run_numpy_implementation(num_elements, batch_size, k) extras = { "numpy implementation baseline": baseline, "delta seconds": (baseline - avg_time), "delta percent": ((baseline - avg_time) / baseline) * 100, } self.report_benchmark( iters=num_repeats, wall_time=avg_time, extras=extras, name=name ) def benchmark_vocab_size_by_batch(self): for vocab_size in [100, 1000, 10000, 100000, 1000000]: for batch in [1, 16, 2048]: self.bm_adapt_implementation( vocab_size, batch, int(vocab_size / 10) ) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/layers/preprocessing/benchmarks/index_lookup_adapt_benchmark.py/0
{ "file_path": "tf-keras/tf_keras/layers/preprocessing/benchmarks/index_lookup_adapt_benchmark.py", "repo_id": "tf-keras", "token_count": 1980 }
217
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Distribution tests for keras.layers.preprocessing.image_preprocessing.""" import numpy as np import tensorflow.compat.v2 as tf import tf_keras as keras from tf_keras.distribute import strategy_combinations from tf_keras.layers.preprocessing import image_preprocessing from tf_keras.layers.preprocessing import preprocessing_test_utils from tf_keras.testing_infra import test_combinations from tf_keras.testing_infra import test_utils @test_utils.run_v2_only @tf.__internal__.distribute.combinations.generate( tf.__internal__.test.combinations.combine( strategy=strategy_combinations.all_strategies + strategy_combinations.multi_worker_mirrored_strategies, mode=["eager"], ) ) class ImagePreprocessingDistributionTest( test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest ): def test_distribution(self, strategy): if "CentralStorage" in type(strategy).__name__: self.skipTest("Does not work with CentralStorageStrategy yet.") # TODO(b/159738418): large image input causes OOM in ubuntu multi gpu. np_images = np.random.random((32, 32, 32, 3)).astype(np.float32) image_dataset = tf.data.Dataset.from_tensor_slices(np_images).batch( 16, drop_remainder=True ) with strategy.scope(): input_data = keras.Input(shape=(32, 32, 3), dtype=tf.float32) image_preprocessor = keras.Sequential( [ image_preprocessing.Resizing(height=256, width=256), image_preprocessing.RandomCrop(height=224, width=224), image_preprocessing.RandomTranslation(0.1, 0.1), image_preprocessing.RandomBrightness( 0.1, value_range=(0, 1) ), image_preprocessing.RandomRotation(0.2), image_preprocessing.RandomFlip(), image_preprocessing.RandomZoom(0.2, 0.2), ] ) preprocessed_image = image_preprocessor(input_data) flatten_layer = keras.layers.Flatten(data_format="channels_last") output = flatten_layer(preprocessed_image) cls_layer = keras.layers.Dense(units=1, activation="sigmoid") output = cls_layer(output) model = keras.Model(inputs=input_data, outputs=output) _ = model.predict(image_dataset) if __name__ == "__main__": tf.__internal__.distribute.multi_process_runner.test_main()
tf-keras/tf_keras/layers/preprocessing/image_preprocessing_distribution_test.py/0
{ "file_path": "tf-keras/tf_keras/layers/preprocessing/image_preprocessing_distribution_test.py", "repo_id": "tf-keras", "token_count": 1283 }
218
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keras string lookup preprocessing layer.""" import numpy as np import tensorflow.compat.v2 as tf from tf_keras.layers.preprocessing import index_lookup # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export( "keras.layers.StringLookup", "keras.layers.experimental.preprocessing.StringLookup", v1=[], ) class StringLookup(index_lookup.IndexLookup): """A preprocessing layer which maps string features to integer indices. This layer translates a set of arbitrary strings into integer output via a table-based vocabulary lookup. This layer will perform no splitting or transformation of input strings. For a layer that can split and tokenize natural language, see the `tf.keras.layers.TextVectorization` layer. The vocabulary for the layer must be either supplied on construction or learned via `adapt()`. During `adapt()`, the layer will analyze a data set, determine the frequency of individual strings tokens, and create a vocabulary from them. If the vocabulary is capped in size, the most frequent tokens will be used to create the vocabulary and all others will be treated as out-of-vocabulary (OOV). There are two possible output modes for the layer. When `output_mode` is `"int"`, input strings are converted to their index in the vocabulary (an integer). When `output_mode` is `"multi_hot"`, `"count"`, or `"tf_idf"`, input strings are encoded into an array where each dimension corresponds to an element in the vocabulary. The vocabulary can optionally contain a mask token as well as an OOV token (which can optionally occupy multiple indices in the vocabulary, as set by `num_oov_indices`). The position of these tokens in the vocabulary is fixed. When `output_mode` is `"int"`, the vocabulary will begin with the mask token (if set), followed by OOV indices, followed by the rest of the vocabulary. When `output_mode` is `"multi_hot"`, `"count"`, or `"tf_idf"` the vocabulary will begin with OOV indices and instances of the mask token will be dropped. For an overview and full list of preprocessing layers, see the preprocessing [guide](https://www.tensorflow.org/guide/keras/preprocessing_layers). Args: max_tokens: Maximum size of the vocabulary for this layer. This should only be specified when adapting the vocabulary or when setting `pad_to_max_tokens=True`. If None, there is no cap on the size of the vocabulary. Note that this size includes the OOV and mask tokens. Defaults to `None`. num_oov_indices: The number of out-of-vocabulary tokens to use. If this value is more than 1, OOV inputs are hashed to determine their OOV value. If this value is 0, OOV inputs will cause an error when calling the layer. Defaults to `1`. mask_token: A token that represents masked inputs. When `output_mode` is `"int"`, the token is included in vocabulary and mapped to index 0. In other output modes, the token will not appear in the vocabulary and instances of the mask token in the input will be dropped. If set to None, no mask term will be added. Defaults to `None`. oov_token: Only used when `invert` is True. The token to return for OOV indices. Defaults to `"[UNK]"`. vocabulary: Optional. Either an array of strings or a string path to a text file. If passing an array, can pass a tuple, list, 1D numpy array, or 1D tensor containing the string vocabulary terms. If passing a file path, the file should contain one line per term in the vocabulary. If this argument is set, there is no need to `adapt()` the layer. idf_weights: Only valid when `output_mode` is `"tf_idf"`. A tuple, list, 1D numpy array, or 1D tensor or the same length as the vocabulary, containing the floating point inverse document frequency weights, which will be multiplied by per sample term counts for the final `tf_idf` weight. If the `vocabulary` argument is set, and `output_mode` is `"tf_idf"`, this argument must be supplied. invert: Only valid when `output_mode` is `"int"`. If True, this layer will map indices to vocabulary items instead of mapping vocabulary items to indices. Defaults to `False`. output_mode: Specification for the output of the layer. Values can be `"int"`, `"one_hot"`, `"multi_hot"`, `"count"`, or `"tf_idf"` configuring the layer as follows: - `"int"`: Return the raw integer indices of the input tokens. - `"one_hot"`: Encodes each individual element in the input into an array the same size as the vocabulary, containing a 1 at the element index. If the last dimension is size 1, will encode on that dimension. If the last dimension is not size 1, will append a new dimension for the encoded output. - `"multi_hot"`: Encodes each sample in the input into a single array the same size as the vocabulary, containing a 1 for each vocabulary term present in the sample. Treats the last dimension as the sample dimension, if input shape is (..., sample_length), output shape will be (..., num_tokens). - `"count"`: As `"multi_hot"`, but the int array contains a count of the number of times the token at that index appeared in the sample. - `"tf_idf"`: As `"multi_hot"`, but the TF-IDF algorithm is applied to find the value in each token slot. For `"int"` output, any shape of input and output is supported. For all other output modes, currently only output up to rank 2 is supported. Defaults to `"int"`. pad_to_max_tokens: Only applicable when `output_mode` is `"multi_hot"`, `"count"`, or `"tf_idf"`. If True, the output will have its feature axis padded to `max_tokens` even if the number of unique tokens in the vocabulary is less than max_tokens, resulting in a tensor of shape [batch_size, max_tokens] regardless of vocabulary size. Defaults to `False`. sparse: Boolean. Only applicable when `output_mode` is `"multi_hot"`, `"count"`, or `"tf_idf"`. If True, returns a `SparseTensor` instead of a dense `Tensor`. Defaults to `False`. encoding: Optional. The text encoding to use to interpret the input strings. Defaults to `"utf-8"`. Examples: **Creating a lookup layer with a known vocabulary** This example creates a lookup layer with a pre-existing vocabulary. >>> vocab = ["a", "b", "c", "d"] >>> data = tf.constant([["a", "c", "d"], ["d", "z", "b"]]) >>> layer = tf.keras.layers.StringLookup(vocabulary=vocab) >>> layer(data) <tf.Tensor: shape=(2, 3), dtype=int64, numpy= array([[1, 3, 4], [4, 0, 2]])> **Creating a lookup layer with an adapted vocabulary** This example creates a lookup layer and generates the vocabulary by analyzing the dataset. >>> data = tf.constant([["a", "c", "d"], ["d", "z", "b"]]) >>> layer = tf.keras.layers.StringLookup() >>> layer.adapt(data) >>> layer.get_vocabulary() ['[UNK]', 'd', 'z', 'c', 'b', 'a'] Note that the OOV token `"[UNK]"` has been added to the vocabulary. The remaining tokens are sorted by frequency (`"d"`, which has 2 occurrences, is first) then by inverse sort order. >>> data = tf.constant([["a", "c", "d"], ["d", "z", "b"]]) >>> layer = tf.keras.layers.StringLookup() >>> layer.adapt(data) >>> layer(data) <tf.Tensor: shape=(2, 3), dtype=int64, numpy= array([[5, 3, 1], [1, 2, 4]])> **Lookups with multiple OOV indices** This example demonstrates how to use a lookup layer with multiple OOV indices. When a layer is created with more than one OOV index, any OOV values are hashed into the number of OOV buckets, distributing OOV values in a deterministic fashion across the set. >>> vocab = ["a", "b", "c", "d"] >>> data = tf.constant([["a", "c", "d"], ["m", "z", "b"]]) >>> layer = tf.keras.layers.StringLookup(vocabulary=vocab, ... num_oov_indices=2) >>> layer(data) <tf.Tensor: shape=(2, 3), dtype=int64, numpy= array([[2, 4, 5], [0, 1, 3]])> Note that the output for OOV value 'm' is 0, while the output for OOV value 'z' is 1. The in-vocab terms have their output index increased by 1 from earlier examples (a maps to 2, etc) in order to make space for the extra OOV value. **One-hot output** Configure the layer with `output_mode='one_hot'`. Note that the first `num_oov_indices` dimensions in the one_hot encoding represent OOV values. >>> vocab = ["a", "b", "c", "d"] >>> data = tf.constant(["a", "b", "c", "d", "z"]) >>> layer = tf.keras.layers.StringLookup( ... vocabulary=vocab, output_mode='one_hot') >>> layer(data) <tf.Tensor: shape=(5, 5), dtype=float32, numpy= array([[0., 1., 0., 0., 0.], [0., 0., 1., 0., 0.], [0., 0., 0., 1., 0.], [0., 0., 0., 0., 1.], [1., 0., 0., 0., 0.]], dtype=float32)> **Multi-hot output** Configure the layer with `output_mode='multi_hot'`. Note that the first `num_oov_indices` dimensions in the multi_hot encoding represent OOV values. >>> vocab = ["a", "b", "c", "d"] >>> data = tf.constant([["a", "c", "d", "d"], ["d", "z", "b", "z"]]) >>> layer = tf.keras.layers.StringLookup( ... vocabulary=vocab, output_mode='multi_hot') >>> layer(data) <tf.Tensor: shape=(2, 5), dtype=float32, numpy= array([[0., 1., 0., 1., 1.], [1., 0., 1., 0., 1.]], dtype=float32)> **Token count output** Configure the layer with `output_mode='count'`. As with multi_hot output, the first `num_oov_indices` dimensions in the output represent OOV values. >>> vocab = ["a", "b", "c", "d"] >>> data = tf.constant([["a", "c", "d", "d"], ["d", "z", "b", "z"]]) >>> layer = tf.keras.layers.StringLookup( ... vocabulary=vocab, output_mode='count') >>> layer(data) <tf.Tensor: shape=(2, 5), dtype=float32, numpy= array([[0., 1., 0., 1., 2.], [2., 0., 1., 0., 1.]], dtype=float32)> **TF-IDF output** Configure the layer with `output_mode="tf_idf"`. As with multi_hot output, the first `num_oov_indices` dimensions in the output represent OOV values. Each token bin will output `token_count * idf_weight`, where the idf weights are the inverse document frequency weights per token. These should be provided along with the vocabulary. Note that the `idf_weight` for OOV values will default to the average of all idf weights passed in. >>> vocab = ["a", "b", "c", "d"] >>> idf_weights = [0.25, 0.75, 0.6, 0.4] >>> data = tf.constant([["a", "c", "d", "d"], ["d", "z", "b", "z"]]) >>> layer = tf.keras.layers.StringLookup(output_mode="tf_idf") >>> layer.set_vocabulary(vocab, idf_weights=idf_weights) >>> layer(data) <tf.Tensor: shape=(2, 5), dtype=float32, numpy= array([[0. , 0.25, 0. , 0.6 , 0.8 ], [1.0 , 0. , 0.75, 0. , 0.4 ]], dtype=float32)> To specify the idf weights for oov values, you will need to pass the entire vocabularly including the leading oov token. >>> vocab = ["[UNK]", "a", "b", "c", "d"] >>> idf_weights = [0.9, 0.25, 0.75, 0.6, 0.4] >>> data = tf.constant([["a", "c", "d", "d"], ["d", "z", "b", "z"]]) >>> layer = tf.keras.layers.StringLookup(output_mode="tf_idf") >>> layer.set_vocabulary(vocab, idf_weights=idf_weights) >>> layer(data) <tf.Tensor: shape=(2, 5), dtype=float32, numpy= array([[0. , 0.25, 0. , 0.6 , 0.8 ], [1.8 , 0. , 0.75, 0. , 0.4 ]], dtype=float32)> When adapting the layer in `"tf_idf"` mode, each input sample will be considered a document, and IDF weight per token will be calculated as `log(1 + num_documents / (1 + token_document_count))`. **Inverse lookup** This example demonstrates how to map indices to strings using this layer. (You can also use `adapt()` with `inverse=True`, but for simplicity we'll pass the vocab in this example.) >>> vocab = ["a", "b", "c", "d"] >>> data = tf.constant([[1, 3, 4], [4, 0, 2]]) >>> layer = tf.keras.layers.StringLookup(vocabulary=vocab, invert=True) >>> layer(data) <tf.Tensor: shape=(2, 3), dtype=string, numpy= array([[b'a', b'c', b'd'], [b'd', b'[UNK]', b'b']], dtype=object)> Note that the first index correspond to the oov token by default. **Forward and inverse lookup pairs** This example demonstrates how to use the vocabulary of a standard lookup layer to create an inverse lookup layer. >>> vocab = ["a", "b", "c", "d"] >>> data = tf.constant([["a", "c", "d"], ["d", "z", "b"]]) >>> layer = tf.keras.layers.StringLookup(vocabulary=vocab) >>> i_layer = tf.keras.layers.StringLookup(vocabulary=vocab, invert=True) >>> int_data = layer(data) >>> i_layer(int_data) <tf.Tensor: shape=(2, 3), dtype=string, numpy= array([[b'a', b'c', b'd'], [b'd', b'[UNK]', b'b']], dtype=object)> In this example, the input value `"z"` resulted in an output of `"[UNK]"`, since 1000 was not in the vocabulary - it got represented as an OOV, and all OOV values are returned as `"[UNK]"` in the inverse layer. Also, note that for the inverse to work, you must have already set the forward layer vocabulary either directly or via `adapt()` before calling `get_vocabulary()`. """ def __init__( self, max_tokens=None, num_oov_indices=1, mask_token=None, oov_token="[UNK]", vocabulary=None, idf_weights=None, encoding="utf-8", invert=False, output_mode="int", sparse=False, pad_to_max_tokens=False, **kwargs ): # Legacy versions of the StringLookup layer set layer dtype to string, # instead of the output type. If we see this, clear it. if "dtype" in kwargs and ( kwargs["dtype"] == tf.string or kwargs["dtype"] == "string" ): del kwargs["dtype"] self.encoding = encoding super().__init__( max_tokens=max_tokens, num_oov_indices=num_oov_indices, mask_token=mask_token, oov_token=oov_token, vocabulary=vocabulary, vocabulary_dtype=tf.string, idf_weights=idf_weights, invert=invert, output_mode=output_mode, sparse=sparse, pad_to_max_tokens=pad_to_max_tokens, **kwargs ) def get_config(self): config = {"encoding": self.encoding} base_config = super().get_config() # There is only one valid dtype for strings, so we don't expose this. del base_config["vocabulary_dtype"] return dict(list(base_config.items()) + list(config.items())) # We override this method solely to generate a docstring. def adapt(self, data, batch_size=None, steps=None): """Computes a vocabulary of string terms from tokens in a dataset. Calling `adapt()` on a `StringLookup` layer is an alternative to passing in a precomputed vocabulary on construction via the `vocabulary` argument. A `StringLookup` layer should always be either adapted over a dataset or supplied with a vocabulary. During `adapt()`, the layer will build a vocabulary of all string tokens seen in the dataset, sorted by occurrence count, with ties broken by sort order of the tokens (high to low). At the end of `adapt()`, if `max_tokens` is set, the vocabulary wil be truncated to `max_tokens` size. For example, adapting a layer with `max_tokens=1000` will compute the 1000 most frequent tokens occurring in the input dataset. If `output_mode='tf-idf'`, `adapt()` will also learn the document frequencies of each token in the input dataset. In order to make `StringLookup` efficient in any distribution context, the vocabulary is kept static with respect to any compiled `tf.Graph`s that call the layer. As a consequence, if the layer is adapted a second time, any models using the layer should be re-compiled. For more information see `tf.keras.layers.experimental.preprocessing.PreprocessingLayer.adapt`. `adapt()` is meant only as a single machine utility to compute layer state. To analyze a dataset that cannot fit on a single machine, see [Tensorflow Transform]( https://www.tensorflow.org/tfx/transform/get_started) for a multi-machine, map-reduce solution. Arguments: data: The data to train on. It can be passed either as a `tf.data.Dataset`, or as a numpy array. batch_size: Integer or `None`. Number of samples per state update. If unspecified, `batch_size` will default to 32. Do not specify the `batch_size` if your data is in the form of datasets, generators, or `keras.utils.Sequence` instances (since they generate batches). steps: Integer or `None`. Total number of steps (batches of samples) When training with input tensors such as TensorFlow data tensors, the default `None` is equal to the number of samples in your dataset divided by the batch size, or 1 if that cannot be determined. If x is a `tf.data` dataset, and 'steps' is None, the epoch will run until the input dataset is exhausted. When passing an infinitely repeating dataset, you must specify the `steps` argument. This argument is not supported with array inputs. """ super().adapt(data, batch_size=batch_size, steps=steps) # Overridden methods from IndexLookup. def _tensor_vocab_to_numpy(self, vocabulary): vocabulary = vocabulary.numpy() return np.array( [tf.compat.as_text(x, self.encoding) for x in vocabulary] )
tf-keras/tf_keras/layers/preprocessing/string_lookup.py/0
{ "file_path": "tf-keras/tf_keras/layers/preprocessing/string_lookup.py", "repo_id": "tf-keras", "token_count": 7292 }
219
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base class for recurrent layers backed by cuDNN.""" import tensorflow.compat.v2 as tf from tf_keras import backend from tf_keras.engine.input_spec import InputSpec from tf_keras.layers.rnn.base_rnn import RNN class _CuDNNRNN(RNN): """Private base class for CuDNNGRU and CuDNNLSTM layers. Args: return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence. return_state: Boolean. Whether to return the last state in addition to the output. go_backwards: Boolean (default False). If True, process the input sequence backwards and return the reversed sequence. stateful: Boolean (default False). If True, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. time_major: Boolean (default False). If true, the inputs and outputs will be in shape `(timesteps, batch, ...)`, whereas in the False case, it will be `(batch, timesteps, ...)`. """ def __init__( self, return_sequences=False, return_state=False, go_backwards=False, stateful=False, time_major=False, **kwargs ): # We invoke the base layer's initializer directly here because we do not # want to create RNN cell instance. super(RNN, self).__init__(**kwargs) self.return_sequences = return_sequences self.return_state = return_state self.go_backwards = go_backwards self.stateful = stateful self.time_major = time_major self.supports_masking = False self.input_spec = [InputSpec(ndim=3)] if hasattr(self.cell.state_size, "__len__"): state_size = self.cell.state_size else: state_size = [self.cell.state_size] self.state_spec = [InputSpec(shape=(None, dim)) for dim in state_size] self.constants_spec = None self._states = None self._num_constants = 0 self._vector_shape = tf.constant([-1]) def call(self, inputs, mask=None, training=None, initial_state=None): if isinstance(mask, list): mask = mask[0] if mask is not None: raise ValueError("Masking is not supported for CuDNN RNNs.") # input shape: `(samples, time (padded with zeros), input_dim)` # note that the .build() method of subclasses MUST define # self.input_spec and self.state_spec with complete input shapes. if isinstance(inputs, list): initial_state = inputs[1:] inputs = inputs[0] elif initial_state is not None: pass elif self.stateful: initial_state = self.states else: initial_state = self.get_initial_state(inputs) if len(initial_state) != len(self.states): raise ValueError( "Layer has " + str(len(self.states)) + " states but was passed " + str(len(initial_state)) + " initial states." ) if self.go_backwards: # Reverse time axis. inputs = backend.reverse(inputs, 1) output, states = self._process_batch(inputs, initial_state) if self.stateful: updates = [ tf.compat.v1.assign(self_state, state) for self_state, state in zip(self.states, states) ] self.add_update(updates) if self.return_state: return [output] + states else: return output def get_config(self): config = { "return_sequences": self.return_sequences, "return_state": self.return_state, "go_backwards": self.go_backwards, "stateful": self.stateful, "time_major": self.time_major, } base_config = super(RNN, self).get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config): return cls(**config) @property def trainable_weights(self): if self.trainable and self.built: return [self.kernel, self.recurrent_kernel, self.bias] return [] @property def non_trainable_weights(self): if not self.trainable and self.built: return [self.kernel, self.recurrent_kernel, self.bias] return [] @property def losses(self): return super(RNN, self).losses def get_losses_for(self, inputs=None): return super(RNN, self).get_losses_for(inputs=inputs)
tf-keras/tf_keras/layers/rnn/base_cudnn_rnn.py/0
{ "file_path": "tf-keras/tf_keras/layers/rnn/base_cudnn_rnn.py", "repo_id": "tf-keras", "token_count": 2258 }
220
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Mixin holding dropout fields for RNN cells.""" import tensorflow.compat.v2 as tf from tensorflow.tools.docs import doc_controls from tf_keras import backend @doc_controls.do_not_generate_docs class DropoutRNNCellMixin: """Object that hold dropout related fields for RNN Cell. This class is not a standalone RNN cell. It suppose to be used with a RNN cell by multiple inheritance. Any cell that mix with class should have following fields: dropout: a float number within range [0, 1). The ratio that the input tensor need to dropout. recurrent_dropout: a float number within range [0, 1). The ratio that the recurrent state weights need to dropout. _random_generator: A backend.RandomGenerator instance, which will be used to produce outputs based on the inputs and dropout rate. This object will create and cache created dropout masks, and reuse them for the incoming data, so that the same mask is used for every batch input. """ def __init__(self, *args, **kwargs): self._create_non_trackable_mask_cache() super().__init__(*args, **kwargs) @tf.__internal__.tracking.no_automatic_dependency_tracking def _create_non_trackable_mask_cache(self): """Create the cache for dropout and recurrent dropout mask. Note that the following two masks will be used in "graph function" mode, e.g. these masks are symbolic tensors. In eager mode, the `eager_*_mask` tensors will be generated differently than in the "graph function" case, and they will be cached. Also note that in graph mode, we still cache those masks only because the RNN could be created with `unroll=True`. In that case, the `cell.call()` function will be invoked multiple times, and we want to ensure same mask is used every time. Also the caches are created without tracking. Since they are not pickleable by python when deepcopy, we don't want `layer._obj_reference_counts_dict` to track it by default. """ self._dropout_mask_cache = backend.ContextValueCache( self._create_dropout_mask ) self._recurrent_dropout_mask_cache = backend.ContextValueCache( self._create_recurrent_dropout_mask ) def reset_dropout_mask(self): """Reset the cached dropout masks if any. This is important for the RNN layer to invoke this in it `call()` method so that the cached mask is cleared before calling the `cell.call()`. The mask should be cached across the timestep within the same batch, but shouldn't be cached between batches. Otherwise it will introduce unreasonable bias against certain index of data within the batch. """ self._dropout_mask_cache.clear() def reset_recurrent_dropout_mask(self): """Reset the cached recurrent dropout masks if any. This is important for the RNN layer to invoke this in it call() method so that the cached mask is cleared before calling the cell.call(). The mask should be cached across the timestep within the same batch, but shouldn't be cached between batches. Otherwise it will introduce unreasonable bias against certain index of data within the batch. """ self._recurrent_dropout_mask_cache.clear() def _create_dropout_mask(self, inputs, training, count=1): return _generate_dropout_mask( self._random_generator, tf.ones_like(inputs), self.dropout, training=training, count=count, ) def _create_recurrent_dropout_mask(self, inputs, training, count=1): return _generate_dropout_mask( self._random_generator, tf.ones_like(inputs), self.recurrent_dropout, training=training, count=count, ) def get_dropout_mask_for_cell(self, inputs, training, count=1): """Get the dropout mask for RNN cell's input. It will create mask based on context if there isn't any existing cached mask. If a new mask is generated, it will update the cache in the cell. Args: inputs: The input tensor whose shape will be used to generate dropout mask. training: Boolean tensor, whether its in training mode, dropout will be ignored in non-training mode. count: Int, how many dropout mask will be generated. It is useful for cell that has internal weights fused together. Returns: List of mask tensor, generated or cached mask based on context. """ if self.dropout == 0: return None init_kwargs = dict(inputs=inputs, training=training, count=count) return self._dropout_mask_cache.setdefault(kwargs=init_kwargs) def get_recurrent_dropout_mask_for_cell(self, inputs, training, count=1): """Get the recurrent dropout mask for RNN cell. It will create mask based on context if there isn't any existing cached mask. If a new mask is generated, it will update the cache in the cell. Args: inputs: The input tensor whose shape will be used to generate dropout mask. training: Boolean tensor, whether its in training mode, dropout will be ignored in non-training mode. count: Int, how many dropout mask will be generated. It is useful for cell that has internal weights fused together. Returns: List of mask tensor, generated or cached mask based on context. """ if self.recurrent_dropout == 0: return None init_kwargs = dict(inputs=inputs, training=training, count=count) return self._recurrent_dropout_mask_cache.setdefault(kwargs=init_kwargs) def __getstate__(self): # Used for deepcopy. The caching can't be pickled by python, since it # will contain tensor and graph. state = super().__getstate__() state.pop("_dropout_mask_cache", None) state.pop("_recurrent_dropout_mask_cache", None) return state def __setstate__(self, state): state["_dropout_mask_cache"] = backend.ContextValueCache( self._create_dropout_mask ) state["_recurrent_dropout_mask_cache"] = backend.ContextValueCache( self._create_recurrent_dropout_mask ) super().__setstate__(state) def _generate_dropout_mask(generator, ones, rate, training=None, count=1): def dropped_inputs(): return generator.dropout(ones, rate) if count > 1: return [ backend.in_train_phase(dropped_inputs, ones, training=training) for _ in range(count) ] return backend.in_train_phase(dropped_inputs, ones, training=training)
tf-keras/tf_keras/layers/rnn/dropout_rnn_cell_mixin.py/0
{ "file_path": "tf-keras/tf_keras/layers/rnn/dropout_rnn_cell_mixin.py", "repo_id": "tf-keras", "token_count": 2767 }
221
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for SimpleRNN layer.""" import copy import numpy as np import tensorflow.compat.v2 as tf from absl.testing import parameterized import tf_keras as keras from tf_keras.testing_infra import test_combinations from tf_keras.testing_infra import test_utils @test_combinations.generate(test_combinations.keras_mode_combinations()) class SimpleRNNLayerTest(tf.test.TestCase, parameterized.TestCase): def test_return_sequences_SimpleRNN(self): num_samples = 2 timesteps = 3 embedding_dim = 4 units = 2 test_utils.layer_test( keras.layers.SimpleRNN, kwargs={"units": units, "return_sequences": True}, input_shape=(num_samples, timesteps, embedding_dim), ) @test_utils.run_v2_only def test_float64_SimpleRNN(self): num_samples = 2 timesteps = 3 embedding_dim = 4 units = 2 test_utils.layer_test( keras.layers.SimpleRNN, kwargs={ "units": units, "return_sequences": True, "dtype": "float64", }, input_shape=(num_samples, timesteps, embedding_dim), input_dtype="float64", ) def test_dynamic_behavior_SimpleRNN(self): num_samples = 2 timesteps = 3 embedding_dim = 4 units = 2 layer = keras.layers.SimpleRNN(units, input_shape=(None, embedding_dim)) model = keras.models.Sequential() model.add(layer) model.compile("rmsprop", "mse") x = np.random.random((num_samples, timesteps, embedding_dim)) y = np.random.random((num_samples, units)) model.train_on_batch(x, y) def test_dropout_SimpleRNN(self): num_samples = 2 timesteps = 3 embedding_dim = 4 units = 2 test_utils.layer_test( keras.layers.SimpleRNN, kwargs={"units": units, "dropout": 0.1, "recurrent_dropout": 0.1}, input_shape=(num_samples, timesteps, embedding_dim), ) def test_implementation_mode_SimpleRNN(self): num_samples = 2 timesteps = 3 embedding_dim = 4 units = 2 for mode in [0, 1, 2]: test_utils.layer_test( keras.layers.SimpleRNN, kwargs={"units": units, "implementation": mode}, input_shape=(num_samples, timesteps, embedding_dim), ) def test_constraints_SimpleRNN(self): embedding_dim = 4 layer_class = keras.layers.SimpleRNN k_constraint = keras.constraints.max_norm(0.01) r_constraint = keras.constraints.max_norm(0.01) b_constraint = keras.constraints.max_norm(0.01) layer = layer_class( 5, return_sequences=False, weights=None, input_shape=(None, embedding_dim), kernel_constraint=k_constraint, recurrent_constraint=r_constraint, bias_constraint=b_constraint, ) layer.build((None, None, embedding_dim)) self.assertEqual(layer.cell.kernel.constraint, k_constraint) self.assertEqual(layer.cell.recurrent_kernel.constraint, r_constraint) self.assertEqual(layer.cell.bias.constraint, b_constraint) def test_with_masking_layer_SimpleRNN(self): layer_class = keras.layers.SimpleRNN inputs = np.random.random((2, 3, 4)) targets = np.abs(np.random.random((2, 3, 5))) targets /= targets.sum(axis=-1, keepdims=True) model = keras.models.Sequential() model.add(keras.layers.Masking(input_shape=(3, 4))) model.add(layer_class(units=5, return_sequences=True, unroll=False)) model.compile(loss="categorical_crossentropy", optimizer="rmsprop") model.fit(inputs, targets, epochs=1, batch_size=2, verbose=1) def test_from_config_SimpleRNN(self): layer_class = keras.layers.SimpleRNN for stateful in (False, True): l1 = layer_class(units=1, stateful=stateful) l2 = layer_class.from_config(l1.get_config()) assert l1.get_config() == l2.get_config() def test_deep_copy_SimpleRNN(self): cell = keras.layers.SimpleRNNCell(5) copied_cell = copy.deepcopy(cell) self.assertEqual(copied_cell.units, 5) self.assertEqual(cell.get_config(), copied_cell.get_config()) def test_regularizers_SimpleRNN(self): embedding_dim = 4 layer_class = keras.layers.SimpleRNN layer = layer_class( 5, return_sequences=False, weights=None, input_shape=(None, embedding_dim), kernel_regularizer=keras.regularizers.l1(0.01), recurrent_regularizer=keras.regularizers.l1(0.01), bias_regularizer="l2", activity_regularizer="l1", ) layer.build((None, None, 2)) self.assertLen(layer.losses, 3) x = keras.backend.variable(np.ones((2, 3, 2))) layer(x) if tf.executing_eagerly(): self.assertLen(layer.losses, 4) else: self.assertLen(layer.get_losses_for(x), 1) def test_statefulness_SimpleRNN(self): num_samples = 2 timesteps = 3 embedding_dim = 4 units = 2 layer_class = keras.layers.SimpleRNN model = keras.models.Sequential() model.add( keras.layers.Embedding( 4, embedding_dim, mask_zero=True, input_length=timesteps, batch_input_shape=(num_samples, timesteps), ) ) layer = layer_class( units, return_sequences=False, stateful=True, weights=None ) model.add(layer) model.compile( optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01), loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) out1 = model.predict(np.ones((num_samples, timesteps))) self.assertEqual(out1.shape, (num_samples, units)) # train once so that the states change model.train_on_batch( np.ones((num_samples, timesteps)), np.ones((num_samples, units)) ) out2 = model.predict(np.ones((num_samples, timesteps))) # if the state is not reset, output should be different self.assertNotEqual(out1.max(), out2.max()) # check that output changes after states are reset # (even though the model itself didn't change) layer.reset_states() out3 = model.predict(np.ones((num_samples, timesteps))) self.assertNotEqual(out2.max(), out3.max()) # check that container-level reset_states() works model.reset_states() out4 = model.predict(np.ones((num_samples, timesteps))) np.testing.assert_allclose(out3, out4, atol=1e-5) # check that the call to `predict` updated the states out5 = model.predict(np.ones((num_samples, timesteps))) self.assertNotEqual(out4.max(), out5.max()) # Check masking layer.reset_states() left_padded_input = np.ones((num_samples, timesteps)) left_padded_input[0, :1] = 0 left_padded_input[1, :2] = 0 out6 = model.predict(left_padded_input) layer.reset_states() right_padded_input = np.ones((num_samples, timesteps)) right_padded_input[0, -1:] = 0 right_padded_input[1, -2:] = 0 out7 = model.predict(right_padded_input) np.testing.assert_allclose(out7, out6, atol=1e-5) def test_get_initial_states(self): batch_size = 4 cell = keras.layers.SimpleRNNCell(20) initial_state = cell.get_initial_state( batch_size=batch_size, dtype=tf.float32 ) _, state = cell( np.ones((batch_size, 20), dtype=np.float32), initial_state ) self.assertEqual(state.shape, initial_state.shape) @test_utils.run_v2_only def test_cloned_weight_names(self): inp = keras.Input([None, 3]) rnn = keras.layers.SimpleRNN(units=3) model = keras.Model(inp, rnn(inp)) clone = keras.models.clone_model(model) model_names = [x.name for x in model.weights] clone_names = [x.name for x in clone.weights] self.assertEqual(model_names, clone_names) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/layers/rnn/simple_rnn_test.py/0
{ "file_path": "tf-keras/tf_keras/layers/rnn/simple_rnn_test.py", "repo_id": "tf-keras", "token_count": 4295 }
222
"""The DetermisticRandomTestTool. (from www.tensorflow.org/guide/migrate/validate_correctness) is a tool used to make random number generation semantics match between TF1.x graphs/sessions and eager execution. """ import sys import tensorflow.compat.v2 as tf # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export(v1=["keras.utils.DeterministicRandomTestTool"]) class DeterministicRandomTestTool(object): """DeterministicRandomTestTool is a testing tool. This tool is used to validate random number generation semantics match between TF1.x graphs/sessions and eager execution. This is useful when you are migrating from TF 1.x to TF2 and need to make sure your computation is still happening correctly along the way. See the validating correctness migration guide for more info: https://www.tensorflow.org/guide/migrate/validate_correctness The following DeterministicRandomTestTool object provides a context manager scope() that can make stateful random operations use the same seed across both TF1 graphs/sessions and eager execution,The tool provides two testing modes: - constant which uses the same seed for every single operation no matter how many times it has been called and, - num_random_ops which uses the number of previously-observed stateful random operations as the operation seed. The num_random_ops mode serves as a more sensitive validation check than the constant mode. It ensures that the random numbers initialization does not get accidentaly reused.(for example if several weights take on the same initializations), you can use the num_random_ops mode to avoid this. In the num_random_ops mode, the generated random numbers will depend on the ordering of random ops in the program. This applies both to the stateful random operations used for creating and initializing variables, and to the stateful random operations used in computation (such as for dropout layers). Args: mode: Set mode to 'constant' or 'num_random_ops'. Defaults to 'constant'. seed: The random seed to use. """ def __init__(self, seed: int = 42, mode="constant"): if mode not in {"constant", "num_random_ops"}: raise ValueError( "Mode arg must be 'constant' or 'num_random_ops'. " + f"Got: {mode}" ) self.seed_implementation = sys.modules[tf.compat.v1.get_seed.__module__] self._mode = mode self._seed = seed self.operation_seed = 0 self._observed_seeds = set() @property def operation_seed(self): return self._operation_seed @operation_seed.setter def operation_seed(self, value): self._operation_seed = value def scope(self): """set random seed.""" tf.random.set_seed(self._seed) def _get_seed(_): """Wraps TF get_seed to make deterministic random generation easier. This makes a variable's initialization (and calls that involve random number generation) depend only on how many random number generations were used in the scope so far, rather than on how many unrelated operations the graph contains. Returns: Random seed tuple. """ op_seed = self._operation_seed if self._mode == "constant": tf.random.set_seed(op_seed) else: if op_seed in self._observed_seeds: raise ValueError( "This `DeterministicRandomTestTool` " "object is trying to re-use the " + f"already-used operation seed {op_seed}. " + "It cannot guarantee random numbers will match " + "between eager and sessions when an operation seed " + "is reused. You most likely set " + "`operation_seed` explicitly but used a value that " + "caused the naturally-incrementing operation seed " + "sequences to overlap with an already-used seed." ) self._observed_seeds.add(op_seed) self._operation_seed += 1 return (self._seed, op_seed) # mock.patch internal symbols to modify the behavior of TF APIs relying # on them return tf.compat.v1.test.mock.patch.object( self.seed_implementation, "get_seed", wraps=_get_seed )
tf-keras/tf_keras/legacy_tf_layers/migration_utils.py/0
{ "file_path": "tf-keras/tf_keras/legacy_tf_layers/migration_utils.py", "repo_id": "tf-keras", "token_count": 1778 }
223
