repo_name
stringclasses
1 value
pr_number
int64
4.12k
11.2k
pr_title
stringlengths
9
107
pr_description
stringlengths
107
5.48k
author
stringlengths
4
18
date_created
timestamp[ns, tz=UTC]
date_merged
timestamp[ns, tz=UTC]
previous_commit
stringlengths
40
40
pr_commit
stringlengths
40
40
query
stringlengths
118
5.52k
before_content
stringlengths
0
7.93M
after_content
stringlengths
0
7.93M
label
int64
-1
1
TheAlgorithms/Python
4,278
fix(mypy): Fix annotations for 13 cipher algorithms
Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
dhruvmanila
2021-03-20T09:09:15Z
2021-03-22T06:59:51Z
99a42f2b5821356718fb7d011ac711a6b4a63a83
14bcb580d55ee90614ad258ea31ef8fe4e4b5c40
fix(mypy): Fix annotations for 13 cipher algorithms. Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Hill Cipher: The 'HillCipher' class below implements the Hill Cipher algorithm which uses modern linear algebra techniques to encode and decode text using an encryption key matrix. Algorithm: Let the order of the encryption key be N (as it is a square matrix). Your text is divided into batches of length N and converted to numerical vectors by a simple mapping starting with A=0 and so on. The key is then multiplied with the newly created batch vector to obtain the encoded vector. After each multiplication modular 36 calculations are performed on the vectors so as to bring the numbers between 0 and 36 and then mapped with their corresponding alphanumerics. While decrypting, the decrypting key is found which is the inverse of the encrypting key modular 36. The same process is repeated for decrypting to get the original message back. Constraints: The determinant of the encryption key matrix must be relatively prime w.r.t 36. Note: This implementation only considers alphanumerics in the text. If the length of the text to be encrypted is not a multiple of the break key(the length of one batch of letters), the last character of the text is added to the text until the length of the text reaches a multiple of the break_key. So the text after decrypting might be a little different than the original text. References: https://apprendre-en-ligne.net/crypto/hill/Hillciph.pdf https://www.youtube.com/watch?v=kfmNeskzs2o https://www.youtube.com/watch?v=4RhLNDqcjpA """ import string import numpy def greatest_common_divisor(a: int, b: int) -> int: """ >>> greatest_common_divisor(4, 8) 4 >>> greatest_common_divisor(8, 4) 4 >>> greatest_common_divisor(4, 7) 1 >>> greatest_common_divisor(0, 10) 10 """ return b if a == 0 else greatest_common_divisor(b % a, a) class HillCipher: key_string = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) modulus = numpy.vectorize(lambda x: x % 36) to_int = numpy.vectorize(lambda x: round(x)) def __init__(self, encrypt_key: int): """ encrypt_key is an NxN numpy array """ self.encrypt_key = self.modulus(encrypt_key) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key self.decrypt_key = None self.break_key = encrypt_key.shape[0] def replace_letters(self, letter: str) -> int: """ >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]])) >>> hill_cipher.replace_letters('T') 19 >>> hill_cipher.replace_letters('0') 26 """ return self.key_string.index(letter) def replace_digits(self, num: int) -> str: """ >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]])) >>> hill_cipher.replace_digits(19) 'T' >>> hill_cipher.replace_digits(26) '0' """ return self.key_string[round(num)] def check_determinant(self) -> None: """ >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]])) >>> hill_cipher.check_determinant() """ det = round(numpy.linalg.det(self.encrypt_key)) if det < 0: det = det % len(self.key_string) req_l = len(self.key_string) if greatest_common_divisor(det, len(self.key_string)) != 1: raise ValueError( f"determinant modular {req_l} of encryption key({det}) is not co prime " f"w.r.t {req_l}.\nTry another key." ) def process_text(self, text: str) -> str: """ >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]])) >>> hill_cipher.process_text('Testing Hill Cipher') 'TESTINGHILLCIPHERR' >>> hill_cipher.process_text('hello') 'HELLOO' """ chars = [char for char in text.upper() if char in self.key_string] last = chars[-1] while len(chars) % self.break_key != 0: chars.append(last) return "".join(chars) def encrypt(self, text: str) -> str: """ >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]])) >>> hill_cipher.encrypt('testing hill cipher') 'WHXYJOLM9C6XT085LL' >>> hill_cipher.encrypt('hello') '85FF00' """ text = self.process_text(text.upper()) encrypted = "" for i in range(0, len(text) - self.break_key + 1, self.break_key): batch = text[i : i + self.break_key] batch_vec = [self.replace_letters(char) for char in batch] batch_vec = numpy.array([batch_vec]).T batch_encrypted = self.modulus(self.encrypt_key.dot(batch_vec)).T.tolist()[ 0 ] encrypted_batch = "".join( self.replace_digits(num) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def make_decrypt_key(self): """ >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]])) >>> hill_cipher.make_decrypt_key() array([[ 6, 25], [ 5, 26]]) """ det = round(numpy.linalg.det(self.encrypt_key)) if det < 0: det = det % len(self.key_string) det_inv = None for i in range(len(self.key_string)): if (det * i) % len(self.key_string) == 1: det_inv = i break inv_key = ( det_inv * numpy.linalg.det(self.encrypt_key) * numpy.linalg.inv(self.encrypt_key) ) return self.to_int(self.modulus(inv_key)) def decrypt(self, text: str) -> str: """ >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]])) >>> hill_cipher.decrypt('WHXYJOLM9C6XT085LL') 'TESTINGHILLCIPHERR' >>> hill_cipher.decrypt('85FF00') 'HELLOO' """ self.decrypt_key = self.make_decrypt_key() text = self.process_text(text.upper()) decrypted = "" for i in range(0, len(text) - self.break_key + 1, self.break_key): batch = text[i : i + self.break_key] batch_vec = [self.replace_letters(char) for char in batch] batch_vec = numpy.array([batch_vec]).T batch_decrypted = self.modulus(self.decrypt_key.dot(batch_vec)).T.tolist()[ 0 ] decrypted_batch = "".join( self.replace_digits(num) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def main(): N = int(input("Enter the order of the encryption key: ")) hill_matrix = [] print("Enter each row of the encryption key with space separated integers") for i in range(N): row = [int(x) for x in input().split()] hill_matrix.append(row) hc = HillCipher(numpy.array(hill_matrix)) print("Would you like to encrypt or decrypt some text? (1 or 2)") option = input("\n1. Encrypt\n2. Decrypt\n") if option == "1": text_e = input("What text would you like to encrypt?: ") print("Your encrypted text is:") print(hc.encrypt(text_e)) elif option == "2": text_d = input("What text would you like to decrypt?: ") print("Your decrypted text is:") print(hc.decrypt(text_d)) if __name__ == "__main__": import doctest doctest.testmod() main()
""" Hill Cipher: The 'HillCipher' class below implements the Hill Cipher algorithm which uses modern linear algebra techniques to encode and decode text using an encryption key matrix. Algorithm: Let the order of the encryption key be N (as it is a square matrix). Your text is divided into batches of length N and converted to numerical vectors by a simple mapping starting with A=0 and so on. The key is then multiplied with the newly created batch vector to obtain the encoded vector. After each multiplication modular 36 calculations are performed on the vectors so as to bring the numbers between 0 and 36 and then mapped with their corresponding alphanumerics. While decrypting, the decrypting key is found which is the inverse of the encrypting key modular 36. The same process is repeated for decrypting to get the original message back. Constraints: The determinant of the encryption key matrix must be relatively prime w.r.t 36. Note: This implementation only considers alphanumerics in the text. If the length of the text to be encrypted is not a multiple of the break key(the length of one batch of letters), the last character of the text is added to the text until the length of the text reaches a multiple of the break_key. So the text after decrypting might be a little different than the original text. References: https://apprendre-en-ligne.net/crypto/hill/Hillciph.pdf https://www.youtube.com/watch?v=kfmNeskzs2o https://www.youtube.com/watch?v=4RhLNDqcjpA """ import string import numpy def greatest_common_divisor(a: int, b: int) -> int: """ >>> greatest_common_divisor(4, 8) 4 >>> greatest_common_divisor(8, 4) 4 >>> greatest_common_divisor(4, 7) 1 >>> greatest_common_divisor(0, 10) 10 """ return b if a == 0 else greatest_common_divisor(b % a, a) class HillCipher: key_string = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) modulus = numpy.vectorize(lambda x: x % 36) to_int = numpy.vectorize(lambda x: round(x)) def __init__(self, encrypt_key: int): """ encrypt_key is an NxN numpy array """ self.encrypt_key = self.modulus(encrypt_key) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key self.decrypt_key = None self.break_key = encrypt_key.shape[0] def replace_letters(self, letter: str) -> int: """ >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]])) >>> hill_cipher.replace_letters('T') 19 >>> hill_cipher.replace_letters('0') 26 """ return self.key_string.index(letter) def replace_digits(self, num: int) -> str: """ >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]])) >>> hill_cipher.replace_digits(19) 'T' >>> hill_cipher.replace_digits(26) '0' """ return self.key_string[round(num)] def check_determinant(self) -> None: """ >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]])) >>> hill_cipher.check_determinant() """ det = round(numpy.linalg.det(self.encrypt_key)) if det < 0: det = det % len(self.key_string) req_l = len(self.key_string) if greatest_common_divisor(det, len(self.key_string)) != 1: raise ValueError( f"determinant modular {req_l} of encryption key({det}) is not co prime " f"w.r.t {req_l}.\nTry another key." ) def process_text(self, text: str) -> str: """ >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]])) >>> hill_cipher.process_text('Testing Hill Cipher') 'TESTINGHILLCIPHERR' >>> hill_cipher.process_text('hello') 'HELLOO' """ chars = [char for char in text.upper() if char in self.key_string] last = chars[-1] while len(chars) % self.break_key != 0: chars.append(last) return "".join(chars) def encrypt(self, text: str) -> str: """ >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]])) >>> hill_cipher.encrypt('testing hill cipher') 'WHXYJOLM9C6XT085LL' >>> hill_cipher.encrypt('hello') '85FF00' """ text = self.process_text(text.upper()) encrypted = "" for i in range(0, len(text) - self.break_key + 1, self.break_key): batch = text[i : i + self.break_key] batch_vec = [self.replace_letters(char) for char in batch] batch_vec = numpy.array([batch_vec]).T batch_encrypted = self.modulus(self.encrypt_key.dot(batch_vec)).T.tolist()[ 0 ] encrypted_batch = "".join( self.replace_digits(num) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def make_decrypt_key(self): """ >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]])) >>> hill_cipher.make_decrypt_key() array([[ 6, 25], [ 5, 26]]) """ det = round(numpy.linalg.det(self.encrypt_key)) if det < 0: det = det % len(self.key_string) det_inv = None for i in range(len(self.key_string)): if (det * i) % len(self.key_string) == 1: det_inv = i break inv_key = ( det_inv * numpy.linalg.det(self.encrypt_key) * numpy.linalg.inv(self.encrypt_key) ) return self.to_int(self.modulus(inv_key)) def decrypt(self, text: str) -> str: """ >>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]])) >>> hill_cipher.decrypt('WHXYJOLM9C6XT085LL') 'TESTINGHILLCIPHERR' >>> hill_cipher.decrypt('85FF00') 'HELLOO' """ self.decrypt_key = self.make_decrypt_key() text = self.process_text(text.upper()) decrypted = "" for i in range(0, len(text) - self.break_key + 1, self.break_key): batch = text[i : i + self.break_key] batch_vec = [self.replace_letters(char) for char in batch] batch_vec = numpy.array([batch_vec]).T batch_decrypted = self.modulus(self.decrypt_key.dot(batch_vec)).T.tolist()[ 0 ] decrypted_batch = "".join( self.replace_digits(num) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def main(): N = int(input("Enter the order of the encryption key: ")) hill_matrix = [] print("Enter each row of the encryption key with space separated integers") for i in range(N): row = [int(x) for x in input().split()] hill_matrix.append(row) hc = HillCipher(numpy.array(hill_matrix)) print("Would you like to encrypt or decrypt some text? (1 or 2)") option = input("\n1. Encrypt\n2. Decrypt\n") if option == "1": text_e = input("What text would you like to encrypt?: ") print("Your encrypted text is:") print(hc.encrypt(text_e)) elif option == "2": text_d = input("What text would you like to decrypt?: ") print("Your decrypted text is:") print(hc.decrypt(text_d)) if __name__ == "__main__": import doctest doctest.testmod() main()
-1
TheAlgorithms/Python
4,278
fix(mypy): Fix annotations for 13 cipher algorithms
Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
dhruvmanila
2021-03-20T09:09:15Z
2021-03-22T06:59:51Z
99a42f2b5821356718fb7d011ac711a6b4a63a83
14bcb580d55ee90614ad258ea31ef8fe4e4b5c40
fix(mypy): Fix annotations for 13 cipher algorithms. Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" References: wikipedia:square free number python/black : True flake8 : True """ from __future__ import annotations def is_square_free(factors: list[int]) -> bool: """ # doctest: +NORMALIZE_WHITESPACE This functions takes a list of prime factors as input. returns True if the factors are square free. >>> is_square_free([1, 1, 2, 3, 4]) False These are wrong but should return some value it simply checks for repition in the numbers. >>> is_square_free([1, 3, 4, 'sd', 0.0]) True >>> is_square_free([1, 0.5, 2, 0.0]) True >>> is_square_free([1, 2, 2, 5]) False >>> is_square_free('asd') True >>> is_square_free(24) Traceback (most recent call last): ... TypeError: 'int' object is not iterable """ return len(set(factors)) == len(factors) if __name__ == "__main__": import doctest doctest.testmod()
""" References: wikipedia:square free number python/black : True flake8 : True """ from __future__ import annotations def is_square_free(factors: list[int]) -> bool: """ # doctest: +NORMALIZE_WHITESPACE This functions takes a list of prime factors as input. returns True if the factors are square free. >>> is_square_free([1, 1, 2, 3, 4]) False These are wrong but should return some value it simply checks for repition in the numbers. >>> is_square_free([1, 3, 4, 'sd', 0.0]) True >>> is_square_free([1, 0.5, 2, 0.0]) True >>> is_square_free([1, 2, 2, 5]) False >>> is_square_free('asd') True >>> is_square_free(24) Traceback (most recent call last): ... TypeError: 'int' object is not iterable """ return len(set(factors)) == len(factors) if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,278
fix(mypy): Fix annotations for 13 cipher algorithms
Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
dhruvmanila
2021-03-20T09:09:15Z
2021-03-22T06:59:51Z
99a42f2b5821356718fb7d011ac711a6b4a63a83
14bcb580d55ee90614ad258ea31ef8fe4e4b5c40
fix(mypy): Fix annotations for 13 cipher algorithms. Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 203: https://projecteuler.net/problem=203 The binomial coefficients (n k) can be arranged in triangular form, Pascal's triangle, like this: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 ......... It can be seen that the first eight rows of Pascal's triangle contain twelve distinct numbers: 1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 21 and 35. A positive integer n is called squarefree if no square of a prime divides n. Of the twelve distinct numbers in the first eight rows of Pascal's triangle, all except 4 and 20 are squarefree. The sum of the distinct squarefree numbers in the first eight rows is 105. Find the sum of the distinct squarefree numbers in the first 51 rows of Pascal's triangle. References: - https://en.wikipedia.org/wiki/Pascal%27s_triangle """ import math from typing import List, Set def get_pascal_triangle_unique_coefficients(depth: int) -> Set[int]: """ Returns the unique coefficients of a Pascal's triangle of depth "depth". The coefficients of this triangle are symmetric. A further improvement to this method could be to calculate the coefficients once per level. Nonetheless, the current implementation is fast enough for the original problem. >>> get_pascal_triangle_unique_coefficients(1) {1} >>> get_pascal_triangle_unique_coefficients(2) {1} >>> get_pascal_triangle_unique_coefficients(3) {1, 2} >>> get_pascal_triangle_unique_coefficients(8) {1, 2, 3, 4, 5, 6, 7, 35, 10, 15, 20, 21} """ coefficients = {1} previous_coefficients = [1] for step in range(2, depth + 1): coefficients_begins_one = previous_coefficients + [0] coefficients_ends_one = [0] + previous_coefficients previous_coefficients = [] for x, y in zip(coefficients_begins_one, coefficients_ends_one): coefficients.add(x + y) previous_coefficients.append(x + y) return coefficients def get_primes_squared(max_number: int) -> List[int]: """ Calculates all primes between 2 and round(sqrt(max_number)) and returns them squared up. >>> get_primes_squared(2) [] >>> get_primes_squared(4) [4] >>> get_primes_squared(10) [4, 9] >>> get_primes_squared(100) [4, 9, 25, 49] """ max_prime = round(math.sqrt(max_number)) non_primes = set() primes = [] for num in range(2, max_prime + 1): if num in non_primes: continue counter = 2 while num * counter <= max_prime: non_primes.add(num * counter) counter += 1 primes.append(num ** 2) return primes def get_squared_primes_to_use( num_to_look: int, squared_primes: List[int], previous_index: int ) -> int: """ Returns an int indicating the last index on which squares of primes in primes are lower than num_to_look. This method supposes that squared_primes is sorted in ascending order and that each num_to_look is provided in ascending order as well. Under these assumptions, it needs a previous_index parameter that tells what was the index returned by the method for the previous num_to_look. If all the elements in squared_primes are greater than num_to_look, then the method returns -1. >>> get_squared_primes_to_use(1, [4, 9, 16, 25], 0) -1 >>> get_squared_primes_to_use(4, [4, 9, 16, 25], 0) 1 >>> get_squared_primes_to_use(16, [4, 9, 16, 25], 1) 3 """ idx = max(previous_index, 0) while idx < len(squared_primes) and squared_primes[idx] <= num_to_look: idx += 1 if idx == 0 and squared_primes[idx] > num_to_look: return -1 if idx == len(squared_primes) and squared_primes[-1] > num_to_look: return -1 return idx def get_squarefree( unique_coefficients: Set[int], squared_primes: List[int] ) -> Set[int]: """ Calculates the squarefree numbers inside unique_coefficients given a list of square of primes. Based on the definition of a non-squarefree number, then any non-squarefree n can be decomposed as n = p*p*r, where p is positive prime number and r is a positive integer. Under the previous formula, any coefficient that is lower than p*p is squarefree as r cannot be negative. On the contrary, if any r exists such that n = p*p*r, then the number is non-squarefree. >>> get_squarefree({1}, []) set() >>> get_squarefree({1, 2}, []) set() >>> get_squarefree({1, 2, 3, 4, 5, 6, 7, 35, 10, 15, 20, 21}, [4, 9, 25]) {1, 2, 3, 5, 6, 7, 35, 10, 15, 21} """ if len(squared_primes) == 0: return set() non_squarefrees = set() prime_squared_idx = 0 for num in sorted(unique_coefficients): prime_squared_idx = get_squared_primes_to_use( num, squared_primes, prime_squared_idx ) if prime_squared_idx == -1: continue if any(num % prime == 0 for prime in squared_primes[:prime_squared_idx]): non_squarefrees.add(num) return unique_coefficients.difference(non_squarefrees) def solution(n: int = 51) -> int: """ Returns the sum of squarefrees for a given Pascal's Triangle of depth n. >>> solution(1) 0 >>> solution(8) 105 >>> solution(9) 175 """ unique_coefficients = get_pascal_triangle_unique_coefficients(n) primes = get_primes_squared(max(unique_coefficients)) squarefrees = get_squarefree(unique_coefficients, primes) return sum(squarefrees) if __name__ == "__main__": print(f"{solution() = }")
""" Project Euler Problem 203: https://projecteuler.net/problem=203 The binomial coefficients (n k) can be arranged in triangular form, Pascal's triangle, like this: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 ......... It can be seen that the first eight rows of Pascal's triangle contain twelve distinct numbers: 1, 2, 3, 4, 5, 6, 7, 10, 15, 20, 21 and 35. A positive integer n is called squarefree if no square of a prime divides n. Of the twelve distinct numbers in the first eight rows of Pascal's triangle, all except 4 and 20 are squarefree. The sum of the distinct squarefree numbers in the first eight rows is 105. Find the sum of the distinct squarefree numbers in the first 51 rows of Pascal's triangle. References: - https://en.wikipedia.org/wiki/Pascal%27s_triangle """ import math from typing import List, Set def get_pascal_triangle_unique_coefficients(depth: int) -> Set[int]: """ Returns the unique coefficients of a Pascal's triangle of depth "depth". The coefficients of this triangle are symmetric. A further improvement to this method could be to calculate the coefficients once per level. Nonetheless, the current implementation is fast enough for the original problem. >>> get_pascal_triangle_unique_coefficients(1) {1} >>> get_pascal_triangle_unique_coefficients(2) {1} >>> get_pascal_triangle_unique_coefficients(3) {1, 2} >>> get_pascal_triangle_unique_coefficients(8) {1, 2, 3, 4, 5, 6, 7, 35, 10, 15, 20, 21} """ coefficients = {1} previous_coefficients = [1] for step in range(2, depth + 1): coefficients_begins_one = previous_coefficients + [0] coefficients_ends_one = [0] + previous_coefficients previous_coefficients = [] for x, y in zip(coefficients_begins_one, coefficients_ends_one): coefficients.add(x + y) previous_coefficients.append(x + y) return coefficients def get_primes_squared(max_number: int) -> List[int]: """ Calculates all primes between 2 and round(sqrt(max_number)) and returns them squared up. >>> get_primes_squared(2) [] >>> get_primes_squared(4) [4] >>> get_primes_squared(10) [4, 9] >>> get_primes_squared(100) [4, 9, 25, 49] """ max_prime = round(math.sqrt(max_number)) non_primes = set() primes = [] for num in range(2, max_prime + 1): if num in non_primes: continue counter = 2 while num * counter <= max_prime: non_primes.add(num * counter) counter += 1 primes.append(num ** 2) return primes def get_squared_primes_to_use( num_to_look: int, squared_primes: List[int], previous_index: int ) -> int: """ Returns an int indicating the last index on which squares of primes in primes are lower than num_to_look. This method supposes that squared_primes is sorted in ascending order and that each num_to_look is provided in ascending order as well. Under these assumptions, it needs a previous_index parameter that tells what was the index returned by the method for the previous num_to_look. If all the elements in squared_primes are greater than num_to_look, then the method returns -1. >>> get_squared_primes_to_use(1, [4, 9, 16, 25], 0) -1 >>> get_squared_primes_to_use(4, [4, 9, 16, 25], 0) 1 >>> get_squared_primes_to_use(16, [4, 9, 16, 25], 1) 3 """ idx = max(previous_index, 0) while idx < len(squared_primes) and squared_primes[idx] <= num_to_look: idx += 1 if idx == 0 and squared_primes[idx] > num_to_look: return -1 if idx == len(squared_primes) and squared_primes[-1] > num_to_look: return -1 return idx def get_squarefree( unique_coefficients: Set[int], squared_primes: List[int] ) -> Set[int]: """ Calculates the squarefree numbers inside unique_coefficients given a list of square of primes. Based on the definition of a non-squarefree number, then any non-squarefree n can be decomposed as n = p*p*r, where p is positive prime number and r is a positive integer. Under the previous formula, any coefficient that is lower than p*p is squarefree as r cannot be negative. On the contrary, if any r exists such that n = p*p*r, then the number is non-squarefree. >>> get_squarefree({1}, []) set() >>> get_squarefree({1, 2}, []) set() >>> get_squarefree({1, 2, 3, 4, 5, 6, 7, 35, 10, 15, 20, 21}, [4, 9, 25]) {1, 2, 3, 5, 6, 7, 35, 10, 15, 21} """ if len(squared_primes) == 0: return set() non_squarefrees = set() prime_squared_idx = 0 for num in sorted(unique_coefficients): prime_squared_idx = get_squared_primes_to_use( num, squared_primes, prime_squared_idx ) if prime_squared_idx == -1: continue if any(num % prime == 0 for prime in squared_primes[:prime_squared_idx]): non_squarefrees.add(num) return unique_coefficients.difference(non_squarefrees) def solution(n: int = 51) -> int: """ Returns the sum of squarefrees for a given Pascal's Triangle of depth n. >>> solution(1) 0 >>> solution(8) 105 >>> solution(9) 175 """ unique_coefficients = get_pascal_triangle_unique_coefficients(n) primes = get_primes_squared(max(unique_coefficients)) squarefrees = get_squarefree(unique_coefficients, primes) return sum(squarefrees) if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
4,278
fix(mypy): Fix annotations for 13 cipher algorithms
Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
dhruvmanila
2021-03-20T09:09:15Z
2021-03-22T06:59:51Z
99a42f2b5821356718fb7d011ac711a6b4a63a83
14bcb580d55ee90614ad258ea31ef8fe4e4b5c40
fix(mypy): Fix annotations for 13 cipher algorithms. Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" This is a pure Python implementation of the merge-insertion sort algorithm Source: https://en.wikipedia.org/wiki/Merge-insertion_sort For doctests run following command: python3 -m doctest -v merge_insertion_sort.py or python -m doctest -v merge_insertion_sort.py For manual testing run: python3 merge_insertion_sort.py """ from __future__ import annotations def merge_insertion_sort(collection: list[int]) -> list[int]: """Pure implementation of merge-insertion sort algorithm in Python :param collection: some mutable ordered collection with heterogeneous comparable items inside :return: the same collection ordered by ascending Examples: >>> merge_insertion_sort([0, 5, 3, 2, 2]) [0, 2, 2, 3, 5] >>> merge_insertion_sort([99]) [99] >>> merge_insertion_sort([-2, -5, -45]) [-45, -5, -2] """ def binary_search_insertion(sorted_list, item): left = 0 right = len(sorted_list) - 1 while left <= right: middle = (left + right) // 2 if left == right: if sorted_list[middle] < item: left = middle + 1 break elif sorted_list[middle] < item: left = middle + 1 else: right = middle - 1 sorted_list.insert(left, item) return sorted_list def sortlist_2d(list_2d): def merge(left, right): result = [] while left and right: if left[0][0] < right[0][0]: result.append(left.pop(0)) else: result.append(right.pop(0)) return result + left + right length = len(list_2d) if length <= 1: return list_2d middle = length // 2 return merge(sortlist_2d(list_2d[:middle]), sortlist_2d(list_2d[middle:])) if len(collection) <= 1: return collection """ Group the items into two pairs, and leave one element if there is a last odd item. Example: [999, 100, 75, 40, 10000] -> [999, 100], [75, 40]. Leave 10000. """ two_paired_list = [] has_last_odd_item = False for i in range(0, len(collection), 2): if i == len(collection) - 1: has_last_odd_item = True else: """ Sort two-pairs in each groups. Example: [999, 100], [75, 40] -> [100, 999], [40, 75] """ if collection[i] < collection[i + 1]: two_paired_list.append([collection[i], collection[i + 1]]) else: two_paired_list.append([collection[i + 1], collection[i]]) """ Sort two_paired_list. Example: [100, 999], [40, 75] -> [40, 75], [100, 999] """ sorted_list_2d = sortlist_2d(two_paired_list) """ 40 < 100 is sure because it has already been sorted. Generate the sorted_list of them so that you can avoid unnecessary comparison. Example: group0 group1 40 100 75 999 -> group0 group1 [40, 100] 75 999 """ result = [i[0] for i in sorted_list_2d] """ 100 < 999 is sure because it has already been sorted. Put 999 in last of the sorted_list so that you can avoid unnecessary comparison. Example: group0 group1 [40, 100] 75 999 -> group0 group1 [40, 100, 999] 75 """ result.append(sorted_list_2d[-1][1]) """ Insert the last odd item left if there is. Example: group0 group1 [40, 100, 999] 75 -> group0 group1 [40, 100, 999, 10000] 75 """ if has_last_odd_item: pivot = collection[-1] result = binary_search_insertion(result, pivot) """ Insert the remaining items. In this case, 40 < 75 is sure because it has already been sorted. Therefore, you only need to insert 75 into [100, 999, 10000], so that you can avoid unnecessary comparison. Example: group0 group1 [40, 100, 999, 10000] ^ You don't need to compare with this as 40 < 75 is already sure. 75 -> [40, 75, 100, 999, 10000] """ is_last_odd_item_inserted_before_this_index = False for i in range(len(sorted_list_2d) - 1): if result[i] == collection[-i]: is_last_odd_item_inserted_before_this_index = True pivot = sorted_list_2d[i][1] # If last_odd_item is inserted before the item's index, # you should forward index one more. if is_last_odd_item_inserted_before_this_index: result = result[: i + 2] + binary_search_insertion(result[i + 2 :], pivot) else: result = result[: i + 1] + binary_search_insertion(result[i + 1 :], pivot) return result if __name__ == "__main__": user_input = input("Enter numbers separated by a comma:\n").strip() unsorted = [int(item) for item in user_input.split(",")] print(merge_insertion_sort(unsorted))
""" This is a pure Python implementation of the merge-insertion sort algorithm Source: https://en.wikipedia.org/wiki/Merge-insertion_sort For doctests run following command: python3 -m doctest -v merge_insertion_sort.py or python -m doctest -v merge_insertion_sort.py For manual testing run: python3 merge_insertion_sort.py """ from __future__ import annotations def merge_insertion_sort(collection: list[int]) -> list[int]: """Pure implementation of merge-insertion sort algorithm in Python :param collection: some mutable ordered collection with heterogeneous comparable items inside :return: the same collection ordered by ascending Examples: >>> merge_insertion_sort([0, 5, 3, 2, 2]) [0, 2, 2, 3, 5] >>> merge_insertion_sort([99]) [99] >>> merge_insertion_sort([-2, -5, -45]) [-45, -5, -2] """ def binary_search_insertion(sorted_list, item): left = 0 right = len(sorted_list) - 1 while left <= right: middle = (left + right) // 2 if left == right: if sorted_list[middle] < item: left = middle + 1 break elif sorted_list[middle] < item: left = middle + 1 else: right = middle - 1 sorted_list.insert(left, item) return sorted_list def sortlist_2d(list_2d): def merge(left, right): result = [] while left and right: if left[0][0] < right[0][0]: result.append(left.pop(0)) else: result.append(right.pop(0)) return result + left + right length = len(list_2d) if length <= 1: return list_2d middle = length // 2 return merge(sortlist_2d(list_2d[:middle]), sortlist_2d(list_2d[middle:])) if len(collection) <= 1: return collection """ Group the items into two pairs, and leave one element if there is a last odd item. Example: [999, 100, 75, 40, 10000] -> [999, 100], [75, 40]. Leave 10000. """ two_paired_list = [] has_last_odd_item = False for i in range(0, len(collection), 2): if i == len(collection) - 1: has_last_odd_item = True else: """ Sort two-pairs in each groups. Example: [999, 100], [75, 40] -> [100, 999], [40, 75] """ if collection[i] < collection[i + 1]: two_paired_list.append([collection[i], collection[i + 1]]) else: two_paired_list.append([collection[i + 1], collection[i]]) """ Sort two_paired_list. Example: [100, 999], [40, 75] -> [40, 75], [100, 999] """ sorted_list_2d = sortlist_2d(two_paired_list) """ 40 < 100 is sure because it has already been sorted. Generate the sorted_list of them so that you can avoid unnecessary comparison. Example: group0 group1 40 100 75 999 -> group0 group1 [40, 100] 75 999 """ result = [i[0] for i in sorted_list_2d] """ 100 < 999 is sure because it has already been sorted. Put 999 in last of the sorted_list so that you can avoid unnecessary comparison. Example: group0 group1 [40, 100] 75 999 -> group0 group1 [40, 100, 999] 75 """ result.append(sorted_list_2d[-1][1]) """ Insert the last odd item left if there is. Example: group0 group1 [40, 100, 999] 75 -> group0 group1 [40, 100, 999, 10000] 75 """ if has_last_odd_item: pivot = collection[-1] result = binary_search_insertion(result, pivot) """ Insert the remaining items. In this case, 40 < 75 is sure because it has already been sorted. Therefore, you only need to insert 75 into [100, 999, 10000], so that you can avoid unnecessary comparison. Example: group0 group1 [40, 100, 999, 10000] ^ You don't need to compare with this as 40 < 75 is already sure. 75 -> [40, 75, 100, 999, 10000] """ is_last_odd_item_inserted_before_this_index = False for i in range(len(sorted_list_2d) - 1): if result[i] == collection[-i]: is_last_odd_item_inserted_before_this_index = True pivot = sorted_list_2d[i][1] # If last_odd_item is inserted before the item's index, # you should forward index one more. if is_last_odd_item_inserted_before_this_index: result = result[: i + 2] + binary_search_insertion(result[i + 2 :], pivot) else: result = result[: i + 1] + binary_search_insertion(result[i + 1 :], pivot) return result if __name__ == "__main__": user_input = input("Enter numbers separated by a comma:\n").strip() unsorted = [int(item) for item in user_input.split(",")] print(merge_insertion_sort(unsorted))
-1
TheAlgorithms/Python
4,278
fix(mypy): Fix annotations for 13 cipher algorithms
Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
dhruvmanila
2021-03-20T09:09:15Z
2021-03-22T06:59:51Z
99a42f2b5821356718fb7d011ac711a6b4a63a83
14bcb580d55ee90614ad258ea31ef8fe4e4b5c40
fix(mypy): Fix annotations for 13 cipher algorithms. Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" The Fibonacci sequence is defined by the recurrence relation: Fn = Fn−1 + Fn−2, where F1 = 1 and F2 = 1. Hence the first 12 terms will be: F1 = 1 F2 = 1 F3 = 2 F4 = 3 F5 = 5 F6 = 8 F7 = 13 F8 = 21 F9 = 34 F10 = 55 F11 = 89 F12 = 144 The 12th term, F12, is the first term to contain three digits. What is the index of the first term in the Fibonacci sequence to contain 1000 digits? """ def fibonacci(n: int) -> int: """ Computes the Fibonacci number for input n by iterating through n numbers and creating an array of ints using the Fibonacci formula. Returns the nth element of the array. >>> fibonacci(2) 1 >>> fibonacci(3) 2 >>> fibonacci(5) 5 >>> fibonacci(10) 55 >>> fibonacci(12) 144 """ if n == 1 or type(n) is not int: return 0 elif n == 2: return 1 else: sequence = [0, 1] for i in range(2, n + 1): sequence.append(sequence[i - 1] + sequence[i - 2]) return sequence[n] def fibonacci_digits_index(n: int) -> int: """ Computes incrementing Fibonacci numbers starting from 3 until the length of the resulting Fibonacci result is the input value n. Returns the term of the Fibonacci sequence where this occurs. >>> fibonacci_digits_index(1000) 4782 >>> fibonacci_digits_index(100) 476 >>> fibonacci_digits_index(50) 237 >>> fibonacci_digits_index(3) 12 """ digits = 0 index = 2 while digits < n: index += 1 digits = len(str(fibonacci(index))) return index def solution(n: int = 1000) -> int: """ Returns the index of the first term in the Fibonacci sequence to contain n digits. >>> solution(1000) 4782 >>> solution(100) 476 >>> solution(50) 237 >>> solution(3) 12 """ return fibonacci_digits_index(n) if __name__ == "__main__": print(solution(int(str(input()).strip())))
""" The Fibonacci sequence is defined by the recurrence relation: Fn = Fn−1 + Fn−2, where F1 = 1 and F2 = 1. Hence the first 12 terms will be: F1 = 1 F2 = 1 F3 = 2 F4 = 3 F5 = 5 F6 = 8 F7 = 13 F8 = 21 F9 = 34 F10 = 55 F11 = 89 F12 = 144 The 12th term, F12, is the first term to contain three digits. What is the index of the first term in the Fibonacci sequence to contain 1000 digits? """ def fibonacci(n: int) -> int: """ Computes the Fibonacci number for input n by iterating through n numbers and creating an array of ints using the Fibonacci formula. Returns the nth element of the array. >>> fibonacci(2) 1 >>> fibonacci(3) 2 >>> fibonacci(5) 5 >>> fibonacci(10) 55 >>> fibonacci(12) 144 """ if n == 1 or type(n) is not int: return 0 elif n == 2: return 1 else: sequence = [0, 1] for i in range(2, n + 1): sequence.append(sequence[i - 1] + sequence[i - 2]) return sequence[n] def fibonacci_digits_index(n: int) -> int: """ Computes incrementing Fibonacci numbers starting from 3 until the length of the resulting Fibonacci result is the input value n. Returns the term of the Fibonacci sequence where this occurs. >>> fibonacci_digits_index(1000) 4782 >>> fibonacci_digits_index(100) 476 >>> fibonacci_digits_index(50) 237 >>> fibonacci_digits_index(3) 12 """ digits = 0 index = 2 while digits < n: index += 1 digits = len(str(fibonacci(index))) return index def solution(n: int = 1000) -> int: """ Returns the index of the first term in the Fibonacci sequence to contain n digits. >>> solution(1000) 4782 >>> solution(100) 476 >>> solution(50) 237 >>> solution(3) 12 """ return fibonacci_digits_index(n) if __name__ == "__main__": print(solution(int(str(input()).strip())))
-1
TheAlgorithms/Python
4,278
fix(mypy): Fix annotations for 13 cipher algorithms
Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
dhruvmanila
2021-03-20T09:09:15Z
2021-03-22T06:59:51Z
99a42f2b5821356718fb7d011ac711a6b4a63a83
14bcb580d55ee90614ad258ea31ef8fe4e4b5c40
fix(mypy): Fix annotations for 13 cipher algorithms. Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" This algorithm helps you to swap cases. User will give input and then program will perform swap cases. In other words, convert all lowercase letters to uppercase letters and vice versa. For example: 1. Please input sentence: Algorithm.Python@89 aLGORITHM.pYTHON@89 2. Please input sentence: github.com/mayur200 GITHUB.COM/MAYUR200 """ def swap_case(sentence: str) -> str: """ This function will convert all lowercase letters to uppercase letters and vice versa. >>> swap_case('Algorithm.Python@89') 'aLGORITHM.pYTHON@89' """ new_string = "" for char in sentence: if char.isupper(): new_string += char.lower() elif char.islower(): new_string += char.upper() else: new_string += char return new_string if __name__ == "__main__": print(swap_case(input("Please input sentence: ")))
""" This algorithm helps you to swap cases. User will give input and then program will perform swap cases. In other words, convert all lowercase letters to uppercase letters and vice versa. For example: 1. Please input sentence: Algorithm.Python@89 aLGORITHM.pYTHON@89 2. Please input sentence: github.com/mayur200 GITHUB.COM/MAYUR200 """ def swap_case(sentence: str) -> str: """ This function will convert all lowercase letters to uppercase letters and vice versa. >>> swap_case('Algorithm.Python@89') 'aLGORITHM.pYTHON@89' """ new_string = "" for char in sentence: if char.isupper(): new_string += char.lower() elif char.islower(): new_string += char.upper() else: new_string += char return new_string if __name__ == "__main__": print(swap_case(input("Please input sentence: ")))
-1
TheAlgorithms/Python
4,278
fix(mypy): Fix annotations for 13 cipher algorithms
Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
dhruvmanila
2021-03-20T09:09:15Z
2021-03-22T06:59:51Z
99a42f2b5821356718fb7d011ac711a6b4a63a83
14bcb580d55ee90614ad258ea31ef8fe4e4b5c40
fix(mypy): Fix annotations for 13 cipher algorithms. Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
import math from timeit import timeit def num_digits(n: int) -> int: """ Find the number of digits in a number. >>> num_digits(12345) 5 >>> num_digits(123) 3 >>> num_digits(0) 1 >>> num_digits(-1) 1 >>> num_digits(-123456) 6 """ digits = 0 n = abs(n) while True: n = n // 10 digits += 1 if n == 0: break return digits def num_digits_fast(n: int) -> int: """ Find the number of digits in a number. abs() is used as logarithm for negative numbers is not defined. >>> num_digits_fast(12345) 5 >>> num_digits_fast(123) 3 >>> num_digits_fast(0) 1 >>> num_digits_fast(-1) 1 >>> num_digits_fast(-123456) 6 """ return 1 if n == 0 else math.floor(math.log(abs(n), 10) + 1) def num_digits_faster(n: int) -> int: """ Find the number of digits in a number. abs() is used for negative numbers >>> num_digits_faster(12345) 5 >>> num_digits_faster(123) 3 >>> num_digits_faster(0) 1 >>> num_digits_faster(-1) 1 >>> num_digits_faster(-123456) 6 """ return len(str(abs(n))) def benchmark() -> None: """ Benchmark code for comparing 3 functions, with 3 different length int values. """ print("\nFor small_num = ", small_num, ":") print( "> num_digits()", "\t\tans =", num_digits(small_num), "\ttime =", timeit("z.num_digits(z.small_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_fast()", "\tans =", num_digits_fast(small_num), "\ttime =", timeit("z.num_digits_fast(z.small_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_faster()", "\tans =", num_digits_faster(small_num), "\ttime =", timeit("z.num_digits_faster(z.small_num)", setup="import __main__ as z"), "seconds", ) print("\nFor medium_num = ", medium_num, ":") print( "> num_digits()", "\t\tans =", num_digits(medium_num), "\ttime =", timeit("z.num_digits(z.medium_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_fast()", "\tans =", num_digits_fast(medium_num), "\ttime =", timeit("z.num_digits_fast(z.medium_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_faster()", "\tans =", num_digits_faster(medium_num), "\ttime =", timeit("z.num_digits_faster(z.medium_num)", setup="import __main__ as z"), "seconds", ) print("\nFor large_num = ", large_num, ":") print( "> num_digits()", "\t\tans =", num_digits(large_num), "\ttime =", timeit("z.num_digits(z.large_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_fast()", "\tans =", num_digits_fast(large_num), "\ttime =", timeit("z.num_digits_fast(z.large_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_faster()", "\tans =", num_digits_faster(large_num), "\ttime =", timeit("z.num_digits_faster(z.large_num)", setup="import __main__ as z"), "seconds", ) if __name__ == "__main__": small_num = 262144 medium_num = 1125899906842624 large_num = 1267650600228229401496703205376 benchmark() import doctest doctest.testmod()
import math from timeit import timeit def num_digits(n: int) -> int: """ Find the number of digits in a number. >>> num_digits(12345) 5 >>> num_digits(123) 3 >>> num_digits(0) 1 >>> num_digits(-1) 1 >>> num_digits(-123456) 6 """ digits = 0 n = abs(n) while True: n = n // 10 digits += 1 if n == 0: break return digits def num_digits_fast(n: int) -> int: """ Find the number of digits in a number. abs() is used as logarithm for negative numbers is not defined. >>> num_digits_fast(12345) 5 >>> num_digits_fast(123) 3 >>> num_digits_fast(0) 1 >>> num_digits_fast(-1) 1 >>> num_digits_fast(-123456) 6 """ return 1 if n == 0 else math.floor(math.log(abs(n), 10) + 1) def num_digits_faster(n: int) -> int: """ Find the number of digits in a number. abs() is used for negative numbers >>> num_digits_faster(12345) 5 >>> num_digits_faster(123) 3 >>> num_digits_faster(0) 1 >>> num_digits_faster(-1) 1 >>> num_digits_faster(-123456) 6 """ return len(str(abs(n))) def benchmark() -> None: """ Benchmark code for comparing 3 functions, with 3 different length int values. """ print("\nFor small_num = ", small_num, ":") print( "> num_digits()", "\t\tans =", num_digits(small_num), "\ttime =", timeit("z.num_digits(z.small_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_fast()", "\tans =", num_digits_fast(small_num), "\ttime =", timeit("z.num_digits_fast(z.small_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_faster()", "\tans =", num_digits_faster(small_num), "\ttime =", timeit("z.num_digits_faster(z.small_num)", setup="import __main__ as z"), "seconds", ) print("\nFor medium_num = ", medium_num, ":") print( "> num_digits()", "\t\tans =", num_digits(medium_num), "\ttime =", timeit("z.num_digits(z.medium_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_fast()", "\tans =", num_digits_fast(medium_num), "\ttime =", timeit("z.num_digits_fast(z.medium_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_faster()", "\tans =", num_digits_faster(medium_num), "\ttime =", timeit("z.num_digits_faster(z.medium_num)", setup="import __main__ as z"), "seconds", ) print("\nFor large_num = ", large_num, ":") print( "> num_digits()", "\t\tans =", num_digits(large_num), "\ttime =", timeit("z.num_digits(z.large_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_fast()", "\tans =", num_digits_fast(large_num), "\ttime =", timeit("z.num_digits_fast(z.large_num)", setup="import __main__ as z"), "seconds", ) print( "> num_digits_faster()", "\tans =", num_digits_faster(large_num), "\ttime =", timeit("z.num_digits_faster(z.large_num)", setup="import __main__ as z"), "seconds", ) if __name__ == "__main__": small_num = 262144 medium_num = 1125899906842624 large_num = 1267650600228229401496703205376 benchmark() import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,278
fix(mypy): Fix annotations for 13 cipher algorithms
Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
dhruvmanila
2021-03-20T09:09:15Z
2021-03-22T06:59:51Z
99a42f2b5821356718fb7d011ac711a6b4a63a83
14bcb580d55ee90614ad258ea31ef8fe4e4b5c40
fix(mypy): Fix annotations for 13 cipher algorithms. Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,278
fix(mypy): Fix annotations for 13 cipher algorithms
Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
dhruvmanila
2021-03-20T09:09:15Z
2021-03-22T06:59:51Z
99a42f2b5821356718fb7d011ac711a6b4a63a83
14bcb580d55ee90614ad258ea31ef8fe4e4b5c40
fix(mypy): Fix annotations for 13 cipher algorithms. Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,278
fix(mypy): Fix annotations for 13 cipher algorithms
Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
dhruvmanila
2021-03-20T09:09:15Z
2021-03-22T06:59:51Z
99a42f2b5821356718fb7d011ac711a6b4a63a83
14bcb580d55ee90614ad258ea31ef8fe4e4b5c40
fix(mypy): Fix annotations for 13 cipher algorithms. Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" https://en.wikipedia.org/wiki/Lucas_number """ def recursive_lucas_number(n_th_number: int) -> int: """ Returns the nth lucas number >>> recursive_lucas_number(1) 1 >>> recursive_lucas_number(20) 15127 >>> recursive_lucas_number(0) 2 >>> recursive_lucas_number(25) 167761 >>> recursive_lucas_number(-1.5) Traceback (most recent call last): ... TypeError: recursive_lucas_number accepts only integer arguments. """ if not isinstance(n_th_number, int): raise TypeError("recursive_lucas_number accepts only integer arguments.") if n_th_number == 0: return 2 if n_th_number == 1: return 1 return recursive_lucas_number(n_th_number - 1) + recursive_lucas_number( n_th_number - 2 ) def dynamic_lucas_number(n_th_number: int) -> int: """ Returns the nth lucas number >>> dynamic_lucas_number(1) 1 >>> dynamic_lucas_number(20) 15127 >>> dynamic_lucas_number(0) 2 >>> dynamic_lucas_number(25) 167761 >>> dynamic_lucas_number(-1.5) Traceback (most recent call last): ... TypeError: dynamic_lucas_number accepts only integer arguments. """ if not isinstance(n_th_number, int): raise TypeError("dynamic_lucas_number accepts only integer arguments.") a, b = 2, 1 for i in range(n_th_number): a, b = b, a + b return a if __name__ == "__main__": from doctest import testmod testmod() n = int(input("Enter the number of terms in lucas series:\n").strip()) print("Using recursive function to calculate lucas series:") print(" ".join(str(recursive_lucas_number(i)) for i in range(n))) print("\nUsing dynamic function to calculate lucas series:") print(" ".join(str(dynamic_lucas_number(i)) for i in range(n)))
""" https://en.wikipedia.org/wiki/Lucas_number """ def recursive_lucas_number(n_th_number: int) -> int: """ Returns the nth lucas number >>> recursive_lucas_number(1) 1 >>> recursive_lucas_number(20) 15127 >>> recursive_lucas_number(0) 2 >>> recursive_lucas_number(25) 167761 >>> recursive_lucas_number(-1.5) Traceback (most recent call last): ... TypeError: recursive_lucas_number accepts only integer arguments. """ if not isinstance(n_th_number, int): raise TypeError("recursive_lucas_number accepts only integer arguments.") if n_th_number == 0: return 2 if n_th_number == 1: return 1 return recursive_lucas_number(n_th_number - 1) + recursive_lucas_number( n_th_number - 2 ) def dynamic_lucas_number(n_th_number: int) -> int: """ Returns the nth lucas number >>> dynamic_lucas_number(1) 1 >>> dynamic_lucas_number(20) 15127 >>> dynamic_lucas_number(0) 2 >>> dynamic_lucas_number(25) 167761 >>> dynamic_lucas_number(-1.5) Traceback (most recent call last): ... TypeError: dynamic_lucas_number accepts only integer arguments. """ if not isinstance(n_th_number, int): raise TypeError("dynamic_lucas_number accepts only integer arguments.") a, b = 2, 1 for i in range(n_th_number): a, b = b, a + b return a if __name__ == "__main__": from doctest import testmod testmod() n = int(input("Enter the number of terms in lucas series:\n").strip()) print("Using recursive function to calculate lucas series:") print(" ".join(str(recursive_lucas_number(i)) for i in range(n))) print("\nUsing dynamic function to calculate lucas series:") print(" ".join(str(dynamic_lucas_number(i)) for i in range(n)))
-1
TheAlgorithms/Python
4,278
fix(mypy): Fix annotations for 13 cipher algorithms
Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
dhruvmanila
2021-03-20T09:09:15Z
2021-03-22T06:59:51Z
99a42f2b5821356718fb7d011ac711a6b4a63a83
14bcb580d55ee90614ad258ea31ef8fe4e4b5c40
fix(mypy): Fix annotations for 13 cipher algorithms. Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
def factorial(n: int) -> int: """ Calculate the factorial of a positive integer https://en.wikipedia.org/wiki/Factorial >>> import math >>> all(factorial(i) == math.factorial(i) for i in range(20)) True >>> factorial(0.1) Traceback (most recent call last): ... ValueError: factorial() only accepts integral values >>> factorial(-1) Traceback (most recent call last): ... ValueError: factorial() not defined for negative values """ if not isinstance(n, int): raise ValueError("factorial() only accepts integral values") if n < 0: raise ValueError("factorial() not defined for negative values") return 1 if n == 0 or n == 1 else n * factorial(n - 1) if __name__ == "__main__": import doctest doctest.testmod()
def factorial(n: int) -> int: """ Calculate the factorial of a positive integer https://en.wikipedia.org/wiki/Factorial >>> import math >>> all(factorial(i) == math.factorial(i) for i in range(20)) True >>> factorial(0.1) Traceback (most recent call last): ... ValueError: factorial() only accepts integral values >>> factorial(-1) Traceback (most recent call last): ... ValueError: factorial() not defined for negative values """ if not isinstance(n, int): raise ValueError("factorial() only accepts integral values") if n < 0: raise ValueError("factorial() not defined for negative values") return 1 if n == 0 or n == 1 else n * factorial(n - 1) if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,278
fix(mypy): Fix annotations for 13 cipher algorithms
Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
dhruvmanila
2021-03-20T09:09:15Z
2021-03-22T06:59:51Z
99a42f2b5821356718fb7d011ac711a6b4a63a83
14bcb580d55ee90614ad258ea31ef8fe4e4b5c40
fix(mypy): Fix annotations for 13 cipher algorithms. Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/usr/bin/env python3 """ Created by sarathkaul on 14/11/19 Updated by lawric1 on 24/11/20 Authentication will be made via access token. To generate your personal access token visit https://github.com/settings/tokens. NOTE: Never hardcode any credential information in the code. Always use an environment file to store the private information and use the `os` module to get the information during runtime. Create a ".env" file in the root directory and write these two lines in that file with your token:: #!/usr/bin/env bash export USER_TOKEN="" """ import os from typing import Any, Dict import requests BASE_URL = "https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user AUTHENTICATED_USER_ENDPOINT = BASE_URL + "/user" # https://github.com/settings/tokens USER_TOKEN = os.environ.get("USER_TOKEN", "") def fetch_github_info(auth_token: str) -> Dict[Any, Any]: """ Fetch GitHub info of a user using the requests module """ headers = { "Authorization": f"token {auth_token}", "Accept": "application/vnd.github.v3+json", } return requests.get(AUTHENTICATED_USER_ENDPOINT, headers=headers).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f"{key}: {value}") else: raise ValueError("'USER_TOKEN' field cannot be empty.")
#!/usr/bin/env python3 """ Created by sarathkaul on 14/11/19 Updated by lawric1 on 24/11/20 Authentication will be made via access token. To generate your personal access token visit https://github.com/settings/tokens. NOTE: Never hardcode any credential information in the code. Always use an environment file to store the private information and use the `os` module to get the information during runtime. Create a ".env" file in the root directory and write these two lines in that file with your token:: #!/usr/bin/env bash export USER_TOKEN="" """ import os from typing import Any, Dict import requests BASE_URL = "https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user AUTHENTICATED_USER_ENDPOINT = BASE_URL + "/user" # https://github.com/settings/tokens USER_TOKEN = os.environ.get("USER_TOKEN", "") def fetch_github_info(auth_token: str) -> Dict[Any, Any]: """ Fetch GitHub info of a user using the requests module """ headers = { "Authorization": f"token {auth_token}", "Accept": "application/vnd.github.v3+json", } return requests.get(AUTHENTICATED_USER_ENDPOINT, headers=headers).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f"{key}: {value}") else: raise ValueError("'USER_TOKEN' field cannot be empty.")
-1
TheAlgorithms/Python
4,278
fix(mypy): Fix annotations for 13 cipher algorithms
Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
dhruvmanila
2021-03-20T09:09:15Z
2021-03-22T06:59:51Z
99a42f2b5821356718fb7d011ac711a6b4a63a83
14bcb580d55ee90614ad258ea31ef8fe4e4b5c40
fix(mypy): Fix annotations for 13 cipher algorithms. Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 1: https://projecteuler.net/problem=1 Multiples of 3 and 5 If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below 1000. """ def solution(n: int = 1000) -> int: """ Returns the sum of all the multiples of 3 or 5 below n. A straightforward pythonic solution using list comprehension. >>> solution(3) 0 >>> solution(4) 3 >>> solution(10) 23 >>> solution(600) 83700 """ return sum([i for i in range(n) if i % 3 == 0 or i % 5 == 0]) if __name__ == "__main__": print(f"{solution() = }")
""" Project Euler Problem 1: https://projecteuler.net/problem=1 Multiples of 3 and 5 If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below 1000. """ def solution(n: int = 1000) -> int: """ Returns the sum of all the multiples of 3 or 5 below n. A straightforward pythonic solution using list comprehension. >>> solution(3) 0 >>> solution(4) 3 >>> solution(10) 23 >>> solution(600) 83700 """ return sum([i for i in range(n) if i % 3 == 0 or i % 5 == 0]) if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
4,278
fix(mypy): Fix annotations for 13 cipher algorithms
Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
dhruvmanila
2021-03-20T09:09:15Z
2021-03-22T06:59:51Z
99a42f2b5821356718fb7d011ac711a6b4a63a83
14bcb580d55ee90614ad258ea31ef8fe4e4b5c40
fix(mypy): Fix annotations for 13 cipher algorithms. Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/usr/bin/env python3 from .number_theory.prime_numbers import next_prime class HashTable: """ Basic Hash Table example with open addressing and linear probing """ def __init__(self, size_table, charge_factor=None, lim_charge=None): self.size_table = size_table self.values = [None] * self.size_table self.lim_charge = 0.75 if lim_charge is None else lim_charge self.charge_factor = 1 if charge_factor is None else charge_factor self.__aux_list = [] self._keys = {} def keys(self): return self._keys def balanced_factor(self): return sum([1 for slot in self.values if slot is not None]) / ( self.size_table * self.charge_factor ) def hash_function(self, key): return key % self.size_table def _step_by_step(self, step_ord): print(f"step {step_ord}") print([i for i in range(len(self.values))]) print(self.values) def bulk_insert(self, values): i = 1 self.__aux_list = values for value in values: self.insert_data(value) self._step_by_step(i) i += 1 def _set_value(self, key, data): self.values[key] = data self._keys[key] = data def _collision_resolution(self, key, data=None): new_key = self.hash_function(key + 1) while self.values[new_key] is not None and self.values[new_key] != key: if self.values.count(None) > 0: new_key = self.hash_function(new_key + 1) else: new_key = None break return new_key def rehashing(self): survivor_values = [value for value in self.values if value is not None] self.size_table = next_prime(self.size_table, factor=2) self._keys.clear() self.values = [None] * self.size_table # hell's pointers D: don't DRY ;/ for value in survivor_values: self.insert_data(value) def insert_data(self, data): key = self.hash_function(data) if self.values[key] is None: self._set_value(key, data) elif self.values[key] == data: pass else: collision_resolution = self._collision_resolution(key, data) if collision_resolution is not None: self._set_value(collision_resolution, data) else: self.rehashing() self.insert_data(data)
#!/usr/bin/env python3 from .number_theory.prime_numbers import next_prime class HashTable: """ Basic Hash Table example with open addressing and linear probing """ def __init__(self, size_table, charge_factor=None, lim_charge=None): self.size_table = size_table self.values = [None] * self.size_table self.lim_charge = 0.75 if lim_charge is None else lim_charge self.charge_factor = 1 if charge_factor is None else charge_factor self.__aux_list = [] self._keys = {} def keys(self): return self._keys def balanced_factor(self): return sum([1 for slot in self.values if slot is not None]) / ( self.size_table * self.charge_factor ) def hash_function(self, key): return key % self.size_table def _step_by_step(self, step_ord): print(f"step {step_ord}") print([i for i in range(len(self.values))]) print(self.values) def bulk_insert(self, values): i = 1 self.__aux_list = values for value in values: self.insert_data(value) self._step_by_step(i) i += 1 def _set_value(self, key, data): self.values[key] = data self._keys[key] = data def _collision_resolution(self, key, data=None): new_key = self.hash_function(key + 1) while self.values[new_key] is not None and self.values[new_key] != key: if self.values.count(None) > 0: new_key = self.hash_function(new_key + 1) else: new_key = None break return new_key def rehashing(self): survivor_values = [value for value in self.values if value is not None] self.size_table = next_prime(self.size_table, factor=2) self._keys.clear() self.values = [None] * self.size_table # hell's pointers D: don't DRY ;/ for value in survivor_values: self.insert_data(value) def insert_data(self, data): key = self.hash_function(data) if self.values[key] is None: self._set_value(key, data) elif self.values[key] == data: pass else: collision_resolution = self._collision_resolution(key, data) if collision_resolution is not None: self._set_value(collision_resolution, data) else: self.rehashing() self.insert_data(data)
-1
TheAlgorithms/Python
4,278
fix(mypy): Fix annotations for 13 cipher algorithms
Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
dhruvmanila
2021-03-20T09:09:15Z
2021-03-22T06:59:51Z
99a42f2b5821356718fb7d011ac711a6b4a63a83
14bcb580d55ee90614ad258ea31ef8fe4e4b5c40
fix(mypy): Fix annotations for 13 cipher algorithms. Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
"""Uses Pythagoras theorem to calculate the distance between two points in space.""" import math class Point: def __init__(self, x, y, z): self.x = x self.y = y self.z = z def __repr__(self) -> str: return f"Point({self.x}, {self.y}, {self.z})" def distance(a: Point, b: Point) -> float: return math.sqrt(abs((b.x - a.x) ** 2 + (b.y - a.y) ** 2 + (b.z - a.z) ** 2)) def test_distance() -> None: """ >>> point1 = Point(2, -1, 7) >>> point2 = Point(1, -3, 5) >>> print(f"Distance from {point1} to {point2} is {distance(point1, point2)}") Distance from Point(2, -1, 7) to Point(1, -3, 5) is 3.0 """ pass if __name__ == "__main__": import doctest doctest.testmod()
"""Uses Pythagoras theorem to calculate the distance between two points in space.""" import math class Point: def __init__(self, x, y, z): self.x = x self.y = y self.z = z def __repr__(self) -> str: return f"Point({self.x}, {self.y}, {self.z})" def distance(a: Point, b: Point) -> float: return math.sqrt(abs((b.x - a.x) ** 2 + (b.y - a.y) ** 2 + (b.z - a.z) ** 2)) def test_distance() -> None: """ >>> point1 = Point(2, -1, 7) >>> point2 = Point(1, -3, 5) >>> print(f"Distance from {point1} to {point2} is {distance(point1, point2)}") Distance from Point(2, -1, 7) to Point(1, -3, 5) is 3.0 """ pass if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,278
fix(mypy): Fix annotations for 13 cipher algorithms
Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
dhruvmanila
2021-03-20T09:09:15Z
2021-03-22T06:59:51Z
99a42f2b5821356718fb7d011ac711a6b4a63a83
14bcb580d55ee90614ad258ea31ef8fe4e4b5c40
fix(mypy): Fix annotations for 13 cipher algorithms. Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
def mixed_keyword(key: str = "college", pt: str = "UNIVERSITY") -> str: """ For key:hello H E L O A B C D F G I J K M N P Q R S T U V W X Y Z and map vertically >>> mixed_keyword("college", "UNIVERSITY") # doctest: +NORMALIZE_WHITESPACE {'A': 'C', 'B': 'A', 'C': 'I', 'D': 'P', 'E': 'U', 'F': 'Z', 'G': 'O', 'H': 'B', 'I': 'J', 'J': 'Q', 'K': 'V', 'L': 'L', 'M': 'D', 'N': 'K', 'O': 'R', 'P': 'W', 'Q': 'E', 'R': 'F', 'S': 'M', 'T': 'S', 'U': 'X', 'V': 'G', 'W': 'H', 'X': 'N', 'Y': 'T', 'Z': 'Y'} 'XKJGUFMJST' """ key = key.upper() pt = pt.upper() temp = [] for i in key: if i not in temp: temp.append(i) len_temp = len(temp) # print(temp) alpha = [] modalpha = [] for i in range(65, 91): t = chr(i) alpha.append(t) if t not in temp: temp.append(t) # print(temp) r = int(26 / 4) # print(r) k = 0 for i in range(r): t = [] for j in range(len_temp): t.append(temp[k]) if not (k < 25): break k += 1 modalpha.append(t) # print(modalpha) d = {} j = 0 k = 0 for j in range(len_temp): for i in modalpha: if not (len(i) - 1 >= j): break d[alpha[k]] = i[j] if not k < 25: break k += 1 print(d) cypher = "" for i in pt: cypher += d[i] return cypher print(mixed_keyword("college", "UNIVERSITY"))
def mixed_keyword(key: str = "college", pt: str = "UNIVERSITY") -> str: """ For key:hello H E L O A B C D F G I J K M N P Q R S T U V W X Y Z and map vertically >>> mixed_keyword("college", "UNIVERSITY") # doctest: +NORMALIZE_WHITESPACE {'A': 'C', 'B': 'A', 'C': 'I', 'D': 'P', 'E': 'U', 'F': 'Z', 'G': 'O', 'H': 'B', 'I': 'J', 'J': 'Q', 'K': 'V', 'L': 'L', 'M': 'D', 'N': 'K', 'O': 'R', 'P': 'W', 'Q': 'E', 'R': 'F', 'S': 'M', 'T': 'S', 'U': 'X', 'V': 'G', 'W': 'H', 'X': 'N', 'Y': 'T', 'Z': 'Y'} 'XKJGUFMJST' """ key = key.upper() pt = pt.upper() temp = [] for i in key: if i not in temp: temp.append(i) len_temp = len(temp) # print(temp) alpha = [] modalpha = [] for i in range(65, 91): t = chr(i) alpha.append(t) if t not in temp: temp.append(t) # print(temp) r = int(26 / 4) # print(r) k = 0 for i in range(r): t = [] for j in range(len_temp): t.append(temp[k]) if not (k < 25): break k += 1 modalpha.append(t) # print(modalpha) d = {} j = 0 k = 0 for j in range(len_temp): for i in modalpha: if not (len(i) - 1 >= j): break d[alpha[k]] = i[j] if not k < 25: break k += 1 print(d) cypher = "" for i in pt: cypher += d[i] return cypher print(mixed_keyword("college", "UNIVERSITY"))
-1
TheAlgorithms/Python
4,278
fix(mypy): Fix annotations for 13 cipher algorithms
Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
dhruvmanila
2021-03-20T09:09:15Z
2021-03-22T06:59:51Z
99a42f2b5821356718fb7d011ac711a6b4a63a83
14bcb580d55ee90614ad258ea31ef8fe4e4b5c40
fix(mypy): Fix annotations for 13 cipher algorithms. Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/usr/bin/env python3 import importlib.util import json import os import pathlib from types import ModuleType from typing import Dict, List import pytest import requests PROJECT_EULER_DIR_PATH = pathlib.Path.cwd().joinpath("project_euler") PROJECT_EULER_ANSWERS_PATH = pathlib.Path.cwd().joinpath( "scripts", "project_euler_answers.json" ) with open(PROJECT_EULER_ANSWERS_PATH) as file_handle: PROBLEM_ANSWERS: Dict[str, str] = json.load(file_handle) def convert_path_to_module(file_path: pathlib.Path) -> ModuleType: """Converts a file path to a Python module""" spec = importlib.util.spec_from_file_location(file_path.name, str(file_path)) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) return module def all_solution_file_paths() -> List[pathlib.Path]: """Collects all the solution file path in the Project Euler directory""" solution_file_paths = [] for problem_dir_path in PROJECT_EULER_DIR_PATH.iterdir(): if problem_dir_path.is_file() or problem_dir_path.name.startswith("_"): continue for file_path in problem_dir_path.iterdir(): if file_path.suffix != ".py" or file_path.name.startswith(("_", "test")): continue solution_file_paths.append(file_path) return solution_file_paths def get_files_url() -> str: """Return the pull request number which triggered this action.""" with open(os.environ["GITHUB_EVENT_PATH"]) as file: event = json.load(file) return event["pull_request"]["url"] + "/files" def added_solution_file_path() -> List[pathlib.Path]: """Collects only the solution file path which got added in the current pull request. This will only be triggered if the script is ran from GitHub Actions. """ solution_file_paths = [] headers = { "Accept": "application/vnd.github.v3+json", "Authorization": "token " + os.environ["GITHUB_TOKEN"], } files = requests.get(get_files_url(), headers=headers).json() for file in files: filepath = pathlib.Path.cwd().joinpath(file["filename"]) if ( filepath.suffix != ".py" or filepath.name.startswith(("_", "test")) or not filepath.name.startswith("sol") ): continue solution_file_paths.append(filepath) return solution_file_paths def collect_solution_file_paths() -> List[pathlib.Path]: if os.environ.get("CI") and os.environ.get("GITHUB_EVENT_NAME") == "pull_request": # Return only if there are any, otherwise default to all solutions if filepaths := added_solution_file_path(): return filepaths return all_solution_file_paths() @pytest.mark.parametrize( "solution_path", collect_solution_file_paths(), ids=lambda path: f"{path.parent.name}/{path.name}", ) def test_project_euler(solution_path: pathlib.Path) -> None: """Testing for all Project Euler solutions""" # problem_[extract this part] and pad it with zeroes for width 3 problem_number: str = solution_path.parent.name[8:].zfill(3) expected: str = PROBLEM_ANSWERS[problem_number] solution_module = convert_path_to_module(solution_path) answer = str(solution_module.solution()) assert answer == expected, f"Expected {expected} but got {answer}"
#!/usr/bin/env python3 import importlib.util import json import os import pathlib from types import ModuleType from typing import Dict, List import pytest import requests PROJECT_EULER_DIR_PATH = pathlib.Path.cwd().joinpath("project_euler") PROJECT_EULER_ANSWERS_PATH = pathlib.Path.cwd().joinpath( "scripts", "project_euler_answers.json" ) with open(PROJECT_EULER_ANSWERS_PATH) as file_handle: PROBLEM_ANSWERS: Dict[str, str] = json.load(file_handle) def convert_path_to_module(file_path: pathlib.Path) -> ModuleType: """Converts a file path to a Python module""" spec = importlib.util.spec_from_file_location(file_path.name, str(file_path)) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) return module def all_solution_file_paths() -> List[pathlib.Path]: """Collects all the solution file path in the Project Euler directory""" solution_file_paths = [] for problem_dir_path in PROJECT_EULER_DIR_PATH.iterdir(): if problem_dir_path.is_file() or problem_dir_path.name.startswith("_"): continue for file_path in problem_dir_path.iterdir(): if file_path.suffix != ".py" or file_path.name.startswith(("_", "test")): continue solution_file_paths.append(file_path) return solution_file_paths def get_files_url() -> str: """Return the pull request number which triggered this action.""" with open(os.environ["GITHUB_EVENT_PATH"]) as file: event = json.load(file) return event["pull_request"]["url"] + "/files" def added_solution_file_path() -> List[pathlib.Path]: """Collects only the solution file path which got added in the current pull request. This will only be triggered if the script is ran from GitHub Actions. """ solution_file_paths = [] headers = { "Accept": "application/vnd.github.v3+json", "Authorization": "token " + os.environ["GITHUB_TOKEN"], } files = requests.get(get_files_url(), headers=headers).json() for file in files: filepath = pathlib.Path.cwd().joinpath(file["filename"]) if ( filepath.suffix != ".py" or filepath.name.startswith(("_", "test")) or not filepath.name.startswith("sol") ): continue solution_file_paths.append(filepath) return solution_file_paths def collect_solution_file_paths() -> List[pathlib.Path]: if os.environ.get("CI") and os.environ.get("GITHUB_EVENT_NAME") == "pull_request": # Return only if there are any, otherwise default to all solutions if filepaths := added_solution_file_path(): return filepaths return all_solution_file_paths() @pytest.mark.parametrize( "solution_path", collect_solution_file_paths(), ids=lambda path: f"{path.parent.name}/{path.name}", ) def test_project_euler(solution_path: pathlib.Path) -> None: """Testing for all Project Euler solutions""" # problem_[extract this part] and pad it with zeroes for width 3 problem_number: str = solution_path.parent.name[8:].zfill(3) expected: str = PROBLEM_ANSWERS[problem_number] solution_module = convert_path_to_module(solution_path) answer = str(solution_module.solution()) assert answer == expected, f"Expected {expected} but got {answer}"
-1
TheAlgorithms/Python
4,278
fix(mypy): Fix annotations for 13 cipher algorithms
Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
dhruvmanila
2021-03-20T09:09:15Z
2021-03-22T06:59:51Z
99a42f2b5821356718fb7d011ac711a6b4a63a83
14bcb580d55ee90614ad258ea31ef8fe4e4b5c40
fix(mypy): Fix annotations for 13 cipher algorithms. Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" * Binary Exponentiation with Multiplication * This is a method to find a*b in a time complexity of O(log b) * This is one of the most commonly used methods of finding result of multiplication. * Also useful in cases where solution to (a*b)%c is required, * where a,b,c can be numbers over the computers calculation limits. * Done using iteration, can also be done using recursion * @author chinmoy159 * @version 1.0 dated 10/08/2017 """ def b_expo(a, b): res = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def b_expo_mod(a, b, c): res = 0 while b > 0: if b & 1: res = ((res % c) + (a % c)) % c a += a b >>= 1 return res """ * Wondering how this method works ! * It's pretty simple. * Let's say you need to calculate a ^ b * RULE 1 : a * b = (a+a) * (b/2) ---- example : 4 * 4 = (4+4) * (4/2) = 8 * 2 * RULE 2 : IF b is ODD, then ---- a * b = a + (a * (b - 1)) :: where (b - 1) is even. * Once b is even, repeat the process to get a * b * Repeat the process till b = 1 OR b = 0, because a*1 = a AND a*0 = 0 * * As far as the modulo is concerned, * the fact : (a+b) % c = ((a%c) + (b%c)) % c * Now apply RULE 1 OR 2, whichever is required. """
""" * Binary Exponentiation with Multiplication * This is a method to find a*b in a time complexity of O(log b) * This is one of the most commonly used methods of finding result of multiplication. * Also useful in cases where solution to (a*b)%c is required, * where a,b,c can be numbers over the computers calculation limits. * Done using iteration, can also be done using recursion * @author chinmoy159 * @version 1.0 dated 10/08/2017 """ def b_expo(a, b): res = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def b_expo_mod(a, b, c): res = 0 while b > 0: if b & 1: res = ((res % c) + (a % c)) % c a += a b >>= 1 return res """ * Wondering how this method works ! * It's pretty simple. * Let's say you need to calculate a ^ b * RULE 1 : a * b = (a+a) * (b/2) ---- example : 4 * 4 = (4+4) * (4/2) = 8 * 2 * RULE 2 : IF b is ODD, then ---- a * b = a + (a * (b - 1)) :: where (b - 1) is even. * Once b is even, repeat the process to get a * b * Repeat the process till b = 1 OR b = 0, because a*1 = a AND a*0 = 0 * * As far as the modulo is concerned, * the fact : (a+b) % c = ((a%c) + (b%c)) % c * Now apply RULE 1 OR 2, whichever is required. """
-1
TheAlgorithms/Python
4,278
fix(mypy): Fix annotations for 13 cipher algorithms
Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
dhruvmanila
2021-03-20T09:09:15Z
2021-03-22T06:59:51Z
99a42f2b5821356718fb7d011ac711a6b4a63a83
14bcb580d55ee90614ad258ea31ef8fe4e4b5c40
fix(mypy): Fix annotations for 13 cipher algorithms. Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" https://en.wikipedia.org/wiki/Doubly_linked_list """ class Node: def __init__(self, data): self.data = data self.previous = None self.next = None def __str__(self): return f"{self.data}" class DoublyLinkedList: def __init__(self): self.head = None self.tail = None def __iter__(self): """ >>> linked_list = DoublyLinkedList() >>> linked_list.insert_at_head('b') >>> linked_list.insert_at_head('a') >>> linked_list.insert_at_tail('c') >>> tuple(linked_list) ('a', 'b', 'c') """ node = self.head while node: yield node.data node = node.next def __str__(self): """ >>> linked_list = DoublyLinkedList() >>> linked_list.insert_at_tail('a') >>> linked_list.insert_at_tail('b') >>> linked_list.insert_at_tail('c') >>> str(linked_list) 'a->b->c' """ return "->".join([str(item) for item in self]) def __len__(self): """ >>> linked_list = DoublyLinkedList() >>> for i in range(0, 5): ... linked_list.insert_at_nth(i, i + 1) >>> len(linked_list) == 5 True """ return len(tuple(iter(self))) def insert_at_head(self, data): self.insert_at_nth(0, data) def insert_at_tail(self, data): self.insert_at_nth(len(self), data) def insert_at_nth(self, index: int, data): """ >>> linked_list = DoublyLinkedList() >>> linked_list.insert_at_nth(-1, 666) Traceback (most recent call last): .... IndexError: list index out of range >>> linked_list.insert_at_nth(1, 666) Traceback (most recent call last): .... IndexError: list index out of range >>> linked_list.insert_at_nth(0, 2) >>> linked_list.insert_at_nth(0, 1) >>> linked_list.insert_at_nth(2, 4) >>> linked_list.insert_at_nth(2, 3) >>> str(linked_list) '1->2->3->4' >>> linked_list.insert_at_nth(5, 5) Traceback (most recent call last): .... IndexError: list index out of range """ if not 0 <= index <= len(self): raise IndexError("list index out of range") new_node = Node(data) if self.head is None: self.head = self.tail = new_node elif index == 0: self.head.previous = new_node new_node.next = self.head self.head = new_node elif index == len(self): self.tail.next = new_node new_node.previous = self.tail self.tail = new_node else: temp = self.head for i in range(0, index): temp = temp.next temp.previous.next = new_node new_node.previous = temp.previous new_node.next = temp temp.previous = new_node def delete_head(self): return self.delete_at_nth(0) def delete_tail(self): return self.delete_at_nth(len(self) - 1) def delete_at_nth(self, index: int): """ >>> linked_list = DoublyLinkedList() >>> linked_list.delete_at_nth(0) Traceback (most recent call last): .... IndexError: list index out of range >>> for i in range(0, 5): ... linked_list.insert_at_nth(i, i + 1) >>> linked_list.delete_at_nth(0) == 1 True >>> linked_list.delete_at_nth(3) == 5 True >>> linked_list.delete_at_nth(1) == 3 True >>> str(linked_list) '2->4' >>> linked_list.delete_at_nth(2) Traceback (most recent call last): .... IndexError: list index out of range """ if not 0 <= index <= len(self) - 1: raise IndexError("list index out of range") delete_node = self.head # default first node if len(self) == 1: self.head = self.tail = None elif index == 0: self.head = self.head.next self.head.previous = None elif index == len(self) - 1: delete_node = self.tail self.tail = self.tail.previous self.tail.next = None else: temp = self.head for i in range(0, index): temp = temp.next delete_node = temp temp.next.previous = temp.previous temp.previous.next = temp.next return delete_node.data def delete(self, data) -> str: current = self.head while current.data != data: # Find the position to delete if current.next: current = current.next else: # We have reached the end an no value matches return "No data matching given value" if current == self.head: self.delete_head() elif current == self.tail: self.delete_tail() else: # Before: 1 <--> 2(current) <--> 3 current.previous.next = current.next # 1 --> 3 current.next.previous = current.previous # 1 <--> 3 return data def is_empty(self): """ >>> linked_list = DoublyLinkedList() >>> linked_list.is_empty() True >>> linked_list.insert_at_tail(1) >>> linked_list.is_empty() False """ return len(self) == 0 def test_doubly_linked_list() -> None: """ >>> test_doubly_linked_list() """ linked_list = DoublyLinkedList() assert linked_list.is_empty() is True assert str(linked_list) == "" try: linked_list.delete_head() assert False # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() assert False # This should not happen. except IndexError: assert True # This should happen. for i in range(10): assert len(linked_list) == i linked_list.insert_at_nth(i, i + 1) assert str(linked_list) == "->".join(str(i) for i in range(1, 11)) linked_list.insert_at_head(0) linked_list.insert_at_tail(11) assert str(linked_list) == "->".join(str(i) for i in range(0, 12)) assert linked_list.delete_head() == 0 assert linked_list.delete_at_nth(9) == 10 assert linked_list.delete_tail() == 11 assert len(linked_list) == 9 assert str(linked_list) == "->".join(str(i) for i in range(1, 10)) if __name__ == "__main__": from doctest import testmod testmod()
""" https://en.wikipedia.org/wiki/Doubly_linked_list """ class Node: def __init__(self, data): self.data = data self.previous = None self.next = None def __str__(self): return f"{self.data}" class DoublyLinkedList: def __init__(self): self.head = None self.tail = None def __iter__(self): """ >>> linked_list = DoublyLinkedList() >>> linked_list.insert_at_head('b') >>> linked_list.insert_at_head('a') >>> linked_list.insert_at_tail('c') >>> tuple(linked_list) ('a', 'b', 'c') """ node = self.head while node: yield node.data node = node.next def __str__(self): """ >>> linked_list = DoublyLinkedList() >>> linked_list.insert_at_tail('a') >>> linked_list.insert_at_tail('b') >>> linked_list.insert_at_tail('c') >>> str(linked_list) 'a->b->c' """ return "->".join([str(item) for item in self]) def __len__(self): """ >>> linked_list = DoublyLinkedList() >>> for i in range(0, 5): ... linked_list.insert_at_nth(i, i + 1) >>> len(linked_list) == 5 True """ return len(tuple(iter(self))) def insert_at_head(self, data): self.insert_at_nth(0, data) def insert_at_tail(self, data): self.insert_at_nth(len(self), data) def insert_at_nth(self, index: int, data): """ >>> linked_list = DoublyLinkedList() >>> linked_list.insert_at_nth(-1, 666) Traceback (most recent call last): .... IndexError: list index out of range >>> linked_list.insert_at_nth(1, 666) Traceback (most recent call last): .... IndexError: list index out of range >>> linked_list.insert_at_nth(0, 2) >>> linked_list.insert_at_nth(0, 1) >>> linked_list.insert_at_nth(2, 4) >>> linked_list.insert_at_nth(2, 3) >>> str(linked_list) '1->2->3->4' >>> linked_list.insert_at_nth(5, 5) Traceback (most recent call last): .... IndexError: list index out of range """ if not 0 <= index <= len(self): raise IndexError("list index out of range") new_node = Node(data) if self.head is None: self.head = self.tail = new_node elif index == 0: self.head.previous = new_node new_node.next = self.head self.head = new_node elif index == len(self): self.tail.next = new_node new_node.previous = self.tail self.tail = new_node else: temp = self.head for i in range(0, index): temp = temp.next temp.previous.next = new_node new_node.previous = temp.previous new_node.next = temp temp.previous = new_node def delete_head(self): return self.delete_at_nth(0) def delete_tail(self): return self.delete_at_nth(len(self) - 1) def delete_at_nth(self, index: int): """ >>> linked_list = DoublyLinkedList() >>> linked_list.delete_at_nth(0) Traceback (most recent call last): .... IndexError: list index out of range >>> for i in range(0, 5): ... linked_list.insert_at_nth(i, i + 1) >>> linked_list.delete_at_nth(0) == 1 True >>> linked_list.delete_at_nth(3) == 5 True >>> linked_list.delete_at_nth(1) == 3 True >>> str(linked_list) '2->4' >>> linked_list.delete_at_nth(2) Traceback (most recent call last): .... IndexError: list index out of range """ if not 0 <= index <= len(self) - 1: raise IndexError("list index out of range") delete_node = self.head # default first node if len(self) == 1: self.head = self.tail = None elif index == 0: self.head = self.head.next self.head.previous = None elif index == len(self) - 1: delete_node = self.tail self.tail = self.tail.previous self.tail.next = None else: temp = self.head for i in range(0, index): temp = temp.next delete_node = temp temp.next.previous = temp.previous temp.previous.next = temp.next return delete_node.data def delete(self, data) -> str: current = self.head while current.data != data: # Find the position to delete if current.next: current = current.next else: # We have reached the end an no value matches return "No data matching given value" if current == self.head: self.delete_head() elif current == self.tail: self.delete_tail() else: # Before: 1 <--> 2(current) <--> 3 current.previous.next = current.next # 1 --> 3 current.next.previous = current.previous # 1 <--> 3 return data def is_empty(self): """ >>> linked_list = DoublyLinkedList() >>> linked_list.is_empty() True >>> linked_list.insert_at_tail(1) >>> linked_list.is_empty() False """ return len(self) == 0 def test_doubly_linked_list() -> None: """ >>> test_doubly_linked_list() """ linked_list = DoublyLinkedList() assert linked_list.is_empty() is True assert str(linked_list) == "" try: linked_list.delete_head() assert False # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() assert False # This should not happen. except IndexError: assert True # This should happen. for i in range(10): assert len(linked_list) == i linked_list.insert_at_nth(i, i + 1) assert str(linked_list) == "->".join(str(i) for i in range(1, 11)) linked_list.insert_at_head(0) linked_list.insert_at_tail(11) assert str(linked_list) == "->".join(str(i) for i in range(0, 12)) assert linked_list.delete_head() == 0 assert linked_list.delete_at_nth(9) == 10 assert linked_list.delete_tail() == 11 assert len(linked_list) == 9 assert str(linked_list) == "->".join(str(i) for i in range(1, 10)) if __name__ == "__main__": from doctest import testmod testmod()
-1
TheAlgorithms/Python
4,278
fix(mypy): Fix annotations for 13 cipher algorithms
Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
dhruvmanila
2021-03-20T09:09:15Z
2021-03-22T06:59:51Z
99a42f2b5821356718fb7d011ac711a6b4a63a83
14bcb580d55ee90614ad258ea31ef8fe4e4b5c40
fix(mypy): Fix annotations for 13 cipher algorithms. Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# Factorial of a number using memoization from functools import lru_cache @lru_cache def factorial(num: int) -> int: """ >>> factorial(7) 5040 >>> factorial(-1) Traceback (most recent call last): ... ValueError: Number should not be negative. >>> [factorial(i) for i in range(10)] [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880] """ if num < 0: raise ValueError("Number should not be negative.") return 1 if num in (0, 1) else num * factorial(num - 1) if __name__ == "__main__": import doctest doctest.testmod()
# Factorial of a number using memoization from functools import lru_cache @lru_cache def factorial(num: int) -> int: """ >>> factorial(7) 5040 >>> factorial(-1) Traceback (most recent call last): ... ValueError: Number should not be negative. >>> [factorial(i) for i in range(10)] [1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880] """ if num < 0: raise ValueError("Number should not be negative.") return 1 if num in (0, 1) else num * factorial(num - 1) if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,278
fix(mypy): Fix annotations for 13 cipher algorithms
Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
dhruvmanila
2021-03-20T09:09:15Z
2021-03-22T06:59:51Z
