text
stringlengths
5
261k
id
stringlengths
16
106
metadata
dict
__index_level_0__
int64
0
266
# Keras layers API Layers are the basic building blocks of neural networks in Keras. A layer consists of a tensor-in tensor-out computation function (the layer's `call` method) and some state, held in TensorFlow variables (the layer's *weights*). A Layer instance is callable, much like a function: ```python import keras from keras import layers layer = layers.Dense(32, activation='relu') inputs = keras.random.uniform(shape=(10, 20)) outputs = layer(inputs) ``` Unlike a function, though, layers maintain a state, updated when the layer receives data during training, and stored in `layer.weights`: ```python >>> layer.weights [<KerasVariable shape=(20, 32), dtype=float32, path=dense/kernel>, <KerasVariable shape=(32,), dtype=float32, path=dense/bias>] ``` --- ## Creating custom layers While Keras offers a wide range of built-in layers, they don't cover ever possible use case. Creating custom layers is very common, and very easy. See the guide [Making new layers and models via subclassing](/guides/making_new_layers_and_models_via_subclassing) for an extensive overview, and refer to the documentation for [the base `Layer` class](base_layer). --- ## Layers API overview {{toc}}
keras-io/templates/api/layers/index.md/0
{ "file_path": "keras-io/templates/api/layers/index.md", "repo_id": "keras-io", "token_count": 358 }
143
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="description" content="Keras documentation"> <meta name="author" content="Keras Team"> <link rel="shortcut icon" href="https://keras.io/img/favicon.ico"> {% if relative_url %} <link rel="canonical" href="https://keras.io{{relative_url}}" /> {% endif %} <!-- Social --> <meta property="og:title" content="Keras documentation: {{title}}"> <meta property="og:image" content="https://keras.io/img/logo-k-keras-wb.png"> <meta name="twitter:title" content="Keras documentation: {{title}}"> <meta name="twitter:image" content="https://keras.io/img/k-keras-social.png"> <meta name="twitter:card" content="summary"> <title>{{title}}</title> <!-- Bootstrap core CSS --> <link href="{{base_url}}css/bootstrap.min.css" rel="stylesheet"> <!-- Custom fonts for this template --> <link href="https://fonts.googleapis.com/css2?family=Open+Sans:wght@400;600;700;800&display=swap" rel="stylesheet"> <!-- Custom styles for this template --> <link href="{{base_url}}css/docs.css" rel="stylesheet"> <link href="{{base_url}}css/monokai.css" rel="stylesheet"> <!-- Google Tag Manager --> <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-5DNGF4N'); </script> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-175165319-128', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Tag Manager --> <script async defer src="https://buttons.github.io/buttons.js"></script> </head> <body> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5DNGF4N" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <div class='k-page'> <div class="k-nav" id="nav-menu"> <a href='{{base_url}}'><img src='{{base_url}}img/logo-small.png' class='logo-small' /></a> <div class="nav flex-column nav-pills" role="tablist" aria-orientation="vertical"> {% for item in nav %} <a class="nav-link{% if item.active %} active{% endif %}" href="{{item.url}}" role="tab" aria-selected="{{item.selected}}">{{item.title}}</a> {% if item.active %} {% for child in item.children %} <a class="nav-sublink{% if child.active %} active{% endif %}" href="{{child.url}}">{{child.title}}</a> {% if child.active %} {% for grandchild in child.children %} <a class="nav-sublink2{% if grandchild.active %} active{% endif %}" href="{{grandchild.url}}">{{grandchild.title}}</a> {% endfor %} {% endif %} {% endfor %} {% endif %} {% endfor %} </div> </div> <div class='k-main'> {{main}} </div> </div> </body> <footer style="float: left; width: 100%; padding: 1em; border-top: solid 1px #bbb;"> <a href="https://policies.google.com/terms">Terms</a> | <a href="https://policies.google.com/privacy">Privacy</a> </footer> </html>
keras-io/theme/base.html/0
{ "file_path": "keras-io/theme/base.html", "repo_id": "keras-io", "token_count": 1565 }
144
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import time import tensorflow as tf import tensorflow_datasets as tfds from absl import app from absl import flags from tensorflow import keras import keras_nlp FLAGS = flags.FLAGS flags.DEFINE_string( "model", None, "The name of the classifier such as BertClassifier.", ) flags.DEFINE_string( "preset", None, "The name of a preset, e.g. bert_base_multi.", ) flags.DEFINE_string( "mixed_precision_policy", "mixed_float16", "The global precision policy to use. E.g. 'mixed_float16' or 'float32'.", ) flags.DEFINE_float("learning_rate", 5e-5, "The learning rate.") flags.DEFINE_integer("num_epochs", 1, "The number of epochs.") flags.DEFINE_integer("batch_size", 16, "The batch size.") tfds.disable_progress_bar() BUFFER_SIZE = 10000 def create_imdb_dataset(): dataset, info = tfds.load( "imdb_reviews", as_supervised=True, with_info=True ) train_dataset, test_dataset = dataset["train"], dataset["test"] train_dataset = ( train_dataset.shuffle(BUFFER_SIZE) .batch(FLAGS.batch_size) .prefetch(tf.data.AUTOTUNE) ) # We split the test data evenly into validation and test sets. test_dataset_size = info.splits["test"].num_examples // 2 val_dataset = ( test_dataset.take(test_dataset_size) .batch(FLAGS.batch_size) .prefetch(tf.data.AUTOTUNE) ) test_dataset = ( test_dataset.skip(test_dataset_size) .batch(FLAGS.batch_size) .prefetch(tf.data.AUTOTUNE) ) return train_dataset, val_dataset, test_dataset def create_model(): for name, symbol in keras_nlp.models.__dict__.items(): if inspect.isclass(symbol) and issubclass(symbol, keras.Model): if FLAGS.model and name != FLAGS.model: continue if not hasattr(symbol, "from_preset"): continue for preset in symbol.presets: if FLAGS.preset and preset != FLAGS.preset: continue model = symbol.from_preset(preset) print(f"Using model {name} with preset {preset}") return model raise ValueError(f"Model {FLAGS.model} or preset {FLAGS.preset} not found.") def train_model( model: keras.Model, train_dataset: tf.data.Dataset, validation_dataset: tf.data.Dataset, ): model.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=keras.optimizers.Adam(5e-5), metrics=[keras.metrics.SparseCategoricalAccuracy()], jit_compile=True, ) model.fit( train_dataset, epochs=FLAGS.num_epochs, validation_data=validation_dataset, verbose=2, ) return model def evaluate_model(model: keras.Model, test_dataset: tf.data.Dataset): loss, accuracy = model.evaluate(test_dataset) print(f"Test loss: {loss}") print(f"Test accuracy: {accuracy}") def main(_): keras.mixed_precision.set_global_policy(FLAGS.mixed_precision_policy) # Start time start_time = time.time() train_dataset, validation_dataset, test_dataset = create_imdb_dataset() model = create_model() model = train_model(model, train_dataset, validation_dataset) evaluate_model(model, test_dataset) # End time end_time = time.time() print(f"Total wall time: {end_time - start_time}") if __name__ == "__main__": flags.mark_flag_as_required("model") app.run(main)
keras-nlp/benchmarks/sentiment_analysis.py/0
{ "file_path": "keras-nlp/benchmarks/sentiment_analysis.py", "repo_id": "keras-nlp", "token_count": 1704 }
145
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import tensorflow as tf from absl import app from absl import flags from absl import logging from tensorflow import keras # Import data module to include the customized serializable, required for # loading tokenizer. import examples.machine_translation.data # noqa: F401. FLAGS = flags.FLAGS flags.DEFINE_integer( "sequence_length", 20, "Input and output sequence length.", ) flags.DEFINE_string( "saved_model_path", "saved_models/machine_translation_model", "The path to saved model", ) flags.DEFINE_string("inputs", None, "The inputs to run machine translation on.") EXAMPLES = [ ( "Tom doesn't listen to anyone.", "[start] Tomás no escucha a nadie. [end]", ), ("I got soaked to the skin.", "[start] Estoy chorreando. [end]"), ("I imagined that.", "[start] Me imaginé eso. [end]"), ("The baby is crying.", "[start] El bebé está llorando. [end]"), ( "I've never felt so exhilarated.", "[start] Nunca me he sentido tan animado. [end]", ), ( "Please forgive me for not having written sooner.", "[start] Perdóname por no haberte escrito antes, por favor. [end]", ), ("I expected more from you.", "[start] Esperaba más de vos. [end]"), ("I have a computer.", "[start] Tengo un computador. [end]"), ("Dinner's ready!", "[start] ¡La cena está lista! [end]"), ("Let me finish.", "[start] Déjame terminar. [end]"), ] def decode_sequence(input_sentence, model, max_sequence_length, lookup_table): encoder_tokenizer = model.encoder_tokenizer decoder_tokenizer = model.decoder_tokenizer tokenized_input = encoder_tokenizer([input_sentence]) start_token = decoder_tokenizer("[start]")[0].numpy() end_token = decoder_tokenizer("[end]")[0].numpy() decoded_sentence = [start_token] for i in range(max_sequence_length): decoder_inputs = tf.convert_to_tensor( [decoded_sentence], dtype="int64", ) decoder_inputs = tf.concat( [ decoder_inputs, tf.zeros( [1, max_sequence_length - i - 1], dtype="int64", ), ], axis=1, ) input = { "encoder_inputs": tokenized_input, "decoder_inputs": decoder_inputs, } predictions = model(input) predicted_token = np.argmax(predictions[0, i, :]) decoded_sentence.append(predicted_token) if predicted_token == end_token: break detokenized_output = [] for token in decoded_sentence: detokenized_output.append(lookup_table[token]) return " ".join(detokenized_output) def main(_): loaded_model = keras.models.load_model(FLAGS.saved_model_path) decoder_tokenizer = loaded_model.decoder_tokenizer vocab = decoder_tokenizer.get_vocabulary() index_lookup_table = dict(zip(range(len(vocab)), vocab)) if FLAGS.inputs is not None: # Run inference on user-specified sentence. translated = decode_sequence( FLAGS.inputs, loaded_model, FLAGS.sequence_length, index_lookup_table, ) logging.info(f"Translated results: {translated}") else: translated = [] for example in EXAMPLES: translated.append( decode_sequence( example[0], loaded_model, FLAGS.sequence_length, index_lookup_table, ) ) for i in range(len(EXAMPLES)): print("ENGLISH SENTENCE: ", EXAMPLES[i][0]) print("MACHINE TRANSLATED RESULT: ", translated[i]) print("GOLDEN: ", EXAMPLES[i][1]) if __name__ == "__main__": app.run(main)
keras-nlp/examples/machine_translation/inference.py/0
{ "file_path": "keras-nlp/examples/machine_translation/inference.py", "repo_id": "keras-nlp", "token_count": 1913 }
146
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from keras_nlp.backend import keras from keras_nlp.backend import ops from keras_nlp.backend import random from keras_nlp.layers.modeling.position_embedding import PositionEmbedding from keras_nlp.tests.test_case import TestCase def custom_init(shape, dtype=None): count = 1 for length in shape: count *= length return ops.reshape(ops.arange(count, dtype=dtype), shape) class PositionEmbeddingTest(TestCase): def test_layer_behaviors(self): self.run_layer_test( cls=PositionEmbedding, init_kwargs={ "sequence_length": 21, }, input_data=random.uniform(shape=(4, 21, 30)), expected_output_shape=(4, 21, 30), expected_num_trainable_weights=1, ) def test_layer_behaviors_4d(self): self.run_layer_test( cls=PositionEmbedding, init_kwargs={ "sequence_length": 21, }, input_data=random.uniform(shape=(4, 5, 21, 30)), expected_output_shape=(4, 5, 21, 30), expected_num_trainable_weights=1, ) def test_float16_dtype(self): # Create a 3-dimensional input (the first dimension is implicit). sequence_length = 21 feature_size = 30 test_layer = PositionEmbedding( sequence_length=sequence_length, dtype="float16" ) input_tensor = keras.Input(shape=(sequence_length, feature_size)) output_tensor = test_layer(input_tensor) # When using static position embedding shapes, the output is expected # to be the same as the input shape in all dimensions save batch. expected_output_shape = (None, sequence_length, feature_size) self.assertEqual(expected_output_shape, output_tensor.shape) # The default output dtype for this layer should be "float32". self.assertEqual("float16", output_tensor.dtype) def test_dynamic_layer_output_shape(self): max_sequence_length = 40 feature_size = 30 test_layer = PositionEmbedding(sequence_length=max_sequence_length) # Create a 3-dimensional input (the first dimension is implicit). input_tensor = keras.Input(shape=(None, feature_size)) output_tensor = test_layer(input_tensor) # When using dynamic position embedding shapes, the output is expected # to be the same as the input shape in all dimensions - but may be None # if the input shape is None there. expected_output_shape = (None, None, feature_size) self.assertEqual(expected_output_shape, output_tensor.shape) def test_more_than_3_dimensions_dynamic(self): max_sequence_length = 60 feature_size = 30 test_layer = PositionEmbedding(sequence_length=max_sequence_length) # Create a 4-dimensional input (the first dimension is implicit). input_tensor = keras.Input(shape=(None, None, feature_size)) output_tensor = test_layer(input_tensor) # When using dynamic position embedding shapes, the output is expected # to be the same as the input shape in all dimensions - but may be None # if the input shape is None there. expected_output_shape = (None, None, None, feature_size) self.assertEqual(expected_output_shape, output_tensor.shape) def test_dynamic_layer_slicing(self): max_sequence_length = 40 feature_size = 30 test_layer = PositionEmbedding(sequence_length=max_sequence_length) # Create a 3-dimensional input (the first dimension is implicit). input_tensor = keras.Input(shape=(None, feature_size)) output_tensor = test_layer(input_tensor) model = keras.Model(input_tensor, output_tensor) # Create input data that is shorter than max_sequence_length, which # should trigger a down-slice. input_length = 17 # Note: This test explicitly uses a batch size of 1. This is to get # around Keras' restriction on Model invocations: inputs are expected to # have the same batch cardinality as outputs. In practice, this layer # should be used inside a model, where it can be projected when added to # another tensor. input_data = np.ones(shape=[1, input_length, feature_size]) output_data = model.predict(input_data) self.assertAllEqual([1, input_length, feature_size], output_data.shape) def test_callable_initializer(self): max_sequence_length = 4 feature_size = 3 test_layer = PositionEmbedding( sequence_length=max_sequence_length, initializer=custom_init, ) inputs = keras.Input(shape=(max_sequence_length, feature_size)) outputs = test_layer(inputs) model = keras.Model(inputs=inputs, outputs=outputs) batch_size = 2 data = np.zeros(shape=[batch_size, max_sequence_length, feature_size]) model(data) model_output = model.predict(data) expected_output = np.broadcast_to( np.reshape( np.arange(max_sequence_length * feature_size), [max_sequence_length, feature_size], ), [batch_size, max_sequence_length, feature_size], ) self.assertAllClose(model_output, expected_output) def test_start_index(self): batch_size, seq_length, feature_size = 2, 3, 4 layer = PositionEmbedding(seq_length) data = random.uniform(shape=(batch_size, seq_length, feature_size)) full_output = layer(data) sequential_output = ops.zeros((batch_size, seq_length, feature_size)) for i in range(seq_length): parial_output = layer(data[:, i : i + 1, :], start_index=i) sequential_output = ops.slice_update( sequential_output, (0, i, 0), parial_output ) self.assertAllClose(full_output, sequential_output)
keras-nlp/keras_nlp/layers/modeling/position_embedding_test.py/0
{ "file_path": "keras-nlp/keras_nlp/layers/modeling/position_embedding_test.py", "repo_id": "keras-nlp", "token_count": 2629 }
147
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tensorflow as tf from keras_nlp.api_export import keras_nlp_export from keras_nlp.layers.preprocessing.preprocessing_layer import ( PreprocessingLayer, ) from keras_nlp.utils.tensor_utils import assert_tf_text_installed from keras_nlp.utils.tensor_utils import convert_to_ragged_batch try: import tensorflow_text as tf_text except ImportError: tf_text = None @keras_nlp_export("keras_nlp.layers.MaskedLMMaskGenerator") class MaskedLMMaskGenerator(PreprocessingLayer): """Layer that applies language model masking. This layer is useful for preparing inputs for masked language modeling (MaskedLM) tasks. It follows the masking strategy described in the [original BERT paper](https://arxiv.org/abs/1810.04805). Given tokenized text, it randomly selects certain number of tokens for masking. Then for each selected token, it has a chance (configurable) to be replaced by "mask token" or random token, or stay unchanged. Input data should be passed as tensors, `tf.RaggedTensor`s, or lists. For batched input, inputs should be a list of lists or a rank two tensor. For unbatched inputs, each element should be a list or a rank one tensor. This layer can be used with `tf.data` to generate dynamic masks on the fly during training. Args: vocabulary_size: int, the size of the vocabulary. mask_selection_rate: float, the probability of a token is selected for masking. mask_token_id: int. The id of mask token. mask_selection_length: int. Maximum number of tokens selected for masking in each sequence. If set, the output `mask_positions`, `mask_ids` and `mask_weights` will be padded to dense tensors of length `mask_selection_length`, otherwise the output will be a RaggedTensor. Defaults to `None`. unselectable_token_ids: A list of tokens id that should not be considered eligible for masking. By default, we assume `0` corresponds to a padding token and ignore it. Defaults to `[0]`. mask_token_rate: float. `mask_token_rate` must be between 0 and 1 which indicates how often the mask_token is substituted for tokens selected for masking. Defaults to `0.8`. random_token_rate: float. `random_token_rate` must be between 0 and 1 which indicates how often a random token is substituted for tokens selected for masking. Note: mask_token_rate + random_token_rate <= 1, and for (1 - mask_token_rate - random_token_rate), the token will not be changed. Defaults to `0.1`. Returns: A Dict with 4 keys: token_ids: Tensor or RaggedTensor, has the same type and shape of input. Sequence after getting masked. mask_positions: Tensor, or RaggedTensor if `mask_selection_length` is None. The positions of token_ids getting masked. mask_ids: Tensor, or RaggedTensor if `mask_selection_length` is None. The original token ids at masked positions. mask_weights: Tensor, or RaggedTensor if `mask_selection_length` is None. `mask_weights` has the same shape as `mask_positions` and `mask_ids`. Each element in `mask_weights` should be 0 or 1, 1 means the corresponding position in `mask_positions` is an actual mask, 0 means it is a pad. Examples: Basic usage. ```python masker = keras_nlp.layers.MaskedLMMaskGenerator( vocabulary_size=10, mask_selection_rate=0.2, mask_token_id=0, mask_selection_length=5 ) # Dense input. masker([1, 2, 3, 4, 5]) # Ragged input. masker([[1, 2], [1, 2, 3, 4]]) ``` Masking a batch that contains special tokens. ```python pad_id, cls_id, sep_id, mask_id = 0, 1, 2, 3 batch = [ [cls_id, 4, 5, 6, sep_id, 7, 8, sep_id, pad_id, pad_id], [cls_id, 4, 5, sep_id, 6, 7, 8, 9, sep_id, pad_id], ] masker = keras_nlp.layers.MaskedLMMaskGenerator( vocabulary_size = 10, mask_selection_rate = 0.2, mask_selection_length = 5, mask_token_id = mask_id, unselectable_token_ids = [ cls_id, sep_id, pad_id, ] ) masker(batch) ``` """ def __init__( self, vocabulary_size, mask_selection_rate, mask_token_id, mask_selection_length=None, unselectable_token_ids=[0], mask_token_rate=0.8, random_token_rate=0.1, **kwargs, ): assert_tf_text_installed(self.__class__.__name__) super().__init__(**kwargs) self.vocabulary_size = vocabulary_size self.unselectable_token_ids = unselectable_token_ids self.mask_selection_rate = mask_selection_rate self.mask_selection_length = mask_selection_length self.mask_token_rate = mask_token_rate self.random_token_rate = random_token_rate if mask_token_id >= vocabulary_size: raise ValueError( f"Mask token id should be in range [0, vocabulary_size - 1], " f"but received mask_token_id={mask_token_id}." ) self.mask_token_id = mask_token_id max_selections = self.mask_selection_length if max_selections is None: # Set a large number to remove the `max_selections_per_batch` cap. max_selections = 2**31 - 1 self._random_selector = tf_text.RandomItemSelector( max_selections_per_batch=max_selections, selection_rate=self.mask_selection_rate, unselectable_ids=self.unselectable_token_ids, ) self._mask_values_chooser = tf_text.MaskValuesChooser( self.vocabulary_size, self.mask_token_id, mask_token_rate=self.mask_token_rate, random_token_rate=self.random_token_rate, ) def call(self, inputs): inputs, unbatched, rectangular = convert_to_ragged_batch(inputs) ( token_ids, mask_positions, mask_ids, ) = tf_text.mask_language_model( inputs, item_selector=self._random_selector, mask_values_chooser=self._mask_values_chooser, ) if rectangular: # If we converted the input from dense to ragged, convert back. token_ids = token_ids.to_tensor() mask_weights = tf.ones_like(mask_positions, self.compute_dtype) # If `mask_selection_length` is set, convert to dense. if self.mask_selection_length: target_shape = tf.cast([-1, self.mask_selection_length], "int64") mask_positions = mask_positions.to_tensor(shape=target_shape) mask_ids = mask_ids.to_tensor(shape=target_shape) mask_weights = mask_weights.to_tensor(shape=target_shape) if unbatched: # If inputs is 1D, we format the output to be 1D as well. token_ids = tf.squeeze(token_ids, axis=0) mask_positions = tf.squeeze(mask_positions, axis=0) mask_ids = tf.squeeze(mask_ids, axis=0) mask_weights = tf.squeeze(mask_weights, axis=0) return { "token_ids": token_ids, "mask_positions": mask_positions, "mask_ids": mask_ids, "mask_weights": mask_weights, } def get_config(self): config = super().get_config() config.update( { "vocabulary_size": self.vocabulary_size, "mask_selection_rate": self.mask_selection_rate, "mask_selection_length": self.mask_selection_length, "unselectable_token_ids": self.unselectable_token_ids, "mask_token_id": self.mask_token_id, "mask_token_rate": self.mask_token_rate, "random_token_rate": self.random_token_rate, } ) return config
keras-nlp/keras_nlp/layers/preprocessing/masked_lm_mask_generator.py/0
{ "file_path": "keras-nlp/keras_nlp/layers/preprocessing/masked_lm_mask_generator.py", "repo_id": "keras-nlp", "token_count": 3802 }
148
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from keras_nlp.api_export import keras_nlp_export from keras_nlp.backend import keras from keras_nlp.backend import ops from keras_nlp.utils.tensor_utils import is_float_dtype @keras_nlp_export("keras_nlp.metrics.Perplexity") class Perplexity(keras.metrics.Metric): """Perplexity metric. This class implements the perplexity metric. In short, this class calculates the cross entropy loss and takes its exponent. Note: This implementation is not suitable for fixed-size windows. Args: from_logits: bool. If True, `y_pred` (input to `update_state()`) should be the logits as returned by the model. Otherwise, `y_pred` is a tensor of probabilities. mask_token_id: int. ID of the token to be masked. If provided, the mask is computed for this class. Note that if this field is provided, and if the `sample_weight` field in `update_state()` is also provided, we will compute the final `sample_weight` as the element-wise product of the mask and the `sample_weight`. dtype: string or tf.dtypes.Dtype. Precision of metric computation. If not specified, it defaults to `"float32"`. name: string. Name of the metric instance. **kwargs: Other keyword arguments. Examples: 1. Calculate perplexity by calling update_state() and result(). 1.1. `sample_weight`, and `mask_token_id` are not provided. >>> np.random.seed(42) >>> perplexity = keras_nlp.metrics.Perplexity(name="perplexity") >>> target = np.random.randint(10, size=[2, 5]) >>> logits = np.random.uniform(size=(2, 5, 10)) >>> perplexity.update_state(target, logits) >>> perplexity.result() <tf.Tensor: shape=(), dtype=float32, numpy=14.352535> 1.2. `sample_weight` specified (masking token with ID 0). >>> np.random.seed(42) >>> perplexity = keras_nlp.metrics.Perplexity(name="perplexity") >>> target = np.random.randint(10, size=[2, 5]) >>> logits = np.random.uniform(size=(2, 5, 10)) >>> sample_weight = (target != 0).astype("float32") >>> perplexity.update_state(target, logits, sample_weight) >>> perplexity.result() <tf.Tensor: shape=(), dtype=float32, numpy=14.352535> 2. Call perplexity directly. >>> np.random.seed(42) >>> perplexity = keras_nlp.metrics.Perplexity(name="perplexity") >>> target = np.random.randint(10, size=[2, 5]) >>> logits = np.random.uniform(size=(2, 5, 10)) >>> perplexity(target, logits) <tf.Tensor: shape=(), dtype=float32, numpy=14.352535> 3. Provide the padding token ID and let the class compute the mask on its own. >>> np.random.seed(42) >>> perplexity = keras_nlp.metrics.Perplexity(mask_token_id=0) >>> target = np.random.randint(10, size=[2, 5]) >>> logits = np.random.uniform(size=(2, 5, 10)) >>> perplexity(target, logits) <tf.Tensor: shape=(), dtype=float32, numpy=14.352535> """ def __init__( self, from_logits=False, mask_token_id=None, dtype="float32", name="perplexity", **kwargs, ): if not is_float_dtype(dtype): raise ValueError( "`dtype` must be a floating point type. " f"Received: dtype={dtype}" ) super().__init__(name=name, dtype=dtype, **kwargs) self._crossentropy = keras.losses.SparseCategoricalCrossentropy( from_logits=from_logits, reduction="sum" ) self.from_logits = from_logits self.mask_token_id = mask_token_id self._aggregate_crossentropy = self.add_weight( shape=(), initializer="zeros", dtype=self.dtype, name="aggregate_crossentropy", ) self._number_of_samples = self.add_weight( shape=(), initializer="zeros", dtype=self.dtype, name="number_of_samples", ) def update_state(self, y_true, y_pred, sample_weight=None): # y_true shape: (batch_size, seq_len) # y_pred shape: (batch_size, seq_len, vocab_size) y_true = ops.cast(y_true, self.dtype) y_pred = ops.cast(y_pred, self.dtype) if sample_weight is not None: sample_weight = ops.cast(sample_weight, self.dtype) batch_size = ops.cast(ops.shape(y_true)[0], self.dtype) if self.mask_token_id is not None: mask = ops.cast( ops.logical_not(ops.equal(y_true, self.mask_token_id)), self.dtype, ) if sample_weight is None: sample_weight = mask else: sample_weight = ops.multiply(mask, sample_weight) # Calculate the Cross Entropy Loss. crossentropy_value = ops.cast( self._crossentropy(y_true, y_pred, sample_weight=sample_weight), self.dtype, ) # scalar # Divide the loss by the number of non-masked tokens if sample_weight is not None: crossentropy_value = crossentropy_value / ops.sum( sample_weight ) # scalar else: crossentropy_value = crossentropy_value / ( ops.cast(ops.shape(y_true)[0], self.dtype) * ops.cast(ops.shape(y_true)[1], self.dtype) ) # scalar self._aggregate_crossentropy.assign_add(batch_size * crossentropy_value) self._number_of_samples.assign_add(batch_size) def result(self): perplexity_score = ops.where( ops.equal(ops.convert_to_tensor(self._number_of_samples), 0), 0, ops.exp(self._aggregate_crossentropy / self._number_of_samples), ) return perplexity_score def reset_state(self): self._aggregate_crossentropy.assign(0.0) self._number_of_samples.assign(0.0) def get_config(self): config = super().get_config() config.update( { "from_logits": self.from_logits, "mask_token_id": self.mask_token_id, } ) return config
keras-nlp/keras_nlp/metrics/perplexity.py/0
{ "file_path": "keras-nlp/keras_nlp/metrics/perplexity.py", "repo_id": "keras-nlp", "token_count": 2965 }
149
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest from keras_nlp.models.albert.albert_backbone import AlbertBackbone from keras_nlp.models.albert.albert_masked_lm import AlbertMaskedLM from keras_nlp.models.albert.albert_masked_lm_preprocessor import ( AlbertMaskedLMPreprocessor, ) from keras_nlp.models.albert.albert_tokenizer import AlbertTokenizer from keras_nlp.tests.test_case import TestCase class AlbertMaskedLMTest(TestCase): def setUp(self): # Setup model. self.preprocessor = AlbertMaskedLMPreprocessor( AlbertTokenizer( # Generated using create_albert_test_proto.py proto=os.path.join( self.get_test_data_dir(), "albert_test_vocab.spm" ), sequence_length=5, ), # Simplify our testing by masking every available token. mask_selection_rate=1.0, mask_token_rate=1.0, random_token_rate=0.0, mask_selection_length=5, sequence_length=5, ) self.backbone = AlbertBackbone( vocabulary_size=self.preprocessor.tokenizer.vocabulary_size(), num_layers=2, num_heads=2, hidden_dim=2, embedding_dim=2, intermediate_dim=4, max_sequence_length=self.preprocessor.sequence_length, ) self.init_kwargs = { "preprocessor": self.preprocessor, "backbone": self.backbone, } self.train_data = ( ["the quick brown fox.", "the slow brown fox."], # Features. ) self.input_data = self.preprocessor(*self.train_data)[0] def test_masked_lm_basics(self): self.run_task_test( cls=AlbertMaskedLM, init_kwargs=self.init_kwargs, train_data=self.train_data, expected_output_shape=(2, 5, 12), ) @pytest.mark.large def test_saved_model(self): self.run_model_saving_test( cls=AlbertMaskedLM, init_kwargs=self.init_kwargs, input_data=self.input_data, ) @pytest.mark.extra_large def test_all_presets(self): for preset in AlbertMaskedLM.presets: self.run_preset_test( cls=AlbertMaskedLM, preset=preset, input_data=self.input_data, )
keras-nlp/keras_nlp/models/albert/albert_masked_lm_test.py/0
{ "file_path": "keras-nlp/keras_nlp/models/albert/albert_masked_lm_test.py", "repo_id": "keras-nlp", "token_count": 1368 }
150
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest.mock import patch import pytest from keras_nlp.backend import ops from keras_nlp.models.bart.bart_backbone import BartBackbone from keras_nlp.models.bart.bart_seq_2_seq_lm import BartSeq2SeqLM from keras_nlp.models.bart.bart_seq_2_seq_lm_preprocessor import ( BartSeq2SeqLMPreprocessor, ) from keras_nlp.models.bart.bart_tokenizer import BartTokenizer from keras_nlp.tests.test_case import TestCase class BartSeq2SeqLMTest(TestCase): def setUp(self): self.vocab = ["<s>", "<pad>", "</s>", "air", "Ġair", "plane", "Ġat"] self.vocab += ["port", "<mask>"] self.vocab = dict([(token, i) for i, token in enumerate(self.vocab)]) self.merges = ["Ġ a", "Ġ t", "Ġ i", "Ġ b", "a i", "p l", "n e"] self.merges += ["Ġa t", "p o", "r t", "Ġt h", "ai r", "pl a", "po rt"] self.merges += ["Ġai r", "Ġa i", "pla ne"] self.preprocessor = BartSeq2SeqLMPreprocessor( BartTokenizer(vocabulary=self.vocab, merges=self.merges), encoder_sequence_length=12, decoder_sequence_length=10, ) self.backbone = BartBackbone( vocabulary_size=self.preprocessor.tokenizer.vocabulary_size(), num_layers=2, num_heads=2, hidden_dim=4, intermediate_dim=8, max_sequence_length=12, ) self.init_kwargs = { "preprocessor": self.preprocessor, "backbone": self.backbone, } self.train_data = ( { "encoder_text": [ " airplane at airport", " airplane at airport", ], "decoder_text": [" airplane airport", " airplane airport"], }, ) self.input_data = self.preprocessor(*self.train_data)[0] def test_causal_lm_basics(self): self.run_task_test( cls=BartSeq2SeqLM, init_kwargs=self.init_kwargs, train_data=self.train_data, expected_output_shape=(2, 10, 9), ) def test_generate(self): # String input. inputs = { "encoder_text": " airplane at airport", "decoder_text": " airplane at", } seq_2_seq_lm = BartSeq2SeqLM(**self.init_kwargs) output = seq_2_seq_lm.generate(inputs) self.assertTrue(" airplane at" in output) # String tensor input. self.assertIsInstance( seq_2_seq_lm.generate(" airplane at airport"), str ) # Int tensor input. seq_2_seq_lm.preprocessor = None preprocessed_batch = self.preprocessor.generate_preprocess(inputs) outputs = seq_2_seq_lm.generate(preprocessed_batch) # Assert prompt is in output in token id space. self.assertAllEqual( outputs["decoder_token_ids"][:, :5], preprocessed_batch["decoder_token_ids"][:, :5], ) self.assertAllEqual( outputs["decoder_padding_mask"][:, :5], preprocessed_batch["decoder_padding_mask"][:, :5], ) def test_early_stopping(self): seq_2_seq_lm = BartSeq2SeqLM(**self.init_kwargs) call_decoder_with_cache = seq_2_seq_lm.call_decoder_with_cache def wrapper(*args, **kwargs): """Modify output logits to always favor end_token_id""" ( logits, hidden_states, self_attention_cache, cross_attention_cache, ) = call_decoder_with_cache(*args, **kwargs) index = self.preprocessor.tokenizer.end_token_id update = ops.ones_like(logits)[:, :, index] * 1.0e9 update = ops.expand_dims(update, axis=-1) logits = ops.slice_update(logits, (0, 0, index), update) return ( logits, hidden_states, self_attention_cache, cross_attention_cache, ) with patch.object( seq_2_seq_lm, "call_decoder_with_cache", wraps=wrapper ): inputs = { "encoder_text": [ " airplane at airport", " airplane at airport", ], "decoder_text": [" airplane at", " airplane"], } output = seq_2_seq_lm.generate(inputs) # We should immediately abort and output the prompt. self.assertAllEqual(inputs["decoder_text"], output) def test_generate_compilation(self): seq_2_seq_lm = BartSeq2SeqLM(**self.init_kwargs) # Assert we do not recompile with successive calls. seq_2_seq_lm.generate(" airplane at airport") first_fn = seq_2_seq_lm.generate_function seq_2_seq_lm.generate(" airplane at airport") second_fn = seq_2_seq_lm.generate_function self.assertEqual(first_fn, second_fn) # Assert we do recompile after compile is called. seq_2_seq_lm.compile(sampler="greedy") self.assertIsNone(seq_2_seq_lm.generate_function) def test_beam_search(self): seq_2_seq_lm = BartSeq2SeqLM( backbone=self.backbone, preprocessor=self.preprocessor, ) seq_2_seq_lm.compile(sampler="beam") seq_2_seq_lm.generate(" airplane at airport") @pytest.mark.large def test_saved_model(self): self.run_model_saving_test( cls=BartSeq2SeqLM, init_kwargs=self.init_kwargs, input_data=self.input_data, ) @pytest.mark.extra_large def test_all_presets(self): for preset in BartSeq2SeqLM.presets: self.run_preset_test( cls=BartSeq2SeqLM, preset=preset, input_data=self.input_data, )
keras-nlp/keras_nlp/models/bart/bart_seq_2_seq_lm_test.py/0
{ "file_path": "keras-nlp/keras_nlp/models/bart/bart_seq_2_seq_lm_test.py", "repo_id": "keras-nlp", "token_count": 3159 }
151
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from keras_nlp.models.bert.bert_tokenizer import BertTokenizer from keras_nlp.tests.test_case import TestCase class BertTokenizerTest(TestCase): def setUp(self): self.vocab = ["[PAD]", "[UNK]", "[CLS]", "[SEP]", "[MASK]"] self.vocab += ["THE", "QUICK", "BROWN", "FOX"] self.vocab += ["the", "quick", "brown", "fox"] self.init_kwargs = {"vocabulary": self.vocab} self.input_data = ["THE QUICK BROWN FOX", "THE FOX"] def test_tokenizer_basics(self): self.run_preprocessing_layer_test( cls=BertTokenizer, init_kwargs=self.init_kwargs, input_data=self.input_data, expected_output=[[5, 6, 7, 8], [5, 8]], ) def test_lowercase(self): tokenizer = BertTokenizer(vocabulary=self.vocab, lowercase=True) output = tokenizer(self.input_data) self.assertAllEqual(output, [[9, 10, 11, 12], [9, 12]]) def test_errors_missing_special_tokens(self): with self.assertRaises(ValueError): BertTokenizer(vocabulary=["a", "b", "c"]) @pytest.mark.large def test_smallest_preset(self): self.run_preset_test( cls=BertTokenizer, preset="bert_tiny_en_uncased", input_data=["The quick brown fox."], expected_output=[[1996, 4248, 2829, 4419, 1012]], ) @pytest.mark.extra_large def test_all_presets(self): for preset in BertTokenizer.presets: self.run_preset_test( cls=BertTokenizer, preset=preset, input_data=self.input_data, )
keras-nlp/keras_nlp/models/bert/bert_tokenizer_test.py/0
{ "file_path": "keras-nlp/keras_nlp/models/bert/bert_tokenizer_test.py", "repo_id": "keras-nlp", "token_count": 954 }
152
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from keras_nlp.api_export import keras_nlp_export from keras_nlp.backend import keras from keras_nlp.models.deberta_v3.deberta_v3_backbone import DebertaV3Backbone from keras_nlp.models.deberta_v3.deberta_v3_backbone import ( deberta_kernel_initializer, ) from keras_nlp.models.deberta_v3.deberta_v3_preprocessor import ( DebertaV3Preprocessor, ) from keras_nlp.models.deberta_v3.deberta_v3_presets import backbone_presets from keras_nlp.models.task import Task from keras_nlp.utils.python_utils import classproperty @keras_nlp_export("keras_nlp.models.DebertaV3Classifier") class DebertaV3Classifier(Task): """An end-to-end DeBERTa model for classification tasks. This model attaches a classification head to a `keras_nlp.model.DebertaV3Backbone` model, mapping from the backbone outputs to logit output suitable for a classification task. For usage of this model with pre-trained weights, see the `from_preset()` method. This model can optionally be configured with a `preprocessor` layer, in which case it will automatically apply preprocessing to raw inputs during `fit()`, `predict()`, and `evaluate()`. This is done by default when creating the model with `from_preset()`. Note: `DebertaV3Backbone` has a performance issue on TPUs, and we recommend other models for TPU training and inference. Disclaimer: Pre-trained models are provided on an "as is" basis, without warranties or conditions of any kind. The underlying model is provided by a third party and subject to a separate license, available [here](https://github.com/microsoft/DeBERTa). Args: backbone: A `keras_nlp.models.DebertaV3` instance. num_classes: int. Number of classes to predict. preprocessor: A `keras_nlp.models.DebertaV3Preprocessor` or `None`. If `None`, this model will not apply preprocessing, and inputs should be preprocessed before calling the model. activation: Optional `str` or callable. The activation function to use on the model outputs. Set `activation="softmax"` to return output probabilities. Defaults to `None`. hidden_dim: int. The size of the pooler layer. dropout: float. Dropout probability applied to the pooled output. For the second dropout layer, `backbone.dropout` is used. Examples: Raw string data. ```python features = ["The quick brown fox jumped.", "I forgot my homework."] labels = [0, 3] # Pretrained classifier. classifier = keras_nlp.models.DebertaV3Classifier.from_preset( "deberta_v3_base_en", num_classes=4, ) classifier.fit(x=features, y=labels, batch_size=2) classifier.predict(x=features, batch_size=2) # Re-compile (e.g., with a new learning rate). classifier.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=keras.optimizers.Adam(5e-5), jit_compile=True, ) # Access backbone programmatically (e.g., to change `trainable`). classifier.backbone.trainable = False # Fit again. classifier.fit(x=features, y=labels, batch_size=2) ``` Preprocessed integer data. ```python features = { "token_ids": np.ones(shape=(2, 12), dtype="int32"), "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2), } labels = [0, 3] # Pretrained classifier without preprocessing. classifier = keras_nlp.models.DebertaV3Classifier.from_preset( "deberta_v3_base_en", num_classes=4, preprocessor=None, ) classifier.fit(x=features, y=labels, batch_size=2) ``` Custom backbone and vocabulary. ```python features = ["The quick brown fox jumped.", "I forgot my homework."] labels = [0, 3] bytes_io = io.BytesIO() ds = tf.data.Dataset.from_tensor_slices(features) sentencepiece.SentencePieceTrainer.train( sentence_iterator=ds.as_numpy_iterator(), model_writer=bytes_io, vocab_size=10, model_type="WORD", pad_id=0, bos_id=1, eos_id=2, unk_id=3, pad_piece="[PAD]", bos_piece="[CLS]", eos_piece="[SEP]", unk_piece="[UNK]", ) tokenizer = keras_nlp.models.DebertaV3Tokenizer( proto=bytes_io.getvalue(), ) preprocessor = keras_nlp.models.DebertaV3Preprocessor( tokenizer=tokenizer, sequence_length=128, ) backbone = keras_nlp.models.DebertaV3Backbone( vocabulary_size=30552, num_layers=4, num_heads=4, hidden_dim=256, intermediate_dim=512, max_sequence_length=128, ) classifier = keras_nlp.models.DebertaV3Classifier( backbone=backbone, preprocessor=preprocessor, num_classes=4, ) classifier.fit(x=features, y=labels, batch_size=2) ``` """ def __init__( self, backbone, num_classes, preprocessor=None, activation=None, hidden_dim=None, dropout=0.0, **kwargs, ): # === Layers === self.backbone = backbone self.preprocessor = preprocessor self.pooled_dropout = keras.layers.Dropout( dropout, dtype=backbone.dtype_policy, name="pooled_dropout", ) hidden_dim = hidden_dim or backbone.hidden_dim self.pooled_dense = keras.layers.Dense( hidden_dim, activation=keras.activations.gelu, dtype=backbone.dtype_policy, name="pooled_dense", ) self.output_dropout = keras.layers.Dropout( backbone.dropout, dtype=backbone.dtype_policy, name="classifier_dropout", ) self.output_dense = keras.layers.Dense( num_classes, kernel_initializer=deberta_kernel_initializer(), activation=activation, dtype=backbone.dtype_policy, name="logits", ) # === Functional Model === inputs = backbone.input x = backbone(inputs)[:, backbone.start_token_index, :] x = self.pooled_dropout(x) x = self.pooled_dense(x) x = self.output_dropout(x) outputs = self.output_dense(x) super().__init__( inputs=inputs, outputs=outputs, **kwargs, ) # === Config === self.backbone = backbone self.preprocessor = preprocessor self.num_classes = num_classes self.activation = keras.activations.get(activation) self.hidden_dim = hidden_dim self.dropout = dropout # === Default compilation === logit_output = self.activation == keras.activations.linear self.compile( loss=keras.losses.SparseCategoricalCrossentropy( from_logits=logit_output ), optimizer=keras.optimizers.Adam(5e-5), metrics=[keras.metrics.SparseCategoricalAccuracy()], jit_compile=True, ) def get_config(self): config = super().get_config() config.update( { "num_classes": self.num_classes, "activation": keras.activations.serialize(self.activation), "hidden_dim": self.hidden_dim, "dropout": self.dropout, } ) return config @classproperty def backbone_cls(cls): return DebertaV3Backbone @classproperty def preprocessor_cls(cls): return DebertaV3Preprocessor @classproperty def presets(cls): return copy.deepcopy(backbone_presets)
keras-nlp/keras_nlp/models/deberta_v3/deberta_v3_classifier.py/0
{ "file_path": "keras-nlp/keras_nlp/models/deberta_v3/deberta_v3_classifier.py", "repo_id": "keras-nlp", "token_count": 3628 }
153
# Copyright 2024 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from keras_nlp.backend import keras from keras_nlp.backend import ops from keras_nlp.utils.keras_utils import clone_initializer class CachedGemmaAttention(keras.layers.Layer): """A cached grouped query attention layer.""" def __init__( self, head_dim, num_query_heads, num_key_value_heads, kernel_initializer="glorot_uniform", dropout=0, **kwargs, ): super().__init__(**kwargs) self.num_query_heads = num_query_heads self.num_key_value_heads = num_key_value_heads self.head_dim = head_dim self.dropout = dropout self._kernel_initializer = keras.initializers.get( clone_initializer(kernel_initializer) ) self.num_key_value_groups = num_query_heads // num_key_value_heads def build(self, inputs_shape): self.hidden_dim = inputs_shape[-1] self.query_dense = keras.layers.EinsumDense( "btd,ndh->btnh", output_shape=(None, self.num_query_heads, self.head_dim), kernel_initializer=self._kernel_initializer, dtype=self.dtype_policy, name="query", ) self.query_dense.build(inputs_shape) self.key_dense = keras.layers.EinsumDense( "bsd,kdh->bskh", output_shape=(None, self.num_key_value_heads, self.head_dim), kernel_initializer=self._kernel_initializer, dtype=self.dtype_policy, name="key", ) self.key_dense.build(inputs_shape) self.value_dense = keras.layers.EinsumDense( "bsd,kdh->bskh", output_shape=(None, self.num_key_value_heads, self.head_dim), kernel_initializer=self._kernel_initializer, dtype=self.dtype_policy, name="value", ) self.value_dense.build(inputs_shape) self.dropout_layer = keras.layers.Dropout( rate=self.dropout, dtype=self.dtype_policy, ) self.output_dense = keras.layers.EinsumDense( equation="btnh,nhd->btd", output_shape=(None, self.hidden_dim), kernel_initializer=self._kernel_initializer, dtype=self.dtype_policy, name="attention_output", ) self.output_dense.build( (None, None, self.num_query_heads, self.head_dim) ) self.softmax = keras.layers.Softmax(dtype="float32") self.built = True def _apply_rope(self, x, positions): """Rope rotate q or k.""" # TODO: refactor to use RotaryEmbedding layer? max_wavelength = 10000 x_shape = ops.shape(x) freq_exponents = (2.0 / x_shape[-1]) * ops.cast( ops.arange(x_shape[-1] // 2, dtype="float32"), self.compute_dtype ) timescale = max_wavelength**freq_exponents radians = positions[..., None] / timescale[None, None, :] radians = radians[..., None, :] sin, cos = ops.sin(radians), ops.cos(radians) x1, x2 = ops.split(x, 2, axis=-1) # Avoid `ops.concatenate` for now, to avoid a obscure bug with XLA # compilation on jax. We should be able to remove this once the # following PR is in all jax releases we care about: # https://github.com/openxla/xla/pull/7875 output = ops.stack([x1 * cos - x2 * sin, x2 * cos + x1 * sin], axis=-1) return ops.reshape(output, x_shape) def _compute_attention( self, q, k, v, attention_mask, training=False, ): query_normalization = 1 / np.sqrt(self.head_dim) q *= ops.cast(query_normalization, dtype=q.dtype) q_shape = ops.shape(q) q = ops.reshape( q, ( *q_shape[:-2], self.num_key_value_heads, self.num_query_heads // self.num_key_value_heads, q_shape[-1], ), ) b, q_len, _, _, h = ops.shape(q) attention_logits = ops.einsum("btkgh,bskh->bkgts", q, k) attention_mask = attention_mask[:, None, None, :, :] orig_dtype = attention_logits.dtype attention_softmax = self.softmax(attention_logits, mask=attention_mask) attention_softmax = ops.cast(attention_softmax, orig_dtype) if self.dropout: attention_softmax = self.dropout_layer( attention_softmax, training=training ) results = ops.einsum("bkgts,bskh->btkgh", attention_softmax, v) return ops.reshape(results, (b, q_len, self.num_query_heads, h)) def call( self, x, attention_mask=None, cache=None, cache_update_index=0, training=False, ): seq_len = ops.shape(x)[1] start_index = cache_update_index positions = ops.cast( ops.arange(seq_len, dtype="float32"), self.compute_dtype ) positions = positions + ops.cast(start_index, self.compute_dtype) query = self.query_dense(x) query = self._apply_rope(query, positions) if cache is not None: key_cache = cache[:, 0, ...] value_cache = cache[:, 1, ...] key_update = self.key_dense(x) key_update = self._apply_rope(key_update, positions) value_update = self.value_dense(x) start = [0, cache_update_index, 0, 0] key = ops.slice_update(key_cache, start, key_update) value = ops.slice_update(value_cache, start, value_update) cache = ops.stack((key, value), axis=1) else: key = self.key_dense(x) key = self._apply_rope(key, positions) value = self.value_dense(x) attention_vec = self._compute_attention( query, key, value, attention_mask, training=training ) # Wipe attn vec if there are no attended tokens. no_attended_tokens = ops.all( ops.equal(attention_mask, 0), axis=-1, keepdims=True )[..., None] attention_vec = ops.where( no_attended_tokens, ops.zeros_like(attention_vec), attention_vec ) attention_output = self.output_dense(attention_vec) if cache is not None: return attention_output, cache return attention_output
keras-nlp/keras_nlp/models/gemma/gemma_attention.py/0
{ "file_path": "keras-nlp/keras_nlp/models/gemma/gemma_attention.py", "repo_id": "keras-nlp", "token_count": 3335 }
154
# Copyright 2022 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from keras_nlp.api_export import keras_nlp_export from keras_nlp.backend import keras from keras_nlp.backend import ops from keras_nlp.models.generative_task import GenerativeTask from keras_nlp.models.gpt_neo_x.gpt_neo_x_backbone import GPTNeoXBackbone from keras_nlp.models.gpt_neo_x.gpt_neo_x_causal_lm_preprocessor import ( GPTNeoXCausalLMPreprocessor, ) from keras_nlp.utils.python_utils import classproperty @keras_nlp_export("keras_nlp.models.GPTNeoXCausalLM") class GPTNeoXCausalLM(GenerativeTask): """An end-to-end GPTNeoX model for causal language modeling. A causal language model (LM) predicts the next token based on previous tokens. This task setup can be used to train the model unsupervised on plain text input, or to autoregressively generate plain text similar to the data used for training. This task can be used for pre-training or fine-tuning a GPT-NeoX model, simply by calling `fit()`. This model has a `generate()` method, which generates text based on a prompt. The generation strategy used is controlled by an additional `sampler` argument on `compile()`. You can recompile the model with different `keras_nlp.samplers` objects to control the generation. By default, `"top_k"` sampling will be used. Args: backbone: A `keras_nlp.models.GPTNeoXBackbone` instance. preprocessor: A `keras_nlp.models.GPTNeoXCausalLMPreprocessor` or `None`. If `None`, this model will not apply preprocessing, and inputs should be preprocessed before calling the model. """ def __init__( self, backbone, preprocessor=None, **kwargs, ): # === Layers === self.backbone = backbone self.preprocessor = preprocessor # === Functional Model === inputs = backbone.input hidden_states = backbone(inputs) outputs = backbone.token_embedding(hidden_states, reverse=True) super().__init__( inputs=inputs, outputs=outputs, **kwargs, ) # === Default compilation === self.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=keras.optimizers.Adam(2e-5), metrics=[keras.metrics.SparseCategoricalAccuracy()], jit_compile=True, ) @classproperty def backbone_cls(cls): return GPTNeoXBackbone @classproperty def preprocessor_cls(cls): return GPTNeoXCausalLMPreprocessor def call_with_cache( self, token_ids, cache, cache_update_index, ): """Forward pass of `GPTNeoXCausalLM` with cache. `call_with_cache` adds an additional forward pass for the model for autoregressive inference. Unlike calling the model directly, this method allows caching previous key/value Tensors in multi-head attention layer, and avoids recomputing the outputs of seen tokens. Args: token_ids: a dense int Tensor with shape `(batch_size, max_length)`. cache: a dense float Tensor, the cache of key and value. cache_update_index: int, or int Tensor. The index of current inputs in the whole sequence. Returns: A (logits, hidden_states, cache) tuple. Where `logits` is the language model logits for the input token_ids, `hidden_states` is the final hidden representation of the input tokens, and `cache` is the decoding cache. """ token_embedding = self.backbone.token_embedding(token_ids) x = self.backbone.embeddings_dropout(token_embedding) # Each decoder layer has a cache; we update them separately. caches = [] for i, transformer_layer in enumerate(self.backbone.transformer_layers): current_cache = cache[:, i, ...] x, next_cache = transformer_layer( x, self_attention_cache=current_cache, self_attention_cache_update_index=cache_update_index, ) caches.append(next_cache) cache = ops.stack(caches, axis=1) x = self.backbone.layer_norm(x) hidden_states = x logits = self.backbone.token_embedding(hidden_states, reverse=True) return logits, hidden_states, cache def _build_cache(self, token_ids): """Build an empty cache for use with `call_with_cache()`.""" batch_size = ops.shape(token_ids)[0] max_length = ops.shape(token_ids)[1] num_layers = self.backbone.num_layers num_heads = self.backbone.num_heads head_dim = self.backbone.hidden_dim // self.backbone.num_heads shape = [batch_size, num_layers, 2, max_length, num_heads, head_dim] cache = ops.zeros(shape, dtype=self.compute_dtype) # Seed the cache. _, hidden_states, cache = self.call_with_cache(token_ids, cache, 0) return hidden_states, cache def generate_step( self, inputs, end_token_id=None, ): """A compilable generation function for a single batch of inputs. This function represents the inner, XLA-compilable, generation function for a single batch of inputs. Inputs should have the same structure as model inputs, a dictionary with keys `"token_ids"` and `"padding_mask"`. Args: inputs: A dictionary with two keys `"token_ids"` and `"padding_mask"` and batched tensor values. end_token_id: The id of the end token to stop on. If all sequences have produced a new `end_token_id`, generation will stop. """ token_ids, padding_mask = inputs["token_ids"], inputs["padding_mask"] # Create and seed cache with a single forward pass. hidden_states, cache = self._build_cache(token_ids) # Compute the lengths of all user inputted tokens ids. row_lengths = ops.sum(ops.cast(padding_mask, "int32"), axis=-1) # Start at the first index that has no user inputted id. index = ops.min(row_lengths) def next(prompt, cache, index): # The cache index is the index of our previous token. cache_update_index = index - 1 batch_size = ops.shape(prompt)[0] prompt = ops.slice(prompt, [0, cache_update_index], [batch_size, 1]) logits, hidden_states, cache = self.call_with_cache( prompt, cache, cache_update_index, ) return ( ops.squeeze(logits, axis=1), ops.squeeze(hidden_states, axis=1), cache, ) token_ids = self._sampler( next=next, prompt=token_ids, cache=cache, index=index, mask=padding_mask, end_token_id=end_token_id, hidden_states=hidden_states, model=self, ) # Compute an output padding mask with the token ids we updated. if end_token_id is not None: # Build a mask of `end_token_id` locations not in the original # prompt (not in locations where `padding_mask` is True). end_locations = ops.logical_and( ops.equal(token_ids, end_token_id), ops.logical_not(padding_mask), ) end_locations = ops.cast(end_locations, "int32") # Use cumsum to get ones in all locations after end_locations. cumsum = ops.cast(ops.cumsum(end_locations, axis=-1), "int32") overflow = cumsum - end_locations # Our padding mask is the inverse of these overflow locations. padding_mask = ops.logical_not(ops.cast(overflow, "bool")) else: # Without early stopping, all locations will have been updated. padding_mask = ops.ones_like(token_ids, dtype="bool") return { "token_ids": token_ids, "padding_mask": padding_mask, }
keras-nlp/keras_nlp/models/gpt_neo_x/gpt_neo_x_causal_lm.py/0
{ "file_path": "keras-nlp/keras_nlp/models/gpt_neo_x/gpt_neo_x_causal_lm.py", "repo_id": "keras-nlp", "token_count": 3706 }
155
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from keras_nlp.models.llama.llama_tokenizer import LlamaTokenizer from keras_nlp.tests.test_case import TestCase class LlamaTokenizerTest(TestCase): def setUp(self): self.init_kwargs = { # Generated using create_llama_test_proto.py "proto": os.path.join( self.get_test_data_dir(), "llama_test_vocab.spm" ) } self.input_data = ["the quick brown fox", "the earth is round"] def test_tokenizer_basics(self): self.run_preprocessing_layer_test( cls=LlamaTokenizer, init_kwargs=self.init_kwargs, input_data=self.input_data, expected_output=[[3, 8, 4, 6], [3, 5, 7, 9]], ) def test_errors_missing_special_tokens(self): with self.assertRaises(ValueError): LlamaTokenizer( # Generated using create_no_special_token_proto.py proto=os.path.join( self.get_test_data_dir(), "no_special_token_vocab.spm" ) )
keras-nlp/keras_nlp/models/llama/llama_tokenizer_test.py/0
{ "file_path": "keras-nlp/keras_nlp/models/llama/llama_tokenizer_test.py", "repo_id": "keras-nlp", "token_count": 698 }
156
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from keras_nlp.api_export import keras_nlp_export from keras_nlp.backend import keras from keras_nlp.models.roberta.roberta_backbone import RobertaBackbone from keras_nlp.models.roberta.roberta_backbone import roberta_kernel_initializer from keras_nlp.models.roberta.roberta_preprocessor import RobertaPreprocessor from keras_nlp.models.roberta.roberta_presets import backbone_presets from keras_nlp.models.task import Task from keras_nlp.utils.python_utils import classproperty @keras_nlp_export("keras_nlp.models.RobertaClassifier") class RobertaClassifier(Task): """An end-to-end RoBERTa model for classification tasks. This model attaches a classification head to a `keras_nlp.model.RobertaBackbone` instance, mapping from the backbone outputs to logits suitable for a classification task. For usage of this model with pre-trained weights, see the `from_preset()` constructor. This model can optionally be configured with a `preprocessor` layer, in which case it will automatically apply preprocessing to raw inputs during `fit()`, `predict()`, and `evaluate()`. This is done by default when creating the model with `from_preset()`. Disclaimer: Pre-trained models are provided on an "as is" basis, without warranties or conditions of any kind. The underlying model is provided by a third party and subject to a separate license, available [here](https://github.com/facebookresearch/fairseq). Args: backbone: A `keras_nlp.models.RobertaBackbone` instance. num_classes: int. Number of classes to predict. preprocessor: A `keras_nlp.models.RobertaPreprocessor` or `None`. If `None`, this model will not apply preprocessing, and inputs should be preprocessed before calling the model. activation: Optional `str` or callable. The activation function to use on the model outputs. Set `activation="softmax"` to return output probabilities. Defaults to `None`. hidden_dim: int. The size of the pooler layer. dropout: float. The dropout probability value, applied to the pooled output, and after the first dense layer. Examples: Raw string data. ```python features = ["The quick brown fox jumped.", "I forgot my homework."] labels = [0, 3] # Pretrained classifier. classifier = keras_nlp.models.RobertaClassifier.from_preset( "roberta_base_en", num_classes=4, ) classifier.fit(x=features, y=labels, batch_size=2) classifier.predict(x=features, batch_size=2) # Re-compile (e.g., with a new learning rate). classifier.compile( loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer=keras.optimizers.Adam(5e-5), jit_compile=True, ) # Access backbone programmatically (e.g., to change `trainable`). classifier.backbone.trainable = False # Fit again. classifier.fit(x=features, y=labels, batch_size=2) ``` Preprocessed integer data. ```python features = { "token_ids": np.ones(shape=(2, 12), dtype="int32"), "padding_mask": np.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0]] * 2), } labels = [0, 3] # Pretrained classifier without preprocessing. classifier = keras_nlp.models.RobertaClassifier.from_preset( "roberta_base_en", num_classes=4, preprocessor=None, ) classifier.fit(x=features, y=labels, batch_size=2) ``` Custom backbone and vocabulary. ```python features = ["a quick fox", "a fox quick"] labels = [0, 3] vocab = {"<s>": 0, "<pad>": 1, "</s>": 2, "<mask>": 3} vocab = {**vocab, "a": 4, "Ġquick": 5, "Ġfox": 6} merges = ["Ġ q", "u i", "c k", "ui ck", "Ġq uick"] merges += ["Ġ f", "o x", "Ġf ox"] tokenizer = keras_nlp.models.RobertaTokenizer( vocabulary=vocab, merges=merges ) preprocessor = keras_nlp.models.RobertaPreprocessor( tokenizer=tokenizer, sequence_length=128, ) backbone = keras_nlp.models.RobertaBackbone( vocabulary_size=20, num_layers=4, num_heads=4, hidden_dim=256, intermediate_dim=512, max_sequence_length=128 ) classifier = keras_nlp.models.RobertaClassifier( backbone=backbone, preprocessor=preprocessor, num_classes=4, ) classifier.fit(x=features, y=labels, batch_size=2) ``` """ def __init__( self, backbone, num_classes, preprocessor=None, activation=None, hidden_dim=None, dropout=0.0, **kwargs, ): # === Layers === self.backbone = backbone self.preprocessor = preprocessor self.pooled_dropout = keras.layers.Dropout( dropout, dtype=backbone.dtype_policy, name="pooled_dropout", ) hidden_dim = hidden_dim or backbone.hidden_dim self.pooled_dense = keras.layers.Dense( hidden_dim, activation="tanh", dtype=backbone.dtype_policy, name="pooled_dense", ) self.output_dropout = keras.layers.Dropout( dropout, dtype=backbone.dtype_policy, name="output_dropout", ) self.output_dense = keras.layers.Dense( num_classes, kernel_initializer=roberta_kernel_initializer(), activation=activation, dtype=backbone.dtype_policy, name="logits", ) # === Functional Model === inputs = backbone.input x = backbone(inputs)[:, backbone.start_token_index, :] x = self.pooled_dropout(x) x = self.pooled_dense(x) x = self.output_dropout(x) outputs = self.output_dense(x) super().__init__( inputs=inputs, outputs=outputs, **kwargs, ) # === Config === self.num_classes = num_classes self.activation = keras.activations.get(activation) self.hidden_dim = hidden_dim self.dropout = dropout # === Default compilation === logit_output = self.activation == keras.activations.linear self.compile( loss=keras.losses.SparseCategoricalCrossentropy( from_logits=logit_output ), optimizer=keras.optimizers.Adam(2e-5), metrics=[keras.metrics.SparseCategoricalAccuracy()], jit_compile=True, ) def get_config(self): config = super().get_config() config.update( { "num_classes": self.num_classes, "activation": keras.activations.serialize(self.activation), "hidden_dim": self.hidden_dim, "dropout": self.dropout, } ) return config @classproperty def backbone_cls(cls): return RobertaBackbone @classproperty def preprocessor_cls(cls): return RobertaPreprocessor @classproperty def presets(cls): return copy.deepcopy(backbone_presets)
keras-nlp/keras_nlp/models/roberta/roberta_classifier.py/0
{ "file_path": "keras-nlp/keras_nlp/models/roberta/roberta_classifier.py", "repo_id": "keras-nlp", "token_count": 3307 }
157
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """XLM-RoBERTa model preset configurations.""" backbone_presets = { "t5_small_multi": { "metadata": { "description": ( "8-layer T5 model. Trained on the Colossal Clean Crawled " "Corpus (C4)." ), "params": 0, "official_name": "T5", "path": "t5", "model_card": "https://github.com/google-research/text-to-text-transfer-transformer/blob/main/README.md", }, "kaggle_handle": "kaggle://keras/t5/keras/t5_small_multi/2", }, "t5_base_multi": { "metadata": { "description": ( "12-layer T5 model. Trained on the Colossal Clean Crawled " "Corpus (C4)." ), "params": 0, "official_name": "T5", "path": "t5", "model_card": "https://github.com/google-research/text-to-text-transfer-transformer/blob/main/README.md", }, "kaggle_handle": "kaggle://keras/t5/keras/t5_base_multi/2", }, "t5_large_multi": { "metadata": { "description": ( "24-layer T5 model. Trained on the Colossal Clean Crawled " "Corpus (C4)." ), "params": 0, "official_name": "T5", "path": "t5", "model_card": "https://github.com/google-research/text-to-text-transfer-transformer/blob/main/README.md", }, "kaggle_handle": "kaggle://keras/t5/keras/t5_large_multi/2", }, "flan_small_multi": { "metadata": { "description": ( "8-layer T5 model. Trained on the Colossal Clean Crawled " "Corpus (C4)." ), "params": 0, "official_name": "T5", "path": "t5", "model_card": "https://github.com/google-research/text-to-text-transfer-transformer/blob/main/README.md", }, "kaggle_handle": "kaggle://keras/t5/keras/flan_small_multi/2", }, "flan_base_multi": { "metadata": { "description": ( "12-layer T5 model. Trained on the Colossal Clean Crawled " "Corpus (C4)." ), "params": 0, "official_name": "T5", "path": "t5", "model_card": "https://github.com/google-research/text-to-text-transfer-transformer/blob/main/README.md", }, "kaggle_handle": "kaggle://keras/t5/keras/flan_base_multi/2", }, "flan_large_multi": { "metadata": { "description": ( "24-layer T5 model. Trained on the Colossal Clean Crawled " "Corpus (C4)." ), "params": 0, "official_name": "T5", "path": "t5", "model_card": "https://github.com/google-research/text-to-text-transfer-transformer/blob/main/README.md", }, "kaggle_handle": "kaggle://keras/t5/keras/flan_large_multi/2", }, }
keras-nlp/keras_nlp/models/t5/t5_presets.py/0
{ "file_path": "keras-nlp/keras_nlp/models/t5/t5_presets.py", "repo_id": "keras-nlp", "token_count": 1791 }
158
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Metadata for loading pretrained model weights. backbone_presets = { "whisper_tiny_en": { "metadata": { "description": ( "4-layer Whisper model. Trained on 438,000 hours of labelled " "English speech data." ), "params": 37184256, "official_name": "Whisper", "path": "whisper", "model_card": "https://github.com/openai/whisper/blob/main/model-card.md", }, "kaggle_handle": "kaggle://keras/whisper/keras/whisper_tiny_en/2", }, "whisper_base_en": { "metadata": { "description": ( "6-layer Whisper model. Trained on 438,000 hours of labelled " "English speech data." ), "params": 124439808, "official_name": "Whisper", "path": "whisper", "model_card": "https://github.com/openai/whisper/blob/main/model-card.md", }, "kaggle_handle": "kaggle://keras/whisper/keras/whisper_base_en/2", }, "whisper_small_en": { "metadata": { "description": ( "12-layer Whisper model. Trained on 438,000 hours of labelled " "English speech data." ), "params": 241734144, "official_name": "Whisper", "path": "whisper", "model_card": "https://github.com/openai/whisper/blob/main/model-card.md", }, "kaggle_handle": "kaggle://keras/whisper/keras/whisper_small_en/2", }, "whisper_medium_en": { "metadata": { "description": ( "24-layer Whisper model. Trained on 438,000 hours of labelled " "English speech data." ), "params": 763856896, "official_name": "Whisper", "path": "whisper", "model_card": "https://github.com/openai/whisper/blob/main/model-card.md", }, "kaggle_handle": "kaggle://keras/whisper/keras/whisper_medium_en/2", }, "whisper_tiny_multi": { "metadata": { "description": ( "4-layer Whisper model. Trained on 680,000 hours of labelled " "multilingual speech data." ), "params": 37760640, "official_name": "Whisper", "path": "whisper", "model_card": "https://github.com/openai/whisper/blob/main/model-card.md", }, "kaggle_handle": "kaggle://keras/whisper/keras/whisper_tiny_multi/2", }, "whisper_base_multi": { "metadata": { "description": ( "6-layer Whisper model. Trained on 680,000 hours of labelled " "multilingual speech data." ), "params": 72593920, "official_name": "Whisper", "path": "whisper", "model_card": "https://github.com/openai/whisper/blob/main/model-card.md", }, "kaggle_handle": "kaggle://keras/whisper/keras/whisper_base_multi/2", }, "whisper_small_multi": { "metadata": { "description": ( "12-layer Whisper model. Trained on 680,000 hours of labelled " "multilingual speech data." ), "params": 241734912, "official_name": "Whisper", "path": "whisper", "model_card": "https://github.com/openai/whisper/blob/main/model-card.md", }, "kaggle_handle": "kaggle://keras/whisper/keras/whisper_small_multi/2", }, "whisper_medium_multi": { "metadata": { "description": ( "24-layer Whisper model. Trained on 680,000 hours of labelled " "multilingual speech data." ), "params": 763857920, "official_name": "Whisper", "path": "whisper", "model_card": "https://github.com/openai/whisper/blob/main/model-card.md", }, "kaggle_handle": "kaggle://keras/whisper/keras/whisper_medium_multi/2", }, "whisper_large_multi": { "metadata": { "description": ( "32-layer Whisper model. Trained on 680,000 hours of labelled " "multilingual speech data." ), "params": 1543304960, "official_name": "Whisper", "path": "whisper", "model_card": "https://github.com/openai/whisper/blob/main/model-card.md", }, "kaggle_handle": "kaggle://keras/whisper/keras/whisper_large_multi/2", }, "whisper_large_multi_v2": { "metadata": { "description": ( "32-layer Whisper model. Trained for 2.5 epochs on 680,000 " "hours of labelled multilingual speech data. An improved " "of `whisper_large_multi`." ), "params": 1543304960, "official_name": "Whisper", "path": "whisper", "model_card": "https://github.com/openai/whisper/blob/main/model-card.md", }, "kaggle_handle": "kaggle://keras/whisper/keras/whisper_large_multi_v2/2", }, }
keras-nlp/keras_nlp/models/whisper/whisper_presets.py/0
{ "file_path": "keras-nlp/keras_nlp/models/whisper/whisper_presets.py", "repo_id": "keras-nlp", "token_count": 2909 }
159
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pytest from keras_nlp.models.xlm_roberta.xlm_roberta_tokenizer import ( XLMRobertaTokenizer, ) from keras_nlp.tests.test_case import TestCase class XLMRobertaTokenizerTest(TestCase): def setUp(self): self.init_kwargs = { # Generated using create_xlm_roberta_test_proto.py "proto": os.path.join( self.get_test_data_dir(), "xlm_roberta_test_vocab.spm" ) } self.input_data = ["the quick brown fox", "the earth is round"] def test_tokenizer_basics(self): self.run_preprocessing_layer_test( cls=XLMRobertaTokenizer, init_kwargs=self.init_kwargs, input_data=self.input_data, expected_output=[[6, 11, 7, 9], [6, 8, 10, 12]], ) @pytest.mark.large def test_smallest_preset(self): self.run_preset_test( cls=XLMRobertaTokenizer, preset="xlm_roberta_base_multi", input_data=["The quick brown fox."], expected_output=[[581, 63773, 119455, 6, 147797, 5]], ) @pytest.mark.extra_large def test_all_presets(self): for preset in XLMRobertaTokenizer.presets: self.run_preset_test( cls=XLMRobertaTokenizer, preset=preset, input_data=self.input_data, )
keras-nlp/keras_nlp/models/xlm_roberta/xlm_roberta_tokenizer_test.py/0
{ "file_path": "keras-nlp/keras_nlp/models/xlm_roberta/xlm_roberta_tokenizer_test.py", "repo_id": "keras-nlp", "token_count": 866 }
160
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from keras_nlp.api_export import keras_nlp_export from keras_nlp.backend import config from keras_nlp.backend import keras from keras_nlp.backend import ops from keras_nlp.backend import random @keras_nlp_export("keras_nlp.samplers.Sampler") class Sampler: """Base sampler class. Args: temperature: float. optional. Used to control the randomness of the sampling. The higher the temperature, the more diverse the samples. Defaults to `1.0`. Call arguments: {{call_args}} This base class can be extended to implement different auto-regressive sampling methods. To do so, override the `get_next_token()` method, which computes the next token based on a probability distribution over all possible vocab entries. Examples: ```python causal_lm = keras_nlp.models.GPT2CausalLM.from_preset("gpt2_base_en") # Greedy search with some tokens forbidden. class CustomSampler(keras_nlp.samplers.Sampler): def __init__(self, forbidden_tokens, **kwargs): super().__init__(**kwargs) self.forbidden_tokens = forbidden_tokens def get_next_token(self, probs): batch_size, vocab_size = keras.ops.shape(probs) for id in self.forbidden_tokens: update = keras.ops.zeros((batch_size, 1)) probs = keras.ops.slice_update(probs, (0, id), update) return keras.ops.argmax(probs, axis=-1) # 257 = "a" with a leading space, 262 = "the" with a leading space. causal_lm.compile(sampler=CustomSampler(forbidden_tokens=[257, 262])) causal_lm.summary() causal_lm.generate(["That's strange"]) ``` """ def __init__( self, temperature=1.0, ): self.temperature = temperature self._seed_generators = [] def __setattr__(self, name, value): # We could update to the `Tracker` class from keras-core if our needs # become more advanced (e.g. list assignment, nested trackables). For # now, we only track `SeedGenerator` instances directly on the sampler. if isinstance(value, random.SeedGenerator): self._seed_generators.append(value) return super().__setattr__(name, value) @property def variables(self): variables = [] for sg in self._seed_generators: variables.append(sg.state) return variables def __call__( self, next, prompt, cache=None, index=0, mask=None, end_token_id=None, hidden_states=None, model=None, ): max_length = ops.shape(prompt)[-1] # Make sure `max_length` and `index` are the same dtype. index = ops.cast(index, "int32") max_length = ops.cast(max_length, "int32") if mask is None: mask = ops.zeros_like(prompt, dtype="bool") else: mask = ops.cast(mask, dtype="bool") # `ops.while_loop` will not accept `None` as a value for `loop_vars`. cache = () if cache is None else cache def cond(prompt, cache, index): if end_token_id is None: return True # Stop if all sequences have produced a *new* end_token_id. end_tokens = (prompt == end_token_id) & (~mask) prompt_done = ops.any(end_tokens, axis=-1) return ops.logical_not(ops.all(prompt_done)) def body(prompt, cache, index): # Compute the softmax distribution for the next token. logits, _, cache = next(prompt, cache, index) probabilities = self.compute_probabilities(logits) # Compute the next token. next_token = self.get_next_token(probabilities) # Don't overwrite anywhere mask is True. next_token = ops.cast(next_token, prompt.dtype) next_token = ops.where(mask[:, index], prompt[:, index], next_token) # Update the prompt with the next token. next_token = next_token[:, None] prompt = ops.slice_update(prompt, [0, index], next_token) # Return the next prompt, cache and incremented index. return (prompt, cache, index + 1) prompt, _, _ = self.run_loop( cond, body, loop_vars=(prompt, cache, index), maximum_iterations=(max_length - index), model=model, ) return prompt def compute_probabilities(self, logits): """Compute token probabilities from logits. This will always be done in full precision, regardless of dtype, and scale by `temperature`. """ logits_dtype = logits.dtype logits = ops.cast(logits, "float32") probs = keras.activations.softmax(logits / self.temperature) return ops.cast(probs, logits_dtype) def run_loop( self, cond, body, model=None, loop_vars=None, maximum_iterations=None ): """Run ops.while_loops with a `StatelessScope` if necessary.""" if config.backend() == "jax": import itertools if model: model_trainable_variables = model.trainable_variables model_non_trainable_variables = model.non_trainable_variables else: model_trainable_variables = [] model_non_trainable_variables = [] def stateless_cond(state, *loop_vars): return cond(*loop_vars) def stateless_body(state, *loop_vars): ( sampler_variables, trainable_variables, non_trainable_variables, ) = state mapping = itertools.chain( zip(self.variables, sampler_variables), zip(model_trainable_variables, trainable_variables), zip(model_non_trainable_variables, non_trainable_variables), ) with keras.StatelessScope(state_mapping=mapping) as scope: loop_vars = body(*loop_vars) sampler_variables = [] for v in self.variables: new_v = scope.get_current_value(v) sampler_variables.append(new_v if new_v is not None else v) state = ( sampler_variables, trainable_variables, non_trainable_variables, ) return state, *loop_vars variables = [ops.convert_to_tensor(v) for v in self.variables] trainable_variables = [ ops.convert_to_tensor(v) for v in model_trainable_variables ] non_trainable_variables = [ ops.convert_to_tensor(v) for v in model_non_trainable_variables ] state = ( variables, trainable_variables, non_trainable_variables, ) state, *loop_vars = ops.while_loop( cond=stateless_cond, body=stateless_body, loop_vars=(state, *loop_vars), maximum_iterations=maximum_iterations, ) for ref_v, v in zip(self.variables, state[0]): ref_v.assign(v) else: loop_vars = ops.while_loop( cond=cond, body=body, loop_vars=(loop_vars), maximum_iterations=maximum_iterations, ) return loop_vars def get_next_token(self, probabilities): """Get the next token. Args: probabilities: a Tensor, the probability distribution for next token over all vocab tokens. Get the next token based on given probability distribution over tokens. Subclasses must implement this method. """ raise NotImplementedError @classmethod def from_config(cls, config): return cls(**config) def get_config(self): return {"temperature": self.temperature}
keras-nlp/keras_nlp/samplers/sampler.py/0
{ "file_path": "keras-nlp/keras_nlp/samplers/sampler.py", "repo_id": "keras-nlp", "token_count": 4068 }
161
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List from keras_nlp.api_export import keras_nlp_export from keras_nlp.layers.preprocessing.preprocessing_layer import ( PreprocessingLayer, ) @keras_nlp_export("keras_nlp.tokenizers.Tokenizer") class Tokenizer(PreprocessingLayer): """A base class for tokenizer layers. Tokenizers in the KerasNLP library should all subclass this layer. The class provides two core methods `tokenize()` and `detokenize()` for going from plain text to sequences and back. A tokenizer is a subclass of `keras.layers.Layer` and can be combined into a `keras.Model`. Subclassers should always implement the `tokenize()` method, which will also be the default when calling the layer directly on inputs. Subclassers can optionally implement the `detokenize()` method if the tokenization is reversible. Otherwise, this can be skipped. Subclassers should implement `get_vocabulary()`, `vocabulary_size()`, `token_to_id()` and `id_to_token()` if applicable. For some simple "vocab free" tokenizers, such as a whitespace splitter show below, these methods do not apply and can be skipped. Examples: ```python class WhitespaceSplitterTokenizer(keras_nlp.tokenizers.Tokenizer): def tokenize(self, inputs): return tf.strings.split(inputs) def detokenize(self, inputs): return tf.strings.reduce_join(inputs, separator=" ", axis=-1) tokenizer = WhitespaceSplitterTokenizer() # Tokenize some inputs. tokenizer.tokenize("This is a test") # Shorthard for `tokenize()`. tokenizer("This is a test") # Detokenize some outputs. tokenizer.detokenize(["This", "is", "a", "test"]) ``` """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def tokenize(self, inputs, *args, **kwargs): """Transform input tensors of strings into output tokens. Args: inputs: Input tensor, or dict/list/tuple of input tensors. *args: Additional positional arguments. **kwargs: Additional keyword arguments. """ raise NotImplementedError( "No implementation of `tokenize()` was found for " f"{self.__class__.__name__}. All tokenizers should implement " "`tokenize()`." ) def detokenize(self, inputs, *args, **kwargs): """Transform tokens back into strings. Args: inputs: Input tensor, or dict/list/tuple of input tensors. *args: Additional positional arguments. **kwargs: Additional keyword arguments. """ raise NotImplementedError( "No implementation of `detokenize()` was found for " f"{self.__class__.__name__}." ) def get_vocabulary(self) -> List[str]: """Get the tokenizer vocabulary as a list of strings terms.""" raise NotImplementedError( "No implementation of `get_vocabulary()` was found for " f"{self.__class__.__name__}." ) def vocabulary_size(self) -> int: """Returns the total size of the token id space.""" raise NotImplementedError( "No implementation of `vocabulary_size()` was found for " f"{self.__class__.__name__}." ) def id_to_token(self, id: int) -> str: """Convert an integer id to a string token.""" raise NotImplementedError( "No implementation of `id_to_token()` was found for " f"{self.__class__.__name__}." ) def token_to_id(self, token: str) -> int: """Convert a string token to an integer id.""" raise NotImplementedError( "No implementation of `token_to_id()` was found for " f"{self.__class__.__name__}." ) def call(self, inputs, *args, training=None, **kwargs): return self.tokenize(inputs, *args, **kwargs)
keras-nlp/keras_nlp/tokenizers/tokenizer.py/0
{ "file_path": "keras-nlp/keras_nlp/tokenizers/tokenizer.py", "repo_id": "keras-nlp", "token_count": 1708 }
162
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from keras_nlp.tests.test_case import TestCase from keras_nlp.utils.python_utils import classproperty from keras_nlp.utils.python_utils import format_docstring class ClassPropertyTest(TestCase): def test_class_property(self): class Foo: @classproperty def bar(cls): return "class property" self.assertAllEqual(Foo.bar, "class property") class FormatDocstringTest(TestCase): def test_function(self): @format_docstring(adjective="salubrious") def foo(): """It was a {{adjective}} November day.""" return "function" self.assertAllEqual(foo(), "function") self.assertAllEqual(foo.__doc__, "It was a salubrious November day.") def test_class(self): @format_docstring(adjective="smelly", name="Mortimer") class Foo: """I saw my {{adjective}} friend {{name}}.""" def __init__(self): self.bar = "property" self.assertAllEqual(Foo().bar, "property") self.assertAllEqual(Foo.__doc__, "I saw my smelly friend Mortimer.") def test_class_method(self): @format_docstring(adjective="smelly", name="Mortimer") class Foo: """I saw my {{adjective}} friend {{name}}.""" def __init__(self): self.bar = "property" @classmethod @format_docstring(noun="cactus", bodypart="nostril") def baz(cls): """He was holding a {{noun}} in his {{bodypart}}.""" return "class method" self.assertAllEqual(Foo.baz(), "class method") self.assertAllEqual( Foo.baz.__doc__, "He was holding a cactus in his nostril.", ) self.assertAllEqual( Foo.baz.__func__.__doc__, "He was holding a cactus in his nostril.", ) def test_brackets(self): @format_docstring(nickname="dumdum") def bar(): """Use `{}` to create a dictionary, {{nickname}}.""" return "function" self.assertAllEqual(bar(), "function") self.assertAllEqual( bar.__doc__, "Use `{}` to create a dictionary, dumdum." )
keras-nlp/keras_nlp/utils/python_utils_test.py/0
{ "file_path": "keras-nlp/keras_nlp/utils/python_utils_test.py", "repo_id": "keras-nlp", "token_count": 1210 }
163
# Copyright 2023 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import numpy as np import requests import tensorflow as tf import transformers from absl import app from absl import flags import keras_nlp from tools.checkpoint_conversion.checkpoint_conversion_utils import ( get_md5_checksum, ) PRESET_MAP = { "distil_bert_base_en_uncased": "distilbert-base-uncased", "distil_bert_base_en_cased": "distilbert-base-cased", "distil_bert_base_multi_cased": "distilbert-base-multilingual-cased", } EXTRACT_DIR = "./{}" FLAGS = flags.FLAGS flags.DEFINE_string( "preset", None, f'Must be one of {",".join(PRESET_MAP.keys())}' ) def download_files(hf_model_name): print("-> Download original vocab and config.") extract_dir = EXTRACT_DIR.format(FLAGS.preset) if not os.path.exists(extract_dir): os.makedirs(extract_dir) # Config. config_path = os.path.join(extract_dir, "config.json") response = requests.get( f"https://huggingface.co/{hf_model_name}/raw/main/config.json" ) open(config_path, "wb").write(response.content) print(f"`{config_path}`") # Vocab. vocab_path = os.path.join(extract_dir, "vocab.txt") response = requests.get( f"https://huggingface.co/{hf_model_name}/raw/main/vocab.txt" ) open(vocab_path, "wb").write(response.content) print(f"`{vocab_path}`") def define_preprocessor(hf_model_name): print("\n-> Define the tokenizers.") extract_dir = EXTRACT_DIR.format(FLAGS.preset) vocab_path = os.path.join(extract_dir, "vocab.txt") keras_nlp_tokenizer = keras_nlp.models.DistilBertTokenizer( vocabulary=vocab_path, ) keras_nlp_preprocessor = keras_nlp.models.DistilBertPreprocessor( keras_nlp_tokenizer ) hf_tokenizer = transformers.AutoTokenizer.from_pretrained(hf_model_name) print("\n-> Print MD5 checksum of the vocab files.") print(f"`{vocab_path}` md5sum: ", get_md5_checksum(vocab_path)) return keras_nlp_preprocessor, hf_tokenizer def convert_checkpoints(keras_nlp_model, hf_model): print("\n-> Convert original weights to KerasNLP format.") extract_dir = EXTRACT_DIR.format(FLAGS.preset) config_path = os.path.join(extract_dir, "config.json") # Build config. cfg = {} with open(config_path, "r") as pt_cfg_handler: pt_cfg = json.load(pt_cfg_handler) cfg["vocabulary_size"] = pt_cfg["vocab_size"] cfg["num_layers"] = pt_cfg["n_layers"] cfg["num_heads"] = pt_cfg["n_heads"] cfg["hidden_dim"] = pt_cfg["dim"] cfg["intermediate_dim"] = pt_cfg["hidden_dim"] cfg["dropout"] = pt_cfg["dropout"] cfg["max_sequence_length"] = pt_cfg["max_position_embeddings"] print("Config:", cfg) hf_wts = hf_model.state_dict() print("Original weights:") print( str(hf_wts.keys()) .replace(", ", "\n") .replace("odict_keys([", "") .replace("]", "") .replace(")", "") ) keras_nlp_model.get_layer( "token_and_position_embedding" ).token_embedding.embeddings.assign( hf_wts["embeddings.word_embeddings.weight"] ) keras_nlp_model.get_layer( "token_and_position_embedding" ).position_embedding.position_embeddings.assign( hf_wts["embeddings.position_embeddings.weight"] ) keras_nlp_model.get_layer("embeddings_layer_norm").gamma.assign( hf_wts["embeddings.LayerNorm.weight"] ) keras_nlp_model.get_layer("embeddings_layer_norm").beta.assign( hf_wts["embeddings.LayerNorm.bias"] ) for i in range(keras_nlp_model.num_layers): keras_nlp_model.get_layer( f"transformer_layer_{i}" )._self_attention_layer._query_dense.kernel.assign( hf_wts[f"transformer.layer.{i}.attention.q_lin.weight"] .transpose(1, 0) .reshape((cfg["hidden_dim"], cfg["num_heads"], -1)) .numpy() ) keras_nlp_model.get_layer( f"transformer_layer_{i}" )._self_attention_layer._query_dense.bias.assign( hf_wts[f"transformer.layer.{i}.attention.q_lin.bias"] .reshape((cfg["num_heads"], -1)) .numpy() ) keras_nlp_model.get_layer( f"transformer_layer_{i}" )._self_attention_layer._key_dense.kernel.assign( hf_wts[f"transformer.layer.{i}.attention.k_lin.weight"] .transpose(1, 0) .reshape((cfg["hidden_dim"], cfg["num_heads"], -1)) .numpy() ) keras_nlp_model.get_layer( f"transformer_layer_{i}" )._self_attention_layer._key_dense.bias.assign( hf_wts[f"transformer.layer.{i}.attention.k_lin.bias"] .reshape((cfg["num_heads"], -1)) .numpy() ) keras_nlp_model.get_layer( f"transformer_layer_{i}" )._self_attention_layer._value_dense.kernel.assign( hf_wts[f"transformer.layer.{i}.attention.v_lin.weight"] .transpose(1, 0) .reshape((cfg["hidden_dim"], cfg["num_heads"], -1)) .numpy() ) keras_nlp_model.get_layer( f"transformer_layer_{i}" )._self_attention_layer._value_dense.bias.assign( hf_wts[f"transformer.layer.{i}.attention.v_lin.bias"] .reshape((cfg["num_heads"], -1)) .numpy() ) keras_nlp_model.get_layer( f"transformer_layer_{i}" )._self_attention_layer._output_dense.kernel.assign( hf_wts[f"transformer.layer.{i}.attention.out_lin.weight"] .transpose(1, 0) .reshape((cfg["num_heads"], -1, cfg["hidden_dim"])) .numpy() ) keras_nlp_model.get_layer( f"transformer_layer_{i}" )._self_attention_layer._output_dense.bias.assign( hf_wts[f"transformer.layer.{i}.attention.out_lin.bias"].numpy() ) keras_nlp_model.get_layer( f"transformer_layer_{i}" )._self_attention_layer_norm.gamma.assign( hf_wts[f"transformer.layer.{i}.sa_layer_norm.weight"].numpy() ) keras_nlp_model.get_layer( f"transformer_layer_{i}" )._self_attention_layer_norm.beta.assign( hf_wts[f"transformer.layer.{i}.sa_layer_norm.bias"].numpy() ) keras_nlp_model.get_layer( f"transformer_layer_{i}" )._feedforward_intermediate_dense.kernel.assign( hf_wts[f"transformer.layer.{i}.ffn.lin1.weight"] .transpose(1, 0) .numpy() ) keras_nlp_model.get_layer( f"transformer_layer_{i}" )._feedforward_intermediate_dense.bias.assign( hf_wts[f"transformer.layer.{i}.ffn.lin1.bias"].numpy() ) keras_nlp_model.get_layer( f"transformer_layer_{i}" )._feedforward_output_dense.kernel.assign( hf_wts[f"transformer.layer.{i}.ffn.lin2.weight"] .transpose(1, 0) .numpy() ) keras_nlp_model.get_layer( f"transformer_layer_{i}" )._feedforward_output_dense.bias.assign( hf_wts[f"transformer.layer.{i}.ffn.lin2.bias"].numpy() ) keras_nlp_model.get_layer( f"transformer_layer_{i}" )._feedforward_layer_norm.gamma.assign( hf_wts[f"transformer.layer.{i}.output_layer_norm.weight"].numpy() ) keras_nlp_model.get_layer( f"transformer_layer_{i}" )._feedforward_layer_norm.beta.assign( hf_wts[f"transformer.layer.{i}.output_layer_norm.bias"].numpy() ) # Save the model. print(f"\n-> Save KerasNLP model weights to `{FLAGS.preset}.h5`.") keras_nlp_model.save_weights(f"{FLAGS.preset}.h5") return keras_nlp_model def check_output( keras_nlp_preprocessor, keras_nlp_model, hf_tokenizer, hf_model, ): print("\n-> Check the outputs.") sample_text = ["cricket is awesome, easily the best sport in the world!"] # KerasNLP keras_nlp_inputs = keras_nlp_preprocessor(tf.constant(sample_text)) keras_nlp_output = keras_nlp_model.predict(keras_nlp_inputs) # HF hf_inputs = hf_tokenizer( sample_text, padding="max_length", return_tensors="pt" ) hf_output = hf_model(**hf_inputs).last_hidden_state print("KerasNLP output:", keras_nlp_output[0, 0, :10]) print("HF output:", hf_output[0, 0, :10]) print("Difference:", np.mean(keras_nlp_output - hf_output.detach().numpy())) # Show the MD5 checksum of the model weights. print("Model md5sum: ", get_md5_checksum(f"./{FLAGS.preset}.h5")) def main(_): hf_model_name = PRESET_MAP[FLAGS.preset] download_files(hf_model_name) keras_nlp_preprocessor, hf_tokenizer = define_preprocessor(hf_model_name) print("\n-> Load KerasNLP model.") keras_nlp_model = keras_nlp.models.DistilBertBackbone.from_preset( FLAGS.preset, load_weights=False ) print("\n-> Load HF model.") hf_model = transformers.AutoModel.from_pretrained(hf_model_name) hf_model.eval() keras_nlp_model = convert_checkpoints(keras_nlp_model, hf_model) check_output( keras_nlp_preprocessor, keras_nlp_model, hf_tokenizer, hf_model, ) if __name__ == "__main__": flags.mark_flag_as_required("preset") app.run(main)
keras-nlp/tools/checkpoint_conversion/convert_distilbert_checkpoints.py/0
{ "file_path": "keras-nlp/tools/checkpoint_conversion/convert_distilbert_checkpoints.py", "repo_id": "keras-nlp", "token_count": 4816 }
164
# Copyright 2024 The KerasNLP Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import os import gemma import torch import torch_xla.core.xla_model as xm from absl import app from absl import flags from gemma import model_xla as gemma_model import keras_nlp os.environ["KERAS_BACKEND"] = "torch" """ Sample usage: For converting a Keras model to PyTorch format using a custom or fine-tuned checkpoint from Keras, make sure to pass the path for the Keras weights file (ending in `.weights.h5`) and the model size (`2b` or `7b`) to `--weights_file` and `--size`, respectively. Optionally, you can specify the output path for the converted model at `--output_file`. (This defaults to `gemma.ckpt`) ``` python tools/gemma/export_gemma_to_torch_xla.py \ --weights_file fine_tuned_imdb.weights.h5 \ --size 2b \ --output_file fine_tuned_imdb.ckpt ``` For converting a Keras model to PyTorch format from a preset, simply pass the Keras preset name to `--preset`. ``` python tools/gemma/export_gemma_to_torch_xla.py \ --preset gemma_2b_en \ --output_file path/to/keras_torch_model.ckpt ``` """ PRESET_MAP = { "gemma_2b_en": gemma.config.get_config_for_2b(), "gemma_instruct_2b_en": gemma.config.get_config_for_2b(), "gemma_7b_en": gemma.config.get_config_for_7b(), "gemma_instruct_7b_en": gemma.config.get_config_for_7b(), } SIZE_MAP = { "2b": (gemma.config.get_config_for_2b(), "gemma_2b_en"), "7b": (gemma.config.get_config_for_7b(), "gemma_7b_en"), } FLAGS = flags.FLAGS flags.DEFINE_string( "preset", None, f'Must be one of {",".join(PRESET_MAP.keys())}' " Alternatively, a Keras weights file (`.weights.h5`) can be passed" " to --weights_file flag.", ) flags.DEFINE_string( "weights_file", None, "A Keras weights file (`.weights.h5`)." " Alternatively, a model preset can be passed to --preset flag.", ) flags.DEFINE_string( "size", None, "Size of model. Must be passed if `weights_file` is passed. " "This should be either `2b` or `7b`.", ) flags.DEFINE_string( "output_file", "gemma.ckpt", "An output file for the converted PyTorch checkpoint. Default: `gemma.ckpt`", ) flags.DEFINE_string( "vocab_dir", "gemma_tokenizer", "A directory in which the vocabulary for the tokenizer will be stored.", ) flags.DEFINE_string( "dtype", "float32", "Set the precision of the converted checkpoint. Must be a valid PyTorch dtype.", ) @contextlib.contextmanager def _set_default_tensor_type(dtype: torch.dtype): """Sets the default torch dtype to the given dtype.""" torch.set_default_dtype(dtype) yield torch.set_default_dtype(torch.float) def _reconcile_attention_dims(qkv, target_shape): return torch.cat(qkv).reshape(tuple(target_shape)) def convert_checkpoints(preset, weights_file, size, output_file, vocab_dir): device = xm.xla_device() if preset is not None: print( f"\n-> Loading PyTorch Gemma model config for preset `{preset}`..." ) model = gemma_model.GemmaForCausalLM( PRESET_MAP[preset], world_size=1, rank=0, device=device ) print(f"\n-> Loading KerasNLP Gemma model with preset `{preset}`...") keras_nlp_model = keras_nlp.models.GemmaCausalLM.from_preset(preset) else: print(f"\n-> Loading PyTorch Gemma model config for `{size}` model...") config, size_preset = SIZE_MAP[size.lower()] model = gemma_model.GemmaForCausalLM( config, world_size=1, rank=0, device=device ) print(f"\n-> Loading Keras weights from file `{weights_file}`...") keras_nlp_model = keras_nlp.models.GemmaCausalLM.from_preset( size_preset ) keras_nlp_model.load_weights(weights_file) print("\n✅ Model loading complete.") print("\n-> Converting weights from KerasNLP Gemma to PyTorch Gemma...") # Token embedding (with vocab size difference handling) keras_embedding = keras_nlp_model.backbone.token_embedding.weights[0] torch_vocab_size = model.embedder.weight.shape[0] keras_nlp_vocab_size = keras_embedding.value.shape[0] if torch_vocab_size < keras_nlp_vocab_size: diff = keras_nlp_vocab_size - torch_vocab_size update_state_dict( model.embedder, "weight", keras_embedding.value[:-diff, :], ) else: update_state_dict( model.embedder, "weight", keras_embedding.value, ) # Decoder blocks for i in range(keras_nlp_model.backbone.num_layers): decoder_block = keras_nlp_model.backbone.get_layer(f"decoder_block_{i}") # Pre-attention norm update_state_dict( model.model.layers[i].input_layernorm, "weight", decoder_block.pre_attention_norm.weights[0].value, ) # Attention qkv = ( decoder_block.attention.query_dense.weights[0].value.transpose( 1, 2 ), decoder_block.attention.key_dense.weights[0].value.transpose(1, 2), decoder_block.attention.value_dense.weights[0].value.transpose( 1, 2 ), ) qkv_target_shape = model.model.layers[i].self_attn.qkv_proj.weight.shape combined_tensor = _reconcile_attention_dims(qkv, qkv_target_shape) update_state_dict( model.model.layers[i].self_attn.qkv_proj, "weight", combined_tensor ) out_target_shape = model.model.layers[i].self_attn.o_proj.weight.shape keras_out_tensor = decoder_block.attention.output_dense.weights[0].value out_tensor = keras_out_tensor.reshape( (out_target_shape[1], out_target_shape[0]) # Transpose target size ).transpose(0, 1) update_state_dict( model.model.layers[i].self_attn.o_proj, "weight", out_tensor ) # Post-attention norm update_state_dict( model.model.layers[i].post_attention_layernorm, "weight", decoder_block.pre_ffw_norm.weights[0].value, ) # MLP (Feed-forward) update_state_dict( model.model.layers[i].mlp.gate_proj, "weight", decoder_block.gating_ffw.weights[0].value.transpose(0, 1), ) update_state_dict( model.model.layers[i].mlp.up_proj, "weight", decoder_block.gating_ffw_2.weights[0].value.transpose(0, 1), ) update_state_dict( model.model.layers[i].mlp.down_proj, "weight", decoder_block.ffw_linear.weights[0].value.transpose(0, 1), ) # Final norm update_state_dict( model.model.norm, "weight", keras_nlp_model.backbone.layers[-1].weights[0].value, ) print("\n✅ Weights converted successfully.") print(f"\n-> Saving PyTorch model checkpoint to `{output_file}`...") # Save model checkpoint torch.save({"model_state_dict": model.state_dict()}, output_file) print( f"\n✅ Saving complete. Model checkpoint available at `{output_file}`." ) if preset is not None: # Tokenizer print( f"\n-> Loading KerasNLP Gemma tokenizer with preset `{preset}`..." ) keras_nlp_tokenizer = keras_nlp.models.GemmaTokenizer.from_preset( preset ) print("\n✅ Model loading complete.") print(f"\n-> Saving tokenizer state to directory `{vocab_dir}`...") # Save tokenizer state os.makedirs(vocab_dir, exist_ok=True) keras_nlp_tokenizer.save_assets(vocab_dir) print( "\n✅ Saving complete. Tokenizer state " f"available at `{vocab_dir}/vocabulary.spm`." ) def update_state_dict(layer, weight_name: str, tensor: torch.Tensor) -> None: """Updates the state dict for a weight given a tensor.""" assert ( tensor.shape == layer.state_dict()[weight_name].shape ), f"{tensor.shape} vs {layer.state_dict()[weight_name].shape}" layer.state_dict()[weight_name].copy_(tensor) def flag_error_handler(): if not FLAGS.preset and not FLAGS.weights_file: raise ValueError( "Please pass either a valid Keras preset to `--preset`" " or supply a Keras weights file (`.weights.h5`) and model size" " (`2b` or `7b`) to `--weights_file` and `--size`, respectively." ) if FLAGS.weights_file: if FLAGS.preset: raise ValueError( "Both `--preset` and `--weights_file` flags cannot be supplied " "at the same time. Either supply a valid Keras preset to " "`--preset`or supply a Keras `.weights.h5` file and " "model size (`2b` or `7b`) to `--weights_file` and `--size`, " "respectively." ) if not str(FLAGS.weights_file).endswith(".weights.h5"): raise ValueError( "Please pass a valid Keras weights file ending in `.weights.h5`." ) if not FLAGS.size: raise ValueError( "The `size` flag must be passed if a weights file is passed. " "Please pass the appropriate size (`2b` or `7b`) for your " "model to the `--size` flag." ) if FLAGS.size.lower() not in ["2b", "7b"]: raise ValueError( "Invalid `size`. Please pass the appropriate size (`2b` or `7b`) " "for your model to the `--size` flag." ) if FLAGS.dtype: dtype = getattr(torch, FLAGS.dtype) if not isinstance(dtype, torch.dtype): raise ValueError( "Invalid `dtype`. Please pass a valid PyTorch data type (e.g. " "`float32', 'float16`, etc.) to the `--dtype` flag." ) def main(_): flag_error_handler() with _set_default_tensor_type(getattr(torch, FLAGS.dtype)): convert_checkpoints( FLAGS.preset, FLAGS.weights_file, FLAGS.size, FLAGS.output_file, FLAGS.vocab_dir, ) if __name__ == "__main__": app.run(main)
keras-nlp/tools/gemma/export_gemma_to_torch_xla.py/0
{ "file_path": "keras-nlp/tools/gemma/export_gemma_to_torch_xla.py", "repo_id": "keras-nlp", "token_count": 4941 }
165
# On Github Issues and Pull Requests Found a bug? Want to contribute changes to the codebase? Make sure to read this first. ## Update Your Environment To easily update Keras: `pip install git+https://www.github.com/keras-team/keras.git --upgrade` To easily update Keras-Preprocessing: `pip install git+https://www.github.com/keras-team/keras-preprocessing.git --upgrade` To easily update Theano: `pip install git+git://github.com/Theano/Theano.git --upgrade` To update TensorFlow: See [TensorFlow Installation instructions](https://github.com/tensorflow/tensorflow#installation) ## Bug reporting Your code doesn't work, **and you have determined that the issue lies with Keras-Preprocessing**? Follow these steps to report a bug. 1. Your bug may already be fixed. Make sure to update to the current Keras master branch and Keras-Preprocessing master branch, as well as the latest Theano/TensorFlow master branch. 2. [Search for similar issues](https://github.com/keras-team/keras-preprocessing/issues?utf8=%E2%9C%93&q=is%3Aissue). It's possible somebody has encountered this bug already. Still having a problem? Open an issue on Github to let us know. 3. Make sure you provide us with useful information about your configuration: what OS are you using? What Keras backend are you using? Are you running on GPU? If so, what is your version of Cuda, of cuDNN? What is your GPU? 4. Provide us with a script to reproduce the issue. This script should be runnable as-is and should not require external data download (use randomly generated data if you need to run a model on some test data). We recommend that you use Github Gists to post your code. Any issue that cannot be reproduced is likely to be closed. 5. If possible, take a stab at fixing the bug yourself --if you can! The more information you provide, the easier it is for us to validate that there is a bug and the faster we'll be able to take action. If you want your issue to be resolved quickly, following the steps above is crucial. ## Pull Requests We love pull requests. Here's a quick guide: 1. If your PR introduces a change in functionality, make sure you start by opening an issue to discuss whether the change should be made, and how to handle it. This will save you from having your PR closed down the road! Of course, if your PR is a simple bug fix, you don't need to do that. 2. Ensure that your environment (Keras, Keras-Preprocessing, and your backend) are up to date. See "Update Your Environment". Create a new branch for your changes. 3. Write the code (or get others to write it). This is the hard part! 4. Make sure any new function or class you introduce has proper docstrings. Make sure any code you touch still has up-to-date docstrings and documentation. **Docstring style should be respected.** In particular, they should be formatted in MarkDown, and there should be sections for `Arguments`, `Returns`, `Raises` (if applicable). Look at other docstrings in the codebase for examples. 5. Write tests. Your code should have full unit test coverage. If you want to see your PR merged promptly, this is crucial. If your PR is a bug fix, it is advisable to add a new test, which, without your fix in this PR, would have failed. 6. Run our test suite locally. It's easy: from the Keras folder, simply run: `py.test tests/`. - You will need to install the test requirements as well: `pip install -e .[tests]`. 7. Make sure all tests are passing: - with the Theano backend, on Python 2.7 and Python 3.6. Make sure you have the development version of Theano. - with the TensorFlow backend, on Python 2.7 and Python 3.6. Make sure you have the development version of TensorFlow. - with the CNTK backend, on Python 2.7 and Python 3.6. Make sure you have the development version of CNTK. - **Please Note:** all tests run on top of the very latest Keras master branch. 8. We use PEP8 syntax conventions, but we aren't dogmatic when it comes to line length. Make sure your lines stay reasonably sized, though. To make your life easier, we recommend running a PEP8 linter: - Install PEP8 packages: `pip install pep8 pytest-pep8 autopep8` - Run a standalone PEP8 check: `py.test --pep8 -m pep8` - You can automatically fix some PEP8 error by running: `autopep8 -i --select <errors> <FILENAME>` for example: `autopep8 -i --select E128 tests/keras/backend/test_backends.py` 9. When committing, use appropriate, descriptive commit messages. Make sure that your branch history is not a string of "bug fix", "fix", "oops", etc. When submitting your PR, squash your commits into a single commit with an appropriate commit message, to make sure the project history stays clean and readable. See ['rebase and squash'](http://rebaseandsqua.sh/) for technical help on how to squash your commits. 10. Update the documentation. If introducing new functionality, make sure you include code snippets demonstrating the usage of your new feature. 11. Submit your PR. If your changes have been approved in a previous discussion, and if you have complete (and passing) unit tests, your PR is likely to be merged promptly.