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # Description: # Contains the TF-Keras Mixed Precision API (TensorFlow version). # Placeholder: load unaliased py_library load("@org_keras//tf_keras:tf_keras.bzl", "cuda_py_test") load("@org_keras//tf_keras:tf_keras.bzl", "tf_py_test") # buildifier: disable=same-origin-load package( # copybara:uncomment default_applicable_licenses = ["//tf_keras:license"], default_visibility = [ # TODO(scottzhu): Remove these two deps and convert the test to integration test. "//third_party/tensorflow/python/distribute:__pkg__", # For collective_all_reduce_strategy_test "//tf_keras:friends", "//third_party/tensorflow/tools/pip_package:__pkg__", ], licenses = ["notice"], ) py_library( name = "mixed_precision_experimental", srcs = ["__init__.py"], srcs_version = "PY3", deps = [ ":loss_scale_optimizer", ":policy", ], ) py_library( name = "policy", srcs = [ "policy.py", ], srcs_version = "PY3", deps = [ ":device_compatibility_check", "//:expect_tensorflow_installed", ], ) tf_py_test( name = "policy_test", size = "medium", srcs = [ "policy_test.py", ], python_version = "PY3", srcs_version = "PY3", tags = ["no_rocm"], deps = [ ":policy", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/optimizers/legacy:optimizers", "//tf_keras/testing_infra:test_combinations", ], ) py_library( name = "device_compatibility_check", srcs = ["device_compatibility_check.py"], srcs_version = "PY3", deps = [ "//:expect_tensorflow_installed", ], ) cuda_py_test( name = "device_compatibility_check_test", srcs = ["device_compatibility_check_test.py"], srcs_version = "PY3", deps = [ ":device_compatibility_check", "//:expect_tensorflow_installed", "//tf_keras/testing_infra:test_combinations", ], ) py_library( name = "autocast_variable", srcs = [ "autocast_variable.py", ], srcs_version = "PY3", deps = [ "//:expect_tensorflow_installed", "//tf_keras/distribute", ], ) tf_py_test( name = "autocast_variable_test", size = "medium", srcs = ["autocast_variable_test.py"], python_version = "PY3", deps = [ ":autocast_variable", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_tensorflow_installed", "//tf_keras/layers", "//tf_keras/optimizers/legacy:optimizers", ], ) py_library( name = "loss_scale_optimizer", srcs = ["loss_scale_optimizer.py"], srcs_version = "PY3", deps = [ "//:expect_absl_installed", # absl/testing:parameterized "//:expect_tensorflow_installed", "//tf_keras/optimizers/legacy:optimizers", "//tf_keras/utils:generic_utils", ], ) cuda_py_test( name = "loss_scale_optimizer_test", size = "medium", srcs = ["loss_scale_optimizer_test.py"], python_version = "PY3", shard_count = 4, deps = [ ":loss_scale_optimizer", ":test_util", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", ], ) cuda_py_test( name = "mixed_precision_graph_rewrite_test", size = "small", srcs = ["mixed_precision_graph_rewrite_test.py"], python_version = "PY3", deps = [ ":loss_scale_optimizer", ":policy", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/optimizers/legacy:optimizers", "//tf_keras/testing_infra:test_combinations", "//tf_keras/testing_infra:test_utils", ], ) py_library( name = "test_util", srcs = ["test_util.py"], srcs_version = "PY3", deps = [ "//:expect_tensorflow_installed", "//tf_keras", ], ) cuda_py_test( name = "layer_test", size = "medium", srcs = ["layer_test.py"], python_version = "PY3", tags = [ "no_pip", "no_windows", # b/139083295: bfloat16 tests fail on Windows ], deps = [ ":test_util", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", ], ) cuda_py_test( name = "model_test", size = "medium", srcs = ["model_test.py"], data = [ "//tf_keras/mixed_precision/testdata:lso_ckpt_tf2.2", "//tf_keras/mixed_precision/testdata:lso_savedmodel_tf2.2", ], python_version = "PY3", shard_count = 5, tags = [ "no_pip", "no_windows", # b/139083295: bfloat16 tests fail on Windows ], deps = [ ":test_util", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", ], ) cuda_py_test( name = "layer_correctness_test", size = "medium", srcs = ["layer_correctness_test.py"], python_version = "PY3", shard_count = 10, tags = [ "no_rocm", ], deps = [ "//:expect_absl_installed", # absl/testing:parameterized "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", ], )
tf-keras/tf_keras/mixed_precision/BUILD/0
{ "file_path": "tf-keras/tf_keras/mixed_precision/BUILD", "repo_id": "tf-keras", "token_count": 2820 }
224
model_checkpoint_path: "ckpt" all_model_checkpoint_paths: "ckpt"
tf-keras/tf_keras/mixed_precision/testdata/lso_ckpt_tf2.2/checkpoint/0
{ "file_path": "tf-keras/tf_keras/mixed_precision/testdata/lso_ckpt_tf2.2/checkpoint", "repo_id": "tf-keras", "token_count": 27 }
225
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Built-in optimizer classes. For more examples see the base class `tf.keras.optimizers.Optimizer`. """ # Imports needed for deserialization. import platform import warnings import tensorflow.compat.v2 as tf from absl import logging from tf_keras import backend from tf_keras.optimizers import adadelta from tf_keras.optimizers import adafactor from tf_keras.optimizers import adagrad from tf_keras.optimizers import adam from tf_keras.optimizers import adamax from tf_keras.optimizers import adamw from tf_keras.optimizers import ftrl from tf_keras.optimizers import lion from tf_keras.optimizers import nadam from tf_keras.optimizers import optimizer as base_optimizer from tf_keras.optimizers import rmsprop from tf_keras.optimizers import sgd from tf_keras.optimizers.legacy import adadelta as adadelta_legacy from tf_keras.optimizers.legacy import adagrad as adagrad_legacy from tf_keras.optimizers.legacy import adam as adam_legacy from tf_keras.optimizers.legacy import adamax as adamax_legacy from tf_keras.optimizers.legacy import ftrl as ftrl_legacy from tf_keras.optimizers.legacy import ( gradient_descent as gradient_descent_legacy, ) from tf_keras.optimizers.legacy import nadam as nadam_legacy from tf_keras.optimizers.legacy import optimizer_v2 as base_optimizer_legacy from tf_keras.optimizers.legacy import rmsprop as rmsprop_legacy from tf_keras.optimizers.legacy.adadelta import Adadelta from tf_keras.optimizers.legacy.adagrad import Adagrad from tf_keras.optimizers.legacy.adam import Adam from tf_keras.optimizers.legacy.adamax import Adamax from tf_keras.optimizers.legacy.ftrl import Ftrl # Symbols to be accessed under keras.optimizers. To be replaced with # optimizers v2022 when they graduate out of experimental. from tf_keras.optimizers.legacy.gradient_descent import SGD from tf_keras.optimizers.legacy.nadam import Nadam from tf_keras.optimizers.legacy.rmsprop import RMSprop from tf_keras.optimizers.optimizer_v1 import Optimizer from tf_keras.optimizers.optimizer_v1 import TFOptimizer from tf_keras.optimizers.schedules import learning_rate_schedule from tf_keras.saving.legacy import serialization as legacy_serialization from tf_keras.saving.serialization_lib import deserialize_keras_object from tf_keras.saving.serialization_lib import serialize_keras_object # isort: off from tensorflow.python.util.tf_export import keras_export # pylint: disable=line-too-long @keras_export("keras.optimizers.serialize") def serialize(optimizer, use_legacy_format=False): """Serialize the optimizer configuration to JSON compatible python dict. The configuration can be used for persistence and reconstruct the `Optimizer` instance again. >>> tf.keras.optimizers.serialize(tf.keras.optimizers.legacy.SGD()) {'module': 'keras.optimizers.legacy', 'class_name': 'SGD', 'config': {'name': 'SGD', 'learning_rate': 0.01, 'decay': 0.0, 'momentum': 0.0, 'nesterov': False}, 'registered_name': None} """ # noqa: E501 """ Args: optimizer: An `Optimizer` instance to serialize. Returns: Python dict which contains the configuration of the input optimizer. """ if optimizer is None: return None if not isinstance( optimizer, ( base_optimizer.Optimizer, Optimizer, base_optimizer_legacy.OptimizerV2, ), ): warnings.warn( "The `keras.optimizers.serialize()` API should only be used for " "objects of type `keras.optimizers.Optimizer`. Found an instance " f"of type {type(optimizer)}, which may lead to improper " "serialization." ) if use_legacy_format: return legacy_serialization.serialize_keras_object(optimizer) return serialize_keras_object(optimizer) def is_arm_mac(): return platform.system() == "Darwin" and platform.processor() == "arm" @keras_export("keras.optimizers.deserialize") def deserialize(config, custom_objects=None, use_legacy_format=False, **kwargs): """Inverse of the `serialize` function. Args: config: Optimizer configuration dictionary. custom_objects: Optional dictionary mapping names (strings) to custom objects (classes and functions) to be considered during deserialization. Returns: A TF-Keras Optimizer instance. """ # loss_scale_optimizer has a direct dependency of optimizer, import here # rather than top to avoid the cyclic dependency. from tf_keras.mixed_precision import ( loss_scale_optimizer, ) use_legacy_optimizer = kwargs.pop("use_legacy_optimizer", False) if kwargs: raise TypeError(f"Invalid keyword arguments: {kwargs}") if len(config["config"]) > 0: # If the optimizer config is not empty, then we use the value of # `is_legacy_optimizer` to override `use_legacy_optimizer`. If # `is_legacy_optimizer` does not exist in config, it means we are # using the legacy optimzier. use_legacy_optimizer = config["config"].get("is_legacy_optimizer", True) if ( tf.__internal__.tf2.enabled() and tf.executing_eagerly() and not is_arm_mac() and not use_legacy_optimizer ): # We observed a slowdown of optimizer on M1 Mac, so we fall back to the # legacy optimizer for M1 users now, see b/263339144 for more context. all_classes = { "adadelta": adadelta.Adadelta, "adagrad": adagrad.Adagrad, "adam": adam.Adam, "adamw": adamw.AdamW, "adamax": adamax.Adamax, "experimentaladadelta": adadelta.Adadelta, "experimentaladagrad": adagrad.Adagrad, "experimentaladam": adam.Adam, "experimentalsgd": sgd.SGD, "nadam": nadam.Nadam, "rmsprop": rmsprop.RMSprop, "sgd": sgd.SGD, "ftrl": ftrl.Ftrl, "lossscaleoptimizer": loss_scale_optimizer.LossScaleOptimizerV3, "lossscaleoptimizerv3": loss_scale_optimizer.LossScaleOptimizerV3, # LossScaleOptimizerV1 was an old version of LSO that was removed. # Deserializing it turns it into a LossScaleOptimizer "lossscaleoptimizerv1": loss_scale_optimizer.LossScaleOptimizer, } else: all_classes = { "adadelta": adadelta_legacy.Adadelta, "adagrad": adagrad_legacy.Adagrad, "adam": adam_legacy.Adam, "adamax": adamax_legacy.Adamax, "experimentaladadelta": adadelta.Adadelta, "experimentaladagrad": adagrad.Adagrad, "experimentaladam": adam.Adam, "experimentalsgd": sgd.SGD, "nadam": nadam_legacy.Nadam, "rmsprop": rmsprop_legacy.RMSprop, "sgd": gradient_descent_legacy.SGD, "ftrl": ftrl_legacy.Ftrl, "lossscaleoptimizer": loss_scale_optimizer.LossScaleOptimizer, "lossscaleoptimizerv3": loss_scale_optimizer.LossScaleOptimizerV3, # LossScaleOptimizerV1 was an old version of LSO that was removed. # Deserializing it turns it into a LossScaleOptimizer "lossscaleoptimizerv1": loss_scale_optimizer.LossScaleOptimizer, } # Make deserialization case-insensitive for built-in optimizers. if config["class_name"].lower() in all_classes: config["class_name"] = config["class_name"].lower() if use_legacy_format: return legacy_serialization.deserialize_keras_object( config, module_objects=all_classes, custom_objects=custom_objects, printable_module_name="optimizer", ) return deserialize_keras_object( config, module_objects=all_classes, custom_objects=custom_objects, printable_module_name="optimizer", ) @keras_export( "keras.__internal__.optimizers.convert_to_legacy_optimizer", v1=[] ) def convert_to_legacy_optimizer(optimizer): """Convert experimental optimizer to legacy optimizer. This function takes in a `keras.optimizers.Optimizer` instance and converts it to the corresponding `keras.optimizers.legacy.Optimizer` instance. For example, `keras.optimizers.Adam(...)` to `keras.optimizers.legacy.Adam(...)`. Args: optimizer: An instance of `keras.optimizers.Optimizer`. """ # loss_scale_optimizer has a direct dependency of optimizer, import here # rather than top to avoid the cyclic dependency. from tf_keras.mixed_precision import ( loss_scale_optimizer, ) if not isinstance(optimizer, base_optimizer.Optimizer): raise ValueError( "`convert_to_legacy_optimizer` should only be called " "on instances of `tf.keras.optimizers.Optimizer`, but " f"received {optimizer} of type {type(optimizer)}." ) optimizer_name = optimizer.__class__.__name__.lower() config = optimizer.get_config() # Remove fields that only exist in experimental optimizer. keys_to_remove = [ "weight_decay", "use_ema", "ema_momentum", "ema_overwrite_frequency", "jit_compile", "is_legacy_optimizer", ] for key in keys_to_remove: config.pop(key, None) if isinstance(optimizer, loss_scale_optimizer.LossScaleOptimizerV3): # For LossScaleOptimizers, recursively convert the inner optimizer config["inner_optimizer"] = convert_to_legacy_optimizer( optimizer.inner_optimizer ) if optimizer_name == "lossscaleoptimizerv3": optimizer_name = "lossscaleoptimizer" # Learning rate can be a custom LearningRateSchedule, which is stored as # a dict in config, and cannot be deserialized. if hasattr(optimizer, "_learning_rate") and isinstance( optimizer._learning_rate, learning_rate_schedule.LearningRateSchedule ): config["learning_rate"] = optimizer._learning_rate legacy_optimizer_config = { "class_name": optimizer_name, "config": config, } return deserialize( legacy_optimizer_config, use_legacy_optimizer=True, use_legacy_format=True, ) @keras_export("keras.optimizers.get") def get(identifier, **kwargs): """Retrieves a TF-Keras Optimizer instance. Args: identifier: Optimizer identifier, one of - String: name of an optimizer - Dictionary: configuration dictionary. - TF-Keras Optimizer instance (it will be returned unchanged). - TensorFlow Optimizer instance (it will be wrapped as a TF-Keras Optimizer). Returns: A TF-Keras Optimizer instance. Raises: ValueError: If `identifier` cannot be interpreted. """ use_legacy_optimizer = kwargs.pop("use_legacy_optimizer", False) if kwargs: raise TypeError(f"Invalid keyword arguments: {kwargs}") if isinstance( identifier, ( Optimizer, base_optimizer_legacy.OptimizerV2, ), ): return identifier elif isinstance(identifier, base_optimizer.Optimizer): if tf.__internal__.tf2.enabled(): return identifier else: # If TF2 is disabled, we convert to the legacy # optimizer. return convert_to_legacy_optimizer(identifier) # Wrap legacy TF optimizer instances elif isinstance(identifier, tf.compat.v1.train.Optimizer): opt = TFOptimizer(identifier) backend.track_tf_optimizer(opt) return opt elif isinstance(identifier, dict): use_legacy_format = "module" not in identifier return deserialize( identifier, use_legacy_optimizer=use_legacy_optimizer, use_legacy_format=use_legacy_format, ) elif isinstance(identifier, str): config = {"class_name": str(identifier), "config": {}} return get( config, use_legacy_optimizer=use_legacy_optimizer, ) else: raise ValueError( f"Could not interpret optimizer identifier: {identifier}" )
tf-keras/tf_keras/optimizers/__init__.py/0
{ "file_path": "tf-keras/tf_keras/optimizers/__init__.py", "repo_id": "tf-keras", "token_count": 5195 }
226
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Adamax optimizer implementation.""" import tensorflow.compat.v2 as tf from tf_keras import backend_config from tf_keras.optimizers.legacy import optimizer_v2 # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export( "keras.optimizers.legacy.Adamax", v1=["keras.optimizers.Adamax", "keras.optimizers.legacy.Adamax"], ) class Adamax(optimizer_v2.OptimizerV2): """Optimizer that implements the Adamax algorithm. It is a variant of Adam based on the infinity norm. Default parameters follow those provided in the paper. Adamax is sometimes superior to adam, specially in models with embeddings. Initialization: ```python m = 0 # Initialize initial 1st moment vector v = 0 # Initialize the exponentially weighted infinity norm t = 0 # Initialize timestep ``` The update rule for parameter `w` with gradient `g` is described at the end of section 7.1 of the paper: ```python t += 1 m = beta1 * m + (1 - beta) * g v = max(beta2 * v, abs(g)) current_lr = learning_rate / (1 - beta1 ** t) w = w - current_lr * m / (v + epsilon) ``` Similarly to `Adam`, the epsilon is added for numerical stability (especially to get rid of division by zero when `v_t == 0`). In contrast to `Adam`, the sparse implementation of this algorithm (used when the gradient is an IndexedSlices object, typically because of `tf.gather` or an embedding lookup in the forward pass) only updates variable slices and corresponding `m_t`, `v_t` terms when that part of the variable was used in the forward pass. This means that the sparse behavior is contrast to the dense behavior (similar to some momentum implementations which ignore momentum unless a variable slice was actually used). Args: learning_rate: A `Tensor`, floating point value, or a schedule that is a `tf.keras.optimizers.schedules.LearningRateSchedule`. The learning rate. beta_1: A float value or a constant float tensor. The exponential decay rate for the 1st moment estimates. beta_2: A float value or a constant float tensor. The exponential decay rate for the exponentially weighted infinity norm. epsilon: A small constant for numerical stability. name: Optional name for the operations created when applying gradients. Defaults to `"Adamax"`. **kwargs: keyword arguments. Allowed arguments are `clipvalue`, `clipnorm`, `global_clipnorm`. If `clipvalue` (float) is set, the gradient of each weight is clipped to be no higher than this value. If `clipnorm` (float) is set, the gradient of each weight is individually clipped so that its norm is no higher than this value. If `global_clipnorm` (float) is set the gradient of all weights is clipped so that their global norm is no higher than this value. Reference: - [Kingma et al., 2014](http://arxiv.org/abs/1412.6980) """ _HAS_AGGREGATE_GRAD = True def __init__( self, learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7, name="Adamax", **kwargs ): super().__init__(name, **kwargs) self._set_hyper("learning_rate", kwargs.get("lr", learning_rate)) self._set_hyper("decay", self._initial_decay) self._set_hyper("beta_1", beta_1) self._set_hyper("beta_2", beta_2) self.epsilon = epsilon or backend_config.epsilon() def _create_slots(self, var_list): # Separate for-loops to respect the ordering of slot variables from v1. for var in var_list: self.add_slot(var, "m") # Create slots for the first moments. for var in var_list: self.add_slot(var, "v") # Create slots for the second moments. def _prepare_local(self, var_device, var_dtype, apply_state): super()._prepare_local(var_device, var_dtype, apply_state) local_step = tf.cast(self.iterations + 1, var_dtype) beta_1_t = tf.identity(self._get_hyper("beta_1", var_dtype)) beta_2_t = tf.identity(self._get_hyper("beta_2", var_dtype)) beta_1_power = tf.pow(beta_1_t, local_step) lr_t = apply_state[(var_device, var_dtype)]["lr_t"] apply_state[(var_device, var_dtype)].update( dict( neg_scaled_lr=-lr_t / (1 - beta_1_power), epsilon=tf.convert_to_tensor(self.epsilon, var_dtype), beta_1_t=beta_1_t, beta_1_power=beta_1_power, one_minus_beta_1_t=1 - beta_1_t, beta_2_t=beta_2_t, zero=tf.zeros((), dtype=tf.int64), ) ) def _resource_apply_dense(self, grad, var, apply_state=None): var_device, var_dtype = var.device, var.dtype.base_dtype coefficients = (apply_state or {}).get( (var_device, var_dtype) ) or self._fallback_apply_state(var_device, var_dtype) m = self.get_slot(var, "m") v = self.get_slot(var, "v") return tf.raw_ops.ResourceApplyAdaMax( var=var.handle, m=m.handle, v=v.handle, beta1_power=coefficients["beta_1_power"], lr=coefficients["lr_t"], beta1=coefficients["beta_1_t"], beta2=coefficients["beta_2_t"], epsilon=coefficients["epsilon"], grad=grad, use_locking=self._use_locking, ) def _resource_apply_sparse(self, grad, var, indices, apply_state=None): var_device, var_dtype = var.device, var.dtype.base_dtype coefficients = (apply_state or {}).get( (var_device, var_dtype) ) or self._fallback_apply_state(var_device, var_dtype) # m_t = beta1 * m + (1 - beta1) * g_t m = self.get_slot(var, "m") m_slice = tf.gather(m, indices, axis=coefficients["zero"]) m_t_slice = ( m_slice * coefficients["beta_1_t"] + grad * coefficients["one_minus_beta_1_t"] ) with tf.control_dependencies([m_t_slice]): m_t = self._resource_scatter_update(m, indices, m_t_slice) # u_t = max(beta2 * u, abs(g_t)) v = self.get_slot(var, "v") v_slice = tf.gather(v, indices, axis=coefficients["zero"]) v_t_slice = tf.maximum(v_slice * coefficients["beta_2_t"], tf.abs(grad)) with tf.control_dependencies([v_t_slice]): v_t = self._resource_scatter_update(v, indices, v_t_slice) # theta_t = theta - lr / (1 - beta1^t) * m_t / u_t var_slice = coefficients["neg_scaled_lr"] * ( m_t_slice / (v_t_slice + coefficients["epsilon"]) ) with tf.control_dependencies([var_slice]): var_update = self._resource_scatter_add(var, indices, var_slice) return tf.group(*[var_update, m_t, v_t]) def get_config(self): config = super().get_config() config.update( { "learning_rate": self._serialize_hyperparameter( "learning_rate" ), "decay": self._initial_decay, "beta_1": self._serialize_hyperparameter("beta_1"), "beta_2": self._serialize_hyperparameter("beta_2"), "epsilon": self.epsilon, } ) return config
tf-keras/tf_keras/optimizers/legacy/adamax.py/0
{ "file_path": "tf-keras/tf_keras/optimizers/legacy/adamax.py", "repo_id": "tf-keras", "token_count": 3441 }
227
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Nadam optimizer implementation.""" import tensorflow.compat.v2 as tf from tf_keras.optimizers import optimizer from tf_keras.saving.object_registration import register_keras_serializable # isort: off from tensorflow.python.util.tf_export import keras_export @register_keras_serializable() @keras_export( "keras.optimizers.Nadam", "keras.optimizers.experimental.Nadam", v1=[] ) class Nadam(optimizer.Optimizer): r"""Optimizer that implements the Nadam algorithm. Much like Adam is essentially RMSprop with momentum, Nadam is Adam with Nesterov momentum. Args: learning_rate: A `tf.Tensor`, floating point value, a schedule that is a `tf.keras.optimizers.schedules.LearningRateSchedule`, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to `0.001`. beta_1: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 1st moment estimates. Defaults to `0.9`. beta_2: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 2nd moment estimates. Defaults to `0.999`. epsilon: A small constant for numerical stability. This epsilon is "epsilon hat" in the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults to `1e-7`. {{base_optimizer_keyword_args}} Reference: - [Dozat, 2015](http://cs229.stanford.edu/proj2015/054_report.pdf). """ def __init__( self, learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7, weight_decay=None, clipnorm=None, clipvalue=None, global_clipnorm=None, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=None, jit_compile=True, name="Nadam", **kwargs ): super().__init__( name=name, weight_decay=weight_decay, clipnorm=clipnorm, clipvalue=clipvalue, global_clipnorm=global_clipnorm, use_ema=use_ema, ema_momentum=ema_momentum, ema_overwrite_frequency=ema_overwrite_frequency, jit_compile=jit_compile, **kwargs ) self._learning_rate = self._build_learning_rate(learning_rate) self.beta_1 = beta_1 self.beta_2 = beta_2 self.epsilon = epsilon def build(self, var_list): """Initialize optimizer variables. Nadam optimizer has 2 types of variables: momentums and velocities. Args: var_list: list of model variables to build Nadam variables on. """ super().build(var_list) if getattr(self, "_built", False): return self._built = True self._momentums = [] self._velocities = [] self._u_product = tf.Variable(1.0, dtype=var_list[0].dtype) # Keep a counter on how many times of _u_product has been computed to # avoid duplicated computations. self._u_product_counter = 1 for var in var_list: self._momentums.append( self.add_variable_from_reference( model_variable=var, variable_name="m" ) ) self._velocities.append( self.add_variable_from_reference( model_variable=var, variable_name="v" ) ) def update_step(self, gradient, variable): """Update step given gradient and the associated model variable.""" var_dtype = variable.dtype lr = tf.cast(self.learning_rate, var_dtype) local_step = tf.cast(self.iterations + 1, var_dtype) next_step = tf.cast(self.iterations + 2, var_dtype) decay = tf.cast(0.96, var_dtype) beta_1 = tf.cast(self.beta_1, var_dtype) beta_2 = tf.cast(self.beta_2, var_dtype) u_t = beta_1 * (1.0 - 0.5 * (tf.pow(decay, local_step))) u_t_1 = beta_1 * (1.0 - 0.5 * (tf.pow(decay, next_step))) def get_cached_u_product(): return self._u_product def compute_new_u_product(): u_product_t = self._u_product * u_t self._u_product.assign(u_product_t) self._u_product_counter += 1 return u_product_t u_product_t = tf.cond( self._u_product_counter == (self.iterations + 2), true_fn=get_cached_u_product, false_fn=compute_new_u_product, ) u_product_t_1 = u_product_t * u_t_1 beta_2_power = tf.pow(beta_2, local_step) var_key = self._var_key(variable) m = self._momentums[self._index_dict[var_key]] v = self._velocities[self._index_dict[var_key]] if isinstance(gradient, tf.IndexedSlices): # Sparse gradients. m.assign_add(-m * (1 - beta_1)) m.scatter_add( tf.IndexedSlices( gradient.values * (1 - beta_1), gradient.indices ) ) v.assign_add(-v * (1 - beta_2)) v.scatter_add( tf.IndexedSlices( tf.square(gradient.values) * (1 - beta_2), gradient.indices ) ) m_hat = u_t_1 * m / (1 - u_product_t_1) + (1 - u_t) * gradient / ( 1 - u_product_t ) v_hat = v / (1 - beta_2_power) variable.assign_sub((m_hat * lr) / (tf.sqrt(v_hat) + self.epsilon)) else: # Dense gradients. m.assign_add((gradient - m) * (1 - beta_1)) v.assign_add((tf.square(gradient) - v) * (1 - beta_2)) m_hat = u_t_1 * m / (1 - u_product_t_1) + (1 - u_t) * gradient / ( 1 - u_product_t ) v_hat = v / (1 - beta_2_power) variable.assign_sub((m_hat * lr) / (tf.sqrt(v_hat) + self.epsilon)) def get_config(self): config = super().get_config() config.update( { "learning_rate": self._serialize_hyperparameter( self._learning_rate ), "beta_1": self.beta_1, "beta_2": self.beta_2, "epsilon": self.epsilon, } ) return config Nadam.__doc__ = Nadam.__doc__.replace( "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args )
tf-keras/tf_keras/optimizers/nadam.py/0
{ "file_path": "tf-keras/tf_keras/optimizers/nadam.py", "repo_id": "tf-keras", "token_count": 3559 }
228
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for TF-Keras Premade Linear models.""" import numpy as np import tensorflow.compat.v2 as tf from tf_keras import backend from tf_keras import losses from tf_keras.engine import input_layer from tf_keras.engine import sequential from tf_keras.engine import training from tf_keras.feature_column import dense_features_v2 from tf_keras.layers import core from tf_keras.optimizers.legacy import gradient_descent from tf_keras.premade_models import linear from tf_keras.testing_infra import test_combinations @test_combinations.run_all_keras_modes(always_skip_v1=True) class LinearModelTest(test_combinations.TestCase): def test_linear_model_with_single_input(self): model = linear.LinearModel() inp = np.random.uniform(low=-5.0, high=5.0, size=(64, 2)) output = 0.3 * inp[:, 0] + 0.2 * inp[:, 1] model.compile("sgd", "mse", []) model.fit(inp, output, epochs=5) self.assertTrue(model.built) def test_linear_model_with_list_input(self): model = linear.LinearModel() input_a = np.random.uniform(low=-5.0, high=5.0, size=(64, 1)) input_b = np.random.uniform(low=-5.0, high=5.0, size=(64, 1)) output = 0.3 * input_a + 0.2 * input_b model.compile("sgd", "mse", []) model.fit([input_a, input_b], output, epochs=5) def test_linear_model_with_mismatched_dict_inputs(self): model = linear.LinearModel() input_a = np.random.uniform(low=-5.0, high=5.0, size=(64, 1)) input_b = np.random.uniform(low=-5.0, high=5.0, size=(64, 1)) output = 0.3 * input_a + 0.2 * input_b model.compile("sgd", "mse", []) model.build( {"a": tf.TensorShape([None, 1]), "b": tf.TensorShape([None, 1])} ) with self.assertRaisesRegex(ValueError, "Missing keys"): model.fit({"c": input_a, "b": input_b}, output, epochs=5) def test_linear_model_with_dict_input(self): model = linear.LinearModel() input_a = np.random.uniform(low=-5.0, high=5.0, size=(64, 1)) input_b = np.random.uniform(low=-5.0, high=5.0, size=(64, 1)) output = 0.3 * input_a + 0.2 * input_b model.compile("sgd", "mse", []) model.fit({"a": input_a, "b": input_b}, output, epochs=5) def test_linear_model_as_layer(self): input_a = input_layer.Input(shape=(1,), name="a") output_a = linear.LinearModel()(input_a) input_b = input_layer.Input(shape=(1,), name="b") output_b = core.Dense(units=1)(input_b) output = output_a + output_b model = training.Model(inputs=[input_a, input_b], outputs=[output]) input_a_np = np.random.uniform(low=-5.0, high=5.0, size=(64, 1)) input_b_np = np.random.uniform(low=-5.0, high=5.0, size=(64, 1)) output_np = 0.3 * input_a_np + 0.2 * input_b_np model.compile("sgd", "mse", []) model.fit([input_a_np, input_b_np], output_np, epochs=5) def test_linear_model_with_sparse_input(self): indices = tf.constant([[0, 0], [0, 2], [1, 0], [1, 1]], dtype=tf.int64) values = tf.constant([0.4, 0.6, 0.8, 0.5]) shape = tf.constant([2, 3], dtype=tf.int64) model = linear.LinearModel() inp = tf.SparseTensor(indices, values, shape) output = model(inp) self.evaluate(tf.compat.v1.global_variables_initializer()) if tf.executing_eagerly(): weights = model.get_weights() weights[0] = np.ones((3, 1)) model.set_weights(weights) output = model(inp) self.assertAllClose([[1.0], [1.3]], self.evaluate(output)) def test_linear_model_with_sparse_input_and_custom_training(self): batch_size = 64 indices = [] values = [] target = np.zeros((batch_size, 1)) for i in range(64): rand_int = np.random.randint(3) if rand_int == 0: indices.append((i, 0)) val = np.random.uniform(low=-5.0, high=5.0) values.append(val) target[i] = 0.3 * val elif rand_int == 1: indices.append((i, 1)) val = np.random.uniform(low=-5.0, high=5.0) values.append(val) target[i] = 0.2 * val else: indices.append((i, 0)) indices.append((i, 1)) val_1 = np.random.uniform(low=-5.0, high=5.0) val_2 = np.random.uniform(low=-5.0, high=5.0) values.append(val_1) values.append(val_2) target[i] = 0.3 * val_1 + 0.2 * val_2 indices = np.asarray(indices) values = np.asarray(values) shape = tf.constant([batch_size, 2], dtype=tf.int64) inp = tf.SparseTensor(indices, values, shape) model = linear.LinearModel(use_bias=False) opt = gradient_descent.SGD() for _ in range(20): with tf.GradientTape() as t: output = model(inp) loss = backend.mean(losses.mean_squared_error(target, output)) grads = t.gradient(loss, model.trainable_variables) grads_and_vars = zip(grads, model.trainable_variables) opt.apply_gradients(grads_and_vars) # This test is an example for a regression on categorical inputs, i.e., # the output is 0.4, 0.6, 0.9 when input is 'alpha', 'beta', 'gamma' # separately. def test_linear_model_with_feature_column(self): vocab_list = ["alpha", "beta", "gamma"] vocab_val = [0.4, 0.6, 0.9] data = np.random.choice(vocab_list, size=256) y = np.zeros_like(data, dtype=np.float32) for vocab, val in zip(vocab_list, vocab_val): indices = np.where(data == vocab) y[indices] = val + np.random.uniform( low=-0.01, high=0.01, size=indices[0].shape ) cat_column = tf.feature_column.categorical_column_with_vocabulary_list( key="symbol", vocabulary_list=vocab_list ) ind_column = tf.feature_column.indicator_column(cat_column) dense_feature_layer = dense_features_v2.DenseFeatures([ind_column]) linear_model = linear.LinearModel( use_bias=False, kernel_initializer="zeros" ) combined = sequential.Sequential([dense_feature_layer, linear_model]) opt = gradient_descent.SGD(learning_rate=0.1) combined.compile(opt, "mse", []) combined.fit(x={"symbol": data}, y=y, batch_size=32, epochs=10) self.assertAllClose( [[0.4], [0.6], [0.9]], combined.layers[1].dense_layers[0].kernel.numpy(), atol=0.01, ) def test_config(self): linear_model = linear.LinearModel(units=3, use_bias=True) config = linear_model.get_config() cloned_linear_model = linear.LinearModel.from_config(config) self.assertEqual(linear_model.units, cloned_linear_model.units) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/premade_models/linear_test.py/0
{ "file_path": "tf-keras/tf_keras/premade_models/linear_test.py", "repo_id": "tf-keras", "token_count": 3597 }
229
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for TF-Keras regularizers.""" import numpy as np import tensorflow.compat.v2 as tf from absl.testing import parameterized import tf_keras as keras from tf_keras import regularizers from tf_keras.testing_infra import test_combinations from tf_keras.testing_infra import test_utils from tf_keras.utils import np_utils DATA_DIM = 5 NUM_CLASSES = 2 class KerasRegularizersTest(test_combinations.TestCase, parameterized.TestCase): def create_model( self, kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, ): model = keras.models.Sequential() model.add( keras.layers.Dense( NUM_CLASSES, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, input_shape=(DATA_DIM,), ) ) return model def regularizer_fn_tensor(x): return tf.constant(0.0) def regularizer_fn_scalar(x): return 0.0 class RegularizerTensor(regularizers.Regularizer): def __call__(self, x): return tf.constant(0.0) class RegularizerScalar(regularizers.Regularizer): def __call__(self, x): return 0.0 def get_data(self): (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( train_samples=10, test_samples=10, input_shape=(DATA_DIM,), num_classes=NUM_CLASSES, ) y_train = np_utils.to_categorical(y_train, NUM_CLASSES) y_test = np_utils.to_categorical(y_test, NUM_CLASSES) return (x_train, y_train), (x_test, y_test) def create_multi_input_model_from(self, layer1, layer2): input_1 = keras.layers.Input(shape=(DATA_DIM,)) input_2 = keras.layers.Input(shape=(DATA_DIM,)) out1 = layer1(input_1) out2 = layer2(input_2) out = keras.layers.Average()([out1, out2]) model = keras.models.Model([input_1, input_2], out) model.add_loss(keras.backend.mean(out2)) model.add_loss(tf.reduce_sum(input_1)) return model @test_combinations.run_all_keras_modes @parameterized.named_parameters( [ ("l1", regularizers.l1()), ("l2", regularizers.l2()), ("l1_l2", regularizers.l1_l2()), ("l2_zero", keras.regularizers.l2(0.0)), ("function_tensor", regularizer_fn_tensor), ("function_scalar", regularizer_fn_scalar), ("lambda_tensor", lambda x: tf.constant(0.0)), ("lambda_scalar", lambda x: 0.0), ("regularizer_base_class", regularizers.Regularizer()), ("regularizer_custom_class_tensor", RegularizerTensor()), ("regularizer_custom_class_scalar", RegularizerScalar()), ] ) def test_kernel_regularization(self, regularizer): (x_train, y_train), _ = self.get_data() model = self.create_model(kernel_regularizer=regularizer) model.compile( loss="categorical_crossentropy", optimizer="sgd", run_eagerly=test_utils.should_run_eagerly(), ) self.assertEqual(len(model.losses), 1) model.fit(x_train, y_train, batch_size=10, epochs=1, verbose=0) @test_combinations.run_all_keras_modes @parameterized.named_parameters( [ ("l1", regularizers.l1()), ("l2", regularizers.l2()), ("l1_l2", regularizers.l1_l2()), ("l2_zero", keras.regularizers.l2(0.0)), ("function_tensor", regularizer_fn_tensor), ("function_scalar", regularizer_fn_scalar), ("lambda_tensor", lambda x: tf.constant(0.0)), ("lambda_scalar", lambda x: 0.0), ("regularizer_base_class", regularizers.Regularizer()), ("regularizer_custom_class_tensor", RegularizerTensor()), ("regularizer_custom_class_scalar", RegularizerScalar()), ] ) def test_bias_regularization(self, regularizer): (x_train, y_train), _ = self.get_data() model = self.create_model(bias_regularizer=regularizer) model.compile( loss="categorical_crossentropy", optimizer="sgd", run_eagerly=test_utils.should_run_eagerly(), ) self.assertEqual(len(model.losses), 1) model.fit(x_train, y_train, batch_size=10, epochs=1, verbose=0) @test_combinations.run_all_keras_modes @parameterized.named_parameters( [ ("l1", regularizers.l1()), ("l2", regularizers.l2()), ("l1_l2", regularizers.l1_l2()), ("l2_zero", keras.regularizers.l2(0.0)), ("function_tensor", regularizer_fn_tensor), ("function_scalar", regularizer_fn_scalar), ("lambda_tensor", lambda x: tf.constant(0.0)), ("lambda_scalar", lambda x: 0.0), ("regularizer_base_class", regularizers.Regularizer()), ("regularizer_custom_class_tensor", RegularizerTensor()), ("regularizer_custom_class_scalar", RegularizerScalar()), ] ) def test_activity_regularization(self, regularizer): (x_train, y_train), _ = self.get_data() model = self.create_model(activity_regularizer=regularizer) model.compile( loss="categorical_crossentropy", optimizer="sgd", run_eagerly=test_utils.should_run_eagerly(), ) self.assertEqual(len(model.losses), 1 if tf.executing_eagerly() else 1) model.fit(x_train, y_train, batch_size=10, epochs=1, verbose=0) @test_combinations.run_all_keras_modes @test_combinations.run_with_all_model_types def test_zero_regularization(self): # Verifies that training with zero regularization works. x, y = np.ones((10, 10)), np.ones((10, 3)) model = test_utils.get_model_from_layers( [ keras.layers.Dense( 3, kernel_regularizer=keras.regularizers.l2(0) ) ], input_shape=(10,), ) model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) model.fit(x, y, batch_size=5, epochs=1) def test_custom_regularizer_saving(self): def my_regularizer(weights): return tf.reduce_sum(tf.abs(weights)) inputs = keras.Input((10,)) outputs = keras.layers.Dense(1, kernel_regularizer=my_regularizer)( inputs ) model = keras.Model(inputs, outputs) model2 = model.from_config( model.get_config(), custom_objects={"my_regularizer": my_regularizer}, ) self.assertEqual(model2.layers[1].kernel_regularizer, my_regularizer) @test_combinations.run_all_keras_modes @parameterized.named_parameters( [ ("l1", regularizers.l1()), ("l2", regularizers.l2()), ("l1_l2", regularizers.l1_l2()), ] ) def test_regularization_shared_layer(self, regularizer): dense_layer = keras.layers.Dense( NUM_CLASSES, kernel_regularizer=regularizer, activity_regularizer=regularizer, ) model = self.create_multi_input_model_from(dense_layer, dense_layer) model.compile( loss="categorical_crossentropy", optimizer="sgd", run_eagerly=test_utils.should_run_eagerly(), ) self.assertLen(model.losses, 5) @test_combinations.run_all_keras_modes @parameterized.named_parameters( [ ("l1", regularizers.l1()), ("l2", regularizers.l2()), ("l1_l2", regularizers.l1_l2()), ] ) def test_regularization_shared_model(self, regularizer): dense_layer = keras.layers.Dense( NUM_CLASSES, kernel_regularizer=regularizer, activity_regularizer=regularizer, ) input_tensor = keras.layers.Input(shape=(DATA_DIM,)) dummy_model = keras.models.Model( input_tensor, dense_layer(input_tensor) ) model = self.create_multi_input_model_from(dummy_model, dummy_model) model.compile( loss="categorical_crossentropy", optimizer="sgd", run_eagerly=test_utils.should_run_eagerly(), ) self.assertLen(model.losses, 6) @test_combinations.run_all_keras_modes @parameterized.named_parameters( [ ("l1", regularizers.l1()), ("l2", regularizers.l2()), ("l1_l2", regularizers.l1_l2()), ] ) def test_regularization_shared_layer_in_different_models(self, regularizer): shared_dense = keras.layers.Dense( NUM_CLASSES, kernel_regularizer=regularizer, activity_regularizer=regularizer, ) models = [] for _ in range(2): input_tensor = keras.layers.Input(shape=(DATA_DIM,)) unshared_dense = keras.layers.Dense( NUM_CLASSES, kernel_regularizer=regularizer ) out = unshared_dense(shared_dense(input_tensor)) models.append(keras.models.Model(input_tensor, out)) model = self.create_multi_input_model_from( layer1=models[0], layer2=models[1] ) model.compile( loss="categorical_crossentropy", optimizer="sgd", run_eagerly=test_utils.should_run_eagerly(), ) # We expect to see 9 losses on the model: # - 2 from the 2 add_loss calls on the outer model. # - 3 from the weight regularizers on the shared_dense layer, # unshared_dense in inner model 1, unshared_dense in inner model 2. # - 4 from activity regularizers on the shared_dense layer. self.assertLen(model.losses, 9) def test_deserialization_error(self): with self.assertRaisesRegex( ValueError, "Could not interpret regularizer" ): keras.regularizers.get(0) @parameterized.named_parameters( [ ("l1", regularizers.l1(l1=None), 0.01), ("l2", regularizers.l2(l2=None), 0.01), ("l1_l2", regularizers.l1_l2(l1=None, l2=None), 0.0), ] ) def test_default_value_when_init_with_none( self, regularizer, expected_value ): expected_value = np.asarray(expected_value) if hasattr(regularizer, "l1"): self.assertAllClose(regularizer.l1, expected_value) if hasattr(regularizer, "l2"): self.assertAllClose(regularizer.l2, expected_value) @test_utils.run_v2_only def test_orthogonal_regularizer(self): # Test correctness. factor = 0.1 reg_rows = regularizers.OrthogonalRegularizer( factor=factor, mode="rows" ) reg_cols = regularizers.OrthogonalRegularizer( factor=factor, mode="columns" ) # Test with square matrix inputs = tf.constant( [[1, 1, 1, 1], [2, 0, 0, 0], [0, 0, 3, 1]], dtype="float32" ) normalized_rows = tf.math.l2_normalize(inputs, axis=1) normalized_cols = tf.math.l2_normalize(inputs, axis=0) rows_pairs = [ tf.reduce_sum(normalized_rows[0] * normalized_rows[1]), tf.reduce_sum(normalized_rows[0] * normalized_rows[2]), tf.reduce_sum(normalized_rows[1] * normalized_rows[2]), ] col_pairs = [ tf.reduce_sum(normalized_cols[:, 0] * normalized_cols[:, 1]), tf.reduce_sum(normalized_cols[:, 0] * normalized_cols[:, 2]), tf.reduce_sum(normalized_cols[:, 0] * normalized_cols[:, 3]), tf.reduce_sum(normalized_cols[:, 1] * normalized_cols[:, 2]), tf.reduce_sum(normalized_cols[:, 1] * normalized_cols[:, 3]), tf.reduce_sum(normalized_cols[:, 2] * normalized_cols[:, 3]), ] num_row_pairs = 3 num_col_pairs = 6 # Expected: factor * sum(pairwise_dot_products_of_rows) / num_row_pairs self.assertAllClose( reg_rows(inputs), factor * sum(rows_pairs) / num_row_pairs ) # Expected: factor * sum(pairwise_dot_products_of_columns) / # num_col_pairs self.assertAllClose( reg_cols(inputs), factor * sum(col_pairs) / num_col_pairs ) # Test incorrect usage. with self.assertRaisesRegex(ValueError, "must have rank 2"): reg_rows(tf.constant([1, 1], dtype="float32")) # Test serialization self.assertDictEqual( reg_cols.get_config(), {"factor": factor, "mode": "columns"} ) # Test usage in model. model_inputs = keras.Input((3,)) model_outputs = keras.layers.Dense(4, kernel_regularizer=reg_rows)( model_inputs ) model = keras.Model(model_inputs, model_outputs) model.compile(optimizer="rmsprop", loss="mse") model.fit( np.random.random((16, 3)), np.random.random((16, 4)), epochs=1 ) # Test serialization and deserialiation as part of model. inputs = tf.constant([[1, 1, 1], [2, 0, 0], [0, 0, 3]], dtype="float32") outputs = model(inputs) config = model.get_config() weights = model.get_weights() model = keras.Model.from_config(config) model.set_weights(weights) self.assertAllClose(model(inputs), outputs, atol=1e-5) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/regularizers_test.py/0
{ "file_path": "tf-keras/tf_keras/regularizers_test.py", "repo_id": "tf-keras", "token_count": 6897 }