99a42f2b5821356718fb7d011ac711a6b4a63a83
14bcb580d55ee90614ad258ea31ef8fe4e4b5c40
fix(mypy): Fix annotations for 13 cipher algorithms. Issue: #4052 ```console $ git diff master --name-only ciphers/a1z26.py ciphers/affine_cipher.py ciphers/atbash.py ciphers/base32.py ciphers/base85.py ciphers/beaufort_cipher.py ciphers/brute_force_caesar_cipher.py ciphers/cryptomath_module.py ciphers/decrypt_caesar_with_chi_squared.py ciphers/diffie.py ciphers/elgamal_key_generator.py ciphers/enigma_machine2.py ciphers/rsa_key_generator.py ``` Running `mypy`: ```console $ git diff master --name-only | xargs -I% mypy --strict % Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file Success: no issues found in 1 source file ``` ### **Describe your change:** * [ ] Add an algorithm? * [x] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [ ] All new Python files are placed inside an existing directory. * [ ] All filenames are in all lowercase characters with no spaces or dashes. * [ ] All functions and variable names follow Python naming conventions. * [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Output: Enter an Infix Equation = a + b ^c Symbol | Stack | Postfix ---------------------------- c | | c ^ | ^ | c b | ^ | cb + | + | cb^ a | + | cb^a | | cb^a+ a+b^c (Infix) -> +a^bc (Prefix) """ def infix_2_postfix(Infix): Stack = [] Postfix = [] priority = { "^": 3, "*": 2, "/": 2, "%": 2, "+": 1, "-": 1, } # Priority of each operator print_width = len(Infix) if (len(Infix) > 7) else 7 # Print table header for output print( "Symbol".center(8), "Stack".center(print_width), "Postfix".center(print_width), sep=" | ", ) print("-" * (print_width * 3 + 7)) for x in Infix: if x.isalpha() or x.isdigit(): Postfix.append(x) # if x is Alphabet / Digit, add it to Postfix elif x == "(": Stack.append(x) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while Stack[-1] != "(": Postfix.append(Stack.pop()) # Pop stack & add the content to Postfix Stack.pop() else: if len(Stack) == 0: Stack.append(x) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(Stack) > 0 and priority[x] <= priority[Stack[-1]]: Postfix.append(Stack.pop()) # pop stack & add to Postfix Stack.append(x) # push x to stack print( x.center(8), ("".join(Stack)).ljust(print_width), ("".join(Postfix)).ljust(print_width), sep=" | ", ) # Output in tabular format while len(Stack) > 0: # while stack is not empty Postfix.append(Stack.pop()) # pop stack & add to Postfix print( " ".center(8), ("".join(Stack)).ljust(print_width), ("".join(Postfix)).ljust(print_width), sep=" | ", ) # Output in tabular format return "".join(Postfix) # return Postfix as str def infix_2_prefix(Infix): Infix = list(Infix[::-1]) # reverse the infix equation for i in range(len(Infix)): if Infix[i] == "(": Infix[i] = ")" # change "(" to ")" elif Infix[i] == ")": Infix[i] = "(" # change ")" to "(" return (infix_2_postfix("".join(Infix)))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": Infix = input("\nEnter an Infix Equation = ") # Input an Infix equation Infix = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
""" Output: Enter an Infix Equation = a + b ^c Symbol | Stack | Postfix ---------------------------- c | | c ^ | ^ | c b | ^ | cb + | + | cb^ a | + | cb^a | | cb^a+ a+b^c (Infix) -> +a^bc (Prefix) """ def infix_2_postfix(Infix): Stack = [] Postfix = [] priority = { "^": 3, "*": 2, "/": 2, "%": 2, "+": 1, "-": 1, } # Priority of each operator print_width = len(Infix) if (len(Infix) > 7) else 7 # Print table header for output print( "Symbol".center(8), "Stack".center(print_width), "Postfix".center(print_width), sep=" | ", ) print("-" * (print_width * 3 + 7)) for x in Infix: if x.isalpha() or x.isdigit(): Postfix.append(x) # if x is Alphabet / Digit, add it to Postfix elif x == "(": Stack.append(x) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while Stack[-1] != "(": Postfix.append(Stack.pop()) # Pop stack & add the content to Postfix Stack.pop() else: if len(Stack) == 0: Stack.append(x) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(Stack) > 0 and priority[x] <= priority[Stack[-1]]: Postfix.append(Stack.pop()) # pop stack & add to Postfix Stack.append(x) # push x to stack print( x.center(8), ("".join(Stack)).ljust(print_width), ("".join(Postfix)).ljust(print_width), sep=" | ", ) # Output in tabular format while len(Stack) > 0: # while stack is not empty Postfix.append(Stack.pop()) # pop stack & add to Postfix print( " ".center(8), ("".join(Stack)).ljust(print_width), ("".join(Postfix)).ljust(print_width), sep=" | ", ) # Output in tabular format return "".join(Postfix) # return Postfix as str def infix_2_prefix(Infix): Infix = list(Infix[::-1]) # reverse the infix equation for i in range(len(Infix)): if Infix[i] == "(": Infix[i] = ")" # change "(" to ")" elif Infix[i] == ")": Infix[i] = "(" # change ")" to "(" return (infix_2_postfix("".join(Infix)))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": Infix = input("\nEnter an Infix Equation = ") # Input an Infix equation Infix = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
repos: - repo: https://github.com/pre-commit/pre-commit-hooks rev: v3.2.0 hooks: - id: check-executables-have-shebangs - id: check-yaml - id: end-of-file-fixer types: [python] - id: trailing-whitespace exclude: | (?x)^( data_structures/heap/binomial_heap.py )$ - id: requirements-txt-fixer - repo: https://github.com/psf/black rev: stable hooks: - id: black - repo: https://github.com/PyCQA/isort rev: 5.5.3 hooks: - id: isort args: - --profile=black - repo: https://gitlab.com/pycqa/flake8 rev: 3.8.3 hooks: - id: flake8 args: - --ignore=E203,W503 - --max-complexity=25 - --max-line-length=88 # FIXME: fix mypy errors and then uncomment this # - repo: https://github.com/pre-commit/mirrors-mypy # rev: v0.782 # hooks: # - id: mypy # args: # - --ignore-missing-imports - repo: https://github.com/codespell-project/codespell rev: v1.17.1 hooks: - id: codespell args: - --ignore-words-list=ans,fo,followings,hist,iff,mater,secant,som,tim - --skip="./.*,./other/dictionary.txt,./other/words,./project_euler/problem_022/p022_names.txt" - --quiet-level=2 exclude: | (?x)^( other/dictionary.txt | other/words | project_euler/problem_022/p022_names.txt )$ - repo: local hooks: - id: validate-filenames name: Validate filenames entry: ./scripts/validate_filenames.py language: script pass_filenames: false
repos: - repo: https://github.com/pre-commit/pre-commit-hooks rev: v3.4.0 hooks: - id: check-executables-have-shebangs - id: check-yaml - id: end-of-file-fixer types: [python] - id: trailing-whitespace exclude: | (?x)^( data_structures/heap/binomial_heap.py )$ - id: requirements-txt-fixer - repo: https://github.com/psf/black rev: 20.8b1 hooks: - id: black - repo: https://github.com/PyCQA/isort rev: 5.7.0 hooks: - id: isort args: - --profile=black - repo: https://gitlab.com/pycqa/flake8 rev: 3.9.0 hooks: - id: flake8 args: - --ignore=E203,W503 - --max-complexity=25 - --max-line-length=88 # FIXME: fix mypy errors and then uncomment this # - repo: https://github.com/pre-commit/mirrors-mypy # rev: v0.782 # hooks: # - id: mypy # args: # - --ignore-missing-imports - repo: https://github.com/codespell-project/codespell rev: v2.0.0 hooks: - id: codespell args: - --ignore-words-list=ans,crate,fo,followings,hist,iff,mater,secant,som,tim - --skip="./.*,./other/dictionary.txt,./other/words,./project_euler/problem_022/p022_names.txt" - --quiet-level=2 exclude: | (?x)^( other/dictionary.txt | other/words | project_euler/problem_022/p022_names.txt )$ - repo: local hooks: - id: validate-filenames name: Validate filenames entry: ./scripts/validate_filenames.py language: script pass_filenames: false
1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
## Arithmetic Analysis * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py) * [Gaussian Elimination](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/gaussian_elimination.py) * [In Static Equilibrium](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/in_static_equilibrium.py) * [Intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py) * [Lu Decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py) * [Newton Forward Interpolation](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_forward_interpolation.py) * [Newton Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_raphson.py) * [Secant Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/secant_method.py) ## Backtracking * [All Combinations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_combinations.py) * [All Permutations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_permutations.py) * [All Subsequences](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_subsequences.py) * [Coloring](https://github.com/TheAlgorithms/Python/blob/master/backtracking/coloring.py) * [Hamiltonian Cycle](https://github.com/TheAlgorithms/Python/blob/master/backtracking/hamiltonian_cycle.py) * [Knight Tour](https://github.com/TheAlgorithms/Python/blob/master/backtracking/knight_tour.py) * [Minimax](https://github.com/TheAlgorithms/Python/blob/master/backtracking/minimax.py) * [N Queens](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens.py) * [N Queens Math](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens_math.py) * [Rat In Maze](https://github.com/TheAlgorithms/Python/blob/master/backtracking/rat_in_maze.py) * [Sudoku](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sudoku.py) * [Sum Of Subsets](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sum_of_subsets.py) ## Bit Manipulation * [Binary And Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_and_operator.py) * [Binary Count Setbits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_count_setbits.py) * [Binary Count Trailing Zeros](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_count_trailing_zeros.py) * [Binary Or Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_or_operator.py) * [Binary Shifts](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_shifts.py) * [Binary Twos Complement](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_twos_complement.py) * [Binary Xor Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_xor_operator.py) * [Count Number Of One Bits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/count_number_of_one_bits.py) * [Reverse Bits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/reverse_bits.py) * [Single Bit Manipulation Operations](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/single_bit_manipulation_operations.py) ## Blockchain * [Chinese Remainder Theorem](https://github.com/TheAlgorithms/Python/blob/master/blockchain/chinese_remainder_theorem.py) * [Diophantine Equation](https://github.com/TheAlgorithms/Python/blob/master/blockchain/diophantine_equation.py) * [Modular Division](https://github.com/TheAlgorithms/Python/blob/master/blockchain/modular_division.py) ## Boolean Algebra * [Quine Mc Cluskey](https://github.com/TheAlgorithms/Python/blob/master/boolean_algebra/quine_mc_cluskey.py) ## Cellular Automata * [Conways Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/conways_game_of_life.py) * [One Dimensional](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/one_dimensional.py) ## Ciphers * [A1Z26](https://github.com/TheAlgorithms/Python/blob/master/ciphers/a1z26.py) * [Affine Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/affine_cipher.py) * [Atbash](https://github.com/TheAlgorithms/Python/blob/master/ciphers/atbash.py) * [Base16](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base16.py) * [Base32](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base32.py) * [Base64 Encoding](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base64_encoding.py) * [Base85](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base85.py) * [Beaufort Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/beaufort_cipher.py) * [Brute Force Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/brute_force_caesar_cipher.py) * [Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/caesar_cipher.py) * [Cryptomath Module](https://github.com/TheAlgorithms/Python/blob/master/ciphers/cryptomath_module.py) * [Decrypt Caesar With Chi Squared](https://github.com/TheAlgorithms/Python/blob/master/ciphers/decrypt_caesar_with_chi_squared.py) * [Deterministic Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/ciphers/deterministic_miller_rabin.py) * [Diffie](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie.py) * [Diffie Hellman](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie_hellman.py) * [Elgamal Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/elgamal_key_generator.py) * [Enigma Machine2](https://github.com/TheAlgorithms/Python/blob/master/ciphers/enigma_machine2.py) * [Hill Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/hill_cipher.py) * [Mixed Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mixed_keyword_cypher.py) * [Mono Alphabetic Ciphers](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mono_alphabetic_ciphers.py) * [Morse Code Implementation](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_code_implementation.py) * [Onepad Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) * [Playfair Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) * [Porta Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/porta_cipher.py) * [Rabin Miller](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rabin_miller.py) * [Rail Fence Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rail_fence_cipher.py) * [Rot13](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rot13.py) * [Rsa Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_cipher.py) * [Rsa Factorization](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_factorization.py) * [Rsa Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_key_generator.py) * [Shuffled Shift Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/shuffled_shift_cipher.py) * [Simple Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_keyword_cypher.py) * [Simple Substitution Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_substitution_cipher.py) * [Trafid Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/trafid_cipher.py) * [Transposition Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher.py) * [Transposition Cipher Encrypt Decrypt File](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher_encrypt_decrypt_file.py) * [Vigenere Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/vigenere_cipher.py) * [Xor Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/xor_cipher.py) ## Compression * [Burrows Wheeler](https://github.com/TheAlgorithms/Python/blob/master/compression/burrows_wheeler.py) * [Huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) * [Lempel Ziv](https://github.com/TheAlgorithms/Python/blob/master/compression/lempel_ziv.py) * [Lempel Ziv Decompress](https://github.com/TheAlgorithms/Python/blob/master/compression/lempel_ziv_decompress.py) * [Peak Signal To Noise Ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py) ## Computer Vision * [Harriscorner](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/harriscorner.py) * [Meanthreshold](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/meanthreshold.py) ## Conversions * [Binary To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/binary_to_decimal.py) * [Binary To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/binary_to_octal.py) * [Decimal To Any](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_any.py) * [Decimal To Binary](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary.py) * [Decimal To Binary Recursion](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary_recursion.py) * [Decimal To Hexadecimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_hexadecimal.py) * [Decimal To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_octal.py) * [Hexadecimal To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/hexadecimal_to_decimal.py) * [Molecular Chemistry](https://github.com/TheAlgorithms/Python/blob/master/conversions/molecular_chemistry.py) * [Octal To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/octal_to_decimal.py) * [Prefix Conversions](https://github.com/TheAlgorithms/Python/blob/master/conversions/prefix_conversions.py) * [Roman Numerals](https://github.com/TheAlgorithms/Python/blob/master/conversions/roman_numerals.py) * [Temperature Conversions](https://github.com/TheAlgorithms/Python/blob/master/conversions/temperature_conversions.py) * [Weight Conversion](https://github.com/TheAlgorithms/Python/blob/master/conversions/weight_conversion.py) ## Data Structures * Binary Tree * [Avl Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/avl_tree.py) * [Basic Binary Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/basic_binary_tree.py) * [Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree.py) * [Binary Search Tree Recursive](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree_recursive.py) * [Binary Tree Mirror](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_tree_mirror.py) * [Binary Tree Traversals](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_tree_traversals.py) * [Fenwick Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/fenwick_tree.py) * [Lazy Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lazy_segment_tree.py) * [Lowest Common Ancestor](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lowest_common_ancestor.py) * [Merge Two Binary Trees](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/merge_two_binary_trees.py) * [Non Recursive Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/non_recursive_segment_tree.py) * [Number Of Possible Binary Trees](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/number_of_possible_binary_trees.py) * [Red Black Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/red_black_tree.py) * [Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree.py) * [Segment Tree Other](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree_other.py) * [Treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/treap.py) * Disjoint Set * [Alternate Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/alternate_disjoint_set.py) * [Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/disjoint_set.py) * Hashing * [Double Hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/double_hash.py) * [Hash Table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table.py) * [Hash Table With Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table_with_linked_list.py) * Number Theory * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/number_theory/prime_numbers.py) * [Quadratic Probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/quadratic_probing.py) * Heap * [Binomial Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/binomial_heap.py) * [Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py) * [Heap Generic](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap_generic.py) * [Max Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/max_heap.py) * [Min Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/min_heap.py) * [Randomized Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/randomized_heap.py) * [Skew Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/skew_heap.py) * Linked List * [Circular Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/circular_linked_list.py) * [Deque Doubly](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/deque_doubly.py) * [Doubly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list.py) * [Doubly Linked List Two](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list_two.py) * [From Sequence](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/from_sequence.py) * [Has Loop](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/has_loop.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_palindrome.py) * [Merge Two Lists](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/merge_two_lists.py) * [Middle Element Of Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/middle_element_of_linked_list.py) * [Print Reverse](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/print_reverse.py) * [Singly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) * [Skip List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/skip_list.py) * [Swap Nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swap_nodes.py) * Queue * [Circular Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/circular_queue.py) * [Double Ended Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/double_ended_queue.py) * [Linked Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/linked_queue.py) * [Priority Queue Using List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/priority_queue_using_list.py) * [Queue On List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_list.py) * [Queue On Pseudo Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_pseudo_stack.py) * Stacks * [Balanced Parentheses](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/balanced_parentheses.py) * [Dijkstras Two Stack Algorithm](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/dijkstras_two_stack_algorithm.py) * [Evaluate Postfix Notations](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/evaluate_postfix_notations.py) * [Infix To Postfix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_postfix_conversion.py) * [Infix To Prefix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_prefix_conversion.py) * [Linked Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/linked_stack.py) * [Next Greater Element](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/next_greater_element.py) * [Postfix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/postfix_evaluation.py) * [Prefix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/prefix_evaluation.py) * [Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack.py) * [Stack Using Dll](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack_using_dll.py) * [Stock Span Problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stock_span_problem.py) * Trie * [Trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py) ## Digital Image Processing * [Change Brightness](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_brightness.py) * [Change Contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py) * [Convert To Negative](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/convert_to_negative.py) * Dithering * [Burkes](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/dithering/burkes.py) * Edge Detection * [Canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/edge_detection/canny.py) * Filters * [Bilateral Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/bilateral_filter.py) * [Convolve](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/convolve.py) * [Gaussian Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py) * [Median Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py) * [Sobel Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/sobel_filter.py) * Histogram Equalization * [Histogram Stretch](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/histogram_equalization/histogram_stretch.py) * [Index Calculation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/index_calculation.py) * Resize * [Resize](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/resize/resize.py) * Rotation * [Rotation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/rotation/rotation.py) * [Sepia](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/sepia.py) * [Test Digital Image Processing](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/test_digital_image_processing.py) ## Divide And Conquer * [Closest Pair Of Points](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/closest_pair_of_points.py) * [Convex Hull](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/convex_hull.py) * [Heaps Algorithm](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/heaps_algorithm.py) * [Heaps Algorithm Iterative](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/heaps_algorithm_iterative.py) * [Inversions](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/inversions.py) * [Kth Order Statistic](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/kth_order_statistic.py) * [Max Difference Pair](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_difference_pair.py) * [Max Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py) * [Mergesort](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/mergesort.py) * [Peak](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/peak.py) * [Power](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/power.py) * [Strassen Matrix Multiplication](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/strassen_matrix_multiplication.py) ## Dynamic Programming * [Abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py) * [Bitmask](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/bitmask.py) * [Climbing Stairs](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/climbing_stairs.py) * [Edit Distance](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/edit_distance.py) * [Factorial](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/factorial.py) * [Fast Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fast_fibonacci.py) * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fibonacci.py) * [Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/floyd_warshall.py) * [Fractional Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack.py) * [Fractional Knapsack 2](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack_2.py) * [Integer Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/integer_partition.py) * [Iterating Through Submasks](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/iterating_through_submasks.py) * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/knapsack.py) * [Longest Common Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_common_subsequence.py) * [Longest Increasing Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence.py) * [Longest Increasing Subsequence O(Nlogn)](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence_o(nlogn).py) * [Longest Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_sub_array.py) * [Matrix Chain Order](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/matrix_chain_order.py) * [Max Non Adjacent Sum](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_non_adjacent_sum.py) * [Max Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) * [Max Sum Contiguous Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sum_contiguous_subsequence.py) * [Minimum Coin Change](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_coin_change.py) * [Minimum Cost Path](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_cost_path.py) * [Minimum Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) * [Minimum Steps To One](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_steps_to_one.py) * [Optimal Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/optimal_binary_search_tree.py) * [Rod Cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) * [Subset Generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) * [Sum Of Subset](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/sum_of_subset.py) ## Electronics * [Electric Power](https://github.com/TheAlgorithms/Python/blob/master/electronics/electric_power.py) * [Ohms Law](https://github.com/TheAlgorithms/Python/blob/master/electronics/ohms_law.py) ## File Transfer * [Receive File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/receive_file.py) * [Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/send_file.py) * Tests * [Test Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/tests/test_send_file.py) ## Fuzzy Logic * [Fuzzy Operations](https://github.com/TheAlgorithms/Python/blob/master/fuzzy_logic/fuzzy_operations.py) ## Genetic Algorithm * [Basic String](https://github.com/TheAlgorithms/Python/blob/master/genetic_algorithm/basic_string.py) ## Geodesy * [Haversine Distance](https://github.com/TheAlgorithms/Python/blob/master/geodesy/haversine_distance.py) * [Lamberts Ellipsoidal Distance](https://github.com/TheAlgorithms/Python/blob/master/geodesy/lamberts_ellipsoidal_distance.py) ## Graphics * [Bezier Curve](https://github.com/TheAlgorithms/Python/blob/master/graphics/bezier_curve.py) * [Koch Snowflake](https://github.com/TheAlgorithms/Python/blob/master/graphics/koch_snowflake.py) * [Mandelbrot](https://github.com/TheAlgorithms/Python/blob/master/graphics/mandelbrot.py) * [Vector3 For 2D Rendering](https://github.com/TheAlgorithms/Python/blob/master/graphics/vector3_for_2d_rendering.py) ## Graphs * [A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/a_star.py) * [Articulation Points](https://github.com/TheAlgorithms/Python/blob/master/graphs/articulation_points.py) * [Basic Graphs](https://github.com/TheAlgorithms/Python/blob/master/graphs/basic_graphs.py) * [Bellman Ford](https://github.com/TheAlgorithms/Python/blob/master/graphs/bellman_ford.py) * [Bfs Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_shortest_path.py) * [Bfs Zero One Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_zero_one_shortest_path.py) * [Bidirectional A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/bidirectional_a_star.py) * [Bidirectional Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/bidirectional_breadth_first_search.py) * [Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search.py) * [Breadth First Search 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search_2.py) * [Breadth First Search Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search_shortest_path.py) * [Check Bipartite Graph Bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_bfs.py) * [Check Bipartite Graph Dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_dfs.py) * [Connected Components](https://github.com/TheAlgorithms/Python/blob/master/graphs/connected_components.py) * [Depth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search.py) * [Depth First Search 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search_2.py) * [Dijkstra](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra.py) * [Dijkstra 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_2.py) * [Dijkstra Algorithm](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_algorithm.py) * [Dinic](https://github.com/TheAlgorithms/Python/blob/master/graphs/dinic.py) * [Directed And Undirected (Weighted) Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/directed_and_undirected_(weighted)_graph.py) * [Edmonds Karp Multiple Source And Sink](https://github.com/TheAlgorithms/Python/blob/master/graphs/edmonds_karp_multiple_source_and_sink.py) * [Eulerian Path And Circuit For Undirected Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/eulerian_path_and_circuit_for_undirected_graph.py) * [Even Tree](https://github.com/TheAlgorithms/Python/blob/master/graphs/even_tree.py) * [Finding Bridges](https://github.com/TheAlgorithms/Python/blob/master/graphs/finding_bridges.py) * [Frequent Pattern Graph Miner](https://github.com/TheAlgorithms/Python/blob/master/graphs/frequent_pattern_graph_miner.py) * [G Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/graphs/g_topological_sort.py) * [Gale Shapley Bigraph](https://github.com/TheAlgorithms/Python/blob/master/graphs/gale_shapley_bigraph.py) * [Graph List](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_list.py) * [Graph Matrix](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_matrix.py) * [Graphs Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/graphs_floyd_warshall.py) * [Greedy Best First](https://github.com/TheAlgorithms/Python/blob/master/graphs/greedy_best_first.py) * [Kahns Algorithm Long](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_long.py) * [Kahns Algorithm Topo](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_topo.py) * [Karger](https://github.com/TheAlgorithms/Python/blob/master/graphs/karger.py) * [Minimum Spanning Tree Boruvka](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_boruvka.py) * [Minimum Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py) * [Minimum Spanning Tree Kruskal2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal2.py) * [Minimum Spanning Tree Prims](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims.py) * [Minimum Spanning Tree Prims2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims2.py) * [Multi Heuristic Astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_heuristic_astar.py) * [Page Rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py) * [Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py) * [Scc Kosaraju](https://github.com/TheAlgorithms/Python/blob/master/graphs/scc_kosaraju.py) * [Strongly Connected Components](https://github.com/TheAlgorithms/Python/blob/master/graphs/strongly_connected_components.py) * [Tarjans Scc](https://github.com/TheAlgorithms/Python/blob/master/graphs/tarjans_scc.py) * Tests * [Test Min Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/tests/test_min_spanning_tree_kruskal.py) * [Test Min Spanning Tree Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/tests/test_min_spanning_tree_prim.py) ## Hashes * [Adler32](https://github.com/TheAlgorithms/Python/blob/master/hashes/adler32.py) * [Chaos Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/chaos_machine.py) * [Djb2](https://github.com/TheAlgorithms/Python/blob/master/hashes/djb2.py) * [Enigma Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/enigma_machine.py) * [Hamming Code](https://github.com/TheAlgorithms/Python/blob/master/hashes/hamming_code.py) * [Md5](https://github.com/TheAlgorithms/Python/blob/master/hashes/md5.py) * [Sdbm](https://github.com/TheAlgorithms/Python/blob/master/hashes/sdbm.py) * [Sha1](https://github.com/TheAlgorithms/Python/blob/master/hashes/sha1.py) ## Knapsack * [Greedy Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/greedy_knapsack.py) * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/knapsack.py) * Tests * [Test Greedy Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/tests/test_greedy_knapsack.py) * [Test Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/tests/test_knapsack.py) ## Linear Algebra * Src * [Conjugate Gradient](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/conjugate_gradient.py) * [Lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/lib.py) * [Polynom For Points](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/polynom_for_points.py) * [Power Iteration](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/power_iteration.py) * [Rayleigh Quotient](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/rayleigh_quotient.py) * [Test Linear Algebra](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/test_linear_algebra.py) * [Transformations 2D](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/transformations_2d.py) ## Machine Learning * [Astar](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/astar.py) * [Data Transformations](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/data_transformations.py) * [Decision Tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py) * Forecasting * [Run](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/forecasting/run.py) * [Gaussian Naive Bayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gaussian_naive_bayes.py) * [Gradient Boosting Regressor](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_boosting_regressor.py) * [Gradient Descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py) * [K Means Clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py) * [K Nearest Neighbours](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_nearest_neighbours.py) * [Knn Sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py) * [Linear Discriminant Analysis](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_discriminant_analysis.py) * [Linear Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) * [Logistic Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) * [Multilayer Perceptron Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/multilayer_perceptron_classifier.py) * [Polymonial Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/polymonial_regression.py) * [Random Forest Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classifier.py) * [Random Forest Regressor](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regressor.py) * [Scoring Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) * [Sequential Minimum Optimization](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/sequential_minimum_optimization.py) * [Similarity Search](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/similarity_search.py) * [Support Vector Machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/support_vector_machines.py) * [Word Frequency Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/word_frequency_functions.py) ## Maths * [3N Plus 1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n_plus_1.py) * [Abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) * [Abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) * [Abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) * [Add](https://github.com/TheAlgorithms/Python/blob/master/maths/add.py) * [Aliquot Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/aliquot_sum.py) * [Allocation Number](https://github.com/TheAlgorithms/Python/blob/master/maths/allocation_number.py) * [Area](https://github.com/TheAlgorithms/Python/blob/master/maths/area.py) * [Area Under Curve](https://github.com/TheAlgorithms/Python/blob/master/maths/area_under_curve.py) * [Armstrong Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/armstrong_numbers.py) * [Average Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py) * [Average Median](https://github.com/TheAlgorithms/Python/blob/master/maths/average_median.py) * [Average Mode](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mode.py) * [Bailey Borwein Plouffe](https://github.com/TheAlgorithms/Python/blob/master/maths/bailey_borwein_plouffe.py) * [Basic Maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py) * [Binary Exp Mod](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exp_mod.py) * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py) * [Binomial Coefficient](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_coefficient.py) * [Binomial Distribution](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_distribution.py) * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/maths/bisection.py) * [Ceil](https://github.com/TheAlgorithms/Python/blob/master/maths/ceil.py) * [Chudnovsky Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/chudnovsky_algorithm.py) * [Collatz Sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/collatz_sequence.py) * [Combinations](https://github.com/TheAlgorithms/Python/blob/master/maths/combinations.py) * [Decimal Isolate](https://github.com/TheAlgorithms/Python/blob/master/maths/decimal_isolate.py) * [Entropy](https://github.com/TheAlgorithms/Python/blob/master/maths/entropy.py) * [Euclidean Distance](https://github.com/TheAlgorithms/Python/blob/master/maths/euclidean_distance.py) * [Eulers Totient](https://github.com/TheAlgorithms/Python/blob/master/maths/eulers_totient.py) * [Explicit Euler](https://github.com/TheAlgorithms/Python/blob/master/maths/explicit_euler.py) * [Extended Euclidean Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) * [Factorial Iterative](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_iterative.py) * [Factorial Python](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_python.py) * [Factorial Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_recursive.py) * [Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/factors.py) * [Fermat Little Theorem](https://github.com/TheAlgorithms/Python/blob/master/maths/fermat_little_theorem.py) * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci.py) * [Fibonacci Sequence Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci_sequence_recursion.py) * [Find Max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py) * [Find Max Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max_recursion.py) * [Find Min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py) * [Find Min Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min_recursion.py) * [Floor](https://github.com/TheAlgorithms/Python/blob/master/maths/floor.py) * [Gamma](https://github.com/TheAlgorithms/Python/blob/master/maths/gamma.py) * [Gaussian](https://github.com/TheAlgorithms/Python/blob/master/maths/gaussian.py) * [Greatest Common Divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greatest_common_divisor.py) * [Hardy Ramanujanalgo](https://github.com/TheAlgorithms/Python/blob/master/maths/hardy_ramanujanalgo.py) * [Is Square Free](https://github.com/TheAlgorithms/Python/blob/master/maths/is_square_free.py) * [Jaccard Similarity](https://github.com/TheAlgorithms/Python/blob/master/maths/jaccard_similarity.py) * [Kadanes](https://github.com/TheAlgorithms/Python/blob/master/maths/kadanes.py) * [Karatsuba](https://github.com/TheAlgorithms/Python/blob/master/maths/karatsuba.py) * [Krishnamurthy Number](https://github.com/TheAlgorithms/Python/blob/master/maths/krishnamurthy_number.py) * [Kth Lexicographic Permutation](https://github.com/TheAlgorithms/Python/blob/master/maths/kth_lexicographic_permutation.py) * [Largest Of Very Large Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_of_very_large_numbers.py) * [Least Common Multiple](https://github.com/TheAlgorithms/Python/blob/master/maths/least_common_multiple.py) * [Line Length](https://github.com/TheAlgorithms/Python/blob/master/maths/line_length.py) * [Lucas Lehmer Primality Test](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_lehmer_primality_test.py) * [Lucas Series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py) * [Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/matrix_exponentiation.py) * [Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/maths/miller_rabin.py) * [Mobius Function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) * [Modular Exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) * [Monte Carlo](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo.py) * [Monte Carlo Dice](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo_dice.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) * [Number Of Digits](https://github.com/TheAlgorithms/Python/blob/master/maths/number_of_digits.py) * [Numerical Integration](https://github.com/TheAlgorithms/Python/blob/master/maths/numerical_integration.py) * [Perfect Cube](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_cube.py) * [Perfect Number](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_number.py) * [Perfect Square](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_square.py) * [Pi Monte Carlo Estimation](https://github.com/TheAlgorithms/Python/blob/master/maths/pi_monte_carlo_estimation.py) * [Polynomial Evaluation](https://github.com/TheAlgorithms/Python/blob/master/maths/polynomial_evaluation.py) * [Power Using Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/power_using_recursion.py) * [Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) * [Prime Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py) * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_numbers.py) * [Prime Sieve Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_sieve_eratosthenes.py) * [Pythagoras](https://github.com/TheAlgorithms/Python/blob/master/maths/pythagoras.py) * [Qr Decomposition](https://github.com/TheAlgorithms/Python/blob/master/maths/qr_decomposition.py) * [Quadratic Equations Complex Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/quadratic_equations_complex_numbers.py) * [Radians](https://github.com/TheAlgorithms/Python/blob/master/maths/radians.py) * [Radix2 Fft](https://github.com/TheAlgorithms/Python/blob/master/maths/radix2_fft.py) * [Relu](https://github.com/TheAlgorithms/Python/blob/master/maths/relu.py) * [Runge Kutta](https://github.com/TheAlgorithms/Python/blob/master/maths/runge_kutta.py) * [Segmented Sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py) * Series * [Arithmetic Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/series/arithmetic_mean.py) * [Geometric Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/series/geometric_mean.py) * [Geometric Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/geometric_series.py) * [Harmonic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/harmonic_series.py) * [P Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/p_series.py) * [Sieve Of Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py) * [Sigmoid](https://github.com/TheAlgorithms/Python/blob/master/maths/sigmoid.py) * [Simpson Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py) * [Softmax](https://github.com/TheAlgorithms/Python/blob/master/maths/softmax.py) * [Square Root](https://github.com/TheAlgorithms/Python/blob/master/maths/square_root.py) * [Sum Of Arithmetic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_arithmetic_series.py) * [Sum Of Digits](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_digits.py) * [Sum Of Geometric Progression](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_geometric_progression.py) * [Test Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/test_prime_check.py) * [Trapezoidal Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/trapezoidal_rule.py) * [Ugly Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/ugly_numbers.py) * [Volume](https://github.com/TheAlgorithms/Python/blob/master/maths/volume.py) * [Zellers Congruence](https://github.com/TheAlgorithms/Python/blob/master/maths/zellers_congruence.py) ## Matrix * [Count Islands In Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/count_islands_in_matrix.py) * [Inverse Of Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/inverse_of_matrix.py) * [Matrix Class](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_class.py) * [Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_operation.py) * [Nth Fibonacci Using Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/matrix/nth_fibonacci_using_matrix_exponentiation.py) * [Rotate Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/rotate_matrix.py) * [Searching In Sorted Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) * [Sherman Morrison](https://github.com/TheAlgorithms/Python/blob/master/matrix/sherman_morrison.py) * [Spiral Print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py) * Tests * [Test Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/tests/test_matrix_operation.py) ## Networking Flow * [Ford Fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py) * [Minimum Cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py) ## Neural Network * [2 Hidden Layers Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/2_hidden_layers_neural_network.py) * [Back Propagation Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py) * [Convolution Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) * [Perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) ## Other * [Activity Selection](https://github.com/TheAlgorithms/Python/blob/master/other/activity_selection.py) * [Anagrams](https://github.com/TheAlgorithms/Python/blob/master/other/anagrams.py) * [Autocomplete Using Trie](https://github.com/TheAlgorithms/Python/blob/master/other/autocomplete_using_trie.py) * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation.py) * [Binary Exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation_2.py) * [Davis–Putnam–Logemann–Loveland](https://github.com/TheAlgorithms/Python/blob/master/other/davis–putnam–logemann–loveland.py) * [Detecting English Programmatically](https://github.com/TheAlgorithms/Python/blob/master/other/detecting_english_programmatically.py) * [Dijkstra Bankers Algorithm](https://github.com/TheAlgorithms/Python/blob/master/other/dijkstra_bankers_algorithm.py) * [Doomsday](https://github.com/TheAlgorithms/Python/blob/master/other/doomsday.py) * [Euclidean Gcd](https://github.com/TheAlgorithms/Python/blob/master/other/euclidean_gcd.py) * [Fischer Yates Shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) * [Frequency Finder](https://github.com/TheAlgorithms/Python/blob/master/other/frequency_finder.py) * [Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/other/game_of_life.py) * [Gauss Easter](https://github.com/TheAlgorithms/Python/blob/master/other/gauss_easter.py) * [Graham Scan](https://github.com/TheAlgorithms/Python/blob/master/other/graham_scan.py) * [Greedy](https://github.com/TheAlgorithms/Python/blob/master/other/greedy.py) * [Integeration By Simpson Approx](https://github.com/TheAlgorithms/Python/blob/master/other/integeration_by_simpson_approx.py) * [Largest Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/other/largest_subarray_sum.py) * [Least Recently Used](https://github.com/TheAlgorithms/Python/blob/master/other/least_recently_used.py) * [Lfu Cache](https://github.com/TheAlgorithms/Python/blob/master/other/lfu_cache.py) * [Linear Congruential Generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) * [Lru Cache](https://github.com/TheAlgorithms/Python/blob/master/other/lru_cache.py) * [Magicdiamondpattern](https://github.com/TheAlgorithms/Python/blob/master/other/magicdiamondpattern.py) * [Markov Chain](https://github.com/TheAlgorithms/Python/blob/master/other/markov_chain.py) * [Max Sum Sliding Window](https://github.com/TheAlgorithms/Python/blob/master/other/max_sum_sliding_window.py) * [Median Of Two Arrays](https://github.com/TheAlgorithms/Python/blob/master/other/median_of_two_arrays.py) * [Nested Brackets](https://github.com/TheAlgorithms/Python/blob/master/other/nested_brackets.py) * [Palindrome](https://github.com/TheAlgorithms/Python/blob/master/other/palindrome.py) * [Password Generator](https://github.com/TheAlgorithms/Python/blob/master/other/password_generator.py) * [Primelib](https://github.com/TheAlgorithms/Python/blob/master/other/primelib.py) * [Scoring Algorithm](https://github.com/TheAlgorithms/Python/blob/master/other/scoring_algorithm.py) * [Sdes](https://github.com/TheAlgorithms/Python/blob/master/other/sdes.py) * [Sierpinski Triangle](https://github.com/TheAlgorithms/Python/blob/master/other/sierpinski_triangle.py) * [Tower Of Hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py) * [Triplet Sum](https://github.com/TheAlgorithms/Python/blob/master/other/triplet_sum.py) * [Two Pointer](https://github.com/TheAlgorithms/Python/blob/master/other/two_pointer.py) * [Two Sum](https://github.com/TheAlgorithms/Python/blob/master/other/two_sum.py) * [Word Patterns](https://github.com/TheAlgorithms/Python/blob/master/other/word_patterns.py) ## Project Euler * Problem 001 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol4.py) * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol5.py) * [Sol6](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol6.py) * [Sol7](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol7.py) * Problem 002 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol4.py) * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol5.py) * Problem 003 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol3.py) * Problem 004 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_004/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_004/sol2.py) * Problem 005 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_005/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_005/sol2.py) * Problem 006 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol4.py) * Problem 007 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol3.py) * Problem 008 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol3.py) * Problem 009 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol3.py) * Problem 010 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol3.py) * Problem 011 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_011/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_011/sol2.py) * Problem 012 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_012/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_012/sol2.py) * Problem 013 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_013/sol1.py) * Problem 014 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_014/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_014/sol2.py) * Problem 015 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_015/sol1.py) * Problem 016 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_016/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_016/sol2.py) * Problem 017 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_017/sol1.py) * Problem 018 * [Solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_018/solution.py) * Problem 019 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_019/sol1.py) * Problem 020 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol4.py) * Problem 021 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_021/sol1.py) * Problem 022 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_022/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_022/sol2.py) * Problem 023 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_023/sol1.py) * Problem 024 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_024/sol1.py) * Problem 025 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol3.py) * Problem 026 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_026/sol1.py) * Problem 027 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_027/sol1.py) * Problem 028 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_028/sol1.py) * Problem 029 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_029/sol1.py) * Problem 030 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_030/sol1.py) * Problem 031 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_031/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_031/sol2.py) * Problem 032 * [Sol32](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_032/sol32.py) * Problem 033 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_033/sol1.py) * Problem 034 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_034/sol1.py) * Problem 035 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_035/sol1.py) * Problem 036 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_036/sol1.py) * Problem 037 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_037/sol1.py) * Problem 038 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_038/sol1.py) * Problem 039 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_039/sol1.py) * Problem 040 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_040/sol1.py) * Problem 041 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_041/sol1.py) * Problem 042 * [Solution42](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_042/solution42.py) * Problem 043 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_043/sol1.py) * Problem 044 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_044/sol1.py) * Problem 045 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_045/sol1.py) * Problem 046 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_046/sol1.py) * Problem 047 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_047/sol1.py) * Problem 048 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_048/sol1.py) * Problem 049 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_049/sol1.py) * Problem 050 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_050/sol1.py) * Problem 051 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_051/sol1.py) * Problem 052 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_052/sol1.py) * Problem 053 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_053/sol1.py) * Problem 054 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_054/sol1.py) * [Test Poker Hand](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_054/test_poker_hand.py) * Problem 055 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_055/sol1.py) * Problem 056 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_056/sol1.py) * Problem 057 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_057/sol1.py) * Problem 058 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_058/sol1.py) * Problem 059 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_059/sol1.py) * Problem 062 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_062/sol1.py) * Problem 063 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_063/sol1.py) * Problem 064 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_064/sol1.py) * Problem 065 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_065/sol1.py) * Problem 067 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_067/sol1.py) * Problem 069 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_069/sol1.py) * Problem 070 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_070/sol1.py) * Problem 071 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_071/sol1.py) * Problem 072 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_072/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_072/sol2.py) * Problem 074 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_074/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_074/sol2.py) * Problem 075 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_075/sol1.py) * Problem 076 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_076/sol1.py) * Problem 077 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_077/sol1.py) * Problem 080 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_080/sol1.py) * Problem 081 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_081/sol1.py) * Problem 085 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_085/sol1.py) * Problem 086 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_086/sol1.py) * Problem 087 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_087/sol1.py) * Problem 089 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_089/sol1.py) * Problem 091 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_091/sol1.py) * Problem 097 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_097/sol1.py) * Problem 099 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_099/sol1.py) * Problem 101 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_101/sol1.py) * Problem 102 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_102/sol1.py) * Problem 107 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_107/sol1.py) * Problem 109 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_109/sol1.py) * Problem 112 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_112/sol1.py) * Problem 113 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_113/sol1.py) * Problem 119 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_119/sol1.py) * Problem 120 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_120/sol1.py) * Problem 123 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_123/sol1.py) * Problem 125 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_125/sol1.py) * Problem 129 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_129/sol1.py) * Problem 135 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_135/sol1.py) * Problem 173 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_173/sol1.py) * Problem 174 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_174/sol1.py) * Problem 180 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_180/sol1.py) * Problem 188 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_188/sol1.py) * Problem 191 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_191/sol1.py) * Problem 203 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_203/sol1.py) * Problem 206 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_206/sol1.py) * Problem 207 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_207/sol1.py) * Problem 234 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_234/sol1.py) * Problem 301 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_301/sol1.py) * Problem 551 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_551/sol1.py) ## Quantum * [Deutsch Jozsa](https://github.com/TheAlgorithms/Python/blob/master/quantum/deutsch_jozsa.py) * [Half Adder](https://github.com/TheAlgorithms/Python/blob/master/quantum/half_adder.py) * [Not Gate](https://github.com/TheAlgorithms/Python/blob/master/quantum/not_gate.py) * [Quantum Entanglement](https://github.com/TheAlgorithms/Python/blob/master/quantum/quantum_entanglement.py) * [Ripple Adder Classic](https://github.com/TheAlgorithms/Python/blob/master/quantum/ripple_adder_classic.py) * [Single Qubit Measure](https://github.com/TheAlgorithms/Python/blob/master/quantum/single_qubit_measure.py) ## Scheduling * [First Come First Served](https://github.com/TheAlgorithms/Python/blob/master/scheduling/first_come_first_served.py) * [Round Robin](https://github.com/TheAlgorithms/Python/blob/master/scheduling/round_robin.py) * [Shortest Job First](https://github.com/TheAlgorithms/Python/blob/master/scheduling/shortest_job_first.py) ## Searches * [Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) * [Double Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/double_linear_search.py) * [Double Linear Search Recursion](https://github.com/TheAlgorithms/Python/blob/master/searches/double_linear_search_recursion.py) * [Fibonacci Search](https://github.com/TheAlgorithms/Python/blob/master/searches/fibonacci_search.py) * [Hill Climbing](https://github.com/TheAlgorithms/Python/blob/master/searches/hill_climbing.py) * [Interpolation Search](https://github.com/TheAlgorithms/Python/blob/master/searches/interpolation_search.py) * [Jump Search](https://github.com/TheAlgorithms/Python/blob/master/searches/jump_search.py) * [Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/linear_search.py) * [Quick Select](https://github.com/TheAlgorithms/Python/blob/master/searches/quick_select.py) * [Sentinel Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/sentinel_linear_search.py) * [Simple Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/simple_binary_search.py) * [Simulated Annealing](https://github.com/TheAlgorithms/Python/blob/master/searches/simulated_annealing.py) * [Tabu Search](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_search.py) * [Ternary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/ternary_search.py) ## Sorts * [Bead Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bead_sort.py) * [Bitonic Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bitonic_sort.py) * [Bogo Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bogo_sort.py) * [Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bubble_sort.py) * [Bucket Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bucket_sort.py) * [Cocktail Shaker Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cocktail_shaker_sort.py) * [Comb Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/comb_sort.py) * [Counting Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/counting_sort.py) * [Cycle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cycle_sort.py) * [Double Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/double_sort.py) * [External Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/external_sort.py) * [Gnome Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/gnome_sort.py) * [Heap Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/heap_sort.py) * [Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/insertion_sort.py) * [Intro Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/intro_sort.py) * [Iterative Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/iterative_merge_sort.py) * [Merge Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_insertion_sort.py) * [Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort.py) * [Natural Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/natural_sort.py) * [Odd Even Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_sort.py) * [Odd Even Transposition Parallel](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_parallel.py) * [Odd Even Transposition Single Threaded](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_single_threaded.py) * [Pancake Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pancake_sort.py) * [Patience Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/patience_sort.py) * [Pigeon Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeon_sort.py) * [Pigeonhole Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeonhole_sort.py) * [Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort.py) * [Quick Sort 3 Partition](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort_3_partition.py) * [Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/radix_sort.py) * [Random Normal Distribution Quicksort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_normal_distribution_quicksort.py) * [Random Pivot Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_pivot_quick_sort.py) * [Recursive Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_bubble_sort.py) * [Recursive Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_insertion_sort.py) * [Recursive Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_quick_sort.py) * [Selection Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/selection_sort.py) * [Shell Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) * [Slowsort](https://github.com/TheAlgorithms/Python/blob/master/sorts/slowsort.py) * [Stooge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/stooge_sort.py) * [Strand Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/strand_sort.py) * [Tim Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py) * [Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py) * [Tree Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py) * [Unknown Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/unknown_sort.py) * [Wiggle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/wiggle_sort.py) ## Strings * [Aho Corasick](https://github.com/TheAlgorithms/Python/blob/master/strings/aho_corasick.py) * [Boyer Moore Search](https://github.com/TheAlgorithms/Python/blob/master/strings/boyer_moore_search.py) * [Can String Be Rearranged As Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/can_string_be_rearranged_as_palindrome.py) * [Capitalize](https://github.com/TheAlgorithms/Python/blob/master/strings/capitalize.py) * [Check Anagrams](https://github.com/TheAlgorithms/Python/blob/master/strings/check_anagrams.py) * [Check Pangram](https://github.com/TheAlgorithms/Python/blob/master/strings/check_pangram.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/is_palindrome.py) * [Jaro Winkler](https://github.com/TheAlgorithms/Python/blob/master/strings/jaro_winkler.py) * [Knuth Morris Pratt](https://github.com/TheAlgorithms/Python/blob/master/strings/knuth_morris_pratt.py) * [Levenshtein Distance](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py) * [Lower](https://github.com/TheAlgorithms/Python/blob/master/strings/lower.py) * [Manacher](https://github.com/TheAlgorithms/Python/blob/master/strings/manacher.py) * [Min Cost String Conversion](https://github.com/TheAlgorithms/Python/blob/master/strings/min_cost_string_conversion.py) * [Naive String Search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_string_search.py) * [Prefix Function](https://github.com/TheAlgorithms/Python/blob/master/strings/prefix_function.py) * [Rabin Karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) * [Remove Duplicate](https://github.com/TheAlgorithms/Python/blob/master/strings/remove_duplicate.py) * [Reverse Letters](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_letters.py) * [Reverse Words](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_words.py) * [Split](https://github.com/TheAlgorithms/Python/blob/master/strings/split.py) * [Swap Case](https://github.com/TheAlgorithms/Python/blob/master/strings/swap_case.py) * [Upper](https://github.com/TheAlgorithms/Python/blob/master/strings/upper.py) * [Word Occurrence](https://github.com/TheAlgorithms/Python/blob/master/strings/word_occurrence.py) * [Z Function](https://github.com/TheAlgorithms/Python/blob/master/strings/z_function.py) ## Traversals * [Binary Tree Traversals](https://github.com/TheAlgorithms/Python/blob/master/traversals/binary_tree_traversals.py) ## Web Programming * [Co2 Emission](https://github.com/TheAlgorithms/Python/blob/master/web_programming/co2_emission.py) * [Covid Stats Via Xpath](https://github.com/TheAlgorithms/Python/blob/master/web_programming/covid_stats_via_xpath.py) * [Crawl Google Results](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_results.py) * [Crawl Google Scholar Citation](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_scholar_citation.py) * [Currency Converter](https://github.com/TheAlgorithms/Python/blob/master/web_programming/currency_converter.py) * [Current Stock Price](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_stock_price.py) * [Current Weather](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_weather.py) * [Daily Horoscope](https://github.com/TheAlgorithms/Python/blob/master/web_programming/daily_horoscope.py) * [Emails From Url](https://github.com/TheAlgorithms/Python/blob/master/web_programming/emails_from_url.py) * [Fetch Bbc News](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_bbc_news.py) * [Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_github_info.py) * [Fetch Jobs](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_jobs.py) * [Get Imdb Top 250 Movies Csv](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdb_top_250_movies_csv.py) * [Get Imdbtop](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdbtop.py) * [Instagram Crawler](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_crawler.py) * [Instagram Pic](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_pic.py) * [Instagram Video](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_video.py) * [Recaptcha Verification](https://github.com/TheAlgorithms/Python/blob/master/web_programming/recaptcha_verification.py) * [Slack Message](https://github.com/TheAlgorithms/Python/blob/master/web_programming/slack_message.py) * [Test Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/test_fetch_github_info.py) * [World Covid19 Stats](https://github.com/TheAlgorithms/Python/blob/master/web_programming/world_covid19_stats.py)
## Arithmetic Analysis * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py) * [Gaussian Elimination](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/gaussian_elimination.py) * [In Static Equilibrium](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/in_static_equilibrium.py) * [Intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py) * [Lu Decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py) * [Newton Forward Interpolation](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_forward_interpolation.py) * [Newton Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_raphson.py) * [Secant Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/secant_method.py) ## Backtracking * [All Combinations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_combinations.py) * [All Permutations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_permutations.py) * [All Subsequences](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_subsequences.py) * [Coloring](https://github.com/TheAlgorithms/Python/blob/master/backtracking/coloring.py) * [Hamiltonian Cycle](https://github.com/TheAlgorithms/Python/blob/master/backtracking/hamiltonian_cycle.py) * [Knight Tour](https://github.com/TheAlgorithms/Python/blob/master/backtracking/knight_tour.py) * [Minimax](https://github.com/TheAlgorithms/Python/blob/master/backtracking/minimax.py) * [N Queens](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens.py) * [N Queens Math](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens_math.py) * [Rat In Maze](https://github.com/TheAlgorithms/Python/blob/master/backtracking/rat_in_maze.py) * [Sudoku](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sudoku.py) * [Sum Of Subsets](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sum_of_subsets.py) ## Bit Manipulation * [Binary And Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_and_operator.py) * [Binary Count Setbits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_count_setbits.py) * [Binary Count Trailing Zeros](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_count_trailing_zeros.py) * [Binary Or Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_or_operator.py) * [Binary Shifts](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_shifts.py) * [Binary Twos Complement](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_twos_complement.py) * [Binary Xor Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_xor_operator.py) * [Count Number Of One Bits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/count_number_of_one_bits.py) * [Reverse Bits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/reverse_bits.py) * [Single Bit Manipulation Operations](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/single_bit_manipulation_operations.py) ## Blockchain * [Chinese Remainder Theorem](https://github.com/TheAlgorithms/Python/blob/master/blockchain/chinese_remainder_theorem.py) * [Diophantine Equation](https://github.com/TheAlgorithms/Python/blob/master/blockchain/diophantine_equation.py) * [Modular Division](https://github.com/TheAlgorithms/Python/blob/master/blockchain/modular_division.py) ## Boolean Algebra * [Quine Mc Cluskey](https://github.com/TheAlgorithms/Python/blob/master/boolean_algebra/quine_mc_cluskey.py) ## Cellular Automata * [Conways Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/conways_game_of_life.py) * [One Dimensional](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/one_dimensional.py) ## Ciphers * [A1Z26](https://github.com/TheAlgorithms/Python/blob/master/ciphers/a1z26.py) * [Affine Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/affine_cipher.py) * [Atbash](https://github.com/TheAlgorithms/Python/blob/master/ciphers/atbash.py) * [Base16](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base16.py) * [Base32](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base32.py) * [Base64 Encoding](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base64_encoding.py) * [Base85](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base85.py) * [Beaufort Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/beaufort_cipher.py) * [Brute Force Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/brute_force_caesar_cipher.py) * [Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/caesar_cipher.py) * [Cryptomath Module](https://github.com/TheAlgorithms/Python/blob/master/ciphers/cryptomath_module.py) * [Decrypt Caesar With Chi Squared](https://github.com/TheAlgorithms/Python/blob/master/ciphers/decrypt_caesar_with_chi_squared.py) * [Deterministic Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/ciphers/deterministic_miller_rabin.py) * [Diffie](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie.py) * [Diffie Hellman](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie_hellman.py) * [Elgamal Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/elgamal_key_generator.py) * [Enigma Machine2](https://github.com/TheAlgorithms/Python/blob/master/ciphers/enigma_machine2.py) * [Hill Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/hill_cipher.py) * [Mixed Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mixed_keyword_cypher.py) * [Mono Alphabetic Ciphers](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mono_alphabetic_ciphers.py) * [Morse Code Implementation](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_code_implementation.py) * [Onepad Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) * [Playfair Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) * [Porta Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/porta_cipher.py) * [Rabin Miller](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rabin_miller.py) * [Rail Fence Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rail_fence_cipher.py) * [Rot13](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rot13.py) * [Rsa Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_cipher.py) * [Rsa Factorization](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_factorization.py) * [Rsa Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_key_generator.py) * [Shuffled Shift Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/shuffled_shift_cipher.py) * [Simple Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_keyword_cypher.py) * [Simple Substitution Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_substitution_cipher.py) * [Trafid Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/trafid_cipher.py) * [Transposition Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher.py) * [Transposition Cipher Encrypt Decrypt File](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher_encrypt_decrypt_file.py) * [Vigenere Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/vigenere_cipher.py) * [Xor Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/xor_cipher.py) ## Compression * [Burrows Wheeler](https://github.com/TheAlgorithms/Python/blob/master/compression/burrows_wheeler.py) * [Huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) * [Lempel Ziv](https://github.com/TheAlgorithms/Python/blob/master/compression/lempel_ziv.py) * [Lempel Ziv Decompress](https://github.com/TheAlgorithms/Python/blob/master/compression/lempel_ziv_decompress.py) * [Peak Signal To Noise Ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py) ## Computer Vision * [Harriscorner](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/harriscorner.py) * [Meanthreshold](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/meanthreshold.py) ## Conversions * [Binary To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/binary_to_decimal.py) * [Binary To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/binary_to_octal.py) * [Decimal To Any](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_any.py) * [Decimal To Binary](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary.py) * [Decimal To Binary Recursion](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary_recursion.py) * [Decimal To Hexadecimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_hexadecimal.py) * [Decimal To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_octal.py) * [Hexadecimal To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/hexadecimal_to_decimal.py) * [Molecular Chemistry](https://github.com/TheAlgorithms/Python/blob/master/conversions/molecular_chemistry.py) * [Octal To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/octal_to_decimal.py) * [Prefix Conversions](https://github.com/TheAlgorithms/Python/blob/master/conversions/prefix_conversions.py) * [Roman Numerals](https://github.com/TheAlgorithms/Python/blob/master/conversions/roman_numerals.py) * [Temperature Conversions](https://github.com/TheAlgorithms/Python/blob/master/conversions/temperature_conversions.py) * [Weight Conversion](https://github.com/TheAlgorithms/Python/blob/master/conversions/weight_conversion.py) ## Data Structures * Binary Tree * [Avl Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/avl_tree.py) * [Basic Binary Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/basic_binary_tree.py) * [Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree.py) * [Binary Search Tree Recursive](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree_recursive.py) * [Binary Tree Mirror](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_tree_mirror.py) * [Binary Tree Traversals](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_tree_traversals.py) * [Fenwick Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/fenwick_tree.py) * [Lazy Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lazy_segment_tree.py) * [Lowest Common Ancestor](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lowest_common_ancestor.py) * [Merge Two Binary Trees](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/merge_two_binary_trees.py) * [Non Recursive Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/non_recursive_segment_tree.py) * [Number Of Possible Binary Trees](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/number_of_possible_binary_trees.py) * [Red Black Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/red_black_tree.py) * [Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree.py) * [Segment Tree Other](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree_other.py) * [Treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/treap.py) * Disjoint Set * [Alternate Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/alternate_disjoint_set.py) * [Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/disjoint_set.py) * Hashing * [Double Hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/double_hash.py) * [Hash Table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table.py) * [Hash Table With Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table_with_linked_list.py) * Number Theory * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/number_theory/prime_numbers.py) * [Quadratic Probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/quadratic_probing.py) * Heap * [Binomial Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/binomial_heap.py) * [Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py) * [Heap Generic](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap_generic.py) * [Max Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/max_heap.py) * [Min Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/min_heap.py) * [Randomized Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/randomized_heap.py) * [Skew Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/skew_heap.py) * Linked List * [Circular Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/circular_linked_list.py) * [Deque Doubly](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/deque_doubly.py) * [Doubly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list.py) * [Doubly Linked List Two](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list_two.py) * [From Sequence](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/from_sequence.py) * [Has Loop](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/has_loop.