keras-preprocessing/CONTRIBUTING.md/0
{ "file_path": "keras-preprocessing/CONTRIBUTING.md", "repo_id": "keras-preprocessing", "token_count": 1358 }
166
# Configuration of py.test [tool:pytest]] addopts=-v -n 2 --durations=20 # Do not run tests in the build folder norecursedirs=build [flake8] # Use 85 as max line length in PEP8 test. max-line-length=85 # do not run pep8 test in the build folder exclude=build # PEP-8 The following are ignored: # E731 do not assign a lambda expression, use a def # E402 module level import not at top of file pep8ignore=* E731 \ * E402 \
keras-preprocessing/setup.cfg/0
{ "file_path": "keras-preprocessing/setup.cfg", "repo_id": "keras-preprocessing", "token_count": 156 }
167
sudo pip install --upgrade pip sudo pip install -e ".[tensorflow-cpu,tests]" echo "sh shell/lint.sh" > .git/hooks/pre-commit chmod a+x .git/hooks/pre-commit
keras-tuner/.devcontainer/setup.sh/0
{ "file_path": "keras-tuner/.devcontainer/setup.sh", "repo_id": "keras-tuner", "token_count": 59 }
168
<meta http-equiv="refresh" content="0; URL='https://keras.io/guides/keras_tuner/custom_tuner/'" />
keras-tuner/docs/site/tutorials/subclass-tuner/index.html/0
{ "file_path": "keras-tuner/docs/site/tutorials/subclass-tuner/index.html", "repo_id": "keras-tuner", "token_count": 40 }
169
# Copyright 2019 The KerasTuner Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from keras_tuner.backend.config import multi_backend if multi_backend(): from keras.src.ops import * # noqa: F403, F401 else: import tensorflow as tf from tensorflow import cast # noqa: F403, F401 def any_symbolic_tensors(args=None, kwargs=None): args = args or () kwargs = kwargs or {} for x in tf.nest.flatten((args, kwargs)): if "KerasTensor" in x.__class__.__name__: return True return False def shape(x): if any_symbolic_tensors((x,)): return x.shape dynamic = tf.shape(x) static = x.shape.as_list() return tuple( dynamic[i] if s is None else s for i, s in enumerate(static) )
keras-tuner/keras_tuner/backend/ops.py/0
{ "file_path": "keras-tuner/keras_tuner/backend/ops.py", "repo_id": "keras-tuner", "token_count": 507 }
170
# Copyright 2019 The KerasTuner Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. "HyperModel base class." from keras_tuner import errors from keras_tuner.api_export import keras_tuner_export @keras_tuner_export( [ "keras_tuner.HyperModel", "keras_tuner.engine.hypermodel.HyperModel", ] ) class HyperModel: """Defines a search space of models. A search space is a collection of models. The `build` function will build one of the models from the space using the given `HyperParameters` object. Users should subclass the `HyperModel` class to define their search spaces by overriding `build()`, which creates and returns the Keras model. Optionally, you may also override `fit()` to customize the training process of the model. Examples: In `build()`, you can create the model using the hyperparameters. ```python class MyHyperModel(kt.HyperModel): def build(self, hp): model = keras.Sequential() model.add(keras.layers.Dense( hp.Choice('units', [8, 16, 32]), activation='relu')) model.add(keras.layers.Dense(1, activation='relu')) model.compile(loss='mse') return model ``` When overriding `HyperModel.fit()`, if you use `model.fit()` to train your model, which returns the training history, you can return it directly. You may use `hp` to specify any hyperparameters to tune. ```python class MyHyperModel(kt.HyperModel): def build(self, hp): ... def fit(self, hp, model, *args, **kwargs): return model.fit( *args, epochs=hp.Int("epochs", 5, 20), **kwargs) ``` If you have a customized training process, you can return the objective value as a float. If you want to keep track of more metrics, you can return a dictionary of the metrics to track. ```python class MyHyperModel(kt.HyperModel): def build(self, hp): ... def fit(self, hp, model, *args, **kwargs): ... return { "loss": loss, "val_loss": val_loss, "val_accuracy": val_accuracy } ``` Args: name: Optional string, the name of this HyperModel. tunable: Boolean, whether the hyperparameters defined in this hypermodel should be added to search space. If `False`, either the search space for these parameters must be defined in advance, or the default values will be used. Defaults to True. """ def __init__(self, name=None, tunable=True): self.name = name self.tunable = tunable self._build = self.build self.build = self._build_wrapper def build(self, hp): """Builds a model. Args: hp: A `HyperParameters` instance. Returns: A model instance. """ raise NotImplementedError def _build_wrapper(self, hp, *args, **kwargs): if not self.tunable: # Copy `HyperParameters` object so that new entries are not added # to the search space. hp = hp.copy() return self._build(hp, *args, **kwargs) def declare_hyperparameters(self, hp): pass def fit(self, hp, model, *args, **kwargs): """Train the model. Args: hp: HyperParameters. model: `keras.Model` built in the `build()` function. **kwargs: All arguments passed to `Tuner.search()` are in the `kwargs` here. It always contains a `callbacks` argument, which is a list of default Keras callback functions for model checkpointing, tensorboard configuration, and other tuning utilities. If `callbacks` is passed by the user from `Tuner.search()`, these default callbacks will be appended to the user provided list. Returns: A `History` object, which is the return value of `model.fit()`, a dictionary, or a float. If return a dictionary, it should be a dictionary of the metrics to track. The keys are the metric names, which contains the `objective` name. The values should be the metric values. If return a float, it should be the `objective` value. """ return model.fit(*args, **kwargs) class DefaultHyperModel(HyperModel): """Produces HyperModel from a model building function.""" def __init__(self, build, name=None, tunable=True): super().__init__(name=name) self.build = build def get_hypermodel(hypermodel): """Gets a HyperModel from a HyperModel or callable.""" if hypermodel is None: return None if isinstance(hypermodel, HyperModel): return hypermodel if not callable(hypermodel): raise errors.FatalValueError( "The `hypermodel` argument should be either " "a callable with signature `build(hp)` returning a model, " "or an instance of `HyperModel`." ) return DefaultHyperModel(hypermodel)
keras-tuner/keras_tuner/engine/hypermodel.py/0
{ "file_path": "keras-tuner/keras_tuner/engine/hypermodel.py", "repo_id": "keras-tuner", "token_count": 2296 }
171
# Copyright 2019 The KerasTuner Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random from keras_tuner import utils from keras_tuner.api_export import keras_tuner_export from keras_tuner.engine import conditions as conditions_mod @keras_tuner_export("keras_tuner.engine.hyperparameters.HyperParameter") class HyperParameter: """Hyperparameter base class. A `HyperParameter` instance is uniquely identified by its `name` and `conditions` attributes. `HyperParameter`s with the same `name` but with different `conditions` are considered as different `HyperParameter`s by the `HyperParameters` instance. Args: name: A string. the name of parameter. Must be unique for each `HyperParameter` instance in the search space. default: The default value to return for the parameter. conditions: A list of `Condition`s for this object to be considered active. """ def __init__(self, name, default=None, conditions=None): self.name = name self._default = default conditions = utils.to_list(conditions) if conditions else [] self.conditions = conditions def get_config(self): conditions = [conditions_mod.serialize(c) for c in self.conditions] return { "name": self.name, "default": self.default, "conditions": conditions, } @property def default(self): return self._default @property def values(self): """Return a iterable of all possible values of the hp.""" raise NotImplementedError def random_sample(self, seed=None): random_state = random.Random(seed) prob = float(random_state.random()) return self.prob_to_value(prob) def prob_to_value(self, prob): """Convert cumulative probability in range [0.0, 1.0) to hp value.""" raise NotImplementedError def value_to_prob(self, value): """Convert a hp value to cumulative probability in range [0.0, 1.0).""" raise NotImplementedError @classmethod def from_config(cls, config): config["conditions"] = [ conditions_mod.deserialize(c) for c in config["conditions"] ] return cls(**config)
keras-tuner/keras_tuner/engine/hyperparameters/hyperparameter.py/0
{ "file_path": "keras-tuner/keras_tuner/engine/hyperparameters/hyperparameter.py", "repo_id": "keras-tuner", "token_count": 985 }
172
# Copyright 2019 The KerasTuner Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import pytest from keras_tuner.backend import keras from keras_tuner.engine import objective as obj_module from keras_tuner.engine import tuner_utils def test_save_best_epoch_with_single_objective(tmp_path): objective = obj_module.create_objective("val_loss") filepath = os.path.join(tmp_path, "saved_weights.weights.h5") callback = tuner_utils.SaveBestEpoch(objective, filepath) model = keras.Sequential([keras.layers.Dense(1)]) model.compile(loss="mse") val_x = np.random.rand(10, 10) val_y = np.random.rand(10, 10) history = model.fit( x=np.random.rand(10, 10), y=np.random.rand(10, 1), validation_data=(val_x, val_y), epochs=10, callbacks=[callback], ) model.load_weights(filepath) assert min(history.history["val_loss"]) == model.evaluate(val_x, val_y) def test_save_best_epoch_with_multi_objective(tmp_path): objective = obj_module.create_objective(["val_loss", "val_mae"]) filepath = os.path.join(tmp_path, "saved_weights.weights.h5") callback = tuner_utils.SaveBestEpoch(objective, filepath) model = keras.Sequential([keras.layers.Dense(1)]) model.compile(loss="mse", metrics=["mae"]) val_x = np.random.rand(10, 10) val_y = np.random.rand(10, 10) history = model.fit( x=np.random.rand(10, 10), y=np.random.rand(10, 1), validation_data=(val_x, val_y), epochs=10, callbacks=[callback], ) model.load_weights(filepath) assert min(history.history["val_loss"]) + min( history.history["val_mae"] ) == sum(model.evaluate(val_x, val_y)) def test_save_best_epoch_with_default_objective(tmp_path): objective = obj_module.create_objective(None) filepath = os.path.join(tmp_path, "saved_weights.weights.h5") callback = tuner_utils.SaveBestEpoch(objective, filepath) model = keras.Sequential([keras.layers.Dense(1)]) model.compile(loss="mse") val_x = np.random.rand(10, 10) val_y = np.random.rand(10, 10) history = model.fit( x=np.random.rand(10, 10), y=np.random.rand(10, 1), validation_data=(val_x, val_y), epochs=10, callbacks=[callback], ) model.load_weights(filepath) assert history.history["val_loss"][-1] == model.evaluate(val_x, val_y) def test_convert_to_metrics_with_history(): model = keras.Sequential([keras.layers.Dense(1)]) model.compile(loss="mse", metrics=["mae"]) val_x = np.random.rand(10, 10) val_y = np.random.rand(10, 10) history = model.fit( x=np.random.rand(10, 10), y=np.random.rand(10, 1), validation_data=(val_x, val_y), ) results = tuner_utils.convert_to_metrics_dict( history, obj_module.Objective("val_loss", "min"), ) assert all(key in results for key in ["loss", "val_loss", "mae", "val_mae"]) def test_convert_to_metrics_with_float(): assert tuner_utils.convert_to_metrics_dict( 0.1, obj_module.Objective("val_loss", "min"), ) == {"val_loss": 0.1} def test_convert_to_metrics_with_dict(): assert tuner_utils.convert_to_metrics_dict( {"loss": 0.2, "val_loss": 0.1}, obj_module.Objective("val_loss", "min"), ) == {"loss": 0.2, "val_loss": 0.1} def test_convert_to_metrics_with_list_of_floats(): assert tuner_utils.convert_to_metrics_dict( [0.1, 0.2], obj_module.Objective("val_loss", "min"), ) == {"val_loss": (0.1 + 0.2) / 2} def test_convert_to_metrics_with_dict_without_obj_key(): with pytest.raises(ValueError, match="the specified objective"): tuner_utils.validate_trial_results( {"loss": 0.1}, obj_module.Objective("val_loss", "min"), "func_name" ) def test_get_best_step_return_zero(): assert ( tuner_utils.get_best_step( [{"val_loss": 1}, {"val_loss": 2}], obj_module.Objective("val_loss", "min"), ) == 0 ) def test_get_best_step_return_average_epoch(): class History(keras.callbacks.History): def __init__(self, history): self.history = history results = [ History( { "val_loss": [5, 8, 3, 1, 2], "val_accuracy": [5, 8, 3, 1, 2], } ), History( { "val_loss": [5, 8, 3, 2, 1], "val_accuracy": [5, 8, 3, 1, 2], } ), ] assert ( tuner_utils.get_best_step( results, obj_module.Objective("val_loss", "min"), ) == 3 )
keras-tuner/keras_tuner/engine/tuner_utils_test.py/0
{ "file_path": "keras-tuner/keras_tuner/engine/tuner_utils_test.py", "repo_id": "keras-tuner", "token_count": 2353 }
173
# Copyright 2019 The KerasTuner Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tuner for Scikit-learn Models.""" import collections import inspect import os import pickle import numpy as np try: import pandas as pd # pytype: disable=import-error except ImportError: # pragma: no cover pd = None # pragma: no cover try: import sklearn # pytype: disable=import-error import sklearn.model_selection import sklearn.pipeline except ImportError: # pragma: no cover sklearn = None # pragma: no cover from keras_tuner import backend from keras_tuner.api_export import keras_tuner_export from keras_tuner.engine import base_tuner def split_data(data, indices): if isinstance(data, np.ndarray): return data[indices] elif pd is not None and isinstance(data, pd.DataFrame): return data.iloc[indices] else: raise TypeError( "Expected the data to be numpy.ndarray or pandas.DataFrame. " f"Received: {data}." ) @keras_tuner_export( ["keras_tuner.SklearnTuner", "keras_tuner.tuners.SklearnTuner"] ) class SklearnTuner(base_tuner.BaseTuner): """Tuner for Scikit-learn Models. Performs cross-validated hyperparameter search for Scikit-learn models. Examples: ```python import keras_tuner from sklearn import ensemble from sklearn import datasets from sklearn import linear_model from sklearn import metrics from sklearn import model_selection def build_model(hp): model_type = hp.Choice('model_type', ['random_forest', 'ridge']) if model_type == 'random_forest': model = ensemble.RandomForestClassifier( n_estimators=hp.Int('n_estimators', 10, 50, step=10), max_depth=hp.Int('max_depth', 3, 10)) else: model = linear_model.RidgeClassifier( alpha=hp.Float('alpha', 1e-3, 1, sampling='log')) return model tuner = keras_tuner.tuners.SklearnTuner( oracle=keras_tuner.oracles.BayesianOptimizationOracle( objective=keras_tuner.Objective('score', 'max'), max_trials=10), hypermodel=build_model, scoring=metrics.make_scorer(metrics.accuracy_score), cv=model_selection.StratifiedKFold(5), directory='.', project_name='my_project') X, y = datasets.load_iris(return_X_y=True) X_train, X_test, y_train, y_test = model_selection.train_test_split( X, y, test_size=0.2) tuner.search(X_train, y_train) best_model = tuner.get_best_models(num_models=1)[0] ``` Args: oracle: A `keras_tuner.Oracle` instance. Note that for this `Tuner`, the `objective` for the `Oracle` should always be set to `Objective('score', direction='max')`. Also, `Oracle`s that exploit Neural-Network-specific training (e.g. `Hyperband`) should not be used with this `Tuner`. hypermodel: A `HyperModel` instance (or callable that takes hyperparameters and returns a Model instance). scoring: An sklearn `scoring` function. For more information, see `sklearn.metrics.make_scorer`. If not provided, the Model's default scoring will be used via `model.score`. Note that if you are searching across different Model families, the default scoring for these Models will often be different. In this case you should supply `scoring` here in order to make sure your Models are being scored on the same metric. metrics: Additional `sklearn.metrics` functions to monitor during search. Note that these metrics do not affect the search process. cv: An `sklearn.model_selection` Splitter class. Used to determine how samples are split up into groups for cross-validation. **kwargs: Keyword arguments relevant to all `Tuner` subclasses. Please see the docstring for `Tuner`. """ def __init__( self, oracle, hypermodel, scoring=None, metrics=None, cv=None, **kwargs ): super().__init__(oracle=oracle, hypermodel=hypermodel, **kwargs) if sklearn is None: raise ImportError( "Please install sklearn before using the `SklearnTuner`." ) self.scoring = scoring if metrics is None: metrics = [] if not isinstance(metrics, (list, tuple)): metrics = [metrics] self.metrics = metrics self.cv = cv or sklearn.model_selection.KFold( 5, shuffle=True, random_state=1 ) def search(self, X, y, sample_weight=None, groups=None): """Performs hyperparameter search. Args: X: See docstring for `model.fit` for the `sklearn` Models being tuned. y: See docstring for `model.fit` for the `sklearn` Models being tuned. sample_weight: Optional. See docstring for `model.fit` for the `sklearn` Models being tuned. groups: Optional. Required for `sklearn.model_selection` Splitter classes that split based on group labels (For example, see `sklearn.model_selection.GroupKFold`). """ # Only overridden for the docstring. return super().search(X, y, sample_weight=sample_weight, groups=groups) def run_trial(self, trial, X, y, sample_weight=None, groups=None): metrics = collections.defaultdict(list) # For cross-validation methods that expect a `groups` argument. cv_kwargs = {"groups": groups} if groups is not None else {} for train_indices, test_indices in self.cv.split(X, y, **cv_kwargs): X_train = split_data(X, train_indices) y_train = split_data(y, train_indices) X_test = split_data(X, test_indices) y_test = split_data(y, test_indices) sample_weight_train = ( sample_weight[train_indices] if sample_weight is not None else None ) model = self.hypermodel.build(trial.hyperparameters) supports_sw = ( "sample_weight" in inspect.getfullargspec(model.fit).args ) if isinstance(model, sklearn.pipeline.Pipeline) or not supports_sw: model.fit(X_train, y_train) else: model.fit(X_train, y_train, sample_weight=sample_weight_train) sample_weight_test = ( sample_weight[test_indices] if sample_weight is not None else None ) if self.scoring is None: score = model.score( X_test, y_test, sample_weight=sample_weight_test ) else: score = self.scoring( model, X_test, y_test, sample_weight=sample_weight_test ) metrics["score"].append(score) if self.metrics: y_test_pred = model.predict(X_test) for metric in self.metrics: result = metric( y_test, y_test_pred, sample_weight=sample_weight_test ) metrics[metric.__name__].append(result) self.save_model(trial.trial_id, model) return {name: np.mean(values) for name, values in metrics.items()} def save_model(self, trial_id, model, step=0): fname = os.path.join(self.get_trial_dir(trial_id), "model.pickle") with backend.io.File(fname, "wb") as f: pickle.dump(model, f) def load_model(self, trial): fname = os.path.join(self.get_trial_dir(trial.trial_id), "model.pickle") with backend.io.File(fname, "rb") as f: return pickle.load(f)
keras-tuner/keras_tuner/tuners/sklearn_tuner.py/0
{ "file_path": "keras-tuner/keras_tuner/tuners/sklearn_tuner.py", "repo_id": "keras-tuner", "token_count": 3640 }
174
#!/bin/bash guides=( https://raw.githubusercontent.com/keras-team/keras-io/master/guides/keras_tuner/getting_started.py https://raw.githubusercontent.com/keras-team/keras-io/master/guides/keras_tuner/distributed_tuning.py https://raw.githubusercontent.com/keras-team/keras-io/master/guides/keras_tuner/custom_tuner.py https://raw.githubusercontent.com/keras-team/keras-io/master/guides/keras_tuner/visualize_tuning.py https://raw.githubusercontent.com/keras-team/keras-io/master/guides/keras_tuner/tailor_the_search_space.py ) for guide in ${guides[@]}; do wget $guide -O /tmp/a.py if ! python /tmp/a.py; then echo "error occured!" exit 1 fi done
keras-tuner/shell/run_guides.sh/0
{ "file_path": "keras-tuner/shell/run_guides.sh", "repo_id": "keras-tuner", "token_count": 291 }
175
"""Benchmark pooling layers. To run benchmarks, see the following command for an example, please change the flag to your custom value: ``` python3 -m benchmarks.layer_benchmark.pooling_benchmark \ --benchmark_name=benchmark_max_pooling1d \ --num_samples=2048 \ --batch_size=256 \ --jit_compile=True ``` """ from absl import app from absl import flags from benchmarks.layer_benchmark.base_benchmark import LayerBenchmark FLAGS = flags.FLAGS def benchmark_average_pooling1d( num_samples, batch_size, jit_compile=True, ): layer_name = "AveragePooling1D" init_args = { "pool_size": 2, } benchmark = LayerBenchmark( layer_name, init_args, input_shape=[1024, 256], jit_compile=jit_compile, ) benchmark.benchmark_predict( num_samples=num_samples, batch_size=batch_size, ) benchmark.benchmark_train( num_samples=num_samples, batch_size=batch_size, ) def benchmark_average_pooling2d( num_samples, batch_size, jit_compile=True, ): layer_name = "AveragePooling2D" init_args = { "pool_size": 2, } benchmark = LayerBenchmark( layer_name, init_args, input_shape=[256, 256, 3], jit_compile=jit_compile, ) benchmark.benchmark_predict( num_samples=num_samples, batch_size=batch_size, ) benchmark.benchmark_train( num_samples=num_samples, batch_size=batch_size, ) def benchmark_average_pooling3d( num_samples, batch_size, jit_compile=True, ): layer_name = "AveragePooling3D" init_args = { "pool_size": 2, } benchmark = LayerBenchmark( layer_name, init_args, input_shape=[64, 64, 32, 3], jit_compile=jit_compile, ) benchmark.benchmark_predict( num_samples=num_samples, batch_size=batch_size, ) benchmark.benchmark_train( num_samples=num_samples, batch_size=batch_size, ) def benchmark_max_pooling1d( num_samples, batch_size, jit_compile=True, ): layer_name = "MaxPooling1D" init_args = { "pool_size": 2, } benchmark = LayerBenchmark( layer_name, init_args, input_shape=[1024, 256], jit_compile=jit_compile, ) benchmark.benchmark_predict( num_samples=num_samples, batch_size=batch_size, ) benchmark.benchmark_train( num_samples=num_samples, batch_size=batch_size, ) def benchmark_max_pooling2d( num_samples, batch_size, jit_compile=True, ): layer_name = "MaxPooling2D" init_args = { "pool_size": 2, } benchmark = LayerBenchmark( layer_name, init_args, input_shape=[256, 256, 3], jit_compile=jit_compile, ) benchmark.benchmark_predict( num_samples=num_samples, batch_size=batch_size, ) benchmark.benchmark_train( num_samples=num_samples, batch_size=batch_size, ) def benchmark_max_pooling3d( num_samples, batch_size, jit_compile=True, ): layer_name = "MaxPooling3D" init_args = { "pool_size": 2, } benchmark = LayerBenchmark( layer_name, init_args, input_shape=[64, 64, 32, 3], jit_compile=jit_compile, ) benchmark.benchmark_predict( num_samples=num_samples, batch_size=batch_size, ) benchmark.benchmark_train( num_samples=num_samples, batch_size=batch_size, ) def benchmark_global_average_pooling1d( num_samples, batch_size, jit_compile=True, ): layer_name = "GlobalAveragePooling1D" init_args = {} benchmark = LayerBenchmark( layer_name, init_args, input_shape=[1024, 256], jit_compile=jit_compile, ) benchmark.benchmark_predict( num_samples=num_samples, batch_size=batch_size, ) benchmark.benchmark_train( num_samples=num_samples, batch_size=batch_size, ) def benchmark_global_average_pooling2d( num_samples, batch_size, jit_compile=True, ): layer_name = "GlobalAveragePooling2D" init_args = {} benchmark = LayerBenchmark( layer_name, init_args, input_shape=[256, 256, 3], jit_compile=jit_compile, ) benchmark.benchmark_predict( num_samples=num_samples, batch_size=batch_size, ) benchmark.benchmark_train( num_samples=num_samples, batch_size=batch_size, ) def benchmark_global_average_pooling3d( num_samples, batch_size, jit_compile=True, ): layer_name = "GlobalAveragePooling3D" init_args = {} benchmark = LayerBenchmark( layer_name, init_args, input_shape=[64, 64, 32, 3], jit_compile=jit_compile, ) benchmark.benchmark_predict( num_samples=num_samples, batch_size=batch_size, ) benchmark.benchmark_train( num_samples=num_samples, batch_size=batch_size, ) def benchmark_global_max_pooling1d( num_samples, batch_size, jit_compile=True, ): layer_name = "GlobalMaxPooling1D" init_args = {} benchmark = LayerBenchmark( layer_name, init_args, input_shape=[1024, 256], jit_compile=jit_compile, ) benchmark.benchmark_predict( num_samples=num_samples, batch_size=batch_size, ) benchmark.benchmark_train( num_samples=num_samples, batch_size=batch_size, ) def benchmark_global_max_pooling2d( num_samples, batch_size, jit_compile=True, ): layer_name = "GlobalMaxPooling2D" init_args = {} benchmark = LayerBenchmark( layer_name, init_args, input_shape=[256, 256, 3], jit_compile=jit_compile, ) benchmark.benchmark_predict( num_samples=num_samples, batch_size=batch_size, ) benchmark.benchmark_train( num_samples=num_samples, batch_size=batch_size, ) def benchmark_global_max_pooling3d( num_samples, batch_size, jit_compile=True, ): layer_name = "GlobalMaxPooling3D" init_args = {} benchmark = LayerBenchmark( layer_name, init_args, input_shape=[64, 64, 32, 3], jit_compile=jit_compile, ) benchmark.benchmark_predict( num_samples=num_samples, batch_size=batch_size, ) benchmark.benchmark_train( num_samples=num_samples, batch_size=batch_size, ) BENCHMARK_NAMES = { "benchmark_average_pooling1d": benchmark_average_pooling1d, "benchmark_average_pooling2d": benchmark_average_pooling2d, "benchmark_average_pooling3d": benchmark_average_pooling3d, "benchmark_max_pooling1d": benchmark_max_pooling1d, "benchmark_max_pooling2d": benchmark_max_pooling2d, "benchmark_max_pooling3d": benchmark_max_pooling3d, "benchmark_global_average_pooling1d": benchmark_global_average_pooling1d, "benchmark_global_average_pooling2d": benchmark_global_average_pooling2d, "benchmark_global_average_pooling3d": benchmark_global_average_pooling3d, "benchmark_global_max_pooling1d": benchmark_global_max_pooling1d, "benchmark_global_max_pooling2d": benchmark_global_max_pooling2d, "benchmark_global_max_pooling3d": benchmark_global_max_pooling3d, } def main(_): benchmark_name = FLAGS.benchmark_name num_samples = FLAGS.num_samples batch_size = FLAGS.batch_size jit_compile = FLAGS.jit_compile if benchmark_name is None: for name, benchmark_fn in BENCHMARK_NAMES.items(): benchmark_fn(num_samples, batch_size, jit_compile) return if benchmark_name not in BENCHMARK_NAMES: raise ValueError( f"Invalid benchmark name: {benchmark_name}, `benchmark_name` must " f"be one of {BENCHMARK_NAMES.keys()}" ) benchmark_fn = BENCHMARK_NAMES[benchmark_name] benchmark_fn(num_samples, batch_size, jit_compile) if __name__ == "__main__": app.run(main)
keras/benchmarks/layer_benchmark/pooling_benchmark.py/0
{ "file_path": "keras/benchmarks/layer_benchmark/pooling_benchmark.py", "repo_id": "keras", "token_count": 3861 }
176
import numpy as np import keras from keras import Model from keras import initializers from keras import layers from keras import losses from keras import metrics from keras import ops from keras import optimizers class MyDense(layers.Layer): def __init__(self, units, name=None): super().__init__(name=name) self.units = units def build(self, input_shape): input_dim = input_shape[-1] self.w = self.add_weight( shape=(input_dim, self.units), initializer=initializers.GlorotNormal(), name="kernel", trainable=True, ) self.b = self.add_weight( shape=(self.units,), initializer=initializers.Zeros(), name="bias", trainable=True, ) def call(self, inputs): # Use Keras ops to create backend-agnostic layers/metrics/etc. return ops.matmul(inputs, self.w) + self.b class MyDropout(layers.Layer): def __init__(self, rate, name=None): super().__init__(name=name) self.rate = rate # Use seed_generator for managing RNG state. # It is a state element and its seed variable is # tracked as part of `layer.variables`. self.seed_generator = keras.random.SeedGenerator(1337) def call(self, inputs): # Use `keras.random` for random ops. return keras.random.dropout( inputs, self.rate, seed=self.seed_generator ) class MyModel(Model): def __init__(self, hidden_dim, output_dim): super().__init__() self.dense1 = MyDense(hidden_dim) self.dense2 = MyDense(hidden_dim) self.dense3 = MyDense(output_dim) self.dp = MyDropout(0.5) def call(self, x): x1 = self.dense1(x) x2 = self.dense2(x) # Why not use some ops here as well x = ops.concatenate([x1, x2], axis=-1) x = self.dp(x) return self.dense3(x) model = MyModel(hidden_dim=256, output_dim=16) x = np.random.random((50000, 128)) y = np.random.random((50000, 16)) batch_size = 32 epochs = 5 model.compile( optimizer=optimizers.SGD(learning_rate=0.001), loss=losses.MeanSquaredError(), metrics=[metrics.MeanSquaredError()], ) history = model.fit(x, y, batch_size=batch_size, epochs=epochs) model.summary() print("History:") print(history.history)
keras/examples/demo_custom_layer_backend_agnostic.py/0
{ "file_path": "keras/examples/demo_custom_layer_backend_agnostic.py", "repo_id": "keras", "token_count": 1065 }
177
from keras import backend from keras import ops from keras.api_export import keras_export @keras_export("keras.activations.relu") def relu(x, negative_slope=0.0, max_value=None, threshold=0.0): """Applies the rectified linear unit activation function. With default values, this returns the standard ReLU activation: `max(x, 0)`, the element-wise maximum of 0 and the input tensor. Modifying default parameters allows you to use non-zero thresholds, change the max value of the activation, and to use a non-zero multiple of the input for values below the threshold. Examples: >>> x = [-10, -5, 0.0, 5, 10] >>> keras.activations.relu(x) [ 0., 0., 0., 5., 10.] >>> keras.activations.relu(x, negative_slope=0.5) [-5. , -2.5, 0. , 5. , 10. ] >>> keras.activations.relu(x, max_value=5.) [0., 0., 0., 5., 5.] >>> keras.activations.relu(x, threshold=5.) [-0., -0., 0., 0., 10.] Args: x: Input tensor. negative_slope: A `float` that controls the slope for values lower than the threshold. max_value: A `float` that sets the saturation threshold (the largest value the function will return). threshold: A `float` giving the threshold value of the activation function below which values will be damped or set to zero. Returns: A tensor with the same shape and dtype as input `x`. """ if backend.any_symbolic_tensors((x,)): return ReLU( negative_slope=negative_slope, max_value=max_value, threshold=threshold, )(x) return ReLU.static_call( x, negative_slope=negative_slope, max_value=max_value, threshold=threshold, ) class ReLU(ops.Operation): def __init__( self, negative_slope=0.0, max_value=None, threshold=0.0, name=None ): super().__init__(name=name) self.negative_slope = negative_slope self.max_value = max_value self.threshold = threshold def call(self, x): return self.static_call( x, negative_slope=self.negative_slope, max_value=self.max_value, threshold=self.threshold, ) def compute_output_spec(self, x): return backend.KerasTensor(x.shape, x.dtype) @staticmethod def static_call(x, negative_slope=0.0, max_value=None, threshold=0.0): x = backend.convert_to_tensor(x) if negative_slope != 0.0: if max_value is None and threshold == 0: return backend.nn.leaky_relu(x, negative_slope=negative_slope) if threshold != 0: negative_part = backend.nn.relu(-x + threshold) else: negative_part = backend.nn.relu(-x) clip_max = max_value is not None if threshold != 0: # computes x for x > threshold else 0 threshold = ops.cast(threshold, dtype=x.dtype) x = x * backend.cast( backend.numpy.greater(x, threshold), dtype=x.dtype ) elif max_value == 6: # if no threshold, then can use nn.relu6 native op for performance x = backend.nn.relu6(x) clip_max = False else: x = backend.nn.relu(x) if clip_max: min_value = ops.cast(0.0, dtype=x.dtype) max_value = ops.cast(max_value, dtype=x.dtype) x = backend.numpy.clip(x, min_value, max_value) if negative_slope != 0.0: x -= negative_slope * negative_part return x @keras_export("keras.activations.leaky_relu") def leaky_relu(x, negative_slope=0.2): """Leaky relu activation function. Args: x: Input tensor. negative_slope: A `float` that controls the slope for values lower than the threshold. """ return ops.leaky_relu(x, negative_slope=negative_slope) @keras_export("keras.activations.relu6") def relu6(x): """Relu6 activation function. It's the ReLU function, but truncated to a maximum value of 6. Args: x: Input tensor. """ return ops.relu6(x) @keras_export("keras.activations.softmax") def softmax(x, axis=-1): """Softmax converts a vector of values to a probability distribution. The elements of the output vector are in range `[0, 1]` and sum to 1. Each input vector is handled independently. The `axis` argument sets which axis of the input the function is applied along. Softmax is often used as the activation for the last layer of a classification network because the result could be interpreted as a probability distribution. The softmax of each vector x is computed as `exp(x) / sum(exp(x))`. The input values in are the log-odds of the resulting probability. Args: x: Input tensor. axis: Integer, axis along which the softmax is applied. """ output = ops.softmax(x, axis=axis) # Cache the logits to use for crossentropy loss. try: output._keras_logits = x except AttributeError: # We're dealing with a C-type. pass return output @keras_export("keras.activations.elu") def elu(x, alpha=1.0): """Exponential Linear Unit. The exponential linear unit (ELU) with `alpha > 0` is define as: - `x` if `x > 0` - alpha * `exp(x) - 1` if `x < 0` ELUs have negative values which pushes the mean of the activations closer to zero. Mean activations that are closer to zero enable faster learning as they bring the gradient closer to the natural gradient. ELUs saturate to a negative value when the argument gets smaller. Saturation means a small derivative which decreases the variation and the information that is propagated to the next layer. Args: x: Input tensor. Reference: - [Clevert et al., 2016](https://arxiv.org/abs/1511.07289) """ return ops.elu(x, alpha=alpha) @keras_export("keras.activations.selu") def selu(x): """Scaled Exponential Linear Unit (SELU). The Scaled Exponential Linear Unit (SELU) activation function is defined as: - `scale * x` if `x > 0` - `scale * alpha * (exp(x) - 1)` if `x < 0` where `alpha` and `scale` are pre-defined constants (`alpha=1.67326324` and `scale=1.05070098`). Basically, the SELU activation function multiplies `scale` (> 1) with the output of the `keras.activations.elu` function to ensure a slope larger than one for positive inputs. The values of `alpha` and `scale` are chosen so that the mean and variance of the inputs are preserved between two consecutive layers as long as the weights are initialized correctly (see `keras.initializers.LecunNormal` initializer) and the number of input units is "large enough" (see reference paper for more information). Args: x: Input tensor. Notes: - To be used together with the `keras.initializers.LecunNormal` initializer. - To be used together with the dropout variant `keras.layers.AlphaDropout` (rather than regular dropout). Reference: - [Klambauer et al., 2017](https://arxiv.org/abs/1706.02515) """ return ops.selu(x) @keras_export("keras.activations.softplus") def softplus(x): """Softplus activation function. It is defined as: `softplus(x) = log(exp(x) + 1)`. Args: x: Input tensor. """ return ops.softplus(x) @keras_export("keras.activations.softsign") def softsign(x): """Softsign activation function. Softsign is defined as: `softsign(x) = x / (abs(x) + 1)`. Args: x: Input tensor. """ return ops.softsign(x) @keras_export(["keras.activations.silu", "keras.activations.swish"]) def silu(x): """Swish (or Silu) activation function. It is defined as: `swish(x) = x * sigmoid(x)`. The Swish (or Silu) activation function is a smooth, non-monotonic function that is unbounded above and bounded below. Args: x: Input tensor. Reference: - [Ramachandran et al., 2017](https://arxiv.org/abs/1710.05941) """ return ops.silu(x) @keras_export("keras.activations.gelu") def gelu(x, approximate=False): """Gaussian error linear unit (GELU) activation function. The Gaussian error linear unit (GELU) is defined as: `gelu(x) = x * P(X <= x)` where `P(X) ~ N(0, 1)`, i.e. `gelu(x) = 0.5 * x * (1 + erf(x / sqrt(2)))`. GELU weights inputs by their value, rather than gating inputs by their sign as in ReLU. Args: x: Input tensor. approximate: A `bool`, whether to enable approximation. Reference: - [Hendrycks et al., 2016](https://arxiv.org/abs/1606.08415) """ return ops.gelu(x, approximate=approximate) @keras_export("keras.activations.tanh") def tanh(x): """Hyperbolic tangent activation function. It is defined as: `tanh(x) = sinh(x) / cosh(x)`, i.e. `tanh(x) = ((exp(x) - exp(-x)) / (exp(x) + exp(-x)))`. Args: x: Input tensor. """ return ops.tanh(x) @keras_export("keras.activations.sigmoid") def sigmoid(x): """Sigmoid activation function. It is defined as: `sigmoid(x) = 1 / (1 + exp(-x))`. For small values (<-5), `sigmoid` returns a value close to zero, and for large values (>5) the result of the function gets close to 1. Sigmoid is equivalent to a 2-element softmax, where the second element is assumed to be zero. The sigmoid function always returns a value between 0 and 1. Args: x: Input tensor. """ output = ops.sigmoid(x) # Cache the logits to use for crossentropy loss. try: output._keras_logits = x except AttributeError: # We're dealing with a C-type. pass return output @keras_export("keras.activations.exponential") def exponential(x): """Exponential activation function. Args: x: Input tensor. """ return ops.exp(x) @keras_export("keras.activations.hard_sigmoid") def hard_sigmoid(x): """Hard sigmoid activation function. The hard sigmoid activation is defined as: - `0` if `if x < -2.5` - `1` if `x > 2.5` - `0.2 * x + 0.5` if `-2.5 <= x <= 2.5` It's a faster, piecewise linear approximation of the sigmoid activation. Args: x: Input tensor. Reference: - [Wikipedia "Hard sigmoid"](https://en.wikipedia.org/wiki/Hard_sigmoid) """ return ops.hard_sigmoid(x) @keras_export(["keras.activations.hard_silu", "keras.activations.hard_swish"]) def hard_silu(x): """Hard SiLU activation function, also known as Hard Swish. It is defined as: - `0` if `if x < -3` - `x` if `x > 3` - `x * (x + 3) / 6` if `-3 <= x <= 3` It's a faster, piecewise linear approximation of the silu activation. Args: x: Input tensor. Reference: - [A Howard, 2019](https://arxiv.org/abs/1905.02244) """ x = backend.convert_to_tensor(x) return ops.hard_silu(x) @keras_export("keras.activations.linear") def linear(x): """Linear activation function (pass-through). A "linear" activation is an identity function: it returns the input, unmodified. Args: x: Input tensor. """ return x class Mish(ops.Operation): def call(self, x): return self.static_call(x) def compute_output_spec(self, x): return backend.KerasTensor(x.shape, x.dtype) @staticmethod def static_call(x): return x * backend.nn.tanh(backend.nn.softplus(x)) @keras_export("keras.activations.mish") def mish(x): """Mish activation function. It is defined as: `mish(x) = x * tanh(softplus(x))` where `softplus` is defined as: `softplus(x) = log(exp(x) + 1)` Args: x: Input tensor. Reference: - [Misra, 2019](https://arxiv.org/abs/1908.08681) """ x = backend.convert_to_tensor(x) return Mish.static_call(x) @keras_export("keras.activations.log_softmax") def log_softmax(x, axis=-1): """Log-Softmax activation function. Each input vector is handled independently. The `axis` argument sets which axis of the input the function is applied along. Args: x: Input tensor. axis: Integer, axis along which the softmax is applied. """ return ops.log_softmax(x, axis=axis)
keras/keras/activations/activations.py/0
{ "file_path": "keras/keras/activations/activations.py", "repo_id": "keras", "token_count": 5125 }
178
from unittest.mock import Mock from unittest.mock import patch import numpy as np import tensorflow as tf from keras import backend from keras import ops from keras import testing from keras.backend.common import keras_tensor class KerasTensorTest(testing.TestCase): def test_attributes(self): x = keras_tensor.KerasTensor(shape=(3,), dtype="float32", sparse=True) self.assertEqual(x.dtype, "float32") self.assertEqual(x.shape, (3,)) self.assertEqual(x.sparse, True) def test_numpy_methods(self): x = keras_tensor.KerasTensor(shape=(3, 2), dtype="float32") # reshape x = x.reshape((6,)) self.assertEqual(x.shape, (6,)) # expand_dims, squeeze x = ops.expand_dims(x, -1) self.assertEqual(x.shape, (6, 1)) x = x.squeeze() self.assertEqual(x.shape, (6,)) x = ops.expand_dims(x, axis=0) self.assertEqual(x.shape, (1, 6)) x = x.squeeze(axis=0) self.assertEqual(x.shape, (6,)) def test_invalid_usage(self): x = keras_tensor.KerasTensor(shape=(3,), dtype="float32") with self.assertRaisesRegex( ValueError, "doesn't have any actual numerical value" ): np.array(x) if backend.backend() == "jax": from jax import numpy as jnp with self.assertRaisesRegex( ValueError, "cannot be used as input to a JAX function" ): jnp.array(x) with self.assertRaisesRegex( ValueError, "cannot be used as input to a TensorFlow function" ): tf.convert_to_tensor(x) def test_bool(self): tensor = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") with self.assertRaisesRegex(TypeError, "cannot be used as a boolean."): bool(tensor) def test_representation(self): x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") self.assertIn("<KerasTensor shape=(3, 4)", repr(x)) def test_iterating(self): x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") with self.assertRaises(NotImplementedError): iter(x) def test_any_symbolic_tensors(self): x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") y = np.array([1, 2, 3]) self.assertTrue(keras_tensor.any_symbolic_tensors(args=[x, y])) self.assertFalse(keras_tensor.any_symbolic_tensors(args=[y])) def test_is_keras_tensor(self): x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") self.assertTrue(keras_tensor.is_keras_tensor(x)) y = np.array([1, 2, 3]) self.assertFalse(keras_tensor.is_keras_tensor(y)) @patch("keras.ops.Absolute.symbolic_call") def test_abs_method(self, mock_symbolic_call): mock_tensor = Mock() mock_symbolic_call.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") abs_x = abs(x) # this will internally call x.__abs__() mock_symbolic_call.assert_called_once_with(x) self.assertEqual(abs_x, mock_tensor) @patch("keras.ops.Negative.symbolic_call") def test_neg_method(self, mock_method): self._test_unary_op_method(mock_method, lambda x: -x) @patch("keras.ops.Subtract.symbolic_call") def test_sub_method(self, mock_method): y = Mock() self._test_binary_op_method(mock_method, y, lambda x, y: x - y) @patch("keras.ops.Multiply.symbolic_call") def test_mul_method(self, mock_method): y = Mock() self._test_binary_op_method(mock_method, y, lambda x, y: x * y) @patch("keras.ops.Matmul.symbolic_call") def test_matmul_method(self, mock_method): y = Mock() self._test_binary_op_method(mock_method, y, lambda x, y: x @ y) @patch("keras.ops.Power.symbolic_call") def test_pow_method(self, mock_method): y = Mock() self._test_binary_op_method(mock_method, y, lambda x, y: x**y) @patch("keras.ops.Mod.symbolic_call") def test_mod_method(self, mock_method): y = Mock() self._test_binary_op_method(mock_method, y, lambda x, y: x % y) @patch("keras.ops.Less.symbolic_call") def test_lt_method(self, mock_method): y = Mock() self._test_binary_op_method(mock_method, y, lambda x, y: x < y) @patch("keras.ops.LogicalAnd.symbolic_call") def test_and_method(self, mock_method): y = Mock() self._test_binary_op_method(mock_method, y, lambda x, y: x & y) @patch("keras.ops.LogicalOr.symbolic_call") def test_or_method(self, mock_method): y = Mock() self._test_binary_op_method(mock_method, y, lambda x, y: x | y) @patch("keras.ops.GetItem.symbolic_call") def test_getitem_method(self, mock_method): y = Mock() self._test_binary_op_method(mock_method, y, lambda x, y: x[y]) def _test_unary_op_method(self, mock_method, operator): mock_tensor = Mock() mock_method.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") result = operator(x) mock_method.assert_called_once_with(x) self.assertEqual(result, mock_tensor) def _test_binary_op_method(self, mock_method, other, operator): mock_tensor = Mock() mock_method.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") result = operator(x, other) mock_method.assert_called_once_with(x, other) self.assertEqual(result, mock_tensor) @patch("keras.ops.Add.symbolic_call") def test_radd_method(self, mock_symbolic_call): """Test __radd__ method""" mock_tensor = Mock() mock_symbolic_call.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") y = Mock() result = y + x mock_symbolic_call.assert_called_once_with(y, x) self.assertEqual(result, mock_tensor) @patch("keras.ops.Subtract.symbolic_call") def test_rsub_method(self, mock_symbolic_call): """Test __rsub__ method""" mock_tensor = Mock() mock_symbolic_call.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") y = Mock() result = y - x mock_symbolic_call.assert_called_once_with(y, x) self.assertEqual(result, mock_tensor) @patch("keras.ops.Multiply.symbolic_call") def test_rmul_method(self, mock_symbolic_call): """Test __rmul__ method""" mock_tensor = Mock() mock_symbolic_call.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") y = Mock() result = y * x mock_symbolic_call.assert_called_once_with(y, x) self.assertEqual(result, mock_tensor) @patch("keras.ops.Matmul.symbolic_call") def test_rmatmul_method(self, mock_symbolic_call): """Test __rmatmul__ method""" mock_tensor = Mock() mock_symbolic_call.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") y = Mock() result = y @ x mock_symbolic_call.assert_called_once_with(y, x) self.assertEqual(result, mock_tensor) @patch("keras.ops.Power.symbolic_call") def test_rpow_method(self, mock_symbolic_call): """Test __rpow__ method""" mock_tensor = Mock() mock_symbolic_call.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") y = Mock() result = y**x mock_symbolic_call.assert_called_once_with(y, x) self.assertEqual(result, mock_tensor) @patch("keras.ops.FloorDivide.symbolic_call") def test_floordiv_method(self, mock_symbolic_call): """Test __floordiv__ method""" mock_tensor = Mock() mock_symbolic_call.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") y = Mock() result = x // y mock_symbolic_call.assert_called_once_with(x, y) self.assertEqual(result, mock_tensor) @patch("keras.ops.FloorDivide.symbolic_call") def test_rfloordiv_method(self, mock_symbolic_call): """Test __rfloordiv__ method""" mock_tensor = Mock() mock_symbolic_call.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") y = Mock() result = y // x mock_symbolic_call.assert_called_once_with(y, x) self.assertEqual(result, mock_tensor) @patch("keras.ops.Mod.symbolic_call") def test_rmod_method(self, mock_symbolic_call): """Test __rmod__ method""" mock_tensor = Mock() mock_symbolic_call.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") y = Mock() result = y % x mock_symbolic_call.assert_called_once_with(y, x) self.assertEqual(result, mock_tensor) @patch("keras.ops.LessEqual.symbolic_call") def test_le_method(self, mock_symbolic_call): """Test __le__ method""" mock_tensor = Mock() mock_symbolic_call.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") y = Mock() result = x <= y mock_symbolic_call.assert_called_once_with(x, y) self.assertEqual(result, mock_tensor) @patch("keras.ops.Greater.symbolic_call") def test_gt_method(self, mock_symbolic_call): """Test __gt__ method""" mock_tensor = Mock() mock_symbolic_call.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") y = Mock() result = x > y mock_symbolic_call.assert_called_once_with(x, y) self.assertEqual(result, mock_tensor) @patch("keras.ops.GreaterEqual.symbolic_call") def test_ge_method(self, mock_symbolic_call): """Test __ge__ method""" mock_tensor = Mock() mock_symbolic_call.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") y = Mock() result = x >= y mock_symbolic_call.assert_called_once_with(x, y) self.assertEqual(result, mock_tensor) @patch("keras.ops.NotEqual.symbolic_call") def test_ne_method(self, mock_symbolic_call): """Test __ne__ method""" mock_tensor = Mock() mock_symbolic_call.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") y = Mock() result = x != y mock_symbolic_call.assert_called_once_with(x, y) self.assertEqual(result, mock_tensor) @patch("keras.ops.LogicalAnd.symbolic_call") def test_rand_method(self, mock_symbolic_call): """Test __rand__ method""" mock_tensor = Mock() mock_symbolic_call.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="bool") y = Mock() result = y & x mock_symbolic_call.assert_called_once_with(y, x) self.assertEqual(result, mock_tensor) @patch("keras.ops.LogicalOr.symbolic_call") def test_ror_method(self, mock_symbolic_call): """Test __ror__ method""" mock_tensor = Mock() mock_symbolic_call.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="bool") y = Mock() result = y | x mock_symbolic_call.assert_called_once_with(y, x) self.assertEqual(result, mock_tensor) @patch("keras.ops.LogicalNot.symbolic_call") def test_invert_method(self, mock_symbolic_call): """Test __invert__ method""" mock_tensor = Mock() mock_symbolic_call.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="bool") result = ~x mock_symbolic_call.assert_called_once_with(x) self.assertEqual(result, mock_tensor) @patch("keras.ops.LogicalXor.symbolic_call") def test_xor_method(self, mock_symbolic_call): """Test __xor__ method""" mock_tensor = Mock() mock_symbolic_call.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="bool") y = Mock() result = x ^ y mock_symbolic_call.assert_called_once_with(x, y) self.assertEqual(result, mock_tensor) @patch("keras.ops.LogicalXor.symbolic_call") def test_rxor_method(self, mock_symbolic_call): """Test __rxor__ method""" mock_tensor = Mock() mock_symbolic_call.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="bool") y = Mock() result = y ^ x mock_symbolic_call.assert_called_once_with(y, x) self.assertEqual(result, mock_tensor) @patch("keras.ops.TrueDivide.symbolic_call") def test_truediv_method(self, mock_symbolic_call): """Test __truediv__ method""" mock_tensor = Mock() mock_symbolic_call.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") y = Mock() result = x / y mock_symbolic_call.assert_called_once_with(x, y) self.assertEqual(result, mock_tensor) @patch("keras.ops.TrueDivide.symbolic_call") def test_rtruediv_method(self, mock_symbolic_call): """Test __rtruediv__ method""" mock_tensor = Mock() mock_symbolic_call.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") y = Mock() result = y / x mock_symbolic_call.assert_called_once_with(y, x) self.assertEqual(result, mock_tensor) @patch("keras.ops.Divide.symbolic_call") def test_div_method(self, mock_symbolic_call): """Test __div__ method""" mock_tensor = Mock() mock_symbolic_call.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") y = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") # to ensure compatibility across Python versions result = x.__div__(y) mock_symbolic_call.assert_called_once_with(x, y) self.assertEqual(result, mock_tensor) @patch("keras.ops.Divide.symbolic_call") def test_rdiv_method(self, mock_symbolic_call): """Test __rdiv__ method""" mock_tensor = Mock() mock_symbolic_call.return_value = mock_tensor x = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") y = keras_tensor.KerasTensor(shape=(3, 4), dtype="float32") # to ensure compatibility across Python versions result = x.__rdiv__(y) mock_symbolic_call.assert_called_once_with(y, x) self.assertEqual(result, mock_tensor)
keras/keras/backend/common/keras_tensor_test.py/0
{ "file_path": "keras/keras/backend/common/keras_tensor_test.py", "repo_id": "keras", "token_count": 7067 }
179
import math import jax import jax.numpy as jnp from keras.backend import config from keras.backend import standardize_dtype from keras.backend.common import dtypes from keras.backend.jax.core import cast from keras.backend.jax.core import convert_to_tensor from keras.utils.module_utils import scipy def segment_sum(data, segment_ids, num_segments=None, sorted=False): if num_segments is None: raise ValueError( "Argument `num_segments` must be set when using the JAX backend. " "Received: num_segments=None" ) return jax.ops.segment_sum( data, segment_ids, num_segments, indices_are_sorted=sorted ) def segment_max(data, segment_ids, num_segments=None, sorted=False): if num_segments is None: raise ValueError( "Argument `num_segments` must be set when using the JAX backend. " "Received: num_segments=None" ) return jax.ops.segment_max( data, segment_ids, num_segments, indices_are_sorted=sorted ) def top_k(x, k, sorted=True): # Jax does not supported `sorted`, but in the case where `sorted=False`, # order is not guaranteed, so OK to return sorted output. return jax.lax.top_k(x, k) def in_top_k(targets, predictions, k): targets = targets[..., None] topk_values = top_k(predictions, k)[0] targets_values = jnp.take_along_axis(predictions, targets, axis=-1) mask = targets_values >= topk_values return jnp.any(mask, axis=1) def logsumexp(x, axis=None, keepdims=False): max_x = jnp.max(x, axis=axis, keepdims=True) result = ( jnp.log(jnp.sum(jnp.exp(x - max_x), axis=axis, keepdims=True)) + max_x ) return jnp.squeeze(result) if not keepdims else result def qr(x, mode="reduced"): if mode not in {"reduced", "complete"}: raise ValueError( "`mode` argument value not supported. " "Expected one of {'reduced', 'complete'}. " f"Received: mode={mode}" ) return jnp.linalg.qr(x, mode=mode) def extract_sequences(x, sequence_length, sequence_stride): *batch_shape, signal_length = x.shape batch_shape = list(batch_shape) x = jnp.reshape(x, (math.prod(batch_shape), signal_length, 1)) x = jax.lax.conv_general_dilated_patches( x, (sequence_length,), (sequence_stride,), "VALID", dimension_numbers=("NTC", "OIT", "NTC"), ) return jnp.reshape(x, (*batch_shape, *x.shape[-2:])) def _get_complex_tensor_from_tuple(x): if not isinstance(x, (tuple, list)) or len(x) != 2: raise ValueError( "Input `x` should be a tuple of two tensors - real and imaginary." f"Received: x={x}" ) # `convert_to_tensor` does not support passing complex tensors. We separate # the input out into real and imaginary and convert them separately. real, imag = x # Check shapes. if real.shape != imag.shape: raise ValueError( "Input `x` should be a tuple of two tensors - real and imaginary." "Both the real and imaginary parts should have the same shape. " f"Received: x[0].shape = {real.shape}, x[1].shape = {imag.shape}" ) # Ensure dtype is float. if not jnp.issubdtype(real.dtype, jnp.floating) or not jnp.issubdtype( imag.dtype, jnp.floating ): raise ValueError( "At least one tensor in input `x` is not of type float." f"Received: x={x}." ) complex_input = jax.lax.complex(real, imag) return complex_input def fft(x): complex_input = _get_complex_tensor_from_tuple(x) complex_output = jnp.fft.fft(complex_input) return jnp.real(complex_output), jnp.imag(complex_output) def fft2(x): complex_input = _get_complex_tensor_from_tuple(x) complex_output = jnp.fft.fft2(complex_input) return jnp.real(complex_output), jnp.imag(complex_output) def rfft(x, fft_length=None): complex_output = jnp.fft.rfft(x, n=fft_length, axis=-1, norm="backward") return jnp.real(complex_output), jnp.imag(complex_output) def irfft(x, fft_length=None): complex_input = _get_complex_tensor_from_tuple(x) return jnp.fft.irfft(complex_input, n=fft_length, axis=-1, norm="backward") def stft( x, sequence_length, sequence_stride, fft_length, window="hann", center=True ): if standardize_dtype(x.dtype) not in {"float32", "float64"}: raise TypeError( "Invalid input type. Expected `float32` or `float64`. " f"Received: input type={x.dtype}" ) if fft_length < sequence_length: raise ValueError( "`fft_length` must equal or larger than `sequence_length`. " f"Received: sequence_length={sequence_length}, " f"fft_length={fft_length}" ) if isinstance(window, str): if window not in {"hann", "hamming"}: raise ValueError( "If a string is passed to `window`, it must be one of " f'`"hann"`, `"hamming"`. Received: window={window}' ) x = convert_to_tensor(x) if center: pad_width = [(0, 0) for _ in range(len(x.shape))] pad_width[-1] = (fft_length // 2, fft_length // 2) x = jnp.pad(x, pad_width, mode="reflect") l_pad = (fft_length - sequence_length) // 2 r_pad = fft_length - sequence_length - l_pad if window is not None: if isinstance(window, str): win = convert_to_tensor( scipy.signal.get_window(window, sequence_length), dtype=x.dtype ) else: win = convert_to_tensor(window, dtype=x.dtype) if len(win.shape) != 1 or win.shape[-1] != sequence_length: raise ValueError( "The shape of `window` must be equal to [sequence_length]." f"Received: window shape={win.shape}" ) win = jnp.pad(win, [[l_pad, r_pad]]) else: win = jnp.ones((sequence_length + l_pad + r_pad), dtype=x.dtype) result = jax.scipy.signal.stft( x, fs=1.0, window=win, nperseg=(sequence_length + l_pad + r_pad), noverlap=(sequence_length + l_pad + r_pad - sequence_stride), nfft=fft_length, boundary=None, padded=False, )[-1] # scale and swap to (..., num_sequences, fft_bins) scale = jnp.sqrt(1.0 / win.sum() ** 2) result = result / scale result = jnp.swapaxes(result, -2, -1) return jnp.real(result), jnp.imag(result) def istft( x, sequence_length, sequence_stride, fft_length, length=None, window="hann", center=True, ): x = _get_complex_tensor_from_tuple(x) dtype = jnp.real(x).dtype expected_output_len = fft_length + sequence_stride * (x.shape[-2] - 1) l_pad = (fft_length - sequence_length) // 2 r_pad = fft_length - sequence_length - l_pad if window is not None: if isinstance(window, str): win = convert_to_tensor( scipy.signal.get_window(window, sequence_length), dtype=dtype ) else: win = convert_to_tensor(window, dtype=dtype) if len(win.shape) != 1 or win.shape[-1] != sequence_length: raise ValueError( "The shape of `window` must be equal to [sequence_length]." f"Received: window shape={win.shape}" ) win = jnp.pad(win, [[l_pad, r_pad]]) else: win = jnp.ones((sequence_length + l_pad + r_pad), dtype=dtype) x = jax.scipy.signal.istft( x, fs=1.0, window=win, nperseg=(sequence_length + l_pad + r_pad), noverlap=(sequence_length + l_pad + r_pad - sequence_stride), nfft=fft_length, boundary=False, time_axis=-2, freq_axis=-1, )[-1] # scale x = x / win.sum() if window is not None else x / sequence_stride start = 0 if center is False else fft_length // 2 if length is not None: end = start + length elif center is True: end = -(fft_length // 2) else: end = expected_output_len return x[..., start:end] def rsqrt(x): return jax.lax.rsqrt(x) def erf(x): return jax.lax.erf(x) def erfinv(x): return jax.lax.erf_inv(x) def solve(a, b): a = convert_to_tensor(a) b = convert_to_tensor(b) return jnp.linalg.solve(a, b) def norm(x, ord=None, axis=None, keepdims=False): x = convert_to_tensor(x) if standardize_dtype(x.dtype) == "int64": dtype = config.floatx() else: dtype = dtypes.result_type(x.dtype, float) x = cast(x, dtype) return jnp.linalg.norm(x, ord=ord, axis=axis, keepdims=keepdims)
keras/keras/backend/jax/math.py/0
{ "file_path": "keras/keras/backend/jax/math.py", "repo_id": "keras", "token_count": 4046 }
180
import numpy as np from keras.backend.config import floatx from keras.backend.numpy.nn import softmax from keras.random.seed_generator import SeedGenerator from keras.random.seed_generator import draw_seed from keras.random.seed_generator import make_default_seed def normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None): dtype = dtype or floatx() seed = draw_seed(seed) rng = np.random.default_rng(seed) return rng.normal(size=shape, loc=mean, scale=stddev).astype(dtype) def uniform(shape, minval=0.0, maxval=1.0, dtype=None, seed=None): dtype = dtype or floatx() seed = draw_seed(seed) rng = np.random.default_rng(seed) return rng.uniform(size=shape, low=minval, high=maxval).astype(dtype) def categorical(logits, num_samples, dtype="int64", seed=None): seed = draw_seed(seed) rng = np.random.default_rng(seed) output = [] for logits_instance in logits: probabilities = softmax(logits_instance) classes = np.arange(logits_instance.shape[-1]) samples = rng.choice(classes, size=num_samples, p=probabilities) output.append(samples) return np.array(output).astype(dtype) def randint(shape, minval, maxval, dtype="int32", seed=None): seed = draw_seed(seed) rng = np.random.default_rng(seed) output = rng.integers(low=minval, high=maxval, size=shape, dtype=dtype) return output def truncated_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None): dtype = dtype or floatx() seed = draw_seed(seed) rng = np.random.default_rng(seed) lower_bound = mean - 2 * stddev upper_bound = mean + 2 * stddev flat_shape = np.prod(shape) random_numbers = np.empty(0) # loop until we have enough valid numbers to fill our desired shape while random_numbers.shape[0] < flat_shape: # Generate a batch of random numbers from a normal distribution batch = rng.normal(loc=mean, scale=stddev, size=flat_shape) # Filter the numbers to keep only those within the specified bounds valid = batch[(batch >= lower_bound) & (batch <= upper_bound)] # Append the valid numbers to the result array random_numbers = np.append(random_numbers, valid) # Truncate the result array to the desired size and reshape it return random_numbers[:flat_shape].astype(dtype).reshape(shape) def dropout(inputs, rate, noise_shape=None, seed=None): seed = draw_seed(seed) keep_prob = 1.0 - rate # If noise_shape is not provided, use the shape of inputs if noise_shape is None: noise_shape = inputs.shape else: # If noise_shape is provided, replace None with corresponding # input shape noise_shape = [ n if n is not None else inputs.shape[i] for i, n in enumerate(noise_shape) ] rng = np.random.default_rng(seed) mask = rng.uniform(size=noise_shape) < keep_prob mask = np.broadcast_to(mask, inputs.shape) return np.where(mask, inputs / keep_prob, np.zeros_like(inputs)) def shuffle(x, axis=0, seed=None): seed = draw_seed(seed) rng = np.random.default_rng(seed) return rng.permuted(x, axis=axis) def gamma(shape, alpha, dtype=None, seed=None): dtype = dtype or floatx() seed = draw_seed(seed) rng = np.random.default_rng(seed) return rng.gamma(alpha, scale=1.0, size=shape).astype(dtype) def binomial(shape, counts, probabilities, dtype=None, seed=None): dtype = dtype or floatx() seed = draw_seed(seed) rng = np.random.default_rng(seed) sample = rng.binomial(n=counts, p=probabilities, size=shape).astype(dtype) return sample def beta(shape, alpha, beta, dtype=None, seed=None): dtype = dtype or floatx() seed = draw_seed(seed) rng = np.random.default_rng(seed) sample = rng.beta(a=alpha, b=beta, size=shape).astype(dtype) return sample
keras/keras/backend/numpy/random.py/0
{ "file_path": "keras/keras/backend/numpy/random.py", "repo_id": "keras", "token_count": 1558 }
181
import tensorflow as tf from tensorflow.experimental import numpy as tfnp from keras.backend.common import standardize_dtype from keras.backend.config import floatx from keras.random.seed_generator import SeedGenerator from keras.random.seed_generator import draw_seed from keras.random.seed_generator import make_default_seed def tf_draw_seed(seed): # TF ops only accept int32/64 seeds but our base seed is uint32. return tf.cast(draw_seed(seed), dtype="int32") def normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None): dtype = dtype or floatx() seed = tf_draw_seed(seed) return tf.random.stateless_normal( shape=shape, mean=mean, stddev=stddev, dtype=dtype, seed=seed ) def uniform(shape, minval=0.0, maxval=1.0, dtype=None, seed=None): dtype = dtype or floatx() seed = tf_draw_seed(seed) return tf.random.stateless_uniform( shape=shape, minval=tf.cast(minval, dtype), maxval=tf.cast(maxval, dtype), dtype=dtype, seed=seed, ) def categorical(logits, num_samples, dtype="int64", seed=None): seed = tf_draw_seed(seed) output = tf.random.stateless_categorical(logits, num_samples, seed=seed) return tf.cast(output, dtype) def randint(shape, minval, maxval, dtype="int32", seed=None): intemediate_dtype = dtype if standardize_dtype(dtype) not in ["int32", "int64"]: intemediate_dtype = "int64" seed = tf_draw_seed(seed) output = tf.random.stateless_uniform( shape=shape, minval=minval, maxval=maxval, dtype=intemediate_dtype, seed=seed, ) return tf.cast(output, dtype) def truncated_normal(shape, mean=0.0, stddev=1.0, dtype=None, seed=None): dtype = dtype or floatx() seed = tf_draw_seed(seed) return tf.random.stateless_truncated_normal( shape=shape, mean=mean, stddev=stddev, dtype=dtype, seed=seed ) def _get_concrete_noise_shape(inputs, noise_shape): if noise_shape is None: return tf.shape(inputs) concrete_inputs_shape = tf.shape(inputs) concrete_noise_shape = [] for i, value in enumerate(noise_shape): concrete_noise_shape.append( concrete_inputs_shape[i] if value is None else value ) return concrete_noise_shape def dropout(inputs, rate, noise_shape=None, seed=None): seed = tf_draw_seed(seed) noise_shape = _get_concrete_noise_shape(inputs, noise_shape) return tf.nn.experimental.stateless_dropout( inputs, rate=rate, noise_shape=noise_shape, seed=seed, ) def shuffle(x, axis=0, seed=None): seed = tf_draw_seed(seed) if axis == 0: return tf.random.experimental.stateless_shuffle(x, seed=seed) x = tfnp.swapaxes(x, axis1=0, axis2=axis) x = tf.random.experimental.stateless_shuffle(x, seed=seed) x = tfnp.swapaxes(x, axis1=0, axis2=axis) return x def gamma(shape, alpha, dtype=None, seed=None): dtype = dtype or floatx() seed = tf_draw_seed(seed) return tf.random.stateless_gamma( shape, alpha=alpha, dtype=dtype, seed=seed, ) def binomial(shape, counts, probabilities, dtype=None, seed=None): dtype = dtype or floatx() seed = tf_draw_seed(seed) sample = tf.random.stateless_binomial( shape=shape, seed=seed, counts=counts, probs=probabilities, output_dtype=dtype, ) return sample def beta(shape, alpha, beta, dtype=None, seed=None): dtype = dtype or floatx() # since tensorflow doesn't offer a beta distribution function # so we'll use the formula U(a,b) = (X(a) / (X(a) + Y(b)), # where U(a,b) is a beta-distributed random variable with # parameters a and b, and X(a) and Y(b) are gamma-distributed # random variables with parameters a and b respectively. # Additionally, we'll use two different seeds for our two # gamma random variables to prevent any unintended # dependencies and correlations between the generated values # due to the usage of same seed. seed_1 = tf_draw_seed(seed) # The choice of 12 is totally arbitrary, as we're # incrementing the first drawn seed by a CONSTANT to # ensure deterministic results. seed_2 = seed_1 + 12 alpha = tf.convert_to_tensor(alpha, dtype=dtype) beta = tf.convert_to_tensor(beta, dtype=dtype) # tensorflow's tf.random.stateless_gamma has a bit of unconventional # implementation of the stateless_gamma function where it checks the # broadcastability of alpha's shape with ONLY the RIGHTMOST dimension of # the specified output shape instead of considering the whole. # Consequently, it then results in errors for perfectly broadcastable shapes # such as for output shape of (2, 3) and alpha shape of (1, 3) # So to resolve this, we explicitly broadcast alpha and beta to shape before # passing them to the stateless_gamma function. if tf.rank(alpha) > 1: alpha = tf.broadcast_to(alpha, shape) if tf.rank(beta) > 1: beta = tf.broadcast_to(beta, shape) gamma_a = tf.random.stateless_gamma( shape=shape, seed=seed_1, alpha=alpha, dtype=dtype ) gamma_b = tf.random.stateless_gamma( shape=shape, seed=seed_2, alpha=beta, dtype=dtype ) sample = gamma_a / (gamma_a + gamma_b) return sample
keras/keras/backend/tensorflow/random.py/0
{ "file_path": "keras/keras/backend/tensorflow/random.py", "repo_id": "keras", "token_count": 2179 }
182
import builtins import math import torch from keras.backend import KerasTensor from keras.backend import config from keras.backend.common import dtypes from keras.backend.common.variables import standardize_dtype from keras.backend.torch.core import cast from keras.backend.torch.core import convert_to_tensor from keras.backend.torch.core import get_device from keras.backend.torch.core import is_tensor from keras.backend.torch.core import to_torch_dtype TORCH_INT_TYPES = ( torch.int8, torch.int16, torch.int32, torch.int64, ) def add(x1, x2): x1 = convert_to_tensor(x1) x2 = convert_to_tensor(x2) return torch.add(x1, x2) def einsum(subscripts, *operands, **kwargs): operands = [convert_to_tensor(operand) for operand in operands] return torch.einsum(subscripts, *operands) def subtract(x1, x2): x1 = convert_to_tensor(x1) x2 = convert_to_tensor(x2) # TODO: torch.subtract doesn't support bool if standardize_dtype(x1.dtype) == "bool": x1 = cast(x1, x2.dtype) if standardize_dtype(x2.dtype) == "bool": x2 = cast(x2, x1.dtype) return torch.subtract(x1, x2) def _can_use_int_matmul(x1, x2): # torch._int_mm only accepts the following conditions: # 1. cuda # 2. both inputs must have int8 dtype # 3. both inputs must be 2d # 4. x1.shape must be [>16, >= 16 and a multiplier of 8] # 5. x2.shape must be [>= 16 and a multiplier of 8, multiplier of 8] if get_device() != "cuda": return False x1_dtype = standardize_dtype(x1.dtype) x2_dtype = standardize_dtype(x2.dtype) if x1_dtype != "int8" or x2_dtype != "int8": return False x1_shape = x1.shape x2_shape = x2.shape if x1.ndim != 2 or x2.ndim != 2: return False if x1_shape[0] <= 16 or x1_shape[1] < 16 or x1_shape[1] % 8 != 0: return False if x2_shape[0] < 16 or x2_shape[0] % 8 != 0 or x2_shape[1] % 8 != 0: return False return True def matmul(x1, x2): x1 = convert_to_tensor(x1) x2 = convert_to_tensor(x2) # Shortcut for torch._int_mm # TODO: Loosen the restriction of the usage of torch._int_mm # TODO: We should replace torch._int_mm with the public api if possible if _can_use_int_matmul(x1, x2): return torch._int_mm(x1, x2) x1_dtype = standardize_dtype(x1.dtype) x2_dtype = standardize_dtype(x2.dtype) if x1_dtype == "int8" and x2_dtype == "int8": result_dtype = "int32" else: result_dtype = dtypes.result_type(x1.dtype, x2.dtype) compute_dtype = result_dtype # TODO: torch.matmul doesn't support bool if compute_dtype == "bool": compute_dtype = config.floatx() # TODO: torch.matmul doesn't support float16 with cpu if get_device() == "cpu" and compute_dtype == "float16": compute_dtype = "float32" # TODO: torch.matmul doesn't support integer types with cuda if get_device() == "cuda" and "int" in compute_dtype: compute_dtype = config.floatx() x1 = cast(x1, compute_dtype) x2 = cast(x2, compute_dtype) return cast(torch.matmul(x1, x2), result_dtype) def multiply(x1, x2): x1 = convert_to_tensor(x1) x2 = convert_to_tensor(x2) return torch.multiply(x1, x2) def mean(x, axis=None, keepdims=False): if isinstance(x, (list, tuple)): x = stack(x) x = convert_to_tensor(x) if axis == () or axis == []: # Torch handles the empty axis case differently from numpy. return x elif isinstance(axis, int): axis = (axis,) # see [NB] below ori_dtype = standardize_dtype(x.dtype) # torch.mean only supports floating point inputs compute_dtype = dtypes.result_type(x.dtype, "float32") if "int" in ori_dtype or ori_dtype == "bool": result_dtype = compute_dtype else: result_dtype = ori_dtype # [NB] the python torch op torch.mean() is generated into # `torch._C._VariableFunctions.pyi`, and the method # signature is overloaded. # Dynamo won't actually find the correct signature of # `torch.mean()` if arguments are passed via kwargs # So we have to pass the arguments via positional args # EXCEPT for those that are forced as kwargs via the `*` # delimiter in the overloaded method signatures. # Additionally, we have to create a singleton-tuple # when `axis` is an int to match the existing fn signature result = torch.mean( x, axis, keepdims, dtype=to_torch_dtype(compute_dtype), ) return cast(result, result_dtype) def max(x, axis=None, keepdims=False, initial=None): x = convert_to_tensor(x) if 0 in x.shape: if initial is None: raise ValueError("Cannot compute the max of an empty tensor.") elif keepdims: return torch.full((1,) * len(x.shape), initial) else: return torch.tensor(initial) if axis is None: result = torch.max(x) else: result = amax(x, axis=axis, keepdims=keepdims) if isinstance(getattr(result, "values", None), torch.Tensor): result = result.values if initial is not None: initial = convert_to_tensor(initial) return torch.maximum(result, torch.full(result.shape, initial)) return result def ones(shape, dtype=None): dtype = to_torch_dtype(dtype or config.floatx()) if isinstance(shape, int): shape = (shape,) return torch.ones(size=shape, dtype=dtype, device=get_device()) def zeros(shape, dtype=None): dtype = to_torch_dtype(dtype or config.floatx()) if isinstance(shape, int): shape = (shape,) return torch.zeros(size=shape, dtype=dtype, device=get_device()) def zeros_like(x, dtype=None): x = convert_to_tensor(x) dtype = to_torch_dtype(dtype or x.dtype) return torch.zeros_like(x, dtype=dtype) def absolute(x): return abs(x) def abs(x): x = convert_to_tensor(x) # bool are always non-negative if standardize_dtype(x.dtype) == "bool": return x return torch.abs(x) def all(x, axis=None, keepdims=False): x = convert_to_tensor(x) if axis is None: return cast(torch.all(x), "bool") if not isinstance(axis, (list, tuple)): axis = (axis,) for a in axis: # `torch.all` does not handle multiple axes. x = torch.all(x, dim=a, keepdim=keepdims) return cast(x, "bool") def any(x, axis=None, keepdims=False): x = convert_to_tensor(x) if axis is None: return cast(torch.any(x), "bool") if not isinstance(axis, (list, tuple)): axis = (axis,) for a in axis: # `torch.any` does not handle multiple axes. x = torch.any(x, dim=a, keepdim=keepdims) return cast(x, "bool") def amax(x, axis=None, keepdims=False): x = convert_to_tensor(x) if axis is None: return torch.amax(x) if axis == () or axis == []: # Torch handles the empty axis case differently from numpy. return x return torch.amax(x, dim=axis, keepdim=keepdims) def amin(x, axis=None, keepdims=False): x = convert_to_tensor(x) if axis is None: return torch.amin(x) if axis == () or axis == []: # Torch handles the empty axis case differently from numpy. return x return torch.amin(x, dim=axis, keepdim=keepdims) def append(x1, x2, axis=None): x1, x2 = convert_to_tensor(x1), convert_to_tensor(x2) if axis is None: return torch.cat((x1.flatten(), x2.flatten())) return torch.cat((x1, x2), dim=axis) def arange(start, stop=None, step=1, dtype=None): if dtype is None: dtypes_to_resolve = [ getattr(start, "dtype", type(start)), getattr(step, "dtype", type(step)), ] if stop is not None: dtypes_to_resolve.append(getattr(stop, "dtype", type(stop))) dtype = dtypes.result_type(*dtypes_to_resolve) dtype = to_torch_dtype(dtype) if stop is None: return torch.arange(end=start, dtype=dtype, device=get_device()) return torch.arange( start, stop, step=step, dtype=dtype, device=get_device() ) def arccos(x): x = convert_to_tensor(x) return torch.arccos(x) def arccosh(x): x = convert_to_tensor(x) return torch.arccosh(x) def arcsin(x): x = convert_to_tensor(x) return torch.arcsin(x) def arcsinh(x): x = convert_to_tensor(x) return torch.arcsinh(x) def arctan(x): x = convert_to_tensor(x) return torch.arctan(x) def arctan2(x1, x2): x1 = convert_to_tensor(x1) x2 = convert_to_tensor(x2) result_dtype = dtypes.result_type(x1.dtype, x2.dtype, float) compute_dtype = result_dtype # TODO: torch.arctan2 doesn't support float16 with cpu if get_device() == "cpu" and compute_dtype == "float16": compute_dtype = "float32" x1 = cast(x1, compute_dtype) x2 = cast(x2, compute_dtype) return cast(torch.arctan2(x1, x2), result_dtype) def arctanh(x): x = convert_to_tensor(x) return torch.arctanh(x) def argmax(x, axis=None): x = convert_to_tensor(x) # TODO: torch.argmax doesn't support bool if standardize_dtype(x.dtype) == "bool": x = cast(x, "uint8") return cast(torch.argmax(x, dim=axis), dtype="int32") def argmin(x, axis=None): x = convert_to_tensor(x) # TODO: torch.argmin doesn't support bool if standardize_dtype(x.dtype) == "bool": x = cast(x, "uint8") return cast(torch.argmin(x, dim=axis), dtype="int32") def argsort(x, axis=-1): x = convert_to_tensor(x) # TODO: torch.argsort doesn't support bool if standardize_dtype(x.dtype) == "bool": x = cast(x, "uint8") if axis is None: axis = -1 x = x.reshape(-1) return cast(torch.argsort(x, dim=axis, stable=True), dtype="int32") def array(x, dtype=None): return convert_to_tensor(x, dtype=dtype) def average(x, axis=None, weights=None): x = convert_to_tensor(x) dtypes_to_resolve = [x.dtype, float] if weights is not None: weights = convert_to_tensor(weights) dtypes_to_resolve.append(weights.dtype) dtype = dtypes.result_type(*dtypes_to_resolve) x = cast(x, dtype) if weights is not None: weights = cast(weights, dtype) if axis == () or axis == []: # Torch handles the empty axis case differently from numpy. return x if weights is not None: return torch.sum(torch.mul(x, weights), dim=axis) / torch.sum( weights, dim=-1 ) return torch.mean(x, axis) def bincount(x, weights=None, minlength=0): x = convert_to_tensor(x) dtypes_to_resolve = [x.dtype] if weights is not None: weights = convert_to_tensor(weights) dtypes_to_resolve.append(weights.dtype) dtype = dtypes.result_type(*dtypes_to_resolve) else: dtype = "int32" if len(x.shape) == 2: if weights is None: def bincount_fn(arr): return torch.bincount(arr, minlength=minlength) bincounts = list(map(bincount_fn, x)) else: def bincount_fn(arr_w): return torch.bincount( arr_w[0], weights=arr_w[1], minlength=minlength ) bincounts = list(map(bincount_fn, zip(x, weights))) return cast(torch.stack(bincounts), dtype) return cast(torch.bincount(x, weights, minlength), dtype) def broadcast_to(x, shape): x = convert_to_tensor(x) return torch.broadcast_to(x, shape) def ceil(x): x = convert_to_tensor(x) ori_dtype = standardize_dtype(x.dtype) # TODO: torch.ceil doesn't support bool if ori_dtype == "bool": x = cast(x, "uint8") # TODO: torch.ceil doesn't support float16 with cpu elif get_device() == "cpu" and ori_dtype == "float16": x = cast(x, config.floatx()) if ori_dtype == "int64": dtype = config.floatx() else: dtype = dtypes.result_type(ori_dtype, float) return cast(torch.ceil(x), dtype=dtype) def clip(x, x_min, x_max): x = convert_to_tensor(x) x_min = convert_to_tensor(x_min) x_max = convert_to_tensor(x_max) ori_dtype = standardize_dtype(x.dtype) # TODO: torch.clip doesn't support float16 with cpu if get_device() == "cpu" and ori_dtype == "float16": x = cast(x, "float32") return cast(torch.clip(x, min=x_min, max=x_max), "float16") if ori_dtype == "bool": x = cast(x, "int32") return torch.clip(x, min=x_min, max=x_max) def concatenate(xs, axis=0): xs = [convert_to_tensor(x) for x in xs] return torch.cat(xs, dim=axis) def conjugate(x): if not isinstance(x, torch.Tensor): x = torch.from_numpy(x) # needed for complex type conversion return torch.conj(x).resolve_conj() def conj(x): if not isinstance(x, torch.Tensor): x = torch.from_numpy(x) # needed for complex type conversion return torch.conj(x).resolve_conj() def copy(x): x = convert_to_tensor(x) return torch.clone(x) def cos(x): x = convert_to_tensor(x) return torch.cos(x) def cosh(x): x = convert_to_tensor(x) return torch.cosh(x) def count_nonzero(x, axis=None): x = convert_to_tensor(x) if axis == () or axis == []: # Torch handles the empty axis case differently from numpy. return cast(torch.ne(x, 0), "int32") return cast(torch.count_nonzero(x, dim=axis).T, "int32") def cross(x1, x2, axisa=-1, axisb=-1, axisc=-1, axis=-1): if axisa != -1 or axisb != -1 or axisc != -1: raise ValueError( "Torch backend does not support `axisa`, `axisb`, or `axisc`. " f"Received: axisa={axisa}, axisb={axisb}, axisc={axisc}. Please " "use `axis` arg in torch backend." ) x1 = convert_to_tensor(x1) x2 = convert_to_tensor(x2) compute_dtype = dtypes.result_type(x1.dtype, x2.dtype) result_dtype = compute_dtype # TODO: torch.cross doesn't support bfloat16 with gpu if get_device() == "cuda" and compute_dtype == "bfloat16": compute_dtype = "float32" # TODO: torch.cross doesn't support float16 with cpu elif get_device() == "cpu" and compute_dtype == "float16": compute_dtype = "float32" x1 = cast(x1, compute_dtype) x2 = cast(x2, compute_dtype) return cast(torch.cross(x1, x2, dim=axis), result_dtype) def cumprod(x, axis=None, dtype=None): x = convert_to_tensor(x) if axis is None: x = x.flatten() axis = 0 dtype = dtypes.result_type(dtype or x.dtype) if dtype == "bool": dtype = "int32" # TODO: torch.cumprod doesn't support float16 with cpu elif get_device() == "cpu" and dtype == "float16": return cast( torch.cumprod(x, dim=axis, dtype=to_torch_dtype("float32")), "float16", ) return torch.cumprod(x, dim=axis, dtype=to_torch_dtype(dtype)) def cumsum(x, axis=None, dtype=None): x = convert_to_tensor(x) if axis is None: x = x.flatten() axis = 0 dtype = dtypes.result_type(dtype or x.dtype) if dtype == "bool": dtype = "int32" # TODO: torch.cumsum doesn't support float16 with cpu elif get_device() == "cpu" and dtype == "float16": return cast( torch.cumsum(x, dim=axis, dtype=to_torch_dtype("float32")), "float16", ) return torch.cumsum(x, dim=axis, dtype=to_torch_dtype(dtype)) def diag(x, k=0): x = convert_to_tensor(x) return torch.diag(x, diagonal=k) def diagonal(x, offset=0, axis1=0, axis2=1): x = convert_to_tensor(x) return torch.diagonal( x, offset=offset, dim1=axis1, dim2=axis2, ) def diff(a, n=1, axis=-1): a = convert_to_tensor(a) return torch.diff(a, n=n, dim=axis) def digitize(x, bins): x = convert_to_tensor(x) bins = convert_to_tensor(bins) if standardize_dtype(x.dtype) == "bool": x = cast(x, "uint8") return cast(torch.bucketize(x, bins, right=True), "int32") def dot(x, y): x = convert_to_tensor(x) y = convert_to_tensor(y) result_dtype = dtypes.result_type(x.dtype, y.dtype) # GPU only supports float types compute_dtype = dtypes.result_type(result_dtype, float) # TODO: torch.matmul doesn't support float16 with cpu if get_device() == "cpu" and compute_dtype == "float16": compute_dtype = "float32" x = cast(x, compute_dtype) y = cast(y, compute_dtype) if x.ndim == 0 or y.ndim == 0: return cast(torch.multiply(x, y), result_dtype) return cast(torch.matmul(x, y), result_dtype) def empty(shape, dtype=None): dtype = to_torch_dtype(dtype or config.floatx()) return torch.empty(size=shape, dtype=dtype, device=get_device()) def equal(x1, x2): x1, x2 = convert_to_tensor(x1), convert_to_tensor(x2) return torch.eq(x1, x2) def exp(x): x = convert_to_tensor(x) ori_dtype = standardize_dtype(x.dtype) if "int" in ori_dtype or ori_dtype == "bool": x = cast(x, config.floatx()) return torch.exp(x) def expand_dims(x, axis): x = convert_to_tensor(x) return torch.unsqueeze(x, dim=axis) def expm1(x): x = convert_to_tensor(x) ori_dtype = standardize_dtype(x.dtype) if "int" in ori_dtype or ori_dtype == "bool": x = cast(x, config.floatx()) return torch.expm1(x) def flip(x, axis=None): x = convert_to_tensor(x) if axis is None: axis = tuple(range(x.ndim)) if isinstance(axis, int): axis = (axis,) return torch.flip(x, dims=axis) def floor(x): x = convert_to_tensor(x) dtype = ( config.floatx() if standardize_dtype(x.dtype) == "int64" else dtypes.result_type(x.dtype, float) ) x = cast(x, dtype) return torch.floor(x) def full(shape, fill_value, dtype=None): dtype = to_torch_dtype(dtype) fill_value = convert_to_tensor(fill_value, dtype=dtype) if len(fill_value.shape) > 0: # `torch.full` only supports scala `fill_value`. expand_size = len(shape) - len(fill_value.shape) tile_shape = tuple(shape[:expand_size]) + (1,) * len(fill_value.shape) return torch.tile(fill_value, tile_shape) return torch.full( size=shape, fill_value=fill_value, dtype=dtype, device=get_device() ) def full_like(x, fill_value, dtype=None): dtype = dtype or x.dtype return full(shape=x.shape, fill_value=fill_value, dtype=dtype) def greater(x1, x2): x1, x2 = convert_to_tensor(x1), convert_to_tensor(x2) return torch.greater(x1, x2) def greater_equal(x1, x2): x1, x2 = convert_to_tensor(x1), convert_to_tensor(x2) return torch.greater_equal(x1, x2) def hstack(xs): xs = [convert_to_tensor(x) for x in xs] return torch.hstack(xs) def identity(n, dtype=None): dtype = to_torch_dtype(dtype or config.floatx()) # TODO: torch.eye doesn't support bfloat16 with cpu if get_device() == "cpu" and dtype == torch.bfloat16: return cast( torch.eye(n, dtype=to_torch_dtype("float32"), device=get_device()), dtype, ) return torch.eye(n, dtype=dtype, device=get_device()) def imag(x): if not isinstance(x, torch.Tensor): x = torch.from_numpy(x) # needed for complex type conversion return torch.imag(x) def isclose(x1, x2): x1 = convert_to_tensor(x1) x2 = convert_to_tensor(x2) result_dtype = dtypes.result_type(x1.dtype, x2.dtype) x1 = cast(x1, result_dtype) x2 = cast(x2, result_dtype) return torch.isclose(x1, x2) def isfinite(x): x = convert_to_tensor(x) return torch.isfinite(x) def isinf(x): x = convert_to_tensor(x) return torch.isinf(x) def isnan(x): x = convert_to_tensor(x) return torch.isnan(x) def less(x1, x2): x1, x2 = convert_to_tensor(x1), convert_to_tensor(x2) return torch.less(x1, x2) def less_equal(x1, x2): x1, x2 = convert_to_tensor(x1), convert_to_tensor(x2) return torch.less_equal(x1, x2) def linspace( start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0 ): if axis != 0: raise ValueError( "torch.linspace does not support an `axis` argument. " f"Received axis={axis}" ) if dtype is None: dtypes_to_resolve = [ getattr(start, "dtype", type(start)), getattr(stop, "dtype", type(stop)), float, ] dtype = dtypes.result_type(*dtypes_to_resolve) dtype = to_torch_dtype(dtype) if endpoint is False: stop = stop - ((stop - start) / num) if hasattr(start, "__len__") and hasattr(stop, "__len__"): start = convert_to_tensor(start, dtype=dtype) stop = convert_to_tensor(stop, dtype=dtype) steps = torch.arange(num, dtype=dtype, device=get_device()) / (num - 1) # reshape `steps` to allow for broadcasting for i in range(start.ndim): steps = steps.unsqueeze(-1) # increments from `start` to `stop` in each dimension linspace = start[None] + steps * (stop - start)[None] else: linspace = torch.linspace( start=start, end=stop, steps=num, dtype=dtype, device=get_device(), ) if retstep is True: return (linspace, num) return linspace def log(x): x = convert_to_tensor(x) return torch.log(x) def log10(x): x = convert_to_tensor(x) return torch.log10(x) def log1p(x): x = convert_to_tensor(x) return torch.log1p(x) def log2(x): x = convert_to_tensor(x) return torch.log2(x) def logaddexp(x1, x2): x1 = convert_to_tensor(x1) x2 = convert_to_tensor(x2) dtype = dtypes.result_type(x1.dtype, x2.dtype, float) # TODO: torch.logaddexp doesn't support float16 with cpu if get_device() == "cpu" and dtype == "float16": x1 = cast(x1, "float32") x2 = cast(x2, "float32") return cast(torch.logaddexp(x1, x2), dtype) else: x1 = cast(x1, dtype) x2 = cast(x2, dtype) return torch.logaddexp(x1, x2) def logical_and(x1, x2): x1, x2 = convert_to_tensor(x1), convert_to_tensor(x2) return torch.logical_and(x1, x2) def logical_not(x): x = convert_to_tensor(x) return torch.logical_not(x) def logical_or(x1, x2): x1, x2 = convert_to_tensor(x1), convert_to_tensor(x2) return torch.logical_or(x1, x2) def logspace(start, stop, num=50, endpoint=True, base=10, dtype=None, axis=0): if axis != 0: raise ValueError( "torch.logspace does not support an `axis` argument. " f"Received axis={axis}" ) if dtype is None: dtypes_to_resolve = [ getattr(start, "dtype", type(start)), getattr(stop, "dtype", type(stop)), float, ] dtype = dtypes.result_type(*dtypes_to_resolve) dtype = to_torch_dtype(dtype) if endpoint is False: stop = stop - ((stop - start) / num) if hasattr(start, "__len__") and hasattr(stop, "__len__"): start = convert_to_tensor(start, dtype=dtype) stop = convert_to_tensor(stop, dtype=dtype) steps = torch.arange(num, dtype=dtype, device=get_device()) / (num - 1) # reshape `steps` to allow for broadcasting for i in range(start.ndim): steps = steps.unsqueeze(-1) # increments from `start` to `stop` in each dimension linspace = start[None] + steps * (stop - start)[None] logspace = base**linspace else: compute_dtype = dtype # TODO: torch.logspace doesn't support float16 with cpu if get_device() == "cpu" and dtype == torch.float16: compute_dtype = torch.float32 logspace = cast( torch.logspace( start=start, end=stop, steps=num, base=base, dtype=compute_dtype, device=get_device(), ), dtype, ) return logspace def maximum(x1, x2): if not isinstance(x1, (int, float)): x1 = convert_to_tensor(x1) if not isinstance(x2, (int, float)): x2 = convert_to_tensor(x2) dtype = dtypes.result_type( getattr(x1, "dtype", type(x1)), getattr(x2, "dtype", type(x2)), ) x1 = convert_to_tensor(x1, dtype) x2 = convert_to_tensor(x2, dtype) return torch.maximum(x1, x2) def median(x, axis=None, keepdims=False): x = convert_to_tensor(x) compute_dtype = dtypes.result_type(x.dtype, "float32") result_dtype = dtypes.result_type(x.dtype, float) x = cast(x, compute_dtype) if axis is None and keepdims is False: return cast(torch.median(x), result_dtype) elif isinstance(axis, int): return cast( torch.median(x, dim=axis, keepdim=keepdims)[0], result_dtype ) # support multiple axes if axis is None: y = reshape(x, [-1]) else: # transpose axis = list(map(lambda a: a if a >= 0 else a + x.ndim, axis)) other_dims = sorted(set(range(x.ndim)).difference(axis)) perm = other_dims + list(axis) x_permed = torch.permute(x, dims=perm) # reshape x_shape = list(x.shape) other_shape = [x_shape[i] for i in other_dims] end_shape = [math.prod([x_shape[i] for i in axis])] full_shape = other_shape + end_shape y = reshape(x_permed, full_shape) y = torch.median(y, dim=-1)[0] if keepdims: if axis is None: for _ in range(x.ndim): y = expand_dims(y, axis=-1) else: for i in sorted(axis): y = expand_dims(y, axis=i) return cast(y, result_dtype) def meshgrid(*x, indexing="xy"): x = [convert_to_tensor(sc_tensor) for sc_tensor in x] return torch.meshgrid(x, indexing=indexing) def min(x, axis=None, keepdims=False, initial=None): x = convert_to_tensor(x) if 0 in x.shape: if initial is None: raise ValueError("Cannot compute the min of an empty tensor.") elif keepdims: return torch.full((1,) * len(x.shape), initial) else: return torch.tensor(initial) if axis is None: result = torch.min(x) else: result = amin(x, axis=axis, keepdims=keepdims) if isinstance(getattr(result, "values", None), torch.Tensor): result = result.values if initial is not None: initial = convert_to_tensor(initial) return torch.minimum(result, initial) return result def minimum(x1, x2): if not isinstance(x1, (int, float)): x1 = convert_to_tensor(x1) if not isinstance(x2, (int, float)): x2 = convert_to_tensor(x2) dtype = dtypes.result_type( getattr(x1, "dtype", type(x1)), getattr(x2, "dtype", type(x2)), ) x1 = convert_to_tensor(x1, dtype) x2 = convert_to_tensor(x2, dtype) return torch.minimum(x1, x2) def mod(x1, x2): x1 = convert_to_tensor(x1) x2 = convert_to_tensor(x2) dtype = dtypes.result_type(x1.dtype, x2.dtype) if dtype == "bool": x1 = cast(x1, "int32") x2 = cast(x2, "int32") return torch.remainder(x1, x2) def moveaxis(x, source, destination): x = convert_to_tensor(x) return torch.moveaxis(x, source=source, destination=destination) def nan_to_num(x): x = convert_to_tensor(x) return torch.nan_to_num(x) def ndim(x): x = convert_to_tensor(x) return x.ndim def nonzero(x): x = convert_to_tensor(x) return tuple(cast(indices, "int32") for indices in torch.nonzero(x).T) def not_equal(x1, x2): x1, x2 = convert_to_tensor(x1), convert_to_tensor(x2) return torch.not_equal(x1, x2) def ones_like(x, dtype=None): x = convert_to_tensor(x) dtype = to_torch_dtype(dtype or x.dtype) return torch.ones_like(x, dtype=dtype) def outer(x1, x2): x1, x2 = convert_to_tensor(x1), convert_to_tensor(x2) return torch.outer(x1.flatten(), x2.flatten()) def pad(x, pad_width, mode="constant", constant_values=None): kwargs = {} if constant_values is not None: if mode != "constant": raise ValueError( "Argument `constant_values` can only be " "provided when `mode == 'constant'`. " f"Received: mode={mode}" ) kwargs["value"] = constant_values x = convert_to_tensor(x) pad_sum = [] pad_width = list(pad_width)[::-1] # torch uses reverse order pad_width_sum = 0 for pad in pad_width: pad_width_sum += pad[0] + pad[1] for pad in pad_width: pad_sum += pad pad_width_sum -= pad[0] + pad[1] if pad_width_sum == 0: # early break when no padding in higher order break if mode == "symmetric": mode = "replicate" if mode == "constant": return torch.nn.functional.pad(x, pad=pad_sum, mode=mode, **kwargs) # TODO: reflect and symmetric padding are implemented for padding the # last 3 dimensions of a 4D or 5D input tensor, the last 2 dimensions of a # 3D or 4D input tensor, or the last dimension of a 2D or 3D input tensor. # https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html ori_dtype = x.dtype ori_ndim = x.ndim need_squeeze = False if x.ndim < 3: need_squeeze = True new_dims = [1] * (3 - x.ndim) x = x.view(*new_dims, *x.shape) need_cast = False if x.dtype not in (torch.float32, torch.float64): # TODO: reflect and symmetric padding are only supported with float32/64 # https://github.com/pytorch/pytorch/issues/40763 need_cast = True x = cast(x, torch.float32) x = torch.nn.functional.pad(x, pad=pad_sum, mode=mode) if need_cast: x = cast(x, ori_dtype) if need_squeeze: x = torch.squeeze(x, dim=tuple(range(3 - ori_ndim))) return x def prod(x, axis=None, keepdims=False, dtype=None): x = convert_to_tensor(x) if dtype is None: dtype = dtypes.result_type(x.dtype) if dtype == "bool": dtype = "int32" elif dtype in ("int8", "int16"): dtype = "int32" # TODO: torch.prod doesn't support uint32 elif dtype == "uint8": dtype = "int32" compute_dtype = dtype # TODO: torch.prod doesn't support float16 with cpu if get_device() == "cpu" and compute_dtype == "float16": compute_dtype = "float32" if axis is None: return cast(torch.prod(x, dtype=to_torch_dtype(compute_dtype)), dtype) if not isinstance(axis, (list, tuple)): axis = (axis,) for a in axis: # `torch.prod` does not handle multiple axes. x = cast( torch.prod( x, dim=a, keepdim=keepdims, dtype=to_torch_dtype(compute_dtype) ), dtype, ) return x def quantile(x, q, axis=None, method="linear", keepdims=False): if isinstance(axis, int): axis = [axis] x = convert_to_tensor(x) q = convert_to_tensor(q) compute_dtype = dtypes.result_type(x.dtype, "float32") result_dtype = dtypes.result_type(x.dtype, float) x = cast(x, compute_dtype) # q must be same dtype as x if x.dtype != q.dtype: q = cast(q, x.dtype) # support multiple axes if axis is None: y = reshape(x, [-1]) else: # transpose axis = list(map(lambda a: a if a >= 0 else a + x.ndim, axis)) other_dims = sorted(set(range(x.ndim)).difference(axis)) perm = other_dims + list(axis) x_permed = torch.permute(x, dims=perm) # reshape x_shape = list(x.shape) other_shape = [x_shape[i] for i in other_dims] end_shape = [math.prod([x_shape[i] for i in axis])] full_shape = other_shape + end_shape y = reshape(x_permed, full_shape) y = torch.quantile(y, q, dim=-1, interpolation=method) if keepdims: if axis is None: for _ in range(x.ndim): y = expand_dims(y, axis=-1) else: for i in sorted(axis): i = i + 1 if q.ndim > 0 else i y = expand_dims(y, axis=i) return cast(y, result_dtype) def ravel(x): x = convert_to_tensor(x) return torch.ravel(x) def real(x): if not isinstance(x, torch.Tensor): x = torch.from_numpy(x) # needed for complex type conversion return torch.real(x) def reciprocal(x): x = convert_to_tensor(x) return torch.reciprocal(x) def repeat(x, repeats, axis=None): x = convert_to_tensor(x) if get_device() == "meta": x = KerasTensor(x.shape, standardize_dtype(x.dtype)) outputs = repeat(x, repeats, axis=axis) return torch.empty( size=outputs.shape, dtype=to_torch_dtype(outputs.dtype), device=get_device(), ) repeats = convert_to_tensor(repeats, dtype=int) return torch.repeat_interleave(x, repeats, dim=axis) def reshape(x, newshape): if not isinstance(newshape, (list, tuple)): newshape = (newshape,) x = convert_to_tensor(x) return torch.reshape(x, newshape) def roll(x, shift, axis=None): x = convert_to_tensor(x) return torch.roll(x, shift, dims=axis) def sign(x): x = convert_to_tensor(x) return torch.sign(x) def sin(x): x = convert_to_tensor(x) return torch.sin(x) def sinh(x): x = convert_to_tensor(x) return torch.sinh(x) def size(x): x_shape = convert_to_tensor(tuple(x.shape)) return torch.prod(x_shape) def sort(x, axis=-1): x = convert_to_tensor(x) # TODO: torch.sort doesn't support bool with cuda if get_device() == "cuda" and standardize_dtype(x.dtype) == "bool": x = cast(x, "uint8") return cast(torch.sort(x, dim=axis).values, "bool") return torch.sort(x, dim=axis).values def split(x, indices_or_sections, axis=0): x = convert_to_tensor(x) dim = x.shape[axis] if not isinstance(indices_or_sections, int): indices_or_sections = convert_to_tensor(indices_or_sections) start_size = indices_or_sections[0:1] end_size = dim - indices_or_sections[-1:] chunk_sizes = torch.concat( [start_size, torch.diff(indices_or_sections), end_size], dim=0 ) # torch.split doesn't support tensor input for `split_size_or_sections` chunk_sizes = chunk_sizes.tolist() else: if dim % indices_or_sections != 0: raise ValueError( f"Received indices_or_sections={indices_or_sections} " f"(interpreted as a number of sections) and axis={axis}, " f"but input dimension x.shape[{axis}]={x.shape[axis]} " f"is not divisible by {indices_or_sections}. " f"Full input shape: x.shape={x.shape}" ) chunk_sizes = dim // indices_or_sections out = torch.split( tensor=x, split_size_or_sections=chunk_sizes, dim=axis, ) if dim == 0 and isinstance(indices_or_sections, int): out = tuple(out[0].clone() for _ in range(indices_or_sections)) return out def stack(x, axis=0): x = [convert_to_tensor(elem) for elem in x] return torch.stack(x, dim=axis) def std(x, axis=None, keepdims=False): x = convert_to_tensor(x) ori_dtype = standardize_dtype(x.dtype) if "int" in ori_dtype or ori_dtype == "bool": x = cast(x, "float32") # Remove Bessel correction to align with numpy return torch.std(x, dim=axis, keepdim=keepdims, unbiased=False) def swapaxes(x, axis1, axis2): x = convert_to_tensor(x) return torch.swapaxes(x, axis0=axis1, axis1=axis2) def take(x, indices, axis=None): x = convert_to_tensor(x) indices = convert_to_tensor(indices).long() if x.ndim == 2 and axis == 0: # This case is equivalent to embedding lookup. return torch.nn.functional.embedding(indices, x) if axis is None: x = torch.reshape(x, (-1,)) axis = 0 if axis is not None: # make sure axis is non-negative axis = len(x.shape) + axis if axis < 0 else axis shape = x.shape[:axis] + indices.shape + x.shape[axis + 1 :] # ravel the `indices` since `index_select` expects `indices` # to be a vector (1-D tensor). indices = indices.ravel() out = torch.index_select(x, dim=axis, index=indices).squeeze(axis) return out.reshape(shape) return torch.take(x, index=indices) def take_along_axis(x, indices, axis=None): x = convert_to_tensor(x) indices = convert_to_tensor(indices).long() return torch.take_along_dim(x, indices, dim=axis) def tan(x): x = convert_to_tensor(x) return torch.tan(x) def tanh(x): x = convert_to_tensor(x) return torch.tanh(x) def tensordot(x1, x2, axes=2): x1 = convert_to_tensor(x1) x2 = convert_to_tensor(x2) result_dtype = dtypes.result_type(x1.dtype, x2.dtype) # TODO: torch.tensordot only supports float types compute_dtype = dtypes.result_type(result_dtype, float) # TODO: torch.tensordot doesn't support float16 with cpu if get_device() == "cpu" and compute_dtype == "float16": compute_dtype = "float32" x1 = cast(x1, compute_dtype) x2 = cast(x2, compute_dtype) # torch only handles dims=((0,), (1,)), numpy accepts axes=(0, 1). if isinstance(axes, (list, tuple)): first, second = axes if not isinstance(first, (list, tuple)): first = (first,) if not isinstance(second, (list, tuple)): second = (second,) axes = (first, second) return cast(torch.tensordot(x1, x2, dims=axes), result_dtype) def round(x, decimals=0): x = convert_to_tensor(x) ori_dtype = standardize_dtype(x.dtype) # TODO: torch.round doesn't support int8, int16, int32, int64, uint8 if "int" in ori_dtype: x = cast(x, config.floatx()) return cast(torch.round(x, decimals=decimals), ori_dtype) return torch.round(x, decimals=decimals) def tile(x, repeats): if is_tensor(repeats): repeats = tuple(repeats.int().numpy()) x = convert_to_tensor(x) return torch.tile(x, dims=repeats) def trace(x, offset=None, axis1=None, axis2=None): x = convert_to_tensor(x) dtype = standardize_dtype(x.dtype) if dtype != "int64": dtype = dtypes.result_type(dtype, "int32") return torch.sum( torch.diagonal(x, offset, axis1, axis2), dim=-1, dtype=to_torch_dtype(dtype), ) def tri(N, M=None, k=0, dtype=None): dtype = to_torch_dtype(dtype or config.floatx()) M = M or N x = torch.ones((N, M), dtype=dtype, device=get_device()) return torch.tril(x, diagonal=k) def tril(x, k=0): x = convert_to_tensor(x) return torch.tril(x, diagonal=k) def triu(x, k=0): x = convert_to_tensor(x) return torch.triu(x, diagonal=k) def vdot(x1, x2): x1 = convert_to_tensor(x1) x2 = convert_to_tensor(x2) result_dtype = dtypes.result_type(x1.dtype, x2.dtype) # TODO: torch.vdot only supports float types compute_dtype = dtypes.result_type(result_dtype, float) # TODO: torch.vdot doesn't support float16 with cpu if get_device() == "cpu" and compute_dtype == "float16": compute_dtype = "float32" x1 = cast(x1, compute_dtype) x2 = cast(x2, compute_dtype) return cast(torch.vdot(x1, x2), result_dtype) def vstack(xs): xs = [convert_to_tensor(x) for x in xs] return torch.vstack(xs) def where(condition, x1, x2): condition = convert_to_tensor(condition, dtype=bool) if x1 is not None and x2 is not None: x1 = convert_to_tensor(x1) x2 = convert_to_tensor(x2) return torch.where(condition, x1, x2) else: return torch.where(condition) def divide(x1, x2): if not isinstance(x1, (int, float)): x1 = convert_to_tensor(x1) if not isinstance(x2, (int, float)): x2 = convert_to_tensor(x2) return torch.divide(x1, x2) def divide_no_nan(x1, x2): if not isinstance(x1, (int, float)): x1 = convert_to_tensor(x1) if not isinstance(x2, (int, float)): x2 = convert_to_tensor(x2) return torch.where(x2 == 0, 0, torch.divide(x1, x2)) def true_divide(x1, x2): return divide(x1, x2) def power(x1, x2): x1, x2 = convert_to_tensor(x1), convert_to_tensor(x2) return torch.pow(x1, x2) def negative(x): x = convert_to_tensor(x) return torch.negative(x) def square(x): x = convert_to_tensor(x) if standardize_dtype(x.dtype) == "bool": x = cast(x, "int32") return torch.square(x) def sqrt(x): x = convert_to_tensor(x) if standardize_dtype(x.dtype) == "int64": x = cast(x, config.floatx()) return torch.sqrt(x) def squeeze(x, axis=None): x = convert_to_tensor(x) if axis is not None: return torch.squeeze(x, dim=axis) return torch.squeeze(x) def transpose(x, axes=None): x = convert_to_tensor(x) if axes is not None: return torch.permute(x, dims=axes) return x.T def var(x, axis=None, keepdims=False): x = convert_to_tensor(x) compute_dtype = dtypes.result_type(x.dtype, "float32") result_dtype = dtypes.result_type(x.dtype, float) if axis == [] or axis == (): # Torch handles the empty axis case differently from numpy. return zeros_like(x, result_dtype) # Bessel correction removed for numpy compatibility x = cast(x, compute_dtype) return cast( torch.var(x, dim=axis, keepdim=keepdims, correction=0), result_dtype ) def sum(x, axis=None, keepdims=False): if isinstance(x, (list, tuple)): x = stack(x) x = convert_to_tensor(x) if axis == () or axis == []: # Torch handles the empty axis case differently from numpy. return x dtype = standardize_dtype(x.dtype) # follow jax's rule # TODO: torch doesn't support uint32 if dtype in ("bool", "uint8", "int8", "int16"): dtype = "int32" if axis is not None: return cast(torch.sum(x, axis=axis, keepdim=keepdims), dtype) return cast(torch.sum(x), dtype) def eye(N, M=None, k=None, dtype=None): dtype = to_torch_dtype(dtype or config.floatx()) M = N if M is None else M k = 0 if k is None else k if k == 0: # TODO: torch.eye doesn't support bfloat16 with cpu if get_device() == "cpu" and dtype == torch.bfloat16: return cast( torch.eye( N, M, dtype=to_torch_dtype("float32"), device=get_device() ), dtype, ) return torch.eye(N, M, dtype=dtype, device=get_device()) diag_length = builtins.max(N, M) diag = torch.ones(diag_length, dtype=dtype, device=get_device()) return torch.diag(diag, diagonal=k)[:N, :M] def floor_divide(x1, x2): if not isinstance(x1, (int, float)): x1 = convert_to_tensor(x1) if not isinstance(x2, (int, float)): x2 = convert_to_tensor(x2) dtype = dtypes.result_type( getattr(x1, "dtype", type(x1)), getattr(x2, "dtype", type(x2)), ) return cast(torch.floor_divide(x1, x2), dtype) def logical_xor(x1, x2): x1, x2 = convert_to_tensor(x1), convert_to_tensor(x2) return torch.logical_xor(x1, x2)
keras/keras/backend/torch/numpy.py/0
{ "file_path": "keras/keras/backend/torch/numpy.py", "repo_id": "keras", "token_count": 20264 }
183
from keras.callbacks.backup_and_restore_callback import BackupAndRestore from keras.callbacks.callback import Callback from keras.callbacks.callback_list import CallbackList from keras.callbacks.csv_logger import CSVLogger from keras.callbacks.early_stopping import EarlyStopping from keras.callbacks.history import History from keras.callbacks.lambda_callback import LambdaCallback from keras.callbacks.learning_rate_scheduler import LearningRateScheduler from keras.callbacks.model_checkpoint import ModelCheckpoint from keras.callbacks.progbar_logger import ProgbarLogger from keras.callbacks.reduce_lr_on_plateau import ReduceLROnPlateau from keras.callbacks.remote_monitor import RemoteMonitor from keras.callbacks.swap_ema_weights import SwapEMAWeights from keras.callbacks.tensorboard import TensorBoard from keras.callbacks.terminate_on_nan import TerminateOnNaN
keras/keras/callbacks/__init__.py/0
{ "file_path": "keras/keras/callbacks/__init__.py", "repo_id": "keras", "token_count": 256 }
184
import os import warnings import pytest from keras import callbacks from keras import layers from keras import metrics from keras import models from keras import saving from keras import testing from keras.models import Sequential from keras.testing import test_utils from keras.utils import numerical_utils try: import h5py except ImportError: h5py = None TRAIN_SAMPLES = 30 TEST_SAMPLES = 30 NUM_CLASSES = 3 INPUT_DIM = 3 NUM_HIDDEN = 5 BATCH_SIZE = 5 class ModelCheckpointTest(testing.TestCase): @pytest.mark.skipif( h5py is None, reason="`h5py` is a required dependency for `ModelCheckpoint` tests.", ) @pytest.mark.requires_trainable_backend def test_model_checkpoint_options(self): def get_model(): model = Sequential( [ layers.Dense(NUM_HIDDEN, activation="relu"), layers.Dense(NUM_CLASSES, activation="softmax"), ] ) model.compile( loss="categorical_crossentropy", optimizer="sgd", metrics=[metrics.Accuracy("acc")], ) return model model = get_model() temp_dir = self.get_temp_dir() # Save model to a subdir inside the temp_dir so we can test # automatic directory creation. filepath = os.path.join(temp_dir, "subdir", "checkpoint.keras") (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( random_seed=42, train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES, ) y_test = numerical_utils.to_categorical(y_test, num_classes=NUM_CLASSES) y_train = numerical_utils.to_categorical( y_train, num_classes=NUM_CLASSES ) # Case 1 monitor = "val_loss" save_best_only = False mode = "auto" cbks = [ callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode, ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0, ) self.assertTrue(os.path.exists(filepath)) os.remove(filepath) # Case 2 mode = "min" cbks = [ callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode, ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0, ) self.assertTrue(os.path.exists(filepath)) os.remove(filepath) # Case 3 mode = "max" monitor = "val_acc" cbks = [ callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode, ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0, ) self.assertTrue(os.path.exists(filepath)) os.remove(filepath) # Case 4 save_best_only = True cbks = [ callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode, ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0, ) self.assertTrue(os.path.exists(filepath)) os.remove(filepath) # Case 5: metric not available. cbks = [ callbacks.ModelCheckpoint( filepath, monitor="unknown", save_best_only=True ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0, ) # File won't be written. self.assertFalse(os.path.exists(filepath)) # Case 6 with warnings.catch_warnings(record=True) as warning_logs: warnings.simplefilter("always") callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode="unknown", ) self.assertIn( "ModelCheckpoint mode 'unknown' is unknown", str(warning_logs[-1].message), ) # Case 8a: `ModelCheckpoint` with an integer `save_freq` temp_dir = self.get_temp_dir() filepath = os.path.join(temp_dir, "checkpoint.epoch{epoch:02d}.keras") save_best_only = False cbks = [ callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode, save_freq=15, ) ] self.assertFalse(os.path.exists(filepath.format(epoch=3))) model.fit( x_train, y_train, batch_size=6, # 5 batches / epoch, so should backup every 3 epochs validation_data=(x_test, y_test), callbacks=cbks, epochs=10, verbose=0, ) self.assertFalse(os.path.exists(filepath.format(epoch=1))) self.assertFalse(os.path.exists(filepath.format(epoch=2))) self.assertTrue(os.path.exists(filepath.format(epoch=3))) self.assertFalse(os.path.exists(filepath.format(epoch=4))) self.assertFalse(os.path.exists(filepath.format(epoch=5))) self.assertTrue(os.path.exists(filepath.format(epoch=6))) self.assertFalse(os.path.exists(filepath.format(epoch=7))) self.assertFalse(os.path.exists(filepath.format(epoch=8))) self.assertTrue(os.path.exists(filepath.format(epoch=9))) os.remove(filepath.format(epoch=3)) os.remove(filepath.format(epoch=6)) os.remove(filepath.format(epoch=9)) # Case 8b: `ModelCheckpoint` with int `save_freq` & `save_weights_only` temp_dir = self.get_temp_dir() filepath = os.path.join( temp_dir, "checkpoint.epoch{epoch:02d}.weights.h5" ) cbks = [ callbacks.ModelCheckpoint( filepath, monitor=monitor, save_freq=15, save_weights_only=True ) ] self.assertFalse(os.path.exists(filepath.format(epoch=3))) model.fit( x_train, y_train, batch_size=6, validation_data=(x_test, y_test), callbacks=cbks, epochs=10, verbose=0, ) self.assertFalse(os.path.exists(filepath.format(epoch=1))) self.assertFalse(os.path.exists(filepath.format(epoch=2))) self.assertTrue(os.path.exists(filepath.format(epoch=3))) self.assertFalse(os.path.exists(filepath.format(epoch=4))) self.assertFalse(os.path.exists(filepath.format(epoch=5))) self.assertTrue(os.path.exists(filepath.format(epoch=6))) self.assertFalse(os.path.exists(filepath.format(epoch=7))) self.assertFalse(os.path.exists(filepath.format(epoch=8))) self.assertTrue(os.path.exists(filepath.format(epoch=9))) # Case 9: `ModelCheckpoint` with valid and invalid save_freq argument. with self.assertRaisesRegex(ValueError, "Unrecognized save_freq"): callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, save_weights_only=True, mode=mode, save_freq="invalid_save_freq", ) # The following should not raise ValueError. callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, save_weights_only=True, mode=mode, save_freq="epoch", ) callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, save_weights_only=True, mode=mode, save_freq=3, ) # Case 10a: `ModelCheckpoint` save with batch in filename. temp_dir = self.get_temp_dir() filepath = os.path.join( temp_dir, "checkpoint.epoch{epoch:02d}batch{batch:02d}.keras" ) cbks = [ callbacks.ModelCheckpoint(filepath, monitor=monitor, save_freq=1) ] model.fit( x_train, y_train, batch_size=15, validation_data=(x_test, y_test), callbacks=cbks, epochs=5, verbose=1, ) self.assertTrue(os.path.exists(filepath.format(epoch=1, batch=1))) self.assertTrue(os.path.exists(filepath.format(epoch=1, batch=2))) self.assertTrue(os.path.exists(filepath.format(epoch=2, batch=1))) self.assertTrue(os.path.exists(filepath.format(epoch=2, batch=2))) self.assertTrue(os.path.exists(filepath.format(epoch=3, batch=1))) self.assertTrue(os.path.exists(filepath.format(epoch=3, batch=2))) self.assertTrue(os.path.exists(filepath.format(epoch=4, batch=1))) self.assertTrue(os.path.exists(filepath.format(epoch=4, batch=2))) self.assertTrue(os.path.exists(filepath.format(epoch=5, batch=1))) self.assertTrue(os.path.exists(filepath.format(epoch=5, batch=2))) # Case 10b: `ModelCheckpoint` save weights with batch in filename. temp_dir = self.get_temp_dir() filepath = os.path.join( temp_dir, "checkpoint.epoch{epoch:02d}batch{batch:02d}.weights.h5" ) cbks = [ callbacks.ModelCheckpoint( filepath, monitor=monitor, save_freq=1, save_weights_only=True ) ] model.fit( x_train, y_train, batch_size=15, validation_data=(x_test, y_test), callbacks=cbks, epochs=5, verbose=1, ) self.assertTrue(os.path.exists(filepath.format(epoch=1, batch=1))) self.assertTrue(os.path.exists(filepath.format(epoch=1, batch=2))) self.assertTrue(os.path.exists(filepath.format(epoch=2, batch=1))) self.assertTrue(os.path.exists(filepath.format(epoch=2, batch=2))) self.assertTrue(os.path.exists(filepath.format(epoch=3, batch=1))) self.assertTrue(os.path.exists(filepath.format(epoch=3, batch=2))) self.assertTrue(os.path.exists(filepath.format(epoch=4, batch=1))) self.assertTrue(os.path.exists(filepath.format(epoch=4, batch=2))) self.assertTrue(os.path.exists(filepath.format(epoch=5, batch=1))) self.assertTrue(os.path.exists(filepath.format(epoch=5, batch=2))) # Case 11: ModelCheckpoint saves model with initial_value_threshold # param mode = "max" monitor = "val_acc" initial_value_threshold = -0.01 save_best_only = True filepath = os.path.join(temp_dir, "checkpoint.keras") cbks = [ callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, initial_value_threshold=initial_value_threshold, mode=mode, ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0, ) self.assertTrue(os.path.exists(filepath)) os.remove(filepath) # Case 12: ModelCheckpoint saves model with initial_value_threshold # param mode = "auto" monitor = "val_loss" initial_value_threshold = None save_best_only = True cbks = [ callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, initial_value_threshold=initial_value_threshold, mode=mode, ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0, ) self.assertTrue(os.path.exists(filepath)) os.remove(filepath) # Case 13: ModelCheckpoint doesnt save model if loss was minimum earlier mode = "min" monitor = "val_loss" initial_value_threshold = 0 save_best_only = True cbks = [ callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, initial_value_threshold=initial_value_threshold, mode=mode, ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0, ) self.assertFalse(os.path.exists(filepath)) # Case 14: ModelCheckpoint doesnt save model if loss was min earlier in # auto mode mode = "auto" monitor = "val_loss" initial_value_threshold = 0 save_best_only = True cbks = [ callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, initial_value_threshold=initial_value_threshold, mode=mode, ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0, ) self.assertFalse(os.path.exists(filepath)) @pytest.mark.skipif( h5py is None, reason="`h5py` is a required dependency for `ModelCheckpoint` tests.", ) @pytest.mark.requires_trainable_backend def test_model_checkpoint_loading(self): def get_model(): inputs = layers.Input(shape=(INPUT_DIM,), batch_size=5) x = layers.Dense(NUM_HIDDEN, activation="relu")(inputs) outputs = layers.Dense(NUM_CLASSES, activation="softmax")(x) functional_model = models.Model(inputs, outputs) functional_model.compile( loss="categorical_crossentropy", optimizer="sgd", metrics=[metrics.Accuracy("acc")], ) return functional_model (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( random_seed=42, train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES, ) y_test = numerical_utils.to_categorical(y_test, num_classes=NUM_CLASSES) y_train = numerical_utils.to_categorical( y_train, num_classes=NUM_CLASSES ) # Model Checkpoint load model (default) model = get_model() temp_dir = self.get_temp_dir() filepath = os.path.join(temp_dir, "checkpoint.model.keras") mode = "auto" monitor = "val_loss" save_best_only = True cbks = [ callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode, ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0, ) ref_weights = model.get_weights() self.assertTrue(os.path.exists(filepath)) new_model = saving.load_model(filepath) new_weights = new_model.get_weights() self.assertEqual(len(ref_weights), len(new_weights)) for ref_w, w in zip(ref_weights, new_weights): self.assertAllClose(ref_w, w) # Model Checkpoint load model weights model = get_model() temp_dir = self.get_temp_dir() filepath = os.path.join(temp_dir, "checkpoint.weights.h5") mode = "auto" monitor = "val_loss" save_best_only = True cbks = [ callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, save_weights_only=True, mode=mode, ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0, ) ref_weights = model.get_weights() self.assertTrue(os.path.exists(filepath)) new_model = get_model() new_model.load_weights(filepath) new_weights = new_model.get_weights() self.assertEqual(len(ref_weights), len(new_weights)) for ref_w, w in zip(ref_weights, new_weights): self.assertAllClose(ref_w, w)
keras/keras/callbacks/model_checkpoint_test.py/0
{ "file_path": "keras/keras/callbacks/model_checkpoint_test.py", "repo_id": "keras", "token_count": 9759 }
185
import numpy as np from keras.api_export import keras_export from keras.utils.file_utils import get_file @keras_export("keras.datasets.boston_housing.load_data") def load_data(path="boston_housing.npz", test_split=0.2, seed=113): """Loads the Boston Housing dataset. This is a dataset taken from the StatLib library which is maintained at Carnegie Mellon University. **WARNING:** This dataset has an ethical problem: the authors of this dataset included a variable, "B", that may appear to assume that racial self-segregation influences house prices. As such, we strongly discourage the use of this dataset, unless in the context of illustrating ethical issues in data science and machine learning. Samples contain 13 attributes of houses at different locations around the Boston suburbs in the late 1970s. Targets are the median values of the houses at a location (in k$). The attributes themselves are defined in the [StatLib website](http://lib.stat.cmu.edu/datasets/boston). Args: path: path where to cache the dataset locally (relative to `~/.keras/datasets`). test_split: fraction of the data to reserve as test set. seed: Random seed for shuffling the data before computing the test split. Returns: Tuple of NumPy arrays: `(x_train, y_train), (x_test, y_test)`. **x_train, x_test**: NumPy arrays with shape `(num_samples, 13)` containing either the training samples (for x_train), or test samples (for y_train). **y_train, y_test**: NumPy arrays of shape `(num_samples,)` containing the target scalars. The targets are float scalars typically between 10 and 50 that represent the home prices in k$. """ assert 0 <= test_split < 1 origin_folder = ( "https://storage.googleapis.com/tensorflow/tf-keras-datasets/" ) path = get_file( path, origin=origin_folder + "boston_housing.npz", file_hash=( # noqa: E501 "f553886a1f8d56431e820c5b82552d9d95cfcb96d1e678153f8839538947dff5" ), ) with np.load(path, allow_pickle=True) as f: x = f["x"] y = f["y"] rng = np.random.RandomState(seed) indices = np.arange(len(x)) rng.shuffle(indices) x = x[indices] y = y[indices] x_train = np.array(x[: int(len(x) * (1 - test_split))]) y_train = np.array(y[: int(len(x) * (1 - test_split))]) x_test = np.array(x[int(len(x) * (1 - test_split)) :]) y_test = np.array(y[int(len(x) * (1 - test_split)) :]) return (x_train, y_train), (x_test, y_test)
keras/keras/datasets/boston_housing.py/0
{ "file_path": "keras/keras/datasets/boston_housing.py", "repo_id": "keras", "token_count": 1027 }
186
"""Library for exporting inference-only Keras models/layers.""" from absl import logging from keras import backend from keras.api_export import keras_export from keras.layers import Layer from keras.models import Functional from keras.models import Sequential from keras.utils import io_utils from keras.utils.module_utils import tensorflow as tf @keras_export("keras.export.ExportArchive") class ExportArchive: """ExportArchive is used to write SavedModel artifacts (e.g. for inference). If you have a Keras model or layer that you want to export as SavedModel for serving (e.g. via TensorFlow-Serving), you can use `ExportArchive` to configure the different serving endpoints you need to make available, as well as their signatures. Simply instantiate an `ExportArchive`, use `track()` to register the layer(s) or model(s) to be used, then use the `add_endpoint()` method to register a new serving endpoint. When done, use the `write_out()` method to save the artifact. The resulting artifact is a SavedModel and can be reloaded via `tf.saved_model.load`. Examples: Here's how to export a model for inference. ```python export_archive = ExportArchive() export_archive.track(model) export_archive.add_endpoint( name="serve", fn=model.call, input_signature=[tf.TensorSpec(shape=(None, 3), dtype=tf.float32)], ) export_archive.write_out("path/to/location") # Elsewhere, we can reload the artifact and serve it. # The endpoint we added is available as a method: serving_model = tf.saved_model.load("path/to/location") outputs = serving_model.serve(inputs) ``` Here's how to export a model with one endpoint for inference and one endpoint for a training-mode forward pass (e.g. with dropout on). ```python export_archive = ExportArchive() export_archive.track(model) export_archive.add_endpoint( name="call_inference", fn=lambda x: model.call(x, training=False), input_signature=[tf.TensorSpec(shape=(None, 3), dtype=tf.float32)], ) export_archive.add_endpoint( name="call_training", fn=lambda x: model.call(x, training=True), input_signature=[tf.TensorSpec(shape=(None, 3), dtype=tf.float32)], ) export_archive.write_out("path/to/location") ``` **Note on resource tracking:** `ExportArchive` is able to automatically track all `tf.Variables` used by its endpoints, so most of the time calling `.track(model)` is not strictly required. However, if your model uses lookup layers such as `IntegerLookup`, `StringLookup`, or `TextVectorization`, it will need to be tracked explicitly via `.track(model)`. Explicit tracking is also required if you need to be able to access the properties `variables`, `trainable_variables`, or `non_trainable_variables` on the revived archive. """ def __init__(self): self._endpoint_names = [] self._endpoint_signatures = {} self.tensorflow_version = tf.__version__ self._tf_trackable = tf.__internal__.tracking.AutoTrackable() self._tf_trackable.variables = [] self._tf_trackable.trainable_variables = [] self._tf_trackable.non_trainable_variables = [] if backend.backend() not in ("tensorflow", "jax"): raise NotImplementedError( "The export API is only compatible with JAX and TF backends." ) @property def variables(self): return self._tf_trackable.variables @property def trainable_variables(self): return self._tf_trackable.trainable_variables @property def non_trainable_variables(self): return self._tf_trackable.non_trainable_variables def track(self, resource): """Track the variables (and other assets) of a layer or model.""" if backend.backend() == "tensorflow" and not isinstance( resource, tf.__internal__.tracking.Trackable ): raise ValueError( "Invalid resource type. Expected an instance of a " "TensorFlow `Trackable` (such as a Keras `Layer` or `Model`). " f"Received instead an object of type '{type(resource)}'. " f"Object received: {resource}" ) if backend.backend() == "jax" and not isinstance( resource, backend.jax.layer.JaxLayer ): raise ValueError( "Invalid resource type. Expected an instance of a " "JAX-based Keras `Layer` or `Model`. " f"Received instead an object of type '{type(resource)}'. " f"Object received: {resource}" ) if isinstance(resource, Layer): if not resource.built: raise ValueError( "The layer provided has not yet been built. " "It must be built before export." ) # Layers in `_tracked` are not part of the trackables that get saved, # because we're creating the attribute in a # no_automatic_dependency_tracking scope. if not hasattr(self, "_tracked"): self._tracked = [] self._tracked.append(resource) if isinstance(resource, Layer): # Variables in the lists below are actually part of the trackables # that get saved, because the lists are created in __init__. if backend.backend() == "jax": self._tf_trackable.variables += tf.nest.flatten( tf.nest.map_structure(tf.Variable, resource.variables) ) self._tf_trackable.trainable_variables += tf.nest.flatten( tf.nest.map_structure( tf.Variable, resource.trainable_variables ) ) self._tf_trackable.non_trainable_variables += tf.nest.flatten( tf.nest.map_structure( tf.Variable, resource.non_trainable_variables ) ) else: self._tf_trackable.variables += resource.variables self._tf_trackable.trainable_variables += ( resource.trainable_variables ) self._tf_trackable.non_trainable_variables += ( resource.non_trainable_variables ) def add_endpoint(self, name, fn, input_signature=None): """Register a new serving endpoint. Arguments: name: Str, name of the endpoint. fn: A function. It should only leverage resources (e.g. `tf.Variable` objects or `tf.lookup.StaticHashTable` objects) that are available on the models/layers tracked by the `ExportArchive` (you can call `.track(model)` to track a new model). The shape and dtype of the inputs to the function must be known. For that purpose, you can either 1) make sure that `fn` is a `tf.function` that has been called at least once, or 2) provide an `input_signature` argument that specifies the shape and dtype of the inputs (see below). input_signature: Used to specify the shape and dtype of the inputs to `fn`. List of `tf.TensorSpec` objects (one per positional input argument of `fn`). Nested arguments are allowed (see below for an example showing a Functional model with 2 input arguments). Example: Adding an endpoint using the `input_signature` argument when the model has a single input argument: ```python export_archive = ExportArchive() export_archive.track(model) export_archive.add_endpoint( name="serve", fn=model.call, input_signature=[tf.TensorSpec(shape=(None, 3), dtype=tf.float32)], ) ``` Adding an endpoint using the `input_signature` argument when the model has two positional input arguments: ```python export_archive = ExportArchive() export_archive.track(model) export_archive.add_endpoint( name="serve", fn=model.call, input_signature=[ tf.TensorSpec(shape=(None, 3), dtype=tf.float32), tf.TensorSpec(shape=(None, 4), dtype=tf.float32), ], ) ``` Adding an endpoint using the `input_signature` argument when the model has one input argument that is a list of 2 tensors (e.g. a Functional model with 2 inputs): ```python model = keras.Model(inputs=[x1, x2], outputs=outputs) export_archive = ExportArchive() export_archive.track(model) export_archive.add_endpoint( name="serve", fn=model.call, input_signature=[ [ tf.TensorSpec(shape=(None, 3), dtype=tf.float32), tf.TensorSpec(shape=(None, 4), dtype=tf.float32), ], ], ) ``` This also works with dictionary inputs: ```python model = keras.Model(inputs={"x1": x1, "x2": x2}, outputs=outputs) export_archive = ExportArchive() export_archive.track(model) export_archive.add_endpoint( name="serve", fn=model.call, input_signature=[ { "x1": tf.TensorSpec(shape=(None, 3), dtype=tf.float32), "x2": tf.TensorSpec(shape=(None, 4), dtype=tf.float32), }, ], ) ``` Adding an endpoint that is a `tf.function`: ```python @tf.function() def serving_fn(x): return model(x) # The function must be traced, i.e. it must be called at least once. serving_fn(tf.random.normal(shape=(2, 3))) export_archive = ExportArchive() export_archive.track(model) export_archive.add_endpoint(name="serve", fn=serving_fn) ``` """ if name in self._endpoint_names: raise ValueError(f"Endpoint name '{name}' is already taken.") if input_signature: if backend.backend() == "tensorflow": decorated_fn = tf.function(fn, input_signature=input_signature) else: # JAX backend fn = self._convert_jax2tf_function(fn, input_signature) decorated_fn = tf.function( fn, input_signature=input_signature, autograph=False ) self._endpoint_signatures[name] = input_signature else: if isinstance(fn, tf.types.experimental.GenericFunction): if not fn._list_all_concrete_functions(): raise ValueError( f"The provided tf.function '{fn}' " "has never been called. " "To specify the expected shape and dtype " "of the function's arguments, " "you must either provide a function that " "has been called at least once, or alternatively pass " "an `input_signature` argument in `add_endpoint()`." ) decorated_fn = fn else: raise ValueError( "If the `fn` argument provided is not a `tf.function`, " "you must provide an `input_signature` argument to " "specify the shape and dtype of the function arguments. " "Example:\n\n" "export_archive.add_endpoint(\n" " name='call',\n" " fn=model.call,\n" " input_signature=[\n" " tf.TensorSpec(\n" " shape=(None, 224, 224, 3),\n" " dtype=tf.float32,\n" " )\n" " ],\n" ")" ) setattr(self._tf_trackable, name, decorated_fn) self._endpoint_names.append(name) def add_variable_collection(self, name, variables): """Register a set of variables to be retrieved after reloading. Arguments: name: The string name for the collection. variables: A tuple/list/set of `tf.Variable` instances. Example: ```python export_archive = ExportArchive() export_archive.track(model) # Register an endpoint export_archive.add_endpoint( name="serve", fn=model.call, input_signature=[tf.TensorSpec(shape=(None, 3), dtype=tf.float32)], ) # Save a variable collection export_archive.add_variable_collection( name="optimizer_variables", variables=model.optimizer.variables) export_archive.write_out("path/to/location") # Reload the object revived_object = tf.saved_model.load("path/to/location") # Retrieve the variables optimizer_variables = revived_object.optimizer_variables ``` """ if not isinstance(variables, (list, tuple, set)): raise ValueError( "Expected `variables` to be a list/tuple/set. " f"Received instead object of type '{type(variables)}'." ) # Ensure that all variables added are either tf.Variables # or Variables created by Keras 3 with the TF or JAX backends. if not all( isinstance(v, (tf.Variable, backend.Variable)) for v in variables ): raise ValueError( "Expected all elements in `variables` to be " "`tf.Variable` instances. Found instead the following types: " f"{list(set(type(v) for v in variables))}" ) if backend.backend() == "jax": variables = tf.nest.flatten( tf.nest.map_structure(tf.Variable, variables) ) setattr(self._tf_trackable, name, list(variables)) def write_out(self, filepath, options=None): """Write the corresponding SavedModel to disk. Arguments: filepath: `str` or `pathlib.Path` object. Path where to save the artifact. options: `tf.saved_model.SaveOptions` object that specifies SavedModel saving options. **Note on TF-Serving**: all endpoints registered via `add_endpoint()` are made visible for TF-Serving in the SavedModel artifact. In addition, the first endpoint registered is made visible under the alias `"serving_default"` (unless an endpoint with the name `"serving_default"` was already registered manually), since TF-Serving requires this endpoint to be set. """ if not self._endpoint_names: raise ValueError( "No endpoints have been set yet. Call add_endpoint()." ) if backend.backend() == "tensorflow": self._filter_and_track_resources() signatures = {} for name in self._endpoint_names: signatures[name] = self._get_concrete_fn(name) # Add "serving_default" signature key for TFServing if "serving_default" not in self._endpoint_names: signatures["serving_default"] = self._get_concrete_fn( self._endpoint_names[0] ) tf.saved_model.save( self._tf_trackable, filepath, options=options, signatures=signatures, ) # Print out available endpoints endpoints = "\n\n".join( _print_signature(getattr(self._tf_trackable, name), name) for name in self._endpoint_names ) io_utils.print_msg( f"Saved artifact at '{filepath}'. " "The following endpoints are available:\n\n" f"{endpoints}" ) def _get_concrete_fn(self, endpoint): """Workaround for some SavedModel quirks.""" if endpoint in self._endpoint_signatures: return getattr(self._tf_trackable, endpoint) else: traces = getattr(self._tf_trackable, endpoint)._trackable_children( "saved_model" ) return list(traces.values())[0] def _get_variables_used_by_endpoints(self): fns = [self._get_concrete_fn(name) for name in self._endpoint_names] return _list_variables_used_by_fns(fns) def _filter_and_track_resources(self): """Track resources used by endpoints / referenced in `track()` calls.""" # Start by extracting variables from endpoints. fns = [self._get_concrete_fn(name) for name in self._endpoint_names] tvs, ntvs = _list_variables_used_by_fns(fns) self._tf_trackable._all_variables = list(tvs + ntvs) # Next, track lookup tables. # Hopefully, one day this will be automated at the tf.function level. self._tf_trackable._misc_assets = [] from keras.layers import IntegerLookup from keras.layers import StringLookup from keras.layers import TextVectorization if hasattr(self, "_tracked"): for root in self._tracked: descendants = tf.train.TrackableView(root).descendants() for trackable in descendants: if isinstance( trackable, (IntegerLookup, StringLookup, TextVectorization), ): self._tf_trackable._misc_assets.append(trackable) def _convert_jax2tf_function(self, fn, input_signature): from jax.experimental import jax2tf native_serialization = self._check_device_compatible() shapes = [] for spec in input_signature: shapes.append(self._spec_to_poly_shape(spec)) return jax2tf.convert( fn, polymorphic_shapes=shapes, native_serialization=native_serialization, ) def _spec_to_poly_shape(self, spec): if isinstance(spec, (dict, list)): return tf.nest.map_structure(self._spec_to_poly_shape, spec) spec_shape = spec.shape spec_shape = str(spec_shape).replace("None", "b") return spec_shape def _check_device_compatible(self): from jax import default_backend as jax_device if ( jax_device() == "gpu" and len(tf.config.list_physical_devices("GPU")) == 0 ): logging.warning( "JAX backend is using GPU for export, but installed " "TF package cannot access GPU, so reloading the model with " "the TF runtime in the same environment will not work. " "To use JAX-native serialization for high-performance export " "and serving, please install `tensorflow-gpu` and ensure " "CUDA version compatiblity between your JAX and TF " "installations." ) return False else: return True def export_model(model, filepath): export_archive = ExportArchive() export_archive.track(model) if isinstance(model, (Functional, Sequential)): input_signature = tf.nest.map_structure(_make_tensor_spec, model.inputs) if isinstance(input_signature, list) and len(input_signature) > 1: input_signature = [input_signature] export_archive.add_endpoint("serve", model.__call__, input_signature) else: save_spec = _get_save_spec(model) if not save_spec or not model._called: raise ValueError( "The model provided has never called. " "It must be called at least once before export." ) input_signature = [save_spec] export_archive.add_endpoint("serve", model.__call__, input_signature) export_archive.write_out(filepath) def _get_save_spec(model): shapes_dict = getattr(model, "_build_shapes_dict", None) if not shapes_dict: return None if len(shapes_dict) == 1: return tf.TensorSpec( shape=list(shapes_dict.values())[0], dtype=model.input_dtype ) specs = {} for key, value in shapes_dict.items(): key = key.rstrip("_shape") specs[key] = tf.TensorSpec(shape=value, dtype=model.input_dtype) return specs @keras_export("keras.layers.TFSMLayer") class TFSMLayer(Layer): """Reload a Keras model/layer that was saved via SavedModel / ExportArchive. Arguments: filepath: `str` or `pathlib.Path` object. The path to the SavedModel. call_endpoint: Name of the endpoint to use as the `call()` method of the reloaded layer. If the SavedModel was created via `model.export()`, then the default endpoint name is `'serve'`. In other cases it may be named `'serving_default'`. Example: ```python model.export("path/to/artifact") reloaded_layer = TFSMLayer("path/to/artifact") outputs = reloaded_layer(inputs) ``` The reloaded object can be used like a regular Keras layer, and supports training/fine-tuning of its trainable weights. Note that the reloaded object retains none of the internal structure or custom methods of the original object -- it's a brand new layer created around the saved function. **Limitations:** * Only call endpoints with a single `inputs` tensor argument (which may optionally be a dict/tuple/list of tensors) are supported. For endpoints with multiple separate input tensor arguments, consider subclassing `TFSMLayer` and implementing a `call()` method with a custom signature. * If you need training-time behavior to differ from inference-time behavior (i.e. if you need the reloaded object to support a `training=True` argument in `__call__()`), make sure that the training-time call function is saved as a standalone endpoint in the artifact, and provide its name to the `TFSMLayer` via the `call_training_endpoint` argument. """ def __init__( self, filepath, call_endpoint="serve", call_training_endpoint=None, trainable=True, name=None, dtype=None, ): # Initialize an empty layer, then add_weight() etc. as needed. super().__init__(trainable=trainable, name=name, dtype=dtype) self._reloaded_obj = tf.saved_model.load(filepath) self.filepath = filepath self.call_endpoint = call_endpoint self.call_training_endpoint = call_training_endpoint # Resolve the call function. if hasattr(self._reloaded_obj, call_endpoint): # Case 1: it's set as an attribute. self.call_endpoint_fn = getattr(self._reloaded_obj, call_endpoint) elif call_endpoint in self._reloaded_obj.signatures: # Case 2: it's listed in the `signatures` field. self.call_endpoint_fn = self._reloaded_obj.signatures[call_endpoint] else: raise ValueError( f"The endpoint '{call_endpoint}' " "is neither an attribute of the reloaded SavedModel, " "nor an entry in the `signatures` field of " "the reloaded SavedModel. Select another endpoint via " "the `call_endpoint` argument. Available endpoints for " "this SavedModel: " f"{list(self._reloaded_obj.signatures.keys())}" ) # Resolving the training function. if call_training_endpoint: if hasattr(self._reloaded_obj, call_training_endpoint): self.call_training_endpoint_fn = getattr( self._reloaded_obj, call_training_endpoint ) elif call_training_endpoint in self._reloaded_obj.signatures: self.call_training_endpoint_fn = self._reloaded_obj.signatures[ call_training_endpoint ] else: raise ValueError( f"The endpoint '{call_training_endpoint}' " "is neither an attribute of the reloaded SavedModel, " "nor an entry in the `signatures` field of " "the reloaded SavedModel. Available endpoints for " "this SavedModel: " f"{list(self._reloaded_obj.signatures.keys())}" ) # Add trainable and non-trainable weights from the call_endpoint_fn. all_fns = [self.call_endpoint_fn] if call_training_endpoint: all_fns.append(self.call_training_endpoint_fn) tvs, ntvs = _list_variables_used_by_fns(all_fns) for v in tvs: self._add_existing_weight(v) for v in ntvs: self._add_existing_weight(v) self.built = True def _add_existing_weight(self, weight): """Tracks an existing weight.""" self._track_variable(weight) def call(self, inputs, training=False, **kwargs): if training: if self.call_training_endpoint: return self.call_training_endpoint_fn(inputs, **kwargs) return self.call_endpoint_fn(inputs, **kwargs) def get_config(self): base_config = super().get_config() config = { # Note: this is not intended to be portable. "filepath": self.filepath, "call_endpoint": self.call_endpoint, "call_training_endpoint": self.call_training_endpoint, } return {**base_config, **config} def _make_tensor_spec(x): return tf.TensorSpec(x.shape, dtype=x.dtype, name=x.name) def _print_signature(fn, name): concrete_fn = fn._list_all_concrete_functions()[0] pprinted_signature = concrete_fn.pretty_printed_signature(verbose=True) lines = pprinted_signature.split("\n") lines = [f"* Endpoint '{name}'"] + lines[1:] endpoint = "\n".join(lines) return endpoint def _list_variables_used_by_fns(fns): trainable_variables = [] non_trainable_variables = [] trainable_variables_ids = set() non_trainable_variables_ids = set() for fn in fns: if hasattr(fn, "concrete_functions"): concrete_functions = fn.concrete_functions elif hasattr(fn, "get_concrete_function"): concrete_functions = [fn.get_concrete_function()] else: concrete_functions = [fn] for concrete_fn in concrete_functions: for v in concrete_fn.trainable_variables: if id(v) not in trainable_variables_ids: trainable_variables.append(v) trainable_variables_ids.add(id(v)) for v in concrete_fn.variables: if ( id(v) not in trainable_variables_ids and id(v) not in non_trainable_variables_ids ): non_trainable_variables.append(v) non_trainable_variables_ids.add(id(v)) return trainable_variables, non_trainable_variables
keras/keras/export/export_lib.py/0
{ "file_path": "keras/keras/export/export_lib.py", "repo_id": "keras", "token_count": 12558 }
187
from keras import activations from keras import constraints from keras import initializers from keras import regularizers from keras.api_export import keras_export from keras.layers.input_spec import InputSpec from keras.layers.layer import Layer @keras_export("keras.layers.PReLU") class PReLU(Layer): """Parametric Rectified Linear Unit activation layer. Formula: ``` python f(x) = alpha * x for x < 0 f(x) = x for x >= 0 ``` where `alpha` is a learned array with the same shape as x. Args: alpha_initializer: Initializer function for the weights. alpha_regularizer: Regularizer for the weights. alpha_constraint: Constraint for the weights. shared_axes: The axes along which to share learnable parameters for the activation function. For example, if the incoming feature maps are from a 2D convolution with output shape `(batch, height, width, channels)`, and you wish to share parameters across space so that each filter only has one set of parameters, set `shared_axes=[1, 2]`. **kwargs: Base layer keyword arguments, such as `name` and `dtype`. """ def __init__( self, alpha_initializer="Zeros", alpha_regularizer=None, alpha_constraint=None, shared_axes=None, **kwargs ): super().__init__(**kwargs) self.supports_masking = True self.alpha_initializer = initializers.get(alpha_initializer) self.alpha_regularizer = regularizers.get(alpha_regularizer) self.alpha_constraint = constraints.get(alpha_constraint) if shared_axes is None: self.shared_axes = None elif not isinstance(shared_axes, (list, tuple)): self.shared_axes = [shared_axes] else: self.shared_axes = list(shared_axes) def build(self, input_shape): param_shape = list(input_shape[1:]) if self.shared_axes is not None: for i in self.shared_axes: param_shape[i - 1] = 1 self.alpha = self.add_weight( shape=param_shape, name="alpha", initializer=self.alpha_initializer, regularizer=self.alpha_regularizer, constraint=self.alpha_constraint, ) # Set input spec axes = {} if self.shared_axes: for i in range(1, len(input_shape)): if i not in self.shared_axes: axes[i] = input_shape[i] self.input_spec = InputSpec(ndim=len(input_shape), axes=axes) self.built = True def call(self, inputs): pos = activations.relu(inputs) neg = -self.alpha * activations.relu(-inputs) return pos + neg def get_config(self): config = super().get_config() config.update( { "alpha_initializer": initializers.serialize( self.alpha_initializer ), "alpha_regularizer": regularizers.serialize( self.alpha_regularizer ), "alpha_constraint": constraints.serialize( self.alpha_constraint ), "shared_axes": self.shared_axes, } ) return config def compute_output_shape(self, input_shape): return input_shape
keras/keras/layers/activations/prelu.py/0
{ "file_path": "keras/keras/layers/activations/prelu.py", "repo_id": "keras", "token_count": 1566 }
188
"""Keras base class for convolution layers.""" from keras import activations from keras import constraints from keras import initializers from keras import ops from keras import regularizers from keras.backend import standardize_data_format from keras.layers.input_spec import InputSpec from keras.layers.layer import Layer from keras.ops.operation_utils import compute_conv_output_shape from keras.utils.argument_validation import standardize_padding from keras.utils.argument_validation import standardize_tuple class BaseConv(Layer): """Abstract N-D convolution layer (private, used as implementation base). This layer creates a convolution kernel that is convolved (actually cross-correlated) with the layer input to produce a tensor of outputs. If `use_bias` is True (and a `bias_initializer` is provided), a bias vector is created and added to the outputs. Finally, if `activation` is not `None`, it is applied to the outputs as well. Note: layer attributes cannot be modified after the layer has been called once (except the `trainable` attribute). Args: rank: int, the rank of the convolution, e.g. 2 for 2D convolution. filters: int, the dimension of the output space (the number of filters in the convolution). kernel_size: int or tuple/list of `rank` integers, specifying the size of the convolution window. strides: int or tuple/list of `rank` integers, specifying the stride length of the convolution. If only one int is specified, the same stride size will be used for all dimensions. `strides > 1` is incompatible with `dilation_rate > 1`. padding: string, either `"valid"` or `"same"` (case-insensitive). `"valid"` means no padding. `"same"` results in padding evenly to the left/right or up/down of the input. When `padding="same"` and `strides=1`, the output has the same size as the input. data_format: string, either `"channels_last"` or `"channels_first"`. The ordering of the dimensions in the inputs. `"channels_last"` corresponds to inputs with shape `(batch, steps, features)` while `"channels_first"` corresponds to inputs with shape `(batch, features, steps)`. It defaults to the `image_data_format` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be `"channels_last"`. dilation_rate: int or tuple/list of `rank` integers, specifying the dilation rate to use for dilated convolution. If only one int is specified, the same dilation rate will be used for all dimensions. groups: A positive int specifying the number of groups in which the input is split along the channel axis. Each group is convolved separately with `filters // groups` filters. The output is the concatenation of all the `groups` results along the channel axis. Input channels and `filters` must both be divisible by `groups`. activation: Activation function. If `None`, no activation is applied. use_bias: bool, if `True`, bias will be added to the output. kernel_initializer: Initializer for the convolution kernel. If `None`, the default initializer (`"glorot_uniform"`) will be used. bias_initializer: Initializer for the bias vector. If `None`, the default initializer (`"zeros"`) will be used. kernel_regularizer: Optional regularizer for the convolution kernel. bias_regularizer: Optional regularizer for the bias vector. activity_regularizer: Optional regularizer function for the output. kernel_constraint: Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. bias_constraint: Optional projection function to be applied to the bias after being updated by an `Optimizer`. """ def __init__( self, rank, filters, kernel_size, strides=1, padding="valid", data_format=None, dilation_rate=1, groups=1, activation=None, use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, trainable=True, name=None, **kwargs, ): super().__init__( trainable=trainable, name=name, activity_regularizer=activity_regularizer, **kwargs, ) self.rank = rank self.filters = filters self.groups = groups self.kernel_size = standardize_tuple(kernel_size, rank, "kernel_size") self.strides = standardize_tuple(strides, rank, "strides") self.dilation_rate = standardize_tuple( dilation_rate, rank, "dilation_rate" ) self.padding = standardize_padding(padding, allow_causal=rank == 1) self.data_format = standardize_data_format(data_format) self.activation = activations.get(activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.bias_constraint = constraints.get(bias_constraint) self.input_spec = InputSpec(min_ndim=self.rank + 2) self.data_format = self.data_format if self.filters is not None and self.filters <= 0: raise ValueError( "Invalid value for argument `filters`. Expected a strictly " f"positive value. Received filters={self.filters}." ) if self.groups <= 0: raise ValueError( "The number of groups must be a positive integer. " f"Received: groups={self.groups}." ) if self.filters is not None and self.filters % self.groups != 0: raise ValueError( "The number of filters must be evenly divisible by the " f"number of groups. Received: groups={self.groups}, " f"filters={self.filters}." ) if not all(self.kernel_size): raise ValueError( "The argument `kernel_size` cannot contain 0. Received " f"kernel_size={self.kernel_size}." ) if not all(self.strides): raise ValueError( "The argument `strides` cannot contains 0. Received " f"strides={self.strides}" ) if max(self.strides) > 1 and max(self.dilation_rate) > 1: raise ValueError( "`strides > 1` not supported in conjunction with " f"`dilation_rate > 1`. Received: strides={self.strides} and " f"dilation_rate={self.dilation_rate}" ) def build(self, input_shape): if self.data_format == "channels_last": channel_axis = -1 input_channel = input_shape[-1] else: channel_axis = 1 input_channel = input_shape[1] self.input_spec = InputSpec( min_ndim=self.rank + 2, axes={channel_axis: input_channel} ) if input_channel % self.groups != 0: raise ValueError( "The number of input channels must be evenly divisible by " f"the number of groups. Received groups={self.groups}, but the " f"input has {input_channel} channels (full input shape is " f"{input_shape})." ) kernel_shape = self.kernel_size + ( input_channel // self.groups, self.filters, ) # compute_output_shape contains some validation logic for the input # shape, and make sure the output shape has all positive dimensions. self.compute_output_shape(input_shape) self.kernel = self.add_weight( name="kernel", shape=kernel_shape, initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, trainable=True, dtype=self.dtype, ) if self.use_bias: self.bias = self.add_weight( name="bias", shape=(self.filters,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, trainable=True, dtype=self.dtype, ) else: self.bias = None self.built = True def convolution_op(self, inputs, kernel): return ops.conv( inputs, kernel, strides=list(self.strides), padding=self.padding, dilation_rate=self.dilation_rate, data_format=self.data_format, ) def call(self, inputs): outputs = self.convolution_op( inputs, self.kernel, ) if self.use_bias: if self.data_format == "channels_last": bias_shape = (1,) * (self.rank + 1) + (self.filters,) else: bias_shape = (1, self.filters) + (1,) * self.rank bias = ops.reshape(self.bias, bias_shape) outputs += bias if self.activation is not None: return self.activation(outputs) return outputs def compute_output_shape(self, input_shape): return compute_conv_output_shape( input_shape, self.filters, self.kernel_size, strides=self.strides, padding=self.padding, data_format=self.data_format, dilation_rate=self.dilation_rate, ) def get_config(self): config = super().get_config() config.update( { "filters": self.filters, "kernel_size": self.kernel_size, "strides": self.strides, "padding": self.padding, "data_format": self.data_format, "dilation_rate": self.dilation_rate, "groups": self.groups, "activation": activations.serialize(self.activation), "use_bias": self.use_bias, "kernel_initializer": initializers.serialize( self.kernel_initializer ), "bias_initializer": initializers.serialize( self.bias_initializer ), "kernel_regularizer": regularizers.serialize( self.kernel_regularizer ), "bias_regularizer": regularizers.serialize( self.bias_regularizer ), "activity_regularizer": regularizers.serialize( self.activity_regularizer ), "kernel_constraint": constraints.serialize( self.kernel_constraint ), "bias_constraint": constraints.serialize(self.bias_constraint), } ) return config
keras/keras/layers/convolutional/base_conv.py/0
{ "file_path": "keras/keras/layers/convolutional/base_conv.py", "repo_id": "keras", "token_count": 5351 }
189
import numpy as np import pytest from keras import layers from keras import models from keras import testing class MaskingTest(testing.TestCase): @pytest.mark.requires_trainable_backend def test_masking_basics(self): self.run_layer_test( layers.Masking, init_kwargs={"mask_value": 0.0}, input_shape=(2, 3, 2), expected_output_shape=(2, 3, 2), expected_num_trainable_weights=0, expected_num_non_trainable_weights=0, expected_num_seed_generators=0, expected_num_losses=0, supports_masking=True, ) @pytest.mark.requires_trainable_backend def test_masking_correctness(self): x = np.array( [ [[0.0, 0.0], [1.0, 2.0], [0.0, 0.0]], [[2.0, 2.0], [0.0, 0.0], [2.0, 1.0]], ] ) expected_mask = [[False, True, False], [True, False, True]] layer = layers.Masking(mask_value=0.0) self.assertAllClose(layer.compute_mask(x), expected_mask) test_obj = self class TestLayer(layers.Layer): def __init__(self, **kwargs): super().__init__(**kwargs) self.supports_masking = True def compute_output_shape(self, input_shape): return input_shape def call(self, inputs, mask=None): assert mask is not None test_obj.assertAllClose(mask, expected_mask) return inputs model = models.Sequential( [ layers.Masking(mask_value=0.0), TestLayer(), ] ) model(x)
keras/keras/layers/core/masking_test.py/0
{ "file_path": "keras/keras/layers/core/masking_test.py", "repo_id": "keras", "token_count": 894 }
190
from keras import ops from keras.api_export import keras_export from keras.layers.merging.base_merge import Merge @keras_export("keras.layers.Subtract") class Subtract(Merge): """Performs elementwise subtraction. It takes as input a list of tensors of size 2 both of the same shape, and returns a single tensor (inputs[0] - inputs[1]) of same shape. Examples: >>> input_shape = (2, 3, 4) >>> x1 = np.random.rand(*input_shape) >>> x2 = np.random.rand(*input_shape) >>> y = keras.layers.Subtract()([x1, x2]) Usage in a Keras model: >>> input1 = keras.layers.Input(shape=(16,)) >>> x1 = keras.layers.Dense(8, activation='relu')(input1) >>> input2 = keras.layers.Input(shape=(32,)) >>> x2 = keras.layers.Dense(8, activation='relu')(input2) >>> # equivalent to `subtracted = keras.layers.subtract([x1, x2])` >>> subtracted = keras.layers.Subtract()([x1, x2]) >>> out = keras.layers.Dense(4)(subtracted) >>> model = keras.models.Model(inputs=[input1, input2], outputs=out) """ def build(self, input_shape): super().build(input_shape) if len(input_shape) != 2: raise ValueError( "A `Subtract` layer should be called on exactly 2 inputs. " f"Received: input_shape={input_shape}" ) def _merge_function(self, inputs): if len(inputs) != 2: raise ValueError( "A `Subtract` layer should be called on exactly 2 inputs. " f"Received: inputs={inputs}" ) return ops.subtract(inputs[0], inputs[1]) @keras_export("keras.layers.subtract") def subtract(inputs, **kwargs): """Functional interface to the `keras.layers.Subtract` layer. Args: inputs: A list of input tensors of size 2, each tensor of the same shape. **kwargs: Standard layer keyword arguments. Returns: A tensor as the difference of the inputs. It has the same shape as the inputs. Examples: >>> input_shape = (2, 3, 4) >>> x1 = np.random.rand(*input_shape) >>> x2 = np.random.rand(*input_shape) >>> y = keras.layers.subtract([x1, x2]) Usage in a Keras model: >>> input1 = keras.layers.Input(shape=(16,)) >>> x1 = keras.layers.Dense(8, activation='relu')(input1) >>> input2 = keras.layers.Input(shape=(32,)) >>> x2 = keras.layers.Dense(8, activation='relu')(input2) >>> subtracted = keras.layers.subtract([x1, x2]) >>> out = keras.layers.Dense(4)(subtracted) >>> model = keras.models.Model(inputs=[input1, input2], outputs=out) """ return Subtract(**kwargs)(inputs)
keras/keras/layers/merging/subtract.py/0
{ "file_path": "keras/keras/layers/merging/subtract.py", "repo_id": "keras", "token_count": 1149 }
191
import numpy as np import pytest from absl.testing import parameterized from numpy.lib.stride_tricks import as_strided from keras import backend from keras import layers from keras import testing def _same_padding(input_size, pool_size, stride): if input_size % stride == 0: return max(pool_size - stride, 0) else: return max(pool_size - (input_size % stride), 0) def np_avgpool1d(x, pool_size, strides, padding, data_format): if data_format == "channels_first": x = x.swapaxes(1, 2) if isinstance(pool_size, (tuple, list)): pool_size = pool_size[0] if isinstance(strides, (tuple, list)): h_stride = strides[0] else: h_stride = strides if padding == "same": n_batch, h_x, ch_x = x.shape pad_value = _same_padding(h_x, pool_size, h_stride) npad = [(0, 0)] * x.ndim npad[1] = (0, pad_value) x = np.pad(x, pad_width=npad, mode="edge") n_batch, h_x, ch_x = x.shape out_h = int((h_x - pool_size) / h_stride) + 1 stride_shape = (n_batch, out_h, ch_x, pool_size) strides = ( x.strides[0], h_stride * x.strides[1], x.strides[2], x.strides[1], ) windows = as_strided(x, shape=stride_shape, strides=strides) out = np.mean(windows, axis=(3,)) if data_format == "channels_first": out = out.swapaxes(1, 2) return out def np_avgpool2d(x, pool_size, strides, padding, data_format): if data_format == "channels_first": x = x.transpose((0, 2, 3, 1)) if isinstance(pool_size, int): pool_size = (pool_size, pool_size) if isinstance(strides, int): strides = (strides, strides) h_pool_size, w_pool_size = pool_size h_stride, w_stride = strides if padding == "same": n_batch, h_x, w_x, ch_x = x.shape h_padding = _same_padding(h_x, h_pool_size, h_stride) w_padding = _same_padding(w_x, w_pool_size, w_stride) npad = [(0, 0)] * x.ndim npad[1] = (0, h_padding) npad[2] = (0, w_padding) x = np.pad(x, pad_width=npad, mode="edge") n_batch, h_x, w_x, ch_x = x.shape out_h = int((h_x - h_pool_size) / h_stride) + 1 out_w = int((w_x - w_pool_size) / w_stride) + 1 stride_shape = (n_batch, out_h, out_w, ch_x, *pool_size) strides = ( x.strides[0], h_stride * x.strides[1], w_stride * x.strides[2], x.strides[3], x.strides[1], x.strides[2], ) windows = as_strided(x, shape=stride_shape, strides=strides) out = np.mean(windows, axis=(4, 5)) if data_format == "channels_first": out = out.transpose((0, 3, 1, 2)) return out def np_avgpool3d(x, pool_size, strides, padding, data_format): if data_format == "channels_first": x = x.transpose((0, 2, 3, 4, 1)) if isinstance(pool_size, int): pool_size = (pool_size, pool_size, pool_size) if isinstance(strides, int): strides = (strides, strides, strides) h_pool_size, w_pool_size, d_pool_size = pool_size h_stride, w_stride, d_stride = strides if padding == "same": n_batch, h_x, w_x, d_x, ch_x = x.shape h_padding = _same_padding(h_x, h_pool_size, h_stride) w_padding = _same_padding(w_x, w_pool_size, w_stride) d_padding = _same_padding(d_x, d_pool_size, d_stride) npad = [(0, 0)] * x.ndim npad[1] = (0, h_padding) npad[2] = (0, w_padding) npad[3] = (0, d_padding) x = np.pad(x, pad_width=npad, mode="symmetric") n_batch, h_x, w_x, d_x, ch_x = x.shape out_h = int((h_x - h_pool_size) / h_stride) + 1 out_w = int((w_x - w_pool_size) / w_stride) + 1 out_d = int((d_x - d_pool_size) / d_stride) + 1 stride_shape = (n_batch, out_h, out_w, out_d, ch_x, *pool_size) strides = ( x.strides[0], h_stride * x.strides[1], w_stride * x.strides[2], d_stride * x.strides[3], x.strides[4], x.strides[1], x.strides[2], x.strides[3], ) windows = as_strided(x, shape=stride_shape, strides=strides) out = np.mean(windows, axis=(5, 6, 7)) if data_format == "channels_first": out = out.transpose((0, 4, 1, 2, 3)) return out @pytest.mark.requires_trainable_backend class AveragePoolingBasicTest(testing.TestCase, parameterized.TestCase): @parameterized.parameters( (2, 1, "valid", "channels_last", (3, 5, 4), (3, 4, 4)), (2, 1, "same", "channels_first", (3, 5, 4), (3, 5, 4)), ((2,), (2,), "valid", "channels_last", (3, 5, 4), (3, 2, 4)), ) def test_average_pooling1d( self, pool_size, strides, padding, data_format, input_shape, output_shape, ): self.run_layer_test( layers.AveragePooling1D, init_kwargs={ "pool_size": pool_size, "strides": strides, "padding": padding, "data_format": data_format, }, input_shape=input_shape, expected_output_shape=output_shape, expected_num_trainable_weights=0, expected_num_non_trainable_weights=0, expected_num_losses=0, supports_masking=False, ) @parameterized.parameters( (2, 1, "valid", "channels_last", (3, 5, 5, 4), (3, 4, 4, 4)), (2, 1, "same", "channels_first", (3, 5, 5, 4), (3, 5, 5, 4)), ((2, 3), (2, 2), "valid", "channels_last", (3, 5, 5, 4), (3, 2, 2, 4)), ) def test_average_pooling2d( self, pool_size, strides, padding, data_format, input_shape, output_shape, ): self.run_layer_test( layers.AveragePooling2D, init_kwargs={ "pool_size": pool_size, "strides": strides, "padding": padding, "data_format": data_format, }, input_shape=input_shape, expected_output_shape=output_shape, expected_num_trainable_weights=0, expected_num_non_trainable_weights=0, expected_num_losses=0, supports_masking=False, ) @parameterized.parameters( (2, 1, "valid", "channels_last", (3, 5, 5, 5, 4), (3, 4, 4, 4, 4)), (2, 1, "same", "channels_first", (3, 5, 5, 5, 4), (3, 5, 5, 5, 4)), ( (2, 3, 2), (2, 2, 1), "valid", "channels_last", (3, 5, 5, 5, 4), (3, 2, 2, 4, 4), ), ) def test_average_pooling3d( self, pool_size, strides, padding, data_format, input_shape, output_shape, ): self.run_layer_test( layers.AveragePooling3D, init_kwargs={ "pool_size": pool_size, "strides": strides, "padding": padding, "data_format": data_format, }, input_shape=input_shape, expected_output_shape=output_shape, expected_num_trainable_weights=0, expected_num_non_trainable_weights=0, expected_num_losses=0, supports_masking=False, # Incomplete op support on tensorflow. run_mixed_precision_check=False, ) class AveragePoolingCorrectnessTest(testing.TestCase, parameterized.TestCase): @parameterized.parameters( (2, 1, "valid", "channels_last"), (2, 1, "valid", "channels_first"), ((2,), (2,), "valid", "channels_last"), ((2,), (2,), "valid", "channels_first"), ) def test_average_pooling1d(self, pool_size, strides, padding, data_format): inputs = np.arange(24, dtype="float32").reshape((2, 3, 4)) layer = layers.AveragePooling1D( pool_size=pool_size, strides=strides, padding=padding, data_format=data_format, ) outputs = layer(inputs) expected = np_avgpool1d( inputs, pool_size, strides, padding, data_format ) self.assertAllClose(outputs, expected) @parameterized.parameters( (2, 1, "same", "channels_last"), (2, 1, "same", "channels_first"), ((2,), (2,), "same", "channels_last"), ((2,), (2,), "same", "channels_first"), ) @pytest.mark.skipif( backend.backend() == "torch", reason="Same padding in Torch backend produces different results.", ) def test_average_pooling1d_same_padding( self, pool_size, strides, padding, data_format ): inputs = np.arange(24, dtype="float32").reshape((2, 3, 4)) layer = layers.AveragePooling1D( pool_size=pool_size, strides=strides, padding=padding, data_format=data_format, ) outputs = layer(inputs) expected = np_avgpool1d( inputs, pool_size, strides, padding, data_format ) self.assertAllClose(outputs, expected) @parameterized.parameters( (2, 1, "valid", "channels_last"), ((2, 3), (2, 2), "valid", "channels_last"), ) def test_average_pooling2d(self, pool_size, strides, padding, data_format): inputs = np.arange(16, dtype="float32").reshape((1, 4, 4, 1)) layer = layers.AveragePooling2D( pool_size=pool_size, strides=strides, padding=padding, data_format=data_format, ) outputs = layer(inputs) expected = np_avgpool2d( inputs, pool_size, strides, padding, data_format ) self.assertAllClose(outputs, expected) @parameterized.parameters( (2, (2, 1), "same", "channels_last"), (2, (2, 1), "same", "channels_first"), ((2, 2), (2, 2), "same", "channels_last"), ((2, 2), (2, 2), "same", "channels_first"), ) @pytest.mark.skipif( backend.backend() == "torch", reason="Same padding in Torch backend produces different results.", ) def test_average_pooling2d_same_padding( self, pool_size, strides, padding, data_format ): inputs = np.arange(16, dtype="float32").reshape((1, 4, 4, 1)) layer = layers.AveragePooling2D( pool_size=pool_size, strides=strides, padding=padding, data_format=data_format, ) outputs = layer(inputs) expected = np_avgpool2d( inputs, pool_size, strides, padding, data_format ) self.assertAllClose(outputs, expected) @parameterized.parameters( (2, 1, "valid", "channels_last"), (2, 1, "valid", "channels_first"), ((2, 3, 2), (2, 2, 1), "valid", "channels_last"), ((2, 3, 2), (2, 2, 1), "valid", "channels_first"), ) def test_average_pooling3d(self, pool_size, strides, padding, data_format): inputs = np.arange(240, dtype="float32").reshape((2, 3, 4, 5, 2)) layer = layers.AveragePooling3D( pool_size=pool_size, strides=strides, padding=padding, data_format=data_format, ) outputs = layer(inputs) expected = np_avgpool3d( inputs, pool_size, strides, padding, data_format ) self.assertAllClose(outputs, expected) @parameterized.parameters( (2, 1, "same", "channels_last"), (2, 1, "same", "channels_first"), ((2, 2, 2), (2, 2, 1), "same", "channels_last"), ((2, 2, 2), (2, 2, 1), "same", "channels_first"), ) @pytest.mark.skipif( backend.backend() == "torch", reason="Same padding in Torch backend produces different results.", ) def test_average_pooling3d_same_padding( self, pool_size, strides, padding, data_format ): inputs = np.arange(240, dtype="float32").reshape((2, 3, 4, 5, 2)) layer = layers.AveragePooling3D( pool_size=pool_size, strides=strides, padding=padding, data_format=data_format, ) outputs = layer(inputs) expected = np_avgpool3d( inputs, pool_size, strides, padding, data_format ) self.assertAllClose(outputs, expected)