230
"""A binary that creates a serialized SavedModel from a keras model. This is used in tests to ensure that model serialization is deterministic across different processes. """ import tensorflow.compat.v2 as tf from absl import app from absl import flags from tf_keras import regularizers from tf_keras.testing_infra import test_utils flags.DEFINE_string("output_path", "", "The path to write the SavedModel at.") FLAGS = flags.FLAGS def main(_) -> None: with test_utils.model_type_scope("functional"): model = test_utils.get_small_mlp(1, 4, input_dim=3) model.layers[-1].activity_regularizer = regularizers.get("l2") model.activity_regularizer = regularizers.get("l2") model.compile(loss="mse", optimizer="rmsprop") def callable_loss(): return tf.reduce_sum(model.weights[0]) model.add_loss(callable_loss) print(f"_____Writing saved model to: {FLAGS.output_path}") model.save(FLAGS.output_path) if __name__ == "__main__": app.run(main)
tf-keras/tf_keras/saving/legacy/saved_model/create_test_saved_model.py/0
{ "file_path": "tf-keras/tf_keras/saving/legacy/saved_model/create_test_saved_model.py", "repo_id": "tf-keras", "token_count": 389 }
231
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utils related to keras model saving.""" import copy import os import tensorflow.compat.v2 as tf import tf_keras as keras from tf_keras import backend from tf_keras import losses from tf_keras import optimizers from tf_keras.engine import base_layer_utils from tf_keras.optimizers import optimizer_v1 from tf_keras.saving.legacy import serialization from tf_keras.utils import version_utils from tf_keras.utils.io_utils import ask_to_proceed_with_overwrite # isort: off from tensorflow.python.platform import tf_logging as logging def extract_model_metrics(model): """Convert metrics from a TF-Keras model `compile` API to dictionary. This is used for converting TF-Keras models to Estimators and SavedModels. Args: model: A `tf.keras.Model` object. Returns: Dictionary mapping metric names to metric instances. May return `None` if the model does not contain any metrics. """ if getattr(model, "_compile_metrics", None): # TODO(psv/kathywu): use this implementation in model to estimator flow. # We are not using model.metrics here because we want to exclude the # metrics added using `add_metric` API. return {m.name: m for m in model._compile_metric_functions} return None def model_call_inputs(model, keep_original_batch_size=False): """Inspect model to get its input signature. The model's input signature is a list with a single (possibly-nested) object. This is due to the Keras-enforced restriction that tensor inputs must be passed in as the first argument. For example, a model with input {'feature1': <Tensor>, 'feature2': <Tensor>} will have input signature: [{'feature1': TensorSpec, 'feature2': TensorSpec}] Args: model: TF-Keras Model object. keep_original_batch_size: A boolean indicating whether we want to keep using the original batch size or set it to None. Default is `False`, which means that the batch dim of the returned input signature will always be set to `None`. Returns: A tuple containing `(args, kwargs)` TensorSpecs of the model call function inputs. `kwargs` does not contain the `training` argument. """ input_specs = model.save_spec(dynamic_batch=not keep_original_batch_size) if input_specs is None: return None, None input_specs = _enforce_names_consistency(input_specs) return input_specs def raise_model_input_error(model): if isinstance(model, keras.models.Sequential): raise ValueError( f"Model {model} cannot be saved because the input shape is not " "available. Please specify an input shape either by calling " "`build(input_shape)` directly, or by calling the model on actual " "data using `Model()`, `Model.fit()`, or `Model.predict()`." ) # If the model is not a `Sequential`, it is intended to be a subclassed # model. raise ValueError( f"Model {model} cannot be saved either because the input shape is not " "available or because the forward pass of the model is not defined." "To define a forward pass, please override `Model.call()`. To specify " "an input shape, either call `build(input_shape)` directly, or call " "the model on actual data using `Model()`, `Model.fit()`, or " "`Model.predict()`. If you have a custom training step, please make " "sure to invoke the forward pass in train step through " "`Model.__call__`, i.e. `model(inputs)`, as opposed to `model.call()`." ) def trace_model_call(model, input_signature=None): """Trace the model call to create a tf.function for exporting a TF-Keras model. Args: model: A TF-Keras model. input_signature: optional, a list of tf.TensorSpec objects specifying the inputs to the model. Returns: A tf.function wrapping the model's call function with input signatures set. Raises: ValueError: if input signature cannot be inferred from the model. """ if input_signature is None: if isinstance(model.call, tf.__internal__.function.Function): input_signature = model.call.input_signature if input_signature: model_args = input_signature model_kwargs = {} else: model_args, model_kwargs = model_call_inputs(model) if model_args is None: raise_model_input_error(model) @tf.function def _wrapped_model(*args, **kwargs): """A concrete tf.function that wraps the model's call function.""" (args, kwargs,) = model._call_spec.set_arg_value( "training", False, args, kwargs, inputs_in_args=True ) with base_layer_utils.call_context().enter( model, inputs=None, build_graph=False, training=False, saving=True ): outputs = model(*args, **kwargs) # Outputs always has to be a flat dict. output_names = model.output_names # Functional Model. if output_names is None: # Subclassed Model. from tf_keras.engine import compile_utils output_names = compile_utils.create_pseudo_output_names(outputs) outputs = tf.nest.flatten(outputs) return {name: output for name, output in zip(output_names, outputs)} return _wrapped_model.get_concrete_function(*model_args, **model_kwargs) def model_metadata(model, include_optimizer=True, require_config=True): """Returns a dictionary containing the model metadata.""" from tf_keras import __version__ as keras_version from tf_keras.optimizers.legacy import optimizer_v2 model_config = {"class_name": model.__class__.__name__} try: model_config["config"] = model.get_config() except NotImplementedError as e: if require_config: raise e metadata = dict( keras_version=str(keras_version), backend=backend.backend(), model_config=model_config, ) if model.optimizer and include_optimizer: if isinstance(model.optimizer, optimizer_v1.TFOptimizer): logging.warning( "TensorFlow optimizers do not " "make it possible to access " "optimizer attributes or optimizer state " "after instantiation. " "As a result, we cannot save the optimizer " "as part of the model save file. " "You will have to compile your model again after loading it. " "Prefer using a TF-Keras optimizer instead " "(see keras.io/optimizers)." ) elif model._compile_was_called: training_config = model._get_compile_args(user_metrics=False) training_config.pop("optimizer", None) # Handled separately. metadata["training_config"] = _serialize_nested_config( training_config ) if isinstance(model.optimizer, optimizer_v2.RestoredOptimizer): raise NotImplementedError( "Optimizers loaded from a SavedModel cannot be saved. " "If you are calling `model.save` or " "`tf.keras.models.save_model`, " "please set the `include_optimizer` option to `False`. For " "`tf.saved_model.save`, " "delete the optimizer from the model." ) else: optimizer_config = { "class_name": keras.utils.get_registered_name( model.optimizer.__class__ ), "config": model.optimizer.get_config(), } metadata["training_config"]["optimizer_config"] = optimizer_config return metadata def should_overwrite(filepath, overwrite): """Returns whether the filepath should be overwritten.""" # If file exists and should not be overwritten. if not overwrite and os.path.isfile(filepath): return ask_to_proceed_with_overwrite(filepath) return True def compile_args_from_training_config(training_config, custom_objects=None): """Return model.compile arguments from training config.""" if custom_objects is None: custom_objects = {} with keras.utils.CustomObjectScope(custom_objects): optimizer_config = training_config["optimizer_config"] optimizer = optimizers.deserialize(optimizer_config) # Recover losses. loss = None loss_config = training_config.get("loss", None) if loss_config is not None: loss = _deserialize_nested_config(losses.deserialize, loss_config) # Recover metrics. metrics = None metrics_config = training_config.get("metrics", None) if metrics_config is not None: metrics = _deserialize_nested_config( _deserialize_metric, metrics_config ) # Recover weighted metrics. weighted_metrics = None weighted_metrics_config = training_config.get("weighted_metrics", None) if weighted_metrics_config is not None: weighted_metrics = _deserialize_nested_config( _deserialize_metric, weighted_metrics_config ) sample_weight_mode = ( training_config["sample_weight_mode"] if hasattr(training_config, "sample_weight_mode") else None ) loss_weights = training_config["loss_weights"] return dict( optimizer=optimizer, loss=loss, metrics=metrics, weighted_metrics=weighted_metrics, loss_weights=loss_weights, sample_weight_mode=sample_weight_mode, ) def _deserialize_nested_config(deserialize_fn, config): """Deserializes arbitrary TF-Keras `config` using `deserialize_fn`.""" def _is_single_object(obj): if isinstance(obj, dict) and "class_name" in obj: return True # Serialized TF-Keras object. if isinstance(obj, str): return True # Serialized function or string. return False if config is None: return None if _is_single_object(config): return deserialize_fn(config) elif isinstance(config, dict): return { k: _deserialize_nested_config(deserialize_fn, v) for k, v in config.items() } elif isinstance(config, (tuple, list)): return [ _deserialize_nested_config(deserialize_fn, obj) for obj in config ] raise ValueError( "Saved configuration not understood. Configuration should be a " f"dictionary, string, tuple or list. Received: config={config}." ) def _serialize_nested_config(config): """Serialized a nested structure of TF-Keras objects.""" def _serialize_fn(obj): if callable(obj): return serialization.serialize_keras_object(obj) return obj return tf.nest.map_structure(_serialize_fn, config) def _deserialize_metric(metric_config): """Deserialize metrics, leaving special strings untouched.""" from tf_keras import metrics as metrics_module if metric_config in ["accuracy", "acc", "crossentropy", "ce"]: # Do not deserialize accuracy and cross-entropy strings as we have # special case handling for these in compile, based on model output # shape. return metric_config return metrics_module.deserialize(metric_config) def _enforce_names_consistency(specs): """Enforces that either all specs have names or none do.""" def _has_name(spec): return spec is None or (hasattr(spec, "name") and spec.name is not None) def _clear_name(spec): spec = copy.deepcopy(spec) if hasattr(spec, "name"): spec._name = None return spec flat_specs = tf.nest.flatten(specs) name_inconsistency = any(_has_name(s) for s in flat_specs) and not all( _has_name(s) for s in flat_specs ) if name_inconsistency: specs = tf.nest.map_structure(_clear_name, specs) return specs def try_build_compiled_arguments(model): if ( not version_utils.is_v1_layer_or_model(model) and model.outputs is not None ): try: if not model.compiled_loss.built: model.compiled_loss.build(model.outputs) if not model.compiled_metrics.built: model.compiled_metrics.build(model.outputs, model.outputs) except: # noqa: E722 logging.warning( "Compiled the loaded model, but the compiled metrics have " "yet to be built. `model.compile_metrics` will be empty " "until you train or evaluate the model." ) def is_hdf5_filepath(filepath): return ( filepath.endswith(".h5") or filepath.endswith(".keras") or filepath.endswith(".hdf5") )
tf-keras/tf_keras/saving/legacy/saving_utils.py/0
{ "file_path": "tf-keras/tf_keras/saving/legacy/saving_utils.py", "repo_id": "tf-keras", "token_count": 5500 }
232
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utilities for unit-testing TF-Keras.""" import collections import functools import itertools import unittest import tensorflow.compat.v2 as tf from absl.testing import parameterized import tf_keras as keras from tf_keras.testing_infra import test_utils try: import h5py except ImportError: h5py = None KERAS_MODEL_TYPES = ["functional", "subclass", "sequential"] class TestCase(tf.test.TestCase, parameterized.TestCase): def tearDown(self): keras.backend.clear_session() super().tearDown() def run_with_all_saved_model_formats(test_or_class=None, exclude_formats=None): """Execute the decorated test with all TF-Keras saved model formats). This decorator is intended to be applied either to individual test methods in a `test_combinations.TestCase` class, or directly to a test class that extends it. Doing so will cause the contents of the individual test method (or all test methods in the class) to be executed multiple times - once for each TF-Keras saved model format. The TF-Keras saved model formats include: 1. HDF5: 'h5' 2. SavedModel: 'tf' Note: if stacking this decorator with absl.testing's parameterized decorators, those should be at the bottom of the stack. Various methods in `testing_utils` to get file path for saved models will auto-generate a string of the two saved model formats. This allows unittests to confirm the equivalence between the two TF-Keras saved model formats. For example, consider the following unittest: ```python class MyTests(test_utils.KerasTestCase): @test_utils.run_with_all_saved_model_formats def test_foo(self): save_format = test_utils.get_save_format() saved_model_dir = '/tmp/saved_model/' model = keras.models.Sequential() model.add(keras.layers.Dense(2, input_shape=(3,))) model.add(keras.layers.Dense(3)) model.compile(loss='mse', optimizer='sgd', metrics=['acc']) keras.models.save_model(model, saved_model_dir, save_format=save_format) model = keras.models.load_model(saved_model_dir) if __name__ == "__main__": tf.test.main() ``` This test tries to save the model into the formats of 'hdf5', 'h5', 'keras', 'tensorflow', and 'tf'. We can also annotate the whole class if we want this to apply to all tests in the class: ```python @test_utils.run_with_all_saved_model_formats class MyTests(test_utils.KerasTestCase): def test_foo(self): save_format = test_utils.get_save_format() saved_model_dir = '/tmp/saved_model/' model = keras.models.Sequential() model.add(keras.layers.Dense(2, input_shape=(3,))) model.add(keras.layers.Dense(3)) model.compile(loss='mse', optimizer='sgd', metrics=['acc']) keras.models.save_model(model, saved_model_dir, save_format=save_format) model = tf.keras.models.load_model(saved_model_dir) if __name__ == "__main__": tf.test.main() ``` Args: test_or_class: test method or class to be annotated. If None, this method returns a decorator that can be applied to a test method or test class. If it is not None this returns the decorator applied to the test or class. exclude_formats: A collection of TF-Keras saved model formats to not run. (May also be a single format not wrapped in a collection). Defaults to `None`. Returns: Returns a decorator that will run the decorated test method multiple times: once for each desired TF-Keras saved model format. Raises: ImportError: If abseil parameterized is not installed or not included as a target dependency. """ # Exclude h5 save format if H5py isn't available. if h5py is None: exclude_formats.append(["h5"]) saved_model_formats = ["h5", "tf", "tf_no_traces"] params = [ (f"_{saved_format}", saved_format) for saved_format in saved_model_formats if saved_format not in tf.nest.flatten(exclude_formats) ] def single_method_decorator(f): """Decorator that constructs the test cases.""" # Use named_parameters so it can be individually run from the command # line @parameterized.named_parameters(*params) @functools.wraps(f) def decorated(self, saved_format, *args, **kwargs): """A run of a single test case w/ the specified model type.""" if saved_format == "h5": _test_h5_saved_model_format(f, self, *args, **kwargs) elif saved_format == "tf": _test_tf_saved_model_format(f, self, *args, **kwargs) elif saved_format == "tf_no_traces": _test_tf_saved_model_format_no_traces(f, self, *args, **kwargs) else: raise ValueError(f"Unknown model type: {saved_format}") return decorated return _test_or_class_decorator(test_or_class, single_method_decorator) def _test_h5_saved_model_format(f, test_or_class, *args, **kwargs): with test_utils.saved_model_format_scope("h5"): f(test_or_class, *args, **kwargs) def _test_tf_saved_model_format(f, test_or_class, *args, **kwargs): with test_utils.saved_model_format_scope("tf"): f(test_or_class, *args, **kwargs) def _test_tf_saved_model_format_no_traces(f, test_or_class, *args, **kwargs): with test_utils.saved_model_format_scope("tf", save_traces=False): f(test_or_class, *args, **kwargs) def run_with_all_weight_formats(test_or_class=None, exclude_formats=None): """Runs all tests with the supported formats for saving weights.""" exclude_formats = exclude_formats or [] exclude_formats.append("tf_no_traces") # Only applies to saving models return run_with_all_saved_model_formats(test_or_class, exclude_formats) # TODO(kaftan): Possibly enable 'subclass_custom_build' when tests begin to pass # it. Or perhaps make 'subclass' always use a custom build method. def run_with_all_model_types(test_or_class=None, exclude_models=None): """Execute the decorated test with all TF-Keras model types. This decorator is intended to be applied either to individual test methods in a `test_combinations.TestCase` class, or directly to a test class that extends it. Doing so will cause the contents of the individual test method (or all test methods in the class) to be executed multiple times - once for each TF-Keras model type. The TF-Keras model types are: ['functional', 'subclass', 'sequential'] Note: if stacking this decorator with absl.testing's parameterized decorators, those should be at the bottom of the stack. Various methods in `testing_utils` to get models will auto-generate a model of the currently active TF-Keras model type. This allows unittests to confirm the equivalence between different TF-Keras models. For example, consider the following unittest: ```python class MyTests(test_utils.KerasTestCase): @test_utils.run_with_all_model_types( exclude_models = ['sequential']) def test_foo(self): model = test_utils.get_small_mlp(1, 4, input_dim=3) optimizer = RMSPropOptimizer(learning_rate=0.001) loss = 'mse' metrics = ['mae'] model.compile(optimizer, loss, metrics=metrics) inputs = np.zeros((10, 3)) targets = np.zeros((10, 4)) dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets)) dataset = dataset.repeat(100) dataset = dataset.batch(10) model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1) if __name__ == "__main__": tf.test.main() ``` This test tries building a small mlp as both a functional model and as a subclass model. We can also annotate the whole class if we want this to apply to all tests in the class: ```python @test_utils.run_with_all_model_types(exclude_models = ['sequential']) class MyTests(test_utils.KerasTestCase): def test_foo(self): model = test_utils.get_small_mlp(1, 4, input_dim=3) optimizer = RMSPropOptimizer(learning_rate=0.001) loss = 'mse' metrics = ['mae'] model.compile(optimizer, loss, metrics=metrics) inputs = np.zeros((10, 3)) targets = np.zeros((10, 4)) dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets)) dataset = dataset.repeat(100) dataset = dataset.batch(10) model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1) if __name__ == "__main__": tf.test.main() ``` Args: test_or_class: test method or class to be annotated. If None, this method returns a decorator that can be applied to a test method or test class. If it is not None this returns the decorator applied to the test or class. exclude_models: A collection of TF-Keras model types to not run. (May also be a single model type not wrapped in a collection). Defaults to `None`. Returns: Returns a decorator that will run the decorated test method multiple times: once for each desired TF-Keras model type. Raises: ImportError: If abseil parameterized is not installed or not included as a target dependency. """ model_types = ["functional", "subclass", "sequential"] params = [ (f"_{model}", model) for model in model_types if model not in tf.nest.flatten(exclude_models) ] def single_method_decorator(f): """Decorator that constructs the test cases.""" # Use named_parameters so it can be individually run from the command # line @parameterized.named_parameters(*params) @functools.wraps(f) def decorated(self, model_type, *args, **kwargs): """A run of a single test case w/ the specified model type.""" if model_type == "functional": _test_functional_model_type(f, self, *args, **kwargs) elif model_type == "subclass": _test_subclass_model_type(f, self, *args, **kwargs) elif model_type == "sequential": _test_sequential_model_type(f, self, *args, **kwargs) else: raise ValueError(f"Unknown model type: {model_type}") return decorated return _test_or_class_decorator(test_or_class, single_method_decorator) def _test_functional_model_type(f, test_or_class, *args, **kwargs): with test_utils.model_type_scope("functional"): f(test_or_class, *args, **kwargs) def _test_subclass_model_type(f, test_or_class, *args, **kwargs): with test_utils.model_type_scope("subclass"): f(test_or_class, *args, **kwargs) def _test_sequential_model_type(f, test_or_class, *args, **kwargs): with test_utils.model_type_scope("sequential"): f(test_or_class, *args, **kwargs) def run_all_keras_modes( test_or_class=None, config=None, always_skip_v1=False, always_skip_eager=False, **kwargs, ): """Execute the decorated test with all keras execution modes. This decorator is intended to be applied either to individual test methods in a `test_combinations.TestCase` class, or directly to a test class that extends it. Doing so will cause the contents of the individual test method (or all test methods in the class) to be executed multiple times - once executing in legacy graph mode, once running eagerly and with `should_run_eagerly` returning True, and once running eagerly with `should_run_eagerly` returning False. If Tensorflow v2 behavior is enabled, legacy graph mode will be skipped, and the test will only run twice. Note: if stacking this decorator with absl.testing's parameterized decorators, those should be at the bottom of the stack. For example, consider the following unittest: ```python class MyTests(test_utils.KerasTestCase): @test_utils.run_all_keras_modes def test_foo(self): model = test_utils.get_small_functional_mlp(1, 4, input_dim=3) optimizer = RMSPropOptimizer(learning_rate=0.001) loss = 'mse' metrics = ['mae'] model.compile( optimizer, loss, metrics=metrics, run_eagerly=test_utils.should_run_eagerly()) inputs = np.zeros((10, 3)) targets = np.zeros((10, 4)) dataset = dataset_ops.Dataset.from_tensor_slices((inputs, targets)) dataset = dataset.repeat(100) dataset = dataset.batch(10) model.fit(dataset, epochs=1, steps_per_epoch=2, verbose=1) if __name__ == "__main__": tf.test.main() ``` This test will try compiling & fitting the small functional mlp using all three TF-Keras execution modes. Args: test_or_class: test method or class to be annotated. If None, this method returns a decorator that can be applied to a test method or test class. If it is not None this returns the decorator applied to the test or class. config: An optional config_pb2.ConfigProto to use to configure the session when executing graphs. always_skip_v1: If True, does not try running the legacy graph mode even when Tensorflow v2 behavior is not enabled. always_skip_eager: If True, does not execute the decorated test with eager execution modes. **kwargs: Additional kwargs for configuring tests for in-progress TF-Keras behaviors/ refactorings that we haven't fully rolled out yet Returns: Returns a decorator that will run the decorated test method multiple times. Raises: ImportError: If abseil parameterized is not installed or not included as a target dependency. """ if kwargs: raise ValueError(f"Unrecognized keyword args: {kwargs}") params = [("_v2_function", "v2_function")] if not always_skip_eager: params.append(("_v2_eager", "v2_eager")) if not (always_skip_v1 or tf.__internal__.tf2.enabled()): params.append(("_v1_session", "v1_session")) def single_method_decorator(f): """Decorator that constructs the test cases.""" # Use named_parameters so it can be individually run from the command # line @parameterized.named_parameters(*params) @functools.wraps(f) def decorated(self, run_mode, *args, **kwargs): """A run of a single test case w/ specified run mode.""" if run_mode == "v1_session": _v1_session_test(f, self, config, *args, **kwargs) elif run_mode == "v2_eager": _v2_eager_test(f, self, *args, **kwargs) elif run_mode == "v2_function": _v2_function_test(f, self, *args, **kwargs) else: return ValueError(f"Unknown run mode {run_mode}") return decorated return _test_or_class_decorator(test_or_class, single_method_decorator) def _v1_session_test(f, test_or_class, config, *args, **kwargs): with tf.compat.v1.get_default_graph().as_default(): with test_utils.run_eagerly_scope(False): with test_or_class.test_session(config=config): f(test_or_class, *args, **kwargs) def _v2_eager_test(f, test_or_class, *args, **kwargs): with tf.__internal__.eager_context.eager_mode(): with test_utils.run_eagerly_scope(True): f(test_or_class, *args, **kwargs) def _v2_function_test(f, test_or_class, *args, **kwargs): with tf.__internal__.eager_context.eager_mode(): with test_utils.run_eagerly_scope(False): f(test_or_class, *args, **kwargs) def _test_or_class_decorator(test_or_class, single_method_decorator): """Decorate a test or class with a decorator intended for one method. If the test_or_class is a class: This will apply the decorator to all test methods in the class. If the test_or_class is an iterable of already-parameterized test cases: This will apply the decorator to all the cases, and then flatten the resulting cross-product of test cases. This allows stacking the Keras parameterized decorators w/ each other, and to apply them to test methods that have already been marked with an absl parameterized decorator. Otherwise, treat the obj as a single method and apply the decorator directly. Args: test_or_class: A test method (that may have already been decorated with a parameterized decorator, or a test class that extends test_combinations.TestCase single_method_decorator: A parameterized decorator intended for a single test method. Returns: The decorated result. """ def _decorate_test_or_class(obj): if isinstance(obj, collections.abc.Iterable): return itertools.chain.from_iterable( single_method_decorator(method) for method in obj ) if isinstance(obj, type): cls = obj for name, value in cls.__dict__.copy().items(): if callable(value) and name.startswith( unittest.TestLoader.testMethodPrefix ): setattr(cls, name, single_method_decorator(value)) cls = type(cls).__new__( type(cls), cls.__name__, cls.__bases__, cls.__dict__.copy() ) return cls return single_method_decorator(obj) if test_or_class is not None: return _decorate_test_or_class(test_or_class) return _decorate_test_or_class def keras_mode_combinations(mode=None, run_eagerly=None): """Returns the default test combinations for tf.keras tests. Note that if tf2 is enabled, then v1 session test will be skipped. Args: mode: List of modes to run the tests. The valid options are 'graph' and 'eager'. If None, uses ['graph', 'eager']. If an empty list is provided, then the test will run under the context based on tensorflow's version, e.g., graph for v1 and eager for v2. Defaults to `None`. run_eagerly: List of `run_eagerly` value to be run with the tests. When None, uses [True, False]. Note that for `graph` mode, run_eagerly value will only be False. Defaults to `None`. Returns: A list contains all the combinations to be used to generate test cases. """ if mode is None: mode = ( ["eager"] if tf.__internal__.tf2.enabled() else ["graph", "eager"] ) if run_eagerly is None: run_eagerly = [True, False] result = [] if "eager" in mode: result += tf.__internal__.test.combinations.combine( mode=["eager"], run_eagerly=run_eagerly ) if "graph" in mode: result += tf.__internal__.test.combinations.combine( mode=["graph"], run_eagerly=[False] ) return result def keras_model_type_combinations(): return tf.__internal__.test.combinations.combine( model_type=KERAS_MODEL_TYPES ) class KerasModeCombination(tf.__internal__.test.combinations.TestCombination): """Combination for TF-Keras test mode. It by default includes v1_session, v2_eager and v2_tf_function. """ def context_managers(self, kwargs): run_eagerly = kwargs.pop("run_eagerly", None) if run_eagerly is not None: return [test_utils.run_eagerly_scope(run_eagerly)] else: return [] def parameter_modifiers(self): return [ tf.__internal__.test.combinations.OptionalParameter("run_eagerly") ] class KerasModelTypeCombination( tf.__internal__.test.combinations.TestCombination ): """Combination for TF-Keras model types when doing model test. It by default includes 'functional', 'subclass', 'sequential'. Various methods in `testing_utils` to get models will auto-generate a model of the currently active TF-Keras model type. This allows unittests to confirm the equivalence between different TF-Keras models. """ def context_managers(self, kwargs): model_type = kwargs.pop("model_type", None) if model_type in KERAS_MODEL_TYPES: return [test_utils.model_type_scope(model_type)] else: return [] def parameter_modifiers(self): return [ tf.__internal__.test.combinations.OptionalParameter("model_type") ] _defaults = tf.__internal__.test.combinations.generate.keywords[ "test_combinations" ] generate = functools.partial( tf.__internal__.test.combinations.generate, test_combinations=_defaults + (KerasModeCombination(), KerasModelTypeCombination()), ) combine = tf.__internal__.test.combinations.combine times = tf.__internal__.test.combinations.times NamedObject = tf.__internal__.test.combinations.NamedObject
tf-keras/tf_keras/testing_infra/test_combinations.py/0
{ "file_path": "tf-keras/tf_keras/testing_infra/test_combinations.py", "repo_id": "tf-keras", "token_count": 8580 }
233
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for saving/loading function for keras Model.""" import collections import tf_keras as keras # Declaring namedtuple() ModelFn = collections.namedtuple( "ModelFn", ["model", "input_shape", "target_shape"] ) def basic_sequential(): """Basic sequential model.""" model = keras.Sequential( [ keras.layers.Dense(3, activation="relu", input_shape=(3,)), keras.layers.Dense(2, activation="softmax"), ] ) return ModelFn(model, (None, 3), (None, 2)) def basic_sequential_deferred(): """Sequential model with deferred input shape.""" model = keras.Sequential( [ keras.layers.Dense(3, activation="relu"), keras.layers.Dense(2, activation="softmax"), ] ) return ModelFn(model, (None, 3), (None, 2)) def stacked_rnn(): """Stacked RNN model.""" inputs = keras.Input((None, 3)) layer = keras.layers.RNN([keras.layers.LSTMCell(2) for _ in range(3)]) x = layer(inputs) outputs = keras.layers.Dense(2)(x) model = keras.Model(inputs, outputs) return ModelFn(model, (None, 4, 3), (None, 2)) def lstm(): """LSTM model.""" inputs = keras.Input((None, 3)) x = keras.layers.LSTM(4, return_sequences=True)(inputs) x = keras.layers.LSTM(3, return_sequences=True)(x) x = keras.layers.LSTM(2, return_sequences=False)(x) outputs = keras.layers.Dense(2)(x) model = keras.Model(inputs, outputs) return ModelFn(model, (None, 4, 3), (None, 2)) def multi_input_multi_output(): """Multi-input Multi-output model.""" body_input = keras.Input(shape=(None,), name="body") tags_input = keras.Input(shape=(2,), name="tags") x = keras.layers.Embedding(10, 4)(body_input) body_features = keras.layers.LSTM(5)(x) x = keras.layers.concatenate([body_features, tags_input]) pred_1 = keras.layers.Dense(2, activation="sigmoid", name="priority")(x) pred_2 = keras.layers.Dense(3, activation="softmax", name="department")(x) model = keras.Model( inputs=[body_input, tags_input], outputs=[pred_1, pred_2] ) return ModelFn(model, [(None, 1), (None, 2)], [(None, 2), (None, 3)]) def nested_sequential_in_functional(): """A sequential model nested in a functional model.""" inner_model = keras.Sequential( [ keras.layers.Dense(3, activation="relu", input_shape=(3,)), keras.layers.Dense(2, activation="relu"), ] ) inputs = keras.Input(shape=(3,)) x = inner_model(inputs) outputs = keras.layers.Dense(2, activation="softmax")(x) model = keras.Model(inputs, outputs) return ModelFn(model, (None, 3), (None, 2)) def seq_to_seq(): """Sequence to sequence model.""" num_encoder_tokens = 3 num_decoder_tokens = 3 latent_dim = 2 encoder_inputs = keras.Input(shape=(None, num_encoder_tokens)) encoder = keras.layers.LSTM(latent_dim, return_state=True) _, state_h, state_c = encoder(encoder_inputs) encoder_states = [state_h, state_c] decoder_inputs = keras.Input(shape=(None, num_decoder_tokens)) decoder_lstm = keras.layers.LSTM( latent_dim, return_sequences=True, return_state=True ) decoder_outputs, _, _ = decoder_lstm( decoder_inputs, initial_state=encoder_states ) decoder_dense = keras.layers.Dense(num_decoder_tokens, activation="softmax") decoder_outputs = decoder_dense(decoder_outputs) model = keras.Model([encoder_inputs, decoder_inputs], decoder_outputs) return ModelFn( model, [(None, 2, num_encoder_tokens), (None, 2, num_decoder_tokens)], (None, 2, num_decoder_tokens), ) def shared_layer_functional(): """Shared layer in a functional model.""" main_input = keras.Input(shape=(10,), dtype="int32", name="main_input") x = keras.layers.Embedding(output_dim=5, input_dim=4, input_length=10)( main_input ) lstm_out = keras.layers.LSTM(3)(x) auxiliary_output = keras.layers.Dense( 1, activation="sigmoid", name="aux_output" )(lstm_out) auxiliary_input = keras.Input(shape=(5,), name="aux_input") x = keras.layers.concatenate([lstm_out, auxiliary_input]) x = keras.layers.Dense(2, activation="relu")(x) main_output = keras.layers.Dense( 1, activation="sigmoid", name="main_output" )(x) model = keras.Model( inputs=[main_input, auxiliary_input], outputs=[main_output, auxiliary_output], ) return ModelFn(model, [(None, 10), (None, 5)], [(None, 1), (None, 1)]) def shared_sequential(): """Shared sequential model in a functional model.""" inner_model = keras.Sequential( [ keras.layers.Conv2D(2, 3, activation="relu"), keras.layers.Conv2D(2, 3, activation="relu"), ] ) inputs_1 = keras.Input((5, 5, 3)) inputs_2 = keras.Input((5, 5, 3)) x1 = inner_model(inputs_1) x2 = inner_model(inputs_2) x = keras.layers.concatenate([x1, x2]) outputs = keras.layers.GlobalAveragePooling2D()(x) model = keras.Model([inputs_1, inputs_2], outputs) return ModelFn(model, [(None, 5, 5, 3), (None, 5, 5, 3)], (None, 4)) class MySubclassModel(keras.Model): """A subclass model.""" def __init__(self, input_dim=3): super().__init__(name="my_subclass_model") self._config = {"input_dim": input_dim} self.dense1 = keras.layers.Dense(8, activation="relu") self.dense2 = keras.layers.Dense(2, activation="softmax") self.bn = keras.layers.BatchNormalization() self.dp = keras.layers.Dropout(0.5) def call(self, inputs, **kwargs): x = self.dense1(inputs) x = self.dp(x) x = self.bn(x) return self.dense2(x) def get_config(self): return self._config @classmethod def from_config(cls, config): return cls(**config) def nested_subclassed_model(): """A subclass model nested in another subclass model.""" class NestedSubclassModel(keras.Model): """A nested subclass model.""" def __init__(self): super().__init__() self.dense1 = keras.layers.Dense(4, activation="relu") self.dense2 = keras.layers.Dense(2, activation="relu") self.bn = keras.layers.BatchNormalization() self.inner_subclass_model = MySubclassModel() def call(self, inputs): x = self.dense1(inputs) x = self.bn(x) x = self.inner_subclass_model(x) return self.dense2(x) return ModelFn(NestedSubclassModel(), (None, 3), (None, 2)) def nested_subclassed_in_functional_model(): """A subclass model nested in a functional model.""" inner_subclass_model = MySubclassModel() inputs = keras.Input(shape=(3,)) x = inner_subclass_model(inputs) x = keras.layers.BatchNormalization()(x) outputs = keras.layers.Dense(2, activation="softmax")(x) model = keras.Model(inputs, outputs) return ModelFn(model, (None, 3), (None, 2)) def nested_functional_in_subclassed_model(): """A functional model nested in a subclass model.""" def get_functional_model(): inputs = keras.Input(shape=(4,)) x = keras.layers.Dense(4, activation="relu")(inputs) x = keras.layers.BatchNormalization()(x) outputs = keras.layers.Dense(2)(x) return keras.Model(inputs, outputs) class NestedFunctionalInSubclassModel(keras.Model): """A functional nested in subclass model.""" def __init__(self): super().__init__(name="nested_functional_in_subclassed_model") self.dense1 = keras.layers.Dense(4, activation="relu") self.dense2 = keras.layers.Dense(2, activation="relu") self.inner_functional_model = get_functional_model() def call(self, inputs): x = self.dense1(inputs) x = self.inner_functional_model(x) return self.dense2(x) return ModelFn(NestedFunctionalInSubclassModel(), (None, 3), (None, 2)) def shared_layer_subclassed_model(): """Shared layer in a subclass model.""" class SharedLayerSubclassModel(keras.Model): """A subclass model with shared layers.""" def __init__(self): super().__init__(name="shared_layer_subclass_model") self.dense = keras.layers.Dense(3, activation="relu") self.dp = keras.layers.Dropout(0.5) self.bn = keras.layers.BatchNormalization() def call(self, inputs): x = self.dense(inputs) x = self.dp(x) x = self.bn(x) return self.dense(x) return ModelFn(SharedLayerSubclassModel(), (None, 3), (None, 3)) def functional_with_keyword_args(): """A functional model with keyword args.""" inputs = keras.Input(shape=(3,)) x = keras.layers.Dense(4)(inputs) x = keras.layers.BatchNormalization()(x) outputs = keras.layers.Dense(2)(x) model = keras.Model(inputs, outputs, name="m", trainable=False) return ModelFn(model, (None, 3), (None, 2)) ALL_MODELS = [ ("basic_sequential", basic_sequential), ("basic_sequential_deferred", basic_sequential_deferred), ("stacked_rnn", stacked_rnn), ("lstm", lstm), ("multi_input_multi_output", multi_input_multi_output), ("nested_sequential_in_functional", nested_sequential_in_functional), ("seq_to_seq", seq_to_seq), ("shared_layer_functional", shared_layer_functional), ("shared_sequential", shared_sequential), ("nested_subclassed_model", nested_subclassed_model), ( "nested_subclassed_in_functional_model", nested_subclassed_in_functional_model, ), ( "nested_functional_in_subclassed_model", nested_functional_in_subclassed_model, ), ("shared_layer_subclassed_model", shared_layer_subclassed_model), ("functional_with_keyword_args", functional_with_keyword_args), ] def get_models(exclude_models=None): """Get all models excluding the specified ones.""" models = [model for model in ALL_MODELS if model[0] not in exclude_models] return models
tf-keras/tf_keras/tests/model_architectures.py/0
{ "file_path": "tf-keras/tf_keras/tests/model_architectures.py", "repo_id": "tf-keras", "token_count": 4595 }
234
#!/usr/bin/env bash # Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # # # A script to run multiple GPU tests in parallel controlled with an environment # variable. # # Required environment variables: # TF_GPU_COUNT = Number of GPUs available. TF_GPU_COUNT=${TF_GPU_COUNT:-4} TF_TESTS_PER_GPU=${TF_TESTS_PER_GPU:-8} export TF_PER_DEVICE_MEMORY_LIMIT_MB=${TF_PER_DEVICE_MEMORY_LIMIT_MB:-1024} # ******************************************************************* # This section of the script is needed to # make things work on windows under msys. # ******************************************************************* RUNFILES_MANIFEST_FILE="${TEST_SRCDIR}/MANIFEST" function rlocation() { if is_absolute "$1" ; then # If the file path is already fully specified, simply return it. echo "$1" elif [[ -e "$TEST_SRCDIR/$1" ]]; then # If the file exists in the $TEST_SRCDIR then just use it. echo "$TEST_SRCDIR/$1" elif [[ -e "$RUNFILES_MANIFEST_FILE" ]]; then # If a runfiles manifest file exists then use it. echo "$(grep "^$1 " "$RUNFILES_MANIFEST_FILE" | sed 's/[^ ]* //')" fi } TEST_BINARY="$(rlocation $TEST_WORKSPACE/${1#./})" shift # ******************************************************************* mkdir -p /var/lock # Try to acquire any of the TF_GPU_COUNT * TF_TESTS_PER_GPU # slots to run a test at. # # Prefer to allocate 1 test per GPU over 4 tests on 1 GPU. # So, we iterate over TF_TESTS_PER_GPU first. for j in `seq 0 $((TF_TESTS_PER_GPU-1))`; do for i in `seq 0 $((TF_GPU_COUNT-1))`; do exec {lock_fd}>/var/lock/gpulock${i}_${j} || exit 1 if flock -n "$lock_fd"; then ( # This export only works within the brackets, so it is isolated to one # single command. export CUDA_VISIBLE_DEVICES=$i export HIP_VISIBLE_DEVICES=$i echo "Running test $TEST_BINARY $* on GPU $CUDA_VISIBLE_DEVICES" "$TEST_BINARY" $@ ) return_code=$? flock -u "$lock_fd" exit $return_code fi done done echo "Cannot find a free GPU to run the test $* on, exiting with failure..." exit 1
tf-keras/tf_keras/tools/gpu_build/parallel_gpu_execute.sh/0
{ "file_path": "tf-keras/tf_keras/tools/gpu_build/parallel_gpu_execute.sh", "repo_id": "tf-keras", "token_count": 973 }
235