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_palindrome.py) * [Merge Two Lists](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/merge_two_lists.py) * [Middle Element Of Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/middle_element_of_linked_list.py) * [Print Reverse](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/print_reverse.py) * [Singly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) * [Skip List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/skip_list.py) * [Swap Nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swap_nodes.py) * Queue * [Circular Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/circular_queue.py) * [Double Ended Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/double_ended_queue.py) * [Linked Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/linked_queue.py) * [Priority Queue Using List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/priority_queue_using_list.py) * [Queue On List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_list.py) * [Queue On Pseudo Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_pseudo_stack.py) * Stacks * [Balanced Parentheses](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/balanced_parentheses.py) * [Dijkstras Two Stack Algorithm](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/dijkstras_two_stack_algorithm.py) * [Evaluate Postfix Notations](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/evaluate_postfix_notations.py) * [Infix To Postfix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_postfix_conversion.py) * [Infix To Prefix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_prefix_conversion.py) * [Linked Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/linked_stack.py) * [Next Greater Element](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/next_greater_element.py) * [Postfix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/postfix_evaluation.py) * [Prefix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/prefix_evaluation.py) * [Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack.py) * [Stack Using Dll](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack_using_dll.py) * [Stock Span Problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stock_span_problem.py) * Trie * [Trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py) ## Digital Image Processing * [Change Brightness](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_brightness.py) * [Change Contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py) * [Convert To Negative](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/convert_to_negative.py) * Dithering * [Burkes](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/dithering/burkes.py) * Edge Detection * [Canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/edge_detection/canny.py) * Filters * [Bilateral Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/bilateral_filter.py) * [Convolve](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/convolve.py) * [Gaussian Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py) * [Median Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py) * [Sobel Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/sobel_filter.py) * Histogram Equalization * [Histogram Stretch](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/histogram_equalization/histogram_stretch.py) * [Index Calculation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/index_calculation.py) * Resize * [Resize](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/resize/resize.py) * Rotation * [Rotation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/rotation/rotation.py) * [Sepia](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/sepia.py) * [Test Digital Image Processing](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/test_digital_image_processing.py) ## Divide And Conquer * [Closest Pair Of Points](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/closest_pair_of_points.py) * [Convex Hull](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/convex_hull.py) * [Heaps Algorithm](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/heaps_algorithm.py) * [Heaps Algorithm Iterative](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/heaps_algorithm_iterative.py) * [Inversions](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/inversions.py) * [Kth Order Statistic](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/kth_order_statistic.py) * [Max Difference Pair](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_difference_pair.py) * [Max Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py) * [Mergesort](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/mergesort.py) * [Peak](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/peak.py) * [Power](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/power.py) * [Strassen Matrix Multiplication](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/strassen_matrix_multiplication.py) ## Dynamic Programming * [Abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py) * [Bitmask](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/bitmask.py) * [Climbing Stairs](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/climbing_stairs.py) * [Edit Distance](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/edit_distance.py) * [Factorial](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/factorial.py) * [Fast Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fast_fibonacci.py) * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fibonacci.py) * [Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/floyd_warshall.py) * [Fractional Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack.py) * [Fractional Knapsack 2](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack_2.py) * [Integer Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/integer_partition.py) * [Iterating Through Submasks](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/iterating_through_submasks.py) * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/knapsack.py) * [Longest Common Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_common_subsequence.py) * [Longest Increasing Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence.py) * [Longest Increasing Subsequence O(Nlogn)](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence_o(nlogn).py) * [Longest Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_sub_array.py) * [Matrix Chain Order](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/matrix_chain_order.py) * [Max Non Adjacent Sum](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_non_adjacent_sum.py) * [Max Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) * [Max Sum Contiguous Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sum_contiguous_subsequence.py) * [Minimum Coin Change](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_coin_change.py) * [Minimum Cost Path](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_cost_path.py) * [Minimum Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) * [Minimum Steps To One](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_steps_to_one.py) * [Optimal Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/optimal_binary_search_tree.py) * [Rod Cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) * [Subset Generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) * [Sum Of Subset](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/sum_of_subset.py) ## Electronics * [Electric Power](https://github.com/TheAlgorithms/Python/blob/master/electronics/electric_power.py) * [Ohms Law](https://github.com/TheAlgorithms/Python/blob/master/electronics/ohms_law.py) ## File Transfer * [Receive File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/receive_file.py) * [Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/send_file.py) * Tests * [Test Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/tests/test_send_file.py) ## Fuzzy Logic * [Fuzzy Operations](https://github.com/TheAlgorithms/Python/blob/master/fuzzy_logic/fuzzy_operations.py) ## Genetic Algorithm * [Basic String](https://github.com/TheAlgorithms/Python/blob/master/genetic_algorithm/basic_string.py) ## Geodesy * [Haversine Distance](https://github.com/TheAlgorithms/Python/blob/master/geodesy/haversine_distance.py) * [Lamberts Ellipsoidal Distance](https://github.com/TheAlgorithms/Python/blob/master/geodesy/lamberts_ellipsoidal_distance.py) ## Graphics * [Bezier Curve](https://github.com/TheAlgorithms/Python/blob/master/graphics/bezier_curve.py) * [Koch Snowflake](https://github.com/TheAlgorithms/Python/blob/master/graphics/koch_snowflake.py) * [Mandelbrot](https://github.com/TheAlgorithms/Python/blob/master/graphics/mandelbrot.py) * [Vector3 For 2D Rendering](https://github.com/TheAlgorithms/Python/blob/master/graphics/vector3_for_2d_rendering.py) ## Graphs * [A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/a_star.py) * [Articulation Points](https://github.com/TheAlgorithms/Python/blob/master/graphs/articulation_points.py) * [Basic Graphs](https://github.com/TheAlgorithms/Python/blob/master/graphs/basic_graphs.py) * [Bellman Ford](https://github.com/TheAlgorithms/Python/blob/master/graphs/bellman_ford.py) * [Bfs Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_shortest_path.py) * [Bfs Zero One Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_zero_one_shortest_path.py) * [Bidirectional A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/bidirectional_a_star.py) * [Bidirectional Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/bidirectional_breadth_first_search.py) * [Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search.py) * [Breadth First Search 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search_2.py) * [Breadth First Search Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search_shortest_path.py) * [Check Bipartite Graph Bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_bfs.py) * [Check Bipartite Graph Dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_dfs.py) * [Connected Components](https://github.com/TheAlgorithms/Python/blob/master/graphs/connected_components.py) * [Depth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search.py) * [Depth First Search 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search_2.py) * [Dijkstra](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra.py) * [Dijkstra 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_2.py) * [Dijkstra Algorithm](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_algorithm.py) * [Dinic](https://github.com/TheAlgorithms/Python/blob/master/graphs/dinic.py) * [Directed And Undirected (Weighted) Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/directed_and_undirected_(weighted)_graph.py) * [Edmonds Karp Multiple Source And Sink](https://github.com/TheAlgorithms/Python/blob/master/graphs/edmonds_karp_multiple_source_and_sink.py) * [Eulerian Path And Circuit For Undirected Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/eulerian_path_and_circuit_for_undirected_graph.py) * [Even Tree](https://github.com/TheAlgorithms/Python/blob/master/graphs/even_tree.py) * [Finding Bridges](https://github.com/TheAlgorithms/Python/blob/master/graphs/finding_bridges.py) * [Frequent Pattern Graph Miner](https://github.com/TheAlgorithms/Python/blob/master/graphs/frequent_pattern_graph_miner.py) * [G Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/graphs/g_topological_sort.py) * [Gale Shapley Bigraph](https://github.com/TheAlgorithms/Python/blob/master/graphs/gale_shapley_bigraph.py) * [Graph List](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_list.py) * [Graph Matrix](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_matrix.py) * [Graphs Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/graphs_floyd_warshall.py) * [Greedy Best First](https://github.com/TheAlgorithms/Python/blob/master/graphs/greedy_best_first.py) * [Kahns Algorithm Long](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_long.py) * [Kahns Algorithm Topo](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_topo.py) * [Karger](https://github.com/TheAlgorithms/Python/blob/master/graphs/karger.py) * [Minimum Spanning Tree Boruvka](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_boruvka.py) * [Minimum Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py) * [Minimum Spanning Tree Kruskal2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal2.py) * [Minimum Spanning Tree Prims](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims.py) * [Minimum Spanning Tree Prims2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims2.py) * [Multi Heuristic Astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_heuristic_astar.py) * [Page Rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py) * [Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py) * [Scc Kosaraju](https://github.com/TheAlgorithms/Python/blob/master/graphs/scc_kosaraju.py) * [Strongly Connected Components](https://github.com/TheAlgorithms/Python/blob/master/graphs/strongly_connected_components.py) * [Tarjans Scc](https://github.com/TheAlgorithms/Python/blob/master/graphs/tarjans_scc.py) * Tests * [Test Min Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/tests/test_min_spanning_tree_kruskal.py) * [Test Min Spanning Tree Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/tests/test_min_spanning_tree_prim.py) ## Hashes * [Adler32](https://github.com/TheAlgorithms/Python/blob/master/hashes/adler32.py) * [Chaos Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/chaos_machine.py) * [Djb2](https://github.com/TheAlgorithms/Python/blob/master/hashes/djb2.py) * [Enigma Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/enigma_machine.py) * [Hamming Code](https://github.com/TheAlgorithms/Python/blob/master/hashes/hamming_code.py) * [Md5](https://github.com/TheAlgorithms/Python/blob/master/hashes/md5.py) * [Sdbm](https://github.com/TheAlgorithms/Python/blob/master/hashes/sdbm.py) * [Sha1](https://github.com/TheAlgorithms/Python/blob/master/hashes/sha1.py) ## Knapsack * [Greedy Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/greedy_knapsack.py) * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/knapsack.py) * Tests * [Test Greedy Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/tests/test_greedy_knapsack.py) * [Test Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/tests/test_knapsack.py) ## Linear Algebra * Src * [Conjugate Gradient](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/conjugate_gradient.py) * [Lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/lib.py) * [Polynom For Points](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/polynom_for_points.py) * [Power Iteration](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/power_iteration.py) * [Rayleigh Quotient](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/rayleigh_quotient.py) * [Test Linear Algebra](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/test_linear_algebra.py) * [Transformations 2D](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/transformations_2d.py) ## Machine Learning * [Astar](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/astar.py) * [Data Transformations](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/data_transformations.py) * [Decision Tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py) * Forecasting * [Run](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/forecasting/run.py) * [Gaussian Naive Bayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gaussian_naive_bayes.py) * [Gradient Boosting Regressor](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_boosting_regressor.py) * [Gradient Descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py) * [K Means Clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py) * [K Nearest Neighbours](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_nearest_neighbours.py) * [Knn Sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py) * [Linear Discriminant Analysis](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_discriminant_analysis.py) * [Linear Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) * [Logistic Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) * [Multilayer Perceptron Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/multilayer_perceptron_classifier.py) * [Polymonial Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/polymonial_regression.py) * [Random Forest Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classifier.py) * [Random Forest Regressor](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regressor.py) * [Scoring Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) * [Sequential Minimum Optimization](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/sequential_minimum_optimization.py) * [Similarity Search](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/similarity_search.py) * [Support Vector Machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/support_vector_machines.py) * [Word Frequency Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/word_frequency_functions.py) ## Maths * [3N Plus 1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n_plus_1.py) * [Abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) * [Abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) * [Abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) * [Add](https://github.com/TheAlgorithms/Python/blob/master/maths/add.py) * [Aliquot Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/aliquot_sum.py) * [Allocation Number](https://github.com/TheAlgorithms/Python/blob/master/maths/allocation_number.py) * [Area](https://github.com/TheAlgorithms/Python/blob/master/maths/area.py) * [Area Under Curve](https://github.com/TheAlgorithms/Python/blob/master/maths/area_under_curve.py) * [Armstrong Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/armstrong_numbers.py) * [Average Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py) * [Average Median](https://github.com/TheAlgorithms/Python/blob/master/maths/average_median.py) * [Average Mode](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mode.py) * [Bailey Borwein Plouffe](https://github.com/TheAlgorithms/Python/blob/master/maths/bailey_borwein_plouffe.py) * [Basic Maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py) * [Binary Exp Mod](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exp_mod.py) * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py) * [Binomial Coefficient](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_coefficient.py) * [Binomial Distribution](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_distribution.py) * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/maths/bisection.py) * [Ceil](https://github.com/TheAlgorithms/Python/blob/master/maths/ceil.py) * [Chudnovsky Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/chudnovsky_algorithm.py) * [Collatz Sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/collatz_sequence.py) * [Combinations](https://github.com/TheAlgorithms/Python/blob/master/maths/combinations.py) * [Decimal Isolate](https://github.com/TheAlgorithms/Python/blob/master/maths/decimal_isolate.py) * [Entropy](https://github.com/TheAlgorithms/Python/blob/master/maths/entropy.py) * [Euclidean Distance](https://github.com/TheAlgorithms/Python/blob/master/maths/euclidean_distance.py) * [Eulers Totient](https://github.com/TheAlgorithms/Python/blob/master/maths/eulers_totient.py) * [Explicit Euler](https://github.com/TheAlgorithms/Python/blob/master/maths/explicit_euler.py) * [Extended Euclidean Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) * [Factorial Iterative](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_iterative.py) * [Factorial Python](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_python.py) * [Factorial Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_recursive.py) * [Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/factors.py) * [Fermat Little Theorem](https://github.com/TheAlgorithms/Python/blob/master/maths/fermat_little_theorem.py) * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci.py) * [Fibonacci Sequence Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci_sequence_recursion.py) * [Find Max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py) * [Find Max Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max_recursion.py) * [Find Min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py) * [Find Min Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min_recursion.py) * [Floor](https://github.com/TheAlgorithms/Python/blob/master/maths/floor.py) * [Gamma](https://github.com/TheAlgorithms/Python/blob/master/maths/gamma.py) * [Gaussian](https://github.com/TheAlgorithms/Python/blob/master/maths/gaussian.py) * [Greatest Common Divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greatest_common_divisor.py) * [Hardy Ramanujanalgo](https://github.com/TheAlgorithms/Python/blob/master/maths/hardy_ramanujanalgo.py) * [Is Square Free](https://github.com/TheAlgorithms/Python/blob/master/maths/is_square_free.py) * [Jaccard Similarity](https://github.com/TheAlgorithms/Python/blob/master/maths/jaccard_similarity.py) * [Kadanes](https://github.com/TheAlgorithms/Python/blob/master/maths/kadanes.py) * [Karatsuba](https://github.com/TheAlgorithms/Python/blob/master/maths/karatsuba.py) * [Krishnamurthy Number](https://github.com/TheAlgorithms/Python/blob/master/maths/krishnamurthy_number.py) * [Kth Lexicographic Permutation](https://github.com/TheAlgorithms/Python/blob/master/maths/kth_lexicographic_permutation.py) * [Largest Of Very Large Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_of_very_large_numbers.py) * [Least Common Multiple](https://github.com/TheAlgorithms/Python/blob/master/maths/least_common_multiple.py) * [Line Length](https://github.com/TheAlgorithms/Python/blob/master/maths/line_length.py) * [Lucas Lehmer Primality Test](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_lehmer_primality_test.py) * [Lucas Series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py) * [Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/matrix_exponentiation.py) * [Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/maths/miller_rabin.py) * [Mobius Function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) * [Modular Exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) * [Monte Carlo](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo.py) * [Monte Carlo Dice](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo_dice.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) * [Number Of Digits](https://github.com/TheAlgorithms/Python/blob/master/maths/number_of_digits.py) * [Numerical Integration](https://github.com/TheAlgorithms/Python/blob/master/maths/numerical_integration.py) * [Perfect Cube](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_cube.py) * [Perfect Number](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_number.py) * [Perfect Square](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_square.py) * [Pi Monte Carlo Estimation](https://github.com/TheAlgorithms/Python/blob/master/maths/pi_monte_carlo_estimation.py) * [Polynomial Evaluation](https://github.com/TheAlgorithms/Python/blob/master/maths/polynomial_evaluation.py) * [Power Using Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/power_using_recursion.py) * [Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) * [Prime Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py) * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_numbers.py) * [Prime Sieve Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_sieve_eratosthenes.py) * [Pythagoras](https://github.com/TheAlgorithms/Python/blob/master/maths/pythagoras.py) * [Qr Decomposition](https://github.com/TheAlgorithms/Python/blob/master/maths/qr_decomposition.py) * [Quadratic Equations Complex Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/quadratic_equations_complex_numbers.py) * [Radians](https://github.com/TheAlgorithms/Python/blob/master/maths/radians.py) * [Radix2 Fft](https://github.com/TheAlgorithms/Python/blob/master/maths/radix2_fft.py) * [Relu](https://github.com/TheAlgorithms/Python/blob/master/maths/relu.py) * [Runge Kutta](https://github.com/TheAlgorithms/Python/blob/master/maths/runge_kutta.py) * [Segmented Sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py) * Series * [Arithmetic Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/series/arithmetic_mean.py) * [Geometric Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/series/geometric_mean.py) * [Geometric Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/geometric_series.py) * [Harmonic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/harmonic_series.py) * [P Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/p_series.py) * [Sieve Of Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py) * [Sigmoid](https://github.com/TheAlgorithms/Python/blob/master/maths/sigmoid.py) * [Simpson Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py) * [Softmax](https://github.com/TheAlgorithms/Python/blob/master/maths/softmax.py) * [Square Root](https://github.com/TheAlgorithms/Python/blob/master/maths/square_root.py) * [Sum Of Arithmetic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_arithmetic_series.py) * [Sum Of Digits](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_digits.py) * [Sum Of Geometric Progression](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_geometric_progression.py) * [Test Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/test_prime_check.py) * [Trapezoidal Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/trapezoidal_rule.py) * [Ugly Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/ugly_numbers.py) * [Volume](https://github.com/TheAlgorithms/Python/blob/master/maths/volume.py) * [Zellers Congruence](https://github.com/TheAlgorithms/Python/blob/master/maths/zellers_congruence.py) ## Matrix * [Count Islands In Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/count_islands_in_matrix.py) * [Inverse Of Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/inverse_of_matrix.py) * [Matrix Class](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_class.py) * [Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_operation.py) * [Nth Fibonacci Using Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/matrix/nth_fibonacci_using_matrix_exponentiation.py) * [Rotate Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/rotate_matrix.py) * [Searching In Sorted Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) * [Sherman Morrison](https://github.com/TheAlgorithms/Python/blob/master/matrix/sherman_morrison.py) * [Spiral Print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py) * Tests * [Test Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/tests/test_matrix_operation.py) ## Networking Flow * [Ford Fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py) * [Minimum Cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py) ## Neural Network * [2 Hidden Layers Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/2_hidden_layers_neural_network.py) * [Back Propagation Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py) * [Convolution Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) * [Perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) ## Other * [Activity Selection](https://github.com/TheAlgorithms/Python/blob/master/other/activity_selection.py) * [Anagrams](https://github.com/TheAlgorithms/Python/blob/master/other/anagrams.py) * [Autocomplete Using Trie](https://github.com/TheAlgorithms/Python/blob/master/other/autocomplete_using_trie.py) * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation.py) * [Binary Exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/other/binary_exponentiation_2.py) * [Davis–Putnam–Logemann–Loveland](https://github.com/TheAlgorithms/Python/blob/master/other/davis–putnam–logemann–loveland.py) * [Detecting English Programmatically](https://github.com/TheAlgorithms/Python/blob/master/other/detecting_english_programmatically.py) * [Dijkstra Bankers Algorithm](https://github.com/TheAlgorithms/Python/blob/master/other/dijkstra_bankers_algorithm.py) * [Doomsday](https://github.com/TheAlgorithms/Python/blob/master/other/doomsday.py) * [Euclidean Gcd](https://github.com/TheAlgorithms/Python/blob/master/other/euclidean_gcd.py) * [Fischer Yates Shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) * [Frequency Finder](https://github.com/TheAlgorithms/Python/blob/master/other/frequency_finder.py) * [Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/other/game_of_life.py) * [Gauss Easter](https://github.com/TheAlgorithms/Python/blob/master/other/gauss_easter.py) * [Graham Scan](https://github.com/TheAlgorithms/Python/blob/master/other/graham_scan.py) * [Greedy](https://github.com/TheAlgorithms/Python/blob/master/other/greedy.py) * [Integeration By Simpson Approx](https://github.com/TheAlgorithms/Python/blob/master/other/integeration_by_simpson_approx.py) * [Largest Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/other/largest_subarray_sum.py) * [Least Recently Used](https://github.com/TheAlgorithms/Python/blob/master/other/least_recently_used.py) * [Lfu Cache](https://github.com/TheAlgorithms/Python/blob/master/other/lfu_cache.py) * [Linear Congruential Generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) * [Lru Cache](https://github.com/TheAlgorithms/Python/blob/master/other/lru_cache.py) * [Magicdiamondpattern](https://github.com/TheAlgorithms/Python/blob/master/other/magicdiamondpattern.py) * [Markov Chain](https://github.com/TheAlgorithms/Python/blob/master/other/markov_chain.py) * [Max Sum Sliding Window](https://github.com/TheAlgorithms/Python/blob/master/other/max_sum_sliding_window.py) * [Median Of Two Arrays](https://github.com/TheAlgorithms/Python/blob/master/other/median_of_two_arrays.py) * [Nested Brackets](https://github.com/TheAlgorithms/Python/blob/master/other/nested_brackets.py) * [Palindrome](https://github.com/TheAlgorithms/Python/blob/master/other/palindrome.py) * [Password Generator](https://github.com/TheAlgorithms/Python/blob/master/other/password_generator.py) * [Primelib](https://github.com/TheAlgorithms/Python/blob/master/other/primelib.py) * [Scoring Algorithm](https://github.com/TheAlgorithms/Python/blob/master/other/scoring_algorithm.py) * [Sdes](https://github.com/TheAlgorithms/Python/blob/master/other/sdes.py) * [Sierpinski Triangle](https://github.com/TheAlgorithms/Python/blob/master/other/sierpinski_triangle.py) * [Tower Of Hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py) * [Triplet Sum](https://github.com/TheAlgorithms/Python/blob/master/other/triplet_sum.py) * [Two Pointer](https://github.com/TheAlgorithms/Python/blob/master/other/two_pointer.py) * [Two Sum](https://github.com/TheAlgorithms/Python/blob/master/other/two_sum.py) * [Word Patterns](https://github.com/TheAlgorithms/Python/blob/master/other/word_patterns.py) ## Project Euler * Problem 001 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol4.py) * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol5.py) * [Sol6](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol6.py) * [Sol7](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol7.py) * Problem 002 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol4.py) * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol5.py) * Problem 003 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol3.py) * Problem 004 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_004/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_004/sol2.py) * Problem 005 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_005/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_005/sol2.py) * Problem 006 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol4.py) * Problem 007 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol3.py) * Problem 008 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol3.py) * Problem 009 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol3.py) * Problem 010 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol3.py) * Problem 011 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_011/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_011/sol2.py) * Problem 012 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_012/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_012/sol2.py) * Problem 013 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_013/sol1.py) * Problem 014 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_014/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_014/sol2.py) * Problem 015 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_015/sol1.py) * Problem 016 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_016/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_016/sol2.py) * Problem 017 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_017/sol1.py) * Problem 018 * [Solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_018/solution.py) * Problem 019 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_019/sol1.py) * Problem 020 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol4.py) * Problem 021 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_021/sol1.py) * Problem 022 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_022/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_022/sol2.py) * Problem 023 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_023/sol1.py) * Problem 024 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_024/sol1.py) * Problem 025 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol3.py) * Problem 026 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_026/sol1.py) * Problem 027 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_027/sol1.py) * Problem 028 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_028/sol1.py) * Problem 029 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_029/sol1.py) * Problem 030 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_030/sol1.py) * Problem 031 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_031/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_031/sol2.py) * Problem 032 * [Sol32](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_032/sol32.py) * Problem 033 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_033/sol1.py) * Problem 034 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_034/sol1.py) * Problem 035 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_035/sol1.py) * Problem 036 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_036/sol1.py) * Problem 037 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_037/sol1.py) * Problem 038 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_038/sol1.py) * Problem 039 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_039/sol1.py) * Problem 040 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_040/sol1.py) * Problem 041 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_041/sol1.py) * Problem 042 * [Solution42](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_042/solution42.py) * Problem 043 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_043/sol1.py) * Problem 044 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_044/sol1.py) * Problem 045 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_045/sol1.py) * Problem 046 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_046/sol1.py) * Problem 047 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_047/sol1.py) * Problem 048 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_048/sol1.py) * Problem 049 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_049/sol1.py) * Problem 050 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_050/sol1.py) * Problem 051 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_051/sol1.py) * Problem 052 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_052/sol1.py) * Problem 053 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_053/sol1.py) * Problem 054 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_054/sol1.py) * [Test Poker Hand](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_054/test_poker_hand.py) * Problem 055 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_055/sol1.py) * Problem 056 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_056/sol1.py) * Problem 057 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_057/sol1.py) * Problem 058 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_058/sol1.py) * Problem 059 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_059/sol1.py) * Problem 062 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_062/sol1.py) * Problem 063 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_063/sol1.py) * Problem 064 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_064/sol1.py) * Problem 065 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_065/sol1.py) * Problem 067 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_067/sol1.py) * Problem 069 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_069/sol1.py) * Problem 070 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_070/sol1.py) * Problem 071 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_071/sol1.py) * Problem 072 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_072/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_072/sol2.py) * Problem 074 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_074/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_074/sol2.py) * Problem 075 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_075/sol1.py) * Problem 076 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_076/sol1.py) * Problem 077 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_077/sol1.py) * Problem 080 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_080/sol1.py) * Problem 081 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_081/sol1.py) * Problem 085 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_085/sol1.py) * Problem 086 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_086/sol1.py) * Problem 087 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_087/sol1.py) * Problem 089 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_089/sol1.py) * Problem 091 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_091/sol1.py) * Problem 097 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_097/sol1.py) * Problem 099 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_099/sol1.py) * Problem 101 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_101/sol1.py) * Problem 102 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_102/sol1.py) * Problem 107 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_107/sol1.py) * Problem 109 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_109/sol1.py) * Problem 112 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_112/sol1.py) * Problem 113 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_113/sol1.py) * Problem 119 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_119/sol1.py) * Problem 120 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_120/sol1.py) * Problem 123 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_123/sol1.py) * Problem 125 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_125/sol1.py) * Problem 129 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_129/sol1.py) * Problem 135 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_135/sol1.py) * Problem 173 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_173/sol1.py) * Problem 174 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_174/sol1.py) * Problem 180 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_180/sol1.py) * Problem 188 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_188/sol1.py) * Problem 191 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_191/sol1.py) * Problem 203 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_203/sol1.py) * Problem 206 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_206/sol1.py) * Problem 207 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_207/sol1.py) * Problem 234 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_234/sol1.py) * Problem 301 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_301/sol1.py) * Problem 551 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_551/sol1.py) ## Quantum * [Deutsch Jozsa](https://github.com/TheAlgorithms/Python/blob/master/quantum/deutsch_jozsa.py) * [Half Adder](https://github.com/TheAlgorithms/Python/blob/master/quantum/half_adder.py) * [Not Gate](https://github.com/TheAlgorithms/Python/blob/master/quantum/not_gate.py) * [Quantum Entanglement](https://github.com/TheAlgorithms/Python/blob/master/quantum/quantum_entanglement.py) * [Ripple Adder Classic](https://github.com/TheAlgorithms/Python/blob/master/quantum/ripple_adder_classic.py) * [Single Qubit Measure](https://github.com/TheAlgorithms/Python/blob/master/quantum/single_qubit_measure.py) ## Scheduling * [First Come First Served](https://github.com/TheAlgorithms/Python/blob/master/scheduling/first_come_first_served.py) * [Round Robin](https://github.com/TheAlgorithms/Python/blob/master/scheduling/round_robin.py) * [Shortest Job First](https://github.com/TheAlgorithms/Python/blob/master/scheduling/shortest_job_first.py) ## Searches * [Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) * [Double Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/double_linear_search.py) * [Double Linear Search Recursion](https://github.com/TheAlgorithms/Python/blob/master/searches/double_linear_search_recursion.py) * [Fibonacci Search](https://github.com/TheAlgorithms/Python/blob/master/searches/fibonacci_search.py) * [Hill Climbing](https://github.com/TheAlgorithms/Python/blob/master/searches/hill_climbing.py) * [Interpolation Search](https://github.com/TheAlgorithms/Python/blob/master/searches/interpolation_search.py) * [Jump Search](https://github.com/TheAlgorithms/Python/blob/master/searches/jump_search.py) * [Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/linear_search.py) * [Quick Select](https://github.com/TheAlgorithms/Python/blob/master/searches/quick_select.py) * [Sentinel Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/sentinel_linear_search.py) * [Simple Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/simple_binary_search.py) * [Simulated Annealing](https://github.com/TheAlgorithms/Python/blob/master/searches/simulated_annealing.py) * [Tabu Search](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_search.py) * [Ternary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/ternary_search.py) ## Sorts * [Bead Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bead_sort.py) * [Bitonic Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bitonic_sort.py) * [Bogo Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bogo_sort.py) * [Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bubble_sort.py) * [Bucket Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bucket_sort.py) * [Cocktail Shaker Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cocktail_shaker_sort.py) * [Comb Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/comb_sort.py) * [Counting Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/counting_sort.py) * [Cycle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cycle_sort.py) * [Double Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/double_sort.py) * [External Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/external_sort.py) * [Gnome Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/gnome_sort.py) * [Heap Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/heap_sort.py) * [Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/insertion_sort.py) * [Intro Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/intro_sort.py) * [Iterative Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/iterative_merge_sort.py) * [Merge Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_insertion_sort.py) * [Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort.py) * [Natural Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/natural_sort.py) * [Odd Even Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_sort.py) * [Odd Even Transposition Parallel](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_parallel.py) * [Odd Even Transposition Single Threaded](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_single_threaded.py) * [Pancake Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pancake_sort.py) * [Patience Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/patience_sort.py) * [Pigeon Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeon_sort.py) * [Pigeonhole Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeonhole_sort.py) * [Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort.py) * [Quick Sort 3 Partition](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort_3_partition.py) * [Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/radix_sort.py) * [Random Normal Distribution Quicksort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_normal_distribution_quicksort.py) * [Random Pivot Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_pivot_quick_sort.py) * [Recursive Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_bubble_sort.py) * [Recursive Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_insertion_sort.py) * [Recursive Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_quick_sort.py) * [Selection Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/selection_sort.py) * [Shell Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) * [Slowsort](https://github.com/TheAlgorithms/Python/blob/master/sorts/slowsort.py) * [Stooge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/stooge_sort.py) * [Strand Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/strand_sort.py) * [Tim Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py) * [Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py) * [Tree Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py) * [Unknown Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/unknown_sort.py) * [Wiggle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/wiggle_sort.py) ## Strings * [Aho Corasick](https://github.com/TheAlgorithms/Python/blob/master/strings/aho_corasick.py) * [Boyer Moore Search](https://github.com/TheAlgorithms/Python/blob/master/strings/boyer_moore_search.py) * [Can String Be Rearranged As Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/can_string_be_rearranged_as_palindrome.py) * [Capitalize](https://github.com/TheAlgorithms/Python/blob/master/strings/capitalize.py) * [Check Anagrams](https://github.com/TheAlgorithms/Python/blob/master/strings/check_anagrams.py) * [Check Pangram](https://github.com/TheAlgorithms/Python/blob/master/strings/check_pangram.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/is_palindrome.py) * [Jaro Winkler](https://github.com/TheAlgorithms/Python/blob/master/strings/jaro_winkler.py) * [Knuth Morris Pratt](https://github.com/TheAlgorithms/Python/blob/master/strings/knuth_morris_pratt.py) * [Levenshtein Distance](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py) * [Lower](https://github.com/TheAlgorithms/Python/blob/master/strings/lower.py) * [Manacher](https://github.com/TheAlgorithms/Python/blob/master/strings/manacher.py) * [Min Cost String Conversion](https://github.com/TheAlgorithms/Python/blob/master/strings/min_cost_string_conversion.py) * [Naive String Search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_string_search.py) * [Prefix Function](https://github.com/TheAlgorithms/Python/blob/master/strings/prefix_function.py) * [Rabin Karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) * [Remove Duplicate](https://github.com/TheAlgorithms/Python/blob/master/strings/remove_duplicate.py) * [Reverse Letters](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_letters.py) * [Reverse Words](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_words.py) * [Split](https://github.com/TheAlgorithms/Python/blob/master/strings/split.py) * [Swap Case](https://github.com/TheAlgorithms/Python/blob/master/strings/swap_case.py) * [Upper](https://github.com/TheAlgorithms/Python/blob/master/strings/upper.py) * [Word Occurrence](https://github.com/TheAlgorithms/Python/blob/master/strings/word_occurrence.py) * [Z Function](https://github.com/TheAlgorithms/Python/blob/master/strings/z_function.py) ## Traversals * [Binary Tree Traversals](https://github.com/TheAlgorithms/Python/blob/master/traversals/binary_tree_traversals.py) ## Web Programming * [Co2 Emission](https://github.com/TheAlgorithms/Python/blob/master/web_programming/co2_emission.py) * [Covid Stats Via Xpath](https://github.com/TheAlgorithms/Python/blob/master/web_programming/covid_stats_via_xpath.py) * [Crawl Google Results](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_results.py) * [Crawl Google Scholar Citation](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_scholar_citation.py) * [Currency Converter](https://github.com/TheAlgorithms/Python/blob/master/web_programming/currency_converter.py) * [Current Stock Price](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_stock_price.py) * [Current Weather](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_weather.py) * [Daily Horoscope](https://github.com/TheAlgorithms/Python/blob/master/web_programming/daily_horoscope.py) * [Emails From Url](https://github.com/TheAlgorithms/Python/blob/master/web_programming/emails_from_url.py) * [Fetch Bbc News](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_bbc_news.py) * [Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_github_info.py) * [Fetch Jobs](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_jobs.py) * [Get Imdb Top 250 Movies Csv](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdb_top_250_movies_csv.py) * [Get Imdbtop](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdbtop.py) * [Instagram Crawler](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_crawler.py) * [Instagram Pic](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_pic.py) * [Instagram Video](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_video.py) * [Recaptcha Verification](https://github.com/TheAlgorithms/Python/blob/master/web_programming/recaptcha_verification.py) * [Slack Message](https://github.com/TheAlgorithms/Python/blob/master/web_programming/slack_message.py) * [Test Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/test_fetch_github_info.py) * [World Covid19 Stats](https://github.com/TheAlgorithms/Python/blob/master/web_programming/world_covid19_stats.py)
1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split data = datasets.load_iris() X = np.array(data["data"]) y = np.array(data["target"]) classes = data["target_names"] X_train, X_test, y_train, y_test = train_test_split(X, y) def euclidean_distance(a, b): """ Gives the euclidean distance between two points >>> euclidean_distance([0, 0], [3, 4]) 5.0 >>> euclidean_distance([1, 2, 3], [1, 8, 11]) 10.0 """ return np.linalg.norm(np.array(a) - np.array(b)) def classifier(train_data, train_target, classes, point, k=5): """ Classifies the point using the KNN algorithm k closest points are found (ranked in ascending order of euclidean distance) Params: :train_data: Set of points that are classified into two or more classes :train_target: List of classes in the order of train_data points :classes: Labels of the classes :point: The data point that needs to be classifed >>> X_train = [[0, 0], [1, 0], [0, 1], [0.5, 0.5], [3, 3], [2, 3], [3, 2]] >>> y_train = [0, 0, 0, 0, 1, 1, 1] >>> classes = ['A','B']; point = [1.2,1.2] >>> classifier(X_train, y_train, classes,point) 'A' """ data = zip(train_data, train_target) # List of distances of all points from the point to be classified distances = [] for data_point in data: distance = euclidean_distance(data_point[0], point) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. votes = [i[1] for i in sorted(distances)[:k]] # Most commonly occurring class among them # is the class into which the point is classified result = Counter(votes).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split data = datasets.load_iris() X = np.array(data["data"]) y = np.array(data["target"]) classes = data["target_names"] X_train, X_test, y_train, y_test = train_test_split(X, y) def euclidean_distance(a, b): """ Gives the euclidean distance between two points >>> euclidean_distance([0, 0], [3, 4]) 5.0 >>> euclidean_distance([1, 2, 3], [1, 8, 11]) 10.0 """ return np.linalg.norm(np.array(a) - np.array(b)) def classifier(train_data, train_target, classes, point, k=5): """ Classifies the point using the KNN algorithm k closest points are found (ranked in ascending order of euclidean distance) Params: :train_data: Set of points that are classified into two or more classes :train_target: List of classes in the order of train_data points :classes: Labels of the classes :point: The data point that needs to be classified >>> X_train = [[0, 0], [1, 0], [0, 1], [0.5, 0.5], [3, 3], [2, 3], [3, 2]] >>> y_train = [0, 0, 0, 0, 1, 1, 1] >>> classes = ['A','B']; point = [1.2,1.2] >>> classifier(X_train, y_train, classes,point) 'A' """ data = zip(train_data, train_target) # List of distances of all points from the point to be classified distances = [] for data_point in data: distance = euclidean_distance(data_point[0], point) distances.append((distance, data_point[1])) # Choosing 'k' points with the least distances. votes = [i[1] for i in sorted(distances)[:k]] # Most commonly occurring class among them # is the class into which the point is classified result = Counter(votes).most_common(1)[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from typing import Sequence def evaluate_poly(poly: Sequence[float], x: float) -> float: """Evaluate a polynomial f(x) at specified point x and return the value. Arguments: poly -- the coeffiecients of a polynomial as an iterable in order of ascending degree x -- the point at which to evaluate the polynomial >>> evaluate_poly((0.0, 0.0, 5.0, 9.3, 7.0), 10.0) 79800.0 """ return sum(c * (x ** i) for i, c in enumerate(poly)) def horner(poly: Sequence[float], x: float) -> float: """Evaluate a polynomial at specified point using Horner's method. In terms of computational complexity, Horner's method is an efficient method of evaluating a polynomial. It avoids the use of expensive exponentiation, and instead uses only multiplication and addition to evaluate the polynomial in O(n), where n is the degree of the polynomial. https://en.wikipedia.org/wiki/Horner's_method Arguments: poly -- the coeffiecients of a polynomial as an iterable in order of ascending degree x -- the point at which to evaluate the polynomial >>> horner((0.0, 0.0, 5.0, 9.3, 7.0), 10.0) 79800.0 """ result = 0.0 for coeff in reversed(poly): result = result * x + coeff return result if __name__ == "__main__": """ Example: >>> poly = (0.0, 0.0, 5.0, 9.3, 7.0) # f(x) = 7.0x^4 + 9.3x^3 + 5.0x^2 >>> x = -13.0 >>> # f(-13) = 7.0(-13)^4 + 9.3(-13)^3 + 5.0(-13)^2 = 180339.9 >>> print(evaluate_poly(poly, x)) 180339.9 """ poly = (0.0, 0.0, 5.0, 9.3, 7.0) x = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
from typing import Sequence def evaluate_poly(poly: Sequence[float], x: float) -> float: """Evaluate a polynomial f(x) at specified point x and return the value. Arguments: poly -- the coefficients of a polynomial as an iterable in order of ascending degree x -- the point at which to evaluate the polynomial >>> evaluate_poly((0.0, 0.0, 5.0, 9.3, 7.0), 10.0) 79800.0 """ return sum(c * (x ** i) for i, c in enumerate(poly)) def horner(poly: Sequence[float], x: float) -> float: """Evaluate a polynomial at specified point using Horner's method. In terms of computational complexity, Horner's method is an efficient method of evaluating a polynomial. It avoids the use of expensive exponentiation, and instead uses only multiplication and addition to evaluate the polynomial in O(n), where n is the degree of the polynomial. https://en.wikipedia.org/wiki/Horner's_method Arguments: poly -- the coefficients of a polynomial as an iterable in order of ascending degree x -- the point at which to evaluate the polynomial >>> horner((0.0, 0.0, 5.0, 9.3, 7.0), 10.0) 79800.0 """ result = 0.0 for coeff in reversed(poly): result = result * x + coeff return result if __name__ == "__main__": """ Example: >>> poly = (0.0, 0.0, 5.0, 9.3, 7.0) # f(x) = 7.0x^4 + 9.3x^3 + 5.0x^2 >>> x = -13.0 >>> # f(-13) = 7.0(-13)^4 + 9.3(-13)^3 + 5.0(-13)^2 = 180339.9 >>> print(evaluate_poly(poly, x)) 180339.9 """ poly = (0.0, 0.0, 5.0, 9.3, 7.0) x = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# https://en.wikipedia.org/wiki/Hill_climbing import math class SearchProblem: """ An interface to define search problems. The interface will be illustrated using the example of mathematical function. """ def __init__(self, x: int, y: int, step_size: int, function_to_optimize): """ The constructor of the search problem. x: the x coordinate of the current search state. y: the y coordinate of the current search state. step_size: size of the step to take when looking for neighbors. function_to_optimize: a function to optimize having the signature f(x, y). """ self.x = x self.y = y self.step_size = step_size self.function = function_to_optimize def score(self) -> int: """ Returns the output of the function called with current x and y coordinates. >>> def test_function(x, y): ... return x + y >>> SearchProblem(0, 0, 1, test_function).score() # 0 + 0 = 0 0 >>> SearchProblem(5, 7, 1, test_function).score() # 5 + 7 = 12 12 """ return self.function(self.x, self.y) def get_neighbors(self): """ Returns a list of coordinates of neighbors adjacent to the current coordinates. Neighbors: | 0 | 1 | 2 | | 3 | _ | 4 | | 5 | 6 | 7 | """ step_size = self.step_size return [ SearchProblem(x, y, step_size, self.function) for x, y in ( (self.x - step_size, self.y - step_size), (self.x - step_size, self.y), (self.x - step_size, self.y + step_size), (self.x, self.y - step_size), (self.x, self.y + step_size), (self.x + step_size, self.y - step_size), (self.x + step_size, self.y), (self.x + step_size, self.y + step_size), ) ] def __hash__(self): """ hash the string represetation of the current search state. """ return hash(str(self)) def __eq__(self, obj): """ Check if the 2 objects are equal. """ if isinstance(obj, SearchProblem): return hash(str(self)) == hash(str(obj)) return False def __str__(self): """ string representation of the current search state. >>> str(SearchProblem(0, 0, 1, None)) 'x: 0 y: 0' >>> str(SearchProblem(2, 5, 1, None)) 'x: 2 y: 5' """ return f"x: {self.x} y: {self.y}" def hill_climbing( search_prob, find_max: bool = True, max_x: float = math.inf, min_x: float = -math.inf, max_y: float = math.inf, min_y: float = -math.inf, visualization: bool = False, max_iter: int = 10000, ) -> SearchProblem: """ Implementation of the hill climbling algorithm. We start with a given state, find all its neighbors, move towards the neighbor which provides the maximum (or minimum) change. We keep doing this until we are at a state where we do not have any neighbors which can improve the solution. Args: search_prob: The search state at the start. find_max: If True, the algorithm should find the maximum else the minimum. max_x, min_x, max_y, min_y: the maximum and minimum bounds of x and y. visualization: If True, a matplotlib graph is displayed. max_iter: number of times to run the iteration. Returns a search state having the maximum (or minimum) score. """ current_state = search_prob scores = [] # list to store the current score at each iteration iterations = 0 solution_found = False visited = set() while not solution_found and iterations < max_iter: visited.add(current_state) iterations += 1 current_score = current_state.score() scores.append(current_score) neighbors = current_state.get_neighbors() max_change = -math.inf min_change = math.inf next_state = None # to hold the next best neighbor for neighbor in neighbors: if neighbor in visited: continue # do not want to visit the same state again if ( neighbor.x > max_x or neighbor.x < min_x or neighbor.y > max_y or neighbor.y < min_y ): continue # neighbor outside our bounds change = neighbor.score() - current_score if find_max: # finding max # going to direction with greatest ascent if change > max_change and change > 0: max_change = change next_state = neighbor else: # finding min # to direction with greatest descent if change < min_change and change < 0: min_change = change next_state = neighbor if next_state is not None: # we found at least one neighbor which improved the current state current_state = next_state else: # since we have no neighbor that improves the solution we stop the search solution_found = True if visualization: from matplotlib import pyplot as plt plt.plot(range(iterations), scores) plt.xlabel("Iterations") plt.ylabel("Function values") plt.show() return current_state if __name__ == "__main__": import doctest doctest.testmod() def test_f1(x, y): return (x ** 2) + (y ** 2) # starting the problem with initial coordinates (3, 4) prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) local_min = hill_climbing(prob, find_max=False) print( "The minimum score for f(x, y) = x^2 + y^2 found via hill climbing: " f"{local_min.score()}" ) # starting the problem with initial coordinates (12, 47) prob = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_f1) local_min = hill_climbing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f"and 50 > y > - 5 found via hill climbing: {local_min.score()}" ) def test_f2(x, y): return (3 * x ** 2) - (6 * y) prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) local_min = hill_climbing(prob, find_max=True) print( "The maximum score for f(x, y) = x^2 + y^2 found via hill climbing: " f"{local_min.score()}" )
# https://en.wikipedia.org/wiki/Hill_climbing import math class SearchProblem: """ An interface to define search problems. The interface will be illustrated using the example of mathematical function. """ def __init__(self, x: int, y: int, step_size: int, function_to_optimize): """ The constructor of the search problem. x: the x coordinate of the current search state. y: the y coordinate of the current search state. step_size: size of the step to take when looking for neighbors. function_to_optimize: a function to optimize having the signature f(x, y). """ self.x = x self.y = y self.step_size = step_size self.function = function_to_optimize def score(self) -> int: """ Returns the output of the function called with current x and y coordinates. >>> def test_function(x, y): ... return x + y >>> SearchProblem(0, 0, 1, test_function).score() # 0 + 0 = 0 0 >>> SearchProblem(5, 7, 1, test_function).score() # 5 + 7 = 12 12 """ return self.function(self.x, self.y) def get_neighbors(self): """ Returns a list of coordinates of neighbors adjacent to the current coordinates. Neighbors: | 0 | 1 | 2 | | 3 | _ | 4 | | 5 | 6 | 7 | """ step_size = self.step_size return [ SearchProblem(x, y, step_size, self.function) for x, y in ( (self.x - step_size, self.y - step_size), (self.x - step_size, self.y), (self.x - step_size, self.y + step_size), (self.x, self.y - step_size), (self.x, self.y + step_size), (self.x + step_size, self.y - step_size), (self.x + step_size, self.y), (self.x + step_size, self.y + step_size), ) ] def __hash__(self): """ hash the string representation of the current search state. """ return hash(str(self)) def __eq__(self, obj): """ Check if the 2 objects are equal. """ if isinstance(obj, SearchProblem): return hash(str(self)) == hash(str(obj)) return False def __str__(self): """ string representation of the current search state. >>> str(SearchProblem(0, 0, 1, None)) 'x: 0 y: 0' >>> str(SearchProblem(2, 5, 1, None)) 'x: 2 y: 5' """ return f"x: {self.x} y: {self.y}" def hill_climbing( search_prob, find_max: bool = True, max_x: float = math.inf, min_x: float = -math.inf, max_y: float = math.inf, min_y: float = -math.inf, visualization: bool = False, max_iter: int = 10000, ) -> SearchProblem: """ Implementation of the hill climbling algorithm. We start with a given state, find all its neighbors, move towards the neighbor which provides the maximum (or minimum) change. We keep doing this until we are at a state where we do not have any neighbors which can improve the solution. Args: search_prob: The search state at the start. find_max: If True, the algorithm should find the maximum else the minimum. max_x, min_x, max_y, min_y: the maximum and minimum bounds of x and y. visualization: If True, a matplotlib graph is displayed. max_iter: number of times to run the iteration. Returns a search state having the maximum (or minimum) score. """ current_state = search_prob scores = [] # list to store the current score at each iteration iterations = 0 solution_found = False visited = set() while not solution_found and iterations < max_iter: visited.add(current_state) iterations += 1 current_score = current_state.score() scores.append(current_score) neighbors = current_state.get_neighbors() max_change = -math.inf min_change = math.inf next_state = None # to hold the next best neighbor for neighbor in neighbors: if neighbor in visited: continue # do not want to visit the same state again if ( neighbor.x > max_x or neighbor.x < min_x or neighbor.y > max_y or neighbor.y < min_y ): continue # neighbor outside our bounds change = neighbor.score() - current_score if find_max: # finding max # going to direction with greatest ascent if change > max_change and change > 0: max_change = change next_state = neighbor else: # finding min # to direction with greatest descent if change < min_change and change < 0: min_change = change next_state = neighbor if next_state is not None: # we found at least one neighbor which improved the current state current_state = next_state else: # since we have no neighbor that improves the solution we stop the search solution_found = True if visualization: from matplotlib import pyplot as plt plt.plot(range(iterations), scores) plt.xlabel("Iterations") plt.ylabel("Function values") plt.show() return current_state if __name__ == "__main__": import doctest doctest.testmod() def test_f1(x, y): return (x ** 2) + (y ** 2) # starting the problem with initial coordinates (3, 4) prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) local_min = hill_climbing(prob, find_max=False) print( "The minimum score for f(x, y) = x^2 + y^2 found via hill climbing: " f"{local_min.score()}" ) # starting the problem with initial coordinates (12, 47) prob = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_f1) local_min = hill_climbing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " f"and 50 > y > - 5 found via hill climbing: {local_min.score()}" ) def test_f2(x, y): return (3 * x ** 2) - (6 * y) prob = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_f1) local_min = hill_climbing(prob, find_max=True) print( "The maximum score for f(x, y) = x^2 + y^2 found via hill climbing: " f"{local_min.score()}" )
1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Isolate the Decimal part of a Number https://stackoverflow.com/questions/3886402/how-to-get-numbers-after-decimal-point """ def decimal_isolate(number, digitAmount): """ Isolates the decimal part of a number. If digitAmount > 0 round to that decimal place, else print the entire decimal. >>> decimal_isolate(1.53, 0) 0.53 >>> decimal_isolate(35.345, 1) 0.3 >>> decimal_isolate(35.345, 2) 0.34 >>> decimal_isolate(35.345, 3) 0.345 >>> decimal_isolate(-14.789, 3) -0.789 >>> decimal_isolate(0, 2) 0 >>> decimal_isolate(-14.123, 1) -0.1 >>> decimal_isolate(-14.123, 2) -0.12 >>> decimal_isolate(-14.123, 3) -0.123 """ if digitAmount > 0: return round(number - int(number), digitAmount) return number - int(number) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
""" Isolate the Decimal part of a Number https://stackoverflow.com/questions/3886402/how-to-get-numbers-after-decimal-point """ def decimal_isolate(number, digitAmount): """ Isolates the decimal part of a number. If digitAmount > 0 round to that decimal place, else print the entire decimal. >>> decimal_isolate(1.53, 0) 0.53 >>> decimal_isolate(35.345, 1) 0.3 >>> decimal_isolate(35.345, 2) 0.34 >>> decimal_isolate(35.345, 3) 0.345 >>> decimal_isolate(-14.789, 3) -0.789 >>> decimal_isolate(0, 2) 0 >>> decimal_isolate(-14.123, 1) -0.1 >>> decimal_isolate(-14.123, 2) -0.12 >>> decimal_isolate(-14.123, 3) -0.123 """ if digitAmount > 0: return round(number - int(number), digitAmount) return number - int(number) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" disjoint set Reference: https://en.wikipedia.org/wiki/Disjoint-set_data_structure """ class Node: def __init__(self, data): self.data = data def make_set(x): """ make x as a set. """ # rank is the distance from x to its' parent # root's rank is 0 x.rank = 0 x.parent = x def union_set(x, y): """ union two sets. set with bigger rank should be parent, so that the disjoint set tree will be more flat. """ x, y = find_set(x), find_set(y) if x.rank > y.rank: y.parent = x else: x.parent = y if x.rank == y.rank: y.rank += 1 def find_set(x): """ return the parent of x """ if x != x.parent: x.parent = find_set(x.parent) return x.parent def find_python_set(node: Node) -> set: """ Return a Python Standard Library set that contains i. """ sets = ({0, 1, 2}, {3, 4, 5}) for s in sets: if node.data in s: return s raise ValueError(f"{node.data} is not in {sets}") def test_disjoint_set(): """ >>> test_disjoint_set() """ vertex = [Node(i) for i in range(6)] for v in vertex: make_set(v) union_set(vertex[0], vertex[1]) union_set(vertex[1], vertex[2]) union_set(vertex[3], vertex[4]) union_set(vertex[3], vertex[5]) for node0 in vertex: for node1 in vertex: if find_python_set(node0).isdisjoint(find_python_set(node1)): assert find_set(node0) != find_set(node1) else: assert find_set(node0) == find_set(node1) if __name__ == "__main__": test_disjoint_set()
""" disjoint set Reference: https://en.wikipedia.org/wiki/Disjoint-set_data_structure """ class Node: def __init__(self, data): self.data = data def make_set(x): """ make x as a set. """ # rank is the distance from x to its' parent # root's rank is 0 x.rank = 0 x.parent = x def union_set(x, y): """ union two sets. set with bigger rank should be parent, so that the disjoint set tree will be more flat. """ x, y = find_set(x), find_set(y) if x.rank > y.rank: y.parent = x else: x.parent = y if x.rank == y.rank: y.rank += 1 def find_set(x): """ return the parent of x """ if x != x.parent: x.parent = find_set(x.parent) return x.parent def find_python_set(node: Node) -> set: """ Return a Python Standard Library set that contains i. """ sets = ({0, 1, 2}, {3, 4, 5}) for s in sets: if node.data in s: return s raise ValueError(f"{node.data} is not in {sets}") def test_disjoint_set(): """ >>> test_disjoint_set() """ vertex = [Node(i) for i in range(6)] for v in vertex: make_set(v) union_set(vertex[0], vertex[1]) union_set(vertex[1], vertex[2]) union_set(vertex[3], vertex[4]) union_set(vertex[3], vertex[5]) for node0 in vertex: for node1 in vertex: if find_python_set(node0).isdisjoint(find_python_set(node1)): assert find_set(node0) != find_set(node1) else: assert find_set(node0) == find_set(node1) if __name__ == "__main__": test_disjoint_set()
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Gaussian elimination method for solving a system of linear equations. Gaussian elimination - https://en.wikipedia.org/wiki/Gaussian_elimination """ import numpy as np def retroactive_resolution(coefficients: np.matrix, vector: np.array) -> np.array: """ This function performs a retroactive linear system resolution for triangular matrix Examples: 2x1 + 2x2 - 1x3 = 5 2x1 + 2x2 = -1 0x1 - 2x2 - 1x3 = -7 0x1 - 2x2 = -1 0x1 + 0x2 + 5x3 = 15 >>> gaussian_elimination([[2, 2, -1], [0, -2, -1], [0, 0, 5]], [[5], [-7], [15]]) array([[2.], [2.], [3.]]) >>> gaussian_elimination([[2, 2], [0, -2]], [[-1], [-1]]) array([[-1. ], [ 0.5]]) """ rows, columns = np.shape(coefficients) x = np.zeros((rows, 1), dtype=float) for row in reversed(range(rows)): sum = 0 for col in range(row + 1, columns): sum += coefficients[row, col] * x[col] x[row, 0] = (vector[row] - sum) / coefficients[row, row] return x def gaussian_elimination(coefficients: np.matrix, vector: np.array) -> np.array: """ This function performs Gaussian elimination method Examples: 1x1 - 4x2 - 2x3 = -2 1x1 + 2x2 = 5 5x1 + 2x2 - 2x3 = -3 5x1 + 2x2 = 5 1x1 - 1x2 + 0x3 = 4 >>> gaussian_elimination([[1, -4, -2], [5, 2, -2], [1, -1, 0]], [[-2], [-3], [4]]) array([[ 2.3 ], [-1.7 ], [ 5.55]]) >>> gaussian_elimination([[1, 2], [5, 2]], [[5], [5]]) array([[0. ], [2.5]]) """ # coefficients must to be a square matrix so we need to check first rows, columns = np.shape(coefficients) if rows != columns: return [] # augmented matrix augmented_mat = np.concatenate((coefficients, vector), axis=1) augmented_mat = augmented_mat.astype("float64") # scale the matrix leaving it triangular for row in range(rows - 1): pivot = augmented_mat[row, row] for col in range(row + 1, columns): factor = augmented_mat[col, row] / pivot augmented_mat[col, :] -= factor * augmented_mat[row, :] x = retroactive_resolution( augmented_mat[:, 0:columns], augmented_mat[:, columns : columns + 1] ) return x if __name__ == "__main__": import doctest doctest.testmod()
""" Gaussian elimination method for solving a system of linear equations. Gaussian elimination - https://en.wikipedia.org/wiki/Gaussian_elimination """ import numpy as np def retroactive_resolution(coefficients: np.matrix, vector: np.array) -> np.array: """ This function performs a retroactive linear system resolution for triangular matrix Examples: 2x1 + 2x2 - 1x3 = 5 2x1 + 2x2 = -1 0x1 - 2x2 - 1x3 = -7 0x1 - 2x2 = -1 0x1 + 0x2 + 5x3 = 15 >>> gaussian_elimination([[2, 2, -1], [0, -2, -1], [0, 0, 5]], [[5], [-7], [15]]) array([[2.], [2.], [3.]]) >>> gaussian_elimination([[2, 2], [0, -2]], [[-1], [-1]]) array([[-1. ], [ 0.5]]) """ rows, columns = np.shape(coefficients) x = np.zeros((rows, 1), dtype=float) for row in reversed(range(rows)): sum = 0 for col in range(row + 1, columns): sum += coefficients[row, col] * x[col] x[row, 0] = (vector[row] - sum) / coefficients[row, row] return x def gaussian_elimination(coefficients: np.matrix, vector: np.array) -> np.array: """ This function performs Gaussian elimination method Examples: 1x1 - 4x2 - 2x3 = -2 1x1 + 2x2 = 5 5x1 + 2x2 - 2x3 = -3 5x1 + 2x2 = 5 1x1 - 1x2 + 0x3 = 4 >>> gaussian_elimination([[1, -4, -2], [5, 2, -2], [1, -1, 0]], [[-2], [-3], [4]]) array([[ 2.3 ], [-1.7 ], [ 5.55]]) >>> gaussian_elimination([[1, 2], [5, 2]], [[5], [5]]) array([[0. ], [2.5]]) """ # coefficients must to be a square matrix so we need to check first rows, columns = np.shape(coefficients) if rows != columns: return [] # augmented matrix augmented_mat = np.concatenate((coefficients, vector), axis=1) augmented_mat = augmented_mat.astype("float64") # scale the matrix leaving it triangular for row in range(rows - 1): pivot = augmented_mat[row, row] for col in range(row + 1, columns): factor = augmented_mat[col, row] / pivot augmented_mat[col, :] -= factor * augmented_mat[row, :] x = retroactive_resolution( augmented_mat[:, 0:columns], augmented_mat[:, columns : columns + 1] ) return x if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" https://cp-algorithms.com/string/prefix-function.html Prefix function Knuth–Morris–Pratt algorithm Different algorithm than Knuth-Morris-Pratt pattern finding E.x. Finding longest prefix which is also suffix Time Complexity: O(n) - where n is the length of the string """ def prefix_function(input_string: str) -> list: """ For the given string this function computes value for each index(i), which represents the longest coincidence of prefix and sufix for given substring (input_str[0...i]) For the value of the first element the algorithm always returns 0 >>> prefix_function("aabcdaabc") [0, 1, 0, 0, 0, 1, 2, 3, 4] >>> prefix_function("asdasdad") [0, 0, 0, 1, 2, 3, 4, 0] """ # list for the result values prefix_result = [0] * len(input_string) for i in range(1, len(input_string)): # use last results for better performance - dynamic programming j = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: j = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 prefix_result[i] = j return prefix_result def longest_prefix(input_str: str) -> int: """ Prefix-function use case Finding longest prefix which is sufix as well >>> longest_prefix("aabcdaabc") 4 >>> longest_prefix("asdasdad") 4 >>> longest_prefix("abcab") 2 """ # just returning maximum value of the array gives us answer return max(prefix_function(input_str)) if __name__ == "__main__": import doctest doctest.testmod()
""" https://cp-algorithms.com/string/prefix-function.html Prefix function Knuth–Morris–Pratt algorithm Different algorithm than Knuth-Morris-Pratt pattern finding E.x. Finding longest prefix which is also suffix Time Complexity: O(n) - where n is the length of the string """ def prefix_function(input_string: str) -> list: """ For the given string this function computes value for each index(i), which represents the longest coincidence of prefix and sufix for given substring (input_str[0...i]) For the value of the first element the algorithm always returns 0 >>> prefix_function("aabcdaabc") [0, 1, 0, 0, 0, 1, 2, 3, 4] >>> prefix_function("asdasdad") [0, 0, 0, 1, 2, 3, 4, 0] """ # list for the result values prefix_result = [0] * len(input_string) for i in range(1, len(input_string)): # use last results for better performance - dynamic programming j = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: j = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 prefix_result[i] = j return prefix_result def longest_prefix(input_str: str) -> int: """ Prefix-function use case Finding longest prefix which is sufix as well >>> longest_prefix("aabcdaabc") 4 >>> longest_prefix("asdasdad") 4 >>> longest_prefix("abcab") 2 """ # just returning maximum value of the array gives us answer return max(prefix_function(input_str)) if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Problem 112: https://projecteuler.net/problem=112 Working from left-to-right if no digit is exceeded by the digit to its left it is called an increasing number; for example, 134468. Similarly if no digit is exceeded by the digit to its right it is called a decreasing number; for example, 66420. We shall call a positive integer that is neither increasing nor decreasing a "bouncy" number, for example, 155349. Clearly there cannot be any bouncy numbers below one-hundred, but just over half of the numbers below one-thousand (525) are bouncy. In fact, the least number for which the proportion of bouncy numbers first reaches 50% is 538. Surprisingly, bouncy numbers become more and more common and by the time we reach 21780 the proportion of bouncy numbers is equal to 90%. Find the least number for which the proportion of bouncy numbers is exactly 99%. """ def check_bouncy(n: int) -> bool: """ Returns True if number is bouncy, False otherwise >>> check_bouncy(6789) False >>> check_bouncy(-12345) False >>> check_bouncy(0) False >>> check_bouncy(6.74) Traceback (most recent call last): ... ValueError: check_bouncy() accepts only integer arguments >>> check_bouncy(132475) True >>> check_bouncy(34) False >>> check_bouncy(341) True >>> check_bouncy(47) False >>> check_bouncy(-12.54) Traceback (most recent call last): ... ValueError: check_bouncy() accepts only integer arguments >>> check_bouncy(-6548) True """ if not isinstance(n, int): raise ValueError("check_bouncy() accepts only integer arguments") return "".join(sorted(str(n))) != str(n) and "".join(sorted(str(n)))[::-1] != str(n) def solution(percent: float = 99) -> int: """ Returns the least number for which the proportion of bouncy numbers is exactly 'percent' >>> solution(50) 538 >>> solution(90) 21780 >>> solution(80) 4770 >>> solution(105) Traceback (most recent call last): ... ValueError: solution() only accepts values from 0 to 100 >>> solution(100.011) Traceback (most recent call last): ... ValueError: solution() only accepts values from 0 to 100 """ if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100") bouncy_num = 0 num = 1 while True: if check_bouncy(num): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
""" Problem 112: https://projecteuler.net/problem=112 Working from left-to-right if no digit is exceeded by the digit to its left it is called an increasing number; for example, 134468. Similarly if no digit is exceeded by the digit to its right it is called a decreasing number; for example, 66420. We shall call a positive integer that is neither increasing nor decreasing a "bouncy" number, for example, 155349. Clearly there cannot be any bouncy numbers below one-hundred, but just over half of the numbers below one-thousand (525) are bouncy. In fact, the least number for which the proportion of bouncy numbers first reaches 50% is 538. Surprisingly, bouncy numbers become more and more common and by the time we reach 21780 the proportion of bouncy numbers is equal to 90%. Find the least number for which the proportion of bouncy numbers is exactly 99%. """ def check_bouncy(n: int) -> bool: """ Returns True if number is bouncy, False otherwise >>> check_bouncy(6789) False >>> check_bouncy(-12345) False >>> check_bouncy(0) False >>> check_bouncy(6.74) Traceback (most recent call last): ... ValueError: check_bouncy() accepts only integer arguments >>> check_bouncy(132475) True >>> check_bouncy(34) False >>> check_bouncy(341) True >>> check_bouncy(47) False >>> check_bouncy(-12.54) Traceback (most recent call last): ... ValueError: check_bouncy() accepts only integer arguments >>> check_bouncy(-6548) True """ if not isinstance(n, int): raise ValueError("check_bouncy() accepts only integer arguments") return "".join(sorted(str(n))) != str(n) and "".join(sorted(str(n)))[::-1] != str(n) def solution(percent: float = 99) -> int: """ Returns the least number for which the proportion of bouncy numbers is exactly 'percent' >>> solution(50) 538 >>> solution(90) 21780 >>> solution(80) 4770 >>> solution(105) Traceback (most recent call last): ... ValueError: solution() only accepts values from 0 to 100 >>> solution(100.011) Traceback (most recent call last): ... ValueError: solution() only accepts values from 0 to 100 """ if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100") bouncy_num = 0 num = 1 while True: if check_bouncy(num): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" This script demonstrates the implementation of the Softmax function. Its a function that takes as input a vector of K real numbers, and normalizes it into a probability distribution consisting of K probabilities proportional to the exponentials of the input numbers. After softmax, the elements of the vector always sum up to 1. Script inspired from its corresponding Wikipedia article https://en.wikipedia.org/wiki/Softmax_function """ import numpy as np def softmax(vector): """ Implements the softmax function Parameters: vector (np.array,list,tuple): A numpy array of shape (1,n) consisting of real values or a similar list,tuple Returns: softmax_vec (np.array): The input numpy array after applying softmax. The softmax vector adds up to one. We need to ceil to mitigate for precision >>> np.ceil(np.sum(softmax([1,2,3,4]))) 1.0 >>> vec = np.array([5,5]) >>> softmax(vec) array([0.5, 0.5]) >>> softmax([0]) array([1.]) """ # Calculate e^x for each x in your vector where e is Euler's # number (approximately 2.718) exponentVector = np.exp(vector) # Add up the all the exponentials sumOfExponents = np.sum(exponentVector) # Divide every exponent by the sum of all exponents softmax_vector = exponentVector / sumOfExponents return softmax_vector if __name__ == "__main__": print(softmax((0,)))
""" This script demonstrates the implementation of the Softmax function. Its a function that takes as input a vector of K real numbers, and normalizes it into a probability distribution consisting of K probabilities proportional to the exponentials of the input numbers. After softmax, the elements of the vector always sum up to 1. Script inspired from its corresponding Wikipedia article https://en.wikipedia.org/wiki/Softmax_function """ import numpy as np def softmax(vector): """ Implements the softmax function Parameters: vector (np.array,list,tuple): A numpy array of shape (1,n) consisting of real values or a similar list,tuple Returns: softmax_vec (np.array): The input numpy array after applying softmax. The softmax vector adds up to one. We need to ceil to mitigate for precision >>> np.ceil(np.sum(softmax([1,2,3,4]))) 1.0 >>> vec = np.array([5,5]) >>> softmax(vec) array([0.5, 0.5]) >>> softmax([0]) array([1.]) """ # Calculate e^x for each x in your vector where e is Euler's # number (approximately 2.718) exponentVector = np.exp(vector) # Add up the all the exponentials sumOfExponents = np.sum(exponentVector) # Divide every exponent by the sum of all exponents softmax_vector = exponentVector / sumOfExponents return softmax_vector if __name__ == "__main__": print(softmax((0,)))
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# Python program to implement Pigeonhole Sorting in python # Algorithm for the pigeonhole sorting def pigeonhole_sort(a): """ >>> a = [8, 3, 2, 7, 4, 6, 8] >>> b = sorted(a) # a nondestructive sort >>> pigeonhole_sort(a) # a destructive sort >>> a == b True """ # size of range of values in the list (ie, number of pigeonholes we need) min_val = min(a) # min() finds the minimum value max_val = max(a) # max() finds the maximum value size = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size holes = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(x, int), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. i = 0 for count in range(size): while holes[count] > 0: holes[count] -= 1 a[i] = count + min_val i += 1 def main(): a = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(a) print("Sorted order is:", " ".join(a)) if __name__ == "__main__": main()
# Python program to implement Pigeonhole Sorting in python # Algorithm for the pigeonhole sorting def pigeonhole_sort(a): """ >>> a = [8, 3, 2, 7, 4, 6, 8] >>> b = sorted(a) # a nondestructive sort >>> pigeonhole_sort(a) # a destructive sort >>> a == b True """ # size of range of values in the list (ie, number of pigeonholes we need) min_val = min(a) # min() finds the minimum value max_val = max(a) # max() finds the maximum value size = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size holes = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(x, int), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. i = 0 for count in range(size): while holes[count] > 0: holes[count] -= 1 a[i] = count + min_val i += 1 def main(): a = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(a) print("Sorted order is:", " ".join(a)) if __name__ == "__main__": main()
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Finding the peak of a unimodal list using divide and conquer. A unimodal array is defined as follows: array is increasing up to index p, then decreasing afterwards. (for p >= 1) An obvious solution can be performed in O(n), to find the maximum of the array. (From Kleinberg and Tardos. Algorithm Design. Addison Wesley 2006: Chapter 5 Solved Exercise 1) """ from typing import List def peak(lst: List[int]) -> int: """ Return the peak value of `lst`. >>> peak([1, 2, 3, 4, 5, 4, 3, 2, 1]) 5 >>> peak([1, 10, 9, 8, 7, 6, 5, 4]) 10 >>> peak([1, 9, 8, 7]) 9 >>> peak([1, 2, 3, 4, 5, 6, 7, 0]) 7 >>> peak([1, 2, 3, 4, 3, 2, 1, 0, -1, -2]) 4 """ # middle index m = len(lst) // 2 # choose the middle 3 elements three = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m]) == 2: m -= 1 return peak(lst[m:]) # decreasing else: if len(lst[:m]) == 2: m += 1 return peak(lst[:m]) if __name__ == "__main__": import doctest doctest.testmod()