keras/keras/layers/pooling/average_pooling_test.py/0
{ "file_path": "keras/keras/layers/pooling/average_pooling_test.py", "repo_id": "keras", "token_count": 6276 }
192
from keras.api_export import keras_export from keras.layers.preprocessing.tf_data_layer import TFDataLayer from keras.utils import backend_utils @keras_export("keras.layers.CategoryEncoding") class CategoryEncoding(TFDataLayer): """A preprocessing layer which encodes integer features. This layer provides options for condensing data into a categorical encoding when the total number of tokens are known in advance. It accepts integer values as inputs, and it outputs a dense or sparse representation of those inputs. For integer inputs where the total number of tokens is not known, use `keras.layers.IntegerLookup` instead. **Note:** This layer is safe to use inside a `tf.data` pipeline (independently of which backend you're using). Examples: **One-hot encoding data** >>> layer = keras.layers.CategoryEncoding( ... num_tokens=4, output_mode="one_hot") >>> layer([3, 2, 0, 1]) array([[0., 0., 0., 1.], [0., 0., 1., 0.], [1., 0., 0., 0.], [0., 1., 0., 0.]]> **Multi-hot encoding data** >>> layer = keras.layers.CategoryEncoding( ... num_tokens=4, output_mode="multi_hot") >>> layer([[0, 1], [0, 0], [1, 2], [3, 1]]) array([[1., 1., 0., 0.], [1., 0., 0., 0.], [0., 1., 1., 0.], [0., 1., 0., 1.]]> **Using weighted inputs in `"count"` mode** >>> layer = keras.layers.CategoryEncoding( ... num_tokens=4, output_mode="count") >>> count_weights = np.array([[.1, .2], [.1, .1], [.2, .3], [.4, .2]]) >>> layer([[0, 1], [0, 0], [1, 2], [3, 1]], count_weights=count_weights) array([[0.1, 0.2, 0. , 0. ], [0.2, 0. , 0. , 0. ], [0. , 0.2, 0.3, 0. ], [0. , 0.2, 0. , 0.4]]> Args: num_tokens: The total number of tokens the layer should support. All inputs to the layer must integers in the range `0 <= value < num_tokens`, or an error will be thrown. output_mode: Specification for the output of the layer. Values can be `"one_hot"`, `"multi_hot"` or `"count"`, configuring the layer as follows: - `"one_hot"`: Encodes each individual element in the input into an array of `num_tokens` size, containing a 1 at the element index. If the last dimension is size 1, will encode on that dimension. If the last dimension is not size 1, will append a new dimension for the encoded output. - `"multi_hot"`: Encodes each sample in the input into a single array of `num_tokens` size, containing a 1 for each vocabulary term present in the sample. Treats the last dimension as the sample dimension, if input shape is `(..., sample_length)`, output shape will be `(..., num_tokens)`. - `"count"`: Like `"multi_hot"`, but the int array contains a count of the number of times the token at that index appeared in the sample. For all output modes, currently only output up to rank 2 is supported. Defaults to `"multi_hot"`. Call arguments: inputs: A 1D or 2D tensor of integer inputs. count_weights: A tensor in the same shape as `inputs` indicating the weight for each sample value when summing up in `count` mode. Not used in `"multi_hot"` or `"one_hot"` modes. """ def __init__(self, num_tokens=None, output_mode="multi_hot", **kwargs): super().__init__(**kwargs) # Support deprecated names for output_modes. if output_mode == "binary": output_mode = "multi_hot" # 'output_mode' must be one of ("count", "one_hot", "multi_hot") if output_mode not in ("count", "one_hot", "multi_hot"): raise ValueError(f"Unknown arg for output_mode: {output_mode}") if num_tokens is None: raise ValueError( "num_tokens must be set to use this layer. If the " "number of tokens is not known beforehand, use the " "IntegerLookup layer instead." ) if num_tokens < 1: raise ValueError( f"`num_tokens` must be >= 1. Received: num_tokens={num_tokens}." ) self.num_tokens = num_tokens self.output_mode = output_mode self._allow_non_tensor_positional_args = True self._convert_input_args = False def _count(self, inputs, axis=-1, count_weights=None): reduction_axis = 1 if len(inputs.shape) > 1 else 0 one_hot_encoding = self.backend.nn.one_hot( inputs, self.num_tokens, axis=axis, dtype=self.dtype ) if count_weights is not None: split_weights = self.backend.numpy.split( count_weights, count_weights.shape[reduction_axis], reduction_axis, ) stacked_weights = self.backend.numpy.stack( split_weights, axis=reduction_axis ) one_hot_encoding = one_hot_encoding * stacked_weights outputs = self.backend.numpy.sum( one_hot_encoding, axis=reduction_axis, ) return outputs def _encode(self, inputs, count_weights=None): if self.output_mode == "multi_hot": outputs = self.backend.nn.multi_hot( inputs, self.num_tokens, dtype=self.dtype ) elif self.output_mode == "one_hot": outputs = self.backend.nn.one_hot( inputs, self.num_tokens, dtype=self.dtype ) elif self.output_mode == "count": outputs = self._count(inputs, count_weights=count_weights) return outputs def compute_output_shape(self, input_shape): if self.output_mode == "one_hot": if input_shape[-1] != 1: return tuple(input_shape + (self.num_tokens,)) else: return tuple(input_shape[:-1] + (self.num_tokens,)) return tuple(input_shape[:-1] + (self.num_tokens,)) def get_config(self): config = { "num_tokens": self.num_tokens, "output_mode": self.output_mode, } base_config = super().get_config() return {**base_config, **config} def call(self, inputs, count_weights=None): if count_weights is not None: if self.output_mode != "count": raise ValueError( "`count_weights` is not used when `output_mode` is not " "`'count'`. Received `count_weights={count_weights}`." ) count_weights = self.backend.convert_to_tensor( count_weights, dtype=self.compute_dtype ) outputs = self._encode(inputs, count_weights) return backend_utils.convert_tf_tensor(outputs)
keras/keras/layers/preprocessing/category_encoding.py/0
{ "file_path": "keras/keras/layers/preprocessing/category_encoding.py", "repo_id": "keras", "token_count": 3325 }
193
import math import numpy as np from keras import backend from keras import ops from keras.api_export import keras_export from keras.layers.layer import Layer from keras.utils.module_utils import tensorflow as tf @keras_export("keras.layers.Normalization") class Normalization(Layer): """A preprocessing layer that normalizes continuous features. This layer will shift and scale inputs into a distribution centered around 0 with standard deviation 1. It accomplishes this by precomputing the mean and variance of the data, and calling `(input - mean) / sqrt(var)` at runtime. The mean and variance values for the layer must be either supplied on construction or learned via `adapt()`. `adapt()` will compute the mean and variance of the data and store them as the layer's weights. `adapt()` should be called before `fit()`, `evaluate()`, or `predict()`. Args: axis: Integer, tuple of integers, or None. The axis or axes that should have a separate mean and variance for each index in the shape. For example, if shape is `(None, 5)` and `axis=1`, the layer will track 5 separate mean and variance values for the last axis. If `axis` is set to `None`, the layer will normalize all elements in the input by a scalar mean and variance. When `-1`, the last axis of the input is assumed to be a feature dimension and is normalized per index. Note that in the specific case of batched scalar inputs where the only axis is the batch axis, the default will normalize each index in the batch separately. In this case, consider passing `axis=None`. Defaults to `-1`. mean: The mean value(s) to use during normalization. The passed value(s) will be broadcast to the shape of the kept axes above; if the value(s) cannot be broadcast, an error will be raised when this layer's `build()` method is called. variance: The variance value(s) to use during normalization. The passed value(s) will be broadcast to the shape of the kept axes above; if the value(s) cannot be broadcast, an error will be raised when this layer's `build()` method is called. invert: If `True`, this layer will apply the inverse transformation to its inputs: it would turn a normalized input back into its original form. Examples: Calculate a global mean and variance by analyzing the dataset in `adapt()`. >>> adapt_data = np.array([1., 2., 3., 4., 5.], dtype='float32') >>> input_data = np.array([1., 2., 3.], dtype='float32') >>> layer = keras.layers.Normalization(axis=None) >>> layer.adapt(adapt_data) >>> layer(input_data) array([-1.4142135, -0.70710677, 0.], dtype=float32) Calculate a mean and variance for each index on the last axis. >>> adapt_data = np.array([[0., 7., 4.], ... [2., 9., 6.], ... [0., 7., 4.], ... [2., 9., 6.]], dtype='float32') >>> input_data = np.array([[0., 7., 4.]], dtype='float32') >>> layer = keras.layers.Normalization(axis=-1) >>> layer.adapt(adapt_data) >>> layer(input_data) array([-1., -1., -1.], dtype=float32) Pass the mean and variance directly. >>> input_data = np.array([[1.], [2.], [3.]], dtype='float32') >>> layer = keras.layers.Normalization(mean=3., variance=2.) >>> layer(input_data) array([[-1.4142135 ], [-0.70710677], [ 0. ]], dtype=float32) Use the layer to de-normalize inputs (after adapting the layer). >>> adapt_data = np.array([[0., 7., 4.], ... [2., 9., 6.], ... [0., 7., 4.], ... [2., 9., 6.]], dtype='float32') >>> input_data = np.array([[1., 2., 3.]], dtype='float32') >>> layer = keras.layers.Normalization(axis=-1, invert=True) >>> layer.adapt(adapt_data) >>> layer(input_data) array([2., 10., 8.], dtype=float32) """ def __init__( self, axis=-1, mean=None, variance=None, invert=False, **kwargs ): super().__init__(**kwargs) # Standardize `axis` to a tuple. if axis is None: axis = () elif isinstance(axis, int): axis = (axis,) else: axis = tuple(axis) self.axis = axis # Set `mean` and `variance` if passed. if (mean is not None) != (variance is not None): raise ValueError( "When setting values directly, both `mean` and `variance` " f"must be set. Received: mean={mean} and variance={variance}" ) self.input_mean = mean self.input_variance = variance self.invert = invert self.supports_masking = True self._build_input_shape = None def build(self, input_shape): if input_shape is None: return ndim = len(input_shape) self._build_input_shape = input_shape if any(a < -ndim or a >= ndim for a in self.axis): raise ValueError( "All `axis` values must be in the range [-ndim, ndim). " f"Received inputs with ndim={ndim}, while axis={self.axis}" ) # Axes to be kept, replacing negative values with positive equivalents. # Sorted to avoid transposing axes. self._keep_axis = tuple( sorted([d if d >= 0 else d + ndim for d in self.axis]) ) # All axes to be kept should have known shape. for d in self._keep_axis: if input_shape[d] is None: raise ValueError( "All `axis` values to be kept must have a known shape. " f"Received axis={self.axis}, " f"inputs.shape={input_shape}, " f"with unknown axis at index {d}" ) # Axes to be reduced. self._reduce_axis = tuple( d for d in range(ndim) if d not in self._keep_axis ) # 1 if an axis should be reduced, 0 otherwise. self._reduce_axis_mask = [ 0 if d in self._keep_axis else 1 for d in range(ndim) ] # Broadcast any reduced axes. self._broadcast_shape = [ input_shape[d] if d in self._keep_axis else 1 for d in range(ndim) ] mean_and_var_shape = tuple(input_shape[d] for d in self._keep_axis) self._mean_and_var_shape = mean_and_var_shape if self.input_mean is None: self.adapt_mean = self.add_weight( name="mean", shape=mean_and_var_shape, initializer="zeros", trainable=False, ) self.adapt_variance = self.add_weight( name="variance", shape=mean_and_var_shape, initializer="ones", trainable=False, ) # For backwards compatibility with older saved models. self.count = self.add_weight( name="count", shape=(), dtype="int", initializer="zeros", trainable=False, ) self.built = True self.finalize_state() else: # In the no adapt case, make constant tensors for mean and variance # with proper broadcast shape for use during call. mean = ops.convert_to_tensor(self.input_mean) variance = ops.convert_to_tensor(self.input_variance) mean = ops.reshape(mean, self._broadcast_shape) variance = ops.reshape(variance, self._broadcast_shape) self.mean = ops.cast(mean, dtype=self.compute_dtype) self.variance = ops.cast(variance, dtype=self.compute_dtype) self.built = True def adapt(self, data): """Computes the mean and variance of values in a dataset. Calling `adapt()` on a `Normalization` layer is an alternative to passing in `mean` and `variance` arguments during layer construction. A `Normalization` layer should always either be adapted over a dataset or passed `mean` and `variance`. During `adapt()`, the layer will compute a `mean` and `variance` separately for each position in each axis specified by the `axis` argument. To calculate a single `mean` and `variance` over the input data, simply pass `axis=None` to the layer. Arg: data: The data to train on. It can be passed either as a `tf.data.Dataset`, as a NumPy array, or as a backend-native eager tensor. If a dataset, *it must be batched*. Keras will assume that the data is batched, and if that assumption doesn't hold, the mean and variance may be incorrectly computed. """ if isinstance(data, np.ndarray) or backend.is_tensor(data): input_shape = data.shape elif isinstance(data, tf.data.Dataset): input_shape = tuple(data.element_spec.shape) if len(input_shape) == 1: # Batch dataset if it isn't batched data = data.batch(128) input_shape = tuple(data.element_spec.shape) if not self.built: self.build(input_shape) else: for d in self._keep_axis: if input_shape[d] != self._build_input_shape[d]: raise ValueError( "The layer was built with " f"input_shape={self._build_input_shape}, " "but adapt() is being called with data with " f"an incompatible shape, data.shape={input_shape}" ) if isinstance(data, np.ndarray): total_mean = np.mean(data, axis=self._reduce_axis) total_var = np.var(data, axis=self._reduce_axis) elif backend.is_tensor(data): total_mean = ops.mean(data, axis=self._reduce_axis) total_var = ops.var(data, axis=self._reduce_axis) elif isinstance(data, tf.data.Dataset): total_mean = ops.zeros(self._mean_and_var_shape) total_var = ops.zeros(self._mean_and_var_shape) total_count = 0 for batch in data: batch = backend.convert_to_tensor( batch, dtype=self.compute_dtype ) batch_mean = ops.mean(batch, axis=self._reduce_axis) batch_var = ops.var(batch, axis=self._reduce_axis) if self._reduce_axis: batch_reduce_shape = ( batch.shape[d] for d in self._reduce_axis ) batch_count = math.prod(batch_reduce_shape) else: batch_count = 1 total_count += batch_count batch_weight = float(batch_count) / total_count existing_weight = 1.0 - batch_weight new_total_mean = ( total_mean * existing_weight + batch_mean * batch_weight ) # The variance is computed using the lack-of-fit sum of squares # formula (see # https://en.wikipedia.org/wiki/Lack-of-fit_sum_of_squares). total_var = ( total_var + (total_mean - new_total_mean) ** 2 ) * existing_weight + ( batch_var + (batch_mean - new_total_mean) ** 2 ) * batch_weight total_mean = new_total_mean self.adapt_mean.assign(total_mean) self.adapt_variance.assign(total_var) self.finalize_state() def finalize_state(self): if self.input_mean is not None or not self.built: return # In the adapt case, we make constant tensors for mean and variance with # proper broadcast shape and dtype each time `finalize_state` is called. self.mean = ops.reshape(self.adapt_mean, self._broadcast_shape) self.mean = ops.cast(self.mean, self.compute_dtype) self.variance = ops.reshape(self.adapt_variance, self._broadcast_shape) self.variance = ops.cast(self.variance, self.compute_dtype) def call(self, inputs): inputs = backend.convert_to_tensor(inputs, dtype=self.compute_dtype) if self.invert: return ops.add( self.mean, ops.multiply( inputs, ops.maximum(ops.sqrt(self.variance), backend.epsilon()), ), ) else: return ops.divide( ops.subtract(inputs, self.mean), ops.maximum(ops.sqrt(self.variance), backend.epsilon()), ) def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = super().get_config() config.update( { "axis": self.axis, "invert": self.invert, "mean": np.array(self.input_mean).tolist(), "variance": np.array(self.input_variance).tolist(), } ) return config def load_own_variables(self, store): super().load_own_variables(store) # Ensure that we call finalize_state after variable loading. self.finalize_state() def get_build_config(self): if self._build_input_shape: return {"input_shape": self._build_input_shape} def build_from_config(self, config): if config: self.build(config["input_shape"])
keras/keras/layers/preprocessing/normalization.py/0
{ "file_path": "keras/keras/layers/preprocessing/normalization.py", "repo_id": "keras", "token_count": 6471 }
194
from keras import backend from keras.api_export import keras_export from keras.layers.preprocessing.tf_data_layer import TFDataLayer @keras_export("keras.layers.Rescaling") class Rescaling(TFDataLayer): """A preprocessing layer which rescales input values to a new range. This layer rescales every value of an input (often an image) by multiplying by `scale` and adding `offset`. For instance: 1. To rescale an input in the `[0, 255]` range to be in the `[0, 1]` range, you would pass `scale=1./255`. 2. To rescale an input in the `[0, 255]` range to be in the `[-1, 1]` range, you would pass `scale=1./127.5, offset=-1`. The rescaling is applied both during training and inference. Inputs can be of integer or floating point dtype, and by default the layer will output floats. **Note:** This layer is safe to use inside a `tf.data` pipeline (independently of which backend you're using). Args: scale: Float, the scale to apply to the inputs. offset: Float, the offset to apply to the inputs. **kwargs: Base layer keyword arguments, such as `name` and `dtype`. """ def __init__(self, scale, offset=0.0, **kwargs): super().__init__(**kwargs) self.scale = scale self.offset = offset self.supports_masking = True def call(self, inputs): dtype = self.compute_dtype scale = self.backend.cast(self.scale, dtype) offset = self.backend.cast(self.offset, dtype) scale_shape = self.backend.core.shape(scale) if ( len(scale_shape) > 0 and backend.image_data_format() == "channels_first" ): scale = self.backend.numpy.reshape( scale, scale_shape + (1,) * (3 - len(scale_shape)) ) return self.backend.cast(inputs, dtype) * scale + offset def compute_output_shape(self, input_shape): return input_shape def get_config(self): base_config = super().get_config() config = { "scale": self.scale, "offset": self.offset, } return {**base_config, **config}
keras/keras/layers/preprocessing/rescaling.py/0
{ "file_path": "keras/keras/layers/preprocessing/rescaling.py", "repo_id": "keras", "token_count": 873 }
195
import math from keras import backend from keras import layers from keras import ops from keras.api_export import keras_export @keras_export("keras.layers.GaussianDropout") class GaussianDropout(layers.Layer): """Apply multiplicative 1-centered Gaussian noise. As it is a regularization layer, it is only active at training time. Args: rate: Float, drop probability (as with `Dropout`). The multiplicative noise will have standard deviation `sqrt(rate / (1 - rate))`. seed: Integer, optional random seed to enable deterministic behavior. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding dropout) or in inference mode (doing nothing). """ def __init__(self, rate, seed=None, **kwargs): super().__init__(**kwargs) if not 0 <= rate <= 1: raise ValueError( f"Invalid value received for argument " "`rate`. Expected a float value between 0 and 1. " f"Received: rate={rate}" ) self.rate = rate self.seed = seed self.seed_generator = backend.random.SeedGenerator(seed) self.supports_masking = True def call(self, inputs, training=False): if training and self.rate > 0: stddev = math.sqrt(self.rate / (1.0 - self.rate)) return inputs * backend.random.normal( shape=ops.shape(inputs), mean=1.0, stddev=stddev, seed=self.seed_generator, ) return inputs def compute_output_shape(self, input_shape): return input_shape def get_config(self): base_config = super().get_config() config = { "rate": self.rate, "seed": self.seed, } return {**base_config, **config}
keras/keras/layers/regularization/gaussian_dropout.py/0
{ "file_path": "keras/keras/layers/regularization/gaussian_dropout.py", "repo_id": "keras", "token_count": 844 }
196
import numpy as np import pytest from absl.testing import parameterized from keras import backend from keras import layers from keras import ops from keras import testing class PermuteTest(testing.TestCase, parameterized.TestCase): @parameterized.named_parameters( [ {"testcase_name": "dense", "sparse": False}, {"testcase_name": "sparse", "sparse": True}, ] ) @pytest.mark.requires_trainable_backend def test_permute(self, sparse): if sparse and not backend.SUPPORTS_SPARSE_TENSORS: pytest.skip("Backend does not support sparse tensors.") inputs = np.random.random((10, 3, 5, 5)).astype("float32") # Make the ndarray relatively sparse inputs = np.multiply(inputs, inputs >= 0.8) expected_output = ops.convert_to_tensor( np.transpose(inputs, axes=(0, 3, 1, 2)) ) if sparse: if backend.backend() == "tensorflow": import tensorflow as tf inputs = tf.sparse.from_dense(inputs) expected_output = tf.sparse.from_dense(expected_output) elif backend.backend() == "jax": import jax.experimental.sparse as jax_sparse inputs = jax_sparse.BCOO.fromdense(inputs) expected_output = jax_sparse.BCOO.fromdense(expected_output) else: self.fail( f"Backend {backend.backend()} does not support sparse" ) self.run_layer_test( layers.Permute, init_kwargs={"dims": (3, 1, 2)}, input_data=inputs, input_sparse=sparse, expected_output=expected_output, expected_output_sparse=sparse, run_training_check=not sparse, ) def test_permute_with_dynamic_batch_size(self): input_layer = layers.Input(batch_shape=(None, 3, 5)) permuted = layers.Permute((2, 1))(input_layer) self.assertEqual(permuted.shape, (None, 5, 3)) def test_permute_errors_on_invalid_starting_dims_index(self): with self.assertRaisesRegex( ValueError, r"Invalid permutation .*dims.*" ): self.run_layer_test( layers.Permute, init_kwargs={"dims": (0, 1, 2)}, input_shape=(3, 2, 4), ) def test_permute_errors_on_invalid_set_of_dims_indices(self): with self.assertRaisesRegex( ValueError, r"Invalid permutation .*dims.*" ): self.run_layer_test( layers.Permute, init_kwargs={"dims": (1, 4, 2)}, input_shape=(3, 2, 4), )
keras/keras/layers/reshaping/permute_test.py/0
{ "file_path": "keras/keras/layers/reshaping/permute_test.py", "repo_id": "keras", "token_count": 1367 }
197
import numpy as np from absl.testing import parameterized from keras import backend from keras import layers from keras import testing class ZeroPadding3DTest(testing.TestCase, parameterized.TestCase): @parameterized.named_parameters( ("channels_first", "channels_first"), ("channels_last", "channels_last") ) def test_zero_padding_3d(self, data_format): inputs = np.random.rand(1, 2, 3, 4, 5) outputs = layers.ZeroPadding3D( padding=((1, 2), (3, 4), (0, 2)), data_format=data_format )(inputs) if data_format == "channels_first": for index in [0, -1, -2]: self.assertAllClose(outputs[:, :, index, :, :], 0.0) for index in [0, 1, 2, -1, -2, -3, -4]: self.assertAllClose(outputs[:, :, :, index, :], 0.0) for index in [-1, -2]: self.assertAllClose(outputs[:, :, :, :, index], 0.0) self.assertAllClose(outputs[:, :, 1:-2, 3:-4, 0:-2], inputs) else: for index in [0, -1, -2]: self.assertAllClose(outputs[:, index, :, :, :], 0.0) for index in [0, 1, 2, -1, -2, -3, -4]: self.assertAllClose(outputs[:, :, index, :, :], 0.0) for index in [-1, -2]: self.assertAllClose(outputs[:, :, :, index, :], 0.0) self.assertAllClose(outputs[:, 1:-2, 3:-4, 0:-2, :], inputs) @parameterized.product( ( {"padding": ((2, 2), (2, 2), (2, 2))}, # 3 tuples {"padding": (2, 2, 2)}, # 1 tuple {"padding": 2}, # 1 int ), ( {"data_format": "channels_first"}, {"data_format": "channels_last"}, ), ) def test_zero_padding_3d_with_same_padding(self, padding, data_format): inputs = np.random.rand(1, 2, 3, 4, 5) outputs = layers.ZeroPadding3D( padding=padding, data_format=data_format )(inputs) if data_format == "channels_first": for index in [0, 1, -1, -2]: self.assertAllClose(outputs[:, :, index, :, :], 0.0) self.assertAllClose(outputs[:, :, :, index, :], 0.0) self.assertAllClose(outputs[:, :, :, :, index], 0.0) self.assertAllClose(outputs[:, :, 2:-2, 2:-2, 2:-2], inputs) else: for index in [0, 1, -1, -2]: self.assertAllClose(outputs[:, index, :, :, :], 0.0) self.assertAllClose(outputs[:, :, index, :, :], 0.0) self.assertAllClose(outputs[:, :, :, index, :], 0.0) self.assertAllClose(outputs[:, 2:-2, 2:-2, 2:-2, :], inputs) def test_zero_padding_3d_with_dynamic_spatial_dim(self): if backend.config.image_data_format() == "channels_last": input_layer = layers.Input(batch_shape=(1, 2, None, 4, 5)) else: input_layer = layers.Input(batch_shape=(1, 5, 2, None, 4)) padded = layers.ZeroPadding3D(((1, 2), (3, 4), (5, 6)))(input_layer) if backend.config.image_data_format() == "channels_last": self.assertEqual(padded.shape, (1, 5, None, 15, 5)) else: self.assertEqual(padded.shape, (1, 5, 5, None, 15)) def test_zero_padding_3d_errors_if_padding_argument_invalid(self): with self.assertRaises(ValueError): layers.ZeroPadding3D(padding=(1,)) with self.assertRaises(ValueError): layers.ZeroPadding3D(padding=(1, 2)) with self.assertRaises(ValueError): layers.ZeroPadding3D(padding=(1, 2, 3, 4)) with self.assertRaises(ValueError): layers.ZeroPadding3D(padding="1") with self.assertRaises(ValueError): layers.ZeroPadding3D(padding=((1, 2), (3, 4), (5, 6, 7))) with self.assertRaises(ValueError): layers.ZeroPadding3D(padding=((1, 2), (3, 4), (5, -6))) with self.assertRaises(ValueError): layers.ZeroPadding3D(padding=((1, 2), (3, 4), "5"))
keras/keras/layers/reshaping/zero_padding3d_test.py/0
{ "file_path": "keras/keras/layers/reshaping/zero_padding3d_test.py", "repo_id": "keras", "token_count": 2027 }
198
import tree from keras import activations from keras import backend from keras import constraints from keras import initializers from keras import ops from keras import regularizers from keras.api_export import keras_export from keras.layers.input_spec import InputSpec from keras.layers.layer import Layer from keras.layers.rnn.dropout_rnn_cell import DropoutRNNCell from keras.layers.rnn.rnn import RNN @keras_export("keras.layers.LSTMCell") class LSTMCell(Layer, DropoutRNNCell): """Cell class for the LSTM layer. This class processes one step within the whole time sequence input, whereas `keras.layer.LSTM` processes the whole sequence. Args: units: Positive integer, dimensionality of the output space. activation: Activation function to use. Default: hyperbolic tangent (`tanh`). If you pass None, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step. Default: sigmoid (`sigmoid`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, (default `True`), whether the layer should use a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. Default: `"glorot_uniform"`. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. Default: `"orthogonal"`. bias_initializer: Initializer for the bias vector. Default: `"zeros"`. unit_forget_bias: Boolean (default `True`). If `True`, add 1 to the bias of the forget gate at initialization. Setting it to `True` will also force `bias_initializer="zeros"`. This is recommended in [Jozefowicz et al.]( https://github.com/mlresearch/v37/blob/gh-pages/jozefowicz15.pdf) kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. Default: `None`. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. Default: `None`. bias_regularizer: Regularizer function applied to the bias vector. Default: `None`. kernel_constraint: Constraint function applied to the `kernel` weights matrix. Default: `None`. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. Default: `None`. bias_constraint: Constraint function applied to the bias vector. Default: `None`. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0. seed: Random seed for dropout. Call arguments: inputs: A 2D tensor, with shape `(batch, features)`. states: A 2D tensor with shape `(batch, units)`, which is the state from the previous time step. training: Python boolean indicating whether the layer should behave in training mode or in inference mode. Only relevant when `dropout` or `recurrent_dropout` is used. Example: >>> inputs = np.random.random((32, 10, 8)) >>> rnn = keras.layers.RNN(keras.layers.LSTMCell(4)) >>> output = rnn(inputs) >>> output.shape (32, 4) >>> rnn = keras.layers.RNN( ... keras.layers.LSTMCell(4), ... return_sequences=True, ... return_state=True) >>> whole_sequence_output, final_state = rnn(inputs) >>> whole_sequence_output.shape (32, 10, 4) >>> final_state.shape (32, 4) """ def __init__( self, units, activation="tanh", recurrent_activation="sigmoid", use_bias=True, kernel_initializer="glorot_uniform", recurrent_initializer="orthogonal", bias_initializer="zeros", unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, seed=None, **kwargs, ): if units <= 0: raise ValueError( "Received an invalid value for argument `units`, " f"expected a positive integer, got {units}." ) implementation = kwargs.pop("implementation", 2) super().__init__(**kwargs) self.units = units self.activation = activations.get(activation) self.recurrent_activation = activations.get(recurrent_activation) self.use_bias = use_bias self.kernel_initializer = initializers.get(kernel_initializer) self.recurrent_initializer = initializers.get(recurrent_initializer) self.bias_initializer = initializers.get(bias_initializer) self.kernel_regularizer = regularizers.get(kernel_regularizer) self.recurrent_regularizer = regularizers.get(recurrent_regularizer) self.bias_regularizer = regularizers.get(bias_regularizer) self.kernel_constraint = constraints.get(kernel_constraint) self.recurrent_constraint = constraints.get(recurrent_constraint) self.bias_constraint = constraints.get(bias_constraint) self.dropout = min(1.0, max(0.0, dropout)) self.recurrent_dropout = min(1.0, max(0.0, recurrent_dropout)) self.seed = seed self.seed_generator = backend.random.SeedGenerator(seed=seed) self.unit_forget_bias = unit_forget_bias self.state_size = [self.units, self.units] self.output_size = self.units self.implementation = implementation def build(self, input_shape): super().build(input_shape) input_dim = input_shape[-1] self.kernel = self.add_weight( shape=(input_dim, self.units * 4), name="kernel", initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, ) self.recurrent_kernel = self.add_weight( shape=(self.units, self.units * 4), name="recurrent_kernel", initializer=self.recurrent_initializer, regularizer=self.recurrent_regularizer, constraint=self.recurrent_constraint, ) if self.use_bias: if self.unit_forget_bias: def bias_initializer(_, *args, **kwargs): return ops.concatenate( [ self.bias_initializer( (self.units,), *args, **kwargs ), initializers.get("ones")( (self.units,), *args, **kwargs ), self.bias_initializer( (self.units * 2,), *args, **kwargs ), ] ) else: bias_initializer = self.bias_initializer self.bias = self.add_weight( shape=(self.units * 4,), name="bias", initializer=bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, ) else: self.bias = None self.built = True def _compute_carry_and_output(self, x, h_tm1, c_tm1): """Computes carry and output using split kernels.""" x_i, x_f, x_c, x_o = x h_tm1_i, h_tm1_f, h_tm1_c, h_tm1_o = h_tm1 i = self.recurrent_activation( x_i + ops.matmul(h_tm1_i, self.recurrent_kernel[:, : self.units]) ) f = self.recurrent_activation( x_f + ops.matmul( h_tm1_f, self.recurrent_kernel[:, self.units : self.units * 2] ) ) c = f * c_tm1 + i * self.activation( x_c + ops.matmul( h_tm1_c, self.recurrent_kernel[:, self.units * 2 : self.units * 3], ) ) o = self.recurrent_activation( x_o + ops.matmul(h_tm1_o, self.recurrent_kernel[:, self.units * 3 :]) ) return c, o def _compute_carry_and_output_fused(self, z, c_tm1): """Computes carry and output using fused kernels.""" z0, z1, z2, z3 = z i = self.recurrent_activation(z0) f = self.recurrent_activation(z1) c = f * c_tm1 + i * self.activation(z2) o = self.recurrent_activation(z3) return c, o def call(self, inputs, states, training=False): h_tm1 = states[0] # previous memory state c_tm1 = states[1] # previous carry state dp_mask = self.get_dropout_mask(inputs) rec_dp_mask = self.get_recurrent_dropout_mask(h_tm1) if training and 0.0 < self.dropout < 1.0: inputs = inputs * dp_mask if training and 0.0 < self.recurrent_dropout < 1.0: h_tm1 = h_tm1 * rec_dp_mask if self.implementation == 1: inputs_i = inputs inputs_f = inputs inputs_c = inputs inputs_o = inputs k_i, k_f, k_c, k_o = ops.split(self.kernel, 4, axis=1) x_i = ops.matmul(inputs_i, k_i) x_f = ops.matmul(inputs_f, k_f) x_c = ops.matmul(inputs_c, k_c) x_o = ops.matmul(inputs_o, k_o) if self.use_bias: b_i, b_f, b_c, b_o = ops.split(self.bias, 4, axis=0) x_i += b_i x_f += b_f x_c += b_c x_o += b_o h_tm1_i = h_tm1 h_tm1_f = h_tm1 h_tm1_c = h_tm1 h_tm1_o = h_tm1 x = (x_i, x_f, x_c, x_o) h_tm1 = (h_tm1_i, h_tm1_f, h_tm1_c, h_tm1_o) c, o = self._compute_carry_and_output(x, h_tm1, c_tm1) else: z = ops.matmul(inputs, self.kernel) z += ops.matmul(h_tm1, self.recurrent_kernel) if self.use_bias: z += self.bias z = ops.split(z, 4, axis=1) c, o = self._compute_carry_and_output_fused(z, c_tm1) h = o * self.activation(c) return h, [h, c] def get_config(self): config = { "units": self.units, "activation": activations.serialize(self.activation), "recurrent_activation": activations.serialize( self.recurrent_activation ), "use_bias": self.use_bias, "unit_forget_bias": self.unit_forget_bias, "kernel_initializer": initializers.serialize( self.kernel_initializer ), "recurrent_initializer": initializers.serialize( self.recurrent_initializer ), "bias_initializer": initializers.serialize(self.bias_initializer), "kernel_regularizer": regularizers.serialize( self.kernel_regularizer ), "recurrent_regularizer": regularizers.serialize( self.recurrent_regularizer ), "bias_regularizer": regularizers.serialize(self.bias_regularizer), "kernel_constraint": constraints.serialize(self.kernel_constraint), "recurrent_constraint": constraints.serialize( self.recurrent_constraint ), "bias_constraint": constraints.serialize(self.bias_constraint), "dropout": self.dropout, "recurrent_dropout": self.recurrent_dropout, "seed": self.seed, } base_config = super().get_config() return {**base_config, **config} def get_initial_state(self, batch_size=None): return [ ops.zeros((batch_size, d), dtype=self.compute_dtype) for d in self.state_size ] @keras_export("keras.layers.LSTM") class LSTM(RNN): """Long Short-Term Memory layer - Hochreiter 1997. Based on available runtime hardware and constraints, this layer will choose different implementations (cuDNN-based or backend-native) to maximize the performance. If a GPU is available and all the arguments to the layer meet the requirement of the cuDNN kernel (see below for details), the layer will use a fast cuDNN implementation when using the TensorFlow backend. The requirements to use the cuDNN implementation are: 1. `activation` == `tanh` 2. `recurrent_activation` == `sigmoid` 3. `dropout` == 0 and `recurrent_dropout` == 0 4. `unroll` is `False` 5. `use_bias` is `True` 6. Inputs, if use masking, are strictly right-padded. 7. Eager execution is enabled in the outermost context. For example: >>> inputs = np.random.random((32, 10, 8)) >>> lstm = keras.layers.LSTM(4) >>> output = lstm(inputs) >>> output.shape (32, 4) >>> lstm = keras.layers.LSTM( ... 4, return_sequences=True, return_state=True) >>> whole_seq_output, final_memory_state, final_carry_state = lstm(inputs) >>> whole_seq_output.shape (32, 10, 4) >>> final_memory_state.shape (32, 4) >>> final_carry_state.shape (32, 4) Args: units: Positive integer, dimensionality of the output space. activation: Activation function to use. Default: hyperbolic tangent (`tanh`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). recurrent_activation: Activation function to use for the recurrent step. Default: sigmoid (`sigmoid`). If you pass `None`, no activation is applied (ie. "linear" activation: `a(x) = x`). use_bias: Boolean, (default `True`), whether the layer should use a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix, used for the linear transformation of the inputs. Default: `"glorot_uniform"`. recurrent_initializer: Initializer for the `recurrent_kernel` weights matrix, used for the linear transformation of the recurrent state. Default: `"orthogonal"`. bias_initializer: Initializer for the bias vector. Default: `"zeros"`. unit_forget_bias: Boolean (default `True`). If `True`, add 1 to the bias of the forget gate at initialization. Setting it to `True` will also force `bias_initializer="zeros"`. This is recommended in [Jozefowicz et al.]( https://github.com/mlresearch/v37/blob/gh-pages/jozefowicz15.pdf) kernel_regularizer: Regularizer function applied to the `kernel` weights matrix. Default: `None`. recurrent_regularizer: Regularizer function applied to the `recurrent_kernel` weights matrix. Default: `None`. bias_regularizer: Regularizer function applied to the bias vector. Default: `None`. activity_regularizer: Regularizer function applied to the output of the layer (its "activation"). Default: `None`. kernel_constraint: Constraint function applied to the `kernel` weights matrix. Default: `None`. recurrent_constraint: Constraint function applied to the `recurrent_kernel` weights matrix. Default: `None`. bias_constraint: Constraint function applied to the bias vector. Default: `None`. dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0. recurrent_dropout: Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0. seed: Random seed for dropout. return_sequences: Boolean. Whether to return the last output in the output sequence, or the full sequence. Default: `False`. return_state: Boolean. Whether to return the last state in addition to the output. Default: `False`. go_backwards: Boolean (default: `False`). If `True`, process the input sequence backwards and return the reversed sequence. stateful: Boolean (default: `False`). If `True`, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch. unroll: Boolean (default False). If `True`, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences. Call arguments: inputs: A 3D tensor, with shape `(batch, timesteps, feature)`. mask: Binary tensor of shape `(samples, timesteps)` indicating whether a given timestep should be masked (optional). An individual `True` entry indicates that the corresponding timestep should be utilized, while a `False` entry indicates that the corresponding timestep should be ignored. Defaults to `None`. training: Python boolean indicating whether the layer should behave in training mode or in inference mode. This argument is passed to the cell when calling it. This is only relevant if `dropout` or `recurrent_dropout` is used (optional). Defaults to `None`. initial_state: List of initial state tensors to be passed to the first call of the cell (optional, `None` causes creation of zero-filled initial state tensors). Defaults to `None`. """ def __init__( self, units, activation="tanh", recurrent_activation="sigmoid", use_bias=True, kernel_initializer="glorot_uniform", recurrent_initializer="orthogonal", bias_initializer="zeros", unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, seed=None, return_sequences=False, return_state=False, go_backwards=False, stateful=False, unroll=False, **kwargs, ): cell = LSTMCell( units, activation=activation, recurrent_activation=recurrent_activation, use_bias=use_bias, kernel_initializer=kernel_initializer, unit_forget_bias=unit_forget_bias, recurrent_initializer=recurrent_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, recurrent_regularizer=recurrent_regularizer, bias_regularizer=bias_regularizer, kernel_constraint=kernel_constraint, recurrent_constraint=recurrent_constraint, bias_constraint=bias_constraint, dropout=dropout, recurrent_dropout=recurrent_dropout, dtype=kwargs.get("dtype", None), trainable=kwargs.get("trainable", True), name="lstm_cell", seed=seed, implementation=kwargs.pop("implementation", 2), ) super().__init__( cell, return_sequences=return_sequences, return_state=return_state, go_backwards=go_backwards, stateful=stateful, unroll=unroll, activity_regularizer=activity_regularizer, **kwargs, ) self.input_spec = InputSpec(ndim=3) if backend.backend() == "tensorflow" and backend.cudnn_ok( cell.activation, cell.recurrent_activation, self.unroll, cell.use_bias, ): self.supports_jit = False def inner_loop(self, sequences, initial_state, mask, training=False): if tree.is_nested(mask): mask = mask[0] if not self.dropout and not self.recurrent_dropout: try: # Backends are allowed to specify (optionally) optimized # implementation of the inner LSTM loop. In the case of # TF for instance, it will leverage cuDNN when feasible, and # it will raise NotImplementedError otherwise. out = backend.lstm( sequences, initial_state[0], initial_state[1], mask, kernel=self.cell.kernel, recurrent_kernel=self.cell.recurrent_kernel, bias=self.cell.bias, activation=self.cell.activation, recurrent_activation=self.cell.recurrent_activation, return_sequences=self.return_sequences, go_backwards=self.go_backwards, unroll=self.unroll, ) # We disable jit_compile for the model in this case, # since cuDNN ops aren't XLA compatible. if backend.backend() == "tensorflow": self.supports_jit = False return out except NotImplementedError: pass return super().inner_loop( sequences, initial_state, mask=mask, training=training ) def call(self, sequences, initial_state=None, mask=None, training=False): return super().call( sequences, mask=mask, training=training, initial_state=initial_state ) @property def units(self): return self.cell.units @property def activation(self): return self.cell.activation @property def recurrent_activation(self): return self.cell.recurrent_activation @property def use_bias(self): return self.cell.use_bias @property def unit_forget_bias(self): return self.cell.unit_forget_bias @property def kernel_initializer(self): return self.cell.kernel_initializer @property def recurrent_initializer(self): return self.cell.recurrent_initializer @property def bias_initializer(self): return self.cell.bias_initializer @property def kernel_regularizer(self): return self.cell.kernel_regularizer @property def recurrent_regularizer(self): return self.cell.recurrent_regularizer @property def bias_regularizer(self): return self.cell.bias_regularizer @property def kernel_constraint(self): return self.cell.kernel_constraint @property def recurrent_constraint(self): return self.cell.recurrent_constraint @property def bias_constraint(self): return self.cell.bias_constraint @property def dropout(self): return self.cell.dropout @property def recurrent_dropout(self): return self.cell.recurrent_dropout def get_config(self): config = { "units": self.units, "activation": activations.serialize(self.activation), "recurrent_activation": activations.serialize( self.recurrent_activation ), "use_bias": self.use_bias, "kernel_initializer": initializers.serialize( self.kernel_initializer ), "recurrent_initializer": initializers.serialize( self.recurrent_initializer ), "bias_initializer": initializers.serialize(self.bias_initializer), "unit_forget_bias": self.unit_forget_bias, "kernel_regularizer": regularizers.serialize( self.kernel_regularizer ), "recurrent_regularizer": regularizers.serialize( self.recurrent_regularizer ), "bias_regularizer": regularizers.serialize(self.bias_regularizer), "activity_regularizer": regularizers.serialize( self.activity_regularizer ), "kernel_constraint": constraints.serialize(self.kernel_constraint), "recurrent_constraint": constraints.serialize( self.recurrent_constraint ), "bias_constraint": constraints.serialize(self.bias_constraint), "dropout": self.dropout, "recurrent_dropout": self.recurrent_dropout, "seed": self.cell.seed, } base_config = super().get_config() del base_config["cell"] return {**base_config, **config} @classmethod def from_config(cls, config): return cls(**config)
keras/keras/layers/rnn/lstm.py/0
{ "file_path": "keras/keras/layers/rnn/lstm.py", "repo_id": "keras", "token_count": 11712 }
199
"""Deprecated sequence preprocessing APIs from Keras 1.""" import json import random import numpy as np from keras.api_export import keras_export from keras.trainers.data_adapters.py_dataset_adapter import PyDataset @keras_export("keras._legacy.preprocessing.sequence.TimeseriesGenerator") class TimeseriesGenerator(PyDataset): """Utility class for generating batches of temporal data. DEPRECATED. This class takes in a sequence of data-points gathered at equal intervals, along with time series parameters such as stride, length of history, etc., to produce batches for training/validation. Arguments: data: Indexable generator (such as list or Numpy array) containing consecutive data points (timesteps). The data should be at 2D, and axis 0 is expected to be the time dimension. targets: Targets corresponding to timesteps in `data`. It should have same length as `data`. length: Length of the output sequences (in number of timesteps). sampling_rate: Period between successive individual timesteps within sequences. For rate `r`, timesteps `data[i]`, `data[i-r]`, ... `data[i - length]` are used for create a sample sequence. stride: Period between successive output sequences. For stride `s`, consecutive output samples would be centered around `data[i]`, `data[i+s]`, `data[i+2*s]`, etc. start_index: Data points earlier than `start_index` will not be used in the output sequences. This is useful to reserve part of the data for test or validation. end_index: Data points later than `end_index` will not be used in the output sequences. This is useful to reserve part of the data for test or validation. shuffle: Whether to shuffle output samples, or instead draw them in chronological order. reverse: Boolean: if `true`, timesteps in each output sample will be in reverse chronological order. batch_size: Number of timeseries samples in each batch (except maybe the last one). Returns: A PyDataset instance. """ def __init__( self, data, targets, length, sampling_rate=1, stride=1, start_index=0, end_index=None, shuffle=False, reverse=False, batch_size=128, ): if len(data) != len(targets): raise ValueError( "Data and targets have to be " f"of same length. Data length is {len(data)} " f"while target length is {len(targets)}" ) self.data = data self.targets = targets self.length = length self.sampling_rate = sampling_rate self.stride = stride self.start_index = start_index + length if end_index is None: end_index = len(data) - 1 self.end_index = end_index self.shuffle = shuffle self.reverse = reverse self.batch_size = batch_size if self.start_index > self.end_index: raise ValueError( f"`start_index+length={self.start_index} " f"> end_index={self.end_index}` " "is disallowed, as no part of the sequence " "would be left to be used as current step." ) def __len__(self): return ( self.end_index - self.start_index + self.batch_size * self.stride ) // (self.batch_size * self.stride) def __getitem__(self, index): if self.shuffle: rows = np.random.randint( self.start_index, self.end_index + 1, size=self.batch_size ) else: i = self.start_index + self.batch_size * self.stride * index rows = np.arange( i, min(i + self.batch_size * self.stride, self.end_index + 1), self.stride, ) samples = np.array( [ self.data[row - self.length : row : self.sampling_rate] for row in rows ] ) targets = np.array([self.targets[row] for row in rows]) if self.reverse: return samples[:, ::-1, ...], targets return samples, targets def get_config(self): """Returns the TimeseriesGenerator configuration as Python dictionary. Returns: A Python dictionary with the TimeseriesGenerator configuration. """ data = self.data if type(self.data).__module__ == np.__name__: data = self.data.tolist() try: json_data = json.dumps(data) except TypeError as e: raise TypeError(f"Data not JSON Serializable: {data}") from e targets = self.targets if type(self.targets).__module__ == np.__name__: targets = self.targets.tolist() try: json_targets = json.dumps(targets) except TypeError as e: raise TypeError(f"Targets not JSON Serializable: {targets}") from e return { "data": json_data, "targets": json_targets, "length": self.length, "sampling_rate": self.sampling_rate, "stride": self.stride, "start_index": self.start_index, "end_index": self.end_index, "shuffle": self.shuffle, "reverse": self.reverse, "batch_size": self.batch_size, } def to_json(self, **kwargs): """Returns a JSON string containing the generator's configuration. Args: **kwargs: Additional keyword arguments to be passed to `json.dumps()`. Returns: A JSON string containing the tokenizer configuration. """ config = self.get_config() timeseries_generator_config = { "class_name": self.__class__.__name__, "config": config, } return json.dumps(timeseries_generator_config, **kwargs) @keras_export("keras._legacy.preprocessing.sequence.make_sampling_table") def make_sampling_table(size, sampling_factor=1e-5): """Generates a word rank-based probabilistic sampling table. DEPRECATED. Used for generating the `sampling_table` argument for `skipgrams`. `sampling_table[i]` is the probability of sampling the word i-th most common word in a dataset (more common words should be sampled less frequently, for balance). The sampling probabilities are generated according to the sampling distribution used in word2vec: ``` p(word) = (min(1, sqrt(word_frequency / sampling_factor) / (word_frequency / sampling_factor))) ``` We assume that the word frequencies follow Zipf's law (s=1) to derive a numerical approximation of frequency(rank): `frequency(rank) ~ 1/(rank * (log(rank) + gamma) + 1/2 - 1/(12*rank))` where `gamma` is the Euler-Mascheroni constant. Args: size: Int, number of possible words to sample. sampling_factor: The sampling factor in the word2vec formula. Returns: A 1D Numpy array of length `size` where the ith entry is the probability that a word of rank i should be sampled. """ gamma = 0.577 rank = np.arange(size) rank[0] = 1 inv_fq = rank * (np.log(rank) + gamma) + 0.5 - 1.0 / (12.0 * rank) f = sampling_factor * inv_fq return np.minimum(1.0, f / np.sqrt(f)) @keras_export("keras._legacy.preprocessing.sequence.skipgrams") def skipgrams( sequence, vocabulary_size, window_size=4, negative_samples=1.0, shuffle=True, categorical=False, sampling_table=None, seed=None, ): """Generates skipgram word pairs. DEPRECATED. This function transforms a sequence of word indexes (list of integers) into tuples of words of the form: - (word, word in the same window), with label 1 (positive samples). - (word, random word from the vocabulary), with label 0 (negative samples). Read more about Skipgram in this gnomic paper by Mikolov et al.: [Efficient Estimation of Word Representations in Vector Space](http://arxiv.org/pdf/1301.3781v3.pdf) Args: sequence: A word sequence (sentence), encoded as a list of word indices (integers). If using a `sampling_table`, word indices are expected to match the rank of the words in a reference dataset (e.g. 10 would encode the 10-th most frequently occurring token). Note that index 0 is expected to be a non-word and will be skipped. vocabulary_size: Int, maximum possible word index + 1 window_size: Int, size of sampling windows (technically half-window). The window of a word `w_i` will be `[i - window_size, i + window_size+1]`. negative_samples: Float >= 0. 0 for no negative (i.e. random) samples. 1 for same number as positive samples. shuffle: Whether to shuffle the word couples before returning them. categorical: bool. if False, labels will be integers (eg. `[0, 1, 1 .. ]`), if `True`, labels will be categorical, e.g. `[[1,0],[0,1],[0,1] .. ]`. sampling_table: 1D array of size `vocabulary_size` where the entry i encodes the probability to sample a word of rank i. seed: Random seed. Returns: couples, labels: where `couples` are int pairs and `labels` are either 0 or 1. Note: By convention, index 0 in the vocabulary is a non-word and will be skipped. """ couples = [] labels = [] for i, wi in enumerate(sequence): if not wi: continue if sampling_table is not None: if sampling_table[wi] < random.random(): continue window_start = max(0, i - window_size) window_end = min(len(sequence), i + window_size + 1) for j in range(window_start, window_end): if j != i: wj = sequence[j] if not wj: continue couples.append([wi, wj]) if categorical: labels.append([0, 1]) else: labels.append(1) if negative_samples > 0: num_negative_samples = int(len(labels) * negative_samples) words = [c[0] for c in couples] random.shuffle(words) couples += [ [words[i % len(words)], random.randint(1, vocabulary_size - 1)] for i in range(num_negative_samples) ] if categorical: labels += [[1, 0]] * num_negative_samples else: labels += [0] * num_negative_samples if shuffle: if seed is None: seed = random.randint(0, 10e6) random.seed(seed) random.shuffle(couples) random.seed(seed) random.shuffle(labels) return couples, labels
keras/keras/legacy/preprocessing/sequence.py/0
{ "file_path": "keras/keras/legacy/preprocessing/sequence.py", "repo_id": "keras", "token_count": 4854 }
200
from keras import backend from keras import ops from keras.api_export import keras_export from keras.losses.loss import squeeze_or_expand_to_same_rank from keras.metrics import reduction_metrics def accuracy(y_true, y_pred): y_pred = ops.convert_to_tensor(y_pred) y_true = ops.convert_to_tensor(y_true, dtype=y_pred.dtype) y_true, y_pred = squeeze_or_expand_to_same_rank(y_true, y_pred) return ops.mean( ops.cast(ops.equal(y_true, y_pred), dtype=backend.floatx()), axis=-1, ) @keras_export("keras.metrics.Accuracy") class Accuracy(reduction_metrics.MeanMetricWrapper): """Calculates how often predictions equal labels. This metric creates two local variables, `total` and `count` that are used to compute the frequency with which `y_pred` matches `y_true`. This frequency is ultimately returned as `binary accuracy`: an idempotent operation that simply divides `total` by `count`. If `sample_weight` is `None`, weights default to 1. Use `sample_weight` of 0 to mask values. Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result. Standalone usage: >>> m = keras.metrics.Accuracy() >>> m.update_state([[1], [2], [3], [4]], [[0], [2], [3], [4]]) >>> m.result() 0.75 >>> m.reset_state() >>> m.update_state([[1], [2], [3], [4]], [[0], [2], [3], [4]], ... sample_weight=[1, 1, 0, 0]) >>> m.result() 0.5 Usage with `compile()` API: ```python model.compile(optimizer='sgd', loss='binary_crossentropy', metrics=[keras.metrics.Accuracy()]) ``` """ def __init__(self, name="accuracy", dtype=None): super().__init__(fn=accuracy, name=name, dtype=dtype) # Metric should be maximized during optimization. self._direction = "up" def get_config(self): return {"name": self.name, "dtype": self.dtype} @keras_export("keras.metrics.binary_accuracy") def binary_accuracy(y_true, y_pred, threshold=0.5): y_true = ops.convert_to_tensor(y_true) y_pred = ops.convert_to_tensor(y_pred) y_true, y_pred = squeeze_or_expand_to_same_rank(y_true, y_pred) threshold = ops.cast(threshold, y_pred.dtype) y_pred = ops.cast(y_pred > threshold, y_true.dtype) return ops.mean( ops.cast(ops.equal(y_true, y_pred), dtype=backend.floatx()), axis=-1, ) @keras_export("keras.metrics.BinaryAccuracy") class BinaryAccuracy(reduction_metrics.MeanMetricWrapper): """Calculates how often predictions match binary labels. This metric creates two local variables, `total` and `count` that are used to compute the frequency with which `y_pred` matches `y_true`. This frequency is ultimately returned as `binary accuracy`: an idempotent operation that simply divides `total` by `count`. If `sample_weight` is `None`, weights default to 1. Use `sample_weight` of 0 to mask values. Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result. threshold: (Optional) Float representing the threshold for deciding whether prediction values are 1 or 0. Standalone usage: >>> m = keras.metrics.BinaryAccuracy() >>> m.update_state([[1], [1], [0], [0]], [[0.98], [1], [0], [0.6]]) >>> m.result() 0.75 >>> m.reset_state() >>> m.update_state([[1], [1], [0], [0]], [[0.98], [1], [0], [0.6]], ... sample_weight=[1, 0, 0, 1]) >>> m.result() 0.5 Usage with `compile()` API: ```python model.compile(optimizer='sgd', loss='binary_crossentropy', metrics=[keras.metrics.BinaryAccuracy()]) ``` """ def __init__(self, name="binary_accuracy", dtype=None, threshold=0.5): if threshold is not None and (threshold <= 0 or threshold >= 1): raise ValueError( "Invalid value for argument `threshold`. " "Expected a value in interval (0, 1). " f"Received: threshold={threshold}" ) super().__init__( fn=binary_accuracy, name=name, dtype=dtype, threshold=threshold ) self.threshold = threshold # Metric should be maximized during optimization. self._direction = "up" def get_config(self): return { "name": self.name, "dtype": self.dtype, "threshold": self.threshold, } @keras_export("keras.metrics.categorical_accuracy") def categorical_accuracy(y_true, y_pred): y_true = ops.argmax(y_true, axis=-1) reshape_matches = False y_pred = ops.convert_to_tensor(y_pred) y_true = ops.convert_to_tensor(y_true, dtype=y_true.dtype) y_true_org_shape = ops.shape(y_true) y_pred_rank = len(y_pred.shape) y_true_rank = len(y_true.shape) # If the shape of y_true is (num_samples, 1), squeeze to (num_samples,) if ( (y_true_rank is not None) and (y_pred_rank is not None) and (len(y_true.shape) == len(y_pred.shape)) ): y_true = ops.squeeze(y_true, -1) reshape_matches = True y_pred = ops.argmax(y_pred, axis=-1) # If the predicted output and actual output types don't match, force cast # them to match. if y_pred.dtype != y_true.dtype: y_pred = ops.cast(y_pred, dtype=y_true.dtype) matches = ops.cast(ops.equal(y_true, y_pred), backend.floatx()) if reshape_matches: matches = ops.reshape(matches, y_true_org_shape) return matches @keras_export("keras.metrics.CategoricalAccuracy") class CategoricalAccuracy(reduction_metrics.MeanMetricWrapper): """Calculates how often predictions match one-hot labels. You can provide logits of classes as `y_pred`, since argmax of logits and probabilities are same. This metric creates two local variables, `total` and `count` that are used to compute the frequency with which `y_pred` matches `y_true`. This frequency is ultimately returned as `categorical accuracy`: an idempotent operation that simply divides `total` by `count`. `y_pred` and `y_true` should be passed in as vectors of probabilities, rather than as labels. If necessary, use `ops.one_hot` to expand `y_true` as a vector. If `sample_weight` is `None`, weights default to 1. Use `sample_weight` of 0 to mask values. Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result. Standalone usage: >>> m = keras.metrics.CategoricalAccuracy() >>> m.update_state([[0, 0, 1], [0, 1, 0]], [[0.1, 0.9, 0.8], ... [0.05, 0.95, 0]]) >>> m.result() 0.5 >>> m.reset_state() >>> m.update_state([[0, 0, 1], [0, 1, 0]], [[0.1, 0.9, 0.8], ... [0.05, 0.95, 0]], ... sample_weight=[0.7, 0.3]) >>> m.result() 0.3 Usage with `compile()` API: ```python model.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=[keras.metrics.CategoricalAccuracy()]) ``` """ def __init__(self, name="categorical_accuracy", dtype=None): super().__init__(fn=categorical_accuracy, name=name, dtype=dtype) # Metric should be maximized during optimization. self._direction = "up" def get_config(self): return {"name": self.name, "dtype": self.dtype} @keras_export("keras.metrics.sparse_categorical_accuracy") def sparse_categorical_accuracy(y_true, y_pred): reshape_matches = False y_pred = ops.convert_to_tensor(y_pred) y_true = ops.convert_to_tensor(y_true, dtype=y_true.dtype) y_true_org_shape = ops.shape(y_true) y_pred_rank = len(y_pred.shape) y_true_rank = len(y_true.shape) # If the shape of y_true is (num_samples, 1), squeeze to (num_samples,) if ( (y_true_rank is not None) and (y_pred_rank is not None) and (len(y_true.shape) == len(y_pred.shape)) and ops.shape(y_true)[-1] == 1 ): y_true = ops.squeeze(y_true, -1) reshape_matches = True y_pred = ops.argmax(y_pred, axis=-1) # If the predicted output and actual output types don't match, force cast # them to match. if y_pred.dtype != y_true.dtype: y_pred = ops.cast(y_pred, y_true.dtype) matches = ops.cast(ops.equal(y_true, y_pred), backend.floatx()) if reshape_matches: matches = ops.reshape(matches, y_true_org_shape) # if shape is (num_samples, 1) squeeze if len(matches.shape) > 1 and matches.shape[-1] == 1: matches = ops.squeeze(matches, -1) return matches @keras_export("keras.metrics.SparseCategoricalAccuracy") class SparseCategoricalAccuracy(reduction_metrics.MeanMetricWrapper): """Calculates how often predictions match integer labels. ```python acc = np.dot(sample_weight, np.equal(y_true, np.argmax(y_pred, axis=1)) ``` You can provide logits of classes as `y_pred`, since argmax of logits and probabilities are same. This metric creates two local variables, `total` and `count` that are used to compute the frequency with which `y_pred` matches `y_true`. This frequency is ultimately returned as `sparse categorical accuracy`: an idempotent operation that simply divides `total` by `count`. If `sample_weight` is `None`, weights default to 1. Use `sample_weight` of 0 to mask values. Args: name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result. Standalone usage: >>> m = keras.metrics.SparseCategoricalAccuracy() >>> m.update_state([[2], [1]], [[0.1, 0.6, 0.3], [0.05, 0.95, 0]]) >>> m.result() 0.5 >>> m.reset_state() >>> m.update_state([[2], [1]], [[0.1, 0.6, 0.3], [0.05, 0.95, 0]], ... sample_weight=[0.7, 0.3]) >>> m.result() 0.3 Usage with `compile()` API: ```python model.compile(optimizer='sgd', loss='sparse_categorical_crossentropy', metrics=[keras.metrics.SparseCategoricalAccuracy()]) ``` """ def __init__(self, name="sparse_categorical_accuracy", dtype=None): super().__init__(fn=sparse_categorical_accuracy, name=name, dtype=dtype) # Metric should be maximized during optimization. self._direction = "up" def get_config(self): return {"name": self.name, "dtype": self.dtype} @keras_export("keras.metrics.top_k_categorical_accuracy") def top_k_categorical_accuracy(y_true, y_pred, k=5): reshape_matches = False y_pred = ops.convert_to_tensor(y_pred) y_true = ops.convert_to_tensor(y_true, dtype=y_true.dtype) y_true = ops.argmax(y_true, axis=-1) y_true_rank = len(y_true.shape) y_pred_rank = len(y_pred.shape) y_true_org_shape = ops.shape(y_true) # Flatten y_pred to (batch_size, num_samples) and y_true to (num_samples,) if (y_true_rank is not None) and (y_pred_rank is not None): if y_pred_rank > 2: y_pred = ops.reshape(y_pred, [-1, y_pred.shape[-1]]) if y_true_rank > 1: reshape_matches = True y_true = ops.reshape(y_true, [-1]) matches = ops.cast( ops.in_top_k(ops.cast(y_true, "int32"), y_pred, k=k), dtype=backend.floatx(), ) # returned matches is expected to have same shape as y_true input if reshape_matches: matches = ops.reshape(matches, y_true_org_shape) return matches @keras_export("keras.metrics.TopKCategoricalAccuracy") class TopKCategoricalAccuracy(reduction_metrics.MeanMetricWrapper): """Computes how often targets are in the top `K` predictions. Args: k: (Optional) Number of top elements to look at for computing accuracy. Defaults to `5`. name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result. Standalone usage: >>> m = keras.metrics.TopKCategoricalAccuracy(k=1) >>> m.update_state([[0, 0, 1], [0, 1, 0]], ... [[0.1, 0.9, 0.8], [0.05, 0.95, 0]]) >>> m.result() 0.5 >>> m.reset_state() >>> m.update_state([[0, 0, 1], [0, 1, 0]], ... [[0.1, 0.9, 0.8], [0.05, 0.95, 0]], ... sample_weight=[0.7, 0.3]) >>> m.result() 0.3 Usage with `compile()` API: ```python model.compile(optimizer='sgd', loss='categorical_crossentropy', metrics=[keras.metrics.TopKCategoricalAccuracy()]) ``` """ def __init__(self, k=5, name="top_k_categorical_accuracy", dtype=None): super().__init__( fn=top_k_categorical_accuracy, name=name, dtype=dtype, k=k, ) self.k = k # Metric should be maximized during optimization. self._direction = "up" def get_config(self): return {"name": self.name, "dtype": self.dtype, "k": self.k} @keras_export("keras.metrics.sparse_top_k_categorical_accuracy") def sparse_top_k_categorical_accuracy(y_true, y_pred, k=5): reshape_matches = False y_pred = ops.convert_to_tensor(y_pred) y_true = ops.convert_to_tensor(y_true, dtype=y_true.dtype) y_true_rank = len(y_true.shape) y_pred_rank = len(y_pred.shape) y_true_org_shape = ops.shape(y_true) # Flatten y_pred to (batch_size, num_samples) and y_true to (num_samples,) if (y_true_rank is not None) and (y_pred_rank is not None): if y_pred_rank > 2: y_pred = ops.reshape(y_pred, [-1, y_pred.shape[-1]]) if y_true_rank > 1: reshape_matches = True y_true = ops.reshape(y_true, [-1]) matches = ops.cast( ops.in_top_k(ops.cast(y_true, "int32"), y_pred, k=k), dtype=backend.floatx(), ) # returned matches is expected to have same shape as y_true input if reshape_matches: matches = ops.reshape(matches, y_true_org_shape) return matches @keras_export("keras.metrics.SparseTopKCategoricalAccuracy") class SparseTopKCategoricalAccuracy(reduction_metrics.MeanMetricWrapper): """Computes how often integer targets are in the top `K` predictions. Args: k: (Optional) Number of top elements to look at for computing accuracy. Defaults to `5`. name: (Optional) string name of the metric instance. dtype: (Optional) data type of the metric result. Standalone usage: >>> m = keras.metrics.SparseTopKCategoricalAccuracy(k=1) >>> m.update_state([2, 1], [[0.1, 0.9, 0.8], [0.05, 0.95, 0]]) >>> m.result() 0.5 >>> m.reset_state() >>> m.update_state([2, 1], [[0.1, 0.9, 0.8], [0.05, 0.95, 0]], ... sample_weight=[0.7, 0.3]) >>> m.result() 0.3 Usage with `compile()` API: ```python model.compile(optimizer='sgd', loss='sparse_categorical_crossentropy', metrics=[keras.metrics.SparseTopKCategoricalAccuracy()]) ``` """ def __init__( self, k=5, name="sparse_top_k_categorical_accuracy", dtype=None ): super().__init__( fn=sparse_top_k_categorical_accuracy, name=name, dtype=dtype, k=k, ) self.k = k # Metric should be maximized during optimization. self._direction = "up" def get_config(self): return {"name": self.name, "dtype": self.dtype, "k": self.k}
keras/keras/metrics/accuracy_metrics.py/0
{ "file_path": "keras/keras/metrics/accuracy_metrics.py", "repo_id": "keras", "token_count": 6920 }
201
import numpy as np from keras import testing from keras.metrics import reduction_metrics from keras.saving import register_keras_serializable class SumTest(testing.TestCase): def test_config(self): sum_obj = reduction_metrics.Sum(name="sum", dtype="float32") self.assertEqual(sum_obj.name, "sum") self.assertEqual(len(sum_obj.variables), 1) self.assertEqual(sum_obj._dtype, "float32") # Check save and restore config sum_obj2 = reduction_metrics.Sum.from_config(sum_obj.get_config()) self.assertEqual(sum_obj2.name, "sum") self.assertEqual(len(sum_obj2.variables), 1) self.assertEqual(sum_obj2._dtype, "float32") def test_unweighted(self): sum_obj = reduction_metrics.Sum(name="sum", dtype="float32") sum_obj.update_state([1, 3, 5, 7]) result = sum_obj.result() self.assertAllClose(result, 16.0, atol=1e-3) def test_weighted(self): sum_obj = reduction_metrics.Sum(name="sum", dtype="float32") sum_obj.update_state([1, 3, 5, 7], sample_weight=[1, 1, 0, 0]) result = sum_obj.result() self.assertAllClose(result, 4.0, atol=1e-3) def test_weighted_nd(self): sum_obj = reduction_metrics.Sum(name="sum", dtype="float32") sum_obj.update_state([[1, 3], [5, 7]], sample_weight=[[1, 1], [1, 0]]) result = sum_obj.result() self.assertAllClose(result, 9.0, atol=1e-3) class MeanTest(testing.TestCase): def test_config(self): mean_obj = reduction_metrics.Mean(name="mean", dtype="float32") self.assertEqual(mean_obj.name, "mean") self.assertEqual(len(mean_obj.variables), 2) self.assertEqual(mean_obj._dtype, "float32") # Check save and restore config mean_obj2 = reduction_metrics.Mean.from_config(mean_obj.get_config()) self.assertEqual(mean_obj2.name, "mean") self.assertEqual(len(mean_obj2.variables), 2) self.assertEqual(mean_obj2._dtype, "float32") def test_unweighted(self): mean_obj = reduction_metrics.Mean(name="mean", dtype="float32") mean_obj.update_state([1, 3, 5, 7]) result = mean_obj.result() self.assertAllClose(result, 4.0, atol=1e-3) def test_weighted(self): mean_obj = reduction_metrics.Mean(name="mean", dtype="float32") mean_obj.update_state([1, 3, 5, 7], sample_weight=[1, 1, 0, 0]) result = mean_obj.result() self.assertAllClose(result, 2.0, atol=1e-3) def test_weighted_negative_weights(self): mean_obj = reduction_metrics.Mean(name="mean", dtype="float32") mean_obj.update_state([1, 3, 5, 7], sample_weight=[-1, -1, 0, 0]) result = mean_obj.result() self.assertAllClose(result, 2.0, atol=1e-3) def test_weighted_nd(self): mean_obj = reduction_metrics.Mean(name="mean", dtype="float32") mean_obj.update_state([[1, 3], [5, 7]], sample_weight=[[1, 1], [1, 0]]) result = mean_obj.result() self.assertAllClose(result, 3.0, atol=1e-3) # How users would register a custom function or class to use with # MeanMetricWrapper. @register_keras_serializable(package="test", name="mse") def mse(y_true, y_pred): return (y_true - y_pred) ** 2 class MetricWrapperTest(testing.TestCase): def test_config(self): mse_obj = reduction_metrics.MeanMetricWrapper( fn=mse, name="mse", dtype="float32" ) self.assertEqual(mse_obj.name, "mse") self.assertEqual(len(mse_obj.variables), 2) self.assertEqual(mse_obj._dtype, "float32") # Check save and restore config mse_obj2 = reduction_metrics.MeanMetricWrapper.from_config( mse_obj.get_config() ) self.assertEqual(mse_obj2.name, "mse") self.assertEqual(len(mse_obj2.variables), 2) self.assertEqual(mse_obj2._dtype, "float32") self.assertTrue("fn" in mse_obj2.get_config()) def test_unweighted(self): mse_obj = reduction_metrics.MeanMetricWrapper( fn=mse, name="mse", dtype="float32" ) y_true = np.array( [[0, 1, 0, 1, 0], [0, 0, 1, 1, 1], [1, 1, 1, 1, 0], [0, 0, 0, 0, 1]] ) y_pred = np.array( [[0, 0, 1, 1, 0], [1, 1, 1, 1, 1], [0, 1, 0, 1, 0], [1, 1, 1, 1, 1]] ) mse_obj.update_state(y_true, y_pred) result = mse_obj.result() self.assertAllClose(0.5, result, atol=1e-5) def test_weighted(self): mse_obj = reduction_metrics.MeanMetricWrapper( fn=mse, name="mse", dtype="float32" ) y_true = np.array( [[0, 1, 0, 1, 0], [0, 0, 1, 1, 1], [1, 1, 1, 1, 0], [0, 0, 0, 0, 1]] ) y_pred = np.array( [[0, 0, 1, 1, 0], [1, 1, 1, 1, 1], [0, 1, 0, 1, 0], [1, 1, 1, 1, 1]] ) sample_weight = np.array([1.0, 1.5, 2.0, 2.5]) result = mse_obj(y_true, y_pred, sample_weight=sample_weight) self.assertAllClose(0.54285, result, atol=1e-5)
keras/keras/metrics/reduction_metrics_test.py/0
{ "file_path": "keras/keras/metrics/reduction_metrics_test.py", "repo_id": "keras", "token_count": 2434 }
202
import contextlib from unittest.mock import Mock import numpy as np import pytest import tree from absl.testing import parameterized from keras import backend from keras import layers from keras import losses from keras import models from keras import ops from keras import optimizers from keras import testing from keras.backend.common.keras_tensor import KerasTensor from keras.backend.common.variables import ALLOWED_DTYPES from keras.ops import core class CoreOpsStaticShapeTest(testing.TestCase): def test_scatter(self): indices = KerasTensor((5, 2)) values = KerasTensor((5,)) shape = (4, 4) self.assertEqual(core.scatter(indices, values, shape).shape, (4, 4)) def test_scatter_update(self): inputs = KerasTensor((4, 4)) indices = KerasTensor((5, 2)) updates = KerasTensor((5,)) self.assertEqual( core.scatter_update(inputs, indices, updates).shape, (4, 4) ) inputs = KerasTensor((4, 4, 4)) indices = KerasTensor((5, 2)) updates = KerasTensor((5, 4)) self.assertEqual( core.scatter_update(inputs, indices, updates).shape, (4, 4, 4) ) def test_slice_update(self): inputs = KerasTensor((4, 4)) start_indices = KerasTensor((2,)) updates = KerasTensor((2, 2)) self.assertEqual( core.slice_update(inputs, start_indices, updates).shape, (4, 4) ) inputs = KerasTensor((4, 4, 4)) start_indices = KerasTensor((3,)) updates = KerasTensor((2, 2, 2)) self.assertEqual( core.slice_update(inputs, start_indices, updates).shape, (4, 4, 4) ) def test_fori_loop(self): def body_fun(i, x): return x + i initial_value = KerasTensor((3, 5, 7)) result = core.fori_loop(0, 10, body_fun, initial_value) self.assertEqual(result.shape, (3, 5, 7)) def test_unstack(self): x = KerasTensor((2, 3, 4)) axis = 1 out = core.unstack(x, axis=axis) self.assertEqual(len(out), 3) for o in out: self.assertEqual(o.shape, (2, 4)) x = KerasTensor((2, None, None)) axis, num = 1, 3 out = core.unstack(x, num=num, axis=axis) self.assertEqual(len(out), 3) for o in out: self.assertEqual(o.shape, (2, None)) with self.assertRaisesRegex( ValueError, r"Cannot infer argument `num` from shape" ): core.unstack(x, axis=axis) class CoreOpsCorrectnessTest(testing.TestCase, parameterized.TestCase): def test_scatter(self): # Test 1D indices = np.array([[1], [3], [4], [7]]) values = np.array([9, 10, 11, 12]) self.assertAllClose( core.scatter(indices, values, (8,)), [0, 9, 0, 10, 11, 0, 0, 12], ) # Test 2D indices = np.array([[0, 1], [2, 0]]) values = np.array([5, 10]) self.assertAllClose( core.scatter(indices, values, (3, 2)), [[0, 5], [0, 0], [10, 0]] ) # Test 3D indices = np.array([[1], [3]]) values = np.array( [ [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]], [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]], ] ) self.assertAllClose( core.scatter(indices, values, (4, 4, 4)), [ [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]], [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]], ], ) # Test slices indices = np.array([[2], [4]]) values = np.array([[1, 2, 3], [4, 5, 6]]) self.assertAllClose( core.scatter(indices, values, (6, 3)), [[0, 0, 0], [0, 0, 0], [1, 2, 3], [0, 0, 0], [4, 5, 6], [0, 0, 0]], ) # Duplicate indices indices = np.array([[0], [0]]) values = np.array([1, 1]) self.assertAllClose(core.scatter(indices, values, (1,)), [2]) def test_scatter_update(self): # Test 1D. inputs = np.array([0, 0, 0, 0, 0, 0, 0, 0]) indices = [[1], [3], [4], [7]] updates = np.array([9, 10, 11, 12]) self.assertAllClose( core.scatter_update(inputs, indices, updates), [0, 9, 0, 10, 11, 0, 0, 12], ) # Test 2D. inputs = np.array([[1, 1], [1, 1], [1, 1]]) indices = [[0, 1], [2, 0]] updates = np.array([5, 10]) self.assertAllClose( core.scatter_update(inputs, indices, updates), [[1, 5], [1, 1], [10, 1]], ) # Test updates has multiple dimension. inputs = np.ones([4, 4, 4]) indices = [[1, 1], [2, 2]] updates = np.array([[0, 1, 2, 3], [3, 2, 1, 0]], dtype=np.float64) outputs = core.scatter_update(inputs, indices, updates) self.assertTrue(ops.is_tensor(outputs)) self.assertAllClose(outputs[1, 1, :], [0, 1, 2, 3]) self.assertAllClose(outputs[2, 2, :], [3, 2, 1, 0]) def test_slice(self): # Test 1D. inputs = np.arange(10) start_indices = np.array([1]) shape = np.array([4]) self.assertAllClose( core.slice(inputs, start_indices, shape), [1, 2, 3, 4], ) # Test 2D. inputs = np.broadcast_to(np.arange(10), (4, 10)) start_indices = np.array([1, 1]) shape = np.array([2, 4]) self.assertAllClose( core.slice(inputs, start_indices, shape), [[1, 2, 3, 4], [1, 2, 3, 4]], ) # Test N-D. inputs = np.broadcast_to(np.arange(10), (4, 4, 4, 10)) start_indices = np.array([1, 1, 1, 1]) shape = np.array([1, 2, 3, 4]) outputs = core.slice(inputs, start_indices, shape) expected = np.broadcast_to(np.arange(1, 5), (1, 2, 3, 4)) self.assertAllClose(outputs, expected) def test_dynamic_slice(self): def cond(index, inputs, sum): return index < 10 def body(index, inputs, sum): sum = sum + core.slice(inputs, [index], [1]) index = index + 1 return index, inputs, sum index, inputs, sum = 0, np.arange(10), np.array([0]) index, inputs, sum = core.while_loop(cond, body, (index, inputs, sum)) self.assertAllClose(sum, [45]) def test_slice_update(self): # Test 1D. inputs = np.array([0, 0, 0, 0, 0, 0, 0, 0]) start_indices = np.array([1]) updates = np.array([9, 10, 11, 12]) self.assertAllClose( core.slice_update(inputs, start_indices, updates), [0, 9, 10, 11, 12, 0, 0, 0], ) # Test 2D. inputs = np.array([[1, 1], [1, 1], [1, 1]]) start_indices = [1, 0] updates = np.array([[2, 2], [2, 2]]) self.assertAllClose( core.slice_update(inputs, start_indices, updates), [[1, 1], [2, 2], [2, 2]], ) # Test N-D. inputs = np.ones([4, 4, 4, 4]) start_indices = [1, 1, 2, 2] updates = np.zeros([2, 2, 2, 2]) outputs = core.slice_update(inputs, start_indices, updates) self.assertAllClose(outputs[1:3, 1:3, 2:4, 2:4], np.zeros([2, 2, 2, 2])) @parameterized.named_parameters( [ { "testcase_name": "with_max", "state": (np.array(0), np.array(1)), "output": (np.array(5), np.array(6)), "maximum_iterations": 5, }, { "testcase_name": "no_max", "state": (np.array(0), np.array(1)), "output": (np.array(10), np.array(11)), "maximum_iterations": None, }, ] ) def test_while_loop_list_data(self, state, output, maximum_iterations): def cond(*args): return tree.flatten(args)[0] < 10 def body(*args): return tree.map_structure(lambda x: x + 1, args) state = core.while_loop( cond, body, state, maximum_iterations=maximum_iterations ) tree.map_structure(self.assertAllClose, state, output) @parameterized.named_parameters( [ { "testcase_name": "scalar_data_with_max", "state": np.array(0), "output": np.array(5), "maximum_iterations": 5, }, { "testcase_name": "scalar_data_no_max", "state": np.array(0), "output": np.array(10), "maximum_iterations": None, }, { "testcase_name": "nested_data_with_max", "state": { "a": np.array(0), "b": (np.array(1), np.array(2)), }, "output": { "a": np.array(5), "b": (np.array(6), np.array(7)), }, "maximum_iterations": 5, }, { "testcase_name": "nested_data_no_max", "state": { "a": np.array(0), "b": (np.array(1), np.array(2)), }, "output": { "a": np.array(10), "b": (np.array(11), np.array(12)), }, "maximum_iterations": None, }, ] ) def test_while_loop(self, state, output, maximum_iterations): def cond(args): return tree.flatten(args)[0] < 10 def body(args): return tree.map_structure(lambda x: x + 1, args) state = core.while_loop( cond, body, state, maximum_iterations=maximum_iterations ) tree.map_structure(self.assertAllClose, state, output) def test_fori_loop(self): def body_fun(i, x): return x + i initial_value = np.array(0) result = core.fori_loop(0, 10, body_fun, initial_value) self.assertAllClose(result, 45) @pytest.mark.requires_trainable_backend def test_stop_gradient(self): class ExampleLayer(layers.Layer): def __init__(self): super().__init__() self.w = self.add_weight(shape=(1,), initializer="zeros") self.b = self.add_weight(shape=(1,), initializer="zeros") def call(self, x, training=False): return x * ops.stop_gradient(self.w.value) + self.b model = models.Sequential([ExampleLayer()]) model.compile( optimizer=optimizers.SGD(), loss=losses.MeanSquaredError() ) rng = np.random.default_rng(0) x = np.ones((2, 4), dtype=np.float32) y = rng.standard_normal((2, 4), dtype=np.float32) model.fit(x, y, epochs=1, batch_size=2) self.assertEqual(model.layers[0].w.numpy(), 0.0) self.assertNotEqual(model.layers[0].b.numpy(), 0.0) def test_stop_gradient_return(self): x = ops.random.uniform(shape=(2, 4), dtype="float32") y = ops.stop_gradient(x) self.assertAllClose(x, y) def test_shape(self): x = np.ones((2, 3, 7, 1)) self.assertAllEqual(core.shape(x), (2, 3, 7, 1)) x = KerasTensor((None, 3, None, 1)) self.assertAllEqual(core.shape(x), (None, 3, None, 1)) @pytest.mark.skipif( not backend.SUPPORTS_SPARSE_TENSORS, reason="Backend does not support sparse tensors.", ) def test_shape_sparse(self): if backend.backend() == "tensorflow": import tensorflow as tf x = tf.SparseTensor([[0, 0], [1, 2]], [1.0, 2.0], (2, 3)) elif backend.backend() == "jax": import jax.experimental.sparse as jax_sparse x = jax_sparse.BCOO(([1.0, 2.0], [[0, 0], [1, 2]]), shape=(2, 3)) else: self.fail(f"Sparse is unsupported with backend {backend.backend()}") self.assertAllEqual(core.shape(x), (2, 3)) def test_convert_to_tensor(self): x = np.ones((2,)) x = ops.convert_to_tensor(x) x = ops.convert_to_numpy(x) self.assertAllEqual(x, (1, 1)) self.assertIsInstance(x, np.ndarray) # Empty lists should give an empty array. x = ops.convert_to_tensor([]) np_x = ops.convert_to_numpy(x) self.assertTrue(ops.is_tensor(x)) self.assertAllEqual(x, []) self.assertIsInstance(np_x, np.ndarray) # Partially converted. x = ops.convert_to_tensor((1, ops.array(2), 3)) self.assertAllEqual(x, (1, 2, 3)) with self.assertRaises(ValueError): ops.convert_to_numpy(KerasTensor((2,))) @pytest.mark.skipif( not backend.SUPPORTS_SPARSE_TENSORS, reason="Backend does not support sparse tensors.", ) def test_convert_to_tensor_sparse(self): if backend.backend() == "tensorflow": import tensorflow as tf x = tf.SparseTensor([[0, 0], [1, 2]], [1.0, 2.0], (2, 3)) sparse_class = tf.SparseTensor elif backend.backend() == "jax": import jax.experimental.sparse as jax_sparse x = jax_sparse.BCOO(([1.0, 2.0], [[0, 0], [1, 2]]), shape=(2, 3)) sparse_class = jax_sparse.JAXSparse else: self.fail(f"Sparse is unsupported with backend {backend.backend()}") x_default = ops.convert_to_tensor(x) self.assertIsInstance(x_default, sparse_class) self.assertAllClose(x, x_default) x_sparse = ops.convert_to_tensor(x, sparse=True) self.assertIsInstance(x_sparse, sparse_class) self.assertAllClose(x, x_sparse) x_dense = ops.convert_to_tensor(x, sparse=False) self.assertNotIsInstance(x_dense, sparse_class) self.assertAllClose(x, x_dense) x_numpy = ops.convert_to_numpy(x) self.assertIsInstance(x_numpy, np.ndarray) self.assertAllClose(x_numpy, x_dense) def test_cond(self): t = ops.cond(True, lambda: 0, lambda: 1) self.assertEqual(t, 0) f = ops.cond(False, lambda: 0, lambda: 1) self.assertEqual(f, 1) f = ops.cond(False, lambda: None, lambda: None) self.assertEqual(f, None) for val in [True, False]: out = ops.cond( val, lambda: KerasTensor((16, 3)), lambda: KerasTensor((16, 3)), ) self.assertEqual((16, 3), out.shape) out = ops.cond( KerasTensor((), dtype="bool"), lambda: ops.ones((1, 3)), lambda: ops.zeros((1, 3)), ) self.assertEqual((1, 3), out.shape) out = ops.cond( KerasTensor((), dtype="bool"), lambda: KerasTensor((3,)), lambda: KerasTensor((3,)), ) self.assertEqual((3,), out.shape) with self.assertRaises(ValueError): ops.cond( KerasTensor((), dtype="bool"), lambda: KerasTensor((3,)), lambda: KerasTensor((4,)), ) def test_unstack(self): rng = np.random.default_rng(0) x = rng.uniform(size=(2, 3, 4)) x_tensor = ops.convert_to_tensor(x) axis = 1 out = ops.unstack(x_tensor, axis=axis) out_ex = [x[:, i, :] for i in range(x.shape[axis])] self.assertEqual(len(out), len(out_ex)) for o, o_e in zip(out, out_ex): o = ops.convert_to_numpy(o) self.assertAllClose(o, o_e) def test_cast(self): x = ops.ones((2,), dtype="float32") y = ops.cast(x, "float16") self.assertIn("float16", str(y.dtype)) x = ops.KerasTensor((2,), dtype="float32") y = ops.cast(x, "float16") self.assertEqual("float16", y.dtype) self.assertEqual(x.shape, y.shape) self.assertTrue(hasattr(y, "_keras_history")) def test_vectorized_map(self): def fn(x): return x + 1 output = ops.vectorized_map(fn, ops.zeros((2, 3), dtype="float32")) self.assertAllClose(backend.convert_to_numpy(output), np.ones((2, 3))) def fn(x): return ops.stack([x, x]) output = ops.vectorized_map(fn, ops.zeros((2, 3), dtype="float32")) self.assertAllClose( backend.convert_to_numpy(output), np.zeros((2, 2, 3)) ) # Case: multiple args def fn(elems): x, y = elems return x + y output = ops.vectorized_map(fn, [ops.ones((2, 3)), ops.ones((2, 3))]) self.assertAllClose( backend.convert_to_numpy(output), 2 * np.ones((2, 3)) ) def test_is_tensor(self): np_x = np.array([[1, 2, 3], [3, 2, 1]]) x = backend.convert_to_tensor(np_x) if backend.backend() != "numpy": self.assertFalse(ops.is_tensor(np_x)) self.assertTrue(ops.is_tensor(x)) self.assertFalse(ops.is_tensor([1, 2, 3])) class CoreOpsDtypeTest(testing.TestCase, parameterized.TestCase): import jax # enable bfloat16 for numpy # TODO: Using uint64 will lead to weak type promotion (`float`), # resulting in different behavior between JAX and Keras. Currently, we # are skipping the test for uint64 ALL_DTYPES = [ x for x in ALLOWED_DTYPES if x not in ["string", "uint64"] ] + [None] if backend.backend() == "torch": # TODO: torch doesn't support uint16, uint32 and uint64 ALL_DTYPES = [ x for x in ALL_DTYPES if x not in ["uint16", "uint32", "uint64"] ] @parameterized.parameters( ((), None, backend.floatx()), ([], None, backend.floatx()), (bool(0), None, "bool"), (int(0), None, "int32"), (float(0), None, backend.floatx()), ([False, True, False], None, "bool"), ([1, 2, 3], None, "int32"), ([1.0, 2.0, 3.0], None, backend.floatx()), ([1, 2.0, 3], None, backend.floatx()), ([[False], [True], [False]], None, "bool"), ([[1], [2], [3]], None, "int32"), ([[1], [2.0], [3]], None, backend.floatx()), *[ (np.array(0, dtype=dtype), None, dtype) for dtype in ALL_DTYPES if dtype is not None ], *[ ([[1, 0, 1], [1, 1, 0]], dtype, dtype) for dtype in ALL_DTYPES if dtype is not None ], ) def test_convert_to_tensor(self, x, dtype, expected_dtype): # We have to disable x64 for jax backend since jnp.array doesn't respect # JAX_DEFAULT_DTYPE_BITS=32 in `./conftest.py`. We also need to downcast # the expected dtype from 64 bit to 32 bit. if backend.backend() == "jax": import jax.experimental jax_disable_x64 = jax.experimental.disable_x64() expected_dtype = expected_dtype.replace("64", "32") else: jax_disable_x64 = contextlib.nullcontext() with jax_disable_x64: self.assertEqual( backend.standardize_dtype( ops.convert_to_tensor(x, dtype=dtype).dtype ), expected_dtype, ) class CoreOpsCallsTests(testing.TestCase): def test_scatter_basic_call(self): indices = np.array([[1, 0], [0, 1]]) values = np.array([10, 20]) shape = (2, 2) scatter = core.Scatter() result = scatter.call(indices, values, shape) expected_output = np.array([[0, 20], [10, 0]]) self.assertAllClose(core.convert_to_numpy(result), expected_output) def test_scatter_update_basic_call(self): inputs = np.array([[0, 0], [0, 0]]) indices = np.array([[1, 0], [0, 1]]) updates = np.array([10, 20]) scatter_update = core.ScatterUpdate() result = scatter_update.call(inputs, indices, updates) expected_output = np.array([[0, 20], [10, 0]]) self.assertAllClose(core.convert_to_numpy(result), expected_output) def test_slice_basic_call(self): inputs = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) start_indices = np.array([1, 1]) shape = (2, 2) slice_op = core.Slice() result = slice_op.call(inputs, start_indices, shape) expected_output = np.array([[5, 6], [8, 9]]) self.assertAllClose(core.convert_to_numpy(result), expected_output) def test_slice_compute_output_spec(self): inputs = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.float32) start_indices = np.array([1, 1]) shape = (2, 2) slice_op = core.Slice() output_spec = slice_op.compute_output_spec(inputs, start_indices, shape) self.assertEqual(output_spec.shape, shape) self.assertEqual(output_spec.dtype, inputs.dtype) def test_slice_with_symbolic_tensors(self): inputs = KerasTensor(shape=(3, 3), dtype=np.float32) start_indices = KerasTensor(shape=(2,), dtype=np.int32) shape = (2, 2) result = core.slice(inputs, start_indices, shape) self.assertTrue(isinstance(result, KerasTensor)) def test_slice_with_non_symbolic_tensors(self): inputs = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) start_indices = np.array([1, 1]) shape = (2, 2) result = core.slice(inputs, start_indices, shape) expected_output = np.array([[5, 6], [8, 9]]) self.assertAllClose(result, expected_output) def test_slice_update_basic_call(self): inputs = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) start_indices = np.array([1, 1]) updates = np.array([[10, 11], [12, 13]]) slice_update = core.SliceUpdate() result = slice_update.call(inputs, start_indices, updates) expected_output = np.array([[1, 2, 3], [4, 10, 11], [7, 12, 13]]) self.assertAllClose(core.convert_to_numpy(result), expected_output) def test_while_loop_basic_functionality(self): # Loop condition: continue if i < 5 def cond(i): return i < 5 # Loop body: increment i by 1 def body(i): return (i + 1,) while_loop = core.WhileLoop(cond, body, maximum_iterations=None) # Initial loop variable (i = 0) loop_vars = (0,) result = while_loop.call(loop_vars) self.assertEqual(result[0], 5) def test_while_loop_output_spec(self): # Define dummy cond and body functions def cond(x): return True def body(x): return (x,) while_loop = core.WhileLoop(cond, body, maximum_iterations=None) loop_vars = (KerasTensor(shape=(10,), dtype=np.float32),) output_spec = while_loop.compute_output_spec(loop_vars) self.assertEqual(output_spec[0].shape, loop_vars[0].shape) self.assertEqual(output_spec[0].dtype, loop_vars[0].dtype) def test_while_loop_with_max_iterations(self): # loop condition: continue if i < 10 def cond(i): return i < 10 def body(i): return (i + 1,) while_loop = core.WhileLoop(cond, body, maximum_iterations=5) result = while_loop.call((0,)) self.assertEqual(result[0], 5) def test_whileloop_compute_output_spec(self): # Define loop variables with different shapes and data types loop_vars = (np.random.rand(5, 5), np.random.randint(10, size=(3, 7))) keras_loop_vars = [ KerasTensor(v.shape, dtype=v.dtype) for v in loop_vars ] def cond(v): return v[0] < 5 def body(v): return (v[0] + 1, v[1]) while_loop = core.WhileLoop(cond, body, maximum_iterations=None) output_specs = while_loop.compute_output_spec(keras_loop_vars) self.assertEqual(output_specs[0].shape, keras_loop_vars[0].shape) self.assertEqual(output_specs[0].dtype, keras_loop_vars[0].dtype) self.assertEqual(output_specs[1].shape, keras_loop_vars[1].shape) self.assertEqual(output_specs[1].dtype, keras_loop_vars[1].dtype) def test_stop_gradient_call(self): variable_np = np.array([1.0, 2.0, 3.0], dtype=np.float32) variable = core.convert_to_tensor(variable_np) stop_gradient = core.StopGradient() result = stop_gradient.call(variable) result_np = core.convert_to_numpy(result) self.assertTrue(np.array_equal(result_np, variable_np)) self.assertEqual(result_np.dtype, variable_np.dtype) def test_stop_gradient_compute_output_spec(self): variable = KerasTensor(shape=(3,), dtype=np.float32) stop_gradient = core.StopGradient() output_spec = stop_gradient.compute_output_spec(variable) self.assertEqual(output_spec.shape, variable.shape) self.assertEqual(output_spec.dtype, variable.dtype) def test_fori_loop_basic_functionality(self): lower = 0 upper = 5 def body_fun(index, val): return val + 1 fori_loop = core.ForiLoop(lower, upper, body_fun) init_val = 0 result = fori_loop.call(init_val) self.assertEqual(result, upper) def test_unstack_basic_functionality(self): x = np.random.rand(2, 3, 4) x = core.convert_to_tensor(x) axis = 1 unstack = core.Unstack(axis=axis) result = unstack.call(x) self.assertEqual(len(result), x.shape[axis]) result = core.convert_to_numpy(result) expected_shape = x.shape[:axis] + x.shape[axis + 1 :] # Check that all tensors have the same shape if len(result) > 0: self.assertEqual(result[0].shape, expected_shape) if len(result) > 1: self.assertEqual(result[1].shape, expected_shape) if len(result) > 2: self.assertEqual(result[2].shape, expected_shape) def test_cast_basic_functionality(self): x = np.array([1.0, 2.0, 3.0], dtype=np.float32) target_dtype = np.int32 cast = core.Cast(target_dtype) result = cast.call(x) result = core.convert_to_numpy(result) self.assertEqual(result.dtype, target_dtype) # Check that the values are the same expected_values = x.astype(target_dtype) self.assertTrue(np.array_equal(result, expected_values)) def test_cond_check_output_spec_list_tuple(self): cond_op = core.Cond() mock_spec = Mock(dtype="float32", shape=(2, 2)) self.assertTrue( cond_op._check_output_spec( [mock_spec, mock_spec], [mock_spec, mock_spec] ) ) def test_cond_check_output_spec_other_types(self): cond_op = core.Cond() # Create mock objects with dtype and shape attributes mock_spec1 = Mock(dtype="float32", shape=(2, 2)) mock_spec2 = Mock(dtype="float32", shape=(2, 2)) self.assertTrue(cond_op._check_output_spec(mock_spec1, mock_spec2)) def test_cond_check_output_spec_none(self): cond_op = core.Cond() self.assertTrue(cond_op._check_output_spec(None, None)) self.assertFalse( cond_op._check_output_spec( None, Mock(dtype="float32", shape=(2, 2)) ) ) self.assertFalse( cond_op._check_output_spec( Mock(dtype="float32", shape=(2, 2)), None ) ) def test_cond_check_output_spec_dict(self): cond_op = core.Cond() mock_spec = Mock(dtype="float32", shape=(2, 2)) self.assertTrue( cond_op._check_output_spec({"a": mock_spec}, {"a": mock_spec}) ) self.assertFalse( cond_op._check_output_spec({"a": mock_spec}, {"b": mock_spec}) ) self.assertFalse( cond_op._check_output_spec( {"a": mock_spec}, {"a": mock_spec, "b": mock_spec} ) ) def test_cond_check_output_spec_list(self): cond_op = core.Cond() mock_spec = Mock(dtype="float32", shape=(2, 2)) mock_spec_different = Mock(dtype="int32", shape=(3, 3)) self.assertTrue(cond_op._check_output_spec([mock_spec], [mock_spec])) self.assertFalse( cond_op._check_output_spec( [mock_spec], [mock_spec, mock_spec_different] ) ) def test_cond_check_output_spec_tuple(self): cond_op = core.Cond() mock_spec = Mock(dtype="float32", shape=(2, 2)) mock_spec_different = Mock(dtype="int32", shape=(3, 3)) self.assertTrue(cond_op._check_output_spec((mock_spec,), (mock_spec,))) self.assertFalse( cond_op._check_output_spec( (mock_spec,), (mock_spec, mock_spec_different) ) )