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Input dataset creator for `model.fit`.""" import tensorflow.compat.v2 as tf # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export("keras.utils.experimental.DatasetCreator", v1=[]) class DatasetCreator: """Object that returns a `tf.data.Dataset` upon invoking. `tf.keras.utils.experimental.DatasetCreator` is designated as a supported type for `x`, or the input, in `tf.keras.Model.fit`. Pass an instance of this class to `fit` when using a callable (with a `input_context` argument) that returns a `tf.data.Dataset`. ```python model = tf.keras.Sequential([tf.keras.layers.Dense(10)]) model.compile(tf.keras.optimizers.SGD(), loss="mse") def dataset_fn(input_context): global_batch_size = 64 batch_size = input_context.get_per_replica_batch_size(global_batch_size) dataset = tf.data.Dataset.from_tensors(([1.], [1.])).repeat() dataset = dataset.shard( input_context.num_input_pipelines, input_context.input_pipeline_id) dataset = dataset.batch(batch_size) dataset = dataset.prefetch(2) return dataset input_options = tf.distribute.InputOptions( experimental_fetch_to_device=True, experimental_per_replica_buffer_size=2) model.fit(tf.keras.utils.experimental.DatasetCreator( dataset_fn, input_options=input_options), epochs=10, steps_per_epoch=10) ``` `Model.fit` usage with `DatasetCreator` is intended to work across all `tf.distribute.Strategy`s, as long as `Strategy.scope` is used at model creation: ```python strategy = tf.distribute.experimental.ParameterServerStrategy( cluster_resolver) with strategy.scope(): model = tf.keras.Sequential([tf.keras.layers.Dense(10)]) model.compile(tf.keras.optimizers.SGD(), loss="mse") def dataset_fn(input_context): ... input_options = ... model.fit(tf.keras.utils.experimental.DatasetCreator( dataset_fn, input_options=input_options), epochs=10, steps_per_epoch=10) ``` Note: When using `DatasetCreator`, `steps_per_epoch` argument in `Model.fit` must be provided as the cardinality of such input cannot be inferred. Args: dataset_fn: A callable that takes a single argument of type `tf.distribute.InputContext`, which is used for batch size calculation and cross-worker input pipeline sharding (if neither is needed, the `InputContext` parameter can be ignored in the `dataset_fn`), and returns a `tf.data.Dataset`. input_options: Optional `tf.distribute.InputOptions`, used for specific options when used with distribution, for example, whether to prefetch dataset elements to accelerator device memory or host device memory, and prefetch buffer size in the replica device memory. No effect if not used with distributed training. See `tf.distribute.InputOptions` for more information. """ def __init__(self, dataset_fn, input_options=None): if not callable(dataset_fn): raise TypeError( "`dataset_fn` for `DatasetCreator` must be a `callable`. " f"Received: {dataset_fn}" ) if input_options and ( not isinstance(input_options, tf.distribute.InputOptions) ): raise TypeError( "`input_options` for `DatasetCreator` must be a " f"`tf.distribute.InputOptions`. Received: {input_options}" ) self.dataset_fn = dataset_fn self.input_options = input_options def __call__(self, *args, **kwargs): # When a `DatasetCreator` is invoked, it forwards args/kwargs straight # to the callable. dataset = self.dataset_fn(*args, **kwargs) if not isinstance(dataset, tf.data.Dataset): raise TypeError( "The `callable` provided to `DatasetCreator` must return " f'a Dataset. It returns "{dataset}"' ) return dataset
tf-keras/tf_keras/utils/dataset_creator.py/0
{ "file_path": "tf-keras/tf_keras/utils/dataset_creator.py", "repo_id": "tf-keras", "token_count": 1802 }
236
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for kernelized_utils.py.""" import functools import tensorflow.compat.v2 as tf from absl.testing import parameterized from tf_keras.utils import kernelized_utils def _exact_gaussian(stddev): return functools.partial( kernelized_utils.exact_gaussian_kernel, stddev=stddev ) def _exact_laplacian(stddev): return functools.partial( kernelized_utils.exact_laplacian_kernel, stddev=stddev ) class KernelizedUtilsTest(tf.test.TestCase, parameterized.TestCase): @parameterized.named_parameters( ("gaussian", _exact_gaussian(stddev=10.0), [[1.0]]), ("laplacian", _exact_laplacian(stddev=50.0), [[1.0]]), ) def test_equal_vectors(self, exact_kernel_fn, expected_values): """Identical vectors give exactly the identity kernel value.""" x = tf.constant([0.5, -0.5, -0.5, 0.5]) y = tf.constant([0.5, -0.5, -0.5, 0.5]) exact_kernel = exact_kernel_fn(x, y) shape = exact_kernel.shape.as_list() self.assertLen(shape, 2) # x and y are identical and therefore K(x, y) will be precisely equal to # the identity value of the kernel. self.assertAllClose(expected_values, exact_kernel, atol=1e-6) @parameterized.named_parameters( ("gaussian", _exact_gaussian(stddev=10.0), [[1.0]]), ("laplacian", _exact_laplacian(stddev=50.0), [[1.0]]), ) def test_almost_identical_vectors(self, exact_kernel_fn, expected_values): """Almost identical vectors give the identity kernel value.""" x = tf.constant([1.0, 0.4, -2.1, -1.1]) y = tf.constant([1.01, 0.39, -2.099, -1.101]) exact_kernel = exact_kernel_fn(x, y) shape = exact_kernel.shape.as_list() self.assertLen(shape, 2) # x and y are almost identical and therefore K(x, y) will be almost # equal to the identity value of the kernel. self.assertAllClose(expected_values, exact_kernel, atol=1e-3) @parameterized.named_parameters( ("gaussian", _exact_gaussian(stddev=1.0), [[0.99], [0.977]]), ("laplacian", _exact_laplacian(stddev=5.0), [[0.96], [0.94]]), ) def test_similar_matrices(self, exact_kernel_fn, expected_values): """Pairwise "close" vectors give high kernel values (similarity scores).""" x = tf.constant([1.0, 3.4, -2.1, 0.9, 3.3, -2.0], shape=[2, 3]) y = tf.constant([1.1, 3.35, -2.05]) exact_kernel = exact_kernel_fn(x, y) shape = exact_kernel.shape.as_list() self.assertLen(shape, 2) # The 2 rows of x are close to y. The pairwise kernel values (similarity # scores) are somewhat close to the identity value of the kernel. self.assertAllClose(expected_values, exact_kernel, atol=1e-2) @parameterized.named_parameters( ( "gaussian", _exact_gaussian(stddev=2.0), [[0.997, 0.279], [0.251, 1.0], [0.164, 0.019]], ), ( "laplacian", _exact_laplacian(stddev=2.0), [[0.904, 0.128], [0.116, 1.0], [0.07, 0.027]], ), ) def test_matrices_varying_similarity( self, exact_kernel_fn, expected_values ): """Test matrices with row vectors of varying pairwise similarity.""" x = tf.constant([1.0, 2.0, -2.0, 0.9, 3.3, -1.0], shape=[3, 2]) y = tf.constant([1.1, 2.1, -2.0, 0.9], shape=[2, 2]) exact_kernel = exact_kernel_fn(x, y) shape = exact_kernel.shape.as_list() self.assertLen(shape, 2) self.assertAllClose(expected_values, exact_kernel, atol=1e-2) @parameterized.named_parameters( ("gaussian", _exact_gaussian(stddev=1.0), [[0.0]]), ("laplacian", _exact_laplacian(stddev=1.0), [[0.0]]), ) def test_completely_dissimilar_vectors( self, exact_kernel_fn, expected_values ): """Very dissimilar vectors give very low similarity scores.""" x = tf.constant([1.0, 3.4, -2.1, -5.1]) y = tf.constant([0.5, 2.1, 1.0, 3.0]) exact_kernel = exact_kernel_fn(x, y) shape = exact_kernel.shape.as_list() self.assertLen(shape, 2) # x and y are very "far" from each other and so the corresponding kernel # value will be very low. self.assertAllClose(expected_values, exact_kernel, atol=1e-2) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/utils/kernelized_utils_test.py/0
{ "file_path": "tf-keras/tf_keras/utils/kernelized_utils_test.py", "repo_id": "tf-keras", "token_count": 2223 }
237
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test steps_per_execution_tuning.""" import time import tensorflow.compat.v2 as tf from tf_keras import Input from tf_keras import Model from tf_keras import losses from tf_keras import optimizers from tf_keras.layers import Dense from tf_keras.testing_infra import test_combinations from tf_keras.utils import steps_per_execution_tuning class mockOptimizer: def __init__(self, iterations): self.iterations = tf.Variable(iterations) @test_combinations.run_with_all_model_types @test_combinations.run_all_keras_modes(always_skip_v1=True) class StepsPerExecutionTuningTest(test_combinations.TestCase): def test_variables(self): spe_variable = tf.Variable(1) tuner = steps_per_execution_tuning.StepsPerExecutionTuner( mockOptimizer(5), spe_variable, 5, 50, 0.5 ) assert tuner.optimizer.iterations.numpy() == 5 assert tuner._steps_per_execution.numpy().item() == 1 assert tuner.interval == 5 assert tuner.change_spe_interval == 50 assert tuner.spe_change_threshold == 0.5 assert not tuner.steps_per_execution_stop_event.is_set() def test_start_stop(self): spe_variable = tf.Variable(1) tuner = steps_per_execution_tuning.StepsPerExecutionTuner( mockOptimizer(5), spe_variable, interval=0.2 ) tuner.start() assert not tuner.steps_per_execution_stop_event.is_set() assert tuner.start_time > 0 time.sleep(0.5) # should be enough time for 2 measurements tuner.stop() assert tuner.steps_per_execution_stop_event.is_set() assert tuner.spe_measurement_count > 0 def test_settable_steps_per_execution(self): spe_variable = tf.Variable(1) tuner = steps_per_execution_tuning.StepsPerExecutionTuner( mockOptimizer(5), spe_variable, interval=0.2 ) tuner.start() tuner.stop() assert tuner.init_spe == 1 tuner.steps_per_execution = 5 assert spe_variable.numpy().item() == 5 assert tuner.init_spe == 5 def test_custom_training_loop(self): dataset = _get_dataset() iterator = iter(dataset) inputs = Input(shape=(784,), name="digits") x = Dense(64, activation="relu", name="dense_1")(inputs) x = Dense(64, activation="relu", name="dense_2")(x) outputs = Dense(10, name="predictions")(x) model = Model(inputs=inputs, outputs=outputs) optimizer = optimizers.SGD(learning_rate=1e-3) loss_fn = losses.SparseCategoricalCrossentropy(from_logits=True) # Create our steps per execution variable steps_per_execution = tf.Variable( 1, dtype="int64", aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA, ) # Create the tuner tuner = steps_per_execution_tuning.StepsPerExecutionTuner( optimizer, steps_per_execution ) # Create a step function that runs a single training step @tf.function def step_fn(iterator): batch_data, labels = next(iterator) print(batch_data.shape, labels.shape) with tf.GradientTape() as tape: logits = model(batch_data, training=True) loss_value = loss_fn(labels, logits) grads = tape.gradient(loss_value, model.trainable_weights) optimizer.apply_gradients(zip(grads, model.trainable_weights)) # We can now pack multiple execution steps into one call @tf.function def multi_step_train_fn(iterator, steps_per_execution): for _ in tf.range(steps_per_execution): step_fn(iterator) return steps_per_epoch = 10 epochs = 2 # Start the tuner before training tuner.start() for _ in range(epochs): for _ in range(steps_per_epoch): multi_step_train_fn(iterator, steps_per_execution) # End the tuner after training tuner.stop() def _get_dataset(): inputs = tf.zeros((1000, 784), dtype=tf.float32) targets = tf.zeros((1000,), dtype=tf.float32) dataset = tf.data.Dataset.from_tensor_slices((inputs, targets)) dataset = dataset.batch(10) return dataset if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/utils/steps_per_execution_tuning_test.py/0
{ "file_path": "tf-keras/tf_keras/utils/steps_per_execution_tuning_test.py", "repo_id": "tf-keras", "token_count": 2098 }
238
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for TF-Keras Vis utils.""" import tensorflow.compat.v2 as tf from absl.testing import parameterized import tf_keras as keras from tf_keras.applications import efficientnet from tf_keras.utils import layer_utils from tf_keras.utils import vis_utils class ModelToDotFormatTest(tf.test.TestCase, parameterized.TestCase): def test_plot_model_cnn(self): model = keras.Sequential() model.add( keras.layers.Conv2D( filters=2, kernel_size=(2, 3), input_shape=(3, 5, 5), name="conv", ) ) model.add(keras.layers.Flatten(name="flat")) model.add(keras.layers.Dense(5, name="dense")) dot_img_file = "model_1.png" try: vis_utils.plot_model( model, to_file=dot_img_file, show_shapes=True, show_dtype=True ) self.assertTrue(tf.io.gfile.exists(dot_img_file)) tf.io.gfile.remove(dot_img_file) except ImportError: pass def test_plot_model_with_wrapped_layers_and_models(self): inputs = keras.Input(shape=(None, 3)) lstm = keras.layers.LSTM(6, return_sequences=True, name="lstm") x = lstm(inputs) # Add layer inside a Wrapper bilstm = keras.layers.Bidirectional( keras.layers.LSTM(16, return_sequences=True, name="bilstm") ) x = bilstm(x) # Add model inside a Wrapper submodel = keras.Sequential( [keras.layers.Dense(32, name="dense", input_shape=(None, 32))] ) wrapped_dense = keras.layers.TimeDistributed(submodel) x = wrapped_dense(x) # Add shared submodel outputs = submodel(x) model = keras.Model(inputs, outputs) dot_img_file = "model_2.png" try: vis_utils.plot_model( model, to_file=dot_img_file, show_shapes=True, show_dtype=True, expand_nested=True, ) self.assertTrue(tf.io.gfile.exists(dot_img_file)) tf.io.gfile.remove(dot_img_file) except ImportError: pass def test_plot_model_with_add_loss(self): inputs = keras.Input(shape=(None, 3)) outputs = keras.layers.Dense(1)(inputs) model = keras.Model(inputs, outputs) model.add_loss(tf.reduce_mean(outputs)) dot_img_file = "model_3.png" try: vis_utils.plot_model( model, to_file=dot_img_file, show_shapes=True, show_dtype=True, expand_nested=True, ) self.assertTrue(tf.io.gfile.exists(dot_img_file)) tf.io.gfile.remove(dot_img_file) except ImportError: pass model = keras.Sequential( [keras.Input(shape=(None, 3)), keras.layers.Dense(1)] ) model.add_loss(tf.reduce_mean(model.output)) dot_img_file = "model_4.png" try: vis_utils.plot_model( model, to_file=dot_img_file, show_shapes=True, show_dtype=True, expand_nested=True, ) self.assertTrue(tf.io.gfile.exists(dot_img_file)) tf.io.gfile.remove(dot_img_file) except ImportError: pass @parameterized.parameters( {"show_shapes": False, "show_dtype": False}, {"show_shapes": False, "show_dtype": True}, {"show_shapes": True, "show_dtype": False}, {"show_shapes": True, "show_dtype": True}, ) def test_plot_model_cnn_with_activations(self, show_shapes, show_dtype): model = keras.Sequential() model.add( keras.layers.Conv2D( filters=2, kernel_size=2, input_shape=(9, 9, 3), activation="relu", ) ) model.add( keras.layers.Conv2D( filters=4, kernel_size=2, strides=(2, 2), activation="relu" ) ) model.add(keras.layers.Flatten(name="flat")) model.add(keras.layers.Dense(5, name="head", activation="softmax")) dot_img_file = "model_5.png" try: vis_utils.plot_model( model, to_file=dot_img_file, show_shapes=show_shapes, show_dtype=show_dtype, show_layer_activations=True, ) self.assertTrue(tf.io.gfile.exists(dot_img_file)) tf.io.gfile.remove(dot_img_file) except ImportError: pass @parameterized.parameters( {"layer_range": ["block1a_project_conv", "block1a_activation"]}, {"layer_range": ["block1a_activation", "block1a_project_conv"]}, {"layer_range": [r"block*", "block2a_se_excite"]}, {"layer_range": [r"block\da_activation", r"block\da_project_bn"]}, ) def test_dot_layer_range(self, layer_range): model = efficientnet.EfficientNetB0(weights=None) layer_ids_from_model = get_layer_ids_from_model(model, layer_range) try: dot = vis_utils.model_to_dot(model, layer_range=layer_range) dot_edges = dot.get_edges() layer_ids_from_dot = get_layer_ids_from_dot(dot_edges) self.assertAllEqual( sorted(layer_ids_from_model), sorted(layer_ids_from_dot) ) except ImportError: pass @parameterized.parameters( {"layer_range": ["block1a_project_conv", "block1a_activation"]}, {"layer_range": ["block1a_activation", "block1a_project_conv"]}, {"layer_range": [r"block*", "block2a_se_excite"]}, {"layer_range": [r"block\da_activation", r"block\da_project_bn"]}, ) def test_plot_layer_range(self, layer_range): model = efficientnet.EfficientNetB0(weights=None) effnet_subplot = "model_effnet.png" try: vis_utils.plot_model( model, to_file=effnet_subplot, layer_range=layer_range ) self.assertTrue(tf.io.gfile.exists(effnet_subplot)) except ImportError: pass finally: if tf.io.gfile.exists(effnet_subplot): tf.io.gfile.remove(effnet_subplot) @parameterized.parameters( {"layer_range": ["block1a_se_squeeze", "block2a_project_conv"]}, {"layer_range": [r"block\da_se_reshape", r"block*"]}, ) def test_layer_range_assertion_fail(self, layer_range): model = efficientnet.EfficientNetB0(weights=None) try: with self.assertRaises(AssertionError): vis_utils.model_to_dot(model, layer_range=layer_range) with self.assertRaises(AssertionError): vis_utils.plot_model(model, layer_range=layer_range) except ImportError: pass @parameterized.parameters( {"layer_range": ["block1a_activation"]}, {"layer_range": []}, { "layer_range": [ "input", "block1a_activation", "block1a_project_conv", ] }, {"layer_range": [9, "block1a_activation"]}, {"layer_range": [29, 9]}, {"layer_range": ["block8a_se_reshape", "block*"]}, ) def test_layer_range_value_fail(self, layer_range): model = efficientnet.EfficientNetB0(weights=None) try: with self.assertRaises(ValueError): vis_utils.model_to_dot(model, layer_range=layer_range) with self.assertRaises(ValueError): vis_utils.plot_model(model, layer_range=layer_range) except ImportError: pass def test_model_with_tf_op(self): # Test fix for a bug in which inputs to a TFOp layer past the 1st one # were not connected in the TF-Keras model plot. a = keras.Input((2,)) b = keras.Input((2,)) model = keras.Model(inputs=[a, b], outputs=a + b) try: dot = vis_utils.model_to_dot(model) self.assertLen(dot.get_edges(), 2) # This model has 2 edges. except ImportError: pass def test_model_with_brackets_in_shape(self): # Test fix for a bug in which plotting the model shapes fails if # any labels contain brackets class DictLayer(keras.layers.Layer): def call(self, inputs) -> tf.Tensor: tensor_input, dict_input = inputs return tf.concat(list(dict_input.values()), axis=1) inputs = { "a": keras.Input(name="a", shape=(1), dtype=tf.float32), "b": keras.Input(name="b", shape=(1), dtype=tf.float32), } outputs = DictLayer()((inputs["a"], inputs)) model = keras.Model( inputs=inputs, outputs=outputs, ) try: vis_utils.model_to_dot( model, show_shapes=True, show_dtype=True, show_layer_names=True ) except ImportError: pass def test_plot_model_with_show_trainable(self): model = keras.Sequential(name="trainable") untrained = keras.layers.Conv2D( filters=2, kernel_size=(2, 3), input_shape=(3, 5, 5), name="conv" ) model.add(untrained) model.add(keras.layers.Flatten(name="flat")) model.add(keras.layers.Dense(5, name="dense")) # Should display as Non Trainable untrained.trainable = False dot_img_file = "model_trainable.png" try: vis_utils.plot_model( model, to_file=dot_img_file, show_shapes=True, show_dtype=True, show_trainable=True, ) self.assertTrue(tf.io.gfile.exists(dot_img_file)) tf.io.gfile.remove(dot_img_file) except ImportError: pass def get_layer_ids_from_model(model, layer_range): layer_range = layer_utils.get_layer_index_bound_by_layer_name( model, layer_range ) layer_ids_from_model = [ str(id(layer)) for layer in model.layers[layer_range[0] : layer_range[1]] ] return layer_ids_from_model def get_layer_ids_from_dot(dot_edges): layer_ids_from_dot = [] for edge in dot_edges: for pt in edge.obj_dict["points"]: if pt not in layer_ids_from_dot: layer_ids_from_dot.append(pt) return layer_ids_from_dot if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/utils/vis_utils_test.py/0
{ "file_path": "tf-keras/tf_keras/utils/vis_utils_test.py", "repo_id": "tf-keras", "token_count": 5725 }
239
# Copyright 2020 The AutoKeras Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import keras_tuner import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow import nest import autokeras as ak from autokeras import hyper_preprocessors from autokeras import nodes as input_module from autokeras import preprocessors from autokeras import test_utils from autokeras.blocks import heads as head_module def test_two_classes_infer_binary_crossentropy(): dataset = np.array(["a", "a", "a", "b"]) head = head_module.ClassificationHead(name="a", shape=(1,)) adapter = head.get_adapter() dataset = adapter.adapt(dataset, batch_size=32) analyser = head.get_analyser() for data in dataset: analyser.update(data) analyser.finalize() head.config_from_analyser(analyser) head.build( keras_tuner.HyperParameters(), input_module.Input(shape=(32,)).build_node( keras_tuner.HyperParameters() ), ) assert head.loss.name == "binary_crossentropy" def test_three_classes_infer_categorical_crossentropy(): dataset = np.array(["a", "a", "c", "b"]) head = head_module.ClassificationHead(name="a", shape=(1,)) adapter = head.get_adapter() dataset = adapter.adapt(dataset, batch_size=32) analyser = head.get_analyser() for data in dataset: analyser.update(data) analyser.finalize() head.config_from_analyser(analyser) head.build( keras_tuner.HyperParameters(), input_module.Input(shape=(32,)).build_node( keras_tuner.HyperParameters() ), ) assert head.loss.name == "categorical_crossentropy" def test_multi_label_loss(): head = head_module.ClassificationHead( name="a", multi_label=True, num_classes=8, shape=(8,) ) input_node = keras.Input(shape=(5,)) output_node = head.build(keras_tuner.HyperParameters(), input_node) model = keras.Model(input_node, output_node) assert model.layers[-1].activation.__name__ == "sigmoid" assert head.loss.name == "binary_crossentropy" def test_clf_head_get_sigmoid_postprocessor(): head = head_module.ClassificationHead(name="a", multi_label=True) head._encoded = True head._encoded_for_sigmoid = True assert isinstance( head.get_hyper_preprocessors()[0].preprocessor, preprocessors.SigmoidPostprocessor, ) def test_clf_head_with_2_clases_get_label_encoder(): head = head_module.ClassificationHead(name="a", num_classes=2) head._encoded = False head._labels = ["a", "b"] assert isinstance( head.get_hyper_preprocessors()[-1].preprocessor, preprocessors.LabelEncoder, ) def test_clf_head_build_with_zero_dropout_return_tensor(): block = head_module.ClassificationHead(dropout=0, shape=(8,)) outputs = block.build( keras_tuner.HyperParameters(), keras.Input(shape=(5,), dtype=tf.float32), ) assert len(nest.flatten(outputs)) == 1 def test_clf_head_hpps_with_uint8_contain_cast_to_int32(): dataset = test_utils.generate_one_hot_labels(100, 10, "dataset") dataset = dataset.map(lambda x: tf.cast(x, tf.uint8)) head = head_module.ClassificationHead(shape=(8,)) analyser = head.get_analyser() for data in dataset: analyser.update(data) analyser.finalize() head.config_from_analyser(analyser) assert any( [ isinstance(hpp, hyper_preprocessors.DefaultHyperPreprocessor) and isinstance(hpp.preprocessor, preprocessors.CastToInt32) for hpp in head.get_hyper_preprocessors() ] ) def test_reg_head_build_with_zero_dropout_return_tensor(): block = head_module.RegressionHead(dropout=0, shape=(8,)) outputs = block.build( keras_tuner.HyperParameters(), keras.Input(shape=(5,), dtype=tf.float32), ) assert len(nest.flatten(outputs)) == 1 def test_segmentation(): dataset = np.array(["a", "a", "c", "b"]) head = head_module.SegmentationHead(name="a", shape=(1,)) adapter = head.get_adapter() dataset = adapter.adapt(dataset, batch_size=32) analyser = head.get_analyser() for data in dataset: analyser.update(data) analyser.finalize() head.config_from_analyser(analyser) head.build( keras_tuner.HyperParameters(), ak.Input(shape=(32,)).build_node(keras_tuner.HyperParameters()), )
autokeras/autokeras/blocks/heads_test.py/0
{ "file_path": "autokeras/autokeras/blocks/heads_test.py", "repo_id": "autokeras", "token_count": 1943 }
0
# Copyright 2020 The AutoKeras Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pandas as pd import tensorflow as tf from tensorflow import keras import autokeras as ak from autokeras import test_utils NUM_INSTANCES = 3 BATCH_SIZE = 2 def test_image_classifier(tmp_path): train_x = test_utils.generate_data( num_instances=NUM_INSTANCES, shape=(32, 32) ) train_y = test_utils.generate_one_hot_labels( num_instances=NUM_INSTANCES, num_classes=10 ) clf = ak.ImageClassifier( directory=tmp_path, max_trials=2, seed=test_utils.SEED, distribution_strategy=tf.distribute.MirroredStrategy(), ) clf.fit( train_x, train_y, epochs=1, validation_split=0.2, batch_size=BATCH_SIZE ) keras_model = clf.export_model() clf.evaluate(train_x, train_y) assert clf.predict(train_x).shape == (len(train_x), 10) assert isinstance(keras_model, keras.Model) def test_image_regressor(tmp_path): train_x = test_utils.generate_data( num_instances=NUM_INSTANCES, shape=(32, 32, 3) ) train_y = test_utils.generate_data(num_instances=NUM_INSTANCES, shape=(1,)) clf = ak.ImageRegressor( directory=tmp_path, max_trials=2, seed=test_utils.SEED ) clf.fit( train_x, train_y, epochs=1, validation_split=0.2, batch_size=BATCH_SIZE ) clf.export_model() assert clf.predict(train_x).shape == (len(train_x), 1) def test_text_classifier(tmp_path): train_x = test_utils.generate_text_data(num_instances=NUM_INSTANCES) train_y = np.array([0, 1] * ((NUM_INSTANCES + 1) // 2))[:NUM_INSTANCES] test_x = train_x test_y = train_y clf = ak.TextClassifier( directory=tmp_path, max_trials=2, seed=test_utils.SEED, metrics=["accuracy"], objective="accuracy", ) clf.fit( train_x, train_y, epochs=2, validation_data=(test_x, test_y), batch_size=BATCH_SIZE, ) clf.export_model() assert clf.predict(test_x).shape == (len(test_x), 1) assert clf.tuner._get_best_trial_epochs() <= 2 def test_text_regressor(tmp_path): train_x = test_utils.generate_text_data(num_instances=NUM_INSTANCES) test_x = train_x train_y = test_utils.generate_data(num_instances=NUM_INSTANCES, shape=(1,)) test_y = train_y clf = ak.TextRegressor( directory=tmp_path, max_trials=2, seed=test_utils.SEED ) clf.fit( train_x, train_y, epochs=1, validation_data=(test_x, test_y), batch_size=BATCH_SIZE, ) clf.export_model() assert clf.predict(test_x).shape == (len(test_x), 1) def test_structured_data_regressor(tmp_path): num_data = NUM_INSTANCES * 2 num_train = NUM_INSTANCES data = ( pd.read_csv(test_utils.TRAIN_CSV_PATH).to_numpy().astype(str)[:num_data] ) x_train, x_test = data[:num_train], data[num_train:] y = test_utils.generate_data(num_instances=num_data, shape=tuple()) y_train, y_test = y[:num_train], y[num_train:] clf = ak.StructuredDataRegressor( directory=tmp_path, max_trials=2, seed=test_utils.SEED ) clf.fit( x_train, y_train, epochs=11, validation_data=(x_train, y_train), batch_size=BATCH_SIZE, ) clf.export_model() assert clf.predict(x_test).shape == (len(y_test), 1) def test_structured_data_classifier(tmp_path): num_data = NUM_INSTANCES * 2 num_train = NUM_INSTANCES data = ( pd.read_csv(test_utils.TRAIN_CSV_PATH).to_numpy().astype(str)[:num_data] ) x_train, x_test = data[:num_train], data[num_train:] y = test_utils.generate_one_hot_labels( num_instances=num_data, num_classes=3 ) y_train, y_test = y[:num_train], y[num_train:] clf = ak.StructuredDataClassifier( directory=tmp_path, max_trials=1, seed=test_utils.SEED ) clf.fit( x_train, y_train, epochs=2, validation_data=(x_train, y_train), batch_size=BATCH_SIZE, ) clf.export_model() assert clf.predict(x_test).shape == (len(y_test), 3) def test_timeseries_forecaster(tmp_path): lookback = 2 predict_from = 1 predict_until = 10 train_x = test_utils.generate_data_with_categorical(num_instances=100) train_y = test_utils.generate_data(num_instances=80, shape=(1,)) clf = ak.TimeseriesForecaster( lookback=lookback, directory=tmp_path, predict_from=predict_from, predict_until=predict_until, max_trials=2, seed=test_utils.SEED, ) clf.fit(train_x, train_y, epochs=1, validation_data=(train_x, train_y)) keras_model = clf.export_model() clf.evaluate(train_x, train_y) assert clf.predict(train_x).shape == (predict_until - predict_from + 1, 1) assert clf.fit_and_predict( train_x, train_y, epochs=1, validation_split=0.2 ).shape == (predict_until - predict_from + 1, 1) assert isinstance(keras_model, keras.Model)
autokeras/autokeras/integration_tests/task_api_test.py/0
{ "file_path": "autokeras/autokeras/integration_tests/task_api_test.py", "repo_id": "autokeras", "token_count": 2503 }
1
# Copyright 2020 The AutoKeras Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path from typing import Dict from typing import List from typing import Optional from typing import Type from typing import Union import pandas as pd from autokeras import blocks from autokeras import nodes as input_module from autokeras.engine import tuner from autokeras.tasks import structured_data from autokeras.tuners import greedy from autokeras.utils import types class SupervisedTimeseriesDataPipeline( structured_data.BaseStructuredDataPipeline ): def __init__( self, outputs, column_names=None, column_types=None, lookback=None, predict_from=1, predict_until=None, **kwargs ): inputs = input_module.TimeseriesInput( lookback=lookback, column_names=column_names, column_types=column_types, ) super().__init__(inputs=inputs, outputs=outputs, **kwargs) self.predict_from = predict_from self.predict_until = predict_until self._target_col_name = None self.train_len = 0 @staticmethod def _read_from_csv(x, y): df = pd.read_csv(x) target = df.pop(y).dropna().to_numpy() return df, target def fit( self, x=None, y=None, epochs=None, callbacks=None, validation_split=0.2, validation_data=None, **kwargs ): # x is file path of training data if isinstance(x, str): self._target_col_name = y x, y = self._read_from_csv(x, y) if validation_data: x_val, y_val = validation_data if isinstance(x_val, str): validation_data = self._read_from_csv(x_val, y_val) self.check_in_fit(x) self.train_len = len(y) if validation_data: x_val, y_val = validation_data train_len = len(y_val) x_val = x_val[:train_len] y_val = y_val[self.lookback - 1 :] validation_data = x_val, y_val history = super().fit( x=x[: self.train_len], y=y[self.lookback - 1 :], epochs=epochs, callbacks=callbacks, validation_split=validation_split, validation_data=validation_data, **kwargs ) return history def predict(self, x, **kwargs): x = self.read_for_predict(x) if len(x) < self.train_len: raise ValueError( "The prediction data requires the original training" " data to make predictions on subsequent data points" ) y_pred = super().predict(x=x, **kwargs) lower_bound = self.train_len + self.predict_from if self.predict_until is None: self.predict_until = len(y_pred) upper_bound = min(self.train_len + self.predict_until + 1, len(y_pred)) return y_pred[lower_bound:upper_bound] def evaluate(self, x, y=None, **kwargs): """Evaluate the best model for the given data. # Arguments x: String, numpy.ndarray, pandas.DataFrame or tensorflow.Dataset. Testing data x. If the data is from a csv file, it should be a string specifying the path of the csv file of the testing data. y: String, numpy.ndarray, or tensorflow.Dataset. Testing data y. If the data is from a csv file, it should be a string corresponding to the label column. **kwargs: Any arguments supported by keras.Model.evaluate. # Returns Scalar test loss (if the model has a single output and no metrics) or list of scalars (if the model has multiple outputs and/or metrics). The attribute model.metrics_names will give you the display labels for the scalar outputs. """ if isinstance(x, str): x, y = self._read_from_csv(x, y) return super().evaluate( x=x[: len(y)], y=y[self.lookback - 1 :], **kwargs ) class TimeseriesForecaster(SupervisedTimeseriesDataPipeline): """AutoKeras time series data forecast class. # Arguments column_names: A list of strings specifying the names of the columns. The length of the list should be equal to the number of columns of the data. Defaults to None. If None, it will be obtained from the header of the csv file or the pandas.DataFrame. column_types: Dict. The keys are the column names. The values should either be 'numerical' or 'categorical', indicating the type of that column. Defaults to None. If not None, the column_names need to be specified. If None, it will be inferred from the data. lookback: Int. The range of history steps to consider for each prediction. For example, if lookback=n, the data in the range of [i - n, i - 1] is used to predict the value of step i. If unspecified, it will be tuned automatically. predict_from: Int. The starting point of the forecast for each sample (in number of steps) after the last time step in the input. If N is the last step in the input, then the first step of the predicted output will be N + predict_from. Defaults to 1 (which corresponds to starting the forecast immediately after the last step in the input). predict_until: Int. The end point of the forecast for each sample (in number of steps) after the last time step in the input. If N is the last step in the input, then the last step of the predicted output will be N + predict_until. If unspecified, it will predict till end of dataset. Defaults to None. loss: A Keras loss function. Defaults to use 'mean_squared_error'. metrics: A list of Keras metrics. Defaults to use 'mean_squared_error'. project_name: String. The name of the AutoModel. Defaults to 'time_series_forecaster'. max_trials: Int. The maximum number of different Keras Models to try. The search may finish before reaching the max_trials. Defaults to 100. directory: String. The path to a directory for storing the search outputs. Defaults to None, which would create a folder with the name of the AutoModel in the current directory. objective: String. Name of model metric to minimize or maximize, e.g. 'val_accuracy'. Defaults to 'val_loss'. tuner: String or subclass of AutoTuner. If string, it should be one of 'greedy', 'bayesian', 'hyperband' or 'random'. It can also be a subclass of AutoTuner. If left unspecified, it uses a task specific tuner, which first evaluates the most commonly used models for the task before exploring other models. overwrite: Boolean. Defaults to `False`. If `False`, reloads an existing project of the same name if one is found. Otherwise, overwrites the project. seed: Int. Random seed. max_model_size: Int. Maximum number of scalars in the parameters of a model. Models larger than this are rejected. **kwargs: Any arguments supported by AutoModel. """ def __init__( self, output_dim: Optional[int] = None, column_names: Optional[List[str]] = None, column_types: Optional[Dict[str, str]] = None, lookback: Optional[int] = None, predict_from: int = 1, predict_until: Optional[int] = None, loss: types.LossType = "mean_squared_error", metrics: Optional[types.MetricsType] = None, project_name: str = "time_series_forecaster", max_trials: int = 100, directory: Union[str, Path, None] = None, objective: str = "val_loss", tuner: Union[str, Type[tuner.AutoTuner]] = None, overwrite: bool = False, seed: Optional[int] = None, max_model_size: Optional[int] = None, **kwargs ): if tuner is None: tuner = greedy.Greedy super().__init__( outputs=blocks.RegressionHead( output_dim=output_dim, loss=loss, metrics=metrics ), column_names=column_names, column_types=column_types, lookback=lookback, predict_from=predict_from, predict_until=predict_until, project_name=project_name, max_trials=max_trials, directory=directory, objective=objective, tuner=tuner, overwrite=overwrite, seed=seed, max_model_size=max_model_size, **kwargs ) self.lookback = lookback self.predict_from = predict_from self.predict_until = predict_until def fit( self, x=None, y=None, validation_split=0.2, validation_data=None, **kwargs ): """Search for the best model and hyperparameters for the AutoModel. # Arguments x: String, numpy.ndarray, pandas.DataFrame or tensorflow.Dataset. Training data x. If the data is from a csv file, it should be a string specifying the path of the csv file of the training data. y: String, a list of string(s), numpy.ndarray, pandas.DataFrame or tensorflow.Dataset. Training data y. If the data is from a csv file, it should be a list of string(s) specifying the name(s) of the column(s) need to be forecasted. If it is multivariate forecasting, y should be a list of more than one column names. If it is univariate forecasting, y should be a string or a list of one string. validation_split: Float between 0 and 1. Defaults to 0.2. Fraction of the training data to be used as validation data. The model will set apart this fraction of the training data, will not train on it, and will evaluate the loss and any model metrics on this data at the end of each epoch. The validation data is selected from the last samples in the `x` and `y` data provided, before shuffling. This argument is not supported when `x` is a dataset. The best model found would be fit on the entire dataset including the validation data. validation_data: Data on which to evaluate the loss and any model metrics at the end of each epoch. The model will not be trained on this data. `validation_data` will override `validation_split`. The type of the validation data should be the same as the training data. The best model found would be fit on the training dataset without the validation data. **kwargs: Any arguments supported by [keras.Model.fit](https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit). """ super().fit( x=x, y=y, validation_split=validation_split, validation_data=validation_data, **kwargs ) def predict(self, x=None, **kwargs): """Predict the output for a given testing data. # Arguments x: String, numpy.ndarray, pandas.DataFrame or tensorflow.Dataset. Testing data x. If the data is from a csv file, it should be a string specifying the path of the csv file of the testing data. **kwargs: Any arguments supported by keras.Model.predict. # Returns A list of numpy.ndarray objects or a single numpy.ndarray. The predicted results. """ return super().predict(x=x, **kwargs) def fit_and_predict( self, x=None, y=None, validation_split=0.2, validation_data=None, **kwargs ): """Search for the best model and then predict for remaining data points. # Arguments x: String, numpy.ndarray, pandas.DataFrame or tensorflow.Dataset. Training data x. If the data is from a csv file, it should be a string specifying the path of the csv file of the training data. y: String, a list of string(s), numpy.ndarray, pandas.DataFrame or tensorflow.Dataset. Training data y. If the data is from a csv file, it should be a list of string(s) specifying the name(s) of the column(s) need to be forecasted. If it is multivariate forecasting, y should be a list of more than one column names. If it is univariate forecasting, y should be a string or a list of one string. validation_split: Float between 0 and 1. Defaults to 0.2. Fraction of the training data to be used as validation data. The model will set apart this fraction of the training data, will not train on it, and will evaluate the loss and any model metrics on this data at the end of each epoch. The validation data is selected from the last samples in the `x` and `y` data provided, before shuffling. This argument is not supported when `x` is a dataset. The best model found would be fit on the entire dataset including the validation data. validation_data: Data on which to evaluate the loss and any model metrics at the end of each epoch. The model will not be trained on this data. `validation_data` will override `validation_split`. The type of the validation data should be the same as the training data. The best model found would be fit on the training dataset without the validation data. **kwargs: Any arguments supported by [keras.Model.fit](https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit). """ self.fit( x=x, y=y, validation_split=validation_split, validation_data=validation_data, **kwargs ) return self.predict(x=x) class TimeseriesClassifier(SupervisedTimeseriesDataPipeline): """ "AutoKeras time series data classification class. # Arguments column_names: A list of strings specifying the names of the columns. The length of the list should be equal to the number of columns of the data. Defaults to None. If None, it will be obtained from the header of the csv file or the pandas.DataFrame. column_types: Dict. The keys are the column names. The values should either be 'numerical' or 'categorical', indicating the type of that column. Defaults to None. If not None, the column_names need to be specified. If None, it will be inferred from the data. lookback: Int. The range of history steps to consider for each prediction. For example, if lookback=n, the data in the range of [i - n, i - 1] is used to predict the value of step i. If unspecified, it will be tuned automatically. predict_from: Int. The starting point of the forecast for each sample (in number of steps) after the last time step in the input. If N is the last step in the input, then the first step of the predicted output will be N + predict_from. Defaults to 1 (which corresponds to starting the forecast immediately after the last step in the input). predict_until: Int. The end point of the forecast for each sample (in number of steps) after the last time step in the input. If N is the last step in the input, then the last step of the predicted output will be N + predict_until. If unspecified, it will predict till end of dataset. Defaults to None. loss: A Keras loss function. Defaults to use 'mean_squared_error'. metrics: A list of Keras metrics. Defaults to use 'mean_squared_error'. project_name: String. The name of the AutoModel. Defaults to 'time_series_forecaster'. max_trials: Int. The maximum number of different Keras Models to try. The search may finish before reaching the max_trials. Defaults to 100. directory: String. The path to a directory for storing the search outputs. Defaults to None, which would create a folder with the name of the AutoModel in the current directory. objective: String. Name of model metric to minimize or maximize, e.g. 'val_accuracy'. Defaults to 'val_loss'. overwrite: Boolean. Defaults to `False`. If `False`, reloads an existing project of the same name if one is found. Otherwise, overwrites the project. seed: Int. Random seed. max_model_size: Int. Maximum number of scalars in the parameters of a model. Models larger than this are rejected. **kwargs: Any arguments supported by AutoModel. """ def __init__( self, output_dim=None, column_names=None, column_types=None, lookback=None, predict_from=1, predict_until=None, loss="mean_squared_error", metrics=None, project_name="time_series_classifier", max_trials=100, directory=None, objective="val_loss", overwrite=False, seed=None, max_model_size: Optional[int] = None, **kwargs ): raise NotImplementedError def fit( self, x=None, y=None, validation_split=0.2, validation_data=None, **kwargs ): """Search for the best model and hyperparameters for the AutoModel. # Arguments x: String, numpy.ndarray, pandas.DataFrame or tensorflow.Dataset. Training data x. If the data is from a csv file, it should be a string specifying the path of the csv file of the training data. y: String, a list of string(s), numpy.ndarray, pandas.DataFrame or tensorflow.Dataset. Training data y. If the data is from a csv file, it should be a list of string(s) specifying the name(s) of the column(s) need to be forecasted. If it is multivariate forecasting, y should be a list of more than one column names. If it is univariate forecasting, y should be a string or a list of one string. validation_split: Float between 0 and 1. Defaults to 0.2. Fraction of the training data to be used as validation data. The model will set apart this fraction of the training data, will not train on it, and will evaluate the loss and any model metrics on this data at the end of each epoch. The validation data is selected from the last samples in the `x` and `y` data provided, before shuffling. This argument is not supported when `x` is a dataset. The best model found would be fit on the entire dataset including the validation data. validation_data: Data on which to evaluate the loss and any model metrics at the end of each epoch. The model will not be trained on this data. `validation_data` will override `validation_split`. The type of the validation data should be the same as the training data. The best model found would be fit on the training dataset without the validation data. **kwargs: Any arguments supported by [keras.Model.fit](https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit). """ raise NotImplementedError def predict(self, x=None, **kwargs): """Predict the output for a given testing data. # Arguments x: String, numpy.ndarray, pandas.DataFrame or tensorflow.Dataset. Testing data x, it should also contain the training data used as, subsequent predictions depend on them. If the data is from a csv file, it should be a string specifying the path of the csv file of the testing data. **kwargs: Any arguments supported by keras.Model.predict. # Returns A list of numpy.ndarray objects or a single numpy.ndarray. The predicted results. """ raise NotImplementedError def fit_and_predict( self, x=None, y=None, validation_split=0.2, validation_data=None, **kwargs ): """Search for the best model and then predict for remaining data points. # Arguments x: String, numpy.ndarray, pandas.DataFrame or tensorflow.Dataset. Training and Test data x. If the data is from a csv file, it should be a string specifying the path of the csv file of the training data. y: String, a list of string(s), numpy.ndarray, pandas.DataFrame or tensorflow.Dataset. Training data y. If the data is from a csv file, it should be a list of string(s) specifying the name(s) of the column(s) need to be forecasted. If it is multivariate forecasting, y should be a list of more than one column names. If it is univariate forecasting, y should be a string or a list of one string. validation_split: Float between 0 and 1. Defaults to 0.2. Fraction of the training data to be used as validation data. The model will set apart this fraction of the training data, will not train on it, and will evaluate the loss and any model metrics on this data at the end of each epoch. The validation data is selected from the last samples in the `x` and `y` data provided, before shuffling. This argument is not supported when `x` is a dataset. The best model found would be fit on the entire dataset including the validation data. validation_data: Data on which to evaluate the loss and any model metrics at the end of each epoch. The model will not be trained on this data. `validation_data` will override `validation_split`. The type of the validation data should be the same as the training data. The best model found would be fit on the training dataset without the validation data. **kwargs: Any arguments supported by [keras.Model.fit](https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit). """ raise NotImplementedError
autokeras/autokeras/tasks/time_series_forecaster.py/0
