text
stringlengths
29
320k
id
stringlengths
22
166
metadata
dict
__index_level_0__
int64
0
195
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # CamemBERT ## Overview The CamemBERT model was proposed in [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894) by [Louis Martin](https://huggingface.co/louismartin), [Benjamin Muller](https://huggingface.co/benjamin-mlr), [Pedro Javier Ortiz Suárez](https://huggingface.co/pjox), Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, [Djamé Seddah](https://huggingface.co/Djame), and [Benoît Sagot](https://huggingface.co/sagot). It is based on Facebook's RoBERTa model released in 2019. It is a model trained on 138GB of French text. The abstract from the paper is the following: *Pretrained language models are now ubiquitous in Natural Language Processing. Despite their success, most available models have either been trained on English data or on the concatenation of data in multiple languages. This makes practical use of such models --in all languages except English-- very limited. Aiming to address this issue for French, we release CamemBERT, a French version of the Bi-directional Encoders for Transformers (BERT). We measure the performance of CamemBERT compared to multilingual models in multiple downstream tasks, namely part-of-speech tagging, dependency parsing, named-entity recognition, and natural language inference. CamemBERT improves the state of the art for most of the tasks considered. We release the pretrained model for CamemBERT hoping to foster research and downstream applications for French NLP.* This model was contributed by [the ALMAnaCH team (Inria)](https://huggingface.co/almanach). The original code can be found [here](https://camembert-model.fr/). <Tip> This implementation is the same as RoBERTa. Refer to the [documentation of RoBERTa](roberta) for usage examples as well as the information relative to the inputs and outputs. </Tip> ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Causal language modeling task guide](../tasks/language_modeling) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## CamembertConfig [[autodoc]] CamembertConfig ## CamembertTokenizer [[autodoc]] CamembertTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## CamembertTokenizerFast [[autodoc]] CamembertTokenizerFast <frameworkcontent> <pt> ## CamembertModel [[autodoc]] CamembertModel ## CamembertForCausalLM [[autodoc]] CamembertForCausalLM ## CamembertForMaskedLM [[autodoc]] CamembertForMaskedLM ## CamembertForSequenceClassification [[autodoc]] CamembertForSequenceClassification ## CamembertForMultipleChoice [[autodoc]] CamembertForMultipleChoice ## CamembertForTokenClassification [[autodoc]] CamembertForTokenClassification ## CamembertForQuestionAnswering [[autodoc]] CamembertForQuestionAnswering </pt> <tf> ## TFCamembertModel [[autodoc]] TFCamembertModel ## TFCamembertForCasualLM [[autodoc]] TFCamembertForCausalLM ## TFCamembertForMaskedLM [[autodoc]] TFCamembertForMaskedLM ## TFCamembertForSequenceClassification [[autodoc]] TFCamembertForSequenceClassification ## TFCamembertForMultipleChoice [[autodoc]] TFCamembertForMultipleChoice ## TFCamembertForTokenClassification [[autodoc]] TFCamembertForTokenClassification ## TFCamembertForQuestionAnswering [[autodoc]] TFCamembertForQuestionAnswering </tf> </frameworkcontent>
transformers/docs/source/en/model_doc/camembert.md/0
{ "file_path": "transformers/docs/source/en/model_doc/camembert.md", "repo_id": "transformers", "token_count": 1309 }
7
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Convolutional Vision Transformer (CvT) ## Overview The CvT model was proposed in [CvT: Introducing Convolutions to Vision Transformers](https://arxiv.org/abs/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan and Lei Zhang. The Convolutional vision Transformer (CvT) improves the [Vision Transformer (ViT)](vit) in performance and efficiency by introducing convolutions into ViT to yield the best of both designs. The abstract from the paper is the following: *We present in this paper a new architecture, named Convolutional vision Transformer (CvT), that improves Vision Transformer (ViT) in performance and efficiency by introducing convolutions into ViT to yield the best of both designs. This is accomplished through two primary modifications: a hierarchy of Transformers containing a new convolutional token embedding, and a convolutional Transformer block leveraging a convolutional projection. These changes introduce desirable properties of convolutional neural networks (CNNs) to the ViT architecture (\ie shift, scale, and distortion invariance) while maintaining the merits of Transformers (\ie dynamic attention, global context, and better generalization). We validate CvT by conducting extensive experiments, showing that this approach achieves state-of-the-art performance over other Vision Transformers and ResNets on ImageNet-1k, with fewer parameters and lower FLOPs. In addition, performance gains are maintained when pretrained on larger datasets (\eg ImageNet-22k) and fine-tuned to downstream tasks. Pre-trained on ImageNet-22k, our CvT-W24 obtains a top-1 accuracy of 87.7\% on the ImageNet-1k val set. Finally, our results show that the positional encoding, a crucial component in existing Vision Transformers, can be safely removed in our model, simplifying the design for higher resolution vision tasks.* This model was contributed by [anugunj](https://huggingface.co/anugunj). The original code can be found [here](https://github.com/microsoft/CvT). ## Usage tips - CvT models are regular Vision Transformers, but trained with convolutions. They outperform the [original model (ViT)](vit) when fine-tuned on ImageNet-1K and CIFAR-100. - You can check out demo notebooks regarding inference as well as fine-tuning on custom data [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/VisionTransformer) (you can just replace [`ViTFeatureExtractor`] by [`AutoImageProcessor`] and [`ViTForImageClassification`] by [`CvtForImageClassification`]). - The available checkpoints are either (1) pre-trained on [ImageNet-22k](http://www.image-net.org/) (a collection of 14 million images and 22k classes) only, (2) also fine-tuned on ImageNet-22k or (3) also fine-tuned on [ImageNet-1k](http://www.image-net.org/challenges/LSVRC/2012/) (also referred to as ILSVRC 2012, a collection of 1.3 million images and 1,000 classes). ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with CvT. <PipelineTag pipeline="image-classification"/> - [`CvtForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb). - See also: [Image classification task guide](../tasks/image_classification) If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. ## CvtConfig [[autodoc]] CvtConfig <frameworkcontent> <pt> ## CvtModel [[autodoc]] CvtModel - forward ## CvtForImageClassification [[autodoc]] CvtForImageClassification - forward </pt> <tf> ## TFCvtModel [[autodoc]] TFCvtModel - call ## TFCvtForImageClassification [[autodoc]] TFCvtForImageClassification - call </tf> </frameworkcontent>
transformers/docs/source/en/model_doc/cvt.md/0
{ "file_path": "transformers/docs/source/en/model_doc/cvt.md", "repo_id": "transformers", "token_count": 1314 }
8
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # FLAVA ## Overview The FLAVA model was proposed in [FLAVA: A Foundational Language And Vision Alignment Model](https://arxiv.org/abs/2112.04482) by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela and is accepted at CVPR 2022. The paper aims at creating a single unified foundation model which can work across vision, language as well as vision-and-language multimodal tasks. The abstract from the paper is the following: *State-of-the-art vision and vision-and-language models rely on large-scale visio-linguistic pretraining for obtaining good performance on a variety of downstream tasks. Generally, such models are often either cross-modal (contrastive) or multi-modal (with earlier fusion) but not both; and they often only target specific modalities or tasks. A promising direction would be to use a single holistic universal model, as a "foundation", that targets all modalities at once -- a true vision and language foundation model should be good at vision tasks, language tasks, and cross- and multi-modal vision and language tasks. We introduce FLAVA as such a model and demonstrate impressive performance on a wide range of 35 tasks spanning these target modalities.* This model was contributed by [aps](https://huggingface.co/aps). The original code can be found [here](https://github.com/facebookresearch/multimodal/tree/main/examples/flava). ## FlavaConfig [[autodoc]] FlavaConfig ## FlavaTextConfig [[autodoc]] FlavaTextConfig ## FlavaImageConfig [[autodoc]] FlavaImageConfig ## FlavaMultimodalConfig [[autodoc]] FlavaMultimodalConfig ## FlavaImageCodebookConfig [[autodoc]] FlavaImageCodebookConfig ## FlavaProcessor [[autodoc]] FlavaProcessor ## FlavaFeatureExtractor [[autodoc]] FlavaFeatureExtractor ## FlavaImageProcessor [[autodoc]] FlavaImageProcessor - preprocess ## FlavaForPreTraining [[autodoc]] FlavaForPreTraining - forward ## FlavaModel [[autodoc]] FlavaModel - forward - get_text_features - get_image_features ## FlavaImageCodebook [[autodoc]] FlavaImageCodebook - forward - get_codebook_indices - get_codebook_probs ## FlavaTextModel [[autodoc]] FlavaTextModel - forward ## FlavaImageModel [[autodoc]] FlavaImageModel - forward ## FlavaMultimodalModel [[autodoc]] FlavaMultimodalModel - forward
transformers/docs/source/en/model_doc/flava.md/0
{ "file_path": "transformers/docs/source/en/model_doc/flava.md", "repo_id": "transformers", "token_count": 916 }
9
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # GPTSAN-japanese ## Overview The GPTSAN-japanese model was released in the repository by Toshiyuki Sakamoto (tanreinama). GPTSAN is a Japanese language model using Switch Transformer. It has the same structure as the model introduced as Prefix LM in the T5 paper, and support both Text Generation and Masked Language Modeling tasks. These basic tasks similarly can fine-tune for translation or summarization. ### Usage example The `generate()` method can be used to generate text using GPTSAN-Japanese model. ```python >>> from transformers import AutoModel, AutoTokenizer >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("Tanrei/GPTSAN-japanese") >>> model = AutoModel.from_pretrained("Tanrei/GPTSAN-japanese").cuda() >>> x_tok = tokenizer("は、", prefix_text="織田信長", return_tensors="pt") >>> torch.manual_seed(0) >>> gen_tok = model.generate(x_tok.input_ids.cuda(), token_type_ids=x_tok.token_type_ids.cuda(), max_new_tokens=20) >>> tokenizer.decode(gen_tok[0]) '織田信長は、2004年に『戦国BASARA』のために、豊臣秀吉' ``` ## GPTSAN Features GPTSAN has some unique features. It has a model structure of Prefix-LM. It works as a shifted Masked Language Model for Prefix Input tokens. Un-prefixed inputs behave like normal generative models. The Spout vector is a GPTSAN specific input. Spout is pre-trained with random inputs, but you can specify a class of text or an arbitrary vector during fine-tuning. This allows you to indicate the tendency of the generated text. GPTSAN has a sparse Feed Forward based on Switch-Transformer. You can also add other layers and train them partially. See the original GPTSAN repository for details. ### Prefix-LM Model GPTSAN has the structure of the model named Prefix-LM in the `T5` paper. (The original GPTSAN repository calls it `hybrid`) In GPTSAN, the `Prefix` part of Prefix-LM, that is, the input position that can be referenced by both tokens, can be specified with any length. Arbitrary lengths can also be specified differently for each batch. This length applies to the text entered in `prefix_text` for the tokenizer. The tokenizer returns the mask of the `Prefix` part of Prefix-LM as `token_type_ids`. The model treats the part where `token_type_ids` is 1 as a `Prefix` part, that is, the input can refer to both tokens before and after. ## Usage tips Specifying the Prefix part is done with a mask passed to self-attention. When token_type_ids=None or all zero, it is equivalent to regular causal mask for example: >>> x_token = tokenizer("アイウエ") input_ids: | SOT | SEG | ア | イ | ウ | エ | token_type_ids: | 1 | 0 | 0 | 0 | 0 | 0 | prefix_lm_mask: SOT | 1 0 0 0 0 0 | SEG | 1 1 0 0 0 0 | ア | 1 1 1 0 0 0 | イ | 1 1 1 1 0 0 | ウ | 1 1 1 1 1 0 | エ | 1 1 1 1 1 1 | >>> x_token = tokenizer("", prefix_text="アイウエ") input_ids: | SOT | ア | イ | ウ | エ | SEG | token_type_ids: | 1 | 1 | 1 | 1 | 1 | 0 | prefix_lm_mask: SOT | 1 1 1 1 1 0 | ア | 1 1 1 1 1 0 | イ | 1 1 1 1 1 0 | ウ | 1 1 1 1 1 0 | エ | 1 1 1 1 1 0 | SEG | 1 1 1 1 1 1 | >>> x_token = tokenizer("ウエ", prefix_text="アイ") input_ids: | SOT | ア | イ | SEG | ウ | エ | token_type_ids: | 1 | 1 | 1 | 0 | 0 | 0 | prefix_lm_mask: SOT | 1 1 1 0 0 0 | ア | 1 1 1 0 0 0 | イ | 1 1 1 0 0 0 | SEG | 1 1 1 1 0 0 | ウ | 1 1 1 1 1 0 | エ | 1 1 1 1 1 1 | ### Spout Vector A Spout Vector is a special vector for controlling text generation. This vector is treated as the first embedding in self-attention to bring extraneous attention to the generated tokens. In the pre-trained model published from `Tanrei/GPTSAN-japanese`, the Spout Vector is a 128-dimensional vector that passes through 8 fully connected layers in the model and is projected into the space acting as external attention. The Spout Vector projected by the fully connected layer is split to be passed to all self-attentions. ## GPTSanJapaneseConfig [[autodoc]] GPTSanJapaneseConfig ## GPTSanJapaneseTokenizer [[autodoc]] GPTSanJapaneseTokenizer ## GPTSanJapaneseModel [[autodoc]] GPTSanJapaneseModel ## GPTSanJapaneseForConditionalGeneration [[autodoc]] GPTSanJapaneseForConditionalGeneration - forward
transformers/docs/source/en/model_doc/gptsan-japanese.md/0
{ "file_path": "transformers/docs/source/en/model_doc/gptsan-japanese.md", "repo_id": "transformers", "token_count": 1659 }
10
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # LED ## Overview The LED model was proposed in [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. The abstract from the paper is the following: *Transformer-based models are unable to process long sequences due to their self-attention operation, which scales quadratically with the sequence length. To address this limitation, we introduce the Longformer with an attention mechanism that scales linearly with sequence length, making it easy to process documents of thousands of tokens or longer. Longformer's attention mechanism is a drop-in replacement for the standard self-attention and combines a local windowed attention with a task motivated global attention. Following prior work on long-sequence transformers, we evaluate Longformer on character-level language modeling and achieve state-of-the-art results on text8 and enwik8. In contrast to most prior work, we also pretrain Longformer and finetune it on a variety of downstream tasks. Our pretrained Longformer consistently outperforms RoBERTa on long document tasks and sets new state-of-the-art results on WikiHop and TriviaQA. We finally introduce the Longformer-Encoder-Decoder (LED), a Longformer variant for supporting long document generative sequence-to-sequence tasks, and demonstrate its effectiveness on the arXiv summarization dataset.* ## Usage tips - [`LEDForConditionalGeneration`] is an extension of [`BartForConditionalGeneration`] exchanging the traditional *self-attention* layer with *Longformer*'s *chunked self-attention* layer. [`LEDTokenizer`] is an alias of [`BartTokenizer`]. - LED works very well on long-range *sequence-to-sequence* tasks where the `input_ids` largely exceed a length of 1024 tokens. - LED pads the `input_ids` to be a multiple of `config.attention_window` if required. Therefore a small speed-up is gained, when [`LEDTokenizer`] is used with the `pad_to_multiple_of` argument. - LED makes use of *global attention* by means of the `global_attention_mask` (see [`LongformerModel`]). For summarization, it is advised to put *global attention* only on the first `<s>` token. For question answering, it is advised to put *global attention* on all tokens of the question. - To fine-tune LED on all 16384, *gradient checkpointing* can be enabled in case training leads to out-of-memory (OOM) errors. This can be done by executing `model.gradient_checkpointing_enable()`. Moreover, the `use_cache=False` flag can be used to disable the caching mechanism to save memory. - LED is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). ## Resources - [A notebook showing how to evaluate LED](https://colab.research.google.com/drive/12INTTR6n64TzS4RrXZxMSXfrOd9Xzamo?usp=sharing). - [A notebook showing how to fine-tune LED](https://colab.research.google.com/drive/12LjJazBl7Gam0XBPy_y0CTOJZeZ34c2v?usp=sharing). - [Text classification task guide](../tasks/sequence_classification) - [Question answering task guide](../tasks/question_answering) - [Translation task guide](../tasks/translation) - [Summarization task guide](../tasks/summarization) ## LEDConfig [[autodoc]] LEDConfig ## LEDTokenizer [[autodoc]] LEDTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## LEDTokenizerFast [[autodoc]] LEDTokenizerFast ## LED specific outputs [[autodoc]] models.led.modeling_led.LEDEncoderBaseModelOutput [[autodoc]] models.led.modeling_led.LEDSeq2SeqModelOutput [[autodoc]] models.led.modeling_led.LEDSeq2SeqLMOutput [[autodoc]] models.led.modeling_led.LEDSeq2SeqSequenceClassifierOutput [[autodoc]] models.led.modeling_led.LEDSeq2SeqQuestionAnsweringModelOutput [[autodoc]] models.led.modeling_tf_led.TFLEDEncoderBaseModelOutput [[autodoc]] models.led.modeling_tf_led.TFLEDSeq2SeqModelOutput [[autodoc]] models.led.modeling_tf_led.TFLEDSeq2SeqLMOutput <frameworkcontent> <pt> ## LEDModel [[autodoc]] LEDModel - forward ## LEDForConditionalGeneration [[autodoc]] LEDForConditionalGeneration - forward ## LEDForSequenceClassification [[autodoc]] LEDForSequenceClassification - forward ## LEDForQuestionAnswering [[autodoc]] LEDForQuestionAnswering - forward </pt> <tf> ## TFLEDModel [[autodoc]] TFLEDModel - call ## TFLEDForConditionalGeneration [[autodoc]] TFLEDForConditionalGeneration - call </tf> </frameworkcontent>
transformers/docs/source/en/model_doc/led.md/0
{ "file_path": "transformers/docs/source/en/model_doc/led.md", "repo_id": "transformers", "token_count": 1602 }
11
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # MPNet ## Overview The MPNet model was proposed in [MPNet: Masked and Permuted Pre-training for Language Understanding](https://arxiv.org/abs/2004.09297) by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu. MPNet adopts a novel pre-training method, named masked and permuted language modeling, to inherit the advantages of masked language modeling and permuted language modeling for natural language understanding. The abstract from the paper is the following: *BERT adopts masked language modeling (MLM) for pre-training and is one of the most successful pre-training models. Since BERT neglects dependency among predicted tokens, XLNet introduces permuted language modeling (PLM) for pre-training to address this problem. However, XLNet does not leverage the full position information of a sentence and thus suffers from position discrepancy between pre-training and fine-tuning. In this paper, we propose MPNet, a novel pre-training method that inherits the advantages of BERT and XLNet and avoids their limitations. MPNet leverages the dependency among predicted tokens through permuted language modeling (vs. MLM in BERT), and takes auxiliary position information as input to make the model see a full sentence and thus reducing the position discrepancy (vs. PLM in XLNet). We pre-train MPNet on a large-scale dataset (over 160GB text corpora) and fine-tune on a variety of down-streaming tasks (GLUE, SQuAD, etc). Experimental results show that MPNet outperforms MLM and PLM by a large margin, and achieves better results on these tasks compared with previous state-of-the-art pre-trained methods (e.g., BERT, XLNet, RoBERTa) under the same model setting.* The original code can be found [here](https://github.com/microsoft/MPNet). ## Usage tips MPNet doesn't have `token_type_ids`, you don't need to indicate which token belongs to which segment. Just separate your segments with the separation token `tokenizer.sep_token` (or `[sep]`). ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## MPNetConfig [[autodoc]] MPNetConfig ## MPNetTokenizer [[autodoc]] MPNetTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## MPNetTokenizerFast [[autodoc]] MPNetTokenizerFast <frameworkcontent> <pt> ## MPNetModel [[autodoc]] MPNetModel - forward ## MPNetForMaskedLM [[autodoc]] MPNetForMaskedLM - forward ## MPNetForSequenceClassification [[autodoc]] MPNetForSequenceClassification - forward ## MPNetForMultipleChoice [[autodoc]] MPNetForMultipleChoice - forward ## MPNetForTokenClassification [[autodoc]] MPNetForTokenClassification - forward ## MPNetForQuestionAnswering [[autodoc]] MPNetForQuestionAnswering - forward </pt> <tf> ## TFMPNetModel [[autodoc]] TFMPNetModel - call ## TFMPNetForMaskedLM [[autodoc]] TFMPNetForMaskedLM - call ## TFMPNetForSequenceClassification [[autodoc]] TFMPNetForSequenceClassification - call ## TFMPNetForMultipleChoice [[autodoc]] TFMPNetForMultipleChoice - call ## TFMPNetForTokenClassification [[autodoc]] TFMPNetForTokenClassification - call ## TFMPNetForQuestionAnswering [[autodoc]] TFMPNetForQuestionAnswering - call </tf> </frameworkcontent>
transformers/docs/source/en/model_doc/mpnet.md/0
{ "file_path": "transformers/docs/source/en/model_doc/mpnet.md", "repo_id": "transformers", "token_count": 1255 }
12
<!--Copyright 2021 NVIDIA Corporation and The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # QDQBERT ## Overview The QDQBERT model can be referenced in [Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation](https://arxiv.org/abs/2004.09602) by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius. The abstract from the paper is the following: *Quantization techniques can reduce the size of Deep Neural Networks and improve inference latency and throughput by taking advantage of high throughput integer instructions. In this paper we review the mathematical aspects of quantization parameters and evaluate their choices on a wide range of neural network models for different application domains, including vision, speech, and language. We focus on quantization techniques that are amenable to acceleration by processors with high-throughput integer math pipelines. We also present a workflow for 8-bit quantization that is able to maintain accuracy within 1% of the floating-point baseline on all networks studied, including models that are more difficult to quantize, such as MobileNets and BERT-large.* This model was contributed by [shangz](https://huggingface.co/shangz). ## Usage tips - QDQBERT model adds fake quantization operations (pair of QuantizeLinear/DequantizeLinear ops) to (i) linear layer inputs and weights, (ii) matmul inputs, (iii) residual add inputs, in BERT model. - QDQBERT requires the dependency of [Pytorch Quantization Toolkit](https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization). To install `pip install pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com` - QDQBERT model can be loaded from any checkpoint of HuggingFace BERT model (for example *google-bert/bert-base-uncased*), and perform Quantization Aware Training/Post Training Quantization. - A complete example of using QDQBERT model to perform Quatization Aware Training and Post Training Quantization for SQUAD task can be found at [transformers/examples/research_projects/quantization-qdqbert/](examples/research_projects/quantization-qdqbert/). ### Set default quantizers QDQBERT model adds fake quantization operations (pair of QuantizeLinear/DequantizeLinear ops) to BERT by `TensorQuantizer` in [Pytorch Quantization Toolkit](https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization). `TensorQuantizer` is the module for quantizing tensors, with `QuantDescriptor` defining how the tensor should be quantized. Refer to [Pytorch Quantization Toolkit userguide](https://docs.nvidia.com/deeplearning/tensorrt/pytorch-quantization-toolkit/docs/userguide.html) for more details. Before creating QDQBERT model, one has to set the default `QuantDescriptor` defining default tensor quantizers. Example: ```python >>> import pytorch_quantization.nn as quant_nn >>> from pytorch_quantization.tensor_quant import QuantDescriptor >>> # The default tensor quantizer is set to use Max calibration method >>> input_desc = QuantDescriptor(num_bits=8, calib_method="max") >>> # The default tensor quantizer is set to be per-channel quantization for weights >>> weight_desc = QuantDescriptor(num_bits=8, axis=((0,))) >>> quant_nn.QuantLinear.set_default_quant_desc_input(input_desc) >>> quant_nn.QuantLinear.set_default_quant_desc_weight(weight_desc) ``` ### Calibration Calibration is the terminology of passing data samples to the quantizer and deciding the best scaling factors for tensors. After setting up the tensor quantizers, one can use the following example to calibrate the model: ```python >>> # Find the TensorQuantizer and enable calibration >>> for name, module in model.named_modules(): ... if name.endswith("_input_quantizer"): ... module.enable_calib() ... module.disable_quant() # Use full precision data to calibrate >>> # Feeding data samples >>> model(x) >>> # ... >>> # Finalize calibration >>> for name, module in model.named_modules(): ... if name.endswith("_input_quantizer"): ... module.load_calib_amax() ... module.enable_quant() >>> # If running on GPU, it needs to call .cuda() again because new tensors will be created by calibration process >>> model.cuda() >>> # Keep running the quantized model >>> # ... ``` ### Export to ONNX The goal of exporting to ONNX is to deploy inference by [TensorRT](https://developer.nvidia.com/tensorrt). Fake quantization will be broken into a pair of QuantizeLinear/DequantizeLinear ONNX ops. After setting static member of TensorQuantizer to use Pytorch’s own fake quantization functions, fake quantized model can be exported to ONNX, follow the instructions in [torch.onnx](https://pytorch.org/docs/stable/onnx.html). Example: ```python >>> from pytorch_quantization.nn import TensorQuantizer >>> TensorQuantizer.use_fb_fake_quant = True >>> # Load the calibrated model >>> ... >>> # ONNX export >>> torch.onnx.export(...) ``` ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Token classification task guide](../tasks/token_classification) - [Question answering task guide](../tasks/question_answering) - [Causal language modeling task guide](../tasks/language_modeling) - [Masked language modeling task guide](../tasks/masked_language_modeling) - [Multiple choice task guide](../tasks/multiple_choice) ## QDQBertConfig [[autodoc]] QDQBertConfig ## QDQBertModel [[autodoc]] QDQBertModel - forward ## QDQBertLMHeadModel [[autodoc]] QDQBertLMHeadModel - forward ## QDQBertForMaskedLM [[autodoc]] QDQBertForMaskedLM - forward ## QDQBertForSequenceClassification [[autodoc]] QDQBertForSequenceClassification - forward ## QDQBertForNextSentencePrediction [[autodoc]] QDQBertForNextSentencePrediction - forward ## QDQBertForMultipleChoice [[autodoc]] QDQBertForMultipleChoice - forward ## QDQBertForTokenClassification [[autodoc]] QDQBertForTokenClassification - forward ## QDQBertForQuestionAnswering [[autodoc]] QDQBertForQuestionAnswering - forward
transformers/docs/source/en/model_doc/qdqbert.md/0
{ "file_path": "transformers/docs/source/en/model_doc/qdqbert.md", "repo_id": "transformers", "token_count": 1982 }
13
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # UniSpeech ## Overview The UniSpeech model was proposed in [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang . The abstract from the paper is the following: *In this paper, we propose a unified pre-training approach called UniSpeech to learn speech representations with both unlabeled and labeled data, in which supervised phonetic CTC learning and phonetically-aware contrastive self-supervised learning are conducted in a multi-task learning manner. The resultant representations can capture information more correlated with phonetic structures and improve the generalization across languages and domains. We evaluate the effectiveness of UniSpeech for cross-lingual representation learning on public CommonVoice corpus. The results show that UniSpeech outperforms self-supervised pretraining and supervised transfer learning for speech recognition by a maximum of 13.4% and 17.8% relative phone error rate reductions respectively (averaged over all testing languages). The transferability of UniSpeech is also demonstrated on a domain-shift speech recognition task, i.e., a relative word error rate reduction of 6% against the previous approach.* This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). The Authors' code can be found [here](https://github.com/microsoft/UniSpeech/tree/main/UniSpeech). ## Usage tips - UniSpeech is a speech model that accepts a float array corresponding to the raw waveform of the speech signal. Please use [`Wav2Vec2Processor`] for the feature extraction. - UniSpeech model can be fine-tuned using connectionist temporal classification (CTC) so the model output has to be decoded using [`Wav2Vec2CTCTokenizer`]. ## Resources - [Audio classification task guide](../tasks/audio_classification) - [Automatic speech recognition task guide](../tasks/asr) ## UniSpeechConfig [[autodoc]] UniSpeechConfig ## UniSpeech specific outputs [[autodoc]] models.unispeech.modeling_unispeech.UniSpeechForPreTrainingOutput ## UniSpeechModel [[autodoc]] UniSpeechModel - forward ## UniSpeechForCTC [[autodoc]] UniSpeechForCTC - forward ## UniSpeechForSequenceClassification [[autodoc]] UniSpeechForSequenceClassification - forward ## UniSpeechForPreTraining [[autodoc]] UniSpeechForPreTraining - forward
transformers/docs/source/en/model_doc/unispeech.md/0
{ "file_path": "transformers/docs/source/en/model_doc/unispeech.md", "repo_id": "transformers", "token_count": 853 }
14
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # XLS-R ## Overview The XLS-R model was proposed in [XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale](https://arxiv.org/abs/2111.09296) by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli. The abstract from the paper is the following: *This paper presents XLS-R, a large-scale model for cross-lingual speech representation learning based on wav2vec 2.0. We train models with up to 2B parameters on nearly half a million hours of publicly available speech audio in 128 languages, an order of magnitude more public data than the largest known prior work. Our evaluation covers a wide range of tasks, domains, data regimes and languages, both high and low-resource. On the CoVoST-2 speech translation benchmark, we improve the previous state of the art by an average of 7.4 BLEU over 21 translation directions into English. For speech recognition, XLS-R improves over the best known prior work on BABEL, MLS, CommonVoice as well as VoxPopuli, lowering error rates by 14-34% relative on average. XLS-R also sets a new state of the art on VoxLingua107 language identification. Moreover, we show that with sufficient model size, cross-lingual pretraining can outperform English-only pretraining when translating English speech into other languages, a setting which favors monolingual pretraining. We hope XLS-R can help to improve speech processing tasks for many more languages of the world.* Relevant checkpoints can be found under https://huggingface.co/models?other=xls_r. The original code can be found [here](https://github.com/pytorch/fairseq/tree/master/fairseq/models/wav2vec). ## Usage tips - XLS-R is a speech model that accepts a float array corresponding to the raw waveform of the speech signal. - XLS-R model was trained using connectionist temporal classification (CTC) so the model output has to be decoded using [`Wav2Vec2CTCTokenizer`]. <Tip> XLS-R's architecture is based on the Wav2Vec2 model, refer to [Wav2Vec2's documentation page](wav2vec2) for API reference. </Tip>
transformers/docs/source/en/model_doc/xls_r.md/0
{ "file_path": "transformers/docs/source/en/model_doc/xls_r.md", "repo_id": "transformers", "token_count": 782 }
15
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Efficient Training on CPU This guide focuses on training large models efficiently on CPU. ## Mixed precision with IPEX Mixed precision uses single (fp32) and half-precision (bf16/fp16) data types in a model to accelerate training or inference while still preserving much of the single-precision accuracy. Modern CPUs such as 3rd and 4th Gen Intel® Xeon® Scalable processors natively support bf16, so you should get more performance out of the box by enabling mixed precision training with bf16. To further maximize training performance, you can use Intel® Extension for PyTorch (IPEX), which is a library built on PyTorch and adds additional CPU instruction level architecture (ISA) level support such as Intel® Advanced Vector Extensions 512 Vector Neural Network Instructions (Intel® AVX512-VNNI), and Intel® Advanced Matrix Extensions (Intel® AMX) for an extra performance boost on Intel CPUs. However, CPUs with only AVX2 (e.g., AMD or older Intel CPUs) are not guaranteed to have better performance under IPEX. Auto Mixed Precision (AMP) for CPU backends has been enabled since PyTorch 1.10. AMP support for bf16 on CPUs and bf16 operator optimization is also supported in IPEX and partially upstreamed to the main PyTorch branch. You can get better performance and user experience with IPEX AMP. Check more detailed information for [Auto Mixed Precision](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/features/amp.html). ### IPEX installation: IPEX release is following PyTorch, to install via pip: | PyTorch Version | IPEX version | | :---------------: | :----------: | | 2.1.x | 2.1.100+cpu | | 2.0.x | 2.0.100+cpu | | 1.13 | 1.13.0+cpu | | 1.12 | 1.12.300+cpu | Please run `pip list | grep torch` to get your `pytorch_version`, so you can get the `IPEX version_name`. ```bash pip install intel_extension_for_pytorch==<version_name> -f https://developer.intel.com/ipex-whl-stable-cpu ``` You can check the latest versions in [ipex-whl-stable-cpu](https://developer.intel.com/ipex-whl-stable-cpu) if needed. Check more approaches for [IPEX installation](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/installation.html). ### Usage in Trainer To enable auto mixed precision with IPEX in Trainer, users should add `use_ipex`, `bf16` and `no_cuda` in training command arguments. Take an example of the use cases on [Transformers question-answering](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) - Training with IPEX using BF16 auto mixed precision on CPU: <pre> python run_qa.py \ --model_name_or_path google-bert/bert-base-uncased \ --dataset_name squad \ --do_train \ --do_eval \ --per_device_train_batch_size 12 \ --learning_rate 3e-5 \ --num_train_epochs 2 \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /tmp/debug_squad/ \ <b>--use_ipex</b> \ <b>--bf16</b> \ <b>--use_cpu</b></pre> If you want to enable `use_ipex` and `bf16` in your script, add these parameters to `TrainingArguments` like this: ```diff training_args = TrainingArguments( output_dir=args.output_path, + bf16=True, + use_ipex=True, + use_cpu=True, **kwargs ) ``` ### Practice example Blog: [Accelerating PyTorch Transformers with Intel Sapphire Rapids](https://huggingface.co/blog/intel-sapphire-rapids)
transformers/docs/source/en/perf_train_cpu.md/0
{ "file_path": "transformers/docs/source/en/perf_train_cpu.md", "repo_id": "transformers", "token_count": 1270 }
16
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Object detection [[open-in-colab]] Object detection is the computer vision task of detecting instances (such as humans, buildings, or cars) in an image. Object detection models receive an image as input and output coordinates of the bounding boxes and associated labels of the detected objects. An image can contain multiple objects, each with its own bounding box and a label (e.g. it can have a car and a building), and each object can be present in different parts of an image (e.g. the image can have several cars). This task is commonly used in autonomous driving for detecting things like pedestrians, road signs, and traffic lights. Other applications include counting objects in images, image search, and more. In this guide, you will learn how to: 1. Finetune [DETR](https://huggingface.co/docs/transformers/model_doc/detr), a model that combines a convolutional backbone with an encoder-decoder Transformer, on the [CPPE-5](https://huggingface.co/datasets/cppe-5) dataset. 2. Use your finetuned model for inference. <Tip> The task illustrated in this tutorial is supported by the following model architectures: <!--This tip is automatically generated by `make fix-copies`, do not fill manually!--> [Conditional DETR](../model_doc/conditional_detr), [Deformable DETR](../model_doc/deformable_detr), [DETA](../model_doc/deta), [DETR](../model_doc/detr), [Table Transformer](../model_doc/table-transformer), [YOLOS](../model_doc/yolos) <!--End of the generated tip--> </Tip> Before you begin, make sure you have all the necessary libraries installed: ```bash pip install -q datasets transformers evaluate timm albumentations ``` You'll use 🤗 Datasets to load a dataset from the Hugging Face Hub, 🤗 Transformers to train your model, and `albumentations` to augment the data. `timm` is currently required to load a convolutional backbone for the DETR model. We encourage you to share your model with the community. Log in to your Hugging Face account to upload it to the Hub. When prompted, enter your token to log in: ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## Load the CPPE-5 dataset The [CPPE-5 dataset](https://huggingface.co/datasets/cppe-5) contains images with annotations identifying medical personal protective equipment (PPE) in the context of the COVID-19 pandemic. Start by loading the dataset: ```py >>> from datasets import load_dataset >>> cppe5 = load_dataset("cppe-5") >>> cppe5 DatasetDict({ train: Dataset({ features: ['image_id', 'image', 'width', 'height', 'objects'], num_rows: 1000 }) test: Dataset({ features: ['image_id', 'image', 'width', 'height', 'objects'], num_rows: 29 }) }) ``` You'll see that this dataset already comes with a training set containing 1000 images and a test set with 29 images. To get familiar with the data, explore what the examples look like. ```py >>> cppe5["train"][0] {'image_id': 15, 'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=943x663 at 0x7F9EC9E77C10>, 'width': 943, 'height': 663, 'objects': {'id': [114, 115, 116, 117], 'area': [3796, 1596, 152768, 81002], 'bbox': [[302.0, 109.0, 73.0, 52.0], [810.0, 100.0, 57.0, 28.0], [160.0, 31.0, 248.0, 616.0], [741.0, 68.0, 202.0, 401.0]], 'category': [4, 4, 0, 0]}} ``` The examples in the dataset have the following fields: - `image_id`: the example image id - `image`: a `PIL.Image.Image` object containing the image - `width`: width of the image - `height`: height of the image - `objects`: a dictionary containing bounding box metadata for the objects in the image: - `id`: the annotation id - `area`: the area of the bounding box - `bbox`: the object's bounding box (in the [COCO format](https://albumentations.ai/docs/getting_started/bounding_boxes_augmentation/#coco) ) - `category`: the object's category, with possible values including `Coverall (0)`, `Face_Shield (1)`, `Gloves (2)`, `Goggles (3)` and `Mask (4)` You may notice that the `bbox` field follows the COCO format, which is the format that the DETR model expects. However, the grouping of the fields inside `objects` differs from the annotation format DETR requires. You will need to apply some preprocessing transformations before using this data for training. To get an even better understanding of the data, visualize an example in the dataset. ```py >>> import numpy as np >>> import os >>> from PIL import Image, ImageDraw >>> image = cppe5["train"][0]["image"] >>> annotations = cppe5["train"][0]["objects"] >>> draw = ImageDraw.Draw(image) >>> categories = cppe5["train"].features["objects"].feature["category"].names >>> id2label = {index: x for index, x in enumerate(categories, start=0)} >>> label2id = {v: k for k, v in id2label.items()} >>> for i in range(len(annotations["id"])): ... box = annotations["bbox"][i] ... class_idx = annotations["category"][i] ... x, y, w, h = tuple(box) ... # Check if coordinates are normalized or not ... if max(box) > 1.0: ... # Coordinates are un-normalized, no need to re-scale them ... x1, y1 = int(x), int(y) ... x2, y2 = int(x + w), int(y + h) ... else: ... # Coordinates are normalized, re-scale them ... x1 = int(x * width) ... y1 = int(y * height) ... x2 = int((x + w) * width) ... y2 = int((y + h) * height) ... draw.rectangle((x, y, x + w, y + h), outline="red", width=1) ... draw.text((x, y), id2label[class_idx], fill="white") >>> image ``` <div class="flex justify-center"> <img src="https://i.imgur.com/TdaqPJO.png" alt="CPPE-5 Image Example"/> </div> To visualize the bounding boxes with associated labels, you can get the labels from the dataset's metadata, specifically the `category` field. You'll also want to create dictionaries that map a label id to a label class (`id2label`) and the other way around (`label2id`). You can use them later when setting up the model. Including these maps will make your model reusable by others if you share it on the Hugging Face Hub. Please note that, the part of above code that draws the bounding boxes assume that it is in `XYWH` (x,y co-ordinates and width and height of the box) format. It might not work for other formats like `(x1, y1, x2, y2)`. As a final step of getting familiar with the data, explore it for potential issues. One common problem with datasets for object detection is bounding boxes that "stretch" beyond the edge of the image. Such "runaway" bounding boxes can raise errors during training and should be addressed at this stage. There are a few examples with this issue in this dataset. To keep things simple in this guide, we remove these images from the data. ```py >>> remove_idx = [590, 821, 822, 875, 876, 878, 879] >>> keep = [i for i in range(len(cppe5["train"])) if i not in remove_idx] >>> cppe5["train"] = cppe5["train"].select(keep) ``` ## Preprocess the data To finetune a model, you must preprocess the data you plan to use to match precisely the approach used for the pre-trained model. [`AutoImageProcessor`] takes care of processing image data to create `pixel_values`, `pixel_mask`, and `labels` that a DETR model can train with. The image processor has some attributes that you won't have to worry about: - `image_mean = [0.485, 0.456, 0.406 ]` - `image_std = [0.229, 0.224, 0.225]` These are the mean and standard deviation used to normalize images during the model pre-training. These values are crucial to replicate when doing inference or finetuning a pre-trained image model. Instantiate the image processor from the same checkpoint as the model you want to finetune. ```py >>> from transformers import AutoImageProcessor >>> checkpoint = "facebook/detr-resnet-50" >>> image_processor = AutoImageProcessor.from_pretrained(checkpoint) ``` Before passing the images to the `image_processor`, apply two preprocessing transformations to the dataset: - Augmenting images - Reformatting annotations to meet DETR expectations First, to make sure the model does not overfit on the training data, you can apply image augmentation with any data augmentation library. Here we use [Albumentations](https://albumentations.ai/docs/) ... This library ensures that transformations affect the image and update the bounding boxes accordingly. The 🤗 Datasets library documentation has a detailed [guide on how to augment images for object detection](https://huggingface.co/docs/datasets/object_detection), and it uses the exact same dataset as an example. Apply the same approach here, resize each image to (480, 480), flip it horizontally, and brighten it: ```py >>> import albumentations >>> import numpy as np >>> import torch >>> transform = albumentations.Compose( ... [ ... albumentations.Resize(480, 480), ... albumentations.HorizontalFlip(p=1.0), ... albumentations.RandomBrightnessContrast(p=1.0), ... ], ... bbox_params=albumentations.BboxParams(format="coco", label_fields=["category"]), ... ) ``` The `image_processor` expects the annotations to be in the following format: `{'image_id': int, 'annotations': List[Dict]}`, where each dictionary is a COCO object annotation. Let's add a function to reformat annotations for a single example: ```py >>> def formatted_anns(image_id, category, area, bbox): ... annotations = [] ... for i in range(0, len(category)): ... new_ann = { ... "image_id": image_id, ... "category_id": category[i], ... "isCrowd": 0, ... "area": area[i], ... "bbox": list(bbox[i]), ... } ... annotations.append(new_ann) ... return annotations ``` Now you can combine the image and annotation transformations to use on a batch of examples: ```py >>> # transforming a batch >>> def transform_aug_ann(examples): ... image_ids = examples["image_id"] ... images, bboxes, area, categories = [], [], [], [] ... for image, objects in zip(examples["image"], examples["objects"]): ... image = np.array(image.convert("RGB"))[:, :, ::-1] ... out = transform(image=image, bboxes=objects["bbox"], category=objects["category"]) ... area.append(objects["area"]) ... images.append(out["image"]) ... bboxes.append(out["bboxes"]) ... categories.append(out["category"]) ... targets = [ ... {"image_id": id_, "annotations": formatted_anns(id_, cat_, ar_, box_)} ... for id_, cat_, ar_, box_ in zip(image_ids, categories, area, bboxes) ... ] ... return image_processor(images=images, annotations=targets, return_tensors="pt") ``` Apply this preprocessing function to the entire dataset using 🤗 Datasets [`~datasets.Dataset.with_transform`] method. This method applies transformations on the fly when you load an element of the dataset. At this point, you can check what an example from the dataset looks like after the transformations. You should see a tensor with `pixel_values`, a tensor with `pixel_mask`, and `labels`. ```py >>> cppe5["train"] = cppe5["train"].with_transform(transform_aug_ann) >>> cppe5["train"][15] {'pixel_values': tensor([[[ 0.9132, 0.9132, 0.9132, ..., -1.9809, -1.9809, -1.9809], [ 0.9132, 0.9132, 0.9132, ..., -1.9809, -1.9809, -1.9809], [ 0.9132, 0.9132, 0.9132, ..., -1.9638, -1.9638, -1.9638], ..., [-1.5699, -1.5699, -1.5699, ..., -1.9980, -1.9980, -1.9980], [-1.5528, -1.5528, -1.5528, ..., -1.9980, -1.9809, -1.9809], [-1.5528, -1.5528, -1.5528, ..., -1.9980, -1.9809, -1.9809]], [[ 1.3081, 1.3081, 1.3081, ..., -1.8431, -1.8431, -1.8431], [ 1.3081, 1.3081, 1.3081, ..., -1.8431, -1.8431, -1.8431], [ 1.3081, 1.3081, 1.3081, ..., -1.8256, -1.8256, -1.8256], ..., [-1.3179, -1.3179, -1.3179, ..., -1.8606, -1.8606, -1.8606], [-1.3004, -1.3004, -1.3004, ..., -1.8606, -1.8431, -1.8431], [-1.3004, -1.3004, -1.3004, ..., -1.8606, -1.8431, -1.8431]], [[ 1.4200, 1.4200, 1.4200, ..., -1.6476, -1.6476, -1.6476], [ 1.4200, 1.4200, 1.4200, ..., -1.6476, -1.6476, -1.6476], [ 1.4200, 1.4200, 1.4200, ..., -1.6302, -1.6302, -1.6302], ..., [-1.0201, -1.0201, -1.0201, ..., -1.5604, -1.5604, -1.5604], [-1.0027, -1.0027, -1.0027, ..., -1.5604, -1.5430, -1.5430], [-1.0027, -1.0027, -1.0027, ..., -1.5604, -1.5430, -1.5430]]]), 'pixel_mask': tensor([[1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1], ..., [1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1]]), 'labels': {'size': tensor([800, 800]), 'image_id': tensor([756]), 'class_labels': tensor([4]), 'boxes': tensor([[0.7340, 0.6986, 0.3414, 0.5944]]), 'area': tensor([519544.4375]), 'iscrowd': tensor([0]), 'orig_size': tensor([480, 480])}} ``` You have successfully augmented the individual images and prepared their annotations. However, preprocessing isn't complete yet. In the final step, create a custom `collate_fn` to batch images together. Pad images (which are now `pixel_values`) to the largest image in a batch, and create a corresponding `pixel_mask` to indicate which pixels are real (1) and which are padding (0). ```py >>> def collate_fn(batch): ... pixel_values = [item["pixel_values"] for item in batch] ... encoding = image_processor.pad(pixel_values, return_tensors="pt") ... labels = [item["labels"] for item in batch] ... batch = {} ... batch["pixel_values"] = encoding["pixel_values"] ... batch["pixel_mask"] = encoding["pixel_mask"] ... batch["labels"] = labels ... return batch ``` ## Training the DETR model You have done most of the heavy lifting in the previous sections, so now you are ready to train your model! The images in this dataset are still quite large, even after resizing. This means that finetuning this model will require at least one GPU. Training involves the following steps: 1. Load the model with [`AutoModelForObjectDetection`] using the same checkpoint as in the preprocessing. 2. Define your training hyperparameters in [`TrainingArguments`]. 3. Pass the training arguments to [`Trainer`] along with the model, dataset, image processor, and data collator. 4. Call [`~Trainer.train`] to finetune your model. When loading the model from the same checkpoint that you used for the preprocessing, remember to pass the `label2id` and `id2label` maps that you created earlier from the dataset's metadata. Additionally, we specify `ignore_mismatched_sizes=True` to replace the existing classification head with a new one. ```py >>> from transformers import AutoModelForObjectDetection >>> model = AutoModelForObjectDetection.from_pretrained( ... checkpoint, ... id2label=id2label, ... label2id=label2id, ... ignore_mismatched_sizes=True, ... ) ``` In the [`TrainingArguments`] use `output_dir` to specify where to save your model, then configure hyperparameters as you see fit. It is important you do not remove unused columns because this will drop the image column. Without the image column, you can't create `pixel_values`. For this reason, set `remove_unused_columns` to `False`. If you wish to share your model by pushing to the Hub, set `push_to_hub` to `True` (you must be signed in to Hugging Face to upload your model). ```py >>> from transformers import TrainingArguments >>> training_args = TrainingArguments( ... output_dir="detr-resnet-50_finetuned_cppe5", ... per_device_train_batch_size=8, ... num_train_epochs=10, ... fp16=True, ... save_steps=200, ... logging_steps=50, ... learning_rate=1e-5, ... weight_decay=1e-4, ... save_total_limit=2, ... remove_unused_columns=False, ... push_to_hub=True, ... ) ``` Finally, bring everything together, and call [`~transformers.Trainer.train`]: ```py >>> from transformers import Trainer >>> trainer = Trainer( ... model=model, ... args=training_args, ... data_collator=collate_fn, ... train_dataset=cppe5["train"], ... tokenizer=image_processor, ... ) >>> trainer.train() ``` If you have set `push_to_hub` to `True` in the `training_args`, the training checkpoints are pushed to the Hugging Face Hub. Upon training completion, push the final model to the Hub as well by calling the [`~transformers.Trainer.push_to_hub`] method. ```py >>> trainer.push_to_hub() ``` ## Evaluate Object detection models are commonly evaluated with a set of <a href="https://cocodataset.org/#detection-eval">COCO-style metrics</a>. You can use one of the existing metrics implementations, but here you'll use the one from `torchvision` to evaluate the final model that you pushed to the Hub. To use the `torchvision` evaluator, you'll need to prepare a ground truth COCO dataset. The API to build a COCO dataset requires the data to be stored in a certain format, so you'll need to save images and annotations to disk first. Just like when you prepared your data for training, the annotations from the `cppe5["test"]` need to be formatted. However, images should stay as they are. The evaluation step requires a bit of work, but it can be split in three major steps. First, prepare the `cppe5["test"]` set: format the annotations and save the data to disk. ```py >>> import json >>> # format annotations the same as for training, no need for data augmentation >>> def val_formatted_anns(image_id, objects): ... annotations = [] ... for i in range(0, len(objects["id"])): ... new_ann = { ... "id": objects["id"][i], ... "category_id": objects["category"][i], ... "iscrowd": 0, ... "image_id": image_id, ... "area": objects["area"][i], ... "bbox": objects["bbox"][i], ... } ... annotations.append(new_ann) ... return annotations >>> # Save images and annotations into the files torchvision.datasets.CocoDetection expects >>> def save_cppe5_annotation_file_images(cppe5): ... output_json = {} ... path_output_cppe5 = f"{os.getcwd()}/cppe5/" ... if not os.path.exists(path_output_cppe5): ... os.makedirs(path_output_cppe5) ... path_anno = os.path.join(path_output_cppe5, "cppe5_ann.json") ... categories_json = [{"supercategory": "none", "id": id, "name": id2label[id]} for id in id2label] ... output_json["images"] = [] ... output_json["annotations"] = [] ... for example in cppe5: ... ann = val_formatted_anns(example["image_id"], example["objects"]) ... output_json["images"].append( ... { ... "id": example["image_id"], ... "width": example["image"].width, ... "height": example["image"].height, ... "file_name": f"{example['image_id']}.png", ... } ... ) ... output_json["annotations"].extend(ann) ... output_json["categories"] = categories_json ... with open(path_anno, "w") as file: ... json.dump(output_json, file, ensure_ascii=False, indent=4) ... for im, img_id in zip(cppe5["image"], cppe5["image_id"]): ... path_img = os.path.join(path_output_cppe5, f"{img_id}.png") ... im.save(path_img) ... return path_output_cppe5, path_anno ``` Next, prepare an instance of a `CocoDetection` class that can be used with `cocoevaluator`. ```py >>> import torchvision >>> class CocoDetection(torchvision.datasets.CocoDetection): ... def __init__(self, img_folder, image_processor, ann_file): ... super().__init__(img_folder, ann_file) ... self.image_processor = image_processor ... def __getitem__(self, idx): ... # read in PIL image and target in COCO format ... img, target = super(CocoDetection, self).__getitem__(idx) ... # preprocess image and target: converting target to DETR format, ... # resizing + normalization of both image and target) ... image_id = self.ids[idx] ... target = {"image_id": image_id, "annotations": target} ... encoding = self.image_processor(images=img, annotations=target, return_tensors="pt") ... pixel_values = encoding["pixel_values"].squeeze() # remove batch dimension ... target = encoding["labels"][0] # remove batch dimension ... return {"pixel_values": pixel_values, "labels": target} >>> im_processor = AutoImageProcessor.from_pretrained("devonho/detr-resnet-50_finetuned_cppe5") >>> path_output_cppe5, path_anno = save_cppe5_annotation_file_images(cppe5["test"]) >>> test_ds_coco_format = CocoDetection(path_output_cppe5, im_processor, path_anno) ``` Finally, load the metrics and run the evaluation. ```py >>> import evaluate >>> from tqdm import tqdm >>> model = AutoModelForObjectDetection.from_pretrained("devonho/detr-resnet-50_finetuned_cppe5") >>> module = evaluate.load("ybelkada/cocoevaluate", coco=test_ds_coco_format.coco) >>> val_dataloader = torch.utils.data.DataLoader( ... test_ds_coco_format, batch_size=8, shuffle=False, num_workers=4, collate_fn=collate_fn ... ) >>> with torch.no_grad(): ... for idx, batch in enumerate(tqdm(val_dataloader)): ... pixel_values = batch["pixel_values"] ... pixel_mask = batch["pixel_mask"] ... labels = [ ... {k: v for k, v in t.items()} for t in batch["labels"] ... ] # these are in DETR format, resized + normalized ... # forward pass ... outputs = model(pixel_values=pixel_values, pixel_mask=pixel_mask) ... orig_target_sizes = torch.stack([target["orig_size"] for target in labels], dim=0) ... results = im_processor.post_process(outputs, orig_target_sizes) # convert outputs of model to Pascal VOC format (xmin, ymin, xmax, ymax) ... module.add(prediction=results, reference=labels) ... del batch >>> results = module.compute() >>> print(results) Accumulating evaluation results... DONE (t=0.08s). IoU metric: bbox Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.352 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.681 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.292 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.168 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.208 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.429 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.274 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.484 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.501 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.191 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.323 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.590 ``` These results can be further improved by adjusting the hyperparameters in [`~transformers.TrainingArguments`]. Give it a go! ## Inference Now that you have finetuned a DETR model, evaluated it, and uploaded it to the Hugging Face Hub, you can use it for inference. The simplest way to try out your finetuned model for inference is to use it in a [`Pipeline`]. Instantiate a pipeline for object detection with your model, and pass an image to it: ```py >>> from transformers import pipeline >>> import requests >>> url = "https://i.imgur.com/2lnWoly.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> obj_detector = pipeline("object-detection", model="devonho/detr-resnet-50_finetuned_cppe5") >>> obj_detector(image) ``` You can also manually replicate the results of the pipeline if you'd like: ```py >>> image_processor = AutoImageProcessor.from_pretrained("devonho/detr-resnet-50_finetuned_cppe5") >>> model = AutoModelForObjectDetection.from_pretrained("devonho/detr-resnet-50_finetuned_cppe5") >>> with torch.no_grad(): ... inputs = image_processor(images=image, return_tensors="pt") ... outputs = model(**inputs) ... target_sizes = torch.tensor([image.size[::-1]]) ... results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[0] >>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): ... box = [round(i, 2) for i in box.tolist()] ... print( ... f"Detected {model.config.id2label[label.item()]} with confidence " ... f"{round(score.item(), 3)} at location {box}" ... ) Detected Coverall with confidence 0.566 at location [1215.32, 147.38, 4401.81, 3227.08] Detected Mask with confidence 0.584 at location [2449.06, 823.19, 3256.43, 1413.9] ``` Let's plot the result: ```py >>> draw = ImageDraw.Draw(image) >>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): ... box = [round(i, 2) for i in box.tolist()] ... x, y, x2, y2 = tuple(box) ... draw.rectangle((x, y, x2, y2), outline="red", width=1) ... draw.text((x, y), model.config.id2label[label.item()], fill="white") >>> image ``` <div class="flex justify-center"> <img src="https://i.imgur.com/4QZnf9A.png" alt="Object detection result on a new image"/> </div>
transformers/docs/source/en/tasks/object_detection.md/0
{ "file_path": "transformers/docs/source/en/tasks/object_detection.md", "repo_id": "transformers", "token_count": 9638 }
17
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Export to TFLite [TensorFlow Lite](https://www.tensorflow.org/lite/guide) is a lightweight framework for deploying machine learning models on resource-constrained devices, such as mobile phones, embedded systems, and Internet of Things (IoT) devices. TFLite is designed to optimize and run models efficiently on these devices with limited computational power, memory, and power consumption. A TensorFlow Lite model is represented in a special efficient portable format identified by the `.tflite` file extension. 🤗 Optimum offers functionality to export 🤗 Transformers models to TFLite through the `exporters.tflite` module. For the list of supported model architectures, please refer to [🤗 Optimum documentation](https://huggingface.co/docs/optimum/exporters/tflite/overview). To export a model to TFLite, install the required dependencies: ```bash pip install optimum[exporters-tf] ``` To check out all available arguments, refer to the [🤗 Optimum docs](https://huggingface.co/docs/optimum/main/en/exporters/tflite/usage_guides/export_a_model), or view help in command line: ```bash optimum-cli export tflite --help ``` To export a model's checkpoint from the 🤗 Hub, for example, `google-bert/bert-base-uncased`, run the following command: ```bash optimum-cli export tflite --model google-bert/bert-base-uncased --sequence_length 128 bert_tflite/ ``` You should see the logs indicating progress and showing where the resulting `model.tflite` is saved, like this: ```bash Validating TFLite model... -[✓] TFLite model output names match reference model (logits) - Validating TFLite Model output "logits": -[✓] (1, 128, 30522) matches (1, 128, 30522) -[x] values not close enough, max diff: 5.817413330078125e-05 (atol: 1e-05) The TensorFlow Lite export succeeded with the warning: The maximum absolute difference between the output of the reference model and the TFLite exported model is not within the set tolerance 1e-05: - logits: max diff = 5.817413330078125e-05. The exported model was saved at: bert_tflite ``` The example above illustrates exporting a checkpoint from 🤗 Hub. When exporting a local model, first make sure that you saved both the model's weights and tokenizer files in the same directory (`local_path`). When using CLI, pass the `local_path` to the `model` argument instead of the checkpoint name on 🤗 Hub.
transformers/docs/source/en/tflite.md/0
{ "file_path": "transformers/docs/source/en/tflite.md", "repo_id": "transformers", "token_count": 878 }
18
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Compartir modelos personalizados La biblioteca 🤗 Transformers está diseñada para ser fácilmente ampliable. Cada modelo está completamente codificado sin abstracción en una subcarpeta determinada del repositorio, por lo que puedes copiar fácilmente un archivo del modelo y ajustarlo según tus necesidades. Si estás escribiendo un modelo completamente nuevo, podría ser más fácil comenzar desde cero. En este tutorial, te mostraremos cómo escribir un modelo personalizado y su configuración para que pueda usarse dentro de Transformers, y cómo puedes compartirlo con la comunidad (con el código en el que se basa) para que cualquiera pueda usarlo, incluso si no está presente en la biblioteca 🤗 Transformers. Ilustraremos todo esto con un modelo ResNet, envolviendo la clase ResNet de la [biblioteca timm](https://github.com/rwightman/pytorch-image-models) en un [`PreTrainedModel`]. ## Escribir una configuración personalizada Antes de adentrarnos en el modelo, primero escribamos su configuración. La configuración de un modelo es un objeto que contendrá toda la información necesaria para construir el modelo. Como veremos en la siguiente sección, el modelo solo puede tomar un `config` para ser inicializado, por lo que realmente necesitamos que ese objeto esté lo más completo posible. En nuestro ejemplo, tomaremos un par de argumentos de la clase ResNet que tal vez queramos modificar. Las diferentes configuraciones nos darán los diferentes tipos de ResNet que son posibles. Luego simplemente almacenamos esos argumentos después de verificar la validez de algunos de ellos. ```python from transformers import PretrainedConfig from typing import List class ResnetConfig(PretrainedConfig): model_type = "resnet" def __init__( self, block_type="bottleneck", layers: List[int] = [3, 4, 6, 3], num_classes: int = 1000, input_channels: int = 3, cardinality: int = 1, base_width: int = 64, stem_width: int = 64, stem_type: str = "", avg_down: bool = False, **kwargs, ): if block_type not in ["basic", "bottleneck"]: raise ValueError(f"`block_type` must be 'basic' or bottleneck', got {block_type}.") if stem_type not in ["", "deep", "deep-tiered"]: raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}.") self.block_type = block_type self.layers = layers self.num_classes = num_classes self.input_channels = input_channels self.cardinality = cardinality self.base_width = base_width self.stem_width = stem_width self.stem_type = stem_type self.avg_down = avg_down super().__init__(**kwargs) ``` Las tres cosas importantes que debes recordar al escribir tu propia configuración son las siguientes: - tienes que heredar de `PretrainedConfig`, - el `__init__` de tu `PretrainedConfig` debe aceptar cualquier `kwargs`, - esos `kwargs` deben pasarse a la superclase `__init__`. La herencia es para asegurarte de obtener toda la funcionalidad de la biblioteca 🤗 Transformers, mientras que las otras dos restricciones provienen del hecho de que una `PretrainedConfig` tiene más campos que los que estás configurando. Al recargar una `config` con el método `from_pretrained`, esos campos deben ser aceptados por tu `config` y luego enviados a la superclase. Definir un `model_type` para tu configuración (en este caso `model_type="resnet"`) no es obligatorio, a menos que quieras registrar tu modelo con las clases automáticas (ver la última sección). Una vez hecho esto, puedes crear y guardar fácilmente tu configuración como lo harías con cualquier otra configuración de un modelo de la biblioteca. Así es como podemos crear una configuración resnet50d y guardarla: ```py resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True) resnet50d_config.save_pretrained("custom-resnet") ``` Esto guardará un archivo llamado `config.json` dentro de la carpeta `custom-resnet`. Luego puedes volver a cargar tu configuración con el método `from_pretrained`: ```py resnet50d_config = ResnetConfig.from_pretrained("custom-resnet") ``` También puedes usar cualquier otro método de la clase [`PretrainedConfig`], como [`~PretrainedConfig.push_to_hub`], para cargar directamente tu configuración en el Hub. ## Escribir un modelo personalizado Ahora que tenemos nuestra configuración de ResNet, podemos seguir escribiendo el modelo. En realidad escribiremos dos: una que extrae las características ocultas de un grupo de imágenes (como [`BertModel`]) y una que es adecuada para clasificación de imagenes (como [`BertForSequenceClassification`]). Como mencionamos antes, solo escribiremos un envoltura (_wrapper_) libre del modelo para simplificar este ejemplo. Lo único que debemos hacer antes de escribir esta clase es un mapeo entre los tipos de bloques y las clases de bloques reales. Luego se define el modelo desde la configuración pasando todo a la clase `ResNet`: ```py from transformers import PreTrainedModel from timm.models.resnet import BasicBlock, Bottleneck, ResNet from .configuration_resnet import ResnetConfig BLOCK_MAPPING = {"basic": BasicBlock, "bottleneck": Bottleneck} class ResnetModel(PreTrainedModel): config_class = ResnetConfig def __init__(self, config): super().__init__(config) block_layer = BLOCK_MAPPING[config.block_type] self.model = ResNet( block_layer, config.layers, num_classes=config.num_classes, in_chans=config.input_channels, cardinality=config.cardinality, base_width=config.base_width, stem_width=config.stem_width, stem_type=config.stem_type, avg_down=config.avg_down, ) def forward(self, tensor): return self.model.forward_features(tensor) ``` Para el modelo que clasificará las imágenes, solo cambiamos el método de avance (es decir, el método `forward`): ```py import torch class ResnetModelForImageClassification(PreTrainedModel): config_class = ResnetConfig def __init__(self, config): super().__init__(config) block_layer = BLOCK_MAPPING[config.block_type] self.model = ResNet( block_layer, config.layers, num_classes=config.num_classes, in_chans=config.input_channels, cardinality=config.cardinality, base_width=config.base_width, stem_width=config.stem_width, stem_type=config.stem_type, avg_down=config.avg_down, ) def forward(self, tensor, labels=None): logits = self.model(tensor) if labels is not None: loss = torch.nn.cross_entropy(logits, labels) return {"loss": loss, "logits": logits} return {"logits": logits} ``` En ambos casos, observa cómo heredamos de `PreTrainedModel` y llamamos a la inicialización de la superclase con `config` (un poco como cuando escribes `torch.nn.Module`). La línea que establece `config_class` no es obligatoria, a menos que quieras registrar tu modelo con las clases automáticas (consulta la última sección). <Tip> Si tu modelo es muy similar a un modelo dentro de la biblioteca, puedes reutilizar la misma configuración de ese modelo. </Tip> Puedes hacer que tu modelo devuelva lo que quieras, pero devolver un diccionario como lo hicimos para `ResnetModelForImageClassification`, con el `loss` incluido cuando se pasan las etiquetas, hará que tu modelo se pueda usar directamente dentro de la clase [`Trainer`]. Usar otro formato de salida está bien, siempre y cuando estés planeando usar tu propio bucle de entrenamiento u otra biblioteca para el entrenamiento. Ahora que tenemos nuestra clase, vamos a crear un modelo: ```py resnet50d = ResnetModelForImageClassification(resnet50d_config) ``` Nuevamente, puedes usar cualquiera de los métodos de [`PreTrainedModel`], como [`~PreTrainedModel.save_pretrained`] o [`~PreTrainedModel.push_to_hub`]. Usaremos el segundo en la siguiente sección y veremos cómo pasar los pesos del modelo con el código de nuestro modelo. Pero primero, carguemos algunos pesos previamente entrenados dentro de nuestro modelo. En tu caso de uso, probablemente estarás entrenando tu modelo personalizado con tus propios datos. Para ir rápido en este tutorial, usaremos la versión preentrenada de resnet50d. Dado que nuestro modelo es solo un envoltorio alrededor del resnet50d original, será fácil transferir esos pesos: ```py import timm pretrained_model = timm.create_model("resnet50d", pretrained=True) resnet50d.model.load_state_dict(pretrained_model.state_dict()) ``` Ahora veamos cómo asegurarnos de que cuando hacemos [`~PreTrainedModel.save_pretrained`] o [`~PreTrainedModel.push_to_hub`], se guarda el código del modelo. ## Enviar el código al _Hub_ <Tip warning={true}> Esta _API_ es experimental y puede tener algunos cambios leves en las próximas versiones. </Tip> Primero, asegúrate de que tu modelo esté completamente definido en un archivo `.py`. Puedes basarte en importaciones relativas a otros archivos, siempre que todos los archivos estén en el mismo directorio (aún no admitimos submódulos para esta característica). Para nuestro ejemplo, definiremos un archivo `modeling_resnet.py` y un archivo `configuration_resnet.py` en una carpeta del directorio de trabajo actual llamado `resnet_model`. El archivo de configuración contiene el código de `ResnetConfig` y el archivo del modelo contiene el código de `ResnetModel` y `ResnetModelForImageClassification`. ``` . └── resnet_model ├── __init__.py ├── configuration_resnet.py └── modeling_resnet.py ``` El `__init__.py` puede estar vacío, solo está ahí para que Python detecte que `resnet_model` se puede usar como un módulo. <Tip warning={true}> Si copias archivos del modelo desde la biblioteca, deberás reemplazar todas las importaciones relativas en la parte superior del archivo para importarlos desde el paquete `transformers`. </Tip> Ten en cuenta que puedes reutilizar (o subclasificar) una configuración o modelo existente. Para compartir tu modelo con la comunidad, sigue estos pasos: primero importa el modelo y la configuración de ResNet desde los archivos recién creados: ```py from resnet_model.configuration_resnet import ResnetConfig from resnet_model.modeling_resnet import ResnetModel, ResnetModelForImageClassification ``` Luego, debes decirle a la biblioteca que deseas copiar el código de esos objetos cuando usas el método `save_pretrained` y registrarlos correctamente con una determinada clase automática (especialmente para modelos), simplemente ejecuta: ```py ResnetConfig.register_for_auto_class() ResnetModel.register_for_auto_class("AutoModel") ResnetModelForImageClassification.register_for_auto_class("AutoModelForImageClassification") ``` Ten en cuenta que no es necesario especificar una clase automática para la configuración (solo hay una clase automática para ellos, [`AutoConfig`]), pero es diferente para los modelos. Tu modelo personalizado podría ser adecuado para muchas tareas diferentes, por lo que debes especificar cuál de las clases automáticas es la correcta para tu modelo. A continuación, vamos a crear la configuración y los modelos como lo hicimos antes: ```py resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True) resnet50d = ResnetModelForImageClassification(resnet50d_config) pretrained_model = timm.create_model("resnet50d", pretrained=True) resnet50d.model.load_state_dict(pretrained_model.state_dict()) ``` Ahora, para enviar el modelo al Hub, asegúrate de haber iniciado sesión. Ejecuta en tu terminal: ```bash huggingface-cli login ``` o desde un _notebook_: ```py from huggingface_hub import notebook_login notebook_login() ``` Luego puedes ingresar a tu propio espacio (o una organización de la que seas miembro) de esta manera: ```py resnet50d.push_to_hub("custom-resnet50d") ``` Además de los pesos del modelo y la configuración en formato json, esto también copió los archivos `.py` del modelo y la configuración en la carpeta `custom-resnet50d` y subió el resultado al Hub. Puedes verificar el resultado en este [repositorio de modelos](https://huggingface.co/sgugger/custom-resnet50d). Consulta el tutorial sobre cómo [compartir modelos](model_sharing) para obtener más información sobre el método para subir modelos al Hub. ## Usar un modelo con código personalizado Puedes usar cualquier configuración, modelo o _tokenizador_ con archivos de código personalizado en tu repositorio con las clases automáticas y el método `from_pretrained`. Todos los archivos y códigos cargados en el Hub se analizan en busca de malware (consulta la documentación de [seguridad del Hub](https://huggingface.co/docs/hub/security#malware-scanning) para obtener más información), pero aún debes revisar el código del modelo y el autor para evitar la ejecución de código malicioso en tu computadora. Configura `trust_remote_code=True` para usar un modelo con código personalizado: ```py from transformers import AutoModelForImageClassification model = AutoModelForImageClassification.from_pretrained("sgugger/custom-resnet50d", trust_remote_code=True) ``` También se recomienda encarecidamente pasar un _hash_ de confirmación como una "revisión" para asegurarte de que el autor de los modelos no actualizó el código con algunas líneas nuevas maliciosas (a menos que confíes plenamente en los autores de los modelos). ```py commit_hash = "ed94a7c6247d8aedce4647f00f20de6875b5b292" model = AutoModelForImageClassification.from_pretrained( "sgugger/custom-resnet50d", trust_remote_code=True, revision=commit_hash ) ``` Ten en cuenta que al navegar por el historial de confirmaciones del repositorio del modelo en Hub, hay un botón para copiar fácilmente el hash de confirmación de cualquier _commit_. ## Registrar un model con código personalizado a las clases automáticas Si estás escribiendo una biblioteca que amplía 🤗 Transformers, es posible que quieras ampliar las clases automáticas para incluir tu propio modelo. Esto es diferente de enviar el código al Hub en el sentido de que los usuarios necesitarán importar tu biblioteca para obtener los modelos personalizados (al contrario de descargar automáticamente el código del modelo desde Hub). Siempre que tu configuración tenga un atributo `model_type` que sea diferente de los tipos de modelos existentes, y que tus clases modelo tengan los atributos `config_class` correctos, puedes agregarlos a las clases automáticas de la siguiente manera: ```py from transformers import AutoConfig, AutoModel, AutoModelForImageClassification AutoConfig.register("resnet", ResnetConfig) AutoModel.register(ResnetConfig, ResnetModel) AutoModelForImageClassification.register(ResnetConfig, ResnetModelForImageClassification) ``` Ten en cuenta que el primer argumento utilizado al registrar tu configuración personalizada en [`AutoConfig`] debe coincidir con el `model_type` de tu configuración personalizada, y el primer argumento utilizado al registrar tus modelos personalizados en cualquier clase del modelo automático debe coincidir con el `config_class ` de esos modelos.
transformers/docs/source/es/custom_models.md/0
{ "file_path": "transformers/docs/source/es/custom_models.md", "repo_id": "transformers", "token_count": 5983 }
19
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Entrenamiento con scripts Junto con los [notebooks](./noteboks/README) de 🤗 Transformers, también hay scripts con ejemplos que muestran cómo entrenar un modelo para una tarea en [PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch), [TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow), o [JAX/Flax](https://github.com/huggingface/transformers/tree/main/examples/flax). También encontrarás scripts que hemos usado en nuestros [proyectos de investigación](https://github.com/huggingface/transformers/tree/main/examples/research_projects) y [ejemplos pasados](https://github.com/huggingface/transformers/tree/main/examples/legacy) que en su mayoría son aportados por la comunidad. Estos scripts no se mantienen activamente y requieren una versión específica de 🤗 Transformers que probablemente sea incompatible con la última versión de la biblioteca. No se espera que los scripts de ejemplo funcionen de inmediato en todos los problemas, y es posible que debas adaptar el script al problema que estás tratando de resolver. Para ayudarte con esto, la mayoría de los scripts exponen completamente cómo se preprocesan los datos, lo que te permite editarlos según sea necesario para tu caso de uso. Para cualquier característica que te gustaría implementar en un script de ejemplo, por favor discútelo en el [foro](https://discuss.huggingface.co/) o con un [issue](https://github.com/huggingface/transformers/issues) antes de enviar un Pull Request. Si bien agradecemos las correcciones de errores, es poco probable que fusionemos un Pull Request que agregue más funcionalidad a costa de la legibilidad. Esta guía te mostrará cómo ejecutar un ejemplo de un script de entrenamiento para resumir texto en [PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) y [TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/summarization). Se espera que todos los ejemplos funcionen con ambos frameworks a menos que se especifique lo contrario. ## Configuración Para ejecutar con éxito la última versión de los scripts de ejemplo debes **instalar 🤗 Transformers desde su fuente** en un nuevo entorno virtual: ```bash git clone https://github.com/huggingface/transformers cd transformers pip install . ``` Para versiones anteriores de los scripts de ejemplo, haz clic en alguno de los siguientes links: <details> <summary>Ejemplos de versiones anteriores de 🤗 Transformers</summary> <ul> <li><a href="https://github.com/huggingface/transformers/tree/v4.5.1/examples">v4.5.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.4.2/examples">v4.4.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.3.3/examples">v4.3.3</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.2.2/examples">v4.2.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.1.1/examples">v4.1.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.0.1/examples">v4.0.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.5.1/examples">v3.5.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.4.0/examples">v3.4.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.3.1/examples">v3.3.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.2.0/examples">v3.2.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.1.0/examples">v3.1.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.0.2/examples">v3.0.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.11.0/examples">v2.11.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.10.0/examples">v2.10.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.9.1/examples">v2.9.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.8.0/examples">v2.8.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.7.0/examples">v2.7.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.6.0/examples">v2.6.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.5.1/examples">v2.5.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.4.0/examples">v2.4.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.3.0/examples">v2.3.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.2.0/examples">v2.2.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.1.0/examples">v2.1.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.0.0/examples">v2.0.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v1.2.0/examples">v1.2.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v1.1.0/examples">v1.1.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v1.0.0/examples">v1.0.0</a></li> </ul> </details> Luego cambia tu clon actual de 🤗 Transformers a una versión específica, por ejemplo v3.5.1: ```bash git checkout tags/v3.5.1 ``` Una vez que hayas configurado la versión correcta de la biblioteca, ve a la carpeta de ejemplo de tu elección e instala los requisitos específicos del ejemplo: ```bash pip install -r requirements.txt ``` ## Ejecutar un script <frameworkcontent> <pt> El script de ejemplo descarga y preprocesa un conjunto de datos de la biblioteca 🤗 [Datasets](https://huggingface.co/docs/datasets/). Luego, el script ajusta un conjunto de datos con [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) en una arquitectura que soporta la tarea de resumen. El siguiente ejemplo muestra cómo ajustar un [T5-small](https://huggingface.co/google-t5/t5-small) en el conjunto de datos [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail). El modelo T5 requiere un argumento adicional `source_prefix` debido a cómo fue entrenado. Este aviso le permite a T5 saber que se trata de una tarea de resumir. ```bash python examples/pytorch/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` </pt> <tf> El script de ejemplo descarga y preprocesa un conjunto de datos de la biblioteca 🤗 [Datasets](https://huggingface.co/docs/datasets/). Luego, el script ajusta un conjunto de datos utilizando Keras en una arquitectura que soporta la tarea de resumir. El siguiente ejemplo muestra cómo ajustar un [T5-small](https://huggingface.co/google-t5/t5-small) en el conjunto de datos [CNN/DailyMail](https://huggingface.co/datasets/cnn_dailymail). El modelo T5 requiere un argumento adicional `source_prefix` debido a cómo fue entrenado. Este aviso le permite a T5 saber que se trata de una tarea de resumir. ```bash python examples/tensorflow/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 16 \ --num_train_epochs 3 \ --do_train \ --do_eval ``` </tf> </frameworkcontent> ## Entrenamiento distribuido y de precisión mixta [Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) admite un entrenamiento distribuido y de precisión mixta, lo que significa que también puedes usarlo en un script. Para habilitar ambas características: - Agrega el argumento `fp16` para habilitar la precisión mixta. - Establece la cantidad de GPU que se usará con el argumento `nproc_per_node`. ```bash torchrun \ --nproc_per_node 8 pytorch/summarization/run_summarization.py \ --fp16 \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` Los scripts de TensorFlow utilizan [`MirroredStrategy`](https://www.tensorflow.org/guide/distributed_training#mirroredstrategy) para el entrenamiento distribuido, y no es necesario agregar argumentos adicionales al script de entrenamiento. El script de TensorFlow utilizará múltiples GPUs de forma predeterminada si están disponibles. ## Ejecutar un script en una TPU <frameworkcontent> <pt> Las Unidades de Procesamiento de Tensor (TPUs) están diseñadas específicamente para acelerar el rendimiento. PyTorch admite TPU con el compilador de aprendizaje profundo [XLA](https://www.tensorflow.org/xla) (consulta [aquí](https://github.com/pytorch/xla/blob/master/README.md) para obtener más detalles). Para usar una TPU, inicia el script `xla_spawn.py` y usa el argumento `num_cores` para establecer la cantidad de núcleos de TPU que deseas usar. ```bash python xla_spawn.py --num_cores 8 \ summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` </pt> <tf> Las Unidades de Procesamiento de Tensor (TPUs) están diseñadas específicamente para acelerar el rendimiento. TensorFlow utiliza [`TPUStrategy`](https://www.tensorflow.org/guide/distributed_training#tpustrategy) para entrenar en TPUs. Para usar una TPU, pasa el nombre del recurso de la TPU al argumento `tpu` ```bash python run_summarization.py \ --tpu name_of_tpu_resource \ --model_name_or_path google-t5/t5-small \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 16 \ --num_train_epochs 3 \ --do_train \ --do_eval ``` </tf> </frameworkcontent> ## Ejecutar un script con 🤗 Accelerate 🤗 [Accelerate](https://huggingface.co/docs/accelerate) es una biblioteca exclusiva de PyTorch que ofrece un método unificado para entrenar un modelo en varios tipos de configuraciones (solo CPU, GPU múltiples, TPU) mientras mantiene una visibilidad completa en el ciclo de entrenamiento de PyTorch. Asegúrate de tener 🤗 Accelerate instalado si aún no lo tienes: > Nota: Como Accelerate se está desarrollando rápidamente, debes instalar la versión git de Accelerate para ejecutar los scripts ```bash pip install git+https://github.com/huggingface/accelerate ``` En lugar del script `run_summarization.py`, debes usar el script `run_summarization_no_trainer.py`. Los scripts compatibles con 🤗 Accelerate tendrán un archivo `task_no_trainer.py` en la carpeta. Comienza ejecutando el siguiente comando para crear y guardar un archivo de configuración: ```bash accelerate config ``` Prueba tu configuración para asegurarte que está configurada correctamente: ```bash accelerate test ``` Todo listo para iniciar el entrenamiento: ```bash accelerate launch run_summarization_no_trainer.py \ --model_name_or_path google-t5/t5-small \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir ~/tmp/tst-summarization ``` ## Usar un conjunto de datos personalizado El script de la tarea resumir admite conjuntos de datos personalizados siempre que sean un archivo CSV o JSON Line. Cuando uses tu propio conjunto de datos, necesitas especificar varios argumentos adicionales: - `train_file` y `validation_file` especifican la ruta a tus archivos de entrenamiento y validación. - `text_column` es el texto de entrada para resumir. - `summary_column` es el texto de destino para la salida. Un script para resumir que utiliza un conjunto de datos personalizado se vera así: ```bash python examples/pytorch/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --train_file path_to_csv_or_jsonlines_file \ --validation_file path_to_csv_or_jsonlines_file \ --text_column text_column_name \ --summary_column summary_column_name \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --overwrite_output_dir \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --predict_with_generate ``` ## Prueba un script A veces, es una buena idea ejecutar tu secuencia de comandos en una cantidad menor de ejemplos para asegurarte de que todo funciona como se espera antes de comprometerte con un conjunto de datos completo, lo que puede demorar horas en completarse. Utiliza los siguientes argumentos para truncar el conjunto de datos a un número máximo de muestras: - `max_train_samples` - `max_eval_samples` - `max_predict_samples` ```bash python examples/pytorch/summarization/run_summarization.py \ --model_name_or_path google-t5/t5-small \ --max_train_samples 50 \ --max_eval_samples 50 \ --max_predict_samples 50 \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ``` No todos los scripts de ejemplo admiten el argumento `max_predict_samples`. Puede que desconozcas si la secuencia de comandos admite este argumento, agrega `-h` para verificar: ```bash examples/pytorch/summarization/run_summarization.py -h ``` ## Reanudar el entrenamiento desde el punto de control Otra opción útil para habilitar es reanudar el entrenamiento desde un punto de control anterior. Esto asegurará que puedas continuar donde lo dejaste sin comenzar de nuevo si tu entrenamiento se interrumpe. Hay dos métodos para reanudar el entrenamiento desde un punto de control. El primer método utiliza el argumento `output_dir previous_output_dir` para reanudar el entrenamiento desde el último punto de control almacenado en `output_dir`. En este caso, debes eliminar `overwrite_output_dir`: ```bash python examples/pytorch/summarization/run_summarization.py --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --output_dir previous_output_dir \ --predict_with_generate ``` El segundo método utiliza el argumento `resume_from_checkpoint path_to_specific_checkpoint` para reanudar el entrenamiento desde una carpeta de punto de control específica. ```bash python examples/pytorch/summarization/run_summarization.py --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --resume_from_checkpoint path_to_specific_checkpoint \ --predict_with_generate ``` ## Comparte tu modelo Todos los scripts pueden cargar tu modelo final en el [Model Hub](https://huggingface.co/models). Asegúrate de haber iniciado sesión en Hugging Face antes de comenzar: ```bash huggingface-cli login ``` Luego agrega el argumento `push_to_hub` al script. Este argumento creará un repositorio con tu nombre de usuario Hugging Face y el nombre de la carpeta especificado en `output_dir`. Para darle a tu repositorio un nombre específico, usa el argumento `push_to_hub_model_id` para añadirlo. El repositorio se incluirá automáticamente en tu namespace. El siguiente ejemplo muestra cómo cargar un modelo con un nombre de repositorio específico: ```bash python examples/pytorch/summarization/run_summarization.py --model_name_or_path google-t5/t5-small \ --do_train \ --do_eval \ --dataset_name cnn_dailymail \ --dataset_config "3.0.0" \ --source_prefix "summarize: " \ --push_to_hub \ --push_to_hub_model_id finetuned-t5-cnn_dailymail \ --output_dir /tmp/tst-summarization \ --per_device_train_batch_size=4 \ --per_device_eval_batch_size=4 \ --overwrite_output_dir \ --predict_with_generate ```
transformers/docs/source/es/run_scripts.md/0
{ "file_path": "transformers/docs/source/es/run_scripts.md", "repo_id": "transformers", "token_count": 7017 }
20
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Debugging ## Debug dei problemi di rete multi-GPU Quando addestri o fai inferenza con `DistributedDataParallel` e GPU multiple, se si verificano problemi di intercomunicazione tra processi e/o nodi, puoi utilizzare il seguente script per diagnosticare i problemi della rete. ```bash wget https://raw.githubusercontent.com/huggingface/transformers/main/scripts/distributed/torch-distributed-gpu-test.py ``` Per esempio per testare come 2 GPU interagiscono fai: ```bash python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py ``` Se entrambi i processi sono in grado di comunicare tra loro e di allocare la memoria della GPU, ciascuno di essi stamperà lo stato OK. Per più GPU o nodi adatta gli argumenti nello script. All'interno dello script di diagnostica troverai molti altri dettagli e anche una guida per eseguirlo in ambiente SLURM. Un livello di debug superiore è aggiungere la variabile d'ambiente `NCCL_DEBUG=INFO` come di seguito: ```bash NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py ``` In questo modo si scaricano molte informazioni di debug relative a NCCL, che puoi cercare online in caso di problemi. Oppure, se non hai la sicurezza di come interpretare l'output, puoi condividere il file di log in una Issue. ## Rilevamento di Underflow e Overflow <Tip> Questa funzionalità al momento è disponibile solo per PyTorch. </Tip> <Tip> Per addestramento multi-GPU richiede DDP (`torch.distributed.launch`). </Tip> <Tip> Questa funzionalità può essere usata con modelli basati su `nn.Module`. </Tip> Se inizi a ottenere `loss=NaN` o il modello presenta qualche altro comportamento anomalo a causa di valori `inf` o `nan` in attivazioni o nei pesi, è necessario scoprire dove si verifica il primo underflow o overflow e cosa lo ha determinato. Fortunatamente è possibile farlo facilmente attivando un modulo speciale che effettuerà il rilevamento automaticamente. Se stai usando [`Trainer`], hai bisogno di aggiungere solo: ```bash --debug underflow_overflow ``` ai normali argomenti della riga di comando, o passa `debug="underflow_overflow"` quando viene creato l'oggetto [`TrainingArguments`]. Se stai usando il tuo ciclo di allenamento o un altro trainer, puoi ottenere lo stesso risultato con: ```python from .debug_utils import DebugUnderflowOverflow debug_overflow = DebugUnderflowOverflow(model) ``` [`~debug_utils.DebugUnderflowOverflow`] inserisce dei ganci nel modello che dopo ogni chiamata testeranno le variabili di ingresso e di uscita e anche i pesi del modulo corrispondente. Non appena viene rilevato `inf` o o `nan` in almeno un elemento delle attivazioni o dei pesi, il programma lo notifica e stampa un rapporto come il seguente (questo è stato rilevato con `google/mt5-small` sotto fp16 mixed precision): ``` Detected inf/nan during batch_number=0 Last 21 forward frames: abs min abs max metadata encoder.block.1.layer.1.DenseReluDense.dropout Dropout 0.00e+00 2.57e+02 input[0] 0.00e+00 2.85e+02 output [...] encoder.block.2.layer.0 T5LayerSelfAttention 6.78e-04 3.15e+03 input[0] 2.65e-04 3.42e+03 output[0] None output[1] 2.25e-01 1.00e+04 output[2] encoder.block.2.layer.1.layer_norm T5LayerNorm 8.69e-02 4.18e-01 weight 2.65e-04 3.42e+03 input[0] 1.79e-06 4.65e+00 output encoder.block.2.layer.1.DenseReluDense.wi_0 Linear 2.17e-07 4.50e+00 weight 1.79e-06 4.65e+00 input[0] 2.68e-06 3.70e+01 output encoder.block.2.layer.1.DenseReluDense.wi_1 Linear 8.08e-07 2.66e+01 weight 1.79e-06 4.65e+00 input[0] 1.27e-04 2.37e+02 output encoder.block.2.layer.1.DenseReluDense.dropout Dropout 0.00e+00 8.76e+03 input[0] 0.00e+00 9.74e+03 output encoder.block.2.layer.1.DenseReluDense.wo Linear 1.01e-06 6.44e+00 weight 0.00e+00 9.74e+03 input[0] 3.18e-04 6.27e+04 output encoder.block.2.layer.1.DenseReluDense T5DenseGatedGeluDense 1.79e-06 4.65e+00 input[0] 3.18e-04 6.27e+04 output encoder.block.2.layer.1.dropout Dropout 3.18e-04 6.27e+04 input[0] 0.00e+00 inf output ``` L'output di esempio è stato tagliato al centro per brevità. La seconda colonna mostra il valore dell'elemento più grande in assoluto,così se osserviamo da vicino gli ultimi istanti, input e output sono nel range di `1e4`. Questo addestramento è stato eseguito con una mixed precision fp16 e l'ultimo passo usciva fuori (sotto `fp16` il valore più grande prima di `inf` è `64e3`). Per evitare overflows sotto `fp16` le attivazionioni devono rimanere molto al di sotto di `1e4`, perché `1e4 * 1e4 = 1e8` quindi qualsiasi moltiplicazione di matrice con grandi attivazioni porterà a una condizione di overflow numerico. All'inizio della traccia è possibile scoprire a quale lotto si è verificato il problema (questo `Detected inf/nan during batch_number=0` significa che il problema si è verificato nel primo lotto). Ogni frame segnalato inizia dichiarando la voce completamente qualificata per il modulo corrispondente per il quale il frame è stato segnalato. Se osserviamo il seguente frame: ``` encoder.block.2.layer.1.layer_norm T5LayerNorm 8.69e-02 4.18e-01 weight 2.65e-04 3.42e+03 input[0] 1.79e-06 4.65e+00 output ``` Questo, `encoder.block.2.layer.1.layer_norm` indica che si tratta di un layer norm nel primo layer, del secondo blocco dell'encoder. E le chiamata specifica di `forward` è `T5LayerNorm`. Osserviamo gli ultimi frame del report: ``` Detected inf/nan during batch_number=0 Last 21 forward frames: abs min abs max metadata [...] encoder.block.2.layer.1.DenseReluDense.wi_0 Linear 2.17e-07 4.50e+00 weight 1.79e-06 4.65e+00 input[0] 2.68e-06 3.70e+01 output encoder.block.2.layer.1.DenseReluDense.wi_1 Linear 8.08e-07 2.66e+01 weight 1.79e-06 4.65e+00 input[0] 1.27e-04 2.37e+02 output encoder.block.2.layer.1.DenseReluDense.wo Linear 1.01e-06 6.44e+00 weight 0.00e+00 9.74e+03 input[0] 3.18e-04 6.27e+04 output encoder.block.2.layer.1.DenseReluDense T5DenseGatedGeluDense 1.79e-06 4.65e+00 input[0] 3.18e-04 6.27e+04 output encoder.block.2.layer.1.dropout Dropout 3.18e-04 6.27e+04 input[0] 0.00e+00 inf output ``` L'ultimo frame report per la funzione `Dropout.forward` con la prima voce per l'unico input e la seconda per l'unico output. Si può notare che è stato richiamato da un attibuto `dropout` dentro la classe `DenseReluDense`. Si può notare che ciò è avvenuto durante il primo strato, del 2° blocco, durante il primissimo lotto. Infine, gli elementi di input più grandi in assoluto sono stati `6.27e+04` e l'equivalente per l'output era `inf`. Puoi vedere qui, che `T5DenseGatedGeluDense.forward` risulta in output activations, il cui valore massimo assoluto era circa 62,7K, che è molto vicino al limite massimo di 64K di fp16. Nel prossimo frame abbiamo `Dropout` che rinormalizza i pesi, dopo aver azzerato alcuni elementi, il che spinge il valore massimo assoluto a più di 64K e si verifica un overflow.(`inf`). Come puoi notare, è nei frames precedenti che occorre esaminare quando i numeri iniziano a diventare molto grandi per i valori fp16. Confrontiamo il report al codice `models/t5/modeling_t5.py`: ```python class T5DenseGatedGeluDense(nn.Module): def __init__(self, config): super().__init__() self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False) self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False) self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) self.dropout = nn.Dropout(config.dropout_rate) self.gelu_act = ACT2FN["gelu_new"] def forward(self, hidden_states): hidden_gelu = self.gelu_act(self.wi_0(hidden_states)) hidden_linear = self.wi_1(hidden_states) hidden_states = hidden_gelu * hidden_linear hidden_states = self.dropout(hidden_states) hidden_states = self.wo(hidden_states) return hidden_states ``` Ora è facile vedere la chiamata `dropout`, e tutte le chiamate precedenti. Poiché il rilevamento avviene in un avanzamento (forward hook in eng.), i rapporti vengono creati immeditamente dopo ogni rientro da `forward` (forward returns in eng.). Tornando al rapporto completo, per agire e risolvere il problema, dobbiamo andare qualche frame più in alto, dove i numeri hanno iniziato a salire, e probabilmente passare alla modalità `fp32`, in modo che i numeri non trabocchino quando vengono moltiplicati o sommati. Naturalmente, potrebbero esserci altre soluzioni. Per esempio, potremmo spegnere temporanemante `amp` se è abilitato, successivamente spostare `forward` in un helper wrapper, come: ```python def _forward(self, hidden_states): hidden_gelu = self.gelu_act(self.wi_0(hidden_states)) hidden_linear = self.wi_1(hidden_states) hidden_states = hidden_gelu * hidden_linear hidden_states = self.dropout(hidden_states) hidden_states = self.wo(hidden_states) return hidden_states import torch def forward(self, hidden_states): if torch.is_autocast_enabled(): with torch.cuda.amp.autocast(enabled=False): return self._forward(hidden_states) else: return self._forward(hidden_states) ``` Poiché il rilevatore automatico riporta solo gli ingressi e le uscite di fotogrammi completi, una volta che si sa dove cercare, si può analizzare anche le fasi intermedie di una specifica funzione `forward`. In alcuni casi puoi usare la funzione di supporto `detect_overflow` per indirizzare il rilevatore dove preferisci, ad esempio: ```python from debug_utils import detect_overflow class T5LayerFF(nn.Module): [...] def forward(self, hidden_states): forwarded_states = self.layer_norm(hidden_states) detect_overflow(forwarded_states, "after layer_norm") forwarded_states = self.DenseReluDense(forwarded_states) detect_overflow(forwarded_states, "after DenseReluDense") return hidden_states + self.dropout(forwarded_states) ``` Si può vedere che abbiamo aggiunto 2 di questi e ora teniamo traccia se `inf` o `nan` per `forwarded_states` è stato rilevato da qualche parte. In realtà, il rilevatore li riporta già, perché ciascuna delle chiamate nell'esempio precedente è un `nn.Module`, ma diciamo che se avessimo dei calcoli diretti locali, questo è il modo in cui lo faremmo. Inoltre, se si istanzia il debugger nel proprio codice, è possibile modificare il numero di fotogrammi stampati rispetto a predefinito, ad esempio.: ```python from .debug_utils import DebugUnderflowOverflow debug_overflow = DebugUnderflowOverflow(model, max_frames_to_save=100) ``` ### Tracciamento della mistura assoluta del lotto specifico e del valore massimo La stessa classe di debug può essere utilizzata per il tracciamento per-batch con la funzione di rilevamento di underflow/overflow disattivata. Supponiamo di voler osservare i valori minimi e massimi assoluti per tutti gli ingredienti di ogni chiamata `forward` di un dato lotto. lotto, e che lo si voglia fare solo per i lotti 1 e 3. Si istanzia questa classe come: ```python debug_overflow = DebugUnderflowOverflow(model, trace_batch_nums=[1, 3]) ``` Ora i batch completi 1 e 3 saranno tracciati utilizzando lo stesso formato del rilevatore di underflow/overflow. I batches sono 0-indexed. Questo è utile se si sa che il programma inizia a comportarsi male dopo un certo numero di batch, in modo da poter avanzare velocemente fino a quell'area. direttamente a quell'area. Ecco un esempio di output troncato per questa configurazione: ``` *** Starting batch number=1 *** abs min abs max metadata shared Embedding 1.01e-06 7.92e+02 weight 0.00e+00 2.47e+04 input[0] 5.36e-05 7.92e+02 output [...] decoder.dropout Dropout 1.60e-07 2.27e+01 input[0] 0.00e+00 2.52e+01 output decoder T5Stack not a tensor output lm_head Linear 1.01e-06 7.92e+02 weight 0.00e+00 1.11e+00 input[0] 6.06e-02 8.39e+01 output T5ForConditionalGeneration not a tensor output *** Starting batch number=3 *** abs min abs max metadata shared Embedding 1.01e-06 7.92e+02 weight 0.00e+00 2.78e+04 input[0] 5.36e-05 7.92e+02 output [...] ``` Qui verrà scaricato un numero enorme di fotogrammi, tanti quanti sono le chiamate in avanti nel modello, quindi può essere o non essere quello che volete, ma a volte può essere più utile usarlo di un classico debugger. Per esempio, se il problema inizia a verificarsi a partire dal lotto numero 150. Quindi è possibile scaricare le tracce dei lotti 149 e 150 e confrontare i punti in cui i numeri hanno iniziato a divergere. È inoltre possibile specificare il numero di batch dopo il quale interrompere l'addestramento, con: ```python debug_overflow = DebugUnderflowOverflow(model, trace_batch_nums=[1, 3], abort_after_batch_num=3) ```