""" Finding the peak of a unimodal list using divide and conquer. A unimodal array is defined as follows: array is increasing up to index p, then decreasing afterwards. (for p >= 1) An obvious solution can be performed in O(n), to find the maximum of the array. (From Kleinberg and Tardos. Algorithm Design. Addison Wesley 2006: Chapter 5 Solved Exercise 1) """ from typing import List def peak(lst: List[int]) -> int: """ Return the peak value of `lst`. >>> peak([1, 2, 3, 4, 5, 4, 3, 2, 1]) 5 >>> peak([1, 10, 9, 8, 7, 6, 5, 4]) 10 >>> peak([1, 9, 8, 7]) 9 >>> peak([1, 2, 3, 4, 5, 6, 7, 0]) 7 >>> peak([1, 2, 3, 4, 3, 2, 1, 0, -1, -2]) 4 """ # middle index m = len(lst) // 2 # choose the middle 3 elements three = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m]) == 2: m -= 1 return peak(lst[m:]) # decreasing else: if len(lst[:m]) == 2: m += 1 return peak(lst[:m]) if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
class Node: def __init__(self, data): self.data = data self.next = None def __repr__(self): return f"Node({self.data})" class LinkedList: def __init__(self): self.head = None def __iter__(self): node = self.head while node: yield node.data node = node.next def __len__(self) -> int: """ Return length of linked list i.e. number of nodes >>> linked_list = LinkedList() >>> len(linked_list) 0 >>> linked_list.insert_tail("head") >>> len(linked_list) 1 >>> linked_list.insert_head("head") >>> len(linked_list) 2 >>> _ = linked_list.delete_tail() >>> len(linked_list) 1 >>> _ = linked_list.delete_head() >>> len(linked_list) 0 """ return len(tuple(iter(self))) def __repr__(self): """ String representation/visualization of a Linked Lists """ return "->".join([str(item) for item in self]) def __getitem__(self, index): """ Indexing Support. Used to get a node at particular position >>> linked_list = LinkedList() >>> for i in range(0, 10): ... linked_list.insert_nth(i, i) >>> all(str(linked_list[i]) == str(i) for i in range(0, 10)) True >>> linked_list[-10] Traceback (most recent call last): ... ValueError: list index out of range. >>> linked_list[len(linked_list)] Traceback (most recent call last): ... ValueError: list index out of range. """ if not 0 <= index < len(self): raise ValueError("list index out of range.") for i, node in enumerate(self): if i == index: return node # Used to change the data of a particular node def __setitem__(self, index, data): """ >>> linked_list = LinkedList() >>> for i in range(0, 10): ... linked_list.insert_nth(i, i) >>> linked_list[0] = 666 >>> linked_list[0] 666 >>> linked_list[5] = -666 >>> linked_list[5] -666 >>> linked_list[-10] = 666 Traceback (most recent call last): ... ValueError: list index out of range. >>> linked_list[len(linked_list)] = 666 Traceback (most recent call last): ... ValueError: list index out of range. """ if not 0 <= index < len(self): raise ValueError("list index out of range.") current = self.head for i in range(index): current = current.next current.data = data def insert_tail(self, data) -> None: self.insert_nth(len(self), data) def insert_head(self, data) -> None: self.insert_nth(0, data) def insert_nth(self, index: int, data) -> None: if not 0 <= index <= len(self): raise IndexError("list index out of range") new_node = Node(data) if self.head is None: self.head = new_node elif index == 0: new_node.next = self.head # link new_node to head self.head = new_node else: temp = self.head for _ in range(index - 1): temp = temp.next new_node.next = temp.next temp.next = new_node def print_list(self) -> None: # print every node data print(self) def delete_head(self): return self.delete_nth(0) def delete_tail(self): # delete from tail return self.delete_nth(len(self) - 1) def delete_nth(self, index: int = 0): if not 0 <= index <= len(self) - 1: # test if index is valid raise IndexError("list index out of range") delete_node = self.head # default first node if index == 0: self.head = self.head.next else: temp = self.head for _ in range(index - 1): temp = temp.next delete_node = temp.next temp.next = temp.next.next return delete_node.data def is_empty(self) -> bool: return self.head is None def reverse(self): prev = None current = self.head while current: # Store the current node's next node. next_node = current.next # Make the current node's next point backwards current.next = prev # Make the previous node be the current node prev = current # Make the current node the next node (to progress iteration) current = next_node # Return prev in order to put the head at the end self.head = prev def test_singly_linked_list() -> None: """ >>> test_singly_linked_list() """ linked_list = LinkedList() assert linked_list.is_empty() is True assert str(linked_list) == "" try: linked_list.delete_head() assert False # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() assert False # This should not happen. except IndexError: assert True # This should happen. for i in range(10): assert len(linked_list) == i linked_list.insert_nth(i, i + 1) assert str(linked_list) == "->".join(str(i) for i in range(1, 11)) linked_list.insert_head(0) linked_list.insert_tail(11) assert str(linked_list) == "->".join(str(i) for i in range(0, 12)) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9) == 10 assert linked_list.delete_tail() == 11 assert len(linked_list) == 9 assert str(linked_list) == "->".join(str(i) for i in range(1, 10)) assert all(linked_list[i] == i + 1 for i in range(0, 9)) is True for i in range(0, 9): linked_list[i] = -i assert all(linked_list[i] == -i for i in range(0, 9)) is True def main(): from doctest import testmod testmod() linked_list = LinkedList() linked_list.insert_head(input("Inserting 1st at head ").strip()) linked_list.insert_head(input("Inserting 2nd at head ").strip()) print("\nPrint list:") linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail ").strip()) linked_list.insert_tail(input("Inserting 2nd at tail ").strip()) print("\nPrint list:") linked_list.print_list() print("\nDelete head") linked_list.delete_head() print("Delete tail") linked_list.delete_tail() print("\nPrint list:") linked_list.print_list() print("\nReverse linked list") linked_list.reverse() print("\nPrint list:") linked_list.print_list() print("\nString representation of linked list:") print(linked_list) print("\nReading/changing Node data using indexing:") print(f"Element at Position 1: {linked_list[1]}") linked_list[1] = input("Enter New Value: ").strip() print("New list:") print(linked_list) print(f"length of linked_list is : {len(linked_list)}") if __name__ == "__main__": main()
class Node: def __init__(self, data): self.data = data self.next = None def __repr__(self): return f"Node({self.data})" class LinkedList: def __init__(self): self.head = None def __iter__(self): node = self.head while node: yield node.data node = node.next def __len__(self) -> int: """ Return length of linked list i.e. number of nodes >>> linked_list = LinkedList() >>> len(linked_list) 0 >>> linked_list.insert_tail("head") >>> len(linked_list) 1 >>> linked_list.insert_head("head") >>> len(linked_list) 2 >>> _ = linked_list.delete_tail() >>> len(linked_list) 1 >>> _ = linked_list.delete_head() >>> len(linked_list) 0 """ return len(tuple(iter(self))) def __repr__(self): """ String representation/visualization of a Linked Lists """ return "->".join([str(item) for item in self]) def __getitem__(self, index): """ Indexing Support. Used to get a node at particular position >>> linked_list = LinkedList() >>> for i in range(0, 10): ... linked_list.insert_nth(i, i) >>> all(str(linked_list[i]) == str(i) for i in range(0, 10)) True >>> linked_list[-10] Traceback (most recent call last): ... ValueError: list index out of range. >>> linked_list[len(linked_list)] Traceback (most recent call last): ... ValueError: list index out of range. """ if not 0 <= index < len(self): raise ValueError("list index out of range.") for i, node in enumerate(self): if i == index: return node # Used to change the data of a particular node def __setitem__(self, index, data): """ >>> linked_list = LinkedList() >>> for i in range(0, 10): ... linked_list.insert_nth(i, i) >>> linked_list[0] = 666 >>> linked_list[0] 666 >>> linked_list[5] = -666 >>> linked_list[5] -666 >>> linked_list[-10] = 666 Traceback (most recent call last): ... ValueError: list index out of range. >>> linked_list[len(linked_list)] = 666 Traceback (most recent call last): ... ValueError: list index out of range. """ if not 0 <= index < len(self): raise ValueError("list index out of range.") current = self.head for i in range(index): current = current.next current.data = data def insert_tail(self, data) -> None: self.insert_nth(len(self), data) def insert_head(self, data) -> None: self.insert_nth(0, data) def insert_nth(self, index: int, data) -> None: if not 0 <= index <= len(self): raise IndexError("list index out of range") new_node = Node(data) if self.head is None: self.head = new_node elif index == 0: new_node.next = self.head # link new_node to head self.head = new_node else: temp = self.head for _ in range(index - 1): temp = temp.next new_node.next = temp.next temp.next = new_node def print_list(self) -> None: # print every node data print(self) def delete_head(self): return self.delete_nth(0) def delete_tail(self): # delete from tail return self.delete_nth(len(self) - 1) def delete_nth(self, index: int = 0): if not 0 <= index <= len(self) - 1: # test if index is valid raise IndexError("list index out of range") delete_node = self.head # default first node if index == 0: self.head = self.head.next else: temp = self.head for _ in range(index - 1): temp = temp.next delete_node = temp.next temp.next = temp.next.next return delete_node.data def is_empty(self) -> bool: return self.head is None def reverse(self): prev = None current = self.head while current: # Store the current node's next node. next_node = current.next # Make the current node's next point backwards current.next = prev # Make the previous node be the current node prev = current # Make the current node the next node (to progress iteration) current = next_node # Return prev in order to put the head at the end self.head = prev def test_singly_linked_list() -> None: """ >>> test_singly_linked_list() """ linked_list = LinkedList() assert linked_list.is_empty() is True assert str(linked_list) == "" try: linked_list.delete_head() assert False # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() assert False # This should not happen. except IndexError: assert True # This should happen. for i in range(10): assert len(linked_list) == i linked_list.insert_nth(i, i + 1) assert str(linked_list) == "->".join(str(i) for i in range(1, 11)) linked_list.insert_head(0) linked_list.insert_tail(11) assert str(linked_list) == "->".join(str(i) for i in range(0, 12)) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9) == 10 assert linked_list.delete_tail() == 11 assert len(linked_list) == 9 assert str(linked_list) == "->".join(str(i) for i in range(1, 10)) assert all(linked_list[i] == i + 1 for i in range(0, 9)) is True for i in range(0, 9): linked_list[i] = -i assert all(linked_list[i] == -i for i in range(0, 9)) is True def main(): from doctest import testmod testmod() linked_list = LinkedList() linked_list.insert_head(input("Inserting 1st at head ").strip()) linked_list.insert_head(input("Inserting 2nd at head ").strip()) print("\nPrint list:") linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail ").strip()) linked_list.insert_tail(input("Inserting 2nd at tail ").strip()) print("\nPrint list:") linked_list.print_list() print("\nDelete head") linked_list.delete_head() print("Delete tail") linked_list.delete_tail() print("\nPrint list:") linked_list.print_list() print("\nReverse linked list") linked_list.reverse() print("\nPrint list:") linked_list.print_list() print("\nString representation of linked list:") print(linked_list) print("\nReading/changing Node data using indexing:") print(f"Element at Position 1: {linked_list[1]}") linked_list[1] = input("Enter New Value: ").strip() print("New list:") print(linked_list) print(f"length of linked_list is : {len(linked_list)}") if __name__ == "__main__": main()
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
def get_word_pattern(word: str) -> str: """ >>> get_word_pattern("pattern") '0.1.2.2.3.4.5' >>> get_word_pattern("word pattern") '0.1.2.3.4.5.6.7.7.8.2.9' >>> get_word_pattern("get word pattern") '0.1.2.3.4.5.6.7.3.8.9.2.2.1.6.10' """ word = word.upper() next_num = 0 letter_nums = {} word_pattern = [] for letter in word: if letter not in letter_nums: letter_nums[letter] = str(next_num) next_num += 1 word_pattern.append(letter_nums[letter]) return ".".join(word_pattern) if __name__ == "__main__": import pprint import time start_time = time.time() with open("dictionary.txt") as in_file: wordList = in_file.read().splitlines() all_patterns = {} for word in wordList: pattern = get_word_pattern(word) if pattern in all_patterns: all_patterns[pattern].append(word) else: all_patterns[pattern] = [word] with open("word_patterns.txt", "w") as out_file: out_file.write(pprint.pformat(all_patterns)) totalTime = round(time.time() - start_time, 2) print(f"Done! {len(all_patterns):,} word patterns found in {totalTime} seconds.") # Done! 9,581 word patterns found in 0.58 seconds.
def get_word_pattern(word: str) -> str: """ >>> get_word_pattern("pattern") '0.1.2.2.3.4.5' >>> get_word_pattern("word pattern") '0.1.2.3.4.5.6.7.7.8.2.9' >>> get_word_pattern("get word pattern") '0.1.2.3.4.5.6.7.3.8.9.2.2.1.6.10' """ word = word.upper() next_num = 0 letter_nums = {} word_pattern = [] for letter in word: if letter not in letter_nums: letter_nums[letter] = str(next_num) next_num += 1 word_pattern.append(letter_nums[letter]) return ".".join(word_pattern) if __name__ == "__main__": import pprint import time start_time = time.time() with open("dictionary.txt") as in_file: wordList = in_file.read().splitlines() all_patterns = {} for word in wordList: pattern = get_word_pattern(word) if pattern in all_patterns: all_patterns[pattern].append(word) else: all_patterns[pattern] = [word] with open("word_patterns.txt", "w") as out_file: out_file.write(pprint.pformat(all_patterns)) totalTime = round(time.time() - start_time, 2) print(f"Done! {len(all_patterns):,} word patterns found in {totalTime} seconds.") # Done! 9,581 word patterns found in 0.58 seconds.
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# NguyenU def find_max(nums): """ >>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]): ... find_max(nums) == max(nums) True True True True """ max_num = nums[0] for x in nums: if x > max_num: max_num = x return max_num def main(): print(find_max([2, 4, 9, 7, 19, 94, 5])) # 94 if __name__ == "__main__": main()
# NguyenU def find_max(nums): """ >>> for nums in ([3, 2, 1], [-3, -2, -1], [3, -3, 0], [3.0, 3.1, 2.9]): ... find_max(nums) == max(nums) True True True True """ max_num = nums[0] for x in nums: if x > max_num: max_num = x return max_num def main(): print(find_max([2, 4, 9, 7, 19, 94, 5])) # 94 if __name__ == "__main__": main()
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Implements a disjoint set using Lists and some added heuristics for efficiency Union by Rank Heuristic and Path Compression """ class DisjointSet: def __init__(self, set_counts: list) -> None: """ Initialize with a list of the number of items in each set and with rank = 1 for each set """ self.set_counts = set_counts self.max_set = max(set_counts) num_sets = len(set_counts) self.ranks = [1] * num_sets self.parents = list(range(num_sets)) def merge(self, src: int, dst: int) -> bool: """ Merge two sets together using Union by rank heuristic Return True if successful Merge two disjoint sets >>> A = DisjointSet([1, 1, 1]) >>> A.merge(1, 2) True >>> A.merge(0, 2) True >>> A.merge(0, 1) False """ src_parent = self.get_parent(src) dst_parent = self.get_parent(dst) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] self.set_counts[src_parent] = 0 self.parents[src_parent] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 joined_set_size = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] self.set_counts[dst_parent] = 0 self.parents[dst_parent] = src_parent joined_set_size = self.set_counts[src_parent] self.max_set = max(self.max_set, joined_set_size) return True def get_parent(self, disj_set: int) -> int: """ Find the Parent of a given set >>> A = DisjointSet([1, 1, 1]) >>> A.merge(1, 2) True >>> A.get_parent(0) 0 >>> A.get_parent(1) 2 """ if self.parents[disj_set] == disj_set: return disj_set self.parents[disj_set] = self.get_parent(self.parents[disj_set]) return self.parents[disj_set]
""" Implements a disjoint set using Lists and some added heuristics for efficiency Union by Rank Heuristic and Path Compression """ class DisjointSet: def __init__(self, set_counts: list) -> None: """ Initialize with a list of the number of items in each set and with rank = 1 for each set """ self.set_counts = set_counts self.max_set = max(set_counts) num_sets = len(set_counts) self.ranks = [1] * num_sets self.parents = list(range(num_sets)) def merge(self, src: int, dst: int) -> bool: """ Merge two sets together using Union by rank heuristic Return True if successful Merge two disjoint sets >>> A = DisjointSet([1, 1, 1]) >>> A.merge(1, 2) True >>> A.merge(0, 2) True >>> A.merge(0, 1) False """ src_parent = self.get_parent(src) dst_parent = self.get_parent(dst) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] self.set_counts[src_parent] = 0 self.parents[src_parent] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 joined_set_size = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] self.set_counts[dst_parent] = 0 self.parents[dst_parent] = src_parent joined_set_size = self.set_counts[src_parent] self.max_set = max(self.max_set, joined_set_size) return True def get_parent(self, disj_set: int) -> int: """ Find the Parent of a given set >>> A = DisjointSet([1, 1, 1]) >>> A.merge(1, 2) True >>> A.get_parent(0) 0 >>> A.get_parent(1) 2 """ if self.parents[disj_set] == disj_set: return disj_set self.parents[disj_set] = self.get_parent(self.parents[disj_set]) return self.parents[disj_set]
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
def remove_duplicates(key: str) -> str: """ Removes duplicate alphabetic characters in a keyword (letter is ignored after its first appearance). :param key: Keyword to use :return: String with duplicates removed >>> remove_duplicates('Hello World!!') 'Helo Wrd' """ key_no_dups = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def create_cipher_map(key: str) -> dict: """ Returns a cipher map given a keyword. :param key: keyword to use :return: dictionary cipher map """ # Create alphabet list alphabet = [chr(i + 65) for i in range(26)] # Remove duplicate characters from key key = remove_duplicates(key.upper()) offset = len(key) # First fill cipher with key characters cipher_alphabet = {alphabet[i]: char for i, char in enumerate(key)} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(cipher_alphabet), 26): char = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 char = alphabet[i - offset] cipher_alphabet[alphabet[i]] = char return cipher_alphabet def encipher(message: str, cipher_map: dict) -> str: """ Enciphers a message given a cipher map. :param message: Message to encipher :param cipher_map: Cipher map :return: enciphered string >>> encipher('Hello World!!', create_cipher_map('Goodbye!!')) 'CYJJM VMQJB!!' """ return "".join(cipher_map.get(ch, ch) for ch in message.upper()) def decipher(message: str, cipher_map: dict) -> str: """ Deciphers a message given a cipher map :param message: Message to decipher :param cipher_map: Dictionary mapping to use :return: Deciphered string >>> cipher_map = create_cipher_map('Goodbye!!') >>> decipher(encipher('Hello World!!', cipher_map), cipher_map) 'HELLO WORLD!!' """ # Reverse our cipher mappings rev_cipher_map = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(ch, ch) for ch in message.upper()) def main(): """ Handles I/O :return: void """ message = input("Enter message to encode or decode: ").strip() key = input("Enter keyword: ").strip() option = input("Encipher or decipher? E/D:").strip()[0].lower() try: func = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option") cipher_map = create_cipher_map(key) print(func(message, cipher_map)) if __name__ == "__main__": import doctest doctest.testmod() main()
def remove_duplicates(key: str) -> str: """ Removes duplicate alphabetic characters in a keyword (letter is ignored after its first appearance). :param key: Keyword to use :return: String with duplicates removed >>> remove_duplicates('Hello World!!') 'Helo Wrd' """ key_no_dups = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def create_cipher_map(key: str) -> dict: """ Returns a cipher map given a keyword. :param key: keyword to use :return: dictionary cipher map """ # Create alphabet list alphabet = [chr(i + 65) for i in range(26)] # Remove duplicate characters from key key = remove_duplicates(key.upper()) offset = len(key) # First fill cipher with key characters cipher_alphabet = {alphabet[i]: char for i, char in enumerate(key)} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(cipher_alphabet), 26): char = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 char = alphabet[i - offset] cipher_alphabet[alphabet[i]] = char return cipher_alphabet def encipher(message: str, cipher_map: dict) -> str: """ Enciphers a message given a cipher map. :param message: Message to encipher :param cipher_map: Cipher map :return: enciphered string >>> encipher('Hello World!!', create_cipher_map('Goodbye!!')) 'CYJJM VMQJB!!' """ return "".join(cipher_map.get(ch, ch) for ch in message.upper()) def decipher(message: str, cipher_map: dict) -> str: """ Deciphers a message given a cipher map :param message: Message to decipher :param cipher_map: Dictionary mapping to use :return: Deciphered string >>> cipher_map = create_cipher_map('Goodbye!!') >>> decipher(encipher('Hello World!!', cipher_map), cipher_map) 'HELLO WORLD!!' """ # Reverse our cipher mappings rev_cipher_map = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(ch, ch) for ch in message.upper()) def main(): """ Handles I/O :return: void """ message = input("Enter message to encode or decode: ").strip() key = input("Enter keyword: ").strip() option = input("Encipher or decipher? E/D:").strip()[0].lower() try: func = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option") cipher_map = create_cipher_map(key) print(func(message, cipher_map)) if __name__ == "__main__": import doctest doctest.testmod() main()
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" This algorithm helps you to swap cases. User will give input and then program will perform swap cases. In other words, convert all lowercase letters to uppercase letters and vice versa. For example: 1. Please input sentence: Algorithm.Python@89 aLGORITHM.pYTHON@89 2. Please input sentence: github.com/mayur200 GITHUB.COM/MAYUR200 """ def swap_case(sentence: str) -> str: """ This function will convert all lowercase letters to uppercase letters and vice versa. >>> swap_case('Algorithm.Python@89') 'aLGORITHM.pYTHON@89' """ new_string = "" for char in sentence: if char.isupper(): new_string += char.lower() elif char.islower(): new_string += char.upper() else: new_string += char return new_string if __name__ == "__main__": print(swap_case(input("Please input sentence: ")))
""" This algorithm helps you to swap cases. User will give input and then program will perform swap cases. In other words, convert all lowercase letters to uppercase letters and vice versa. For example: 1. Please input sentence: Algorithm.Python@89 aLGORITHM.pYTHON@89 2. Please input sentence: github.com/mayur200 GITHUB.COM/MAYUR200 """ def swap_case(sentence: str) -> str: """ This function will convert all lowercase letters to uppercase letters and vice versa. >>> swap_case('Algorithm.Python@89') 'aLGORITHM.pYTHON@89' """ new_string = "" for char in sentence: if char.isupper(): new_string += char.lower() elif char.islower(): new_string += char.upper() else: new_string += char return new_string if __name__ == "__main__": print(swap_case(input("Please input sentence: ")))
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 35 https://projecteuler.net/problem=35 Problem Statement: The number 197 is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime. There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97. How many circular primes are there below one million? To solve this problem in an efficient manner, we will first mark all the primes below 1 million using the Seive of Eratosthenes. Then, out of all these primes, we will rule out the numbers which contain an even digit. After this we will generate each circular combination of the number and check if all are prime. """ from __future__ import annotations seive = [True] * 1000001 i = 2 while i * i <= 1000000: if seive[i]: for j in range(i * i, 1000001, i): seive[j] = False i += 1 def is_prime(n: int) -> bool: """ For 2 <= n <= 1000000, return True if n is prime. >>> is_prime(87) False >>> is_prime(23) True >>> is_prime(25363) False """ return seive[n] def contains_an_even_digit(n: int) -> bool: """ Return True if n contains an even digit. >>> contains_an_even_digit(0) True >>> contains_an_even_digit(975317933) False >>> contains_an_even_digit(-245679) True """ return any(digit in "02468" for digit in str(n)) def find_circular_primes(limit: int = 1000000) -> list[int]: """ Return circular primes below limit. >>> len(find_circular_primes(100)) 13 >>> len(find_circular_primes(1000000)) 55 """ result = [2] # result already includes the number 2. for num in range(3, limit + 1, 2): if is_prime(num) and not contains_an_even_digit(num): str_num = str(num) list_nums = [int(str_num[j:] + str_num[:j]) for j in range(len(str_num))] if all(is_prime(i) for i in list_nums): result.append(num) return result def solution() -> int: """ >>> solution() 55 """ return len(find_circular_primes()) if __name__ == "__main__": print(f"{len(find_circular_primes()) = }")
""" Project Euler Problem 35 https://projecteuler.net/problem=35 Problem Statement: The number 197 is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime. There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97. How many circular primes are there below one million? To solve this problem in an efficient manner, we will first mark all the primes below 1 million using the Seive of Eratosthenes. Then, out of all these primes, we will rule out the numbers which contain an even digit. After this we will generate each circular combination of the number and check if all are prime. """ from __future__ import annotations seive = [True] * 1000001 i = 2 while i * i <= 1000000: if seive[i]: for j in range(i * i, 1000001, i): seive[j] = False i += 1 def is_prime(n: int) -> bool: """ For 2 <= n <= 1000000, return True if n is prime. >>> is_prime(87) False >>> is_prime(23) True >>> is_prime(25363) False """ return seive[n] def contains_an_even_digit(n: int) -> bool: """ Return True if n contains an even digit. >>> contains_an_even_digit(0) True >>> contains_an_even_digit(975317933) False >>> contains_an_even_digit(-245679) True """ return any(digit in "02468" for digit in str(n)) def find_circular_primes(limit: int = 1000000) -> list[int]: """ Return circular primes below limit. >>> len(find_circular_primes(100)) 13 >>> len(find_circular_primes(1000000)) 55 """ result = [2] # result already includes the number 2. for num in range(3, limit + 1, 2): if is_prime(num) and not contains_an_even_digit(num): str_num = str(num) list_nums = [int(str_num[j:] + str_num[:j]) for j in range(len(str_num))] if all(is_prime(i) for i in list_nums): result.append(num) return result def solution() -> int: """ >>> solution() 55 """ return len(find_circular_primes()) if __name__ == "__main__": print(f"{len(find_circular_primes()) = }")
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Python3 program to evaluate a prefix expression. """ calc = { "+": lambda x, y: x + y, "-": lambda x, y: x - y, "*": lambda x, y: x * y, "/": lambda x, y: x / y, } def is_operand(c): """ Return True if the given char c is an operand, e.g. it is a number >>> is_operand("1") True >>> is_operand("+") False """ return c.isdigit() def evaluate(expression): """ Evaluate a given expression in prefix notation. Asserts that the given expression is valid. >>> evaluate("+ 9 * 2 6") 21 >>> evaluate("/ * 10 2 + 4 1 ") 4.0 """ stack = [] # iterate over the string in reverse order for c in expression.split()[::-1]: # push operand to stack if is_operand(c): stack.append(int(c)) else: # pop values from stack can calculate the result # push the result onto the stack again o1 = stack.pop() o2 = stack.pop() stack.append(calc[c](o1, o2)) return stack.pop() # Driver code if __name__ == "__main__": test_expression = "+ 9 * 2 6" print(evaluate(test_expression)) test_expression = "/ * 10 2 + 4 1 " print(evaluate(test_expression))
""" Python3 program to evaluate a prefix expression. """ calc = { "+": lambda x, y: x + y, "-": lambda x, y: x - y, "*": lambda x, y: x * y, "/": lambda x, y: x / y, } def is_operand(c): """ Return True if the given char c is an operand, e.g. it is a number >>> is_operand("1") True >>> is_operand("+") False """ return c.isdigit() def evaluate(expression): """ Evaluate a given expression in prefix notation. Asserts that the given expression is valid. >>> evaluate("+ 9 * 2 6") 21 >>> evaluate("/ * 10 2 + 4 1 ") 4.0 """ stack = [] # iterate over the string in reverse order for c in expression.split()[::-1]: # push operand to stack if is_operand(c): stack.append(int(c)) else: # pop values from stack can calculate the result # push the result onto the stack again o1 = stack.pop() o2 = stack.pop() stack.append(calc[c](o1, o2)) return stack.pop() # Driver code if __name__ == "__main__": test_expression = "+ 9 * 2 6" print(evaluate(test_expression)) test_expression = "/ * 10 2 + 4 1 " print(evaluate(test_expression))
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 4: https://projecteuler.net/problem=4 Largest palindrome product A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99. Find the largest palindrome made from the product of two 3-digit numbers. References: - https://en.wikipedia.org/wiki/Palindromic_number """ def solution(n: int = 998001) -> int: """ Returns the largest palindrome made from the product of two 3-digit numbers which is less than n. >>> solution(20000) 19591 >>> solution(30000) 29992 >>> solution(40000) 39893 """ answer = 0 for i in range(999, 99, -1): # 3 digit numbers range from 999 down to 100 for j in range(999, 99, -1): product_string = str(i * j) if product_string == product_string[::-1] and i * j < n: answer = max(answer, i * j) return answer if __name__ == "__main__": print(f"{solution() = }")
""" Project Euler Problem 4: https://projecteuler.net/problem=4 Largest palindrome product A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99. Find the largest palindrome made from the product of two 3-digit numbers. References: - https://en.wikipedia.org/wiki/Palindromic_number """ def solution(n: int = 998001) -> int: """ Returns the largest palindrome made from the product of two 3-digit numbers which is less than n. >>> solution(20000) 19591 >>> solution(30000) 29992 >>> solution(40000) 39893 """ answer = 0 for i in range(999, 99, -1): # 3 digit numbers range from 999 down to 100 for j in range(999, 99, -1): product_string = str(i * j) if product_string == product_string[::-1] and i * j < n: answer = max(answer, i * j) return answer if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" https://en.wikipedia.org/wiki/Doubly_linked_list """ class Node: def __init__(self, data): self.data = data self.previous = None self.next = None def __str__(self): return f"{self.data}" class DoublyLinkedList: def __init__(self): self.head = None self.tail = None def __iter__(self): """ >>> linked_list = DoublyLinkedList() >>> linked_list.insert_at_head('b') >>> linked_list.insert_at_head('a') >>> linked_list.insert_at_tail('c') >>> tuple(linked_list) ('a', 'b', 'c') """ node = self.head while node: yield node.data node = node.next def __str__(self): """ >>> linked_list = DoublyLinkedList() >>> linked_list.insert_at_tail('a') >>> linked_list.insert_at_tail('b') >>> linked_list.insert_at_tail('c') >>> str(linked_list) 'a->b->c' """ return "->".join([str(item) for item in self]) def __len__(self): """ >>> linked_list = DoublyLinkedList() >>> for i in range(0, 5): ... linked_list.insert_at_nth(i, i + 1) >>> len(linked_list) == 5 True """ return len(tuple(iter(self))) def insert_at_head(self, data): self.insert_at_nth(0, data) def insert_at_tail(self, data): self.insert_at_nth(len(self), data) def insert_at_nth(self, index: int, data): """ >>> linked_list = DoublyLinkedList() >>> linked_list.insert_at_nth(-1, 666) Traceback (most recent call last): .... IndexError: list index out of range >>> linked_list.insert_at_nth(1, 666) Traceback (most recent call last): .... IndexError: list index out of range >>> linked_list.insert_at_nth(0, 2) >>> linked_list.insert_at_nth(0, 1) >>> linked_list.insert_at_nth(2, 4) >>> linked_list.insert_at_nth(2, 3) >>> str(linked_list) '1->2->3->4' >>> linked_list.insert_at_nth(5, 5) Traceback (most recent call last): .... IndexError: list index out of range """ if not 0 <= index <= len(self): raise IndexError("list index out of range") new_node = Node(data) if self.head is None: self.head = self.tail = new_node elif index == 0: self.head.previous = new_node new_node.next = self.head self.head = new_node elif index == len(self): self.tail.next = new_node new_node.previous = self.tail self.tail = new_node else: temp = self.head for i in range(0, index): temp = temp.next temp.previous.next = new_node new_node.previous = temp.previous new_node.next = temp temp.previous = new_node def delete_head(self): return self.delete_at_nth(0) def delete_tail(self): return self.delete_at_nth(len(self) - 1) def delete_at_nth(self, index: int): """ >>> linked_list = DoublyLinkedList() >>> linked_list.delete_at_nth(0) Traceback (most recent call last): .... IndexError: list index out of range >>> for i in range(0, 5): ... linked_list.insert_at_nth(i, i + 1) >>> linked_list.delete_at_nth(0) == 1 True >>> linked_list.delete_at_nth(3) == 5 True >>> linked_list.delete_at_nth(1) == 3 True >>> str(linked_list) '2->4' >>> linked_list.delete_at_nth(2) Traceback (most recent call last): .... IndexError: list index out of range """ if not 0 <= index <= len(self) - 1: raise IndexError("list index out of range") delete_node = self.head # default first node if len(self) == 1: self.head = self.tail = None elif index == 0: self.head = self.head.next self.head.previous = None elif index == len(self) - 1: delete_node = self.tail self.tail = self.tail.previous self.tail.next = None else: temp = self.head for i in range(0, index): temp = temp.next delete_node = temp temp.next.previous = temp.previous temp.previous.next = temp.next return delete_node.data def delete(self, data) -> str: current = self.head while current.data != data: # Find the position to delete if current.next: current = current.next else: # We have reached the end an no value matches return "No data matching given value" if current == self.head: self.delete_head() elif current == self.tail: self.delete_tail() else: # Before: 1 <--> 2(current) <--> 3 current.previous.next = current.next # 1 --> 3 current.next.previous = current.previous # 1 <--> 3 return data def is_empty(self): """ >>> linked_list = DoublyLinkedList() >>> linked_list.is_empty() True >>> linked_list.insert_at_tail(1) >>> linked_list.is_empty() False """ return len(self) == 0 def test_doubly_linked_list() -> None: """ >>> test_doubly_linked_list() """ linked_list = DoublyLinkedList() assert linked_list.is_empty() is True assert str(linked_list) == "" try: linked_list.delete_head() assert False # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() assert False # This should not happen. except IndexError: assert True # This should happen. for i in range(10): assert len(linked_list) == i linked_list.insert_at_nth(i, i + 1) assert str(linked_list) == "->".join(str(i) for i in range(1, 11)) linked_list.insert_at_head(0) linked_list.insert_at_tail(11) assert str(linked_list) == "->".join(str(i) for i in range(0, 12)) assert linked_list.delete_head() == 0 assert linked_list.delete_at_nth(9) == 10 assert linked_list.delete_tail() == 11 assert len(linked_list) == 9 assert str(linked_list) == "->".join(str(i) for i in range(1, 10)) if __name__ == "__main__": from doctest import testmod testmod()
""" https://en.wikipedia.org/wiki/Doubly_linked_list """ class Node: def __init__(self, data): self.data = data self.previous = None self.next = None def __str__(self): return f"{self.data}" class DoublyLinkedList: def __init__(self): self.head = None self.tail = None def __iter__(self): """ >>> linked_list = DoublyLinkedList() >>> linked_list.insert_at_head('b') >>> linked_list.insert_at_head('a') >>> linked_list.insert_at_tail('c') >>> tuple(linked_list) ('a', 'b', 'c') """ node = self.head while node: yield node.data node = node.next def __str__(self): """ >>> linked_list = DoublyLinkedList() >>> linked_list.insert_at_tail('a') >>> linked_list.insert_at_tail('b') >>> linked_list.insert_at_tail('c') >>> str(linked_list) 'a->b->c' """ return "->".join([str(item) for item in self]) def __len__(self): """ >>> linked_list = DoublyLinkedList() >>> for i in range(0, 5): ... linked_list.insert_at_nth(i, i + 1) >>> len(linked_list) == 5 True """ return len(tuple(iter(self))) def insert_at_head(self, data): self.insert_at_nth(0, data) def insert_at_tail(self, data): self.insert_at_nth(len(self), data) def insert_at_nth(self, index: int, data): """ >>> linked_list = DoublyLinkedList() >>> linked_list.insert_at_nth(-1, 666) Traceback (most recent call last): .... IndexError: list index out of range >>> linked_list.insert_at_nth(1, 666) Traceback (most recent call last): .... IndexError: list index out of range >>> linked_list.insert_at_nth(0, 2) >>> linked_list.insert_at_nth(0, 1) >>> linked_list.insert_at_nth(2, 4) >>> linked_list.insert_at_nth(2, 3) >>> str(linked_list) '1->2->3->4' >>> linked_list.insert_at_nth(5, 5) Traceback (most recent call last): .... IndexError: list index out of range """ if not 0 <= index <= len(self): raise IndexError("list index out of range") new_node = Node(data) if self.head is None: self.head = self.tail = new_node elif index == 0: self.head.previous = new_node new_node.next = self.head self.head = new_node elif index == len(self): self.tail.next = new_node new_node.previous = self.tail self.tail = new_node else: temp = self.head for i in range(0, index): temp = temp.next temp.previous.next = new_node new_node.previous = temp.previous new_node.next = temp temp.previous = new_node def delete_head(self): return self.delete_at_nth(0) def delete_tail(self): return self.delete_at_nth(len(self) - 1) def delete_at_nth(self, index: int): """ >>> linked_list = DoublyLinkedList() >>> linked_list.delete_at_nth(0) Traceback (most recent call last): .... IndexError: list index out of range >>> for i in range(0, 5): ... linked_list.insert_at_nth(i, i + 1) >>> linked_list.delete_at_nth(0) == 1 True >>> linked_list.delete_at_nth(3) == 5 True >>> linked_list.delete_at_nth(1) == 3 True >>> str(linked_list) '2->4' >>> linked_list.delete_at_nth(2) Traceback (most recent call last): .... IndexError: list index out of range """ if not 0 <= index <= len(self) - 1: raise IndexError("list index out of range") delete_node = self.head # default first node if len(self) == 1: self.head = self.tail = None elif index == 0: self.head = self.head.next self.head.previous = None elif index == len(self) - 1: delete_node = self.tail self.tail = self.tail.previous self.tail.next = None else: temp = self.head for i in range(0, index): temp = temp.next delete_node = temp temp.next.previous = temp.previous temp.previous.next = temp.next return delete_node.data def delete(self, data) -> str: current = self.head while current.data != data: # Find the position to delete if current.next: current = current.next else: # We have reached the end an no value matches return "No data matching given value" if current == self.head: self.delete_head() elif current == self.tail: self.delete_tail() else: # Before: 1 <--> 2(current) <--> 3 current.previous.next = current.next # 1 --> 3 current.next.previous = current.previous # 1 <--> 3 return data def is_empty(self): """ >>> linked_list = DoublyLinkedList() >>> linked_list.is_empty() True >>> linked_list.insert_at_tail(1) >>> linked_list.is_empty() False """ return len(self) == 0 def test_doubly_linked_list() -> None: """ >>> test_doubly_linked_list() """ linked_list = DoublyLinkedList() assert linked_list.is_empty() is True assert str(linked_list) == "" try: linked_list.delete_head() assert False # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() assert False # This should not happen. except IndexError: assert True # This should happen. for i in range(10): assert len(linked_list) == i linked_list.insert_at_nth(i, i + 1) assert str(linked_list) == "->".join(str(i) for i in range(1, 11)) linked_list.insert_at_head(0) linked_list.insert_at_tail(11) assert str(linked_list) == "->".join(str(i) for i in range(0, 12)) assert linked_list.delete_head() == 0 assert linked_list.delete_at_nth(9) == 10 assert linked_list.delete_tail() == 11 assert len(linked_list) == 9 assert str(linked_list) == "->".join(str(i) for i in range(1, 10)) if __name__ == "__main__": from doctest import testmod testmod()
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" FP-GraphMiner - A Fast Frequent Pattern Mining Algorithm for Network Graphs A novel Frequent Pattern Graph Mining algorithm, FP-GraphMiner, that compactly represents a set of network graphs as a Frequent Pattern Graph (or FP-Graph). This graph can be used to efficiently mine frequent subgraphs including maximal frequent subgraphs and maximum common subgraphs. URL: https://www.researchgate.net/publication/235255851 """ # fmt: off edge_array = [ ['ab-e1', 'ac-e3', 'ad-e5', 'bc-e4', 'bd-e2', 'be-e6', 'bh-e12', 'cd-e2', 'ce-e4', 'de-e1', 'df-e8', 'dg-e5', 'dh-e10', 'ef-e3', 'eg-e2', 'fg-e6', 'gh-e6', 'hi-e3'], ['ab-e1', 'ac-e3', 'ad-e5', 'bc-e4', 'bd-e2', 'be-e6', 'cd-e2', 'de-e1', 'df-e8', 'ef-e3', 'eg-e2', 'fg-e6'], ['ab-e1', 'ac-e3', 'bc-e4', 'bd-e2', 'de-e1', 'df-e8', 'dg-e5', 'ef-e3', 'eg-e2', 'eh-e12', 'fg-e6', 'fh-e10', 'gh-e6'], ['ab-e1', 'ac-e3', 'bc-e4', 'bd-e2', 'bh-e12', 'cd-e2', 'df-e8', 'dh-e10'], ['ab-e1', 'ac-e3', 'ad-e5', 'bc-e4', 'bd-e2', 'cd-e2', 'ce-e4', 'de-e1', 'df-e8', 'dg-e5', 'ef-e3', 'eg-e2', 'fg-e6'] ] # fmt: on def get_distinct_edge(edge_array): """ Return Distinct edges from edge array of multiple graphs >>> sorted(get_distinct_edge(edge_array)) ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] """ distinct_edge = set() for row in edge_array: for item in row: distinct_edge.add(item[0]) return list(distinct_edge) def get_bitcode(edge_array, distinct_edge): """ Return bitcode of distinct_edge """ bitcode = ["0"] * len(edge_array) for i, row in enumerate(edge_array): for item in row: if distinct_edge in item[0]: bitcode[i] = "1" break return "".join(bitcode) def get_frequency_table(edge_array): """ Returns Frequency Table """ distinct_edge = get_distinct_edge(edge_array) frequency_table = dict() for item in distinct_edge: bit = get_bitcode(edge_array, item) # print('bit',bit) # bt=''.join(bit) s = bit.count("1") frequency_table[item] = [s, bit] # Store [Distinct edge, WT(Bitcode), Bitcode] in descending order sorted_frequency_table = [ [k, v[0], v[1]] for k, v in sorted(frequency_table.items(), key=lambda v: v[1][0], reverse=True) ] return sorted_frequency_table def get_nodes(frequency_table): """ Returns nodes format nodes={bitcode:edges that represent the bitcode} >>> get_nodes([['ab', 5, '11111'], ['ac', 5, '11111'], ['df', 5, '11111'], ... ['bd', 5, '11111'], ['bc', 5, '11111']]) {'11111': ['ab', 'ac', 'df', 'bd', 'bc']} """ nodes = {} for i, item in enumerate(frequency_table): nodes.setdefault(item[2], []).append(item[0]) return nodes def get_cluster(nodes): """ Returns cluster format cluster:{WT(bitcode):nodes with same WT} """ cluster = {} for key, value in nodes.items(): cluster.setdefault(key.count("1"), {})[key] = value return cluster def get_support(cluster): """ Returns support >>> get_support({5: {'11111': ['ab', 'ac', 'df', 'bd', 'bc']}, ... 4: {'11101': ['ef', 'eg', 'de', 'fg'], '11011': ['cd']}, ... 3: {'11001': ['ad'], '10101': ['dg']}, ... 2: {'10010': ['dh', 'bh'], '11000': ['be'], '10100': ['gh'], ... '10001': ['ce']}, ... 1: {'00100': ['fh', 'eh'], '10000': ['hi']}}) [100.0, 80.0, 60.0, 40.0, 20.0] """ return [i * 100 / len(cluster) for i in cluster] def print_all() -> None: print("\nNodes\n") for key, value in nodes.items(): print(key, value) print("\nSupport\n") print(support) print("\n Cluster \n") for key, value in sorted(cluster.items(), reverse=True): print(key, value) print("\n Graph\n") for key, value in graph.items(): print(key, value) print("\n Edge List of Frequent subgraphs \n") for edge_list in freq_subgraph_edge_list: print(edge_list) def create_edge(nodes, graph, cluster, c1): """ create edge between the nodes """ for i in cluster[c1].keys(): count = 0 c2 = c1 + 1 while c2 < max(cluster.keys()): for j in cluster[c2].keys(): """ creates edge only if the condition satisfies """ if int(i, 2) & int(j, 2) == int(i, 2): if tuple(nodes[i]) in graph: graph[tuple(nodes[i])].append(nodes[j]) else: graph[tuple(nodes[i])] = [nodes[j]] count += 1 if count == 0: c2 = c2 + 1 else: break def construct_graph(cluster, nodes): X = cluster[max(cluster.keys())] cluster[max(cluster.keys()) + 1] = "Header" graph = {} for i in X: if tuple(["Header"]) in graph: graph[tuple(["Header"])].append(X[i]) else: graph[tuple(["Header"])] = [X[i]] for i in X: graph[tuple(X[i])] = [["Header"]] i = 1 while i < max(cluster) - 1: create_edge(nodes, graph, cluster, i) i = i + 1 return graph def myDFS(graph, start, end, path=[]): """ find different DFS walk from given node to Header node """ path = path + [start] if start == end: paths.append(path) for node in graph[start]: if tuple(node) not in path: myDFS(graph, tuple(node), end, path) def find_freq_subgraph_given_support(s, cluster, graph): """ find edges of multiple frequent subgraphs """ k = int(s / 100 * (len(cluster) - 1)) for i in cluster[k].keys(): myDFS(graph, tuple(cluster[k][i]), tuple(["Header"])) def freq_subgraphs_edge_list(paths): """ returns Edge list for frequent subgraphs """ freq_sub_EL = [] for edges in paths: EL = [] for j in range(len(edges) - 1): temp = list(edges[j]) for e in temp: edge = (e[0], e[1]) EL.append(edge) freq_sub_EL.append(EL) return freq_sub_EL def preprocess(edge_array): """ Preprocess the edge array >>> preprocess([['ab-e1', 'ac-e3', 'ad-e5', 'bc-e4', 'bd-e2', 'be-e6', 'bh-e12', ... 'cd-e2', 'ce-e4', 'de-e1', 'df-e8', 'dg-e5', 'dh-e10', 'ef-e3', ... 'eg-e2', 'fg-e6', 'gh-e6', 'hi-e3']]) """ for i in range(len(edge_array)): for j in range(len(edge_array[i])): t = edge_array[i][j].split("-") edge_array[i][j] = t if __name__ == "__main__": preprocess(edge_array) frequency_table = get_frequency_table(edge_array) nodes = get_nodes(frequency_table) cluster = get_cluster(nodes) support = get_support(cluster) graph = construct_graph(cluster, nodes) find_freq_subgraph_given_support(60, cluster, graph) paths = [] freq_subgraph_edge_list = freq_subgraphs_edge_list(paths) print_all()
""" FP-GraphMiner - A Fast Frequent Pattern Mining Algorithm for Network Graphs A novel Frequent Pattern Graph Mining algorithm, FP-GraphMiner, that compactly represents a set of network graphs as a Frequent Pattern Graph (or FP-Graph). This graph can be used to efficiently mine frequent subgraphs including maximal frequent subgraphs and maximum common subgraphs. URL: https://www.researchgate.net/publication/235255851 """ # fmt: off edge_array = [ ['ab-e1', 'ac-e3', 'ad-e5', 'bc-e4', 'bd-e2', 'be-e6', 'bh-e12', 'cd-e2', 'ce-e4', 'de-e1', 'df-e8', 'dg-e5', 'dh-e10', 'ef-e3', 'eg-e2', 'fg-e6', 'gh-e6', 'hi-e3'], ['ab-e1', 'ac-e3', 'ad-e5', 'bc-e4', 'bd-e2', 'be-e6', 'cd-e2', 'de-e1', 'df-e8', 'ef-e3', 'eg-e2', 'fg-e6'], ['ab-e1', 'ac-e3', 'bc-e4', 'bd-e2', 'de-e1', 'df-e8', 'dg-e5', 'ef-e3', 'eg-e2', 'eh-e12', 'fg-e6', 'fh-e10', 'gh-e6'], ['ab-e1', 'ac-e3', 'bc-e4', 'bd-e2', 'bh-e12', 'cd-e2', 'df-e8', 'dh-e10'], ['ab-e1', 'ac-e3', 'ad-e5', 'bc-e4', 'bd-e2', 'cd-e2', 'ce-e4', 'de-e1', 'df-e8', 'dg-e5', 'ef-e3', 'eg-e2', 'fg-e6'] ] # fmt: on def get_distinct_edge(edge_array): """ Return Distinct edges from edge array of multiple graphs >>> sorted(get_distinct_edge(edge_array)) ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] """ distinct_edge = set() for row in edge_array: for item in row: distinct_edge.add(item[0]) return list(distinct_edge) def get_bitcode(edge_array, distinct_edge): """ Return bitcode of distinct_edge """ bitcode = ["0"] * len(edge_array) for i, row in enumerate(edge_array): for item in row: if distinct_edge in item[0]: bitcode[i] = "1" break return "".join(bitcode) def get_frequency_table(edge_array): """ Returns Frequency Table """ distinct_edge = get_distinct_edge(edge_array) frequency_table = dict() for item in distinct_edge: bit = get_bitcode(edge_array, item) # print('bit',bit) # bt=''.join(bit) s = bit.count("1") frequency_table[item] = [s, bit] # Store [Distinct edge, WT(Bitcode), Bitcode] in descending order sorted_frequency_table = [ [k, v[0], v[1]] for k, v in sorted(frequency_table.items(), key=lambda v: v[1][0], reverse=True) ] return sorted_frequency_table def get_nodes(frequency_table): """ Returns nodes format nodes={bitcode:edges that represent the bitcode} >>> get_nodes([['ab', 5, '11111'], ['ac', 5, '11111'], ['df', 5, '11111'], ... ['bd', 5, '11111'], ['bc', 5, '11111']]) {'11111': ['ab', 'ac', 'df', 'bd', 'bc']} """ nodes = {} for i, item in enumerate(frequency_table): nodes.setdefault(item[2], []).append(item[0]) return nodes def get_cluster(nodes): """ Returns cluster format cluster:{WT(bitcode):nodes with same WT} """ cluster = {} for key, value in nodes.items(): cluster.setdefault(key.count("1"), {})[key] = value return cluster def get_support(cluster): """ Returns support >>> get_support({5: {'11111': ['ab', 'ac', 'df', 'bd', 'bc']}, ... 4: {'11101': ['ef', 'eg', 'de', 'fg'], '11011': ['cd']}, ... 3: {'11001': ['ad'], '10101': ['dg']}, ... 2: {'10010': ['dh', 'bh'], '11000': ['be'], '10100': ['gh'], ... '10001': ['ce']}, ... 1: {'00100': ['fh', 'eh'], '10000': ['hi']}}) [100.0, 80.0, 60.0, 40.0, 20.0] """ return [i * 100 / len(cluster) for i in cluster] def print_all() -> None: print("\nNodes\n") for key, value in nodes.items(): print(key, value) print("\nSupport\n") print(support) print("\n Cluster \n") for key, value in sorted(cluster.items(), reverse=True): print(key, value) print("\n Graph\n") for key, value in graph.items(): print(key, value) print("\n Edge List of Frequent subgraphs \n") for edge_list in freq_subgraph_edge_list: print(edge_list) def create_edge(nodes, graph, cluster, c1): """ create edge between the nodes """ for i in cluster[c1].keys(): count = 0 c2 = c1 + 1 while c2 < max(cluster.keys()): for j in cluster[c2].keys(): """ creates edge only if the condition satisfies """ if int(i, 2) & int(j, 2) == int(i, 2): if tuple(nodes[i]) in graph: graph[tuple(nodes[i])].append(nodes[j]) else: graph[tuple(nodes[i])] = [nodes[j]] count += 1 if count == 0: c2 = c2 + 1 else: break def construct_graph(cluster, nodes): X = cluster[max(cluster.keys())] cluster[max(cluster.keys()) + 1] = "Header" graph = {} for i in X: if tuple(["Header"]) in graph: graph[tuple(["Header"])].append(X[i]) else: graph[tuple(["Header"])] = [X[i]] for i in X: graph[tuple(X[i])] = [["Header"]] i = 1 while i < max(cluster) - 1: create_edge(nodes, graph, cluster, i) i = i + 1 return graph def myDFS(graph, start, end, path=[]): """ find different DFS walk from given node to Header node """ path = path + [start] if start == end: paths.append(path) for node in graph[start]: if tuple(node) not in path: myDFS(graph, tuple(node), end, path) def find_freq_subgraph_given_support(s, cluster, graph): """ find edges of multiple frequent subgraphs """ k = int(s / 100 * (len(cluster) - 1)) for i in cluster[k].keys(): myDFS(graph, tuple(cluster[k][i]), tuple(["Header"])) def freq_subgraphs_edge_list(paths): """ returns Edge list for frequent subgraphs """ freq_sub_EL = [] for edges in paths: EL = [] for j in range(len(edges) - 1): temp = list(edges[j]) for e in temp: edge = (e[0], e[1]) EL.append(edge) freq_sub_EL.append(EL) return freq_sub_EL def preprocess(edge_array): """ Preprocess the edge array >>> preprocess([['ab-e1', 'ac-e3', 'ad-e5', 'bc-e4', 'bd-e2', 'be-e6', 'bh-e12', ... 'cd-e2', 'ce-e4', 'de-e1', 'df-e8', 'dg-e5', 'dh-e10', 'ef-e3', ... 'eg-e2', 'fg-e6', 'gh-e6', 'hi-e3']]) """ for i in range(len(edge_array)): for j in range(len(edge_array[i])): t = edge_array[i][j].split("-") edge_array[i][j] = t if __name__ == "__main__": preprocess(edge_array) frequency_table = get_frequency_table(edge_array) nodes = get_nodes(frequency_table) cluster = get_cluster(nodes) support = get_support(cluster) graph = construct_graph(cluster, nodes) find_freq_subgraph_given_support(60, cluster, graph) paths = [] freq_subgraph_edge_list = freq_subgraphs_edge_list(paths) print_all()
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from sklearn import svm from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split # different functions implementing different types of SVM's def NuSVC(train_x, train_y): svc_NuSVC = svm.NuSVC() svc_NuSVC.fit(train_x, train_y) return svc_NuSVC def Linearsvc(train_x, train_y): svc_linear = svm.LinearSVC(tol=10e-2) svc_linear.fit(train_x, train_y) return svc_linear def SVC(train_x, train_y): # svm.SVC(C=1.0, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, # probability=False,tol=0.001, cache_size=200, class_weight=None, verbose=False, # max_iter=1000, random_state=None) # various parameters like "kernel","gamma","C" can effectively tuned for a given # machine learning model. SVC = svm.SVC(gamma="auto") SVC.fit(train_x, train_y) return SVC def test(X_new): """ 3 test cases to be passed an array containing the sepal length (cm), sepal width (cm), petal length (cm), petal width (cm) based on which the target name will be predicted >>> test([1,2,1,4]) 'virginica' >>> test([5, 2, 4, 1]) 'versicolor' >>> test([6,3,4,1]) 'versicolor' """ iris = load_iris() # splitting the dataset to test and train train_x, test_x, train_y, test_y = train_test_split( iris["data"], iris["target"], random_state=4 ) # any of the 3 types of SVM can be used # current_model=SVC(train_x, train_y) # current_model=NuSVC(train_x, train_y) current_model = Linearsvc(train_x, train_y) prediction = current_model.predict([X_new]) return iris["target_names"][prediction][0] if __name__ == "__main__": import doctest doctest.testmod()
from sklearn import svm from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split # different functions implementing different types of SVM's def NuSVC(train_x, train_y): svc_NuSVC = svm.NuSVC() svc_NuSVC.fit(train_x, train_y) return svc_NuSVC def Linearsvc(train_x, train_y): svc_linear = svm.LinearSVC(tol=10e-2) svc_linear.fit(train_x, train_y) return svc_linear def SVC(train_x, train_y): # svm.SVC(C=1.0, kernel='rbf', degree=3, gamma=0.0, coef0=0.0, shrinking=True, # probability=False,tol=0.001, cache_size=200, class_weight=None, verbose=False, # max_iter=1000, random_state=None) # various parameters like "kernel","gamma","C" can effectively tuned for a given # machine learning model. SVC = svm.SVC(gamma="auto") SVC.fit(train_x, train_y) return SVC def test(X_new): """ 3 test cases to be passed an array containing the sepal length (cm), sepal width (cm), petal length (cm), petal width (cm) based on which the target name will be predicted >>> test([1,2,1,4]) 'virginica' >>> test([5, 2, 4, 1]) 'versicolor' >>> test([6,3,4,1]) 'versicolor' """ iris = load_iris() # splitting the dataset to test and train train_x, test_x, train_y, test_y = train_test_split( iris["data"], iris["target"], random_state=4 ) # any of the 3 types of SVM can be used # current_model=SVC(train_x, train_y) # current_model=NuSVC(train_x, train_y) current_model = Linearsvc(train_x, train_y) prediction = current_model.predict([X_new]) return iris["target_names"][prediction][0] if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
import numpy as np def power_iteration( input_matrix: np.array, vector: np.array, error_tol=1e-12, max_iterations=100 ) -> [float, np.array]: """ Power Iteration. Find the largest eignevalue and corresponding eigenvector of matrix input_matrix given a random vector in the same space. Will work so long as vector has component of largest eigenvector. input_matrix must be symmetric. Input input_matrix: input matrix whose largest eigenvalue we will find. Numpy array. np.shape(input_matrix) == (N,N). vector: random initial vector in same space as matrix. Numpy array. np.shape(vector) == (N,) or (N,1) Output largest_eigenvalue: largest eigenvalue of the matrix input_matrix. Float. Scalar. largest_eigenvector: eigenvector corresponding to largest_eigenvalue. Numpy array. np.shape(largest_eigenvector) == (N,) or (N,1). >>> import numpy as np >>> input_matrix = np.array([ ... [41, 4, 20], ... [ 4, 26, 30], ... [20, 30, 50] ... ]) >>> vector = np.array([41,4,20]) >>> power_iteration(input_matrix,vector) (79.66086378788381, array([0.44472726, 0.46209842, 0.76725662])) """ # Ensure matrix is square. assert np.shape(input_matrix)[0] == np.shape(input_matrix)[1] # Ensure proper dimensionality. assert np.shape(input_matrix)[0] == np.shape(vector)[0] # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. convergence = False lamda_previous = 0 iterations = 0 error = 1e12 while not convergence: # Multiple matrix by the vector. w = np.dot(input_matrix, vector) # Normalize the resulting output vector. vector = w / np.linalg.norm(w) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) lamda = np.dot(vector.T, np.dot(input_matrix, vector)) # Check convergence. error = np.abs(lamda - lamda_previous) / lamda iterations += 1 if error <= error_tol or iterations >= max_iterations: convergence = True lamda_previous = lamda return lamda, vector def test_power_iteration() -> None: """ >>> test_power_iteration() # self running tests """ # Our implementation. input_matrix = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]]) vector = np.array([41, 4, 20]) eigen_value, eigen_vector = power_iteration(input_matrix, vector) # Numpy implementation. # Get eigen values and eigen vectors using built in numpy # eigh (eigh used for symmetric or hermetian matrices). eigen_values, eigen_vectors = np.linalg.eigh(input_matrix) # Last eigen value is the maximum one. eigen_value_max = eigen_values[-1] # Last column in this matrix is eigen vector corresponding to largest eigen value. eigen_vector_max = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(eigen_vector) - np.abs(eigen_vector_max)) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
import numpy as np def power_iteration( input_matrix: np.array, vector: np.array, error_tol=1e-12, max_iterations=100 ) -> [float, np.array]: """ Power Iteration. Find the largest eignevalue and corresponding eigenvector of matrix input_matrix given a random vector in the same space. Will work so long as vector has component of largest eigenvector. input_matrix must be symmetric. Input input_matrix: input matrix whose largest eigenvalue we will find. Numpy array. np.shape(input_matrix) == (N,N). vector: random initial vector in same space as matrix. Numpy array. np.shape(vector) == (N,) or (N,1) Output largest_eigenvalue: largest eigenvalue of the matrix input_matrix. Float. Scalar. largest_eigenvector: eigenvector corresponding to largest_eigenvalue. Numpy array. np.shape(largest_eigenvector) == (N,) or (N,1). >>> import numpy as np >>> input_matrix = np.array([ ... [41, 4, 20], ... [ 4, 26, 30], ... [20, 30, 50] ... ]) >>> vector = np.array([41,4,20]) >>> power_iteration(input_matrix,vector) (79.66086378788381, array([0.44472726, 0.46209842, 0.76725662])) """ # Ensure matrix is square. assert np.shape(input_matrix)[0] == np.shape(input_matrix)[1] # Ensure proper dimensionality. assert np.shape(input_matrix)[0] == np.shape(vector)[0] # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. convergence = False lamda_previous = 0 iterations = 0 error = 1e12 while not convergence: # Multiple matrix by the vector. w = np.dot(input_matrix, vector) # Normalize the resulting output vector. vector = w / np.linalg.norm(w) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) lamda = np.dot(vector.T, np.dot(input_matrix, vector)) # Check convergence. error = np.abs(lamda - lamda_previous) / lamda iterations += 1 if error <= error_tol or iterations >= max_iterations: convergence = True lamda_previous = lamda return lamda, vector def test_power_iteration() -> None: """ >>> test_power_iteration() # self running tests """ # Our implementation. input_matrix = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]]) vector = np.array([41, 4, 20]) eigen_value, eigen_vector = power_iteration(input_matrix, vector) # Numpy implementation. # Get eigen values and eigen vectors using built in numpy # eigh (eigh used for symmetric or hermetian matrices). eigen_values, eigen_vectors = np.linalg.eigh(input_matrix) # Last eigen value is the maximum one. eigen_value_max = eigen_values[-1] # Last column in this matrix is eigen vector corresponding to largest eigen value. eigen_vector_max = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(eigen_vector) - np.abs(eigen_vector_max)) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
alphabets = [chr(i) for i in range(32, 126)] gear_one = [i for i in range(len(alphabets))] gear_two = [i for i in range(len(alphabets))] gear_three = [i for i in range(len(alphabets))] reflector = [i for i in reversed(range(len(alphabets)))] code = [] gear_one_pos = gear_two_pos = gear_three_pos = 0 def rotator(): global gear_one_pos global gear_two_pos global gear_three_pos i = gear_one[0] gear_one.append(i) del gear_one[0] gear_one_pos += 1 if gear_one_pos % int(len(alphabets)) == 0: i = gear_two[0] gear_two.append(i) del gear_two[0] gear_two_pos += 1 if gear_two_pos % int(len(alphabets)) == 0: i = gear_three[0] gear_three.append(i) del gear_three[0] gear_three_pos += 1 def engine(input_character): target = alphabets.index(input_character) target = gear_one[target] target = gear_two[target] target = gear_three[target] target = reflector[target] target = gear_three.index(target) target = gear_two.index(target) target = gear_one.index(target) code.append(alphabets[target]) rotator() if __name__ == "__main__": decode = input("Type your message:\n") decode = list(decode) while True: try: token = int(input("Please set token:(must be only digits)\n")) break except Exception as error: print(error) for i in range(token): rotator() for i in decode: engine(i) print("\n" + "".join(code)) print( f"\nYour Token is {token} please write it down.\nIf you want to decode " f"this message again you should input same digits as token!" )
alphabets = [chr(i) for i in range(32, 126)] gear_one = [i for i in range(len(alphabets))] gear_two = [i for i in range(len(alphabets))] gear_three = [i for i in range(len(alphabets))] reflector = [i for i in reversed(range(len(alphabets)))] code = [] gear_one_pos = gear_two_pos = gear_three_pos = 0 def rotator(): global gear_one_pos global gear_two_pos global gear_three_pos i = gear_one[0] gear_one.append(i) del gear_one[0] gear_one_pos += 1 if gear_one_pos % int(len(alphabets)) == 0: i = gear_two[0] gear_two.append(i) del gear_two[0] gear_two_pos += 1 if gear_two_pos % int(len(alphabets)) == 0: i = gear_three[0] gear_three.append(i) del gear_three[0] gear_three_pos += 1 def engine(input_character): target = alphabets.index(input_character) target = gear_one[target] target = gear_two[target] target = gear_three[target] target = reflector[target] target = gear_three.index(target) target = gear_two.index(target) target = gear_one.index(target) code.append(alphabets[target]) rotator() if __name__ == "__main__": decode = input("Type your message:\n") decode = list(decode) while True: try: token = int(input("Please set token:(must be only digits)\n")) break except Exception as error: print(error) for i in range(token): rotator() for i in decode: engine(i) print("\n" + "".join(code)) print( f"\nYour Token is {token} please write it down.\nIf you want to decode " f"this message again you should input same digits as token!" )
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Prim's (also known as Jarník's) algorithm is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized. The algorithm operates by building this tree one vertex at a time, from an arbitrary starting vertex, at each step adding the cheapest possible connection from the tree to another vertex. """ from sys import maxsize from typing import Dict, Optional, Tuple, Union def get_parent_position(position: int) -> int: """ heap helper function get the position of the parent of the current node >>> get_parent_position(1) 0 >>> get_parent_position(2) 0 """ return (position - 1) // 2 def get_child_left_position(position: int) -> int: """ heap helper function get the position of the left child of the current node >>> get_child_left_position(0) 1 """ return (2 * position) + 1 def get_child_right_position(position: int) -> int: """ heap helper function get the position of the right child of the current node >>> get_child_right_position(0) 2 """ return (2 * position) + 2 class MinPriorityQueue: """ Minimum Priority Queue Class Functions: is_empty: function to check if the priority queue is empty push: function to add an element with given priority to the queue extract_min: function to remove and return the element with lowest weight (highest priority) update_key: function to update the weight of the given key _bubble_up: helper function to place a node at the proper position (upward movement) _bubble_down: helper function to place a node at the proper position (downward movement) _swap_nodes: helper function to swap the nodes at the given positions >>> queue = MinPriorityQueue() >>> queue.push(1, 1000) >>> queue.push(2, 100) >>> queue.push(3, 4000) >>> queue.push(4, 3000) >>> print(queue.extract_min()) 2 >>> queue.update_key(4, 50) >>> print(queue.extract_min()) 4 >>> print(queue.extract_min()) 1 >>> print(queue.extract_min()) 3 """ def __init__(self) -> None: self.heap = [] self.position_map = {} self.elements = 0 def __len__(self) -> int: return self.elements def __repr__(self) -> str: return str(self.heap) def is_empty(self) -> bool: # Check if the priority queue is empty return self.elements == 0 def push(self, elem: Union[int, str], weight: int) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight)) self.position_map[elem] = self.elements self.elements += 1 self._bubble_up(elem) def extract_min(self) -> Union[int, str]: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0, self.elements - 1) elem, _ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: bubble_down_elem, _ = self.heap[0] self._bubble_down(bubble_down_elem) return elem def update_key(self, elem: Union[int, str], weight: int) -> None: # Update the weight of the given key position = self.position_map[elem] self.heap[position] = (elem, weight) if position > 0: parent_position = get_parent_position(position) _, parent_weight = self.heap[parent_position] if parent_weight > weight: self._bubble_up(elem) else: self._bubble_down(elem) else: self._bubble_down(elem) def _bubble_up(self, elem: Union[int, str]) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] curr_pos = self.position_map[elem] if curr_pos == 0: return parent_position = get_parent_position(curr_pos) _, weight = self.heap[curr_pos] _, parent_weight = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(parent_position, curr_pos) return self._bubble_up(elem) return def _bubble_down(self, elem: Union[int, str]) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] curr_pos = self.position_map[elem] _, weight = self.heap[curr_pos] child_left_position = get_child_left_position(curr_pos) child_right_position = get_child_right_position(curr_pos) if child_left_position < self.elements and child_right_position < self.elements: _, child_left_weight = self.heap[child_left_position] _, child_right_weight = self.heap[child_right_position] if child_right_weight < child_left_weight: if child_right_weight < weight: self._swap_nodes(child_right_position, curr_pos) return self._bubble_down(elem) if child_left_position < self.elements: _, child_left_weight = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(child_left_position, curr_pos) return self._bubble_down(elem) else: return if child_right_position < self.elements: _, child_right_weight = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(child_right_position, curr_pos) return self._bubble_down(elem) else: return def _swap_nodes(self, node1_pos: int, node2_pos: int) -> None: # Swap the nodes at the given positions node1_elem = self.heap[node1_pos][0] node2_elem = self.heap[node2_pos][0] self.heap[node1_pos], self.heap[node2_pos] = ( self.heap[node2_pos], self.heap[node1_pos], ) self.position_map[node1_elem] = node2_pos self.position_map[node2_elem] = node1_pos class GraphUndirectedWeighted: """ Graph Undirected Weighted Class Functions: add_node: function to add a node in the graph add_edge: function to add an edge between 2 nodes in the graph """ def __init__(self) -> None: self.connections = {} self.nodes = 0 def __repr__(self) -> str: return str(self.connections) def __len__(self) -> int: return self.nodes def add_node(self, node: Union[int, str]) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: self.connections[node] = {} self.nodes += 1 def add_edge( self, node1: Union[int, str], node2: Union[int, str], weight: int ) -> None: # Add an edge between 2 nodes in the graph self.add_node(node1) self.add_node(node2) self.connections[node1][node2] = weight self.connections[node2][node1] = weight def prims_algo( graph: GraphUndirectedWeighted, ) -> Tuple[Dict[str, int], Dict[str, Optional[str]]]: """ >>> graph = GraphUndirectedWeighted() >>> graph.add_edge("a", "b", 3) >>> graph.add_edge("b", "c", 10) >>> graph.add_edge("c", "d", 5) >>> graph.add_edge("a", "c", 15) >>> graph.add_edge("b", "d", 100) >>> dist, parent = prims_algo(graph) >>> abs(dist["a"] - dist["b"]) 3 >>> abs(dist["d"] - dist["b"]) 15 >>> abs(dist["a"] - dist["c"]) 13 """ # prim's algorithm for minimum spanning tree dist = {node: maxsize for node in graph.connections} parent = {node: None for node in graph.connections} priority_queue = MinPriorityQueue() [priority_queue.push(node, weight) for node, weight in dist.items()] if priority_queue.is_empty(): return dist, parent # initialization node = priority_queue.extract_min() dist[node] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: dist[neighbour] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(neighbour, dist[neighbour]) parent[neighbour] = node # running prim's algorithm while not priority_queue.is_empty(): node = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: dist[neighbour] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(neighbour, dist[neighbour]) parent[neighbour] = node return dist, parent if __name__ == "__main__": from doctest import testmod testmod()
""" Prim's (also known as Jarník's) algorithm is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized. The algorithm operates by building this tree one vertex at a time, from an arbitrary starting vertex, at each step adding the cheapest possible connection from the tree to another vertex. """ from sys import maxsize from typing import Dict, Optional, Tuple, Union def get_parent_position(position: int) -> int: """ heap helper function get the position of the parent of the current node >>> get_parent_position(1) 0 >>> get_parent_position(2) 0 """ return (position - 1) // 2 def get_child_left_position(position: int) -> int: """ heap helper function get the position of the left child of the current node >>> get_child_left_position(0) 1 """ return (2 * position) + 1 def get_child_right_position(position: int) -> int: """ heap helper function get the position of the right child of the current node >>> get_child_right_position(0) 2 """ return (2 * position) + 2 class MinPriorityQueue: """ Minimum Priority Queue Class Functions: is_empty: function to check if the priority queue is empty push: function to add an element with given priority to the queue extract_min: function to remove and return the element with lowest weight (highest priority) update_key: function to update the weight of the given key _bubble_up: helper function to place a node at the proper position (upward movement) _bubble_down: helper function to place a node at the proper position (downward movement) _swap_nodes: helper function to swap the nodes at the given positions >>> queue = MinPriorityQueue() >>> queue.push(1, 1000) >>> queue.push(2, 100) >>> queue.push(3, 4000) >>> queue.push(4, 3000) >>> print(queue.extract_min()) 2 >>> queue.update_key(4, 50) >>> print(queue.extract_min()) 4 >>> print(queue.extract_min()) 1 >>> print(queue.extract_min()) 3 """ def __init__(self) -> None: self.heap = [] self.position_map = {} self.elements = 0 def __len__(self) -> int: return self.elements def __repr__(self) -> str: return str(self.heap) def is_empty(self) -> bool: # Check if the priority queue is empty return self.elements == 0 def push(self, elem: Union[int, str], weight: int) -> None: # Add an element with given priority to the queue self.heap.append((elem, weight)) self.position_map[elem] = self.elements self.elements += 1 self._bubble_up(elem) def extract_min(self) -> Union[int, str]: # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0, self.elements - 1) elem, _ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: bubble_down_elem, _ = self.heap[0] self._bubble_down(bubble_down_elem) return elem def update_key(self, elem: Union[int, str], weight: int) -> None: # Update the weight of the given key position = self.position_map[elem] self.heap[position] = (elem, weight) if position > 0: parent_position = get_parent_position(position) _, parent_weight = self.heap[parent_position] if parent_weight > weight: self._bubble_up(elem) else: self._bubble_down(elem) else: self._bubble_down(elem) def _bubble_up(self, elem: Union[int, str]) -> None: # Place a node at the proper position (upward movement) [to be used internally # only] curr_pos = self.position_map[elem] if curr_pos == 0: return parent_position = get_parent_position(curr_pos) _, weight = self.heap[curr_pos] _, parent_weight = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(parent_position, curr_pos) return self._bubble_up(elem) return def _bubble_down(self, elem: Union[int, str]) -> None: # Place a node at the proper position (downward movement) [to be used # internally only] curr_pos = self.position_map[elem] _, weight = self.heap[curr_pos] child_left_position = get_child_left_position(curr_pos) child_right_position = get_child_right_position(curr_pos) if child_left_position < self.elements and child_right_position < self.elements: _, child_left_weight = self.heap[child_left_position] _, child_right_weight = self.heap[child_right_position] if child_right_weight < child_left_weight: if child_right_weight < weight: self._swap_nodes(child_right_position, curr_pos) return self._bubble_down(elem) if child_left_position < self.elements: _, child_left_weight = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(child_left_position, curr_pos) return self._bubble_down(elem) else: return if child_right_position < self.elements: _, child_right_weight = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(child_right_position, curr_pos) return self._bubble_down(elem) else: return def _swap_nodes(self, node1_pos: int, node2_pos: int) -> None: # Swap the nodes at the given positions node1_elem = self.heap[node1_pos][0] node2_elem = self.heap[node2_pos][0] self.heap[node1_pos], self.heap[node2_pos] = ( self.heap[node2_pos], self.heap[node1_pos], ) self.position_map[node1_elem] = node2_pos self.position_map[node2_elem] = node1_pos class GraphUndirectedWeighted: """ Graph Undirected Weighted Class Functions: add_node: function to add a node in the graph add_edge: function to add an edge between 2 nodes in the graph """ def __init__(self) -> None: self.connections = {} self.nodes = 0 def __repr__(self) -> str: return str(self.connections) def __len__(self) -> int: return self.nodes def add_node(self, node: Union[int, str]) -> None: # Add a node in the graph if it is not in the graph if node not in self.connections: self.connections[node] = {} self.nodes += 1 def add_edge( self, node1: Union[int, str], node2: Union[int, str], weight: int ) -> None: # Add an edge between 2 nodes in the graph self.add_node(node1) self.add_node(node2) self.connections[node1][node2] = weight self.connections[node2][node1] = weight def prims_algo( graph: GraphUndirectedWeighted, ) -> Tuple[Dict[str, int], Dict[str, Optional[str]]]: """ >>> graph = GraphUndirectedWeighted() >>> graph.add_edge("a", "b", 3) >>> graph.add_edge("b", "c", 10) >>> graph.add_edge("c", "d", 5) >>> graph.add_edge("a", "c", 15) >>> graph.add_edge("b", "d", 100) >>> dist, parent = prims_algo(graph) >>> abs(dist["a"] - dist["b"]) 3 >>> abs(dist["d"] - dist["b"]) 15 >>> abs(dist["a"] - dist["c"]) 13 """ # prim's algorithm for minimum spanning tree dist = {node: maxsize for node in graph.connections} parent = {node: None for node in graph.connections} priority_queue = MinPriorityQueue() [priority_queue.push(node, weight) for node, weight in dist.items()] if priority_queue.is_empty(): return dist, parent # initialization node = priority_queue.extract_min() dist[node] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: dist[neighbour] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(neighbour, dist[neighbour]) parent[neighbour] = node # running prim's algorithm while not priority_queue.is_empty(): node = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: dist[neighbour] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(neighbour, dist[neighbour]) parent[neighbour] = node return dist, parent if __name__ == "__main__": from doctest import testmod testmod()
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
def factors_of_a_number(num: int) -> list: """ >>> factors_of_a_number(1) [1] >>> factors_of_a_number(5) [1, 5] >>> factors_of_a_number(24) [1, 2, 3, 4, 6, 8, 12, 24] >>> factors_of_a_number(-24) [] """ return [i for i in range(1, num + 1) if num % i == 0] if __name__ == "__main__": num = int(input("Enter a number to find its factors: ")) factors = factors_of_a_number(num) print(f"{num} has {len(factors)} factors: {', '.join(str(f) for f in factors)}")
def factors_of_a_number(num: int) -> list: """ >>> factors_of_a_number(1) [1] >>> factors_of_a_number(5) [1, 5] >>> factors_of_a_number(24) [1, 2, 3, 4, 6, 8, 12, 24] >>> factors_of_a_number(-24) [] """ return [i for i in range(1, num + 1) if num % i == 0] if __name__ == "__main__": num = int(input("Enter a number to find its factors: ")) factors = factors_of_a_number(num) print(f"{num} has {len(factors)} factors: {', '.join(str(f) for f in factors)}")
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Champernowne's constant Problem 40 An irrational decimal fraction is created by concatenating the positive integers: 0.123456789101112131415161718192021... It can be seen that the 12th digit of the fractional part is 1. If dn represents the nth digit of the fractional part, find the value of the following expression. d1 × d10 × d100 × d1000 × d10000 × d100000 × d1000000 """ def solution(): """Returns >>> solution() 210 """ constant = [] i = 1 while len(constant) < 1e6: constant.append(str(i)) i += 1 constant = "".join(constant) return ( int(constant[0]) * int(constant[9]) * int(constant[99]) * int(constant[999]) * int(constant[9999]) * int(constant[99999]) * int(constant[999999]) ) if __name__ == "__main__": print(solution())
""" Champernowne's constant Problem 40 An irrational decimal fraction is created by concatenating the positive integers: 0.123456789101112131415161718192021... It can be seen that the 12th digit of the fractional part is 1. If dn represents the nth digit of the fractional part, find the value of the following expression. d1 × d10 × d100 × d1000 × d10000 × d100000 × d1000000 """ def solution(): """Returns >>> solution() 210 """ constant = [] i = 1 while len(constant) < 1e6: constant.append(str(i)) i += 1 constant = "".join(constant) return ( int(constant[0]) * int(constant[9]) * int(constant[99]) * int(constant[999]) * int(constant[9999]) * int(constant[99999]) * int(constant[999999]) ) if __name__ == "__main__": print(solution())
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