{ "file_path": "autokeras/autokeras/tasks/time_series_forecaster.py", "repo_id": "autokeras", "token_count": 10018 }
2
coverage: status: project: default: target: 100% patch: default: target: 100%
autokeras/codecov.yml/0
{ "file_path": "autokeras/codecov.yml", "repo_id": "autokeras", "token_count": 60 }
3
<jupyter_start><jupyter_code>!pip install autokeras import numpy as np import pandas as pd import tensorflow as tf from sklearn.datasets import fetch_california_housing import autokeras as ak<jupyter_output><empty_output><jupyter_text>A Simple ExampleThe first step is to prepare your data. Here we use the [California housingdataset](https://scikit-learn.org/stable/datasets/real_world.htmlcalifornia-housing-dataset)as an example.<jupyter_code>house_dataset = fetch_california_housing() df = pd.DataFrame( np.concatenate( (house_dataset.data, house_dataset.target.reshape(-1, 1)), axis=1 ), columns=house_dataset.feature_names + ["Price"], ) train_size = int(df.shape[0] * 0.9) df[:train_size].to_csv("train.csv", index=False) df[train_size:].to_csv("eval.csv", index=False) train_file_path = "train.csv" test_file_path = "eval.csv"<jupyter_output><empty_output><jupyter_text>The second step is to run the[StructuredDataRegressor](/structured_data_regressor).As a quick demo, we set epochs to 10.You can also leave the epochs unspecified for an adaptive number of epochs.<jupyter_code># Initialize the structured data regressor. reg = ak.StructuredDataRegressor( overwrite=True, max_trials=3 ) # It tries 3 different models. # Feed the structured data regressor with training data. reg.fit( # The path to the train.csv file. train_file_path, # The name of the label column. "Price", epochs=10, ) # Predict with the best model. predicted_y = reg.predict(test_file_path) # Evaluate the best model with testing data. print(reg.evaluate(test_file_path, "Price"))<jupyter_output><empty_output><jupyter_text>Data FormatThe AutoKeras StructuredDataRegressor is quite flexible for the data format.The example above shows how to use the CSV files directly. Besides CSV files,it also supports numpy.ndarray, pandas.DataFrame or [tf.data.Dataset](https://www.tensorflow.org/api_docs/python/tf/data/Dataset?version=stable). Thedata should be two-dimensional with numerical or categorical values.For the regression targets, it should be a vector of numerical values.AutoKeras accepts numpy.ndarray, pandas.DataFrame, or pandas.Series.The following examples show how the data can be prepared with numpy.ndarray,pandas.DataFrame, and tensorflow.data.Dataset.<jupyter_code># x_train as pandas.DataFrame, y_train as pandas.Series x_train = pd.read_csv(train_file_path) print(type(x_train)) # pandas.DataFrame y_train = x_train.pop("Price") print(type(y_train)) # pandas.Series # You can also use pandas.DataFrame for y_train. y_train = pd.DataFrame(y_train) print(type(y_train)) # pandas.DataFrame # You can also use numpy.ndarray for x_train and y_train. x_train = x_train.to_numpy() y_train = y_train.to_numpy() print(type(x_train)) # numpy.ndarray print(type(y_train)) # numpy.ndarray # Preparing testing data. x_test = pd.read_csv(test_file_path) y_test = x_test.pop("Price") # It tries 10 different models. reg = ak.StructuredDataRegressor(max_trials=3, overwrite=True) # Feed the structured data regressor with training data. reg.fit(x_train, y_train, epochs=10) # Predict with the best model. predicted_y = reg.predict(x_test) # Evaluate the best model with testing data. print(reg.evaluate(x_test, y_test))<jupyter_output><empty_output><jupyter_text>The following code shows how to convert numpy.ndarray to tf.data.Dataset.<jupyter_code>train_set = tf.data.Dataset.from_tensor_slices((x_train, y_train)) test_set = tf.data.Dataset.from_tensor_slices((x_test, y_test)) reg = ak.StructuredDataRegressor(max_trials=3, overwrite=True) # Feed the tensorflow Dataset to the regressor. reg.fit(train_set, epochs=10) # Predict with the best model. predicted_y = reg.predict(test_set) # Evaluate the best model with testing data. print(reg.evaluate(test_set))<jupyter_output><empty_output><jupyter_text>You can also specify the column names and types for the data as follows. The`column_names` is optional if the training data already have the column names,e.g. pandas.DataFrame, CSV file. Any column, whose type is not specified willbe inferred from the training data.<jupyter_code># Initialize the structured data regressor. reg = ak.StructuredDataRegressor( column_names=[ "MedInc", "HouseAge", "AveRooms", "AveBedrms", "Population", "AveOccup", "Latitude", "Longitude", ], column_types={"MedInc": "numerical", "Latitude": "numerical"}, max_trials=10, # It tries 10 different models. overwrite=True, )<jupyter_output><empty_output><jupyter_text>Validation DataBy default, AutoKeras use the last 20% of training data as validation data. Asshown in the example below, you can use `validation_split` to specify thepercentage.<jupyter_code>reg.fit( x_train, y_train, # Split the training data and use the last 15% as validation data. validation_split=0.15, epochs=10, )<jupyter_output><empty_output><jupyter_text>You can also use your own validation setinstead of splitting it from the training data with `validation_data`.<jupyter_code>split = 500 x_val = x_train[split:] y_val = y_train[split:] x_train = x_train[:split] y_train = y_train[:split] reg.fit( x_train, y_train, # Use your own validation set. validation_data=(x_val, y_val), epochs=10, )<jupyter_output><empty_output><jupyter_text>Customized Search SpaceFor advanced users, you may customize your search space by using[AutoModel](/auto_model/automodel-class) instead of[StructuredDataRegressor](/structured_data_regressor). You can configure the[StructuredDataBlock](/block/structureddatablock-class) for some high-levelconfigurations, e.g., `categorical_encoding` for whether to use the[CategoricalToNumerical](/block/categoricaltonumerical-class). You can also donot specify these arguments, which would leave the different choices to betuned automatically. See the following example for detail.<jupyter_code>input_node = ak.StructuredDataInput() output_node = ak.StructuredDataBlock(categorical_encoding=True)(input_node) output_node = ak.RegressionHead()(output_node) reg = ak.AutoModel( inputs=input_node, outputs=output_node, overwrite=True, max_trials=3 ) reg.fit(x_train, y_train, epochs=10)<jupyter_output><empty_output><jupyter_text>The usage of [AutoModel](/auto_model/automodel-class) is similar to the[functional API](https://www.tensorflow.org/guide/keras/functional) of Keras.Basically, you are building a graph, whose edges are blocks and the nodes areintermediate outputs of blocks. To add an edge from `input_node` to`output_node` with `output_node = ak.[some_block]([block_args])(input_node)`.You can even also use more fine grained blocks to customize the search spaceeven further. See the following example.<jupyter_code>input_node = ak.StructuredDataInput() output_node = ak.CategoricalToNumerical()(input_node) output_node = ak.DenseBlock()(output_node) output_node = ak.RegressionHead()(output_node) reg = ak.AutoModel( inputs=input_node, outputs=output_node, max_trials=3, overwrite=True ) reg.fit(x_train, y_train, epochs=10)<jupyter_output><empty_output><jupyter_text>You can also export the best model found by AutoKeras as a Keras Model.<jupyter_code>model = reg.export_model() model.summary() # numpy array in object (mixed type) is not supported. # you need convert it to unicode or float first. model.predict(x_train)<jupyter_output><empty_output>
autokeras/docs/ipynb/structured_data_regression.ipynb/0
{ "file_path": "autokeras/docs/ipynb/structured_data_regression.ipynb", "repo_id": "autokeras", "token_count": 2565 }
4
"""shell pip install autokeras """ import os import shutil import numpy as np import tensorflow as tf import autokeras as ak """ ## Load Images from Disk If the data is too large to put in memory all at once, we can load it batch by batch into memory from disk with tf.data.Dataset. This [function]( https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/ image_dataset_from_directory) can help you build such a tf.data.Dataset for image data. First, we download the data and extract the files. """ dataset_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz" # noqa: E501 local_file_path = tf.keras.utils.get_file( origin=dataset_url, fname="image_data", extract=True ) # The file is extracted in the same directory as the downloaded file. local_dir_path = os.path.dirname(local_file_path) # After check mannually, we know the extracted data is in 'flower_photos'. data_dir = os.path.join(local_dir_path, "flower_photos") print(data_dir) """ The directory should look like this. Each folder contains the images in the same class. ``` flowers_photos/ daisy/ dandelion/ roses/ sunflowers/ tulips/ ``` We can split the data into training and testing as we load them. """ batch_size = 32 img_height = 180 img_width = 180 train_data = ak.image_dataset_from_directory( data_dir, # Use 20% data as testing data. validation_split=0.2, subset="training", # Set seed to ensure the same split when loading testing data. seed=123, image_size=(img_height, img_width), batch_size=batch_size, ) test_data = ak.image_dataset_from_directory( data_dir, validation_split=0.2, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size, ) """ Then we just do one quick demo of AutoKeras to make sure the dataset works. """ clf = ak.ImageClassifier(overwrite=True, max_trials=1) clf.fit(train_data, epochs=1) print(clf.evaluate(test_data)) """ ## Load Texts from Disk You can also load text datasets in the same way. """ dataset_url = "http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz" local_file_path = tf.keras.utils.get_file( fname="text_data", origin=dataset_url, extract=True, ) # The file is extracted in the same directory as the downloaded file. local_dir_path = os.path.dirname(local_file_path) # After check mannually, we know the extracted data is in 'aclImdb'. data_dir = os.path.join(local_dir_path, "aclImdb") # Remove the unused data folder. shutil.rmtree(os.path.join(data_dir, "train/unsup")) """ For this dataset, the data is already split into train and test. We just load them separately. """ print(data_dir) train_data = ak.text_dataset_from_directory( os.path.join(data_dir, "train"), batch_size=batch_size ) test_data = ak.text_dataset_from_directory( os.path.join(data_dir, "test"), shuffle=False, batch_size=batch_size ) clf = ak.TextClassifier(overwrite=True, max_trials=1) clf.fit(train_data, epochs=2) print(clf.evaluate(test_data)) """ ## Load Data with Python Generators If you want to use generators, you can refer to the following code. """ N_BATCHES = 30 BATCH_SIZE = 100 N_FEATURES = 10 def get_data_generator(n_batches, batch_size, n_features): """Get a generator returning n_batches random data. The shape of the data is (batch_size, n_features). """ def data_generator(): for _ in range(n_batches * batch_size): x = np.random.randn(n_features) y = x.sum(axis=0) / n_features > 0.5 yield x, y return data_generator dataset = tf.data.Dataset.from_generator( get_data_generator(N_BATCHES, BATCH_SIZE, N_FEATURES), output_types=(tf.float32, tf.float32), output_shapes=((N_FEATURES,), tuple()), ).batch(BATCH_SIZE) clf = ak.StructuredDataClassifier(overwrite=True, max_trials=1, seed=5) clf.fit(x=dataset, validation_data=dataset, batch_size=BATCH_SIZE) print(clf.evaluate(dataset)) """ ## Reference [image_dataset_from_directory](utils/#image_dataset_from_directory-function) [text_dataset_from_directory](utils/#text_dataset_from_directory-function) """
autokeras/docs/py/load.py/0
{ "file_path": "autokeras/docs/py/load.py", "repo_id": "autokeras", "token_count": 1554 }
5
<?xml version="1.0" standalone="no"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg id="logo" width="100" height="100" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <g fill="#d00000"> <g transform="translate(-45, -20) scale(0.62)"> <path d="M150 50 L150 174.8528137423857 L130 154.8528137423857 L130 70 "/> <path d="M131 69 L73.4314575050762 126.5685424949238 L73.4314575050762 154.8528137423857 L131 97.2842712474619 "/> <path d="M131 155.8528137423857 L105.04906208587143 129.90187582825715 L119.19119770960238 115.75974020452618 L131 127.5685424949238 "/> <path d="M73.4314575050762 98.2842712474619 L73.4314575050762 70 L98.38239541920477 94.95093791412857 L84.24025979547382 109.09307353785952 "/> <path d="M154.71404520791032 50 L154.71404520791032 174.8528137423857 L174.71404520791032 154.8528137423857 L174.71404520791032 70 "/> <path d="M173.71404520791032 127.5685424949238 L231.28258770283412 70 L202.99831645537222 70 L173.71404520791032 99.2842712474619 "/> <path d="M206.33164978870556 101.61760458079523 L231.28258770283412 126.5685424949238 L231.28258770283412 154.8528137423857 L192.1895141649746 115.75974020452618 "/> </g> </g> </svg>
autokeras/docs/templates/img/logo_red.svg/0
{ "file_path": "autokeras/docs/templates/img/logo_red.svg", "repo_id": "autokeras", "token_count": 585 }
6
"""shell !pip install -q -U pip !pip install -q -U autokeras==1.0.8 !pip install -q git+https://github.com/keras-team/[email protected] """ import numpy as np import tensorflow as tf from tensorflow.keras.datasets import reuters import autokeras as ak """ Search for a good model for the [Reuters](https://keras.io/ja/datasets/#_5) dataset. """ # Prepare the dataset. def reuters_raw(max_features=20000): index_offset = 3 # word index offset (x_train, y_train), (x_test, y_test) = reuters.load_data( num_words=max_features, index_from=index_offset ) x_train = x_train y_train = y_train.reshape(-1, 1) x_test = x_test y_test = y_test.reshape(-1, 1) word_to_id = reuters.get_word_index() word_to_id = {k: (v + index_offset) for k, v in word_to_id.items()} word_to_id["<PAD>"] = 0 word_to_id["<START>"] = 1 word_to_id["<UNK>"] = 2 id_to_word = {value: key for key, value in word_to_id.items()} x_train = list( map(lambda sentence: " ".join(id_to_word[i] for i in sentence), x_train) ) x_test = list( map(lambda sentence: " ".join(id_to_word[i] for i in sentence), x_test) ) x_train = np.array(x_train, dtype=np.str) x_test = np.array(x_test, dtype=np.str) return (x_train, y_train), (x_test, y_test) # Prepare the data. (x_train, y_train), (x_test, y_test) = reuters_raw() print(x_train.shape) # (8982,) print(y_train.shape) # (8982, 1) print(x_train[0][:50]) # <START> <UNK> <UNK> said as a result of its decemb # Initialize the TextClassifier clf = ak.TextClassifier( max_trials=5, overwrite=True, ) # Callback to avoid overfitting with the EarlyStopping. cbs = [ tf.keras.callbacks.EarlyStopping(patience=3), ] # Search for the best model. clf.fit(x_train, y_train, epochs=10, callback=cbs) # Evaluate on the testing data. print("Accuracy: {accuracy}".format(accuracy=clf.evaluate(x_test, y_test)))
autokeras/examples/reuters.py/0
{ "file_path": "autokeras/examples/reuters.py", "repo_id": "autokeras", "token_count": 846 }
7
#!/usr/bin/env bash set -e export DOCKER_BUILDKIT=1 docker build -t autokeras_formatting -f docker/pre-commit.Dockerfile . docker run --rm -t -v "$(pwd -P):/autokeras" autokeras_formatting
autokeras/shell/pre-commit.sh/0
{ "file_path": "autokeras/shell/pre-commit.sh", "repo_id": "autokeras", "token_count": 77 }
8
# Keras Preprocessing API | Status | Proposed | :-------------- |:---------------------------------------------------- | | **Author(s)** | Francois Chollet ([email protected]), Frederic Branchaud-Charron ([email protected])| | **Updated** | 2019-08-21 | ## Context `tf.data.Dataset` is the main API for data loading and preprocessing in TensorFLow. It has two advantages: - It supports GPU prefetching - It supports distribution via the Distribution Strategies API Meanwhile, `keras.preprocessing` is a major API for data loading and preprocessing in Keras. It is based on Numpy and Scipy, and it produces instances of the `keras.utils.Sequence` class, which are finite-length, resettable Python generators that yield batches of data. Some features of `keras.preprocessing` are highly useful and don't have straightforward equivalents in `tf.data` (in particular image data augmentation and dynamic time series iteration). Ideally, the utilities in `keras.preprocessing` should be made compatible with `tf.data`. This presents the opportunity to improve on the existing API. In particular we don't have good support for image segmentation use cases today. Some features are also being supplanted by [preprocessing layers](https://github.com/keras-team/governance/blob/master/rfcs/20190502-preprocessing-layers.md), in particular text processing. As a result we may want move the current API to an API similar to Layers. ## Goals - Unify "keras.preprocessing" and the recently-introduced [Preprocessing Layers API](https://github.com/keras-team/governance/blob/master/rfcs/20190502-preprocessing-layers.md). - Make all features of `keras.preprocessing` compatible with `tf.data`. - As a by-product, add required ops to TensorFlow (`tf.image`). ## Proposed changes at a high-level - Deprecate `ImagePipelineGenerator` in favor of new `ImagePipeline` class similar to a `Sequential` model. - Inherits from `keras.layers.PreprocessingLayer` for all image transformations. - Deprecate `Tokenizer` class in favor of `TextVectorization` preprocessing layer. - Replace `TimeseriesGenerator` with a function-based API. ## Detailed API changes ### ImagePipeline #### Constructor `ImagePipeline` inherits from `PreprocessingLayer` (or alternatively `keras.model.Sequential`, whose behavior is similar) and takes a list of layers as inputs. In the future it will inherit from `PreprocessingStage`. `ImagePipeline` is a preprocessing layer that encapsulate a series of image transformations. Since some of these transformations may be trained (featurewise normalization), it exposes the method `adapt`, like all other preprocessing layers. ```python class ImagePipeline(Sequential): def __init__(self, layers:List[Layer]): ... ``` #### Example usage ```python preprocessor = ImagePipeline([ RandomFlip(horizontal=True), RandomRotation(0.2, fill_mode='constant'), RandomZoom(0.2, fill_mode='constant'), RandomTranslation(0.2, fill_mode='constant'), Normalization(), # This is the same Normalization introduced in preprocessing layers ]) preprocessor.adapt(sample_data) # optional step in case the object needs to be trained dataset = preprocessor.from_directory(dir_name, image_size=(512, 512)) model.fit(dataset, epochs=10) ``` #### Methods ```python def from_directory( self, directory, targets='inferred', target_mode='categorical', class_names='inferred', color_mode='rgb', batch_size=32, image_size=(255, 255), shuffle=True, seed=None, follow_links=False, validation_split=None, subset='training', subset=None): """Generates a Dataset from files in a directory. # Arguments: directory: Directory where the data is located. If `targets` is "inferred", it should contain subdirectories, each containing images for a class. Otherwise, the directory structure is ignored. targets: Either "inferred" (targets are generated from the directory structure), None (no targets), or a list of integer labels of the same size as the number of image files found in the directory. target_mode: - 'categorical' means that the inferred labels are encoded as a categorical vector (e.g. for categorical_crossentropy). - 'binary' means that the inferred labels (there can be only 2) are encoded as binary scalars (e.g. for binary_crossentropy). class_names: Only valid if "targets" is "inferred". This is the explict list of class names (must match names of subdirectories). Used to control the order of the classes (otherwise alphanumerical order is used). color_mode: One of "grayscale", "rgb", "rgba". Default: "rgb". Whether the images will be converted to have 1, 3, or 4 channels. batch_size: Size of the batches of data (default: 32). image_size: Size to resize images to after they are read from disk. Since the pipeline processes batches of images that must all have the same size, this must be provided. shuffle: Whether to shuffle the data (default: True) If set to False, sorts the data in alphanumeric order. seed: Optional random seed for shuffling and transformations. follow_links: Whether to follow links inside subdirectories (default: False). validation_split: Optional float between 0 and 1, fraction of data to reserve for validation. subset: One of "training" or "validation". Only used if `validation_split` is set. """ def from_dataframe( self, dataframe, directory=None, data_column='filename', target_column='class', target_mode='categorical', weight_column=None, color_mode='rgb', batch_size=32, image_size=(255, 255), shuffle=True, seed=None, validation_split=None, subset=None): """Generates a Dataset from a Pandas dataframe. # Arguments: dataframe: Pandas dataframe instance. directory: The directory that image paths refer to. data_column: Name of column with the paths for the input images. target_column: Name of column with the class information. target_mode: - 'categorical' means that the inferred labels are encoded as a categorical vector (e.g. for categorical_crossentropy). - 'binary' means that the inferred labels (there can be only 2) are encoded as binary scalars (e.g. for binary_crossentropy). weight_column: Name of column with sample weight information. color_mode: One of "grayscale", "rgb", "rgba". Default: "rgb". Whether the images will be converted to have 1, 3, or 4 channels. batch_size: Size of the batches of data (default: 32). image_size: Size to resize images to after they are read from disk. Since the pipeline processes batches of images that must all have the same size, this must be provided. shuffle: Whether to shuffle the data (default: True) If set to False, sorts the data in alphanumeric order. seed: Optional random seed for shuffling and transformations. validation_split: Optional float between 0 and 1, fraction of data to reserve for validation. subset: One of "training" or "validation". Only used if `validation_split` is set. """ def preview(self, data, save_to_directory=None, save_prefix=None, save_format='png'): """Enables users to preview the image augmentation configuration. # Arguments data: Image data. Could be strings (a list of image paths), a list of PIL image instances, a list of arrays, or a list of eager tensors. save_to_directory: Directory to save transformed images. Mandatory if not in a notebook. If in a notebook and this is not specified, images are displayed in-line. save_prefix: String, filename prefix for saved images. save_format: String, extension for saved images. """ ``` **Note:** `from_arrays` is not included since it is possible to transform Numpy data simply by calling the `ImagePipeline` object (like a layer). ### Layers The new data augmentation layers will inherit `keras.layers.Layer` and work in a similar way. ```python Resizing(height, width) # Resize while distorting aspect ratio CenterCrop(height, width) # Resize without distorting aspect ratio RandomCrop(height, width, seed=None) # Return a (height, width) crop from a random location Rescaling(value) # Divide by `value` RandomFlip(horizontal=False, vertical=False, seed=None) RandomTranslation(amplitude=0., fill_mode='constant', fill_value=0., seed=None) RandomRotation(amplitude=0., fill_mode='constant', fill_value=0., seed=None) RandomZoom(amplitude=0., fill_mode='constant', fill_value=0., seed=None) RandomBrightness(amplitude=0., seed=None) RandomContrast(amplitude=0., seed=None) RandomSaturation(amplitude=0., seed=None) RandomWidth(amplitude=0., seed=None) # Expand / shrink width while distorting aspect ratio RandomHeight(amplitude=0., seed=None) # Expand / shrink height while distorting aspect ratio ``` The `amplitude` argument may be: - a positive float: it is understood as "fraction of total" (total is the current width, or height, or 180 degrees in the case `RandomRotation`). E.g. `0.2` results in variations in the [-20%, +20%] range. If larger than 1, it is rounded to one for the lower boundary (but not the higher boundary). - a tuple of 2 positive floats: understood as a fractional range, e.g. `(0.2, 0.4)` is interpreted as the [-20%, +40%] range. The first float may not be larger than 1. To do a random center crop that zooms in and discards part of the image, you would do: ```python preprocessor = ImagePipeline([ RandomZoom([0., 0.2]), CenterCrop(height, width), ]) ``` #### Notes - We are dropping support for ZCA whitening as it is no longer popular in the computer vision community. - We don't have immediate support for random translations along only one axis. - We only plan on implementing support for `data_format='channels_last'`. As such this argument does not appear in the API. #### Example implementation ```python class RandomFlip(PreprocessingLayer): def __init__(self, horizontal=False, vertical=False, seed=None): self.horizontal = horizontal self.vertical = vertical self.seed = seed or random_int() self._rng = rng_from_seed(seed) def call(self, inputs, training=None, seed=None): seed = seed or self._rng.sample() if training: if self.horizontal: inputs = tf.image.random_flip_left_right(inputs, seed=seed) if self.vertical: inputs = tf.image.random_flip_up_down(inputs, seed=seed) return inputs ``` #### Question: how to support image segmentation in a simple way? **Requirements:** - Image loading and image augmentation should be synced across inputs and targets - It should be possible to use different standardization preprocessing (outside of augmentation) across inputs and targets **Proposal:** ```python # Shared spatial transformations for inputs and targets augmenter = ImagePipeline([ RandomRotation(0.5), RandomFlip(vertical=True) ]) input_pipeline = ImagePipeline([ augmenter, RandomBrightness(0.2), RandomContrast(0.2), RandomSaturation(0.2), ]) target_pipeline = ImagePipeline([ augmenter, OneHot(num_classes) ]) input_ds = input_pipeline.from_directory( input_dir, targets=None, image_size=(150, 150), batch_size=32, seed=123) # This seed supercedes the per-layer seed in all transformations target_ds = target_pipeline.from_directory( target_dir, # target_dir should have same structure as input_dir. targets=None, image_size=(150, 150), batch_size=32, seed=123) ds = tf.data.Dataset.zip((input_ds, target_ds)) model.fit(ds) ``` Note that the behavior of having the `seed` argument in `from_directory` supercedes the per-layer argument is achieved by using the seed to sample new random ints (scalar tensors from `tf.random.experimental.Generator`) to serve as the `call` argument to each underlying layer. ### TimeseriesGenerator - Deprecate existing `TimeSeriesGenerator` class - Introduce functional replacement `timeseries_dataset`: ```python def timeseries_dataset( data, targets, length, sampling_rate=1, stride=1, start_index=0, end_index=None, shuffle=False, reverse=False, batch_size=128): """Utility function for generating batches of temporal data. This function takes in a sequence of data-points gathered at equal intervals, along with time series parameters such as stride, length of history, etc., to produce batches for training/validation. # Arguments data: Indexable generator (such as list or Numpy array) containing consecutive data points (timesteps). The data should be at 2D, and axis 0 is expected to be the time dimension. targets: Targets corresponding to timesteps in `data`. It should have same length as `data`. length: Length of the output sequences (in number of timesteps). sampling_rate: Period between successive individual timesteps within sequences. For rate `r`, timesteps `data[i]`, `data[i-r]`, ... `data[i - length]` are used for create a sample sequence. stride: Period between successive output sequences. For stride `s`, consecutive output samples would be centered around `data[i]`, `data[i+s]`, `data[i+2*s]`, etc. start_index: Data points earlier than `start_index` will not be used in the output sequences. This is useful to reserve part of the data for test or validation. end_index: Data points later than `end_index` will not be used in the output sequences. This is useful to reserve part of the data for test or validation. shuffle: Whether to shuffle output samples, or instead draw them in chronological order. reverse: Boolean: if `true`, timesteps in each output sample will be in reverse chronological order. batch_size: Number of timeseries samples in each batch (except maybe the last one). # Returns A Dataset instance. """ ```
governance/rfcs/20190729-keras-preprocessing-redesign.md/0
{ "file_path": "governance/rfcs/20190729-keras-preprocessing-redesign.md", "repo_id": "governance", "token_count": 5002 }
9
"""Inception V3 model for Keras. Note that the input image format for this model is different than for the VGG16 and ResNet models (299x299 instead of 224x224), and that the input preprocessing function is also different (same as Xception). # Reference - [Rethinking the Inception Architecture for Computer Vision]( http://arxiv.org/abs/1512.00567) (CVPR 2016) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from . import get_submodules_from_kwargs from . import imagenet_utils from .imagenet_utils import decode_predictions from .imagenet_utils import _obtain_input_shape WEIGHTS_PATH = ( 'https://github.com/fchollet/deep-learning-models/' 'releases/download/v0.5/' 'inception_v3_weights_tf_dim_ordering_tf_kernels.h5') WEIGHTS_PATH_NO_TOP = ( 'https://github.com/fchollet/deep-learning-models/' 'releases/download/v0.5/' 'inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5') backend = None layers = None models = None keras_utils = None def conv2d_bn(x, filters, num_row, num_col, padding='same', strides=(1, 1), name=None): """Utility function to apply conv + BN. # Arguments x: input tensor. filters: filters in `Conv2D`. num_row: height of the convolution kernel. num_col: width of the convolution kernel. padding: padding mode in `Conv2D`. strides: strides in `Conv2D`. name: name of the ops; will become `name + '_conv'` for the convolution and `name + '_bn'` for the batch norm layer. # Returns Output tensor after applying `Conv2D` and `BatchNormalization`. """ if name is not None: bn_name = name + '_bn' conv_name = name + '_conv' else: bn_name = None conv_name = None if backend.image_data_format() == 'channels_first': bn_axis = 1 else: bn_axis = 3 x = layers.Conv2D( filters, (num_row, num_col), strides=strides, padding=padding, use_bias=False, name=conv_name)(x) x = layers.BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x) x = layers.Activation('relu', name=name)(x) return x def InceptionV3(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, **kwargs): """Instantiates the Inception v3 architecture. Optionally loads weights pre-trained on ImageNet. Note that the data format convention used by the model is the one specified in your Keras config at `~/.keras/keras.json`. # Arguments include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(299, 299, 3)` (with `channels_last` data format) or `(3, 299, 299)` (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 75. E.g. `(150, 150, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. # Returns A Keras model instance. # Raises ValueError: in case of invalid argument for `weights`, or invalid input shape. """ global backend, layers, models, keras_utils backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs) if not (weights in {'imagenet', None} or os.path.exists(weights)): raise ValueError('The `weights` argument should be either ' '`None` (random initialization), `imagenet` ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as `"imagenet"` with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = _obtain_input_shape( input_shape, default_size=299, min_size=75, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights) if input_tensor is None: img_input = layers.Input(shape=input_shape) else: if not backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor if backend.image_data_format() == 'channels_first': channel_axis = 1 else: channel_axis = 3 x = conv2d_bn(img_input, 32, 3, 3, strides=(2, 2), padding='valid') x = conv2d_bn(x, 32, 3, 3, padding='valid') x = conv2d_bn(x, 64, 3, 3) x = layers.MaxPooling2D((3, 3), strides=(2, 2))(x) x = conv2d_bn(x, 80, 1, 1, padding='valid') x = conv2d_bn(x, 192, 3, 3, padding='valid') x = layers.MaxPooling2D((3, 3), strides=(2, 2))(x) # mixed 0: 35 x 35 x 256 branch1x1 = conv2d_bn(x, 64, 1, 1) branch5x5 = conv2d_bn(x, 48, 1, 1) branch5x5 = conv2d_bn(branch5x5, 64, 5, 5) branch3x3dbl = conv2d_bn(x, 64, 1, 1) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch_pool = layers.AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 32, 1, 1) x = layers.concatenate( [branch1x1, branch5x5, branch3x3dbl, branch_pool], axis=channel_axis, name='mixed0') # mixed 1: 35 x 35 x 288 branch1x1 = conv2d_bn(x, 64, 1, 1) branch5x5 = conv2d_bn(x, 48, 1, 1) branch5x5 = conv2d_bn(branch5x5, 64, 5, 5) branch3x3dbl = conv2d_bn(x, 64, 1, 1) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch_pool = layers.AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 64, 1, 1) x = layers.concatenate( [branch1x1, branch5x5, branch3x3dbl, branch_pool], axis=channel_axis, name='mixed1') # mixed 2: 35 x 35 x 288 branch1x1 = conv2d_bn(x, 64, 1, 1) branch5x5 = conv2d_bn(x, 48, 1, 1) branch5x5 = conv2d_bn(branch5x5, 64, 5, 5) branch3x3dbl = conv2d_bn(x, 64, 1, 1) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch_pool = layers.AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 64, 1, 1) x = layers.concatenate( [branch1x1, branch5x5, branch3x3dbl, branch_pool], axis=channel_axis, name='mixed2') # mixed 3: 17 x 17 x 768 branch3x3 = conv2d_bn(x, 384, 3, 3, strides=(2, 2), padding='valid') branch3x3dbl = conv2d_bn(x, 64, 1, 1) branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3) branch3x3dbl = conv2d_bn( branch3x3dbl, 96, 3, 3, strides=(2, 2), padding='valid') branch_pool = layers.MaxPooling2D((3, 3), strides=(2, 2))(x) x = layers.concatenate( [branch3x3, branch3x3dbl, branch_pool], axis=channel_axis, name='mixed3') # mixed 4: 17 x 17 x 768 branch1x1 = conv2d_bn(x, 192, 1, 1) branch7x7 = conv2d_bn(x, 128, 1, 1) branch7x7 = conv2d_bn(branch7x7, 128, 1, 7) branch7x7 = conv2d_bn(branch7x7, 192, 7, 1) branch7x7dbl = conv2d_bn(x, 128, 1, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 1, 7) branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7) branch_pool = layers.AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 192, 1, 1) x = layers.concatenate( [branch1x1, branch7x7, branch7x7dbl, branch_pool], axis=channel_axis, name='mixed4') # mixed 5, 6: 17 x 17 x 768 for i in range(2): branch1x1 = conv2d_bn(x, 192, 1, 1) branch7x7 = conv2d_bn(x, 160, 1, 1) branch7x7 = conv2d_bn(branch7x7, 160, 1, 7) branch7x7 = conv2d_bn(branch7x7, 192, 7, 1) branch7x7dbl = conv2d_bn(x, 160, 1, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 1, 7) branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7) branch_pool = layers.AveragePooling2D( (3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 192, 1, 1) x = layers.concatenate( [branch1x1, branch7x7, branch7x7dbl, branch_pool], axis=channel_axis, name='mixed' + str(5 + i)) # mixed 7: 17 x 17 x 768 branch1x1 = conv2d_bn(x, 192, 1, 1) branch7x7 = conv2d_bn(x, 192, 1, 1) branch7x7 = conv2d_bn(branch7x7, 192, 1, 7) branch7x7 = conv2d_bn(branch7x7, 192, 7, 1) branch7x7dbl = conv2d_bn(x, 192, 1, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7) branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1) branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7) branch_pool = layers.AveragePooling2D((3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 192, 1, 1) x = layers.concatenate( [branch1x1, branch7x7, branch7x7dbl, branch_pool], axis=channel_axis, name='mixed7') # mixed 8: 8 x 8 x 1280 branch3x3 = conv2d_bn(x, 192, 1, 1) branch3x3 = conv2d_bn(branch3x3, 320, 3, 3, strides=(2, 2), padding='valid') branch7x7x3 = conv2d_bn(x, 192, 1, 1) branch7x7x3 = conv2d_bn(branch7x7x3, 192, 1, 7) branch7x7x3 = conv2d_bn(branch7x7x3, 192, 7, 1) branch7x7x3 = conv2d_bn( branch7x7x3, 192, 3, 3, strides=(2, 2), padding='valid') branch_pool = layers.MaxPooling2D((3, 3), strides=(2, 2))(x) x = layers.concatenate( [branch3x3, branch7x7x3, branch_pool], axis=channel_axis, name='mixed8') # mixed 9: 8 x 8 x 2048 for i in range(2): branch1x1 = conv2d_bn(x, 320, 1, 1) branch3x3 = conv2d_bn(x, 384, 1, 1) branch3x3_1 = conv2d_bn(branch3x3, 384, 1, 3) branch3x3_2 = conv2d_bn(branch3x3, 384, 3, 1) branch3x3 = layers.concatenate( [branch3x3_1, branch3x3_2], axis=channel_axis, name='mixed9_' + str(i)) branch3x3dbl = conv2d_bn(x, 448, 1, 1) branch3x3dbl = conv2d_bn(branch3x3dbl, 384, 3, 3) branch3x3dbl_1 = conv2d_bn(branch3x3dbl, 384, 1, 3) branch3x3dbl_2 = conv2d_bn(branch3x3dbl, 384, 3, 1) branch3x3dbl = layers.concatenate( [branch3x3dbl_1, branch3x3dbl_2], axis=channel_axis) branch_pool = layers.AveragePooling2D( (3, 3), strides=(1, 1), padding='same')(x) branch_pool = conv2d_bn(branch_pool, 192, 1, 1) x = layers.concatenate( [branch1x1, branch3x3, branch3x3dbl, branch_pool], axis=channel_axis, name='mixed' + str(9 + i)) if include_top: # Classification block x = layers.GlobalAveragePooling2D(name='avg_pool')(x) x = layers.Dense(classes, activation='softmax', name='predictions')(x) else: if pooling == 'avg': x = layers.GlobalAveragePooling2D()(x) elif pooling == 'max': x = layers.GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = keras_utils.get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = models.Model(inputs, x, name='inception_v3') # Load weights. if weights == 'imagenet': if include_top: weights_path = keras_utils.get_file( 'inception_v3_weights_tf_dim_ordering_tf_kernels.h5', WEIGHTS_PATH, cache_subdir='models', file_hash='9a0d58056eeedaa3f26cb7ebd46da564') else: weights_path = keras_utils.get_file( 'inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5', WEIGHTS_PATH_NO_TOP, cache_subdir='models', file_hash='bcbd6486424b2319ff4ef7d526e38f63') model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model def preprocess_input(x, **kwargs): """Preprocesses a numpy array encoding a batch of images. # Arguments x: a 4D numpy array consists of RGB values within [0, 255]. # Returns Preprocessed array. """ return imagenet_utils.preprocess_input(x, mode='tf', **kwargs)