transformers/docs/source/it/debugging.md/0
{ "file_path": "transformers/docs/source/it/debugging.md", "repo_id": "transformers", "token_count": 5635 }
21
<!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Controlli su una Pull Request Quando apri una pull request sui 🤗 Transformers, vengono eseguiti un discreto numero di controlli per assicurarsi che la patch che stai aggiungendo non stia rompendo qualcosa di esistente. Questi controlli sono di quattro tipi: - test regolari - costruzione della documentazione - stile del codice e della documentazione - coerenza generale del repository In questo documento, cercheremo di spiegare quali sono i vari controlli e le loro ragioni, oltre a spiegare come eseguire il debug locale se uno di essi fallisce sulla tua PR. Nota che tutti richiedono un'installazione dev: ```bash pip install transformers[dev] ``` o un'installazione modificabile: ```bash pip install -e .[dev] ``` all'interno del repo Transformers. ## Tests Tutti i job che iniziano con `ci/circleci: run_tests_` eseguono parti della suite di test dei Transformers. Ognuno di questi job si concentra su una parte della libreria in un determinato ambiente: per esempio `ci/circleci: run_tests_pipelines_tf` esegue il test delle pipeline in un ambiente in cui è installato solo TensorFlow. Nota che per evitare di eseguire i test quando non ci sono cambiamenti reali nei moduli che si stanno testando, ogni volta viene eseguita solo una parte della suite di test: viene eseguita una utility per determinare le differenze nella libreria tra prima e dopo la PR (ciò che GitHub mostra nella scheda "Files changes") e sceglie i test che sono stati impattati dalla diff. Questa utility può essere eseguita localmente con: ```bash python utils/tests_fetcher.py ``` dalla root del repo Transformers. Di seguito ciò che farà: 1. Controlla per ogni file nel diff se le modifiche sono nel codice o solo nei commenti o nelle docstrings. Vengono mantenuti solo i file con modifiche reali al codice. 2. Costruisce una mappa interna che fornisce per ogni file del codice sorgente della libreria tutti i file su cui ha un impatto ricorsivo. Si dice che il modulo A ha un impatto sul modulo B se il modulo B importa il modulo A. Per l'impatto ricorsivo, abbiamo bisogno di una catena di moduli che va dal modulo A al modulo B in cui ogni modulo importa il precedente. 3. Applica questa mappa ai file raccolti nel passaggio 1, si ottiene l'elenco dei file del modello interessati dalla PR. 4. Mappa ciascuno di questi file con i corrispondenti file di test e ottiene l'elenco dei test da eseguire. Quando esegui lo script in locale, dovresti ottenere la stampa dei risultati dei passi 1, 3 e 4 e quindi sapere quali test sono stati eseguiti. Lo script creerà anche un file chiamato `test_list.txt` che contiene l'elenco dei test da eseguire e che puoi eseguire localmente con il seguente comando: ```bash python -m pytest -n 8 --dist=loadfile -rA -s $(cat test_list.txt) ``` Nel caso in cui qualcosa sia sfuggito, l'intera suite di test viene eseguita quotidianamente. ## Build della documentazione Il job `ci/circleci: build_doc` esegue una build della documentazione per assicurarsi che tutto sia a posto una volta che la PR è stata unita. Se questo passaggio fallisce, puoi controllare localmente entrando nella cartella `docs` del repo Transformers e digitare ```bash make html ``` Sphinx non è noto per i suoi messaggi di errore chiari, quindi potrebbe essere necessario che provi alcune cose per trovare davvero la fonte dell'errore. ## Stile del codice e della documentazione La formattazione del codice viene applicata a tutti i file sorgenti, agli esempi e ai test usando `black` e `isort`. Abbiamo anche uno strumento personalizzato che si occupa della formattazione delle docstring e dei file `rst` (`utils/style_doc.py`), così come dell'ordine dei lazy imports eseguiti nei file `__init__.py` dei Transformers (`utils/custom_init_isort.py`). Tutto questo può essere lanciato eseguendo ```bash make style ``` I controlli della CI sono applicati all'interno del controllo `ci/circleci: check_code_quality`. Esegue anche `flake8`, che dà un'occhiata di base al codice e si lamenta se trova una variabile non definita o non utilizzata. Per eseguire questo controllo localmente, usare ```bash make quality ``` Questa operazione può richiedere molto tempo, quindi per eseguire la stessa operazione solo sui file modificati nel branch corrente, eseguire ```bash make fixup ``` Quest'ultimo comando eseguirà anche tutti i controlli aggiuntivi per la consistenza del repository. Diamogli un'occhiata. ## Coerenza del repository All'interno sono raggruppati tutti i test per assicurarsi che la tua PR lasci il repository in un buono stato ed è eseguito dal controllo `ci/circleci: check_repository_consistency`. Puoi eseguire localmente questo controllo eseguendo quanto segue: ```bash make repo-consistency ``` Questo verifica che: - Tutti gli oggetti aggiunti all'init sono documentati (eseguito da `utils/check_repo.py`) - Tutti i file `__init__.py` hanno lo stesso contenuto nelle loro due sezioni (eseguito da `utils/check_inits.py`) - Tutto il codice identificato come copia da un altro modulo è coerente con l'originale (eseguito da `utils/check_copies.py`) - Le traduzioni dei README e l'indice della documentazione hanno lo stesso elenco di modelli del README principale (eseguito da `utils/check_copies.py`) - Le tabelle autogenerate nella documentazione sono aggiornate (eseguito da `utils/check_table.py`) - La libreria ha tutti gli oggetti disponibili anche se non tutte le dipendenze opzionali sono installate (eseguito da `utils/check_dummies.py`) Se questo controllo fallisce, le prime due voci richiedono una correzione manuale, mentre le ultime quattro possono essere corrette automaticamente per te eseguendo il comando ```bash make fix-copies ``` Ulteriori controlli riguardano le PR che aggiungono nuovi modelli, principalmente che: - Tutti i modelli aggiunti sono in un Auto-mapping (eseguita da `utils/check_repo.py`) <!-- TODO Sylvain, add a check that makes sure the common tests are implemented.--> - Tutti i modelli sono testati correttamente (eseguito da `utils/check_repo.py`) <!-- TODO Sylvain, add the following - All models are added to the main README, inside the main doc - All checkpoints used actually exist on the Hub -->
transformers/docs/source/it/pr_checks.md/0
{ "file_path": "transformers/docs/source/it/pr_checks.md", "repo_id": "transformers", "token_count": 2370 }
22
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # BARTpho ## Overview BARTpho モデルは、Nguyen Luong Tran、Duong Minh Le、Dat Quoc Nguyen によって [BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnam](https://arxiv.org/abs/2109.09701) で提案されました。 論文の要約は次のとおりです。 *BARTpho には、BARTpho_word と BARTpho_syllable の 2 つのバージョンがあり、初の公開された大規模な単一言語です。 ベトナム語用に事前トレーニングされたシーケンスツーシーケンス モデル。当社の BARTpho は「大規模な」アーキテクチャと事前トレーニングを使用します シーケンス間ノイズ除去モデル BART のスキームなので、生成 NLP タスクに特に適しています。実験 ベトナム語テキスト要約の下流タスクでは、自動評価と人間による評価の両方で、BARTpho が 強力なベースライン mBART を上回り、最先端の性能を向上させます。将来を容易にするためにBARTphoをリリースします 生成的なベトナム語 NLP タスクの研究と応用。* このモデルは [dqnguyen](https://huggingface.co/dqnguyen) によって提供されました。元のコードは [こちら](https://github.com/VinAIResearch/BARTpho) にあります。 ## Usage example ```python >>> import torch >>> from transformers import AutoModel, AutoTokenizer >>> bartpho = AutoModel.from_pretrained("vinai/bartpho-syllable") >>> tokenizer = AutoTokenizer.from_pretrained("vinai/bartpho-syllable") >>> line = "Chúng tôi là những nghiên cứu viên." >>> input_ids = tokenizer(line, return_tensors="pt") >>> with torch.no_grad(): ... features = bartpho(**input_ids) # Models outputs are now tuples >>> # With TensorFlow 2.0+: >>> from transformers import TFAutoModel >>> bartpho = TFAutoModel.from_pretrained("vinai/bartpho-syllable") >>> input_ids = tokenizer(line, return_tensors="tf") >>> features = bartpho(**input_ids) ``` ## Usage tips - mBARTに続いて、BARTphoはBARTの「大規模な」アーキテクチャを使用し、その上に追加の層正規化層を備えています。 エンコーダとデコーダの両方。したがって、[BART のドキュメント](bart) の使用例は、使用に適応する場合に使用されます。 BARTpho を使用する場合は、BART に特化したクラスを mBART に特化した対応するクラスに置き換えることによって調整する必要があります。 例えば: ```python >>> from transformers import MBartForConditionalGeneration >>> bartpho = MBartForConditionalGeneration.from_pretrained("vinai/bartpho-syllable") >>> TXT = "Chúng tôi là <mask> nghiên cứu viên." >>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"] >>> logits = bartpho(input_ids).logits >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item() >>> probs = logits[0, masked_index].softmax(dim=0) >>> values, predictions = probs.topk(5) >>> print(tokenizer.decode(predictions).split()) ``` - この実装はトークン化のみを目的としています。`monolingual_vocab_file`はベトナム語に特化した型で構成されています 多言語 XLM-RoBERTa から利用できる事前トレーニング済み SentencePiece モデル`vocab_file`から抽出されます。 他の言語 (サブワードにこの事前トレーニング済み多言語 SentencePiece モデル`vocab_file`を使用する場合) セグメンテーションにより、独自の言語に特化した`monolingual_vocab_file`を使用して BartphoTokenizer を再利用できます。 ## BartphoTokenizer [[autodoc]] BartphoTokenizer
transformers/docs/source/ja/model_doc/bartpho.md/0
{ "file_path": "transformers/docs/source/ja/model_doc/bartpho.md", "repo_id": "transformers", "token_count": 1761 }
23
<!--Copyright 2023 The Intel Labs Team Authors, The Microsoft Research Team Authors and HuggingFace Inc. team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # BridgeTower ## Overview BridgeTower モデルは、Xiao Xu、Chenfei Wu、Shachar Rosenman、Vasudev Lal、Wanxiang Che、Nan Duan [BridgeTower: Building Bridges Between Encoders in Vision-Language Representative Learning](https://arxiv.org/abs/2206.08657) で提案されました。ドゥアン。このモデルの目標は、 各ユニモーダル エンコーダとクロスモーダル エンコーダの間のブリッジにより、クロスモーダル エンコーダの各層での包括的かつ詳細な対話が可能になり、追加のパフォーマンスと計算コストがほとんど無視できる程度で、さまざまな下流タスクで優れたパフォーマンスを実現します。 この論文は [AAAI'23](https://aaai.org/Conferences/AAAI-23/) 会議に採択されました。 論文の要約は次のとおりです。 *TWO-TOWER アーキテクチャを備えたビジョン言語 (VL) モデルは、近年の視覚言語表現学習の主流となっています。 現在の VL モデルは、軽量のユニモーダル エンコーダーを使用して、ディープ クロスモーダル エンコーダーで両方のモダリティを同時に抽出、位置合わせ、融合することを学習するか、事前にトレーニングされたディープ ユニモーダル エンコーダーから最終層のユニモーダル表現を上部のクロスモーダルエンコーダー。 どちらのアプローチも、視覚言語表現の学習を制限し、モデルのパフォーマンスを制限する可能性があります。この論文では、ユニモーダル エンコーダの最上位層とクロスモーダル エンコーダの各層の間の接続を構築する複数のブリッジ層を導入する BRIDGETOWER を提案します。 これにより、効果的なボトムアップのクロスモーダル調整と、クロスモーダル エンコーダー内の事前トレーニング済みユニモーダル エンコーダーのさまざまなセマンティック レベルの視覚表現とテキスト表現の間の融合が可能になります。 BRIDGETOWER は 4M 画像のみで事前トレーニングされており、さまざまな下流の視覚言語タスクで最先端のパフォーマンスを実現します。 特に、VQAv2 テスト標準セットでは、BRIDGETOWER は 78.73% の精度を達成し、同じ事前トレーニング データとほぼ無視できる追加パラメータと計算コストで以前の最先端モデル METER を 1.09% 上回りました。 特に、モデルをさらにスケーリングすると、BRIDGETOWER は 81.15% の精度を達成し、桁違いに大きなデータセットで事前トレーニングされたモデルを上回りました。* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/bridgetower_architecture%20.jpg" alt="drawing" width="600"/> <small> ブリッジタワー アーキテクチャ。 <a href="https://arxiv.org/abs/2206.08657">元の論文から抜粋。</a> </small> このモデルは、[Anahita Bhiwandiwalla](https://huggingface.co/anahita-b)、[Tiep Le](https://huggingface.co/Tile)、[Shaoyen Tseng](https://huggingface.co/shaoyent) 。元のコードは [ここ](https://github.com/microsoft/BridgeTower) にあります。 ## Usage tips and examples BridgeTower は、ビジュアル エンコーダー、テキスト エンコーダー、および複数の軽量ブリッジ レイヤーを備えたクロスモーダル エンコーダーで構成されます。 このアプローチの目標は、各ユニモーダル エンコーダーとクロスモーダル エンコーダーの間にブリッジを構築し、クロスモーダル エンコーダーの各層で包括的かつ詳細な対話を可能にすることでした。 原則として、提案されたアーキテクチャでは、任意のビジュアル、テキスト、またはクロスモーダル エンコーダを適用できます。 [`BridgeTowerProcessor`] は、[`RobertaTokenizer`] と [`BridgeTowerImageProcessor`] を単一のインスタンスにラップし、両方の機能を実現します。 テキストをエンコードし、画像をそれぞれ用意します。 次の例は、[`BridgeTowerProcessor`] と [`BridgeTowerForContrastiveLearning`] を使用して対照学習を実行する方法を示しています。 ```python >>> from transformers import BridgeTowerProcessor, BridgeTowerForContrastiveLearning >>> import requests >>> from PIL import Image >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"] >>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc") >>> model = BridgeTowerForContrastiveLearning.from_pretrained("BridgeTower/bridgetower-large-itm-mlm-itc") >>> # forward pass >>> scores = dict() >>> for text in texts: ... # prepare inputs ... encoding = processor(image, text, return_tensors="pt") ... outputs = model(**encoding) ... scores[text] = outputs ``` 次の例は、[`BridgeTowerProcessor`] と [`BridgeTowerForImageAndTextRetrieval`] を使用して画像テキストの取得を実行する方法を示しています。 ```python >>> from transformers import BridgeTowerProcessor, BridgeTowerForImageAndTextRetrieval >>> import requests >>> from PIL import Image >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> texts = ["An image of two cats chilling on a couch", "A football player scoring a goal"] >>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") >>> model = BridgeTowerForImageAndTextRetrieval.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") >>> # forward pass >>> scores = dict() >>> for text in texts: ... # prepare inputs ... encoding = processor(image, text, return_tensors="pt") ... outputs = model(**encoding) ... scores[text] = outputs.logits[0, 1].item() ``` 次の例は、[`BridgeTowerProcessor`] と [`BridgeTowerForMaskedLM`] を使用してマスクされた言語モデリングを実行する方法を示しています。 ```python >>> from transformers import BridgeTowerProcessor, BridgeTowerForMaskedLM >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000360943.jpg" >>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB") >>> text = "a <mask> looking out of the window" >>> processor = BridgeTowerProcessor.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") >>> model = BridgeTowerForMaskedLM.from_pretrained("BridgeTower/bridgetower-base-itm-mlm") >>> # prepare inputs >>> encoding = processor(image, text, return_tensors="pt") >>> # forward pass >>> outputs = model(**encoding) >>> results = processor.decode(outputs.logits.argmax(dim=-1).squeeze(0).tolist()) >>> print(results) .a cat looking out of the window. ``` チップ: - BridgeTower のこの実装では、[`RobertaTokenizer`] を使用してテキスト埋め込みを生成し、OpenAI の CLIP/ViT モデルを使用して視覚的埋め込みを計算します。 - 事前トレーニングされた [bridgeTower-base](https://huggingface.co/BridgeTower/bridgetower-base) および [bridgetower マスクされた言語モデリングと画像テキスト マッチング](https://huggingface.co/BridgeTower/bridgetower--base-itm-mlm) のチェックポイント がリリースされました。 - 画像検索およびその他の下流タスクにおける BridgeTower のパフォーマンスについては、[表 5](https://arxiv.org/pdf/2206.08657.pdf) を参照してください。 - このモデルの PyTorch バージョンは、torch 1.10 以降でのみ使用できます。 ## BridgeTowerConfig [[autodoc]] BridgeTowerConfig ## BridgeTowerTextConfig [[autodoc]] BridgeTowerTextConfig ## BridgeTowerVisionConfig [[autodoc]] BridgeTowerVisionConfig ## BridgeTowerImageProcessor [[autodoc]] BridgeTowerImageProcessor - preprocess ## BridgeTowerProcessor [[autodoc]] BridgeTowerProcessor - __call__ ## BridgeTowerModel [[autodoc]] BridgeTowerModel - forward ## BridgeTowerForContrastiveLearning [[autodoc]] BridgeTowerForContrastiveLearning - forward ## BridgeTowerForMaskedLM [[autodoc]] BridgeTowerForMaskedLM - forward ## BridgeTowerForImageAndTextRetrieval [[autodoc]] BridgeTowerForImageAndTextRetrieval - forward
transformers/docs/source/ja/model_doc/bridgetower.md/0
{ "file_path": "transformers/docs/source/ja/model_doc/bridgetower.md", "repo_id": "transformers", "token_count": 3672 }
24
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # CPM ## Overview CPM モデルは、Zhengyan Zhang、Xu Han、Hao Zhou、Pei Ke、Yuxian Gu によって [CPM: A Large-scale Generative Chinese Pre-trained Language Model](https://arxiv.org/abs/2012.00413) で提案されました。葉徳明、秦裕佳、 Yusheng Su、Haozhe Ji、Jian Guan、Fanchao Qi、Xiaozi Wang、Yanan Zheng、Guoyang Zeng、Huanqi Cao、Shengqi Chen、 Daixuan Li、Zhenbo Sun、Zhiyuan Liu、Minlie Huang、Wentao Han、Jie Tang、Juanzi Li、Xiaoyan Zhu、Maosong Sun。 論文の要約は次のとおりです。 *事前トレーニングされた言語モデル (PLM) は、さまざまな下流の NLP タスクに有益であることが証明されています。最近ではGPT-3、 1,750億個のパラメータと570GBの学習データを備え、数回の撮影(1枚でも)の容量で大きな注目を集めました ゼロショット)学習。ただし、GPT-3 を適用して中国語の NLP タスクに対処することは依然として困難です。 GPT-3 の言語は主に英語であり、パラメーターは公開されていません。この技術レポートでは、 大規模な中国語トレーニング データに対する生成的事前トレーニングを備えた中国語事前トレーニング済み言語モデル (CPM)。最高に 私たちの知識の限りでは、26 億のパラメータと 100GB の中国語トレーニング データを備えた CPM は、事前トレーニングされた中国語としては最大のものです。 言語モデルは、会話、エッセイの作成、 クローゼテストと言語理解。広範な実験により、CPM が多くの環境で優れたパフォーマンスを達成できることが実証されています。 少数ショット (ゼロショットでも) 学習の設定での NLP タスク。* このモデルは [canwenxu](https://huggingface.co/canwenxu) によって提供されました。オリジナルの実装が見つかります ここ: https://github.com/TsinghuaAI/CPM-Generate <Tip> CPM のアーキテクチャは、トークン化方法を除いて GPT-2 と同じです。詳細については、[GPT-2 ドキュメント](openai-community/gpt2) を参照してください。 API リファレンス情報。 </Tip> ## CpmTokenizer [[autodoc]] CpmTokenizer ## CpmTokenizerFast [[autodoc]] CpmTokenizerFast
transformers/docs/source/ja/model_doc/cpm.md/0
{ "file_path": "transformers/docs/source/ja/model_doc/cpm.md", "repo_id": "transformers", "token_count": 1259 }
25
<!-- Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ このファイルはMarkdownですが、Hugging Faceのドキュメントビルダー(MDXに類似)向けの特定の構文を含んでいるため、Markdownビューアーで適切にレンダリングされないことがあります。 --> # Share a Model 最後の2つのチュートリアルでは、PyTorch、Keras、および🤗 Accelerateを使用してモデルをファインチューニングする方法を示しました。次のステップは、モデルをコミュニティと共有することです!Hugging Faceでは、知識とリソースを公開的に共有し、人工知能を誰にでも提供することを信じています。他の人々が時間とリソースを節約できるように、モデルをコミュニティと共有することを検討することをお勧めします。 このチュートリアルでは、訓練済みまたはファインチューニングされたモデルを[Model Hub](https://huggingface.co/models)に共有する2つの方法を学びます: - プログラムでファイルをHubにプッシュする。 - ウェブインターフェースを使用してファイルをHubにドラッグアンドドロップする。 <iframe width="560" height="315" src="https://www.youtube.com/embed/XvSGPZFEjDY" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> <Tip> コミュニティとモデルを共有するには、[huggingface.co](https://huggingface.co/join)でアカウントが必要です。既存の組織に参加したり、新しい組織を作成したりすることもできます。 </Tip> ## Repository Features Model Hub上の各リポジトリは、通常のGitHubリポジトリのように動作します。リポジトリはバージョニング、コミット履歴、違いの視覚化の機能を提供します。 Model Hubの組み込みバージョニングはgitおよび[git-lfs](https://git-lfs.github.com/)に基づいています。言い換えれば、モデルを1つのリポジトリとして扱うことができ、より大きなアクセス制御とスケーラビリティを実現します。バージョン管理には*リビジョン*があり、コミットハッシュ、タグ、またはブランチ名で特定のモデルバージョンをピン留めする方法です。 その結果、`revision`パラメータを使用して特定のモデルバージョンをロードできます: ```py >>> model = AutoModel.from_pretrained( ... "julien-c/EsperBERTo-small", revision="v2.0.1" # タグ名、またはブランチ名、またはコミットハッシュ ... ) ``` ファイルはリポジトリ内で簡単に編集でき、コミット履歴と差分を表示できます: ![vis_diff](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vis_diff.png) ## Set Up モデルをHubに共有する前に、Hugging Faceの認証情報が必要です。ターミナルへのアクセス権がある場合、🤗 Transformersがインストールされている仮想環境で以下のコマンドを実行します。これにより、アクセストークンがHugging Faceのキャッシュフォルダに保存されます(デフォルトでは `~/.cache/` に保存されます): ```bash huggingface-cli login ``` JupyterやColaboratoryのようなノートブックを使用している場合、[`huggingface_hub`](https://huggingface.co/docs/hub/adding-a-library)ライブラリがインストールされていることを確認してください。 このライブラリを使用すると、Hubとプログラム的に対話できます。 ```bash pip install huggingface_hub ``` 次に、`notebook_login`を使用してHubにサインインし、[こちらのリンク](https://huggingface.co/settings/token)にアクセスしてログインに使用するトークンを生成します: ```python >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## Convert a Model for all frameworks 異なるフレームワークで作業している他のユーザーがあなたのモデルを使用できるようにするために、 PyTorchおよびTensorFlowのチェックポイントでモデルを変換してアップロードすることをお勧めします。 このステップをスキップすると、ユーザーは異なるフレームワークからモデルをロードできますが、 モデルをオンザフライで変換する必要があるため、遅くなります。 別のフレームワーク用にチェックポイントを変換することは簡単です。 PyTorchとTensorFlowがインストールされていることを確認してください(インストール手順については[こちら](installation)を参照)し、 その後、他のフレームワーク向けに特定のタスク用のモデルを見つけます。 <frameworkcontent> <pt> TensorFlowからPyTorchにチェックポイントを変換するには、`from_tf=True`を指定します: ```python >>> pt_model = DistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_tf=True) >>> pt_model.save_pretrained("path/to/awesome-name-you-picked") ``` </pt> <tf> 指定して、PyTorchからTensorFlowにチェックポイントを変換するには `from_pt=True` を使用します: ```python >>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_pt=True) ``` 新しいTensorFlowモデルとその新しいチェックポイントを保存できます: ```python >>> tf_model.save_pretrained("path/to/awesome-name-you-picked") ``` </tf> <tf> <jax> Flaxでモデルが利用可能な場合、PyTorchからFlaxへのチェックポイントの変換も行うことができます: ```py >>> flax_model = FlaxDistilBertForSequenceClassification.from_pretrained( ... "path/to/awesome-name-you-picked", from_pt=True ... ) ``` </jax> </frameworkcontent> ## Push a model during traning <frameworkcontent> <pt> <Youtube id="Z1-XMy-GNLQ"/> モデルをHubにプッシュすることは、追加のパラメーターまたはコールバックを追加するだけで簡単です。 [ファインチューニングチュートリアル](training)から思い出してください、[`TrainingArguments`]クラスはハイパーパラメーターと追加のトレーニングオプションを指定する場所です。 これらのトレーニングオプションの1つに、モデルを直接Hubにプッシュする機能があります。[`TrainingArguments`]で`push_to_hub=True`を設定します: ```py >>> training_args = TrainingArguments(output_dir="my-awesome-model", push_to_hub=True) ``` Pass your training arguments as usual to [`Trainer`]: ```py >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=small_train_dataset, ... eval_dataset=small_eval_dataset, ... compute_metrics=compute_metrics, ... ) ``` [`Trainer`]に通常通りトレーニング引数を渡します: ```py >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=small_train_dataset, ... eval_dataset=small_eval_dataset, ... compute_metrics=compute_metrics, ... ) ``` ファインチューニングが完了したら、[`Trainer`]で[`~transformers.Trainer.push_to_hub`]を呼び出して、トレーニング済みモデルをHubにプッシュします。🤗 Transformersは、トレーニングのハイパーパラメータ、トレーニング結果、およびフレームワークのバージョンを自動的にモデルカードに追加します! ```py >>> trainer.push_to_hub() ``` </pt> <tf> [`PushToHubCallback`]を使用してモデルをHubに共有します。[`PushToHubCallback`]関数には、次のものを追加します: - モデルの出力ディレクトリ。 - トークナイザ。 - `hub_model_id`、つまりHubのユーザー名とモデル名。 ```python >>> from transformers import PushToHubCallback >>> push_to_hub_callback = PushToHubCallback( ... output_dir="./your_model_save_path", tokenizer=tokenizer, hub_model_id="your-username/my-awesome-model" ... ) ``` 🤗 Transformersは[`fit`](https://keras.io/api/models/model_training_apis/)にコールバックを追加し、トレーニング済みモデルをHubにプッシュします: ```py >>> model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=3, callbacks=push_to_hub_callback) ``` </tf> </frameworkcontent> ## `push_to_hub` 関数を使用する また、モデルを直接Hubにアップロードするために、`push_to_hub` を呼び出すこともできます。 `push_to_hub` でモデル名を指定します: ```py >>> pt_model.push_to_hub("my-awesome-model") ``` これにより、ユーザー名の下にモデル名 `my-awesome-model` を持つリポジトリが作成されます。 ユーザーは、`from_pretrained` 関数を使用してモデルをロードできます: ```py >>> from transformers import AutoModel >>> model = AutoModel.from_pretrained("your_username/my-awesome-model") ``` 組織に所属し、モデルを組織名のもとにプッシュしたい場合、`repo_id` にそれを追加してください: ```python >>> pt_model.push_to_hub("my-awesome-org/my-awesome-model") ``` `push_to_hub`関数は、モデルリポジトリに他のファイルを追加するためにも使用できます。例えば、トークナイザをモデルリポジトリに追加します: ```py >>> tokenizer.push_to_hub("my-awesome-model") ``` あるいは、ファインチューニングされたPyTorchモデルのTensorFlowバージョンを追加したいかもしれません: ```python >>> tf_model.push_to_hub("my-awesome-model") ``` Hugging Faceプロフィールに移動すると、新しく作成したモデルリポジトリが表示されるはずです。**Files**タブをクリックすると、リポジトリにアップロードしたすべてのファイルが表示されます。 リポジトリにファイルを作成およびアップロードする方法の詳細については、Hubドキュメンテーション[こちら](https://huggingface.co/docs/hub/how-to-upstream)を参照してください。 ## Upload with the web interface コードを書かずにモデルをアップロードしたいユーザーは、Hubのウェブインターフェースを使用してモデルをアップロードできます。[huggingface.co/new](https://huggingface.co/new)を訪れて新しいリポジトリを作成します: ![new_model_repo](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/new_model_repo.png) ここから、モデルに関するいくつかの情報を追加します: - リポジトリの**所有者**を選択します。これはあなた自身または所属している組織のいずれかです。 - モデルの名前を選択します。これはリポジトリの名前にもなります。 - モデルが公開か非公開かを選択します。 - モデルのライセンス使用方法を指定します。 その後、**Files**タブをクリックし、**Add file**ボタンをクリックしてリポジトリに新しいファイルをアップロードします。次に、ファイルをドラッグアンドドロップしてアップロードし、コミットメッセージを追加します。 ![upload_file](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/upload_file.png) ## Add a model card ユーザーがモデルの機能、制限、潜在的な偏り、倫理的な考慮事項を理解できるようにするために、モデルリポジトリにモデルカードを追加してください。モデルカードは`README.md`ファイルで定義されます。モデルカードを追加する方法: * 手動で`README.md`ファイルを作成およびアップロードする。 * モデルリポジトリ内の**Edit model card**ボタンをクリックする。 モデルカードに含めるべき情報の例については、DistilBert [モデルカード](https://huggingface.co/distilbert/distilbert-base-uncased)をご覧ください。`README.md`ファイルで制御できる他のオプション、例えばモデルの炭素フットプリントやウィジェットの例などについての詳細は、[こちらのドキュメンテーション](https://huggingface.co/docs/hub/models-cards)を参照してください。
transformers/docs/source/ja/model_sharing.md/0
{ "file_path": "transformers/docs/source/ja/model_sharing.md", "repo_id": "transformers", "token_count": 5372 }
26
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Image tasks with IDEFICS [[open-in-colab]] 個別のタスクは特殊なモデルを微調整することで対処できますが、別のアプローチも可能です。 最近登場して人気を博しているのは、微調整を行わずにさまざまなタスクに大規模なモデルを使用することです。 たとえば、大規模な言語モデルは、要約、翻訳、分類などの NLP タスクを処理できます。 このアプローチは、テキストなどの単一のモダリティに限定されなくなりました。このガイドでは、次のような方法を説明します。 IDEFICS と呼ばれる大規模なマルチモーダル モデルを使用して、画像とテキストのタスクを解決します。 [IDEFICS](../model_doc/idefics) は、[Flamingo](https://huggingface.co/papers/2204.14198) に基づくオープンアクセスのビジョンおよび言語モデルです。 DeepMind によって最初に開発された最先端の視覚言語モデル。モデルは任意の画像シーケンスを受け入れます テキストを入力し、出力として一貫したテキストを生成します。画像に関する質問に答えたり、視覚的なコンテンツについて説明したり、 複数のイメージに基づいたストーリーを作成するなど。 IDEFICS には 2 つのバリエーションがあります - [800 億パラメータ](https://huggingface.co/HuggingFaceM4/idefics-80b) および [90 億のパラメータ](https://huggingface.co/HuggingFaceM4/idefics-9b)、どちらも 🤗 Hub で入手できます。各バリエーションについて、細かく調整された指示も見つけることができます。 会話のユースケースに適応したモデルのバージョン。 このモデルは非常に多用途で、幅広い画像タスクやマルチモーダル タスクに使用できます。しかし、 大規模なモデルであるということは、大量の計算リソースとインフラストラクチャが必要であることを意味します。それはあなた次第です このアプローチは、個別のタスクごとに特化したモデルを微調整するよりも、ユースケースに適しています。 このガイドでは、次の方法を学習します。 - [IDEFICS をロード](#loading-the-model) および [モデルの量子化バージョンをロード](#quantized-model) - IDEFICS を次の目的で使用します。 - [画像キャプション](#image-captioning) - [プロンプト画像キャプション](#prompted-image-captioning) - [Few-shot プロンプト](#few-shot-prompting) - [ビジュアル質問回答](#visual-question-answering) - [画像分類](#image-classification) - [画像ガイド付きテキスト生成](#image-guided-text-generation) - [バッチモードで推論を実行する](#running-inference-in-batch-mode) - [会話用に IDEFICS 命令を実行](#idefics-instruct-for-conversational-use) 始める前に、必要なライブラリがすべてインストールされていることを確認してください。 ```bash pip install -q bitsandbytes sentencepiece accelerate transformers ``` <Tip> 量子化されていないバージョンのモデル チェックポイントを使用して次の例を実行するには、少なくとも 20GB の GPU メモリが必要です。 </Tip> ## Loading the model まずはモデルの 90 億個のパラメーターのチェックポイントをロードしましょう。 ```py >>> checkpoint = "HuggingFaceM4/idefics-9b" ``` 他の Transformers モデルと同様に、プロセッサとモデル自体をチェックポイントからロードする必要があります。 IDEFICS プロセッサは、[`LlamaTokenizer`] と IDEFICS 画像プロセッサを単一のプロセッサにラップして処理します。 モデルのテキストと画像の入力を準備します。 ```py >>> import torch >>> from transformers import IdeficsForVisionText2Text, AutoProcessor >>> processor = AutoProcessor.from_pretrained(checkpoint) >>> model = IdeficsForVisionText2Text.from_pretrained(checkpoint, torch_dtype=torch.bfloat16, device_map="auto") ``` `device_map`を`auto`に設定すると、モデルの重みを最も最適化された状態でロードおよび保存する方法が自動的に決定されます。 既存のデバイスを考慮した方法。 ### Quantized model ハイメモリ GPU の可用性が問題となる場合は、モデルの量子化されたバージョンをロードできます。モデルと プロセッサを 4 ビット精度で使用する場合、`BitsAndBytesConfig`を`from_pretrained`メソッドに渡すと、モデルが圧縮されます。 ロード中にその場で。 ```py >>> import torch >>> from transformers import IdeficsForVisionText2Text, AutoProcessor, BitsAndBytesConfig >>> quantization_config = BitsAndBytesConfig( ... load_in_4bit=True, ... bnb_4bit_compute_dtype=torch.float16, ... ) >>> processor = AutoProcessor.from_pretrained(checkpoint) >>> model = IdeficsForVisionText2Text.from_pretrained( ... checkpoint, ... quantization_config=quantization_config, ... device_map="auto" ... ) ``` 提案された方法のいずれかでモデルをロードしたので、IDEFICS を使用できるタスクの探索に進みましょう。 ## Image captioning 画像のキャプション付けは、特定の画像のキャプションを予測するタスクです。一般的な用途は視覚障害者を支援することです 人々はさまざまな状況をナビゲートします。たとえば、オンラインで画像コンテンツを探索します。 タスクを説明するには、キャプションを付ける画像を取得します。例: <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-im-captioning.jpg" alt="Image of a puppy in a flower bed"/> </div> 写真提供:[Hendo Wang](https://unsplash.com/@hendoo) IDEFICS はテキストと画像のプロンプトを受け入れます。ただし、画像にキャプションを付けるには、テキスト プロンプトをユーザーに提供する必要はありません。 モデル、前処理された入力画像のみ。テキスト プロンプトがない場合、モデルはテキストの生成を開始します。 BOS (Beginning-of-sequence) トークンによりキャプションが作成されます。 モデルへの画像入力として、画像オブジェクト (`PIL.Image`) または画像を取得できる URL のいずれかを使用できます。 ```py >>> prompt = [ ... "https://images.unsplash.com/photo-1583160247711-2191776b4b91?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3542&q=80", ... ] >>> inputs = processor(prompt, return_tensors="pt").to("cuda") >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, max_new_tokens=10, bad_words_ids=bad_words_ids) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_text[0]) A puppy in a flower bed ``` <Tip> 増加時に発生するエラーを避けるために、`generate`の呼び出しに`bad_words_ids`を含めることをお勧めします。 `max_new_tokens`: モデルは、新しい `<image>` または `<fake_token_around_image>` トークンを生成する必要があります。 モデルによって画像が生成されていません。 このガイドのようにオンザフライで設定することも、[テキスト生成戦略](../generation_strategies) ガイドで説明されているように `GenerationConfig` に保存することもできます。 </Tip> ## Prompted image captioning テキスト プロンプトを提供することで画像キャプションを拡張でき、モデルは画像を指定して続行します。持っていきましょう 別の図で説明します。 <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-prompted-im-captioning.jpg" alt="Image of the Eiffel Tower at night"/> </div> 写真提供:[Denys Nevozhai](https://unsplash.com/@dnevozhai)。 テキストおよび画像のプロンプトを単一のリストとしてモデルのプロセッサに渡し、適切な入力を作成できます。 ```py >>> prompt = [ ... "https://images.unsplash.com/photo-1543349689-9a4d426bee8e?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3501&q=80", ... "This is an image of ", ... ] >>> inputs = processor(prompt, return_tensors="pt").to("cuda") >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, max_new_tokens=10, bad_words_ids=bad_words_ids) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_text[0]) This is an image of the Eiffel Tower in Paris, France. ``` ## Few-shot prompting IDEFICS はゼロショットで優れた結果を示しますが、タスクによっては特定の形式のキャプションが必要になる場合や、キャプションが付属する場合があります。 タスクの複雑さを増大させるその他の制限または要件。少数のショットのプロンプトを使用して、コンテキスト内の学習を有効にすることができます。 プロンプトに例を指定することで、指定された例の形式を模倣した結果を生成するようにモデルを操作できます。 前のエッフェル塔の画像をモデルの例として使用し、モデルにデモンストレーションするプロンプトを作成してみましょう。 画像内のオブジェクトが何であるかを知ることに加えて、それに関する興味深い情報も取得したいと考えています。 次に、自由の女神の画像に対して同じ応答形式を取得できるかどうかを見てみましょう。 <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-few-shot.jpg" alt="Image of the Statue of Liberty"/> </div> 写真提供:[Juan Mayobre](https://unsplash.com/@jmayobres)。 ```py >>> prompt = ["User:", ... "https://images.unsplash.com/photo-1543349689-9a4d426bee8e?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3501&q=80", ... "Describe this image.\nAssistant: An image of the Eiffel Tower at night. Fun fact: the Eiffel Tower is the same height as an 81-storey building.\n", ... "User:", ... "https://images.unsplash.com/photo-1524099163253-32b7f0256868?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3387&q=80", ... "Describe this image.\nAssistant:" ... ] >>> inputs = processor(prompt, return_tensors="pt").to("cuda") >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, max_new_tokens=30, bad_words_ids=bad_words_ids) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_text[0]) User: Describe this image. Assistant: An image of the Eiffel Tower at night. Fun fact: the Eiffel Tower is the same height as an 81-storey building. User: Describe this image. Assistant: An image of the Statue of Liberty. Fun fact: the Statue of Liberty is 151 feet tall. ``` モデルは 1 つの例 (つまり、1 ショット) だけからタスクの実行方法を学習していることに注目してください。より複雑なタスクの場合は、 より多くの例 (3 ショット、5 ショットなど) を自由に試してみてください。 ## Visual question answering Visual Question Answering (VQA) は、画像に基づいて自由形式の質問に答えるタスクです。画像に似ている キャプションは、アクセシビリティ アプリケーションだけでなく、教育 (視覚資料についての推論) にも使用できます。 サービス(画像を基にした商品に関する質問)、画像検索など。 このタスク用に新しい画像を取得しましょう。 <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg" alt="Image of a couple having a picnic"/> </div> 写真提供 [Jarritos Mexican Soda](https://unsplash.com/@jarritos). 適切な指示をプロンプトすることで、モデルを画像キャプションから視覚的な質問への応答に導くことができます。 ```py >>> prompt = [ ... "Instruction: Provide an answer to the question. Use the image to answer.\n", ... "https://images.unsplash.com/photo-1623944889288-cd147dbb517c?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3540&q=80", ... "Question: Where are these people and what's the weather like? Answer:" ... ] >>> inputs = processor(prompt, return_tensors="pt").to("cuda") >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, max_new_tokens=20, bad_words_ids=bad_words_ids) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_text[0]) Instruction: Provide an answer to the question. Use the image to answer. Question: Where are these people and what's the weather like? Answer: They're in a park in New York City, and it's a beautiful day. ``` ## Image classification IDEFICS は、次のデータを含むデータについて明示的にトレーニングしなくても、画像をさまざまなカテゴリに分類できます。 これらの特定のカテゴリからのラベル付きの例。カテゴリのリストを指定し、その画像とテキストを使用して理解する 機能を利用すると、モデルは画像がどのカテゴリに属する​​可能性が高いかを推測できます。 たとえば、次のような野菜スタンドの画像があるとします。 <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-classification.jpg" alt="Image of a vegetable stand"/> </div> 写真提供:[Peter Wendt](https://unsplash.com/@peterwendt)。 画像を次のいずれかのカテゴリに分類するようにモデルに指示できます。 ```py >>> categories = ['animals','vegetables', 'city landscape', 'cars', 'office'] >>> prompt = [f"Instruction: Classify the following image into a single category from the following list: {categories}.\n", ... "https://images.unsplash.com/photo-1471193945509-9ad0617afabf?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3540&q=80", ... "Category: " ... ] >>> inputs = processor(prompt, return_tensors="pt").to("cuda") >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, max_new_tokens=6, bad_words_ids=bad_words_ids) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_text[0]) Instruction: Classify the following image into a single category from the following list: ['animals', 'vegetables', 'city landscape', 'cars', 'office']. Category: Vegetables ``` 上の例では、画像を 1 つのカテゴリに分類するようにモデルに指示していますが、ランク分類を行うようにモデルに指示することもできます。 ## Image-guided text generation よりクリエイティブなアプリケーションの場合は、画像ガイド付きテキスト生成を使用して、画像に基づいてテキストを生成できます。これは可能です 製品、広告、シーンの説明などを作成するのに役立ちます。 IDEFICS に、赤いドアの単純な画像に基づいてストーリーを書くように促してみましょう。 <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-story-generation.jpg" alt="Image of a red door with a pumpkin on the steps"/> </div> 写真提供:[Craig Tidball](https://unsplash.com/@devonshiremedia)。 ```py >>> prompt = ["Instruction: Use the image to write a story. \n", ... "https://images.unsplash.com/photo-1517086822157-2b0358e7684a?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=2203&q=80", ... "Story: \n"] >>> inputs = processor(prompt, return_tensors="pt").to("cuda") >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, num_beams=2, max_new_tokens=200, bad_words_ids=bad_words_ids) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_text[0]) Instruction: Use the image to write a story. Story: Once upon a time, there was a little girl who lived in a house with a red door. She loved her red door. It was the prettiest door in the whole world. One day, the little girl was playing in her yard when she noticed a man standing on her doorstep. He was wearing a long black coat and a top hat. The little girl ran inside and told her mother about the man. Her mother said, “Don’t worry, honey. He’s just a friendly ghost.” The little girl wasn’t sure if she believed her mother, but she went outside anyway. When she got to the door, the man was gone. The next day, the little girl was playing in her yard again when she noticed the man standing on her doorstep. He was wearing a long black coat and a top hat. The little girl ran ``` IDEFICS は玄関先にあるカボチャに気づき、幽霊に関する不気味なハロウィーンの話をしたようです。 <Tip> このような長い出力の場合、テキスト生成戦略を微調整すると大きなメリットが得られます。これは役に立ちます 生成される出力の品質が大幅に向上します。 [テキスト生成戦略](../generation_strategies) を確認してください。 詳しく知ることができ。 </Tip> ## Running inference in batch mode これまでのすべてのセクションでは、IDEFICS を 1 つの例として説明しました。非常に似た方法で、推論を実行できます。 プロンプトのリストを渡すことにより、サンプルのバッチを取得します。 ```py >>> prompts = [ ... [ "https://images.unsplash.com/photo-1543349689-9a4d426bee8e?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3501&q=80", ... "This is an image of ", ... ], ... [ "https://images.unsplash.com/photo-1623944889288-cd147dbb517c?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3540&q=80", ... "This is an image of ", ... ], ... [ "https://images.unsplash.com/photo-1471193945509-9ad0617afabf?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3540&q=80", ... "This is an image of ", ... ], ... ] >>> inputs = processor(prompts, return_tensors="pt").to("cuda") >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, max_new_tokens=10, bad_words_ids=bad_words_ids) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> for i,t in enumerate(generated_text): ... print(f"{i}:\n{t}\n") 0: This is an image of the Eiffel Tower in Paris, France. 1: This is an image of a couple on a picnic blanket. 2: This is an image of a vegetable stand. ``` ## IDEFICS instruct for conversational use 会話型のユースケースの場合は、🤗 ハブでモデルの微調整された指示されたバージョンを見つけることができます。 `HuggingFaceM4/idefics-80b-instruct` および `HuggingFaceM4/idefics-9b-instruct`。 これらのチェックポイントは、教師ありモデルと命令モデルを組み合わせたそれぞれの基本モデルを微調整した結果です。 データセットを微調整することで、ダウンストリームのパフォーマンスを向上させながら、会話設定でモデルをより使いやすくします。 会話での使用とプロンプトは、基本モデルの使用と非常に似ています。 ```py >>> import torch >>> from transformers import IdeficsForVisionText2Text, AutoProcessor >>> device = "cuda" if torch.cuda.is_available() else "cpu" >>> checkpoint = "HuggingFaceM4/idefics-9b-instruct" >>> model = IdeficsForVisionText2Text.from_pretrained(checkpoint, torch_dtype=torch.bfloat16).to(device) >>> processor = AutoProcessor.from_pretrained(checkpoint) >>> prompts = [ ... [ ... "User: What is in this image?", ... "https://upload.wikimedia.org/wikipedia/commons/8/86/Id%C3%A9fix.JPG", ... "<end_of_utterance>", ... "\nAssistant: This picture depicts Idefix, the dog of Obelix in Asterix and Obelix. Idefix is running on the ground.<end_of_utterance>", ... "\nUser:", ... "https://static.wikia.nocookie.net/asterix/images/2/25/R22b.gif/revision/latest?cb=20110815073052", ... "And who is that?<end_of_utterance>", ... "\nAssistant:", ... ], ... ] >>> # --batched mode >>> inputs = processor(prompts, add_end_of_utterance_token=False, return_tensors="pt").to(device) >>> # --single sample mode >>> # inputs = processor(prompts[0], return_tensors="pt").to(device) >>> # Generation args >>> exit_condition = processor.tokenizer("<end_of_utterance>", add_special_tokens=False).input_ids >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, eos_token_id=exit_condition, bad_words_ids=bad_words_ids, max_length=100) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> for i, t in enumerate(generated_text): ... print(f"{i}:\n{t}\n") ```
transformers/docs/source/ja/tasks/idefics.md/0
{ "file_path": "transformers/docs/source/ja/tasks/idefics.md", "repo_id": "transformers", "token_count": 9887 }
27
- sections: - local: index title: 🤗 Transformers - local: quicktour title: 둘러보기 - local: installation title: 설치방법 title: 시작하기 - sections: - local: pipeline_tutorial title: Pipeline으로 추론하기 - local: autoclass_tutorial title: AutoClass로 사전 학습된 인스턴스 로드하기 - local: preprocessing title: 데이터 전처리하기 - local: training title: 사전 학습된 모델 미세 조정하기 - local: run_scripts title: 스크립트로 학습하기 - local: accelerate title: 🤗 Accelerate로 분산 학습 구성하기 - local: peft title: 🤗 PEFT로 어댑터 로드 및 학습하기 - local: model_sharing title: 만든 모델 공유하기 - local: transformers_agents title: 에이전트 - local: llm_tutorial title: 대규모 언어 모델로 생성하기 title: 튜토리얼 - sections: - sections: - local: tasks/sequence_classification title: 텍스트 분류 - local: tasks/token_classification title: 토큰 분류 - local: tasks/question_answering title: 질의 응답(Question Answering) - local: tasks/language_modeling title: 인과적 언어 모델링(Causal language modeling) - local: tasks/masked_language_modeling title: 마스킹된 언어 모델링(Masked language modeling) - local: tasks/translation title: 번역 - local: tasks/summarization title: 요약 - local: tasks/multiple_choice title: 객관식 문제(Multiple Choice) title: 자연어처리 isExpanded: false - sections: - local: tasks/audio_classification title: 오디오 분류 - local: tasks/asr title: 자동 음성 인식 title: 오디오 isExpanded: false - sections: - local: tasks/image_classification title: 이미지 분류 - local: tasks/semantic_segmentation title: 의미적 분할(Semantic segmentation) - local: tasks/video_classification title: 영상 분류 - local: tasks/object_detection title: 객체 탐지 - local: tasks/zero_shot_object_detection title: 제로샷(zero-shot) 객체 탐지 - local: tasks/zero_shot_image_classification title: 제로샷(zero-shot) 이미지 분류 - local: tasks/monocular_depth_estimation title: 단일 영상 기반 깊이 추정 title: 컴퓨터 비전 isExpanded: false - sections: - local: tasks/image_captioning title: 이미지 캡셔닝 - local: tasks/document_question_answering title: 문서 질의 응답(Document Question Answering) - local: tasks/visual_question_answering title: 시각적 질의응답 (Visual Question Answering) title: 멀티모달 isExpanded: false title: 태스크 가이드 - sections: - local: fast_tokenizers title: 🤗 Tokenizers 라이브러리에서 토크나이저 사용하기 - local: multilingual title: 다국어 모델 추론하기 - local: in_translation title: (번역중) Customize text generation strategy - local: create_a_model title: 모델별 API 사용하기 - local: custom_models title: 사용자 정의 모델 공유하기 - local: sagemaker title: Amazon SageMaker에서 학습 실행하기 - local: serialization title: ONNX로 내보내기 - local: tflite title: TFLite로 내보내기 - local: torchscript title: TorchScript로 내보내기 - local: in_translation title: (번역중) Benchmarks - local: in_translation title: (번역중) Notebooks with examples - local: community title: 커뮤니티 리소스 - local: custom_tools title: 사용자 정의 도구와 프롬프트 - local: troubleshooting title: 문제 해결 title: (번역중) 개발자 가이드 - sections: - local: performance title: 성능 및 확장성 - local: in_translation title: (번역중) Training on one GPU - local: perf_train_gpu_many title: 다중 GPU에서 훈련 진행하기 - local: perf_train_cpu title: CPU에서 훈련 - local: perf_train_cpu_many title: 다중 CPU에서 훈련하기 - local: in_translation title: (번역중) Training on TPUs - local: perf_train_tpu_tf title: TensorFlow로 TPU에서 훈련하기 - local: in_translation title: (번역중) Training on Specialized Hardware - local: perf_infer_cpu title: CPU로 추론하기 - local: perf_infer_gpu_one title: 하나의 GPU를 활용한 추론 - local: perf_infer_gpu_many title: 다중 GPU에서 추론 - local: in_translation title: (번역중) Inference on Specialized Hardware - local: perf_hardware title: 훈련용 사용자 맞춤형 하드웨어 - local: big_models title: 대형 모델을 인스턴스화 - local: debugging title: 디버깅 - local: hpo_train title: Trainer API를 사용한 하이퍼파라미터 탐색 - local: tf_xla title: TensorFlow 모델을 위한 XLA 통합 title: (번역중) 성능 및 확장성 - sections: - local: contributing title: 🤗 Transformers에 기여하는 방법 - local: add_new_model title: 🤗 Transformers에 새로운 모델을 추가하는 방법 - local: add_tensorflow_model title: 어떻게 🤗 Transformers 모델을 TensorFlow로 변환하나요? - local: add_new_pipeline title: 어떻게 🤗 Transformers에 파이프라인을 추가하나요? - local: testing title: 테스트 - local: pr_checks title: Pull Request에 대한 검사 title: (번역중) 기여하기 - sections: - local: philosophy title: 이념과 목표 - local: in_translation title: (번역중) Glossary - local: task_summary title: 🤗 Transformers로 할 수 있는 작업 - local: tasks_explained title: 🤗 Transformers로 작업을 해결하는 방법 - local: model_summary title: Transformer 모델군 - local: tokenizer_summary title: 토크나이저 요약 - local: attention title: 어텐션 매커니즘 - local: pad_truncation title: 패딩과 잘라내기 - local: bertology title: BERTology - local: perplexity title: 고정 길이 모델의 펄플렉서티(Perplexity) - local: pipeline_webserver title: 추론 웹 서버를 위한 파이프라인 - local: model_memory_anatomy title: 모델 학습 해부하기 title: (번역중) 개념 가이드 - sections: - sections: - local: in_translation title: (번역중) Auto Classes - local: in_translation title: (번역중) Callbacks - local: in_translation title: (번역중) Configuration - local: in_translation title: (번역중) Data Collator - local: in_translation title: (번역중) Keras callbacks - local: in_translation title: (번역중) Logging - local: in_translation title: (번역중) Models - local: in_translation title: (번역중) Text Generation - local: in_translation title: (번역중) ONNX - local: in_translation title: (번역중) Optimization - local: in_translation title: (번역중) Model outputs - local: in_translation title: (번역중) Pipelines - local: in_translation title: (번역중) Processors - local: in_translation title: (번역중) Quantization - local: in_translation title: (번역중) Tokenizer - local: in_translation title: (번역중) Trainer - local: in_translation title: (번역중) DeepSpeed Integration - local: in_translation title: (번역중) Feature Extractor - local: in_translation title: (번역중) Image Processor title: (번역중) 메인 클래스 - sections: - isExpanded: false sections: - local: in_translation title: (번역중) ALBERT - local: in_translation title: (번역중) BART - local: in_translation title: (번역중) BARThez - local: in_translation title: (번역중) BARTpho - local: in_translation title: (번역중) BERT - local: in_translation title: (번역중) BertGeneration - local: in_translation title: (번역중) BertJapanese - local: in_translation title: (번역중) Bertweet - local: in_translation title: (번역중) BigBird - local: in_translation title: (번역중) BigBirdPegasus - local: in_translation title: (번역중) BioGpt - local: in_translation title: (번역중) Blenderbot - local: in_translation title: (번역중) Blenderbot Small - local: in_translation title: (번역중) BLOOM - local: in_translation title: (번역중) BORT - local: in_translation title: (번역중) ByT5 - local: in_translation title: (번역중) CamemBERT - local: in_translation title: (번역중) CANINE - local: in_translation title: (번역중) CodeGen - local: in_translation title: (번역중) ConvBERT - local: in_translation title: (번역중) CPM - local: in_translation title: (번역중) CPMANT - local: in_translation title: (번역중) CTRL - local: in_translation title: (번역중) DeBERTa - local: in_translation title: (번역중) DeBERTa-v2 - local: in_translation title: (번역중) DialoGPT - local: in_translation title: (번역중) DistilBERT - local: in_translation title: (번역중) DPR - local: in_translation title: (번역중) ELECTRA - local: in_translation title: (번역중) Encoder Decoder Models - local: in_translation title: (번역중) ERNIE - local: in_translation title: (번역중) ErnieM - local: in_translation title: (번역중) ESM - local: in_translation title: (번역중) FLAN-T5 - local: in_translation title: (번역중) FLAN-UL2 - local: in_translation title: (번역중) FlauBERT - local: in_translation title: (번역중) FNet - local: in_translation title: (번역중) FSMT - local: in_translation title: (번역중) Funnel Transformer - local: in_translation title: (번역중) GPT - local: in_translation title: (번역중) GPT Neo - local: in_translation title: (번역중) GPT NeoX - local: in_translation title: (번역중) GPT NeoX Japanese - local: in_translation title: (번역중) GPT-J - local: in_translation title: (번역중) GPT2 - local: in_translation title: (번역중) GPTBigCode - local: in_translation title: (번역중) GPTSAN Japanese - local: in_translation title: (번역중) GPTSw3 - local: in_translation title: (번역중) HerBERT - local: in_translation title: (번역중) I-BERT - local: in_translation title: (번역중) Jukebox - local: in_translation title: (번역중) LED - local: model_doc/llama title: LLaMA - local: model_doc/llama2 title: LLaMA2 - local: in_translation title: (번역중) Longformer - local: in_translation title: (번역중) LongT5 - local: in_translation title: (번역중) LUKE - local: in_translation title: (번역중) M2M100 - local: in_translation title: (번역중) MarianMT - local: in_translation title: (번역중) MarkupLM - local: in_translation title: (번역중) MBart and MBart-50 - local: in_translation title: (번역중) MEGA - local: in_translation title: (번역중) MegatronBERT - local: in_translation title: (번역중) MegatronGPT2 - local: in_translation title: (번역중) mLUKE - local: in_translation title: (번역중) MobileBERT - local: in_translation title: (번역중) MPNet - local: in_translation title: (번역중) MT5 - local: in_translation title: (번역중) MVP - local: in_translation title: (번역중) NEZHA - local: in_translation title: (번역중) NLLB - local: in_translation title: (번역중) NLLB-MoE - local: in_translation title: (번역중) Nyströmformer - local: in_translation title: (번역중) Open-Llama - local: in_translation title: (번역중) OPT - local: in_translation title: (번역중) Pegasus - local: in_translation title: (번역중) PEGASUS-X - local: in_translation title: (번역중) PhoBERT - local: in_translation title: (번역중) PLBart - local: in_translation title: (번역중) ProphetNet - local: in_translation title: (번역중) QDQBert - local: in_translation title: (번역중) RAG - local: in_translation title: (번역중) REALM - local: in_translation title: (번역중) Reformer - local: in_translation title: (번역중) RemBERT - local: in_translation title: (번역중) RetriBERT - local: in_translation title: (번역중) RoBERTa - local: in_translation title: (번역중) RoBERTa-PreLayerNorm - local: in_translation title: (번역중) RoCBert - local: in_translation title: (번역중) RoFormer - local: in_translation title: (번역중) Splinter - local: in_translation title: (번역중) SqueezeBERT - local: in_translation title: (번역중) SwitchTransformers - local: in_translation title: (번역중) T5 - local: in_translation title: (번역중) T5v1.1 - local: in_translation title: (번역중) TAPEX - local: in_translation title: (번역중) Transformer XL - local: in_translation title: (번역중) UL2 - local: in_translation title: (번역중) X-MOD - local: in_translation title: (번역중) XGLM - local: in_translation title: (번역중) XLM - local: in_translation title: (번역중) XLM-ProphetNet - local: in_translation title: (번역중) XLM-RoBERTa - local: in_translation title: (번역중) XLM-RoBERTa-XL - local: in_translation title: (번역중) XLM-V - local: in_translation title: (번역중) XLNet - local: in_translation title: (번역중) YOSO title: (번역중) 텍스트 모델 - isExpanded: false sections: - local: in_translation title: (번역중) BEiT - local: in_translation title: (번역중) BiT - local: in_translation title: (번역중) Conditional DETR - local: in_translation title: (번역중) ConvNeXT - local: in_translation title: (번역중) ConvNeXTV2 - local: in_translation title: (번역중) CvT - local: in_translation title: (번역중) Deformable DETR - local: in_translation title: (번역중) DeiT - local: in_translation title: (번역중) DETA - local: in_translation title: (번역중) DETR - local: in_translation title: (번역중) DiNAT - local: in_translation title: (번역중) DiT - local: in_translation title: (번역중) DPT - local: in_translation title: (번역중) EfficientFormer - local: in_translation title: (번역중) EfficientNet - local: in_translation title: (번역중) FocalNet - local: in_translation title: (번역중) GLPN - local: in_translation title: (번역중) ImageGPT - local: in_translation title: (번역중) LeViT - local: in_translation title: (번역중) Mask2Former - local: in_translation title: (번역중) MaskFormer - local: in_translation title: (번역중) MobileNetV1 - local: in_translation title: (번역중) MobileNetV2 - local: in_translation title: (번역중) MobileViT - local: in_translation title: (번역중) NAT - local: in_translation title: (번역중) PoolFormer - local: in_translation title: (번역중) RegNet - local: in_translation title: (번역중) ResNet - local: in_translation title: (번역중) SegFormer - local: in_translation title: (번역중) Swin Transformer - local: in_translation title: (번역중) Swin Transformer V2 - local: in_translation title: (번역중) Swin2SR - local: in_translation title: (번역중) Table Transformer - local: in_translation title: (번역중) TimeSformer - local: in_translation title: (번역중) UperNet - local: in_translation title: (번역중) VAN - local: in_translation title: (번역중) VideoMAE - local: in_translation title: (번역중) Vision Transformer (ViT) - local: in_translation title: (번역중) ViT Hybrid - local: in_translation title: (번역중) ViTMAE - local: in_translation title: (번역중) ViTMSN - local: in_translation title: (번역중) YOLOS title: (번역중) 비전 모델 - isExpanded: false sections: - local: in_translation title: (번역중) Audio Spectrogram Transformer - local: in_translation title: (번역중) CLAP - local: in_translation title: (번역중) Hubert - local: in_translation title: (번역중) MCTCT - local: in_translation title: (번역중) SEW - local: in_translation title: (번역중) SEW-D - local: in_translation title: (번역중) Speech2Text - local: in_translation title: (번역중) Speech2Text2 - local: in_translation title: (번역중) SpeechT5 - local: in_translation title: (번역중) UniSpeech - local: in_translation title: (번역중) UniSpeech-SAT - local: in_translation title: (번역중) Wav2Vec2 - local: in_translation title: (번역중) Wav2Vec2-Conformer - local: in_translation title: (번역중) Wav2Vec2Phoneme - local: in_translation title: (번역중) WavLM - local: model_doc/whisper title: Whisper - local: in_translation title: (번역중) XLS-R - local: in_translation title: (번역중) XLSR-Wav2Vec2 title: (번역중) 오디오 모델 - isExpanded: false sections: - local: in_translation title: (번역중) ALIGN - local: in_translation title: (번역중) AltCLIP - local: in_translation title: (번역중) BLIP - local: in_translation title: (번역중) BLIP-2 - local: in_translation title: (번역중) BridgeTower - local: in_translation title: (번역중) Chinese-CLIP - local: in_translation title: (번역중) CLIP - local: in_translation title: (번역중) CLIPSeg - local: in_translation title: (번역중) Data2Vec - local: in_translation title: (번역중) DePlot - local: in_translation title: (번역중) Donut - local: in_translation title: (번역중) FLAVA - local: in_translation title: (번역중) GIT - local: in_translation title: (번역중) GroupViT - local: in_translation title: (번역중) LayoutLM - local: in_translation title: (번역중) LayoutLMV2 - local: in_translation title: (번역중) LayoutLMV3 - local: in_translation title: (번역중) LayoutXLM - local: in_translation title: (번역중) LiLT - local: in_translation title: (번역중) LXMERT - local: in_translation title: (번역중) MatCha - local: in_translation title: (번역중) MGP-STR - local: in_translation title: (번역중) OneFormer - local: in_translation title: (번역중) OWL-ViT - local: in_translation title: (번역중) Perceiver - local: in_translation title: (번역중) Pix2Struct - local: in_translation title: (번역중) Segment Anything - local: in_translation title: (번역중) Speech Encoder Decoder Models - local: in_translation title: (번역중) TAPAS - local: in_translation title: (번역중) TrOCR - local: in_translation title: (번역중) TVLT - local: in_translation title: (번역중) ViLT - local: in_translation title: (번역중) Vision Encoder Decoder Models - local: in_translation title: (번역중) Vision Text Dual Encoder - local: in_translation title: (번역중) VisualBERT - local: in_translation title: (번역중) X-CLIP title: (번역중) 멀티모달 모델 - isExpanded: false sections: - local: in_translation title: (번역중) Decision Transformer - local: in_translation title: (번역중) Trajectory Transformer title: (번역중) 강화학습 모델 - isExpanded: false sections: - local: in_translation title: (번역중) Informer - local: in_translation title: (번역중) Time Series Transformer title: (번역중) 시계열 모델 - isExpanded: false sections: - local: in_translation title: (번역중) Graphormer title: (번역중) Graph models title: (번역중) 모델 - sections: - local: in_translation title: (번역중) Custom Layers and Utilities - local: in_translation title: (번역중) Utilities for pipelines - local: in_translation title: (번역중) Utilities for Tokenizers - local: in_translation title: (번역중) Utilities for Trainer - local: in_translation title: (번역중) Utilities for Generation - local: in_translation title: (번역중) Utilities for Image Processors - local: in_translation title: (번역중) Utilities for Audio processing - local: in_translation title: (번역중) General Utilities - local: in_translation title: (번역중) Utilities for Time Series title: (번역중) Internal Helpers title: (번역중) API
transformers/docs/source/ko/_toctree.yml/0
{ "file_path": "transformers/docs/source/ko/_toctree.yml", "repo_id": "transformers", "token_count": 12618 }
28
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Trainer API를 사용한 하이퍼파라미터 탐색 [[hyperparameter-search-using-trainer-api]] 🤗 Transformers에서는 🤗 Transformers 모델을 학습시키는데 최적화된 [`Trainer`] 클래스를 제공하기 때문에, 사용자는 직접 훈련 루프를 작성할 필요 없이 더욱 간편하게 학습을 시킬 수 있습니다. 또한, [`Trainer`]는 하이퍼파라미터 탐색을 위한 API를 제공합니다. 이 문서에서 이 API를 활용하는 방법을 예시와 함께 보여드리겠습니다. ## 하이퍼파라미터 탐색 백엔드 [[hyperparameter-search-backend]] [`Trainer`]는 현재 아래 4가지 하이퍼파라미터 탐색 백엔드를 지원합니다: [optuna](https://optuna.org/)와 [sigopt](https://sigopt.com/), [raytune](https://docs.ray.io/en/latest/tune/index.html), [wandb](https://wandb.ai/site/sweeps) 입니다. 하이퍼파라미터 탐색 백엔드로 사용하기 전에 아래의 명령어를 사용하여 라이브러리들을 설치하세요. ```bash pip install optuna/sigopt/wandb/ray[tune] ``` ## 예제에서 하이퍼파라미터 탐색을 활성화하는 방법 [[how-to-enable-hyperparameter-search-in-example]] 하이퍼파라미터 탐색 공간을 정의하세요. 하이퍼파라미터 탐색 백엔드마다 서로 다른 형식이 필요합니다. sigopt의 경우, 해당 [object_parameter](https://docs.sigopt.com/ai-module-api-references/api_reference/objects/object_parameter) 문서를 참조하여 아래와 같이 작성하세요: ```py >>> def sigopt_hp_space(trial): ... return [ ... {"bounds": {"min": 1e-6, "max": 1e-4}, "name": "learning_rate", "type": "double"}, ... { ... "categorical_values": ["16", "32", "64", "128"], ... "name": "per_device_train_batch_size", ... "type": "categorical", ... }, ... ] ``` optuna의 경우, 해당 [object_parameter](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html#sphx-glr-tutorial-10-key-features-002-configurations-py) 문서를 참조하여 아래와 같이 작성하세요: ```py >>> def optuna_hp_space(trial): ... return { ... "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True), ... "per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [16, 32, 64, 128]), ... } ``` raytune의 경우, 해당 [object_parameter](https://docs.ray.io/en/latest/tune/api/search_space.html) 문서를 참조하여 아래와 같이 작성하세요: ```py >>> def ray_hp_space(trial): ... return { ... "learning_rate": tune.loguniform(1e-6, 1e-4), ... "per_device_train_batch_size": tune.choice([16, 32, 64, 128]), ... } ``` wandb의 경우, 해당 [object_parameter](https://docs.wandb.ai/guides/sweeps/configuration) 문서를 참조하여 아래와 같이 작성하세요: ```py >>> def wandb_hp_space(trial): ... return { ... "method": "random", ... "metric": {"name": "objective", "goal": "minimize"}, ... "parameters": { ... "learning_rate": {"distribution": "uniform", "min": 1e-6, "max": 1e-4}, ... "per_device_train_batch_size": {"values": [16, 32, 64, 128]}, ... }, ... } ``` `model_init` 함수를 정의하고 이를 [`Trainer`]에 전달하세요. 아래는 그 예시입니다. ```py >>> def model_init(trial): ... return AutoModelForSequenceClassification.from_pretrained( ... model_args.model_name_or_path, ... from_tf=bool(".ckpt" in model_args.model_name_or_path), ... config=config, ... cache_dir=model_args.cache_dir, ... revision=model_args.model_revision, ... token=True if model_args.use_auth_token else None, ... ) ``` 아래와 같이 `model_init` 함수, 훈련 인수, 훈련 및 테스트 데이터셋, 그리고 평가 함수를 사용하여 [`Trainer`]를 생성하세요: ```py >>> trainer = Trainer( ... model=None, ... args=training_args, ... train_dataset=small_train_dataset, ... eval_dataset=small_eval_dataset, ... compute_metrics=compute_metrics, ... tokenizer=tokenizer, ... model_init=model_init, ... data_collator=data_collator, ... ) ``` 하이퍼파라미터 탐색을 호출하고, 최적의 시험 매개변수를 가져오세요. 백엔드는 `"optuna"`/`"sigopt"`/`"wandb"`/`"ray"` 중에서 선택할 수 있습니다. 방향은 `"minimize"` 또는 `"maximize"` 중 선택하며, 목표를 최소화할 것인지 최대화할 것인지를 결정합니다. 자신만의 compute_objective 함수를 정의할 수 있습니다. 만약 이 함수를 정의하지 않으면, 기본 compute_objective가 호출되고, f1과 같은 평가 지표의 합이 목푯값으로 반환됩니다. ```py >>> best_trial = trainer.hyperparameter_search( ... direction="maximize", ... backend="optuna", ... hp_space=optuna_hp_space, ... n_trials=20, ... compute_objective=compute_objective, ... ) ``` ## DDP 미세 조정을 위한 하이퍼파라미터 탐색 [[hyperparameter-search-for-ddp-finetune]] 현재, DDP(Distributed Data Parallelism; 분산 데이터 병렬처리)를 위한 하이퍼파라미터 탐색은 optuna와 sigopt에서 가능합니다. 최상위 프로세스가 하이퍼파라미터 탐색 과정을 시작하고 그 결과를 다른 프로세스에 전달합니다.
transformers/docs/source/ko/hpo_train.md/0
{ "file_path": "transformers/docs/source/ko/hpo_train.md", "repo_id": "transformers", "token_count": 3520 }
29
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # ONNX로 내보내기 [[export-to-onnx]] 🤗 Transformers 모델을 제품 환경에서 배포하기 위해서는 모델을 직렬화된 형식으로 내보내고 특정 런타임과 하드웨어에서 로드하고 실행할 수 있으면 유용합니다. 🤗 Optimum은 Transformers의 확장으로, PyTorch 또는 TensorFlow에서 모델을 ONNX와 TFLite와 같은 직렬화된 형식으로 내보낼 수 있도록 하는 `exporters` 모듈을 통해 제공됩니다. 🤗 Optimum은 또한 성능 최적화 도구 세트를 제공하여 특정 하드웨어에서 모델을 훈련하고 실행할 때 최대 효율성을 달성할 수 있습니다. 이 안내서는 🤗 Optimum을 사용하여 🤗 Transformers 모델을 ONNX로 내보내는 방법을 보여줍니다. TFLite로 모델을 내보내는 안내서는 [TFLite로 내보내기 페이지](tflite)를 참조하세요. ## ONNX로 내보내기 [[export-to-onnx]] [ONNX (Open Neural Network eXchange)](http://onnx.ai)는 PyTorch와 TensorFlow를 포함한 다양한 프레임워크에서 심층 학습 모델을 나타내는 데 사용되는 공통 연산자 세트와 공통 파일 형식을 정의하는 오픈 표준입니다. 모델이 ONNX 형식으로 내보내지면 이러한 연산자를 사용하여 신경망을 통해 데이터가 흐르는 흐름을 나타내는 계산 그래프(일반적으로 _중간 표현_이라고 함)가 구성됩니다. 표준화된 연산자와 데이터 유형을 가진 그래프를 노출함으로써, ONNX는 프레임워크 간에 쉽게 전환할 수 있습니다. 예를 들어, PyTorch에서 훈련된 모델을 ONNX 형식으로 내보내고 TensorFlow에서 가져올 수 있습니다(그 반대도 가능합니다). ONNX 형식으로 내보낸 모델은 다음과 같이 사용할 수 있습니다: - [그래프 최적화](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/optimization) 및 [양자화](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/quantization)와 같은 기법을 사용하여 추론을 위해 최적화됩니다. - ONNX Runtime을 통해 실행할 수 있습니다. [`ORTModelForXXX` 클래스들](https://huggingface.co/docs/optimum/onnxruntime/package_reference/modeling_ort)을 통해 동일한 `AutoModel` API를 따릅니다. 이 API는 🤗 Transformers에서 사용하는 것과 동일합니다. - [최적화된 추론 파이프라인](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/pipelines)을 사용할 수 있습니다. 이는 🤗 Transformers의 [`pipeline`] 함수와 동일한 API를 가지고 있습니다. 🤗 Optimum은 구성 객체를 활용하여 ONNX 내보내기를 지원합니다. 이러한 구성 객체는 여러 모델 아키텍처에 대해 미리 준비되어 있으며 다른 아키텍처에 쉽게 확장할 수 있도록 설계되었습니다. 미리 준비된 구성 목록은 [🤗 Optimum 문서](https://huggingface.co/docs/optimum/exporters/onnx/overview)를 참조하세요. 🤗 Transformers 모델을 ONNX로 내보내는 두 가지 방법이 있습니다. 여기에서 두 가지 방법을 모두 보여줍니다: - 🤗 Optimum을 사용하여 CLI로 내보내기 - `optimum.onnxruntime`을 사용하여 🤗 Optimum으로 ONNX로 내보내기 ### CLI를 사용하여 🤗 Transformers 모델을 ONNX로 내보내기 [[exporting-a-transformers-model-to-onnx-with-cli]] 🤗 Transformers 모델을 ONNX로 내보내려면 먼저 추가 종속성을 설치하세요: ```bash pip install optimum[exporters] ``` 사용 가능한 모든 인수를 확인하려면 [🤗 Optimum 문서](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/export_a_model#exporting-a-model-to-onnx-using-the-cli)를 참조하거나 명령줄에서 도움말을 보세요. ```bash optimum-cli export onnx --help ``` 예를 들어, 🤗 Hub에서 `distilbert/distilbert-base-uncased-distilled-squad`와 같은 모델의 체크포인트를 내보내려면 다음 명령을 실행하세요: ```bash optimum-cli export onnx --model distilbert/distilbert-base-uncased-distilled-squad distilbert_base_uncased_squad_onnx/ ``` 위와 같이 진행 상황을 나타내는 로그가 표시되고 결과인 `model.onnx`가 저장된 위치가 표시됩니다. ```bash Validating ONNX model distilbert_base_uncased_squad_onnx/model.onnx... -[✓] ONNX model output names match reference model (start_logits, end_logits) - Validating ONNX Model output "start_logits": -[✓] (2, 16) matches (2, 16) -[✓] all values close (atol: 0.0001) - Validating ONNX Model output "end_logits": -[✓] (2, 16) matches (2, 16) -[✓] all values close (atol: 0.0001) The ONNX export succeeded and the exported model was saved at: distilbert_base_uncased_squad_onnx ``` 위의 예제는 🤗 Hub에서 체크포인트를 내보내는 것을 설명합니다. 로컬 모델을 내보낼 때에는 모델의 가중치와 토크나이저 파일을 동일한 디렉토리(`local_path`)에 저장했는지 확인하세요. CLI를 사용할 때에는 🤗 Hub의 체크포인트 이름 대신 `model` 인수에 `local_path`를 전달하고 `--task` 인수를 제공하세요. 지원되는 작업의 목록은 [🤗 Optimum 문서](https://huggingface.co/docs/optimum/exporters/task_manager)를 참조하세요. `task` 인수가 제공되지 않으면 작업에 특화된 헤드 없이 모델 아키텍처로 기본 설정됩니다. ```bash optimum-cli export onnx --model local_path --task question-answering distilbert_base_uncased_squad_onnx/ ``` 그 결과로 생성된 `model.onnx` 파일은 ONNX 표준을 지원하는 많은 [가속기](https://onnx.ai/supported-tools.html#deployModel) 중 하나에서 실행할 수 있습니다. 예를 들어, [ONNX Runtime](https://onnxruntime.ai/)을 사용하여 모델을 로드하고 실행할 수 있습니다: ```python >>> from transformers import AutoTokenizer >>> from optimum.onnxruntime import ORTModelForQuestionAnswering >>> tokenizer = AutoTokenizer.from_pretrained("distilbert_base_uncased_squad_onnx") >>> model = ORTModelForQuestionAnswering.from_pretrained("distilbert_base_uncased_squad_onnx") >>> inputs = tokenizer("What am I using?", "Using DistilBERT with ONNX Runtime!", return_tensors="pt") >>> outputs = model(**inputs) ``` Hub의 TensorFlow 체크포인트에 대해서도 동일한 프로세스가 적용됩니다. 예를 들어, [Keras organization](https://huggingface.co/keras-io)에서 순수한 TensorFlow 체크포인트를 내보내는 방법은 다음과 같습니다: ```bash optimum-cli export onnx --model keras-io/transformers-qa distilbert_base_cased_squad_onnx/ ``` ### `optimum.onnxruntime`을 사용하여 🤗 Transformers 모델을 ONNX로 내보내기 [[exporting-a-transformers-model-to-onnx-with-optimumonnxruntime]] CLI 대신에 `optimum.onnxruntime`을 사용하여 프로그래밍 방식으로 🤗 Transformers 모델을 ONNX로 내보낼 수도 있습니다. 다음과 같이 진행하세요: ```python >>> from optimum.onnxruntime import ORTModelForSequenceClassification >>> from transformers import AutoTokenizer >>> model_checkpoint = "distilbert_base_uncased_squad" >>> save_directory = "onnx/" >>> # Load a model from transformers and export it to ONNX >>> ort_model = ORTModelForSequenceClassification.from_pretrained(model_checkpoint, export=True) >>> tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) >>> # Save the onnx model and tokenizer >>> ort_model.save_pretrained(save_directory) >>> tokenizer.save_pretrained(save_directory) ``` ### 지원되지 않는 아키텍처의 모델 내보내기 [[exporting-a-model-for-an-unsupported-architecture]] 현재 내보낼 수 없는 모델을 지원하기 위해 기여하려면, 먼저 [`optimum.exporters.onnx`](https://huggingface.co/docs/optimum/exporters/onnx/overview)에서 지원되는지 확인한 후 지원되지 않는 경우에는 [🤗 Optimum에 기여](https://huggingface.co/docs/optimum/exporters/onnx/usage_guides/contribute)하세요. ### `transformers.onnx`를 사용하여 모델 내보내기 [[exporting-a-model-with-transformersonnx]] <Tip warning={true}> `tranformers.onnx`는 더 이상 유지되지 않습니다. 위에서 설명한 대로 🤗 Optimum을 사용하여 모델을 내보내세요. 이 섹션은 향후 버전에서 제거될 예정입니다. </Tip> 🤗 Transformers 모델을 ONNX로 내보내려면 추가 종속성을 설치하세요: ```bash pip install transformers[onnx] ``` `transformers.onnx` 패키지를 Python 모듈로 사용하여 준비된 구성을 사용하여 체크포인트를 내보냅니다: ```bash python -m transformers.onnx --model=distilbert/distilbert-base-uncased onnx/ ``` 이렇게 하면 `--model` 인수에 정의된 체크포인트의 ONNX 그래프가 내보내집니다. 🤗 Hub에서 제공하는 체크포인트나 로컬에 저장된 체크포인트를 전달할 수 있습니다. 결과로 생성된 `model.onnx` 파일은 ONNX 표준을 지원하는 많은 가속기 중 하나에서 실행할 수 있습니다. 예를 들어, 다음과 같이 ONNX Runtime을 사용하여 모델을 로드하고 실행할 수 있습니다: ```python >>> from transformers import AutoTokenizer >>> from onnxruntime import InferenceSession >>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased") >>> session = InferenceSession("onnx/model.onnx") >>> # ONNX Runtime expects NumPy arrays as input >>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np") >>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs)) ``` 필요한 출력 이름(예: `["last_hidden_state"]`)은 각 모델의 ONNX 구성을 확인하여 얻을 수 있습니다. 예를 들어, DistilBERT의 경우 다음과 같습니다: ```python >>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig >>> config = DistilBertConfig() >>> onnx_config = DistilBertOnnxConfig(config) >>> print(list(onnx_config.outputs.keys())) ["last_hidden_state"] ``` Hub의 TensorFlow 체크포인트에 대해서도 동일한 프로세스가 적용됩니다. 예를 들어, 다음과 같이 순수한 TensorFlow 체크포인트를 내보냅니다: ```bash python -m transformers.onnx --model=keras-io/transformers-qa onnx/ ``` 로컬에 저장된 모델을 내보내려면 모델의 가중치 파일과 토크나이저 파일을 동일한 디렉토리에 저장한 다음, transformers.onnx 패키지의 --model 인수를 원하는 디렉토리로 지정하여 ONNX로 내보냅니다: ```bash python -m transformers.onnx --model=local-pt-checkpoint onnx/ ```
transformers/docs/source/ko/serialization.md/0
{ "file_path": "transformers/docs/source/ko/serialization.md", "repo_id": "transformers", "token_count": 6886 }
30
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Classificação de tokens <Youtube id="wVHdVlPScxA"/> A classificação de tokens atribui um rótulo a tokens individuais em uma frase. Uma das tarefas de classificação de tokens mais comuns é o Reconhecimento de Entidade Nomeada, também chamada de NER (sigla em inglês para Named Entity Recognition). O NER tenta encontrar um rótulo para cada entidade em uma frase, como uma pessoa, local ou organização. Este guia mostrará como realizar o fine-tuning do [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) no conjunto de dados [WNUT 17](https://huggingface.co/datasets/wnut_17) para detectar novas entidades. <Tip> Consulte a [página de tarefas de classificação de tokens](https://huggingface.co/tasks/token-classification) para obter mais informações sobre outras formas de classificação de tokens e seus modelos, conjuntos de dados e métricas associadas. </Tip> ## Carregando o conjunto de dados WNUT 17 Carregue o conjunto de dados WNUT 17 da biblioteca 🤗 Datasets: ```py >>> from datasets import load_dataset >>> wnut = load_dataset("wnut_17") ``` E dê uma olhada em um exemplo: ```py >>> wnut["train"][0] {'id': '0', 'ner_tags': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0], 'tokens': ['@paulwalk', 'It', "'s", 'the', 'view', 'from', 'where', 'I', "'m", 'living', 'for', 'two', 'weeks', '.', 'Empire', 'State', 'Building', '=', 'ESB', '.', 'Pretty', 'bad', 'storm', 'here', 'last', 'evening', '.'] } ``` Cada número em `ner_tags` representa uma entidade. Converta o número em um rótulo para obter mais informações: ```py >>> label_list = wnut["train"].features[f"ner_tags"].feature.names >>> label_list [ "O", "B-corporation", "I-corporation", "B-creative-work", "I-creative-work", "B-group", "I-group", "B-location", "I-location", "B-person", "I-person", "B-product", "I-product", ] ``` O `ner_tag` descreve uma entidade, como uma organização, local ou pessoa. A letra que prefixa cada `ner_tag` indica a posição do token da entidade: - `B-` indica o início de uma entidade. - `I-` indica que um token está contido dentro da mesma entidade (por exemplo, o token `State` pode fazer parte de uma entidade como `Empire State Building`). - `0` indica que o token não corresponde a nenhuma entidade. ## Pré-processamento <Youtube id="iY2AZYdZAr0"/> Carregue o tokenizer do DistilBERT para processar os `tokens`: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased") ``` Como a entrada já foi dividida em palavras, defina `is_split_into_words=True` para tokenizar as palavras em subpalavras: ```py >>> tokenized_input = tokenizer(example["tokens"], is_split_into_words=True) >>> tokens = tokenizer.convert_ids_to_tokens(tokenized_input["input_ids"]) >>> tokens ['[CLS]', '@', 'paul', '##walk', 'it', "'", 's', 'the', 'view', 'from', 'where', 'i', "'", 'm', 'living', 'for', 'two', 'weeks', '.', 'empire', 'state', 'building', '=', 'es', '##b', '.', 'pretty', 'bad', 'storm', 'here', 'last', 'evening', '.', '[SEP]'] ``` Ao adicionar os tokens especiais `[CLS]` e `[SEP]` e a tokenização de subpalavras uma incompatibilidade é gerada entre a entrada e os rótulos. Uma única palavra correspondente a um único rótulo pode ser dividida em duas subpalavras. Você precisará realinhar os tokens e os rótulos da seguinte forma: 1. Mapeie todos os tokens para a palavra correspondente com o método [`word_ids`](https://huggingface.co/docs/tokenizers/python/latest/api/reference.html#tokenizers.Encoding.word_ids). 2. Atribuindo o rótulo `-100` aos tokens especiais `[CLS]` e `[SEP]` para que a função de loss do PyTorch ignore eles. 3. Rotular apenas o primeiro token de uma determinada palavra. Atribuindo `-100` a outros subtokens da mesma palavra. Aqui está como você pode criar uma função para realinhar os tokens e rótulos e truncar sequências para não serem maiores que o comprimento máximo de entrada do DistilBERT: ```py >>> def tokenize_and_align_labels(examples): ... tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True) ... labels = [] ... for i, label in enumerate(examples[f"ner_tags"]): ... word_ids = tokenized_inputs.word_ids(batch_index=i) # Map tokens to their respective word. ... previous_word_idx = None ... label_ids = [] ... for word_idx in word_ids: # Set the special tokens to -100. ... if word_idx is None: ... label_ids.append(-100) ... elif word_idx != previous_word_idx: # Only label the first token of a given word. ... label_ids.append(label[word_idx]) ... else: ... label_ids.append(-100) ... previous_word_idx = word_idx ... labels.append(label_ids) ... tokenized_inputs["labels"] = labels ... return tokenized_inputs ``` Use a função [`map`](https://huggingface.co/docs/datasets/process#map) do 🤗 Datasets para tokenizar e alinhar os rótulos em todo o conjunto de dados. Você pode acelerar a função `map` configurando `batched=True` para processar vários elementos do conjunto de dados de uma só vez: ```py >>> tokenized_wnut = wnut.map(tokenize_and_align_labels, batched=True) ``` Use o [`DataCollatorForTokenClassification`] para criar um batch de exemplos. Ele também *preencherá dinamicamente* seu texto e rótulos para o comprimento do elemento mais longo em seu batch, para que tenham um comprimento uniforme. Embora seja possível preencher seu texto na função `tokenizer` configurando `padding=True`, o preenchimento dinâmico é mais eficiente. <frameworkcontent> <pt> ```py >>> from transformers import DataCollatorForTokenClassification >>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer) ``` </pt> <tf> ```py >>> from transformers import DataCollatorForTokenClassification >>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer, return_tensors="tf") ``` </tf> </frameworkcontent> ## Treinamento <frameworkcontent> <pt> Carregue o DistilBERT com o [`AutoModelForTokenClassification`] junto com o número de rótulos esperados: ```py >>> from transformers import AutoModelForTokenClassification, TrainingArguments, Trainer >>> model = AutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased", num_labels=14) ``` <Tip> Se você não estiver familiarizado com o fine-tuning de um modelo com o [`Trainer`], dê uma olhada no tutorial básico [aqui](../training#finetune-with-trainer)! </Tip> Nesse ponto, restam apenas três passos: 1. Definir seus hiperparâmetros de treinamento em [`TrainingArguments`]. 2. Passar os argumentos de treinamento para o [`Trainer`] junto com o modelo, conjunto de dados, tokenizador e o data collator. 3. Chamar a função [`~Trainer.train`] para executar o fine-tuning do seu modelo. ```py >>> training_args = TrainingArguments( ... output_dir="./results", ... evaluation_strategy="epoch", ... learning_rate=2e-5, ... per_device_train_batch_size=16, ... per_device_eval_batch_size=16, ... num_train_epochs=3, ... weight_decay=0.01, ... ) >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=tokenized_wnut["train"], ... eval_dataset=tokenized_wnut["test"], ... tokenizer=tokenizer, ... data_collator=data_collator, ... ) >>> trainer.train() ``` </pt> <tf> Para executar o fine-tuning de um modelo no TensorFlow, comece convertendo seu conjunto de dados para o formato `tf.data.Dataset` com [`to_tf_dataset`](https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.to_tf_dataset). Nessa execução você deverá especificar as entradas e rótulos (no parâmetro `columns`), se deseja embaralhar o conjunto de dados, o tamanho do batch e o data collator: ```py >>> tf_train_set = tokenized_wnut["train"].to_tf_dataset( ... columns=["attention_mask", "input_ids", "labels"], ... shuffle=True, ... batch_size=16, ... collate_fn=data_collator, ... ) >>> tf_validation_set = tokenized_wnut["validation"].to_tf_dataset( ... columns=["attention_mask", "input_ids", "labels"], ... shuffle=False, ... batch_size=16, ... collate_fn=data_collator, ... ) ``` <Tip> Se você não estiver familiarizado com o fine-tuning de um modelo com o Keras, dê uma olhada no tutorial básico [aqui](training#finetune-with-keras)! </Tip> Configure o otimizador e alguns hiperparâmetros de treinamento: ```py >>> from transformers import create_optimizer >>> batch_size = 16 >>> num_train_epochs = 3 >>> num_train_steps = (len(tokenized_wnut["train"]) // batch_size) * num_train_epochs >>> optimizer, lr_schedule = create_optimizer( ... init_lr=2e-5, ... num_train_steps=num_train_steps, ... weight_decay_rate=0.01, ... num_warmup_steps=0, ... ) ``` Carregue o DistilBERT com o [`TFAutoModelForTokenClassification`] junto com o número de rótulos esperados: ```py >>> from transformers import TFAutoModelForTokenClassification >>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased", num_labels=2) ``` Configure o modelo para treinamento com o método [`compile`](https://keras.io/api/models/model_training_apis/#compile-method): ```py >>> import tensorflow as tf >>> model.compile(optimizer=optimizer) ``` Chame o método [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) para executar o fine-tuning do modelo: ```py >>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=3) ``` </tf> </frameworkcontent> <Tip> Para obter um exemplo mais aprofundado de como executar o fine-tuning de um modelo para classificação de tokens, dê uma olhada nesse [notebook utilizando PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb) ou nesse [notebook utilizando TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb). </Tip>
transformers/docs/source/pt/tasks/token_classification.md/0
{ "file_path": "transformers/docs/source/pt/tasks/token_classification.md", "repo_id": "transformers", "token_count": 4235 }
31
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 使用Trainer API进行超参数搜索 🤗 Transformers库提供了一个优化过的[`Trainer`]类,用于训练🤗 Transformers模型,相比于手动编写自己的训练循环,这更容易开始训练。[`Trainer`]提供了超参数搜索的API。本文档展示了如何在示例中启用它。 ## 超参数搜索后端 [`Trainer`] 目前支持四种超参数搜索后端:[optuna](https://optuna.org/),[sigopt](https://sigopt.com/),[raytune](https://docs.ray.io/en/latest/tune/index.html),[wandb](https://wandb.ai/site/sweeps) 在使用它们之前,您应该先安装它们作为超参数搜索后端。 ```bash pip install optuna/sigopt/wandb/ray[tune] ``` ## 如何在示例中启用超参数搜索 定义超参数搜索空间,不同的后端需要不同的格式。 对于sigopt,请参阅sigopt [object_parameter](https://docs.sigopt.com/ai-module-api-references/api_reference/objects/object_parameter),它类似于以下内容: ```py >>> def sigopt_hp_space(trial): ... return [ ... {"bounds": {"min": 1e-6, "max": 1e-4}, "name": "learning_rate", "type": "double"}, ... { ... "categorical_values": ["16", "32", "64", "128"], ... "name": "per_device_train_batch_size", ... "type": "categorical", ... }, ... ] ``` 对于optuna,请参阅optuna [object_parameter](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html#sphx-glr-tutorial-10-key-features-002-configurations-py),它类似于以下内容: ```py >>> def optuna_hp_space(trial): ... return { ... "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True), ... "per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [16, 32, 64, 128]), ... } ``` Optuna提供了多目标HPO。您可以在`hyperparameter_search`中传递`direction`参数,并定义自己的`compute_objective`以返回多个目标值。在`hyperparameter_search`中将返回Pareto Front(`List[BestRun]`),您应该参考[test_trainer](https://github.com/huggingface/transformers/blob/main/tests/trainer/test_trainer.py)中的测试用例`TrainerHyperParameterMultiObjectOptunaIntegrationTest`。它类似于以下内容: ```py >>> best_trials = trainer.hyperparameter_search( ... direction=["minimize", "maximize"], ... backend="optuna", ... hp_space=optuna_hp_space, ... n_trials=20, ... compute_objective=compute_objective, ... ) ``` 对于raytune,可以参考raytune的[object_parameter](https://docs.ray.io/en/latest/tune/api/search_space.html),它类似于以下内容: ```py >>> def ray_hp_space(trial): ... return { ... "learning_rate": tune.loguniform(1e-6, 1e-4), ... "per_device_train_batch_size": tune.choice([16, 32, 64, 128]), ... } ``` 对于wandb,可以参考wandb的[object_parameter](https://docs.wandb.ai/guides/sweeps/configuration),它类似于以下内容: ```py >>> def wandb_hp_space(trial): ... return { ... "method": "random", ... "metric": {"name": "objective", "goal": "minimize"}, ... "parameters": { ... "learning_rate": {"distribution": "uniform", "min": 1e-6, "max": 1e-4}, ... "per_device_train_batch_size": {"values": [16, 32, 64, 128]}, ... }, ... } ``` 定义一个`model_init`函数并将其传递给[Trainer],作为示例: ```py >>> def model_init(trial): ... return AutoModelForSequenceClassification.from_pretrained( ... model_args.model_name_or_path, ... from_tf=bool(".ckpt" in model_args.model_name_or_path), ... config=config, ... cache_dir=model_args.cache_dir, ... revision=model_args.model_revision, ... use_auth_token=True if model_args.use_auth_token else None, ... ) ``` 使用你的`model_init`函数、训练参数、训练和测试数据集以及评估函数创建一个[`Trainer`]。 ```py >>> trainer = Trainer( ... model=None, ... args=training_args, ... train_dataset=small_train_dataset, ... eval_dataset=small_eval_dataset, ... compute_metrics=compute_metrics, ... tokenizer=tokenizer, ... model_init=model_init, ... data_collator=data_collator, ... ) ``` 调用超参数搜索,获取最佳试验参数,后端可以是`"optuna"`/`"sigopt"`/`"wandb"`/`"ray"`。方向可以是`"minimize"`或`"maximize"`,表示是否优化更大或更低的目标。 您可以定义自己的compute_objective函数,如果没有定义,将调用默认的compute_objective,并将评估指标(如f1)之和作为目标值返回。 ```py >>> best_trial = trainer.hyperparameter_search( ... direction="maximize", ... backend="optuna", ... hp_space=optuna_hp_space, ... n_trials=20, ... compute_objective=compute_objective, ... ) ``` ## 针对DDP微调的超参数搜索 目前,Optuna和Sigopt已启用针对DDP的超参数搜索。只有rank-zero进程会进行超参数搜索并将参数传递给其他进程。
transformers/docs/source/zh/hpo_train.md/0
{ "file_path": "transformers/docs/source/zh/hpo_train.md", "repo_id": "transformers", "token_count": 2832 }
32
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 分享模型 最后两个教程展示了如何使用PyTorch、Keras和 🤗 Accelerate进行分布式设置来微调模型。下一步是将您的模型与社区分享!在Hugging Face,我们相信公开分享知识和资源,能实现人工智能的普及化,让每个人都能受益。我们鼓励您将您的模型与社区分享,以帮助他人节省时间和精力。 在本教程中,您将学习两种在[Model Hub](https://huggingface.co/models)上共享训练好的或微调的模型的方法: - 通过编程将文件推送到Hub。 - 使用Web界面将文件拖放到Hub。 <iframe width="560" height="315" src="https://www.youtube.com/embed/XvSGPZFEjDY" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> <Tip> 要与社区共享模型,您需要在[huggingface.co](https://huggingface.co/join)上拥有一个帐户。您还可以加入现有的组织或创建一个新的组织。 </Tip> ## 仓库功能 Model Hub上的每个仓库都像是一个典型的GitHub仓库。我们的仓库提供版本控制、提交历史记录以及可视化差异的能力。 Model Hub的内置版本控制基于git和[git-lfs](https://git-lfs.github.com/)。换句话说,您可以将一个模型视为一个仓库,从而实现更好的访问控制和可扩展性。版本控制允许使用*修订*方法来固定特定版本的模型,可以使用提交哈希值、标签或分支来标记。 因此,您可以通过`revision`参数加载特定的模型版本: ```py >>> model = AutoModel.from_pretrained( ... "julien-c/EsperBERTo-small", revision="v2.0.1" # tag name, or branch name, or commit hash ... ) ``` 文件也可以轻松地在仓库中编辑,您可以查看提交历史记录以及差异: ![vis_diff](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vis_diff.png) ## 设置 在将模型共享到Hub之前,您需要拥有Hugging Face的凭证。如果您有访问终端的权限,请在安装🤗 Transformers的虚拟环境中运行以下命令。这将在您的Hugging Face缓存文件夹(默认为`~/.cache/`)中存储您的`access token`: ```bash huggingface-cli login ``` 如果您正在使用像Jupyter或Colaboratory这样的`notebook`,请确保您已安装了[`huggingface_hub`](https://huggingface.co/docs/hub/adding-a-library)库。该库允许您以编程方式与Hub进行交互。 ```bash pip install huggingface_hub ``` 然后使用`notebook_login`登录到Hub,并按照[这里](https://huggingface.co/settings/token)的链接生成一个token进行登录: ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## 转换模型适用于所有框架 为确保您的模型可以被使用不同框架的人使用,我们建议您将PyTorch和TensorFlow `checkpoints`都转换并上传。如果您跳过此步骤,用户仍然可以从其他框架加载您的模型,但速度会变慢,因为🤗 Transformers需要实时转换`checkpoints`。 为另一个框架转换`checkpoints`很容易。确保您已安装PyTorch和TensorFlow(请参阅[此处](installation)的安装说明),然后在其他框架中找到适合您任务的特定模型。 <frameworkcontent> <pt> 指定`from_tf=True`将checkpoint从TensorFlow转换为PyTorch。 ```py >>> pt_model = DistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_tf=True) >>> pt_model.save_pretrained("path/to/awesome-name-you-picked") ``` </pt> <tf> 指定`from_pt=True`将checkpoint从PyTorch转换为TensorFlow。 ```py >>> tf_model = TFDistilBertForSequenceClassification.from_pretrained("path/to/awesome-name-you-picked", from_pt=True) ``` 然后,您可以使用新的checkpoint保存您的新TensorFlow模型: ```py >>> tf_model.save_pretrained("path/to/awesome-name-you-picked") ``` </tf> <jax> 如果模型在Flax中可用,您还可以将PyTorch checkpoint转换为Flax: ```py >>> flax_model = FlaxDistilBertForSequenceClassification.from_pretrained( ... "path/to/awesome-name-you-picked", from_pt=True ... ) ``` </jax> </frameworkcontent> ## 在训练过程中推送模型 <frameworkcontent> <pt> <Youtube id="Z1-XMy-GNLQ"/> 将模型分享到Hub就像添加一个额外的参数或回调函数一样简单。请记住,在[微调教程](training)中,`TrainingArguments`类是您指定超参数和附加训练选项的地方。其中一项训练选项包括直接将模型推送到Hub的能力。在您的`TrainingArguments`中设置`push_to_hub=True`: ```py >>> training_args = TrainingArguments(output_dir="my-awesome-model", push_to_hub=True) ``` 像往常一样将您的训练参数传递给[`Trainer`]: ```py >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=small_train_dataset, ... eval_dataset=small_eval_dataset, ... compute_metrics=compute_metrics, ... ) ``` 在您微调完模型后,在[`Trainer`]上调用[`~transformers.Trainer.push_to_hub`]将训练好的模型推送到Hub。🤗 Transformers甚至会自动将训练超参数、训练结果和框架版本添加到你的模型卡片中! ```py >>> trainer.push_to_hub() ``` </pt> <tf> 使用[`PushToHubCallback`]将模型分享到Hub。在[`PushToHubCallback`]函数中,添加以下内容: - 一个用于存储模型的输出目录。 - 一个tokenizer。 - `hub_model_id`,即您的Hub用户名和模型名称。 ```py >>> from transformers import PushToHubCallback >>> push_to_hub_callback = PushToHubCallback( ... output_dir="./your_model_save_path", tokenizer=tokenizer, hub_model_id="your-username/my-awesome-model" ... ) ``` 将回调函数添加到 [`fit`](https://keras.io/api/models/model_training_apis/)中,然后🤗 Transformers 会将训练好的模型推送到 Hub: ```py >>> model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=3, callbacks=push_to_hub_callback) ``` </tf> </frameworkcontent> ## 使用`push_to_hub`功能 您可以直接在您的模型上调用`push_to_hub`来将其上传到Hub。 在`push_to_hub`中指定你的模型名称: ```py >>> pt_model.push_to_hub("my-awesome-model") ``` 这会在您的用户名下创建一个名为`my-awesome-model`的仓库。用户现在可以使用`from_pretrained`函数加载您的模型: ```py >>> from transformers import AutoModel >>> model = AutoModel.from_pretrained("your_username/my-awesome-model") ``` 如果您属于一个组织,并希望将您的模型推送到组织名称下,只需将其添加到`repo_id`中: ```py >>> pt_model.push_to_hub("my-awesome-org/my-awesome-model") ``` `push_to_hub`函数还可以用于向模型仓库添加其他文件。例如,向模型仓库中添加一个`tokenizer`: ```py >>> tokenizer.push_to_hub("my-awesome-model") ``` 或者,您可能希望将您的微调后的PyTorch模型的TensorFlow版本添加进去: ```py >>> tf_model.push_to_hub("my-awesome-model") ``` 现在,当您导航到您的Hugging Face个人资料时,您应该看到您新创建的模型仓库。点击**文件**选项卡将显示您已上传到仓库的所有文件。 有关如何创建和上传文件到仓库的更多详细信息,请参考Hub文档[这里](https://huggingface.co/docs/hub/how-to-upstream)。 ## 使用Web界面上传 喜欢无代码方法的用户可以通过Hugging Face的Web界面上传模型。访问[huggingface.co/new](https://huggingface.co/new)创建一个新的仓库: ![new_model_repo](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/new_model_repo.png) 从这里开始,添加一些关于您的模型的信息: - 选择仓库的**所有者**。这可以是您本人或者您所属的任何组织。 - 为您的项目选择一个名称,该名称也将成为仓库的名称。 - 选择您的模型是公开还是私有。 - 指定您的模型的许可证使用情况。 现在点击**文件**选项卡,然后点击**添加文件**按钮将一个新文件上传到你的仓库。接着拖放一个文件进行上传,并添加提交信息。 ![upload_file](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/upload_file.png) ## 添加模型卡片 为了确保用户了解您的模型的能力、限制、潜在偏差和伦理考虑,请在仓库中添加一个模型卡片。模型卡片在`README.md`文件中定义。你可以通过以下方式添加模型卡片: * 手动创建并上传一个`README.md`文件。 * 在你的模型仓库中点击**编辑模型卡片**按钮。 可以参考DistilBert的[模型卡片](https://huggingface.co/distilbert/distilbert-base-uncased)来了解模型卡片应该包含的信息类型。有关您可以在`README.md`文件中控制的更多选项的细节,例如模型的碳足迹或小部件示例,请参考文档[这里](https://huggingface.co/docs/hub/models-cards)。
transformers/docs/source/zh/model_sharing.md/0
{ "file_path": "transformers/docs/source/zh/model_sharing.md", "repo_id": "transformers", "token_count": 5356 }
33
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Transformers Agents <Tip warning={true}> `Transformers Agents`是一个实验性的随时可能发生变化的API。由于API或底层模型可能发生变化,`agents`返回的结果也会有所不同。 </Tip> Transformers版本`v4.29.0`基于`tools`和`agents`概念构建。您可以在[此Colab链接](https://colab.research.google.com/drive/1c7MHD-T1forUPGcC_jlwsIptOzpG3hSj)中进行测试。 简而言之,它在`Transformers`之上提供了一个自然语言API:我们定义了一组经过筛选的`tools`,并设计了一个`agents`来解读自然语言并使用这些工具。它具有很强的可扩展性;我们筛选了一些相关的`tools`,但我们将向您展示如何通过社区开发的`tool`轻松地扩展系统。 让我们从一些可以通过这个新API实现的示例开始。在处理多模态任务时它尤其强大,因此让我们快速试着生成图像并大声朗读文本。 ```py agent.run("Caption the following image", image=image) ``` | **输入** | **输出** | |-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------| | <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/beaver.png" width=200> | A beaver is swimming in the water | --- ```py agent.run("Read the following text out loud", text=text) ``` | **输入** | **输出** | |-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | A beaver is swimming in the water | <audio controls><source src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tts_example.wav" type="audio/wav"> your browser does not support the audio element. </audio> --- ```py agent.run( "In the following `document`, where will the TRRF Scientific Advisory Council Meeting take place?", document=document, ) ``` | **输入** | **输出** | |-----------------------------------------------------------------------------------------------------------------------------|----------------| | <img src="https://datasets-server.huggingface.co/assets/hf-internal-testing/example-documents/--/hf-internal-testing--example-documents/test/0/image/image.jpg" width=200> | ballroom foyer | ## 快速入门 要使用 `agent.run`,您需要实例化一个`agent`,它是一个大型语言模型(LLM)。我们支持OpenAI模型以及来自BigCode和OpenAssistant的开源替代方案。OpenAI模型性能更好(但需要您拥有OpenAI API密钥,因此无法免费使用),Hugging Face为BigCode和OpenAssistant模型提供了免费访问端点。 一开始请安装`agents`附加模块,以安装所有默认依赖项。 ```bash pip install transformers[agents] ``` 要使用OpenAI模型,您可以在安装`openai`依赖项后实例化一个`OpenAiAgent`: ```bash pip install openai ``` ```py from transformers import OpenAiAgent agent = OpenAiAgent(model="text-davinci-003", api_key="<your_api_key>") ``` 要使用BigCode或OpenAssistant,请首先登录以访问Inference API: ```py from huggingface_hub import login login("<YOUR_TOKEN>") ``` 然后,实例化`agent`: ```py from transformers import HfAgent # Starcoder agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoder") # StarcoderBase # agent = HfAgent("https://api-inference.huggingface.co/models/bigcode/starcoderbase") # OpenAssistant # agent = HfAgent(url_endpoint="https://api-inference.huggingface.co/models/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5") ``` 此示例使用了目前Hugging Face免费提供的推理API。如果你有自己的推理端点用于此模型(或其他模型),你可以用你的URL替换上面的URL。 <Tip> StarCoder和OpenAssistant可以免费使用,并且在简单任务上表现出色。然而,当处理更复杂的提示时就不再有效。如果你遇到这样的问题,我们建议尝试使用OpenAI模型,尽管遗憾的是它不是开源的,但它在目前情况下表现更好。 </Tip> 现在,您已经可以开始使用了!让我们深入了解您现在可以使用的两个API。 ### 单次执行(run) 单次执行方法是使用`agent`的 `~Agent.run`: ```py agent.run("Draw me a picture of rivers and lakes.") ``` <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png" width=200> 它会自动选择适合您要执行的任务的`tool`(或`tools`),并以适当的方式运行它们。它可以在同一指令中执行一个或多个任务(尽管您的指令越复杂,`agent`失败的可能性就越大)。 ```py agent.run("Draw me a picture of the sea then transform the picture to add an island") ``` <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/sea_and_island.png" width=200> <br/> 每个 [`~Agent.run`] 操作都是独立的,因此您可以多次连续运行 [`~Agent.run`]并执行不同的任务。 请注意,您的 `agent` 只是一个大型语言模型,因此您略有变化的提示可能会产生完全不同的结果。重要的是尽可能清晰地解释您要执行的任务。我们在[这里](../en/custom_tools#writing-good-user-inputs)更深入地讨论了如何编写良好的提示。 如果您想在多次执行之间保持同一状态或向`agent`传递非文本对象,可以通过指定`agent`要使用的变量来实现。例如,您可以生成有关河流和湖泊的第一幅图像,并要求模型通过执行以下操作向该图片添加一个岛屿: ```python picture = agent.run("Generate a picture of rivers and lakes.") updated_picture = agent.run("Transform the image in `picture` to add an island to it.", picture=picture) ``` <Tip> 当模型无法理解您的请求和库中的工具时,这可能会有所帮助。例如: ```py agent.run("Draw me the picture of a capybara swimming in the sea") ``` 在这种情况下,模型可以以两种方式理解您的请求: - 使用`text-to-image` 生成在大海中游泳的大水獭 - 或者,使用`text-to-image`生成大水獭,然后使用`image-transformation`工具使其在大海中游泳 如果您想强制使用第一种情景,可以通过将提示作为参数传递给它来实现: ```py agent.run("Draw me a picture of the `prompt`", prompt="a capybara swimming in the sea") ``` </Tip> ### 基于交流的执行 (chat) 基于交流的执行(chat)方式是使用 [`~Agent.chat`]: ```py agent.chat("Generate a picture of rivers and lakes") ``` <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes.png" width=200> ```py agent.chat("Transform the picture so that there is a rock in there") ``` <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rivers_and_lakes_and_beaver.png" width=200> <br/> 当您希望在不同指令之间保持同一状态时,这会是一个有趣的方法。它更适合用于单个指令,而不是复杂的多步指令(`~Agent.run` 方法更适合处理这种情况)。 这种方法也可以接受参数,以便您可以传递非文本类型或特定提示。 ### ⚠️ 远程执行 出于演示目的以便适用于所有设置,我们为发布版本的少数默认工具创建了远程执行器。这些工具是使用推理终端(inference endpoints)创建的。 目前我们已将其关闭,但为了了解如何自行设置远程执行器工具,我们建议阅读[自定义工具指南](./custom_tools)。 ### 这里发生了什么?什么是`tools`,什么是`agents`? <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/diagram.png"> #### Agents 这里的`Agents`是一个大型语言模型,我们通过提示它以访问特定的工具集。 大型语言模型在生成小代码示例方面表现出色,因此这个API利用这一特点,通过提示LLM生成一个使用`tools`集合的小代码示例。然后,根据您给`Agents`的任务和`tools`的描述来完成此提示。这种方式让它能够访问工具的文档,特别是它们的期望输入和输出,以生成相关的代码。 #### Tools `Tools`非常简单:它们是有名称和描述的单个函数。然后,我们使用这些`tools`的描述来提示代理。通过提示,我们向`agent`展示如何使用`tool`来执行查询语言中请求的操作。 这是使用全新`tools`而不是`pipelines`,因为`agent`编写的代码更好,具有非常原子化的`tools`。`pipelines`经常被重构,并且通常将多个任务合并为一个。`tools`旨在专注于一个非常简单的任务。 #### 代码执行? 然后,这段代码基于`tools`的输入被我们的小型Python解释器执行。我们听到你在后面大声呼喊“任意代码执行!”,但让我们解释为什么情况并非如此。 只能您提供的`tools`和打印函数可以被执行,因此您已经受到了执行的限制。如果仅限于 Hugging Face 工具,那么您应该是安全的。 然后,我们不允许任何属性查找或导入(无论如何都不需要将输入/输出传递给一小组函数),因此所有最明显的攻击(并且您需要提示LLM无论如何输出它们)不应该是一个问题。如果你想超级安全,你可以使用附加参数 return_code=True 执行 run() 方法,在这种情况下,`agent`将只返回要执行的代码,你可以决定是否执行。 如果`agent`生成的代码存在任何尝试执行非法操作的行为,或者代码中出现了常规Python错误,执行将停止。 ### 一组经过精心筛选的`tools` 我们确定了一组可以赋予这些`agent`强大能力的`tools`。以下是我们在`transformers`中集成的`tools`的更新列表: - **文档问答**:给定一个图像格式的文档(例如PDF),回答该文档上的问题([Donut](../en/model_doc/donut)) - **文本问答**:给定一段长文本和一个问题,回答文本中的问题([Flan-T5](../en/model_doc/flan-t5)) - **无条件图像字幕**:为图像添加字幕!([BLIP](../en/model_doc/blip)) - **图像问答**:给定一张图像,回答该图像上的问题([VILT](../en/model_doc/vilt)) - **图像分割**:给定一张图像和一个提示,输出该提示的分割掩模([CLIPSeg](../en/model_doc/clipseg)) - **语音转文本**:给定一个人说话的音频录音,将演讲内容转录为文本([Whisper](../en/model_doc/whisper)) - **文本转语音**:将文本转换为语音([SpeechT5](../en/model_doc/speecht5)) - **Zero-Shot文本分类**:给定一个文本和一个标签列表,确定文本最符合哪个标签([BART](../en/model_doc/bart)) - **文本摘要**:总结长文本为一两句话([BART](../en/model_doc/bart)) - **翻译**:将文本翻译为指定语言([NLLB](../en/model_doc/nllb)) 这些`tools`已在transformers中集成,并且也可以手动使用,例如: ```py from transformers import load_tool tool = load_tool("text-to-speech") audio = tool("This is a text to speech tool") ``` ### 自定义工具 尽管我们确定了一组经过筛选的`tools`,但我们坚信,此实现提供的主要价值在于能够快速创建和共享自定义`tool`。 通过将工具的代码上传到Hugging Face空间或模型repository,您可以直接通过`agent`使用`tools`。我们已经添加了一些**与transformers无关**的`tools`到[`huggingface-tools`组织](https://huggingface.co/huggingface-tools)中: - **文本下载器**:从Web URL下载文本 - **文本到图像**:根据提示生成图像,利用`stable diffusion` - **图像转换**:根据初始图像和提示修改图像,利用`instruct pix2pix stable diffusion` - **文本到视频**:根据提示生成小视频,利用`damo-vilab` 从一开始就一直在使用的文本到图像`tool`是一个远程`tool `,位于[*huggingface-tools/text-to-image*](https://huggingface.co/spaces/huggingface-tools/text-to-image)!我们将继续在此组织和其他组织上发布此类`tool`,以进一步增强此实现。 `agents`默认可以访问存储在[`huggingface-tools`](https://huggingface.co/huggingface-tools)上的`tools`。我们将在后续指南中解释如何编写和共享自定义`tools`,以及如何利用Hub上存在的任何自定义`tools`。 ### 代码生成 到目前为止,我们已经展示了如何使用`agents`来为您执行操作。但是,`agents`仅使用非常受限Python解释器执行的代码。如果您希望在不同的环境中使用生成的代码,可以提示`agents`返回代码,以及`tools`的定义和准确的导入信息。 例如,以下指令 ```python agent.run("Draw me a picture of rivers and lakes", return_code=True) ``` 返回以下代码 ```python from transformers import load_tool image_generator = load_tool("huggingface-tools/text-to-image") image = image_generator(prompt="rivers and lakes") ``` 然后你就可以调整并执行代码
transformers/docs/source/zh/transformers_agents.md/0
{ "file_path": "transformers/docs/source/zh/transformers_agents.md", "repo_id": "transformers", "token_count": 8118 }
34
<!--- Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Image Classification training examples The following example showcases how to train/fine-tune `ViT` for image-classification using the JAX/Flax backend. JAX/Flax allows you to trace pure functions and compile them into efficient, fused accelerator code on both GPU and TPU. Models written in JAX/Flax are **immutable** and updated in a purely functional way which enables simple and efficient model parallelism. In this example we will train/fine-tune the model on the [imagenette](https://github.com/fastai/imagenette) dataset. ## Prepare the dataset We will use the [imagenette](https://github.com/fastai/imagenette) dataset to train/fine-tune our model. Imagenette is a subset of 10 easily classified classes from Imagenet (tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute). ### Download and extract the data. ```bash wget https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz tar -xvzf imagenette2.tgz ``` This will create a `imagenette2` dir with two subdirectories `train` and `val` each with multiple subdirectories per class. The training script expects the following directory structure ```bash root/dog/xxx.png root/dog/xxy.png root/dog/[...]/xxz.png root/cat/123.png root/cat/nsdf3.png root/cat/[...]/asd932_.png ``` ## Train the model Next we can run the example script to fine-tune the model: ```bash python run_image_classification.py \ --output_dir ./vit-base-patch16-imagenette \ --model_name_or_path google/vit-base-patch16-224-in21k \ --train_dir="imagenette2/train" \ --validation_dir="imagenette2/val" \ --num_train_epochs 5 \ --learning_rate 1e-3 \ --per_device_train_batch_size 128 --per_device_eval_batch_size 128 \ --overwrite_output_dir \ --preprocessing_num_workers 32 \ --push_to_hub ``` This should finish in ~7mins with 99% validation accuracy.