PNG  IHDR  ʮsRGBgAMA a pHYsttfxIDATx^דfו _3c46=cfSU%B{pwZkZkIA2H A2sosGXcnUߕgu9b d+dɋ \.p \./O.p \.p \_.Ȃ \.p \. .Ȃ \.p \. .Ȃ \.p \. .Ȃ \.p \. j@/p _2q!L\./'BYGmںeim¦emX~ӹeٝlز [\ڲ? +rm[ОՌZK<ybV?guftߪGjd*8|0JvPl;Vwo[.ӱiYྲt,gqY׭cъ6e7GyfaR6,唦uKi\5~qܫ_;u, Fy~ŷݪ]qh=pcuzySΟܰi~/9gv,,]2[}ߓEujY5vzٮW-KvrѮT,صyZfr*>[^Zvj([7JRɬU:koXD%[%|3QsoUj[7JJ;ǹ8JZ(ٯeR¾}.a[?= oƿ~ӶuᲶimW(.eh]U֯vw|bޮڮw^hI7(Wq#_۩Lw쏏 x9oTߧo;_D=~FP$iM+.+{5F,empv~ǿؗںmJWJGbU?ܚ'ip|&r*|uʒ+8=G~_}G^߾euYF=ضSHO ڮ]^f 3~ۼeZNSl>K8<BYqϬ=lB6[Na.a#o=l6Ǹm nm կYG )W6,Yj# \oYj3xL=G9[7v:vv$լ9W8U.Rh+IUmJZv%OؽIЮVd<\*_:t^#yf1[<kW~{$uEɴҙS\r]yW5tuwdS~ٿ wW]G3v|L9|zT#$]k {ķΓ,l~2E]l\D.+Ѳj]ۖ _ٗ_~iVұf%]V30mG +w<j6zb5CV=xpdCd.pgZ? >lHf-ruYv4:ƾ+~gwL#Ct6r){#cBlﹽ:K|>6<'[<hXqOK_D~!isp;-U[k6}=r {J]B˖Rђ]A Ec\kwKzxX5`͜fdhƮLi1Xv$s@ =u{QϿWX`xΐKl9-v$Dw߆DyOs _ zLZ{QA~^u5֯nGٖ'!I蓛svb}<m7$Ӿ_z@1߆׏ׯ8d~ifMQ'񥃿׃ m&g~篬axr[~pZ׬}'6j{MZzbuvU ooӍoϟK,;o޻eop?r1Fc[߮; U wcJ^9:cnӂo}yɒq) ɭZ޲ľeKi~ {yя}2of}CM1 }ŏIiys.*[uܒws2{ó9:9t\r21 ~>uo S'#e[`ۮSbWkPgwnـt։%eWb_)CS7;vF8G=TMɾ2]ge[]K!vblإװVjFxƿ~}%\JI>gHYѡ2'U΁vBEG/8nT 9W `qfmm mqsԡj&'|wWL8|bcٯ(G8?RWd?3YEpkӊh0(x/&p߶M[Yݶ/~j Vѷe;8;V3g5c(9{uY5D"TIyPN8)""'2\ɑ e? dm>q1 qUv.Z~x6 oZ9WD$<;r +(]B7 o@zNj@]>:GL,'ï9!" Psқý|$(0a(_ȽJu+ǃSVP?h+(E*M [lCzg:, r$p2cD|0S~vlx]玃w9*϶:zH7A#o¹|_TٮR?8 s_Nئeޡ_Ժ@H r4$81!AI lGIyLpHDhf5r/i[e?@r-byxܽKm{^Xeak[zojgl_Xym}ϭmjD`E#V d?_NB^GvEJ"G2NS8]"p0XY=WbpKq$?8 Gܻv^idn58]۲o1^HoT<(ˁԷwqT8ACu_B "D<QSL3SjӽIzתGP@)odfՆAp~紬nڝap|ƶ?hꫜ8o~"b@Ya^r@.?bZ" tee ~u=zNԈwt5^$hyw8NG}v;/IyPj#*þew!7yc-O9'`/-!1n3/`68hUj XxjOڧ7odJ%=;V @ sfC/H$k Yv-aۥ;ێjClXI2H|DȂpjpFHoI鄪'[m{8wuJ }8HKSOk]pzsL_#0Z٫t&(Ul}X.n)6C?Fɴ]E>i.oYYsJɲJUp!׹tΫl; :.sy8_w.!Q߼sJ!& < ,djpI;'TW7˦úە3ٺ ^G%x<ԃ΢T.[в({-@{jfljy~?oO-[Ekx:[Ȟ5Zc}|kXck{۪|tl#*_|5bunl~ut.ۯ"O\GA28}UeW۴n[~HC|v.T0@0nf>}NugIS|k])!țq׻|F:zpc"A)m>3qbkŤP@ DVS# Jn-9.!+fc{P>hKmbΫ\+fNzDɁ0سe`_$-tD=/)W h]d6f ǔ7-a#|7.Z' N(m*' A$& /TG+7jܨfǸVR$„׫_10~nPgDODN"p%ݡſ?}|w_V֭~xǪA6U<l`8" pDDc !$IKdž:w-B&FWFVY1݂6l q(d) 0rDA G]p2@ BB )Tvd(ȿx{H ,P2 DP-RxΟTA`H-^VP-{}V^aphnFd*N_[piz8oL>F 8Y!s#\_PpvJ<Sb[Ur#g!\}@LH6N R@*Ck!z "[ݱu^:@yԩu92JtRΆ!QIJ]NtQA-~%n2`[  EC[zU4 ?-Xmش"t@ F!K/u ɸֶ 8eɽZ۽G`imsȹrtE>wv&g90ܪG6]I D v^ Dp^۱hw) N -zMϺoE ^^&"&ܡo+0쭊IK}ʨIzϮTٍ3 eb߆ ɷ2 E.y.XE^8!Ő.<rCACؗBu|YDG!B=|$4sA7_qF頎\( w"qPcs9X "\u<󜋬=FYb*EZ+?a_}GmYȢgTM'Y]pe )s@Ego@6rEuo?19eZ%()[9KU!ܸgTn؍mtݪ5~fZ:[(B$ʠW^,)8N U_ci!{ArF,S_%85 pY,!e V:kUC~%WyfF+%v qUrɺˁ p 4{9D?3;Oc$Dk?qߵ211" i!"C9+ 6"5P-'"D<$`;L=V{d='C+=C h^Cw~:ߵ6ʆk_!{O{n{בu+ /B_!ʜFv ؓ ,8Qp[?@P;?l_-dJ P{vmH>G.bٚ =8oB~C\'!7k[v f픗 T=MȆ;:G }ݏȈB> <;7e3'ɕz=1lfɂ5,sm.f-/?[f]eOۭ>{PfOV~% 3v`LY3NI;vM@vmS!&  _ޮrڎuNy>^'+q_goCϗoΈ@z#9v?7*DOS):qge B2]T ADR>gD]7K=}E;j&8ȓqV&/`/U#[co _Yu?ضmāڳU{vrhk'unj[`AAZEx'Xv7J;KVmmWJ!7aD .@ OIIIq"vɀ$7QNjArGh3 P:N獳{][<N绁c t>/B ҝN(KvtJL!`U,p p7p,4,ྫ&D[`8g< v"BD" ݇qu "& | u ` ?8pD?8%lppk,h_'H3_=zV'& B <@yBbwSr'ADr=`6;߃p:0FP˵zOj;KN h6BBD=˾Z;ozbM*A YмM/o/_̒ n0l"sV:[Yà=Omlت:ss{g̡3?h߶]G8' Z? SW,iβRDoVoyuN C5ʽfܣMBNpmq@7J9zk'}J9v'ٽ8/&.EI5r/sZu=1Yo#$gWKU#_RKG? :-C6]ϩ);Pq䊺0,pb́\*XGt?D+Fpy;<& Tqp_"{93(V(HQYY,- 7{}sQTc`A+h 8OE(p/{@v?_߇M#0X^X?kӟlVl¡-ҡ]}b%lrUw/! DrujAb{o 6a _?Bk}\O@P?iM{Pku蚖%GGy\ry6T> X߅euSﷆ@([~$N<=Q$Upr '50x~_zjW8ROg{xݢx&ŎwUomj[,^Jg|G8͔ 7A芠e +l群$sȩr6'JA쟇 ^D5!]xݫ<Ca H-zK~cRPb"O)Q]^pqf ֩Kw7"V7 IGq<9=]+ڷ'V pp?ݴE[Z?ZCyf]{>kUu6?*6 ,w [ۅгC|M~@}{AHiQvoEf-@=^?~79:xύ3ھ0{[gG,+b t{|:ȂߨD'9uEA SoAnVcw+w1'18{nڮF&e^ J$QG fOzuCYok]F&Ԟ}c鮽b[mt_A]+Ue% ïknn@Lе5~W8~ [¶#I eR ^% N# *um[ 0y彇w/>!s8Q5J|ALj 1Je{0u>M'&rk0$C tJDz dANW"@ 7<@(5T-[]۵~K' p$6pvP6VJQݻl6Ċp:9XlVE jI ZNơxCp(ؿs$aw8roS>aݬ̺2wgg0`9!]@pܴ= R¨ ANRB3:GܗX +22rO+V)#crՏѾ H'XVmm~`]okDcxYq-/QVvEI q]??vp$XIS__CbPDpGc `^Z3EeA  Nzt-/zh½N&7b+@qxj2b}- ۘL%XAHwU+c.P⠦D=eoslNABu Pq:Vܳ>XkU`_mhzCnp֊TXIÈg{/VL0@5C@P }Mpd] UKQyp旑 ?Niu,el^Ze5 Y;D`!& x=qK[r9XV?cI灂F8iLA^bI}K[YC-yCffϬ#R1Lptk@zmge,KOHցjԚ(Vh@g7qg{σ@ĤM0A(L:_UpJ,~K}ɂDu=F"g̻K^y߹ش"8C nY``ŚU CSV?m;8UYA͠gso[YnIkw&.Q@Y-t*M$r@Ǚ8xθ[MP=jȳշy uۜw30b<ˋoR6a3DQ9o@ ى"'}2y ɳdߡ刄d_Agy%t[oPJXw{|;񣬢+8Wpx/gwٓmeاzKYu^?T/,( 2/Qg7d_r2uɽH p>dc:.qgI{Wѽz-~l )PWT@v2^o"[M[P{vȂc#CzZ^/B`:flf~?_}t ksBqtr lnݿnnIU}A?Av=_] ND"YJܪI˪[LΛs{Ku|w1&?SkYP檐QYJW˱ĝ3himPր:R7'!5UY֩+kѱKhp,;IDAhTI߲5f^_Y䕜._nCkGvQ]Y' uS׍cg: E\ "ے\@n3Ds}d& 1|WH'1yc9\2B|Ui,)ޝ)K>zճGx \i&Μ2@y׽:^I"b=}gG?|eT Zؾmڎ}/7M.oZWPڷM`Ǘ->@Bvf @#u1;%NmDI:)`?&n~K};4ZW@qp^$/[:,@"-8Ae?r4Hc=AIQS7 =)B?L`l~9 7pA?"$LڔnUF) K~B餁m(8<PGG8v1V㴸`ˇ1VJs؁Q)7CBSƃZd%4n8uLT^At@(`ZΒA1"jqpen;&!35C"%>k^=-\C vpbg ckǞ,A̶]"D(<28juRK G5",rD kY-]AU #V;ku{U+ZC׭z`׭sxf/Y_5+¾U+SwI_9ZI뜕!9pb {2:<8xԱB{r}ɩ:e( (%A`vAy(֑){1^]iw+t 9tȇ.AK.2#}g<$0:B48Y`AjeI{w]TC=Q+62%uBmqezv͖JpJÿҝ+5ɂ;8dSDYCXi}"g' ( SϜpy8o"_w=sG=7}'\'Qwx}ƁZ%b &b86Q e˔e\"+تBlr?z`kزU+سkܱ[Tf'Ma'*i&V"ٟmG@$arH^P4x(LIn%3i9~f_O[Vˬ7:`tt¦!!Av=yݖζvɷ; r=ux.=S& -qiߔ׷_[N7)&WàW|`o/}Zg++n[Nzi72ݖhk%3.^9qduVvy܇6<߷Ⱦh9Ƨupd| g2*lcqZֶWPwJ1dnUW˂weM, yy,JdJ|lpg XȞu/}gA}YWg-/޵ ز|lb Nޅ܆6) ] br@˩x]RC i9M" 35NY 2ٰhY"񍚑{ns=Twyδ=d{jǒ%wqA 7c/ftksSu[xu4( :|a kvHr1u[ʱ"kJW{ qK"wcdՒ:Oe7؃N\=(#ĻRVO@ם¸dpT=ODXLzYr]B^5;xGj/UYAu15@O=lc܏Hy 7$Ġ Е1C>n2OjeSG[i[ae҄10ɖH2}ZNDz dk|AP3バ)Я&hݳ}ޱ]CD-X;΂RJ9ǃԌm?23uEYJ?Vd9 aнr` ) *;(GV\%˨tgBDA@ h},D=8ޕ,P6ߠ0AXv)6jD 3il $"DȰ^(P- ߔد}Zq2{ 7H;R`w' 䬲||wX1e6?,H#k:d0r$m~mr/' xFKABvΠG-j)N+% .g;&8l= si99<R;Fh y_0u}k?~K뺆9 㝈H g}d΁CM{qD9J[{78yz%re_W"m+X57Z N-ں/筶oɪ֭xpъ;Vٹd}{ZnV%Ҡ3۶!ْ|IgH6+nYyq+Lus|ЁJ " \X6DaǸ=_$Yrw My8'V; u8!XY\ۮi^]o@/׬ٕj:$'Ou+ۃxPuٕj{dVXRV<c7*bbn,PJyO;'PKV myLgThd4eY?|O>StD"tAoq:&>i21P<}c񮮫%$fF$ctU+=d<gdJ"3=*̯1d 8Ob`ߪf&OoZؑՎ[u/֮/?zkj#Kmz6l:QX}`y={#ѾA(Y|/٧8Qxγy(M$jT@![n"N?ca8cYѸ~=w?"7V& ,صGEӳcYCE$H2d ~ " rOze}۟~M?*Hֻ^;]a`N^4%W=g=d`sQ;HTau -qA#we=p*&~[Cpd>sJn׃\:G%Y `'yWϒYsgR$ ή=/sC AA4; 1IQc"</ٵAd~~`ݴM}k;CX͍]?zwujͰ`zm[a< ?{`2)ҁ?q ږ쳂S(؈]?@b$h9 @$"mmF=R=su]F^,wR p W#(}U ּԶ0 !!fHi =9Oݻ' %]W}yHW1 fZ+(o!־%zY8G@b {ͫر\ľW.mrЏ-ӆVZvn$ލz|x3*4xaLl"-5ʟ_@BLV|qMF5&Zhޛc͡ ' BUqzAzrWP|5]k #$Vݍen`SXC)S'OUq²weBECѲȗp/}Y%S%@]dXJ2Xߙ,i 4k5uڑ}ka<0vd=?~mdiךah1,%P精 ͽ+!ȊG9V;n8 b,hPAja$;"{ uQ8_F 4cMTR'Bg cVe wt#AJJ'ҹ=%Rc_QA z( b}pue 2 6lNDp"`;/cTzrD68@I7!& shwJmCBY>emv%] g)a c0OwS"^.8h{mWݟ; R^7p@J ů \_eQz'8j}b,P M!'@Cۥ"A@'B8u΀?ίgZѳ0{ Ai:S,FfpۚG4OZ܉5 .ƾx_6SUoZ:AêU l8ZIۢ5k2 D(Uϝ4N-aw1w4ry~=ƷAr1Ar9arkf~{DVK CrZJʿ&ϝY'Cd7T JmSp. i<_?Rk)zMz& Ξz *C?o$ BHD:I,+U =a#6rd7KyiA1 M\ !FHC<}{k8p %z ͳOu ;mζSmAN 5dη3q@kpBS}0mt81oo 6prn]0@j, Ne[;+^'  !qޅd?!^d_/GNTb㇞]PNhyfM3'2as['/g_O68j%8J׭v5mO>5ZQׁ$]""1l~Țg x+("KGkRޓngnYe8^\=|ӼOu HPz 8ܸl-+5~_&r%(<Wy@oAaH\S`[B]#@d>5ਣRKZljjy RxOrEr$J(߯#nw;aL3r; >vb] HNx&(',:{P,+h,k_2~}NJ~7rZ.y 𮧽ԱaHڇD=߷QoaEx?/& b-& _'u#G0r`Mz66~s:Vmzyy]×_uBr`*z=qlU}31e" 7,"pCCp0FAh{HN" 5[V'qϒ2Qq 0CvB8Wk4Wvqʒ]r۴=hrH u;o"~V@@[dG}CLĭ"c莬:=GNUv!:Ԯ ٥Zu h= u@:5pK܋3 h\k"d}<@.n.t P"-e4N댃 0~*CȏpyED>< w~Bl/r({Z^} Z,&tv:5uO3!oIUF%:I$yމ!tq]2z"aMsxXY0A='"De?3YP1D?gC;0kc}P,}j/_~nsK0[>%RQϦMqn f)8RbQGD0vqD$B ,@:Yoݷ)Gaf5ڣf 2dPпf#VYaQd 1Pr`#RXAV R{PKe -8K %by_6oA`97XV-0k$X9b:DYP;`3v3Ӆ. H'!ڞ?g<>jUaEpACZAN[lW 8q/E; <p*={96JOE)草8?Nd;btDT$hM8 '@ ý+sÉ T7EHWkڈ,h۳#Gԉu[}ߜm>?ȝ܊Uu\l[¼uZy:#+"xy`:@${1W' {Z qo"S.Pp,+p}";+0g)=GvP-Bh{P5jŝc|O:~e4 J>2n I(ɉw`MjɿB'gWax !?pT[1fJZymU6`+Vr`gZբF:&T(,$u3wCqJN$C~.4ITٿz"r6r84E.R!2f y}[T;Ɍ2${4H~T<*W@)/CY,"D$ɨ/"q_<ڮ ƺL~1bbub O+& ,[xk 4uG4YТmk}}? -XV4e+Vڹfe5s[q#DYͲ܏v~dNY2.Y,+hĠ'*O}ݟweZ<ܳ "k|?k bЪ'L `'D +;Mx7:GP\mOA;.2/ϐ| 6 P"S4H1MA}eKmf޺_2yn 㑓Gvhk3r?A8цJEH} Sv}n"; Tw# 'äW}e>XȔGtO -097or6EBzWr5.;3ܠO\ aH_qoiVWвqo&3 ,1@ZCL:@d~x%C2,huk6t͟X̞w?jFDwlXE!e3v#dw4va:.\@c2zZubwe h_h_0ΙGFiKo%-! пS>aq_t^-+Ai(<A9I*p&M " WB ^~d26VŁ])S<gm]6|`n]+ zg½'>DqT&QP:r{[-0I9F~}5o7 >yghMSv(Eؕi==FvS\l+%Wk5lX%22K~uSz߻P&7ZT ޔz"yF'I="!O{r%U e\)Q tUQƄ2a(]e<8[3M}W2oBf I0!jMٵ&' &cڧ|۳'/O7>ܶUY #9#(0t)L N8G?N_P@-+@)A" Q]Ȃ @PG*op;( J BY U*dxf#%0g@XmT.PQ|h=GAe8^j?vOc!-VBx+S 1!)ecF §8eާ2 4Zè2w(pO ωzZ;BpT>rqW 1Qp:258e`;xHЛ576Q.Tp~{F)pp_J!Xw:p.  O9w&X5AiU,>U0~dm'ֆWtL؋?g/^دwo-V6,!咎E+޴e{'VҾ`Y>Xj&rc8Y:f;仉`>Bb+p6$aqz~/Dj ƥfoO0 EA>C$wx@FYؐ@f<曫uGR" , m8]pjnڋ|f 8Mv?ƖvNާ\/:Y>9Kx~\S gP9]0rlKn8쁲0yY Ğtu ӌ.M7܃ 6u93ĺMݮM%Bϫ{}k\)<.4h [O!:ؖ">^)upX]؇yq"?8ʹGt;:>Z~7sVse_nzw]k+ɂJP1fv7_;}:G 'w F-cJ;Wcj)D}z[=MӚdREgd-%@A|(|%!@ї7 nZ56,{.8% 6wG$) DSD&L7Nf^ELv}ݏZHk|"u%JH%BH$"]eى%"p6Kq$ :a ]=bXܵM]7R?eñȏ \}g]Qzn'ʽd*o?'[)d;@.PǃK#٧ NS*m>EGƳ_/#M[óawx9W2:>[ <KSsJ|4G^d>D.OM $#@=boCFZ#DŽz/K.Γn5E}l6,+i?N=_g?UhI+zew V=aTM6?K#@w )2Db@] zOȩXٕIK!w&۶fddJ&ruY#Ϡe!ܿOi !M(Pn,></@Aud@LD?GJK>XrA7F¨ k2:JO%3P'_`\Gd^c _"egnk|5ťv$>hCwPn]i(9gt ݫRciHF~ʌ]*^U|G)a?ſWRԹda AUrM(c=ɢtkڮtS_:R;&; Y e]b8EF*4sYBW0(h'"w& 4GT,N[>}kbeby};>:C;:¹aذE+[Gҿ@Pzd 2-L˨Y5Ub 4~C$+ )U/J'@6P";Bͬe(p]I.d#NU|MSmWQ ,H9/bLPI<sA6b Ȃh92@!_0rB)(~9 *|]] RFmĚzK+lru3<8y =u OQYE1LƲ`pSލ9x~1Il"piFhQ?S<S)N:oBW*c=К>vMe @ν GO_nvlS)çʔs E'; *\KNjQS p<޻7w|9" S!ܿee[ lyף}k1xh 6r*:'G?-./nXUAuZY) _#/ڋ>AMgY=[> ",kKu<ww{qj8p<طΕܶ14~@D,,q$R~ Tmλ#wJg:12W>u#}c@)q 2o厪DD(*,BvA1bBF6FH)o/c؃&8d`53V"ApDvŸ; \H!#zg:K"'c+h-˦~]F8acy '"PeԧhxH=D<oTp畒:,ޗ|;*Y9L㜏)L^&m3 462MYx@sgElJyg *(T݌ zx׉x8!HqZJC[Kz}`jG2 JF_wwcj:,ڱ\Ntwɞ#tвw-'Ucdt_N5ifׁe"v50ȑށh۳!8Aj55zA)I_MoTm])\A%W6Mvh3@Nuz%@v"D+VНh,]p?v|\*Hwⷷ9)ɂ*m{Yybo}66B,y`=s0Bb9{E|ݓ!_uK.nKcǾK%;#on Ʊ|;RɢR}>w G:)/ݬ _>Sw8wW ڗyu>/MiWz;z{t;54P6(f{sꙥKDrܞ)Ż3dO""L/O$cD2uw8vGD$FwXz] 8m5{bݳGV5e?Wj_|on[Qs7ZQϔ.X~ۚ[qXМeY~ߑel{5Ee<0} , @a0t58j=t!+(v@OA1BёAIdC f]Șgw `JϪv -S ^토"  ˣ|,X譊mZ<ceǟY/pdV-ڛ}Ys)et6"/ AuM-Y3v4n{<gM %6$fC&X ڞJ8!UY$[TcYwGiJMoJFo&xV:۳XgẦfg/t&:@F7YQρW95A[sY\>* 9Э1}  4Z<զ1>KSr ^L,PFL'"_5fA͐f<lVeX#-ݵ={;gS{`` eU=8N<ڴ<E{rtls>uc0@Qe @"d{PyE(PFJ#USPG ^xC<UX>_aX)NLĵ0Pd>ܞb tmWs#vpJH$lZp."b ˰x!hRЊ&oF>ց%KYͼ/YWGT-0-)oDVU* Q|zspC-=ehh=c4DIe^O9F\a>9m"=kiJ]# õ9GB2 x Χ: !5]^vawnZY]Ses-!XU+M" DLPKQp "A ""&_+QIJ_:kc<E&ck=Vٿf#8 qQk[®5Ԭ)kVǛV>eqڦ Fn?߻,g"@3$>" I@B0# P @;}z7w1׫-}9a;V Z=dJ-FPcIt -j1aqAVz"0א{,8OO@!bPPrrZ5{?NbvyTc փtvΆu$1|Y޹ Wz̮4O/>jG߃H>0BN:6$ģ2G}qaq4U\h0e(g^DHN)G( q8sۂ^R΍"g2?mi8v&z"} e]:jg ɾtNOMD׻Rp%'_!AAp8DP`RI&,P@HoP'U/ pϓ}Mq&#k: sOb`ZV_JGuqne+߲!S<ʺ{?vtGN;ǃ"{wɼ=BfǾϖ!ݷ4da+DBT7K}r5rX#PSZQdҮ o]N- 4nVJ[׽xXʷ7YY@|ܮ+=ʨ2z탏n|٥̭q3m +~/}'@B={ ٖ:2@],IJ~a(ncR2sI]+E4/B 4'=MSU")>B׈t ă_52ۂ~ɦ.i W:R"%3pL:\>8g2 V:[ݚr|??V~tNݳH`L2D:Y@UcA4UDHF@ 𴛃H & ⬛dn5 <k#Gֈn>65kٰ>M/~m۲a+kI` g[<1@:Vw3hƐ,Lb5F{ЇO7=&]ݎn{w{[Pԇzer'"scRdh f(g&ȮP 0hߵ CzDck˔Q;IЬ y}RB <! D-~pg|,We5(`e;Ъ~VfSK<qugV~ zL>@3q:BuP%E6T+$*ц(FeE`3e~6T3=F浜[|a;ۖQ@3XhzL1ŵ ~DtDa˸M|  hgX"N^g };׬k緭Xϛxܟ^اUS؊il<VduaNJA}< F TSVCU8I 'm @$,muc~O?Q#@Eעwܡ@j񱍬X& #"<k'+d hDe1 0^?([BNZ;@^Ulk(^$Ni(p]ke9Q-8=F~~8 Eyq z56& % 2r`ϲv~'GL r!'G-!RQ]=99 k띶$ 2j X5ҲUzj)Qp@)Puc8LSt麄 (bT U X9˚m(:6T EBxbUϯOC@^eM[ jA,Ե1^VM;]Od@_u<=~K}47OI0PP 7 TV@)J)BYyA c'q(u\bٯ:' p@Ս8YqǼ ,ڳ~L0a_'? Pa<\Mz:2 :P;T$ SQ,e (c$RM$ u#2X*Qׯ*zrnx\V(]2;>IW;3e1! "8VG#3I]7#A@Qw >*)e& m,ï`^88w <_[ Np?hͮ>A}N OK]L`гKL'eDȩJQ*OHt8aL,g( {\$G.K_I߮cwT[ rTY=lL #,<@Fsc.؞Ǯ3#\'_ǻ̩חԖrP=r/N>Cst lH"nsRQֿoܻs)Ii{?l[ J*Xxزz Yq$+XV`ԍWv' {` ' ~?Ck߳]۳ CبO_ǟj8Y[#uN&?@Ƒ}{]ƺғ=!ei?O³K=gD։,A=Swv\`mP|bPiU]cm{xƝ^' 8۠[zBchLuGH~k<j񗸧@,%/b:n9+oPީ"p$L~<*>6޽㖜]jkJv]lH*YDhvE,S !/ euJ5!#*]$wȵPHYLsxK 5zAD㒗"= tґgs Ȝ-Y&/ G}˗:Qc@i]aU t 6l?uցtCΕo"T$f26<θ cD>~Ȗ+?X>UFuo] ༬ok$xǚ߱>Zi?|_be6ĞsZ/>V=0n%V24cCV{(n9o>ed}kUID^^Q RkCy)BppuyDT2@MpOP ^K86R>z^6`wr^?iUXضJv.P3|k`\ϕoPcj|lM2.؟b." Ed3W3>EzX(YOݴf֨L*۴7ngٝ! 2d!SRڧY޷V_(5dqƞyL}Dpz$3lRshvȴ(',=RtDIoP*ʳ Q3HdY߉X&o%xo%~$Wא9,5>fFk?]"N(E.K٥JOerlu1K ;A8Yzʳը.:k6y Dˏ~@g3AF*oUǰ'Ku[3POqHI4.IZ>fB";]ĖUcFن0/;ἉXߙ,8 #R8 8QSU֟S[<?~`McbT߽b=+ݾu-l=1ͳ9$`k%(;FYjCEIx*򊀒 uJըN4 vIU5tYJY$cu~椁RQ9CV!r.~#@[ F|p8 EU΁JyvA)n MڝK}fOmslfbGvV( Eq@xȈI x^ O' A9AWP]zPA]Ӵ{;V 4Ц5N9c=Fk.[Fp^YgYYJ_Jc,"]J)uW}H Υ^UkwP֍󨎮'!'AQU<K5au=P {Q뻂"D V\!{7PkZLHoȑºm$X5M}T pPǍ􇶶Ƨ/O?Qmg',$H(Dq|Svܦ>N$Nz '"ACtVj;@<KBn O7+pgC@U%I/F/]36c G"} Kih8X?\74^%젷v"DD(`5"~z>>} 2\7MreLPw+9d!vل`]翲lzi˖ַ?_GR=!` Sסx^%ݦ@5Z9 p*7}è$q ($} %8rΫj* TjjiG֧Nk.<g֥v;5CR_K֬}2XR1kfQw+@W:B-rZƕMG@1{FCSPLR(:!y A< eܫ"ZK%0 R>J7NyߏxZ5ÆOՋ KVtظ(x'U[V?o5#-_=IK7OOlu)#?V9; BXQ˔\f>4Mi(9Ƚ ?]F\V&<{X:!*vrz ])nT8i~9k=S.#+"۝ Dds+b%2۵L^l`ػIa][2/RiFv˧3sb_b Ppޒ~\a?4Bu\UÄW< e#fNGd?w!{nMt0u v) u;7;8Lj:HS =u6k34u]g"DDΌX葕jp&S l :2jE*:/G>qɾ*z[ltN:UutՃnYp]Cѱs,>]vsh3yFttB3dխ~6Ő,GugBf5< ޥonWWEݳ 1Y1!Ko'ϬI<pl }gu.滶60<c?ُ>7wppɪF #yK{6͟\tbarԲ>8j V :I-aӐ]%B*i#/ e0"%~Ȩe<h Z1:}^f/~ˬe"WJO}gH ffRf ,m~6 s ^)os.Mm`*]J9 W^ʳ: ,r~ lY4Y1k׋G߮^ul>XpRE*+Hy]]9A&^˔k{-&ꚈalqЉ9r؇"ؾ0'V?LC됷qV߱巭c5#ܡel<4OϿl%kNއm"&U7; ䷼s~ݪl_mm;-kuc*D$<PlzW6O 7ky*_ qq^q~6Twl}&gd6rT;Fgp;uS2(@WtCPBEYrI52 Y;Cw~ ucVSu8,/ʦ4=c'g e *[ҋ=pyn9I0JN0D pEu U8t]4^pxpPA,鷒6_ qhK7>A爑=\OEpX}@Em1"+8*-+P*e2^Fp8vOsT;ºhe8\*tomXyIXSc-MZLF)aA@ |QZkŊ?>€MO9R- Eԛx9LdA%uPMNf5}ds6tbSlf<c>f{#8>0>ơY2lSC0*Sk/bʢQ1yh=3G7wd=a!sΥ C1"3h1Q 8!BD~rPZ"UDET ]-H\h7""]E$QIJ_U7286oU89 ~ic61h7?OoR(6͈R>3(\ͳ6~b/>㖇֢!NS/!08u{7kyᚠmz@]Dy`!cp~)˨:E8^2[j6ۅ Ǖ-UvAӵjFxmC9Uk(! b" A]nF *."q%%$% >PG ?7؇SkxY׎õ4ZGMo Q!;H]388y8 ߥxd'jū<DN.!oS H]~ako;6u#G:oJss+}BGeשh-kǶ{zshË'6t ȺZ#E~  c LZ0 ):ed]W6}iRwuR YP=9V?iPB*xK}1Γ}c.J$@'߰y}=w[Y:uަ֐[J8R}쾲@%P`$j`R## ?d!"I.u{~Ͼg8huFˡ!6MJ q]{LBp}m AʏEĠ.iv_Iq*[A(Oaf#MdGW|ؾhӿa>]]qՊleMǝydZu'Q 4hؕdꯦxz,y"";/ G S5PUc7[] Zf7?Glĩo{vkuϞX;kC?h*|ʖǭAk65k@tA+rЃ;ŧ6@ǧ }AuyjO 4ܠox* dJʱ"KёKvf>mJe+P0յoLa&u;\g tLx /IIηg=r[ף1 =W9kGFvmdbVby<y;cٻe4NvO,`.u_2VRxD Ql#]cK0_KPkK%aw0%W`퍬~oy{YضrPχK)FŖg58Eev2vj%`R6 DW (FyQr'VQl'u ~ `k=?ޏ?lK}lygҲe-yWT:|أFM 9:ߤƯ!Nth@=Am`!:A]W r Dz d<ZFaO]zy۳]X>ɝmjYj+'5G ?,.̯si{ցn"oB4IM#kAEDRw [;" {zg79m`qzv9G@ \>+xCk=BG<A<QniOY: BXRlz߮ƬIV>] m(xaVG6[meq')N(@ɂ~)>ԔYץp"*yOߵ^Ȃ?7O~<ԢAeXgoc#uCHE=2 RpȔnRY}u0؆ b:P@%-cL=p͢{=Z#Uكql|'.P9֡h9Q O)CZDDV?P Dj!P|:Nsi.d}U[X kNPL +r  |R|)+kʆ^j7\PiZ>TFP;|4e+@nf{.PdOV:A{O^B 2Z18rW>%pxjO0'wM+Wȍ{7~}EU8B}}<v_d3{8c|r/bA2Dz(@-CY e%(K5H'xШ̻S+лQ2!'h%ZV2F0șӲʰ/QIJ_ٻ3!TokǞd[ O}5?)Kݵ%+>?O6 keo=sXZێ=^' 9=" |ɺcqc8Q' ]^ܑ_w*1UQw59}V4lc>kΣ@\74>͂v ѽ<_}xC?%# @<ޙ8 4R#тUk/~k-̓VQb%U;qp K/Ez > "Y<&>mf#9؂\<@:V9eT`N=u;BIߋ$`Y|n/<`|gB zܱ>ŗ=uuؚ'M=rK7 z'~ z8gS=_zL]ݨnϩEm Z]D#.P&uדQ >ҡgV>ŠX^ShpGBױ= rː]:|EoQPųU,T⼩cבּkئ4YcߔeDdA]"NԼLymK6td'?ԌYnwOk=XuH}߱'EdA'D2${*$s܆QgoYeT#{ yI} x|ɯȮ#ո1ó &9H< Y|+CJDxvҘԝwYBD ૟=cQdV+j97S9=Go\L} u1)=`Np/+Vг,;AUASYN^C.2OdA7A^x?wz޵gSC>Q:= DX<CC}񵭅m-6Jv|')O9yՇ"!``/qa eؿ k_OqR*)e{3)0FPW$ 䚋=/&`zbQV.hTݾP7tu?#WIse? i߱Stu 苯uЦ76gYYK l[N؜UwkDWԉqNbZB xY-5Elf2AS =@/GO[ )-#I;vW4^|ۥ!nYv(?VQQ7 '88_B WKWX_Uܫ2v);"pk,PUaeZ^V%Azhw=%!׉_n5,e|%oWR3_a-mVYUcUl߻l OI]L#0MVPT|Mԯ!S즵s|,#؅MP&@KYAf`[zt@Ȗu sGM޷o#Olb{Ъ8=o 6%sO@-S|nio#V?nXqm'Aùf#+ ao)YJg5K.E']#Y̳"O;Vԩ=u5nx]Q#|=+~fCǦA-(@Dt |{"  j*$X߽ZZhϪA)Jrbm :?O>% "T1{P8r&2ey =C3_۶yuM>!q2 pP~>VRdN%4QVBp0!5O 㜥b e쯰ϝs|[Ȃe#!:Wt>'X҃h=ަTe9eLPFNT_m! 9Uz7"VbhzJ<BiA,+pWe+lMh.G9(} jRw/eq!"(@p=o+Ld1Z]ԝE:V'砎zVTp_#s+V;c[>axbC,O1 {/ï` vJ[-sL'; D,:O,@b@^PݿPF13kMU{|L))ظg]H)sA'qqb%@A' T/DQ U M!;Ų5]~=l]#?I8,BYy Eٷw>Վ 0x|@R,<m{J@B)S$)YjHb6iS9ѫ;}?`ՍV5)gWS> yiyw'I;3w?dqNBɼ.0̇)c%9?u)GC_p:cJsV7Ofm1he5U`7ng`QUHԲRj%WP6u PjZ9 @? G<cmȿ2y<xǁ@ "޶ 8' 2:v9ִO\A9u#bm" f˾:9Wv94sN 9yf[ J0lE8;E8(ݦf;jlQ$UТm{,^ʱV dOoϱ==asc/Y; YD}WrijV [2VB,,+e}Ndj q*G[M߲ﭰŖ6v,g?)@f]K+ǒ{m[BO{?Տ[2 m4!'@r"pO~nl,{'kdJU [zq -<"BO{(@NDl" 'B_]!nCmV`uR^JzZec}Jy7n}ϲrU hΫskGWT+N>\A7֫q96 k0t ]vJw`˪jGAp{Vhg{خuط~dٟX~n/mtY$N0dA@4H;NcY$".P/9yc~|L(M&"=yڦ_rϽ/uy/ХjoгZ͜~;:r,Ԡ}u1S:w,sGSvV|_MPݽ) UVNG-'%\q9:5茽^~vtw2ϴb?N._'2_ݷ 4cbf_ڃA{<qtcz6 V IHQKvDx+5N{[Ȁm{иxe"ۻvJ[f[xr֮Oڕe{z׮bG-t4Us0] GÕ1w# q-רC/i\ zMXS;[r=6=K_o0U&>w{-;w;dlCȔ=l}KVm 5j=fA A:g ݩAY0"_h*/d iר'Su)Ƕ7+3 iaj-#ԽUk&sB@kO(_7t@Ln+'tM?Wxzfv9wY'm '֍^Zgݷ)|9C?F2݈>Fz_Lv#`>fhvv0߬W8)KԵb3.I%z,}uEh],H8e(Ɏy(@Ըj]PBXkj6^X}d|bJ%*5:r/C* 7j/~*d" Dߒ&iJTWꮠ10(?Y](5rzìowv__>fe^d9R{F{lI)#mK\@9x@ 9 $>4+Ӏq5BJ] !`Wz+qa}Қ[{lz|2s~s<Bc])vmu|- ,Pրse  f;8W_- "mW}>AؕQef bB] ܤ邀}2t.}~TB`x ExO/B1 xɖ8tP"_ | èTK,{nqJu A!(Us&SGiklVjƞYN[ЊWQRg{G~}#֩7X #BS~m><'>"4i;߀2< w@ wc`q4)_d]λ;چOmBVOӶ87p,fm]B_q|r2O-}861/|oiux{>Sjin u2LOq |YލHV L89_s1V ]`~w68bͽVB@t3G=! E'PNu_"K*z;\=B~ 2kj :.gZ1BB f]{X ?Eqp;故 ' UA]GA@3k$X4duKYL`amV;vd7N=& ϣ8c'V6|bǖC.9_u( Yõj8ocˎ 5#C2 \] e@] 5{ @C,)@$L<ٗNVt{2ƟsEOٓ~i {l_0|_[] Y2@%,@4lڇ_|E9M)`4 bGMP |Ėm"@ϓ}qud?m|J5Gͬi:d?dj,nHɽ^<3u/˦~WA^M@նj :[%AJ鿏T8?, #nwC"w2"e_,Ji/9D, Y=J#sl v)2|deg? ! j/վhilGF$z{GZ$@Ri|w˾;O߆w"^{և9A~3:Eo&4Ⱥ0Α|=Y}_+1}lJɗ4qeF'g<3;!:N Be"#[͵dG%OUE)9#xavI]HA5ɹty}m'Pz$,Oy_ǻ{䌽guO{uGڱiU-6cB?[M️t݋ػbk% uqwf G, 3" 45Y1iVҘ,p€`^j;) }̖@&(B؍yMC+K+v2o+KG{(n@nE VavFAĬѾ3An xVDe!Я2%M#iiש#㞑Ľ Tj|TB@ >cy/z6u+q"z)o[j e ;0b-M]f{9>^lR~,A{W]%;AF,z% R#XT?. n ;\mŧ'ȭ|dn^v2@37PA>]2 =el۳[ᱻȝЄΪ@Yg_-~A5vԀniƯfOq=mW_P\kB[ \=ZF˱#@MIY"a3x9Չ6owZ"3MQq#b vOA@"ĥ6h{uDz d ; 8;ZWC6 i;;" ~OGQ-ZUQۺuh -à%ENB@8KŖHdg }ֶ;PPr s"6.8*Gx#!wpD7XQ`z S`#۴3,<HHKʆ,+&R bԒgAہ py ػsvxo3km696biӎ,Z-1q(k:qp.,? kYAg /8+s &4± ) 2}"ޭ%DMYQ:Ϧq¸T:b_ AD (@ Z(3"DJ;ֹ)^D*]:0MDNM0Wx ^! @&"Ȁ-D$tWS"@,u8KUY)V3H2LVld}[eh.l:Y*z4򑥫!U(n9bWG_b{\?#̭Iˡd m} Ba*FAֽE6Ӻ%'.kg0(f]:b }]7pp9q3_ %D$:;g|GO[:$hK9pO|[wQ-/FX RK~2<y`E PǨoFmꞜ||ؒ+및>F&p[?+ַ}u_;Az -?2] ̱?}<ͣ>4pUa ?ݧCYg'>ƬLv=m\׻, +Ϯ̙JeπRlX)2.݉WzUk@-Y1u i#@?բZй9EUQY꿝܀*&xa͘cеzDt1"dM|L)'5P@_U#ʄx>2JlqEny Wd_gCL,XwCd<Ixg5 U@Bے dkq?}'€w3]p »Eƀ N]mܳ;ej],d_Mb|z`F.`F߂owҲ.޴ݿFzuu269G+%J[h'`q>5x5Ҿf()5 G9ii=>G?e>[77l`#~Bh#d9qcfA$Rqe'@|w>l C"lQ~l%: "" D0NX7s ] rahɂzS0H*dD+x7F=WV(PRWoD{F]U߲c9MۖE]z)k@q~A:E 7Ҡe $>*vOƊ"خɺHA{1e#GA%teG򿕹nB)<y_=_mn5}|ᷭjQʪogK/>Ԓ:[b_akgl<ϕ߹}W>*~}o3֍]xe9 @U&vGr<-^eމ&rOqwҎm%7-#3"{; j eʆ2FֈOC>}Ud8Fhu]KYQʆRAZۮw}зxJ%H^Ӵkԗt΃2ZnY)Q+>@.DN*+]f˹-i@c4+Oz?66<֎[{ϯ7lzSŎ'oL6=:lB r-Av-v~DhjmjtoVvlЂ6}ը1oC/lx .xO ˇA3"9 "!>s)@$a#,cyQ8th<P߿oU*K`m{7,"D!b>Xςeu#C[+^.i m.U>x,YYV!Y T}bv9DIK׀#y&h}ɭO9b.)"AH澲DEHDz dZʇB>_.@sȫG8?{l?:GG {^߿dZN%Rȁp"tEHIScPf`=x gǬ[7d@A՘TZ1I!"nŋ!CʐPC 3 [hvrC/_Zr["(w1 AAً*Lb1\m{g6wZl|xpfNiJ -s8 }ݙ]Sm p3tw4PwNJc|Mh]'pb@"`d)F4`LB2=r_jQG!<!*JRdȹMHwu*+#Vн}M "|x]4DyP,+Wu.KhTzK#6+.'kݛ ;")Խ8SȱL,8;mg6{0̬:Y'[A˘=ƐS?0kS+(w>==8  =g!/%ʿteRa pP45%zw^Y^;0i!OK =0 1Q+QhsYvYdVDgUJ5*féwc,SW, 쏑orqn N::yoGE*'B]]'65Kp:hd_g0 [֌7kT`6`E4+Wd{26t0j@qG=XcL,?C$EA΂Omdm} O/ e(@qЂj"HYPGzMG%P֛,Gj6Mg!j[&JÆEK4 bG8cY.o ^ qI00hCAٜ_Om¡|\ R^q^Ø6вѾXnh?$Rq1x!l~ ߻JdAk dH梎e[~yI=O~fEȾNW@N ڌk%{/pY"q=9m)a'wN2.y~%HƉw'oih~~9Ivr̪{,n #N^J3d%q/bt] j)Gw}~*}|_:&@T]w<츂`?bP+S-Z fg^%@PAeK֥ D=5`U ?%0<{69n VcoOviVWq邱Cٯ?n=JPWg;T2~h#GޅprM=1<"ٗCǗ_Rg6_@|m8AȂYY 98<0& yJWe",#du!^fgQpn+ 9F՝g.kj5#;u4_{:$MDÆ@8Vw+e==d?s'w5V(d`B۸.'XK7Dn\wm=˨nV9<kZ:uf%Hu|e{"Ï&H1*!2&/ba}uJ}o\OYһ߬ MWyAD:>+iQKF.#ՂȦM$ٶTR{&Ϟ,gdyhχ؁}hv_{Ox.bP^AO羗Hj_(Ǝ ae![Er- +#F +9rle_&ZD"/Y1 E=YA?88) A02] =C`z}=_e'66†){ ιC||빍nh@Ce(@{enukV8VVA3ݠLM䰘oY{mSCv:.~VwSXNmؚIdߵ%,v?@쫺dPײ|FݱH췌϶Mn線$vsvK˷ﷸƝ(ĻPUMĀ$:?,REDhB-+}Rۇo[' Jsl_vR1-nDd^6k'{֍*%,$m(7' An E ' <h8Wʮ[Q۴Kފ8 5(}  vq J9y@.6 lY|@9(#C]u('C -"umO8&6LP (TۿjMC>ξ kvOd0ed[ Ah$ mW`B5ZO~eā`UN`Y(IqڦRAR{q<z"$V ǥU1w'QAExj-3,' /" :ATƆ!cC՚/AN BAA3DO@^RIX;@], 5- ,uI 4pNWLz J1jMT=>Gi6>+&:pG?Q+;By%l5(clm)~׮QNy3>hJR}U:{vLPn "%%)s8qX 'E{f5V]ion߱ebd18Yru?hz#+<pdEVGY4]ޡF/9:YJ11=FuWwde=K+E~[jI|}={CжL[kgؿ6#uNnZgpZ 4ˈ=NdQ8 . 69C 4#G%Sk lf9Y18~~ /0,=~.i;>F0 W eQNF<HBE:uTYC$n0ug^->4-8zՠnJmE(LuѶGrɉMIM=N$d^Եl&JcK8iHS|rX~Ч;[m)io]|(,FoBTԱ=ᨋM>m=w|S} Y4RĨUUUHDXb=kZb n@F׏eJCKT z8kx枂C+Ac+= ?:tO v?ao C>2™u}`@>Dg[gI+J:4vFI}·606cg333owҁGw^ʶ*S}RC%.+G~{s`5HL$##ɿ## <ϹEtsv1'[Ugĩȵ(|>X_9}RJB"k%F/vRkQ=Mn.#"N&h8Qo6,y۲Y=~"@gd,ֳ 25T #/ɾgf ![IaiKu? C|ЊMDkt@BfrWEZFe<{MNyN5!؞-[enUaw}3t<zLسV V`u?"ܵ>Q)*A8(A^; Ӕ?CsJX?hLw%~6rl췒iK!Ħ+;2{cOֿmz?@=ogU#@?蓢^].{򋎩oh{8&xK~%|;A:[^*I\]RjFh'Vk8~?u'^uh>M!?tm/.-ۿϽ%d}Md-<>}e?Cf56H}l?A&۶ط>6Mn OlHXŧ_ܱ-_ jOOвT(qXٍjΕYЂ k⛊$(CNJR WDEQCȂtY*u6[J]NLiq à9r e/HnOg ԭfSgZaNPhHfcgSOwۖ\Nj_L 0ܸ`iu/4D(08e?3YPKvtS" Zjw^X=caך׿| R!W:\퓖)Knu[? A=IG$~#@(OA(VǣAg"PbèС@b{=O6V.X%*@Tty(N+\|H/_;B 38= e'0wue"pk(u$ԧz$@Ur}yXaf$U/R@ wAci"W ~m+4auc21l](A}73 qB`<& ( H`[2̋P^ p,` ęc8:hY4g>~A&'t~"g1tK.. cs(UX]ԍ@@>ji c,B`Ѕ,y4I9q~ O*cB@^Nȇ~v!55ܓc1Ν|jCe_iȪSa4#S}Ͷ?`Y6d?A]y"0)A)wXX;0Gt]/w-b "a9qBy=9h?Y}r0Ka]Y8ڟ2Pͭ}V1ky2 /B\hh]G1uo*x+?/]Z`I1DTAU zو CP*]늃S/\z.ٯ6lxgM! ߝ Bc_'5XMo8l#Wk-x1zE܁'> ^yS g?Om`g0oɼȃC]<q_&P\-Xd,Ԁc܇3% j4 Z@ZI @Jn I6uX2 Iֲ L왜d - '#cCi8Sow, AIq Jl:E>64kuDP)>AOAն.z' jZ9 #t#\޷b{|a-VXn+[NksjR v9p̳:V-bv_V޳"$ wtkeg(G>3{Ⱦ;z@>g: e3ԅDcKO{F7a>snJ}!N_6^Ez" yi-áaP1*A@B Y1ú :)AY:AYQ^3C wGK{>Yk.[[_o C!ǎ*/t>Aϼ_|eJUpyv.e|L"B 8FdtǰwO@ w@B HL 4M|A>V r"OT#(P>J^,!5lm ymƶ6Q֩YX#PV*"RL(Q;D$PVQZ),GNKqe3eQ*{HcA:Av?: )tWQ8kY )4o鯩QlOhϼM>+uq,[c/>v("0S9 h@>AJv, û;p2gd1Ƿ}i놭J:'-fRr!5#=w-BKǞZsl8sՎw85 >{Xn M69yma‰E0hxƾ'Vi}MzgvѦ^X A<$@H_r27-GXPW dްm73zncOmt":~}[ ;/}1~){5Y3!@ z?4!j6콦3T7e4j ds Ѳ XZ"w*Ea_z:OVw65POтcgb/',);7vWiK:!]  GP6dĝ9mYΖ>^Xq,e?3YP3Sb@Y][l(0¸sbwvq27BfڦîEXߴ'/٦gDC6w DբT~o>O7P0"үeyQt</Q٪1Zr>ZշXE X]_} gHa9vǍA" g"x+J,"p@]N,~"H[DP11D`Ls k-v!4[.YggM ۍ)(&[LpmB\D d{= 3 p-q>OjXVS$A!'1IqpJn>x"24* 1E&"\e+~9:6PNB |89r!#p~m''V-q }kSb@ CwCWvk1*DxAO[|ȧgD=˾fA(uRd_oV7e?{+n[G FB 1ur_혭`|sK* /r/&0 ֕JÁ<Z )x}w+# shYg1J[o'Rsi,<Σ]] :[# $frN$b!Fqp "ǎOq@!2BXDWԎkp:-VtDD:KY1iԃ~n27Oc{bXw'kjuy?mX" qH(I&˷B6`ٳ"bA2Fdtp߱\;Q02-}sG\԰J3GJ;&~6~uH[G˒7Me/IMO]3wb(9Ƒ=Ŷ!>FJA ObvvQC$;*ܛĠ ;2O<ٗ+DVKq~94²5Nl~e58ݶg'whElþP5~NCuׂ巂.d{_~"l@ȿ_>"-vȥ>gWF3A?ٞMC&D+AF3˪QE|C," 1f zuc@>@"J?}cl52=;Qܟ|C~d:#(`[ Z2/hN`YP;~ذYgmtv1" _7YM#r j] 䝖=HnqC0DW("!{#5>DF Hv<%3E '}zT+u^^ Ȉ ن7u)%|wi)-+%Y_-q.7'D4No]=zC˶T6B3J ?z9C6l ז/^H`[Lcr\twC4 _3P83MٗtV?wĊ^v"wV9fݶ~ҾG?Blg-u8a%܆ qfF,[_G<;B<d !'w`#*_EfQwa5p\K7е>+g>k'G,~x:A f[IX3u R'^Z Z/Iwiew~o<C'42hoQ0ZeZkml*[:}nS]SiG;g3+XȪ-.u].AH"z涐}-o8a@ -8v@sRfA";I0 B׃6 =j/?˵ETnۥG 3hcM76Kt_J8&/>}Ex]@Tj5&Rj {YF> IGH5)"*׎>ꡧ'c<LV jEb~dk?uj(BȮk4!k3unk_Dz dZ%GhR=@?h6?}GIe]K6ct@ŠxA-u߉;o~yI"ѓ'Krd(" {SޜS۪:-m{`A"|w:jJkZy2#3cرsnHF 7B~Dmy T1^xhS; a mΝ0P?#bU{4!c0V IOrS"Dϧ$:.NUC#:ԯvwg+vA#q:zg{3@N<YwH8O@!9OC<.ΎGOUmxx܊(g`f"D8+08 v]q"bD9Ku2&4a'%BŒ a[Sl|(4q#8NGQ& <,йzP:6$qھ01V;9x Pӹ~$q)> +2|h1d놿bx!9Do8Y5#tr󜷛Cy/0fV`1ɻvwd\_Ћ&(ݽyڻIr-o~~pb cap(F-c U{yNFL?ط]a0(Y| ~xTrBKJL(&w&}hޝ (.eFRȸܵ3"c 8_hPP̞ 2"d0ϵ%V֕_q{睏m:a#Eܱw; z<A+J94>ݠNc%%/ Vq0o$y]h4D(y4)JfTwZ` 4s𬚷|N% Ƕ4ӊ]<2CWKx1~coӘ@?M >嘐B97P(RG.4|(2_}ptewxpȸBp2< MU ?X˜s[?gwmNڣ+V'g ڿӛRf)׽mZU߶bݦ.Kh zU pLHJo !yý߃)R8ߞ马uW/H@thFHn:12xz<棼?B38xO@N(etD'G~DOgJ6wt҇0dvuCCM{tbImkg5] @NEx#"GJF<?/FW- fUVAD=H`rM9 0h CaC0 A9 "BP3 Z !8 (a;C]tݙAgzǺTo w ,}@|CIˢCMFd( tQԵ k9)=G_ ߀c_}vk910 AQ>*:H4qύu@z!EO?N| :m>>*4P.x߳= ̨ﺣp}< 1mWx3a|)̯_V]qC\'79 xC,g x!n4MK'} ]rwf2yyo _\tmA4\iTJlE1 ڏ|#Buڦ1dc~=hN4'LGX2_k:BnMmpt~qπx6\ ֊Ϳ%01W|!!p$m P) 5Akpz^@5v`ڑ%mfNP:" r^R Iv[*D+p(L/x C}vbJHnxAo/j2G?I[l;NC-cBC@d- .'."2k6В7\roA'3:M>^XSXow/ZZ;_6P.&JĔmFoDs`lQHFN>Yy3#1A) `{f}Rˈl|`~r>>a =1-1%e]ᚮC3^p|D31QJy'o=M%b?ލ~-9 I Ye+*$B VDLx  w(ୖ'O)*1 rA7 y=IK uj[[ȯZDՆFNڿr!~:c;˓/=CtÞRF~T8PԁCJw ":)'G\2DµipmϧZpG!lCDB8-i~\Β35~(m3ZI"8n!KS&yRCG̀ uZB !n9s^DZvBpa"+[u޾̪2o ⚇"<ieٍ>V7:2fYڷkWv &vkJ c@Hc$Ak%0`4htE4u<`(+(t0a/]{ &[X \pu/ pftz +Y $Ob{mxFȥGCύUh2kB¢(;  r(X@LzΑ."g}W˧aXm`|vv[nВB}QΥׅ)4z/3-uG {;AAE\fs5b'`nzq2Q82)#I9!}]u MGN\Yl*E%hAhd@ >>'zH608xE*mϾ7k4'^jiF ׇ{2(z|9pH~ɫnM?(hYpZ;Om࠯5_5w h_whCsףmQv[cPh_ƒP mGT0b X9e0[΂AaçH^^mOZd~ΠՖkYI׿]W;Q)ԢPBN N_ޝQH|@=أE 9]bWflv&gоtMiBl'i yrNі[ZbRT3Fi[}88u"m(v0hC)P]ry{^eJWg$e`s}_?0=24~Q(6; 8,C%V;Hk:>< Di m9TmEh+(h_'1c=иޏyd:]ÿ Gpx@~-^r8Ewȩ؍ѝ9Bt́P]&tApUu9#<*GC_4 X\o"O_,h9N}y~۪Oj1,owZ~aiek( aiOT7nv[]v/eY;߅v^?_7ryV<:tþ :{^r" $5[61ȂKweUb{+*<GĿ.<[ ~@dFH [їT`bjՂެ<05UmԞXH^=߳djR646aO{j[?SF;B`̆ T`k:19 JWBbN##_P^71N\ogAXJ1,Ĉ%uM/֧],{n]#~ o}e#v#x)|<G|j2BO |'_w%0҉i@!tqhkx)]C1F5B }!;y,< hdя1ъA镓v4~#",蟮a*6[ғ4hƛ_za% Anם S5^@n`fxxy ZDѾ+7놸 ʠ|{BBvi4pMs1WJ]FU>:AW#2¥țJ[}zO0faN|F}[enPbuW4ا9P?O_[* : 4@@}Cy͠L)JvpEy) "*úVlck&6Vɬ_/֏h':)Ok`}oBBq-q_W$9<b}pFOd`(@P >Q0 d<;8vݨVEfFJ(E5 G2j%mĘ)  yE%) w 8X+4G\ۇppo.ǨF>i00>ЋמB*[n뙥aikM?2 ϷߞrCm`0NZ{{hҾ}-4gZ78{@2Qmk?ܨ|7*J!=ˀ2ugc[j&͖)K 1^^gS1̧dTu(< m).=B"1WJ E"M+ڨ]428],aאǖtlp"e{'Wߵ{:2-w-ykh8vڮbАHD!Ap ya\/H#1>*@'c!$8\qg҉knڡ)U!9ZX9,3z=и^w(6y?̢@`Dt%rXhw)M(M)ǚVckOG;g<@m|6VVA#99jsw9R:~__ږEYZneQoiG?S[?x'ewzh?о/Q3vO}{0Z5eV( uWF06cVh7EWE anNٓRjyܳ+3I}ȵ?h-#Dq;t-5`ٔlSPBFAYp1C{H'9_ rj)6VMA_>蚴ȦR5x^kmcw6"GyQ:@G_E+(ad1U9v$G60Rua0?Hgt'QS!r_O9 EVc{:ڧR.BKNOt g'>-D#IE%ZR{ ѨF,;0ڧ?NAN>3`n>/G@xfאXB{g׬3sefൣxXpJiMY6 æ`V3H}d=S.}%ZSξp˼yx"mQh7P 'AS tmt}v5t+2/z29ЛGFS>7Xb֝W'*1yNO.sA h6Urv98¹Yg/}jP@1* $CYtЛ\{]샏l`$kC ;xVZ=942"ZF<$:rQ!0 j{'h^!ʜ[l[ K0 r%1ǎQRo0`v-qU@ذjXua{)1 U丒 [h m4>%z_Cv?xC/uAhw~9Y<6>w?>TGh$z2ߣu'鷚&9k{ѯ{֢"=iewr߷{ӶxcЌRr˞YC]=zBIFoD^ M,ZxZ4dbF- l}.֬U# U/'!q`ZkwdKEٓ/>2 i%FRoJ6/QRNQ!htB9nvf2ܩP%O5u]#dN@D^èQ~0*(%!LLP&t>m^ s0t8VIy(fX1+RZoG 8:.YʳG.DBgP1&dxhòl\ە'##2=DA x @J]ǧ ܀E@GJW (׭;RFiJ S 1r(uQN sNd9j^5õ?pcr0$\OsO } k710:xW| mj9dNx{7iuvZh_l<kK%5c([),=5bYw^kIgAYEkdN4F6FB3r4(P} ½̳-L;ݛ@ܯNZ:]mο7 @K!(zx!^gJШt=Z}-xS-??0! Ejt"oQ&vN #ug{$m{G/: UiFbDj^iu;?c:/P0#+h 8ހN >%u\ut^wD:T^}h^#xp>cbje\kiyi8ʖdr6<D<ҒlH-/+'`; Ip4(F5"; 0:eG>`@h|"Jf;kKP*wM/aFF=w)J?DKu=*SCyCL3voKW =l5w&P Eʞ#gFFlG { Ø=_~7x*08uPֳs=<s~yi]e#N!4 y}kЮ'-)Z<s q]O ~E .ZsC #U}ݩ'4:mGX(+|Po QS9Zvǂ2лO[؂it9kQ?mj叇!>{]L{25X  B=^VN.P)Y&~Ex$2}Nz 7At_v~A?up2M5$^mp:ҟ=҇ گcrGB |h m7WZef[&1.&UʰWN:O/yH<TBЧ"u< 0,H)1 EupgފQAmwct>⼕RDzޭ_CB_/}Y :V fCy釼Lw<]_C]6ľZ*c[f×z*1|ulaޚ:{?_7>M@tFmkc l(kа gu5\~mJ5]۵9dijWo&7 hO dqpz!\WmN펥o( V~X;Cu 5"(Rw9u \E&\/ zGO%?wєȻAvN޳l kk_Y=}x8}>MOS.h\-1*\ҫEeB-AEOq@=H z]ѳpk!B%^%~+bw m/aJ{sY|uϺ-6o yy6QU֝XX7}wANI院= 4"; x&u<<86N$I.@?#v-h>xH1I}dkMd>{᩽x"iߟ+hC%C ,i؊͞gދC+- F8?{:2a0YyWOmzi<Bף>R D[BP~cj@=Jyqa2BgzGe)汩Jx`,_]GԺz9dh(PO#_XPZR^dE}[qGG}[WfwƠmt<6.HqieC4:^}v7g6CUkX9O].m EHmjZ|~JG]G/h[u]tTQґ`ȇ㚛gHpM3R5.{Z %V6R4 @sICsM~J۪{pY G㳇(w%9\ yPL5@0`'Ljb<iO8Ga{83s+KAإ>뛜ockB(-FԾWCĥi:ӥ}ЦjvelAfryh\[=W>1iDW]FfC(AՁbxbLuX:]D,8=5M,ҧ|;J.m!ڕ͋Ρa?0Ϛ#CUڈ懨wG뼛+ހtKJ _%tծu YVG#0e/>Z'ҏсsUJlʥ6fr6m#ZdnR+9ⲄCyIѳCfAa9yEڦyO_a%Q HΑwZ Ԫ$y}{(G )zQB犽 AcM1:)c]t `~&> WtJ@/T2Ac8 mL>cs֕\ \y7JE/P<=}=ZDVvd ە60wyߧh7.:?3MK^+Чk Zm9 HPN޹v~970Q|Č4e}"l#pg #<Bx4b̤s5({?;4K Є޻{c[o}yЈFA#MâAg5^+eS"8N|ZF .}d+A'*b|-ᓷ]]yיW/eW0@G(W2nJJ~t#m֎F#-^ʧPFN} ا @sx>m>ms E{Йs!iw)=SzN zϝ~2v+$gA }'1@TT`D\}3iEc/e <)R|䘢 yqr@#ÚncMSΗ d$"ڗ1z9oZ^α7 {l|&c/aB9{^vmpG{w=[v~}hC{`W924m?詽!.C1<WM{n!G޻1.$;-MwzRY!d>.<Z$WVWq/Zw-x 1A:s\>+<eetȀ DVE;ywߓkqL;<m}@\/@_wJnjP4t;fI;zOhk%c2$tpY>|wzH|?-%Og$I:r> Py_vג.po<G JO@]aZNez'h-9d%߸S53 4?ĚG} l~h{_Cva 9sMhAF@GO G"ыdnMѽ<WϪm-iE;XoY/kl~[>41Ee)R[NakE H| >28]̶BvQBB]|u~o“A)K8܅TO׬ .FV8 : k^m3BseR'EZJ`{A`R$8S rJS8NVϻ7XYqer!ȉ↉N}ΥoAǢ>688!w*Zсcsj4q5,sW؎w БQy<:/7Jv'g+k(Ua<X\_,Q؆5' 'A'Ө-hA9,4us3p΃I{&oܿڏu*vțm#x" o/"ԄN9#V75rxdu2F%3ANV@ph$0>s0#$t MPvmU%zb3Dڿmԉ=@hˬwtpfѶiYY]o%,YO,ԕ.v ޜD7PaAzo|[_Ae.H![@'2{^=QhZ<, i&& M=SK1Us~f0i TN & sB 9,Ar\r9CWoy9dp :݀['pۣamбW^)2iZ=]b0_yݑ'޳LU)qgX/EpWd+h.9F ްd^To}k(ZB\6ȗ=p: zK?7yw8GHS$pQ3Q%PCR:cO+ۊV#@PԀ<y~:PDYuZ> RCH (r}xg}GqFۧa'\H$g.}9 Cg^XS0b2WLڒvڟ-V'?֞!ydFnHD?T/7$P ګ/b=M'{ K=rJ]0C^ˁ廄hy/E ishI`N\аg3u|=t*thsCD0ŇG݆9 V?" 18Gd? >G=93N49a?ۚbhO411$Z}lqw;;=F7chX/GaFۍj;Q׺ٳjF o3\^8gsv}%֢]\_(G#Sߘz; !CA C+}\uS*w_9A @<Jܫ}?*mG E9KC҉Si ]#3}  :"r_KitrX^wV(\0 ZMF^KXjBoj۽,z9SrTl_5ٝUmuTNW7'|K#v^=[6eԓ %zy&/t/e1pظ}~~.<^fnCk<G/1A'(kzR'nc<v}û3SnCyp~+ }*P$\TeڭQMyur0P .x]<c^Bk)WTw \0Wuy̞5ܼ9k:'/{3VUv/K0/.SU9?~zP C*2 >row}L |r7$_^We#<p 8]zeĽE 10a?|y?Hf嘎scY+ywp MQ]wE=Nnе0=iz4> uޑ:`kN/LIs?HG敿A%isP?4~#",,_K4iЖ޶v,|Oko؏6乏%}ԍ;Ue+Q«hOVm{I<Y9h O\_ЈΑKH%;D+>B@UkZpa CFNdms(Xp2E21@1yurtxJetht@8 .BP@.жgw ތ{X/!,#&~Rؿb^DctKk{Z \z FJ9&Q?EA.z̉3՝np]g\- :|oaHXFn7# ~dpˡ= B{ͣ kPNՅ02BJO S@NCavaϗjo+%OІ|vUdh?cM?S^( e;`V$HJDW @4h{w.u4?H}Cz^"|FYp*1Ľ5SF Mi >}'i3ɂèuo_=D(gO]5,j"PΣCb>Jvemޟ78Tzkl_l>vY:mog~=gPF(cx\:o(()$ZmR'ipe`ZXk=WPuNqIVt7!B"(1k08|eN Ôu'1}Ǭe_ yCA/QzQ>ZEut#(#Vkd^?)!ǃF)4ArȦoz9KY2q+ZK{bg3M[6I;w=`hP]ݴZz ڧxݜyU+oFm{Jw9 CCr\"]^,PPƱ =4n R)M(5jBzu'FLSG[ɔfjEah77wGOR _8sT jWt&^9 <qEz%;^4)SEA~7o+քܿ1\Z} 9֖w/(otao}A0ګvw.a_°x{jEЪy,q%h[VNӘkB9(5rR9)P;_J |%{"hUUdԨO=RNj9y]п!<YB|}z)Dovj.w){osrpOtIjK~k ڵ3ɚufxm;~֞ybMcѕڎ?3+ct[hXvb:`ֺk<_o OWoovL /-.AFe<{,yf5̶V䭌vE\B 8r-HΒ<o׬&,:;Û8aԡ5hNXuy܂x3 'MAPT=l"û"LqNR;M#<:=*yнNGw9*|*@2j<zǚo7 ۫i>mo>g/g^_e˾}F}J΀jڳ[Y}'O1r)-Krԍ|9/Ï>]͚ބ?xρ9'L_ л65onkhE;8W^}TϿk#OmuLY:VH8İg(!`7U#`: 0w`6+nګhvZi]nFo~ȭv1D yʯ; JyXzC5ϰ:7"Rt! yYr(tvnۖW#(5zbXmUp?y`wQ&?NZ5g]˝^Ԋ S g:aNF"i2KA. B8Gӵ5"Fv4Qݠ=X񩤍Y@;}y>: JH=y "bDA\`9t`A#>]ߎ#!>Ղm7"TtNXb1Kk]Ga:G#r"hΣ(nAY2\ѕM1J fO~s[b%@y@?u,p(|яBƽC頻N1J&Qs0@s^;Bd'0zu<wm)e@j r / ҏ!pfQ*4P JQVJ)2G Ptqdi˝|:OZ>ֲoН >ޖFY%eC?֕=I[b2r a]3̻~4<87i¢?)Z#=&d^Ƃy+@*4rE߾^տ3 -Ѳi.~(z7eL7,(B,xzbѢv~^ vl(އ5$qBTKkAh]DQZ}xl_xa~ }szm[%b kou,3%nyuJE2VrnB@wo ՝A#>݈еиӱ5 сBws#VocCNqʏ(zD`!ۖj`*# |徰O"0Wx) 琰u:GkiXIOc2sm2/9[ߟA HB2fܬ2trs/=qSX84gO kPע(pZf},Ymٟق=Fj.CEǪxrzڀa1nܜ}{h׺Nw؝.r?ҾH}2grE/yS#Ƴx{hbA&ıXbf֓eiKM)IBEM}h)@o4&G ECA.ϧ1.Ήǵ/BKAڡ-At!E Yr)7:քQ߄5\rghi̱]w^kot&RF$k z}tF0Ѓn KNobGW Gϐ0:-ڈX aOx7n`H^ΗNw=R [KjNvL, *2@S"<zݟ}9E# ~tќCxIWؗO^!J%qp˄"jfcqEmn4a-s>5wt!7a"=}+ߓ?ٳZK/ [7\چd}@>XFMo!dsuj#q(|rUr+=!r- 7{\x}dsO-{luؼ]/ض=ւI+7ceMۭ~M\x%udh=t] ED<Ё)1DL)T!bb\a8 iWܜ?lNDžxGa+)-H\.#:\9S;J}a_xv_[.4/B<؃F{]yǗ+-9 z d]u[KФrr|w'[<>|+{/c8IDATf 9 a(p}~G;5,mK:RϠ3sb=#Gwb5%GAXfҗL*fw_ăsr '*k]wtڏ+oH~ @|Ѷ@a:Ѧ S&!1u.S10UvrYxג^:t\v#7"AH) cRm+i^V %wg I(c%i0[k{$.@>x Ȃ'&7D꥖ur/2e4<ZE4 alb2$3(p+ʄJvp@>:{P]*S!-(2c'iPNŜC~΋Q J2)cYF;ce0Jq;eZ|/cjݯ, qS^=2@DE\AG!pJ9bĀ:]# &R/3A S #" |)&: LxgaWКԾbAP B"G%W1%YS!JmIPwPȿsOc>/ H u_;, uP.:R0ڞ(@})|]GV( >B|%?5˯C3+ l-ۥB5 UaxG~u?#x{Pߑ-Z NFd4xA_spzOcH gNse(gt`94-43: fdP RrSG@4h*."Ok>kjEÁ7tGT8er?7b8~ijn).罼0oCH7݃'۞}6;(M ?ϡP4ܗ;6x~jWQ95 򩡏/ku#8¢fWFW0$=w}J׊y}z_6 ڶ5)'H'JuhړAJ4"}3=O=DQ gP$h@tTW k zic^Qy/^IMX! sNs "\nc&Nl+{0:r@wYP\= ]pGagFsYe$+"kM9xzsh>CLPA;^w8>, yXGY~ =TsJ|hw+ v XbzʳA?I_rD<ˆi{eTS{%cv ~A)'Q}k>}<G#-Fs@̞;K|rh|h͊V쭖^{ 7U>Gce\ZpF9,п; 04 }j =xwѿJѺr3:wG"d9TF"UGpIO0UFV NSnZy$P<mNx/5;֒=% C5uӾd0<B-:!/ڟ*C " @<zm֨E(U7 AVwNYhW$: >-9!_I债Eߘ^8ʳ K؟la@_ʃԉ=F&>WyM]S=ѳ1 ͗1//5*~Xzjpot J߿&LUhz>I`ax{j;D&#h4G 7mӟө#ۿjBߕ>!6Q-u3#wO#d!؇6D*}J)4B<$-kX?NA|EΕn{uujA9Y_A%F'4s읯|b*ڕ1?}aЇ /s}{B_o7rh7퍡qeKOǴa^c࢕(<^h;$ ?Loߨ(bP[ɣONoכzj=|LL@ҏ#*)h0?n:{[6̹cnܠNN5Ja@ 6liխ:jZJ9 F]H,:N51|c%1ۖ]=9\z=gv܇qF۝tlۭ<>/]hh˶}h?l ܊-gF F)Li2:DkSrR {״\hוl'6eUG".٣З"ݤEh 9F[*ؔgzDǀ+t ;quhO J@fUVFs.@atFrPʠ 49 N@xipBVb<*iT+!T mHH笶d7췛S>ڐ  0h*{#AeUuϣQ )(8Fbе# ,b "Nж+uxPYЈ 3w+"4@SBM7) 9473xq-⠼D1@A 8b~q !@0"|_mplS TNM5k띰̜ΡHף @fa,xD %?eaq=/#$ahʒ<qd!r/X) ЂpW[ a}?YJyar9h]|F 2(u~;J(qm -JLޏyG(;hn(hb %@ː@CJ J@!Z( O%y )2$e[7gzZ2dz «ky.?fhw['w?_Ӂc5J9҆w}ҰWgk_e󪖸pyS| T (1G</!aE.yuAY(vt$2 h)^q2K)GGaGlV΍e ݷvCeL6D0 0@V7C'T^a}|Y)ǩ"J|c{9>AF % ա$PTTnf#9 FH!phţSqhA?++s|ѣnRgOط %g}!yz{V%Y{9lh? >ލ:s ̏-<ZAΣ/@^d[u: u)5R(E(vfć6BiC9Y=b<=+_%]9 2[1$[>h6gy8MҔIwDžG< !ƯCshD_jqؗ@/޶/kr|_嘹QԈh_NN /$Kfkii-+{uT#a @ANA ,| X2oq!xUK=3 B5:?qx\>?ӻ^J_?Vvx}G 2aWipф1tS l$ }?PM=к!π•ǠS/`H 2ĤX߈2bz;о  Cwd0/}Uއ" nb4I&6m'[v|~^뜵,(NsJ+= Y gXvɣZ5&Q?nq3v#z~}{*rox} }_}x!w{7L2e̷TrO}aiw/k遲ϬulǗ9:*ccN =õ18VV;6c*IjdNB!·w '5蛊z4P8=gu}"mBhFU&(t_=˾\':`w9T^*cM5~g/D;Ԧifn-o - W}6EMPJeY9y<Z##;px]c<zm&ͺca Gc)@0C L}/_);7O ha[wځn+ JNi=ed r a[1@th5r' -(@ B9 `M7` lzq߮[6,~bˬXz+ǖlFD>Y ]sTJxwa*!p#i.΁7J+O#^`42/~nd #sqF?1aZ:Jy#B.%Y⎀uO?öd/Z`&T6ida A OXVK !/#Í| |Z@B.:B F(J J,,R t9|m +PnhfU_b$wHm`WG%{#҉=3Z2g@ʥG|E_=pњG:1B5oSaG'RC?2}@~e>uF 0,}KrDqauU T1]ˡvc~ 1ѡ'4BNL 9ȗ2@ə !BAl> qBN c#kpa<Ha0^I4j{8ȀF>i4=(Y{ 7XLsoQg2!!J,GQRU,j$ko=첏~Or[ h#%轇 kE8<ߏ/}] !$FU6 ;J?oPJx`vûi cc36pA|9< eNo@%9D{[{wH(2SԝcD^ Nr<gNBu:ޙ{ZOkAJm+4:̳t鼙]k[pɺҙ_ٿ~ɾǯu`ɚr%dT~zzf ۰ BcAƃөxi7ʢhJw@9 1LB]K4G%}}DĨEFDꣵ(JB J9w(]) DB2LTHDh_˙:>ZWB`I #Aa>R |RŔ1t_k(S%ĶqKH̠y$̇\%Y+zI`^|"Zؼ@FԞ۟"vb<PN9_n@3+>+:[&9˨vēa'Z67K;n?=BMл7f͵Լc90 z҇=NC)<{611f*fdcZ:\H3cyʇe :E{!B(z?x] Tc>P?Ϸ7̖u4p'{r(<dJO[f^;xC.i;z/+bS5_>$}t $#~%"'">pi w.g<-:W@!Z'K0 !ӨF<Un1w#X;a= ;' p L{)afzNOCtז0'6}Rl<wLQ%"{ ?Mf =G(7mdd-V#h1mwTv-pr\(w0JZsc?katb9i~m)PtЗ͕FWu%Nݖ^?(I9N >4ևlCitUk9[IA)}Gw÷'Ժ1h}[ӜXfrV-vF_o߅5t] :J>sdGtч9L]N\Kw^?֡Ry?C}ojM,R.@Ǔe U֭;`=Ypz$ߞ=<aɱwZ0;ˮ?ޙEcû }C?XBʑ s@#Ь'd_ƻ@Fj%K*5E!`U> WT''-9ܨ:j aur _݈^ ǡ7n7=+(/W*2XcX*1âmtw$Dw_ڰCۃE9 @C,TMT7R0ml~®M->߰}FE+9xK2(  ';?}+m=ucI ^q7I9aWO,8w~0%JRvҮf; 0WsFOA\EH"73֒O0 OdX4CT@0TD3z Y[]P ^ pd(y2YJ[(RH)Zʜ/c*5tSUP'g׬l؛0RΚ\;(nXRHZ|)(P!2Sd+tʅaN`k87",z] 53BƅgozA08?/5׸jLT%J C޹+ʁPOwuJՁƈx<JTz]p<y8<@ѐa{U V;4EDW=Zo%x8o/>>αv a!S`/#W>AhT.iB23S7tG?cˮjc0|\GNFz5{ жFtLCR:Mc w7 ]J@r622e^¡sF4)Gh<D1"#I:4ͱ3h]t ^_" (<9}ʲM*g P:)ЙXZ1Z1zP4إG=k מmk{~7n<gV_TPnpa[3%JU[w{R֥>O{5TH˧:A)PNˠ@I3P&Ph<*(+or\y.);""Pz 9- $+N<@B}^!~->OJq%8g0@!"^+m4ck>T"W(K$Pk3߯}8k'`0д=V"ђ՞ٟZ~ CD Z u #5h}cb卧(iKniZQ:T<X~ύ(}T>ђytT߁۞P^ƅi{NmO/ic6 ɬ494iOxXjxlkCB4xx,:!,9]qWX|'ϣR]C봿o=<KWC e 61g̓h>ޞ/`L^om w ܶ_䴯i9fgT<"P F眆b•e@is^i=Ӿ"’,!7W2h2bO(֊J3E55-Br깝hmhy"zzt C>D! *CJKҧ;vOҷ) %Rи7b$Q' #GDX'n}` 96N9Y4yȷ6Uܴ†a6})shw1矹qގ޷lByGΉE[| <}GgzYs| ڟ*ڭJ (`15ۦ6E[Br).ڂAw%\sh=]LA'HjZuObàG ܻff-=kShDf^a GuqN?:xV9}%c;ql]S`tMv <;ֱqZ6n_Txv |n etYRΟa?ok)4n7WBԙ_no؍k\GљF|`@CwsmDN&4x>y}2!}t;||4+@Sր/j45,4#_ה Z>( .E7gT~Zjwrn@^覗~|=B7:ʾY9u9е;ʸ=Zu%9M/[mC,( ;@jFD>=gG(%|VwiB ƕggM#wGtm+1DObƱѢoK9E8!%_AO6kj$KhJQV~ eׅۙs|괚0 amA7d ^lxx’Wx+ǂ ];Chk:pN°<pls`Y\"d׈1G8DEҝE՞†k).Ѻ^GkB(?.Y+*7PnBh7]oKM!0#R9-] U9&Tx#^ž$T-~t-WЀm .Is֭%= Q Nˁ!GBn0yaPon xUFSá0BI* Ý2" ;¶i )ySVF4H2---i#j/nt嬴rdO o0(609{Q}?_I> s R½ӆ\ F坮 ZYZ QvhNtO(Z˾ovՔ\9r"5uL|ѥhgt _-`T("Pd|!ފ+=Jƿh[4^k.}A#X|{r<U ٽނOك;|}뛬Z/N={>_7vi t~D5/M(Zk<fwZr }YQ}#xƁm9L#KMk*voD`GiCJϳ(.d(dD;/[8cM*5.hRh{+m]l7Buˁ(: `~B'xD VCexCEw6=nms؆Q[Q%j_k{Gg.[Լ?{t+wQKMl4don=~e7$>;3ǘcpAFs0a-=geo3~>xU̺G>!.+ twoDڠh;}]%4 _> },<}@Wz|'%ϓy. 7C@FX<}/cy@qo} }N38 Pi_¾9oCϟ}`-S&ЏZ-@S<=8DnKhmyB|FpꟑUI^#hh-.зPCx*Z#Z%i h`٣"H?xq Ӻ^y>-F<rtOw;81 GGr4BucBt7(Ƹi*Qt0ZQgn3v^<pjњ׺3V\w!絢O2A[*eR͆AmW<l^fw<qc3wOKL%M/@iv~:zB;<JI~hQ6^{nyHڦ>MѴ0w@wFO!NEΈ:;"#pĽf/غ&kLþyS@NmG|Z%nH~.s *}?+`kYxH<zll~{Cݲ/q;vo'ҋ#'͚]/@;UO)9,}w$~,KnVT*ah|UsZwA#zMk;rhwwA֠ƭ9=Zݟ}B|Q?sh[৯};"HP{áEhhIP2, k[  ʿpl(eEW+/@˃߈3; NC%$8 V@Iv%`0l'{7l(B,JX'l.XNm)JOkPER5 C]K?A@9FY3 ^,HODT*nӃ`v4*ꢌ@'K񒍌LZ2]_*1X_sb(%1@2!`!pecJRH: Bu9z+!P 8Ot!,)o)憼lc0jJ1kwa;xBGVض.e(CC6: h\ASCXu1 5t}=;p%e?HV%aAʇ+AXx{zBxF6{x[<:ޞhp,> M?#y!_phAt"P4=|ͦ+6l%T @}-UɊ'} VY:iFV޶[F D +@6́Mokl@߃?\j鷣w޳ C~ <潩擛.Zַ(:qoaѣ|T -Oz͝6èMJ)s8c#V^DS' A ,cYGT5g]<]Щу d?7D WC#B%zcɧxEQ]h ^%Zn^Bq ;Agsޭ{]vgl:l2 & |Ph7SϷ|hQ݅\xK :I]Ѽ»韂UsDhɢ!>FAG=)xӫ,a[|=L)>܁GW g%ss?k@]x2shQQsCSPz?րt_-)y~f ; ӄh:΂C{ru)*%B`b<,?GAnHU(<e%_٫wcH./(#O'CA7vv=磒.m'h_99zxgAzN#FFWK֟\s1~lb`A}o 5\Ϡi/ӄ‚YPG0 d,DFzlQxPEG;QH$xb@>̓c!hN{zt`;fo=h3-׏NC5~a ZoCrzVpzݼKh%3 }K~] r`:i_ ïeHCr{0<rz2a. ֝BF|,>yڣ>{93w#|P4ȟadԐ@=}M9?4kɵc}^h@އϠ}E7m9?a=L޲deӦܶr_ x>ځB_/CWr\=t_f1TӴw R(v":Lͮ?贽Ï19FsP1"`EW!x_x<O  ՟4`HyP;xߴgzl|%_s7J?t{Zrz ;.4mhOG t :w峂oԃљE s:O(ZL>XʞTg.3ӴcȎ^"k\gѮ<gG_v*֌>cO95>.&>#%GWh-ۋ'Uv#wlpMŻk 9cuZٛ|swLC|!~*vMykm%|AA~&𩋠ȡ0FX9A$9 98+)<Dpe^O~sW]FG$FD>Y 'Fek^ V!aPط%:dض`yϠқ+w`@B#-CBna O}΋ƿINj0i9 6<:aE^ 2JOA<clDabu蚺^tVhϝ_dcTwv)QRY}h}p#C .,`4=|%kd;;;>׭&wҪ=qn6#Ԝ߇ G#rJW xu#7J`(a4ZP>J}ͽS?OkIx]Iz2lV\[d4㺎ЎUjoX@:^QHy@H~|N]Km1w@l)Oaǒ9%0ܵL &-]^,$W{k%eDoS습h c_#/li:4ywƾpʫG%UBZP:P5̾|tawff|[XS%O'}\}L͓Bi@!,Yt…0B,~xS40eqgrjoȷ]C69<jW>ɪه&|r(}((ZFS'42y? 1rJAu~>RFHHj s~Xgj|qY3=v]Uu~vb]zj꾍^W_ŋo7/>0ɀm>"}S'\zN 64~~~$טPh-ж+>Q':Od6QhCK=/iT Lp|(svB_6u١e|}_ń8CxF q-{r҅m@r\ih:Mm*y³Yر4/Z/XV (h_|ytV F5FוYGcYݷo{6C5,vjR %r(m֔-oQDN޿h cw~:Bx>ޫZ%_wO`[ּ;A.Lj%d35Kg5^[|r3Gڸ>}o[H޻A+ w=> FyrD'yD;97'D!:ŕ#dJƥ9H|Ɋ^O7l'/Q3ZC鑽߰K|| s4ꥹ27+XmД.Ql}+t.<{{h#"eC}O;u Kˋ|c733 _NR7ö}gܺcx{y0'pR4d*c/|KKLNtV0H)''~NWD!h^(YZCȲKGl?M~hyԸt/,!)Yܷ*m.X@ 5 V i_I0F[{ZJsq >0Ysv{>4lCgR0WU뚨# }ؾ*r3a7y]6(׊4` yg'_vz+}o&»| cs!D{xL9DF!Ô {wcrƦlm%}z&?^dko-ppe4աO)vY=z!tϋ1UH)njdm.l Fku;oHN.؃1{o?C^.t| j`Mv=9qF, GJ=̶[ʗ/G>>8{lTߘn98D2g@kmh=VT7 O:}p?Ѹ%b'e]wh=C/ ZeZ_'3{i3NOJ/@i }{8 XeJrnFD>Y𕁺2z ivP>* NF%L#20;bd޵1>:v_ۖb0>GtR|Hʁ2 X iZn#h45,E2)2I)}9ܑ5G(\MjN2nxFx0C83;sc(@#q;Ǻ8x:<IDjYF`*:RJdr™]hH\hw_;RaI)` lw2Ү`qLeHU:>}'([{2>BB:AIdlNen0;v߱LwuV0Y~x?Ҿg23<۩zj5n}PG(()gоyPN&lp,iUe,_+^_.<d}I#m[ ekU(0s8Q8-DНFiMr&**шbIDB_YC}>п8> z&QF]0 Ck1`3a[}ƻ26fS(eAa_N<JAt0Ƌ;J6 %(F?([@(t lԁ+;L)#Y$x97COp1:l681gCvٕVhaW> 0<`A&%L^hy  ԍZц=htK t^"E~e> /P鎮:?PIJ-ϖl[} hB%h:w֪yQȩd?.W"}:<?ϒ m44)~:h<-l\[^搻Z<0Gy'eʉՋ3Aך^wgAguLm_97wB&P׿mK6>7g{^k#g,Daeh}߃6֝{NnqќTv*/ׄA{9190BVzYBa#㶂r G(ibem|V(Ss(@5r~pJ)V{(0rR(~Bѡ4|:uDN}IBTS8GaNyxRoMIQA׶1҆Ñ M`yvlo~ס6_v/Y>oBZS<n盚ʻ8''}_4/މQ :m3iw˾<8@'H!3 ǐaH׎ s{9]@iҠayPJ|ioem[{eeVX򟶦Qkhc^ζ@ۢ,&q=%Ҿ_^ #y 'KTjC^"K@eddtD b=meJ@t<gt:V\ܶTe*k\sspk7Fv_ڭk/֬ejwJV9o~Ȗ4bS׳K,zؾ"$ ;`bNߤ?k*2H:II+mtLnȗ++[:4Q yelݺ^5D9@Єm'xy{?.R* *Cc.o 7h0T7F5B*~gh[>fW$ doգ4+|1E[ۋ7d3ٽ=nL}q t}]n#²|WJih4 =S~:#?wqrvR+%h ZS@ivVޱx#䔋<G0Agt6|2sR\)tx2\WX HO:S glbANz<mN֬ c<O~Ҏ*slFD>Y 'F"F7M,[Q}.#@FA zHv Ad UHiE/~*[y;(Aǣ B*J`D”#@ Ea1R"\@{D(\ߦTP<'FؔVwa, @S|)xFpzLн@0{8L8_vy'H/!FFy7Os4%LT>uR]aN:_ư[v=}r΂fl<j)oo~1!䤼Kap2r`Ѓ`"܀ӶʂJNCUP~ECٍ}$7%:qzQ >–m7/QF.x0ֶlmBb~r^tp'F`迡p!a2{zd8~1mK<^,?Gc{|lI'9 B=BYEF>i_5%%thW?=(k5@*qV#[u '!مQZF(7aF&@? 7A v?p#EJxs#7m9 TKӉE3{9Q*Tgv!?2cö?(! EfZ3v&,F4!@qG`kdJF4l{Rm&n p%'Fm~ҽN= H52= }Kq/ HNHxMLL}v,=S]=sh>ó8ʥ`sczFh2E@`@G_y.0կA)2TAJAR/6yu[}sb0/ƱUexZgTxTǪ<ϫseKzrPs6M xaˊ~ cT>U??&z O.Dz 67چV'%ڶ _E# ѾYЂ[Ժ|G9NlXWrzPN[w?C\/9 փ3:S/yUA? o' }H>9(Z_.ʽZnl0vEМu :Bb /ƽV6oc5]|i9C%hȸ\QEIPz(d Gl?>];~pZ@@ C8<hIw^_kw}UΙœ0'L^Y12zgM5lE}&hdM] Cy]A׈FNlY<Š y·sCmPAܢ7t>Me=xA1 /2Ƃd\b+Oc4<_ǖ%#t(sBPe{/ jb_Es^|G:.ѧZ}2b摕9\e sܓKܻȷ)~Qxx*1e痹9_gP:HRsk{6[$mD./[2ZUڧ)BOO)V_+֩h!N͓oZi`9 Id )f݋Zu(k]MLaۿ1}u^ 1 I/%V~BPk$Zts/eSVְ"096 rp>F݅EEH$lbxv^۠}PQsW8oQ>1xWoPt>:I7Ok|_E&`GF__h]7i/~_L&y I[Wi{}_wOcүk{Mb`+(#~KAw'F0~y%Gɨ"b^r "ו!mG54*GtyѢdh:w[zn5xS{'}RXl@Y9<o~QjK〄xr8 .90>:]/Oq(raj=7"?^s`D#7"UPwk4g =)rHٳ~0#wHab/ÁSJ%E&k<q>:Qx1FBAk<GGE=:h ^5}`z2eqnFٰ>)I) P7ֹ; "gPg_ "J1p'Cdۡ9ZJf!4Ēa[:BL]#ILx20Bmp!J*>q6;gOvP+R3 aGptbdkd/aD<8 .PuO|dThJ)2dfJOrö @JI/gu9 VuOա8ԏ@@i18 P*(U0W}Ԉh43zΣux̺sUӟ&f(΂V~%Hk$qZ'k߷>ƄxRڻe?/GIve+AJl8|ZЄZnV>jM!SFw)e֑|eB!rc(BI':u^^TW^[8 Rc*g k?4O!-qZsgj0My#ϴqr=|Aj<R%\pC#e8_w#rEAB1 /Ȼ P/IBiQߨJJe9c 5BՒɴ={~W~zmr!GJ/H@!!=йQF'>$-UXq[N!.Q<Zwqa}6vliָ悀23'Zm@wnc<Ծ*Ϥ"/X'_>zV;;ܩ9i^hd:F|\(ڴ=gEn J|x^~},9>rN0`ecƷFh ePԏ ;fQGw; =qP9,7 L[yU66{ ٖ!' vi M#tp2#(xV#G1h9|f=ԍkN$K1?QԍxL>#pCzrBNK;P(ʁ}ܲhJkx')RZ(S˭Z~Ky}u[YG,gKK3hL,/y#Bp/>9Q=;5rg+cE7~C.#(T^uxFHl05m(/QW#[ޤExa{ s*SY^}:S<e.r6B5͋Es|:΁DUTƚ;im:,{{uO,wc`wl״J95ɾ@ƮA2Ԝ fUKk`>-C˜֠('F05򟠍gnG߆PTnM6оj[u諣@W:Hqz^U5ɩU[#PXnٯ$׬H֯w<hbSyGNpLۺigy5A*S>7,Wyr"PwɱRUɣs4Mrvb`G/lckʖmhIyY9i--{p%uL!g(So״7S]6OzSC݁Zya%_w6W 4Q[f{ng(c sǶ8AosȬdP;U/h\2lc ]˯_1WE#U3K$cos2ҳy7 @}fgAÚ#<[ < # a{YPBwp GF^%BRgv}'De R|9 1_&5aRbTxC]]c F LmaqS<̇ sΐHhd='q/OXő5=1J7qZJȱ2e6((2HpH]UF\ipBf󶻳kTyR0j/e"9?Ƿѩ}g ~@8u`0FGpnhS1_WmU;Kk0 eu+jjR[@@;+bw ([)`^Ɖ-u{nޏ`k8} }!=}=¨D^m?rMgy9xx>) w <hROLFzYla0t<Zh#@K.Q37QQ55lzhvQr=m6MAhRQJ*k0ɍg6.AuǪ7t-G*u49-dȄZRjzFgQ7m#yaa >BH_9^SQBPa% ݪTέ,!98y^SuDm9Q">"W29۶i2J]*eϟ#(B)5~*QJW^Iw"BpO@C yp/†r(H`~ÊsֶmHN_Tot |m9 @k!hX4"8.F5"@˫c78Eߦn^SXsTKFEߚݷ@`fΎ]Q4<a(LX_bm~knraޞ W=g"*|~{r_o 5( 2xum$EW0_@'Bx>[>EIFYRg{BiW|Y͔l`<m;(3;`+iBGQ|RSв we?>v?SGc5J(x@35'U9#/5I PXETdS ?5ߖM$Ż/fs{`=>= 19݋'J]; eD{mZd:GexjjF? ";# Mxc=Bϕlukum3Cyи GyAq<y^P_K/bځ @݃ ]k ~ڧ %۵%(U^~;6a\Cy;Z_ڷ4sH\׈~iY.]tkҪ?9 Z{mٻV{VMK@ h[i8(-ƞO/Ѯ9 W7M2g BFSAeCh8mbt OSa e?LCG/)b b4 b9,8 L8r"<2rжGVo{xD?DA!``y+s_oƦwvw鷒3sO6*6wYF Wz2 Hp$C9 @v :'cgYL%Yv "<<k{fov}Kԭ/S֍gtZX,R#JFy4F/@y۶L_|jã%왲DZ*^s'2kF| > &.! vYeLKsi@nݞlڷu+oڄe?8 P; rkx2ym7]' ^7E,R08zSD l@Mvca34tb3I ͻ`G  JoQ@H Pp}_5'S蜗20N`Xm9 52P'RJ$*@<G ,Pd-`U8Wٿ_-~~\#,`;#@p KWH~#p+~n#(@#tm~J) YcMA L3\h0Z1O fZ^uC#xA!ee=uPB?w>>sPE_] ;;q 2݁!p9蟏p<H&fJ1h;3Osڻgw?OY" /;03qkm-y" 26Lej(%Ķ_|-"\4 m{mzϵ1F4: F5h04щwM*d9eIJ0wFh>m^^twA!Â8󮐸"ǣa;(r rȹdn~g{2VVYW;mo 5H)g;sE}R|OF.XW8-g*.oXeUan`0 %w,,[(m* Wh%: !ވF0o@yFy4:5؆ #7+}| ߘ^d,@'>Q;"-'ھuNVm -OWY]h?oSHF,ی|i4RKFS/Ɓ 'lcv봯Ux!1/[{~,)^Lxw!9^@c)%֓@ -'?6/gA"_~kwDxo)R]_;oxF K1WE:5F G@(RW?q:rQhn~a `u e),r/sɔ?{cC{C__M7]h$: VY[wl"./]8Χ"Dٹ5ˢ+"}Z,[Xmye%0&`LG@t 5UF; 4b< =O|ppȑ[R{L;oXbI n^k?1v싦(}-xF +6,30i|CqY`4\f7m8];-d?$'"@Ԧ⊷Ky g"i#65G/o%A]Oa 1 TwY Pc/# !BEQ%ު"9s]VԈ"1 w,,[:_iwo='/m<ߕQ]ʈ-q? tqF{z&9 "m߉Αc HU/gΓs +Pȿզvf^_B+tdҼ-“<<P8W#zj9g h ]˯wuqԦ^kS9 : Tze9[BWΣ."XՅw_FD>Yd{< h7mib@vsXnv7[0*9 &P$G5?v KWmfz[ <{?a8*yN1myϠX9zn<3Q𤋣64:iC#L!p?Ř@:P\S0 *"~DHy#8_Cn;P)(S<FzQ 56!TQ8ڂσTٶ6m/gA*[J!cc u]PD@#Q392샒/e^|xvH;y"m7qϽr(';E]̺48Z.YwF;ᙤhh_=? FQO^:Os ŋwY F4(u?wM" ?JQW_"8 P,S#[6S:+kmL6^}hKX`0h OYw|?Jh#K D`PFBdzl!"J!` ƀV4~iv^5WxJ g4~ظ/"Q ѿ"4:$^JtGπ; zmsfK˞LGB9Z!K)Q|ayhi BMA4BOh_d 7őO}<v::m"<4:c'mmmGI߱o O@9FAvpB~ x>}h;"dQ.BQ8<_plԟ-.ϼf,4 bF{0,T9N@AԽ՝[email protected]/p'gp@pz>U}&g )YU#ɡM?縈;r֙>rmCN@J+^+ЩMSƑ;B@s~8`CSE9JĬC'ƄF]01A  z)h~r^9PFQ.l5ԁPWt),C2_^a[A-/soEC_дBJ0lԋ1SJE\7B[eب;^u:i닟(ӽL _9Sj>7 ӇFK9N>}Km>Q,ofݡ>,T&O_r}Edƽ}n_`_tns!w.YiR[d6o,ϼ}+ 4m~I|6 ehed0| P oD0=yM'k+GcЦE΅#{wMˉ@#Sy}O흩 `r*[?C.o@vCj޿" 4,l-ðƒ}>:Mb&sc3A^F59v}:.z%|gEY0J5VAKNL[w=yj}ESY,V$A0h Tjʁsh_}ˬ׭ȪWGh|xy:<)#*8 HjM{$Mŧ`;<yiJfa~g~~7dN> 2r]-gX%xBu7Y>C|,8N8V7*GrSy9Xm .,r~jy#طt=~WBrhT?2?PoD948FB<~Q]Es6^X)-zT \D]j#~#",3@ P{/8 a)#,^۴o~=8 \k* F8j{ll\jt͵e{)xE^| ץ AR:4W8: o  C{(ySeZZ+!&25kcӳ608Pذ Sj t:fe|^39[JFódsdU4~~0)e׏ECP<JדpDB1[^4 (UA"LP*77lyi JLʅ?u MƶH Dځ^8Wh LYQhFRS1w.E c[sPnZZR0fA |1mu@"w 3B0gG5=RήP@읲~rH!R[9v| ~дچ2 !䏿Mˮ[rh><AӐ0d0Phh(K.T4݋? MÏ@\TV6~ 45X:FJ ؃O^w>@%גRtKAhh>T縜] gAWBf3y FCeF(1E) w>J2&({r%.¢MXi\F{ћ)Z"=X1)eI;|j;k?M7m jGtn?s D4n"GYWϔjB*@CX[Ex2(zOYh; "m._1 O֝!(q\8/: P;,hi뷉 9.<tWqm% E_ ZG;ϻewO QQP(ɟ}ΔySY[Xٲ_ٹ2 in͋eG )v`pk Io!8rkAH}I:t9KC==rK{Rs<U :G/4RZ C}Y[xX $/^y:ʐ/9$? rKN: Q <4@Ha@k Oi?"WVyt,5 Ş@#KE SR^ԉ6吔.Jrh48> ?-4 GD/,дJA \ =>P ._"A*|/v@St4U !|} ~jקHVNߵc7}~vl0Y}GYeQ(?YONIt/;^~M5|z yIa8XvM <7m]?xǍ$|AHclQ F68Zݑ;,4MBmn)ta?G?X19~Wk@yBރPXA!h?y 焜 Fώy΃LE׷e+ؑCG+YEQzsgor?gəG+VN>Q֋S|4G5ԣm ΍8:ONE#4F'(Os",("k <Iϣd ,o Iep05hQ8߈x^#A{6l,<G6=elEhp]+YzlsgV߈; (; & '=b6PTOlE9 rxz)#+).b:#Y^\Wt h`䇑A%\~z,p=@Gitn,@#RݩQ(9FgLmAOyP& u7T, Aƽ'7S}zk$kz_?|!c4^mKW&~)W,B<_\s?R?Ɛ2S5d-l2aiڰEIb3 Y/?V* C=TCw 2@_ۦ/9})}U<9x;Q \ZH ju7|_Ɯ&)YJN Ad} y!%aR|[ _U]}ۏKYs?3߀Pw8y6Q?OqP֯A (BCIK0uM9h[(D﹑D+Ў9{w1j6Tvb-6ipq;Xq)(Ԣs%Ai!ZS 0=q;(ʢ{ߤyR (>˻/l~Jп2s*q6(W 3')D2U'flr:iCT85D__ZK# P $BӛTjx, Gt.\4~. sh+_/2J G@,oٿ,P_Rҵ[@A)zް>;"S!}t.|V)ṩY^t^ke7y!BSήw~=ۧ9 cgE:0§eh;OZ\ݷ!KI!01hpÒPj|6_%836V,P2r?NЄwfQ֠M:J&/xd{} }CTWmqr,'(I *qEHq߈Dak*m ,h&&oV7y/OD w$6Һ9}IMCrNj-KB:GTEw ; 4g,; mϊ0gS9rGgAO }=W`;o`?~Wx{d|I_@2>+r%+]^"DѸi\9E<CduNY EhUZqW,ȉ!rDI r"[h#_o{ OUi`qyچlt4},P$B>|hCS}UckZjZ}~hU>dV8PԠU[yϡ[/{_䐃fV+h]}<%^yQ .BcDiEoôuMmp|F'5`5hd<'7]y^@ YKgrѩ2dɾlx 9 aD]۪?B_9Ou\wLG1]?3jOYbR# >x}[oۿbЕCr<9 9B玬\ٷc79c :Σ1ɜ:v^\ S%%4[iE+jݦUȀ$Kr2(k^(Fz@S.2GisMC7jϭu3 -c--𭐁o,вea"PyŞkYEl,l:mn8hp@pubAiPHhnk(tBjc<HsS<y`ȟEFp<0%0u's( G@\Ri2ā/`>gMxmԟ ϚNmw@2N:͵Μ y~hGXO!syV |aԈ!>η'[k*%&.xd?__/oZ<ƅ,Nbx-s:Z ®n8N X/8$(B͏:|:+ҕCBPR8B!}!dzzsy-jQƅ7'Y5"lICR~,pcnSh؟\=z» א`= ^<8q?]1Ϣ'}>^ans~ :@! E #'Pڷm Yt瞖&R^3 G( U}?>L?\NPy# 6}Pɉ4#U׏PQ1h{wtE ѯD>!9VH.J ;NDUB?!O|v" At0u4z=CP 7]4,Pd_?g[8 ]+[Q!E:p:?-a h~Vw*4~E:4 A=-l`+( %7̣5: >Y]Dhڕ}9*TW4z! !Zoot ,8;g}-3{VqD '^DE-d(YdG߲J*64Y9B6{yw; (GT?9̩J0>lH*'H"e_V@=L"?3L& K4ce6Oe+bO {]O2|C-96%~==Ggwejfe <_S e/J|kpj<̑YZ~{i~c]Y G#T3h} 9 PA(|rԝ/_SD[;,P45gV|@!Կَr>N97}@EI#p䦁~ȂFWÜxсd;Ӿpg<33, CǠ>ŀ:h} Ox(0⑒wF,Qڋ|ƲeS,)>?YS{ ^΂A9x}9L9ޟ{_}{WR4 ^=|s)8Q'gb0Ϗ1m!Ām__|KE xul YmQ>sKG#!7AcނF^#BN>@%mH/eH(%x8rc%偡]ʹj GkF,(΂Pwԝӥ=tENe<6MF)Ѯ;yVWWZ-tb{Y_׶gd/slz#8 @ʵe9B4\et.2%#Ύ 蕯 h<W\K VDFufl5R6i!YPGL И@۱.1# cʉhv,>gEDzm J"|bג%t≕_Zak߈3; $Re*++vpxHgƀP]ӏCr|l~ Q(4NtFA^a{<lHr8ث|  zYW 0P+#@93 :X|͈P}Cri+!0):TMMMȠͤTm2=oeF=<pA`S@I|h~ȏBqC=ʾo`H)O=؆-!^re1ȹyn@?̹@]XT `>\Ycaϱ2<;8N) Y:~P@پ~z ,0P4Dhe>TI)_5b*#!/ X#t]9DYY @ڮw%ǃ zL͕gvxz~)Ln`†ؓw0@Ҿ ˩YFÏlzFP'bTh}{G1D!_Hɻ/G 1yWC 9F'SW>겒-z8eZ9uו.LrЎ11C;81eeY˒R3s̨Zeb%={󬧪ԩSU{w׶ Xy--]f<V݌[+Xgt)$B㶳Q?O0n!x!4U;MD[󇩃%'oWMJ%KT{@;8 hʂ]@&f>7b zpcԏ5b&QYpȫ74ҼEPOSa=Um 8gv}ݏVaMS/]a&ˉ^ AE$ nu]<N? b-C#ܞS[K̶[L>ޤ=ȿ>{FU{y}?.T{MDd#d>AWj .}` ^xZ!!g=R{SP[0|$f~e/qwT$dEu2g ϙs޿t_:oRwxW=@̳= &Qy< r ҏ"$}DJ'W8e>>%Z;~xBf;v]'( D'3eQE{J@d9oy}})H,;E~?QB/MQOTهNYp1\q4$F+MV|ys}؟,.Y[c6,'-f tk"XWʖ|&[aX]O i 4AH.OkS8؀S}Q(*2k %zv_ r(pcj$e6I=u& Hu͠)ւx'tl $9A>S:MA#J TB?EMvxG^#37xBxۼoB7G$"*Z':^fi=3?0mE/rQy0%).ޣCg_vĄ46{pSn:z&e5 lH}ehZA aU]cHYh~D#޼R;=b]wN/ڷYDa/$iM׊Jh8PD:Oobdd?Z[[QlQ?W_} q#<`2Zx~GA$_[$6)(Oc:d&T L[}tȏ:rV!H=d&RC!/o{hѱd3(v(_H ʹ7;U=D[}AN)"zv$)Y>E]B~a X4uTE`j-(3ɼV9:_>WzP!7}qeP?_|v,*rՋQ8lI]JC(BSnwynv|I ܷia(0l'HXiO,0EõH]ǎ>*)隣Ӻڗ/%\thɀF_ (<܎jDcQ59QC+5~QtړtX4v@@FF +J1N| "u-SO:y},v0lyΩBrxHy@!NQ* d+JT)$bAsxyH<mtrZaLG 5 3Hf8|...`b唵5@oF'|}}_IN~s@S0" ̈Ϣ'u܀okzV#rb ,zT)waFDF&}~|Nx/ܪ-EMhB4MmT $hQX#Xt퀭JELRU.y8 zZHˡiΓw}{2Kzi/z'⠬ M§I:cOmq?{hKþkF(5Cg{񝇸* P < *@Dś6syf>mCM,ʝ T4 f\:vGt?F<֢ZB/6ҧENsn;LЬI(<&R:/)WL9%Ff hI7:AYSAYP(qAS_CgYӴ! >@ݯ_#՗WTp@vBwy\ϧ;8uY|v,=Mm$ >O#BV6D ?V* s[wXVm0qӻq6:nu\3 ܓᄘ|>v+PDyu|5M? */@qtD5_ȑcppDZ_$)!EjdmfTQq {$|x =cpcFK "AG2*jR^v3ӾD[g@L%. "=]H>N~uCB刣އz46&8cOUԹPKoSoh+E-ABN9I'lگ]~ _>pmF[NbGIS 8ωO[SiEZ vd)aP4)BWWP-ntߞPliG0%a8. v'Go+\"vPv&@>iL~$EM?=)#𻓿}] k9s+g6ŶGMHSFL@cz7]" b<oFxN鴾ct=1a7kڥm$mL/mmrP^B}%/퀮/W龖yz11ROk$(ﻉ>c7͙>j8'F}ڔQ4zB8z 3vmS# B` \}kE}.`7$N iOtCBU`Q(oD}ǬzԢF?`,?r_?@~>ɾWS}OP0Rt!ύuYK)NFY ?Y-nuuO}BѺ6o}}5Pd1։ e2=Bmp188꾦 yoJ7b``?~ DC]૆GO<Miȿ Mm-Q("nk^s; \}~Wmkյ]^zynHJԏ4}^mV/u Ihz DгaİGKm~_>AܕUa<SaDKHE Z&`"1C;)ۍ]Yo: U qbj1kU걓ϯڀ$o}Ou@ d^U-c>6FBqHvH@@ .g7MPوq`dxR -~CMtki@PD } :K9Sw3$-K~/M2k"pD0'CS4ag߰Ya8-ROc/OG.`=<4L>$'DYr}׈EUOb߳@4kXb99:&%+X}Eb4Zk=Vjf"]=>6d5T)z&E 9d<ebk?: ӖCoQaTj#W-ϝ|\AC"$dVw~tssu(o7?A)`k@+xb cl3LnF,1uxhȈFG)&}ѓAYcƄK$ /=غ42K1pzJ/tk4vX++xF5AUT龂h.MɃ10< "oJzٯMJL a oDNny>iP@UQ<MC4Ji ʖZ|l+\>/=NR"/]Kh7lqGO7/1zzN=$ZcށљD" `d狰ʶs SFe8l,P`+pÍb`#j"*P:x 5kK/׈2[UT&I@yE&qVd.*r -k%^*P?cg8jQ[6`xdp4K)>mtD&bY&=Ee|ֺfM6E!?Cѿ7Aӏ䳵|hA8+P/%h$<y!uvF_Am5OdN;b/uه&/ n~'g!^L'V*&*4:_$1 +aS&2mN$[LCXfVB}`_*aE |wL?9X&F=le{T>'OwXY'N]O5Ⱦ$."Y 4 0ѵtb!O +p ``!A}Q&lkܚ"&:}Qd9,hO_VPzc 叕Y''~Y %F4ō'Db lp7mo:s]HcF#aޯ2o%!.9k|f']'5oϔUQŞ*'\ (P}o"xTTˢ9LAr&;#WA\r3i} uN4qxr>> % }N0C W|&-zy]ȗDFHz]+C؝=AĻ~u_AK<x5,rPve Ihjr 'jw`O$|c"A|gt0A lZ|%jY$ZAaoL/;% Y`V](IB!Dɳ)>o5Cr];X+Թ166/3eES1-7jQ$ @m h#K/I% 4ϥ(K@e_bğ[\n?JH3aޛ?)"~ $Z$mɉH]|}$( sJ= $I=hYE-AqhE\~YƈwQ)DqtBƌ[F?#iHe}ca/A=!X' v6D_vЏJwN\>dݟ,`oYt4|m`tR(X `9$ P #t"44"-fC\s=$ Z>QKjc"cCc 9VfRȔ@&1o͗os`h-P g.C= D8!67*/!u(*paDF91TC=Lbs+klbo/'o9# "c{7}s~Gurl ]VxhGm&&cAλp]!LL I09D j#&P@DdY-2`gݛ@EM^[)3rڪaʙwx7syOgsr?{Խj5R{N ?eՇoߍD[(LH9xoxHFJS ND' C'4ı!fR <"XϠ1`4ҀL'u?JO=׈z͡8:'E;I6bv}` ~`4o9IDΪ")Piܨ~iLsoE (.&< ,R%f0S)0F3-ImGhv( ;= *`H%( (vG' dqϐ%7̈tRR"vAcOXߘ J%&hw .;k[q> ~qŕטJM J`[0f9*@u?,ف-Z<QbM@mvD؆volFm`A _("*Vm9iҜy!:tUmOKahjRq/)K^yvpMݒV4i$य़UFV63T@s ZoP8.dZW5G-C'0| !kϧc"=) 6&7V4!Q{݇rH|ALP}fl.|L #SSRdY<Cb`l-A"?izwrDz˚^`As0\$@~C'1љ.Xߕ-*Q(eEBw>3E`P䠀$(W۞ 19X`Wzo|1\""5 A,jL <lO .2# 3dۍtja<r+Ͱ S-A%Y<YǓ|%,qZO>~Oδfԡ(K*R^,w()\An캍,liЗ'ۘΉc7'LKge-g3a-E *څmehRg0G]cf׹8uL8tn.b`lgRJI9HPjppAg $4 zfkU'I@Ȕٍq4FӨaG@,44]4`Y>R&ZPvyioqmz PKw߳VBP"M:n2!)*v<h\B`k|F{ M7S/m|<_2kU7f qJ4;t(mWR:hE6,f&5,hk-fd?UW_x 7edI̵Mǭc}+p`<P =bTLG yr0ax+>mY4nk̏ EIg#* dGyC(*5_v?F_zǑUqCP"'F J=ؗ}}`Dd=J(#~א.ElWL NQUpzsD^NTwGb v;i>pA~;~ M,`)MefȁF 4 ,f8zrJa\?SG>3/׉'Shs.0BNJȴ ǭ9W&J" m̹OBc:J~~Oath(T(0ALV@gqs]֬8DvS$2KciS$7Y J6d:[`Dvjt q:duN(j@4{[oo۬׭nA@L ]dۤSL#=qދ D#"arʼ/Cmp*HQܷF "H,rdȽg@  hm@kߩc~6!a}.Dd`~@z{ lP$NJ7\*EVo'?w(2Y*{oOyҳ5!TSpX0 *KFUP'[ h$ !o58<|=:'t@zI}t9u9sl'Y4ʨM(Q=vH]#pS_9$is"44(`ll ]q\9c}g>h\{vP/Qȑ?#ط󼟢fh(Pz9A,v@`>ľ#=N\)$W A3("A5},oh;}VFDMJ2ߙK``*J&iwE5,V) ؅$_< ?Sl3-ҷɁl(0Rhd,b\:kFRIBzѦ5am}tUA!{nُ ־ 8oQtXE` 9ylHk dAbߟ Tj /eޯUЊF_I$|:QaO#pf &, &E؇HR$xlZ@#=PU~Q+*(tE@Wk6N0:ofچ)clPkɻDWp-""üHF>=zx>^+rne; %<C]ݏ~ ?e/BXޟﶃQT(ۧD6mgxz(@Aab<b {Ώqi)e,8c[YB" = PhsN_;H`n&& $LM}wxz)W}^II5.]䤭3XHz㽘-EAfe(g|<ӞfSwt݈'辂F̀Ä}<>kpig ~4S|&JhoYG~N]|FԕV[{I`#i  foCT0JbOl?_s<F'ߩQ+*2np"G$]po{'Fǽvwfj=@֊|<l$u $ĻDnjJܖ^BY49𒃌 ̐i;Ļ (@`F':f8h"~m#|-x瓿w?<W=I )9),WhzK7B[&R@Ju"/"-"vgb`@d3q}N<8/8\t |̰IOF{(e Rʹ&<,Se%-#ɧү}se|zd+ģ iQFoR's[To@b07XlQg>9~&?֎aNv3F;-O/<K }K`889o :W,j9Ur3{%9ڈ>G: ʛ%M:~a9SظA[rs?Yl;`UW?KeQ]k,B#eXmho;oim 9 aсɑdkߤj#hDo€y# 0X0Y; uDīH/&:*q"0} >GdJ#hTT5oH}}~S`}&:SbG1Kx-}NW)FwCFU@Vʹ<6=%:ۉ$ӈ &A:ZVthtq"XMq/ko5Kb~ 9@ i00 z>q܊QN~NO`b#V" F&~J=drrQ$L& twJ>1r^AR-!a\tf AFmĨ}'jyNE:P4RkXz߁FJKFIF&P@54AXzwֻUBSP{f*XMͤOzށRi%A?R ='|OMOiVV latс}!Q9r;IA^sA>OUs,jLk_ )cʝ tג.}_L1_6Rta4FdH<|,1ۆxY2?!V n2xh }f.;X`H-ujeA96imtZ"@njDCvC0:;I^Qޅ8=J'` R׸S`pZ"Vd𙬚"=;-ȷNsz$꿼.0zߖ{'na=E~"c D]o!MǟT{?PK*(n~mGӄ6Fj3Rl=J *]x슱1}އkH@MXYK#zN?~ @}[w7 硹"E*c?Viç}C?rXd(@@A!Mg*p(@eȤk#`(@L7@;|1i>x( k~Q>8Q$<[>ծT8oﲓM]GIfienN5!:`8P<kt_Nv&ޖGף%&퉂qa&~o-QoYݲDȌTsedxߚbD,HWĤʲ#k/ >tu#Gp .ξ݃f5|sēnMUDaWP ~cLjĊ%I$iA8,о9f ,}3ENj[ci[U$' )qtO,̓vv3CaWi KgmmR¢ߓs%{[”H{#E}ee >VBaWMGI(\>lH\l'߳>22{t D-NcV>?ŧZIK{ ChA>B{C$QKe 3^S}8?L,N_s $~$QRq:"G5l^ ,*k|[] f9F~GЦ(_TQWIhShԧUd9~$I2&`vY4D|Ev>o;SS~„,;  OUaPVdi-K*OEho4x剶҆!DJ ErH%io"mHQw*188BWC>I]p>:<p}G ax2 (Ig4 ePA}o;hlj)K݇PoG9E yN2J^Dђ2ULc N:T- ƍP#}ß@[mm=7"ꅦՙ?/aoP$*zw z}v#q\R+M_CWK]vy.je45SofOd74.S<99L`P{ɋiv@ktvkiS2QLS4?B`һٍN&F\̌ʨIey?Wzc:GG6AM}&| lH0&`tnt9 ɇ *9&ύS Z#. 𣏠2#L 3[^[Kg< ;8x`ʈ9(8p*vY4 P1XTwD2CiZ21U0,D(, ap{0D:GiL7_HC'Zk㳝 EMJ3XΉY 021<2}tzS->yNI+KcgU; `[շtr ))T8GwjN}Lo2}n"Wp@u (0k'W (e J/Repe eZLS 3!#I&)Ō|sDx `zܖU6 ej&y U8ACƓ?Q:,+{R& >1@`R*r&geKdZlWfL^L)|YVO#@  bq #&NH's"Va)H破 5 tcmqq:*>%!1S(q3 ZPMzJIy?)g;[nܚL u"*gS@规Lmі-*TgZ:`tF<D"|:Kk*ARGGǛűqŗ=cּ`ꛙ^{HґLTIϯfU+kfn# !T`njRM׷zG"M)QL-wUpXJUMsٕ"Ih`=}JkȢٓi;Q&j `@@`HIAHFFo5It}AF=^^OH풏+ gidH%}ZTq拦uYeg&Tه[;'aPG狠Eve_@zK=F;r4`2 5߻ i*>:giTTJ",`2 <C`agKÇҮWB]u&mz3}Ʋ eIT$0>N`r@$ eWEEh""~498p5x1꽈=I/KtCD$NHUΊx?p,L%ܗΫ+Nb[(Z"ۧ,ksLee!nôagـP(AvSazɅgQ~vKKܧ`Ӕ mP hv=M-*0y,KbҹvG[L,OV}vm;u}5MA AVpD}׃A˶f[ISAs 4-TupX5P%d;u|4 -;yRUߓ/EEJAcmL-+]?[uho}[ ب7$^3m"A}'uR#< <),nlᱣHSi|G4 2ޖQxH&`p $eNa1j0q[)ï\ӆ$Iv'AM;m]$yߚ*wo%:-@I[ Ybo &T.(l[m' $.iᅫhH"U<^=JwGm#DI]<d^mcq~IkC@̴?c?l1S^PF}a (b똩fFS*# ^tE}Qm'7lV]*?m>,oC~16 Z_6a $2M2?"|;g_]ZHڋ,6$mHq?4"AfEnKmO'áW0Dr%!$}F,J>|4LOKў$ig$aKP_R*v:5B4JD6@frQc#|9.W`6I>H$ QEkӫTs QCQ͢_hEsD6dhI63 me{QEX:@s6l$[ɵJ= rqbXqq|vT vS[_&dW d 쓁*aD,hvvwDK"p"hYDN)tARВc3G(aEN-ЬkֈV*oȽ9ЈHrb{YE_{;y_ދuo JRgc߭wi0'AiS4<g8I'J'urr6áCwsLb=-zkXgmMAkcFtSDYzoDY%y0sy"a2_0N$*IONɓVDaVc"K# !1$fM#v0@e;8ʶy!(!/#EHnOy\ӟhM&Dd_AfZow` o81*A@AÌ5$(p2 t-}MeHTCj eX3h=IvԈ0D}zj_4*h,m'-=Է=i4ڞ:և"DQjF#ɯ+AT  ,?s%$'[㹃f!DszLl|㇏cpL4>S>#AMzR ٯvE~+uC"c SKw "$ZJw#>Lҕelh$O@[S4p4[78~}1}m1C̄x 4 GMnT7 (}(u$#saC#k|NtdE3%V){! +eP1E% HߓX ?/ 16 DFI߫ 4*}w{Bه~d^g?wp.ۘ_S@>UM@%ʔhk zL6&4DE֛o?iaӎX)檚ȴm?*UFZz%}Fn4-n~mz"(coE-v؅~>{h%P'Q Bqk*G n^~T}_]?9} XW}";)S9x@wAR$1.PPosbg?iuLjæ{IRͣTEC%G򴗠l|#[+h]?NLOiQ6z;LƻzD@O{e+-b.g;j+o\o#xS{Z-HBJo%ki#8nAg`XSmSm"!Q4-XaoiGx;Lg& SlE +N hFܛLO4>Yg1UFdQ&!XhV'-wg_PV|C}HC$?%ҏ%wj }D BKl^SͰjR5j߾eRke?<S$v 8CH y A%;EY|}j<IҪ9Ʊq8>z#$) H7XJW A|+_$"ъ*gt/] /ڵ}#;t;$ @,WO .]W`II+dzۦ%Ds*AS  NH)6fL6+)/qoKtH=/Q?/%~B|1c<֏qlZ!C9t%϶h_:OPT̴}DDcd>AvG+;>J>hͨW256O!3!{v~_Z~TAp$LQ0~\>DԆ7aͦ|avuwa`2kdoC GԈD<<C \0#C?)n+m]!ÝNvPGg[^C 3̾H?!e1WAQ8hGVŶY %L?c!6BAջFGĴqC8.AɎP0f{zI:s %&暟?fm$.ns\iwT}.Rc<>dV"h-7ST0]#aߠ>ӣH[m>DpOb}JL?ϗ1mA!BU{3S)*|Y\A4-紺]y}36lߎ|'>xP i{i/h 󰝚-])}Qi^1nlK3lyf1JAL}!_'Q_5agد-Cm.T8BX :ӕAWaORjJ9#-%6O!K\_"n.!_hAoII{ 賢9'Jm&dW |4.;+v#CSvC4_Nэ8ֻ0bU0yR@B[UHw5Ӱٰw"zHbAjv3ZlҒFCEu7 ZCi<|,'_~!?``ACE"$˩74jYGjn2"4ZfDxҳM14R5jjM`%88*m ;P *Xy:">!p򾵵kC#n/~D# 4\W37#,N@b]" -4 $~\q-pw t$>H sޛ[4[_Ow7>kĀŚ+ PkH<v2h! (EP#[Ubެi* t񯟾786D:|4"-cTl-@o`YLNi}Xi>@fe[jd_M4V#Yneh_$@gV40+ FF0okpy(XP,uxs>G*fΌƆO+pUD\ذeCu8t>V""o*8E|W"?Q_E# ԟ4d<O5bw?~t>W7vCO``Fb1t`9s~{-?w=|ȼH`ÚCHHSgl\.*#I85U )VpMxOK&H?? "#(msw iշiLT: +s}^#b#6 =R0`1wӈ'߽'%e~] >R} &!@`kE կѻMQ<4Ĥ^h};LŶ|z'QهHDќ^*9/=J(\wL @P#bDaISd&8ʚf%`?ƛ!Ҭ.UU0轧&V0MF>7|<LESTL{mU!4g(Y{k=uK4@"iL6k.Hw" ׋A0X۩ġk[WLF2~/:Y;q]SDjt_AK`pp:OnN{࣏wj!/Ԩ<|d;M%W/!#NTŽIHSDX+m9r8:G7:>c7*}G;J?F1x9ǿC(u_hVO_Ts}ЮVQ$ArL?nOO?4Ji$QP2vߥj }`sξ$1d U@5&WP Ѵ879$ WrUט| *waJ"dywv'iV%Gh !3ف V*ك}݇ϟ}cH:x]b0Ϧ@ӄH/7+ϖSNT|x^LiH]w?W1ɲhkA]S:PISNU 6]PZ<?OY醒!yq?cy6KR'}yg{)0p:o4öAv `g0m)G+f84:gV4@lo~Gk ,`[fN{L*Xcӏѭ)H>K|$Y>tCcd|Ċm~9/wPbέ&|E8i_Ϳgmuz߃c122~k߫=x(GqQw>t=m"1̑lg>H{vSEu$58N>W noM/bkyHG}l' o!X ۥGOk"L2Hq5+Xij FYݡsLDTuLՊ) n5[`S^2~I ѿ2HxĤ? ѹ$}d7x#:\hZymeZdiӔƩ~ ^a~ϭhed';LoЦIO"r,=GH؃NzYNa7m[܂HZ-Xf ,xy.G;/<~4JߖBZJD4j24-9g2o;\!1<WRT(0vBDHV(C"inKz:G(6Q:yNmCH};%9bdKJ~?KLJi3ũ߶oI @ZZZ=ܚ*mk+}N'm쿿:XPQSC\۷Mcպ%WTwx #O6wBK7 -OY~Jϗ J7< i8kl5DO措bs q7oMk|j,ye,]Vr/-Z{O>r?vYB'b ]] ~G`TNCmTt$4+:DeC H"IY+k&X`x+`!'j)<,IEA|m54œ#<\mC1).t M Dd*ps|:G\ 4T (|Wm' +`Ej2wf@?l8r`>x0>|(Nz|"VP7p+0 BO#RAS<)5K^BQʟ_ZϜUq&[0OCgo@)>C`MiW-!i.߳Ft,K`6[Am3355cAt-v /!+{o1a'[D+ h1KsҼf;u<^_Ϟ#@ufw=+I9al޺O<o(FĻz[wwgSktR Icy=4pע%,FZZ J ._U;w.x1<7m|q<1ux1LzY<SqM7ᅙ c,jCpg-hxُc!Vqi+ 48 3 O51K>)x]1=3Vs tt$V-E IS" +1FJXdGxM;wKx_lo$S3[aﭦɶ@{;)C[wu!!|$|*$fқI>fA>ex^B L?B=w:O>|oyG`K0}hN$fI U5*U *jhz^z?(f<,:;IV>Ao8Mݜh#>+X?+ЩkJwIxi/ P$V2LE RdS-dO#8H $xy<W~LXu$~Vb2 6i,vtv<Z :mWBޗWXq)e ͘[7@2:|7$vUP~ kϣূ4:A\ \/齳]D:-$h <n8~UV`S,<x>mgSW\[n?,߷_?~D3tׇ`2v(Vh/i+I!8.446ca8w.)NP~LI`=nNed>"LIp䵷 vWe"O4 P R>hEXBߧ5ߌIR+PՊ>^SgO;̈T{;~H mE׍)}]MQP@ ۬>K |DI?AIgGfVkU b{$=- (@A>RSsOOE_W'># =byWS>ͱ-R'I>j⍼V,S;} U'G;@cgԣUkA6v$+o|<!Cii. ik[ډhE l (h(DΝ(f|qs ZzI>WC9 6n܈M[v`] _'x |h臔}%VF7蛲cHj Hl鏠E0~P` ̜9ϘӧGÔi'g)cڬp՗[YӐ&\UKp9hr6G ꤂V՛[ ;1>_!Om5`2%u٩\3WQӊ2 ׅ?%=dt_WDBkn$aD:"Um'-*X4O^qAEw9Aj샞 u;nc[w y2 c]o5S, u m#&`*@T@{ >y]M Qb8ɸD>OG 6SAYS? N "N$J}ĉIa|exx}y\6CG|5}TYSg=IU'NB,JξB}L跄Us%_$oO7 @:;mKQus;Nk-z *hҐ*0>uzh>l6SD@?D)i/[ m`AS2"Fer-#۶0s Vp8LM`Ou`gg6xex;pl44;1'|?|){]>%d'kWe `jNe97݅ y;9sMÚ˱iJ,[|S{=}w#ṩSHԧߋ6X`'1scxq,̛7U˱{:](E}n xfRL{*)(Vq<I7s)m=?`@NkӉ };;AD:&y9G8ٷ ؟|X BѤh%hd0hk$&W*pVg*xS|]y#A[F(Y'x}C-APTS`T6ğB}x!#Gq>f^EEu4kN<_ۚ "g@ee{De顁KzJpk.}qMRy̐bo3/!2`~גSAe$s{:'Q2ihxdG4iSlݿ_cK]w^I4BtFࡃ'?O>#"Is2~<v41|akk:tw/:u*ua`μSV/'S>ǩ=(կ#S0nÌi0׭ƺW㉇<y >,_4gϮܻ 6A:Xh4ii A}"X&Iq/nm IO%A 9lrn(kOOR?VnTTNNXD'd$$&3rȦn5:sN3J=xWJ W5-5*E cu߀o| t8Iy Ft HE iM(AB>xx$Ԣ(?o{ s{ Gy1:$|>FrFd+ Ƚ6j]lJд&.$Í[`=tX9OgKN{6pO)IfpI "i_Km-fф(pf [븦Q5D/i,DEey6 h%M&I (TnQC.]3 s!t{odžM10\Y_^9sH6RGppA ϟ ??mk3s6wgLh]mg5e08M ؾ~ :i>C^_a QQ濄g {Q;QLvۭ&8sskq*Ly~LO}CxqKxqZ-ؽ{3*+wrME_G2J` H *`@kdv6A,#R:i*~_A nd fg$xt[:$}11HgW #(Acee"u[/}, "1HEݏ Ǎ7܄oMgE$YݢU1c?ٗ8\_, t9D O'o_[h(>eʨDKsm76@*sGzd+o AZq)A w|8=سi<A{6+N]h/jԝUl_ytI $m +@@]7 ¿<}LAae dYl]YHo(hh>1`8e aX'&w%Pj=?~ رv!<~kyEqx(^?NOg#~HtIX(\rq8g|!@08I"XY?#cBÇ3^>[x*x2<S(1==܇{MyOO q3yTکg#g\6b+K(y)xvӸ11o ݲ*Q\JW96Y{V$#}Y~V@[tLE&o}MWȫ;]K:~By0g7v xh5V8i\izyz+A}ZMO[jLcPUM&aō7ހo; - CH!~ *D~Ǻᣮk*^u" q*{-<(`Dvv`+a8)LW@skE@35~ 1ձG;pxN0 ߖBnuK5bv- iFK~QC VGadDi/>FF~- طؗEW-!FZ!Dh*(m` bm E4e~pvPUYle/aS.cpp}  (}Έ29425L+K apBmGeNRY7FMC5X4y̚4׿įoz;r&7_zոksӍ7f7&u'M}[ ^7 3{NGs4VnEc8jvPwttToZsՐW|aru]0PYRm]ٷ&\])ѵk̛$Gjt]qjDZUA0 QEw'(;#ZDȅ'~WFxB) ~dɳZ@L44F~:&-ECGyZ!]$< p;c>&ao[$@,MjU J֭;wt T67Sϒj*,ЈRO ;Yt=S{0#S-G?yk0rkOQ: +-YIr{+FxO~^FbH$q]4()vۏ0EO`Xb &Ǿ!t&ht"X0J$u5  qSfȞAh[סs_~t&&<7c'axfSgW7__*pu\w͵Kqgse_le]~t6n:<9a)\2kT 15e"4]pDz`|B*PgVɹox"UҙNn0(tTk{Kzh$\Iu֖l]2mU R7 (PD L4H2~:qO8v5lnyt8"h<NxCI/AD 73H4 /ejZ(@'! <Fgio@ xtI (x`lu`@%Ȩi~ǪNL` Sss&oلv@{$s$cfs#&#$Y'H'=X7CҢ 0>!#F:_d+jHH,h_4<v6@ TX͈yf|, V:k1{si|TwmB tlƮ=՛Ţ3)3jlܸLJ1><Nǿ}^UZƓ*Uf]~ڡ]3q/n&̞g~? qo矇o|rYgw2\I+nE_{-yAGyӞ}@3j,GS.FT!b%p8Ih4ZM@I*hh6 8 gqz)ϗqR&KQE.nK-;.+خ :ADn1(}Fټ/u@P+x,Ⱦf>u7hj̥#[o|Hh'pϯ AhGg|_z걟>Uc5G]'|%bڡv qp_;8Il_S!uJO|9unRA_+ op1?Ⱦ;1ُ]Y7t#!!h1D?0ўwYZ L~\vMAkޛ+m籁,0ۓBlq Ky\7I2(p ?AuZ8 <hBm $ޚ+Qhm0A$9TUQ(V*T\ⳅ_ĊWc劕ش~-@Hh_0u,JU.wHMq3u܃P{*#1%8p-Sg͡?g[qM7oÏ> _pϮ/<l‹\.Wr\@|p5?Ã>r,X0>(hlEhU,bwFMztH} 5Ud~NF8t }@zfs /QРD$Fp|Nx~|;s=h !m j^Hi prʆ~$k߆ʹnׅ/@/Ƚǹ<m1Z3u[!@J^?/gv<VS12 *Dįh^w6C9܁#"!^("2ܦwR<'h =Ux}OzJ  ;kv?*FԻq G0ۆԉQmF_~q]-nݏSW@ @!1bj1cFZaJY~nC+ۺ$;vжD,N ZR#_Hhò1+P`4NyvzBMU_GJQ MBڐ,6Ŷ_,PQT&ނAGAF=BYEM{vE!Ԁ߽y|;\)JdF{}EC܏R-tnp 6(oP1(5wogcF1ml\tx)Xrc8> {?Hz'p]w?y Naʓ᥅+x*8]^lپ Sg>GdM{ѸwjvoGiF;S!  #B`2&H#}NC"-t֮>? *u;Jm23t)N#0tR}<*LsqMnwU$=)4("Z J'$evPx)G |h+{MˮGusN?#Ț@m%YF$ \k D8R#kЕā!al[,ldp9"& @c$pP@jo݁6b+)lZ c| (k.˱m*l[{6nAݨE3w0&9Qoɩ@ƩcZblyF~xRy6ò0otl+ft^Ϛ}M; ѻt:ChD eh xN,(\IWRjPwL-**QW_ć~[ݦbdېPiWZSfH,W4%s_: _Ãw۶ s”G? =5W]~9ٵ4̟|b*fϚ7ciX~ j5 S+/D"DhoXW`:zHgOL;+8gFd5fFUFKn(+XڛZA:걃芑ALE~<|:h ekLY`JL2=^f)/EEypk_:"8 p $I{4e?킗@BW5r*yL3!0Ǐ `f Iv5J!H7xfT^KS1:Aw=*zތʱnn_K 3^ߎn g<=i=$ My3xK,y˰ضa;6݌7#LRVAkTӀ"m5C%I˒k3EkK{ eiEύN^ >s:|q[Ό|f Y?kdSɮ5@b[{?vEӏ B;t7sx:nkE2ڋB6wVaO%ًڪ?'}2?ƨf=nM5ZLj&I܅-7~<6oچys๧SyufMj^sڊ7o>?7x!<S3%lذg<U//};g Oݯ"Dͨؽظn1 B:@BC&O}-TYe|0Z7?@xezoMߖw7'P }ot2y~SI:n-`CoA ۝vC]eiHMP(Y6 Q p/W53B07#MR̪^HΈPR?AHN>~ ĭA;1Z-C0B*ڃ$ߕF?&IJV@jxtw$Cuvc•xyt6!ټhsbO`OcʃaO`ҟLÂ9 uؾvLU44R#a Dk0<6R#<GA|e1x)ذy6mSBA6bwym$}Uc;2u@/l\HI 4 {V 5eP{v~;|Jϑj~{}:B +uVE ؼ߱kc`*g|O6o߸^xOrxww>,.R\q%x&외7wGSO=a*nܸa&6oކu6<z5m܆ekzB4*lDM5~CV=>wnmU$v%9}e%M qz2 hP@CfU+e(`e5Ad(ߏ˾Xs~#S% DfU'ΒybIڃ}$O`Gnf|_E4C!/ :wخ^kK7/$9|n~MJn\Xgj~?5d}60mEv"J/?N5W6oٍ+7cK`y7\fLO>> i<೘99,u~-ٌM/6L]$L+# О#bd~IbwR| #K66rdh #V.3333NJ5x< P'nSvP878֖ASB/zFQYN(1\ee5 WB,`F5#ـ/F"ȇlp{PcV ټ>߽G@i#IT[he}T+54ܳw`;f͛v=^|~>6Yet- /̥qI[[.]V`=c{n,ZFе[b.Uؼ}/b$]n.)!ÈQ{' ԗPG$}E4!( 8TʯR:)VJ49q&4gs*Y B5M@ N};ࣳwp$IM/¦QEoF^EsL1CŏT鋡D澑d{|!R!<Av(6Nbe$E>btu~D<Fhph4#|`7(XނH)J)6|"" 4ȹ'm}lxix0{0'#?'z^w+:|%Gsϻ7R\~+~x6.;g~yG0KغipJ֒t&SHW U}cUXx|Bsx ;Ɯ/%W.yvlc(jީ. ZX;(Cm$1h;iFt06r|mDuC쀭"!Q"hۏM6|խ>;?O>xTdD+n &]L UX$15҉mظH?`H7mہ+VbK b…3k&mق뮻 <?%3f%Vcuqb }w5֐eE^3jtfV;} mٌn>k+x<->*n2l, 븏UC4Z,eFR,"@j6:G߶tޗ%C(ÐnE$ L(R[&=4B Iғޑh*  O([DKf9B$x `9:ۿde3)}  {×U_ǡW\.eݨiۊH79Fc3웚A}0CQ[]Ix04ɦciUJ (q { J\y5+pww܋k7^ .<xwoq?|?W+|_W['YsdhSSrb(* 5bP%f:5h ўj9/:o2ZWT`FU D.+ 5,tP!jȶ;ia 5s(~D m! *h®]QW{#7؆IE*+Ƞ?NJHR*"'dPfFlڂm3^|a~Ķmv&,:?K_ߌowSlمEc/b%9X*j*xn|k7D{[^/xx#^-qd"2kyRڶ]=j_x>M*C+Y D6YUS@ڸNmÑcﲽ\^|ɿk^+`` |Q]h ~M ߛA궇B &Ux4IW1{foW# 0B5uOR y !#{OeR>f~}o(Ab*#1@:Q(QOP 1~&N 1T+xee = D0F@KV .#So׸Wzos>B\J__~3_ǯoo7_Wue|ニo>=g-@0J~4MEE25i$ĺ Qlp\:jET~}MqwA:~~5صwU*. 9߁z b<Il!QJ[ s]ߣML r8=kiu?_jaIdy?Cu}<nl][ף>;} +4#$N@/g?&o;؏<=^ih` 2ggGV.^_y/ṙxvIt=wSWcWXh\N~f46;+aVƂQxv:n6o VVoǚuKsFtuoY4E\8rpQAsnHEIIR$wiI}VH-]E{~F7?k_E4Cq!(AY VNehgxO#e:jy/$ة!{/ M u"Aoo/oIЋ{p8~2hn_}A[-9QV\RP4G #1bOWيN:\8z~tQbջjBuDFAVHKHt0.y_^}-~k_W7ng[#|~Ws{9?/K?o|~f?FDBIDAT>4|s8$AϭA>gQ5="L'c`Vozt#\J2BmwțO28w.o2ݯk.e܎D"EܤhKB2E$H;w8uv_;*L~?A(`dWmf0Ŷ_,sOS+m+аg%;#cxݷH$i(5* '7ZV7Q/ުjTW`+)O=_kXmĊk`2%x饅EXt5nNw~Wn px漀g}Š;L[yG%6Dy1pfN}h=2 {IjB+rKM舴;ঈ[T<E'?~sE"-vtd_#tܜO`F 8_`@hDv̉8n! `]HR%S4-)yt T\l><C8˱p\C`TekvD*OH'8:KM"اStJ۰=9/Ň>(rnP$Ċʋ[\8Ȟ(z3}Xb B|cސr&8gϦhB3&O nz?n¬ /g=={TtzV֌DfL%?FԾi$.W]U.wpesQp(hKwwc l*N!SJarLyQ\{eW8bHwj, Hrt$'6Ş]+hX5RH)T4&pR4=i۞*4ijNum5jk_ށˮldž;|u˘Gݟ71fUK sز}/6p,|y5͘'wXvƅ%`:޴ۀ^ <͝Fܽ;wMщ>y<f7w,if{:uxw]OGYfߣ6Sx,JAksi0" ؓh _``BZ$ o=U `j޼ejb!UcL T0('d8.;*,!_"{ѱFpy <&2 f=ɶͩm%I ]f04 mdĢfGPL7 !(\ n/"*j[@vA)$$"C0}boY =]?*(G#/("X0Y1><g` !d?> kVo3WiM@@)FϩH5ETJ&!U`hP5D߷lE#eW .7ϸꪋq揾o_|$jO+G+l%bx;a~>IM+}/Rg;}}e6HҴafy&lظ;AMOÏO^g%"4F$ZF]MT$jCuuv}]݌mbXIҿ` ̛ ^Z9n.wly6E+H&g,`͆Sá,>?5gQ[ *t1=}COlIִ!-فD鼗!1v65, &Q?c4Ql;Zϧދ ܳ_ijWB|P h?<4Ia1 PI:]#ԃ}Mei/ >u(tD3e?O ޻\G-(];1DwםH}GSߕ*0DٶYtu(fL0TbzϗHo$kUvd^=sR|(P;q5b_kd^a(mAL=_q -]88~1چGN`_8Ϙn>xzG0<"I+q66فR?Fs}?GͶWٞͮ02?Ld{Ze%Hۧ)X¿Z&簃(%B?f_R- ~r!7q.|7t qN's GJaNp{~86bMv?ƶ'a[~;~IR~ۇB7}j&kDG3vn^=[мw+;}b6dАH mb[hӚ#Y#&Aٵ۷>^vl\g%m\/ŋҼyI̶ev\zxy&]^ZYflW5V܂j{c [|m<4}B˵廰c&T*=<=pn#;LR> " csI#')hNl_{`"/"꺃 ȿ >P0 n<ǴJI K(;YY NoMP&͞ mq2|x@X0LrrQ<sN8xwC.CC$1%gP!W8 bk0ahdK_Vvz^l«=^EPfߡ~hJR2F"6K?? Hs1̜". 6dk! #86F;xgBrQ '/ص ||[¦ ٟ06v</De5Bn< %{O6BE$S*ƨ)uqI- =z E1h l\te%W^3/>nZ̚=ľ>(0wG=f ;vhh_[G@y֭p뭷[:s?Yl;` w'Q!n: w@y>y}{&l4SE[ !p,P+ )/k )JBβ2lX2t-3Xj=݄֯+aWxr4w]oc<7`k1kLXnI6lۀmeBࢁYFsxgPHӚG!ռ|x-dҤ7jI>3V|3OcmE:n2,(mFΪZR5}˭ (A;)mH88ǜk?q]C"*N JemqVߵ|{eZ޵γ0 ۍF'ɋsο rPE@I:iq8M`3s4oh/0h lTfoS%zte=a[s uVSZ4:x 'fs9F)<O7LӣCK: W}55[ۺe2I՗ CwV4W^׈Z`TdV櫛 >u@bpr_WDp~|p?ͿO<u?kށއ Hᖆw ,l? F/c spA9sv}-QWAsO$H B-a5OهhiM,*DDJCX;|F`B< =9Ta^n3F,\ /.԰O^wb:ܰ=<zIl!aXl#jQь 71UGGaƳ3p~6)UUjNi)گ4.:Ht$~> z즃t_nwӱh  eZ;E8[LjGJMk%p*,/"$e? *(0,=IRPTP۱ ~]AV[I"T_r^Y2^?q0'Aas W |e2y3}%ʠ0ξA[{7utUn*!G}o"袳ˢj:t8r@/w;i5KGϚ,}h}N2=hjSLhk\$v:x}Q_,$>e3')8v'eyV+XMɗ®j߱ff8 O)P35~NvM%4"{@QA ]E׮ۄk~q9!)nO1)ع hҤm 4Rf5޲yS,HRxqֹg|'o/tzi'i? Y4w}r.[I]ڀOx > 4ۈ$ۯB\z 4ne+U7*ۋKځl<H_zvr3/\K_T5ݿv.ڎ\?5ql!߀=U.t5FF]G_i/;F?To@0腧 7c)+GseSN^>p4oXœ[(>bx[)}e<e'*#GYPp|N$QoiV&t?L ДFgm#2g8|I+QU+VP_yoPKyJf;Sdy6Q? d%ыh>~ۘ}mD{"ǾUt?Ql<a4g DE|W"Z b7Bˏ i1msHX9|y7БJ╹s?KHӗ)ED=F?EkW&wcU\J 7JABoh׬ y5nG(Jyv(B\&=^\s ~|98K>0vW!3+X@C\!{0f*K N{t9-M⬳~s;봺doF/x]ؽyvoj;ӷEdFX55Ci׃$CğA4me>G;*+jIW~xjʣؾi6]// b܍s>Oy`#vK,O?1I%]N]wcJlݼM80~3?_+tw7S>wVUY}Qxa+ ! rKr rzc~[iGR:۞>~ƟUB/I=hzC4YS}<> 4@"aGi W? G$YSꊇ2絨C7oy =KV-e /kVӮ.¡CibzS-_ -[f}9A\Cc$I+}E#S/<NSh )⪝mWh7 tA#c3E m<E'?9GQ.mIN,;ɒ~q|Gh{_BܘȄ d{IKy3Ρ~`ɒż8}5'Dr[ MK4Ŭ䆊5 {^y8߿(ԧڑ~CAB?Mig- 7J!λl\|ȔP^diG\P Ia dH^jNib0J SO=>dgv)ړ0p4\رM{W!څ_oノ$x"9Ƅ ضJ.pffx˗.$`9V.Za&X %?eR,ӞEp7MJ 6N-;˱uG9*jp,Y?3T=m4a 44߁\Hqo'N"`t{(Ra !h'S.)KUJ|?f޿׳D?޷Xk]ZU1[D(T|,De'ܧ0kØ=w*,x-`/A  N8`3O 5;&8hʝDDR2Q"J)Q$8HК*#9<,Pq+z_Un7d^ -]^ky.mQG0 ^L`iMؽk3Z3~ v 4Ty[S*H+j\fΟ9ple*SwsVoYOL`]}FZeeXǔ0k\\rE q>Uۮ :߲ޕ-)hc=p(Cn"ԼgEfv(0]t쀭n>4b44n=nصy *v-yxA7,ĘsntrMt|_s7U44G ٸq}lݲ g|4[q\Vm+R_ܗcێj|nVj~q)2 /[njOe36nnD$Ţnmp U{ᬩ 4Ԡ9aD)BOSuD'{F'e it!@ԨrDf6=L%:9 {`'C奝@+!{8ɉ4\]8 $$ްLd5Jrr`ꌧ'G0cS>I,\^=<6PN؉Ύ.̞"_FyuIMۡH(҈Iv@TQ)Una_#Q@d9B'F`KT[Ik9C|vOMgҨ# ^-`e4N7no g29X,^f&A?ԨIŢV #JҠ"7U~w8C&(<dw0?]$ ƈ57^w?V]iL Bd"%z+-\qY-? 7_M;"U-Q= N*.-k"'O$Sؽ{7_r酸 N!W #FOଯ+-7OٯE.n.8A4?7fzPxIl&Iwvs'V̾v]9]euis|&lZm;"?ص/FT0TT9YOP[44wK~/: M{Q_oC[.6+$V+R$"i7]AfQC\G"|L=b?=Ppd1CA G}E9 )3+@=V#JT@eIENIX866i̜5OO}3hO{GO;y$bms?װ\swPn[k۝NLt T};s?uo0I\Z@Fb1 m|L};.hMz0$4X.CQIU?s/Z-7# <()H{J(ʈP Np>?: ma)fo*fW_܌K.~ 7+P:" YE' 73N|: ]c(RM^;t}/k}4`2 HVEKט顛;Hbfگᢋ.W\|ZجՔhxw+۶ц]OG+3kG>ԇ\D,:IQ&1F[;BrGN@mE D6>׿FiV\A_n1o<,Z[l7-Xd{vWaWOXW%++*9MĿQby݋vt M$\B0Bה`5n|+@bV/L_,v G?ko̧w <LdzI5H@%¦v*o&կ.L/$niy;,}s3 bV;~US`OUns|K 8-Ͳ#Ȧhf_Q׺ک0 {s/ES=#_( Mcuu?Ñ}}(Dg߈ۑP_! $ԏ1P}<N[jX:ÎmS\E-Lk~m!w濂 [Pb:ydRIbl.BK.x#JhC ع6X FUmZ\v[~tlKXxEڄAKJh OD^Wf,9R'UxǗ73l߾e#|G!Qt1Z4`CkU6mڊr B:ME~uV<ڕLb,p ]96H,!ir9Qk P'';o"H3 *[ QɄ"~::o4-eMj ,gnĖիn!a4WƲe12e&Ǘ^^%~vMXx zf&VQQ5ز ;vW`]fR.?[SFG&b>g-*wnN\mfTJ$Y#C$, djR'#rU`\ k^ uQ<:nBMpRn7 C#4-<Z <Jb7Ń6^:{n_ Ѐ! *QӇt,s˯|&a_8` Tm3iҁJ4I$I7UnmS1R z>YȚ&"-`MOo)*Xg)hs;QW]կ,KZ|p3rSakqW yKAOY~6xxqO~{X0 N3`2Lfm<Ϝ)sqEď!~Jpm7_"b)ϸx0ƺeQ*+Ԍ4CDϾ5x{p5+>o8l֔HD]iGr`bjԗ/GнxQUL#Y!`̌:ktMNg{ʪHh|jwa 0g38oQWVVa {,[/B6X@x*] wTbux'm^([ߩ22[~qƆ gc%vm]ƚ]hIڷGC(&tnYtI:8!F0!SƐ6XٞzJ{!DQFKIRڲGRe wڞ&W0j&q x4$R.5Z-yͮ Af<x0q篮#0rvIB:ZȂ/odZx؆짾$tzMZl6{!Fm]$tpGQmAT$ߩt]H$mN[:Q@:O Q dgYSвY N4j9/V` a$RMFvGg5uBy@@}Im Ԛ[%dyxΙxgI84g> lk #)Ei4Eݜ;w pΏy|^]g?5ѾsNjwh^C(I°6SQ&t0 l9n\}KNU[x?tdr1w-ʷ/C՞uP^*ϭ%vL~b$r SMsFׯ^ysf;gTźU(jFL߾yAEϥXv+U9zw#ضe^zq1i`ӆ$ $Ne8D~}|_MMسi#5C:FM$nSd3h%*rJM_+$*g /(Nꫂ]%-y_'IZeր \{6"(tj$o/uID[)@SO+( ^1KZ[6GOޏ=zY1 xu? Y3@}n-җ[i >zl>߅jPba#/7*I.}C=Ixu⡰5$ [Z#ED($'UC<՝})[#6iN&JEUVF]ȓY3#vH׬=zzu,&- &woW _ڗ3Hݟ f[qDʐx,g$]Y?E?.~vOpecմ!d+;X %um׺F KOWQN2bo|] TnZJU=o1@_ =${$K}dvB6>kj'Q݉VbweXv \k`WWKy֯=-| ú 1RVw?> KB]޽رc'vD*2%z-6zN,S6bmkֳO%~ͷE?k?"R6Df+} k ߼quAV<TASEYebt`qhrG!L<ҁO B<_Jg؏rOt7\N[R@ܳO <k<7v5Xz!:>2NͱPUU%Koɷ^ALƨ^b$; ^N#S mcm ڑ(F4BnOZ'Вn>b$|})네7%)d4Ea֤L=fyO(2O457e ˫%gS.Fs}߈lʃb>L2D`(45#cè%Vv!C?Tx$Ȳ?ӞkZq}w7xgj'-[dxr@]&8p+<^]X~ pE?2Y ;jg( 6똲 "xȍ;a۷`owr\ub4nZS.g]l]u;WUj|ư {2xkj8vn=囐dUlDz3D͖Wq"/Fn3E/ޏ~un݌uI&+( V4,^秿E$ o"Pz= /aͲUBy:lZ[7nF=Xr f<8 :IHPH\!/r ?l_mk{b^ʰ`ǵɫH"K㡑똄NN Ŏož1_m$<ߤ $}2_)zը@_N;B1#.F_lu<A୮jxW+q]?3I10GJÖ6L"s+~,AG0HJ#Y!(%*R Z%vl޾!s֜<M"\ BQA<<^>WV^piڂNl`OU-OO_Gו٣hRU̖dY,bff,fɲ, bffY̌-3e\IQ*`t:t~7׮}ɸyc?Ocqセ99^[)瑗M1S\*&2^s XP-  w7td"BDKt7bb[L)8E[8&I|b-hpD4m`i`g\Hտ8&D_@A61@}W"V7CQP iT $P\ikg( 0Skb@i&: 蹥 LO/alt" LͬPg b!s%#~>=W&_%~D`}X>o~-FʱR5`:5x:&ؔ\Ld2ޟۀt՗XAe~* Q_D / ^VbCHj.AEyŕpu@fzRRQ[fb(+.ar]DUE#M Q7 RX,wL:f\GwgR)Y]RuXnJII_|(ųX$% "D 2Q6i:1U,Lέ_xO^0251qXr] ^=LLc(#E,P_ ~gx!nQNOçeRfW$===9~U3ѯ^HImccO<cT<,xU:1X0?3yy0O?~"m#29Ox>& q~1Ea6*@# By}hNǟ C Čl'<B +7_*y6.}Rq;WwZ9BU[_*NqnN GEmYYT`f~app_w' od\АxO?ţؓZjiF>'Z\EkŕPCc; S-*J!!9^ߠp%r-ib^\ɠIXg,)LXg?"3_Y <^|]SgG͛~/iF[+DULp|  XR,Ugbw L^LK!Pv.ͅXhG}E<-J>ZF5MBEQ**r|2 *4c_W<gYq5*؈}g;d(+,Ek#yBZ4OcQ7W7x}z5nýkKxc.<.GyecwCs6}sC̤E&0M}(O|՗s9Y6_38"*`!cBhq+WĈ(*afhrz&cÿc:J/\'>;)#h ț )]PSO}$Q'戜2R 9+r*jPwRLUR>xӢx 4Pcr14?9_³gXXWٗފ: K+wxE(X\ @Uug/ЈFpH.\Eju]r&rH+@s]-ΝF_g;_'̬p\*j8 7GwF twu81}|q]#$,ζ00Eq6>F44" Wr> bU(n y}lh`#`dpz:`mq! Eg_u1-f]'"s4Ye$[,E"occp:{޿᯿F,6t/Oo:b,4`*/“1P׏6bKޯÍײoj hG'rr,jjؽo7 ׅeGRr .]JdH|_W_ʪxϢxB,x& |\(f(BuE&Azzyn6vhƞ172SJU<Op./6iĒG|2'ycK2Q9DB_`b]K711sh㰭WZ ~}꧿Mr34מ82L9uk +sEo`}!sSi&$\&nCzZ6gDziU44_Ws6 =~/4,ok!}l'wf;G6g.2cn\Ur@Scji .g`bd S~a>KbOICjjS o qB+<Kv qi:LMMhk荆҅;qkbDZv|w4 ..V($=R1c`}-X_zok+b CMb oMyXi"4 ҅kbX - 2j5iQVx!`aaN :w,}<`ai{=X9ԁk#LF_n<z/5%<!woE_VZH;t?a%z š@EOLV%)% p[\HUUoe*@ BzZ t عR5l͕XT]QgΠ022/_ƅ$7yi[email protected]>&wօ@@+o_G+ww7I"5h({dFN/ ;!IMƕ$ԧ'&":j1;$ uhfV1\6O@mޗw l)~p Wh (ZE݀vi;͏>/Xuh|(d(]_XzIU~1.\ p6%]idzItFfH*fLSbjzInA9"gp ֯] ]!3L⊃ַ!xJl =1Ia0E"/ ]:gV181t"#U$Yk> E~X/8&qc4<4R`7&I54K$ 2r`nk??gx{#*%farILQh~7` F{’+B} ;-#{\*4SC, Cyq6hŴrQPR~w|mtdw$2::u ML/M)wxPXZ|sx"XIOIǥ @ƹ\7Tb3?ɧf0)4 e1^sFI#;Vg1?@iY'R䬃޿]1K*o4e945ҀAVZUطMDri\_&"?3)){ҥA,PtgӸb )jl,⃷nS0Q<[?"-l,JSHs4UuI$4;QT,9J➠kFLK68x>@s>EC%dI{W7n?_}5^.V("64ի4*61'^+ycS|<n mX0r4>9n^[`:گ?AbRo߇ܢRܺSRSSSGqiOfdK\{-i)Y0A֫1KQ0$W䇇4lqeqm tl:Fa;Qԁq$<6N3@[@AхIv+znR}XĹ8wx~['iJi&VbR< $/YZh /C~'a((#`/f}"}> >MT|2KC'Z"<WaQ1PRRy9sSMj!**KhXzA.32FX&Al_,ϗNIdlCBq>ΰ0Wg}@@쟏AJ|2[17PO#|Χ~(<Q}'uꈛ=?1N#3gi$OCĹa?)X'ש!R<nEҀA= \QG_M>硩NF1qp?fP,de#+#94#d{_@{-\T '}p6R<H=b 01ɳ?ۢF:FG_+DmQCG\Pf2D~XRcMq_lM&_-Jx6@NN>/~wo8~~}M01Ԍ"x'`i_'?9^_@':Z5ݗc>Qp~e&}b; J2?zF~q|}G/ߡ^f>VGc\]>N|Tl~r ]L/ܡVX$7\Õ+}hIhhh'w|7-fL1jö.<w޹}7oç/wpG`ܣؼQDߡfZ!'ۂ*x keU4YsO@J6qe(*!6.T~TL !:J؟b`_X~?!ֲb ,o~Q 19Ȉ3PQV e )@T֔v< 1AlQ* ‘=b ū]b܊4薨Cw -lPMtX(<b+S{+8+iY >Kl&ce؉?? 'H EZ+J=n|ɫDwYRlQFEf K8h(ť 7PUST5W%P^.fV}(LODIY Ҁ dgsK]R>̼Tdcdrx~fr q*uh' UF#&iϠ$# yJz.蓖/\g}]e>~ϱF_X`liB֞bgy&rC$t = :ُ@Ky_}1~ͷx{d]'o,1lՇFpZ*JrjgӈZYρ2?qs# RgArܻw#Fff1:)f8y鋗%jU<fxE8 +s`9:Hx =o>f 13IybdzՍ+ he3$V{WEE9z{:};}9?Ϟ~óSjqzb̓X^^e/y^.&Wط7AheĝsCX R'R]]>C'R;'HfoE#fŲ%CC] 'CWGzzA-X˭@<_cayA,[}æ9<g1SZhSpgr(=|,kFdN S坃Pn[BTuz6Fouom'g8DY ?4^ܾWx#=)HRiiωhx-.I bB^["+y要Y`s :j x[ #.4"Oxy |t$][;0=҇zbqrWG1?ޅRz.溈 pC!-l<+dz" ÙODy3(-GQ!vbt}4+ ݚy1hqMQOT"tRKbmݷKQ}ST#€s}=H$VU"R8j/`pE<|X$5ҳIs vP8w3W-9Wi.! !Ny[ c8oW>HĶyXW2}rCJb@LZ*YiOyikǑ%hWWLcVXR>_ΩźcQX!Lk0S|UOo3޶tu͓}WST0sD|\,<<d3$`u88i3go52 qA& ROstJ/ܝiGu5CmM95M y+V3 C[k'jzSMNQL/ghoGki|ɜrJ[.4-ϯ =jk˟?B? c| .!) ѝHO>x?Kǯf!=COU6"aoa C1ގIf=i@Aa^ 2sY8rHmMM1AmPGT0c`[󁇓=}:Мd]\ՅAL6 fFf88i3Ά8福nq1FNV&p07DT7ӐJS1=61X@7ܳ?f5uH+ 㳛Ҵr1q K7{-lb7'cO~M:)FD\3&ipWh,i<<ݤy>.ETG(W?zISV,=yg.BVFEE(jՂ+x.4h?y_,c8)MۋuL/Wҥ%Lգ[x|{FCp :Nx 9nW:hHh0xb+5 bsd K9g2'H x{ȯ %.100>"gz 47|߂wWTjg4r09[``8AZrS<Ely6n\_xC -bGl{(@X. :y G堥{Ƒq}8.N4Q@\}&kV2l -N"7PP'w<faRu1 ?~F5{,.s"<s؎Ybnw;| f2O2ۘÉ ~Sy!l4E墋t3͡ {}]49R+-)(Fff. p:,dȠY0َShh7jKrp&gbNSҖ9=>| |ӊ|t5Ր7:qؿ2ɑ+2-3SShl7Ni IYW}D:#lnnO+ ؛!,ch<riK蒸,L%A&XR`dcf)*ZǏ11=xyO?|O>}W[-|<M$2El<O p9!f0P?(wy^&9?={\ JJQ`%ɓ4[P /^7_/곈b`؟x]M-x15|!ln03o/gboqL?W#3sk^ZC$o ~\# _%iz{0׏RmץmEvbw=YwgyØE\Su",lbdtE {{s;BSK:j8,e`J_\" [4 ~qxvϋZyu8ٻ@S;gK=X3zuԛiB6E-G4oK|L\A췶=.?>@3yؿ%Yj9 cE_xgrA/ e.Ek[fG>׀??;b?$ 3ȉĿ|=q$ᔓ5Lea.|D T厢97>"e"77bK܂|$"!a8"sHMn\_C: 5bnUE9HA qinncCd_xJ[v #cؼ1O8;Ḇ/|,O:s%h#ҧ1\LQw/ad_/{K[-ź5QK-s_9M |&|>A(?g~kϰ18Mܬ3e}<EDjɻnsŗ_⋈K 9Ϟ!<,d啑E&~竍u[%/}1$;wIbD;"Omn&;M<:^=u1mE,jnj)<Vg6x Cd|ؕ)3+ݭ4+ďL9n"\^b=OOACnάy>{ Po,cCRM=D9vP8CYUڎs^*5U0oJ- $wQ*0/$wd-;KՖmE&O M#S-,Y4<$]kVCz^gzl} ۰˷ oXutn0GcU9ƻxmP34&hx\.G8tQt-sG?!$Zm 9l-mAq'af!--% i9C>I`'dgRR 3V鶯>y 󂡩5l'^ntuƥ1xy{F:XY:̍xᦘF]H M䉪$O b&M)>$2̵`w(6Me8 1g0Iܐd}O3|_\_@Mc;&olC hlݸML/09Gj Fynn).A[C%ct ~4eQsnф!#-iQX&`Y"1)AWw'4f& 5&U*^w @Qu{./L"p6S~@H@}iJ84ydb eΞ>,|]Gv~bXT'^ƂxX~1M#-oNu-qɌSkEcM#jʫփ6tu5b '115wC*y.# G%?_;@46L,#1|_h%KM V161 abzҠ $w8sl|յ)(%]`D$P\H>IqHMʦVJ,cbzAKh2^32҅?ؗw*{^3,SC8gVԷa7li4`m"b;ݿ} Ok&yPܳaF™ hJi3BrODƥ% |4%.; -!Zꑑx 9QW”+9@89OhJ 6p)w|WmT<&~,LtDQ(2]]񘭹G̏@ f*`JpB9 CMHے7NLKWVG 3#sG߭Q^^R\eh[$qlu Jq/ X4Ť1G<_ibŒT5y:#] UuUI;Q>x>D'਌21J1VdE P`Wf0<2?4+R[4-7Yhǣ'ɁXX'/~3OI['0:+/9LMI)K,vn LHK17QjfATvfAF )"ꪫP^TNt6U Rx]:F̂(/y nATTEؕ؅aXq1|yr>'C`VY^vn!b'011syŕX_iID9' Q Eshؚ]\wlx&6aj`WcNI3L )!Z׌d@W[)K1 jP7 m=Rys|9~Oft (߇PW]LT 6\`_\A?^ttOmjyXZXȺK AJRQd%E3YF&yv1<]G/Y%03օO617ىh}CC}h("=q<{ E 3]0U9'}uxZ"V& N8_tu}ffK3:mb:f7`T<s2rpKtN1.K}:<Џ vܾϜg|sb&3ڙSSrL1MEI{X:Bt k/l;bN{8~G)#%2&'r"xcBS|>X*l*5 |X؟Q|Qb|FM>xG~wfW:̯7iΗRUӼO|Iqb:1ELbwybp]=(/)Ao{S5 ЌZKQWԌ i`@"G֟gbhZwGxD0ǡBZK>OŠ+0 nRmHV7`q>9A,UxHle w]5yEncSWQXZT=h<B#xwtLtPx0bpE:#>M絥[O7Q?ž]1 <yЪG0_z鯟cvP1> `o&J?ď]x = YP=N1WpC):HIL͟Ԍtd墤 025ƥ gD4W"4cJ1$ܜ젮FMnf?/yʂ~>%Y#QYE/3{ jy z8*˧}њ{eq?Pp8kRc`s\^8}JHO„Tᗿ-&f7n_naxS05<GGYwB$9-ynf,Q/QN]̨)focv:fkJc?DJ KDr@oK5ΝGMCN'DT\ >xS<KV#]<O <Yb_솶"0&<{iy&ܾs|Ͻy\͐/Í|=s$K11;"\^QܓωE!^|9u`b[0yr%֖Ӎbjn 5:<yw>e%yGOK0?w6%=Aum. k)/C^N 2CWS{Xg>_[_o-ؠ_!S ӿ" ,`_Z"/*r2Q>WK%0,uʲt8{T099 C4y\NWg&p}U<zfY %@~w h(+Hg,߼2M)J<n@u54ޣi8u O..&,-⁎F6t 3-.4^~HN<OOiBQ$T\Bʥa GQF"Ji>.Dh7يB 6aq|Cxx}I;7-#O0Kux{6wy$CuF .8f kTg62f44X>66&nMɥM44]8`EzHutK!qc4{^1_l\Nzt|JZ?G,X\ @gS5j˳p}u=eHċX3054FBB"fuS3ؼF@`žxQJ;%$y-,cctN^R)Σ`g_|wH-IbɃ*( '1[q$6P/--Ki~Ma iỌw}}$ar2sBg $Y*jc .kAksƆ169kMm&nPl6+ .w KTSaFa#H}rMsQA/=&fQ+,SW3+j(BgCXU mEhQ+@C ͎J'c4biY7 `LQ<=w^V6or?0CKS;[*0D J:d $8Z[('g)kڋoz=Hcl5fCWΞĵ. ҳ8 g{̌ yb)A:A&q4$TBYEC1$ BNz0Z* P rthDTGpDj+1JI##1uf}T$,~^ΰQFYRF*0_{_^VPtG_ l5e '-@)#t4ecz ]&_}dVhi(,GG ZeS 4mH.1{Im$E,-Lh3 3R,Q_xA)^*hW1608DcI$;KHK]:b=ፇo#\*vyX11Mܽs SB4 O?eb\oh-&y{(&D5<{!Cz >|vw֧>E<N@.X^Qm|^2#S hhҶy/&Q$cJ:id ŢPh?y|\Q$]ks|Ns۫h,$pCf^:/$^#ш3F\Ya1 </"\vmiju[q\Fs' nꇮ.4U`e`$ 8GT8$s d☊TO(>k)8M%.RLg14:-caua3 j05w%`+.`9ouar-sp~ sE}PM{",,~HsD/[8o~4g)KuNa} !\NvAgf1'Q$"%55 Tp>.37@AyV*/yX]uyA6BcPSb?- 'hAMi>ftS#4ɨ*˂Lɯ%!.?X|фwkP+m6 D#)gI&, 6 ׌513'4f9a\-0wNcK72q+]b6]@O 2/+c@s~yϙW]l9>>\A)O^D:cmr)UtF &ijiؿ]/HMay|7}dgtt| Ķ\bXtcއ<5ܸs&_`1EvRϟ4 }⣷_dlҀޠ^汌M`;<2N1yxjXd4bJ+[ `?[4s&ϨIΉ:`θK}QSOSI 7lbFC/m`_cPa&.&'0/yW,E_歇GmɽOpClmErq u|Ѕ2tt~)ee cضcIWQ8"B-3k$%c1"fK"fy.H aEMhlQʄy47c3C_6}T&ڒ:,c卙c~`wQ]-Cr'] MX[H[\vw Xʖ }/-*D vVvwFshĕ礣 G| :4a(Af _ѤS TWbl WWGh[͏8 j*w&ZP7WxدwVx ?wΆH=@G4梃g`_| ƨgױ2s3#;4709u3kSY*c/.Z@:Qr4++4kks_h󘙜&ujd9Pqݰ<9Kxz - GHYTy}g33Ǐ7-Mj_q|'obdq>}w!W9~)rSC|Ϗw/ޣuچ4(igFaTWQ_Dbux& wc_g/iŝ ˠ7 ⱵWUan` xt oP A6;IQ$]ÝS|ا pk wOM/p㚨t|L~U(ezJ;#5d_Giq!!Gڵ 2228p`AQڇ'T s cdR KJ,IXZZ23ƌ 1X V<[^9D4JW._yNr+K  ܐiK~m<5Ncop^ .Y1I &1]tP8xEzRR~&R2Ν@z-Q'pA=}h|S>8E!alfA3e]S>@BI@S bt]keBuԗc e ! wӀ$!"<f}LbPWx2dxछ9BO9!%lp.a 9:4 LҀ04 bMhx ni,*DS0WAtUR8 #- LcIkhjLI&}rc z&>$Ip. U(,E,N8Kg`nj&=~̎҈NLbH\ǽ; bͲHL Lx!DmYqzWA{OH&[ݧ}' zh 稣wv4(h7\f$>HB'(ZS\\jnP4##& q'(7+* Ɲ9ĐT*M4 apd d5Wp6<5$q' *]cŕNay QPRT75b{I$;0?k!$q GQ8Bsp2G (yUYN*HzpwB'*c!FG5q񀁾?߭4bE@7Z )B,» Sy 8hj#z֍B?5##9 p0TD֦Z ueğ=zd YHJN لصg/.0WV\ _W;x8@Oܠ %uuJcC8%-C1IaYBi)Bq%<L\Ѐ_F|/<S5+ ǫUxg 5p"]5(tqGVZۑ|ƆC 9L}g~+X20XD21Kqϸe\ủu4M]H-(n˨)'FsPAr+a X-v#όMS+lb;ъҜT;#T#!>yJ@Y^<D9FQр3 Hx,]u/-D".uk442A^>4 Qz` uT~y {OL6H[=~ %(ILF}*1*D9{N]~fV0,)#UP +[8j >|^KF'li@abl/^,^_UD!%m:;@#Z OtXD2<02QuredHNDAi4 tgvTn&q2G ߓص{v %5uaWR2wd7tc;3+}€x`lKs)Vocơvΐ~8ЌV&O5D%S}MXlȬjYXEB(Ar#N{`J36G nMgVWV¹3ظ&I6Kۤ$j M{pDBɖ"un3鞀 STAXD =L9_7G;/1E䦣͕(ؿŨ*IE\7<&k`$V%pہ2DM$8E#44!GUkE n qtE 1(qY| )m1]W4 V&14:6F~KiF ZaΚ0s: MO?ogrs.DeYGSY"O÷^"'I\҂)^jA avf m;- Фiu6EX[/bn}6o>zצo{oQLIؾ]^Xr(/`cXbRr_L=1^p҆9NYZBFAgЛSPK[ih"'-m`( udġ>7Oolbzdzyr2ɣ%434*k} }@=rz &s>(Z[,UlQc;ͮ\fTS'-}|qTqľdv U%;c* |{톶&T5hT娹`icǎSLI~X0:\ehTiwƶE"~hD`FtTOZő&~>j,TTP\s8큙6<boʛH*8h࢟%,QGAIIN2ꑓ}1X(LLMKEcWVR9,M bm O[x;9:q:ښ4T GCU)FZ`W|\Vd_@s].J)tdF~$_Ga(_GhHtEEb=wuA_[mLad?K[Xb|̐'GViP04L;t]?6%v" ?EeM#/Mz90RIPNMaqjjuṣ3hc] 5zZ"}-9|=\τ5/h% vv'ԼI'b7bW5z /V)O?yS'x`#}X^]'vWf{}qvkKRU3?xO=F}q1ŬLMSQh7b[ ކ2,Arli syv!?2rQvw0ۋnѝ{!̶m37K1 ?@ƆSq}mbM(z{rQ.dJu Dwr҅Xw#܍@tu>ܽ{C^_F ?&CGTTRƚcXXp?9e?*-њZvrq.<~@ ~ylZgV<]Z]z<ZƯxz쵸eSzfŒ1i?/4Wq],q!:EbK4U)8MqɈ C N9;JR VSPljP8*7'[ Qx>,|=IPTT*PW6ȾʼtQ0{"/sX ʲ+Ks@_y4Q0xs}P䎪9m'aH?㈱\,<+*g6O/̰)U56D ȯI8{LZ$o]rf5dg"(*B( xEYH9Bs}I[)BsUKq"6&D3RɁib'}-YXd_+֠_YVLBB7A5Cqm4574 b%~%ğFGG-2.Cmx޺w *Wre#=+iLq4<ed"?/ WI)\4.Y"QW t᫯ CeE0VL࣢b w& <nGh.SUeS)C=\21B7A$ (յyhhv!W]c,)A bv_0cadƍT)jO:t mS(+C ϫZA * ",,̌f; wGaAi6y%S, 1.n;{9rŌ y~W㤻?߮7TCn, CGb9]Ih_kdWvR TB.&ᔽ:왔Z8>h*Ƕ *9SՈ!JQaO78ˋ\5!a;(+^& cE¡}8} E%lߊsgOc=8x0p!)09`L"(هKqXX^X+rSN83 {reQ|)j/"5Qx ).N\5|`~2s7""ZDȢ4X -3YΎ *`le%M<$2{`a}Ml!krL~> Abf*BcB UN8wb Bh'<޺=(H4G] B¥>:ԇu qy,/Σ+ B~<pt_7Ͻ)q!! ʲX'/%d H)ODǞo`("+8Aѧy? 1giYYҾ1!A=u Κf\xf|L^jje x3= Nb?M^=?rElh@/Tw6TγO9Ђ y4ޅN׿Bv]s?2M ?mA7@VA.+͐(d87NrZ$JaF>۽Mڿ {g2"@SO\ 8sAN9傸 aT,[[xɫ%o ÕaBvMhخSiWp@1J.Pٍ${x9( #o-O7-pCcy6"UU8 CamnHxyznȓAVC@XH8Th2dGD[bسsБC8 'WwiV }&:8R[#Xƃ[Ko=MEai(Dq G`;?,D]j[}Yg殃юx|y+S-C06HS򅴜Bΐ#E@CCLmЃkWQ|6-5ml9(7~3CUTCGc6 .0p;{O7xRf"bO<UW…8\MTJXWد͋G^i,N|%kZK#4 0@PRtrIV-M%Jf 9'st3^/FCCzxzg<,<: C`DX8Gd,\6Ju<=DShqT~Ԇ-0'r l)j>uO㰠Pz} Nl C}vj'`HpѸ|.e4 KҠ:(yN]twMXBk=!ۇݲ-ز a޿[Z:~6z;qs_"ؐhl1v8v#񈬂 vێCGS;c +lj}Pc8[⤟+Ν=P,™mcBk2HՎ^i:أ cp,LVvBV# 94h' if ϮV a~Ԫ<hGmT#*:JfƼ oO/Xѣؽ{7v7me~uo+MU5غ/$`?z!Ǿ0<a{, r)Տ 3%x8x6[hD+uJm<N㓫x<QKnļ_y >2{k I 137yU,, +?:,-+_jU88B^Q?JxwT[ 59X4)S+ٳq8Jċx&']PWK]k#(+83X^D\d<q:1 㳳]igƒfRO2_ȧ;]ɱ8vd7~'>{y y^>z&+sz~@DA! G`/"7"6"yĐ,B `Dv쀳,*5Е+ƅs7aݻ갦pFHLtu $NS?TVH/-aL<yXcM\ŝckA?Fs/Ç{صmvMmu桵7 ywg|W7 w>GNNJJc<@o۝ad }Cu!<|@[KV0;)Oq{=XCP0@-xM=N-`?~JX;~HG Thw'&lh(#(d #+ľ}x0bǮ=q+a޽0=2}=EţػgLpDuU%~ IHWG **8 03҇ ^޽O޹[ø>ߋ6Tơ·9Bqo_zL՟Cg^Jh$doabx{1Ey2 sb0((.@W0HދƖ.T75#:£\p!) %p@v64 ǡ߫p\`Ac.Jif=\`bg [ w8A@HҒ PDOBe-rgp1>Eix;xr{>ksF%-xm'L<Wb 7+Ȣo)y n&?3< QSP'8a|ew4r)> ֎vprw ,axs1 $;WW$&%1183f`jKN'`K—"F!D83#^Af:H7h"#4ι\s5t0Va`lsh.8,/'W:EU&C9&nepT0TdpB_>~IfH>lBCe N]$4 =tHSV =)D15&PMC+w]Ō9BZB?# n1~ o;c>5#Y1c}hȪh@Gbdk  Q~D:("Gp6Y^AP'wmmc+|7cݺu^c+؉:죝۶w7^gj2`gMه) U(4&&8&{&t S_|#m<ݏ<1sm@\33"W'5>ٍɖTEr3B\t欅@|2((KQ3}{ Q1e bb~mMظ4~Lj / k ͑9:4J47TZ&p tJv ͷ7EmQz/jo۫xzk=/.lL0z[096~'$1;9z #A^~}Vpse2Sed6YXVHOhŏtLlmob =##Y@А‚Bez+s\pwK+\lj8pWWIre(yݛ m-Иx Scp‹aA:P_-PPBeiʹP x.mWCLSA ô0s swrezzP 3Ԉ{~{!+G!'PG1cd$''f:h+;{iv?dV'4|1e+H:Jptq{HSHݸɹ XaHM?$]rrW*إK~9ގ&L7PTFfY N2sq9Ju 2\hLӽϞ"&EY&#-ޅدd0kvl!~oؾMl۲o[c|n MqpN)ܨ(lG{|*́]25a=p?4 fO??Ҏ7瑟~C핸ڴptpؕTCR+Be |*.b %9 ͼ;C{e35^46 ^ޮ$,"M]qDCj8,{b M-' }cL,( :7Y `Z8!6uRExpmiO.HKJCWG3Ɔ_R*H83fiWWϟƠ{woނŖbV +c񴁺Al, 7ibňrr5 ec=sK蛙nbfc #hjEύ5κ9#?I{Sh(]KfzPW@!Lv<™͌aI}yJ6k@BPtt vm4WKE!/ E{s9yg' + ,.H?t,}~惐%enQGBQqr`f HH@b9ֵjiÎmi{v2fEpKw+il"1@[#<M.cXƉ:qu&7;b+;qoZ}F>jlg9n3'*i~Xt."Ngs9䁅VY7_FdJ.c~\Q~MEԦKöy˛[x޶X< bnxu>khM=]Mm,񅕕tE-̼۠J_!wTIAf?R7C=U/߼˜|]'.O&SxH؟kNR˳ |xWQ48m`|d0?քt[R&^HAGkT`y{Pþnho܉`i)Ax1Uic2刾|Lգ&QW`fμG7E!#+A}}="#J3ꆪd|_}4_zOcnUEpIrU*:{13;_⧸ɼ4J PP ꟏^4Upq j[{W/[h*aae^PۃAQ`jĄzA<Lʹhv-agi+c+N)99:ILPPGG8C-} jP>S~*12@u}9#iq!zp:*}?GrEZD,pIp'g 4!9z-6=mXۜ. 's3X[E+50u /c!L^GA_ME 24a S d 1o]n Ŏ7vb};%{ MUWNh#`bN= gxadVb˳k'G ]G}_ۄ@2raد]ء+3-<6|8l~6 [<w$CFI%"Q(Ɉ^4E{{("vN18{7܍7ֶM5e?]vSkTQMJJҀdB]E *$YT{+(14TM 5  //ǣi3f#> b W/d9nb> i(ϊCYZМ[Lto-Js|Vމvt wtm/*FNI Ex' ]&% )~344D2]aHlfk~pD>QgP][sQ EYqv'/ε%&nK(`msg0шn,MP a 4S-"ϟGad/! ZHř'1ۄei(wҀ3,`hs[k֔fB9Bt Op& RO::F<UӺz D:NKC4$݆d9 _''D{#! v|1 7CZj36>FeEzGfPQJn 9%;|!CS<J2}i&qmy)oVZNQU☼0k?18dd|B prԤ@S, F44We(Cs]EЌoav1x{[XC<*շ~5S=FAj* ^_M$ {kC}\)i_S9醉Zf;0RP?.d <Mw`7<{voJB<|?s;۶7IU ’@ vm}Z8-LʊJ oB7h vq *{;;O?=&N \m,,>ܘiEW]& E)JS^H/^^TT3:Ax!4^iBM:PTUL@MGg`l ;2n#8,4ц8rd?|<,Zqb `ae '7w9;!̹zÍ 33}g'7~^>U;ҔĹ.dd 8vpoj*09܏+BlT0G+c\]'E c ڱXGox*? g=akO;xzŽɂ|fjϤjM`K[[Xk45З=gLo<7a5opprd"|dἱBi&"s_*\'w,Vz{n o'DCKJl'}eDz_/J#=)Kmxk ؽo;T`.&TC@8?3+MXXTi`-8&w6fuCbmرW 4(wWaϋ.NX^'-)hU#"al"gn>j<ygط #Arzأlv:1?ڈCӟZȪ0^+B1؇#M58iDuq6<s]:E[}6Ltxܻp߷w4p Fa۱| ;NAh< x>myFZd xc olycxbTVع50ʐ_ #mu#_/a"2\s.BW&QJ37eRI^ P$"/G[{ ZZ[78qF{`eHNKC@)fUĝo׃5"A%8uCs~S>az45PS܉" ޸apv DEE͂N ^<k|[4}p+XBiV.͜isZio$fGTU^rB+K#,/M⤏35Lh`'I3^Wg{kxya|L*jg //;xv;,aA,ajeB[Iݺqy29X3C1k s| 5h1+C h("T+/n**8#>> p7Gt7.Fu@mq'ߋ4bum} kkW1~pQ?|톬Ȩ~f5` #kUoe:A=]E} K3 *a+|`eC[U_2 '~'P$:3E@6  sU5c,cJs_9,?yGTan[S=\<Hrk+qc_ACt?}Me*:FZ.Bd`?i={w`7ewoJ ݱ ZNCb| 2Mz$oyc+ut-[߄9YoPğQj4\!6?GϿƯ~ >~y *LE 0Tb<^vtfamb>RbN81xwL7BýqmJ;{QW"9##* 쨷Ui:!t qh>>7?ڂ"c|-]ӧ* ڻ9NGvi<_~s˳}ⳇ6̕9aQc=W02ԃA tA=a`|Kq̔16Ն`\_goĻVޣ5L3DB.﷦Vu=ua`}K$ggJW+az(|/X!y'c P  w ?OeeЃ)zkl g L8dby?ΌPOT )X]N8XASEC)fc?Fpp"tTՂ v<f7{7E@v<&&vgB\ cb~]%[1߇0'$eFkg f0%լE^Ak}.ĹKojU" H,F\JTxo]ïzB QzBOWe}g0/g4Vno Zj w+]%@-Y9w4v :DuHz\*ؾGQ9D(STP`@Vd$'"{1 B9>w ܜxLbƁX3v<ϿocnDnj<?\I摾nq<Snd2vuC\T$re 1Xn<P|7WgKݿ}3Auc rWk{+YF^0"iCC_ǎЦIR<Lv(œt݉d古q:&Պt$]A|;L7Tsx6Wl Fg!ⳕ¸ m]k4E př($?M B4NZQGIq ͢3]ͤW֥{:"y5]i(lx,s2 CЉBsH WaQ`,D9EDŀ#v?d8s`眘-TQ;.tA5 1\>SR…H}T7Y\.-C{p&Cs{>!c*rPP#A4ؐX" }=8.m-EhホVP9 G(@AqehiSx]ҀSS[D-S#3#/En~.ʫkڎ\G=S\C,GD,BIa1;1#0tO) acO@ں -%p! $ [cR;srT]4Mm<&iv;s60c & m[hغ~?} 2h4vIu4o !;u_r6>2"GyU J׿/%?:~!08WsmX*RǡwB AOC5JS.R V\(]IS~NIJ00Tq(C j{FZ48v~8&F{C a=㰴4hp=Nx#ELO;t/LiK~cq~ '2Y^Z c5CY^&9͵1ܾY"6*ܒ }Qyq<Zrk@x'OceZ,CW'w܉pKsR*"ڙ 4<Fb=.y䮄:@}gg7|ؿaL䂐#GKA?oɳ*%<, khށ ?18hPo #(lقLC8c Nu#$4Vx퇯aώ]8x`9]m'BohU5ƞ!b_\Pŭ,TU<CCcבVLO> =U谯yn. cFʰBd D )q..F(=%e4mR:?~(V106bqoAqq +05Pk4_ }77bRzBon OBW(,˃ 0>Km 5۹M #61h N4 ᎭJqKk+ͿC 11Kx-Wb vSd3۶8rp/T8s_ /Q@f>0R;  ")yu[ Gok#|:~͹ ]Fuy6~է6]iFbJ2<`hb$ dV}m IV4;$50}]W/{imkOLf8oX\N\0o!=5+ }O;/c~f}WO `wW֖ vס%9h*E_{{kh,>D8H~mu>9I羾<>ߋ߹૏7q}쨍@?Gx|SOY8Pj.3eSvt@Jj ~c|>c*!y=F T(맩B0A[KjE j]0ۍ@o9#J;(*G`%q~Nho Gyan~vvx[w~{2d1*$c2į:qez-c9[64BE}hT堥`Sk1((KS*^c<r\-x18ط*Rp\ <=ș(E[{nDLT?~ ?|CshFkP]TR0_hϐWR {_ƛnߊY#mWi?Imf udw8 Ml?q~'߷o {6[_ǞqFEruTmY|T^>{; deeV09Uv>g1o?|fd"6fserЅN(Hb sӑ{>7;1ؚ(*|65!%1..~skkAQ]JԮg"3_]m} [:{ ʌrz.А(l?ddg(jd'an |~>yyO?}q5~*zkD7 2񝅮ztu41(*N=c6 J`hMj۞jAO0ӗރ8(8 (Edc +i'CDYvOs(@(6"?UxL*Jf%]%5}p#nPv~pD8=|YV w'1یade`qn.4[~:;QٿTNҰbOIE熆yY b2 BU?8&D+R2҆tsJ=M~wO[УinӞ'p1)Oᤷ7RQ_ق1ܿod&-U| "4J)lc)Vhc)` Qw9Yw n ܼh$){ci݊q졡3D3QH %KsC5b.1w\+-U bXwO/k&+s.NPT`jHNßK);=M#Xs$6ChB_&fRe5u-Ep@0{5!1 :ʤ 74'Oc`lU050  Kݝ?| |0# 88@rF&A(@WMKQ\pQ2׆|ԊVIIgo٨BkKcmy qss|[ǍY|k3C4lN@ W07܁7~Y$ FJ5t(lPZs$/k6fCXFvI҅q&H% գ 5!!$PxyD^ z“_P:8&@>A Dq<psL((H D-$EO] a4u HLvFn^hsi5 K*_b KFU_K^WN2byޑAG[&&U ͑6̡LT |9P h驱oaZY) 9͞I.ƈNpuDžgPQQ.Ӑr :T5H{ԕcSŸ3ߍψt܉L&:Xga1YŽ9^K2=|jM@q&"<NNGx~9ر}d vv4o`/M~Z)^ y;HM!LbBcR} ? _Ͽ/~. rrjٷf4JLƖPWSǑCAtp"<\h(pn`z}7?alCB!#r?qR,|}=R@8 jPc );o.L7ʋ`f! oajow~#22DRNs[v%+257b R8Z5B̎7h}u4S<G"#P]m4 0cӖp+.DQ`)av]Y'jiN"^.0S8G@P ~8#̠?IDc2ac+?yE c'i•i4#h )*B 8Es}TA2 ǠyZζq Iv .w D"Ԝ3)<$l}5l{u5)+nXzJ^[?Tī! E.B[_6y((2tt )!4Z= 8-: Čpl-͡Kj``b.UM#g0U]܏?Ƿ[,]~(B_[[ cç1և:^0=! jy|ؾ}t5q X)x5DЄ‘qaiĭĬmR^xf&f:@h0y4)xA>3k0&!??K%;wPrPkXiBGY^¾'GID:hģo)0$F=!!1я>B|<y~ ."Vv&^"1($.D{bWgQRc}u nX^v9r45U\@/S/(? /o?g ~ߺϿFG_90:\L]h-A՗aqr? ~I^RtLTB_N[#C<p3͏ux)f¤ͱnsSM<QkBZ owQT?G "BC }غ4ԡJ|arWѐc2W80y,s7{EEh:H}UQZJr WNFDJYdtE3O^*۷nQUcPT;96SQ|pP iVT]OUz%x{8I"-yɈFFUj }E Km0V<OJiIQp~27.R?طد(*b GIy%rbTWQǑŮ[܉[\cn\^Aāٜ'hѦbܣa0"`Z@AZ'=v;`#w`.=Ky?*2>xJ3 ,SWv@cGE>5"мYbFo@SU6SϟG?ӟ~_'䣗(˥A."X[]*iIb 9 OGNLz+/cs}1/01>ζv㸪)K-B<OI!6vf0'RF<\hnNHMaI-! =VZ&;<ԃԔdի_kKn3;uf^ F;`fcm5np_3nmK3()Lh'+r0<ځ|kQEH.&D(gקObmipv2VP2 beiSu &6D8 ϓGMxiQ9?a$TWQC8c ^2NSa? Svɣ&] vq!++>'kُ(]AjEjrc S?e^4U)cGBN0탑 g2yl1zb_c/L̕iMg=/(?M`c@L샼 - ,`j`w{ZzIvs \L1`mD ;} 2bfpۚj!ub[X\)z6ii[ 8煋сL00Fhhh\U g<jxi}7H D3dIQYij8DؾF@,Qu  ,;H{d Le 2r ? ۿ|FA&F: L88mq݃ &v;wX:E ʙIhki@dXƹ4U\C[*4 'tilii(f@P10<E"S[蜂7E bB}]b^oAfli K__75ϛBh_d]nOcE뢸l@t|g@zkH7x|+] 8;3| - %Xl)AMe\nzx-y ,y} 3=HOtG/1hhP=qNmLYjJӵ)ʼt$=`hCdhd#u2pw> / řGp,kLUT 5Ѕ ܜB`O 5( acuÓ,ffffffffdK,e1ǎvMڤ)N;3:WY}1^[p}vNZwNvlaT/5jowtB4`ba6V%PXI-jK`2۞@/aceGkgM0Iru5`o[<,zgOIiX?RgAD@ݿ/oK"ɂ6Ms R~.W.>`z_|\,tu[ Ɔpxn;͗<W.=,3o[:0G33%bhi#6S;ʝeKdTB\(_+J(PB*Ss '(2_`>ɉL45ך'/O |o?kMM`a(ʊ(+/=4jJvGqtNr2IkEbko2 W`mڞf Ңu )'s-,WT[JzRVdűsGg6;=|= ̉},_: Z*I{ӧSYOV8Mtn9x_1gNlݽw<xčǹwGnf nbtiX{1棫<u_m]WH}:ljSK=ż(~Ÿ[X%fM FNb,bM܅D)%D(SZK(@-*f+YW`(Lxo2<DgZ4_,^ Rx8lgΚV3R,Hr1".R<Њ$"#NY9o'u\s}{1 s^(Xb:Y$.RexLl?4I`a(z FX^*_O/3Ք;! 7' H!JAL) ;WfhE c gx7xx(3^}>|!bc"8q{'@uʢx܄wM2o\ %+x ~55ĩGe1o,X \LX7w:(5PG/ZP T{-Y ,[H?W{ 8_,457Oj`/_~ןgvo։ x8a'+籢b\\'#5J.:͛-m;MnZ wo]fݝ:ZcRUKݏ0-HG1>u07XIrs҈Nc {|]\$\8 s09'3 pKx)Μǐkד_UϚl?y ,} ($1>Οɹ[9K\\ŻWq(wVóNp_DaMk t!φ g7Y<Q>xr}{0; ul!m*M%Dc+Jg MdB&輅hw. %@ VDkŰ/-`rrg1{`)pߦ E&&)3 \qak}b="N8)TK8IzR0anT9O_񼜗O pWf2@C<u)s%Ζ@8N#S[]LLu<m &**P cf)7sITL$F؈~hI10Z!^J y=}$8%>͈|~, 1V*b0)gرYp-~y)1صGyIwym>)Lȋ߿/\dG'78wM6 'f6)V+Xˡ{hoZb)Ļ-ߦ ,_8`Jye<2_r%,1ڊE:_?~7P]8A pʒ`r pr?Tj1.;][m(ܱ-=8E~Aiq~1vvYX"SCcԹUze[F E/p`9e9#8O*Hu?(}z VM p#Z䡝dF| ԋoP;mOnb3DmOp.)%tm9G6sI2܍ueZ. YIFG%'o#ڹ]ŃG:i*O)26\.>D ڂwey: ɈMjJ,fTg 'k_x2#cWi?W~|R'[{>%`z,M"BS2E0ؒ,a|$Hx,{g="rgOJJl%R'<zwhnΖ<R ſ>~hhs՞EfZ(mxPw1̟Dc#sU :دSpp+.: ԛZ+6 '<4R޻?>z?ƐMlhC=H 񕐚.kמʯ>x#[|Y[֍[J[%PO_m<(+H%0_^9% bB%o/'/+Rb Bbu&? CA%ʣ:`TR fK-gT)` :zZRCuS?|.Aמgy .9(<Jw{=5e4UURS^IIa5\]^n_>ûHܻas [;3H1UIBt0#Z++^WkE"c@ٰFY7c}eąz@H+ardyBKҼXR>bLXAhZk<&iEvܷ\e(9^/c<yo)4%sQ|x;yFzkoPPb&ʔs!&lLUS|4Ƕ0`_ tXZ#`b-X&&*+' ? y* 16v2\W ^mRkeAe+֦PLB|?`r|pJ/s3jnCpw"ˆ4b T>n|&B.$DJcS1.z2}t޸BcҠF_ Zz"hKݭZ,iZ|֐P%{xبK\TY+(H9'&"7Bge:zg }B<)-+JBRl(&"`!/=UiEz&3<ԋ!a8a;w.7_ F!#|} ,.D2 <=p'3J^%؟/Vq}1 2w3[3=1JCM3zyf!o|e,Ν$hkk2wl ʣ:@.PvFPv\`^Iel8O?~{8"w릫ֺjjyOյʒ ?~{vIs+&oƣqQތ?LYr2zFKc *A2]$#>6n lWb-ny: gqİ9!ng%5OT{cHvİ* ̝I1!%PN>!O{c<cbݹB}Y.4GGO\\K'vfpZ)!@okBB@a$kl'x6‹eu9&m kD, u)b )00$K>Q`hBUz$iXN`_WC&/Jjl'HV$Z H/" 1[cO۟Q-R_[P 1Ċ5VZK ?%Fy=1%Q^G ]ʤ,B142I]a.a=Xww /oGԙ^r㢅È &&> O|"7W?fR}%u<7ܸ|\_8wXjHY^$op+<q6M}m&/͟ W3V֩{W$/ZJCks&K`V.fy f@KCKW֗wW ./O)|lV9 /}em??[.<8ux7[7nu'm6TS'\_;x?eq;8g3Wsb ҜlqrsdhMU?t0 -& J:6=ӂ*77qjS6ݭ pu%˗`yX1߇0 o+uLr3oxzixyKhQƳ&:Dw%9_&"'D%'<>ā<}Y~MH b_Gλݗn}墺#Fpj`_6$ML)&*دi]L}4=7TCq\$-ѠČ#CR55H\d3?#肟UZxGܱ><T:;/|Ws3R?>+m-Z(Yho}.rǟ>W>/_S]^fGSD՛V˔RF{o6&(;)Om|m}cS%HDHxחJh^h=z^|7 lEgdNJ #.!Oѡ5L-f@&:N]+%w?|gabc@IqqCpd?g~ɫ^]GQN$>fj0V-8~f̜:;k*mرe5y)fzZ YḤ.Tg +ʲeQY.[s˕g Y쌖 }c#4txF^g|>]rvۦ6Qg64UQZUFjn.c[5 \ط ?8-|x@Ÿf<~pH'u J| ۩*DKs2 h+Qt6?Ʋ(?]d7䧰mS'0.>Ԝ@{"<$.ؗS1$^_;eT &+*H&؏#< Xfo\#Zf%.ޏPԕ&'`O/MpՂ(6o^O)NNV.rz'o='] 3p#-) gѦ@ W f4$-˙ʚ MN$2v=NKV<o ňNL%XE\YhJ>YSJtsdmsl&5w`|-In._g Gĺg$<<L2UF_/?}L]uϕc+n3DCsrey% Bc6v8ɵ44\6H45OGjJ&AFF۫ϣO/'y1pt6WNTRSWFJJ>DG4{oy`2d B}_C<Nnѥ`s/m<wk_S{x|hYgPOeFi:l%+_tcْ%xbB1 ,RX*'_4@ ! ,PB@o-Ɔٲ?sWxr< )39'a[emOl縘pQ_:JYE2a6!EHhdAD u30&{ l-/N6.nd}lZ]Lou,錭fT'HO}A<eٱTf dT%DCGk=}ݍfqpx!Q%VbߎWvXUAbl+d9)&$(ZJhm,IֹQl\ÓoӔ{ e돟uly7Xp;RJ}5q4@Ws:LG@vW(BJPWR-  l/ . zqr(yʠ: Jr7QBQ,H$+חjO[E>sO{AbwJ@7#\]C ::Ip"X@"6z_p_{L "f&jȷsd!D;@b|eF ..vDAlD؉A }h!71P6Kq @@'kSBvA4W+J~{&aTjo6АNke"]9&*`vCϹu;@o1uW[Bs'fĥPIQra[cd̛3EHL|1gT}Gs fb3bdƌ7Od(,Q?Q鈬r̕]r)~KRV-(ݽ|w_[/;/E~|{|:SRÛֲq|6L[m: G߷['pr/%H}PۙrU- IN!!.1憜?q=6b*Qgz xpe7wLr`/{6Vrdgh6QBƺ*Dp׳sC/% u6RSI[M鮢8'D[ē*:Q)<;m$,qj(`@l<;J5 E֑̋w/n_f4U釞<Ow58üEN"?5Eą8b-o3Z9K =.rDt'NUQ-rLV dAȑO? Ѣ~搬m@Uz_HTk̛ s9GjTGj|.^ 3!~zZQSQxR]-zPſ,Z(&BSXCx 'KK3lm,sS|س|}Bp):LYXFK1[ >^.%nEYBCed,7bOY>6 `Ժ࿾$-C<߾ ?þJ{$u􄼬t)ɏ0+y\#Ԙsg3O 2xΜ*eEFZ40_ᇧEsg8gR&?̚1C-fl, r(SI0SJj21k@5;%(ן~7/$a_.<66*!bqx9==U󍋧샷)B!܈$1{hc*{wLɵ[RZsxAk88Q -h6"uWrt ${`{\|jsxJxa:uPUR"mѕԬǯpFIΗ#FZ9w\ #79\േ7k|*oajt :sq|t |YN"_B|`K$@._:+ mVOl|l *1Geד66mxf!0X8 n**2 r$ b%.[AYdh.?#'s 1֜۾3gHH$640gb왮[uSM ]^8eIuq`^{p/{NXSΒQ؛ahdE@@xU}Cx&WfZc+XONJl\:{HO%!Rre/o/; E k`b|aaxx!8ll/<b(dv {F*J,P~uax$aiۡ1V)twm\K꽗,'+-Dђu0imO/'؜!x~½̀YO?%8ޮvw̙O_ysJ>XJJ_8X8e|el i{}X.o,>Idrrk>}~NWrEF:ݰQe`|ofxp&8k+o\xw?Ұ/v.lqQ$FxbmåsGrt5hޥ=:;ɩ\˾mMXhn=ՌWpz['{$-&Xt\* aLt?҂8׶}"%DUexŠo-5SGx ykl"h#kNǺ61h`[e`}9=9DL?UEDRo&[ 2&)ü/^?ɻqf1YLlKV\1#s--e3$?ְ}r .{xJbV$YYρea߼9$Lg<|,'p#P5QA*܈Ex/1Oꇧ=xxSU/=/u?=u%#ew"_f=Z5ޡɬXSs]uIQrZڱ qXYيF}GB l<shNG`_tUކ Nx ݄O/σFXK_[ 1a yv4eۆyAY =G7.ՇOx,&|Qvom<wu/UByY%,[ A)*@N!FF -%0́:vHKFZ?s|yJ!!>F KNTT8!tKww1N^׮ʜ]3sS#u"|M~ͧ|C~GǯW%lSHT/^R4ns8HtG4گ6HLJ'(MDnWW1BA;X9 v5Z)33ZؓPs2[ٯLo(&l_Z鮐hOX2ČSFGu1ֶ,2'4 r\%F ^CS<" qMn5o=9xFKȔUUP\b|bD?}-<{ .W^W/brWm|X.$džAH;p|&^~IH;Z@w3LGrƜ8ZdX4vgm⥸-Y6+ + *G ґ &=W |/uRIgK |wu@EgY6fDj,—Ljj'~S__⣗ݛr0`MF|CKl] ˕Cr%dJHh)QS_OIUtюB&$?",@Α2aNP?g$H$'Kqy5%y*z'&$x~E)Qn&Z.!W֦ غ~-6/$__;9vpXm2ÛOΒEjl 4 .}|D.j%x5WHۺf@7- tw41ֶzzfUePZZD^\+1)rd$0ÂAr0X!CĬ+iͯןK DbBpsJ̎ VzmI"#ȅu442*A]v%!wM<$d˵0P&\1rVHH޽c;]Gu/GvwrZZS.'!Y8 51̦&R#K<+x 9r{(L 3$ÙDKm9RsY8&І}H^s8^IR+x\ǖt+5ɩ=bPRxA0Ex\@ٰO]`oM2%ܾtw^|7W8wdTlo͐~H01Пc1> GYC?`Xs,l%,xYpM-R)fdZm)@&|,<AD[{B^h$T=̛ R{ѤpGGFjj45XPW(ŝPow|Ĥ>go1[B\ܜCE%dވY_T(O```=tD`W JwygV"H!_9<G=6-#."@ѓPRsI)iW7y~,S '0bW>KVy t7WccfDWS5kۛ12 <<kl]'ͷ߾×_%?Ʊln‰iz^dbigsu%b-LsGIR^X]ĞmĈfx?'xH0`"ꫫՁ $&HzOJ$1Flyƺkdɼyi fcu7? }ߋ}db|puc":acj.fd$X_;m^7|qW p1R hW_{2j.ۧW讌!_H7gYFm\pWZkm)؞a6AMu|Z^VuGaf<eyEHk-0H],}یAV SIZW^.~Tm|R>ޭj(IgxC]_OqQ~8X}z={%pj/[.]zM*k}Ggh$)9G`l%;8ՌقE BM]⍕ӌI4͖2kiimK\xk+1T߀bMonaQ=mECOTeIN`Ukv1.:vo>yxWž9} i-F[2Au|tc~ij]ܸ89} N9O.؈6y ӁPHΣR<&Vt?(:,u=L_’xƚr:ټ~=q_qhnW_'߽{G9up=l)>~rXDp1&6"E b.^79!`?y-}3Cm,`ߎM.kikkOC']tR^VJMU5e%TU EKb~\asʌeڂO8_}-7_+/ $ f>G-,1p%/˜@Fğ*>Igʅ+Y%|p2L5T/s Gw&miAڛ3hJ!>Et&"lbӺ6)L4=du`j)/Ή%+%\]RECMEkWJ/IW*q״ 8E'OrRyLo17vs~8- _y'w./W?FkcV~6`TΕCYp8|ԥV!ɴ05C'9-{`-5 9p^Nd V3MRz*؏\gkMA%ĊokjaX]}kkcdgTo,S~vXz S}\A~ m wxC|+Z:5}o.؏\g!&<~x|4u';70 tU>:8hb1/Oy]00T03Ri)ǭow'ܔh|I)}~,(K #o$[ZVJr93p|z^r߿k8"k77DqxGxp76#UG߽tuT{G/ =J2i(eN :n`D'6fBBdlMU7] hgZ cڨl7nwfu Au*`sCWtGooJ;[2\(qs.,]U%8uɡNz;*0IPtb? mue4ooAVFG ΈX*b"ZUN1}d',E#ف?$`#K]R@o{-$FbEd K9A: r zZzuD{J06tIIΆv߹g?w^w_÷^@=[!pd1^w=!! lALL5F:8JRj(kt,lL%SY^v% ֑+[l s$XA\@尵SG{|uv$ɞ`{bDCi(8+UHVY,u/&""L̷FIusu&>0H)GHo1 |-޾{'yf3 I+{:'FCsK+1D狍+>^b"wq" l`=m@ @ V-mmqtަz[ဓXkk ǁB Ak 9x.KxR_$u玧!NRVCcy>7 plZ_$ `dO>z>x~)}CGI>~lWl:+$Pq /ԮILGSq<k;J-rfݛٽ}ɵعymSڳUp=8{ ޹5 o繇Wxۼsm\?PM_;?ߓw"ReX[JEahouzkM>|eͥrW\§"}WsFXP#Z̓7V89ǟ;$F9Jj%R\]R^BM}bȈ" -1c"b&3p6CYVc'8໺KxT"q @:fdnfifYܽ4vLǀFM^ [o쟢)/K6κBt?g׌aQnBCy<q7́ ^/|FEi̕^%ZyJk)KW,T+M%s}m$FN Ă]pw[=$iPPL ﺈsS ߝ]>=dGbP4D퇟-b^}H $I~.JPϿ}\.7sBWw.::pa˲E Y4uP7^^,| ւIKpiΟ=vj%';%hsPjXyr5RkllѪRBCފޙ%˔ b40^Lo,炋+I 6qp| 8_H#c#=|,zzC;Gľ>zYl\>*$` I]eq BMn"%$57Z,yqd6鍂Qodz|=73ݥ>޻v]_8g&Gy[<vcT_>=?9~|{_{7 V uGkB\lO^WDqHTG5maXtUꍏ;wUI[5.ɑ6V,_3O>N`O_=Gpy4D2]Sh%)ĕ1Z؋AØ+PwH6j19Ʉ%*0;X>͒f J}A7ce`HrljO ?K Ηs{[B7^~J%l۲M\SG6Kxazp6qx鱪+wD @Cs (tt4Ņ*{ч",A,_KK%[ka Mq3b"ߗng>372JrII"6((Dܼ0S(&@7<*!4>K}»O.qOBCg.zo"eE}C<lg#w_6|{d1% XRjH}N#`N T[Z%WIm8#a 1{*0" j i*-ؖM޹'vJ0$u>5~,u]ieۦ!S$Z_LCe`eG7s4*2éΉ*5{<}[;vL1iq&7 7m6Ą~v[x-n޼׮Os;7_p۷߼{{n9O]C >‹ZK15ҥ$3-u]uBɺz{_+7mBjAL1Żodf~Z!jw?ǴvJ`\7n qt7V_?ArmtL6$Ǔ(L$+ʸj*+rw aԀY!elD'c]XaVfV4Ug}cY A&eMv)ؿoODLJ*y&}~ml)~osGyKpK6<}R'y)Izͮ~|Z˙p.GZ~Ya!->$BԳaZ+3L43"B_=/c Jc1'v:ỷ"!*Hԟ|]%,B<u2cO3Q)+IO|G葵\̛64_r>[1W |`_0y me8 r&)3>wӗNnM-p"t4401a?vH| P8 9Gg;llfLxl,f6j/σtlP;p: lldD'nGX_˶A{9!W7ylq?ǯ=xwzs^̡ LvUUE_E,Cu Wʚ,4gQNca,E91ǐBHuQkc=r_D7:OW{Jr!+Τ*$kf^o;x5Ν!=u\;}o>{K]?_q .pphKNKQ?uQ,qy'pw(@v[1mu崈63%bRu1r \Y`1gv^KvA]"-4#H>ܤ W tQ`_VwKlbX'Xt1naVU@`w8Y([W(#A*_C*| u5rpZy[x|7_yor_!~}]ٻmpWrhup@S{+uH(k˵WBvj<a%$!KpO<*3?|< Qo**&a<;ml>mR4$ 2:fJʉU dņ`ro7 2E ȋO2 1&4ek0k ]D1_J㹰pOɋC1NĘD{y-:`1%njxb=r}mpw3'*EB=~RZZXXJSK&^nB&fظ~<ymcCعW.OoSQnoo|{oޓ_̙|cTaOq$~q6&?΍Xwӂ*cDp?֖hG6E)e*<#PH|ŢyRaZ4 V̟Kt$`GX0siRQDxbFWOoMk=+!d@L "V~W_ Tko! 2aq^ ՝gxCܕ5V;+ݷpu`ʊ%U3=Ų0g#m#jyQZ *pPPTnɶoZ.HAR"fM33͎C7[V;[i"Y*yAFxbt):n^\ FĔ&ES [-–HK1OVG34~?zU7^J[֒E>7;ǣ+xIXV&BS JWcjm@ZN"+5@iT| ";K7QQL."F ĘP@Mtfy$/^=E1&vpa6IPk@t42$la55yD]@l5iRc.֤y*GjRORrԘr4$H8Yjl`_LR zx]Fc].6rL(ͪ:;F(0mPh1QA7BXDXjŕZ[Jm1Uaf1ͣK.bIu1Zs$'WzODA16ً?|7/oWN0]A^+rn*Em-d%I \y nf@\/-OVR<IMDt\=ثw%#X2woq'L-!-ٰ<x9y/_s6@8ދkoVY`osV (y~m}E݄kR~V-fFr}|3ve+! A>57&/5 &$ć(b?., 0?"%I(fjRK+`~(:mhʂCl@Wy݃S`eE9 1QCEQP&4\Z}h*H 1//xG<~|^W,[ĕ ;yS<7e`[*J_"#f̞URVdo[,3Cp>9rMޖj- &!JD[\#IF\1^Y[EGy>{G?9IDATKy|[޸31|Iu.l=jβ,ˋf3NM?=/t =fTJ{'IX,^\Wv+wgR_ղ6ёn nJ:ʁ=S)}Ć WI--XxE*M,mppDPt+8bUn^1_^2{v o9Woߡ27N>z ~rxw_pO g_/_?ѽKןp16ylɎv\mN4r(ark)'-? KD#,O\K76RYgQXKZzqᤤbEi^ %lh<y<y"cin̈́ߊW???ͷ^$66XxwWVк'ywqt֜>-]/NK+]gFp}S7+W,PC!ΞZxjG1|3aϦ2 )̈x|m <%5'5d2C?Gk(O<ORiF!̵LE;g[X"ގ_$&HmNR4.9'W<f_WG|KyM=-==qٽE^u^fZrhG3FF[`*[LECss%#;K¶:&9!FK 4_ U{aJ:3-G8Н(I]JRg(/׹*>9̵c2#[C=k m/Yg#j-3%)ՋD~ADD{G}Cpy"ym$xډו'fLmG)%6Wl,^JwIFٵcB^vGyDx,X9Yl1O?=C)x+=~_ ׍2=5Ł]ټaѵ]j 5peU[x|K||<<\Õ}gy;Mޓg5"=Z|h2E|-(d)P''Km-qrd9Xv*V&F *S:餎*k%TUd_OKa8N>0 11walh儗Ǽ!"B;8K0 TAtTp]>{縘@p@^򵝝!mŴ1""pPLs03al\/J4| Ϫ $ x⣌&zL #6TՖ O1~$K8:h_})9&e~x|[c;XDtS[HΚ2Z (!-21dJ"3fsOSܻv}[x$/8ƣK;h͠8Fij#fv)zr=`;yFWTdx/{i*"OjJsi-N_H{uyKÏ\ >D{aC^dzK3*50i/8tVF*?0<,$2[LD.P)ӵ=u%8@@}"#2""H6(Z I'=]^ >|<x>\e)bGWo# e+S'86؞@ !4]ޜs@kg! ||b~MLeFz6Uκ5C7WB{A _ۯo`sMW07o wuӇ $0R,cjv UeP"Ի." ʕVh/_YpLOO&, i<+ܰ43+uECY_/:~x,﷯_txxc^x/>Ͼ]us\_ws$b<;7pGj#iSuI; f8H bf%c tJ5sƛ&A5OfUx$EVɄՑWPp/rq> 7zXmoOSE &FiO9lYہV&giV,7b3E ͡^y=NVlYps)ʼnAԊin('7#Qϓ߽JO/ X-e>{|'wsi)K8s# 4P*ux +CttWPYQ.Eb;}4 uԗ^WJ:1iw60*_;M+=3 Pr"<*%DS΋1b#\XQIZP(EIQr^=5H/( #SBD^ TV ;W3]3[/%n@ 4BECՁ2[0EA~ )t 6=eh*,E^7$$h 5x:-w.pR]"1ܜMt"3/CعeSڻX7ڦFVҙɭJÝtN>z uF?^5RGu߼{/]W^/rf^,2)d2_&rŬ)zfc˗hc3%=f t4tY4o!8߅acGz EJP'_}V01\N\\E:Y;D/ سs ^.b職_WzJ9miC`bjHOO}}1ͦW4eV ʠC;OKXc<81*1DfI_ MLJ!P$'$F(v2'ˑ \n_Qd?W5X spfں:)(Ȓs9;X\BABph5$AfR,wo]u3wn]ܺq'bjLt9ʛO.د53^Juo!ZwSCr2imr9Jid]o9ٌ5ձ|bhM0@bt?3}<4#.Ћp7[2H X ƍZ-mo4S}z8[֐mufK=%ezx([jCpA6$Yb|S85Pd|pY6y%a%@e`QޓԆ䈷3 Xx_B3 =\-n¥pAxy"bvvlZA׊ n#۷|~E>{&v|*N^쑍eX$uJc^e)L.a;l9sY[[+̙l]]]Lqrs%AP]Hr`?3o/>1ݛ$ AŸovW_?eΖbx {KR6]ۻ7B8q& oڈ'7mߏ BO꼻H4AR:ۺW|3aWLtY',/^aMGP;Ep\NxڹRU޸2 -2PWlz`""J*0mB3f+wbw%[*ފq&M{: Ƿ +qdIN)פGTFqv2r.22y{׮[q,GOld杗/sxYڋD[)yMK}`dʮ%+SP|_&iJD<[@}aTd)3$!Di*JGO#'GR!Q'kj l^JENh>6nFRې-ttfbhrR<3=c{DNQ4[v2W>K<!qCbb|pw7Km]Lw6J<5n&G9"'V% kk(I|~A>DmYZwjL^>Rgez??I!!Z:zi젢rַ1SN.lcp'{x2o<]i& k_>˱]߸JЭdQ x 8=ٌ1ccbGSb%`jSyut4m451PT;pB)[-`’E령jz;SBc 7YR@X/ [A^j,[.V edgRGK%SE?[&r|//n3s-$$Ѵѕ[@L/  YC 3yƣڙBڪR{+7&!6o A.dAsqyRNb݈<+Ek)k`QFGn`5ax kcW4!3joHa?'8\JJrhUW.bbSWՙ]?ɱݓ%c}93Moy -uscj.vj@1^DJpVڪ )ɈZ̆&Ni]\ YP&=E$s"H~܌V([}-H(]m Y(“  (bdIӈ3+@_m1&S_"{'w\uZ^إPJr|b$S<|޺B z=%jNr?' a'@՜A) z '7~RX,!_Q N*ʋk)gB|;STײq OsyrpKCSQy"XdiTummEn$ )8MLt3Pt_Rӫuxzrl/֪e\H^& ff3X2gK-bLe'Yyf& Ƈ3Ak/KGST[;oyw߸P+Ubiؕi0)/]NծF i.j l`m=[G9sj?|)?Om)ƘWۯ]<wXP 6+E4#%v.)jf1˫ŞED8VWihȶՌVchyϥbLil #.3 ~JH^qz8e5uaWzK0o>,șp2RzyEl 4yj9p{5Yqahs286ړy(gˏ|IP~ _K7RGn?ƺ06X[(RNYdD-k ?Ʃ)!=.Rq^ڶN0Hȷ&JBX|Bݬ7!ьhjU9 "-ă_O%&1=Ύ^^yxF"6Zo@rmd韛 ~ p[l4^)r9`nXWZ&)kek\k1+O+\%8I%6ڛǷK %,8Z"McL3aaD6@t\QrU{]MkW- bԊM޾ZtK3Sx,-Oqnj"p`xr6ײ}}ejSʬ6fr&} RǫW%sð5Zy?+Y)l"5X aaάQp.sf<lѼ̛b85D' }%Xb;}&ک-",ȍB\yGe;Kb21͕A_mc‰u,ٵem֯_.200/\q.EKC!bF-VH3#T=e u)ݯgNZvĽVʫ\Cbo'ғ&bI D{6YSg8u vaWvs*ُu~yj0㏙'g21k?{fohH#;!Z`׮a^gⳏxt,N#!ʟۆE#N }${-l6&pNt_;;3`\5e욞NM铲q1F>ۆ! )v'Ʉd{c7 u\>pK-r 1܋2%h'&8Q\O0G|} %@8%ޖ݅4EWcoY[X mWac#:іK~^|b[0#.4-7VBSn.{٨[y{ű#ӬPlvfHu'!ҕHwB'"› "G)I&$bء݌ H{{= S"F;8LJ\]#Gy;p2H;>($Y+!j܎9nI1w1UCm[Jh/a@A zsXl>˗cժ,U^]=M/O#ٳ9s&f͔gsVWeG+#"}EcʈG6GepM-% RωRt4WuDžܼt[j)sW[h5޶IHwN 曏x ̌Urr3q<Ka +/,=q-f[3z)wy5/:{ruXKVɕdbm+YKzBK swVV$%DzNl飴 RJap cXS< |0 $?BAe]_ ^B;yYF۫Ȏ Tj>{wۯpYc^}E.\<řIux/\k7QOFs15ZJ,-śۑLdLp1a8RQQEdwsj.nG;?܍h73GyX(q6Rc>khBR?5yWJK">̕;gT/:&6q2 8ʖ$gwTB\\ p^rc!vn'jϏ!.G:8/f%}ʬH7%xJ6UX{Ξ@|M-헐Hx`ݕo=?DJfR"'ĐOM]/σK2<"d>:kEK7oftusF1d.K𨄅FZl)85ͥTgslsbk'kݣL T2SJkU"4VWH0mMuy3k\u eg9s ez#vO] h2oA;18PKaNEY䦅/![@? rغa}7s^=k'}+$=[<Y=&w Ir-Jb,K&@!z<m_<X3<,1)TU s] y,k]Ri(0#u\%ȴ7Չ V'Q?|&mbb[X?GYlOS }!BAQFwK#' ƙ V+HQWSI?櫏|򦜟V.ŝ?[i/@⋝&VN8 tq 4&`C*'++CQL)/YaK%GSKG!D胟zǵ0ERflYFYy1dFokJ-e:=w^u&t'.^W=h "3X3 9KwSW"8iˡjH` s1Bb>+P+Ę `OLj"`)Dz°`@̋ >nB*D[ .3ܒp? ϓ`$%/?+=g`t6&?V*SCj]PGgm֡6>~ RJSv>=?ͱm:>%;^1fz%D3oakKe3Y,_ 3B^~o̝5[3̟7!)a%h5Nį>} fEJAz,bHsR΂|%ڑ+<ux+/rN>w/7xwY8; ݯ+JX?F> fN̴ XuosspIȣlN#ʹOQ,ᭇ\of|@ 3n-紙]~nYMmQE,%jR\5@<s#'Rpu~\Z.ߍ 9N좳DQ#^Rlg/?o?מ'9ԃ;F$(]v\?5$X*Bof 9!F͙Դ8z25rHnyl|=y_JmUFxQEv'qb#\:Mc]ej S*ʋ$;gkSˁ s=y45Ƈ* 5 =Ñg [`/{bC&yKQ:kcoG%9j~"'G ګ qSRHL !9+)@bB6n/l9>,4 '˜yŌ{Ndt.n o"~˿`?,C w`D$ݵulgH17qlLwS3O OĦVjb88Ϗzu%E$3^AQgrVnLO.gMK5H> Vh?-3<%^"93mUϖ0)$h,Y@b7qErV>U֯i&7=RΑTbɔbOPni Ok<}<ϋϞU|_w^pCbb,{޽{KѠ1T6FTe ofA86iz36^<eSxƣy8SQ(<['>iXĪyOMTwzײc0[,ZaDO:c\|XGĐ`1j턗7 tr W+WNOg , _gݏ|w˂U_Pz<i'O/͛TO%9.S6DN22GBtۧ8cZEh-IZyiЗ&II3INYp<S.b9r=Z&!1[ŸiSzwu<?~ѡZO= $HKH&ա%R^OZ#~zxEqvP/>^2<\Wag`_77  |L #ABRF$»ə vՓ_F|b)AlacoW;coEC"A6D{/A$(HSlNDDCp /<PxAWeI uLc4;qr MEIDoc͕;SLPűkWD<r|>nW:qVO? UdoDdepk3ll&˖/b<euNa޼y(^@7{ 9)(ؗY<ox~o)a|+?07_:‹Tgdcgg-5聽 9iݿSQ߾~#^u7 ޯJ8?x@FN.(.)[1M5<gCX6Nvh;01}OfS)αTuY].9Fmq2ef(f:}Ä:fkv pwwŒiLX."h=3.oL-wr')$Dw˸zh;:K:­-Vg^Cnq:Sу~5_}9@NģWvo*̢kcfzlD\vbC8́S&'ZRƩq:<o{4JK &7̍7HwlBvv8W}3 lQg87ѠF4wGo kZsyt"ŗ$^(`C\J|Ip OS𦇣"1+ 6U ;7=,Wa%8ԑB0j1@_'b$ܧ$HߙE`(57A}عc5M `JxKS텧\W q%R2b__x7su?жyu4 1֕1ў'*5\fQ208Lum QfӔř޼͌t׳ai.Q.̞uϾNvMv[xʉU)kݜl 2{\f̞ˢvK,橃3%(R9y X"jR=)Lf>7,w^KWs>iDKeő%!@1uxFo[+#l4ŵGx!<$,_xubN;6jټm#$WS/!2$ʂjJ" OGL<P3NP xګr8m"`}S:;i'*Ɖ yw/1x;WOsqu ,%v%ҖMaZ<I,v¦I%ELG]p3&֛Z}'C Wom.w{ϣ $Ɔ16>%?5?Kk(>p8GY]JEA04]Bup_^34*@qb=MPLCi:Me!gwZ~VL1q~."~XXBkv$x݇Gl#'Kj#8>ʅ]ۯ>z&m|@7UQQ@li$CSO1nz* <57P~1ށGyԛOP<b,ROg[8D4b Va`eK+ ee1*n8yzㅷoxLn/བྷ}:}k(kZ(B{ ַpv{~:j@nR!W޻!i~X0[7@Mv 59L7ggM@ &ʑQ\ٿwYˉC8ZjjxԙCffl&+39,Z21 3f2GĪKX0k&)ASSGOͻoާ&KgGWS)Yɑ!?K,p6jbmO gxxO~}~s~gܿw7{!ΝLA~1y4@]e=-x8J4SP90˥[ᷚ-w'agRǁ݌Tŵ{ ]UbĶ΋y :"A89 7c r<K3L h<OLv<Iva6!#4I c.;+39m=쒰v@t|?~O?DOn_ǣKvhWwu4;)KPHk{vnuGhVFg0OⱘϞ;Ձ׼ ?},q"E3^CL+$4>Zy(#6MmbqFԓ㋽233\c8wyA]sS:isn RR=|i FYwGѬU q$"ؔ0| qQD9bOrn^}7 +w<SbZǶ$%)f0Qa)q>$9 &@2JG v[]狍?e<M{_+Wu۵ ֵ3˙b 2f4NMNr vt`wkV7k V]Q1a;&8w`2"Z 4sisr'vWk=VH0tp/OV\) 3Dӗ"ϐ3Of2r)u`_{B͜AbX-tkh{O~egˊjR\ 7' Et+EN~O%8|ܹs <q%JJJ%=eR6jJ\4"mBf:1ó<b2F8v<UsX}a\@gMמ{Vk̉)zq]FA]wC~*<eWI <:jF?)dlON{z wTer`:NF|6MKwaLB ?_I Q^ާ.8l? ѱD5$BOh_9-.\vmZ˵{ ;U)_>! 1Ey1, 3pcQ6oaZy8-1˟C#U<8Dž_a p;8:Ї2ST5VjX%^|`ߌCEE7"$̂2ētQz̄-~ TIv af>$|4_Ol̈( !e`m'=+7B]I!{  ,n(׽NAvR4d%a-[˗>OcI2ZUoڶBn]]\<4(kÝ ݂QNJ <ꊧ*++W U ΛɂEsXLu8_wzkJ<uDԭ\(/M'O~qqmu@2[K]BPZ^Hk[ÃwD_^Wo޼Ԧq^x1Mͭ<}VRg9օT橍}\MYgL=Xl"hN<WNg{I;sn^W y93 Oؒ-:,+iXb/\Ҋ>鎂{kce+6ϖc}J-u'pjo(ܬtFƈKMݍaoo?I1_9GQM0?"Tp?$›kz >l6ʵGk-cjMw޺w/ C˜>Ot!8>uuXhӆMlk$- ȦpNK.|h ^g2 a;w gai7r$ꑔ`MAXq ..w\6^ŏ?%:܅&o%d~~Ņ"8(?&BT}p1G|BzJdR e+FI-39\"6&ȈW <XpArqq?CRHNL<wsd].me44wݽbK+b;y}<Gla(]t5T15.`Ω=5ŽvDLŅ=C\ط[ 5@O ?v'ky5g3(3X =w*Pf( .dŊ$Txw%wkwio. AU^LaaRy{.,ܼz#o|\ѽkO;.ı2M=;SVYEV^b80$bmB+]xơTLfy1ý=40ݙTw&mQ{6dƅo^:G}({1EJco$Eȥ,k5+JLN'Rʗ߯K u]/o#;'Y`w qD*!9^xx|۟@|CskĖVnjھP")*a:Ww1^.ǐͶ->5}=9n[̄~9V3-55S[[,3Ő7 #<Ԏ.6謢\QEC' 2ٷc'YYAie:5S<:;=tzgQO__#-CtqrpCo1IΔfH #H˕IBztT'TIUNř!n˷BL{`|b)*CHy].sh)</Zc 0 !J*";?MLon7€Kc䉳gDS ַG{&~Y'V fO"?=^W2~Շ|ܕZ 27I mճ;+tT_s8{P\80"wK4-H#DQP[ČgQ>抙D<3b(拁Xv7w&@ca6;}]WoStNUN֖fHϧHLD^b]ej3Njgsq8Kp.o;{GcN<x9b.KifB)N\69hZ܏91̲eC! cAu>$!؅ZvU'G Ν^u36K8ʙYQ5yQ%#4AZWgm9~8gg@3)>GКŶumH84V<4-}˧z1QP_UƗőO_~4qx]x,|`5~͑sKWywgɭ^y{w\Gok);&mSHrS= 0YH-1؛.ggX_MeʈqMcm05 'UT%sfo_NsFSc~Vbnp4^FV`LQX2u)O@ w=cpu%x39Rھ 9UgMpEs9{6a !"JE;k֬n<P-5UX&&4 sŰQSS$z%))h Ey45T[!YYhbBOm 6rd[mUn&m ^ϕ (d7}Wo[Np. RI/ʩm|5ͼ|J`XY2Xpn¼X`>.6x: Yg$ϝh<xy2D3xlKfbnBhu9L /ӼyriT%)TW Dä&o8K;LŧsQn^>s7+svs. OsLt]ɹ;w`?KDN5%Ĥ'ER|m4Ȍc)KͽgV<cB 3hXug֊L:k}$^V u`ԾM<vL#GF${K+?:,@gqw@;$$[N 4H>{;ojn{Nr^kk,Kh6؟*kbzU Ѷ jbc@deQi(Nz֕6.&(<mIAF*n^bz/{cY;ccLR”>ظ7.;++alLY`6Əe|ud 5 %S_@^'14b%zL Cӳ猫>$0BK_L$ߔӊ~TfrnnRtvQΏe_I'=큟;5:m1ލPxhN.'MLôVERYMAI1Ӻs;>oae`i©EPW">{43$ĕQ]F`*;54xLn0b+!