keras-applications/keras_applications/inception_v3.py/0
{ "file_path": "keras-applications/keras_applications/inception_v3.py", "repo_id": "keras-applications", "token_count": 7299 }
10
# examples # activations keras_contrib/activations/squash.py @SriRangaTarun # applications keras_contrib/applications/densenet.py @titu1994 keras_contrib/applications/nasnet.py @titu1994 keras_contrib/applications/wide_resnet.py @titu1994 # backend # callbacks keras_contrib/callbacks/tensorboard.py @gabrieldemarmiesse keras_contrib/callbacks/snapshot.py @titu1994 # constraints # datasets # initializers # layers keras_contrib/layers/advanced_activations/sinerelu.py @wilderrodrigues keras_contrib/layers/advanced_activations/swish.py @gabrieldemarmiesse keras_contrib/layers/convolutional/subpixelupscaling.py @titu1994 keras_contrib/layers/normalization/groupnormalization.py @titu1994 keras_contrib/layers/capsule.py @SriRangaTarun # losses # metrics # optimizers keras_contrib/optimizers/yogi.py @MarcoAndreaBuchmann keras_contrib/optimizers/padam.py @MFreidank # preprocessing # regularizers # utils # wrappers
keras-contrib/CODEOWNERS/0
{ "file_path": "keras-contrib/CODEOWNERS", "repo_id": "keras-contrib", "token_count": 359 }
11
"""An implementation of the improved WGAN described in https://arxiv.org/abs/1704.00028 The improved WGAN has a term in the loss function which penalizes the network if its gradient norm moves away from 1. This is included because the Earth Mover (EM) distance used in WGANs is only easy to calculate for 1-Lipschitz functions (i.e. functions where the gradient norm has a constant upper bound of 1). The original WGAN paper enforced this by clipping weights to very small values [-0.01, 0.01]. However, this drastically reduced network capacity. Penalizing the gradient norm is more natural, but this requires second-order gradients. These are not supported for some tensorflow ops (particularly MaxPool and AveragePool) in the current release (1.0.x), but they are supported in the current nightly builds (1.1.0-rc1 and higher). To avoid this, this model uses strided convolutions instead of Average/Maxpooling for downsampling. If you wish to use pooling operations in your discriminator, please ensure you update Tensorflow to 1.1.0-rc1 or higher. I haven't tested this with Theano at all. The model saves images using pillow. If you don't have pillow, either install it or remove the calls to generate_images. """ import argparse import os import numpy as np from keras.models import Model, Sequential from keras.layers import Input, Dense, Reshape, Flatten from keras.layers.merge import _Merge from keras.layers.convolutional import Convolution2D, Conv2DTranspose from keras.layers.normalization import BatchNormalization from keras.layers.advanced_activations import LeakyReLU from keras.optimizers import Adam from keras.datasets import mnist from keras import backend as K from functools import partial try: from PIL import Image except ImportError: print('This script depends on pillow! ' 'Please install it (e.g. with pip install pillow)') exit() BATCH_SIZE = 64 # The training ratio is the number of discriminator updates # per generator update. The paper uses 5. TRAINING_RATIO = 5 GRADIENT_PENALTY_WEIGHT = 10 # As per the paper def wasserstein_loss(y_true, y_pred): """Calculates the Wasserstein loss for a sample batch. The Wasserstein loss function is very simple to calculate. In a standard GAN, the discriminator has a sigmoid output, representing the probability that samples are real or generated. In Wasserstein GANs, however, the output is linear with no activation function! Instead of being constrained to [0, 1], the discriminator wants to make the distance between its output for real and generated samples as large as possible. The most natural way to achieve this is to label generated samples -1 and real samples 1, instead of the 0 and 1 used in normal GANs, so that multiplying the outputs by the labels will give you the loss immediately. Note that the nature of this loss means that it can be (and frequently will be) less than 0.""" return K.mean(y_true * y_pred) def gradient_penalty_loss(y_true, y_pred, averaged_samples, gradient_penalty_weight): """Calculates the gradient penalty loss for a batch of "averaged" samples. In Improved WGANs, the 1-Lipschitz constraint is enforced by adding a term to the loss function that penalizes the network if the gradient norm moves away from 1. However, it is impossible to evaluate this function at all points in the input space. The compromise used in the paper is to choose random points on the lines between real and generated samples, and check the gradients at these points. Note that it is the gradient w.r.t. the input averaged samples, not the weights of the discriminator, that we're penalizing! In order to evaluate the gradients, we must first run samples through the generator and evaluate the loss. Then we get the gradients of the discriminator w.r.t. the input averaged samples. The l2 norm and penalty can then be calculated for this gradient. Note that this loss function requires the original averaged samples as input, but Keras only supports passing y_true and y_pred to loss functions. To get around this, we make a partial() of the function with the averaged_samples argument, and use that for model training.""" # first get the gradients: # assuming: - that y_pred has dimensions (batch_size, 1) # - averaged_samples has dimensions (batch_size, nbr_features) # gradients afterwards has dimension (batch_size, nbr_features), basically # a list of nbr_features-dimensional gradient vectors gradients = K.gradients(y_pred, averaged_samples)[0] # compute the euclidean norm by squaring ... gradients_sqr = K.square(gradients) # ... summing over the rows ... gradients_sqr_sum = K.sum(gradients_sqr, axis=np.arange(1, len(gradients_sqr.shape))) # ... and sqrt gradient_l2_norm = K.sqrt(gradients_sqr_sum) # compute lambda * (1 - ||grad||)^2 still for each single sample gradient_penalty = gradient_penalty_weight * K.square(1 - gradient_l2_norm) # return the mean as loss over all the batch samples return K.mean(gradient_penalty) def make_generator(): """Creates a generator model that takes a 100-dimensional noise vector as a "seed", and outputs images of size 28x28x1.""" model = Sequential() model.add(Dense(1024, input_dim=100)) model.add(LeakyReLU()) model.add(Dense(128 * 7 * 7)) model.add(BatchNormalization()) model.add(LeakyReLU()) if K.image_data_format() == 'channels_first': model.add(Reshape((128, 7, 7), input_shape=(128 * 7 * 7,))) bn_axis = 1 else: model.add(Reshape((7, 7, 128), input_shape=(128 * 7 * 7,))) bn_axis = -1 model.add(Conv2DTranspose(128, (5, 5), strides=2, padding='same')) model.add(BatchNormalization(axis=bn_axis)) model.add(LeakyReLU()) model.add(Convolution2D(64, (5, 5), padding='same')) model.add(BatchNormalization(axis=bn_axis)) model.add(LeakyReLU()) model.add(Conv2DTranspose(64, (5, 5), strides=2, padding='same')) model.add(BatchNormalization(axis=bn_axis)) model.add(LeakyReLU()) # Because we normalized training inputs to lie in the range [-1, 1], # the tanh function should be used for the output of the generator to ensure # its output also lies in this range. model.add(Convolution2D(1, (5, 5), padding='same', activation='tanh')) return model def make_discriminator(): """Creates a discriminator model that takes an image as input and outputs a single value, representing whether the input is real or generated. Unlike normal GANs, the output is not sigmoid and does not represent a probability! Instead, the output should be as large and negative as possible for generated inputs and as large and positive as possible for real inputs. Note that the improved WGAN paper suggests that BatchNormalization should not be used in the discriminator.""" model = Sequential() if K.image_data_format() == 'channels_first': model.add(Convolution2D(64, (5, 5), padding='same', input_shape=(1, 28, 28))) else: model.add(Convolution2D(64, (5, 5), padding='same', input_shape=(28, 28, 1))) model.add(LeakyReLU()) model.add(Convolution2D(128, (5, 5), kernel_initializer='he_normal', strides=[2, 2])) model.add(LeakyReLU()) model.add(Convolution2D(128, (5, 5), kernel_initializer='he_normal', padding='same', strides=[2, 2])) model.add(LeakyReLU()) model.add(Flatten()) model.add(Dense(1024, kernel_initializer='he_normal')) model.add(LeakyReLU()) model.add(Dense(1, kernel_initializer='he_normal')) return model def tile_images(image_stack): """Given a stacked tensor of images, reshapes them into a horizontal tiling for display.""" assert len(image_stack.shape) == 3 image_list = [image_stack[i, :, :] for i in range(image_stack.shape[0])] tiled_images = np.concatenate(image_list, axis=1) return tiled_images class RandomWeightedAverage(_Merge): """Takes a randomly-weighted average of two tensors. In geometric terms, this outputs a random point on the line between each pair of input points. Inheriting from _Merge is a little messy but it was the quickest solution I could think of. Improvements appreciated.""" def _merge_function(self, inputs): weights = K.random_uniform((BATCH_SIZE, 1, 1, 1)) return (weights * inputs[0]) + ((1 - weights) * inputs[1]) def generate_images(generator_model, output_dir, epoch): """Feeds random seeds into the generator and tiles and saves the output to a PNG file.""" test_image_stack = generator_model.predict(np.random.rand(10, 100)) test_image_stack = (test_image_stack * 127.5) + 127.5 test_image_stack = np.squeeze(np.round(test_image_stack).astype(np.uint8)) tiled_output = tile_images(test_image_stack) tiled_output = Image.fromarray(tiled_output, mode='L') # L specifies greyscale outfile = os.path.join(output_dir, 'epoch_{}.png'.format(epoch)) tiled_output.save(outfile) parser = argparse.ArgumentParser(description="Improved Wasserstein GAN " "implementation for Keras.") parser.add_argument("--output_dir", "-o", required=True, help="Directory to output generated files to") args = parser.parse_args() # First we load the image data, reshape it and normalize it to the range [-1, 1] (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = np.concatenate((X_train, X_test), axis=0) if K.image_data_format() == 'channels_first': X_train = X_train.reshape((X_train.shape[0], 1, X_train.shape[1], X_train.shape[2])) else: X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], X_train.shape[2], 1)) X_train = (X_train.astype(np.float32) - 127.5) / 127.5 # Now we initialize the generator and discriminator. generator = make_generator() discriminator = make_discriminator() # The generator_model is used when we want to train the generator layers. # As such, we ensure that the discriminator layers are not trainable. # Note that once we compile this model, updating .trainable will have no effect within # it. As such, it won't cause problems if we later set discriminator.trainable = True # for the discriminator_model, as long as we compile the generator_model first. for layer in discriminator.layers: layer.trainable = False discriminator.trainable = False generator_input = Input(shape=(100,)) generator_layers = generator(generator_input) discriminator_layers_for_generator = discriminator(generator_layers) generator_model = Model(inputs=[generator_input], outputs=[discriminator_layers_for_generator]) # We use the Adam paramaters from Gulrajani et al. generator_model.compile(optimizer=Adam(0.0001, beta_1=0.5, beta_2=0.9), loss=wasserstein_loss) # Now that the generator_model is compiled, we can make the discriminator # layers trainable. for layer in discriminator.layers: layer.trainable = True for layer in generator.layers: layer.trainable = False discriminator.trainable = True generator.trainable = False # The discriminator_model is more complex. It takes both real image samples and random # noise seeds as input. The noise seed is run through the generator model to get # generated images. Both real and generated images are then run through the # discriminator. Although we could concatenate the real and generated images into a # single tensor, we don't (see model compilation for why). real_samples = Input(shape=X_train.shape[1:]) generator_input_for_discriminator = Input(shape=(100,)) generated_samples_for_discriminator = generator(generator_input_for_discriminator) discriminator_output_from_generator = discriminator(generated_samples_for_discriminator) discriminator_output_from_real_samples = discriminator(real_samples) # We also need to generate weighted-averages of real and generated samples, # to use for the gradient norm penalty. averaged_samples = RandomWeightedAverage()([real_samples, generated_samples_for_discriminator]) # We then run these samples through the discriminator as well. Note that we never # really use the discriminator output for these samples - we're only running them to # get the gradient norm for the gradient penalty loss. averaged_samples_out = discriminator(averaged_samples) # The gradient penalty loss function requires the input averaged samples to get # gradients. However, Keras loss functions can only have two arguments, y_true and # y_pred. We get around this by making a partial() of the function with the averaged # samples here. partial_gp_loss = partial(gradient_penalty_loss, averaged_samples=averaged_samples, gradient_penalty_weight=GRADIENT_PENALTY_WEIGHT) # Functions need names or Keras will throw an error partial_gp_loss.__name__ = 'gradient_penalty' # Keras requires that inputs and outputs have the same number of samples. This is why # we didn't concatenate the real samples and generated samples before passing them to # the discriminator: If we had, it would create an output with 2 * BATCH_SIZE samples, # while the output of the "averaged" samples for gradient penalty # would have only BATCH_SIZE samples. # If we don't concatenate the real and generated samples, however, we get three # outputs: One of the generated samples, one of the real samples, and one of the # averaged samples, all of size BATCH_SIZE. This works neatly! discriminator_model = Model(inputs=[real_samples, generator_input_for_discriminator], outputs=[discriminator_output_from_real_samples, discriminator_output_from_generator, averaged_samples_out]) # We use the Adam paramaters from Gulrajani et al. We use the Wasserstein loss for both # the real and generated samples, and the gradient penalty loss for the averaged samples discriminator_model.compile(optimizer=Adam(0.0001, beta_1=0.5, beta_2=0.9), loss=[wasserstein_loss, wasserstein_loss, partial_gp_loss]) # We make three label vectors for training. positive_y is the label vector for real # samples, with value 1. negative_y is the label vector for generated samples, with # value -1. The dummy_y vector is passed to the gradient_penalty loss function and # is not used. positive_y = np.ones((BATCH_SIZE, 1), dtype=np.float32) negative_y = -positive_y dummy_y = np.zeros((BATCH_SIZE, 1), dtype=np.float32) for epoch in range(100): np.random.shuffle(X_train) print("Epoch: ", epoch) print("Number of batches: ", int(X_train.shape[0] // BATCH_SIZE)) discriminator_loss = [] generator_loss = [] minibatches_size = BATCH_SIZE * TRAINING_RATIO for i in range(int(X_train.shape[0] // (BATCH_SIZE * TRAINING_RATIO))): discriminator_minibatches = X_train[i * minibatches_size: (i + 1) * minibatches_size] for j in range(TRAINING_RATIO): image_batch = discriminator_minibatches[j * BATCH_SIZE: (j + 1) * BATCH_SIZE] noise = np.random.rand(BATCH_SIZE, 100).astype(np.float32) discriminator_loss.append(discriminator_model.train_on_batch( [image_batch, noise], [positive_y, negative_y, dummy_y])) generator_loss.append(generator_model.train_on_batch(np.random.rand(BATCH_SIZE, 100), positive_y)) # Still needs some code to display losses from the generator and discriminator, # progress bars, etc. generate_images(generator, args.output_dir, epoch)
keras-contrib/examples/improved_wgan.py/0
{ "file_path": "keras-contrib/examples/improved_wgan.py", "repo_id": "keras-contrib", "token_count": 5747 }
12
from keras.callbacks import Callback from keras import backend as K import numpy as np class CyclicLR(Callback): """This callback implements a cyclical learning rate policy (CLR). The method cycles the learning rate between two boundaries with some constant frequency. # Arguments base_lr: initial learning rate which is the lower boundary in the cycle. max_lr: upper boundary in the cycle. Functionally, it defines the cycle amplitude (max_lr - base_lr). The lr at any cycle is the sum of base_lr and some scaling of the amplitude; therefore max_lr may not actually be reached depending on scaling function. step_size: number of training iterations per half cycle. Authors suggest setting step_size 2-8 x training iterations in epoch. mode: one of {triangular, triangular2, exp_range}. Default 'triangular'. Values correspond to policies detailed above. If scale_fn is not None, this argument is ignored. gamma: constant in 'exp_range' scaling function: gamma**(cycle iterations) scale_fn: Custom scaling policy defined by a single argument lambda function, where 0 <= scale_fn(x) <= 1 for all x >= 0. mode paramater is ignored scale_mode: {'cycle', 'iterations'}. Defines whether scale_fn is evaluated on cycle number or cycle iterations (training iterations since start of cycle). Default is 'cycle'. The amplitude of the cycle can be scaled on a per-iteration or per-cycle basis. This class has three built-in policies, as put forth in the paper. "triangular": A basic triangular cycle w/ no amplitude scaling. "triangular2": A basic triangular cycle that scales initial amplitude by half each cycle. "exp_range": A cycle that scales initial amplitude by gamma**(cycle iterations) at each cycle iteration. For more detail, please see paper. # Example for CIFAR-10 w/ batch size 100: ```python clr = CyclicLR(base_lr=0.001, max_lr=0.006, step_size=2000., mode='triangular') model.fit(X_train, Y_train, callbacks=[clr]) ``` Class also supports custom scaling functions: ```python clr_fn = lambda x: 0.5*(1+np.sin(x*np.pi/2.)) clr = CyclicLR(base_lr=0.001, max_lr=0.006, step_size=2000., scale_fn=clr_fn, scale_mode='cycle') model.fit(X_train, Y_train, callbacks=[clr]) ``` # References - [Cyclical Learning Rates for Training Neural Networks]( https://arxiv.org/abs/1506.01186) """ def __init__( self, base_lr=0.001, max_lr=0.006, step_size=2000., mode='triangular', gamma=1., scale_fn=None, scale_mode='cycle'): super(CyclicLR, self).__init__() if mode not in ['triangular', 'triangular2', 'exp_range']: raise KeyError("mode must be one of 'triangular', " "'triangular2', or 'exp_range'") self.base_lr = base_lr self.max_lr = max_lr self.step_size = step_size self.mode = mode self.gamma = gamma if scale_fn is None: if self.mode == 'triangular': self.scale_fn = lambda x: 1. self.scale_mode = 'cycle' elif self.mode == 'triangular2': self.scale_fn = lambda x: 1 / (2.**(x - 1)) self.scale_mode = 'cycle' elif self.mode == 'exp_range': self.scale_fn = lambda x: gamma ** x self.scale_mode = 'iterations' else: self.scale_fn = scale_fn self.scale_mode = scale_mode self.clr_iterations = 0. self.trn_iterations = 0. self.history = {} self._reset() def _reset(self, new_base_lr=None, new_max_lr=None, new_step_size=None): """Resets cycle iterations. Optional boundary/step size adjustment. """ if new_base_lr is not None: self.base_lr = new_base_lr if new_max_lr is not None: self.max_lr = new_max_lr if new_step_size is not None: self.step_size = new_step_size self.clr_iterations = 0. def clr(self): cycle = np.floor(1 + self.clr_iterations / (2 * self.step_size)) x = np.abs(self.clr_iterations / self.step_size - 2 * cycle + 1) if self.scale_mode == 'cycle': return self.base_lr + (self.max_lr - self.base_lr) * \ np.maximum(0, (1 - x)) * self.scale_fn(cycle) else: return self.base_lr + (self.max_lr - self.base_lr) * \ np.maximum(0, (1 - x)) * self.scale_fn(self.clr_iterations) def on_train_begin(self, logs={}): logs = logs or {} if self.clr_iterations == 0: K.set_value(self.model.optimizer.lr, self.base_lr) else: K.set_value(self.model.optimizer.lr, self.clr()) def on_batch_end(self, epoch, logs=None): logs = logs or {} self.trn_iterations += 1 self.clr_iterations += 1 K.set_value(self.model.optimizer.lr, self.clr()) self.history.setdefault( 'lr', []).append( K.get_value( self.model.optimizer.lr)) self.history.setdefault('iterations', []).append(self.trn_iterations) for k, v in logs.items(): self.history.setdefault(k, []).append(v) def on_epoch_end(self, epoch, logs=None): logs = logs or {} logs['lr'] = K.get_value(self.model.optimizer.lr)
keras-contrib/keras_contrib/callbacks/cyclical_learning_rate.py/0
{ "file_path": "keras-contrib/keras_contrib/callbacks/cyclical_learning_rate.py", "repo_id": "keras-contrib", "token_count": 2807 }
13
from keras.layers import Layer, InputSpec from keras import initializers import keras.backend as K from keras_contrib.utils.test_utils import to_tuple class SReLU(Layer): """S-shaped Rectified Linear Unit. It follows: `f(x) = t^r + a^r(x - t^r) for x >= t^r`, `f(x) = x for t^r > x > t^l`, `f(x) = t^l + a^l(x - t^l) for x <= t^l`. # Input shape Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. # Output shape Same shape as the input. # Arguments t_left_initializer: initializer function for the left part intercept a_left_initializer: initializer function for the left part slope t_right_initializer: initializer function for the right part intercept a_right_initializer: initializer function for the right part slope shared_axes: the axes along which to share learnable parameters for the activation function. For example, if the incoming feature maps are from a 2D convolution with output shape `(batch, height, width, channels)`, and you wish to share parameters across space so that each filter only has one set of parameters, set `shared_axes=[1, 2]`. # References - [Deep Learning with S-shaped Rectified Linear Activation Units]( http://arxiv.org/abs/1512.07030) """ def __init__(self, t_left_initializer='zeros', a_left_initializer=initializers.RandomUniform(minval=0, maxval=1), t_right_initializer=initializers.RandomUniform(minval=0, maxval=5), a_right_initializer='ones', shared_axes=None, **kwargs): super(SReLU, self).__init__(**kwargs) self.supports_masking = True self.t_left_initializer = initializers.get(t_left_initializer) self.a_left_initializer = initializers.get(a_left_initializer) self.t_right_initializer = initializers.get(t_right_initializer) self.a_right_initializer = initializers.get(a_right_initializer) if shared_axes is None: self.shared_axes = None elif not isinstance(shared_axes, (list, tuple)): self.shared_axes = [shared_axes] else: self.shared_axes = list(shared_axes) def build(self, input_shape): input_shape = to_tuple(input_shape) param_shape = list(input_shape[1:]) self.param_broadcast = [False] * len(param_shape) if self.shared_axes is not None: for i in self.shared_axes: param_shape[i - 1] = 1 self.param_broadcast[i - 1] = True param_shape = tuple(param_shape) self.t_left = self.add_weight(shape=param_shape, name='t_left', initializer=self.t_left_initializer) self.a_left = self.add_weight(shape=param_shape, name='a_left', initializer=self.a_left_initializer) self.t_right = self.add_weight(shape=param_shape, name='t_right', initializer=self.t_right_initializer) self.a_right = self.add_weight(shape=param_shape, name='a_right', initializer=self.a_right_initializer) # Set input spec axes = {} if self.shared_axes: for i in range(1, len(input_shape)): if i not in self.shared_axes: axes[i] = input_shape[i] self.input_spec = InputSpec(ndim=len(input_shape), axes=axes) self.built = True def call(self, x, mask=None): # ensure the the right part is always to the right of the left t_right_actual = self.t_left + K.abs(self.t_right) if K.backend() == 'theano': t_left = K.pattern_broadcast(self.t_left, self.param_broadcast) a_left = K.pattern_broadcast(self.a_left, self.param_broadcast) a_right = K.pattern_broadcast(self.a_right, self.param_broadcast) t_right_actual = K.pattern_broadcast(t_right_actual, self.param_broadcast) else: t_left = self.t_left a_left = self.a_left a_right = self.a_right y_left_and_center = t_left + K.relu(x - t_left, a_left, t_right_actual - t_left) y_right = K.relu(x - t_right_actual) * a_right return y_left_and_center + y_right def get_config(self): config = { 't_left_initializer': self.t_left_initializer, 'a_left_initializer': self.a_left_initializer, 't_right_initializer': self.t_right_initializer, 'a_right_initializer': self.a_right_initializer, 'shared_axes': self.shared_axes } base_config = super(SReLU, self).get_config() return dict(list(base_config.items()) + list(config.items())) def compute_output_shape(self, input_shape): return input_shape
keras-contrib/keras_contrib/layers/advanced_activations/srelu.py/0
{ "file_path": "keras-contrib/keras_contrib/layers/advanced_activations/srelu.py", "repo_id": "keras-contrib", "token_count": 2664 }
14
from keras import backend as K def _get_accuracy(y_true, y_pred, mask, sparse_target=False): y_pred = K.argmax(y_pred, -1) if sparse_target: y_true = K.cast(y_true[:, :, 0], K.dtype(y_pred)) else: y_true = K.argmax(y_true, -1) judge = K.cast(K.equal(y_pred, y_true), K.floatx()) if mask is None: return K.mean(judge) else: mask = K.cast(mask, K.floatx()) return K.sum(judge * mask) / K.sum(mask) def crf_viterbi_accuracy(y_true, y_pred): '''Use Viterbi algorithm to get best path, and compute its accuracy. `y_pred` must be an output from CRF.''' crf, idx = y_pred._keras_history[:2] X = crf._inbound_nodes[idx].input_tensors[0] mask = crf._inbound_nodes[idx].input_masks[0] y_pred = crf.viterbi_decoding(X, mask) return _get_accuracy(y_true, y_pred, mask, crf.sparse_target) def crf_marginal_accuracy(y_true, y_pred): '''Use time-wise marginal argmax as prediction. `y_pred` must be an output from CRF with `learn_mode="marginal"`.''' crf, idx = y_pred._keras_history[:2] X = crf._inbound_nodes[idx].input_tensors[0] mask = crf._inbound_nodes[idx].input_masks[0] y_pred = crf.get_marginal_prob(X, mask) return _get_accuracy(y_true, y_pred, mask, crf.sparse_target) def crf_accuracy(y_true, y_pred): '''Ge default accuracy based on CRF `test_mode`.''' crf, idx = y_pred._keras_history[:2] if crf.test_mode == 'viterbi': return crf_viterbi_accuracy(y_true, y_pred) else: return crf_marginal_accuracy(y_true, y_pred)
keras-contrib/keras_contrib/metrics/crf_accuracies.py/0
{ "file_path": "keras-contrib/keras_contrib/metrics/crf_accuracies.py", "repo_id": "keras-contrib", "token_count": 738 }
15
"""Utilities related to Keras unit tests.""" import sys import numpy as np from numpy.testing import assert_allclose import inspect import keras from keras.layers import Input from keras.models import Model from keras import backend as K def get_test_data(num_train=1000, num_test=500, input_shape=(10,), output_shape=(2,), classification=True, num_classes=2): """Generates test data to train a model on. classification=True overrides output_shape (i.e. output_shape is set to (1,)) and the output consists in integers in [0, num_class-1]. Otherwise: float output with shape output_shape. """ samples = num_train + num_test if classification: y = np.random.randint(0, num_classes, size=(samples,)) X = np.zeros((samples,) + input_shape) for i in range(samples): X[i] = np.random.normal(loc=y[i], scale=0.7, size=input_shape) else: y_loc = np.random.random((samples,)) X = np.zeros((samples,) + input_shape) y = np.zeros((samples,) + output_shape) for i in range(samples): X[i] = np.random.normal(loc=y_loc[i], scale=0.7, size=input_shape) y[i] = np.random.normal(loc=y_loc[i], scale=0.7, size=output_shape) return (X[:num_train], y[:num_train]), (X[num_train:], y[num_train:]) def layer_test(layer_cls, kwargs={}, input_shape=None, input_dtype=None, input_data=None, expected_output=None, expected_output_dtype=None, fixed_batch_size=False): """Test routine for a layer with a single input tensor and single output tensor. Copy of the function in keras-team/keras because it's not in the public API. If we use the one from keras-team/keras it won't work with tf.keras. """ # generate input data if input_data is None: assert input_shape if not input_dtype: input_dtype = K.floatx() input_data_shape = list(input_shape) for i, e in enumerate(input_data_shape): if e is None: input_data_shape[i] = np.random.randint(1, 4) input_data = (10 * np.random.random(input_data_shape)) input_data = input_data.astype(input_dtype) else: if input_shape is None: input_shape = input_data.shape if input_dtype is None: input_dtype = input_data.dtype if expected_output_dtype is None: expected_output_dtype = input_dtype # instantiation layer = layer_cls(**kwargs) # test get_weights , set_weights at layer level weights = layer.get_weights() layer.set_weights(weights) expected_output_shape = layer.compute_output_shape(input_shape) # test in functional API if fixed_batch_size: x = Input(batch_shape=input_shape, dtype=input_dtype) else: x = Input(shape=input_shape[1:], dtype=input_dtype) y = layer(x) assert K.dtype(y) == expected_output_dtype # check with the functional API model = Model(x, y) actual_output = model.predict(input_data) actual_output_shape = actual_output.shape for expected_dim, actual_dim in zip(expected_output_shape, actual_output_shape): if expected_dim is not None: assert expected_dim == actual_dim if expected_output is not None: assert_allclose(actual_output, expected_output, rtol=1e-3) # test serialization, weight setting at model level model_config = model.get_config() custom_objects = {layer.__class__.__name__: layer.__class__} recovered_model = model.__class__.from_config(model_config, custom_objects) if model.weights: weights = model.get_weights() recovered_model.set_weights(weights) _output = recovered_model.predict(input_data) assert_allclose(_output, actual_output, rtol=1e-3) # test training mode (e.g. useful when the layer has a # different behavior at training and testing time). if has_arg(layer.call, 'training'): model.compile('rmsprop', 'mse') model.train_on_batch(input_data, actual_output) # test instantiation from layer config layer_config = layer.get_config() layer_config['batch_input_shape'] = input_shape layer = layer.__class__.from_config(layer_config) # for further checks in the caller function return actual_output def has_arg(fn, name, accept_all=False): """Checks if a callable accepts a given keyword argument. For Python 2, checks if there is an argument with the given name. For Python 3, checks if there is an argument with the given name, and also whether this argument can be called with a keyword (i.e. if it is not a positional-only argument). This function is a copy of the one in keras-team/keras because it's not in the public API. # Arguments fn: Callable to inspect. name: Check if `fn` can be called with `name` as a keyword argument. accept_all: What to return if there is no parameter called `name` but the function accepts a `**kwargs` argument. # Returns bool, whether `fn` accepts a `name` keyword argument. """ if sys.version_info < (3,): arg_spec = inspect.getargspec(fn) if accept_all and arg_spec.keywords is not None: return True return name in arg_spec.args elif sys.version_info < (3, 3): arg_spec = inspect.getfullargspec(fn) if accept_all and arg_spec.varkw is not None: return True return (name in arg_spec.args or name in arg_spec.kwonlyargs) else: signature = inspect.signature(fn) parameter = signature.parameters.get(name) if parameter is None: if accept_all: for param in signature.parameters.values(): if param.kind == inspect.Parameter.VAR_KEYWORD: return True return False return (parameter.kind in (inspect.Parameter.POSITIONAL_OR_KEYWORD, inspect.Parameter.KEYWORD_ONLY)) def to_list(x, allow_tuple=False): if isinstance(x, list): return x if allow_tuple and isinstance(x, tuple): return list(x) return [x] def unpack_singleton(x): if len(x) == 1: return x[0] return x if keras.__name__ == 'keras': is_tf_keras = False elif keras.__name__ == 'tensorflow.keras': is_tf_keras = True else: raise KeyError('Cannot detect if using keras or tf.keras.') def to_tuple(shape): """This functions is here to fix an inconsistency between keras and tf.keras. In tf.keras, the input_shape argument is an tuple with `Dimensions` objects. In keras, the input_shape is a simple tuple of ints or `None`. We'll work with tuples of ints or `None` to be consistent with keras-team/keras. So we must apply this function to all input_shapes of the build methods in custom layers. """ if is_tf_keras: import tensorflow as tf return tuple(tf.TensorShape(shape).as_list()) else: return shape
keras-contrib/keras_contrib/utils/test_utils.py/0
{ "file_path": "keras-contrib/keras_contrib/utils/test_utils.py", "repo_id": "keras-contrib", "token_count": 2958 }
16
import pytest from keras_contrib.utils.test_utils import layer_test from keras_contrib.layers import SReLU @pytest.mark.parametrize('kwargs', [{}, {'shared_axes': 1}]) def test_srelu(kwargs): layer_test(SReLU, kwargs=kwargs, input_shape=(2, 3, 4)) if __name__ == '__main__': pytest.main([__file__])
keras-contrib/tests/keras_contrib/layers/advanced_activations/test_srelu.py/0
{ "file_path": "keras-contrib/tests/keras_contrib/layers/advanced_activations/test_srelu.py", "repo_id": "keras-contrib", "token_count": 129 }
17
""" Title: Fine-tuning a pre-trained TorchVision Model Author: [Ayush Thakur](https://twitter.com/ayushthakur0), [Soumik Rakshit](https://twitter.com/soumikRakshit96) Date created: 2023/09/18 Last modified: 2023/09/18 Description: Fine-tuning a pre-trained Torch model from TorchVision for image classification using Keras. """ """ ## Introduction [TorchVision](https://pytorch.org/vision/stable/index.html) is a library part of the [PyTorch](http://pytorch.org/) project that consists of popular datasets, model architectures, and common image transformations for computer vision. This example demonstrates how we can perform transfer learning for image classification using a pre-trained backbone model from TorchVision on the [Imagenette dataset](https://github.com/fastai/imagenette) using KerasCore. We will also demonstrate the compatibility of KerasCore with an input system consisting of [Torch Datasets and Dataloaders](https://pytorch.org/tutorials/beginner/basics/data_tutorial.html). ### References: - [Customizing what happens in `fit()` with PyTorch](https://keras.io/keras_core/guides/custom_train_step_in_torch/) - [PyTorch Datasets and Dataloaders](https://pytorch.org/tutorials/beginner/basics/data_tutorial.html) - [Transfer learning for Computer Vision using PyTorch](https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html) - [Fine-tuning a TorchVision Model using Keras ](https://wandb.ai/ml-colabs/keras-torch/reports/Fine-tuning-a-TorchVision-Model-using-Keras--Vmlldzo1NDE5NDE1) ## Setup """ import os os.environ["KERAS_BACKEND"] = "torch" import numpy as np import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as F import torchvision from torchvision import datasets, models, transforms import keras_core as keras from keras_core.layers import TorchModuleWrapper """ ## Define the Hyperparameters """ batch_size = 32 image_size = 224 initial_learning_rate = 1e-3 num_epochs = 5 """ ## Creating the Torch Datasets and Dataloaders In this example, we would train an image classification model on the [Imagenette dataset](https://github.com/fastai/imagenette). Imagenette is a subset of 10 easily classified classes from [Imagenet](https://www.image-net.org/) (tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute). """ # Fetch the imagenette dataset data_dir = keras.utils.get_file( fname="imagenette2-320.tgz", origin="https://s3.amazonaws.com/fast-ai-imageclas/imagenette2-320.tgz", extract=True, ) data_dir = data_dir.replace(".tgz", "") """ Next, we define pre-processing and augmentation transforms from TorchVision for the train and validation sets. """ data_transforms = { "train": transforms.Compose( [ transforms.RandomResizedCrop(image_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ), "val": transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(image_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ), } """ Finally, we will use TorchVision and the [`torch.utils.data`](https://pytorch.org/docs/stable/data.html) packages for creating the dataloaders for trainig and validation. """ # Define the train and validation datasets image_datasets = { x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ["train", "val"] } # Define the torch dataloaders corresponding to the train and validation dataset dataloaders = { x: torch.utils.data.DataLoader( image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=4 ) for x in ["train", "val"] } dataset_sizes = {x: len(image_datasets[x]) for x in ["train", "val"]} class_names = image_datasets["train"].classes # Specify the global device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") """ Let us visualize a few samples from the training dataloader. """ plt.figure(figsize=(10, 10)) sample_images, sample_labels = next(iter(dataloaders["train"])) sample_images = sample_images.numpy() sample_labels = sample_labels.numpy() for idx in range(9): ax = plt.subplot(3, 3, idx + 1) image = sample_images[idx].transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) image = std * image + mean image = np.clip(image, 0, 1) plt.imshow(image) plt.title("Ground Truth Label: " + class_names[int(sample_labels[idx])]) plt.axis("off") """ ## The Image Classification Model """ """ We typically define a model in PyTorch using [`torch.nn.Module`s](https://pytorch.org/docs/stable/notes/modules.html) which act as the building blocks of stateful computation. Let us define the ResNet18 model from the TorchVision package as a `torch.nn.Module` pre-trained on the [Imagenet1K dataset](https://huggingface.co/datasets/imagenet-1k). """ # Define the pre-trained resnet18 module from TorchVision resnet_18 = models.resnet18(weights="IMAGENET1K_V1") # We set the classification head of the pre-trained ResNet18 # module to an identity module resnet_18.fc = nn.Identity() """ Even though Keras supports PyTorch as a backend, it does not mean that we can nest torch modules inside a [`keras_core.Model`](https://keras.io/keras_core/api/models/), because trainable variables inside a Keras Model is tracked exclusively via [Keras Layers](https://keras.io/keras_core/api/layers/). KerasCore provides us with a feature called `TorchModuleWrapper` which enables us to do exactly this. The `TorchModuleWrapper` is a Keras Layer that accepts a torch module and tracks its trainable variables, essentially converting the torch module into a Keras Layer. This enables us to put any torch modules inside a Keras Model and train them with a single `model.fit()`! """ # We set the trainable ResNet18 backbone to be a Keras Layer # using `TorchModuleWrapper` backbone = TorchModuleWrapper(resnet_18) # We set this to `False` if you want to freeze the backbone backbone.trainable = True """ Now, we will build a Keras functional model with the backbone layer. """ inputs = keras.Input(shape=(3, image_size, image_size)) x = backbone(inputs) x = keras.layers.Dropout(0.5)(x) x = keras.layers.Dense(len(class_names))(x) outputs = keras.activations.softmax(x, axis=1) model = keras.Model(inputs, outputs, name="ResNet18_Classifier") model.summary() # Create exponential decay learning rate scheduler decay_steps = num_epochs * len(dataloaders["train"]) // batch_size lr_scheduler = keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=initial_learning_rate, decay_steps=decay_steps, decay_rate=0.1, ) # Compile the model model.compile( loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.Adam(lr_scheduler), metrics=["accuracy"], ) # Define the backend-agnostic WandB callbacks for KerasCore callbacks = [ # Save best model checkpoints keras.callbacks.ModelCheckpoint( filepath="model.weights.h5", monitor="val_loss", save_best_only=True, save_weights_only=True, ) ] # Train the model by calling model.fit history = model.fit( dataloaders["train"], validation_data=dataloaders["val"], epochs=num_epochs, callbacks=callbacks, ) def plot_history(item): plt.plot(history.history[item], label=item) plt.plot(history.history["val_" + item], label="val_" + item) plt.xlabel("Epochs") plt.ylabel(item) plt.title("Train and Validation {} Over Epochs".format(item), fontsize=14) plt.legend() plt.grid() plt.show() plot_history("loss") plot_history("accuracy") """ ## Evaluation and Inference Now, we let us load the best model weights checkpoint and evaluate the model. """ model.load_weights("model.weights.h5") _, val_accuracy = model.evaluate(dataloaders["val"]) print("Best Validation Accuracy:", val_accuracy) """ Finally, let us visualize the some predictions of the model """ plt.figure(figsize=(10, 10)) sample_images, sample_labels = next(iter(dataloaders["train"])) # We perform inference and detach the predicted probabilities from the Torch # computation graph with a tensor that does not require gradient computation. sample_pred_probas = model(sample_images.to("cuda")).detach() sample_pred_logits = keras.ops.argmax(sample_pred_probas, axis=1) sample_pred_logits = sample_pred_logits.to("cpu").numpy() sample_images = sample_images.numpy() sample_labels = sample_labels.numpy() for idx in range(9): ax = plt.subplot(3, 3, idx + 1) image = sample_images[idx].transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) image = std * image + mean image = np.clip(image, 0, 1) plt.imshow(image) title = "Ground Truth Label: " + class_names[int(sample_labels[idx])] title += "\nPredicted Label: " + class_names[int(sample_pred_logits[idx])] plt.title(title) plt.axis("off")