transformers/examples/flax/vision/README.md/0
{ "file_path": "transformers/examples/flax/vision/README.md", "repo_id": "transformers", "token_count": 775 }
35
#!/usr/bin/env bash if ! [ -f ./dev.txt ]; then echo "Download dev dataset...." curl -L -o ./dev.txt 'https://github.com/UniversalDependencies/UD_English-EWT/raw/master/en_ewt-ud-dev.conllu' fi if ! [ -f ./test.txt ]; then echo "Download test dataset...." curl -L -o ./test.txt 'https://github.com/UniversalDependencies/UD_English-EWT/raw/master/en_ewt-ud-test.conllu' fi if ! [ -f ./train.txt ]; then echo "Download train dataset...." curl -L -o ./train.txt 'https://github.com/UniversalDependencies/UD_English-EWT/raw/master/en_ewt-ud-train.conllu' fi export MAX_LENGTH=200 export BERT_MODEL=bert-base-uncased export OUTPUT_DIR=postagger-model export BATCH_SIZE=32 export NUM_EPOCHS=3 export SAVE_STEPS=750 export SEED=1 # Add parent directory to python path to access lightning_base.py export PYTHONPATH="../":"${PYTHONPATH}" python3 run_ner.py --data_dir ./ \ --task_type POS \ --model_name_or_path $BERT_MODEL \ --output_dir $OUTPUT_DIR \ --max_seq_length $MAX_LENGTH \ --num_train_epochs $NUM_EPOCHS \ --train_batch_size $BATCH_SIZE \ --seed $SEED \ --gpus 1 \ --do_train \ --do_predict
transformers/examples/legacy/pytorch-lightning/run_pos.sh/0
{ "file_path": "transformers/examples/legacy/pytorch-lightning/run_pos.sh", "repo_id": "transformers", "token_count": 440 }
36
#!/usr/bin/env python # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seq2seq_trainer import Seq2SeqTrainer from seq2seq_training_args import Seq2SeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( Seq2SeqDataCollator, Seq2SeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) logger = logging.getLogger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) freeze_encoder: bool = field(default=False, metadata={"help": "Whether tp freeze the encoder."}) freeze_embeds: bool = field(default=False, metadata={"help": "Whether to freeze the embeddings."}) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ data_dir: str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) task: Optional[str] = field( default="summarization", metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"}, ) max_source_length: Optional[int] = field( default=1024, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) max_target_length: Optional[int] = field( default=128, metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) val_max_target_length: Optional[int] = field( default=142, metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) }, ) test_max_target_length: Optional[int] = field( default=142, metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) n_train: Optional[int] = field(default=-1, metadata={"help": "# training examples. -1 means use all."}) n_val: Optional[int] = field(default=-1, metadata={"help": "# validation examples. -1 means use all."}) n_test: Optional[int] = field(default=-1, metadata={"help": "# test examples. -1 means use all."}) src_lang: Optional[str] = field(default=None, metadata={"help": "Source language id for translation."}) tgt_lang: Optional[str] = field(default=None, metadata={"help": "Target language id for translation."}) eval_beams: Optional[int] = field(default=None, metadata={"help": "# num_beams to use for evaluation."}) ignore_pad_token_for_loss: bool = field( default=True, metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."}, ) def handle_metrics(split, metrics, output_dir): """ Log and save metrics Args: - split: one of train, val, test - metrics: metrics dict - output_dir: where to save the metrics """ logger.info(f"***** {split} metrics *****") for key in sorted(metrics.keys()): logger.info(f" {key} = {metrics[key]}") save_json(metrics, os.path.join(output_dir, f"{split}_results.json")) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() check_output_dir(training_args) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED), training_args.fp16, ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s", training_args) # Set seed set_seed(training_args.seed) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(training_args, p, None): assert hasattr(config, p), f"({config.__class__.__name__}) doesn't have a `{p}` attribute" setattr(config, p, getattr(training_args, p)) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) model = AutoModelForSeq2SeqLM.from_pretrained( model_args.model_name_or_path, from_tf=".ckpt" in model_args.model_name_or_path, config=config, cache_dir=model_args.cache_dir, ) # use task specific params use_task_specific_params(model, data_args.task) # set num_beams for evaluation if data_args.eval_beams is None: data_args.eval_beams = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(tokenizer, MBartTokenizer): model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.tgt_lang] else: model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.tgt_lang) if model_args.freeze_embeds: freeze_embeds(model) if model_args.freeze_encoder: freeze_params(model.get_encoder()) assert_all_frozen(model.get_encoder()) dataset_class = Seq2SeqDataset # Get datasets train_dataset = ( dataset_class( tokenizer, type_path="train", data_dir=data_args.data_dir, n_obs=data_args.n_train, max_target_length=data_args.max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_train else None ) eval_dataset = ( dataset_class( tokenizer, type_path="val", data_dir=data_args.data_dir, n_obs=data_args.n_val, max_target_length=data_args.val_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) test_dataset = ( dataset_class( tokenizer, type_path="test", data_dir=data_args.data_dir, n_obs=data_args.n_test, max_target_length=data_args.test_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_predict else None ) # Initialize our Trainer compute_metrics_fn = ( build_compute_metrics_fn(data_args.task, tokenizer) if training_args.predict_with_generate else None ) trainer = Seq2SeqTrainer( model=model, args=training_args, data_args=data_args, train_dataset=train_dataset, eval_dataset=eval_dataset, data_collator=Seq2SeqDataCollator( tokenizer, data_args, model.config.decoder_start_token_id, training_args.tpu_num_cores ), compute_metrics=compute_metrics_fn, tokenizer=tokenizer, ) all_metrics = {} # Training if training_args.do_train: logger.info("*** Train ***") train_result = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None ) metrics = train_result.metrics metrics["train_n_objs"] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train", metrics, training_args.output_dir) all_metrics.update(metrics) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json")) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate(metric_key_prefix="val") metrics["val_n_objs"] = data_args.n_val metrics["val_loss"] = round(metrics["val_loss"], 4) if trainer.is_world_process_zero(): handle_metrics("val", metrics, training_args.output_dir) all_metrics.update(metrics) if training_args.do_predict: logger.info("*** Predict ***") test_output = trainer.predict(test_dataset=test_dataset, metric_key_prefix="test") metrics = test_output.metrics metrics["test_n_objs"] = data_args.n_test if trainer.is_world_process_zero(): metrics["test_loss"] = round(metrics["test_loss"], 4) handle_metrics("test", metrics, training_args.output_dir) all_metrics.update(metrics) if training_args.predict_with_generate: test_preds = tokenizer.batch_decode( test_output.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True ) test_preds = lmap(str.strip, test_preds) write_txt_file(test_preds, os.path.join(training_args.output_dir, "test_generations.txt")) if trainer.is_world_process_zero(): save_json(all_metrics, os.path.join(training_args.output_dir, "all_results.json")) return all_metrics def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers/examples/legacy/seq2seq/finetune_trainer.py/0
{ "file_path": "transformers/examples/legacy/seq2seq/finetune_trainer.py", "repo_id": "transformers", "token_count": 5726 }
37
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. export WANDB_PROJECT=distilbart-trainer export BS=32 export m=sshleifer/student_cnn_12_6 export tok=facebook/bart-large export MAX_TGT_LEN=142 python finetune_trainer.py \ --model_name_or_path $m --tokenizer_name $tok \ --data_dir cnn_dm \ --output_dir distilbart-cnn-12-6 --overwrite_output_dir \ --learning_rate=3e-5 \ --warmup_steps 500 --sortish_sampler \ --fp16 \ --n_val 500 \ --gradient_accumulation_steps=1 \ --per_device_train_batch_size=$BS --per_device_eval_batch_size=$BS \ --freeze_encoder --freeze_embeds \ --num_train_epochs=2 \ --save_steps 3000 --eval_steps 3000 \ --logging_first_step \ --max_target_length 56 --val_max_target_length $MAX_TGT_LEN --test_max_target_length $MAX_TGT_LEN\ --do_train --do_eval --do_predict \ --evaluation_strategy steps \ --predict_with_generate --sortish_sampler \ "$@"
transformers/examples/legacy/seq2seq/train_distilbart_cnn.sh/0
{ "file_path": "transformers/examples/legacy/seq2seq/train_distilbart_cnn.sh", "repo_id": "transformers", "token_count": 541 }
38
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version logger = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.39.0.dev0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def random_subsample(wav: np.ndarray, max_length: float, sample_rate: int = 16000): """Randomly sample chunks of `max_length` seconds from the input audio""" sample_length = int(round(sample_rate * max_length)) if len(wav) <= sample_length: return wav random_offset = randint(0, len(wav) - sample_length - 1) return wav[random_offset : random_offset + sample_length] @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ dataset_name: Optional[str] = field(default=None, metadata={"help": "Name of a dataset from the datasets package"}) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field( default=None, metadata={"help": "A file containing the training audio paths and labels."} ) eval_file: Optional[str] = field( default=None, metadata={"help": "A file containing the validation audio paths and labels."} ) train_split_name: str = field( default="train", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) eval_split_name: str = field( default="validation", metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) }, ) audio_column_name: str = field( default="audio", metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, ) label_column_name: str = field( default="label", metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_length_seconds: float = field( default=20, metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."}, ) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( default="facebook/wav2vec2-base", metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) feature_extractor_name: Optional[str] = field( default=None, metadata={"help": "Name or path of preprocessor config."} ) freeze_feature_encoder: bool = field( default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) attention_mask: bool = field( default=True, metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ) }, ) freeze_feature_extractor: Optional[bool] = field( default=None, metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) ignore_mismatched_sizes: bool = field( default=False, metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."}, ) def __post_init__(self): if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder` " "instead. Setting `freeze_feature_encoder==True`.", FutureWarning, ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`. " "Only make use of `--freeze_feature_encoder`." ) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.", FutureWarning, ) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification", model_args, data_args) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() log_level = training_args.get_process_log_level() logger.setLevel(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # Set seed before initializing model. set_seed(training_args.seed) # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. raw_datasets = DatasetDict() raw_datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name, token=model_args.token, ) raw_datasets["eval"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.eval_split_name, token=model_args.token, ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f"--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--audio_column_name` to the correct audio column - one of " f"{', '.join(raw_datasets['train'].column_names)}." ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f"--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--label_column_name` to the correct text column - one of " f"{', '.join(raw_datasets['train'].column_names)}." ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy feature_extractor = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path, return_attention_mask=model_args.attention_mask, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. raw_datasets = raw_datasets.cast_column( data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate) ) model_input_name = feature_extractor.model_input_names[0] def train_transforms(batch): """Apply train_transforms across a batch.""" subsampled_wavs = [] for audio in batch[data_args.audio_column_name]: wav = random_subsample( audio["array"], max_length=data_args.max_length_seconds, sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(wav) inputs = feature_extractor(subsampled_wavs, sampling_rate=feature_extractor.sampling_rate) output_batch = {model_input_name: inputs.get(model_input_name)} output_batch["labels"] = list(batch[data_args.label_column_name]) return output_batch def val_transforms(batch): """Apply val_transforms across a batch.""" wavs = [audio["array"] for audio in batch[data_args.audio_column_name]] inputs = feature_extractor(wavs, sampling_rate=feature_extractor.sampling_rate) output_batch = {model_input_name: inputs.get(model_input_name)} output_batch["labels"] = list(batch[data_args.label_column_name]) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. labels = raw_datasets["train"].features[data_args.label_column_name].names label2id, id2label = {}, {} for i, label in enumerate(labels): label2id[label] = str(i) id2label[str(i)] = label # Load the accuracy metric from the datasets package metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(eval_pred): """Computes accuracy on a batch of predictions""" predictions = np.argmax(eval_pred.predictions, axis=1) return metric.compute(predictions=predictions, references=eval_pred.label_ids) config = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(labels), label2id=label2id, id2label=id2label, finetuning_task="audio-classification", cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) model = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: raw_datasets["train"] = ( raw_datasets["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples)) ) # Set the training transforms raw_datasets["train"].set_transform(train_transforms, output_all_columns=False) if training_args.do_eval: if data_args.max_eval_samples is not None: raw_datasets["eval"] = ( raw_datasets["eval"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples)) ) # Set the validation transforms raw_datasets["eval"].set_transform(val_transforms, output_all_columns=False) # Initialize our trainer trainer = Trainer( model=model, args=training_args, train_dataset=raw_datasets["train"] if training_args.do_train else None, eval_dataset=raw_datasets["eval"] if training_args.do_eval else None, compute_metrics=compute_metrics, tokenizer=feature_extractor, ) # Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() # Evaluation if training_args.do_eval: metrics = trainer.evaluate() trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Write model card and (optionally) push to hub kwargs = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) if __name__ == "__main__": main()
transformers/examples/pytorch/audio-classification/run_audio_classification.py/0
{ "file_path": "transformers/examples/pytorch/audio-classification/run_audio_classification.py", "repo_id": "transformers", "token_count": 7223 }
39
#!/usr/bin/env python # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset. Here is the full list of checkpoints on the hub that can be fine-tuned by this script: https://huggingface.co/models?filter=text-generation """ # You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments. import logging import math import os import sys import warnings from dataclasses import dataclass, field from itertools import chain from typing import Optional import datasets import evaluate import torch from datasets import load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_CAUSAL_LM_MAPPING, AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, is_torch_tpu_available, set_seed, ) from transformers.testing_utils import CaptureLogger from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.39.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt") logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": ( "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch." ) }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_overrides: Optional[str] = field( default=None, metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) }, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ) }, ) torch_dtype: Optional[str] = field( default=None, metadata={ "help": ( "Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the " "dtype will be automatically derived from the model's weights." ), "choices": ["auto", "bfloat16", "float16", "float32"], }, ) low_cpu_mem_usage: bool = field( default=False, metadata={ "help": ( "It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. " "set True will benefit LLM loading time and RAM consumption." ) }, ) def __post_init__(self): if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( "--config_overrides can't be used in combination with --config_name or --model_name_or_path" ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"}) block_size: Optional[int] = field( default=None, metadata={ "help": ( "Optional input sequence length after tokenization. " "The training dataset will be truncated in block of this size for training. " "Default to the model max input length for single sentence inputs (take into account special tokens)." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) validation_split_percentage: Optional[int] = field( default=5, metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" }, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) keep_linebreaks: bool = field( default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."} ) def __post_init__(self): if self.streaming: require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`") if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.", FutureWarning, ) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_clm", model_args, data_args) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " + f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, token=model_args.token, streaming=data_args.streaming, ) if "validation" not in raw_datasets.keys(): raw_datasets["validation"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, token=model_args.token, streaming=data_args.streaming, ) raw_datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, token=model_args.token, streaming=data_args.streaming, ) else: data_files = {} dataset_args = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = ( data_args.train_file.split(".")[-1] if data_args.train_file is not None else data_args.validation_file.split(".")[-1] ) if extension == "txt": extension = "text" dataset_args["keep_linebreaks"] = data_args.keep_linebreaks raw_datasets = load_dataset( extension, data_files=data_files, cache_dir=model_args.cache_dir, token=model_args.token, **dataset_args, ) # If no validation data is there, validation_split_percentage will be used to divide the dataset. if "validation" not in raw_datasets.keys(): raw_datasets["validation"] = load_dataset( extension, data_files=data_files, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, token=model_args.token, **dataset_args, ) raw_datasets["train"] = load_dataset( extension, data_files=data_files, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, token=model_args.token, **dataset_args, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config_kwargs = { "cache_dir": model_args.cache_dir, "revision": model_args.model_revision, "token": model_args.token, "trust_remote_code": model_args.trust_remote_code, } if model_args.config_name: config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if model_args.config_overrides is not None: logger.info(f"Overriding config: {model_args.config_overrides}") config.update_from_string(model_args.config_overrides) logger.info(f"New config: {config}") tokenizer_kwargs = { "cache_dir": model_args.cache_dir, "use_fast": model_args.use_fast_tokenizer, "revision": model_args.model_revision, "token": model_args.token, "trust_remote_code": model_args.trust_remote_code, } if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script. " "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: torch_dtype = ( model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype) ) model = AutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, torch_dtype=torch_dtype, low_cpu_mem_usage=model_args.low_cpu_mem_usage, ) else: model = AutoModelForCausalLM.from_config(config, trust_remote_code=model_args.trust_remote_code) n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values()) logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params") # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch # on a small vocab and want a smaller embedding size, remove this test. embedding_size = model.get_input_embeddings().weight.shape[0] if len(tokenizer) > embedding_size: model.resize_token_embeddings(len(tokenizer)) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: column_names = list(raw_datasets["train"].features) else: column_names = list(raw_datasets["validation"].features) text_column_name = "text" if "text" in column_names else column_names[0] # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base") def tokenize_function(examples): with CaptureLogger(tok_logger) as cl: output = tokenizer(examples[text_column_name]) # clm input could be much much longer than block_size if "Token indices sequence length is longer than the" in cl.out: tok_logger.warning( "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits" " before being passed to the model." ) return output with training_args.main_process_first(desc="dataset map tokenization"): if not data_args.streaming: tokenized_datasets = raw_datasets.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on dataset", ) else: tokenized_datasets = raw_datasets.map( tokenize_function, batched=True, remove_columns=column_names, ) if hasattr(config, "max_position_embeddings"): max_pos_embeddings = config.max_position_embeddings else: # Define a default value if the attribute is missing in the config. max_pos_embeddings = 1024 if data_args.block_size is None: block_size = tokenizer.model_max_length if block_size > max_pos_embeddings: logger.warning( f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " f"Using block_size={min(1024, max_pos_embeddings)} instead. You can change that default value by passing --block_size xxx." ) if max_pos_embeddings > 0: block_size = min(1024, max_pos_embeddings) else: block_size = 1024 else: if data_args.block_size > tokenizer.model_max_length: logger.warning( f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model " f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." ) block_size = min(data_args.block_size, tokenizer.model_max_length) # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size. def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, and if the total_length < block_size we exclude this batch and return an empty dict. # We could add padding if the model supported it instead of this drop, you can customize this part to your needs. total_length = (total_length // block_size) * block_size # Split by chunks of max_len. result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } result["labels"] = result["input_ids"].copy() return result # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower # to preprocess. # # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: # https://huggingface.co/docs/datasets/process#map with training_args.main_process_first(desc="grouping texts together"): if not data_args.streaming: lm_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, desc=f"Grouping texts in chunks of {block_size}", ) else: lm_datasets = tokenized_datasets.map( group_texts, batched=True, ) if training_args.do_train: if "train" not in tokenized_datasets: raise ValueError("--do_train requires a train dataset") train_dataset = lm_datasets["train"] if data_args.max_train_samples is not None: max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) if training_args.do_eval: if "validation" not in tokenized_datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = lm_datasets["validation"] if data_args.max_eval_samples is not None: max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) eval_dataset = eval_dataset.select(range(max_eval_samples)) def preprocess_logits_for_metrics(logits, labels): if isinstance(logits, tuple): # Depending on the model and config, logits may contain extra tensors, # like past_key_values, but logits always come first logits = logits[0] return logits.argmax(dim=-1) metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir) def compute_metrics(eval_preds): preds, labels = eval_preds # preds have the same shape as the labels, after the argmax(-1) has been calculated # by preprocess_logits_for_metrics but we need to shift the labels labels = labels[:, 1:].reshape(-1) preds = preds[:, :-1].reshape(-1) return metric.compute(predictions=preds, references=labels) # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=tokenizer, # Data collator will default to DataCollatorWithPadding, so we change it. data_collator=default_data_collator, compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None, preprocess_logits_for_metrics=preprocess_logits_for_metrics if training_args.do_eval and not is_torch_tpu_available() else None, ) # Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() # Saves the tokenizer too for easy upload metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) ) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate() max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) try: perplexity = math.exp(metrics["eval_loss"]) except OverflowError: perplexity = float("inf") metrics["perplexity"] = perplexity trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"} if data_args.dataset_name is not None: kwargs["dataset_tags"] = data_args.dataset_name if data_args.dataset_config_name is not None: kwargs["dataset_args"] = data_args.dataset_config_name kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" else: kwargs["dataset"] = data_args.dataset_name if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers/examples/pytorch/language-modeling/run_clm.py/0
{ "file_path": "transformers/examples/pytorch/language-modeling/run_clm.py", "repo_id": "transformers", "token_count": 12007 }
40
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning the library models for sequence to sequence speech recognition. """ # You can also adapt this script on your own sequence to sequence speech # recognition task. Pointers for this are left as comments. import logging import os import sys import warnings from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import evaluate import torch from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForSpeechSeq2Seq, AutoProcessor, AutoTokenizer, HfArgumentParser, Seq2SeqTrainer, Seq2SeqTrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.39.0.dev0") require_version("datasets>=1.18.0", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt") logger = logging.getLogger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) feature_extractor_name: Optional[str] = field( default=None, metadata={"help": "feature extractor name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ) }, ) freeze_feature_encoder: bool = field( default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) freeze_encoder: bool = field( default=False, metadata={"help": "Whether to freeze the entire encoder of the seq2seq model."} ) forced_decoder_ids: List[List[int]] = field( default=None, metadata={ "help": ( "A list of pairs of integers which indicates a mapping from generation indices to token indices " "that will be forced before sampling. For example, [[0, 123]] means the first generated token " "will always be a token of index 123." ) }, ) suppress_tokens: List[int] = field( default=None, metadata={"help": "A list of tokens that will be suppressed at generation."} ) apply_spec_augment: bool = field( default=False, metadata={ "help": "Whether to apply *SpecAugment* data augmentation to the input features. This is currently only relevant for Wav2Vec2, HuBERT, WavLM and Whisper models." }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: str = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) audio_column_name: str = field( default="audio", metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, ) text_column_name: str = field( default="text", metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"}, ) max_duration_in_seconds: float = field( default=20.0, metadata={ "help": ( "Truncate audio files that are longer than `max_duration_in_seconds` seconds to" " 'max_duration_in_seconds`" ) }, ) min_duration_in_seconds: float = field( default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"} ) preprocessing_only: bool = field( default=False, metadata={ "help": ( "Whether to only do data preprocessing and skip training. This is especially useful when data" " preprocessing errors out in distributed training due to timeout. In this case, one should run the" " preprocessing in a non-distributed setup with `preprocessing_only=True` so that the cached datasets" " can consequently be loaded in distributed training" ) }, ) train_split_name: str = field( default="train", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) eval_split_name: str = field( default="test", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) do_lower_case: bool = field( default=True, metadata={"help": "Whether the target text should be lower cased."}, ) language: str = field( default=None, metadata={ "help": ( "Language for multilingual fine-tuning. This argument should be set for multilingual fine-tuning " "only. For English speech recognition, it should be set to `None`." ) }, ) task: str = field( default="transcribe", metadata={"help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."}, ) @dataclass class DataCollatorSpeechSeq2SeqWithPadding: """ Data collator that will dynamically pad the inputs received. Args: processor ([`WhisperProcessor`]) The processor used for processing the data. decoder_start_token_id (`int`) The begin-of-sentence of the decoder. forward_attention_mask (`bool`) Whether to return attention_mask. """ processor: Any decoder_start_token_id: int forward_attention_mask: bool def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lengths and need # different padding methods model_input_name = self.processor.model_input_names[0] input_features = [{model_input_name: feature[model_input_name]} for feature in features] label_features = [{"input_ids": feature["labels"]} for feature in features] batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt") if self.forward_attention_mask: batch["attention_mask"] = torch.LongTensor([feature["attention_mask"] for feature in features]) labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt") # replace padding with -100 to ignore loss correctly labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) # if bos token is appended in previous tokenization step, # cut bos token here as it's append later anyways if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item(): labels = labels[:, 1:] batch["labels"] = labels return batch def main(): # 1. Parse input arguments # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.", FutureWarning, ) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_speech_recognition_seq2seq", model_args, data_args) # 2. Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s", training_args) # 3. Detecting last checkpoint and eventually continue from last checkpoint last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed) # 4. Load dataset raw_datasets = DatasetDict() if training_args.do_train: raw_datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name, cache_dir=model_args.cache_dir, token=model_args.token, ) if training_args.do_eval: raw_datasets["eval"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.eval_split_name, cache_dir=model_args.cache_dir, token=model_args.token, ) if data_args.audio_column_name not in next(iter(raw_datasets.values())).column_names: raise ValueError( f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--audio_column_name` to the correct audio column - one of " f"{', '.join(next(iter(raw_datasets.values())).column_names)}." ) if data_args.text_column_name not in next(iter(raw_datasets.values())).column_names: raise ValueError( f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. " "Make sure to set `--text_column_name` to the correct text column - one of " f"{', '.join(next(iter(raw_datasets.values())).column_names)}." ) # 5. Load pretrained model, tokenizer, and feature extractor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) config.update({"forced_decoder_ids": model_args.forced_decoder_ids, "suppress_tokens": model_args.suppress_tokens}) # SpecAugment for whisper models if getattr(config, "model_type", None) == "whisper": config.update({"apply_spec_augment": model_args.apply_spec_augment}) feature_extractor = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) model = AutoModelForSpeechSeq2Seq.from_pretrained( model_args.model_name_or_path, config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if model_args.freeze_encoder: model.freeze_encoder() model.model.encoder.gradient_checkpointing = False if data_args.language is not None: # We only need to set the task id when the language is specified (i.e. in a multilingual setting) tokenizer.set_prefix_tokens(language=data_args.language, task=data_args.task) # 6. Resample speech dataset if necessary dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate if dataset_sampling_rate != feature_extractor.sampling_rate: raw_datasets = raw_datasets.cast_column( data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate) ) # 7. Preprocessing the datasets. # We need to read the audio files as arrays and tokenize the targets. max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate audio_column_name = data_args.audio_column_name num_workers = data_args.preprocessing_num_workers text_column_name = data_args.text_column_name model_input_name = feature_extractor.model_input_names[0] do_lower_case = data_args.do_lower_case # if SpecAugment is used for whisper models, return attention_mask to guide the mask along time axis forward_attention_mask = ( getattr(config, "model_type", None) == "whisper" and getattr(config, "apply_spec_augment", False) and getattr(config, "mask_time_prob", 0) > 0 ) if data_args.max_train_samples is not None: raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples)) if data_args.max_eval_samples is not None: raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples)) def prepare_dataset(batch): # process audio sample = batch[audio_column_name] inputs = feature_extractor( sample["array"], sampling_rate=sample["sampling_rate"], return_attention_mask=forward_attention_mask ) # process audio length batch[model_input_name] = inputs.get(model_input_name)[0] batch["input_length"] = len(sample["array"]) if forward_attention_mask: batch["attention_mask"] = inputs.get("attention_mask")[0] # process targets input_str = batch[text_column_name].lower() if do_lower_case else batch[text_column_name] batch["labels"] = tokenizer(input_str).input_ids return batch with training_args.main_process_first(desc="dataset map pre-processing"): vectorized_datasets = raw_datasets.map( prepare_dataset, remove_columns=next(iter(raw_datasets.values())).column_names, num_proc=data_args.preprocessing_num_workers, desc="preprocess train dataset", ) # filter data that is shorter than min_input_length or longer than # max_input_length def is_audio_in_length_range(length): return length > min_input_length and length < max_input_length vectorized_datasets = vectorized_datasets.filter( is_audio_in_length_range, num_proc=num_workers, input_columns=["input_length"], ) # for large datasets it is advised to run the preprocessing on a # single machine first with `args.preprocessing_only` since there will mostly likely # be a timeout when running the script in distributed mode. # In a second step `args.preprocessing_only` can then be set to `False` to load the # cached dataset if data_args.preprocessing_only: cache = {k: v.cache_files for k, v in vectorized_datasets.items()} logger.info(f"Data preprocessing finished. Files cached at {cache}.") return # 8. Load Metric metric = evaluate.load("wer", cache_dir=model_args.cache_dir) def compute_metrics(pred): pred_ids = pred.predictions pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) # we do not want to group tokens when computing the metrics label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True) wer = metric.compute(predictions=pred_str, references=label_str) return {"wer": wer} # 9. Create a single speech processor # make sure all processes wait until data is saved with training_args.main_process_first(): # only the main process saves them if is_main_process(training_args.local_rank): # save feature extractor, tokenizer and config feature_extractor.save_pretrained(training_args.output_dir) tokenizer.save_pretrained(training_args.output_dir) config.save_pretrained(training_args.output_dir) processor = AutoProcessor.from_pretrained(training_args.output_dir) # 10. Define data collator data_collator = DataCollatorSpeechSeq2SeqWithPadding( processor=processor, decoder_start_token_id=model.config.decoder_start_token_id, forward_attention_mask=forward_attention_mask, ) # 11. Initialize Trainer trainer = Seq2SeqTrainer( model=model, args=training_args, train_dataset=vectorized_datasets["train"] if training_args.do_train else None, eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None, tokenizer=feature_extractor, data_collator=data_collator, compute_metrics=compute_metrics if training_args.predict_with_generate else None, ) # 12. Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() # Saves the feature extractor too for easy upload metrics = train_result.metrics max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(vectorized_datasets["train"]) ) metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"])) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # 13. Evaluation results = {} if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate( metric_key_prefix="eval", max_length=training_args.generation_max_length, num_beams=training_args.generation_num_beams, ) max_eval_samples = ( data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"]) ) metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"])) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # 14. Write Training Stats kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "automatic-speech-recognition"} if data_args.dataset_name is not None: kwargs["dataset_tags"] = data_args.dataset_name if data_args.dataset_config_name is not None: kwargs["dataset_args"] = data_args.dataset_config_name kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" else: kwargs["dataset"] = data_args.dataset_name if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) return results if __name__ == "__main__": main()
transformers/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py/0
{ "file_path": "transformers/examples/pytorch/speech-recognition/run_speech_recognition_seq2seq.py", "repo_id": "transformers", "token_count": 10176 }
41
#!/usr/bin/env python # coding=utf-8 # Copyright 2022 University of Cambridge, Tencent AI Lab, DeepMind and The University of Hong Kong Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ The examples of running contrastive search on the auto-APIs; Running this example: python run_generation_contrastive_search.py --model_name_or_path=openai-community/gpt2-large --penalty_alpha=0.6 --k=4 --length=256 """ import argparse import logging from accelerate import PartialState from accelerate.utils import set_seed from transformers import AutoModelForCausalLM, AutoTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger = logging.getLogger(__name__) def main(): parser = argparse.ArgumentParser() parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, ) parser.add_argument("--prompt", type=str, default="") parser.add_argument("--length", type=int, default=20) parser.add_argument("--stop_token", type=str, default=None, help="Token at which text generation is stopped") parser.add_argument( "--temperature", type=float, default=1.0, help="temperature of 1.0 has no effect, lower tend toward greedy sampling", ) parser.add_argument( "--repetition_penalty", type=float, default=1.0, help="primarily useful for CTRL model; in that case, use 1.2" ) parser.add_argument("--k", type=int, default=0) parser.add_argument("--penalty_alpha", type=float, default=0.0) parser.add_argument("--p", type=float, default=0.9) parser.add_argument("--prefix", type=str, default="", help="Text added prior to input.") parser.add_argument("--padding_text", type=str, default="", help="Deprecated, the use of `--prefix` is preferred.") parser.add_argument("--xlm_language", type=str, default="", help="Optional language when used with the XLM model.") parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--use_cpu", action="store_true", help="Whether or not to use cpu. If set to False, " "we will use gpu/npu or mps device if available", ) parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) args = parser.parse_args() # Initialize the distributed state. distributed_state = PartialState(cpu=args.use_cpu) logger.warning(f"device: {distributed_state.device}, 16-bits inference: {args.fp16}") if args.seed is not None: set_seed(args.seed) # Initialize the model and tokenizer tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path) model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path) # tokenizer = GPT2Tokenizer.from_pretrained(args.model_name_or_path) # model = OPTForCausalLM.from_pretrained(args.model_name_or_path) # Set the model to the right device model.to(distributed_state.device) if args.fp16: model.half() logger.info(args) prompt_text = args.prompt if args.prompt else input("Model prompt >>> ") inputs = tokenizer(prompt_text, return_tensors="pt", add_special_tokens=False) inputs = {key: value.to(distributed_state.device) for key, value in inputs.items()} output_sequences = model.generate( **inputs, max_length=args.length + len(inputs["input_ids"][0]), penalty_alpha=args.penalty_alpha, top_k=args.k, ) generated_sequences = [] for generated_sequence_idx, generated_sequence in enumerate(output_sequences): print(f"=== GENERATED SEQUENCE {generated_sequence_idx + 1} ===") generated_sequence = generated_sequence.tolist() # Decode text text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True, add_special_tokens=False) # Remove all text after the stop token text = text[: text.find(args.stop_token) if args.stop_token else None] # Add the prompt at the beginning of the sequence. Remove the excess text that was used for pre-processing total_sequence = ( prompt_text + text[len(tokenizer.decode(inputs["input_ids"][0], clean_up_tokenization_spaces=True)) :] ) generated_sequences.append(total_sequence) print(total_sequence) return generated_sequences if __name__ == "__main__": main()
transformers/examples/pytorch/text-generation/run_generation_contrastive_search.py/0
{ "file_path": "transformers/examples/pytorch/text-generation/run_generation_contrastive_search.py", "repo_id": "transformers", "token_count": 1870 }
42
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) logger = logging.getLogger(__name__) @dataclass(frozen=True) class InputExample: """ A single training/test example for simple sequence classification. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. pairID: (Optional) string. Unique identifier for the pair of sentences. """ guid: str text_a: str text_b: Optional[str] = None label: Optional[str] = None pairID: Optional[str] = None @dataclass(frozen=True) class InputFeatures: """ A single set of features of data. Property names are the same names as the corresponding inputs to a model. Args: input_ids: Indices of input sequence tokens in the vocabulary. attention_mask: Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: Usually ``1`` for tokens that are NOT MASKED, ``0`` for MASKED (padded) tokens. token_type_ids: (Optional) Segment token indices to indicate first and second portions of the inputs. Only some models use them. label: (Optional) Label corresponding to the input. Int for classification problems, float for regression problems. pairID: (Optional) Unique identifier for the pair of sentences. """ input_ids: List[int] attention_mask: Optional[List[int]] = None token_type_ids: Optional[List[int]] = None label: Optional[Union[int, float]] = None pairID: Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class HansDataset(Dataset): """ This will be superseded by a framework-agnostic approach soon. """ features: List[InputFeatures] def __init__( self, data_dir: str, tokenizer: PreTrainedTokenizer, task: str, max_seq_length: Optional[int] = None, overwrite_cache=False, evaluate: bool = False, ): processor = hans_processors[task]() cached_features_file = os.path.join( data_dir, "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train", tokenizer.__class__.__name__, str(max_seq_length), task, ), ) label_list = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) label_list[1], label_list[2] = label_list[2], label_list[1] self.label_list = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lock_path = cached_features_file + ".lock" with FileLock(lock_path): if os.path.exists(cached_features_file) and not overwrite_cache: logger.info(f"Loading features from cached file {cached_features_file}") self.features = torch.load(cached_features_file) else: logger.info(f"Creating features from dataset file at {data_dir}") examples = ( processor.get_dev_examples(data_dir) if evaluate else processor.get_train_examples(data_dir) ) logger.info("Training examples: %s", len(examples)) self.features = hans_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer) logger.info("Saving features into cached file %s", cached_features_file) torch.save(self.features, cached_features_file) def __len__(self): return len(self.features) def __getitem__(self, i) -> InputFeatures: return self.features[i] def get_labels(self): return self.label_list if is_tf_available(): import tensorflow as tf class TFHansDataset: """ This will be superseded by a framework-agnostic approach soon. """ features: List[InputFeatures] def __init__( self, data_dir: str, tokenizer: PreTrainedTokenizer, task: str, max_seq_length: Optional[int] = 128, overwrite_cache=False, evaluate: bool = False, ): processor = hans_processors[task]() label_list = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) label_list[1], label_list[2] = label_list[2], label_list[1] self.label_list = label_list examples = processor.get_dev_examples(data_dir) if evaluate else processor.get_train_examples(data_dir) self.features = hans_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features), desc="convert examples to features"): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(examples))) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) self.dataset = tf.data.Dataset.from_generator( gen, ( { "example_id": tf.int32, "input_ids": tf.int32, "attention_mask": tf.int32, "token_type_ids": tf.int32, }, tf.int64, ), ( { "example_id": tf.TensorShape([]), "input_ids": tf.TensorShape([None, None]), "attention_mask": tf.TensorShape([None, None]), "token_type_ids": tf.TensorShape([None, None]), }, tf.TensorShape([]), ), ) def get_dataset(self): return self.dataset def __len__(self): return len(self.features) def __getitem__(self, i) -> InputFeatures: return self.features[i] def get_labels(self): return self.label_list class HansProcessor(DataProcessor): """Processor for the HANS data set.""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "heuristics_train_set.txt")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples(self._read_tsv(os.path.join(data_dir, "heuristics_evaluation_set.txt")), "dev") def get_labels(self): """See base class. Note that we follow the standard three labels for MNLI (see :class:`~transformers.data.processors.utils.MnliProcessor`) but the HANS evaluation groups `contradiction` and `neutral` into `non-entailment` (label 0) while `entailment` is label 1.""" return ["contradiction", "entailment", "neutral"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for i, line in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, line[0]) text_a = line[5] text_b = line[6] pairID = line[7][2:] if line[7].startswith("ex") else line[7] label = line[0] examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label, pairID=pairID)) return examples def hans_convert_examples_to_features( examples: List[InputExample], label_list: List[str], max_length: int, tokenizer: PreTrainedTokenizer, ): """ Loads a data file into a list of ``InputFeatures`` Args: examples: List of ``InputExamples`` containing the examples. label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method. max_length: Maximum example length. tokenizer: Instance of a tokenizer that will tokenize the examples. Returns: A list of task-specific ``InputFeatures`` which can be fed to the model. """ label_map = {label: i for i, label in enumerate(label_list)} features = [] for ex_index, example in tqdm.tqdm(enumerate(examples), desc="convert examples to features"): if ex_index % 10000 == 0: logger.info("Writing example %d" % (ex_index)) inputs = tokenizer( example.text_a, example.text_b, add_special_tokens=True, max_length=max_length, padding="max_length", truncation=True, return_overflowing_tokens=True, ) label = label_map[example.label] if example.label in label_map else 0 pairID = int(example.pairID) features.append(InputFeatures(**inputs, label=label, pairID=pairID)) for i, example in enumerate(examples[:5]): logger.info("*** Example ***") logger.info(f"guid: {example}") logger.info(f"features: {features[i]}") return features hans_tasks_num_labels = { "hans": 3, } hans_processors = { "hans": HansProcessor, }
transformers/examples/research_projects/adversarial/utils_hans.py/0
{ "file_path": "transformers/examples/research_projects/adversarial/utils_hans.py", "repo_id": "transformers", "token_count": 5431 }
43
import os from collections import deque import torch from torch.utils.data import Dataset # ------------ # Data loading # ------------ class CNNDMDataset(Dataset): """Abstracts the dataset used to train seq2seq models. The class will process the documents that are located in the specified folder. The preprocessing will work on any document that is reasonably formatted. On the CNN/DailyMail dataset it will extract both the story and the summary. CNN/Daily News: The CNN/Daily News raw datasets are downloaded from [1]. The stories are stored in different files; the summary appears at the end of the story as sentences that are prefixed by the special `@highlight` line. To process the data, untar both datasets in the same folder, and pass the path to this folder as the "data_dir argument. The formatting code was inspired by [2]. [1] https://cs.nyu.edu/~kcho/ [2] https://github.com/abisee/cnn-dailymail/ """ def __init__(self, path="", prefix="train"): """We initialize the class by listing all the documents to summarize. Files are not read in memory due to the size of some datasets (like CNN/DailyMail). """ assert os.path.isdir(path) self.documents = [] story_filenames_list = os.listdir(path) for story_filename in story_filenames_list: if "summary" in story_filename: continue path_to_story = os.path.join(path, story_filename) if not os.path.isfile(path_to_story): continue self.documents.append(path_to_story) def __len__(self): """Returns the number of documents.""" return len(self.documents) def __getitem__(self, idx): document_path = self.documents[idx] document_name = document_path.split("/")[-1] with open(document_path, encoding="utf-8") as source: raw_story = source.read() story_lines, summary_lines = process_story(raw_story) return document_name, story_lines, summary_lines def process_story(raw_story): """Extract the story and summary from a story file. Arguments: raw_story (str): content of the story file as an utf-8 encoded string. Raises: IndexError: If the story is empty or contains no highlights. """ nonempty_lines = list(filter(lambda x: len(x) != 0, [line.strip() for line in raw_story.split("\n")])) # for some unknown reason some lines miss a period, add it nonempty_lines = [_add_missing_period(line) for line in nonempty_lines] # gather article lines story_lines = [] lines = deque(nonempty_lines) while True: try: element = lines.popleft() if element.startswith("@highlight"): break story_lines.append(element) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines summary_lines = list(filter(lambda t: not t.startswith("@highlight"), lines)) return story_lines, summary_lines def _add_missing_period(line): END_TOKENS = [".", "!", "?", "...", "'", "`", '"', "\u2019", "\u2019", ")"] if line.startswith("@highlight"): return line if line[-1] in END_TOKENS: return line return line + "." # -------------------------- # Encoding and preprocessing # -------------------------- def truncate_or_pad(sequence, block_size, pad_token_id): """Adapt the source and target sequences' lengths to the block size. If the sequence is shorter we append padding token to the right of the sequence. """ if len(sequence) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(sequence))) return sequence def build_mask(sequence, pad_token_id): """Builds the mask. The attention mechanism will only attend to positions with value 1.""" mask = torch.ones_like(sequence) idx_pad_tokens = sequence == pad_token_id mask[idx_pad_tokens] = 0 return mask def encode_for_summarization(story_lines, summary_lines, tokenizer): """Encode the story and summary lines, and join them as specified in [1] by using `[SEP] [CLS]` tokens to separate sentences. """ story_lines_token_ids = [tokenizer.encode(line) for line in story_lines] story_token_ids = [token for sentence in story_lines_token_ids for token in sentence] summary_lines_token_ids = [tokenizer.encode(line) for line in summary_lines] summary_token_ids = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def compute_token_type_ids(batch, separator_token_id): """Segment embeddings as described in [1] The values {0,1} were found in the repository [2]. Attributes: batch: torch.Tensor, size [batch_size, block_size] Batch of input. separator_token_id: int The value of the token that separates the segments. [1] Liu, Yang, and Mirella Lapata. "Text summarization with pretrained encoders." arXiv preprint arXiv:1908.08345 (2019). [2] https://github.com/nlpyang/PreSumm (/src/prepro/data_builder.py, commit fac1217) """ batch_embeddings = [] for sequence in batch: sentence_num = -1 embeddings = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2) batch_embeddings.append(embeddings) return torch.tensor(batch_embeddings)
transformers/examples/research_projects/bertabs/utils_summarization.py/0
{ "file_path": "transformers/examples/research_projects/bertabs/utils_summarization.py", "repo_id": "transformers", "token_count": 2180 }
44
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def tokenize(example): output = {} output["input_ids"] = tokenizer(example["content"], truncation=False)["input_ids"] output["ratio_char_token"] = len(example["content"]) / len(output["input_ids"]) return output parser = HfArgumentParser(PretokenizationArguments) args = parser.parse_args() if args.num_workers is None: args.num_workers = multiprocessing.cpu_count() tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_dir) t_start = time.time() ds = load_dataset(args.dataset_name, split="train") print(f"Dataset loaded in {time.time()-t_start:.2f}s") t_start = time.time() ds = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f"Dataset tokenized in {time.time()-t_start:.2f}s") t_start = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f"Data pushed to the hub in {time.time()-t_start:.2f}s")
transformers/examples/research_projects/codeparrot/scripts/pretokenizing.py/0
{ "file_path": "transformers/examples/research_projects/codeparrot/scripts/pretokenizing.py", "repo_id": "transformers", "token_count": 527 }
45
# Distil* Author: @VictorSanh This folder contains the original code used to train Distil* as well as examples showcasing how to use DistilBERT, DistilRoBERTa and DistilGPT2. **January 20, 2020 - Bug fixing** We have recently discovered and fixed [a bug](https://github.com/huggingface/transformers/commit/48cbf267c988b56c71a2380f748a3e6092ccaed3) in the evaluation of our `run_*.py` scripts that caused the reported metrics to be over-estimated on average. We have updated all the metrics with the latest runs. **December 6, 2019 - Update** We release **DistilmBERT**: 92% of `bert-base-multilingual-cased` on XNLI. The model supports 104 different languages listed [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages). **November 19, 2019 - Update** We release German **DistilBERT**: 98.8% of `bert-base-german-dbmdz-cased` on NER tasks. **October 23, 2019 - Update** We release **DistilRoBERTa**: 95% of `RoBERTa-base`'s performance on GLUE, twice as fast as RoBERTa while being 35% smaller. **October 3, 2019 - Update** We release our [NeurIPS workshop paper](https://arxiv.org/abs/1910.01108) explaining our approach on **DistilBERT**. It includes updated results and further experiments. We applied the same method to GPT2 and release the weights of **DistilGPT2**. DistilGPT2 is two times faster and 33% smaller than GPT2. **The paper supersedes our [previous blogpost](https://medium.com/huggingface/distilbert-8cf3380435b5) with a different distillation loss and better performances. Please use the paper as a reference when comparing/reporting results on DistilBERT.** **September 19, 2019 - Update:** We fixed bugs in the code and released an updated version of the weights trained with a modification of the distillation loss. DistilBERT now reaches 99% of `BERT-base`'s performance on GLUE, and 86.9 F1 score on SQuAD v1.1 dev set (compared to 88.5 for `BERT-base`). We will publish a formal write-up of our approach in the near future! ## What is Distil* Distil* is a class of compressed models that started with DistilBERT. DistilBERT stands for Distilled-BERT. DistilBERT is a small, fast, cheap and light Transformer model based on Bert architecture. It has 40% less parameters than `bert-base-uncased`, runs 60% faster while preserving 97% of BERT's performances as measured on the GLUE language understanding benchmark. DistilBERT is trained using knowledge distillation, a technique to compress a large model called the teacher into a smaller model called the student. By distillating Bert, we obtain a smaller Transformer model that bears a lot of similarities with the original BERT model while being lighter, smaller and faster to run. DistilBERT is thus an interesting option to put large-scaled trained Transformer model into production. We have applied the same method to other Transformer architectures and released the weights: - GPT2: on the [WikiText-103](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/) benchmark, GPT2 reaches a perplexity on the test set of 16.3 compared to 21.1 for **DistilGPT2** (after fine-tuning on the train set). - RoBERTa: **DistilRoBERTa** reaches 95% of `RoBERTa-base`'s performance on GLUE while being twice faster and 35% smaller. - German BERT: **German DistilBERT** reaches 99% of `bert-base-german-dbmdz-cased`'s performance on German NER (CoNLL-2003). - Multilingual BERT: **DistilmBERT** reaches 92% of Multilingual BERT's performance on XNLI while being twice faster and 25% smaller. The model supports 104 languages listed [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages). For more information on DistilBERT, please refer to our [NeurIPS workshop paper](https://arxiv.org/abs/1910.01108). Here are the results on the dev sets of GLUE: | Model | Macro-score | CoLA | MNLI | MRPC | QNLI | QQP | RTE | SST-2| STS-B| WNLI | | :---: | :---: | :---:| :---:| :---:| :---:| :---:| :---:| :---:| :---:| :---: | | BERT-base-uncased | **79.5** | 56.3 | 84.7 | 88.6 | 91.8 | 89.6 | 69.3 | 92.7 | 89.0 | 53.5 | | DistilBERT-base-uncased | **77.0** | 51.3 | 82.1 | 87.5 | 89.2 | 88.5 | 59.9 | 91.3 | 86.9 | 56.3 | | BERT-base-cased | **78.2** | 58.2 | 83.9 | 87.8 | 91.0 | 89.2 | 66.1 | 91.7 | 89.2 | 46.5 | | DistilBERT-base-cased | **75.9** | 47.2 | 81.5 | 85.6 | 88.2 | 87.8 | 60.6 | 90.4 | 85.5 | 56.3 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | RoBERTa-base (reported) | **83.2**/**86.4**<sup>2</sup> | 63.6 | 87.6 | 90.2 | 92.8 | 91.9 | 78.7 | 94.8 | 91.2 | 57.7<sup>3</sup> | | DistilRoBERTa<sup>1</sup> | **79.0**/**82.3**<sup>2</sup> | 59.3 | 84.0 | 86.6 | 90.8 | 89.4 | 67.9 | 92.5 | 88.3 | 52.1 | <sup>1</sup> We did not use the MNLI checkpoint for fine-tuning but directly perform transfer learning on the pre-trained DistilRoBERTa. <sup>2</sup> Macro-score computed without WNLI. <sup>3</sup> We compute this score ourselves for completeness. Here are the results on the *test* sets for 6 of the languages available in XNLI. The results are computed in the zero shot setting (trained on the English portion and evaluated on the target language portion): | Model | English | Spanish | Chinese | German | Arabic | Urdu | | :---: | :---: | :---: | :---: | :---: | :---: | :---:| | mBERT base cased (computed) | 82.1 | 74.6 | 69.1 | 72.3 | 66.4 | 58.5 | | mBERT base uncased (reported)| 81.4 | 74.3 | 63.8 | 70.5 | 62.1 | 58.3 | | DistilmBERT | 78.2 | 69.1 | 64.0 | 66.3 | 59.1 | 54.7 | ## Setup This part of the library has only be tested with Python3.6+. There are few specific dependencies to install before launching a distillation, you can install them with the command `pip install -r requirements.txt`. **Important note:** The training scripts have been updated to support PyTorch v1.2.0 (there are breaking changes compared to v1.1.0). ## How to use DistilBERT Transformers includes five pre-trained Distil* models, currently only provided for English and German (we are investigating the possibility to train and release a multilingual version of DistilBERT): - `distilbert-base-uncased`: DistilBERT English language model pretrained on the same data used to pretrain Bert (concatenation of the Toronto Book Corpus and full English Wikipedia) using distillation with the supervision of the `bert-base-uncased` version of Bert. The model has 6 layers, 768 dimension and 12 heads, totalizing 66M parameters. - `distilbert-base-uncased-distilled-squad`: A finetuned version of `distilbert-base-uncased` finetuned using (a second step of) knowledge distillation on SQuAD 1.0. This model reaches a F1 score of 86.9 on the dev set (for comparison, Bert `bert-base-uncased` version reaches a 88.5 F1 score). - `distilbert-base-cased`: DistilBERT English language model pretrained on the same data used to pretrain Bert (concatenation of the Toronto Book Corpus and full English Wikipedia) using distillation with the supervision of the `bert-base-cased` version of Bert. The model has 6 layers, 768 dimension and 12 heads, totalizing 65M parameters. - `distilbert-base-cased-distilled-squad`: A finetuned version of `distilbert-base-cased` finetuned using (a second step of) knowledge distillation on SQuAD 1.0. This model reaches a F1 score of 87.1 on the dev set (for comparison, Bert `bert-base-cased` version reaches a 88.7 F1 score). - `distilbert-base-german-cased`: DistilBERT German language model pretrained on 1/2 of the data used to pretrain Bert using distillation with the supervision of the `bert-base-german-dbmdz-cased` version of German DBMDZ Bert. For NER tasks the model reaches a F1 score of 83.49 on the CoNLL-2003 test set (for comparison, `bert-base-german-dbmdz-cased` reaches a 84.52 F1 score), and a F1 score of 85.23 on the GermEval 2014 test set (`bert-base-german-dbmdz-cased` reaches a 86.89 F1 score). - `distilgpt2`: DistilGPT2 English language model pretrained with the supervision of `gpt2` (the smallest version of GPT2) on [OpenWebTextCorpus](https://skylion007.github.io/OpenWebTextCorpus/), a reproduction of OpenAI's WebText dataset. The model has 6 layers, 768 dimension and 12 heads, totalizing 82M parameters (compared to 124M parameters for GPT2). On average, DistilGPT2 is two times faster than GPT2. - `distilroberta-base`: DistilRoBERTa English language model pretrained with the supervision of `roberta-base` solely on [OpenWebTextCorpus](https://skylion007.github.io/OpenWebTextCorpus/), a reproduction of OpenAI's WebText dataset (it is ~4 times less training data than the teacher RoBERTa). The model has 6 layers, 768 dimension and 12 heads, totalizing 82M parameters (compared to 125M parameters for RoBERTa-base). On average DistilRoBERTa is twice as fast as Roberta-base. - `distilbert-base-multilingual-cased`: DistilmBERT multilingual model pretrained with the supervision of `bert-base-multilingual-cased` on the concatenation of Wikipedia in 104 different languages. The model supports the 104 languages listed [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages). The model has 6 layers, 768 dimension and 12 heads, totalizing 134M parameters (compared to 177M parameters for mBERT-base). On average DistilmBERT is twice as fast as mBERT-base. Using DistilBERT is very similar to using BERT. DistilBERT share the same tokenizer as BERT's `bert-base-uncased` even though we provide a link to this tokenizer under the `DistilBertTokenizer` name to have a consistent naming between the library models. ```python tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased') model = DistilBertModel.from_pretrained('distilbert-base-cased') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) outputs = model(input_ids) last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple ``` Similarly, using the other Distil* models simply consists in calling the base classes with a different pretrained checkpoint: - DistilBERT uncased: `model = DistilBertModel.from_pretrained('distilbert-base-uncased')` - DistilGPT2: `model = GPT2Model.from_pretrained('distilgpt2')` - DistilRoBERTa: `model = RobertaModel.from_pretrained('distilroberta-base')` - DistilmBERT: `model = DistilBertModel.from_pretrained('distilbert-base-multilingual-cased')` ## How to train Distil* In the following, we will explain how you can train DistilBERT. ### A. Preparing the data The weights we release are trained using a concatenation of Toronto Book Corpus and English Wikipedia (same training data as the English version of BERT). To avoid processing the data several time, we do it once and for all before the training. From now on, will suppose that you have a text file `dump.txt` which contains one sequence per line (a sequence being composed of one of several coherent sentences). First, we will binarize the data, i.e. tokenize the data and convert each token in an index in our model's vocabulary. ```bash python scripts/binarized_data.py \ --file_path data/dump.txt \ --tokenizer_type bert \ --tokenizer_name bert-base-uncased \ --dump_file data/binarized_text ``` Our implementation of masked language modeling loss follows [XLM](https://github.com/facebookresearch/XLM)'s one and smooths the probability of masking with a factor that put more emphasis on rare words. Thus we count the occurrences of each tokens in the data: ```bash python scripts/token_counts.py \ --data_file data/binarized_text.bert-base-uncased.pickle \ --token_counts_dump data/token_counts.bert-base-uncased.pickle \ --vocab_size 30522 ``` ### B. Training Training with distillation is really simple once you have pre-processed the data: ```bash python train.py \ --student_type distilbert \ --student_config training_configs/distilbert-base-uncased.json \ --teacher_type bert \ --teacher_name bert-base-uncased \ --alpha_ce 5.0 --alpha_mlm 2.0 --alpha_cos 1.0 --alpha_clm 0.0 --mlm \ --freeze_pos_embs \ --dump_path serialization_dir/my_first_training \ --data_file data/binarized_text.bert-base-uncased.pickle \ --token_counts data/token_counts.bert-base-uncased.pickle \ --force # overwrites the `dump_path` if it already exists. ``` By default, this will launch a training on a single GPU (even if more are available on the cluster). Other parameters are available in the command line, please look in `train.py` or run `python train.py --help` to list them. We highly encourage you to use distributed training for training DistilBERT as the training corpus is quite large. Here's an example that runs a distributed training on a single node having 4 GPUs: ```bash export NODE_RANK=0 export N_NODES=1 export N_GPU_NODE=4 export WORLD_SIZE=4 export MASTER_PORT=<AN_OPEN_PORT> export MASTER_ADDR=<I.P.> pkill -f 'python -u train.py' python -m torch.distributed.launch \ --nproc_per_node=$N_GPU_NODE \ --nnodes=$N_NODES \ --node_rank $NODE_RANK \ --master_addr $MASTER_ADDR \ --master_port $MASTER_PORT \ train.py \ --force \ --n_gpu $WORLD_SIZE \ --student_type distilbert \ --student_config training_configs/distilbert-base-uncased.json \ --teacher_type bert \ --teacher_name bert-base-uncased \ --alpha_ce 0.33 --alpha_mlm 0.33 --alpha_cos 0.33 --alpha_clm 0.0 --mlm \ --freeze_pos_embs \ --dump_path serialization_dir/my_first_training \ --data_file data/binarized_text.bert-base-uncased.pickle \ --token_counts data/token_counts.bert-base-uncased.pickle ``` **Tips:** Starting distilled training with good initialization of the model weights is crucial to reach decent performance. In our experiments, we initialized our model from a few layers of the teacher (Bert) itself! Please refer to `scripts/extract.py` and `scripts/extract_distilbert.py` to create a valid initialization checkpoint and use `--student_pretrained_weights` argument to use this initialization for the distilled training! Happy distillation! ## Citation If you find the resource useful, you should cite the following paper: ```bibtex @inproceedings{sanh2019distilbert, title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter}, author={Sanh, Victor and Debut, Lysandre and Chaumond, Julien and Wolf, Thomas}, booktitle={NeurIPS EMC^2 Workshop}, year={2019} } ```
transformers/examples/research_projects/distillation/README.md/0
{ "file_path": "transformers/examples/research_projects/distillation/README.md", "repo_id": "transformers", "token_count": 5075 }
46
# coding=utf-8 # Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utils to train DistilBERT adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM) """ import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger = logging.getLogger(__name__) def git_log(folder_path: str): """ Log commit info. """ repo = git.Repo(search_parent_directories=True) repo_infos = { "repo_id": str(repo), "repo_sha": str(repo.head.object.hexsha), "repo_branch": str(repo.active_branch), } with open(os.path.join(folder_path, "git_log.json"), "w") as f: json.dump(repo_infos, f, indent=4) def init_gpu_params(params): """ Handle single and multi-GPU / multi-node. """ if params.n_gpu <= 0: params.local_rank = 0 params.master_port = -1 params.is_master = True params.multi_gpu = False return assert torch.cuda.is_available() logger.info("Initializing GPUs") if params.n_gpu > 1: assert params.local_rank != -1 params.world_size = int(os.environ["WORLD_SIZE"]) params.n_gpu_per_node = int(os.environ["N_GPU_NODE"]) params.global_rank = int(os.environ["RANK"]) # number of nodes / node ID params.n_nodes = params.world_size // params.n_gpu_per_node params.node_id = params.global_rank // params.n_gpu_per_node params.multi_gpu = True assert params.n_nodes == int(os.environ["N_NODES"]) assert params.node_id == int(os.environ["NODE_RANK"]) # local job (single GPU) else: assert params.local_rank == -1 params.n_nodes = 1 params.node_id = 0 params.local_rank = 0 params.global_rank = 0 params.world_size = 1 params.n_gpu_per_node = 1 params.multi_gpu = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode params.is_master = params.node_id == 0 and params.local_rank == 0 params.multi_node = params.n_nodes > 1 # summary PREFIX = f"--- Global rank: {params.global_rank} - " logger.info(PREFIX + "Number of nodes: %i" % params.n_nodes) logger.info(PREFIX + "Node ID : %i" % params.node_id) logger.info(PREFIX + "Local rank : %i" % params.local_rank) logger.info(PREFIX + "World size : %i" % params.world_size) logger.info(PREFIX + "GPUs per node : %i" % params.n_gpu_per_node) logger.info(PREFIX + "Master : %s" % str(params.is_master)) logger.info(PREFIX + "Multi-node : %s" % str(params.multi_node)) logger.info(PREFIX + "Multi-GPU : %s" % str(params.multi_gpu)) logger.info(PREFIX + "Hostname : %s" % socket.gethostname()) # set GPU device torch.cuda.set_device(params.local_rank) # initialize multi-GPU if params.multi_gpu: logger.info("Initializing PyTorch distributed") torch.distributed.init_process_group( init_method="env://", backend="nccl", ) def set_seed(args): """ Set the random seed. """ np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed)
transformers/examples/research_projects/distillation/utils.py/0
{ "file_path": "transformers/examples/research_projects/distillation/utils.py", "repo_id": "transformers", "token_count": 1772 }
47
Author: [@vasudevgupta7](https://github.com/thevasudevgupta/) ## Intro In this project, we fine-tuned [**BigBird**](https://arxiv.org/abs/2007.14062) on [**natural-questions**](https://huggingface.co/datasets/natural_questions) dataset for **question-answering** task on long documents. **BigBird**, is a **sparse-attention based transformer** which extends Transformer based models, such as BERT to much **longer sequences**. Read more about BigBird at https://huggingface.co/blog/big-bird ## Fine-tuning **Setup** You need to install jax yourself by following the official docs ([refer this](https://github.com/google/jax#installation)). Other requirements for this project can be installed by running following command: ```shell pip3 install -qr requirements.txt ``` **Download & prepare dataset** The Natural Questions corpus contains questions from real users, and it requires QA systems to read and comprehend an entire Wikipedia article that may or may not contain the answer to the question. This corpus takes ~100 GB on disk. We have used HuggingFace datasets to download & process the dataset. ```shell # just run following CMD python3 prepare_natural_questions.py # this will download the whole dataset from HuggingFace Hub & will make it ready for training # this script takes ~3 hours to process the dataset ``` **Launch Training** We have trained on Cloud's TPU v3-8. Each epoch took around 4.5 hours and the model got converged in just 2 epochs. You can see complete training args in [this script](bigbird_flax.py). ```shell # just run following CMD python3 train.py # In case, you want to try hparams tuning, you can run wandb sweep wandb sweep --project=bigbird sweep_flax.yaml wandb agent <agent-id-obtained-by-above-CMD> ``` ## Evaluation Our evaluation script is different from the original script and we are evaluating sequences with length up to 4096 for simplicity. We managed to get the **EM score of ~55.2** using our evaluation script. ```shell # download validation-dataset first mkdir natural-questions-validation wget https://huggingface.co/datasets/vasudevgupta/natural-questions-validation/resolve/main/natural_questions-validation.arrow -P natural-questions-validation wget https://huggingface.co/datasets/vasudevgupta/natural-questions-validation/resolve/main/dataset_info.json -P natural-questions-validation wget https://huggingface.co/datasets/vasudevgupta/natural-questions-validation/resolve/main/state.json -P natural-questions-validation # simply run following command python3 evaluate.py ``` You can find our checkpoint on HuggingFace Hub ([see this](https://huggingface.co/vasudevgupta/flax-bigbird-natural-questions)). In case you are interested in PyTorch BigBird fine-tuning, you can refer to [this repository](https://github.com/thevasudevgupta/bigbird).
transformers/examples/research_projects/jax-projects/big_bird/README.md/0
{ "file_path": "transformers/examples/research_projects/jax-projects/big_bird/README.md", "repo_id": "transformers", "token_count": 824 }
48
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Pre-training/Fine-tuning the GPTNeo model for causal language modeling on a text file or a dataset using model parallelism. """ import logging import math import os import sys import time from dataclasses import dataclass, field from itertools import chain from pathlib import Path from typing import Callable, Optional import datasets import jax import jax.numpy as jnp import numpy as np import optax from datasets import Dataset, load_dataset from flax.core.frozen_dict import freeze, unfreeze from flax.training.common_utils import onehot, stack_forest from jax.experimental.maps import mesh from jax.experimental.pjit import pjit from partitions import set_partitions from tqdm import tqdm import transformers from transformers import ( CONFIG_MAPPING, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING, AutoConfig, AutoTokenizer, FlaxAutoModelForCausalLM, HfArgumentParser, TrainingArguments, is_tensorboard_available, ) from transformers.testing_utils import CaptureLogger logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_CAUSAL_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={ "help": ( "The model checkpoint for weights initialization. Don't set if you want to train a model from scratch." ) }, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) dtype: Optional[str] = field( default="float32", metadata={ "help": ( "Floating-point format in which the model weights should be initialized and trained. Choose one of" " `[float32, float16, bfloat16]`." ) }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) validation_split_percentage: Optional[int] = field( default=5, metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" }, ) block_size: Optional[int] = field( default=None, metadata={ "help": ( "Optional input sequence length after tokenization. " "The training dataset will be truncated in block of this size for training. " "Default to the model max input length for single sentence inputs (take into account special tokens)." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False): """ Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices. Shuffle batches if `shuffle` is `True`. """ steps_per_epoch = len(dataset) // batch_size if shuffle: batch_idx = jax.random.permutation(rng, len(dataset)) else: batch_idx = jnp.arange(len(dataset)) batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch. batch_idx = batch_idx.reshape((steps_per_epoch, batch_size)) for idx in batch_idx: batch = dataset[idx] batch = {k: jnp.array(v) for k, v in batch.items()} yield batch def write_train_metric(summary_writer, train_metrics, train_time, step): summary_writer.scalar("train_time", train_time, step) train_metrics = stack_forest(train_metrics) for key, vals in train_metrics.items(): tag = f"train_{key}" for i, val in enumerate(vals): summary_writer.scalar(tag, val, step - len(vals) + i + 1) def write_eval_metric(summary_writer, eval_metrics, step): for metric_name, value in eval_metrics.items(): summary_writer.scalar(f"eval_{metric_name}", value, step) def create_learning_rate_fn( train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float ) -> Callable[[int], jnp.ndarray]: """Returns a linear warmup, linear_decay learning rate function.""" steps_per_epoch = train_ds_size // train_batch_size num_train_steps = steps_per_epoch * num_train_epochs warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps) decay_fn = optax.linear_schedule( init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps ) schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps]) return schedule_fn def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) if jax.process_index() == 0: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # Set the verbosity to info of the Transformers logger (on main process only): logger.info(f"Training/evaluation parameters {training_args}") # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, keep_in_memory=False ) if "validation" not in dataset.keys(): dataset["validation"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, ) dataset["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"train[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if extension == "txt": extension = "text" dataset = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets. # Load pretrained config and tokenizer if model_args.config_name: config = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: config = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir) else: config = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer ) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script. " "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if training_args.do_train: column_names = dataset["train"].column_names else: column_names = dataset["validation"].column_names text_column_name = "text" if "text" in column_names else column_names[0] # since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base") def tokenize_function(examples): with CaptureLogger(tok_logger) as cl: output = tokenizer(examples[text_column_name]) # clm input could be much much longer than block_size if "Token indices sequence length is longer than the" in cl.out: tok_logger.warning( "^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits" " before being passed to the model." ) return output tokenized_datasets = dataset.map( tokenize_function, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not data_args.overwrite_cache, ) if data_args.block_size is None: block_size = tokenizer.model_max_length if block_size > config.max_position_embeddings: logger.warning( f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " f"Using block_size={min(1024, config.max_position_embeddings)} instead. You can change that default value by passing --block_size xxx." ) block_size = min(1024, config.max_position_embeddings) else: if data_args.block_size > tokenizer.model_max_length: logger.warning( f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model " f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." ) block_size = min(data_args.block_size, tokenizer.model_max_length) # Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size. def group_texts(examples): # Concatenate all texts. concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} total_length = len(concatenated_examples[list(examples.keys())[0]]) # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can # customize this part to your needs. if total_length >= block_size: total_length = (total_length // block_size) * block_size # Split by chunks of max_len. result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } result["labels"] = result["input_ids"].copy() return result # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder # for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower # to preprocess. # # To speed up this part, we use multiprocessing. See the documentation of the map method for more information: # https://huggingface.co/docs/datasets/process#map lm_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_train: if "train" not in tokenized_datasets: raise ValueError("--do_train requires a train dataset") train_dataset = lm_datasets["train"] if data_args.max_train_samples is not None: max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) if training_args.do_eval: if "validation" not in tokenized_datasets: raise ValueError("--do_eval requires a validation dataset") eval_dataset = lm_datasets["validation"] if data_args.max_eval_samples is not None: max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) eval_dataset = eval_dataset.select(range(max_eval_samples)) # Enable tensorboard only on the master node has_tensorboard = is_tensorboard_available() if has_tensorboard and jax.process_index() == 0: try: from flax.metrics.tensorboard import SummaryWriter summary_writer = SummaryWriter(log_dir=Path(training_args.output_dir)) except ImportError as ie: has_tensorboard = False logger.warning( f"Unable to display metrics through TensorBoard because some package are not installed: {ie}" ) else: logger.warning( "Unable to display metrics through TensorBoard because the package is not installed: " "Please run pip install tensorboard to enable." ) # Initialize our training rng = jax.random.PRNGKey(training_args.seed) rng, dropout_rng = jax.random.split(rng) # Store some constant num_epochs = int(training_args.num_train_epochs) train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count() eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count() steps_per_epoch = len(train_dataset) // train_batch_size total_train_steps = steps_per_epoch * num_epochs # TODO: weights should be initialized in pjitted fun, this won't work for REALLY large models # TODO: when loading from pre-trained model we need to make sure the vocab is divisible by num_partitions # GPT2's vocab is odd, we need to resize it for fine-tuning model = FlaxAutoModelForCausalLM.from_pretrained( model_args.model_name_or_path, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype) ) # Create learning rate schedule linear_decay_lr_schedule_fn = create_learning_rate_fn( len(train_dataset), train_batch_size, training_args.num_train_epochs, training_args.warmup_steps, training_args.learning_rate, ) optimizer = optax.adamw( learning_rate=linear_decay_lr_schedule_fn, b1=training_args.adam_beta1, b2=training_args.adam_beta2, eps=training_args.adam_epsilon, weight_decay=training_args.weight_decay, ) def get_initial_state(params): state = optimizer.init(params) return tuple(state), params # Get PartitionSpec for model params param_spec = set_partitions(unfreeze(model.params)) # Get the PyTree for opt_state, we don't actually initialize the opt_state yet. params_shapes = jax.tree_util.tree_map(lambda x: x.shape, model.params) state_shapes = jax.eval_shape(get_initial_state, params_shapes) # get PartitionSpec for opt_state, this is very specific to adamw # TODO: optax returns different state for different optimizers, how can we handle this generically ? # or maybe we don't since in our examples we just use adamw or adafactor def get_opt_spec(x): if isinstance(x, dict): return param_spec return None opt_state_spec, param_spec = jax.tree_util.tree_map( get_opt_spec, state_shapes, is_leaf=lambda x: isinstance(x, (dict, optax.EmptyState)) ) # pjit the get_initial_state function to shard params and init # optimizer state in sharded way p_get_initial_state = pjit( get_initial_state, in_axis_resources=None, out_axis_resources=(opt_state_spec, param_spec), ) # hack: move the inital params to CPU to free up device memory # TODO: allow loading weights on CPU in pre-trained model model.params = jax.tree_util.tree_map(lambda x: np.asarray(x), model.params) # mesh defination mesh_devices = np.array(jax.devices()).reshape(1, jax.local_device_count()) # actually initialize the opt_state with mesh(mesh_devices, ("dp", "mp")): opt_state, params = p_get_initial_state(freeze(model.params)) # cross-entropy with z loss def loss_fn(logits, labels, z_loss=0): shift_logits = logits[..., :-1, :] shift_labels = labels[..., 1:] shift_labels = onehot(shift_labels, shift_logits.shape[-1]) shift_logits = shift_logits - jax.lax.stop_gradient(shift_logits.max(axis=-1, keepdims=True)) log_z = jnp.log(jnp.sum(jnp.exp(shift_logits), axis=-1, keepdims=True)) log_softmax = shift_logits - log_z loss = -jnp.sum(shift_labels * log_softmax, axis=-1) loss += (1e-4 * jnp.square(log_z.squeeze(-1))) * z_loss return loss.mean() # Define gradient update step fn # TODO: try to use TrainState instead of passing params and opt_state individually def train_step(params, opt_state, dropout_rng, batch, step): dropout_rng, new_dropout_rng = jax.random.split(dropout_rng) def compute_loss(params): labels = batch.pop("labels") logits = model(**batch, params=params, dropout_rng=dropout_rng, train=True)[0] loss = loss_fn(logits, labels, z_loss=1.0) return loss grad_fn = jax.value_and_grad(compute_loss) loss, grads = grad_fn(params) updates, new_opt_state = optimizer.update(grads, opt_state, params) new_params = optax.apply_updates(params, updates) metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(step)} return new_params, tuple(new_opt_state), new_dropout_rng, metrics, step + 1 # Define eval fn def eval_step(input_ids, labels, params): logits = model(input_ids=input_ids, params=params, train=False)[0] loss = loss_fn(logits, labels) # metrics return {"loss": loss} p_train_step = pjit( train_step, in_axis_resources=(param_spec, opt_state_spec, None, None, None), out_axis_resources=(param_spec, opt_state_spec, None, None, None), donate_argnums=(0, 1), ) p_eval_step = pjit( eval_step, in_axis_resources=(None, None, param_spec), out_axis_resources=None, ) logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {num_epochs}") logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel & distributed) = {train_batch_size}") logger.info(f" Total optimization steps = {total_train_steps}") train_time = 0 train_metrics = [] epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0) global_step = 0 # we are not doing 2D parallelism (yet!), this just does model parallelism with mesh(mesh_devices, ("dp", "mp")): for _ in epochs: # ======================== Training ================================ train_start = time.time() # Create sampling rng rng, input_rng = jax.random.split(rng) # Generate an epoch by shuffling sampling indices from the train dataset train_metrics = [] train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True) steps_per_epoch = len(train_dataset) // train_batch_size # train for _ in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False): batch = next(train_loader) params, opt_state, dropout_rng, train_metric, global_step = p_train_step( params, opt_state, dropout_rng, batch, global_step, ) train_metrics.append(train_metric) cur_step = global_step if cur_step % training_args.logging_steps == 0 and cur_step > 0: # Save metrics train_time += time.time() - train_start if has_tensorboard and jax.process_index() == 0: write_train_metric(summary_writer, train_metrics, train_time, cur_step) epochs.write( f"Step... ({cur_step} | Loss: {train_metric['loss']}, Learning Rate:" f" {train_metric['learning_rate']})" ) train_metrics = [] if cur_step % training_args.eval_steps == 0 and cur_step > 0: # ======================== Evaluating ============================== eval_metrics = [] eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size) eval_steps = len(eval_dataset) // eval_batch_size for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False): batch = next(eval_loader) metrics = p_eval_step(batch["input_ids"], batch["labels"], params) eval_metrics.append(metrics) # normalize eval metrics eval_metrics = stack_forest(eval_metrics) eval_metrics = jax.tree_util.tree_map(jnp.mean, eval_metrics) try: eval_metrics["perplexity"] = math.exp(eval_metrics["loss"]) except OverflowError: eval_metrics["perplexity"] = float("inf") logger.info( f"Step... ({cur_step} | Eval loss: {eval_metrics['loss']} | Eval Perplexity:" f" {eval_metrics['perplexity']}" ) if cur_step % training_args.save_steps == 0 and cur_step > 0: # save checkpoint after each epoch and push checkpoint to the hub if jax.process_index() == 0: params = jax.device_get(params) model.save_pretrained( training_args.output_dir, params=params, push_to_hub=training_args.push_to_hub, commit_message=f"Saving weights and logs of step {cur_step}", ) if __name__ == "__main__": main()
transformers/examples/research_projects/jax-projects/model_parallel/run_clm_mp.py/0
{ "file_path": "transformers/examples/research_projects/jax-projects/model_parallel/run_clm_mp.py", "repo_id": "transformers", "token_count": 11794 }
49
""" coding=utf-8 Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal Adapted From Facebook Inc, Detectron2 && Huggingface Co. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.import copy """ import itertools import math import os from abc import ABCMeta, abstractmethod from collections import OrderedDict, namedtuple from typing import Dict, List, Tuple import numpy as np import torch from torch import nn from torch.nn.modules.batchnorm import BatchNorm2d from torchvision.ops import RoIPool from torchvision.ops.boxes import batched_nms, nms from utils import WEIGHTS_NAME, Config, cached_path, hf_bucket_url, is_remote_url, load_checkpoint # other: def norm_box(boxes, raw_sizes): if not isinstance(boxes, torch.Tensor): normalized_boxes = boxes.copy() else: normalized_boxes = boxes.clone() normalized_boxes[:, :, (0, 2)] /= raw_sizes[:, 1] normalized_boxes[:, :, (1, 3)] /= raw_sizes[:, 0] return normalized_boxes def pad_list_tensors( list_tensors, preds_per_image, max_detections=None, return_tensors=None, padding=None, pad_value=0, location=None, ): """ location will always be cpu for np tensors """ if location is None: location = "cpu" assert return_tensors in {"pt", "np", None} assert padding in {"max_detections", "max_batch", None} new = [] if padding is None: if return_tensors is None: return list_tensors elif return_tensors == "pt": if not isinstance(list_tensors, torch.Tensor): return torch.stack(list_tensors).to(location) else: return list_tensors.to(location) else: if not isinstance(list_tensors, list): return np.array(list_tensors.to(location)) else: return list_tensors.to(location) if padding == "max_detections": assert max_detections is not None, "specify max number of detections per batch" elif padding == "max_batch": max_detections = max(preds_per_image) for i in range(len(list_tensors)): too_small = False tensor_i = list_tensors.pop(0) if tensor_i.ndim < 2: too_small = True tensor_i = tensor_i.unsqueeze(-1) assert isinstance(tensor_i, torch.Tensor) tensor_i = nn.functional.pad( input=tensor_i, pad=(0, 0, 0, max_detections - preds_per_image[i]), mode="constant", value=pad_value, ) if too_small: tensor_i = tensor_i.squeeze(-1) if return_tensors is None: if location == "cpu": tensor_i = tensor_i.cpu() tensor_i = tensor_i.tolist() if return_tensors == "np": if location == "cpu": tensor_i = tensor_i.cpu() tensor_i = tensor_i.numpy() else: if location == "cpu": tensor_i = tensor_i.cpu() new.append(tensor_i) if return_tensors == "np": return np.stack(new, axis=0) elif return_tensors == "pt" and not isinstance(new, torch.Tensor): return torch.stack(new, dim=0) else: return list_tensors def do_nms(boxes, scores, image_shape, score_thresh, nms_thresh, mind, maxd): scores = scores[:, :-1] num_bbox_reg_classes = boxes.shape[1] // 4 # Convert to Boxes to use the `clip` function ... boxes = boxes.reshape(-1, 4) _clip_box(boxes, image_shape) boxes = boxes.view(-1, num_bbox_reg_classes, 4) # R x C x 4 # Select max scores max_scores, max_classes = scores.max(1) # R x C --> R num_objs = boxes.size(0) boxes = boxes.view(-1, 4) idxs = torch.arange(num_objs).to(boxes.device) * num_bbox_reg_classes + max_classes max_boxes = boxes[idxs] # Select max boxes according to the max scores. # Apply NMS keep = nms(max_boxes, max_scores, nms_thresh) keep = keep[:maxd] if keep.shape[-1] >= mind and keep.shape[-1] <= maxd: max_boxes, max_scores = max_boxes[keep], max_scores[keep] classes = max_classes[keep] return max_boxes, max_scores, classes, keep else: return None # Helper Functions def _clip_box(tensor, box_size: Tuple[int, int]): assert torch.isfinite(tensor).all(), "Box tensor contains infinite or NaN!" h, w = box_size tensor[:, 0].clamp_(min=0, max=w) tensor[:, 1].clamp_(min=0, max=h) tensor[:, 2].clamp_(min=0, max=w) tensor[:, 3].clamp_(min=0, max=h) def _nonempty_boxes(box, threshold: float = 0.0) -> torch.Tensor: widths = box[:, 2] - box[:, 0] heights = box[:, 3] - box[:, 1] keep = (widths > threshold) & (heights > threshold) return keep def get_norm(norm, out_channels): if isinstance(norm, str): if len(norm) == 0: return None norm = { "BN": BatchNorm2d, "GN": lambda channels: nn.GroupNorm(32, channels), "nnSyncBN": nn.SyncBatchNorm, # keep for debugging "": lambda x: x, }[norm] return norm(out_channels) def _create_grid_offsets(size: List[int], stride: int, offset: float, device): grid_height, grid_width = size shifts_x = torch.arange( offset * stride, grid_width * stride, step=stride, dtype=torch.float32, device=device, ) shifts_y = torch.arange( offset * stride, grid_height * stride, step=stride, dtype=torch.float32, device=device, ) shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x) shift_x = shift_x.reshape(-1) shift_y = shift_y.reshape(-1) return shift_x, shift_y def build_backbone(cfg): input_shape = ShapeSpec(channels=len(cfg.MODEL.PIXEL_MEAN)) norm = cfg.RESNETS.NORM stem = BasicStem( in_channels=input_shape.channels, out_channels=cfg.RESNETS.STEM_OUT_CHANNELS, norm=norm, caffe_maxpool=cfg.MODEL.MAX_POOL, ) freeze_at = cfg.BACKBONE.FREEZE_AT if freeze_at >= 1: for p in stem.parameters(): p.requires_grad = False out_features = cfg.RESNETS.OUT_FEATURES depth = cfg.RESNETS.DEPTH num_groups = cfg.RESNETS.NUM_GROUPS width_per_group = cfg.RESNETS.WIDTH_PER_GROUP bottleneck_channels = num_groups * width_per_group in_channels = cfg.RESNETS.STEM_OUT_CHANNELS out_channels = cfg.RESNETS.RES2_OUT_CHANNELS stride_in_1x1 = cfg.RESNETS.STRIDE_IN_1X1 res5_dilation = cfg.RESNETS.RES5_DILATION assert res5_dilation in {1, 2}, "res5_dilation cannot be {}.".format(res5_dilation) num_blocks_per_stage = {50: [3, 4, 6, 3], 101: [3, 4, 23, 3], 152: [3, 8, 36, 3]}[depth] stages = [] out_stage_idx = [{"res2": 2, "res3": 3, "res4": 4, "res5": 5}[f] for f in out_features] max_stage_idx = max(out_stage_idx) for idx, stage_idx in enumerate(range(2, max_stage_idx + 1)): dilation = res5_dilation if stage_idx == 5 else 1 first_stride = 1 if idx == 0 or (stage_idx == 5 and dilation == 2) else 2 stage_kargs = { "num_blocks": num_blocks_per_stage[idx], "first_stride": first_stride, "in_channels": in_channels, "bottleneck_channels": bottleneck_channels, "out_channels": out_channels, "num_groups": num_groups, "norm": norm, "stride_in_1x1": stride_in_1x1, "dilation": dilation, } stage_kargs["block_class"] = BottleneckBlock blocks = ResNet.make_stage(**stage_kargs) in_channels = out_channels out_channels *= 2 bottleneck_channels *= 2 if freeze_at >= stage_idx: for block in blocks: block.freeze() stages.append(blocks) return ResNet(stem, stages, out_features=out_features) def find_top_rpn_proposals( proposals, pred_objectness_logits, images, image_sizes, nms_thresh, pre_nms_topk, post_nms_topk, min_box_side_len, training, ): """Args: proposals (list[Tensor]): (L, N, Hi*Wi*A, 4). pred_objectness_logits: tensors of length L. nms_thresh (float): IoU threshold to use for NMS pre_nms_topk (int): before nms post_nms_topk (int): after nms min_box_side_len (float): minimum proposal box side training (bool): True if proposals are to be used in training, Returns: results (List[Dict]): stores post_nms_topk object proposals for image i. """ num_images = len(images) device = proposals[0].device # 1. Select top-k anchor for every level and every image topk_scores = [] # #lvl Tensor, each of shape N x topk topk_proposals = [] level_ids = [] # #lvl Tensor, each of shape (topk,) batch_idx = torch.arange(num_images, device=device) for level_id, proposals_i, logits_i in zip(itertools.count(), proposals, pred_objectness_logits): Hi_Wi_A = logits_i.shape[1] num_proposals_i = min(pre_nms_topk, Hi_Wi_A) # sort is faster than topk (https://github.com/pytorch/pytorch/issues/22812) # topk_scores_i, topk_idx = logits_i.topk(num_proposals_i, dim=1) logits_i, idx = logits_i.sort(descending=True, dim=1) topk_scores_i = logits_i[batch_idx, :num_proposals_i] topk_idx = idx[batch_idx, :num_proposals_i] # each is N x topk topk_proposals_i = proposals_i[batch_idx[:, None], topk_idx] # N x topk x 4 topk_proposals.append(topk_proposals_i) topk_scores.append(topk_scores_i) level_ids.append(torch.full((num_proposals_i,), level_id, dtype=torch.int64, device=device)) # 2. Concat all levels together topk_scores = torch.cat(topk_scores, dim=1) topk_proposals = torch.cat(topk_proposals, dim=1) level_ids = torch.cat(level_ids, dim=0) # if I change to batched_nms, I wonder if this will make a difference # 3. For each image, run a per-level NMS, and choose topk results. results = [] for n, image_size in enumerate(image_sizes): boxes = topk_proposals[n] scores_per_img = topk_scores[n] # I will have to take a look at the boxes clip method _clip_box(boxes, image_size) # filter empty boxes keep = _nonempty_boxes(boxes, threshold=min_box_side_len) lvl = level_ids if keep.sum().item() != len(boxes): boxes, scores_per_img, lvl = ( boxes[keep], scores_per_img[keep], level_ids[keep], ) keep = batched_nms(boxes, scores_per_img, lvl, nms_thresh) keep = keep[:post_nms_topk] res = (boxes[keep], scores_per_img[keep]) results.append(res) # I wonder if it would be possible for me to pad all these things. return results def subsample_labels(labels, num_samples, positive_fraction, bg_label): """ Returns: pos_idx, neg_idx (Tensor): 1D vector of indices. The total length of both is `num_samples` or fewer. """ positive = torch.nonzero((labels != -1) & (labels != bg_label)).squeeze(1) negative = torch.nonzero(labels == bg_label).squeeze(1) num_pos = int(num_samples * positive_fraction) # protect against not enough positive examples num_pos = min(positive.numel(), num_pos) num_neg = num_samples - num_pos # protect against not enough negative examples num_neg = min(negative.numel(), num_neg) # randomly select positive and negative examples perm1 = torch.randperm(positive.numel(), device=positive.device)[:num_pos] perm2 = torch.randperm(negative.numel(), device=negative.device)[:num_neg] pos_idx = positive[perm1] neg_idx = negative[perm2] return pos_idx, neg_idx def add_ground_truth_to_proposals(gt_boxes, proposals): raise NotImplementedError() def add_ground_truth_to_proposals_single_image(gt_boxes, proposals): raise NotImplementedError() def _fmt_box_list(box_tensor, batch_index: int): repeated_index = torch.full( (len(box_tensor), 1), batch_index, dtype=box_tensor.dtype, device=box_tensor.device, ) return torch.cat((repeated_index, box_tensor), dim=1) def convert_boxes_to_pooler_format(box_lists: List[torch.Tensor]): pooler_fmt_boxes = torch.cat( [_fmt_box_list(box_list, i) for i, box_list in enumerate(box_lists)], dim=0, ) return pooler_fmt_boxes def assign_boxes_to_levels( box_lists: List[torch.Tensor], min_level: int, max_level: int, canonical_box_size: int, canonical_level: int, ): box_sizes = torch.sqrt(torch.cat([boxes.area() for boxes in box_lists])) # Eqn.(1) in FPN paper level_assignments = torch.floor(canonical_level + torch.log2(box_sizes / canonical_box_size + 1e-8)) # clamp level to (min, max), in case the box size is too large or too small # for the available feature maps level_assignments = torch.clamp(level_assignments, min=min_level, max=max_level) return level_assignments.to(torch.int64) - min_level # Helper Classes class _NewEmptyTensorOp(torch.autograd.Function): @staticmethod def forward(ctx, x, new_shape): ctx.shape = x.shape return x.new_empty(new_shape) @staticmethod def backward(ctx, grad): shape = ctx.shape return _NewEmptyTensorOp.apply(grad, shape), None class ShapeSpec(namedtuple("_ShapeSpec", ["channels", "height", "width", "stride"])): def __new__(cls, *, channels=None, height=None, width=None, stride=None): return super().__new__(cls, channels, height, width, stride) class Box2BoxTransform(object): """ This R-CNN transformation scales the box's width and height by exp(dw), exp(dh) and shifts a box's center by the offset (dx * width, dy * height). """ def __init__(self, weights: Tuple[float, float, float, float], scale_clamp: float = None): """ Args: weights (4-element tuple): Scaling factors that are applied to the (dx, dy, dw, dh) deltas. In Fast R-CNN, these were originally set such that the deltas have unit variance; now they are treated as hyperparameters of the system. scale_clamp (float): When predicting deltas, the predicted box scaling factors (dw and dh) are clamped such that they are <= scale_clamp. """ self.weights = weights if scale_clamp is not None: self.scale_clamp = scale_clamp else: """ Value for clamping large dw and dh predictions. The heuristic is that we clamp such that dw and dh are no larger than what would transform a 16px box into a 1000px box (based on a small anchor, 16px, and a typical image size, 1000px). """ self.scale_clamp = math.log(1000.0 / 16) def get_deltas(self, src_boxes, target_boxes): """ Get box regression transformation deltas (dx, dy, dw, dh) that can be used to transform the `src_boxes` into the `target_boxes`. That is, the relation ``target_boxes == self.apply_deltas(deltas, src_boxes)`` is true (unless any delta is too large and is clamped). Args: src_boxes (Tensor): source boxes, e.g., object proposals target_boxes (Tensor): target of the transformation, e.g., ground-truth boxes. """ assert isinstance(src_boxes, torch.Tensor), type(src_boxes) assert isinstance(target_boxes, torch.Tensor), type(target_boxes) src_widths = src_boxes[:, 2] - src_boxes[:, 0] src_heights = src_boxes[:, 3] - src_boxes[:, 1] src_ctr_x = src_boxes[:, 0] + 0.5 * src_widths src_ctr_y = src_boxes[:, 1] + 0.5 * src_heights target_widths = target_boxes[:, 2] - target_boxes[:, 0] target_heights = target_boxes[:, 3] - target_boxes[:, 1] target_ctr_x = target_boxes[:, 0] + 0.5 * target_widths target_ctr_y = target_boxes[:, 1] + 0.5 * target_heights wx, wy, ww, wh = self.weights dx = wx * (target_ctr_x - src_ctr_x) / src_widths dy = wy * (target_ctr_y - src_ctr_y) / src_heights dw = ww * torch.log(target_widths / src_widths) dh = wh * torch.log(target_heights / src_heights) deltas = torch.stack((dx, dy, dw, dh), dim=1) assert (src_widths > 0).all().item(), "Input boxes to Box2BoxTransform are not valid!" return deltas def apply_deltas(self, deltas, boxes): """ Apply transformation `deltas` (dx, dy, dw, dh) to `boxes`. Args: deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1. deltas[i] represents k potentially different class-specific box transformations for the single box boxes[i]. boxes (Tensor): boxes to transform, of shape (N, 4) """ boxes = boxes.to(deltas.dtype) widths = boxes[:, 2] - boxes[:, 0] heights = boxes[:, 3] - boxes[:, 1] ctr_x = boxes[:, 0] + 0.5 * widths ctr_y = boxes[:, 1] + 0.5 * heights wx, wy, ww, wh = self.weights dx = deltas[:, 0::4] / wx dy = deltas[:, 1::4] / wy dw = deltas[:, 2::4] / ww dh = deltas[:, 3::4] / wh # Prevent sending too large values into torch.exp() dw = torch.clamp(dw, max=self.scale_clamp) dh = torch.clamp(dh, max=self.scale_clamp) pred_ctr_x = dx * widths[:, None] + ctr_x[:, None] pred_ctr_y = dy * heights[:, None] + ctr_y[:, None] pred_w = torch.exp(dw) * widths[:, None] pred_h = torch.exp(dh) * heights[:, None] pred_boxes = torch.zeros_like(deltas) pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w # x1 pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h # y1 pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w # x2 pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h # y2 return pred_boxes class Matcher(object): """ This class assigns to each predicted "element" (e.g., a box) a ground-truth element. Each predicted element will have exactly zero or one matches; each ground-truth element may be matched to zero or more predicted elements. The matching is determined by the MxN match_quality_matrix, that characterizes how well each (ground-truth, prediction)-pair match each other. For example, if the elements are boxes, this matrix may contain box intersection-over-union overlap values. The matcher returns (a) a vector of length N containing the index of the ground-truth element m in [0, M) that matches to prediction n in [0, N). (b) a vector of length N containing the labels for each prediction. """ def __init__( self, thresholds: List[float], labels: List[int], allow_low_quality_matches: bool = False, ): """ Args: thresholds (list): a list of thresholds used to stratify predictions into levels. labels (list): a list of values to label predictions belonging at each level. A label can be one of {-1, 0, 1} signifying {ignore, negative class, positive class}, respectively. allow_low_quality_matches (bool): if True, produce additional matches or predictions with maximum match quality lower than high_threshold. For example, thresholds = [0.3, 0.5] labels = [0, -1, 1] All predictions with iou < 0.3 will be marked with 0 and thus will be considered as false positives while training. All predictions with 0.3 <= iou < 0.5 will be marked with -1 and thus will be ignored. All predictions with 0.5 <= iou will be marked with 1 and thus will be considered as true positives. """ thresholds = thresholds[:] assert thresholds[0] > 0 thresholds.insert(0, -float("inf")) thresholds.append(float("inf")) assert all(low <= high for (low, high) in zip(thresholds[:-1], thresholds[1:])) assert all(label_i in [-1, 0, 1] for label_i in labels) assert len(labels) == len(thresholds) - 1 self.thresholds = thresholds self.labels = labels self.allow_low_quality_matches = allow_low_quality_matches def __call__(self, match_quality_matrix): """ Args: match_quality_matrix (Tensor[float]): an MxN tensor, containing the pairwise quality between M ground-truth elements and N predicted elements. All elements must be >= 0 (due to the us of `torch.nonzero` for selecting indices in :meth:`set_low_quality_matches_`). Returns: matches (Tensor[int64]): a vector of length N, where matches[i] is a matched ground-truth index in [0, M) match_labels (Tensor[int8]): a vector of length N, where pred_labels[i] indicates true or false positive or ignored """ assert match_quality_matrix.dim() == 2 if match_quality_matrix.numel() == 0: default_matches = match_quality_matrix.new_full((match_quality_matrix.size(1),), 0, dtype=torch.int64) # When no gt boxes exist, we define IOU = 0 and therefore set labels # to `self.labels[0]`, which usually defaults to background class 0 # To choose to ignore instead, # can make labels=[-1,0,-1,1] + set appropriate thresholds default_match_labels = match_quality_matrix.new_full( (match_quality_matrix.size(1),), self.labels[0], dtype=torch.int8 ) return default_matches, default_match_labels assert torch.all(match_quality_matrix >= 0) # match_quality_matrix is M (gt) x N (predicted) # Max over gt elements (dim 0) to find best gt candidate for each prediction matched_vals, matches = match_quality_matrix.max(dim=0) match_labels = matches.new_full(matches.size(), 1, dtype=torch.int8) for l, low, high in zip(self.labels, self.thresholds[:-1], self.thresholds[1:]): low_high = (matched_vals >= low) & (matched_vals < high) match_labels[low_high] = l if self.allow_low_quality_matches: self.set_low_quality_matches_(match_labels, match_quality_matrix) return matches, match_labels def set_low_quality_matches_(self, match_labels, match_quality_matrix): """ Produce additional matches for predictions that have only low-quality matches. Specifically, for each ground-truth G find the set of predictions that have maximum overlap with it (including ties); for each prediction in that set, if it is unmatched, then match it to the ground-truth G. This function implements the RPN assignment case (i) in Sec. 3.1.2 of Faster R-CNN. """ # For each gt, find the prediction with which it has highest quality highest_quality_foreach_gt, _ = match_quality_matrix.max(dim=1) # Find the highest quality match available, even if it is low, including ties. # Note that the matches qualities must be positive due to the use of # `torch.nonzero`. of_quality_inds = match_quality_matrix == highest_quality_foreach_gt[:, None] if of_quality_inds.dim() == 0: (_, pred_inds_with_highest_quality) = of_quality_inds.unsqueeze(0).nonzero().unbind(1) else: (_, pred_inds_with_highest_quality) = of_quality_inds.nonzero().unbind(1) match_labels[pred_inds_with_highest_quality] = 1 class RPNOutputs(object): def __init__( self, box2box_transform, anchor_matcher, batch_size_per_image, positive_fraction, images, pred_objectness_logits, pred_anchor_deltas, anchors, boundary_threshold=0, gt_boxes=None, smooth_l1_beta=0.0, ): """ Args: box2box_transform (Box2BoxTransform): :class:`Box2BoxTransform` instance for anchor-proposal transformations. anchor_matcher (Matcher): :class:`Matcher` instance for matching anchors to ground-truth boxes; used to determine training labels. batch_size_per_image (int): number of proposals to sample when training positive_fraction (float): target fraction of sampled proposals that should be positive images (ImageList): :class:`ImageList` instance representing N input images pred_objectness_logits (list[Tensor]): A list of L elements. Element i is a tensor of shape (N, A, Hi, W) pred_anchor_deltas (list[Tensor]): A list of L elements. Element i is a tensor of shape (N, A*4, Hi, Wi) anchors (list[torch.Tensor]): nested list of boxes. anchors[i][j] at (n, l) stores anchor array for feature map l boundary_threshold (int): if >= 0, then anchors that extend beyond the image boundary by more than boundary_thresh are not used in training. gt_boxes (list[Boxes], optional): A list of N elements. smooth_l1_beta (float): The transition point between L1 and L2 lossn. When set to 0, the loss becomes L1. When +inf, it is ignored """ self.box2box_transform = box2box_transform self.anchor_matcher = anchor_matcher self.batch_size_per_image = batch_size_per_image self.positive_fraction = positive_fraction self.pred_objectness_logits = pred_objectness_logits self.pred_anchor_deltas = pred_anchor_deltas self.anchors = anchors self.gt_boxes = gt_boxes self.num_feature_maps = len(pred_objectness_logits) self.num_images = len(images) self.boundary_threshold = boundary_threshold self.smooth_l1_beta = smooth_l1_beta def _get_ground_truth(self): raise NotImplementedError() def predict_proposals(self): # pred_anchor_deltas: (L, N, ? Hi, Wi) # anchors:(N, L, -1, B) # here we loop over specific feature map, NOT images proposals = [] anchors = self.anchors.transpose(0, 1) for anchors_i, pred_anchor_deltas_i in zip(anchors, self.pred_anchor_deltas): B = anchors_i.size(-1) N, _, Hi, Wi = pred_anchor_deltas_i.shape anchors_i = anchors_i.flatten(start_dim=0, end_dim=1) pred_anchor_deltas_i = pred_anchor_deltas_i.view(N, -1, B, Hi, Wi).permute(0, 3, 4, 1, 2).reshape(-1, B) proposals_i = self.box2box_transform.apply_deltas(pred_anchor_deltas_i, anchors_i) # Append feature map proposals with shape (N, Hi*Wi*A, B) proposals.append(proposals_i.view(N, -1, B)) proposals = torch.stack(proposals) return proposals def predict_objectness_logits(self): """ Returns: pred_objectness_logits (list[Tensor]) -> (N, Hi*Wi*A). """ pred_objectness_logits = [ # Reshape: (N, A, Hi, Wi) -> (N, Hi, Wi, A) -> (N, Hi*Wi*A) score.permute(0, 2, 3, 1).reshape(self.num_images, -1) for score in self.pred_objectness_logits ] return pred_objectness_logits # Main Classes class Conv2d(nn.Conv2d): def __init__(self, *args, **kwargs): norm = kwargs.pop("norm", None) activation = kwargs.pop("activation", None) super().__init__(*args, **kwargs) self.norm = norm self.activation = activation def forward(self, x): if x.numel() == 0 and self.training: assert not isinstance(self.norm, nn.SyncBatchNorm) if x.numel() == 0: assert not isinstance(self.norm, nn.GroupNorm) output_shape = [ (i + 2 * p - (di * (k - 1) + 1)) // s + 1 for i, p, di, k, s in zip( x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride, ) ] output_shape = [x.shape[0], self.weight.shape[0]] + output_shape empty = _NewEmptyTensorOp.apply(x, output_shape) if self.training: _dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 return empty + _dummy else: return empty x = super().forward(x) if self.norm is not None: x = self.norm(x) if self.activation is not None: x = self.activation(x) return x class LastLevelMaxPool(nn.Module): """ This module is used in the original FPN to generate a downsampled P6 feature from P5. """ def __init__(self): super().__init__() self.num_levels = 1 self.in_feature = "p5" def forward(self, x): return [nn.functional.max_pool2d(x, kernel_size=1, stride=2, padding=0)] class LastLevelP6P7(nn.Module): """ This module is used in RetinaNet to generate extra layers, P6 and P7 from C5 feature. """ def __init__(self, in_channels, out_channels): super().__init__() self.num_levels = 2 self.in_feature = "res5" self.p6 = nn.Conv2d(in_channels, out_channels, 3, 2, 1) self.p7 = nn.Conv2d(out_channels, out_channels, 3, 2, 1) def forward(self, c5): p6 = self.p6(c5) p7 = self.p7(nn.functional.relu(p6)) return [p6, p7] class BasicStem(nn.Module): def __init__(self, in_channels=3, out_channels=64, norm="BN", caffe_maxpool=False): super().__init__() self.conv1 = Conv2d( in_channels, out_channels, kernel_size=7, stride=2, padding=3, bias=False, norm=get_norm(norm, out_channels), ) self.caffe_maxpool = caffe_maxpool # use pad 1 instead of pad zero def forward(self, x): x = self.conv1(x) x = nn.functional.relu_(x) if self.caffe_maxpool: x = nn.functional.max_pool2d(x, kernel_size=3, stride=2, padding=0, ceil_mode=True) else: x = nn.functional.max_pool2d(x, kernel_size=3, stride=2, padding=1) return x @property def out_channels(self): return self.conv1.out_channels @property def stride(self): return 4 # = stride 2 conv -> stride 2 max pool class ResNetBlockBase(nn.Module): def __init__(self, in_channels, out_channels, stride): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.stride = stride def freeze(self): for p in self.parameters(): p.requires_grad = False return self class BottleneckBlock(ResNetBlockBase): def __init__( self, in_channels, out_channels, bottleneck_channels, stride=1, num_groups=1, norm="BN", stride_in_1x1=False, dilation=1, ): super().__init__(in_channels, out_channels, stride) if in_channels != out_channels: self.shortcut = Conv2d( in_channels, out_channels, kernel_size=1, stride=stride, bias=False, norm=get_norm(norm, out_channels), ) else: self.shortcut = None # The original MSRA ResNet models have stride in the first 1x1 conv # The subsequent fb.torch.resnet and Caffe2 ResNe[X]t implementations have # stride in the 3x3 conv stride_1x1, stride_3x3 = (stride, 1) if stride_in_1x1 else (1, stride) self.conv1 = Conv2d( in_channels, bottleneck_channels, kernel_size=1, stride=stride_1x1, bias=False, norm=get_norm(norm, bottleneck_channels), ) self.conv2 = Conv2d( bottleneck_channels, bottleneck_channels, kernel_size=3, stride=stride_3x3, padding=1 * dilation, bias=False, groups=num_groups, dilation=dilation, norm=get_norm(norm, bottleneck_channels), ) self.conv3 = Conv2d( bottleneck_channels, out_channels, kernel_size=1, bias=False, norm=get_norm(norm, out_channels), ) def forward(self, x): out = self.conv1(x) out = nn.functional.relu_(out) out = self.conv2(out) out = nn.functional.relu_(out) out = self.conv3(out) if self.shortcut is not None: shortcut = self.shortcut(x) else: shortcut = x out += shortcut out = nn.functional.relu_(out) return out class Backbone(nn.Module, metaclass=ABCMeta): def __init__(self): super().__init__() @abstractmethod def forward(self): pass @property def size_divisibility(self): """ Some backbones require the input height and width to be divisible by a specific integer. This is typically true for encoder / decoder type networks with lateral connection (e.g., FPN) for which feature maps need to match dimension in the "bottom up" and "top down" paths. Set to 0 if no specific input size divisibility is required. """ return 0 def output_shape(self): return { name: ShapeSpec( channels=self._out_feature_channels[name], stride=self._out_feature_strides[name], ) for name in self._out_features } @property def out_features(self): """deprecated""" return self._out_features @property def out_feature_strides(self): """deprecated""" return {f: self._out_feature_strides[f] for f in self._out_features} @property def out_feature_channels(self): """deprecated""" return {f: self._out_feature_channels[f] for f in self._out_features} class ResNet(Backbone): def __init__(self, stem, stages, num_classes=None, out_features=None): """ Args: stem (nn.Module): a stem module stages (list[list[ResNetBlock]]): several (typically 4) stages, each contains multiple :class:`ResNetBlockBase`. num_classes (None or int): if None, will not perform classification. out_features (list[str]): name of the layers whose outputs should be returned in forward. Can be anything in: "stem", "linear", or "res2" ... If None, will return the output of the last layer. """ super(ResNet, self).__init__() self.stem = stem self.num_classes = num_classes current_stride = self.stem.stride self._out_feature_strides = {"stem": current_stride} self._out_feature_channels = {"stem": self.stem.out_channels} self.stages_and_names = [] for i, blocks in enumerate(stages): for block in blocks: assert isinstance(block, ResNetBlockBase), block curr_channels = block.out_channels stage = nn.Sequential(*blocks) name = "res" + str(i + 2) self.add_module(name, stage) self.stages_and_names.append((stage, name)) self._out_feature_strides[name] = current_stride = int( current_stride * np.prod([k.stride for k in blocks]) ) self._out_feature_channels[name] = blocks[-1].out_channels if num_classes is not None: self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.linear = nn.Linear(curr_channels, num_classes) # Sec 5.1 in "Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour": # "The 1000-way fully-connected layer is initialized by # drawing weights from a zero-mean Gaussian with std of 0.01." nn.init.normal_(self.linear.weight, stddev=0.01) name = "linear" if out_features is None: out_features = [name] self._out_features = out_features assert len(self._out_features) children = [x[0] for x in self.named_children()] for out_feature in self._out_features: assert out_feature in children, "Available children: {}".format(", ".join(children)) def forward(self, x): outputs = {} x = self.stem(x) if "stem" in self._out_features: outputs["stem"] = x for stage, name in self.stages_and_names: x = stage(x) if name in self._out_features: outputs[name] = x if self.num_classes is not None: x = self.avgpool(x) x = self.linear(x) if "linear" in self._out_features: outputs["linear"] = x return outputs def output_shape(self): return { name: ShapeSpec( channels=self._out_feature_channels[name], stride=self._out_feature_strides[name], ) for name in self._out_features } @staticmethod def make_stage( block_class, num_blocks, first_stride=None, *, in_channels, out_channels, **kwargs, ): """ Usually, layers that produce the same feature map spatial size are defined as one "stage". Under such definition, stride_per_block[1:] should all be 1. """ if first_stride is not None: assert "stride" not in kwargs and "stride_per_block" not in kwargs kwargs["stride_per_block"] = [first_stride] + [1] * (num_blocks - 1) blocks = [] for i in range(num_blocks): curr_kwargs = {} for k, v in kwargs.items(): if k.endswith("_per_block"): assert ( len(v) == num_blocks ), f"Argument '{k}' of make_stage should have the same length as num_blocks={num_blocks}." newk = k[: -len("_per_block")] assert newk not in kwargs, f"Cannot call make_stage with both {k} and {newk}!" curr_kwargs[newk] = v[i] else: curr_kwargs[k] = v blocks.append(block_class(in_channels=in_channels, out_channels=out_channels, **curr_kwargs)) in_channels = out_channels return blocks class ROIPooler(nn.Module): """ Region of interest feature map pooler that supports pooling from one or more feature maps. """ def __init__( self, output_size, scales, sampling_ratio, canonical_box_size=224, canonical_level=4, ): super().__init__() # assumption that stride is a power of 2. min_level = -math.log2(scales[0]) max_level = -math.log2(scales[-1]) # a bunch of testing assert math.isclose(min_level, int(min_level)) and math.isclose(max_level, int(max_level)) assert len(scales) == max_level - min_level + 1, "not pyramid" assert 0 < min_level and min_level <= max_level if isinstance(output_size, int): output_size = (output_size, output_size) assert len(output_size) == 2 and isinstance(output_size[0], int) and isinstance(output_size[1], int) if len(scales) > 1: assert min_level <= canonical_level and canonical_level <= max_level assert canonical_box_size > 0 self.output_size = output_size self.min_level = int(min_level) self.max_level = int(max_level) self.level_poolers = nn.ModuleList(RoIPool(output_size, spatial_scale=scale) for scale in scales) self.canonical_level = canonical_level self.canonical_box_size = canonical_box_size def forward(self, feature_maps, boxes): """ Args: feature_maps: List[torch.Tensor(N,C,W,H)] box_lists: list[torch.Tensor]) Returns: A tensor of shape(N*B, Channels, output_size, output_size) """ x = list(feature_maps.values()) num_level_assignments = len(self.level_poolers) assert len(x) == num_level_assignments and len(boxes) == x[0].size(0) pooler_fmt_boxes = convert_boxes_to_pooler_format(boxes) if num_level_assignments == 1: return self.level_poolers[0](x[0], pooler_fmt_boxes) level_assignments = assign_boxes_to_levels( boxes, self.min_level, self.max_level, self.canonical_box_size, self.canonical_level, ) num_boxes = len(pooler_fmt_boxes) num_channels = x[0].shape[1] output_size = self.output_size[0] dtype, device = x[0].dtype, x[0].device output = torch.zeros( (num_boxes, num_channels, output_size, output_size), dtype=dtype, device=device, ) for level, (x_level, pooler) in enumerate(zip(x, self.level_poolers)): inds = torch.nonzero(level_assignments == level).squeeze(1) pooler_fmt_boxes_level = pooler_fmt_boxes[inds] output[inds] = pooler(x_level, pooler_fmt_boxes_level) return output class ROIOutputs(object): def __init__(self, cfg, training=False): self.smooth_l1_beta = cfg.ROI_BOX_HEAD.SMOOTH_L1_BETA self.box2box_transform = Box2BoxTransform(weights=cfg.ROI_BOX_HEAD.BBOX_REG_WEIGHTS) self.training = training self.score_thresh = cfg.ROI_HEADS.SCORE_THRESH_TEST self.min_detections = cfg.MIN_DETECTIONS self.max_detections = cfg.MAX_DETECTIONS nms_thresh = cfg.ROI_HEADS.NMS_THRESH_TEST if not isinstance(nms_thresh, list): nms_thresh = [nms_thresh] self.nms_thresh = nms_thresh def _predict_boxes(self, proposals, box_deltas, preds_per_image): num_pred = box_deltas.size(0) B = proposals[0].size(-1) K = box_deltas.size(-1) // B box_deltas = box_deltas.view(num_pred * K, B) proposals = torch.cat(proposals, dim=0).unsqueeze(-2).expand(num_pred, K, B) proposals = proposals.reshape(-1, B) boxes = self.box2box_transform.apply_deltas(box_deltas, proposals) return boxes.view(num_pred, K * B).split(preds_per_image, dim=0) def _predict_objs(self, obj_logits, preds_per_image): probs = nn.functional.softmax(obj_logits, dim=-1) probs = probs.split(preds_per_image, dim=0) return probs def _predict_attrs(self, attr_logits, preds_per_image): attr_logits = attr_logits[..., :-1].softmax(-1) attr_probs, attrs = attr_logits.max(-1) return attr_probs.split(preds_per_image, dim=0), attrs.split(preds_per_image, dim=0) @torch.no_grad() def inference( self, obj_logits, attr_logits, box_deltas, pred_boxes, features, sizes, scales=None, ): # only the pred boxes is the preds_per_image = [p.size(0) for p in pred_boxes] boxes_all = self._predict_boxes(pred_boxes, box_deltas, preds_per_image) obj_scores_all = self._predict_objs(obj_logits, preds_per_image) # list of length N attr_probs_all, attrs_all = self._predict_attrs(attr_logits, preds_per_image) features = features.split(preds_per_image, dim=0) # fun for each image too, also I can experiment and do multiple images final_results = [] zipped = zip(boxes_all, obj_scores_all, attr_probs_all, attrs_all, sizes) for i, (boxes, obj_scores, attr_probs, attrs, size) in enumerate(zipped): for nms_t in self.nms_thresh: outputs = do_nms( boxes, obj_scores, size, self.score_thresh, nms_t, self.min_detections, self.max_detections, ) if outputs is not None: max_boxes, max_scores, classes, ids = outputs break if scales is not None: scale_yx = scales[i] max_boxes[:, 0::2] *= scale_yx[1] max_boxes[:, 1::2] *= scale_yx[0] final_results.append( ( max_boxes, classes, max_scores, attrs[ids], attr_probs[ids], features[i][ids], ) ) boxes, classes, class_probs, attrs, attr_probs, roi_features = map(list, zip(*final_results)) return boxes, classes, class_probs, attrs, attr_probs, roi_features def training(self, obj_logits, attr_logits, box_deltas, pred_boxes, features, sizes): pass def __call__( self, obj_logits, attr_logits, box_deltas, pred_boxes, features, sizes, scales=None, ): if self.training: raise NotImplementedError() return self.inference( obj_logits, attr_logits, box_deltas, pred_boxes, features, sizes, scales=scales, ) class Res5ROIHeads(nn.Module): """ ROIHeads perform all per-region computation in an R-CNN. It contains logic of cropping the regions, extract per-region features (by the res-5 block in this case), and make per-region predictions. """ def __init__(self, cfg, input_shape): super().__init__() self.batch_size_per_image = cfg.RPN.BATCH_SIZE_PER_IMAGE self.positive_sample_fraction = cfg.ROI_HEADS.POSITIVE_FRACTION self.in_features = cfg.ROI_HEADS.IN_FEATURES self.num_classes = cfg.ROI_HEADS.NUM_CLASSES self.proposal_append_gt = cfg.ROI_HEADS.PROPOSAL_APPEND_GT self.feature_strides = {k: v.stride for k, v in input_shape.items()} self.feature_channels = {k: v.channels for k, v in input_shape.items()} self.cls_agnostic_bbox_reg = cfg.ROI_BOX_HEAD.CLS_AGNOSTIC_BBOX_REG self.stage_channel_factor = 2**3 # res5 is 8x res2 self.out_channels = cfg.RESNETS.RES2_OUT_CHANNELS * self.stage_channel_factor # self.proposal_matcher = Matcher( # cfg.ROI_HEADS.IOU_THRESHOLDS, # cfg.ROI_HEADS.IOU_LABELS, # allow_low_quality_matches=False, # ) pooler_resolution = cfg.ROI_BOX_HEAD.POOLER_RESOLUTION pooler_scales = (1.0 / self.feature_strides[self.in_features[0]],) sampling_ratio = cfg.ROI_BOX_HEAD.POOLER_SAMPLING_RATIO res5_halve = cfg.ROI_BOX_HEAD.RES5HALVE use_attr = cfg.ROI_BOX_HEAD.ATTR num_attrs = cfg.ROI_BOX_HEAD.NUM_ATTRS self.pooler = ROIPooler( output_size=pooler_resolution, scales=pooler_scales, sampling_ratio=sampling_ratio, ) self.res5 = self._build_res5_block(cfg) if not res5_halve: """ Modifications for VG in RoI heads: 1. Change the stride of conv1 and shortcut in Res5.Block1 from 2 to 1 2. Modifying all conv2 with (padding: 1 --> 2) and (dilation: 1 --> 2) """ self.res5[0].conv1.stride = (1, 1) self.res5[0].shortcut.stride = (1, 1) for i in range(3): self.res5[i].conv2.padding = (2, 2) self.res5[i].conv2.dilation = (2, 2) self.box_predictor = FastRCNNOutputLayers( self.out_channels, self.num_classes, self.cls_agnostic_bbox_reg, use_attr=use_attr, num_attrs=num_attrs, ) def _build_res5_block(self, cfg): stage_channel_factor = self.stage_channel_factor # res5 is 8x res2 num_groups = cfg.RESNETS.NUM_GROUPS width_per_group = cfg.RESNETS.WIDTH_PER_GROUP bottleneck_channels = num_groups * width_per_group * stage_channel_factor out_channels = self.out_channels stride_in_1x1 = cfg.RESNETS.STRIDE_IN_1X1 norm = cfg.RESNETS.NORM blocks = ResNet.make_stage( BottleneckBlock, 3, first_stride=2, in_channels=out_channels // 2, bottleneck_channels=bottleneck_channels, out_channels=out_channels, num_groups=num_groups, norm=norm, stride_in_1x1=stride_in_1x1, ) return nn.Sequential(*blocks) def _shared_roi_transform(self, features, boxes): x = self.pooler(features, boxes) return self.res5(x) def forward(self, features, proposal_boxes, gt_boxes=None): if self.training: """ see https://github.com/airsplay/py-bottom-up-attention/\ blob/master/detectron2/modeling/roi_heads/roi_heads.py """ raise NotImplementedError() assert not proposal_boxes[0].requires_grad box_features = self._shared_roi_transform(features, proposal_boxes) feature_pooled = box_features.mean(dim=[2, 3]) # pooled to 1x1 obj_logits, attr_logits, pred_proposal_deltas = self.box_predictor(feature_pooled) return obj_logits, attr_logits, pred_proposal_deltas, feature_pooled class AnchorGenerator(nn.Module): """ For a set of image sizes and feature maps, computes a set of anchors. """ def __init__(self, cfg, input_shape: List[ShapeSpec]): super().__init__() sizes = cfg.ANCHOR_GENERATOR.SIZES aspect_ratios = cfg.ANCHOR_GENERATOR.ASPECT_RATIOS self.strides = [x.stride for x in input_shape] self.offset = cfg.ANCHOR_GENERATOR.OFFSET assert 0.0 <= self.offset < 1.0, self.offset """ sizes (list[list[int]]): sizes[i] is the list of anchor sizes for feat map i 1. given in absolute lengths in units of the input image; 2. they do not dynamically scale if the input image size changes. aspect_ratios (list[list[float]]) strides (list[int]): stride of each input feature. """ self.num_features = len(self.strides) self.cell_anchors = nn.ParameterList(self._calculate_anchors(sizes, aspect_ratios)) self._spacial_feat_dim = 4 def _calculate_anchors(self, sizes, aspect_ratios): # If one size (or aspect ratio) is specified and there are multiple feature # maps, then we "broadcast" anchors of that single size (or aspect ratio) if len(sizes) == 1: sizes *= self.num_features if len(aspect_ratios) == 1: aspect_ratios *= self.num_features assert self.num_features == len(sizes) assert self.num_features == len(aspect_ratios) cell_anchors = [self.generate_cell_anchors(s, a).float() for s, a in zip(sizes, aspect_ratios)] return cell_anchors @property def box_dim(self): return self._spacial_feat_dim @property def num_cell_anchors(self): """ Returns: list[int]: Each int is the number of anchors at every pixel location, on that feature map. """ return [len(cell_anchors) for cell_anchors in self.cell_anchors] def grid_anchors(self, grid_sizes): anchors = [] for size, stride, base_anchors in zip(grid_sizes, self.strides, self.cell_anchors): shift_x, shift_y = _create_grid_offsets(size, stride, self.offset, base_anchors.device) shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1) anchors.append((shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)) return anchors def generate_cell_anchors(self, sizes=(32, 64, 128, 256, 512), aspect_ratios=(0.5, 1, 2)): """ anchors are continuous geometric rectangles centered on one feature map point sample. We can later build the set of anchors for the entire feature map by tiling these tensors """ anchors = [] for size in sizes: area = size**2.0 for aspect_ratio in aspect_ratios: w = math.sqrt(area / aspect_ratio) h = aspect_ratio * w x0, y0, x1, y1 = -w / 2.0, -h / 2.0, w / 2.0, h / 2.0 anchors.append([x0, y0, x1, y1]) return nn.Parameter(torch.tensor(anchors)) def forward(self, features): """ Args: features List[torch.Tensor]: list of feature maps on which to generate anchors. Returns: torch.Tensor: a list of #image elements. """ num_images = features[0].size(0) grid_sizes = [feature_map.shape[-2:] for feature_map in features] anchors_over_all_feature_maps = self.grid_anchors(grid_sizes) anchors_over_all_feature_maps = torch.stack(anchors_over_all_feature_maps) return anchors_over_all_feature_maps.unsqueeze(0).repeat_interleave(num_images, dim=0) class RPNHead(nn.Module): """ RPN classification and regression heads. Uses a 3x3 conv to produce a shared hidden state from which one 1x1 conv predicts objectness logits for each anchor and a second 1x1 conv predicts bounding-box deltas specifying how to deform each anchor into an object proposal. """ def __init__(self, cfg, input_shape: List[ShapeSpec]): super().__init__() # Standard RPN is shared across levels: in_channels = [s.channels for s in input_shape] assert len(set(in_channels)) == 1, "Each level must have the same channel!" in_channels = in_channels[0] anchor_generator = AnchorGenerator(cfg, input_shape) num_cell_anchors = anchor_generator.num_cell_anchors box_dim = anchor_generator.box_dim assert len(set(num_cell_anchors)) == 1, "Each level must have the same number of cell anchors" num_cell_anchors = num_cell_anchors[0] if cfg.PROPOSAL_GENERATOR.HIDDEN_CHANNELS == -1: hid_channels = in_channels else: hid_channels = cfg.PROPOSAL_GENERATOR.HIDDEN_CHANNELS # Modifications for VG in RPN (modeling/proposal_generator/rpn.py) # Use hidden dim instead fo the same dim as Res4 (in_channels) # 3x3 conv for the hidden representation self.conv = nn.Conv2d(in_channels, hid_channels, kernel_size=3, stride=1, padding=1) # 1x1 conv for predicting objectness logits self.objectness_logits = nn.Conv2d(hid_channels, num_cell_anchors, kernel_size=1, stride=1) # 1x1 conv for predicting box2box transform deltas self.anchor_deltas = nn.Conv2d(hid_channels, num_cell_anchors * box_dim, kernel_size=1, stride=1) for layer in [self.conv, self.objectness_logits, self.anchor_deltas]: nn.init.normal_(layer.weight, std=0.01) nn.init.constant_(layer.bias, 0) def forward(self, features): """ Args: features (list[Tensor]): list of feature maps """ pred_objectness_logits = [] pred_anchor_deltas = [] for x in features: t = nn.functional.relu(self.conv(x)) pred_objectness_logits.append(self.objectness_logits(t)) pred_anchor_deltas.append(self.anchor_deltas(t)) return pred_objectness_logits, pred_anchor_deltas class RPN(nn.Module): """ Region Proposal Network, introduced by the Faster R-CNN paper. """ def __init__(self, cfg, input_shape: Dict[str, ShapeSpec]): super().__init__() self.min_box_side_len = cfg.PROPOSAL_GENERATOR.MIN_SIZE self.in_features = cfg.RPN.IN_FEATURES self.nms_thresh = cfg.RPN.NMS_THRESH self.batch_size_per_image = cfg.RPN.BATCH_SIZE_PER_IMAGE self.positive_fraction = cfg.RPN.POSITIVE_FRACTION self.smooth_l1_beta = cfg.RPN.SMOOTH_L1_BETA self.loss_weight = cfg.RPN.LOSS_WEIGHT self.pre_nms_topk = { True: cfg.RPN.PRE_NMS_TOPK_TRAIN, False: cfg.RPN.PRE_NMS_TOPK_TEST, } self.post_nms_topk = { True: cfg.RPN.POST_NMS_TOPK_TRAIN, False: cfg.RPN.POST_NMS_TOPK_TEST, } self.boundary_threshold = cfg.RPN.BOUNDARY_THRESH self.anchor_generator = AnchorGenerator(cfg, [input_shape[f] for f in self.in_features]) self.box2box_transform = Box2BoxTransform(weights=cfg.RPN.BBOX_REG_WEIGHTS) self.anchor_matcher = Matcher( cfg.RPN.IOU_THRESHOLDS, cfg.RPN.IOU_LABELS, allow_low_quality_matches=True, ) self.rpn_head = RPNHead(cfg, [input_shape[f] for f in self.in_features]) def training(self, images, image_shapes, features, gt_boxes): pass def inference(self, outputs, images, image_shapes, features, gt_boxes=None): outputs = find_top_rpn_proposals( outputs.predict_proposals(), outputs.predict_objectness_logits(), images, image_shapes, self.nms_thresh, self.pre_nms_topk[self.training], self.post_nms_topk[self.training], self.min_box_side_len, self.training, ) results = [] for img in outputs: im_boxes, img_box_logits = img img_box_logits, inds = img_box_logits.sort(descending=True) im_boxes = im_boxes[inds] results.append((im_boxes, img_box_logits)) (proposal_boxes, logits) = tuple(map(list, zip(*results))) return proposal_boxes, logits def forward(self, images, image_shapes, features, gt_boxes=None): """ Args: images (torch.Tensor): input images of length `N` features (dict[str: Tensor]) gt_instances """ # features is dict, key = block level, v = feature_map features = [features[f] for f in self.in_features] pred_objectness_logits, pred_anchor_deltas = self.rpn_head(features) anchors = self.anchor_generator(features) outputs = RPNOutputs( self.box2box_transform, self.anchor_matcher, self.batch_size_per_image, self.positive_fraction, images, pred_objectness_logits, pred_anchor_deltas, anchors, self.boundary_threshold, gt_boxes, self.smooth_l1_beta, ) # For RPN-only models, the proposals are the final output if self.training: raise NotImplementedError() return self.training(outputs, images, image_shapes, features, gt_boxes) else: return self.inference(outputs, images, image_shapes, features, gt_boxes) class FastRCNNOutputLayers(nn.Module): """ Two linear layers for predicting Fast R-CNN outputs: (1) proposal-to-detection box regression deltas (2) classification scores """ def __init__( self, input_size, num_classes, cls_agnostic_bbox_reg, box_dim=4, use_attr=False, num_attrs=-1, ): """ Args: input_size (int): channels, or (channels, height, width) num_classes (int) cls_agnostic_bbox_reg (bool) box_dim (int) """ super().__init__() if not isinstance(input_size, int): input_size = np.prod(input_size) # (do + 1 for background class) self.cls_score = nn.Linear(input_size, num_classes + 1) num_bbox_reg_classes = 1 if cls_agnostic_bbox_reg else num_classes self.bbox_pred = nn.Linear(input_size, num_bbox_reg_classes * box_dim) self.use_attr = use_attr if use_attr: """ Modifications for VG in RoI heads Embedding: {num_classes + 1} --> {input_size // 8} Linear: {input_size + input_size // 8} --> {input_size // 4} Linear: {input_size // 4} --> {num_attrs + 1} """ self.cls_embedding = nn.Embedding(num_classes + 1, input_size // 8) self.fc_attr = nn.Linear(input_size + input_size // 8, input_size // 4) self.attr_score = nn.Linear(input_size // 4, num_attrs + 1) nn.init.normal_(self.cls_score.weight, std=0.01) nn.init.normal_(self.bbox_pred.weight, std=0.001) for item in [self.cls_score, self.bbox_pred]: nn.init.constant_(item.bias, 0) def forward(self, roi_features): if roi_features.dim() > 2: roi_features = torch.flatten(roi_features, start_dim=1) scores = self.cls_score(roi_features) proposal_deltas = self.bbox_pred(roi_features) if self.use_attr: _, max_class = scores.max(-1) # [b, c] --> [b] cls_emb = self.cls_embedding(max_class) # [b] --> [b, 256] roi_features = torch.cat([roi_features, cls_emb], -1) # [b, 2048] + [b, 256] --> [b, 2304] roi_features = self.fc_attr(roi_features) roi_features = nn.functional.relu(roi_features) attr_scores = self.attr_score(roi_features) return scores, attr_scores, proposal_deltas else: return scores, proposal_deltas class GeneralizedRCNN(nn.Module): def __init__(self, cfg): super().__init__() self.device = torch.device(cfg.MODEL.DEVICE) self.backbone = build_backbone(cfg) self.proposal_generator = RPN(cfg, self.backbone.output_shape()) self.roi_heads = Res5ROIHeads(cfg, self.backbone.output_shape()) self.roi_outputs = ROIOutputs(cfg) self.to(self.device) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): config = kwargs.pop("config", None) state_dict = kwargs.pop("state_dict", None) cache_dir = kwargs.pop("cache_dir", None) from_tf = kwargs.pop("from_tf", False) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", False) proxies = kwargs.pop("proxies", None) local_files_only = kwargs.pop("local_files_only", False) use_cdn = kwargs.pop("use_cdn", True) # Load config if we don't provide a configuration if not isinstance(config, Config): config_path = config if config is not None else pretrained_model_name_or_path # try: config = Config.from_pretrained( config_path, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, local_files_only=local_files_only, ) # Load model if pretrained_model_name_or_path is not None: if os.path.isdir(pretrained_model_name_or_path): if os.path.isfile(os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)): # Load from a PyTorch checkpoint archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME) else: raise EnvironmentError( "Error no file named {} found in directory {} ".format( WEIGHTS_NAME, pretrained_model_name_or_path, ) ) elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path): archive_file = pretrained_model_name_or_path elif os.path.isfile(pretrained_model_name_or_path + ".index"): assert from_tf, "We found a TensorFlow checkpoint at {}, please set from_tf to True to load from this checkpoint".format( pretrained_model_name_or_path + ".index" ) archive_file = pretrained_model_name_or_path + ".index" else: archive_file = hf_bucket_url( pretrained_model_name_or_path, filename=WEIGHTS_NAME, use_cdn=use_cdn, ) try: # Load from URL or cache if already cached resolved_archive_file = cached_path( archive_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, ) if resolved_archive_file is None: raise EnvironmentError except EnvironmentError: msg = f"Can't load weights for '{pretrained_model_name_or_path}'." raise EnvironmentError(msg) if resolved_archive_file == archive_file: print("loading weights file {}".format(archive_file)) else: print("loading weights file {} from cache at {}".format(archive_file, resolved_archive_file)) else: resolved_archive_file = None # Instantiate model. model = cls(config) if state_dict is None: try: try: state_dict = torch.load(resolved_archive_file, map_location="cpu") except Exception: state_dict = load_checkpoint(resolved_archive_file) except Exception: raise OSError( "Unable to load weights from pytorch checkpoint file. " "If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. " ) missing_keys = [] unexpected_keys = [] error_msgs = [] # Convert old format to new format if needed from a PyTorch state_dict old_keys = [] new_keys = [] for key in state_dict.keys(): new_key = None if "gamma" in key: new_key = key.replace("gamma", "weight") if "beta" in key: new_key = key.replace("beta", "bias") if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): state_dict[new_key] = state_dict.pop(old_key) # copy state_dict so _load_from_state_dict can modify it metadata = getattr(state_dict, "_metadata", None) state_dict = state_dict.copy() if metadata is not None: state_dict._metadata = metadata model_to_load = model model_to_load.load_state_dict(state_dict) if model.__class__.__name__ != model_to_load.__class__.__name__: base_model_state_dict = model_to_load.state_dict().keys() head_model_state_dict_without_base_prefix = [ key.split(cls.base_model_prefix + ".")[-1] for key in model.state_dict().keys() ] missing_keys.extend(head_model_state_dict_without_base_prefix - base_model_state_dict) if len(unexpected_keys) > 0: print( f"Some weights of the model checkpoint at {pretrained_model_name_or_path} were not used when" f" initializing {model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are" f" initializing {model.__class__.__name__} from the checkpoint of a model trained on another task or" " with another architecture (e.g. initializing a BertForSequenceClassification model from a" " BertForPreTraining model).\n- This IS NOT expected if you are initializing" f" {model.__class__.__name__} from the checkpoint of a model that you expect to be exactly identical" " (initializing a BertForSequenceClassification model from a BertForSequenceClassification model)." ) else: print(f"All model checkpoint weights were used when initializing {model.__class__.__name__}.\n") if len(missing_keys) > 0: print( f"Some weights of {model.__class__.__name__} were not initialized from the model checkpoint at" f" {pretrained_model_name_or_path} and are newly initialized: {missing_keys}\nYou should probably" " TRAIN this model on a down-stream task to be able to use it for predictions and inference." ) else: print( f"All the weights of {model.__class__.__name__} were initialized from the model checkpoint at" f" {pretrained_model_name_or_path}.\nIf your task is similar to the task the model of the checkpoint" f" was trained on, you can already use {model.__class__.__name__} for predictions without further" " training." ) if len(error_msgs) > 0: raise RuntimeError( "Error(s) in loading state_dict for {}:\n\t{}".format( model.__class__.__name__, "\n\t".join(error_msgs) ) ) # Set model in evaluation mode to deactivate DropOut modules by default model.eval() return model def forward( self, images, image_shapes, gt_boxes=None, proposals=None, scales_yx=None, **kwargs, ): """ kwargs: max_detections (int), return_tensors {"np", "pt", None}, padding {None, "max_detections"}, pad_value (int), location = {"cuda", "cpu"} """ if self.training: raise NotImplementedError() return self.inference( images=images, image_shapes=image_shapes, gt_boxes=gt_boxes, proposals=proposals, scales_yx=scales_yx, **kwargs, ) @torch.no_grad() def inference( self, images, image_shapes, gt_boxes=None, proposals=None, scales_yx=None, **kwargs, ): # run images through backbone original_sizes = image_shapes * scales_yx features = self.backbone(images) # generate proposals if none are available if proposals is None: proposal_boxes, _ = self.proposal_generator(images, image_shapes, features, gt_boxes) else: assert proposals is not None # pool object features from either gt_boxes, or from proposals obj_logits, attr_logits, box_deltas, feature_pooled = self.roi_heads(features, proposal_boxes, gt_boxes) # prepare FRCNN Outputs and select top proposals boxes, classes, class_probs, attrs, attr_probs, roi_features = self.roi_outputs( obj_logits=obj_logits, attr_logits=attr_logits, box_deltas=box_deltas, pred_boxes=proposal_boxes, features=feature_pooled, sizes=image_shapes, scales=scales_yx, ) # will we pad??? subset_kwargs = { "max_detections": kwargs.get("max_detections", None), "return_tensors": kwargs.get("return_tensors", None), "pad_value": kwargs.get("pad_value", 0), "padding": kwargs.get("padding", None), } preds_per_image = torch.tensor([p.size(0) for p in boxes]) boxes = pad_list_tensors(boxes, preds_per_image, **subset_kwargs) classes = pad_list_tensors(classes, preds_per_image, **subset_kwargs) class_probs = pad_list_tensors(class_probs, preds_per_image, **subset_kwargs) attrs = pad_list_tensors(attrs, preds_per_image, **subset_kwargs) attr_probs = pad_list_tensors(attr_probs, preds_per_image, **subset_kwargs) roi_features = pad_list_tensors(roi_features, preds_per_image, **subset_kwargs) subset_kwargs["padding"] = None preds_per_image = pad_list_tensors(preds_per_image, None, **subset_kwargs) sizes = pad_list_tensors(image_shapes, None, **subset_kwargs) normalized_boxes = norm_box(boxes, original_sizes) return OrderedDict( { "obj_ids": classes, "obj_probs": class_probs, "attr_ids": attrs, "attr_probs": attr_probs, "boxes": boxes, "sizes": sizes, "preds_per_image": preds_per_image, "roi_features": roi_features, "normalized_boxes": normalized_boxes, } )