keras/keras/ops/core_test.py/0
{ "file_path": "keras/keras/ops/core_test.py", "repo_id": "keras", "token_count": 14875 }
203
import numpy as np from keras import backend from keras import testing from keras.backend.common import keras_tensor from keras.ops import numpy as knp from keras.ops import operation class OpWithMultipleInputs(operation.Operation): def call(self, x, y, z=None): # `z` has to be put first due to the order of operations issue with # torch backend. return 3 * z + x + 2 * y def compute_output_spec(self, x, y, z=None): return keras_tensor.KerasTensor(x.shape, x.dtype) class OpWithMultipleOutputs(operation.Operation): def call(self, x): return (x, x + 1) def compute_output_spec(self, x): return ( keras_tensor.KerasTensor(x.shape, x.dtype), keras_tensor.KerasTensor(x.shape, x.dtype), ) class OpWithCustomConstructor(operation.Operation): def __init__(self, alpha, mode="foo"): super().__init__() self.alpha = alpha self.mode = mode def call(self, x): if self.mode == "foo": return x return self.alpha * x def compute_output_spec(self, x): return keras_tensor.KerasTensor(x.shape, x.dtype) class OperationTest(testing.TestCase): def test_symbolic_call(self): x = keras_tensor.KerasTensor(shape=(2, 3), name="x") y = keras_tensor.KerasTensor(shape=(2, 3), name="y") z = keras_tensor.KerasTensor(shape=(2, 3), name="z") # Positional arguments op = OpWithMultipleInputs(name="test_op") self.assertEqual(op.name, "test_op") out = op(x, y, z) self.assertIsInstance(out, keras_tensor.KerasTensor) self.assertEqual(out.shape, (2, 3)) self.assertEqual(len(op._inbound_nodes), 1) self.assertEqual(op.input, [x, y, z]) self.assertEqual(op.output, out) # Keyword arguments op = OpWithMultipleInputs(name="test_op") out = op(x=x, y=y, z=z) self.assertIsInstance(out, keras_tensor.KerasTensor) self.assertEqual(out.shape, (2, 3)) self.assertEqual(len(op._inbound_nodes), 1) self.assertEqual(op.input, [x, y, z]) self.assertEqual(op.output, out) # Mix op = OpWithMultipleInputs(name="test_op") out = op(x, y=y, z=z) self.assertIsInstance(out, keras_tensor.KerasTensor) self.assertEqual(out.shape, (2, 3)) self.assertEqual(len(op._inbound_nodes), 1) self.assertEqual(op.input, [x, y, z]) self.assertEqual(op.output, out) # Test op reuse prev_out = out out = op(x, y=y, z=z) self.assertIsInstance(out, keras_tensor.KerasTensor) self.assertEqual(out.shape, (2, 3)) self.assertEqual(len(op._inbound_nodes), 2) self.assertEqual(op.output, prev_out) # Test multiple outputs op = OpWithMultipleOutputs() out = op(x) self.assertIsInstance(out, tuple) self.assertEqual(len(out), 2) self.assertIsInstance(out[0], keras_tensor.KerasTensor) self.assertIsInstance(out[1], keras_tensor.KerasTensor) self.assertEqual(out[0].shape, (2, 3)) self.assertEqual(out[1].shape, (2, 3)) self.assertEqual(len(op._inbound_nodes), 1) self.assertEqual(op.output, list(out)) def test_eager_call(self): x = knp.ones((2, 3)) y = knp.ones((2, 3)) z = knp.ones((2, 3)) op = OpWithMultipleInputs(name="test_op") self.assertEqual(op.name, "test_op") # Positional arguments out = op(x, y, z) self.assertTrue(backend.is_tensor(out)) self.assertAllClose(out, 6 * np.ones((2, 3))) # Keyword arguments out = op(x=x, y=y, z=z) self.assertTrue(backend.is_tensor(out)) self.assertAllClose(out, 6 * np.ones((2, 3))) # Mixed arguments out = op(x, y=y, z=z) self.assertTrue(backend.is_tensor(out)) self.assertAllClose(out, 6 * np.ones((2, 3))) # Test multiple outputs op = OpWithMultipleOutputs() out = op(x) self.assertEqual(len(out), 2) self.assertTrue(backend.is_tensor(out[0])) self.assertTrue(backend.is_tensor(out[1])) self.assertAllClose(out[0], np.ones((2, 3))) self.assertAllClose(out[1], np.ones((2, 3)) + 1) def test_serialization(self): op = OpWithMultipleOutputs(name="test_op") config = op.get_config() self.assertEqual(config, {"name": "test_op"}) op = OpWithMultipleOutputs.from_config(config) self.assertEqual(op.name, "test_op") def test_autoconfig(self): op = OpWithCustomConstructor(alpha=0.2, mode="bar") config = op.get_config() self.assertEqual(config, {"alpha": 0.2, "mode": "bar"}) revived = OpWithCustomConstructor.from_config(config) self.assertEqual(revived.get_config(), config) def test_input_conversion(self): x = np.ones((2,)) y = np.ones((2,)) z = knp.ones((2,)) # mix if backend.backend() == "torch": z = z.cpu() op = OpWithMultipleInputs() out = op(x, y, z) self.assertTrue(backend.is_tensor(out)) self.assertAllClose(out, 6 * np.ones((2,))) def test_valid_naming(self): OpWithMultipleOutputs(name="test_op") with self.assertRaisesRegex( ValueError, "must be a string and cannot contain character `/`." ): OpWithMultipleOutputs(name="test/op")
keras/keras/ops/operation_test.py/0
{ "file_path": "keras/keras/ops/operation_test.py", "repo_id": "keras", "token_count": 2641 }
204
from keras.api_export import keras_export from keras.optimizers import adam from keras.optimizers import optimizer @keras_export(["keras.optimizers.AdamW"]) class AdamW(adam.Adam): """Optimizer that implements the AdamW algorithm. AdamW optimization is a stochastic gradient descent method that is based on adaptive estimation of first-order and second-order moments with an added method to decay weights per the techniques discussed in the paper, 'Decoupled Weight Decay Regularization' by [Loshchilov, Hutter et al., 2019](https://arxiv.org/abs/1711.05101). According to [Kingma et al., 2014](http://arxiv.org/abs/1412.6980), the underying Adam method is "*computationally efficient, has little memory requirement, invariant to diagonal rescaling of gradients, and is well suited for problems that are large in terms of data/parameters*". Args: learning_rate: A float, a `keras.optimizers.schedules.LearningRateSchedule` instance, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to `0.001`. beta_1: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 1st moment estimates. Defaults to `0.9`. beta_2: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 2nd moment estimates. Defaults to `0.999`. epsilon: A small constant for numerical stability. This epsilon is "epsilon hat" in the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults to 1e-7. amsgrad: Boolean. Whether to apply AMSGrad variant of this algorithm from the paper "On the Convergence of Adam and beyond". Defaults to `False`. {{base_optimizer_keyword_args}} References: - [Loshchilov et al., 2019](https://arxiv.org/abs/1711.05101) - [Kingma et al., 2014](http://arxiv.org/abs/1412.6980) for `adam` - [Reddi et al., 2018]( https://openreview.net/pdf?id=ryQu7f-RZ) for `amsgrad`. """ def __init__( self, learning_rate=0.001, weight_decay=0.004, beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=False, clipnorm=None, clipvalue=None, global_clipnorm=None, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=None, name="adamw", **kwargs, ): super().__init__( learning_rate=learning_rate, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon, amsgrad=amsgrad, name=name, weight_decay=weight_decay, clipnorm=clipnorm, clipvalue=clipvalue, global_clipnorm=global_clipnorm, use_ema=use_ema, ema_momentum=ema_momentum, ema_overwrite_frequency=ema_overwrite_frequency, **kwargs, ) if self.weight_decay is None: raise ValueError( "Argument `weight_decay` must be a float. Received: " "weight_decay=None" ) AdamW.__doc__ = AdamW.__doc__.replace( "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args )
keras/keras/optimizers/adamw.py/0
{ "file_path": "keras/keras/optimizers/adamw.py", "repo_id": "keras", "token_count": 1574 }
205
from keras.optimizers.schedules.learning_rate_schedule import CosineDecay from keras.optimizers.schedules.learning_rate_schedule import ( CosineDecayRestarts, ) from keras.optimizers.schedules.learning_rate_schedule import ExponentialDecay from keras.optimizers.schedules.learning_rate_schedule import InverseTimeDecay from keras.optimizers.schedules.learning_rate_schedule import ( PiecewiseConstantDecay, ) from keras.optimizers.schedules.learning_rate_schedule import PolynomialDecay
keras/keras/optimizers/schedules/__init__.py/0
{ "file_path": "keras/keras/optimizers/schedules/__init__.py", "repo_id": "keras", "token_count": 160 }
206
import keras from keras import testing from keras.saving import object_registration from keras.saving import serialization_lib class TestObjectRegistration(testing.TestCase): def test_custom_object_scope(self): def custom_fn(): pass class CustomClass: pass def check_get_in_thread(): with object_registration.custom_object_scope( {"CustomClass": CustomClass, "custom_fn": custom_fn} ): actual_custom_fn = keras.activations.get("custom_fn") self.assertEqual(actual_custom_fn, custom_fn) actual_custom_class = keras.regularizers.get("CustomClass") self.assertEqual(actual_custom_class.__class__, CustomClass) with object_registration.custom_object_scope( {"CustomClass": CustomClass, "custom_fn": custom_fn} ): actual_custom_fn = keras.activations.get("custom_fn") self.assertEqual(actual_custom_fn, custom_fn) actual_custom_class = keras.regularizers.get("CustomClass") self.assertEqual(actual_custom_class.__class__, CustomClass) checked_thread = self.checkedThread(check_get_in_thread) checked_thread.start() checked_thread.join() def test_serialize_custom_class_with_default_name(self): @object_registration.register_keras_serializable() class TestClass: def __init__(self, value): self._value = value def get_config(self): return {"value": self._value} @classmethod def from_config(cls, config): return cls(**config) serialized_name = "Custom>TestClass" inst = TestClass(value=10) class_name = object_registration.GLOBAL_CUSTOM_NAMES[TestClass] self.assertEqual(serialized_name, class_name) config = serialization_lib.serialize_keras_object(inst) self.assertEqual("TestClass", config["class_name"]) new_inst = serialization_lib.deserialize_keras_object(config) self.assertIsNot(inst, new_inst) self.assertIsInstance(new_inst, TestClass) self.assertEqual(10, new_inst._value) def test_serialize_custom_class_with_custom_name(self): @object_registration.register_keras_serializable( "TestPackage", "CustomName" ) class OtherTestClass: def __init__(self, val): self._val = val def get_config(self): return {"val": self._val} @classmethod def from_config(cls, config): return cls(**config) serialized_name = "TestPackage>CustomName" inst = OtherTestClass(val=5) class_name = object_registration.GLOBAL_CUSTOM_NAMES[OtherTestClass] self.assertEqual(serialized_name, class_name) fn_class_name = object_registration.get_registered_name(OtherTestClass) self.assertEqual(fn_class_name, class_name) cls = object_registration.get_registered_object(fn_class_name) self.assertEqual(OtherTestClass, cls) config = keras.saving.serialize_keras_object(inst) self.assertEqual("OtherTestClass", config["class_name"]) new_inst = keras.saving.deserialize_keras_object(config) self.assertIsNot(inst, new_inst) self.assertIsInstance(new_inst, OtherTestClass) self.assertEqual(5, new_inst._val) def test_serialize_custom_function(self): @object_registration.register_keras_serializable() def my_fn(): return 42 serialized_name = "Custom>my_fn" class_name = object_registration.GLOBAL_CUSTOM_NAMES[my_fn] self.assertEqual(serialized_name, class_name) fn_class_name = object_registration.get_registered_name(my_fn) self.assertEqual(fn_class_name, class_name) config = keras.saving.serialize_keras_object(my_fn) fn = keras.saving.deserialize_keras_object(config) self.assertEqual(42, fn()) fn_2 = object_registration.get_registered_object(fn_class_name) self.assertEqual(42, fn_2()) def test_serialize_custom_class_without_get_config_fails(self): with self.assertRaisesRegex( ValueError, "Cannot register a class that does not have a get_config.*", ): @object_registration.register_keras_serializable( "TestPackage", "TestClass" ) class TestClass: def __init__(self, value): self._value = value
keras/keras/saving/object_registration_test.py/0
{ "file_path": "keras/keras/saving/object_registration_test.py", "repo_id": "keras", "token_count": 2145 }
207
import jax import numpy as np import pandas import pytest import tensorflow as tf import torch from absl.testing import parameterized from keras import backend from keras import testing from keras.testing.test_utils import named_product from keras.trainers.data_adapters import array_data_adapter class TestArrayDataAdapter(testing.TestCase, parameterized.TestCase): def make_array(self, array_type, shape, dtype="float32"): x = np.array([[i] * shape[1] for i in range(shape[0])], dtype=dtype) if array_type == "np": return x elif array_type == "tf": return tf.constant(x) elif array_type == "jax": return jax.numpy.array(x) elif array_type == "torch": return torch.as_tensor(x) elif array_type == "pandas": return pandas.DataFrame(x) @parameterized.named_parameters( named_product( array_type=["np", "tf", "jax", "torch", "pandas"], iterator_type=["np", "tf", "jax", "torch"], shuffle=[False, "batch", True], ) ) def test_basic_flow(self, array_type, iterator_type, shuffle): x = self.make_array(array_type, (34, 4)) y = self.make_array(array_type, (34, 2)) adapter = array_data_adapter.ArrayDataAdapter( x, y=y, sample_weight=None, batch_size=16, steps=None, shuffle=shuffle, ) self.assertEqual(adapter.num_batches, 3) self.assertEqual(adapter.batch_size, 16) self.assertEqual(adapter.has_partial_batch, True) self.assertEqual(adapter.partial_batch_size, 2) if iterator_type == "np": it = adapter.get_numpy_iterator() expected_class = np.ndarray elif iterator_type == "tf": it = adapter.get_tf_dataset() expected_class = tf.Tensor elif iterator_type == "jax": it = adapter.get_jax_iterator() expected_class = jax.Array elif iterator_type == "torch": it = adapter.get_torch_dataloader() expected_class = torch.Tensor sample_order = [] for i, batch in enumerate(it): self.assertEqual(len(batch), 2) bx, by = batch self.assertIsInstance(bx, expected_class) self.assertIsInstance(by, expected_class) self.assertEqual(bx.dtype, by.dtype) self.assertContainsExactSubsequence(str(bx.dtype), "float32") if i < 2: self.assertEqual(bx.shape, (16, 4)) self.assertEqual(by.shape, (16, 2)) else: self.assertEqual(bx.shape, (2, 4)) self.assertEqual(by.shape, (2, 2)) for i in range(by.shape[0]): sample_order.append(by[i, 0]) if shuffle: self.assertNotAllClose(sample_order, list(range(34))) else: self.assertAllClose(sample_order, list(range(34))) def test_multi_inputs_and_outputs(self): x1 = np.random.random((34, 1)) x2 = np.random.random((34, 2)) y1 = np.random.random((34, 3)) y2 = np.random.random((34, 4)) sw = np.random.random((34,)) adapter = array_data_adapter.ArrayDataAdapter( x={"x1": x1, "x2": x2}, y=[y1, y2], sample_weight=sw, batch_size=16, steps=None, shuffle=False, ) gen = adapter.get_numpy_iterator() for i, batch in enumerate(gen): self.assertEqual(len(batch), 3) bx, by, bw = batch self.assertIsInstance(bx, dict) # NOTE: the y list was converted to a tuple for tf.data # compatibility. self.assertIsInstance(by, tuple) self.assertIsInstance(bw, tuple) self.assertIsInstance(bx["x1"], np.ndarray) self.assertIsInstance(bx["x2"], np.ndarray) self.assertIsInstance(by[0], np.ndarray) self.assertIsInstance(by[1], np.ndarray) self.assertIsInstance(bw[0], np.ndarray) self.assertIsInstance(bw[1], np.ndarray) self.assertEqual(bx["x1"].dtype, by[0].dtype) self.assertEqual(bx["x1"].dtype, backend.floatx()) if i < 2: self.assertEqual(bx["x1"].shape, (16, 1)) self.assertEqual(bx["x2"].shape, (16, 2)) self.assertEqual(by[0].shape, (16, 3)) self.assertEqual(by[1].shape, (16, 4)) self.assertEqual(bw[0].shape, (16,)) self.assertEqual(bw[1].shape, (16,)) else: self.assertEqual(bx["x1"].shape, (2, 1)) self.assertEqual(by[0].shape, (2, 3)) self.assertEqual(bw[0].shape, (2,)) self.assertEqual(bw[1].shape, (2,)) ds = adapter.get_tf_dataset() for i, batch in enumerate(ds): self.assertEqual(len(batch), 3) bx, by, bw = batch self.assertIsInstance(bx, dict) # NOTE: the y list was converted to a tuple for tf.data # compatibility. self.assertIsInstance(by, tuple) self.assertIsInstance(bw, tuple) self.assertIsInstance(bx["x1"], tf.Tensor) self.assertIsInstance(bx["x2"], tf.Tensor) self.assertIsInstance(by[0], tf.Tensor) self.assertIsInstance(by[1], tf.Tensor) self.assertIsInstance(bw[0], tf.Tensor) self.assertIsInstance(bw[1], tf.Tensor) self.assertEqual(bx["x1"].dtype, by[0].dtype) self.assertEqual(bx["x1"].dtype, backend.floatx()) if i < 2: self.assertEqual(tuple(bx["x1"].shape), (16, 1)) self.assertEqual(tuple(bx["x2"].shape), (16, 2)) self.assertEqual(tuple(by[0].shape), (16, 3)) self.assertEqual(tuple(by[1].shape), (16, 4)) self.assertEqual(tuple(bw[0].shape), (16,)) self.assertEqual(tuple(bw[1].shape), (16,)) else: self.assertEqual(tuple(bx["x1"].shape), (2, 1)) self.assertEqual(tuple(by[0].shape), (2, 3)) self.assertEqual(tuple(bw[0].shape), (2,)) self.assertEqual(tuple(bw[1].shape), (2,)) @parameterized.named_parameters( named_product(target_encoding=["int", "categorical"]) ) def test_class_weights(self, target_encoding): x = np.random.random((4, 2)) if target_encoding == "int": y = np.array([[0], [1], [2], [3]], dtype="int32") else: y = np.array( [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype="float32", ) class_weight = { 0: 0.1, 1: 0.2, 2: 0.3, 3: 0.4, } adapter = array_data_adapter.ArrayDataAdapter( x, y=y, class_weight=class_weight, batch_size=16, ) gen = adapter.get_numpy_iterator() for batch in gen: self.assertEqual(len(batch), 3) _, _, bw = batch self.assertAllClose(bw, [0.1, 0.2, 0.3, 0.4]) def test_errors(self): # TODO pass @parameterized.named_parameters( named_product(array_type=["np", "tf", "jax", "torch", "pandas"]) ) def test_integer_inputs(self, array_type): x1 = self.make_array(array_type, (4, 4), dtype="float64") x2 = self.make_array(array_type, (4, 4), dtype="int32") y = self.make_array(array_type, (4, 2)) adapter = array_data_adapter.ArrayDataAdapter( (x1, x2), y=y, sample_weight=None, batch_size=4, steps=None, shuffle=False, ) (x1, x2), y = next(adapter.get_numpy_iterator()) self.assertEqual(x1.dtype, backend.floatx()) self.assertEqual(x2.dtype, "int32") def test_pandas_series(self): x = pandas.Series(np.ones((10,))) y = np.ones((10,)) adapter = array_data_adapter.ArrayDataAdapter( x, y=y, sample_weight=None, batch_size=4, steps=None, shuffle=False, ) self.assertEqual(adapter.num_batches, 3) self.assertEqual(adapter.batch_size, 4) self.assertEqual(adapter.has_partial_batch, True) self.assertEqual(adapter.partial_batch_size, 2) x, y = next(adapter.get_numpy_iterator()) self.assertEqual(x.dtype, backend.floatx()) self.assertIsInstance(x, np.ndarray) self.assertEqual(x.shape, (4, 1)) @pytest.mark.skipif( backend.backend() != "tensorflow", reason="Only tensorflow supports raggeds", ) def test_tf_ragged(self): x = tf.ragged.constant([[1, 2], [1, 2, 3], [1, 2], [1], []], "float64") y = np.ones((5,)) adapter = array_data_adapter.ArrayDataAdapter( x, y=y, sample_weight=None, batch_size=2, steps=None, shuffle=False, ) self.assertEqual(adapter.num_batches, 3) self.assertEqual(adapter.batch_size, 2) self.assertEqual(adapter.has_partial_batch, True) self.assertEqual(adapter.partial_batch_size, 1) x, y = next(adapter.get_numpy_iterator()) self.assertEqual(x.dtype, backend.floatx()) self.assertIsInstance(x, tf.RaggedTensor) self.assertEqual(x.shape, (2, None))
keras/keras/trainers/data_adapters/array_data_adapter_test.py/0
{ "file_path": "keras/keras/trainers/data_adapters/array_data_adapter_test.py", "repo_id": "keras", "token_count": 5174 }
208
def standardize_tuple(value, n, name, allow_zero=False): """Transforms non-negative/positive integer/integers into an integer tuple. Args: value: int or iterable of ints. The value to validate and convert. n: int. The size of the tuple to be returned. name: string. The name of the argument being validated, e.g. "strides" or "kernel_size". This is only used to format error messages. allow_zero: bool, defaults to False. A ValueError will raised if zero is received and this param is False. Returns: A tuple of n integers. """ error_msg = ( f"The `{name}` argument must be a tuple of {n} integers. " f"Received {name}={value}" ) if isinstance(value, int): value_tuple = (value,) * n else: try: value_tuple = tuple(value) except TypeError: raise ValueError(error_msg) if len(value_tuple) != n: raise ValueError(error_msg) for single_value in value_tuple: try: int(single_value) except (ValueError, TypeError): error_msg += ( f"including element {single_value} of " f"type {type(single_value)}" ) raise ValueError(error_msg) if allow_zero: unqualified_values = {v for v in value_tuple if v < 0} req_msg = ">= 0" else: unqualified_values = {v for v in value_tuple if v <= 0} req_msg = "> 0" if unqualified_values: error_msg += ( f", including values {unqualified_values}" f" that do not satisfy `value {req_msg}`" ) raise ValueError(error_msg) return value_tuple def standardize_padding(value, allow_causal=False): if isinstance(value, (list, tuple)): return value padding = value.lower() if allow_causal: allowed_values = {"valid", "same", "causal"} else: allowed_values = {"valid", "same"} if padding not in allowed_values: raise ValueError( "The `padding` argument must be a list/tuple or one of " f"{allowed_values}. " f"Received: {padding}" ) return padding def validate_string_arg( value, allowable_strings, caller_name, arg_name, allow_none=False, allow_callables=False, ): """Validates the correctness of a string-based arg.""" if allow_none and value is None: return elif allow_callables and callable(value): return elif isinstance(value, str) and value in allowable_strings: return raise ValueError( f"Unkown value for `{arg_name}` argument of {caller_name}. " f"Allowed values are: {allowable_strings}. Received: " f"{arg_name}={value}" )
keras/keras/utils/argument_validation.py/0
{ "file_path": "keras/keras/utils/argument_validation.py", "repo_id": "keras", "token_count": 1281 }
209
from unittest.mock import patch from keras.testing import test_case from keras.utils import io_utils class TestIoUtils(test_case.TestCase): def test_enable_interactive_logging(self): io_utils.enable_interactive_logging() self.assertTrue(io_utils.is_interactive_logging_enabled()) def test_disable_interactive_logging(self): io_utils.disable_interactive_logging() self.assertFalse(io_utils.is_interactive_logging_enabled()) def test_set_logging_verbosity_valid(self): valid_levels = ["FATAL", "ERROR", "WARNING", "INFO", "DEBUG"] for level in valid_levels: io_utils.set_logging_verbosity(level) def test_set_logging_verbosity_invalid(self): with self.assertRaises(ValueError): io_utils.set_logging_verbosity("INVALID") @patch("builtins.input", side_effect=["y"]) def test_ask_to_proceed_with_overwrite_yes(self, _): self.assertTrue(io_utils.ask_to_proceed_with_overwrite("test_path")) @patch("builtins.input", side_effect=["n"]) def test_ask_to_proceed_with_overwrite_no(self, _): self.assertFalse(io_utils.ask_to_proceed_with_overwrite("test_path")) @patch("sys.stdout.write") def test_print_msg_interactive_with_line_break(self, mock_write): io_utils.enable_interactive_logging() io_utils.print_msg("Hello", line_break=True) mock_write.assert_called_once_with("Hello\n") @patch("sys.stdout.write") def test_print_msg_interactive_without_line_break(self, mock_write): io_utils.enable_interactive_logging() io_utils.print_msg("Hello", line_break=False) mock_write.assert_called_once_with("Hello") @patch("absl.logging.info") def test_print_msg_non_interactive(self, mock_logging): io_utils.disable_interactive_logging() io_utils.print_msg("Hello") mock_logging.assert_called_once_with("Hello") @patch("builtins.input", side_effect=["invalid", "invalid", "y"]) def test_ask_to_proceed_with_overwrite_invalid_then_yes(self, _): self.assertTrue(io_utils.ask_to_proceed_with_overwrite("test_path")) @patch("builtins.input", side_effect=["invalid", "n"]) def test_ask_to_proceed_with_overwrite_invalid_then_no(self, _): self.assertFalse(io_utils.ask_to_proceed_with_overwrite("test_path"))
keras/keras/utils/io_utils_test.py/0
{ "file_path": "keras/keras/utils/io_utils_test.py", "repo_id": "keras", "token_count": 977 }
210
def is_shape_tuple(x): if isinstance(x, (list, tuple)): if all(isinstance(e, (int, type(None))) for e in x): return True return False def map_shape_structure(fn, struct): """Variant of tree.map_structure that operates on shape tuples.""" if is_shape_tuple(struct): return fn(tuple(struct)) if isinstance(struct, list): return [map_shape_structure(fn, e) for e in struct] if isinstance(struct, tuple): return tuple(map_shape_structure(fn, e) for e in struct) if isinstance(struct, dict): return {k: map_shape_structure(fn, v) for k, v in struct.items()} else: raise ValueError(f"Cannot map function to unknown object {struct}")
keras/keras/utils/shape_utils.py/0
{ "file_path": "keras/keras/utils/shape_utils.py", "repo_id": "keras", "token_count": 294 }
211
[isort] force_single_line=True known_first_party=keras line_length=80 profile=black [flake8] # imported but unused in __init__.py, that's ok. per-file-ignores=*__init__.py:F401 ignore=E203,W503,W605,F632,E266,E731,E712,E741 max-line-length=80
tf-keras/setup.cfg/0
{ "file_path": "tf-keras/setup.cfg", "repo_id": "tf-keras", "token_count": 108 }
212
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keras Applications are premade architectures with pre-trained weights.""" from tf_keras.applications.convnext import ConvNeXtBase from tf_keras.applications.convnext import ConvNeXtLarge from tf_keras.applications.convnext import ConvNeXtSmall from tf_keras.applications.convnext import ConvNeXtTiny from tf_keras.applications.convnext import ConvNeXtXLarge from tf_keras.applications.densenet import DenseNet121 from tf_keras.applications.densenet import DenseNet169 from tf_keras.applications.densenet import DenseNet201 from tf_keras.applications.efficientnet import EfficientNetB0 from tf_keras.applications.efficientnet import EfficientNetB1 from tf_keras.applications.efficientnet import EfficientNetB2 from tf_keras.applications.efficientnet import EfficientNetB3 from tf_keras.applications.efficientnet import EfficientNetB4 from tf_keras.applications.efficientnet import EfficientNetB5 from tf_keras.applications.efficientnet import EfficientNetB6 from tf_keras.applications.efficientnet import EfficientNetB7 from tf_keras.applications.efficientnet_v2 import EfficientNetV2B0 from tf_keras.applications.efficientnet_v2 import EfficientNetV2B1 from tf_keras.applications.efficientnet_v2 import EfficientNetV2B2 from tf_keras.applications.efficientnet_v2 import EfficientNetV2B3 from tf_keras.applications.efficientnet_v2 import EfficientNetV2L from tf_keras.applications.efficientnet_v2 import EfficientNetV2M from tf_keras.applications.efficientnet_v2 import EfficientNetV2S from tf_keras.applications.inception_resnet_v2 import InceptionResNetV2 from tf_keras.applications.inception_v3 import InceptionV3 from tf_keras.applications.mobilenet import MobileNet from tf_keras.applications.mobilenet_v2 import MobileNetV2 from tf_keras.applications.mobilenet_v3 import MobileNetV3Large from tf_keras.applications.mobilenet_v3 import MobileNetV3Small from tf_keras.applications.nasnet import NASNetLarge from tf_keras.applications.nasnet import NASNetMobile from tf_keras.applications.resnet import ResNet50 from tf_keras.applications.resnet import ResNet101 from tf_keras.applications.resnet import ResNet152 from tf_keras.applications.resnet_rs import ResNetRS50 from tf_keras.applications.resnet_rs import ResNetRS101 from tf_keras.applications.resnet_rs import ResNetRS152 from tf_keras.applications.resnet_rs import ResNetRS200 from tf_keras.applications.resnet_rs import ResNetRS270 from tf_keras.applications.resnet_rs import ResNetRS350 from tf_keras.applications.resnet_rs import ResNetRS420 from tf_keras.applications.resnet_v2 import ResNet50V2 from tf_keras.applications.resnet_v2 import ResNet101V2 from tf_keras.applications.resnet_v2 import ResNet152V2 from tf_keras.applications.vgg16 import VGG16 from tf_keras.applications.vgg19 import VGG19 from tf_keras.applications.xception import Xception
tf-keras/tf_keras/applications/__init__.py/0
{ "file_path": "tf-keras/tf_keras/applications/__init__.py", "repo_id": "tf-keras", "token_count": 1129 }
213
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ResNet models for TF-Keras. Reference: - [Deep Residual Learning for Image Recognition]( https://arxiv.org/abs/1512.03385) (CVPR 2015) """ import tensorflow.compat.v2 as tf from tf_keras import backend from tf_keras.applications import imagenet_utils from tf_keras.engine import training from tf_keras.layers import VersionAwareLayers from tf_keras.utils import data_utils from tf_keras.utils import layer_utils # isort: off from tensorflow.python.util.tf_export import keras_export BASE_WEIGHTS_PATH = ( "https://storage.googleapis.com/tensorflow/keras-applications/resnet/" ) WEIGHTS_HASHES = { "resnet50": ( "2cb95161c43110f7111970584f804107", "4d473c1dd8becc155b73f8504c6f6626", ), "resnet101": ( "f1aeb4b969a6efcfb50fad2f0c20cfc5", "88cf7a10940856eca736dc7b7e228a21", ), "resnet152": ( "100835be76be38e30d865e96f2aaae62", "ee4c566cf9a93f14d82f913c2dc6dd0c", ), "resnet50v2": ( "3ef43a0b657b3be2300d5770ece849e0", "fac2f116257151a9d068a22e544a4917", ), "resnet101v2": ( "6343647c601c52e1368623803854d971", "c0ed64b8031c3730f411d2eb4eea35b5", ), "resnet152v2": ( "a49b44d1979771252814e80f8ec446f9", "ed17cf2e0169df9d443503ef94b23b33", ), "resnext50": ( "67a5b30d522ed92f75a1f16eef299d1a", "62527c363bdd9ec598bed41947b379fc", ), "resnext101": ( "34fb605428fcc7aa4d62f44404c11509", "0f678c91647380debd923963594981b3", ), } layers = None def ResNet( stack_fn, preact, use_bias, model_name="resnet", include_top=True, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation="softmax", **kwargs, ): """Instantiates the ResNet, ResNetV2, and ResNeXt architecture. Args: stack_fn: a function that returns output tensor for the stacked residual blocks. preact: whether to use pre-activation or not (True for ResNetV2, False for ResNet and ResNeXt). use_bias: whether to use biases for convolutional layers or not (True for ResNet and ResNetV2, False for ResNeXt). model_name: string, model name. include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional TF-Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `channels_last` data format) or `(3, 224, 224)` (with `channels_first` data format). It should have exactly 3 inputs channels. pooling: optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer. - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. When loading pretrained weights, `classifier_activation` can only be `None` or `"softmax"`. **kwargs: For backwards compatibility only. Returns: A `keras.Model` instance. """ global layers if "layers" in kwargs: layers = kwargs.pop("layers") else: layers = VersionAwareLayers() if kwargs: raise ValueError(f"Unknown argument(s): {kwargs}") if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)): raise ValueError( "The `weights` argument should be either " "`None` (random initialization), `imagenet` " "(pre-training on ImageNet), " "or the path to the weights file to be loaded." ) if weights == "imagenet" and include_top and classes != 1000: raise ValueError( 'If using `weights` as `"imagenet"` with `include_top`' " as true, `classes` should be 1000" ) # Determine proper input shape input_shape = imagenet_utils.obtain_input_shape( input_shape, default_size=224, min_size=32, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights, ) if input_tensor is None: img_input = layers.Input(shape=input_shape) else: if not backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 x = layers.ZeroPadding2D(padding=((3, 3), (3, 3)), name="conv1_pad")( img_input ) x = layers.Conv2D(64, 7, strides=2, use_bias=use_bias, name="conv1_conv")(x) if not preact: x = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name="conv1_bn" )(x) x = layers.Activation("relu", name="conv1_relu")(x) x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name="pool1_pad")(x) x = layers.MaxPooling2D(3, strides=2, name="pool1_pool")(x) x = stack_fn(x) if preact: x = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name="post_bn" )(x) x = layers.Activation("relu", name="post_relu")(x) if include_top: x = layers.GlobalAveragePooling2D(name="avg_pool")(x) imagenet_utils.validate_activation(classifier_activation, weights) x = layers.Dense( classes, activation=classifier_activation, name="predictions" )(x) else: if pooling == "avg": x = layers.GlobalAveragePooling2D(name="avg_pool")(x) elif pooling == "max": x = layers.GlobalMaxPooling2D(name="max_pool")(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = layer_utils.get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = training.Model(inputs, x, name=model_name) # Load weights. if (weights == "imagenet") and (model_name in WEIGHTS_HASHES): if include_top: file_name = model_name + "_weights_tf_dim_ordering_tf_kernels.h5" file_hash = WEIGHTS_HASHES[model_name][0] else: file_name = ( model_name + "_weights_tf_dim_ordering_tf_kernels_notop.h5" ) file_hash = WEIGHTS_HASHES[model_name][1] weights_path = data_utils.get_file( file_name, BASE_WEIGHTS_PATH + file_name, cache_subdir="models", file_hash=file_hash, ) model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model def block1(x, filters, kernel_size=3, stride=1, conv_shortcut=True, name=None): """A residual block. Args: x: input tensor. filters: integer, filters of the bottleneck layer. kernel_size: default 3, kernel size of the bottleneck layer. stride: default 1, stride of the first layer. conv_shortcut: default True, use convolution shortcut if True, otherwise identity shortcut. name: string, block label. Returns: Output tensor for the residual block. """ bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 if conv_shortcut: shortcut = layers.Conv2D( 4 * filters, 1, strides=stride, name=name + "_0_conv" )(x) shortcut = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name=name + "_0_bn" )(shortcut) else: shortcut = x x = layers.Conv2D(filters, 1, strides=stride, name=name + "_1_conv")(x) x = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name=name + "_1_bn" )(x) x = layers.Activation("relu", name=name + "_1_relu")(x) x = layers.Conv2D( filters, kernel_size, padding="SAME", name=name + "_2_conv" )(x) x = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name=name + "_2_bn" )(x) x = layers.Activation("relu", name=name + "_2_relu")(x) x = layers.Conv2D(4 * filters, 1, name=name + "_3_conv")(x) x = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name=name + "_3_bn" )(x) x = layers.Add(name=name + "_add")([shortcut, x]) x = layers.Activation("relu", name=name + "_out")(x) return x def stack1(x, filters, blocks, stride1=2, name=None): """A set of stacked residual blocks. Args: x: input tensor. filters: integer, filters of the bottleneck layer in a block. blocks: integer, blocks in the stacked blocks. stride1: default 2, stride of the first layer in the first block. name: string, stack label. Returns: Output tensor for the stacked blocks. """ x = block1(x, filters, stride=stride1, name=name + "_block1") for i in range(2, blocks + 1): x = block1( x, filters, conv_shortcut=False, name=name + "_block" + str(i) ) return x def block2(x, filters, kernel_size=3, stride=1, conv_shortcut=False, name=None): """A residual block. Args: x: input tensor. filters: integer, filters of the bottleneck layer. kernel_size: default 3, kernel size of the bottleneck layer. stride: default 1, stride of the first layer. conv_shortcut: default False, use convolution shortcut if True, otherwise identity shortcut. name: string, block label. Returns: Output tensor for the residual block. """ bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 preact = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name=name + "_preact_bn" )(x) preact = layers.Activation("relu", name=name + "_preact_relu")(preact) if conv_shortcut: shortcut = layers.Conv2D( 4 * filters, 1, strides=stride, name=name + "_0_conv" )(preact) else: shortcut = ( layers.MaxPooling2D(1, strides=stride)(x) if stride > 1 else x ) x = layers.Conv2D( filters, 1, strides=1, use_bias=False, name=name + "_1_conv" )(preact) x = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name=name + "_1_bn" )(x) x = layers.Activation("relu", name=name + "_1_relu")(x) x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name=name + "_2_pad")(x) x = layers.Conv2D( filters, kernel_size, strides=stride, use_bias=False, name=name + "_2_conv", )(x) x = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name=name + "_2_bn" )(x) x = layers.Activation("relu", name=name + "_2_relu")(x) x = layers.Conv2D(4 * filters, 1, name=name + "_3_conv")(x) x = layers.Add(name=name + "_out")([shortcut, x]) return x def stack2(x, filters, blocks, stride1=2, name=None): """A set of stacked residual blocks. Args: x: input tensor. filters: integer, filters of the bottleneck layer in a block. blocks: integer, blocks in the stacked blocks. stride1: default 2, stride of the first layer in the first block. name: string, stack label. Returns: Output tensor for the stacked blocks. """ x = block2(x, filters, conv_shortcut=True, name=name + "_block1") for i in range(2, blocks): x = block2(x, filters, name=name + "_block" + str(i)) x = block2(x, filters, stride=stride1, name=name + "_block" + str(blocks)) return x def block3( x, filters, kernel_size=3, stride=1, groups=32, conv_shortcut=True, name=None, ): """A residual block. Args: x: input tensor. filters: integer, filters of the bottleneck layer. kernel_size: default 3, kernel size of the bottleneck layer. stride: default 1, stride of the first layer. groups: default 32, group size for grouped convolution. conv_shortcut: default True, use convolution shortcut if True, otherwise identity shortcut. name: string, block label. Returns: Output tensor for the residual block. """ bn_axis = 3 if backend.image_data_format() == "channels_last" else 1 if conv_shortcut: shortcut = layers.Conv2D( (64 // groups) * filters, 1, strides=stride, use_bias=False, name=name + "_0_conv", )(x) shortcut = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name=name + "_0_bn" )(shortcut) else: shortcut = x x = layers.Conv2D(filters, 1, use_bias=False, name=name + "_1_conv")(x) x = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name=name + "_1_bn" )(x) x = layers.Activation("relu", name=name + "_1_relu")(x) c = filters // groups x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)), name=name + "_2_pad")(x) x = layers.DepthwiseConv2D( kernel_size, strides=stride, depth_multiplier=c, use_bias=False, name=name + "_2_conv", )(x) x_shape = backend.shape(x)[:-1] x = backend.reshape(x, backend.concatenate([x_shape, (groups, c, c)])) x = layers.Lambda( lambda x: sum(x[:, :, :, :, i] for i in range(c)), name=name + "_2_reduce", )(x) x = backend.reshape(x, backend.concatenate([x_shape, (filters,)])) x = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name=name + "_2_bn" )(x) x = layers.Activation("relu", name=name + "_2_relu")(x) x = layers.Conv2D( (64 // groups) * filters, 1, use_bias=False, name=name + "_3_conv" )(x) x = layers.BatchNormalization( axis=bn_axis, epsilon=1.001e-5, name=name + "_3_bn" )(x) x = layers.Add(name=name + "_add")([shortcut, x]) x = layers.Activation("relu", name=name + "_out")(x) return x def stack3(x, filters, blocks, stride1=2, groups=32, name=None): """A set of stacked residual blocks. Args: x: input tensor. filters: integer, filters of the bottleneck layer in a block. blocks: integer, blocks in the stacked blocks. stride1: default 2, stride of the first layer in the first block. groups: default 32, group size for grouped convolution. name: string, stack label. Returns: Output tensor for the stacked blocks. """ x = block3(x, filters, stride=stride1, groups=groups, name=name + "_block1") for i in range(2, blocks + 1): x = block3( x, filters, groups=groups, conv_shortcut=False, name=name + "_block" + str(i), ) return x @keras_export( "keras.applications.resnet50.ResNet50", "keras.applications.resnet.ResNet50", "keras.applications.ResNet50", ) def ResNet50( include_top=True, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, **kwargs, ): """Instantiates the ResNet50 architecture.""" def stack_fn(x): x = stack1(x, 64, 3, stride1=1, name="conv2") x = stack1(x, 128, 4, name="conv3") x = stack1(x, 256, 6, name="conv4") return stack1(x, 512, 3, name="conv5") return ResNet( stack_fn, False, True, "resnet50", include_top, weights, input_tensor, input_shape, pooling, classes, **kwargs, ) @keras_export( "keras.applications.resnet.ResNet101", "keras.applications.ResNet101" ) def ResNet101( include_top=True, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, **kwargs, ): """Instantiates the ResNet101 architecture.""" def stack_fn(x): x = stack1(x, 64, 3, stride1=1, name="conv2") x = stack1(x, 128, 4, name="conv3") x = stack1(x, 256, 23, name="conv4") return stack1(x, 512, 3, name="conv5") return ResNet( stack_fn, False, True, "resnet101", include_top, weights, input_tensor, input_shape, pooling, classes, **kwargs, ) @keras_export( "keras.applications.resnet.ResNet152", "keras.applications.ResNet152" ) def ResNet152( include_top=True, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, **kwargs, ): """Instantiates the ResNet152 architecture.""" def stack_fn(x): x = stack1(x, 64, 3, stride1=1, name="conv2") x = stack1(x, 128, 8, name="conv3") x = stack1(x, 256, 36, name="conv4") return stack1(x, 512, 3, name="conv5") return ResNet( stack_fn, False, True, "resnet152", include_top, weights, input_tensor, input_shape, pooling, classes, **kwargs, ) @keras_export( "keras.applications.resnet50.preprocess_input", "keras.applications.resnet.preprocess_input", ) def preprocess_input(x, data_format=None): return imagenet_utils.preprocess_input( x, data_format=data_format, mode="caffe" ) @keras_export( "keras.applications.resnet50.decode_predictions", "keras.applications.resnet.decode_predictions", ) def decode_predictions(preds, top=5): return imagenet_utils.decode_predictions(preds, top=top) preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format( mode="", ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_CAFFE, error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC, ) decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ DOC = """ Reference: - [Deep Residual Learning for Image Recognition]( https://arxiv.org/abs/1512.03385) (CVPR 2015) For image classification use cases, see [this page for detailed examples]( https://keras.io/api/applications/#usage-examples-for-image-classification-models). For transfer learning use cases, make sure to read the [guide to transfer learning & fine-tuning]( https://keras.io/guides/transfer_learning/). Note: each TF-Keras Application expects a specific kind of input preprocessing. For ResNet, call `tf.keras.applications.resnet.preprocess_input` on your inputs before passing them to the model. `resnet.preprocess_input` will convert the input images from RGB to BGR, then will zero-center each color channel with respect to the ImageNet dataset, without scaling. Args: include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional TF-Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has to be `(224, 224, 3)` (with `'channels_last'` data format) or `(3, 224, 224)` (with `'channels_first'` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 32. E.g. `(200, 200, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `avg` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `max` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and if no `weights` argument is specified. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. When loading pretrained weights, `classifier_activation` can only be `None` or `"softmax"`. Returns: A TF-Keras model instance. """ setattr(ResNet50, "__doc__", ResNet50.__doc__ + DOC) setattr(ResNet101, "__doc__", ResNet101.__doc__ + DOC) setattr(ResNet152, "__doc__", ResNet152.__doc__ + DOC)
tf-keras/tf_keras/applications/resnet.py/0
{ "file_path": "tf-keras/tf_keras/applications/resnet.py", "repo_id": "tf-keras", "token_count": 9700 }
214
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Microbenchmarks for TF-Keras components in eager mode.""" import time import tensorflow.compat.v2 as tf import tf_keras as keras from tf_keras.utils import tf_inspect # isort: off from tensorflow.python.eager import context from tensorflow.python.eager.context import get_executor def _run_benchmark(func, num_iters, execution_mode=None): with context.execution_mode(execution_mode): # call func to warm up func() if execution_mode == context.ASYNC: get_executor().wait() start = time.time() for _ in range(num_iters): func() if execution_mode == context.ASYNC: get_executor().wait() end = time.time() return end - start class MicroBenchmarksBase(tf.test.Benchmark): """Run and report benchmark results.""" def run_report(self, run_benchmark, func, num_iters, execution_mode=None): """Run and report benchmark results.""" total_time = run_benchmark(func, num_iters, execution_mode) mean_us = total_time * 1e6 / num_iters metrics = [ { "name": "exp_per_sec", "value": float(f"{num_iters / total_time:.3f}"), }, { "name": "us_per_exp", "value": float(f"{total_time * 1000000.0 / num_iters:.3f}"), }, ] benchmark_name = self._get_benchmark_name() self.report_benchmark( iters=num_iters, wall_time=mean_us, metrics=metrics, name=benchmark_name, ) def _get_benchmark_name(self): """Mostly copied from benchmark.py _get_name().""" stack = tf_inspect.stack() name = None for frame in stack[::-1]: f_locals = frame[0].f_locals f_self = f_locals.get("self", None) if isinstance(f_self, tf.test.Benchmark): name = frame[3] # Get the method name # This is a hack to get around the fact that some methods might # have a disable_tfrt decorator around them. In that case a # function called 'decorated' wraps the real called function # underneath and so we peek one deeper into the stack to get the # real name. if name == "decorated": continue else: break if name is None: raise ValueError("Unable to determine calling Benchmark function.") if tf.__internal__.is_tfrt_enabled(): name = name + "_tfrt" return name def _run(self, func, num_iters, execution_mode=None): self.run_report(_run_benchmark, func, num_iters, execution_mode) def benchmark_layers_call_overhead(self): class OnlyOverheadLayer(keras.layers.Layer): def call(self, x): return x layer = OnlyOverheadLayer() x = tf.convert_to_tensor([[1.0]]) def fn(): layer(x) self._run(fn, 10000) def benchmark_op_layer_call_overhead(self): model_input = keras.Input(shape=(1,)) model_output = model_input x = tf.convert_to_tensor([[1.1]]) for _ in range(20): model_output = tf.multiply(model_output, x) model = keras.Model(inputs=model_input, outputs=model_output) def fn(): model(x) fn() self._run(fn, 100) def benchmark_model_predict_tensorlike_overhead(self): class OnlyOverheadLayer(keras.layers.Layer): def call(self, x): return x model = keras.Sequential([OnlyOverheadLayer()]) x = tf.convert_to_tensor([[1.0]]) def fn(): model.predict(x) self._run(fn, 20) def benchmark_layers_embeddings_embedding_overhead(self): layer = keras.layers.Embedding(1, 1) x = tf.zeros((1, 1), dtype="int32") def fn(): layer(x) self._run(fn, 10000) class KerasLayerCallOverheadBenchmarks( MicroBenchmarksBase, metaclass=tf.__internal__.test.ParameterizedBenchmark ): # The set of layers for benchmarking. To add benchmarks for new layers, # please add the parameter configs to "_benchmark_paramters". # The parameter of each layer benchmark is a tuple contains: # 1) The benchmark name with convention "{module_name}_{layer_name}"; # 2) The layer instance; # 3) The shape of the input to the layer; # 4) The kwargs used in the benchmark. It can include the number of # iterations to run the benchmarks, and kwargs used in the layer call. # By default, # of iteration is 10000. _benchmark_parameters = [ ( "advanced_activations_leaky_relu", keras.layers.LeakyReLU(), (1, 1), ), ("advanced_activations_prelu", keras.layers.PReLU(), (1, 1)), ("advanced_activations_elu", keras.layers.ELU(), (1, 1)), ( "advanced_activations_thresholded_relu", keras.layers.ThresholdedReLU(), (1, 1), ), ("advanced_activations_softmax", keras.layers.Softmax(), (1, 1)), ("advanced_activations_relu", keras.layers.ReLU(), (1, 1)), ("core_masking", keras.layers.Masking(), (1, 1)), ( "core_dropout", keras.layers.Dropout(0.5), (1, 1), {"training": True}, ), ("core_flatten", keras.layers.Flatten(), (1, 1, 1)), ("core_dense", keras.layers.Dense(1), (1, 1)), ("convolutional_conv1d", keras.layers.Conv1D(1, (1,)), (1, 1, 1)), ( "convolutional_conv2d", keras.layers.Conv2D(1, (1, 1)), (1, 1, 1, 1), ), ( "convolutional_conv3d", keras.layers.Conv3D(1, (1, 1, 1)), (1, 1, 1, 1, 1), ), ( "batch_norm_fused_inf", keras.layers.BatchNormalization(fused=True), (1, 1, 1, 1), ), ( "batch_norm_fused_train", keras.layers.BatchNormalization(fused=True), (1, 1, 1, 1), {"training": True}, ), ( "batch_norm_nonfused_inf", keras.layers.BatchNormalization(fused=False), (1, 1, 1, 1), ), ( "batch_norm_nonfused_train", keras.layers.BatchNormalization(fused=False), (1, 1, 1, 1), {"training": True}, ), ( "normalization_layer_normalization", keras.layers.LayerNormalization(), (1, 1), {"iters": 100, "training": True}, ), ] def benchmark_layer(self, layer, input_shape, kwargs=None): x = tf.ones(input_shape) def fn(): layer(x, **(kwargs or {})) default_iters = 10000 iters = kwargs.pop("iters", default_iters) if kwargs else default_iters self._run(fn, iters) if __name__ == "__main__": if tf.compat.v1.executing_eagerly(): # Only run test when eager is enabled (skip test in v1). tf.test.main()
tf-keras/tf_keras/benchmarks/eager_microbenchmarks_test.py/0
{ "file_path": "tf-keras/tf_keras/benchmarks/eager_microbenchmarks_test.py", "repo_id": "tf-keras", "token_count": 3759 }
215
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import as _absolute_import from __future__ import division as _division from __future__ import print_function as _print_function import os import time import uuid from tensorflow.python.profiler import profiler_v2 as profiler def run_with_xprof( self, func, num_iters_xprof=100, enable_python_trace=True, logdir="/tmp/layer_benchmark_xprof/", ): suid = str(uuid.uuid4()) if enable_python_trace: options = profiler.ProfilerOptions(python_tracer_level=1) logdir = os.path.join(logdir, str(uuid.uuid4()) + "_with_python") else: options = profiler.ProfilerOptions(python_tracer_level=0) logdir = os.path.join(logdir, suid) start = time.time() with profiler.Profile(logdir, options): for _ in range(num_iters_xprof): func() total_time = time.time() - start us_per_example = float(f"{total_time * 1000000.0 / num_iters_xprof:.3f}") return logdir, us_per_example
tf-keras/tf_keras/benchmarks/layer_benchmarks/run_xprof.py/0
{ "file_path": "tf-keras/tf_keras/benchmarks/layer_benchmarks/run_xprof.py", "repo_id": "tf-keras", "token_count": 565 }
216
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for TF-Keras callbacks.""" import collections import csv import json import os import re import shutil import sys import threading import time import unittest from unittest import mock import numpy as np import tensorflow.compat.v2 as tf from absl.testing import parameterized import tf_keras as keras from tf_keras.callbacks import BackupAndRestore from tf_keras.callbacks import BackupAndRestoreExperimental from tf_keras.callbacks import Callback from tf_keras.engine import sequential from tf_keras.layers import Activation from tf_keras.layers import Dense from tf_keras.optimizers import sgd from tf_keras.optimizers.legacy import gradient_descent from tf_keras.optimizers.schedules import learning_rate_schedule from tf_keras.testing_infra import test_combinations from tf_keras.testing_infra import test_utils from tf_keras.utils import io_utils from tf_keras.utils import np_utils from tf_keras.utils import tf_utils # isort: off from tensorflow.python.platform import tf_logging as logging try: import h5py except ImportError: h5py = None try: import requests except ImportError: requests = None TRAIN_SAMPLES = 10 TEST_SAMPLES = 10 NUM_CLASSES = 2 INPUT_DIM = 3 NUM_HIDDEN = 5 BATCH_SIZE = 5 CALLBACK_HOOKS = [ "on_batch_begin", "on_batch_end", "on_epoch_begin", "on_epoch_end", "on_predict_batch_begin", "on_predict_batch_end", "on_predict_begin", "on_predict_end", "on_test_batch_begin", "on_test_batch_end", "on_test_begin", "on_test_end", "on_train_batch_begin", "on_train_batch_end", "on_train_begin", "on_train_end", ] class Counter(keras.callbacks.Callback): """Counts the number of times each callback method was run. Attributes: method_counts: dict. Contains the counts of time each callback method was run. """ def __init__(self): self.method_counts = collections.defaultdict(int) for method_name in CALLBACK_HOOKS: setattr( self, method_name, self.wrap_with_counts(method_name, getattr(self, method_name)), ) def wrap_with_counts(self, method_name, method): def _call_and_count(*args, **kwargs): self.method_counts[method_name] += 1 return method(*args, **kwargs) return _call_and_count class CallAllHooks(keras.callbacks.Callback): """A callback that calls self._run for all hooks""" def __init__(self): for method_name in CALLBACK_HOOKS: setattr(self, method_name, self._run) def _run(self, *args, logs=None): raise NotImplementedError def _get_numpy(): return np.ones((10, 10)), np.ones((10, 1)) def _get_sequence(): class MySequence(keras.utils.data_utils.Sequence): def __getitem__(self, _): return np.ones((2, 10)), np.ones((2, 1)) def __len__(self): return 5 return MySequence(), None @test_combinations.run_with_all_model_types @test_combinations.run_all_keras_modes class CallbackCountsTest(test_combinations.TestCase): def _check_counts(self, counter, expected_counts): """Checks that the counts registered by `counter` are those expected.""" for method_name, expected_count in expected_counts.items(): self.assertEqual( counter.method_counts[method_name], expected_count, msg="For method {}: expected {}, got: {}".format( method_name, expected_count, counter.method_counts[method_name], ), ) def _get_model(self): layers = [ keras.layers.Dense(10, activation="relu"), keras.layers.Dense(1, activation="sigmoid"), ] model = test_utils.get_model_from_layers(layers, input_shape=(10,)) model.compile( tf.compat.v1.train.AdamOptimizer(0.001), "binary_crossentropy", run_eagerly=test_utils.should_run_eagerly(), ) return model @parameterized.named_parameters( ("with_numpy", _get_numpy()), ("with_sequence", _get_sequence()) ) def test_callback_hooks_are_called_in_fit(self, data): if not tf.executing_eagerly(): self.skipTest("Behavior changed in v2.") x, y = data val_x, val_y = np.ones((4, 10)), np.ones((4, 1)) model = self._get_model() counter = Counter() model.fit( x, y, validation_data=(val_x, val_y), batch_size=2, steps_per_epoch=5, epochs=5, callbacks=[counter], ) self._check_counts( counter, { "on_batch_begin": 25, "on_batch_end": 25, "on_epoch_begin": 5, "on_epoch_end": 5, "on_predict_batch_begin": 0, "on_predict_batch_end": 0, "on_predict_begin": 0, "on_predict_end": 0, "on_test_batch_begin": 10, "on_test_batch_end": 10, "on_test_begin": 5, "on_test_end": 5, "on_train_batch_begin": 25, "on_train_batch_end": 25, "on_train_begin": 1, "on_train_end": 1, }, ) @parameterized.named_parameters( ("with_numpy", _get_numpy()), ("with_sequence", _get_sequence()) ) def test_callback_hooks_are_called_in_evaluate(self, data): x, y = data is_sequence = isinstance(x, keras.utils.data_utils.Sequence) model = self._get_model() counter = Counter() model.evaluate( x, y, batch_size=2 if not is_sequence else None, steps=5 if is_sequence else None, callbacks=[counter], ) self._check_counts( counter, { "on_test_batch_begin": 5, "on_test_batch_end": 5, "on_test_begin": 1, "on_test_end": 1, }, ) @parameterized.named_parameters( ("with_numpy", _get_numpy()), ("with_sequence", _get_sequence()) ) def test_callback_hooks_are_called_in_predict(self, data): x = data[0] is_sequence = isinstance(x, keras.utils.data_utils.Sequence) model = self._get_model() counter = Counter() model.predict( x, batch_size=2 if not is_sequence else None, steps=5 if is_sequence else None, callbacks=[counter], ) self._check_counts( counter, { "on_predict_batch_begin": 5, "on_predict_batch_end": 5, "on_predict_begin": 1, "on_predict_end": 1, }, ) def test_callback_list_methods(self): counter = Counter() callback_list = keras.callbacks.CallbackList([counter]) batch = 0 callback_list.on_test_batch_begin(batch) callback_list.on_test_batch_end(batch) callback_list.on_predict_batch_begin(batch) callback_list.on_predict_batch_end(batch) self._check_counts( counter, { "on_test_batch_begin": 1, "on_test_batch_end": 1, "on_predict_batch_begin": 1, "on_predict_batch_end": 1, }, ) class KerasCallbacksTest(test_combinations.TestCase, parameterized.TestCase): def _get_model(self, input_shape=None, additional_metrics=None): additional_metrics = additional_metrics or [] layers = [ keras.layers.Dense(3, activation="relu"), keras.layers.Dense(2, activation="softmax"), ] model = test_utils.get_model_from_layers( layers, input_shape=input_shape ) model.compile( loss="mse", optimizer="rmsprop", metrics=[keras.metrics.CategoricalAccuracy(name="my_acc")] + additional_metrics, run_eagerly=test_utils.should_run_eagerly(), ) return model @test_combinations.run_with_all_model_types @test_combinations.run_all_keras_modes def test_progbar_logging(self): model = self._get_model(input_shape=(3,)) x = tf.ones((200, 3)) y = tf.zeros((200, 2)) dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(10) expected_log = r"(.*- loss:.*- my_acc:.*)+" io_utils.enable_interactive_logging() with self.captureWritesToStream(sys.stdout) as printed: model.fit(dataset, epochs=2, steps_per_epoch=10) self.assertRegex(printed.contents(), expected_log) @test_combinations.run_with_all_model_types @test_combinations.run_all_keras_modes def test_progbar_logging_with_stateful_metrics(self): class AddAllOnes(keras.metrics.Metric): """A simple metric that adds all the one's in `y_true`.""" def __init__(self, name="add_all_ones", **kwargs): super().__init__(name=name, **kwargs) self.total = self.add_weight(name="total", initializer="zeros") def update_state(self, y_true, y_pred, sample_weight=None): self.total.assign_add( tf.cast(tf.reduce_sum(y_true), dtype=tf.float32) ) def result(self): return self.total x_train = np.array([[0, 1, 0, 1, 0, 1, 0, 1]] * 8).astype(float) y_train = np.array( [[1, 0], [0, 0], [1, 1], [1, 0], [0, 1], [1, 0], [1, 0], [0, 0]] ) # There are 7 ones in total in `y_train` after two batches. expected_log = r"(.*- loss:.*- my_acc:.*- add_all_ones: 7.0000)+" io_utils.enable_interactive_logging() with self.captureWritesToStream(sys.stdout) as printed: model = self._get_model( input_shape=(8,), additional_metrics=[AddAllOnes()] ) model.fit(x_train, y_train, verbose=1, batch_size=4, shuffle=False) self.assertRegex(printed.contents(), expected_log) # When not executing eagerly, `model.evaluate` does not have the metrics # results printed. if tf.executing_eagerly(): with self.captureWritesToStream(sys.stdout) as printed: model = self._get_model( input_shape=(8,), additional_metrics=[AddAllOnes()] ) model.evaluate(x_train, y_train, verbose=1, batch_size=4) self.assertRegex(printed.contents(), expected_log) @test_combinations.run_all_keras_modes def test_trivial_backup_restore(self): if test_utils.should_run_eagerly(): model = keras.Sequential([keras.layers.Dense(1)]) model.compile("sgd", "mse") cbk = BackupAndRestore(self.get_temp_dir()) model.fit( np.ones((10, 1)), np.ones((10, 1)), epochs=1, callbacks=[cbk] ) def test_backup_restore_train_counter(self): if not tf.compat.v1.executing_eagerly(): self.skipTest( "BackupAndRestore only available when eager execution is " "enabled" ) model = keras.Sequential([keras.layers.Dense(1)]) model.compile("sgd", "mse") cbk = BackupAndRestore(self.get_temp_dir()) class InterruptingCallback(keras.callbacks.Callback): """A callback to intentionally introduce interruption to training.""" def on_epoch_end(self, epoch, log=None): logging.info(f"counter: {model._train_counter}") if epoch == 5 or epoch == 12: raise RuntimeError("Interruption") self.get_temp_dir() # The following asserts that the train counter is fault tolerant. self.assertEqual(model._train_counter.numpy(), 0) try: model.fit( np.ones((10, 1)), np.ones((10, 1)), epochs=20, callbacks=[cbk, InterruptingCallback()], ) except RuntimeError: pass self.assertEqual(model._train_counter.numpy(), 6) try: model.fit( np.ones((10, 1)), np.ones((10, 1)), epochs=20, callbacks=[cbk, InterruptingCallback()], ) except RuntimeError: pass self.assertEqual(model._train_counter.numpy(), 13) def _test_backup_and_restore_callback_with(self, cls): if not tf.compat.v1.executing_eagerly(): self.skipTest( "BackupAndRestore only available when execution is enabled" ) class InterruptingCallback(keras.callbacks.Callback): """A callback to intentionally introduce interruption to training.""" def on_epoch_end(self, epoch, log=None): if epoch == 15: raise RuntimeError("Interruption") model = keras.Sequential([keras.layers.Dense(10)]) optimizer = sgd.SGD() model.compile(optimizer, loss="mse") x = tf.random.uniform((24, 10)) y = tf.random.uniform((24,)) dataset = tf.data.Dataset.from_tensor_slices((x, y)).repeat().batch(2) backup_callback = cls(backup_dir=self.get_temp_dir()) try: model.fit( dataset, epochs=20, steps_per_epoch=5, callbacks=[backup_callback, InterruptingCallback()], ) except RuntimeError: logging.warning("***Handling interruption***") # This continues at the epoch where it left off. model.fit( dataset, epochs=20, steps_per_epoch=5, callbacks=[backup_callback], ) def _test_backup_and_restore_callback_at_steps( self, cls, epoch_int, steps_int, mode ): if not tf.compat.v1.executing_eagerly(): self.skipTest( "BackupAndRestore only available when eager execution is " "enabled" ) class InterruptingCallback(keras.callbacks.Callback): """A callback to intentionally introduce interruption to training.""" batch_count = 0 def on_epoch_end(self, epoch, log=None): if epoch == epoch_int: raise RuntimeError("EpochInterruption") def on_batch_end(self, batch, logs=None): self.batch_count += 1 if self.batch_count == steps_int: raise RuntimeError("StepsInterruption") class VerifyRestore(Callback): """Verify if the training restored to the correct epoch and step.""" def __init__(self, initial_epoch, initial_step): super(VerifyRestore, self).__init__() self.initial_epoch = initial_epoch self.initial_step = initial_step self._current_epoch = 0 def on_epoch_begin(self, epoch, logs=None): self._current_epoch = epoch if epoch < self.initial_epoch: raise ValueError( "Training did not restore at epoch (%d) and step (%d)" % (self.initial_epoch, self.initial_step) ) def on_batch_begin(self, batch, logs=None): if ( batch <= self.initial_step and self._current_epoch < self.initial_epoch ): raise ValueError( "Training did not restore at Epoch (%d) and step (%d)" % (self.initial_epoch, self.initial_step) ) model = keras.Sequential([keras.layers.Dense(10)]) optimizer = sgd.SGD() model.compile(optimizer, loss="mse") x = tf.random.uniform((24, 10)) y = tf.random.uniform((24,)) dataset = tf.data.Dataset.from_tensor_slices((x, y)).repeat().batch(2) save_freq_arg = "epoch" if mode == "epoch" else 7 backup_callback = cls( backup_dir=self.get_temp_dir(), save_freq=save_freq_arg ) # epoch where the restore should resume from if save_freq_arg == "epoch": init_epoch = epoch_int init_step = 0 elif save_freq_arg: init_epoch = int(((steps_int // 7) * 7) // 5) init_step = int((((steps_int // 7) * 7) % 5) - 1) else: init_epoch = 0 init_step = 0 # callback to verify accurate training state restore verify_restore_callback = VerifyRestore( initial_epoch=init_epoch, initial_step=init_step ) try: model.fit( dataset, epochs=20, steps_per_epoch=5, callbacks=[backup_callback, InterruptingCallback()], ) except RuntimeError as e: if str(e) == "EpochInterruption": logging.warning("***Handling interruption at epoch***") elif str(e) == "StepsInterruption": logging.warning("***Handling interruption at Nth step***") # This continues at the epoch and step where it left off. model.fit( dataset, epochs=20, steps_per_epoch=5, callbacks=[backup_callback, verify_restore_callback], ) def test_experimental_backup_and_restore(self): """Ensure the legacy endpoint of `BackupAndRestore` gives warning.""" warning_messages = [] def warning(msg): warning_messages.append(msg) with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): self._test_backup_and_restore_callback_with( BackupAndRestoreExperimental ) warning_msg = ( "`tf.keras.callbacks.experimental.BackupAndRestore` " "endpoint is deprecated" ) self.assertIn(warning_msg, "\n".join(warning_messages)) warning_msg = "***Handling interruption***" self.assertIn(warning_msg, "\n".join(warning_messages)) def test_backup_and_restore(self): """Ensure the public endpoint of `BackupAndRestore` is working.""" warning_messages = [] def warning(msg): warning_messages.append(msg) with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): self._test_backup_and_restore_callback_with(BackupAndRestore) warning_msg = ( "`tf.keras.callbacks.experimental.BackupAndRestore` " "endpoint is deprecated" ) self.assertNotIn(warning_msg, "\n".join(warning_messages)) warning_msg = "***Handling interruption***" self.assertIn(warning_msg, "\n".join(warning_messages)) def test_backup_and_restore_steps(self): """Ensure the public endpoint of `BackupAndRestore` is working.""" warning_messages = [] def warning(msg): warning_messages.append(msg) with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): # interrupt at steps before 1 epoch self._test_backup_and_restore_callback_at_steps( BackupAndRestore, epoch_int=20, steps_int=3, mode="batch" ) warning_msg = ( "`tf.keras.callbacks.experimental.BackupAndRestore` " "endpoint is deprecated" ) self.assertNotIn(warning_msg, "\n".join(warning_messages)) warning_msg = "***Handling interruption at Nth step***" self.assertIn(warning_msg, "\n".join(warning_messages)) # interrupt at steps after 1 epoch warning_messages = [] with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): self._test_backup_and_restore_callback_at_steps( BackupAndRestore, epoch_int=20, steps_int=8, mode="batch" ) warning_msg = "***Handling interruption at Nth step***" self.assertIn(warning_msg, "\n".join(warning_messages)) # interrupt at epoch before steps warning_messages = [] with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): self._test_backup_and_restore_callback_at_steps( BackupAndRestore, epoch_int=1, steps_int=12, mode="epoch" ) warning_msg = "***Handling interruption at epoch***" self.assertIn(warning_msg, "\n".join(warning_messages)) def test_backup_and_restore_steps_last_batch(self): """Ensure the public endpoint of `BackupAndRestore` is working.""" warning_messages = [] def warning(msg): warning_messages.append(msg) with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): # interrupt at last step in 7th epoch self._test_backup_and_restore_callback_at_steps( BackupAndRestore, epoch_int=20, steps_int=35, mode="batch" ) warning_msg = ( "`tf.keras.callbacks.experimental.BackupAndRestore` " "endpoint is deprecated" ) self.assertNotIn(warning_msg, "\n".join(warning_messages)) warning_msg = "***Handling interruption at Nth step***" self.assertIn(warning_msg, "\n".join(warning_messages)) def test_backup_and_restore_steps_false_save_freq(self): """Ensure the public endpoint of `BackupAndRestore` is working.""" warning_messages = [] def warning(msg): warning_messages.append(msg) with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): # interrupt at steps before 1 epoch self._test_backup_and_restore_callback_at_steps( BackupAndRestore, epoch_int=20, steps_int=3, mode=False ) warning_msg = ( "`tf.keras.callbacks.experimental.BackupAndRestore` " "endpoint is deprecated" ) self.assertNotIn(warning_msg, "\n".join(warning_messages)) warning_msg = "***Handling interruption at Nth step***" self.assertIn(warning_msg, "\n".join(warning_messages)) # interrupt at steps after 1 epoch warning_messages = [] with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): self._test_backup_and_restore_callback_at_steps( BackupAndRestore, epoch_int=20, steps_int=8, mode="batch" ) warning_msg = "***Handling interruption at Nth step***" self.assertIn(warning_msg, "\n".join(warning_messages)) # interrupt at epoch before steps warning_messages = [] with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): self._test_backup_and_restore_callback_at_steps( BackupAndRestore, epoch_int=1, steps_int=12, mode="epoch" ) warning_msg = "***Handling interruption at epoch***" self.assertIn(warning_msg, "\n".join(warning_messages)) def test_backup_and_restore_steps_clean_up(self): if not tf.executing_eagerly(): self.skipTest( "BackupAndRestore only available when eager execution is " "enabled." ) path = self.get_temp_dir() callback = BackupAndRestore(path, delete_checkpoint=True) model = keras.Sequential([keras.layers.Dense(10)]) optimizer = gradient_descent.SGD() model.compile(optimizer, loss="mse") x = tf.random.uniform((24, 10)) y = tf.random.uniform((24,)) dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(2) model.fit(dataset, epochs=1, callbacks=[callback]) self.assertEmpty(os.listdir(path)) callback = BackupAndRestore(path, delete_checkpoint=False) model.fit(dataset, epochs=1, callbacks=[callback]) self.assertNotEmpty(os.listdir(path)) @test_combinations.run_all_keras_modes def test_callback_warning(self): class SleepCallback(keras.callbacks.Callback): def on_train_batch_end(self, batch, logs=None): time.sleep(0.1) model = sequential.Sequential() model.add(keras.layers.Dense(1)) model.compile( "sgd", loss="mse", run_eagerly=test_utils.should_run_eagerly() ) warning_messages = [] def warning(msg): warning_messages.append(msg) with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): model.fit( np.ones((16, 1), "float32"), np.ones((16, 1), "float32"), batch_size=3, epochs=1, callbacks=[SleepCallback()], ) warning_msg = ( "Callback method `on_train_batch_end` is slow compared " "to the batch time" ) self.assertIn(warning_msg, "\n".join(warning_messages)) @test_combinations.run_all_keras_modes def test_default_callbacks_no_warning(self): # Test that without the callback no warning is raised model = sequential.Sequential() model.add(keras.layers.Dense(1)) model.compile( "sgd", loss="mse", run_eagerly=test_utils.should_run_eagerly() ) warning_messages = [] def warning(msg): warning_messages.append(msg) with tf.compat.v1.test.mock.patch.object(logging, "warning", warning): model.fit( np.ones((16, 1), "float32"), np.ones((16, 1), "float32"), batch_size=3, epochs=1, ) self.assertListEqual(warning_messages, []) @test_combinations.run_with_all_model_types(exclude_models="functional") @test_combinations.run_all_keras_modes def test_progbar_logging_deferred_model_build(self): model = self._get_model() self.assertFalse(model.built) x = tf.ones((200, 3)) y = tf.zeros((200, 2)) dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(10) expected_log = r"(.*- loss:.*- my_acc:.*)+" io_utils.enable_interactive_logging() with self.captureWritesToStream(sys.stdout) as printed: model.fit(dataset, epochs=2, steps_per_epoch=10) self.assertRegex(printed.contents(), expected_log) @test_combinations.run_with_all_model_types @test_combinations.run_all_keras_modes def test_progbar_logging_validation_data(self): model = self._get_model(input_shape=(3,)) x = tf.ones((50, 3)) y = tf.zeros((50, 2)) training_dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(10) val_dataset = tf.data.Dataset.from_tensor_slices((x, y)).batch(10) expected_log = ( r"(.