keras-core/examples/keras_io/pytorch/torchvision_keras.py/0
{ "file_path": "keras-core/examples/keras_io/pytorch/torchvision_keras.py", "repo_id": "keras-core", "token_count": 3302 }
18
import numpy as np import keras_core from keras_core import layers from keras_core import ops keras_core.utils.set_random_seed(1337) x = np.random.rand(100, 32, 32, 3) y = np.random.randint(0, 2, size=(100, 1)) # Test sequential model. model = keras_core.Sequential( [ layers.Conv2D(filters=10, kernel_size=3), layers.GlobalAveragePooling2D(), layers.Dense(1, activation="sigmoid"), ] ) model.compile( loss="binary_crossentropy", optimizer="adam", metrics=["mae", "accuracy"] ) history = model.fit( x=x, y=y, epochs=10, validation_data=(x, y), verbose=0, ) model.evaluate(x, y, verbose=0) model.predict(x, verbose=0) # Test on batch functions model.train_on_batch(x, y) model.test_on_batch(x, y) model.predict_on_batch(x) # Test functional model. inputs = keras_core.Input(shape=(32, 32, 3)) outputs = layers.Conv2D(filters=10, kernel_size=3)(inputs) outputs = layers.GlobalAveragePooling2D()(outputs) outputs = layers.Dense(1, activation="sigmoid")(outputs) model = keras_core.Model(inputs, outputs) model.compile( loss="binary_crossentropy", optimizer="adam", metrics=["mae", "accuracy"] ) history = model.fit( x=x, y=y, epochs=10, validation_data=(x, y), verbose=0, ) model.evaluate(x, y, verbose=0) model.predict(x, verbose=0) # Test custom layer class Linear(layers.Layer): def __init__(self, units=32): super().__init__() self.units = units def build(self, input_shape): self.w = self.add_weight( shape=(input_shape[-1], self.units), initializer="random_normal", trainable=True, ) self.b = self.add_weight( shape=(self.units,), initializer="random_normal", trainable=True ) def call(self, inputs): return ops.matmul(inputs, self.w) + self.b inputs = keras_core.Input(shape=(32, 32, 3)) outputs = layers.Conv2D(filters=10, kernel_size=3)(inputs) outputs = layers.GlobalAveragePooling2D()(outputs) outputs = Linear(1)(outputs) outputs = layers.Activation("sigmoid")(outputs) model = keras_core.Model(inputs, outputs) model.compile( loss="binary_crossentropy", optimizer="adam", metrics=["mae", "accuracy"] ) history = model.fit( x=x, y=y, epochs=10, validation_data=(x, y), verbose=0, ) model.evaluate(x, y, verbose=0) model.predict(x, verbose=0)
keras-core/integration_tests/torch_backend_keras_workflow.py/0
{ "file_path": "keras-core/integration_tests/torch_backend_keras_workflow.py", "repo_id": "keras-core", "token_count": 1038 }
19
import warnings from keras_core import backend from keras_core import layers from keras_core.api_export import keras_core_export from keras_core.applications import imagenet_utils from keras_core.models import Functional from keras_core.ops import operation_utils from keras_core.utils import file_utils BASE_WEIGHT_PATH = ( "https://storage.googleapis.com/tensorflow/keras-applications/mobilenet/" ) @keras_core_export( [ "keras_core.applications.mobilenet.MobileNet", "keras_core.applications.MobileNet", ] ) def MobileNet( input_shape=None, alpha=1.0, depth_multiplier=1, dropout=1e-3, include_top=True, weights="imagenet", input_tensor=None, pooling=None, classes=1000, classifier_activation="softmax", ): """Instantiates the MobileNet architecture. Reference: - [MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications]( https://arxiv.org/abs/1704.04861) This function returns a Keras image classification model, optionally loaded with weights pre-trained on ImageNet. For image classification use cases, see [this page for detailed examples]( https://keras.io/api/applications/#usage-examples-for-image-classification-models). For transfer learning use cases, make sure to read the [guide to transfer learning & fine-tuning]( https://keras.io/guides/transfer_learning/). Note: each Keras Application expects a specific kind of input preprocessing. For MobileNet, call `keras_core.applications.mobilenet.preprocess_input` on your inputs before passing them to the model. `mobilenet.preprocess_input` will scale input pixels between -1 and 1. Args: input_shape: Optional shape tuple, only to be specified if `include_top` is `False` (otherwise the input shape has to be `(224, 224, 3)` (with `"channels_last"` data format) or `(3, 224, 224)` (with `"channels_first"` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(200, 200, 3)` would be one valid value. Defaults to `None`. `input_shape` will be ignored if the `input_tensor` is provided. alpha: Controls the width of the network. This is known as the width multiplier in the MobileNet paper. - If `alpha < 1.0`, proportionally decreases the number of filters in each layer. - If `alpha > 1.0`, proportionally increases the number of filters in each layer. - If `alpha == 1`, default number of filters from the paper are used at each layer. Defaults to `1.0`. depth_multiplier: Depth multiplier for depthwise convolution. This is called the resolution multiplier in the MobileNet paper. Defaults to `1.0`. dropout: Dropout rate. Defaults to `0.001`. include_top: Boolean, whether to include the fully-connected layer at the top of the network. Defaults to `True`. weights: One of `None` (random initialization), `"imagenet"` (pre-training on ImageNet), or the path to the weights file to be loaded. Defaults to `"imagenet"`. input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. `input_tensor` is useful for sharing inputs between multiple different networks. Defaults to `None`. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` (default) means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: Optional number of classes to classify images into, only to be specified if `include_top` is `True`, and if no `weights` argument is specified. Defaults to `1000`. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. When loading pretrained weights, `classifier_activation` can only be `None` or `"softmax"`. Returns: A model instance. """ if not (weights in {"imagenet", None} or file_utils.exists(weights)): raise ValueError( "The `weights` argument should be either " "`None` (random initialization), 'imagenet' " "(pre-training on ImageNet), " "or the path to the weights file to be loaded. " f"Received weights={weights}" ) if weights == "imagenet" and include_top and classes != 1000: raise ValueError( "If using `weights='imagenet'` with `include_top=True`, " "`classes` should be 1000. " f"Received classes={classes}" ) # Determine proper input shape and default size. if input_shape is None: default_size = 224 else: if backend.image_data_format() == "channels_first": rows = input_shape[1] cols = input_shape[2] else: rows = input_shape[0] cols = input_shape[1] if rows == cols and rows in [128, 160, 192, 224]: default_size = rows else: default_size = 224 input_shape = imagenet_utils.obtain_input_shape( input_shape, default_size=default_size, min_size=32, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights, ) if backend.image_data_format() == "channels_last": row_axis, col_axis = (0, 1) else: row_axis, col_axis = (1, 2) rows = input_shape[row_axis] cols = input_shape[col_axis] if weights == "imagenet": if depth_multiplier != 1: raise ValueError( "If imagenet weights are being loaded, " "depth multiplier must be 1. " f"Received depth_multiplier={depth_multiplier}" ) if alpha not in [0.25, 0.50, 0.75, 1.0]: raise ValueError( "If imagenet weights are being loaded, " "alpha can be one of" "`0.25`, `0.50`, `0.75` or `1.0` only. " f"Received alpha={alpha}" ) if rows != cols or rows not in [128, 160, 192, 224]: rows = 224 warnings.warn( "`input_shape` is undefined or non-square, " "or `rows` is not in [128, 160, 192, 224]. " "Weights for input shape (224, 224) will be " "loaded as the default.", stacklevel=2, ) if input_tensor is None: img_input = layers.Input(shape=input_shape) else: if not backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor x = _conv_block(img_input, 32, alpha, strides=(2, 2)) x = _depthwise_conv_block(x, 64, alpha, depth_multiplier, block_id=1) x = _depthwise_conv_block( x, 128, alpha, depth_multiplier, strides=(2, 2), block_id=2 ) x = _depthwise_conv_block(x, 128, alpha, depth_multiplier, block_id=3) x = _depthwise_conv_block( x, 256, alpha, depth_multiplier, strides=(2, 2), block_id=4 ) x = _depthwise_conv_block(x, 256, alpha, depth_multiplier, block_id=5) x = _depthwise_conv_block( x, 512, alpha, depth_multiplier, strides=(2, 2), block_id=6 ) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=7) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=8) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=9) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=10) x = _depthwise_conv_block(x, 512, alpha, depth_multiplier, block_id=11) x = _depthwise_conv_block( x, 1024, alpha, depth_multiplier, strides=(2, 2), block_id=12 ) x = _depthwise_conv_block(x, 1024, alpha, depth_multiplier, block_id=13) if include_top: x = layers.GlobalAveragePooling2D(keepdims=True)(x) x = layers.Dropout(dropout, name="dropout")(x) x = layers.Conv2D(classes, (1, 1), padding="same", name="conv_preds")(x) x = layers.Reshape((classes,), name="reshape_2")(x) imagenet_utils.validate_activation(classifier_activation, weights) x = layers.Activation( activation=classifier_activation, name="predictions" )(x) else: if pooling == "avg": x = layers.GlobalAveragePooling2D()(x) elif pooling == "max": x = layers.GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = operation_utils.get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = Functional(inputs, x, name=f"mobilenet_{alpha:0.2f}_{rows}") # Load weights. if weights == "imagenet": if alpha == 1.0: alpha_text = "1_0" elif alpha == 0.75: alpha_text = "7_5" elif alpha == 0.50: alpha_text = "5_0" else: alpha_text = "2_5" if include_top: model_name = "mobilenet_%s_%d_tf.h5" % (alpha_text, rows) weight_path = BASE_WEIGHT_PATH + model_name weights_path = file_utils.get_file( model_name, weight_path, cache_subdir="models" ) else: model_name = "mobilenet_%s_%d_tf_no_top.h5" % (alpha_text, rows) weight_path = BASE_WEIGHT_PATH + model_name weights_path = file_utils.get_file( model_name, weight_path, cache_subdir="models" ) model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model def _conv_block(inputs, filters, alpha, kernel=(3, 3), strides=(1, 1)): """Adds an initial convolution layer (with batch normalization and relu6). Args: inputs: Input tensor of shape `(rows, cols, 3)` (with `channels_last` data format) or (3, rows, cols) (with `channels_first` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(224, 224, 3)` would be one valid value. filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution). alpha: controls the width of the network. - If `alpha` < 1.0, proportionally decreases the number of filters in each layer. - If `alpha` > 1.0, proportionally increases the number of filters in each layer. - If `alpha` = 1, default number of filters from the paper are used at each layer. kernel: An integer or tuple/list of 2 integers, specifying the width and height of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the width and height. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. # Input shape 4D tensor with shape: `(samples, channels, rows, cols)` if data_format='channels_first' or 4D tensor with shape: `(samples, rows, cols, channels)` if data_format='channels_last'. # Output shape 4D tensor with shape: `(samples, filters, new_rows, new_cols)` if data_format='channels_first' or 4D tensor with shape: `(samples, new_rows, new_cols, filters)` if data_format='channels_last'. `rows` and `cols` values might have changed due to stride. Returns: Output tensor of block. """ channel_axis = 1 if backend.image_data_format() == "channels_first" else -1 filters = int(filters * alpha) x = layers.Conv2D( filters, kernel, padding="same", use_bias=False, strides=strides, name="conv1", )(inputs) x = layers.BatchNormalization(axis=channel_axis, name="conv1_bn")(x) return layers.ReLU(6.0, name="conv1_relu")(x) def _depthwise_conv_block( inputs, pointwise_conv_filters, alpha, depth_multiplier=1, strides=(1, 1), block_id=1, ): """Adds a depthwise convolution block. A depthwise convolution block consists of a depthwise conv, batch normalization, relu6, pointwise convolution, batch normalization and relu6 activation. Args: inputs: Input tensor of shape `(rows, cols, channels)` (with `channels_last` data format) or (channels, rows, cols) (with `channels_first` data format). pointwise_conv_filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the pointwise convolution). alpha: controls the width of the network. - If `alpha` < 1.0, proportionally decreases the number of filters in each layer. - If `alpha` > 1.0, proportionally increases the number of filters in each layer. - If `alpha` = 1, default number of filters from the paper are used at each layer. depth_multiplier: The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to `filters_in * depth_multiplier`. strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the width and height. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. block_id: Integer, a unique identification designating the block number. # Input shape 4D tensor with shape: `(batch, channels, rows, cols)` if data_format='channels_first' or 4D tensor with shape: `(batch, rows, cols, channels)` if data_format='channels_last'. # Output shape 4D tensor with shape: `(batch, filters, new_rows, new_cols)` if data_format='channels_first' or 4D tensor with shape: `(batch, new_rows, new_cols, filters)` if data_format='channels_last'. `rows` and `cols` values might have changed due to stride. Returns: Output tensor of block. """ channel_axis = 1 if backend.image_data_format() == "channels_first" else -1 pointwise_conv_filters = int(pointwise_conv_filters * alpha) if strides == (1, 1): x = inputs else: x = layers.ZeroPadding2D( ((0, 1), (0, 1)), name="conv_pad_%d" % block_id )(inputs) x = layers.DepthwiseConv2D( (3, 3), padding="same" if strides == (1, 1) else "valid", depth_multiplier=depth_multiplier, strides=strides, use_bias=False, name="conv_dw_%d" % block_id, )(x) x = layers.BatchNormalization( axis=channel_axis, name="conv_dw_%d_bn" % block_id )(x) x = layers.ReLU(6.0, name="conv_dw_%d_relu" % block_id)(x) x = layers.Conv2D( pointwise_conv_filters, (1, 1), padding="same", use_bias=False, strides=(1, 1), name="conv_pw_%d" % block_id, )(x) x = layers.BatchNormalization( axis=channel_axis, name="conv_pw_%d_bn" % block_id )(x) return layers.ReLU(6.0, name="conv_pw_%d_relu" % block_id)(x) @keras_core_export("keras_core.applications.mobilenet.preprocess_input") def preprocess_input(x, data_format=None): return imagenet_utils.preprocess_input( x, data_format=data_format, mode="tf" ) @keras_core_export("keras_core.applications.mobilenet.decode_predictions") def decode_predictions(preds, top=5): return imagenet_utils.decode_predictions(preds, top=top) preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format( mode="", ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF, error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC, ) decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__
keras-core/keras_core/applications/mobilenet.py/0
{ "file_path": "keras-core/keras_core/applications/mobilenet.py", "repo_id": "keras-core", "token_count": 7412 }
20
import tree from keras_core.api_export import keras_core_export from keras_core.utils.naming import auto_name @keras_core_export("keras_core.KerasTensor") class KerasTensor: """Symbolic tensor -- encapsulates a shape and a dtype. You can use `KerasTensor` instances to build computation graphs of Keras operations, such as `keras_core.Function` objects or Functional `keras_core.models.Model` objects. Example: >>> x = keras_core.KerasTensor(shape=(3, 4), dtype="float32") >>> x.shape (3, 4) >>> x.dtype float32 Calling a Keras operation (including a layer or a model) on a `KerasTensor` instance will return another `KerasTensor` instance with the appropriate shape and dtype. This is called a "symbolic call" (since there is no actual data involved). The computation of the correct output shape and dtype is called "static shape inference". """ def __init__( self, shape, dtype="float32", sparse=False, record_history=True, name=None, ): from keras_core import backend self.shape = backend.standardize_shape(shape) self.dtype = backend.standardize_dtype(dtype) self.sparse = sparse self.name = name or auto_name(self.__class__.__name__) self.record_history = record_history @property def ndim(self): return len(self.shape) def reshape(self, new_shape): from keras_core import ops return ops.Reshape(new_shape)(self) def squeeze(self, axis=None): from keras_core import ops return ops.Squeeze(axis)(self) def __array__(self): raise ValueError( "A KerasTensor is symbolic: it's a placeholder for a shape " "an a dtype. It doesn't have any actual numerical value. " "You cannot convert it to a NumPy array." ) def __jax_array__(self): raise ValueError( "A KerasTensor cannot be used as input to a JAX function. " "A KerasTensor is a symbolic placeholder for a shape and dtype, " "used when constructing Keras Functional models " "or Keras Functions. You can only use it as input to a Keras layer " "or a Keras operation (from the namespaces `keras_core.layers` " "and `keras_core.operations`). " "You are likely doing something like:\n\n" "```\n" "x = Input(...)\n" "...\n" "jax_fn(x) # Invalid.\n" "```\n\n" "What you should do instead is wrap `jax_fn` in a layer:\n\n" "```\n" "class MyLayer(Layer):\n" " def call(self, x):\n" " return jax_fn(x)\n\n" "x = MyLayer()(x)\n" "```\n" ) def __tf_tensor__(self, dtype=None, name=None): raise ValueError( "A KerasTensor cannot be used as input to a TensorFlow function. " "A KerasTensor is a symbolic placeholder for a shape and dtype, " "used when constructing Keras Functional models " "or Keras Functions. You can only use it as input to a Keras layer " "or a Keras operation (from the namespaces `keras_core.layers` " "and `keras_core.operations`). " "You are likely doing something like:\n\n" "```\n" "x = Input(...)\n" "...\n" "tf_fn(x) # Invalid.\n" "```\n\n" "What you should do instead is wrap `tf_fn` in a layer:\n\n" "```\n" "class MyLayer(Layer):\n" " def call(self, x):\n" " return tf_fn(x)\n\n" "x = MyLayer()(x)\n" "```\n" ) def __repr__(self): return ( f"<KerasTensor shape={self.shape}, dtype={self.dtype}, " f"sparse={self.sparse}, name={self.name}>" ) def __iter__(self): raise NotImplementedError( "Iterating over a symbolic KerasTensor is not supported." ) def __bool__(self): raise TypeError("A symbolic KerasTensor cannot be used as a boolean.") def __add__(self, other): from keras_core import ops return ops.Add().symbolic_call(self, other) def __radd__(self, other): from keras_core import ops return ops.Add().symbolic_call(other, self) def __sub__(self, other): from keras_core import ops return ops.Subtract().symbolic_call(self, other) def __rsub__(self, other): from keras_core import ops return ops.Subtract().symbolic_call(other, self) def __mul__(self, other): from keras_core import ops return ops.Multiply().symbolic_call(self, other) def __rmul__(self, other): from keras_core import ops return ops.Multiply().symbolic_call(other, self) def __matmul__(self, other): from keras_core import ops return ops.Matmul().symbolic_call(self, other) def __rmatmul__(self, other): from keras_core import ops return ops.Matmul().symbolic_call(other, self) def __div__(self, other): from keras_core import ops return ops.Divide().symbolic_call(self, other) def __rdiv__(self, other): from keras_core import ops return ops.Divide().symbolic_call(other, self) def __truediv__(self, other): from keras_core import ops return ops.TrueDivide().symbolic_call(self, other) def __rtruediv__(self, other): from keras_core import ops return ops.TrueDivide().symbolic_call(other, self) def __neg__(self): from keras_core import ops return ops.Negative().symbolic_call(self) def __abs__(self): from keras_core import ops return ops.Absolute().symbolic_call(self) def __pow__(self, other): from keras_core import ops return ops.Power().symbolic_call(self, other) def __rpow__(self, other): from keras_core import ops return ops.Power().symbolic_call(other, self) def __floordiv__(self, other): from keras_core import ops return ops.FloorDiv().symbolic_call(self, other) def __rfloordiv__(self, other): from keras_core import ops return ops.FloorDiv().symbolic_call(other, self) def __mod__(self, other): from keras_core import ops return ops.Mod().symbolic_call(self, other) def __rmod__(self, other): from keras_core import ops return ops.Mod().symbolic_call(other, self) def __lt__(self, other): from keras_core import ops return ops.Less().symbolic_call(self, other) def __le__(self, other): from keras_core import ops return ops.LessEqual().symbolic_call(self, other) def __gt__(self, other): from keras_core import ops return ops.Greater().symbolic_call(self, other) def __ge__(self, other): from keras_core import ops return ops.GreaterEqual().symbolic_call(self, other) def __ne__(self, other): from keras_core import ops return ops.NotEqual().symbolic_call(self, other) def __and__(self, other): from keras_core import ops return ops.LogicalAnd().symbolic_call(self, other) def __rand__(self, other): from keras_core import ops return ops.LogicalAnd().symbolic_call(other, self) def __or__(self, other): from keras_core import ops return ops.LogicalOr().symbolic_call(self, other) def __ror__(self, other): from keras_core import ops return ops.LogicalOr().symbolic_call(other, self) def __invert__(self, other): from keras_core import ops return ops.LogicalNot().symbolic_call(other, self) def __xor__(self, other): from keras_core import ops return ops.LogicalXor().symbolic_call(self, other) def __rxor__(self, other): from keras_core import ops return ops.LogicalXor().symbolic_call(other, self) def __getitem__(self, key): from keras_core import ops return ops.GetItem().symbolic_call(self, key) def any_symbolic_tensors(args=None, kwargs=None): args = args or () kwargs = kwargs or {} for x in tree.flatten((args, kwargs)): if isinstance(x, KerasTensor): return True return False @keras_core_export( ["keras_core.utils.is_keras_tensor", "keras_core.backend.is_keras_tensor"] ) def is_keras_tensor(x): """Returns whether `x` is a Keras tensor. A "Keras tensor" is a *symbolic tensor*, such as a tensor that was created via `Input()`. A "symbolic tensor" can be understood as a placeholder -- it does not contain any actual numerical data, only a shape and dtype. It can be used for building Functional models, but it cannot be used in actual computations. """ return isinstance(x, KerasTensor)
keras-core/keras_core/backend/common/keras_tensor.py/0
{ "file_path": "keras-core/keras_core/backend/common/keras_tensor.py", "repo_id": "keras-core", "token_count": 4024 }
21
import jax import jax.numpy as jnp import numpy as np from jax import lax from jax import nn as jnn from keras_core.backend import standardize_data_format from keras_core.backend import standardize_dtype from keras_core.backend.common.backend_utils import ( compute_conv_transpose_padding_args_for_jax, ) from keras_core.backend.config import epsilon from keras_core.backend.jax.core import cast from keras_core.backend.jax.core import convert_to_tensor def relu(x): x = convert_to_tensor(x) return jnn.relu(x) def relu6(x): x = convert_to_tensor(x) return jnn.relu6(x) def sigmoid(x): x = convert_to_tensor(x) return jnn.sigmoid(x) def tanh(x): x = convert_to_tensor(x) return jnn.tanh(x) def softplus(x): x = convert_to_tensor(x) return jnn.softplus(x) def softsign(x): x = convert_to_tensor(x) return jnn.soft_sign(x) def silu(x): x = convert_to_tensor(x) return jnn.silu(x) def log_sigmoid(x): x = convert_to_tensor(x) return jnn.log_sigmoid(x) def leaky_relu(x, negative_slope=0.2): x = convert_to_tensor(x) return jnn.leaky_relu(x, negative_slope=negative_slope) def hard_sigmoid(x): x = convert_to_tensor(x) return jnn.hard_sigmoid(x) def elu(x, alpha=1.0): x = convert_to_tensor(x) return jnn.elu(x, alpha=alpha) def selu(x): x = convert_to_tensor(x) return jnn.selu(x) def gelu(x, approximate=True): x = convert_to_tensor(x) return jnn.gelu(x, approximate) def softmax(x, axis=-1): x = convert_to_tensor(x) return jnn.softmax(x, axis=axis) def log_softmax(x, axis=-1): x = convert_to_tensor(x) return jnn.log_softmax(x, axis=axis) def _convert_to_spatial_operand( x, num_spatial_dims, data_format="channels_last", include_batch_and_channels=True, ): # Helper function that converts an operand to a spatial operand. x = (x,) * num_spatial_dims if isinstance(x, int) else x if not include_batch_and_channels: return x if data_format == "channels_last": x = (1,) + x + (1,) else: x = (1,) + (1,) + x return x def _pool( inputs, initial_value, reduce_fn, pool_size, strides=None, padding="valid", ): """Helper function to define pooling functions. Args: inputs: input data of shape `N+2`. initial_value: the initial value for the reduction. reduce_fn: a reduce function of the form `(T, T) -> T`. pool_size: a sequence of `N` integers, representing the window size to reduce over. strides: a sequence of `N` integers, representing the inter-window strides (default: `(1, ..., 1)`). padding: either the string `same` or `valid`. Returns: The output of the reduction for each window slice. """ if padding not in ("same", "valid"): raise ValueError( f"Invalid padding '{padding}', must be 'same' or 'valid'." ) padding = padding.upper() return lax.reduce_window( inputs, initial_value, reduce_fn, pool_size, strides, padding, ) def max_pool( inputs, pool_size, strides=None, padding="valid", data_format=None, ): data_format = standardize_data_format(data_format) num_spatial_dims = inputs.ndim - 2 pool_size = _convert_to_spatial_operand( pool_size, num_spatial_dims, data_format ) strides = pool_size if strides is None else strides strides = _convert_to_spatial_operand( strides, num_spatial_dims, data_format ) return _pool(inputs, -jnp.inf, lax.max, pool_size, strides, padding) def average_pool( inputs, pool_size, strides, padding, data_format=None, ): data_format = standardize_data_format(data_format) num_spatial_dims = inputs.ndim - 2 pool_size = _convert_to_spatial_operand( pool_size, num_spatial_dims, data_format ) strides = pool_size if strides is None else strides strides = _convert_to_spatial_operand( strides, num_spatial_dims, data_format ) pooled = _pool(inputs, 0.0, lax.add, pool_size, strides, padding) if padding == "valid": # Avoid the extra reduce_window. return pooled / np.prod(pool_size) else: # Count the number of valid entries at each input point, then use that # for computing average. Assumes that any two arrays of same shape will # be padded the same. Avoid broadcasting on axis where pooling is # skipped. shape = [ (a if b != 1 else 1) for (a, b) in zip(inputs.shape, pool_size) ] window_counts = _pool( jnp.ones(shape, inputs.dtype), 0.0, lax.add, pool_size, strides, padding, ) return pooled / window_counts def _convert_to_lax_conv_dimension_numbers( num_spatial_dims, data_format="channels_last", transpose=False, ): """Create a `lax.ConvDimensionNumbers` for the given inputs.""" num_dims = num_spatial_dims + 2 if data_format == "channels_last": spatial_dims = tuple(range(1, num_dims - 1)) inputs_dn = (0, num_dims - 1) + spatial_dims else: spatial_dims = tuple(range(2, num_dims)) inputs_dn = (0, 1) + spatial_dims if transpose: kernel_dn = (num_dims - 2, num_dims - 1) + tuple(range(num_dims - 2)) else: kernel_dn = (num_dims - 1, num_dims - 2) + tuple(range(num_dims - 2)) return lax.ConvDimensionNumbers( lhs_spec=inputs_dn, rhs_spec=kernel_dn, out_spec=inputs_dn ) def conv( inputs, kernel, strides=1, padding="valid", data_format=None, dilation_rate=1, ): data_format = standardize_data_format(data_format) num_spatial_dims = inputs.ndim - 2 dimension_numbers = _convert_to_lax_conv_dimension_numbers( num_spatial_dims, data_format, transpose=False, ) strides = _convert_to_spatial_operand( strides, num_spatial_dims, data_format, include_batch_and_channels=False, ) dilation_rate = _convert_to_spatial_operand( dilation_rate, num_spatial_dims, data_format, include_batch_and_channels=False, ) if data_format == "channels_last": channels = inputs.shape[-1] else: channels = inputs.shape[1] kernel_in_channels = kernel.shape[-2] if channels % kernel_in_channels > 0: raise ValueError( "The number of input channels must be evenly divisible by " f"kernel's in_channels. Received input channels {channels} and " f"kernel in_channels {kernel_in_channels}. " ) feature_group_count = channels // kernel_in_channels return jax.lax.conv_general_dilated( convert_to_tensor(inputs), convert_to_tensor(kernel), strides, padding, rhs_dilation=dilation_rate, dimension_numbers=dimension_numbers, feature_group_count=feature_group_count, ) def depthwise_conv( inputs, kernel, strides=1, padding="valid", data_format=None, dilation_rate=1, ): data_format = standardize_data_format(data_format) num_spatial_dims = inputs.ndim - 2 dimension_numbers = _convert_to_lax_conv_dimension_numbers( num_spatial_dims, data_format, transpose=False, ) strides = _convert_to_spatial_operand( strides, num_spatial_dims, data_format, include_batch_and_channels=False, ) dilation_rate = _convert_to_spatial_operand( dilation_rate, num_spatial_dims, data_format, include_batch_and_channels=False, ) feature_group_count = ( inputs.shape[-1] if data_format == "channels_last" else inputs.shape[1] ) kernel = jnp.reshape( kernel, kernel.shape[:-2] + (1, feature_group_count * kernel.shape[-1]), ) return jax.lax.conv_general_dilated( inputs, kernel, strides, padding, rhs_dilation=dilation_rate, dimension_numbers=dimension_numbers, feature_group_count=feature_group_count, ) def separable_conv( inputs, depthwise_kernel, pointwise_kernel, strides=1, padding="valid", data_format=None, dilation_rate=1, ): data_format = standardize_data_format(data_format) depthwise_conv_output = depthwise_conv( inputs, depthwise_kernel, strides, padding, data_format, dilation_rate, ) return conv( depthwise_conv_output, pointwise_kernel, strides=1, padding="valid", data_format=data_format, dilation_rate=dilation_rate, ) def conv_transpose( inputs, kernel, strides=1, padding="valid", output_padding=None, data_format=None, dilation_rate=1, ): data_format = standardize_data_format(data_format) num_spatial_dims = inputs.ndim - 2 padding_values = compute_conv_transpose_padding_args_for_jax( input_shape=inputs.shape, kernel_shape=kernel.shape, strides=strides, padding=padding, output_padding=output_padding, dilation_rate=dilation_rate, ) dimension_numbers = _convert_to_lax_conv_dimension_numbers( num_spatial_dims, data_format, transpose=False, ) strides = _convert_to_spatial_operand( strides, num_spatial_dims, data_format, include_batch_and_channels=False, ) dilation_rate = _convert_to_spatial_operand( dilation_rate, num_spatial_dims, data_format, include_batch_and_channels=False, ) return jax.lax.conv_transpose( inputs, kernel, strides, padding=padding_values, rhs_dilation=dilation_rate, dimension_numbers=dimension_numbers, transpose_kernel=True, ) def one_hot(x, num_classes, axis=-1, dtype="float32"): x = convert_to_tensor(x) return jnn.one_hot(x, num_classes, axis=axis, dtype=dtype) def multi_hot(x, num_classes, axis=-1, dtype="float32"): reduction_axis = 1 if len(x.shape) > 1 else 0 outputs = jnp.max( one_hot(cast(x, "int32"), num_classes, axis=axis, dtype=dtype), axis=reduction_axis, ) return outputs def categorical_crossentropy(target, output, from_logits=False, axis=-1): target = jnp.array(target) output = jnp.array(output) if target.shape != output.shape: raise ValueError( "Arguments `target` and `output` must have the same shape. " "Received: " f"target.shape={target.shape}, output.shape={output.shape}" ) if len(target.shape) < 1: raise ValueError( "Arguments `target` and `output` must be at least rank 1. " "Received: " f"target.shape={target.shape}, output.shape={output.shape}" ) if from_logits: log_prob = jax.nn.log_softmax(output, axis=axis) else: output = output / jnp.sum(output, axis, keepdims=True) output = jnp.clip(output, epsilon(), 1.0 - epsilon()) log_prob = jnp.log(output) return -jnp.sum(target * log_prob, axis=axis) def sparse_categorical_crossentropy(target, output, from_logits=False, axis=-1): target = jnp.array(target, dtype="int32") output = jnp.array(output) if len(target.shape) == len(output.shape) and target.shape[-1] == 1: target = jnp.squeeze(target, axis=-1) if len(output.shape) < 1: raise ValueError( "Argument `output` must be at least rank 1. " "Received: " f"output.shape={output.shape}" ) if target.shape != output.shape[:-1]: raise ValueError( "Arguments `target` and `output` must have the same shape " "up until the last dimension: " f"target.shape={target.shape}, output.shape={output.shape}" ) if from_logits: log_prob = jax.nn.log_softmax(output, axis=axis) else: output = output / jnp.sum(output, axis, keepdims=True) output = jnp.clip(output, epsilon(), 1.0 - epsilon()) log_prob = jnp.log(output) target = jnn.one_hot(target, output.shape[axis], axis=axis) return -jnp.sum(target * log_prob, axis=axis) def binary_crossentropy(target, output, from_logits=False): target = jnp.array(target) output = jnp.array(output) if target.shape != output.shape: raise ValueError( "Arguments `target` and `output` must have the same shape. " "Received: " f"target.shape={target.shape}, output.shape={output.shape}" ) if from_logits: log_logits = jax.nn.log_sigmoid(output) log_neg_logits = jax.nn.log_sigmoid(-output) return -1.0 * target * log_logits - (1.0 - target) * log_neg_logits output = jnp.clip(output, epsilon(), 1.0 - epsilon()) bce = target * jnp.log(output) bce += (1.0 - target) * jnp.log(1.0 - output) return -bce def moments(x, axes, keepdims=False): # The dynamic range of float16 is too limited for statistics. As a # workaround, we simply perform the operations on float32 and convert back # to float16 need_cast = False ori_dtype = standardize_dtype(x.dtype) if ori_dtype == "float16": need_cast = True x = cast(x, "float32") mean = jnp.mean(x, axes, keepdims=True) # The variance is computed using $Var = E[|x|^2] - |E[x]|^2$, It is faster # but less numerically stable. # Note: stop_gradient does not change the gradient to the mean, because that # gradient is zero. variance = jnp.mean(jnp.square(x), axis=axes, keepdims=True) - jnp.square( jax.lax.stop_gradient(mean) ) if not keepdims: mean = jnp.squeeze(mean, axes) variance = jnp.squeeze(variance, axes) if need_cast: # avoid overflow and underflow when casting from float16 to float32 mean = jnp.clip( mean, jnp.finfo(jnp.float16).min, jnp.finfo(jnp.float16).max ) variance = jnp.clip( variance, jnp.finfo(jnp.float16).min, jnp.finfo(jnp.float16).max ) mean = cast(mean, ori_dtype) variance = cast(variance, ori_dtype) return mean, variance
keras-core/keras_core/backend/jax/nn.py/0
{ "file_path": "keras-core/keras_core/backend/jax/nn.py", "repo_id": "keras-core", "token_count": 6611 }
22
import types import numpy as np import tensorflow as tf from tensorflow.compiler.tf2xla.python.xla import dynamic_update_slice from keras_core.backend.common import KerasVariable from keras_core.backend.common import global_state from keras_core.backend.common import standardize_dtype from keras_core.backend.common.keras_tensor import KerasTensor from keras_core.backend.common.name_scope import name_scope as base_name_scope from keras_core.backend.common.stateless_scope import StatelessScope from keras_core.utils.naming import auto_name SUPPORTS_SPARSE_TENSORS = True class Variable( KerasVariable, tf.__internal__.types.Tensor, tf.__internal__.tracking.Trackable, ): _should_act_as_resource_variable = True @property def handle(self): return self.value.handle def _initialize(self, value): self._value = tf.Variable( value, dtype=self._dtype, trainable=self.trainable, name=self.name ) def _direct_assign(self, value): self._value.assign(tf.cast(value, self._value.dtype)) def _convert_to_tensor(self, value, dtype=None): return convert_to_tensor(value, dtype=dtype) def numpy(self): # noqa: F811 return self.value.numpy() @property def shape(self): return tf.TensorShape(super().shape) # Overload native accessor. def __tf_tensor__(self, dtype=None, name=None): return tf.convert_to_tensor(self.value, dtype=dtype, name=name) # Methods below are for SavedModel support @property def _shared_name(self): return self.value._shared_name def _serialize_to_tensors(self): return self.value._serialize_to_tensors() def _restore_from_tensors(self, restored_tensors): return self.value._restore_from_tensors(restored_tensors) def _export_to_saved_model_graph( self, object_map, tensor_map, options, **kwargs ): resource_list = self.value._export_to_saved_model_graph( object_map, tensor_map, options, **kwargs ) object_map[self] = tf.Variable(object_map[self.value]) return resource_list def _write_object_proto(self, proto, options): return self.value._write_object_proto(proto, options) def convert_to_tensor(x, dtype=None, sparse=True): """Convert to a TensorFlow tensor. `sparse=True` means that `tf.SparseTensor`s are returned as-is, which is the default with the TensorFlow backend. An explicit `sparse=False` densifies `tf.SparseTensor`s. """ if isinstance(x, tf.SparseTensor) and not sparse: x = tf.sparse.to_dense(x) if dtype is not None: dtype = standardize_dtype(dtype) if not tf.is_tensor(x): return tf.convert_to_tensor(x, dtype=dtype) elif dtype is not None: return tf.cast(x, dtype=dtype) else: return x def convert_to_numpy(x): if isinstance(x, tf.SparseTensor): x = tf.sparse.to_dense(x) return np.array(x) def is_tensor(x): return tf.is_tensor(x) def shape(x): """Always return a tuple shape. `tf.shape` will return a `tf.Tensor`, which differs from the tuple return type on the torch and jax backends. We write our own method instead which always returns a tuple, with integer values when the shape is known, and tensor values when the shape is unknown (this is tf specific, as dynamic shapes do not apply in other backends). """ if not tf.is_tensor(x): x = tf.convert_to_tensor(x) dynamic = tf.shape(x) if x.shape == tf.TensorShape(None): raise ValueError( "All tensors passed to `ops.shape` must have a statically known " f"rank. Received: x={x} with unknown rank." ) static = x.shape.as_list() return tuple(dynamic[i] if s is None else s for i, s in enumerate(static)) def cast(x, dtype): dtype = standardize_dtype(dtype) return tf.cast(x, dtype=dtype) def compute_output_spec(fn, *args, **kwargs): with StatelessScope(): graph_name = auto_name("scratch_graph") with tf.__internal__.FuncGraph(graph_name).as_default(): def convert_keras_tensor_to_tf(x): if isinstance(x, KerasTensor): if x.sparse: return tf.compat.v1.sparse_placeholder( shape=x.shape, dtype=x.dtype ) else: return tf.compat.v1.placeholder( shape=x.shape, dtype=x.dtype ) if isinstance(x, types.FunctionType): def _fn(*x_args, **x_kwargs): out = x(*x_args, **x_kwargs) out = convert_keras_tensor_to_tf(out) return out return _fn return x args, kwargs = tf.nest.map_structure( convert_keras_tensor_to_tf, (args, kwargs) ) tf_out = fn(*args, **kwargs) def convert_tf_to_keras_tensor(x): if tf.is_tensor(x): return KerasTensor( x.shape, x.dtype, sparse=isinstance(x, tf.SparseTensor) ) return x output_spec = tf.nest.map_structure( convert_tf_to_keras_tensor, tf_out ) return output_spec def cond(pred, true_fn, false_fn): return tf.cond(pred, true_fn=true_fn, false_fn=false_fn) def vectorized_map(function, elements): return tf.vectorized_map(function, elements) def scatter(indices, values, shape): return tf.scatter_nd(indices, values, shape) def scatter_update(inputs, indices, updates): return tf.tensor_scatter_nd_update(inputs, indices, updates) def slice(inputs, start_indices, shape): return tf.slice(inputs, start_indices, shape) def slice_update(inputs, start_indices, updates): return dynamic_update_slice(inputs, updates, start_indices) def while_loop( cond, body, loop_vars, maximum_iterations=None, ): return tf.while_loop( cond, body, loop_vars, maximum_iterations=maximum_iterations, ) def fori_loop(lower, upper, body_fun, init_val): return tf.while_loop( lambda i, val: i < upper, lambda i, val: (i + 1, body_fun(i, val)), (lower, init_val), )[1] def stop_gradient(variable): return tf.stop_gradient(variable) def unstack(x, num=None, axis=0): return tf.unstack(x, num=num, axis=axis) class name_scope(base_name_scope): def __init__(self, name, **kwargs): super().__init__(name, **kwargs) self._tf_name_scope = tf.name_scope(name) def __enter__(self): name_scope_stack = global_state.get_global_attribute( "name_scope_stack", default=[], set_to_default=True ) if self.deduplicate and name_scope_stack: parent_caller = name_scope_stack[-1].caller parent_name = name_scope_stack[-1].name if ( self.caller is not None and self.caller is parent_caller and self.name == parent_name ): return self name_scope_stack.append(self) self._pop_on_exit = True self._tf_name_scope.__enter__() return self def __exit__(self, *args, **kwargs): super().__exit__(*args, **kwargs) if self._pop_on_exit: self._tf_name_scope.__exit__(*args, **kwargs)