transformers/examples/research_projects/lxmert/modeling_frcnn.py/0
{ "file_path": "transformers/examples/research_projects/lxmert/modeling_frcnn.py", "repo_id": "transformers", "token_count": 34766 }
50
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
transformers/examples/research_projects/movement-pruning/emmental/__init__.py/0
{ "file_path": "transformers/examples/research_projects/movement-pruning/emmental/__init__.py", "repo_id": "transformers", "token_count": 99 }
51
# coding=utf-8 # Copyright 2018 The Google Flax Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, Dict, Tuple import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from jax.random import PRNGKey from modeling_flax_performer_utils import make_fast_softmax_attention from transformers.file_utils import add_start_docstrings from transformers.modeling_flax_utils import ACT2FN from transformers.models.bert.configuration_bert import BertConfig from transformers.models.bert.modeling_flax_bert import FlaxBertOnlyMLMHead, FlaxBertPreTrainedModel from transformers.utils import logging logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "BertConfig" _TOKENIZER_FOR_DOC = "BertTokenizer" BERT_START_DOCSTRING = r""" This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights. """ BERT_INPUTS_DOCSTRING = r""" Args: input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using :class:`~transformers.BertTokenizer`. See :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for details. `What are input IDs? <../glossary.html#input-ids>`__ attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`): Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. `What are attention masks? <../glossary.html#attention-mask>`__ token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0, 1]``: - 0 corresponds to a `sentence A` token, - 1 corresponds to a `sentence B` token. `What are token type IDs? <../glossary.html#token-type-ids>`_ position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0, config.max_position_embeddings - 1]``. `What are position IDs? <../glossary.html#position-ids>`_ head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`): Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert :obj:`input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (:obj:`bool`, `optional`): Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned tensors for more detail. output_hidden_states (:obj:`bool`, `optional`): Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for more detail. return_dict (:obj:`bool`, `optional`): Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. """ class FlaxPerformerLayerNorm(nn.Module): """ Layer normalization (https://arxiv.org/abs/1607.06450). Operates on the last axis of the input data. """ epsilon: float = 1e-6 dtype: jnp.dtype = jnp.float32 # the dtype of the computation bias: bool = True # If True, bias (beta) is added. scale: bool = True # If True, multiply by scale (gamma). When the next layer is linear # (also e.g. nn.relu), this can be disabled since the scaling will be # done by the next layer. bias_init: jnp.ndarray = nn.initializers.zeros scale_init: jnp.ndarray = nn.initializers.ones @nn.compact def __call__(self, x): """ Applies layer normalization on the input. It normalizes the activations of the layer for each given example in a batch independently, rather than across a batch like Batch Normalization. i.e. applies a transformation that maintains the mean activation within each example close to 0 and the activation standard deviation close to 1 Args: x: the inputs Returns: Normalized inputs (the same shape as inputs). """ features = x.shape[-1] mean = jnp.mean(x, axis=-1, keepdims=True) mean2 = jnp.mean(jax.lax.square(x), axis=-1, keepdims=True) var = mean2 - jax.lax.square(mean) mul = jax.lax.rsqrt(var + self.epsilon) if self.scale: mul = mul * jnp.asarray(self.param("gamma", self.scale_init, (features,)), self.dtype) y = (x - mean) * mul if self.bias: y = y + jnp.asarray(self.param("beta", self.bias_init, (features,)), self.dtype) return y class FlaxPerformerEmbedding(nn.Module): """ Specify a new class for doing the embedding stuff as Flax's one use 'embedding' for the parameter name and PyTorch use 'weight' """ vocab_size: int hidden_size: int emb_init: Callable[..., np.ndarray] = nn.initializers.normal(stddev=0.1) @nn.compact def __call__(self, inputs): embedding = self.param("weight", self.emb_init, (self.vocab_size, self.hidden_size)) return jnp.take(embedding, inputs, axis=0) class FlaxPerformerEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" vocab_size: int hidden_size: int type_vocab_size: int max_length: int @nn.compact def __call__(self, input_ids, token_type_ids, position_ids, attention_mask): # Embed w_emb = FlaxPerformerEmbedding(self.vocab_size, self.hidden_size, name="word_embeddings")( jnp.atleast_2d(input_ids.astype("i4")) ) p_emb = FlaxPerformerEmbedding(self.max_length, self.hidden_size, name="position_embeddings")( jnp.atleast_2d(position_ids.astype("i4")) ) t_emb = FlaxPerformerEmbedding(self.type_vocab_size, self.hidden_size, name="token_type_embeddings")( jnp.atleast_2d(token_type_ids.astype("i4")) ) # Sum all embeddings summed_emb = w_emb + jnp.broadcast_to(p_emb, w_emb.shape) + t_emb # Layer Norm layer_norm = FlaxPerformerLayerNorm(name="layer_norm")(summed_emb) return layer_norm class FlaxPerformerAttention(nn.Module): num_heads: int head_size: int @nn.compact def __call__(self, hidden_state, attention_mask): single_head_dim = self.head_size // self.num_heads fast_softmax_attention = make_fast_softmax_attention(qkv_dim=single_head_dim) self_att = nn.attention.SelfAttention( num_heads=self.num_heads, qkv_features=self.head_size, name="self", attention_fn=fast_softmax_attention )(hidden_state, attention_mask) layer_norm = FlaxPerformerLayerNorm(name="layer_norm")(self_att + hidden_state) return layer_norm class FlaxPerformerIntermediate(nn.Module): output_size: int hidden_act: str = "gelu" @nn.compact def __call__(self, hidden_state): # TODO: Add ACT2FN reference to change activation function dense = nn.Dense(features=self.output_size, name="dense")(hidden_state) return ACT2FN[self.hidden_act](dense) class FlaxPerformerOutput(nn.Module): @nn.compact def __call__(self, intermediate_output, attention_output): hidden_state = nn.Dense(attention_output.shape[-1], name="dense")(intermediate_output) hidden_state = FlaxPerformerLayerNorm(name="layer_norm")(hidden_state + attention_output) return hidden_state class FlaxPerformerLayer(nn.Module): num_heads: int head_size: int intermediate_size: int hidden_act: str = "gelu" @nn.compact def __call__(self, hidden_state, attention_mask): attention = FlaxPerformerAttention(self.num_heads, self.head_size, name="attention")( hidden_state, attention_mask ) intermediate = FlaxPerformerIntermediate( self.intermediate_size, name="intermediate", hidden_act=self.hidden_act )(attention) output = FlaxPerformerOutput(name="output")(intermediate, attention) return output class FlaxPerformerLayerCollection(nn.Module): """ Stores N BertLayer(s) """ num_layers: int num_heads: int head_size: int intermediate_size: int hidden_act: str = "gelu" @nn.compact def __call__(self, inputs, attention_mask): assert self.num_layers > 0, f"num_layers should be >= 1, got ({self.num_layers})" # Initialize input / output input_i = inputs # Forward over all encoders for i in range(self.num_layers): layer = FlaxPerformerLayer( self.num_heads, self.head_size, self.intermediate_size, hidden_act=self.hidden_act, name=f"{i}" ) input_i = layer(input_i, attention_mask) return input_i class FlaxPerformerEncoder(nn.Module): num_layers: int num_heads: int head_size: int intermediate_size: int hidden_act: str = "gelu" @nn.compact def __call__(self, hidden_state, attention_mask): layer = FlaxPerformerLayerCollection( self.num_layers, self.num_heads, self.head_size, self.intermediate_size, name="layer", hidden_act=self.hidden_act, )(hidden_state, attention_mask) return layer class FlaxPerformerPooler(nn.Module): @nn.compact def __call__(self, hidden_state): cls_token = hidden_state[:, 0] out = nn.Dense(hidden_state.shape[-1], name="dense")(cls_token) return jax.lax.tanh(out) class FlaxPerformerModule(nn.Module): vocab_size: int hidden_size: int type_vocab_size: int max_length: int num_encoder_layers: int num_heads: int head_size: int intermediate_size: int hidden_act: str = "gelu" add_pooling_layer: bool = True @nn.compact def __call__(self, input_ids, token_type_ids, position_ids, attention_mask): # Embedding embeddings = FlaxPerformerEmbeddings( self.vocab_size, self.hidden_size, self.type_vocab_size, self.max_length, name="embeddings" )(input_ids, token_type_ids, position_ids, attention_mask) # N stacked encoding layers encoder = FlaxPerformerEncoder( self.num_encoder_layers, self.num_heads, self.head_size, self.intermediate_size, hidden_act=self.hidden_act, name="encoder", )(embeddings, attention_mask) if not self.add_pooling_layer: return encoder pooled = FlaxPerformerPooler(name="pooler")(encoder) return encoder, pooled @add_start_docstrings( "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.", BERT_START_DOCSTRING, ) class FlaxPerformerModel(FlaxBertPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in `Attention is all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. """ model_class = FlaxPerformerModule config_class = BertConfig base_model_prefix = "bert" @staticmethod def convert_from_pytorch(pt_state: Dict, config: BertConfig) -> Dict: jax_state = dict(pt_state) # Need to change some parameters name to match Flax names so that we don't have to fork any layer for key, tensor in pt_state.items(): # Key parts key_parts = set(key.split(".")) # Every dense layer has "kernel" parameters instead of "weight" if "dense.weight" in key: del jax_state[key] key = key.replace("weight", "kernel") jax_state[key] = tensor # SelfAttention needs also to replace "weight" by "kernel" if {"query", "key", "value"} & key_parts: # Flax SelfAttention decomposes the heads (num_head, size // num_heads) if "bias" in key: jax_state[key] = tensor.reshape((config.num_attention_heads, -1)) elif "weight": del jax_state[key] key = key.replace("weight", "kernel") tensor = tensor.reshape((config.num_attention_heads, -1, config.hidden_size)).transpose((2, 0, 1)) jax_state[key] = tensor # SelfAttention output is not a separate layer, remove one nesting if "attention.output.dense" in key: del jax_state[key] key = key.replace("attention.output.dense", "attention.self.out") jax_state[key] = tensor # SelfAttention output is not a separate layer, remove nesting on layer norm if "attention.output.LayerNorm" in key: del jax_state[key] key = key.replace("attention.output.LayerNorm", "attention.LayerNorm") jax_state[key] = tensor # There are some transposed parameters w.r.t their PyTorch counterpart if "intermediate.dense.kernel" in key or "output.dense.kernel" in key: jax_state[key] = tensor.T # Self Attention output projection needs to be transposed if "out.kernel" in key: jax_state[key] = tensor.reshape((config.hidden_size, config.num_attention_heads, -1)).transpose( 1, 2, 0 ) # Pooler needs to transpose its kernel if "pooler.dense.kernel" in key: jax_state[key] = tensor.T # Handle LayerNorm conversion if "LayerNorm" in key: del jax_state[key] # Replace LayerNorm by layer_norm new_key = key.replace("LayerNorm", "layer_norm") if "weight" in key: new_key = new_key.replace("weight", "gamma") elif "bias" in key: new_key = new_key.replace("bias", "beta") jax_state[new_key] = tensor return jax_state def __init__( self, config: BertConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, **kwargs ): module = FlaxPerformerModule( vocab_size=config.vocab_size, hidden_size=config.hidden_size, type_vocab_size=config.type_vocab_size, max_length=config.max_position_embeddings, num_encoder_layers=config.num_hidden_layers, num_heads=config.num_attention_heads, head_size=config.hidden_size, intermediate_size=config.intermediate_size, dropout_rate=config.hidden_dropout_prob, hidden_act=config.hidden_act, ) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype) @property def module(self) -> nn.Module: return self._module def __call__( self, input_ids, token_type_ids=None, position_ids=None, dropout_rng: PRNGKey = None, attention_mask=None ): input_ids, attention_mask, token_type_ids, position_ids = self._check_inputs( input_ids, attention_mask, token_type_ids, position_ids ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng return self.module.apply( {"params": self.params}, jnp.array(input_ids, dtype="i4"), jnp.array(token_type_ids, dtype="i4"), jnp.array(position_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), rng=rngs, ) class FlaxPerformerForMaskedLM(FlaxBertPreTrainedModel): def __init__( self, config: BertConfig, input_shape: Tuple = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, **kwargs ): module = FlaxPerformerForMaskedLMModule( vocab_size=config.vocab_size, type_vocab_size=config.type_vocab_size, hidden_size=config.hidden_size, intermediate_size=config.intermediate_size, head_size=config.hidden_size, num_heads=config.num_attention_heads, num_encoder_layers=config.num_hidden_layers, max_length=config.max_position_embeddings, hidden_act=config.hidden_act, **kwargs, ) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype) def __call__( self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, params: dict = None, train: bool = False, dropout_rng: PRNGKey = None, ): input_ids, attention_mask, token_type_ids, position_ids = self._check_inputs( input_ids, attention_mask, token_type_ids, position_ids ) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng return self.module.apply( {"params": params or self.params}, jnp.array(input_ids, dtype="i4"), jnp.array(attention_mask, dtype="i4"), jnp.array(token_type_ids, dtype="i4"), jnp.array(position_ids, dtype="i4"), not train, rngs=rngs, ) class FlaxPerformerForMaskedLMModule(nn.Module): vocab_size: int hidden_size: int intermediate_size: int head_size: int num_heads: int num_encoder_layers: int type_vocab_size: int max_length: int hidden_act: str dropout_rate: float = 0.0 dtype: jnp.dtype = jnp.float32 @nn.compact def __call__( self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, deterministic: bool = True ): # Model encoder = FlaxPerformerModule( vocab_size=self.vocab_size, hidden_size=self.hidden_size, type_vocab_size=self.type_vocab_size, max_length=self.max_length, num_encoder_layers=self.num_encoder_layers, num_heads=self.num_heads, head_size=self.hidden_size, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, add_pooling_layer=False, name="bert", )(input_ids, attention_mask, token_type_ids, position_ids) # Compute the prediction scores encoder = nn.Dropout(rate=self.dropout_rate)(encoder, deterministic=deterministic) logits = FlaxBertOnlyMLMHead( vocab_size=self.vocab_size, hidden_act=self.hidden_act, name="cls", dtype=self.dtype )(encoder) return (logits,)
transformers/examples/research_projects/performer/modeling_flax_performer.py/0
{ "file_path": "transformers/examples/research_projects/performer/modeling_flax_performer.py", "repo_id": "transformers", "token_count": 9147 }
52
# Add parent directory to python path to access lightning_base.py export PYTHONPATH="../":"${PYTHONPATH}" # A sample finetuning run, you need to specify data_dir, output_dir and model_name_or_path # run ./examples/rag/finetune_rag.sh --help to see all the possible options python examples/rag/finetune_rag.py \ --data_dir $DATA_DIR \ --output_dir $OUTPUT_DIR \ --model_name_or_path $MODEL_NAME_OR_PATH \ --model_type rag_sequence \ --fp16 \ --gpus 8 \ --profile \ --do_train \ --do_predict \ --n_val -1 \ --train_batch_size 8 \ --eval_batch_size 1 \ --max_source_length 128 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-05 \ --num_train_epochs 100 \ --warmup_steps 500 \ --gradient_accumulation_steps 1 \
transformers/examples/research_projects/rag/finetune_rag.sh/0
{ "file_path": "transformers/examples/research_projects/rag/finetune_rag.sh", "repo_id": "transformers", "token_count": 440 }
53
# Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/bin/bash # Create a virtual environment conda deactivate conda update conda -y conda update anaconda -y pip install --upgrade pip python3 -m pip install --user virtualenv conda create -n strata python=3.9 -y conda activate strata # Install all necessary packages pip install transformers pip install -r requirements.txt # Download and prepare data WORK_DIR="/tmp/strata" rm -rf "${WORK_DIR}" && mkdir -p "${WORK_DIR}" wget https://storage.googleapis.com/gresearch/strata/demo.zip -P "${WORK_DIR}" DEMO_ZIP_FILE="${WORK_DIR}/demo.zip" unzip "${DEMO_ZIP_FILE}" -d "${WORK_DIR}" && rm "${DEMO_ZIP_FILE}" DATA_DIR="${WORK_DIR}/demo/scitail-8" OUTPUT_DIR="/tmp/output" rm -rf "${OUTPUT_DIR}" && mkdir -p "${OUTPUT_DIR}" # Specific hyperparameters MODEL_NAME_OR_PATH="bert-base-uncased" NUM_NODES=1 NUM_TRAINERS=4 LAUNCH_SCRIPT="torchrun --nnodes='${NUM_NODES}' --nproc_per_node='${NUM_TRAINERS}' python -c" MAX_SELFTRAIN_ITERATIONS=100 TRAIN_FILE="train.csv" INFER_FILE="infer.csv" EVAL_FILE="eval_256.csv" MAX_STEPS=100000 # Start self-training ${LAUNCH_SCRIPT} " import os from selftraining import selftrain data_dir = '${DATA_DIR}' parameters_dict = { 'max_selftrain_iterations': ${MAX_SELFTRAIN_ITERATIONS}, 'model_name_or_path': '${MODEL_NAME_OR_PATH}', 'output_dir': '${OUTPUT_DIR}', 'train_file': os.path.join(data_dir, '${TRAIN_FILE}'), 'infer_file': os.path.join(data_dir, '${INFER_FILE}'), 'eval_file': os.path.join(data_dir, '${EVAL_FILE}'), 'evaluation_strategy': 'steps', 'task_name': 'scitail', 'label_list': ['entails', 'neutral'], 'per_device_train_batch_size': 32, 'per_device_eval_batch_size': 8, 'max_length': 128, 'learning_rate': 2e-5, 'max_steps': ${MAX_STEPS}, 'eval_steps': 1, 'early_stopping_patience': 50, 'overwrite_output_dir': True, 'do_filter_by_confidence': False, 'do_filter_by_val_performance': True, 'finetune_on_labeled_data': False, 'seed': 42, } selftrain(**parameters_dict) "
transformers/examples/research_projects/self-training-text-classification/run.sh/0
{ "file_path": "transformers/examples/research_projects/self-training-text-classification/run.sh", "repo_id": "transformers", "token_count": 961 }
54
#!/usr/bin/env bash export PYTHONPATH="../":"${PYTHONPATH}" # From appendix C of paper https://arxiv.org/abs/1912.08777 # Set --gradient_accumulation_steps so that effective batch size is 256 (2*128, 4*64, 8*32, 16*16) python finetune.py \ --learning_rate=1e-4 \ --do_train \ --do_predict \ --n_val 1000 \ --val_check_interval 0.25 \ --max_source_length 512 --max_target_length 56 \ --freeze_embeds --label_smoothing 0.1 --adafactor --task summarization_xsum \ "$@"
transformers/examples/research_projects/seq2seq-distillation/finetune_pegasus_xsum.sh/0
{ "file_path": "transformers/examples/research_projects/seq2seq-distillation/finetune_pegasus_xsum.sh", "repo_id": "transformers", "token_count": 208 }
55
# Fine-Tuning week of XLSR-Wav2Vec2 on 60 languages 🌍 Welcome to the fine-tuning week! The goal of this week is to have state-of-the-art automatic speech recognition (ASR) models in as many languages as possible. The fine-tuning week ends on Friday, the 26th March at midnight PST time. Participants are encouraged to fine-tune the pretrained [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) checkpoint on one or more of the 60 languages of [Common Voice dataset](https://commonvoice.mozilla.org/en/datasets). Furthermore, it is very much appreciated if participants fine-tune XLSR-Wav2Vec2 on a language that is not included in the Common Voice dataset. All fine-tuned models uploaded until Friday, the 26th March midnight PST, will be taken into account for competition, and the best model per language will be awarded a prize if the best model performs reasonably well. The testing data to evaluate the models will be the official [Common Voice dataset](https://commonvoice.mozilla.org/en/datasets) *`test data`* of version 6.1. Again, participants are very much encouraged to fine-tune XLSR-Wav2Vec2 on languages that are not found in the Common Voice dataset since those languages are even more likely to be underrepresented in the speech community. Each model fine-tuned on a language not found in Common Voice, will be evaluated by the Hugging Face team after Friday, the 26th March at midnight PST, and if the model performs reasonably well, the model receives a prize as well. For more information on which data can be used for training, how the models are evaluated exactly, and what type of data preprocessing can be used, please see ["Training and Evaluation Rules"](#training-and-evaluation-rules). **Please keep in mind:** The spirit of the fine-tuning week is to provide state-of-the-art speech recognition in as many languages as possible to the community! So while we encourage healthy competition between people/groups of the same language so that better results are obtained, it is extremely important that we help each other and share our insights with the whole team/community. What matters in the end is what has been achieved by the team as a whole during the fine-tuning week. That being said, we strongly encourage people to share tips & tricks on the forum or Slack, help each other when team members encounter bugs, and work in groups. To make it easier to share and help, forum threads have been created under the name {language} ASR: Fine-Tuning Wav2Vec2, e.g. here. It is very much possible that prizes will be given to groups of people instead of individuals. Also, don't hesitate to ask questions, propose improvements to the organization, to the material given to participants, etc...🤗 ## Table of Contents - [Organization of the fine tuning week](#organization-of-the-fine-tuning-week) - [How to fine tune XLSR Wav2Vec2](#how-to-fine-tune-xlsr-wav2vec2) - [Google colab setup](#google-colab-setup) - [Local machine](#local-machine) - [How to upload my trained checkpoint](#how-to-upload-my-trained-checkpoint) - [How to create the README](#how-to-create-the-readme) - [How to evaluate my trained checkpoint](#how-to-evaluate-my-trained-checkpoint) - [Rules of training and evaluation](#rules-of-training-and-evaluation) - [Tips and tricks](#tips-and-tricks) - [How to combine multiple datasests into one](#how-to-combine-multiple-datasets-into-one) - [How to effectively preprocess the data](#how-to-effectively-preprocess-the-data) - [How to efficiently preproces the data](#how-to-do-efficiently-load-datasets-with-limited-ram-and-hard-drive-space) - [How to do hyperparameter tuning](#how-to-do-hyperparameter-tuning) - [How to preprocess and evaluate character based languages](#how-to-preprocess-and-evaluate-character-based-languages) - [Further reading material](#further-reading-material) - [FAQ](#faq) ## Organization of the fine tuning week The week officially starts on 22.03.2021 and ends on 29.03.2021, but you are more than welcome to start fine-tuning models before the start date. General questions you might have, general problems you encounter, and general tips can be shared directly on the Slack channel (see [this post](https://discuss.huggingface.co/t/open-to-the-community-xlsr-wav2vec2-fine-tuning-week-for-low-resource-languages/4467) on how to be added to Slack). More language-specific questions or specific bugs should be posted on the [forum](https://discuss.huggingface.co/) (feel free to use already existing language-specific threads, *e.g.* [this one](https://discuss.huggingface.co/t/arabic-asr-fine-tuning-wav2vec2/4608) or open a new one if there is no thread for your language yet) or directly on [github](https://github.com/huggingface/transformers) if you think some code or document needs correction/improvement. Starting on Monday, the 22.03.2021, the Hugging Face team will try to provide an overview of currently trained models along with their evaluation results. All the necessary information on: - How to fine-tune the XLSR model - How to upload the model - How to share your evaluation results & training/eval script - What are the training/evaluation rules can be found in the sections below. If something is still unclear, feel free to drop a message in the Slack channel. ## How to fine tune XLSR Wav2Vec2 This chapter gives an in-detail explanation of how to fine-tune [Facebook's multi-lingual Wav2vec2](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on any language of the [Common Voice dataset](https://commonvoice.mozilla.org/en/datasets). Two possible setups can be used to fine-tune Wav2Vec2. The easiest setup is to simply use [google colab](https://colab.research.google.com/). It is possible to train the full model in a *free* google colab, but it is recommended to use google colab pro since it is more stable. The other option is to run a script locally. While this can be more difficult to set up, it also means that you have more control over the training run and probably access to better GPUs than you would have in a google colab. For small datasets, it is usually totally sufficient to train your model in a google colab. For larger and thus more memory-intensive datasets, it is probably better to fine-tune the model locally. For each option, we explain in detail how to fine-tune XLSR-Wav2Vec2 in the following. ### Google colab setup **Note**: Instead of reading the following section, you can simply watch [this](https://www.youtube.com/watch?v=UynYn2C3tI0&ab_channel=PatrickvonPlaten) video, where Patrick explains how to adapt the google colab for your specific language. **1.**: If you plan on training XLSR-Wav2Vec2 in a google colab, you should first make sure to have a valid gmail account. You can sign up for a gmail account [here](https://accounts.google.com/signup/v2/webcreateaccount?hl=en&flowName=GlifWebSignIn&flowEntry=SignUp). Having successfully signed up for gmail, you can now sign in to your account to make sure you are logged in when opening new tabs in your browser. **2.**: Next, head over to the official [Fine-Tune XLSR-Wav2Vec2 with 🤗 Transformes](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_Tune_XLSR_Wav2Vec2_on_Turkish_ASR_with_%F0%9F%A4%97_Transformers.ipynb) google colab. The first thing you should do is to make a copy of it - click `->File->Save a copy in Drive`. This should save a copy of the google colab in your google drive. **3.**: Now it is highly recommended to carefully read the google colab without running the cells yet. You should get an understanding of the model is trained and what you will have to change when training the model in a different language. Having done so, you can again head over to [Common Voice](https://commonvoice.mozilla.org/en/datasets) and pick a language you want to fine-tune [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on. Make sure you remember the language code (For each language, you can find it under the field "*Version*". It corresponds to **all characters before the first underscore**. *E.g.* for Greek it is *el*, while for Irish it is *ga-IE*. **4.**: Now you should replace the language code used for the demo of this colab, being *tr* for Turkish with the language code corresponding to the language you just chose in the **second** cell of the google colab. This will load the correct data for your language. **5.**: It is time to start running the google colab! Make sure that you have selected "GPU" as your runtime environment and you can start running the cells one-by-one. Make sure you attentively read the text between the cells to understand what is happening and to eventually correct the cells to improve the fine-tuning script for your language. Things you might want to improve/change: - Data loading. It is very much recommended to use more than just the official training data of the Common Voice dataset. If you find more data on the internet, feel free to use it! Check out the section ["How to combined multiple datasets into one"](#how-to-combine-multiple-datasets-into-one) - Data Processing. You should adapt the data processing to your specific language. In data processing, you should make the data more uniform so that it will be easier for the model to learn how to classify speech in your data. Here it can be really helpful to be proficient in the language to know what can be done to simplify the language without changing the meaning. Data processing methods include, but are not limited to: - Normalizing your data. Make sure all characters are lower-cased. - Remove typographical symbols and punctuation marks. See a list [here](https://en.wikipedia.org/wiki/List_of_typographical_symbols_and_punctuation_marks). Be careful to not remove punctuation marks that can change the meaning of the sentence. *E.g.* you should not remove the single quotation mark `'` in English, as it would change the words `"it's"` to `"its"` which is a different word and has thus a different meaning. For more tips on data processing see ["How to effectively preprocess the data"](#how-to-effectively-preprocess-the-data") - Hyperparameter Tuning. Depending on the size of the data you should probably change the hyperparameters of the google colab. You can change any parameter you like. For more tips and tricks see ["How to do hyperparameter tuning for my language"](#how-to-do-hyperparameter-tuning-for-my-language) When running the google colab make sure that you uncomment the cell corresponding to mounting your google drive to the colab. This cell looks as follows: ```python # from google.colab import drive # drive.mount('/content/gdrive/') ``` Uncomment it, run it, and follow the instructions to mount your google drive. This way you can be sure that the model parameters and created tokenizer & feature extractor files are saved in **your** google drive. Also, make sure that you uncomment the cells corresponding to save the preprocessing files and trained model weights to your drive. Otherwise, you might lose a trained model if you google crashes. You should change the name of your model from `wav2vec2-large-xlsr-turkish-demo` to `wav2vec2-large-xlsr-{your_favorite_name}`. Those cells correspond to: ```python # processor.save_pretrained("/content/gdrive/MyDrive/wav2vec2-large-xlsr-turkish-demo") ``` and the line: ```python output_dir="/content/gdrive/MyDrive/wav2vec2-large-xlsr-turkish-demo", ``` further below (which should already be uncommented). Having finished the training you should find the following files/folders under the folder `wav2vec2-large-xlsr-{your_favorite_name}` in your google drive: - `preprocessor_config.json` - the parameters of the feature extractor - `special_tokens_map.json` - the special token map of the tokenizer - `tokenizer_config.json` - the parameters of the tokenizer - `vocab.json` - the vocabulary of the tokenizer - `checkpoint-{...}/` - the saved checkpoints saved during training. Each checkpoint should contain the files: `config.json`, `optimizer.pt`, `pytorch_model.bin`, `scheduler.pt`, `training_args.bin`. The files `config.json` and `pytorch_model.bin` define your model. If you are happy with your training results it is time to upload your model! Download the following files to your local computer: **`preprocessor_config.json`, `special_tokens_map.json`, `tokenizer_config.json`, `vocab.json`, `config.json`, `pytorch_model.bin`**. Those files fully define a XLSR-Wav2Vec2 model checkpoint. Awesome you have successfully trained a XLSR-Wav2Vec2 model 😎. Now you can jump to the section ["How to upload my trained checkpoint"](#how-to-upload-my-trained-checkpoint) ### Local machine We have provided `run_common_voice.py` script to run fine-tuning on local machine. The script is similar to the colab but allows you to launch training using command line, save and continue training from previous checkpoints and launch training on multiple GPUs. For bigger datasets, we recommend to train Wav2Vec2 locally instead of in a google colab. 1. To begin with, we should clone transformers localy and install all the required packages. First, you need to clone the `transformers` repo with: ```bash $ git clone https://github.com/huggingface/transformers.git ``` Second, head over to the `examples/research_projects/wav2vec2` directory, where the `run_common_voice.py` script is located. ```bash $ cd transformers/examples/research_projects/wav2vec2 ``` Third, install the required packages. The packages are listed in the `requirements.txt` file and can be installed with ```bash $ pip install -r requirements.txt ``` **Note**: Installing the latest version of `torchaudio` will also upgrade `torch` to it's latest stable version. If you are using specific version of `torch` then make sure to use the correct `torchaudio` version compatible with your version of `torch`. By default the `requirements.txt` will install the latest version of `torchaudio`. 2. Next, take a look at the `run_common_voice.py` script to get an understanding of how it works. In short the script does the following: - Load the given common voice dataset - Create vocab for the language - Load the model with given hyperparameters - Pre-process the dataset to input into the model - Run training - Run evaluation 3. The following examples show how you can launch fine-tuning for the common voice dataset. Here we will run the script on the *Turkish* Common Voice dataset for demonstration purposes. **To lanuch fine-tuninig on a single GPU:** ```bash python run_common_voice.py \ --model_name_or_path="facebook/wav2vec2-large-xlsr-53" \ --dataset_config_name="tr" \ # use this argument to specify the language code --output_dir=./wav2vec2-large-xlsr-turkish-demo \ --overwrite_output_dir \ --num_train_epochs="5" \ --per_device_train_batch_size="16" \ --learning_rate="3e-4" \ --warmup_steps="500" \ --evaluation_strategy="steps" \ --save_steps="400" \ --eval_steps="400" \ --logging_steps="400" \ --save_total_limit="3" \ --freeze_feature_extractor \ --feat_proj_dropout="0.0" \ --layerdrop="0.1" \ --gradient_checkpointing \ --fp16 \ --group_by_length \ --do_train --do_eval ``` **To lanuch fine-tuninig on multiple GPUs:** ```bash python -m torch.distributed.launch \ --nproc_per_node 4 run_common_voice.py \ --model_name_or_path="facebook/wav2vec2-large-xlsr-53" \ --dataset_config_name="tr" \ # use this argument to specify the language code --output_dir=./wav2vec2-large-xlsr-turkish-demo \ --overwrite_output_dir \ --num_train_epochs="5" \ --per_device_train_batch_size="16" \ --learning_rate="3e-4" \ --warmup_steps="500" \ --evaluation_strategy="steps" \ --save_steps="400" \ --eval_steps="400" \ --logging_steps="400" \ --save_total_limit="3" \ --freeze_feature_extractor \ --feat_proj_dropout="0.0" \ --layerdrop="0.1" \ --gradient_checkpointing \ --fp16 \ --group_by_length \ --do_train --do_eval ``` The above command will launch the training on 4 GPUs. Use the `--nproc_per_node` option to specify the number of GPUs. Once the training is finished, the model and checkpoints will be saved under the directory specified by the `--output_dir` argument. 4. The script also allows you to resume training from the last saved checkpoint. To resume training from last saved checkpoint remove the `--overwrite_output_dir` option and run the same command again. And to continue training from a specific checkpoint, keep the `--overwrite_output_dir` option and pass the path of the checkpoint as `--model_name_or_path`. As the script is based on the `Trainer` API, refer to the [Trainer docs](https://huggingface.co/transformers/main_classes/trainer.html) for more information about ``Trainer`` and ``TrainingArguments``. [OVH cloud](https://www.ovh.com/world/) has generously offered free compute for this sprint. Please refer to [this video](https://www.youtube.com/watch?v=2hlkWAESMk8&ab_channel=Databuzzword) to get started with OVH. ## How to upload my trained checkpoint To upload your trained checkpoint, you have to create a new model repository on the 🤗 model hub, from this page: https://huggingface.co/new > You can also follow the more in-depth instructions [here](https://huggingface.co/transformers/model_sharing.html) if needed. Having created your model repository on the hub, you should clone it locally: ```bash git lfs install git clone https://huggingface.co/username/your-model-name ``` Then and add the following files that fully define a XLSR-Wav2Vec2 checkpoint into the repository. You should have added the following files. - `preprocessor_config.json` - `special_tokens_map.json` - `tokenizer_config.json` - `vocab.json` - `config.json` - `pytorch_model.bin` Having added the above files, you should run the following to push files to your model repository. ```bash git add . && git commit -m "Add model files" && git push ``` The next **very important** step is to create the model card. For people to use your fine-tuned model it is important to understand: - What kind of model is it? - What is your model useful for? - What data was your model trained on? - How well does your model perform? All these questions should be answered in a model card which is the first thing people see when visiting your model on the hub under `https://huggingface.co/{your_username}/{your_modelname}`. **Note**: It is extremely important that you add this model card or else we cannot find your model and thus cannot take the model into account for the final evaluation. ### How to create the readme The model card is written in markdown (`.md`) and should be added by simply clicking on the "Add model card" button which is found on the top right corner. You are encouraged to copy-paste the following template into your model card. **Make sure that** instead of copying the output of the markdown file you copy the **raw** version of the following part. To get the raw version of this file, simply click on the "`raw`" button on the top right corner of this file next to "`blame`" and copy everything below the marker. Make sure that you read and consequently remove all #TODO: statements from the model card. <======================Copy **raw** version from here========================= --- language: {lang_id} #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. datasets: - common_voice #TODO: remove if you did not use the common voice dataset - TODO: add more datasets if you have used additional datasets. Make sure to use the exact same dataset name as the one found [here](https://huggingface.co/datasets). If the dataset can not be found in the official datasets, just give it a new name metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: {human_readable_name} #TODO: replace {human_readable_name} with a name of your model as it should appear on the leaderboard. It could be something like `Elgeish XLSR Wav2Vec2 Large 53` results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice {lang_id} #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. type: common_voice args: {lang_id} #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. metrics: - name: Test WER type: wer value: {wer_result_on_test} #TODO (IMPORTANT): replace {wer_result_on_test} with the WER error rate you achieved on the common_voice test set. It should be in the format XX.XX (don't add the % sign here). **Please** remember to fill out this value after you evaluated your model, so that your model appears on the leaderboard. If you fill out this model card before evaluating your model, please remember to edit the model card afterward to fill in your value --- # Wav2Vec2-Large-XLSR-53-{language} #TODO: replace language with your {language}, *e.g.* French Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on {language} using the [Common Voice](https://huggingface.co/datasets/common_voice), ... and ... dataset{s}. #TODO: replace {language} with your language, *e.g.* French and eventually add more datasets that were used and eventually remove common voice if model was not trained on common voice When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "{lang_id}", split="test[:2%]") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. processor = Wav2Vec2Processor.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model = Wav2Vec2ForCTC.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "{lang_id}", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model = Wav2Vec2ForCTC.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' # TODO: adapt this list to include all special characters you removed from the data resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: XX.XX % # TODO: write output of print here. IMPORTANT: Please remember to also replace {wer_result_on_test} at the top of with this value here. tags. ## Training The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO: adapt to state all the datasets that were used for training. The script used for training can be found [here](...) # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here. =======================To here===============================> Your model in then available under *huggingface.co/{your_username}/{your_chosen_xlsr-large_model_name}* for everybody to use 🎉. ## How to evaluate my trained checkpoint Having uploaded your model, you should now evaluate your model in a final step. This should be as simple as copying the evaluation code of your model card into a python script and running it. Make sure to note the final result on the model card **both** under the YAML tags at the very top **and** below your evaluation code under "Test Results". ## Rules of training and evaluation In this section, we will quickly go over what data is allowed to be used as training data, what kind of data preprocessing is allowed be used, and how the model should be evaluated. To make it very simple regarding the first point: **All data except the official common voice `test` data set can be used as training data**. For models trained in a language that is not included in Common Voice, the author of the model is responsible to leave a reasonable amount of data for evaluation. Second, the rules regarding the preprocessing are not that as straight-forward. It is allowed (and recommended) to normalize the data to only have lower-case characters. It is also allowed (and recommended) to remove typographical symbols and punctuation marks. A list of such symbols can *e.g.* be fonud [here](https://en.wikipedia.org/wiki/List_of_typographical_symbols_and_punctuation_marks) - however here we already must be careful. We should **not** remove a symbol that would change the meaning of the words, *e.g.* in English, we should not remove the single quotation mark `'` since it would change the meaning of the word `"it's"` to `"its"` which would then be incorrect. So the golden rule here is to not remove any characters that could change the meaning of a word into another word. This is not always obvious and should be given some consideration. As another example, it is fine to remove the "Hypen-minus" sign "`-`" since it doesn't change the meaninng of a word to another one. *E.g.* "`fine-tuning`" would be changed to "`finetuning`" which has still the same meaning. Since those choices are not always obvious when in doubt feel free to ask on Slack or even better post on the forum, as was done, *e.g.* [here](https://discuss.huggingface.co/t/spanish-asr-fine-tuning-wav2vec2/4586). ## Tips and tricks This section summarizes a couple of tips and tricks across various topics. It will continously be updated during the week. ### How to combine multiple datasets into one Check out [this](https://discuss.huggingface.co/t/how-to-combine-local-data-files-with-an-official-dataset/4685) post. ### How to effectively preprocess the data ### How to do efficiently load datasets with limited ram and hard drive space Check out [this](https://discuss.huggingface.co/t/german-asr-fine-tuning-wav2vec2/4558/8?u=patrickvonplaten) post. ### How to do hyperparameter tuning ### How to preprocess and evaluate character based languages ## Further reading material It is recommended that take some time to read up on how Wav2vec2 works in theory. Getting a better understanding of the theory and the inner mechanisms of the model often helps when fine-tuning the model. **However**, if you don't like reading blog posts/papers, don't worry - it is by no means necessary to go through the theory to fine-tune Wav2Vec2 on your language of choice. If you are interested in learning more about the model though, here are a couple of resources that are important to better understand Wav2Vec2: - [Facebook's Wav2Vec2 blog post](https://ai.facebook.com/blog/wav2vec-state-of-the-art-speech-recognition-through-self-supervision/) - [Official Wav2Vec2 paper](https://arxiv.org/abs/2006.11477) - [Official XLSR Wav2vec2 paper](https://arxiv.org/pdf/2006.13979.pdf) - [Hugging Face Blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) - [How does CTC (Connectionist Temporal Classification) work](https://distill.pub/2017/ctc/) It helps to have a good understanding of the following points: - How was XLSR-Wav2Vec2 pretrained? -> Feature vectors were masked and had to be predicted by the model; very similar in spirit to masked language model of BERT. - What parts of XLSR-Wav2Vec2 are responsible for what? What is the feature extractor part used for? -> extract feature vectors from the 1D raw audio waveform; What is the transformer part doing? -> mapping feature vectors to contextualized feature vectors; ... - What part of the model needs to be fine-tuned? -> The pretrained model **does not** include a language head to classify the contextualized features to letters. This is randomly initialized when loading the pretrained checkpoint and has to be fine-tuned. Also, note that the authors recommend to **not** further fine-tune the feature extractor. - What data was used to XLSR-Wav2Vec2? The checkpoint we will use for further fine-tuning was pretrained on **53** languages. - What languages are considered to be similar by XLSR-Wav2Vec2? In the official [XLSR Wav2Vec2 paper](https://arxiv.org/pdf/2006.13979.pdf), the authors show nicely which languages share a common contextualized latent space. It might be useful for you to extend your training data with data of other languages that are considered to be very similar by the model (or you). ## FAQ - Can a participant fine-tune models for more than one language? Yes! A participant can fine-tune models in as many languages she/he likes - Can a participant use extra data (apart from the common voice data)? Yes! All data except the official common voice `test data` can be used for training. If a participant wants to train a model on a language that is not part of Common Voice (which is very much encouraged!), the participant should make sure that some test data is held out to make sure the model is not overfitting. - Can we fine-tune for high-resource languages? Yes! While we do not really recommend people to fine-tune models in English since there are already so many fine-tuned speech recognition models in English. However, it is very much appreciated if participants want to fine-tune models in other "high-resource" languages, such as French, Spanish, or German. For such cases, one probably needs to train locally and apply might have to apply tricks such as lazy data loading (check the ["Lazy data loading"](#how-to-do-lazy-data-loading) section for more details).
transformers/examples/research_projects/wav2vec2/FINE_TUNE_XLSR_WAV2VEC2.md/0
{ "file_path": "transformers/examples/research_projects/wav2vec2/FINE_TUNE_XLSR_WAV2VEC2.md", "repo_id": "transformers", "token_count": 9587 }
56
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path git_repo_path = Path(__file__).resolve().parents[3] / "src" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.integrations.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) models = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"} ZERO2 = "zero2" ZERO3 = "zero3" stages = [ZERO2, ZERO3] def custom_name_func(func, param_num, param): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param param_based_name = parameterized.to_safe_name("_".join(str(x) for x in param.args)) return f"{func.__name__}_{param_based_name}" # Cartesian-product of zero stages with models to test params = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class TestDeepSpeedWav2Vec2(TestCasePlus): @parameterized.expand(params, name_func=custom_name_func) def test_fp32_non_distributed(self, stage, model): self.run_and_check( stage=stage, model=model, distributed=False, fp16=False, ) @require_torch_multi_gpu @parameterized.expand(params, name_func=custom_name_func) def test_fp32_distributed(self, stage, model): self.run_and_check( stage=stage, model=model, distributed=True, fp16=False, ) @parameterized.expand(params, name_func=custom_name_func) def test_fp16_non_distributed(self, stage, model): self.run_and_check( stage=stage, model=model, distributed=False, fp16=True, ) @require_torch_multi_gpu @parameterized.expand(params, name_func=custom_name_func) def test_fp16_distributed(self, stage, model): self.run_and_check( stage=stage, model=model, distributed=True, fp16=True, ) def do_checks(self, output_dir): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass # XXX: need to do better validation beyond just that the run was successful def run_and_check( self, stage: str, model: str, eval_steps: int = 10, distributed: bool = True, quality_checks: bool = True, fp16: bool = True, ): model_name = models[model] output_dir = self.run_trainer( stage=stage, model_name=model_name, eval_steps=eval_steps, num_train_epochs=1, distributed=distributed, fp16=fp16, ) self.do_checks(output_dir) return output_dir def run_trainer( self, stage: str, model_name: str, eval_steps: int = 10, num_train_epochs: int = 1, distributed: bool = True, fp16: bool = True, ): output_dir = self.get_auto_remove_tmp_dir("./xxx", after=False) args = f""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(num_train_epochs)} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fp16: args.extend(["--fp16"]) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json".split() script = [f"{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"] launcher = self.get_launcher(distributed) cmd = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(cmd, env=self.get_env()) return output_dir def get_launcher(self, distributed=False): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) num_gpus = min(2, get_gpu_count()) if distributed else 1 return f"deepspeed --num_nodes 1 --num_gpus {num_gpus}".split()
transformers/examples/research_projects/wav2vec2/test_wav2vec2_deepspeed.py/0
{ "file_path": "transformers/examples/research_projects/wav2vec2/test_wav2vec2_deepspeed.py", "repo_id": "transformers", "token_count": 2788 }
57
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Training a CLIP like dual encoder models using text and vision encoders in the library. The script can be used to train CLIP like models for languages other than English by using a text encoder pre-trained in the desired language. Currently this script supports the following vision and text models: Vision models: ViT(https://huggingface.co/models?filter=vit), CLIP (https://huggingface.co/models?filter=clip) Text models: BERT, ROBERTa (https://huggingface.co/models?filter=fill-mask) """ import logging import os import sys import warnings from dataclasses import dataclass, field from typing import Optional import tensorflow as tf from datasets import load_dataset from PIL import Image import transformers from transformers import ( AutoImageProcessor, AutoTokenizer, HfArgumentParser, PushToHubCallback, TFAutoModel, TFTrainingArguments, TFVisionTextDualEncoderModel, create_optimizer, ) from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version logger = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.39.0.dev0") require_version( "datasets>=1.8.0", "To fix: pip install -r examples/tensorflow/contrastive-image-text/requirements.txt" ) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}, default=None ) vision_model_name_or_path: str = field( metadata={"help": "Path to pretrained image model or model identifier from huggingface.co/models"}, default=None, ) text_model_name_or_path: str = field( metadata={"help": "Path to pretrained text model or model identifier from huggingface.co/models"}, default=None ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."}) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_fast_tokenizer: bool = field( default=True, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) use_auth_token: bool = field( default=None, metadata={ "help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead." }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether or not to allow for custom models defined on the Hub in their own modeling files. This option " "should only be set to `True` for repositories you trust and in which you have read the code, as it will " "execute code present on the Hub on your local machine." ) }, ) freeze_vision_model: bool = field( default=False, metadata={"help": "Whether to freeze the vision model parameters or not."} ) freeze_text_model: bool = field( default=False, metadata={"help": "Whether to freeze the text model parameters or not."} ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) data_dir: Optional[str] = field(default=None, metadata={"help": "The data directory containing input files."}) image_column: Optional[str] = field( default="image_path", metadata={"help": "The name of the column in the datasets containing the full image file paths."}, ) caption_column: Optional[str] = field( default="caption", metadata={"help": "The name of the column in the datasets containing the image captions."}, ) train_file: Optional[str] = field( default=None, metadata={"help": "The input training data file (a jsonlines file)."} ) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file (a jsonlines file)."}, ) test_file: Optional[str] = field( default=None, metadata={"help": "An optional input testing data file (a jsonlines file)."}, ) max_seq_length: Optional[int] = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension == "json", "`validation_file` should be a json file." dataset_name_mapping = { "image_caption_dataset.py": ("image_path", "caption"), } def crop_to_square(image): height, width = tf.shape(image)[0], tf.shape(image)[1] if height > width: image = tf.image.crop_to_bounding_box(image, (height - width) // 2, 0, width, width) elif width > height: image = tf.image.crop_to_bounding_box(image, 0, (width - height) // 2, height, height) return image def load_as_tf_dataset(dataset, image_column, image_size, mean, std, batch_size, shuffle): dataset = dataset.with_format("tensorflow")[:] # Load the dataset as tensor slices, but not the images yet! tf_dataset = tf.data.Dataset.from_tensor_slices(dataset) def load_image(sample): image_path = sample[image_column] image = tf.io.read_file(image_path) image = tf.image.decode_image(image, channels=3, expand_animations=False) image = crop_to_square(image) image = tf.image.resize(image, [image_size, image_size], method="bicubic", antialias=True) image = image / 255.0 image = (image - mean) / std image = tf.transpose(image, perm=[2, 0, 1]) # Convert to channels-first sample["pixel_values"] = image del sample[image_column] return sample if shuffle: tf_dataset = tf_dataset.shuffle(len(tf_dataset)) tf_dataset = tf_dataset.map(load_image, num_parallel_calls=tf.data.experimental.AUTOTUNE) tf_dataset = tf_dataset.batch(batch_size, drop_remainder=shuffle) tf_dataset = tf_dataset.prefetch(tf.data.experimental.AUTOTUNE) return tf_dataset def main(): # 1. Parse input arguments # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() if model_args.use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token` instead.", FutureWarning, ) if model_args.token is not None: raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.") model_args.token = model_args.use_auth_token if model_args.model_name_or_path is not None: if model_args.vision_model_name_or_path is not None or model_args.text_model_name_or_path is not None: raise ValueError( "If using model_name_or_path, you cannot specify separate image/text model paths as well!" ) if model_args.vision_model_name_or_path is not None or model_args.text_model_name_or_path is not None: if model_args.model_name_or_path is not None: raise ValueError( "If using separate image/text model paths, you cannot specify model_name_or_path as well!" ) if not (model_args.vision_model_name_or_path is not None and model_args.text_model_name_or_path is not None): raise ValueError( "If using separate image/text model paths, you must specify both vision_model_name_or_path " "and text_model_name_or_path!" ) # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/TensorFlow versions. send_example_telemetry("run_clip", model_args, data_args, framework="tensorflow") # 2. Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() log_level = training_args.get_process_log_level() logger.setLevel(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.info(f"Training/evaluation parameters {training_args}") # 3. Detecting last checkpoint and eventually continue from last checkpoint last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # 4. Load dataset # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files this script will use the first column for the full image path and the second column for the # captions (unless you specify column names for this with the `image_column` and `caption_column` arguments). # if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, keep_in_memory=False, data_dir=data_args.data_dir, token=model_args.token, ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if data_args.test_file is not None: data_files["test"] = data_args.test_file extension = data_args.test_file.split(".")[-1] dataset = load_dataset( extension, data_files=data_files, cache_dir=model_args.cache_dir, token=model_args.token, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets. # 5. Load pretrained model, tokenizer, and image processor if model_args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) elif model_args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) elif model_args.text_model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( model_args.text_model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script. " "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if model_args.model_name_or_path: # Load image_processor, in this script we only use this to get the mean and std for normalization. image_processor = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) with training_args.strategy.scope(): model = TFAutoModel.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) else: # Load image_processor, in this script we only use this to get the mean and std for normalization. image_processor = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.vision_model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) with training_args.strategy.scope(): model = TFVisionTextDualEncoderModel.from_vision_text_pretrained( vision_model_name_or_path=model_args.vision_model_name_or_path, text_model_name_or_path=model_args.text_model_name_or_path, cache_dir=model_args.cache_dir, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) config = model.config if model_args.freeze_vision_model: model.vision_model.trainable = False if model_args.freeze_text_model: model.text_model.trainable = False # Preprocessing the datasets. # We need to tokenize inputs and targets. if training_args.do_train: column_names = dataset["train"].column_names elif training_args.do_eval: column_names = dataset["validation"].column_names elif training_args.do_predict: column_names = dataset["test"].column_names else: logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") return # 6. Get the column names for input/target. dataset_columns = dataset_name_mapping.get(data_args.dataset_name, None) if data_args.image_column is None: image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] else: image_column = data_args.image_column if image_column not in column_names: raise ValueError( f"--image_column' value '{data_args.image_column}' needs to be one of: {', '.join(column_names)}" ) if data_args.caption_column is None: caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1] else: caption_column = data_args.caption_column if caption_column not in column_names: raise ValueError( f"--caption_column' value '{data_args.caption_column}' needs to be one of: {', '.join(column_names)}" ) # # 7. Preprocessing the datasets. # We need to tokenize input captions and transform the images. def tokenize_captions(examples): captions = list(examples[caption_column]) text_inputs = tokenizer(captions, max_length=data_args.max_seq_length, padding="max_length", truncation=True) examples["input_ids"] = text_inputs.input_ids examples["attention_mask"] = text_inputs.attention_mask return examples def filter_corrupt_images(examples): """remove problematic images""" valid_images = [] for image_file in examples[image_column]: try: Image.open(image_file) valid_images.append(True) except Exception: valid_images.append(False) return valid_images if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset") train_dataset = dataset["train"] if data_args.max_train_samples is not None: max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) train_dataset = train_dataset.filter( filter_corrupt_images, batched=True, num_proc=data_args.preprocessing_num_workers ) train_dataset = train_dataset.map( function=tokenize_captions, batched=True, remove_columns=[col for col in column_names if col != image_column], num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on train dataset", ) tf_train_dataset = load_as_tf_dataset( dataset=train_dataset, batch_size=training_args.per_device_train_batch_size, image_column=image_column, image_size=config.vision_config.image_size, mean=image_processor.image_mean, std=image_processor.image_std, shuffle=True, ) if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a train validation") eval_dataset = dataset["validation"] if data_args.max_eval_samples is not None: max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) eval_dataset = eval_dataset.select(range(max_eval_samples)) eval_dataset = eval_dataset.filter( filter_corrupt_images, batched=True, num_proc=data_args.preprocessing_num_workers ) eval_dataset = eval_dataset.map( function=tokenize_captions, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=[col for col in column_names if col != image_column], load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on validation dataset", ) tf_eval_dataset = load_as_tf_dataset( dataset=eval_dataset, batch_size=training_args.per_device_eval_batch_size, image_column=image_column, image_size=config.vision_config.image_size, mean=image_processor.image_mean, std=image_processor.image_std, shuffle=False, ) # 8. Preparing push_to_hub and model card push_to_hub_model_id = training_args.push_to_hub_model_id if model_args.model_name_or_path is not None: model_name = model_args.model_name_or_path.split("/")[-1] else: vision_name = model_args.vision_model_name_or_path.split("/")[-1] text_name = model_args.text_model_name_or_path.split("/")[-1] model_name = f"{vision_name}-{text_name}" if not push_to_hub_model_id: if data_args.dataset_name is not None: push_to_hub_model_id = f"{model_name}-finetuned-{data_args.dataset_name}" else: push_to_hub_model_id = f"{model_name}-finetuned-contrastive-image-text-modeling" model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "contrastive-image-text-modeling"} if data_args.dataset_name is not None: model_card_kwargs["dataset_tags"] = data_args.dataset_name if data_args.dataset_config_name is not None: model_card_kwargs["dataset_args"] = data_args.dataset_config_name model_card_kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" else: model_card_kwargs["dataset"] = data_args.dataset_name if training_args.push_to_hub: callbacks = [ PushToHubCallback( output_dir=training_args.output_dir, hub_model_id=push_to_hub_model_id, hub_token=training_args.push_to_hub_token, tokenizer=tokenizer, **model_card_kwargs, ) ] else: callbacks = [] # # 9. Training if training_args.do_train: num_train_steps = int(len(tf_train_dataset) * int(training_args.num_train_epochs)) if training_args.warmup_steps > 0: num_warmup_steps = training_args.warmup_steps elif training_args.warmup_ratio > 0: num_warmup_steps = int(num_train_steps * training_args.warmup_ratio) else: num_warmup_steps = 0 optimizer, lr_schedule = create_optimizer( init_lr=training_args.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, adam_beta1=training_args.adam_beta1, adam_beta2=training_args.adam_beta2, adam_epsilon=training_args.adam_epsilon, weight_decay_rate=training_args.weight_decay, adam_global_clipnorm=training_args.max_grad_norm, ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=optimizer, jit_compile=training_args.xla) if not training_args.do_eval: tf_eval_dataset = None model.fit( tf_train_dataset, validation_data=tf_eval_dataset, epochs=int(training_args.num_train_epochs), callbacks=callbacks, ) # # 10. Evaluation if training_args.do_eval and not training_args.do_train: model.evaluate(tf_eval_dataset) if __name__ == "__main__": main()
transformers/examples/tensorflow/contrastive-image-text/run_clip.py/0
{ "file_path": "transformers/examples/tensorflow/contrastive-image-text/run_clip.py", "repo_id": "transformers", "token_count": 11224 }
58
<!--- Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Question answering example This folder contains the `run_qa.py` script, demonstrating *question answering* with the 🤗 Transformers library. For straightforward use-cases you may be able to use this script without modification, although we have also included comments in the code to indicate areas that you may need to adapt to your own projects. ### Usage notes Note that when contexts are long they may be split into multiple training cases, not all of which may contain the answer span. As-is, the example script will train on SQuAD or any other question-answering dataset formatted the same way, and can handle user inputs as well. ### Multi-GPU and TPU usage By default, the script uses a `MirroredStrategy` and will use multiple GPUs effectively if they are available. TPUs can also be used by passing the name of the TPU resource with the `--tpu` argument. There are some issues surrounding these strategies and our models right now, which are most likely to appear in the evaluation/prediction steps. We're actively working on better support for multi-GPU and TPU training in TF, but if you encounter problems a quick workaround is to train in the multi-GPU or TPU context and then perform predictions outside of it. ### Memory usage and data loading One thing to note is that all data is loaded into memory in this script. Most question answering datasets are small enough that this is not an issue, but if you have a very large dataset you will need to modify the script to handle data streaming. This is particularly challenging for TPUs, given the stricter requirements and the sheer volume of data required to keep them fed. A full explanation of all the possible pitfalls is a bit beyond this example script and README, but for more information you can see the 'Input Datasets' section of [this document](https://www.tensorflow.org/guide/tpu). ### Example command ```bash python run_qa.py \ --model_name_or_path distilbert/distilbert-base-cased \ --output_dir output \ --dataset_name squad \ --do_train \ --do_eval \ ```
transformers/examples/tensorflow/question-answering/README.md/0
{ "file_path": "transformers/examples/tensorflow/question-answering/README.md", "repo_id": "transformers", "token_count": 657 }
59
#!/usr/bin/env python # coding: utf-8 # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTConfig, FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-en-de" tokenizer = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model config = FSMTConfig.from_pretrained(mname) config.update({ "d_model": 4, "encoder_layers": 1, "decoder_layers": 1, "encoder_ffn_dim": 4, "decoder_ffn_dim": 4, "encoder_attention_heads": 1, "decoder_attention_heads": 1}) tiny_model = FSMTForConditionalGeneration(config) print(f"num of params {tiny_model.num_parameters()}") # Test batch = tokenizer(["Making tiny model"], return_tensors="pt") outputs = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save mname_tiny = "tiny-wmt19-en-de" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-de
transformers/scripts/fsmt/fsmt-make-tiny-model.py/0
{ "file_path": "transformers/scripts/fsmt/fsmt-make-tiny-model.py", "repo_id": "transformers", "token_count": 704 }
60
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Benchmarking the library on inference and training in PyTorch. """ import timeit from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_auto import MODEL_MAPPING, MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_py3nvml_available, is_torch_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_torch_available(): import torch from .benchmark_args import PyTorchBenchmarkArguments if is_py3nvml_available(): import py3nvml.py3nvml as nvml logger = logging.get_logger(__name__) class PyTorchBenchmark(Benchmark): args: PyTorchBenchmarkArguments configs: PretrainedConfig framework: str = "PyTorch" @property def framework_version(self): return torch.__version__ def _inference_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float: _inference = self._prepare_inference_func(model_name, batch_size, sequence_length) return self._measure_speed(_inference) def _inference_memory( self, model_name: str, batch_size: int, sequence_length: int ) -> [Memory, Optional[MemorySummary]]: _inference = self._prepare_inference_func(model_name, batch_size, sequence_length) return self._measure_memory(_inference) def _train_speed(self, model_name: str, batch_size: int, sequence_length: int) -> float: _train = self._prepare_train_func(model_name, batch_size, sequence_length) return self._measure_speed(_train) def _train_memory( self, model_name: str, batch_size: int, sequence_length: int ) -> [Memory, Optional[MemorySummary]]: _train = self._prepare_train_func(model_name, batch_size, sequence_length) return self._measure_memory(_train) def _prepare_inference_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]: config = self.config_dict[model_name] if self.args.torchscript: config.torchscript = True has_model_class_in_config = ( hasattr(config, "architectures") and isinstance(config.architectures, list) and len(config.architectures) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: model_class = config.architectures[0] transformers_module = __import__("transformers", fromlist=[model_class]) model_cls = getattr(transformers_module, model_class) model = model_cls(config) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: model = MODEL_MAPPING[config.__class__](config) model.eval() model.to(self.args.device) # encoder-decoder has vocab size saved differently vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size input_ids = torch.randint(vocab_size, (batch_size, sequence_length), dtype=torch.long, device=self.args.device) if self.args.fp16: logger.info("Running training in Mixed Precision...") if not self.args.is_gpu: raise ValueError("Mixed precision is possible only for GPU.") # amp seems to have memory leaks so that memory usage # is measured using .half() for now https://github.com/NVIDIA/apex/issues/439 model.half() if self.args.torchscript: with torch.no_grad(): inference_model = torch.jit.trace(model, input_ids) else: inference_model = model def encoder_decoder_forward(): with torch.no_grad(): outputs = inference_model(input_ids, decoder_input_ids=input_ids) return outputs def encoder_forward(): with torch.no_grad(): outputs = inference_model(input_ids) return outputs _forward = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _forward def _prepare_train_func(self, model_name: str, batch_size: int, sequence_length: int) -> Callable[[], None]: config = self.config_dict[model_name] has_model_class_in_config = ( hasattr(config, "architectures") and isinstance(config.architectures, list) and len(config.architectures) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: model_class = config.architectures[0] transformers_module = __import__("transformers", fromlist=[model_class]) model_cls = getattr(transformers_module, model_class) model = model_cls(config) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" " set `--only_pretrain_model` or `args.only_pretrain_model=True`." ) else: model = MODEL_WITH_LM_HEAD_MAPPING[config.__class__](config) if self.args.torchscript: raise NotImplementedError("Training for torchscript is currently not implemented") else: train_model = model model.train() model.to(self.args.device) # encoder-decoder has vocab size saved differently vocab_size = config.vocab_size if hasattr(config, "vocab_size") else config.encoder.vocab_size input_ids = torch.randint(vocab_size, (batch_size, sequence_length), dtype=torch.long, device=self.args.device) if self.args.fp16: logger.info("Running training in Mixed Precision...") if not self.args.is_gpu: raise ValueError("Mixed precision is possible only for GPU.") # amp seems to have memory leaks so that memory usage # is measured using .half() for now https://github.com/NVIDIA/apex/issues/439 model.half() def compute_loss_and_backprob_encoder(): loss = train_model(input_ids, labels=input_ids)[0] loss.backward() return loss def compute_loss_and_backprob_encoder_decoder(): loss = train_model(input_ids, decoder_input_ids=input_ids, labels=input_ids)[0] loss.backward() return loss _train = ( compute_loss_and_backprob_encoder_decoder if config.is_encoder_decoder else compute_loss_and_backprob_encoder ) return _train def _measure_speed(self, func) -> float: try: if self.args.is_tpu or self.args.torchscript: # run additional 10 times to stabilize compilation for tpu and torchscript logger.info("Do inference on TPU or torchscript. Running model 5 times to stabilize compilation") timeit.repeat( func, repeat=1, number=5, ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average runtimes = timeit.repeat( func, repeat=self.args.repeat, number=10, ) if self.args.is_tpu and self.args.torch_xla_tpu_print_metrics: import torch_xla.debug.metrics as met self.print_fn(met.metrics_report()) return min(runtimes) / 10.0 except RuntimeError as e: self.print_fn(f"Doesn't fit on GPU. {e}") return "N/A" def _measure_memory(self, func: Callable[[], None]) -> [Memory, MemorySummary]: try: if self.args.trace_memory_line_by_line: trace = start_memory_tracing("transformers") if self.args.is_tpu: # tpu raise NotImplementedError( "Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking with" " `--no-memory` or `args.memory=False`" ) elif self.args.is_gpu: if not is_py3nvml_available(): logger.warning( "py3nvml not installed, we won't log GPU memory usage. " "Install py3nvml (pip install py3nvml) to log information about GPU." ) memory = "N/A" else: logger.info( "Measuring total GPU usage on GPU device. Make sure to not have additional processes running" " on the same GPU." ) # init nvml nvml.nvmlInit() func() handle = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx) meminfo = nvml.nvmlDeviceGetMemoryInfo(handle) max_bytes_in_use = meminfo.used memory = Memory(max_bytes_in_use) # shutdown nvml nvml.nvmlShutdown() else: # cpu memory_bytes = measure_peak_memory_cpu(func) memory = Memory(memory_bytes) if isinstance(memory_bytes, int) else memory_bytes if self.args.trace_memory_line_by_line: summary = stop_memory_tracing(trace) else: summary = None return memory, summary except RuntimeError as e: self.print_fn(f"Doesn't fit on GPU. {e}") return "N/A", None
transformers/src/transformers/benchmark/benchmark.py/0
{ "file_path": "transformers/src/transformers/benchmark/benchmark.py", "repo_id": "transformers", "token_count": 4892 }
61
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run _serve_dependencies_installed = True except (ImportError, AttributeError): BaseModel = object def Body(*x, **y): pass _serve_dependencies_installed = False logger = logging.get_logger("transformers-cli/serving") def serve_command_factory(args: Namespace): """ Factory function used to instantiate serving server from provided command line arguments. Returns: ServeCommand """ nlp = pipeline( task=args.task, model=args.model if args.model else None, config=args.config, tokenizer=args.tokenizer, device=args.device, ) return ServeCommand(nlp, args.host, args.port, args.workers) class ServeModelInfoResult(BaseModel): """ Expose model information """ infos: dict class ServeTokenizeResult(BaseModel): """ Tokenize result model """ tokens: List[str] tokens_ids: Optional[List[int]] class ServeDeTokenizeResult(BaseModel): """ DeTokenize result model """ text: str class ServeForwardResult(BaseModel): """ Forward result model """ output: Any class ServeCommand(BaseTransformersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): """ Register this command to argparse so it's available for the transformer-cli Args: parser: Root parser to register command-specific arguments """ serve_parser = parser.add_parser( "serve", help="CLI tool to run inference requests through REST and GraphQL endpoints." ) serve_parser.add_argument( "--task", type=str, choices=get_supported_tasks(), help="The task to run the pipeline on", ) serve_parser.add_argument("--host", type=str, default="localhost", help="Interface the server will listen on.") serve_parser.add_argument("--port", type=int, default=8888, help="Port the serving will listen to.") serve_parser.add_argument("--workers", type=int, default=1, help="Number of http workers") serve_parser.add_argument("--model", type=str, help="Model's name or path to stored model.") serve_parser.add_argument("--config", type=str, help="Model's config name or path to stored model.") serve_parser.add_argument("--tokenizer", type=str, help="Tokenizer name to use.") serve_parser.add_argument( "--device", type=int, default=-1, help="Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)", ) serve_parser.set_defaults(func=serve_command_factory) def __init__(self, pipeline: Pipeline, host: str, port: int, workers: int): self._pipeline = pipeline self.host = host self.port = port self.workers = workers if not _serve_dependencies_installed: raise RuntimeError( "Using serve command requires FastAPI and uvicorn. " 'Please install transformers with [serving]: pip install "transformers[serving]". ' "Or install FastAPI and uvicorn separately." ) else: logger.info(f"Serving model over {host}:{port}") self._app = FastAPI( routes=[ APIRoute( "/", self.model_info, response_model=ServeModelInfoResult, response_class=JSONResponse, methods=["GET"], ), APIRoute( "/tokenize", self.tokenize, response_model=ServeTokenizeResult, response_class=JSONResponse, methods=["POST"], ), APIRoute( "/detokenize", self.detokenize, response_model=ServeDeTokenizeResult, response_class=JSONResponse, methods=["POST"], ), APIRoute( "/forward", self.forward, response_model=ServeForwardResult, response_class=JSONResponse, methods=["POST"], ), ], timeout=600, ) def run(self): run(self._app, host=self.host, port=self.port, workers=self.workers) def model_info(self): return ServeModelInfoResult(infos=vars(self._pipeline.model.config)) def tokenize(self, text_input: str = Body(None, embed=True), return_ids: bool = Body(False, embed=True)): """ Tokenize the provided input and eventually returns corresponding tokens id: - **text_input**: String to tokenize - **return_ids**: Boolean flags indicating if the tokens have to be converted to their integer mapping. """ try: tokens_txt = self._pipeline.tokenizer.tokenize(text_input) if return_ids: tokens_ids = self._pipeline.tokenizer.convert_tokens_to_ids(tokens_txt) return ServeTokenizeResult(tokens=tokens_txt, tokens_ids=tokens_ids) else: return ServeTokenizeResult(tokens=tokens_txt) except Exception as e: raise HTTPException(status_code=500, detail={"model": "", "error": str(e)}) def detokenize( self, tokens_ids: List[int] = Body(None, embed=True), skip_special_tokens: bool = Body(False, embed=True), cleanup_tokenization_spaces: bool = Body(True, embed=True), ): """ Detokenize the provided tokens ids to readable text: - **tokens_ids**: List of tokens ids - **skip_special_tokens**: Flag indicating to not try to decode special tokens - **cleanup_tokenization_spaces**: Flag indicating to remove all leading/trailing spaces and intermediate ones. """ try: decoded_str = self._pipeline.tokenizer.decode(tokens_ids, skip_special_tokens, cleanup_tokenization_spaces) return ServeDeTokenizeResult(model="", text=decoded_str) except Exception as e: raise HTTPException(status_code=500, detail={"model": "", "error": str(e)}) async def forward(self, inputs=Body(None, embed=True)): """ **inputs**: **attention_mask**: **tokens_type_ids**: """ # Check we don't have empty string if len(inputs) == 0: return ServeForwardResult(output=[], attention=[]) try: # Forward through the model output = self._pipeline(inputs) return ServeForwardResult(output=output) except Exception as e: raise HTTPException(500, {"error": str(e)})
transformers/src/transformers/commands/serving.py/0
{ "file_path": "transformers/src/transformers/commands/serving.py", "repo_id": "transformers", "token_count": 3477 }
62
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import f1_score, matthews_corrcoef DEPRECATION_WARNING = ( "This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" ) def simple_accuracy(preds, labels): warnings.warn(DEPRECATION_WARNING, FutureWarning) requires_backends(simple_accuracy, "sklearn") return (preds == labels).mean() def acc_and_f1(preds, labels): warnings.warn(DEPRECATION_WARNING, FutureWarning) requires_backends(acc_and_f1, "sklearn") acc = simple_accuracy(preds, labels) f1 = f1_score(y_true=labels, y_pred=preds) return { "acc": acc, "f1": f1, "acc_and_f1": (acc + f1) / 2, } def pearson_and_spearman(preds, labels): warnings.warn(DEPRECATION_WARNING, FutureWarning) requires_backends(pearson_and_spearman, "sklearn") pearson_corr = pearsonr(preds, labels)[0] spearman_corr = spearmanr(preds, labels)[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def glue_compute_metrics(task_name, preds, labels): warnings.warn(DEPRECATION_WARNING, FutureWarning) requires_backends(glue_compute_metrics, "sklearn") assert len(preds) == len(labels), f"Predictions and labels have mismatched lengths {len(preds)} and {len(labels)}" if task_name == "cola": return {"mcc": matthews_corrcoef(labels, preds)} elif task_name == "sst-2": return {"acc": simple_accuracy(preds, labels)} elif task_name == "mrpc": return acc_and_f1(preds, labels) elif task_name == "sts-b": return pearson_and_spearman(preds, labels) elif task_name == "qqp": return acc_and_f1(preds, labels) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(preds, labels)} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(preds, labels)} elif task_name == "qnli": return {"acc": simple_accuracy(preds, labels)} elif task_name == "rte": return {"acc": simple_accuracy(preds, labels)} elif task_name == "wnli": return {"acc": simple_accuracy(preds, labels)} elif task_name == "hans": return {"acc": simple_accuracy(preds, labels)} else: raise KeyError(task_name) def xnli_compute_metrics(task_name, preds, labels): warnings.warn(DEPRECATION_WARNING, FutureWarning) requires_backends(xnli_compute_metrics, "sklearn") if len(preds) != len(labels): raise ValueError(f"Predictions and labels have mismatched lengths {len(preds)} and {len(labels)}") if task_name == "xnli": return {"acc": simple_accuracy(preds, labels)} else: raise KeyError(task_name)
transformers/src/transformers/data/metrics/__init__.py/0
{ "file_path": "transformers/src/transformers/data/metrics/__init__.py", "repo_id": "transformers", "token_count": 1413 }
63
from abc import ABC, abstractmethod from typing import List, Optional class Constraint(ABC): r"""Abstract base class for all constraints that can be applied during generation. It must define how the constraint can be satisfied. All classes that inherit Constraint must follow the requirement that ```py completed = False while not completed: _, completed = constraint.update(constraint.advance()) ``` will always terminate (halt). """ def __init__(self): # test for the above condition self.test() def test(self): """ Tests whether this constraint has been properly defined. """ counter = 0 completed = False while not completed: if counter == 1: self.reset() advance = self.advance() if not self.does_advance(advance): raise Exception( "Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true." ) stepped, completed, reset = self.update(advance) counter += 1 if counter > 10000: raise Exception("update() does not fulfill the constraint.") if self.remaining() != 0: raise Exception("Custom Constraint is not defined correctly.") @abstractmethod def advance(self): """ When called, returns the token that would take this constraint one step closer to being fulfilled. Return: token_ids(`torch.tensor`): Must be a tensor of a list of indexable tokens, not some integer. """ raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def does_advance(self, token_id: int): """ Reads in a token and returns whether it creates progress. """ raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def update(self, token_id: int): """ Reads in a token and returns booleans that indicate the progress made by it. This function will update the state of this object unlikes `does_advance(self, token_id: int)`. This isn't to test whether a certain token will advance the progress; it's to update its state as if it has been generated. This becomes important if token_id != desired token (refer to else statement in PhrasalConstraint) Args: token_id(`int`): The id of a newly generated token in the beam search. Return: stepped(`bool`): Whether this constraint has become one step closer to being fulfuilled. completed(`bool`): Whether this constraint has been completely fulfilled by this token being generated. reset (`bool`): Whether this constraint has reset its progress by this token being generated. """ raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def reset(self): """ Resets the state of this constraint to its initialization. We would call this in cases where the fulfillment of a constraint is abrupted by an unwanted token. """ raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def remaining(self): """ Returns the number of remaining steps of `advance()` in order to complete this constraint. """ raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def copy(self, stateful=False): """ Creates a new instance of this constraint. Args: stateful(`bool`): Whether to not only copy the constraint for new instance, but also its state. Return: constraint(`Constraint`): The same constraint as the one being called from. """ raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class PhrasalConstraint(Constraint): r""" [`Constraint`] enforcing that an ordered sequence of tokens is included in the output. Args: token_ids (`List[int]`): The id of the token that must be generated by the output. """ def __init__(self, token_ids: List[int]): super(Constraint, self).__init__() if not isinstance(token_ids, list) or len(token_ids) == 0: raise ValueError(f"`token_ids` has to be a non-empty list, but is {token_ids}.") if any((not isinstance(token_id, int) or token_id < 0) for token_id in token_ids): raise ValueError(f"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.") self.token_ids = token_ids self.seqlen = len(self.token_ids) self.fulfilled_idx = -1 # the index of the currently fulfilled step self.completed = False def advance(self): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def does_advance(self, token_id: int): if not isinstance(token_id, int): raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(token_id)}") if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def update(self, token_id: int): if not isinstance(token_id, int): raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(token_id)}") stepped = False completed = False reset = False if self.does_advance(token_id): self.fulfilled_idx += 1 stepped = True if self.fulfilled_idx == (self.seqlen - 1): completed = True self.completed = completed else: # failed to make progress. reset = True self.reset() return stepped, completed, reset def reset(self): self.completed = False self.fulfilled_idx = 0 def remaining(self): return self.seqlen - (self.fulfilled_idx + 1) def copy(self, stateful=False): new_constraint = PhrasalConstraint(self.token_ids) if stateful: new_constraint.seq_len = self.seqlen new_constraint.fulfilled_idx = self.fulfilled_idx new_constraint.completed = self.completed return new_constraint class DisjunctiveTrie: def __init__(self, nested_token_ids: List[List[int]], no_subsets=True): r""" A helper class that builds a trie with the words represented in `nested_token_ids`. """ self.max_height = max([len(one) for one in nested_token_ids]) root = {} for token_ids in nested_token_ids: level = root for tidx, token_id in enumerate(token_ids): if token_id not in level: level[token_id] = {} level = level[token_id] if no_subsets and self.has_subsets(root, nested_token_ids): raise ValueError( "Each list in `nested_token_ids` can't be a complete subset of another list, but is" f" {nested_token_ids}." ) self.trie = root def next_tokens(self, current_seq): """ The next possible tokens that will progress the trie, given the current sequence of tokens in `current_seq`. """ start = self.trie for current_token in current_seq: start = start[current_token] next_tokens = list(start.keys()) return next_tokens def reached_leaf(self, current_seq): next_tokens = self.next_tokens(current_seq) return len(next_tokens) == 0 def count_leaves(self, root): next_nodes = list(root.values()) if len(next_nodes) == 0: return 1 else: return sum([self.count_leaves(nn) for nn in next_nodes]) def has_subsets(self, trie, nested_token_ids): """ Returns whether # of leaves == # of words. Otherwise some word is a subset of another. """ leaf_count = self.count_leaves(trie) return len(nested_token_ids) != leaf_count class DisjunctiveConstraint(Constraint): r""" A special [`Constraint`] that is fulfilled by fulfilling just one of several constraints. Args: nested_token_ids (`List[List[int]]`): A list of words, where each word is a list of ids. This constraint is fulfilled by generating just one from the list of words. """ def __init__(self, nested_token_ids: List[List[int]]): super(Constraint, self).__init__() if not isinstance(nested_token_ids, list) or len(nested_token_ids) == 0: raise ValueError(f"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.") if any(not isinstance(token_ids, list) for token_ids in nested_token_ids): raise ValueError(f"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.") if any( any((not isinstance(token_id, int) or token_id < 0) for token_id in token_ids) for token_ids in nested_token_ids ): raise ValueError( f"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) self.trie = DisjunctiveTrie(nested_token_ids) self.token_ids = nested_token_ids self.seqlen = self.trie.max_height self.current_seq = [] self.completed = False def advance(self): token_list = self.trie.next_tokens(self.current_seq) if len(token_list) == 0: return None else: return token_list def does_advance(self, token_id: int): if not isinstance(token_id, int): raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(token_id)}") next_tokens = self.trie.next_tokens(self.current_seq) return token_id in next_tokens def update(self, token_id: int): if not isinstance(token_id, int): raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(token_id)}") stepped = False completed = False reset = False if self.does_advance(token_id): self.current_seq.append(token_id) stepped = True else: reset = True self.reset() completed = self.trie.reached_leaf(self.current_seq) self.completed = completed return stepped, completed, reset def reset(self): self.completed = False self.current_seq = [] def remaining(self): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq) def copy(self, stateful=False): new_constraint = DisjunctiveConstraint(self.token_ids) if stateful: new_constraint.seq_len = self.seqlen new_constraint.current_seq = self.current_seq new_constraint.completed = self.completed return new_constraint class ConstraintListState: r""" A class for beam scorers to track its progress through a list of constraints. Args: constraints (`List[Constraint]`): A list of [`Constraint`] objects that must be fulfilled by the beam scorer. """ def __init__(self, constraints: List[Constraint]): self.constraints = constraints # max # of steps required to fulfill a given constraint self.max_seqlen = max([c.seqlen for c in constraints]) self.n_constraints = len(constraints) self.completed = False self.init_state() def init_state(self): self.complete_constraints = [] self.inprogress_constraint = None self.pending_constraints = [constraint.copy(stateful=False) for constraint in self.constraints] def get_bank(self): add = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints) * self.max_seqlen) + add def advance(self): """The list of tokens to generate such that we can make progress. By "list" we don't mean the list of token that will fully fulfill a constraint. Given constraints `c_i = {t_ij | j == # of tokens}`, If we're not in the middle of progressing through a specific constraint `c_i`, we return: `[t_k1 for k in indices of unfulfilled constraints]` If we are in the middle of a constraint, then we return: `[t_ij]`, where `i` is the index of the inprogress constraint, `j` is the next step for the constraint. Though we don't care which constraint is fulfilled first, if we are in the progress of fulfilling a constraint, that's the only one we'll return. """ token_list = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" advance = constraint.advance() if isinstance(advance, int): token_list.append(advance) elif isinstance(advance, list): token_list.extend(advance) else: advance = self.inprogress_constraint.advance() if isinstance(advance, int): token_list.append(advance) elif isinstance(advance, list): token_list.extend(advance) if len(token_list) == 0: return None else: return token_list def reset(self, token_ids: Optional[List[int]]): """ token_ids: the tokens generated thus far to reset the state of the progress through constraints. """ self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint complete, stepped = self.add(token) # the entire list of constraints are fulfilled if self.completed: break def add(self, token_id: int): if not isinstance(token_id, int): raise ValueError(f"`token_id` should be an `int`, but is `{token_id}`.") complete, stepped = False, False if self.completed: complete = True stepped = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state stepped, complete, reset = self.inprogress_constraint.update(token_id) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=False)) self.inprogress_constraint = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint) self.inprogress_constraint = None if len(self.pending_constraints) == 0: # we're done! self.completed = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints): if pending_constraint.does_advance(token_id): stepped, complete, reset = pending_constraint.update(token_id) if not stepped: raise Exception( "`constraint.update(token_id)` is not yielding incremental progress, " "even though `constraint.does_advance(token_id)` is true." ) if complete: self.complete_constraints.append(pending_constraint) self.inprogress_constraint = None if not complete and stepped: self.inprogress_constraint = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". self.pending_constraints = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. self.completed = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def copy(self, stateful=True): new_state = ConstraintListState(self.constraints) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: new_state.complete_constraints = [ constraint.copy(stateful=True) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: new_state.inprogress_constraint = self.inprogress_constraint.copy(stateful=True) new_state.pending_constraints = [constraint.copy() for constraint in self.pending_constraints] return new_state
transformers/src/transformers/generation/beam_constraints.py/0
{ "file_path": "transformers/src/transformers/generation/beam_constraints.py", "repo_id": "transformers", "token_count": 8310 }
64
# coding=utf-8 # Copyright 2023-present the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .integrations import ( is_optuna_available, is_ray_tune_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging logger = logging.get_logger(__name__) class HyperParamSearchBackendBase: name: str pip_package: str = None @staticmethod def is_available(): raise NotImplementedError def run(self, trainer, n_trials: int, direction: str, **kwargs): raise NotImplementedError def default_hp_space(self, trial): raise NotImplementedError def ensure_available(self): if not self.is_available(): raise RuntimeError( f"You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}." ) @classmethod def pip_install(cls): return f"`pip install {cls.pip_package or cls.name}`" class OptunaBackend(HyperParamSearchBackendBase): name = "optuna" @staticmethod def is_available(): return is_optuna_available() def run(self, trainer, n_trials: int, direction: str, **kwargs): return run_hp_search_optuna(trainer, n_trials, direction, **kwargs) def default_hp_space(self, trial): return default_hp_space_optuna(trial) class RayTuneBackend(HyperParamSearchBackendBase): name = "ray" pip_package = "'ray[tune]'" @staticmethod def is_available(): return is_ray_tune_available() def run(self, trainer, n_trials: int, direction: str, **kwargs): return run_hp_search_ray(trainer, n_trials, direction, **kwargs) def default_hp_space(self, trial): return default_hp_space_ray(trial) class SigOptBackend(HyperParamSearchBackendBase): name = "sigopt" @staticmethod def is_available(): return is_sigopt_available() def run(self, trainer, n_trials: int, direction: str, **kwargs): return run_hp_search_sigopt(trainer, n_trials, direction, **kwargs) def default_hp_space(self, trial): return default_hp_space_sigopt(trial) class WandbBackend(HyperParamSearchBackendBase): name = "wandb" @staticmethod def is_available(): return is_wandb_available() def run(self, trainer, n_trials: int, direction: str, **kwargs): return run_hp_search_wandb(trainer, n_trials, direction, **kwargs) def default_hp_space(self, trial): return default_hp_space_wandb(trial) ALL_HYPERPARAMETER_SEARCH_BACKENDS = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def default_hp_search_backend() -> str: available_backends = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(available_backends) > 0: name = available_backends[0].name if len(available_backends) > 1: logger.info( f"{len(available_backends)} hyperparameter search backends available. Using {name} as the default." ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f" - To install {backend.name} run {backend.pip_install()}" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
transformers/src/transformers/hyperparameter_search.py/0
{ "file_path": "transformers/src/transformers/hyperparameter_search.py", "repo_id": "transformers", "token_count": 1646 }
65
#include <torch/extension.h> #include <ATen/ATen.h> #include <vector> #define min(a, b) ((a)<(b)?(a):(b)) #define max(a, b) ((a)>(b)?(a):(b)) std::vector<at::Tensor> index_max_kernel( at::Tensor index_vals, at::Tensor indices, int A_num_block, int B_num_block ); at::Tensor mm_to_sparse_kernel( at::Tensor dense_A, at::Tensor dense_B, at::Tensor indices ); at::Tensor sparse_dense_mm_kernel( at::Tensor sparse_A, at::Tensor indices, at::Tensor dense_B, int A_num_block ); at::Tensor reduce_sum_kernel( at::Tensor sparse_A, at::Tensor indices, int A_num_block, int B_num_block ); at::Tensor scatter_kernel( at::Tensor dense_A, at::Tensor indices, int B_num_block );
transformers/src/transformers/kernels/mra/cuda_launch.h/0
{ "file_path": "transformers/src/transformers/kernels/mra/cuda_launch.h", "repo_id": "transformers", "token_count": 312 }
66
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch - Flax general utilities.""" import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from . import is_safetensors_available, is_torch_available from .utils import logging if is_torch_available(): import torch if is_safetensors_available(): from safetensors import safe_open from safetensors.flax import load_file as safe_load_file logger = logging.get_logger(__name__) ##################### # PyTorch => Flax # ##################### def load_pytorch_checkpoint_in_flax_state_dict( flax_model, pytorch_checkpoint_path, is_sharded, allow_missing_keys=False ): """Load pytorch checkpoints in a flax model""" if not is_sharded: pt_path = os.path.abspath(pytorch_checkpoint_path) logger.info(f"Loading PyTorch weights from {pt_path}") if pt_path.endswith(".safetensors"): pt_state_dict = {} with safe_open(pt_path, framework="flax") as f: for k in f.keys(): pt_state_dict[k] = f.get_tensor(k) else: try: import torch # noqa: F401 from .pytorch_utils import is_torch_greater_or_equal_than_1_13 # noqa: F401 except (ImportError, ModuleNotFoundError): logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {} pt_state_dict = torch.load(pt_path, map_location="cpu", **weights_only_kwarg) logger.info(f"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values()):,} parameters.") flax_state_dict = convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files flax_state_dict = convert_pytorch_sharded_state_dict_to_flax(pytorch_checkpoint_path, flax_model) return flax_state_dict def rename_key_and_reshape_tensor( pt_tuple_key: Tuple[str], pt_tensor: np.ndarray, random_flax_state_dict: Dict[str, jnp.ndarray], model_prefix: str, ) -> (Tuple[str], np.ndarray): """Rename PT weight names to corresponding Flax weight names and reshape tensor if necessary""" def is_key_or_prefix_key_in_dict(key: Tuple[str]) -> bool: """Checks if `key` of `(prefix,) + key` is in random_flax_state_dict""" return len(set(random_flax_state_dict) & {key, (model_prefix,) + key}) > 0 # layer norm renamed_pt_tuple_key = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(renamed_pt_tuple_key): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean renamed_pt_tuple_key = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(pt_tuple_key): return renamed_pt_tuple_key, pt_tensor # batch norm layer var renamed_pt_tuple_key = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(pt_tuple_key): return renamed_pt_tuple_key, pt_tensor # embedding renamed_pt_tuple_key = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(renamed_pt_tuple_key): return renamed_pt_tuple_key, pt_tensor # conv layer renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(pt_tuple_key): pt_tensor = pt_tensor.transpose(2, 3, 1, 0) return renamed_pt_tuple_key, pt_tensor # linear layer renamed_pt_tuple_key = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(pt_tuple_key): pt_tensor = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight renamed_pt_tuple_key = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias renamed_pt_tuple_key = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 name = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): name = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): name = pt_tuple_key[-2] + "_v" if name is not None: renamed_pt_tuple_key = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def convert_pytorch_state_dict_to_flax(pt_state_dict, flax_model): # convert pytorch tensor to numpy from_bin = is_torch_available() and isinstance(next(iter(pt_state_dict.values())), torch.Tensor) bfloat16 = torch.bfloat16 if from_bin else "bfloat16" weight_dtypes = {k: v.dtype for k, v in pt_state_dict.items()} if from_bin: for k, v in pt_state_dict.items(): # numpy currently does not support bfloat16, need to go over float32 in this case to not lose precision if v.dtype == bfloat16: v = v.float() pt_state_dict[k] = v.numpy() model_prefix = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: flax_model_params = flax_model.params["params"] else: flax_model_params = flax_model.params random_flax_state_dict = flatten_dict(flax_model_params) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: flax_batch_stats = flatten_dict(flax_model.params["batch_stats"]) random_flax_state_dict.update(flax_batch_stats) flax_state_dict = {} load_model_with_head_into_base_model = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(".")[0] for k in pt_state_dict.keys()} ) load_base_model_into_model_with_head = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(".")[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): pt_tuple_key = tuple(pt_key.split(".")) is_bfloat_16 = weight_dtypes[pt_key] == bfloat16 # remove base model prefix if necessary has_base_model_prefix = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: pt_tuple_key = pt_tuple_key[1:] # Correctly rename weight parameters flax_key, flax_tensor = rename_key_and_reshape_tensor( pt_tuple_key, pt_tensor, random_flax_state_dict, model_prefix ) # add model prefix if necessary require_base_model_prefix = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: flax_key = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: flax_state_dict[("batch_stats",) + flax_key] = jnp.asarray(flax_tensor) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(flax_key, None) continue # also add unexpected weight so that warning is thrown flax_state_dict[("params",) + flax_key] = ( jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16) ) else: # also add unexpected weight so that warning is thrown flax_state_dict[flax_key] = ( jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16) ) return unflatten_dict(flax_state_dict) ############################ # Sharded Pytorch => Flax # ############################ def convert_pytorch_sharded_state_dict_to_flax(shard_filenames, flax_model): import torch from .pytorch_utils import is_torch_greater_or_equal_than_1_13 # Load the index flax_state_dict = {} for shard_file in shard_filenames: # load using msgpack utils weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {} pt_state_dict = torch.load(shard_file, **weights_only_kwarg) weight_dtypes = {k: v.dtype for k, v in pt_state_dict.items()} pt_state_dict = { k: v.numpy() if v.dtype != torch.bfloat16 else v.float().numpy() for k, v in pt_state_dict.items() } model_prefix = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: flax_model_params = flax_model.params["params"] random_flax_state_dict = flatten_dict(flax_model_params) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"])) else: flax_model_params = flax_model.params random_flax_state_dict = flatten_dict(flax_model_params) load_model_with_head_into_base_model = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(".")[0] for k in pt_state_dict.keys()} ) load_base_model_into_model_with_head = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(".")[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): pt_tuple_key = tuple(pt_key.split(".")) is_bfloat_16 = weight_dtypes[pt_key] == torch.bfloat16 # remove base model prefix if necessary has_base_model_prefix = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: pt_tuple_key = pt_tuple_key[1:] # Correctly rename weight parameters flax_key, flax_tensor = rename_key_and_reshape_tensor( pt_tuple_key, pt_tensor, random_flax_state_dict, model_prefix ) # add model prefix if necessary require_base_model_prefix = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: flax_key = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " f"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: flax_state_dict[("batch_stats",) + flax_key] = jnp.asarray(flax_tensor) continue if "var" in flax_key[-1]: flax_state_dict[("batch_stats",) + flax_key] = jnp.asarray(flax_tensor) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(flax_key, None) continue # also add unexpected weight so that warning is thrown flax_state_dict[("params",) + flax_key] = ( jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16) ) else: # also add unexpected weight so that warning is thrown flax_state_dict[flax_key] = ( jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16) ) return unflatten_dict(flax_state_dict) ##################### # Flax => PyTorch # ##################### def load_flax_checkpoint_in_pytorch_model(model, flax_checkpoint_path): """Load flax checkpoints in a PyTorch model""" flax_checkpoint_path = os.path.abspath(flax_checkpoint_path) logger.info(f"Loading Flax weights from {flax_checkpoint_path}") # import correct flax class flax_cls = getattr(transformers, "Flax" + model.__class__.__name__) # load flax weight dict if flax_checkpoint_path.endswith(".safetensors"): flax_state_dict = safe_load_file(flax_checkpoint_path) flax_state_dict = unflatten_dict(flax_state_dict, sep=".") else: with open(flax_checkpoint_path, "rb") as state_f: try: flax_state_dict = from_bytes(flax_cls, state_f.read()) except UnpicklingError: raise EnvironmentError(f"Unable to convert {flax_checkpoint_path} to Flax deserializable object. ") return load_flax_weights_in_pytorch_model(model, flax_state_dict) def load_flax_weights_in_pytorch_model(pt_model, flax_state): """Load flax checkpoints in a PyTorch model""" try: import torch # noqa: F401 except (ImportError, ModuleNotFoundError): logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights is_type_bf16 = flatten_dict(jax.tree_util.tree_map(lambda x: x.dtype == jnp.bfloat16, flax_state)).values() if any(is_type_bf16): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) flax_state = jax.tree_util.tree_map( lambda params: params.astype(np.float32) if params.dtype == jnp.bfloat16 else params, flax_state ) flax_state_dict = flatten_dict(flax_state) pt_model_dict = pt_model.state_dict() load_model_with_head_into_base_model = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(".")[0] for k in pt_model_dict.keys()} ) load_base_model_into_model_with_head = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(".")[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys unexpected_keys = [] missing_keys = set(pt_model_dict.keys()) for flax_key_tuple, flax_tensor in flax_state_dict.items(): has_base_model_prefix = flax_key_tuple[0] == pt_model.base_model_prefix require_base_model_prefix = ".".join((pt_model.base_model_prefix,) + flax_key_tuple) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: flax_key_tuple = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: flax_key_tuple = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(flax_key_tuple) not in pt_model_dict: # conv layer flax_key_tuple = flax_key_tuple[:-1] + ("weight",) flax_tensor = jnp.transpose(flax_tensor, (3, 2, 0, 1)) elif flax_key_tuple[-1] == "kernel" and ".".join(flax_key_tuple) not in pt_model_dict: # linear layer flax_key_tuple = flax_key_tuple[:-1] + ("weight",) flax_tensor = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: flax_key_tuple = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: flax_key_tuple = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: flax_key_tuple = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: flax_key = ".".join(flax_key_tuple[1:]) # Remove the params/batch_stats header else: flax_key = ".".join(flax_key_tuple) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. special_pt_names = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: key_components = key.split(".") name = None if key_components[-3::2] == ["parametrizations", "original0"]: name = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: name = key_components[-2] + "_v" if name is not None: key_components = key_components[:-3] + [name] key_to_check = ".".join(key_components) special_pt_names[key_to_check] = key if flax_key in special_pt_names: flax_key = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict flax_tensor = np.asarray(flax_tensor) if not isinstance(flax_tensor, np.ndarray) else flax_tensor pt_model_dict[flax_key] = torch.from_numpy(flax_tensor) # remove from missing keys missing_keys.remove(flax_key) else: # weight is not expected by PyTorch model unexpected_keys.append(flax_key) pt_model.load_state_dict(pt_model_dict) # re-transform missing_keys to list missing_keys = list(missing_keys) if len(unexpected_keys) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" f" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" f" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(f"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n") if len(missing_keys) > 0: logger.warning( f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" " use it for predictions and inference." ) else: logger.warning( f"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n" "If your task is similar to the task the model of the checkpoint was trained on, " f"you can already use {pt_model.__class__.__name__} for predictions without further training." ) return pt_model
transformers/src/transformers/modeling_flax_pytorch_utils.py/0
{ "file_path": "transformers/src/transformers/modeling_flax_pytorch_utils.py", "repo_id": "transformers", "token_count": 9864 }
67