*5/5.*- loss:.*- my_acc:.*- val_loss:.*- val_my_acc:.*)+" ) io_utils.enable_interactive_logging() with self.captureWritesToStream(sys.stdout) as printed: model.fit(training_dataset, epochs=2, validation_data=val_dataset) self.assertRegex(printed.contents(), expected_log) @test_combinations.run_with_all_model_types @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_progbar_logging_validation_split(self): model = self._get_model(input_shape=(3,)) x = np.ones((100, 3)) y = np.zeros((100, 2)) expected_log = ( r"(?s).*1/2.*8/8.*- loss:.*- my_acc:.*- val_loss:.*- val_my_acc:" r".*2/2.*8/8.*- loss:.*- my_acc:.*- val_loss:.*- val_my_acc:.*" ) io_utils.enable_interactive_logging() with self.captureWritesToStream(sys.stdout) as printed: model.fit(x, y, batch_size=10, epochs=2, validation_split=0.2) self.assertRegex(printed.contents(), expected_log) @test_combinations.run_with_all_model_types @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_progbar_logging_training_validation(self): model = self._get_model(input_shape=(2,)) def generator(): for _ in range(100): yield [1, 1], 1 training = ( tf.data.Dataset.from_generator( generator=generator, output_types=("float64", "float64"), output_shapes=([2], []), ) .batch(2) .repeat() ) validation = tf.data.Dataset.from_generator( generator=generator, output_types=("float64", "float64"), output_shapes=([2], []), ).batch(2) expected_log = ( r"(?s).*1/2.*20/20.*- loss:.*- my_acc:.*- val_loss:.*- val_my_acc:" r".*2/2.*20/20.*- loss:.*- my_acc:.*- val_loss:.*- val_my_acc:.*" ) io_utils.enable_interactive_logging() with self.captureWritesToStream(sys.stdout) as printed: model.fit( x=training, validation_data=validation, epochs=2, steps_per_epoch=20, ) self.assertRegex(printed.contents(), expected_log) @test_combinations.run_with_all_model_types @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_progbar_logging_with_dataset_and_partial_batch(self): model = self._get_model(input_shape=(2,)) def generator(): # Have a partial batch at the end. for _ in range(9): yield np.random.random(2), 1 training = tf.data.Dataset.from_generator( generator=generator, output_types=("float64", "float64"), output_shapes=([2], []), ).batch(2) validation = tf.data.Dataset.from_generator( generator=generator, output_types=("float64", "float64"), output_shapes=([2], []), ).batch(2) io_utils.enable_interactive_logging() with self.captureWritesToStream(sys.stdout) as printed: model.fit(x=training, validation_data=validation) # Make sure the value of val_ metrics are not zeros. log_content = printed.contents() val_loss = re.findall(r"val_loss: (\d\.\d+)", log_content) self.assertLen(val_loss, 1) self.assertGreater(float(val_loss[0]), 0.0) @test_combinations.run_with_all_model_types @parameterized.named_parameters( ("h5", ".h5"), ("keras", ".keras"), ) def test_ModelCheckpoint(self, save_format): if save_format == ".h5" and h5py is None: return # Skip test if models cannot be saved. model_type = test_utils.get_model_type() if model_type == "subclass": # Skip test since subclassed models cannot be saved in .h5 format. return if not tf.__internal__.tf2.enabled(): self.skipTest("Checkpoint callback only available in v2.") layers = [ keras.layers.Dense( NUM_HIDDEN, input_dim=INPUT_DIM, activation="relu" ), keras.layers.Dense(NUM_CLASSES, activation="softmax"), ] model = test_utils.get_model_from_layers(layers, input_shape=(3,)) model.compile( loss="categorical_crossentropy", optimizer="rmsprop", metrics=["acc"], ) temp_dir = self.get_temp_dir() self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) # Save model to a subdir inside the temp_dir so we can test # automatic directory creation. filepath = os.path.join(temp_dir, "subdir", "checkpoint" + save_format) (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES, ) y_test = np_utils.to_categorical(y_test) y_train = np_utils.to_categorical(y_train) # Case 1 monitor = "val_loss" save_best_only = False mode = "auto" cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode, ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0, ) assert os.path.exists(filepath) os.remove(filepath) # Case 2 mode = "min" cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode, ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0, ) assert os.path.exists(filepath) os.remove(filepath) # Case 3 mode = "max" monitor = "val_acc" cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode, ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0, ) assert os.path.exists(filepath) os.remove(filepath) # Case 4 save_best_only = True cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode, ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0, ) assert os.path.exists(filepath) os.remove(filepath) # Case 5: metric not available. cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor="unknown", save_best_only=True ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0, ) # File won't be written. assert not os.path.exists(filepath) # Case 6 save_best_only = False period = 2 mode = "auto" filepath = os.path.join( temp_dir, "checkpoint.{epoch:02d}" + save_format ) cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode, period=period, ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=4, verbose=1, ) assert os.path.exists(filepath.format(epoch=2)) assert os.path.exists(filepath.format(epoch=4)) os.remove(filepath.format(epoch=2)) os.remove(filepath.format(epoch=4)) assert not os.path.exists(filepath.format(epoch=1)) assert not os.path.exists(filepath.format(epoch=3)) # Invalid use: this will raise a warning but not an Exception. keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode="unknown", ) # Case 7: `ModelCheckpoint` with a combination of `save_freq` and # `period`. Though `period` is deprecated, we're testing it for # backward-compatibility. filepath = os.path.join( temp_dir, "checkpoint.epoch{epoch:02d}" + save_format ) cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, mode=mode, save_freq="epoch", period=5, ) ] assert not os.path.exists(filepath.format(epoch=0)) assert not os.path.exists(filepath.format(epoch=5)) model.fit( x_train, y_train, batch_size=2, validation_data=(x_test, y_test), callbacks=cbks, epochs=10, verbose=1, ) assert not os.path.exists(filepath.format(epoch=1)) assert not os.path.exists(filepath.format(epoch=2)) assert not os.path.exists(filepath.format(epoch=3)) assert not os.path.exists(filepath.format(epoch=4)) assert os.path.exists(filepath.format(epoch=5)) assert not os.path.exists(filepath.format(epoch=6)) assert os.path.exists(filepath.format(epoch=10)) os.remove(filepath.format(epoch=5)) os.remove(filepath.format(epoch=10)) # Case 8: `ModelCheckpoint` with an integer `save_freq` filepath = os.path.join( temp_dir, "checkpoint.epoch{epoch:02d}" + save_format ) cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode, save_freq=15, period=100, ) # The period should be ignored (this test tests this). ] assert not os.path.exists(filepath.format(epoch=3)) model.fit( x_train, y_train, batch_size=2, validation_data=(x_test, y_test), callbacks=cbks, epochs=10, verbose=1, ) assert not os.path.exists(filepath.format(epoch=1)) assert not os.path.exists(filepath.format(epoch=2)) assert os.path.exists(filepath.format(epoch=3)) assert not os.path.exists(filepath.format(epoch=4)) assert not os.path.exists(filepath.format(epoch=5)) assert os.path.exists(filepath.format(epoch=6)) assert not os.path.exists(filepath.format(epoch=7)) assert not os.path.exists(filepath.format(epoch=8)) assert os.path.exists(filepath.format(epoch=9)) os.remove(filepath.format(epoch=3)) os.remove(filepath.format(epoch=6)) os.remove(filepath.format(epoch=9)) # Case 9: `ModelCheckpoint` with valid and invalid save_freq argument. with self.assertRaisesRegex(ValueError, "Unrecognized save_freq"): keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode, save_freq="invalid_save_freq", ) # The following should not raise ValueError. keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode, save_freq="epoch", ) keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, mode=mode, save_freq=3, ) # Case 10: `ModelCheckpoint` with valid and invalid `options` argument. if save_format == ".h5": with self.assertRaisesRegex( TypeError, "tf.train.CheckpointOptions" ): keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, save_weights_only=True, mode=mode, options=tf.saved_model.SaveOptions(), ) with self.assertRaisesRegex( TypeError, "tf.saved_model.SaveOptions" ): keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, save_weights_only=False, mode=mode, options=tf.train.CheckpointOptions(), ) keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, save_weights_only=True, mode=mode, options=tf.train.CheckpointOptions(), ) keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, save_weights_only=False, mode=mode, options=tf.saved_model.SaveOptions(), ) # Case 11: `ModelCheckpoint` save model with batch number in filename. filepath = os.path.join( temp_dir, "checkpoint.epoch{epoch:02d}batch{batch:02d}" + save_format, ) cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_freq=1 ) ] assert not os.path.exists(filepath.format(epoch=1, batch=1)) assert not os.path.exists(filepath.format(epoch=1, batch=2)) assert not os.path.exists(filepath.format(epoch=2, batch=1)) assert not os.path.exists(filepath.format(epoch=2, batch=2)) assert not os.path.exists(filepath.format(epoch=3, batch=1)) assert not os.path.exists(filepath.format(epoch=3, batch=2)) assert not os.path.exists(filepath.format(epoch=4, batch=1)) assert not os.path.exists(filepath.format(epoch=4, batch=2)) assert not os.path.exists(filepath.format(epoch=5, batch=1)) assert not os.path.exists(filepath.format(epoch=5, batch=2)) model.fit( x_train, y_train, batch_size=5, validation_data=(x_test, y_test), callbacks=cbks, epochs=5, verbose=1, ) assert os.path.exists(filepath.format(epoch=1, batch=1)) assert os.path.exists(filepath.format(epoch=1, batch=2)) assert os.path.exists(filepath.format(epoch=2, batch=1)) assert os.path.exists(filepath.format(epoch=2, batch=2)) assert os.path.exists(filepath.format(epoch=3, batch=1)) assert os.path.exists(filepath.format(epoch=3, batch=2)) assert os.path.exists(filepath.format(epoch=4, batch=1)) assert os.path.exists(filepath.format(epoch=4, batch=2)) assert os.path.exists(filepath.format(epoch=5, batch=1)) assert os.path.exists(filepath.format(epoch=5, batch=2)) os.remove(filepath.format(epoch=1, batch=1)) os.remove(filepath.format(epoch=1, batch=2)) os.remove(filepath.format(epoch=2, batch=1)) os.remove(filepath.format(epoch=2, batch=2)) os.remove(filepath.format(epoch=3, batch=1)) os.remove(filepath.format(epoch=3, batch=2)) os.remove(filepath.format(epoch=4, batch=1)) os.remove(filepath.format(epoch=4, batch=2)) os.remove(filepath.format(epoch=5, batch=1)) os.remove(filepath.format(epoch=5, batch=2)) # Case 12: ModelCheckpoint saves model with initial_value_threshold # param mode = "max" monitor = "val_acc" initial_value_threshold = 0 save_best_only = True filepath = os.path.join(temp_dir, "checkpoint" + save_format) cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, initial_value_threshold=initial_value_threshold, mode=mode, ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0, ) assert os.path.exists(filepath) os.remove(filepath) # Case 13: ModelCheckpoint saves model with initial_value_threshold # param mode = "auto" monitor = "val_loss" initial_value_threshold = None save_best_only = True cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, initial_value_threshold=initial_value_threshold, mode=mode, ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0, ) assert os.path.exists(filepath) os.remove(filepath) # Case 14: ModelCkpt doesn't save model if loss was minimum earlier mode = "min" monitor = "val_loss" initial_value_threshold = 0 save_best_only = True cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, initial_value_threshold=initial_value_threshold, mode=mode, ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0, ) assert not os.path.exists(filepath) # Case 15: ModelCheckpoint doesn't save model if loss was min earlier in # auto mode mode = "auto" monitor = "val_loss" initial_value_threshold = 0 save_best_only = True cbks = [ keras.callbacks.ModelCheckpoint( filepath, monitor=monitor, save_best_only=save_best_only, initial_value_threshold=initial_value_threshold, mode=mode, ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0, ) assert not os.path.exists(filepath) @test_utils.run_v2_only def test_ModelCheckpoint_subclass_SavedModel_save_weights_false(self): model = test_utils.get_small_subclass_mlp(NUM_HIDDEN, NUM_CLASSES) model.compile( loss="categorical_crossentropy", optimizer="rmsprop", metrics=["acc"], ) temp_dir = self.get_temp_dir() self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) filepath = os.path.join(temp_dir, "checkpoint") cbks = [ keras.callbacks.ModelCheckpoint(filepath, save_weights_only=False) ] (x_train, y_train), _ = test_utils.get_test_data( train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES, ) y_train = np_utils.to_categorical(y_train, num_classes=NUM_CLASSES) model.fit(x_train, y_train, callbacks=cbks, epochs=1, verbose=0) # Check that the filepath is a SavedModel directory. self.assertIn("saved_model.pb", os.listdir(filepath)) @test_utils.run_v2_only def test_ModelCheckpoint_subclass_KerasV3(self): model = test_utils.get_small_subclass_mlp(NUM_HIDDEN, NUM_CLASSES) model.compile( loss="categorical_crossentropy", optimizer="rmsprop", metrics=["acc"], ) temp_dir = self.get_temp_dir() self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) filepath = os.path.join(temp_dir, "checkpoint.keras") cbks = [ keras.callbacks.ModelCheckpoint(filepath, save_weights_only=False) ] (x_train, y_train), _ = test_utils.get_test_data( train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES, ) y_train = np_utils.to_categorical(y_train, num_classes=NUM_CLASSES) model.fit(x_train, y_train, callbacks=cbks, epochs=1, verbose=0) assert os.path.exists(filepath) def _get_dummy_resource_for_model_checkpoint_testing(self): def get_input_datasets(): # Simple training input. train_input = [[1.0]] * 16 train_label = [[0.0]] * 16 ds = tf.data.Dataset.from_tensor_slices((train_input, train_label)) return ds.batch(8, drop_remainder=True) # Very simple bias model to eliminate randomness. optimizer = gradient_descent.SGD(0.1) model = sequential.Sequential() model.add(test_utils.Bias(input_shape=(1,))) model.compile(loss="mae", optimizer=optimizer, metrics=["mae"]) train_ds = get_input_datasets() temp_dir = self.get_temp_dir() filepath = os.path.join(temp_dir, "checkpoint.epoch{epoch:02d}.h5") # The filepath shouldn't exist at the beginning. self.assertFalse(os.path.exists(filepath)) callback = keras.callbacks.ModelCheckpoint( filepath=filepath, save_weights_only=True ) return model, train_ds, callback, filepath def _run_load_weights_on_restart_test_common_iterations(self): ( model, train_ds, callback, filepath, ) = self._get_dummy_resource_for_model_checkpoint_testing() initial_epochs = 3 model.fit(train_ds, epochs=initial_epochs, callbacks=[callback]) # The files should exist after fitting with callback. for epoch in range(initial_epochs): self.assertTrue(os.path.exists(filepath.format(epoch=epoch + 1))) self.assertFalse( os.path.exists(filepath.format(epoch=initial_epochs + 1)) ) self.assertEqual( callback._get_most_recently_modified_file_matching_pattern( filepath ), filepath.format(epoch=initial_epochs), ) model.fit(train_ds, epochs=1) weights_after_one_more_epoch = model.get_weights() # The filepath should continue to exist after fitting without callback. for epoch in range(initial_epochs): self.assertTrue(os.path.exists(filepath.format(epoch=epoch + 1))) return model, train_ds, filepath, weights_after_one_more_epoch @staticmethod def get_ModelCheckpoint_load_weights_on_restart_true_test( save_weights_only, ): def func(self): ( model, train_ds, filepath, weights_after_one_more_epoch, ) = self._run_load_weights_on_restart_test_common_iterations() # Sleep for some short time period ensuring the files are created # with a different time (in MacOS OSS the granularity is only 1 # second). time.sleep(2) callback = keras.callbacks.ModelCheckpoint( filepath=filepath, save_weights_only=save_weights_only, load_weights_on_restart=True, ) model.fit(train_ds, epochs=1, callbacks=[callback]) weights_after_model_restoring_and_one_more_epoch = ( model.get_weights() ) self.assertEqual( callback._get_most_recently_modified_file_matching_pattern( filepath ), filepath.format(epoch=1), ) model.fit( train_ds, epochs=1, callbacks=[ keras.callbacks.ModelCheckpoint( filepath=filepath, save_weights_only=save_weights_only, load_weights_on_restart=True, ) ], ) weights_with_one_final_extra_epoch = model.get_weights() # Asserting the weights one epoch after initial fitting and another # epoch after that are closed, if a ModelCheckpoint with # load_weights_on_restart=True is given (so the model is restored at # the beginning of training). self.assertAllClose( weights_after_one_more_epoch, weights_after_model_restoring_and_one_more_epoch, ) self.assertNotAllClose( weights_after_one_more_epoch, weights_with_one_final_extra_epoch ) return func @staticmethod def get_ModelCheckpoint_load_weights_on_restart_false_test( save_weights_only, ): def func(self): ( model, train_ds, filepath, weights_after_one_more_epoch, ) = self._run_load_weights_on_restart_test_common_iterations() model.fit( train_ds, epochs=1, callbacks=[ keras.callbacks.ModelCheckpoint( filepath=filepath, save_weights_only=save_weights_only ) ], ) weights_after_model_restoring_and_one_more_epoch = ( model.get_weights() ) # Asserting the weights one epoch after initial fitting and another # epoch after that are different, if a ModelCheckpoint with # load_weights_on_restart=False is given (so the model is not # restored at the beginning of training). self.assertNotAllClose( weights_after_one_more_epoch, weights_after_model_restoring_and_one_more_epoch, ) return func test_model_checkpoint_load_weights_on_restart_true_save_weights_only_true = get_ModelCheckpoint_load_weights_on_restart_true_test.__func__( # noqa: E501 True ) test_model_checkpoint_load_weights_on_restart_true_save_weights_only_false = get_ModelCheckpoint_load_weights_on_restart_true_test.__func__( # noqa: E501 False ) test_model_checkpoint_load_weights_on_restart_false_save_weights_only_true = get_ModelCheckpoint_load_weights_on_restart_false_test.__func__( # noqa: E501 True ) test_model_checkpoint_load_weights_on_restart_false_save_weights_only_false = get_ModelCheckpoint_load_weights_on_restart_false_test.__func__( # noqa: E501 False ) def test_ModelCheckpoint_override_if_file_exist(self): ( model, train_ds, filepath, _, ) = self._run_load_weights_on_restart_test_common_iterations() # Sleep for some short time period to ensure the files are created with # a different time (in MacOS OSS the granularity is only 1 second). time.sleep(2) callback = keras.callbacks.ModelCheckpoint( filepath=filepath, save_weights_only=True ) model.load_weights( callback._get_most_recently_modified_file_matching_pattern(filepath) ) weights_before_additional_fit = model.get_weights() model.fit(train_ds, epochs=1, callbacks=[callback]) model.load_weights( callback._get_most_recently_modified_file_matching_pattern(filepath) ) weights_after_additional_fit = model.get_weights() self.assertNotAllClose( weights_before_additional_fit, weights_after_additional_fit ) def test_fit_with_ModelCheckpoint_with_tf_config(self): ( model, train_ds, callback, _, ) = self._get_dummy_resource_for_model_checkpoint_testing() os.environ["TF_CONFIG"] = json.dumps( { "cluster": {"worker": ["localhost:23333"]}, "task": {"type": "worker", "index": 0}, } ) # `model.fit()` should work regardless of the presence of `TF_CONFIG`. model.fit(train_ds, epochs=1, callbacks=[callback]) def test_fit_with_ModelCheckpoint_with_dir_as_h5_filepath(self): ( model, train_ds, callback, filepath, ) = self._get_dummy_resource_for_model_checkpoint_testing() temp_dir = self.get_temp_dir() filepath = os.path.join(temp_dir, "temp.h5") self.assertFalse(os.path.exists(filepath)) os.mkdir(filepath) self.assertTrue(os.path.exists(filepath)) callback = keras.callbacks.ModelCheckpoint(filepath=filepath) with self.assertRaisesRegex( IOError, "Please specify a non-directory filepath for ModelCheckpoint.", ): model.fit(train_ds, epochs=1, callbacks=[callback]) def test_ModelCheckpoint_KerasV3_save_options_error(self): ( model, train_ds, callback, filepath, ) = self._get_dummy_resource_for_model_checkpoint_testing() temp_dir = self.get_temp_dir() filepath = os.path.join(temp_dir, "temp.keras") with self.assertRaisesRegex( ValueError, "The native TF-Keras format does not support" ): _ = keras.callbacks.ModelCheckpoint( filepath=filepath, options=tf.saved_model.SaveOptions() ) def test_ModelCheckpoint_with_bad_path_placeholders(self): ( model, train_ds, callback, filepath, ) = self._get_dummy_resource_for_model_checkpoint_testing() temp_dir = self.get_temp_dir() filepath = os.path.join(temp_dir, "chkpt_{epoch:02d}_{mape:.2f}.h5") callback = keras.callbacks.ModelCheckpoint(filepath=filepath) with self.assertRaisesRegex( KeyError, "Failed to format this callback filepath.*" ): model.fit(train_ds, epochs=1, callbacks=[callback]) def test_ModelCheckpoint_nonblocking(self): filepath = self.get_temp_dir() # Should only cause a sync block when saving is actually performed. callback = keras.callbacks.ModelCheckpoint( filepath=filepath, save_freq=100 ) self.assertTrue(callback._supports_tf_logs) model = keras.Sequential([keras.layers.Dense(1)]) cb_list = keras.callbacks.CallbackList( [callback], model=model, epochs=1, steps=10, verbose=0 ) tensor = tf.convert_to_tensor(1.0) def mock_numpy(): raise RuntimeError( "If this error is seen, ModelCheckpoint is causing a blocking " "NumPy conversion even when not checkpointing." ) tensor.numpy = mock_numpy logs = {"metric": tensor} cb_list.on_train_begin(logs) cb_list.on_epoch_begin(0, logs) cb_list.on_train_batch_begin(0, logs) cb_list.on_train_batch_end(0, logs) cb_list.on_epoch_end(0, logs) cb_list.on_train_end(logs) cb_list.on_test_begin(logs) cb_list.on_test_batch_begin(0, logs) cb_list.on_test_batch_end(0, logs) cb_list.on_test_end(logs) cb_list.on_predict_begin(logs) cb_list.on_predict_batch_begin(logs) cb_list.on_predict_batch_end(logs) cb_list.on_predict_end(logs) def _run_fit_with_ModelCheckpoint_with_steps_per_execution( self, model, savepath, save_freq, train_samples, steps_per_execution, epochs, check_ckpt_epochs, check_ckpt_batchs, ): assert len(check_ckpt_epochs) == len(check_ckpt_batchs) (x_train, y_train), _ = test_utils.get_test_data( train_samples=train_samples, test_samples=0, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES, ) y_train = np_utils.to_categorical(y_train) model.compile( loss="categorical_crossentropy", optimizer="rmsprop", steps_per_execution=steps_per_execution, ) self.assertFalse(os.path.exists(savepath)) callback = keras.callbacks.ModelCheckpoint( filepath=os.path.join(savepath, "ckpt_{epoch}_{batch}"), save_freq=save_freq, ) model.fit( x_train, y_train, batch_size=1, epochs=epochs, verbose=0, callbacks=[callback], ) self.assertTrue(os.path.exists(savepath)) for i in range(len(check_ckpt_epochs)): epoch = check_ckpt_epochs[i] batch = check_ckpt_batchs[i] ckpt_name = "ckpt_" + str(epoch) + "_" + str(batch) ckpt_path = os.path.join(savepath, ckpt_name) self.assertTrue(os.path.exists(ckpt_path)) self.assertIn("saved_model.pb", os.listdir(ckpt_path)) shutil.rmtree(savepath) @test_combinations.run_with_all_model_types @test_utils.run_v2_only def test_fit_with_ModelCheckpoint_with_steps_per_execution(self): layers = [ keras.layers.Dense( NUM_HIDDEN, input_dim=INPUT_DIM, activation="relu" ), keras.layers.Dense(NUM_CLASSES, activation="softmax"), ] model = test_utils.get_model_from_layers( layers, input_shape=(INPUT_DIM,) ) temp_dir = self.get_temp_dir() savepath = os.path.join(temp_dir, "checkpoint") for steps_per_execution in [None, 7]: self._run_fit_with_ModelCheckpoint_with_steps_per_execution( model, savepath, save_freq=7, train_samples=7, steps_per_execution=steps_per_execution, epochs=1, check_ckpt_epochs=[1], check_ckpt_batchs=[7], ) self._run_fit_with_ModelCheckpoint_with_steps_per_execution( model, savepath, save_freq=7, train_samples=7, steps_per_execution=steps_per_execution, epochs=2, check_ckpt_epochs=[1, 2], check_ckpt_batchs=[7, 7], ) self._run_fit_with_ModelCheckpoint_with_steps_per_execution( model, savepath, save_freq=14, train_samples=7, steps_per_execution=steps_per_execution, epochs=2, check_ckpt_epochs=[2], check_ckpt_batchs=[7], ) self._run_fit_with_ModelCheckpoint_with_steps_per_execution( model, savepath, save_freq=7, train_samples=14, steps_per_execution=steps_per_execution, epochs=2, check_ckpt_epochs=[1, 1, 2, 2], check_ckpt_batchs=[7, 14, 7, 14], ) def test_verbose_2_logging(self): data = np.random.random((100, 1)) labels = np.where(data > 0.5, 1, 0) model = keras.models.Sequential( ( keras.layers.Dense(1, input_dim=1, activation="relu"), keras.layers.Dense(1, activation="sigmoid"), ) ) model.compile( optimizer="sgd", loss="binary_crossentropy", metrics=["accuracy"] ) expected_log = r"(.*- loss:.*- acc.*:.*epoch)+" with self.captureWritesToStream(sys.stdout) as printed: model.fit(data, labels, verbose=2, epochs=20) self.assertRegex(printed.contents(), expected_log) def test_ProgbarLogger_verbose_2_nonblocking(self): # Should only cause a sync block on epoch end methods. callback = keras.callbacks.ProgbarLogger(count_mode="steps") self.assertTrue(callback._supports_tf_logs) model = keras.Sequential([keras.layers.Dense(1)]) cb_list = keras.callbacks.CallbackList( [callback], model=model, epochs=1, steps=10, verbose=2 ) tensor = tf.convert_to_tensor(1.0) def mock_numpy(): raise RuntimeError( "If this error is seen, ModelCheckpoint is causing a blocking " "NumPy conversion even when not checkpointing." ) tensor.numpy = mock_numpy logs = {"metric": tensor} cb_list.on_train_begin(logs) cb_list.on_epoch_begin(0, logs) cb_list.on_train_batch_begin(0, logs) cb_list.on_train_batch_end(0, logs) cb_list.on_test_begin(logs) cb_list.on_test_batch_begin(0, logs) cb_list.on_test_batch_end(0, logs) cb_list.on_test_end(logs) with self.assertRaisesRegex(RuntimeError, "NumPy conversion"): # on_epoch_end should still block. cb_list.on_epoch_end(0, logs) cb_list.on_train_end(logs) def test_EarlyStopping(self): with self.cached_session(): np.random.seed(123) (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES, ) y_test = np_utils.to_categorical(y_test) y_train = np_utils.to_categorical(y_train) model = test_utils.get_small_sequential_mlp( num_hidden=NUM_HIDDEN, num_classes=NUM_CLASSES, input_dim=INPUT_DIM, ) model.compile( loss="categorical_crossentropy", optimizer="rmsprop", metrics=["acc"], ) cases = [ ("max", "val_acc"), ("min", "val_loss"), ("auto", "val_acc"), ("auto", "loss"), ("unknown", "unknown"), ] for mode, monitor in cases: patience = 0 cbks = [ keras.callbacks.EarlyStopping( patience=patience, monitor=monitor, mode=mode ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=5, verbose=0, ) def test_EarlyStopping_patience(self): cases = [0, 1, 2, 3] losses = [10.0, 9.0, 8.0, 9.0, 8.9, 8.8, 8.7, 8.6, 8.5] for patience in cases: stopper = keras.callbacks.EarlyStopping( monitor="loss", patience=patience ) stopper.model = keras.models.Sequential() stopper.on_train_begin() for epoch, loss in enumerate(losses): stopper.on_epoch_end(epoch=epoch, logs={"loss": loss}) if stopper.model.stop_training: break self.assertEqual(stopper.stopped_epoch, max(patience, 1) + 2) def test_EarlyStopping_reuse(self): with self.cached_session(): np.random.seed(1337) patience = 3 data = np.random.random((100, 1)) labels = np.where(data > 0.5, 1, 0) model = keras.models.Sequential( ( keras.layers.Dense(1, input_dim=1, activation="relu"), keras.layers.Dense(1, activation="sigmoid"), ) ) model.compile( optimizer="sgd", loss="binary_crossentropy", metrics=["accuracy"], ) weights = model.get_weights() # This should allow training to go for at least `patience` epochs model.set_weights(weights) stopper = keras.callbacks.EarlyStopping( monitor="acc", patience=patience ) hist = model.fit( data, labels, callbacks=[stopper], verbose=0, epochs=20 ) assert len(hist.epoch) >= patience def test_EarlyStopping_with_baseline(self): with self.cached_session(): np.random.seed(1337) baseline = 0.6 (data, labels), _ = test_utils.get_test_data( train_samples=100, test_samples=50, input_shape=(1,), num_classes=NUM_CLASSES, ) model = test_utils.get_small_sequential_mlp( num_hidden=1, num_classes=1, input_dim=1 ) model.compile( optimizer="sgd", loss="binary_crossentropy", metrics=["acc"] ) stopper = keras.callbacks.EarlyStopping( monitor="acc", baseline=baseline ) hist = model.fit( data, labels, callbacks=[stopper], verbose=0, epochs=20 ) assert len(hist.epoch) == 2 patience = 3 stopper = keras.callbacks.EarlyStopping( monitor="acc", patience=patience, baseline=baseline ) hist = model.fit( data, labels, callbacks=[stopper], verbose=0, epochs=20 ) assert len(hist.epoch) >= patience def test_EarlyStopping_final_weights_when_restoring_model_weights(self): class DummyModel: def __init__(self): self.stop_training = False self.weights = -1 def get_weights(self): return self.weights def set_weights(self, weights): self.weights = weights def set_weight_to_epoch(self, epoch): self.weights = epoch early_stop = keras.callbacks.EarlyStopping( monitor="val_loss", patience=2, restore_best_weights=True ) early_stop.model = DummyModel() losses = [0.2, 0.15, 0.1, 0.11, 0.12] # The best configuration is in the epoch 2 (loss = 0.1000). epochs_trained = 0 early_stop.on_train_begin() for epoch in range(len(losses)): epochs_trained += 1 early_stop.model.set_weight_to_epoch(epoch=epoch) early_stop.on_epoch_end(epoch, logs={"val_loss": losses[epoch]}) if early_stop.model.stop_training: break early_stop.on_train_end() # The best configuration is in epoch 2 (loss = 0.1000), # and while patience = 2, we're restoring the best weights, # so we end up at the epoch with the best weights, i.e. epoch 2 self.assertEqual(early_stop.model.get_weights(), 2) # Check early stopping when no model beats the baseline. early_stop = keras.callbacks.EarlyStopping( monitor="val_loss", patience=5, baseline=0.5, restore_best_weights=True, ) early_stop.model = DummyModel() losses = [0.9, 0.8, 0.7, 0.71, 0.72, 0.73] # The best configuration is in the epoch 2 (loss = 0.7000). epochs_trained = 0 early_stop.on_train_begin() for epoch in range(len(losses)): epochs_trained += 1 early_stop.model.set_weight_to_epoch(epoch=epoch) early_stop.on_epoch_end(epoch, logs={"val_loss": losses[epoch]}) if early_stop.model.stop_training: break early_stop.on_train_end() # No epoch improves on the baseline, so we should train for only 5 # epochs, and restore the second model. self.assertEqual(epochs_trained, 5) self.assertEqual(early_stop.model.get_weights(), 2) def test_EarlyStopping_with_start_from_epoch(self): with self.cached_session(): np.random.seed(1337) (data, labels), _ = test_utils.get_test_data( train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES, ) labels = np_utils.to_categorical(labels) model = test_utils.get_small_sequential_mlp( num_hidden=NUM_HIDDEN, num_classes=NUM_CLASSES, input_dim=INPUT_DIM, ) model.compile( optimizer="sgd", loss="binary_crossentropy", metrics=["acc"] ) start_from_epoch = 2 patience = 3 stopper = keras.callbacks.EarlyStopping( monitor="acc", patience=patience, start_from_epoch=start_from_epoch, ) history = model.fit( data, labels, callbacks=[stopper], verbose=0, epochs=20 ) # Test 'patience' argument functions correctly when used # in conjunction with 'start_from_epoch'. self.assertGreaterEqual( len(history.epoch), patience + start_from_epoch ) start_from_epoch = 2 patience = 0 stopper = keras.callbacks.EarlyStopping( monitor="acc", patience=patience, start_from_epoch=start_from_epoch, ) history = model.fit( data, labels, callbacks=[stopper], verbose=0, epochs=20 ) # Test for boundary condition when 'patience' = 0. self.assertGreaterEqual(len(history.epoch), start_from_epoch) def test_RemoteMonitor(self): if requests is None: self.skipTest("`requests` required to run this test") return None monitor = keras.callbacks.RemoteMonitor() # This will raise a warning since the default address in unreachable: monitor.on_epoch_end(0, logs={"loss": 0.0}) def test_LearningRateScheduler(self): with self.cached_session(): np.random.seed(1337) (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES, ) y_test = np_utils.to_categorical(y_test) y_train = np_utils.to_categorical(y_train) model = test_utils.get_small_sequential_mlp( num_hidden=NUM_HIDDEN, num_classes=NUM_CLASSES, input_dim=INPUT_DIM, ) model.compile( loss="categorical_crossentropy", optimizer="sgd", metrics=["accuracy"], ) cbks = [ keras.callbacks.LearningRateScheduler( lambda x: 1.0 / (1.0 + x), verbose=1 ) ] io_utils.enable_interactive_logging() with self.captureWritesToStream(sys.stdout) as printed: model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=5, ) self.assertIn( "LearningRateScheduler setting learning rate to 1.0", printed.contents(), ) assert ( float(keras.backend.get_value(model.optimizer.lr)) - 0.2 ) < keras.backend.epsilon() cbks = [keras.callbacks.LearningRateScheduler(lambda x, lr: lr / 2)] model.compile( loss="categorical_crossentropy", optimizer="sgd", metrics=["accuracy"], ) model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=2, verbose=0, ) assert ( float(keras.backend.get_value(model.optimizer.lr)) - 0.01 / 4 ) < keras.backend.epsilon() cbks = [ keras.callbacks.LearningRateScheduler( lambda epoch, _: learning_rate_schedule.CosineDecay( 0.01, 2 )(epoch) ) ] model.compile( loss="categorical_crossentropy", optimizer="sgd", metrics=["accuracy"], ) model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=2, verbose=0, ) cosine_decay_np = 0.5 * (1 + np.cos(np.pi * (1 / 2))) decayed_learning_rate = 0.01 * cosine_decay_np assert ( float(keras.backend.get_value(model.optimizer.lr)) - decayed_learning_rate ) < keras.backend.epsilon() def test_ReduceLROnPlateau(self): with self.cached_session(): tf_utils.set_random_seed(1337) (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES, ) y_test = np_utils.to_categorical(y_test) y_train = np_utils.to_categorical(y_train) def make_model(): tf_utils.set_random_seed(1337) model = test_utils.get_small_sequential_mlp( num_hidden=NUM_HIDDEN, num_classes=NUM_CLASSES, input_dim=INPUT_DIM, ) model.compile( loss="categorical_crossentropy", optimizer=gradient_descent.SGD(lr=0.1), ) return model # TODO(psv): Make sure the callback works correctly when min_delta # is set as 0. Test fails when the order of this callback and # assertion is interchanged. model = make_model() cbks = [ keras.callbacks.ReduceLROnPlateau( monitor="val_loss", factor=0.1, min_delta=0, patience=1, cooldown=5, ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=2, verbose=0, ) self.assertAllClose( float(keras.backend.get_value(model.optimizer.lr)), 0.1, atol=1e-4, ) model = make_model() # This should reduce the LR after the first epoch (due to high # epsilon). cbks = [ keras.callbacks.ReduceLROnPlateau( monitor="val_loss", factor=0.1, min_delta=10, patience=1, cooldown=5, ) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=2, verbose=2, ) self.assertAllClose( float(keras.backend.get_value(model.optimizer.lr)), 0.01, atol=1e-4, ) def test_ReduceLROnPlateau_patience(self): class DummyOptimizer: def __init__(self): self.lr = keras.backend.variable(1.0) class DummyModel: def __init__(self): self.optimizer = DummyOptimizer() reduce_on_plateau = keras.callbacks.ReduceLROnPlateau( monitor="val_loss", patience=2 ) reduce_on_plateau.model = DummyModel() losses = [0.0860, 0.1096, 0.1040] lrs = [] for epoch in range(len(losses)): reduce_on_plateau.on_epoch_end( epoch, logs={"val_loss": losses[epoch]} ) lrs.append( keras.backend.get_value(reduce_on_plateau.model.optimizer.lr) ) # The learning rates should be 1.0 except the last one for lr in lrs[:-1]: self.assertEqual(lr, 1.0) self.assertLess(lrs[-1], 1.0) def test_ReduceLROnPlateau_backwards_compatibility(self): with tf.compat.v1.test.mock.patch.object( logging, "warning" ) as mock_log: reduce_on_plateau = keras.callbacks.ReduceLROnPlateau(epsilon=1e-13) self.assertRegex( str(mock_log.call_args), "`epsilon` argument is deprecated" ) self.assertFalse(hasattr(reduce_on_plateau, "epsilon")) self.assertTrue(hasattr(reduce_on_plateau, "min_delta")) self.assertEqual(reduce_on_plateau.min_delta, 1e-13) def test_CSVLogger(self): with self.cached_session(): np.random.seed(1337) temp_dir = self.get_temp_dir() self.addCleanup(shutil.rmtree, temp_dir, ignore_errors=True) filepath = os.path.join(temp_dir, "log.tsv") sep = "\t" (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES, ) y_test = np_utils.to_categorical(y_test) y_train = np_utils.to_categorical(y_train) def make_model(): np.random.seed(1337) model = test_utils.get_small_sequential_mlp( num_hidden=NUM_HIDDEN, num_classes=NUM_CLASSES, input_dim=INPUT_DIM, ) model.compile( loss="categorical_crossentropy", optimizer=gradient_descent.SGD(lr=0.1), metrics=["accuracy"], ) return model # case 1, create new file with defined separator model = make_model() cbks = [keras.callbacks.CSVLogger(filepath, separator=sep)] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0, ) assert os.path.exists(filepath) with open(filepath) as csvfile: dialect = csv.Sniffer().sniff(csvfile.read()) assert dialect.delimiter == sep del model del cbks # case 2, append data to existing file, skip header model = make_model() cbks = [ keras.callbacks.CSVLogger(filepath, separator=sep, append=True) ] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, verbose=0, ) # case 3, reuse of CSVLogger object model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=2, verbose=0, ) with open(filepath) as csvfile: list_lines = csvfile.readlines() for line in list_lines: assert line.count(sep) == 4 assert len(list_lines) == 5 output = " ".join(list_lines) assert len(re.findall("epoch", output)) == 1 os.remove(filepath) # case 3, Verify Val. loss also registered when Validation Freq > 1 model = make_model() cbks = [keras.callbacks.CSVLogger(filepath, separator=sep)] hist = model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), validation_freq=3, callbacks=cbks, epochs=5, verbose=0, ) assert os.path.exists(filepath) # Verify that validation loss is registered at val. freq with open(filepath) as csvfile: rows = csv.DictReader(csvfile, delimiter=sep) for idx, row in enumerate(rows, 1): self.assertIn("val_loss", row) if idx == 3: self.assertEqual( row["val_loss"], str(hist.history["val_loss"][0]) ) else: self.assertEqual(row["val_loss"], "NA") def test_stop_training_csv(self): # Test that using the CSVLogger callback with the TerminateOnNaN # callback does not result in invalid CSVs. np.random.seed(1337) tmpdir = self.get_temp_dir() self.addCleanup(shutil.rmtree, tmpdir, ignore_errors=True) with self.cached_session(): fp = os.path.join(tmpdir, "test.csv") (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES, ) y_test = np_utils.to_categorical(y_test) y_train = np_utils.to_categorical(y_train) cbks = [ keras.callbacks.TerminateOnNaN(), keras.callbacks.CSVLogger(fp), ] model = keras.models.Sequential() for _ in range(5): model.add( keras.layers.Dense( 2, input_dim=INPUT_DIM, activation="relu" ) ) model.add(keras.layers.Dense(NUM_CLASSES, activation="linear")) model.compile(loss="mean_squared_error", optimizer="rmsprop") def data_generator(): i = 0 max_batch_index = len(x_train) // BATCH_SIZE tot = 0 while 1: if tot > 3 * len(x_train): yield ( np.ones([BATCH_SIZE, INPUT_DIM]) * np.nan, np.ones([BATCH_SIZE, NUM_CLASSES]) * np.nan, ) else: yield ( x_train[i * BATCH_SIZE : (i + 1) * BATCH_SIZE], y_train[i * BATCH_SIZE : (i + 1) * BATCH_SIZE], ) i += 1 tot += 1 i %= max_batch_index history = model.fit_generator( data_generator(), len(x_train) // BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=20, ) loss = history.history["loss"] assert len(loss) > 1 assert loss[-1] == np.inf or np.isnan(loss[-1]) values = [] with open(fp) as f: # On Windows, due to \r\n line ends, we may end up reading empty # lines after each line. Skip empty lines. values = [x for x in csv.reader(f) if x] assert "nan" in values[-1], "The last epoch was not logged." @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_TerminateOnNaN(self): np.random.seed(1337) (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES, ) y_test = np_utils.to_categorical(y_test) y_train = np_utils.to_categorical(y_train) cbks = [keras.callbacks.TerminateOnNaN()] model = keras.models.Sequential() initializer = keras.initializers.Constant(value=1e5) for _ in range(5): model.add( keras.layers.Dense( 2, input_dim=INPUT_DIM, activation="relu", kernel_initializer=initializer, ) ) model.add(keras.layers.Dense(NUM_CLASSES)) model.compile(loss="mean_squared_error", optimizer="rmsprop") history = model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=20, ) loss = history.history["loss"] self.assertEqual(len(loss), 1) self.assertTrue(np.isnan(loss[0]) or np.isinf(loss[0])) @unittest.skipIf( os.name == "nt", "use_multiprocessing=True does not work on windows properly.", ) def test_LambdaCallback(self): with self.cached_session(): np.random.seed(1337) (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES, ) y_test = np_utils.to_categorical(y_test) y_train = np_utils.to_categorical(y_train) model = keras.models.Sequential() model.add( keras.layers.Dense( NUM_HIDDEN, input_dim=INPUT_DIM, activation="relu" ) ) model.add(keras.layers.Dense(NUM_CLASSES, activation="softmax")) model.compile( loss="categorical_crossentropy", optimizer="sgd", metrics=["accuracy"], ) # Start an arbitrary process that should run during model # training and be terminated after training has completed. e = threading.Event() def target(): e.wait() t = threading.Thread(target=target) t.start() cleanup_callback = keras.callbacks.LambdaCallback( on_train_end=lambda logs: e.set() ) cbks = [cleanup_callback] model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=5, verbose=0, ) t.join() assert not t.is_alive() def test_RemoteMonitor_np_array(self): if requests is None: self.skipTest("`requests` required to run this test") with tf.compat.v1.test.mock.patch.object( requests, "post" ) as requests_post: monitor = keras.callbacks.RemoteMonitor(send_as_json=True) a = np.arange(1) # a 1 by 1 array logs = {"loss": 0.0, "val": a} monitor.on_epoch_end(0, logs=logs) send = {"loss": 0.0, "epoch": 0, "val": 0} requests_post.assert_called_once_with( monitor.root + monitor.path, json=send, headers=monitor.headers ) def test_RemoteMonitor_np_float32(self): if requests is None: self.skipTest("`requests` required to run this test") with tf.compat.v1.test.mock.patch.object( requests, "post" ) as requests_post: monitor = keras.callbacks.RemoteMonitor(send_as_json=True) a = np.float32(1.0) # a float32 generic type logs = {"loss": 0.0, "val": a} monitor.on_epoch_end(0, logs=logs) send = {"loss": 0.0, "epoch": 0, "val": 1.0} requests_post.assert_called_once_with( monitor.root + monitor.path, json=send, headers=monitor.headers ) def test_RemoteMonitorWithJsonPayload(self): if requests is None: self.skipTest("`requests` required to run this test") return None with self.cached_session(): (x_train, y_train), (x_test, y_test) = test_utils.get_test_data( train_samples=TRAIN_SAMPLES, test_samples=TEST_SAMPLES, input_shape=(INPUT_DIM,), num_classes=NUM_CLASSES, ) y_test = keras.utils.np_utils.to_categorical(y_test) y_train = keras.utils.np_utils.to_categorical(y_train) model = keras.models.Sequential() model.add( keras.layers.Dense( NUM_HIDDEN, input_dim=INPUT_DIM, activation="relu" ) ) model.add(keras.layers.Dense(NUM_CLASSES, activation="softmax")) model.compile( loss="categorical_crossentropy", optimizer="rmsprop", metrics=["accuracy"], ) cbks = [keras.callbacks.RemoteMonitor(send_as_json=True)] with tf.compat.v1.test.mock.patch.object(requests, "post"): model.fit( x_train, y_train, batch_size=BATCH_SIZE, validation_data=(x_test, y_test), callbacks=cbks, epochs=1, ) def test_progbar_infers_steps(self): x, y = np.ones((10, 1)), np.ones((10, 1)) data = tf.data.Dataset.from_tensor_slices((x, y)).batch(2) data = data.filter(lambda x, y: True) # Unknown cardinality. progbar = keras.callbacks.ProgbarLogger("steps") model = keras.Sequential([keras.layers.Dense(1)]) model.compile("sgd", "mse") self.assertIsNone(progbar.target) model.fit(data, epochs=2, callbacks=[progbar]) self.assertEqual(progbar.target, 5) @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_callback_passed_floats(self): class MyCallback(keras.callbacks.Callback): def on_batch_end(self, batch, logs=None): assert isinstance(batch, int) assert isinstance(logs["loss"], float) self.on_batch_end_called = True def on_epoch_end(self, batch, logs=None): assert isinstance(batch, int) assert isinstance(logs["loss"], float) self.on_epoch_end_called = True x, y = np.ones((10, 1)), np.ones((10, 1)) model = keras.Sequential([keras.layers.Dense(1)]) model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) callback = MyCallback() model.fit(x, y, epochs=2, callbacks=[callback]) self.assertTrue(callback.on_batch_end_called) self.assertTrue(callback.on_batch_end_called) @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_implements_batch_hooks(self): class MyCallbackWithBatchHooks(keras.callbacks.Callback): def __init__(self): self.train_batches = 0 self.test_batches = 0 self.predict_batches = 0 def on_train_batch_end(self, batch, logs=None): self.train_batches += 1 def on_test_batch_end(self, batch, logs=None): self.test_batches += 1 def on_predict_batch_end(self, batch, logs=None): self.predict_batches += 1 class MyCallbackWithTFBatchHooks(keras.callbacks.Callback): def __init__(self): super().__init__() self._supports_tf_logs = True class MyCallbackWithoutBatchHooks(keras.callbacks.Callback): def __init__(self): self.epochs = 0 def on_epoch_end(self, epoch, logs=None): self.epochs += 1 x, y = np.ones((10, 1)), np.ones((10, 1)) model = keras.Sequential([keras.layers.Dense(1)]) model.compile("sgd", "mse") my_cb = MyCallbackWithBatchHooks() cb_list = keras.callbacks.CallbackList([my_cb], verbose=0) self.assertTrue(cb_list._should_call_train_batch_hooks) self.assertTrue(cb_list._should_call_test_batch_hooks) self.assertTrue(cb_list._should_call_predict_batch_hooks) self.assertFalse(cb_list._batch_hooks_support_tf_logs) model.fit(x, y, epochs=2, batch_size=10, callbacks=[my_cb], verbose=0) model.evaluate(x, y, batch_size=10, callbacks=[my_cb], verbose=0) model.predict(x, batch_size=10, callbacks=[my_cb], verbose=0) self.assertEqual(my_cb.train_batches, 2) self.assertEqual(my_cb.test_batches, 1) self.assertEqual(my_cb.predict_batches, 1) my_cb = MyCallbackWithTFBatchHooks() cb_list = keras.callbacks.CallbackList([my_cb], verbose=0) self.assertTrue(cb_list._batch_hooks_support_tf_logs) my_cb = MyCallbackWithoutBatchHooks() cb_list = keras.callbacks.CallbackList([my_cb], verbose=0) self.assertLen(cb_list.callbacks, 1) self.assertFalse(cb_list._should_call_train_batch_hooks) self.assertFalse(cb_list._should_call_test_batch_hooks) self.assertFalse(cb_list._should_call_predict_batch_hooks) model.fit(x, y, epochs=2, batch_size=10, callbacks=[my_cb], verbose=0) model.evaluate(x, y, batch_size=10, callbacks=[my_cb], verbose=0) model.predict(x, batch_size=10, callbacks=[my_cb], verbose=0) @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_logs_conversion(self): assert_dict_equal = self.assertDictEqual class MutateNumpyLogs(CallAllHooks): def _run(self, *args, logs=None): logs = logs or args[-1] logs["numpy"] = 1 class MutateTensorFlowLogs(CallAllHooks): def __init__(self): super().__init__() self._supports_tf_logs = True def _run(self, *args, logs=None): logs = logs or args[-1] logs["tf"] = 2 class AssertNumpyLogs(CallAllHooks): def _run(self, *args, logs=None): logs = logs or args[-1] assert_dict_equal(logs, {"all": 0, "numpy": 1, "tf": 2}) class AssertTensorFlowLogs(AssertNumpyLogs): def __init__(self): super().__init__() self._supports_tf_logs = True cb_list = keras.callbacks.CallbackList( [ MutateNumpyLogs(), MutateTensorFlowLogs(), AssertNumpyLogs(), AssertTensorFlowLogs(), ] ) assert len(cb_list.callbacks) == 4 cb_list.on_epoch_begin(0, logs={"all": 0}) cb_list.on_epoch_end(0, logs={"all": 0}) cb_list.on_predict_batch_begin(0, logs={"all": 0}) cb_list.on_predict_batch_end(0, logs={"all": 0}) cb_list.on_predict_begin(logs={"all": 0}) cb_list.on_predict_end(logs={"all": 0}) cb_list.on_test_batch_begin(0, logs={"all": 0}) cb_list.on_test_batch_end(0, logs={"all": 0}) cb_list.on_test_begin(logs={"all": 0}) cb_list.on_test_end(logs={"all": 0}) cb_list.on_train_batch_begin(0, logs={"all": 0}) cb_list.on_train_batch_end(0, logs={"all": 0}) cb_list.on_train_begin(logs={"all": 0}) cb_list.on_train_end(logs={"all": 0}) @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_implements_batch_hooks_override(self): class MyCallback(keras.callbacks.Callback): def __init__(self, should_run=True): self.should_run = should_run self.train_batches = 0 self.test_batches = 0 self.predict_batches = 0 def on_train_batch_end(self, batch, logs=None): self.train_batches += 1 def on_test_batch_end(self, batch, logs=None): self.test_batches += 1 def on_predict_batch_end(self, batch, logs=None): self.predict_batches += 1 def _implements_train_batch_hooks(self): return self.should_run def _implements_test_batch_hooks(self): return self.should_run def _implements_predict_batch_hooks(self): return self.should_run x, y = np.ones((10, 1)), np.ones((10, 1)) model = keras.Sequential([keras.layers.Dense(1)]) model.compile("sgd", "mse") my_cb = MyCallback(should_run=True) cb_list = keras.callbacks.CallbackList([my_cb], verbose=0) self.assertTrue(cb_list._should_call_train_batch_hooks) self.assertTrue(cb_list._should_call_test_batch_hooks) self.assertTrue(cb_list._should_call_predict_batch_hooks) model.fit(x, y, epochs=2, batch_size=10, callbacks=[my_cb], verbose=0) model.evaluate(x, y, batch_size=10, callbacks=[my_cb], verbose=0) model.predict(x, batch_size=10, callbacks=[my_cb], verbose=0) self.assertEqual(my_cb.train_batches, 2) self.assertEqual(my_cb.test_batches, 1) self.assertEqual(my_cb.predict_batches, 1) my_cb = MyCallback(should_run=False) cb_list = keras.callbacks.CallbackList([my_cb], verbose=0) self.assertFalse(cb_list._should_call_train_batch_hooks) self.assertFalse(cb_list._should_call_test_batch_hooks) self.assertFalse(cb_list._should_call_predict_batch_hooks) model.fit(x, y, epochs=2, batch_size=10, callbacks=[my_cb], verbose=0) model.evaluate(x, y, batch_size=10, callbacks=[my_cb], verbose=0) model.predict(x, batch_size=10, callbacks=[my_cb], verbose=0) self.assertEqual(my_cb.train_batches, 0) self.assertEqual(my_cb.test_batches, 0) self.assertEqual(my_cb.predict_batches, 0) @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_default_callbacks_do_not_call_batch_hooks(self): model = keras.Sequential([keras.layers.Dense(1)]) log_dir = self.get_temp_dir() cb_list = keras.callbacks.CallbackList( [ keras.callbacks.TensorBoard(log_dir, profile_batch=0), keras.callbacks.ModelCheckpoint(log_dir), ], add_progbar=True, model=model, verbose=2, epochs=3, ) self.assertLen(cb_list.callbacks, 3) self.assertFalse(cb_list._should_call_train_batch_hooks) self.assertFalse(cb_list._should_call_test_batch_hooks) self.assertFalse(cb_list._should_call_predict_batch_hooks) @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_change_tf_functions_during_fit(self): class ChangeFunctions(keras.callbacks.Callback): def on_epoch_end(self, epochs, logs=None): def new_fn(iterator): raise ValueError("New function substituted successfully.") self.model.train_function = new_fn self.model.test_function = new_fn self.model.predict_function = new_fn model = keras.Sequential([keras.layers.Dense(1)]) model.compile("sgd", "mse") x, y = np.ones((10, 10)), np.ones((10, 1)) with self.assertRaisesRegex(ValueError, "New function "): model.fit( x, y, batch_size=2, epochs=2, callbacks=[ChangeFunctions()] ) with self.assertRaisesRegex(ValueError, "New function "): model.evaluate(x, y, batch_size=2) with self.assertRaisesRegex(ValueError, "New function "): model.predict(x, batch_size=2) @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_stop_training_batch_level(self): class MyCallback(keras.callbacks.Callback): def __init__(self): super().__init__() self.batch_counter = 0 def on_train_batch_end(self, batch, logs=None): self.batch_counter += 1 if batch == 2: self.model.stop_training = True model = keras.Sequential([keras.layers.Dense(1)]) model.compile("sgd", "mse") x, y = np.ones((10, 10)), np.ones((10, 1)) my_cb = MyCallback() # Will run 5 batches if `stop_training` doesn't work. model.fit(x, y, batch_size=2, callbacks=[my_cb]) self.assertEqual(my_cb.batch_counter, 3) @test_combinations.run_all_keras_modes(always_skip_v1=True) def test_built_in_callback_order(self): class CustomCallback(keras.callbacks.Callback): pass class TestingCallbackList(keras.callbacks.CallbackList): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if ( (not isinstance(self.callbacks[0], CustomCallback)) or ( not isinstance( self.callbacks[1], keras.callbacks.History ) ) or ( not isinstance( self.callbacks[2], keras.callbacks.ProgbarLogger ) ) ): raise AssertionError( f"Callback order unexpected: {self.callbacks}" ) with mock.patch.object( keras.callbacks, "CallbackList", TestingCallbackList ): model = keras.Sequential([keras.layers.Dense(1)]) model.compile("sgd", "mse") custom_callback = CustomCallback() model.fit( np.ones((10, 10)), np.ones((10, 1)), epochs=5, callbacks=[custom_callback], ) # A summary that was emitted during a test. Fields: # logdir: str. The logdir of the FileWriter to which the summary was # written. # tag: str. The name of the summary. _ObservedSummary = collections.namedtuple("_ObservedSummary", ("logdir", "tag")) class _SummaryFile: """A record of summary tags and the files to which they were written. Fields `scalars`, `images`, `histograms`, and `tensors` are sets containing `_ObservedSummary` values. """ def __init__(self): self.scalars = set() self.images = set() self.histograms = set() self.tensors = set() self.graph_defs = [] self.convert_from_v2_summary_proto = False def list_summaries(logdir): """Read all summaries under the logdir into a `_SummaryFile`. Args: logdir: A path to a directory that contains zero or more event files, either as direct children or in transitive subdirectories. Summaries in these events must only contain old-style scalars, images, and histograms. Non-summary events, like `graph_def`s, are ignored. Returns: A `_SummaryFile` object reflecting all summaries written to any event files in the logdir or any of its descendant directories. Raises: ValueError: If an event file contains an summary of unexpected kind. """ result = _SummaryFile() for dirpath, _, filenames in os.walk(logdir): for filename in filenames: if not filename.startswith("events.out."): continue path = os.path.join(dirpath, filename) for event in tf.compat.v1.train.summary_iterator(path): if event.graph_def: result.graph_defs.append(event.graph_def) if not event.summary: # (e.g., it's a `graph_def` event) continue for value in event.summary.value: tag = value.tag # Case on the `value` rather than the summary metadata # because the TF-Keras callback uses `summary_ops_v2` to # emit old-style summaries. See b/124535134. kind = value.WhichOneof("value") container = { "simple_value": result.scalars, "image": result.images, "histo": result.histograms, "tensor": result.tensors, }.get(kind) if container is None: raise ValueError( "Unexpected summary kind %r in event file %s:\n%r" % (kind, path, event) ) elif kind == "tensor" and tag != "keras": # Convert the tf2 summary proto to old style for type # checking. plugin_name = value.metadata.plugin_data.plugin_name container = { "images": result.images, "histograms": result.histograms, "scalars": result.scalars, }.get(plugin_name) if container is not None: result.convert_from_v2_summary_proto = True else: container = result.tensors container.add(_ObservedSummary(logdir=dirpath, tag=tag)) return result @test_combinations.run_with_all_model_types @test_combinations.run_all_keras_modes(always_skip_v1=True) class TestTensorBoardV2(test_combinations.TestCase): def setUp(self): super(TestTensorBoardV2, self).setUp() self.logdir = os.path.join(self.get_temp_dir(), "tb") self.train_dir = os.path.join(self.logdir, "train") self.validation_dir = os.path.join(self.logdir, "validation") def _get_model(self, compile_model=True): layers = [ keras.layers.Conv2D(8, (3, 3)), keras.layers.Flatten(), keras.layers.Dense(1), ] model = test_utils.get_model_from_layers( layers, input_shape=(10, 10, 1) ) if compile_model: opt = gradient_descent.SGD(learning_rate=0.001) model.compile( opt, "mse", run_eagerly=test_utils.should_run_eagerly() ) return model def test_TensorBoard_default_logdir(self): """Regression test for cross-platform pathsep in default logdir.""" os.chdir(self.get_temp_dir()) model = self._get_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard() # no logdir specified model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk], ) summary_file = list_summaries(logdir=".") train_dir = os.path.join(".", "logs", "train") validation_dir = os.path.join(".", "logs", "validation") self.assertEqual( summary_file.scalars, { _ObservedSummary(logdir=train_dir, tag="epoch_loss"), _ObservedSummary(logdir=validation_dir, tag="epoch_loss"), _ObservedSummary( logdir=validation_dir, tag="evaluation_loss_vs_iterations" ), }, ) def test_TensorBoard_basic(self): model = self._get_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard(self.logdir) model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk], ) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.scalars, { _ObservedSummary(logdir=self.train_dir, tag="epoch_loss"), _ObservedSummary(logdir=self.validation_dir, tag="epoch_loss"), _ObservedSummary( logdir=self.validation_dir, tag="evaluation_loss_vs_iterations", ), }, ) def test_TensorBoard_across_invocations(self): """Regression test for summary writer resource use-after-free. See: <https://github.com/tensorflow/tensorflow/issues/25707> """ model = self._get_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard(self.logdir) for _ in (1, 2): model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk], ) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.scalars, { _ObservedSummary(logdir=self.train_dir, tag="epoch_loss"), _ObservedSummary(logdir=self.validation_dir, tag="epoch_loss"), _ObservedSummary( logdir=self.validation_dir, tag="evaluation_loss_vs_iterations", ), }, ) def test_TensorBoard_no_spurious_event_files(self): model = self._get_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard(self.logdir) model.fit(x, y, batch_size=2, epochs=2, callbacks=[tb_cbk]) events_file_run_basenames = set() for dirpath, _, filenames in os.walk(self.train_dir): if any(fn.startswith("events.out.") for fn in filenames): events_file_run_basenames.add(os.path.basename(dirpath)) self.assertEqual(events_file_run_basenames, {"train"}) def test_TensorBoard_batch_metrics(self): model = self._get_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard(self.logdir, update_freq=1) model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk], ) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.scalars, { _ObservedSummary(logdir=self.train_dir, tag="batch_loss"), _ObservedSummary(logdir=self.train_dir, tag="epoch_loss"), _ObservedSummary(logdir=self.validation_dir, tag="epoch_loss"), _ObservedSummary( logdir=self.validation_dir, tag="evaluation_loss_vs_iterations", ), }, ) def test_TensorBoard_learning_rate_schedules(self): model = self._get_model(compile_model=False) opt = gradient_descent.SGD(learning_rate_schedule.CosineDecay(0.01, 1)) model.compile(opt, "mse", run_eagerly=test_utils.should_run_eagerly()) x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) model.fit( x, y, batch_size=2, epochs=2, callbacks=[keras.callbacks.TensorBoard(self.logdir)], ) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.scalars, { _ObservedSummary(logdir=self.train_dir, tag="epoch_loss"), _ObservedSummary( logdir=self.train_dir, tag="epoch_learning_rate" ), }, ) def test_TensorBoard_global_step(self): model = self._get_model(compile_model=False) opt = gradient_descent.SGD(learning_rate_schedule.CosineDecay(0.01, 1)) model.compile(opt, "mse", run_eagerly=test_utils.should_run_eagerly()) x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) model.fit( x, y, batch_size=2, epochs=2, verbose=0, callbacks=[ keras.callbacks.TensorBoard( self.logdir, update_freq=1, profile_batch=0, write_steps_per_second=True, ) ], ) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.scalars, { _ObservedSummary(logdir=self.train_dir, tag="batch_loss"), _ObservedSummary(logdir=self.train_dir, tag="epoch_loss"), _ObservedSummary( logdir=self.train_dir, tag="epoch_learning_rate" ), _ObservedSummary( logdir=self.train_dir, tag="epoch_steps_per_second" ), _ObservedSummary( logdir=self.train_dir, tag="batch_steps_per_second" ), }, ) def test_TensorBoard_weight_histograms(self): model = self._get_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard(self.logdir, histogram_freq=1) model_type = test_utils.get_model_type() model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk], ) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.scalars, { _ObservedSummary(logdir=self.train_dir, tag="epoch_loss"), _ObservedSummary(logdir=self.validation_dir, tag="epoch_loss"), _ObservedSummary( logdir=self.validation_dir, tag="evaluation_loss_vs_iterations", ), }, ) self.assertEqual( self._strip_layer_names(summary_file.histograms, model_type), { _ObservedSummary(logdir=self.train_dir, tag="bias_0/histogram"), _ObservedSummary( logdir=self.train_dir, tag="kernel_0/histogram" ), }, ) def test_TensorBoard_weight_images(self): model = self._get_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, write_images=True ) model_type = test_utils.get_model_type() model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk], ) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.scalars, { _ObservedSummary(logdir=self.train_dir, tag="epoch_loss"), _ObservedSummary(logdir=self.validation_dir, tag="epoch_loss"), _ObservedSummary( logdir=self.validation_dir, tag="evaluation_loss_vs_iterations", ), }, ) self.assertEqual( self._strip_layer_names(summary_file.histograms, model_type), { _ObservedSummary(logdir=self.train_dir, tag="bias_0/histogram"), _ObservedSummary( logdir=self.train_dir, tag="kernel_0/histogram" ), }, ) if summary_file.convert_from_v2_summary_proto: expected_image_summaries = { _ObservedSummary(logdir=self.train_dir, tag="bias_0/image"), _ObservedSummary(logdir=self.train_dir, tag="kernel_0/image"), } else: expected_image_summaries = { _ObservedSummary(logdir=self.train_dir, tag="bias_0/image/0"), _ObservedSummary(logdir=self.train_dir, tag="kernel_0/image/0"), _ObservedSummary(logdir=self.train_dir, tag="kernel_0/image/1"), _ObservedSummary(logdir=self.train_dir, tag="kernel_0/image/2"), } self.assertEqual( self._strip_layer_names(summary_file.images, model_type), expected_image_summaries, ) def test_TensorBoard_projector_callback(self): layers = [ keras.layers.Embedding(10, 10, name="test_embedding"), keras.layers.Dense(10, activation="relu"), keras.layers.Dense(1, activation="sigmoid"), ] model = test_utils.get_model_from_layers(layers, input_shape=(10,)) model.compile( optimizer="adam", loss=keras.losses.BinaryCrossentropy(from_logits=True), run_eagerly=test_utils.should_run_eagerly(), ) x, y = np.ones((10, 10)), np.ones((10, 10)) tb_cbk = keras.callbacks.TensorBoard( self.logdir, embeddings_freq=1, embeddings_metadata={"test_embedding": "metadata.tsv"}, ) model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk], ) with open(os.path.join(self.logdir, "projector_config.pbtxt")) as f: self.assertEqual( f.readlines(), [ "embeddings {\n", " tensor_name: " '"layer_with_weights-0/embeddings/.ATTRIBUTES/' 'VARIABLE_VALUE"\n', ' metadata_path: "metadata.tsv"\n', "}\n", ], ) def test_custom_summary(self): if not tf.executing_eagerly(): self.skipTest("Custom summaries only supported in V2 code path.") def scalar_v2_mock(name, data, step=None): """A reimplementation of the scalar plugin to avoid circular deps.""" metadata = tf.compat.v1.SummaryMetadata() # Should match value in tensorboard/plugins/scalar/metadata.py. metadata.plugin_data.plugin_name = "scalars" with tf.summary.experimental.summary_scope( name, "scalar_summary", values=[data, step] ) as (tag, _): return tf.summary.write( tag=tag, tensor=tf.cast(data, "float32"), step=step, metadata=metadata, ) class LayerWithSummary(keras.layers.Layer): def call(self, x): scalar_v2_mock("custom_summary", tf.reduce_sum(x)) return x model = test_utils.get_model_from_layers( [LayerWithSummary()], input_shape=(5,), name="model" ) model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) tb_cbk = keras.callbacks.TensorBoard(self.logdir, update_freq=1) x, y = np.ones((10, 5)), np.ones((10, 5)) model.fit( x, y, batch_size=2, validation_data=(x, y), callbacks=[tb_cbk] ) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.scalars, { _ObservedSummary(logdir=self.train_dir, tag="batch_loss"), _ObservedSummary(logdir=self.train_dir, tag="epoch_loss"), _ObservedSummary(logdir=self.validation_dir, tag="epoch_loss"), _ObservedSummary( logdir=self.validation_dir, tag="evaluation_loss_vs_iterations", ), _ObservedSummary( logdir=self.train_dir, tag="model/layer_with_summary/custom_summary", ), _ObservedSummary( logdir=self.validation_dir, tag="model/layer_with_summary/custom_summary", ), }, ) def _strip_layer_names(self, summaries, model_type): """Deduplicate summary names modulo layer prefix. This removes the first slash-component of each tag name: for instance, "foo/bar/baz" becomes "bar/baz". Args: summaries: A `set` of `_ObservedSummary` values. model_type: The model type currently being tested. Returns: A new `set` of `_ObservedSummary` values with layer prefixes removed. """ result = set() for summary in summaries: if "/" not in summary.tag: raise ValueError(f"tag has no layer name: {summary.tag!r}") start_from = 2 if "subclass" in model_type else 1 new_tag = "/".join(summary.tag.split("/")[start_from:]) result.add(summary._replace(tag=new_tag)) return result def test_TensorBoard_invalid_argument(self): with self.assertRaisesRegex(ValueError, "Unrecognized arguments"): keras.callbacks.TensorBoard(wwrite_images=True) def test_TensorBoard_non_blocking(self): model = keras.Sequential([keras.layers.Dense(1)]) tb = keras.callbacks.TensorBoard(self.logdir) self.assertTrue(tb._supports_tf_logs) cb_list = keras.callbacks.CallbackList( [tb], model=model, epochs=1, steps=100, verbose=0 ) tensor = tf.convert_to_tensor(1.0) def mock_numpy(): raise RuntimeError( "If this error is seen, TensorBoard is causing a blocking " "NumPy conversion." ) with tf.compat.v1.test.mock.patch.object(tensor, "numpy", mock_numpy): logs = {"metric": tensor} cb_list.on_train_begin(logs) cb_list.on_epoch_begin(0, logs) cb_list.on_train_batch_begin(0, logs) cb_list.on_train_batch_end(0, logs) cb_list.on_epoch_end(0, logs) cb_list.on_train_end(logs) cb_list.on_test_begin(logs) cb_list.on_test_batch_begin(0, logs) cb_list.on_test_batch_end(0, logs) cb_list.on_test_end(logs) cb_list.on_predict_begin(logs) cb_list.on_predict_batch_begin(logs) cb_list.on_predict_batch_end(logs) cb_list.on_predict_end(logs) # Note that this test specifies model_type explicitly. @test_combinations.run_all_keras_modes(always_skip_v1=True) class TestTensorBoardV2NonParameterizedTest(test_combinations.TestCase): def setUp(self): super(TestTensorBoardV2NonParameterizedTest, self).setUp() self.logdir = os.path.join(self.get_temp_dir(), "tb") self.train_dir = os.path.join(self.logdir, "train") self.validation_dir = os.path.join(self.logdir, "validation") def _get_seq_model(self): model = keras.models.Sequential( [ keras.layers.Conv2D(8, (3, 3), input_shape=(10, 10, 1)), keras.layers.Flatten(), keras.layers.Dense(1), ] ) opt = gradient_descent.SGD(learning_rate=0.001) model.compile(opt, "mse", run_eagerly=test_utils.should_run_eagerly()) return model def _count_xplane_file(self, logdir): profile_dir = os.path.join(logdir, "plugins", "profile") count = 0 for dirpath, dirnames, filenames in os.walk(profile_dir): del dirpath # unused del dirnames # unused for filename in filenames: if filename.endswith(".xplane.pb"): count += 1 return count def fitModelAndAssertKerasModelWritten(self, model): x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard( self.logdir, write_graph=True, profile_batch=0 ) model.fit( x, y, batch_size=2, epochs=3, validation_data=(x, y), callbacks=[tb_cbk], ) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.tensors, { _ObservedSummary(logdir=self.train_dir, tag="keras"), }, ) if not model.run_eagerly: # There should be one train graph self.assertLen(summary_file.graph_defs, 1) for graph_def in summary_file.graph_defs: graph_def_str = str(graph_def) # All the model layers should appear in the graphs for layer in model.layers: if "input" not in layer.name: self.assertIn(layer.name, graph_def_str) def test_TensorBoard_writeSequentialModel_noInputShape(self): model = keras.models.Sequential( [ keras.layers.Conv2D(8, (3, 3)), keras.layers.Flatten(), keras.layers.Dense(1), ] ) model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) self.fitModelAndAssertKerasModelWritten(model) def test_TensorBoard_writeSequentialModel_withInputShape(self): model = keras.models.Sequential( [ keras.layers.Conv2D(8, (3, 3), input_shape=(10, 10, 1)), keras.layers.Flatten(), keras.layers.Dense(1), ] ) model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) self.fitModelAndAssertKerasModelWritten(model) def test_TensorBoard_writeModel(self): inputs = keras.layers.Input([10, 10, 1]) x = keras.layers.Conv2D(8, (3, 3), activation="relu")(inputs) x = keras.layers.Flatten()(x) x = keras.layers.Dense(1)(x) model = keras.models.Model(inputs=inputs, outputs=[x]) model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) self.fitModelAndAssertKerasModelWritten(model) def test_TensorBoard_autoTrace(self): model = self._get_seq_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, profile_batch=1, write_graph=False ) model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk], ) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.tensors, { _ObservedSummary(logdir=self.train_dir, tag="batch_1"), }, ) self.assertEqual(1, self._count_xplane_file(logdir=self.logdir)) def test_TensorBoard_autoTrace_outerProfiler(self): """Runs a profiler session that interferes with the callback's one. The callback will not generate a profile but execution will proceed without crashing due to unhandled exceptions. """ tf.profiler.experimental.start(logdir="") model = self._get_seq_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, profile_batch=1, write_graph=False ) model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk], ) summary_file = list_summaries(self.logdir) tf.profiler.experimental.stop(save=False) self.assertEqual( summary_file.tensors, { _ObservedSummary(logdir=self.train_dir, tag="batch_1"), }, ) self.assertEqual(0, self._count_xplane_file(logdir=self.train_dir)) def test_TensorBoard_autoTrace_tagNameWithBatchNum(self): model = self._get_seq_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, profile_batch=2, write_graph=False ) model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk], ) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.tensors, { _ObservedSummary(logdir=self.train_dir, tag="batch_2"), }, ) self.assertEqual(1, self._count_xplane_file(logdir=self.logdir)) def test_TensorBoard_autoTrace_profileBatchRangeSingle(self): model = self._get_seq_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, profile_batch="2,2", write_graph=False, ) model.fit( x, y, batch_size=3, epochs=2, validation_data=(x, y), callbacks=[tb_cbk], ) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.tensors, { # Trace will be logged once at the batch it stops profiling. _ObservedSummary(logdir=self.train_dir, tag="batch_2"), }, ) self.assertEqual(1, self._count_xplane_file(logdir=self.logdir)) def test_TensorBoard_autoTrace_profileBatchRangeTwice(self): model = self._get_seq_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, profile_batch="10,10", write_graph=False, ) model.fit( x, y, batch_size=3, epochs=10, validation_data=(x, y), callbacks=[tb_cbk], ) time.sleep(1) # Avoids the second profile over-writing the first. model.fit( x, y, batch_size=3, epochs=10, validation_data=(x, y), callbacks=[tb_cbk], ) self.assertEqual(2, self._count_xplane_file(logdir=self.logdir)) # Test case that replicates a GitHub issue. # https://github.com/tensorflow/tensorflow/issues/37543 def test_TensorBoard_autoTrace_profileTwiceGraphMode(self): tf.compat.v1.disable_eager_execution() inp = keras.Input((1,)) out = keras.layers.Dense(units=1)(inp) model = keras.Model(inp, out) model.compile(gradient_descent.SGD(1), "mse") logdir = os.path.join(self.get_temp_dir(), "tb1") model.fit( np.zeros((64, 1)), np.zeros((64, 1)), batch_size=32, callbacks=[keras.callbacks.TensorBoard(logdir, profile_batch=1)], ) # Verifies trace exists in the first logdir. self.assertEqual(1, self._count_xplane_file(logdir=logdir)) logdir = os.path.join(self.get_temp_dir(), "tb2") model.fit( np.zeros((64, 1)), np.zeros((64, 1)), batch_size=32, callbacks=[keras.callbacks.TensorBoard(logdir, profile_batch=2)], ) # Verifies trace exists in the second logdir. self.assertEqual(1, self._count_xplane_file(logdir=logdir)) def test_TensorBoard_autoTrace_profileBatchRange(self): model = self._get_seq_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, profile_batch="1,3", write_graph=False, ) model.fit( x, y, batch_size=4, epochs=2, validation_data=(x, y), callbacks=[tb_cbk], ) summary_file = list_summaries(self.logdir) self.assertEqual( summary_file.tensors, { # Trace will be logged once at the batch it stops profiling. _ObservedSummary(logdir=self.train_dir, tag="batch_3"), }, ) self.assertEqual(1, self._count_xplane_file(logdir=self.logdir)) def test_TensorBoard_autoTrace_profileInvalidBatchRange(self): with self.assertRaises(ValueError): keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, profile_batch="-1,3", write_graph=False, ) with self.assertRaises(ValueError): keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, profile_batch="1,None", write_graph=False, ) with self.assertRaises(ValueError): keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, profile_batch="6,5", write_graph=False, ) with self.assertRaises(ValueError): keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, profile_batch=-1, write_graph=False, ) def test_TensorBoard_autoTrace_profile_batch_largerThanBatchCount(self): model = self._get_seq_model() x, y = np.ones((10, 10, 10, 1)), np.ones((10, 1)) tb_cbk = keras.callbacks.TensorBoard( self.logdir, histogram_freq=1, profile_batch=10000, write_graph=False, ) model.fit( x, y, batch_size=2, epochs=2, validation_data=(x, y), callbacks=[tb_cbk], ) summary_file = list_summaries(self.logdir) # Enabled trace only on the 10000th batch, thus it should be empty. self.assertEmpty(summary_file.tensors) self.assertEqual(0, self._count_xplane_file(logdir=self.train_dir)) class MostRecentlyModifiedFileMatchingPatternTest(tf.test.TestCase): def test_get_most_recently_modified_file_matching_pattern(self): file_pattern = "f.batch{batch:02d}epoch{epoch:02d}.h5" test_dir = self.get_temp_dir() path_pattern = os.path.join(test_dir, file_pattern) file_paths = [ os.path.join(test_dir, file_name) for file_name in [ "f.batch03epoch02.h5", "f.batch02epoch02.h5", "f.batch01epoch01.h5", ] ] for file_path in file_paths: with open(file_path, "w") as f: # Ensure there are some intervals between file creation. time.sleep(2) f.write("foo bar") # Ensure the files have been actually written. self.assertEqual( set( [ os.path.join(test_dir, file_name) for file_name in os.listdir(test_dir) ] ), set(file_paths), ) self.assertEqual( keras.callbacks.ModelCheckpoint( None )._get_most_recently_modified_file_matching_pattern(path_pattern), file_paths[-1], ) def test_some_file_not_matching_pattern(self): file_pattern = "f.batch{batch:02d}epoch{epoch:02d}.h5" test_dir = self.get_temp_dir() path_pattern = os.path.join(test_dir, file_pattern) file_paths = [ os.path.join(test_dir, file_name) for file_name in [ "f.batch03epoch02.h5", "f.batch02epoch02.h5", "f.baatch01epoch01.h5", ] ] for file_path in file_paths: with open(file_path, "w") as f: # Ensure there are some intervals between file creation. time.sleep(2) f.write("foo bar") self.assertEqual( keras.callbacks.ModelCheckpoint( None )._get_most_recently_modified_file_matching_pattern(path_pattern), file_paths[-2], ) def test_get_same_file_if_file_name_equals_pattern(self): file_name = "f.batch02.h5" test_dir = self.get_temp_dir() file_path = os.path.join(test_dir, file_name) with open(file_path, "w") as f: f.write("foo bar") self.assertEqual( os.path.join(test_dir, os.listdir(test_dir)[0]), file_path ) self.assertEqual( keras.callbacks.ModelCheckpoint( None )._get_most_recently_modified_file_matching_pattern(file_path), file_path, ) def test_get_none_if_file_does_not_exist(self): file_name = "f.batch02.h5" test_dir = self.get_temp_dir() file_path = os.path.join(test_dir, file_name) self.assertEmpty(os.listdir(test_dir)) self.assertEqual( keras.callbacks.ModelCheckpoint( None )._get_most_recently_modified_file_matching_pattern(file_path), None, ) def test_using_checkpoint_management_latest_checkpoint(self): file_pattern = "f.batch{batch:02d}epoch{epoch:02d}" ckpt_file_name = "f.batchXepochY" test_dir = self.get_temp_dir() path_pattern = os.path.join(test_dir, file_pattern) ckpt_file_path = os.path.join(test_dir, ckpt_file_name) with open(ckpt_file_path, "w") as f: f.write("dummy ckpt") tf.__internal__.train.update_checkpoint_state(test_dir, ckpt_file_path) file_paths = [ os.path.join(test_dir, file_name) for file_name in ["f.batch03epoch02", "f.batch02epoch02"] ] for file_path in file_paths: with open(file_path, "w") as f: f.write("foo bar") # The result returned from checkpoint_management.latest_checkpoint takes # priority, so even if it was written earlier, we should still return # that. self.assertEqual( keras.callbacks.ModelCheckpoint( None )._get_most_recently_modified_file_matching_pattern(path_pattern), ckpt_file_path, ) class SummaryOpsTest(tf.test.TestCase): def tearDown(self): super(SummaryOpsTest, self).tearDown() tf.summary.trace_off() def keras_model(self, *args, **kwargs): logdir = self.get_temp_dir() writer = tf.summary.create_file_writer(logdir) with writer.as_default(): keras.callbacks.keras_model_summary(*args, **kwargs) writer.close() events = events_from_logdir(logdir) # The first event contains no summary values. The written content goes # to the second event. return events[1] @test_utils.run_v2_only def testKerasModel(self): model = keras.Sequential( [Dense(10, input_shape=(100,)), Activation("relu", name="my_relu")] ) event = self.keras_model(name="my_name", data=model, step=1) first_val = event.summary.value[0] self.assertEqual( model.to_json(), first_val.tensor.string_val[0].decode() ) @test_utils.run_v2_only def testKerasModel_usesDefaultStep(self): model = keras.Sequential( [Dense(10, input_shape=(100,)), Activation("relu", name="my_relu")] ) try: tf.summary.experimental.set_step(42) event = self.keras_model(name="my_name", data=model) self.assertEqual(42, event.step) finally: # Reset to default state for other tests. tf.summary.experimental.set_step(None) @test_utils.run_v2_only def testKerasModel_subclass(self): class SimpleSubclass(keras.Model): def __init__(self): super().__init__(name="subclass") self.dense = Dense(10, input_shape=(100,)) self.activation = Activation("relu", name="my_relu") def call(self, inputs): x = self.dense(inputs) return self.activation(x) # Intentionally erroring out at json serialization to test the # warning. def get_config(self): raise NotImplementedError model = SimpleSubclass() with tf.compat.v1.test.mock.patch.object( logging, "warning" ) as mock_log: self.assertFalse( keras.callbacks.keras_model_summary( name="my_name", data=model, step=1 ) ) self.assertRegex( str(mock_log.call_args), "Model failed to serialize as JSON." ) @test_utils.run_v2_only def testKerasModel_otherExceptions(self): model = keras.Sequential() with tf.compat.v1.test.mock.patch.object( model, "to_json" ) as mock_to_json: with tf.compat.v1.test.mock.patch.object( logging, "warning" ) as mock_log: mock_to_json.side_effect = Exception("oops") self.assertFalse( keras.callbacks.keras_model_summary( name="my_name", data=model, step=1 ) ) self.assertRegex( str(mock_log.call_args), "Model failed to serialize as JSON. Ignoring", ) def events_from_file(filepath): """Returns all events in a single event file. Args: filepath: Path to the event file. Returns: A list of all tf.Event protos in the event file. """ result = [] raw_dataset = tf.data.TFRecordDataset([filepath]) for raw_record in raw_dataset.take(10): event = tf.compat.v1.Event() event.ParseFromString(raw_record.numpy()) result.append(event) return result def events_from_logdir(logdir): """Returns all events in the single eventfile in logdir. Args: logdir: The directory in which the single event file is sought. Returns: A list of all tf.Event protos from the single event file. Raises: AssertionError: If logdir does not contain exactly one file. """ assert tf.compat.v1.gfile.Exists(logdir) files = tf.compat.v1.gfile.ListDirectory(logdir) assert len(files) == 1, f"Found not exactly one file in logdir: {files}" return events_from_file(os.path.join(logdir, files[0])) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/callbacks_test.py/0
{ "file_path": "tf-keras/tf_keras/callbacks_test.py", "repo_id": "tf-keras", "token_count": 79548 }
217
# TF-Keras with Distribution Strategy Tests This directory contains unit tests that combine TF-Keras library with [Distribution Training](https://www.tensorflow.org/guide/distributed_training). Tests that use a custom training loop instead of TF-Keras compile/fit should be placed under python/distribute directory instead.