~dd&s9dgw_=ڡSttM0w``aQY ȁzW5TCqrMUMڳpuB4ͯx-[ȞM+ȊRwپ~7lcQ?kivhbf^6{sMzv,޽N(5 >ꄁ~hZUE#eiqLo,Ծuz0I "IѤ-Syo#=ΟL3vo_9{d2n]*>^=d5YKks^HNL ?[^I dPju א!tӵMbie,O 1?{/se̙Z&BqfpZ,N_6;Q|Jsq6k&֓cB!FXJvBFfYS ֢i>A6VdYP)_12s_˱+ؼb>FԈL;G{rr3~ħ?{t_7rEgK>_ȩs3:(g~K {cfn#n8+g5ԉ/^04'VuB}K/<^'1;`]p҉$ev?i4ymkCshNDZ? ]rξcy~&פqNfM*8{gqHNq!7Gt}6붡8jEeq,F3.C:YOAYq*1!>i' P} L-qpOaA))4O1*<WQ&\KzR%-̜2LmёXy9f<Ypj\<1虺b`탋7^XCzJ4QIeSZ^GJflYA:4ϟ=?%W/,_:_ :#se3'`qrĕGiDm.PžrOWݦ];Z0 BYЩsGZiN#cmiӶ=:tT v,'bo^87/pa!lr2%:W%D:"F`$%2g$.wM;gr1Gy߾zƵ˘6e:'N%)3d}$vnj8T002l0Q~t:>QiGfbM(^qbB3I 0Y>Zǔ) }پn& (vo\ Kٸ|&k2\f_H/䎜\!Ei893@w@CH K>sf\4b:#<W/<gQU%5!A'{"&"pn:ewYpe,¦4ϯ#'1'[²3VVFÒs9{3'5bDo^,UT([z1 #X_14ǐfI@͇l݄\MsNRlhy)Qx9BErL_<7‘ LӤ77=1Sm yZ ;oK$f.6ZԆOX#ܬ4q~wP C]ĨfvaظWf"d>JO %3Ƈ(uǏ@R#1ͤ_[N ܖIMy!B6ÇL=髩F>ٸPIm3*}Y45x1!~$PVZIB|2%lڸULep[6s)^=}čٵii1<y7TVͮY$f70g|\GLC{,L *˪Lҭ3-mNBA[:tBnhR0J|+y^̃)WwlӊP/2R)8mܹΌ 7;@'}:!__u|Dq _&c7W$8 5޿yΧoYhG*pwvCs@1! 퉵Iˈ$15\|c I/9,M,05@ p6R.VΙV/\<rrL3FUQ[;jإ1z)Y4,]A 5+d\*&\ ˉb.F% lԭvmXœp8e_fILMU#'Z`݅=[?':ha@!<-|͚%|6c%0L(> -$aI cj\9 LI"VHxLs wk͌ $3Hpbҗh9Q,k,\>"i酶`.鎖>$4huMOt#!V8Ziam2@B|p"̊StA_>vuQr@C3b'wOP2amcn$\+H(Tgfr:Q.^E\| u%SSUŨѱhFPܯ,Æw>&VbM\q#/ы,;V:hJ -(&.A_Z b¯^7rA<op`3xrnƪ5\>3G0Q՜1,\;q0Jm11J:YLtI:IU<F| j-mZWtlقo~n:ƍ<uWaM`S&(ի24~_kNV̟7xk>~x#z5cG3sLe|֓-wqA_qw{1Lv::$/!5"O98 Oga¿K@v9KgLR?oX9>)n 'vm!Éckor5[,Y-ݺFxL LUIQd/tP_N./8{P^σ|D,q1eEj$Qp߰zDY2۹$KmXG{h?lq\y^(Os>& ɕpP.</M 2oG qzp>zX ^:dxdeBfLC&+ɏh_*X42crBƨIWSW'щ0k#\gP0ꈓ`R~TW /fX>L2=>hhנ~X8k92T;*W0<Bq`k#H>7Z!c70" AA>\QҨRu(F?/ؿw4Çk]w!]07;@u $-&Z3[pqq KXvk>q;qy^=ؿs#y1Op&ni%߻ sTх[Ƀ{qFgFÌpwJ߱cGZh!su}{۫OkѲ%]vG _x:nڵ#"ȑ1悇;섃-Ll]rS'qT<9ux3OG_}5 d… R񖕕#wɖPtz,>4؝T ҋJ(&<c$Ҵ",2B tY~(&2֬X:{KfMeQݻT.'prՂ_K ֥ L)}םcL*%n݉rR!TJ%b#_?E%͵\;H{Օ8:`o-X^< G3 7̼%LNŤaً~]۠#Zjb>͡TV;i˖k>e4OcxqVuEIL/eRE6;63"P;|,c+ v3W +khG&Y=>G^B$2ʟ5lU{|'cjܹ"9M^htc辉~w\ d6ƺ1$^wkmbwGkpLMu@X8ih0s"ES}b Ƞ8ZKN>!'4$KFSMWdѤ$$gjq4I4#?_<ɂӧ7a@ Mhhgn 輙P΂DD<HJ#r ꨮq7ic'̤q<[׮ϫg9~ho̕8a vΥ#9Ûg{lϕ;3fȠ>~u ҳW5JMeUҔzRDY *%T(-C,(Kfݼf9xpvSYG]uj)1{z3sgy9~[x⡄;8&b垍ݼ\nEYUݻپ#EqE ̘>ɓ']N\RBnVBñ5&&U%0Mid̐bݰK)N"ך`ɖиzj6[+eZ%xRC[bl]>kx85+va3 cF32=X M g%$WLh~j"af&2TUrVœصr&5g$m+vSx]/K^;32ɕ1ZJ\ 8퍰28GˡbB)g)̓04cb#VΕ4I_'QBraTLi(nFtCbFjaQ? )WG35JRuL 3mcY5*c9mSR%f =61bB?W1 ^6؉Y0Lؙ xJƦ13  C? |0r 'Olpt!5Y'/!!<ʭ 9?1'ObJ`1/[/0@ss$0T ϟ]a谁tmlPv!-Io˘ ,"->'{(IJfy5z aJXd)}#Gmq*v(Av!>:˝e7d||{ 섞&Z]uuSnA"s1U9-Z&IhGkဎmZBQJ"#w/q>cEiS ,]:M ;9yxu+ I/K|xR,غe%%'rgeZ\rd[0lhu{Xo2B-ϙSY&3AB5R[6#K)K %מo_󵚭V _x:Wa׺E۰Kb7M#|6;]A)00 =0OJRq9br}Nf&fȹ9~\; S Tja؈1}ŗoM~#-_ei#sSt֧* gC%|`h4KԊ̊0N1즡**el7e_0\EEDPIz|tkwMt8 ;ňb'u>fNy_\ǘ\C6<;}{_vowsmߧڴ?.8X Ԡ1끉LTW8Bpo"nM-=|I[_Js"&9CS{\=qs O E$ƐOIa\D32B .ne$%PU^wI^˱/_CG lw15wÃ(7 -SɒŤņlGrql%yTZqF(oh"GLŋx }Aϟsjvo_ȇ/ sj0/aI0EWS་h~ڶStz@]"GԡmhI{]Wgӓ _/>@rlq2'OifѢyۻǏϟUxo$ٶVkqY}-[6W"VHAzNJeKYd!no{eL_+n]ICee<~E-!ƗguEZ0RB|zۣ@~`"?UcZVX0]&͕wu*[1EIkXߡUCI(,#=;j3SX49cٳfۖMf|%A*+^Za:ȸ$o_C_?nQUQj=vJ&jb~mJ|~FW.{i#1ԓ 34m &qi:.YO7N>;AF:d+p6L1qנJLfsv:<q#ԝ8ePnh-KClؽ%]1א*D)n:T/!x|My->h~/ill ='/_B32 q%6c{vɉbH@WVT |b%)د!11:JyqA!ǍzMS_K{j1Sc ^$Dz`CSM +֒eՔ7]BYe|=~EǎLqQ ,ݛW2^qxptxmxpncܰ.˹5g.ɰatC]-FxX0PV(d_ ?7?gGJˮ?_GwNqN⽨`:~#K^^O o?~>O} cۦ%l\=Go^>Wy$"e:SX0KO2,-"2,P@o~7}kULY59uK_BmMLLz{Ɔ3 u,rC;vmrRbE;&c|m\M (%Mݼu%k%|c?`fZtjљ _ѓ֒LMJKG1#%voȚ\ܿ(JrS<톾dK~9ޠ0M94GZ0w >FzgR.칓0a4 ]玨v4SGrXr .NҾd oY` ȟ0O|})h=L~GSiζYc3\Ěr&ri:^_>%SEv׿5(;v``Vxof6hw|x?t$`d=퉥N cg+}.G7J'TI>衩'? 9/68xl)>əZєԸ8SӨ)$;-*b..,#!c'&"==ܼ+dLbۿx_ϓgNm""9C[wtj`psmp4"׊ah"5#b Hϯ$>ґ׌%1}55Juc|&OovͣK<~qFn;DMmK͠I AY܊8ALb{ 4ZϕB2ѻW/Uj9{||oevn]-O];BZw4o>@y!\8ƞY+by^6;6r1^:~+.u#F1c4nnqD)q!$G R ddU6 ε||WΙ9sGY!EQ]5+شj1OeFfI^6YLXϚN fNQ{1bַcˮ*Ә2Zkli@7ܢJOT+߽^Au̽kgnF=N28܅|IJyؿk#^?g9d ˢgڈtC$ej<Mp0!בyӛY8k:U2GRUVʢ9c%n`JbIkMq,6g2#E@lD%\L6zvyh/}YYSNzRk= ƺ4e$|l H jbN~BW3@ Bdn2 ؛UWؚiK-uqs ,}rEmCkm%(a+D`$U])) e哞[B2YWTGbV B6"%TH)bI GOꁥb sL(a0b`.nADP$6% )GbF %r ^|[.Ϲsyu{_^<rG_WA6tF Q~U/ߟbڷS0*5e3ZjB>R)C|ċoH_ÇW7[w?{rGܾr?^1c9L8mågXn 'M";;&M˗ܹŜ铉 ('eքˎ39-孫(c] ަe4+s{r_ECIl[M+ZeiZ<)jY2g]ޝ : } S9N\\m=fAĥ3'qM7>þX\ArEN`߇`og0ƺ2 \yk=On0^9XwMPZ: 1 fysVl@QacG7&hRsǙ3p_'"\ $&ʹ uP/4X)ׄ}:}C.rj:vgx C{dL^4gֱld%ͽ,=}ba@ukwʤX+ÇvI-d0ւ}'giNfCھLι9.aj怙ts;0d-vXH`k턉#?d͠LLhEVKbr&i9 KKk,#+=%.cB11FܘC164\KB FxaYQ- دPQXKYx U'%sQ=}ȕ+g$@~}kyu(%c]|S!>6}߻7}sn"\mڵQ"uQZE-ZFYao7g1\<`[~M{扄{!^O ߿͋9߳u-?+;Ϟ`LLAA#F _;޽ fɂix0z7g뢩\سQnȜ1lT 'oXn l,c2Feu<vIXظ| Me)̞=~׮ҷa? bae kY7NtW.^PŇabJ%fiܹv!oK^5E+( d@o"}\uaZF֊n .߾ßϳڒhU'S՘)+lXɪ% 055? vne|R cGS"Jk;m'%ZdOķMS+A$ \=YjBO"Opvh̀nrt*%w3|mF"6w$+so_b O PkA$Kka t1\'6R`=\0h.8ۙnlzAF. w1skK)ہ 3YӦW ES$8$$eCAQE G>ښZFFW?O) f C|]RW,:3 ߑ$SXHJfrFoLPFVN9e$'r=~W?z*qjyOq]ui//xUp_=%DE.~h&dAkmrRKzuA5YܽEŋl۱;>}_?D?Y8?>qyN+՗-\NJEX2O|_8ɺ_2ill7ϟܽ{KmQၔ gp>'riZA8a &eٸb׶õhH,ױqKX|gLWy8o7GvoW.\9֮buH|fP+jpz!`Ls:ϯӣ˜ڲY ERN뎫 $Uxd޾˟U~eM<Y\d]떱rV6p 9MHY*w&5&bٌ<yM*Jbz]717 X V0z}w< 4:t޴{ /VV )3/NeFY//,Գ{[Lai6+!&ӂho}6z}K!>AS^gc L4*b`_78[3\}\wCczF8{c!yPÇb-:}XfNOEx`Q~!)$ǥEQ^9#jG#/Ay o?Oܹ,xt3gObpp@N&elWCyy. $ AeW!*US.bETbj g~~_a<;Gvr H`?rzj\LrnjC%0SwB$!ed@iӮ=-(WӠ^]P:YІ6mŁB:ȟ?_ܾrwOO }OWΛR1/;xrc;ٱq%DO[Wϊ]=,=Qhljf϶<{d͌mØ2lr>YYcX` 9o3IKH ;-kWζ)@\Š3WWAb|$ Z9MBl҇lݸ7_SC< 3 KPBSJ("~>Vn5|ure[Hui~XDCeЦȨZ>ٰd%yj/-<MkHIь R c,+isdHR[Mõ3عfSH`ơ shu^U3G^O%Cd\yb%7Ψ0O*b:nţkX7r{ 6`/ցO{G =ocZb2jg07W,)_;耭[l=Bq %@ 4Oib估uV/%'rnsR≉ .5bY3 H#%[Ȥ$1qxy{</zvS[vqb g hMR-'/JkPxd)Knecf GP5Y!ʪ N_]wۧw WK[39gwÜ.[ ӳG7Mn/*mmۑێ _Ъ{E+eV΂?㻏9s/_SHG GX8w"i >6ͭs~޿x(|q][s ޿ue3'5kF5PSSx[1{11j72{Ri+X&U$,,kz~2F;_C;8m׬.Mk%$2(R6Y3 U-)w?hjJ: b<=#I.`-ܽ'WZ7哪o\.p= FQT#k' C8 !/яW#㼘<GbDllvV`1TVAbLY|zR+J(5R_̙8R {w![fp%:E΄=]Cuf=ڒjώDA-09g3X\W΋s'uu -ؙ ofFx'5li(? .>bȄ[t$H١o;3m0\#p J9+@q̟=$]?@NzNYd䕩+R3 IL!&&\Lru%1Wns6m[hѡ4 Gg`W $%’SWI $^LNI=J`Ḥb,uM3幑4L$ALLYe˖-s{~k~|uWwq͙=+87)6rWnAا;wc>tҁ2Fkevm[-h-o%a[Dӫ΂t !eO/t0o^?3𣄃ox d(K$Q_9}<Oo.>&ɓGx侺ynٌYCmm%*˕Kٴ~5&!MnJYǫ3*$pL3FRZqQVG^|`''ngYh#j qHfۆOU 2Kԫ."&1ہ # {,y=Ⴅ{A }xv"a:V2 P_b| &!1C 5yI{H=3ae4$?"\)O ej] n]fέw웒b ᕨh]s9?}utqdhWؾcFc H)AZNRgO@>ðW[>q,Qf{DW,0m F1OQzd)a@0<:K 8-;Cm|D]N;tN1S)j!O{EŇ:88ac~9)_qe\_/Qq BS)!>)[0OBj.aQIT!ZaR$;D&MG^QBԿ:D?9yp=ąJX)%h$)eATTOb6JJJeUs~QG7yyoEc[s9uhu+ȮЧGoҳg,P& ?3Tu?& \Noނ=Ih= ~>>᧟ü~{_' Kd&JRɊb٢ۇx^+uލ;y@/pO?/;w6ī*%owwnF2+2v߽ܙY4c ^͢1,[΢Zv^'oqT R)Ltk7Wwr,LSc!.dqz6oZKlLYilrj/\>yHOťGcᓈWh6NFd&=̵$}>@K&0%ĄN ([Mg|?؟5s$6:fDIJڳ9O<I\4+M%0~X*+(’ ? ]2g!S92Ucq ߑsY;Y`0C;|i6zW)jjL7-4{gʎL-wraN_%7`J2p0V'puqXr8ֶxoA ع$g_zhoJZ..*wuEqxɑ&ϲHO͓sKixs%w;<Y)>cS:S\QMpZ3"ribT*,pQPMz~r1|UOSg>&5Mc˧o3ϯ^}xi'__;*{3  Aʬ@u,h/|AA;ur@Y],P'1 mڴgQ,Bt)=F+ ܿrG7ϲ ͚@S}1M4=m"o=޿û7Adln_]!#{7~߽e44~,5M_KI0^&Ibk$l޺CKП+6VNg:y\;rV#W+56!ٌx/ ddBrMfdE`B?I2<D`}OͣX|\fL@L?P S "6s:(kpn˄ĮP̖8}&/͐AlZ>PWg-Q^a\AtLlLqwSmbl aaW2oR:ڹSh,]39p7.*$ATy Gҽ,pI. ܔDNLÚ2&H?Ofd`tE1lTIJIur޷vER;Hr 1Wefs !W{ {YK!<1B$+-!U@R>QBQ YEdi3 Y(%VH!ܒC Ki5ReEܑS5Zľ `Xĩ $g!}""&“ K#qqrQŠom><'Wj {~ͽ ^\u{W^~0tvIDa5lݪsU{U!BYQB΀$5G 㟿侘 TfND62([Զs,9Mز~?eObvQZZ$aJV\.[7LPzW/e>]+w孋nn`\;wX#ڔ,ۚ=떒)`zh-% jFwq{{E)/eLm׏42abKHb9)S`Z NmXKgϴ[9Iuy2SY] :Cqau2>SRbۉ {C)W̛Sʸ4XKKekp=U6s-!ٚp?(e©;+w Z<@hh.i`[S=/䖄ױ~/K~b Qll wؾ p0JO !8٫O&FxH"v*-g<v8f[Khnԗ!2"e@Ie (9(MFv5䓛r*$9+zG!b@59߆SUUόYt!׾:_+d [P=jF>Vž _ԩ-!&&KG4~&n>;] _y~:O}x|ŧ_lO.-]-udeW-A m۴}VA6-[ _P:a BYΠ}HK] _Eܻ̹ӇؿGFF<Dz3wF ffɜ:3 5HXǶx)3gL۶nM#iEsyvlfRC&5P* Ҹ$^H0Zڣxq!qo$L(`/cLP=To^:&{^:h,͆ace;vn(2{'PĠbN 'z C{+1eayĠaV$&0Eg"Ŵ<F$3Qfh۶mr>CЉ@Ldӂ)ؼsԀ{kLxhG0Z~ CIzyHOYƬi9{z/gn,*ط"x Q5Aj n:Y?6smnXÎ ]>0FE}qsql7!V5.VC1UP'+۰-yܬs%@1n&8hp<9+#uEb(P}Ռa"/.(U/ddoNxȤQ V<Bl c)TT3yT͛+{ sOʈqhyx֦8KHٽ̞LNjyEF?"c ɭ<p9n26jx.߿~gxy gy*\7i~zyOonEhi[+ E[L]4^,Pv=R& m(SN Lس?>yUEdK6 V?g4ėٱy{/gfm9F?Uۮ]dzƍm۷mZcImHps^'^8{snsyq<9k& ~,t'Ցmf%E13B`7~~;-cU0[f )@9nDW\>!}E2q>Cs7QR6TW@YV<S58`ieṟ~~^.$DmEnp uٳ'3f `!>8(,Ww7BCCioN[.\*rs']nQzd$=9%8d./X .F:X_ɕ+%nF#(?ڌvMk`۝C(:q`J|,T b=`߂Xʹv6[.3$sXX`f>s8`k7Ga8ai>O7;BC/z /So/$3-[PQ#kYYjM'0~ i)7E&CYj/׿dۧΜIWS)"4*3S1 CIsgF!5rr+UYD2~!d_h,.4Z_ӷ-?=IǃK۹ur%93[ɉCsp_tch+AzоcGu@Ԛh,*d"M)vZ:";wf@~+W#PWUȈb ^r>GDPNvX\ <w3KںijfqL4,9og^L (]R^Ս M;.8IpT8IxL(50c(M"'u˧uEg@)Ċshnd 3iK,P[uG6>üNeR15F0^f Jami;</hJMhWq5=krx|ͩ۹|$G46l2z׏oP^![kSGpTX!qab8LBoOOH#WBi}&OMVB1]) x4ը+hO>Uj1:>cٳ=6;Է3{1Zg{A*'eZ0c$ M a͘VLӻyx8;V͢ GDW_4DẄ{B;FC0S$T;3mlLt5*_a+$d5 g +%48Hx6K-d_E"Cˋ seeKP$&!DE&"nl'";9!dF6|ZwRV$'9eRRMPd ^~a$&ao@avW3>ony!sxb$\LO={IHNi-oQ,Z@YmТtڙY0"-%[rf[6Hؿs%'m`";x]WvҨ//P1z c;t΍֬^Ny3Cn֥4SHΩH3nD8"BA+Qb(sP>59ь,H +ʇswP* %;Ĝ({Ҥ&%nXZ8ҭ@m=ٻgO_Η{O~h&  pi,-4'_3DrJj<n,ۖ<qvE߼)4{6[|5ʖRႁ!gUlL.7P44ЧO?|'.*L1 ,1İB<])HbJcpW=eL/1uF:>&vkEVʕX숣FpVsnx^U%h@E[dq nx '7ɛh'3INAJ*Lu`5\ -[-b#aJxBNW1 n<ZKhS411䌑+F>X{`f玥+.xxxU8ؗ:ӫ? ?bD_%$f &K'O%-#G݉c\</W쿽@ѓ2FW!а L$ZB)D G%E^75*ҳI*7(W0B"Rp "%%C!7={[,,o\={wޗ{v [vo0c~=z(ۧ}.XBmڶC7aere+3:wHG~6}#/ca<WfMxp+8> +~m_/سy9=e u5m|,?QW\#OZ}9~s}ښ`:l0.vH75 Y Q^x._PXE<l./h_Acyx5H3cjjJ2e>#sS;-a#<([Ȉ+`@g4?(ft9#̢jLjf`C[y}47$ܽro߽d_l@{yHmWv!GD>#XB AA 2'I`(+ ) !H|SiZ"3j6{\K&d^ms3) 'B%tZ1]KL|uvw@K2"xNb"BEKRټhKypė<_p.c8ɓXWb,{}”FZ}Ԛ zX`4\‚6pBS__<43M\F {be/|2ngOGٿ>>D ăTOTAF.Yۣisx?r&M,jd.#EOwze<sxfP[Fiq=y9Ϫ MCTDɤ$d0 3>_-yͯoۻ5gxw'vr:E9>8{tP ZztM0NUɁM(_|R't/,7w| IϖƦ2v^˳'W{xE\8pF^?/?=cڹ&S]5NZs ?a:JV$3D-\mj>6߆xYjF v !ě`/$#,#< w;lt D gL\ǔ>8u&n> 33v.9|/W2H }X!~t7On&8?1V3}B3V<vʅS{N¾Gx?ocJqF\+ͩ.H[eSPÆg B1OMY+,J39LYԑ5,?cY45:bҟ8 ][պzZwDNt NgS8=݋dzpR#Ņ ?ndiS1nsܸ9`c  9Hp cݞ[&wcK4#g]l7c>S#+쬼3|q>W0>8b`C.ݳ/N$&f9%=RHrjQ!LLxQdǗsn<uKYpfM$>%՛|Y&檴<(!gB&q+7( O 8~,=_>׏_ӻ{y/9AF^9ՓɏgF_H' CjACeZm;ڵrdeAim%,U]m\iб3y}G~'wn|T0^3{9}d+WNھ+b?+d4GV3M aޜܼtQ UEF {sOYV՛޽$įV1_/I_Ly~Ec@eEU%edLEeIh(mRbl}MDkÒkœ5Vr9FT+!ş‚з 4K ,M1CF!(Vܬ*-cfU,=U૳Ǹi߿Χ8l/OcC`¼Y56RW]Ey^Iѻo_uY ^$FR^/ nEXQ̜:Y4DŘě%B3C:ֽܿ1/1"v0Ɍu#rٱh,k'xT#R)Bjzj'eKM *+7*\Ɏt.=G1CF$ V[Lb̵id+.&$j/ؘcG0vnعa싍Vl]q3kG\<pLf? 1=ci&ʲ.iV 7H5&8/rʹ$pyάXl)h >ի#[7Σ, £c I/$$|ށ1xD(cJ)%bL{~çW=_y}z;wJ<)^<8%]]Y CahhӳWoyu ullY,B,hK/gPZ6ړYDon̜0޽?o mX&^?wvN1 y&+4sCcsQ]SI>yǍ,(*MpRI 4UϿӥS+zܾ%[_Hooth哣=U42P?7f.<3#[W.4Ə̈́㈉&1)SszOn;غy'8Mqp+&3YCNUFh.6$&~$M;svF0+sCnݽ_Ïؼe5+ˊC8xZ4kqn8KA~%%%$'gгw:v#K~޾Ԕ3Z$;/ _I!~Lϼfdv/ásY?E88%[" +wPw|ƶk{$%X3MK&FȂLgr2BSU[_).^/aŁWJB0C]5sd!Sj%d71$~(bd|lx)H;3]l\q ;{H,]rRp&&fI4<~2P M":j믥 m}zg0 ͚_O ,[;khV.x _4 Rv`!:>B"W':WYpn"~E䷏Q>绗t~7Ns6M .ӋĄн  S2v5E= (+ZIǺ@YEԲ@t_Z-Юଽz+41߽{̏~#?ȶKp%ؾ/ ;#Dovd?=gӪԖ2c ܜhnlRUZӾKBKU ~w: G47_N)eciܗ ƔQ1Fգv,7v q$'cld*Ʋ?=`[6=iXYDtL9IY1rJїbIc}+'U5ͤ'%Nmc rhmGyLݏؾe#5d^ٛ[ "zSwiN>ܥ`|=YSj2R"9ؗOMX?Ɂ[m*B/έ2&B a$ p+JS94kX7t\?# sr;oړBCi,!Hgޤmt1 3Xhn#+aX0!<>Dpp6[G[[K<cjG.K3[Z;H-`_Ya@= SAKMx:*{ O`΀ %3?>,Z:0<Es'mJS  .2ȰX0# +\=Xe2G>>%?~xWyv<[ y#յC44@Ppӓ)[ j%x̷h%j+uE[)[g CjKI<{ذvgO~/ {y{_߿(\6&d-Mg:%qWk#}^K _wsp{EFvJ_V_|El+u@.c*sG2~*s$2n(bI҆ӥOOٶc;>%>.ḺD[BLN-.tu6t5Lcg5s=iec<֟ٻ(ƍ,g}p;O/}^bnfv8izT\?CYi%9DݿR`!.n88x kgCFXƳkL\h2%O ?=Ʋg' !r8SL 8(yabI< 'Sø,mfV]&Op`=Ia.%P$=dN,֠d6 &}0^X;Yaq-Mk{FO6{hHOHZzciN0az IKj12ddJ-[-4 @C?Aa>,Y5?_<ɂ>Psq4م 6Pcł'. $B B8>xWIqEBw )I|}=}xOD3|}o'7H`8̥ckɏwT' 4)Uõޣ.b:Q@[aǿ& ItAoGi]tVVܹ32 Ϝ*F1~\#\;B.˽%|pN!y<wI]iwxpㄘ4fQ։EcKAotP""N!f\Ҡ'Saz=,FX`ia^00# (ؘX* 3Y^?/[ʒ:wŜGRBQN XK`%eE'!Ok{WVXέ穩G D _8h[bGm-MF?D'.' b$$zhrcIMJR¹"+pa>&*lrqua@ kŗ[ؿ} yzqOh-AZH/FBiIn9ٙ^Y$0ZݛwߺٴusXNn'AAp3 gC(>N왁?y[b4305MS=+e\,nd2sɉ ={&e`%/VV?5 ib% I fKp #  ۞<D="q ?Ofe;BR Ss}1Z n9&Ҍ4T >4u'HM]b{ kr4 ]REp@ !rl2^<dxan*fY 7q?~X݋1||,poģ}fM\>WeRٽ5%h1P/+E tJ'2ةs'u2CG}'ګUݻwQ8:dOO3}v;sjKq,ᇻ):Q?(ϝGytեoڻc} G4P@)8SxNio0X}v\8\l-͌doMETwl[-G7;GKLuIP(;;*Ĵ[#AQC7vmIPGCtjDFzZ'=k. ;" ${aހ_H<C3I,xc̚</ JKg;Cn7dcޟ;gO".& ElңtGxIBCyYd'Q-(-&@'kHP;c=g[8r2e1>i ]q- ע,%DkRI1.ld100 O,E^{),l.3}|.D+ aMd=tt`iW~?5sv068YpGn"8Z `aNx,!IxKG` ֗"1m ! }qrvQo2qgj& 1@C[Ab (cAk+3+y?,|wzR@o/tܰh%yI_nꄁ:eEŽ` pESݽeq[~xX C~.|ǯ/>^ɝ[~LQÃGNh` =={V/(Wp(oNo]C^xڅݺұUjl{F ?)+ޞΥR/d|x)s?Ĕ|߽ÏW^?*`̈r}&cQP= M@@Ȓ\ Wx{cj8b Is  6*-r#V@LI ԛpV.b3E(~,/D4YHgPJ0逶6[7oW(˫d@AhQ]*<튁5a$+F6҈>>䥔g}gꄩL6wZΟ Q Zl;wpv&$0Kջkg|٩!#QgwfL,M$8itƶo{t¨JTޗ Rx{6oI3 c f*~"gw.<>e;+Ȋv' wm6.NW,ci2P[_̿謅&ʶf Q+a§ w`^&ApD2޾䉂tB_}5e}3}C(8PB1։)S zoOwe'_#o̒E(M"ߟP%, {;g\=qV&{<HCarh=|}͓thO+ąyӣK;5PHJvi߲.t(m'ڵо;ϥuzuCNغ4tL>y?IwOT}Q:s~6Ϋg_{IP/x \;Imy&8~xnV'3Du$) zZS Kk+& 7n8b66fX[(YLvl\FzB&C{|8<1Dvr≋rr033E?kOێm¦-x#WTXJ=jLfvvB5toX{&]ۛqbix~X#gsdrN$Dž2qX&LŽy YJKIuwY9w|?CBBd8Mٮ[wZ]Y)ԊD˘5edKr~j6oY81GJ슛fwww; F~+ 5D'Nё7=Qe`\I<gv,?Sj6icI [0+>u N1[! 遲v6c1Nn9 ⌷gB9 #XwXh߇c &6Rq=g)Y]qz{aCdꋶx#KϿdR%\i-iw:ؤJꇿ +ˑM`h$0uvtT' \< bڸq<|Z k{yS#~x}o.Q[xzm?O+\9NB|З׿]t௄.AGe{%erKNjԮb&>B ]wtd|9{1y/7.I8s 㛻'Xx [V/7Br/o ;DžP1U9sl9y)&K;8B:;$H >d,_8IKRΡ ѵȥ8SΩ/4,gƔDIv#'U@6'E+Mv\MntODs{S3ظv5lپyf1}BZ4ӣAt5q4&v˰ + 芻ߣ2)J$59<*j8a]~bܝm01N89Q"'p,lӿFouN!GrR1FnIEnSH^/b~?Y6(A3œ8v6IOclnj9dS[grpTi4Pܙ6t .Z|=K-!IMm(`|90K]+{ W/ܕFX:zbꏣG< [INKMĸPo%lDoX,^A"SpKd|4ض,Pjwh1 =vlLX/wdЀ:3b _GN[ fO; JQ/<|?/o<yXӹc h!A"*U@w1]:;+һu,VL`cvtЎ!K;m>g ~O ͝KI%D|ޥl_$,|&։@T >yꦘT1oXV-nmX^\IQ t)[EGr"߽U'KM">=3sgA+W+'41mX5<y:1ub#kV%> $!'a([x+[GwgԪJݖ-pS*W*e5|^ҵlݶkVJ7e]WZEC_10B$XXcbaAmm9u$geQTZ+jn7 7%7#B1z녅qo3|v&K(rX[;ѵ[w =8h }OV"c=+15zbWG=~8>7:?oN?{ l$T !}iL %^:yuk,4Ax$-ycUWs6 {9w57ed L^D`V514Y/M @z,8>ަ}<dq1FL;n~xbd큵6.zUqenfINZ e#Չ"J#Ept"AQ  c!AWB^vN&sfOƍ2O~WDxh=ѵ#5M"2܋0 bB{go̭]SvJW3yZLx:L$8e{z7wQ^9oʕt-A?}E;ҹS'w9.cEa}]ի{]ta~ӭM[w?;{v.Ky"| 7K0}\-$T}s]<}9Mw`\2#))eL:xGvܺ΍˗8{EyJ+oT?zdF>a1x8dg.\2Ug f<23qLmX'(Ș0=}Rܱ mZCt^p۰~h+^>}sغfx%DAߪ}gZK:Q?z8GM)GX2lb(ʥPsHm} $Ut"Gs3u& 63™z?c+[RV_MuY dŅрn؈2!No~$m9F][3@oջ31ȕs2Jٵrt52{D.f KW^ƣs ?u)4rպK+"* w qwQ.hbk!^LZS>K] '?֗f.zv06wZ[FVsJȊb~O&2IwC`L2I'AO'bܾk=?{*}hm>Mҧ1DN@ ;^Kctqr*>lj3{޻Ưoӳk\ڳ˼}^~o%=֮@mui=ٻz;qN]ѻ7e̴߹Gw|ݑZCѥ`ܔ=[w7OE瓼'ѕڰ>=W7,nS.;HyA ԲZtJ(ʊXn5&'=-8X6Y]׮ e$kJ|-L8SG1NBS'fLê3HdV7|,d"l2Rb> SǮJmV<+Fe&n޼yo^qklڰ ު]K:jݥ-pOGlbq /D;;glL h+00)(ȥMw򓌫 7DnzZ\)Xd￾ƪSq T&HmEm٫d2ކлz+9$+-!} 7Ob6p#܇{ :chLfg_r1STuЉ\ݼ '26*M &5cK[+vh=ҾݽTTeG9K"wDv:8 jvNJF9`0LDW<%..^89`b茁-v~8;cg㊣AY)TT JɃ!⻕9ǥGhLtp%w p*0YAmdoy%yJ쇟)EdgF`SoJ02$VCLd<W-s!_ۻs~HD6?'1JXxre/__;Ǘ9wh9i1.hy.#D D (\ʣc{zJ*qPك%巟ީ^(Z1ؿk y;˧PS™#;(+,]8IG2Z!$򳳩(H H4ϛL Yݿr7o" R«DpZWʜLl,cѴQ^8"%x̘ #Th:glO 7qKpIiӾ;-m1nI/-+cd6[._ڵ4 p yhBˏv%֏}2ĸCeW@c'Mصs;$>vVHwS$@JuqwՕ%9f0YD7VӇ={oގ0|.)pDxSCVz C(D:;@(Ǩp* ?oȉeq1,j!EBK+azu3439m!l=+&{hϩe<f7f~nՉB$fxca6k!ZkKJ`; O7S JA#܄8wl8XX)-;`%@ˑ0쎵HXtřdLJHh, 1 ނ"b %"bJe %I_L(/?}L 쉆U7gD, %Fb$0xb"7HCK1fV8۱u*~Jw}|+퍸] x~Oo~oօdѿ]쳿H䱅3z[Jҹݻ ;K6֑aC5ٹ-anܸpL>RhRx๘K s2[V-`ڱ"=Xw$Ј=XAiAK? Qd鎽=uOq.XG`?2ԋvn])"4i-f9پQ (#$PL`ʄƒ҃ Ə($;8ԩSY7弴j!wa֪%5H,}oK?Uݧ$aZ:m=hE!Vac\-枱j Q8{6MpRAn.Ye4浫VL֫j ')b cbx/1nb9̟50(Y^G\puPqL )؈QF^7тyiYQ1(-JgިJ7V2UE4d2>7e,~R<dɤz($9\5fg,FųQ YM7j9&0fD:^)$ o< Rv@YHf&a2qfuA (^XXXʘz"@eNNX| aF"Ox|N#ٰA`_R<`_޻^QQUBDh zիAbb'7TKh1Uve a#<+*]ٶi-?(?˻/_xyK]ËGC\@4ucUUpAK&XoCw=Ukv =MiM+WϜ_" G7O޸E X,ȮVс?߾Ƴq0YSi]IjdL %Irg-aQ jn&׏8u`z2.LLr[mkD(Kb٢錨)%c`b 1,Y0Y&[_BqnZ#K)M,'J: )T+[I8HW3bd%7R 2wSI&?Q]U(=5CC|ߤfLHQiy;amOThz{b><',3{臛pLį?UY2͓şiӣKgz膛=njpKv)Qx(/ .'pjsH```bU`YuE̩+fFe`?I Y0D,.gQLYVk_7o<sU߻Zڪ*7/]̢elY;Qubؓ=Qr5|`uAĔf+Ր@?K5Cl00Z} k̬12sb`GO输p ,Ć _WjŦecGC%8$&S]]Š+C?_g_P\Z"뇆fgxM ƕTd@>jo/ir|V::hǮMkY\$/jȷ7O>8/pa&2#ڷ]Z}犦 &XW[~g{t},xث+]o^hiӭ]=ݸtKnc~Ƿb7yr$[Wa& #;gLWKcM1S[K HOO%+;7;f VJx>cǶUTeBm]>%)ޏܬhIq`L@j a,_4Jv1gH$Fy0vd2K)Cs`?>WoQ(޽;@#Y)ŋW|#O1{G6w]W]:%BR}M/i$ܝTzGI~T7q6>|o_`,c{p\})JᏏsn?+gO`g&Cի:vm+ۅ!r<99S' C &>C_FW[w-иqwwwww7B $BI ݴw;ܱfZ+Kߪ9zj@b6'$J Śɣ1oTTdcQe.f2.Գ-Mӳb0^k)198 %1^h[PƉ4/LVkfD,_XyKm"̙Z~T8;kQ2mT؆r8m"HA[ɂYȱ#Lxn.r3\y.-q Bdd(t !"<$($%a~oɂ?i!نQAVx fV!;= A/\il\ЈN~poU߇ґ-tlދzyk*L> < Q FH?|`dcCAd7|20F3p@? 6#`<Rrp˛;x,_=vлe%̞3jQ? (DNwݳݻ|waH'h62Ke qx[36Y(')HULaGFzqX=&A> nj0-mc{#[(NaгP 6c0d塴hjx_S-g_=Ϡ\/?g~6oXu-G_T2m`S`0D!be8hdge#3cMDǦM8b?vn\m+Ѿzr(n] Cc}plW CCS)t  @_$Fq Q̝D`Xx:lXm4MKоv1Rlm[ݛ m8$UnƱ=8:u 'o[x܌#|ԡ8ϱwۺqS{7[I<yo='7u?:caߡS3ukTÌmuj*{:7z02`=FYB vnvpzoB$$( WâHIDdL (M̬ZN:Łӏ/9.>_@{[32Kl 0$CC,xOOD;]IN HdOx&_?8.sA߆qvzf\;މv;yY}fLZM#]FA]\&D"bƝ\kUeSV4Dn$ξ0\y4P' F(spN>aV,iuOQYKrLR}OqvmCƮ><h`&$<5MXOWP] aH>{`㺥10SC|/F2i|Ib˜l̝>ifN(9SQ310 ;#+tCA+!CdUL4 Ռ~*Eזx! 'H$JF;\f={#֭s-Gtj140PF1p/(r`ggPoF3f!1#Oª%ն#!.p %ؿc-N܆7DmmOBSU}hEzR J Po@yٺG#qVܻGy-8||$ݍ)o?}O/<b{Hyb?r<p;ږ s8N>޿U&⏟~_t7.CqVOt9Fκ:ǁ c$s8G'= 15o`nƖP҇ mb8[!"> C(q(WQ NHABJ:b0ou#LBo¸pbLKU 7XT?8J+B=]W%W  ='$%!59cʋqa5cwӸyvNk8}5.nÍ[p\;':][1<\Y^(-!w'h2l(F(ݿ~}:*sgpb7.ޅǶ lXj0n<j+؟ Xx>C{6rbsc-5U+*P`$V||lmشn?n0QG|T0i^m͵C2Eb֔Y1I`?.P]OASe)ͩ\w ={~K=vShJ0f*&`KW ޼[xMgb X~&MT-{ T1m4\4Ssr9M'rҒO򐚖Ҋ>e]ٵ]Sq0H9-!wG, W0WO f$Gfaj6V0Mͣq<~z&֊s!Gw˄lؿp`_:O9ƀK'<> ؿ}j/8{a[_$|pO`̷˧Gbqu[0j2dGOsS_p>W^q3GA;L}e3SQk:PUׇ \ab"KKMqsunC$I1}HOM g/###*i>MRraqf2o/7XY2YHI$6#1wyzo]Ý3\"8緮e;:`<8o\˧fM_BD UՈ?<G7`>8J(HwُO'W98w|+EFNRL_ cKP,+m;8Ƨmx3ښ0'Ŗb=2&sK 8lGG 9V0(/$#" ͝mX0"1z4$⃑0y@O1&loFz`ࡌ=F(**)S0qb-**ˋ0z(lԎo_~ǟ?}?g3.b=Aݔ>s 1Bma&R侢ω rdU㱹c3Ν8u:{6CyȊpE&u 7:a_\߁'O :FPQV8c T]./n:. qٹl8vƅmxu(Sӽpsxqv?ޞ?OO>yգ8չ.>S!Bvkfo<O7Guc ybǿ&{l05" MنA޾ )lu``4vf027)_ϒÂv"G-~~ް1C<8IOg h $8\MGD*&bBB\HJߚq& {U}%2A<0wl.g0e($$ f`)Xx&:-ƶ ji@GBشv>\yc<l];Z{c#v.kpx:ٲ[ZѶvZck l۴ۖy)lLR;3H/GEy>&Oriq6MFP߾7uK4]܀bѼi1uϙ\'7N ͹cq1lZÎt9;׊"Bў OOx3CQS^NЏ@bf!:: 1E+(x"/#i r13 kF!/?A>4$4GU1RS If31H(*)e*FWlT9=UaC*<s G6aF[;C<{E%KdYbDƧU*ZХpFr|3qhkmgp6ɾ\0xIe!4m4l[q.dDž"VFF.~IH EJ޶ [u"]2-+`3k2tr<lk_F{i*omƑ4:(N7cOܶ'(6񻝡;Dt^]޼w/Ĺ]4[7 {8.b<ܽg.Ń+;܅208$`d#,,uhgs81؈60694 Mahi sQNc݋B6Baj,B(>\@+0 a1 R($dq wHOK_qosAA(q5q18yQT$pų8 GRBcAђqJtiMbylg_s՘7uODì*|q6M+g`˺yu]֭Y&wwJ%t䑝4hY&1 k)*W,ǴQ^4yK);Z#=|xvo]O_Yc)[ӊEӱpV-Żؗ\.SD>1nd#`m GsѸy 4 C sSP($G0[D zJژ`X GFRChh&e<(dƠH5Aeh/ 鍲4grBO[$ѣ0y$_Cҍ(/+CQafOC?ضqW2'~?sc].OԜ"Lի;Ƅ-iiN@^aZZz.ߋWN!+>70eøtj;û`8XXCE|XB1i=}f9X^_z+{`3ya{ZlݸJ-V27ش'wvԮN\9wD#PT;UU~vӘ#@9˸1Kg<v n«{gqnHg?!#\_ 0U(9la '{c FxX0;;Z–S714Ǎ-`aBgoyԄ!pit=<}yQ/DE#>1B#"}1-҆t"3&3_N8QؙgsLg <DR!_1׸h!:ȣh]݀e'ch1*0oJ%NBqhZXV>kfbk<'7P$LMa?AûgkW-F{rb9F3KLؼnn=_>I\_?/݋krh\0k-3&b\Y.JÇ'8J.x&s<Aks=ܝ؟@Xh`?OƏ(M,d% }egq@'rL +u`ĆJoj^ i*1( 95>Fp x9A72E@hLB(.+E1[UuQM˱z)8u08{:wa9H,]O6N&HNE*MClB*2 K Oȋi.?{ '.L{v6SF1A\9E"7@LpbCaojEr~ϯRb#0r3v7heLogdoaj]öcNҊ;:q"Lv vڎ ~6۱& s'Ɨq <qOӻQܼ3D̦ 0'Ois&pt2}{bҚZ0{fvp_ M.x͸ 42pƀ1YL忱Ï/+ܼybZr$,F giKI@5YRD hd'cbBl9oYC I]qZT [>f`ŬXD^^5cVMǡu^-:MƶeC߼l]XkWlm#wSlӼj 6cOޞuU(< gc27KrGxM?>_^V%` o? wo'tXͣ<i܂FͿpLX$@ΣNK, 8.q\:01A0DE~d,k\ Ɛ)c]!zJWS셒dYMA[gG "rԌʈҲ"WKS=/?Wb<Na^p6y~?qu4wCq4g30n^~wI$4$&P_0%~n_ə[p^&"E NkqK$yǶGbh CaAӬ0T| RRa[)&3/EYX:cftzKxhzlƆe8@Oxm9Kނsרٶ[pyF&;JO?r~љ6.w8M=pc5ṋÇWqae{@A||7.BeY&MȆf04U2tnvt6 =]`jNL ...s!}>l d9#}9,,B򀝽%\oo/jx_,^<<)C9)1)cw[|!:yF)Gn^<dPwS˦Q 1%7k+0kX5UEQnkoXmc)vw.[A}9t-+ql;jo3hÅ#p(M 8} N܈(qlZ2\€[0(n`չqvoYK"᳻7rħWw9زq l!:QXEYܾx\P/!>*)q4b )dJA^V"&.b]1E2yJM@AF* Rd5E9iqXJb,>RO~fƒerL,KCzI*/) )a ChbmT,hkZ/y܆I]@vEnS-{v?~zSط'5AbZ\L~\R&+0ctx|Lytz% A.X+>.!ogEH:R8 {[KT$73ht4/E$b,^yӪpjNEc=Ů5DٸjIgb&,hsWêyYM3{ӲWmIUjZ~֎irsx|<Erm̞{#{cXDaNܘRZYoiL`([}nba 36C4A ֎pbPbQıw[; `"2. b * QbEN<oG A7 __^`ڥJJr9a-';LU؈0Q6Nf1}2fOuhXXU磵woYö v8cq܊{ czf.ލܩ}8 ]ric;i>I8{t;E ވbFof;o\?~|(+3鉜:qhhGǁ=)FT xxqQ|x>HOF.1– т u)D2*0SkFa&1<59@32s(V%bqEr!EDj\ *bZ̢a[|{njʊePE"'+kQ]=se|^NWTTXRlذ*~-9^<&ad|"#ܽ7o嫗xߘ`5+OBr>W;<o !q7pVsn<q  qM ״WnЯ7 QQV{кv :[aMĂ)c0,K1}ޱkʶa6lMrv󱠾<UCk?6r޽v 鱁ضa9plh]9o*3ܽro^b  ^?{Wcr̙Z6llL}- p$ d Sm8;Q@Є@چط=&b?fmg t8Xt%Jߐpye1*.aшMDl\"q쯜?~{~}/_^i]L^\J)ٚcˋƛ36s$gcZ,Id\mc1xj8}=mhƩ=JQ;•q,~q?.CЊgm8OOAW*GwxFIc-E^lr?z?|6$]r KMO*7qq{@^ qsrhĶ,0Ey( c1}|%zV Ƃ)WxP ϖLV"!z%;ŅQ?q,&Rf$J]Q\K1 4̟X PZ^r;%Ge޺DG+gaUc=ήOWT6O4'x};8rߛ,ge!93酢b5ׄk}yCJsk5x$^܋G g܂#?#[&aݭ cS^#{ uJlX6OHp<8W.͟F~rL;Vܬ[KĪؿ ϡ)\3'h$S哸rh\=`t\1t$nr H޿%4IΕ=UTXLX (afWsS]3&f| h `nm SKg;X KQW*JG_'CۡMLB )/R/FD#9!Ey"<O& e<4ZvY~☚1}"fe9FPO" `;ko*Mok 8{| ~o-j[v3I8xߋ'̞-qv4ˊ모V8 'qnԯ"9C|z{|/cΉ] 8v7o+ Z |˱ZC>.%*_X 9 ir'TbBe10^L^{Ս`Ƥ2/.NPƑt(:7x~=jY5|m=BNzJ Ӱab"e^LN(/%/lbaQQFQЂ[o_~=<ȭNs߾z/?᝻v:SoxN]}#3'A|b='7HIIENv9 75ک|d'݇pW$z!Zu%<:o+volC#}; #0 {ؗ-MSaLQN)eLQh]1 6y4ϟ8I=8<סsl9 jK9xD?w}˪9sr"<^a5厕se/ɣsw; .c)̩`03U> ad C04ւ-u@j NpJ"&,ecs:0N8 bհ_kd|j-?OYiG  Sp >>A~8' Ċ<<dtH;h+%8z2q |(Ұdn:73ye.Mè$eSؑw.;pbO ;I1)pǭ틱} nA"M3[˃+pv<~T>}OníKp ɭu~~ܾ.Mٝ)JOw#.8"9 >4<$EnǺe4$prƕ>ᵳ{)06D`3#}XGkĕ)inOy;"ÑGQ4|4^N6p9u3%h?w?mdEI0)U%4 [9CY_m\Xli]7/?<|?G)иxV.]HA׉]h] IEK9ķ2pفiU$?xx22VbղrM+okmXpѷG)3(3 I 37 AC]? gɫbUA蔪2̝R ȹQ*D=EE3y,b i\aд6`)][A̒c [8cwl=u=/@DK+ 竇i@޽Ƿƙh[6EȌ󅝝1lٜ <l`O`nGK v' ,hl=̬0`[f2#l푐x9[>>AHx(cbMĤT%g !11LK_qokoc()CFf C0:'GRv 4ƚ$ dF0;^&a8uX'M}'.P\>Fq7.IUWOxz )<{w(ezpf"iY^ǷO߿zÛg3W+K7CKl )-v$EC)ŪF*(7 \ƭkgM|оPSePT3C0bW_>&j5Ӂ&hyD4NVz0Wpey%(+ݠ2F)PKvlf4UNԠ5"[85=- %ֳ-& y"TP<l؊oR4|b_~KgQ\]0(wn݈c<qN:?~? |I߽wgN MiTơKNۊGw-rAF 0a?c3}=`Tomwƒbz%X"gPUF8gK@MXj!6]Ս9vaA}-:[aNM] er][UOyq|& ͳw(,+'W_<okg)ܿ~ +qdF*07#&0#xy'.'b^< V4 ΰ!pKkgSDXFL$ / y07A?vo0 M 㑘I/ҥg#(OGrrϿ_^ʕHKBIQ,Пm: 9yk7ʕj+`* [vlZ4@Q ^Ûywf<z-˧3^OGg9< os4d^[ue|s8x?+*x~1O/뗷 M/3#||_浍Xb)_<ڱe0-e'd7/X;ÕBYqϋh"( 0k Uo + 8BoMĽc_Uſ4tG(CO]64lľp:9%^u ŝbKE- 2&΍xx~7xz?p/[0Chر&{.ϜiSp!?~z+]=w{wv޽#hd8ęql&\GlDdǸӌ4`.c0G?~?r2BU>^rZs Ta8,3o9"G7̞&4XZX[!󾴷ٓP^seu%8w|\l޷gP/^=CVkC]c^߿wݝGfth(?Q@kR; (؇nAMi KC{gW{n  5l #G2(ɨk+C-"<2Q\N f!^8iraYq\93twP 2lhjZ5rڄR; ^ԼF@̋vf&?ЅvcKAl\6Ь=̓xvA2~xx^o>Ƌ9|yo5WN xr0>ܽ*Wyr pL8?< =ǧXz6-!X(<|twƳ`nE ĸ2 *(Be*_#ir*?bLO&pԇHpY_l?uq29F+aHUUz@Qš/tGW)<aN`,V3Y 6Rij(ӠϣG+-A$=zH0J(.!`ǎx)~3E& t\4.)عyB̙6SǓ7?𵇎p]ȘcK 8o.~߁Pfp7Rj/x3ۃs߹ֆľW0x5'V~Ԕ hm^FݿkzT*'c2;X:;Z`՜ Le<6Lǵ#۰bV /+ƕ&83OԪb}܁'ʭ ׏n[kp|k"W7]y:STkZ>M+f!<2m}v4vR &}8RחVfT6reAQqLVhoϘ"*yx#>>Q0HK=@[email protected]{;,#ɸu9rs؄8 tLP%ObЮ2XDQE<Ģzt/C 8k=Z@r\;fk'n݅khmal_́׎#&<uoŻ'(NұMyr+^3b{"?OD1<<<~y{WHxx~#$irnbr7efK,Mkh ue}SHsrpO+\])T u(FW H$ ā!iHWS!1>s EPTxnUTQ$G3 xZ }(@{+y4 (/+dc0X$% (+GKw)7<44w 4ǂѺ~5uf2h̜:aO/ϟSx L:bںE*9(/ہ]DKfX_\<i<ĕWg5Ŷ.ԔT1ݟBlq+).+q͙FaBC3wfϚ$EOˊBSeZWb'ޮ8;V MH`wa;S-B$Dj+h<f YW.5xlEDLڹ3!4hܜ+Gx#0be4$~{ )[shh"5RQ;c)(`lM`g`pG|b _Ȑ˒""("hWxW`ɲIEcou/|I##‘8TDjue\ʷfl"]tPʒy"75%9xt8NkKc^jlZ;MEV2ܶOin7?'n7>@Ls~~~zFq'k+xj/>(wqd{݌E .=M pwv`y\i0$YaIgl }} !ǩ1?dz99|i",3='G 9 iQA4ΰ2׃><R}<ZSe \`nk?댤ё\wJ[BqQļhbuA M&,+ Kqe33͖5rkɬuؿg;ϛuQ?i<jUm ײZ߿x;8ڌd QcPU5&}"9 v0R}H ǧqkjh()#titѣG()v6Ȣ15/OѰ+ĆUi)V/-- kkб}Zdrzom{p?x40=xt$6,i0;GWS^кbk<|o_G_kr͓g/'`>y-\gqaM`h ?m,,}n0IgH VYAPgﵰ4 b4E9(+JQ\ h*(48Vi6BdAdTHdddd\ ?b0$ƅ#-9fznW_?Yi${ED`ZLc˱N.S'KMg-X[GCuXmY\sXVbZ$D8c*F?[76ϏѢb[|q<ٱ?=/ef>>>?~}m\<qPNob%k4ocT0<DžShJJ>y \8Ks =-uXFm;K |38z2x>lGNM'Zz4 ښJj:d41I & ;cjӖI{Vf.(̑_8,.&ˊQT^|ƇB,_ _YzK lbҲG?zv=`4cV_02^||nBFh yz,IDATq5? GPtx*DB>ڍcۆ5PWO/jûu};L:V-ê% оfllgn|l\(ȳcc :ػx??Nj-o71_ޓ.;c-[_ó'S1m98Nny 3wwA[+bޅ}K`-' ˄!0e-d325[tĶ$ +(a(͂$F:cҚZO^eIi `r.wWXsHyZ_ZnBDGbʔTEióMByN\M1xrn*u#ьݻt8=ǣydmC)V/c7ӵ ~~[||| 1.߾]x|zO.ӳ;8{r~`Lo8_Ďk1on ?&57[~=ipy|s\t ::gM`jd]k[@ [[k8;"b|x R%#bݑ(_S:1r@AGќiE|rYOoprc7|k@9XA(VP(,' Dž g?E3p>;:1oԍu4XL<w~=[1kLvl@BJ<td\Y}%9~<vΦ0!(DF>>bkj o7g>5hkhw2)}agm*WP65bŢihY=MԆ66iVPn(mX=˱mB8I{gHWn؉=o]%>!W w? 'ĥ߿79.ŖWˋd|/'b*Nq7jFw7z˃nN rALۑ `j*L޷ _M3BCYy![)I[ :G;\mm~ )' H=.Wee/{;,xxvmkC FdT4BB`֋BU 7b40cƔ a\eƕgb:HKز\'vL .t-Ƙt,Y"/7 @J:+1"뫰mtx{X27OwObwr̟Tǻd1 V@(I&>hwnK2eټl[5K]HIt\<Ha=#cPqUa0T a 55U6b_p4Ղ. eWp{X٬`0r8++@WU*o3XSHY! (?KYY} _o/dLL1,H ZW5.K B|~H sc=fLX)4 sfLуh?>hx><jFipvt623PVRe᝸zb7jEω2c|pv#h]Oo@mc`~o,_쫖 aX9@Ӱv B'[2Uصi p"ƿSK ];WN\\9 ;WӻIi 8EsgxDL~tmqh$:~> ?}}Msxwȷ/M(K _SG꺺Ğ,UgnmK;k%!/-fۀv$.G "$"# H--& i)ye'7FIWлϷπxLB͘QXH̨-Ȕ5Z(wPLX(aӺRX)aѸ,5%&֏C-ƕbL8iAغa!ԇC!>>2掃Nۀ"8f'Moaxk)oQ|Sdϟ|VOQ͑0;7[11; ; E0eȐ^PR#:#~ ~{E*LuaB|k)d_ S*Ca,@[ŚFi~: ㌪"cz 1Q (+-X((C Cn~ 1"<w= 1gT̚5'Oѣ0eB5O'3ڵ Oh4~xAN !ZPb<27E^~xnD>kgpJ?Fx4ځ7ΠyLiL,yt0x2z} ! HMMDG{3V-%W,"ޗcu:D>MM\ۀbW*ۼد7,%QLXڌ:q6\;'(nŵS;q^b%_\;g([V&1YX ^Ќzt_ga\,WKp\@1i ^]qu^ Pvuu C1p0 Sׂ=19-= y2DibۂhRLbsY WE[ObM AR\"CrP\(շ'c@J QHOIeV"Ņ`Lq*VaJU6n#Nk>B IQL d+}|PgBFfs.l/*Rƕ$(=[/b?Q]%l,'_9-'t&W;}X0s ̓Hxo㰎/ּ;Z$;F\nc߫JA;(_&j hɒ؈|O3hK!iKD rA<e&ek<4",MuQ^?W_j %eG?+8ϓeE(""ٹ9dX8g!ܽ~%w01m8Ujǡvl?|?>o^+"'3IF #? G`?'K^]z,[+0P qu gD[fFP' QB^Cѭ[wBEش aiRt^~׺ؽq-ڨ _|} lp-vQƱ:pV\>gmw܃;'wo߷aE+޿w<^'ʘdxÎѝ:?^~ 9? ΕXH:r%{e(h.LLH]7HQ *Z4 4!.60@ c` ǃ,0UlK[U~xDR3+' D DjJ:c3?&ߘh$&!8 ьu}{Ƿ??_$Q;q,jj1"q4y9|z & *2EzPi>ok*gzreqÜ8)MBd0'@M/=-|Z}EbjFb__WfT+opqܾu Znb/~֕@7㛘Q_c`Ϟ=C[E3ÔAy tS}mMؚNV5}<phzbP +Ɔ:4fru) 0X$gW |E nݿFhXxqQ@\,))TPVR3pu"V=E`rz\<sVɭO3&ġvb MyC%Z6@Qi6"`ha*CxC7.Oܑ=xt4"ma6ڃC>=A˧V|hR#)^:p|-I\mA?+a4-s6QwԒޖ%ضf>wM+phj;}`#Nv]wqv,>"'ɍxƶiz|^=7d/V) G3IJ<=d /W\$p++ޝ<=aM}8fppw*raHM@L.bUBhh(D鲉QL;?O[dHÝ?\Sg$={|`.$F.?/)GuTWP$l“1}| ,L=];(-HE~V<%tZ xt ftKMBia**J3Q5irߔR4-EؼvhCv~2Gq@+͍#454D7gJ -.Ҍ[[r.hݡD9udɔ=xd8{SDכ⿯4B(eP%ȇЁ||x\Q2LaH_()S|(` EI,տo/4D} C@NF3H(<YrY0 m i ƥ3+k߿d@ q>*1vLV3_OE؃'P?qL1bJ3kjj _X$zt́ $9-em/ +M KeCCC+)c(CzCCmI*+sց jV.Dظ͍ѴY:[^ i&vĖ ѱvlZIAN=S&`<_$AY7/Wܾv\ 'Il'w69 ij{"Q,u/fME$ 0, ~!, AR8xySĖr)_¢FQYp򅭫lĠ4~ llM`fi,X8<<diňxdd=f4ٹBAJj ECc?:%A41$MOxy@G[__4o)˕jhj1pS:h̚\,BDb_>Q!hm@d#/5)R=]L1/C}]1fN*EQ0g̬-14 Q-Vkmaxrpf|zq N ڪR<yxݺ@߀M"_ɧѸh&.?@?w)Fdx&`qu-zS@Ij"r>y+[5rnAaP(  }0C^ޝ1CԌxD0Bm X=.u}5 Us%[33Rld"+S$E>[^AlK0et<彼6u8L밸Ǹ2TdaɼsuOp_X't`abDp*pV4eCՁ~!&D*+|cLmEQ$~?DJJB\d.ZCE0 [V-B'U fv-͟s'y$,E=YK좰رa\K1یt7;Mѵ[c\j^¦3 <sNf*&oc;bѬ13c,2ңp/4XBT| i}H/++ 9yDg"iV xݽDd%.4׃oQqq#HihEΚO[r~LF|#QapEd`ů?WbK*2 e+j)."56i1>; uXMK9})hR#hJ oZ$Dx<߫&R/LEY^ JrPULNYغa1 RƩrRpvܱ' ߋ g~Ɲ|Mk:|~K '? 9T=S&ʲa=uC?r~У݉_a$$";NR" 2=k޷o|-_2tľX1B*Jn"n>~n3e((Mrshs$ b8%4~Aa sK0n߻,<JS0ulXހ2U3'rwu\҈}wA^F̺ܷ 7@) UB['"k˧Ml^Z(#fan-!0Z*5>Oܬocu@Dzغz>7-B:4͛5sjaT-zbAX> W 8{=[;lYګ:<w:l,.5m8ݍx%V\VaɌ*;)+5P78 Eu@ǒ>5 SA;U"Io>2ȏaחKݩ%ãّH'sFcT(×,/&Ҳ wЈ0j Kxj=iԂB2z}rhz< S壦,LAۊA\JǨhfRdcԁ^xib3&[:e9(c 8D,[2 m x@oX`\>_'1Rk1ًS&ŋoyض[6/Ǻ8C,\0/M]Cf<XC#<nNn={R!yG1`P\j=/y9_u2}PŋWSQ`lU" _N>( ۯP6cPXL{? YYYϗQ41Y[? ů=[mQWW+WcMW3X0&6'2;=HL:^12GTL8B ;sr ݋:q!:[De FO{n='.a0{{{p<**PSP@ƶCI.m]砝o]CVvULr83-Kga*v6XVMfHN?L?"O΅bfY&c4ܸ;c23x{$>׏ӫ_:{}rbI?"+#,,=~$XG'bX\\tua _$$D!PLupttIgzz?/FNVT$V&7{;,̕_Ë? n6ԧ)~Е:| uu`ifXL2S&Uc2r`RU.&Tdc ̚ZK(반A}ެXd:1p\6]8o7LF;Z3E;oAp2v5ak :(fӐ@ԻX;"!g+9uk#GY|z\RI\?,lǹC;Y ӹط A._g؄bVJJ:{(` S"_ :#GȦ#JgiLvf:p0ׅa?YNq,_/J)(PT P{*aJ2њ PQ` w! KMI@^N*3I,~ȣȧp Ogε6iSuPE)@bф?߿?+Y)$VN+ d⠕CIL *#=p6ܢ% ׭X06&6A GAIañlT gՖΑIW4V.K( eݾ{;VcO ٴ 9~o]>3{7?Љ#[̞6?؁+hxNd˗.Cw^(߹$΢EÐDDPX B 0#02J>ǂEl00 QOQggp ?<Tg_oYN. I A\J ӑ Ȣ2d0bbcVpp_V:&fп/Z$5BK}$cbviԌɕc3Q5X2sӭhY;(SHt1y>w JÕӻpATQ(kZƂ@;ܹz^$;/ذoDi֓5|y{[^1T6CH.NUDJ "C;IOиp&<!W^puqOG~(E!F%Ji+ DR+Ñaܱ2Dzn-DWkF@Ero)_BUuc}]0\2% W_}KB EZj2 rPRĸHFY4 b ȥay>>KQ0'ŤiuXފAEؽ H߱sC}B``K[gd'cVu9OQXM!/Ӆv#&à9½xr":[ȫ)!A0RaۯKEb9XD`,زd&75`8ԲDJ&Ot-pbئgvƹ=d|`.nŝMIpe:n[یvxy0ߧY`<9ÏOchZ$P#%>1̝<@SS @ wg(1E kQ]lQp'<| (O9"-mMx  d#.)^L1OXXܼb,111'?c_d\XџԓM c]ci !&xI5?1 G"/3'c|q͍`+&[gm&;.WŞkp},lDh9e)6w"7ȱëxZWz7 |z~_:ŁNۡcûrp!)on{[Y ["ޕA>pq󀮦6(UCEƀh=} h)bĀ|omG+syQ225j& 9R}w=bPE Q++#U)0}ʪ *`En0 ALOEnf:ʊ+KcvN&PS5g|ps)tMiY[1t VjhͲ6?l޴N53 >v)cP?y"&b5±8u`;ގH-h+A߼gho] |9ÃYy8gQ+ϷBbNgbbX4 ]K뱕}c`Mh[H<'ssgv5¾fZpaZ=ҁ CooŃ]xvqݎwN˃ yyp>>;GiVeV܇EbE x!!H\@`B8%bk#*ij;\=}?7_,}1Q(2ȉ@+ҳsb?#&I>¾'aȸhbZ$.U}?FWWO74#jLǗaJu&cL~֕b 3'bK"]<o:,܈mPoCXhLTwpjܵ> !~0];7ӻ[xB_MoZ6 wx}ȧe|_'On?> ?u8vM :HV[\UmjsEr(ѮF 0Xjv%eb_F0d35֗+ ֝l`M시fmH7s4S+DepywM}1ǀA0&'|}erbb@.˓('gdi~|i^յU6}7_Ld`65~ѱj[k))I|⸱Xx&.މ;;p;[Bm~w|zx ˻~ xsƄ̔ypײj۲4a6-CSI4;F?Nqcn\[ְpnw N'wisq"c]/l_<? /ă3;~,~zt >;ǯ//G'i4/o-Gfb|J~ }菂@X,3o+e__IO91B̊I@M`1) 5Y &D"Z?!!^>aqd-4khAnkAn$.M WS*4ChIlgf*1kxa(h]Ea)hu=ںa#l'vِ?v`Lvxf\Qܾ|fv4!<bx,Y\v`F=i&xy4 .ôic`hj4~Ngb[óx sEۈLTeTG.{M->V7χp%*A[KAMddqLA2a$PYL<O 3 Z#A* SQ [OK0x0ffr!У`7  INEzz\l(r9r1cz=߼_>c0tL\K0 NŨ"|䢎"@_?=uH^=QQ OWWX;HKCqaF1JK)jqB_2KgT!v&2ӴASf~1*/Du5F2(d  _O4LA©_8 iZ8 Ҁ}mKDMQ#Q0)=spDvNpQ"t`\'ނǷ&ILlI}z7݃r_ӭ[as w'&iaHWy؁ Q2ٙo7""Aq*pyœ b#\\Ʊ0zwxRX8Ӝx1h F"iyȦQ-2Q$[ ˿ǁoaUm]hA]#(j5u9U18I44HZCЯwxYWi+ټ+fR(Ԡqhlns{[email protected]?Opvi^; ‹{qfuxx(>C'o[Ē.h׏#$J(]0txr ܾ?D_>b3E(ѵmS3 ѓc9]:bp6X҅> Ԇ򜘘@WOSCbe SbX1 gCD1}csGiCE}$7ÔiCWׄ?HWC_uG# ÐG%II1|:%@qq2_^84J^8 SAq[dL|:G.<YQDī&Eza̘x9Y6i4gM𰵄6 F >ΧX3GvЮX4w&͙ F:#d<H @o@gl\:Vسr6~Ckcҩ(jwokƥylMk{qP;݈;lOmaی{7٩.:/鏗-›{^qo4?//Ǜ;ex,ZIE5,4AA$k8\OU0Ǒ(hoOOwB f60wpW|)s--y:ƒc˛c*1BQTg HA^~܆0<?,д 5 U B(U4աqŁӣFs bj5-B9Xpf3h'>c{q(J ph\8;.Vy0^>OK4U݃q<%ۗ8&+2gыgqAYBQSLlRUf&Ťxx<~N}kَ@_Y_9ZZ030Q075(i#~HL`#&*%94d_ǰ#CCBp09@U]4#CŕH#AG[ z}6Ac1|8"z|>~~v5F 2ӐEOOCq'p| ǬL7㗟^ BLX!ϛ3rBVV&LؿMoޗi~񀳓 .B|P=ZlC)`+AYN614-]Dav#`8|(<m̰ejh'K, bŕ~_X{)ػ|kf@l]=;|J\q7h,o#<:։';6<"cxyz^ o+{A|s5}xvzo# UԹ0"4Q ;W/b7-14 rş`iL261i;?xˉX+Oqa/{RK#./)CtB2Qġ4?a M0Ț֡QαeL^EZ:011C}8W0:t"9rhlj^+p(l[[j Cg Me=ø|]q|;u"]b32})xz8. 6,ݳE|}Mܻgv(g(WcgO7矟M 9vn]O`f##+*BLSB_*j2?0Fꎐ+CijS*Q,+-Qj2qHC(L]`0zvX2\I!@cŸ-0 =m(BN~[!/Z8/& ,Waʢ&C~mM5޽{~\c&fx]s7HI/7o?>QɈ.u2 |ihJGa (+P?qB,L7 AV4a}g}-Ke9.ڎC]0x,7!ا7Նcz$7}5<ѹr1v_Uj]`[l_7{6,ıjF\n*%g>Nn[x9v5yb>&ݵxt ?<:{ѼWbli!t67& ĖqC+v!} ĊjCCGcO@4:* prt..U ZQ"ddd1]s7h8g@:r߈W&t)(u- (nX~X8ۖ-Bڙؼ[cI}e8CQi+ѹnDپnZXC[ЖF&\8F(4n߁DIM8s5.ۄ{vv 2a8MQ1"Fjuw Ožݏzfn\QH?xF.=;à 4Zɣ܋lH?χ!LSPTU+dKc /)/Ǹډȯ2Dd!4.~!t ݽdw;xŒÈBVfՃ. 㢑J#g#KdJOOOFFz\.>s&6Y)'vfM(Wd3dfEN̨)CJ,ů ,C6&pMDif<F& DTfš$- a4ƁvBTj 0,K0&?<o4)1pujz", S0#SS|P̌ ,)qhIŪ XYcvl2jt`k}! .m^&Zh蘚]sgN *iY蚖ӳejváRn@۬R̘(2!A &1 l41FA8 5yD ~<dU` _Q1$xPl28FxODZv*pcU= k0<+;$%Ic_qs$G% PRTͱ.M\;GL[[b|g`o[@L/=*Ǻm,lXQ/W Rn[`sxs|ƀ58{;pxZ@d?{h,*n3ukya/FA{ H92oo߼ w]rE#qKBZO q{%#@ScLMJ>#x#9)!>EYa~$.Z8cV_0~xTL1Uhhl(=%5(*+3[9Zba#b41N$K;0F-;ֶ6HHGNv&I?%r -#YfJOHDݤ K)b<KV-CY8 &CL85-ý[WH򄽥1te> E # an0$=iH @rb=(_WE!&i8$GH#i1A2?M,}T;l1?:J/䆺#\PꉂOd*)S0$>0LȎD]~,P?* XW||\j0ǡ63rQ1$)|Wajq*;sFe`FQIDzh_Ty1TqK0{3PC@80nsXec<WD""1x`J)j <~pbbJ.p=lh\Gӑ/azLVycȡigL 7vOh,\?ZԡabСP&wq2h(w=㱯MD.\k"{{([cXX (J䶤- e,8wmq~< vʲ[rg5||vE/GsJ %n'G̜6 ߾~7.)d!mOA~1\_K#@Վ,a0RVĸ2R DyEΛNǾp!z\&MC*q/DUU5bZ|TNDiBb-[h+OrKOLdľ(tuq4ami8䠐F "YLN+Ye1fn|fs YuctTO,W2v]#^a`mm}SژCA;z<4S^r3TƪTޏ pANB].+9"Ŏ I4^2\I'{!6ގL"u#Q( ']P(D)\{Jj30e`Rv,&YeX4> tuVj0%?(OĜL%)yS,hmʹc1kR j Xd3FU$9$ə+8J`򻝍-qNQG w@ľoH }qQ2=m0pjQ̙)1uL2Yyԝ2¾'Gid(v#ԡJ766cawЫy8زN8бR+3/ݭ2MѹlVymfP ޸;P4-KpR߳ZqŃwb'jžExLi2~~v|sGg`\Y!Fw <1sev;w.`le&Z[hC]/LaiL[GCC #0q@$҂9(t|be'+, aIx"τXN dS[D\Ҕ >hil,ahl?03DA~~.vqeYlEHMZ?y uo L;gäYSb:3.cTy%Mg6-+p"~P8R_N0w~HOABbܚ$8,1f(F>9: չIHwE BeD\h0lW?}%$z#9 ~HwB*(3nȋ0QaBlGfFE(13tROEnOdLΉÔxLK~ \qrRc10 *8LX:9K&ckI7 cG'))iHJJE2ATF{^(Jʿ +D)D__?6YU VG\qkdA"_M7ctL:ôieLM׿cqd!án5] 4HS4h;64Lu0TQ,0F`|q6fjsinZ[/kprZf_>låcbEF9ApH;Փ||nKqܽw/]xpe]݇'.e{r0v҈%w[Lv607M``j =o=haɧ@RTeԄ&,2Uz33hħE =X\_BEzVj' "م)LQ;f4R, 13a#BO1S3c莀<G {{k +:Ù"<W` |jkq%ٳfOL$j놅L.$w_o9U&#G2h  U '!qfw4B h+#<["^ 4> q!cP`r}7nݳ4ް0VKUC`>C<R#dsb9ᡣ=6e Xla PBx; 1TA BTgDku$X@&24jlG=X>?S`TPJ3)ٯYJHD؎XؚϾv񁛇;lI8  )(D  Iӂ(@6{` Pra OB`PI")EßqowO| Vr>}{o <xH,(0>h %9/#]+{|lo'`R9axk\~xF\: WlƵ[p\9܉{gwv6.>Xށ;l$3O0];{x qbOo湲9<|0a|h39>FXJ}=YZzPa,  6_F4nȥ)INhu)q^?a,Sli]Pb{JU"W#xa yx b)3eMHZþr@R) t4iX牠@?E0SAE=FfҌ:S y"yL!i?‚"'Y%0p򂝵) i O_1OqEi |_}.!H.F2 ւ썔aK̹[DmyMuhCIaEq G;@&@]i&eAw^ }}} >A_(Ձ}1t %>Է;TpgPm>a2Ç@GcvH/ 0P#!0suEy T0ج5e # 0⫊/J*qe++W^~-$!:1bB.&O\itq\dU9%J!%!:.q?"~_̾6A}cA%(U"811Y.m_ F^~<sH!CjA)_sۛe7EIZ3 ;bg[EbV\<Ԋk':qvܻwnÍS:pf=UQy|zy?_܇7!qűBǺN,m գѰ`"C&@kCR`ju'c:4a8҈<!<7\S󦢣m-0SLA\|1ƾ'kPP<c'a GdB*i~+GXd"AKl=&2Dfb1*&XJAG#4aLnWKϿ+]!!!h>~ή6#)5^^/ 3[X[r~=zgݿWqyH p9\^p4Q"\d;#mx;z#, ľްȊpd t(O17ۯ0W֫Tzw<y0ui^5*/b !9FuPM jÈAy{(LG(T}Lx4R} Sj QzTS&ÇAg8<u$$Q_^[rꄪJkPU3'疏!+/t_^1RsxΩ =_`L.EGDd,y jhX^psw-L`fa@ 0YnY)2 PA_Z2jMΈh$hs<'U_ G8HEj!C`@~HAE&z0RPBeQ.6X o?b_R,Cת8о Ė[q@'n]۳ oߏ'wx#pvަg{pl'ߏgK!x cr_>LHrPkGU%X-* (`dKn!W *+or uDž 5҂,;;%4bY4cjBln_0T*D#G}(dl=_]DG#ɧK3;b64Xj.5h2Ƚb/l#Վ );9D^*Lz`@Tīw/a$ 89K_/W_yf@z?x0K^o`zn_W_w B.Ub|*<m`gW 5[tCm ȟw." GK b/2#=1yL.r0_տ@BBgw(}C5lpj*}AcPoGC#tUXC  s>E>crL<5Wo$|aKNψĴZ(MlhM>%%%.GVFҒBOX]\AiA& yhĊ1 Zc\\(hjj K|1 `X.$[ ^+1w<Y-モndo{Q$N 0e X$pP:yq^3Kѹ|v4ciX M ilpd ߱B58wkf[6.lŃxM/i؄'DpF\>)Hy/njfj@=\EQW[蚘`6T5ԡ<BJjjՖ  s `滑hÂl  xmsQ= S'OEPX1&qAHAUxt0A14`KʋMafa 3U5( \@0HYEȦJPd[Ē …3u#c(ԁih0%a=C^9zrL7ݿ{n |)IHC%"]dpS an#-< `x{RФCdV5r‘d;$ZT߉o7ߢǷѝ}&NM$}[o}>עc0cﺣ{!={BXW(s"Ͳڠ9t0"Tb6RI6&zNä)(ٿ%H-FZNASӑ(2  9)DR98"b?lN. tptFPD$bS3'?:))HHь_x ȲEᖊ1+!+ 9"22##2JURb%u[ R{={>?[K5OLY8qkm߾3G##Aj)Xpm$s Bn^bb:XQc1Xa$Q#1a$UP1}e Avz<zmuToJu!q$Nqdy<>>>~>oOw㛟?"lgϟs,UWO7$ %QWoϞߺ߽ox _|_; j,H:":ʊ"47{J5s0c,L6Sسg+JL 3c541$y!ZenZ\F\ͳw ,hmǵkQ3˸pBc zHI\gAA qyf.*H沣(e̛#JUuUU}Y>B5yL=q"1K=~ m(H=W'm68)ΞGKGR0b$FQ6؛#F6a$ 3Yw-УBbSGH>qzndFAV~dDlNߎddR誵tj\K"vt 2i6P<^xÇ(ڀQ$^`"1jpd#庈/7l\ "8ƍ|$#0^^ 14g9 cؑ4'dd3)4a^, =85/GF^1IГI23"-'_a9<:B dJ{݊[!\+j˙y~!f!%JjvJ9ymSHs쏐=}=Fh#GÉ}v LW؟<i #[\8CO!ugڝ>D?_>6>@쭻ՇGW|x~_~1Zf<eWO_>TI7Ւ1s/o>Drbxq=b rPYZֆ:ٹV/b 3B0y]6x&RIAؽuҤh~7Y$ IаZ<v,587؁k`&I+WL/</>S@X)fq~I S򑔚GTvnK_)\cc8_D;{'M")N _kA&҆c'` ESغWOIlM(?a2}$[LGƍ!/+/+#elP@ P1 tdv$i {w1Վ(~qf:S2tU0՘Q[UԈb¨ hi  NRQ|(Q\hn43DZ=Թm"+3kR!h Cp؟4s96O †szLߟ?9ˈ< 'ˉBdTe-EFv2s4'eTqC.%I)((,P;F  Ȝ|~fV#H* -bUjjj/((?Q醍=㘡@K5[x[W4{tY;B_6kgՎ4t۽:Є7Ǘo?/z@n_~|!~c|GO}~|2{)F;]+o'o?FjR6]M; 압h'6oY+W.V9ΦOFȯmZ Fc%NQS(LDrL85DxqD?\8n]]O_ǽW֓k 6h6jbR-,-$+E:ƈ\Z q)ľ%Xv*XT%0 YbDQF/ǩ6)('}rx;S}gM# AИ {Q#hǏİ1prG`؋1fLydAb*GRLZ}i1{=暈TK BNEn&MZU#43 );a\廧&2Y8> ⫇a1<AY7m/m~(10n$G@[CO"&{Lyw_ 3faXJhLhg[Za*ˉ}td .?'[lr%'"=5mӶ{nڵ ` 9JbAm-b~*Z( 111* @t:jLy,w,c=`A@PmUoi17g"<YrO8 $Rc ؽ)$dD9@DZ UzJMq*i)JAmI*epkr-PGS -hWQvgZF n-zj0P_:-Z hELU_m*#(`؄磈#IeKvhR#}%ɪfYSrUto=:HKAF|,Q Κgň^8уƀm͍:1EC4k4f7.?f >EL JVйddByiŸ8_D0?x,M$s㥏&+1.hSekV#"+ o{0mƱ_L ϲF("#|$zL>g|l&Ŝ6`Ǻؾv m#w]kaضfV{7zq(Lݏ8y),qA*M&)T#P5v4h~cxb`ҭ_"T2YΞ*-mPŪ͝?oB]΋rcFhD$0TAEQ9Gi 2X\YE_ĴTDq<IzrDDϣj" et04Et6م$$Yj5: & <|x9Ly,QQ'gAيxNx1{Z/C(4({O 3v,pU{8ޥa"ݾ^ml_ a#:! YĨ0_y)(͎Š,'UlIiSPS$ lڲ 2Q[ .N<|_j!g'[ZFslRq.tlDGIZSmV'b4´Oz #񘱁X0/ >3ݿO DžE 79^S-,UYnNt6ڹAUe!;w00;[k+Јx0X=[h Kҙ_Վ88.:"ڶ+Azr HE ajYXmby"8nO<y3?e(\S0w9_?+B&`$ *0fO0B8po0tnj@m `ژXz#VY bX:kC`ÒyظtǦ~=Wc8'dLhl]KT^$a;l`$bvI$cF`;fSADR=ǍD $ƌ|Hi8YLĜAj}+)6Z0k™2t筍Mt*#+(56;V zd83$\:$<'Ī-bh2RQ\VŁ4ŢcZGg0`E9O!v4\l:Ԙhl`kGCK+n7iJJUOa32m泬A_fT>e0B*<`EՒK`Pݺ;˖i ۍ$xY#H9(sJINb.,/ y*4ilr|* x=Z^7TdɃ*9 Ȍ "mZ?Ն& qndsa_/\0ar3aﶈؗŋfu~95cӺe0΂iÛ7qUٻ${qȥ[M-/BǢvr${&u ZwN^Եt^~X0QTFBXTMAdd>*+J}ZX61NML5ǜ &O' 9MpK!  30{8A3^ h+c9qH2=qN)Xr֮^M/u2CO[<x¶`Ղ\ڹ>b چ-bPHQqΛNJ@L=Ng5Z2a/>8׌C>ju>)a>?f4q>y$Jz<{>L]q)Ab[4woٴl!V.p{rvzAMPDiMgj-ѡJ S$7R,5AE%U ZPik UeՂ~BS{ۈv8=>RHTȟ~H4L8&hfL J=yI޷1grPXo۶6#7-{ZXwl@]H!!b_IP2;tjL 3a(Ɇ,lj|T^O8wQ;Peג4pVCDG.zQ8>9ɨ))g(?{f02`7B._a?fk£qqݍ(dKM8)tVƹjIVOKw]`ჅBnrxף&zͰ:WX_kt !!ďrR﨤XM Ԓ`{r]'џKC;wPdfcƲY3\wVqO8n"BƇ`)vx"$P7>}>v0 M$'&؈א-zŵk'/b_`ۼCvnîq~>ıcOVꅥ g*,AAL!<ܜ`"x~/nyq<"m<҆5b Ĩa/L{?5h<q/uA`9*+bŬXhs̯\N47OQLi4茰fbVB`2P[وjr~i|,=5M- ?z iRXe6Rw@did Hր\&@ԧ\.  ~_ $@^/v,O9kEˣ̴QRƌGrJ'3H0vd"0s&c@qG#$ۃ`i<`D+gLQ aF-a^<`lx TbhT,#ۿs=ʫ{V$f5>Xhut2 8H!3N.;4Jg{<8;7g7q\;2~iQQY .z?zۛp z7u^=sFfw#$ V 6x;`4s3`dVq5KW/@h⩑{ql?؟4V, bS06F%hҳ~6m.j IHuc&N(>7};jD UЀ},m4Ҙ ~!BD2wL|xt.`dOډ*]!<8$|16-tN,޲a1&5؍RE?Q"b4uFp|Xf^u.4Iq'`" :=c)j3dP,XmfΝt2֌hj H+F^IZPӡאHhPE/hI)x-<>%C)B2.&$\!y]C?c 9$)iOQK^j09]$U(Q}X@J-ҕԸ<u2#0sEHH:$2KH6n\q4ʣF'3LN="E6?~|0fƍ|v}XF"㕐{kycJ{A_:WVcQSM:z<zx 7ǭU_ء6e,֯<|p Yqx8L`6_F<ytnC\^Dډ{a.f]>t7x/H_&G#,<oI$ӊZ^3829UA^FZbqؐ`jFJ<Rق_|k֯֝;)BOcbta1Ha:e4پ3sa9 !F173|lrqI$DL{1Eˈ ؇$g-K SۤQ<CgӂFbjH:o:tzrƌ7} vq ɲ1}G? #HF VߣHƍ׌#K3VrH!啴cHB>WHDBx}X gN %&c݊9]&m]ĵ9EH-.C&I6uvi[98 $R|\XHUjϾ*`מv1HCvA KR$+OY1}G䢊pSLodk@}S3E2{[^:$CW`ޒXj-Bլ } )+A&DR(I((Ŵ6 YO"'}MF>lhs4mmgm`]l'ch8 G|OmY@]-6'aXDApܻ{wn^". IL+q8=d<֯Yf<~: Sڅhe8׎/Û=:BO 6e%j򡫥C}]X($nܼC`{:6Qe5&h-.,l)ԠTjIp9*`Xd&e4D+ۧY vm'}0Q4xkSǚ1i6/(7#c'aq5N `q|,DL9ef%&`$q?^`_f{ݛȾH;/m*FsΔqjov~mfPhHb_y#(G Px"a'~ȱįeZI`E9G,? lP$/Dh[y/؂g5$Ṵ ,%e9 *=hFQH+"o4OW\RUDC=JeEݻBJ2EH$R2s I_,(B!>9#cy^i9V *kkhV 4`Am,9z' ϓ5ˈQ)5{!$d"F_Ix#lظ~2O!d'&%F>F1"_O"ljc>1|,cfxd~M{l^W-v.eTT **fWMذ.TgM "W@O#^~p9x+8oO=[W^-ܻv  Gp"j*ZakooA[k{:౛ҽu0{ap5`ǒ1TW5/2󫐑Wmv?.G-Bl<8U4oʔ)쇑/c̙3G $X B ђyKlN&G+EA'uciC%sx8ۈ?5I 6m"q5LB܇L-"g d|rU@0bdP#^x1njgqO!VC8dؐcć9)~_(صĸdC8| ^1y##]O0D["}5 = (Hd64q|]H0>#?CP_sj<, CDM8΅vl곲rl6M%Ņ*AQBU%~n"]8jRKdD(R@ dyd s"٣+6Mn7ZzU0A>/֬RiVa%1g<S0M4e2I&!Ps67oV:F g61bf&Cx 25`1&' : >$ ㉘6DVx^X~/I &V-_ ]Yos].sz %6T$$x.U@[S Lj8M8ׄA! чqˇo C(Aba$Vۆ5H4{lAjM{PW 6hM%(@C"ռVZcsVڐ_eDJA%tt ˇͬG~Ivݍm")b7خfc통Oa,Y /# ,]JOfޮ0k\,ݴS.Ÿ30nt6~(1ߐY1u\̚?HUم]s.\8Z%X|f̚8NT7 LoB`xNaNfL3:/W KQ?Vɿd8q"ֳ̖ jDfRE4li}ܳ<Iɓ%[`kM73O&3sfIL3h<`ɂ9XNb IR6DE$Tf$@K6T߫gVe8PM1XWHT<؏7c 8}))k& (QI6jjyAjiN)ft@kLoiI8v؁_zXMg." EKT^B$X>0a$fwC?f0yO<ӧaU4pJhu}ń$c>iAajIit#)6GSERi/$9CBB_I^t6,ñcavB49n8%r+H`P^G04g8; -|my6±;P:7pfMjbG{.]Bք*" $QN sEFqم,$jk;SI##cy^Gy[xv\ v4_2[0"DyF0gM H|O^$^&A;%yS1eD̝9SS,PALCr VnF[r VuC0c2ĴY?s6N;d1d0LJ<4sŋg`$|X G?GfE0;&"47!AeQ}$ 'BM#L_,6X-UNM ]4Wu:e"${P,J?3xtk+܄m׹&yz텵wӣX^jM w`l݁Ԍ,6J V'tF:)<.S:Up)qUҟԩfn:JkA#S%CWۀ9bC/U4IȠ vWY4DEIF'%L>4 S(ȧݗIq\K;2A`S`+g8F1s%>BH_f^Č-FaӖU8tLVRhKqB \:}~.L" 7~NϫmP+_>7_{Euq:bE8mCnr|>t58w8:ۉ}?_J34ķ D웉y=jl^T #99Q\H۱4t&RS 茧pb݆ՈMƑȣرw'nZqU2i36sgaJ0 p g̘31`'Ϝ=``,_<b<ZL_j&̤X<ש*/5sOM~Up>a] "j\Y| X`LF(̏LGY -$_W]k5n8FGS5>ab~ C*ni3),gt9oyRs2}LjLl^l_,ySz<,3 ΄mM:>? ;דmz=3KsyQ3!:K$HM{ozr (6ӮHv\@CKvArF2@5<4vvq̣7/ن\,l۾'bjr<8Zs.$ouh;,m0> zGN%+M sAİ@,J^N-aLO L= (&Iv{h|L1#<N8#(>HͦϘ4[lDll4/GowΞj^f;y6,58W?STf7qn8w3n_“ծa8lF5?8DP/Z>x6\8wA*(7סA^נ8a>@A _bdACGvcHIQ'6lQ )蒺.5/6mڤvq S|-y>mjHL-=:~ }BX4o}xeS&OX1byV̜@Q3$},bk!sϥ= B=A\#Xb1يübɄ_;fb0^5cl<^5FFIvKD]D'gD(w$p< BQ/[}Od{'T<Ξ>af] w òųdllݶ5*5bz+܎z8^MFF ~S5y,1WvþLUA _Hdx<j9dHƁV h *X K$⏱<;!t~,\ (eMؓ-~ O!4!sV BbBҏ@I|M#Ι6K'I:j/@]F*Ah<%Xzd<)B%k.BRIV,Dv)rZ:Y2r K'xwq?+Cmz8x`3wt~eEój 7%eQHI<9d56Úٚq ^khMofj>TnT<0i< -բťt&Al߸i1{;`dYr0;wmš=? Y*EplYbv( D(禍8 GcehK0kb^+WѰ%؈cQ d"9'7qغs6nޢvm@l<yg1KKsPgPW{|)B ^hԞ9 pBP(ɘ E BHJЩ|T:YS'a<?yV Ǡ92Vf2X3hl,_keez"lZ;6˱m N>۰ms="woh(HutjvOҌ&tf tf74$z O1G-I@Ό|D=X+,)Eie5=ŀ~! 0eqe ljh}S+|lu :"M/v9⓱bF,h>Gh%ƛ6|&>Q}Roъ|*Z+yf͞I"q2I*0$1$$ 3|+a0.`&kWnB 9X:]u a|<sfq, .Cݷg *) hK6 9$$!}|GN3=^%Llrcdž$!H؋'.oцH^jHQ__BsN7oߥM68V$-JQcsġcB&U]ȭ2 $Î2C?˄bɂ(đ#<)(CT}֛R=y˶Xv5̓rAu"1y!b)k&m:ٲ10s֠ީߡE׀\lݺ{Ċ 0mBL=XĽ\N¹jj,^0<x5kp\4Cix9TT$!4e_K.${"˄I$HxyڄgMND;ı0 | >bEd`΍ؽc="Ή][`uۻvέKqd;4UEp HarZ>^Rj3N,;+!۝ҡDzD,$(_)!ըPZCjV.ҲK*)K+U &J *x|#1XtzL,{YsfҷSP/'Xk֭%_g'VYcI"P{w)ڹwbrV/˰~b&T5k` UA ZL?3c<h~d h3HQS=7cypb; t _}:pNtc֍XHQ|O_qۃh8jviGC ' jǍog>FWȒ*] jhk( jUXMD^a9 F3̦Z>˖F^^ caNvt?ׇ9@ES`~2h&\a 5ňI)J._5I&ٲf#F~$LJ\bS %J(cö혽 3-?Kd˱r**b ;S&Ĵ3d BOWv`ilB 8Y 6kfvuKKs(VD? 1*( A3(F|N0 K; 6` "EG2k(cnݲ~5֑۽mނll]vpZE-ؾ%yۼn[Z**KHs/QU昙&A|,HO$ë A,=%:^7BCON'!.)@VA*jj`AgQd  2KWU֩ ԰N[.#c&LRRl\Hg~NQFK-^kW&LWs,E3d$Lа͢_qr\˗/\8G^[:TPzy% `k'"tF3rLJ4Ua!OS2"GO?|ڕO^ſ×8O0#PgU[.[4Q Oi'}a7jNn_Oq&\mmh櫃PFG j:`uT G};j0ա@cG΁J3҉""QGwRO@N~ Yf e7/k>}š5kTv…ՄiI<3s/ˈ+f JI4WފM%b Ǻ,79t0VLK?g|\d1bXru ~`"EHPO~ |lmh K +[ Hxtz{O/\Y@#e,$i31٦̠Vq7U&%s!dz 㱄{Yk7(ܯc8ǰ]۱wzۿ_#6?G8~/N'L hrː] Qk2A#7' طwNPeH @v Q _ ʹF&H@ >? d)Rq{nܒl?U[@/#F$ 0mt 9q n3ai xan#{!4?'ODAA2gJ̀&@/s)b،0QK⯩dg$ﭐu0`!)JC~adKuص誯>\9@} if͝EJ|ٛ>;ekW]3=| #eO±tRdιN|s=]N~ fvyÉtut uj4I`x( HZxlFBJ =ϣbgJ%Dء]T߹c+JEcAdу8vTGag{qd; h@G*Ebvh҉fEkWit4c$wŪe4H(-[*[cf"%CD~s)% w *,P:Ɋ| Q;0ZIo}[|}*5س}V;1Gv#"߻ Hm_O?8TYiI(ȌCAV<cGB%kjKʲcQxX*ɅZ M^,j𜀕 >Ԓ>Znr@4h Y45lzl$69GbI!""y(顷H*F~L2H5[P!fK|T՚2 ဧdV2g~_G#n&̣=oZ ?tlx#dYi-22Si*PNRQ mE4nMO+d+:[\nˏ8s =lu9u.dˀ*v>3Tee+Eo7'7H`fO]i~ۯ>y>{.*Z?wR=#t$$Y 8_}::L@r|8c[a1ކCAcnVHNnbx([࠘4>PP:P1Ri񢮵tBREmr\!**bZ~bX16!"*BDD"*$yxxCdeQdB"cHVÏb>#woz=\>ݍ0dj_DM--6E8/")5mILK"9 N'F8ҥfE(Iϝѣ(0$gL^CݣMT[rŒlSd.='=QM<'fٷ1$B1'Eng(řTA_OADRtT\[ &2xDidShlĨM֧ii W_v/Qg$%V$f(hjT}OIαdTZ 2ȄxdFǯI[s^I#(r [FhK*v53hoC-S؟H&bPnɴ:߸wlCNVM%y*DUQ&t*ŋFq_$]f4BGxP  }7;h#Lثi"k ISg$%Qdk/AO7u+n50vjϞ_~˯TLo@_} 5,،7^̯>yH^EF!U85+).@O{'ۏk޺G L[}p5tG[@|Ĺ3 #}w\iI),KF ڸ1N$$ƨ&%Iѱl8|(;}^{r RPZ< Mٴ{\z.H7Ͽy|IXcs>,Z KVQنk(X%k_wpv O Yf:Ľ/X<a92҅'O Q^ >&\EG:~r2/c]S8QGq\Ad&D(eiYuj+cU 9~+x$KPSFF?fXvF7NS8{f~v NbO0jaq7f(=z] JQ:~RZ*4znnYN {㘱8ݨh;?U 7@PYH\+F|O )|z[oQYċ%xbڀ*X<ylfϘfa5㘓\RW/E -=gcuw~F+Ǵu#>1ЂSiDW]m^ Z*_ ZU]=0 鱰.txjA;B&Qs,)oKUۯ~}4hk߼C;ǎ-2t&¶Wo!|;8@6FRML M4ap$N8v7nܦ W)a _|/,i5\ U.ڃr~F11#N?Υe."PR_n<x cG$'_$\^9LDJ\h]E!>xs|ջ˯ǟ~7"~ދЕkb$,Z!~i(XFO8oxq}̛O?"7o'dN%0rJڣ}8FyG}#?rt>b(1d}؁6C;{d#o {܆Jԙ50&S;BKy!ϷhqFlegܰL vX>⫩6"EGf0.oqQ8F/ǤD-j)RJ/5$[yd 47|N [<k$ !Y@ [201ܞہw=LFA\{S&at9s0adڃt&X tQ*Ӑ>NbʎP`UY."8y:䳽nu&4׷ui:<Ӡ!7.pρ['xt.=5ӹ~-&ٙ^[o>z 'xx^줱p"NP}$6#!<և$$Q(-.j"LC؍nvlpqX9xz%, G:\6@KXe aI 3>7EmUmvRH]8vl;LW[&FЉ&GsGH#"WpTVUWnョPoU{窠G29U d#';Uz5ܹ؃|d&!"&;E+m2޲6-Ƶ4رy%J]PmC#3$+yܷ?l7Q oܺ.+wzFdbUeشm2z (" #fR礢\ Pג`sɃ* ԔdX+s@ !`+C M 4+yiDtV7Pq\;Պ'pF\=ތz}Q@qfU>YCfԱ- Dnۯ UBcqћ8&ԒI"$YjE%ȑ<Yv >hq 6de"&>/v9zwnj?M[7@I9B0]@<3DzV\L\>?ր ~yνxoɁ& tס/wW}gpd .py/wpϏ&3>v4\˽~/SO߹WNן=K]H;P4ܱb^w/>+'mq pj/NRQ(޸N,uwç?ΫdҊBnoCsK+zz{10D臧΍@orPI`=_Chxx)1)t]iDrA4?V'q:v\r!K󑔒 dǡIxxh DF)G8ȞŅ9_@ pvv*ʊQ@+k}$+?#W/tEY*y h857kIb8xp;ހMbEX|!Vőj^4 l [~aܾyqmXA')-/(3.΂Y[|4ŰhJ-gAgC_zcBN67(96miɂZ>S=v7Nw&\?݆';Hs!ݮtz ĽdiNԒ0H-*J Eya^/m-6o߆T֚rRRUoSM 04<e#\u *yR$697ԨlUkI;cyXiUv@iZ>( sYp⩙6 ଁTA"^C8 ) N7cǏfr_>Aq߈KTO_7ԀpQ+w{}Јh}|wOkgqZWfΒضu O-xt =gR#G)ǹvV`eXrj*(޺;W7/O8i PYRzO\M eVИmĻ|QҎk frʴ #€J0֛p{8'bݪPTjF]ځ='Q}e#)0S|CwGSFL yyHȈ%Gj^||3=r$ D ݵ7cz%o짏ߴ~)kW,š塪qBEƎ;c8g+_6byXCq.%|GIn~ _Fgì)E6 MMN3 bx Zxj+hӡmDRހC-ulцf wNN9ۇ+CJp<NbR_K@`rDoƳomN{雛4|Nj8| k7nR3[v@d36jG YUAiمE(*Q&_z%ݴI>#}+5w-=ۈ@.~fULv ]BL8Q-ِL5yIqZl:hOn-TΝ@polPLUǃ6bӭ-~gh屣ٌN;)pbyW+wsC C(,ؾu-Uo xFjY{94Uyؾ`|Tw!|z| r"bW;c476̹ бk\MиP@U6҈SfdTZ\UZф#Q{梊+5-Y-- dY M"$ (ן/Gk -CT OGfzJcuݧ/>~ o=rڌ\(ډc+wۅ]{7cPP:n|\ A8,K(#ic6m܈˗҇,ޝT`KQ(,Hz4%z*, lTk3a0Q:<M3"`.G|eWoƉ'z!8Fψ!^ǩ^:ޅmx|h/No7H$&hiKv46urr V-8x`VZvE+AY~ K$hh ip)~(A&dry,$!'?s;\P&h=c+,]$ 3g4`Xj%d0 _RjԔ8`DAV<Ug)(ZL8k z8>7. 0jN;]nǫ;6^ܽЄ'g+kHTRp`UwW/A\>ь!:0]4Rd}g [j7I*dPdnfV5 [ٮ:q`p-]0{a0JY"_ FԺawLvEYeګf%H!߱Y<Ys1qTnuDKf!"bqLf)XDEo>|nNVfJ)B4fn PR<t6//߼zߒ<| JlL\*D`x<ۄ2s-vlZݛ!|FCG.[ٶ]E8z` #8p`7~#ڿc vǾ][q (dd@[i~VS4&"F}ŀJE' A@Ok(CS49pU[@qQFQQm-(osaӁGe kt\/<*zN#B YI{NowP;:$8$z^/ރiTSŮ=H I=~YIO5ZbԆrT$#X(D.8i(q!bHwo^gq| Yjˑcax!Ƈa”I#ˍ/¬1k,,_qw sWneB[hXu978A7x4wU_2t7pۅ mHqS{H"xDI04_3x <w74P.|M| |E|u\;݀}8,Nٵd׿|'w㕛qd 6S{.5e< Zډ3xkS9OLF#*`0lliG[g'ϝE{wrw"[c;\)~Է1gK/j-:I2:xpz$ +Pg!.!ƌ°OabRe!BbDDG=}8/&-_GPl+bX\$$& $!G(ZO_= LdӾG~}aXz }\5^=`֍˰"l*l~D  AfJ"i$ 89e$%y%n |bky,T-2>3I+:Ftwwx#mMe;_/VZ<"XplZ*h+Nw8p㱟yp o߿>w]-8KzA[#>blA/jjlj=즨 #9%صoބ{dԃNJͰk1m 4:2Wҏ-vY쩧 aӾ#%'{tƵsx8nps2 H]P9^9{w"?#+^wnʼT&FzlNpjI`䱈}P4L?8'a qaȏ7^:7%O֙>ی'j>*>{*>~~u:DoW)fcR??}';gHeqam1}rY6MuZE<}p >3bb4nⴅh.sF}7|@MVp?܍]گxdynUh(-ƌa#_Ği ("d+hd>IJdQXe7x㸌Ŀ</>EYHHFj1b__~ G<#s0څUkbj}zb_+W!", a{o$ 1.H )1&<vHa_|LޘBb],bԙ4hu[0#mtztTS,֔¥͇WWBJA;E"}MV_7珮=rx3b_Dd$~_AK^ `6Pc#UvBP}+pb/*> Z Z86y}x>c%I <~ړ:uO<2[|ϱ }NQ?Ă,d ;-[sgܙӰd\$ąS`ƩY'?da,}8I-JX ]V$ .5Qu:qSw~_)rmwϴ66^ԇo}o(l?xx_}wNwݗT!uj};7i__7YOn;ONa93`;)y.⣧p!~ۜvUkQcO NjϠWe|Qc} 0r uZ7vbopHn..ɤO.1b*p'.&rCa~a&>x O,d(EHgKv^FrZ=_ƿ3˷_~>Bei!(>ދHblڲKWLu3s2ڿ-mߋvȱGFG}H<6 &2 nSF#ĪAq>&}"YW!|uhk1%@<7Г΂_ 6uI}C]*^z#z87\] V|>s _<7/[<vz|pYLh$,5&[[Kn00hRhKljG)jfJٹǎI 5=%>dH@R@[$0 M 3%H?s;/?'ۑN+ he1w",XpA~^:i_T8TӰ7݊6_ g@7W[oEe xh,HsaG pB8af#tqeB8OqeWҕ -JlR̘7u+auw7Bq 'qh@ߡtEi*uĩSW.@OLAQ~#Lmg;Q𣡩ΟGK I# @7u F%JBh&r`ZTB!69z 3‘6cV8 qI$g%Ykϲ(x=>o<~O]ŬAQI t(,bXIJxq0棇߼}>{mfe <*a.FiY1ҳ3AU<OƖuKn<"n%)+HE +Av& " ֱ;yG"'=^{ Z YRmyuЖAW 4U^f~Ǟ ur:Jh&A.)xsrÃFf(J;pb,;/ǗΣx9Y<0tZa#1KDa $ &6d\HflT5#9GcHxW\DcCI/Aսpշ쬐E Mۡt\N:1wUU.Chf<߾w~7"d(\ #Ǐ¸ j)UpBU+dPĄBiA&Œ^ Pެ2/Ulc!n^FnP¦: z jQsw7ϵV/.c'CVv)qρvO g8kŝstfWf<?CV/_Cw8?a^nv9[-z zk9>xr ݋۳;u4YYyH*PZa}ORND!H@X7ruр+-kRk]KGu*l0mSx˶JiYH(Xb-d<^?dǠ0=ei0WWύ<x$f(?|߾aGgE )-:b:'3IBRxA[I+h}QDtIw$cCv ?+G@^F<5$ ]^a T zE~C,Zj~K%:Mh#toIDA;SNQtB'g<59u W}Oo F4[K{/o8(<Ny<^y~BJ c'V_|+\MtE/v^ĠA/*Bt|EE#>5 YbX2;YQ)3K³K8@%HʲVoEENْ׀vԘm*U$ +_אA?C0Ǝؠq`\RLUu, ۍP[XG/ͳhm,hh&M8mSL;kN{jm5pґQSk'U_ﱲh/+kql M?[6?}7o>W/z۽ˊör|<և׉o>~o_T0%]HK@^6mu>=}V\oꂅv=A#ZY@Qi}["ʈA`1I]Ha_lYEY2l޶Ym+1 HJ&:pQM"=f<Wx[(WzI(͆ )<.=))qG)6_s˷z$Ɔ+D[_cT)9ӆjjQ]N?kY8{+}sLd됒{">OlDnF1Naߤ}-HFuQ2KFIV"駴kT@C` t-p؆3\lƍ;ۅCMpL+pc'j/Ƿw_OnW\XF^,zQm'׮2 ]~~;fF,>]Aai#t,*Rb6%GpQ]CqPMor=ZD&a_1W֬ % ҡER'miM?(?J^(ۈJM+`Ѫ*[Jt,_# v7@_I̤ppl3;;-E Z(k10BW7.T;nUvl j@Eľ 0PxN\tU׈_ ecض~L?~ӗ/Ɵ|Ãhpt}]Næ $WMY:zeOc(3=.$ ;55i=D/LZOt^Q[c]/-07ЀR8WAo ezL#LG1bݻUCW id@|jr.KER SC~SbWQ ڒ#3*J"Dcbll"|o>Ŀc+#"c53'y%cRUV@_C)X-Ceu2lbA⫷Sa'_H!ǔĮc8oi{ݏtܱiɑ0dYK.ʊɉP]Jc<G~جyEYrsO9{]U8q7#PiGg{r o] PCgSxIw4>zxoݽmE= g}o4>;}h'!!^ q G@YqQ5 YYr gH IHE ,MLY~ 9u,1ܞہwO߼_Wk Ո\n%LAI0…DE֬†-,qXkqd7E\&e=vfRY@2`Pe8vzvlaAN:Sr?MG^~,R$#eD£рqVV&yxzƠc>VYB3O $O0|xЏTFFҝzyx/_'i}Бt49]U1Z 7.<~CΨ0,c'$V>Wm&*Il"YR@ U &&"hJM5%f`8@$ Pl'PŐű>;&Ī̂'OMܺ:Be[4Z`Wkƛꌸ~ߡovB:!(vʬ&Ei9Exӳ߭ 8ǩnFڟ^.֣3`Ǧ}֫l^I% ʪ_ZEⓌH}ʑ5$eД墄d4U4VA[[m9[)|"Kv-ɪn,a(B-`ɞzCEF9N;qW(&(BTqX8Ap ^}.J,jv=0$`$DY_V\Dڥ d4B88vd?^|LԺjDcBoUXp˺ņvLv"gQI<Dw[p4"38_i0ijE!W[u`Ƶ3*/'I+1'"4/]"әK6RLhd&EZ.Ld%b0i,Qe%VuPqqG#3vly8eV 0hû$g}4S׮^WP,J2*&4i/&×IA֞AA(C{mK|{xQG4 7އB]C7 p7Q,/NxZI8.(,->owT STZ鈼~/22v`z[X 7a1OGEEdK&[ a "bHdƐ,/B >}Ls*Aé^\:]n<⸿WH ldlްĮ C'ΠbمF?[g._=zlY1=d3rd?m§ rJQ/' w̔ӹ>=w~HdS`Tj(CEQ(HE8hG50uƩJ`)Vvm!l^c:)0ZYvfĿ,7jU-4:O:ha3Or5pb?Kxc! 2 }UĜVL[n 9mjk*=R2rOqJ4%f@kqP4oQ3RK+6V3Ьxyp77_C*7yeUI?~D-19A-BJJ֮_N Rc a5"PQLX^L{I(I@ajɸ%{B91_<2 )|3,թ[/ij4}ce0c";q'H<jcqXl56<;&'\k#R[8 -,}%>|zOD'YMIՁX9ݳg30:d&@SYmk#-nއt6'"(oQh 8.\Uq6)ujt 罨F]blݱ{XHU>(I%$@aiN|6?wɧ "<9Ѓ gqd- kGwO/`oɳ<Lv;Ѧv ۆ3af(ڼZٗF~CyF+8>DȮ@a >(2b˪V+UQYFX& a*S& Uw ,pהV],G"`b'\.xWoD_'8$ѕA9өR]k/{q)랭6[ {"evQ#ķkWon;gmMArF69ZB"2}ڎ@[[{6ve lp:TQ},;RL&uR,>ǚHT,)VZ}[x+Ry9M[7`9 S3kW/Ŧ+u:aVW{PYJD#;- zk⍍LY;= 1u/9N3V"9j;J3fKeZ؝M?-(< }En/7qlW-]wo; mq&1eB88'|z}/ȠO`>ˉFS Ώ+O+ĿǬUK(Aŵ75T=2}]' 0| Ӱ¦sw^>,腷8!bd$^˖R^R%@ ~XjH4$7.;_~%?~^ ~9Y)Ϣ2 W'0Uk:I<ތu'o>W,ꕶ:u~Neg$=x [9$4{mP+nTRi']pZrH aLFUE6rsbQZB KhA%6<-J+`ʋ<Lx`,Bv^Q SͱTNN+߸6wK}xr]˃:؆6 -^;KE-4BS[t6]|~:4 hr DG!#=Ce $t:iE Y </Mg!k0d<?n;XWo_ŧ+}bHJkh4&c2]ߺ`LN^S: fD"=Jrqē$("6 e%i(ȋG9 E=mV0fSۚ;I$(2<9J1ak1RZq/Am`Gznt =2c#(#<I߾_sbJlErxC/Y}"C"s 9HJ&$#,܆^>sVgiU3RDPj$ |6,GY(Z)|HHE(JC$8D0(x*% u6OS] <Wݍ)2iη /48ifwf}h5gF'G б}[T%҅g8?؈:p.:RnJ)Y4Gpn ;A 6SLL($^n7V¬+%1$ CSТޥC}jϹ):Hkv.&TsE<h%1QHU:674@cqGƝSx^I-VO㳚BؿRZJ`*nE/_oCJv ¢qNΤH-,O`@|d,QҐmlVN"kT[/I%nwCvq*Ҡ9<__~^}xA~ OH0 !Ӄ YN()YPu #;5?)gO4:*KAq^$s#G,GOCrũ*TVlCOGl`դWNiСS>I?.IG7:V/:}&R8qb';ӗo_ /}*+H!umDC~g5I"^w /_+͏`O >k=Ԩp}[JpmlXVb}d7B"(4RIfAُR3iGɧe@=6 P l;e$'ǩ&6 6>ZmE AД~_/[$[N]L'nCQAPZElGN~"G{Y5(+A9(NG=vPU. nܰfQlN=;K7p9ܸs g/%LQUkFd\":{w`ApdJ Кک 8y;jeK:Mi _#:G21ϩE7`hqխCmz|"YhW>Sy7.tܹ*.vhVSNwS74 zºf F zRZ.v S.נ\oDlFbgZ^bAQ)\|פ2S2r`X0`Y"Kӂj䔕#d䧰߾y[||}ŅXf1c_a6l]OSliiEq^Nv ?=ىH:Ԙ^AkB.7Ɂ\ W7 5q|ՠ/ʿ7olhV-}OxҋǷ{T&B]F{ʭ~ywo Ѣzڊt8ߎ|6[W޵>w,O mP{gKM.˧z%.EoГywP:1M8}·0_Vr~D1VZb_c`6uPPIac͊HںEfe+۶mAj*fb,RSxߓsS(ʒG#ݗ],ı^</)FYi& sc7wbϟU⻲ DGEBCOa'N kRΞa϶xU\zo_ g`uav*@ -T9^VV[<>^zvRZ=}FJ_w+YE =nz ~<lU8[~ڄG#o GM˧qq\4|G6x%Gܭ|,;e'@7{oG",f_ Q:%/%eHF}>?1"-glj:!G ȹS5Or~e77^BnGfF֮[)Fj^- +@:_T6rXGJC'( }]KBnQ:85XO~6&"d\o!ooA_C]'xz}r\9؄W:[oxLqAMY!jJ`)V7/_&kk6Ռ8D[7F 5o;Gy/ /d&ϋ B<@BQ҈7nuA_ߏjW7>qtBgPVTPd :TZ\a_IJ߱6è/i2,MΟg<_ dۯωk9(+L뱢<?(y)F 'OhtXQr=*TrznT[X͎ZVoZ'!8x$ށݛWq UcG{u0 ¡cv NO5}fb]/F'uX w{<cJx쥨~ wҶw_{ziڈsC].- LS3rto 6}ԖZqR^iXM[g!}~~8vW/[^Yc;5щqCAq~IdY K /Ax^$ ''GdفV (=_ ?s;/^Go^*f6a~:=ۀ{aˎm* 6-=٩"U4 X䦐 ag%#=# tU4$uv 2UWNPG6!g>v^#t:qҠGF/EAiqWNH[f#MxB_=w_F|oTG)ծVIv[ϪJI\ZBBc13~}[*t8L$fIAѯ屆Aב,m>e? k>Xirаԑ("sd+ eXj{0`7@l>+p&Ag-!9}5y7_ޠHkF :Mfʰ"oqƲ(E)JY5EQ X_[v7,ò9Xh6"?tun|F^!RSDcDG#jKT0G)QM150J(de1\j 8K!3MmPlC<od4l)l$ t!8?ЀRfܹ<WO'Tf3Q]>lR "%&UE,H@DvȐr=~6"|4TMUH MMǵv7j(6˴,*S^A7Il(Ҡ!؁W/Oz/~~O vހ9-QW^ؽwy8t02ss":ZsQYHt{hCJ)*bpI,MD&uX yVe%qԪ h"[괸|.w b\Dsn\;݈ncU:\܊WqrCAk5嫧޻78ih9>z;}l~4@!!rF>|yyxOnc,~ ZdO 0dVjH= $K%X ԸQikL١vDvQG\6hUF<]wdޏXb?:\F`AlX+w/_RH U0 hx/`X>_5m8ׄt4g-ǟ.VMq^G։K'{IkbT\8faszl,V4H/(EBz6Rsh;"BqVQY Q5eviqLHX5 *L>@% D8):x<}^ I-8K5B^">ܹهW#7s 8e6ѡ2|it:A3qogS4HvMRImTTCLb*p*iIYH#y(כi?^4_ ^j.kjU986/\&%Idd"d䧰/Ox{:G}- ڵ3LŴSxE(£RÖq!dg#-Ez:X+xtS,NjTK\߱זF恶,MK?ɞ[3=E,?y$ǟd {\ISCU RvQ)n\f[*߼>o"ɧHl)ʍBRn>w_kwnmAld~ۈI7B%8uϡ`?7kAwq]*t-jٯ: ~mhU~_֠H(J;ZƴHx8vܡ >|PeDGD"2:QO1 ~<⢡.7?_KrhT:eFcť(/!Z mş~zWhFY~6JK/Q3hH&[=\8ލfNg%s'a} mhmGqy*Z"[HH@ qIn2 TRJ M̆2TUNBYMaIa(UA0l hp2'ԫ](npL'`=Ǥ &Mq +:G.WpE5kQe(<6$[@`r>+EC&x 9ayďI3CW $5-$ıbv6` A t7}z-x!@  @dy.Q hS ʵO߼__}h>kZQ{l۲C~Q1PDXBR(dDv<; ;]HP MES%n̩xx䚒h.B[EQpl'^~{|7|(֊ E"O>P<S-謳ի|MJ?Nvd`=Zn;Uu^/KjX򟜼l8(ЌFlJS'd@/jQi 66Ti\f+65wM s߿g@=E"Olj E<QY#طTko/[ƙAFDNJF_QT^_7=G/9~5QY)h2t5RMڀ:)T `/FX4˗Ot'0ہF?KMH_Xi@JNo.}#LjxT}")(@~I6j8%gfdl/ǯDuRnK]z,UhkРvONzܴZ kiK~l7N>U=|}x@(En~ 5qR+< ZC<k;<^⶛|09;xlV#~?6:iEF `$)U}r{iLW!==>q =]|y(1ܞہww__zt7wҐzPÛ}f̦`C >|Žp)3.#ee(.HQR)XRf+G5M7C$:UX]~)D*FG/q֙F8UOQ3TgSSB$z=54H$+pt;%|O W?I!%$-gH$#:Gg5K Ultf)d$&44|g`f53ܢ dUifgĎGXjA 4"zEeLICTVKSQ[G;|C$ l1%Y1Dz (%bcY*o>o?DҬ 2xo'"?6{Ëxt{HjBVO2^4yR`ӐP@*eR\>m.I~pN50z^%Z#NJD ,ˤS4f8D<禪\V=ul,Fm8vllF"ނs P<r"]; Wn)scWN`Z:x(-Uv < 1ƦҒt+TNA@q AHdlh.h"2d" i9 x~xsrlغ Sg<U"Uj32R)Nc=JL@~YRQZVNaCVz4Rؑ(MCG QG!I墷Efim$|,d. ]E$A'.B&1h3:QGqipB*???\LA_ kM6;?~6Ds] $lĥSq\^~6 m)[^񢁍<p;)dkξA R4ȚsKf_7[;,2D`r$Wc7|ji'NTJA,qgO"ؾe9u,Ĵsu69zJ0>1Nm$WZ:_|*~CF"JϱRA[I 5<4lgC5VLąCEi>L&#:iВ:fb͈ Yա3ft,#qZqd/[?lv+ш>b9Mic1j'd|dg& 9( ' MKDUyZ~lP6tZStiou` [ߌs[Kofa! '`)+Cxx$n][CyNKG®za*H1` $ gD䒬15"L`cîIAD=!%?CisrKߑU5zSGbO"v4.'w祥<9O5pi96`ʬ4c2-E=o7} \I9(-B1#%v91OhonOE5I^#cTe,=B]- qwlP7q/EPIOjwO33cWl=`dp;-o0%5j\\:^?~:?ǿ=WO񘿷"`pg':ysZ?*JQq^ h= 0),'A?ޓQMh f eɣ؀vV} e+7yUQEaώ T(nFڳ!X%J1q$ ij9[Bj(*DoUK [zx} ('գ>`/DGW&n_<>GLhaQ. V ;UR<X\- YXaTݍk1׊͙SF TkUAb R3 ShcRTq ))@9fZB$JR [(S "jqInW <VaipwaDO#_c^lKxpm/p:8>A0v6N ORlGޠv %PKL=z+F)PNNY&$(J p=lYyeiCu&x_xЋћn9Oa뷯?7ι#HPO:؟Q ܂{w(~YBNyY uvF 9}Qdd%ì:n{.:slH0PZdddvY0Aו n@Zk"2#CkuZppudFj]Y U(AIPn{ggg~s֪͸?6>{#{Ws+ƣK}?V𪤵?Ǜ&՚"GM8u3q8nxvs Ki0A EOxD(V3f<9+l17+O&ug1!@_=O$qX]Xm.&yVI@y"7$_M2K݀%NH\"^kŵs)u\PM_W_U}F4moWP? 'ƓQ$}V4=>}}HHGNcai{??ģi,ѧFf(WA,^[<D,a4}`DNũ{pV47;PpƊڑ6VkT3#.S`(vҮ!qc~B$ 0`>fX2E1C'ee=b,dyϟOWTɑLՐwN?cځ}|x8viCi 'b 5kn\_Erdz{GѵĎ`2 nҖg)) Ƣ=Ц wwLN0$&C>bGca2ӣGKL<W 'n99p܉}v҅е`NpN4yV\$tsC8wOٝaH3iz6E1;"lyIgnZ hB8 mX22䣗2Ic$n]gF3!좒L>9ٷI?wTG; i~AB!oRG} D(x)y  b+㎆FxIfI*ԽH&ExSc4B@$BK!ΛJ4,iXqI}yCUصAhH0[t6^*}4dez W TY.Qf%[OT;K>3ڥHq jdƨխ@sZ  O믃/)]餒G#BGIc{qࡹO֦HHZS\4H/> 'BrkCkG'Hx# 6vX]z=6yobW&Qݒc?I&,Fn Ee12Z-z'TýIk78ޥxuE,O$4O[ MйKշ./?罕%D_ḢFT_vH{5L*"%(&$Kew5)BK$)7I\@$ А$y=.&:ϟ?:ß~~O[ sϨ];i ʑw*JgAiu4.@/z:hHx^U惧txVW nb G }z=afȃDPI2ZZZUy ^M=Lm%诿 )F5>' o?S5O]L Fy5գ:!ß|~6¶fdz|-_Gy_~ YS:~[kᅫoܺ Ix:?N5sKkԁ7} / <d g %I@HQKٷG20 aX<ћ QC։a o0J250ޕ8s'OƉ'pI8ykj1m?w&8,;gp.{pAq3vځ N"rTQfrˈh4D9WQgluY:=i98yx n T\ ]>0*3ԓ)9հY~t`ɅXGfC;v >Iɸ)G*8m7tѪ6mm}p5p`&K3F 9|H 0GSqkHjo>W%Àz5w'+#qϊS"'#y~UD%H2Ip_҉8{ u}VA.)9zD󱤰hVivO %XU$M3$2Uvv{?'ŏ?2{\ tPR< x JaxnQkG*܏Lɋ.~*[O^G#$7F1nMGh9 S"nXuՒ|ZE`,EWUWdlj! 4N֡KSxa{3;y[ʗ୧xD /z{K#[uڲ* DIfx0HH/Dx^ET{Y12 ؒډԡ 9eZ]#gmO"+O"C(:+8s!GOʼns2=.'QPO_ByؾGȑ=8@[a<߈|H܈UvxZ".bAڰI WR3 05(f&q8 ;7}eWkx=<s $3-toAmc*Shgl$ ] xUjOlf耾~Fpj90> /_罟8c7߽F 2 >M|c|MS?"'i#*.z`_(H$/}*-Z\,sWP^LM= SIfz;4$1fs<C I(xlj`v,?O?o}Wغg/v>'QΛT gO624vj$ Ble0oG_o-[o.x|:Au`.=>X` F}Z.-_O[-mA_mRƣM03`>2x*Y5WqX?_g!Jgw||6>Mxrk%X@tm?;_w?xx,OBK"]~LMΩ@ Y=9Mo <;Ħo"H\Y7Z샨7GfQрg3bEpz1 qqK8B[}!W8޳f?GOëcjrPuמ]8xۍWɓذu'؁s[".Ie5QLfǐa?+ Gp?w %_g0>8[&^ZC?U֣Km:qI&]=7鄕X[9ͭ뮀j65K04_EH`\X a[7*֬d»𣯽oц}wi11[\ɛNK;5wbqg:yP-ݸx99g0p2"qwAHߠ?P"٬G_|;}uxr嵋J+xYğU>/`\;p1RR:4t@'B{fYk[T3:˂@$k>M0Ư &~Nq{.)tԈDL",ٸ2X"b"b@o4%i<Ѵ[^*Rt4W\'1~gōŌgdv ][_yuwAi,O`$_+"Vn`y&"R3p'lUWk`i%q$leNLqhWEԎNG8!iAQu=.ܕ|]B\&U/?o]wo}Xr;LMƭԠ5m4dC=~+(,y\$+id[F3H f43[ØN`އR:9pI5ZYE<-zarL/QuUjӾia"0!H’yu Y{ $&ļz xJ=a ,f'3e#흕)^ᄎFXK8ݚ<$ O )FjǁN_= q:[QԀFb+A43FC1Gp\PGM 6HPf!Ʌ?1/vwÒᒥ,~sJ/ہ??ĻV62m˧}&ڹϜ@5uhhUYCsVz]3![ ><wpΓI~D[s!ܘceƒ; tC.,4]#^?-|Ɋ/JIy{k)s0hZ)+t0=u5c hO~9;j'3aq*[ i/ݛUX31<}zJ%`nIjm.?z褤1ޗ ~ &IS^p <q" ͪSt Uh4fEQ^]ah(G=}(-k._@MUډ7o~;OInGG:]m3[XX\F$C" 'HM=MiG1xsHVGi3gwQSqc|@ 'zxױ0KtԭA^q.$Wk[K/IAی[DȦ_pGPWgp{as8 X'HGc^d& ƸdZ㗦I5k5&V xrʛO&0,4I2 gʌ`1YyY\|Lgz,g;Ayk꼻 V^]$I=^<G?߃Py]RI ," ZA Nhk06wFӏ>u ]$n9'Ч/mDKCz4?*Pm_#3~1-IxzsSM8Y&g#QF-XH:QC7oŗI`ufVeĪdP_C6mmxH/CUo~m(F2>]`yٰa>,z!Rx\F"*@nh]އ!`~.: {t< S``Z3#6 Wt]n$enx6>ed Φ*f,,aqiYW@e >O"vJKPPQ |c~٧tO gZm&ʡ Wipu`kE2#ӑ?at)Qqܻ-{n7P^|'/~ o>{y< ɕ2ҭGna%p.^Ec3uUo6^VM;"QBn% cgF0XZMJ1r`J6 BVĨæfl,L&L k9rm=Y|Ve$z%|>JR"yQ{ьd ?K`xN#y ȊHl Hy^oGcEw:>78qPP/KKJ$ &Hi /!F{5K:20# '$~U$>OI -&v7lێ}hn)ASC5ݰ-h@w]rhPɶX[%^Gby hi* ZhsIDAT 6}{&F\{\,>x}:>x ߜ ¸%:L֏e0܆v+fm̚6t2W?Wuy4)>^I{(;*Ix }{{( IUI8; /u:17zXkvb{S|8t1X- htaI !0ue'+m,FWO+c6<{\[@/E﷣*q!.墌X`vj ;? bi֨%sE^?L[FPvC ``+Oy*˸>>\?mBEu.{gxW-IGO % -@# G;9>h5>3\n!KMZ`q\_x3'3bi逇0j邷SaF=xJ\ Wqwy 'G<gphU%2"[SȺT Fr&W'Cg4Aɤ-CFix-z?@;YDvZCāoNLPލACѯXE,&E~Yy=Y}||M\_< Ǯ۱! hڊPQ[&4uj19U]j͍t*"A./w*TnOὧsxHT4I ؀wqk. :|)Hf@x"?26شH Pl;t]uiBGK%h8;p^W/~5η)շ`zT#Xa<C#4ƲXեy1:l4%HĈJ9^)/ E"?[T/FC\A1gF <c Q!X&o%k@ai qHQ-ZQ/cTZk;}Mǿ]񝯾J㜀?"pwak1<Rz<?!HMԛJF4Flx|Z UoLMP,#Gv]-#P)+ A@#t '`pp^녌4i tiw `C.@zM[{AknD6n>M|ڴ͘LH8(Ӹs}cq} 7Vr1?M2G1;OOb @z DH\!9zʲ4œd]uY]J4,*B'(}KpBd` Hdֲ$J0Dk~<o >wy ׬wڌ}{](/CgSW/&;; Ёdʁp..H>gwS'p5q7f$_> qH1qo.eEM2bd CHPLK_{%sawªo\4UtPuUuP]y9|ۇ#]Oọ{7F: Ԉ\t:! Ц=94;D򻀥՝<AfdbiM_K0;>qTe.`g%M/vO9.+@VMφU/لʒ|h;xm3Ȍ ӇRx.F.t~Ti|6:?y׿3/{wp6BC$oǿ#)ʤKobfv8avq 0,$>=@cȻ| w]_@Y%ܽlJuFjP:K(DJ;/[PRx F)a^eh:`oRYFڎZF7¥ݍȸ4]5:58yumjN`A !/Y,ܾ9wy9Ŵ0iI= eb6;sR ZDz`Z52Aޢj7,W(.,>(  1'G%vwH5rIY>k̴+Y7O"yIMݲs3ێKW.%Eԭ-,^? n3fF0c'S.l$~ߚ{&zs,:y}xěCn_Jc,nCީЀGX`;si-GSU=$PT&4䣪"-(CrS~~  kRt}oR(uF_Br8`Y޿9>e;U/"b% E&322s.ܤ(U L%x36 7/!o4-Y;5K0I۞%3tA׆,iVRP idx9r]Kye~ko']koĿ'7R-PAo<_/)hn̯bjr#YL%1G P>x1Q)a3"A>㞝^Fe"AnT [ $~<V%5uFt] ?26C @9 H;-h-@W}) uF=cWO<=upk X⇨ܞ"RQQxpw7'qkeZ{obqI&L0?)0b4K;><\>s?`9)3ȒDL+RقJI_iC\2QwQU$c32r[OL8'ՏSaw_>;2܂0ZQ\JH-mw Vqa4##A2P6,M/w)<^4#ѵmHH# 90FxisN*1ɦ=(ECU8lNwۚKQVD/CS]!j+\WPHݟ?? %Leф1Qj7w`a*27G?q7Hߎg! xfGA||$y5o#0uޱ؈$vNr;Ǚoh5`JEච6M >%e!pR}~BC#Oo7}jlըR|}?GycqX|?O~c<Lc\g\c>pz$IpPA? _6O %jt8r.=/c/"Y18R4ǒD?҈Ʋ -2n׮XCm14BYkO ik]* Ǝr:0A쮇>M2^RR'tt\<+ԣtou+x|:^}Mb.9QxCqd6@N' d\Ⱥ͋'aTiDɌ`xlw5(mYA wl6?Fqr yT"h#&w3j/vϿ:XGj@=f6޲k6?W@]2Nu*WRE,:8lH >inoǓjFܜ֬DX BF&J]c[t QFPU|ϫkJqZ.=艣8q][qqd"5C'O>>O0w-m4NW? dGvYz3iB ATڽ@!RS.3w.&毫d)?#KvRUAC"ܟ>8z4 (ɼdDNAfGk@mk]TUר-m}ݟ?'jF:t >c$}ȹVti,]-$#. hrVf+>HAb =8rt7jk1:B6:IGH ,s0:Ct-IBI46mMێnsI?b˨|eygPq*EciZ*AC9q7aP߂ n]Z~gW5}M8poeOoO*&#afy:щtAUV pEHe_ T 4~҇BȂ DC%;U3)0x@+ώ`aѐ pB4qx>ҫ;\7'U :paܽ wBv:aAaA>:tkՠǨ4d6,ex@&~!~[O͇C nL FRVtW QZ҂\PSu ͍5hj )&)=ݻb۶o޳¿7صu+~_+.w o>^U ')} RjnܼAK(YF3M)t2ON,56{_("_G!.} ƖT)]ʾ$.хY8%x9 Ջ3M8#3n,vz hnFEM=*kq1 r.]6<-?~}|*I$ hhbD;•Rls']Bs[;ICv=jP&F o$`t`8;\±;q2ׯ/(5<2N9Cy'6Z1hl4w֣U} zzU#-j* Xm !T*ۅ G!A?rg4_iMOO=,2!GׁJ4vc4G֊7^kK 9aL a0p7o^B"ж *2@Jbtr^Q qI Agp`;CpTg"dHB}\i'FJP>+ϟed|~_ cصo;܈\x}vIhߩk$Fi7f 3"3 i X&zM^÷>Zޙ';\ ~օV#T_]ƚk<K"* h7Ss/^^sfՐ7{o4]|o~Ooz3c1>1@'=zt?=D\} 0|V?1*f1F1>{]a,"2B } 82 q*X $A(v~+mq5M"=%BoIPm9{ TyX<Bݯ(Cq@÷wo@o$F(ǵJH6I5<s/9cΣ6v}o'>A!-eF 7-Bt.N,@$ky8~tu;j3K|8MP<Msi=zJg5ȞjXmHMV[hy$PK'ܡݸrZt?OAEghj tMmC-uQJ\02 a[wI9Z6 i2Zl7I"RCHЇ QC8e@| KJi(r"hvoLeHIN k ,^!AuYfU/FCTsX"Յzx=y^S9c5ZqK+jkFNScwnH# ?N7,o㵻u<\TiF:HcX0Kf认_J<KuW . *x +QP"\vVq$~Ƕ-8{o )'Qc}} Ng'$6Ă={]$XHICݿz2{Ὂ.Y!X|,<beIf護1<' I G'3u<ހg|Ee0ԲLsA3#ӰFPь$=9>p<6Z455uut".__+DkC3}_UPJψnZױ` .K;ًoj٠x?I*X~PAa5.<E^rػo q"BH $z0И| ݧ=%7[ %h^K\ 9P{}V\<gi¼ GP_t :l)7W+sub2dě7/֦1`vf8ib!\u}Dq\x:uS00V%gGרHMD@6w LV.7-&%G <1|z 0ތ L"sd Y'f3F'JGEX:u5ɻǏDѕ0kjQRS:# FIRgwHT"yfo7½WLeH`~C#í$fet}@:$'V<Z6e#TRz:PLp(O?svlAXM?/~?Ww՘qwp`< AK4`O< ͢twLJxl|)Rc["rD$ 3>Kd ( \F.*q£0=sdFc P.h;h$$]}Tu e\z%jb(W޼Osw/ae2mO H.83gN"72Tx}4zKPᶮ D!H5Uo'#8H4J@p|scj,I#5V;,HP B~tR*k ^T m-}O~+ ~=F\p\&9ܳ4WsEbli##)FA#|nغ*4#F޸7k H&XgF1=>a([0rupׅ QPK>?0P;}z FM,N"2`}t >KGNlH1::@$I(C(U$3 PIXk8vڃ={IwO!{^^ZWK} ACԋ Iw"%)L.'_}/9 '.%p5zf!5i<;o_'w0==BgC,槃ϿA=1@g i@ZjTUsxK_< ǿS_ ï>ō<9W&N)n mK: Nf hzP?I(YNBKha f#J-U~``$N@8Fo:?7%9kvDৃhjD:R~#M(| |W'#8w v:wbCxeUGim3Llv,f!DÁ1hO]FI 2#ƙbmqu~ZrDay-¼fQEE^ K+ITKP[[]M$vM= :³(r EOi^> z$zp)ut'T2Dm46=޾yH07;<{uxwd!@VjE_$ >H6z9ҺM,#ϹhGKM=:]zAǔj( R廆gN$DrfDgRAolZKzJQ7U5~ 2q3LZ\ܼK*Ⱦu6ڽ&eeh%k_Op; xI%pxH`y[߸ޚob&kĭ $p_z,)]C'5Ӈ17=֤'`tY %hvMժ)f xE*m/3O>w?zJ1GkS>dJ{4Q[HHo3ȎRe I>OGGGM}csh@Z ҹcsǕ0yA}N K>MxNّ AyL d,jms *q8-yVQZh&9/gWrU8y4:]a灃DPP׎n%uM9)S.7R%H?4U~ 0 Y7)ٳ BAA.X}UFy7R\P|4:[^ nhȥη`\MیK(<yQ{uep"lG؉)/gxaHoLs!nD؂nq]XYZ$VS}ѱe9$`ICKF|xlW(tZKh1*HXR_J$P =$C\N~Ē; B$ 2%L(H0SMΞ b3 ^VQgN쥣8@'cҷm.~w"u~vޤe'E2폫,$hf }uܟIb}m"'G(Xl{pioNY}4ɠݴGor /+S'ZPTztc_eb[? ~?C|O;[b#АZb &f ijc< or$8 a Z­;\@BOd Chow%CgFEh_l$m>4 < ]oiBeMΝQe_@<ȪE?Qfn~vX6=Ĺ Gb]8r4lߏk(ʛ;aw:eڠpP8ualj K#ci%2cpx9v7VoL+$137͗yN' R 6\V+ 9 hmFԡTCϧ(? aC҅kVN<Jt &qc"k;1!m|oޠo}a۷=͛7+x;[M⺋@rm7B+dT)Kk}U}zz!JQFPK˘EdľfJr6byX58A̟L2;F57zno>ZQ LJtgs`'I}N}=;p$ $xP.̉ AtW{),$`Yf'qk&dwQQy4[%*QS9'qQ>zHe >zNGqQյȱtGq kF~z|UWΩ9Qiާ4n\*/$8HJ+6{Ie7@z鄿r&c6 Y0GsLָK`yߗYܩIaIٸڙݼN5 pFca^' 3**PYUF MT2 ^*>xrO15`38t2tR@vh NV5KZ"]줫KJn޵+8phޅX(40$̓#$ q,E%h+r'ɨ,0@h00"lm*rTq %h.Ёx>tʇ#t`i?UPo &L\$#x x%Z7<F`ci\' 2՛@eȚV@:ZxTe>^' B09}nXl~Z2 T!)!).Y׳Tڦ#8- H$K]"!,Rv%KAK>bto<^0,v IgNㇰwf9HЁ6YT(θXFL2)\>::Tr?{?_ホ~%TNbm1zcD{sxe+xqF x+/uY/xyKt~۱>9$99'{_{ v OoNꔉ:n!QN@b' {4ZA^ϤX?;D=I2,$pnCDx%;ȕN10גINa.#uHU Iӱ|>8!Iьa Sb4ʪOګs׿ /GϜWFWJ_4cabnI_ډJ]syF0x:*ʚaaf,$@fAnfW d_N-;r.!hL-8E} OLR70L+vp=dV|΂S<Fѵ鬅ϩ@k_ 1_DsU4Q#9Zq3ưӀ` +; Ceso=^ݛ R$1hBevOMƭ{9i*G %r-T! Q꽔#Qnh4v/Y O P=MH8(%p *sy]vrX /}y.YfOXgE g_ıǰw6ۻm$)'OA]G?Rwݏ# @HD c ?;ߓQv+秱8!+.e+98F.U7S7nܠ֋/W6M7`<n|GK/bÆsv?tŋg|vodm I<.xmD}Fn1"@ `s)(K/dN=\=By &KMEp\ҷH Nl eHAٍ^DdtszxC-Y~=uCcY((u*OoFIe*E+†8r ߮xxI!"F_<r\t".]ōhֻ1~ oz>ߢFNN<C㪡[Lu!3sLRso.عY=0w԰Q4y vI\/IK[%14&/)/Z+DZb']F}3Fܑv->hM4>ep<lūק۸LKBA=Jeu0I{St)>BsH<r>*dx^,ߣSOEX}뙹zzluK2 ,O jFW }2ib I<ql,>fovG&e<|8b~."ؽ{#vu#G9FrddrQȰarl=z <cwÛz0g+ j/sqnl۹ lozl}_z҆/ᅗh^6nۀ6c{8zvm݂玡 Gԁ,@RA/.؜ЙxNC^b1ʨNJSY"Ӱa?m'[ƍ; .w #|} q*EpюG5*\y L-R'ZR1iT7 hȽZT#76nچ^|O報 P_4mGo8n$b}Gȝg9 -:^G߰hqade\"O#ģs ) m"Nޏ`bzX3,92|0k9Uֺ}(/j@cB߀kX`:h⹴V塦<ʋΩu2W&bdz b"`(y@¥GA\s[ey0k/!aڣt*K[&O!Ƌ?m*u %S0|xDЩAog@ 8Ƴs^&=KAp PݏdF׏@ h#K1 }0x<ہ?`Y[x\+/ā{p.\t7dMD#䚂.4c$%*8tXB1)I[15"`lB 8[މ{wa;$ ;xܸs'6ߏoڂ |Nyس'oP,{7V `n2a,N\I`gzjS$j$Jb\5(rDÙS  :ʥ,R6,fӁr30)KԤ~ ;veMCiD1@B.єOvmzL64\5;{OǞI (1|mZx d.5]]Q:/:ht@k Lmih4xIj- ITL4(5i!Ҫr?GEy:@zHx֛ }0 nʡɉVӋ|sdk@Ls3<6tD=9'o]qN=CՋt79$.t9Ch*AXSE9H̪VU31$}d<{@'%"#p3ɳK)(> AJ3e;퉏L䋩{%$2;,bZHEzX(ʚ|<Xm$ j4#_ cb~yF065^2JKgFػWsL`mkT I®@^WB8~K)k#ͅps!bt] ;m6`?oVͻa3yN>q#zM긝a#u~Mxy&yݡ'wo['UK Ll:70:OOt$&`4BcHT!;M+cSULO"H$ YFl4NjbEFII#XLFyU(:arftYqeÑ q)u\]T`غ0~K/c%>M|oӯ}_~>b>;Z׶`76U:th>:"aa4\JB\2I2 :^ZY#Խ}3@jDʮy}yM"Hri<o'Y8rpJ=aa4H mksdN݂}/|װ Mk;PvRr8S epi̸6[adIxl`  ҬݻG4 Jgfd!#`R.z+efReI)=4@:@0DDj,zTr|dIH; CՑ'F{~[x-LM/,b}L.a#ـkD$$x6vS%Ps| <a8]6ͯd~1<?Me$}? z ShګжW{ؼ-?oݶ۷nۢoq˖I,uf .7nHb_xE~fno7ߨo᷿>Vw'12[,'qCy KEiBh7(A!2dS#U{K+YV}Kb6P LRwWa MPxB>z:[ٌaS_I^0uEReEyC3:-7^x 'H?͏]>&ƛYۏƖ^WfMEymmեdZL6+u /#_&mE16H@+攏,P;g1:50} 9ЧQUɕsu.pIF ӥLF c*9oF$`&N_x(؂7a/`;7:[kLPs ~7(pJ}Zzg w׮#J⛦FGDaw< q)YP iC~꥗H2&eɦKQ=b< *h2&5R :.z,Kv|!:wzW6|?JAv7:$H?OկN,eL.a< KoTGF0 "Abc%n c6N·J[Ч%&aY\dPcĬhAWOrw$Wah!]|`ۦ{Fݷ]lZm`Ӗ xeKذQh5~N&xlގ_ڄ8g zZJ?o?0M7w?yF rֽE\[oUz,¦ M}dr1uVo=VcS%xR%FoM(XJ#S70'}$N<^щZۛN"οI#31A{Ov* %ɱdVMjy v҆ng0E?~o|e|Gw5Wׁڦ:b|+@އ l.bo3|>5`w~V{Ar4zvsf) <\y8pe fficahF04>~} 4PX# ;aj,GDۆʜ#8e_ [7;>"6P._܌Ϳopalq`ˋ(pFH$ܸh xdI@,c>BUKL@CfB/p%ob <X$7Tn~+'F % c:1QXCiG&{:ʀgp#* !}~5<W xSC@uj\tN eӰE'~m1SX$ual0w$2 =/K->WI߸ʘY+  Φb=$aNl!`شg'* c;6+4+B$HalI,dV\bqT a2 }DqvBIᎦ5-C2l 8s"M <р0Hg|zwR+k0vN"KIv#ǣCvk})h._B1Ғ$}"4IU426 4 wHW4µ"\-B䕔;4#$(ټRkPҏk.4x`q&YXpoIV3ʁ6ɴ0,tn -AFTNU |,E3;`3iatXUN$$5tTU ?m8Ho8w;.p{=ZsϫT QuQ4G ak+dߝʢX뭚r#t.[bNx " XU&$:EdQvLoFk4Zi,}$7c ~څl e'QR% ,W]v~<d‚p؆bi/˨(9MP FsyKÌ<W2t?nlgG0>`ܐ1#ZLvDjܷm߀]{[ oیlٵC$8<l $ޖ]|8|MUo)Yq*qI5UEzo  3*@e) A":%1\_%,pJ+iLw_#aVIHq 1Ʌ#nTEwݎ:QtۂjGXv̆~1.H XfD5&[RjNԶip+P\^ {C'g[Q]Y3'ѳ8|,N]ߩ6x^m A]GhihPHd&2t b` eI46(=8ʚR$ ^ӥزӗ,'8Qª|t40p!F[ho@_S) 5"h)3qu2t =Qw3Z] _B9W\Tv !ʟԆg񕷟 IO*u(IMiЮ߾`N>FKIV A@v}'Pe`J K6A^vOH!b."^~d*I  փ3^9YͲĊeIk!B*UqH0At?t~'ZPT)%\P(*Ay)h:+q!I5a&,tPx5)^e"$O[~qgS&e6DѤ;6o[H 6y$۱]7n/-[l{ $ It8s)v5d"vTGSU?*<yW<T`ZI"^cMuH7xaz+/Ӑ=%XjRjRSOH)*z.mZO]v^_K\ $XXYTYN1E9"_IP  z[\ZTVE~ڱFTԖC$rJe-.WԨlQG;Hd'Iy)#Yn^/m~?<5V=w ǎVVPVA=m&D0ymyykx'K;8ƈvi %t ZTB&6t@Vsw#i9+)?up;؀[_m/Ȯ-rcZiO.^<jځSZIJ:dm_{u\O IH1m[#OR%,0EGBnJ%F|_tK$F7md\2;J)}JxVvbH"YٜȪcbTz' }Viy?0L&b\rErQk)ՆZ~HUߟ'Lo#.!#^]iL`z5ܞ7&pg<S=Q{'n۫pvvپYMa" /gmoڀ$̿el]µڇM[i6l߶6mƙQY id 71砵Ws9<yh&%뀕Mh9uZR#А5.^v02GۈH`ѕ3E"<0 u?8Ov m4, v꿉dÝBw-$:A߃@sWwiC3ݭJpjmj֣ @2 ߇&)U.8rʾ̹V(TmO":[is!|PFO9F&gLC*D0^ګ{ u?4T0mm0/E3CׄAk] 0Pmmu,;CPn^/bMطe }}ʔ+ /*#onЎWoƭ%DBPҴGiX0kh$sWl6 }ft05YAH2$@<^H?qetNV>+gk3L9J2ue8{lQeBLEjjA풝\D//vϿ:XpүAI}+U<4jqΜ>y'3AmEK]f8&ZGpTQ:Q!QLO [x0TL!|FH05*u'&(ػ{e.lٻ Ħ ?Evضwv;V OcQ|۷8](A^Up==jnO|:ƍ$A${I%;貄zHit86=O٥(pd;h$j{S(`TLTs볣JdwoH҃(5hJ=4].TmT|?/øT܌y8s2N:ϣ%J=HF)3IIC/r dIn\QbD56tCI)6ng4Ȃ &X SVlAG%e%,iE"ݎ\k|^@S8yd/Kc+عk+نLh2* >!=|㰵çp؄2<tn.~NXcg|$sYXRE%@w|Ih:NΤd"Ibk=s@}'7K/F8vԔ.], 5DN2:EM(nGn|hK8vE$V=hj@*;xҔ0 Kk[]!a`nCt0&L mFWUcOII%j+`'aaㇰe:/A91>[wx݁7$ey:~~thPqWlS,MgTD{<'.7=%XO(`1*M04 Dm 䂲ۨ&egG@ РSqPxi}]*0N/c,\ﻤơcNס u CS8ǑSp&G^qU\(,Z8m:  $*0=2,~deHJ3h\i&wP%(,<Wl$`pP&-\i3G!A)g¹ y(**V k )nƭ+؅Sr|q N߆${6{CWc6ჱm•p融|jL]$#me1 !&X^5MƑ9}H;O^C*AȐdiFe'JZ/'gD_ESFu\KOFI`Y(n}/L 9@Rס q.Wpl8y%$6Hj:n6xݒ0JHBXAI8}U3$ cR*VzYkwhm쬆uWgFWp^:nî}{ھgvک֮=q!߿GqlUB KN"nNӯ=mԉ+͑;T]4n,O`0@*vlyy9JedI%c``k*ݗC'e>0H.9uxݯ;hUGtyBe8$ݙ"B߅&Xr$1hn$4:؉h2 uR я̌ gą8s1G_ā#p$(f7 N`FRRi1<F`srR' QgKQVA@0IJ)Yx E2M s|.a4PQz UæiI/ ?8݊;^-/cm;P_p s$2ؽ OD|o3 F֨Sd!B!"Hx@<BOȽUy0H;./A" {JR̡@o,89Jl6}jL*{@2 졄"rrd,I0|ONI0v\nCNI5T\$a{zc7j[z>Pfߔ,$4fVbDK6Y t] Wk\mpuUBR m@ElEwۍSG8HwE߳>v=݃c8}4M^EǪ'~U_FAc5P^O!-$CXYBRt?&F->ߞMJ >MYT IF܍N71|?kNTlc6:.#HL/0d#?u3Nx?!Ӏڻ;8ԸdSפ?RHe={+uۆʆ^vJ߇n06~f/N8wvUQ%5a_z5.z!G$} I1R8K=6PW,N2lں2DbaEyMĽv~Fr90GAy<_2V\<VwVgmB7׆ˌsʗ&۾ell} vnƞQA?򡳦Gy8o#.ރ*v0Su 6xȩ@0=| ~޻0}~`:Òq "C.}d'#+1"XϟN|CJ2RsrG)cX26>L$^juk):AO8Qfzn?!Mk@Yc )xM-*Ӈp aZx"Q ֠jV7 ӊl`X{q㊡hDk/A_K:R S_=`1SgO峸 \/t)=u'N#=(BJTf)[email protected]>{gU:\J.sjG_+xzmxh=7ot,nB]\;(;bX!Y.s AL:R! 6x4U3?ͥ8K!.zzkAJ!VLotI@ CH}C9X<,K`~/N\<ç/reV6"͎6kFO_a7IäWJ4ңtR 4%BaI!ry_O嶓fH (:2:ҙ4\m:'+*ix XYn gQHv|ygQ{ lǁqNqؽk}NSQ\W`S9sPGdԴhТ}~SeJ9]H`VeI|ɒc9?YR]S kxpD1lsy_0ֿG4ewȒɨ ;R)v3#4H"BBOBv7IHki`A+jS'"6TF7c444r4 2'Zg֓<aPLn0$`$cRntA.H¦U4waŕs8q0rDyP\]H>eTy?sOQkU [^+_@ޕ3;8ܙU_n=.;ۏ;7棳zU%@ H%B4dMeeu 46:N[]]i{Hi'm %I` .;rnip)vQE~?uSF'%S{.m@REeQo\h ١7Y ==cywpb1#a:K~^Ui-}{ A_=&4F+$jihZRiKeOn@Gi\rQ,Ir`hr@ KE@DszʖGֆ"؊*|DS*8ً; A=ߊ x_R 9vCHR@p g|\ECy4t5GfSI2|}*%pIJ@iea&0u 5(g'N$KjIPZ*+Gi)KI`X|s\kzgH Y ِ< !󡾭խ\%̽s'v#V4Ao[^4< <$^4ʟhDf:o'eE{[[\=o-CKOv5 Uz8qh^8bWjuZ-:rv8M; ;vl,^x ظͳJ,1;SHt>ڵ%$=묣٨Eh`2}?م..,F?7!Nps u_6I?Ȩ-7I#AJ^Ue 2_*ڄ pLtwkИ09c<a*`EС!2 Dfnrm8t Gb 8r"'J9mls sݔ4qE6;I ?}@bzaKrK\$5Ë7E|p8fS~d!Ifn>ٽu @I]li5}?WI1Zjpa\;{T+䁝8{;vICsC|صvh/<_AOS-µh$Ym.$lZattt`ӧ:>Nd{`3^zK#}b:F86V]J)]kPtQgՑ=_ögj UHG$dp31A\7_sY L/jlT܅h{ :y_Way:GQ ԚEo񡦥 }u* UyaUӏ\Jr_oHQ*UQV8>O871زqE<؉s=Oߥ7 \C$PUSzkM sbjSG0z`JzU/?9R:iĽabNqc,8>0{9: =e$d{c7H0H**kсA(L"7\觿DwΘ#Ab/ 8nԥJͭ8[Grpx3B[Tۆvmcz ]:[Njbn;!%8_B|:_F1KzTP jnM]0XNQ63І`#Ͽ6A#te{X| Ǒs.ESw|b>w'͛pؿڪP<5Յȣ_:E85G B E0$"vׄ`paN٫x4{aD!hxʊBǣQp C_x!j%%< q2u~cģqK1tݞxi')lfrr4znVIba VM j(o@MeS[ :- S =!tquʢSfzHLEź)t$wF1`Pkv-ЂK!wޏ#\}s/ؾgنvbwNa=8@pY_;Osk13H I6TCX&LӓCB$-\XZC! в׼yL"T4]jח;)5,Ag|ɎJLvj X$P)K!1:o$0x{m!kAPH, z4"=W}bnm{}QqL |^7ln/_ [(BN Lf!ymhBi%[Ib~'-fSu0t!TjC҆QEaMTJMo.$H,9?si@Nۧ.&x8aj(.S>z BpBޅȻxt.2JI"]u0zVf;ANR:KJ K$`W;!D36gi<$h oU$C~o\H[uW\>d(hHԮ~<R+*}(6]}:4 m͵&`4ՙN]#j[7=PYc&hÊ&p Vgc0c"iQ3^K'b~#B~ rsϩ۷`u}/ _E FG!eFI.P;eۄ&?,>{7a:6s>~M㻸{co?{wn 3B0%]`M@On$iL@g (3481{UexI2fgluEx3 4|DI'jz\ :#9$PjӃ$BpDѥsC @Lk=#LM0ґ*Ԁ]8zGN<=| :(cs.k4KNFY̴&ZnK^Ri$YZۂZ-FhvW0zIt6}sÌv#MkC~]9v!;B_:E lڃ{HU؂KgeW 6,I  OWNITsعs7v>}Zq)Ӌ%*!A'4=0ȹS$JE_Hd9%&*|^a HL 5?_fo\K9g$P e dTBVjd}\Cjd/vJI߆BVGmkmDjs mq:5QVކsޛNQܸ1̤xVH8{KD<} WbUmf޷MҼLt_ |mA}?s8:u.FQ)xW=4͸]pۑZ1~V #FWw$J[K[丹Qt2A>Hҭj\v<Y4.ت4Tʯ~{Dz ЮەE/u{!ғzJ'0<>EL#[g C#;<y m%Ş*|{#g.Wb>'S+HbҰƳhC\~hh,*Foq~w^ K5l:򣫧:m7:z4&'2.^ TzQ@Q%FuPi@nqb׮$UA8{~a:C; Aؿk߾۷;ɣoBsYN߅+ą'!1=ҼӨ/>֊(=sru婤&ss DS$R<g\kL&u#,/LpDo?-2"@ ;XHY@% u@bܼy@Z҃D?dIi]* M%``iR<JyEK1$R젝"ym7YцBW} x=]k^J(# @z>AtG$V&0?lʍA?{r!G+Z%l޸v{c6x//Q/_Ž۱}v<(W~;䣬 ˇ.C"Eԧp2:u*OýE6nM>2-:Nˠǝo&suH]bSs`}c!9KbEIV`wiTvXC#ur"Q3!Ffr<?R6ڵ.4c%RH,M$:^W j:L]rX%uXN9N/|gPJ6ěDɁڎ޾~8].8^h5:=~^>@9h>b:{:5r՞Bϣώ*;Mh8('/kK6 F9SPX| Nnw'ٯ[K=b!i)Q:/Y9gĹ3P]~ t _?g*nwZڇ"l6LG}#3XGƹMS3 '$ [h (Kd dt%HgOL 3.ǠU('WE_lA)c*$J쾋$wpf//vϿ:X 8l17Mj.31=q]R 4",LN6nM'qkm  щKAN#|F\"pw#Q]f87@UKc]RvIxyf-$pa9+WΣ@P"4<Wd癠,p %x 0 a+0b8l%q!q 8hT"qL' UXvew_4Kd0462 Vn<qHMSII ѐQI^^W4:%JN TJ=C/4^OJQ#iMCaGqDc6Тwς>-:Bpŋk\(Ɖ~4'q.(Es /N@щ>8J#!FўPMyQNkV \tpPe| |FH`zfl uMhnӬA%6 $b<.Pe%xhن=}H /j] T6E9'I&OAHS(kOF (oDSwɂ&gfUe_:KА"}ȑE4@Z P"gL4G+B2A 4~!i7{T48:C4 aGٱP`e!e;\h(oAiM j=d9ښbv҃ yVJ Oޠ\ϒa[`{UK]:\.+Ԏ' 6c4.+1)2 G_ue6l߷ w6B vێ4y.EKs*ILQ^Y+%?GPQtca^{d|F,܋L&] rT7C /Aph^eH H0 :Wq iRS><I~^䋎d,HB@ ^dQC8KV6H"&Ҵ@ ϥv뽡:xi@إ'ҩ$ h5xQnP;2ґB4PfH˃3E-ȹ҈`ׁ8*h߻HR,-d2isB2Wd7F"UT MષXPW_H!AަGև>(>o٣ƴzEQYF{ g'hŕ3;g9c{lKp3NqMOɩc{ne)ڌSvO\@G}j/Cقd"  _ Hmb s+KT⪉,%g))D$xϗI$藲# HJ-|. H慔</Iit*yO>'A Hzd2)VݖCܦ~[]P؎V +kDm}zZˠoQpW/HơDؓ0;ǸV(kM5xx![Z16S~_]Oz:jqLt^Dж/-/ Nv> FW6Tk(*#;t?!TPCx*^|I:{/p ax6Bch69U $nEGGAݗ1Jooo7ǡWPGI'>~N/A^.ԆI2f`"yr5ՌqߋԐ40 KkUC/uNc& &] jnM=RXsU|(^p sx=b}8y `/j{2٨Vx-v, B{{+Y=_Zaɾ 74rACҐNaigmj}i@!v+x[+؂2o-WZPY| -5G͵8,kkƥǑ{4.9t_R3{'m(=2 rOA#8vx\>HFMq:j,v5S! NSƘ&S1*J DHv\덏%MّfRr(6=0퀁_5;דDV=gOQE%-AN.J&d ߁d;JD jh}UN6ؕT76D13A~59ĭ$Բʦ2R.zoB=N"\_ť=xx{ I'.LytG[ԣ~~ ضa+:ƅj/%ǩ3QV^F/Fm]Z=L#ZZi*Pل|ȿI;ܝkn`,K!Q|6\MnW1pOM)qgc$0N? +mv`HFۏQX( zoHBG| n6bc]\,o АGY[mN} P:ؚӞ]PCOޥ9-p-!Ш {cx ݪWlޠ2%aUvk7Y䱌0eΊFt=vUl$~#&좝k0Ɖch ^#vi"vi2N"iZ{:=nJKm 0;lDA>q|<z99gqbA[C!ڃP-%(!֗IL\8%PSuEEg`t#;1kK ,\%qLӋ0 ̨ N6{`_3=_V7qQoK>6[0F=PmƟ1+{MDN{፤KV(f/)?Z//vϿ:Xt*u(hE(, 4WU#hEcC5 :oڠ\.v97؄Ә4{Wo):cs \XZmG9R<9{Hv؅]wc{hٿA@cê AE!8H:tt?(LS+Nj0{| =hӆN&t,id͗8~Y/]h2O5|]R^N < qS-럓+YݩѪ錤e( 2sEI:T.A':zq [/bW((+,ϡFKSEಐ8H,=*Df#KtTuxh.Y$2gZ"MWU|XjF2 18V;r.<K@DfXwhI:RKͧ$N9'o6:0؊ ĩc{K 4rh8NRrϟD]yt)Ra쮃ԇN:T i3cy^KKFT&Ec/ςvi$@siⵓ_v ,~_NTCI䵶quotzI3ZH-f\PAXz2!QW5t<' 4hP٢!lµF\GG}iXz2Z: h5E Oى. &"uuS+kɈ[ ʨi'\lʣ k/C]yHRK/ IC]8p|?=>kspv&!">޾k+{'H$A۰upY4~5 ]\Zu,B/QW[ ZInjjPI kRm+-J%pyAcB}|_0>h=N{:^ɬI_:Lw#IcJJMR`@/=Ҁ*v:?Y%1333z83sx3)$XʔRJ.ji.<Z5걼flwkyHk7xe6/.cĿ>] XS]قv}!=Xј@"\C<?kT?!̌ܠܾ ׽CE97Bҏtۛ$jd&LvO= >5|&SO%6kpXgѐ2ε3ٱ! uM\-P3*eUFu-ٻ*^5_OBg_fL4cGKgZYZO|.)Cjno"{:diYFt[sE߸4W5 ɾ/VhиE 4PI Geg#H8 S7+`ߤ{jOʗF\@ҋ!̎v7݌7<_=|5}s&5{4&naC{?Dɪ)7M!`D? /T|i6qu-ZJ36(r!v)I}3mx _]KC47br>ğ3˿ IXr0|V۔$1@<i+6OeGK2hmd33:7|~6}~S29S;jLCxXM /kK$(J0,C,Ӯ,1/MOblױI"|:P=nnl L"{rd6 ‰E<-E" 2-%MQɟ<ߙ% n㵝D6.vH=\cS,aE׸;B<`ʐ^7u~ uuGZRM~6 (}4s}-5٨at4^c~\pΒXHDm%ynCS{7? 3udji1\K$M+yB1ɃD% "|e2gC3Xҁ<8|\ xQ9~L"=ӆhBF*MM?@0cS76ርaԛE\~L"4׏; v̑,*s-}K;|5YwIiã<>#>bgяm ϵc~F4555$M-hhsfա5u(+w5|Ur<R߳V?ſ`k= ,ȦHG\89{ ԝ:G֏~iԳ8ev'v'SHy?C: ?(@mm (;aRQm(}29I}e(dE\<.6#s~=;f.^4KZŨg<'py牡B(\KI[/ZF|~{}LQvw|-{7$+*N獍ό+8f&O^"O >ŪzP/kM4`4X2Y~/:ۛym&1G_16ك y^ ڨӍuD}jqv)n^/AR4TTENGio*C_=f;`}>N$m(Z;(介%~&I>e>Ez61yK`JԈgrg /{w^9Bx-EO<_,嚛'\m/+3kfr!u+S3behg@UkH!e2vy! GfKn~U-?Ce}fdx`v$GN,@ Zr cU;tej"~jp A=IA]9* HoT7KL*I(>zF (yuWOrKqleHfv{'rtrI. tQ1Ckwy6 i $)M\z %~1u;%Xhp%*P:a'q:T&If|bE3- NSj.z3[X#QwMS4MD`Ԃa 5Qt$6găray\yMG;8VM,I&F> ;VzH'X٣A81"Me>nl f۳stLaqA3D?R[JRZ#+&JH([&!!H:1׎aH;zHL:`sXa`E0 u|#?&):wE)$+4'xpPB2oc[J?$X. Avxun15~I_R A& h|2^(+$-4ɒȼkMг=-XBp;܈TWlKX]$yxL]cүr\+$'YN&> {p7`SO1 ljNg 1:e4浵%oBuZ:ߪ(m:eeU^K7L$و<kh9*<>"~9C]c}1<>~r?/OI*[^;#/AnM 7#x)"|lMzй*+&Lm) Dy3\oD<<M5嵏ҡҫg<B0inKBt~\k$ %L8Rh@wH"\օf7!K }@v)۰kG~vϟλ$;+tFGca>AQdD`f:ߢfUK *[Y2<VW15=R $\gzj7n:Hn(o]A+7Q_yDc> <sp n`dU'!( 1 g?0}zO>nk'ozi)&Gb]~/l Diz#R@= $`A1pLHp,CUk7MDIW::#H3^#G?4<b{QDډ5~^bchǴILyژ}E#d\=<ܾhq>3g5l~`v:͂2ܨ+/FY,Vy`ӫ6~i+*ڀfOo+ x,ǃܧؠo&hb8SWo^SIxSDëF+ uzhw4ޅ`.@^:?{Hޗ#Ϧϧ-  DPqV`:k\yMMpv 6[mr[r]8i׎{&8FJj5@Ѕʺ6Z;aFGt , Z1㒷LN[ X7!FdžrB**b!-<??4@ :"-LMMb9@7uw߆X`^tTڛuJ!]1%H 4xf/1h´zQzH݊j lh<@2sea}?zW_>û B*3/m59-6<QQF.+xZLQ%5&eΛ\e$!@_z2e5nvډo}_bK똡qdsG`35Oϗq#Κ1q9'IoDI0h|t>~n\Vtb]!ַal8cY$9%*Cum nUUU$q5ߗz {u51C-9CBb9A2*<xVWwz>ݍvW_%>y16 J秷?w #_呾wG긲>qu߽  +P5(F쇈BkwLJ4mA~1%~D f6MR)J?F#S^-g|G-ۇi`EC(9E}}j:7l!.5dJƽiXC Hehl*)ǫm%ڬ㰇|9*Ž"y2q" 6U@IcmR3Lb 3s-ͯ?hBMI*or *G}mnwceAW *O<N<C)ڮ5<|1^C%f9w_cT>Msw>rǟۏ>qo9țVܺmkcZ &Wr1F%qdVgtpKLRſ?8X0Hp173#Y b&G;,nqway>Ãy3$I _=/_"I|` E<vcbrSc]Dfd֠\evm @u]%jhoVhUx Wn_ AM<Pu(a=GCK:M2ыx~_|ECV8g{͏^gOM+\I$$Tb @`_EC>N0|]pCȺ)g*?HE@bPhO" M.07WxOnf^Fd1ߣ#C,йY./=6l,/`p|iDM {7:dd Hzdq:' IejoUB2$jVsY2,Uh|4Z*3QNd)A[1$ HEI0LgAc2bMԴ5k.W`JaY+4Aǜ:wƆt03##qp7py0J]=}}~ Ɂ  '80IN %\+F%" ()+&@P, b-Xt$rsN匢=cG~.?];P6+AQG09bKG '"ٞ'a><znUl j2CO Y}!ACC c=hk1)u\O_z^4 >.^ ׮Uەq7?և.7XhW6Ih+vV~8bo:q@1>y~7_|eF)7KO`)1k:|IHZ)Mq6ebTGg YX@0'h'K nva.Ä;a\wMکKx/p0f u6a8 - m}hœw"6ٙNr}׸sD[$ՑZKY$AZcofqEzh:5o21 Ts;$X1r 4ӫ[:4q1nߺjI00;ڃn,io05=}.$kv} - ѷܖ!+91؎zLccu,.fG~s!I Iw|9>gTPx<;/E Epm2UYL߇B"K$j\d(Q nf8"A vn<%X8!Y8#QCo15wo î<<B(ypg't̏s}I}VkGo"xKۄP7[M۶f먥M.q$bd޸uM-(WZ|xM|>ġP@A>t44rڕ2f>O?:Ϩ{^A_~/CO>k4)ݏQwN Y$FB|LJ7M񽩍G$˴'FH\q(['P]I`$Cґ'P6K:$Q':R}u0 [d']?W?D-EainGS{/{7?or?~( Mrx?|fZݝ!yʉ m B"㎮ YE>yƾ MH+0Hh/|vD=Hw01wI0A2jMӼs>tV:Ԕ@E5ܼz%Ya jo{96ڱF+q/~hzyla~]hOmi PϞ |DebS꽚(W}2\i e)KT>S~lPWUd`Q4?F\p;"^(m#ߤ$emC(mGe^Ah~ }roG^.p~Ĭgu^>>_!K8wk& #]$Ds-TV^2*.n zh^0EܺE|OшT= 3mʪO`7F?9K +>?Y=8GOsxk@^31GHl?>1]uI];oS +wiI^z]K已 ,ĩ &hcOIb~酦 ח6B86v=t=W37}e/ sc6;6 o,1sLأ<jAW(Jʛ72_bpY:"A(IO<c8wr|:t5k}E9lh+0na)Iuε5 $=; f[606=q&}[KaRaf\ӓiDKC9Z*X]Pv:ʪxl҈8f{`#VІbg#yD?Q|/<Ÿ/pK+ͭ]|OpH?R%Q&P`ꝏLC5Q$ 9${LM OMz_WSl=>S7&+]Wv ޯwkFa\oGS#vLOM"iq+$ CpDbs!1^|> B"N ?҇&tw՛u%o'wY'` `b| 5f2\#xkpM6%(j*Ccau(62)^?;/~?Ggq~O?'/V 'W_/O}56TDG%Av5^R!5U@@#ύ)3A;9qN^8FP4ch޳-#lͅm* \ybYsdILKnȍn*f%@CM{'0H!M -#HCR[TA SovYw<4Ù;0N Ў J.%}8TBp!שa=&J% }o8Maxtc&,Qk'I8,zfiCsڹDDo)FH[=p/4@w+ )Vב,"3Dmŧ}jH(ٽ BAG4;ݡe5$oIDG"t tBW[`4>Rg/'~;Z(8"PsclîܘvfTAūxtN\("nESC;A.|8ǏW g$NKӏ1OcNJĊN<x,ckCK+A]W ޺^ft2 {tOcgFQVgtZ|^nj쯗86ܺF$>*MgSmv> Sޛ?1O~gXau8b$WH|8K$G:ecyeh7ؤP5y?אF"W]aLYIfG OW2u`Eu g| "ă7C*9pWL`Z_M(zL $:98c9ƅ6 E[k0N6`hځL^Kіh3i^ח)sG@ 515 gGe1WM,dwD٨UH"K{fgV Yڝ%Y֬~F*p"A~F0?F"d5ҖS$cHG<pM$ 䢝?M_Ӂɱ! tu^LX4ƁڂNi χ%`ad-PH8D@AOKԵ@ J程Е*J2]ܣަ-%9R$FAR@K&DH4AXn;}aD5*ɌK:{n2 Է<߯i,ڵTAd&ݿr߽^BM /oƅhhHy/ o`+B'߽4`Es_6帆hlF|~k%Hjo4^ͤf#oSÈDAoR2ʪ*XE+ߟNGN0;eJ?s|<L̐:mⲙ"%V}l16@c3@~ehHӓ~fvVVY &K1ztDci H^Tv i챼iX\%oÏƢ$4kl}_I'kڨߨà=gF+W56ctI"H?wOwQʪ 61VHk6'1R}># ~n>8;@"E*`z|-ʄ{DTwm 4R<{wC'v$^[B.R}ΫaGK5䢭}}$Ch`3|7p#uaLjB4"u фI=V@eC? ksdO+H'iwX1F]'_6X۲ z0ixNs*@)\*GxI<V|^St2^-Idzg57Ubu+[Zo(&!u!b%6gG|r+{N4T6.)fYDWSp'bn瘝P7?4 fcO`ttuuu& ,e2 ._K.ݿIIH~$NTcc#|>~s ~/͈uE9-vƕ۠}y哏͎Wt/~IlA$op.}0QI= aGl}ك;x`E!.a#WVg6I0M/qFݧ/ҟ߁/!Tֶadv~QE E|^/'?E [lڟ997m2A{dl ʣaMc6 7uýx@O]1\N`u}.?{1˵ q|1-#fu5hhjG{5Zn pZgaiA2&N՜5dXŲnW?>}V7N_Q/*t.^*<7>b#=f׀ 4I%Z1Q`WE%*PnoޣgJ`'.g 8z1ڣw1GOb3 B4$DjFԮ#n?@zdVp|+ރ%Mpȅ2öSZjԢ:NLhOvcr}$C40mDiU9+@@Bkq j@EGGWif1PPo#N{'_H~^=ǧO>$egwQYEl, FO%4)WXu`26<G 6hQI2rD141篞3U.)Th'O'ˈ82Ps QcB70' ,`6gV 'pf4qyyiD`ԼI 'Yi(6lYcwwSD(TE#^;ؤ#6ǖ4wVwY11<˸R '᷍2 ck6ZI,IL{MrڊfLucj҃nOp#윅:g>W5XtSt$^t<a!r<&WGgD;#g )rLdL92x4G<W]1JGhi]5ځ/%/g-1l [N<bj n NbƝox$wEExMrNz3$ї̡$sӉ>Q tvGz0<kxeƦI- JHz:ӊtzjb?}Pu5Rb_g8;'鏿'wރy( C`wԤ:e+ldF[N`n CP+Xyzu&94R6vWq˯p.@ihozD i~~;_p{dz{b_u-f0G" ;6MmNA1AFTaWHin,%X9pd\<*[(&Vvf5)Ы#{D][!.Z2cS8cvU\]ʲ$U@oo7z(m\_cLMq}$ V$i8f$4J33 !H c5dmP ;`jI(fgǏ?3wկm[l޿("{A/[]$xDd.?@|GRã4N^*Poy;orsMtx|6.7 X=\b Oo<`!FH=@d<jKR] NrP θSK.u6`>^M0P 铕-vYEA/*At>!.RVt:n"e vWtbp|=('Ess:NO~9zw7ӟ?vpS'ysnO56#j9y]K+X*gT9mKX{n厞5L &f\wŧ_5B@HȨD:@ (K.b=kI߼<ś(kC$ǎNg@^nˤ> w/bOL_Ur-+xuД<n,dXLphۛܥ\?7}vB[S>RP~Np2NvL#3lc77~ *+GS}#::H&n(FPUmF I=_-6cE(ɫӇhrpp+4YIXI?K$QzQ%{_^%>0jFC#  7;*MUDU6nb֪Y^jXQyC񀋺oM,(_FtV^ L'j{^ZGFU' |5m!,hlј'&~}`3'{Y^wct6ؠCm (pU\xшe$PvA{;1 6UCZ[ cU(1g¿?/1gG?_#oՏ^$~{C;1t^;""~ڍQ.PH EU`:1uEGeկ-'X_yMQ)_Ë_KRx+p 697G<bK)hqJ*O1⚧ߤ_DŽ+r mu COqJ,9aeڣj^avkxD^ _cc|q>aBʁӽu~5،Lf|apt_!gŎW^/ʝØ5nwϗ5ezuV#ե ",'އcis+H&K[Ms o˟S}F1@$tye}?q9DY*Uj(1^IRڼ.JٕzWߕ(x0;%`̛40݋/F?蛶e: Gj>| eH$DM >KP3 Vhn^Nm6k'̬宮4֣o:-2U) Y Jy,c娨)+HmJdb{g#F֗b{xl0ţgTR=z)$AaQ\Юcxx]G*@IcHԈ )eJ7VJ9I2APHy'!RSr‡e;7bz+qJbXL@cj &=ILf6xhy;Fp vUFUs"i gUf2㼖jr^!#y2iΒDQ(u ##9xwB3[\5okwϐ\\C*6vV \iH胎 Sqv\'U\'<*kC=9-NP`4da-Ã` O6'Yw#Sv NcpxcV}l?%/dWMIfH LS9YHMHt:]-iut{ $ƟFB1⫅l@&O`q_$-jvFCQ)†RO(d W7LWVMfW&pG'nGGWAteIs:=@GW3DM5%Uwjz5!+7 ]Y*dVRe%|]Mc-mա 8>{] ""lyX"Q<7p-(GDc^:Փvo:*>y[gzܐ|UGTs: }z:3u^39U=8#Iz=$8}N ~ج5γI+Z P4 +>>x9{ o`*FCrk 4u "_6= (,r)Z#9n2.6a7$ʊV~U W|h; d'84XR~v4^4'L{۪^Iѳ~sq813ҍ^WTWk| p*)C0oՁV6IrK8><`}C$~L̢%5ͨC;O^L.zIҀHu-**X#qhL/C[Ą3N$?`0Il(I4% $ eg ɽ@@JWT~$2`B@aTP´!U3#$x}9$S8ًmxu h &H4g?H޴s: 8!?F[UP5PM쏖zZTTK՟Dck(` RMIi6v@@Kq|! e8= W_E^eX#Y̆uN`~Q;9ʘQ 4AIg?11> *T2׽:g Zy o@̸XٓLFATYjڙVi[:/]UVG;'?D` }-)ㇰJoO'(d+d7SȂfQ}>t K -os,ǐ!uST$I(?~b23j*Y^:5&4mFF>9xg`ul SChAEI)n^z[۸vxf)u: `a~y1$#}3p󹐗i˴ ĺu-jl͊z4 S?&Eȕ5Q٥pʪFuxN|M +ݟ}1Gl klE8b&諠e+p=~mJhzo_W_(Шߤ*[u*<k|aU><<]^SJ6b|fGx^0*1 kCcZbqbR47W 6Xprr]|HSSK Q@Rӣ TPN-Zk;:?Z~cpíEF*E$u0nj2H</sļ5%W3rNW'{ K1槆(*YbaΙvMᐟC}X8}EzOWOhvIz>ss"{&GQJ"TÙޠskM`̿j2,83t&0׆3t ս0^~_l~Qϩ ߕT +IQ6V=cH=8;}}5>+^!{V%iԽ,[?-&kGJa ,SC3ɴAPQJOx[&7n S n03eE7{C&xN} bytu cx|M?Ml@cװLjp6=TTobD"f"8bԛ;!^qoS|V@xY/ (p siYaOQaR%dV)@`A p+a; ܁0/ kY/>{͝ jFuqA8{<Ay59{`jwΜ(爋l SZMM2J IA3I}[kzZ1=1@`ыZ kAu=ABB"$A0"zh[(%hAn2A>w|<;û8-* XUz+*`CGOVVAt[ũIC|ts2Tn((+w9ty.>oHtDa:̊FQGkp!ƑnG0tO9Q6n+{h1 z#hRa"oҏ5OMT~Z$fjY:CcHN2b>X&r3"Cpja#.J#2Dy\L*/õacQ2(ikEwK3gښ٬n [I`j +@rAsr $!YHfIT0a>6nqobV;sNJa h7|5=$P@_K9#o$4 &\ LM, U=:ը<*_=$e5D"APD^Pfg`&Q=<YLsRgq_7F~OLi_j䥵暎Ě *2b znܼBgUh9&8,,$]3iGUC*jx/$`WqzWMk@=OZZQCہG!>:O~/>G)E >%qs Ķ#,EJ n`rI=S"Aѳ |LOxOt$1!ZGG\+f04J";禬@;K <辎PJt[;ʋ$MxV|ƵG](*z226Vi!QT P)#ua IVɔF d] r$IO:w\ji5l q;ve'a;1I5u19>jf7 wv mMFg{ I SӰX혞v`053<| 6x<AD#ID a||@v{saN9P2/|(PD-q+wSq1N zPhw(Ō%2הM.!K[@ Tdj,)5KI=k04i/s(gphKQ?AG7.(M6]ziBQ֘v"ooÇ.• ()'/hn2۩Nֹ44Pǥm)`4 UP]"QѕuD=J[k#1߅''/clt?C;yM<_IПkDنHׯ}u|""]ã_wҏ@-H ;6:w+F[:q^ P5f753%oTq-i]u"τ5e_aԽ4Fh@[j;P;D C_sgf{TF@Di\rHqkA꿚9]a<O&D~!|aΟan~E=v SD)/wYv"e̒05`iy㣣h"QompgzI BRЇ}L}Gc͆ /kz=Q':Z`H(&Lp!yK8E1.yI_뾮ɻ./{Q;EKջITꙥFY7)7F>l-J21~<ƭ* Xjjħr*\],/Z98<~p\~eQ}qcuI;@Ss;hk̄ZM9kA1Mد… &@} 8unhs|]5jk1F.>>3ʯ~)?zr ۴y6,IW1_(Kc W|&pDt[Q]OڼSF[Q I_AP ˉ5h#zƥ>O푈űH"|NI=ʹ8m )cC*:P300UtNQ?uG;.[nqC^Odw^/!hcU: V8N!?Қ2f I o vQ`"i*B351j v}@oKK#|>`Qx^+'pwg&Eo0&m̴cq1LyPY KJkBh.:X*Ey(Wxd1+@R_W6&3ҝLfn+cS{a|]Wv ώ+V\pӉLƒͥ~o^aȟFg)+J?㢼8Uc]xu?NQ1654֠n_/9!E}NQKe7LS[eqy uL55456I}T垮fS}[O?3<3u'WVޑ=\z d.f;ma*Z&fy. ME)u3|k6h>D9&`(i?}'fޙҾn;3i>Hza֔ŵM8nw㽦:1<A_Ьa7k) 0&&<|i*Cc '&9 ؄=4>J4-GХ=93H-摉ڱua}2k$"}3i⼯Zf_ aAfy2^~1t b`p~ӌ_a-!c?ovc,AL:tX#9>d =D^%`v)ZQW<OînrD$o PL9QX:jp$Aۦ!S%8Edi4a\5Y(OsسځWNς\i(ke>#hpG߻_kIG5kJ l=t4^, !ʪDHx}5e }hl؋ήv\pUCD&xESzP |^q ^eޮ5N BCA_$ }? _O;OKKwFz'ut.ODxU0t"I|xR賆1+ Ia!q3Qh(XZ&!1In~%u4d:$@=I$j߲yB!'иZމChMKgp ޮ4`l1'킓kܕX=@Z 5V &I>vUx¤$j+s$ivl.bDK4r|c LCAiQ?;@PMP`ؤ==5usSðO2$2D$ S <^?RE LarƂP$(3/, L}Lʹy#u 0 #BPto+ťd!,M)^5FJM {x Sٯ싂*od^/BF"P9ıYí&Np=lW5}䜠R]'ޫ &[A5hKQ<$|s*`udo}u0N1[Z> lEPOUk{#A%\]\𻨭.GGF5L+r*K>}PʐWPOׇʆv, r LO/o_?+-oΟ<W CAؒdd &+-bԓ^0Hb?ۣ4lS I-*L@-{GF)]`u!V9#T~?H=8WPgLm(I;0SIڼv("_;TvR0gR|p-}4ڒ9 Eb+p#Kec e*Vʰx-֭g89~\&um1WV XGGj@"v_3ILiI80;6Q[ :@f>xD%A E$Gniڂ) &)8$mDna )9 OP?'p0AH"AҠ ^<of$ג>UV'F+.h6##sE.;SfqdDA=;l-ehi}|7m؊A }B 5Նr)7~S/w< Kx l_i6~*81E%yn`2!~݂-*Lo@uQ-Ԩ|{CWW7qvIJJJM@PS=^ (`^S۝] *s wNP}Qz൵SM SƶM9[(ڀ8{~-j%8u<IDuTNdMpǸ.T l+d~?/~D&JH"iTiJ$ݼofJV5cR>=G/twDq߾U+f$㼆:m6yˊ WI/e $3{c#{&Ly n>:Ui"Ĭa꿙$AP( o3?gFf>&G09:lg'%LLgry1>N1k5v G0]%?D?Œ~Ì6#ӱ ;9Dvlt-;u] ɡ2I`$bBYmnhV)&кW%v!S@;z]Wv IhxBs< ]Uth=X //㏟`G<I<YGҀωP;[F ;nP6y.YVcښ3'YuWc`Ϥ ^v\^…[KepC kQ܄At IhCcgz5$u/gsD½$8M 1\+H`Á5 P<t\ dD). v(կ$ $WBP!  q(v'ϥF(HX8ѹ b(shQ.k*񾩡ˮ#˅" ]"% Rx& jDO.GC`HNPiی{!qUF1<6 ocueŤӪ92L*cn~Qn#+%];JR!Мe|` C}j`[zZ;چ֦tQ<:ѥ7lvg.<>&If-*[N+3"C=ø+@sB]!(F^M %r" $z4ș|^'}yӫ@:!o˻<<*iPٱ6TAqSo5/S9a=(|ua~Oa{%<$Fp1~g_ fR\=SEUlH#` EPEUիCsm>-V 2u…ti|p"|*6Q{ {006 QQk_V_״vdzhzeeאyw)bG\ntAti5gR t<0E0Y~P/L#]1pK?$2JK>% {/]nS%(.a"gz3UMPm =)3E QFXuz*xFtL006gD.ʵ8LIZ&' VI4{d U[4)}-S+3GHduZXJI50MDõ2Ir&ik(ZJmh^ qӵd7kwZV AmmM!M5]V߈Nb$,AanjeN \-m#}Q^Ɣ3pnL,JՏjWIR<7<{Jl&e>"Y+ =*cLVl5Vxr$idAxifLkߤڹ]Y9{>髸&+N_ ߻<3<ϹO0Gk'fvv0OrR&YWn>MWnTW/}G0.Qk>u+_~LZ^*] %1Owu-0} ZQI<1=5QhB&wpv'XO Fgx0⎠Gl$]s .b<4R2umɢvM/gQUTD@\OrV's?mJx:/רIM?JL;g&iss$!Ohd1G]=ݟ{ocx~}k^#32JW*z( i-JS> wfk-NO=J{),&NЖH_XƜmJK|\Kʒ-la`$--& -6W_[_Tנcur !ƹ;bqLĶ=ݸVZaFʶu " ka)ZHv?O? Y=R A(*IlllJde[^ SOIl\h$mlM5~+{fc?GX՛87T" ~ÏgoI|R .jp7!(ܳr G!bb}b;SoKp}\~kbȾBMu=qU\xЧ7e(@GFFF0==s[}Q؀FTOMZ07 O(A6VȠKc*(mt1xG8b"^"K<&$A*EQe " Cy=ePyf6Tx.H9(>,m !*oh@lSx9Iɣ'@I,)$蓏Hcҗ3BVnנs9mMV-q};ɝ"**ИJQ SirE&q<1u bEoJ~+i?T6`2/5Rڴlj$FTWZ4כYQA_%u(($$"i?}kc2ۺ3hF^/oF4L60K{&.L<<EGSEH@d^}*/X%& sbp@eK׍6U!>*+ߙ .ŒeHt}tJ`Y {W0dwa1ëU|& Oހdh"\:M_>Ӈ4;ץsw\M:}W}[Yq41Dew9 ͵%\q7@jF053Bߍ1 kʃgx$ǦE71_H< aȃ2dčtԌ cl$hx 1Z+e^J(23P~ vr}dިcg(:kKc;$1L) ^޷iғTrl^б4wRjGbfknE0鄵f9Iv-fzp ]CrJѩ+jF㢃 R+Tb*rχeq6ꘚ 6r8Y >$Psvީ"֪O.GRkFi{F&H:XU2t8\[7RVR:H!(PӓRTB5@ةgn@#c9Gp9ڋrVംOƧVRKsO#H6I LcAJ%[L0E=HHnz^xNNv%IH4Φ.)d0([= l44h!:2@<?Eݯt}ԏ)"Vʎ7Z:ؑOoj;O9t N )MJFϾ2)=\6I;.޼?T)AKG;* ZM8Fi$x5$$ 7{p4x ( P&,S0 ,tu{`.&M}vmbpe1~r ] x\d[1J)_hbJB5`ΧW𩙑+Y{"f$ nBnvUšiM1|Fy~Awu3,)k/Lm'J][?WBP$)X"9<$ ک({F'W:AzF;{U-]Λ&_jL,iW _ϙ(j&5ezl$w$I d |Hf %,w{+81Ntv?UT[syp0ig!~Wn7o ~%(-)5A2u̮C A~yE C.#AЇx6cJYl2k{}#C&429Aك~>ݺUswri꺸ƆMW?^}E^j (4~-75,Js4AvS͎A;" c~D%H{t̫c n<F#6`Eó4oSz\Hǭx0W}h>F R!ČJQ?_#{ '/MPF;Ņ*m"ٯkGK[Zۛ0L;DoVUW{^j+'DׅsZZzt>=^ڊqh&lc$fTk.&a]~$нFߤkoOOi l>xٮ:j06llb6!]!9xQB>Vdyw!}t4 jiu"?tdj6'r瓟l1t47m^1$=`!I|!#uX"+4z e V9?*uxl{6#ce$=i,3#q]ՈKJQ^YoRoߺFDI ܺ}Hz۔ߢ\Ax:OP+ 朴NҗwkKY=z{;]V_ UۂtΚ7?2 믮 ԁm?RyuvQt_ :~1[=Fs{C`gbivoYGNrhpNj)Ƒ~OR0uDR(p"">;C ITGf!uۨkmEEM-HG[;91AxnJ"._N^n7"N$msLl8\N̙2VX_[6 TjoRGO!!MhDv"+lLb;? QByj+"{کs" I뚌J)C4!jHq<a0E}e0Ǩ'e%ү7njb/F_]N|波v2EFM&?%z^Y::R,| Yq@̬"2H+=0=+c*pWMSQ׆K۫p-r}}9*+]RZ *cU}#\&0euMu]h:j!Ĭ߹pnV6vm'Vsݷk zl9(4iЎ6@_kAY%*QњҦ|GV6*9Wث(ov)" ̵mb ]Wv &\ L1M٤0KG,,+N֢*ajӹmHCBG>:Jw0]Ű+~uwd*oh]}k'(AUc+:G52~) 6w ݃sE}G754B08dv!-H'"4<NLh"f!H`q)²x}tn"Tm;bQ))P6Ҍ4)j1XTKI,+EOTt4)E[I[^\hTRTyFZZ7QKYx+Bt (JqtȂ馬)9m5ߘ"ML.Jh+HQ(,Nvq:4~QՎEѹ$4" f+aa}d9ts aXe%h@!WW**5)CcC5hHHiGawFVǭNL8$Q89;)acNL2nIi"] Eߛ eD(pKJ<ANN "r1Y1<lxqa6aTG-CD>o (z(꾇Lur:8ɦ7~#ˎk<zˏI\>C0*գAMG`RAH&&p6 tխ!hkG_ғ!|^i $u_ 2) S1ԏN.[HD8g11k=9*[.666tE¡]>eDsQ~ڳXԋqu9zFC$X5DAbFR(sp{Wu쁚 >Ӹ}e˯Apk+*2@Z/JDPzadqB Ӟ4𧖐Evm_(m멋pkvbO7Y&f'\ Z홴 =\~ǻy-De95:2I~Ö́W@B8 <Iݧ-Ɨ0j``|ƅFTVt6R]]gWUբ6u~k]}h# 7eaH?3O8ۃf> qzeO.l0E:Ҍi^gY+([ T ҪTm]g :M)foXc.3SEjtשQDOi:Wn<yȃOYZ [ߨ:yYH_ѣmyQZ7l<Ah1<+ \ǼAqE$Id`$uBݯ0kjDcs#yz14:dҔLyA-u0c2=VԷRi7۩!n ҩ(&a)ǣ{y~ uTkfH5>u_D6U%H76 k x GdkbHu={A}q ϛz$4q0>'Hج+V6it= 6Pz>5؋uF%, _*Dknk~%+AJ&{>9G@\kDD)m="tBc++_Ɛn Y6Y8kɐm乳q"WDy M9i0ePVי%Jnq]5룚8>>dki'%yt9Œ;@")'P6fHf%HN26C§?'Ϲ(> ث8P @bT怦X"˴<)Έ&W6>C:>M[$RB@kH~+SEh+q@Z<0?'pqLP?[*\-?z'=kž^S"np}hhnACc#ک}ݘkAooygqP@} ,P& mjhOBY1؉{ڰƣ]Q$k* #&ӮE]oY8c|$m8҄-QJ/"B`@#>^LWWcb9|SIJs xեN9os?ǃv7ө,>d_\)CǴ4-T 4 2ϣmzryy>m *{py=,Jg*<Cȵb7(HQN_Y 5>vEyĤ׿OGYy5kPQQ2Ҳ .)7#7601=eb a4ݦD1i"@L ։Iפ{z3B:I(dWSLtXIseKDU~zYWꩰ0NR%Ӽ*szJ]<^Q@+E;P@8[8ع >Mv<=24jtxNmeH mczO'vC0 ssE? w$;{H QR]%Mg2ݯF%@Em+5 NFomBmk#H|`2!m$:ޙJ K)hcI :ıJ 2٠BmbaJ;]Ӄ@س-4HMIBDC\<I.Y܅F-hjUc*C:6t9BHQ$¦I7 ul;ڟAF$dL `,,be)nJߨCϤaa5P,(]NlbBU 2 @h1PJ6hr8؜!9zϜ3N C%(H9;ᘨASFkGN-hhⵧi%4O-ݽ"ذ3_#V{?ϕ)=lҰ%Uo&QA!@7d\NG4P}|^!yU^Jd5& Pgx6ndqS[Qb&;HejhW pd. ];P G"%^iu$u|+RN| ^<;95waS:wrHFLHhu2Z 5<Z18=^Yi "q߹t*qmJ ihr%Qzizf롺L[Ϫ>B&TK\^=@jڹ8 o8ԱZۧ]zdڼB:f^g`e4 8tr."JWX H R[/3ݡ>7|Sly)[Kytb.?:kYGFi)YqfH,x>…W2͸a!APmPBkpN=v%+m5LK'7Csmo`#-`_kyVW (Xm1[zϵb\?c^ Z=Kѩv #CujG f,%姦K0sA0<9>{mCd͌uUytYA@X"_s@~Ru %nES<wxF()OL2V4NI YEs\DV0IcU oɭo089c%3@4@Ds۱7{x|{{$N~^Mo}DOIfr/iH5ꍑď;0Ez.W›|Lx(Wt_= *ꪩj^,継AuC=;ԃ^׳ӣ&e_~/<z <!/f1~ ci^E@oOPpUzSm3Avb'.&+hBx;O:xSӘjGXVWWȟ|WX=f{"ţs).*8XlcjH\B!|I~s#=z7+!.\˷+101/~P6e k-:xccy5\s-SyLqxssDZ݃lngC` E?$:S<9d /'[M$@s> YLp+KAAtvtW`Gg}|8?A Cы/ dYX?dhtu1NA(W>G/M߂RsH,o.Eѕ='>":*nRC$ )k[L$#(}]e6m]0u ?׾5Ť _9W{XX?+:joI|dVY2*IS 61 >:`zv6(M@.)˗q(P&Ik!(@ QJZ tPmz̴ĶmMxs/hۂXHqMz\}.HO4Rv CFRY+yڲ|@_Hu[A yd^gQ A+ftXV&ȜUsY9967ׂD5P{=(Spc1P? ?YW{.^w}I]uVvoS@;M'TP0Qb,v 6-W?#hF`>٥/\s# Vq gd‚nu]=C<]}hi4R5 C1X<6?Yy-ḙJ^uxZ&k^xK(\UE5*WI uUu/G)o!7k-f+zLzoS/SAAAVf+E;Pi{Z1$0!!G[Wٗ`!J׮=8R*KOp:C%ӈ̅ l D~'ǤՉޱ)k஢ ^UIpM('aQ*j4q4>::.&.Ym-hhAB$mCɊӁ=gGx;Gf?r>eDE  4O#S`繰f)nPsG3M\h~^XېOo!HAEƅ3"ap MЈi^-PTI8HE4syӬ/-{:YB5![E uLi~%xt\43BKcjD!-`Իcz_ Z.ŴWp5u:`zn2>Qy12F FOB B[0GAQcvo0;M5uO`x̊9̸<89:Acᔁ)s0yL9qM>Bю뻊S|\@Qt~Lp@i]y_(zA#Z_$&:g FHj#[3"5X:0 һvICc㚱ڨ^S|x 7ow~ GkaZ}4f;se+ufk?͵6bu2$IuC[O *( N`k`v<kz?:dꗕ}00:A@<ҏۨm@M]-xp'Ϟ?}/ɋ:{a 4>5Cѧ)P^)swO(ǦfЩ] ]*SJE~QMR.m=Z"l3Df91֐%`ƞ;v& mߍ>=nDSw Jӈ<nC:r_v7\J[5 4-fF \q;'3Y3yqWƐ,mAy$ ܹCPHsr}l٩_WĄ)@ p+#%V7Na Os2#&Cm@w/J1}FFx4౷oCSpm?V'wh?OAI'3:At[bOYI>Ο@@D~1BPR.0K!b@D\GcHLiM2D*4%<ߤYs@Aa?Zo I.?5u)q/P꿃A]K_y5',^Әڭr" ē^302^.k5l&(#(CtouTOP9~󨪎+E?߁ΖZ<GŧO~F2t`<xX5 WJE+oYj2|jl /gKCkJ} /n*+B$ :]/q$ @ˆ+AGٹwFlO=^ڸ.)#i3d9f6$1dSp}.5G'q5sQv^/lD0E_qJ,OIbĈ8׸jP*!d]=2FۈkwM4L׾ 0oKHF96tvS1L,3:5׍NccsWz#i %ͨҝz('m`hD=Q>4 m^R2(da(aW@@FU (m,D1@>`%Aae#)P((6ӲyNH.I=ĕĂV,g"~ٯ;O>UKr~SJ:54C4C4OA7[K'as`FycSzz:N_m@e(_az SM6_FӁjSVS]P0 Ǐ!ڄޮfGjIDAT_#œ/иGHSOy]kڀ~wi\H"]L1&."nN5OMЮ^M2˦s +nso0ʡ }mu4@! ;${I8Ac<ȬN/ca!.\ô3d2K+`5ALaDd9U6h8C~KOd$>Jcxwhkyb l<Z#)X` O(؃M.}ݧnu 8HO=..>a6 QCC!4Z=Espih.1"N _I'5Pv18P H PGqt%m6Xmm ҷ Ǎ }Nڨv r ɲ0?whpȬkV& \j%p2F K<%9kid(jvwD ȈE` u`b!X'$!hkFUTfi F;ҀTTTJ㕚Lڢ^SVSjr5jm@ FO;&'h0zz[ïW?۟kgx=zayjTȽRRFNޤ ]xL {{[HN yL"c { q%Sl貦5D%v\a%IXb蟋`tA[!OD~)GOd1?GIXϸƝIҮ", YTq*Ih,L@Yf"LjvfM,6s8]< 4"VE] &b)W 4 |#qш[lA18A 3ur &`(d}S3 K ܮҕQ༙[nNxh,s44!H0 B(B!`+F)!EnW zu' HuW(K+@sVչ+{=#3ABif1$ؚ >ȸkKZkf ((~_/ǂdp[+C<G=lawqF;n$)"5qnjU4k 4v 4sNq od|u&>Dաx .^e|ut"ucdp;M.3;o_/pSQ:1ul=JzOci(ϑȥH'H?ݏqkڃ;$ω=J=_"^0AK>Ph1j>Cm>EiK)-.tu3AtNous{ 6T7>ObKyqԓ`keWU% \FlZo3QvI^ ]Fx;Iq<ɉQRJӿԶMD\j5V;.]ഇ!P>-7<aXACF&g1cuSWw,-jTW7 \te-R.^ƍVt ZIR њOQFIR'|Qc$fL"ssi8p+Bֺ,w lQ :g ;MiWV <.&Lۣ:Q~j 1wE"MΝcطL"@poWSH !8v_7)^3X\}cX l |Ӷi OVַCc@Cc)%ilm䡂@(Kod[&{@}N_QW_FJx}?|˪L~Y49= ߎ.\8ǿ_˿_?>ǽ_,)G~[1O>5M դ4ǣ9;iQ ]rOU)  Oxp%:n Q?hwL11s:n6.S~m@ .zT]c^pc ']\ lyJXG;!vhUzP-yWf=a֡)_g%^E觥G;X} $BF'`*IIC/TOxU $aHl(,(u>qfjƅYtLLQ_׆~ֵҌټx Jje_C&QSk6ʵ4 /gyNq Wib7t]/ (@A@28(، Q_%- h3c "&1?*'݆촃ߺ$/1ߨ ,a'.nRO$A^'b Kɯ?~3<GƎ)He;V{(]}ğ%P@SXpdєXD=B1TwjEcSh%^oN7lsav*1Oe9ڻ:M#FTn_3jfwU:+͸z"[F􌱱)\nbQ\r_|?/p+<ubEդom<Ff`CĤ|^OD }e~1@ _@H=65NAN?4Jsya֖nP?d-}M6@͐}h~7y1[h:B>Bңbqa'u8P$I,~[ PQw[of]_8VAiS]}`8<<ԧ0ybxI=zw;<?*P6j,QAK0z9 eBӛ:juI]G_TmniCM(-6ruR|5\^+%uh靦O`V.! &tZxvl؜^GoX1` y( tyhjD]QE]1]ݗkD#S@]<J`vU'Ժv•>E#C*%W?[wxAIަ0;q: ɷdRDgdEij䧝QQNw훸zd&޺A҈xt5i}Wn—WjWyKp $`lx?ZjWK _? 4??zׯad_uk&ԯ::Pv%Vi0zH*^@3NdݼݧS|Kvg.eˢÖFB>D%8I "P:,qY&sf) Y #&vDI~d0h8Jjg(xEH+6+ADb ÌA4N-Y$iX]?5MoG/hv•B퐴*4K{t]$4=JRTKЭqU4fD$LՏەt2\sJnFEAi"@s3y>RΛב o 2xL'lݧ)bM=N,Kyy'!)R<\G-+AmfSkJ9(T0ÙJ$L`k?8=g^{ϯ .|9D=#xy} qjbFDhLh?F w*]ZOÝ\!YL[_w?o{G.C3Fh/_o}1>G]_GPK{#߷/~?!>$և}:z5Sp |?F:+OOI7x/~ю n#~}ss?V\?e{I9jq8TK>ON9ђ~MvnstVv.$;GA%DCG!OphtE<g"SÇ{X^=Orp۴IQt^֚vO C7mGR i"1?e'i8!qGBY/ вJۤmgv,Pds}N:3w|4 x㋦l QC<9,o!9E ʪαMKȴ`N7IќwR'<))¯o-Lt]G{%puЮøv((udU0IPUZRe Ӵw8BHbZ j@j&w$En.5ǥ^`=c|3o;?S 5ni!\ceӰʭ!DUpzÂ=|w?@WFS۴Poƥ޼o_xKn"}]wI(#օK} ׫q:zZހm|現5ʘK<ϐ?} ͔w+Kls2@F}wΣ>F LSM3!O@4YQ}992NY$jv:'Q\?$&Gbh++8CmONRf4J-gV 1wbu{X^~\/u~Sur\DABe2 HI-*N7=y=2んf4jaIe@z N!SSyIJy, 7sٳJ]]V\7eMĝh@ՔYI5A`җ_#z5(P·z^n@?E;2i:h}^J5FкicVYPzW Ĕ6S3 _kA%0N{F5!t߻ 򉚴>uTO>'I;?7&} S ϛSeE{H__w>ַn|%ww>@=mnķ#Jo.o_o~&!]EyeWo\lY_ku֍v*P܆/^AiY9K"ݟ'//?Ǔ/_Z*)15F{o5Q;QY"ױ^)\XL%Ya,<E&zNszl\'>odg֛kYc ı\/d6?9N`sd_kXA-`}}?}/}Wʆ{:nFqB gyY2<zE^t!0Ժ^S4-O1bQsGe oREcJ*=lW8,Z6'@]uQ5gulm4fiP F'D=Se d* 7KD89+{CߞwEkֹktNTZ b e!t n٬='=uQJ+E;PÃ$jT'c>&Oςl7?|7QO1:)Yug)3EuIuXq5AR {z?`R+p7pת* Z)+Wy y\^67oƛePY_˷f-T.l'Ƀ}||+.f kl{XݵhAB$GDAd$dJQ`ĠӐ[,I (|~91W$%>N'.6}6-xX+HrVrxWKE)w+kkѹ*bu%ivnHµk8I8<5xq70kz(a㵠)<zFL#͵,Q ɯO!(Blҏi0攙 B%Q$[ U{58.QuK4vbhk-GN[?4 0v?97lz,-n"o Ƹ4;+{HD._k젽=4F8</NӠQjʓ I z`OLAFPW" B; 'Eu <mD~iھځO[$Q KRʅ76wc<|vO[3daWC'b;d zj$ L)="Qp-]#1>9q -]٭rԶ5UD0o] ޻zDB?_55&eJ.|WH<*Z*fƱN`g}!ǤH2EDc~} 2&RpC$^ڂ.ݚ6 A%f⠬ %qm&Q9FPsSM;EgE00 ,)"uxqpz۰|tl?_z͔nP  VI}@Au΄Xm`[mx#C,8"(=hhc Qu 8J~$" }~4w? ]ChBτ =c6ԑT&fnU/k?B3MXtz ߤ]:EPbNjB_B o7RT nE#)4u.>[Ҡc5Gd3zZ7*~S37,Aα򾺃̨LŽ/?Km&a'$vh(a`-1 ~IUݸgjh}%WJ ?ŜA=ɉi -ݨjiՊ4vLt)_ )xe@/P/3rY u=DpEחueM`eIJq;06DdzdzOR>\Nl7uO=HH }"z<9titS$m@ :m떩o.u"$e22TRWwF*FԗP#J 2f~Yw$ y~˃P*S53G\1|Z #u]" R+z`4gHz~:4Ax(@ۚVgXT"ϥif|Di+ydj&kk5Ms-mlGUS'j40m&:POݯmlEUFvIR^یU p"8,Q ƳN+ 6AR)/mt\]k$WC>-K 22Zk *nY-uwGl<}  k7[,w>_ټgqe}]4rQvRNl/OPVDGw8XHdIO0{0νwli:֋t"pPczD>*9[V)g'[m}-͔ܷa&BIVr5&ӵnXYo\AaU+L'>"64,?9fW뗬cl.y-I+/k,K>g7.aϟۥKn/^k%~ύs֬];8޵b.H^eݖ,=ſfq}d q 7Lf g[Nv!?^X2$Drɾ#1q8ܦ `i{'w<`+'ݯgpXrƣ'V<K[7rg6=KW]^W dʆwf5%3hwN-,DRpʺ'w$a#M%6)Y`H6aH咝.x0 \v{mJ~FXgѲTj SNmw-.M QY[Oz }weϵ ~}J>{5ϛ`@|ws`?<QBlqlvvJ,s"Β=\pyV`jdo~>u[>O` *Dr&& @jIz2=9; bkJ2H#(+e4N)(T-*0DFdHz |0%YF?o]v] +KrW] NT.arѦKE+ 6ת ʼEu~yFJmGτc" C#E϶A  g)2q {PH x ~T@!좜sF9q> %sؠцkt' @( ROtR493'C#GX_s3Ƿ,l5fvFK󯯟H9@jDS]ґ=1!0rvڎ@ٮ+Extwod8_G۹-}/^cKJ;( /k H-Dhc OǢkLDwtzF(C7(.XWoMe*I۴]w:ӏ "Vlڑx1rm9OuOz_]Gt@A&$}-$ںN:NMhh$Y>b?99Kavfζ u{'~xk]ykf&c'N7ۊU~"u{oiGk'oJ5s XIfU:vm$.tߕv,+OqjVo.XI;+XXDvZ`.ctcP*.tV[p&cIm3NF#1'PqͮIzD0(O谾^ mmmWf*Vx\[iurKͳ:]R/aVp ֱEZ'.ChR6 {^” >HCl9 U,%YY96QҽiDY{@:Kѕ'@܎['cpm-l'kM;*s"[-RqMy""܊OT&N  {Ύ=n~, 㤾)B~^%dmɯHK}vu{E$|Ml,%ݝHf㉤ţW,T<eK"FF_7_z^m c1EGt?= (SKoyX+'4cCc{7-9[ﺎȦ=B2Ŀnv?kbz؈& GC=-ϵ~eK NKCObsV^Ij[Y?Gحt<߷.=:=tA}˭h=<YJ,D+3r([PmW;.j-Yڴ3%dGEDbN&-gl"Xfg-vtUt`Ȯ >LتtiiFfjy(3#yWއ(e Ȫ@ܤYm#g,92 ȼ AΘ+zT`tz`)|>4eKBE4F[E뇖mmZ}G lYZD3_:g|Z'-*8Գklʲ|=fOܴC9uu ;=K^=*Y:4!X~^ ;s}6JxFz;ݲtS//8ZRlnڢɬMƳQg_~}s/W.uP(ctM?+*OӱE(ҤFcA yOz}ԧDҧUSd7Hͦ))_m/ye^G.;kMX` ~of_ߐ5y[3Gksfe{ξfm;}۵;ed>Bn 5J5nݿيfdRKzv7+椃5Ue eBNZ-6e}Cz~q%}CL?Mٵ>]zw^/%[Xq+!$s3eXU[.dae,hj]X-> .6`{u{F'{J:"2k|r(udppyh[ͺϿa B^7q?m![c d'ق];l޽mwd?Vlvƌ1&<+/+ +EF]v7]QJ,kY<'(C‡Ӗ*MԔuk,>lQmj,1(;h<pϹna_fuc/uQα}7","aN^8gp<voo_߳`CN_Nww,;a33[Y,ۣeߴ?Co~`yHd"%ӹt{w\FIq]0/ۈ~Р[_=!bE6 QmFe id,ʘD4b6;FȨE,jVlg{VW`Ά5-QߴdmE%DЖ=?"r$1H%(Ÿi)}RIlgn7_0g1it\vYtuK$nm)) z9Vu7/-ζG N4ϻFy,V\x 'g37!YDp;mecڶvkZz&|22‰oOܖ3skL"9 3r0=31T!\VB:3<n7r^u{WUοn]k#YvfŖ"w\@#=Ō-ِr"O e9{= 0rf5%4w[jKY;oo? dl}}n~KDyFdpww684gj^ >"t^Efgxe{ǟos[ >d3Rn?#SGn"-fR[9E懥ӣDFB?,b?azo5:}EKL -&0"L$Sڏ[AC1Vj"5H\ӎ5g.YZQN\YmiiҲFP#bH}{H{0 tAx5YHAڇn6?=i#)>>X[FO82+=e5=k>GO]jkGr% YVH R=H&HQA FLM$f2{ܴ7UkX,]YxuѢS;"),Yqn)ӈ-Sdvb)Ypc8j]cە1mǬ$T}k&3v(\D y/^߾vɾ ri4D5ځ]{2A+"g]p'J&Y]vا0@}}?.4)c R֛^XdU.D)G@\%!`K cwL,YE_hӋvx7mvmϦrK36`ve?P[Y1O|Yh1^Y^% fHOo5mj";;jפJd&?8fCvw@Ax^znӰéDhtKJqZߐt_6cdBcjZzFGdGD fhfg6۬Z!zl7Odۋ4} ȷgDrmr/R?Uu(')G-2/pl1IJll_FןE_Bʳ|>ua9v6z/r\{Kto11Dzc|zPl;ݟX\}[ص%%7SoK[;}׈o]^11r&M6KAfoweu_b%^GѢXe%+szҼLsZ('g喅5nN$k"i7ƓvM6j߄k[mmFo%p^~2+W/g^zþU{rNfm<SNqOuV@˙b|p=H~20 @ |`|6XH|X6@E>$(Gw]' Fdֹ$X„ƂE[eՔ_#֨\nHu?On!1+?ؕ#$3AF+˜:/J(=vΦYW㩔MNNȈ @uuwXF {׬ MguIX.ع>>,R-q-[rCeǧ©k7*%+v(X-Z 2_<c!A a 0Ex{y~(#=d-Υ5<QlۿNŖ'>R Y% +d/9} ,͇(4r8eG7] Y̒|7}PMP7y=#ayG6Opun=n⎕Y%j[c3. e^L/HJ+YI"J(iH ',?&?u 4olem9Xo5?k_usRǀ]56$I:,H_<^m爿?|=.@6Ӗ[DlLc]ח!@Fy{[fꍂ-heڟm>}O@WA`V~CEvrz]8ݐq NP$fzȽ"-ڕKvGcXDbкX-ԫ! !zz}Qwg E P= ,<qVr ;4Zu)D"#s"H͠@g3a$ X@ZdYr}9h}Xנ{u5e]{Jd["Yãq0k/C)`mr2[6mUil(3$r2w]Zܠᑄ~9F-3"MЃ-{pcΡO yLHe$AmgHْƛ,,K8xu-6h\@B0Y,lw}^&Ó.p`@9s2\6oTm͂e<); X@& |\&:qOKGຜ w}d*l&8RT3Ko=.d1H9-:h:kt_wS+̮vg0g+շw?{n;5߱Y  <dqbe9ƂTIY8Lbɒ%[͗^.ڹE쵫פ#uA!:_$Wdƫ.X,wNmyerYٶvwmm{n4Zrz&V‘%DD_` ٧BlB}ߗ):Eڶћ ,"Y-C~MF˷޵9UfLe|jr o?^5Q 0^9,[, 0 gR} j`̔yYhحw={-YsmM"kJ.]4|嬥'da[Ә,4fEmnhŖ EBJVllp atbEv aYxuXnzi V}?NGszJO#z<#{PZ OTM|keTP3Zԑ"RHmOEzV#ɪע%eFYO_PelcE?- _;o3z$Zs\MOg_;CvkGD~𪐡6$NMm4pSg++JWse E3|SNo˯]p O߸rå_:DnC.@p[dL~?l.n%X*nwo۪l8mRɶmKrt,P_iX Ă|ܑ;4AI9ឬp-LvVl3&{Auo÷k@18K!" ;[A 5gge@PVc`AC*C:U..2tI=<%koN Jo@p*b <xb0u(_gK"ǛGV[> LϬhmfvv鼦0U%m2G_||Mj [VγJeI:YؾJ\/?>אI׸TD޷gS~u'?DŽ&4?E3=*'mtXv%9aq{\MeRzϖ VĐ 约{j噊-̗mof_>v͙)=?9 `4L6'3\>8 ULd,I[ re Ĉ ثl߸`C".ZWπ)kGB"SQ69ar ٰzޒŜ=z-./YRZl;k۶#Lc>gߞ]ɘx{q}Р=wra3avb=_DC9?}'6Y V<вyAâ邝}l֪}]F^<-}g$ ş?ӧ#Pse޹i:p= 5cD<<N J, ҥl53]߶ŝ=YڲH¦dzY۹ydٖ=e1]+P6'+}]/~Άa+ .oZyB[=GS~ y-B"[{{?w?>}@i|ɖ|#1Jaxu]}?KvrR[-J<YOϟ|d_ڣAR~`=f(k,\!~cvviac2#M NXX`_;Zo].a_le8tOr!dm t&.Xdcø Ypk :e|ajmm,:tā:q R"BHZΟ^ y׋A  )GV.s,O{g,1/(0p6K@ep bB XV"`2" X݆*t f&jRkQkU^҆;eYkd7PȦr3VY:)P(/ 7q&<8:w4pb7 ߱6큀;ǕJNp/ zzh + @4HONemt*:c9RjQdJ(X !mS|6NC1(%" tfۣP\6 3<Ӝȥ(8h3  % qlKju2=Hm"z:i4p)4ʶMU4 ;iS5;Bv;Lu-@=kr.;2u9Z.Fm>zboggO(K48cdfh,88ɘE+l6/"9(tg8"}Fgtv]Ld/kr6 J V!NAtM~#鲻ʮ P 4$R3 [ڴ=ڛG;AY uM+>i9ȶA ?%@H;vwf'{Nx{,Og?x"oܢ$97^XIwd]SE'LϻEw-nZ\cJ7}z&.g6oy:f3kgjN!fjO%޽iwnۃUOquޮ@REOW#3tqת"#8Kv>{WCQ럚QLվq,zCD:3kj<t Ph&X/7Z "Y u/ߐ][v9MV Pk>wD(7@(ufxTYge,0swݐ?g̈́ LRF"6?'// %k;oRNyrN럾k_7;cW~c 3F]Ը*)фs'"ybJ/v ൜] Co.tŮ{z}AJ Md̥9}6bclY_/I7`0„ (^@RgE&W6mĞk.Gm;6|!eQ"A{lE]y_}Y)X_i}u+Z7R䴶w[b{v|=[]ll}cMOK_phu]W / t|h#B") E`ݬr)HsesqDfsUkdGܲ/זEEtvt}Nvu8f=iH ^q}JzGB6`AШ]vLoYYfҵ7o?|F2UwN;H?Y'u{<-(;X:/25U֘ +&巣e:+YnEt67E^61O_Qm,mmٟ~ o_t^dy{G$EXhVlzfRU;}n 6YĤ/++z7 vyĔeR9K369X"ݙrӲyq .`:oC}nԋ.u;v|zϖWt?Ikgl{}׎٩HݯXFhlquc <HZ{DY_ \=aM!EbObuGڲjB_sό:%a=ۻn=yn 4"icsv@1M guv%`W׳IεwضdoV[Ƕwh+̠>P;U"=( k 󻀁olwzSq^>w;ttj$\F䵾7ҥ!פ34bCG13vˉm޺1.9Ҟ5oiw> O7yj@s>g۞ucP"z8~N/UH`/vooTv!Ǝ–Uf*6ך=X_|/ K0.#6%qRm>+EwNxnq2- %bWϮPt0^6Z/Nm(͉$ndjqtچ&lmqNoE6?װE;_m)󒀿$, 3u) N  z 9a\ w= bgT86FHcskn(bWڶMA *n5K|&"#M@2EuMT~hmogmON jg ;.hZ1 ukO%ivnrȼ;3eޒoauN ;.K Re ^'ejK͗m(AD[etP -U[nfUW$P-HNlL3Z}QRnx<R"q ,`Leȿ :%/x. S*@6=$^q️I2iE8#rn%,M8uWdԃF+7oAtDGZ;?x5嗶-]XNo?oK%Ĭ0gnj%%,#%+/~l@gROZdn ٥a{{. /\s;쥋3 "oq#`eZg-UjZNH YC';~2o5liwONif6uVt2 \ͱtehQGJ6\ސ |?ĥ1.d* ibFЧNΐ@PvI$a폳aBC:t1hgE8fr};y퟈.Xzls[Nhґ( B ,#HJd!k;ug;޻lnKNovMYHbXDڕ/eE4.Q>3q;u,)=x_D!(Pj:l_Xڦ[_}ٰe[\j5+T>qS]M:9ـųO{r).@({heH F|zrPa _ҽcɂk~FsY̜ Lkŭcf8igitG:'< zO\go>/%GC{- \lZ"޲__ZyRv.}FhS9ˤ[ZVvL瘞/ ɇT^uކ9uq%8t\g]zuל9^pC>:oTI:߲LeR36ʊRFVx@Z|tBSQklgؖ tK'.@) @GgȈ++` {43P`"H#=I{x^u? Xއa +%֚֘r]i&kHWe]`XryC_Q^t%[J L )]_Dv.:clO5fdђpQw|lOك=߲kJD齲+`9N\iuV獝[h"9]>Nt_ HYsyK"&<D4m㱜|ޞ5vkM0٦[e?\ z߮:kt=W6,/, xŷppkvex\]T&0ݧk[&QB&MO9gzR^ͅc|G =4ҶJr#jyO~#lOƧY0f)apJʒkn uШ6.;]h&o]΁o]D'x.r.@QGV<gbJ9KVj4r3˛_L¡)-j\-䒽v/ %2; @A!}P-Y"''P&o!\<@đîd5ηow ׅYo>{Nv @H~=>.|.KO%ɼp,h#[Z[>pV>Edyf+iav%+%Xf1atC$U7۹K]N%9m0)";iչU+ eeh&1kYk#|Soۼl$MF}`2E@)Št 1$@x>}~yy^cy )Y GBP_p6NC{溸K񚍼-{mێT880YZ֭#/GVXDoXHH4Qg8RȢ>$+@Xw(nWzo]괋"WctzFmuشg<4GhR 4 [Td{cVaBjͺ@öed&] Tvݲn5r[R?@|zL`,pc"r8࠰fUu$A$ rnF8 &r{$-6i( ) 2IΞl[o]ز{[RWuMeeJKz-ڈؐdXeXsK:g=;fcl嗒FUs2 XBq 2쁔qR 4pv ,@\cC)q 4C:Y yREzl&"K>$+ V | 'b;d7:{:D@w08;20Uѽy2+THMf E֘ /% e@z&M=] d.3y6L\ hѹ$#%(W=/_) U֭k~6M龀tUKZeܾx7qt]3K;d U;4Mf9j:_5wo<%xaƁtvo?vFǒy9i ݮ7{$*`fgEG-lh*e)͈(k501eeM0-Ұ;wxKŦ Ι{N DXvD1";g> 2˦ |"[: l"$2`@G693sg|=@J,'If]/n#ECcKԬ?^& #[^oK4 /5{tgӞ<ikDz is<p])WrMuA!]l o.+뼧k6UTaQьȲ]sV_Й.<-ڍA{rE{sv^DL]3ACJܖ퟾e?ÿTl/I6=iJ3uɖ^w55y.z-2yNXp+gDsOD@9b^A pA~N6ZݵS[?yresmC7?mm#eUI֑N,VB׮@*6|ڻ-=ksyKEu:y L%}#!(7kpe MRpFtOؐBؔM/lnمk7wpV_iZQc>+Z2cG75u o(?k#gAAt .}>^eu}yߏ x6K$niEb@ |]pU "5o޷9R(:mӺp2%Z'~hn%/EW2ĥ9v0 "5*=k)YQ_ߗϿmo>eG)ojk27Eu]Н.tZ5VNc连˼ Af[:eV-ص;Ǿtu{na~EbL ̺l¦myl?8"gU?//@8\IU>1t^#[3.ߔ-=5J6< df6o<? I=>EߢP@Xv? [F%bs}SOap$n* 7"|BUkްPaNv~c[ܹXqqK6oN`Yr^>sActZnV88 ZdH$F=䠣#6NH&by4(oHl@ )[]6!ڂidJ Ӯ[)FИY]#VC ^ 'X<ug|'q@;}E>>П;r~@_ `<&>y/o H}>d[U-Iq",ѳxS3/_veld 6k9w}/8ό|+yoJ_wlϹ|->=Shp{.FI߾onUS<q삆0@V,"_.T˲gu7kZy~Ӛk:\;wKWo.ص}}60/drҞm{~>?>췓w?|[r<#`K7~!Np k%g"BpqC]W (A(GbK2qK3uYpݲ}A'?wid(2Ԃ@cRZcqmeu@XuYOf*.