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Auto Config class.""" import importlib import os import re import warnings from collections import OrderedDict from typing import List, Union from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...utils import CONFIG_NAME, logging logger = logging.get_logger(__name__) CONFIG_MAPPING_NAMES = OrderedDict( [ # Add configs here ("albert", "AlbertConfig"), ("align", "AlignConfig"), ("altclip", "AltCLIPConfig"), ("audio-spectrogram-transformer", "ASTConfig"), ("autoformer", "AutoformerConfig"), ("bark", "BarkConfig"), ("bart", "BartConfig"), ("beit", "BeitConfig"), ("bert", "BertConfig"), ("bert-generation", "BertGenerationConfig"), ("big_bird", "BigBirdConfig"), ("bigbird_pegasus", "BigBirdPegasusConfig"), ("biogpt", "BioGptConfig"), ("bit", "BitConfig"), ("blenderbot", "BlenderbotConfig"), ("blenderbot-small", "BlenderbotSmallConfig"), ("blip", "BlipConfig"), ("blip-2", "Blip2Config"), ("bloom", "BloomConfig"), ("bridgetower", "BridgeTowerConfig"), ("bros", "BrosConfig"), ("camembert", "CamembertConfig"), ("canine", "CanineConfig"), ("chinese_clip", "ChineseCLIPConfig"), ("chinese_clip_vision_model", "ChineseCLIPVisionConfig"), ("clap", "ClapConfig"), ("clip", "CLIPConfig"), ("clip_vision_model", "CLIPVisionConfig"), ("clipseg", "CLIPSegConfig"), ("clvp", "ClvpConfig"), ("code_llama", "LlamaConfig"), ("codegen", "CodeGenConfig"), ("conditional_detr", "ConditionalDetrConfig"), ("convbert", "ConvBertConfig"), ("convnext", "ConvNextConfig"), ("convnextv2", "ConvNextV2Config"), ("cpmant", "CpmAntConfig"), ("ctrl", "CTRLConfig"), ("cvt", "CvtConfig"), ("data2vec-audio", "Data2VecAudioConfig"), ("data2vec-text", "Data2VecTextConfig"), ("data2vec-vision", "Data2VecVisionConfig"), ("deberta", "DebertaConfig"), ("deberta-v2", "DebertaV2Config"), ("decision_transformer", "DecisionTransformerConfig"), ("deformable_detr", "DeformableDetrConfig"), ("deit", "DeiTConfig"), ("depth_anything", "DepthAnythingConfig"), ("deta", "DetaConfig"), ("detr", "DetrConfig"), ("dinat", "DinatConfig"), ("dinov2", "Dinov2Config"), ("distilbert", "DistilBertConfig"), ("donut-swin", "DonutSwinConfig"), ("dpr", "DPRConfig"), ("dpt", "DPTConfig"), ("efficientformer", "EfficientFormerConfig"), ("efficientnet", "EfficientNetConfig"), ("electra", "ElectraConfig"), ("encodec", "EncodecConfig"), ("encoder-decoder", "EncoderDecoderConfig"), ("ernie", "ErnieConfig"), ("ernie_m", "ErnieMConfig"), ("esm", "EsmConfig"), ("falcon", "FalconConfig"), ("fastspeech2_conformer", "FastSpeech2ConformerConfig"), ("flaubert", "FlaubertConfig"), ("flava", "FlavaConfig"), ("fnet", "FNetConfig"), ("focalnet", "FocalNetConfig"), ("fsmt", "FSMTConfig"), ("funnel", "FunnelConfig"), ("fuyu", "FuyuConfig"), ("gemma", "GemmaConfig"), ("git", "GitConfig"), ("glpn", "GLPNConfig"), ("gpt-sw3", "GPT2Config"), ("gpt2", "GPT2Config"), ("gpt_bigcode", "GPTBigCodeConfig"), ("gpt_neo", "GPTNeoConfig"), ("gpt_neox", "GPTNeoXConfig"), ("gpt_neox_japanese", "GPTNeoXJapaneseConfig"), ("gptj", "GPTJConfig"), ("gptsan-japanese", "GPTSanJapaneseConfig"), ("graphormer", "GraphormerConfig"), ("groupvit", "GroupViTConfig"), ("hubert", "HubertConfig"), ("ibert", "IBertConfig"), ("idefics", "IdeficsConfig"), ("imagegpt", "ImageGPTConfig"), ("informer", "InformerConfig"), ("instructblip", "InstructBlipConfig"), ("jukebox", "JukeboxConfig"), ("kosmos-2", "Kosmos2Config"), ("layoutlm", "LayoutLMConfig"), ("layoutlmv2", "LayoutLMv2Config"), ("layoutlmv3", "LayoutLMv3Config"), ("led", "LEDConfig"), ("levit", "LevitConfig"), ("lilt", "LiltConfig"), ("llama", "LlamaConfig"), ("llava", "LlavaConfig"), ("longformer", "LongformerConfig"), ("longt5", "LongT5Config"), ("luke", "LukeConfig"), ("lxmert", "LxmertConfig"), ("m2m_100", "M2M100Config"), ("marian", "MarianConfig"), ("markuplm", "MarkupLMConfig"), ("mask2former", "Mask2FormerConfig"), ("maskformer", "MaskFormerConfig"), ("maskformer-swin", "MaskFormerSwinConfig"), ("mbart", "MBartConfig"), ("mctct", "MCTCTConfig"), ("mega", "MegaConfig"), ("megatron-bert", "MegatronBertConfig"), ("mgp-str", "MgpstrConfig"), ("mistral", "MistralConfig"), ("mixtral", "MixtralConfig"), ("mobilebert", "MobileBertConfig"), ("mobilenet_v1", "MobileNetV1Config"), ("mobilenet_v2", "MobileNetV2Config"), ("mobilevit", "MobileViTConfig"), ("mobilevitv2", "MobileViTV2Config"), ("mpnet", "MPNetConfig"), ("mpt", "MptConfig"), ("mra", "MraConfig"), ("mt5", "MT5Config"), ("musicgen", "MusicgenConfig"), ("mvp", "MvpConfig"), ("nat", "NatConfig"), ("nezha", "NezhaConfig"), ("nllb-moe", "NllbMoeConfig"), ("nougat", "VisionEncoderDecoderConfig"), ("nystromformer", "NystromformerConfig"), ("oneformer", "OneFormerConfig"), ("open-llama", "OpenLlamaConfig"), ("openai-gpt", "OpenAIGPTConfig"), ("opt", "OPTConfig"), ("owlv2", "Owlv2Config"), ("owlvit", "OwlViTConfig"), ("patchtsmixer", "PatchTSMixerConfig"), ("patchtst", "PatchTSTConfig"), ("pegasus", "PegasusConfig"), ("pegasus_x", "PegasusXConfig"), ("perceiver", "PerceiverConfig"), ("persimmon", "PersimmonConfig"), ("phi", "PhiConfig"), ("pix2struct", "Pix2StructConfig"), ("plbart", "PLBartConfig"), ("poolformer", "PoolFormerConfig"), ("pop2piano", "Pop2PianoConfig"), ("prophetnet", "ProphetNetConfig"), ("pvt", "PvtConfig"), ("qdqbert", "QDQBertConfig"), ("qwen2", "Qwen2Config"), ("rag", "RagConfig"), ("realm", "RealmConfig"), ("reformer", "ReformerConfig"), ("regnet", "RegNetConfig"), ("rembert", "RemBertConfig"), ("resnet", "ResNetConfig"), ("retribert", "RetriBertConfig"), ("roberta", "RobertaConfig"), ("roberta-prelayernorm", "RobertaPreLayerNormConfig"), ("roc_bert", "RoCBertConfig"), ("roformer", "RoFormerConfig"), ("rwkv", "RwkvConfig"), ("sam", "SamConfig"), ("seamless_m4t", "SeamlessM4TConfig"), ("seamless_m4t_v2", "SeamlessM4Tv2Config"), ("segformer", "SegformerConfig"), ("sew", "SEWConfig"), ("sew-d", "SEWDConfig"), ("siglip", "SiglipConfig"), ("siglip_vision_model", "SiglipVisionConfig"), ("speech-encoder-decoder", "SpeechEncoderDecoderConfig"), ("speech_to_text", "Speech2TextConfig"), ("speech_to_text_2", "Speech2Text2Config"), ("speecht5", "SpeechT5Config"), ("splinter", "SplinterConfig"), ("squeezebert", "SqueezeBertConfig"), ("stablelm", "StableLmConfig"), ("swiftformer", "SwiftFormerConfig"), ("swin", "SwinConfig"), ("swin2sr", "Swin2SRConfig"), ("swinv2", "Swinv2Config"), ("switch_transformers", "SwitchTransformersConfig"), ("t5", "T5Config"), ("table-transformer", "TableTransformerConfig"), ("tapas", "TapasConfig"), ("time_series_transformer", "TimeSeriesTransformerConfig"), ("timesformer", "TimesformerConfig"), ("timm_backbone", "TimmBackboneConfig"), ("trajectory_transformer", "TrajectoryTransformerConfig"), ("transfo-xl", "TransfoXLConfig"), ("trocr", "TrOCRConfig"), ("tvlt", "TvltConfig"), ("tvp", "TvpConfig"), ("umt5", "UMT5Config"), ("unispeech", "UniSpeechConfig"), ("unispeech-sat", "UniSpeechSatConfig"), ("univnet", "UnivNetConfig"), ("upernet", "UperNetConfig"), ("van", "VanConfig"), ("videomae", "VideoMAEConfig"), ("vilt", "ViltConfig"), ("vipllava", "VipLlavaConfig"), ("vision-encoder-decoder", "VisionEncoderDecoderConfig"), ("vision-text-dual-encoder", "VisionTextDualEncoderConfig"), ("visual_bert", "VisualBertConfig"), ("vit", "ViTConfig"), ("vit_hybrid", "ViTHybridConfig"), ("vit_mae", "ViTMAEConfig"), ("vit_msn", "ViTMSNConfig"), ("vitdet", "VitDetConfig"), ("vitmatte", "VitMatteConfig"), ("vits", "VitsConfig"), ("vivit", "VivitConfig"), ("wav2vec2", "Wav2Vec2Config"), ("wav2vec2-bert", "Wav2Vec2BertConfig"), ("wav2vec2-conformer", "Wav2Vec2ConformerConfig"), ("wavlm", "WavLMConfig"), ("whisper", "WhisperConfig"), ("xclip", "XCLIPConfig"), ("xglm", "XGLMConfig"), ("xlm", "XLMConfig"), ("xlm-prophetnet", "XLMProphetNetConfig"), ("xlm-roberta", "XLMRobertaConfig"), ("xlm-roberta-xl", "XLMRobertaXLConfig"), ("xlnet", "XLNetConfig"), ("xmod", "XmodConfig"), ("yolos", "YolosConfig"), ("yoso", "YosoConfig"), ] ) CONFIG_ARCHIVE_MAP_MAPPING_NAMES = OrderedDict( [ # Add archive maps here) ("albert", "ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("align", "ALIGN_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("altclip", "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("audio-spectrogram-transformer", "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("autoformer", "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("bark", "BARK_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("bart", "BART_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("beit", "BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("bert", "BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("big_bird", "BIG_BIRD_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("bigbird_pegasus", "BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("biogpt", "BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("bit", "BIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("blenderbot", "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("blenderbot-small", "BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("blip", "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("blip-2", "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("bloom", "BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("bridgetower", "BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("bros", "BROS_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("camembert", "CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("canine", "CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("chinese_clip", "CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("clap", "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST"), ("clip", "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("clipseg", "CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("clvp", "CLVP_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("codegen", "CODEGEN_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("conditional_detr", "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("convbert", "CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("convnext", "CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("convnextv2", "CONVNEXTV2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("cpmant", "CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("ctrl", "CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("cvt", "CVT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("data2vec-audio", "DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("data2vec-text", "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("data2vec-vision", "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("deberta", "DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("deberta-v2", "DEBERTA_V2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("deformable_detr", "DEFORMABLE_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("deit", "DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("depth_anything", "DEPTH_ANYTHING_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("deta", "DETA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("detr", "DETR_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("dinat", "DINAT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("dinov2", "DINOV2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("distilbert", "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("donut-swin", "DONUT_SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("dpr", "DPR_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("dpt", "DPT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("efficientformer", "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("efficientnet", "EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("electra", "ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("encodec", "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("ernie", "ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("ernie_m", "ERNIE_M_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("esm", "ESM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("falcon", "FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("fastspeech2_conformer", "FASTSPEECH2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("flaubert", "FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("flava", "FLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("fnet", "FNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("focalnet", "FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("fsmt", "FSMT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("funnel", "FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("fuyu", "FUYU_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("gemma", "GEMMA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("git", "GIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("glpn", "GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("gpt2", "GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("gpt_bigcode", "GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("gpt_neo", "GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("gpt_neox", "GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("gpt_neox_japanese", "GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("gptj", "GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("gptsan-japanese", "GPTSAN_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("graphormer", "GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("groupvit", "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("hubert", "HUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("ibert", "IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("idefics", "IDEFICS_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("imagegpt", "IMAGEGPT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("informer", "INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("instructblip", "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("jukebox", "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("kosmos-2", "KOSMOS2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("layoutlm", "LAYOUTLM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("layoutlmv2", "LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("layoutlmv3", "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("led", "LED_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("levit", "LEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("lilt", "LILT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("llama", "LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("llava", "LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("longformer", "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("longt5", "LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("luke", "LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("lxmert", "LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("m2m_100", "M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("markuplm", "MARKUPLM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mask2former", "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("maskformer", "MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mbart", "MBART_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mctct", "MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mega", "MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("megatron-bert", "MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mgp-str", "MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mistral", "MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mixtral", "MIXTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mobilenet_v1", "MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mobilenet_v2", "MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mobilevit", "MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mobilevitv2", "MOBILEVITV2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mpnet", "MPNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mpt", "MPT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mra", "MRA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("musicgen", "MUSICGEN_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("mvp", "MVP_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("nat", "NAT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("nezha", "NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("nllb-moe", "NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("nystromformer", "NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("oneformer", "ONEFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("open-llama", "OPEN_LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("openai-gpt", "OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("opt", "OPT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("owlv2", "OWLV2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("owlvit", "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("patchtsmixer", "PATCHTSMIXER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("patchtst", "PATCHTST_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("pegasus", "PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("pegasus_x", "PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("perceiver", "PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("persimmon", "PERSIMMON_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("phi", "PHI_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("pix2struct", "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("plbart", "PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("poolformer", "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("pop2piano", "POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("prophetnet", "PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("pvt", "PVT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("qdqbert", "QDQBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("qwen2", "QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("realm", "REALM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("regnet", "REGNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("rembert", "REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("resnet", "RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("retribert", "RETRIBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("roberta", "ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("roberta-prelayernorm", "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("roc_bert", "ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("roformer", "ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("rwkv", "RWKV_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("sam", "SAM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("seamless_m4t", "SEAMLESS_M4T_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("seamless_m4t_v2", "SEAMLESS_M4T_V2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("segformer", "SEGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("sew", "SEW_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("sew-d", "SEW_D_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("siglip", "SIGLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("speech_to_text", "SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("speech_to_text_2", "SPEECH_TO_TEXT_2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("speecht5", "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("splinter", "SPLINTER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("squeezebert", "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("stablelm", "STABLELM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("swiftformer", "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("swin", "SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("swin2sr", "SWIN2SR_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("swinv2", "SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("switch_transformers", "SWITCH_TRANSFORMERS_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("t5", "T5_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("table-transformer", "TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("tapas", "TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("time_series_transformer", "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("timesformer", "TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("transfo-xl", "TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("tvlt", "TVLT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("tvp", "TVP_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("unispeech", "UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("unispeech-sat", "UNISPEECH_SAT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("univnet", "UNIVNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("van", "VAN_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("videomae", "VIDEOMAE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vilt", "VILT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vipllava", "VIPLLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("visual_bert", "VISUAL_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vit", "VIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vit_hybrid", "VIT_HYBRID_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vit_mae", "VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vit_msn", "VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vitdet", "VITDET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vitmatte", "VITMATTE_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vits", "VITS_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("vivit", "VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("wav2vec2", "WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("wav2vec2-bert", "WAV2VEC2_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("wav2vec2-conformer", "WAV2VEC2_CONFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("whisper", "WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("xclip", "XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("xglm", "XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("xlm", "XLM_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("xlm-prophetnet", "XLM_PROPHETNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("xlm-roberta", "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("xlnet", "XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("xmod", "XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("yolos", "YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP"), ("yoso", "YOSO_PRETRAINED_CONFIG_ARCHIVE_MAP"), ] ) MODEL_NAMES_MAPPING = OrderedDict( [ # Add full (and cased) model names here ("albert", "ALBERT"), ("align", "ALIGN"), ("altclip", "AltCLIP"), ("audio-spectrogram-transformer", "Audio Spectrogram Transformer"), ("autoformer", "Autoformer"), ("bark", "Bark"), ("bart", "BART"), ("barthez", "BARThez"), ("bartpho", "BARTpho"), ("beit", "BEiT"), ("bert", "BERT"), ("bert-generation", "Bert Generation"), ("bert-japanese", "BertJapanese"), ("bertweet", "BERTweet"), ("big_bird", "BigBird"), ("bigbird_pegasus", "BigBird-Pegasus"), ("biogpt", "BioGpt"), ("bit", "BiT"), ("blenderbot", "Blenderbot"), ("blenderbot-small", "BlenderbotSmall"), ("blip", "BLIP"), ("blip-2", "BLIP-2"), ("bloom", "BLOOM"), ("bort", "BORT"), ("bridgetower", "BridgeTower"), ("bros", "BROS"), ("byt5", "ByT5"), ("camembert", "CamemBERT"), ("canine", "CANINE"), ("chinese_clip", "Chinese-CLIP"), ("chinese_clip_vision_model", "ChineseCLIPVisionModel"), ("clap", "CLAP"), ("clip", "CLIP"), ("clip_vision_model", "CLIPVisionModel"), ("clipseg", "CLIPSeg"), ("clvp", "CLVP"), ("code_llama", "CodeLlama"), ("codegen", "CodeGen"), ("conditional_detr", "Conditional DETR"), ("convbert", "ConvBERT"), ("convnext", "ConvNeXT"), ("convnextv2", "ConvNeXTV2"), ("cpm", "CPM"), ("cpmant", "CPM-Ant"), ("ctrl", "CTRL"), ("cvt", "CvT"), ("data2vec-audio", "Data2VecAudio"), ("data2vec-text", "Data2VecText"), ("data2vec-vision", "Data2VecVision"), ("deberta", "DeBERTa"), ("deberta-v2", "DeBERTa-v2"), ("decision_transformer", "Decision Transformer"), ("deformable_detr", "Deformable DETR"), ("deit", "DeiT"), ("deplot", "DePlot"), ("depth_anything", "Depth Anything"), ("deta", "DETA"), ("detr", "DETR"), ("dialogpt", "DialoGPT"), ("dinat", "DiNAT"), ("dinov2", "DINOv2"), ("distilbert", "DistilBERT"), ("dit", "DiT"), ("donut-swin", "DonutSwin"), ("dpr", "DPR"), ("dpt", "DPT"), ("efficientformer", "EfficientFormer"), ("efficientnet", "EfficientNet"), ("electra", "ELECTRA"), ("encodec", "EnCodec"), ("encoder-decoder", "Encoder decoder"), ("ernie", "ERNIE"), ("ernie_m", "ErnieM"), ("esm", "ESM"), ("falcon", "Falcon"), ("fastspeech2_conformer", "FastSpeech2Conformer"), ("flan-t5", "FLAN-T5"), ("flan-ul2", "FLAN-UL2"), ("flaubert", "FlauBERT"), ("flava", "FLAVA"), ("fnet", "FNet"), ("focalnet", "FocalNet"), ("fsmt", "FairSeq Machine-Translation"), ("funnel", "Funnel Transformer"), ("fuyu", "Fuyu"), ("gemma", "Gemma"), ("git", "GIT"), ("glpn", "GLPN"), ("gpt-sw3", "GPT-Sw3"), ("gpt2", "OpenAI GPT-2"), ("gpt_bigcode", "GPTBigCode"), ("gpt_neo", "GPT Neo"), ("gpt_neox", "GPT NeoX"), ("gpt_neox_japanese", "GPT NeoX Japanese"), ("gptj", "GPT-J"), ("gptsan-japanese", "GPTSAN-japanese"), ("graphormer", "Graphormer"), ("groupvit", "GroupViT"), ("herbert", "HerBERT"), ("hubert", "Hubert"), ("ibert", "I-BERT"), ("idefics", "IDEFICS"), ("imagegpt", "ImageGPT"), ("informer", "Informer"), ("instructblip", "InstructBLIP"), ("jukebox", "Jukebox"), ("kosmos-2", "KOSMOS-2"), ("layoutlm", "LayoutLM"), ("layoutlmv2", "LayoutLMv2"), ("layoutlmv3", "LayoutLMv3"), ("layoutxlm", "LayoutXLM"), ("led", "LED"), ("levit", "LeViT"), ("lilt", "LiLT"), ("llama", "LLaMA"), ("llama2", "Llama2"), ("llava", "LLaVa"), ("longformer", "Longformer"), ("longt5", "LongT5"), ("luke", "LUKE"), ("lxmert", "LXMERT"), ("m2m_100", "M2M100"), ("madlad-400", "MADLAD-400"), ("marian", "Marian"), ("markuplm", "MarkupLM"), ("mask2former", "Mask2Former"), ("maskformer", "MaskFormer"), ("maskformer-swin", "MaskFormerSwin"), ("matcha", "MatCha"), ("mbart", "mBART"), ("mbart50", "mBART-50"), ("mctct", "M-CTC-T"), ("mega", "MEGA"), ("megatron-bert", "Megatron-BERT"), ("megatron_gpt2", "Megatron-GPT2"), ("mgp-str", "MGP-STR"), ("mistral", "Mistral"), ("mixtral", "Mixtral"), ("mluke", "mLUKE"), ("mms", "MMS"), ("mobilebert", "MobileBERT"), ("mobilenet_v1", "MobileNetV1"), ("mobilenet_v2", "MobileNetV2"), ("mobilevit", "MobileViT"), ("mobilevitv2", "MobileViTV2"), ("mpnet", "MPNet"), ("mpt", "MPT"), ("mra", "MRA"), ("mt5", "MT5"), ("musicgen", "MusicGen"), ("mvp", "MVP"), ("nat", "NAT"), ("nezha", "Nezha"), ("nllb", "NLLB"), ("nllb-moe", "NLLB-MOE"), ("nougat", "Nougat"), ("nystromformer", "Nyströmformer"), ("oneformer", "OneFormer"), ("open-llama", "OpenLlama"), ("openai-gpt", "OpenAI GPT"), ("opt", "OPT"), ("owlv2", "OWLv2"), ("owlvit", "OWL-ViT"), ("patchtsmixer", "PatchTSMixer"), ("patchtst", "PatchTST"), ("pegasus", "Pegasus"), ("pegasus_x", "PEGASUS-X"), ("perceiver", "Perceiver"), ("persimmon", "Persimmon"), ("phi", "Phi"), ("phobert", "PhoBERT"), ("pix2struct", "Pix2Struct"), ("plbart", "PLBart"), ("poolformer", "PoolFormer"), ("pop2piano", "Pop2Piano"), ("prophetnet", "ProphetNet"), ("pvt", "PVT"), ("qdqbert", "QDQBert"), ("qwen2", "Qwen2"), ("rag", "RAG"), ("realm", "REALM"), ("reformer", "Reformer"), ("regnet", "RegNet"), ("rembert", "RemBERT"), ("resnet", "ResNet"), ("retribert", "RetriBERT"), ("roberta", "RoBERTa"), ("roberta-prelayernorm", "RoBERTa-PreLayerNorm"), ("roc_bert", "RoCBert"), ("roformer", "RoFormer"), ("rwkv", "RWKV"), ("sam", "SAM"), ("seamless_m4t", "SeamlessM4T"), ("seamless_m4t_v2", "SeamlessM4Tv2"), ("segformer", "SegFormer"), ("sew", "SEW"), ("sew-d", "SEW-D"), ("siglip", "SigLIP"), ("siglip_vision_model", "SiglipVisionModel"), ("speech-encoder-decoder", "Speech Encoder decoder"), ("speech_to_text", "Speech2Text"), ("speech_to_text_2", "Speech2Text2"), ("speecht5", "SpeechT5"), ("splinter", "Splinter"), ("squeezebert", "SqueezeBERT"), ("stablelm", "StableLm"), ("swiftformer", "SwiftFormer"), ("swin", "Swin Transformer"), ("swin2sr", "Swin2SR"), ("swinv2", "Swin Transformer V2"), ("switch_transformers", "SwitchTransformers"), ("t5", "T5"), ("t5v1.1", "T5v1.1"), ("table-transformer", "Table Transformer"), ("tapas", "TAPAS"), ("tapex", "TAPEX"), ("time_series_transformer", "Time Series Transformer"), ("timesformer", "TimeSformer"), ("timm_backbone", "TimmBackbone"), ("trajectory_transformer", "Trajectory Transformer"), ("transfo-xl", "Transformer-XL"), ("trocr", "TrOCR"), ("tvlt", "TVLT"), ("tvp", "TVP"), ("ul2", "UL2"), ("umt5", "UMT5"), ("unispeech", "UniSpeech"), ("unispeech-sat", "UniSpeechSat"), ("univnet", "UnivNet"), ("upernet", "UPerNet"), ("van", "VAN"), ("videomae", "VideoMAE"), ("vilt", "ViLT"), ("vipllava", "VipLlava"), ("vision-encoder-decoder", "Vision Encoder decoder"), ("vision-text-dual-encoder", "VisionTextDualEncoder"), ("visual_bert", "VisualBERT"), ("vit", "ViT"), ("vit_hybrid", "ViT Hybrid"), ("vit_mae", "ViTMAE"), ("vit_msn", "ViTMSN"), ("vitdet", "VitDet"), ("vitmatte", "ViTMatte"), ("vits", "VITS"), ("vivit", "ViViT"), ("wav2vec2", "Wav2Vec2"), ("wav2vec2-bert", "Wav2Vec2-BERT"), ("wav2vec2-conformer", "Wav2Vec2-Conformer"), ("wav2vec2_phoneme", "Wav2Vec2Phoneme"), ("wavlm", "WavLM"), ("whisper", "Whisper"), ("xclip", "X-CLIP"), ("xglm", "XGLM"), ("xlm", "XLM"), ("xlm-prophetnet", "XLM-ProphetNet"), ("xlm-roberta", "XLM-RoBERTa"), ("xlm-roberta-xl", "XLM-RoBERTa-XL"), ("xlm-v", "XLM-V"), ("xlnet", "XLNet"), ("xls_r", "XLS-R"), ("xlsr_wav2vec2", "XLSR-Wav2Vec2"), ("xmod", "X-MOD"), ("yolos", "YOLOS"), ("yoso", "YOSO"), ] ) # This is tied to the processing `-` -> `_` in `model_type_to_module_name`. For example, instead of putting # `transfo-xl` (as in `CONFIG_MAPPING_NAMES`), we should use `transfo_xl`. DEPRECATED_MODELS = [ "bort", "mctct", "mmbt", "open_llama", "retribert", "tapex", "trajectory_transformer", "transfo_xl", "van", ] SPECIAL_MODEL_TYPE_TO_MODULE_NAME = OrderedDict( [ ("openai-gpt", "openai"), ("data2vec-audio", "data2vec"), ("data2vec-text", "data2vec"), ("data2vec-vision", "data2vec"), ("donut-swin", "donut"), ("kosmos-2", "kosmos2"), ("maskformer-swin", "maskformer"), ("xclip", "x_clip"), ("clip_vision_model", "clip"), ("siglip_vision_model", "siglip"), ("chinese_clip_vision_model", "chinese_clip"), ] ) def model_type_to_module_name(key): """Converts a config key to the corresponding module.""" # Special treatment if key in SPECIAL_MODEL_TYPE_TO_MODULE_NAME: return SPECIAL_MODEL_TYPE_TO_MODULE_NAME[key] key = key.replace("-", "_") if key in DEPRECATED_MODELS: key = f"deprecated.{key}" return key def config_class_to_model_type(config): """Converts a config class name to the corresponding model type""" for key, cls in CONFIG_MAPPING_NAMES.items(): if cls == config: return key # if key not found check in extra content for key, cls in CONFIG_MAPPING._extra_content.items(): if cls.__name__ == config: return key return None class _LazyConfigMapping(OrderedDict): """ A dictionary that lazily load its values when they are requested. """ def __init__(self, mapping): self._mapping = mapping self._extra_content = {} self._modules = {} def __getitem__(self, key): if key in self._extra_content: return self._extra_content[key] if key not in self._mapping: raise KeyError(key) value = self._mapping[key] module_name = model_type_to_module_name(key) if module_name not in self._modules: self._modules[module_name] = importlib.import_module(f".{module_name}", "transformers.models") if hasattr(self._modules[module_name], value): return getattr(self._modules[module_name], value) # Some of the mappings have entries model_type -> config of another model type. In that case we try to grab the # object at the top level. transformers_module = importlib.import_module("transformers") return getattr(transformers_module, value) def keys(self): return list(self._mapping.keys()) + list(self._extra_content.keys()) def values(self): return [self[k] for k in self._mapping.keys()] + list(self._extra_content.values()) def items(self): return [(k, self[k]) for k in self._mapping.keys()] + list(self._extra_content.items()) def __iter__(self): return iter(list(self._mapping.keys()) + list(self._extra_content.keys())) def __contains__(self, item): return item in self._mapping or item in self._extra_content def register(self, key, value, exist_ok=False): """ Register a new configuration in this mapping. """ if key in self._mapping.keys() and not exist_ok: raise ValueError(f"'{key}' is already used by a Transformers config, pick another name.") self._extra_content[key] = value CONFIG_MAPPING = _LazyConfigMapping(CONFIG_MAPPING_NAMES) class _LazyLoadAllMappings(OrderedDict): """ A mapping that will load all pairs of key values at the first access (either by indexing, requestions keys, values, etc.) Args: mapping: The mapping to load. """ def __init__(self, mapping): self._mapping = mapping self._initialized = False self._data = {} def _initialize(self): if self._initialized: return warnings.warn( "ALL_PRETRAINED_CONFIG_ARCHIVE_MAP is deprecated and will be removed in v5 of Transformers. " "It does not contain all available model checkpoints, far from it. Checkout hf.co/models for that.", FutureWarning, ) for model_type, map_name in self._mapping.items(): module_name = model_type_to_module_name(model_type) module = importlib.import_module(f".{module_name}", "transformers.models") mapping = getattr(module, map_name) self._data.update(mapping) self._initialized = True def __getitem__(self, key): self._initialize() return self._data[key] def keys(self): self._initialize() return self._data.keys() def values(self): self._initialize() return self._data.values() def items(self): self._initialize() return self._data.keys() def __iter__(self): self._initialize() return iter(self._data) def __contains__(self, item): self._initialize() return item in self._data ALL_PRETRAINED_CONFIG_ARCHIVE_MAP = _LazyLoadAllMappings(CONFIG_ARCHIVE_MAP_MAPPING_NAMES) def _get_class_name(model_class: Union[str, List[str]]): if isinstance(model_class, (list, tuple)): return " or ".join([f"[`{c}`]" for c in model_class if c is not None]) return f"[`{model_class}`]" def _list_model_options(indent, config_to_class=None, use_model_types=True): if config_to_class is None and not use_model_types: raise ValueError("Using `use_model_types=False` requires a `config_to_class` dictionary.") if use_model_types: if config_to_class is None: model_type_to_name = {model_type: f"[`{config}`]" for model_type, config in CONFIG_MAPPING_NAMES.items()} else: model_type_to_name = { model_type: _get_class_name(model_class) for model_type, model_class in config_to_class.items() if model_type in MODEL_NAMES_MAPPING } lines = [ f"{indent}- **{model_type}** -- {model_type_to_name[model_type]} ({MODEL_NAMES_MAPPING[model_type]} model)" for model_type in sorted(model_type_to_name.keys()) ] else: config_to_name = { CONFIG_MAPPING_NAMES[config]: _get_class_name(clas) for config, clas in config_to_class.items() if config in CONFIG_MAPPING_NAMES } config_to_model_name = { config: MODEL_NAMES_MAPPING[model_type] for model_type, config in CONFIG_MAPPING_NAMES.items() } lines = [ f"{indent}- [`{config_name}`] configuration class:" f" {config_to_name[config_name]} ({config_to_model_name[config_name]} model)" for config_name in sorted(config_to_name.keys()) ] return "\n".join(lines) def replace_list_option_in_docstrings(config_to_class=None, use_model_types=True): def docstring_decorator(fn): docstrings = fn.__doc__ lines = docstrings.split("\n") i = 0 while i < len(lines) and re.search(r"^(\s*)List options\s*$", lines[i]) is None: i += 1 if i < len(lines): indent = re.search(r"^(\s*)List options\s*$", lines[i]).groups()[0] if use_model_types: indent = f"{indent} " lines[i] = _list_model_options(indent, config_to_class=config_to_class, use_model_types=use_model_types) docstrings = "\n".join(lines) else: raise ValueError( f"The function {fn} should have an empty 'List options' in its docstring as placeholder, current" f" docstring is:\n{docstrings}" ) fn.__doc__ = docstrings return fn return docstring_decorator class AutoConfig: r""" This is a generic configuration class that will be instantiated as one of the configuration classes of the library when created with the [`~AutoConfig.from_pretrained`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). """ def __init__(self): raise EnvironmentError( "AutoConfig is designed to be instantiated " "using the `AutoConfig.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod def for_model(cls, model_type: str, *args, **kwargs): if model_type in CONFIG_MAPPING: config_class = CONFIG_MAPPING[model_type] return config_class(*args, **kwargs) raise ValueError( f"Unrecognized model identifier: {model_type}. Should contain one of {', '.join(CONFIG_MAPPING.keys())}" ) @classmethod @replace_list_option_in_docstrings() def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): r""" Instantiate one of the configuration classes of the library from a pretrained model configuration. The configuration class to instantiate is selected based on the `model_type` property of the config object that is loaded, or when it's missing, by falling back to using pattern matching on `pretrained_model_name_or_path`: List options Args: pretrained_model_name_or_path (`str` or `os.PathLike`): Can be either: - A string, the *model id* of a pretrained model configuration hosted inside a model repo on huggingface.co. - A path to a *directory* containing a configuration file saved using the [`~PretrainedConfig.save_pretrained`] method, or the [`~PreTrainedModel.save_pretrained`] method, e.g., `./my_model_directory/`. - A path or url to a saved configuration JSON *file*, e.g., `./my_model_directory/configuration.json`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download the model weights and configuration files and override the cached versions if they exist. resume_download (`bool`, *optional*, defaults to `False`): Whether or not to delete incompletely received files. Will attempt to resume the download if such a file exists. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. return_unused_kwargs (`bool`, *optional*, defaults to `False`): If `False`, then this function returns just the final configuration object. If `True`, then this functions returns a `Tuple(config, unused_kwargs)` where *unused_kwargs* is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the part of `kwargs` which has not been used to update `config` and is otherwise ignored. trust_remote_code (`bool`, *optional*, defaults to `False`): Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. kwargs(additional keyword arguments, *optional*): The values in kwargs of any keys which are configuration attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled by the `return_unused_kwargs` keyword parameter. Examples: ```python >>> from transformers import AutoConfig >>> # Download configuration from huggingface.co and cache. >>> config = AutoConfig.from_pretrained("google-bert/bert-base-uncased") >>> # Download configuration from huggingface.co (user-uploaded) and cache. >>> config = AutoConfig.from_pretrained("dbmdz/bert-base-german-cased") >>> # If configuration file is in a directory (e.g., was saved using *save_pretrained('./test/saved_model/')*). >>> config = AutoConfig.from_pretrained("./test/bert_saved_model/") >>> # Load a specific configuration file. >>> config = AutoConfig.from_pretrained("./test/bert_saved_model/my_configuration.json") >>> # Change some config attributes when loading a pretrained config. >>> config = AutoConfig.from_pretrained("google-bert/bert-base-uncased", output_attentions=True, foo=False) >>> config.output_attentions True >>> config, unused_kwargs = AutoConfig.from_pretrained( ... "google-bert/bert-base-uncased", output_attentions=True, foo=False, return_unused_kwargs=True ... ) >>> config.output_attentions True >>> unused_kwargs {'foo': False} ```""" use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token kwargs["_from_auto"] = True kwargs["name_or_path"] = pretrained_model_name_or_path trust_remote_code = kwargs.pop("trust_remote_code", None) code_revision = kwargs.pop("code_revision", None) config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) has_remote_code = "auto_map" in config_dict and "AutoConfig" in config_dict["auto_map"] has_local_code = "model_type" in config_dict and config_dict["model_type"] in CONFIG_MAPPING trust_remote_code = resolve_trust_remote_code( trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code ) if has_remote_code and trust_remote_code: class_ref = config_dict["auto_map"]["AutoConfig"] config_class = get_class_from_dynamic_module( class_ref, pretrained_model_name_or_path, code_revision=code_revision, **kwargs ) if os.path.isdir(pretrained_model_name_or_path): config_class.register_for_auto_class() return config_class.from_pretrained(pretrained_model_name_or_path, **kwargs) elif "model_type" in config_dict: try: config_class = CONFIG_MAPPING[config_dict["model_type"]] except KeyError: raise ValueError( f"The checkpoint you are trying to load has model type `{config_dict['model_type']}` " "but Transformers does not recognize this architecture. This could be because of an " "issue with the checkpoint, or because your version of Transformers is out of date." ) return config_class.from_dict(config_dict, **unused_kwargs) else: # Fallback: use pattern matching on the string. # We go from longer names to shorter names to catch roberta before bert (for instance) for pattern in sorted(CONFIG_MAPPING.keys(), key=len, reverse=True): if pattern in str(pretrained_model_name_or_path): return CONFIG_MAPPING[pattern].from_dict(config_dict, **unused_kwargs) raise ValueError( f"Unrecognized model in {pretrained_model_name_or_path}. " f"Should have a `model_type` key in its {CONFIG_NAME}, or contain one of the following strings " f"in its name: {', '.join(CONFIG_MAPPING.keys())}" ) @staticmethod def register(model_type, config, exist_ok=False): """ Register a new configuration for this class. Args: model_type (`str`): The model type like "bert" or "gpt". config ([`PretrainedConfig`]): The config to register. """ if issubclass(config, PretrainedConfig) and config.model_type != model_type: raise ValueError( "The config you are passing has a `model_type` attribute that is not consistent with the model type " f"you passed (config has {config.model_type} and you passed {model_type}. Fix one of those so they " "match!" ) CONFIG_MAPPING.register(model_type, config, exist_ok=exist_ok)
transformers/src/transformers/models/auto/configuration_auto.py/0
{ "file_path": "transformers/src/transformers/models/auto/configuration_auto.py", "repo_id": "transformers", "token_count": 24304 }
68
# coding=utf-8 # Copyright 2023 The Suno AI Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for Bark """ import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer logger = logging.get_logger(__name__) class BarkProcessor(ProcessorMixin): r""" Constructs a Bark processor which wraps a text tokenizer and optional Bark voice presets into a single processor. Args: tokenizer ([`PreTrainedTokenizer`]): An instance of [`PreTrainedTokenizer`]. speaker_embeddings (`Dict[Dict[str]]`, *optional*): Optional nested speaker embeddings dictionary. The first level contains voice preset names (e.g `"en_speaker_4"`). The second level contains `"semantic_prompt"`, `"coarse_prompt"` and `"fine_prompt"` embeddings. The values correspond to the path of the corresponding `np.ndarray`. See [here](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c) for a list of `voice_preset_names`. """ tokenizer_class = "AutoTokenizer" attributes = ["tokenizer"] preset_shape = { "semantic_prompt": 1, "coarse_prompt": 2, "fine_prompt": 2, } def __init__(self, tokenizer, speaker_embeddings=None): super().__init__(tokenizer) self.speaker_embeddings = speaker_embeddings @classmethod def from_pretrained( cls, pretrained_processor_name_or_path, speaker_embeddings_dict_path="speaker_embeddings_path.json", **kwargs ): r""" Instantiate a Bark processor associated with a pretrained model. Args: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained [`BarkProcessor`] hosted inside a model repo on huggingface.co. - a path to a *directory* containing a processor saved using the [`~BarkProcessor.save_pretrained`] method, e.g., `./my_model_directory/`. speaker_embeddings_dict_path (`str`, *optional*, defaults to `"speaker_embeddings_path.json"`): The name of the `.json` file containing the speaker_embeddings dictionnary located in `pretrained_model_name_or_path`. If `None`, no speaker_embeddings is loaded. **kwargs Additional keyword arguments passed along to both [`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`]. """ if speaker_embeddings_dict_path is not None: speaker_embeddings_path = get_file_from_repo( pretrained_processor_name_or_path, speaker_embeddings_dict_path, subfolder=kwargs.pop("subfolder", None), cache_dir=kwargs.pop("cache_dir", None), force_download=kwargs.pop("force_download", False), proxies=kwargs.pop("proxies", None), resume_download=kwargs.pop("resume_download", False), local_files_only=kwargs.pop("local_files_only", False), token=kwargs.pop("use_auth_token", None), revision=kwargs.pop("revision", None), ) if speaker_embeddings_path is None: logger.warning( f"""`{os.path.join(pretrained_processor_name_or_path,speaker_embeddings_dict_path)}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.""" ) speaker_embeddings = None else: with open(speaker_embeddings_path) as speaker_embeddings_json: speaker_embeddings = json.load(speaker_embeddings_json) else: speaker_embeddings = None tokenizer = AutoTokenizer.from_pretrained(pretrained_processor_name_or_path, **kwargs) return cls(tokenizer=tokenizer, speaker_embeddings=speaker_embeddings) def save_pretrained( self, save_directory, speaker_embeddings_dict_path="speaker_embeddings_path.json", speaker_embeddings_directory="speaker_embeddings", push_to_hub: bool = False, **kwargs, ): """ Saves the attributes of this processor (tokenizer...) in the specified directory so that it can be reloaded using the [`~BarkProcessor.from_pretrained`] method. Args: save_directory (`str` or `os.PathLike`): Directory where the tokenizer files and the speaker embeddings will be saved (directory will be created if it does not exist). speaker_embeddings_dict_path (`str`, *optional*, defaults to `"speaker_embeddings_path.json"`): The name of the `.json` file that will contains the speaker_embeddings nested path dictionnary, if it exists, and that will be located in `pretrained_model_name_or_path/speaker_embeddings_directory`. speaker_embeddings_directory (`str`, *optional*, defaults to `"speaker_embeddings/"`): The name of the folder in which the speaker_embeddings arrays will be saved. push_to_hub (`bool`, *optional*, defaults to `False`): Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the repository you want to push to with `repo_id` (will default to the name of `save_directory` in your namespace). kwargs: Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. """ if self.speaker_embeddings is not None: os.makedirs(os.path.join(save_directory, speaker_embeddings_directory, "v2"), exist_ok=True) embeddings_dict = {} embeddings_dict["repo_or_path"] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": voice_preset = self._load_voice_preset(prompt_key) tmp_dict = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"], speaker_embeddings_directory, f"{prompt_key}_{key}" ), voice_preset[key], allow_pickle=False, ) tmp_dict[key] = os.path.join(speaker_embeddings_directory, f"{prompt_key}_{key}.npy") embeddings_dict[prompt_key] = tmp_dict with open(os.path.join(save_directory, speaker_embeddings_dict_path), "w") as fp: json.dump(embeddings_dict, fp) super().save_pretrained(save_directory, push_to_hub, **kwargs) def _load_voice_preset(self, voice_preset: str = None, **kwargs): voice_preset_paths = self.speaker_embeddings[voice_preset] voice_preset_dict = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." ) path = get_file_from_repo( self.speaker_embeddings.get("repo_or_path", "/"), voice_preset_paths[key], subfolder=kwargs.pop("subfolder", None), cache_dir=kwargs.pop("cache_dir", None), force_download=kwargs.pop("force_download", False), proxies=kwargs.pop("proxies", None), resume_download=kwargs.pop("resume_download", False), local_files_only=kwargs.pop("local_files_only", False), token=kwargs.pop("use_auth_token", None), revision=kwargs.pop("revision", None), ) if path is None: raise ValueError( f"""`{os.path.join(self.speaker_embeddings.get("repo_or_path", "/"),voice_preset_paths[key])}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.""" ) voice_preset_dict[key] = np.load(path) return voice_preset_dict def _validate_voice_preset_dict(self, voice_preset: Optional[dict] = None): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f"Voice preset unrecognized, missing {key} as a key.") if not isinstance(voice_preset[key], np.ndarray): raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.") if len(voice_preset[key].shape) != self.preset_shape[key]: raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key])}D ndarray.") def __call__( self, text=None, voice_preset=None, return_tensors="pt", max_length=256, add_special_tokens=False, return_attention_mask=True, return_token_type_ids=False, **kwargs, ): """ Main method to prepare for the model one or several sequences(s). This method forwards the `text` and `kwargs` arguments to the AutoTokenizer's [`~AutoTokenizer.__call__`] to encode the text. The method also proposes a voice preset which is a dictionary of arrays that conditions `Bark`'s output. `kwargs` arguments are forwarded to the tokenizer and to `cached_file` method if `voice_preset` is a valid filename. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). voice_preset (`str`, `Dict[np.ndarray]`): The voice preset, i.e the speaker embeddings. It can either be a valid voice_preset name, e.g `"en_speaker_1"`, or directly a dictionnary of `np.ndarray` embeddings for each submodel of `Bark`. Or it can be a valid file name of a local `.npz` single voice preset. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. Returns: Tuple([`BatchEncoding`], [`BatchFeature`]): A tuple composed of a [`BatchEncoding`], i.e the output of the `tokenizer` and a [`BatchFeature`], i.e the voice preset with the right tensors type. """ if voice_preset is not None and not isinstance(voice_preset, dict): if ( isinstance(voice_preset, str) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): voice_preset = self._load_voice_preset(voice_preset) else: if isinstance(voice_preset, str) and not voice_preset.endswith(".npz"): voice_preset = voice_preset + ".npz" voice_preset = np.load(voice_preset) if voice_preset is not None: self._validate_voice_preset_dict(voice_preset, **kwargs) voice_preset = BatchFeature(data=voice_preset, tensor_type=return_tensors) encoded_text = self.tokenizer( text, return_tensors=return_tensors, padding="max_length", max_length=max_length, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, add_special_tokens=add_special_tokens, **kwargs, ) if voice_preset is not None: encoded_text["history_prompt"] = voice_preset return encoded_text
transformers/src/transformers/models/bark/processing_bark.py/0
{ "file_path": "transformers/src/transformers/models/bark/processing_bark.py", "repo_id": "transformers", "token_count": 6008 }
69
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert BEiT checkpoints from the unilm repository.""" import argparse import json from pathlib import Path import requests import torch from datasets import load_dataset from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitImageProcessor, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) def create_rename_keys(config, has_lm_head=False, is_semantic=False): prefix = "backbone." if is_semantic else "" rename_keys = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"{prefix}blocks.{i}.norm1.weight", f"beit.encoder.layer.{i}.layernorm_before.weight")) rename_keys.append((f"{prefix}blocks.{i}.norm1.bias", f"beit.encoder.layer.{i}.layernorm_before.bias")) rename_keys.append( (f"{prefix}blocks.{i}.attn.proj.weight", f"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (f"{prefix}blocks.{i}.attn.proj.bias", f"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"{prefix}blocks.{i}.norm2.weight", f"beit.encoder.layer.{i}.layernorm_after.weight")) rename_keys.append((f"{prefix}blocks.{i}.norm2.bias", f"beit.encoder.layer.{i}.layernorm_after.bias")) rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.weight", f"beit.encoder.layer.{i}.intermediate.dense.weight")) rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.bias", f"beit.encoder.layer.{i}.intermediate.dense.bias")) rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.weight", f"beit.encoder.layer.{i}.output.dense.weight")) rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.bias", f"beit.encoder.layer.{i}.output.dense.bias")) # projection layer + position embeddings rename_keys.extend( [ (f"{prefix}cls_token", "beit.embeddings.cls_token"), (f"{prefix}patch_embed.proj.weight", "beit.embeddings.patch_embeddings.projection.weight"), (f"{prefix}patch_embed.proj.bias", "beit.embeddings.patch_embeddings.projection.bias"), ] ) if has_lm_head: # mask token + shared relative position bias + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ( "rel_pos_bias.relative_position_bias_table", "beit.encoder.relative_position_bias.relative_position_bias_table", ), ( "rel_pos_bias.relative_position_index", "beit.encoder.relative_position_bias.relative_position_index", ), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) elif is_semantic: # semantic segmentation classification heads rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, config, has_lm_head=False, is_semantic=False): for i in range(config.num_hidden_layers): prefix = "backbone." if is_semantic else "" # queries, keys and values in_proj_weight = state_dict.pop(f"{prefix}blocks.{i}.attn.qkv.weight") q_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.q_bias") v_bias = state_dict.pop(f"{prefix}blocks.{i}.attn.v_bias") state_dict[f"beit.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[ : config.hidden_size, : ] state_dict[f"beit.encoder.layer.{i}.attention.attention.query.bias"] = q_bias state_dict[f"beit.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] state_dict[f"beit.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[ -config.hidden_size :, : ] state_dict[f"beit.encoder.layer.{i}.attention.attention.value.bias"] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained gamma_1 = state_dict.pop(f"{prefix}blocks.{i}.gamma_1") gamma_2 = state_dict.pop(f"{prefix}blocks.{i}.gamma_2") state_dict[f"beit.encoder.layer.{i}.lambda_1"] = gamma_1 state_dict[f"beit.encoder.layer.{i}.lambda_2"] = gamma_2 # relative_position bias table + index if not has_lm_head: # each layer has its own relative position bias table = state_dict.pop(f"{prefix}blocks.{i}.attn.relative_position_bias_table") index = state_dict.pop(f"{prefix}blocks.{i}.attn.relative_position_index") state_dict[ f"beit.encoder.layer.{i}.attention.attention.relative_position_bias.relative_position_bias_table" ] = table state_dict[ f"beit.encoder.layer.{i}.attention.attention.relative_position_bias.relative_position_index" ] = index def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_beit_checkpoint(checkpoint_url, pytorch_dump_folder_path): """ Copy/paste/tweak model's weights to our BEiT structure. """ # define default BEiT configuration config = BeitConfig() has_lm_head = False is_semantic = False repo_id = "huggingface/label-files" # set config parameters based on URL if checkpoint_url[-9:-4] == "pt22k": # masked image modeling config.use_shared_relative_position_bias = True config.use_mask_token = True has_lm_head = True elif checkpoint_url[-9:-4] == "ft22k": # intermediate fine-tuning on ImageNet-22k config.use_relative_position_bias = True config.num_labels = 21841 filename = "imagenet-22k-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} # this dataset contains 21843 labels but the model only has 21841 # we delete the classes as mentioned in https://github.com/google-research/big_transfer/issues/18 del id2label[9205] del id2label[15027] config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} elif checkpoint_url[-8:-4] == "to1k": # fine-tuning on ImageNet-1k config.use_relative_position_bias = True config.num_labels = 1000 filename = "imagenet-1k-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} if "384" in checkpoint_url: config.image_size = 384 if "512" in checkpoint_url: config.image_size = 512 elif "ade20k" in checkpoint_url: # fine-tuning config.use_relative_position_bias = True config.num_labels = 150 filename = "ade20k-id2label.json" id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} config.image_size = 640 is_semantic = True else: raise ValueError("Checkpoint not supported, URL should either end with 'pt22k', 'ft22k', 'to1k' or 'ade20k'") # size of the architecture if "base" in checkpoint_url: pass elif "large" in checkpoint_url: config.hidden_size = 1024 config.intermediate_size = 4096 config.num_hidden_layers = 24 config.num_attention_heads = 16 if "ade20k" in checkpoint_url: config.image_size = 640 config.out_indices = [7, 11, 15, 23] else: raise ValueError("Should either find 'base' or 'large' in checkpoint URL") # load state_dict of original model, remove and rename some keys state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu", check_hash=True) state_dict = state_dict["model"] if "ade20k" not in checkpoint_url else state_dict["state_dict"] rename_keys = create_rename_keys(config, has_lm_head=has_lm_head, is_semantic=is_semantic) for src, dest in rename_keys: rename_key(state_dict, src, dest) read_in_q_k_v(state_dict, config, has_lm_head=has_lm_head, is_semantic=is_semantic) if is_semantic: # add prefix to decoder keys for key, val in state_dict.copy().items(): val = state_dict.pop(key) if key.startswith("backbone.fpn"): key = key.replace("backbone.fpn", "fpn") state_dict[key] = val # load HuggingFace model if checkpoint_url[-9:-4] == "pt22k": model = BeitForMaskedImageModeling(config) elif "ade20k" in checkpoint_url: model = BeitForSemanticSegmentation(config) else: model = BeitForImageClassification(config) model.eval() model.load_state_dict(state_dict) # Check outputs on an image if is_semantic: image_processor = BeitImageProcessor(size=config.image_size, do_center_crop=False) ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test") image = Image.open(ds[0]["file"]) else: image_processor = BeitImageProcessor( size=config.image_size, resample=PILImageResampling.BILINEAR, do_center_crop=False ) image = prepare_img() encoding = image_processor(images=image, return_tensors="pt") pixel_values = encoding["pixel_values"] outputs = model(pixel_values) logits = outputs.logits # verify logits expected_shape = torch.Size([1, 1000]) if checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k"): expected_shape = torch.Size([1, 196, 8192]) elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k"): expected_shape = torch.Size([1, 196, 8192]) elif checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k_ft22k"): expected_shape = torch.Size([1, 21841]) expected_logits = torch.tensor([2.2288, 2.4671, 0.7395]) expected_class_idx = 2397 elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k_ft22k"): expected_shape = torch.Size([1, 21841]) expected_logits = torch.tensor([1.6881, -0.2787, 0.5901]) expected_class_idx = 2396 elif checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k_ft1k"): expected_logits = torch.tensor([0.1241, 0.0798, -0.6569]) expected_class_idx = 285 elif checkpoint_url[:-4].endswith("beit_base_patch16_224_pt22k_ft22kto1k"): expected_logits = torch.tensor([-1.2385, -1.0987, -1.0108]) expected_class_idx = 281 elif checkpoint_url[:-4].endswith("beit_base_patch16_384_pt22k_ft22kto1k"): expected_logits = torch.tensor([-1.5303, -0.9484, -0.3147]) expected_class_idx = 761 elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k_ft1k"): expected_logits = torch.tensor([0.4610, -0.0928, 0.2086]) expected_class_idx = 761 elif checkpoint_url[:-4].endswith("beit_large_patch16_224_pt22k_ft22kto1k"): expected_logits = torch.tensor([-0.4804, 0.6257, -0.1837]) expected_class_idx = 761 elif checkpoint_url[:-4].endswith("beit_large_patch16_384_pt22k_ft22kto1k"): expected_logits = torch.tensor([[-0.5122, 0.5117, -0.2113]]) expected_class_idx = 761 elif checkpoint_url[:-4].endswith("beit_large_patch16_512_pt22k_ft22kto1k"): expected_logits = torch.tensor([-0.3062, 0.7261, 0.4852]) expected_class_idx = 761 elif checkpoint_url[:-4].endswith("beit_base_patch16_640_pt22k_ft22ktoade20k"): expected_shape = (1, 150, 160, 160) expected_logits = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] ) elif checkpoint_url[:-4].endswith("beit_large_patch16_640_pt22k_ft22ktoade20k"): expected_shape = (1, 150, 160, 160) expected_logits = torch.tensor( [ [[-4.3305, -2.3049, -3.0161], [-2.9591, -1.5305, -2.2251], [-3.4198, -1.8004, -2.9062]], [[-5.8922, -3.7435, -4.3978], [-4.2063, -2.7872, -3.4755], [-4.2791, -3.1874, -4.1681]], [[0.9895, 4.3467, 4.7663], [4.2476, 5.6830, 6.1518], [4.5550, 6.2495, 6.5154]], ] ) else: raise ValueError("Can't verify logits as model is not supported") if logits.shape != expected_shape: raise ValueError(f"Shape of logits not as expected. {logits.shape=}, {expected_shape=}") if not has_lm_head: if is_semantic: if not torch.allclose(logits[0, :3, :3, :3], expected_logits, atol=1e-3): raise ValueError("First elements of logits not as expected") else: print("Predicted class idx:", logits.argmax(-1).item()) if not torch.allclose(logits[0, :3], expected_logits, atol=1e-3): raise ValueError("First elements of logits not as expected") if logits.argmax(-1).item() != expected_class_idx: raise ValueError("Predicted class index not as expected") Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) print(f"Saving image processor to {pytorch_dump_folder_path}") image_processor.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://conversationhub.blob.core.windows.net/beit-share-public/beit/beit_base_patch16_224_pt22k_ft22kto1k.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) args = parser.parse_args() convert_beit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
transformers/src/transformers/models/beit/convert_beit_unilm_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/beit/convert_beit_unilm_to_pytorch.py", "repo_id": "transformers", "token_count": 7533 }
70
import os from typing import List, Union import tensorflow as tf from tensorflow_text import BertTokenizer as BertTokenizerLayer from tensorflow_text import FastBertTokenizer, ShrinkLongestTrimmer, case_fold_utf8, combine_segments, pad_model_inputs from ...modeling_tf_utils import keras from .tokenization_bert import BertTokenizer class TFBertTokenizer(keras.layers.Layer): """ This is an in-graph tokenizer for BERT. It should be initialized similarly to other tokenizers, using the `from_pretrained()` method. It can also be initialized with the `from_tokenizer()` method, which imports settings from an existing standard tokenizer object. In-graph tokenizers, unlike other Hugging Face tokenizers, are actually Keras layers and are designed to be run when the model is called, rather than during preprocessing. As a result, they have somewhat more limited options than standard tokenizer classes. They are most useful when you want to create an end-to-end model that goes straight from `tf.string` inputs to outputs. Args: vocab_list (`list`): List containing the vocabulary. do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. cls_token_id (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. sep_token_id (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token_id (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. padding (`str`, defaults to `"longest"`): The type of padding to use. Can be either `"longest"`, to pad only up to the longest sample in the batch, or `"max_length", to pad all inputs to the maximum length supported by the tokenizer. truncation (`bool`, *optional*, defaults to `True`): Whether to truncate the sequence to the maximum length. max_length (`int`, *optional*, defaults to `512`): The maximum length of the sequence, used for padding (if `padding` is "max_length") and/or truncation (if `truncation` is `True`). pad_to_multiple_of (`int`, *optional*, defaults to `None`): If set, the sequence will be padded to a multiple of this value. return_token_type_ids (`bool`, *optional*, defaults to `True`): Whether to return token_type_ids. return_attention_mask (`bool`, *optional*, defaults to `True`): Whether to return the attention_mask. use_fast_bert_tokenizer (`bool`, *optional*, defaults to `True`): If True, will use the FastBertTokenizer class from Tensorflow Text. If False, will use the BertTokenizer class instead. BertTokenizer supports some additional options, but is slower and cannot be exported to TFLite. """ def __init__( self, vocab_list: List, do_lower_case: bool, cls_token_id: int = None, sep_token_id: int = None, pad_token_id: int = None, padding: str = "longest", truncation: bool = True, max_length: int = 512, pad_to_multiple_of: int = None, return_token_type_ids: bool = True, return_attention_mask: bool = True, use_fast_bert_tokenizer: bool = True, **tokenizer_kwargs, ): super().__init__() if use_fast_bert_tokenizer: self.tf_tokenizer = FastBertTokenizer( vocab_list, token_out_type=tf.int64, lower_case_nfd_strip_accents=do_lower_case, **tokenizer_kwargs ) else: lookup_table = tf.lookup.StaticVocabularyTable( tf.lookup.KeyValueTensorInitializer( keys=vocab_list, key_dtype=tf.string, values=tf.range(tf.size(vocab_list, out_type=tf.int64), dtype=tf.int64), value_dtype=tf.int64, ), num_oov_buckets=1, ) self.tf_tokenizer = BertTokenizerLayer( lookup_table, token_out_type=tf.int64, lower_case=do_lower_case, **tokenizer_kwargs ) self.vocab_list = vocab_list self.do_lower_case = do_lower_case self.cls_token_id = vocab_list.index("[CLS]") if cls_token_id is None else cls_token_id self.sep_token_id = vocab_list.index("[SEP]") if sep_token_id is None else sep_token_id self.pad_token_id = vocab_list.index("[PAD]") if pad_token_id is None else pad_token_id self.paired_trimmer = ShrinkLongestTrimmer(max_length - 3, axis=1) # Allow room for special tokens self.max_length = max_length self.padding = padding self.truncation = truncation self.pad_to_multiple_of = pad_to_multiple_of self.return_token_type_ids = return_token_type_ids self.return_attention_mask = return_attention_mask @classmethod def from_tokenizer(cls, tokenizer: "PreTrainedTokenizerBase", **kwargs): # noqa: F821 """ Initialize a `TFBertTokenizer` from an existing `Tokenizer`. Args: tokenizer (`PreTrainedTokenizerBase`): The tokenizer to use to initialize the `TFBertTokenizer`. Examples: ```python from transformers import AutoTokenizer, TFBertTokenizer tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased") tf_tokenizer = TFBertTokenizer.from_tokenizer(tokenizer) ``` """ do_lower_case = kwargs.pop("do_lower_case", None) do_lower_case = tokenizer.do_lower_case if do_lower_case is None else do_lower_case cls_token_id = kwargs.pop("cls_token_id", None) cls_token_id = tokenizer.cls_token_id if cls_token_id is None else cls_token_id sep_token_id = kwargs.pop("sep_token_id", None) sep_token_id = tokenizer.sep_token_id if sep_token_id is None else sep_token_id pad_token_id = kwargs.pop("pad_token_id", None) pad_token_id = tokenizer.pad_token_id if pad_token_id is None else pad_token_id vocab = tokenizer.get_vocab() vocab = sorted(vocab.items(), key=lambda x: x[1]) vocab_list = [entry[0] for entry in vocab] return cls( vocab_list=vocab_list, do_lower_case=do_lower_case, cls_token_id=cls_token_id, sep_token_id=sep_token_id, pad_token_id=pad_token_id, **kwargs, ) @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], *init_inputs, **kwargs): """ Instantiate a `TFBertTokenizer` from a pre-trained tokenizer. Args: pretrained_model_name_or_path (`str` or `os.PathLike`): The name or path to the pre-trained tokenizer. Examples: ```python from transformers import TFBertTokenizer tf_tokenizer = TFBertTokenizer.from_pretrained("google-bert/bert-base-uncased") ``` """ try: tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path, *init_inputs, **kwargs) except: # noqa: E722 from .tokenization_bert_fast import BertTokenizerFast tokenizer = BertTokenizerFast.from_pretrained(pretrained_model_name_or_path, *init_inputs, **kwargs) return cls.from_tokenizer(tokenizer, **kwargs) def unpaired_tokenize(self, texts): if self.do_lower_case: texts = case_fold_utf8(texts) tokens = self.tf_tokenizer.tokenize(texts) return tokens.merge_dims(1, -1) def call( self, text, text_pair=None, padding=None, truncation=None, max_length=None, pad_to_multiple_of=None, return_token_type_ids=None, return_attention_mask=None, ): if padding is None: padding = self.padding if padding not in ("longest", "max_length"): raise ValueError("Padding must be either 'longest' or 'max_length'!") if max_length is not None and text_pair is not None: # Because we have to instantiate a Trimmer to do it properly raise ValueError("max_length cannot be overridden at call time when truncating paired texts!") if max_length is None: max_length = self.max_length if truncation is None: truncation = self.truncation if pad_to_multiple_of is None: pad_to_multiple_of = self.pad_to_multiple_of if return_token_type_ids is None: return_token_type_ids = self.return_token_type_ids if return_attention_mask is None: return_attention_mask = self.return_attention_mask if not isinstance(text, tf.Tensor): text = tf.convert_to_tensor(text) if text_pair is not None and not isinstance(text_pair, tf.Tensor): text_pair = tf.convert_to_tensor(text_pair) if text_pair is not None: if text.shape.rank > 1: raise ValueError("text argument should not be multidimensional when a text pair is supplied!") if text_pair.shape.rank > 1: raise ValueError("text_pair should not be multidimensional!") if text.shape.rank == 2: text, text_pair = text[:, 0], text[:, 1] text = self.unpaired_tokenize(text) if text_pair is None: # Unpaired text if truncation: text = text[:, : max_length - 2] # Allow room for special tokens input_ids, token_type_ids = combine_segments( (text,), start_of_sequence_id=self.cls_token_id, end_of_segment_id=self.sep_token_id ) else: # Paired text text_pair = self.unpaired_tokenize(text_pair) if truncation: text, text_pair = self.paired_trimmer.trim([text, text_pair]) input_ids, token_type_ids = combine_segments( (text, text_pair), start_of_sequence_id=self.cls_token_id, end_of_segment_id=self.sep_token_id ) if padding == "longest": pad_length = input_ids.bounding_shape(axis=1) if pad_to_multiple_of is not None: # No ceiling division in tensorflow, so we negate floordiv instead pad_length = pad_to_multiple_of * (-tf.math.floordiv(-pad_length, pad_to_multiple_of)) else: pad_length = max_length input_ids, attention_mask = pad_model_inputs(input_ids, max_seq_length=pad_length, pad_value=self.pad_token_id) output = {"input_ids": input_ids} if return_attention_mask: output["attention_mask"] = attention_mask if return_token_type_ids: token_type_ids, _ = pad_model_inputs( token_type_ids, max_seq_length=pad_length, pad_value=self.pad_token_id ) output["token_type_ids"] = token_type_ids return output def get_config(self): return { "vocab_list": self.vocab_list, "do_lower_case": self.do_lower_case, "cls_token_id": self.cls_token_id, "sep_token_id": self.sep_token_id, "pad_token_id": self.pad_token_id, }
transformers/src/transformers/models/bert/tokenization_bert_tf.py/0
{ "file_path": "transformers/src/transformers/models/bert/tokenization_bert_tf.py", "repo_id": "transformers", "token_count": 5234 }
71
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Blenderbot checkpoint.""" import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) PATTERNS = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def rename_state_dict_key(k): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: k = k.replace(parlai_name, hf_name) if k.startswith("encoder"): k = k.replace(".attn", ".self_attn") k = k.replace("norm1", "self_attn_layer_norm") k = k.replace("norm2", "final_layer_norm") elif k.startswith("decoder"): k = k.replace("norm1", "self_attn_layer_norm") k = k.replace("norm2", "encoder_attn_layer_norm") k = k.replace("norm3", "final_layer_norm") return k def rename_layernorm_keys(sd): keys = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: v = sd.pop(k) new_k = k.replace("layernorm_embedding", "layer_norm") assert new_k not in sd sd[new_k] = v IGNORE_KEYS = ["START"] @torch.no_grad() def convert_parlai_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_json_path): """ Copy/paste/tweak model's weights to our BERT structure. """ model = torch.load(checkpoint_path, map_location="cpu") sd = model["model"] cfg = BlenderbotConfig.from_json_file(config_json_path) m = BlenderbotForConditionalGeneration(cfg) valid_keys = m.model.state_dict().keys() failures = [] mapping = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue new_k = rename_state_dict_key(k) if new_k not in valid_keys: failures.append([k, new_k]) else: mapping[new_k] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(sd) m.model.load_state_dict(mapping, strict=True) m.half() m.save_pretrained(pytorch_dump_folder_path) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) args = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
transformers/src/transformers/models/blenderbot/convert_blenderbot_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/blenderbot/convert_blenderbot_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 1504 }
72
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for BLIP.""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_kwargs, validate_preprocess_arguments, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL logger = logging.get_logger(__name__) class BlipImageProcessor(BaseImageProcessor): r""" Constructs a BLIP image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`dict`, *optional*, defaults to `{"height": 384, "width": 384}`): Size of the output image after resizing. Can be overridden by the `size` parameter in the `preprocess` method. resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. Can be overridden by the `resample` parameter in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `True`): Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Only has an effect if `do_rescale` is set to `True`. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`): Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`): Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_rgb (`bool`, *optional*, defaults to `True`): Whether to convert the image to RGB. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BICUBIC, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = True, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_convert_rgb: bool = True, **kwargs, ) -> None: super().__init__(**kwargs) size = size if size is not None else {"height": 384, "width": 384} size = get_size_dict(size, default_to_square=True) self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD self.do_convert_rgb = do_convert_rgb self._valid_processor_keys = [ "images", "do_resize", "size", "resample", "do_rescale", "rescale_factor", "do_normalize", "image_mean", "image_std", "do_convert_rgb", "return_tensors", "data_format", "input_data_format", ] # Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.BICUBIC def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BICUBIC, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize an image to `(size["height"], size["width"])`. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`): `PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. Returns: `np.ndarray`: The resized image. """ size = get_size_dict(size) if "height" not in size or "width" not in size: raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}") output_size = (size["height"], size["width"]) return resize( image, size=output_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) def preprocess( self, images: ImageInput, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample: PILImageResampling = None, do_rescale: Optional[bool] = None, rescale_factor: Optional[float] = None, do_normalize: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, return_tensors: Optional[Union[str, TensorType]] = None, do_convert_rgb: bool = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> PIL.Image.Image: """ Preprocess an image or batch of images. Args: images (`ImageInput`): Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to `self.size`): Controls the size of the image after `resize`. The shortest edge of the image is resized to `size["shortest_edge"]` whilst preserving the aspect ratio. If the longest edge of this resized image is > `int(size["shortest_edge"] * (1333 / 800))`, then the image is resized again to make the longest edge equal to `int(size["shortest_edge"] * (1333 / 800))`. resample (`PILImageResampling`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the image. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the image values between [0 - 1]. rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): Rescale factor to rescale the image by if `do_rescale` is set to `True`. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): Image mean to normalize the image by if `do_normalize` is set to `True`. image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): Image standard deviation to normalize the image by if `do_normalize` is set to `True`. do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): Whether to convert the image to RGB. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize resample = resample if resample is not None else self.resample do_rescale = do_rescale if do_rescale is not None else self.do_rescale rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor do_normalize = do_normalize if do_normalize is not None else self.do_normalize image_mean = image_mean if image_mean is not None else self.image_mean image_std = image_std if image_std is not None else self.image_std do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb size = size if size is not None else self.size size = get_size_dict(size, default_to_square=False) images = make_list_of_images(images) validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample, ) # PIL RGBA images are converted to RGB if do_convert_rgb: images = [convert_to_rgb(image) for image in images] # All transformations expect numpy arrays. images = [to_numpy_array(image) for image in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_resize: images = [ self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format) for image in images ] if do_rescale: images = [ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format) for image in images ] if do_normalize: images = [ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format) for image in images ] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] encoded_outputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors) return encoded_outputs
transformers/src/transformers/models/blip/image_processing_blip.py/0
{ "file_path": "transformers/src/transformers/models/blip/image_processing_blip.py", "repo_id": "transformers", "token_count": 6670 }
73
# coding=utf-8 # Copyright 2021 The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for OpenAI GPT.""" from typing import List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_clip import CLIPTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "openai/clip-vit-base-patch32": "https://huggingface.co/openai/clip-vit-base-patch32/resolve/main/vocab.json", }, "merges_file": { "openai/clip-vit-base-patch32": "https://huggingface.co/openai/clip-vit-base-patch32/resolve/main/merges.txt", }, "tokenizer_file": { "openai/clip-vit-base-patch32": ( "https://huggingface.co/openai/clip-vit-base-patch32/resolve/main/tokenizer.json" ), }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "openai/clip-vit-base-patch32": 77, } class CLIPTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" CLIP tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level Byte-Pair-Encoding. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`, *optional*): Path to the vocabulary file. merges_file (`str`, *optional*): Path to the merges file. tokenizer_file (`str`, *optional*): The path to a tokenizer file to use instead of the vocab file. unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<|startoftext|>"`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The end of sequence token. pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`): The token used for padding, for example when batching sequences of different lengths. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] slow_tokenizer_class = CLIPTokenizer def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, unk_token="<|endoftext|>", bos_token="<|startoftext|>", eos_token="<|endoftext|>", pad_token="<|endoftext|>", # hack to enable padding **kwargs, ): super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, pad_token=pad_token, **kwargs, ) if not isinstance(self.backend_tokenizer.pre_tokenizer, pre_tokenizers.Sequence): raise ValueError( "The `backend_tokenizer` provided does not match the expected format. The CLIP tokenizer has been" " heavily modified from transformers version 4.17.0. You need to convert the tokenizer you are using" " to be compatible with this version.The easiest way to do so is" ' `CLIPTokenizerFast.from_pretrained("path_to_local_folder_or_hub_repo, from_slow=True)`. If you want' " to use your existing tokenizer, you will have to revert to a version prior to 4.17.0 of" " transformers." ) self._wrap_decode_method_backend_tokenizer() # Very ugly hack to enable padding to have a correct decoding see https://github.com/huggingface/tokenizers/issues/872 def _wrap_decode_method_backend_tokenizer(self): orig_decode_method = self.backend_tokenizer.decode def new_decode_method(*args, **kwargs): text = orig_decode_method(*args, **kwargs) text = text.replace(self.backend_tokenizer.model.end_of_word_suffix, " ").strip() return text self.backend_tokenizer.decode = new_decode_method def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A CLIP sequence has the following format: - single sequence: `<|startoftext|> X <|endoftext|>` Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ bos_token = [self.bos_token_id] eos_token = [self.eos_token_id] if token_ids_1 is None: return bos_token + token_ids_0 + eos_token return bos_token + token_ids_0 + eos_token + eos_token + token_ids_1 + eos_token def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed. CLIP does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ bos_token = [self.bos_token_id] eos_token = [self.eos_token_id] if token_ids_1 is None: return len(bos_token + token_ids_0 + eos_token) * [0] return len(bos_token + token_ids_0 + eos_token + eos_token + token_ids_1 + eos_token) * [0] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files)
transformers/src/transformers/models/clip/tokenization_clip_fast.py/0
{ "file_path": "transformers/src/transformers/models/clip/tokenization_clip_fast.py", "repo_id": "transformers", "token_count": 3006 }
74
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import normalizers, processors from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging from ...utils.versions import require_version require_version("tokenizers>=0.13.3") if is_sentencepiece_available(): from .tokenization_code_llama import CodeLlamaTokenizer else: CodeLlamaTokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"} SPIECE_UNDERLINE = "▁" B_INST, E_INST = "[INST]", "[/INST]" B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n" # fmt: off DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \ answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\ that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \ correct. If you don't know the answer to a question, please don't share false information.""" # fmt: on class CodeLlamaTokenizerFast(PreTrainedTokenizerFast): """ Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. This uses notably ByteFallback and no normalization. ```python >>> from transformers import CodeLlamaTokenizerFast >>> tokenizer = CodeLlamaTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer") >>> tokenizer.encode("Hello this is a test") [1, 15043, 445, 338, 263, 1243] ``` If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the values of the first token and final token of an encoded sequence will not be correct). For more details, checkout [post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. The default configuration match that of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf/blob/main/tokenizer_config.json) which supports prompt infilling. Args: vocab_file (`str`, *optional*): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that contains the vocabulary necessary to instantiate a tokenizer. tokenizer_file (`str`, *optional*): [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that contains everything needed to load the tokenizer. clean_up_tokenization_spaces (`str`, *optional*, defaults to `False`): Wether to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra spaces. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. prefix_token (`str`, *optional*, defaults to `"▁<PRE>"`): Prefix token used for infilling. middle_token (`str`, *optional*, defaults to `"▁<MID>"`): Middle token used for infilling. suffix_token (`str`, *optional*, defaults to `"▁<SUF>"`): Suffix token used for infilling. eot_token (`str`, *optional*, defaults to `"▁<EOT>"`): End of text token used for infilling. fill_token (`str`, *optional*, defaults to `"<FILL_ME>"`): The token used to split the input between the prefix and suffix. additional_special_tokens (`List[str]`, *optional*): Additional special tokens used by the tokenizer. add_bos_token (`bool`, *optional*, defaults to `True`): Whether to add a beginning of sequence token at the start of sequences. add_eos_token (`bool`, *optional*, defaults to `False`): Whether to add an end of sequence token at the end of sequences. use_default_system_prompt (`bool`, *optional*, defaults to `False`): Whether or not the default system prompt for Llama should be used. """ vocab_files_names = VOCAB_FILES_NAMES slow_tokenizer_class = CodeLlamaTokenizer padding_side = "left" model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file=None, tokenizer_file=None, clean_up_tokenization_spaces=False, unk_token="<unk>", bos_token="<s>", eos_token="</s>", prefix_token="▁<PRE>", middle_token="▁<MID>", suffix_token="▁<SUF>", eot_token="▁<EOT>", fill_token="<FILL_ME>", additional_special_tokens=None, add_bos_token=True, add_eos_token=False, use_default_system_prompt=False, **kwargs, ): # mark tokens special to skip them additional_special_tokens = additional_special_tokens or [] for token in [prefix_token, middle_token, suffix_token, eot_token]: additional_special_tokens += [token] if token is not None else [] self.use_default_system_prompt = use_default_system_prompt super().__init__( vocab_file=vocab_file, tokenizer_file=tokenizer_file, clean_up_tokenization_spaces=clean_up_tokenization_spaces, additional_special_tokens=additional_special_tokens, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, add_bos_token=add_bos_token, add_eos_token=add_eos_token, prefix_token=prefix_token, middle_token=middle_token, suffix_token=suffix_token, eot_token=eot_token, fill_token=fill_token, use_default_system_prompt=use_default_system_prompt, **kwargs, ) self._add_bos_token = add_bos_token self._add_eos_token = add_eos_token self.update_post_processor() self.vocab_file = vocab_file self._prefix_token = prefix_token self._middle_token = middle_token self._suffix_token = suffix_token self._eot_token = eot_token self.fill_token = fill_token @property def can_save_slow_tokenizer(self) -> bool: return os.path.isfile(self.vocab_file) if self.vocab_file else False # Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.update_post_processor def update_post_processor(self): """ Updates the underlying post processor with the current `bos_token` and `eos_token`. """ bos = self.bos_token bos_token_id = self.bos_token_id if bos is None and self.add_bos_token: raise ValueError("add_bos_token = True but bos_token = None") eos = self.eos_token eos_token_id = self.eos_token_id if eos is None and self.add_eos_token: raise ValueError("add_eos_token = True but eos_token = None") single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}" pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}" special_tokens = [] if self.add_bos_token: special_tokens.append((bos, bos_token_id)) if self.add_eos_token: special_tokens.append((eos, eos_token_id)) self._tokenizer.post_processor = processors.TemplateProcessing( single=single, pair=pair, special_tokens=special_tokens ) @property def prefix_token(self): return self._prefix_token @property def prefix_id(self): if self._prefix_token is None: return None return self.convert_tokens_to_ids(self.prefix_token) @property def middle_token(self): return self._middle_token @property def middle_id(self): if self._middle_token is None: return None return self.convert_tokens_to_ids(self.middle_token) @property def suffix_token(self): return self._suffix_token @property def suffix_id(self): if self._suffix_token is None: return None return self.convert_tokens_to_ids(self.suffix_token) @property def eot_id(self): if self._eot_token is None: return None return self.convert_tokens_to_ids(self.eot_token) @property def eot_token(self): return self._eot_token @property def add_eos_token(self): return self._add_eos_token @property def add_bos_token(self): return self._add_bos_token @add_eos_token.setter def add_eos_token(self, value): self._add_eos_token = value self.update_post_processor() @add_bos_token.setter def add_bos_token(self, value): self._add_bos_token = value self.update_post_processor() def set_infilling_processor(self, reset, suffix_first=False, add_special_tokens=True): """ Updates the normalizer to make sure the prompt format for `infilling` is respected. The infilling format is the following: if suffix_first " <PRE> <SUF>{suf} <MID> {pre}" else: " <PRE> {pre} <SUF>{suf} <MID>" If `reset` is set to `True`, the `normalizer` and `post_processor` are reset to their "normal" behaviour, which is to add a prefix space for the normalizer, and add a `bos_token` to the input text for the `post_processor`. """ if reset: self._tokenizer.normalizer = normalizers.Sequence( [ normalizers.Prepend(prepend="▁"), normalizers.Replace(pattern=" ", content="▁"), ] ) self.update_post_processor() return self._tokenizer.normalizer = normalizers.Replace(pattern=" ", content="▁") pair = [self.bos_token] if self.add_bos_token and add_special_tokens else [] special_tokens = [(self.bos_token, self.bos_token_id)] if self.add_bos_token and add_special_tokens else [] if suffix_first: # format as " <PRE> <SUF>{suf} <MID> {pre}" pair += [self.prefix_token, self.suffix_token, "$B", self.middle_token, "$A"] special_tokens += [ (self.prefix_token, self.prefix_id), (self.suffix_token, self.suffix_id), (self.middle_token, self.middle_id), ] else: # format as " <PRE> {pre} <SUF>{suf} <MID>" pair += [self.prefix_token, "$A", self.suffix_token, "$B", self.middle_token] special_tokens += [ (self.prefix_token, self.prefix_id), (self.suffix_token, self.suffix_id), (self.middle_token, self.middle_id), ] if self.add_eos_token and add_special_tokens: pair += [self.eos_token] special_tokens += [(self.eos_token, self.eos_token_id)] self._tokenizer.post_processor = processors.TemplateProcessing( single="$A", pair=pair, special_tokens=special_tokens ) def encode_plus(self, text, text_pair=None, suffix_first=False, add_special_tokens=True, **kwargs): # hack to make sure the input is pre-process but outside rust text_pair = kwargs.pop("suffix", text_pair) if self.fill_token is not None and self.fill_token in text and text_pair is None: text, text_pair = text.split(self.fill_token) if text_pair is None or len(text_pair) < 1: return super().encode_plus(text, text_pair, add_special_tokens=add_special_tokens, **kwargs) if None in (self.prefix_id, self.middle_id, self.suffix_id): raise ValueError( "Then input includes a `prefix` and a `suffix` used for the infilling task," " the `prefix_id, middle_id, suffix_id` must all be initialized. Current" f" values : {self.prefix_id, self.middle_id, self.suffix_id}" ) self.set_infilling_processor(False, suffix_first=suffix_first, add_special_tokens=add_special_tokens) tokens = super().encode_plus(" " + text, text_pair=text_pair, add_special_tokens=True, **kwargs) self.set_infilling_processor(True) return tokens # Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,) @property # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.default_chat_template def default_chat_template(self): """ LLaMA uses [INST] and [/INST] to indicate user messages, and <<SYS>> and <</SYS>> to indicate system messages. Assistant messages do not have special tokens, because LLaMA chat models are generally trained with strict user/assistant/user/assistant message ordering, and so assistant messages can be identified from the ordering rather than needing special tokens. The system message is partly 'embedded' in the first user message, which results in an unusual token ordering when it is present. This template should definitely be changed if you wish to fine-tune a model with more flexible role ordering! The output should look something like: <bos>[INST] B_SYS SystemPrompt E_SYS Prompt [/INST] Answer <eos><bos>[INST] Prompt [/INST] Answer <eos> <bos>[INST] Prompt [/INST] The reference for this chat template is [this code snippet](https://github.com/facebookresearch/llama/blob/556949fdfb72da27c2f4a40b7f0e4cf0b8153a28/llama/generation.py#L320-L362) in the original repository. """ logger.warning_once( "\nNo chat template is defined for this tokenizer - using the default template " f"for the {self.__class__.__name__} class. If the default is not appropriate for " "your model, please set `tokenizer.chat_template` to an appropriate template. " "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n" ) template = ( "{% if messages[0]['role'] == 'system' %}" "{% set loop_messages = messages[1:] %}" # Extract system message if it's present "{% set system_message = messages[0]['content'] %}" "{% elif USE_DEFAULT_PROMPT == true and not '<<SYS>>' in messages[0]['content'] %}" "{% set loop_messages = messages %}" # Or use the default system message if the flag is set "{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}" "{% else %}" "{% set loop_messages = messages %}" "{% set system_message = false %}" "{% endif %}" "{% for message in loop_messages %}" # Loop over all non-system messages "{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}" "{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}" "{% endif %}" "{% if loop.index0 == 0 and system_message != false %}" # Embed system message in first message "{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}" "{% else %}" "{% set content = message['content'] %}" "{% endif %}" "{% if message['role'] == 'user' %}" # After all of that, handle messages/roles in a fairly normal way "{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}" "{% elif message['role'] == 'system' %}" "{{ '<<SYS>>\\n' + content.strip() + '\\n<</SYS>>\\n\\n' }}" "{% elif message['role'] == 'assistant' %}" "{{ ' ' + content.strip() + ' ' + eos_token }}" "{% endif %}" "{% endfor %}" ) template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false") default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'") template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message) return template def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. The special tokens depend on calling set_lang. An NLLB sequence has the following format, where `X` represents the sequence: - `input_ids` (for encoder) `X [eos, src_lang_code]` - `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]` BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return self.bos_token_id + token_ids_0 + self.eos_token_id return self.bos_token_id + token_ids_0 + token_ids_1 + self.eos_token_id
transformers/src/transformers/models/code_llama/tokenization_code_llama_fast.py/0
{ "file_path": "transformers/src/transformers/models/code_llama/tokenization_code_llama_fast.py", "repo_id": "transformers", "token_count": 8207 }
75
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TF 2.0 ConvBERT model.""" from __future__ import annotations from typing import Optional, Tuple, Union import numpy as np import tensorflow as tf from ...activations_tf import get_tf_activation from ...modeling_tf_outputs import ( TFBaseModelOutput, TFMaskedLMOutput, TFMultipleChoiceModelOutput, TFQuestionAnsweringModelOutput, TFSequenceClassifierOutput, TFTokenClassifierOutput, ) from ...modeling_tf_utils import ( TFMaskedLanguageModelingLoss, TFModelInputType, TFMultipleChoiceLoss, TFPreTrainedModel, TFQuestionAnsweringLoss, TFSequenceClassificationLoss, TFSequenceSummary, TFTokenClassificationLoss, get_initializer, keras, keras_serializable, unpack_inputs, ) from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, ) from .configuration_convbert import ConvBertConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "YituTech/conv-bert-base" _CONFIG_FOR_DOC = "ConvBertConfig" TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "YituTech/conv-bert-base", "YituTech/conv-bert-medium-small", "YituTech/conv-bert-small", # See all ConvBERT models at https://huggingface.co/models?filter=convbert ] # Copied from transformers.models.albert.modeling_tf_albert.TFAlbertEmbeddings with Albert->ConvBert class TFConvBertEmbeddings(keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config: ConvBertConfig, **kwargs): super().__init__(**kwargs) self.config = config self.embedding_size = config.embedding_size self.max_position_embeddings = config.max_position_embeddings self.initializer_range = config.initializer_range self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) def build(self, input_shape=None): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.embedding_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("token_type_embeddings"): self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.config.type_vocab_size, self.embedding_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("position_embeddings"): self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.embedding_size], initializer=get_initializer(self.initializer_range), ) if self.built: return self.built = True if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.embedding_size]) # Copied from transformers.models.bert.modeling_tf_bert.TFBertEmbeddings.call def call( self, input_ids: tf.Tensor = None, position_ids: tf.Tensor = None, token_type_ids: tf.Tensor = None, inputs_embeds: tf.Tensor = None, past_key_values_length=0, training: bool = False, ) -> tf.Tensor: """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ if input_ids is None and inputs_embeds is None: raise ValueError("Need to provide either `input_ids` or `input_embeds`.") if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if position_ids is None: position_ids = tf.expand_dims( tf.range(start=past_key_values_length, limit=input_shape[1] + past_key_values_length), axis=0 ) position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings = inputs_embeds + position_embeds + token_type_embeds final_embeddings = self.LayerNorm(inputs=final_embeddings) final_embeddings = self.dropout(inputs=final_embeddings, training=training) return final_embeddings class TFConvBertSelfAttention(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) new_num_attention_heads = int(config.num_attention_heads / config.head_ratio) if new_num_attention_heads < 1: self.head_ratio = config.num_attention_heads num_attention_heads = 1 else: num_attention_heads = new_num_attention_heads self.head_ratio = config.head_ratio self.num_attention_heads = num_attention_heads self.conv_kernel_size = config.conv_kernel_size if config.hidden_size % self.num_attention_heads != 0: raise ValueError("hidden_size should be divisible by num_attention_heads") self.attention_head_size = config.hidden_size // config.num_attention_heads self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" ) self.key = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" ) self.value = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" ) self.key_conv_attn_layer = keras.layers.SeparableConv1D( self.all_head_size, self.conv_kernel_size, padding="same", activation=None, depthwise_initializer=get_initializer(1 / self.conv_kernel_size), pointwise_initializer=get_initializer(config.initializer_range), name="key_conv_attn_layer", ) self.conv_kernel_layer = keras.layers.Dense( self.num_attention_heads * self.conv_kernel_size, activation=None, name="conv_kernel_layer", kernel_initializer=get_initializer(config.initializer_range), ) self.conv_out_layer = keras.layers.Dense( self.all_head_size, activation=None, name="conv_out_layer", kernel_initializer=get_initializer(config.initializer_range), ) self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob) self.config = config def transpose_for_scores(self, x, batch_size): # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] x = tf.reshape(x, (batch_size, -1, self.num_attention_heads, self.attention_head_size)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call(self, hidden_states, attention_mask, head_mask, output_attentions, training=False): batch_size = shape_list(hidden_states)[0] mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) mixed_key_conv_attn_layer = self.key_conv_attn_layer(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) key_layer = self.transpose_for_scores(mixed_key_layer, batch_size) conv_attn_layer = tf.multiply(mixed_key_conv_attn_layer, mixed_query_layer) conv_kernel_layer = self.conv_kernel_layer(conv_attn_layer) conv_kernel_layer = tf.reshape(conv_kernel_layer, [-1, self.conv_kernel_size, 1]) conv_kernel_layer = stable_softmax(conv_kernel_layer, axis=1) paddings = tf.constant( [ [ 0, 0, ], [int((self.conv_kernel_size - 1) / 2), int((self.conv_kernel_size - 1) / 2)], [0, 0], ] ) conv_out_layer = self.conv_out_layer(hidden_states) conv_out_layer = tf.reshape(conv_out_layer, [batch_size, -1, self.all_head_size]) conv_out_layer = tf.pad(conv_out_layer, paddings, "CONSTANT") unfold_conv_out_layer = tf.stack( [ tf.slice(conv_out_layer, [0, i, 0], [batch_size, shape_list(mixed_query_layer)[1], self.all_head_size]) for i in range(self.conv_kernel_size) ], axis=-1, ) conv_out_layer = tf.reshape(unfold_conv_out_layer, [-1, self.attention_head_size, self.conv_kernel_size]) conv_out_layer = tf.matmul(conv_out_layer, conv_kernel_layer) conv_out_layer = tf.reshape(conv_out_layer, [-1, self.all_head_size]) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = tf.matmul( query_layer, key_layer, transpose_b=True ) # (batch size, num_heads, seq_len_q, seq_len_k) dk = tf.cast(shape_list(key_layer)[-1], attention_scores.dtype) # scale attention_scores attention_scores = attention_scores / tf.math.sqrt(dk) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in TFBertModel call() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = stable_softmax(attention_scores, axis=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs, training=training) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask value_layer = tf.reshape( mixed_value_layer, [batch_size, -1, self.num_attention_heads, self.attention_head_size] ) value_layer = tf.transpose(value_layer, [0, 2, 1, 3]) context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, perm=[0, 2, 1, 3]) conv_out = tf.reshape(conv_out_layer, [batch_size, -1, self.num_attention_heads, self.attention_head_size]) context_layer = tf.concat([context_layer, conv_out], 2) context_layer = tf.reshape( context_layer, (batch_size, -1, self.head_ratio * self.all_head_size) ) # (batch_size, seq_len_q, all_head_size) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "query", None) is not None: with tf.name_scope(self.query.name): self.query.build([None, None, self.config.hidden_size]) if getattr(self, "key", None) is not None: with tf.name_scope(self.key.name): self.key.build([None, None, self.config.hidden_size]) if getattr(self, "value", None) is not None: with tf.name_scope(self.value.name): self.value.build([None, None, self.config.hidden_size]) if getattr(self, "key_conv_attn_layer", None) is not None: with tf.name_scope(self.key_conv_attn_layer.name): self.key_conv_attn_layer.build([None, None, self.config.hidden_size]) if getattr(self, "conv_kernel_layer", None) is not None: with tf.name_scope(self.conv_kernel_layer.name): self.conv_kernel_layer.build([None, None, self.all_head_size]) if getattr(self, "conv_out_layer", None) is not None: with tf.name_scope(self.conv_out_layer.name): self.conv_out_layer.build([None, None, self.config.hidden_size]) class TFConvBertSelfOutput(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.config = config def call(self, hidden_states, input_tensor, training=False): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) class TFConvBertAttention(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.self_attention = TFConvBertSelfAttention(config, name="self") self.dense_output = TFConvBertSelfOutput(config, name="output") def prune_heads(self, heads): raise NotImplementedError def call(self, input_tensor, attention_mask, head_mask, output_attentions, training=False): self_outputs = self.self_attention( input_tensor, attention_mask, head_mask, output_attentions, training=training ) attention_output = self.dense_output(self_outputs[0], input_tensor, training=training) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self_attention", None) is not None: with tf.name_scope(self.self_attention.name): self.self_attention.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None) class GroupedLinearLayer(keras.layers.Layer): def __init__(self, input_size, output_size, num_groups, kernel_initializer, **kwargs): super().__init__(**kwargs) self.input_size = input_size self.output_size = output_size self.num_groups = num_groups self.kernel_initializer = kernel_initializer self.group_in_dim = self.input_size // self.num_groups self.group_out_dim = self.output_size // self.num_groups def build(self, input_shape=None): self.kernel = self.add_weight( "kernel", shape=[self.group_out_dim, self.group_in_dim, self.num_groups], initializer=self.kernel_initializer, trainable=True, ) self.bias = self.add_weight( "bias", shape=[self.output_size], initializer=self.kernel_initializer, dtype=self.dtype, trainable=True ) super().build(input_shape) def call(self, hidden_states): batch_size = shape_list(hidden_states)[0] x = tf.transpose(tf.reshape(hidden_states, [-1, self.num_groups, self.group_in_dim]), [1, 0, 2]) x = tf.matmul(x, tf.transpose(self.kernel, [2, 1, 0])) x = tf.transpose(x, [1, 0, 2]) x = tf.reshape(x, [batch_size, -1, self.output_size]) x = tf.nn.bias_add(value=x, bias=self.bias) return x class TFConvBertIntermediate(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.num_groups == 1: self.dense = keras.layers.Dense( config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) else: self.dense = GroupedLinearLayer( config.hidden_size, config.intermediate_size, num_groups=config.num_groups, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) class TFConvBertOutput(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) if config.num_groups == 1: self.dense = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) else: self.dense = GroupedLinearLayer( config.intermediate_size, config.hidden_size, num_groups=config.num_groups, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) self.config = config def call(self, hidden_states, input_tensor, training=False): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) class TFConvBertLayer(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.attention = TFConvBertAttention(config, name="attention") self.intermediate = TFConvBertIntermediate(config, name="intermediate") self.bert_output = TFConvBertOutput(config, name="output") def call(self, hidden_states, attention_mask, head_mask, output_attentions, training=False): attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions, training=training ) attention_output = attention_outputs[0] intermediate_output = self.intermediate(attention_output) layer_output = self.bert_output(intermediate_output, attention_output, training=training) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "bert_output", None) is not None: with tf.name_scope(self.bert_output.name): self.bert_output.build(None) class TFConvBertEncoder(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.layer = [TFConvBertLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] def call( self, hidden_states, attention_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=False, ): all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, head_mask[i], output_attentions, training=training ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) class TFConvBertPredictionHeadTransform(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( config.embedding_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.config = config def call(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) @keras_serializable class TFConvBertMainLayer(keras.layers.Layer): config_class = ConvBertConfig def __init__(self, config, **kwargs): super().__init__(**kwargs) self.embeddings = TFConvBertEmbeddings(config, name="embeddings") if config.embedding_size != config.hidden_size: self.embeddings_project = keras.layers.Dense(config.hidden_size, name="embeddings_project") self.encoder = TFConvBertEncoder(config, name="encoder") self.config = config def get_input_embeddings(self): return self.embeddings def set_input_embeddings(self, value): self.embeddings.weight = value self.embeddings.vocab_size = value.shape[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError def get_extended_attention_mask(self, attention_mask, input_shape, dtype): if attention_mask is None: attention_mask = tf.fill(input_shape, 1) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = tf.cast(extended_attention_mask, dtype) extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask def get_head_mask(self, head_mask): if head_mask is not None: raise NotImplementedError else: head_mask = [None] * self.config.num_hidden_layers return head_mask @unpack_inputs def call( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, training=False, ): if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(input_shape, 1) if token_type_ids is None: token_type_ids = tf.fill(input_shape, 0) hidden_states = self.embeddings(input_ids, position_ids, token_type_ids, inputs_embeds, training=training) extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, hidden_states.dtype) head_mask = self.get_head_mask(head_mask) if hasattr(self, "embeddings_project"): hidden_states = self.embeddings_project(hidden_states, training=training) hidden_states = self.encoder( hidden_states, extended_attention_mask, head_mask, output_attentions, output_hidden_states, return_dict, training=training, ) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None) if getattr(self, "embeddings_project", None) is not None: with tf.name_scope(self.embeddings_project.name): self.embeddings_project.build([None, None, self.config.embedding_size]) class TFConvBertPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ConvBertConfig base_model_prefix = "convbert" CONVBERT_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and behavior. <Tip> TensorFlow models and layers in `transformers` accept two formats as input: - having all inputs as keyword arguments (like PyTorch models), or - having all inputs as a list, tuple or dict in the first positional argument. The reason the second format is supported is that Keras methods prefer this format when passing inputs to models and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first positional argument: - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` - a dictionary with one or several input Tensors associated to the input names given in the docstring: `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` Note that when creating models and layers with [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry about any of this, as you can just pass inputs like you would to any other Python function! </Tip> Args: config ([`ConvBertConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ CONVBERT_INPUTS_DOCSTRING = r""" Args: input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`: - 0 corresponds to a *sentence A* token, - 1 corresponds to a *sentence B* token. [What are token type IDs?](../glossary#token-type-ids) position_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the config will be used instead. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in eager mode, in graph mode the value will always be set to True. training (`bool`, *optional*, defaults to `False`): Whether or not to use the model in training mode (some modules like dropout modules have different behaviors between training and evaluation). """ @add_start_docstrings( "The bare ConvBERT Model transformer outputting raw hidden-states without any specific head on top.", CONVBERT_START_DOCSTRING, ) class TFConvBertModel(TFConvBertPreTrainedModel): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.convbert = TFConvBertMainLayer(config, name="convbert") @unpack_inputs @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: Optional[Union[np.array, tf.Tensor]] = None, token_type_ids: Optional[Union[np.array, tf.Tensor]] = None, position_ids: Optional[Union[np.array, tf.Tensor]] = None, head_mask: Optional[Union[np.array, tf.Tensor]] = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: outputs = self.convbert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "convbert", None) is not None: with tf.name_scope(self.convbert.name): self.convbert.build(None) class TFConvBertMaskedLMHead(keras.layers.Layer): def __init__(self, config, input_embeddings, **kwargs): super().__init__(**kwargs) self.config = config self.embedding_size = config.embedding_size self.input_embeddings = input_embeddings def build(self, input_shape): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") super().build(input_shape) def get_output_embeddings(self): return self.input_embeddings def set_output_embeddings(self, value): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self): return {"bias": self.bias} def set_bias(self, value): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states): seq_length = shape_list(tensor=hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size]) hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states class TFConvBertGeneratorPredictions(keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dense = keras.layers.Dense(config.embedding_size, name="dense") self.config = config def call(self, generator_hidden_states, training=False): hidden_states = self.dense(generator_hidden_states) hidden_states = get_tf_activation("gelu")(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.embedding_size]) if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) @add_start_docstrings("""ConvBERT Model with a `language modeling` head on top.""", CONVBERT_START_DOCSTRING) class TFConvBertForMaskedLM(TFConvBertPreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, **kwargs) self.config = config self.convbert = TFConvBertMainLayer(config, name="convbert") self.generator_predictions = TFConvBertGeneratorPredictions(config, name="generator_predictions") if isinstance(config.hidden_act, str): self.activation = get_tf_activation(config.hidden_act) else: self.activation = config.hidden_act self.generator_lm_head = TFConvBertMaskedLMHead(config, self.convbert.embeddings, name="generator_lm_head") def get_lm_head(self): return self.generator_lm_head def get_prefix_bias_name(self): return self.name + "/" + self.generator_lm_head.name @unpack_inputs @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFMaskedLMOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ generator_hidden_states = self.convbert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) generator_sequence_output = generator_hidden_states[0] prediction_scores = self.generator_predictions(generator_sequence_output, training=training) prediction_scores = self.generator_lm_head(prediction_scores, training=training) loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores) if not return_dict: output = (prediction_scores,) + generator_hidden_states[1:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=generator_hidden_states.hidden_states, attentions=generator_hidden_states.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "convbert", None) is not None: with tf.name_scope(self.convbert.name): self.convbert.build(None) if getattr(self, "generator_predictions", None) is not None: with tf.name_scope(self.generator_predictions.name): self.generator_predictions.build(None) if getattr(self, "generator_lm_head", None) is not None: with tf.name_scope(self.generator_lm_head.name): self.generator_lm_head.build(None) class TFConvBertClassificationHead(keras.layers.Layer): """Head for sentence-level classification tasks.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = keras.layers.Dropout(classifier_dropout) self.out_proj = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="out_proj" ) self.config = config def call(self, hidden_states, **kwargs): x = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS]) x = self.dropout(x) x = self.dense(x) x = get_tf_activation(self.config.hidden_act)(x) x = self.dropout(x) x = self.out_proj(x) return x def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "out_proj", None) is not None: with tf.name_scope(self.out_proj.name): self.out_proj.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ ConvBERT Model transformer with a sequence classification/regression head on top e.g., for GLUE tasks. """, CONVBERT_START_DOCSTRING, ) class TFConvBertForSequenceClassification(TFConvBertPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.convbert = TFConvBertMainLayer(config, name="convbert") self.classifier = TFConvBertClassificationHead(config, name="classifier") @unpack_inputs @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFSequenceClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.convbert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) logits = self.classifier(outputs[0], training=training) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "convbert", None) is not None: with tf.name_scope(self.convbert.name): self.convbert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build(None) @add_start_docstrings( """ ConvBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """, CONVBERT_START_DOCSTRING, ) class TFConvBertForMultipleChoice(TFConvBertPreTrainedModel, TFMultipleChoiceLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.convbert = TFConvBertMainLayer(config, name="convbert") self.sequence_summary = TFSequenceSummary( config, initializer_range=config.initializer_range, name="sequence_summary" ) self.classifier = keras.layers.Dense( 1, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward( CONVBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length") ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFMultipleChoiceModelOutput]: r""" labels (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ if input_ids is not None: num_choices = shape_list(input_ids)[1] seq_length = shape_list(input_ids)[2] else: num_choices = shape_list(inputs_embeds)[1] seq_length = shape_list(inputs_embeds)[2] flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None flat_inputs_embeds = ( tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3])) if inputs_embeds is not None else None ) outputs = self.convbert( flat_input_ids, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask, flat_inputs_embeds, output_attentions, output_hidden_states, return_dict=return_dict, training=training, ) logits = self.sequence_summary(outputs[0], training=training) logits = self.classifier(logits) reshaped_logits = tf.reshape(logits, (-1, num_choices)) loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits) if not return_dict: output = (reshaped_logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "convbert", None) is not None: with tf.name_scope(self.convbert.name): self.convbert.build(None) if getattr(self, "sequence_summary", None) is not None: with tf.name_scope(self.sequence_summary.name): self.sequence_summary.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ ConvBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """, CONVBERT_START_DOCSTRING, ) class TFConvBertForTokenClassification(TFConvBertPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.convbert = TFConvBertMainLayer(config, name="convbert") classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = keras.layers.Dropout(classifier_dropout) self.classifier = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFTokenClassifierOutput]: r""" labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.convbert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(sequence_output) loss = None if labels is None else self.hf_compute_loss(labels, logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "convbert", None) is not None: with tf.name_scope(self.convbert.name): self.convbert.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size]) @add_start_docstrings( """ ConvBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). """, CONVBERT_START_DOCSTRING, ) class TFConvBertForQuestionAnswering(TFConvBertPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.convbert = TFConvBertMainLayer(config, name="convbert") self.qa_outputs = keras.layers.Dense( config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, head_mask: np.ndarray | tf.Tensor | None = None, inputs_embeds: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: tf.Tensor | None = None, end_positions: tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[Tuple, TFQuestionAnsweringModelOutput]: r""" start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.convbert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = tf.split(logits, 2, axis=-1) start_logits = tf.squeeze(start_logits, axis=-1) end_logits = tf.squeeze(end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels, (start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "convbert", None) is not None: with tf.name_scope(self.convbert.name): self.convbert.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size])
transformers/src/transformers/models/convbert/modeling_tf_convbert.py/0
{ "file_path": "transformers/src/transformers/models/convbert/modeling_tf_convbert.py", "repo_id": "transformers", "token_count": 26614 }
76
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes.""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class CpmTokenizer(PreTrainedTokenizer): """Runs pre-tokenization with Jieba segmentation tool. It is used in CPM models.""" vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP def __init__( self, vocab_file, do_lower_case=False, remove_space=True, keep_accents=False, bos_token="<s>", eos_token="</s>", unk_token="<unk>", sep_token="<sep>", pad_token="<pad>", cls_token="<cls>", mask_token="<mask>", additional_special_tokens=["<eop>", "<eod>"], sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: """ Construct a CPM tokenizer. Based on [Jieba](https://pypi.org/project/jieba/) and [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that contains the vocabulary necessary to instantiate a tokenizer. do_lower_case (`bool`, *optional*, defaults to `True`): Whether to lowercase the input when tokenizing. remove_space (`bool`, *optional*, defaults to `True`): Whether to strip the text when tokenizing (removing excess spaces before and after the string). keep_accents (`bool`, *optional*, defaults to `False`): Whether to keep accents when tokenizing. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. sep_token (`str`, *optional*, defaults to `"<sep>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. cls_token (`str`, *optional*, defaults to `"<cls>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. additional_special_tokens (`List[str]`, *optional*, defaults to `["<eop>", "<eod>"]`): Additional special tokens used by the tokenizer. Attributes: sp_model (`SentencePieceProcessor`): The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). """ # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.do_lower_case = do_lower_case self.remove_space = remove_space self.keep_accents = keep_accents self.vocab_file = vocab_file self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(vocab_file) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) self.jieba = jieba self.translator = str.maketrans(" \n", "\u2582\u2583") super().__init__( do_lower_case=do_lower_case, remove_space=remove_space, keep_accents=keep_accents, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, pad_token=pad_token, cls_token=cls_token, mask_token=mask_token, additional_special_tokens=additional_special_tokens, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) self._pad_token_type_id = 3 @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def vocab_size(self): return len(self.sp_model) # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.get_vocab def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.__getstate__ def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.__setstate__ def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.preprocess_text def preprocess_text(self, inputs): if self.remove_space: outputs = " ".join(inputs.strip().split()) else: outputs = inputs outputs = outputs.replace("``", '"').replace("''", '"') if not self.keep_accents: outputs = unicodedata.normalize("NFKD", outputs) outputs = "".join([c for c in outputs if not unicodedata.combining(c)]) if self.do_lower_case: outputs = outputs.lower() return outputs # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer._tokenize def _tokenize(self, text: str) -> List[str]: """Tokenize a string.""" text = self.preprocess_text(text) pieces = self.sp_model.encode(text, out_type=str) new_pieces = [] for piece in pieces: if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit(): cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, "")) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: cur_pieces = cur_pieces[1:] else: cur_pieces[0] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(cur_pieces) else: new_pieces.append(piece) return new_pieces # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.PieceToId(token) # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.sp_model.IdToPiece(index) # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (strings for sub-words) in a single string.""" out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() return out_string # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. An XLNet sequence has the following format: - single sequence: `X <sep> <cls>` - pair of sequences: `A <sep> B <sep> <cls>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return token_ids_0 + sep + cls return token_ids_0 + sep + token_ids_1 + sep + cls # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is not None: return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1, 1] return ([0] * len(token_ids_0)) + [1, 1] # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.create_token_type_ids_from_sequences def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls_segment_id = [2] if token_ids_1 is None: return len(token_ids_0 + sep) * [0] + cls_segment_id return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + cls_segment_id # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,) def _decode(self, *args, **kwargs): text = super()._decode(*args, **kwargs) text = text.replace(" ", "").replace("\u2582", " ").replace("\u2583", "\n") return text
transformers/src/transformers/models/cpm/tokenization_cpm.py/0
{ "file_path": "transformers/src/transformers/models/cpm/tokenization_cpm.py", "repo_id": "transformers", "token_count": 6643 }
77
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _import_structure = { "configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"], "configuration_data2vec_text": [ "DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecTextConfig", "Data2VecTextOnnxConfig", ], "configuration_data2vec_vision": [ "DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecVisionConfig", "Data2VecVisionOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_data2vec_audio"] = [ "DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecAudioForAudioFrameClassification", "Data2VecAudioForCTC", "Data2VecAudioForSequenceClassification", "Data2VecAudioForXVector", "Data2VecAudioModel", "Data2VecAudioPreTrainedModel", ] _import_structure["modeling_data2vec_text"] = [ "DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecTextForCausalLM", "Data2VecTextForMaskedLM", "Data2VecTextForMultipleChoice", "Data2VecTextForQuestionAnswering", "Data2VecTextForSequenceClassification", "Data2VecTextForTokenClassification", "Data2VecTextModel", "Data2VecTextPreTrainedModel", ] _import_structure["modeling_data2vec_vision"] = [ "DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST", "Data2VecVisionForImageClassification", "Data2VecVisionForMaskedImageModeling", "Data2VecVisionForSemanticSegmentation", "Data2VecVisionModel", "Data2VecVisionPreTrainedModel", ] if is_tf_available(): _import_structure["modeling_tf_data2vec_vision"] = [ "TFData2VecVisionForImageClassification", "TFData2VecVisionForSemanticSegmentation", "TFData2VecVisionModel", "TFData2VecVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_data2vec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, Data2VecAudioConfig from .configuration_data2vec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, Data2VecTextConfig, Data2VecTextOnnxConfig, ) from .configuration_data2vec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, Data2VecVisionConfig, Data2VecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_data2vec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, Data2VecAudioForAudioFrameClassification, Data2VecAudioForCTC, Data2VecAudioForSequenceClassification, Data2VecAudioForXVector, Data2VecAudioModel, Data2VecAudioPreTrainedModel, ) from .modeling_data2vec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, Data2VecTextForCausalLM, Data2VecTextForMaskedLM, Data2VecTextForMultipleChoice, Data2VecTextForQuestionAnswering, Data2VecTextForSequenceClassification, Data2VecTextForTokenClassification, Data2VecTextModel, Data2VecTextPreTrainedModel, ) from .modeling_data2vec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, Data2VecVisionForImageClassification, Data2VecVisionForMaskedImageModeling, Data2VecVisionForSemanticSegmentation, Data2VecVisionModel, Data2VecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_data2vec_vision import ( TFData2VecVisionForImageClassification, TFData2VecVisionForSemanticSegmentation, TFData2VecVisionModel, TFData2VecVisionPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/data2vec/__init__.py/0
{ "file_path": "transformers/src/transformers/models/data2vec/__init__.py", "repo_id": "transformers", "token_count": 2188 }
78
# coding=utf-8 # Copyright 2020 Microsoft and the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fast Tokenization class for model DeBERTa.""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_deberta import DebertaTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "microsoft/deberta-base": "https://huggingface.co/microsoft/deberta-base/resolve/main/vocab.json", "microsoft/deberta-large": "https://huggingface.co/microsoft/deberta-large/resolve/main/vocab.json", "microsoft/deberta-xlarge": "https://huggingface.co/microsoft/deberta-xlarge/resolve/main/vocab.json", "microsoft/deberta-base-mnli": "https://huggingface.co/microsoft/deberta-base-mnli/resolve/main/vocab.json", "microsoft/deberta-large-mnli": "https://huggingface.co/microsoft/deberta-large-mnli/resolve/main/vocab.json", "microsoft/deberta-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-xlarge-mnli/resolve/main/vocab.json" ), }, "merges_file": { "microsoft/deberta-base": "https://huggingface.co/microsoft/deberta-base/resolve/main/merges.txt", "microsoft/deberta-large": "https://huggingface.co/microsoft/deberta-large/resolve/main/merges.txt", "microsoft/deberta-xlarge": "https://huggingface.co/microsoft/deberta-xlarge/resolve/main/merges.txt", "microsoft/deberta-base-mnli": "https://huggingface.co/microsoft/deberta-base-mnli/resolve/main/merges.txt", "microsoft/deberta-large-mnli": "https://huggingface.co/microsoft/deberta-large-mnli/resolve/main/merges.txt", "microsoft/deberta-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-xlarge-mnli/resolve/main/merges.txt" ), }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "microsoft/deberta-base": 512, "microsoft/deberta-large": 512, "microsoft/deberta-xlarge": 512, "microsoft/deberta-base-mnli": 512, "microsoft/deberta-large-mnli": 512, "microsoft/deberta-xlarge-mnli": 512, } PRETRAINED_INIT_CONFIGURATION = { "microsoft/deberta-base": {"do_lower_case": False}, "microsoft/deberta-large": {"do_lower_case": False}, } class DebertaTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" DeBERTa tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import DebertaTokenizerFast >>> tokenizer = DebertaTokenizerFast.from_pretrained("microsoft/deberta-base") >>> tokenizer("Hello world")["input_ids"] [1, 31414, 232, 2] >>> tokenizer(" Hello world")["input_ids"] [1, 20920, 232, 2] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. </Tip> This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`, *optional*): Path to the vocabulary file. merges_file (`str`, *optional*): Path to the merges file. tokenizer_file (`str`, *optional*): The path to a tokenizer file to use instead of the vocab file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"[CLS]"`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"[SEP]"`): The end of sequence token. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (Deberta tokenizer detect beginning of words by the preceding space). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask", "token_type_ids"] slow_tokenizer_class = DebertaTokenizer def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, errors="replace", bos_token="[CLS]", eos_token="[SEP]", sep_token="[SEP]", cls_token="[CLS]", unk_token="[UNK]", pad_token="[PAD]", mask_token="[MASK]", add_prefix_space=False, **kwargs, ): super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, **kwargs, ) self.add_bos_token = kwargs.pop("add_bos_token", False) pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) pre_tok_state["add_prefix_space"] = add_prefix_space self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) self.add_prefix_space = add_prefix_space @property def mask_token(self) -> str: """ `str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not having been set. Deberta tokenizer has a special mask token to be used in the fill-mask pipeline. The mask token will greedily comprise the space before the *[MASK]*. """ if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def mask_token(self, value): """ Overriding the default behavior of the mask token to have it eat the space before it. """ # Mask token behave like a normal word, i.e. include the space before it # So we set lstrip to True value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value self._mask_token = value def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A DeBERTa sequence has the following format: - single sequence: [CLS] X [SEP] - pair of sequences: [CLS] A [SEP] B [SEP] Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._batch_encode_plus def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*args, **kwargs) # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._encode_plus def _encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*args, **kwargs) # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files)
transformers/src/transformers/models/deberta/tokenization_deberta_fast.py/0