tf-keras/tf_keras/distribute/README.md/0
{ "file_path": "tf-keras/tf_keras/distribute/README.md", "repo_id": "tf-keras", "token_count": 81 }
218
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for distributed training utility functions.""" import tensorflow.compat.v2 as tf from tf_keras import callbacks from tf_keras.distribute import distributed_training_utils_v1 from tf_keras.optimizers.legacy import adam class DistributedTrainingUtilsTest(tf.test.TestCase): def test_validate_callbacks_predefined_callbacks(self): supported_predefined_callbacks = [ callbacks.TensorBoard(), callbacks.CSVLogger(filename="./log.csv"), callbacks.EarlyStopping(), callbacks.ModelCheckpoint(filepath="./checkpoint"), callbacks.TerminateOnNaN(), callbacks.ProgbarLogger(), callbacks.History(), callbacks.RemoteMonitor(), ] distributed_training_utils_v1.validate_callbacks( supported_predefined_callbacks, adam.Adam() ) unsupported_predefined_callbacks = [ callbacks.ReduceLROnPlateau(), callbacks.LearningRateScheduler(schedule=lambda epoch: 0.001), ] for callback in unsupported_predefined_callbacks: with self.assertRaisesRegex( ValueError, "You must specify a TF-Keras Optimizer V2" ): distributed_training_utils_v1.validate_callbacks( [callback], tf.compat.v1.train.AdamOptimizer() ) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/distribute/distributed_training_utils_test.py/0
{ "file_path": "tf-keras/tf_keras/distribute/distributed_training_utils_test.py", "repo_id": "tf-keras", "token_count": 793 }
219
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test MirroredVariable in MirroredStrategy and MultiWorkerMirroredStrategy.""" import tensorflow.compat.v2 as tf from tf_keras.distribute import distributed_training_utils from tf_keras.layers import core def _mimic_two_cpus(): try: cpus = tf.config.list_physical_devices("CPU") except tf.errors.NotFoundError: # Testing device not available. Skip the test. return False tf.config.set_logical_device_configuration( cpus[0], [ tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration(), ], ) return True def get_strategy_with_mimicing_cpus(): if not _mimic_two_cpus(): return None return tf.distribute.MultiWorkerMirroredStrategy._from_local_devices( ("/device:CPU:0", "/device:CPU:1") ) @tf.__internal__.distribute.combinations.generate( tf.__internal__.test.combinations.combine( distribution=list( filter( None.__ne__, [ tf.__internal__.distribute.combinations.mirrored_strategy_with_gpu_and_cpu, # noqa: E501 get_strategy_with_mimicing_cpus(), ], ) ), mode=["graph", "eager"], ) ) class MirroredVariableCreationTest(tf.test.TestCase): """Base class that tests mirrored variable creator. Currently it assumes all strategy objects have two replicas. """ @classmethod def setUpClass(cls): _mimic_two_cpus() def assertAllDifferent(self, objs): for i in range(len(objs)): for j in range(len(objs)): if i == j: continue self.assertIsNot(objs[i], objs[j]) def _is_mirrored(self, val): if distributed_training_utils.is_distributed_variable(val): if val._policy: return val._policy._is_mirrored() # Since `Mirrored` is a private symbol in tf.distribute, we're checking # with `DistributedValues` as an approximation. return isinstance(val, tf.distribute.DistributedValues) def testWithLayers(self, distribution): def model_fn(features): layer1 = core.Dense(1) layer1(features) layer2 = core.Dense(1) layer2(features) # We rely on names and orders to make sure replica references the # same MirroredVariable. Uniquifying names may involve global # states, merge_call switches threads so we need to test things work # after merge_call. tf.distribute.get_replica_context().merge_call(lambda _: _) layer3 = core.Dense(1) layer3(features) return [ (layer1.kernel, layer1.bias), (layer2.kernel, layer2.bias), (layer3.kernel, layer3.bias), ] iterator = distribution.make_input_fn_iterator( lambda _: tf.data.Dataset.from_tensors([[1.0]]).repeat(10) ) self.evaluate(iterator.initializer) features = iterator.get_next() with distribution.scope(): result = distribution.extended.call_for_each_replica( model_fn, args=(features,) ) for kernel, bias in result: self.assertTrue(self._is_mirrored(kernel)) self.assertAllDifferent( distribution.experimental_local_results(kernel) ) self.assertTrue(self._is_mirrored(bias)) self.assertAllDifferent( distribution.experimental_local_results(kernel) ) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/distribute/mirrored_variable_test.py/0
{ "file_path": "tf-keras/tf_keras/distribute/mirrored_variable_test.py", "repo_id": "tf-keras", "token_count": 1928 }
220
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """A simple network to use in tests and examples.""" import tensorflow.compat.v2 as tf from tf_keras.legacy_tf_layers import core from tf_keras.legacy_tf_layers import normalization from tf_keras.optimizers.legacy import optimizer_v2 def minimize_loss_example(optimizer, use_bias=False, use_callable_loss=True): """Example of non-distribution-aware legacy code.""" def dataset_fn(): dataset = tf.data.Dataset.from_tensors([[1.0]]).repeat() # TODO(isaprykin): batch with drop_remainder causes shapes to be # fully defined for TPU. Remove this when XLA supports dynamic shapes. return dataset.batch(1, drop_remainder=True) layer = core.Dense(1, use_bias=use_bias) def model_fn(x): """A very simple model written by the user.""" def loss_fn(): y = tf.reshape(layer(x), []) - tf.constant(1.0) return y * y if isinstance(optimizer, optimizer_v2.OptimizerV2): return optimizer.minimize( loss_fn, lambda: layer.trainable_variables ) elif use_callable_loss: return optimizer.minimize(loss_fn) else: return optimizer.minimize(loss_fn()) return model_fn, dataset_fn, layer def batchnorm_example( optimizer_fn, batch_per_epoch=1, momentum=0.9, renorm=False, update_ops_in_replica_mode=False, ): """Example of non-distribution-aware legacy code with batch normalization.""" def dataset_fn(): # input shape is [16, 8], input values are increasing in both # dimensions. return tf.data.Dataset.from_tensor_slices( [ [ [float(x * 8 + y + z * 100) for y in range(8)] for x in range(16) ] for z in range(batch_per_epoch) ] ).repeat() optimizer = optimizer_fn() batchnorm = normalization.BatchNormalization( renorm=renorm, momentum=momentum, fused=False ) layer = core.Dense(1, use_bias=False) def model_fn(x): """A model that uses batchnorm.""" def loss_fn(): y = batchnorm(x, training=True) with tf.control_dependencies( tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.UPDATE_OPS) if update_ops_in_replica_mode else [] ): loss = tf.reduce_mean( tf.reduce_sum(layer(y)) - tf.constant(1.0) ) # `x` and `y` will be fetched by the gradient computation, but not # `loss`. return loss if isinstance(optimizer, optimizer_v2.OptimizerV2): return optimizer.minimize( loss_fn, lambda: layer.trainable_variables ) # Callable loss. return optimizer.minimize(loss_fn) return model_fn, dataset_fn, batchnorm
tf-keras/tf_keras/distribute/test_example.py/0
{ "file_path": "tf-keras/tf_keras/distribute/test_example.py", "repo_id": "tf-keras", "token_count": 1561 }
221
# Copyright 2022 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for DTensor based strategy training.""" import numpy as np import tensorflow.compat.v2 as tf from absl.testing import parameterized from tf_keras import backend from tf_keras import mixed_precision from tf_keras.dtensor import integration_test_utils from tf_keras.optimizers import adam from tf_keras.utils import tf_utils # isort: off # Import the MirroredStrategy that is backed by DTensor # It is not a public API yet, so we do a private symbol import for now. from tensorflow.python.distribute.experimental import ( mirrored_strategy as dtensor_mirrored_strategy, ) from tensorflow.dtensor.python.tests import test_util class TrainingTest(test_util.DTensorBaseTest): def setUp(self): super().setUp() backend.enable_tf_random_generator() tf_utils.set_random_seed(1337) global_ids = test_util.create_device_ids_array((2,)) local_device_ids = np.ravel(global_ids).tolist() mesh_dict = { device: tf.experimental.dtensor.Mesh( ["batch"], global_ids, local_device_ids, test_util.create_device_list((2,), device), ) for device in ("CPU", "GPU", "TPU") } self.mesh = self.configTestMesh(mesh_dict) def tearDown(self): super().tearDown() # clean up the mixed precision setting if any. mixed_precision.set_global_policy("float32") @parameterized.product( run_eagerly=[True, False], jit_compile=[True, False], optimizer_creator=[lambda: adam.Adam(), lambda: "adam"], enable_mixed_precision=[True, False], ) def test_model_fit( self, run_eagerly, jit_compile, optimizer_creator, enable_mixed_precision, ): if run_eagerly and jit_compile: self.skipTest("run_eagerly can't run with jit_compile") if enable_mixed_precision and self.mesh.device_type() != "GPU": self.skipTest("Only run mixed_precision on GPU for performance") if enable_mixed_precision: mixed_precision.set_global_policy("mixed_float16") dtensor_strategy = dtensor_mirrored_strategy.MirroredStrategy( mesh=self.mesh ) # Make fake MNIST-like image data. batch_size = 64 dataset = tf.data.Dataset.from_tensor_slices( ( np.random.uniform(size=(batch_size, 28, 28, 1)).astype( np.float32 ), np.random.randint(0, 10, size=(batch_size,)), ) ) dataset = dataset.shuffle(64).repeat().batch(64, drop_remainder=True) with dtensor_strategy.scope(): model = integration_test_utils.get_model() optimizer = optimizer_creator() model.compile( loss="SparseCategoricalCrossentropy", optimizer=optimizer, metrics="acc", run_eagerly=run_eagerly, jit_compile=jit_compile, ) model.fit(dataset, steps_per_epoch=10) prediction = model.predict( np.random.uniform(size=(batch_size, 28, 28, 1)).astype(np.float32) ) self.assertEqual(prediction.shape, (batch_size, 10)) if enable_mixed_precision: self.assertEqual(prediction.dtype, tf.float16) else: self.assertEqual(prediction.dtype, tf.float32) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/dtensor/strategy_integration_test.py/0
{ "file_path": "tf-keras/tf_keras/dtensor/strategy_integration_test.py", "repo_id": "tf-keras", "token_count": 1788 }
222
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for numerical correctness.""" import numpy as np import tensorflow.compat.v2 as tf from absl.testing import parameterized import tf_keras as keras from tf_keras.testing_infra import test_combinations from tf_keras.testing_infra import test_utils class MultiInputSubclassed(keras.Model): """Subclassed Model that adds its inputs and then adds a bias.""" def __init__(self): super().__init__() self.add = keras.layers.Add() self.bias = test_utils.Bias() def call(self, inputs): added = self.add(inputs) return self.bias(added) def multi_input_functional(): """Functional Model that adds its inputs and then adds a bias.""" input_1 = keras.Input(shape=(1,)) input_2 = keras.Input(shape=(1,)) input_3 = keras.Input(shape=(1,)) added = keras.layers.Add()([input_1, input_2, input_3]) output = test_utils.Bias()(added) return keras.Model([input_1, input_2, input_3], output) @test_combinations.run_with_all_model_types @test_combinations.run_all_keras_modes class SimpleBiasTest(test_combinations.TestCase): def _get_simple_bias_model(self): model = test_utils.get_model_from_layers( [test_utils.Bias()], input_shape=(1,) ) model.compile( keras.optimizers.legacy.gradient_descent.SGD(0.1), "mae", run_eagerly=test_utils.should_run_eagerly(), ) return model def test_simple_bias_fit(self): x = np.array([[0.0], [1.0], [2.0]]) y = np.array([[0.5], [2.0], [3.5]]) model = self._get_simple_bias_model() history = model.fit(x, y, batch_size=3, epochs=5) self.assertAllClose(history.history["loss"], [1.0, 0.9, 0.8, 0.7, 0.6]) def test_simple_bias_evaluate(self): x = np.array([[0.0], [1.0], [2.0]]) y = np.array([[1.0], [3.0], [5.0]]) model = self._get_simple_bias_model() loss = model.evaluate(x, y, batch_size=1) self.assertAlmostEqual(loss, 2.0) def test_simple_bias_predict(self): x = np.array([[0.0], [1.0], [2.0]]) model = self._get_simple_bias_model() pred = model.predict(x, batch_size=1) self.assertAllClose(x, pred) @test_combinations.run_all_keras_modes class MultipleInputTest(test_combinations.TestCase): def _get_multiple_input_model(self, subclassed=True): if subclassed: model = MultiInputSubclassed() else: model = multi_input_functional() model.compile( keras.optimizers.legacy.gradient_descent.SGD(0.1), "mae", run_eagerly=test_utils.should_run_eagerly(), ) return model @parameterized.named_parameters(("subclassed", True), ("functional", False)) def test_multiple_input_fit(self, subclassed): x = [ np.array([[1.0], [2.0], [3.0]]), np.array([[4.0], [5.0], [6.0]]), np.array([[7.0], [8.0], [9.0]]), ] y = np.array([[12.5], [16.0], [19.5]]) model = self._get_multiple_input_model(subclassed) history = model.fit(x, y, batch_size=3, epochs=5) self.assertAllClose(history.history["loss"], [1.0, 0.9, 0.8, 0.7, 0.6]) @parameterized.named_parameters(("subclassed", True), ("functional", False)) def test_multiple_input_evaluate(self, subclassed): x = [ np.array([[1.0], [2.0], [3.0]]), np.array([[4.0], [5.0], [6.0]]), np.array([[7.0], [8.0], [9.0]]), ] y = np.array([[13.0], [17.0], [21.0]]) model = self._get_multiple_input_model(subclassed) loss = model.evaluate(x, y, batch_size=3) self.assertAlmostEqual(loss, 2.0) @parameterized.named_parameters(("subclassed", True), ("functional", False)) def test_multiple_input_predict(self, subclassed): x = [ np.array([[1.0], [2.0], [3.0]]), np.array([[4.0], [5.0], [6.0]]), np.array([[7.0], [8.0], [9.0]]), ] model = self._get_multiple_input_model(subclassed) pred = model.predict(x, batch_size=1) self.assertAllClose(pred, [[12.0], [15.0], [18.0]]) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/engine/correctness_test.py/0
{ "file_path": "tf-keras/tf_keras/engine/correctness_test.py", "repo_id": "tf-keras", "token_count": 2215 }
223
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ,============================================================================ """Tests for layer graphs construction & handling.""" import tensorflow.compat.v2 as tf from tf_keras.engine import base_layer from tf_keras.engine import node as node_module from tf_keras.testing_infra import test_combinations class DummyTensor(tf.__internal__.types.Tensor): def __init__(self, shape=None): self._shape = shape @property def shape(self): return self._shape class DummyLayer(base_layer.Layer): pass class NetworkConstructionTest(test_combinations.TestCase): def test_chained_node_construction(self): # test basics a = DummyTensor(shape=(None, 32)) b = DummyTensor(shape=(None, 32)) a_layer = DummyLayer() node = node_module.Node(a_layer, outputs=a) self.assertEqual(node.outbound_layer, a_layer) self.assertTrue(node.is_input) self.assertListEqual(node.inbound_layers, []) self.assertListEqual(node.input_tensors, [a]) self.assertListEqual(node.input_shapes, [(None, 32)]) self.assertListEqual(node.output_tensors, [a]) self.assertListEqual(node.output_shapes, [(None, 32)]) b_layer = DummyLayer() node_module.Node(b_layer, outputs=b) dense = DummyLayer() a_2 = DummyTensor() node_a = node_module.Node(layer=dense, call_args=(a,), outputs=a_2) b_2 = DummyTensor() node_b = node_module.Node(layer=dense, call_args=(b,), outputs=b_2) # test the node attributes self.assertFalse(node_a.is_input) self.assertFalse(node_b.is_input) self.assertEqual(node_a.call_args, (a,)) self.assertEqual(node_a.call_kwargs, {}) self.assertEqual(node_a.outputs, a_2) # Test the layer wiring self.assertLen(dense._inbound_nodes, 2) self.assertLen(dense._outbound_nodes, 0) self.assertEqual(dense._inbound_nodes, [node_a, node_b]) self.assertEqual(dense._inbound_nodes[0].inbound_layers, a_layer) self.assertEqual(dense._inbound_nodes[0].outbound_layer, dense) self.assertEqual(dense._inbound_nodes[1].inbound_layers, b_layer) self.assertEqual(dense._inbound_nodes[1].outbound_layer, dense) self.assertIs(dense._inbound_nodes[0].input_tensors, a) self.assertIs(dense._inbound_nodes[1].input_tensors, b) def test_multi_input_node(self): # test multi-input layer a = DummyTensor() b = DummyTensor() dense = DummyLayer() a_2 = DummyTensor() node_module.Node(layer=dense, call_args=(a,), outputs=a_2) b_2 = DummyTensor() node_module.Node(layer=dense, call_args=(b,), outputs=b_2) concat_layer = DummyLayer() merged = DummyTensor() node_module.Node( layer=concat_layer, call_args=([a_2, b_2],), outputs=merged ) ( merge_layer, merge_node_index, merge_tensor_index, ) = merged._keras_history self.assertEqual(merge_node_index, 0) self.assertEqual(merge_tensor_index, 0) self.assertLen(merge_layer._inbound_nodes, 1) self.assertLen(merge_layer._outbound_nodes, 0) self.assertLen(merge_layer._inbound_nodes[0].input_tensors, 2) self.assertEqual( merge_layer._inbound_nodes[0].input_tensors, [a_2, b_2] ) self.assertLen(merge_layer._inbound_nodes[0].inbound_layers, 2) def test_arg_and_kwarg_mix(self): input_layer = DummyLayer() input_layer_2 = DummyLayer() a = DummyTensor() node_a = node_module.Node(layer=input_layer, outputs=a) b = DummyTensor() node_b = node_module.Node(layer=input_layer_2, outputs=b) arg_2 = DummyTensor() arg_3 = DummyTensor() node_c = node_module.Node(layer=input_layer, outputs=arg_3) kwarg_x = DummyTensor() kwarg_y = DummyTensor() node_d = node_module.Node(layer=input_layer, outputs=kwarg_y) merge_layer = DummyLayer() merged = DummyTensor() node = node_module.Node( layer=merge_layer, call_args=([a, b], arg_2, arg_3), call_kwargs={"x": kwarg_x, "y": kwarg_y}, outputs=merged, ) ( merge_layer, merge_node_index, merge_tensor_index, ) = merged._keras_history # Check the saved call args/kwargs self.assertEqual(([a, b], arg_2, arg_3), node.call_args) self.assertEqual({"x": kwarg_x, "y": kwarg_y}, node.call_kwargs) # Only the inputs that were produced by input nodes should appear in # keras_tensors self.assertEqual({a, b, arg_3, kwarg_y}, set(node.keras_inputs)) self.assertEqual( set(node.parent_nodes), {node_a, node_b, node_c, node_d} ) # Check the layer wirings self.assertEqual(merge_node_index, 0) self.assertEqual(merge_tensor_index, 0) self.assertLen(merge_layer._inbound_nodes, 1) self.assertLen(merge_layer._outbound_nodes, 0) self.assertLen(input_layer._outbound_nodes, 3) self.assertLen(input_layer_2._outbound_nodes, 1) self.assertLen(merge_layer._inbound_nodes[0].input_tensors, 2) self.assertEqual(merge_layer._inbound_nodes[0].input_tensors, [a, b]) self.assertLen(merge_layer._inbound_nodes[0].inbound_layers, 4) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/engine/node_test.py/0
{ "file_path": "tf-keras/tf_keras/engine/node_test.py", "repo_id": "tf-keras", "token_count": 2799 }
224
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """End-to-end tests for a variety of small models.""" import collections import itertools import numpy as np import tensorflow.compat.v2 as tf from absl.testing import parameterized import tf_keras as keras from tf_keras.testing_infra import test_combinations from tf_keras.testing_infra import test_utils def _conv2d_filter(**kwargs): """Conv with non-default strides and dilation rate is not supported.""" return kwargs["strides"] <= 1 or kwargs["dilation_rate"] <= 1 # Scheme: (layer_class, data_shape, fuzz_dims, constructor_args, filter_fn) # layer_class: # A keras Layer class to be tested. # data_shape: # The shape of the input data. (not including batch dim) # fuzz_dims: # Dimensions which can be unspecified during model construction. For # instance, if data_shape is (2, 5) and fuzz_dims is (False, True), a pass # with model input shape of (2, None) will also be performed. # constructor_args: # An OrderedDict (to ensure consistent test names) with a key and a list # of values to test. Test cases will be generated for the Cartesian product # of all constructor args, so adding more fields can cause the drastically # increase the testing load. # filter_fn: # If not None, this function will be called on each set of generated # constructor args, and prevents generation of contradictory combinations. # A True return value indicates a valid test. _LAYERS_TO_TEST = [ ( keras.layers.Dense, (1,), (False,), collections.OrderedDict([("units", [1])]), None, ), ( keras.layers.Activation, (2, 2), (True, True), collections.OrderedDict([("activation", ["relu"])]), None, ), ( keras.layers.Dropout, (16,), (False,), collections.OrderedDict([("rate", [0.25])]), None, ), ( keras.layers.BatchNormalization, (8, 8, 3), (True, True, False), collections.OrderedDict( [("axis", [3]), ("center", [True, False]), ("scale", [True, False])] ), None, ), ( keras.layers.Conv1D, (8, 8), (False, False), collections.OrderedDict( [ ("filters", [1]), ("kernel_size", [1, 3]), ("strides", [1, 2]), ("padding", ["valid", "same"]), ("use_bias", [True]), ("kernel_regularizer", ["l2"]), ("data_format", ["channels_last"]), ] ), None, ), ( keras.layers.Conv2D, (8, 8, 3), (True, True, False), collections.OrderedDict( [ ("filters", [1]), ("kernel_size", [1, 3]), ("strides", [1, 2]), ("padding", ["valid", "same"]), ("use_bias", [True, False]), ("kernel_regularizer", ["l2"]), ("dilation_rate", [1, 2]), ("data_format", ["channels_last"]), ] ), _conv2d_filter, ), ( keras.layers.LSTM, (4, 4), (False, False), collections.OrderedDict( [ ("units", [1]), ("kernel_regularizer", ["l2"]), ("dropout", [0, 0.5]), ("stateful", [True, False]), ("unroll", [True, False]), ("return_sequences", [True, False]), ] ), None, ), ] def _gather_test_cases(): cases = [] for ( layer_type, inp_shape, fuzz_dims, arg_dict, filter_fn, ) in _LAYERS_TO_TEST: arg_combinations = [[(k, i) for i in v] for k, v in arg_dict.items()] for arguments in itertools.product(*arg_combinations): layer_kwargs = {k: v for k, v in arguments} if filter_fn is not None and not filter_fn(**layer_kwargs): continue name = "_{}_{}".format( layer_type.__name__, "_".join("{}_{}".format(*i) for i in arguments), ) cases.append((name, layer_type, inp_shape, fuzz_dims, layer_kwargs)) return cases OUTPUT_TEST_CASES = _gather_test_cases() class CoreLayerIntegrationTest(test_combinations.TestCase): """Test that layers and models produce the correct tensor types.""" # In v1 graph there are only symbolic tensors. @test_combinations.run_all_keras_modes(always_skip_v1=True) @parameterized.named_parameters(*OUTPUT_TEST_CASES) def test_layer_output_type( self, layer_to_test, input_shape, _, layer_kwargs ): layer = layer_to_test(**layer_kwargs) input_data = np.ones(shape=(2,) + input_shape, dtype=np.float32) layer_result = layer(input_data) inp = keras.layers.Input(shape=input_shape, batch_size=2) model = keras.models.Model(inp, layer_to_test(**layer_kwargs)(inp)) model_result = model(input_data) for x in [layer_result, model_result]: if not isinstance(x, tf.Tensor): raise ValueError( f"Tensor or EagerTensor expected, got type {type(x)}" ) if ( isinstance(x, tf.__internal__.EagerTensor) != tf.executing_eagerly() ): expected_type = ( tf.__internal__.EagerTensor if tf.executing_eagerly() else tf.Tensor ) raise ValueError( f"Expected type {expected_type}, got type {type(x)}" ) def _run_fit_eval_predict( self, layer_to_test, input_shape, data_shape, layer_kwargs ): batch_size = 2 run_eagerly = test_utils.should_run_eagerly() def map_fn(_): x = keras.backend.random_uniform(shape=data_shape) y = keras.backend.random_uniform(shape=(1,)) return x, y dataset = tf.data.Dataset.range(4).map(map_fn).batch(batch_size) inp = keras.layers.Input(shape=input_shape, batch_size=batch_size) layer = layer_to_test(**layer_kwargs)(inp) # Condense the output down to a single scalar. layer = keras.layers.Flatten()(layer) layer = keras.layers.Lambda(lambda x: tf.reduce_mean(x, keepdims=True))( layer ) layer = keras.layers.Dense(1, activation=None)(layer) model = keras.models.Model(inp, layer) model.compile(loss="mse", optimizer="sgd", run_eagerly=run_eagerly) model.fit(dataset, verbose=2, epochs=2) model.compile(loss="mse", optimizer="sgd", run_eagerly=run_eagerly) model.fit(dataset.repeat(2), verbose=2, epochs=2, steps_per_epoch=2) eval_dataset = tf.data.Dataset.range(4).map(map_fn).batch(batch_size) model.evaluate(eval_dataset, verbose=2) def pred_map_fn(_): return keras.backend.random_uniform(shape=data_shape) pred_dataset = tf.data.Dataset.range(4) pred_dataset = pred_dataset.map(pred_map_fn).batch(batch_size) model.predict(pred_dataset, verbose=2) @test_combinations.run_all_keras_modes(always_skip_v1=False) @parameterized.named_parameters(*OUTPUT_TEST_CASES) def test_model_loops( self, layer_to_test, input_shape, fuzz_dims, layer_kwargs ): self._run_fit_eval_predict( layer_to_test, input_shape, input_shape, layer_kwargs ) if any(fuzz_dims): fuzzed_shape = [] for dim, should_fuzz in zip(input_shape, fuzz_dims): fuzzed_shape.append(None if should_fuzz else dim) self._run_fit_eval_predict( layer_to_test, fuzzed_shape, input_shape, layer_kwargs ) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/engine/training_integration_test.py/0
{ "file_path": "tf-keras/tf_keras/engine/training_integration_test.py", "repo_id": "tf-keras", "token_count": 4107 }
225
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for dense_features.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow.compat.v2 as tf from absl.testing import parameterized from tf_keras.feature_column import dense_features as df from tf_keras.testing_infra import test_combinations # isort: off from tensorflow.python.eager import backprop from tensorflow.python.framework import ( test_util as tf_test_utils, ) def _initialized_session(config=None): sess = tf.compat.v1.Session(config=config) sess.run(tf.compat.v1.global_variables_initializer()) sess.run(tf.compat.v1.tables_initializer()) return sess class DenseFeaturesTest(test_combinations.TestCase): @test_combinations.generate( test_combinations.combine(mode=["graph", "eager"]) ) def test_retrieving_input(self): features = {"a": [0.0]} dense_features = df.DenseFeatures(tf.feature_column.numeric_column("a")) inputs = self.evaluate(dense_features(features)) self.assertAllClose([[0.0]], inputs) @test_combinations.generate(test_combinations.combine(mode=["eager"])) def test_reuses_variables(self): sparse_input = tf.SparseTensor( indices=((0, 0), (1, 0), (2, 0)), values=(0, 1, 2), dense_shape=(3, 3), ) # Create feature columns (categorical and embedding). categorical_column = tf.feature_column.categorical_column_with_identity( key="a", num_buckets=3 ) embedding_dimension = 2 def _embedding_column_initializer(shape, dtype, partition_info=None): del shape # unused del dtype # unused del partition_info # unused embedding_values = ((1, 0), (0, 1), (1, 1)) # id 0 # id 1 # id 2 return embedding_values embedding_column = tf.feature_column.embedding_column( categorical_column, dimension=embedding_dimension, initializer=_embedding_column_initializer, ) dense_features = df.DenseFeatures([embedding_column]) features = {"a": sparse_input} inputs = dense_features(features) variables = dense_features.variables # Sanity check: test that the inputs are correct. self.assertAllEqual([[1, 0], [0, 1], [1, 1]], inputs) # Check that only one variable was created. self.assertEqual(1, len(variables)) # Check that invoking dense_features on the same features does not # create additional variables _ = dense_features(features) self.assertEqual(1, len(variables)) self.assertIs(variables[0], dense_features.variables[0]) @test_combinations.generate(test_combinations.combine(mode=["eager"])) def test_dense_feature_with_partitioner(self): sparse_input = tf.SparseTensor( indices=((0, 0), (1, 0), (2, 0), (3, 0)), values=(0, 1, 3, 2), dense_shape=(4, 4), ) # Create feature columns (categorical and embedding). categorical_column = tf.feature_column.categorical_column_with_identity( key="a", num_buckets=4 ) embedding_dimension = 2 def _embedding_column_initializer(shape, dtype, partition_info=None): offset = partition_info._var_offset[0] del shape # unused del dtype # unused if offset == 0: embedding_values = ((1, 0), (0, 1)) # id 0 # id 1 else: embedding_values = ((1, 1), (2, 2)) # id 2 # id 3 return embedding_values embedding_column = tf.feature_column.embedding_column( categorical_column, dimension=embedding_dimension, initializer=_embedding_column_initializer, ) dense_features = df.DenseFeatures( [embedding_column], partitioner=tf.compat.v1.fixed_size_partitioner(2), ) features = {"a": sparse_input} inputs = dense_features(features) variables = dense_features.variables # Sanity check: test that the inputs are correct. self.assertAllEqual([[1, 0], [0, 1], [2, 2], [1, 1]], inputs) # Check that only one variable was created. self.assertEqual(2, len(variables)) # Check that invoking dense_features on the same features does not # create additional variables _ = dense_features(features) self.assertEqual(2, len(variables)) self.assertIs(variables[0], dense_features.variables[0]) self.assertIs(variables[1], dense_features.variables[1]) @test_combinations.generate(test_combinations.combine(mode=["eager"])) def test_feature_column_dense_features_gradient(self): sparse_input = tf.SparseTensor( indices=((0, 0), (1, 0), (2, 0)), values=(0, 1, 2), dense_shape=(3, 3), ) # Create feature columns (categorical and embedding). categorical_column = tf.feature_column.categorical_column_with_identity( key="a", num_buckets=3 ) embedding_dimension = 2 def _embedding_column_initializer(shape, dtype, partition_info=None): del shape # unused del dtype # unused del partition_info # unused embedding_values = ((1, 0), (0, 1), (1, 1)) # id 0 # id 1 # id 2 return embedding_values embedding_column = tf.feature_column.embedding_column( categorical_column, dimension=embedding_dimension, initializer=_embedding_column_initializer, ) dense_features = df.DenseFeatures([embedding_column]) features = {"a": sparse_input} def scale_matrix(): matrix = dense_features(features) return 2 * matrix # Sanity check: Verify that scale_matrix returns the correct output. self.assertAllEqual([[2, 0], [0, 2], [2, 2]], scale_matrix()) # Check that the returned gradient is correct. grad_function = backprop.implicit_grad(scale_matrix) grads_and_vars = grad_function() indexed_slice = grads_and_vars[0][0] gradient = grads_and_vars[0][0].values self.assertAllEqual([0, 1, 2], indexed_slice.indices) self.assertAllEqual([[2, 2], [2, 2], [2, 2]], gradient) def test_raises_if_empty_feature_columns(self): with self.assertRaisesRegex( ValueError, "feature_columns must not be empty" ): df.DenseFeatures(feature_columns=[])(features={}) def test_should_be_dense_column(self): with self.assertRaisesRegex(ValueError, "must be a .*DenseColumn"): df.DenseFeatures( feature_columns=[ tf.feature_column.categorical_column_with_hash_bucket( "wire_cast", 4 ) ] )(features={"a": [[0]]}) def test_does_not_support_dict_columns(self): with self.assertRaisesRegex( ValueError, "Expected feature_columns to be iterable, found dict." ): df.DenseFeatures( feature_columns={"a": tf.feature_column.numeric_column("a")} )(features={"a": [[0]]}) def test_bare_column(self): with tf.Graph().as_default(): features = features = {"a": [0.0]} net = df.DenseFeatures(tf.feature_column.numeric_column("a"))( features ) self.evaluate(tf.compat.v1.global_variables_initializer()) self.evaluate(tf.compat.v1.tables_initializer()) self.assertAllClose([[0.0]], self.evaluate(net)) def test_column_generator(self): with tf.Graph().as_default(): features = features = {"a": [0.0], "b": [1.0]} columns = ( tf.feature_column.numeric_column(key) for key in features ) net = df.DenseFeatures(columns)(features) self.evaluate(tf.compat.v1.global_variables_initializer()) self.evaluate(tf.compat.v1.tables_initializer()) self.assertAllClose([[0.0, 1.0]], self.evaluate(net)) def test_raises_if_duplicate_name(self): with self.assertRaisesRegex( ValueError, "Duplicate feature column name found for columns" ): df.DenseFeatures( feature_columns=[ tf.feature_column.numeric_column("a"), tf.feature_column.numeric_column("a"), ] )(features={"a": [[0]]}) def test_one_column(self): price = tf.feature_column.numeric_column("price") with tf.Graph().as_default(): features = {"price": [[1.0], [5.0]]} net = df.DenseFeatures([price])(features) self.evaluate(tf.compat.v1.global_variables_initializer()) self.evaluate(tf.compat.v1.tables_initializer()) self.assertAllClose([[1.0], [5.0]], self.evaluate(net)) def test_multi_dimension(self): price = tf.feature_column.numeric_column("price", shape=2) with tf.Graph().as_default(): features = {"price": [[1.0, 2.0], [5.0, 6.0]]} net = df.DenseFeatures([price])(features) self.evaluate(tf.compat.v1.global_variables_initializer()) self.evaluate(tf.compat.v1.tables_initializer()) self.assertAllClose([[1.0, 2.0], [5.0, 6.0]], self.evaluate(net)) def test_compute_output_shape(self): price1 = tf.feature_column.numeric_column("price1", shape=2) price2 = tf.feature_column.numeric_column("price2", shape=4) with tf.Graph().as_default(): features = { "price1": [[1.0, 2.0], [5.0, 6.0]], "price2": [[3.0, 4.0, 5.0, 6.0], [7.0, 8.0, 9.0, 10.0]], } dense_features = df.DenseFeatures([price1, price2]) self.assertEqual( (None, 6), dense_features.compute_output_shape((None,)) ) net = dense_features(features) self.evaluate(tf.compat.v1.global_variables_initializer()) self.evaluate(tf.compat.v1.tables_initializer()) self.assertAllClose( [ [1.0, 2.0, 3.0, 4.0, 5.0, 6.0], [5.0, 6.0, 7.0, 8.0, 9.0, 10.0], ], self.evaluate(net), ) def test_raises_if_shape_mismatch(self): price = tf.feature_column.numeric_column("price", shape=2) with tf.Graph().as_default(): features = {"price": [[1.0], [5.0]]} with self.assertRaisesRegex( Exception, r"Cannot reshape a tensor with 2 elements to shape \[2,2\]", ): df.DenseFeatures([price])(features) def test_reshaping(self): price = tf.feature_column.numeric_column("price", shape=[1, 2]) with tf.Graph().as_default(): features = {"price": [[[1.0, 2.0]], [[5.0, 6.0]]]} net = df.DenseFeatures([price])(features) self.evaluate(tf.compat.v1.global_variables_initializer()) self.evaluate(tf.compat.v1.tables_initializer()) self.assertAllClose([[1.0, 2.0], [5.0, 6.0]], self.evaluate(net)) def test_multi_column(self): price1 = tf.feature_column.numeric_column("price1", shape=2) price2 = tf.feature_column.numeric_column("price2") with tf.Graph().as_default(): features = { "price1": [[1.0, 2.0], [5.0, 6.0]], "price2": [[3.0], [4.0]], } net = df.DenseFeatures([price1, price2])(features) self.evaluate(tf.compat.v1.global_variables_initializer()) self.evaluate(tf.compat.v1.tables_initializer()) self.assertAllClose( [[1.0, 2.0, 3.0], [5.0, 6.0, 4.0]], self.evaluate(net) ) def test_cols_to_output_tensors(self): price1 = tf.feature_column.numeric_column("price1", shape=2) price2 = tf.feature_column.numeric_column("price2") with tf.Graph().as_default(): cols_dict = {} features = { "price1": [[1.0, 2.0], [5.0, 6.0]], "price2": [[3.0], [4.0]], } dense_features = df.DenseFeatures([price1, price2]) net = dense_features(features, cols_dict) self.evaluate(tf.compat.v1.global_variables_initializer()) self.evaluate(tf.compat.v1.tables_initializer()) self.assertAllClose( [[1.0, 2.0], [5.0, 6.0]], self.evaluate(cols_dict[price1]) ) self.assertAllClose( [[3.0], [4.0]], self.evaluate(cols_dict[price2]) ) self.assertAllClose( [[1.0, 2.0, 3.0], [5.0, 6.0, 4.0]], self.evaluate(net) ) def test_column_order(self): price_a = tf.feature_column.numeric_column("price_a") price_b = tf.feature_column.numeric_column("price_b") with tf.Graph().as_default(): features = { "price_a": [[1.0]], "price_b": [[3.0]], } net1 = df.DenseFeatures([price_a, price_b])(features) net2 = df.DenseFeatures([price_b, price_a])(features) self.evaluate(tf.compat.v1.global_variables_initializer()) self.evaluate(tf.compat.v1.tables_initializer()) self.assertAllClose([[1.0, 3.0]], self.evaluate(net1)) self.assertAllClose([[1.0, 3.0]], self.evaluate(net2)) def test_fails_for_categorical_column(self): animal = tf.feature_column.categorical_column_with_identity( "animal", num_buckets=4 ) with tf.Graph().as_default(): features = { "animal": tf.SparseTensor( indices=[[0, 0], [0, 1]], values=[1, 2], dense_shape=[1, 2] ) } with self.assertRaisesRegex(Exception, "must be a .*DenseColumn"): df.DenseFeatures([animal])(features) def test_static_batch_size_mismatch(self): price1 = tf.feature_column.numeric_column("price1") price2 = tf.feature_column.numeric_column("price2") with tf.Graph().as_default(): features = { "price1": [[1.0], [5.0], [7.0]], # batchsize = 3 "price2": [[3.0], [4.0]], # batchsize = 2 } with self.assertRaisesRegex( ValueError, r"Batch size \(first dimension\) of each feature must be same.", ): df.DenseFeatures([price1, price2])(features) def test_subset_of_static_batch_size_mismatch(self): price1 = tf.feature_column.numeric_column("price1") price2 = tf.feature_column.numeric_column("price2") price3 = tf.feature_column.numeric_column("price3") with tf.Graph().as_default(): features = { "price1": tf.compat.v1.placeholder( dtype=tf.int64 ), # batchsize = 3 "price2": [[3.0], [4.0]], # batchsize = 2 "price3": [[3.0], [4.0], [5.0]], # batchsize = 3 } with self.assertRaisesRegex( ValueError, r"Batch size \(first dimension\) of each feature must be same.", ): df.DenseFeatures([price1, price2, price3])(features) def test_runtime_batch_size_mismatch(self): price1 = tf.feature_column.numeric_column("price1") price2 = tf.feature_column.numeric_column("price2") with tf.Graph().as_default(): features = { "price1": tf.compat.v1.placeholder( dtype=tf.int64 ), # batchsize = 3 "price2": [[3.0], [4.0]], # batchsize = 2 } net = df.DenseFeatures([price1, price2])(features) with _initialized_session() as sess: with self.assertRaisesRegex( tf.errors.OpError, "Dimension 0 in both shapes must be equal|" "Dimensions of inputs should match", ): sess.run( net, feed_dict={features["price1"]: [[1.0], [5.0], [7.0]]}, ) def test_runtime_batch_size_matches(self): price1 = tf.feature_column.numeric_column("price1") price2 = tf.feature_column.numeric_column("price2") with tf.Graph().as_default(): features = { "price1": tf.compat.v1.placeholder( dtype=tf.int64 ), # batchsize = 2 "price2": tf.compat.v1.placeholder( dtype=tf.int64 ), # batchsize = 2 } net = df.DenseFeatures([price1, price2])(features) with _initialized_session() as sess: sess.run( net, feed_dict={ features["price1"]: [[1.0], [5.0]], features["price2"]: [[1.0], [5.0]], }, ) def test_multiple_layers_with_same_embedding_column(self): some_sparse_column = ( tf.feature_column.categorical_column_with_hash_bucket( "sparse_feature", hash_bucket_size=5 ) ) some_embedding_column = tf.feature_column.embedding_column( some_sparse_column, dimension=10 ) with tf.Graph().as_default(): features = { "sparse_feature": [["a"], ["x"]], } all_cols = [some_embedding_column] df.DenseFeatures(all_cols)(features) df.DenseFeatures(all_cols)(features) # Make sure that 2 variables get created in this case. self.assertEqual( 2, len( tf.compat.v1.get_collection( tf.compat.v1.GraphKeys.GLOBAL_VARIABLES ) ), ) expected_var_names = [ "dense_features/sparse_feature_embedding/embedding_weights:0", "dense_features_1/sparse_feature_embedding/embedding_weights:0", ] self.assertCountEqual( expected_var_names, [ v.name for v in tf.compat.v1.get_collection( tf.compat.v1.GraphKeys.GLOBAL_VARIABLES ) ], ) @tf_test_utils.run_deprecated_v1 def test_multiple_layers_with_same_shared_embedding_column(self): categorical_column_a = ( tf.feature_column.categorical_column_with_identity( key="aaa", num_buckets=3 ) ) categorical_column_b = ( tf.feature_column.categorical_column_with_identity( key="bbb", num_buckets=3 ) ) embedding_dimension = 2 ( embedding_column_b, embedding_column_a, ) = tf.feature_column.shared_embeddings( [categorical_column_b, categorical_column_a], dimension=embedding_dimension, ) with tf.Graph().as_default(): features = { "aaa": tf.SparseTensor( indices=((0, 0), (1, 0), (1, 1)), values=(0, 1, 0), dense_shape=(2, 2), ), "bbb": tf.SparseTensor( indices=((0, 0), (1, 0), (1, 1)), values=(1, 2, 1), dense_shape=(2, 2), ), } all_cols = [embedding_column_a, embedding_column_b] df.DenseFeatures(all_cols)(features) df.DenseFeatures(all_cols)(features) # Make sure that only 1 variable gets created in this case. self.assertEqual( 1, len( tf.compat.v1.get_collection( tf.compat.v1.GraphKeys.GLOBAL_VARIABLES ) ), ) self.assertCountEqual( ["aaa_bbb_shared_embedding:0"], [ v.name for v in tf.compat.v1.get_collection( tf.compat.v1.GraphKeys.GLOBAL_VARIABLES ) ], ) @tf_test_utils.run_deprecated_v1 def test_multiple_layers_with_same_shared_embedding_column_diff_graphs( self, ): categorical_column_a = ( tf.feature_column.categorical_column_with_identity( key="aaa", num_buckets=3 ) ) categorical_column_b = ( tf.feature_column.categorical_column_with_identity( key="bbb", num_buckets=3 ) ) embedding_dimension = 2 ( embedding_column_b, embedding_column_a, ) = tf.feature_column.shared_embeddings( [categorical_column_b, categorical_column_a], dimension=embedding_dimension, ) all_cols = [embedding_column_a, embedding_column_b] with tf.Graph().as_default(): features = { "aaa": tf.SparseTensor( indices=((0, 0), (1, 0), (1, 1)), values=(0, 1, 0), dense_shape=(2, 2), ), "bbb": tf.SparseTensor( indices=((0, 0), (1, 0), (1, 1)), values=(1, 2, 1), dense_shape=(2, 2), ), } df.DenseFeatures(all_cols)(features) # Make sure that only 1 variable gets created in this case. self.assertEqual( 1, len( tf.compat.v1.get_collection( tf.compat.v1.GraphKeys.GLOBAL_VARIABLES ) ), ) with tf.Graph().as_default(): features1 = { "aaa": tf.SparseTensor( indices=((0, 0), (1, 0), (1, 1)), values=(0, 1, 0), dense_shape=(2, 2), ), "bbb": tf.SparseTensor( indices=((0, 0), (1, 0), (1, 1)), values=(1, 2, 1), dense_shape=(2, 2), ), } df.DenseFeatures(all_cols)(features1) # Make sure that only 1 variable gets created in this case. self.assertEqual( 1, len( tf.compat.v1.get_collection( tf.compat.v1.GraphKeys.GLOBAL_VARIABLES ) ), ) self.assertCountEqual( ["aaa_bbb_shared_embedding:0"], [ v.name for v in tf.compat.v1.get_collection( tf.compat.v1.GraphKeys.GLOBAL_VARIABLES ) ], ) @tf_test_utils.run_deprecated_v1 def test_with_1d_sparse_tensor(self): embedding_values = ( (1.0, 2.0, 3.0, 4.0, 5.0), # id 0 (6.0, 7.0, 8.0, 9.0, 10.0), # id 1 (11.0, 12.0, 13.0, 14.0, 15.0), # id 2 ) def _initializer(shape, dtype, partition_info=None): del shape, dtype, partition_info return embedding_values # price has 1 dimension in dense_features price = tf.feature_column.numeric_column("price") # one_hot_body_style has 3 dims in dense_features. body_style = tf.feature_column.categorical_column_with_vocabulary_list( "body-style", vocabulary_list=["hardtop", "wagon", "sedan"] ) one_hot_body_style = tf.feature_column.indicator_column(body_style) # embedded_body_style has 5 dims in dense_features. country = tf.feature_column.categorical_column_with_vocabulary_list( "country", vocabulary_list=["US", "JP", "CA"] ) embedded_country = tf.feature_column.embedding_column( country, dimension=5, initializer=_initializer ) # Provides 1-dim tensor and dense tensor. features = { "price": tf.constant( [ 11.0, 12.0, ] ), "body-style": tf.SparseTensor( indices=((0,), (1,)), values=("sedan", "hardtop"), dense_shape=(2,), ), # This is dense tensor for the categorical_column. "country": tf.constant(["CA", "US"]), } self.assertEqual(1, features["price"].shape.ndims) self.assertEqual(1, features["body-style"].dense_shape.get_shape()[0]) self.assertEqual(1, features["country"].shape.ndims) net = df.DenseFeatures([price, one_hot_body_style, embedded_country])( features ) self.assertEqual(1 + 3 + 5, net.shape[1]) with _initialized_session() as sess: # Each row is formed by concatenating `embedded_body_style`, # `one_hot_body_style`, and `price` in order. self.assertAllEqual( [ [0.0, 0.0, 1.0, 11.0, 12.0, 13.0, 14.0, 15.0, 11.0], [1.0, 0.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 12.0], ], sess.run(net), ) @tf_test_utils.run_deprecated_v1 def test_with_1d_unknown_shape_sparse_tensor(self): embedding_values = ( (1.0, 2.0), # id 0 (6.0, 7.0), # id 1 (11.0, 12.0), # id 2 ) def _initializer(shape, dtype, partition_info=None): del shape, dtype, partition_info return embedding_values # price has 1 dimension in dense_features price = tf.feature_column.numeric_column("price") # one_hot_body_style has 3 dims in dense_features. body_style = tf.feature_column.categorical_column_with_vocabulary_list( "body-style", vocabulary_list=["hardtop", "wagon", "sedan"] ) one_hot_body_style = tf.feature_column.indicator_column(body_style) # embedded_body_style has 5 dims in dense_features. country = tf.feature_column.categorical_column_with_vocabulary_list( "country", vocabulary_list=["US", "JP", "CA"] ) embedded_country = tf.feature_column.embedding_column( country, dimension=2, initializer=_initializer ) # Provides 1-dim tensor and dense tensor. features = { "price": tf.compat.v1.placeholder(tf.float32), "body-style": tf.compat.v1.sparse_placeholder(tf.string), # This is dense tensor for the categorical_column. "country": tf.compat.v1.placeholder(tf.string), } self.assertIsNone(features["price"].shape.ndims) self.assertIsNone(features["body-style"].get_shape().ndims) self.assertIsNone(features["country"].shape.ndims) price_data = np.array([11.0, 12.0]) body_style_data = tf.compat.v1.SparseTensorValue( indices=((0,), (1,)), values=("sedan", "hardtop"), dense_shape=(2,) ) country_data = np.array([["US"], ["CA"]]) net = df.DenseFeatures([price, one_hot_body_style, embedded_country])( features ) self.assertEqual(1 + 3 + 2, net.shape[1]) with _initialized_session() as sess: # Each row is formed by concatenating `embedded_body_style`, # `one_hot_body_style`, and `price` in order. self.assertAllEqual( [ [0.0, 0.0, 1.0, 1.0, 2.0, 11.0], [1.0, 0.0, 0.0, 11.0, 12.0, 12.0], ], sess.run( net, feed_dict={ features["price"]: price_data, features["body-style"]: body_style_data, features["country"]: country_data, }, ), ) @tf_test_utils.run_deprecated_v1 def test_with_rank_0_feature(self): # price has 1 dimension in dense_features price = tf.feature_column.numeric_column("price") features = { "price": tf.constant(0), } self.assertEqual(0, features["price"].shape.ndims) # Static rank 0 should fail with self.assertRaisesRegex( ValueError, "Feature .* cannot have rank 0" ): df.DenseFeatures([price])(features) # Dynamic rank 0 should fail features = { "price": tf.compat.v1.placeholder(tf.float32), } net = df.DenseFeatures([price])(features) self.assertEqual(1, net.shape[1]) with _initialized_session() as sess: with self.assertRaisesOpError("Feature .* cannot have rank 0"): sess.run(net, feed_dict={features["price"]: np.array(1)}) class IndicatorColumnTest(tf.test.TestCase): @tf_test_utils.run_deprecated_v1 def test_dense_features(self): animal = tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_identity( "animal", num_buckets=4 ) ) with tf.Graph().as_default(): features = { "animal": tf.SparseTensor( indices=[[0, 0], [0, 1]], values=[1, 2], dense_shape=[1, 2] ) } net = df.DenseFeatures([animal])(features) self.evaluate(tf.compat.v1.global_variables_initializer()) self.evaluate(tf.compat.v1.tables_initializer()) self.assertAllClose([[0.0, 1.0, 1.0, 0.0]], self.evaluate(net)) class EmbeddingColumnTest(tf.test.TestCase, parameterized.TestCase): @parameterized.named_parameters( { "testcase_name": "use_safe_embedding_lookup", "use_safe_embedding_lookup": True, "partition_variables": False, }, { "testcase_name": "dont_use_safe_embedding_lookup", "use_safe_embedding_lookup": False, "partition_variables": False, }, { "testcase_name": "use_safe_embedding_lookup_partitioned", "use_safe_embedding_lookup": True, "partition_variables": True, }, { "testcase_name": "dont_use_safe_embedding_lookup_partitioned", "use_safe_embedding_lookup": False, "partition_variables": True, }, ) @tf_test_utils.run_deprecated_v1 def test_dense_features( self, use_safe_embedding_lookup, partition_variables ): # Inputs. vocabulary_size = 4 sparse_input = tf.compat.v1.SparseTensorValue( # example 0, ids [2] # example 1, ids [0, 1] # example 2, ids [] # example 3, ids [1] indices=((0, 0), (1, 0), (1, 4), (3, 0)), values=(2, 0, 1, 1), dense_shape=(4, 5), ) # Embedding variable. embedding_dimension = 2 embedding_values = ( (1.0, 2.0), # id 0 (3.0, 5.0), # id 1 (7.0, 11.0), # id 2 (9.0, 13.0), # id 3 ) def _initializer(shape, dtype, partition_info=None): self.assertEqual(tf.float32, dtype) if partition_variables: assert partition_info is not None self.assertEqual( [vocabulary_size, embedding_dimension], partition_info.full_shape, ) self.assertAllEqual((2, embedding_dimension), shape) return tf.slice( embedding_values, partition_info.var_offset, shape ) else: self.assertAllEqual( (vocabulary_size, embedding_dimension), shape ) self.assertIsNone(partition_info) return embedding_values # Expected lookup result, using combiner='mean'. expected_lookups = ( # example 0, ids [2], embedding = [7, 11] (7.0, 11.0), # example 1, ids [0, 1], embedding = mean([1, 2] + [3, 5]) = [2, # 3.5] (2.0, 3.5), # example 2, ids [], embedding = [0, 0] (0.0, 0.0), # example 3, ids [1], embedding = [3, 5] (3.0, 5.0), ) # Build columns. categorical_column = tf.feature_column.categorical_column_with_identity( key="aaa", num_buckets=vocabulary_size ) partitioner = None if partition_variables: partitioner = tf.compat.v1.fixed_size_partitioner(2, axis=0) with tf.compat.v1.variable_scope("vars", partitioner=partitioner): embedding_column = tf.feature_column.embedding_column( categorical_column, dimension=embedding_dimension, initializer=_initializer, use_safe_embedding_lookup=use_safe_embedding_lookup, ) # Provide sparse input and get dense result. l = df.DenseFeatures((embedding_column,)) dense_features = l({"aaa": sparse_input}) # Assert expected embedding variable and lookups. global_vars = tf.compat.v1.get_collection( tf.compat.v1.GraphKeys.GLOBAL_VARIABLES ) if partition_variables: self.assertCountEqual( ( "vars/dense_features/aaa_embedding/embedding_weights/" "part_0:0", "vars/dense_features/aaa_embedding/embedding_weights/" "part_1:0", ), tuple([v.name for v in global_vars]), ) else: self.assertCountEqual( ("vars/dense_features/aaa_embedding/embedding_weights:0",), tuple([v.name for v in global_vars]), ) for v in global_vars: self.assertIsInstance(v, tf.Variable) trainable_vars = tf.compat.v1.get_collection( tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES ) if partition_variables: self.assertCountEqual( ( "vars/dense_features/aaa_embedding/embedding_weights/" "part_0:0", "vars/dense_features/aaa_embedding/embedding_weights/" "part_1:0", ), tuple([v.name for v in trainable_vars]), ) else: self.assertCountEqual( ("vars/dense_features/aaa_embedding/embedding_weights:0",), tuple([v.name for v in trainable_vars]), ) self.evaluate(tf.compat.v1.global_variables_initializer()) self.evaluate(tf.compat.v1.tables_initializer()) if partition_variables: self.assertAllEqual( embedding_values, self.evaluate(tf.concat(trainable_vars, axis=0)), ) else: self.assertAllEqual( embedding_values, self.evaluate(trainable_vars[0]) ) self.assertAllEqual(expected_lookups, self.evaluate(dense_features)) if use_safe_embedding_lookup: self.assertIn( "SparseFillEmptyRows", [ x.type for x in tf.compat.v1.get_default_graph().get_operations() ], ) else: self.assertNotIn( "SparseFillEmptyRows", [ x.type for x in tf.compat.v1.get_default_graph().get_operations() ], ) @tf_test_utils.run_deprecated_v1 def test_dense_features_not_trainable(self): # Inputs. vocabulary_size = 3 sparse_input = tf.compat.v1.SparseTensorValue( # example 0, ids [2] # example 1, ids [0, 1] # example 2, ids [] # example 3, ids [1] indices=((0, 0), (1, 0), (1, 4), (3, 0)), values=(2, 0, 1, 1), dense_shape=(4, 5), ) # Embedding variable. embedding_dimension = 2 embedding_values = ( (1.0, 2.0), # id 0 (3.0, 5.0), # id 1 (7.0, 11.0), # id 2 ) def _initializer(shape, dtype, partition_info=None): self.assertAllEqual((vocabulary_size, embedding_dimension), shape) self.assertEqual(tf.float32, dtype) self.assertIsNone(partition_info) return embedding_values # Expected lookup result, using combiner='mean'. expected_lookups = ( # example 0, ids [2], embedding = [7, 11] (7.0, 11.0), # example 1, ids [0, 1], embedding = mean([1, 2] + [3, 5]) = [2, # 3.5] (2.0, 3.5), # example 2, ids [], embedding = [0, 0] (0.0, 0.0), # example 3, ids [1], embedding = [3, 5] (3.0, 5.0), ) # Build columns. categorical_column = tf.feature_column.categorical_column_with_identity( key="aaa", num_buckets=vocabulary_size ) embedding_column = tf.feature_column.embedding_column( categorical_column, dimension=embedding_dimension, initializer=_initializer, trainable=False, ) # Provide sparse input and get dense result. dense_features = df.DenseFeatures((embedding_column,))( {"aaa": sparse_input} ) # Assert expected embedding variable and lookups. global_vars = tf.compat.v1.get_collection( tf.compat.v1.GraphKeys.GLOBAL_VARIABLES ) self.assertCountEqual( ("dense_features/aaa_embedding/embedding_weights:0",), tuple([v.name for v in global_vars]), ) self.assertCountEqual( [], tf.compat.v1.get_collection( tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES ), ) self.evaluate(tf.compat.v1.global_variables_initializer()) self.evaluate(tf.compat.v1.tables_initializer()) self.assertAllEqual(embedding_values, self.evaluate(global_vars[0])) self.assertAllEqual(expected_lookups, self.evaluate(dense_features)) class SharedEmbeddingColumnTest(tf.test.TestCase, parameterized.TestCase): def _test_dense_features(self, trainable=True): # Inputs. vocabulary_size = 3 sparse_input_a = tf.compat.v1.SparseTensorValue( # example 0, ids [2] # example 1, ids [0, 1] indices=((0, 0), (1, 0), (1, 4)), values=(2, 0, 1), dense_shape=(2, 5), ) sparse_input_b = tf.compat.v1.SparseTensorValue( # example 0, ids [0] # example 1, ids [] indices=((0, 0),), values=(0,), dense_shape=(2, 5), ) sparse_input_c = tf.compat.v1.SparseTensorValue( # example 0, ids [2] # example 1, ids [0, 1] indices=((0, 1), (1, 1), (1, 3)), values=(2, 0, 1), dense_shape=(2, 5), ) sparse_input_d = tf.compat.v1.SparseTensorValue( # example 0, ids [2] # example 1, ids [] indices=((0, 1),), values=(2,), dense_shape=(2, 5), ) # Embedding variable. embedding_dimension = 2 embedding_values = ( (1.0, 2.0), # id 0 (3.0, 5.0), # id 1 (7.0, 11.0), # id 2 ) def _initializer(shape, dtype, partition_info=None): self.assertAllEqual((vocabulary_size, embedding_dimension), shape) self.assertEqual(tf.float32, dtype) self.assertIsNone(partition_info) return embedding_values # Expected lookup result, using combiner='mean'. expected_lookups = ( # example 0: # A ids [2], embedding = [7, 11] # B ids [0], embedding = [1, 2] # C ids [2], embedding = [7, 11] # D ids [2], embedding = [7, 11] (7.0, 11.0, 1.0, 2.0, 7.0, 11.0, 7.0, 11.0), # example 1: # A ids [0, 1], embedding = mean([1, 2] + [3, 5]) = [2, 3.5] # B ids [], embedding = [0, 0] # C ids [0, 1], embedding = mean([1, 2] + [3, 5]) = [2, 3.5] # D ids [], embedding = [0, 0] (2.0, 3.5, 0.0, 0.0, 2.0, 3.5, 0.0, 0.0), ) # Build columns. categorical_column_a = ( tf.feature_column.categorical_column_with_identity( key="aaa", num_buckets=vocabulary_size ) ) categorical_column_b = ( tf.feature_column.categorical_column_with_identity( key="bbb", num_buckets=vocabulary_size ) ) categorical_column_c = ( tf.feature_column.categorical_column_with_identity( key="ccc", num_buckets=vocabulary_size ) ) categorical_column_d = ( tf.feature_column.categorical_column_with_identity( key="ddd", num_buckets=vocabulary_size ) ) ( embedding_column_a, embedding_column_b, ) = tf.feature_column.shared_embeddings( [categorical_column_a, categorical_column_b], dimension=embedding_dimension, initializer=_initializer, trainable=trainable, ) ( embedding_column_c, embedding_column_d, ) = tf.feature_column.shared_embeddings( [categorical_column_c, categorical_column_d], dimension=embedding_dimension, initializer=_initializer, trainable=trainable, ) features = { "aaa": sparse_input_a, "bbb": sparse_input_b, "ccc": sparse_input_c, "ddd": sparse_input_d, } # Provide sparse input and get dense result. dense_features = df.DenseFeatures( feature_columns=( embedding_column_b, embedding_column_a, embedding_column_c, embedding_column_d, ) )(features) # Assert expected embedding variable and lookups. global_vars = tf.compat.v1.get_collection( tf.compat.v1.GraphKeys.GLOBAL_VARIABLES ) self.assertCountEqual( ["aaa_bbb_shared_embedding:0", "ccc_ddd_shared_embedding:0"], tuple([v.name for v in global_vars]), ) for v in global_vars: self.assertIsInstance(v, tf.Variable) trainable_vars = tf.compat.v1.get_collection( tf.compat.v1.GraphKeys.TRAINABLE_VARIABLES ) if trainable: self.assertCountEqual( ["aaa_bbb_shared_embedding:0", "ccc_ddd_shared_embedding:0"], tuple([v.name for v in trainable_vars]), ) else: self.assertCountEqual([], tuple([v.name for v in trainable_vars])) shared_embedding_vars = global_vars self.evaluate(tf.compat.v1.global_variables_initializer()) self.evaluate(tf.compat.v1.tables_initializer()) self.assertAllEqual( embedding_values, self.evaluate(shared_embedding_vars[0]) ) self.assertAllEqual(expected_lookups, self.evaluate(dense_features)) @tf_test_utils.run_deprecated_v1 def test_dense_features(self): self._test_dense_features() @tf_test_utils.run_deprecated_v1 def test_dense_features_no_trainable(self): self._test_dense_features(trainable=False) @test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) class DenseFeaturesSerializationTest(tf.test.TestCase, parameterized.TestCase): @parameterized.named_parameters( ("trainable", True, "trainable"), ("not_trainable", False, "frozen") ) def test_get_config(self, trainable, name): cols = [ tf.feature_column.numeric_column("a"), tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_identity( key="b", num_buckets=3 ), dimension=2, ), ] orig_layer = df.DenseFeatures(cols, trainable=trainable, name=name) config = orig_layer.get_config() self.assertEqual(config["name"], orig_layer.name) self.assertEqual(config["trainable"], trainable) self.assertLen(config["feature_columns"], 2) self.assertEqual( config["feature_columns"][0]["class_name"], "NumericColumn" ) self.assertEqual(config["feature_columns"][0]["config"]["shape"], (1,)) self.assertEqual( config["feature_columns"][1]["class_name"], "EmbeddingColumn" ) @parameterized.named_parameters( ("trainable", True, "trainable"), ("not_trainable", False, "frozen") ) def test_from_config(self, trainable, name): cols = [ tf.feature_column.numeric_column("a"), tf.feature_column.embedding_column( tf.feature_column.categorical_column_with_vocabulary_list( "b", vocabulary_list=["1", "2", "3"] ), dimension=2, ), tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_hash_bucket( key="c", hash_bucket_size=3 ) ), ] orig_layer = df.DenseFeatures(cols, trainable=trainable, name=name) config = orig_layer.get_config() new_layer = df.DenseFeatures.from_config(config) self.assertEqual(new_layer.name, orig_layer.name) self.assertEqual(new_layer.trainable, trainable) self.assertLen(new_layer._feature_columns, 3) self.assertEqual(new_layer._feature_columns[0].name, "a") self.assertEqual(new_layer._feature_columns[1].initializer.mean, 0.0) self.assertEqual( new_layer._feature_columns[1].categorical_column.name, "b" ) self.assertIsInstance(new_layer._feature_columns[0], cols[0].__class__) self.assertIsInstance(new_layer._feature_columns[1], cols[1].__class__) self.assertIsInstance(new_layer._feature_columns[2], cols[2].__class__) def test_crossed_column(self): a = tf.feature_column.categorical_column_with_vocabulary_list( "a", vocabulary_list=["1", "2", "3"] ) b = tf.feature_column.categorical_column_with_vocabulary_list( "b", vocabulary_list=["1", "2", "3"] ) ab = tf.feature_column.crossed_column([a, b], hash_bucket_size=2) cols = [tf.feature_column.indicator_column(ab)] orig_layer = df.DenseFeatures(cols) config = orig_layer.get_config() new_layer = df.DenseFeatures.from_config(config) self.assertLen(new_layer._feature_columns, 1) self.assertEqual(new_layer._feature_columns[0].name, "a_X_b_indicator") @test_combinations.generate(test_combinations.combine(mode=["graph", "eager"])) class SequenceFeatureColumnsTest(tf.test.TestCase): """Tests DenseFeatures with sequence feature columns.""" def test_embedding_column(self): """Tests that error is raised for sequence embedding column.""" vocabulary_size = 3 sparse_input = tf.compat.v1.SparseTensorValue( # example 0, ids [2] # example 1, ids [0, 1] indices=((0, 0), (1, 0), (1, 1)), values=(2, 0, 1), dense_shape=(2, 2), ) categorical_column_a = ( tf.feature_column.sequence_categorical_column_with_identity( key="aaa", num_buckets=vocabulary_size ) ) embedding_column_a = tf.feature_column.embedding_column( categorical_column_a, dimension=2 ) input_layer = df.DenseFeatures([embedding_column_a]) with self.assertRaisesRegex( ValueError, r"In embedding_column: aaa_embedding\. categorical_column must not " r"be of type SequenceCategoricalColumn\.", ): _ = input_layer({"aaa": sparse_input}) def test_indicator_column(self): """Tests that error is raised for sequence indicator column.""" vocabulary_size = 3 sparse_input = tf.compat.v1.SparseTensorValue( # example 0, ids [2] # example 1, ids [0, 1] indices=((0, 0), (1, 0), (1, 1)), values=(2, 0, 1), dense_shape=(2, 2), ) categorical_column_a = ( tf.feature_column.sequence_categorical_column_with_identity( key="aaa", num_buckets=vocabulary_size ) ) indicator_column_a = tf.feature_column.indicator_column( categorical_column_a ) input_layer = df.DenseFeatures([indicator_column_a]) with self.assertRaisesRegex( ValueError, r"In indicator_column: aaa_indicator\. categorical_column must not " r"be of type SequenceCategoricalColumn\.", ): _ = input_layer({"aaa": sparse_input}) if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/feature_column/dense_features_test.py/0
{ "file_path": "tf-keras/tf_keras/feature_column/dense_features_test.py", "repo_id": "tf-keras", "token_count": 26765 }
226
"""Class to specify an input's shape/dtype/value range. """ import tensorflow as tf class InputSpec: def __init__(self, shape, dtype="float32", range=None): self.shape = shape self.dtype = dtype self.range = range def spec_to_value(spec): shape = spec.shape dtype = spec.dtype rg = spec.range or [0, 1] if dtype == "string": return tf.constant( ["some string" for _ in range(shape[0])], dtype="string" ) return tf.random.stateless_uniform( shape, seed=[123, 1], minval=rg[0], maxval=rg[1], dtype=dtype )
tf-keras/tf_keras/integration_test/models/input_spec.py/0
{ "file_path": "tf-keras/tf_keras/integration_test/models/input_spec.py", "repo_id": "tf-keras", "token_count": 262 }
227
# Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Demonstrate TF-Keras preprocessing layers applied in tf.data.Dataset.map.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow.compat.v2 as tf from tf_keras.integration_test import preprocessing_test_utils as utils ds_combinations = tf.__internal__.distribute.combinations multi_process_runner = tf.__internal__.distribute.multi_process_runner test_combinations = tf.__internal__.test.combinations # Note: Strategy combinations are not (yet) public APIs, so they are subject # to API changes and backward-compatibility is not guaranteed. STRATEGIES = [ ds_combinations.default_strategy, ds_combinations.mirrored_strategy_with_two_cpus, ds_combinations.mirrored_strategy_with_two_gpus, ds_combinations.tpu_strategy, ds_combinations.cloud_tpu_strategy, ds_combinations.parameter_server_strategy_3worker_2ps_cpu, ds_combinations.parameter_server_strategy_3worker_2ps_1gpu, ds_combinations.multi_worker_mirrored_2x1_cpu, ds_combinations.multi_worker_mirrored_2x2_gpu, ds_combinations.central_storage_strategy_with_two_gpus, ] @ds_combinations.generate( test_combinations.combine(strategy=STRATEGIES, mode="eager") ) class PreprocessingAppliedInDatasetCreatorTest(tf.test.TestCase): """Demonstrate TF-Keras preprocessing layers applied in tf.data.Dataset.map. """ def testDistributedModelFit(self, strategy): if not tf.__internal__.tf2.enabled() and isinstance( strategy, tf.distribute.experimental.ParameterServerStrategy ): self.skipTest( "Parameter Server strategy with dataset creator need to be run " "when eager execution is enabled." ) with strategy.scope(): preprocessing_model = utils.make_preprocessing_model( self.get_temp_dir() ) training_model = utils.make_training_model() training_model.compile(optimizer="sgd", loss="binary_crossentropy") def dataset_fn(input_context): dataset = utils.make_dataset() dataset = dataset.shard( input_context.num_input_pipelines, input_context.input_pipeline_id, ) batch_size = input_context.get_per_replica_batch_size( global_batch_size=utils.BATCH_SIZE ) dataset = dataset.batch(batch_size).repeat().prefetch(2) return dataset.map(lambda x, y: (preprocessing_model(x), y)) dataset_creator = tf.keras.utils.experimental.DatasetCreator(dataset_fn) training_model.fit( dataset_creator, epochs=2, steps_per_epoch=utils.STEPS ) if __name__ == "__main__": multi_process_runner.test_main()
tf-keras/tf_keras/integration_test/preprocessing_applied_in_dataset_creator_test.py/0
{ "file_path": "tf-keras/tf_keras/integration_test/preprocessing_applied_in_dataset_creator_test.py", "repo_id": "tf-keras", "token_count": 1325 }
228
# Description: # Contains the TF-Keras layers (internal TensorFlow version). # Placeholder: load unaliased py_library load("@org_keras//tf_keras:tf_keras.bzl", "tf_py_test") package( # copybara:uncomment default_applicable_licenses = ["//tf_keras:license"], # TODO(scottzhu): Remove non-keras deps from TF. default_visibility = [ "//tf_keras:friends", "//third_party/tensorflow/python/distribute:__pkg__", "//third_party/tensorflow/python/feature_column:__pkg__", "//third_party/tensorflow/python/trackable:__pkg__", "//third_party/tensorflow/tools/pip_package:__pkg__", ], licenses = ["notice"], ) # A separate build for layers without serialization to avoid circular deps # with feature column. py_library( name = "layers", srcs = [ "__init__.py", "serialization.py", ], srcs_version = "PY3", deps = [ ":kernelized", ":noise", "//tf_keras/feature_column", "//tf_keras/layers/activation", "//tf_keras/layers/attention", "//tf_keras/layers/convolutional", "//tf_keras/layers/core", "//tf_keras/layers/locally_connected", "//tf_keras/layers/merging", "//tf_keras/layers/normalization", "//tf_keras/layers/pooling", "//tf_keras/layers/preprocessing", "//tf_keras/layers/regularization", "//tf_keras/layers/reshaping", "//tf_keras/layers/rnn", "//tf_keras/premade_models", "//tf_keras/utils:tf_utils", ], ) py_library( name = "kernelized", srcs = ["kernelized.py"], srcs_version = "PY3", deps = [ "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras:base_layer", "//tf_keras/engine:input_spec", "//tf_keras/initializers", ], ) py_library( name = "noise", srcs = ["noise.py"], srcs_version = "PY3", deps = [ "//tf_keras/layers/regularization:alpha_dropout", "//tf_keras/layers/regularization:gaussian_dropout", "//tf_keras/layers/regularization:gaussian_noise", ], ) tf_py_test( name = "tensorflow_op_layer_test", size = "medium", srcs = ["tensorflow_op_layer_test.py"], python_version = "PY3", shard_count = 3, deps = [ "//:expect_absl_installed", # absl/testing:parameterized "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/saving", "//tf_keras/testing_infra:test_combinations", ], ) tf_py_test( name = "subclassed_layers_test", size = "medium", srcs = ["subclassed_layers_test.py"], python_version = "PY3", shard_count = 3, deps = [ "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", ], ) tf_py_test( name = "serialization_test", size = "small", srcs = ["serialization_test.py"], python_version = "PY3", deps = [ "//:expect_absl_installed", # absl/testing:parameterized "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", ], ) tf_py_test( name = "kernelized_test", size = "small", srcs = ["kernelized_test.py"], python_version = "PY3", deps = [ ":layers", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras:backend", "//tf_keras/initializers", "//tf_keras/testing_infra:test_combinations", ], ) tf_py_test( name = "layers_test", size = "small", srcs = ["layers_test.py"], python_version = "PY3", deps = [ ":layers", "//:expect_tensorflow_installed", ], )
tf-keras/tf_keras/layers/BUILD/0
{ "file_path": "tf-keras/tf_keras/layers/BUILD", "repo_id": "tf-keras", "token_count": 1907 }
229
# Description: # Contains the TF-Keras attention layers. # Placeholder: load unaliased py_library load("@org_keras//tf_keras:tf_keras.bzl", "tf_py_test") package( # copybara:uncomment default_applicable_licenses = ["//tf_keras:license"], default_visibility = [ "//tf_keras:friends", "//third_party/py/tensorflow_gnn:__subpackages__", "//third_party/tensorflow/python/distribute:__pkg__", "//third_party/tensorflow/python/feature_column:__pkg__", "//third_party/tensorflow/python/trackable:__pkg__", "//third_party/tensorflow/tools/pip_package:__pkg__", "//third_party/tensorflow_models/official/projects/residual_mobilenet/modeling/backbones:__pkg__", ], licenses = ["notice"], ) py_library( name = "attention", srcs = [ "__init__.py", ], srcs_version = "PY3", deps = [ ":additive_attention", ":attention_layer", ":multi_head_attention", ], ) py_library( name = "multi_head_attention", srcs = ["multi_head_attention.py"], srcs_version = "PY3", deps = [ "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras:constraints", "//tf_keras:regularizers", "//tf_keras/engine:base_layer", "//tf_keras/initializers", "//tf_keras/layers/activation", "//tf_keras/layers/core", "//tf_keras/layers/regularization", "//tf_keras/utils:tf_utils", ], ) py_library( name = "base_dense_attention", srcs = ["base_dense_attention.py"], srcs_version = "PY3", deps = [ "//:expect_tensorflow_installed", "//tf_keras:backend", "//tf_keras:base_layer", "//tf_keras/utils:control_flow_util", ], ) py_library( name = "attention_layer", srcs = ["attention.py"], srcs_version = "PY3", deps = [ ":base_dense_attention", "//:expect_tensorflow_installed", ], ) py_library( name = "additive_attention", srcs = ["additive_attention.py"], srcs_version = "PY3", deps = [ ":base_dense_attention", "//:expect_tensorflow_installed", ], ) tf_py_test( name = "multi_head_attention_test", srcs = ["multi_head_attention_test.py"], python_version = "PY3", deps = [ "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", ], ) tf_py_test( name = "base_dense_attention_test", size = "medium", srcs = ["base_dense_attention_test.py"], python_version = "PY3", deps = [ ":base_dense_attention", "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/testing_infra:test_combinations", ], ) tf_py_test( name = "attention_test", size = "medium", srcs = ["attention_test.py"], python_version = "PY3", deps = [ "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/layers/core", "//tf_keras/testing_infra:test_combinations", ], ) tf_py_test( name = "additive_attention_test", size = "medium", srcs = ["additive_attention_test.py"], python_version = "PY3", deps = [ "//:expect_absl_installed", # absl/testing:parameterized "//:expect_numpy_installed", "//:expect_tensorflow_installed", "//tf_keras", "//tf_keras/mixed_precision:policy", "//tf_keras/testing_infra:test_combinations", "//tf_keras/testing_infra:test_utils", ], )
tf-keras/tf_keras/layers/attention/BUILD/0
{ "file_path": "tf-keras/tf_keras/layers/attention/BUILD", "repo_id": "tf-keras", "token_count": 1868 }
230