keras-core/keras_core/backend/tensorflow/core.py/0
{ "file_path": "keras-core/keras_core/backend/tensorflow/core.py", "repo_id": "keras-core", "token_count": 3506 }
23
"""Torch backend APIs. # Note on device placement Torch has a different device placement style compared to TF and JAX. In short, variables/tensors are not created on GPU by default, and the GPU cannot directly communicate with the CPU. To bring Torch behavior in line with TF and JAX automated device placement, we are doing the following to automate device placement if a GPU is available: - Variables are created on GPU. - Input data will be placed on GPU at the first `keras_core.layers.Layer` call. - Tensor creation happens on GPU, e.g., `zeros()` will create a tensor on GPU. - `convert_to_numpy` will bring the tensor to CPU before converting it to NumPy. """ from keras_core.backend.torch import core from keras_core.backend.torch import image from keras_core.backend.torch import math from keras_core.backend.torch import nn from keras_core.backend.torch import numpy from keras_core.backend.torch import random from keras_core.backend.torch.core import SUPPORTS_SPARSE_TENSORS from keras_core.backend.torch.core import Variable from keras_core.backend.torch.core import cast from keras_core.backend.torch.core import compute_output_spec from keras_core.backend.torch.core import cond from keras_core.backend.torch.core import convert_to_numpy from keras_core.backend.torch.core import convert_to_tensor from keras_core.backend.torch.core import is_tensor from keras_core.backend.torch.core import scatter from keras_core.backend.torch.core import shape from keras_core.backend.torch.core import stop_gradient from keras_core.backend.torch.core import to_torch_dtype from keras_core.backend.torch.core import vectorized_map from keras_core.backend.torch.rnn import cudnn_ok from keras_core.backend.torch.rnn import gru from keras_core.backend.torch.rnn import lstm from keras_core.backend.torch.rnn import rnn
keras-core/keras_core/backend/torch/__init__.py/0
{ "file_path": "keras-core/keras_core/backend/torch/__init__.py", "repo_id": "keras-core", "token_count": 587 }
24
from keras_core.optimizers.base_optimizer import BaseOptimizer class TorchParallelOptimizer(BaseOptimizer): def _internal_apply_gradients(self, grads_and_vars): grads, trainable_variables = zip(*grads_and_vars) self._parallel_update_step( grads, trainable_variables, self._get_current_learning_rate(), ) self.iterations.assign(self.iterations + 1)
keras-core/keras_core/backend/torch/optimizers/torch_parallel_optimizer.py/0
{ "file_path": "keras-core/keras_core/backend/torch/optimizers/torch_parallel_optimizer.py", "repo_id": "keras-core", "token_count": 188 }
25
import inspect from keras_core.api_export import keras_core_export from keras_core.constraints.constraints import Constraint from keras_core.constraints.constraints import MaxNorm from keras_core.constraints.constraints import MinMaxNorm from keras_core.constraints.constraints import NonNeg from keras_core.constraints.constraints import UnitNorm from keras_core.saving import serialization_lib from keras_core.utils.naming import to_snake_case ALL_OBJECTS = { Constraint, MaxNorm, MinMaxNorm, NonNeg, UnitNorm, } ALL_OBJECTS_DICT = {cls.__name__: cls for cls in ALL_OBJECTS} ALL_OBJECTS_DICT.update( {to_snake_case(cls.__name__): cls for cls in ALL_OBJECTS} ) @keras_core_export("keras_core.constraints.serialize") def serialize(constraint): return serialization_lib.serialize_keras_object(constraint) @keras_core_export("keras_core.constraints.deserialize") def deserialize(config, custom_objects=None): """Return a Keras constraint object via its config.""" return serialization_lib.deserialize_keras_object( config, module_objects=ALL_OBJECTS_DICT, custom_objects=custom_objects, ) @keras_core_export("keras_core.constraints.get") def get(identifier): """Retrieve a Keras constraint object via an identifier.""" if identifier is None: return None if isinstance(identifier, dict): obj = deserialize(identifier) elif isinstance(identifier, str): config = {"class_name": str(identifier), "config": {}} obj = deserialize(config) else: obj = identifier if callable(obj): if inspect.isclass(obj): obj = obj() return obj else: raise ValueError( f"Could not interpret constraint identifier: {identifier}" )
keras-core/keras_core/constraints/__init__.py/0
{ "file_path": "keras-core/keras_core/constraints/__init__.py", "repo_id": "keras-core", "token_count": 715 }
26
from keras_core.export.export_lib import ExportArchive
keras-core/keras_core/export/__init__.py/0
{ "file_path": "keras-core/keras_core/export/__init__.py", "repo_id": "keras-core", "token_count": 16 }
27
import numpy as np import pytest from absl.testing import parameterized from keras_core import layers from keras_core import testing from keras_core.layers.convolutional.conv_test import np_conv1d from keras_core.layers.convolutional.conv_test import np_conv2d from keras_core.layers.convolutional.depthwise_conv_test import ( np_depthwise_conv1d, ) from keras_core.layers.convolutional.depthwise_conv_test import ( np_depthwise_conv2d, ) class SeparableConvBasicTest(testing.TestCase, parameterized.TestCase): @parameterized.parameters( { "depth_multiplier": 5, "filters": 5, "kernel_size": 2, "strides": 1, "padding": "valid", "data_format": "channels_last", "dilation_rate": 1, "input_shape": (3, 5, 4), "output_shape": (3, 4, 5), }, { "depth_multiplier": 6, "filters": 6, "kernel_size": 2, "strides": 1, "padding": "same", "data_format": "channels_last", "dilation_rate": (2,), "input_shape": (3, 4, 4), "output_shape": (3, 4, 6), }, { "depth_multiplier": 6, "filters": 6, "kernel_size": 2, "strides": (2,), "padding": "valid", "data_format": "channels_last", "dilation_rate": 1, "input_shape": (3, 5, 4), "output_shape": (3, 2, 6), }, ) @pytest.mark.requires_trainable_backend def test_separable_conv1d_basic( self, depth_multiplier, filters, kernel_size, strides, padding, data_format, dilation_rate, input_shape, output_shape, ): self.run_layer_test( layers.SeparableConv1D, init_kwargs={ "depth_multiplier": depth_multiplier, "filters": filters, "kernel_size": kernel_size, "strides": strides, "padding": padding, "data_format": data_format, "dilation_rate": dilation_rate, }, input_shape=input_shape, expected_output_shape=output_shape, expected_num_trainable_weights=3, expected_num_non_trainable_weights=0, expected_num_losses=0, supports_masking=False, ) @parameterized.parameters( { "depth_multiplier": 5, "filters": 5, "kernel_size": 2, "strides": 1, "padding": "valid", "data_format": "channels_last", "dilation_rate": 1, "input_shape": (3, 5, 5, 4), "output_shape": (3, 4, 4, 5), }, { "depth_multiplier": 6, "filters": 6, "kernel_size": 2, "strides": 1, "padding": "same", "data_format": "channels_last", "dilation_rate": (2, 2), "input_shape": (3, 4, 4, 4), "output_shape": (3, 4, 4, 6), }, { "depth_multiplier": 6, "filters": 6, "kernel_size": (2, 2), "strides": (2, 2), "padding": "valid", "data_format": "channels_last", "dilation_rate": (1, 1), "input_shape": (3, 5, 5, 4), "output_shape": (3, 2, 2, 6), }, ) @pytest.mark.requires_trainable_backend def test_separable_conv2d_basic( self, depth_multiplier, filters, kernel_size, strides, padding, data_format, dilation_rate, input_shape, output_shape, ): self.run_layer_test( layers.SeparableConv2D, init_kwargs={ "depth_multiplier": depth_multiplier, "filters": filters, "kernel_size": kernel_size, "strides": strides, "padding": padding, "data_format": data_format, "dilation_rate": dilation_rate, }, input_shape=input_shape, expected_output_shape=output_shape, expected_num_trainable_weights=3, expected_num_non_trainable_weights=0, expected_num_losses=0, supports_masking=False, ) def test_bad_init_args(self): # `depth_multiplier` is not positive. with self.assertRaises(ValueError): layers.SeparableConv1D(depth_multiplier=0, filters=1, kernel_size=1) # `filters` is not positive. with self.assertRaises(ValueError): layers.SeparableConv1D(depth_multiplier=1, filters=0, kernel_size=1) # `kernel_size` has 0. with self.assertRaises(ValueError): layers.SeparableConv2D( depth_multiplier=2, filters=2, kernel_size=(1, 0) ) # `strides` has 0. with self.assertRaises(ValueError): layers.SeparableConv2D( depth_multiplier=2, filters=2, kernel_size=(2, 2), strides=(1, 0), ) # `dilation_rate > 1` while `strides > 1`. with self.assertRaises(ValueError): layers.SeparableConv2D( depth_multiplier=2, filters=2, kernel_size=(2, 2), strides=2, dilation_rate=(2, 1), ) class SeparableConvCorrectnessTest(testing.TestCase, parameterized.TestCase): @parameterized.parameters( { "depth_multiplier": 5, "filters": 5, "kernel_size": 2, "strides": 1, "padding": "valid", "data_format": "channels_last", "dilation_rate": 1, }, { "depth_multiplier": 6, "filters": 6, "kernel_size": 2, "strides": 1, "padding": "same", "data_format": "channels_last", "dilation_rate": (2,), }, { "depth_multiplier": 6, "filters": 6, "kernel_size": (2,), "strides": (2,), "padding": "valid", "data_format": "channels_last", "dilation_rate": 1, }, ) def test_separable_conv1d( self, depth_multiplier, filters, kernel_size, strides, padding, data_format, dilation_rate, ): layer = layers.SeparableConv1D( depth_multiplier=depth_multiplier, filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, ) inputs = np.random.normal(size=[2, 8, 4]) layer.build(input_shape=inputs.shape) depthwise_kernel_shape = layer.depthwise_kernel.shape depthwise_kernel_weights = np.random.normal(size=depthwise_kernel_shape) layer.depthwise_kernel.assign(depthwise_kernel_weights) pointwise_kernel_shape = layer.pointwise_kernel.shape pointwise_kernel_weights = np.random.normal(size=pointwise_kernel_shape) layer.pointwise_kernel.assign(pointwise_kernel_weights) bias_weights = np.random.normal(size=(filters,)) layer.bias.assign(bias_weights) outputs = layer(inputs) expected_depthwise = np_depthwise_conv1d( inputs, depthwise_kernel_weights, np.zeros(4 * depth_multiplier), strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, ) expected = np_conv1d( expected_depthwise, pointwise_kernel_weights, bias_weights, strides=1, padding=padding, data_format=data_format, dilation_rate=1, groups=1, ) self.assertAllClose(outputs.shape, expected.shape) self.assertAllClose(outputs, expected, rtol=1e-5, atol=1e-5) @parameterized.parameters( { "depth_multiplier": 5, "filters": 5, "kernel_size": 2, "strides": 1, "padding": "valid", "data_format": "channels_last", "dilation_rate": 1, }, { "depth_multiplier": 6, "filters": 6, "kernel_size": 2, "strides": 1, "padding": "same", "data_format": "channels_last", "dilation_rate": (2, 2), }, { "depth_multiplier": 6, "filters": 6, "kernel_size": (2, 2), "strides": (2, 2), "padding": "valid", "data_format": "channels_last", "dilation_rate": (1, 1), }, ) def test_separable_conv2d( self, depth_multiplier, filters, kernel_size, strides, padding, data_format, dilation_rate, ): layer = layers.SeparableConv2D( depth_multiplier=depth_multiplier, filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, ) inputs = np.random.normal(size=[2, 8, 8, 4]) layer.build(input_shape=inputs.shape) depthwise_kernel_shape = layer.depthwise_kernel.shape depthwise_kernel_weights = np.random.normal(size=depthwise_kernel_shape) layer.depthwise_kernel.assign(depthwise_kernel_weights) pointwise_kernel_shape = layer.pointwise_kernel.shape pointwise_kernel_weights = np.random.normal(size=pointwise_kernel_shape) layer.pointwise_kernel.assign(pointwise_kernel_weights) bias_weights = np.random.normal(size=(filters,)) layer.bias.assign(bias_weights) outputs = layer(inputs) expected_depthwise = np_depthwise_conv2d( inputs, depthwise_kernel_weights, np.zeros(4 * depth_multiplier), strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, ) expected = np_conv2d( expected_depthwise, pointwise_kernel_weights, bias_weights, strides=1, padding=padding, data_format=data_format, dilation_rate=1, groups=1, ) self.assertAllClose(outputs.shape, expected.shape) self.assertAllClose(outputs, expected, rtol=1e-5, atol=1e-5)
keras-core/keras_core/layers/convolutional/separable_conv_test.py/0
{ "file_path": "keras-core/keras_core/layers/convolutional/separable_conv_test.py", "repo_id": "keras-core", "token_count": 5964 }
28
from keras_core.backend import image_data_format from keras_core.layers.input_spec import InputSpec from keras_core.layers.layer import Layer class BaseGlobalPooling(Layer): """Base global pooling layer.""" def __init__( self, pool_dimensions, data_format=None, keepdims=False, **kwargs ): super().__init__(**kwargs) self.data_format = ( image_data_format() if data_format is None else data_format ) self.keepdims = keepdims self.input_spec = InputSpec(ndim=pool_dimensions + 2) def call(self, inputs): raise NotImplementedError def compute_output_shape(self, input_shape): num_spatial_dims = len(input_shape) - 2 if self.data_format == "channels_last": if self.keepdims: return ( (input_shape[0],) + (1,) * num_spatial_dims + (input_shape[-1],) ) else: return (input_shape[0],) + (input_shape[-1],) else: if self.keepdims: return (input_shape[0], input_shape[1]) + ( 1, ) * num_spatial_dims else: return (input_shape[0], input_shape[1]) def get_config(self): config = super().get_config() config.update( { "data_format": self.data_format, "keepdims": self.keepdims, } ) return config
keras-core/keras_core/layers/pooling/base_global_pooling.py/0
{ "file_path": "keras-core/keras_core/layers/pooling/base_global_pooling.py", "repo_id": "keras-core", "token_count": 794 }
29
import numpy as np import pytest from absl.testing import parameterized from tensorflow import data as tf_data from keras_core import backend from keras_core import layers from keras_core import testing class NormalizationTest(testing.TestCase, parameterized.TestCase): @pytest.mark.requires_trainable_backend def test_normalization_basics(self): self.run_layer_test( layers.Normalization, init_kwargs={ "axis": -1, }, input_shape=(2, 3), expected_output_shape=(2, 3), expected_num_trainable_weights=0, expected_num_non_trainable_weights=3, expected_num_seed_generators=0, expected_num_losses=0, supports_masking=True, ) self.run_layer_test( layers.Normalization, init_kwargs={ "axis": -1, "mean": np.array([0.5, 0.2, -0.1]), "variance": np.array([0.1, 0.2, 0.3]), }, input_shape=(2, 3), expected_output_shape=(2, 3), expected_num_trainable_weights=0, expected_num_non_trainable_weights=0, expected_num_seed_generators=0, expected_num_losses=0, supports_masking=True, ) self.run_layer_test( layers.Normalization, init_kwargs={ "axis": -1, "mean": np.array([0.5, 0.2, -0.1]), "variance": np.array([0.1, 0.2, 0.3]), "invert": True, }, input_shape=(2, 3), expected_output_shape=(2, 3), expected_num_trainable_weights=0, expected_num_non_trainable_weights=0, expected_num_seed_generators=0, expected_num_losses=0, supports_masking=True, ) @parameterized.parameters([("np",), ("tensor",), ("tf.data")]) def test_normalization_adapt(self, input_type): x = np.random.random((32, 4)) if input_type == "np": data = x elif input_type == "tensor": data = backend.convert_to_tensor(x) elif input_type == "tf.data": data = tf_data.Dataset.from_tensor_slices(x).batch(8) layer = layers.Normalization() layer.adapt(data) self.assertTrue(layer.built) output = layer(x) output = backend.convert_to_numpy(output) self.assertAllClose(np.var(output, axis=0), 1.0, atol=1e-5) self.assertAllClose(np.mean(output, axis=0), 0.0, atol=1e-5) # Test in high-dim and with tuple axis. x = np.random.random((32, 4, 3, 5)) if input_type == "np": data = x elif input_type == "tensor": data = backend.convert_to_tensor(x) elif input_type == "tf.data": data = tf_data.Dataset.from_tensor_slices(x).batch(8) layer = layers.Normalization(axis=(1, 2)) layer.adapt(data) self.assertTrue(layer.built) output = layer(x) output = backend.convert_to_numpy(output) self.assertAllClose(np.var(output, axis=(0, 3)), 1.0, atol=1e-5) self.assertAllClose(np.mean(output, axis=(0, 3)), 0.0, atol=1e-5) def test_normalization_errors(self): # TODO pass @pytest.mark.skipif( backend.backend() != "torch", reason="Test symbolic call for torch meta device.", ) def test_call_on_meta_device_after_built(self): from keras_core.backend.torch import core layer = layers.Normalization() data = np.random.random((32, 4)) layer.adapt(data) with core.device_scope("meta"): layer(data)
keras-core/keras_core/layers/preprocessing/normalization_test.py/0
{ "file_path": "keras-core/keras_core/layers/preprocessing/normalization_test.py", "repo_id": "keras-core", "token_count": 1913 }
30
import numpy as np import pytest from keras_core import backend from keras_core import layers from keras_core import testing class GaussianNoiseTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_gaussian_noise_basics(self): self.run_layer_test( layers.GaussianNoise, init_kwargs={ "stddev": 0.2, }, input_shape=(2, 3), expected_output_shape=(2, 3), expected_num_trainable_weights=0, expected_num_non_trainable_weights=0, expected_num_seed_generators=1, expected_num_losses=0, supports_masking=True, ) def test_gaussian_noise_correctness(self): inputs = np.ones((20, 500)) layer = layers.GaussianNoise(0.3, seed=1337) outputs = layer(inputs, training=True) self.assertAllClose( np.std(backend.convert_to_numpy(outputs)), 0.3, atol=0.02 )
keras-core/keras_core/layers/regularization/gaussian_noise_test.py/0
{ "file_path": "keras-core/keras_core/layers/regularization/gaussian_noise_test.py", "repo_id": "keras-core", "token_count": 480 }
31
from keras_core import ops from keras_core.api_export import keras_core_export from keras_core.backend.common.keras_tensor import KerasTensor from keras_core.layers.layer import Layer from keras_core.ops import operation_utils @keras_core_export("keras_core.layers.Reshape") class Reshape(Layer): """Layer that reshapes inputs into the given shape. Args: target_shape: Target shape. Tuple of integers, does not include the samples dimension (batch size). Input shape: Arbitrary, although all dimensions in the input shape must be known/fixed. Use the keyword argument `input_shape` (tuple of integers, does not include the samples/batch size axis) when using this layer as the first layer in a model. Output shape: `(batch_size, *target_shape)` Example: >>> x = keras_core.Input(shape=(12,)) >>> y = keras_core.layers.Reshape((3, 4))(x) >>> y.shape (None, 3, 4) >>> # also supports shape inference using `-1` as dimension >>> y = keras_core.layers.Reshape((-1, 2, 2))(x) >>> y.shape (None, 3, 2, 2) """ def __init__(self, target_shape, **kwargs): super().__init__(**kwargs) self.target_shape = tuple(target_shape) def compute_output_shape(self, input_shape): return ( input_shape[0], *operation_utils.compute_reshape_output_shape( input_shape[1:], self.target_shape, "target_shape" ), ) def compute_output_spec(self, inputs): output_shape = self.compute_output_shape(inputs.shape) return KerasTensor( shape=output_shape, dtype=inputs.dtype, sparse=inputs.sparse ) def call(self, inputs): return ops.reshape(inputs, (ops.shape(inputs)[0],) + self.target_shape) def get_config(self): config = {"target_shape": self.target_shape} base_config = super().get_config() return {**base_config, **config}
keras-core/keras_core/layers/reshaping/reshape.py/0
{ "file_path": "keras-core/keras_core/layers/reshaping/reshape.py", "repo_id": "keras-core", "token_count": 824 }
32
import numpy as np import pytest from keras_core import initializers from keras_core import layers from keras_core import testing class SimpleRNNTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_basics(self): self.run_layer_test( layers.Bidirectional, init_kwargs={"layer": layers.SimpleRNN(4)}, input_shape=(3, 2, 4), expected_output_shape=(3, 8), expected_num_trainable_weights=6, expected_num_non_trainable_weights=0, supports_masking=True, ) self.run_layer_test( layers.Bidirectional, init_kwargs={ "layer": layers.SimpleRNN(4), "backward_layer": layers.SimpleRNN(4, go_backwards=True), "merge_mode": "sum", }, input_shape=(3, 2, 4), expected_output_shape=(3, 4), expected_num_trainable_weights=6, expected_num_non_trainable_weights=0, supports_masking=True, ) def test_correctness(self): sequence = np.arange(24).reshape((2, 3, 4)).astype("float32") forward_layer = layers.SimpleRNN( 2, kernel_initializer=initializers.Constant(0.01), recurrent_initializer=initializers.Constant(0.02), bias_initializer=initializers.Constant(0.03), ) layer = layers.Bidirectional( layer=forward_layer, ) output = layer(sequence) self.assertAllClose( np.array( [ [0.39687276, 0.39687276, 0.10004295, 0.10004295], [0.7237238, 0.7237238, 0.53391594, 0.53391594], ] ), output, ) layer = layers.Bidirectional(layer=forward_layer, merge_mode="ave") output = layer(sequence) self.assertAllClose( np.array([[0.24845785, 0.24845785], [0.6288199, 0.6288199]]), output, ) layer = layers.Bidirectional(layer=forward_layer, merge_mode=None) output1, output2 = layer(sequence) self.assertAllClose( np.array([[0.39687276, 0.39687276], [0.7237238, 0.7237238]]), output1, ) self.assertAllClose( np.array([[0.10004295, 0.10004295], [0.53391594, 0.53391594]]), output2, ) backward_layer = layers.SimpleRNN( 2, kernel_initializer=initializers.Constant(0.03), recurrent_initializer=initializers.Constant(0.02), bias_initializer=initializers.Constant(0.01), go_backwards=True, ) layer = layers.Bidirectional( layer=forward_layer, backward_layer=backward_layer, merge_mode="mul" ) output = layer(sequence) self.assertAllClose( np.array([[0.08374989, 0.08374989], [0.6740834, 0.6740834]]), output, ) forward_layer = layers.GRU( 2, kernel_initializer=initializers.Constant(0.01), recurrent_initializer=initializers.Constant(0.02), bias_initializer=initializers.Constant(0.03), return_sequences=True, ) layer = layers.Bidirectional(layer=forward_layer, merge_mode="sum") output = layer(sequence) self.assertAllClose( np.array( [ [ [0.20937867, 0.20937867], [0.34462988, 0.34462988], [0.40290534, 0.40290534], ], [ [0.59829646, 0.59829646], [0.6734641, 0.6734641], [0.6479671, 0.6479671], ], ] ), output, ) def test_statefulness(self): sequence = np.arange(24).reshape((2, 4, 3)).astype("float32") forward_layer = layers.LSTM( 2, kernel_initializer=initializers.Constant(0.01), recurrent_initializer=initializers.Constant(0.02), bias_initializer=initializers.Constant(0.03), stateful=True, ) layer = layers.Bidirectional(layer=forward_layer) layer(sequence) output = layer(sequence) self.assertAllClose( np.array( [ [0.26234663, 0.26234663, 0.16959146, 0.16959146], [0.6137073, 0.6137073, 0.5381646, 0.5381646], ] ), output, ) layer.reset_state() layer(sequence) output = layer(sequence) self.assertAllClose( np.array( [ [0.26234663, 0.26234663, 0.16959146, 0.16959146], [0.6137073, 0.6137073, 0.5381646, 0.5381646], ] ), output, ) def test_pass_initial_state(self): sequence = np.arange(24).reshape((2, 4, 3)).astype("float32") initial_state = [ np.arange(4).reshape((2, 2)).astype("float32") * 1, np.arange(4).reshape((2, 2)).astype("float32") * 2, np.arange(4).reshape((2, 2)).astype("float32") * 3, np.arange(4).reshape((2, 2)).astype("float32") * 4, ] forward_layer = layers.LSTM( 2, kernel_initializer=initializers.Constant(0.01), recurrent_initializer=initializers.Constant(0.02), bias_initializer=initializers.Constant(0.03), ) layer = layers.Bidirectional( layer=forward_layer, ) output = layer(sequence, initial_state=initial_state) self.assertAllClose( np.array( [ [0.20794602, 0.4577124, 0.14046375, 0.48191673], [0.6682636, 0.6711909, 0.60943645, 0.60950446], ] ), output, ) def test_masking(self): sequence = np.arange(24).reshape((2, 4, 3)).astype("float32") forward_layer = layers.GRU( 2, kernel_initializer=initializers.Constant(0.01), recurrent_initializer=initializers.Constant(0.02), bias_initializer=initializers.Constant(0.03), ) layer = layers.Bidirectional(layer=forward_layer) mask = np.array([[True, True, False, True], [True, False, False, True]]) output = layer(sequence, mask=mask) self.assertAllClose( np.array( [ [0.19393763, 0.19393763, 0.11669192, 0.11669192], [0.30818558, 0.30818558, 0.28380975, 0.28380975], ] ), output, )
keras-core/keras_core/layers/rnn/bidirectional_test.py/0
{ "file_path": "keras-core/keras_core/layers/rnn/bidirectional_test.py", "repo_id": "keras-core", "token_count": 3849 }
33
from keras_core import backend from keras_core.mixed_precision.dtype_policy import DTypePolicy from keras_core.mixed_precision.dtype_policy import dtype_policy from keras_core.mixed_precision.dtype_policy import set_dtype_policy from keras_core.saving import serialization_lib def resolve_policy(identifier): if identifier is None: return dtype_policy() if isinstance(identifier, DTypePolicy): return identifier if isinstance(identifier, dict): return serialization_lib.deserialize_keras_object(identifier) if isinstance(identifier, str): return DTypePolicy(identifier) try: return DTypePolicy(backend.standardize_dtype(identifier)) except: raise ValueError( "Cannot interpret `dtype` argument. Expected a string " f"or an instance of DTypePolicy. Received: dtype={identifier}" )
keras-core/keras_core/mixed_precision/__init__.py/0
{ "file_path": "keras-core/keras_core/mixed_precision/__init__.py", "repo_id": "keras-core", "token_count": 329 }
34
import tree from keras_core.trainers.data_adapters import data_adapter_utils from keras_core.trainers.data_adapters.data_adapter import DataAdapter class TFDatasetAdapter(DataAdapter): """Adapter that handles `tf.data.Dataset`.""" def __init__(self, dataset, class_weight=None): from keras_core.utils.module_utils import tensorflow as tf if not isinstance(dataset, tf.data.Dataset): raise ValueError( "Expected argument `dataset` to be a tf.data.Dataset. " f"Received: {dataset}" ) if class_weight is not None: dataset = dataset.map( make_class_weight_map_fn(class_weight) ).prefetch(tf.data.AUTOTUNE) self._dataset = dataset def get_numpy_iterator(self): for batch in self._dataset: yield tree.map_structure(lambda x: x.numpy(), batch) def get_tf_dataset(self): return self._dataset @property def num_batches(self): cardinality = int(self._dataset.cardinality()) # Return None for Unknown and Infiite cardinality datasets if cardinality < 0: return None return cardinality @property def batch_size(self): first_element_spec = tree.flatten(self._dataset.element_spec)[0] return first_element_spec.shape[0] @property def has_partial_batch(self): return None @property def partial_batch_size(self): return None def make_class_weight_map_fn(class_weight): """Applies class weighting to a `Dataset`. The `Dataset` is assumed to be in format `(x, y)` or `(x, y, sw)`, where `y` must be a single `Tensor`. Args: class_weight: A map where the keys are integer class ids and values are the class weights, e.g. `{0: 0.2, 1: 0.6, 2: 0.3}` Returns: A function that can be used with `tf.data.Dataset.map` to apply class weighting. """ from keras_core.utils.module_utils import tensorflow as tf class_weight_tensor = tf.convert_to_tensor( [ class_weight.get(int(c), 1.0) for c in range(max(class_weight.keys()) + 1) ] ) def class_weights_map_fn(*data): """Convert `class_weight` to `sample_weight`.""" x, y, sw = data_adapter_utils.unpack_x_y_sample_weight(data) if sw is not None: raise ValueError( "You cannot `class_weight` and `sample_weight` " "at the same time." ) if tree.is_nested(y): raise ValueError( "`class_weight` is only supported for Models with a single " "output." ) if y.shape.rank >= 2: y_classes = tf.__internal__.smart_cond.smart_cond( tf.shape(y)[-1] > 1, lambda: tf.argmax(y, axis=-1), lambda: tf.cast(tf.round(tf.squeeze(y, axis=-1)), tf.int32), ) else: # Special casing for rank 1, where we can guarantee sparse encoding. y_classes = tf.cast(tf.round(y), tf.int32) cw = tf.gather(class_weight_tensor, y_classes) return x, y, cw return class_weights_map_fn
keras-core/keras_core/trainers/data_adapters/tf_dataset_adapter.py/0
{ "file_path": "keras-core/keras_core/trainers/data_adapters/tf_dataset_adapter.py", "repo_id": "keras-core", "token_count": 1531 }
35
5.4.0
keras-cv/.bazelversion/0
{ "file_path": "keras-cv/.bazelversion", "repo_id": "keras-cv", "token_count": 5 }
36
load("//build_deps/tf_dependency:tf_configure.bzl", "tf_configure") tf_configure(name = "local_config_tf")
keras-cv/WORKSPACE/0
{ "file_path": "keras-cv/WORKSPACE", "repo_id": "keras-cv", "token_count": 44 }
37
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow import keras from keras_cv.layers import RandomHue from keras_cv.layers.preprocessing.base_image_augmentation_layer import ( BaseImageAugmentationLayer, ) from keras_cv.utils import preprocessing as preprocessing_utils class OldRandomHue(BaseImageAugmentationLayer): """Randomly adjusts the hue on given images. This layer will randomly increase/reduce the hue for the input RGB images. At inference time, the output will be identical to the input. Call the layer with `training=True` to adjust the brightness of the input. The image hue is adjusted by converting the image(s) to HSV and rotating the hue channel (H) by delta. The image is then converted back to RGB. Args: factor: A tuple of two floats, a single float or `keras_cv.FactorSampler`. `factor` controls the extent to which the image hue is impacted. `factor=0.0` makes this layer perform a no-op operation, while a value of 1.0 performs the most aggressive contrast adjustment available. If a tuple is used, a `factor` is sampled between the two values for every image augmented. If a single float is used, a value between `0.0` and the passed float is sampled. In order to ensure the value is always the same, please pass a tuple with two identical floats: `(0.5, 0.5)`. value_range: the range of values the incoming images will have. Represented as a two number tuple written [low, high]. This is typically either `[0, 1]` or `[0, 255]` depending on how your preprocessing pipeline is set up. seed: Integer. Used to create a random seed. """ def __init__(self, factor, value_range, seed=None, **kwargs): super().__init__(seed=seed, **kwargs) self.factor = preprocessing_utils.parse_factor( factor, ) self.value_range = value_range self.seed = seed def get_random_transformation(self, **kwargs): invert = preprocessing_utils.random_inversion(self._random_generator) # We must scale self.factor() to the range [-0.5, 0.5]. This is because # the tf.image operation performs rotation on the hue saturation value # orientation. This can be thought of as an angle in the range # [-180, 180] return invert * self.factor() * 0.5 def augment_image(self, image, transformation=None, **kwargs): image = preprocessing_utils.transform_value_range( image, self.value_range, (0, 1), dtype=self.compute_dtype ) # tf.image.adjust_hue expects floats to be in range [0, 1] image = tf.image.adjust_hue(image, delta=transformation) # RandomHue is one of the rare KPLs that needs to clip image = tf.clip_by_value(image, 0, 1) image = preprocessing_utils.transform_value_range( image, (0, 1), self.value_range, dtype=self.compute_dtype ) return image def augment_bounding_boxes(self, bounding_boxes, **kwargs): return bounding_boxes def augment_label(self, label, transformation=None, **kwargs): return label def augment_segmentation_mask( self, segmentation_mask, transformation, **kwargs ): return segmentation_mask def get_config(self): config = { "factor": self.factor, "value_range": self.value_range, "seed": self.seed, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) class RandomHueTest(tf.test.TestCase): def test_consistency_with_old_impl_rescaled_range(self): image_shape = (16, 32, 32, 3) fixed_factor = (0.8, 0.8) fixed_seed = 2023 image = tf.random.uniform(shape=image_shape) layer = RandomHue(fixed_factor, (0, 1), fixed_seed) old_layer = OldRandomHue(fixed_factor, (0, 1), fixed_seed) output = layer(image) old_output = old_layer(image) self.assertAllClose(old_output, output) def test_consistency_with_old_impl_rgb_range(self): image_shape = (16, 32, 32, 3) fixed_factor = (0.8, 0.8) fixed_seed = 2023 image = tf.random.uniform(shape=image_shape) * 255.0 layer = RandomHue(fixed_factor, (0, 255), fixed_seed) old_layer = OldRandomHue(fixed_factor, (0, 255), fixed_seed) output = layer(image) old_output = old_layer(image) self.assertAllClose(old_output, output, atol=1e-3, rtol=1e-5) if __name__ == "__main__": # Run benchmark (x_train, _), _ = keras.datasets.cifar10.load_data() x_train = x_train.astype(np.float32) num_images = [1000, 2000, 5000, 10000] results = {} aug_candidates = [RandomHue, OldRandomHue] aug_args = {"factor": (0.5), "value_range": (0, 255)} for aug in aug_candidates: # Eager Mode c = aug.__name__ layer = aug(**aug_args) runtimes = [] print(f"Timing {c}") for n_images in num_images: # warmup layer(x_train[:n_images]) t0 = time.time() r1 = layer(x_train[:n_images]) t1 = time.time() runtimes.append(t1 - t0) print(f"Runtime for {c}, n_images={n_images}: {t1-t0}") results[c] = runtimes # Graph Mode c = aug.__name__ + " Graph Mode" layer = aug(**aug_args) @tf.function() def apply_aug(inputs): return layer(inputs) runtimes = [] print(f"Timing {c}") for n_images in num_images: # warmup apply_aug(x_train[:n_images]) t0 = time.time() r1 = apply_aug(x_train[:n_images]) t1 = time.time() runtimes.append(t1 - t0) print(f"Runtime for {c}, n_images={n_images}: {t1-t0}") results[c] = runtimes # XLA Mode # OldRandomHue fails to run jit_compile=True plt.figure() for key in results: plt.plot(num_images, results[key], label=key) plt.xlabel("Number images") plt.ylabel("Runtime (seconds)") plt.legend() plt.savefig("comparison.png") # So we can actually see more relevant margins del results[aug_candidates[1].__name__] plt.figure() for key in results: plt.plot(num_images, results[key], label=key) plt.xlabel("Number images") plt.ylabel("Runtime (seconds)") plt.legend() plt.savefig("comparison_no_old_eager.png") # Run unit tests tf.test.main()
keras-cv/benchmarks/vectorized_random_hue.py/0
{ "file_path": "keras-cv/benchmarks/vectorized_random_hue.py", "repo_id": "keras-cv", "token_count": 3049 }
38
# Copyright 2023 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import tensorflow as tf from packaging import version from keras_cv.backend import config as backend_config from keras_cv.backend.config import keras_3 def pytest_addoption(parser): parser.addoption( "--run_large", action="store_true", default=False, help="run large tests", ) parser.addoption( "--run_extra_large", action="store_true", default=False, help="run extra_large tests", ) parser.addoption( "--check_gpu", action="store_true", default=False, help="fail if a gpu is not present", ) def pytest_configure(config): # Verify that device has GPU and detected by backend if config.getoption("--check_gpu"): found_gpu = False backend = backend_config.backend() if backend == "jax": import jax try: found_gpu = bool(jax.devices("gpu")) except RuntimeError: found_gpu = False elif backend == "tensorflow": found_gpu = bool(tf.config.list_logical_devices("GPU")) elif backend == "torch": import torch found_gpu = bool(torch.cuda.device_count()) if not found_gpu: pytest.fail(f"No GPUs discovered on the {backend} backend.") config.addinivalue_line( "markers", "large: mark test as being slow or requiring a network" ) config.addinivalue_line( "markers", "extra_large: mark test as being too large to run continuously", ) config.addinivalue_line( "markers", "tf_keras_only: mark test as a Keras 2-only test", ) config.addinivalue_line( "markers", "tf_only: mark test as a Tensorflow-only test", ) def pytest_collection_modifyitems(config, items): run_extra_large_tests = config.getoption("--run_extra_large") # Run large tests for --run_extra_large or --run_large. run_large_tests = config.getoption("--run_large") or run_extra_large_tests # Run Keras saving tests on 2.12 stable, nightlies and later releases. skip_keras_saving_test = pytest.mark.skipif( version.parse(tf.__version__) < version.parse("2.12.0-dev0"), reason="keras_v3 format requires tf > 2.12.", ) skip_large = pytest.mark.skipif( not run_large_tests, reason="need --run_large option to run" ) skip_extra_large = pytest.mark.skipif( not run_extra_large_tests, reason="need --run_extra_large option to run" ) skip_keras_2_only = pytest.mark.skipif( keras_3(), reason="This test is only supported on Keras 2", ) skip_tf_only = pytest.mark.skipif( keras_3() and backend_config.backend() != "tensorflow", reason="This test is only supported on TensorFlow", ) for item in items: if "keras_format" in item.name: item.add_marker(skip_keras_saving_test) if "tf_format" in item.name: item.add_marker(skip_extra_large) if "large" in item.keywords: item.add_marker(skip_large) if "extra_large" in item.keywords: item.add_marker(skip_extra_large) if "tf_keras_only" in item.keywords: item.add_marker(skip_keras_2_only) if "tf_only" in item.keywords: item.add_marker(skip_tf_only)
keras-cv/conftest.py/0
{ "file_path": "keras-cv/conftest.py", "repo_id": "keras-cv", "token_count": 1663 }
39
licenses(["notice"]) # Apache 2.0 package(default_visibility = ["//visibility:public"]) config_setting( name = "windows", constraint_values = ["@bazel_tools//platforms:windows"], ) py_library( name = "keras_cv", srcs = glob(["**/*.py"]), data = [ "//keras_cv/custom_ops:_keras_cv_custom_ops.so", ] )
keras-cv/keras_cv/BUILD/0
{ "file_path": "keras-cv/keras_cv/BUILD", "repo_id": "keras-cv", "token_count": 145 }
40
# Copyright 2022 The KerasCV Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ formats.py contains axis information for each supported format. """ from keras_cv.api_export import keras_cv_export @keras_cv_export("keras_cv.bounding_box.XYXY") class XYXY: """XYXY contains axis indices for the XYXY format. All values in the XYXY format should be absolute pixel values. The XYXY format consists of the following required indices: - LEFT: left of the bounding box - TOP: top of the bounding box - RIGHT: right of the bounding box - BOTTOM: bottom of the bounding box """ LEFT = 0 TOP = 1 RIGHT = 2 BOTTOM = 3 @keras_cv_export("keras_cv.bounding_box.REL_XYXY") class REL_XYXY: """REL_XYXY contains axis indices for the REL_XYXY format. REL_XYXY is like XYXY, but each value is relative to the width and height of the origin image. Values are percentages of the origin images' width and height respectively. The REL_XYXY format consists of the following required indices: - LEFT: left of the bounding box - TOP: top of the bounding box - RIGHT: right of the bounding box - BOTTOM: bottom of the bounding box """ LEFT = 0 TOP = 1 RIGHT = 2 BOTTOM = 3 @keras_cv_export("keras_cv.bounding_box.CENTER_XYWH") class CENTER_XYWH: """CENTER_XYWH contains axis indices for the CENTER_XYWH format. All values in the CENTER_XYWH format should be absolute pixel values. The CENTER_XYWH format consists of the following required indices: - X: X coordinate of the center of the bounding box - Y: Y coordinate of the center of the bounding box - WIDTH: width of the bounding box - HEIGHT: height of the bounding box """ X = 0 Y = 1 WIDTH = 2 HEIGHT = 3 @keras_cv_export("keras_cv.bounding_box.XYWH") class XYWH: """XYWH contains axis indices for the XYWH format. All values in the XYWH format should be absolute pixel values. The XYWH format consists of the following required indices: - X: X coordinate of the left of the bounding box - Y: Y coordinate of the top of the bounding box - WIDTH: width of the bounding box - HEIGHT: height of the bounding box """ X = 0 Y = 1 WIDTH = 2 HEIGHT = 3 @keras_cv_export("keras_cv.bounding_box.REL_XYWH") class REL_XYWH: """REL_XYWH contains axis indices for the XYWH format. REL_XYXY is like XYWH, but each value is relative to the width and height of the origin image. Values are percentages of the origin images' width and height respectively. - X: X coordinate of the left of the bounding box - Y: Y coordinate of the top of the bounding box - WIDTH: width of the bounding box - HEIGHT: height of the bounding box """ X = 0 Y = 1 WIDTH = 2 HEIGHT = 3 @keras_cv_export("keras_cv.bounding_box.YXYX") class YXYX: """YXYX contains axis indices for the YXYX format. All values in the YXYX format should be absolute pixel values. The YXYX format consists of the following required indices: - TOP: top of the bounding box - LEFT: left of the bounding box - BOTTOM: bottom of the bounding box - RIGHT: right of the bounding box """ TOP = 0 LEFT = 1 BOTTOM = 2 RIGHT = 3 @keras_cv_export("keras_cv.bounding_box.REL_YXYX") class REL_YXYX: """REL_YXYX contains axis indices for the REL_YXYX format. REL_YXYX is like YXYX, but each value is relative to the width and height of the origin image. Values are percentages of the origin images' width and height respectively. The REL_YXYX format consists of the following required indices: - TOP: top of the bounding box - LEFT: left of the bounding box - BOTTOM: bottom of the bounding box - RIGHT: right of the bounding box """ TOP = 0 LEFT = 1 BOTTOM = 2 RIGHT = 3
keras-cv/keras_cv/bounding_box/formats.py/0
{ "file_path": "keras-cv/keras_cv/bounding_box/formats.py", "repo_id": "keras-cv", "token_count": 1517 }
41