{ "file_path": "transformers/src/transformers/models/deberta/tokenization_deberta_fast.py", "repo_id": "transformers", "token_count": 5211 }
79
# coding=utf-8 # Copyright 2022 SenseTime and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Deformable DETR model.""" import copy import math import os import warnings from dataclasses import dataclass from pathlib import Path from typing import Dict, List, Optional, Tuple, Union import torch import torch.nn.functional as F from torch import Tensor, nn from torch.autograd import Function from torch.autograd.function import once_differentiable from ...activations import ACT2FN from ...file_utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, is_scipy_available, is_timm_available, is_torch_cuda_available, is_vision_available, replace_return_docstrings, requires_backends, ) from ...modeling_attn_mask_utils import _prepare_4d_attention_mask from ...modeling_outputs import BaseModelOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import meshgrid from ...utils import is_accelerate_available, is_ninja_available, logging from ...utils.backbone_utils import load_backbone from .configuration_deformable_detr import DeformableDetrConfig logger = logging.get_logger(__name__) MultiScaleDeformableAttention = None def load_cuda_kernels(): from torch.utils.cpp_extension import load global MultiScaleDeformableAttention root = Path(__file__).resolve().parent.parent.parent / "kernels" / "deta" src_files = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu", "ms_deform_attn_cpu.cpp"), os.path.join("cuda", "ms_deform_attn_cuda.cu"), ] ] MultiScaleDeformableAttention = load( "MultiScaleDeformableAttention", src_files, with_cuda=True, extra_include_paths=[str(root)], extra_cflags=["-DWITH_CUDA=1"], extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ], ) if is_vision_available(): from transformers.image_transforms import center_to_corners_format if is_accelerate_available(): from accelerate import PartialState from accelerate.utils import reduce class MultiScaleDeformableAttentionFunction(Function): @staticmethod def forward( context, value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, im2col_step, ): context.im2col_step = im2col_step output = MultiScaleDeformableAttention.ms_deform_attn_forward( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, context.im2col_step, ) context.save_for_backward( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights ) return output @staticmethod @once_differentiable def backward(context, grad_output): ( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, ) = context.saved_tensors grad_value, grad_sampling_loc, grad_attn_weight = MultiScaleDeformableAttention.ms_deform_attn_backward( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, grad_output, context.im2col_step, ) return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None if is_scipy_available(): from scipy.optimize import linear_sum_assignment if is_timm_available(): from timm import create_model logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "DeformableDetrConfig" _CHECKPOINT_FOR_DOC = "sensetime/deformable-detr" DEFORMABLE_DETR_PRETRAINED_MODEL_ARCHIVE_LIST = [ "sensetime/deformable-detr", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr ] @dataclass class DeformableDetrDecoderOutput(ModelOutput): """ Base class for outputs of the DeformableDetrDecoder. This class adds two attributes to BaseModelOutputWithCrossAttentions, namely: - a stacked tensor of intermediate decoder hidden states (i.e. the output of each decoder layer) - a stacked tensor of intermediate reference points. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`): Stacked intermediate hidden states (output of each layer of the decoder). intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, hidden_size)`): Stacked intermediate reference points (reference points of each layer of the decoder). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. """ last_hidden_state: torch.FloatTensor = None intermediate_hidden_states: torch.FloatTensor = None intermediate_reference_points: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None @dataclass class DeformableDetrModelOutput(ModelOutput): """ Base class for outputs of the Deformable DETR encoder-decoder model. Args: init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): Initial reference points sent through the Transformer decoder. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`): Sequence of hidden-states at the output of the last layer of the decoder of the model. intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`): Stacked intermediate hidden states (output of each layer of the decoder). intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`): Stacked intermediate reference points (reference points of each layer of the decoder). decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_queries, num_queries)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`): Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are picked as region proposals in the first stage. Output of bounding box binary classification (i.e. foreground and background). enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`): Logits of predicted bounding boxes coordinates in the first stage. """ init_reference_points: torch.FloatTensor = None last_hidden_state: torch.FloatTensor = None intermediate_hidden_states: torch.FloatTensor = None intermediate_reference_points: torch.FloatTensor = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None enc_outputs_class: Optional[torch.FloatTensor] = None enc_outputs_coord_logits: Optional[torch.FloatTensor] = None @dataclass class DeformableDetrObjectDetectionOutput(ModelOutput): """ Output type of [`DeformableDetrForObjectDetection`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)): Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized scale-invariant IoU loss. loss_dict (`Dict`, *optional*): A dictionary containing the individual losses. Useful for logging. logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`): Classification logits (including no-object) for all queries. pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding possible padding). You can use [`~DeformableDetrProcessor.post_process_object_detection`] to retrieve the unnormalized bounding boxes. auxiliary_outputs (`list[Dict]`, *optional*): Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`) and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and `pred_boxes`) for each decoder layer. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the decoder of the model. decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_queries, num_queries)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_heads, 4, 4)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`): Stacked intermediate hidden states (output of each layer of the decoder). intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`): Stacked intermediate reference points (reference points of each layer of the decoder). init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): Initial reference points sent through the Transformer decoder. enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`): Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are picked as region proposals in the first stage. Output of bounding box binary classification (i.e. foreground and background). enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`): Logits of predicted bounding boxes coordinates in the first stage. """ loss: Optional[torch.FloatTensor] = None loss_dict: Optional[Dict] = None logits: torch.FloatTensor = None pred_boxes: torch.FloatTensor = None auxiliary_outputs: Optional[List[Dict]] = None init_reference_points: Optional[torch.FloatTensor] = None last_hidden_state: Optional[torch.FloatTensor] = None intermediate_hidden_states: Optional[torch.FloatTensor] = None intermediate_reference_points: Optional[torch.FloatTensor] = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None enc_outputs_class: Optional = None enc_outputs_coord_logits: Optional = None def _get_clones(module, N): return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) def inverse_sigmoid(x, eps=1e-5): x = x.clamp(min=0, max=1) x1 = x.clamp(min=eps) x2 = (1 - x).clamp(min=eps) return torch.log(x1 / x2) # Copied from transformers.models.detr.modeling_detr.DetrFrozenBatchNorm2d with Detr->DeformableDetr class DeformableDetrFrozenBatchNorm2d(nn.Module): """ BatchNorm2d where the batch statistics and the affine parameters are fixed. Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than torchvision.models.resnet[18,34,50,101] produce nans. """ def __init__(self, n): super().__init__() self.register_buffer("weight", torch.ones(n)) self.register_buffer("bias", torch.zeros(n)) self.register_buffer("running_mean", torch.zeros(n)) self.register_buffer("running_var", torch.ones(n)) def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ): num_batches_tracked_key = prefix + "num_batches_tracked" if num_batches_tracked_key in state_dict: del state_dict[num_batches_tracked_key] super()._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ) def forward(self, x): # move reshapes to the beginning # to make it user-friendly weight = self.weight.reshape(1, -1, 1, 1) bias = self.bias.reshape(1, -1, 1, 1) running_var = self.running_var.reshape(1, -1, 1, 1) running_mean = self.running_mean.reshape(1, -1, 1, 1) epsilon = 1e-5 scale = weight * (running_var + epsilon).rsqrt() bias = bias - running_mean * scale return x * scale + bias # Copied from transformers.models.detr.modeling_detr.replace_batch_norm with Detr->DeformableDetr def replace_batch_norm(model): r""" Recursively replace all `torch.nn.BatchNorm2d` with `DeformableDetrFrozenBatchNorm2d`. Args: model (torch.nn.Module): input model """ for name, module in model.named_children(): if isinstance(module, nn.BatchNorm2d): new_module = DeformableDetrFrozenBatchNorm2d(module.num_features) if not module.weight.device == torch.device("meta"): new_module.weight.data.copy_(module.weight) new_module.bias.data.copy_(module.bias) new_module.running_mean.data.copy_(module.running_mean) new_module.running_var.data.copy_(module.running_var) model._modules[name] = new_module if len(list(module.children())) > 0: replace_batch_norm(module) class DeformableDetrConvEncoder(nn.Module): """ Convolutional backbone, using either the AutoBackbone API or one from the timm library. nn.BatchNorm2d layers are replaced by DeformableDetrFrozenBatchNorm2d as defined above. """ def __init__(self, config): super().__init__() self.config = config if config.use_timm_backbone: requires_backends(self, ["timm"]) kwargs = {} if config.dilation: kwargs["output_stride"] = 16 backbone = create_model( config.backbone, pretrained=config.use_pretrained_backbone, features_only=True, out_indices=(2, 3, 4) if config.num_feature_levels > 1 else (4,), in_chans=config.num_channels, **kwargs, ) else: backbone = load_backbone(config) # replace batch norm by frozen batch norm with torch.no_grad(): replace_batch_norm(backbone) self.model = backbone self.intermediate_channel_sizes = ( self.model.feature_info.channels() if config.use_timm_backbone else self.model.channels ) backbone_model_type = config.backbone if config.use_timm_backbone else config.backbone_config.model_type if "resnet" in backbone_model_type: for name, parameter in self.model.named_parameters(): if config.use_timm_backbone: if "layer2" not in name and "layer3" not in name and "layer4" not in name: parameter.requires_grad_(False) else: if "stage.1" not in name and "stage.2" not in name and "stage.3" not in name: parameter.requires_grad_(False) # Copied from transformers.models.detr.modeling_detr.DetrConvEncoder.forward with Detr->DeformableDetr def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor): # send pixel_values through the model to get list of feature maps features = self.model(pixel_values) if self.config.use_timm_backbone else self.model(pixel_values).feature_maps out = [] for feature_map in features: # downsample pixel_mask to match shape of corresponding feature_map mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0] out.append((feature_map, mask)) return out # Copied from transformers.models.detr.modeling_detr.DetrConvModel with Detr->DeformableDetr class DeformableDetrConvModel(nn.Module): """ This module adds 2D position embeddings to all intermediate feature maps of the convolutional encoder. """ def __init__(self, conv_encoder, position_embedding): super().__init__() self.conv_encoder = conv_encoder self.position_embedding = position_embedding def forward(self, pixel_values, pixel_mask): # send pixel_values and pixel_mask through backbone to get list of (feature_map, pixel_mask) tuples out = self.conv_encoder(pixel_values, pixel_mask) pos = [] for feature_map, mask in out: # position encoding pos.append(self.position_embedding(feature_map, mask).to(feature_map.dtype)) return out, pos class DeformableDetrSinePositionEmbedding(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, embedding_dim=64, temperature=10000, normalize=False, scale=None): super().__init__() self.embedding_dim = embedding_dim self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, pixel_values, pixel_mask): if pixel_mask is None: raise ValueError("No pixel mask provided") y_embed = pixel_mask.cumsum(1, dtype=torch.float32) x_embed = pixel_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = (y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * self.scale x_embed = (x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.embedding_dim, dtype=torch.int64, device=pixel_values.device).float() dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.embedding_dim) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos # Copied from transformers.models.detr.modeling_detr.DetrLearnedPositionEmbedding class DeformableDetrLearnedPositionEmbedding(nn.Module): """ This module learns positional embeddings up to a fixed maximum size. """ def __init__(self, embedding_dim=256): super().__init__() self.row_embeddings = nn.Embedding(50, embedding_dim) self.column_embeddings = nn.Embedding(50, embedding_dim) def forward(self, pixel_values, pixel_mask=None): height, width = pixel_values.shape[-2:] width_values = torch.arange(width, device=pixel_values.device) height_values = torch.arange(height, device=pixel_values.device) x_emb = self.column_embeddings(width_values) y_emb = self.row_embeddings(height_values) pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1) pos = pos.permute(2, 0, 1) pos = pos.unsqueeze(0) pos = pos.repeat(pixel_values.shape[0], 1, 1, 1) return pos # Copied from transformers.models.detr.modeling_detr.build_position_encoding with Detr->DeformableDetr def build_position_encoding(config): n_steps = config.d_model // 2 if config.position_embedding_type == "sine": # TODO find a better way of exposing other arguments position_embedding = DeformableDetrSinePositionEmbedding(n_steps, normalize=True) elif config.position_embedding_type == "learned": position_embedding = DeformableDetrLearnedPositionEmbedding(n_steps) else: raise ValueError(f"Not supported {config.position_embedding_type}") return position_embedding def multi_scale_deformable_attention( value: Tensor, value_spatial_shapes: Tensor, sampling_locations: Tensor, attention_weights: Tensor ) -> Tensor: batch_size, _, num_heads, hidden_dim = value.shape _, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape value_list = value.split([height.item() * width.item() for height, width in value_spatial_shapes], dim=1) sampling_grids = 2 * sampling_locations - 1 sampling_value_list = [] for level_id, (height, width) in enumerate(value_spatial_shapes): # batch_size, height*width, num_heads, hidden_dim # -> batch_size, height*width, num_heads*hidden_dim # -> batch_size, num_heads*hidden_dim, height*width # -> batch_size*num_heads, hidden_dim, height, width value_l_ = ( value_list[level_id].flatten(2).transpose(1, 2).reshape(batch_size * num_heads, hidden_dim, height, width) ) # batch_size, num_queries, num_heads, num_points, 2 # -> batch_size, num_heads, num_queries, num_points, 2 # -> batch_size*num_heads, num_queries, num_points, 2 sampling_grid_l_ = sampling_grids[:, :, :, level_id].transpose(1, 2).flatten(0, 1) # batch_size*num_heads, hidden_dim, num_queries, num_points sampling_value_l_ = nn.functional.grid_sample( value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False ) sampling_value_list.append(sampling_value_l_) # (batch_size, num_queries, num_heads, num_levels, num_points) # -> (batch_size, num_heads, num_queries, num_levels, num_points) # -> (batch_size, num_heads, 1, num_queries, num_levels*num_points) attention_weights = attention_weights.transpose(1, 2).reshape( batch_size * num_heads, 1, num_queries, num_levels * num_points ) output = ( (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights) .sum(-1) .view(batch_size, num_heads * hidden_dim, num_queries) ) return output.transpose(1, 2).contiguous() class DeformableDetrMultiscaleDeformableAttention(nn.Module): """ Multiscale deformable attention as proposed in Deformable DETR. """ def __init__(self, config: DeformableDetrConfig, num_heads: int, n_points: int): super().__init__() kernel_loaded = MultiScaleDeformableAttention is not None if is_torch_cuda_available() and is_ninja_available() and not kernel_loaded: try: load_cuda_kernels() except Exception as e: logger.warning(f"Could not load the custom kernel for multi-scale deformable attention: {e}") if config.d_model % num_heads != 0: raise ValueError( f"embed_dim (d_model) must be divisible by num_heads, but got {config.d_model} and {num_heads}" ) dim_per_head = config.d_model // num_heads # check if dim_per_head is power of 2 if not ((dim_per_head & (dim_per_head - 1) == 0) and dim_per_head != 0): warnings.warn( "You'd better set embed_dim (d_model) in DeformableDetrMultiscaleDeformableAttention to make the" " dimension of each attention head a power of 2 which is more efficient in the authors' CUDA" " implementation." ) self.im2col_step = 64 self.d_model = config.d_model self.n_levels = config.num_feature_levels self.n_heads = num_heads self.n_points = n_points self.sampling_offsets = nn.Linear(config.d_model, num_heads * self.n_levels * n_points * 2) self.attention_weights = nn.Linear(config.d_model, num_heads * self.n_levels * n_points) self.value_proj = nn.Linear(config.d_model, config.d_model) self.output_proj = nn.Linear(config.d_model, config.d_model) self.disable_custom_kernels = config.disable_custom_kernels self._reset_parameters() def _reset_parameters(self): nn.init.constant_(self.sampling_offsets.weight.data, 0.0) default_dtype = torch.get_default_dtype() thetas = torch.arange(self.n_heads, dtype=torch.int64).to(default_dtype) * (2.0 * math.pi / self.n_heads) grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) grid_init = ( (grid_init / grid_init.abs().max(-1, keepdim=True)[0]) .view(self.n_heads, 1, 1, 2) .repeat(1, self.n_levels, self.n_points, 1) ) for i in range(self.n_points): grid_init[:, :, i, :] *= i + 1 with torch.no_grad(): self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1)) nn.init.constant_(self.attention_weights.weight.data, 0.0) nn.init.constant_(self.attention_weights.bias.data, 0.0) nn.init.xavier_uniform_(self.value_proj.weight.data) nn.init.constant_(self.value_proj.bias.data, 0.0) nn.init.xavier_uniform_(self.output_proj.weight.data) nn.init.constant_(self.output_proj.bias.data, 0.0) def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]): return tensor if position_embeddings is None else tensor + position_embeddings def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states=None, encoder_attention_mask=None, position_embeddings: Optional[torch.Tensor] = None, reference_points=None, spatial_shapes=None, level_start_index=None, output_attentions: bool = False, ): # add position embeddings to the hidden states before projecting to queries and keys if position_embeddings is not None: hidden_states = self.with_pos_embed(hidden_states, position_embeddings) batch_size, num_queries, _ = hidden_states.shape batch_size, sequence_length, _ = encoder_hidden_states.shape if (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() != sequence_length: raise ValueError( "Make sure to align the spatial shapes with the sequence length of the encoder hidden states" ) value = self.value_proj(encoder_hidden_states) if attention_mask is not None: # we invert the attention_mask value = value.masked_fill(~attention_mask[..., None], float(0)) value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads) sampling_offsets = self.sampling_offsets(hidden_states).view( batch_size, num_queries, self.n_heads, self.n_levels, self.n_points, 2 ) attention_weights = self.attention_weights(hidden_states).view( batch_size, num_queries, self.n_heads, self.n_levels * self.n_points ) attention_weights = F.softmax(attention_weights, -1).view( batch_size, num_queries, self.n_heads, self.n_levels, self.n_points ) # batch_size, num_queries, n_heads, n_levels, n_points, 2 if reference_points.shape[-1] == 2: offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1) sampling_locations = ( reference_points[:, :, None, :, None, :] + sampling_offsets / offset_normalizer[None, None, None, :, None, :] ) elif reference_points.shape[-1] == 4: sampling_locations = ( reference_points[:, :, None, :, None, :2] + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5 ) else: raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}") if self.disable_custom_kernels: # PyTorch implementation output = multi_scale_deformable_attention(value, spatial_shapes, sampling_locations, attention_weights) else: try: # custom kernel output = MultiScaleDeformableAttentionFunction.apply( value, spatial_shapes, level_start_index, sampling_locations, attention_weights, self.im2col_step, ) except Exception: # PyTorch implementation output = multi_scale_deformable_attention(value, spatial_shapes, sampling_locations, attention_weights) output = self.output_proj(output) return output, attention_weights class DeformableDetrMultiheadAttention(nn.Module): """ Multi-headed attention from 'Attention Is All You Need' paper. Here, we add position embeddings to the queries and keys (as explained in the Deformable DETR paper). """ def __init__( self, embed_dim: int, num_heads: int, dropout: float = 0.0, bias: bool = True, ): super().__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads if self.head_dim * num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {num_heads})." ) self.scaling = self.head_dim**-0.5 self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int): return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() def with_pos_embed(self, tensor: torch.Tensor, position_embeddings: Optional[Tensor]): return tensor if position_embeddings is None else tensor + position_embeddings def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_embeddings: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: """Input shape: Batch x Time x Channel""" batch_size, target_len, embed_dim = hidden_states.size() # add position embeddings to the hidden states before projecting to queries and keys if position_embeddings is not None: hidden_states_original = hidden_states hidden_states = self.with_pos_embed(hidden_states, position_embeddings) # get queries, keys and values query_states = self.q_proj(hidden_states) * self.scaling key_states = self._shape(self.k_proj(hidden_states), -1, batch_size) value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size) proj_shape = (batch_size * self.num_heads, -1, self.head_dim) query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape) key_states = key_states.view(*proj_shape) value_states = value_states.view(*proj_shape) source_len = key_states.size(1) attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len): raise ValueError( f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is" f" {attn_weights.size()}" ) # expand attention_mask if attention_mask is not None: # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len] attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype) if attention_mask is not None: if attention_mask.size() != (batch_size, 1, target_len, source_len): raise ValueError( f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is" f" {attention_mask.size()}" ) attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len) attn_weights = nn.functional.softmax(attn_weights, dim=-1) if output_attentions: # this operation is a bit awkward, but it's required to # make sure that attn_weights keeps its gradient. # In order to do so, attn_weights have to reshaped # twice and have to be reused in the following attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len) attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len) else: attn_weights_reshaped = None attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_probs, value_states) if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim): raise ValueError( f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is" f" {attn_output.size()}" ) attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(batch_size, target_len, embed_dim) attn_output = self.out_proj(attn_output) return attn_output, attn_weights_reshaped class DeformableDetrEncoderLayer(nn.Module): def __init__(self, config: DeformableDetrConfig): super().__init__() self.embed_dim = config.d_model self.self_attn = DeformableDetrMultiscaleDeformableAttention( config, num_heads=config.encoder_attention_heads, n_points=config.encoder_n_points ) self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, position_embeddings: torch.Tensor = None, reference_points=None, spatial_shapes=None, level_start_index=None, output_attentions: bool = False, ): """ Args: hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Input to the layer. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Attention mask. position_embeddings (`torch.FloatTensor`, *optional*): Position embeddings, to be added to `hidden_states`. reference_points (`torch.FloatTensor`, *optional*): Reference points. spatial_shapes (`torch.LongTensor`, *optional*): Spatial shapes of the backbone feature maps. level_start_index (`torch.LongTensor`, *optional*): Level start index. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states # Apply Multi-scale Deformable Attention Module on the multi-scale feature maps. hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, position_embeddings=position_embeddings, reference_points=reference_points, spatial_shapes=spatial_shapes, level_start_index=level_start_index, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) if self.training: if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class DeformableDetrDecoderLayer(nn.Module): def __init__(self, config: DeformableDetrConfig): super().__init__() self.embed_dim = config.d_model # self-attention self.self_attn = DeformableDetrMultiheadAttention( embed_dim=self.embed_dim, num_heads=config.decoder_attention_heads, dropout=config.attention_dropout, ) self.dropout = config.dropout self.activation_fn = ACT2FN[config.activation_function] self.activation_dropout = config.activation_dropout self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) # cross-attention self.encoder_attn = DeformableDetrMultiscaleDeformableAttention( config, num_heads=config.decoder_attention_heads, n_points=config.decoder_n_points, ) self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) # feedforward neural networks self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) self.final_layer_norm = nn.LayerNorm(self.embed_dim) def forward( self, hidden_states: torch.Tensor, position_embeddings: Optional[torch.Tensor] = None, reference_points=None, spatial_shapes=None, level_start_index=None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ): """ Args: hidden_states (`torch.FloatTensor`): Input to the layer of shape `(seq_len, batch, embed_dim)`. position_embeddings (`torch.FloatTensor`, *optional*): Position embeddings that are added to the queries and keys in the self-attention layer. reference_points (`torch.FloatTensor`, *optional*): Reference points. spatial_shapes (`torch.LongTensor`, *optional*): Spatial shapes. level_start_index (`torch.LongTensor`, *optional*): Level start index. encoder_hidden_states (`torch.FloatTensor`): cross attention input to the layer of shape `(seq_len, batch, embed_dim)` encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, position_embeddings=position_embeddings, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.self_attn_layer_norm(hidden_states) second_residual = hidden_states # Cross-Attention cross_attn_weights = None hidden_states, cross_attn_weights = self.encoder_attn( hidden_states=hidden_states, attention_mask=encoder_attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, position_embeddings=position_embeddings, reference_points=reference_points, spatial_shapes=spatial_shapes, level_start_index=level_start_index, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = second_residual + hidden_states hidden_states = self.encoder_attn_layer_norm(hidden_states) # Fully Connected residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states hidden_states = self.final_layer_norm(hidden_states) outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights, cross_attn_weights) return outputs # Copied from transformers.models.detr.modeling_detr.DetrClassificationHead class DeformableDetrClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, input_dim: int, inner_dim: int, num_classes: int, pooler_dropout: float): super().__init__() self.dense = nn.Linear(input_dim, inner_dim) self.dropout = nn.Dropout(p=pooler_dropout) self.out_proj = nn.Linear(inner_dim, num_classes) def forward(self, hidden_states: torch.Tensor): hidden_states = self.dropout(hidden_states) hidden_states = self.dense(hidden_states) hidden_states = torch.tanh(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.out_proj(hidden_states) return hidden_states class DeformableDetrPreTrainedModel(PreTrainedModel): config_class = DeformableDetrConfig base_model_prefix = "model" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = [r"DeformableDetrConvEncoder", r"DeformableDetrEncoderLayer", r"DeformableDetrDecoderLayer"] supports_gradient_checkpointing = True def _init_weights(self, module): std = self.config.init_std if isinstance(module, DeformableDetrLearnedPositionEmbedding): nn.init.uniform_(module.row_embeddings.weight) nn.init.uniform_(module.column_embeddings.weight) elif isinstance(module, DeformableDetrMultiscaleDeformableAttention): module._reset_parameters() elif isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() if hasattr(module, "reference_points") and not self.config.two_stage: nn.init.xavier_uniform_(module.reference_points.weight.data, gain=1.0) nn.init.constant_(module.reference_points.bias.data, 0.0) if hasattr(module, "level_embed"): nn.init.normal_(module.level_embed) DEFORMABLE_DETR_START_DOCSTRING = r""" This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`DeformableDetrConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DEFORMABLE_DETR_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`DeformableDetrImageProcessor.__call__`] for details. pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). [What are attention masks?](../glossary#attention-mask) decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*): Not used by default. Can be used to mask object queries. encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you can choose to directly pass a flattened representation of an image. decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*): Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an embedded representation. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ class DeformableDetrEncoder(DeformableDetrPreTrainedModel): """ Transformer encoder consisting of *config.encoder_layers* deformable attention layers. Each layer is a [`DeformableDetrEncoderLayer`]. The encoder updates the flattened multi-scale feature maps through multiple deformable attention layers. Args: config: DeformableDetrConfig """ def __init__(self, config: DeformableDetrConfig): super().__init__(config) self.gradient_checkpointing = False self.dropout = config.dropout self.layers = nn.ModuleList([DeformableDetrEncoderLayer(config) for _ in range(config.encoder_layers)]) # Initialize weights and apply final processing self.post_init() @staticmethod def get_reference_points(spatial_shapes, valid_ratios, device): """ Get reference points for each feature map. Used in decoder. Args: spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`): Spatial shapes of each feature map. valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`): Valid ratios of each feature map. device (`torch.device`): Device on which to create the tensors. Returns: `torch.FloatTensor` of shape `(batch_size, num_queries, num_feature_levels, 2)` """ reference_points_list = [] for level, (height, width) in enumerate(spatial_shapes): ref_y, ref_x = meshgrid( torch.linspace(0.5, height - 0.5, height, dtype=valid_ratios.dtype, device=device), torch.linspace(0.5, width - 0.5, width, dtype=valid_ratios.dtype, device=device), indexing="ij", ) # TODO: valid_ratios could be useless here. check https://github.com/fundamentalvision/Deformable-DETR/issues/36 ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, level, 1] * height) ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, level, 0] * width) ref = torch.stack((ref_x, ref_y), -1) reference_points_list.append(ref) reference_points = torch.cat(reference_points_list, 1) reference_points = reference_points[:, :, None] * valid_ratios[:, None] return reference_points def forward( self, inputs_embeds=None, attention_mask=None, position_embeddings=None, spatial_shapes=None, level_start_index=None, valid_ratios=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Flattened feature map (output of the backbone + projection layer) that is passed to the encoder. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`: - 1 for pixel features that are real (i.e. **not masked**), - 0 for pixel features that are padding (i.e. **masked**). [What are attention masks?](../glossary#attention-mask) position_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Position embeddings that are added to the queries and keys in each self-attention layer. spatial_shapes (`torch.LongTensor` of shape `(num_feature_levels, 2)`): Spatial shapes of each feature map. level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`): Starting index of each feature map. valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`): Ratio of valid area in each feature level. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict hidden_states = inputs_embeds hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=inputs_embeds.device) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, encoder_layer in enumerate(self.layers): if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( encoder_layer.__call__, hidden_states, attention_mask, position_embeddings, reference_points, spatial_shapes, level_start_index, output_attentions, ) else: layer_outputs = encoder_layer( hidden_states, attention_mask, position_embeddings=position_embeddings, reference_points=reference_points, spatial_shapes=spatial_shapes, level_start_index=level_start_index, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) class DeformableDetrDecoder(DeformableDetrPreTrainedModel): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`DeformableDetrDecoderLayer`]. The decoder updates the query embeddings through multiple self-attention and cross-attention layers. Some tweaks for Deformable DETR: - `position_embeddings`, `reference_points`, `spatial_shapes` and `valid_ratios` are added to the forward pass. - it also returns a stack of intermediate outputs and reference points from all decoding layers. Args: config: DeformableDetrConfig """ def __init__(self, config: DeformableDetrConfig): super().__init__(config) self.dropout = config.dropout self.layers = nn.ModuleList([DeformableDetrDecoderLayer(config) for _ in range(config.decoder_layers)]) self.gradient_checkpointing = False # hack implementation for iterative bounding box refinement and two-stage Deformable DETR self.bbox_embed = None self.class_embed = None # Initialize weights and apply final processing self.post_init() def forward( self, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, position_embeddings=None, reference_points=None, spatial_shapes=None, level_start_index=None, valid_ratios=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`): The query embeddings that are passed into the decoder. encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected in `[0, 1]`: - 1 for pixels that are real (i.e. **not masked**), - 0 for pixels that are padding (i.e. **masked**). position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*): Position embeddings that are added to the queries and keys in each self-attention layer. reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)` is `as_two_stage` else `(batch_size, num_queries, 2)` or , *optional*): Reference point in range `[0, 1]`, top-left (0,0), bottom-right (1, 1), including padding area. spatial_shapes (`torch.FloatTensor` of shape `(num_feature_levels, 2)`): Spatial shapes of the feature maps. level_start_index (`torch.LongTensor` of shape `(num_feature_levels)`, *optional*): Indexes for the start of each feature level. In range `[0, sequence_length]`. valid_ratios (`torch.FloatTensor` of shape `(batch_size, num_feature_levels, 2)`, *optional*): Ratio of valid area in each feature level. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if inputs_embeds is not None: hidden_states = inputs_embeds # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None intermediate = () intermediate_reference_points = () for idx, decoder_layer in enumerate(self.layers): if reference_points.shape[-1] == 4: reference_points_input = ( reference_points[:, :, None] * torch.cat([valid_ratios, valid_ratios], -1)[:, None] ) else: if reference_points.shape[-1] != 2: raise ValueError("Reference points' last dimension must be of size 2") reference_points_input = reference_points[:, :, None] * valid_ratios[:, None] if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, position_embeddings, reference_points_input, spatial_shapes, level_start_index, encoder_hidden_states, encoder_attention_mask, output_attentions, ) else: layer_outputs = decoder_layer( hidden_states, position_embeddings=position_embeddings, encoder_hidden_states=encoder_hidden_states, reference_points=reference_points_input, spatial_shapes=spatial_shapes, level_start_index=level_start_index, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] # hack implementation for iterative bounding box refinement if self.bbox_embed is not None: tmp = self.bbox_embed[idx](hidden_states) if reference_points.shape[-1] == 4: new_reference_points = tmp + inverse_sigmoid(reference_points) new_reference_points = new_reference_points.sigmoid() else: if reference_points.shape[-1] != 2: raise ValueError( f"Reference points' last dimension must be of size 2, but is {reference_points.shape[-1]}" ) new_reference_points = tmp new_reference_points[..., :2] = tmp[..., :2] + inverse_sigmoid(reference_points) new_reference_points = new_reference_points.sigmoid() reference_points = new_reference_points.detach() intermediate += (hidden_states,) intermediate_reference_points += (reference_points,) if output_attentions: all_self_attns += (layer_outputs[1],) if encoder_hidden_states is not None: all_cross_attentions += (layer_outputs[2],) # Keep batch_size as first dimension intermediate = torch.stack(intermediate, dim=1) intermediate_reference_points = torch.stack(intermediate_reference_points, dim=1) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, intermediate, intermediate_reference_points, all_hidden_states, all_self_attns, all_cross_attentions, ] if v is not None ) return DeformableDetrDecoderOutput( last_hidden_state=hidden_states, intermediate_hidden_states=intermediate, intermediate_reference_points=intermediate_reference_points, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attentions, ) @add_start_docstrings( """ The bare Deformable DETR Model (consisting of a backbone and encoder-decoder Transformer) outputting raw hidden-states without any specific head on top. """, DEFORMABLE_DETR_START_DOCSTRING, ) class DeformableDetrModel(DeformableDetrPreTrainedModel): def __init__(self, config: DeformableDetrConfig): super().__init__(config) # Create backbone + positional encoding backbone = DeformableDetrConvEncoder(config) position_embeddings = build_position_encoding(config) self.backbone = DeformableDetrConvModel(backbone, position_embeddings) # Create input projection layers if config.num_feature_levels > 1: num_backbone_outs = len(backbone.intermediate_channel_sizes) input_proj_list = [] for _ in range(num_backbone_outs): in_channels = backbone.intermediate_channel_sizes[_] input_proj_list.append( nn.Sequential( nn.Conv2d(in_channels, config.d_model, kernel_size=1), nn.GroupNorm(32, config.d_model), ) ) for _ in range(config.num_feature_levels - num_backbone_outs): input_proj_list.append( nn.Sequential( nn.Conv2d(in_channels, config.d_model, kernel_size=3, stride=2, padding=1), nn.GroupNorm(32, config.d_model), ) ) in_channels = config.d_model self.input_proj = nn.ModuleList(input_proj_list) else: self.input_proj = nn.ModuleList( [ nn.Sequential( nn.Conv2d(backbone.intermediate_channel_sizes[-1], config.d_model, kernel_size=1), nn.GroupNorm(32, config.d_model), ) ] ) if not config.two_stage: self.query_position_embeddings = nn.Embedding(config.num_queries, config.d_model * 2) self.encoder = DeformableDetrEncoder(config) self.decoder = DeformableDetrDecoder(config) self.level_embed = nn.Parameter(torch.Tensor(config.num_feature_levels, config.d_model)) if config.two_stage: self.enc_output = nn.Linear(config.d_model, config.d_model) self.enc_output_norm = nn.LayerNorm(config.d_model) self.pos_trans = nn.Linear(config.d_model * 2, config.d_model * 2) self.pos_trans_norm = nn.LayerNorm(config.d_model * 2) else: self.reference_points = nn.Linear(config.d_model, 2) self.post_init() def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def freeze_backbone(self): for name, param in self.backbone.conv_encoder.model.named_parameters(): param.requires_grad_(False) def unfreeze_backbone(self): for name, param in self.backbone.conv_encoder.model.named_parameters(): param.requires_grad_(True) def get_valid_ratio(self, mask, dtype=torch.float32): """Get the valid ratio of all feature maps.""" _, height, width = mask.shape valid_height = torch.sum(mask[:, :, 0], 1) valid_width = torch.sum(mask[:, 0, :], 1) valid_ratio_height = valid_height.to(dtype) / height valid_ratio_width = valid_width.to(dtype) / width valid_ratio = torch.stack([valid_ratio_width, valid_ratio_height], -1) return valid_ratio def get_proposal_pos_embed(self, proposals): """Get the position embedding of the proposals.""" num_pos_feats = self.config.d_model // 2 temperature = 10000 scale = 2 * math.pi dim_t = torch.arange(num_pos_feats, dtype=torch.int64, device=proposals.device).float() dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats) # batch_size, num_queries, 4 proposals = proposals.sigmoid() * scale # batch_size, num_queries, 4, 128 pos = proposals[:, :, :, None] / dim_t # batch_size, num_queries, 4, 64, 2 -> batch_size, num_queries, 512 pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), dim=4).flatten(2) return pos def gen_encoder_output_proposals(self, enc_output, padding_mask, spatial_shapes): """Generate the encoder output proposals from encoded enc_output. Args: enc_output (Tensor[batch_size, sequence_length, hidden_size]): Output of the encoder. padding_mask (Tensor[batch_size, sequence_length]): Padding mask for `enc_output`. spatial_shapes (Tensor[num_feature_levels, 2]): Spatial shapes of the feature maps. Returns: `tuple(torch.FloatTensor)`: A tuple of feature map and bbox prediction. - object_query (Tensor[batch_size, sequence_length, hidden_size]): Object query features. Later used to directly predict a bounding box. (without the need of a decoder) - output_proposals (Tensor[batch_size, sequence_length, 4]): Normalized proposals, after an inverse sigmoid. """ batch_size = enc_output.shape[0] proposals = [] _cur = 0 for level, (height, width) in enumerate(spatial_shapes): mask_flatten_ = padding_mask[:, _cur : (_cur + height * width)].view(batch_size, height, width, 1) valid_height = torch.sum(~mask_flatten_[:, :, 0, 0], 1) valid_width = torch.sum(~mask_flatten_[:, 0, :, 0], 1) grid_y, grid_x = meshgrid( torch.linspace(0, height - 1, height, dtype=torch.float32, device=enc_output.device), torch.linspace(0, width - 1, width, dtype=torch.float32, device=enc_output.device), indexing="ij", ) grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) scale = torch.cat([valid_width.unsqueeze(-1), valid_height.unsqueeze(-1)], 1).view(batch_size, 1, 1, 2) grid = (grid.unsqueeze(0).expand(batch_size, -1, -1, -1) + 0.5) / scale width_heigth = torch.ones_like(grid) * 0.05 * (2.0**level) proposal = torch.cat((grid, width_heigth), -1).view(batch_size, -1, 4) proposals.append(proposal) _cur += height * width output_proposals = torch.cat(proposals, 1) output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True) output_proposals = torch.log(output_proposals / (1 - output_proposals)) # inverse sigmoid output_proposals = output_proposals.masked_fill(padding_mask.unsqueeze(-1), float("inf")) output_proposals = output_proposals.masked_fill(~output_proposals_valid, float("inf")) # assign each pixel as an object query object_query = enc_output object_query = object_query.masked_fill(padding_mask.unsqueeze(-1), float(0)) object_query = object_query.masked_fill(~output_proposals_valid, float(0)) object_query = self.enc_output_norm(self.enc_output(object_query)) return object_query, output_proposals @add_start_docstrings_to_model_forward(DEFORMABLE_DETR_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=DeformableDetrModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, pixel_mask: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.FloatTensor] = None, encoder_outputs: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], DeformableDetrModelOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, DeformableDetrModel >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("SenseTime/deformable-detr") >>> model = DeformableDetrModel.from_pretrained("SenseTime/deformable-detr") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 300, 256] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict batch_size, num_channels, height, width = pixel_values.shape device = pixel_values.device if pixel_mask is None: pixel_mask = torch.ones(((batch_size, height, width)), dtype=torch.long, device=device) # Extract multi-scale feature maps of same resolution `config.d_model` (cf Figure 4 in paper) # First, sent pixel_values + pixel_mask through Backbone to obtain the features # which is a list of tuples features, position_embeddings_list = self.backbone(pixel_values, pixel_mask) # Then, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default) sources = [] masks = [] for level, (source, mask) in enumerate(features): sources.append(self.input_proj[level](source)) masks.append(mask) if mask is None: raise ValueError("No attention mask was provided") # Lowest resolution feature maps are obtained via 3x3 stride 2 convolutions on the final stage if self.config.num_feature_levels > len(sources): _len_sources = len(sources) for level in range(_len_sources, self.config.num_feature_levels): if level == _len_sources: source = self.input_proj[level](features[-1][0]) else: source = self.input_proj[level](sources[-1]) mask = nn.functional.interpolate(pixel_mask[None].float(), size=source.shape[-2:]).to(torch.bool)[0] pos_l = self.backbone.position_embedding(source, mask).to(source.dtype) sources.append(source) masks.append(mask) position_embeddings_list.append(pos_l) # Create queries query_embeds = None if not self.config.two_stage: query_embeds = self.query_position_embeddings.weight # Prepare encoder inputs (by flattening) source_flatten = [] mask_flatten = [] lvl_pos_embed_flatten = [] spatial_shapes = [] for level, (source, mask, pos_embed) in enumerate(zip(sources, masks, position_embeddings_list)): batch_size, num_channels, height, width = source.shape spatial_shape = (height, width) spatial_shapes.append(spatial_shape) source = source.flatten(2).transpose(1, 2) mask = mask.flatten(1) pos_embed = pos_embed.flatten(2).transpose(1, 2) lvl_pos_embed = pos_embed + self.level_embed[level].view(1, 1, -1) lvl_pos_embed_flatten.append(lvl_pos_embed) source_flatten.append(source) mask_flatten.append(mask) source_flatten = torch.cat(source_flatten, 1) mask_flatten = torch.cat(mask_flatten, 1) lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=source_flatten.device) level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1])) valid_ratios = torch.stack([self.get_valid_ratio(m, dtype=source_flatten.dtype) for m in masks], 1) valid_ratios = valid_ratios.float() # Fourth, sent source_flatten + mask_flatten + lvl_pos_embed_flatten (backbone + proj layer output) through encoder # Also provide spatial_shapes, level_start_index and valid_ratios if encoder_outputs is None: encoder_outputs = self.encoder( inputs_embeds=source_flatten, attention_mask=mask_flatten, position_embeddings=lvl_pos_embed_flatten, spatial_shapes=spatial_shapes, level_start_index=level_start_index, valid_ratios=valid_ratios, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) # Fifth, prepare decoder inputs batch_size, _, num_channels = encoder_outputs[0].shape enc_outputs_class = None enc_outputs_coord_logits = None if self.config.two_stage: object_query_embedding, output_proposals = self.gen_encoder_output_proposals( encoder_outputs[0], ~mask_flatten, spatial_shapes ) # hack implementation for two-stage Deformable DETR # apply a detection head to each pixel (A.4 in paper) # linear projection for bounding box binary classification (i.e. foreground and background) enc_outputs_class = self.decoder.class_embed[-1](object_query_embedding) # 3-layer FFN to predict bounding boxes coordinates (bbox regression branch) delta_bbox = self.decoder.bbox_embed[-1](object_query_embedding) enc_outputs_coord_logits = delta_bbox + output_proposals # only keep top scoring `config.two_stage_num_proposals` proposals topk = self.config.two_stage_num_proposals topk_proposals = torch.topk(enc_outputs_class[..., 0], topk, dim=1)[1] topk_coords_logits = torch.gather( enc_outputs_coord_logits, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4) ) topk_coords_logits = topk_coords_logits.detach() reference_points = topk_coords_logits.sigmoid() init_reference_points = reference_points pos_trans_out = self.pos_trans_norm(self.pos_trans(self.get_proposal_pos_embed(topk_coords_logits))) query_embed, target = torch.split(pos_trans_out, num_channels, dim=2) else: query_embed, target = torch.split(query_embeds, num_channels, dim=1) query_embed = query_embed.unsqueeze(0).expand(batch_size, -1, -1) target = target.unsqueeze(0).expand(batch_size, -1, -1) reference_points = self.reference_points(query_embed).sigmoid() init_reference_points = reference_points decoder_outputs = self.decoder( inputs_embeds=target, position_embeddings=query_embed, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=mask_flatten, reference_points=reference_points, spatial_shapes=spatial_shapes, level_start_index=level_start_index, valid_ratios=valid_ratios, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if not return_dict: enc_outputs = tuple(value for value in [enc_outputs_class, enc_outputs_coord_logits] if value is not None) tuple_outputs = (init_reference_points,) + decoder_outputs + encoder_outputs + enc_outputs return tuple_outputs return DeformableDetrModelOutput( init_reference_points=init_reference_points, last_hidden_state=decoder_outputs.last_hidden_state, intermediate_hidden_states=decoder_outputs.intermediate_hidden_states, intermediate_reference_points=decoder_outputs.intermediate_reference_points, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, enc_outputs_class=enc_outputs_class, enc_outputs_coord_logits=enc_outputs_coord_logits, ) @add_start_docstrings( """ Deformable DETR Model (consisting of a backbone and encoder-decoder Transformer) with object detection heads on top, for tasks such as COCO detection. """, DEFORMABLE_DETR_START_DOCSTRING, ) class DeformableDetrForObjectDetection(DeformableDetrPreTrainedModel): # When using clones, all layers > 0 will be clones, but layer 0 *is* required _tied_weights_keys = [r"bbox_embed\.[1-9]\d*", r"class_embed\.[1-9]\d*"] # We can't initialize the model on meta device as some weights are modified during the initialization _no_split_modules = None def __init__(self, config: DeformableDetrConfig): super().__init__(config) # Deformable DETR encoder-decoder model self.model = DeformableDetrModel(config) # Detection heads on top self.class_embed = nn.Linear(config.d_model, config.num_labels) self.bbox_embed = DeformableDetrMLPPredictionHead( input_dim=config.d_model, hidden_dim=config.d_model, output_dim=4, num_layers=3 ) prior_prob = 0.01 bias_value = -math.log((1 - prior_prob) / prior_prob) self.class_embed.bias.data = torch.ones(config.num_labels) * bias_value nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0) nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0) # if two-stage, the last class_embed and bbox_embed is for region proposal generation num_pred = (config.decoder_layers + 1) if config.two_stage else config.decoder_layers if config.with_box_refine: self.class_embed = _get_clones(self.class_embed, num_pred) self.bbox_embed = _get_clones(self.bbox_embed, num_pred) nn.init.constant_(self.bbox_embed[0].layers[-1].bias.data[2:], -2.0) # hack implementation for iterative bounding box refinement self.model.decoder.bbox_embed = self.bbox_embed else: nn.init.constant_(self.bbox_embed.layers[-1].bias.data[2:], -2.0) self.class_embed = nn.ModuleList([self.class_embed for _ in range(num_pred)]) self.bbox_embed = nn.ModuleList([self.bbox_embed for _ in range(num_pred)]) self.model.decoder.bbox_embed = None if config.two_stage: # hack implementation for two-stage self.model.decoder.class_embed = self.class_embed for box_embed in self.bbox_embed: nn.init.constant_(box_embed.layers[-1].bias.data[2:], 0.0) # Initialize weights and apply final processing self.post_init() # taken from https://github.com/facebookresearch/detr/blob/master/models/detr.py @torch.jit.unused def _set_aux_loss(self, outputs_class, outputs_coord): # this is a workaround to make torchscript happy, as torchscript # doesn't support dictionary with non-homogeneous values, such # as a dict having both a Tensor and a list. return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])] @add_start_docstrings_to_model_forward(DEFORMABLE_DETR_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=DeformableDetrObjectDetectionOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, pixel_mask: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.FloatTensor] = None, encoder_outputs: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[List[dict]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.FloatTensor], DeformableDetrObjectDetectionOutput]: r""" labels (`List[Dict]` of len `(batch_size,)`, *optional*): Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`. Returns: Examples: ```python >>> from transformers import AutoImageProcessor, DeformableDetrForObjectDetection >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("SenseTime/deformable-detr") >>> model = DeformableDetrForObjectDetection.from_pretrained("SenseTime/deformable-detr") >>> inputs = image_processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax) >>> target_sizes = torch.tensor([image.size[::-1]]) >>> results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[ ... 0 ... ] >>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): ... box = [round(i, 2) for i in box.tolist()] ... print( ... f"Detected {model.config.id2label[label.item()]} with confidence " ... f"{round(score.item(), 3)} at location {box}" ... ) Detected cat with confidence 0.8 at location [16.5, 52.84, 318.25, 470.78] Detected cat with confidence 0.789 at location [342.19, 24.3, 640.02, 372.25] Detected remote with confidence 0.633 at location [40.79, 72.78, 176.76, 117.25] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict # First, sent images through DETR base model to obtain encoder + decoder outputs outputs = self.model( pixel_values, pixel_mask=pixel_mask, decoder_attention_mask=decoder_attention_mask, encoder_outputs=encoder_outputs, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs.intermediate_hidden_states if return_dict else outputs[2] init_reference = outputs.init_reference_points if return_dict else outputs[0] inter_references = outputs.intermediate_reference_points if return_dict else outputs[3] # class logits + predicted bounding boxes outputs_classes = [] outputs_coords = [] for level in range(hidden_states.shape[1]): if level == 0: reference = init_reference else: reference = inter_references[:, level - 1] reference = inverse_sigmoid(reference) outputs_class = self.class_embed[level](hidden_states[:, level]) delta_bbox = self.bbox_embed[level](hidden_states[:, level]) if reference.shape[-1] == 4: outputs_coord_logits = delta_bbox + reference elif reference.shape[-1] == 2: delta_bbox[..., :2] += reference outputs_coord_logits = delta_bbox else: raise ValueError(f"reference.shape[-1] should be 4 or 2, but got {reference.shape[-1]}") outputs_coord = outputs_coord_logits.sigmoid() outputs_classes.append(outputs_class) outputs_coords.append(outputs_coord) outputs_class = torch.stack(outputs_classes) outputs_coord = torch.stack(outputs_coords) logits = outputs_class[-1] pred_boxes = outputs_coord[-1] loss, loss_dict, auxiliary_outputs = None, None, None if labels is not None: # First: create the matcher matcher = DeformableDetrHungarianMatcher( class_cost=self.config.class_cost, bbox_cost=self.config.bbox_cost, giou_cost=self.config.giou_cost ) # Second: create the criterion losses = ["labels", "boxes", "cardinality"] criterion = DeformableDetrLoss( matcher=matcher, num_classes=self.config.num_labels, focal_alpha=self.config.focal_alpha, losses=losses, ) criterion.to(self.device) # Third: compute the losses, based on outputs and labels outputs_loss = {} outputs_loss["logits"] = logits outputs_loss["pred_boxes"] = pred_boxes if self.config.auxiliary_loss: auxiliary_outputs = self._set_aux_loss(outputs_class, outputs_coord) outputs_loss["auxiliary_outputs"] = auxiliary_outputs if self.config.two_stage: enc_outputs_coord = outputs.enc_outputs_coord_logits.sigmoid() outputs_loss["enc_outputs"] = {"logits": outputs.enc_outputs_class, "pred_boxes": enc_outputs_coord} loss_dict = criterion(outputs_loss, labels) # Fourth: compute total loss, as a weighted sum of the various losses weight_dict = {"loss_ce": 1, "loss_bbox": self.config.bbox_loss_coefficient} weight_dict["loss_giou"] = self.config.giou_loss_coefficient if self.config.auxiliary_loss: aux_weight_dict = {} for i in range(self.config.decoder_layers - 1): aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) weight_dict.update(aux_weight_dict) loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict) if not return_dict: if auxiliary_outputs is not None: output = (logits, pred_boxes) + auxiliary_outputs + outputs else: output = (logits, pred_boxes) + outputs tuple_outputs = ((loss, loss_dict) + output) if loss is not None else output return tuple_outputs dict_outputs = DeformableDetrObjectDetectionOutput( loss=loss, loss_dict=loss_dict, logits=logits, pred_boxes=pred_boxes, auxiliary_outputs=auxiliary_outputs, last_hidden_state=outputs.last_hidden_state, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, intermediate_hidden_states=outputs.intermediate_hidden_states, intermediate_reference_points=outputs.intermediate_reference_points, init_reference_points=outputs.init_reference_points, enc_outputs_class=outputs.enc_outputs_class, enc_outputs_coord_logits=outputs.enc_outputs_coord_logits, ) return dict_outputs # Copied from transformers.models.detr.modeling_detr.dice_loss def dice_loss(inputs, targets, num_boxes): """ Compute the DICE loss, similar to generalized IOU for masks Args: inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). """ inputs = inputs.sigmoid() inputs = inputs.flatten(1) numerator = 2 * (inputs * targets).sum(1) denominator = inputs.sum(-1) + targets.sum(-1) loss = 1 - (numerator + 1) / (denominator + 1) return loss.sum() / num_boxes # Copied from transformers.models.detr.modeling_detr.sigmoid_focal_loss def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2): """ Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. Args: inputs (`torch.FloatTensor` of arbitrary shape): The predictions for each example. targets (`torch.FloatTensor` with the same shape as `inputs`) A tensor storing the binary classification label for each element in the `inputs` (0 for the negative class and 1 for the positive class). alpha (`float`, *optional*, defaults to `0.25`): Optional weighting factor in the range (0,1) to balance positive vs. negative examples. gamma (`int`, *optional*, defaults to `2`): Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. Returns: Loss tensor """ prob = inputs.sigmoid() ce_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction="none") # add modulating factor p_t = prob * targets + (1 - prob) * (1 - targets) loss = ce_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * targets + (1 - alpha) * (1 - targets) loss = alpha_t * loss return loss.mean(1).sum() / num_boxes class DeformableDetrLoss(nn.Module): """ This class computes the losses for `DeformableDetrForObjectDetection`. The process happens in two steps: 1) we compute hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched ground-truth / prediction (supervise class and box). Args: matcher (`DeformableDetrHungarianMatcher`): Module able to compute a matching between targets and proposals. num_classes (`int`): Number of object categories, omitting the special no-object category. focal_alpha (`float`): Alpha parameter in focal loss. losses (`List[str]`): List of all the losses to be applied. See `get_loss` for a list of all available losses. """ def __init__(self, matcher, num_classes, focal_alpha, losses): super().__init__() self.matcher = matcher self.num_classes = num_classes self.focal_alpha = focal_alpha self.losses = losses # removed logging parameter, which was part of the original implementation def loss_labels(self, outputs, targets, indices, num_boxes): """ Classification loss (Binary focal loss) targets dicts must contain the key "class_labels" containing a tensor of dim [nb_target_boxes] """ if "logits" not in outputs: raise KeyError("No logits were found in the outputs") source_logits = outputs["logits"] idx = self._get_source_permutation_idx(indices) target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)]) target_classes = torch.full( source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device ) target_classes[idx] = target_classes_o target_classes_onehot = torch.zeros( [source_logits.shape[0], source_logits.shape[1], source_logits.shape[2] + 1], dtype=source_logits.dtype, layout=source_logits.layout, device=source_logits.device, ) target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1) target_classes_onehot = target_classes_onehot[:, :, :-1] loss_ce = ( sigmoid_focal_loss(source_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2) * source_logits.shape[1] ) losses = {"loss_ce": loss_ce} return losses @torch.no_grad() # Copied from transformers.models.detr.modeling_detr.DetrLoss.loss_cardinality def loss_cardinality(self, outputs, targets, indices, num_boxes): """ Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes. This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients. """ logits = outputs["logits"] device = logits.device target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device) # Count the number of predictions that are NOT "no-object" (which is the last class) card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1) card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float()) losses = {"cardinality_error": card_err} return losses # Copied from transformers.models.detr.modeling_detr.DetrLoss.loss_boxes def loss_boxes(self, outputs, targets, indices, num_boxes): """ Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss. Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size. """ if "pred_boxes" not in outputs: raise KeyError("No predicted boxes found in outputs") idx = self._get_source_permutation_idx(indices) source_boxes = outputs["pred_boxes"][idx] target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0) loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none") losses = {} losses["loss_bbox"] = loss_bbox.sum() / num_boxes loss_giou = 1 - torch.diag( generalized_box_iou(center_to_corners_format(source_boxes), center_to_corners_format(target_boxes)) ) losses["loss_giou"] = loss_giou.sum() / num_boxes return losses # Copied from transformers.models.detr.modeling_detr.DetrLoss._get_source_permutation_idx def _get_source_permutation_idx(self, indices): # permute predictions following indices batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)]) source_idx = torch.cat([source for (source, _) in indices]) return batch_idx, source_idx # Copied from transformers.models.detr.modeling_detr.DetrLoss._get_target_permutation_idx def _get_target_permutation_idx(self, indices): # permute targets following indices batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)]) target_idx = torch.cat([target for (_, target) in indices]) return batch_idx, target_idx def get_loss(self, loss, outputs, targets, indices, num_boxes): loss_map = { "labels": self.loss_labels, "cardinality": self.loss_cardinality, "boxes": self.loss_boxes, } if loss not in loss_map: raise ValueError(f"Loss {loss} not supported") return loss_map[loss](outputs, targets, indices, num_boxes) def forward(self, outputs, targets): """ This performs the loss computation. Args: outputs (`dict`, *optional*): Dictionary of tensors, see the output specification of the model for the format. targets (`List[dict]`, *optional*): List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the losses applied, see each loss' doc. """ outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs" and k != "enc_outputs"} # Retrieve the matching between the outputs of the last layer and the targets indices = self.matcher(outputs_without_aux, targets) # Compute the average number of target boxes accross all nodes, for normalization purposes num_boxes = sum(len(t["class_labels"]) for t in targets) num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) world_size = 1 if PartialState._shared_state != {}: num_boxes = reduce(num_boxes) world_size = PartialState().num_processes num_boxes = torch.clamp(num_boxes / world_size, min=1).item() # Compute all the requested losses losses = {} for loss in self.losses: losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes)) # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. if "auxiliary_outputs" in outputs: for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]): indices = self.matcher(auxiliary_outputs, targets) for loss in self.losses: l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes) l_dict = {k + f"_{i}": v for k, v in l_dict.items()} losses.update(l_dict) if "enc_outputs" in outputs: enc_outputs = outputs["enc_outputs"] bin_targets = copy.deepcopy(targets) for bt in bin_targets: bt["class_labels"] = torch.zeros_like(bt["class_labels"]) indices = self.matcher(enc_outputs, bin_targets) for loss in self.losses: l_dict = self.get_loss(loss, enc_outputs, bin_targets, indices, num_boxes) l_dict = {k + "_enc": v for k, v in l_dict.items()} losses.update(l_dict) return losses # Copied from transformers.models.detr.modeling_detr.DetrMLPPredictionHead class DeformableDetrMLPPredictionHead(nn.Module): """ Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates, height and width of a bounding box w.r.t. an image. Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py """ def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) def forward(self, x): for i, layer in enumerate(self.layers): x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x class DeformableDetrHungarianMatcher(nn.Module): """ This class computes an assignment between the targets and the predictions of the network. For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are un-matched (and thus treated as non-objects). Args: class_cost: The relative weight of the classification error in the matching cost. bbox_cost: The relative weight of the L1 error of the bounding box coordinates in the matching cost. giou_cost: The relative weight of the giou loss of the bounding box in the matching cost. """ def __init__(self, class_cost: float = 1, bbox_cost: float = 1, giou_cost: float = 1): super().__init__() requires_backends(self, ["scipy"]) self.class_cost = class_cost self.bbox_cost = bbox_cost self.giou_cost = giou_cost if class_cost == 0 and bbox_cost == 0 and giou_cost == 0: raise ValueError("All costs of the Matcher can't be 0") @torch.no_grad() def forward(self, outputs, targets): """ Args: outputs (`dict`): A dictionary that contains at least these entries: * "logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits * "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates. targets (`List[dict]`): A list of targets (len(targets) = batch_size), where each target is a dict containing: * "class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels * "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates. Returns: `List[Tuple]`: A list of size `batch_size`, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected targets (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) """ batch_size, num_queries = outputs["logits"].shape[:2] # We flatten to compute the cost matrices in a batch out_prob = outputs["logits"].flatten(0, 1).sigmoid() # [batch_size * num_queries, num_classes] out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4] # Also concat the target labels and boxes target_ids = torch.cat([v["class_labels"] for v in targets]) target_bbox = torch.cat([v["boxes"] for v in targets]) # Compute the classification cost. alpha = 0.25 gamma = 2.0 neg_cost_class = (1 - alpha) * (out_prob**gamma) * (-(1 - out_prob + 1e-8).log()) pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log()) class_cost = pos_cost_class[:, target_ids] - neg_cost_class[:, target_ids] # Compute the L1 cost between boxes bbox_cost = torch.cdist(out_bbox, target_bbox, p=1) # Compute the giou cost between boxes giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox)) # Final cost matrix cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu() sizes = [len(v["boxes"]) for v in targets] indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))] return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices] # Copied from transformers.models.detr.modeling_detr._upcast def _upcast(t: Tensor) -> Tensor: # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type if t.is_floating_point(): return t if t.dtype in (torch.float32, torch.float64) else t.float() else: return t if t.dtype in (torch.int32, torch.int64) else t.int() # Copied from transformers.models.detr.modeling_detr.box_area def box_area(boxes: Tensor) -> Tensor: """ Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates. Args: boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`): Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1 < x2` and `0 <= y1 < y2`. Returns: `torch.FloatTensor`: a tensor containing the area for each box. """ boxes = _upcast(boxes) return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) # Copied from transformers.models.detr.modeling_detr.box_iou def box_iou(boxes1, boxes2): area1 = box_area(boxes1) area2 = box_area(boxes2) left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2] inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M] union = area1[:, None] + area2 - inter iou = inter / union return iou, union # Copied from transformers.models.detr.modeling_detr.generalized_box_iou def generalized_box_iou(boxes1, boxes2): """ Generalized IoU from https://giou.stanford.edu/. The boxes should be in [x0, y0, x1, y1] (corner) format. Returns: `torch.FloatTensor`: a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2) """ # degenerate boxes gives inf / nan results # so do an early check if not (boxes1[:, 2:] >= boxes1[:, :2]).all(): raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}") if not (boxes2[:, 2:] >= boxes2[:, :2]).all(): raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}") iou, union = box_iou(boxes1, boxes2) top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2]) bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) width_height = (bottom_right - top_left).clamp(min=0) # [N,M,2] area = width_height[:, :, 0] * width_height[:, :, 1] return iou - (area - union) / area # Copied from transformers.models.detr.modeling_detr._max_by_axis def _max_by_axis(the_list): # type: (List[List[int]]) -> List[int] maxes = the_list[0] for sublist in the_list[1:]: for index, item in enumerate(sublist): maxes[index] = max(maxes[index], item) return maxes # Copied from transformers.models.detr.modeling_detr.NestedTensor class NestedTensor(object): def __init__(self, tensors, mask: Optional[Tensor]): self.tensors = tensors self.mask = mask def to(self, device): cast_tensor = self.tensors.to(device) mask = self.mask if mask is not None: cast_mask = mask.to(device) else: cast_mask = None return NestedTensor(cast_tensor, cast_mask) def decompose(self): return self.tensors, self.mask def __repr__(self): return str(self.tensors) # Copied from transformers.models.detr.modeling_detr.nested_tensor_from_tensor_list def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): if tensor_list[0].ndim == 3: max_size = _max_by_axis([list(img.shape) for img in tensor_list]) batch_shape = [len(tensor_list)] + max_size batch_size, num_channels, height, width = batch_shape dtype = tensor_list[0].dtype device = tensor_list[0].device tensor = torch.zeros(batch_shape, dtype=dtype, device=device) mask = torch.ones((batch_size, height, width), dtype=torch.bool, device=device) for img, pad_img, m in zip(tensor_list, tensor, mask): pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) m[: img.shape[1], : img.shape[2]] = False else: raise ValueError("Only 3-dimensional tensors are supported") return NestedTensor(tensor, mask)
transformers/src/transformers/models/deformable_detr/modeling_deformable_detr.py/0
{ "file_path": "transformers/src/transformers/models/deformable_detr/modeling_deformable_detr.py", "repo_id": "transformers", "token_count": 51888 }
80
# coding=utf-8 # Copyright 2022 The Trajectory Transformers paper authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch TrajectoryTransformer model.""" import math import os from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch import torch.utils.checkpoint from torch import nn from torch.nn import functional as F from ....modeling_utils import PreTrainedModel from ....utils import ( ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_trajectory_transformer import TrajectoryTransformerConfig logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "CarlCochet/trajectory-transformer-halfcheetah-medium-v2" _CONFIG_FOR_DOC = "TrajectoryTransformerConfig" TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST = [ "CarlCochet/trajectory-transformer-halfcheetah-medium-v2", # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer ] def load_tf_weights_in_trajectory_transformer(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] arrays = [] for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) arrays.append(array) for name, array in zip(names, arrays): name = name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") continue pointer = model for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] == "kernel" or scope_names[0] == "gamma": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "output_weights": pointer = getattr(pointer, "weight") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if m_name[-11:] == "_embeddings": pointer = getattr(pointer, "weight") elif m_name == "kernel": array = np.transpose(array) try: if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array) return model @dataclass class TrajectoryTransformerOutput(ModelOutput): """ Base class for model's outputs that also contains a pooling of the last hidden states. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss. logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`Tuple[Tuple[torch.Tensor]]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of length `config.n_layers`, containing tuples of tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. GPT2Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None class TrajectoryTransformerPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = TrajectoryTransformerConfig load_tf_weights = load_tf_weights_in_trajectory_transformer base_model_prefix = "trajectory_transformer" main_input_name = "trajectories" supports_gradient_checkpointing = True def _init_weights(self, module): if isinstance(module, (nn.Linear, nn.Embedding)): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if isinstance(module, nn.Linear) and module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, EinLinear): for i in range(module.n_models): nn.init.kaiming_uniform_(module.weight[i], a=math.sqrt(5) / self.config.kaiming_initializer_range) if module.bias is not None: fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight[i]) bound = (1 / math.sqrt(fan_in)) * self.config.initializer_range nn.init.uniform_(module.bias[i], -bound, bound) TRAJECTORY_TRANSFORMER_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`TrajectoryTransformerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ TRAJECTORY_TRANSFORMER_INPUTS_DOCSTRING = r""" Args: trajectories (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Batch of trajectories, where a trajectory is a sequence of states, actions and rewards. past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`, *optional*): Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have their past given to this model should not be passed as `input_ids` as they have already been computed. targets (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Desired targets used to compute the loss. attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class EinLinear(nn.Module): def __init__(self, n_models, in_features, out_features, bias): super().__init__() self.n_models = n_models self.out_features = out_features self.in_features = in_features self.weight = nn.Parameter(torch.Tensor(n_models, out_features, in_features)) if bias: self.bias = nn.Parameter(torch.Tensor(n_models, out_features)) else: self.register_parameter("bias", None) def reset_parameters(self): for i in range(self.n_models): nn.init.kaiming_uniform_(self.weight[i], a=math.sqrt(5)) if self.bias is not None: fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight[i]) bound = 1 / math.sqrt(fan_in) nn.init.uniform_(self.bias[i], -bound, bound) def forward(self, input): """ Args: input (`torch.FloatTensor` of shape `(B, n_models, input_dim)`): The input to the layer. """ # [ batch_size x n_models x output_dim ] output = torch.einsum("eoi,bei->beo", self.weight, input) if self.bias is not None: raise RuntimeError() return output class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.n_embd % config.n_head != 0: raise ValueError(f"n_head ({config.n_head}) should be a divisor of n_embd ({config.n_embd})") # key, query, value projections for all heads self.key = nn.Linear(config.n_embd, config.n_embd) self.query = nn.Linear(config.n_embd, config.n_embd) self.value = nn.Linear(config.n_embd, config.n_embd) # regularization self.attn_drop = nn.Dropout(config.attn_pdrop) self.resid_drop = nn.Dropout(config.resid_pdrop) # output projection self.proj = nn.Linear(config.n_embd, config.n_embd) # causal mask to ensure that attention is only applied to the left in the input sequence self.register_buffer( "mask", torch.tril(torch.ones(config.block_size, config.block_size)).view( 1, 1, config.block_size, config.block_size ), persistent=False, ) # mask previous value estimates joined_dim = config.observation_dim + config.action_dim + 2 self.mask.squeeze()[:, joined_dim - 1 :: joined_dim] = 0 self.n_head = config.n_head def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], layer_past: Optional[Tuple[torch.Tensor]] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ): batch_size, sequence_length, embedding_dim = hidden_states.size() # calculate query, key, values for all heads in batch and move head forward to be the batch dim # [ batch_size x n_heads x sequence_length x head_dim ] key = ( self.key(hidden_states) .view(batch_size, sequence_length, self.n_head, embedding_dim // self.n_head) .transpose(1, 2) ) query = ( self.query(hidden_states) .view(batch_size, sequence_length, self.n_head, embedding_dim // self.n_head) .transpose(1, 2) ) value = ( self.value(hidden_states) .view(batch_size, sequence_length, self.n_head, embedding_dim // self.n_head) .transpose(1, 2) ) if layer_past is not None: past_key, past_value = layer_past key = torch.cat((past_key, key), dim=-2) value = torch.cat((past_value, value), dim=-2) if use_cache is True: present = (key, value) else: present = None # causal self-attention # [ batch_size x n_heads x sequence_length x sequence_length ] attn_weights = (torch.matmul(query, key.transpose(-2, -1))) * (1.0 / math.sqrt(key.size(-1))) attn_weights = attn_weights.masked_fill( self.mask[:, :, :sequence_length, :sequence_length] == 0, torch.finfo(attn_weights.dtype).min ) attn_weights = F.softmax(attn_weights, dim=-1) self._attn_map = attn_weights.clone() attn_weights = self.attn_drop(attn_weights) output = torch.matmul(attn_weights, value) # [ batch_size x sequence_length x embedding_dim ] # re-assemble all head outputs side by side output = output.transpose(1, 2).contiguous().view(batch_size, sequence_length, embedding_dim) # output projection output = self.resid_drop(self.proj(output)) outputs = (output, present) if output_attentions: outputs += (attn_weights,) return outputs class Block(nn.Module): def __init__(self, config): super().__init__() self.ln1 = nn.LayerNorm(config.n_embd) self.ln2 = nn.LayerNorm(config.n_embd) self.attn = CausalSelfAttention(config) # MLP self.l1 = nn.Linear(config.n_embd, 4 * config.n_embd) self.act = nn.GELU() self.l2 = nn.Linear(4 * config.n_embd, config.n_embd) self.drop = nn.Dropout(config.resid_pdrop) def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], layer_past: Optional[Tuple[torch.Tensor]] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, ): residual = hidden_states hidden_states = self.ln1(hidden_states) attn_outputs = self.attn( hidden_states, layer_past=layer_past, use_cache=use_cache, output_attentions=output_attentions ) attn_output = attn_outputs[0] outputs = attn_outputs[1:] hidden_states = attn_output + residual residual = hidden_states hidden_states = self.ln2(hidden_states) hidden_states = self.l1(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.l2(hidden_states) hidden_states = residual + self.drop(hidden_states) if use_cache: outputs = (hidden_states,) + outputs else: outputs = (hidden_states,) + outputs[1:] return outputs @add_start_docstrings( "The bare TrajectoryTransformer Model transformer outputting raw hidden-states without any specific head on top.", TRAJECTORY_TRANSFORMER_START_DOCSTRING, ) class TrajectoryTransformerModel(TrajectoryTransformerPreTrainedModel): """the full GPT language model, with a context size of block_size""" def __init__(self, config): super().__init__(config) # input embedding stem (+1 for stop token) self.tok_emb = nn.Embedding(config.vocab_size * config.transition_dim + 1, config.n_embd) self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd)) self.drop = nn.Dropout(config.embd_pdrop) # transformer self.blocks = nn.ModuleList([Block(config) for _ in range(config.n_layer)]) # decoder head self.ln_f = nn.LayerNorm(config.n_embd) self.head = EinLinear(config.transition_dim, config.n_embd, config.vocab_size + 1, bias=False) self.vocab_size = config.vocab_size self.stop_token = config.vocab_size * config.transition_dim self.block_size = config.block_size self.observation_dim = config.observation_dim self.action_dim = config.action_dim self.transition_dim = config.transition_dim self.embedding_dim = config.n_embd self.action_weight = config.action_weight self.reward_weight = config.reward_weight self.value_weight = config.value_weight self.gradient_checkpointing = False self.post_init() def get_block_size(self): return self.block_size def offset_tokens(self, trajectories): _, sequence_length = trajectories.shape n_states = int(np.ceil(sequence_length / self.transition_dim)) offsets = torch.arange(self.transition_dim) * self.vocab_size offsets = offsets.repeat(n_states).to(trajectories.device) offset_trajectories = trajectories + offsets[:sequence_length] offset_trajectories[trajectories == self.vocab_size] = self.stop_token return offset_trajectories def pad_to_full_observation(self, hidden_states): batch_size, sequence_length, _ = hidden_states.shape n_pad = (self.transition_dim - sequence_length % self.transition_dim) % self.transition_dim padding = torch.zeros(batch_size, n_pad, self.embedding_dim, device=hidden_states.device) # [ batch_size x padded_sequence_length' x embedding_dim ] hidden_states_pad = torch.cat([hidden_states, padding], dim=1) hidden_states_pad = hidden_states_pad.view(-1, self.transition_dim, self.embedding_dim) return hidden_states_pad, n_pad @add_start_docstrings_to_model_forward( TRAJECTORY_TRANSFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length") ) @replace_return_docstrings(output_type=TrajectoryTransformerOutput, config_class=_CONFIG_FOR_DOC) def forward( self, trajectories: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, targets: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], TrajectoryTransformerOutput]: r""" Returns: Examples: ```python >>> from transformers import TrajectoryTransformerModel >>> import torch >>> model = TrajectoryTransformerModel.from_pretrained( ... "CarlCochet/trajectory-transformer-halfcheetah-medium-v2" ... ) >>> model.to(device) >>> model.eval() >>> observations_dim, action_dim, batch_size = 17, 6, 256 >>> seq_length = observations_dim + action_dim + 1 >>> trajectories = torch.LongTensor([np.random.permutation(self.seq_length) for _ in range(batch_size)]).to( ... device ... ) >>> targets = torch.LongTensor([np.random.permutation(self.seq_length) for _ in range(batch_size)]).to(device) >>> outputs = model( ... trajectories, ... targets=targets, ... use_cache=True, ... output_attentions=True, ... output_hidden_states=True, ... return_dict=True, ... ) ``` """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) if past_key_values is None: past_key_values = tuple([None] * len(self.blocks)) batch_size, sequence_length = trajectories.size() if sequence_length > self.block_size: raise ValueError("Cannot forward, model block size is exhausted.") offset_trajectories = self.offset_tokens(trajectories) # [ batch_size x sequence_length x embedding_dim ] # forward the GPT model token_embeddings = self.tok_emb(offset_trajectories) # each index maps to a (learnable) vector position_embeddings = self.pos_emb[:, :sequence_length, :] # each position maps to a (learnable) vector hidden_states = self.drop(token_embeddings + position_embeddings) if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False presents = () if use_cache else None all_self_attentions = () if output_attentions else None all_hidden_states = () if output_hidden_states else None for i, (block, layer_past) in enumerate(zip(self.blocks, past_key_values)): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if self.gradient_checkpointing and self.training: outputs = self._gradient_checkpointing_func( block.__call__, hidden_states, layer_past, use_cache, output_attentions, ) else: outputs = block(hidden_states, layer_past, use_cache, output_attentions) hidden_states = outputs[0] if use_cache is True: presents = presents + (outputs[1],) if output_attentions: all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) # [ batch_size x sequence_length x embedding_dim ] hidden_state = self.ln_f(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) hidden_states_pad, n_pad = self.pad_to_full_observation(hidden_state) logits = self.head(hidden_states_pad) logits = logits.reshape(batch_size, sequence_length + n_pad, self.vocab_size + 1) logits = logits[:, :sequence_length] # if we are given some desired targets also calculate the loss if targets is not None: loss = F.cross_entropy(logits.reshape(-1, logits.size(-1)), targets.view(-1), reduction="none") if self.action_weight != 1 or self.reward_weight != 1 or self.value_weight != 1: # make weights n_states = int(np.ceil(sequence_length / self.transition_dim)) weights = torch.cat( [ torch.ones(self.observation_dim, device=trajectories.device), torch.ones(self.action_dim, device=trajectories.device) * self.action_weight, torch.ones(1, device=trajectories.device) * self.reward_weight, torch.ones(1, device=trajectories.device) * self.value_weight, ] ) weights = weights.repeat(n_states) weights = weights[1:].repeat(batch_size, 1) loss = loss * weights.view(-1) loss = (loss * attention_mask.view(-1)).mean() else: loss = None if not return_dict: return tuple(v for v in [loss, logits, presents, all_hidden_states, all_self_attentions] if v is not None) return TrajectoryTransformerOutput( loss=loss, logits=logits, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, )
transformers/src/transformers/models/deprecated/trajectory_transformer/modeling_trajectory_transformer.py/0
{ "file_path": "transformers/src/transformers/models/deprecated/trajectory_transformer/modeling_trajectory_transformer.py", "repo_id": "transformers", "token_count": 11094 }
81
# coding=utf-8 # Copyright 2024 TikTok and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Depth Anything model.""" from typing import List, Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...file_utils import ( add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings, ) from ...modeling_outputs import DepthEstimatorOutput from ...modeling_utils import PreTrainedModel from ...utils import logging from ..auto import AutoBackbone from .configuration_depth_anything import DepthAnythingConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "DepthAnythingConfig" DEPTH_ANYTHING_PRETRAINED_MODEL_ARCHIVE_LIST = [ "LiheYoung/depth-anything-small-hf", # See all Depth Anything models at https://huggingface.co/models?filter=depth_anything ] DEPTH_ANYTHING_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`DepthAnythingConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ DEPTH_ANYTHING_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`DPTImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ class DepthAnythingReassembleLayer(nn.Module): def __init__(self, config, channels, factor): super().__init__() self.projection = nn.Conv2d(in_channels=config.reassemble_hidden_size, out_channels=channels, kernel_size=1) # up/down sampling depending on factor if factor > 1: self.resize = nn.ConvTranspose2d(channels, channels, kernel_size=factor, stride=factor, padding=0) elif factor == 1: self.resize = nn.Identity() elif factor < 1: # so should downsample self.resize = nn.Conv2d(channels, channels, kernel_size=3, stride=int(1 / factor), padding=1) # Copied from transformers.models.dpt.modeling_dpt.DPTReassembleLayer.forward def forward(self, hidden_state): hidden_state = self.projection(hidden_state) hidden_state = self.resize(hidden_state) return hidden_state class DepthAnythingReassembleStage(nn.Module): """ This class reassembles the hidden states of the backbone into image-like feature representations at various resolutions. This happens in 3 stages: 1. Take the patch embeddings and reshape them to image-like feature representations. 2. Project the channel dimension of the hidden states according to `config.neck_hidden_sizes`. 3. Resizing the spatial dimensions (height, width). Args: config (`[DepthAnythingConfig]`): Model configuration class defining the model architecture. """ def __init__(self, config): super().__init__() self.config = config self.layers = nn.ModuleList() for channels, factor in zip(config.neck_hidden_sizes, config.reassemble_factors): self.layers.append(DepthAnythingReassembleLayer(config, channels=channels, factor=factor)) def forward(self, hidden_states: List[torch.Tensor], patch_height=None, patch_width=None) -> List[torch.Tensor]: """ Args: hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length + 1, hidden_size)`): List of hidden states from the backbone. """ out = [] for i, hidden_state in enumerate(hidden_states): # reshape to (batch_size, num_channels, height, width) hidden_state = hidden_state[:, 1:] batch_size, _, num_channels = hidden_state.shape hidden_state = hidden_state.reshape(batch_size, patch_height, patch_width, num_channels) hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous() hidden_state = self.layers[i](hidden_state) out.append(hidden_state) return out class DepthAnythingPreActResidualLayer(nn.Module): """ ResidualConvUnit, pre-activate residual unit. Args: config (`[DepthAnythingConfig]`): Model configuration class defining the model architecture. """ def __init__(self, config): super().__init__() self.activation1 = nn.ReLU() self.convolution1 = nn.Conv2d( config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=3, stride=1, padding=1, bias=True, ) self.activation2 = nn.ReLU() self.convolution2 = nn.Conv2d( config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=3, stride=1, padding=1, bias=True, ) def forward(self, hidden_state: torch.Tensor) -> torch.Tensor: residual = hidden_state hidden_state = self.activation1(hidden_state) hidden_state = self.convolution1(hidden_state) hidden_state = self.activation2(hidden_state) hidden_state = self.convolution2(hidden_state) return hidden_state + residual class DepthAnythingFeatureFusionLayer(nn.Module): """Feature fusion layer, merges feature maps from different stages. Args: config (`[DepthAnythingConfig]`): Model configuration class defining the model architecture. """ def __init__(self, config): super().__init__() self.projection = nn.Conv2d(config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=1, bias=True) self.residual_layer1 = DepthAnythingPreActResidualLayer(config) self.residual_layer2 = DepthAnythingPreActResidualLayer(config) def forward(self, hidden_state, residual=None, size=None): if residual is not None: if hidden_state.shape != residual.shape: residual = nn.functional.interpolate( residual, size=(hidden_state.shape[2], hidden_state.shape[3]), mode="bilinear", align_corners=False ) hidden_state = hidden_state + self.residual_layer1(residual) hidden_state = self.residual_layer2(hidden_state) modifier = {"scale_factor": 2} if size is None else {"size": size} hidden_state = nn.functional.interpolate( hidden_state, **modifier, mode="bilinear", align_corners=True, ) hidden_state = self.projection(hidden_state) return hidden_state class DepthAnythingFeatureFusionStage(nn.Module): # Copied from transformers.models.dpt.modeling_dpt.DPTFeatureFusionStage.__init__ with DPT->DepthAnything def __init__(self, config): super().__init__() self.layers = nn.ModuleList() for _ in range(len(config.neck_hidden_sizes)): self.layers.append(DepthAnythingFeatureFusionLayer(config)) def forward(self, hidden_states, size=None): # reversing the hidden_states, we start from the last hidden_states = hidden_states[::-1] fused_hidden_states = [] # first layer only uses the last hidden_state size = hidden_states[1].shape[2:] fused_hidden_state = self.layers[0](hidden_states[0], size=size) fused_hidden_states.append(fused_hidden_state) # looping from the last layer to the second for idx, (hidden_state, layer) in enumerate(zip(hidden_states[1:], self.layers[1:])): size = hidden_states[1:][idx + 1].shape[2:] if idx != (len(hidden_states[1:]) - 1) else None fused_hidden_state = layer(fused_hidden_state, hidden_state, size=size) fused_hidden_states.append(fused_hidden_state) return fused_hidden_states # Copied from transformers.models.dpt.modeling_dpt.DPTPreTrainedModel with DPT->DepthAnything,dpt->depth_anything class DepthAnythingPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DepthAnythingConfig base_model_prefix = "depth_anything" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) class DepthAnythingNeck(nn.Module): """ DepthAnythingNeck. A neck is a module that is normally used between the backbone and the head. It takes a list of tensors as input and produces another list of tensors as output. For DepthAnything, it includes 2 stages: * DepthAnythingReassembleStage * DepthAnythingFeatureFusionStage. Args: config (dict): config dict. """ def __init__(self, config): super().__init__() self.config = config self.reassemble_stage = DepthAnythingReassembleStage(config) self.convs = nn.ModuleList() for channel in config.neck_hidden_sizes: self.convs.append(nn.Conv2d(channel, config.fusion_hidden_size, kernel_size=3, padding=1, bias=False)) # fusion self.fusion_stage = DepthAnythingFeatureFusionStage(config) def forward(self, hidden_states: List[torch.Tensor], patch_height=None, patch_width=None) -> List[torch.Tensor]: """ Args: hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length, hidden_size)` or `(batch_size, hidden_size, height, width)`): List of hidden states from the backbone. """ if not isinstance(hidden_states, (tuple, list)): raise ValueError("hidden_states should be a tuple or list of tensors") if len(hidden_states) != len(self.config.neck_hidden_sizes): raise ValueError("The number of hidden states should be equal to the number of neck hidden sizes.") # postprocess hidden states hidden_states = self.reassemble_stage(hidden_states, patch_height, patch_width) features = [self.convs[i](feature) for i, feature in enumerate(hidden_states)] # fusion blocks output = self.fusion_stage(features) return output class DepthAnythingDepthEstimationHead(nn.Module): """ Output head consisting of 3 convolutional layers. It progressively halves the feature dimension and upsamples the predictions to the input resolution after the first convolutional layer (details can be found in the DPT paper's supplementary material). """ def __init__(self, config): super().__init__() self.head_in_index = config.head_in_index self.patch_size = config.patch_size features = config.fusion_hidden_size self.conv1 = nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(features // 2, config.head_hidden_size, kernel_size=3, stride=1, padding=1) self.activation1 = nn.ReLU() self.conv3 = nn.Conv2d(config.head_hidden_size, 1, kernel_size=1, stride=1, padding=0) self.activation2 = nn.ReLU() def forward(self, hidden_states: List[torch.Tensor], patch_height, patch_width) -> torch.Tensor: hidden_states = hidden_states[self.head_in_index] predicted_depth = self.conv1(hidden_states) predicted_depth = nn.functional.interpolate( predicted_depth, (int(patch_height * self.patch_size), int(patch_width * self.patch_size)), mode="bilinear", align_corners=True, ) predicted_depth = self.conv2(predicted_depth) predicted_depth = self.activation1(predicted_depth) predicted_depth = self.conv3(predicted_depth) predicted_depth = self.activation2(predicted_depth) predicted_depth = predicted_depth.squeeze(dim=1) # shape (batch_size, height, width) return predicted_depth @add_start_docstrings( """ Depth Anything Model with a depth estimation head on top (consisting of 3 convolutional layers) e.g. for KITTI, NYUv2. """, DEPTH_ANYTHING_START_DOCSTRING, ) class DepthAnythingForDepthEstimation(DepthAnythingPreTrainedModel): def __init__(self, config): super().__init__(config) self.backbone = AutoBackbone.from_config(config.backbone_config) self.neck = DepthAnythingNeck(config) self.head = DepthAnythingDepthEstimationHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DEPTH_ANYTHING_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=DepthEstimatorOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: torch.FloatTensor, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], DepthEstimatorOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth depth estimation maps for computing the loss. Returns: Examples: ```python >>> from transformers import AutoImageProcessor, AutoModelForDepthEstimation >>> import torch >>> import numpy as np >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("LiheYoung/depth-anything-small-hf") >>> model = AutoModelForDepthEstimation.from_pretrained("LiheYoung/depth-anything-small-hf") >>> # prepare image for the model >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) ... predicted_depth = outputs.predicted_depth >>> # interpolate to original size >>> prediction = torch.nn.functional.interpolate( ... predicted_depth.unsqueeze(1), ... size=image.size[::-1], ... mode="bicubic", ... align_corners=False, ... ) >>> # visualize the prediction >>> output = prediction.squeeze().cpu().numpy() >>> formatted = (output * 255 / np.max(output)).astype("uint8") >>> depth = Image.fromarray(formatted) ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions outputs = self.backbone.forward_with_filtered_kwargs( pixel_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions ) hidden_states = outputs.feature_maps _, _, height, width = pixel_values.shape patch_size = self.config.patch_size patch_height = height // patch_size patch_width = width // patch_size hidden_states = self.neck(hidden_states, patch_height, patch_width) predicted_depth = self.head(hidden_states, patch_height, patch_width) loss = None if labels is not None: raise NotImplementedError("Training is not implemented yet") if not return_dict: if output_hidden_states: output = (predicted_depth,) + outputs[1:] else: output = (predicted_depth,) + outputs[2:] return ((loss,) + output) if loss is not None else output return DepthEstimatorOutput( loss=loss, predicted_depth=predicted_depth, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=outputs.attentions, )
transformers/src/transformers/models/depth_anything/modeling_depth_anything.py/0
{ "file_path": "transformers/src/transformers/models/depth_anything/modeling_depth_anything.py", "repo_id": "transformers", "token_count": 7171 }
82
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _import_structure = { "configuration_donut_swin": ["DONUT_SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "DonutSwinConfig"], "processing_donut": ["DonutProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_donut_swin"] = [ "DONUT_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "DonutSwinModel", "DonutSwinPreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["feature_extraction_donut"] = ["DonutFeatureExtractor"] _import_structure["image_processing_donut"] = ["DonutImageProcessor"] if TYPE_CHECKING: from .configuration_donut_swin import DONUT_SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, DonutSwinConfig from .processing_donut import DonutProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_donut_swin import ( DONUT_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, DonutSwinModel, DonutSwinPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_donut import DonutFeatureExtractor from .image_processing_donut import DonutImageProcessor else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/donut/__init__.py/0
{ "file_path": "transformers/src/transformers/models/donut/__init__.py", "repo_id": "transformers", "token_count": 902 }
83
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert DINOv2 + DPT checkpoints from the original repository. URL: https://github.com/facebookresearch/dinov2/tree/main""" import argparse import itertools import math from pathlib import Path import requests import torch from PIL import Image from torchvision import transforms from transformers import Dinov2Config, DPTConfig, DPTForDepthEstimation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) def get_dpt_config(model_name): if "small" in model_name: # equivalent to stage 3, stage 6, stage 9, stage 12 backbone_config = Dinov2Config.from_pretrained( "facebook/dinov2-small", out_indices=[3, 6, 9, 12], apply_layernorm=False, reshape_hidden_states=False ) neck_hidden_sizes = [48, 96, 192, 384] elif "base" in model_name: backbone_config = Dinov2Config.from_pretrained( "facebook/dinov2-base", out_indices=[3, 6, 9, 12], apply_layernorm=False, reshape_hidden_states=False ) neck_hidden_sizes = [96, 192, 384, 768] elif "large" in model_name: backbone_config = Dinov2Config.from_pretrained( "facebook/dinov2-large", out_indices=[5, 12, 18, 24], apply_layernorm=False, reshape_hidden_states=False ) neck_hidden_sizes = [128, 256, 512, 1024] elif "giant" in model_name: backbone_config = Dinov2Config.from_pretrained( "facebook/dinov2-giant", out_indices=[10, 20, 30, 40], apply_layernorm=False, reshape_hidden_states=False ) neck_hidden_sizes = [192, 384, 768, 1536] else: raise NotImplementedError("To do") config = DPTConfig( backbone_config=backbone_config, neck_hidden_sizes=neck_hidden_sizes, use_bias_in_fusion_residual=False, add_projection=True, ) return config # here we list all DPT keys to be renamed (original name on the left, our name on the right) def create_rename_keys_dpt(config): rename_keys = [] # fmt: off # activation postprocessing (projections, readout projections + resize blocks) for i in range(4): rename_keys.append((f"decode_head.reassemble_blocks.projects.{i}.conv.weight", f"neck.reassemble_stage.layers.{i}.projection.weight")) rename_keys.append((f"decode_head.reassemble_blocks.projects.{i}.conv.bias", f"neck.reassemble_stage.layers.{i}.projection.bias")) rename_keys.append((f"decode_head.reassemble_blocks.readout_projects.{i}.0.weight", f"neck.reassemble_stage.readout_projects.{i}.0.weight")) rename_keys.append((f"decode_head.reassemble_blocks.readout_projects.{i}.0.bias", f"neck.reassemble_stage.readout_projects.{i}.0.bias")) if i != 2: rename_keys.append((f"decode_head.reassemble_blocks.resize_layers.{i}.weight", f"neck.reassemble_stage.layers.{i}.resize.weight")) rename_keys.append((f"decode_head.reassemble_blocks.resize_layers.{i}.bias", f"neck.reassemble_stage.layers.{i}.resize.bias")) # fusion layers for i in range(4): rename_keys.append((f"decode_head.fusion_blocks.{i}.project.conv.weight", f"neck.fusion_stage.layers.{i}.projection.weight")) rename_keys.append((f"decode_head.fusion_blocks.{i}.project.conv.bias", f"neck.fusion_stage.layers.{i}.projection.bias")) if i != 0: rename_keys.append((f"decode_head.fusion_blocks.{i}.res_conv_unit1.conv1.conv.weight", f"neck.fusion_stage.layers.{i}.residual_layer1.convolution1.weight")) rename_keys.append((f"decode_head.fusion_blocks.{i}.res_conv_unit1.conv2.conv.weight", f"neck.fusion_stage.layers.{i}.residual_layer1.convolution2.weight")) rename_keys.append((f"decode_head.fusion_blocks.{i}.res_conv_unit2.conv1.conv.weight", f"neck.fusion_stage.layers.{i}.residual_layer2.convolution1.weight")) rename_keys.append((f"decode_head.fusion_blocks.{i}.res_conv_unit2.conv2.conv.weight", f"neck.fusion_stage.layers.{i}.residual_layer2.convolution2.weight")) # neck convolutions for i in range(4): rename_keys.append((f"decode_head.convs.{i}.conv.weight", f"neck.convs.{i}.weight")) # head rename_keys.append(("decode_head.project.conv.weight", "head.projection.weight")) rename_keys.append(("decode_head.project.conv.bias", "head.projection.bias")) for i in range(0, 5, 2): rename_keys.append((f"decode_head.conv_depth.head.{i}.weight", f"head.head.{i}.weight")) rename_keys.append((f"decode_head.conv_depth.head.{i}.bias", f"head.head.{i}.bias")) # fmt: on return rename_keys # here we list all backbone keys to be renamed (original name on the left, our name on the right) def create_rename_keys_backbone(config): rename_keys = [] # fmt: off # patch embedding layer rename_keys.append(("cls_token", "backbone.embeddings.cls_token")) rename_keys.append(("mask_token", "backbone.embeddings.mask_token")) rename_keys.append(("pos_embed", "backbone.embeddings.position_embeddings")) rename_keys.append(("patch_embed.proj.weight", "backbone.embeddings.patch_embeddings.projection.weight")) rename_keys.append(("patch_embed.proj.bias", "backbone.embeddings.patch_embeddings.projection.bias")) # Transfomer encoder for i in range(config.backbone_config.num_hidden_layers): # layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"backbone.encoder.layer.{i}.norm1.weight")) rename_keys.append((f"blocks.{i}.norm1.bias", f"backbone.encoder.layer.{i}.norm1.bias")) rename_keys.append((f"blocks.{i}.norm2.weight", f"backbone.encoder.layer.{i}.norm2.weight")) rename_keys.append((f"blocks.{i}.norm2.bias", f"backbone.encoder.layer.{i}.norm2.bias")) # MLP if config.backbone_config.use_swiglu_ffn: rename_keys.append((f"blocks.{i}.mlp.w12.weight", f"backbone.encoder.layer.{i}.mlp.w12.weight")) rename_keys.append((f"blocks.{i}.mlp.w12.bias", f"backbone.encoder.layer.{i}.mlp.w12.bias")) rename_keys.append((f"blocks.{i}.mlp.w3.weight", f"backbone.encoder.layer.{i}.mlp.w3.weight")) rename_keys.append((f"blocks.{i}.mlp.w3.bias", f"backbone.encoder.layer.{i}.mlp.w3.bias")) else: rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"backbone.encoder.layer.{i}.mlp.fc1.weight")) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"backbone.encoder.layer.{i}.mlp.fc1.bias")) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"backbone.encoder.layer.{i}.mlp.fc2.weight")) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"backbone.encoder.layer.{i}.mlp.fc2.bias")) # layerscale rename_keys.append((f"blocks.{i}.ls1.gamma", f"backbone.encoder.layer.{i}.layer_scale1.lambda1")) rename_keys.append((f"blocks.{i}.ls2.gamma", f"backbone.encoder.layer.{i}.layer_scale2.lambda1")) # attention projection layer rename_keys.append((f"blocks.{i}.attn.proj.weight", f"backbone.encoder.layer.{i}.attention.output.dense.weight")) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"backbone.encoder.layer.{i}.attention.output.dense.bias")) # fmt: on rename_keys.append(("norm.weight", "backbone.layernorm.weight")) rename_keys.append(("norm.bias", "backbone.layernorm.bias")) return rename_keys # we split up the matrix of each encoder layer into queries, keys and values def read_in_q_k_v(state_dict, config): for i in range(config.backbone_config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight") in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias") hidden_size = config.backbone_config.hidden_size # next, add query, keys and values (in that order) to the state dict state_dict[f"backbone.encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[:hidden_size, :] state_dict[f"backbone.encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[:hidden_size] state_dict[f"backbone.encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[ hidden_size : hidden_size * 2, : ] state_dict[f"backbone.encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[ hidden_size : hidden_size * 2 ] state_dict[f"backbone.encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[-hidden_size:, :] state_dict[f"backbone.encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-hidden_size:] def rename_key(dct, old, new): val = dct.pop(old) dct[new] = val # We will verify our results on an image of cute cats def prepare_img(): url = "https://dl.fbaipublicfiles.com/dinov2/images/example.jpg" im = Image.open(requests.get(url, stream=True).raw) return im name_to_url = { "dpt-dinov2-small-nyu": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_nyu_dpt_head.pth", "dpt-dinov2-small-kitti": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vits14/dinov2_vits14_kitti_dpt_head.pth", "dpt-dinov2-base-nyu": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_nyu_dpt_head.pth", "dpt-dinov2-base-kitti": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitb14/dinov2_vitb14_kitti_dpt_head.pth", "dpt-dinov2-large-nyu": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_nyu_dpt_head.pth", "dpt-dinov2-large-kitti": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_kitti_dpt_head.pth", "dpt-dinov2-giant-nyu": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_nyu_dpt_head.pth", "dpt-dinov2-giant-kitti": "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitg14/dinov2_vitg14_kitti_dpt_head.pth", } def get_original_pixel_values(image): class CenterPadding(object): def __init__(self, multiple): super().__init__() self.multiple = multiple def _get_pad(self, size): new_size = math.ceil(size / self.multiple) * self.multiple pad_size = new_size - size pad_size_left = pad_size // 2 pad_size_right = pad_size - pad_size_left return pad_size_left, pad_size_right def __call__(self, img): pads = list(itertools.chain.from_iterable(self._get_pad(m) for m in img.shape[-2:][::-1])) output = torch.nn.functional.pad(img, pads) return output def __repr__(self): return self.__class__.__name__ + "()" def make_depth_transform() -> transforms.Compose: return transforms.Compose( [ transforms.ToTensor(), lambda x: 255.0 * x[:3], # Discard alpha component and scale by 255 transforms.Normalize( mean=(123.675, 116.28, 103.53), std=(58.395, 57.12, 57.375), ), CenterPadding(multiple=14), ] ) transform = make_depth_transform() original_pixel_values = transform(image).unsqueeze(0) return original_pixel_values @torch.no_grad() def convert_dpt_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub, verify_logits): """ Copy/paste/tweak model's weights to our DPT structure. """ # define DPT configuration based on URL checkpoint_url = name_to_url[model_name] config = get_dpt_config(model_name) # load original DPT state_dict from URL print("URL:", checkpoint_url) dpt_state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["state_dict"] # rename keys rename_keys = create_rename_keys_dpt(config) for src, dest in rename_keys: rename_key(dpt_state_dict, src, dest) # load original backbone state_dict from URL if "small" in model_name: original_model = torch.hub.load("facebookresearch/dinov2", "dinov2_vits14") elif "base" in model_name: original_model = torch.hub.load("facebookresearch/dinov2", "dinov2_vitb14") elif "large" in model_name: original_model = torch.hub.load("facebookresearch/dinov2", "dinov2_vitl14") elif "giant" in model_name: original_model = torch.hub.load("facebookresearch/dinov2", "dinov2_vitg14") else: raise NotImplementedError("To do") original_model.eval() backbone_state_dict = original_model.state_dict() # rename keys rename_keys = create_rename_keys_backbone(config) for src, dest in rename_keys: rename_key(backbone_state_dict, src, dest) # read in qkv matrices read_in_q_k_v(backbone_state_dict, config) for key, val in backbone_state_dict.copy().items(): val = backbone_state_dict.pop(key) if "w12" in key: key = key.replace("w12", "weights_in") if "w3" in key: key = key.replace("w3", "weights_out") backbone_state_dict[key] = val # merge state_dicts state_dict = {**backbone_state_dict, **dpt_state_dict} # load HuggingFace model model = DPTForDepthEstimation(config) missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) print("Missing keys:", missing_keys) print("Unexpected keys:", unexpected_keys) assert missing_keys == [ "neck.fusion_stage.layers.0.residual_layer1.convolution1.weight", "neck.fusion_stage.layers.0.residual_layer1.convolution2.weight", ] model.eval() # Verify image processor processor = DPTImageProcessor( do_resize=False, do_rescale=False, do_pad=True, size_divisor=14, do_normalize=True, image_mean=(123.675, 116.28, 103.53), image_std=(58.395, 57.12, 57.375), ) image = prepare_img() pixel_values = processor(image, return_tensors="pt").pixel_values.float() original_pixel_values = get_original_pixel_values(image) assert torch.allclose(pixel_values, original_pixel_values) # Verify forward pass with torch.no_grad(): outputs = model(pixel_values) predicted_depth = outputs.predicted_depth print("Shape of predicted depth:", predicted_depth.shape) print("First values of predicted depth:", predicted_depth[0, :3, :3]) # assert logits if verify_logits: if model_name == "dpt-dinov2-small-nyu": expected_shape = torch.Size([1, 576, 736]) expected_slice = torch.tensor( [[3.3576, 3.4741, 3.4345], [3.4324, 3.5012, 3.2775], [3.2560, 3.3563, 3.2354]] ) assert predicted_depth.shape == torch.Size(expected_shape) assert torch.allclose(predicted_depth[0, :3, :3], expected_slice, atol=1e-5) print("Looks ok!") if pytorch_dump_folder_path is not None: Path(pytorch_dump_folder_path).mkdir(exist_ok=True) print(f"Saving model and processor to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: print("Pushing model and processor to hub...") model.push_to_hub(repo_id=f"facebook/{model_name}") processor.push_to_hub(repo_id=f"facebook/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dpt-dinov2-small-nyu", type=str, choices=name_to_url.keys(), help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub after conversion.", ) parser.add_argument( "--verify_logits", action="store_true", required=False, help="Path to the output PyTorch model directory.", ) args = parser.parse_args() convert_dpt_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.verify_logits)
transformers/src/transformers/models/dpt/convert_dinov2_depth_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/dpt/convert_dinov2_depth_to_hf.py", "repo_id": "transformers", "token_count": 7347 }
84
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert EfficientNet checkpoints from the original repository. URL: https://github.com/keras-team/keras/blob/v2.11.0/keras/applications/efficientnet.py""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() logger = logging.get_logger(__name__) model_classes = { "b0": efficientnet.EfficientNetB0, "b1": efficientnet.EfficientNetB1, "b2": efficientnet.EfficientNetB2, "b3": efficientnet.EfficientNetB3, "b4": efficientnet.EfficientNetB4, "b5": efficientnet.EfficientNetB5, "b6": efficientnet.EfficientNetB6, "b7": efficientnet.EfficientNetB7, } CONFIG_MAP = { "b0": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.0, "image_size": 224, "dropout_rate": 0.2, "dw_padding": [], }, "b1": { "hidden_dim": 1280, "width_coef": 1.0, "depth_coef": 1.1, "image_size": 240, "dropout_rate": 0.2, "dw_padding": [16], }, "b2": { "hidden_dim": 1408, "width_coef": 1.1, "depth_coef": 1.2, "image_size": 260, "dropout_rate": 0.3, "dw_padding": [5, 8, 16], }, "b3": { "hidden_dim": 1536, "width_coef": 1.2, "depth_coef": 1.4, "image_size": 300, "dropout_rate": 0.3, "dw_padding": [5, 18], }, "b4": { "hidden_dim": 1792, "width_coef": 1.4, "depth_coef": 1.8, "image_size": 380, "dropout_rate": 0.4, "dw_padding": [6], }, "b5": { "hidden_dim": 2048, "width_coef": 1.6, "depth_coef": 2.2, "image_size": 456, "dropout_rate": 0.4, "dw_padding": [13, 27], }, "b6": { "hidden_dim": 2304, "width_coef": 1.8, "depth_coef": 2.6, "image_size": 528, "dropout_rate": 0.5, "dw_padding": [31], }, "b7": { "hidden_dim": 2560, "width_coef": 2.0, "depth_coef": 3.1, "image_size": 600, "dropout_rate": 0.5, "dw_padding": [18], }, } def get_efficientnet_config(model_name): config = EfficientNetConfig() config.hidden_dim = CONFIG_MAP[model_name]["hidden_dim"] config.width_coefficient = CONFIG_MAP[model_name]["width_coef"] config.depth_coefficient = CONFIG_MAP[model_name]["depth_coef"] config.image_size = CONFIG_MAP[model_name]["image_size"] config.dropout_rate = CONFIG_MAP[model_name]["dropout_rate"] config.depthwise_padding = CONFIG_MAP[model_name]["dw_padding"] repo_id = "huggingface/label-files" filename = "imagenet-1k-id2label.json" config.num_labels = 1000 id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r")) id2label = {int(k): v for k, v in id2label.items()} config.id2label = id2label config.label2id = {v: k for k, v in id2label.items()} return config # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im def convert_image_processor(model_name): size = CONFIG_MAP[model_name]["image_size"] preprocessor = EfficientNetImageProcessor( size={"height": size, "width": size}, image_mean=[0.485, 0.456, 0.406], image_std=[0.47853944, 0.4732864, 0.47434163], do_center_crop=False, ) return preprocessor # here we list all keys to be renamed (original name on the left, our name on the right) def rename_keys(original_param_names): block_names = [v.split("_")[0].split("block")[1] for v in original_param_names if v.startswith("block")] block_names = sorted(set(block_names)) num_blocks = len(block_names) block_name_mapping = {b: str(i) for b, i in zip(block_names, range(num_blocks))} rename_keys = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight")) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight")) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias")) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean")) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var")) for b in block_names: hf_b = block_name_mapping[b] rename_keys.append((f"block{b}_expand_conv/kernel:0", f"encoder.blocks.{hf_b}.expansion.expand_conv.weight")) rename_keys.append((f"block{b}_expand_bn/gamma:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.weight")) rename_keys.append((f"block{b}_expand_bn/beta:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.bias")) rename_keys.append( (f"block{b}_expand_bn/moving_mean:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (f"block{b}_expand_bn/moving_variance:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (f"block{b}_dwconv/depthwise_kernel:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((f"block{b}_bn/gamma:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight")) rename_keys.append((f"block{b}_bn/beta:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias")) rename_keys.append( (f"block{b}_bn/moving_mean:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (f"block{b}_bn/moving_variance:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((f"block{b}_se_reduce/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight")) rename_keys.append((f"block{b}_se_reduce/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias")) rename_keys.append((f"block{b}_se_expand/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.weight")) rename_keys.append((f"block{b}_se_expand/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.bias")) rename_keys.append( (f"block{b}_project_conv/kernel:0", f"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((f"block{b}_project_bn/gamma:0", f"encoder.blocks.{hf_b}.projection.project_bn.weight")) rename_keys.append((f"block{b}_project_bn/beta:0", f"encoder.blocks.{hf_b}.projection.project_bn.bias")) rename_keys.append( (f"block{b}_project_bn/moving_mean:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (f"block{b}_project_bn/moving_variance:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight")) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight")) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias")) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean")) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var")) key_mapping = {} for item in rename_keys: if item[0] in original_param_names: key_mapping[item[0]] = "efficientnet." + item[1] key_mapping["predictions/kernel:0"] = "classifier.weight" key_mapping["predictions/bias:0"] = "classifier.bias" return key_mapping def replace_params(hf_params, tf_params, key_mapping): for key, value in tf_params.items(): if "normalization" in key: continue hf_key = key_mapping[key] if "_conv" in key and "kernel" in key: new_hf_value = torch.from_numpy(value).permute(3, 2, 0, 1) elif "depthwise_kernel" in key: new_hf_value = torch.from_numpy(value).permute(2, 3, 0, 1) elif "kernel" in key: new_hf_value = torch.from_numpy(np.transpose(value)) else: new_hf_value = torch.from_numpy(value) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(new_hf_value) @torch.no_grad() def convert_efficientnet_checkpoint(model_name, pytorch_dump_folder_path, save_model, push_to_hub): """ Copy/paste/tweak model's weights to our EfficientNet structure. """ # Load original model original_model = model_classes[model_name]( include_top=True, weights="imagenet", input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation="softmax", ) tf_params = original_model.trainable_variables tf_non_train_params = original_model.non_trainable_variables tf_params = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: tf_params[param.name] = param.numpy() tf_param_names = list(tf_params.keys()) # Load HuggingFace model config = get_efficientnet_config(model_name) hf_model = EfficientNetForImageClassification(config).eval() hf_params = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters...") key_mapping = rename_keys(tf_param_names) replace_params(hf_params, tf_params, key_mapping) # Initialize preprocessor and preprocess input image preprocessor = convert_image_processor(model_name) inputs = preprocessor(images=prepare_img(), return_tensors="pt") # HF model inference hf_model.eval() with torch.no_grad(): outputs = hf_model(**inputs) hf_logits = outputs.logits.detach().numpy() # Original model inference original_model.trainable = False image_size = CONFIG_MAP[model_name]["image_size"] img = prepare_img().resize((image_size, image_size), resample=PIL.Image.NEAREST) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) original_logits = original_model.predict(x) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(original_logits, hf_logits, atol=1e-3), "The predicted logits are not the same." print("Model outputs match!") if save_model: # Create folder to save model if not os.path.isdir(pytorch_dump_folder_path): os.mkdir(pytorch_dump_folder_path) # Save converted model and image processor hf_model.save_pretrained(pytorch_dump_folder_path) preprocessor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: # Push model and image processor to hub print(f"Pushing converted {model_name} to the hub...") model_name = f"efficientnet-{model_name}" preprocessor.push_to_hub(model_name) hf_model.push_to_hub(model_name) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="b0", type=str, help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].", ) parser.add_argument( "--pytorch_dump_folder_path", default="hf_model", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--save_model", action="store_true", help="Save model to local") parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") args = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
transformers/src/transformers/models/efficientnet/convert_efficientnet_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/efficientnet/convert_efficientnet_to_pytorch.py", "repo_id": "transformers", "token_count": 5603 }
85