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keras 1D transposed convolution layer (sometimes called deconvolution).""" import tensorflow.compat.v2 as tf from tf_keras import activations from tf_keras import constraints from tf_keras import initializers from tf_keras import regularizers from tf_keras.dtensor import utils from tf_keras.engine.input_spec import InputSpec from tf_keras.layers.convolutional.conv1d import Conv1D from tf_keras.utils import conv_utils # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export( "keras.layers.Conv1DTranspose", "keras.layers.Convolution1DTranspose" ) class Conv1DTranspose(Conv1D): """Transposed convolution layer (sometimes called Deconvolution). The need for transposed convolutions generally arises from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution. When using this layer as the first layer in a model, provide the keyword argument `input_shape` (tuple of integers or `None`, does not include the sample axis), e.g. `input_shape=(128, 3)` for data with 128 time steps and 3 channels. Args: filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution). kernel_size: An integer length of the 1D convolution window. strides: An integer specifying the stride of the convolution along the time dimension. Specifying a stride value != 1 is incompatible with specifying a `dilation_rate` value != 1. Defaults to `1`. padding: one of `"valid"` or `"same"` (case-insensitive). `"valid"` means no padding. `"same"` results in padding with zeros evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. output_padding: An integer specifying the amount of padding along the time dimension of the output tensor. The amount of output padding must be lower than the stride. If set to `None` (default), the output shape is inferred. data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch_size, length, channels)` while `channels_first` corresponds to inputs with shape `(batch_size, channels, length)`. dilation_rate: an integer, specifying the dilation rate to use for dilated convolution. Currently, specifying a `dilation_rate` value != 1 is incompatible with specifying a stride value != 1. Also dilation rate larger than 1 is not currently supported. activation: Activation function to use. If you don't specify anything, no activation is applied (see `keras.activations`). use_bias: Boolean, whether the layer uses a bias vector. kernel_initializer: Initializer for the `kernel` weights matrix (see `keras.initializers`). Defaults to 'glorot_uniform'. bias_initializer: Initializer for the bias vector (see `keras.initializers`). Defaults to 'zeros'. kernel_regularizer: Regularizer function applied to the `kernel` weights matrix (see `keras.regularizers`). bias_regularizer: Regularizer function applied to the bias vector (see `keras.regularizers`). activity_regularizer: Regularizer function applied to the output of the layer (its "activation") (see `keras.regularizers`). kernel_constraint: Constraint function applied to the kernel matrix (see `keras.constraints`). bias_constraint: Constraint function applied to the bias vector (see `keras.constraints`). Input shape: 3D tensor with shape: `(batch_size, steps, channels)` Output shape: 3D tensor with shape: `(batch_size, new_steps, filters)` If `output_padding` is specified: ``` new_timesteps = ((timesteps - 1) * strides + kernel_size - 2 * padding + output_padding) ``` Returns: A tensor of rank 3 representing `activation(conv1dtranspose(inputs, kernel) + bias)`. Raises: ValueError: if `padding` is "causal". ValueError: when both `strides` > 1 and `dilation_rate` > 1. References: - [A guide to convolution arithmetic for deep learning]( https://arxiv.org/abs/1603.07285v1) - [Deconvolutional Networks]( https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf) """ @utils.allow_initializer_layout def __init__( self, filters, kernel_size, strides=1, padding="valid", output_padding=None, data_format=None, dilation_rate=1, activation=None, use_bias=True, kernel_initializer="glorot_uniform", bias_initializer="zeros", kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None, **kwargs, ): super().__init__( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activations.get(activation), use_bias=use_bias, kernel_initializer=initializers.get(kernel_initializer), bias_initializer=initializers.get(bias_initializer), kernel_regularizer=regularizers.get(kernel_regularizer), bias_regularizer=regularizers.get(bias_regularizer), activity_regularizer=regularizers.get(activity_regularizer), kernel_constraint=constraints.get(kernel_constraint), bias_constraint=constraints.get(bias_constraint), **kwargs, ) self.output_padding = output_padding if self.output_padding is not None: self.output_padding = conv_utils.normalize_tuple( self.output_padding, 1, "output_padding", allow_zero=True ) for stride, out_pad in zip(self.strides, self.output_padding): if out_pad >= stride: raise ValueError( "Strides must be greater than output padding. " f"Received strides={self.strides}, " f"output_padding={self.output_padding}." ) def build(self, input_shape): input_shape = tf.TensorShape(input_shape) if len(input_shape) != 3: raise ValueError( "Inputs should have rank 3. " f"Received input_shape={input_shape}." ) channel_axis = self._get_channel_axis() if input_shape.dims[channel_axis].value is None: raise ValueError( "The channel dimension of the inputs " "to `Conv1DTranspose` should be defined. " f"The input_shape received is {input_shape}, " f"where axis {channel_axis} (0-based) " "is the channel dimension, which found to be `None`." ) input_dim = int(input_shape[channel_axis]) self.input_spec = InputSpec(ndim=3, axes={channel_axis: input_dim}) kernel_shape = self.kernel_size + (self.filters, input_dim) self.kernel = self.add_weight( name="kernel", shape=kernel_shape, initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, constraint=self.kernel_constraint, trainable=True, dtype=self.dtype, ) if self.use_bias: self.bias = self.add_weight( name="bias", shape=(self.filters,), initializer=self.bias_initializer, regularizer=self.bias_regularizer, constraint=self.bias_constraint, trainable=True, dtype=self.dtype, ) else: self.bias = None self.built = True def call(self, inputs): inputs_shape = tf.shape(inputs) batch_size = inputs_shape[0] if self.data_format == "channels_first": t_axis = 2 else: t_axis = 1 length = inputs_shape[t_axis] if self.output_padding is None: output_padding = None else: output_padding = self.output_padding[0] # Infer the dynamic output shape: out_length = conv_utils.deconv_output_length( length, self.kernel_size[0], padding=self.padding, output_padding=output_padding, stride=self.strides[0], dilation=self.dilation_rate[0], ) if self.data_format == "channels_first": output_shape = (batch_size, self.filters, out_length) else: output_shape = (batch_size, out_length, self.filters) data_format = conv_utils.convert_data_format(self.data_format, ndim=3) output_shape_tensor = tf.stack(output_shape) outputs = tf.nn.conv1d_transpose( inputs, self.kernel, output_shape_tensor, strides=self.strides, padding=self.padding.upper(), data_format=data_format, dilations=self.dilation_rate, ) if not tf.executing_eagerly() and inputs.shape.rank: # Infer the static output shape: out_shape = self.compute_output_shape(inputs.shape) outputs.set_shape(out_shape) if self.use_bias: outputs = tf.nn.bias_add( outputs, self.bias, data_format=data_format ) if self.activation is not None: return self.activation(outputs) return outputs def compute_output_shape(self, input_shape): input_shape = tf.TensorShape(input_shape).as_list() output_shape = list(input_shape) if self.data_format == "channels_first": c_axis, t_axis = 1, 2 else: c_axis, t_axis = 2, 1 if self.output_padding is None: output_padding = None else: output_padding = self.output_padding[0] output_shape[c_axis] = self.filters output_shape[t_axis] = conv_utils.deconv_output_length( output_shape[t_axis], self.kernel_size[0], padding=self.padding, output_padding=output_padding, stride=self.strides[0], dilation=self.dilation_rate[0], ) return tf.TensorShape(output_shape) def get_config(self): config = super().get_config() config["output_padding"] = self.output_padding return config # Alias Convolution1DTranspose = Conv1DTranspose
tf-keras/tf_keras/layers/convolutional/conv1d_transpose.py/0
{ "file_path": "tf-keras/tf_keras/layers/convolutional/conv1d_transpose.py", "repo_id": "tf-keras", "token_count": 5026 }
231
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for TF-Keras core layers.""" import os import textwrap import numpy as np import tensorflow.compat.v2 as tf import tf_keras as keras from tf_keras import initializers from tf_keras.layers import core from tf_keras.mixed_precision import policy from tf_keras.saving.serialization_lib import SafeModeScope from tf_keras.testing_infra import test_combinations from tf_keras.testing_infra import test_utils @test_combinations.run_all_keras_modes class DropoutLayersTest(test_combinations.TestCase): def test_dropout(self): test_utils.layer_test( keras.layers.Dropout, kwargs={"rate": 0.5}, input_shape=(3, 2) ) test_utils.layer_test( keras.layers.Dropout, kwargs={"rate": 0.5, "noise_shape": [3, 1]}, input_shape=(3, 2), ) def test_dropout_supports_masking(self): dropout = keras.layers.Dropout(0.5) self.assertEqual(True, dropout.supports_masking) def test_spatial_dropout_1d(self): test_utils.layer_test( keras.layers.SpatialDropout1D, kwargs={"rate": 0.5}, input_shape=(2, 3, 4), ) def test_spatial_dropout_2d(self): test_utils.layer_test( keras.layers.SpatialDropout2D, kwargs={"rate": 0.5}, input_shape=(2, 3, 4, 5), ) test_utils.layer_test( keras.layers.SpatialDropout2D, kwargs={"rate": 0.5, "data_format": "channels_first"}, input_shape=(2, 3, 4, 5), ) def test_spatial_dropout_3d(self): test_utils.layer_test( keras.layers.SpatialDropout3D, kwargs={"rate": 0.5}, input_shape=(2, 3, 4, 4, 5), ) test_utils.layer_test( keras.layers.SpatialDropout3D, kwargs={"rate": 0.5, "data_format": "channels_first"}, input_shape=(2, 3, 4, 4, 5), ) def test_dropout_partial_noise_shape(self): inputs = keras.Input(shape=(5, 10)) layer = keras.layers.Dropout(0.5, noise_shape=(None, 1, None)) outputs = layer(inputs) model = keras.Model(inputs, outputs) out = model(np.ones((20, 5, 10)), training=True) out_np = keras.backend.get_value(out) # Test that dropout mask is shared across second dim. self.assertAllClose(out_np[:, 0, :], out_np[:, 1, :]) def test_dropout_with_saving(self): inputs = keras.Input(shape=(5, 10)) layer = keras.layers.Dropout(0.5, force_generator=True) outputs = layer(inputs) model = keras.Model(inputs, outputs) train = model(np.ones((20, 5, 10)), training=True) predict = model(np.ones((20, 5, 10))) # Make sure the weights from tf.random.Generator is not present in the # model which will cause weight loading issue for existing application # models if it contains dropout layer. self.assertEmpty(layer.get_weights()) self.assertEmpty(model.get_weights()) # Make sure the layer does dropout value when training self.assertNotAllClose(train, predict) with self.subTest("savedmodel"): model.save( os.path.join(self.get_temp_dir(), "savedmodel"), save_format="tf", ) loaded_model = keras.models.load_model( os.path.join(self.get_temp_dir(), "savedmodel") ) predict2 = loaded_model(np.ones((20, 5, 10))) self.assertAllClose(predict, predict2) # Make sure the model dropout different value after loading train2 = loaded_model(np.ones((20, 5, 10)), training=True) self.assertNotAllClose(train, train2) self.assertIsNotNone(loaded_model.layers[1]._random_generator) with self.subTest("keras_v3"): if not tf.__internal__.tf2.enabled(): self.skipTest( "TF2 must be enabled to use the new `.keras` saving." ) model.save(os.path.join(self.get_temp_dir(), "model.keras")) loaded_model = keras.models.load_model( os.path.join(self.get_temp_dir(), "model.keras") ) predict2 = loaded_model(np.ones((20, 5, 10))) self.assertAllClose(predict, predict2) # Make sure the model dropout different value after loading train2 = loaded_model(np.ones((20, 5, 10)), training=True) self.assertNotAllClose(train, train2) self.assertIsNotNone(loaded_model.layers[1]._random_generator) with self.subTest("checkpoint"): # Also make sure the checkpoint doesn't contain any variable from # the dropout layer, to keep the backward compatibility. checkpoint = tf.train.Checkpoint(model) save_path = checkpoint.save( os.path.join(self.get_temp_dir(), "checkpoint") ) checkpoint_var_names = [ name_value_tuple[0] for name_value_tuple in tf.train.list_variables(save_path) ] for name in checkpoint_var_names: self.assertNotIn("dropout", name) @test_combinations.run_all_keras_modes class LambdaLayerTest(test_combinations.TestCase): def test_lambda(self): with SafeModeScope(safe_mode=False): test_utils.layer_test( keras.layers.Lambda, kwargs={"function": lambda x: x + 1}, input_shape=(3, 2), ) test_utils.layer_test( keras.layers.Lambda, kwargs={ "function": lambda x, a, b: x * a + b, "arguments": {"a": 0.6, "b": 0.4}, }, input_shape=(3, 2), ) # test serialization with function def f(x): return x + 1 ld = keras.layers.Lambda(f) config = ld.get_config() with SafeModeScope(safe_mode=False): ld = keras.layers.deserialize( {"class_name": "Lambda", "config": config} ) self.assertEqual(ld.function(3), 4) # test with lambda ld = keras.layers.Lambda( lambda x: keras.backend.concatenate([tf.square(x), x]) ) config = ld.get_config() ld = keras.layers.Lambda.from_config(config) self.assertAllEqual(self.evaluate(ld.function([3])), [9, 3]) def test_lambda_multiple_inputs(self): ld = keras.layers.Lambda(lambda x: x[0], output_shape=lambda x: x[0]) x1 = np.ones([3, 2], np.float32) x2 = np.ones([3, 5], np.float32) out = ld([x1, x2]) self.assertAllEqual(out.shape, [3, 2]) def test_lambda_output_shape(self): l = keras.layers.Lambda(lambda x: x + 1, output_shape=(1, 1)) l(keras.backend.variable(np.ones((1, 1)))) self.assertEqual((1, 1), l.get_config()["output_shape"]) def test_lambda_output_shape_function(self): def get_output_shape(input_shape): return 1 * input_shape l = keras.layers.Lambda(lambda x: x + 1, output_shape=get_output_shape) l(keras.backend.variable(np.ones((1, 1)))) self.assertEqual("lambda", l.get_config()["output_shape_type"]) def test_lambda_output_shape_autocalculate_multiple_inputs(self): def lambda_fn(x): return tf.matmul(x[0], x[1]) l = keras.layers.Lambda(lambda_fn, dtype=tf.float64) output_shape = l.compute_output_shape([(10, 10), (10, 20)]) self.assertAllEqual((10, 20), output_shape) output_signature = l.compute_output_signature( [ tf.TensorSpec(dtype=tf.float64, shape=(10, 10)), tf.TensorSpec(dtype=tf.float64, shape=(10, 20)), ] ) self.assertAllEqual((10, 20), output_signature.shape) self.assertAllEqual(tf.float64, output_signature.dtype) def test_lambda_output_shape_list_multiple_outputs(self): def lambda_fn(x): return x l = keras.layers.Lambda(lambda_fn, output_shape=[(10,), (20,)]) output_shape = l.compute_output_shape([(10, 10), (10, 20)]) self.assertAllEqual([(10, 10), (10, 20)], output_shape) def test_lambda_output_shape_tuple_with_none(self): def lambda_fn(x): return x l = keras.layers.Lambda(lambda_fn, output_shape=(None, 10)) output_shape = l.compute_output_shape((5, 10, 20)) self.assertAllEqual([5, None, 10], output_shape.as_list()) def test_lambda_output_shape_function_multiple_outputs(self): def lambda_fn(x): return x def output_shape_fn(input_shape): return input_shape l = keras.layers.Lambda(lambda_fn, output_shape=output_shape_fn) output_shape = l.compute_output_shape([(10, 10), (10, 20)]) self.assertAllEqual([(10, 10), (10, 20)], output_shape) def test_lambda_output_shape_nested(self): def lambda_fn(inputs): return (inputs[1]["a"], {"b": inputs[0]}) l = keras.layers.Lambda(lambda_fn) output_shape = l.compute_output_shape(((10, 20), {"a": (10, 5)})) self.assertAllEqual(((10, 5), {"b": (10, 20)}), output_shape) def test_lambda_config_serialization(self): # Test serialization with output_shape and output_shape_type layer = keras.layers.Lambda( lambda x: x + 1, output_shape=(1, 1), mask=lambda i, m: m ) layer(keras.backend.variable(np.ones((1, 1)))) config = layer.get_config() with SafeModeScope(safe_mode=False): layer = keras.layers.deserialize( {"class_name": "Lambda", "config": config} ) self.assertAllEqual(layer.function(1), 2) self.assertAllEqual(layer._output_shape, (1, 1)) self.assertAllEqual(layer.mask(1, True), True) layer = keras.layers.Lambda.from_config(config) self.assertAllEqual(layer.function(1), 2) self.assertAllEqual(layer._output_shape, (1, 1)) self.assertAllEqual(layer.mask(1, True), True) def test_lambda_with_training_arg(self): def fn(x, training=True): return keras.backend.in_train_phase(x, 2 * x, training=training) layer = keras.layers.Lambda(fn) x = keras.backend.ones(()) train_out = layer(x, training=True) eval_out = layer(x, training=False) self.assertEqual(keras.backend.get_value(train_out), 1.0) self.assertEqual(keras.backend.get_value(eval_out), 2.0) def test_lambda_with_mask(self): def add_one(inputs): return inputs + 1.0 def mask(unused_inputs, previous_mask): return previous_mask layer = keras.layers.Lambda(add_one, mask=mask) x = np.ones([5, 4, 3]) x[:, -1, :] = 0 masking = keras.layers.Masking() out = layer(masking(x)) expected_out = np.full([5, 4, 3], 2.0) expected_out[:, -1, :] = 1.0 expected_mask = np.ones([5, 4]) expected_mask[:, -1] = 0.0 self.assertAllClose(self.evaluate(out), expected_out) self.assertIsNotNone(out._keras_mask) self.assertAllClose(self.evaluate(out._keras_mask), expected_mask) def test_lambda_with_ragged_input(self): def add_one(inputs): return inputs + 1.0 layer = keras.layers.Lambda(add_one) ragged_input = tf.ragged.constant([[1.0], [2.0, 3.0]]) out = layer(ragged_input) expected_out = tf.ragged.constant([[2.0], [3.0, 4.0]]) self.assertAllClose(out, expected_out) def test_lambda_deserialization_does_not_pollute_core(self): layer = keras.layers.Lambda(lambda x: x + 1) config = layer.get_config() keras.layers.Lambda.from_config(config) self.assertNotIn(self.__class__.__name__, dir(core)) class TestStatefulLambda(test_combinations.TestCase): @test_combinations.run_all_keras_modes @test_combinations.run_with_all_model_types def test_lambda_with_variable_in_model(self): v = tf.Variable(1.0, trainable=True) def lambda_fn(x, v): return x * v # While it is generally not advised to mix Variables with Lambda layers, # if the variables are explicitly set as attributes then they are still # tracked. This is consistent with the base Layer behavior. layer = keras.layers.Lambda(lambda_fn, arguments={"v": v}) self.assertLen(layer.trainable_weights, 0) layer.v = v self.assertLen(layer.trainable_weights, 1) model = test_utils.get_model_from_layers([layer], input_shape=(10,)) model.compile( keras.optimizers.legacy.gradient_descent.SGD(0.1), "mae", run_eagerly=test_utils.should_run_eagerly(), ) x, y = np.ones((10, 10), "float32"), 2 * np.ones((10, 10), "float32") model.fit(x, y, batch_size=2, epochs=2, validation_data=(x, y)) self.assertLen(model.trainable_weights, 1) self.assertAllClose( keras.backend.get_value(model.trainable_weights[0]), 2.0 ) @test_combinations.run_all_keras_modes @test_combinations.run_with_all_model_types def test_creation_inside_lambda(self): def lambda_fn(x): scale = tf.Variable(1.0, trainable=True, name="scale") shift = tf.Variable(1.0, trainable=True, name="shift") return x * scale + shift expected_error = textwrap.dedent( r""" ( )?The following Variables were created within a Lambda layer \(shift_and_scale\)""" # noqa: E501 r""" ( )?but are not tracked by said layer: ( )? <tf.Variable \'.*shift_and_scale/scale:0\'.+ ( )? <tf.Variable \'.*shift_and_scale/shift:0\'.+ ( )?The layer cannot safely ensure proper Variable reuse.+""" ) with self.assertRaisesRegex(ValueError, expected_error): layer = keras.layers.Lambda(lambda_fn, name="shift_and_scale") model = test_utils.get_model_from_layers([layer], input_shape=(1,)) model(tf.ones((4, 1))) @test_combinations.run_all_keras_modes @test_combinations.run_with_all_model_types def test_transitive_variable_creation(self): dense = keras.layers.Dense(1, use_bias=False, kernel_initializer="ones") def bad_lambda_fn(x): return dense(x + 1) # Dense layer is built on first call expected_error = textwrap.dedent( r""" ( )?The following Variables were created within a Lambda layer \(bias_dense\) ( )?but are not tracked by said layer: ( )? <tf.Variable \'.*bias_dense/dense/kernel:0\'.+ ( )?The layer cannot safely ensure proper Variable reuse.+""" ) with self.assertRaisesRegex(ValueError, expected_error): layer = keras.layers.Lambda(bad_lambda_fn, name="bias_dense") model = test_utils.get_model_from_layers([layer], input_shape=(1,)) model(tf.ones((4, 1))) @test_combinations.run_all_keras_modes @test_combinations.run_with_all_model_types def test_warns_on_variable_capture(self): v = tf.Variable(1.0, trainable=True) def lambda_fn(x): return x * v expected_warning = textwrap.dedent( r""" ( )?The following Variables were used a Lambda layer\'s call \(lambda\), but ( )?are not present in its tracked objects: ( )? <tf.Variable \'.*Variable:0\'.+ ( )?It is possible that this is intended behavior.+""" ) layer = keras.layers.Lambda(lambda_fn) def patched_warn(msg): raise ValueError(msg) layer._warn = patched_warn with self.assertRaisesRegex(ValueError, expected_warning): model = test_utils.get_model_from_layers([layer], input_shape=(1,)) model(tf.ones((4, 1))) @test_combinations.run_all_keras_modes @test_combinations.run_with_all_model_types def test_lambda_skip_state_variable_from_initializer(self): # Force the initializers to use the tf.random.Generator, which will # contain the state variable. kernel_initializer = initializers.RandomNormalV2() kernel_initializer._random_generator._rng_type = ( kernel_initializer._random_generator.RNG_STATEFUL ) dense = keras.layers.Dense( 1, use_bias=False, kernel_initializer=kernel_initializer ) def lambda_fn(x): return dense(x + 1) # Dense layer is built on first call # While it is generally not advised to mix Variables with Lambda layers, # if the variables are explicitly set as attributes then they are still # tracked. This is consistent with the base Layer behavior. layer = keras.layers.Lambda(lambda_fn) layer.dense = dense model = test_utils.get_model_from_layers([layer], input_shape=(10,)) model.compile( keras.optimizers.legacy.gradient_descent.SGD(0.1), "mae", run_eagerly=test_utils.should_run_eagerly(), ) x, y = np.ones((10, 10), "float32"), 2 * np.ones((10, 10), "float32") model.fit(x, y, batch_size=2, epochs=2, validation_data=(x, y)) self.assertLen(model.trainable_weights, 1) @test_combinations.run_all_keras_modes class CoreLayersTest(test_combinations.TestCase): def test_masking(self): test_utils.layer_test( keras.layers.Masking, kwargs={}, input_shape=(3, 2, 3) ) def test_keras_mask(self): x = np.ones((10, 10)) y = keras.layers.Masking(1.0)(x) self.assertTrue(hasattr(y, "_keras_mask")) self.assertIsNotNone(y._keras_mask) self.assertAllClose(self.evaluate(y._keras_mask), np.zeros((10,))) def test_compute_mask_with_positional_mask_arg(self): class MyLayer(keras.layers.Layer): def call(self, inputs, mask=None): return inputs def compute_mask(self, inputs, mask=None): if mask is not None: return tf.ones(()) else: return tf.zeros(()) x, mask = tf.ones((1, 1)), tf.ones((1, 1)) layer = MyLayer() y = layer(x, mask) # Check that `mask` was correctly sent to `compute_mask`. self.assertEqual(keras.backend.get_value(y._keras_mask), 1) def test_activation(self): # with string argument test_utils.layer_test( keras.layers.Activation, kwargs={"activation": "relu"}, input_shape=(3, 2), ) # with function argument test_utils.layer_test( keras.layers.Activation, kwargs={"activation": keras.backend.relu}, input_shape=(3, 2), ) def test_dense(self): test_utils.layer_test( keras.layers.Dense, kwargs={"units": 3}, input_shape=(3, 2) ) test_utils.layer_test( keras.layers.Dense, kwargs={"units": 3}, input_shape=(3, 4, 2) ) test_utils.layer_test( keras.layers.Dense, kwargs={"units": 3}, input_shape=(None, None, 2) ) test_utils.layer_test( keras.layers.Dense, kwargs={"units": 3}, input_shape=(3, 4, 5, 2) ) def test_dense_output(self): dense_inputs = tf.convert_to_tensor( np.random.uniform(size=(10, 10)).astype("f") ) # Create some sparse data where multiple rows and columns are missing. sparse_inputs = tf.SparseTensor( indices=np.random.randint(low=0, high=10, size=(5, 2)), values=np.random.uniform(size=(5,)).astype("f"), dense_shape=[10, 10], ) sparse_inputs = tf.sparse.reorder(sparse_inputs) # Create some ragged data. ragged_inputs = tf.RaggedTensor.from_row_splits( np.random.uniform(size=(10, 10)).astype("f"), row_splits=[0, 4, 6, 6, 9, 10], ) layer = keras.layers.Dense( 5, kernel_initializer=keras.initializers.RandomUniform(), bias_initializer=keras.initializers.RandomUniform(), dtype="float32", ) dense_outputs = layer(dense_inputs) sparse_outpus = layer(sparse_inputs) ragged_outputs = layer(ragged_inputs) expected_dense = tf.add( tf.matmul(dense_inputs, keras.backend.get_value(layer.kernel)), keras.backend.get_value(layer.bias), ) expected_sparse = tf.add( tf.matmul( tf.sparse.to_dense(sparse_inputs), keras.backend.get_value(layer.kernel), ), keras.backend.get_value(layer.bias), ) expected_ragged_values = tf.add( tf.matmul( ragged_inputs.flat_values, keras.backend.get_value(layer.kernel) ), keras.backend.get_value(layer.bias), ) expected_ragged = tf.RaggedTensor.from_row_splits( expected_ragged_values, row_splits=[0, 4, 6, 6, 9, 10] ) self.assertAllClose(dense_outputs, expected_dense) self.assertAllClose(sparse_outpus, expected_sparse) self.assertAllClose(ragged_outputs, expected_ragged) def test_dense_dtype(self): inputs = tf.convert_to_tensor( np.random.randint(low=0, high=7, size=(2, 2)) ) layer = keras.layers.Dense(5, dtype="float32") outputs = layer(inputs) self.assertEqual(outputs.dtype, "float32") def test_dense_with_policy(self): inputs = tf.convert_to_tensor( np.random.randint(low=0, high=7, size=(2, 2)) ) layer = keras.layers.Dense(5, dtype=policy.Policy("mixed_float16")) outputs = layer(inputs) output_signature = layer.compute_output_signature( tf.TensorSpec(dtype="float16", shape=(2, 2)) ) self.assertEqual(output_signature.dtype, tf.float16) self.assertEqual(output_signature.shape, (2, 5)) self.assertEqual(outputs.dtype, "float16") self.assertEqual(layer.kernel.dtype, "float32") def test_dense_regularization(self): layer = keras.layers.Dense( 3, kernel_regularizer=keras.regularizers.l1(0.01), bias_regularizer="l1", activity_regularizer="l2", name="dense_reg", ) layer(keras.backend.variable(np.ones((2, 4)))) self.assertEqual(3, len(layer.losses)) def test_dense_constraints(self): k_constraint = keras.constraints.max_norm(0.01) b_constraint = keras.constraints.max_norm(0.01) layer = keras.layers.Dense( 3, kernel_constraint=k_constraint, bias_constraint=b_constraint ) layer(keras.backend.variable(np.ones((2, 4)))) self.assertEqual(layer.kernel.constraint, k_constraint) self.assertEqual(layer.bias.constraint, b_constraint) def test_dense_layer_ragged_tensor(self): layer = keras.layers.Dense(2, kernel_initializer="ones", use_bias=False) # a.shape = [2, None, 2]; a.ragged_rank=1 a = tf.ragged.constant( [[[1.0, 2], [3, 4], [5, 6]], [[7, 8]]], ragged_rank=1 ) a_out = layer(a) keras.backend.get_value(layer.kernel) # ensures var is built in TF 1.x. self.assertAllEqual(a_out, [[[3.0, 3], [7, 7], [11, 11]], [[15, 15]]]) # b.shape = [4, 2]; b.ragged_rank=1 b = tf.RaggedTensor.from_uniform_row_length( [1.0, 2, 3, 4, 5, 6, 7, 8], 2 ) self.assertAllEqual(layer(b), [[3.0, 3], [7, 7], [11, 11], [15, 15]]) # c.shape = [2, 2, 2]; c.ragged_rank=2 c = tf.RaggedTensor.from_uniform_row_length(b, 2) self.assertAllEqual( layer(c), [[[3.0, 3], [7, 7]], [[11, 11], [15, 15]]] ) def test_dense_layer_ragged_tensor_savedmodel(self): # Check that we don't get a deadlock when saving a TF-Keras model with # a dense layer that processes RaggedTensors. (This happened because # Dense.call() had a recursive call, which is not currently supported # by the @tf.function decorator.) class TestModel(keras.Model): def __init__(self): super().__init__() self._layer = keras.layers.Dense( 1, kernel_initializer="ones", use_bias=False ) def call(self, inputs): return self._layer(inputs) model = TestModel() result = model( tf.RaggedTensor.from_row_lengths([[1.0], [2], [3]], [1, 2]) ) keras.backend.get_value(model._layer.kernel) # required in TF 1.x. self.assertAllClose(result, [[[1.0]], [[2.0], [3.0]]]) model.save( os.path.join(self.get_temp_dir(), "savedmodel"), save_format="tf" ) def test_dense_layer_unsupported_ragged_tensor_error(self): layer = keras.layers.Dense(2) with self.assertRaisesRegex( ValueError, "The last dimension of the inputs to a Dense layer should " r"be defined. Found None. Full input shape received: .*", ): layer(tf.ragged.constant([[1.0, 2], [3, 4, 5]])) with self.assertRaisesRegex( ValueError, "Dense layer only supports RaggedTensors when the " r"innermost dimension is non-ragged. Received: inputs.shape=.*", ): layer.call(tf.ragged.constant([[1.0, 2], [3, 4, 5]])) @test_combinations.run_all_keras_modes class TFOpLambdaTest(test_combinations.TestCase): def test_non_tf_symbol(self): def dummy_func(a, b): return a + b layer = core.TFOpLambda(dummy_func) self.assertIsNone(layer.symbol) self.assertEqual(layer.name, "dummy_func") with self.assertRaisesRegex( ValueError, "was generated from .*dummy_func" ): layer.get_config() if __name__ == "__main__": tf.test.main()
tf-keras/tf_keras/layers/core/core_test.py/0
{ "file_path": "tf-keras/tf_keras/layers/core/core_test.py", "repo_id": "tf-keras", "token_count": 12920 }
232
"""Test DynamicEmbedding with Parameter server strategy.""" import numpy as np import tensorflow.compat.v2 as tf from absl.testing import parameterized import tf_keras as keras from tf_keras.layers.experimental import dynamic_lookup from tf_keras.testing_infra import test_utils ds_combinations = tf.__internal__.distribute.combinations @test_utils.run_v2_only class DistributedDynamiclookupTest(tf.test.TestCase, parameterized.TestCase): @ds_combinations.generate( tf.__internal__.test.combinations.combine( strategy=[ ds_combinations.parameter_server_strategy_3worker_2ps_cpu ], mode="eager", ) ) def test_dynamic_lookup_with_pss(self, strategy): train_data = np.array( [ ["a", "j", "c", "d", "e"], ["a", "h", "i", "j", "b"], ["i", "h", "c", "j", "e"], ] ) train_labels = np.array([0, 1, 2]) vocab = tf.constant(["a", "b", "c", "d", "e"]) vocabulary_size = 5 eviction_policy = "LFU" with strategy.scope(): # Define the model model = keras.models.Sequential( [ dynamic_lookup.DynamicLookup( vocabulary_size, initial_vocabulary=vocab, eviction_policy=eviction_policy, name="dynamic_lookup", ), keras.layers.Flatten(), keras.layers.Dense(3, activation="softmax"), ] ) # Compile the model model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"], ) result = model.fit( train_data, train_labels, epochs=10, batch_size=1, steps_per_epoch=1, ) # Assert model trains self.assertEqual(result.history["loss"][0] > 0, True) if __name__ == "__main__": tf.__internal__.distribute.multi_process_runner.test_main()
tf-keras/tf_keras/layers/experimental/dynamic_lookup_distributed_test.py/0
{ "file_path": "tf-keras/tf_keras/layers/experimental/dynamic_lookup_distributed_test.py", "repo_id": "tf-keras", "token_count": 1201 }
233
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Layer that concatenates several inputs.""" import tensorflow.compat.v2 as tf from tf_keras import backend from tf_keras.layers.merging.base_merge import _Merge from tf_keras.utils import tf_utils # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export("keras.layers.Concatenate") class Concatenate(_Merge): """Layer that concatenates a list of inputs. It takes as input a list of tensors, all of the same shape except for the concatenation axis, and returns a single tensor that is the concatenation of all inputs. >>> x = np.arange(20).reshape(2, 2, 5) >>> print(x) [[[ 0 1 2 3 4] [ 5 6 7 8 9]] [[10 11 12 13 14] [15 16 17 18 19]]] >>> y = np.arange(20, 30).reshape(2, 1, 5) >>> print(y) [[[20 21 22 23 24]] [[25 26 27 28 29]]] >>> tf.keras.layers.Concatenate(axis=1)([x, y]) <tf.Tensor: shape=(2, 3, 5), dtype=int64, numpy= array([[[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [20, 21, 22, 23, 24]], [[10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [25, 26, 27, 28, 29]]])> >>> x1 = tf.keras.layers.Dense(8)(np.arange(10).reshape(5, 2)) >>> x2 = tf.keras.layers.Dense(8)(np.arange(10, 20).reshape(5, 2)) >>> concatted = tf.keras.layers.Concatenate()([x1, x2]) >>> concatted.shape TensorShape([5, 16]) """ def __init__(self, axis=-1, **kwargs): """Instantiates a Concatenate layer. >>> x = np.arange(20).reshape(2, 2, 5) >>> print(x) [[[ 0 1 2 3 4] [ 5 6 7 8 9]] [[10 11 12 13 14] [15 16 17 18 19]]] >>> y = np.arange(20, 30).reshape(2, 1, 5) >>> print(y) [[[20 21 22 23 24]] [[25 26 27 28 29]]] >>> tf.keras.layers.Concatenate(axis=1)([x, y]) <tf.Tensor: shape=(2, 3, 5), dtype=int64, numpy= array([[[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [20, 21, 22, 23, 24]], [[10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [25, 26, 27, 28, 29]]])> Args: axis: Axis along which to concatenate. **kwargs: standard layer keyword arguments. """ super().__init__(**kwargs) self.axis = axis self.supports_masking = True self._reshape_required = False @tf_utils.shape_type_conversion def build(self, input_shape): # Used purely for shape validation. if len(input_shape) < 1 or not isinstance(input_shape[0], tuple): raise ValueError( "A `Concatenate` layer should be called on a list of " f"at least 1 input. Received: input_shape={input_shape}" ) if all(shape is None for shape in input_shape): return reduced_inputs_shapes = [list(shape) for shape in input_shape] shape_set = set() for i in range(len(reduced_inputs_shapes)): del reduced_inputs_shapes[i][self.axis] shape_set.add(tuple(reduced_inputs_shapes[i])) if len(shape_set) != 1: err_msg = ( "A `Concatenate` layer requires inputs with matching shapes " "except for the concatenation axis. " f"Received: input_shape={input_shape}" ) # Make sure all the shapes have same ranks. ranks = set(len(shape) for shape in shape_set) if len(ranks) != 1: raise ValueError(err_msg) # Get the only rank for the set. (rank,) = ranks for axis in range(rank): # Skip the Nones in the shape since they are dynamic, also the # axis for concat has been removed above. unique_dims = set( shape[axis] for shape in shape_set if shape[axis] is not None ) if len(unique_dims) > 1: raise ValueError(err_msg) def _merge_function(self, inputs): return backend.concatenate(inputs, axis=self.axis) @tf_utils.shape_type_conversion def compute_output_shape(self, input_shape): if (not isinstance(input_shape, (tuple, list))) or ( not isinstance(input_shape[0], (tuple, list)) ): # The tf_utils.shape_type_conversion decorator turns tensorshapes # into tuples, so we need to verify that `input_shape` is a # list/tuple, *and* that the individual elements are themselves # shape tuples. raise ValueError( "A `Concatenate` layer should be called on a list of inputs. " f"Received: input_shape={input_shape}" ) input_shapes = input_shape output_shape = list(input_shapes[0]) for shape in input_shapes[1:]: if output_shape[self.axis] is None or shape[self.axis] is None: output_shape[self.axis] = None break output_shape[self.axis] += shape[self.axis] return tuple(output_shape) def compute_mask(self, inputs, mask=None): if mask is None: return None if not isinstance(mask, (tuple, list)): raise ValueError(f"`mask` should be a list. Received mask={mask}") if not isinstance(inputs, (tuple, list)): raise ValueError( f"`inputs` should be a list. Received: inputs={inputs}" ) if len(mask) != len(inputs): raise ValueError( "The lists `inputs` and `mask` should have the same length. " f"Received: inputs={inputs} of length {len(inputs)}, and " f"mask={mask} of length {len(mask)}" ) if all(m is None for m in mask): return None # Make a list of masks while making sure # the dimensionality of each mask # is the same as the corresponding input. masks = [] for input_i, mask_i in zip(inputs, mask): if mask_i is None: # Input is unmasked. Append all 1s to masks, masks.append(tf.ones_like(input_i, dtype="bool")) elif backend.ndim(mask_i) < backend.ndim(input_i): # Mask is smaller than the input, expand it masks.append(tf.expand_dims(mask_i, axis=-1)) else: masks.append(mask_i) concatenated = backend.concatenate(masks, axis=self.axis) return backend.all(concatenated, axis=-1, keepdims=False) def get_config(self): config = { "axis": self.axis, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @keras_export("keras.layers.concatenate") def concatenate(inputs, axis=-1, **kwargs): """Functional interface to the `Concatenate` layer. >>> x = np.arange(20).reshape(2, 2, 5) >>> print(x) [[[ 0 1 2 3 4] [ 5 6 7 8 9]] [[10 11 12 13 14] [15 16 17 18 19]]] >>> y = np.arange(20, 30).reshape(2, 1, 5) >>> print(y) [[[20 21 22 23 24]] [[25 26 27 28 29]]] >>> tf.keras.layers.concatenate([x, y], ... axis=1) <tf.Tensor: shape=(2, 3, 5), dtype=int64, numpy= array([[[ 0, 1, 2, 3, 4], [ 5, 6, 7, 8, 9], [20, 21, 22, 23, 24]], [[10, 11, 12, 13, 14], [15, 16, 17, 18, 19], [25, 26, 27, 28, 29]]])> Args: inputs: A list of input tensors. axis: Concatenation axis. **kwargs: Standard layer keyword arguments. Returns: A tensor, the concatenation of the inputs alongside axis `axis`. """ return Concatenate(axis=axis, **kwargs)(inputs)
tf-keras/tf_keras/layers/merging/concatenate.py/0
{ "file_path": "tf-keras/tf_keras/layers/merging/concatenate.py", "repo_id": "tf-keras", "token_count": 4104 }
234
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Layer Normalization layer.""" import tensorflow.compat.v2 as tf from tf_keras import constraints from tf_keras import initializers from tf_keras import regularizers from tf_keras.dtensor import utils from tf_keras.engine.base_layer import Layer from tf_keras.utils import tf_utils # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export("keras.layers.LayerNormalization") class LayerNormalization(Layer): """Layer normalization layer (Ba et al., 2016). Normalize the activations of the previous layer for each given example in a batch independently, rather than across a batch like Batch Normalization. i.e. applies a transformation that maintains the mean activation within each example close to 0 and the activation standard deviation close to 1. Given a tensor `inputs`, moments are calculated and normalization is performed across the axes specified in `axis`. Example: >>> data = tf.constant(np.arange(10).reshape(5, 2) * 10, dtype=tf.float32) >>> print(data) tf.Tensor( [[ 0. 10.] [20. 30.] [40. 50.] [60. 70.] [80. 90.]], shape=(5, 2), dtype=float32) >>> layer = tf.keras.layers.LayerNormalization(axis=1) >>> output = layer(data) >>> print(output) tf.Tensor( [[-1. 1.] [-1. 1.] [-1. 1.] [-1. 1.] [-1. 1.]], shape=(5, 2), dtype=float32) Notice that with Layer Normalization the normalization happens across the axes *within* each example, rather than across different examples in the batch. If `scale` or `center` are enabled, the layer will scale the normalized outputs by broadcasting them with a trainable variable `gamma`, and center the outputs by broadcasting with a trainable variable `beta`. `gamma` will default to a ones tensor and `beta` will default to a zeros tensor, so that centering and scaling are no-ops before training has begun. So, with scaling and centering enabled the normalization equations are as follows: Let the intermediate activations for a mini-batch to be the `inputs`. For each sample `x_i` in `inputs` with `k` features, we compute the mean and variance of the sample: ```python mean_i = sum(x_i[j] for j in range(k)) / k var_i = sum((x_i[j] - mean_i) ** 2 for j in range(k)) / k ``` and then compute a normalized `x_i_normalized`, including a small factor `epsilon` for numerical stability. ```python x_i_normalized = (x_i - mean_i) / sqrt(var_i + epsilon) ``` And finally `x_i_normalized ` is linearly transformed by `gamma` and `beta`, which are learned parameters: ```python output_i = x_i_normalized * gamma + beta ``` `gamma` and `beta` will span the axes of `inputs` specified in `axis`, and this part of the inputs' shape must be fully defined. For example: >>> layer = tf.keras.layers.LayerNormalization(axis=[1, 2, 3]) >>> layer.build([5, 20, 30, 40]) >>> print(layer.beta.shape) (20, 30, 40) >>> print(layer.gamma.shape) (20, 30, 40) Note that other implementations of layer normalization may choose to define `gamma` and `beta` over a separate set of axes from the axes being normalized across. For example, Group Normalization ([Wu et al. 2018](https://arxiv.org/abs/1803.08494)) with group size of 1 corresponds to a Layer Normalization that normalizes across height, width, and channel and has `gamma` and `beta` span only the channel dimension. So, this Layer Normalization implementation will not match a Group Normalization layer with group size set to 1. Args: axis: Integer or List/Tuple. The axis or axes to normalize across. Typically, this is the features axis/axes. The left-out axes are typically the batch axis/axes. `-1` is the last dimension in the input. Defaults to `-1`. epsilon: Small float added to variance to avoid dividing by zero. Defaults to 1e-3 center: If True, add offset of `beta` to normalized tensor. If False, `beta` is ignored. Defaults to `True`. scale: If True, multiply by `gamma`. If False, `gamma` is not used. When the next layer is linear (also e.g. `nn.relu`), this can be disabled since the scaling will be done by the next layer. Defaults to `True`. beta_initializer: Initializer for the beta weight. Defaults to zeros. gamma_initializer: Initializer for the gamma weight. Defaults to ones. beta_regularizer: Optional regularizer for the beta weight. None by default. gamma_regularizer: Optional regularizer for the gamma weight. None by default. beta_constraint: Optional constraint for the beta weight. None by default. gamma_constraint: Optional constraint for the gamma weight. None by default. Input shape: Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. Output shape: Same shape as input. Reference: - [Lei Ba et al., 2016](https://arxiv.org/abs/1607.06450). """ @utils.allow_initializer_layout def __init__( self, axis=-1, epsilon=1e-3, center=True, scale=True, beta_initializer="zeros", gamma_initializer="ones", beta_regularizer=None, gamma_regularizer=None, beta_constraint=None, gamma_constraint=None, **kwargs ): super().__init__(**kwargs) if isinstance(axis, (list, tuple)): self.axis = list(axis) elif isinstance(axis, int): self.axis = axis else: raise TypeError( "Expected an int or a list/tuple of ints for the " "argument 'axis', but received: %r" % axis ) self.epsilon = epsilon self.center = center self.scale = scale self.beta_initializer = initializers.get(beta_initializer) self.gamma_initializer = initializers.get(gamma_initializer) self.beta_regularizer = regularizers.get(beta_regularizer) self.gamma_regularizer = regularizers.get(gamma_regularizer) self.beta_constraint = constraints.get(beta_constraint) self.gamma_constraint = constraints.get(gamma_constraint) self.supports_masking = True # Indicates whether a faster fused implementation can be used. This will # be set to True or False in build()" self._fused = None def _fused_can_be_used(self, ndims): """Returns false if fused implementation cannot be used. Check if the axis is contiguous and can be collapsed into the last axis. The self.axis is assumed to have no duplicates. """ axis = sorted(self.axis) can_use_fused = False if axis[-1] == ndims - 1 and axis[-1] - axis[0] == len(axis) - 1: can_use_fused = True # fused_batch_norm will silently raise epsilon to be at least 1.001e-5, # so we cannot used the fused version if epsilon is below that value. # Also, the variable dtype must be float32, as fused_batch_norm only # supports float32 variables. if self.epsilon < 1.001e-5 or self.dtype != "float32": can_use_fused = False return can_use_fused def build(self, input_shape): self.axis = tf_utils.validate_axis(self.axis, input_shape) input_shape = tf.TensorShape(input_shape) rank = input_shape.rank param_shape = [input_shape[dim] for dim in self.axis] if self.scale: self.gamma = self.add_weight( name="gamma", shape=param_shape, initializer=self.gamma_initializer, regularizer=self.gamma_regularizer, constraint=self.gamma_constraint, trainable=True, experimental_autocast=False, ) else: self.gamma = None if self.center: self.beta = self.add_weight( name="beta", shape=param_shape, initializer=self.beta_initializer, regularizer=self.beta_regularizer, constraint=self.beta_constraint, trainable=True, experimental_autocast=False, ) else: self.beta = None self._fused = self._fused_can_be_used(rank) self.built = True def call(self, inputs): # TODO(b/229545225): Remove the RaggedTensor check. is_ragged = isinstance(inputs, tf.RaggedTensor) if is_ragged: inputs_lengths = inputs.nested_row_lengths() inputs = inputs.to_tensor() inputs = tf.cast(inputs, self.compute_dtype) # Compute the axes along which to reduce the mean / variance input_shape = inputs.shape ndims = len(input_shape) # Broadcasting only necessary for norm when the axis is not just # the last dimension broadcast_shape = [1] * ndims for dim in self.axis: broadcast_shape[dim] = input_shape.dims[dim].value def _broadcast(v): if ( v is not None and len(v.shape) != ndims and self.axis != [ndims - 1] ): return tf.reshape(v, broadcast_shape) return v if not self._fused: input_dtype = inputs.dtype if ( input_dtype in ("float16", "bfloat16") and self.dtype == "float32" ): # If mixed precision is used, cast inputs to float32 so that # this is at least as numerically stable as the fused version. inputs = tf.cast(inputs, "float32") # Calculate the moments on the last axis (layer activations). mean, variance = tf.nn.moments(inputs, self.axis, keepdims=True) scale, offset = _broadcast(self.gamma), _broadcast(self.beta) # Compute layer normalization using the batch_normalization # function. outputs = tf.nn.batch_normalization( inputs, mean, variance, offset=offset, scale=scale, variance_epsilon=self.epsilon, ) outputs = tf.cast(outputs, input_dtype) else: # Collapse dims before self.axis, and dims in self.axis axis = sorted(self.axis) tensor_shape = tf.shape(inputs) pre_dim = tf.reduce_prod(tensor_shape[: axis[0]]) in_dim = tf.reduce_prod(tensor_shape[axis[0] :]) squeezed_shape = [1, pre_dim, in_dim, 1] # This fused operation requires reshaped inputs to be NCHW. data_format = "NCHW" inputs = tf.reshape(inputs, squeezed_shape) # self.gamma and self.beta have the wrong shape for # fused_batch_norm, so we cannot pass them as the scale and offset # parameters. Therefore, we create two constant tensors in correct # shapes for fused_batch_norm and later construct a separate # calculation on the scale and offset. scale = tf.ones([pre_dim], dtype=self.dtype) offset = tf.zeros([pre_dim], dtype=self.dtype) # Compute layer normalization using the fused_batch_norm function. outputs, _, _ = tf.compat.v1.nn.fused_batch_norm( inputs, scale=scale, offset=offset, epsilon=self.epsilon, data_format=data_format, ) outputs = tf.reshape(outputs, tensor_shape) scale, offset = _broadcast(self.gamma), _broadcast(self.beta) if scale is not None: outputs = outputs * tf.cast(scale, outputs.dtype) if offset is not None: outputs = outputs + tf.cast(offset, outputs.dtype) # If some components of the shape got lost due to adjustments, fix that. outputs.set_shape(input_shape) if is_ragged: outputs = tf.RaggedTensor.from_tensor(outputs, inputs_lengths) return outputs def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = { "axis": self.axis, "epsilon": self.epsilon, "center": self.center, "scale": self.scale, "beta_initializer": initializers.serialize(self.beta_initializer), "gamma_initializer": initializers.serialize(self.gamma_initializer), "beta_regularizer": regularizers.serialize(self.beta_regularizer), "gamma_regularizer": regularizers.serialize(self.gamma_regularizer), "beta_constraint": constraints.serialize(self.beta_constraint), "gamma_constraint": constraints.serialize(self.gamma_constraint), } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))
tf-keras/tf_keras/layers/normalization/layer_normalization.py/0
{ "file_path": "tf-keras/tf_keras/layers/normalization/layer_normalization.py", "repo_id": "tf-keras", "token_count": 5834 }
235
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Private base class for pooling 2D layers.""" import tensorflow.compat.v2 as tf from tf_keras import backend from tf_keras.engine.base_layer import Layer from tf_keras.engine.input_spec import InputSpec from tf_keras.utils import conv_utils class Pooling2D(Layer): """Pooling layer for arbitrary pooling functions, for 2D data (e.g. images). This class only exists for code reuse. It will never be an exposed API. Args: pool_function: The pooling function to apply, e.g. `tf.nn.max_pool2d`. pool_size: An integer or tuple/list of 2 integers: (pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions. strides: An integer or tuple/list of 2 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions. padding: A string. The padding method, either 'valid' or 'same'. Case-insensitive. data_format: A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. name: A string, the name of the layer. """ def __init__( self, pool_function, pool_size, strides, padding="valid", data_format=None, name=None, **kwargs ): super().__init__(name=name, **kwargs) if data_format is None: data_format = backend.image_data_format() if strides is None: strides = pool_size self.pool_function = pool_function self.pool_size = conv_utils.normalize_tuple(pool_size, 2, "pool_size") self.strides = conv_utils.normalize_tuple( strides, 2, "strides", allow_zero=True ) self.padding = conv_utils.normalize_padding(padding) self.data_format = conv_utils.normalize_data_format(data_format) self.input_spec = InputSpec(ndim=4) def call(self, inputs): if self.data_format == "channels_last": pool_shape = (1,) + self.pool_size + (1,) strides = (1,) + self.strides + (1,) else: pool_shape = (1, 1) + self.pool_size strides = (1, 1) + self.strides outputs = self.pool_function( inputs, ksize=pool_shape, strides=strides, padding=self.padding.upper(), data_format=conv_utils.convert_data_format(self.data_format, 4), ) return outputs def compute_output_shape(self, input_shape): input_shape = tf.TensorShape(input_shape).as_list() if self.data_format == "channels_first": rows = input_shape[2] cols = input_shape[3] else: rows = input_shape[1] cols = input_shape[2] rows = conv_utils.conv_output_length( rows, self.pool_size[0], self.padding, self.strides[0] ) cols = conv_utils.conv_output_length( cols, self.pool_size[1], self.padding, self.strides[1] ) if self.data_format == "channels_first": return tf.TensorShape([input_shape[0], input_shape[1], rows, cols]) else: return tf.TensorShape([input_shape[0], rows, cols, input_shape[3]]) def get_config(self): config = { "pool_size": self.pool_size, "padding": self.padding, "strides": self.strides, "data_format": self.data_format, } base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))
tf-keras/tf_keras/layers/pooling/base_pooling2d.py/0
{ "file_path": "tf-keras/tf_keras/layers/pooling/base_pooling2d.py", "repo_id": "tf-keras", "token_count": 1883 }
236
# Placeholder: load unaliased py_library # Benchmarks for TF-Keras preprocessing layers. load("@org_keras//tf_keras:tf_keras.bzl", "cuda_py_test") # buildifier: disable=same-origin-load load("@org_keras//tf_keras:tf_keras.bzl", "tf_py_test") package( # copybara:uncomment default_applicable_licenses = ["//tf_keras:license"], default_visibility = [ "//tf_keras:friends", "//third_party/tensorflow/tools/pip_package:__pkg__", ], licenses = ["notice"], ) tf_py_test( name = "category_encoding_benchmark", srcs = ["category_encoding_benchmark.py"], python_version = "PY3", deps = [ "//:expect_tensorflow_installed", "//tf_keras/api:tf_keras_api", "//tf_keras/layers/preprocessing:category_encoding", ], ) tf_py_test( name = "hashing_benchmark", srcs = ["hashing_benchmark.py"], python_version = "PY3", deps = [ "//:expect_tensorflow_installed", "//tf_keras/api:tf_keras_api", "//tf_keras/layers/preprocessing:hashing", ], ) tf_py_test( name = "index_lookup_adapt_benchmark", srcs = ["index_lookup_adapt_benchmark.py"], python_version = "PY3", deps = [ "//:expect_tensorflow_installed", "//tf_keras/api:tf_keras_api", "//tf_keras/layers/preprocessing:index_lookup", ], ) tf_py_test( name = "index_lookup_forward_benchmark", srcs = ["index_lookup_forward_benchmark.py"], python_version = "PY3", deps = [ "//:expect_tensorflow_installed", "//tf_keras/api:tf_keras_api", "//tf_keras/layers/preprocessing:index_lookup", ], ) tf_py_test( name = "normalization_adapt_benchmark", srcs = ["normalization_adapt_benchmark.py"], python_version = "PY3", deps = [ "//:expect_tensorflow_installed", "//tf_keras/api:tf_keras_api", "//tf_keras/layers/preprocessing:normalization", ], ) tf_py_test( name = "discretization_adapt_benchmark", srcs = ["discretization_adapt_benchmark.py"], python_version = "PY3", deps = [ "//:expect_tensorflow_installed", "//tf_keras/api:tf_keras_api", "//tf_keras/layers/preprocessing:discretization", ], ) cuda_py_test( name = "image_preproc_benchmark", srcs = ["image_preproc_benchmark.py"], python_version = "PY3", deps = [ "//:expect_tensorflow_installed", "//tf_keras/api:tf_keras_api", "//tf_keras/layers/preprocessing:image_preprocessing", ], ) tf_py_test( name = "bucketized_column_dense_benchmark", srcs = ["bucketized_column_dense_benchmark.py"], python_version = "PY3", deps = [ ":feature_column_benchmark", "//:expect_tensorflow_installed", "//tf_keras/api:tf_keras_api", ], ) tf_py_test( name = "hashed_crossing_benchmark", srcs = ["hashed_crossing_benchmark.py"], python_version = "PY3", deps = [ ":feature_column_benchmark", "//:expect_tensorflow_installed", "//tf_keras/api:tf_keras_api", ], ) tf_py_test( name = "category_hash_dense_benchmark", srcs = ["category_hash_dense_benchmark.py"], python_version = "PY3", deps = [ ":feature_column_benchmark", "//:expect_tensorflow_installed", "//tf_keras/api:tf_keras_api", ], ) tf_py_test( name = "category_hash_varlen_benchmark", srcs = ["category_hash_varlen_benchmark.py"], python_version = "PY3", deps = [ ":feature_column_benchmark", "//:expect_tensorflow_installed", "//tf_keras/api:tf_keras_api", ], ) tf_py_test( name = "category_vocab_file_dense_benchmark", srcs = ["category_vocab_file_dense_benchmark.py"], python_version = "PY3", tags = ["no_windows"], deps = [ ":feature_column_benchmark", "//:expect_tensorflow_installed", "//tf_keras/api:tf_keras_api", ], ) tf_py_test( name = "category_vocab_file_varlen_benchmark", srcs = ["category_vocab_file_varlen_benchmark.py"], python_version = "PY3", tags = ["no_windows"], deps = [ ":feature_column_benchmark", "//:expect_tensorflow_installed", "//tf_keras/api:tf_keras_api", ], ) tf_py_test( name = "category_vocab_list_dense_benchmark", srcs = ["category_vocab_list_dense_benchmark.py"], python_version = "PY3", tags = ["no_windows"], deps = [ ":feature_column_benchmark", "//:expect_tensorflow_installed", "//tf_keras/api:tf_keras_api", ], ) tf_py_test( name = "category_vocab_list_indicator_dense_benchmark", srcs = ["category_vocab_list_indicator_dense_benchmark.py"], python_version = "PY3", tags = ["no_windows"], deps = [ ":feature_column_benchmark", "//:expect_tensorflow_installed", "//tf_keras/api:tf_keras_api", ], ) tf_py_test( name = "category_vocab_list_indicator_varlen_benchmark", srcs = ["category_vocab_list_indicator_varlen_benchmark.py"], python_version = "PY3", tags = ["no_windows"], deps = [ ":feature_column_benchmark", "//:expect_tensorflow_installed", "//tf_keras/api:tf_keras_api", ], ) tf_py_test( name = "category_vocab_list_varlen_benchmark", srcs = ["category_vocab_list_varlen_benchmark.py"], python_version = "PY3", tags = ["no_windows"], deps = [ ":feature_column_benchmark", "//:expect_tensorflow_installed", "//tf_keras/api:tf_keras_api", ], ) tf_py_test( name = "embedding_dense_benchmark", srcs = ["embedding_dense_benchmark.py"], python_version = "PY3", deps = [ ":feature_column_benchmark", "//:expect_tensorflow_installed", "//tf_keras/api:tf_keras_api", ], ) tf_py_test( name = "embedding_varlen_benchmark", srcs = ["embedding_varlen_benchmark.py"], python_version = "PY3", deps = [ ":feature_column_benchmark", "//:expect_tensorflow_installed", "//tf_keras/api:tf_keras_api", ], ) py_library( name = "feature_column_benchmark", srcs = ["feature_column_benchmark.py"], deps = [ "//:expect_tensorflow_installed", ], ) tf_py_test( name = "weighted_embedding_varlen_benchmark", srcs = ["weighted_embedding_varlen_benchmark.py"], python_version = "PY3", deps = [ ":feature_column_benchmark", "//:expect_tensorflow_installed", "//tf_keras/api:tf_keras_api", ], )
tf-keras/tf_keras/layers/preprocessing/benchmarks/BUILD/0
{ "file_path": "tf-keras/tf_keras/layers/preprocessing/benchmarks/BUILD", "repo_id": "tf-keras", "token_count": 3120 }
237
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for keras.layers.preprocessing.hashing.""" import numpy as np import tensorflow.compat.v2 as tf import tf_keras as keras from tf_keras import backend from tf_keras.distribute import strategy_combinations from tf_keras.layers.preprocessing import hashing from tf_keras.layers.preprocessing import preprocessing_test_utils from tf_keras.testing_infra import test_combinations from tf_keras.testing_infra import test_utils # isort: off from tensorflow.python.framework import ( test_util as tf_test_utils, ) @test_utils.run_v2_only @tf.__internal__.distribute.combinations.generate( tf.__internal__.test.combinations.combine( strategy=strategy_combinations.all_strategies + strategy_combinations.multi_worker_mirrored_strategies + strategy_combinations.parameter_server_strategies_single_worker + strategy_combinations.parameter_server_strategies_multi_worker, mode=["eager"], ) ) class HashingDistributionTest( test_combinations.TestCase, preprocessing_test_utils.PreprocessingLayerTest ): def test_strategy(self, strategy): if ( backend.is_tpu_strategy(strategy) and not tf_test_utils.is_mlir_bridge_enabled() ): self.skipTest("TPU tests require MLIR bridge") input_data = np.asarray([["omar"], ["stringer"], ["marlo"], ["wire"]]) input_dataset = tf.data.Dataset.from_tensor_slices(input_data).batch( 2, drop_remainder=True ) expected_output = [[0], [0], [1], [0]] tf.config.set_soft_device_placement(True) with strategy.scope(): input_data = keras.Input(shape=(None,), dtype=tf.string) layer = hashing.Hashing(num_bins=2) int_data = layer(input_data) model = keras.Model(inputs=input_data, outputs=int_data) output_dataset = model.predict(input_dataset) self.assertAllEqual(expected_output, output_dataset) if __name__ == "__main__": tf.__internal__.distribute.multi_process_runner.test_main()
tf-keras/tf_keras/layers/preprocessing/hashing_distribution_test.py/0
{ "file_path": "tf-keras/tf_keras/layers/preprocessing/hashing_distribution_test.py", "repo_id": "tf-keras", "token_count": 999 }
238
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests utils for preprocessing layers.""" import collections import numpy as np import tensorflow.compat.v2 as tf class ArrayLike: def __init__(self, values): self.values = values def __array__(self): return np.array(self.values) class PreprocessingLayerTest(tf.test.TestCase): """Base test class for preprocessing layer API validation.""" # TODO(b/137303934): Consider incorporating something like this Close vs All # behavior into core tf.test.TestCase. def assertAllCloseOrEqual(self, a, b, msg=None): """Asserts that elements are close (if numeric) or equal (if string).""" if a is None or b is None: self.assertAllEqual(a, b, msg=msg) elif isinstance(a, (list, tuple)): self.assertEqual(len(a), len(b)) for a_value, b_value in zip(a, b): self.assertAllCloseOrEqual(a_value, b_value, msg=msg) elif isinstance(a, collections.abc.Mapping): self.assertEqual(len(a), len(b)) for key, a_value in a.items(): b_value = b[key] error_message = f"{msg} ({key})" if msg else None self.assertAllCloseOrEqual(a_value, b_value, error_message) elif ( isinstance(a, float) or hasattr(a, "dtype") and np.issubdtype(a.dtype, np.number) ): self.assertAllClose(a, b, msg=msg) else: self.assertAllEqual(a, b, msg=msg) def assert_extracted_output_equal(self, combiner, acc1, acc2, msg=None): data_1 = combiner.extract(acc1) data_2 = combiner.extract(acc2) self.assertAllCloseOrEqual(data_1, data_2, msg=msg) # This is an injection seam so that tests like TextVectorizationTest can # define their own methods for asserting that accumulators are equal. compare_accumulators = assertAllCloseOrEqual def validate_accumulator_computation(self, combiner, data, expected): """Validate that various combinations of compute and merge are identical.""" if len(data) < 4: raise AssertionError( "Data must have at least 4 elements. Received " f"len(data)={len(data)}." ) data_0 = np.array([data[0]]) data_1 = np.array([data[1]]) data_2 = np.array(data[2:]) single_compute = combiner.compute(data) all_merge = combiner.merge( [ combiner.compute(data_0), combiner.compute(data_1), combiner.compute(data_2), ] ) self.compare_accumulators( single_compute, all_merge, msg="Sharding data should not change the data output.", ) unordered_all_merge = combiner.merge( [ combiner.compute(data_1), combiner.compute(data_2), combiner.compute(data_0), ] ) self.compare_accumulators( all_merge, unordered_all_merge, msg=( "The order of merge arguments should not change the data " "output." ), ) hierarchical_merge = combiner.merge( [ combiner.compute(data_1), combiner.merge( [combiner.compute(data_2), combiner.compute(data_0)] ), ] ) self.compare_accumulators( all_merge, hierarchical_merge, msg="Nesting merge arguments should not change the data output.", ) nested_compute = combiner.compute( data_0, combiner.compute(data_1, combiner.compute(data_2)) ) self.compare_accumulators( all_merge, nested_compute, msg="Nesting compute arguments should not change the data output.", ) mixed_compute = combiner.merge( [ combiner.compute(data_0), combiner.compute(data_1, combiner.compute(data_2)), ] ) self.compare_accumulators( all_merge, mixed_compute, msg=( "Mixing merge and compute calls should not change the data " "output." ), ) single_merge = combiner.merge( [ combiner.merge([combiner.compute(data_0)]), combiner.compute(data_1, combiner.compute(data_2)), ] ) self.compare_accumulators( all_merge, single_merge, msg=( "Calling merge with a data length of 1 should not change " "the data output." ), ) self.compare_accumulators( expected, all_merge, msg="Calculated accumulators did not match expected accumulator.", ) def validate_accumulator_extract(self, combiner, data, expected): """Validate that the expected results of computing and extracting.""" acc = combiner.compute(data) extracted_data = combiner.extract(acc) self.assertAllCloseOrEqual(expected, extracted_data) def validate_accumulator_extract_and_restore( self, combiner, data, expected ): """Validate that the extract<->restore loop loses no data.""" acc = combiner.compute(data) extracted_data = combiner.extract(acc) restored_acc = combiner.restore(extracted_data) self.assert_extracted_output_equal(combiner, acc, restored_acc) self.assertAllCloseOrEqual(expected, combiner.extract(restored_acc)) def validate_accumulator_serialize_and_deserialize( self, combiner, data, expected ): """Validate that the serialize<->deserialize loop loses no data.""" acc = combiner.compute(data) serialized_data = combiner.serialize(acc) deserialized_data = combiner.deserialize(serialized_data) self.compare_accumulators(acc, deserialized_data) self.compare_accumulators(expected, deserialized_data) def validate_accumulator_uniqueness(self, combiner, data): """Validate that every call to compute creates a unique accumulator.""" acc = combiner.compute(data) acc2 = combiner.compute(data) self.assertIsNot(acc, acc2) self.compare_accumulators(acc, acc2)
tf-keras/tf_keras/layers/preprocessing/preprocessing_test_utils.py/0
{ "file_path": "tf-keras/tf_keras/layers/preprocessing/preprocessing_test_utils.py", "repo_id": "tf-keras", "token_count": 3307 }
239
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains the GaussianDropout layer.""" import numpy as np import tensorflow.compat.v2 as tf from tf_keras import backend from tf_keras.engine import base_layer from tf_keras.utils import tf_utils # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export("keras.layers.GaussianDropout") class GaussianDropout(base_layer.BaseRandomLayer): """Apply multiplicative 1-centered Gaussian noise. As it is a regularization layer, it is only active at training time. Args: rate: Float, drop probability (as with `Dropout`). The multiplicative noise will have standard deviation `sqrt(rate / (1 - rate))`. seed: Integer, optional random seed to enable deterministic behavior. Call arguments: inputs: Input tensor (of any rank). training: Python boolean indicating whether the layer should behave in training mode (adding dropout) or in inference mode (doing nothing). Input shape: Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. Output shape: Same shape as input. """ def __init__(self, rate, seed=None, **kwargs): super().__init__(seed=seed, **kwargs) self.supports_masking = True self.rate = rate self.seed = seed def call(self, inputs, training=None): if 0 < self.rate < 1: def noised(): stddev = np.sqrt(self.rate / (1.0 - self.rate)) return inputs * self._random_generator.random_normal( shape=tf.shape(inputs), mean=1.0, stddev=stddev, dtype=inputs.dtype, ) return backend.in_train_phase(noised, inputs, training=training) return inputs def get_config(self): config = {"rate": self.rate, "seed": self.seed} base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) @tf_utils.shape_type_conversion def compute_output_shape(self, input_shape): return input_shape
tf-keras/tf_keras/layers/regularization/gaussian_dropout.py/0
{ "file_path": "tf-keras/tf_keras/layers/regularization/gaussian_dropout.py", "repo_id": "tf-keras", "token_count": 1045 }
240
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains the Permute layer.""" import copy import tensorflow.compat.v2 as tf from tf_keras.engine.base_layer import Layer from tf_keras.engine.input_spec import InputSpec # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export("keras.layers.Permute") class Permute(Layer): """Permutes the dimensions of the input according to a given pattern. Useful e.g. connecting RNNs and convnets. Example: ```python model = Sequential() model.add(Permute((2, 1), input_shape=(10, 64))) # now: model.output_shape == (None, 64, 10) # note: `None` is the batch dimension ``` Args: dims: Tuple of integers. Permutation pattern does not include the samples dimension. Indexing starts at 1. For instance, `(2, 1)` permutes the first and second dimensions of the input. Input shape: Arbitrary. Use the keyword argument `input_shape` (tuple of integers, does not include the samples axis) when using this layer as the first layer in a model. Output shape: Same as the input shape, but with the dimensions re-ordered according to the specified pattern. """ def __init__(self, dims, **kwargs): super().__init__(**kwargs) self.dims = tuple(dims) if sorted(dims) != list(range(1, len(dims) + 1)): raise ValueError( "Invalid permutation argument `dims` for Permute Layer. " "The set of indices in `dims` must be consecutive and start " f"from 1. Received dims={dims}" ) self.input_spec = InputSpec(ndim=len(self.dims) + 1) def compute_output_shape(self, input_shape): input_shape = tf.TensorShape(input_shape).as_list() output_shape = copy.copy(input_shape) for i, dim in enumerate(self.dims): target_dim = input_shape[dim] output_shape[i + 1] = target_dim return tf.TensorShape(output_shape) def call(self, inputs): return tf.transpose(inputs, perm=(0,) + self.dims) def get_config(self): config = {"dims": self.dims} base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))
tf-keras/tf_keras/layers/reshaping/permute.py/0
{ "file_path": "tf-keras/tf_keras/layers/reshaping/permute.py", "repo_id": "tf-keras", "token_count": 1078 }
241
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base class for RNN cells.""" from tf_keras.engine import base_layer from tf_keras.layers.rnn import rnn_utils # isort: off from tensorflow.python.util.tf_export import keras_export @keras_export("keras.layers.AbstractRNNCell") class AbstractRNNCell(base_layer.Layer): """Abstract object representing an RNN cell. See [the TF-Keras RNN API guide](https://www.tensorflow.org/guide/keras/rnn) for details about the usage of RNN API. This is the base class for implementing RNN cells with custom behavior. Every `RNNCell` must have the properties below and implement `call` with the signature `(output, next_state) = call(input, state)`. Examples: ```python class MinimalRNNCell(AbstractRNNCell): def __init__(self, units, **kwargs): self.units = units super(MinimalRNNCell, self).__init__(**kwargs) @property def state_size(self): return self.units def build(self, input_shape): self.kernel = self.add_weight(shape=(input_shape[-1], self.units), initializer='uniform', name='kernel') self.recurrent_kernel = self.add_weight( shape=(self.units, self.units), initializer='uniform', name='recurrent_kernel') self.built = True def call(self, inputs, states): prev_output = states[0] h = backend.dot(inputs, self.kernel) output = h + backend.dot(prev_output, self.recurrent_kernel) return output, output ``` This definition of cell differs from the definition used in the literature. In the literature, 'cell' refers to an object with a single scalar output. This definition refers to a horizontal array of such units. An RNN cell, in the most abstract setting, is anything that has a state and performs some operation that takes a matrix of inputs. This operation results in an output matrix with `self.output_size` columns. If `self.state_size` is an integer, this operation also results in a new state matrix with `self.state_size` columns. If `self.state_size` is a (possibly nested tuple of) TensorShape object(s), then it should return a matching structure of Tensors having shape `[batch_size].concatenate(s)` for each `s` in `self.batch_size`. """ def call(self, inputs, states): """The function that contains the logic for one RNN step calculation. Args: inputs: the input tensor, which is a slide from the overall RNN input by the time dimension (usually the second dimension). states: the state tensor from previous step, which has the same shape as `(batch, state_size)`. In the case of timestep 0, it will be the initial state user specified, or zero filled tensor otherwise. Returns: A tuple of two tensors: 1. output tensor for the current timestep, with size `output_size`. 2. state tensor for next step, which has the shape of `state_size`. """ raise NotImplementedError @property def state_size(self): """size(s) of state(s) used by this cell. It can be represented by an Integer, a TensorShape or a tuple of Integers or TensorShapes. """ raise NotImplementedError @property def output_size(self): """Integer or TensorShape: size of outputs produced by this cell.""" raise NotImplementedError def get_initial_state(self, inputs=None, batch_size=None, dtype=None): return rnn_utils.generate_zero_filled_state_for_cell( self, inputs, batch_size, dtype )
tf-keras/tf_keras/layers/rnn/abstract_rnn_cell.py/0
{ "file_path": "tf-keras/tf_keras/layers/rnn/abstract_rnn_cell.py", "repo_id": "tf-keras", "token_count": 1634 }
242