`*S̖lH{0u%;Ǭg"lOI&o>⤗Ȱ0 q0pvÒ鄵^ye1AG35Y1,ҖHKmڰcnV_ᑀ$$COz7CK +Ljτ!E [ aDO &0> +5 4!A[9f&EzF 6_k/\mco[{bt/4msgղݐʀ#N>D|@xr[c7̆@5Nivֶ;ݕvٲef+NcA9lۗIR:o]'DlB'K%Wl" JN(gٺCɆ'&իڹ׌ewX5G ʮg'8#;8#G&/,{$/0,#zQ]>G)á{1y9pӖx5adm sS H" :I_# yqV5`uM;qh^* ]kdv~7m/huPr$?GROe,MPj4k 9qq%'xKL E DR51~e9qg ǥGktJj ^bcш̚Z)\8;kGKMEKnl5umD oT}L2N6셀3}@w]ֳ<"ߟ`@{r 0 I >ខxH3s6ؗ gYi3,/2句vvϺY<@{@w"Xf[̌$,.ݹfO޼m;w5Ddl5qfĩ[v%<#f*#:B(-9)fD^r68pIc!i]Ó )>h<?._﷗E^zu{UaD3,XXFy ̴SP\udFe$Gfg}!H,>B2E\P-0UammfXKWv~$B(ۯg23<k|CJt4zg"d=e*m}[N~wϿ~˟9 ]{ sJ6lI!M>lnzFmPR@A(,"Я5,0۫gtOEWF2'z,*@&bُ׮P8luZeQ$/k5[ rE@ܿ-gB%LqE.BdXeUteLD  A[H~~GGq&yėp]K8kvنҋy' Ԭ{<{~[;GE +2UTldn?zAѕYȋ}(^ X0i_|̖e$%i]gV$YXwno=>훧݇$;yj"V~/S6-q9[uAC32m=ʉ d$ѢuO$l@`2]JQ7.ڐQ!31k]k2ApkXOزûn„qCm^?|F=(HEXI Mi\S)b8KSzl爵zI蹓vX~L/$1/ΉUYo=ag%ٿ+ivoڿ'~F_Y+AOæ?id,?y&ND^ SDD K/+-;0"6$Lvip>{]D&\J8`$,[@pbن]q]V}k9x gV/溮eQt>Paf{YH xyOCpl!d@}|g(N ;_.'bMX2.ɼ{C]흴A } fpq }r>z UsVw=xJYufx֐_%)pk/RKƊ ՠ8ᠶ隍S"qĴ4:>d. r}.ؤ%,>J+;)g 8M}{ϖgu^x x/c׼ >1?Fy&>3¾"#ݮ69:oԊ2P>ٷ-ӯm_7,GV 0mr1Xw< O!G]Δ\&dCV!mYnH/)<8f}r}NW{,l=1mC"~z=Dl D`|I%-WG՚MˉXL ( DA$c H?3pO@q- ýb]g p^0S(Ő#x00&@@nEl}" @2nRYE22ʳ+ЫDnlv.h¬KcЀ6o3- |JqFraEEB.it4;3P]ޱ w{M:q=Vo(3 @jEdk#nیz}-G|XF,>DyDR}ݿcdfzG[$KnEZ.#[ -y!- Ԁ,TФ0|u )uL[vA&E:~7Y#qF dED"R 0Zɚ; ZK:!&K[jwofu ܚoQ̂}Ͽ?o{QY!3 ("PH3NR%!(i>3#Q_88+z]Ʉ@"E}o8+pKd`L: h\"&R!?,'}y¹PZBAXq}OtnbreEM/S @LMYl"r[.(U]+D=%F|d޸f+A2l]qGf % yIu59<t@^" M䚺Q{Nt)Cm1إ0kR}L0%ӂpzTJYn(_:E;>Zwht5ui.#,X@.)I7]V6䟎k{Zn&e"/Q٨5W_r(4{͏h_^^}Ut?s_b\YLj4=K 07 E 4{1=7(pF|fAL*ONjMH!|P8PA Y|t@?2^)Hu+/ W-Zs˙rwo#~jT{"  !),0qlc&Ңq-XlwkOL 26vG˾IT,؍q0# 8{r6, T4nϬZOg,W4+\H(-m&C\mizHi"J+a^re7KymsKuu { L-@ܙ̺@@r 1}zPֶ貊n ѻ߲$-G"ӝM8X( 1!ᓼεX61Yl1Ԛz]5VyIa<2 ٓ-mk9_!9 XHK7mn?ymiM-o,ݫ112'1I79}?l~YDr ؿkW.߰Ͼ~^>,Oq>i:|egCߙ]F( cAvl|"gLE@SE|$0dT~و3 N"71k%}ٹApfA9/}"Xe􃏍ŚXNՅ}{?}#a%lݕ% BɁȑ !dZzF%c;MӚ]Qj%KW/^ kW6\t7UdFx4mz)"h$K]n҈`#YEI6eGD" u+V\$Kö${KJX`B:06~܀ -` U{f!<ș'#~>L1[t}Avgo'큁vrkuL3\Q.ٝ?]rXBXփw 6P/~뇌"ϳW|FhF~}fEa)_=n>5z,lјĝ_!֙sOtܶ><2gAϔգ'~ ?<%Ҍe}wjgp>/f_x.ru>4&Cg ޗs?ޗ}Yۅ|@y~@[;&֮9$n {`ild V>iS'`M2zȉ3`p`2A@`Xڎ-mmCRǍO+-Kzd +YTƺFD "#c3[bhZG@dĆtCGD]@&, X֞ 3H &gurA)EB 3A@T]Rd8lHF0à;`pA`#(Cu#y iݬ~_fA– V$nqH9"?Xr$H%3n\NpU`}_`OģMp }^d LSi`i2 -ސX0wf[j-ƶ1PH}WQ:\e@X!aIHάpș7緬,G83zCC 'G5YDN\(ړ-v%;w]tr3YCYeu s2dNitH#*RklkK`{r2Y" xfh>8eM l)qfo(f*46>^`B*3RHEX $R @hn#гlsۇ7?j UTӻk_B`CĀzEt]:L@ nX={dơB1/l5Y6("1<JFbONJ,{|Q$!mٺnh%K.,EUD.gx*lXaFa+ J^+GAyH E $׋|:nڃ|A0&h#ҀS@5 = "I(SŹuۻ}O\v{v}`Y@1 ,Ho&k.`ʸaT9;=ٰ²q$c+" So`/EyXBxsұ+Wl`2VɸeqXz3?oHLL74*{V nG$?+=wgg pt,."~?UdR|\:?Žj#7$HS%KHq?N5Nb;cJ?bgq~H";ǫ6/{?_ӳHg2~_w~+/, ЍOsY``MpTW!GlK Z"xU~mJsK{~H?.&,}54jt OX|ZD_v;WؚH-:]ڲ|}*)꽊Sq˖ N#"! 6sX=\ӹ _?˰ ȇC%R#2~FB I@G$OCZtwޣ~&9Y,Hr+.@ddh DuۿԶewƌܿo/;oC t< '{6{rn FD5+O=2oՆ[Ѻ<Gٲ E+84G u5=79.Thaq~Rז2ݔ Q2H&ʥ..us™;M0jjπ*-,(O}Ft"ɪl{uهCKB``G2&eTxxN΂lt@ (H©JzOφ#=d;7X~i\@,>oQ/YM?+?~OkVWHKY Qq䧶d;S5wY±'][3929\3+n%bSv5]3K0K0@a2d߯X8[t\>,$?/YXu>2UpY麅3E,%6<oGwO2(^=oEdߋ{` z_bl3+yywkpsʦ% ߃;w>N|77:}Jp I,^<:CKR*[Q8H-%\NN2&dXڝ5z+0h'T02qR~^c_:+zz6\骞M՞^˕)TK\vgL&ْFt/\ 8yپpx9P3Ϗs3|<<Rρۿqծz@nB"Gq|r6nXzNeGwL2iAB͐(Ez3kn[D"4-|H}!}2gֻl9q peNrY a5:$w-1 g&ƂHCVkZkejt]ek5kK$"!rK[_Y^ ]_)P@F0[1Ʉ'eCh`9A\'zM0f?cemEP hL2; 60#o02bh8=LiPu]wa~oցu}ywWrUǴ "$BH@F^NOw&,M#(-RH,ҢHɬ?̮M_Hc,i tGչcE%ڡ$%ҌE" r,93S㤯 T^k7[oE"655f (kap&ڎɉ=x ICw |9fKe䐢O@ekflPҟ1@ҿyDe )1!p!0؟Ը0f'B" BPxݏ=\vC+ P'֕-cOe/{ J_N!.QdYizn۞|cG2-J_Kc<HƣȹO5@ҐP&9Mp>n{^~ݠ}Ig &#n-^fC{e[ش PZٲJk6lqkǚAҩ%ϖ@q+`D&SN)dY \,@_^Cp@(iDE^bH ¹!AĶsz_ ˚1Gٕ9T؎i'wKkv;B53}He7Bl˦!kcGS:չ1kl .4YTτI\v-6OlWKġom!픲)~f9KlWzA{e{5^߲Mr)M'RDCκG'^1[^ұ5DO>:1ĿF3]Jݡ茖%IIGb]3aEDz! =䌎Ⱦ@*x Bʤ-Dceh_#/yR>1"7__}Xz~7=ВCih2$KF12-6WJt/9]5N`\:.d:oCS1كMLEJ_|j^|޸e]C18f} $# ñ%EDki n,[.˕EI;)8I ̲ §e@dD1$ >=>86}=$A>| ёlr5ӲAAςCٞ}圔B>"r,9]ܑ.ɟ/ȯʿ|<Oת{-9_\o--ًy=[ըt4$]]r7C=OĄqխ=W#єA \[6.lӸER<U/Z4X7Wet?Ecݢ%Y둎]٫7WµNxILN&) ;)Aɜ8ɚ+藾Fi.+ʠ^χ(H7>%Z|crZRpbeuQEl76ߓK)pIn`4d[ϛAQ,@0㳓S" !9PEʬz&{Kgz6+ȥV-mO~ӿz|0"4~m!F.@, 3kwmaC᭒YU@=VFǓy.M߸eb}zCW:gxҮ YP҆TȮEl yH4/޼y[6@~\JfzfWma[$Uz^3<A>4{N'} t'w|?{'R}Rg 7vjk ~_vwg1w׮e 9̊#_z_Hg/׸LUVjd e\ %ս6,)1$WUr%̥Sg_ @9Xnotۍ>& 喥smɅ(uK!MSfݴ:kѺ] d:*؍д]̻_&{gۅc|}$=s[ AC~s|ޏA>׮c9`ztyݷRisu;9޲OnD58!ڲjEX]8rM΁k*Rh-Z2Ke]gDhaaA;wr]ao\ׯ_+]r#^ RL]HHO;՜-[Zjl*m-uXsՠ0q&"\oD,oo " ;h j;LX?3 f%\:>K <yN:F!7gϮ{F XsȴֵnI _;Vro! 4%p)L;I#z-Ț_ff!i B6C{Muzbdx<+mpilVmؕw&GUI @@ gJd Rd\'ʕHQ@ʒ9 n 'u9h^"āv3/[}ܓ%xM@m0IV<3 {dS_g$;% S_t CLqw&12y[_b8f krVu\oٽOe?> >+#?U' gKCq5cV;A ]3*5-)@!¥>ҥ썮NBwmpB 6 i!wNآ^zeOw\ pVRN tUΣ`SUIw̠ҖdCFZRX}uV$n&@g=%P0- @0l@e0c.( 0}[av'=P8۠ RE 4̯[email protected]KV3ʢK &-d%yiGyfme4Ceڻ=8jf"G!K`JfQ!p!Аusy_Do*,s\И5Kg,_o-5)D$oѼ<E2yj;YنlӺL:jxM qH֥:?F]ƒ>Mn H=S[@^38Y"Ϭ>_=\>ʊ̜G6#67c+k[O~`?]#9t>$c4`DJXxV\AVcm0}ؼ%UK6*&10lWjWa]i^f^f;{ݲ6NM F c6+3<ײ767gjղ՚+ԫɘ+$$]wBt?GW9:q\:2! }  6\O[-l$D- &`E*HN@>3%}&Z['|Dm+5Sxҡ ˠ"B)|>~}/J4Ft}J\ t?Ȍ7we"ww@~,q+WE 0^]0pBʞ|=:o]kƱEjKcTsY&s qVÐ-985TFcdQd(]͋S,HőxUAyDC]?}ϧ">(t B_z0.7J"ACQm#E=lw^=+פ(8 q~7oYvU~u{oޡ5j -'wfeGcR4?O47ENd{E"VE }d?QaׯݰDff V.,Z,1/x^;w^{WlB׈xAh. Xخ%v9騈ޠ6oj^v +i~tJr`gaE>$ᬗA;)cI>C,56է}>~6l|~1}u}ua}M+ҩMl ~OE~g0{K'\XI-gwb-l_y`_#+8 kjlnF,S+n+)\JAim{V]{$@cĒ]̎ZytbͥphWpV8l7(_&! ʻ%A[/;zŏ?6x3 {g){&0ocl~x;`k a1:<ek.sy>W{?4HG$X@}k6hiXDIҹY:q~Q+`^.9q=IhԆ&ǬcϮNi_l/_<`*>qE=4d#2(dte63,n}ezx"U8%io12Ds8ȡR;>@4(<@7wi3 DV 3 ٬BC`OƚM_k/EAgXMtfŪK붸6ljY Դeg]YQG|O 3;=Z"ΐo ^ݿ+{|ؖ6H4~I$Ağ@i {]+o ̈ZvReH Pf2*C>f6Yun 32R Hg{1?sKsE7v5_ݟiҾYqrӁt)\;,'c #:ұ) [j!.Ȣ > @0D35} aiؔbiYjE҂[疟䁝?}w?%uK+e]-tI (<:%ڵ yN${<b{l*ڵ>ɹv{>U+ʵn{J}jz^7,F[ru ݃6ϹN!Z1{A_|ElJӭAώde z-A03@2>Dtiňt {-XHOYFd#f(;wL5؄G)Odʛ({4 B̂RE`m,*aW6)7UE^V zP2 u$N@,$:Όx˘QpkGEl{';OPk5: |΄1ҩ5٥Q}] ?̺%ƴʱ_j2jSIӪMKWER3.6*dHw+/1sҾ٥v3M2ACFWRADd|YwF]9`@_:o">"LiZ?KlvpIW_ dȏ˗KOi,;%ul雏֝w޵" AV+!_wd5ْ_4{~#y~Ȥ{DzzN$3/]+7UWoEvI+cC?X]Cvm81g_n骤qtpIK,ݓA9gV? 羽ߨhE>fC,% IH~XC~[;Ҙ9r Yc` ~s0j` A[}jm~hyN>sfwE4V͋$ $Mc>8&"ř1D5>dED& %aق @Vm(x-[[怼&7i mk|,M@4+&e8Yn}I>-B aŊ ݇EKM=s  8l`<2vzxBn,5"nS}2ĈLDㅴ -4*?cgy齞HЯ@(1'?4N`!CG4@ i+Cڧ1bXE_Xf2a5aCvOn᭛m7ܳGo>|}/~`4&_FxVjh[cpWvSxG$'N+UKą[4^* /I1Jkv^tվxᲽr庽zrC.Lon{mx^/ >HR)ᗦ] ^ .5gK53{"KF ׎{†xB>?#0>6<OL [hjEEctbicME9~^ľ&Xl< RᙵfFܓ^1[\'g{Ȟ m8U=_OnٽNmuu4d㶄7Yޑ`% VBrK Bc7'dW˜FgsBDB>_{2n  a[RwO$.KJzNCi٩l$\>. f^p$g~,*"<#|w^~ ߏs. C.X 4Ʊm/l޶>zj_v Iqi8*zMhr_anmTȰL Es""#ϕrLddܺGcdn ڵa/c5c#iƬO/~}D.P.fqavɄ4]}0 @@g%C Є0h8"q~. r@)| O:35DHd s(VuD>#&tFD0 HIW2"8ZQƚe#iwYmV\J/0&OKǧimY!S&:v,`艢K +d'vhN$;9s)3;fRg"ƚ"w͛'f])N֬onZe~jr5ge?1#=4i=C.g4lCѼ U9<@cy,2 i9ˠ!\6t'aF/>DKƑԙ܂ e#Z+q%rR2y `08K#! HZiLc;"Xߔ=XŝuM?ꚀjF 'JN,xjɅ[++!L~];@b=W7wMU/.Gl vJcEge~2"1%688 rE_9~ԡi `ju-P l +BQҽ@]w=F+IW+d'y@#ؾ7Ô=Mi YXkdm}^w<: jf9D<!yͬ.&~ho\[t8Vv`;(B4{%A4z|BM!;3kV[VX9{hwm 9rѤٷA1܌L!1YpԠ)Ψs]]k e +]]5ϫ}vc.N YuФw5r$qg+ʱ\S怡vlg$>=t,yEJ1rž-Xss[aٖ|hW?޾Hžed iD4ExUJtݹ?ʧ$#v.u*%뛜 @8Dή)XGdںEתt[_a tHhB"e\m4^BsE/ *ݟ>Ouw"@ $C#"c |ݓ)/!əm{">a%$hC)sN@r޺~O"n9VJt \E:9cɖ~GvWmew^vEmr xI_-ؓD%")" Hw)ٜGR)alVio};9> }}6l`qzENlݍK%7HصqaFĘtENGc56(ݧ+{jHׂkvg.Gu*1 @_5GϰAt݋v~Lft#2dG.x^5l V\`$zLO!.~O>e }0\jYucÚ6#bo>GO~g V<IKn8CC|Uln_nf-Q[TC9>-;(-mdƣ?)ePخԔuF9Ogl"/"0`RiJtI.˒ |[Y~PAS/W1I_+C CO ۉ"=لx ՓE/~&e%jnYWy_}Od{چ+׬o|Ŭ0@Ͱ;?sN Ϝ,Odc~~]_C;{b[U֬l~ x֥_Mە̳T]DidF't՝*U[=:pӔtڰrc^6j/wK&u^O؅XC\X& >.ֿ7BϒgI'rg1~,?voo_,HFr,8'*V>[:qoi?}joAKIe%g1fݧwmn¬ٖOEm(<eVo42#"`1Ri̭#FiOe4ٗ9Y q1kV^bVdEY6mP[VC*tQ D]@ȁk;#׾{̨dLF!zʀB#R J:c>]nQf(<]ѻ%]n/EPn?j~tj K(6DVopʭkJ`AH搀WfGEIoZc^\@{:/ҋIA\,8`svrj+"s2ؐZ4Q0PZԀEYDF ]rҋGc׮_NL`n߰K]]Mv}x:BOmMfUY:$"lѹXDf P(JM };n[\Af +p'S{0H7{O ϘL 7m G`D[O!X!C{Fcww#v;u?pdeK؃V6Rcb]aswv+-# 1H! BTBe?7 gIT]/#ǔ,[4+Imj?gQyXN/1ےh3ѰD.·*GSӖ_ma=\C{Z߽d۷@ Ĭ;06BJR}пn?0 k-HQ@&f#=]$z3+H=,,+Zhآ}TFC=ew=k= NhJ7${i0@ۜ[>.(x!8&SzFBRŢ-꙲EEDA,|ThV~&'@}[z2)xk>w>u7ۿ}nt~mMqnFq5PtK> Do)Btg|0p3 E ||/%`}:q/*cl/}4_`m-VfY}y~O}eIvqGFvYY12$2KR8ZǟfD6?$ILaqn޶h JaS_w0AH̚tNb23.cdL6%V^.^;Y`qh읾XK y=Bދ /2N=z=z&d%N@ !CpPoox:3v#Ұ>ZPŮS[_u:5"[.k+{B}v$Wp[1۹ul7=WD}݋Apg7E+.&~e`*= +%e,LӅeu7e2YCIN*.}t=d R Pg?p|VN v^ŋ=soeyɮv إ>;l SnU2Nytޕgn:g<Ǯqt zwdp"+J&`$ g4l@&/҂,Hɮ>miea"7g߳OSBs5k$%7-T9u_|[;cTe#9Gqxz"K3.7Exs?OJgl^ǛµՊ̮-+4DE&+TGz硋  ~zb!yAH= 28yc]G.x&x)>]|4fB&k]ӵ kGOz=<ga*pcA{ r$+a3ad\NJ&2yx:}tVd7c㳺M7 kH6Qx‰yeWF3.ڿg3/l=45}# :Nҟ\t^_}`xcsyq~^s1{<gɽm/wh<? 3^u]tdڿeyhՅ[Xwg~onf2@y"`v J@' muvk=ơ*p5z̎C!My(2ssv]6}f[I1aH?ITºG\dla[6# E[^[暜[YFVD dP8a@J f#VgD|ZtM.[@`L]4 dMIxޛ^t3aDE nٴ $}ONX >k%U_Y*K&JaIʖv| ` I\`Vv4 Ҍ9 HߢA'٤jaqc?8w޾c{{~ >xP/̧LQZҕϱ2%n3pwKMI7&N[ATLڲE=jxTCik^)w$%\Yzsi0 5)@͎na A%B9 Ps%:'u}0IC&ה30"4'.@dҏ9~Λ _Yv;utEҿ-rwmkeLϭڼ؏߳`YZ0`2ƾ+sci9{GsudC@誮"&޶piV PQ.CDÌߘXOR99=jڥ)y}"kXIsoީlMYPCJ _(Ya|2J t2? M> >f{qRtsʸtbG4{VTzقL/&/,AAb>l/=4@9 DIûط~];y|Wx `f* h .*=: PcBlafMf5~%)IJktUĨfgw߲ez:qWjit6 Uúx%t {J .Su ?;xtO| .)=/4d l٦ "X(yaN,zG6vlP@J@{{~=[?<ֵIoAcW<"3B\wII;PlYcƆƞ춀ۼg_( R.{>И׽d扙.uoDDo^KK=vmH~bWGR",Oxa[jme[-eF^o_$;"=g4(1 =]¦s kLSjHV`r2C c}Hz$]zݭ~Nc]P1x?`Ax98ѸL&l$:eo}C4 FdS Gߕ9 Ҳ)mSOJTvC{޿k!A/F_=|ߟf Rk.EX{LzO%wv$شI0NE"{E:&v}<'Rpz?"[Cu Mk1zAauF|ڃ.ȧH+,xh֭mAXi恕5Vvnۃ޳?\zlAXcEzkfӧ@'@х<C=K-[;gW-?؜n[nty"ʅDF( (er92ki;7IɄ]K^Jv-Tҹ>ȚDi*KwZ9ĺY^/GȢJ @?"܋|g|?_J#[=/Nul#SIiٛ~&cI;5{$E"}}@`W~}ßwGy{}F|Hϡe/yqO 2!MMLZjX#X*. YvGȗ<š䪞0i^#vz WG3”yeJ.xn!A ~=O[LJ?F0څq? ;ڥ}voo_,369L5VkcO sOwj{w;FʖKh`6A<eHʨlǶˎ햄Avߐ :o9G,[~kHcuM]QDƺY岜R.mb՚ i02>`?M$̄ ưΏ>(h pHMV϶8w@@@A gqAO(IJR~, ۠_JLvkqɥPGXu+J$3d%=~F{}Ȋ# s ^@M R:;={=\`ǁ3iz qb" GrNAJk'7S6v9ȴ#΂   r&(7Kj 25uaaYR@DKImsF]¹):gs+q(,J0&A L&d]<@gA0.NwO[v뾟 x`v1/[PO޶bvaǑR9v݃ #ȿ:&1Y``{nɣYZ1*PlLdh{nn(CG?ao9XauxvESKD@nBNQcƤÒƑt]3xѳv:wIf. WGf\t| OGx 'fNtק=% Bƣ3o'gV ۮX\`XpMHEEeiۊs"-EY+Tgl];Chтƨl*Xe I ^ah9 (>)[vCB:^3{?anCy <ZQٸq=Tfw{_y *$ɾ ( '[1iSǧy2w0x>Htϸ]xN^|gu :+l=<$x^|ߋti.?ڳRtU(r6WN?7vSú')"#`#f97߳w}re~eQ/mi <巵n(o٨١=gi 8^rQc@TR%pm<l|XfL m"!c-~<IS-B|n]KV3du$1z?:@pً._1qғdRU&SwV>-x!Da$q٠@//| Ln߶sWKF ɚtHJ Jm^klq>HBy$Pε%-6mH;ֻlp{Ы#syӮ 5A{Ê+={$tLe6g?&@XqHLP2ŊAEf ؗA>zOJeϿ{>X%3^Ȱe&32@.X&m𽐨H+p2 yba7|d+/mX?<~Џ)V'P "dN[rN~YkҳEKY'I-ɆCkonC1?%D4$;>M{>_Y)?Y ՈxQad~2s:'00 O'd8Ƞ'Ap-Bge~6mg3$BDѓy<?pn5srR<Lܹoo\Ni+UdtXy}/ù{y8ƊA4eU"ۆ{Oߵ|hk;{6jWһMg#! ]TBO%=Wʭb2(<S)ol؝>S6!}6Pl}qp'~{ y a3 Mt_^}Ѐ϶|voo_,H)$u8hG*-+0CCik'@!j5WB!U˖Id4*y{ps?<4z4_a&l뱶6Cz@/Arn6yћ[2 2אz".qUjcrXԹq$cϭ \#5:GuDq/D ;ˎp B\C?%d @@*G ' hyG(Cj k--e%Khbeb A Ʋb 2pYε[}Wm@D#@ 0֕+7,bhPb[9nIǯ6{Ղspb(tcV뀠ˁcadbJ4鍱,ˈQ q3r9{GxtWׁ1}&Z p/k sdo -H0uD[we xw2 nYM7]3>=k?[%cRúi kzs T36N0E0*s=Y\ڤNX &X5قofv>H3 5CQ.eIK/}Ht_&@4 m1,ˉEu58s|w/ x,Ο⧟Je~l?Ƙ> g5]'H59k=@$Ya,[(ro60=cσ!`PΩOq@tqI%=S)d&c#])ݘP Kݲb%! 灶@0׋ 08$N\qIش')7-][@KD) BJbIJDXR(> A;i?~=^$yA[Ev }`| #m﷋,"9p:S}Ԧ6 ѭ/?Xin]pE'Q;%ݤqkvnR9W4,4ksvS״} ˦ke#Ao|5OװH%89\z1y1[L[/C4&5*s*9DU`ʧ$lEz2n&%g P{=Ǟ* @3׳%@@`!02)M%x/H>JD"i+;mtbEW@ C> 7*G4f]O5ϺG,IZDY]YGS}y^}t_t}H68UwAN2'Ҧl=؋nS­e5sºY @+U;jb =?uG>a߫i/C=>%AAH n@D]0tzv߲G65kLfj=ݻgU'by{ We7# u\vt0HevOj ;" ĚM!—,)b8yG@Z!dՈ3i Q?+ȼqlτzP!DĊ|J2`u]G(* 3G <Yq}r3O=tL<aG\;y.cѽmr}KȪ<vwBcr)VwP~؇}c| ?}>*?',x8f7Ɋݐ͸>,Kq?N6\7 }LULnV%y]oNb,o[8t ?/>H`& D3^ۜ^p͜w|`g}v<|7e|~x;`MGd0MɱKƉS'wKd.! HXcvٷcL;$SV-7"&4o0qtdLqt2%2 pp3!8 FDĥBSC҅i+f\2A3PV _fs#}R`%D@]Wjd.AP[frȮG! gp ̓YvMY$yLѢMhGu'[E9V hs+-7(0-pSvr` {"ɱrFτ{w%ky DBQDb =v ޻5 7gXKРq |nmnmI,[:LeILƄ&i.9np_{C޹Y뼃 UgRq;ASܣKI%gdݽ} ' `B[_38v;LLܬ 3ˊ쟐wg?\qQW:"k+]q!*0QnKt[ͧ}'9:o{M `GzJug-wlbZ /  )X!UY@ZxWD!-"C_ (-٦KЁr K@">?N?;ks%a2A u}a\fH0.dpA-akZX8Wºh('ʹw3/]񄳑n=_?yu]4 P:D&v"UeoV7lpkuf|T:SN=Mk{:%45 wQ ڌ|tc][o+AG\NΩmJLAE[m=>b }lcϿy?y 9oBiy;.ZY?/grU7Y ˥#zЎn `[jCDVzWؓo"p(_.`\:o߰A JFWț!8@o (OiKY +L1chZEieSLDL% Kidۮ^H2KRgK׏?o#oNJ\6@ R}v>= ){]nIg'5":(2q [8H2+.ŧ nbsc+{,!0u vK{=ҋNHǤ_B vAFwowDNЕbxӞ8j{GC',8 &G}7BK633Q;1<Wy9^\$"^vzFq?{<:w::.D8[/7HiBIqpbХѣ'm, dᗟO#+J6;Z/, / YrLeom׽ Uhtq>,tz3,y!`vϰ@NpVl%Mk"/(}{`'>(హ}'>^lC0 n#QN,)H,<? v}<$ȱo'3HrL? (2 %olξ5WdoT"4OSۯdC: @?Ùο"Rx\bC+-!}.O}DoCW7k 2*|@t/3as@Kg7VxhwخqוIS6jEmkS)@Ö5Cf%mHӠ[B#Jw Q] bf~޾wd'MV٧ÿn9"nd|x5Ș'Y*ȀPͶ=H:H%\Rr%Vk[.n=G`/^xO|J;N96?G!ny)8O-51,A->GޗLOȡKHe"G8\풂Ȭ[?ƒ!SUZ2Bޱk}ry΋8@̎9+H&~Xu}&+1@W\F%[Gvx RRMAγ8'+t R.Ipmph"a]cvGlxd:F,J`4.!y&mp}n)='mn={<K 3$0>/\=w2VA^ cC$pV$ (pgAp{\s@Ffip2V'6-g) ?y`/]49"+#.'@jaX:D-c* ,If4S'o>{om=;9ھt2BrG$#;|Ci@䡎1iOkܑQDvIv@aRLCBe^(+PNҭ"沱< %$pf3:c=䮤Dy;go>/D!d0úvfS 4&p0*='ݿtg*gI9ױߺo9]C$a|Ş~[/YyV O?Z2 vUّ},Kk|>¦ݹo't|*V߾k݇69DϩGGr}N,@51H ]KW5uaʟ1f[.0^Ƥ{m3`E4dO}캷!Ŀ~^ho L VA^ =C=?u3Wf/v)Oߵ,Utiz ˮ9&m$Ƨ e{}{]-=9 (Nw4^dKvFX؟OmBb {,i<.d!} gVrB)g87VlHy+4-'Lg EXpt/qp0ƴE8㽳Qyqznd=xؐ@&I!;@^iqP$2=*=Hlz'bUu]e 7o?eZLH'4D'՗L:!õMGuMnaWϛ_am70nv۶+_#b3{2Du/xc<gWGvm4|*nBW'+]Wo ؗs9;c4naא> Ȋ P{FDx>.{F/(h?s r g]#w5$=P 8fw2$`B&=fp$haٯ ?\sC݉ Dt\Vgvc&j+kug:]1w]yړ%DžbHtnJdH,.L\3<OJyCxa? ?>ǟ?Gǿϵ}/gY}cgxg3G'BT ͻVjއ6~`E4)'rH0s0@n_W,|WirQ=&evnޱ[llZiUgMc}}B (A?nIƓv^/^js3"{qV#[^;?v y _O|@Eǟp~gΖ߆<voo__@mfkX捴Dx<ګ.'][~C8 .2d<:OPj3"75]tL'@0 { g5ᵀ M aI%m|dkoKq8p'RTB?gQMI@-A@{?D]p@q,.߃!HRI*5 @&t3N`r,0dhhF'@$5(<B WWgmmi:{>~s`\JSvC.]#?9P#!$3es+ֲ-hFw ) )@5rޤϑ2'KQd:E P9WH<sN,gQ]=vӮZx5mZ0^$1K+lYOJUI"H<٠> B@e H|(24 lun<HL@O8uL?GitcD8@kX!pgCI_d`//.cvIRJ{ڟYdndⱐ=zwl}L_5`t PVw+}t_L$W$!H)!'" )pG7ko=cj&2e'] 3.36`<d?(Aq8u@A=Hp{o-si8@M01E2Ba֭G9dխt=ō==u; ٤]YiQt^<Mg˅tv|Lɗ+cg ;l[!g0]-~I<qz&5 ^NhRj_>b/]/]/uVOkŖƍ":2{RF o63"PD sEe߳h2>i&`ů:'"`ݥI-&-7-X:oew+A<َH"V5}HǦ[$Q?A &H?&0懲34sGz~.,}ah[_o2dHyx>X^Bfl{ ދ8G p]F :F!a)]kpk'6!;(TCϿ)d<=[H@_8ʉUVnZiM2 H5v 97qJ@/.;=gU2g0Np<`Yl/:n%P%$ $!•e7:X̆R'YcaޕT0;/;}Ǡdg}tٓ{-vmH#Axqf3|~J$(,,7ڴ1ټ|?%D'?=ciw\8S~A_ʐgOAtW5WdC+s{{vË K7<$m ԰d(e<< ݨk;^d~;!hVd3͋4!0!Op(nRr$]/l~' O{R鉻 c?^v^f!D7?8=M;Ҹ흌ږ-llx4!\ͣS˗d[ֳw1?TTM&IcնvLoMmm[Xp='_팒4cA [ڹ?_ٹ}ʐ}}jEߪ=c9IK{y1o<ϒ#\ENvE? ]W &x]A@|}a='G(?57߷ +dT\s3${rDYvr; )6_Fj\  8OE]ARP4<\'RI1@P9\2<M%}'bڦ%a$P3"2}=222rϬ}/6H` AR$[DZl[͘i FwW>ϹFDVe Y~v9Ԓ#XU`p0s: X8Fϡp5 KXYݧ|NHGw)mRo4vpBY6|c߄';7?pQBTɕ0.|BߎEJGaJm ʁy{c0qHGnX ka|ƺ+QS"(8)1!9xŒz}* /3{jpU𤭶-uK (r*"GD>FLpc̘1N#H нl˅!V K쿮 aw S9Dx{- pbMep]ַcʹN]S+wߔ9?7?6IRA(p$ eO}hyלSR~=<~U+?$C7) gjB9.ESն}* D?BM8!a8Pm+atv>̈WDR< -ޓ$݋NS!@P@FO}$ܓ* .^jȸ ?M$us#KS]Y&o0z{' [U蝘c(زFGspTf[ʐ!O ]#a`?;o"+^qTRnVo"dĊd® _")Y;a&m.s )'# \ S+eE=U]CPj"Ms=ps@cHc]/ows7^iZo?%K'Yp'̪/L'P0(137-z\fA@)Rv%K`WB#4c:AL [}AG$f־ɣE g#NU:l-F;`Q{<u Ky-̼g?SϘq̀h4 16Np`mDOύ081z$3?Ct_q0jS[W`#u+ ,N#cz#Sop,LL/!uMv<p 9n;K/[ۯW,նwLg K_6-"q*vPt8(5⑑OŸuDƦzjlCST=)2l?:qJvANwhu?2$}?0f_Yu[?џy} LQ_ؑ/`xaaqX{_>Ae˫Dt Dy:*钶ң`+dx{t`rc[<iw#i'w&stf9̯lͽ0N^j n濧!];׍>?oS4^KB S;:6U|0#F v6{LN_0k1 -N;6S'ώt{<;3ŵ0(?:'ÈIv]Ļwȳ^]AV8(W?ZK뜞 adВh_m`4isDKmNHTQQ͓\Ӏ)p>3; YluqAx7a6oVW_|!wpe}4R[@BUX Q1+!#76lZݢs2@n\(%6FFΈ`g14YБEX-w\{--}sLoB/ Ÿv:s:ϱ0qF9~JqtD>qm3}Lzm(z0pcνECFMn{j)ܿ{zGö@ؐ5'9"M R>"X`Oy<()P`ZƊ pX$<^l +D0,^VnK'kRՖWl!;>epCh00# :HP.G<8!5D Va 0) 煾#6%H5K{Nps (s螔8a* 6v5H#Qژ p/Nvp_g[4Ux)s;m톉vyoþ8E" çtͮ#}캅 c0f?% RUn2V^SR&BܿnYqjĝ1Pu0㰰Ţ ĈEG-{<-(Q0ABQA߇G#] Rv> K1#ZP^P0Q6,pE8ħ+lnhFE<}Ccwp4~0.αY}'zyrV"_VZ#|PFa0-Zm鑡>01GGCĄiM92D8ѰC'0w/,> +/`N?+^KR:٢)>lu"]SΡy xQlAKq-Q.n(8<Zm1B}C; Ej*}@OnܗV/H~\ya8{'~9l.nU)d w-*aR~\jրmE[ӳ{pxuēMT`^D,; uHz,F&*d}t4-~!#<FU0#%]@(DFäðq` /rM2'jaߝsZts$+ 4.ӴN^lْ/}o1nPC6^Ȧ(Z6EMEn> LG"_4:$ _zF_z>@NWY $nODn"zDlB,*GdShqxB?<F&ؼxŠN\vnXۑ@ȶɺͰve<,堾`ڟ/R[l;*Ð=̬شnum]ozOsz_l ]:*]WQ{jռ[C/by2:*" صg/ޣqKF"z˒G6~Mt'zz03<xk 2.ai tv ۯ/(d.kYDEqĴE cA:F/S|}8p,>*G \O̯e EлrC:g4vC=i~餑Ǎ>78X\|?xy=Oz ;K۸g  Nlܿ$acF]=qEi"i9';Wt2qjNua4 Nχ~vB-fp>}޺pL(HN$a0/  ]XгNѭ0#9?%#zڜGM;y57; m{޴/xIHS8ߙ,43,L`NpF%o޺?Vʫfh@g+/E|HDVז×_)잀0Hl0zle G7 𐽸Z*NXPqZJĎş^\ SKsavq6̮ny11$$sL;H#O4HHu4m(9 6qIJf$DcXD@qae:>nωji5H3ba`j )Q#`[آzkk:]ۓp]Ү#0Q) #F2&m:h& *c+m]^9=ܵ癇X B!# A,A0oS vP!* <bb 9S7eY;Zp8?~-|AF.[Xhon;v]{pM^ Z{56^a$i LN_˸`w7RX( OGF 7ۢH|1 wP#Zq\$t?s EP7Y5<WҒq-L}KypDe  MGS'碞߉N- q_@ߜR;أ (j7:Z_=#j@?6 } 8h-h< v]YŏW[/ai{[ 204 hbJHhhހS1}9C Jő w0'A?Nztp']VcAF/F7fW+"#7 B|O p(y%o|AE:0*;9 1o}6‹o~+[ vؗ)8DD%ɇGۮ$F+}-mnXchIt,=@zs@7[SE9ⶣ L[1hlRb۩q=+,Dc2 6^|0#Z=L])~`4HB+G?U.$ÄlKo`^bWu)?@6t pw̲mp" s].$َآR>yXёJAܙ@i*%Q+mŰ{V/X KǓ ; D™8 8x2- 떰P{GS_w=~Jo?車 ύ.GOwZ/st/x4*W( .7u?!#GF|qZ˨_u_^] k;'1Q{n7Ĉ_983—&^GǬ5@9!fY@ v?G7s`X}Rtn֨0un&gNx86-G者ЪK:imMSCˡN{p|wx;ou#̦+_ߎyG$^~x,I~XX?.v mh Q?C@}{ѡfXZ˻{aF2`T2}X<S 8 >7@þ8_N Ya!bO_X] ˽fS?*]=鳖.=u~*{Rv*HoϹO)p>࿳G 4,ߔ"p33awQ+7 HǸwd Lݰn _zM X0Ab:d8@% %db$oR8|sfa`m [ͭ0^a`ፀ1EQ0`L HiFuN1 s?:8 PU0|g2.4^_20054HZ Sֱx萂5W~%M8EEJ蒒ˬHql ĩ6J?y3ܻsܿ<8X4@mBa5ַ޸PR! sd;yH/geޙލE8Y.Gc&:3HsguB G*=: N?,;Q!qCn%=E38FÈgHbʁwj(}C0eQGCBm.mG~ڻ}p^z][ww0|~`(|5GBCsТѤ *őJ8C}Hm T NU) 6*7.X`՜?/~@<Q)QԞމ\zBvtZP;wِ>طN<<VV%ȈkSC@% [8{8p\_o mi8g)O!2n01? }cr&N̅^u=SuGN+ꃌ: p~`V|u'?8~Jx_ ^-,P8%q(!w^2b1uN" d̜ER}1Ehظdʛ\Եy)ni. x7}hҠNh21VSE 4 4J\ceitLF'NէSCg.8RQ0,^Xmͽw$%S׎/ ~?wQH n/L]_3NFKNn?=aua}Cx>{@߭YB42Šq.0d9 hRU #˒28}$du8|a*YI;pź ;p|<G}_=]Ѽ@'_?/:巵fwx& #Sara={lBF'gA`Q96BMuUU۫)08/Qpow}?[aiHF "pMH/OxuXeKv>Ү(Ϲ4DDAzx5l aQ"Зcs'G@)m4#/6-DԥDz9z7SDk}v8JWcp{.ŸٿCcb#sf#e G='ӧWeυ[᷿aQ[ Jt<@k7MN @:Y!Y44[0\힓={]: 9 gG+XNhMc@Ӝ? ,ʃ Ar9wK7PAjXrnyK._Mt'3SaKhX_[ {{{aa~5 t\EcxiN/KBWN8n=2gGKo;C}0 HHY@_uw@}MDz/''B2Dx ٲ(gZJGb)1oK#m*k})xv<O*k4YxˌG/6oc(>/9u|}`qPnH `h㸈|UCǍ-y!oqL.ab`)a V FmDbhQʥZx]RXXl&E PN3ݠmdQA31_] ? <=2`8b!,TҢC'F(D S )lelqDC *A o;:6lG尰旗°e*Y  @JΈqsmP}Lq8}V^x(ܿ}80`{z^B;( (F:D RBh " 0B/!1:r~NJa|GŜc<e7rxx "އv،63*~_txhѾ8bK`D"jC8bO<,U‚m+ S;*ԇ#( 3'~`_ŭ0,}mf-<xamkI@ʵ/#c1q’+Xpf[PNX=2k<{#?eRbo;hآg%_|OF!i a s+{x,n`^˻G'&a {[/H+hWbm-1tfNG>#E.,F30u#m 2z zO]2].qdrVa7,m)S&p ,8$Hqټ2 ce}m[fq^X0~v$GKy8ǢLGZ6C%N(`As3( R(`$GA܆Ү\1Rנ4 e~ Rv' ' 9tk]Ii87~x%-gQ{ _n++΂hh~h{F3k fdw"_xNz) K߲š̟M/G1,mɠrC;ahXt)Z<|7=$#|Thpfc" HdkXT2_׍^O݅vtխ@VvŷR(NN9S)b[炦unIG3\tnJm+ \8a֑8 ض)y;8%z~^էwf(z [a~z]֥#3:$Wĝ@޳hj1:hB-F:+͂kanNXn w>6έٺE ކӁUC[7#|quA3gy/ ],gYbZv=2!:X=,ވ\d0ܜ302/pxt4[NFFC? Vy <h(2EFz, 8!~t58FWo/{_[oZVԿԟ7 wAwm]a{;J88< V_-:`aTO܊:>utԂNd]0tA3H14ыVӭ"06<agvbJF:ot_\Kvzͯ 1=vÑcFcG/p2 %vHfZFQ+6h;86Ve^&SKaRpG~D6sk ^b+a҆)ۏͰ+{ð}VX.*~rUrg v:lş9~?}zR7nҹg??eBwhY2mF]6=0| 7Vu}&MKi?YȢ74a-]//~7,ߔ/BD-A`F~Z Ƿ0 i(F cd9GRL"`%8J#!3#D}PG Q&}`~S̮0fV7L1Zt?<oq~?clSG40#'AT c8A1 dcPހ-'J3^ 3+axzɶ[Y_ C,>6hȸfBnuKh^PgO!+bj .i1[<O{^e0QV;qЁc 1L" )!F)31DzE`a@J Q1d #Q)m"$DAA( 1& cC#>0x!nnG݋q7e9=n1Q|è41,6CGB7NR 8(V€{WX΅M)darN_&$1qF6↫k᭯|-՗," x+)HcK_6EeK Qptсa@D OG$"8 q)37m* yQ!f_0F} QBjH# 966%dH#8'9Gahơ\c!öN9b`Au]ؿFgh$޻l06B3R 1#3B@1ֻcHt¤EO[JIlMn_Meҡ{__F JA.ť IZc< 6|xTdpE7Wo:->'v3\\ zX'gAo2sg\[f7x=LWEW[are5Wao1((v*=k>|Wzq`[GFn?GHs1"ert^2OX(ƑdܺCRs*os#r&!b(%)[^s }cGΎӆ1'[{.`v {mqsd8 'gCh[rGyAb=瑆DA1+#~'#n!=F8ضwz Ls1 #v$CyKcIBѼp^.8P.wn)IDATlŌ߸nςI uwS&(#Q) )Ә+P/MZݿ+S?+L9mqͺd0q?L&wZv~#l WE#Q6"[>QC_ѫ?590#Qr S pXD>_x>̶7-By nANutck[!M3ۡu7(>ے4 B gI JX;!7t[t+adn6 u$blF:e{}Fyv'?FHw[gip'D<u-z)[Px;ҽ +RO|gvt3PPwfp ۄ/:n$|/$^+o_nba# ሰ^dUx= O+(td-1Rw pD#@2Gd0L/07zW68`qt"z3-$fk0W40YV"*Ka,`#yd]B9ʄceq>0ePXa沅olo}QSp28 A߉@u a3P]m۠kEFhJ)8h LY$1  ܎&Pr8X0VlfN~ x/p+.QPq$ gA 2J. G& xN~7N~ "":M*d#8/QLM]tL>JC7=I GCQW;^Z\ +a鐽-`rNXFE ⒄|x/}Yڍ&P}[ܱ4c Xh1݈рQ4CC0!APx; Ak'N<BFCn pcStNa[`PUNTCRg征 •sCਔ<SpBc]/p ?wF=s <o hK8j/L,$qQ*PѠs Zue>),>zlݻC>_o~wed/w$ex"Wo{aZ4>¸o#"Cs8 l:TN&t΂x.e_< y/udnt5TQm: 93`? 0EsݟIOn@u|У6^tEZCIτ}a`?\ 54&eV0)H.q-5׻'ǝ b@Szvk\}8 pJ͙SWt$@vu ᎇ:աLVd]ypbNb΃35Tw;ڕUGEȿpQ~煷l{:l!$}inɿ[{ajEڶts",o,(=(|l.M/7_R9IֽSNncX1):5 n0^?:/Wxli_ <GzUx;)y]qp,p  ]:>3p#DX<xgIGmd#+{mjIvJؼy[<p*tٕpx(m=12R|n{ǟsO^7>N<8?o3JG:'{(,!wfg5F0zw6CG~~z/~{ߔ`&6 `e4ay{7Nxb}.QsAD#QYD\`|9 !q@ W rP|kՉ0"汭{C -!!z1 Շo2qO 1 (a'F_S,c_BCG<7ʄwH0A./坅 {> A.C`i}3L·ީn ǻP_K<R $met)!攀ad3c:i9(d !*u#CKF ( :GAqPPs DU  P:bMR1.`wc] yBX8Fs^cǘ7^_:)`sDGs1`fR< W@ Ct%ψ-dHMBr|;,< ^jQw_x x^`[ n*9t}ta1޺Fغq',0e>Rw%D=l؝(=20&uzUJڊn qCG@jC$~V4thWʏB=3S -(tG$}7݇{t,\3,o};.+=R-6@*[4Q8,`"810p'?ƽ#5=s6  zcBt4Ϩ଍`2zy _iW0"yՖYc GW˨}-dPrрhp畯ȜdĔx_߄{ꦭ5Adҍ0-a|f\n,-[Fعyv!b7Y/p@FK >P{w {w2DYFE8 ,`e7Ȩa~C{ A$&hߝ~i/,zA8hmjMa?>:L,hF_A7&E!4(; 9']#$ s &Cd6[^ d& hJQ^Gek1)c@G]xN>pnht,,R4 2P/-V~-Y Vpڗ7̨O[,rzE&w^ Sètѩ01v%o`[ƩAQr'?2sc LөuLƴ; :^OtЧ>:$6:+ڢ7p8>F2&Fw2n n0w|NwsCލ]@> {a`BϽ WzBWh"޼~/\ǐEt.mٟx:eaS:SDݶi̓ex42:2)p>3; <ܟ| :=d_N< k,XQ~Zq[po?ݾ p`tn1 VuQ0bb],ThLEsc+wԾ`ec.,͇Eza `n9ٴs[@D~~ DAP4#80*zd~0BDDĈ=qb6q*59.Qh2&Y? pm-̎Ӌfx/] xW ǒ6㽎P`!285T[D'A 9 B FA<.## q^28 'dcAJwyzxwF|T2!¨Lj9 瀎 p`FHY0ɨP`z !C;r]dž"1E#1Fgёun #mY *)̌ hW}%,m]cl{3<y])320vDq1!>0&dPK8m8 SEF9<c0 FT8$P j`\1R˨ ,hlQe1a{Kz/hHѐOy|7N(m8^;kfAD;WcMn ۡR.^!/=#[@kz7*G8rmC9s^G-/>Q)pp 69zG 팅A@:=8<m/ hEe P)K(%O[*Ҫ{r|vZZW' s\}NtBsw{0' Y0 ImťpѣvPXa~QpN׳{mM@OɦváۜLL*[fN" gz&wz?8^+:8FCq,8xO#G¬ccq!p"Rg<wG< ѣpqߊ蝅Řo>ߛ4ZWe ?z9$3/] G? pڐp" SM"3[%#bTSѝ$-@ymp&'8CeA`:y5 tSŁIQ#4=&C:G0~h;~ hsT$}~-,`}+ѮNj{tC[a`r6ɟ;oHc-V k”{ᵰw^Z/Ao㸆r0 4N<5tA 5n3@4Dt޻dVG͈tEӹy gz%6Gtz9Ʋ^խsG3 wӽ.MM4Sc 3sy`<<|0&ffǕpZw?aχWxĮH#4">ڞ>ٟtN=γxC{\/M;p_u~~ ; Y@Be5򄹵ð3,!jxo A)0Bz;j6)n:!WGl/:YC(F!OǺ&1!5{S{$ >l^W%L)eg:7HΏJa5$s ':_$Hqu(Q4b΁- h<xq|X郌 3(qs jv<(o+TldGu&2\m;ato6̊<y-\H*'&03$##֚@ !D# A0 0݀k/:"~@uh. .v09z aT.]#/#!( 12q6eSAр4n< W#o:7pHdqn|Kgt΂K 蝦 }`KaPs4 ʳ6Z,3`oBzax}Y~=!a(C7~o]Y3-dwRA(7nd +δzף! >@Z46<q])6]2^ջ7EV~wwa<-; y^w*PuCa~N?HbL(Qqx=^ Dwu7hɉ?1<~)̬ntrwЏuP! B?M@QGF1q ϖ Y+ EAt I}h^׌?;^Q8$@46T F2H"fDt: $,/~:DQ t䱎Qԡ8-%)e[4#Y1ɟA~;,]oAԶx^R[~ppmڦ(kD?46µ[9!Eܝ ~(DnQhߜs+aa)j pm( <݁#a7zzՉ`2 }|ER ͘to^$] .Kt ͆k=c/~)L-.6jcFs;.vHΑ2 D/8@6'+юq0CKuH$(Ή`sנfо@]=U)t)1.M,9 N,0BC P <2HA;,!1SSi:ȸf0魛G"3:gZW045~Iw{z/2E71{hi޽ _ 㳡o|.tI'bLdkJ=t̮}>u׍B7A@u.Wth"j[I>N SYg]=M`rߏH^ 4-uh=CaCSQ RC65li_kȳy08=oٹ0>=GÃ_3]/v^? E8ʤI|ߍ~-upwó|~mgO> wpW|#2v8> Hi?Yǘ#b1:*":@ƞ9+oo;/?2c9ϑv0s=Lh+u3DAhbK}NJ [!w4+;X@D 4q8(DqQ5~TXX S_6ώ_ ! H$[8-إbQ:J96BUiL/q)}IY`@TY guP/)1V{YI(x"]ga>] w K1`fu3H 0o#T />C /=dXwD-:SuGˉ"k hqSz 0S-lʅչ9 t4QF#QI1 !xOsDx@T90ؚM`6p e0pN?:,0c((O0esU>8+`2P/aJqeRW٢Pʺ55Fz$f\XX _Ÿ_y[m4Eyan \(lYhmyK #2* U40rSnPPxHnX@hD# Kxȳm3/Xc:Y'ݪ=+~:ܰѾ4=uTH 7(F79wá_vB 6aN@` ?uR?}Ef@JW_ ó3ahz*; wΡq : %]tyu$a DVF~8BWz杷`W{.GI<7t(d00D#a4-ZCzTp3b$5* v}(e,풬1'8#rSau{-7~gct3%9+|w[aas_Ւ2|я1!Ys$tw8C#pSq/SV ǝ?u2xG(xTBJl #δ"oY Gw[o.O JG._{Q4"8n O? ɸ]Ht;'F~iNzsߩ§D演Vi#t_; رaP5ؤzy>%"tStߩ1^ofh_|8e) Vt utP-^sG%).H+pyuLWu=˔#[kAiJG`͝𥯾/wm@ݰ~-^onv[5Dm]^VYr wE?Fajt:,@ss߭oܶGl\g+ÍN(O멡J>OH[mQtF)g{rlr^5l9~Eω_\cݒ=:^~086F&&Mp{(\?ˤsy;G~\砬wuq:P uҽg)p>3; 01 Ȝ Zy֞[/G / G [Rֶn={aȶa:[2l}߽٘ :d09<0gYqѶ"R' 8 kSac-UP~@0@ah ڑ41 =9 }ų  F !2#4?Žqtkx<DJG;9/ A\]J݇ j<;".Xhm!!h[Bg5/Cަ L*-G'@Տv@Y P; tMJ6AQ+`yoJУ{}] 1W&qMfq'P*)8 8hsx@>JAΐ< (EDA4BMc": CcMBbr0yK@i g4n6ƂGw94&[4ë￧G{Q&Ew(af^z7lSɞgb*ĵHlW/ vDC]]y:#eĝE3p` -JW?b79vn13J!O)v{6Hc,qj?߆o7C9l}   L{bT ѻEߙ2=z"կ.ɠ[[;Rg`X۵EXQ G)ν=wDchSF{tGs)ݕ Oit 6 ϗxHC M'ZoZch_tM)_k*Cܝ8]l:ˀ& y=(r|<G .~7|&9hl釼B#1.18fFxO_`xG .b?-#zj; dh6,lpafA., tfNFhQ^ʦ/_t{'f{6z` hE q "Fՙ Z^ hFDqG|qӾӬ=0B9 0'$HT84$ʧ.gKëDGfWDR'w-h{l* ͪ/ BסO@60`r@0@u|w,twJ,T]}58@8Jփ"P=k8paSҵNs0g/=]@Hy?b>N80$^ FWpITUhwHu3;F%ϑs8ݶd<.IN,/?Go)ZS]I>;nKLc:_ zK[aݰtp'<~'lyh1v#iD-@rCԍK,gY :[vJ 7ɾYHhtk[QJtss024]\)02(s7}t _Ge|[ +{7Bp^X7ݵ:,9 a*^7耈p 6zI<"-}㺿gƝ^'GwP&rݟt?uTyNy^~:xYi;,`=FЎ8+;R_ (c<[email protected]ƗwŒX o;6a+! t})3,x€B⏀PrP'oI҃#!c 5ItII kMd ?*8+:gThsy1J *1C)"z ؈N"_14r)*),RA 9  “ѠHDۢdz0&ŁV R_*AlK24PX!q1H,0,B@etI5'PtJ@s&؁mjFH^)4*E2G#ɧg y#pTt KQ )0Dc(coy#e5.6-IeJqPG MCp#Sc RbF5 P-ZDxwM2R?vػ}S'A&`) b0Vb]^/[D13&o2<\#tD|HCѽeڷ&1fb_A1&wG @eضXkw0<w Eq+ :G@H:$ F4G06Is80Ń'WRdOox7B@v90f;Qξb$z4G|t`WrmgRi)p;8i΂݇; 4w.8kP8 C-3/yAtS>0ڿ azn2|׿]I.ljєM|sLe9 ?x;|F10 QScLlޱs w"Ti[email protected]-D]g2LohN@ 8 DO`z}t_FÔtd9BތHQJ~s6-ܢ0%<./<wɩ0(>14.gEjMtJ'Ց8uX 0> h*c;Lj@EY,spbuEd%`N 8aQ83; |d9 t2 $hwN>kXw.H.6G޽{aX\] ֯? ;nHlwʈ\:X]0`62F=JذIwnڈ}1u*z:F$1ߣ#۫ IVZOw {Gahgxt#ɟN<7N\Α1P.dצepc6 Y/5_-#:;]enҍnx'wp0t9ѓBBijM}ƎQ{h傪i`Bƾ9t?:ߜ#ysH|z\|Oxii>/ Z]:yHi?=@–xyQm-) [afy5 _ 7ܵQ;}Xb. {+ĦVnXU|C< n)gV*BX9@>QLϜQBEY>]#,j|! M =[E :֣R`J? ?9샠GQVV9 ֮ 1;:wqeݏ#a _#J)1: ^.b0z#>; Ju$$$}bq1̭蟘 v*8P^J/F3#q1@Wp1n %gm!Z%Njع 1-ap&P.Ft6u F@c[53RLwHЃN F9m I@]yGmR"GD' QP"H||fPs2蟗"t,/<bI^L (!8`jei2:Tוa4< PaѲhpa=<oÿvq%¥#RƖ=֜Y aPWbO3 (Q9Bs[cH;\vA9<àV`2#hs8 Py8 ȯokb2*+#GA$Ƃ?i\ØwQ9pG@g鍃0 ]"}_fBGgLKREexziC&t=2HgZh¯G\u@+U)Waӝ 8ElA4G(q1fA3͍{[Ux_CZoi;hDtbF݌Hðux' ;~?\s[2wEn_)È % sF;G*a\ و78Fs WAN*<9‹GNŝ0vaB<'A7u0_El vlIޤ; 4G 9gCn\^dQ@huR ֝;+{an ,}pݰu0ڰh~p<@/2&m??asGڗRG(Nd}t"4r7K9e7-A]jcvtpt*DLh8'pݢX5 LCNG:>?1͏1^VZY_G}7D+Y-ƚ#N;͛/}aF_ 뇡G4ݳvn> {gŽ[aC |m2h) 8qBx 7݈uG9]j{ˢ֮1%U aj}Oz{3\1pA݉^A|_5]^gPR6G'lK=\rpc5Š,gYػ#} \_*[nOqxE@yfyiu͑###xgmS$-ןmw']>(^s})<ef[{?Ǵ L< ,0AD=,y|l1?voUwt{ۯlsFVtzZq70v$fE+µ~ ԇq/VN LI Tu4µ#L39Lv%` 9X_ Saj^ 2ʆMw%;qR\+@c{Ébt@Tpp ұkR A]Gx Ǡ #(":BUewYy!b_eG<z,X KaykKy{zW#Cꐄ!3CߋUG (Z(6h `F!ld@t( c`,΄+#ӆȌHe) pyh2\bQ"À+v+Ӡ{|NuE]@8~ C : 87eΧЄrA` ݝKDЗWbKw1^8"KnwXX۔/Nc+Lّrq-P৶W'ln+6?'z_2@GWoXKY8ѩ>֑ 7Mx{CAc1U16nZFTCp@k?za BC:.VBj#1 Q_"up;b@tx0pgA~ڝ>n8xg&B]aaPƒJC  l ;RFFk]aqr=[ )`u|20# ƍE81𼩑Q0kpY|Oĩ,Qp8Z%BqNG{jܧ}3k|CZ#<>*([w zk2ۯ/M8~@yW°Љ"ᘛ[@\qG7{%ˈt ~X*rn$rF8% "@&-Sqzqȇ^uÿ w¹Ӡ5ws0>_!>gJW$:F?t!}CwE92]ȧ \41/>>0:.tvwA=d?N7w̹`3Fq'8|ACqu';@掋V;DK,MLGi5U,}U/[-^/E;$tQ!Nj5AH);ݓz)ß:b["}{~‘)%+hxb^WNZt7_ =S,XǡwUX.}Sf\ۿvn? hst qLr@C!nad#fxͮ.@?yUHb7T(MÍst|1v{~[ޢl0yN9;:׸0{LzN_n  KaxRq9\s+\7,zS뫫`:x{FFIYy~:^G3JCi=uHUۗ֙Ӳ=_k7LkZVJ) " (߮՞0!b?&6?2*^z ?p՗0{/ 24FLPWj8uh;آ" G⨾: ,FݥtG|!\$$-2@G[Wט2` Ί A8S"i0HpgED%)7ǰqQB&q+@noz&;6i`FƺADX/[hlXX6=.a-/|@ ͋a'Dqlԇh$MQ`aF{P&"∥EZ#?* D~<8"Xcu# 2#9dp(B03 ~/d"iN=SPp ՖsQєxR>ݨoᅶf$7oV1p|k7'?^~AץI {ky΢mʌ0N,oGFe_靰0e"|~5F*Q7PM:ک͹O pq+Ŧ@2#g|B'%3x|HSOI꽠pT ]pq#5eFcΛ.>Å=26my񏱙H甇'BpA$(n O!e)mSDcqQ\4l"( ܐh4;U9 _蟮|ut;6.n);aa~S~= i]H_Z ^{'ͫτ)8)`9 !N@Oi :sz"}[cD} k2 DsabMKF B 2# hpgItUʲ֡sӻ;H9GjC@eD{5A}l KvHLVE̬E.Dra2\p#iM[>OshJ4xEQ'~MsT( 3 E8!C# ɦ"O; 6Ž8~(i2ql^ ~F[dA,XWD(|R߾FXxA;/=sʧ~Km~aѹ_l ~Y|gETUt]#ޣ 8F9bPbp!\ctڧ 5 zµbyh`a5̬o1lxuz'UDb170hD'mK 8O{HO}={>kn3qg51R}5UH9^ßs/߻ׁ)o_.9ƹ'歃穢./"[خ8>ϓzi~ex9u]\w9ڝ~ ;l X3aFXέۿ^y:l N0'}nu-ܽw m3l`sA>Bvr0'?й:vt x(>I?[M·wEШ//iH@vOI : $(IQI PA bY8 J #@75$Xxh!sae en|"I (B=GgCD,ĭRЯV' (i8 TgRR' <3 voL) XgpYFEI Xf4FtDrlt3 # A$R`6<' :(Cpi KCR>~?7 EG `$lB,Y`ws_ $T ` &]WÍ7kaxt 6ڗ3> A<b`fǿC(1yzW򭯋ܨƁпY}^<ߍqFmAB7! )caHC!GIF 2X0t*GS\:2UJG)ȇsV;ÙhN{rQ'^e1{ãĒ|s")Wip1*FBHHST$qr20\&E >E%X>Ps;t jԓCeE"h=@~)F_i^|7L˘n]+ɂ9"D,`Ma} o7{G1^?yiDžE8?Hihsx"&eHvN8o "πsKS>8B曎_w IL# 9}(G:58zzGzWl*28(mnu krJg{ 5g!@FOw:L7yMW:s"XE? / NHFNHJ&N繁q;HAѫ-<8zZ )w<';$f^O Ux׹hkh"G9}3* \ WDww7c:Ý|?lnNMs"d'0Ȃz VV8>hVQ\'3QE#4 ݮ!+Q~f6tܹ0~3:=8Hn˪Bʢn G) za{nAg{:GyHwCGF8g '5c{ͬES3l$ܸ}#ቡ0(y?1nSƺij{VLJn{ͺdyxOwTE~ϛ^Hw;!?ksz~?I9z/sy}2sg)p>3; ։Wf€'L`c{7LI(͆w+ (D F8N2XaV*G ( :udӈ9 ,3j! W:Bԕ3 { l00bFVI֑|瞘f Q9G8y:}YWW>Fm]g) x cBP%x<ʦ8bO;a t7e yYА) Tyc057V`0X0uqPޅ 8%pNDE@e 쁄9 ';9PETDGWP:QD"50C gY` N)muDʔ&0Ps8 $svD{Ty GGma9~0<l8 mʆ 1ڄ"GDK{ ,<*%Q0%u5K7/x$pX,Ht1= RQܧ 9*co޴cj-x4q0#7ٕ0</:/*Kmr_=YLj@\ )i Rq86Z t&<>Jz\ث SE7C,`65orpL542Un/F AMF#5.1PSFA Օ^qoa%ѸMI1l( R/ Xa|Xs=qyAM"y/~4  ZuFU`$jii/.aX\:  7D2Ν0#9xQx$3$fC;߮qёd9[p&JeuFغq7/mo9E` ed:SDdN iN7RhyGXԁL}fl"tO bK~ (6=5hfw^j<fyu&AbN1Fgyw8-3NhĪ 5qD8}/ љipM|_z蒌?hI)w4ϛ_),yӱzBI@:8pA8 8^ (:Ĵy ='ȰB߼)΂PpgaӰoG?)J86RGxPG3q]SfKI\w+77_9-o셫20;e'0# NC+#۲)dP˧"(},[%zٶ\ÉFnpFXjt9 zZLC0gx ra(C70wF^ưdϋ1usyh9YHèwVp9/m[ Krb"L,dž~zsL't9o{G:};K>څV._~RpzO]>^0S˒J ͝~59r<M#/࿃r{=uMHZ:u?3ͯS8ߙ209X%Qdpec3Lo%) ko +YE?0cF𙂰–: B(8 p=΂+=wCZBPqP)9JF!n6'0 g^k= D.rcDahBP z$^|)Ywma0` sⳠT`PFxCmbCm4A!؏,Xߗq'alf6LH(# >ʣl ^1(/an΁c> M#_Ӑ#Quz.gA\sg Z[_ak7ʸ %9~sD<nJ \7?ץtc$0z7L7?輸/:b8lo} sETC<!#%D8hQ`y' ڗ[>ݱɶ 4w }Hixݗ70Ӣy h_[َszy)ݿms\T M;!tY2KP0/f+Mh#ۜ6*!M#2L/ OFp! 3(O|FfE?<;w nUՋ0 "A>퇶tC e(#< i[آ5HGS:ā%%ydz!-g8#VaCz?8|:iоI#Dzo)Ks ~FDIїsj̻]$g!H>tAq#)дѷTH *Z/<1 6#Mx>SПh5 yK 7zME`HT AH EfE,J/b܋D^7.w^ orǿاq$]Pfq!)v90?կ. LsQ^cd G+G:|Na F "}Žw K~̢8AE /=uhO_4MsE{SG5<T!!P,tL\0#*D/jF۪YCbz&†=2m@C tpjw⧎!ȗ\5҅O>5mw#r 5Dk6 zƌN폋ΐQ |hZ!k lңaA^ Λ F":*4^)h31_ޣǡJx᛿02;OuAc2"YԻKz8S&W/%{"=RcXct^iu vs7Pk\:5;tωd4Jo s1Ɇ'FGy=fpؑyn̵m򀿇*DgvMM%pؿwFG´t}?+x -P*c^zҮ/{٬K <}{^wv!v7 }7P'q5<uOwCөZm&?6L!~}6, ~Fg32>ȴل~ ߩ΂gYQBvddddddddddddddd%dgAFFFFFFFFFFFFFFF YQBvddddddddddddddd%dgAFFFFFFFFFFFFFFF OYw?/] <[OkuxojSw-ӂɋvjhВ}FY/]5?z߼r uEPW?<{?i55PWɨE{ 4SY)9K[+!'2޿2ퟅ'4B'xLg)33M+Yh8 @KA{;L2(:EgtO%3ӇVK!?ķ$)FxY >DxO'J°Fi4? ^o? zՕf4) {~dEiYgO}G+zY[iYS} +iD>O,(wkw{dt-2>ijd|8AX9M}aUǾ:~s"C}=e^жU,:~Jmr4e ipܮ֓fYRƧOп2<;iS=ѠQ9V3?hؿg oӓ|̺N=L4bqѡcgj):gny?ޑrO"QDBTҼMv:ZMue&+5R JeeyO9 FlsU>YLJu @ Ym([_BV|F,g<Q.~aZNpem/!־oWA4Mvo>R;iS{g~'g|*ii)3M.XL&>?Lv.pҳ֠ikidgeFT3*x'lS_i* ^.eV'b*i2UvѴޟ➴L=5暈 NzE@"ڮ'y*JmhEJk"ORV}>3ShԼϓo@K߸ڣ}Hcۤu7Nژڿ{ }UZ92ֶV~_eyVܘľ)A7}h?E1~zv_nK83?hdo<ɻIUʼ}iSsR'\q^5;p?vJJeʫ\ܞkWFk*NoPb>UPE} XLٮv5Qzj[|wPnu+g+ISzO頖?/Q|3+oby[hqo]{:_Be#{;+CQn]%VqC _yG jN/5$.-3AM_ʴ ~wSj]+(;3]dAEiu׫]&~S8j vvTGkLJyjA: O{ו>q;Ckp*frޛ?~%hNCKIh]0F<i*$Vo{w,蝹u'{mMY懲SƧ8K,~羽FǭOlS gW뮝?=L> jOj˫tR]߈];NagjG,m:0?W)OͳY=-ò[yG؆qvjRi95elxQϧ~DQ,-Dľ(]oSEG[qR0|{n/Pyֶ|i|O ʩ;CR*8{=o>vگ'}'i^ٞ5]~L>Q0Dx 4YGkQ*RZVUO qR uW 5Ok/^ij0p'mVԗenaJMs/^]?SBfjWBB[8:'RFͻ[WGxZ miyg}ueطI꭭d|*P?ퟡ}i 2Q+NzOu[iDwr})~K6MrJ<ʴ8 8-D;AZjZP BJ:p)LZ^q?eVl'Lmh/] ӊ{<i;6T묫e_'_j.)R_b%fQ7*TYjkU)*؏V<sڎj?}gxg)|o"4oM_<|-ԟky;*ڠ_hy'Yi{ߢs{%gMLgwvh}ϭ$}hL6Ц?d?SYKh7X@[4BgOY;n$j_!𖴆qݒV){p;Jel۪M 5QNK맖n{C-N<]5=gi.jKubRg݀gQ'<iJyT^։gxg -:œ H'_y>q=K[]lu4YV*Ymo-ݟrP6umPj^oIƧ+޿>ڶIfL)~g_Oz6ZK \ e<egS=9NbNO 3 $$~"#gLMdxftDVJǪe,tdgE|%ǀyLOg|wx֑i?#㳉L>1|'Av|HdgSGKhZv|oA!~Fg32>|j?dgAFFFFFFFFFFFFFFF YQBvddddddddddddddd%dgAFFFFFFFFFFFFFFF YQBvddddddddddddddd%dgAFFFFFFFFFFFFFFF YQBvddddddddddddddd%dgAFFFFFFFFFFFFFFF YQGtǗ¥KAi}m@oꮝ u?^{gˋGw't\_*/Gyg8<}O??>}8I?y }FX^{miA ?|'geddddd|D<gAHyó,.$yۚدwMOgagnjGYiEv|D%Yf׍|WMqY |#C{xؐI|2S4*buHpQ#ۯGERPTqQ[r? 7#SI~k7JyZ 4 [zO,8aŲIu'5+Wʊm"ZVQf כ~䭾veDy7)/AA;)urI\}(Tʳ>^~w| mF'=y^J}zi{oyoyTa =V~}~TvPI4UTڮ3Kl-8{egwpʳQF>]4֚&ԾQE?[M$moJ?W];K(0wV_\vo'UtFFFFFg\dAE *jR0oP&J@S< ŢP +Z5 GU1IF׻? WcyK !VJKUR*JUgMU߫Z_[qվ!ʩ[Z,UXSXH~w#(+XP >3=<ޗ9j,h~\~3Sܓ2UK7坽? v=kmH7@Er?j;5{³/t2?vTFwk;]M+ CYN_ic˻n2vӾeQI}K_8 LAU90(L(+Ua_T~=BI(AZS,HnhFc<hu 8Tއ]9o]=OWJ\VTqm~bq h܎HE ֠YP6꣱7D@H&}?M3B}u_'W-SzgNz7TZ+xAjli yD3YLj;kgk'*~sMTE߽O|?e|R|3 '#####㳌O.P,/5.+Y5uW:Ŭu7^P΂vvgASg.U4EUl/X~6'DlQvj[ӢX.A<S_,+e4gh=M5 gå<ETK-OD>;h>wkzF9O],8[7?۝;JƀkOo(Q{wmյӞiIugZf6p__TNUh|gmV^mK]~{i"7ѬTfm-ϐ;0#####㳃OY`B= 6 HQSGr'U> gݓcY пcЬ~W߾VGjlvWcM+ibI'9 iABC[z*! |b΂so_oԵ‰?i~jLzN{maZի=!} u_6n]m- O:߭]jѓK]F6[Bz<?9-ڽsKp6dddddd| : b^OM 'sŰ22T@Z{MuZmJJѾvJYjhYHGqY,8OU=R}/~nY }7NWTFhκvW(zҁ`e7*Nv,?|NC(iFWiZNӗ7OF"ZwQ{uX1ݝ^o<-)l/ T냥*1wxw/@wluyU(C"Ro[-OcӮgddddd|V9 T2W*k(UT*"%2ţlEC0Ꟃ 5άR=U3mQ0fzrҶ>`8C_)I1ETnQFyR+}-[h3FhE;車 Y[הUg ΂qOOf/IOeҿZhKPg|/_Q R%h};K߫*8K{=U򞥎:)c72U7]O[3}v<QOW/qݻoB(w$|$_w?߭'8 :EwXnї neTP@UEalT?-G?Y ʌW 2T)]9w֬[z|RUl=K;eQQFzYo"hGl>Zꯥ[Y~]h3r['Le>R\/mX|KqJī>։'>k;K+Qy['*8f'U䫡(douE%e7ZQjw>vz|ڊ(_/whs֢!R{$XYC+|DgU ##΂$jQGAԁ!v)Gvdd|GOYnCKYtg1`#`d&kG3222222~^U4&$ Rd> ΂j8{v ױ?OxO,(!; 222222222222222J΂ ##############,(!; 222222222222222J΂ ##############,(DgAFFFFFFFFFFFFFFg,ȿ˿˿˿˿˿˿˿㗝WegA_______~Y/?+*DIENDB`
PNG  IHDR  ʮsRGBgAMA a pHYsttfxIDATx^דfו _3c46=cfSU%B{pwZkZkIA2H A2sosGXcnUߕgu9b d+dɋ \.p \./O.p \.p \_.Ȃ \.p \. .Ȃ \.p \. .Ȃ \.p \. .Ȃ \.p \. j@/p _2q!L\./'BYGmںeim¦emX~ӹeٝlز [\ڲ? +rm[ОՌZK<ybV?guftߪGjd*8|0JvPl;Vwo[.ӱiYྲt,gqY׭cъ6e7GyfaR6,唦uKi\5~qܫ_;u, Fy~ŷݪ]qh=pcuzySΟܰi~/9gv,,]2[}ߓEujY5vzٮW-KvrѮT,صyZfr*>[^Zvj([7JRɬU:koXD%[%|3QsoUj[7JJ;ǹ8JZ(ٯeR¾}.a[?= oƿ~ӶuᲶimW(.eh]U֯vw|bޮڮw^hI7(Wq#_۩Lw쏏 x9oTߧo;_D=~FP$iM+.+{5F,empv~ǿؗںmJWJGbU?ܚ'ip|&r*|uʒ+8=G~_}G^߾euYF=ضSHO ڮ]^f 3~ۼeZNSl>K8<BYqϬ=lB6[Na.a#o=l6Ǹm nm կYG )W6,Yj# \oYj3xL=G9[7v:vv$լ9W8U.Rh+IUmJZv%OؽIЮVd<\*_:t^#yf1[<kW~{$uEɴҙS\r]yW5tuwdS~ٿ wW]G3v|L9|zT#$]k {ķΓ,l~2E]l\D.+Ѳj]ۖ _ٗ_~iVұf%]V30mG +w<j6zb5CV=xpdCd.pgZ? >lHf-ruYv4:ƾ+~gwL#Ct6r){#cBlﹽ:K|>6<'[<hXqOK_D~!isp;-U[k6}=r {J]B˖Rђ]A Ec\kwKzxX5`͜fdhƮLi1Xv$s@ =u{QϿWX`xΐKl9-v$Dw߆DyOs _ zLZ{QA~^u5֯nGٖ'!I蓛svb}<m7$Ӿ_z@1߆׏ׯ8d~ifMQ'񥃿׃ m&g~篬axr[~pZ׬}'6j{MZzbuvU ooӍoϟK,;o޻eop?r1Fc[߮; U wcJ^9:cnӂo}yɒq) ɭZ޲ľeKi~ {yя}2of}CM1 }ŏIiys.*[uܒws2{ó9:9t\r21 ~>uo S'#e[`ۮSbWkPgwnـt։%eWb_)CS7;vF8G=TMɾ2]ge[]K!vblإװVjFxƿ~}%\JI>gHYѡ2'U΁vBEG/8nT 9W `qfmm mqsԡj&'|wWL8|bcٯ(G8?RWd?3YEpkӊh0(x/&p߶M[Yݶ/~j Vѷe;8;V3g5c(9{uY5D"TIyPN8)""'2\ɑ e? dm>q1 qUv.Z~x6 oZ9WD$<;r +(]B7 o@zNj@]>:GL,'ï9!" Psқý|$(0a(_ȽJu+ǃSVP?h+(E*M [lCzg:, r$p2cD|0S~vlx]玃w9*϶:zH7A#o¹|_TٮR?8 s_Nئeޡ_Ժ@H r4$81!AI lGIyLpHDhf5r/i[e?@r-byxܽKm{^Xeak[zojgl_Xym}ϭmjD`E#V d?_NB^GvEJ"G2NS8]"p0XY=WbpKq$?8 Gܻv^idn58]۲o1^HoT<(ˁԷwqT8ACu_B "D<QSL3SjӽIzתGP@)odfՆAp~紬nڝap|ƶ?hꫜ8o~"b@Ya^r@.?bZ" tee ~u=zNԈwt5^$hyw8NG}v;/IyPj#*þew!7yc-O9'`/-!1n3/`68hUj XxjOڧ7odJ%=;V @ sfC/H$k Yv-aۥ;ێjClXI2H|DȂpjpFHoI鄪'[m{8wuJ }8HKSOk]pzsL_#0Z٫t&(Ul}X.n)6C?Fɴ]E>i.oYYsJɲJUp!׹tΫl; :.sy8_w.!Q߼sJ!& < ,djpI;'TW7˦úە3ٺ ^G%x<ԃ΢T.[в({-@{jfljy~?oO-[Ekx:[Ȟ5Zc}|kXck{۪|tl#*_|5bunl~ut.ۯ"O\GA28}UeW۴n[~HC|v.T0@0nf>}NugIS|k])!țq׻|F:zpc"A)m>3qbkŤP@ DVS# Jn-9.!+fc{P>hKmbΫ\+fNzDɁ0سe`_$-tD=/)W h]d6f ǔ7-a#|7.Z' N(m*' A$& /TG+7jܨfǸVR$„׫_10~nPgDODN"p%ݡſ?}|w_V֭~xǪA6U<l`8" pDDc !$IKdž:w-B&FWFVY1݂6l q(d) 0rDA G]p2@ BB )Tvd(ȿx{H ,P2 DP-RxΟTA`H-^VP-{}V^aphnFd*N_[piz8oL>F 8Y!s#\_PpvJ<Sb[Ur#g!\}@LH6N R@*Ck!z "[ݱu^:@yԩu92JtRΆ!QIJ]NtQA-~%n2`[  EC[zU4 ?-Xmش"t@ F!K/u ɸֶ 8eɽZ۽G`imsȹrtE>wv&g90ܪG6]I D v^ Dp^۱hw) N -zMϺoE ^^&"&ܡo+0쭊IK}ʨIzϮTٍ3 eb߆ ɷ2 E.y.XE^8!Ő.<rCACؗBu|YDG!B=|$4sA7_qF頎\( w"qPcs9X "\u<󜋬=FYb*EZ+?a_}GmYȢgTM'Y]pe )s@Ego@6rEuo?19eZ%()[9KU!ܸgTn؍mtݪ5~fZ:[(B$ʠW^,)8N U_ci!{ArF,S_%85 pY,!e V:kUC~%WyfF+%v qUrɺˁ p 4{9D?3;Oc$Dk?qߵ211" i!"C9+ 6"5P-'"D<$`;L=V{d='C+=C h^Cw~:ߵ6ʆk_!{O{n{בu+ /B_!ʜFv ؓ ,8Qp[?@P;?l_-dJ P{vmH>G.bٚ =8oB~C\'!7k[v f픗 T=MȆ;:G }ݏȈB> <;7e3'ɕz=1lfɂ5,sm.f-/?[f]eOۭ>{PfOV~% 3v`LY3NI;vM@vmS!&  _ޮrڎuNy>^'+q_goCϗoΈ@z#9v?7*DOS):qge B2]T ADR>gD]7K=}E;j&8ȓqV&/`/U#[co _Yu?ضmāڳU{vrhk'unj[`AAZEx'Xv7J;KVmmWJ!7aD .@ OIIIq"vɀ$7QNjArGh3 P:N獳{][<N绁c t>/B ҝN(KvtJL!`U,p p7p,4,ྫ&D[`8g< v"BD" ݇qu "& | u ` ?8pD?8%lppk,h_'H3_=zV'& B <@yBbwSr'ADr=`6;߃p:0FP˵zOj;KN h6BBD=˾Z;ozbM*A YмM/o/_̒ n0l"sV:[Yà=Omlت:ss{g̡3?h߶]G8' Z? SW,iβRDoVoyuN C5ʽfܣMBNpmq@7J9zk'}J9v'ٽ8/&.EI5r/sZu=1Yo#$gWKU#_RKG? :-C6]ϩ);Pq䊺0,pb́\*XGt?D+Fpy;<& Tqp_"{93(V(HQYY,- 7{}sQTc`A+h 8OE(p/{@v?_߇M#0X^X?kӟlVl¡-ҡ]}b%lrUw/! DrujAb{o 6a _?Bk}\O@P?iM{Pku蚖%GGy\ry6T> X߅euSﷆ@([~$N<=Q$Upr '50x~_zjW8ROg{xݢx&ŎwUomj[,^Jg|G8͔ 7A芠e +l群$sȩr6'JA쟇 ^D5!]xݫ<Ca H-zK~cRPb"O)Q]^pqf ֩Kw7"V7 IGq<9=]+ڷ'V pp?ݴE[Z?ZCyf]{>kUu6?*6 ,w [ۅгC|M~@}{AHiQvoEf-@=^?~79:xύ3ھ0{[gG,+b t{|:ȂߨD'9uEA SoAnVcw+w1'18{nڮF&e^ J$QG fOzuCYok]F&Ԟ}c鮽b[mt_A]+Ue% ïknn@Lе5~W8~ [¶#I eR ^% N# *um[ 0y彇w/>!s8Q5J|ALj 1Je{0u>M'&rk0$C tJDz dANW"@ 7<@(5T-[]۵~K' p$6pvP6VJQݻl6Ċp:9XlVE jI ZNơxCp(ؿs$aw8roS>aݬ̺2wgg0`9!]@pܴ= R¨ ANRB3:GܗX +22rO+V)#crՏѾ H'XVmm~`]okDcxYq-/QVvEI q]??vp$XIS__CbPDpGc `^Z3EeA  Nzt-/zh½N&7b+@qxj2b}- ۘL%XAHwU+c.P⠦D=eoslNABu Pq:Vܳ>XkU`_mhzCnp֊TXIÈg{/VL0@5C@P }Mpd] UKQyp旑 ?Niu,el^Ze5 Y;D`!& x=qK[r9XV?cI灂F8iLA^bI}K[YC-yCffϬ#R1Lptk@zmge,KOHցjԚ(Vh@g7qg{σ@ĤM0A(L:_UpJ,~K}ɂDu=F"g̻K^y߹ش"8C nY``ŚU CSV?m;8UYA͠gso[YnIkw&.Q@Y-t*M$r@Ǚ8xθ[MP=jȳշy uۜw30b<ˋoR6a3DQ9o@ ى"'}2y ɳdߡ刄d_Agy%t[oPJXw{|;񣬢+8Wpx/gwٓmeاzKYu^?T/,( 2/Qg7d_r2uɽH p>dc:.qgI{Wѽz-~l )PWT@v2^o"[M[P{vȂc#CzZ^/B`:flf~?_}t ksBqtr lnݿnnIU}A?Av=_] ND"YJܪI˪[LΛs{Ku|w1&?SkYP檐QYJW˱ĝ3himPր:R7'!5UY֩+kѱKhp,;IDAhTI߲5f^_Y䕜._nCkGvQ]Y' uS׍cg: E\ "ے\@n3Ds}d& 1|WH'1yc9\2B|Ui,)ޝ)K>zճGx \i&Μ2@y׽:^I"b=}gG?|eT Zؾmڎ}/7M.oZWPڷM`Ǘ->@Bvf @#u1;%NmDI:)`?&n~K};4ZW@qp^$/[:,@"-8Ae?r4Hc=AIQS7 =)B?L`l~9 7pA?"$LڔnUF) K~B餁m(8<PGG8v1V㴸`ˇ1VJs؁Q)7CBSƃZd%4n8uLT^At@(`ZΒA1"jqpen;&!35C"%>k^=-\C vpbg ckǞ,A̶]"D(<28juRK G5",rD kY-]AU #V;ku{U+ZC׭z`׭sxf/Y_5+¾U+SwI_9ZI뜕!9pb {2:<8xԱB{r}ɩ:e( (%A`vAy(֑){1^]iw+t 9tȇ.AK.2#}g<$0:B48Y`AjeI{w]TC=Q+62%uBmqezv͖JpJÿҝ+5ɂ;8dSDYCXi}"g' ( SϜpy8o"_w=sG=7}'\'Qwx}ƁZ%b &b86Q e˔e\"+تBlr?z`kزU+سkܱ[Tf'Ma'*i&V"ٟmG@$arH^P4x(LIn%3i9~f_O[Vˬ7:`tt¦!!Av=yݖζvɷ; r=ux.=S& -qiߔ׷_[N7)&WàW|`o/}Zg++n[Nzi72ݖhk%3.^9qduVvy܇6<߷Ⱦh9Ƨupd| g2*lcqZֶWPwJ1dnUW˂weM, yy,JdJ|lpg XȞu/}gA}YWg-/޵ ز|lb Nޅ܆6) ] br@˩x]RC i9M" 35NY 2ٰhY"񍚑{ns=Twyδ=d{jǒ%wqA 7c/ftksSu[xu4( :|a kvHr1u[ʱ"kJW{ qK"wcdՒ:Oe7؃N\=(#ĻRVO@ם¸dpT=ODXLzYr]B^5;xGj/UYAu15@O=lc܏Hy 7$Ġ Е1C>n2OjeSG[i[ae҄10ɖH2}ZNDz dk|AP3バ)Я&hݳ}ޱ]CD-X;΂RJ9ǃԌm?23uEYJ?Vd9 aнr` ) *;(GV\%˨tgBDA@ h},D=8ޕ,P6ߠ0AXv)6jD 3il $"DȰ^(P- ߔد}Zq2{ 7H;R`w' 䬲||wX1e6?,H#k:d0r$m~mr/' xFKABvΠG-j)N+% .g;&8l= si99<R;Fh y_0u}k?~K뺆9 㝈H g}d΁CM{qD9J[{78yz%re_W"m+X57Z N-ں/筶oɪ֭xpъ;Vٹd}{ZnV%Ҡ3۶!ْ|IgH6+nYyq+Lus|ЁJ " \X6DaǸ=_$Yrw My8'V; u8!XY\ۮi^]o@/׬ٕj:$'Ou+ۃxPuٕj{dVXRV<c7*bbn,PJyO;'PKV myLgThd4eY?|O>StD"tAoq:&>i21P<}c񮮫%$fF$ctU+=d<gdJ"3=*̯1d 8Ob`ߪf&OoZؑՎ[u/֮/?zkj#Kmz6l:QX}`y={#ѾA(Y|/٧8Qxγy(M$jT@![n"N?ca8cYѸ~=w?"7V& ,صGEӳcYCE$H2d ~ " rOze}۟~M?*Hֻ^;]a`N^4%W=g=d`sQ;HTau -qA#we=p*&~[Cpd>sJn׃\:G%Y `'yWϒYsgR$ ή=/sC AA4; 1IQc"</ٵAd~~`ݴM}k;CX͍]?zwujͰ`zm[a< ?{`2)ҁ?q ږ쳂S(؈]?@b$h9 @$"mmF=R=su]F^,wR p W#(}U ּԶ0 !!fHi =9Oݻ' %]W}yHW1 fZ+(o!־%zY8G@b {ͫر\ľW.mrЏ-ӆVZvn$ލz|x3*4xaLl"-5ʟ_@BLV|qMF5&Zhޛc͡ ' BUqzAzrWP|5]k #$Vݍen`SXC)S'OUq²weBECѲȗp/}Y%S%@]dXJ2Xߙ,i 4k5uڑ}ka<0vd=?~mdiךah1,%P精 ͽ+!ȊG9V;n8 b,hPAja$;"{ uQ8_F 4cMTR'Bg cVe wt#AJJ'ҹ=%Rc_QA z( b}pue 2 6lNDp"`;/cTzrD68@I7!& shwJmCBY>emv%] g)a c0OwS"^.8h{mWݟ; R^7p@J ů \_eQz'8j}b,P M!'@Cۥ"A@'B8u΀?ίgZѳ0{ Ai:S,FfpۚG4OZ܉5 .ƾx_6SUoZ:AêU l8ZIۢ5k2 D(Uϝ4N-aw1w4ry~=ƷAr1Ar9arkf~{DVK CrZJʿ&ϝY'Cd7T JmSp. i<_?Rk)zMz& Ξz *C?o$ BHD:I,+U =a#6rd7KyiA1 M\ !FHC<}{k8p %z ͳOu ;mζSmAN 5dη3q@kpBS}0mt81oo 6prn]0@j, Ne[;+^'  !qޅd?!^d_/GNTb㇞]PNhyfM3'2as['/g_O68j%8J׭v5mO>5ZQׁ$]""1l~Țg x+("KGkRޓngnYe8^\=|ӼOu HPz 8ܸl-+5~_&r%(<Wy@oAaH\S`[B]#@d>5ਣRKZljjy RxOrEr$J(߯#nw;aL3r; >vb] HNx&(',:{P,+h,k_2~}NJ~7rZ.y 𮧽ԱaHڇD=߷QoaEx?/& b-& _'u#G0r`Mz66~s:Vmzyy]×_uBr`*z=qlU}31e" 7,"pCCp0FAh{HN" 5[V'qϒ2Qq 0CvB8Wk4Wvqʒ]r۴=hrH u;o"~V@@[dG}CLĭ"c莬:=GNUv!:Ԯ ٥Zu h= u@:5pK܋3 h\k"d}<@.n.t P"-e4N댃 0~*CȏpyED>< w~Bl/r({Z^} Z,&tv:5uO3!oIUF%:I$yމ!tq]2z"aMsxXY0A='"De?3YP1D?gC;0kc}P,}j/_~nsK0[>%RQϦMqn f)8RbQGD0vqD$B ,@:Yoݷ)Gaf5ڣf 2dPпf#VYaQd 1Pr`#RXAV R{PKe -8K %by_6oA`97XV-0k$X9b:DYP;`3v3Ӆ. H'!ڞ?g<>jUaEpACZAN[lW 8q/E; <p*={96JOE)草8?Nd;btDT$hM8 '@ ý+sÉ T7EHWkڈ,h۳#Gԉu[}ߜm>?ȝ܊Uu\l[¼uZy:#+"xy`:@${1W' {Z qo"S.Pp,+p}";+0g)=GvP-Bh{P5jŝc|O:~e4 J>2n I(ɉw`MjɿB'gWax !?pT[1fJZymU6`+Vr`gZբF:&T(,$u3wCqJN$C~.4ITٿz"r6r84E.R!2f y}[T;Ɍ2${4H~T<*W@)/CY,"D$ɨ/"q_<ڮ ƺL~1bbub O+& ,[xk 4uG4YТmk}}? -XV4e+Vڹfe5s[q#DYͲ܏v~dNY2.Y,+hĠ'*O}ݟweZ<ܳ "k|?k bЪ'L `'D +;Mx7:GP\mOA;.2/ϐ| 6 P"S4H1MA}eKmf޺_2yn 㑓Gvhk3r?A8цJEH} Sv}n"; Tw# 'äW}e>XȔGtO -097or6EBzWr5.;3ܠO\ aH_qoiVWвqo&3 ,1@ZCL:@d~x%C2,huk6t͟X̞w?jFDwlXE!e3v#dw4va:.\@c2zZubwe h_h_0ΙGFiKo%-! пS>aq_t^-+Ai(<A9I*p&M " WB ^~d26VŁ])S<gm]6|`n]+ zg½'>DqT&QP:r{[-0I9F~}5o7 >yghMSv(Eؕi==FvS\l+%Wk5lX%22K~uSz߻P&7ZT ޔz"yF'I="!O{r%U e\)Q tUQƄ2a(]e<8[3M}W2oBf I0!jMٵ&' &cڧ|۳'/O7>ܶUY #9#(0t)L N8G?N_P@-+@)A" Q]Ȃ @PG*op;( J BY U*dxf#%0g@XmT.PQ|h=GAe8^j?vOc!-VBx+S 1!)ecF §8eާ2 4Zè2w(pO ωzZ;BpT>rqW 1Qp:258e`;xHЛ576Q.Tp~{F)pp_J!Xw:p.  O9w&X5AiU,>U0~dm'ֆWtL؋?g/^دwo-V6,!咎E+޴e{'VҾ`Y>Xj&rc8Y:f;仉`>Bb+p6$aqz~/Dj ƥfoO0 EA>C$wx@FYؐ@f<曫uGR" , m8]pjnڋ|f 8Mv?ƖvNާ\/:Y>9Kx~\S gP9]0rlKn8쁲0yY Ğtu ӌ.M7܃ 6u93ĺMݮM%Bϫ{}k\)<.4h [O!:ؖ">^)upX]؇yq"?8ʹGt;:>Z~7sVse_nzw]k+ɂJP1fv7_;}:G 'w F-cJ;Wcj)D}z[=MӚdREgd-%@A|(|%!@ї7 nZ56,{.8% 6wG$) DSD&L7Nf^ELv}ݏZHk|"u%JH%BH$"]eى%"p6Kq$ :a ]=bXܵM]7R?eñȏ \}g]Qzn'ʽd*o?'[)d;@.PǃK#٧ NS*m>EGƳ_/#M[óawx9W2:>[ <KSsJ|4G^d>D.OM $#@=boCFZ#DŽz/K.Γn5E}l6,+i?N=_g?UhI+zew V=aTM6?K#@w )2Db@] zOȩXٕIK!w&۶fddJ&ruY#Ϡe!ܿOi !M(Pn,></@Aud@LD?GJK>XrA7F¨ k2:JO%3P'_`\Gd^c _"egnk|5ťv$>hCwPn]i(9gt ݫRciHF~ʌ]*^U|G)a?ſWRԹda AUrM(c=ɢtkڮtS_:R;&; Y e]b8EF*4sYBW0(h'"w& 4GT,N[>}kbeby};>:C;:¹aذE+[Gҿ@Pzd 2-L˨Y5Ub 4~C$+ )U/J'@6P";Bͬe(p]I.d#NU|MSmWQ ,H9/bLPI<sA6b Ȃh92@!_0rB)(~9 *|]] RFmĚzK+lru3<8y =u OQYE1LƲ`pSލ9x~1Il"piFhQ?S<S)N:oBW*c=К>vMe @ν GO_nvlS)çʔs E'; *\KNjQS p<޻7w|9" S!ܿee[ lyף}k1xh 6r*:'G?-./nXUAuZY) _#/ڋ>AMgY=[> ",kKu<ww{qj8p<طΕܶ14~@D,,q$R~ Tmλ#wJg:12W>u#}c@)q 2o厪DD(*,BvA1bBF6FH)o/c؃&8d`53V"ApDvŸ; \H!#zg:K"'c+h-˦~]F8acy '"PeԧhxH=D<oTp畒:,ޗ|;*Y9L㜏)L^&m3 462MYx@sgElJyg *(T݌ zx׉x8!HqZJC[Kz}`jG2 JF_wwcj:,ڱ\Ntwɞ#tвw-'Ucdt_N5ifׁe"v50ȑށh۳!8Aj55zA)I_MoTm])\A%W6Mvh3@Nuz%@v"D+VНh,]p?v|\*Hwⷷ9)ɂ*m{Yybo}66B,y`=s0Bb9{E|ݓ!_uK.nKcǾK%;#on Ʊ|;RɢR}>w G:)/ݬ _>Sw8wW ڗyu>/MiWz;z{t;54P6(f{sꙥKDrܞ)Ż3dO""L/O$cD2uw8vGD$FwXz] 8m5{bݳGV5e?Wj_|on[Qs7ZQϔ.X~ۚ[qXМeY~ߑel{5Ee<0} , @a0t58j=t!+(v@OA1BёAIdC f]Șgw `JϪv -S ^토"  ˣ|,X譊mZ<ceǟY/pdV-ڛ}Ys)et6"/ AuM-Y3v4n{<gM %6$fC&X ڞJ8!UY$[TcYwGiJMoJFo&xV:۳XgẦfg/t&:@F7YQρW95A[sY\>* 9Э1}  4Z<զ1>KSr ^L,PFL'"_5fA͐f<lVeX#-ݵ={;gS{`` eU=8N<ڴ<E{rtls>uc0@Qe @"d{PyE(PFJ#USPG ^xC<UX>_aX)NLĵ0Pd>ܞb tmWs#vpJH$lZp."b ˰x!hRЊ&oF>ց%KYͼ/YWGT-0-)oDVU* Q|zspC-=ehh=c4DIe^O9F\a>9m"=kiJ]# õ9GB2 x Χ: !5]^vawnZY]Ses-!XU+M" DLPKQp "A ""&_+QIJ_:kc<E&ck=Vٿf#8 qQk[®5Ԭ)kVǛV>eqڦ Fn?߻,g"@3$>" I@B0# P @;}z7w1׫-}9a;V Z=dJ-FPcIt -j1aqAVz"0א{,8OO@!bPPrrZ5{?NbvyTc փtvΆu$1|Y޹ Wz̮4O/>jG߃H>0BN:6$ģ2G}qaq4U\h0e(g^DHN)G( q8sۂ^R΍"g2?mi8v&z"} e]:jg ɾtNOMD׻Rp%'_!AAp8DP`RI&,P@HoP'U/ pϓ}Mq&#k: sOb`ZV_JGuqne+߲!S<ʺ{?vtGN;ǃ"{wɼ=BfǾϖ!ݷ4da+DBT7K}r5rX#PSZQdҮ o]N- 4nVJ[׽xXʷ7YY@|ܮ+=ʨ2z탏n|٥̭q3m +~/}'@B={ ٖ:2@],IJ~a(ncR2sI]+E4/B 4'=MSU")>B׈t ă_52ۂ~ɦ.i W:R"%3pL:\>8g2 V:[ݚr|??V~tNݳH`L2D:Y@UcA4UDHF@ 𴛃H & ⬛dn5 <k#Gֈn>65kٰ>M/~m۲a+kI` g[<1@:Vw3hƐ,Lb5F{ЇO7=&]ݎn{w{[Pԇzer'"scRdh f(g&ȮP 0hߵ CzDck˔Q;IЬ y}RB <! D-~pg|,We5(`e;Ъ~VfSK<qugV~ zL>@3q:BuP%E6T+$*ц(FeE`3e~6T3=F浜[|a;ۖQ@3XhzL1ŵ ~DtDa˸M|  hgX"N^g };׬k緭Xϛxܟ^اUS؊il<VduaNJA}< F TSVCU8I 'm @$,muc~O?Q#@Eעwܡ@j񱍬X& #"<k'+d hDe1 0^?([BNZ;@^Ulk(^$Ni(p]ke9Q-8=F~~8 Eyq z56& % 2r`ϲv~'GL r!'G-!RQ]=99 k띶$ 2j X5ҲUzj)Qp@)Puc8LSt麄 (bT U X9˚m(:6T EBxbUϯOC@^eM[ jA,Ե1^VM;]Od@_u<=~K}47OI0PP 7 TV@)J)BYyA c'q(u\bٯ:' p@Ս8YqǼ ,ڳ~L0a_'? Pa<\Mz:2 :P;T$ SQ,e (c$RM$ u#2X*Qׯ*zrnx\V(]2;>IW;3e1! "8VG#3I]7#A@Qw >*)e& m,ï`^88w <_[ Np?hͮ>A}N OK]L`гKL'eDȩJQ*OHt8aL,g( {\$G.K_I߮cwT[ rTY=lL #,<@Fsc.؞Ǯ3#\'_ǻ̩חԖrP=r/N>Cst lH"nsRQֿoܻs)Ii{?l[ J*Xxزz Yq$+XV`ԍWv' {` ' ~?Ck߳]۳ CبO_ǟj8Y[#uN&?@Ƒ}{]ƺғ=!ei?O³K=gD։,A=Swv\`mP|bPiU]cm{xƝ^' 8۠[zBchLuGH~k<j񗸧@,%/b:n9+oPީ"p$L~<*>6޽㖜]jkJv]lH*YDhvE,S !/ euJ5!#*]$wȵPHYLsxK 5zAD㒗"= tґgs Ȝ-Y&/ G}˗:Qc@i]aU t 6l?uցtCΕo"T$f26<θ cD>~Ȗ+?X>UFuo] ༬ok$xǚ߱>Zi?|_be6ĞsZ/>V=0n%V24cCV{(n9o>ed}kUID^^Q RkCy)BppuyDT2@MpOP ^K86R>z^6`wr^?iUXضJv.P3|k`\ϕoPcj|lM2.؟b." Ed3W3>EzX(YOݴf֨L*۴7ngٝ! 2d!SRڧY޷V_(5dqƞyL}Dpz$3lRshvȴ(',=RtDIoP*ʳ Q3HdY߉X&o%xo%~$Wא9,5>fFk?]"N(E.K٥JOerlu1K ;A8Yzʳը.:k6y Dˏ~@g3AF*oUǰ'Ku[3POqHI4.IZ>fB";]ĖUcFن0/;ἉXߙ,8 #R8 8QSU֟S[<?~`McbT߽b=+ݾu-l=1ͳ9$`k%(;FYjCEIx*򊀒 uJըN4 vIU5tYJY$cu~椁RQ9CV!r.~#@[ F|p8 EU΁JyvA)n MڝK}fOmslfbGvV( Eq@xȈI x^ O' A9AWP]zPA]Ӵ{;V 4Ц5N9c=Fk.[Fp^YgYYJ_Jc,"]J)uW}H Υ^UkwP֍󨎮'!'AQU<K5au=P {Q뻂"D V\!{7PkZLHoȑºm$X5M}T pPǍ􇶶Ƨ/O?Qmg',$H(Dq|Svܦ>N$Nz '"ACtVj;@<KBn O7+pgC@U%I/F/]36c G"} Kih8X?\74^%젷v"DD(`5"~z>>} 2\7MreLPw+9d!vل`]翲lzi˖ַ?_GR=!` Sסx^%ݦ@5Z9 p*7}è$q ($} %8rΫj* TjjiG֧Nk.<g֥v;5CR_K֬}2XR1kfQw+@W:B-rZƕMG@1{FCSPLR(:!y A< eܫ"ZK%0 R>J7NyߏxZ5ÆOՋ KVtظ(x'U[V?o5#-_=IK7OOlu)#?V9; BXQ˔\f>4Mi(9Ƚ ?]F\V&<{X:!*vrz ])nT8i~9k=S.#+"۝ Dds+b%2۵L^l`ػIa][2/RiFv˧3sb_b Ppޒ~\a?4Bu\UÄW< e#fNGd?w!{nMt0u v) u;7;8Lj:HS =u6k34u]g"DDΌX葕jp&S l :2jE*:/G>qɾ*z[ltN:UutՃnYp]Cѱs,>]vsh3yFttB3dխ~6Ő,GugBf5< ޥonWWEݳ 1Y1!Ko'ϬI<pl }gu.滶60<c?ُ>7wppɪF #yK{6͟\tbarԲ>8j V :I-aӐ]%B*i#/ e0"%~Ȩe<h Z1:}^f/~ˬe"WJO}gH ffRf ,m~6 s ^)os.Mm`*]J9 W^ʳ: ,r~ lY4Y1k׋G߮^ul>XpRE*+Hy]]9A&^˔k{-&ꚈalqЉ9r؇"ؾ0'V?LC됷qV߱巭c5#ܡel<4OϿl%kNއm"&U7; ䷼s~ݪl_mm;-kuc*D$<PlzW6O 7ky*_ qq^q~6Twl}&gd6rT;Fgp;uS2(@WtCPBEYrI52 Y;Cw~ ucVSu8,/ʦ4=c'g e *[ҋ=pyn9I0JN0D pEu U8t]4^pxpPA,鷒6_ qhK7>A爑=\OEpX}@Em1"+8*-+P*e2^Fp8vOsT;ºhe8\*tomXyIXSc-MZLF)aA@ |QZkŊ?>€MO9R- Eԛx9LdA%uPMNf5}ds6tbSlf<c>f{#8>0>ơY2lSC0*Sk/bʢQ1yh=3G7wd=a!sΥ C1"3h1Q 8!BD~rPZ"UDET ]-H\h7""]E$QIJ_U7286oU89 ~ic61h7?OoR(6͈R>3(\ͳ6~b/>㖇֢!NS/!08u{7kyᚠmz@]Dy`!cp~)˨:E8^2[j6ۅ Ǖ-UvAӵjFxmC9Uk(! b" A]nF *."q%%$% >PG ?7؇SkxY׎õ4ZGMo Q!;H]388y8 ߥxd'jū<DN.!oS H]~ako;6u#G:oJss+}BGeשh-kǶ{zshË'6t ȺZ#E~  c LZ0 ):ed]W6}iRwuR YP=9V?iPB*xK}1Γ}c.J$@'߰y}=w[Y:uަ֐[J8R}쾲@%P`$j`R## ?d!"I.u{~Ͼg8huFˡ!6MJ q]{LBp}m AʏEĠ.iv_Iq*[A(Oaf#MdGW|ؾhӿa>]]qՊleMǝydZu'Q 4hؕdꯦxz,y"";/ G S5PUc7[] Zf7?Glĩo{vkuϞX;kC?h*|ʖǭAk65k@tA+rЃ;ŧ6@ǧ }AuyjO 4ܠox* dJʱ"KёKvf>mJe+P0յoLa&u;\g tLx /IIηg=r[ף1 =W9kGFvmdbVby<y;cٻe4NvO,`.u_2VRxD Ql#]cK0_KPkK%aw0%W`퍬~oy{YضrPχK)FŖg58Eev2vj%`R6 DW (FyQr'VQl'u ~ `k=?ޏ?lK}lygҲe-yWT:|أFM 9:ߤƯ!Nth@=Am`!:A]W r Dz d<ZFaO]zy۳]X>ɝmjYj+'5G ?,.̯si{ցn"oB4IM#kAEDRw [;" {zg79m`qzv9G@ \>+xCk=BG<A<QniOY: BXRlz߮ƬIV>] m(xaVG6[meq')N(@ɂ~)>ԔYץp"*yOߵ^Ȃ?7O~<ԢAeXgoc#uCHE=2 RpȔnRY}u0؆ b:P@%-cL=p͢{=Z#Uكql|'.P9֡h9Q O)CZDDV?P Dj!P|:Nsi.d}U[X kNPL +r  |R|)+kʆ^j7\PiZ>TFP;|4e+@nf{.PdOV:A{O^B 2Z18rW>%pxjO0'wM+Wȍ{7~}EU8B}}<v_d3{8c|r/bA2Dz(@-CY e%(K5H'xШ̻S+лQ2!'h%ZV2F0șӲʰ/QIJ_ٻ3!TokǞd[ O}5?)Kݵ%+>?O6 keo=sXZێ=^' 9=" |ɺcqc8Q' ]^ܑ_w*1UQw59}V4lc>kΣ@\74>͂v ѽ<_}xC?%# @<ޙ8 4R#тUk/~k-̓VQb%U;qp K/Ez > "Y<&>mf#9؂\<@:V9eT`N=u;BIߋ$`Y|n/<`|gB zܱ>ŗ=uuؚ'M=rK7 z'~ z8gS=_zL]ݨnϩEm Z]D#.P&uדQ >ҡgV>ŠX^ShpGBױ= rː]:|EoQPųU,T⼩cבּkئ4YcߔeDdA]"NԼLymK6td'?ԌYnwOk=XuH}߱'EdA'D2${*$s܆QgoYeT#{ yI} x|ɯȮ#ո1ó &9H< Y|+CJDxvҘԝwYBD ૟=cQdV+j97S9=Go\L} u1)=`Np/+Vг,;AUASYN^C.2OdA7A^x?wz޵gSC>Q:= DX<CC}񵭅m-6Jv|')O9yՇ"!``/qa eؿ k_OqR*)e{3)0FPW$ 䚋=/&`zbQV.hTݾP7tu?#WIse? i߱Stu 苯uЦ76gYYK l[N؜UwkDWԉqNbZB xY-5Elf2AS =@/GO[ )-#I;vW4^|ۥ!nYv(?VQQ7 '88_B WKWX_Uܫ2v);"pk,PUaeZ^V%Azhw=%!׉_n5,e|%oWR3_a-mVYUcUl߻l OI]L#0MVPT|Mԯ!S즵s|,#؅MP&@KYAf`[zt@Ȗu sGM޷o#Olb{Ъ8=o 6%sO@-S|nio#V?nXqm'Aùf#+ ao)YJg5K.E']#Y̳"O;Vԩ=u5nx]Q#|=+~fCǦA-(@Dt |{"  j*$X߽ZZhϪA)Jrbm :?O>% "T1{P8r&2ey =C3_۶yuM>!q2 pP~>VRdN%4QVBp0!5O 㜥b e쯰ϝs|[Ȃe#!:Wt>'X҃h=ަTe9eLPFNT_m! 9Uz7"VbhzJ<BiA,+pWe+lMh.G9(} jRw/eq!"(@p=o+Ld1Z]ԝE:V'砎zVTp_#s+V;c[>axbC,O1 {/ï` vJ[-sL'; D,:O,@b@^PݿPF13kMU{|L))ظg]H)sA'qqb%@A' T/DQ U M!;Ų5]~=l]#?I8,BYy Eٷw>Վ 0x|@R,<m{J@B)S$)YjHb6iS9ѫ;}?`ՍV5)gWS> yiyw'I;3w?dqNBɼ.0̇)c%9?u)GC_p:cJsV7Ofm1he5U`7ng`QUHԲRj%WP6u PjZ9 @? G<cmȿ2y<xǁ@ "޶ 8' 2:v9ִO\A9u#bm" f˾:9Wv94sN 9yf[ J0lE8;E8(ݦf;jlQ$UТm{,^ʱV dOoϱ==asc/Y; YD}WrijV [2VB,,+e}Ndj q*G[M߲ﭰŖ6v,g?)@f]K+ǒ{m[BO{?Տ[2 m4!'@r"pO~nl,{'kdJU [zq -<"BO{(@NDl" 'B_]!nCmV`uR^JzZec}Jy7n}ϲrU hΫskGWT+N>\A7֫q96 k0t ]vJw`˪jGAp{Vhg{خuط~dٟX~n/mtY$N0dA@4H;NcY$".P/9yc~|L(M&"=yڦ_rϽ/uy/ХjoгZ͜~;:r,Ԡ}u1S:w,sGSvV|_MPݽ) UVNG-'%\q9:5茽^~vtw2ϴb?N._'2_ݷ 4cbf_ڃA{<qtcz6 V IHQKvDx+5N{[Ȁm{иxe"ۻvJ[f[xr֮Oڕe{z׮bG-t4Us0] GÕ1w# q-רC/i\ zMXS;[r=6=K_o0U&>w{-;w;dlCȔ=l}KVm 5j=fA A:g ݩAY0"_h*/d iר'Su)Ƕ7+3 iaj-#ԽUk&sB@kO(_7t@Ln+'tM?Wxzfv9wY'm '֍^Zgݷ)|9C?F2݈>Fz_Lv#`>fhvv0߬W8)KԵb3.I%z,}uEh],H8e(Ɏy(@Ըj]PBXkj6^X}d|bJ%*5:r/C* 7j/~*d" Dߒ&iJTWꮠ10(?Y](5rzìowv__>fe^d9R{F{lI)#mK\@9x@ 9 $>4+Ӏq5BJ] !`Wz+qa}Қ[{lz|2s~s<Bc])vmu|- ,Pրse  f;8W_- "mW}>AؕQef bB] ܤ邀}2t.}~TB`x ExO/B1 xɖ8tP"_ | èTK,{nqJu A!(Us&SGiklVjƞYN[ЊWQRg{G~}#֩7X #BS~m><'>"4i;߀2< w@ wc`q4)_d]λ;چOmBVOӶ87p,fm]B_q|r2O-}861/|oiux{>Sjin u2LOq |YލHV L89_s1V ]`~w68bͽVB@t3G=! E'PNu_"K*z;\=B~ 2kj :.gZ1BB f]{X ?Eqp;故 ' UA]GA@3k$X4duKYL`amV;vd7N=& ϣ8c'V6|bǖC.9_u( Yõj8ocˎ 5#C2 \] e@] 5{ @C,)@$L<ٗNVt{2ƟsEOٓ~i {l_0|_[] Y2@%,@4lڇ_|E9M)`4 bGMP |Ėm"@ϓ}qud?m|J5Gͬi:d?dj,nHɽ^<3u/˦~WA^M@նj :[%AJ鿏T8?, #nwC"w2"e_,Ji/9D, Y=J#sl v)2|deg? ! j/վhilGF$z{GZ$@Ri|w˾;O߆w"^{և9A~3:Eo&4Ⱥ0Α|=Y}_+1}lJɗ4qeF'g<3;!:N Be"#[͵dG%OUE)9#xavI]HA5ɹty}m'Pz$,Oy_ǻ{䌽guO{uGڱiU-6cB?[M️t݋ػbk% uqwf G, 3" 45Y1iVҘ,p€`^j;) }̖@&(B؍yMC+K+v2o+KG{(n@nE VavFAĬѾ3An xVDe!Я2%M#iiש#㞑Ľ Tj|TB@ >cy/z6u+q"z)o[j e ;0b-M]f{9>^lR~,A{W]%;AF,z% R#XT?. n ;\mŧ'ȭ|dn^v2@37PA>]2 =el۳[ᱻȝЄΪ@Yg_-~A5vԀniƯfOq=mW_P\kB[ \=ZF˱#@MIY"a3x9Չ6owZ"3MQq#b vOA@"ĥ6h{uDz d ; 8;ZWC6 i;;" ~OGQ-ZUQۺuh -à%ENB@8KŖHdg }ֶ;PPr s"6.8*Gx#!wpD7XQ`z S`#۴3,<HHKʆ,+&R bԒgAہ py ػsvxo3km696biӎ,Z-1q(k:qp.,? kYAg /8+s &4± ) 2}"ޭ%DMYQ:Ϧq¸T:b_ AD (@ Z(3"DJ;ֹ)^D*]:0MDNM0Wx ^! @&"Ȁ-D$tWS"@,u8KUY)V3H2LVld}[eh.l:Y*z4򑥫!U(n9bWG_b{\?#̭Iˡd m} Ba*FAֽE6Ӻ%'.kg0(f]:b }]7pp9q3_ %D$:;g|GO[:$hK9pO|[wQ-/FX RK~2<y`E PǨoFmꞜ||ؒ+및>F&p[?+ַ}u_;Az -?2] ̱?}<ͣ>4pUa ?ݧCYg'>ƬLv=m\׻, +Ϯ̙JeπRlX)2.݉WzUk@-Y1u i#@?բZй9EUQY꿝܀*&xa͘cеzDt1"dM|L)'5P@_U#ʄx>2JlqEny Wd_gCL,XwCd<Ixg5 U@Bے dkq?}'€w3]p »Eƀ N]mܳ;ej],d_Mb|z`F.`F߂owҲ.޴ݿFzuu269G+%J[h'`q>5x5Ҿf()5 G9ii=>G?e>[77l`#~Bh#d9qcfA$Rqe'@|w>l C"lQ~l%: "" D0NX7s ] rahɂzS0H*dD+x7F=WV(PRWoD{F]U߲c9MۖE]z)k@q~A:E 7Ҡe $>*vOƊ"خɺHA{1e#GA%teG򿕹nB)<y_=_mn5}|ᷭjQʪogK/>Ԓ:[b_akgl<ϕ߹}W>*~}o3֍]xe9 @U&vGr<-^eމ&rOqwҎm%7-#3"{; j eʆ2FֈOC>}Ud8Fhu]KYQʆRAZۮw}зxJ%H^Ӵkԗt΃2ZnY)Q+>@.DN*+]f˹-i@c4+Oz?66<֎[{ϯ7lzSŎ'oL6=:lB r-Av-v~DhjmjtoVvlЂ6}ը1oC/lx .xO ˇA3"9 "!>s)@$a#,cyQ8th<P߿oU*K`m{7,"D!b>Xςeu#C[+^.i m.U>x,YYV!Y T}bv9DIK׀#y&h}ɭO9b.)"AH澲DEHDz dZʇB>_.@sȫG8?{l?:GG {^߿dZN%Rȁp"tEHIScPf`=x gǬ[7d@A՘TZ1I!"nŋ!CʐPC 3 [hvrC/_Zr["(w1 AAً*Lb1\m{g6wZl|xpfNiJ -s8 }ݙ]Sm p3tw4PwNJc|Mh]'pb@"`d)F4`LB2=r_jQG!<!*JRdȹMHwu*+#Vн}M "|x]4DyP,+Wu.KhTzK#6+.'kݛ ;")Խ8SȱL,8;mg6{0̬:Y'[A˘=ƐS?0kS+(w>==8  =g!/%ʿteRa pP45%zw^Y^;0i!OK =0 1Q+QhsYvYdVDgUJ5*féwc,SW, 쏑orqn N::yoGE*'B]]'65Kp:hd_g0 [֌7kT`6`E4+Wd{26t0j@qG=XcL,?C$EA΂Omdm} O/ e(@qЂj"HYPGzMG%P֛,Gj6Mg!j[&JÆEK4 bG8cY.o ^ qI00hCAٜ_Om¡|\ R^q^Ø6вѾXnh?$Rq1x!l~ ߻JdAk dH梎e[~yI=O~fEȾNW@N ڌk%{/pY"q=9m)a'wN2.y~%HƉw'oih~~9Ivr̪{,n #N^J3d%q/bt] j)Gw}~*}|_:&@T]w<츂`?bP+S-Z fg^%@PAeK֥ D=5`U ?%0<{69n VcoOviVWq邱Cٯ?n=JPWg;T2~h#GޅprM=1<"ٗCǗ_Rg6_@|m8AȂYY 98<0& yJWe",#du!^fgQpn+ 9F՝g.kj5#;u4_{:$MDÆ@8Vw+e==d?s'w5V(d`B۸.'XK7Dn\wm=˨nV9<kZ:uf%Hu|e{"Ï&H1*!2&/ba}uJ}o\OYһ߬ MWyAD:>+iQKF.#ՂȦM$ٶTR{&Ϟ,gdyhχ؁}hv_{Ox.bP^AO羗Hj_(Ǝ ae![Er- +#F +9rle_&ZD"/Y1 E=YA?88) A02] =C`z}=_e'66†){ ιC||빍nh@Ce(@{enukV8VVA3ݠLM䰘oY{mSCv:.~VwSXNmؚIdߵ%,v?@쫺dPײ|FݱH췌϶Mn線$vsvK˷ﷸƝ(ĻPUMĀ$:?,REDhB-+}Rۇo[' Jsl_vR1-nDd^6k'{֍*%,$m(7' An E ' <h8Wʮ[Q۴Kފ8 5(}  vq J9y@.6 lY|@9(#C]u('C -"umO8&6LP (TۿjMC>ξ kvOd0ed[ Ah$ mW`B5ZO~eā`UN`Y(IqڦRAR{q<z"$V ǥU1w'QAExj-3,' /" :ATƆ!cC՚/AN BAA3DO@^RIX;@], 5- ,uI 4pNWLz J1jMT=>Gi6>+&:pG?Q+;By%l5(clm)~׮QNy3>hJR}U:{vLPn "%%)s8qX 'E{f5V]ion߱ebd18Yru?hz#+<pdEVGY4]ޡF/9:YJ11=FuWwde=K+E~[jI|}={CжL[kgؿ6#uNnZgpZ 4ˈ=NdQ8 . 69C 4#G%Sk lf9Y18~~ /0,=~.i;>F0 W eQNF<HBE:uTYC$n0ug^->4-8zՠnJmE(LuѶGrɉMIM=N$d^Եl&JcK8iHS|rX~Ч;[m)io]|(,FoBTԱ=ᨋM>m=w|S} Y4RĨUUUHDXb=kZb n@F׏eJCKT z8kx枂C+Ac+= ?:tO v?ao C>2™u}`@>Dg[gI+J:4vFI}·606cg333owҁGw^ʶ*S}RC%.+G~{s`5HL$##ɿ## <ϹEtsv1'[Ugĩȵ(|>X_9}RJB"k%F/vRkQ=Mn.#"N&h8Qo6,y۲Y=~"@gd,ֳ 25T #/ɾgf ![IaiKu? C|ЊMDkt@BfrWEZFe<{MNyN5!؞-[enUaw}3t<zLسV V`u?"ܵ>Q)*A8(A^; Ӕ?CsJX?hLw%~6rl췒iK!Ħ+;2{cOֿmz?@=ogU#@?蓢^].{򋎩oh{8&xK~%|;A:[^*I\]RjFh'Vk8~?u'^uh>M!?tm/.-ۿϽ%d}Md-<>}e?Cf56H}l?A&۶ط>6Mn OlHXŧ_ܱ-_ jOOвT(qXٍjΕYЂ k⛊$(CNJR WDEQCȂtY*u6[J]NLiq à9r e/HnOg ԭfSgZaNPhHfcgSOwۖ\Nj_L 0ܸ`iu/4D(08e?3YPKvtS" Zjw^X=caך׿| R!W:\퓖)Knu[? A=IG$~#@(OA(VǣAg"PbèС@b{=O6V.X%*@Tty(N+\|H/_;B 38= e'0wue"pk(u$ԧz$@Ur}yXaf$U/R@ wAci"W ~m+4auc21l](A}73 qB`<& ( H`[2̋P^ p,` ęc8:hY4g>~A&'t~"g1tK.. cs(UX]ԍ@@>ji c,B`Ѕ,y4I9q~ O*cB@^Nȇ~v!55ܓc1Ν|jCe_iȪSa4#S}Ͷ?`Y6d?A]y"0)A)wXX;0Gt]/w-b "a9qBy=9h?Y}r0Ka]Y8ڟ2Pͭ}V1ky2 /B\hh]G1uo*x+?/]Z`I1DTAU zو CP*]늃S/\z.ٯ6lxgM! ߝ Bc_'5XMo8l#Wk-x1zE܁'> ^yS g?Om`g0oɼȃC]<q_&P\-Xd,Ԁc܇3% j4 Z@ZI @Jn I6uX2 Iֲ L왜d - '#cCi8Sow, AIq Jl:E>64kuDP)>AOAն.z' jZ9 #t#\޷b{|a-VXn+[NksjR v9p̳:V-bv_V޳"$ wtkeg(G>3{Ⱦ;z@>g: e3ԅDcKO{F7a>snJ}!N_6^Ez" yi-áaP1*A@B Y1ú :)AY:AYQ^3C wGK{>Yk.[[_o C!ǎ*/t>Aϼ_|eJUpyv.e|L"B 8FdtǰwO@ w@B HL 4M|A>V r"OT#(P>J^,!5lm ymƶ6Q֩YX#PV*"RL(Q;D$PVQZ),GNKqe3eQ*{HcA:Av?: )tWQ8kY )4o鯩QlOhϼM>+uq,[c/>v("0S9 h@>AJv, û;p2gd1Ƿ}i놭J:'-fRr!5#=w-BKǞZsl8sՎw85 >{Xn M69yma‰E0hxƾ'Vi}MzgvѦ^X A<$@H_r27-GXPW dްm73zncOmt":~}[ ;/}1~){5Y3!@ z?4!j6콦3T7e4j ds Ѳ XZ"w*Ea_z:OVw65POтcgb/',);7vWiK:!]  GP6dĝ9mYΖ>^Xq,e?3YP3Sb@Y][l(0¸sbwvq27BfڦîEXߴ'/٦gDC6w DբT~o>O7P0"үeyQt</Q٪1Zr>ZշXE X]_} gHa9vǍA" g"x+J,"p@]N,~"H[DP11D`Ls k-v!4[.YggM ۍ)(&[LpmB\D d{= 3 p-q>OjXVS$A!'1IqpJn>x"24* 1E&"\e+~9:6PNB |89r!#p~m''V-q }kSb@ CwCWvk1*DxAO[|ȧgD=˾fA(uRd_oV7e?{+n[G FB 1ur_혭`|sK* /r/&0 ֕JÁ<Z )x}w+# shYg1J[o'Rsi,<Σ]] :[# $frN$b!Fqp "ǎOq@!2BXDWԎkp:-VtDD:KY1iԃ~n27Oc{bXw'kjuy?mX" qH(I&˷B6`ٳ"bA2Fdtp߱\;Q02-}sG\԰J3GJ;&~6~uH[G˒7Me/IMO]3wb(9Ƒ=Ŷ!>FJA ObvvQC$;*ܛĠ ;2O<ٗ+DVKq~94²5Nl~e58ݶg'whElþP5~NCuׂ巂.d{_~"l@ȿ_>"-vȥ>gWF3A?ٞMC&D+AF3˪QE|C," 1f zuc@>@"J?}cl52=;Qܟ|C~d:#(`[ Z2/hN`YP;~ذYgmtv1" _7YM#r j] 䝖=HnqC0DW("!{#5>DF Hv<%3E '}zT+u^^ Ȉ ن7u)%|wi)-+%Y_-q.7'D4No]=zC˶T6B3J ?z9C6l ז/^H`[Lcr\twC4 _3P83MٗtV?wĊ^v"wV9fݶ~ҾG?Blg-u8a%܆ qfF,[_G<;B<d !'w`#*_EfQwa5p\K7е>+g>k'G,~x:A f[IX3u R'^Z Z/Iwiew~o<C'42hoQ0ZeZkml*[:}nS]SiG;g3+XȪ-.u].AH"z涐}-o8a@ -8v@sRfA";I0 B׃6 =j/?˵ETnۥG 3hcM76Kt_J8&/>}Ex]@Tj5&Rj {YF> IGH5)"*׎>ꡧ'c<LV jEb~dk?uj(BȮk4!k3unk_Dz dZ%GhR=@?h6?}GIe]K6ct@ŠxA-u߉;o~yI"ѓ'Krd(" {SޜS۪:-m{`A"|w:jJkZy2#3cرsnHF 7B~Dmy T1^xhS; a mΝ0P?#bU{4!c0V IOrS"Dϧ$:.NUC#:ԯvwg+vA#q:zg{3@N<YwH8O@!9OC<.ΎGOUmxx܊(g`f"D8+08 v]q"bD9Ku2&4a'%BŒ a[Sl|(4q#8NGQ& <,йzP:6$qھ01V;9x Pӹ~$q)> +2|h1d놿bx!9Do8Y5#tr󜷛Cy/0fV`1ɻvwd\_Ћ&(ݽyڻIr-o~~pb cap(F-c U{yNFL?ط]a0(Y| ~xTrBKJL(&w&}hޝ (.eFRȸܵ3"c 8_hPP̞ 2"d0ϵ%V֕_q{睏m:a#Eܱw; z<A+J94>ݠNc%%/ Vq0o$y]h4D(y4)JfTwZ` 4s𬚷|N% Ƕ4ӊ]<2CWKx1~coӘ@?M >嘐B97P(RG.4|(2_}ptewxpȸBp2< MU ?X˜s[?gwmNڣ+V'g ڿӛRf)׽mZU߶bݦ.Kh zU pLHJo !yý߃)R8ߞ马uW/H@thFHn:12xz<棼?B38xO@N(etD'G~DOgJ6wt҇0dvuCCM{tbImkg5] @NEx#"GJF<?/FW- fUVAD=H`rM9 0h CaC0 A9 "BP3 Z !8 (a;C]tݙAgzǺTo w ,}@|CIˢCMFd( tQԵ k9)=G_ ߀c_}vk910 AQ>*:H4qύu@z!EO?N| :m>>*4P.x߳= ̨ﺣp}< 1mWx3a|)̯_V]qC\'79 xC,g x!n4MK'} ]rwf2yyo _\tmA4\iTJlE1 ڏ|#Buڦ1dc~=hN4'LGX2_k:BnMmpt~qπx6\ ֊Ϳ%01W|!!p$m P) 5Akpz^@5v`ڑ%mfNP:" r^R Iv[*D+p(L/x C}vbJHnxAo/j2G?I[l;NC-cBC@d- .'."2k6В7\roA'3:M>^XSXow/ZZ;_6P.&JĔmFoDs`lQHFN>Yy3#1A) `{f}Rˈl|`~r>>a =1-1%e]ᚮC3^p|D31QJy'o=M%b?ލ~-9 I Ye+*$B VDLx  w(ୖ'O)*1 rA7 y=IK uj[[ȯZDՆFNڿr!~:c;˓/=CtÞRF~T8PԁCJw ":)'G\2DµipmϧZpG!lCDB8-i~\Β35~(m3ZI"8n!KS&yRCG̀ uZB !n9s^DZvBpa"+[u޾̪2o ⚇"<ieٍ>V7:2fYڷkWv &vkJ c@Hc$Ak%0`4htE4u<`(+(t0a/]{ &[X \pu/ pftz +Y $Ob{mxFȥGCύUh2kB¢(;  r(X@LzΑ."g}W˧aXm`|vv[nВB}QΥׅ)4z/3-uG {;AAE\fs5b'`nzq2Q82)#I9!}]u MGN\Yl*E%hAhd@ >>'zH608xE*mϾ7k4'^jiF ׇ{2(z|9pH~ɫnM?(hYpZ;Om࠯5_5w h_whCsףmQv[cPh_ƒP mGT0b X9e0[΂AaçH^^mOZd~ΠՖkYI׿]W;Q)ԢPBN N_ޝQH|@=أE 9]bWflv&gоtMiBl'i yrNі[ZbRT3Fi[}88u"m(v0hC)P]ry{^eJWg$e`s}_?0=24~Q(6; 8,C%V;Hk:>< Di m9TmEh+(h_'1c=иޏyd:]ÿ Gpx@~-^r8Ewȩ؍ѝ9Bt́P]&tApUu9#<*GC_4 X\o"O_,h9N}y~۪Oj1,owZ~aiek( aiOT7nv[]v/eY;߅v^?_7ryV<:tþ :{^r" $5[61ȂKweUb{+*<GĿ.<[ ~@dFH [їT`bjՂެ<05UmԞXH^=߳djR646aO{j[?SF;B`̆ T`k:19 JWBbN##_P^71N\ogAXJ1,Ĉ%uM/֧],{n]#~ o}e#v#x)|<G|j2BO |'_w%0҉i@!tqhkx)]C1F5B }!;y,< hdя1ъA镓v4~#",蟮a*6[ғ4hƛ_za% Anם S5^@n`fxxy ZDѾ+7놸 ʠ|{BBvi4pMs1WJ]FU>:AW#2¥țJ[}zO0faN|F}[enPbuW4ا9P?O_[* : 4@@}Cy͠L)JvpEy) "*úVlck&6Vɬ_/֏h':)Ok`}oBBq-q_W$9<b}pFOd`(@P >Q0 d<;8vݨVEfFJ(E5 G2j%mĘ)  yE%) w 8X+4G\ۇppo.ǨF>i00>ЋמB*[n뙥aikM?2 ϷߞrCm`0NZ{{hҾ}-4gZ78{@2Qmk?ܨ|7*J!=ˀ2ugc[j&͖)K 1^^gS1̧dTu(< m).=B"1WJ E"M+ڨ]428],aאǖtlp"e{'Wߵ{:2-w-ykh8vڮbАHD!Ap ya\/H#1>*@'c!$8\qg҉knڡ)U!9ZX9,3z=и^w(6y?̢@`Dt%rXhw)M(M)ǚVckOG;g<@m|6VVA#99jsw9R:~__ږEYZneQoiG?S[?x'ewzh?о/Q3vO}{0Z5eV( uWF06cVh7EWE anNٓRjyܳ+3I}ȵ?h-#Dq;t-5`ٔlSPBFAYp1C{H'9_ rj)6VMA_>蚴ȦR5x^kmcw6"GyQ:@G_E+(ad1U9v$G60Rua0?Hgt'QS!r_O9 EVc{:ڧR.BKNOt g'>-D#IE%ZR{ ѨF,;0ڧ?NAN>3`n>/G@xfאXB{g׬3sefൣxXpJiMY6 æ`V3H}d=S.}%ZSξp˼yx"mQh7P 'AS tmt}v5t+2/z29ЛGFS>7Xb֝W'*1yNO.sA h6Urv98¹Yg/}jP@1* $CYtЛ\{]샏l`$kC ;xVZ=942"ZF<$:rQ!0 j{'h^!ʜ[l[ K0 r%1ǎQRo0`v-qU@ذjXua{)1 U丒 [h m4>%z_Cv?xC/uAhw~9Y<6>w?>TGh$z2ߣu'鷚&9k{ѯ{֢"=iewr߷{ӶxcЌRr˞YC]=zBIFoD^ M,ZxZ4dbF- l}.֬U# U/'!q`ZkwdKEٓ/>2 i%FRoJ6/QRNQ!htB9nvf2ܩP%O5u]#dN@D^èQ~0*(%!LLP&t>m^ s0t8VIy(fX1+RZoG 8:.YʳG.DBgP1&dxhòl\ە'##2=DA x @J]ǧ ܀E@GJW (׭;RFiJ S 1r(uQN sNd9j^5õ?pcr0$\OsO } k710:xW| mj9dNx{7iuvZh_l<kK%5c([),=5bYw^kIgAYEkdN4F6FB3r4(P} ½̳-L;ݛ@ܯNZ:]mο7 @K!(zx!^gJШt=Z}-xS-??0! Ejt"oQ&vN #ug{$m{G/: UiFbDj^iu;?c:/P0#+h 8ހN >%u\ut^wD:T^}h^#xp>cbje\kiyi8ʖdr6<D<ҒlH-/+'`; Ip4(F5"; 0:eG>`@h|"Jf;kKP*wM/aFF=w)J?DKu=*SCyCL3voKW =l5w&P Eʞ#gFFlG { Ø=_~7x*08uPֳs=<s~yi]e#N!4 y}kЮ'-)Z<s q]O ~E .ZsC #U}ݩ'4:mGX(+|Po QS9Zvǂ2лO[؂it9kQ?mj叇!>{]L{25X  B=^VN.P)Y&~Ex$2}Nz 7At_v~A?up2M5$^mp:ҟ=҇ گcrGB |h m7WZef[&1.&UʰWN:O/yH<TBЧ"u< 0,H)1 EupgފQAmwct>⼕RDzޭ_CB_/}Y :V fCy釼Lw<]_C]6ľZ*c[f×z*1|ulaޚ:{?_7>M@tFmkc l(kа gu5\~mJ5]۵9dijWo&7 hO dqpz!\WmN펥o( V~X;Cu 5"(Rw9u \E&\/ zGO%?wєȻAvN޳l kk_Y=}x8}>MOS.h\-1*\ҫEeB-AEOq@=H z]ѳpk!B%^%~+bw m/aJ{sY|uϺ-6o yy6QU֝XX7}wANI院= 4"; x&u<<86N$I.@?#v-h>xH1I}dkMd>{᩽x"iߟ+hC%C ,i؊͞gދC+- F8?{:2a0YyWOmzi<Bף>R D[BP~cj@=Jyqa2BgzGe)汩Jx`,_]GԺz9dh(PO#_XPZR^dE}[qGG}[WfwƠmt<6.HqieC4:^}v7g6CUkX9O].m EHmjZ|~JG]G/h[u]tTQґ`ȇ㚛gHpM3R5.{Z %V6R4 @sICsM~J۪{pY G㳇(w%9\ yPL5@0`'Ljb<iO8Ga{83s+KAإ>뛜ockB(-FԾWCĥi:ӥ}ЦjvelAfryh\[=W>1iDW]FfC(AՁbxbLuX:]D,8=5M,ҧ|;J.m!ڕ͋Ρa?0Ϛ#CUڈ懨wG뼛+ހtKJ _%tծu YVG#0e/>Z'ҏсsUJlʥ6fr6m#ZdnR+9ⲄCyIѳCfAa9yEڦyO_a%Q HΑwZ Ԫ$y}{(G )zQB犽 AcM1:)c]t `~&> WtJ@/T2Ac8 mL>cs֕\ \y7JE/P<=}=ZDVvd ە60wyߧh7.:?3MK^+Чk Zm9 HPN޹v~970Q|Č4e}"l#pg #<Bx4b̤s5({?;4K Є޻{c[o}yЈFA#MâAg5^+eS"8N|ZF .}d+A'*b|-ᓷ]]yיW/eW0@G(W2nJJ~t#m֎F#-^ʧPFN} ا @sx>m>ms E{Йs!iw)=SzN zϝ~2v+$gA }'1@TT`D\}3iEc/e <)R|䘢 yqr@#ÚncMSΗ d$"ڗ1z9oZ^α7 {l|&c/aB9{^vmpG{w=[v~}hC{`W924m?詽!.C1<WM{n!G޻1.$;-MwzRY!d>.<Z$WVWq/Zw-x 1A:s\>+<eetȀ DVE;ywߓkqL;<m}@\/@_wJnjP4t;fI;zOhk%c2$tpY>|wzH|?-%Og$I:r> Py_vג.po<G JO@]aZNez'h-9d%߸S53 4?ĚG} l~h{_Cva 9sMhAF@GO G"ыdnMѽ<WϪm-iE;XoY/kl~[>41Ee)R[NakE H| >28]̶BvQBB]|u~o“A)K8܅TO׬ .FV8 : k^m3BseR'EZJ`{A`R$8S rJS8NVϻ7XYqer!ȉ↉N}ΥoAǢ>688!w*Zсcsj4q5,sW؎w БQy<:/7Jv'g+k(Ua<X\_,Q؆5' 'A'Ө-hA9,4us3p΃I{&oܿڏu*vțm#x" o/"ԄN9#V75rxdu2F%3ANV@ph$0>s0#$t MPvmU%zb3Dڿmԉ=@hˬwtpfѶiYY]o%,YO,ԕ.v ޜD7PaAzo|[_Ae.H![@'2{^=QhZ<, i&& M=SK1Us~f0i TN & sB 9,Ar\r9CWoy9dp :݀['pۣamбW^)2iZ=]b0_yݑ'޳LU)qgX/EpWd+h.9F ްd^To}k(ZB\6ȗ=p: zK?7yw8GHS$pQ3Q%PCR:cO+ۊV#@PԀ<y~:PDYuZ> RCH (r}xg}GqFۧa'\H$g.}9 Cg^XS0b2WLڒvڟ-V'?֞!ydFnHD?T/7$P ګ/b=M'{ K=rJ]0C^ˁ廄hy/E ishI`N\аg3u|=t*thsCD0ŇG݆9 V?" 18Gd? >G=93N49a?ۚbhO411$Z}lqw;;=F7chX/GaFۍj;Q׺ٳjF o3\^8gsv}%֢]\_(G#Sߘz; !CA C+}\uS*w_9A @<Jܫ}?*mG E9KC҉Si ]#3}  :"r_KitrX^wV(\0 ZMF^KXjBoj۽,z9SrTl_5ٝUmuTNW7'|K#v^=[6eԓ %zy&/t/e1pظ}~~.<^fnCk<G/1A'(kzR'nc<v}û3SnCyp~+ }*P$\TeڭQMyur0P .x]<c^Bk)WTw \0Wuy̞5ܼ9k:'/{3VUv/K0/.SU9?~zP C*2 >row}L |r7$_^We#<p 8]zeĽE 10a?|y?Hf嘎scY+ywp MQ]wE=Nnе0=iz4> uޑ:`kN/LIs?HG敿A%isP?4~#",,_K4iЖ޶v,|Oko؏6乏%}ԍ;Ue+Q«hOVm{I<Y9h O\_ЈΑKH%;D+>B@UkZpa CFNdms(Xp2E21@1yurtxJetht@8 .BP@.жgw ތ{X/!,#&~Rؿb^DctKk{Z \z FJ9&Q?EA.z̉3՝np]g\- :|oaHXFn7# ~dpˡ= B{ͣ kPNՅ02BJO S@NCavaϗjo+%OІ|vUdh?cM?S^( e;`V$HJDW @4h{w.u4?H}Cz^"|FYp*1Ľ5SF Mi >}'i3ɂèuo_=D(gO]5,j"PΣCb>Jvemޟ78Tzkl_l>vY:mog~=gPF(cx\:o(()$ZmR'ipe`ZXk=WPuNqIVt7!B"(1k08|eN Ôu'1}Ǭe_ yCA/QzQ>ZEut#(#Vkd^?)!ǃF)4ArȦoz9KY2q+ZK{bg3M[6I;w=`hP]ݴZz ڧxݜyU+oFm{Jw9 CCr\"]^,PPƱ =4n R)M(5jBzu'FLSG[ɔfjEah77wGOR _8sT jWt&^9 <qEz%;^4)SEA~7o+քܿ1\Z} 9֖w/(otao}A0ګvw.a_°x{jEЪy,q%h[VNӘkB9(5rR9)P;_J |%{"hUUdԨO=RNj9y]п!<YB|}z)Dovj.w){osrpOtIjK~k ڵ3ɚufxm;~֞ybMcѕڎ?3+ct[hXvb:`ֺk<_o OWoovL /-.AFe<{,yf5̶V䭌vE\B 8r-HΒ<o׬&,:;Û8aԡ5hNXuy܂x3 'MAPT=l"û"LqNR;M#<:=*yнNGw9*|*@2j<zǚo7 ۫i>mo>g/g^_e˾}F}J΀jڳ[Y}'O1r)-Krԍ|9/Ï>]͚ބ?xρ9'L_ л65onkhE;8W^}TϿk#OmuLY:VH8İg(!`7U#`: 0w`6+nګhvZi]nFo~ȭv1D yʯ; JyXzC5ϰ:7"Rt! yYr(tvnۖW#(5zbXmUp?y`wQ&?NZ5g]˝^Ԋ S g:aNF"i2KA. B8Gӵ5"Fv4Qݠ=X񩤍Y@;}y>: JH=y "bDA\`9t`A#>]ߎ#!>Ղm7"TtNXb1Kk]Ga:G#r"hΣ(nAY2\ѕM1J fO~s[b%@y@?u,p(|яBƽC頻N1J&Qs0@s^;Bd'0zu<wm)e@j r / ҏ!pfQ*4P JQVJ)2G Ptqdi˝|:OZ>ֲoН >ޖFY%eC?֕=I[b2r a]3̻~4<87i¢?)Z#=&d^Ƃy+@*4rE߾^տ3 -Ѳi.~(z7eL7,(B,xzbѢv~^ vl(އ5$qBTKkAh]DQZ}xl_xa~ }szm[%b kou,3%nyuJE2VrnB@wo ՝A#>݈еиӱ5 сBws#VocCNqʏ(zD`!ۖj`*# |徰O"0Wx) 琰u:GkiXIOc2sm2/9[ߟA HB2fܬ2trs/=qSX84gO kPע(pZf},Ymٟق=Fj.CEǪxrzڀa1nܜ}{h׺Nw؝.r?ҾH}2grE/yS#Ƴx{hbA&ıXbf֓eiKM)IBEM}h)@o4&G ECA.ϧ1.Ήǵ/BKAڡ-At!E Yr)7:քQ߄5\rghi̱]w^kot&RF$k z}tF0Ѓn KNobGW Gϐ0:-ڈX aOx7n`H^ΗNw=R [KjNvL, *2@S"<zݟ}9E# ~tќCxIWؗO^!J%qp˄"jfcqEmn4a-s>5wt!7a"=}+ߓ?ٳZK/ [7\چd}@>XFMo!dsuj#q(|rUr+=!r- 7{\x}dsO-{luؼ]/ض=ւI+7ceMۭ~M\x%udh=t] ED<Ё)1DL)T!bb\a8 iWܜ?lNDžxGa+)-H\.#:\9S;J}a_xv_[.4/B<؃F{]yǗ+-9 z d]u[KФrr|w'[<>|+{/c8IDATf 9 a(p}~G;5,mK:RϠ3sb=#Gwb5%GAXfҗL*fw_ăsr '*k]wtڏ+oH~ @|Ѷ@a:Ѧ S&!1u.S10UvrYxג^:t\v#7"AH) cRm+i^V %wg I(c%i0[k{$.@>x Ȃ'&7D꥖ur/2e4<ZE4 alb2$3(p+ʄJvp@>:{P]*S!-(2c'iPNŜC~΋Q J2)cYF;ce0Jq;eZ|/cjݯ, qS^=2@DE\AG!pJ9bĀ:]# &R/3A S #" |)&: LxgaWКԾbAP B"G%W1%YS!JmIPwPȿsOc>/ H u_;, uP.:R0ڞ(@})|]GV( >B|%?5˯C3+ l-ۥB5 UaxG~u?#x{Pߑ-Z NFd4xA_spzOcH gNse(gt`94-43: fdP RrSG@4h*."Ok>kjEÁ7tGT8er?7b8~ijn).罼0oCH7݃'۞}6;(M ?ϡP4ܗ;6x~jWQ95 򩡏/ku#8¢fWFW0$=w}J׊y}z_6 ڶ5)'H'JuhړAJ4"}3=O=DQ gP$h@tTW k zic^Qy/^IMX! sNs "\nc&Nl+{0:r@wYP\= ]pGagFsYe$+"kM9xzsh>CLPA;^w8>, yXGY~ =TsJ|hw+ v XbzʳA?I_rD<ˆi{eTS{%cv ~A)'Q}k>}<G#-Fs@̞;K|rh|h͊V쭖^{ 7U>Gce\ZpF9,п; 04 }j =xwѿJѺr3:wG"d9TF"UGpIO0UFV NSnZy$P<mNx/5;֒=% C5uӾd0<B-:!/ڟ*C " @<zm֨E(U7 AVwNYhW$: >-9!_I债Eߘ^8ʳ K؟la@_ʃԉ=F&>WyM]S=ѳ1 ͗1//5*~Xzjpot J߿&LUhz>I`ax{j;D&#h4G 7mӟө#ۿjBߕ>!6Q-u3#wO#d!؇6D*}J)4B<$-kX?NA|EΕn{uujA9Y_A%F'4s읯|b*ڕ1?}aЇ /s}{B_o7rh7퍡qeKOǴa^c࢕(<^h;$ ?Loߨ(bP[ɣONoכzj=|LL@ҏ#*)h0?n:{[6̹cnܠNN5Ja@ 6liխ:jZJ9 F]H,:N51|c%1ۖ]=9\z=gv܇qF۝tlۭ<>/]hh˶}h?l ܊-gF F)Li2:DkSrR {״\hוl'6eUG".٣З"ݤEh 9F[*ؔgzDǀ+t ;quhO J@fUVFs.@atFrPʠ 49 N@xipBVb<*iT+!T mHH笶d7췛S>ڐ  0h*{#AeUuϣQ )(8Fbе# ,b "Nж+uxPYЈ 3w+"4@SBM7) 9473xq-⠼D1@A 8b~q !@0"|_mplS TNM5k띰̜ΡHף @fa,xD %?eaq=/#$ahʒ<qd!r/X) ЂpW[ a}?YJyar9h]|F 2(u~;J(qm -JLޏyG(;hn(hb %@ː@CJ J@!Z( O%y )2$e[7gzZ2dz «ky.?fhw['w?_Ӂc5J9҆w}ҰWgk_e󪖸pyS| T (1G</!aE.yuAY(vt$2 h)^q2K)GGaGlV΍e ݷvCeL6D0 0@V7C'T^a}|Y)ǩ"J|c{9>AF % ա$PTTnf#9 FH!phţSqhA?++s|ѣnRgOط %g}!yz{V%Y{9lh? >ލ:s ̏-<ZAΣ/@^d[u: u)5R(E(vfć6BiC9Y=b<=+_%]9 2[1$[>h6gy8MҔIwDžG< !ƯCshD_jqؗ@/޶/kr|_嘹QԈh_NN /$Kfkii-+{uT#a @ANA ,| X2oq!xUK=3 B5:?qx\>?ӻ^J_?Vvx}G 2aWipф1tS l$ }?PM=к!π•ǠS/`H 2ĤX߈2bz;о  Cwd0/}Uއ" nb4I&6m'[v|~^뜵,(NsJ+= Y gXvɣZ5&Q?nq3v#z~}{*rox} }_}x!w{7L2e̷TrO}aiw/k遲ϬulǗ9:*ccN =õ18VV;6c*IjdNB!·w '5蛊z4P8=gu}"mBhFU&(t_=˾\':`w9T^*cM5~g/D;Ԧifn-o - W}6EMPJeY9y<Z##;px]c<zm&ͺca Gc)@0C L}/_);7O ha[wځn+ JNi=ed r a[1@th5r' -(@ B9 `M7` lzq߮[6,~bˬXz+ǖlFD>Y ]sTJxwa*!p#i.΁7J+O#^`42/~nd #sqF?1aZ:Jy#B.%Y⎀uO?öd/Z`&T6ida A OXVK !/#Í| |Z@B.:B F(J J,,R t9|m +PnhfU_b$wHm`WG%{#҉=3Z2g@ʥG|E_=pњG:1B5oSaG'RC?2}@~e>uF 0,}KrDqauU T1]ˡvc~ 1ѡ'4BNL 9ȗ2@ə !BAl> qBN c#kpa<Ha0^I4j{8ȀF>i4=(Y{ 7XLsoQg2!!J,GQRU,j$ko=첏~Or[ h#%轇 kE8<ߏ/}] !$FU6 ;J?oPJx`vûi cc36pA|9< eNo@%9D{[{wH(2SԝcD^ Nr<gNBu:ޙ{ZOkAJm+4:̳t鼙]k[pɺҙ_ٿ~ɾǯu`ɚr%dT~zzf ۰ BcAƃөxi7ʢhJw@9 1LB]K4G%}}DĨEFDꣵ(JB J9w(]) DB2LTHDh_˙:>ZWB`I #Aa>R |RŔ1t_k(S%ĶqKH̠y$̇\%Y+zI`^|"Zؼ@FԞ۟"vb<PN9_n@3+>+:[&9˨vēa'Z67K;n?=BMл7f͵Լc90 z҇=NC)<{611f*fdcZ:\H3cyʇe :E{!B(z?x] Tc>P?Ϸ7̖u4p'{r(<dJO[f^;xC.i;z/+bS5_>$}t $#~%"'">pi w.g<-:W@!Z'K0 !ӨF<Un1w#X;a= ;' p L{)afzNOCtז0'6}Rl<wLQ%"{ ?Mf =G(7mdd-V#h1mwTv-pr\(w0JZsc?katb9i~m)PtЗ͕FWu%Nݖ^?(I9N >4ևlCitUk9[IA)}Gw÷'Ժ1h}[ӜXfrV-vF_o߅5t] :J>sdGtч9L]N\Kw^?֡Ry?C}ojM,R.@Ǔe U֭;`=Ypz$ߞ=<aɱwZ0;ˮ?ޙEcû }C?XBʑ s@#Ь'd_ƻ@Fj%K*5E!`U> WT''-9ܨ:j aur _݈^ ǡ7n7=+(/W*2XcX*1âmtw$Dw_ڰCۃE9 @C,TMT7R0ml~®M->߰}FE+9xK2(  ';?}+m=ucI ^q7I9aWO,8w~0%JRvҮf; 0WsFOA\EH"73֒O0 OdX4CT@0TD3z Y[]P ^ pd(y2YJ[(RH)Zʜ/c*5tSUP'g׬l؛0RΚ\;(nXRHZ|)(P!2Sd+tʅaN`k87",z] 53BƅgozA08?/5׸jLT%J C޹+ʁPOwuJՁƈx<JTz]p<y8<@ѐa{U V;4EDW=Zo%x8o/>>αv a!S`/#W>AhT.iB23S7tG?cˮjc0|\GNFz5{ жFtLCR:Mc w7 ]J@r622e^¡sF4)Gh<D1"#I:4ͱ3h]t ^_" (<9}ʲM*g P:)ЙXZ1Z1zP4إG=k מmk{~7n<gV_TPnpa[3%JU[w{R֥>O{5TH˧:A)PNˠ@I3P&Ph<*(+or\y.);""Pz 9- $+N<@B}^!~->OJq%8g0@!"^+m4ck>T"W(K$Pk3߯}8k'`0д=V"ђ՞ٟZ~ CD Z u #5h}cb卧(iKniZQ:T<X~ύ(}T>ђytT߁۞P^ƅi{NmO/ic6 ɬ494iOxXjxlkCB4xx,:!,9]qWX|'ϣR]C봿o=<KWC e 61g̓h>ޞ/`L^om w ܶ_䴯i9fgT<"P F眆b•e@is^i=Ӿ"’,!7W2h2bO(֊J3E55-Br깝hmhy"zzt C>D! *CJKҧ;vOҷ) %Rи7b$Q' #GDX'n}` 96N9Y4yȷ6Uܴ†a6})shw1矹qގ޷lByGΉE[| <}GgzYs| ڟ*ڭJ (`15ۦ6E[Br).ڂAw%\sh=]LA'HjZuObàG ܻff-=kShDf^a GuqN?:xV9}%c;ql]S`tMv <;ֱqZ6n_Txv |n etYRΟa?ok)4n7WBԙ_no؍k\GљF|`@CwsmDN&4x>y}2!}t;||4+@Sր/j45,4#_ה Z>( .E7gT~Zjwrn@^覗~|=B7:ʾY9u9е;ʸ=Zu%9M/[mC,( ;@jFD>=gG(%|VwiB ƕggM#wGtm+1DObƱѢoK9E8!%_AO6kj$KhJQV~ eׅۙs|괚0 amA7d ^lxx’Wx+ǂ ];Chk:pN°<pls`Y\"d׈1G8DEҝE՞†k).Ѻ^GkB(?.Y+*7PnBh7]oKM!0#R9-] U9&Tx#^ž$T-~t-WЀm .Is֭%= Q Nˁ!GBn0yaPon xUFSá0BI* Ý2" ;¶i )ySVF4H2---i#j/nt嬴rdO o0(609{Q}?_I> s R½ӆ\ F坮 ZYZ QvhNtO(Z˾ovՔ\9r"5uL|ѥhgt _-`T("Pd|!ފ+=Jƿh[4^k.}A#X|{r<U ٽނOك;|}뛬Z/N={>_7vi t~D5/M(Zk<fwZr }YQ}#xƁm9L#KMk*voD`GiCJϳ(.d(dD;/[8cM*5.hRh{+m]l7Buˁ(: `~B'xD VCexCEw6=nms؆Q[Q%j_k{Gg.[Լ?{t+wQKMl4don=~e7$>;3ǘcpAFs0a-=geo3~>xU̺G>!.+ twoDڠh;}]%4 _> },<}@Wz|'%ϓy. 7C@FX<}/cy@qo} }N38 Pi_¾9oCϟ}`-S&ЏZ-@S<=8DnKhmyB|FpꟑUI^#hh-.зPCx*Z#Z%i h`٣"H?xq Ӻ^y>-F<rtOw;81 GGr4BucBt7(Ƹi*Qt0ZQgn3v^<pjњ׺3V\w!絢O2A[*eR͆AmW<l^fw<qc3wOKL%M/@iv~:zB;<JI~hQ6^{nyHڦ>MѴ0w@wFO!NEΈ:;"#pĽf/غ&kLþyS@NmG|Z%nH~.s *}?+`kYxH<zll~{Cݲ/q;vo'ҋ#'͚]/@;UO)9,}w$~,KnVT*ah|UsZwA#zMk;rhwwA֠ƭ9=Zݟ}B|Q?sh[৯};"HP{áEhhIP2, k[  ʿpl(eEW+/@˃߈3; NC%$8 V@Iv%`0l'{7l(B,JX'l.XNm)JOkPER5 C]K?A@9FY3 ^,HODT*nӃ`v4*ꢌ@'K񒍌LZ2]_*1X_sb(%1@2!`!pecJRH: Bu9z+!P 8Ot!,)o)憼lc0jJ1kwa;xBGVض.e(CC6: h\ASCXu1 5t}=;p%e?HV%aAʇ+AXx{zBxF6{x[<:ޞhp,> M?#y!_phAt"P4=|ͦ+6l%T @}-UɊ'} VY:iFV޶[F D +@6́Mokl@߃?\j鷣w޳ C~ <潩擛.Zַ(:qoaѣ|T -Oz͝6èMJ)s8c#V^DS' A ,cYGT5g]<]Щу d?7D WC#B%zcɧxEQ]h ^%Zn^Bq ;Agsޭ{]vgl:l2 & |Ph7SϷ|hQ݅\xK :I]Ѽ»韂UsDhɢ!>FAG=)xӫ,a[|=L)>܁GW g%ss?k@]x2shQQsCSPz?րt_-)y~f ; ӄh:΂C{ru)*%B`b<,?GAnHU(<e%_٫wcH./(#O'CA7vv=磒.m'h_99zxgAzN#FFWK֟\s1~lb`A}o 5\Ϡi/ӄ‚YPG0 d,DFzlQxPEG;QH$xb@>̓c!hN{zt`;fo=h3-׏NC5~a ZoCrzVpzݼKh%3 }K~] r`:i_ ïeHCr{0<rz2a. ֝BF|,>yڣ>{93w#|P4ȟadԐ@=}M9?4kɵc}^h@އϠ}E7m9?a=L޲deӦܶr_ x>ځB_/CWr\=t_f1TӴw R(v":Lͮ?贽Ï19FsP1"`EW!x_x<O  ՟4`HyP;xߴgzl|%_s7J?t{Zrz ;.4mhOG t :w峂oԃљE s:O(ZL>XʞTg.3ӴcȎ^"k\gѮ<gG_v*֌>cO95>.&>#%GWh-ۋ'Uv#wlpMŻk 9cuZٛ|swLC|!~*vMykm%|AA~&𩋠ȡ0FX9A$9 98+)<Dpe^O~sW]FG$FD>Y 'Fek^ V!aPط%:dض`yϠқ+w`@B#-CBna O}΋ƿINj0i9 6<:aE^ 2JOA<clDabu蚺^tVhϝ_dcTwv)QRY}h}p#C .,`4=|%kd;;;>׭&wҪ=qn6#Ԝ߇ G#rJW xu#7J`(a4ZP>J}ͽS?OkIx]Iz2lV\[d4㺎ЎUjoX@:^QHy@H~|N]Km1w@l)Oaǒ9%0ܵL &-]^,$W{k%eDoS습h c_#/li:4ywƾpʫG%UBZP:P5̾|tawff|[XS%O'}\}L͓Bi@!,Yt…0B,~xS40eqgrjoȷ]C69<jW>ɪه&|r(}((ZFS'42y? 1rJAu~>RFHHj s~Xgj|qY3=v]Uu~vb]zj꾍^W_ŋo7/>0ɀm>"}S'\zN 64~~~$טPh-ж+>Q':Od6QhCK=/iT Lp|(svB_6u١e|}_ń8CxF q-{r҅m@r\ih:Mm*y³Yر4/Z/XV (h_|ytV F5FוYGcYݷo{6C5,vjR %r(m֔-oQDN޿h cw~:Bx>ޫZ%_wO`[ּ;A.Lj%d35Kg5^[|r3Gڸ>}o[H޻A+ w=> FyrD'yD;97'D!:ŕ#dJƥ9H|Ɋ^O7l'/Q3ZC鑽߰K|| s4ꥹ27+XmД.Ql}+t.<{{h#"eC}O;u Kˋ|c733 _NR7ö}gܺcx{y0'pR4d*c/|KKLNtV0H)''~NWD!h^(YZCȲKGl?M~hyԸt/,!)Yܷ*m.X@ 5 V i_I0F[{ZJsq >0Ysv{>4lCgR0WU뚨# }ؾ*r3a7y]6(׊4` yg'_vz+}o&»| cs!D{xL9DF!Ô {wcrƦlm%}z&?^dko-ppe4աO)vY=z!tϋ1UH)njdm.l Fku;oHN.؃1{o?C^.t| j`Mv=9qF, GJ=̶[ʗ/G>>8{lTߘn98D2g@kmh=VT7 O:}p?Ѹ%b'e]wh=C/ ZeZ_'3{i3NOJ/@i }{8 XeJrnFD>Y𕁺2z ivP>* NF%L#20;bd޵1>:v_ۖb0>GtR|Hʁ2 X iZn#h45,E2)2I)}9ܑ5G(\MjN2nxFx0C83;sc(@#q;Ǻ8x:<IDjYF`*:RJdr™]hH\hw_;RaI)` lw2Ү`qLeHU:>}'([{2>BB:AIdlNen0;v߱LwuV0Y~x?Ҿg23<۩zj5n}PG(()gоyPN&lp,iUe,_+^_.<d}I#m[ ekU(0s8Q8-DНFiMr&**шbIDB_YC}>п8> z&QF]0 Ck1`3a[}ƻ26fS(eAa_N<JAt0Ƌ;J6 %(F?([@(t lԁ+;L)#Y$x97COp1:l681gCvٕVhaW> 0<`A&%L^hy  ԍZц=htK t^"E~e> /P鎮:?PIJ-ϖl[} hB%h:w֪yQȩd?.W"}:<?ϒ m44)~:h<-l\[^搻Z<0Gy'eʉՋ3Aך^wgAguLm_97wB&P׿mK6>7g{^k#g,Daeh}߃6֝{NnqќTv*/ׄA{9190BVzYBa#㶂r G(ibem|V(Ss(@5r~pJ)V{(0rR(~Bѡ4|:uDN}IBTS8GaNyxRoMIQA׶1҆Ñ M`yvlo~ס6_v/Y>oBZS<n盚ʻ8''}_4/މQ :m3iw˾<8@'H!3 ǐaH׎ s{9]@iҠayPJ|ioem[{eeVX򟶦Qkhc^ζ@ۢ,&q=%Ҿ_^ #y 'KTjC^"K@eddtD b=meJ@t<gt:V\ܶTe*k\sspk7Fv_ڭk/֬ejwJV9o~Ȗ4bS׳K,zؾ"$ ;`bNߤ?k*2H:II+mtLnȗ++[:4Q yelݺ^5D9@Єm'xy{?.R* *Cc.o 7h0T7F5B*~gh[>fW$ doգ4+|1E[ۋ7d3ٽ=nL}q t}]n#²|WJih4 =S~:#?wqrvR+%h ZS@ivVޱx#䔋<G0Agt6|2sR\)tx2\WX HO:S glbANz<mN֬ c<O~Ҏ*slFD>Y 'F"F7M,[Q}.#@FA zHv Ad UHiE/~*[y;(Aǣ B*J`D”#@ Ea1R"\@{D(\ߦTP<'FؔVwa, @S|)xFpzLн@0{8L8_vy'H/!FFy7Os4%LT>uR]aN:_ư[v=}r΂fl<j)oo~1!䤼Kap2r`Ѓ`"܀ӶʂJNCUP~ECٍ}$7%:qzQ >–m7/QF.x0ֶlmBb~r^tp'F`迡p!a2{zd8~1mK<^,?Gc{|lI'9 B=BYEF>i_5%%thW?=(k5@*qV#[u '!مQZF(7aF&@? 7A v?p#EJxs#7m9 TKӉE3{9Q*Tgv!?2cö?(! EfZ3v&,F4!@qG`kdJF4l{Rm&n p%'Fm~ҽN= H52= }Kq/ HNHxMLL}v,=S]=sh>ó8ʥ`sczFh2E@`@G_y.0կA)2TAJAR/6yu[}sb0/ƱUexZgTxTǪ<ϫseKzrPs6M xaˊ~ cT>U??&z O.Dz 67چV'%ڶ _E# ѾYЂ[Ժ|G9NlXWrzPN[w?C\/9 փ3:S/yUA? o' }H>9(Z_.ʽZnl0vEМu :Bb /ƽV6oc5]|i9C%hȸ\QEIPz(d Gl?>];~pZ@@ C8<hIw^_kw}UΙœ0'L^Y12zgM5lE}&hdM] Cy]A׈FNlY<Š y·sCmPAܢ7t>Me=xA1 /2Ƃd\b+Oc4<_ǖ%#t(sBPe{/ jb_Es^|G:.ѧZ}2b摕9\e sܓKܻȷ)~Qxx*1e痹9_gP:HRsk{6[$mD./[2ZUڧ)BOO)V_+֩h!N͓oZi`9 Id )f݋Zu(k]MLaۿ1}u^ 1 I/%V~BPk$Zts/eSVְ"096 rp>F݅EEH$lbxv^۠}PQsW8oQ>1xWoPt>:I7Ok|_E&`GF__h]7i/~_L&y I[Wi{}_wOcүk{Mb`+(#~KAw'F0~y%Gɨ"b^r "ו!mG54*GtyѢdh:w[zn5xS{'}RXl@Y9<o~QjK〄xr8 .90>:]/Oq(raj=7"?^s`D#7"UPwk4g =)rHٳ~0#wHab/ÁSJ%E&k<q>:Qx1FBAk<GGE=:h ^5}`z2eqnFٰ>)I) P7ֹ; "gPg_ "J1p'Cdۡ9ZJf!4Ēa[:BL]#ILx20Bmp!J*>q6;gOvP+R3 aGptbdkd/aD<8 .PuO|dThJ)2dfJOrö @JI/gu9 VuOա8ԏ@@i18 P*(U0W}Ԉh43zΣux̺sUӟ&f(΂V~%Hk$qZ'k߷>ƄxRڻe?/GIve+AJl8|ZЄZnV>jM!SFw)e֑|eB!rc(BI':u^^TW^[8 Rc*g k?4O!-qZsgj0My#ϴqr=|Aj<R%\pC#e8_w#rEAB1 /Ȼ P/IBiQߨJJe9c 5BՒɴ={~W~zmr!GJ/H@!!=йQF'>$-UXq[N!.Q<Zwqa}6vliָ悀23'Zm@wnc<Ծ*Ϥ"/X'_>zV;;ܩ9i^hd:F|\(ڴ=gEn J|x^~},9>rN0`ecƷFh ePԏ ;fQGw; =qP9,7 L[yU66{ ٖ!' vi M#tp2#(xV#G1h9|f=ԍkN$K1?QԍxL>#pCzrBNK;P(ʁ}ܲhJkx')RZ(S˭Z~Ky}u[YG,gKK3hL,/y#Bp/>9Q=;5rg+cE7~C.#(T^uxFHl05m(/QW#[ޤExa{ s*SY^}:S<e.r6B5͋Es|:΁DUTƚ;im:,{{uO,wc`wl״J95ɾ@ƮA2Ԝ fUKk`>-C˜֠('F05򟠍gnG߆PTnM6оj[u諣@W:Hqz^U5ɩU[#PXnٯ$׬H֯w<hbSyGNpLۺigy5A*S>7,Wyr"PwɱRUɣs4Mrvb`G/lckʖmhIyY9i--{p%uL!g(So״7S]6OzSC݁Zya%_w6W 4Q[f{ng(c sǶ8AosȬdP;U/h\2lc ]˯_1WE#U3K$cos2ҳy7 @}fgAÚ#<[ < # a{YPBwp GF^%BRgv}'De R|9 1_&5aRbTxC]]c F LmaqS<̇ sΐHhd='q/OXő5=1J7qZJȱ2e6((2HpH]UF\ipBf󶻳kTyR0j/e"9?Ƿѩ}g ~@8u`0FGpnhS1_WmU;Kk0 eu+jjR[@@;+bw ([)`^Ɖ-u{nޏ`k8} }!=}=¨D^m?rMgy9xx>) w <hROLFzYla0t<Zh#@K.Q37QQ55lzhvQr=m6MAhRQJ*k0ɍg6.AuǪ7t-G*u49-dȄZRjzFgQ7m#yaa >BH_9^SQBPa% ݪTέ,!98y^SuDm9Q">"W29۶i2J]*eϟ#(B)5~*QJW^Iw"BpO@C yp/†r(H`~ÊsֶmHN_Tot |m9 @k!hX4"8.F5"@˫c78Eߦn^SXsTKFEߚݷ@`fΎ]Q4<a(LX_bm~knraޞ W=g"*|~{r_o 5( 2xum$EW0_@'Bx>[>EIFYRg{BiW|Y͔l`<m;(3;`+iBGQ|RSв we?>v?SGc5J(x@35'U9#/5I PXETdS ?5ߖM$Ż/fs{`=>= 19݋'J]; eD{mZd:GexjjF? ";# Mxc=Bϕlukum3Cyи GyAq<y^P_K/bځ @݃ ]k ~ڧ %۵%(U^~;6a\Cy;Z_ڷ4sH\׈~iY.]tkҪ?9 Z{mٻV{VMK@ h[i8(-ƞO/Ѯ9 W7M2g BFSAeCh8mbt OSa e?LCG/)b b4 b9,8 L8r"<2rжGVo{xD?DA!``y+s_oƦwvw鷒3sO6*6wYF Wz2 Hp$C9 @v :'cgYL%Yv "<<k{fov}Kԭ/S֍gtZX,R#JFy4F/@y۶L_|jã%왲DZ*^s'2kF| > &.! vYeLKsi@nݞlڷu+oڄe?8 P; rkx2ym7]' ^7E,R08zSD l@Mvca34tb3I ͻ`G  JoQ@H Pp}_5'S蜗20N`Xm9 52P'RJ$*@<G ,Pd-`U8Wٿ_-~~\#,`;#@p KWH~#p+~n#(@#tm~J) YcMA L3\h0Z1O fZ^uC#xA!ee=uPB?w>>sPE_] ;;q 2݁!p9蟏p<H&fJ1h;3Osڻgw?OY" /;03qkm-y" 26Lej(%Ķ_|-"\4 m{mzϵ1F4: F5h04щwM*d9eIJ0wFh>m^^twA!Â8󮐸"ǣa;(r rȹdn~g{2VVYW;mo 5H)g;sE}R|OF.XW8-g*.oXeUan`0 %w,,[(m* Wh%: !ވF0o@yFy4:5؆ #7+}| ߘ^d,@'>Q;"-'ھuNVm -OWY]h?oSHF,ی|i4RKFS/Ɓ 'lcv봯Ux!1/[{~,)^Lxw!9^@c)%֓@ -'?6/gA"_~kwDxo)R]_;oxF K1WE:5F G@(RW?q:rQhn~a `u e),r/sɔ?{cC{C__M7]h$: VY[wl"./]8Χ"Dٹ5ˢ+"}Z,[Xmye%0&`LG@t 5UF; 4b< =O|ppȑ[R{L;oXbI n^k?1v싦(}-xF +6,30i|CqY`4\f7m8];-d?$'"@Ԧ⊷Ky g"i#65G/o%A]Oa 1 TwY Pc/# !BEQ%ު"9s]VԈ"1 w,,[:_iwo='/m<ߕQ]ʈ-q? tqF{z&9 "m߉Αc HU/gΓs +Pȿզvf^_B+tdҼ-“<<P8W#zj9g h ]˯wuqԦ^kS9 : Tze9[BWΣ."XՅw_FD>Yd{< h7mib@vsXnv7[0*9 &P$G5?v KWmfz[ <{?a8*yN1myϠX9zn<3Q𤋣64:iC#L!p?Ř@:P\S0 *"~DHy#8_Cn;P)(S<FzQ 56!TQ8ڂσTٶ6m/gA*[J!cc u]PD@#Q392샒/e^|xvH;y"m7qϽr(';E]̺48Z.YwF;ᙤhh_=? FQO^:Os ŋwY F4(u?wM" ?JQW_"8 P,S#[6S:+kmL6^}hKX`0h OYw|?Jh#K D`PFBdzl!"J!` ƀV4~iv^5WxJ g4~ظ/"Q ѿ"4:$^JtGπ; zmsfK˞LGB9Z!K)Q|ayhi BMA4BOh_d 7őO}<v::m"<4:c'mmmGI߱o O@9FAvpB~ x>}h;"dQ.BQ8<_plԟ-.ϼf,4 bF{0,T9N@AԽ՝[email protected]/p'gp@pz>U}&g )YU#ɡM?縈;r֙>rmCN@J+^+ЩMSƑ;B@s~8`CSE9JĬC'ƄF]01A  z)h~r^9PFQ.l5ԁPWt),C2_^a[A-/soEC_дBJ0lԋ1SJE\7B[eب;^u:i닟(ӽL _9Sj>7 ӇFK9N>}Km>Q,ofݡ>,T&O_r}Edƽ}n_`_tns!w.YiR[d6o,ϼ}+ 4m~I|6 ehed0| P oD0=yM'k+GcЦE΅#{wMˉ@#Sy}O흩 `r*[?C.o@vCj޿" 4,l-ðƒ}>:Mb&sc3A^F59v}:.z%|gEY0J5VAKNL[w=yj}ESY,V$A0h Tjʁsh_}ˬ׭ȪWGh|xy:<)#*8 HjM{$Mŧ`;<yiJfa~g~~7dN> 2r]-gX%xBu7Y>C|,8N8V7*GrSy9Xm .,r~jy#طt=~WBrhT?2?PoD948FB<~Q]Es6^X)-zT \D]j#~#",3@ P{/8 a)#,^۴o~=8 \k* F8j{ll\jt͵e{)xE^| ץ AR:4W8: o  C{(ySeZZ+!&25kcӳ608Pذ Sj t:fe|^39[JFódsdU4~~0)e׏ECP<JדpDB1[^4 (UA"LP*77lyi JLʅ?u MƶH Dځ^8Wh LYQhFRS1w.E c[sPnZZR0fA |1mu@"w 3B0gG5=RήP@읲~rH!R[9v| ~дچ2 !䏿Mˮ[rh><AӐ0d0Phh(K.T4݋? MÏ@\TV6~ 45X:FJ ؃O^w>@%גRtKAhh>T縜] gAWBf3y FCeF(1E) w>J2&({r%.¢MXi\F{ћ)Z"=X1)eI;|j;k?M7m jGtn?s D4n"GYWϔjB*@CX[Ex2(zOYh; "m._1 O֝!(q\8/: P;,hi뷉 9.<tWqm% E_ ZG;ϻewO QQP(ɟ}ΔySY[Xٲ_ٹ2 in͋eG )v`pk Io!8rkAH}I:t9KC==rK{Rs<U :G/4RZ C}Y[xX $/^y:ʐ/9$? rKN: Q <4@Ha@k Oi?"WVyt,5 Ş@#KE SR^ԉ6吔.Jrh48> ?-4 GD/,дJA \ =>P ._"A*|/v@St4U !|} ~jקHVNߵc7}~vl0Y}GYeQ(?YONIt/;^~M5|z yIa8XvM <7m]?xǍ$|AHclQ F68Zݑ;,4MBmn)ta?G?X19~Wk@yBރPXA!h?y 焜 Fώy΃LE׷e+ؑCG+YEQzsgor?gəG+VN>Q֋S|4G5ԣm ΍8:ONE#4F'(Os",("k <Iϣd ,o Iep05hQ8߈x^#A{6l,<G6=elEhp]+YzlsgV߈; (; & '=b6PTOlE9 rxz)#+).b:#Y^\Wt h`䇑A%\~z,p=@Gitn,@#RݩQ(9FgLmAOyP& u7T, Aƽ'7S}zk$kz_?|!c4^mKW&~)W,B<_\s?R?Ɛ2S5d-l2aiڰEIb3 Y/?V* C=TCw 2@_ۦ/9})}U<9x;Q \ZH ju7|_Ɯ&)YJN Ad} y!%aR|[ _U]}ۏKYs?3߀Pw8y6Q?OqP֯A (BCIK0uM9h[(D﹑D+Ў9{w1j6Tvb-6ipq;Xq)(Ԣs%Ai!ZS 0=q;(ʢ{ߤyR (>˻/l~Jп2s*q6(W 3')D2U'flr:iCT85D__ZK# P $BӛTjx, Gt.\4~. sh+_/2J G@,oٿ,P_Rҵ[@A)zް>;"S!}t.|V)ṩY^t^ke7y!BSήw~=ۧ9 cgE:0§eh;OZ\ݷ!KI!01hpÒPj|6_%836V,P2r?NЄwfQ֠M:J&/xd{} }CTWmqr,'(I *qEHq߈Dak*m ,h&&oV7y/OD w$6Һ9}IMCrNj-KB:GTEw ; 4g,; mϊ0gS9rGgAO }=W`;o`?~Wx{d|I_@2>+r%+]^"DѸi\9E<CduNY EhUZqW,ȉ!rDI r"[h#_o{ OUi`qyچlt4},P$B>|hCS}UckZjZ}~hU>dV8PԠU[yϡ[/{_䐃fV+h]}<%^yQ .BcDiEoôuMmp|F'5`5hd<'7]y^@ YKgrѩ2dɾlx 9 aD]۪?B_9Ou\wLG1]?3jOYbR# >x}[oۿbЕCr<9 9B玬\ٷc79c :Σ1ɜ:v^\ S%%4[iE+jݦUȀ$Kr2(k^(Fz@S.2GisMC7jϭu3 -c--𭐁o,вea"PyŞkYEl,l:mn8hp@pubAiPHhnk(tBjc<HsS<y`ȟEFp<0%0u's( G@\Ri2ā/`>gMxmԟ ϚNmw@2N:͵Μ y~hGXO!syV |aԈ!>η'[k*%&.xd?__/oZ<ƅ,Nbx-s:Z ®n8N X/8$(B͏:|:+ҕCBPR8B!}!dzzsy-jQƅ7'Y5"lICR~,pcnSh؟\=z» א`= ^<8q?]1Ϣ'}>^ans~ :@! E #'Pڷm Yt瞖&R^3 G( U}?>L?\NPy# 6}Pɉ4#U׏PQ1h{wtE ѯD>!9VH.J ;NDUB?!O|v" At0u4z=CP 7]4,Pd_?g[8 ]+[Q!E:p:?-a h~Vw*4~E:4 A=-l`+( %7̣5: >Y]Dhڕ}9*TW4z! !Zoot ,8;g}-3{VqD '^DE-d(YdG߲J*64Y9B6{yw; (GT?9̩J0>lH*'H"e_V@=L"?3L& K4ce6Oe+bO {]O2|C-96%~==Ggwejfe <_S e/J|kpj<̑YZ~{i~c]Y G#T3h} 9 PA(|rԝ/_SD[;,P45gV|@!Կَr>N97}@EI#p䦁~ȂFWÜxсd;Ӿpg<33, CǠ>ŀ:h} Ox(0⑒wF,Qڋ|ƲeS,)>?YS{ ^΂A9x}9L9ޟ{_}{WR4 ^=|s)8Q'gb0Ϗ1m!Ām__|KE xul YmQ>sKG#!7AcނF^#BN>@%mH/eH(%x8rc%偡]ʹj GkF,(΂Pwԝӥ=tENe<6MF)Ѯ;yVWWZ-tb{Y_׶gd/slz#8 @ʵe9B4\et.2%#Ύ 蕯 h<W\K VDFufl5R6i!YPGL И@۱.1# cʉhv,>gEDzm J"|bג%t≕_Zak߈3; $Re*++vpxHgƀP]ӏCr|l~ Q(4NtFA^a{<lHr8ث|  zYW 0P+#@93 :X|͈P}Cri+!0):TMMMȠͤTm2=oeF=<pA`S@I|h~ȏBqC=ʾo`H)O=؆-!^re1ȹyn@?̹@]XT `>\Ycaϱ2<;8N) Y:~P@پ~z ,0P4Dhe>TI)_5b*#!/ X#t]9DYY @ڮw%ǃ zL͕gvxz~)Ln`†ؓw0@Ҿ ˩YFÏlzFP'bTh}{G1D!_Hɻ/G 1yWC 9F'SW>겒-z8eZ9uו.LrЎ11C;81eeY˒R3s̨Zeb%={󬧪ԩSU{w׶ Xy--]f<V݌[+Xgt)$B㶳Q?O0n!x!4U;MD[󇩃%'oWMJ%KT{@;8 hʂ]@&f>7b zpcԏ5b&QYpȫ74ҼEPOSa=Um 8gv}ݏVaMS/]a&ˉ^ AE$ nu]<N? b-C#ܞS[K̶[L>ޤ=ȿ>{FU{y}?.T{MDd#d>AWj .}` ^xZ!!g=R{SP[0|$f~e/qwT$dEu2g ϙs޿t_:oRwxW=@̳= &Qy< r ҏ"$}DJ'W8e>>%Z;~xBf;v]'( D'3eQE{J@d9oy}})H,;E~?QB/MQOTهNYp1\q4$F+MV|ys}؟,.Y[c6,'-f tk"XWʖ|&[aX]O i 4AH.OkS8؀S}Q(*2k %zv_ r(pcj$e6I=u& Hu͠)ւx'tl $9A>S:MA#J TB?EMvxG^#37xBxۼoB7G$"*Z':^fi=3?0mE/rQy0%).ޣCg_vĄ46{pSn:z&e5 lH}ehZA aU]cHYh~D#޼R;=b]wN/ڷYDa/$iM׊Jh8PD:Oobdd?Z[[QlQ?W_} q#<`2Zx~GA$_[$6)(Oc:d&T L[}tȏ:rV!H=d&RC!/o{hѱd3(v(_H ʹ7;U=D[}AN)"zv$)Y>E]B~a X4uTE`j-(3ɼV9:_>WzP!7}qeP?_|v,*rՋQ8lI]JC(BSnwynv|I ܷia(0l'HXiO,0EõH]ǎ>*)隣Ӻڗ/%\thɀF_ (<܎jDcQ59QC+5~QtړtX4v@@FF +J1N| "u-SO:y},v0lyΩBrxHy@!NQ* d+JT)$bAsxyH<mtrZaLG 5 3Hf8|...`b唵5@oF'|}}_IN~s@S0" ̈Ϣ'u܀okzV#rb ,zT)waFDF&}~|Nx/ܪ-EMhB4MmT $hQX#Xt퀭JELRU.y8 zZHˡiΓw}{2Kzi/z'⠬ M§I:cOmq?{hKþkF(5Cg{񝇸* P < *@Dś6syf>mCM,ʝ T4 f\:vGt?F<֢ZB/6ҧENsn;LЬI(<&R:/)WL9%Ff hI7:AYSAYP(qAS_CgYӴ! >@ݯ_#՗WTp@vBwy\ϧ;8uY|v,=Mm$ >O#BV6D ?V* s[wXVm0qӻq6:nu\3 ܓᄘ|>v+PDyu|5M? */@qtD5_ȑcppDZ_$)!EjdmfTQq {$|x =cpcFK "AG2*jR^v3ӾD[g@L%. "=]H>N~uCB刣އz46&8cOUԹPKoSoh+E-ABN9I'lگ]~ _>pmF[NbGIS 8ωO[SiEZ vd)aP4)BWWP-ntߞPliG0%a8. v'Go+\"vPv&@>iL~$EM?=)#𻓿}] k9s+g6ŶGMHSFL@cz7]" b<oFxN鴾ct=1a7kڥm$mL/mmrP^B}%/퀮/W龖yz11ROk$(ﻉ>c7͙>j8'F}ڔQ4zB8z 3vmS# B` \}kE}.`7$N iOtCBU`Q(oD}ǬzԢF?`,?r_?@~>ɾWS}OP0Rt!ύuYK)NFY ?Y-nuuO}BѺ6o}}5Pd1։ e2=Bmp188꾦 yoJ7b``?~ DC]૆GO<Miȿ Mm-Q("nk^s; \}~Wmkյ]^zynHJԏ4}^mV/u Ihz DгaİGKm~_>AܕUa<SaDKHE Z&`"1C;)ۍ]Yo: U qbj1kU걓ϯڀ$o}Ou@ d^U-c>6FBqHvH@@ .g7MPوq`dxR -~CMtki@PD } :K9Sw3$-K~/M2k"pD0'CS4ag߰Ya8-ROc/OG.`=<4L>$'DYr}׈EUOb߳@4kXb99:&%+X}Eb4Zk=Vjf"]=>6d5T)z&E 9d<ebk?: ӖCoQaTj#W-ϝ|\AC"$dVw~tssu(o7?A)`k@+xb cl3LnF,1uxhȈFG)&}ѓAYcƄK$ /=غ42K1pzJ/tk4vX++xF5AUT龂h.MɃ10< "oJzٯMJL a oDNny>iP@UQ<MC4Ji ʖZ|l+\>/=NR"/]Kh7lqGO7/1zzN=$ZcށљD" `d狰ʶs SFe8l,P`+pÍb`#j"*P:x 5kK/׈2[UT&I@yE&qVd.*r -k%^*P?cg8jQ[6`xdp4K)>mtD&bY&=Ee|ֺfM6E!?Cѿ7Aӏ䳵|hA8+P/%h$<y!uvF_Am5OdN;b/uه&/ n~'g!^L'V*&*4:_$1 +aS&2mN$[LCXfVB}`_*aE |wL?9X&F=le{T>'OwXY'N]O5Ⱦ$."Y 4 0ѵtb!O +p ``!A}Q&lkܚ"&:}Qd9,hO_VPzc 叕Y''~Y %F4ō'Db lp7mo:s]HcF#aޯ2o%!.9k|f']'5oϔUQŞ*'\ (P}o"xTTˢ9LAr&;#WA\r3i} uN4qxr>> % }N0C W|&-zy]ȗDFHz]+C؝=AĻ~u_AK<x5,rPve Ihjr 'jw`O$|c"A|gt0A lZ|%jY$ZAaoL/;% Y`V](IB!Dɳ)>o5Cr];X+Թ166/3eES1-7jQ$ @m h#K/I% 4ϥ(K@e_bğ[\n?JH3aޛ?)"~ $Z$mɉH]|}$( sJ= $I=hYE-AqhE\~YƈwQ)DqtBƌ[F?#iHe}ca/A=!X' v6D_vЏJwN\>dݟ,`oYt4|m`tR(X `9$ P #t"44"-fC\s=$ Z>QKjc"cCc 9VfRȔ@&1o͗os`h-P g.C= D8!67*/!u(*paDF91TC=Lbs+klbo/'o9# "c{7}s~Gurl ]VxhGm&&cAλp]!LL I09D j#&P@DdY-2`gݛ@EM^[)3rڪaʙwx7syOgsr?{Խj5R{N ?eՇoߍD[(LH9xoxHFJS ND' C'4ı!fR <"XϠ1`4ҀL'u?JO=׈z͡8:'E;I6bv}` ~`4o9IDΪ")Piܨ~iLsoE (.&< ,R%f0S)0F3-ImGhv( ;= *`H%( (vG' dqϐ%7̈tRR"vAcOXߘ J%&hw .;k[q> ~qŕטJM J`[0f9*@u?,ف-Z<QbM@mvD؆volFm`A _("*Vm9iҜy!:tUmOKahjRq/)K^yvpMݒV4i$य़UFV63T@s ZoP8.dZW5G-C'0| !kϧc"=) 6&7V4!Q{݇rH|ALP}fl.|L #SSRdY<Cb`l-A"?izwrDz˚^`As0\$@~C'1љ.Xߕ-*Q(eEBw>3E`P䠀$(W۞ 19X`Wzo|1\""5 A,jL <lO .2# 3dۍtja<r+Ͱ S-A%Y<YǓ|%,qZO>~Oδfԡ(K*R^,w()\An캍,liЗ'ۘΉc7'LKge-g3a-E *څmehRg0G]cf׹8uL8tn.b`lgRJI9HPjppAg $4 zfkU'I@Ȕٍq4FӨaG@,44]4`Y>R&ZPvyioqmz PKw߳VBP"M:n2!)*v<h\B`k|F{ M7S/m|<_2kU7f qJ4;t(mWR:hE6,f&5,hk-fd?UW_x 7edI̵Mǭc}+p`<P =bTLG yr0ax+>mY4nk̏ EIg#* dGyC(*5_v?F_zǑUqCP"'F J=ؗ}}`Dd=J(#~א.ElWL NQUpzsD^NTwGb v;i>pA~;~ M,`)MefȁF 4 ,f8zrJa\?SG>3/׉'Shs.0BNJȴ ǭ9W&J" m̹OBc:J~~Oath(T(0ALV@gqs]֬8DvS$2KciS$7Y J6d:[`Dvjt q:duN(j@4{[oo۬׭nA@L ]dۤSL#=qދ D#"arʼ/Cmp*HQܷF "H,rdȽg@  hm@kߩc~6!a}.Dd`~@z{ lP$NJ7\*EVo'?w(2Y*{oOyҳ5!TSpX0 *KFUP'[ h$ !o58<|=:'t@zI}t9u9sl'Y4ʨM(Q=vH]#pS_9$is"44(`ll ]q\9c}g>h\{vP/Qȑ?#ط󼟢fh(Pz9A,v@`>ľ#=N\)$W A3("A5},oh;}VFDMJ2ߙK``*J&iwE5,V) ؅$_< ?Sl3-ҷɁl(0Rhd,b\:kFRIBzѦ5am}tUA!{nُ ־ 8oQtXE` 9ylHk dAbߟ Tj /eޯUЊF_I$|:QaO#pf &, &E؇HR$xlZ@#=PU~Q+*(tE@Wk6N0:ofچ)clPkɻDWp-""üHF>=zx>^+rne; %<C]ݏ~ ?e/BXޟﶃQT(ۧD6mgxz(@Aab<b {Ώqi)e,8c[YB" = PhsN_;H`n&& $LM}wxz)W}^II5.]䤭3XHz㽘-EAfe(g|<ӞfSwt݈'辂F̀Ä}<>kpig ~4S|&JhoYG~N]|FԕV[{I`#i  foCT0JbOl?_s<F'ߩQ+*2np"G$]po{'Fǽvwfj=@֊|<l$u $ĻDnjJܖ^BY49𒃌 ̐i;Ļ (@`F':f8h"~m#|-x瓿w?<W=I )9),WhzK7B[&R@Ju"/"-"vgb`@d3q}N<8/8\t |̰IOF{(e Rʹ&<,Se%-#ɧү}se|zd+ģ iQFoR's[To@b07XlQg>9~&?֎aNv3F;-O/<K }K`889o :W,j9Ur3{%9ڈ>G: ʛ%M:~a9SظA[rs?Yl;`UW?KeQ]k,B#eXmho;oim 9 aсɑdkߤj#hDo€y# 0X0Y; uDīH/&:*q"0} >GdJ#hTT5oH}}~S`}&:SbG1Kx-}NW)FwCFU@Vʹ<6=%:ۉ$ӈ &A:ZVthtq"XMq/ko5Kb~ 9@ i00 z>q܊QN~NO`b#V" F&~J=drrQ$L& twJ>1r^AR-!a\tf AFmĨ}'jyNE:P4RkXz߁FJKFIF&P@54AXzwֻUBSP{f*XMͤOzށRi%A?R ='|OMOiVV latс}!Q9r;IA^sA>OUs,jLk_ )cʝ tג.}_L1_6Rta4FdH<|,1ۆxY2?!V n2xh }f.;X`H-ujeA96imtZ"@njDCvC0:;I^Qޅ8=J'` R׸S`pZ"Vd𙬚"=;-ȷNsz$꿼.0zߖ{'na=E~"c D]o!MǟT{?PK*(n~mGӄ6Fj3Rl=J *]x슱1}އkH@MXYK#zN?~ @}[w7 硹"E*c?Viç}C?rXd(@@A!Mg*p(@eȤk#`(@L7@;|1i>x( k~Q>8Q$<[>ծT8oﲓM]GIfienN5!:`8P<kt_Nv&ޖGף%&퉂qa&~o-QoYݲDȌTsedxߚbD,HWĤʲ#k/ >tu#Gp .ξ݃f5|sēnMUDaWP ~cLjĊ%I$iA8,о9f ,}3ENj[ci[U$' )qtO,̓vv3CaWi KgmmR¢ߓs%{[”H{#E}ee >VBaWMGI(\>lH\l'߳>22{t D-NcV>?ŧZIK{ ChA>B{C$QKe 3^S}8?L,N_s $~$QRq:"G5l^ ,*k|[] f9F~GЦ(_TQWIhShԧUd9~$I2&`vY4D|Ev>o;SS~„,;  OUaPVdi-K*OEho4x剶҆!DJ ErH%io"mHQw*188BWC>I]p>:<p}G ax2 (Ig4 ePA}o;hlj)K݇PoG9E yN2J^Dђ2ULc N:T- ƍP#}ß@[mm=7"ꅦՙ?/aoP$*zw z}v#q\R+M_CWK]vy.je45SofOd74.S<99L`P{ɋiv@ktvkiS2QLS4?B`һٍN&F\̌ʨIey?Wzc:GG6AM}&| lH0&`tnt9 ɇ *9&ύS Z#. 𣏠2#L 3[^[Kg< ;8x`ʈ9(8p*vY4 P1XTwD2CiZ21U0,D(, ap{0D:GiL7_HC'Zk㳝 EMJ3XΉY 021<2}tzS->yNI+KcgU; `[շtr ))T8GwjN}Lo2}n"Wp@u (0k'W (e J/Repe eZLS 3!#I&)Ō|sDx `zܖU6 ej&y U8ACƓ?Q:,+{R& >1@`R*r&geKdZlWfL^L)|YVO#@  bq #&NH's"Va)H破 5 tcmqq:*>%!1S(q3 ZPMzJIy?)g;[nܚL u"*gS@规Lmі-*TgZ:`tF<D"|:Kk*ARGGǛűqŗ=cּ`ꛙ^{HґLTIϯfU+kfn# !T`njRM׷zG"M)QL-wUpXJUMsٕ"Ih`=}JkȢٓi;Q&j `@@`HIAHFFo5It}AF=^^OH풏+ gidH%}ZTq拦uYeg&Tه[;'aPG狠Eve_@zK=F;r4`2 5߻ i*>:giTTJ",`2 <C`agKÇҮWB]u&mz3}Ʋ eIT$0>N`r@$ eWEEh""~498p5x1꽈=I/KtCD$NHUΊx?p,L%ܗΫ+Nb[(Z"ۧ,ksLee!nôagـP(AvSazɅgQ~vKKܧ`Ӕ mP hv=M-*0y,KbҹvG[L,OV}vm;u}5MA AVpD}׃A˶f[ISAs 4-TupX5P%d;u|4 -;yRUߓ/EEJAcmL-+]?[uho}[ ب7$^3m"A}'uR#< <),nlᱣHSi|G4 2ޖQxH&`p $eNa1j0q[)ï\ӆ$Iv'AM;m]$yߚ*wo%:-@I[ Ybo &T.(l[m' $.iᅫhH"U<^=JwGm#DI]<d^mcq~IkC@̴?c?l1S^PF}a (b똩fFS*# ^tE}Qm'7lV]*?m>,oC~16 Z_6a $2M2?"|;g_]ZHڋ,6$mHq?4"AfEnKmO'áW0Dr%!$}F,J>|4LOKў$ig$aKP_R*v:5B4JD6@frQc#|9.W`6I>H$ QEkӫTs QCQ͢_hEsD6dhI63 me{QEX:@s6l$[ɵJ= rqbXqq|vT vS[_&dW d 쓁*aD,hvvwDK"p"hYDN)tARВc3G(aEN-ЬkֈV*oȽ9ЈHrb{YE_{;y_ދuo JRgc߭wi0'AiS4<g8I'J'urr6áCwsLb=-zkXgmMAkcFtSDYzoDY%y0sy"a2_0N$*IONɓVDaVc"K# !1$fM#v0@e;8ʶy!(!/#EHnOy\ӟhM&Dd_AfZow` o81*A@AÌ5$(p2 t-}MeHTCj eX3h=IvԈ0D}zj_4*h,m'-=Է=i4ڞ:և"DQjF#ɯ+AT  ,?s%$'[㹃f!DszLl|㇏cpL4>S>#AMzR ٯvE~+uC"c SKw "$ZJw#>Lҕelh$O@[S4p4[78~}1}m1C̄x 4 GMnT7 (}(u$#saC#k|NtdE3%V){! +eP1E% HߓX ?/ 16 DFI߫ 4*}w{Bه~d^g?wp.ۘ_S@>UM@%ʔhk zL6&4DE֛o?iaӎX)檚ȴm?*UFZz%}Fn4-n~mz"(coE-v؅~>{h%P'Q Bqk*G n^~T}_]?9} XW}";)S9x@wAR$1.PPosbg?iuLjæ{IRͣTEC%G򴗠l|#[+h]?NLOiQ6z;LƻzD@O{e+-b.g;j+o\o#xS{Z-HBJo%ki#8nAg`XSmSm"!Q4-XaoiGx;Lg& SlE +N hFܛLO4>Yg1UFdQ&!XhV'-wg_PV|C}HC$?%ҏ%wj }D BKl^SͰjR5j߾eRke?<S$v 8CH y A%;EY|}j<IҪ9Ʊq8>z#$) H7XJW A|+_$"ъ*gt/] /ڵ}#;t;$ @,WO .]W`II+dzۦ%Ds*AS  NH)6fL6+)/qoKtH=/Q?/%~B|1c<֏qlZ!C9t%϶h_:OPT̴}DDcd>AvG+;>J>hͨW256O!3!{v~_Z~TAp$LQ0~\>DԆ7aͦ|avuwa`2kdoC GԈD<<C \0#C?)n+m]!ÝNvPGg[^C 3̾H?!e1WAQ8hGVŶY %L?c!6BAջFGĴqC8.AɎP0f{zI:s %&暟?fm$.ns\iwT}.Rc<>dV"h-7ST0]#aߠ>ӣH[m>DpOb}JL?ϗ1mA!BU{3S)*|Y\A4-紺]y}36lߎ|'>xP i{i/h 󰝚-])}Qi^1nlK3lyf1JAL}!_'Q_5agد-Cm.T8BX :ӕAWaORjJ9#-%6O!K\_"n.!_hAoII{ 賢9'Jm&dW |4.;+v#CSvC4_Nэ8ֻ0bU0yR@B[UHw5Ӱٰw"zHbAjv3ZlҒFCEu7 ZCi<|,'_~!?``ACE"$˩74jYGjn2"4ZfDxҳM14R5jjM`%88*m ;P *Xy:">!p򾵵kC#n/~D# 4\W37#,N@b]" -4 $~\q-pw t$>H sޛ[4[_Ow7>kĀŚ+ PkH<v2h! (EP#[Ubެi* t񯟾786D:|4"-cTl-@o`YLNi}Xi>@fe[jd_M4V#Yneh_$@gV40+ FF0okpy(XP,uxs>G*fΌƆO+pUD\ذeCu8t>V""o*8E|W"?Q_E# ԟ4d<O5bw?~t>W7vCO``Fb1t`9s~{-?w=|ȼH`ÚCHHSgl\.*#I85U )VpMxOK&H?? "#(msw iշiLT: +s}^#b#6 =R0`1wӈ'߽'%e~] >R} &!@`kE կѻMQ<4Ĥ^h};LŶ|z'QهHDќ^*9/=J(\wL @P#bDaISd&8ʚf%`?ƛ!Ҭ.UU0轧&V0MF>7|<LESTL{mU!4g(Y{k=uK4@"iL6k.Hw" ׋A0X۩ġk[WLF2~/:Y;q]SDjt_AK`pp:OnN{࣏wj!/Ԩ<|d;M%W/!#NTŽIHSDX+m9r8:G7:>c7*}G;J?F1x9ǿC(u_hVO_Ts}ЮVQ$ArL?nOO?4Ji$QP2vߥj }`sξ$1d U@5&WP Ѵ879$ WrUט| *waJ"dywv'iV%Gh !3ف V*ك}݇ϟ}cH:x]b0Ϧ@ӄH/7+ϖSNT|x^LiH]w?W1ɲhkA]S:PISNU 6]PZ<?OY醒!yq?cy6KR'}yg{)0p:o4öAv `g0m)G+f84:gV4@lo~Gk ,`[fN{L*Xcӏѭ)H>K|$Y>tCcd|Ċm~9/wPbέ&|E8i_Ϳgmuz߃c122~k߫=x(GqQw>t=m"1̑lg>H{vSEu$58N>W noM/bkyHG}l' o!X ۥGOk"L2Hq5+Xij FYݡsLDTuLՊ) n5[`S^2~I ѿ2HxĤ? ѹ$}d7x#:\hZymeZdiӔƩ~ ^a~ϭhed';LoЦIO"r,=GH؃NzYNa7m[܂HZ-Xf ,xy.G;/<~4JߖBZJD4j24-9g2o;\!1<WRT(0vBDHV(C"inKz:G(6Q:yNmCH};%9bdKJ~?KLJi3ũ߶oI @ZZZ=ܚ*mk+}N'm쿿:XPQSC\۷Mcպ%WTwx #O6wBK7 -OY~Jϗ J7< i8kl5DO措bs q7oMk|j,ye,]Vr/-Z{O>r?vYB'b ]] ~G`TNCmTt$4+:DeC H"IY+k&X`x+`!'j)<,IEA|m54œ#<\mC1).t M Dd*ps|:G\ 4T (|Wm' +`Ej2wf@?l8r`>x0>|(Nz|"VP7p+0 BO#RAS<)5K^BQʟ_ZϜUq&[0OCgo@)>C`MiW-!i.߳Ft,K`6[Am3355cAt-v /!+{o1a'[D+ h1KsҼf;u<^_Ϟ#@ufw=+I9al޺O<o(FĻz[wwgSktR Icy=4pע%,FZZ J ._U;w.x1<7m|q<1ux1LzY<SqM7ᅙ c,jCpg-hxُc!Vqi+ 48 3 O51K>)x]1=3Vs tt$V-E IS" +1FJXdGxM;wKx_lo$S3[aﭦɶ@{;)C[wu!!|$|*$fқI>fA>ex^B L?B=w:O>|oyG`K0}hN$fI U5*U *jhz^z?(f<,:;IV>Ao8Mݜh#>+X?+ЩkJwIxi/ P$V2LE RdS-dO#8H $xy<W~LXu$~Vb2 6i,vtv<Z :mWBޗWXq)e ͘[7@2:|7$vUP~ kϣূ4:A\ \/齳]D:-$h <n8~UV`S,<x>mgSW\[n?,߷_?~D3tׇ`2v(Vh/i+I!8.446ca8w.)NP~LI`=nNed>"LIp䵷 vWe"O4 P R>hEXBߧ5ߌIR+PՊ>^SgO;̈T{;~H mE׍)}]MQP@ ۬>K |DI?AIgGfVkU b{$=- (@A>RSsOOE_W'># =byWS>ͱ-R'I>j⍼V,S;} U'G;@cgԣUkA6v$+o|<!Cii. ik[ډhE l (h(DΝ(f|qs ZzI>WC9 6n܈M[v`] _'x |h臔}%VF7蛲cHj Hl鏠E0~P` ̜9ϘӧGÔi'g)cڬp՗[YӐ&\UKp9hr6G ꤂V՛[ ;1>_!Om5`2%u٩\3WQӊ2 ׅ?%=dt_WDBkn$aD:"Um'-*X4O^qAEw9Aj샞 u;nc[w y2 c]o5S, u m#&`*@T@{ >y]M Qb8ɸD>OG 6SAYS? N "N$J}ĉIa|exx}y\6CG|5}TYSg=IU'NB,JξB}L跄Us%_$oO7 @:;mKQus;Nk-z *hҐ*0>uzh>l6SD@?D)i/[ m`AS2"Fer-#۶0s Vp8LM`Ou`gg6xex;pl44;1'|?|){]>%d'kWe `jNe97݅ y;9sMÚ˱iJ,[|S{=}w#ṩSHԧߋ6X`'1scxq,̛7U˱{:](E}n xfRL{*)(Vq<I7s)m=?`@NkӉ };;AD:&y9G8ٷ ؟|X BѤh%hd0hk$&W*pVg*xS|]y#A[F(Y'x}C-APTS`T6ğB}x!#Gq>f^EEu4kN<_ۚ "g@ee{De顁KzJpk.}qMRy̐bo3/!2`~גSAe$s{:'Q2ihxdG4iSlݿ_cK]w^I4BtFࡃ'?O>#"Is2~<v41|akk:tw/:u*ua`μSV/'S>ǩ=(կ#S0nÌi0׭ƺW㉇<y >,_4gϮܻ 6A:Xh4ii A}"X&Iq/nm IO%A 9lrn(kOOR?VnTTNNXD'd$$&3rȦn5:sN3J=xWJ W5-5*E cu߀o| t8Iy Ft HE iM(AB>xx$Ԣ(?o{ s{ Gy1:$|>FrFd+ Ƚ6j]lJд&.$Í[`=tX9OgKN{6pO)IfpI "i_Km-fф(pf [븦Q5D/i,DEey6 h%M&I (TnQC.]3 s!t{odžM10\Y_^9sH6RGppA ϟ ??mk3s6wgLh]mg5e08M ؾ~ :i>C^_a QQ濄g {Q;QLvۭ&8sskq*Ly~LO}CxqKxqZ-ؽ{3*+wrME_G2J` H *`@kdv6A,#R:i*~_A nd fg$xt[:$}11HgW #(Acee"u[/}, "1HEݏ Ǎ7܄oMgE$YݢU1c?ٗ8\_, t9D O'o_[h(>eʨDKsm76@*sGzd+o AZq)A w|8=سi<A{6+N]h/jԝUl_ytI $m +@@]7 ¿<}LAae dYl]YHo(hh>1`8e aX'&w%Pj=?~ رv!<~kyEqx(^?NOg#~HtIX(\rq8g|!@08I"XY?#cBÇ3^>[x*x2<S(1==܇{MyOO q3yTکg#g\6b+K(y)xvӸ11o ݲ*Q\JW96Y{V$#}Y~V@[tLE&o}MWȫ;]K:~By0g7v xh5V8i\izyz+A}ZMO[jLcPUM&aō7ހo; - CH!~ *D~Ǻᣮk*^u" q*{-<(`Dvv`+a8)LW@skE@35~ 1ձG;pxN0 ߖBnuK5bv- iFK~QC VGadDi/>FF~- طؗEW-!FZ!Dh*(m` bm E4e~pvPUYle/aS.cpp}  (}Έ29425L+K apBmGeNRY7FMC5X4y̚4׿įoz;r&7_zոksӍ7f7&u'M}[ ^7 3{NGs4VnEc8jvPwttToZsՐW|aru]0PYRm]ٷ&\])ѵk̛$Gjt]qjDZUA0 QEw'(;#ZDȅ'~WFxB) ~dɳZ@L44F~:&-ECGyZ!]$< p;c>&ao[$@,MjU J֭;wt T67Sϒj*,ЈRO ;Yt=S{0#S-G?yk0rkOQ: +-YIr{+FxO~^FbH$q]4()vۏ0EO`Xb &Ǿ!t&ht"X0J$u5  qSfȞAh[סs_~t&&<7c'axfSgW7__*pu\w͵Kqgse_le]~t6n:<9a)\2kT 15e"4]pDz`|B*PgVɹox"UҙNn0(tTk{Kzh$\Iu֖l]2mU R7 (PD L4H2~:qO8v5lnyt8"h<NxCI/AD 73H4 /ejZ(@'! <Fgio@ xtI (x`lu`@%Ȩi~ǪNL` Sss&oلv@{$s$cfs#&#$Y'H'=X7CҢ 0>!#F:_d+jHH,h_4<v6@ TX͈yf|, V:k1{si|TwmB tlƮ=՛Ţ3)3jlܸLJ1><Nǿ}^UZƓ*Uf]~ڡ]3q/n&̞g~? qo矇o|rYgw2\I+nE_{-yAGyӞ}@3j,GS.FT!b%p8Ih4ZM@I*hh6 8 gqz)ϗqR&KQE.nK-;.+خ :ADn1(}Fټ/u@P+x,Ⱦf>u7hj̥#[o|Hh'pϯ AhGg|_z걟>Uc5G]'|%bڡv qp_;8Il_S!uJO|9unRA_+ op1?Ⱦ;1ُ]Y7t#!!h1D?0ўwYZ L~\vMAkޛ+m籁,0ۓBlq Ky\7I2(p ?AuZ8 <hBm $ޚ+Qhm0A$9TUQ(V*T\ⳅ_ĊWc劕ش~-@Hh_0u,JU.wHMq3u܃P{*#1%8p-Sg͡?g[qM7oÏ> _pϮ/<l‹\.Wr\@|p5?Ã>r,X0>(hlEhU,bwFMztH} 5Ud~NF8t }@zfs /QРD$Fp|Nx~|;s=h !m j^Hi prʆ~$k߆ʹnׅ/@/Ƚǹ<m1Z3u[!@J^?/gv<VS12 *Dįh^w6C9܁#"!^("2ܦwR<'h =Ux}OzJ  ;kv?*FԻq G0ۆԉQmF_~q]-nݏSW@ @!1bj1cFZaJY~nC+ۺ$;vжD,N ZR#_Hhò1+P`4NyvzBMU_GJQ MBڐ,6Ŷ_,PQT&ނAGAF=BYEM{vE!Ԁ߽y|;\)JdF{}EC܏R-tnp 6(oP1(5wogcF1ml\tx)Xrc8> {?Hz'p]w?y Naʓ᥅+x*8]^lپ Sg>GdM{ѸwjvoGiF;S!  #B`2&H#}NC"-t֮>? *u;Jm23t)N#0tR}<*LsqMnwU$=)4("Z J'$evPx)G |h+{MˮGusN?#Ț@m%YF$ \k D8R#kЕā!al[,ldp9"& @c$pP@jo݁6b+)lZ c| (k.˱m*l[{6nAݨE3w0&9Qoɩ@ƩcZblyF~xRy6ò0otl+ft^Ϛ}M; ѻt:ChD eh xN,(\IWRjPwL-**QW_ć~[ݦbdېPiWZSfH,W4%s_: _Ãw۶ s”G? =5W]~9ٵ4̟|b*fϚ7ciX~ j5 S+/D"DhoXW`:zHgOL;+8gFd5fFUFKn(+XڛZA:걃芑ALE~<|:h ekLY`JL2=^f)/EEypk_:"8 p $I{4e?킗@BW5r*yL3!0Ǐ `f Iv5J!H7xfT^KS1:Aw=*zތʱnn_K 3^ߎn g<=i=$ My3xK,y˰ضa;6݌7#LRVAkTӀ"m5C%I˒k3EkK{ eiEύN^ >s:|q[Ό|f Y?kdSɮ5@b[{?vEӏ B;t7sx:nkE2ڋB6wVaO%ًڪ?'}2?ƨf=nM5ZLj&I܅-7~<6oچys๧SyufMj^sڊ7o>?7x!<S3%lذg<U//};g Oݯ"Dͨؽظn1 B:@BC&O}-TYe|0Z7?@xezoMߖw7'P }ot2y~SI:n-`CoA ۝vC]eiHMP(Y6 Q p/W53B07#MR̪^HΈPR?AHN>~ ĭA;1Z-C0B*ڃ$ߕF?&IJV@jxtw$Cuvc•xyt6!ټhsbO`OcʃaO`ҟLÂ9 uؾvLU44R#a Dk0<6R#<GA|e1x)ذy6mSBA6bwym$}Uc;2u@/l\HI 4 {V 5eP{v~;|Jϑj~{}:B +uVE ؼ߱kc`*g|O6o߸^xOrxww>,.R\q%x&외7wGSO=a*nܸa&6oކu6<z5m܆ekzB4*lDM5~CV=>wnmU$v%9}e%M qz2 hP@CfU+e(`e5Ad(ߏ˾Xs~#S% DfU'ΒybIڃ}$O`Gnf|_E4C!/ :wخ^kK7/$9|n~MJn\Xgj~?5d}60mEv"J/?N5W6oٍ+7cK`y7\fLO>> i<೘99,u~-ٌM/6L]$L+# О#bd~IbwR| #K66rdh #V.3333NJ5x< P'nSvP878֖ASB/zFQYN(1\ee5 WB,`F5#ـ/F"ȇlp{PcV ټ>߽G@i#IT[he}T+54ܳw`;f͛v=^|~>6Yet- /̥qI[[.]V`=c{n,ZFе[b.Uؼ}/b$]n.)!ÈQ{' ԗPG$}E4!( 8TʯR:)VJ49q&4gs*Y B5M@ N};ࣳwp$IM/¦QEoF^EsL1CŏT鋡D澑d{|!R!<Av(6Nbe$E>btu~D<Fhph4#|`7(XނH)J)6|"" 4ȹ'm}lxix0{0'#?'z^w+:|%Gsϻ7R\~+~x6.;g~yG0KغipJ֒t&SHW U}cUXx|Bsx ;Ɯ/%W.yvlc(jީ. ZX;(Cm$1h;iFt06r|mDuC쀭"!Q"hۏM6|խ>;?O>xTdD+n &]L UX$15҉mظH?`H7mہ+VbK b…3k&mق뮻 <?%3f%Vcuqb }w5֐eE^3jtfV;} mٌn>k+x<->*n2l, 븏UC4Z,eFR,"@j6:G߶tޗ%C(ÐnE$ L(R[&=4B Iғޑh*  O([DKf9B$x `9:ۿde3)}  {×U_ǡW\.eݨiۊH79Fc3웚A}0CQ[]Ix04ɦciUJ (q { J\y5+pww܋k7^ .<xwoq?|?W+|_W['YsdhSSrb(* 5bP%f:5h ўj9/:o2ZWT`FU D.+ 5,tP!jȶ;ia 5s(~D m! *h®]QW{#7؆IE*+Ƞ?NJHR*"'dPfFlڂm3^|a~Ķmv&,:?K_ߌowSlمEc/b%9X*j*xn|k7D{[^/xx#^-qd"2kyRڶ]=j_x>M*C+Y D6YUS@ڸNmÑcﲽ\^|ɿk^+`` |Q]h ~M ߛA궇B &Ux4IW1{foW# 0B5uOR y !#{OeR>f~}o(Ab*#1@:Q(QOP 1~&N 1T+xee = D0F@KV .#So׸Wzos>B\J__~3_ǯoo7_Wue|ニo>=g-@0J~4MEE25i$ĺ Qlp\:jET~}MqwA:~~5صwU*. 9߁z b<Il!QJ[ s]ߣML r8=kiu?_jaIdy?Cu}<nl][ף>;} +4#$N@/g?&o;؏<=^ih` 2ggGV.^_y/ṙxvIt=wSWcWXh\N~f46;+aVƂQxv:n6o VVoǚuKsFtuoY4E\8rpQAsnHEIIR$wiI}VH-]E{~F7?k_E4Cq!(AY VNehgxO#e:jy/$ة!{/ M u"Aoo/oIЋ{p8~2hn_}A[-9QV\RP4G #1bOWيN:\8z~tQbջjBuDFAVHKHt0.y_^}-~k_W7ng[#|~Ws{9?/K?o|~f?FDBIDAT>4|s8$AϭA>gQ5="L'c`Vozt#\J2BmwțO28w.o2ݯk.e܎D"EܤhKB2E$H;w8uv_;*L~?A(`dWmf0Ŷ_,sOS+m+аg%;#cxݷH$i(5* '7ZV7Q/ުjTW`+)O=_kXmĊk`2%x饅EXt5nNw~Wn px漀g}Š;L[yG%6Dy1pfN}h=2 {IjB+rKM舴;ঈ[T<E'?~sE"-vtd_#tܜO`F 8_`@hDv̉8n! `]HR%S4-)yt T\l><C8˱p\C`TekvD*OH'8:KM"اStJ۰=9/Ň>(rnP$Ċʋ[\8Ȟ(z3}Xb B|cސr&8gϦhB3&O nz?n¬ /g=={TtzV֌DfL%?FԾi$.W]U.wpesQp(hKwwc l*N!SJarLyQ\{eW8bHwj, Hrt$'6Ş]+hX5RH)T4&pR4=i۞*4ijNum5jk_ށˮldž;|u˘Gݟ71fUK sز}/6p,|y5͘'wXvƅ%`:޴ۀ^ <͝Fܽ;wMщ>y<f7w,if{:uxw]OGYfߣ6Sx,JAksi0" ؓh _``BZ$ o=U `j޼ejb!UcL T0('d8.;*,!_"{ѱFpy <&2 f=ɶͩm%I ]f04 mdĢfGPL7 !(\ n/"*j[@vA)$$"C0}boY =]?*(G#/("X0Y1><g` !d?> kVo3WiM@@)FϩH5ETJ&!U`hP5D߷lE#eW .7ϸꪋq揾o_|$jO+G+l%bx;a~>IM+}/Rg;}}e6HҴafy&lظ;AMOÏO^g%"4F$ZF]MT$jCuuv}]݌mbXIҿ` ̛ ^Z9n.wly6E+H&g,`͆Sá,>?5gQ[ *t1=}COlIִ!-فD鼗!1v65, &Q?c4Ql;Zϧދ ܳ_ijWB|P h?<4Ia1 PI:]#ԃ}Mei/ >u(tD3e?O ޻\G-(];1DwםH}GSߕ*0DٶYtu(fL0TbzϗHo$kUvd^=sR|(P;q5b_kd^a(mAL=_q -]88~1چGN`_8Ϙn>xzG0<"I+q66فR?Fs}?GͶWٞͮ02?Ld{Ze%Hۧ)X¿Z&簃(%B?f_R- ~r!7q.|7t qN's GJaNp{~86bMv?ƶ'a[~;~IR~ۇB7}j&kDG3vn^=[мw+;}b6dАH mb[hӚ#Y#&Aٵ۷>^vl\g%m\/ŋҼyI̶ev\zxy&]^ZYflW5V܂j{c [|m<4}B˵廰c&T*=<=pn#;LR> " csI#')hNl_{`"/"꺃 ȿ >P0 n<ǴJI K(;YY NoMP&͞ mq2|x@X0LrrQ<sN8xwC.CC$1%gP!W8 bk0ahdK_Vvz^l«=^EPfߡ~hJR2F"6K?? Hs1̜". 6dk! #86F;xgBrQ '/ص ||[¦ ٟ06v</De5Bn< %{O6BE$S*ƨ)uqI- =z E1h l\te%W^3/>nZ̚=ľ>(0wG=f ;vhh_[G@y֭p뭷[:s?Yl;` w'Q!n: w@y>y}{&l4SE[ !p,P+ )/k )JBβ2lX2t-3Xj=݄֯+aWxr4w]oc<7`k1kLXnI6lۀmeBࢁYFsxgPHӚG!ռ|x-dҤ7jI>3V|3OcmE:n2,(mFΪZR5}˭ (A;)mH88ǜk?q]C"*N JemqVߵ|{eZ޵γ0 ۍF'ɋsο rPE@I:iq8M`3s4oh/0h lTfoS%zte=a[s uVSZ4:x 'fs9F)<O7LӣCK: W}55[ۺe2I՗ CwV4W^׈Z`TdV櫛 >u@bpr_WDp~|p?ͿO<u?kށއ Hᖆw ,l? F/c spA9sv}-QWAsO$H B-a5OهhiM,*DDJCX;|F`B< =9Ta^n3F,\ /.԰O^wb:ܰ=<zIl!aXl#jQь 71UGGaƳ3p~6)UUjNi)گ4.:Ht$~> z즃t_nwӱh  eZ;E8[LjGJMk%p*,/"$e? *(0,=IRPTP۱ ~]AV[I"T_r^Y2^?q0'Aas W |e2y3}%ʠ0ξA[{7utUn*!G}o"袳ˢj:t8r@/w;i5KGϚ,}h}N2=hjSLhk\$v:x}Q_,$>e3')8v'eyV+XMɗ®j߱ff8 O)P35~NvM%4"{@QA ]E׮ۄk~q9!)nO1)ع hҤm 4Rf5޲yS,HRxqֹg|'o/tzi'i? Y4w}r.[I]ڀOx > 4ۈ$ۯB\z 4ne+U7*ۋKځl<H_zvr3/\K_T5ݿv.ڎ\?5ql!߀=U.t5FF]G_i/;F?To@0腧 7c)+GseSN^>p4oXœ[(>bx[)}e<e'*#GYPp|N$QoiV&t?L ДFgm#2g8|I+QU+VP_yoPKyJf;Sdy6Q? d%ыh>~ۘ}mD{"ǾUt?Ql<a4g DE|W"Z b7Bˏ i1msHX9|y7БJ╹s?KHӗ)ED=F?EkW&wcU\J 7JABoh׬ y5nG(Jyv(B\&=^\s ~|98K>0vW!3+X@C\!{0f*K N{t9-M⬳~s;봺doF/x]ؽyvoj;ӷEdFX55Ci׃$CğA4me>G;*+jIW~xjʣؾi6]// b܍s>Oy`#vK,O?1I%]N]wcJlݼM80~3?_+tw7S>wVUY}Qxa+ ! rKr rzc~[iGR:۞>~ƟUB/I=hzC4YS}<> 4@"aGi W? G$YSꊇ2絨C7oy =KV-e /kVӮ.