# coding=utf-8 # Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import sys from dataclasses import dataclass from functools import partial from typing import Callable, Dict, List, Optional, Sequence, Tuple, Union import numpy as np import torch import torch.nn as nn from torch.nn import LayerNorm from ...integrations.deepspeed import is_deepspeed_available from ...modeling_outputs import ModelOutput from ...utils import ( ContextManagers, add_start_docstrings, add_start_docstrings_to_model_forward, is_scipy_available, logging, replace_return_docstrings, ) from .configuration_esm import EsmConfig from .modeling_esm import ESM_START_DOCSTRING, EsmModel, EsmPreTrainedModel from .openfold_utils import ( OFProtein, Rigid, Rotation, atom14_to_atom37, chunk_layer, compute_predicted_aligned_error, compute_tm, frames_and_literature_positions_to_atom14_pos, make_atom14_masks, residue_constants, to_pdb, torsion_angles_to_frames, ) logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "facebook/esmfold_v1" _CONFIG_FOR_DOC = "EsmConfig" @dataclass class EsmForProteinFoldingOutput(ModelOutput): """ Output type of [`EsmForProteinFoldingOutput`]. Args: frames (`torch.FloatTensor`): Output frames. sidechain_frames (`torch.FloatTensor`): Output sidechain frames. unnormalized_angles (`torch.FloatTensor`): Predicted unnormalized backbone and side chain torsion angles. angles (`torch.FloatTensor`): Predicted backbone and side chain torsion angles. positions (`torch.FloatTensor`): Predicted positions of the backbone and side chain atoms. states (`torch.FloatTensor`): Hidden states from the protein folding trunk. s_s (`torch.FloatTensor`): Per-residue embeddings derived by concatenating the hidden states of each layer of the ESM-2 LM stem. s_z (`torch.FloatTensor`): Pairwise residue embeddings. distogram_logits (`torch.FloatTensor`): Input logits to the distogram used to compute residue distances. lm_logits (`torch.FloatTensor`): Logits output by the ESM-2 protein language model stem. aatype (`torch.FloatTensor`): Input amino acids (AlphaFold2 indices). atom14_atom_exists (`torch.FloatTensor`): Whether each atom exists in the atom14 representation. residx_atom14_to_atom37 (`torch.FloatTensor`): Mapping between atoms in the atom14 and atom37 representations. residx_atom37_to_atom14 (`torch.FloatTensor`): Mapping between atoms in the atom37 and atom14 representations. atom37_atom_exists (`torch.FloatTensor`): Whether each atom exists in the atom37 representation. residue_index (`torch.FloatTensor`): The index of each residue in the protein chain. Unless internal padding tokens are used, this will just be a sequence of integers from 0 to `sequence_length`. lddt_head (`torch.FloatTensor`): Raw outputs from the lddt head used to compute plddt. plddt (`torch.FloatTensor`): Per-residue confidence scores. Regions of low confidence may indicate areas where the model's prediction is uncertain, or where the protein structure is disordered. ptm_logits (`torch.FloatTensor`): Raw logits used for computing ptm. ptm (`torch.FloatTensor`): TM-score output representing the model's high-level confidence in the overall structure. aligned_confidence_probs (`torch.FloatTensor`): Per-residue confidence scores for the aligned structure. predicted_aligned_error (`torch.FloatTensor`): Predicted error between the model's prediction and the ground truth. max_predicted_aligned_error (`torch.FloatTensor`): Per-sample maximum predicted error. """ frames: torch.FloatTensor = None sidechain_frames: torch.FloatTensor = None unnormalized_angles: torch.FloatTensor = None angles: torch.FloatTensor = None positions: torch.FloatTensor = None states: torch.FloatTensor = None s_s: torch.FloatTensor = None s_z: torch.FloatTensor = None distogram_logits: torch.FloatTensor = None lm_logits: torch.FloatTensor = None aatype: torch.FloatTensor = None atom14_atom_exists: torch.FloatTensor = None residx_atom14_to_atom37: torch.FloatTensor = None residx_atom37_to_atom14: torch.FloatTensor = None atom37_atom_exists: torch.FloatTensor = None residue_index: torch.FloatTensor = None lddt_head: torch.FloatTensor = None plddt: torch.FloatTensor = None ptm_logits: torch.FloatTensor = None ptm: torch.FloatTensor = None aligned_confidence_probs: torch.FloatTensor = None predicted_aligned_error: torch.FloatTensor = None max_predicted_aligned_error: torch.FloatTensor = None ESMFOLD_INPUTS_DOCSTRING = r""" Args: input_ids (`torch.LongTensor` of shape `({0})`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) position_ids (`torch.LongTensor` of shape `({0})`, *optional*): Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`. [What are position IDs?](../glossary#position-ids) masking_pattern (`torch.LongTensor` of shape `({0})`, *optional*): Locations of tokens to mask during training as a form of regularization. Mask values selected in `[0, 1]`. num_recycles (`int`, *optional*, defaults to `None`): Number of times to recycle the input sequence. If `None`, defaults to `config.num_recycles`. "Recycling" consists of passing the output of the folding trunk back in as input to the trunk. During training, the number of recycles should vary with each batch, to ensure that the model learns to output valid predictions after each recycle. During inference, num_recycles should be set to the highest value that the model was trained with for maximum accuracy. Accordingly, when this value is set to `None`, config.max_recycles is used. """ def is_fp16_enabled(): # Autocast world fp16_enabled = torch.get_autocast_gpu_dtype() == torch.float16 fp16_enabled = fp16_enabled and torch.is_autocast_enabled() return fp16_enabled def is_deepspeed_initialized(): if is_deepspeed_available(): return False else: try: import deepspeed # This is not available in all DeepSpeed versions. return deepspeed.utils.is_initialized() except Exception: return False def collate_dense_tensors(samples: List[torch.Tensor], pad_v: float = 0) -> torch.Tensor: """ Takes a list of tensors with the following dimensions: [(d_11, ..., d_1K), (d_21, ..., d_2K), ..., (d_N1, ..., d_NK)] and stack + pads them into a single tensor of: (N, max_i=1,N { d_i1 }, ..., max_i=1,N {diK}) """ if len(samples) == 0: return torch.Tensor() if len({x.dim() for x in samples}) != 1: raise RuntimeError(f"Samples has varying dimensions: {[x.dim() for x in samples]}") (device,) = tuple({x.device for x in samples}) # assumes all on same device max_shape = [max(lst) for lst in zip(*[x.shape for x in samples])] result = torch.empty(len(samples), *max_shape, dtype=samples[0].dtype, device=device) result.fill_(pad_v) for i in range(len(samples)): result_i = result[i] t = samples[i] result_i[tuple(slice(0, k) for k in t.shape)] = t return result def flatten_final_dims(t: torch.Tensor, no_dims: int): return t.reshape(t.shape[:-no_dims] + (-1,)) def permute_final_dims(tensor: torch.Tensor, inds: List[int]): zero_index = -1 * len(inds) first_inds = list(range(len(tensor.shape[:zero_index]))) return tensor.permute(first_inds + [zero_index + i for i in inds]) def dict_multimap(fn, dicts): first = dicts[0] new_dict = {} for k, v in first.items(): all_v = [d[k] for d in dicts] if isinstance(v, dict): new_dict[k] = dict_multimap(fn, all_v) else: new_dict[k] = fn(all_v) return new_dict def trunc_normal_init_(weights, scale=1.0, fan="fan_in"): shape = weights.shape scale = scale / max(1, shape[1]) if not is_scipy_available(): logger.warning( "This init requires scipy, but scipy was not found, default to an approximation that might not be" " equivalent." ) std = math.sqrt(scale) torch.nn.init.normal_(weights, std=std).clamp(min=0.0, max=2.0 * std) else: from scipy.stats import truncnorm std = math.sqrt(scale) / truncnorm.std(a=-2, b=2, loc=0, scale=1) samples = truncnorm.rvs(a=-2, b=2, loc=0, scale=std, size=weights.numel()) samples = np.reshape(samples, shape) weights.copy_(torch.tensor(samples, device=weights.device)) def ipa_point_weights_init_(weights): with torch.no_grad(): softplus_inverse_1 = 0.541324854612918 weights.fill_(softplus_inverse_1) class EsmFoldLinear(nn.Linear): """ A Linear layer with built-in nonstandard initializations. Called just like torch.nn.Linear. Implements the initializers in 1.11.4, plus some additional ones found in the code. """ def __init__( self, in_dim: int, out_dim: int, bias: bool = True, init: str = "default", init_fn: Optional[Callable[[torch.Tensor, torch.Tensor], None]] = None, ): """ Args: in_dim: The final dimension of inputs to the layer out_dim: The final dimension of layer outputs bias: Whether to learn an additive bias. True by default init: The initializer to use. Choose from: "default": LeCun fan-in truncated normal initialization "relu": He initialization w/ truncated normal distribution "glorot": Fan-average Glorot uniform initialization "gating": Weights=0, Bias=1 "normal": Normal initialization with std=1/sqrt(fan_in) "final": Weights=0, Bias=0 Overridden by init_fn if the latter is not None. init_fn: A custom initializer taking weight and bias as inputs. Overrides init if not None. """ super().__init__(in_dim, out_dim, bias=bias) if bias: with torch.no_grad(): self.bias.fill_(0) self.init = init self.init_fn = init_fn if init not in ["default", "relu", "glorot", "gating", "normal", "final"]: raise ValueError("Invalid init string.") class EsmFoldLayerNorm(nn.Module): def __init__(self, c_in, eps=1e-5): super().__init__() self.c_in = (c_in,) self.eps = eps self.weight = nn.Parameter(torch.ones(c_in)) self.bias = nn.Parameter(torch.zeros(c_in)) def forward(self, x): d = x.dtype if d is torch.bfloat16 and not is_deepspeed_initialized(): with torch.cuda.amp.autocast(enabled=False): out = nn.functional.layer_norm(x, self.c_in, self.weight.to(dtype=d), self.bias.to(dtype=d), self.eps) else: out = nn.functional.layer_norm(x, self.c_in, self.weight, self.bias, self.eps) return out @torch.jit.ignore def softmax_no_cast(t: torch.Tensor, dim: int = -1) -> torch.Tensor: """ Softmax, but without automatic casting to fp32 when the input is of type bfloat16 """ d = t.dtype if d is torch.bfloat16 and not is_deepspeed_initialized(): with torch.cuda.amp.autocast(enabled=False): s = torch.nn.functional.softmax(t, dim=dim) else: s = torch.nn.functional.softmax(t, dim=dim) return s class EsmFoldAttention(nn.Module): """ Standard multi-head attention using AlphaFold's default layer initialization. Allows multiple bias vectors. """ def __init__( self, c_q: int, c_k: int, c_v: int, c_hidden: int, no_heads: int, gating: bool = True, ): """ Args: c_q: Input dimension of query data c_k: Input dimension of key data c_v: Input dimension of value data c_hidden: Per-head hidden dimension no_heads: Number of attention heads gating: Whether the output should be gated using query data """ super().__init__() self.c_q = c_q self.c_k = c_k self.c_v = c_v self.c_hidden = c_hidden self.no_heads = no_heads self.gating = gating # DISCREPANCY: c_hidden is not the per-head channel dimension, as # stated in the supplement, but the overall channel dimension. self.linear_q = EsmFoldLinear(self.c_q, self.c_hidden * self.no_heads, bias=False, init="glorot") self.linear_k = EsmFoldLinear(self.c_k, self.c_hidden * self.no_heads, bias=False, init="glorot") self.linear_v = EsmFoldLinear(self.c_v, self.c_hidden * self.no_heads, bias=False, init="glorot") self.linear_o = EsmFoldLinear(self.c_hidden * self.no_heads, self.c_q, init="final") self.linear_g = None if self.gating: self.linear_g = EsmFoldLinear(self.c_q, self.c_hidden * self.no_heads, init="gating") self.sigmoid = nn.Sigmoid() def _prep_qkv(self, q_x: torch.Tensor, kv_x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: # [*, Q/K/V, H * C_hidden] q = self.linear_q(q_x) k = self.linear_k(kv_x) v = self.linear_v(kv_x) # [*, Q/K, H, C_hidden] q = q.view(q.shape[:-1] + (self.no_heads, -1)) k = k.view(k.shape[:-1] + (self.no_heads, -1)) v = v.view(v.shape[:-1] + (self.no_heads, -1)) # [*, H, Q/K, C_hidden] q = q.transpose(-2, -3) k = k.transpose(-2, -3) v = v.transpose(-2, -3) q /= math.sqrt(self.c_hidden) return q, k, v def _wrap_up(self, o: torch.Tensor, q_x: torch.Tensor) -> torch.Tensor: if self.linear_g is not None: g = self.sigmoid(self.linear_g(q_x)) # [*, Q, H, C_hidden] g = g.view(g.shape[:-1] + (self.no_heads, -1)) o = o * g # [*, Q, H * C_hidden] o = flatten_final_dims(o, 2) # [*, Q, C_q] o = self.linear_o(o) return o def forward( self, q_x: torch.Tensor, kv_x: torch.Tensor, biases: Optional[List[torch.Tensor]] = None, use_memory_efficient_kernel: bool = False, use_lma: bool = False, lma_q_chunk_size: int = 1024, lma_kv_chunk_size: int = 4096, use_flash: bool = False, flash_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: """ Args: q_x: [*, Q, C_q] query data kv_x: [*, K, C_k] key data biases: List of biases that broadcast to [*, H, Q, K] use_memory_efficient_kernel: Whether to use a custom memory-efficient attention kernel. This should be the default choice for most. If none of the "use_<...>" flags are True, a stock PyTorch implementation is used instead use_lma: Whether to use low-memory attention (Staats & Rabe 2021). If none of the "use_<...>" flags are True, a stock PyTorch implementation is used instead lma_q_chunk_size: Query chunk size (for LMA) lma_kv_chunk_size: Key/Value chunk size (for LMA) Returns [*, Q, C_q] attention update """ if use_lma and (lma_q_chunk_size is None or lma_kv_chunk_size is None): raise ValueError("If use_lma is specified, lma_q_chunk_size and lma_kv_chunk_size must be provided") if use_flash and biases is not None: raise ValueError("use_flash is incompatible with the bias option. For masking, use flash_mask instead") attn_options = [use_memory_efficient_kernel, use_lma, use_flash] if sum(attn_options) > 1: raise ValueError("Choose at most one alternative attention algorithm") if biases is None: biases = [] # [*, H, Q/K, C_hidden] query, key, value = self._prep_qkv(q_x, kv_x) key = permute_final_dims(key, (1, 0)) # [*, H, Q, K] output = torch.matmul(query, key) for b in biases: output += b output = softmax_no_cast(output, -1) # [*, H, Q, C_hidden] output = torch.matmul(output, value) output = output.transpose(-2, -3) output = self._wrap_up(output, q_x) return output class EsmFoldTriangleAttention(nn.Module): def __init__(self, c_in, c_hidden, no_heads, starting=True, inf=1e9): """ Args: c_in: Input channel dimension c_hidden: Overall hidden channel dimension (not per-head) no_heads: Number of attention heads """ super().__init__() self.c_in = c_in self.c_hidden = c_hidden self.no_heads = no_heads self.starting = starting self.inf = inf self.layer_norm = LayerNorm(self.c_in) self.linear = EsmFoldLinear(c_in, self.no_heads, bias=False, init="normal") self.mha = EsmFoldAttention(self.c_in, self.c_in, self.c_in, self.c_hidden, self.no_heads) @torch.jit.ignore def _chunk( self, x: torch.Tensor, biases: List[torch.Tensor], chunk_size: int, use_memory_efficient_kernel: bool = False, use_lma: bool = False, inplace_safe: bool = False, ) -> torch.Tensor: "triangle! triangle!" mha_inputs = { "q_x": x, "kv_x": x, "biases": biases, } return chunk_layer( partial(self.mha, use_memory_efficient_kernel=use_memory_efficient_kernel, use_lma=use_lma), mha_inputs, chunk_size=chunk_size, no_batch_dims=len(x.shape[:-2]), _out=x if inplace_safe else None, ) def forward( self, x: torch.Tensor, mask: Optional[torch.Tensor] = None, chunk_size: Optional[int] = None, use_memory_efficient_kernel: bool = False, use_lma: bool = False, inplace_safe: bool = False, ) -> torch.Tensor: """ Args: x: [*, I, J, C_in] input tensor (e.g. the pair representation) Returns: [*, I, J, C_in] output tensor """ if mask is None: # [*, I, J] mask = x.new_ones( x.shape[:-1], ) if not self.starting: x = x.transpose(-2, -3) mask = mask.transpose(-1, -2) # [*, I, J, C_in] x = self.layer_norm(x) # [*, I, 1, 1, J] mask_bias = (self.inf * (mask - 1))[..., :, None, None, :] # [*, H, I, J] triangle_bias = permute_final_dims(self.linear(x), (2, 0, 1)) # [*, 1, H, I, J] triangle_bias = triangle_bias.unsqueeze(-4) biases = [mask_bias, triangle_bias] if chunk_size is not None: x = self._chunk( x, biases, chunk_size, use_memory_efficient_kernel=use_memory_efficient_kernel, use_lma=use_lma, inplace_safe=inplace_safe, ) else: x = self.mha( q_x=x, kv_x=x, biases=biases, use_memory_efficient_kernel=use_memory_efficient_kernel, use_lma=use_lma ) if not self.starting: x = x.transpose(-2, -3) return x class EsmFoldTriangleMultiplicativeUpdate(nn.Module): """ Implements Algorithms 11 and 12. """ def __init__(self, config, _outgoing=True): super().__init__() c_hidden = config.pairwise_state_dim self._outgoing = _outgoing self.linear_a_p = EsmFoldLinear(c_hidden, c_hidden) self.linear_a_g = EsmFoldLinear(c_hidden, c_hidden, init="gating") self.linear_b_p = EsmFoldLinear(c_hidden, c_hidden) self.linear_b_g = EsmFoldLinear(c_hidden, c_hidden, init="gating") self.linear_g = EsmFoldLinear(c_hidden, c_hidden, init="gating") self.linear_z = EsmFoldLinear(c_hidden, c_hidden, init="final") self.layer_norm_in = LayerNorm(c_hidden) self.layer_norm_out = LayerNorm(c_hidden) self.sigmoid = nn.Sigmoid() def _combine_projections( self, a: torch.Tensor, b: torch.Tensor, _inplace_chunk_size: Optional[int] = None ) -> torch.Tensor: if self._outgoing: a = permute_final_dims(a, (2, 0, 1)) b = permute_final_dims(b, (2, 1, 0)) else: a = permute_final_dims(a, (2, 1, 0)) b = permute_final_dims(b, (2, 0, 1)) if _inplace_chunk_size is not None: # To be replaced by torch vmap for i in range(0, a.shape[-3], _inplace_chunk_size): a_chunk = a[..., i : i + _inplace_chunk_size, :, :] b_chunk = b[..., i : i + _inplace_chunk_size, :, :] a[..., i : i + _inplace_chunk_size, :, :] = torch.matmul( a_chunk, b_chunk, ) p = a else: p = torch.matmul(a, b) return permute_final_dims(p, (1, 2, 0)) def _inference_forward( self, z: torch.Tensor, mask: Optional[torch.Tensor] = None, inplace_chunk_size: Optional[int] = None, with_add: bool = True, ): """ Args: z: A [*, N, N, C_z] pair representation mask: A [*, N, N] pair mask inplace_chunk_size: Size of chunks used in the main computation. Increase to trade memory for speed. with_add: If True, z is overwritten with (z + update). Otherwise, it is overwritten with (update). Returns: A reference to the overwritten z More memory-efficient, inference-only version of the forward function. Uses in-place operations, fusion of the addition that happens after this module in the Evoformer, a smidge of recomputation, and a cache of overwritten values to lower peak memory consumption of this module from 5x the size of the input tensor z to 2.5x its size. Useful for inference on extremely long sequences. It works as follows. We will make reference to variables used in the default forward implementation below. Naively, triangle multiplication attention requires the manifestation of 5 tensors the size of z: 1) z, the "square" input tensor, 2) a, the first projection of z, 3) b, the second projection of b, 4) g, a z-sized mask, and 5) a z-sized tensor for intermediate computations. For large N, this is prohibitively expensive; for N=4000, for example, z is more than 8GB alone. To avoid this problem, we compute b, g, and all intermediate tensors in small chunks, noting that the chunks required to compute a chunk of the output depend only on the tensor a and corresponding vertical and horizontal chunks of z. This suggests an algorithm that loops over pairs of chunks of z: hereafter "columns" and "rows" of z, even though each "column" and "row" in fact contains inplace_chunk_size contiguous true columns and rows of z. Writing output chunks to a new tensor would bring total memory consumption down to 3x the size of z. However, more memory can be saved by writing output chunks directly to z in-place. WLOG, we choose to write output chunks vertically, overwriting the ith "column" of z at the end of the ith iteration of the main loop. Despite this overwriting, the ith column is always one column ahead of previously overwritten columns and can be recovered directly from z. After the first iteration, however, the ith row of z is always at least partially overwritten. For this reason, we introduce the z-cache, a tensor one-half the size of z. The z-cache initially contains the left half (2nd and 3rd quadrants) of z. For 0 < i < N/2, the missing left part of the ith row of z is recovered from this cache at the beginning of the ith iteration. Once i exceeds n/2, the cache is "reoriented" to encompass the 3rd and 4th quadrants of z instead. Though the 3rd quadrant of the original z is entirely overwritten at this point, it can be recovered from the z-cache itself. Thereafter, the ith row of z can be recovered in its entirety from the reoriented z-cache. After the final iteration, z has been completely overwritten and contains the triangular multiplicative update. If with_add is True, it instead contains the sum of z and the triangular multiplicative update. In either case, peak memory consumption is just 2.5x the size of z, disregarding memory used for chunks and other small variables. """ if mask is None: mask = z.new_ones(z.shape[:-1]) mask = mask.unsqueeze(-1) def compute_projection_helper(pair, mask, a=True): if a: linear_g = self.linear_a_g linear_p = self.linear_a_p else: linear_g = self.linear_b_g linear_p = self.linear_b_p pair = self.layer_norm_in(pair) p = linear_g(pair) p.sigmoid_() p *= linear_p(pair) p *= mask p = permute_final_dims(p, (2, 0, 1)) return p def compute_projection(pair, mask, a=True, chunked=True): need_transpose = self._outgoing ^ a if not chunked: p = compute_projection_helper(pair, mask, a) if need_transpose: p = p.transpose(-1, -2) else: # This computation is chunked so as not to exceed our 2.5x # budget with a large intermediate tensor linear_g = self.linear_a_g if a else self.linear_b_g c = linear_g.bias.shape[-1] out_shape = pair.shape[:-3] + (c,) + pair.shape[-3:-1] p = pair.new_zeros(out_shape) for i in range(0, pair.shape[-3], inplace_chunk_size): pair_chunk = pair[..., i : i + inplace_chunk_size, :, :] pair_chunk = compute_projection_helper( pair[..., i : i + inplace_chunk_size, :, :], mask[..., i : i + inplace_chunk_size, :, :], a, ) if need_transpose: pair_chunk = pair_chunk.transpose(-1, -2) p[..., i : i + inplace_chunk_size] = pair_chunk else: p[..., i : i + inplace_chunk_size, :] = pair_chunk del pair_chunk return p # We start by fully manifesting a. In addition to the input, this # brings total memory consumption to 2x z (disregarding size of chunks) # [*, N, N, c] a = compute_projection(z, mask, True, chunked=True) if inplace_chunk_size is not None: n = a.shape[-1] half_n = n // 2 + n % 2 row_dim = -3 col_dim = -2 b_chunk_dim = row_dim if self._outgoing else col_dim def empty_slicer(t): return [slice(None) for _ in t.shape] def slice_tensor(t, start, end, dim): # Slices start:end from the dim dimension of t s = empty_slicer(t) s[dim] = slice(start, end) return t[s] def flip_z_cache_(z_cache, z): # "Reorient" the z_cache (see below), filling it with quadrants # 3---recovered from the z_cache---and 4---recovered from z--- # of the input tensor z. quadrant_3 = slice_tensor(z_cache, half_n, None, row_dim) z_cache = z_cache.transpose(row_dim, col_dim) # If n is odd, we need to shrink the z_cache by one row z_cache = z_cache[..., : (n // 2), :, :] # Move the 3rd quadrant of z into the first_half_slicer = empty_slicer(z_cache) first_half_slicer[col_dim] = slice(0, half_n) z_cache[first_half_slicer] = quadrant_3 # Get the fourth quadrant of z quadrant_4 = slice_tensor(z, half_n, None, row_dim) quadrant_4 = slice_tensor(quadrant_4, half_n, None, col_dim) # Insert said quadrant into the rotated z-cache quadrant_3_slicer = empty_slicer(z_cache) quadrant_3_slicer[col_dim] = slice(half_n, None) z_cache[quadrant_3_slicer] = quadrant_4 return z_cache # Initialize the z cache to the left half of z. z_cache_shape = list(z.shape) z_cache_shape[col_dim] = half_n z_cache = z.new_zeros(z_cache_shape) z_cache_slicer = empty_slicer(z_cache) z_cache_slicer[col_dim] = slice(0, half_n) z_cache.copy_(z[z_cache_slicer]) z_cache_rotated = False # We need to reorient the z-cache at the halfway point, and we # don't want a single chunk to straddle that point. We contract one # of the chunks in the middle to address that problem. i_range = list(range(0, half_n, inplace_chunk_size)) initial_offsets = [i_2 - i_1 for i_1, i_2 in zip(i_range, i_range[1:] + [half_n])] after_half = list(range(half_n, n, inplace_chunk_size)) after_half_offsets = [inplace_chunk_size for _ in after_half] combined_range_with_offsets = zip(i_range + after_half, initial_offsets + after_half_offsets) for i, offset in combined_range_with_offsets: if not z_cache_rotated and i >= half_n: z_cache = flip_z_cache_(z_cache, z) z_cache_rotated = True z_chunk_b = slice_tensor(z, i, i + offset, b_chunk_dim) mask_chunk = slice_tensor(mask, i, i + offset, b_chunk_dim) z_chunk_b = z_chunk_b.clone() if b_chunk_dim == col_dim: z_chunk_b = slice_tensor(z, i, i + offset, col_dim) else: # b_chunk_dim == row_dim # In this case, the b-dimension (b_chunk_dim) is partially # overwritten at the end of each iteration. We need to # restore the missing component from the z-cache. if not z_cache_rotated: z_chunk_slicer = empty_slicer(z_chunk_b) z_chunk_slicer[col_dim] = slice(0, half_n) z_chunk_b[z_chunk_slicer] = slice_tensor(z_cache, i, i + offset, row_dim) else: z_cache_offset = i - half_n z_chunk_b = slice_tensor(z_cache, z_cache_offset, z_cache_offset + offset, row_dim) b_chunk = compute_projection(z_chunk_b, mask_chunk, a=False, chunked=False) del z_chunk_b x_chunk = torch.matmul(a, b_chunk) x_chunk = permute_final_dims(x_chunk, (1, 2, 0)) x_chunk = self.layer_norm_out(x_chunk) x_chunk = self.linear_z(x_chunk) # The g dimension (col_dim) is parallel to and ahead of the # overwrites in z. We can extract the g chunk normally. z_chunk_g = slice_tensor(z, i, i + offset, col_dim) g_chunk = self.linear_g(self.layer_norm_in(z_chunk_g)) g_chunk.sigmoid_() del z_chunk_g x_chunk *= g_chunk # Write the columns into z in-place z_slicer = empty_slicer(z) z_slicer[col_dim] = slice(i, i + offset) if with_add: z[z_slicer] += x_chunk else: z[z_slicer] = x_chunk else: b = compute_projection(z, mask, False, False) x = torch.matmul(a, b) x = self.layer_norm_out(x) x = self.linear_z(x) g = self.linear_g(z) g.sigmoid_() x *= g if with_add: z += x else: z = x return z def forward( self, z: torch.Tensor, mask: Optional[torch.Tensor] = None, inplace_safe: bool = False, _add_with_inplace: bool = False, _inplace_chunk_size: Optional[int] = 256, ) -> torch.Tensor: """ Args: x: [*, N_res, N_res, C_z] input tensor mask: [*, N_res, N_res] input mask Returns: [*, N_res, N_res, C_z] output tensor """ if inplace_safe: x = self._inference_forward( z, mask, inplace_chunk_size=_inplace_chunk_size, with_add=_add_with_inplace, ) return x if mask is None: mask = z.new_ones(z.shape[:-1]) mask = mask.unsqueeze(-1) z = self.layer_norm_in(z) a = mask a = a * self.sigmoid(self.linear_a_g(z)) a = a * self.linear_a_p(z) b = mask b = b * self.sigmoid(self.linear_b_g(z)) b = b * self.linear_b_p(z) if is_fp16_enabled(): with torch.cuda.amp.autocast(enabled=False): x = self._combine_projections(a.float(), b.float()) else: x = self._combine_projections(a, b) del a, b x = self.layer_norm_out(x) x = self.linear_z(x) g = self.sigmoid(self.linear_g(z)) x = x * g return x class EsmFoldPreTrainedModel(EsmPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ # Subclass `EsMPreTrainedModel` to deal with special init def _init_weights(self, module): """Initialize the weights""" if isinstance(module, EsmFoldLinear): with torch.no_grad(): if module.init_fn is not None: module.init_fn(module.weight, module.bias) elif module.init == "default": trunc_normal_init_(module.weight, scale=1.0) elif module.init == "relu": trunc_normal_init_(module.weight, scale=2.0) elif module.init == "glorot": nn.init.xavier_uniform_(module.weight, gain=1) elif module.init == "gating": module.weight.fill_(0.0) if module.bias: module.bias.fill_(1.0) elif module.init == "normal": torch.nn.init.kaiming_normal_(module.weight, nonlinearity="linear") elif module.init == "final": module.weight.fill_(0.0) elif isinstance(module, EsmFoldInvariantPointAttention): ipa_point_weights_init_(module.head_weights) elif isinstance(module, EsmFoldTriangularSelfAttentionBlock): torch.nn.init.zeros_(module.tri_mul_in.linear_z.weight) torch.nn.init.zeros_(module.tri_mul_in.linear_z.bias) torch.nn.init.zeros_(module.tri_mul_out.linear_z.weight) torch.nn.init.zeros_(module.tri_mul_out.linear_z.bias) torch.nn.init.zeros_(module.tri_att_start.mha.linear_o.weight) torch.nn.init.zeros_(module.tri_att_start.mha.linear_o.bias) torch.nn.init.zeros_(module.tri_att_end.mha.linear_o.weight) torch.nn.init.zeros_(module.tri_att_end.mha.linear_o.bias) torch.nn.init.zeros_(module.sequence_to_pair.o_proj.weight) torch.nn.init.zeros_(module.sequence_to_pair.o_proj.bias) torch.nn.init.zeros_(module.pair_to_sequence.linear.weight) torch.nn.init.zeros_(module.seq_attention.o_proj.weight) torch.nn.init.zeros_(module.seq_attention.o_proj.bias) torch.nn.init.zeros_(module.mlp_seq.mlp[-2].weight) torch.nn.init.zeros_(module.mlp_seq.mlp[-2].bias) torch.nn.init.zeros_(module.mlp_pair.mlp[-2].weight) torch.nn.init.zeros_(module.mlp_pair.mlp[-2].bias) else: super()._init_weights(module) class EsmFoldSelfAttention(nn.Module): def __init__(self, embed_dim, num_heads, head_width, gated=False): super().__init__() assert embed_dim == num_heads * head_width self.embed_dim = embed_dim self.num_heads = num_heads self.head_width = head_width self.proj = nn.Linear(embed_dim, embed_dim * 3, bias=False) self.o_proj = nn.Linear(embed_dim, embed_dim, bias=True) self.gated = gated if gated: self.g_proj = nn.Linear(embed_dim, embed_dim) torch.nn.init.zeros_(self.g_proj.weight) torch.nn.init.ones_(self.g_proj.bias) self.rescale_factor = self.head_width**-0.5 torch.nn.init.zeros_(self.o_proj.bias) def forward(self, x, mask=None, bias=None, indices=None): """ Basic self attention with optional mask and external pairwise bias. To handle sequences of different lengths, use mask. Inputs: x: batch of input sequneces (.. x L x C) mask: batch of boolean masks where 1=valid, 0=padding position (.. x L_k) bias: batch of scalar pairwise attention biases (.. x Lq x Lk x num_heads) Outputs: sequence projection (B x L x embed_dim), attention maps (B x L x L x num_heads) """ t = self.proj(x).view(*x.shape[:2], self.num_heads, -1) t = t.permute(0, 2, 1, 3) q, k, v = t.chunk(3, dim=-1) q = self.rescale_factor * q a = torch.einsum("...qc,...kc->...qk", q, k) # Add external attention bias. if bias is not None: a = a + bias.permute(0, 3, 1, 2) # Do not attend to padding tokens. if mask is not None: mask = mask[:, None, None] a = a.masked_fill(mask == False, -np.inf) # noqa: E712 a = nn.functional.softmax(a, dim=-1) y = torch.einsum("...hqk,...hkc->...qhc", a, v) y = y.reshape(*y.shape[:2], -1) if self.gated: y = self.g_proj(x).sigmoid() * y y = self.o_proj(y) return y, a.permute(0, 3, 1, 2) class EsmFoldDropout(nn.Module): """ Implementation of dropout with the ability to share the dropout mask along a particular dimension. """ def __init__(self, r: float, batch_dim: Union[int, List[int]]): super().__init__() self.r = r if isinstance(batch_dim, int): batch_dim = [batch_dim] self.batch_dim = batch_dim self.dropout = nn.Dropout(self.r) def forward(self, x: torch.Tensor) -> torch.Tensor: shape = list(x.shape) if self.batch_dim is not None: for bd in self.batch_dim: shape[bd] = 1 return x * self.dropout(x.new_ones(shape)) class EsmFoldSequenceToPair(nn.Module): def __init__(self, sequence_state_dim, inner_dim, pairwise_state_dim): super().__init__() self.layernorm = nn.LayerNorm(sequence_state_dim) self.proj = nn.Linear(sequence_state_dim, inner_dim * 2, bias=True) self.o_proj = nn.Linear(2 * inner_dim, pairwise_state_dim, bias=True) torch.nn.init.zeros_(self.proj.bias) torch.nn.init.zeros_(self.o_proj.bias) def forward(self, sequence_state): """ Inputs: sequence_state: B x L x sequence_state_dim Output: pairwise_state: B x L x L x pairwise_state_dim Intermediate state: B x L x L x 2*inner_dim """ assert len(sequence_state.shape) == 3 s = self.layernorm(sequence_state) s = self.proj(s) q, k = s.chunk(2, dim=-1) prod = q[:, None, :, :] * k[:, :, None, :] diff = q[:, None, :, :] - k[:, :, None, :] x = torch.cat([prod, diff], dim=-1) x = self.o_proj(x) return x class EsmFoldPairToSequence(nn.Module): def __init__(self, pairwise_state_dim, num_heads): super().__init__() self.layernorm = nn.LayerNorm(pairwise_state_dim) self.linear = nn.Linear(pairwise_state_dim, num_heads, bias=False) def forward(self, pairwise_state): """ Inputs: pairwise_state: B x L x L x pairwise_state_dim Output: pairwise_bias: B x L x L x num_heads """ assert len(pairwise_state.shape) == 4 z = self.layernorm(pairwise_state) pairwise_bias = self.linear(z) return pairwise_bias class EsmFoldResidueMLP(nn.Module): def __init__(self, embed_dim, inner_dim, dropout=0): super().__init__() self.mlp = nn.Sequential( nn.LayerNorm(embed_dim), nn.Linear(embed_dim, inner_dim), nn.ReLU(), nn.Linear(inner_dim, embed_dim), nn.Dropout(dropout), ) def forward(self, x): return x + self.mlp(x) class EsmFoldTriangularSelfAttentionBlock(nn.Module): def __init__(self, config): super().__init__() self.config = config sequence_state_dim = config.sequence_state_dim pairwise_state_dim = config.pairwise_state_dim sequence_num_heads = sequence_state_dim // config.sequence_head_width pairwise_num_heads = pairwise_state_dim // config.pairwise_head_width self.layernorm_1 = nn.LayerNorm(sequence_state_dim) self.sequence_to_pair = EsmFoldSequenceToPair(sequence_state_dim, pairwise_state_dim // 2, pairwise_state_dim) self.pair_to_sequence = EsmFoldPairToSequence(pairwise_state_dim, sequence_num_heads) self.seq_attention = EsmFoldSelfAttention( sequence_state_dim, sequence_num_heads, config.sequence_head_width, gated=True ) self.tri_mul_out = EsmFoldTriangleMultiplicativeUpdate(config, _outgoing=True) self.tri_mul_in = EsmFoldTriangleMultiplicativeUpdate(config, _outgoing=False) self.tri_att_start = EsmFoldTriangleAttention( pairwise_state_dim, config.pairwise_head_width, pairwise_num_heads, inf=1e9, starting=True ) self.tri_att_end = EsmFoldTriangleAttention( pairwise_state_dim, config.pairwise_head_width, pairwise_num_heads, inf=1e9, starting=False ) self.mlp_seq = EsmFoldResidueMLP(sequence_state_dim, 4 * sequence_state_dim, dropout=config.dropout) self.mlp_pair = EsmFoldResidueMLP(pairwise_state_dim, 4 * pairwise_state_dim, dropout=config.dropout) self.drop = nn.Dropout(config.dropout) self.row_drop = EsmFoldDropout(config.dropout * 2, 2) self.col_drop = EsmFoldDropout(config.dropout * 2, 1) def forward(self, sequence_state, pairwise_state, mask=None, chunk_size=None, **__kwargs): """ Inputs: sequence_state: B x L x sequence_state_dim pairwise_state: B x L x L x pairwise_state_dim mask: B x L boolean tensor of valid positions Output: sequence_state: B x L x sequence_state_dim pairwise_state: B x L x L x pairwise_state_dim """ if len(sequence_state.shape) != 3: raise ValueError(f"`sequence_state` should be a 3d-tensor, got {len(sequence_state.shape)} dims.") if len(pairwise_state.shape) != 4: raise ValueError(f"`pairwise_state` should be a 4d-tensor, got {len(pairwise_state.shape)} dims.") if mask is not None and len(mask.shape) != 2: raise ValueError(f"`mask` should be a 2d-tensor, got {len(mask.shape)} dims.") batch_dim, seq_dim, sequence_state_dim = sequence_state.shape pairwise_state_dim = pairwise_state.shape[3] if sequence_state_dim != self.config.sequence_state_dim: raise ValueError( "`sequence_state` last dimension should be equal to `self.sequence_state_dim`. Got " f"{sequence_state_dim} != {self.config.sequence_state_dim}." ) if pairwise_state_dim != self.config.pairwise_state_dim: raise ValueError( "`pairwise_state` last dimension should be equal to `self.pairwise_state_dim`. Got " f"{pairwise_state_dim} != {self.config.pairwise_state_dim}." ) if batch_dim != pairwise_state.shape[0]: raise ValueError( f"`sequence_state` and `pairwise_state` have inconsistent batch size: {batch_dim} != " f"{pairwise_state.shape[0]}." ) if seq_dim != pairwise_state.shape[1] or seq_dim != pairwise_state.shape[2]: raise ValueError( f"`sequence_state` and `pairwise_state` have inconsistent sequence length: {seq_dim} != " f"{pairwise_state.shape[1]} or {pairwise_state.shape[2]}." ) # Update sequence state bias = self.pair_to_sequence(pairwise_state) # Self attention with bias + mlp. y = self.layernorm_1(sequence_state) y, _ = self.seq_attention(y, mask=mask, bias=bias) sequence_state = sequence_state + self.drop(y) sequence_state = self.mlp_seq(sequence_state) # Update pairwise state pairwise_state = pairwise_state + self.sequence_to_pair(sequence_state) # Axial attention with triangular bias. tri_mask = mask.unsqueeze(2) * mask.unsqueeze(1) if mask is not None else None pairwise_state = pairwise_state + self.row_drop(self.tri_mul_out(pairwise_state, mask=tri_mask)) pairwise_state = pairwise_state + self.col_drop(self.tri_mul_in(pairwise_state, mask=tri_mask)) pairwise_state = pairwise_state + self.row_drop( self.tri_att_start(pairwise_state, mask=tri_mask, chunk_size=chunk_size) ) pairwise_state = pairwise_state + self.col_drop( self.tri_att_end(pairwise_state, mask=tri_mask, chunk_size=chunk_size) ) # MLP over pairs. pairwise_state = self.mlp_pair(pairwise_state) return sequence_state, pairwise_state class EsmCategoricalMixture: def __init__(self, param, bins=50, start=0, end=1): # All tensors are of shape ..., bins. self.logits = param bins = torch.linspace(start, end, bins + 1, device=self.logits.device, dtype=self.logits.dtype) self.v_bins = (bins[:-1] + bins[1:]) / 2 def log_prob(self, true): # Shapes are: # self.probs: ... x bins # true : ... true_index = (true.unsqueeze(-1) - self.v_bins[[None] * true.ndim]).abs().argmin(-1) nll = self.logits.log_softmax(-1) return torch.take_along_dim(nll, true_index.unsqueeze(-1), dim=-1).squeeze(-1) def mean(self): return (self.logits.softmax(-1) @ self.v_bins.unsqueeze(1)).squeeze(-1) def categorical_lddt(logits, bins=50): # Logits are ..., 37, bins. return EsmCategoricalMixture(logits, bins=bins).mean() def get_axial_mask(mask): """ Helper to convert B x L mask of valid positions to axial mask used in row column attentions. Input: mask: B x L tensor of booleans Output: mask: B x L x L tensor of booleans """ if mask is None: return None if len(mask.shape) != 2: raise ValueError(f"`mask` should be a 2d-tensor, got {len(mask.shape)} dims.") batch_dim, seq_dim = mask.shape m = mask.unsqueeze(1).expand(batch_dim, seq_dim, seq_dim) m = m.reshape(batch_dim * seq_dim, seq_dim) return m class EsmFoldRelativePosition(nn.Module): def __init__(self, config): super().__init__() self.bins = config.position_bins # Note an additional offset is used so that the 0th position # is reserved for masked pairs. self.embedding = torch.nn.Embedding(2 * self.bins + 2, config.pairwise_state_dim) def forward(self, residue_index, mask=None): """ Input: residue_index: B x L tensor of indices (dytpe=torch.long) mask: B x L tensor of booleans Output: pairwise_state: B x L x L x pairwise_state_dim tensor of embeddings """ if residue_index.dtype != torch.long: raise ValueError(f"`residue_index` has dtype {residue_index.dtype}, it should be `torch.long`.") if mask is not None and residue_index.shape != mask.shape: raise ValueError( f"`residue_index` and `mask` have inconsistent shapes: {residue_index.shape} != {mask.shape}." ) diff = residue_index[:, None, :] - residue_index[:, :, None] diff = diff.clamp(-self.bins, self.bins) diff = diff + self.bins + 1 # Add 1 to adjust for padding index. if mask is not None: mask = mask[:, None, :] * mask[:, :, None] diff[mask == False] = 0 # noqa: E712 output = self.embedding(diff) return output class EsmFoldAngleResnetBlock(nn.Module): def __init__(self, config): super().__init__() self.linear_1 = EsmFoldLinear(config.resnet_dim, config.resnet_dim, init="relu") self.linear_2 = EsmFoldLinear(config.resnet_dim, config.resnet_dim, init="final") self.relu = nn.ReLU() def forward(self, a: torch.Tensor) -> torch.Tensor: s_initial = a a = self.relu(a) a = self.linear_1(a) a = self.relu(a) a = self.linear_2(a) return a + s_initial class EsmFoldAngleResnet(nn.Module): """ Implements Algorithm 20, lines 11-14 """ def __init__(self, config): super().__init__() self.config = config self.linear_in = EsmFoldLinear(config.sequence_dim, config.resnet_dim) self.linear_initial = EsmFoldLinear(config.sequence_dim, config.resnet_dim) self.layers = nn.ModuleList() for _ in range(config.num_resnet_blocks): layer = EsmFoldAngleResnetBlock(config) self.layers.append(layer) self.linear_out = EsmFoldLinear(config.resnet_dim, config.num_angles * 2) self.relu = nn.ReLU() def forward(self, s: torch.Tensor, s_initial: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: s: [*, C_hidden] single embedding s_initial: [*, C_hidden] single embedding as of the start of the StructureModule Returns: [*, no_angles, 2] predicted angles """ # NOTE: The ReLU's applied to the inputs are absent from the supplement # pseudocode but present in the source. For maximal compatibility with # the pretrained weights, I'm going with the source. # [*, C_hidden] s_initial = self.relu(s_initial) s_initial = self.linear_initial(s_initial) s = self.relu(s) s = self.linear_in(s) s = s + s_initial for l in self.layers: s = l(s) s = self.relu(s) # [*, no_angles * 2] s = self.linear_out(s) # [*, no_angles, 2] s = s.view(s.shape[:-1] + (-1, 2)) unnormalized_s = s norm_denom = torch.sqrt( torch.clamp( torch.sum(s**2, dim=-1, keepdim=True), min=self.config.epsilon, ) ) s = s / norm_denom return unnormalized_s, s class EsmFoldInvariantPointAttention(nn.Module): """ Implements Algorithm 22. """ def __init__(self, config): super().__init__() self.config = config c_s = config.sequence_dim c_z = config.pairwise_dim self.hidden_dim = config.ipa_dim self.num_heads = config.num_heads_ipa self.num_qk_points = config.num_qk_points self.num_v_points = config.num_v_points # These linear layers differ from their specifications in the # supplement. There, they lack bias and use Glorot initialization. # Here as in the official source, they have bias and use the default # Lecun initialization. hc = config.ipa_dim * config.num_heads_ipa self.linear_q = EsmFoldLinear(c_s, hc) self.linear_kv = EsmFoldLinear(c_s, 2 * hc) hpq = config.num_heads_ipa * config.num_qk_points * 3 self.linear_q_points = EsmFoldLinear(c_s, hpq) hpkv = config.num_heads_ipa * (config.num_qk_points + config.num_v_points) * 3 self.linear_kv_points = EsmFoldLinear(c_s, hpkv) self.linear_b = EsmFoldLinear(c_z, config.num_heads_ipa) self.head_weights = nn.Parameter(torch.zeros((config.num_heads_ipa))) concat_out_dim = config.num_heads_ipa * (c_z + config.ipa_dim + config.num_v_points * 4) self.linear_out = EsmFoldLinear(concat_out_dim, c_s, init="final") self.softmax = nn.Softmax(dim=-1) self.softplus = nn.Softplus() def forward( self, s: torch.Tensor, z: Optional[torch.Tensor], r: Rigid, mask: torch.Tensor, _offload_inference: bool = False, _z_reference_list: Optional[Sequence[torch.Tensor]] = None, ) -> torch.Tensor: """ Args: s: [*, N_res, C_s] single representation z: [*, N_res, N_res, C_z] pair representation r: [*, N_res] transformation object mask: [*, N_res] mask Returns: [*, N_res, C_s] single representation update """ z = [z] ####################################### # Generate scalar and point activations ####################################### # [*, N_res, H * C_hidden] q = self.linear_q(s) kv = self.linear_kv(s) # [*, N_res, H, C_hidden] q = q.view(q.shape[:-1] + (self.num_heads, -1)) # [*, N_res, H, 2 * C_hidden] kv = kv.view(kv.shape[:-1] + (self.num_heads, -1)) # [*, N_res, H, C_hidden] k, v = torch.split(kv, self.hidden_dim, dim=-1) # [*, N_res, H * P_q * 3] q_pts = self.linear_q_points(s) # This is kind of clunky, but it's how the original does it # [*, N_res, H * P_q, 3] q_pts = torch.split(q_pts, q_pts.shape[-1] // 3, dim=-1) q_pts = torch.stack(q_pts, dim=-1) q_pts = r[..., None].apply(q_pts) # [*, N_res, H, P_q, 3] q_pts = q_pts.view(q_pts.shape[:-2] + (self.num_heads, self.num_qk_points, 3)) # [*, N_res, H * (P_q + P_v) * 3] kv_pts = self.linear_kv_points(s) # [*, N_res, H * (P_q + P_v), 3] kv_pts = torch.split(kv_pts, kv_pts.shape[-1] // 3, dim=-1) kv_pts = torch.stack(kv_pts, dim=-1) kv_pts = r[..., None].apply(kv_pts) # [*, N_res, H, (P_q + P_v), 3] kv_pts = kv_pts.view(kv_pts.shape[:-2] + (self.num_heads, -1, 3)) # [*, N_res, H, P_q/P_v, 3] k_pts, v_pts = torch.split(kv_pts, [self.num_qk_points, self.num_v_points], dim=-2) ########################## # Compute attention scores ########################## # [*, N_res, N_res, H] b = self.linear_b(z[0]) if _offload_inference: assert sys.getrefcount(z[0]) == 2 z[0] = z[0].cpu() # [*, H, N_res, N_res] if is_fp16_enabled(): with torch.cuda.amp.autocast(enabled=False): a = torch.matmul( permute_final_dims(q.float(), (1, 0, 2)), # [*, H, N_res, C_hidden] permute_final_dims(k.float(), (1, 2, 0)), # [*, H, C_hidden, N_res] ) else: a = torch.matmul( permute_final_dims(q, (1, 0, 2)), # [*, H, N_res, C_hidden] permute_final_dims(k, (1, 2, 0)), # [*, H, C_hidden, N_res] ) a *= math.sqrt(1.0 / (3 * self.hidden_dim)) a += math.sqrt(1.0 / 3) * permute_final_dims(b, (2, 0, 1)) # [*, N_res, N_res, H, P_q, 3] pt_att = q_pts.unsqueeze(-4) - k_pts.unsqueeze(-5) pt_att = pt_att**2 # [*, N_res, N_res, H, P_q] pt_att = sum(torch.unbind(pt_att, dim=-1)) head_weights = self.softplus(self.head_weights).view(*((1,) * len(pt_att.shape[:-2]) + (-1, 1))) head_weights = head_weights * math.sqrt(1.0 / (3 * (self.num_qk_points * 9.0 / 2))) pt_att = pt_att * head_weights # [*, N_res, N_res, H] pt_att = torch.sum(pt_att, dim=-1) * (-0.5) # [*, N_res, N_res] square_mask = mask.unsqueeze(-1) * mask.unsqueeze(-2) square_mask = self.config.inf * (square_mask - 1) # [*, H, N_res, N_res] pt_att = permute_final_dims(pt_att, (2, 0, 1)) a = a + pt_att a = a + square_mask.unsqueeze(-3) a = self.softmax(a) ################ # Compute output ################ # [*, N_res, H, C_hidden] o = torch.matmul(a, v.transpose(-2, -3).to(dtype=a.dtype)).transpose(-2, -3) # [*, N_res, H * C_hidden] o = flatten_final_dims(o, 2) # [*, H, 3, N_res, P_v] o_pt = torch.sum( (a[..., None, :, :, None] * permute_final_dims(v_pts, (1, 3, 0, 2))[..., None, :, :]), dim=-2, ) # [*, N_res, H, P_v, 3] o_pt = permute_final_dims(o_pt, (2, 0, 3, 1)) o_pt = r[..., None, None].invert_apply(o_pt) # [*, N_res, H * P_v] o_pt_norm = flatten_final_dims(torch.sqrt(torch.sum(o_pt**2, dim=-1) + self.config.epsilon), 2) # [*, N_res, H * P_v, 3] o_pt = o_pt.reshape(*o_pt.shape[:-3], -1, 3) if _offload_inference: z[0] = z[0].to(o_pt.device) # [*, N_res, H, C_z] o_pair = torch.matmul(a.transpose(-2, -3), z[0].to(dtype=a.dtype)) # [*, N_res, H * C_z] o_pair = flatten_final_dims(o_pair, 2) # [*, N_res, C_s] s = self.linear_out( torch.cat((o, *torch.unbind(o_pt, dim=-1), o_pt_norm, o_pair), dim=-1).to(dtype=z[0].dtype) ) return s class EsmFoldBackboneUpdate(nn.Module): """ Implements part of Algorithm 23. """ def __init__(self, config): super().__init__() self.linear = EsmFoldLinear(config.sequence_dim, 6, init="final") def forward(self, s: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Args: [*, N_res, C_s] single representation Returns: [*, N_res, 6] update vector """ # [*, 6] update = self.linear(s) return update class EsmFoldStructureModuleTransitionLayer(nn.Module): def __init__(self, config): super().__init__() self.linear_1 = EsmFoldLinear(config.sequence_dim, config.sequence_dim, init="relu") self.linear_2 = EsmFoldLinear(config.sequence_dim, config.sequence_dim, init="relu") self.linear_3 = EsmFoldLinear(config.sequence_dim, config.sequence_dim, init="final") self.relu = nn.ReLU() def forward(self, s): s_initial = s s = self.linear_1(s) s = self.relu(s) s = self.linear_2(s) s = self.relu(s) s = self.linear_3(s) s = s + s_initial return s class EsmFoldStructureModuleTransition(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layers = nn.ModuleList() for _ in range(config.num_transition_layers): l = EsmFoldStructureModuleTransitionLayer(config) self.layers.append(l) self.dropout = nn.Dropout(config.dropout_rate) self.layer_norm = LayerNorm(config.sequence_dim) def forward(self, s): for l in self.layers: s = l(s) s = self.dropout(s) s = self.layer_norm(s) return s class EsmFoldStructureModule(nn.Module): def __init__(self, config): super().__init__() self.config = config # Buffers to be lazily initialized later # self.default_frames # self.group_idx # self.atom_mask # self.lit_positions self.layer_norm_s = LayerNorm(config.sequence_dim) self.layer_norm_z = LayerNorm(config.pairwise_dim) self.linear_in = EsmFoldLinear(config.sequence_dim, config.sequence_dim) self.ipa = EsmFoldInvariantPointAttention(config) self.ipa_dropout = nn.Dropout(config.dropout_rate) self.layer_norm_ipa = LayerNorm(config.sequence_dim) self.transition = EsmFoldStructureModuleTransition(config) self.bb_update = EsmFoldBackboneUpdate(config) self.angle_resnet = EsmFoldAngleResnet(config) def forward( self, evoformer_output_dict, aatype, mask=None, _offload_inference=False, ): """ Args: evoformer_output_dict: Dictionary containing: "single": [*, N_res, C_s] single representation "pair": [*, N_res, N_res, C_z] pair representation aatype: [*, N_res] amino acid indices mask: Optional [*, N_res] sequence mask Returns: A dictionary of outputs """ s = evoformer_output_dict["single"] if mask is None: # [*, N] mask = s.new_ones(s.shape[:-1]) # [*, N, C_s] s = self.layer_norm_s(s) # [*, N, N, C_z] z = self.layer_norm_z(evoformer_output_dict["pair"]) z_reference_list = None if _offload_inference: assert sys.getrefcount(evoformer_output_dict["pair"]) == 2 evoformer_output_dict["pair"] = evoformer_output_dict["pair"].cpu() z_reference_list = [z] z = None # [*, N, C_s] s_initial = s s = self.linear_in(s) # [*, N] rigids = Rigid.identity( s.shape[:-1], s.dtype, s.device, self.training, fmt="quat", ) outputs = [] for i in range(self.config.num_blocks): # [*, N, C_s] s = s + self.ipa( s, z, rigids, mask, _offload_inference=_offload_inference, _z_reference_list=z_reference_list, ) s = self.ipa_dropout(s) s = self.layer_norm_ipa(s) s = self.transition(s) # [*, N] rigids = rigids.compose_q_update_vec(self.bb_update(s)) # To hew as closely as possible to AlphaFold, we convert our # quaternion-based transformations to rotation-matrix ones # here backb_to_global = Rigid( Rotation(rot_mats=rigids.get_rots().get_rot_mats(), quats=None), rigids.get_trans(), ) backb_to_global = backb_to_global.scale_translation(self.config.trans_scale_factor) # [*, N, 7, 2] unnormalized_angles, angles = self.angle_resnet(s, s_initial) all_frames_to_global = self.torsion_angles_to_frames(backb_to_global, angles, aatype) pred_xyz = self.frames_and_literature_positions_to_atom14_pos(all_frames_to_global, aatype) scaled_rigids = rigids.scale_translation(self.config.trans_scale_factor) preds = { "frames": scaled_rigids.to_tensor_7(), "sidechain_frames": all_frames_to_global.to_tensor_4x4(), "unnormalized_angles": unnormalized_angles, "angles": angles, "positions": pred_xyz, "states": s, } outputs.append(preds) rigids = rigids.stop_rot_gradient() del z, z_reference_list if _offload_inference: evoformer_output_dict["pair"] = evoformer_output_dict["pair"].to(s.device) outputs = dict_multimap(torch.stack, outputs) outputs["single"] = s return outputs def _init_residue_constants(self, float_dtype, device): if not hasattr(self, "default_frames"): self.register_buffer( "default_frames", torch.tensor( residue_constants.restype_rigid_group_default_frame, dtype=float_dtype, device=device, requires_grad=False, ), persistent=False, ) if not hasattr(self, "group_idx"): self.register_buffer( "group_idx", torch.tensor( residue_constants.restype_atom14_to_rigid_group, device=device, requires_grad=False, ), persistent=False, ) if not hasattr(self, "atom_mask"): self.register_buffer( "atom_mask", torch.tensor( residue_constants.restype_atom14_mask, dtype=float_dtype, device=device, requires_grad=False, ), persistent=False, ) if not hasattr(self, "lit_positions"): self.register_buffer( "lit_positions", torch.tensor( residue_constants.restype_atom14_rigid_group_positions, dtype=float_dtype, device=device, requires_grad=False, ), persistent=False, ) def torsion_angles_to_frames(self, r, alpha, f): # Lazily initialize the residue constants on the correct device self._init_residue_constants(alpha.dtype, alpha.device) # Separated purely to make testing less annoying return torsion_angles_to_frames(r, alpha, f, self.default_frames) def frames_and_literature_positions_to_atom14_pos(self, r, f): # [*, N, 8] # [*, N] # Lazily initialize the residue constants on the correct device self._init_residue_constants(r.get_rots().dtype, r.get_rots().device) return frames_and_literature_positions_to_atom14_pos( r, f, self.default_frames, self.group_idx, self.atom_mask, self.lit_positions, ) class EsmFoldingTrunk(nn.Module): def __init__(self, config): super().__init__() self.config = config c_s = config.sequence_state_dim c_z = config.pairwise_state_dim self.pairwise_positional_embedding = EsmFoldRelativePosition(config) self.blocks = nn.ModuleList([EsmFoldTriangularSelfAttentionBlock(config) for _ in range(config.num_blocks)]) self.recycle_bins = 15 self.recycle_s_norm = nn.LayerNorm(c_s) self.recycle_z_norm = nn.LayerNorm(c_z) self.recycle_disto = nn.Embedding(self.recycle_bins, c_z) self.recycle_disto.weight[0].detach().zero_() self.structure_module = EsmFoldStructureModule(config.structure_module) self.trunk2sm_s = nn.Linear(c_s, config.structure_module.sequence_dim) self.trunk2sm_z = nn.Linear(c_z, config.structure_module.pairwise_dim) self.chunk_size = config.chunk_size def set_chunk_size(self, chunk_size): # This parameter means the axial attention will be computed # in a chunked manner. This should make the memory used more or less O(L) instead of O(L^2). # It's equivalent to running a for loop over chunks of the dimension we're iterative over, # where the chunk_size is the size of the chunks, so 128 would mean to parse 128-length chunks. self.chunk_size = chunk_size def forward(self, seq_feats, pair_feats, true_aa, residx, mask, no_recycles): """ Inputs: seq_feats: B x L x C tensor of sequence features pair_feats: B x L x L x C tensor of pair features residx: B x L long tensor giving the position in the sequence mask: B x L boolean tensor indicating valid residues Output: predicted_structure: B x L x (num_atoms_per_residue * 3) tensor wrapped in a Coordinates object """ device = seq_feats.device s_s_0 = seq_feats s_z_0 = pair_feats if no_recycles is None: no_recycles = self.config.max_recycles else: if no_recycles < 0: raise ValueError("Number of recycles must not be negative.") no_recycles += 1 # First 'recycle' is just the standard forward pass through the model. def trunk_iter(s, z, residx, mask): z = z + self.pairwise_positional_embedding(residx, mask=mask) for block in self.blocks: s, z = block(s, z, mask=mask, residue_index=residx, chunk_size=self.chunk_size) return s, z s_s = s_s_0 s_z = s_z_0 recycle_s = torch.zeros_like(s_s) recycle_z = torch.zeros_like(s_z) recycle_bins = torch.zeros(*s_z.shape[:-1], device=device, dtype=torch.int64) for recycle_idx in range(no_recycles): with ContextManagers([] if recycle_idx == no_recycles - 1 else [torch.no_grad()]): # === Recycling === recycle_s = self.recycle_s_norm(recycle_s.detach()).to(device) recycle_z = self.recycle_z_norm(recycle_z.detach()).to(device) recycle_z += self.recycle_disto(recycle_bins.detach()).to(device) s_s, s_z = trunk_iter(s_s_0 + recycle_s, s_z_0 + recycle_z, residx, mask) # === Structure module === structure = self.structure_module( {"single": self.trunk2sm_s(s_s), "pair": self.trunk2sm_z(s_z)}, true_aa, mask.float(), ) recycle_s = s_s recycle_z = s_z # Distogram needs the N, CA, C coordinates, and bin constants same as alphafold. recycle_bins = EsmFoldingTrunk.distogram( structure["positions"][-1][:, :, :3], 3.375, 21.375, self.recycle_bins, ) structure["s_s"] = s_s structure["s_z"] = s_z return structure @staticmethod def distogram(coords, min_bin, max_bin, num_bins): # Coords are [... L x 3 x 3], where it's [N, CA, C] x 3 coordinates. boundaries = torch.linspace( min_bin, max_bin, num_bins - 1, device=coords.device, ) boundaries = boundaries**2 N, CA, C = [x.squeeze(-2) for x in coords.chunk(3, dim=-2)] # Infer CB coordinates. b = CA - N c = C - CA a = b.cross(c, dim=-1) CB = -0.58273431 * a + 0.56802827 * b - 0.54067466 * c + CA dists = (CB[..., None, :, :] - CB[..., :, None, :]).pow(2).sum(dim=-1, keepdims=True) bins = torch.sum(dists > boundaries, dim=-1) # [..., L, L] return bins # TODO Add information to the docstring about any methods that convert to PDB format, or otherwise prepare # the outputs for downstream use. @add_start_docstrings( """ ESMForProteinFolding is the HuggingFace port of the original ESMFold model. It consists of an ESM-2 "stem" followed by a protein folding "head", although unlike most other output heads, this "head" is similar in size and runtime to the rest of the model combined! It outputs a dictionary containing predicted structural information about the input protein(s). """, ESM_START_DOCSTRING, ) class EsmForProteinFolding(EsmPreTrainedModel): _no_split_modules = ["EsmFoldStructureModule", "EsmFoldTriangularSelfAttentionBlock"] def __init__(self, config): super().__init__(config) self.config = config self.distogram_bins = 64 self.esm = EsmModel(config, add_pooling_layer=False) self.esm.requires_grad_(False) if self.config.esmfold_config.fp16_esm: self.esm.half() self.esm_feats = self.config.hidden_size self.esm_attns = self.config.num_hidden_layers * self.config.num_attention_heads self.esm_layers = self.config.num_hidden_layers self.register_buffer("af2_to_esm", self._af2_to_esm_from_vocab_list(config.vocab_list)) self.esm_s_combine = nn.Parameter(torch.zeros(self.esm_layers + 1)) trunk_config = self.config.esmfold_config.trunk c_s = trunk_config.sequence_state_dim c_z = trunk_config.pairwise_state_dim self.esm_s_mlp = nn.Sequential( LayerNorm(self.esm_feats), nn.Linear(self.esm_feats, c_s), nn.ReLU(), nn.Linear(c_s, c_s), ) # 0 is padding, N is unknown residues, N + 1 is mask. self.n_tokens_embed = residue_constants.restype_num + 3 self.pad_idx = 0 self.unk_idx = self.n_tokens_embed - 2 self.mask_idx = self.n_tokens_embed - 1 self.esm_dict_cls_idx = self.config.vocab_list.index("<cls>") self.esm_dict_mask_idx = self.config.vocab_list.index("<mask>") self.esm_dict_eos_idx = self.config.vocab_list.index("<eos>") self.esm_dict_padding_idx = self.config.vocab_list.index("<pad>") if self.config.esmfold_config.embed_aa: self.embedding = nn.Embedding(self.n_tokens_embed, c_s, padding_idx=0) self.trunk = EsmFoldingTrunk(trunk_config) self.distogram_head = nn.Linear(c_z, self.distogram_bins) self.ptm_head = nn.Linear(c_z, self.distogram_bins) self.lm_head = nn.Linear(c_s, self.n_tokens_embed) self.lddt_bins = 50 structure_module_config = trunk_config.structure_module self.lddt_head = nn.Sequential( nn.LayerNorm(structure_module_config.sequence_dim), nn.Linear(structure_module_config.sequence_dim, self.config.esmfold_config.lddt_head_hid_dim), nn.Linear(self.config.esmfold_config.lddt_head_hid_dim, self.config.esmfold_config.lddt_head_hid_dim), nn.Linear(self.config.esmfold_config.lddt_head_hid_dim, 37 * self.lddt_bins), ) @staticmethod def _af2_to_esm_from_vocab_list(vocab_list: List[str]) -> torch.Tensor: # Remember that t is shifted from residue_constants by 1 (0 is padding). esm_reorder = [vocab_list.index("<pad>")] + [vocab_list.index(v) for v in residue_constants.restypes_with_x] return torch.tensor(esm_reorder) @add_start_docstrings_to_model_forward(ESMFOLD_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=EsmForProteinFoldingOutput, config_class=EsmConfig) def forward( self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, masking_pattern: Optional[torch.Tensor] = None, num_recycles: Optional[int] = None, ) -> EsmForProteinFoldingOutput: r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, EsmForProteinFolding >>> model = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1") >>> tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1") >>> inputs = tokenizer(["MLKNVQVQLV"], return_tensors="pt", add_special_tokens=False) # A tiny random peptide >>> outputs = model(**inputs) >>> folded_positions = outputs.positions ``` """ cfg = self.config.esmfold_config aa = input_ids # B x L B = aa.shape[0] L = aa.shape[1] device = input_ids.device if attention_mask is None: attention_mask = torch.ones_like(aa, device=device) if position_ids is None: position_ids = torch.arange(L, device=device).expand_as(input_ids) # === ESM === esmaa = self.af2_idx_to_esm_idx(aa, attention_mask) if masking_pattern is not None: masked_aa, esmaa, mlm_targets = self.bert_mask(aa, esmaa, attention_mask, masking_pattern) else: masked_aa = aa mlm_targets = None # We get sequence and pair representations from whatever version of ESM / # configuration we are using. The sequence representation esm_s is always # present. The pair embedding esm_z may be present depending on the # configuration of the model. If esm_z is not used by the model then it # is returned as None here. esm_s = self.compute_language_model_representations(esmaa) # Convert esm_s and esm_z, if present, to the precision used by the trunk and # the structure module. These tensors may be a lower precision if, for example, # we're running the language model in fp16 precision. esm_s = esm_s.to(self.esm_s_combine.dtype) if cfg.esm_ablate_sequence: esm_s = esm_s * 0 esm_s = esm_s.detach() # === preprocessing === esm_s = (self.esm_s_combine.softmax(0).unsqueeze(0) @ esm_s).squeeze(2) s_s_0 = self.esm_s_mlp(esm_s) s_z_0 = s_s_0.new_zeros(B, L, L, cfg.trunk.pairwise_state_dim) if self.config.esmfold_config.embed_aa: s_s_0 += self.embedding(masked_aa) structure: dict = self.trunk(s_s_0, s_z_0, aa, position_ids, attention_mask, no_recycles=num_recycles) # Documenting what we expect: structure = { k: v for k, v in structure.items() if k in [ "s_z", "s_s", "frames", "sidechain_frames", "unnormalized_angles", "angles", "positions", "states", ] } # Add BERT mask for the loss to use, if available. if mlm_targets: structure["mlm_targets"] = mlm_targets disto_logits = self.distogram_head(structure["s_z"]) disto_logits = (disto_logits + disto_logits.transpose(1, 2)) / 2 structure["distogram_logits"] = disto_logits lm_logits = self.lm_head(structure["s_s"]) structure["lm_logits"] = lm_logits structure["aatype"] = aa make_atom14_masks(structure) # Of course, this doesn't respect the true mask because it doesn't know about it... # We're not going to properly mask change of index tensors: # "residx_atom14_to_atom37", # "residx_atom37_to_atom14", for k in [ "atom14_atom_exists", "atom37_atom_exists", ]: structure[k] *= attention_mask.unsqueeze(-1) structure["residue_index"] = position_ids lddt_head = self.lddt_head(structure["states"]).reshape(structure["states"].shape[0], B, L, -1, self.lddt_bins) structure["lddt_head"] = lddt_head plddt = categorical_lddt(lddt_head[-1], bins=self.lddt_bins) structure["plddt"] = plddt ptm_logits = self.ptm_head(structure["s_z"]) structure["ptm_logits"] = ptm_logits structure["ptm"] = compute_tm(ptm_logits, max_bin=31, no_bins=self.distogram_bins) structure.update(compute_predicted_aligned_error(ptm_logits, max_bin=31, no_bins=self.distogram_bins)) return EsmForProteinFoldingOutput(**structure) def af2_idx_to_esm_idx(self, aa, mask): # avoid indexing on different devices if self.af2_to_esm.device != aa.device: self.af2_to_esm = self.af2_to_esm.to(aa.device) aa = (aa + 1).masked_fill(mask != 1, 0) return self.af2_to_esm[aa] def compute_language_model_representations(self, esmaa: torch.Tensor) -> torch.Tensor: device = next(self.parameters()).device B, L = esmaa.shape # B = batch size, L = sequence length. if self.config.esmfold_config.bypass_lm: esm_s = torch.zeros(B, L, self.esm_s_combine.size[0], -1, self.esm_feats, device=device) return esm_s bosi, eosi = self.esm_dict_cls_idx, self.esm_dict_eos_idx bos = esmaa.new_full((B, 1), bosi) eos = esmaa.new_full((B, 1), self.esm_dict_padding_idx) esmaa = torch.cat([bos, esmaa, eos], dim=1) # Use the first padding index as eos during inference. esmaa[range(B), (esmaa != 1).sum(1)] = eosi # _, esm_z, esm_s = self.esm(esmaa, return_pairs=self.config.esmfold_config.use_esm_attn_map) # Because we do not support use_esm_attn_map in the HF port as it is not used in any public models, # esm_z is always None esm_hidden_states = self.esm(esmaa, attention_mask=esmaa != 1, output_hidden_states=True)["hidden_states"] esm_s = torch.stack(esm_hidden_states, dim=2) esm_s = esm_s[:, 1:-1] # B, L, nLayers, C return esm_s def bert_mask(self, aa, esmaa, mask, pattern): new_aa = aa.clone() target = aa.clone() new_esmaa = esmaa.clone() new_aa[pattern == 1] = self.mask_idx target[pattern != 1] = 0 new_esmaa[pattern == 1] = self.esm_dict_mask_idx return new_aa, new_esmaa, target @torch.no_grad() def infer( self, seqs: Union[str, List[str]], position_ids=None, ): if isinstance(seqs, str): lst = [seqs] else: lst = seqs # Returns the raw outputs of the model given an input sequence. device = next(self.parameters()).device aatype = collate_dense_tensors( [ torch.from_numpy( residue_constants.sequence_to_onehot( sequence=seq, mapping=residue_constants.restype_order_with_x, map_unknown_to_x=True, ) ) .to(device) .argmax(dim=1) for seq in lst ] ) # B=1 x L mask = collate_dense_tensors([aatype.new_ones(len(seq)) for seq in lst]) position_ids = ( torch.arange(aatype.shape[1], device=device).expand(len(lst), -1) if position_ids is None else position_ids.to(device) ) if position_ids.ndim == 1: position_ids = position_ids.unsqueeze(0) return self.forward( aatype, mask, position_ids=position_ids, ) @staticmethod def output_to_pdb(output: Dict) -> List[str]: """Returns the pbd (file) string from the model given the model output.""" output = {k: v.to("cpu").numpy() for k, v in output.items()} pdbs = [] final_atom_positions = atom14_to_atom37(output["positions"][-1], output) final_atom_mask = output["atom37_atom_exists"] for i in range(output["aatype"].shape[0]): aa = output["aatype"][i] pred_pos = final_atom_positions[i] mask = final_atom_mask[i] resid = output["residue_index"][i] + 1 pred = OFProtein( aatype=aa, atom_positions=pred_pos, atom_mask=mask, residue_index=resid, b_factors=output["plddt"][i], ) pdbs.append(to_pdb(pred)) return pdbs def infer_pdb(self, seqs, *args, **kwargs) -> str: """Returns the pdb (file) string from the model given an input sequence.""" assert isinstance(seqs, str) output = self.infer(seqs, *args, **kwargs) return self.output_to_pdb(output)[0] def infer_pdbs(self, seqs: List[str], *args, **kwargs) -> List[str]: """Returns the pdb (file) string from the model given an input sequence.""" output = self.infer(seqs, *args, **kwargs) return self.output_to_pdb(output)
transformers/src/transformers/models/esm/modeling_esmfold.py/0
{ "file_path": "transformers/src/transformers/models/esm/modeling_esmfold.py", "repo_id": "transformers", "token_count": 42462 }
86
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() json_indent = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model best_score_hparams = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names org_names = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: org_names[m] = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: org_names[m] = "allenai" def rewrite_dict_keys(d): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} d2 = dict((re.sub(r"@@$", "", k), v) if k.endswith("@@") else (re.sub(r"$", "</w>", k), v) for k, v in d.items()) keep_keys = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del d2[f"{k}</w>"] d2[k] = d[k] # restore return d2 def convert_fsmt_checkpoint_to_pytorch(fsmt_checkpoint_path, pytorch_dump_folder_path): # prep assert os.path.exists(fsmt_checkpoint_path) os.makedirs(pytorch_dump_folder_path, exist_ok=True) print(f"Writing results to {pytorch_dump_folder_path}") # handle various types of models checkpoint_file = basename(fsmt_checkpoint_path) fsmt_folder_path = dirname(fsmt_checkpoint_path) cls = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel models = cls.hub_models() kwargs = {"bpe": "fastbpe", "tokenizer": "moses"} data_name_or_path = "." # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"using checkpoint {checkpoint_file}") chkpt = hub_utils.from_pretrained( fsmt_folder_path, checkpoint_file, data_name_or_path, archive_map=models, **kwargs ) args = vars(chkpt["args"]["model"]) src_lang = args["source_lang"] tgt_lang = args["target_lang"] data_root = dirname(pytorch_dump_folder_path) model_dir = basename(pytorch_dump_folder_path) # dicts src_dict_file = os.path.join(fsmt_folder_path, f"dict.{src_lang}.txt") tgt_dict_file = os.path.join(fsmt_folder_path, f"dict.{tgt_lang}.txt") src_dict = Dictionary.load(src_dict_file) src_vocab = rewrite_dict_keys(src_dict.indices) src_vocab_size = len(src_vocab) src_vocab_file = os.path.join(pytorch_dump_folder_path, "vocab-src.json") print(f"Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records") with open(src_vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(src_vocab, ensure_ascii=False, indent=json_indent)) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab do_lower_case = True for k in src_vocab.keys(): if not k.islower(): do_lower_case = False break tgt_dict = Dictionary.load(tgt_dict_file) tgt_vocab = rewrite_dict_keys(tgt_dict.indices) tgt_vocab_size = len(tgt_vocab) tgt_vocab_file = os.path.join(pytorch_dump_folder_path, "vocab-tgt.json") print(f"Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records") with open(tgt_vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(tgt_vocab, ensure_ascii=False, indent=json_indent)) # merges_file (bpecodes) merges_file = os.path.join(pytorch_dump_folder_path, VOCAB_FILES_NAMES["merges_file"]) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" fsmt_merges_file = os.path.join(fsmt_folder_path, fn) if os.path.exists(fsmt_merges_file): break with open(fsmt_merges_file, encoding="utf-8") as fin: merges = fin.read() merges = re.sub(r" \d+$", "", merges, 0, re.M) # remove frequency number print(f"Generating {merges_file}") with open(merges_file, "w", encoding="utf-8") as fout: fout.write(merges) # model config fsmt_model_config_file = os.path.join(pytorch_dump_folder_path, "config.json") # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"need to extend tokenizer to support bpe={args['bpe']}" assert args["tokenizer"] == "moses", f"need to extend tokenizer to support bpe={args['tokenizer']}" model_conf = { "architectures": ["FSMTForConditionalGeneration"], "model_type": "fsmt", "activation_dropout": args["activation_dropout"], "activation_function": "relu", "attention_dropout": args["attention_dropout"], "d_model": args["decoder_embed_dim"], "dropout": args["dropout"], "init_std": 0.02, "max_position_embeddings": args["max_source_positions"], "num_hidden_layers": args["encoder_layers"], "src_vocab_size": src_vocab_size, "tgt_vocab_size": tgt_vocab_size, "langs": [src_lang, tgt_lang], "encoder_attention_heads": args["encoder_attention_heads"], "encoder_ffn_dim": args["encoder_ffn_embed_dim"], "encoder_layerdrop": args["encoder_layerdrop"], "encoder_layers": args["encoder_layers"], "decoder_attention_heads": args["decoder_attention_heads"], "decoder_ffn_dim": args["decoder_ffn_embed_dim"], "decoder_layerdrop": args["decoder_layerdrop"], "decoder_layers": args["decoder_layers"], "bos_token_id": 0, "pad_token_id": 1, "eos_token_id": 2, "is_encoder_decoder": True, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_all_embeddings"], } # good hparam defaults to start with model_conf["num_beams"] = 5 model_conf["early_stopping"] = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: model_conf["length_penalty"] = best_score_hparams[model_dir]["length_penalty"] else: model_conf["length_penalty"] = 1.0 print(f"Generating {fsmt_model_config_file}") with open(fsmt_model_config_file, "w", encoding="utf-8") as f: f.write(json.dumps(model_conf, ensure_ascii=False, indent=json_indent)) # tokenizer config fsmt_tokenizer_config_file = os.path.join(pytorch_dump_folder_path, TOKENIZER_CONFIG_FILE) tokenizer_conf = { "langs": [src_lang, tgt_lang], "model_max_length": 1024, "do_lower_case": do_lower_case, } print(f"Generating {fsmt_tokenizer_config_file}") with open(fsmt_tokenizer_config_file, "w", encoding="utf-8") as f: f.write(json.dumps(tokenizer_conf, ensure_ascii=False, indent=json_indent)) # model model = chkpt["models"][0] model_state_dict = model.state_dict() # rename keys to start with 'model.' model_state_dict = OrderedDict(("model." + k, v) for k, v in model_state_dict.items()) # remove unneeded keys ignore_keys = [ "model.model", "model.encoder.version", "model.decoder.version", "model.encoder_embed_tokens.weight", "model.decoder_embed_tokens.weight", "model.encoder.embed_positions._float_tensor", "model.decoder.embed_positions._float_tensor", ] for k in ignore_keys: model_state_dict.pop(k, None) config = FSMTConfig.from_pretrained(pytorch_dump_folder_path) model_new = FSMTForConditionalGeneration(config) # check that it loads ok model_new.load_state_dict(model_state_dict, strict=False) # save pytorch_weights_dump_path = os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME) print(f"Generating {pytorch_weights_dump_path}") torch.save(model_state_dict, pytorch_weights_dump_path) print("Conversion is done!") print("\nLast step is to upload the files to s3") print(f"cd {data_root}") print(f"transformers-cli upload {model_dir}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) args = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
transformers/src/transformers/models/fsmt/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/fsmt/convert_fsmt_original_pytorch_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 4617 }
87
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _import_structure = { "configuration_gemma": ["GEMMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "GemmaConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_gemma"] = ["GemmaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_gemma_fast"] = ["GemmaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_gemma"] = [ "GemmaForCausalLM", "GemmaModel", "GemmaPreTrainedModel", "GemmaForSequenceClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_flax_gemma"] = [ "FlaxGemmaForCausalLM", "FlaxGemmaModel", "FlaxGemmaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gemma import GEMMA_PRETRAINED_CONFIG_ARCHIVE_MAP, GemmaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gemma import GemmaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gemma_fast import GemmaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gemma import ( GemmaForCausalLM, GemmaForSequenceClassification, GemmaModel, GemmaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gemma import ( FlaxGemmaForCausalLM, FlaxGemmaModel, FlaxGemmaPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
transformers/src/transformers/models/gemma/__init__.py/0
{ "file_path": "transformers/src/transformers/models/gemma/__init__.py", "repo_id": "transformers", "token_count": 1319 }
88
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Image processor class for GLPN.""" from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, infer_channel_dimension_format, is_scaled_image, make_list_of_images, to_numpy_array, valid_images, validate_kwargs, validate_preprocess_arguments, ) from ...utils import TensorType, logging logger = logging.get_logger(__name__) class GLPNImageProcessor(BaseImageProcessor): r""" Constructs a GLPN image processor. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to resize the image's (height, width) dimensions, rounding them down to the closest multiple of `size_divisor`. Can be overridden by `do_resize` in `preprocess`. size_divisor (`int`, *optional*, defaults to 32): When `do_resize` is `True`, images are resized so their height and width are rounded down to the closest multiple of `size_divisor`. Can be overridden by `size_divisor` in `preprocess`. resample (`PIL.Image` resampling filter, *optional*, defaults to `Resampling.BILINEAR`): Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`. do_rescale (`bool`, *optional*, defaults to `True`): Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). Can be overridden by `do_rescale` in `preprocess`. """ model_input_names = ["pixel_values"] def __init__( self, do_resize: bool = True, size_divisor: int = 32, resample=PILImageResampling.BILINEAR, do_rescale: bool = True, **kwargs, ) -> None: self.do_resize = do_resize self.do_rescale = do_rescale self.size_divisor = size_divisor self.resample = resample super().__init__(**kwargs) self._valid_processor_keys = [ "images", "do_resize", "size_divisor", "resample", "do_rescale", "return_tensors", "data_format", "input_data_format", ] def resize( self, image: np.ndarray, size_divisor: int, resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize the image, rounding the (height, width) dimensions down to the closest multiple of size_divisor. If the image is of dimension (3, 260, 170) and size_divisor is 32, the image will be resized to (3, 256, 160). Args: image (`np.ndarray`): The image to resize. size_divisor (`int`): The image is resized so its height and width are rounded down to the closest multiple of `size_divisor`. resample: `PIL.Image` resampling filter to use when resizing the image e.g. `PILImageResampling.BILINEAR`. data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the output image. If `None`, the channel dimension format of the input image is used. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not set, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. Returns: `np.ndarray`: The resized image. """ height, width = get_image_size(image, channel_dim=input_data_format) # Rounds the height and width down to the closest multiple of size_divisor new_h = height // size_divisor * size_divisor new_w = width // size_divisor * size_divisor image = resize( image, (new_h, new_w), resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) return image def preprocess( self, images: Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]], do_resize: Optional[bool] = None, size_divisor: Optional[int] = None, resample=None, do_rescale: Optional[bool] = None, return_tensors: Optional[Union[TensorType, str]] = None, data_format: ChannelDimension = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> BatchFeature: """ Preprocess the given images. Args: images (`PIL.Image.Image` or `TensorType` or `List[np.ndarray]` or `List[TensorType]`): Images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_normalize=False`. do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the input such that the (height, width) dimensions are a multiple of `size_divisor`. size_divisor (`int`, *optional*, defaults to `self.size_divisor`): When `do_resize` is `True`, images are resized so their height and width are rounded down to the closest multiple of `size_divisor`. resample (`PIL.Image` resampling filter, *optional*, defaults to `self.resample`): `PIL.Image` resampling filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has an effect if `do_resize` is set to `True`. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether or not to apply the scaling factor (to make pixel values floats between 0. and 1.). return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - `None`: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. """ do_resize = do_resize if do_resize is not None else self.do_resize do_rescale = do_rescale if do_rescale is not None else self.do_rescale size_divisor = size_divisor if size_divisor is not None else self.size_divisor resample = resample if resample is not None else self.resample images = make_list_of_images(images) validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # Here, the rescale() method uses a constant rescale_factor. It does not need to be validated # with a rescale_factor. validate_preprocess_arguments( do_resize=do_resize, size=size_divisor, # Here, size_divisor is used as a parameter for optimal resizing instead of size. resample=resample, ) # All transformations expect numpy arrays. images = [to_numpy_array(img) for img in images] if is_scaled_image(images[0]) and do_rescale: logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) if do_resize: images = [ self.resize(image, size_divisor=size_divisor, resample=resample, input_data_format=input_data_format) for image in images ] if do_rescale: images = [self.rescale(image, scale=1 / 255, input_data_format=input_data_format) for image in images] images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] data = {"pixel_values": images} return BatchFeature(data=data, tensor_type=return_tensors)
transformers/src/transformers/models/glpn/image_processing_glpn.py/0
{ "file_path": "transformers/src/transformers/models/glpn/image_processing_glpn.py", "repo_id": "transformers", "token_count": 4668 }
89
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GPT Neo model configuration""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging logger = logging.get_logger(__name__) GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP = { "EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class GPTNeoConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`GPTNeoModel`]. It is used to instantiate a GPT Neo model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GPTNeo [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50257): Vocabulary size of the GPT Neo model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GPTNeoModel`]. Vocabulary size of the model. Defines the different tokens that can be represented by the *inputs_ids* passed to the forward method of [`GPTNeoModel`]. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). hidden_size (`int`, *optional*, defaults to 2048): Dimensionality of the encoder layers and the pooler layer. num_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. attention_types (`List`, *optional*, defaults to `[[['global', 'local'], 12]]`): The type of attention for each layer in a `List` of the following format `[[["attention_type"], num_layerss]]` e.g. for a 24 layer model `[[["global"], 24]]` or `[[["global", "local"], 12]]` Choose the value of `attention_type` from `["global", "local"]` num_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 8192): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. window_size (`int`, *optional*, defaults to 256): The size of the sliding window for local attention. activation_function (`str` or `function`, *optional*, defaults to `"gelu_new"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. resid_dropout (`float`, *optional*, defaults to 0.0): Residual dropout used in the attention pattern. embed_dropout (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. classifier_dropout (`float`, *optional*, defaults to 0.1): Argument used when doing token classification, used in the model [`GPTNeoForTokenClassification`]. The dropout ratio for the hidden layer. layer_norm_epsilon (`float`, *optional*, defaults to 1e-05): The epsilon used by the layer normalization layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. bos_token_id (`int`, *optional*, defaults to 50256): The id of the beginning of sentence token in the vocabulary. eos_token_id (`int`, *optional*, defaults to 50256): The id of the end of sentence token in the vocabulary. Example: ```python >>> from transformers import GPTNeoConfig, GPTNeoModel >>> # Initializing a GPTNeo EleutherAI/gpt-neo-1.3B style configuration >>> configuration = GPTNeoConfig() >>> # Initializing a model (with random weights) from the EleutherAI/gpt-neo-1.3B style configuration >>> model = GPTNeoModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "gpt_neo" keys_to_ignore_at_inference = ["past_key_values"] attribute_map = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self, vocab_size=50257, max_position_embeddings=2048, hidden_size=2048, num_layers=24, attention_types=[[["global", "local"], 12]], num_heads=16, intermediate_size=None, window_size=256, activation_function="gelu_new", resid_dropout=0.0, embed_dropout=0.0, attention_dropout=0.0, classifier_dropout=0.1, layer_norm_epsilon=1e-5, initializer_range=0.02, use_cache=True, bos_token_id=50256, eos_token_id=50256, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_layers = num_layers self.num_heads = num_heads self.intermediate_size = intermediate_size self.window_size = window_size self.activation_function = activation_function self.resid_dropout = resid_dropout self.embed_dropout = embed_dropout self.attention_dropout = attention_dropout self.classifier_dropout = classifier_dropout self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.use_cache = use_cache self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id self.attention_types = attention_types self.attention_layers = self.expand_attention_types_params(attention_types) if len(self.attention_layers) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f"but is `len(config.attention_layers) = {len(self.attention_layers)}`, " f"`config.num_layers = {self.num_layers}`. " "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) @staticmethod def expand_attention_types_params(attention_types): attentions = [] for item in attention_types: for _ in range(item[1]): attentions.extend(item[0]) return attentions def custom_unfold(input, dimension, size, step): """Custom torch.Tensor.unfold implementation to enable the export to ONNX.""" import torch shape = input.size() rank = len(shape) sizedim = shape[dimension] low_indices = torch.arange(0, sizedim, step) min_length = torch.div(sizedim - size, step, rounding_mode="floor") + 1 indices = torch.arange(size) + low_indices[:min_length][:, None] s = [slice(None)] * rank s[dimension] = indices sliced = input[s] perm = list(range(0, rank + 1)) perm.append(perm.pop(dimension + 1)) return sliced.permute(perm) def custom_get_block_length_and_num_blocks(seq_length, window_size): """ Custom implementation for GPTNeoAttentionMixin._get_block_length_and_num_blocks to enable the export to ONNX as original implementation uses Python variables and control flow. """ import torch candidates = torch.arange(1, window_size) remainders = torch.remainder(seq_length, candidates) divisor_indices = remainders == 0 divisors = candidates[divisor_indices] largest_divisor = torch.max(divisors) return largest_divisor, torch.div(seq_length, largest_divisor, rounding_mode="floor") class GPTNeoOnnxConfig(OnnxConfigWithPast): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) if self.use_past: self.fill_with_past_key_values_(common_inputs, direction="inputs") common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"} else: common_inputs["attention_mask"] = {0: "batch", 1: "sequence"} return common_inputs @property def num_attention_heads(self) -> int: return self._config.num_heads def generate_dummy_inputs( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) # We need to order the input in the way they appears in the forward() ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch, seqlen = common_inputs["input_ids"].shape # Not using the same length for past_key_values past_key_values_length = seqlen + 2 past_shape = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) ordered_inputs["past_key_values"] = [ (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers) ] ordered_inputs["attention_mask"] = common_inputs["attention_mask"] if self.use_past: mask_dtype = ordered_inputs["attention_mask"].dtype ordered_inputs["attention_mask"] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 ) return ordered_inputs @property def default_onnx_opset(self) -> int: return 13
transformers/src/transformers/models/gpt_neo/configuration_gpt_neo.py/0
{ "file_path": "transformers/src/transformers/models/gpt_neo/configuration_gpt_neo.py", "repo_id": "transformers", "token_count": 4837 }
90
# coding=utf-8 # Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GPT-J model configuration""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging logger = logging.get_logger(__name__) GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class GPTJConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`GPTJModel`]. It is used to instantiate a GPT-J model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the GPT-J [EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50400): Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GPTJModel`]. n_positions (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). n_embd (`int`, *optional*, defaults to 4096): Dimensionality of the embeddings and hidden states. n_layer (`int`, *optional*, defaults to 28): Number of hidden layers in the Transformer encoder. n_head (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. rotary_dim (`int`, *optional*, defaults to 64): Number of dimensions in the embedding that Rotary Position Embedding is applied to. n_inner (`int`, *optional*, defaults to None): Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd activation_function (`str`, *optional*, defaults to `"gelu_new"`): Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`. resid_pdrop (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. embd_pdrop (`int`, *optional*, defaults to 0.1): The dropout ratio for the embeddings. attn_pdrop (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention. layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon to use in the layer normalization layers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Example: ```python >>> from transformers import GPTJModel, GPTJConfig >>> # Initializing a GPT-J 6B configuration >>> configuration = GPTJConfig() >>> # Initializing a model from the configuration >>> model = GPTJModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "gptj" attribute_map = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, vocab_size=50400, n_positions=2048, n_embd=4096, n_layer=28, n_head=16, rotary_dim=64, n_inner=None, activation_function="gelu_new", resid_pdrop=0.0, embd_pdrop=0.0, attn_pdrop=0.0, layer_norm_epsilon=1e-5, initializer_range=0.02, use_cache=True, bos_token_id=50256, eos_token_id=50256, tie_word_embeddings=False, **kwargs, ): self.vocab_size = vocab_size self.n_positions = n_positions self.n_embd = n_embd self.n_layer = n_layer self.n_head = n_head self.n_inner = n_inner self.rotary_dim = rotary_dim self.activation_function = activation_function self.resid_pdrop = resid_pdrop self.embd_pdrop = embd_pdrop self.attn_pdrop = attn_pdrop self.layer_norm_epsilon = layer_norm_epsilon self.initializer_range = initializer_range self.use_cache = use_cache self.bos_token_id = bos_token_id self.eos_token_id = eos_token_id super().__init__( bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs ) # Copied from transformers.models.gpt2.configuration_gpt2.GPT2OnnxConfig class GPTJOnnxConfig(OnnxConfigWithPast): def __init__( self, config: PretrainedConfig, task: str = "default", patching_specs: List[PatchingSpec] = None, use_past: bool = False, ): super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past) if not getattr(self._config, "pad_token_id", None): # TODO: how to do that better? self._config.pad_token_id = 0 @property def inputs(self) -> Mapping[str, Mapping[int, str]]: common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) if self.use_past: self.fill_with_past_key_values_(common_inputs, direction="inputs") common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"} else: common_inputs["attention_mask"] = {0: "batch", 1: "sequence"} return common_inputs @property def num_layers(self) -> int: return self._config.n_layer @property def num_attention_heads(self) -> int: return self._config.n_head def generate_dummy_inputs( self, tokenizer: PreTrainedTokenizer, batch_size: int = -1, seq_length: int = -1, is_pair: bool = False, framework: Optional[TensorType] = None, ) -> Mapping[str, Any]: common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs( tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework ) # We need to order the input in the way they appears in the forward() ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") else: import torch batch, seqlen = common_inputs["input_ids"].shape # Not using the same length for past_key_values past_key_values_length = seqlen + 2 past_shape = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) ordered_inputs["past_key_values"] = [ (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers) ] ordered_inputs["attention_mask"] = common_inputs["attention_mask"] if self.use_past: mask_dtype = ordered_inputs["attention_mask"].dtype ordered_inputs["attention_mask"] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 ) return ordered_inputs @property def default_onnx_opset(self) -> int: return 13
transformers/src/transformers/models/gptj/configuration_gptj.py/0
{ "file_path": "transformers/src/transformers/models/gptj/configuration_gptj.py", "repo_id": "transformers", "token_count": 3773 }
91
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Convert GroupViT checkpoints from the original repository. URL: https://github.com/NVlabs/GroupViT """ import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def rename_key(name): # vision encoder if "img_encoder.pos_embed" in name: name = name.replace("img_encoder.pos_embed", "vision_model.embeddings.position_embeddings") if "img_encoder.patch_embed.proj" in name: name = name.replace("img_encoder.patch_embed.proj", "vision_model.embeddings.patch_embeddings.projection") if "img_encoder.patch_embed.norm" in name: name = name.replace("img_encoder.patch_embed.norm", "vision_model.embeddings.layernorm") if "img_encoder.layers" in name: name = name.replace("img_encoder.layers", "vision_model.encoder.stages") if "blocks" in name and "res" not in name: name = name.replace("blocks", "layers") if "attn" in name and "pre_assign" not in name: name = name.replace("attn", "self_attn") if "proj" in name and "self_attn" in name and "text" not in name: name = name.replace("proj", "out_proj") if "pre_assign_attn.attn.proj" in name: name = name.replace("pre_assign_attn.attn.proj", "pre_assign_attn.attn.out_proj") if "norm1" in name: name = name.replace("norm1", "layer_norm1") if "norm2" in name and "pre_assign" not in name: name = name.replace("norm2", "layer_norm2") if "img_encoder.norm" in name: name = name.replace("img_encoder.norm", "vision_model.layernorm") # text encoder if "text_encoder.token_embedding" in name: name = name.replace("text_encoder.token_embedding", "text_model.embeddings.token_embedding") if "text_encoder.positional_embedding" in name: name = name.replace("text_encoder.positional_embedding", "text_model.embeddings.position_embedding.weight") if "text_encoder.transformer.resblocks." in name: name = name.replace("text_encoder.transformer.resblocks.", "text_model.encoder.layers.") if "ln_1" in name: name = name.replace("ln_1", "layer_norm1") if "ln_2" in name: name = name.replace("ln_2", "layer_norm2") if "c_fc" in name: name = name.replace("c_fc", "fc1") if "c_proj" in name: name = name.replace("c_proj", "fc2") if "text_encoder" in name: name = name.replace("text_encoder", "text_model") if "ln_final" in name: name = name.replace("ln_final", "final_layer_norm") # projection layers if "img_projector.linear_hidden." in name: name = name.replace("img_projector.linear_hidden.", "visual_projection.") if "img_projector.linear_out." in name: name = name.replace("img_projector.linear_out.", "visual_projection.3.") if "text_projector.linear_hidden" in name: name = name.replace("text_projector.linear_hidden", "text_projection") if "text_projector.linear_out" in name: name = name.replace("text_projector.linear_out", "text_projection.3") return name def convert_state_dict(orig_state_dict, config): for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors key_split = key.split(".") stage_num, layer_num = int(key_split[2]), int(key_split[4]) dim = config.vision_config.hidden_size if "weight" in key: orig_state_dict[ f"vision_model.encoder.stages.{stage_num}.layers.{layer_num}.self_attn.q_proj.weight" ] = val[:dim, :] orig_state_dict[ f"vision_model.encoder.stages.{stage_num}.layers.{layer_num}.self_attn.k_proj.weight" ] = val[dim : dim * 2, :] orig_state_dict[ f"vision_model.encoder.stages.{stage_num}.layers.{layer_num}.self_attn.v_proj.weight" ] = val[-dim:, :] else: orig_state_dict[ f"vision_model.encoder.stages.{stage_num}.layers.{layer_num}.self_attn.q_proj.bias" ] = val[:dim] orig_state_dict[ f"vision_model.encoder.stages.{stage_num}.layers.{layer_num}.self_attn.k_proj.bias" ] = val[dim : dim * 2] orig_state_dict[ f"vision_model.encoder.stages.{stage_num}.layers.{layer_num}.self_attn.v_proj.bias" ] = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors key_split = key.split(".") layer_num = int(key_split[3]) dim = config.text_config.hidden_size if "weight" in key: orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.q_proj.weight"] = val[:dim, :] orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.k_proj.weight"] = val[ dim : dim * 2, : ] orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.v_proj.weight"] = val[-dim:, :] else: orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.q_proj.bias"] = val[:dim] orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.k_proj.bias"] = val[dim : dim * 2] orig_state_dict[f"text_model.encoder.layers.{layer_num}.self_attn.v_proj.bias"] = val[-dim:] else: new_name = rename_key(key) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): orig_state_dict[new_name] = val.squeeze_() else: orig_state_dict[new_name] = val return orig_state_dict # We will verify our results on an image of cute cats def prepare_img(): url = "http://images.cocodataset.org/val2017/000000039769.jpg" im = Image.open(requests.get(url, stream=True).raw) return im @torch.no_grad() def convert_groupvit_checkpoint( checkpoint_path, pytorch_dump_folder_path, model_name="groupvit-gcc-yfcc", push_to_hub=False ): """ Copy/paste/tweak model's weights to the Transformers design. """ config = GroupViTConfig() model = GroupViTModel(config).eval() state_dict = torch.load(checkpoint_path, map_location="cpu")["model"] new_state_dict = convert_state_dict(state_dict, config) missing_keys, unexpected_keys = model.load_state_dict(new_state_dict, strict=False) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(unexpected_keys) == 0) # verify result processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") image = prepare_img() inputs = processor(text=["a photo of a cat", "a photo of a dog"], images=image, padding=True, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) if model_name == "groupvit-gcc-yfcc": expected_logits = torch.tensor([[13.3523, 6.3629]]) elif model_name == "groupvit-gcc-redcaps": expected_logits = torch.tensor([[16.1873, 8.6230]]) else: raise ValueError(f"Model name {model_name} not supported.") assert torch.allclose(outputs.logits_per_image, expected_logits, atol=1e-3) processor.save_pretrained(pytorch_dump_folder_path) model.save_pretrained(pytorch_dump_folder_path) print("Successfully saved processor and model to", pytorch_dump_folder_path) if push_to_hub: print("Pushing to the hub...") processor.push_to_hub(model_name, organization="nielsr") model.push_to_hub(model_name, organization="nielsr") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) args = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
transformers/src/transformers/models/groupvit/convert_groupvit_nvlab_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/groupvit/convert_groupvit_nvlab_to_hf.py", "repo_id": "transformers", "token_count": 4252 }
92
# coding=utf-8 # Copyright 2021 The I-BERT Authors (Sehoon Kim, Amir Gholami, Zhewei Yao, # Michael Mahoney, Kurt Keutzer - UC Berkeley) and The HuggingFace Inc. team. # Copyright (c) 20121, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import decimal import numpy as np import torch from torch import nn from torch.autograd import Function from ...utils import logging logger = logging.get_logger(__name__) class QuantEmbedding(nn.Module): """ Quantized version of `torch.nn.Embedding`. Adds quantization-specific arguments on top of `torch.nn.Embedding`. Args: weight_bit (`int`, *optional*, defaults to `8`): Bitwidth for the quantized weight. momentum (`float`, *optional*, defaults to `0.95`): Momentum for updating the activation quantization range. quant_mode (`bool`, *optional*, defaults to `False`): Whether or not the layer is quantized. """ def __init__( self, num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2.0, scale_grad_by_freq=False, sparse=False, _weight=None, weight_bit=8, momentum=0.95, quant_mode=False, ): super().__init__() self.num_ = num_embeddings self.dim = embedding_dim self.padding_idx = padding_idx self.max_norm = max_norm self.norm_type = norm_type self.scale_grad_by_freq = scale_grad_by_freq self.sparse = sparse self.weight = nn.Parameter(torch.zeros([num_embeddings, embedding_dim])) self.register_buffer("weight_scaling_factor", torch.zeros(1)) self.register_buffer("weight_integer", torch.zeros_like(self.weight)) self.weight_bit = weight_bit self.momentum = momentum self.quant_mode = quant_mode self.percentile_mode = False self.weight_function = SymmetricQuantFunction.apply def forward(self, x, positions=None, incremental_state=None): if not self.quant_mode: return ( nn.functional.embedding( x, self.weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ), None, ) w = self.weight w_transform = w.data.detach() w_min = w_transform.min().expand(1) w_max = w_transform.max().expand(1) self.weight_scaling_factor = symmetric_linear_quantization_params(self.weight_bit, w_min, w_max, False) self.weight_integer = self.weight_function( self.weight, self.weight_bit, self.percentile_mode, self.weight_scaling_factor ) emb_int = nn.functional.embedding( x, self.weight_integer, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse, ) return emb_int * self.weight_scaling_factor, self.weight_scaling_factor class QuantAct(nn.Module): """ Quantizes the given activation. Args: activation_bit (`int`): Bitwidth for the quantized activation. act_range_momentum (`float`, *optional*, defaults to `0.95`): Momentum for updating the activation quantization range. per_channel (`bool`, *optional*, defaults to `False`): Whether to or not use channel-wise quantization. channel_len (`int`, *optional*): Specify the channel length when set the *per_channel* True. quant_mode (`bool`, *optional*, defaults to `False`): Whether or not the layer is quantized. """ def __init__(self, activation_bit, act_range_momentum=0.95, per_channel=False, channel_len=None, quant_mode=False): super().__init__() self.activation_bit = activation_bit self.act_range_momentum = act_range_momentum self.quant_mode = quant_mode self.per_channel = per_channel self.percentile = False self.act_function = SymmetricQuantFunction.apply if not self.per_channel: self.register_buffer("x_min", torch.zeros(1)) self.register_buffer("x_max", torch.zeros(1)) self.register_buffer("act_scaling_factor", torch.zeros(1)) self.x_min -= 1e-5 self.x_max += 1e-5 else: raise NotImplementedError("per-channel mode is not currently supported for activation.") def __repr__(self): return ( f"{self.__class__.__name__}(activation_bit={self.activation_bit}, " f"quant_mode: {self.quant_mode}, Act_min: {self.x_min.item():.2f}, " f"Act_max: {self.x_max.item():.2f})" ) def forward( self, x, pre_act_scaling_factor=None, identity=None, identity_scaling_factor=None, specified_min=None, specified_max=None, ): x_act = x if identity is None else identity + x # collect running stats if training if self.training: assert not self.percentile, "percentile mode is not currently supported for activation." assert not self.per_channel, "per-channel mode is not currently supported for activation." x_min = x_act.data.min() x_max = x_act.data.max() assert ( x_max.isnan().sum() == 0 and x_min.isnan().sum() == 0 ), "NaN detected when computing min/max of the activation" # Initialization if self.x_min.min() > -1.1e-5 and self.x_max.max() < 1.1e-5: self.x_min = self.x_min + x_min self.x_max = self.x_max + x_max # exponential moving average (EMA) # use momentum to prevent the quantized values change greatly every iteration elif self.act_range_momentum == -1: self.x_min = torch.min(self.x_min, x_min) self.x_max = torch.max(self.x_max, x_max) else: self.x_min = self.x_min * self.act_range_momentum + x_min * (1 - self.act_range_momentum) self.x_max = self.x_max * self.act_range_momentum + x_max * (1 - self.act_range_momentum) if not self.quant_mode: return x_act, None x_min = self.x_min if specified_min is None else specified_min x_max = self.x_max if specified_max is None else specified_max self.act_scaling_factor = symmetric_linear_quantization_params( self.activation_bit, x_min, x_max, per_channel=self.per_channel ) if pre_act_scaling_factor is None: # this is for the input quantization quant_act_int = self.act_function(x, self.activation_bit, self.percentile, self.act_scaling_factor) else: quant_act_int = FixedPointMul.apply( x, pre_act_scaling_factor, self.activation_bit, self.act_scaling_factor, identity, identity_scaling_factor, ) correct_output_scale = self.act_scaling_factor.view(-1) return quant_act_int * correct_output_scale, self.act_scaling_factor class QuantLinear(nn.Module): """ Quantized version of `torch.nn.Linear`. Adds quantization-specific arguments on top of `torch.nn.Linear`. Args: weight_bit (`int`, *optional*, defaults to `8`): Bitwidth for the quantized weight. bias_bit (`int`, *optional*, defaults to `32`): Bitwidth for the quantized bias. per_channel (`bool`, *optional*, defaults to `False`): Whether or not to use channel-wise quantization. quant_mode (`bool`, *optional*, defaults to `False`): Whether or not the layer is quantized. """ def __init__( self, in_features, out_features, bias=True, weight_bit=8, bias_bit=32, per_channel=False, quant_mode=False ): super().__init__() self.in_features = in_features self.out_features = out_features self.weight = nn.Parameter(torch.zeros([out_features, in_features])) self.register_buffer("weight_integer", torch.zeros_like(self.weight)) self.register_buffer("fc_scaling_factor", torch.zeros(self.out_features)) if bias: self.bias = nn.Parameter(torch.zeros(out_features)) self.register_buffer("bias_integer", torch.zeros_like(self.bias)) self.weight_bit = weight_bit self.quant_mode = quant_mode self.per_channel = per_channel self.bias_bit = bias_bit self.quant_mode = quant_mode self.percentile_mode = False self.weight_function = SymmetricQuantFunction.apply def __repr__(self): s = super().__repr__() s = f"({s} weight_bit={self.weight_bit}, quant_mode={self.quant_mode})" return s def forward(self, x, prev_act_scaling_factor=None): if not self.quant_mode: return nn.functional.linear(x, weight=self.weight, bias=self.bias), None # assert that prev_act_scaling_factor is a scalar tensor assert prev_act_scaling_factor is not None and prev_act_scaling_factor.shape == (1,), ( "Input activation to the QuantLinear layer should be globally (non-channel-wise) quantized. " "Please add a QuantAct layer with `per_channel = True` before this QuantAct layer" ) w = self.weight w_transform = w.data.detach() if self.per_channel: w_min, _ = torch.min(w_transform, dim=1, out=None) w_max, _ = torch.max(w_transform, dim=1, out=None) else: w_min = w_transform.min().expand(1) w_max = w_transform.max().expand(1) self.fc_scaling_factor = symmetric_linear_quantization_params(self.weight_bit, w_min, w_max, self.per_channel) self.weight_integer = self.weight_function( self.weight, self.weight_bit, self.percentile_mode, self.fc_scaling_factor ) bias_scaling_factor = self.fc_scaling_factor * prev_act_scaling_factor if self.bias is not None: self.bias_integer = self.weight_function(self.bias, self.bias_bit, False, bias_scaling_factor) prev_act_scaling_factor = prev_act_scaling_factor.view(1, -1) x_int = x / prev_act_scaling_factor return ( nn.functional.linear(x_int, weight=self.weight_integer, bias=self.bias_integer) * bias_scaling_factor, bias_scaling_factor, ) class IntGELU(nn.Module): """ Quantized version of `torch.nn.GELU`. Adds quantization-specific arguments on top of `torch.nn.GELU`. Args: quant_mode (`bool`, *optional*, defaults to `False`): Whether or not the layer is quantized. force_dequant (`str`, *optional*, defaults to `"none"`): Force dequantize the layer if either "gelu" or "nonlinear" is given. """ def __init__(self, quant_mode=True, force_dequant="none"): super().__init__() self.quant_mode = quant_mode if force_dequant in ["nonlinear", "gelu"]: logger.info("Force dequantize gelu") self.quant_mode = False if not self.quant_mode: self.activation_fn = nn.GELU() self.k = 1.4142 self.const = 14 # dummy integer constant self.coeff = [-0.2888, -1.769, 1] # a(x+b)**2 + c self.coeff[2] /= self.coeff[0] def int_erf(self, x_int, scaling_factor): b_int = torch.floor(self.coeff[1] / scaling_factor) c_int = torch.floor(self.coeff[2] / scaling_factor**2) sign = torch.sign(x_int) abs_int = torch.min(torch.abs(x_int), -b_int) y_int = sign * ((abs_int + b_int) ** 2 + c_int) scaling_factor = scaling_factor**2 * self.coeff[0] # avoid overflow y_int = floor_ste.apply(y_int / 2**self.const) scaling_factor = scaling_factor * 2**self.const return y_int, scaling_factor def forward(self, x, scaling_factor=None): if not self.quant_mode: return self.activation_fn(x), None x_int = x / scaling_factor sigmoid_int, sigmoid_scaling_factor = self.int_erf(x_int, scaling_factor / self.k) shift_int = 1.0 // sigmoid_scaling_factor x_int = x_int * (sigmoid_int + shift_int) scaling_factor = scaling_factor * sigmoid_scaling_factor / 2 return x_int * scaling_factor, scaling_factor class IntSoftmax(nn.Module): """ Quantized version of `torch.nn.Softmax`. Adds quantization-specific arguments on top of `torch.nn.Softmax`. Args: output_bit (`int`): Bitwidth for the layer output activation. quant_mode (`bool`, *optional*, defaults to `False`): Whether or not the layer is quantized. force_dequant (`str`, *optional*, defaults to `"none"`): Force dequantize the layer if either "softmax" or "nonlinear" is given. """ def __init__(self, output_bit, quant_mode=False, force_dequant="none"): super().__init__() self.output_bit = output_bit self.max_bit = 32 self.quant_mode = quant_mode if force_dequant in ["nonlinear", "softmax"]: logger.info("Force dequantize softmax") self.quant_mode = False self.act = QuantAct(16, quant_mode=self.quant_mode) self.x0 = -0.6931 # -ln2 self.const = 30 # dummy integer constant self.coef = [0.35815147, 0.96963238, 1.0] # ax**2 + bx + c self.coef[1] /= self.coef[0] self.coef[2] /= self.coef[0] def int_polynomial(self, x_int, scaling_factor): with torch.no_grad(): b_int = torch.floor(self.coef[1] / scaling_factor) c_int = torch.floor(self.coef[2] / scaling_factor**2) z = (x_int + b_int) * x_int + c_int scaling_factor = self.coef[0] * scaling_factor**2 return z, scaling_factor def int_exp(self, x_int, scaling_factor): with torch.no_grad(): x0_int = torch.floor(self.x0 / scaling_factor) x_int = torch.max(x_int, self.const * x0_int) q = floor_ste.apply(x_int / x0_int) r = x_int - x0_int * q exp_int, exp_scaling_factor = self.int_polynomial(r, scaling_factor) exp_int = torch.clamp(floor_ste.apply(exp_int * 2 ** (self.const - q)), min=0) scaling_factor = exp_scaling_factor / 2**self.const return exp_int, scaling_factor def forward(self, x, scaling_factor): if not self.quant_mode: return nn.functional.softmax(x, dim=-1), None x_int = x / scaling_factor x_int_max, _ = x_int.max(dim=-1, keepdim=True) x_int = x_int - x_int_max exp_int, exp_scaling_factor = self.int_exp(x_int, scaling_factor) # Avoid overflow exp, exp_scaling_factor = self.act(exp_int, exp_scaling_factor) exp_int = exp / exp_scaling_factor exp_int_sum = exp_int.sum(dim=-1, keepdim=True) factor = floor_ste.apply(2**self.max_bit / exp_int_sum) exp_int = floor_ste.apply(exp_int * factor / 2 ** (self.max_bit - self.output_bit)) scaling_factor = 1 / 2**self.output_bit return exp_int * scaling_factor, scaling_factor class IntLayerNorm(nn.Module): """ Quantized version of `torch.nn.LayerNorm`. Adds quantization-specific arguments on top of `torch.nn.LayerNorm`. Args: output_bit (`int`, *optional*, defaults to `8`): Bitwidth for the layer output activation. quant_mode (`bool`, *optional*, defaults to `False`): Whether or not the layer is quantized. force_dequant (`str`, *optional*, defaults to `"none"`): Force dequantize the layer if either "layernorm" or "nonlinear" is given. """ def __init__(self, normalized_shape, eps, output_bit=8, quant_mode=False, force_dequant="none"): super().__init__() self.normalized_shape = normalized_shape self.eps = eps self.weight = nn.Parameter(torch.zeros(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.quant_mode = quant_mode if force_dequant in ["nonlinear", "layernorm"]: logger.info("Force dequantize layernorm") self.quant_mode = False self.register_buffer("shift", torch.zeros(1)) self.output_bit = output_bit self.max_bit = 32 self.dim_sqrt = None self.activation = QuantAct(self.output_bit, quant_mode=self.quant_mode) def set_shift(self, y_int): with torch.no_grad(): y_sq_int = y_int**2 var_int = torch.sum(y_sq_int, axis=2, keepdim=True) shift = (torch.log2(torch.sqrt(var_int / 2**self.max_bit)).ceil()).max() shift_old = self.shift self.shift = torch.max(self.shift, shift) logger.info(f"Dynamic shift adjustment: {int(shift_old)} -> {int(self.shift)}") def overflow_fallback(self, y_int): """ This fallback function is called when overflow is detected during training time, and adjusts the `self.shift` to avoid overflow in the subsequent runs. """ self.set_shift(y_int) # adjusts `self.shift` y_int_shifted = floor_ste.apply(y_int / 2**self.shift) y_sq_int = y_int_shifted**2 var_int = torch.sum(y_sq_int, axis=2, keepdim=True) return var_int def forward(self, x, scaling_factor=None): if not self.quant_mode: mean = x.mean(axis=2, keepdim=True) y = x - mean var = torch.mean(y**2, axis=2, keepdim=True) x = y / torch.sqrt(self.eps + var) x = x * self.weight + self.bias return x, None # compute sqrt of the feature dimension if it is the first run if self.dim_sqrt is None: n = torch.tensor(x.shape[2], dtype=torch.float) self.dim_sqrt = torch.sqrt(n).to(x.device) # Normalization: computes mean and variance(std) x_int = x / scaling_factor mean_int = round_ste.apply(x_int.mean(axis=2, keepdim=True)) y_int = x_int - mean_int y_int_shifted = floor_ste.apply(y_int / 2**self.shift) y_sq_int = y_int_shifted**2 var_int = torch.sum(y_sq_int, axis=2, keepdim=True) # overflow handling in training time if self.training: # if overflow is detected if var_int.max() >= 2**self.max_bit: var_int = self.overflow_fallback(y_int) assert var_int.max() < 2**self.max_bit + 0.1, ( "Error detected in overflow handling: " "`var_int` exceeds `self.max_bit` (the maximum possible bit width)" ) # To be replaced with integer-sqrt kernel that produces the same output std_int = floor_ste.apply(torch.sqrt(var_int)) * 2**self.shift factor = floor_ste.apply(2**31 / std_int) y_int = floor_ste.apply(y_int * factor / 2) scaling_factor = self.dim_sqrt / 2**30 # scaling and shifting bias = self.bias.data.detach() / (self.weight.data.detach()) bias_int = floor_ste.apply(bias / scaling_factor) y_int = y_int + bias_int scaling_factor = scaling_factor * self.weight x = y_int * scaling_factor return x, scaling_factor def get_percentile_min_max(input, lower_percentile, upper_percentile, output_tensor=False): """ Calculate the percentile max and min values in a given tensor Args: input (`torch.Tensor`): The target tensor to calculate percentile max and min. lower_percentile (`float`): If 0.1, means we return the value of the smallest 0.1% value in the tensor as percentile min. upper_percentile (`float`): If 99.9, means we return the value of the largest 0.1% value in the tensor as percentile max. output_tensor (`bool`, *optional*, defaults to `False`): If True, this function returns tensors, otherwise it returns values. Returns: `Tuple(torch.Tensor, torch.Tensor)`: Percentile min and max value of *input* """ input_length = input.shape[0] lower_index = round(input_length * (1 - lower_percentile * 0.01)) upper_index = round(input_length * upper_percentile * 0.01) upper_bound = torch.kthvalue(input, k=upper_index).values if lower_percentile == 0: lower_bound = upper_bound * 0 # lower_index += 1 else: lower_bound = -torch.kthvalue(-input, k=lower_index).values if not output_tensor: lower_bound = lower_bound.item() upper_bound = upper_bound.item() return lower_bound, upper_bound def linear_quantize(input, scale, zero_point, inplace=False): """ Quantize single-precision input tensor to integers with the given scaling factor and zeropoint. Args: input (`torch.Tensor`): Single-precision input tensor to be quantized. scale (`torch.Tensor`): Scaling factor for quantization. zero_pint (`torch.Tensor`): Shift for quantization. inplace (`bool`, *optional*, defaults to `False`): Whether to compute inplace or not. Returns: `torch.Tensor`: Linearly quantized value of *input* according to *scale* and *zero_point*. """ # reshape scale and zeropoint for convolutional weights and activation if len(input.shape) == 4: scale = scale.view(-1, 1, 1, 1) zero_point = zero_point.view(-1, 1, 1, 1) # reshape scale and zeropoint for linear weights elif len(input.shape) == 2: scale = scale.view(-1, 1) zero_point = zero_point.view(-1, 1) else: scale = scale.view(-1) zero_point = zero_point.view(-1) # quantized = float / scale + zero_point if inplace: input.mul_(1.0 / scale).add_(zero_point).round_() return input return torch.round(1.0 / scale * input + zero_point) def symmetric_linear_quantization_params(num_bits, saturation_min, saturation_max, per_channel=False): """ Compute the scaling factor with the given quantization range for symmetric quantization. Args: saturation_min (`torch.Tensor`): Lower bound for quantization range. saturation_max (`torch.Tensor`): Upper bound for quantization range. per_channel (`bool`, *optional*, defaults to `False`): Whether to or not use channel-wise quantization. Returns: `torch.Tensor`: Scaling factor that linearly quantizes the given range between *saturation_min* and *saturation_max*. """ # in this part, we do not need any gradient computation, # in order to enforce this, we put torch.no_grad() with torch.no_grad(): n = 2 ** (num_bits - 1) - 1 if per_channel: scale, _ = torch.max(torch.stack([saturation_min.abs(), saturation_max.abs()], dim=1), dim=1) scale = torch.clamp(scale, min=1e-8) / n else: scale = max(saturation_min.abs(), saturation_max.abs()) scale = torch.clamp(scale, min=1e-8) / n return scale class SymmetricQuantFunction(Function): """ Class to quantize the given floating-point values using symmetric quantization with given range and bitwidth. """ @staticmethod def forward(ctx, x, k, percentile_mode, scale): """ Args: x (`torch.Tensor`): Floating point tensor to be quantized. k (`int`): Quantization bitwidth. percentile_mode (`bool`): Whether or not to use percentile calibration. scale (`torch.Tensor`): Pre-calculated scaling factor for *x*. Note that the current implementation of SymmetricQuantFunction requires pre-calculated scaling factor. Returns: `torch.Tensor`: Symmetric-quantized value of *input*. """ zero_point = torch.tensor(0.0).to(scale.device) n = 2 ** (k - 1) - 1 new_quant_x = linear_quantize(x, scale, zero_point, inplace=False) new_quant_x = torch.clamp(new_quant_x, -n, n - 1) ctx.scale = scale return new_quant_x @staticmethod def backward(ctx, grad_output): scale = ctx.scale if len(grad_output.shape) == 4: scale = scale.view(-1, 1, 1, 1) # reshape scale and zeropoint for linear weights elif len(grad_output.shape) == 2: scale = scale.view(-1, 1) else: scale = scale.view(-1) return grad_output.clone() / scale, None, None, None, None class floor_ste(Function): """ Straight-through Estimator(STE) for torch.floor() """ @staticmethod def forward(ctx, x): return torch.floor(x) @staticmethod def backward(ctx, grad_output): return grad_output.clone() class round_ste(Function): """ Straight-through Estimator(STE) for torch.round() """ @staticmethod def forward(ctx, x): return torch.round(x) @staticmethod def backward(ctx, grad_output): return grad_output.clone() def batch_frexp(inputs, max_bit=31): """ Decompose the scaling factor into mantissa and twos exponent. Args: scaling_factor (`torch.Tensor`): Target scaling factor to decompose. Returns: ``Tuple(torch.Tensor, torch.Tensor)`: mantisa and exponent """ shape_of_input = inputs.size() # trans the input to be a 1-d tensor inputs = inputs.view(-1) output_m, output_e = np.frexp(inputs.cpu().numpy()) tmp_m = [] for m in output_m: int_m_shifted = int( decimal.Decimal(m * (2**max_bit)).quantize(decimal.Decimal("1"), rounding=decimal.ROUND_HALF_UP) ) tmp_m.append(int_m_shifted) output_m = np.array(tmp_m) output_e = float(max_bit) - output_e return ( torch.from_numpy(output_m).to(inputs.device).view(shape_of_input), torch.from_numpy(output_e).to(inputs.device).view(shape_of_input), ) class FixedPointMul(Function): """ Function to perform fixed-point arithmetic that can match integer arithmetic on hardware. Args: pre_act (`torch.Tensor`): Input tensor. pre_act_scaling_factor (`torch.Tensor`): Scaling factor of the input tensor *pre_act*. bit_num (`int`): Quantization bitwidth. z_scaling_factor (`torch.Tensor`): Scaling factor of the output tensor. identity (`torch.Tensor`, *optional*): Identity tensor, if exists. identity_scaling_factor (`torch.Tensor`, *optional*): Scaling factor of the identity tensor *identity*, if exists. Returns: `torch.Tensor`: Output tensor(*pre_act* if *identity* is not given, otherwise the addition of *pre_act* and *identity*), whose scale is rescaled to *z_scaling_factor*. """ @staticmethod def forward( ctx, pre_act, pre_act_scaling_factor, bit_num, z_scaling_factor, identity=None, identity_scaling_factor=None, ): if len(pre_act_scaling_factor.shape) == 3: reshape = lambda x: x # noqa: E731 else: reshape = lambda x: x.view(1, 1, -1) # noqa: E731 ctx.identity = identity n = 2 ** (bit_num - 1) - 1 with torch.no_grad(): pre_act_scaling_factor = reshape(pre_act_scaling_factor) if identity is not None: identity_scaling_factor = reshape(identity_scaling_factor) ctx.z_scaling_factor = z_scaling_factor z_int = torch.round(pre_act / pre_act_scaling_factor) _A = pre_act_scaling_factor.type(torch.double) _B = (z_scaling_factor.type(torch.float)).type(torch.double) new_scale = _A / _B new_scale = reshape(new_scale) m, e = batch_frexp(new_scale) output = z_int.type(torch.double) * m.type(torch.double) output = torch.round(output / (2.0**e)) if identity is not None: # needs addition of identity activation wx_int = torch.round(identity / identity_scaling_factor) _A = identity_scaling_factor.type(torch.double) _B = (z_scaling_factor.type(torch.float)).type(torch.double) new_scale = _A / _B new_scale = reshape(new_scale) m1, e1 = batch_frexp(new_scale) output1 = wx_int.type(torch.double) * m1.type(torch.double) output1 = torch.round(output1 / (2.0**e1)) output = output1 + output return torch.clamp(output.type(torch.float), -n - 1, n) @staticmethod def backward(ctx, grad_output): identity_grad = None if ctx.identity is not None: identity_grad = grad_output.clone() / ctx.z_scaling_factor return grad_output.clone() / ctx.z_scaling_factor, None, None, None, None, identity_grad, None
transformers/src/transformers/models/ibert/quant_modules.py/0
{ "file_path": "transformers/src/transformers/models/ibert/quant_modules.py", "repo_id": "transformers", "token_count": 13544 }
93
# coding=utf-8 # Copyright 2021 Iz Beltagy, Matthew E. Peters, Arman Cohan and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for LED.""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "allenai/led-base-16384": 16384, } class LEDTokenizerFast(PreTrainedTokenizerFast): r""" Construct a "fast" LED tokenizer (backed by HuggingFace's *tokenizers* library), derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import LEDTokenizerFast >>> tokenizer = LEDTokenizerFast.from_pretrained("allenai/led-base-16384") >>> tokenizer("Hello world")["input_ids"] [0, 31414, 232, 2] >>> tokenizer(" Hello world")["input_ids"] [0, 20920, 232, 2] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. </Tip> This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (LED tokenizer detect beginning of words by the preceding space). trim_offsets (`bool`, *optional*, defaults to `True`): Whether the post processing step should trim offsets to avoid including whitespaces. """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES slow_tokenizer_class = LEDTokenizer model_input_names = ["input_ids", "attention_mask"] # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.__init__ def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, trim_offsets=True, **kwargs, ): # we have to specify that this tokens is special otherwise adding it will reset the normalized flag to `False` in `add_special_tokens` mask_token = ( AddedToken(mask_token, lstrip=True, normalized=True, special=True) if isinstance(mask_token, str) else mask_token ) super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, errors=errors, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, trim_offsets=trim_offsets, **kwargs, ) pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space: pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type")) pre_tok_state["add_prefix_space"] = add_prefix_space self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state) self.add_prefix_space = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` tokenizer_component = "post_processor" tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None) if tokenizer_component_instance: state = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: state["sep"] = tuple(state["sep"]) if "cls" in state: state["cls"] = tuple(state["cls"]) changes_to_apply = False if state.get("add_prefix_space", add_prefix_space) != add_prefix_space: state["add_prefix_space"] = add_prefix_space changes_to_apply = True if state.get("trim_offsets", trim_offsets) != trim_offsets: state["trim_offsets"] = trim_offsets changes_to_apply = True if changes_to_apply: component_class = getattr(processors, state.pop("type")) new_value = component_class(**state) setattr(self.backend_tokenizer, tokenizer_component, new_value) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def mask_token(self) -> str: """ `str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not having been set. LED tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily comprise the space before the *<mask>*. """ if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def mask_token(self, value): """ Overriding the default behavior of the mask token to have it eat the space before it. This is needed to preserve backward compatibility with all the previously used models based on LED. """ # Mask token behave like a normal word, i.e. include the space before it # So we set lstrip to True value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value self._mask_token = value # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast._batch_encode_plus def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*args, **kwargs) # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast._encode_plus def _encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*args, **kwargs) # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files) # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.build_inputs_with_special_tokens def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id] if token_ids_1 is None: return output return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id] # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.create_token_type_ids_from_sequences with BART->LED def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. LED does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] # Copied from transformers.models.led.tokenization_led.LEDTokenizer._pad def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, ) -> dict: encoded_inputs = super()._pad( encoded_inputs=encoded_inputs, max_length=max_length, padding_strategy=padding_strategy, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: required_input = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. needs_to_be_padded = len(encoded_inputs["global_attention_mask"]) != len(required_input) if needs_to_be_padded: difference = len(required_input) - len(encoded_inputs["global_attention_mask"]) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` encoded_inputs["global_attention_mask"] = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": encoded_inputs["global_attention_mask"] = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side)) return encoded_inputs
transformers/src/transformers/models/led/tokenization_led_fast.py/0
{ "file_path": "transformers/src/transformers/models/led/tokenization_led_fast.py", "repo_id": "transformers", "token_count": 6243 }
94
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from shutil import copyfile from typing import Optional, Tuple from tokenizers import processors from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging from ...utils.versions import require_version require_version("tokenizers>=0.13.3") if is_sentencepiece_available(): from .tokenization_llama import LlamaTokenizer else: LlamaTokenizer = None logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer.model", }, "tokenizer_file": { "hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer_config.json", }, } B_INST, E_INST = "[INST]", "[/INST]" B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n" # fmt: off DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \ answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\ that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \ correct. If you don't know the answer to a question, please don't share false information.""" # fmt: on class LlamaTokenizerFast(PreTrainedTokenizerFast): """ Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. This uses notably ByteFallback and no normalization. ```python >>> from transformers import LlamaTokenizerFast >>> tokenizer = LlamaTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer") >>> tokenizer.encode("Hello this is a test") [1, 15043, 445, 338, 263, 1243] ``` If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the values of the first token and final token of an encoded sequence will not be correct). For more details, checkout [post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation. This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`, *optional*): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that contains the vocabulary necessary to instantiate a tokenizer. tokenizer_file (`str`, *optional*): [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that contains everything needed to load the tokenizer. clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`): Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra spaces. unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`): The end of sequence token. add_bos_token (`bool`, *optional*, defaults to `True`): Whether or not to add an `bos_token` at the start of sequences. add_eos_token (`bool`, *optional*, defaults to `False`): Whether or not to add an `eos_token` at the end of sequences. use_default_system_prompt (`bool`, *optional*, defaults to `False`): Whether or not the default system prompt for Llama should be used. add_prefix_space (`bool`, *optional*): Whether or not the tokenizer should automatically add a prefix space """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP slow_tokenizer_class = LlamaTokenizer padding_side = "left" model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file=None, tokenizer_file=None, clean_up_tokenization_spaces=False, unk_token="<unk>", bos_token="<s>", eos_token="</s>", add_bos_token=True, add_eos_token=False, use_default_system_prompt=False, add_prefix_space=None, **kwargs, ): if add_prefix_space is not None: logger.warning_once( "You set `add_prefix_space`. The tokenizer needs to be converted from the slow tokenizers" ) kwargs["from_slow"] = True super().__init__( vocab_file=vocab_file, tokenizer_file=tokenizer_file, clean_up_tokenization_spaces=clean_up_tokenization_spaces, unk_token=unk_token, bos_token=bos_token, eos_token=eos_token, add_bos_token=add_bos_token, add_eos_token=add_eos_token, use_default_system_prompt=use_default_system_prompt, **kwargs, ) self._add_bos_token = add_bos_token self._add_eos_token = add_eos_token self.update_post_processor() self.use_default_system_prompt = use_default_system_prompt self.vocab_file = vocab_file @property def can_save_slow_tokenizer(self) -> bool: return os.path.isfile(self.vocab_file) if self.vocab_file else False def update_post_processor(self): """ Updates the underlying post processor with the current `bos_token` and `eos_token`. """ bos = self.bos_token bos_token_id = self.bos_token_id if bos is None and self.add_bos_token: raise ValueError("add_bos_token = True but bos_token = None") eos = self.eos_token eos_token_id = self.eos_token_id if eos is None and self.add_eos_token: raise ValueError("add_eos_token = True but eos_token = None") single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}" pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}" special_tokens = [] if self.add_bos_token: special_tokens.append((bos, bos_token_id)) if self.add_eos_token: special_tokens.append((eos, eos_token_id)) self._tokenizer.post_processor = processors.TemplateProcessing( single=single, pair=pair, special_tokens=special_tokens ) @property def add_eos_token(self): return self._add_eos_token @property def add_bos_token(self): return self._add_bos_token @add_eos_token.setter def add_eos_token(self, value): self._add_eos_token = value self.update_post_processor() @add_bos_token.setter def add_bos_token(self, value): self._add_bos_token = value self.update_post_processor() def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): copyfile(self.vocab_file, out_vocab_file) return (out_vocab_file,) @property # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.default_chat_template def default_chat_template(self): """ LLaMA uses [INST] and [/INST] to indicate user messages, and <<SYS>> and <</SYS>> to indicate system messages. Assistant messages do not have special tokens, because LLaMA chat models are generally trained with strict user/assistant/user/assistant message ordering, and so assistant messages can be identified from the ordering rather than needing special tokens. The system message is partly 'embedded' in the first user message, which results in an unusual token ordering when it is present. This template should definitely be changed if you wish to fine-tune a model with more flexible role ordering! The output should look something like: <bos>[INST] B_SYS SystemPrompt E_SYS Prompt [/INST] Answer <eos><bos>[INST] Prompt [/INST] Answer <eos> <bos>[INST] Prompt [/INST] The reference for this chat template is [this code snippet](https://github.com/facebookresearch/llama/blob/556949fdfb72da27c2f4a40b7f0e4cf0b8153a28/llama/generation.py#L320-L362) in the original repository. """ logger.warning_once( "\nNo chat template is defined for this tokenizer - using the default template " f"for the {self.__class__.__name__} class. If the default is not appropriate for " "your model, please set `tokenizer.chat_template` to an appropriate template. " "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n" ) template = ( "{% if messages[0]['role'] == 'system' %}" "{% set loop_messages = messages[1:] %}" # Extract system message if it's present "{% set system_message = messages[0]['content'] %}" "{% elif USE_DEFAULT_PROMPT == true and not '<<SYS>>' in messages[0]['content'] %}" "{% set loop_messages = messages %}" # Or use the default system message if the flag is set "{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}" "{% else %}" "{% set loop_messages = messages %}" "{% set system_message = false %}" "{% endif %}" "{% for message in loop_messages %}" # Loop over all non-system messages "{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}" "{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}" "{% endif %}" "{% if loop.index0 == 0 and system_message != false %}" # Embed system message in first message "{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}" "{% else %}" "{% set content = message['content'] %}" "{% endif %}" "{% if message['role'] == 'user' %}" # After all of that, handle messages/roles in a fairly normal way "{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}" "{% elif message['role'] == 'system' %}" "{{ '<<SYS>>\\n' + content.strip() + '\\n<</SYS>>\\n\\n' }}" "{% elif message['role'] == 'assistant' %}" "{{ ' ' + content.strip() + ' ' + eos_token }}" "{% endif %}" "{% endfor %}" ) template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false") default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'") template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message) return template # TODO ArthurZ let's rely on the template processor instead, refactor all fast tokenizers # Copied from transformers.models.llama.tokenization_llama.LlamaTokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): bos_token_id = [self.bos_token_id] if self.add_bos_token else [] eos_token_id = [self.eos_token_id] if self.add_eos_token else [] output = bos_token_id + token_ids_0 + eos_token_id if token_ids_1 is not None: output = output + bos_token_id + token_ids_1 + eos_token_id return output
transformers/src/transformers/models/llama/tokenization_llama_fast.py/0
{ "file_path": "transformers/src/transformers/models/llama/tokenization_llama_fast.py", "repo_id": "transformers", "token_count": 5375 }
95
# coding=utf-8 # Copyright 2022 LongT5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Flax LongT5 model.""" import copy from typing import Any, Callable, List, Optional, Tuple import flax.linen as nn import jax import jax.numpy as jnp import numpy as np from flax.core.frozen_dict import FrozenDict, freeze, unfreeze from flax.linen import combine_masks, make_causal_mask from flax.linen import partitioning as nn_partitioning from flax.linen.attention import dot_product_attention_weights from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ...modeling_flax_outputs import ( FlaxBaseModelOutput, FlaxBaseModelOutputWithPastAndCrossAttentions, FlaxCausalLMOutputWithCrossAttentions, FlaxSeq2SeqLMOutput, FlaxSeq2SeqModelOutput, ) from ...modeling_flax_utils import ( ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, append_replace_return_docstrings, overwrite_call_docstring, ) from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings from .configuration_longt5 import LongT5Config logger = logging.get_logger(__name__) _CHECKPOINT_FOR_DOC = "google/long-t5-local-base" _CONFIG_FOR_DOC = "LongT5Config" remat = nn_partitioning.remat # Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray: """ Shift input ids one token to the right. """ shifted_input_ids = jnp.zeros_like(input_ids) shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1]) shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id) shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids) return shifted_input_ids def _pad_to_multiple(x: jnp.ndarray, block_len: int, axis: int, pad_value: int = 0) -> jnp.ndarray: """Pad an array so that a sequence length will be a multiple of `block_len`""" pad_len = -x.shape[axis] % block_len pad = [(0, 0)] * x.ndim pad[axis] = (0, pad_len) x = jnp.pad(x, pad_width=pad, mode="constant", constant_values=pad_value) return x def _split_into_blocks(x: jnp.ndarray, block_len: int, axis: int) -> jnp.ndarray: """Split an input array into blocks of a given `block_len` along the given `axis`. If the dimension length is not a multiple of `block_len`, it will be padded first with selected `pad_value`. """ # pad tensor to multiple of block_len if x.shape[axis] % block_len != 0: x = _pad_to_multiple(x, block_len, axis, pad_value=0) num_blocks = x.shape[axis] // block_len output_shape = x.shape[:axis] + (num_blocks, block_len) + x.shape[(axis + 1) :] return x.reshape(output_shape) def _concatenate_3_blocks(x: jnp.ndarray, block_axis: int, sequence_axis: int, pad_value: int = 0) -> jnp.ndarray: """Concatenate three consecutive blocks for each input block for local attentiont. For more information, see: https://arxiv.org/pdf/2112.07916.pdf. """ num_blocks = x.shape[block_axis] pad = [(0, 0)] * x.ndim pad[block_axis] = (1, 1) # [batch_size, num_blocks, block_len] -> [batch_size, num_blocks + 2, block_len] x = jnp.pad(x, pad_width=pad, mode="constant", constant_values=pad_value) blocks_list: List[np.array] = [] for i in range(3): # We use indexing approach here: # https://numpy.org/doc/stable/user/basics.indexing.html#dealing-with-variable-numbers-of-indices-within-programs indices = [slice(0, None)] * x.ndim indices[block_axis] = slice(i, i + num_blocks) indices = tuple(indices) blocks_list.append(x[indices]) return jnp.concatenate(blocks_list, axis=sequence_axis) # [batch_size, num_blocks, 3 * block_len, ...] def _make_3block_relative_position_ids(block_len: int) -> jnp.ndarray: """Makes 3-blocked relative position ids for local attention.""" position_ids = jnp.arange(3 * block_len, dtype=jnp.int32) center_position_ids = position_ids[block_len:-block_len] relative_position_ids = position_ids[None, :] - center_position_ids[:, None] # [block_len, 3 * block_len] return relative_position_ids def _mask_local_attention_mask(local_attention_mask: np.ndarray, block_len: int) -> jnp.ndarray: """Mask local attention mask to enforce that tokens are not allowed to attend tokens farther than ``local_radius.""" relative_position_ids = _make_3block_relative_position_ids(block_len) locality_mask = jnp.abs(relative_position_ids) < block_len locality_mask = locality_mask[None, None, :, :] return jnp.logical_and(local_attention_mask, locality_mask) def _get_local_attention_mask(attention_mask: np.ndarray, block_len: int) -> jnp.ndarray: """Prepare attention mask to be applied for a local attention.""" # [batch_size, num_blocks, block_len] _blocked_attention_mask = _split_into_blocks(attention_mask, block_len, axis=1) # [batch_size, num_block, 3 * block_len] _3blocked_attention_mask = _concatenate_3_blocks(_blocked_attention_mask, block_axis=1, sequence_axis=2) _blocked_attention_mask = _blocked_attention_mask[..., None] _3blocked_attention_mask = _3blocked_attention_mask[..., None, :] # [batch_size, num_block, block_len, 3 * block_len] local_attention_mask = jnp.logical_and(_blocked_attention_mask, _3blocked_attention_mask) local_attention_mask = _mask_local_attention_mask(local_attention_mask, block_len) # [batch_size, 1, num_block, block_len, 3 * block_len] return local_attention_mask[:, None, ...] def _make_global_fixed_block_ids(attention_mask: np.ndarray, global_block_size: int) -> Tuple[jnp.ndarray, np.ndarray]: """Obtain the "fixed block" global id corresponding to each input token. This implementation is a simlified version of the original Flaxformr implementation adopted from: https://github.com/google/flaxformer/blob/main/flaxformer/architectures/longt5/long_attention.py. In our scenario, as we use this strategy only for a decoder, orphan tokens, i.e. those tokens which do not make for the whole fixed block, are assigned to the preceding block. Padding tokens from the original sequence are represented by -1. """ batch_size, seq_len = attention_mask.shape[:2] def handle_orphan_tokens(block_ids: np.ndarray) -> jnp.ndarray: block_ends = (jnp.arange(seq_len) % global_block_size) == global_block_size - 1 true_block_ends = jnp.logical_and(block_ends, block_ids >= 0) full_blocks = true_block_ends.sum(-1)[..., None] block_ids = jnp.minimum(block_ids, full_blocks - 1) return block_ids fixed_block_mask = jnp.ones_like(attention_mask) / global_block_size fixed_block_mask = jnp.cumsum(fixed_block_mask, axis=1) - fixed_block_mask mask = jnp.where(attention_mask != 0.0, 1.0, -1000.0) global_block_ids = jnp.maximum( jnp.floor(mask + fixed_block_mask - 1.0), jnp.array(-1.0, dtype=attention_mask.dtype) ) # set padding tokens to -1 global_block_ids = (global_block_ids * attention_mask) + (attention_mask - 1) # [batch_size, seq_len] global_block_ids = handle_orphan_tokens(global_block_ids) num_globals = seq_len // global_block_size # [batch_size, seq_len // global_block_size] if num_globals > 0: _sequence_block_ids_max = jnp.repeat(global_block_ids.max(axis=-1)[:, None], repeats=num_globals, axis=1) else: _sequence_block_ids_max = jnp.zeros((batch_size, 0), dtype=global_block_ids.dtype) global_segment_ids = jnp.cumsum(jnp.ones((batch_size, num_globals)), axis=-1) - 1 global_segment_ids = jnp.where(global_segment_ids <= _sequence_block_ids_max, 1, 0) return global_block_ids, global_segment_ids def _make_side_relative_position_ids(attention_mask: np.ndarray, global_block_size: int) -> np.ndarray: """Create the relative position tensor for local -> global attention.""" block_ids, global_segment_ids = _make_global_fixed_block_ids(attention_mask, global_block_size) global_seq_len = global_segment_ids.shape[-1] global_positions = jnp.arange(global_seq_len) side_relative_position = global_positions - block_ids[..., None] return side_relative_position def _create_global_aggregates(hidden_states: np.ndarray, block_ids: np.ndarray, global_seq_len: int) -> np.ndarray: """Compute individual block aggregates by summing over individual blocks.""" # (batch..., seq_len, global_seq_len)) one_hot_block_ids = jax.nn.one_hot(block_ids, global_seq_len) return jnp.einsum("...nd,...ng->...gd", hidden_states, one_hot_block_ids) # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerNorm with T5->LongT5 class FlaxLongT5LayerNorm(nn.Module): hidden_size: int dtype: jnp.dtype = jnp.float32 eps: float = 1e-6 weight_init: Callable[..., np.ndarray] = jax.nn.initializers.ones def setup(self): self.weight = self.param("weight", self.weight_init, (self.hidden_size,)) def __call__(self, hidden_states): """ Construct a layernorm module in the LongT5 style; No bias and no subtraction of mean. """ # layer norm should always be calculated in float32 variance = jnp.power(hidden_states.astype("f4"), 2).mean(axis=-1, keepdims=True) hidden_states = hidden_states / jnp.sqrt(variance + self.eps) return self.weight * hidden_states # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5DenseActDense with T5->LongT5 class FlaxLongT5DenseActDense(nn.Module): config: LongT5Config dtype: jnp.dtype = jnp.float32 def setup(self): wi_init_std = self.config.initializer_factor * (self.config.d_model**-0.5) wo_init_std = self.config.initializer_factor * (self.config.d_ff**-0.5) self.wi = nn.Dense( self.config.d_ff, use_bias=False, kernel_init=jax.nn.initializers.normal(wi_init_std), dtype=self.dtype, ) self.wo = nn.Dense( self.config.d_model, use_bias=False, kernel_init=jax.nn.initializers.normal(wo_init_std), dtype=self.dtype, ) self.dropout = nn.Dropout(self.config.dropout_rate) self.act = ACT2FN[self.config.dense_act_fn] def __call__(self, hidden_states, deterministic=True): hidden_states = self.wi(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.wo(hidden_states) return hidden_states # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5DenseGatedActDense with T5->LongT5 class FlaxLongT5DenseGatedActDense(nn.Module): config: LongT5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): wi_init_std = self.config.initializer_factor * (self.config.d_model**-0.5) wo_init_std = self.config.initializer_factor * (self.config.d_ff**-0.5) self.wi_0 = nn.Dense( self.config.d_ff, use_bias=False, kernel_init=jax.nn.initializers.normal(wi_init_std), dtype=self.dtype, ) self.wi_1 = nn.Dense( self.config.d_ff, use_bias=False, kernel_init=jax.nn.initializers.normal(wi_init_std), dtype=self.dtype, ) self.wo = nn.Dense( self.config.d_model, use_bias=False, kernel_init=jax.nn.initializers.normal(wo_init_std), dtype=self.dtype, ) self.dropout = nn.Dropout(self.config.dropout_rate) self.act = ACT2FN[self.config.dense_act_fn] def __call__(self, hidden_states, deterministic): hidden_gelu = self.act(self.wi_0(hidden_states)) hidden_linear = self.wi_1(hidden_states) hidden_states = hidden_gelu * hidden_linear hidden_states = self.dropout(hidden_states, deterministic=deterministic) hidden_states = self.wo(hidden_states) return hidden_states # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerFF with T5->LongT5 class FlaxLongT5LayerFF(nn.Module): config: LongT5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): if self.config.is_gated_act: self.DenseReluDense = FlaxLongT5DenseGatedActDense(self.config, dtype=self.dtype) else: self.DenseReluDense = FlaxLongT5DenseActDense(self.config, dtype=self.dtype) self.layer_norm = FlaxLongT5LayerNorm( self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype ) self.dropout = nn.Dropout(self.config.dropout_rate) def __call__(self, hidden_states, deterministic=True): forwarded_states = self.layer_norm(hidden_states) forwarded_states = self.DenseReluDense(forwarded_states, deterministic=deterministic) hidden_states = hidden_states + self.dropout(forwarded_states, deterministic=deterministic) return hidden_states # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Attention with T5->LongT5 class FlaxLongT5Attention(nn.Module): config: LongT5Config has_relative_attention_bias: bool = False causal: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.relative_attention_num_buckets = self.config.relative_attention_num_buckets self.relative_attention_max_distance = self.config.relative_attention_max_distance self.d_model = self.config.d_model self.key_value_proj_dim = self.config.d_kv self.n_heads = self.config.num_heads self.dropout = self.config.dropout_rate self.inner_dim = self.n_heads * self.key_value_proj_dim q_init_std = self.config.initializer_factor * ((self.inner_dim * self.key_value_proj_dim) ** -0.5) kv_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) o_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) self.q = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(q_init_std), dtype=self.dtype, ) self.k = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(kv_init_std), dtype=self.dtype, ) self.v = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(kv_init_std), dtype=self.dtype, ) self.o = nn.Dense( self.d_model, use_bias=False, kernel_init=jax.nn.initializers.normal(o_init_std), dtype=self.dtype, ) if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embed( self.relative_attention_num_buckets, self.n_heads, embedding_init=jax.nn.initializers.normal(kv_init_std), dtype=self.dtype, ) @staticmethod def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0) * num_buckets relative_position = jnp.abs(relative_position) else: relative_position = -jnp.clip(relative_position, a_max=0) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( jnp.log(relative_position / max_exact) / jnp.log(max_distance / max_exact) * (num_buckets - max_exact) ) relative_position_if_large = jnp.clip(relative_position_if_large, a_max=num_buckets - 1) relative_buckets += jnp.where(is_small, relative_position, relative_position_if_large) return relative_buckets.astype("i4") def compute_bias(self, query_length, key_length): """Compute binned relative position bias""" context_position = jnp.arange(query_length, dtype="i4")[:, None] memory_position = jnp.arange(key_length, dtype="i4")[None, :] relative_position = memory_position - context_position relative_position_bucket = self._relative_position_bucket( relative_position, bidirectional=(not self.causal), num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) values = self.relative_attention_bias(relative_position_bucket) values = values.transpose((2, 0, 1))[None, :, :, :] return values def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.n_heads, self.key_value_proj_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.inner_dim,)) @nn.compact def _concatenate_to_cache(self, key, value, query, attention_mask): """ This function takes projected key, value states from a single input token and concatenates the states to cached states from previous steps. This function is slighly adapted from the official Flax repository: https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 """ # detect if we're initializing by absence of existing cache data. is_initialized = self.has_variable("cache", "cached_key") cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) if is_initialized: *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape # update key, value caches with our new 1d spatial slices cur_index = cache_index.value indices = (0,) * len(batch_dims) + (cur_index, 0, 0) key = jax.lax.dynamic_update_slice(cached_key.value, key, indices) value = jax.lax.dynamic_update_slice(cached_value.value, value, indices) cached_key.value = key cached_value.value = value num_updated_cache_vectors = query.shape[1] cache_index.value = cache_index.value + num_updated_cache_vectors # causal mask for cached decoder self-attention: our single query position should only attend to those key positions # that have already been generated and cached, not the remaining zero elements. pad_mask = jnp.broadcast_to( jnp.arange(max_length) < cur_index + num_updated_cache_vectors, tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), ) attention_mask = combine_masks(pad_mask, attention_mask) return key, value, attention_mask def _create_position_bias( self, key_states, query_states, attention_mask, init_cache, seq_length, causal_attention_mask_shift ): cache_is_filled = self.causal and self.has_variable("cache", "cached_key") and (not init_cache) key_length = key_states.shape[1] query_length = key_length if cache_is_filled else query_states.shape[1] if self.has_relative_attention_bias: position_bias = self.compute_bias(query_length, key_length) elif attention_mask is not None: position_bias = jnp.zeros_like(attention_mask) else: position_bias = jnp.zeros((1, self.n_heads, query_length, key_length), dtype=self.dtype) # if key and values are already calculated, only the last query position bias should be taken if cache_is_filled: max_decoder_length = self.variables["cache"]["cached_key"].shape[1] position_bias = jax.lax.dynamic_slice( position_bias, (0, 0, causal_attention_mask_shift, 0), (1, self.n_heads, seq_length, max_decoder_length), ) return position_bias def __call__( self, hidden_states, attention_mask=None, key_value_states=None, position_bias=None, use_cache=False, output_attentions=False, deterministic=True, init_cache=False, ): """ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). """ batch_size, seq_length = hidden_states.shape[:2] # q, k, v projections query_states = self.q(hidden_states) # (batch_size, n_heads, seq_length, dim_per_head) key_states = self.k(hidden_states) if key_value_states is None else self.k(key_value_states) value_states = self.v(hidden_states) if key_value_states is None else self.v(key_value_states) # reshape to (batch_size, seq_length, n_heads, head_dim) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # counter-act scaling in dot_product_attention_weights function query_states *= jnp.sqrt(query_states.shape[-1]) # for fast decoding causal attention mask should be shifted causal_attention_mask_shift = ( self.variables["cache"]["cache_index"] if (self.has_variable("cache", "cached_key") and self.causal) else 0 ) # create causal attention_mask; attention_mask has to be defined when model is causal if self.causal: causal_attention_mask = make_causal_mask(attention_mask, dtype="bool") # fast decoding for generate requires special attention_mask if self.has_variable("cache", "cached_key"): max_decoder_length = self.variables["cache"]["cached_key"].shape[1] causal_attention_mask = jax.lax.dynamic_slice( causal_attention_mask, (0, 0, causal_attention_mask_shift, 0), (1, 1, seq_length, max_decoder_length), ) # broadcast causal attention mask & attention mask to fit for merge causal_attention_mask = jnp.broadcast_to( causal_attention_mask, (batch_size,) + causal_attention_mask.shape[1:] ) attention_mask = jnp.broadcast_to( jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_attention_mask.shape ) attention_mask = combine_masks(attention_mask, causal_attention_mask) elif attention_mask is not None: attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) # During fast autoregressive decoding, we feed one position at a time, # and cache the keys and values step by step. if self.causal and (self.has_variable("cache", "cached_key") or init_cache): key_states, value_states, attention_mask = self._concatenate_to_cache( key_states, value_states, query_states, attention_mask ) # replace masked positions with -10_000 if attention_mask is not None: mask_value = jnp.finfo(self.dtype).min attention_mask = jax.lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, mask_value).astype(self.dtype), ) if position_bias is None: # compute position bias (only for first layer) position_bias = self._create_position_bias( key_states, query_states, attention_mask, init_cache, seq_length, causal_attention_mask_shift ) if attention_mask is not None: position_bias = position_bias + attention_mask # create dropout rng dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") # Softmax(QK^T) attn_weights = dot_product_attention_weights( query_states, key_states, bias=position_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, ) # multiply with value states attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) # bring back to (batch_size, seq_length, d_model) attn_output = self._merge_heads(attn_output) # apply output matrix attn_output = self.o(attn_output) outputs = (attn_output, position_bias) if output_attentions: outputs = outputs + (attn_weights,) return outputs class FlaxLongT5LocalAttention(nn.Module): config: LongT5Config has_relative_attention_bias: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.relative_attention_num_buckets = self.config.relative_attention_num_buckets self.relative_attention_max_distance = self.config.relative_attention_max_distance self.d_model = self.config.d_model self.key_value_proj_dim = self.config.d_kv self.n_heads = self.config.num_heads self.local_radius = self.config.local_radius self.block_len = self.local_radius + 1 self.dropout = self.config.dropout_rate self.inner_dim = self.n_heads * self.key_value_proj_dim q_init_std = self.config.initializer_factor * ((self.inner_dim * self.key_value_proj_dim) ** -0.5) kv_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) o_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) self.q = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(q_init_std), dtype=self.dtype, ) self.k = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(kv_init_std), dtype=self.dtype, ) self.v = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(kv_init_std), dtype=self.dtype, ) self.o = nn.Dense( self.d_model, use_bias=False, kernel_init=jax.nn.initializers.normal(o_init_std), dtype=self.dtype, ) if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embed( self.relative_attention_num_buckets, self.n_heads, embedding_init=jax.nn.initializers.normal(kv_init_std), ) @staticmethod # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Attention._relative_position_bucket def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0) * num_buckets relative_position = jnp.abs(relative_position) else: relative_position = -jnp.clip(relative_position, a_max=0) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( jnp.log(relative_position / max_exact) / jnp.log(max_distance / max_exact) * (num_buckets - max_exact) ) relative_position_if_large = jnp.clip(relative_position_if_large, a_max=num_buckets - 1) relative_buckets += jnp.where(is_small, relative_position, relative_position_if_large) return relative_buckets.astype("i4") def compute_bias(self, block_length: int): """Compute binned relative position bias""" memory_position = jnp.arange(3 * block_length, dtype="i4") context_position = memory_position[block_length:-block_length] relative_position = memory_position[None, :] - context_position[:, None] relative_position_bucket = self._relative_position_bucket( relative_position, bidirectional=True, num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) values = self.relative_attention_bias(relative_position_bucket) values = values.transpose((2, 0, 1))[None, None, :, :, :] return values def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.n_heads, self.key_value_proj_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[0], -1, self.inner_dim) def _create_position_bias(self, block_len: int, attention_mask: Optional[np.ndarray]) -> np.ndarray: # position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len) if self.has_relative_attention_bias: position_bias = self.compute_bias(block_len) elif attention_mask is not None: position_bias = jnp.zeros_like(attention_mask) else: position_bias = jnp.zeros((1, 1, self.n_heads, block_len, 3 * block_len), dtype=self.dtype) return position_bias def __call__( self, hidden_states, attention_mask=None, key_value_states=None, position_bias=None, output_attentions=False, deterministic=True, ): """ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). """ batch_size, seq_length = hidden_states.shape[:2] # q, k, v projections query_states = self.q(hidden_states) # (batch_size, n_heads, seq_length, dim_per_head) key_states = self.k(hidden_states) if key_value_states is None else self.k(key_value_states) value_states = self.v(hidden_states) if key_value_states is None else self.v(key_value_states) # reshape to (batch_size, seq_length, n_heads, head_dim) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # Split into blocks -> (batch_size, num_blocks, block_len, n_heads, head_dim) query_states = _split_into_blocks(query_states, self.block_len, axis=1) key_states = _split_into_blocks(key_states, self.block_len, axis=1) value_states = _split_into_blocks(value_states, self.block_len, axis=1) # Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head) key_states = _concatenate_3_blocks(key_states, block_axis=1, sequence_axis=2) value_states = _concatenate_3_blocks(value_states, block_axis=1, sequence_axis=2) # counter-act scaling in dot_product_attention_weights function query_states *= jnp.sqrt(query_states.shape[-1]) if attention_mask is not None: attention_mask = _get_local_attention_mask(attention_mask, self.block_len) # replace masked positions with -10_000 attention_mask = jax.lax.select( attention_mask > 0, jnp.full(attention_mask.shape, 0.0).astype(self.dtype), jnp.full(attention_mask.shape, -1e10).astype(self.dtype), ) if position_bias is None: # compute position bias (only for first layer) position_bias = self._create_position_bias(self.block_len, attention_mask) if attention_mask is not None: position_bias = position_bias + attention_mask.swapaxes(1, 2) # create dropout rng dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") # Softmax(QK^T) attn_weights = dot_product_attention_weights( query_states, key_states, bias=position_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, ) # multiply with value states attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) # bring back to (batch_size, seq_length, d_model) attn_output = self._merge_heads(attn_output) attn_output = attn_output[:, :seq_length, :] # apply output matrix attn_output = self.o(attn_output) outputs = (attn_output, position_bias) if output_attentions: outputs = outputs + (attn_weights,) return outputs class FlaxLongT5TransientGlobalAttention(nn.Module): config: LongT5Config has_relative_attention_bias: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.relative_attention_num_buckets = self.config.relative_attention_num_buckets self.relative_attention_max_distance = self.config.relative_attention_max_distance self.d_model = self.config.d_model self.key_value_proj_dim = self.config.d_kv self.n_heads = self.config.num_heads self.local_radius = self.config.local_radius self.block_len = self.local_radius + 1 self.global_block_size = self.config.global_block_size self.dropout = self.config.dropout_rate self.inner_dim = self.n_heads * self.key_value_proj_dim q_init_std = self.config.initializer_factor * ((self.inner_dim * self.key_value_proj_dim) ** -0.5) kv_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) o_init_std = self.config.initializer_factor * (self.inner_dim**-0.5) self.q = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(q_init_std), dtype=self.dtype, ) self.k = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(kv_init_std), dtype=self.dtype, ) self.v = nn.Dense( self.inner_dim, use_bias=False, kernel_init=jax.nn.initializers.normal(kv_init_std), dtype=self.dtype, ) self.o = nn.Dense( self.d_model, use_bias=False, kernel_init=jax.nn.initializers.normal(o_init_std), dtype=self.dtype, ) if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embed( self.relative_attention_num_buckets, self.n_heads, embedding_init=jax.nn.initializers.normal(kv_init_std), ) # Relativen attention bias & Layer norm for global attention if self.has_relative_attention_bias: self.global_relative_attention_bias = nn.Embed( self.relative_attention_num_buckets, self.n_heads, embedding_init=jax.nn.initializers.normal(kv_init_std), ) self.global_input_layer_norm = FlaxLongT5LayerNorm( self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype ) @staticmethod # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Attention._relative_position_bucket def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0) * num_buckets relative_position = jnp.abs(relative_position) else: relative_position = -jnp.clip(relative_position, a_max=0) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( jnp.log(relative_position / max_exact) / jnp.log(max_distance / max_exact) * (num_buckets - max_exact) ) relative_position_if_large = jnp.clip(relative_position_if_large, a_max=num_buckets - 1) relative_buckets += jnp.where(is_small, relative_position, relative_position_if_large) return relative_buckets.astype("i4") def compute_bias(self, block_length: int): """Compute binned relative position bias""" memory_position = jnp.arange(3 * block_length, dtype="i4") context_position = memory_position[block_length:-block_length] relative_position = memory_position[None, :] - context_position[:, None] relative_position_bucket = self._relative_position_bucket( relative_position, bidirectional=True, num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) values = self.relative_attention_bias(relative_position_bucket) values = values.transpose((2, 0, 1))[None, None, :, :, :] return values def compute_side_bias(self, attention_mask: np.ndarray, global_segment_ids: np.ndarray) -> np.ndarray: # (batch_size, 1, 1, seq_len, global_seq_len) side_attention_mask = jnp.equal(attention_mask[..., None], global_segment_ids[:, None, :])[:, None, ...] attention_side_bias = jax.lax.select( side_attention_mask > 0, jnp.full(side_attention_mask.shape, 0.0).astype(self.dtype), jnp.full(side_attention_mask.shape, -1e10).astype(self.dtype), ) # (batch_size, seq_len, global_seq_len) side_relative_position = _make_side_relative_position_ids(attention_mask, self.global_block_size) side_relative_position_bucket = self._relative_position_bucket( side_relative_position, bidirectional=True, num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) # (batch_size, seq_len, global_seq_len, num_heads) side_bias = self.global_relative_attention_bias(side_relative_position_bucket) # (batch_size, 1, num_heads, seq_len, global_seq_len) side_bias = jnp.transpose(side_bias, (0, 3, 1, 2)) # (batch_size, num_heads, seq_len, global_seq_len) attention_side_bias = attention_side_bias + side_bias return attention_side_bias def _split_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[:2] + (self.n_heads, self.key_value_proj_dim)) def _merge_heads(self, hidden_states): return hidden_states.reshape(hidden_states.shape[0], -1, self.inner_dim) def _create_position_bias(self, block_len: int, attention_mask: Optional[np.ndarray]) -> np.ndarray: # position_bias shape: # (1, 1, n_heads, block_len, 3 * block_len) if self.has_relative_attention_bias: position_bias = self.compute_bias(block_len) elif attention_mask is not None: position_bias = jnp.zeros_like(attention_mask) else: position_bias = jnp.zeros((1, 1, self.n_heads, block_len, 3 * block_len), dtype=self.dtype) return position_bias def __call__( self, hidden_states, attention_mask=None, key_value_states=None, position_bias=None, output_attentions=False, deterministic=True, ): """ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). """ batch_size, seq_length = hidden_states.shape[:2] # Prepare components for transient-global attention # Obtain block_ids and global_segment_ids # global_seq_len := seq_len // self.global_block_size # shapes: (batch_size, seq_len) & (batch_size, global_seq_len) block_ids, global_segment_ids = _make_global_fixed_block_ids( attention_mask if attention_mask is not None else jnp.ones((batch_size, seq_length)), self.global_block_size, ) # Create global inputs _global_seq_len = global_segment_ids.shape[-1] global_inputs = _create_global_aggregates(hidden_states, block_ids, _global_seq_len) global_inputs = self.global_input_layer_norm(global_inputs) # q, k, v projections query_states = self.q(hidden_states) # (batch_size, n_heads, seq_length, dim_per_head) key_states = self.k(hidden_states) if key_value_states is None else self.k(key_value_states) value_states = self.v(hidden_states) if key_value_states is None else self.v(key_value_states) # reshape to (batch_size, seq_length, n_heads, head_dim) query_states = self._split_heads(query_states) key_states = self._split_heads(key_states) value_states = self._split_heads(value_states) # Get global/side key/value_states side_key_states = self.k(global_inputs) side_value_states = self.v(global_inputs) # reshape to (batch_size, global_seq_len, n_heads, head_dim) side_key_states = self._split_heads(side_key_states) side_value_states = self._split_heads(side_value_states) # Split into blocks -> (batch_size, num_blocks, block_len, n_heads, head_dim) query_states = _split_into_blocks(query_states, self.block_len, axis=1) key_states = _split_into_blocks(key_states, self.block_len, axis=1) value_states = _split_into_blocks(value_states, self.block_len, axis=1) # Concatenate 3 blocks for keys and values -> (batch_size, num_blocks, 3 * block_len, n_heads, dim_per_head) key_states = _concatenate_3_blocks(key_states, block_axis=1, sequence_axis=2) value_states = _concatenate_3_blocks(value_states, block_axis=1, sequence_axis=2) # Tile side inputs across local key/value blocks # New shape: (batch_size, num_blocks, global_seq_len, n_heads, dim_per_head) reps = [1] * (side_key_states.ndim + 1) reps[1] = key_states.shape[1] side_key_states = jnp.tile(side_key_states[:, None, ...], reps) side_value_states = jnp.tile(side_value_states[:, None, ...], reps) # Concatenate "local" and "side"/"global" key/value states to allow each token to attend global aggregated ones # New shape: (batch_size, num_blocks, 3 * block_len + global_seq_len, n_heads, dim_per_head) key_states = jnp.concatenate((key_states, side_key_states), axis=2) value_states = jnp.concatenate((value_states, side_value_states), axis=2) # counter-act scaling in dot_product_attention_weights function query_states *= jnp.sqrt(query_states.shape[-1]) if attention_mask is not None: local_attention_mask = _get_local_attention_mask(attention_mask, self.block_len) local_attention_mask = jax.lax.select( local_attention_mask > 0, jnp.full(local_attention_mask.shape, 0.0).astype(self.dtype), jnp.full(local_attention_mask.shape, -1e10).astype(self.dtype), ) else: local_attention_mask = None if position_bias is None: # compute position bias (only for first layer) position_bias = self._create_position_bias(self.block_len, attention_mask) if local_attention_mask is not None: position_bias = position_bias + local_attention_mask.swapaxes(1, 2) # Calculate global/side bias - shape: # (batch_size, num_heads, seq_len, global_seq_len) if attention_mask is None: attention_mask = jnp.ones((batch_size, seq_length)) side_position_bias = self.compute_side_bias(attention_mask, global_segment_ids) side_position_bias = _split_into_blocks(side_position_bias, self.block_len, axis=-2) side_position_bias = jnp.swapaxes(side_position_bias, 1, 2) position_bias = jnp.concatenate((position_bias, side_position_bias), axis=-1) # create dropout rng dropout_rng = None if not deterministic and self.dropout > 0.0: dropout_rng = self.make_rng("dropout") # Softmax(QK^T) attn_weights = dot_product_attention_weights( query_states, key_states, bias=position_bias, dropout_rng=dropout_rng, dropout_rate=self.dropout, broadcast_dropout=True, deterministic=deterministic, dtype=self.dtype, ) # multiply with value states attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) # bring back to (batch_size, seq_length, d_model) attn_output = self._merge_heads(attn_output) attn_output = attn_output[:, :seq_length, :] # apply output matrix attn_output = self.o(attn_output) outputs = (attn_output, position_bias) if output_attentions: outputs = outputs + (attn_weights,) return outputs class FlaxLongT5LayerLocalSelfAttention(nn.Module): """Local self attention used in encoder""" config: LongT5Config has_relative_attention_bias: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.LocalSelfAttention = FlaxLongT5LocalAttention( self.config, has_relative_attention_bias=self.has_relative_attention_bias, dtype=self.dtype ) self.layer_norm = FlaxLongT5LayerNorm( self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype ) self.dropout = nn.Dropout(self.config.dropout_rate) def __call__( self, hidden_states, attention_mask=None, position_bias=None, output_attentions=False, deterministic=True, **kwargs: Any, # to accept init_cache kwargs ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.LocalSelfAttention( normed_hidden_states, attention_mask=attention_mask, position_bias=position_bias, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs class FlaxLongT5LayerTransientGlobalSelfAttention(nn.Module): """Transient-Global self attention used in encoder""" config: LongT5Config has_relative_attention_bias: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.TransientGlobalSelfAttention = FlaxLongT5TransientGlobalAttention( self.config, has_relative_attention_bias=self.has_relative_attention_bias, dtype=self.dtype ) self.layer_norm = FlaxLongT5LayerNorm( self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype ) self.dropout = nn.Dropout(self.config.dropout_rate) def __call__( self, hidden_states, attention_mask=None, position_bias=None, output_attentions=False, deterministic=True, **kwargs: Any, # to accept init_cache kwargs ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.TransientGlobalSelfAttention( normed_hidden_states, attention_mask=attention_mask, position_bias=position_bias, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerSelfAttention with T5->LongT5 class FlaxLongT5LayerSelfAttention(nn.Module): config: LongT5Config has_relative_attention_bias: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.SelfAttention = FlaxLongT5Attention( self.config, has_relative_attention_bias=self.has_relative_attention_bias, causal=self.config.causal, dtype=self.dtype, ) self.layer_norm = FlaxLongT5LayerNorm( self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype ) self.dropout = nn.Dropout(self.config.dropout_rate) def __call__( self, hidden_states, attention_mask=None, position_bias=None, output_attentions=False, deterministic=True, init_cache=False, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.SelfAttention( normed_hidden_states, attention_mask=attention_mask, position_bias=position_bias, output_attentions=output_attentions, deterministic=deterministic, init_cache=init_cache, ) hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerCrossAttention with T5->LongT5 class FlaxLongT5LayerCrossAttention(nn.Module): config: LongT5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.EncDecAttention = FlaxLongT5Attention( self.config, has_relative_attention_bias=False, causal=False, dtype=self.dtype ) self.layer_norm = FlaxLongT5LayerNorm( self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype ) self.dropout = nn.Dropout(self.config.dropout_rate) def __call__( self, hidden_states, key_value_states, attention_mask=None, position_bias=None, output_attentions=False, deterministic=True, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.EncDecAttention( normed_hidden_states, attention_mask=attention_mask, key_value_states=key_value_states, position_bias=position_bias, output_attentions=output_attentions, ) hidden_states = hidden_states + self.dropout(attention_output[0], deterministic=deterministic) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs class FlaxLongT5Block(nn.Module): config: LongT5Config has_relative_attention_bias: bool = False dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.causal = self.config.causal if self.causal: attention_layer = FlaxLongT5LayerSelfAttention elif self.config.encoder_attention_type == "local": attention_layer = FlaxLongT5LayerLocalSelfAttention elif self.config.encoder_attention_type == "transient-global": attention_layer = FlaxLongT5LayerTransientGlobalSelfAttention else: raise ValueError( "For encoder attention mechanism, either `local` or `transient-global` attention type is expected, " f"but got {self.config.encoder_attention_type}." ) self.layer = ( attention_layer( self.config, has_relative_attention_bias=self.has_relative_attention_bias, name=str(0), dtype=self.dtype, ), ) feed_forward_index = 1 if self.causal: self.layer += (FlaxLongT5LayerCrossAttention(self.config, name=str(1), dtype=self.dtype),) feed_forward_index += 1 self.layer += (FlaxLongT5LayerFF(self.config, name=str(feed_forward_index), dtype=self.dtype),) # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Block.__call__ with T5->LongT5 def __call__( self, hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, output_attentions=False, return_dict=True, deterministic=True, init_cache=False, ): self_attention_outputs = self.layer[0]( hidden_states, attention_mask=attention_mask, position_bias=position_bias, output_attentions=output_attentions, deterministic=deterministic, init_cache=init_cache, ) hidden_states = self_attention_outputs[0] attention_outputs = self_attention_outputs[1:] # Keep self-attention outputs and relative position weights do_cross_attention = self.causal and encoder_hidden_states is not None if do_cross_attention: cross_attention_outputs = self.layer[1]( hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, position_bias=encoder_decoder_position_bias, output_attentions=output_attentions, deterministic=deterministic, ) hidden_states = cross_attention_outputs[0] # Keep cross-attention outputs and relative position weights attention_outputs = attention_outputs + cross_attention_outputs[1:] # Apply Feed Forward layer hidden_states = self.layer[-1](hidden_states, deterministic=deterministic) outputs = (hidden_states,) outputs = outputs + attention_outputs # returns hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), # (cross-attention position bias), (cross-attention weights) return outputs # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5LayerCollection with T5->LongT5 class FlaxLongT5LayerCollection(nn.Module): config: LongT5Config has_relative_attention_bias: bool dtype: jnp.dtype = jnp.float32 # the dtype of the computation def setup(self): self.layer = FlaxLongT5Block( self.config, has_relative_attention_bias=self.has_relative_attention_bias, dtype=self.dtype ) def __call__( self, hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, output_attentions=False, deterministic=True, init_cache=False, ): return self.layer( hidden_states, attention_mask=attention_mask, position_bias=position_bias, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, encoder_decoder_position_bias=encoder_decoder_position_bias, output_attentions=output_attentions, deterministic=deterministic, init_cache=init_cache, ) # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5BlockCollection with T5->LongT5 class FlaxLongT5BlockCollection(nn.Module): config: LongT5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): self.causal = self.config.causal if self.gradient_checkpointing: FlaxLongT5CheckpointLayer = remat(FlaxLongT5LayerCollection, static_argnums=(6, 7, 8)) self.blocks = [ FlaxLongT5CheckpointLayer( self.config, has_relative_attention_bias=(i == 0), dtype=self.dtype, name=str(i), ) for i in range(self.config.num_layers) ] else: self.blocks = [ FlaxLongT5LayerCollection( self.config, has_relative_attention_bias=(i == 0), dtype=self.dtype, name=str(i), ) for i in range(self.config.num_layers) ] def __call__( self, hidden_states=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions: bool = False, output_hidden_states: bool = False, deterministic: bool = True, init_cache: bool = False, ): # Prepare head mask if needed all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if (output_attentions and self.causal) else None position_bias = None encoder_decoder_position_bias = None for i, layer_module in enumerate(self.blocks): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, attention_mask, position_bias, encoder_hidden_states, encoder_attention_mask, encoder_decoder_position_bias, output_attentions, deterministic, init_cache, ) hidden_states = layer_outputs[0] # We share the position biases between the layers - the first layer store them # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), # (cross-attention position bias), (cross-attention weights) position_bias = layer_outputs[1] if self.causal and encoder_hidden_states is not None: encoder_decoder_position_bias = layer_outputs[3 if output_attentions else 2] if output_attentions: all_attentions = all_attentions + (layer_outputs[2],) if self.causal: all_cross_attentions = all_cross_attentions + (layer_outputs[4],) return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Stack with T5->LongT5 class FlaxLongT5Stack(nn.Module): config: LongT5Config embed_tokens: nn.Embed dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def setup(self): self.causal = self.config.causal self.block = FlaxLongT5BlockCollection( self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.final_layer_norm = FlaxLongT5LayerNorm( self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype ) self.dropout = nn.Dropout(self.config.dropout_rate) def __call__( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, deterministic: bool = True, init_cache: bool = False, ): hidden_states = self.embed_tokens(input_ids) hidden_states = self.dropout(hidden_states, deterministic=deterministic) outputs = self.block( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, deterministic=deterministic, init_cache=init_cache, ) hidden_states = outputs[0] hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.dropout(hidden_states, deterministic=deterministic) # Add last layer all_hidden_states = None if output_hidden_states: all_hidden_states = outputs.hidden_states all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: if output_hidden_states: return ( hidden_states, all_hidden_states, ) + outputs[2:] return (hidden_states,) + outputs[1:] return FlaxBaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) LONGT5_ENCODE_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5 Training](./longt5#training). attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ LONGT5_DECODE_INPUTS_DOCSTRING = r""" Args: decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) For training, `decoder_input_ids` should be provided. encoder_outputs (`tuple(tuple(jnp.ndarray)`): Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ LONGT5_INPUTS_DOCSTRING = r""" Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. LongT5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. [What are input IDs?](../glossary#input-ids) To know more on how to prepare `input_ids` for pretraining take a look a [LONGT5 Training](./longt5#training). attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) LONGT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare `decoder_input_ids` for pretraining take a look at [LONGT5 Training](./longt5#training). decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. encoder_outputs (`tuple(tuple(jnp.ndarray)`, *optional*): Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. past_key_values (`tuple(tuple(jnp.ndarray))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ class FlaxLongT5PreTrainedModel(FlaxPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LongT5Config base_model_prefix = "transformer" module_class: nn.Module = None def __init__( self, config: LongT5Config, input_shape: Tuple[int] = (1, 1), seed: int = 0, dtype: jnp.dtype = jnp.float32, _do_init: bool = True, **kwargs, ): module = self.module_class(config=config, dtype=dtype, **kwargs) super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) def enable_gradient_checkpointing(self): self._module = self.module_class( config=self.config, dtype=self.dtype, gradient_checkpointing=True, ) def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: # init input tensors input_ids = jnp.zeros(input_shape, dtype="i4") attention_mask = jnp.ones_like(input_ids) decoder_input_ids = jnp.ones_like(input_ids) decoder_attention_mask = jnp.ones_like(input_ids) params_rng, dropout_rng = jax.random.split(rng) rngs = {"params": params_rng, "dropout": dropout_rng} random_params = self.module.init( rngs, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask, )["params"] if params is not None: random_params = flatten_dict(unfreeze(random_params)) params = flatten_dict(unfreeze(params)) for missing_key in self._missing_keys: params[missing_key] = random_params[missing_key] self._missing_keys = set() return freeze(unflatten_dict(params)) else: return random_params @add_start_docstrings_to_model_forward(LONGT5_INPUTS_DOCSTRING) def __call__( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, decoder_input_ids: jnp.ndarray = None, decoder_attention_mask: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if decoder_input_ids is None: raise ValueError( "Make sure to provide both `input_ids` and `decoder_input_ids`. `decoder_input_ids` is not passed" " here." ) # prepare encoder inputs if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # prepare decoder inputs if decoder_attention_mask is None: decoder_attention_mask = jnp.ones_like(decoder_input_ids) # Handle any PRNG if needed rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, ) def init_cache(self, batch_size, max_length, encoder_outputs): r""" Args: batch_size (`int`): batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. max_length (`int`): maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized cache. encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. """ # init input variables to retrieve cache decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") decoder_attention_mask = jnp.ones_like(decoder_input_ids) def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, **kwargs, ) init_variables = self.module.init( jax.random.PRNGKey(0), decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], init_cache=True, method=_decoder_forward, # we only need to call the decoder to init the cache ) return unfreeze(init_variables["cache"]) @add_start_docstrings(LONGT5_ENCODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=LongT5Config) def encode( self, input_ids: jnp.ndarray, attention_mask: Optional[jnp.ndarray] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") >>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict if attention_mask is None: attention_mask = jnp.ones_like(input_ids) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng def _encoder_forward(module, input_ids, attention_mask, **kwargs): encode_module = module._get_encoder_module() return encode_module(input_ids, attention_mask, **kwargs) return self.module.apply( {"params": params or self.params}, input_ids=jnp.array(input_ids, dtype="i4"), attention_mask=jnp.array(attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, method=_encoder_forward, ) @add_start_docstrings(LONGT5_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=LongT5Config) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration >>> import jax.numpy as jnp >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") >>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base") >>> text = "My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxLongT5Attention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs): decoder_module = module._get_decoder_module() return decoder_module( decoder_input_ids, decoder_attention_mask, **kwargs, ) outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) # add updated cache to model output if past_key_values is not None and return_dict: outputs, past = outputs outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs, past = outputs outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs LONGT5_START_DOCSTRING = r""" The LongT5 model was proposed in [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/abs/2112.07916) by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung and Yinfei Yang. It's an encoder-decoder transformer pre-trained in a text-to-text denoising generative setting. LongT5 model is an extension of T5 model, and it enables using one of the two different efficient attention mechanisms - (1) Local attention, or (2) Transient-Global attention. This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a Flax Linen [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. Finally, this model supports inherent JAX features such as: - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) Parameters: config ([`LongT5Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and `jax.numpy.bfloat16` (on TPUs). This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given `dtype`. **Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.** If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and [`~FlaxPreTrainedModel.to_bf16`]. """ @add_start_docstrings( "The bare LONGT5 Model transformer outputting raw hidden-stateswithout any specific head on top.", LONGT5_START_DOCSTRING, ) # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Module with T5->LongT5 class FlaxLongT5Module(nn.Module): config: LongT5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder def setup(self): self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.initializer_factor * 1.0), dtype=self.dtype, ) encoder_config = copy.deepcopy(self.config) encoder_config.causal = False self.encoder = FlaxLongT5Stack( encoder_config, embed_tokens=self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) decoder_config = copy.deepcopy(self.config) decoder_config.causal = True decoder_config.num_layers = self.config.num_decoder_layers self.decoder = FlaxLongT5Stack( decoder_config, embed_tokens=self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing, ) def __call__( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, encoder_outputs=None, output_attentions=None, output_hidden_states=None, return_dict=None, deterministic: bool = True, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Encode if needed (training, first prediction pass) encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=encoder_outputs[0], encoder_attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) if not return_dict: return decoder_outputs + encoder_outputs return FlaxSeq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5Model with T5->LongT5 class FlaxLongT5Model(FlaxLongT5PreTrainedModel): module_class = FlaxLongT5Module append_call_sample_docstring(FlaxLongT5Model, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC) FLAX_LONGT5_MODEL_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxLongT5Model >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") >>> model = FlaxLongT5Model.from_pretrained("google/long-t5-local-base") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="np" ... ).input_ids >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="np").input_ids >>> # forward pass >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state ``` """ overwrite_call_docstring(FlaxLongT5Model, LONGT5_INPUTS_DOCSTRING + FLAX_LONGT5_MODEL_DOCSTRING) append_replace_return_docstrings(FlaxLongT5Model, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) @add_start_docstrings("""LONGT5 Model with a `language modeling` head on top.""", LONGT5_START_DOCSTRING) # Copied from transformers.models.t5.modeling_flax_t5.FlaxT5ForConditionalGenerationModule with T5->LongT5 class FlaxLongT5ForConditionalGenerationModule(nn.Module): config: LongT5Config dtype: jnp.dtype = jnp.float32 # the dtype of the computation gradient_checkpointing: bool = False def _get_encoder_module(self): return self.encoder def _get_decoder_module(self): return self.decoder def setup(self): self.model_dim = self.config.d_model self.shared = nn.Embed( self.config.vocab_size, self.config.d_model, embedding_init=jax.nn.initializers.normal(self.config.initializer_factor), dtype=self.dtype, ) encoder_config = copy.deepcopy(self.config) encoder_config.causal = False encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = FlaxLongT5Stack( encoder_config, self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) decoder_config = copy.deepcopy(self.config) decoder_config.causal = True decoder_config.is_encoder_decoder = False decoder_config.num_layers = self.config.num_decoder_layers self.decoder = FlaxLongT5Stack( decoder_config, self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing ) self.lm_head = nn.Dense( self.config.vocab_size, use_bias=False, kernel_init=jax.nn.initializers.normal(self.config.initializer_factor), dtype=self.dtype, ) def __call__( self, input_ids=None, attention_mask=None, decoder_input_ids=None, decoder_attention_mask=None, encoder_outputs=None, output_attentions=None, output_hidden_states=None, return_dict=None, deterministic: bool = True, ): return_dict = return_dict if return_dict is not None else self.config.use_return_dict # Encode encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) hidden_states = encoder_outputs[0] # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=deterministic, ) sequence_output = decoder_outputs[0] if self.config.tie_word_embeddings: # Rescale output before projecting on vocab # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 sequence_output = sequence_output * (self.model_dim**-0.5) if self.config.tie_word_embeddings: shared_embedding = self.shared.variables["params"]["embedding"] lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, sequence_output) else: lm_logits = self.lm_head(sequence_output) if not return_dict: return (lm_logits,) + decoder_outputs[1:] + encoder_outputs return FlaxSeq2SeqLMOutput( logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) class FlaxLongT5ForConditionalGeneration(FlaxLongT5PreTrainedModel): module_class = FlaxLongT5ForConditionalGenerationModule @add_start_docstrings(LONGT5_DECODE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=LongT5Config) def decode( self, decoder_input_ids, encoder_outputs, encoder_attention_mask: Optional[jnp.ndarray] = None, decoder_attention_mask: Optional[jnp.ndarray] = None, past_key_values: dict = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, train: bool = False, params: dict = None, dropout_rng: PRNGKey = None, ): r""" Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration >>> import jax.numpy as jnp >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") >>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base") >>> text = "summarize: My friends are cool but they eat too many carbs." >>> inputs = tokenizer(text, return_tensors="np") >>> encoder_outputs = model.encode(**inputs) >>> decoder_start_token_id = model.config.decoder_start_token_id >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id >>> outputs = model.decode(decoder_input_ids, encoder_outputs) >>> logits = outputs.logits ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.return_dict encoder_hidden_states = encoder_outputs[0] if encoder_attention_mask is None: batch_size, sequence_length = encoder_hidden_states.shape[:2] encoder_attention_mask = jnp.ones((batch_size, sequence_length)) batch_size, sequence_length = decoder_input_ids.shape if decoder_attention_mask is None: decoder_attention_mask = jnp.ones((batch_size, sequence_length)) # Handle any PRNG if needed rngs = {} if dropout_rng is not None: rngs["dropout"] = dropout_rng inputs = {"params": params or self.params} # if past_key_values are passed then cache is already initialized a private flag init_cache has to be # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that # it can be changed by FlaxLongT5Attention module if past_key_values: inputs["cache"] = past_key_values mutable = ["cache"] else: mutable = False def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs): decoder_module = module._get_decoder_module() decoder_outputs = decoder_module( decoder_input_ids, decoder_attention_mask, **kwargs, ) sequence_output = decoder_outputs[0] if self.config.tie_word_embeddings: # Rescale output before projecting on vocab # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 sequence_output = sequence_output * (self.config.d_model**-0.5) if self.config.tie_word_embeddings: shared_embedding = module.shared.variables["params"]["embedding"] lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, sequence_output) else: lm_logits = module.lm_head(sequence_output) return lm_logits, decoder_outputs outputs = self.module.apply( inputs, decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, deterministic=not train, rngs=rngs, mutable=mutable, method=_decoder_forward, ) if past_key_values is None: lm_logits, decoder_outputs = outputs else: (lm_logits, decoder_outputs), past = outputs if return_dict: outputs = FlaxCausalLMOutputWithCrossAttentions( logits=lm_logits, hidden_states=decoder_outputs.hidden_states, attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, ) else: outputs = (lm_logits,) + decoder_outputs[1:] # add updated cache to model output if past_key_values is not None and return_dict: outputs["past_key_values"] = unfreeze(past["cache"]) return outputs elif past_key_values is not None and not return_dict: outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] return outputs def prepare_inputs_for_generation( self, decoder_input_ids, max_length, attention_mask: Optional[jax.Array] = None, decoder_attention_mask: Optional[jax.Array] = None, encoder_outputs=None, **kwargs, ): # initializing the cache batch_size, seq_length = decoder_input_ids.shape past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. # But since the decoder uses a causal mask, those positions are masked anyways. # Thus we can create a single static attention_mask here, which is more efficient for compilation extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") if decoder_attention_mask is not None: extended_attention_mask = jax.lax.dynamic_update_slice( extended_attention_mask, decoder_attention_mask, (0, 0) ) return { "past_key_values": past_key_values, "encoder_outputs": encoder_outputs, "encoder_attention_mask": attention_mask, "decoder_attention_mask": extended_attention_mask, } def update_inputs_for_generation(self, model_outputs, model_kwargs): model_kwargs["past_key_values"] = model_outputs.past_key_values return model_kwargs FLAX_LONGT5_CONDITIONAL_GENERATION_DOCSTRING = """ Returns: Example: ```python >>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base") >>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base") >>> ARTICLE_TO_SUMMARIZE = "summarize: My friends are cool but they eat too many carbs." >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], return_tensors="np") >>> # Generate Summary >>> summary_ids = model.generate(inputs["input_ids"]).sequences >>> print(tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)) ``` """ overwrite_call_docstring( FlaxLongT5ForConditionalGeneration, LONGT5_INPUTS_DOCSTRING + FLAX_LONGT5_CONDITIONAL_GENERATION_DOCSTRING ) append_replace_return_docstrings( FlaxLongT5ForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC )
transformers/src/transformers/models/longt5/modeling_flax_longt5.py/0
{ "file_path": "transformers/src/transformers/models/longt5/modeling_flax_longt5.py", "repo_id": "transformers", "token_count": 46178 }
96
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import torch from torch import nn from transformers import M2M100Config, M2M100ForConditionalGeneration def remove_ignore_keys_(state_dict): ignore_keys = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(k, None) def make_linear_from_emb(emb): vocab_size, emb_size = emb.weight.shape lin_layer = nn.Linear(vocab_size, emb_size, bias=False) lin_layer.weight.data = emb.weight.data return lin_layer def convert_fairseq_m2m100_checkpoint_from_disk(checkpoint_path): m2m_100 = torch.load(checkpoint_path, map_location="cpu") args = m2m_100["args"] or m2m_100["cfg"]["model"] state_dict = m2m_100["model"] remove_ignore_keys_(state_dict) vocab_size = state_dict["encoder.embed_tokens.weight"].shape[0] config = M2M100Config( vocab_size=vocab_size, max_position_embeddings=1024, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, encoder_layerdrop=args.encoder_layerdrop, decoder_layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function="relu", ) state_dict["shared.weight"] = state_dict["decoder.embed_tokens.weight"] model = M2M100ForConditionalGeneration(config) model.model.load_state_dict(state_dict, strict=False) model.lm_head = make_linear_from_emb(model.model.shared) return model if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") args = parser.parse_args() model = convert_fairseq_m2m100_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
transformers/src/transformers/models/m2m_100/convert_m2m100_original_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/m2m_100/convert_m2m100_original_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 1220 }
97
# coding=utf-8 # Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for MarkupLM.""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...file_utils import PaddingStrategy, TensorType, add_end_docstrings from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import ( ENCODE_KWARGS_DOCSTRING, BatchEncoding, EncodedInput, PreTokenizedInput, TextInput, TextInputPair, TruncationStrategy, ) from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/vocab.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/vocab.json", }, "merges_file": { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/merges.txt", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/merges.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "microsoft/markuplm-base": 512, "microsoft/markuplm-large": 512, } MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" add_special_tokens (`bool`, *optional*, defaults to `True`): Whether or not to encode the sequences with the special tokens relative to their model. padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. stride (`int`, *optional*, defaults to 0): If set to a number along with `max_length`, the overflowing tokens returned when `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence returned to provide some overlap between truncated and overflowing sequences. The value of this argument defines the number of overlapping tokens. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_tensors (`str` or [`~file_utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. """ @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class MarkupLMTokenizer(PreTrainedTokenizer): r""" Construct a MarkupLM tokenizer. Based on byte-level Byte-Pair-Encoding (BPE). [`MarkupLMTokenizer`] can be used to turn HTML strings into to token-level `input_ids`, `attention_mask`, `token_type_ids`, `xpath_tags_seq` and `xpath_tags_seq`. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (RoBERTa tokenizer detect beginning of words by the preceding space). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self, vocab_file, merges_file, tags_dict, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, max_depth=50, max_width=1000, pad_width=1001, pad_token_label=-100, only_label_first_subword=True, **kwargs, ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.tags_dict = tags_dict self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") # additional properties self.max_depth = max_depth self.max_width = max_width self.pad_width = pad_width self.unk_tag_id = len(self.tags_dict) self.pad_tag_id = self.unk_tag_id + 1 self.pad_xpath_tags_seq = [self.pad_tag_id] * self.max_depth self.pad_xpath_subs_seq = [self.pad_width] * self.max_depth super().__init__( vocab_file=vocab_file, merges_file=merges_file, tags_dict=tags_dict, errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, max_depth=max_depth, max_width=max_width, pad_width=pad_width, pad_token_label=pad_token_label, only_label_first_subword=only_label_first_subword, **kwargs, ) self.pad_token_label = pad_token_label self.only_label_first_subword = only_label_first_subword def get_xpath_seq(self, xpath): """ Given the xpath expression of one particular node (like "/html/body/div/li[1]/div/span[2]"), return a list of tag IDs and corresponding subscripts, taking into account max depth. """ xpath_tags_list = [] xpath_subs_list = [] xpath_units = xpath.split("/") for unit in xpath_units: if not unit.strip(): continue name_subs = unit.strip().split("[") tag_name = name_subs[0] sub = 0 if len(name_subs) == 1 else int(name_subs[1][:-1]) xpath_tags_list.append(self.tags_dict.get(tag_name, self.unk_tag_id)) xpath_subs_list.append(min(self.max_width, sub)) xpath_tags_list = xpath_tags_list[: self.max_depth] xpath_subs_list = xpath_subs_list[: self.max_depth] xpath_tags_list += [self.pad_tag_id] * (self.max_depth - len(xpath_tags_list)) xpath_subs_list += [self.pad_width] * (self.max_depth - len(xpath_subs_list)) return xpath_tags_list, xpath_subs_list @property def vocab_size(self): return len(self.encoder) def get_vocab(self): vocab = self.encoder.copy() vocab.update(self.added_tokens_encoder) return vocab def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" logger.warning( "MarkupLM now does not support generative tasks, decoding is experimental and subject to change." ) text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) # save vocab_file with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") # save merge_file index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): text = " " + text return (text, kwargs) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A RoBERTa sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep def build_xpath_tags_with_special_tokens( self, xpath_tags_0: List[int], xpath_tags_1: Optional[List[int]] = None ) -> List[int]: pad = [self.pad_xpath_tags_seq] if len(xpath_tags_1) == 0: return pad + xpath_tags_0 + pad return pad + xpath_tags_0 + pad + xpath_tags_1 + pad def build_xpath_subs_with_special_tokens( self, xpath_subs_0: List[int], xpath_subs_1: Optional[List[int]] = None ) -> List[int]: pad = [self.pad_xpath_subs_seq] if len(xpath_subs_1) == 0: return pad + xpath_subs_0 + pad return pad + xpath_subs_0 + pad + xpath_subs_1 + pad def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Args: Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + token_ids_1 + sep) * [0] @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def __call__( self, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, xpaths: Union[List[List[int]], List[List[List[int]]]] = None, node_labels: Optional[Union[List[int], List[List[int]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of sequences with node-level xpaths and optional labels. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings (nodes of a single example or questions of a batch of examples) or a list of list of strings (batch of nodes). text_pair (`List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence should be a list of strings (pretokenized string). xpaths (`List[List[int]]`, `List[List[List[int]]]`): Node-level xpaths. node_labels (`List[int]`, `List[List[int]]`, *optional*): Node-level integer labels (for token classification tasks). """ # Input type checking for clearer error def _is_valid_text_input(t): if isinstance(t, str): # Strings are fine return True elif isinstance(t, (list, tuple)): # List are fine as long as they are... if len(t) == 0: # ... empty return True elif isinstance(t[0], str): # ... list of strings return True elif isinstance(t[0], (list, tuple)): # ... list with an empty list or with a list of strings return len(t[0]) == 0 or isinstance(t[0][0], str) else: return False else: return False if text_pair is not None: # in case text + text_pair are provided, text = questions, text_pair = nodes if not _is_valid_text_input(text): raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ") if not isinstance(text_pair, (list, tuple)): raise ValueError( "Nodes must be of type `List[str]` (single pretokenized example), " "or `List[List[str]]` (batch of pretokenized examples)." ) else: # in case only text is provided => must be nodes if not isinstance(text, (list, tuple)): raise ValueError( "Nodes must be of type `List[str]` (single pretokenized example), " "or `List[List[str]]` (batch of pretokenized examples)." ) if text_pair is not None: is_batched = isinstance(text, (list, tuple)) else: is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple)) nodes = text if text_pair is None else text_pair assert xpaths is not None, "You must provide corresponding xpaths" if is_batched: assert len(nodes) == len(xpaths), "You must provide nodes and xpaths for an equal amount of examples" for nodes_example, xpaths_example in zip(nodes, xpaths): assert len(nodes_example) == len(xpaths_example), "You must provide as many nodes as there are xpaths" else: assert len(nodes) == len(xpaths), "You must provide as many nodes as there are xpaths" if is_batched: if text_pair is not None and len(text) != len(text_pair): raise ValueError( f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:" f" {len(text_pair)}." ) batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text is_pair = bool(text_pair is not None) return self.batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( text=text, text_pair=text_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], ], is_pair: bool = None, xpaths: Optional[List[List[List[int]]]] = None, node_labels: Optional[Union[List[int], List[List[int]]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _batch_encode_plus( self, batch_text_or_text_pairs: Union[ List[TextInput], List[TextInputPair], List[PreTokenizedInput], ], is_pair: bool = None, xpaths: Optional[List[List[List[int]]]] = None, node_labels: Optional[List[List[int]]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) batch_outputs = self._batch_prepare_for_model( batch_text_or_text_pairs=batch_text_or_text_pairs, is_pair=is_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=return_tensors, verbose=verbose, ) return BatchEncoding(batch_outputs) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def _batch_prepare_for_model( self, batch_text_or_text_pairs, is_pair: bool = None, xpaths: Optional[List[List[int]]] = None, node_labels: Optional[List[List[int]]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: """ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. Args: batch_ids_pairs: list of tokenized input ids or input ids pairs """ batch_outputs = {} for idx, example in enumerate(zip(batch_text_or_text_pairs, xpaths)): batch_text_or_text_pair, xpaths_example = example outputs = self.prepare_for_model( batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair, batch_text_or_text_pair[1] if is_pair else None, xpaths_example, node_labels=node_labels[idx] if node_labels is not None else None, add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=None, # we pad in batch afterward return_attention_mask=False, # we pad in batch afterward return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding_strategy.value, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return batch_outputs @add_end_docstrings(ENCODE_KWARGS_DOCSTRING) def encode( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, xpaths: Optional[List[List[int]]] = None, node_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> List[int]: encoded_inputs = self.encode_plus( text=text, text_pair=text_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) return encoded_inputs["input_ids"] @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def encode_plus( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, xpaths: Optional[List[List[int]]] = None, node_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated, `__call__` should be used instead. Args: text (`str`, `List[str]`, `List[List[str]]`): The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. text_pair (`List[str]` or `List[int]`, *optional*): Optional second sequence to be encoded. This can be a list of strings (nodes of a single example) or a list of list of strings (nodes of a batch of examples). """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) return self._encode_plus( text=text, xpaths=xpaths, text_pair=text_pair, node_labels=node_labels, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _encode_plus( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, xpaths: Optional[List[List[int]]] = None, node_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast. " "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) return self.prepare_for_model( text=text, text_pair=text_pair, xpaths=xpaths, node_labels=node_labels, add_special_tokens=add_special_tokens, padding=padding_strategy.value, truncation=truncation_strategy.value, max_length=max_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, MARKUPLM_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def prepare_for_model( self, text: Union[TextInput, PreTokenizedInput], text_pair: Optional[PreTokenizedInput] = None, xpaths: Optional[List[List[int]]] = None, node_labels: Optional[List[int]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs, ) -> BatchEncoding: """ Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *text_pair* different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a combination of arguments will raise an error. Node-level `xpaths` are turned into token-level `xpath_tags_seq` and `xpath_subs_seq`. If provided, node-level `node_labels` are turned into token-level `labels`. The node label is used for the first token of the node, while remaining tokens are labeled with -100, such that they will be ignored by the loss function. Args: text (`str`, `List[str]`, `List[List[str]]`): The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. text_pair (`List[str]` or `List[int]`, *optional*): Optional second sequence to be encoded. This can be a list of strings (nodes of a single example) or a list of list of strings (nodes of a batch of examples). """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) tokens = [] pair_tokens = [] xpath_tags_seq = [] xpath_subs_seq = [] pair_xpath_tags_seq = [] pair_xpath_subs_seq = [] labels = [] if text_pair is None: if node_labels is None: # CASE 1: web page classification (training + inference) + CASE 2: token classification (inference) for word, xpath in zip(text, xpaths): if len(word) < 1: # skip empty nodes continue word_tokens = self.tokenize(word) tokens.extend(word_tokens) xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpath) xpath_tags_seq.extend([xpath_tags_list] * len(word_tokens)) xpath_subs_seq.extend([xpath_subs_list] * len(word_tokens)) else: # CASE 2: token classification (training) for word, xpath, label in zip(text, xpaths, node_labels): if len(word) < 1: # skip empty nodes continue word_tokens = self.tokenize(word) tokens.extend(word_tokens) xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpath) xpath_tags_seq.extend([xpath_tags_list] * len(word_tokens)) xpath_subs_seq.extend([xpath_subs_list] * len(word_tokens)) if self.only_label_first_subword: # Use the real label id for the first token of the word, and padding ids for the remaining tokens labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1)) else: labels.extend([label] * len(word_tokens)) else: # CASE 3: web page question answering (inference) # text = question # text_pair = nodes tokens = self.tokenize(text) xpath_tags_seq = [self.pad_xpath_tags_seq for _ in range(len(tokens))] xpath_subs_seq = [self.pad_xpath_subs_seq for _ in range(len(tokens))] for word, xpath in zip(text_pair, xpaths): if len(word) < 1: # skip empty nodes continue word_tokens = self.tokenize(word) pair_tokens.extend(word_tokens) xpath_tags_list, xpath_subs_list = self.get_xpath_seq(xpath) pair_xpath_tags_seq.extend([xpath_tags_list] * len(word_tokens)) pair_xpath_subs_seq.extend([xpath_subs_list] * len(word_tokens)) # Create ids + pair_ids ids = self.convert_tokens_to_ids(tokens) pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None if ( return_overflowing_tokens and truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is not None ): raise ValueError( "Not possible to return overflowing tokens for pair of sequences with the " "`longest_first`. Please select another truncation strategy than `longest_first`, " "for instance `only_second` or `only_first`." ) # Compute the total size of the returned encodings pair = bool(pair_ids is not None) len_ids = len(ids) len_pair_ids = len(pair_ids) if pair else 0 total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) # Truncation: Handle max sequence length overflowing_tokens = [] overflowing_xpath_tags_seq = [] overflowing_xpath_subs_seq = [] overflowing_labels = [] if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: ( ids, xpath_tags_seq, xpath_subs_seq, pair_ids, pair_xpath_tags_seq, pair_xpath_subs_seq, labels, overflowing_tokens, overflowing_xpath_tags_seq, overflowing_xpath_subs_seq, overflowing_labels, ) = self.truncate_sequences( ids, xpath_tags_seq=xpath_tags_seq, xpath_subs_seq=xpath_subs_seq, pair_ids=pair_ids, pair_xpath_tags_seq=pair_xpath_tags_seq, pair_xpath_subs_seq=pair_xpath_subs_seq, labels=labels, num_tokens_to_remove=total_len - max_length, truncation_strategy=truncation_strategy, stride=stride, ) if return_token_type_ids and not add_special_tokens: raise ValueError( "Asking to return token_type_ids while setting add_special_tokens to False " "results in an undefined behavior. Please set add_special_tokens to True or " "set return_token_type_ids to None." ) # Load from model defaults if return_token_type_ids is None: return_token_type_ids = "token_type_ids" in self.model_input_names if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names encoded_inputs = {} if return_overflowing_tokens: encoded_inputs["overflowing_tokens"] = overflowing_tokens encoded_inputs["overflowing_xpath_tags_seq"] = overflowing_xpath_tags_seq encoded_inputs["overflowing_xpath_subs_seq"] = overflowing_xpath_subs_seq encoded_inputs["overflowing_labels"] = overflowing_labels encoded_inputs["num_truncated_tokens"] = total_len - max_length # Add special tokens if add_special_tokens: sequence = self.build_inputs_with_special_tokens(ids, pair_ids) token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) xpath_tags_ids = self.build_xpath_tags_with_special_tokens(xpath_tags_seq, pair_xpath_tags_seq) xpath_subs_ids = self.build_xpath_subs_with_special_tokens(xpath_subs_seq, pair_xpath_subs_seq) if labels: labels = [self.pad_token_label] + labels + [self.pad_token_label] else: sequence = ids + pair_ids if pair else ids token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else []) xpath_tags_ids = xpath_tags_seq + pair_xpath_tags_seq if pair else xpath_tags_seq xpath_subs_ids = xpath_subs_seq + pair_xpath_subs_seq if pair else xpath_subs_seq # Build output dictionary encoded_inputs["input_ids"] = sequence encoded_inputs["xpath_tags_seq"] = xpath_tags_ids encoded_inputs["xpath_subs_seq"] = xpath_subs_ids if return_token_type_ids: encoded_inputs["token_type_ids"] = token_type_ids if return_special_tokens_mask: if add_special_tokens: encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) else: encoded_inputs["special_tokens_mask"] = [0] * len(sequence) if labels: encoded_inputs["labels"] = labels # Check lengths self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose) # Padding if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask: encoded_inputs = self.pad( encoded_inputs, max_length=max_length, padding=padding_strategy.value, pad_to_multiple_of=pad_to_multiple_of, return_attention_mask=return_attention_mask, ) if return_length: encoded_inputs["length"] = len(encoded_inputs["input_ids"]) batch_outputs = BatchEncoding( encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis ) return batch_outputs def truncate_sequences( self, ids: List[int], xpath_tags_seq: List[List[int]], xpath_subs_seq: List[List[int]], pair_ids: Optional[List[int]] = None, pair_xpath_tags_seq: Optional[List[List[int]]] = None, pair_xpath_subs_seq: Optional[List[List[int]]] = None, labels: Optional[List[int]] = None, num_tokens_to_remove: int = 0, truncation_strategy: Union[str, TruncationStrategy] = "longest_first", stride: int = 0, ) -> Tuple[List[int], List[int], List[int]]: """ Args: Truncates a sequence pair in-place following the strategy. ids (`List[int]`): Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. xpath_tags_seq (`List[List[int]]`): XPath tag IDs of the first sequence. xpath_subs_seq (`List[List[int]]`): XPath sub IDs of the first sequence. pair_ids (`List[int]`, *optional*): Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` and `convert_tokens_to_ids` methods. pair_xpath_tags_seq (`List[List[int]]`, *optional*): XPath tag IDs of the second sequence. pair_xpath_subs_seq (`List[List[int]]`, *optional*): XPath sub IDs of the second sequence. num_tokens_to_remove (`int`, *optional*, defaults to 0): Number of tokens to remove using the truncation strategy. truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): The strategy to follow for truncation. Can be: - `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). stride (`int`, *optional*, defaults to 0): If set to a positive number, the overflowing tokens returned will contain some tokens from the main sequence returned. The value of this argument defines the number of additional tokens. Returns: `Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of overflowing tokens. Note: The *longest_first* strategy returns empty list of overflowing tokens if a pair of sequences (or a batch of pairs) is provided. """ if num_tokens_to_remove <= 0: return ids, xpath_tags_seq, xpath_subs_seq, pair_ids, pair_xpath_tags_seq, pair_xpath_subs_seq, [], [], [] if not isinstance(truncation_strategy, TruncationStrategy): truncation_strategy = TruncationStrategy(truncation_strategy) overflowing_tokens = [] overflowing_xpath_tags_seq = [] overflowing_xpath_subs_seq = [] overflowing_labels = [] if truncation_strategy == TruncationStrategy.ONLY_FIRST or ( truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is None ): if len(ids) > num_tokens_to_remove: window_len = min(len(ids), stride + num_tokens_to_remove) overflowing_tokens = ids[-window_len:] overflowing_xpath_tags_seq = xpath_tags_seq[-window_len:] overflowing_xpath_subs_seq = xpath_subs_seq[-window_len:] ids = ids[:-num_tokens_to_remove] xpath_tags_seq = xpath_tags_seq[:-num_tokens_to_remove] xpath_subs_seq = xpath_subs_seq[:-num_tokens_to_remove] labels = labels[:-num_tokens_to_remove] else: error_msg = ( f"We need to remove {num_tokens_to_remove} to truncate the input " f"but the first sequence has a length {len(ids)}. " ) if truncation_strategy == TruncationStrategy.ONLY_FIRST: error_msg = ( error_msg + "Please select another truncation strategy than " f"{truncation_strategy}, for instance 'longest_first' or 'only_second'." ) logger.error(error_msg) elif truncation_strategy == TruncationStrategy.LONGEST_FIRST: logger.warning( "Be aware, overflowing tokens are not returned for the setting you have chosen," f" i.e. sequence pairs with the '{TruncationStrategy.LONGEST_FIRST.value}' " "truncation strategy. So the returned list will always be empty even if some " "tokens have been removed." ) for _ in range(num_tokens_to_remove): if pair_ids is None or len(ids) > len(pair_ids): ids = ids[:-1] xpath_tags_seq = xpath_tags_seq[:-1] xpath_subs_seq = xpath_subs_seq[:-1] labels = labels[:-1] else: pair_ids = pair_ids[:-1] pair_xpath_tags_seq = pair_xpath_tags_seq[:-1] pair_xpath_subs_seq = pair_xpath_subs_seq[:-1] elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None: if len(pair_ids) > num_tokens_to_remove: window_len = min(len(pair_ids), stride + num_tokens_to_remove) overflowing_tokens = pair_ids[-window_len:] overflowing_xpath_tags_seq = pair_xpath_tags_seq[-window_len:] overflowing_xpath_subs_seq = pair_xpath_subs_seq[-window_len:] pair_ids = pair_ids[:-num_tokens_to_remove] pair_xpath_tags_seq = pair_xpath_tags_seq[:-num_tokens_to_remove] pair_xpath_subs_seq = pair_xpath_subs_seq[:-num_tokens_to_remove] else: logger.error( f"We need to remove {num_tokens_to_remove} to truncate the input " f"but the second sequence has a length {len(pair_ids)}. " f"Please select another truncation strategy than {truncation_strategy}, " "for instance 'longest_first' or 'only_first'." ) return ( ids, xpath_tags_seq, xpath_subs_seq, pair_ids, pair_xpath_tags_seq, pair_xpath_subs_seq, labels, overflowing_tokens, overflowing_xpath_tags_seq, overflowing_xpath_subs_seq, overflowing_labels, ) def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Args: Pad encoded inputs (on left/right and up to predefined length or max length in the batch) encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names required_input = encoded_inputs[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: max_length = len(required_input) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length # Initialize attention mask if not present. if return_attention_mask and "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * len(required_input) if needs_to_be_padded: difference = max_length - len(required_input) if self.padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = ( encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference ) if "xpath_tags_seq" in encoded_inputs: encoded_inputs["xpath_tags_seq"] = ( encoded_inputs["xpath_tags_seq"] + [self.pad_xpath_tags_seq] * difference ) if "xpath_subs_seq" in encoded_inputs: encoded_inputs["xpath_subs_seq"] = ( encoded_inputs["xpath_subs_seq"] + [self.pad_xpath_subs_seq] * difference ) if "labels" in encoded_inputs: encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference elif self.padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ "token_type_ids" ] if "xpath_tags_seq" in encoded_inputs: encoded_inputs["xpath_tags_seq"] = [self.pad_xpath_tags_seq] * difference + encoded_inputs[ "xpath_tags_seq" ] if "xpath_subs_seq" in encoded_inputs: encoded_inputs["xpath_subs_seq"] = [self.pad_xpath_subs_seq] * difference + encoded_inputs[ "xpath_subs_seq" ] if "labels" in encoded_inputs: encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input else: raise ValueError("Invalid padding strategy:" + str(self.padding_side)) return encoded_inputs
transformers/src/transformers/models/markuplm/tokenization_markuplm.py/0
{ "file_path": "transformers/src/transformers/models/markuplm/tokenization_markuplm.py", "repo_id": "transformers", "token_count": 32634 }
98
# coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MobileNetV1 model configuration""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging logger = logging.get_logger(__name__) MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP = { "google/mobilenet_v1_1.0_224": "https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json", "google/mobilenet_v1_0.75_192": "https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class MobileNetV1Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MobileNetV1Model`]. It is used to instantiate a MobileNetV1 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the MobileNetV1 [google/mobilenet_v1_1.0_224](https://huggingface.co/google/mobilenet_v1_1.0_224) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. depth_multiplier (`float`, *optional*, defaults to 1.0): Shrinks or expands the number of channels in each layer. Default is 1.0, which starts the network with 32 channels. This is sometimes also called "alpha" or "width multiplier". min_depth (`int`, *optional*, defaults to 8): All layers will have at least this many channels. hidden_act (`str` or `function`, *optional*, defaults to `"relu6"`): The non-linear activation function (function or string) in the Transformer encoder and convolution layers. tf_padding (`bool`, *optional*, defaults to `True`): Whether to use TensorFlow padding rules on the convolution layers. classifier_dropout_prob (`float`, *optional*, defaults to 0.999): The dropout ratio for attached classifiers. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 0.001): The epsilon used by the layer normalization layers. Example: ```python >>> from transformers import MobileNetV1Config, MobileNetV1Model >>> # Initializing a "mobilenet_v1_1.0_224" style configuration >>> configuration = MobileNetV1Config() >>> # Initializing a model from the "mobilenet_v1_1.0_224" style configuration >>> model = MobileNetV1Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mobilenet_v1" def __init__( self, num_channels=3, image_size=224, depth_multiplier=1.0, min_depth=8, hidden_act="relu6", tf_padding=True, classifier_dropout_prob=0.999, initializer_range=0.02, layer_norm_eps=0.001, **kwargs, ): super().__init__(**kwargs) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero.") self.num_channels = num_channels self.image_size = image_size self.depth_multiplier = depth_multiplier self.min_depth = min_depth self.hidden_act = hidden_act self.tf_padding = tf_padding self.classifier_dropout_prob = classifier_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps class MobileNetV1OnnxConfig(OnnxConfig): torch_onnx_minimum_version = version.parse("1.11") @property def inputs(self) -> Mapping[str, Mapping[int, str]]: return OrderedDict([("pixel_values", {0: "batch"})]) @property def outputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})]) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})]) @property def atol_for_validation(self) -> float: return 1e-4
transformers/src/transformers/models/mobilenet_v1/configuration_mobilenet_v1.py/0
{ "file_path": "transformers/src/transformers/models/mobilenet_v1/configuration_mobilenet_v1.py", "repo_id": "transformers", "token_count": 1942 }
99
# coding=utf-8 # Copyright 2022 Apple Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Original license: https://github.com/apple/ml-cvnets/blob/main/LICENSE """ PyTorch MobileViT model.""" import math from typing import Dict, Optional, Set, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, SemanticSegmenterOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from .configuration_mobilevit import MobileViTConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "MobileViTConfig" # Base docstring _CHECKPOINT_FOR_DOC = "apple/mobilevit-small" _EXPECTED_OUTPUT_SHAPE = [1, 640, 8, 8] # Image classification docstring _IMAGE_CLASS_CHECKPOINT = "apple/mobilevit-small" _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat" MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST = [ "apple/mobilevit-small", "apple/mobilevit-x-small", "apple/mobilevit-xx-small", "apple/deeplabv3-mobilevit-small", "apple/deeplabv3-mobilevit-x-small", "apple/deeplabv3-mobilevit-xx-small", # See all MobileViT models at https://huggingface.co/models?filter=mobilevit ] def make_divisible(value: int, divisor: int = 8, min_value: Optional[int] = None) -> int: """ Ensure that all layers have a channel count that is divisible by `divisor`. This function is taken from the original TensorFlow repo. It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py """ if min_value is None: min_value = divisor new_value = max(min_value, int(value + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_value < 0.9 * value: new_value += divisor return int(new_value) class MobileViTConvLayer(nn.Module): def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1, groups: int = 1, bias: bool = False, dilation: int = 1, use_normalization: bool = True, use_activation: Union[bool, str] = True, ) -> None: super().__init__() padding = int((kernel_size - 1) / 2) * dilation if in_channels % groups != 0: raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.") if out_channels % groups != 0: raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.") self.convolution = nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias, padding_mode="zeros", ) if use_normalization: self.normalization = nn.BatchNorm2d( num_features=out_channels, eps=1e-5, momentum=0.1, affine=True, track_running_stats=True, ) else: self.normalization = None if use_activation: if isinstance(use_activation, str): self.activation = ACT2FN[use_activation] elif isinstance(config.hidden_act, str): self.activation = ACT2FN[config.hidden_act] else: self.activation = config.hidden_act else: self.activation = None def forward(self, features: torch.Tensor) -> torch.Tensor: features = self.convolution(features) if self.normalization is not None: features = self.normalization(features) if self.activation is not None: features = self.activation(features) return features class MobileViTInvertedResidual(nn.Module): """ Inverted residual block (MobileNetv2): https://arxiv.org/abs/1801.04381 """ def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int, dilation: int = 1 ) -> None: super().__init__() expanded_channels = make_divisible(int(round(in_channels * config.expand_ratio)), 8) if stride not in [1, 2]: raise ValueError(f"Invalid stride {stride}.") self.use_residual = (stride == 1) and (in_channels == out_channels) self.expand_1x1 = MobileViTConvLayer( config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=1 ) self.conv_3x3 = MobileViTConvLayer( config, in_channels=expanded_channels, out_channels=expanded_channels, kernel_size=3, stride=stride, groups=expanded_channels, dilation=dilation, ) self.reduce_1x1 = MobileViTConvLayer( config, in_channels=expanded_channels, out_channels=out_channels, kernel_size=1, use_activation=False, ) def forward(self, features: torch.Tensor) -> torch.Tensor: residual = features features = self.expand_1x1(features) features = self.conv_3x3(features) features = self.reduce_1x1(features) return residual + features if self.use_residual else features class MobileViTMobileNetLayer(nn.Module): def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int = 1, num_stages: int = 1 ) -> None: super().__init__() self.layer = nn.ModuleList() for i in range(num_stages): layer = MobileViTInvertedResidual( config, in_channels=in_channels, out_channels=out_channels, stride=stride if i == 0 else 1, ) self.layer.append(layer) in_channels = out_channels def forward(self, features: torch.Tensor) -> torch.Tensor: for layer_module in self.layer: features = layer_module(features) return features class MobileViTSelfAttention(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int) -> None: super().__init__() if hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size {hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer class MobileViTSelfOutput(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int) -> None: super().__init__() self.dense = nn.Linear(hidden_size, hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states class MobileViTAttention(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int) -> None: super().__init__() self.attention = MobileViTSelfAttention(config, hidden_size) self.output = MobileViTSelfOutput(config, hidden_size) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: self_outputs = self.attention(hidden_states) attention_output = self.output(self_outputs) return attention_output class MobileViTIntermediate(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int) -> None: super().__init__() self.dense = nn.Linear(hidden_size, intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class MobileViTOutput(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int) -> None: super().__init__() self.dense = nn.Linear(intermediate_size, hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states class MobileViTTransformerLayer(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int, intermediate_size: int) -> None: super().__init__() self.attention = MobileViTAttention(config, hidden_size) self.intermediate = MobileViTIntermediate(config, hidden_size, intermediate_size) self.output = MobileViTOutput(config, hidden_size, intermediate_size) self.layernorm_before = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: attention_output = self.attention(self.layernorm_before(hidden_states)) hidden_states = attention_output + hidden_states layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) layer_output = self.output(layer_output, hidden_states) return layer_output class MobileViTTransformer(nn.Module): def __init__(self, config: MobileViTConfig, hidden_size: int, num_stages: int) -> None: super().__init__() self.layer = nn.ModuleList() for _ in range(num_stages): transformer_layer = MobileViTTransformerLayer( config, hidden_size=hidden_size, intermediate_size=int(hidden_size * config.mlp_ratio), ) self.layer.append(transformer_layer) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: for layer_module in self.layer: hidden_states = layer_module(hidden_states) return hidden_states class MobileViTLayer(nn.Module): """ MobileViT block: https://arxiv.org/abs/2110.02178 """ def __init__( self, config: MobileViTConfig, in_channels: int, out_channels: int, stride: int, hidden_size: int, num_stages: int, dilation: int = 1, ) -> None: super().__init__() self.patch_width = config.patch_size self.patch_height = config.patch_size if stride == 2: self.downsampling_layer = MobileViTInvertedResidual( config, in_channels=in_channels, out_channels=out_channels, stride=stride if dilation == 1 else 1, dilation=dilation // 2 if dilation > 1 else 1, ) in_channels = out_channels else: self.downsampling_layer = None self.conv_kxk = MobileViTConvLayer( config, in_channels=in_channels, out_channels=in_channels, kernel_size=config.conv_kernel_size, ) self.conv_1x1 = MobileViTConvLayer( config, in_channels=in_channels, out_channels=hidden_size, kernel_size=1, use_normalization=False, use_activation=False, ) self.transformer = MobileViTTransformer( config, hidden_size=hidden_size, num_stages=num_stages, ) self.layernorm = nn.LayerNorm(hidden_size, eps=config.layer_norm_eps) self.conv_projection = MobileViTConvLayer( config, in_channels=hidden_size, out_channels=in_channels, kernel_size=1 ) self.fusion = MobileViTConvLayer( config, in_channels=2 * in_channels, out_channels=in_channels, kernel_size=config.conv_kernel_size ) def unfolding(self, features: torch.Tensor) -> Tuple[torch.Tensor, Dict]: patch_width, patch_height = self.patch_width, self.patch_height patch_area = int(patch_width * patch_height) batch_size, channels, orig_height, orig_width = features.shape new_height = int(math.ceil(orig_height / patch_height) * patch_height) new_width = int(math.ceil(orig_width / patch_width) * patch_width) interpolate = False if new_width != orig_width or new_height != orig_height: # Note: Padding can be done, but then it needs to be handled in attention function. features = nn.functional.interpolate( features, size=(new_height, new_width), mode="bilinear", align_corners=False ) interpolate = True # number of patches along width and height num_patch_width = new_width // patch_width num_patch_height = new_height // patch_height num_patches = num_patch_height * num_patch_width # convert from shape (batch_size, channels, orig_height, orig_width) # to the shape (batch_size * patch_area, num_patches, channels) patches = features.reshape( batch_size * channels * num_patch_height, patch_height, num_patch_width, patch_width ) patches = patches.transpose(1, 2) patches = patches.reshape(batch_size, channels, num_patches, patch_area) patches = patches.transpose(1, 3) patches = patches.reshape(batch_size * patch_area, num_patches, -1) info_dict = { "orig_size": (orig_height, orig_width), "batch_size": batch_size, "channels": channels, "interpolate": interpolate, "num_patches": num_patches, "num_patches_width": num_patch_width, "num_patches_height": num_patch_height, } return patches, info_dict def folding(self, patches: torch.Tensor, info_dict: Dict) -> torch.Tensor: patch_width, patch_height = self.patch_width, self.patch_height patch_area = int(patch_width * patch_height) batch_size = info_dict["batch_size"] channels = info_dict["channels"] num_patches = info_dict["num_patches"] num_patch_height = info_dict["num_patches_height"] num_patch_width = info_dict["num_patches_width"] # convert from shape (batch_size * patch_area, num_patches, channels) # back to shape (batch_size, channels, orig_height, orig_width) features = patches.contiguous().view(batch_size, patch_area, num_patches, -1) features = features.transpose(1, 3) features = features.reshape( batch_size * channels * num_patch_height, num_patch_width, patch_height, patch_width ) features = features.transpose(1, 2) features = features.reshape( batch_size, channels, num_patch_height * patch_height, num_patch_width * patch_width ) if info_dict["interpolate"]: features = nn.functional.interpolate( features, size=info_dict["orig_size"], mode="bilinear", align_corners=False ) return features def forward(self, features: torch.Tensor) -> torch.Tensor: # reduce spatial dimensions if needed if self.downsampling_layer: features = self.downsampling_layer(features) residual = features # local representation features = self.conv_kxk(features) features = self.conv_1x1(features) # convert feature map to patches patches, info_dict = self.unfolding(features) # learn global representations patches = self.transformer(patches) patches = self.layernorm(patches) # convert patches back to feature maps features = self.folding(patches, info_dict) features = self.conv_projection(features) features = self.fusion(torch.cat((residual, features), dim=1)) return features class MobileViTEncoder(nn.Module): def __init__(self, config: MobileViTConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList() self.gradient_checkpointing = False # segmentation architectures like DeepLab and PSPNet modify the strides # of the classification backbones dilate_layer_4 = dilate_layer_5 = False if config.output_stride == 8: dilate_layer_4 = True dilate_layer_5 = True elif config.output_stride == 16: dilate_layer_5 = True dilation = 1 layer_1 = MobileViTMobileNetLayer( config, in_channels=config.neck_hidden_sizes[0], out_channels=config.neck_hidden_sizes[1], stride=1, num_stages=1, ) self.layer.append(layer_1) layer_2 = MobileViTMobileNetLayer( config, in_channels=config.neck_hidden_sizes[1], out_channels=config.neck_hidden_sizes[2], stride=2, num_stages=3, ) self.layer.append(layer_2) layer_3 = MobileViTLayer( config, in_channels=config.neck_hidden_sizes[2], out_channels=config.neck_hidden_sizes[3], stride=2, hidden_size=config.hidden_sizes[0], num_stages=2, ) self.layer.append(layer_3) if dilate_layer_4: dilation *= 2 layer_4 = MobileViTLayer( config, in_channels=config.neck_hidden_sizes[3], out_channels=config.neck_hidden_sizes[4], stride=2, hidden_size=config.hidden_sizes[1], num_stages=4, dilation=dilation, ) self.layer.append(layer_4) if dilate_layer_5: dilation *= 2 layer_5 = MobileViTLayer( config, in_channels=config.neck_hidden_sizes[4], out_channels=config.neck_hidden_sizes[5], stride=2, hidden_size=config.hidden_sizes[2], num_stages=3, dilation=dilation, ) self.layer.append(layer_5) def forward( self, hidden_states: torch.Tensor, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutputWithNoAttention]: all_hidden_states = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): if self.gradient_checkpointing and self.training: hidden_states = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, ) else: hidden_states = layer_module(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states) class MobileViTPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = MobileViTConfig base_model_prefix = "mobilevit" main_input_name = "pixel_values" supports_gradient_checkpointing = True def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) MOBILEVIT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileViTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ MOBILEVIT_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileViTImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MobileViT model outputting raw hidden-states without any specific head on top.", MOBILEVIT_START_DOCSTRING, ) class MobileViTModel(MobileViTPreTrainedModel): def __init__(self, config: MobileViTConfig, expand_output: bool = True): super().__init__(config) self.config = config self.expand_output = expand_output self.conv_stem = MobileViTConvLayer( config, in_channels=config.num_channels, out_channels=config.neck_hidden_sizes[0], kernel_size=3, stride=2, ) self.encoder = MobileViTEncoder(config) if self.expand_output: self.conv_1x1_exp = MobileViTConvLayer( config, in_channels=config.neck_hidden_sizes[5], out_channels=config.neck_hidden_sizes[6], kernel_size=1, ) # Initialize weights and apply final processing self.post_init() def _prune_heads(self, heads_to_prune): """Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer_index, heads in heads_to_prune.items(): mobilevit_layer = self.encoder.layer[layer_index] if isinstance(mobilevit_layer, MobileViTLayer): for transformer_layer in mobilevit_layer.transformer.layer: transformer_layer.attention.prune_heads(heads) @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPoolingAndNoAttention, config_class=_CONFIG_FOR_DOC, modality="vision", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]: output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") embedding_output = self.conv_stem(pixel_values) encoder_outputs = self.encoder( embedding_output, output_hidden_states=output_hidden_states, return_dict=return_dict, ) if self.expand_output: last_hidden_state = self.conv_1x1_exp(encoder_outputs[0]) # global average pooling: (batch_size, channels, height, width) -> (batch_size, channels) pooled_output = torch.mean(last_hidden_state, dim=[-2, -1], keepdim=False) else: last_hidden_state = encoder_outputs[0] pooled_output = None if not return_dict: output = (last_hidden_state, pooled_output) if pooled_output is not None else (last_hidden_state,) return output + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, ) @add_start_docstrings( """ MobileViT model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """, MOBILEVIT_START_DOCSTRING, ) class MobileViTForImageClassification(MobileViTPreTrainedModel): def __init__(self, config: MobileViTConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.mobilevit = MobileViTModel(config) # Classifier head self.dropout = nn.Dropout(config.classifier_dropout_prob, inplace=True) self.classifier = ( nn.Linear(config.neck_hidden_sizes[-1], config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT, output_type=ImageClassifierOutputWithNoAttention, config_class=_CONFIG_FOR_DOC, expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT, ) def forward( self, pixel_values: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, labels: Optional[torch.Tensor] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutputWithNoAttention]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilevit(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict) pooled_output = outputs.pooler_output if return_dict else outputs[1] logits = self.classifier(self.dropout(pooled_output)) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=loss, logits=logits, hidden_states=outputs.hidden_states, ) class MobileViTASPPPooling(nn.Module): def __init__(self, config: MobileViTConfig, in_channels: int, out_channels: int) -> None: super().__init__() self.global_pool = nn.AdaptiveAvgPool2d(output_size=1) self.conv_1x1 = MobileViTConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, use_normalization=True, use_activation="relu", ) def forward(self, features: torch.Tensor) -> torch.Tensor: spatial_size = features.shape[-2:] features = self.global_pool(features) features = self.conv_1x1(features) features = nn.functional.interpolate(features, size=spatial_size, mode="bilinear", align_corners=False) return features class MobileViTASPP(nn.Module): """ ASPP module defined in DeepLab papers: https://arxiv.org/abs/1606.00915, https://arxiv.org/abs/1706.05587 """ def __init__(self, config: MobileViTConfig) -> None: super().__init__() in_channels = config.neck_hidden_sizes[-2] out_channels = config.aspp_out_channels if len(config.atrous_rates) != 3: raise ValueError("Expected 3 values for atrous_rates") self.convs = nn.ModuleList() in_projection = MobileViTConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=1, use_activation="relu", ) self.convs.append(in_projection) self.convs.extend( [ MobileViTConvLayer( config, in_channels=in_channels, out_channels=out_channels, kernel_size=3, dilation=rate, use_activation="relu", ) for rate in config.atrous_rates ] ) pool_layer = MobileViTASPPPooling(config, in_channels, out_channels) self.convs.append(pool_layer) self.project = MobileViTConvLayer( config, in_channels=5 * out_channels, out_channels=out_channels, kernel_size=1, use_activation="relu" ) self.dropout = nn.Dropout(p=config.aspp_dropout_prob) def forward(self, features: torch.Tensor) -> torch.Tensor: pyramid = [] for conv in self.convs: pyramid.append(conv(features)) pyramid = torch.cat(pyramid, dim=1) pooled_features = self.project(pyramid) pooled_features = self.dropout(pooled_features) return pooled_features class MobileViTDeepLabV3(nn.Module): """ DeepLabv3 architecture: https://arxiv.org/abs/1706.05587 """ def __init__(self, config: MobileViTConfig) -> None: super().__init__() self.aspp = MobileViTASPP(config) self.dropout = nn.Dropout2d(config.classifier_dropout_prob) self.classifier = MobileViTConvLayer( config, in_channels=config.aspp_out_channels, out_channels=config.num_labels, kernel_size=1, use_normalization=False, use_activation=False, bias=True, ) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: features = self.aspp(hidden_states[-1]) features = self.dropout(features) features = self.classifier(features) return features @add_start_docstrings( """ MobileViT model with a semantic segmentation head on top, e.g. for Pascal VOC. """, MOBILEVIT_START_DOCSTRING, ) class MobileViTForSemanticSegmentation(MobileViTPreTrainedModel): def __init__(self, config: MobileViTConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.mobilevit = MobileViTModel(config, expand_output=False) self.segmentation_head = MobileViTDeepLabV3(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(MOBILEVIT_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, SemanticSegmenterOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy). Returns: Examples: ```python >>> import requests >>> import torch >>> from PIL import Image >>> from transformers import AutoImageProcessor, MobileViTForSemanticSegmentation >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-small") >>> model = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-small") >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> # logits are of shape (batch_size, num_labels, height, width) >>> logits = outputs.logits ```""" output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.mobilevit( pixel_values, output_hidden_states=True, # we need the intermediate hidden states return_dict=return_dict, ) encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1] logits = self.segmentation_head(encoder_hidden_states) loss = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one") else: # upsample logits to the images' original size upsampled_logits = nn.functional.interpolate( logits, size=labels.shape[-2:], mode="bilinear", align_corners=False ) loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index) loss = loss_fct(upsampled_logits, labels) if not return_dict: if output_hidden_states: output = (logits,) + outputs[1:] else: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states if output_hidden_states else None, attentions=None, )
transformers/src/transformers/models/mobilevit/modeling_mobilevit.py/0
{ "file_path": "transformers/src/transformers/models/mobilevit/modeling_mobilevit.py", "repo_id": "transformers", "token_count": 17766 }
100
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ MRA model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) MRA_PRETRAINED_CONFIG_ARCHIVE_MAP = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class MraConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`MraModel`]. It is used to instantiate an MRA model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Mra [uw-madison/mra-base-512-4](https://huggingface.co/uw-madison/mra-base-512-4) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50265): Vocabulary size of the Mra model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`MraModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimension of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 1): The vocabulary size of the `token_type_ids` passed when calling [`MraModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon used by the layer normalization layers. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. block_per_row (`int`, *optional*, defaults to 4): Used to set the budget for the high resolution scale. approx_mode (`str`, *optional*, defaults to `"full"`): Controls whether both low and high resolution approximations are used. Set to `"full"` for both low and high resolution and `"sparse"` for only low resolution. initial_prior_first_n_blocks (`int`, *optional*, defaults to 0): The initial number of blocks for which high resolution is used. initial_prior_diagonal_n_blocks (`int`, *optional*, defaults to 0): The number of diagonal blocks for which high resolution is used. Example: ```python >>> from transformers import MraConfig, MraModel >>> # Initializing a Mra uw-madison/mra-base-512-4 style configuration >>> configuration = MraConfig() >>> # Initializing a model (with random weights) from the uw-madison/mra-base-512-4 style configuration >>> model = MraModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "mra" def __init__( self, vocab_size=50265, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=1, initializer_range=0.02, layer_norm_eps=1e-5, position_embedding_type="absolute", block_per_row=4, approx_mode="full", initial_prior_first_n_blocks=0, initial_prior_diagonal_n_blocks=0, pad_token_id=1, bos_token_id=0, eos_token_id=2, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.type_vocab_size = type_vocab_size self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.block_per_row = block_per_row self.approx_mode = approx_mode self.initial_prior_first_n_blocks = initial_prior_first_n_blocks self.initial_prior_diagonal_n_blocks = initial_prior_diagonal_n_blocks
transformers/src/transformers/models/mra/configuration_mra.py/0
{ "file_path": "transformers/src/transformers/models/mra/configuration_mra.py", "repo_id": "transformers", "token_count": 2527 }
101
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert Nougat checkpoints using the original `nougat` library. URL: https://github.com/facebookresearch/nougat/tree/main""" import argparse import torch from huggingface_hub import hf_hub_download from nougat import NougatModel from nougat.dataset.rasterize import rasterize_paper from nougat.utils.checkpoint import get_checkpoint from PIL import Image from transformers import ( DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, NougatImageProcessor, NougatProcessor, NougatTokenizerFast, VisionEncoderDecoderModel, ) def get_configs(model): original_config = model.config encoder_config = DonutSwinConfig( image_size=original_config.input_size, patch_size=4, depths=original_config.encoder_layer, num_heads=[4, 8, 16, 32], window_size=original_config.window_size, embed_dim=128, ) decoder_config = MBartConfig( is_decoder=True, is_encoder_decoder=False, add_cross_attention=True, decoder_layers=original_config.decoder_layer, max_position_embeddings=original_config.max_position_embeddings, vocab_size=len( model.decoder.tokenizer ), # several special tokens are added to the vocab of XLMRobertaTokenizer, see repo on the hub (added_tokens.json) scale_embedding=True, add_final_layer_norm=True, tie_word_embeddings=False, ) return encoder_config, decoder_config # Copied from transformers.models.donut.convert_donut_to_pytorch.rename_key def rename_key(name): if "encoder.model" in name: name = name.replace("encoder.model", "encoder") if "decoder.model" in name: name = name.replace("decoder.model", "decoder") if "patch_embed.proj" in name: name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection") if "patch_embed.norm" in name: name = name.replace("patch_embed.norm", "embeddings.norm") if name.startswith("encoder"): if "layers" in name: name = "encoder." + name if "attn.proj" in name: name = name.replace("attn.proj", "attention.output.dense") if "attn" in name and "mask" not in name: name = name.replace("attn", "attention.self") if "norm1" in name: name = name.replace("norm1", "layernorm_before") if "norm2" in name: name = name.replace("norm2", "layernorm_after") if "mlp.fc1" in name: name = name.replace("mlp.fc1", "intermediate.dense") if "mlp.fc2" in name: name = name.replace("mlp.fc2", "output.dense") if name == "encoder.norm.weight": name = "encoder.layernorm.weight" if name == "encoder.norm.bias": name = "encoder.layernorm.bias" return name # Copied from transformers.models.donut.convert_donut_to_pytorch.convert_state_dict def convert_state_dict(orig_state_dict, model): for key in orig_state_dict.copy().keys(): val = orig_state_dict.pop(key) if "qkv" in key: key_split = key.split(".") layer_num = int(key_split[3]) block_num = int(key_split[5]) dim = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: orig_state_dict[ f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.query.weight" ] = val[:dim, :] orig_state_dict[ f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.key.weight" ] = val[dim : dim * 2, :] orig_state_dict[ f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.value.weight" ] = val[-dim:, :] else: orig_state_dict[ f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.query.bias" ] = val[:dim] orig_state_dict[ f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.key.bias" ] = val[dim : dim * 2] orig_state_dict[ f"encoder.encoder.layers.{layer_num}.blocks.{block_num}.attention.self.value.bias" ] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: orig_state_dict[rename_key(key)] = val return orig_state_dict def convert_nougat_checkpoint(model_tag, pytorch_dump_folder_path=None, push_to_hub=False): # load original model checkpoint_path = get_checkpoint(None, model_tag) original_model = NougatModel.from_pretrained(checkpoint_path) original_model.eval() # load HuggingFace model encoder_config, decoder_config = get_configs(original_model) encoder = DonutSwinModel(encoder_config) decoder = MBartForCausalLM(decoder_config) model = VisionEncoderDecoderModel(encoder=encoder, decoder=decoder) model.eval() state_dict = original_model.state_dict() new_state_dict = convert_state_dict(state_dict, model) model.load_state_dict(new_state_dict) # verify results on PDF filepath = hf_hub_download(repo_id="ysharma/nougat", filename="input/nougat.pdf", repo_type="space") images = rasterize_paper(pdf=filepath, return_pil=True) image = Image.open(images[0]) tokenizer_file = checkpoint_path / "tokenizer.json" tokenizer = NougatTokenizerFast(tokenizer_file=str(tokenizer_file)) tokenizer.pad_token = "<pad>" tokenizer.bos_token = "<s>" tokenizer.eos_token = "</s>" tokenizer.unk_token = "<unk>" tokenizer.model_max_length = original_model.config.max_length size = {"height": original_model.config.input_size[0], "width": original_model.config.input_size[1]} image_processor = NougatImageProcessor( do_align_long_axis=original_model.config.align_long_axis, size=size, ) processor = NougatProcessor(image_processor=image_processor, tokenizer=tokenizer) # verify pixel_values pixel_values = processor(image, return_tensors="pt").pixel_values original_pixel_values = original_model.encoder.prepare_input(image).unsqueeze(0) assert torch.allclose(original_pixel_values, pixel_values) # verify patch embeddings original_patch_embed = original_model.encoder.model.patch_embed(pixel_values) patch_embeddings, _ = model.encoder.embeddings(pixel_values) assert torch.allclose(original_patch_embed, patch_embeddings) # verify encoder hidden states original_last_hidden_state = original_model.encoder(pixel_values) last_hidden_state = model.encoder(pixel_values).last_hidden_state assert torch.allclose(original_last_hidden_state, last_hidden_state, atol=1e-2) # NOTE original model does not use tied weights for embeddings of decoder original_embeddings = original_model.decoder.model.model.decoder.embed_tokens embeddings = model.decoder.model.decoder.embed_tokens assert torch.allclose(original_embeddings.weight, embeddings.weight, atol=1e-3) # verify decoder hidden states prompt = "hello world" decoder_input_ids = original_model.decoder.tokenizer( prompt, add_special_tokens=False, return_tensors="pt" ).input_ids decoder_attention_mask = torch.ones_like(decoder_input_ids) original_logits = original_model( image_tensors=pixel_values, decoder_input_ids=decoder_input_ids, attention_mask=decoder_attention_mask ).logits logits = model( pixel_values, decoder_input_ids=decoder_input_ids[:, :-1], decoder_attention_mask=decoder_attention_mask[:, :-1], ).logits assert torch.allclose(original_logits, logits, atol=1e-3) # verify generation outputs = model.generate( pixel_values, min_length=1, max_length=30, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, use_cache=True, bad_words_ids=[ [tokenizer.unk_token_id], ], return_dict_in_generate=True, do_sample=False, ) generated = tokenizer.batch_decode(outputs.sequences, skip_special_tokens=True)[0] if model_tag == "0.1.0-base": expected_generation = "# Nougat: Neural Optical Understanding for Academic Documents\n\nLukas Blecher\n\nCorrespondence to: lblec" elif model_tag == "0.1.0-small": expected_generation = ( "# Nougat: Neural Optical Understanding for Academic Documents\n\nLukas Blecher\n\nCorrespondence to: lble" ) else: raise ValueError(f"Unexpected model tag: {model_tag}") assert generated == expected_generation print("Looks ok!") if pytorch_dump_folder_path is not None: print(f"Saving model and processor to {pytorch_dump_folder_path}") model.save_pretrained(pytorch_dump_folder_path) processor.save_pretrained(pytorch_dump_folder_path) if push_to_hub: tag_to_name = {"0.1.0-base": "nougat-base", "0.1.0-small": "nougat-small"} model_name = tag_to_name[model_tag] model.push_to_hub(f"facebook/{model_name}") processor.push_to_hub(f"facebook/{model_name}") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_tag", default="0.1.0-base", required=False, type=str, choices=["0.1.0-base", "0.1.0-small"], help="Tag of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) args = parser.parse_args() convert_nougat_checkpoint(args.model_tag, args.pytorch_dump_folder_path, args.push_to_hub)
transformers/src/transformers/models/nougat/convert_nougat_to_hf.py/0
{ "file_path": "transformers/src/transformers/models/nougat/convert_nougat_to_hf.py", "repo_id": "transformers", "token_count": 4666 }
102
# coding=utf-8 # Copyright 2018 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Convert OpenAI GPT checkpoint.""" import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def convert_openai_checkpoint_to_pytorch(openai_checkpoint_folder_path, openai_config_file, pytorch_dump_folder_path): # Construct model if openai_config_file == "": config = OpenAIGPTConfig() else: config = OpenAIGPTConfig.from_json_file(openai_config_file) model = OpenAIGPTModel(config) # Load weights from numpy load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path) # Save pytorch-model pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path}") torch.save(model.state_dict(), pytorch_weights_dump_path) print(f"Save configuration file to {pytorch_config_dump_path}") with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: f.write(config.to_json_string()) if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) args = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
transformers/src/transformers/models/openai/convert_openai_original_tf_checkpoint_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/openai/convert_openai_original_tf_checkpoint_to_pytorch.py", "repo_id": "transformers", "token_count": 987 }
103
# coding=utf-8 # Copyright 2020 Google and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params PATTERNS = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def rename_state_dict_key(k): for pegasus_name, hf_name in PATTERNS: k = k.replace(pegasus_name, hf_name) return k # See appendix C of paper for all hyperparams def convert_pegasus(tf_weights: dict, cfg_updates: dict) -> PegasusForConditionalGeneration: cfg_kwargs = DEFAULTS.copy() cfg_kwargs.update(cfg_updates) cfg = PegasusConfig(**cfg_kwargs) torch_model = PegasusForConditionalGeneration(cfg) sd = torch_model.model.state_dict() mapping = {} for k, v in tf_weights.items(): new_k = rename_state_dict_key(k) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})") if "dense" in k or "proj" in new_k: v = v.T mapping[new_k] = torch.tensor(v, dtype=sd[new_k].dtype) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected mapping["shared.weight"][cfg.pad_token_id] = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1]) mapping["encoder.embed_tokens.weight"] = mapping["shared.weight"] mapping["decoder.embed_tokens.weight"] = mapping["shared.weight"] empty_biases = {k: torch.zeros_like(v) for k, v in sd.items() if k.endswith("bias") and k not in mapping} mapping.update(**empty_biases) missing, extra = torch_model.model.load_state_dict(mapping, strict=False) unexpected_missing = [ k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def get_tf_weights_as_numpy(path="./ckpt/aeslc/model.ckpt-32000") -> Dict: init_vars = tf.train.list_variables(path) tf_weights = {} ignore_name = ["Adafactor", "global_step"] for name, shape in tqdm(init_vars, desc="converting tf checkpoint to dict"): skip_key = any(pat in name for pat in ignore_name) if skip_key: continue array = tf.train.load_variable(path, name) tf_weights[name] = array return tf_weights def convert_pegasus_ckpt_to_pytorch(ckpt_path: str, save_dir: str): # save tokenizer first dataset = Path(ckpt_path).parent.name desired_max_model_length = task_specific_params[f"summarization_{dataset}"]["max_position_embeddings"] tok = PegasusTokenizer.from_pretrained("sshleifer/pegasus", model_max_length=desired_max_model_length) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(save_dir) # convert model tf_weights = get_tf_weights_as_numpy(ckpt_path) cfg_updates = task_specific_params[f"summarization_{dataset}"] if dataset == "large": cfg_updates["task_specific_params"] = task_specific_params torch_model = convert_pegasus(tf_weights, cfg_updates) torch_model.save_pretrained(save_dir) sd = torch_model.state_dict() sd.pop("model.decoder.embed_positions.weight") sd.pop("model.encoder.embed_positions.weight") torch.save(sd, Path(save_dir) / "pytorch_model.bin") if __name__ == "__main__": parser = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") args = parser.parse_args() if args.save_dir is None: dataset = Path(args.tf_ckpt_path).parent.name args.save_dir = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
transformers/src/transformers/models/pegasus/convert_pegasus_tf_to_pytorch.py/0
{ "file_path": "transformers/src/transformers/models/pegasus/convert_pegasus_tf_to_pytorch.py", "repo_id": "transformers", "token_count": 2026 }
104
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _import_structure = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["tokenization_plbart"] = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _import_structure["modeling_plbart"] = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
transformers/src/transformers/models/plbart/__init__.py/0
{ "file_path": "transformers/src/transformers/models/plbart/__init__.py", "repo_id": "transformers", "token_count": 932 }
105
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for Pop2Piano.""" import os from typing import List, Optional, Union import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...tokenization_utils import BatchEncoding, PaddingStrategy, TruncationStrategy from ...utils import TensorType class Pop2PianoProcessor(ProcessorMixin): r""" Constructs an Pop2Piano processor which wraps a Pop2Piano Feature Extractor and Pop2Piano Tokenizer into a single processor. [`Pop2PianoProcessor`] offers all the functionalities of [`Pop2PianoFeatureExtractor`] and [`Pop2PianoTokenizer`]. See the docstring of [`~Pop2PianoProcessor.__call__`] and [`~Pop2PianoProcessor.decode`] for more information. Args: feature_extractor (`Pop2PianoFeatureExtractor`): An instance of [`Pop2PianoFeatureExtractor`]. The feature extractor is a required input. tokenizer (`Pop2PianoTokenizer`): An instance of ['Pop2PianoTokenizer`]. The tokenizer is a required input. """ attributes = ["feature_extractor", "tokenizer"] feature_extractor_class = "Pop2PianoFeatureExtractor" tokenizer_class = "Pop2PianoTokenizer" def __init__(self, feature_extractor, tokenizer): super().__init__(feature_extractor, tokenizer) def __call__( self, audio: Union[np.ndarray, List[float], List[np.ndarray]] = None, sampling_rate: Union[int, List[int]] = None, steps_per_beat: int = 2, resample: Optional[bool] = True, notes: Union[List, TensorType] = None, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, verbose: bool = True, **kwargs, ) -> Union[BatchFeature, BatchEncoding]: """ This method uses [`Pop2PianoFeatureExtractor.__call__`] method to prepare log-mel-spectrograms for the model, and [`Pop2PianoTokenizer.__call__`] to prepare token_ids from notes. Please refer to the docstring of the above two methods for more information. """ # Since Feature Extractor needs both audio and sampling_rate and tokenizer needs both token_ids and # feature_extractor_output, we must check for both. if (audio is None and sampling_rate is None) and (notes is None): raise ValueError( "You have to specify at least audios and sampling_rate in order to use feature extractor or " "notes to use the tokenizer part." ) if audio is not None and sampling_rate is not None: inputs = self.feature_extractor( audio=audio, sampling_rate=sampling_rate, steps_per_beat=steps_per_beat, resample=resample, **kwargs, ) if notes is not None: encoded_token_ids = self.tokenizer( notes=notes, padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) if notes is None: return inputs elif audio is None or sampling_rate is None: return encoded_token_ids else: inputs["token_ids"] = encoded_token_ids["token_ids"] return inputs def batch_decode( self, token_ids, feature_extractor_output: BatchFeature, return_midi: bool = True, ) -> BatchEncoding: """ This method uses [`Pop2PianoTokenizer.batch_decode`] method to convert model generated token_ids to midi_notes. Please refer to the docstring of the above two methods for more information. """ return self.tokenizer.batch_decode( token_ids=token_ids, feature_extractor_output=feature_extractor_output, return_midi=return_midi ) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names feature_extractor_input_names = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names)) def save_pretrained(self, save_directory, **kwargs): if os.path.isfile(save_directory): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file") os.makedirs(save_directory, exist_ok=True) return super().save_pretrained(save_directory, **kwargs) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs) return cls(*args)
transformers/src/transformers/models/pop2piano/processing_pop2piano.py/0
{ "file_path": "transformers/src/transformers/models/pop2piano/processing_pop2piano.py", "repo_id": "transformers", "token_count": 2200 }
106