¡CibzS-_ -[f}9A\Cc$I+}E#S/<NSh )⪝mWh7 tA#c3E m<E'?9GQ.mIN,;ɒ~q|Gh{_BܘȄ d{IKy3Ρ~`ɒż8}5'Dr[ MK4Ŭ䆊5 {^y8߿(ԧڑ~CAB?Mig- 7J!λl\|ȔP^diG\P Ia dH^jNib0J SO=>dgv)ړ0p4\رM{W!څ_oノ$x"9Ƅ ضJ.pffx˗.$`9V.Za&X %?eR,ӞEp7MJ 6N-;˱uG9*jp,Y?3T=m4a 44߁\Hqo'N"`t{(Ra !h'S.)KUJ|?f޿׳D?޷Xk]ZU1[D(T|,De'ܧ0kØ=w*,x-`/A  N8`3O 5;&8hʝDDR2Q"J)Q$8HК*#9<,Pq+z_Un7d^ -]^ky.mQG0 ^L`iMؽk3Z3~ v 4Ty[S*H+j\fΟ9ple*SwsVoYOL`]}FZeeXǔ0k\\rE q>Uۮ :߲ޕ-)hc=p(Cn"ԼgEfv(0]t쀭n>4b44n=nصy *v-yxA7,ĘsntrMt|_s7U44G ٸq}lݲ g|4[q\Vm+R_ܗcێj|nVj~q)2 /[njOe36nnD$Ţnmp U{ᬩ 4Ԡ9aD)BOSuD'{F'e it!@ԨrDf6=L%:9 {`'C奝@+!{8ɉ4\]8 $$ްLd5Jrr`ꌧ'G0cS>I,\^=<6PN؉Ύ.̞"_FyuIMۡH(҈Iv@TQ)Una_#Q@d9B'F`KT[Ik9C|vOMgҨ# ^-`e4N7no g29X,^f&A?ԨIŢV #JҠ"7U~w8C&(<dw0?]$ ƈ57^w?V]iL Bd"%z+-\qY-? 7_M;"U-Q= N*.-k"'O$Sؽ{7_r酸 N!W #FOଯ+-7OٯE.n.8A4?7fzPxIl&Iwvs'V̾v]9]euis|&lZm;"?ص/FT0TT9YOP[44wK~/: M{Q_oC[.6+$V+R$"i7]AfQC\G"|L=b?=Ppd1CA G}E9 )3+@=V#JT@eIENIX866i̜5OO}3hO{GO;y$bms?װ\swPn[k۝NLt T};s?uo0I\Z@Fb1 m|L};.hMz0$4X.CQIU?s/Z-7# <()H{J(ʈP Np>?: ma)fo*fW_܌K.~ 7+P:" YE' 73N|: ]c(RM^;t}/k}4`2 HVEKט顛;Hbfگᢋ.W\|ZجՔhxw+۶ц]OG+3kG>ԇ\D,:IQ&1F[;BrGN@mE D6>׿FiV\A_n1o<,Z[l7-Xd{vWaWOXW%++*9MĿQby݋vt M$\B0Bה`5n|+@bV/L_,v G?ko̧w <LdzI5H@%¦v*o&կ.L/$niy;,}s3 bV;~US`OUns|K 8-Ͳ#Ȧhf_Q׺ک0 {s/ES=#_( Mcuu?Ñ}}(Dg߈ۑP_! $ԏ1P}<N[jX:ÎmS\E-Lk~m!w濂 [Pb:ydRIbl.BK.x#JhC ع6X FUmZ\v[~tlKXxEڄAKJh OD^Wf,9R'UxǗ73l߾e#|G!Qt1Z4`CkU6mڊr B:ME~uV<ڕLb,p ]96H,!ir9Qk P'';o"H3 *[ QɄ"~::o4-eMj ,gnĖիn!a4WƲe12e&Ǘ^^%~vMXx zf&VQQ5ز ;vW`]fR.?[SFG&b>g-*wnN\mfTJ$Y#C$, djR'#rU`\ k^ uQ<:nBMpRn7 C#4-<Z <Jb7Ń6^:{n_ Ѐ! *QӇt,s˯|&a_8` Tm3iҁJ4I$I7UnmS1R z>YȚ&"-`MOo)*Xg)hs;QW]կ,KZ|p3rSakqW yKAOY~6xxqO~{X0 N3`2Lfm<Ϝ)sqEď!~Jpm7_"b)ϸx0ƺeQ*+Ԍ4CDϾ5x{p5+>o8l֔HD]iGr`bjԗ/GнxQUL#Y!`̌:ktMNg{ʪHh|jwa 0g38oQWVVa {,[/B6X@x*] wTbux'm^([ߩ22[~qƆ gc%vm]ƚ]hIڷGC(&tnYtI:8!F0!SƐ6XٞzJ{!DQFKIRڲGRe wڞ&W0j&q x4$R.5Z-yͮ Af<x0q篮#0rvIB:ZȂ/odZx؆짾$tzMZl6{!Fm]$tpGQmAT$ߩt]H$mN[:Q@:O Q dgYSвY N4j9/V` a$RMFvGg5uBy@@}Im Ԛ[%dyxΙxgI84g> lk #)Ei4Eݜ;w pΏy|^]g?5ѾsNjwh^C(I°6SQ&t0 l9n\}KNU[x?tdr1w-ʷ/C՞uP^*ϭ%vL~b$r SMsFׯ^ysf;gTźU(jFL߾yAEϥXv+U9zw#ضe^zq1i`ӆ$ $Ne8D~}|_MMسi#5C:FM$nSd3h%*rJM_+$*g /(Nꫂ]%-y_'IZeր \{6"(tj$o/uID[)@SO+( ^1KZ[6GOޏ=zY1 xu? Y3@}n-җ[i >zl>߅jPba#/7*I.}C=Ixu⡰5$ [Z#ED($'UC<՝})[#6iN&JEUVF]ȓY3#vH׬=zzu,&- &woW _ڗ3Hݟ f[qDʐx,g$]Y?E?.~vOpecմ!d+;X %um׺F KOWQN2bo|] TnZJU=o1@_ =${$K}dvB6>kj'Q݉VbweXv \k`WWKy֯=-| ú 1RVw?> KB]޽رc'vD*2%z-6zN,S6bmkֳO%~ͷE?k?"R6Df+} k ߼quAV<TASEYebt`qhrG!L<ҁO B<_Jg؏rOt7\N[R@ܳO <k<7v5Xz!:>2NͱPUU%Koɷ^ALƨ^b$; ^N#S mcm ڑ(F4BnOZ'Вn>b$|})네7%)d4Ea֤L=fyO(2O457e ˫%gS.Fs}߈lʃb>L2D`(45#cè%Vv!C?Tx$Ȳ?ӞkZq}w7xgj'-[dxr@]&8p+<^]X~ pE?2Y ;jg( 6똲 "xȍ;a۷`owr\ub4nZS.g]l]u;WUj|ư {2xkj8vn=囐dUlDz3D͖Wq"/Fn3E/ޏ~un݌uI&+( V4,^秿E$ o"Pz= /aͲUBy:lZ[7nF=Xr f<8 :IHPH\!/r ?l_mk{b^ʰ`ǵɫH"K㡑똄NN Ŏož1_m$<ߤ $}2_)zը@_N;B1#.F_lu<A୮jxW+q]?3I10GJÖ6L"s+~,AG0HJ#Y!(%*R Z%vl޾!s֜<M"\ BQA<<^>WV^piڂNl`OU-OO_Gו٣hRU̖dY,bff,fɲ, bffY̌-3e\IQ*`t:t~7׮}ɸyc?Ocqセ99^[)瑗M1S\*&2^s XP-  w7td"BDKt7bb[L)8E[8&I|b-hpD4m`i`g\Hտ8&D_@A61@}W"V7CQP iT $P\ikg( 0Skb@i&: 蹥 LO/alt" LͬPg b!s%#~>=W&_%~D`}X>o~-FʱR5`:5x:&ؔ\Ld2ޟۀt՗XAe~* Q_D / ^VbCHj.AEyŕpu@fzRRQ[fb(+.ar]DUE#M Q7 RX,wL:f\GwgR)Y]RuXnJII_|(ųX$% "D 2Q6i:1U,Lέ_xO^0251qXr] ^=LLc(#E,P_ ~gx!nQNOçeRfW$===9~U3ѯ^HImccO<cT<,xU:1X0?3yy0O?~"m#29Ox>& q~1Ea6*@# By}hNǟ C Čl'<B +7_*y6.}Rq;WwZ9BU[_*NqnN GEmYYT`f~app_w' od\АxO?ţؓZjiF>'Z\EkŕPCc; S-*J!!9^ߠp%r-ib^\ɠIXg,)LXg?"3_Y <^|]SgG͛~/iF[+DULp|  XR,Ugbw L^LK!Pv.ͅXhG}E<-J>ZF5MBEQ**r|2 *4c_W<gYq5*؈}g;d(+,Ek#yBZ4OcQ7W7x}z5nýkKxc.<.GyecwCs6}sC̤E&0M}(O|՗s9Y6_38"*`!cBhq+WĈ(*afhrz&cÿc:J/\'>;)#h ț )]PSO}$Q'戜2R 9+r*jPwRLUR>xӢx 4Pcr14?9_³gXXWٗފ: K+wxE(X\ @Uug/ЈFpH.\Eju]r&rH+@s]-ΝF_g;_'̬p\*j8 7GwF twu81}|q]#$,ζ00Eq6>F44" Wr> bU(n y}lh`#`dpz:`mq! Eg_u1-f]'"s4Ye$[,E"occp:{޿᯿F,6t/Oo:b,4`*/“1P׏6bKޯÍײoj hG'rr,jjؽo7 ׅeGRr .]JdH|_W_ʪxϢxB,x& |\(f(BuE&Azzyn6vhƞ172SJU<Op./6iĒG|2'ycK2Q9DB_`b]K711sh㰭WZ ~}꧿Mr34מ82L9uk +sEo`}!sSi&$\&nCzZ6gDziU44_Ws6 =~/4,ok!}l'wf;G6g.2cn\Ur@Scji .g`bd S~a>KbOICjjS o qB+<Kv qi:LMMhk荆҅;qkbDZv|w4 ..V($=R1c`}-X_zok+b CMb oMyXi"4 ҅kbX - 2j5iQVx!`aaN :w,}<`ai{=X9ԁk#LF_n<z/5%<!woE_VZH;t?a%z š@EOLV%)% p[\HUUoe*@ BzZ t عR5l͕XT]QgΠ022/_ƅ$7yi[email protected]>&wօ@@+o_G+ww7I"5h({dFN/ ;!IMƕ$ԧ'&":j1;$ uhfV1\6O@mޗw l)~p Wh (ZE݀vi;͏>/Xuh|(d(]_XzIU~1.\ p6%]idzItFfH*fLSbjzInA9"gp ֯] ]!3L⊃ַ!xJl =1Ia0E"/ ]:gV181t"#U$Yk> E~X/8&qc4<4R`7&I54K$ 2r`nk??gx{#*%farILQh~7` F{’+B} ;-#{\*4SC, Cyq6hŴrQPR~w|mtdw$2::u ML/M)wxPXZ|sx"XIOIǥ @ƹ\7Tb3?ɧf0)4 e1^sFI#;Vg1?@iY'R䬃޿]1K*o4e945ҀAVZUطMDri\_&"?3)){ҥA,PtgӸb )jl,⃷nS0Q<[?"-l,JSHs4UuI$4;QT,9J➠kFLK68x>@s>EC%dI{W7n?_}5^.V("64ի4*61'^+ycS|<n mX0r4>9n^[`:گ?AbRo߇ܢRܺSRSSSGqiOfdK\{-i)Y0A֫1KQ0$W䇇4lqeqm tl:Fa;Qԁq$<6N3@[@AхIv+znR}XĹ8wx~['iJi&VbR< $/YZh /C~'a((#`/f}"}> >MT|2KC'Z"<WaQ1PRRy9sSMj!**KhXzA.32FX&Al_,ϗNIdlCBq>ΰ0Wg}@@쟏AJ|2[17PO#|Χ~(<Q}'uꈛ=?1N#3gi$OCĹa?)X'ש!R<nEҀA= \QG_M>硩NF1qp?fP,de#+#94#d{_@{-\T '}p6R<H=b 01ɳ?ۢF:FG_+DmQCG\Pf2D~XRcMq_lM&_-Jx6@NN>/~wo8~~}M01Ԍ"x'`i_'?9^_@':Z5ݗc>Qp~e&}b; J2?zF~q|}G/ߡ^f>VGc\]>N|Tl~r ]L/ܡVX$7\Õ+}hIhhh'w|7-fL1jö.<w޹}7oç/wpG`ܣؼQDߡfZ!'ۂ*x keU4YsO@J6qe(*!6.T~TL !:J؟b`_X~?!ֲb ,o~Q 19Ȉ3PQV e )@T֔v< 1AlQ* ‘=b ū]b܊4薨Cw -lPMtX(<b+S{+8+iY >Kl&ce؉?? 'H EZ+J=n|ɫDwYRlQFEf K8h(ť 7PUST5W%P^.fV}(LODIY Ҁ dgsK]R>̼Tdcdrx~fr q*uh' UF#&iϠ$# yJz.蓖/\g}]e>~ϱF_X`liB֞bgy&rC$t = :ُ@Ky_}1~ͷx{d]'o,1lՇFpZ*JrjgӈZYρ2?qs# RgArܻw#Fff1:)f8y鋗%jU<fxE8 +s`9:Hx =o>f 13IybdzՍ+ he3$V{WEE9z{:};}9?Ϟ~óSjqzb̓X^^e/y^.&Wط7AheĝsCX R'R]]>C'R;'HfoE#fŲ%CC] 'CWGzzA-X˭@<_cayA,[}æ9<g1SZhSpgr(=|,kFdN S坃Pn[BTuz6Fouom'g8DY ?4^ܾWx#=)HRiiωhx-.I bB^["+y要Y`s :j x[ #.4"Oxy |t$][;0=҇zbqrWG1?ޅRz.溈 pC!-l<+dz" ÙODy3(-GQ!vbt}4+ ݚy1hqMQOT"tRKbmݷKQ}ST#€s}=H$VU"R8j/`pE<|X$5ҳIs vP8w3W-9Wi.! !Ny[ c8oW>HĶyXW2}rCJb@LZ*YiOyikǑ%hWWLcVXR>_ΩźcQX!Lk0S|UOo3޶tu͓}WST0sD|\,<<d3$`u88i3go52 qA& ROstJ/ܝiGu5CmM95M y+V3 C[k'jzSMNQL/ghoGki|ɜrJ[.4-ϯ =jk˟?B? c| .!) ѝHO>x?Kǯf!=COU6"aoa C1ގIf=i@Aa^ 2sY8rHmMM1AmPGT0c`[󁇓=}:Мd]\ՅAL6 fFf88i3Ά8福nq1FNV&p07DT7ӐJS1=61X@7ܳ?f5uH+ 㳛Ҵr1q K7{-lb7'cO~M:)FD\3&ipWh,i<<ݤy>.ETG(W?zISV,=yg.BVFEE(jՂ+x.4h?y_,c8)MۋuL/Wҥ%Lգ[x|{FCp :Nx 9nW:hHh0xb+5 bsd K9g2'H x{ȯ %.100>"gz 47|߂wWTjg4r09[``8AZrS<Ely6n\_xC -bGl{(@X. :y G堥{Ƒq}8.N4Q@\}&kV2l -N"7PP'w<faRu1 ?~F5{,.s"<s؎Ybnw;| f2O2ۘÉ ~Sy!l4E墋t3͡ {}]49R+-)(Fff. p:,dȠY0َShh7jKrp&gbNSҖ9=>| |ӊ|t5Ր7:qؿ2ɑ+2-3SShl7Ni IYW}D:#lnnO+ ؛!,ch<riK蒸,L%A&XR`dcf)*ZǏ11=xyO?|O>}W[-|<M$2El<O p9!f0P?(wy^&9?={\ JJQ`%ɓ4[P /^7_/곈b`؟x]M-x15|!ln03o/gboqL?W#3sk^ZC$o ~\# _%iz{0׏RmץmEvbw=YwgyØE\Su",lbdtE {{s;BSK:j8,e`J_\" [4 ~qxvϋZyu8ٻ@S;gK=X3zuԛiB6E-G4oK|L\A췶=.?>@3yؿ%Yj9 cE_xgrA/ e.Ek[fG>׀??;b?$ 3ȉĿ|=q$ᔓ5Lea.|D T厢97>"e"77bK܂|$"!a8"sHMn\_C: 5bnUE9HA qinncCd_xJ[v #cؼ1O8;Ḇ/|,O:s%h#ҧ1\LQw/ad_/{K[-ź5QK-s_9M |&|>A(?g~kϰ18Mܬ3e}<EDjɻnsŗ_⋈K 9Ϟ!<,d啑E&~竍u[%/}1$;wIbD;"Omn&;M<:^=u1mE,jnj)<Vg6x Cd|ؕ)3+ݭ4+ďL9n"\^b=OOACnάy>{ Po,cCRM=D9vP8CYUڎs^*5U0oJ- $wQ*0/$wd-;KՖmE&O M#S-,Y4<$]kVCz^gzl} ۰˷ oXutn0GcU9ƻxmP34&hx\.G8tQt-sG?!$Zm 9l-mAq'af!--% i9C>I`'dgRR 3V鶯>y 󂡩5l'^ntuƥ1xy{F:XY:̍xᦘF]H M䉪$O b&M)>$2̵`w(6Me8 1g0Iܐd}O3|_\_@Mc;&olC hlݸML/09Gj Fynn).A[C%ct ~4eQsnф!#-iQX&`Y"1)AWw'4f& 5&U*^w @Qu{./L"p6S~@H@}iJ84ydb eΞ>,|]Gv~bXT'^ƂxX~1M#-oNu-qɌSkEcM#jʫփ6tu5b '115wC*y.# G%?_;@46L,#1|_h%KM V161 abzҠ $w8sl|յ)(%]`D$P\H>IqHMʦVJ,cbzAKh2^32҅?ؗw*{^3,SC8gVԷa7li4`m"b;ݿ} Ok&yPܳaF™ hJi3BrODƥ% |4%.; -!Zꑑx 9QW”+9@89OhJ 6p)w|WmT<&~,LtDQ(2]]񘭹G̏@ f*`JpB9 CMHے7NLKWVG 3#sG߭Q^^R\eh[$qlu Jq/ X4Ť1G<_ibŒT5y:#] UuUI;Q>x>D'਌21J1VdE P`Wf0<2?4+R[4-7Yhǣ'ɁXX'/~3OI['0:+/9LMI)K,vn LHK17QjfATvfAF )"ꪫP^TNt6U Rx]:F̂(/y nATTEؕ؅aXq1|yr>'C`VY^vn!b'011syŕX_iID9' Q Eshؚ]\wlx&6aj`WcNI3L )!Z׌d@W[)K1 jP7 m=Rys|9~Oft (߇PW]LT 6\`_\A?^ttOmjyXZXȺK AJRQd%E3YF&yv1<]G/Y%03օO617ىh}CC}h("=q<{ E 3]0U9'}uxZ"V& N8_tu}ffK3:mb:f7`T<s2rpKtN1.K}:<Џ vܾϜg|sb&3ڙSSrL1MEI{X:Bt k/l;bN{8~G)#%2&'r"xcBS|>X*l*5 |X؟Q|Qb|FM>xG~wfW:̯7iΗRUӼO|Iqb:1ELbwybp]=(/)Ao{S5 ЌZKQWԌ i`@"G֟gbhZwGxD0ǡBZK>OŠ+0 nRmHV7`q>9A,UxHle w]5yEncSWQXZT=h<B#xwtLtPx0bpE:#>M絥[O7Q?ž]1 <yЪG0_z鯟cvP1> `o&J?ď]x = YP=N1WpC):HIL͟Ԍtd墤 025ƥ gD4W"4cJ1$ܜ젮FMnf?/yʂ~>%Y#QYE/3{ jy z8*˧}њ{eq?Pp8kRc`s\^8}JHO„Tᗿ-&f7n_naxS05<GGYwB$9-ynf,Q/QN]̨)focv:fkJc?DJ KDr@oK5ΝGMCN'DT\ >xS<KV#]<O <Yb_솶"0&<{iy&ܾs|Ͻy\͐/Í|=s$K11;"\^QܓωE!^|9u`b[0yr%֖Ӎbjn 5:<yw>e%yGOK0?w6%=Aum. k)/C^N 2CWS{Xg>_[_o-ؠ_!S ӿ" ,`_Z"/*r2Q>WK%0,uʲt8{T099 C4y\NWg&p}U<zfY %@~w h(+Hg,߼2M)J<n@u54ޣi8u O..&,-⁎F6t 3-.4^~HN<OOiBQ$T\Bʥa GQF"Ji>.Dh7يB 6aq|Cxx}I;7-#O0Kux{6wy$CuF .8f kTg62f44X>66&nMɥM44]8`EzHutK!qc4{^1_l\Nzt|JZ?G,X\ @gS5j˳p}u=eHċX3054FBB"fuS3ؼF@`žxQJ;%$y-,cctN^R)Σ`g_|wH-IbɃ*( '1[q$6P/--Ki~Ma iỌw}}$ar2sBg $Y*jc .kAksƆ169kMm&nPl6+ .w KTSaFa#H}rMsQA/=&fQ+,SW3+j(BgCXU mEhQ+@C ͎J'c4biY7 `LQ<=w^V6or?0CKS;[*0D J:d $8Z[('g)kڋoz=Hcl5fCWΞĵ. ҳ8 g{̌ yb)A:A&q4$TBYEC1$ BNz0Z* P rthDTGpDj+1JI##1uf}T$,~^ΰQFYRF*0_{_^VPtG_ l5e '-@)#t4ecz ]&_}dVhi(,GG ZeS 4mH.1{Im$E,-Lh3 3R,Q_xA)^*hW1608DcI$;KHK]:b=ፇo#\*vyX11Mܽs SB4 O?eb\oh-&y{(&D5<{!Cz >|vw֧>E<N@.X^Qm|^2#S hhҶy/&Q$cJ:id ŢPh?y|\Q$]ks|Ns۫h,$pCf^:/$^#ш3F\Ya1 </"\vmiju[q\Fs' nꇮ.4U`e`$ 8GT8$s d☊TO(>k)8M%.RLg14:-caua3 j05w%`+.`9ouar-sp~ sE}PM{",,~HsD/[8o~4g)KuNa} !\NvAgf1'Q$"%55 Tp>.37@AyV*/yX]uyA6BcPSb?- 'hAMi>ftS#4ɨ*˂Lɯ%!.?X|фwkP+m6 D#)gI&, 6 ׌513'4f9a\-0wNcK72q+]b6]@O 2/+c@s~yϙW]l9>>\A)O^D:cmr)UtF &ijiؿ]/HMay|7}dgtt| Ķ\bXtcއ<5ܸs&_`1EvRϟ4 }⣷_dlҀޠ^汌M`;<2N1yxjXd4bJ+[ `?[4s&ϨIΉ:`θK}QSOSI 7lbFC/m`_cPa&.&'0/yW,E_歇GmɽOpClmErq u|Ѕ2tt~)ee cضcIWQ8"B-3k$%c1"fK"fy.H aEMhlQʄy47c3C_6}T&ڒ:,c卙c~`wQ]-Cr'] MX[H[\vw Xʖ }/-*D vVvwFshĕ礣 G| :4a(Af _ѤS TWbl WWGh[͏8 j*w&ZP7WxدwVx ?wΆH=@G4梃g`_| ƨgױ2s3#;4709u3kSY*c/.Z@:Qr4++4kks_h󘙜&ujd9Pqݰ<9Kxz - GHYTy}g33Ǐ7-Mj_q|'obdq>}w!W9~)rSC|Ϗw/ޣuچ4(igFaTWQ_Dbux& wc_g/iŝ ˠ7 ⱵWUan` xt oP A6;IQ$]ÝS|ا pk wOM/p㚨t|L~U(ezJ;#5d_Giq!!Gڵ 2228p`AQڇ'T s cdR KJ,IXZZ23ƌ 1X V<[^9D4JW._yNr+K  ܐiK~m<5Ncop^ .Y1I &1]tP8xEzRR~&R2Ν@z-Q'pA=}h|S>8E!alfA3e]S>@BI@S bt]keBuԗc e ! wӀ$!"<f}LbPWx2dxछ9BO9!%lp.a 9:4 LҀ04 bMhx ni,*DS0WAtUR8 #- LcIkhjLI&}rc z&>$Ip. U(,E,N8Kg`nj&=~̎҈NLbH\ǽ; bͲHL Lx!DmYqzWA{OH&[ݧ}' zh 稣wv4(h7\f$>HB'(ZS\\jnP4##& q'(7+* Ɲ9ĐT*M4 apd d5Wp6<5$q' *]cŕNay QPRT75b{I$;0?k!$q GQ8Bsp2G (yUYN*HzpwB'*c!FG5q񀁾?߭4bE@7Z )B,» Sy 8hj#z֍B?5##9 p0TD֦Z ueğ=zd YHJN لصg/.0WV\ _W;x8@Oܠ %uuJcC8%-C1IaYBi)Bq%<L\Ѐ_F|/<S5+ ǫUxg 5p"]5(tqGVZۑ|ƆC 9L}g~+X20XD21Kqϸe\ủu4M]H-(n˨)'FsPAr+a X-v#όMS+lb;ъҜT;#T#!>yJ@Y^<D9FQр3 Hx,]u/-D".uk442A^>4 Qz` uT~y {OL6H[=~ %(ILF}*1*D9{N]~fV0,)#UP +[8j >|^KF'li@abl/^,^_UD!%m:;@#Z OtXD2<02QuredHNDAi4 tgvTn&q2G ߓص{v %5uaWR2wd7tc;3+}€x`lKs)Vocơvΐ~8ЌV&O5D%S}MXlȬjYXEB(Ar#N{`J36G nMgVWV¹3ظ&I6Kۤ$j M{pDBɖ"un3鞀 STAXD =L9_7G;/1E䦣͕(ؿŨ*IE\7<&k`$V%pہ2DM$8E#44!GUkE n qtE 1(qY| )m1]W4 V&14:6F~KiF ZaΚ0s: MO?ogrs.DeYGSY"O÷^"'I\҂)^jA avf m;- Фiu6EX[/bn}6o>zצo{oQLIؾ]^Xr(/`cXbRr_L=1^p҆9NYZBFAgЛSPK[ih"'-m`( udġ>7Oolbzdzyr2ɣ%434*k} }@=rz &s>(Z[,UlQc;ͮ\fTS'-}|qTqľdv U%;c* |{톶&T5hT娹`icǎSLI~X0:\ehTiwƶE"~hD`FtTOZő&~>j,TTP\s8큙6<boʛH*8h࢟%,QGAIIN2ꑓ}1X(LLMKEcWVR9,M bm O[x;9:q:ښ4T GCU)FZ`W|\Vd_@s].J)tdF~$_Ga(_GhHtEEb=wuA_[mLad?K[Xb|̐'GViP04L;t]?6%v" ?EeM#/Mz90RIPNMaqjjuṣ3hc] 5zZ"}-9|=\τ5/h% vv'ԼI'b7bW5z /V)O?yS'x`#}X^]'vWf{}qvkKRU3?xO=F}q1ŬLMSQh7b[ ކ2,Arli syv!?2rQvw0ۋnѝ{!̶m37K1 ?@ƆSq}mbM(z{rQ.dJu Dwr҅Xw#܍@tu>ܽ{C^_F ?&CGTTRƚcXXp?9e?*-њZvrq.<~@ ~ylZgV<]Z]z<ZƯxz쵸eSzfŒ1i?/4Wq],q!:EbK4U)8MqɈ C N9;JR VSPljP8*7'[ Qx>,|=IPTT*PW6ȾʼtQ0{"/sX ʲ+Ks@_y4Q0xs}P䎪9m'aH?㈱\,<+*g6O/̰)U56D ȯI8{LZ$o]rf5dg"(*B( xEYH9Bs}I[)BsUKq"6&D3RɁib'}-YXd_+֠_YVLBB7A5Cqm4574 b%~%ğFGG-2.Cmx޺w *Wre#=+iLq4<ed"?/ WI)\4.Y"QW t᫯ CeE0VL࣢b w& <nGh.SUeS)C=\21B7A$ (յyhhv!W]c,)A bv_0cadƍT)jO:t mS(+C ϫZA * ",,̌f; wGaAi6y%S, 1.n;{9rŌ y~W㤻?߮7TCn, CGb9]Ih_kdWvR TB.&ᔽ:왔Z8>h*Ƕ *9SՈ!JQaO78ˋ\5!a;(+^& cE¡}8} E%lߊsgOc=8x0p!)09`L"(هKqXX^X+rSN83 {reQ|)j/"5Qx ).N\5|`~2s7""ZDȢ4X -3YΎ *`le%M<$2{`a}Ml!krL~> Abf*BcB UN8wb Bh'<޺=(H4G] B¥>:ԇu qy,/Σ+ B~<pt_7Ͻ)q!! ʲX'/%d H)ODǞo`("+8Aѧy? 1giYYҾ1!A=u Κf\xf|L^jje x3= Nb?M^=?rElh@/Tw6TγO9Ђ y4ޅN׿Bv]s?2M ?mA7@VA.+͐(d87NrZ$JaF>۽Mڿ {g2"@SO\ 8sAN9傸 aT,[[xɫ%o ÕaBvMhخSiWp@1J.Pٍ${x9( #o-O7-pCcy6"UU8 CamnHxyznȓAVC@XH8Th2dGD[bسsБC8 'WwiV }&:8R[#Xƃ[Ko=MEai(Dq G`;?,D]j[}Yg殃юx|y+S-C06HS򅴜Bΐ#E@CCLmЃkWQ|6-5ml9(7~3CUTCGc6 .0p;{O7xRf"bO<UW…8\MTJXWد͋G^i,N|%kZK#4 0@PRtrIV-M%Jf 9'st3^/FCCzxzg<,<: C`DX8Gd,\6Ju<=DShqT~Ԇ-0'r l)j>uO㰠Pz} Nl C}vj'`HpѸ|.e4 KҠ:(yN]twMXBk=!ۇݲ-ز a޿[Z:~6z;qs_"ؐhl1v8v#񈬂 vێCGS;c +lj}Pc8[⤟+Ν=P,™mcBk2HՎ^i:أ cp,LVvBV# 94h' if ϮV a~Ԫ<hGmT#*:JfƼ oO/Xѣؽ{7v7me~uo+MU5غ/$`?z!Ǿ0<a{, r)Տ 3%x8x6[hD+uJm<N㓫x<QKnļ_y >2{k I 137yU,, +?:,-+_jU88B^Q?JxwT[ 59X4)S+ٳq8Jċx&']PWK]k#(+83X^D\d<q:1 㳳]igƒfRO2_ȧ;]ɱ8vd7~'>{y y^>z&+sz~@DA! G`/"7"6"yĐ,B `Dv쀳,*5Е+ƅs7aݻ갦pFHLtu $NS?TVH/-aL<yXcM\ŝckA?Fs/Ç{صmvMmu桵7 ywg|W7 w>GNNJJc<@o۝ad }Cu!<|@[KV0;)Oq{=XCP0@-xM=N-`?~JX;~HG Thw'&lh(#(d #+ľ}x0bǮ=q+a޽0=2}=EţػgLpDuU%~ IHWG **8 03҇ ^޽O޹[ø>ߋ6Tơ·9Bqo_zL՟Cg^Jh$doabx{1Ey2 sb0((.@W0HދƖ.T75#:£\p!) %p@v64 ǡ߫p\`Ac.Jif=\`bg [ w8A@HҒ PDOBe-rgp1>Eix;xr{>ksF%-xm'L<Wb 7+Ȣo)y n&?3< QSP'8a|ew4r)> ֎vprw ,axs1 $;WW$&%1183f`jKN'`K—"F!D83#^Af:H7h"#4ι\s5t0Va`lsh.8,/'W:EU&C9&nepT0TdpB_>~IfH>lBCe N]$4 =tHSV =)D15&PMC+w]Ō9BZB?# n1~ o;c>5#Y1c}hȪh@Gbdk  Q~D:("Gp6Y^AP'wmmc+|7cݺu^c+؉:죝۶w7^gj2`gMه) U(4&&8&{&t S_|#m<ݏ<1sm@\33"W'5>ٍɖTEr3B\t欅@|2((KQ3}{ Q1e bb~mMظ4~Lj / k ͑9:4J47TZ&p tJv ͷ7EmQz/jo۫xzk=/.lL0z[096~'$1;9z #A^~}Vpse2Sed6YXVHOhŏtLlmob =##Y@А‚Bez+s\pwK+\lj8pWWIre(yݛ m-Иx Scp‹aA:P_-PPBeiʹP x.mWCLSA ô0s swrezzP 3Ԉ{~{!+G!'PG1cd$''f:h+;{iv?dV'4|1e+H:Jptq{HSHݸɹ XaHM?$]rrW*إK~9ގ&L7PTFfY N2sq9Ju 2\hLӽϞ"&EY&#-ޅدd0kvl!~oؾMl۲o[c|n MqpN)ܨ(lG{|*́]25a=p?4 fO??Ҏ7瑟~C핸ڴptpؕTCR+Be |*.b %9 ͼ;C{e35^46 ^ޮ$,"M]qDCj8,{b M-' }cL,( :7Y `Z8!6uRExpmiO.HKJCWG3Ɔ_R*H83fiWWϟƠ{woނŖbV +c񴁺Al, 7ibňrr5 ec=sK蛙nbfc #hjEύ5κ9#?I{Sh(]KfzPW@!Lv<™͌aI}yJ6k@BPtt vm4WKE!/ E{s9yg' + ,.H?t,}~惐%enQGBQqr`f HH@b9ֵjiÎmi{v2fEpKw+il"1@[#<M.cXƉ:qu&7;b+;qoZ}F>jlg9n3'*i~Xt."Ngs9䁅VY7_FdJ.c~\Q~MEԦKöy˛[x޶X< bnxu>khM=]Mm,񅕕tE-̼۠J_!wTIAf?R7C=U/߼˜|]'.O&SxH؟kNR˳ |xWQ48m`|d0?քt[R&^HAGkT`y{Pþnho܉`i)Ax1Uic2刾|Lգ&QW`fμG7E!#+A}}="#J3ꆪd|_}4_zOcnUEpIrU*:{13;_⧸ɼ4J PP ꟏^4Upq j[{W/[h*aae^PۃAQ`jĄzA<Lʹhv-agi+c+N)99:ILPPGG8C-} jP>S~*12@u}9#iq!zp:*}?GrEZD,pIp'g 4!9z-6=mXۜ. 's3X[E+50u /c!L^GA_ME 24a S d 1o]n Ŏ7vb};%{ MUWNh#`bN= gxadVb˳k'G ]G}_ۄ@2raد]ء+3-<6|8l~6 [<w$CFI%"Q(Ɉ^4E{{("vN18{7܍7ֶM5e?]vSkTQMJJҀdB]E *$YT{+(14TM 5  //ǣi3f#> b W/d9nb> i(ϊCYZМ[Lto-Js|Vމvt wtm/*FNI Ex' ]&% )~344D2]aHlfk~pD>QgP][sQ EYqv'/ε%&nK(`msg0шn,MP a 4S-"ϟGad/! ZHř'1ۄei(wҀ3,`hs[k֔fB9Bt Op& RO::F<UӺz D:NKC4$݆d9 _''D{#! v|1 7CZj36>FeEzGfPQJn 9%;|!CS<J2}i&qmy)oVZNQU☼0k?18dd|B prԤ@S, F44We(Cs]EЌoav1x{[XC<*շ~5S=FAj* ^_M$ {kC}\)i_S9醉Zf;0RP?.d <Mw`7<{voJB<|?s;۶7IU ’@ vm}Z8-LʊJ oB7h vq *{;;O?=&N \m,,>ܘiEW]& E)JS^H/^^TT3:Ax!4^iBM:PTUL@MGg`l ;2n#8,4ц8rd?|<,Zqb `ae '7w9;!̹zÍ 33}g'7~^>U;ҔĹ.dd 8vpoj*09܏+BlT0G+c\]'E c ڱXGox*? g=akO;xzŽɂ|fjϤjM`K[[Xk45З=gLo<7a5opprd"|dἱBi&"s_*\'w,Vz{n o'DCKJl'}eDz_/J#=)Kmxk ؽo;T`.&TC@8?3+MXXTi`-8&w6fuCbmرW 4(wWaϋ.NX^'-)hU#"al"gn>j<ygط #Arzأlv:1?ڈCӟZȪ0^+B1؇#M58iDuq6<s]:E[}6Ltxܻp߷w4p Fa۱| ;NAh< x>myFZd xc olycxbTVع50ʐ_ #mu#_/a"2\s.BW&QJ37eRI^ P$"/G[{ ZZ[78qF{`eHNKC@)fUĝo׃5"A%8uCs~S>az45PS܉" ޸apv DEE͂N ^<k|[4}p+XBiV.͜isZio$fGTU^rB+K#,/M⤏35Lh`'I3^Wg{kxya|L*jg //;xv;,aA,ajeB[Iݺqy29X3C1k s| 5h1+C h("T+/n**8#>> p7Gt7.Fu@mq'ߋ4bum} kkW1~pQ?|톬Ȩ~f5` #kUoe:A=]E} K3 *a+|`eC[U_2 '~'P$:3E@6  sU5c,cJs_9,?yGTan[S=\<Hrk+qc_ACt?}Me*:FZ.Bd`?i={w`7ewoJ ݱ ZNCb| 2Mz$oyc+ut-[߄9YoPğQj4\!6?GϿƯ~ >~y *LE 0Tb<^vtfamb>RbN81xwL7BýqmJ;{QW"9##* 쨷Ui:!t qh>>7?ڂ"c|-]ӧ* ڻ9NGvi<_~s˳}ⳇ6̕9aQc=W02ԃA tA=a`|Kq̔16Ն`\_goĻVޣ5L3DB.﷦Vu=ua`}K$ggJW+az(|/X!y'c P  w ?OeeЃ)zkl g L8dby?ΌPOT )X]N8XASEC)fc?Fpp"tTՂ v<f7{7E@v<&&vgB\ cb~]%[1߇0'$eFkg f0%լE^Ak}.ĹKojU" H,F\JTxo]ïzB QzBOWe}g0/g4Vno Zj w+]%@-Y9w4v :DuHz\*ؾGQ9D(STP`@Vd$'"{1 B9>w ܜxLbƁX3v<ϿocnDnj<?\I摾nq<Snd2vuC\T$re 1Xn<P|7WgKݿ}3Auc rWk{+YF^0"iCC_ǎЦIR<Lv(œt݉d古q:&Պt$]A|;L7Tsx6Wl Fg!ⳕ¸ m]k4E př($?M B4NZQGIq ͢3]ͤW֥{:"y5]i(lx,s2 CЉBsH WaQ`,D9EDŀ#v?d8s`眘-TQ;.tA5 1\>SR…H}T7Y\.-C{p&Cs{>!c*rPP#A4ؐX" }=8.m-EhホVP9 G(@AqehiSx]ҀSS[D-S#3#/En~.ʫkڎ\G=S\C,GD,BIa1;1#0tO) acO@ں -%p! $ [cR;srT]4Mm<&iv;s60c & m[hغ~?} 2h4vIu4o !;u_r6>2"GyU J׿/%?:~!08WsmX*RǡwB AOC5JS.R V\(]IS~NIJ00Tq(C j{FZ48v~8&F{C a=㰴4hp=Nx#ELO;t/LiK~cq~ '2Y^Z c5CY^&9͵1ܾY"6*ܒ }Qyq<Zrk@x'OceZ,CW'w܉pKsR*"ڙ 4<Fb=.y䮄:@}gg7|ؿaL䂐#GKA?oɳ*%<, khށ ?18hPo #(lقLC8c Nu#$4Vx퇯aώ]8x`9]m'BohU5ƞ!b_\Pŭ,TU<CCcבVLO> =U谯yn. cFʰBd D )q..F(=%e4mR:?~(V106bqoAqq +05Pk4_ }77bRzBon OBW(,˃ 0>Km 5۹M #61h N4 ᎭJqKk+ͿC 11Kx-Wb vSd3۶8rp/T8s_ /Q@f>0R;  ")yu[ Gok#|:~͹ ]Fuy6~է6]iFbJ2<`hb$ dV}m IV4;$50}]W/{imkOLf8oX\N\0o!=5+ }O;/c~f}WO `wW֖ vס%9h*E_{{kh,>D8H~mu>9I羾<>ߋ߹૏7q}쨍@?Gx|SOY8Pj.3eSvt@Jj ~c|>c*!y=F T(맩B0A[KjE j]0ۍ@o9#J;(*G`%q~Nho Gyan~vvx[w~{2d1*$c2į:qez-c9[64BE}hT堥`Sk1((KS*^c<r\-x18ط*Rp\ <=ș(E[{nDLT?~ ?|CshFkP]TR0_hϐWR {_ƛnߊY#mWi?Imf udw8 Ml?q~'߷o {6[_ǞqFEruTmY|T^>{; deeV09Uv>g1o?|fd"6fserЅN(Hb sӑ{>7;1ؚ(*|65!%1..~skkAQ]JԮg"3_]m} [:{ ʌrz.А(l?ddg(jd'an |~>yyO?}q5~*zkD7 2񝅮ztu41(*N=c6 J`hMj۞jAO0ӗރ8(8 (Edc +i'CDYvOs(@(6"?UxL*Jf%]%5}p#nPv~pD8=|YV w'1یade`qn.4[~:;QٿTNҰbOIE熆yY b2 BU?8&D+R2҆tsJ=M~wO[УinӞ'p1)Oᤷ7RQ_ق1ܿod&-U| "4J)lc)Vhc)` Qw9Yw n ܼh$){ci݊q졡3D3QH %KsC5b.1w\+-U bXwO/k&+s.NPT`jHNßK);=M#Xs$6ChB_&fRe5u-Ep@0{5!1 :ʤ 74'Oc`lU050  Kݝ?| |0# 88@rF&A(@WMKQ\pQ2׆|ԊVIIgo٨BkKcmy qss|[ǍY|k3C4lN@ W07܁7~Y$ FJ5t(lPZs$/k6fCXFvI҅q&H% գ 5!!$PxyD^ z“_P:8&@>A Dq<psL((H D-$EO] a4u HLvFn^hsi5 K*_b KFU_K^WN2byޑAG[&&U ͑6̡LT |9P h驱oaZY) 9͞I.ƈNpuDžgPQQ.Ӑr :T5H{ԕcSŸ3ߍψt܉L&:Xga1YŽ9^K2=|jM@q&"<NNGx~9ر}d vv4o`/M~Z)^ y;HM!LbBcR} ? _Ͽ/~. rrjٷf4JLƖPWSǑCAtp"<\h(pn`z}7?alCB!#r?qR,|}=R@8 jPc );o.L7ʋ`f! oajow~#22DRNs[v%+257b R8Z5B̎7h}u4S<G"#P]m4 0cӖp+.DQ`)av]Y'jiN"^.0S8G@P ~8#̠?IDc2ac+?yE c'i•i4#h )*B 8Es}TA2 ǠyZζq Iv .w D"Ԝ3)<$l}5l{u5)+nXzJ^[?Tī! E.B[_6y((2tt )!4Z= 8-: Čpl-͡Kj``b.UM#g0U]܏?Ƿ[,]~(B_[[ cç1և:^0=! jy|ؾ}t5q X)x5DЄ‘qaiĭĬmR^xf&f:@h0y4)xA>3k0&!??K%;wPrPkXiBGY^¾'GID:hģo)0$F=!!1я>B|<y~ ."Vv&^"1($.D{bWgQRc}u nX^v9r45U\@/S/(? /o?g ~ߺϿFG_90:\L]h-A՗aqr? ~I^RtLTB_N[#C<p3͏ux)f¤ͱnsSM<QkBZ owQT?G "BC }غ4ԡJ|arWѐc2W80y,s7{EEh:H}UQZJr WNFDJYdtE3O^*۷nQUcPT;96SQ|pP iVT]OUz%x{8I"-yɈFFUj }E Km0V<OJiIQp~27.R?طد(*b GIy%rbTWQǑŮ[܉[\cn\^Aāٜ'hѦbܣa0"`Z@AZ'=v;`#w`.=Ky?*2>xJ3 ,SWv@cGE>5"мYbFo@SU6SϟG?ӟ~_'䣗(˥A."X[]*iIb 9 OGNLz+/cs}1/01>ζv㸪)K-B<OI!6vf0'RF<\hnNHMaI-! =VZ&;<ԃԔdի_kKn3;uf^ F;`fcm5np_3nmK3()Lh'+r0<ځ|kQEH.&D(gקObmipv2VP2 beiSu &6D8 ϓGMxiQ9?a$TWQC8c ^2NSa? Svɣ&] vq!++>'kُ(]AjEjrc S?e^4U)cGBN0탑 g2yl1zb_c/L̕iMg=/(?M`c@L샼 - ,`j`w{ZzIvs \L1`mD ;} 2bfpۚj!ub[X\)z6ii[ 8煋сL00Fhhh\U g<jxi}7H D3dIQYij8DؾF@,Qu  ,;H{d Le 2r ? ۿ|FA&F: L88mq݃ &v;wX:E ʙIhki@dXƹ4U\C[*4 'tilii(f@P10<E"S[蜂7E bB}]b^oAfli K__75ϛBh_d]nOcE뢸l@t|g@zkH7x|+] 8;3| - %Xl)AMe\nzx-y ,y} 3=HOtG/1hhP=qNmLYjJӵ)ʼt$=`hCdhd#u2pw> / řGp,kLUT 5Ѕ ܜB`O 5( acuÓ,ffffffffdK,e1ǎvMڤ)N;3:WY}1^[p}vNZwNvlaT/5jowtB4`ba6V%PXI-jK`2۞@/aceGkgM0Iru5`o[<,zgOIiX?RgAD@ݿ/oK"ɂ6Ms R~.W.>`z_|\,tu[ Ɔpxn;͗<W.=,3o[:0G33%bhi#6S;ʝeKdTB\(_+J(PB*Ss '(2_`>ɉL45ך'/O |o?kMM`a(ʊ(+/=4jJvGqtNr2IkEbko2 W`mڞf Ңu )'s-,WT[JzRVdűsGg6;=|= ̉},_: Z*I{ӧSYOV8Mtn9x_1gNlݽw<xčǹwGnf nbtiX{1棫<u_m]WH}:ljSK=ż(~Ÿ[X%fM FNb,bM܅D)%D(SZK(@-*f+YW`(Lxo2<DgZ4_,^ Rx8lgΚV3R,Hr1".R<Њ$"#NY9o'u\s}{1 s^(Xb:Y$.RexLl?4I`a(z FX^*_O/3Ք;! 7' H!JAL) ;WfhE c gx7xx(3^}>|!bc"8q{'@uʢx܄wM2o\ %+x ~55ĩGe1o,X \LX7w:(5PG/ZP T{-Y ,[H?W{ 8_,457Oj`/_~ןgvo։ x8a'+籢b\\'#5J.:͛-m;MnZ wo]fݝ:ZcRUKݏ0-HG1>u07XIrs҈Nc {|]\$\8 s09'3 pKx)Μǐkד_UϚl?y ,} ($1>Οɹ[9K\\ŻWq(wVóNp_DaMk t!φ g7Y<Q>xr}{0; ul!m*M%Dc+Jg MdB&輅hw. %@ VDkŰ/-`rrg1{`)pߦ E&&)3 \qak}b="N8)TK8IzR0anT9O_񼜗O pWf2@C<u)s%Ζ@8N#S[]LLu<m &**P cf)7sITL$F؈~hI10Z!^J y=}$8%>͈|~, 1V*b0)gرYp-~y)1صGyIwym>)Lȋ߿/\dG'78wM6 'f6)V+Xˡ{hoZb)Ļ-ߦ ,_8`Jye<2_r%,1ڊE:_?~7P]8A pʒ`r pr?Tj1.;][m(ܱ-=8E~Aiq~1vvYX"SCcԹUze[F E/p`9e9#8O*Hu?(}z VM p#Z䡝dF| ԋoP;mOnb3DmOp.)%tm9G6sI2܍ueZ. YIFG%'o#ڹ]ŃG:i*O)26\.>D ڂwey: ɈMjJ,fTg 'k_x2#cWi?W~|R'[{>%`z,M"BS2E0ؒ,a|$Hx,{g="rgOJJl%R'<zwhnΖ<R ſ>~hhs՞EfZ(mxPw1̟Dc#sU :دSpp+.: ԛZ+6 '<4R޻?>z?ƐMlhC=H 񕐚.kמʯ>x#[|Y[֍[J[%PO_m<(+H%0_^9% bB%o/'/+Rb Bbu&? CA%ʣ:`TR fK-gT)` :zZRCuS?|.Aמgy .9(<Jw{=5e4UURS^IIa5\]^n_>ûHܻas [;3H1UIBt0#Z++^WkE"c@ٰFY7c}eąz@H+ardyBKҼXR>bLXAhZk<&iEvܷ\e(9^/c<yo)4%sQ|x;yFzkoPPb&ʔs!&lLUS|4Ƕ0`_ tXZ#`b-X&&*+' ? y* 16v2\W ^mRkeAe+֦PLB|?`r|pJ/s3jnCpw"ˆ4b T>n|&B.$DJcS1.z2}t޸BcҠF_ Zz"hKݭZ,iZ|֐P%{xبK\TY+(H9'&"7Bge:zg }B<)-+JBRl(&"`!/=UiEz&3<ԋ!a8a;w.7_ F!#|} ,.D2 <=p'3J^%؟/Vq}1 2w3[3=1JCM3zyf!o|e,Ν$hkk2wl ʣ:@.PvFPv\`^Iel8O?~{8"w릫ֺjjyOյʒ ?~{vIs+&oƣqQތ?LYr2zFKc *A2]$#>6n lWb-ny: gqİ9!ng%5OT{cHvİ* ̝I1!%PN>!O{c<cbݹB}Y.4GGO\\K'vfpZ)!@okBB@a$kl'x6‹eu9&m kD, u)b )00$K>Q`hBUz$iXN`_WC&/Jjl'HV$Z H/" 1[cO۟Q-R_[P 1Ċ5VZK ?%Fy=1%Q^G ]ʤ,B142I]a.a=Xww /oGԙ^r㢅È &&> O|"7W?fR}%u<7ܸ|\_8wXjHY^$op+<q6M}m&/͟ W3V֩{W$/ZJCks&K`V.fy f@KCKW֗wW ./O)|lV9 /}em??[.<8ux7[7nu'm6TS'\_;x?eq;8g3Wsb ҜlqrsdhMU?t0 -& J:6=ӂ*77qjS6ݭ pu%˗`yX1߇0 o+uLr3oxzixyKhQƳ&:Dw%9_&"'D%'<>ā<}Y~MH b_Gλݗn}墺#Fpj`_6$ML)&*دi]L}4=7TCq\$-ѠČ#CR55H\d3?#肟UZxGܱ><T:;/|Ws3R?>+m-Z(Yho}.rǟ>W>/_S]^fGSD՛V˔RF{o6&(;)Om|m}cS%HDHxחJh^h=z^|7 lEgdNJ #.!Oѡ5L-f@&:N]+%w?|gabc@IqqCpd?g~ɫ^]GQN$>fj0V-8~f̜:;k*mرe5y)fzZ YḤ.Tg +ʲeQY.[s˕g Y쌖 }c#4txF^g|>]rvۦ6Qg64UQZUFjn.c[5 \ط ?8-|x@Ÿf<~pH'u J| ۩*DKs2 h+Qt6?Ʋ(?]d7䧰mS'0.>Ԝ@{"<$.ؗS1$^_;eT &+*H&؏#< Xfo\#Zf%.ޏPԕ&'`O/MpՂ(6o^O)NNV.rz'o='] 3p#-) gѦ@ W f4$-˙ʚ MN$2v=NKV<o ňNL%XE\YhJ>YSJtsdmsl&5w`|-In._g Gĺg$<<L2UF_/?}L]uϕc+n3DCsrey% Bc6v8ɵ44\6H45OGjJ&AFF۫ϣO/'y1pt6WNTRSWFJJ>DG4{oy`2d B}_C<Nnѥ`s/m<wk_S{x|hYgPOeFi:l%+_tcْ%xbB1 ,RX*'_4@ ! ,PB@o-Ɔٲ?sWxr< )39'a[emOl縘pQ_:JYE2a6!EHhdAD u30&{ l-/N6.nd}lZ]Lou,錭fT'HO}A<eٱTf dT%DCGk=}ݍfqpx!Q%VbߎWvXUAbl+d9)&$(ZJhm,IֹQl\ÓoӔ{ e돟uly7Xp;RJ}5q4@Ws:LG@vW(BJPWR-  l/ . zqr(yʠ: Jr7QBQ,H$+חjO[E>sO{AbwJ@7#\]C ::Ip"X@"6z_p_{L "f&jȷsd!D;@b|eF ..vDAlD؉A }h!71P6Kq @@'kSBvA4W+J~{&aTjo6АNke"]9&*`vCϹu;@o1uW[Bs'fĥPIQra[cd̛3EHL|1gT}Gs fb3bdƌ7Od(,Q?Q鈬r̕]r)~KRV-(ݽ|w_[/;/E~|{|:SRÛֲq|6L[m: G߷['pr/%H}PۙrU- IN!!.1憜?q=6b*Qgz xpe7wLr`/{6Vrdgh6QBƺ*Dp׳sC/% u6RSI[M鮢8'D[ē*:Q)<;m$,qj(`@l<;J5 E֑̋w/n_f4U釞<Ow58üEN"?5Eą8b-o3Z9K =.rDt'NUQ-rLV dAȑO? Ѣ~搬m@Uz_HTk̛ s9GjTGj|.^ 3!~zZQSQxR]-zPſ,Z(&BSXCx 'KK3lm,sS|س|}Bp):LYXFK1[ >^.%nEYBCed,7bOY>6 `Ժ࿾$-C<߾ ?þJ{$u􄼬t)ɏ0+y\#Ԙsg3O 2xΜ*eEFZ40_ᇧEsg8gR&?̚1C-fl, r(SI0SJj21k@5;%(ן~7/$a_.<66*!bqx9==U󍋧샷)B!܈$1{hc*{wLɵ[RZsxAk88Q -h6"uWrt ${`{\|jsxJxa:uPUR"mѕԬǯpFIΗ#FZ9w\ #79\േ7k|*oajt :sq|t |YN"_B|`K$@._:+ mVOl|l *1Geד66mxf!0X8 n**2 r$ b%.[AYdh.?#'s 1֜۾3gHH$640gb왮[uSM ]^8eIuq`^{p/{NXSΒQ؛ahdE@@xU}Cx&WfZc+XONJl\:{HO%!Rre/o/; E k`b|aaxx!8ll/<b(dv {F*J,P~uax$aiۡ1V)twm\K꽗,'+-Dђu0imO/'؜!x~½̀YO?%8ޮvw̙O_ysJ>XJJ_8X8e|el i{}X.o,>Idrrk>}~NWrEF:ݰQe`|ofxp&8k+o\xw?Ұ/v.lqQ$FxbmåsGrt5hޥ=:;ɩ\˾mMXhn=ՌWpz['{$-&Xt\* aLt?҂8׶}"%DUexŠo-5SGx ykl"h#kNǺ61h`[e`}9=9DL?UEDRo&[ 2&)ü/^?ɻqf1YLlKV\1#s--e3$?ְ}r .{xJbV$YYρea߼9$Lg<|,'p#P5QA*܈Ex/1Oꇧ=xxSU/=/u?=u%#ew"_f=Z5ޡɬXSs]uIQrZڱ qXYيF}GB l<shNG`_tUކ Nx ݄O/σFXK_[ 1a yv4eۆyAY =G7.ՇOx,&|Qvom<wu/UByY%,[ A)*@N!FF -%0́:vHKFZ?s|yJ!!>F KNTT8!tKww1N^׮ʜ]3sS#u"|M~ͧ|C~GǯW%lSHT/^R4ns8HtG4گ6HLJ'(MDnWW1BA;X9 v5Z)33ZؓPs2[ٯLo(&l_Z鮐hOX2ČSFGu1ֶ,2'4 r\%F ^CS<" qMn5o=9xFKȔUUP\b|bD?}-<{ .W^W/brWm|X.$džAH;p|&^~IH;Z@w3LGrƜ8ZdX4vgm⥸-Y6+ + *G ґ &=W |/uRIgK |wu@EgY6fDj,—Ljj'~S__⣗ݛr0`MF|CKl] ˕Cr%dJHh)QS_OIUtюB&$?",@Α2aNP?g$H$'Kqy5%y*z'&$x~E)Qn&Z.!W֦ غ~-6/$__;9vpXm2ÛOΒEjl 4 .}|D.j%x5WHۺf@7- tw41ֶzzfUePZZD^\+1)rd$0ÂAr0X!CĬ+iͯןK DbBpsJ̎ VzmI"#ȅu442*A]v%!wM<$d˵0P&\1rVHH޽c;]Gu/GvwrZZS.'!Y8 51̦&R#K<+x 9r{(L 3$ÙDKm9RsY8&І}H^s8^IR+x\ǖt+5ɩ=bPRxA0Ex\@ٰO]`oM2%ܾtw^|7W8wdTlo͐~H01Пc1> GYC?`Xs,l%,xYpM-R)fdZm)@&|,<AD[{B^h$T=̛ R{ѤpGGFjj45XPW(ŝPow|Ĥ>go1[B\ܜCE%dވY_T(O```=tD`W JwygV"H!_9<G=6-#."@ѓPRsI)iW7y~,S '0bW>KVy t7WccfDWS5kۛ12 <<kl]'ͷ߾×_%?Ʊln‰iz^dbigsu%b-LsGIR^X]ĞmĈfx?'xH0`"ꫫՁ $&HzOJ$1Flyƺkdɼyi fcu7? }ߋ}db|puc":acj.fd$X_;m^7|qW p1R hW_{2j.ۧW讌!_H7gYFm\pWZkm)؞a6AMu|Z^VuGaf<eyEHk-0H],}یAV SIZW^.~Tm|R>ޭj(IgxC]_OqQ~8X}z={%pj/[.]zM*k}Ggh$)9G`l%;8ՌقE BM]⍕ӌI4͖2kiimK\xk+1T߀bMonaQ=mECOTeIN`Ukv1.:vo>yxWž9} i-F[2Au|tc~ij]ܸ89} N9O.؈6y ӁPHΣR<&Vt?(:,u=L_’xƚr:ټ~=q_qhnW_'߽{G9up=l)>~rXDp1&6"E b.^79!`?y-}3Cm,`ߎM.kikkOC']tR^VJMU5e%TU EKb~\asʌeڂO8_}-7_+/ $ f>G-,1p%/˜@Fğ*>Igʅ+Y%|p2L5T/s Gw&miAڛ3hJ!>Et&"lbӺ6)L4=du`j)/Ή%+%\]RECMEkWJ/IW*q״ 8E'OrRyLo17vs~8- _y'w./W?FkcV~6`TΕCYp8|ԥV!ɴ05C'9-{`-5 9p^Nd V3MRz*؏\gkMA%ĊokjaX]}kkcdgTo,S~vXz S}\A~ m wxC|+Z:5}o.؏\g!&<~x|4u';70 tU>:8hb1/Oy]00T03Ri)ǭow'ܔh|I)}~,(K #o$[ZVJr93p|z^r߿k8"k77DqxGxp76#UG߽tuT{G/ =J2i(eN :n`D'6fBBdlMU7] hgZ cڨl7nwfu Au*`sCWtGooJ;[2\(qs.,]U%8uɡNz;*0IPtb? mue4ooAVFG ΈX*b"ZUN1}d',E#ف?$`#K]R@o{-$FbEd K9A: r zZzuD{J06tIIΆv߹g?w^w_÷^@=[!pd1^w=!! lALL5F:8JRj(kt,lL%SY^v% ֑+[l s$XA\@尵SG{|uv$ɞ`{bDCi(8+UHVY,u/&""L̷FIusu&>0H)GHo1 |-޾{'yf3 I+{:'FCsK+1D狍+>^b"wq" l`=m@ @ V-mmqtަz[ဓXkk ǁB Ak 9x.KxR_$u玧!NRVCcy>7 plZ_$ `dO>z>x~)}CGI>~lWl:+$Pq /ԮILGSq<k;J-rfݛٽ}ɵعymSڳUp=8{ ޹5 o繇Wxۼsm\?PM_;?ߓw"ReX[JEahouzkM>|eͥrW\§"}WsFXP#Z̓7V89ǟ;$F9Jj%R\]R^BM}bȈ" -1c"b&3p6CYVc'8໺KxT"q @:fdnfifYܽ4vLǀFM^ [o쟢)/K6κBt?g׌aQnBCy<q7́ ^/|FEi̕^%ZyJk)KW,T+M%s}m$FN Ă]pw[=$iPPL ﺈsS ߝ]>=dGbP4D퇟-b^}H $I~.JPϿ}\.7sBWw.::pa˲E Y4uP7^^,| ւIKpiΟ=vj%';%hsPjXyr5RkllѪRBCފޙ%˔ b40^Lo,炋+I 6qp| 8_H#c#=|,zzC;Gľ>zYl\>*$` I]eq BMn"%$57Z,yqd6鍂Qodz|=73ݥ>޻v]_8g&Gy[<vcT_>=?9~|{_{7 V uGkB\lO^WDqHTG5maXtUꍏ;wUI[5.ɑ6V,_3O>N`O_=Gpy4D2]Sh%)ĕ1Z؋AØ+PwH6j19Ʉ%*0;X>͒f J}A7ce`HrljO ?K Ηs{[B7^~J%l۲M\SG6Kxazp6qx鱪+wD @Cs (tt4Ņ*{ч",A,_KK%[ka Mq3b"ߗng>372JrII"6((Dܼ0S(&@7<*!4>K}»O.qOBCg.zo"eE}C<lg#w_6|{d1% XRjH}N#`N T[Z%WIm8#a 1{*0" j i*-ؖM޹'vJ0$u>5~,u]ieۦ!S$Z_LCe`eG7s4*2éΉ*5{<}[;vL1iq&7 7m6Ą~v[x-n޼׮Os;7_p۷߼{{n9O]C >‹ZK15ҥ$3-u]uBɺz{_+7mBjAL1Żodf~Z!jw?ǴvJ`\7n qt7V_?ArmtL6$Ǔ(L$+ʸj*+rw aԀY!elD'c]XaVfV4Ug}cY A&eMv)ؿoODLJ*y&}~ml)~osGyKpK6<}R'y)Izͮ~|Z˙p.GZ~Ya!->$BԳaZ+3L43"B_=/c Jc1'v:ỷ"!*Hԟ|]%,B<u2cO3Q)+IO|G葵\̛64_r>[1W |`_0y me8 r&)3>wӗNnM-p"t4401a?vH| P8 9Gg;llfLxl,f6j/σtlP;p: lldD'nGX_˶A{9!W7ylq?ǯ=xwzs^̡ LvUUE_E,Cu Wʚ,4gQNca,E91ǐBHuQkc=r_D7:OW{Jr!+Τ*$kf^o;x5Ν!=u\;}o>{K]?_q .pphKNKQ?uQ,qy'pw(@v[1mu崈63%bRu1r \Y`1gv^KvA]"-4#H>ܤ W tQ`_VwKlbX'Xt1naVU@`w8Y([W(#A*_C*| u5rpZy[x|7_yor_!~}]ٻmpWrhup@S{+uH(k˵WBvj<a%$!KpO<*3?|< Qo**&a<;ml>mR4$ 2:fJʉU dņ`ro7 2E ȋO2 1&4ek0k ]D1_J㹰pOɋC1NĘD{y-:`1%njxb=r}mpw3'*EB=~RZZXXJSK&^nB&fظ~<ymcCعW.OoSQnoo|{oޓ_̙|cTaOq$~q6&?΍Xwӂ*cDp?֖hG6E)e*<#PH|ŢyRaZ4 V̟Kt$`GX0siRQDxbFWOoMk=+!d@L "V~W_ Tko! 2aq^ ՝gxCܕ5V;+ݷpu`ʊ%U3=Ų0g#m#jyQZ *pPPTnɶoZ.HAR"fM33͎C7[V;[i"Y*yAFxbt):n^\ FĔ&ES [-–HK1OVG34~?zU7^J[֒E>7;ǣ+xIXV&BS JWcjm@ZN"+5@iT| ";K7QQL."F ĘP@Mtfy$/^=E1&vpa6IPk@t42$la55yD]@l5iRc.֤y*GjRORrԘr4$H8Yjl`_LR zx]Fc].6rL(ͪ:;F(0mPh1QA7BXDXjŕZ[Jm1Uaf1ͣK.bIu1Zs$'WzODA16ً?|7/oWN0]A^+rn*Em-d%I \y nf@\/-OVR<IMDt\=ثw%#X2woq'L-!-ٰ<x9y/_s6@8ދkoVY`osV (y~m}E݄kR~V-fFr}|3ve+! A>57&/5 &$ć(b?., 0?"%I(fjRK+`~(:mhʂCl@Wy݃S`eE9 1QCEQP&4\Z}h*H 1//xG<~|^W,[ĕ ;yS<7e`[*J_"#f̞URVdo[,3Cp>9rMޖj- &!JD[\#IF\1^Y[EGy>{G?9IDATKy|[޸31|Iu.l=jβ,ˋf3NM?=/t =fTJ{'IX,^\Wv+wgR_ղ6ёn nJ:ʁ=S)}Ć WI--XxE*M,mppDPt+8bUn^1_^2{v o9Woߡ27N>z ~rxw_pO g_/_?ѽKןp16ylɎv\mN4r(ark)'-? KD#,O\K76RYgQXKZzqᤤbEi^ %lh<y<y"cin̈́ߊW???ͷ^$66XxwWVк'ywqt֜>-]/NK+]gFp}S7+W,PC!ΞZxjG1|3aϦ2 )̈x|m <%5'5d2C?Gk(O<ORiF!̵LE;g[X"ގ_$&HmNR4.9'W<f_WG|KyM=-==qٽE^u^fZrhG3FF[`*[LECss%#;K¶:&9!FK 4_ U{aJ:3-G8Н(I]JRg(/׹*>9̵c2#[C=k m/Yg#j-3%)ՋD~ADD{G}Cpy"ym$xډו'fLmG)%6Wl,^JwIFٵcB^vGyDx,X9Yl1O?=C)x+=~_ ׍2=5Ł]ټaѵ]j 5peU[x|K||<<\Õ}gy;Mޓg5"=Z|h2E|-(d)P''Km-qrd9Xv*V&F *S:餎*k%TUd_OKa8N>0 11walh儗Ǽ!"B;8K0 TAtTp]>{縘@p@^򵝝!mŴ1""pPLs03al\/J4| Ϫ $ x⣌&zL #6TՖ O1~$K8:h_})9&e~x|[c;XDtS[HΚ2Z (!-21dJ"3fsOSܻv}[x$/8ƣK;h͠8Fij#fv)zr=`;yFWTdx/{i*"OjJsi-N_H{uyKÏ\ >D{aC^dzK3*50i/8tVF*?0<,$2[LD.P)ӵ=u%8@@}"#2""H6(Z I'=]^ >|<x>\e)bGWo# e+S'86؞@ !4]ޜs@kg! ||b~MLeFz6Uκ5C7WB{A _ۯo`sMW07o wuӇ $0R,cjv UeP"Ի." ʕVh/_YpLOO&, i<+ܰ43+uECY_/:~x,﷯_txxc^x/>Ͼ]us\_ws$b<;7pGj#iSuI; f8H bf%c tJ5sƛ&A5OfUx$EVɄՑWPp/rq> 7zXmoOSE &FiO9lYہV&giV,7b3E ͡^y=NVlYps)ʼnAԊin('7#Qϓ߽JO/ X-e>{|'wsi)K8s# 4P*ux +CttWPYQ.Eb;}4 uԗ^WJ:1iw60*_;M+=3 Pr"<*%DS΋1b#\XQIZP(EIQr^=5H/( #SBD^ TV ;W3]3[/%n@ 4BECՁ2[0EA~ )t 6=eh*,E^7$$h 5x:-w.pR]"1ܜMt"3/CعeSڻX7ڦFVҙɭJÝtN>z uF?^5RGu߼{/]W^/rf^,2)d2_&rŬ)zfc˗hc3%=f t4tY4o!8߅acGz EJP'_}V01\N\\E:Y;D/ سs ^.b職_WzJ9miC`bjHOO}}1ͦW4eV ʠC;OKXc<81*1DfI_ MLJ!P$'$F(v2'ˑ \n_Qd?W5X spfں:)(Ȓs9;X\BABph5$AfR,wo]u3wn]ܺq'bjLt9ʛO.د53^Juo!ZwSCr2imr9Jid]o9ٌ5ձ|bhM0@bt?3}<4#.Ћp7[2H X ƍZ-mo4S}z8[֐mufK=%ezx([jCpA6$Yb|S85Pd|pY6y%a%@e`QޓԆ䈷3 Xx_B3 =\-n¥pAxy"bvvlZA׊ n#۷|~E>{&v|*N^쑍eX$uJc^e)L.a;l9sY[[+̙l]]]Lqrs%AP]Hr`?3o/>1ݛ$ AŸovW_?eΖbx {KR6]ۻ7B8q& oڈ'7mߏ BO꼻H4AR:ۺW|3aWLtY',/^aMGP;Ep\NxڹRU޸2 -2PWlz`""J*0mB3f+wbw%[*ފq&M{: Ƿ +qdIN)פGTFqv2r.22y{׮[q,GOld杗/sxYڋD[)yMK}`dʮ%+SP|_&iJD<[@}aTd)3$!Di*JGO#'GR!Q'kj l^JENh>6nFRې-ttfbhrR<3=c{DNQ4[v2W>K<!qCbb|pw7Km]Lw6J<5n&G9"'V% kk(I|~A>DmYZwjL^>Rgez??I!!Z:zi젢rַ1SN.lcp'{x2o<]i& k_>˱]߸JЭdQ x 8=ٌ1ccbGSb%`jSyut4m451PT;pB)[-`’E령jz;SBc 7YR@X/ [A^j,[.V edgRGK%SE?[&r|//n3s-$$Ѵѕ[@L/  YC 3yƣڙBڪR{+7&!6o A.dAsqyRNb݈<+Ek)k`QFGn`5ax kcW4!3joHa?'8\JJrhUW.bbSWՙ]?ɱݓ%c}93Moy -uscj.vj@1^DJpVڪ )ɈZ̆&Ni]\ YP&=E$s"H~܌V([}-H(]m Y(“  (bdIӈ3+@_m1&S_"{'w\uZ^إPJr|b$S<|޺B z=%jNr?' a'@՜A) z '7~RX,!_Q N*ʋk)gB|;STײq OsyrpKCSQy"XdiTummEn$ )8MLt3Pt_Rӫuxzrl/֪e\H^& ff3X2gK-bLe'Yyf& Ƈ3Ak/KGST[;oyw߸P+Ubiؕi0)/]NծF i.j l`m=[G9sj?|)?Om)ƘWۯ]<wXP 6+E4#%v.)jf1˫ŞED8VWihȶՌVchyϥbLil #.3 ~JH^qz8e5uaWzK0o>,șp2RzyEl 4yj9p{5Yqahs286ړy(gˏ|IP~ _K7RGn?ƺ06X[(RNYdD-k ?Ʃ)!=.Rq^ڶN0Hȷ&JBX|Bݬ7!ьhjU9 "-ă_O%&1=Ύ^^yxF"6Zo@rmd韛 ~ p[l4^)r9`nXWZ&)kek\k1+O+\%8I%6ڛǷK %,8Z"McL3aaD6@t\QrU{]MkW- bԊM޾ZtK3Sx,-Oqnj"p`xr6ײ}}ejSʬ6fr&} RǫW%sð5Zy?+Y)l"5X aaάQp.sf<lѼ̛b85D' }%Xb;}&ک-",ȍB\yGe;Kb21͕A_mc‰u,ٵem֯_.200/\q.EKC!bF-VH3#T=e u)ݯgNZvĽVʫ\Cbo'ғ&bI D{6YSg8u vaWvs*ُu~yj0㏙'g21k?{fohH#;!Z`׮a^gⳏxt,N#!ʟۆE#N }${-l6&pNt_;;3`\5e욞NM铲q1F>ۆ! )v'Ʉd{c7 u\>pK-r 1܋2%h'&8Q\O0G|} %@8%ޖ݅4EWcoY[X mWac#:іK~^|b[0#.4-7VBSn.{٨[y{ű#ӬPlvfHu'!ҕHwB'"› "G)I&$bء݌ H{{= S"F;8LJ\]#Gy;p2H;>($Y+!j܎9nI1w1UCm[Jh/a@A zsXl>˗cժ,U^]=M/O#ٳ9s&f͔gsVWeG+#"}EcʈG6GepM-% RωRt4WuDžܼt[j)sW[h5޶IHwN 曏x ̌Urr3q<Ka +/,=q-f[3z)wy5/:{ruXKVɕdbm+YKzBK swVV$%DzNl飴 RJap cXS< |0 $?BAe]_ ^B;yYF۫Ȏ Tj>{wۯpYc^}E.\<řIux/\k7QOFs15ZJ,-śۑLdLp1a8RQQEdwsj.nG;?܍h73GyX(q6Rc>khBR?5yWJK">̕;gT/:&6q2 8ʖ$gwTB\\ p^rc!vn'jϏ!.G:8/f%}ʬH7%xJ6UX{Ξ@|M-헐Hx`ݕo=?DJfR"'ĐOM]/σK2<"d>:kEK7oftusF1d.K𨄅FZl)85ͥTgslsbk'kݣL T2SJkU"4VWH0mMuy3k\u eg9s ez#vO] h2oA;18PKaNEY䦅/![@? rغa}7s^=k'}+$=[<Y=&w Ir-Jb,K&@!z<m_<X3<,1)TU s] y,k]Ri(0#u\%ȴ7Չ V'Q?|&mbb[X?GYlOS }!BAQFwK#' ƙ V+HQWSI?櫏|򦜟V.ŝ?[i/@⋝&VN8 tq 4&`C*'++CQL)/YaK%GSKG!D胟zǵ0ERflYFYy1dFokJ-e:=w^u&t'.^W=h "3X3 9KwSW"8iˡjH` s1Bb>+P+Ę `OLj"`)Dz°`@̋ >nB*D[ .3ܒp? ϓ`$%/?+=g`t6&?V*SCj]PGgm֡6>~ RJSv>=?ͱm:>%;^1fz%D3oakKe3Y,_ 3B^~o̝5[3̟7!)a%h5Nį>} fEJAz,bHsR΂|%ڑ+<ux+/rN>w/7xwY8; ݯ+JX?F> fN̴ XuosspIȣlN#ʹOQ,ᭇ\of|@ 3n-紙]~nYMmQE,%jR\5@<s#'Rpu~\Z.ߍ 9N좳DQ#^Rlg/?o?מ'9ԃ;F$(]v\?5$X*Bof 9!F͙Դ8z25rHnyl|=y_JmUFxQEv'qb#\:Mc]ej S*ʋ$;gkSˁ s=y45Ƈ* 5 =Ñg [`/{bC&yKQ:kcoG%9j~"'G ګ qSRHL !9+)@bB6n/l9>,4 '˜yŌ{Ndt.n o"~˿`?,C w`D$ݵulgH17qlLwS3O OĦVjb88Ϗzu%E$3^AQgrVnLO.gMK5H> Vh?-3<%^"93mUϖ0)$h,Y@b7qErV>U֯i&7=RΑTbɔbOPni Ok<}<ϋϞU|_w^pCbb,{޽{KѠ1T6FTe ofA86iz36^<eSxƣy8SQ(<['>iXĪyOMTwzײc0[,ZaDO:c\|XGĐ`1j턗7 tr W+WNOg , _gݏ|w˂U_Pz<i'O/͛TO%9.S6DN22GBtۧ8cZEh-IZyiЗ&II3INYp<S.b9r=Z&!1[ŸiSzwu<?~ѡZO= $HKH&ա%R^OZ#~zxEqvP/>^2<\Wag`_77  |L #ABRF$»ə vՓ_F|b)AlacoW;coEC"A6D{/A$(HSlNDDCp /<PxAWeI uLc4;qr MEIDoc͕;SLPűkWD<r|>nW:qVO? UdoDdepk3ll&˖/b<euNa޼y(^@7{ 9)(ؗY<ox~o)a|+?07_:‹Tgdcgg-5聽 9iݿSQ߾~#^u7 ޯJ8?x@FN.(.)[1M5<gCX6Nvh;01}OfS)αTuY].9Fmq2ef(f:}Ä:fkv pwwŒiLX."h=3.oL-wr')$Dw˸zh;:K:­-Vg^Cnq:Sу~5_}9@NģWvo*̢kcfzlD\vbC8́S&'ZRƩq:<o{4JK &7̍7HwlBvv8W}3 lQg87ѠF4wGo kZsyt"ŗ$^(`C\J|Ip OS𦇣"1+ 6U ;7=,Wa%8ԑB0j1@_'b$ܧ$HߙE`(57A}عc5M `JxKS텧\W q%R2b__x7su?жyu4 1֕1ў'*5\fQ208Lum QfӔř޼͌t׳ai.Q.̞uϾNvMv[xʉU)kݜl 2{\f̞ˢvK,橃3%(R9y X"jR=)Lf>7,w^KWs>iDKeő%!@1uxFo[+#l4ŵGx!<$,_xubN;6jټm#$WS/!2$ʂjJ" OGL<P3NP xګr8m"`}S:;i'*Ɖ yw/1x;WOsqu ,%v%ҖMaZ<I,v¦I%ELG]p3&֛Z}'C Wom.w{ϣ $Ɔ16>%?5?Kk(>p8GY]JEA04]Bup_^34*@qb=MPLCi:Me!gwZ~VL1q~."~XXBkv$x݇Gl#'Kj#8>ʅ]ۯ>z&m|@7UQQ@li$CSO1nz* <57P~1ށGyԛOP<b,ROg[8D4b Va`eK+ ee1*n8yzㅷoxLn/བྷ}:}k(kZ(B{ ַpv{~:j@nR!W޻!i~X0[7@Mv 59L7ggM@ &ʑQ\ٿwYˉC8ZjjxԙCffl&+39,Z21 3f2GĪKX0k&)ASSGOͻoާ&KgGWS)Yɑ!?K,p6jbmO gxxO~}~s~gܿw7{!ΝLA~1y4@]e=-x8J4SP90˥[ᷚ-w'agRǁ݌Tŵ{ ]UbĶ΋y :"A89 7c r<K3L h<OLv<Iva6!#4I c.;+39m=쒰v@t|?~O?DOn_ǣKvhWwu4;)KPHk{vnuGhVFg0OⱘϞ;Ձ׼ ?},q"E3^CL+$4>Zy(#6MmbqFԓ㋽233\c8wyA]sS:isn RR=|i FYwGѬU q$"ؔ0| qQD9bOrn^}7 +w<SbZǶ$%)f0Qa)q>$9 &@2JG v[]狍?e<M{_+Wu۵ ֵ3˙b 2f4NMNr vt`wkV7k V]Q1a;&8w`2"Z 4sisr'vWk=VH0tp/OV\) 3Dӗ"ϐ3Of2r)u`_{B͜AbX-tkh{O~egˊjR\ 7' Et+EN~O%8|ܹs <q%JJJ%=eR6jJ\4"mBf:1ó<b2F8v<UsX}a\@gMמ{Vk̉)zq]FA]wC~*<eWI <:jF?)dlON{z wTer`:NF|6MKwaLB ?_I Q^ާ.8l? ѱD5$BOh_9-.\vmZ˵{ ;U)_>! 1Ey1, 3pcQ6oaZy8-1˟C#U<8Dž_a p;8:Ї2ST5VjX%^|`ߌCEE7"$̂2ētQz̄-~ TIv af>$|4_Ol̈( !e`m'=+7B]I!{  ,n(׽NAvR4d%a-[˗>OcI2ZUoڶBn]]\<4(kÝ ݂QNJ <ꊧ*++W U ΛɂEsXLu8_wzkJ<uDԭ\(/M'O~qqmu@2[K]BPZ^Hk[ÃwD_^Wo޼Ԧq^x1Mͭ<}VRg9օT橍}\MYgL=Xl"hN<WNg{I;sn^W y93 Oؒ-:,+iXb/\Ҋ>鎂{kce+6ϖc}J-u'pjo(ܬtFƈKMݍaoo?I1_9GQM0?"Tp?$›kz >l6ʵGk-cjMw޺w/ C˜>Ot!8>uuXhӆMlk$- ȦpNK.|h ^g2 a;w gai7r$ꑔ`MAXq ..w\6^ŏ?%:܅&o%d~~Ņ"8(?&BT}p1G|BzJdR e+FI-39\"6&ȈW <XpArqq?CRHNL<wsd].me44wݽbK+b;y}<Gla(]t5T15.`Ω=5ŽvDLŅ=C\ط[ 5@O ?v'ky5g3(3X =w*Pf( .dŊ$Txw%wkwio. AU^LaaRy{.,ܼz#o|\ѽkO;.ı2M=;SVYEV^b80$bmB+]xơTLfy1ý=40ݙTw&mQ{6dƅo^:G}({1EJco$Eȥ,k5+JLN'Rʗ߯K u]/o#;'Y`w qD*!9^xx|۟@|CskĖVnjھP")*a:Ww1^.ǐͶ->5}=9n[̄~9V3-55S[[,3Ő7 #<Ԏ.6謢\QEC' 2ٷc'YYAie:5S<:;=tzgQO__#-CtqrpCo1IΔfH #H˕IBztT'TIUNř!n˷BL{`|b)*CHy].sh)</Zc 0 !J*";?MLon7€Kc䉳gDS ַG{&~Y'V fO"?=^W2~Շ|ܕZ 27I mճ;+tT_s8{P\80"wK4-H#DQP[ČgQ>抙D<3b(拁Xv7w&@ca6;}]WoStNUN֖fHϧHLD^b]ej3Njgsq8Kp.o;{GcN<x9b.KifB)N\69hZ܏91̲eC! cAu>$!؅ZvU'G Ν^u36K8ʙYQ5yQ%#4AZWgm9~8gg@3)>GКŶumH84V<4-}˧z1QP_UƗőO_~4qx]x,|`5~͑sKWywgɭ^y{w\Gok);&mSHrS= 0YH-1؛.ggX_MeʈqMcm05 'UT%sfo_NsFSc~Vbnp4^FV`LQX2u)O@ w=cpu%x39Rھ 9UgMpEs9{6a !"JE;k֬n<P-5UX&&4 sŰQSS$z%))h Ey45T[!YYhbBOm 6rd[mUn&m ^ϕ (d7}Wo[Np. RI/ʩm|5ͼ|J`XY2Xpn¼X`>.6x: Yg$ϝh<xy2D3xlKfbnBhu9L /ӼyriT%)TW Dä&o8K;LŧsQn^>s7+svs. OsLt]ɹ;w`?KDN5%Ĥ'ER|m4Ȍc)KͽgV<cB 3hXug֊L:k}$^V u`ԾM<vL#GF${K+?:,@gqw@;$$[N 4H>{;ojn{Nr^kk,Kh6؟*kbzU Ѷ jbc@deQi(Nz֕6.&(<mIAF*n^bz/{cY;ccLR”>ظ7.;++alLY`6Əe|ud 5 %S_@^'14b%zL Cӳ猫>$0BK_L$ߔӊ~TfrnnRtvQΏe_I'=큟;5:m1ލPxhN.'MLôVERYMAI1Ӻs;>oae`i©EPW">{43$ĕQ]F`*;54xLn0b+!~dd&s9dgw_=ڡSttM0w``aQY ȁzW5TCqrMUMڳpuB4ͯx-[ȞM+ȊRwپ~7lcQ?kivhbf^6{sMzv,޽N(5 >ꄁ~hZUE#eiqLo,Ծuz0I "IѤ-Syo#=ΟL3vo_9{d2n]*>^=d5YKks^HNL ?[^I dPju א!tӵMbie,O 1?{/se̙Z&BqfpZ,N_6;Q|Jsq6k&֓cB!FXJvBFfYS ֢i>A6VdYP)_12s_˱+ؼb>FԈL;G{rr3~ħ?{t_7rEgK>_ȩs3:(g~K {cfn#n8+g5ԉ/^04'VuB}K/<^'1;`]p҉$ev?i4ymkCshNDZ? ]rξcy~&פqNfM*8{gqHNq!7Gt}6붡8jEeq,F3.C:YOAYq*1!>i' P} L-qpOaA))4O1*<WQ&\KzR%-̜2LmёXy9f<Ypj\<1虺b`탋7^XCzJ4QIeSZ^GJflYA:4ϟ=?%W/,_:_ :#se3'`qrĕGiDm.PžrOWݦ];Z0 BYЩsGZiN#cmiӶ=:tT v,'bo^87/pa!lr2%:W%D:"F`$%2g$.wM;gr1Gy߾zƵ˘6e:'N%)3d}$vnj8T002l0Q~t:>QiGfbM(^qbB3I 0Y>Zǔ) }پn& (vo\ Kٸ|&k2\f_H/䎜\!Ei893@w@CH K>sf\4b:#<W/<gQU%5!A'{"&"pn:ewYpe,¦4ϯ#'1'[²3VVFÒs9{3'5bDo^,UT([z1 #X_14ǐfI@͇l݄\MsNRlhy)Qx9BErL_<7‘ LӤ77=1Sm yZ ;oK$f.6ZԆOX#ܬ4q~wP C]ĨfvaظWf"d>JO %3Ƈ(uǏ@R#1ͤ_[N ܖIMy!B6ÇL=髩F>ٸPIm3*}Y45x1!~$PVZIB|2%lڸULep[6s)^=}čٵii1<y7TVͮY$f70g|\GLC{,L *˪Lҭ3-mNBA[:tBnhR0J|+y^̃)WwlӊP/2R)8mܹΌ 7;@'}:!__u|Dq _&c7W$8 5޿yΧoYhG*pwvCs@1! 퉵Iˈ$15\|c I/9,M,05@ p6R.VΙV/\<rrL3FUQ[;jإ1z)Y4,]A 5+d\*&\ ˉb.F% lԭvmXœp8e_fILMU#'Z`݅=[?':ha@!<-|͚%|6c%0L(> -$aI cj\9 LI"VHxLs wk͌ $3Hpbҗh9Q,k,\>"i酶`.鎖>$4huMOt#!V8Ziam2@B|p"̊StA_>vuQr@C3b'wOP2amcn$\+H(Tgfr:Q.^E\| u%SSUŨѱhFPܯ,Æw>&VbM\q#/ы,;V:hJ -(&.A_Z b¯^7rA<op`3xrnƪ5\>3G0Q՜1,\;q0Jm11J:YLtI:IU<F| j-mZWtlقo~n:ƍ<uWaM`S&(ի24~_kNV̟7xk>~x#z5cG3sLe|֓-wqA_qw{1Lv::$/!5"O98 Oga¿K@v9KgLR?oX9>)n 'vm!Éckor5[,Y-ݺFxL LUIQd/tP_N./8{P^σ|D,q1eEj$Qp߰zDY2۹$KmXG{h?lq\y^(Os>& ɕpP.</M 2oG qzp>zX ^:dxdeBfLC&+ɏh_*X42crBƨIWSW'щ0k#\gP0ꈓ`R~TW /fX>L2=>hhנ~X8k92T;*W0<Bq`k#H>7Z!c70" AA>\QҨRu(F?/ؿw4Çk]w!]07;@u $-&Z3[pqq KXvk>q;qy^=ؿs#y1Op&ni%߻ sTх[Ƀ{qFgFÌpwJ߱cGZh!su}{۫OkѲ%]vG _x:nڵ#"ȑ1悇;섃-Ll]rS'qT<9ux3OG_}5 d… R񖕕#wɖPtz,>4؝T ҋJ(&<c$Ҵ",2B tY~(&2֬X:{KfMeQݻT.'prՂ_K ֥ L)}םcL*%n݉rR!TJ%b#_?E%͵\;H{Օ8:`o-X^< G3 7̼%LNŤaً~]۠#Zjb>͡TV;i˖k>e4OcxqVuEIL/eRE6;63"P;|,c+ v3W +khG&Y=>G^B$2ʟ5lU{|'cjܹ"9M^htc辉~w\ d6ƺ1$^wkmbwGkpLMu@X8ih0s"ES}b Ƞ8ZKN>!'4$KFSMWdѤ$$gjq4I4#?_<ɂӧ7a@ Mhhgn 輙P΂DD<HJ#r ꨮq7ic'̤q<[׮ϫg9~ho̕8a vΥ#9Ûg{lϕ;3fȠ>~u ҳW5JMeUҔzRDY *%T(-C,(Kfݼf9xpvSYG]uj)1{z3sgy9~[x⡄;8&b垍ݼ\nEYUݻپ#EqE ̘>ɓ']N\RBnVBñ5&&U%0Mid̐bݰK)N"ך`ɖиzj6[+eZ%xRC[bl]>kx85+va3 cF32=X M g%$WLh~j"af&2TUrVœصr&5g$m+vSx]/K^;32ɕ1ZJ\ 8퍰28GˡbB)g)̓04cb#VΕ4I_'QBraTLi(nFtCbFjaQ? )WG35JRuL 3mcY5*c9mSR%f =61bB?W1 ^6؉Y0Lؙ xJƦ13  C? |0r 'Olpt!5Y'/!!<ʭ 9?1'ObJ`1/[/0@ss$0T ϟ]a谁tmlPv!-Io˘ ,"->'{(IJfy5z aJXd)}#Gmq*v(Av!>:˝e7d||{ 섞&Z]uuSnA"s1U9-Z&IhGkဎmZBQJ"#w/q>cEiS ,]:M ;9yxu+ I/K|xR,غe%%'rgeZ\rd[0lhu{Xo2B-ϙSY&3AB5R[6#K)K %מo_󵚭V _x:Wa׺E۰Kb7M#|6;]A)00 =0OJRq9br}Nf&fȹ9~\; S Tja؈1}ŗoM~#-_ei#sSt֧* gC%|`h4KԊ̊0N1즡**el7e_0\EEDPIz|tkwMt8 ;ňb'u>fNy_\ǘ\C6<;}{_vowsmߧڴ?.8X Ԡ1끉LTW8Bpo"nM-=|I[_Js"&9CS{\=qs O E$ƐOIa\D32B .ne$%PU^wI^˱/_CG lw15wÃ(7 -SɒŤņlGrql%yTZqF(oh"GLŋx }Aϟsjvo_ȇ/ sj0/aI0EWS་h~ڶStz@]"GԡmhI{]Wgӓ _/>@rlq2'OifѢyۻǏϟUxo$ٶVkqY}-[6W"VHAzNJeKYd!no{eL_+n]ICee<~E-!ƗguEZ0RB|zۣ@~`"?UcZVX0]&͕wu*[1EIkXߡUCI(,#=;j3SX49cٳfۖMf|%A*+^Za:ȸ$o_C_?nQUQj=vJ&jb~mJ|~FW.{i#1ԓ 34m &qi:.YO7N>;AF:d+p6L1qנJLfsv:<q#ԝ8ePnh-KClؽ%]1א*D)n:T/!x|My->h~/ill ='/_B32 q%6c{vɉbH@WVT |b%)د!11:JyqA!ǍzMS_K{j1Sc ^$Dz`CSM +֒eՔ7]BYe|=~EǎLqQ ,ݛW2^qxptxmxpncܰ.˹5g.ɰatC]-FxX0PV(d_ ?7?gGJˮ?_GwNqN⽨`:~#K^^O o?~>O} cۦ%l\=Go^>Wy$"e:SX0KO2,-"2,P@o~7}kULY59uK_BmMLLz{Ɔ3 u,rC;vmrRbE;&c|m\M (%Mݼu%k%|c?`fZtjљ _ѓ֒LMJKG1#%voȚ\ܿ(JrS<톾dK~9ޠ0M94GZ0w >FzgR.칓0a4 ]玨v4SGrXr .NҾd oY` ȟ0O|})h=L~GSiζYc3\Ěr&ri:^_>%SEv׿5(;v``Vxof6hw|x?t$`d=퉥N cg+}.G7J'TI>衩'? 9/68xl)>əZєԸ8SӨ)$;-*b..,#!c'&"==ܼ+dLbۿx_ϓgNm""9C[wtj`psmp4"׊ah"5#b Hϯ$>ґ׌%1}55Juc|&OovͣK<~qFn;DMmK͠I AY܊8ALb{ 4ZϕB2ѻW/Uj9{||oevn]-O];BZw4o>@y!\8ƞY+by^6;6r1^:~+.u#F1c4nnqD)q!$G R ddU6 ε||WΙ9sGY!EQ]5+شj1OeFfI^6YLXϚN fNQ{1bַcˮ*Ә2Zkli@7ܢJOT+߽^Au̽kgnF=N28܅|IJyؿk#^?g9d ˢgڈtC$ej<Mp0!בyӛY8k:U2GRUVʢ9c%n`JbIkMq,6g2#E@lD%\L6zvyh/}YYSNzRk= ƺ4e$|l H jbN~BW3@ Bdn2 ؛UWؚiK-uqs ,}rEmCkm%(a+D`$U])) e哞[B2YWTGbV B6"%TH)bI GOꁥb sL(a0b`.nADP$6% )GbF %r ^|[.Ϲsyu{_^<rG_WA6tF Q~U/ߟbڷS0*5e3ZjB>R)C|ċoH_ÇW7[w?{rGܾr?^1c9L8mågXn 'M";;&M˗ܹŜ铉 ('eքˎ39-孫(c] ަe4+s{r_ECIl[M+ZeiZ<)jY2g]ޝ : } S9N\\m=fAĥ3'qM7>þX\ArEN`߇`og0ƺ2 \yk=On0^9XwMPZ: 1 fysVl@QacG7&hRsǙ3p_'"\ $&ʹ uP/4X)ׄ}:}C.rj:vgx C{dL^4gֱld%ͽ,=}ba@ukwʤX+ÇvI-d0ւ}'giNfCھLι9.aj怙ts;0d-vXH`k턉#?d͠LLhEVKbr&i9 KKk,#+=%.cB11FܘC164\KB FxaYQ- دPQXKYx U'%sQ=}ȕ+g$@~}kyu(%c]|S!>6}߻7}sn"\mڵQ"uQZE-ZFYao7g1\<`[~M{扄{!^O ߿͋9߳u-?+;Ϟ`LLAA#F _;޽ fɂix0z7g뢩\سQnȜ1lT 'oXn l,c2Feu<vIXظ| Me)̞=~׮ҷa? bae kY7NtW.^PŇabJ%fiܹv!oK^5E+( d@o"}\uaZF֊n .߾ßϳڒhU'S՘)+lXɪ% 055? vne|R cGS"Jk;m'%ZdOķMS+A$ \=YjBO"Opvh̀nrt*%w3|mF"6w$+so_b O PkA$Kka t1\'6R`=\0h.8ۙnlzAF. w1skK)ہ 3YӦW ES$8$$eCAQE G>ښZFFW?O) f C|]RW,:3 ߑ$SXHJfrFoLPFVN9e$'r=~W?z*qjyOq]ui//xUp_=%DE.~h&dAkmrRKzuA5YܽEŋl۱;>}_?D?Y8?>qyN+՗-\NJEX2O|_8ɺ_2ill7ϟܽ{KmQၔ gp>'riZA8a &eٸb׶õhH,ױqKX|gLWy8o7GvoW.\9֮buH|fP+jpz!`Ls:ϯӣ˜ڲY ERN뎫 $Uxd޾˟U~eM<Y\d]떱rV6p 9MHY*w&5&bٌ<yM*Jbz]717 X V0z}w< 4:t޴{ /VV )3/NeFY//,Գ{[Lai6+!&ӂho}6z}K!>AS^gc L4*b`_78[3\}\wCczF8{c!yPÇb-:}XfNOEx`Q~!)$ǥEQ^9#jG#/Ay o?Oܹ,xt3gObpp@N&elWCyy. $ AeW!*US.bETbj g~~_a<;Gvr H`?rzj\LrnjC%0SwB$!ed@iӮ=-(WӠ^]P:YІ6mŁB:ȟ?_ܾrwOO }OWΛR1/;xrc;ٱq%DO[Wϊ]=,=Qhljf϶<{d͌mØ2lr>YYcX` 9o3IKH ;-kWζ)@\Š3WWAb|$ Z9MBl҇lݸ7_SC< 3 KPBSJ("~>Vn5|ure[Hui~XDCeЦȨZ>ٰd%yj/-<MkHIь R c,+isdHR[Mõ3عfSH`ơ shu^U3G^O%Cd\yb%7Ψ0O*b:nţkX7r{ 6`/ցO{G =ocZb2jg07W,)_;耭[l=Bq %@ 4Oib估uV/%'rnsR≉ .5bY3 H#%[Ȥ$1qxy{</zvS[vqb g hMR-'/JkPxd)Knecf GP5Y!ʪ N_]wۧw WK[39gwÜ.[ ӳG7Mn/*mmۑێ _Ъ{E+eV΂?㻏9s/_SHG GX8w"i >6ͭs~޿x(|q][s ޿ue3'5kF5PSSx[1{11j72{Ri+X&U$,,kz~2F;_C;8m׬.Mk%$2(R6Y3 U-)w?hjJ: b<=#I.`-ܽ'WZ7哪o\.p= FQT#k' C8 !/яW#㼘<GbDllvV`1TVAbLY|zR+J(5R_̙8R {w![fp%:E΄=]Cuf=ڒjώDA-09g3X\W΋s'uu -ؙ ofFx'5li(? .>bȄ[t$H١o;3m0\#p J9+@q̟=$]?@NzNYd䕩+R3 IL!&&\Lru%1Wns6m[hѡ4 Gg`W $%’SWI $^LNI=J`Ḥb,uM3幑4L$ALLYe˖-s{~k~|uWwq͙=+87)6rWnAا;wc>tҁ2Fkevm[-h-o%a[Dӫ΂t !eO/t0o^?3𣄃ox d(K$Q_9}<Oo.>&ɓGx侺ynٌYCmm%*˕Kٴ~5&!MnJYǫ3*$pL3FRZqQVG^|`''ngYh#j qHfۆOU 2Kԫ."&1ہ # {,y=Ⴅ{A }xv"a:V2 P_b| &!1C 5yI{H=3ae4$?"\)O ej] n]fέw웒b ᕨh]s9?}utqdhWؾcFc H)AZNRgO@>ðW[>q,Qf{DW,0m F1OQzd)a@0<:K 8-;Cm|D]N;tN1S)j!O{EŇ:88ac~9)_qe\_/Qq BS)!>)[0OBj.aQIT!ZaR$;D&MG^QBԿ:D?9yp=ąJX)%h$)eATTOb6JJJeUs~QG7yyoEc[s9uhu+ȮЧGoҳg,P& ?3Tu?& \Noނ=Ih= ~>>᧟ü~{_' Kd&JRɊb٢ۇx^+uލ;y@/pO?/;w6ī*%owwnF2+2v߽ܙY4c ^͢1,[΢Zv^'oqT R)Ltk7Wwr,LSc!.dqz6oZKlLYilrj/\>yHOťGcᓈWh6NFd&=̵$}>@K&0%ĄN ([Mg|?؟5s$6:fDIJڳ9O<I\4+M%0~X*+(’ ? ]2g!S92Ucq ߑsY;Y`0C;|i6zW)jjL7-4{gʎL-wraN_%7`J2p0V'puqXr8ֶxoA ع$g_zhoJZ..*wuEqxɑ&ϲHO͓sKixs%w;<Y)>cS:S\QMpZ3"ribT*,pQPMz~r1|UOSg>&5Mc˧o3ϯ^}xi'__;*{3  Aʬ@u,h/|AA;ur@Y],P'1 mڴgQ,Bt)=F+ ܿrG7ϲ ͚@S}1M4=m"o=޿û7Adln_]!#{7~߽e44~,5M_KI0^&Ibk$l޺CKП+6VNg:y\;rV#W+56!ٌx/ ddBrMfdE`B?I2<D`}OͣX|\fL@L?P S "6s:(kpn˄ĮP̖8}&/͐AlZ>PWg-Q^a\AtLlLqwSmbl aaW2oR:ڹSh,]39p7.*$ATy Gҽ,pI. ܔDNLÚ2&H?Ofd`tE1lTIJIur޷vER;Hr 1Wefs !W{ {YK!<1B$+-!U@R>QBQ YEdi3 Y(%VH!ܒC Ki5ReEܑS5Zľ `Xĩ $g!}""&“ K#qqrQŠom><'Wj {~ͽ ^\u{W^~0tvIDa5lݪsU{U!BYQB΀$5G 㟿侘 TfND62([Զs,9Mز~?eObvQZZ$aJV\.[7LPzW/e>]+w孋nn`\;wX#ڔ,ۚ=떒)`zh-% jFwq{{E)/eLm׏42abKHb9)S`Z NmXKgϴ[9Iuy2SY] :Cqau2>SRbۉ {C)W̛Sʸ4XKKekp=U6s-!ٚp?(e©;+w Z<@hh.i`[S=/䖄ױ~/K~b Qll wؾ p0JO !8٫O&FxH"v*-g<v8f[Khnԗ!2"e@Ie (9(MFv5䓛r*$9+zG!b@59߆SUUόYt!׾:_+d [P=jF>Vž _ԩ-!&&KG4~&n>;] _y~:O}x|ŧ_lO.-]-udeW-A m۴}VA6-[ _P:a BYΠ}HK] _Eܻ̹ӇؿGFF<Dz3wF ffɜ:3 5HXǶx)3gL۶nM#iEsyvlfRC&5P* Ҹ$^H0Zڣxq!qo$L(`/cLP=To^:&{^:h,͆ace;vn(2{'PĠbN 'z C{+1eayĠaV$&0Eg"Ŵ<F$3Qfh۶mr>CЉ@Ldӂ)ؼsԀ{kLxhG0Z~ CIzyHOYƬi9{z/gn,*ط"x Q5Aj n:Y?6smnXÎ ]>0FE}qsql7!V5.VC1UP'+۰-yܬs%@1n&8hp<9+#uEb(P}Ռa"/.(U/ddoNxȤQ V<Bl c)TT3yT͛+{ sOʈqhyx֦8KHٽ̞LNjyEF?"c ɭ<p9n26jx.߿~gxy gy*\7i~zyOonEhi[+ E[L]4^,Pv=R& m(SN Lس?>yUEdK6 V?g4ėٱy{/gfm9F?Uۮ]dzƍm۷mZcImHps^'^8{snsyq<9k& ~,t'Ցmf%E13B`7~~;-cU0[f )@9nDW\>!}E2q>Cs7QR6TW@YV<S58`ieṟ~~^.$DmEnp uٳ'3f `!>8(,Ww7BCCioN[.\*rs']nQzd$=9%8d./X .F:X_ɕ+%nF#(?ڌvMk`۝C(:q`J|,T b=`߂Xʹv6[.3$sXX`f>s8`k7Ga8ai>O7;BC/z /So/$3-[PQ#kYYjM'0~ i)7E&CYj/׿dۧΜIWS)"4*3S1 CIsgF!5rr+UYD2~!d_h,.4Z_ӷ-?=IǃK۹ur%93[ɉCsp_tch+AzоcGu@Ԛh,*d"M)vZ:";wf@~+W#PWUȈb ^r>GDPNvX\ <w3KںijfqL4,9og^L (]R^Ս M;.8IpT8IxL(50c(M"'u˧uEg@)Ċshnd 3iK,P[uG6>üNeR15F0^f Jami;</hJMhWq5=krx|ͩ۹|$G46l2z׏oP^![kSGpTX!qab8LBoOOH#WBi}&OMVB1]) x4ը+hO>Uj1:>cٳ=6;Է3{1Zg{A*'eZ0c$ M a͘VLӻyx8;V͢ GDW_4DẄ{B;FC0S$T;3mlLt5*_a+$d5 g +%48Hx6K-d_E"Cˋ seeKP$&!DE&"nl'";9!dF6|ZwRV$'9eRRMPd ^~a$&ao@avW3>ony!sxb$\LO={IHNi-oQ,Z@YmТtڙY0"-%[rf[6Hؿs%'m`";x]WvҨ//P1z c;t΍֬^Ny3Cn֥4SHΩH3nD8"BA+Qb(sP>59ь,H +ʇswP* %;Ĝ({Ҥ&%nXZ8ҭ@m=ٻgO_Η{O~h&  pi,-4'_3DrJj<n,ۖ<qvE߼)4{6[|5ʖRႁ!gUlL.7P44ЧO?|'.*L1 ,1İB<])HbJcpW=eL/1uF:>&vkEVʕX숣FpVsnx^U%h@E[dq nx '7ɛh'3INAJ*Lu`5\ -[-b#aJxBNW1 n<ZKhS411䌑+F>X{`f玥+.xxxU8ؗ:ӫ? ?bD_%$f &K'O%-#G݉c\</W쿽@ѓ2FW!а L$ZB)D G%E^75*ҳI*7(W0B"Rp "%%C!7={[,,o\={wޗ{v [vo0c~=z(ۧ}.XBmڶC7aere+3:wHG~6}#/ca<WfMxp+8> +~m_/سy9=e u5m|,?QW\#OZ}9~s}ښ`:l0.vH75 Y Q^x._PXE<l./h_Acyx5H3cjjJ2e>#sS;-a#<([Ȉ+`@g4?(ft9#̢jLjf`C[y}47$ܽro߽d_l@{yHmWv!GD>#XB AA 2'I`(+ ) !H|SiZ"3j6{\K&d^ms3) 'B%tZ1]KL|uvw@K2"xNb"BEKRټhKypė<_p.c8ɓXWb,{}”FZ}Ԛ zX`4\‚6pBS__<43M\F {be/|2ngOGٿ>>D ăTOTAF.Yۣisx?r&M,jd.#EOwze<sxfP[Fiq=y9Ϫ MCTDɤ$d0 3>_-yͯoۻ5gxw'vr:E9>8{tP ZztM0NUɁM(_|R't/,7w| IϖƦ2v^˳'W{xE\8pF^?/?=cڹ&S]5NZs ?a:JV$3D-\mj>6߆xYjF v !ě`/$#,#< w;lt D gL\ǔ>8u&n> 33v.9|/W2H }X!~t7On&8?1V3}B3V<vʅS{N¾Gx?ocJqF\+ͩ.H[eSPÆg B1OMY+,J39LYԑ5,?cY45:bҟ8 ][պzZwDNt NgS8=݋dzpR#Ņ ?ndiS1nsܸ9`c  9Hp cݞ[&wcK4#g]l7c>S#+쬼3|q>W0>8b`C.ݳ/N$&f9%=RHrjQ!LLxQdǗsn<uKYpfM$>%՛|Y&檴<(!gB&q+7( O 8~,=_>׏_ӻ{y/9AF^9ՓɏgF_H' CjACeZm;ڵrdeAim%,U]m\iб3y}G~'wn|T0^3{9}d+WNھ+b?+d4GV3M aޜܼtQ UEF {sOYV՛޽$įV1_/I_Ly~Ec@eEU%edLEeIh(mRbl}MDkÒkœ5Vr9FT+!ş‚з 4K ,M1CF!(Vܬ*-cfU,=U૳Ǹi߿Χ8l/OcC`¼Y56RW]Ey^Iѻo_uY ^$FR^/ nEXQ̜:Y4DŘě%B3C:ֽܿ1/1"v0Ɍu#rٱh,k'xT#R)Bjzj'eKM *+7*\Ɏt.=G1CF$ V[Lb̵id+.&$j/ؘcG0vnعa싍Vl]q3kG\<pLf? 1=ci&ʲ.iV 7H5&8/rʹ$pyάXl)h >ի#[7Σ, £c I/$$|ށ1xD(cJ)%bL{~çW=_y}z;wJ<)^<8%]]Y CahhӳWoyu ullY,B,hK/gPZ6ړYDon̜0޽?o mX&^?wvN1 y&+4sCcsQ]SI>yǍ,(*MpRI 4UϿӥS+zܾ%[_Hooth哣=U42P?7f.<3#[W.4Ə̈́㈉&1)SszOn;غy'8Mqp+&3YCNUFh.6$&~$M;svF0+sCnݽ_Ïؼe5+ˊC8xZ4kqn8KA~%%%$'gгw:v#K~޾Ԕ3Z$;/ _I!~Lϼfdv/ásY?E88%[" +wPw|ƶk{$%X3MK&FȂLgr2BSU[_).^/aŁWJB0C]5sd!Sj%d71$~(bd|lx)H;3]l\q ;{H,]rRp&&fI4<~2P M":j믥 m}zg0 ͚_O ,[;khV.x _4 Rv`!:>B"W':WYpn"~E䷏Q>绗t~7Ns6M .ӋĄн  S2v5E= (+ZIǺ@YEԲ@t_Z-Юଽz+41߽{̏~#?ȶKp%ؾ/ ;#Dovd?=gӪԖ2c ܜhnlRUZӾKBKU ~w: G47_N)eciܗ ƔQ1Fգv,7v q$'cld*Ʋ?=`[6=iXYDtL9IY1rJїbIc}+'U5ͤ'%Nmc rhmGyLݏؾe#5d^ٛ[ "zSwiN>ܥ`|=YSj2R"9ؗOMX?Ɂ[m*B/έ2&B a$ p+JS94kX7t\?# sr;oړBCi,!Hgޤmt1 3Xhn#+aX0!<>Dpp6[G[[K<cjG.K3[Z;H-`_Ya@= SAKMx:*{ O`΀ %3?>,Z:0<Es'mJS  .2ȰX0# +\=Xe2G>>%?~xWyv<[ y#յC44@Ppӓ)[ j%x̷h%j+uE[)[g CjKI<{ذvgO~/ {y{_߿(\6&d-Mg:%qWk#}^K _wsp{EFvJ_V_|El+u@.c*sG2~*s$2n(bI҆ӥOOٶc;>%>.ḺD[BLN-.tu6t5Lcg5s=iec<֟ٻ(ƍ,g}p;O/}^bnfv8izT\?CYi%9DݿR`!.n88x kgCFXƳkL\h2%O ?=Ʋg' !r8SL 8(yabI< 'Sø,mfV]&Op`=Ia.%P$=dN,֠d6 &}0^X;Yaq-Mk{FO6{hHOHZzciN0az IKj12ddJ-[-4 @C?Aa>,Y5?_<ɂ>Psq4م 6Pcł'. $B B8>xWIqEBw )I|}=}xOD3|}o'7H`8̥ckɏwT' 4)Uõޣ.b:Q@[aǿ& ItAoGi]tVVܹ32 Ϝ*F1~\#\;B.˽%|pN!y<wI]iwxpㄘ4fQ։EcKAotP""N!f\Ҡ'Saz=,FX`ia^00# (ؘX* 3Y^?/[ʒ:wŜGRBQN XK`%eE'!Ok{WVXέ穩G D _8h[bGm-MF?D'.' b$$zhrcIMJR¹"+pa>&*lrqua@ kŗ[ؿ} yzqOh-AZH/FBiIn9ٙ^Y$0ZݛwߺٴusXNn'AAp3 gC(>N왁?y[b4305MS=+e\,nd2sɉ ={&e`%/VV?5 ib% I fKp #  ۞<D="q ?Ofe;BR Ss}1Z n9&Ҍ4T >4u'HM]b{ kr4 ]REp@ !rl2^<dxan*fY 7q?~X݋1||,poģ}fM\>WeRٽ5%h1P/+E tJ'2ةs'u2CG}'ګUݻwQ8:dOO3}v;sjKq,ᇻ):Q?(ϝGytեoڻc} G4P@)8SxNio0X}v\8\l-͌doMETwl[-G7;GKLuIP(;;*Ĵ[#AQC7vmIPGCtjDFzZ'=k. ;" ${aހ_H<C3I,xc̚</ JKg;Cn7dcޟ;gO".& ElңtGxIBCyYd'Q-(-&@'kHP;c=g[8r2e1>i ]q- ע,%DkRI1.ld100 O,E^{),l.3}|.D+ aMd=tt`iW~?5sv068YpGn"8Z `aNx,!IxKG` ֗"1m ! }qrvQo2qgj& 1@C[Ab (cAk+3+y?,|wzR@o/tܰh%yI_nꄁ:eEŽ` pESݽeq[~xX C~.|ǯ/>^ɝ[~LQÃGNh` =={V/(Wp(oNo]C^xڅݺұUjl{F ?)+ޞΥR/d|x)s?Ĕ|߽ÏW^?*`̈r}&cQP= M@@Ȓ\ Wx{cj8b Is  6*-r#V@LI ԛpV.b3E(~,/D4YHgPJ0逶6[7oW(˫d@AhQ]*<튁5a$+F6҈>>䥔g}gꄩL6wZΟ Q Zl;wpv&$0Kջkg|٩!#QgwfL,M$8itƶo{t¨JTޗ Rx{6oI3 c f*~"gw.<>e;+Ȋv' wm6.NW,ci2P[_̿謅&ʶf Q+a§ w`^&ApD2޾䉂tB_}5e}3}C(8PB1։)S zoOwe'_#o̒E(M"ߟP%, {;g\=qV&{<HCarh=|}͓thO+ąyӣK;5PHJvi߲.t(m'ڵо;ϥuzuCNغ4tL>y?IwOT}Q:s~6Ϋg_{IP/x \;Imy&8~xnV'3Du$) zZS Kk+& 7n8b66fX[(YLvl\FzB&C{|8<1Dvr≋rr033E?kOێm¦-x#WTXJ=jLfvvB5toX{&]ۛqbix~X#gsdrN$Dž2qX&LŽy YJKIuwY9w|?CBBd8Mٮ[wZ]Y)ԊD˘5edKr~j6oY81GJ슛fwww; F~+ 5D'Nё7=Qe`\I<gv,?Sj6icI [0+>u N1[! 遲v6c1Nn9 ⌷gB9 #XwXh߇c &6Rq=g)Y]qz{aCdꋶx#KϿdR%\i-iw:ؤJꇿ +ˑM`h$0uvtT' \< bڸq<|Z k{yS#~x}o.Q[xzm?O+\9NB|З׿]t௄.AGe{%erKNjԮb&>B ]wtd|9{1y/7.I8s 㛻'Xx [V/7Br/o ;DžP1U9sl9y)&K;8B:;$H >d,_8IKRΡ ѵȥ8SΩ/4,gƔDIv#'U@6'E+Mv\MntODs{S3ظv5lپyf1}BZ4ӣAt5q4&v˰ + 芻ߣ2)J$59<*j8a]~bܝm01N89Q"'p,lӿFouN!GrR1FnIEnSH^/b~?Y6(A3œ8v6IOclnj9dS[grpTi4Pܙ6t .Z|=K-!IMm(`|90K]+{ W/ܕFX:zbꏣG< [INKMĸPo%lDoX,^A"SpKd|4ض,Pjwh1 =vlLX/wdЀ:3b _GN[ fO; JQ/<|?/o<yXӹc h!A"*U@w1]:;+һu,VL`cvtЎ!K;m>g ~O ͝KI%D|ޥl_$,|&։@T >yꦘT1oXV-nmX^\IQ t)[EGr"߽U'KM">=3sgA+W+'41mX5<y:1ub#kV%> $!'a([x+[GwgԪJݖ-pS*W*e5|^ҵlݶkVJ7e]WZEC_10B$XXcbaAmm9u$geQTZ+jn7 7%7#B1z녅qo3|v&K(rX[;ѵ[w =8h }OV"c=+15zbWG=~8>7:?oN?{ l$T !}iL %^:yuk,4Ax$-ycUWs6 {9w57ed L^D`V514Y/M @z,8>ަ}<dq1FL;n~xbd큵6.zUqenfINZ e#Չ"J#Ept"AQ  c!AWB^vN&sfOƍ2O~WDxh=ѵ#5M"2܋0 bB{go̭]SvJW3yZLx:L$8e{z7wQ^9oʕt-A?}E;ҹS'w9.cEa}]ի{]ta~ӭM[w?;{v.Ky"| 7K0}\-$T}s]<}9Mw`\2#))eL:xGvܺ΍˗8{EyJ+oT?zdF>a1x8dg.\2Ug f<23qLmX'(Ș0=}Rܱ mZCt^p۰~h+^>}sغfx%DAߪ}gZK:Q?z8GM)GX2lb(ʥPsHm} $Ut"Gs3u& 63™z?c+[RV_MuY dŅрn؈2!No~$m9F][3@oջ31ȕs2Jٵrt52{D.f KW^ƣs ?u)4rպK+"* w qwQ.hbk!^LZS>K] '?֗f.zv06wZ[FVsJȊb~O&2IwC`L2I'AO'bܾk=?{*}hm>Mҧ1DN@ ;^Kctqr*>lj3{޻Ưoӳk\ڳ˼}^~o%=֮@mui=ٻz;qN]ѻ7e̴߹Gw|ݑZCѥ`ܔ=[w7OE瓼'ѕڰ>=W7,nS.;HyA ԲZtJ(ʊXn5&'=-8X6Y]׮ e$kJ|-L8SG1NBS'fLê3HdV7|,d"l2Rb> SǮJmV<+Fe&n޼yo^qklڰ ު]K:jݥ-pOGlbq /D;;glL h+00)(ȥMw򓌫 7DnzZ\)Xd￾ƪSq T&HmEm٫d2ކлz+9$+-!} 7Ob6p#܇{ :chLfg_r1STuЉ\ݼ '26*M &5cK[+vh=ҾݽTTeG9K"wDv:8 jvNJF9`0LDW<%..^89`b茁-v~8;cg㊣AY)TT JɃ!⻕9ǥGhLtp%w p*0YAmdoy%yJ쇟)EdgF`SoJ02$VCLd<W-s!_ۻs~HD6?'1JXxre/__;Ǘ9wh9i1.hy.#D D (\ʣc{zJ*qPك%巟ީ^(Z1ؿk y;˧PS™#;(+,]8IG2Z!$򳳩(H H4ϛL Yݿr7o" R«DpZWʜLl,cѴQ^8"%x̘ #Th:glO 7qKpIiӾ;-m1nI/-+cd6[._ڵ4 p yhBˏv%֏}2ĸCeW@c'Mصs;$>vVHwS$@JuqwՕ%9f0YD7VӇ={oގ0|.)pDxSCVz C(D:;@(Ǩp* ?oȉeq1,j!EBK+azu3439m!l=+&{hϩe<f7f~nՉB$fxca6k!ZkKJ`; O7S JA#܄8wl8XX)-;`%@ˑ0쎵HXtřdLJHh, 1 ނ"b %"bJe %I_L(/?}L 쉆U7gD, %Fb$0xb"7HCK1fV8۱u*~Jw}|+퍸] x~Oo~oօdѿ]쳿H䱅3z[Jҹݻ ;K6֑aC5ٹ-anܸpL>RhRx๘K s2[V-`ڱ"=Xw$Ј=XAiAK? Qd鎽=uOq.XG`?2ԋvn])"4i-f9پQ (#$PL`ʄƒ҃ Ə($;8ԩSY7弴j!wa֪%5H,}oK?Uݧ$aZ:m=hE!Vac\-枱j Q8{6MpRAn.Ye4浫VL֫j ')b cbx/1nb9̟50(Y^G\puPqL )؈QF^7тyiYQ1(-JgިJ7V2UE4d2>7e,~R<dɤz($9\5fg,FųQ YM7j9&0fD:^)$ o< Rv@YHf&a2qfuA (^XXXʘz"@eNNX| aF"Ox|N#ٰA`_R<`_޻^QQUBDh zիAbb'7TKh1Uve a#<+*]ٶi-?(?˻/_xyK]ËGC\@4ucUUpAK&XoCw=Ukv =MiM+WϜ_" G7O޸E X,ȮVс?߾Ƴq0YSi]IjdL %Irg-aQ jn&׏8u`z2.LLr[mkD(Kb٢錨)%c`b 1,Y0Y&[_BqnZ#K)M,'J: )T+[I8HW3bd%7R 2wSI&?Q]U(=5CC|ߤfLHQiy;amOThz{b><',3{臛pLį?UY2͓şiӣKgz膛=njpKv)Qx(/ .'pjsH```bU`YuE̩+fFe`?I Y0D,.gQLYVk_7o<sU߻Zڪ*7/]̢elY;Qubؓ=Qr5|`uAĔf+Ր@?K5Cl00Z} k̬12sb`GO输p ,Ć _WjŦecGC%8$&S]]Š+C?_g_P\Z"뇆fgxM ƕTd@>jo/ir|V::hǮMkY\$/jȷ7O>8/pa&2#ڷ]Z}犦 &XW[~g{t},xث+]o^hiӭ]=ݸtKnc~Ƿb7yr$[Wa& #;gLWKcM1S[K HOO%+;7;f VJx>cǶUTeBm]>%)ޏܬhIq`L@j a,_4Jv1gH$Fy0vd2K)Cs`?>WoQ(޽;@#Y)ŋW|#O1{G6w]W]:%BR}M/i$ܝTzGI~T7q6>|o_`,c{p\})JᏏsn?+gO`g&Cի:vm+ۅ!r<99S' C &>C_FW[w-иqwwwww7B $BI ݴw;ܱfZ+Kߪ9zj@b6'$J Śɣ1oTTdcQe.f2.Գ-Mӳb0^k)198 %1^h[PƉ4/LVkfD,_XyKm"̙Z~T8;kQ2mT؆r8m"HA[ɂYȱ#Lxn.r3\y.-q Bdd(t !"<$($%a~oɂ?i!نQAVx fV!;= A/\il\ЈN~poU߇ґ-tlދzyk*L> < Q FH?|`dcCAd7|20F3p@? 6#`<Rrp˛;x,_=vлe%̞3jQ? (DNwݳݻ|waH'h62Ke qx[36Y(')HULaGFzqX=&A> nj0-mc{#[(NaгP 6c0d塴hjx_S-g_=Ϡ\/?g~6oXu-G_T2m`S`0D!be8hdge#3cMDǦM8b?vn\m+Ѿzr(n] Cc}plW CCS)t  @_$Fq Q̝D`Xx:lXm4MKоv1Rlm[ݛ m8$UnƱ=8:u 'o[x܌#|ԡ8ϱwۺqS{7[I<yo='7u?:caߡS3ukTÌmuj*{:7z02`=FYB vnvpzoB$$( WâHIDdL (M̬ZN:Łӏ/9.>_@{[32Kl 0$CC,xOOD;]IN HdOx&_?8.sA߆qvzf\;މv;yY}fLZM#]FA]\&D"bƝ\kUeSV4Dn$ξ0\y4P' F(spN>aV,iuOQYKrLR}OqvmCƮ><h`&$<5MXOWP] aH>{`㺥10SC|/F2i|Ib˜l̝>ifN(9SQ310 ;#+tCA+!CdUL4 Ռ~*Eזx! 'H$JF;\f={#֭s-Gtj140PF1p/(r`ggPoF3f!1#Oª%ն#!.p %ؿc-N܆7DmmOBSU}hEzR J Po@yٺG#qVܻGy-8||$ݍ)o?}O/<b{Hyb?r<p;ږ s8N>޿U&⏟~_t7.CqVOt9Fκ:ǁ c$s8G'= 15o`nƖP҇ mb8[!"> C(q(WQ NHABJ:b0ou#LBo¸pbLKU 7XT?8J+B=]W%W  ='$%!59cʋqa5cwӸyvNk8}5.nÍ[p\;':][1<\Y^(-!w'h2l(F(ݿ~}:*sgpb7.ޅǶ lXj0n<j+؟ Xx>C{6rbsc-5U+*P`$V||lmشn?n0QG|T0i^m͵C2Eb֔Y1I`?.P]OASe)ͩ\w ={~K=vShJ0f*&`KW ޼[xMgb X~&MT-{ T1m4\4Ssr9M'rҒO򐚖Ҋ>e]ٵ]Sq0H9-!wG, W0WO f$Gfaj6V0Mͣq<~z&֊s!Gw˄lؿp`_:O9ƀK'<> ؿ}j/8{a[_$|pO`̷˧Gbqu[0j2dGOsS_p>W^q3GA;L}e3SQk:PUׇ \ab"KKMqsunC$I1}HOM g/###*i>MRraqf2o/7XY2YHI$6#1wyzo]Ý3\"8緮e;:`<8o\˧fM_BD UՈ?<G7`>8J(HwُO'W98w|+EFNRL_ cKP,+m;8Ƨmx3ښ0'Ŗb=2&sK 8lGG 9V0(/$#" ͝mX0"1z4$⃑0y@O1&loFz`ࡌ=F(**)S0qb-**ˋ0z(lԎo_~ǟ?}?g3.b=Aݔ>s 1Bma&R侢ω rdU㱹c3Ν8u:{6CyȊpE&u 7:a_\߁'O :FPQV8c T]./n:. qٹl8vƅmxu(Sӽpsxqv?ޞ?OO>yգ8չ.>S!Bvkfo<O7Guc ybǿ&{l05" MنA޾ )lu``4vf027)_ϒÂv"G-~~ް1C<8IOg h $8\MGD*&bBB\HJߚq& {U}%2A<0wl.g0e($$ f`)Xx&:-ƶ ji@GBشv>\yc<l];Z{c#v.kpx:ٲ[ZѶvZck l۴ۖy)lLR;3H/GEy>&Oriq6MFP߾7uK4]܀bѼi1uϙ\'7N ͹cq1lZÎt9;׊"Bў OOx3CQS^NЏ@bf!:: 1E+(x"/#i r13 kF!/?A>4$4GU1RS If31H(*)e*FWlT9=UaC*<s G6aF[;C<{E%KdYbDƧU*ZХpFr|3qhkmgp6ɾ\0xIe!4m4l[q.dDž"VFF.~IH EJ޶ [u"]2-+`3k2tr<lk_F{i*omƑ4:(N7cOܶ'(6񻝡;Dt^]޼w/Ĺ]4[7 {8.b<ܽg.Ń+;܅208$`d#,,uhgs81؈60694 Mahi sQNc݋B6Baj,B(>\@+0 a1 R($dq wHOK_qosAA(q5q18yQT$pų8 GRBcAђqJtiMbylg_s՘7uODì*|q6M+g`˺yu]֭Y&wwJ%t䑝4hY&1 k)*W,ǴQ^4yK);Z#=|xvo]O_Yc)[ӊEӱpV-Żؗ\.SD>1nd#`m GsѸy 4 C sSP($G0[D zJژ`X GFRChh&e<(dƠH5Aeh/ 鍲4grBO[$ѣ0y$_Cҍ(/+CQafOC?ضqW2'~?sc].OԜ"Lի;Ƅ-iiN@^aZZz.ߋWN!+>70eøtj;û`8XXCE|XB1i=}f9X^_z+{`3ya{ZlݸJ-V27ش'wvԮN\9wD#PT;UU~vӘ#@9˸1Kg<v n«{gqnHg?!#\_ 0U(9la '{c FxX0;;Z–S714Ǎ-`aBgoyԄ!pit=<}yQ/DE#>1B#"}1-҆t"3&3_N8QؙgsLg <DR!_1׸h!:ȣh]݀e'ch1*0oJ%NBqhZXV>kfbk<'7P$LMa?AûgkW-F{rb9F3KLؼnn=_>I\_?/݋krh\0k-3&b\Y.JÇ'8J.x&s<Aks=ܝ؟@Xh`?OƏ(M,d% }egq@'rL +u`ĆJoj^ i*1( 95>Fp x9A72E@hLB(.+E1[UuQM˱z)8u08{:wa9H,]O6N&HNE*MClB*2 K Oȋi.?{ '.L{v6SF1A\9E"7@LpbCaojEr~ϯRb#0r3v7heLogdoaj]öcNҊ;:q"Lv vڎ ~6۱& s'Ɨq <qOӻQܼ3D̦ 0'Ois&pt2}{bҚZ0{fvp_ M.x͸ 42pƀ1YL忱Ï/+ܼybZr$,F giKI@5YRD hd'cbBl9oYC I]qZT [>f`ŬXD^^5cVMǡu^-:MƶeC߼l]XkWlm#wSlӼj 6cOޞuU(< gc27KrGxM?>_^V%` o? wo'tXͣ<i܂FͿpLX$@ΣNK, 8.q\:01A0DE~d,k\ Ɛ)c]!zJWS셒dYMA[gG "rԌʈҲ"WKS=/?Wb<Na^p6y~?qu4wCq4g30n^~wI$4$&P_0%~n_ə[p^&"E NkqK$yǶGbh CaAӬ0T| RRa[)&3/EYX:cftzKxhzlƆe8@Oxm9Kނsרٶ[pyF&;JO?r~љ6.w8M=pc5ṋÇWqae{@A||7.BeY&MȆf04U2tnvt6 =]`jNL ...s!}>l d9#}9,,B򀝽%\oo/jx_,^<<)C9)1)cw[|!:yF)Gn^<dPwS˦Q 1%7k+0kX5UEQnkoXmc)vw.[A}9t-+ql;jo3hÅ#p(M 8} N܈(qlZ2\€[0(n`չqvoYK"᳻7rħWw9زq l!:QXEYܾx\P/!>*)q4b )dJA^V"&.b]1E2yJM@AF* Rd5E9iqXJb,>RO~fƒerL,KCzI*/) )a ChbmT,hkZ/y܆I]@vEnS-{v?~zSط'5AbZ\L~\R&+0ctx|Lytz% A.X+>.!ogEH:R8 {[KT$73ht4/E$b,^yӪpjNEc=Ů5DٸjIgb&,hsWêyYM3{ӲWmIUjZ~֎irsx|<Erm̞{#{cXDaNܘRZYoiL`([}nba 36C4A ֎pbPbQıw[; `"2. b * QbEN<oG A7 __^`ڥJJr9a-';LU؈0Q6Nf1}2fOuhXXU磵woYö v8cq܊{ czf.ލܩ}8 ]ric;i>I8{t;E ވbFof;o\?~|(+3鉜:qhhGǁ=)FT xxqQ|x>HOF.1– т u)D2*0SkFa&1<59@32s(V%bqEr!EDj\ *bZ̢a[|{njʊePE"'+kQ]=se|^NWTTXRlذ*~-9^<&ad|"#ܽ7o嫗xߘ`5+OBr>W;<o !q7pVsn<q  qM ״WnЯ7 QQV{кv :[aMĂ)c0,K1}ޱkʶa6lMrv󱠾<UCk?6r޽v 鱁ضa9plh]9o*3ܽro^b  ^?{Wcr̙Z6llL}- p$ d Sm8;Q@Є@چط=&b?fmg t8Xt%Jߐpye1*.aшMDl\"q쯜?~{~}/_^i]L^\J)ٚcˋƛ36s$gcZ,Id\mc1xj8}=mhƩ=JQ;•q,~q?.CЊgm8OOAW*GwxFIc-E^lr?z?|6$]r KMO*7qq{@^ qsrhĶ,0Ey( c1}|%zV Ƃ)WxP ϖLV"!z%;ŅQ?q,&Rf$J]Q\K1 4̟X PZ^r;%Ge޺DG+gaUc=ήOWT6O4'x};8rߛ,ge!93酢b5ׄk}yCJsk5x$^܋G g܂#?#[&aݭ cS^#{ uJlX6OHp<8W.͟F~rL;Vܬ[KĪؿ ϡ)\3'h$S哸rh\=`t\1t$nr H޿%4IΕ=UTXLX (afWsS]3&f| h `nm SKg;X KQW*JG_'CۡMLB )/R/FD#9!Ey"<O& e<4ZvY~☚1}"fe9FPO" `;ko*Mok 8{| ~o-j[v3I8xߋ'̞-qv4ˊ모V8 'qnԯ"9C|z{|/cΉ] 8v7o+ Z |˱ZC>.%*_X 9 ir'TbBe10^L^{Ս`Ƥ2/.NPƑt(:7x~=jY5|m=BNzJ Ӱab"e^LN(/%/lbaQQFQЂ[o_~=<ȭNs߾z/?᝻v:SoxN]}#3'A|b='7HIIENv9 75ک|d'݇pW$z!Zu%<:o+volC#}; #0 {ؗ-MSaLQN)eLQh]1 6y4ϟ8I=8<סsl9 jK9xD?w}˪9sr"<^a5厕se/ɣsw; .c)̩`03U> ad C04ւ-u@j NpJ"&,ecs:0N8 bհ_kd|j-?OYiG  Sp >>A~8' Ċ<<dtH;h+%8z2q |(Ұdn:73ye.Mè$eSؑw.;pbO ;I1)pǭ틱} nA"M3[˃+pv<~T>}OníKp ɭu~~ܾ.Mٝ)JOw#.8"9 >4<$EnǺe4$prƕ>ᵳ{)06D`3#}XGkĕ)inOy;"ÑGQ4|4^N6p9u3%h?w?mdEI0)U%4 [9CY_m\Xli]7/?<|?G)иxV.]HA׉]h] IEK9ķ2pفiU$?xx22VbղrM+okmXpѷG)3(3 I 37 AC]? gɫbUA蔪2̝R ȹQ*D=EE3y,b i\aд6`)][A̒c [8cwl=u=/@DK+ 竇i@޽Ƿƙh[6EȌ󅝝1lٜ <l`O`nGK v' ,hl=̬0`[f2#l푐x9[>>AHx(cbMĤT%g !11LK_qokoc()CFf C0:'GRv 4ƚ$ dF0;^&a8uX'M}'.P\>Fq7.IUWOxz )<{w(ezpf"iY^ǷO߿zÛg3W+K7CKl )-v$EC)ŪF*(7 \ƭkgM|оPSePT3C0bW_>&j5Ӂ&hyD4NVz0Wpey%(+ݠ2F)PKvlf4UNԠ5"[85=- %ֳ-& y"TP<l؊oR4|b_~KgQ\]0(wn݈c<qN:?~? |I߽wgN MiTơKNۊGw-rAF 0a?c3}=`Tomwƒbz%X"gPUF8gK@MXj!6]Ս9vaA}-:[aNM] er][UOyq|& ͳw(,+'W_<okg)ܿ~ +qdF*07#&0#xy'.'b^< V4 ΰ!pKkgSDXFL$ / y07A?vo0 M 㑘I/ҥg#(OGrrϿ_^ʕHKBIQ,Пm: 9yk7ʕj+`* [vlZ4@Q ^Ûywf<z-˧3^OGg9< os4d^[ue|s8x?+*x~1O/뗷 M/3#||_浍Xb)_<ڱe0-e'd7/X;ÕBYqϋh"( 0k Uo + 8BoMĽc_Uſ4tG(CO]64lľp:9%^u ŝbKE- 2&΍xx~7xz?p/[0Chر&{.ϜiSp!?~z+]=w{wv޽#hd8ęql&\GlDdǸӌ4`.c0G?~?r2BU>^rZs Ta8,3o9"G7̞&4XZX[!󾴷ٓP^seu%8w|\l޷gP/^=CVkC]c^߿wݝGfth(?Q@kR; (؇nAMi KC{gW{n  5l #G2(ɨk+C-"<2Q\N f!^8iraYq\93twP 2lhjZ5rڄR; ^ԼF@̋vf&?ЅvcKAl\6Ь=̓xvA2~xx^o>Ƌ9|yo5WN xr0>ܽ*Wyr pL8?< =ǧXz6-!X(<|twƳ`nE ĸ2 *(Be*_#ir*?bLO&pԇHpY_l?uq29F+aHUUz@Qš/tGW)<aN`,V3Y 6Rij(ӠϣG+-A$=zH0J(.!`ǎx)~3E& t\4.)عyB̙6SǓ7?𵇎p]ȘcK 8o.~߁Pfp7Rj/x3ۃs߹ֆľW0x5'V~Ԕ hm^FݿkzT*'c2;X:;Z`՜ Le<6Lǵ#۰bV /+ƕ&83OԪb}܁'ʭ ׏n[kp|k"W7]y:STkZ>M+f!<2m}v4vR &}8RחVfT6reAQqLVhoϘ"*yx#>>Q0HK=@[email protected]{;,#ɸu9rs؄8 tLP%ObЮ2XDQE<Ģzt/C 8k=Z@r\;fk'n݅khmal_́׎#&<uoŻ'(NұMyr+^3b{"?OD1<<<~y{WHxx~#$irnbr7efK,Mkh ue}SHsrpO+\])T u(FW H$ ā!iHWS!1>s EPTxnUTQ$G3 xZ }(@{+y4 (/+dc0X$% (+GKw)7<44w 4ǂѺ~5uf2h̜:aO/ϟSx L:bںE*9(/ہ]DKfX_\<i<ĕWg5Ŷ.ԔT1ݟBlq+).+q͙FaBC3wfϚ$EOˊBSeZWb'ޮ8;V MH`wa;S-B$Dj+h<f YW.5xlEDLڹ3!4hܜ+Gx#0be4$~{ )[shh"5RQ;c)(`lM`g`pG|b _Ȑ˒""("hWxW`ɲIEcou/|I##‘8TDjue\ʷfl"]tPʒy"75%9xt8NkKc^jlZ;MEV2ܶOin7?'n7>@Ls~~~zFq'k+xj/>(wqd{݌E .=M pwv`y\i0$YaIgl }} !ǩ1?dz99|i",3='G 9 iQA4ΰ2׃><R}<ZSe \`nk?댤ё\wJ[BqQļhbuA M&,+ Kqe33͖5rkɬuؿg;ϛuQ?i<jUm ײZ߿x;8ڌd QcPU5&}"9 v0R}H ǧqkjh()#titѣG()v6Ȣ15/OѰ+ĆUi)V/-- kkб}Zdrzom{p?x40=xt$6,i0;GWS^кbk<|o_G_kr͓g/'`>y-\gqaM`h ?m,,}n0IgH VYAPgﵰ4 b4E9(+JQ\ h*(48Vi6BdAdTHdddd\ ?b0$ƅ#-9fznW_?Yi${ED`ZLc˱N.S'KMg-X[GCuXmY\sXVbZ$D8c*F?[76ϏѢb[|q<ٱ?=/ef>>>?~}m\<qPNob%k4ocT0<DžShJJ>y \8Ks =-uXFm;K |38z2x>lGNM'Zz4 ښJj:d41I & ;cjӖI{Vf.(̑_8,.&ˊQT^|ƇB,_ _YzK lbҲG?zv=`4cV_02^||nBFh yz,IDATq5? GPtx*DB>ڍcۆ5PWO/jûu};L:V-ê% оfllgn|l\(ȳcc :ػx??Nj-o71_ޓ.;c-[_ó'S1m98Nny 3wwA[+bޅ}K`-' ˄!0e-d325[tĶ$ +(a(͂$F:cҚZO^eIi `r.wWXsHyZ_ZnBDGbʔTEióMByN\M1xrn*u#ьݻt8=ǣydmC)V/c7ӵ ~~[||| 1.߾]x|zO.ӳ;8{r~`Lo8_Ďk1on ?&57[~=ipy|s\t ::gM`jd]k[@ [[k8;"b|x R%#bݑ(_S:1r@AGќiE|rYOoprc7|k@9XA(VP(,' Dž g?E3p>;:1oԍu4XL<w~=[1kLvl@BJ<td\Y}%9~<vΦ0!(DF>>bkj o7g>5hkhw2)}agm*WP65bŢihY=MԆ66iVPn(mX=˱mB8I{gHWn؉=o]%>!W w? 'ĥ߿79.ŖWˋd|/'b*Nq7jFw7z˃nN rALۑ `j*L޷ _M3BCYy![)I[ :G;\mm~ )' H=.Wee/{;,xxvmkC FdT4BB`֋BU 7b40cƔ a\eƕgb:HKز\'vL .t-Ƙt,Y"/7 @J:+1"뫰mtx{X27OwObwr̟Tǻd1 V@(I&>hwnK2eټl[5K]HIt\<Ha=#cPqUa0T a 55U6b_p4Ղ. eWp{X٬`0r8++@WU*o3XSHY! (?KYY} _o/dLL1,H ZW5.K B|~H sc=fLX)4 sfLуh?>hx><jFipvt623PVRe᝸zb7jEω2c|pv#h]Oo@mc`~o,_쫖 aX9@Ӱv B'[2Uصi p"ƿSK ];WN\\9 ;WӻIi 8EsgxDL~tmqh$:~> ?}}Msxwȷ/M(K _SG꺺Ğ,UgnmK;k%!/-fۀv$.G "$"# H--& i)ye'7FIWлϷπxLB͘QXH̨-Ȕ5Z(wPLX(aӺRX)aѸ,5%&֏C-ƕbL8iAغa!ԇC!>>2掃Nۀ"8f'Moaxk)oQ|Sdϟ|VOQ͑0;7[11; ; E0eȐ^PR#:#~ ~{E*LuaB|k)d_ S*Ca,@[ŚFi~: ㌪"cz 1Q (+-X((C Cn~ 1"<w= 1gT̚5'Oѣ0eB5O'3ڵ Oh4~xAN !ZPb<27E^~xnD>kgpJ?Fx4ځ7ΠyLiL,yt0x2z} ! HMMDG{3V-%W,"ޗcu:D>MM\ۀbW*ۼد7,%QLXڌ:q6\;'(nŵS;q^b%_\;g([V&1YX ^Ќzt_ga\,WKp\@1i ^]qu^ Pvuu C1p0 Sׂ=19-= y2DibۂhRLbsY WE[ObM AR\"CrP\(շ'c@J QHOIeV"Ņ`Lq*VaJU6n#Nk>B IQL d+}|PgBFfs.l/*Rƕ$(=[/b?Q]%l,'_9-'t&W;}X0s ̓Hxo㰎/ּ;Z$;F\nc߫JA;(_&j hɒ؈|O3hK!iKD rA<e&ek<4",MuQ^?W_j %eG?+8ϓeE(""ٹ9dX8g!ܽ~%w01m8Ujǡvl?|?>o^+"'3IF #? G`?'K^]z,[+0P qu gD[fFP' QB^Cѭ[wBEش aiRt^~׺ؽq-ڨ _|} lp-vQƱ:pV\>gmw܃;'wo߷aE+޿w<^'ʘdxÎѝ:?^~ 9? ΕXH:r%{e(h.LLH]7HQ *Z4 4!.60@ c` ǃ,0UlK[U~xDR3+' D DjJ:c3?&ߘh$&!8 ьu}{Ƿ??_$Q;q,jj1"q4y9|z & *2EzPi>ok*gzreqÜ8)MBd0'@M/=-|Z}EbjFb__WfT+opqܾu Znb/~֕@7㛘Q_c`Ϟ=C[E3ÔAy tS}mMؚNV5}<phzbP +Ɔ:4fru) 0X$gW |E nݿFhXxqQ@\,))TPVR3pu"V=E`rz\<sVɭO3&ġvb MyC%Z6@Qi6"`ha*CxC7.Oܑ=xt4"ma6ڃC>=A˧V|hR#)^:p|-I\mA?+a4-s6QwԒޖ%ضf>wM+phj;}`#Nv]wqv,>"'ɍxƶiz|^=7d/V) G3IJ<=d /W\$p++ޝ<=aM}8fppw*raHM@L.bUBhh(D鲉QL;?O[dHÝ?\Sg$={|`.$F.?/)GuTWP$l“1}| ,L=];(-HE~V<%tZ xt ftKMBia**J3Q5irߔR4-EؼvhCv~2Gq@+͍#454D7gJ -.Ҍ[[r.hݡD9udɔ=xd8{SDכ⿯4B(eP%ȇЁ||x\Q2LaH_()S|(` EI,տo/4D} C@NF3H(<YrY0 m i ƥ3+k߿d@ q>*1vLV3_OE؃'P?qL1bJ3kjj _X$zt́ $9-em/ +M KeCCC+)c(CzCCmI*+sց jV.Dظ͍ѴY:[^ i&vĖ ѱvlZIAN=S&`<_$AY7/Wܾv\ 'Il'w69 ij{"Q,u/fME$ 0, ~!, AR8xySĖr)_¢FQYp򅭫lĠ4~ llM`fi,X8<<diňxdd=f4ٹBAJj ECc?:%A41$MOxy@G[__4o)˕jhj1pS:h̚\,BDb_>Q!hm@d#/5)R=]L1/C}]1fN*EQ0g̬-14 Q-Vkmaxrpf|zq N ڪR<yxݺ@߀M"_ɧѸh&.?@?w)Fdx&`qu-zS@Ij"r>y+[5rnAaP(  }0C^ޝ1CԌxD0Bm X=.u}5 Us%[33Rld"+S$E>[^AlK0et<彼6u8L밸Ǹ2TdaɼsuOp_X't`abDp*pV4eCՁ~!&D*+|cLmEQ$~?DJJB\d.ZCE0 [V-B'U fv-͟s'y$,E=YK좰رa\K1یt7;Mѵ[c\j^¦3 <sNf*&oc;bѬ13c,2ңp/4XBT| i}H/++ 9yDg"iV xݽDd%.4׃oQqq#HihEΚO[r~LF|#QapEd`ů?WbK*2 e+j)."56i1>; uXMK9})hR#hJ oZ$Dx<߫&R/LEY^ JrPULNYغa1 RƩrRpvܱ' ߋ g~Ɲ|Mk:|~K '? 9T=S&ʲa=uC?r~У݉_a$$";NR" 2=k޷o|-_2tľX1B*Jn"n>~n3e((Mrshs$ b8%4~Aa sK0n߻,<JS0ulXހ2U3'rwu\҈}wA^F̺ܷ 7@) UB['"k˧Ml^Z(#fan-!0Z*5>Oܬocu@Dzغz>7-B:4͛5sjaT-zbAX> W 8{=[;lYګ:<w:l,.5m8ݍx%V\VaɌ*;)+5P78 Eu@ǒ>5 SA;U"Io>2ȏaחKݩ%ãّH'sFcT(×,/&Ҳ wЈ0j Kxj=iԂB2z}rhz< S壦,LAۊA\JǨhfRdcԁ^xib3&[:e9(c 8D,[2 m x@oX`\>_'1Rk1ًS&ŋoyض[6/Ǻ8C,\0/M]Cf<XC#<nNn={R!yG1`P\j=/y9_u2}PŋWSQ`lU" _N>( ۯP6cPXL{? YYYϗQ41Y[? ů=[mQWW+WcMW3X0&6'2;=HL:^12GTL8B ;sr ݋:q!:[De FO{n='.a0{{{p<**PSP@ƶCI.m]砝o]CVvULr83-Kga*v6XVMfHN?L?"O΅bfY&c4ܸ;c23x{$>׏ӫ_:{}rbI?"+#,,=~$XG'bX\\tua _$$D!PLupttIgzz?/FNVT$V&7{;,̕_Ë? n6ԧ)~Е:| uu`ifXL2S&Uc2r`RU.&Tdc ̚ZK(반A}ެXd:1p\6]8o7LF;Z3E;oAp2v5ak :(fӐ@ԻX;"!g+9uk#GY|z\RI\?,lǹC;Y ӹط A._g؄bVJJ:{(` S"_ :#GȦ#JgiLvf:p0ׅa?YNq,_/J)(PT P{*aJ2њ PQ` w! KMI@^N*3I,~ȣȧp Ogε6iSuPE)@bф?߿?+Y)$VN+ d⠕CIL *#=p6ܢ% ׭X06&6A GAIañlT gՖΑIW4V.K( eݾ{;VcO ٴ 9~o]>3{7?Љ#[̞6?؁+hxNd˗.Cw^(߹$΢EÐDDPX B 0#02J>ǂEl00 QOQggp ?<Tg_oYN. I A\J ӑ Ȣ2d0bbcVpp_V:&fп/Z$5BK}$cbviԌɕc3Q5X2sӭhY;(SHt1y>w JÕӻpATQ(kZƂ@;ܹz^$;/ذoDi֓5|y{[^1T6CH.NUDJ "C;IOиp&<!W^puqOG~(E!F%Ji+ DR+Ñaܱ2Dzn-DWkF@Ero)_BUuc}]0\2% W_}KB EZj2 rPRĸHFY4 b ȥay>>KQ0'ŤiuXފAEؽ H߱sC}B``K[gd'cVu9OQXM!/Ӆv#&à9½xr":[ȫ)!A0RaۯKEb9XD`,زd&75`8ԲDJ&Ot-pbئgvƹ=d|`.nŝMIpe:n[یvxy0ߧY`<9ÏOchZ$P#%>1̝<@SS @ wg(1E kQ]lQp'<| (O9"-mMx  d#.)^L1OXXܼb,111'?c_d\XџԓM c]ci !&xI5?1 G"/3'c|q͍`+&[gm&;.WŞkp},lDh9e)6w"7ȱëxZWz7 |z~_:ŁNۡcûrp!)on{[Y ["ޕA>pq󀮦6(UCEƀh=} h)bĀ|omG+syQ225j& 9R}w=bPE Q++#U)0}ʪ *`En0 ALOEnf:ʊ+KcvN&PS5g|ps)tMiY[1t VjhͲ6?l޴N53 >v)cP?y"&b5±8u`;ގH-h+A߼gho] |9ÃYy8gQ+ϷBbNgbbX4 ]K뱕}c`Mh[H<'ssgv5¾fZpaZ=ҁ CooŃ]xvqݎwN˃ yyp>>;GiVeV܇EbE x!!H\@`B8%bk#*ij;\=}?7_,}1Q(2ȉ@+ҳsb?#&I>¾'aȸhbZ$.U}?FWWO74#jLǗaJu&cL~֕b 3'bK"]<o:,܈mPoCXhLTwpjܵ> !~0];7ӻ[xB_MoZ6 wx}ȧe|_'On?> ?u8vM :HV[\UmjsEr(ѮF 0Xjv%eb_F0d35֗+ ֝l`M시fmH7s4S+DepywM}1ǀA0&'|}erbb@.˓('gdi~|i^յU6}7_Ld`65~ѱj[k))I|⸱Xx&.މ;;p;[Bm~w|zx ˻~ xsƄ̔ypײj۲4a6-CSI4;F?Nqcn\[ְpnw N'wisq"c]/l_<? /ă3;~,~zt >;ǯ//G'i4/o-Gfb|J~ }菂@X,3o+e__IO91B̊I@M`1) 5Y &D"Z?!!^>aqd-4khAnkAn$.M WS*4ChIlgf*1kxa(h]Ea)hu=ںa#l'vِ?v`Lvxf\Qܾ|fv4!<bx,Y\v`F=i&xy4 .ôic`hj4~Ngb[óx sEۈLTeTG.{M->V7χp%*A[KAMddqLA2a$PYL<O 3 Z#A* SQ [OK0x0ffr!У`7  INEzz\l(r9r1cz=߼_>c0tL\K0 NŨ"|䢎"@_?=uH^=QQ OWWX;HKCqaF1JK)jqB_2KgT!v&2ӴASf~1*/Du5F2(d  _O4LA©_8 iZ8 Ҁ}mKDMQ#Q0)=spDvNpQ"t`\'ނǷ&ILlI}z7݃r_ӭ[as w'&iaHWy؁ Q2ٙo7""Aq*pyœ b#\\Ʊ0zwxRX8Ӝx1h F"iyȦQ-2Q$[ ˿ǁoaUm]hA]#(j5u9U18I44HZCЯwxYWi+ټ+fR(Ԡqhlns{[email protected]?Opvi^; ‹{qfuxx(>C'o[Ē.h׏#$J(]0txr ܾ?D_>b3E(ѵmS3 ѓc9]:bp6X҅> Ԇ򜘘@WOSCbe SbX1 gCD1}csGiCE}$7ÔiCWׄ?HWC_uG# ÐG%II1|:%@qq2_^84J^8 SAq[dL|:G.<YQDī&Eza̘x9Y6i4gM𰵄6 F >ΧX3GvЮX4w&͙ F:#d<H @o@gl\:Vسr6~Ckcҩ(jwokƥylMk{qP;݈;lOmaی{7٩.:/鏗-›{^qo4?//Ǜ;ex,ZIE5,4AA$k8\OU0Ǒ(hoOOwB f60wpW|)s--y:ƒc˛c*1BQTg HA^~܆0<?,д 5 U B(U4աqŁӣFs bj5-B9Xpf3h'>c{q(J ph\8;.Vy0^>OK4U݃q<%ۗ8&+2gыgqAYBQSLlRUf&Ťxx<~N}kَ@_Y_9ZZ030Q075(i#~HL`#&*%94d_ǰ#CCBp09@U]4#CŕH#AG[ z}6Ac1|8"z|>~~v5F 2ӐEOOCq'p| ǬL7㗟^ BLX!ϛ3rBVV&LؿMoޗi~񀳓 .B|P=ZlC)`+AYN614-]Dav#`8|(<m̰ejh'K, bŕ~_X{)ػ|kf@l]=;|J\q7h,o#<:։';6<"cxyz^ o+{A|s5}xvzo# UԹ0"4Q ;W/b7-14 rş`iL261i;?xˉX+Oqa/{RK#./)CtB2Qġ4?a M0Ț֡QαeL^EZ:011C}8W0:t"9rhlj^+p(l[[j Cg Me=ø|]q|;u"]b32})xz8. 6,ݳE|}Mܻgv(g(WcgO7矟M 9vn]O`f##+*BLSB_*j2?0Fꎐ+CijS*Q,+-Qj2qHC(L]`0zvX2\I!@cŸ-0 =m(BN~[!/Z8/& ,Waʢ&C~mM5޽{~\c&fx]s7HI/7o?>QɈ.u2 |ihJGa (+P?qB,L7 AV4a}g}-Ke9.ڎC]0x,7!ا7Նcz$7}5<ѹr1v_Uj]`[l_7{6,ıjF\n*%g>Nn[x9v5yb>&ݵxt ?<:{ѼWbli!t67& ĖqC+v!} ĊjCCGcO@4:* prt..U ZQ"ddd1]s7h8g@:r߈W&t)(u- (nX~X8ۖ-Bڙؼ[cI}e8CQi+ѹnDپnZXC[ЖF&\8F(4n߁DIM8s5.ۄ{vv 2a8MQ1"Fjuw Ožݏzfn\QH?xF.=;à 4Zɣ܋lH?χ!LSPTU+dKc /)/Ǹډȯ2Dd!4.~!t ݽdw;xŒÈBVfՃ. 㢑J#g#KdJOOOFFz\.>s&6Y)'vfM(Wd3dfEN̨)CJ,ů ,C6&pMDif<F& DTfš$- a4ƁvBTj 0,K0&?<o4)1pujz", S0#SS|P̌ ,)qhIŪ XYcvl2jt`k}! .m^&Zh蘚]sgN *iY蚖ӳejváRn@۬R̘(2!A &1 l41FA8 5yD ~<dU` _Q1$xPl28FxODZv*pcU= k0<+;$%Ic_qs$G% PRTͱ.M\;GL[[b|g`o[@L/=*Ǻm,lXQ/W Rn[`sxs|ƀ58{;pxZ@d?{h,*n3ukya/FA{ H92oo߼ w]rE#qKBZO q{%#@ScLMJ>#x#9)!>EYa~$.Z8cV_0~xTL1Uhhl(=%5(*+3[9Zba#b41N$K;0F-;ֶ6HHGNv&I?%r -#YfJOHDݤ K)b<KV-CY8 &CL85-ý[WH򄽥1te> E # an0$=iH @rb=(_WE!&i8$GH#i1A2?M,}T;l1?:J/䆺#\PꉂOd*)S0$>0LȎD]~,P?* XW||\j0ǡ63rQ1$)|Wajq*;sFe`FQIDzh_Ty1TqK0{3PC@80nsXec<WD""1x`J)j <~pbbJ.p=lh\Gӑ/azLVycȡigL 7vOh,\?ZԡabСP&wq2h(w=㱯MD.\k"{{([cXX (J䶤- e,8wmq~< vʲ[rg5||vE/GsJ %n'G̜6 ߾~7.)d!mOA~1\_K#@Վ,a0RVĸ2R DyEΛNǾp!z\&MC*q/DUU5bZ|TNDiBb-[h+OrKOLdľ(tuq4ami8䠐F "YLN+Ye1fn|fs YuctTO,W2v]#^a`mm}SژCA;z<4S^r3TƪTޏ pANB].+9"Ŏ I4^2\I'{!6ގL"u#Q( ']P(D)\{Jj30e`Rv,&YeX4> tuVj0%?(OĜL%)yS,hmʹc1kR j Xd3FU$9$ə+8J`򻝍-qNQG w@ľoH }qQ2=m0pjQ̙)1uL2Yyԝ2¾'Gid(v#ԡJ766cawЫy8زN8бR+3/ݭ2MѹlVymfP ޸;P4-KpR߳ZqŃwb'jžExLi2~~v|sGg`\Y!Fw <1sev;w.`le&Z[hC]/LaiL[GCC #0q@$҂9(t|be'+, aIx"τXN dS[D\Ҕ >hil,ahl?03DA~~.vqeYlEHMZ?y uo L;gäYSb:3.cTy%Mg6-+p"~P8R_N0w~HOABbܚ$8,1f(F>9: չIHwE BeD\h0lW?}%$z#9 ~HwB*(3nȋ0QaBlGfFE(13tROEnOdLΉÔxLK~ \qrRc10 *8LX:9K&ckI7 cG'))iHJJE2ATF{^(Jʿ +D)D__?6YU VG\qkdA"_M7ctL:ôieLM׿cqd!án5] 4HS4h;64Lu0TQ,0F`|q6fjsinZ[/kprZf_>låcbEF9ApH;Փ||nKqܽw/]xpe]݇'.e{r0v҈%w[Lv607M``j =o=haɧ@RTeԄ&,2Uz33hħE =X\_BEzVj' "م)LQ;f4R, 13a#BO1S3c莀<G {{k +:Ù"<W` |jkq%ٳfOL$j놅L.$w_o9U&#G2h  U '!qfw4B h+#<["^ 4> q!cP`r}7nݳ4ް0VKUC`>C<R#dsb9ᡣ=6e Xla PBx; 1TA BTgDku$X@&24jlG=X>?S`TPJ3)ٯYJHD؎XؚϾv񁛇;lI8  )(D  Iӂ(@6{` Pra OB`PI")EßqowO| Vr>}{o <xH,(0>h %9/#]+{|lo'`R9axk\~xF\: WlƵ[p\9܉{gwv6.>Xށ;l$3O0];{x qbOo湲9<|0a|h39>FXJ}=YZzPa,  6_F4nȥ)INhu)q^?a,Sli]Pb{JU"W#xa yx b)3eMHZþr@R) t4iX牠@?E0SAE=FfҌ:S y"yL!i?‚"'Y%0p򂝵) i O_1OqEi |_}.!H.F2 ւ썔aK̹[DmyMuhCIaEq G;@&@]i&eAw^ }}} >A_(Ձ}1t %>Է;TpgPm>a2Ç@GcvH/ 0P#!0suEy T0ج5e # 0⫊/J*qe++W^~-$!:1bB.&O\itq\dU9%J!%!:.q?"~_̾6A}cA%(U"811Y.m_ F^~<sH!CjA)_sۛe7EIZ3 ;bg[EbV\<Ԋk':qvܻwnÍS:pf=UQy|zy?_܇7!qűBǺN,m գѰ`"C&@kCR`ju'c:4a8҈<!<7\S󦢣m-0SLA\|1ƾ'kPP<c'a GdB*i~+GXd"AKl=&2Dfb1*&XJAG#4aLnWKϿ+]!!!h>~ή6#)5^^/ 3[X[r~=zgݿWqyH p9\^p4Q"\d;#mx;z#, ľްȊpd t(O17ۯ0W֫Tzw<y0ui^5*/b !9FuPM jÈAy{(LG(T}Lx4R} Sj QzTS&ÇAg8<u$$Q_^[rꄪJkPU3'疏!+/t_^1RsxΩ =_`L.EGDd,y jhX^psw-L`fa@ 0YnY)2 PA_Z2jMΈh$hs<'U_ G8HEj!C`@~HAE&z0RPBeQ.6X o?b_R,Cת8о Ė[q@'n]۳ oߏ'wx#pvަg{pl'ߏgK!x cr_>LHrPkGU%X-* (`dKn!W *+or uDž 5҂,;;%4bY4cjBln_0T*D#G}(dl=_]DG#ɧK3;b64Xj.5h2Ƚb/l#Վ );9D^*Lz`@Tīw/a$ 89K_/W_yf@z?x0K^o`zn_W_w B.Ub|*<m`gW 5[tCm ȟw." GK b/2#=1yL.r0_տ@BBgw(}C5lpj*}AcPoGC#tUXC  s>E>crL<5Wo$|aKNψĴZ(MlhM>%%%.GVFҒBOX]\AiA& yhĊ1 Zc\\(hjj K|1 `X.$[ ^+1w<Y-モndo{Q$N 0e X$pP:yq^3Kѹ|v4ciX M ilpd ߱B58wkf[6.lŃxM/i؄'DpF\>)Hy/njfj@=\EQW[蚘`6T5ԡ<BJjjՖ  s `滑hÂl  xmsQ= S'OEPX1&qAHAUxt0A14`KʋMafa 3U5( \@0HYEȦJPd[Ē …3u#c(ԁih0%a=C^9zrL7ݿ{n |)IHC%"]dpS an#-< `x{RФCdV5r‘d;$ZT߉o7ߢǷѝ}&NM$}[o}>עc0cﺣ{!={BXW(s"Ͳڠ9t0"Tb6RI6&zNä)(ٿ%H-FZNASӑ(2  9)DR98"b?lN. tptFPD$bS3'?:))HHь_x ȲEᖊ1+!+ 9"22##2JURb%u[ R{={>?[K5OLY8qkm߾3G##Aj)Xpm$s Bn^bb:XQc1Xa$Q#1a$UP1}e Avz<zmuToJu!q$Nqdy<>>>~>oOw㛟?"lgϟs,UWO7$ %QWoϞߺ߽ox _|_; j,H:":ʊ"47{J5s0c,L6Sسg+JL 3c541$y!ZenZ\F\ͳw ,hmǵkQ3˸pBc zHI\gAA qyf.*H沣(e̛#JUuUU}Y>B5yL=q"1K=~ m(H=W'm68)ΞGKGR0b$FQ6؛#F6a$ 3Yw-УBbSGH>qzndFAV~dDlNߎddR誵tj\K"vt 2i6P<^xÇ(ڀQ$^`"1jpd#庈/7l\ "8ƍ|$#0^^ 14g9 cؑ4'dd3)4a^, =85/GF^1IГI23"-'_a9<:B dJ{݊[!\+j˙y~!f!%JjvJ9ymSHs쏐=}=Fh#GÉ}v LW؟<i #[\8CO!ugڝ>D?_>6>@쭻ՇGW|x~_~1Zf<eWO_>TI7Ւ1s/o>Drbxq=b rPYZֆ:ٹV/b 3B0y]6x&RIAؽuҤh~7Y$ IаZ<v,587؁k`&I+WL/</>S@X)fq~I S򑔚GTvnK_)\cc8_D;{'M")N _kA&҆c'` ESغWOIlM(?a2}$[LGƍ!/+/+#elP@ P1 tdv$i {w1Վ(~qf:S2tU0՘Q[UԈb¨ hi  NRQ|(Q\hn43DZ=Թm"+3kR!h Cp؟4s96O †szLߟ?9ˈ< 'ˉBdTe-EFv2s4'eTqC.%I)((,P;F  Ȝ|~fV#H* -bUjjj/((?Q醍=㘡@K5[x[W4{tY;B_6kgՎ4t۽:Є7Ǘo?/z@n_~|!~c|GO}~|2{)F;]+o'o?FjR6]M; 압h'6oY+W.V9ΦOFȯmZ Fc%NQS(LDrL85DxqD?\8n]]O_ǽW֓k 6h6jbR-,-$+E:ƈ\Z q)ľ%Xv*XT%0 YbDQF/ǩ6)('}rx;S}gM# AИ {Q#hǏİ1prG`؋1fLydAb*GRLZ}i1{=暈TK BNEn&MZU#43 );a\廧&2Y8> ⫇a1<AY7m/m~(10n$G@[CO"&{Lyw_ 3faXJhLhg[Za*ˉ}td .?'[lr%'"=5mӶ{nڵ ` 9JbAm-b~*Z( 111* @t:jLy,w,c=`A@PmUoi17g"<YrO8 $Rc ؽ)$dD9@DZ UzJMq*i)JAmI*epkr-PGS -hWQvgZF n-zj0P_:-Z hELU_m*#(`؄磈#IeKvhR#}%ɪfYSrUto=:HKAF|,Q Κgň^8уƀm͍:1EC4k4f7.?f >EL JVйddByiŸ8_D0?x,M$s㥏&+1.hSekV#"+ o{0mƱ_L ϲF("#|$zL>g|l&Ŝ6`Ǻؾv m#w]kaضfV{7zq(Lݏ8y),qA*M&)T#P5v4h~cxb`ҭ_"T2YΞ*-mPŪ͝?oB]΋rcFhD$0TAEQ9Gi 2X\YE_ĴTDq<IzrDDϣj" et04Et6م$$Yj5: & <|x9Ly,QQ'gAيxNx1{Z/C(4({O 3v,pU{8ޥa"ݾ^ml_ a#:! YĨ0_y)(͎Š,'UlIiSPS$ lڲ 2Q[ .N<|_j!g'[ZFslRq.tlDGIZSmV'b4´Oz #񘱁X0/ >3ݿO DžE 79^S-,UYnNt6ڹAUe!;w00;[k+Јx0X=[h Kҙ_Վ88.:"ڶ+Azr HE ajYXmby"8nO<y3?e(\S0w9_?+B&`$ *0fO0B8po0tnj@m `ژXz#VY bX:kC`ÒyظtǦ~=Wc8'dLhl]KT^$a;l`$bvI$cF`;fSADR=ǍD $ƌ|Hi8YLĜAj}+)6Z0k™2t筍Mt*#+(56;V zd83$\:$<'Ī-bh2RQ\VŁ4ŢcZGg0`E9O!v4\l:Ԙhl`kGCK+n7iJJUOa32m泬A_fT>e0B*<`EՒK`Pݺ;˖i ۍ$xY#H9(sJINb.,/ y*4ilr|* x=Z^7TdɃ*9 Ȍ "mZ?Ն& qndsa_/\0ar3aﶈؗŋfu~95cӺe0΂iÛ7qUٻ${qȥ[M-/BǢvr${&u ZwN^Եt^~X0QTFBXTMAdd>*+J}ZX61NML5ǜ &O' 9MpK!  30{8A3^ h+c9qH2=qN)Xr֮^M/u2CO[<x¶`Ղ\ڹ>b چ-bPHQqΛNJ@L=Ng5Z2a/>8׌C>ju>)a>?f4q>y$Jz<{>L]q)Ab[4woٴl!V.p{rvzAMPDiMgj-ѡJ S$7R,5AE%U ZPik UeՂ~BS{ۈv8=>RHTȟ~H4L8&hfL J=yI޷1grPXo۶6#7-{ZXwl@]H!!b_IP2;tjL 3a(Ɇ,lj|T^O8wQ;Peג4pVCDG.zQ8>9ɨ))g(?{f02`7B._a?fk£qqݍ(dKM8)tVƹjIVOKw]`ჅBnrxף&zͰ:WX_kt !!ďrR﨤XM Ԓ`{r]'џKC;wPdfcƲY3\wVqO8n"BƇ`)vx"$P7>}>v0 M$'&؈א-zŵk'/b_`ۼCvnîq~>ıcOVꅥ g*,AAL!<ܜ`"x~/nyq<"m<҆5b Ĩa/L{?5h<q/uA`9*+bŬXhs̯\N47OQLi4茰fbVB`2P[وjr~i|,=5M- ?z iRXe6Rw@did Hր\&@ԧ\.  ~_ $@^/v,O9kEˣ̴QRƌGrJ'3H0vd"0s&c@qG#$ۃ`i<`D+gLQ aF-a^<`lx TbhT,#ۿs=ʫ{V$f5>Xhut2 8H!3N.;4Jg{<8;7g7q\;2~iQQY .z?zۛp z7u^=sFfw#$ V 6x;`4s3`dVq5KW/@h⩑{ql?؟4V, bS06F%hҳ~6m.j IHuc&N(>7};jD UЀ},m4Ҙ ~!BD2wL|xt.`dOډ*]!<8$|16-tN,޲a1&5؍RE?Q"b4uFp|Xf^u.4Iq'`" :=c)j3dP,XmfΝt2֌hj H+F^IZPӡאHhPE/hI)x-<>%C)B2.&$\!y]C?c 9$)iOQK^j09]$U(Q}X@J-ҕԸ<u2#0sEHH:$2KH6n\q4ʣF'3LN="E6?~|0fƍ|v}XF"㕐{kycJ{A_:WVcQSM:z<zx 7ǭU_ء6e,֯<|p Yqx8L`6_F<ytnC\^Dډ{a.f]>t7x/H_&G#,<oI$ӊZ^3829UA^FZbqؐ`jFJ<Rق_|k֯֝;)BOcbta1Ha:e4پ3sa9 !F173|lrqI$DL{1Eˈ ؇$g-K SۤQ<CgӂFbjH:o:tzrƌ7} vq ɲ1}G? #HF VߣHƍ׌#K3VrH!啴cHB>WHDBx}X gN %&c݊9]&m]ĵ9EH-.C&I6uvi[98 $R|\XHUjϾ*`מv1HCvA KR$+OY1}G䢊pSLodk@}S3E2{[^:$CW`ޒXj-Bլ } )+A&DR(I((Ŵ6 YO"'}MF>lhs4mmgm`]l'ch8 G|OmY@]-6'aXDApܻ{wn^". IL+q8=d<֯Yf<~: Sڅhe8׎/Û=:BO 6e%j򡫥C}]X($nܼC`{:6Qe5&h-.,l)ԠTjIp9*`Xd&e4D+ۧY vm'}0Q4xkSǚ1i6/(7#c'aq5N `q|,DL9ef%&`$q?^`_f{ݛȾH;/m*FsΔqjov~mfPhHb_y#(G Px"a'~ȱįeZI`E9G,? lP$/Dh[y/؂g5$Ṵ ,%e9 *=hFQH+"o4OW\RUDC=JeEݻBJ2EH$R2s I_,(B!>9#cy^i9V *kkhV 4`Am,9z' ϓ5ˈQ)5{!$d"F_Ix#lظ~2O!d'&%F>F1"_O"ljc>1|,cfxd~M{l^W-v.eTT **fWMذ.TgM "W@O#^~p9x+8oO=[W^-ܻv  Gp"j*ZakooA[k{:౛ҽu0{ap5`ǒ1TW5/2󫐑Wmv?.G-Bl<8U4oʔ)쇑/c̙3G $X B ђyKlN&G+EA'uciC%sx8ۈ?5I 6m"q5LB܇L-"g d|rU@0bdP#^x1njgqO!VC8dؐcć9)~_(صĸdC8| ^1y##]O0D["}5 = (Hd64q|]H0>#?CP_sj<, CDM8΅vl곲rl6M%Ņ*AQBU%~n"]8jRKdD(R@ dyd s"٣+6Mn7ZzU0A>/֬RiVa%1g<S0M4e2I&!Ps67oV:F g61bf&Cx 25`1&' : >$ ㉘6DVx^X~/I &V-_ ]Yos].sz %6T$$x.U@[S Lj8M8ׄA! чqˇo C(Aba$Vۆ5H4{lAjM{PW 6hM%(@C"ռVZcsVڐ_eDJA%tt ˇͬG~Ivݍm")b7خfc통Oa,Y /# ,]JOfޮ0k\,ݴS.Ÿ30nt6~(1ߐY1u\̚?HUم]s.\8Z%X|f̚8NT7 LoB`xNaNfL3:/W KQ?Vɿd8q"ֳ̖ jDfRE4li}ܳ<Iɓ%[`kM73O&3sfIL3h<`ɂ9XNb IR6DE$Tf$@K6T߫gVe8PM1XWHT<؏7c 8}))k& (QI6jjyAjiN)ft@kLoiI8v؁_zXMg." EKT^B$X>0a$fwC?f0yO<ӧaU4pJhu}ń$c>iAajIit#)6GSERi/$9CBB_I^t6,ñcavB49n8%r+H`P^G04g8; -|my6±;P:7pfMjbG{.]Bք*" $QN sEFqم,$jk;SI##cy^Gy[xv\ v4_2[0"DyF0gM H|O^$^&A;%yS1eD̝9SS,PALCr VnF[r VuC0c2ĴY?s6N;d1d0LJ<4sŋg`$|X G?GfE0;&"47!AeQ}$ 'BM#L_,6X-UNM ]4Wu:e"${P,J?3xtk+܄m׹&yz텵wӣX^jM w`l݁Ԍ,6J V'tF:)<.S:Up)qUҟԩfn:JkA#S%CWۀ9bC/U4IȠ vWY4DEIF'%L>4 S(ȧݗIq\K;2A`S`+g8F1s%>BH_f^Č-FaӖU8tLVRhKqB \:}~.L" 7~NϫmP+_>7_{Euq:bE8mCnr|>t58w8:ۉ}?_J34ķ D웉y=jl^T #99Q\H۱4t&RS 茧pb݆ՈMƑȣرw'nZqU2i36sgaJ0 p g̘31`'Ϝ=``,_<b<ZL_j&̤X<ש*/5sOM~Up>a] "j\Y| X`LF(̏LGY -$_W]k5n8FGS5>ab~ C*ni3),gt9oyRs2}LjLl^l_,ySz<,3 ΄mM:>? ;דmz=3KsyQ3!:K$HM{ozr (6ӮHv\@CKvArF2@5<4vvq̣7/ن\,l۾'bjr<8Zs.$ouh;,m0> zGN%+M sAİ@,J^N-aLO L= (&Iv{h|L1#<N8#(>HͦϘ4[lDll4/GowΞj^f;y6,58W?STf7qn8w3n_“ծa8lF5?8DP/Z>x6\8wA*(7סA^נ8a>@A _bdACGvcHIQ'6lQ )蒺.5/6mڤvq S|-y>mjHL-=:~ }BX4o}xeS&OX1byV̜@Q3$},bk!sϥ= B=A\#Xb1يübɄ_;fb0^5cl<^5FFIvKD]D'gD(w$p< BQ/[}Od{'T<Ξ>af] w òųdllݶ5*5bz+܎z8^MFF ~S5y,1WvþLUA _Hdx<j9dHƁV h *X K$⏱<;!t~,\ (eMؓ-~ O!4!sV BbBҏ@I|M#Ι6K'I:j/@]F*Ah<%Xzd<)B%k.BRIV,Dv)rZ:Y2r K'xwq?+Cmz8x`3wt~eEój 7%eQHI<9d56Úٚq ^khMofj>TnT<0i< -բťt&Al߸i1{;`dYr0;wmš=? Y*EplYbv( D(禍8 GcehK0kb^+WѰ%؈cQ d"9'7qغs6nޢvm@l<yg1KKsPgPW{|)B ^hԞ9 pBP(ɘ E BHJЩ|T:YS'a<?yV Ǡ92Vf2X3hl,_keez"lZ;6˱m N>۰ms="woh(HutjvOҌ&tf tf74$z O1G-I@Ό|D=X+,)Eie5=ŀ~! 0eqe ljh}S+|lu :"M/v9⓱bF,h>Gh%ƛ6|&>Q}Roъ|*Z+yf͞I"q2I*0$1$$ 3|+a0.`&kWnB 9X:]u a|<sfq, .Cݷg *) hK6 9$$!}|GN3=^%Llrcdž$!H؋'.oцH^jHQ__BsN7oߥM68V$-JQcsġcB&U]ȭ2 $Î2C?˄bɂ(đ#<)(CT}֛R=y˶Xv5̓rAu"1y!b)k&m:ٲ10s֠ީߡE׀\lݺ{Ċ 0mBL=XĽ\N¹jj,^0<x5kp\4Cix9TT$!4e_K.${"˄I$HxyڄgMND;ı0 | >bEd`΍ؽc="Ή][`uۻvέKqd;4UEp HarZ>^Rj3N,;+!۝ҡDzD,$(_)!ըPZCjV.ҲK*)K+U &J *x|#1XtzL,{YsfҷSP/'Xk֭%_g'VYcI"P{w)ڹwbrV/˰~b&T5k` UA ZL?3c<h~d h3HQS=7cypb; t _}:pNtc֍XHQ|O_qۃh8jviGC ' jǍog>FWȒ*] jhk( jUXMD^a9 F3̦Z>˖F^^ caNvt?ׇ9@ES`~2h&\a 5ňI)J._5I&ٲf#F~$LJ\bS %J(cö혽 3-?Kd˱r**b ;S&Ĵ3d BOWv`ilB 8Y 6kfvuKKs(VD? 1*( A3(F|N0 K; 6` "EG2k(cnݲ~5֑۽mނll]vpZE-ؾ%yۼn[Z**KHs/QU昙&A|,HO$ë A,=%:^7BCON'!.)@VA*jj`AgQd  2KWU֩ ԰N[.#c&LRRl\Hg~NQFK-^kW&LWs,E3d$Lа͢_qr\˗/\8G^[:TPzy% `k'"tF3rLJ4Ua!OS2"GO?|ڕO^ſ×8O0#PgU[.[4Q Oi'}a7jNn_Oq&\mmh櫃PFG j:`uT G};j0ա@cG΁J3҉""QGwRO@N~ Yf e7/k>}š5kTv…ՄiI<3s/ˈ+f JI4WފM%b Ǻ,79t0VLK?g|\d1bXru ~`"EHPO~ |lmh K +[ Hxtz{O/\Y@#e,$i31٦̠Vq7U&%s!dz 㱄{Yk7(ܯc8ǰ]۱wzۿ_#6?G8~/N'L hrː] Qk2A#7' طwNPeH @v Q _ ʹF&H@ >? d)Rq{nܒl?U[@/#F$ 0mt 9q n3ai xan#{!4?'ODAA2gJ̀&@/s)b،0QK⯩dg$ﭐu0`!)JC~adKuص誯>\9@} if͝EJ|ٛ>;ekW]3=| #eO±tRdιN|s=]N~ fvyÉtut uj4I`x( HZxlFBJ =ϣbgJ%Dء]T߹c+JEcAdу8vTGag{qd; h@G*Ebvh҉fEkWit4c$wŪe4H(-[*[cf"%CD~s)% w *,P:Ɋ| Q;0ZIo}[|}*5س}V;1Gv#"߻ Hm_O?8TYiI(ȌCAV<cGB%kjKʲcQxX*ɅZ M^,j𜀕 >Ԓ>Znr@4h Y45lzl$69GbI!""y(顷H*F~L2H5[P!fK|T՚2 ဧdV2g~_G#n&̣=oZ ?tlx#dYi-22Si*PNRQ mE4nMO+d+:[\nˏ8s =lu9u.dˀ*v>3Tee+Eo7'7H`fO]i~ۯ>y>{.*Z?wR=#t$$Y 8_}::L@r|8c[a1ކCAcnVHNnbx([࠘4>PP:P1Ri񢮵tBREmr\!**bZ~bX16!"*BDD"*$yxxCdeQdB"cHVÏb>#woz=\>ݍ0dj_DM--6E8/")5mILK"9 N'F8ҥfE(Iϝѣ(0$gL^CݣMT[rŒlSd.='=QM<'fٷ1$B1'Eng(řTA_OADRtT\[ &2xDidShlĨM֧ii W_v/Qg$%V$f(hjT}OIαdTZ 2ȄxdFǯI[s^I#(r [FhK*v53hoC-S؟H&bPnɴ:߸wlCNVM%y*DUQ&t*ŋFq_$]f4BGxP  }7;h#Lثi"k ISg$%Qdk/AO7u+n50vjϞ_~˯TLo@_} 5,،7^̯>yH^EF!U85+).@O{'ۏk޺G L[}p5tG[@|Ĺ3 #}w\iI),KF ڸ1N$$ƨ&%Iѱl8|(;}^{r RPZ< Mٴ{\z.H7Ͽy|IXcs>,Z KVQنk(X%k_wpv O Yf:Ľ/X<a92҅'O Q^ >&\EG:~r2/c]S8QGq\Ad&D(eiYuj+cU 9~+x$KPSFF?fXvF7NS8{f~v NbO0jaq7f(=z] JQ:~RZ*4znnYN {㘱8ݨh;?U 7@PYH\+F|O )|z[oQYċ%xbڀ*X<ylfϘfa5㘓\RW/E -=gcuw~F+Ǵu#>1ЂSiDW]m^ Z*_ ZU]=0 鱰.txjA;B&Qs,)oKUۯ~}4hk߼C;ǎ-2t&¶Wo!|;8@6FRML M4ap$N8v7nܦ W)a _|/,i5\ U.ڃr~F11#N?Υe."PR_n<x cG$'_$\^9LDJ\h]E!>xs|ջ˯ǟ~7"~ދЕkb$,Z!~i(XFO8oxq}̛O?"7o'dN%0rJڣ}8FyG}#?rt>b(1d}؁6C;{d#o {܆Jԙ50&S;BKy!ϷhqFlegܰL vX>⫩6"EGf0.oqQ8F/ǤD-j)RJ/5$[yd 47|N [<k$ !Y@ [201ܞہw=LFA\{S&at9s0adڃt&X tQ*Ӑ>NbʎP`UY."8y:䳽nu&4׷ui:<Ӡ!7.pρ['xt.=5ӹ~-&ٙ^[o>z 'xx^줱p"NP}$6#!<և$$Q(-.j"LC؍nvlpqX9xz%, G:\6@KXe aI 3>7EmUmvRH]8vl;LW[&FЉ&GsGH#"WpTVUWnョPoU{窠G29U d#';Uz5ܹ؃|d&!"&;E+m2޲6-Ƶ4رy%J]PmC#3$+yܷ?l7Q oܺ.+wzFdbUeشm2z (" #fR礢\ Pג`sɃ* ԔdX+s@ !`+C M 4+yiDtV7Pq\;Պ'pF\=ތz}Q@qfU>YCfԱ- Dnۯ UBcqћ8&ԒI"$YjE%ȑ<Yv >hq 6de"&>/v9zwnj?M[7@I9B0]@<3DzV\L\>?ր ~yνxoɁ& tס/wW}gpd .py/wpϏ&3>v4\˽~/SO߹WNן=K]H;P4ܱb^w/>+'mq pj/NRQ(޸N,uwç?ΫdҊBnoCsK+zz{10D臧΍@orPI`=_Chxx)1)t]iDrA4?V'q:v\r!K󑔒 dǡIxxh DF)G8ȞŅ9_@ pvv*ʊQ@+k}$+?#W/tEY*y h857kIb8xp;ހMbEX|!Vőj^4 l [~aܾyqmXA')-/(3.΂Y[|4ŰhJ-gAgC_zcBN67(96miɂZ>S=v7Nw&\?݆';Hs!ݮtz ĽdiNԒ0H-*J Eya^/m-6o߆T֚rRRUoSM 04<e#\u *yR$697ԨlUkI;cyXiUv@iZ>( sYp⩙6 ଁTA"^C8 ) N7cǏfr_>Aq߈KTO_7ԀpQ+w{}Јh}|wOkgqZWfΒضu O-xt =gR#G)ǹvV`eXrj*(޺;W7/O8i PYRzO\M eVИmĻ|QҎk frʴ #€J0֛p{8'bݪPTjF]ځ='Q}e#)0S|CwGSFL yyHȈ%Gj^||3=r$ D ݵ7cz%o짏ߴ~)kW,š塪qBEƎ;c8g+_6byXCq.%|GIn~ _Fgì)E6 MMN3 bx Zxj+hӡmDRހC-ulцf wNN9ۇ+CJp<NbR_K@`rDoƳomN{雛4|Nj8| k7nR3[v@d36jG YUAiمE(*Q&_z%ݴI>#}+5w-=ۈ@.~fULv ]BL8Q-ِL5yIqZl:hOn-TΝ@polPLUǃ6bӭ-~gh屣ٌN;)pbyW+wsC C(,ؾu-Uo xFjY{94Uyؾ`|Tw!|z| r"bW;c476̹ бk\MиP@U6҈SfdTZ\UZф#Q{梊+5-Y-- dY M"$ (ן/Gk -CT OGfzJcuݧ/>~ o=rڌ\(ډc+wۅ]{7cPP:n|\ A8,K(#ic6m܈˗҇,ޝT`KQ(,Hz4%z*, lTk3a0Q:<M3"`.G|eWoƉ'z!8Fψ!^ǩ^:ޅmx|h/No7H$&hiKv46urr V-8x`VZvE+AY~ K$hh ip)~(A&dry,$!'?s;\P&h=c+,]$ 3g4`Xj%d0 _RjԔ8`DAV<Ug)(ZL8k z8>7. 0jN;]nǫ;6^ܽЄ'g+kHTRp`UwW/A\>ь!:0]4Rd}g [j7I*dPdnfV5 [ٮ:q`p-]0{a0JY"_ FԺawLvEYeګf%H!߱Y<Ys1qTnuDKf!"bqLf)XDEo>|nNVfJ)B4fn PR<t6//߼zߒ<| JlL\*D`x<ۄ2s-vlZݛ!|FCG.[ٶ]E8z` #8p`7~#ڿc vǾ][q (dd@[i~VS4&"F}ŀJE' A@Ok(CS49pU[@qQFQQm-(osaӁGe kt\/<*zN#B YI{NowP;:$8$z^/ރiTSŮ=H I=~YIO5ZbԆrT$#X(D.8i(q!bHwo^gq| Yjˑcax!Ƈa”I#ˍ/¬1k,,_qw sWneB[hXu978A7x4wU_2t7pۅ mHqS{H"xDI04_3x <w74P.|M| |E|u\;݀}8,Nٵd׿|'w㕛qd 6S{.5e< Zډ3xkS9OLF#*`0lliG[g'ϝE{wrw"[c;\)~Է1gK/j-:I2:xpz$ +Pg!.!ƌ°OabRe!BbDDG=}8/&-_GPl+bX\$$& $!G(ZO_= LdӾG~}aXz }\5^=`֍˰"l*l~D  AfJ"i$ 89e$%y%n |bky,T-2>3I+:Ftwwx#mMe;_/VZ<"XplZ*h+Nw8p㱟yp o߿>w]-8KzA[#>blA/jjlj=즨 #9%صoބ{dԃNJͰk1m 4:2Wҏ-vY쩧 aӾ#%'{tƵsx8nps2 H]P9^9{w"?#+^wnʼT&FzlNpjI`䱈}P4L?8'a qaȏ7^:7%O֙>ی'j>*>{*>~~u:DoW)fcR??}';gHeqam1}rY6MuZE<}p >3bb4nⴅh.sF}7|@MVp?܍]گxdynUh(-ƌa#_Ği ("d+hd>IJdQXe7x㸌Ŀ</>EYHHFj1b__~ G<#s0څUkbj}zb_+W!", a{o$ 1.H )1&<vHa_|LޘBb],bԙ4hu[0#mtztTS,֔¥͇WWBJA;E"}MV_7珮=rx3b_Dd$~_AK^ `6Pc#UvBP}+pb/*> Z Z86y}x>c%I <~ړ:uO<2[|ϱ }NQ?Ă,d ;-[sgܙӰd\$ąS`ƩY'?da,}8I-JX ]V$ .5Qu:qSw~_)rmwϴ66^ԇo}o(l?xx_}wNwݗT!uj};7i__7YOn;ONa93`;)y.⣧p!~ۜvUkQcO NjϠWe|Qc} 0r uZ7vbopHn..ɤO.1b*p'.&rCa~a&>x O,d(EHgKv^FrZ=_ƿ3˷_~>Bei!(>ދHblڲKWLu3s2ڿ-mߋvȱGFG}H<6 &2 nSF#ĪAq>&}"YW!|uhk1%@<7Г΂_ 6uI}C]*^z#z87\] V|>s _<7/[<vz|pYLh$,5&[[Kn00hRhKljG)jfJٹǎI 5=%>dH@R@[$0 M 3%H?s;/?'ۑN+ he1w",XpA~^:i_T8TӰ7݊6_ g@7W[oEe xh,HsaG pB8af#tqeB8OqeWҕ -JlR̘7u+auw7Bq 'qh@ߡtEi*uĩSW.@OLAQ~#Lmg;Q𣡩ΟGK I# @7u F%JBh&r`ZTB!69z 3‘6cV8 qI$g%Ykϲ(x=>o<~O]ŬAQI t(,bXIJxq0棇߼}>{mfe <*a.FiY1ҳ3AU<OƖuKn<"n%)+HE +Av& " ֱ;yG"'=^{ Z YRmyuЖAW 4U^f~Ǟ ur:Jh&A.)xsrÃFf(J;pb,;/ǗΣx9Y<0tZa#1KDa $ &6d\HflT5#9GcHxW\DcCI/Aսpշ쬐E Mۡt\N:1wUU.Chf<߾w~7"d(\ #Ǐ¸ j)UpBU+dPĄBiA&Œ^ Pެ2/Ulc!n^FnP¦: z jQsw7ϵV/.c'CVv)qρvO g8kŝstfWf<?CV/_Cw8?a^nv9[-z zk9>xr ݋۳;u4YYyH*PZa}ORND!H@X7ruр+-kRk]KGu*l0mSx˶JiYH(Xb-d<^?dǠ0=ei0WWύ<x$f(?|߾aGgE )-:b:'3IBRxA[I+h}QDtIw$cCv ?+G@^F<5$ ]^a T zE~C,Zj~K%:Mh#toIDA;SNQtB'g<59u W}Oo F4[K{/o8(<Ny<^y~BJ c'V_|+\MtE/v^ĠA/*Bt|EE#>5 YbX2;YQ)3K³K8@%HʲVoEENْ׀vԘm*U$ +_אA?C0Ǝؠq`\RLUu, ۍP[XG/ͳhm,hh&M8mSL;kN{jm5pґQSk'U_ﱲh/+kql M?[6?}7o>W/z۽ˊör|<և׉o>~o_T0%]HK@^6mu>=}V\oꂅv=A#ZY@Qi}["ʈA`1I]Ha_lYEY2l޶Ym+1 HJ&:pQM"=f<Wx[(WzI(͆ )<.=))qG)6_s˷z$Ɔ+D[_cT)9ӆjjQ]N?kY8{+}sLd됒{">OlDnF1Naߤ}-HFuQ2KFIV"駴kT@C` t-p؆3\lƍ;ۅCMpL+pc'j/Ƿw_OnW\XF^,zQm'׮2 ]~~;fF,>]Aai#t,*Rb6%GpQ]CqPMor=ZD&a_1W֬ % ҡER'miM?(?J^(ۈJM+`Ѫ*[Jt,_# v7@_I̤ppl3;;-E Z(k10BW7.T;nUvl j@Eľ 0PxN\tU׈_ ecض~L?~ӗ/Ɵ|Ãhpt}]Næ $WMY:zeOc(3=.$ ;55i=D/LZOt^Q[c]/-07ЀR8WAo ezL#LG1bݻUCW id@|jr.KER SC~SbWQ ڒ#3*J"Dcbll"|o>Ŀc+#"c53'y%cRUV@_C)X-Ceu2lbA⫷Sa'_H!ǔĮc8oi{ݏtܱiɑ0dYK.ʊɉP]Jc<G~جyEYrsO9{]U8q7#PiGg{r o] PCgSxIw4>zxoݽmE= g}o4>;}h'!!^ q G@YqQ5 YYr gH IHE ,MLY~ 9u,1ܞہwO߼_Wk Ո\n%LAI0…DE֬†-,qXkqd7E\&e=vfRY@2`Pe8vzvlaAN:Sr?MG^~,R$#eD£рqVV&yxzƠc>VYB3O $O0|xЏTFFҝzyx/_'i}Бt49]U1Z 7.<~CΨ0,c'$V>Wm&*Il"YR@ U &&"hJM5%f`8@$ Pl'PŐű>;&Ī̂'OMܺ:Be[4Z`Wkƛꌸ~ߡovB:!(vʬ&Ei9Exӳ߭ 8ǩnFڟ^.֣3`Ǧ}֫l^I% ʪ_ZEⓌH}ʑ5$eД墄d4U4VA[[m9[)|"Kv-ɪn,a(B-`ɞzCEF9N;qW(&(BTqX8Ap ^}.J,jv=0$`$DY_V\Dڥ d4B88vd?^|LԺjDcBoUXp˺ņvLv"gQI<Dw[p4"38_i0ijE!W[u`Ƶ3*/'I+1'"4/]"әK6RLhd&EZ.Ld%b0i,Qe%VuPqqG#3vly8eV 0hû$g}4S׮^WP,J2*&4i/&×IA֞AA(C{mK|{xQG4 7އB]C7 p7Q,/NxZI8.(,->owT STZ鈼~/22v`z[X 7a1OGEEdK&[ a "bHdƐ,/B >}Ls*Aé^\:]n<⸿WH ldlްĮ C'ΠbمF?[g._=zlY1=d3rd?m§ rJQ/' w̔ӹ>=w~HdS`Tj(CEQ(HE8hG50uƩJ`)Vvm!l^c:)0ZYvfĿ,7jU-4:O:ha3Or5pb?Kxc! 2 }UĜVL[n 9mjk*=R2rOqJ4%f@kqP4oQ3RK+6V3Ьxyp77_C*7yeUI?~D-19A-BJJ֮_N Rc a5"PQLX^L{I(I@ajɸ%{B91_<2 )|3,թ[/ij4}ce0c";q'H<jcqXl56<;&'\k#R[8 -,}%>|zOD'YMIՁX9ݳg30:d&@SYmk#-nއt6'"(oQh 8.\Uq6)ujt 罨F]blݱ{XHU>(I%$@aiN|6?wɧ "<9Ѓ gqd- kGwO/`oɳ<Lv;Ѧv ۆ3af(ڼZٗF~CyF+8>DȮ@a >(2b˪V+UQYFX& a*S& Uw ,pהV],G"`b'\.xWoD_'8$ѕA9өR]k/{q)랭6[ {"evQ#ķkWon;gmMArF69ZB"2}ڎ@[[{6ve lp:TQ},;RL&uR,>ǚHT,)VZ}[x+Ry9M[7`9 S3kW/Ŧ+u:aVW{PYJD#;- zk⍍LY;= 1u/9N3V"9j;J3fKeZ؝M?-(< }En/7qlW-]wo; mq&1eB88'|z}/ȠO`>ˉFS Ώ+O+ĿǬUK(Aŵ75T=2}]' 0| Ӱ¦sw^>,腷8!bd$^˖R^R%@ ~XjH4$7.;_~%?~^ ~9Y)Ϣ2 W'0Uk:I<ތu'o>W,ꕶ:u~Neg$=x [9$4{mP+nTRi']pZrH aLFUE6rsbQZB KhA%6<-J+`ʋ<Lx`,Bv^Q SͱTNN+߸6wK}xr]˃:؆6 -^;KE-4BS[t6]|~:4 hr DG!#=Ce $t:iE Y </Mg!k0d<?n;XWo_ŧ+}bHJkh4&c2]ߺ`LN^S: fD"=Jrqē$("6 e%i(ȋG9 E=mV0fSۚ;I$(2<9J1ak1RZq/Am`Gznt =2c#(#<I߾_sbJlErxC/Y}"C"s 9HJ&$#,܆^>sVgiU3RDPj$ |6,GY(Z)|HHE(JC$8D0(x*% u6OS] <Wݍ)2iη /48ifwf}h5gF'G б}[T%҅g8?؈:p.:RnJ)Y4Gpn ;A 6SLL($^n7V¬+%1$ CSТޥC}jϹ):Hkv.&TsE<h%1QHU:674@cqGƝSx^I-VO㳚BؿRZJ`*nE/_oCJv ¢qNΤH-,O`@|d,QҐmlVN"kT[/I%nwCvq*Ҡ9<__~^}xA~ OH0 !Ӄ YN()YPu #;5?)gO4:*KAq^$s#G,GOCrũ*TVlCOGl`դWNiСS>I?.IG7:V/:}&R8qb';ӗo_ /}*+H!umDC~g5I"^w /_+͏`O >k=Ԩp}[JpmlXVb}d7B"(4RIfAُR3iGɧe@=6 P l;e$'ǩ&6 6>ZmE AД~_/[$[N]L'nCQAPZElGN~"G{Y5(+A9(NG=vPU. nܰfQlN=;K7p9ܸs g/%LQUkFd\":{w`ApdJ Кک 8y;jeK:Mi _#:G21ϩE7`hqխCmz|"YhW>Sy7.tܹ*.vhVSNwS74 zºf F zRZ.v S.נ\oDlFbgZ^bAQ)\|פ2S2r`X0`Y"Kӂj䔕#d䧰߾y[||}ŅXf1c_a6l]OSliiEq^Nv ?=ىH:Ԙ^AkB.7Ɂ\ W7 5q|ՠ/ʿ7olhV-}OxҋǷ{T&B]F{ʭ~ywo Ѣzڊt8ߎ|6[W޵>w,O mP{gKM.˧z%.EoГywP:1M8}·0_Vr~D1VZb_c`6uPPIac͊HںEfe+۶mAj*fb,RSxߓsS(ʒG#ݗ],ı^</)FYi& sc7wbϟU⻲ DGEBCOa'N kRΞa϶xU\zo_ g`uav*@ -T9^VV[<>^zvRZ=}FJ_w+YE =nz ~<lU8[~ڄG#o GM˧qq\4|G6x%Gܭ|,;e'@7{oG",f_ Q:%/%eHF}>?1"-glj:!G ȹS5Or~e77^BnGfF֮[)Fj^- +@:_T6rXGJC'( }]KBnQ:85XO~6&"d\o!ooA_C]'xz}r\9؄W:[oxLqAMY!jJ`)V7/_&kk6Ռ8D[7F 5o;Gy/ /d&ϋ B<@BQ҈7nuA_ߏjW7>qtBgPVTPd :TZ\a_IJ߱6è/i2,MΟg<_ dۯωk9(+L뱢<?(y)F 'OhtXQr=*TrznT[X͎ZVoZ'!8x$ށݛWq UcG{u0 ¡cv NO5}fb]/F'uX w{<cJx쥨~ wҶw_{ziڈsC].- LS3rto 6}ԖZqR^iXM[g!}~~8vW/[^Yc;5щqCAq~IdY K /Ax^$ ''GdفV (=_ ?s;/^Go^*f6a~:=ۀ{aˎm* 6-=٩"U4 X䦐 ag%#=# tU4$uv 2UWNPG6!g>v^#t:qҠGF/EAiqWNH[f#MxB_=w_F|oTG)ծVIv[ϪJI\ZBBc13~}[*t8L$fIAѯ屆Aב,m>e? k>Xirаԑ("sd+ eXj{0`7@l>+p&Ag-!9}5y7_ޠHkF :Mfʰ"oqƲ(E)JY5EQ X_[v7,ò9Xh6"?tun|F^!RSDcDG#jKT0G)QM150J(de1\j 8K!3MmPlC<od4l)l$ t!8?ЀRfܹ<WO'Tf3Q]>lR "%&UE,H@DvȐr=~6"|4TMUH MMǵv7j(6˴,*S^A7Il(Ҡ!؁W/Oz/~~O vހ9-QW^ؽwy8t02ss":ZsQYHt{hCJ)*bpI,MD&uX yVe%qԪ h"[괸|.w b\Dsn\;݈ncU:\܊WqrCAk5嫧޻78ih9>z;}l~4@!!rF>|yyxOnc,~ ZdO 0dVjH= $K%X ԸQikL١vDvQG\6hUF<]wdޏXb?:\F`AlX+w/_RH U0 hx/`X>_5m8ׄt4g-ǟ.VMq^G։K'{IkbT\8faszl,V4H/(EBz6Rsh;"BqVQY Q5eviqLHX5 *L>@% D8):x<}^ I-8K5B^">ܹهW#7s 8e6ѡ2|it:A3qogS4HvMRImTTCLb*p*iIYH#y(כi?^4_ ^j.kjU986/\&%Idd"d䧰/Ox{:G}- ڵ3LŴSxE(£RÖq!dg#-Ez:X+xtS,NjTK\߱זF恶,MK?ɞ[3=E,?y$ǟd {\ISCU RvQ)n\f[*߼>o"ɧHl)ʍBRn>w_kwnmAld~ۈI7B%8uϡ`?7kAwq]*t-jٯ: ~mhU~_֠H(J;ZƴHx8vܡ >|PeDGD"2:QO1 ~<⢡.7?_KrhT:eFcť(/!Z mş~zWhFY~6JK/Q3hH&[=\8ލfNg%s'a} mhmGqy*Z"[HH@ qIn2 TRJ M̆2TUNBYMaIa(UA0l hp2'ԫ](npL'`=Ǥ &Mq +:G.WpE5kQe(<6$[@`r>+EC&x 9ayďI3CW $5-$ıbv6` A t7}z-x!@  @dy.Q hS ʵO߼__}h>kZQ{l۲C~Q1PDXBR(dDv<; ;]HP MES%n̩xx䚒h.B[EQpl'^~{|7|(֊ E"O>P<S-謳ի|MJ?Nvd`=Zn;Uu^/KjX򟜼l8(ЌFlJS'd@/jQi 66Ti\f+65wM s߿g@=E"Olj E<QY#طTko/[ƙAFDNJF_QT^_7=G/9~5QY)h2t5RMڀ:)T `/FX4˗Ot'0ہF?KMH_Xi@JNo.}#LjxT}")(@~I6j8%gfdl/ǯDuRnK]z,UhkРvONzܴZ kiK~l7N>U=|}x@(En~ 5qR+< ZC<k;<^⶛|09;xlV#~?6:iEF `$)U}r{iLW!==>q =]|y(1ܞہww__zt7wҐzPÛ}f̦`C >|Žp)3.#ee(.HQR)XRf+G5M7C$:UX]~)D*FG/q֙F8UOQ3TgSSB$z=54H$+pt;%|O W?I!%$-gH$#:Gg5K Ultf)d$&44|g`f53ܢ dUifgĎGXjA 4"zEeLICTVKSQ[G;|C$ l1%Y1Dz (%bcY*o>o?DҬ 2xo'"?6{Ëxt{HjBVO2^4yR`ӐP@*eR\>m.I~pN50z^%Z#NJD ,ˤS4f8D<禪\V=ul,Fm8vllF"ނs P<r"]; Wn)scWN`Z:x(-Uv < 1ƦҒt+TNA@q AHdlh.h"2d" i9 x~xsrlغ Sg<U"Uj32R)Nc=JL@~YRQZVNaCVz4Rؑ(MCG QG!I墷Efim$|,d. ]E$A'.B&1h3:QGqipB*???\LA_ kM6;?~6Ds] $lĥSq\^~6 m)[^񢁍<p;)dkξA R4ȚsKf_7[;,2D`r$Wc7|ji'NTJA,qgO"ؾe9u,Ĵsu69zJ0>1Nm$WZ:_|*~CF"JϱRA[I 5<4lgC5VLąCEi>L&#:iВ:fb͈ Yա3ft,#qZqd/[?lv+ш>b9Mic1j'd|dg& 9( ' MKDUyZ~lP6tZStiou` [ߌs[Kofa! '`)+Cxx$n][CyNKG®za*H1` $ gD䒬15"L`cîIAD=!%?CisrKߑU5zSGbO"v4.'w祥<9O5pi96`ʬ4c2-E=o7} \I9(-B1#%v91OhonOE5I^#cTe,=B]- qwlP7q/EPIOjwO33cWl=`dp;-o0%5j\\:^?~:?ǿ=WO񘿷"`pg':ysZ?*JQq^ h= 0),'A?ޓQMh f eɣ؀vV} e+7yUQEaώ T(nFڳ!X%J1q$ ij9[Bj(*DoUK [zx} ('գ>`/DGW&n_<>GLhaQ. V ;UR<X\- YXaTݍk1׊͙SF TkUAb R3 ShcRTq ))@9fZB$JR [(S "jqInW <VaipwaDO#_c^lKxpm/p:8>A0v6N ORlGޠv %PKL=z+F)PNNY&$(J p=lYyeiCu&x_xЋћn9Oa뷯?7ι#HPO:؟Q ܂{w(~YBNyY uvF 9}Qdd%ì:n{.:slH0PZdddvY0Aו n@Zk"2#CkuZppudFj]Y U(AIPn{ggg~s֪͸?6>{#{Ws+ƣK}?V𪤵?Ǜ&՚"GM8u3q8nxvs Ki0A EOxD(V3f<9+l17+O&ug1!@_=O$qX]Xm.&yVI@y"7$_M2K݀%NH\"^kŵs)u\PM_W_U}F4moWP? 'ƓQ$}V4=>}}HHGNcai{??ģi,ѧFf(WA,^[<D,a4}`DNũ{pV47;PpƊڑ6VkT3#.S`(vҮ!qc~B$ 0`>fX2E1C'ee=b,dyϟOWTɑLՐwN?cځ}|x8viCi 'b 5kn\_Erdz{GѵĎ`2 nҖg)) Ƣ=Ц wwLN0$&C>bGca2ӣGKL<W 'n99p܉}v҅е`NpN4yV\$tsC8wOٝaH3iz6E1;"lyIgnZ hB8 mX22䣗2Ic$n]gF3!좒L>9ٷI?wTG; i~AB!oRG} D(x)y  b+㎆FxIfI*ԽH&ExSc4B@$BK!ΛJ4,iXqI}yCUصAhH0[t6^*}4dez W TY.Qf%[OT;K>3ڥHq jdƨխ@sZ  O믃/)]餒G#BGIc{qࡹO֦HHZS\4H/> 'BrkCkG'Hx# 6vX]z=6yobW&Qݒc?I&,Fn Ee12Z-z'TýIk78ޥxuE,O$4O[ MйKշ./?罕%D_ḢFT_vH{5L*"%(&$Kew5)BK$)7I\@$ А$y=.&:ϟ?:ß~~O[ sϨ];i ʑw*JgAiu4.@/z:hHx^U惧txVW nb G }z=afȃDPI2ZZZUy ^M=Lm%诿 )F5>' o?S5O]L Fy5գ:!ß|~6¶fdz|-_Gy_~ YS:~[kᅫoܺ Ix:?N5sKkԁ7} / <d g %I@HQKٷG20 aX<ћ QC։a o0J250ޕ8s'OƉ'pI8ykj1m?w&8,;gp.{pAq3vځ N"rTQfrˈh4D9WQgluY:=i98yx n T\ ]>0*3ԓ)9հY~t`ɅXGfC;v >Iɸ)G*8m7tѪ6mm}p5p`&K3F 9|H 0GSqkHjo>W%Àz5w'+#qϊS"'#y~UD%H2Ip_҉8{ u}VA.)9zD󱤰hVivO %XU$M3$2Uvv{?'ŏ?2{\ tPR< x JaxnQkG*܏Lɋ.~*[O^G#$7F1nMGh9 S"nXuՒ|ZE`,EWUWdlj! 4N֡KSxa{3;y[ʗ୧xD /z{K#[uڲ* DIfx0HH/Dx^ET{Y12 ؒډԡ 9eZ]#gmO"+O"C(:+8s!GOʼns2=.'QPO_ByؾGȑ=8@[a<߈|H܈UvxZ".bAڰI WR3 05(f&q8 ;7}eWkx=<s $3-toAmc*Shgl$ ] xUjOlf耾~Fpj90> /_罟8c7߽F 2 >M|c|MS?"'i#*.z`_(H$/}*-Z\,sWP^LM= SIfz;4$1fs<C I(xlj`v,?O?o}Wغg/v>'QΛT gO624vj$ Ble0oG_o-[o.x|:Au`.=>X` F}Z.-_O[-mA_mRƣM03`>2x*Y5WqX?_g!Jgw||6>Mxrk%X@tm?;_w?xx,OBK"]~LMΩ@ Y=9Mo <;Ħo"H\Y7Z샨7GfQрg3bEpz1 qqK8B[}!W8޳f?GOëcjrPuמ]8xۍWɓذu'؁s[".Ie5QLfǐa?+ Gp?w %_g0>8[&^ZC?U֣Km:qI&]=7鄕X[9ͭ뮀j65K04_EH`\X a[7*֬d»𣯽oц}wi11[\ɛNK;5wbqg:yP-ݸx99g0p2"qwAHߠ?P"٬G_|;}uxr嵋J+xYğU>/`\;p1RR:4t@'B{fYk[T3:˂@$k>M0Ư &~Nq{.)tԈDL",ٸ2X"b"b@o4%i<Ѵ[^*Rt4W\'1~gōŌgdv ][_yuwAi,O`$_+"Vn`y&"R3p'lUWk`i%q$leNLqhWEԎNG8!iAQu=.ܕ|]B\&U/?o]wo}Xr;LMƭԠ5m4dC=~+(,y\$+id[F3H f43[ØN`އR:9pI5ZYE<-zarL/QuUjӾia"0!H’yu Y{ $&ļz xJ=a ,f'3e#흕)^ᄎFXK8ݚ<$ O )FjǁN_= q:[QԀFb+A43FC1Gp\PGM 6HPf!Ʌ?1/vwÒᒥ,~sJ/ہ??ĻV62m˧}&ڹϜ@5uhhUYCsVz]3![ ><wpΓI~D[s!ܘceƒ; tC.,4]#^?-|Ɋ/JIy{k)s0hZ)+t0=u5c hO~9;j'3aq*[ i/ݛUX31<}zJ%`nIjm.?z褤1ޗ ~ &IS^p <q" ͪSt Uh4fEQ^]ah(G=}(-k._@MUډ7o~;OInGG:]m3[XX\F$C" 'HM=MiG1xsHVGi3gwQSqc|@ 'zxױ0KtԭA^q.$Wk[K/IAی[DȦ_pGPWgp{as8 X'HGc^d& ƸdZ㗦I5k5&V xrʛO&0,4I2 gʌ`1YyY\|Lgz,g;Ayk꼻 V^]$I=^<G?߃Py]RI ," ZA Nhk06wFӏ>u ]$n9'Ч/mDKCz4?*Pm_#3~1-IxzsSM8Y&g#QF-XH:QC7oŗI`ufVeĪdP_C6mmxH/CUo~m(F2>]`yٰa>,z!Rx\F"*@nh]އ!`~.: {t< S``Z3#6 Wt]n$enx6>ed Φ*f,,aqiYW@e >O"vJKPPQ |c~٧tO gZm&ʡ Wipu`kE2#ӑ?at)Qqܻ-{n7P^|'/~ o>{y< ɕ2ҭGna%p.^Ec3uUo6^VM;"QBn% cgF0XZMJ1r`J6 BVĨæfl,L&L k9rm=Y|Ve$z%|>JR"yQ{ьd ?K`xN#y ȊHl Hy^oGcEw:>78qPP/KKJ$ &Hi /!F{5K:20# '$~U$>OI -&v7lێ}hn)ASC5ݰ-h@w]rhPɶX[%^Gby hi* ZhsIDAT 6}{&F\{\,>x}:>x ߜ ¸%:L֏e0܆v+fm̚6t2W?Wuy4)>^I{(;*Ix }{{( IUI8; /u:17zXkvb{S|8t1X- htaI !0ue'+m,FWO+c6<{\[@/E﷣*q!.墌X`vj ;? bi֨%sE^?L[FPvC ``+Oy*˸>>\?mBEu.{gxW-IGO % -@# G;9>h5>3\n!KMZ`q\_x3'3bi逇0j邷SaF=xJ\ Wqwy 'G<gphU%2"[SȺT Fr&W'Cg4Aɤ-CFix-z?@;YDvZCāoNLPލACѯXE,&E~Yy=Y}||M\_< Ǯ۱! hڊPQ[&4uj19U]j͍t*"A./w*TnOὧsxHT4I ؀wqk. :|)Hf@x"?26شH Pl;t]uiBGK%h8;p^W/~5η)շ`zT#Xa<C#4ƲXեy1:l4%HĈJ9^)/ E"?[T/FC\A1gF <c Q!X&o%k@ai qHQ-ZQ/cTZk;}Mǿ]񝯾J㜀?"pwak1<Rz<?!HMԛJF4Flx|Z UoLMP,#Gv]-#P)+ A@#t '`pp^녌4i tiw `C.@zM[{AknD6n>M|ڴ͘LH8(Ӹs}cq} 7Vr1?M2G1;OOb @z DH\!9zʲ4œd]uY]J4,*B'(}KpBd` Hdֲ$J0Dk~<o >wy ׬wڌ}{](/CgSW/&;; Ёdʁp..H>gwS'p5q7f$_> qH1qo.eEM2bd CHPLK_{%sawªo\4UtPuUuP]y9|ۇ#]Oọ{7F: Ԉ\t:! Ц=94;D򻀥՝<AfdbiM_K0;>qTe.`g%M/vO9.+@VMφU/لʒ|h;xm3Ȍ ӇRx.F.t~Ti|6:?y׿3/{wp6BC$oǿ#)ʤKobfv8avq 0,$>=@cȻ| w]_@Y%ܽlJuFjP:K(DJ;/[PRx F)a^eh:`oRYFڎZF7¥ݍȸ4]5:58yumjN`A !/Y,ܾ9wy9Ŵ0iI= eb6;sR ZDz`Z52Aޢj7,W(.,>(  1'G%vwH5rIY>k̴+Y7O"yIMݲs3ێKW.%Eԭ-,^? n3fF0c'S.l$~ߚ{&zs,:y}xěCn_Jc,nCީЀGX`;si-GSU=$PT&4䣪"-(CrS~~  kRt}oR(uF_Br8`Y޿9>e;U/"b% E&322s.ܤ(U L%x36 7/!o4-Y;5K0I۞%3tA׆,iVRP idx9r]Kye~ko']koĿ'7R-PAo<_/)hn̯bjr#YL%1G P>x1Q)a3"A>㞝^Fe"AnT [ $~<V%5uFt] ?26C @9 H;-h-@W}) uF=cWO<=upk X⇨ܞ"RQQxpw7'qkeZ{obqI&L0?)0b4K;><\>s?`9)3ȒDL+RقJI_iC\2QwQU$c32r[OL8'ՏSaw_>;2܂0ZQ\JH-mw Vqa4##A2P6,M/w)<^4#ѵmHH# 90FxisN*1ɦ=(ECU8lNwۚKQVD/CS]!j+\WPHݟ?? %Leф1Qj7w`a*27G?q7Hߎg! xfGA||$y5o#0uޱ؈$vNr;Ǚoh5`JEච6M >%e!pR}~BC#Oo7}jlըR|}?GycqX|?O~c<Lc\g\c>pz$IpPA? _6O %jt8r.=/c/"Y18R4ǒD?҈Ʋ -2n׮XCm14BYkO ik]* Ǝr:0A쮇>M2^RR'tt\<+ԣtou+x|:^}Mb.9QxCqd6@N' d\Ⱥ͋'aTiDɌ`xlw5(mYA wl6?Fqr yT"h#&w3j/vϿ:XGj@=f6޲k6?W@]2Nu*WRE,:8lH >inoǓjFܜ֬DX BF&J]c[t QFPU|ϫkJqZ.=艣8q][qqd"5C'O>>O0w-m4NW? dGvYz3iB ATڽ@!RS.3w.&毫d)?#KvRUAC"ܟ>8z4 (ɼdDNAfGk@mk]TUר-m}ݟ?'jF:t >c$}ȹVti,]-$#. hrVf+>HAb =8rt7jk1:B6:IGH ,s0:Ct-IBI46mMێnsI?b˨|eygPq*EciZ*AC9q7aP߂ n]Z~gW5}M8poeOoO*&#afy:щtAUV pEHe_ T 4~҇BȂ DC%;U3)0x@+ώ`aѐ pB4qx>ҫ;\7'U :paܽ wBv:aAaA>:tkՠǨ4d6,ex@&~!~[O͇C nL FRVtW QZ҂\PSu ͍5hj )&)=ݻb۶o޳¿7صu+~_+.w o>^U ')} RjnܼAK(YF3M)t2ON,56{_("_G!.} ƖT)]ʾ$.хY8%x9 Ջ3M8#3n,vz hnFEM=*kq1 r.]6<-?~}|*I$ hhbD;•Rls']Bs[;ICv=jP&F o$`t`8;\±;q2ׯ/(5<2N9Cy'6Z1hl4w֣U} zzU#-j* Xm !T*ۅ G!A?rg4_iMOO=,2!GׁJ4vc4G֊7^kK 9aL a0p7o^B"ж *2@Jbtr^Q qI Agp`;CpTg"dHB}\i'FJP>+ϟed|~_ cصo;܈\x}vIhߩk$Fi7f 3"3 i X&zM^÷>Zޙ';\ ~օV#T_]ƚk<K"* h7Ss/^^sfՐ7{o4]|o~Ooz3c1>1@'=zt?=D\} 0|V?1*f1F1>{]a,"2B } 82 q*X $A(v~+mq5M"=%BoIPm9{ TyX<Bݯ(Cq@÷wo@o$F(ǵJH6I5<s/9cΣ6v}o'>A!-eF 7-Bt.N,@$ky8~tu;j3K|8MP<Msi=zJg5ȞjXmHMV[hy$PK'ܡݸrZt?OAEghj tMmC-uQJ\02 a[wI9Z6 i2Zl7I"RCHЇ QC8e@| KJi(r"hvoLeHIN k ,^!AuYfU/FCTsX"Յzx=y^S9c5ZqK+jkFNScwnH# ?N7,o㵻u<\TiF:HcX0Kf认_J<KuW . *x +QP"\vVq$~Ƕ-8{o )'Qc}} Ng'$6Ă={]$XHICݿz2{Ὂ.Y!X|,<beIf護1<' I G'3u<ހg|Ee0ԲLsA3#ӰFPь$=9>p<6Z455uut".__+DkC3}_UPJψnZױ` .K;ًoj٠x?I*X~PAa5.<E^rػo q"BH $z0И| ݧ=%7[ %h^K\ 9P{}V\<gi¼ GP_t :l)7W+sub2dě7/֦1`vf8ib!\u}Dq\x:uS00V%gGרHMD@6w LV.7-&%G <1|z 0ތ L"sd Y'f3F'JGEX:u5ɻǏDѕ0kjQRS:# FIRgwHT"yfo7½WLeH`~C#í$fet}@:$'V<Z6e#TRz:PLp(O?svlAXM?/~?Ww՘qwp`< AK4`O< ͢twLJxl|)Rc["rD$ 3>Kd ( \F.*q£0=sdFc P.h;h$$]}Tu e\z%jb(W޼Osw/ae2mO H.83gN"72Tx}4zKPᶮ D!H5Uo'#8H4J@p|scj,I#5V;,HP B~tR*k ^T m-}O~+ ~=F\p\&9ܳ4WsEbli##)FA#|nغ*4#F޸7k H&XgF1=>a([0rupׅ QPK>?0P;}z FM,N"2`}t >KGNlH1::@$I(C(U$3 PIXk8vڃ={IwO!{^^ZWK} ACԋ Iw"%)L.'_}/9 '.%p5zf!5i<;o_'w0==BgC,槃ϿA=1@g i@ZjTUsxK_< ǿS_ ï>ō<9W&N)n mK: Nf hzP?I(YNBKha f#J-U~``$N@8Fo:?7%9kvDৃhjD:R~#M(| |W'#8w v:wbCxeUGim3Llv,f!DÁ1hO]FI 2#ƙbmqu~ZrDay-¼fQEE^ K+ITKP[[]M$vM= :³(r EOi^> z$zp)ut'T2Dm46=޾yH07;<{uxwd!@VjE_$ >H6z9ҺM,#ϹhGKM=:]zAǔj( R廆gN$DrfDgRAolZKzJQ7U5~ 2q3LZ\ܼK*Ⱦu6ڽ&eeh%k_Op; xI%pxH`y[߸ޚob&kĭ $p_z,)]C'5Ӈ17=֤'`tY %hvMժ)f xE*m/3O>w?zJ1GkS>dJ{4Q[HHo3ȎRe I>OGGGM}csh@Z ҹcsǕ0yA}N K>MxNّ AyL d,jms *q8-yVQZh&9/gWrU8y4:]a灃DPP׎n%uM9)S.7R%H?4U~ 0 Y7)ٳ BAA.X}UFy7R\P|4:[^ nhȥη`\MیK(<yQ{uep"lG؉)/gxaHoLs!nD؂nq]XYZ$VS}ѱe9$`ICKF|xlW(tZKh1*HXR_J$P =$C\N~Ē; B$ 2%L(H0SMΞ b3 ^VQgN쥣8@'cҷm.~w"u~vޤe'E2폫,$hf }uܟIb}m"'G(Xl{pioNY}4ɠݴGor /+S'ZPTztc_eb[? ~?C|O;[b#АZb &f ijc< or$8 a Z­;\@BOd Chow%CgFEh_l$m>4 < ]oiBeMΝQe_@<ȪE?Qfn~vX6=Ĺ Gb]8r4lߏk(ʛ;aw:eڠpP8ualj K#ci%2cpx9v7VoL+$137͗yN' R 6\V+ 9 hmFԡTCϧ(? aC҅kVN<Jt &qc"k;1!m|oޠo}a۷=͛7+x;[M⺋@rm7B+dT)Kk}U}zz!JQFPK˘EdľfJr6byX58A̟L2;F57zno>ZQ LJtgs`'I}N}=;p$ $xP.̉ AtW{),$`Yf'qk&dwQQy4[%*QS9'qQ>zHe >zNGqQյȱtGq kF~z|UWΩ9Qiާ4n\*/$8HJ+6{Ie7@z鄿r&c6 Y0GsLָK`yߗYܩIaIٸڙݼN5 pFca^' 3**PYUF MT2 ^*>xrO15`38t2tR@vh NV5KZ"]줫KJn޵+8phޅX(40$̓#$ q,E%h+r'ɨ,0@h00"lm*rTq %h.Ёx>tʇ#t`i?UPo &L\$#x x%Z7<F`ci\' 2՛@eȚV@:ZxTe>^' B09}nXl~Z2 T!)!).Y׳Tڦ#8- H$K]"!,Rv%KAK>bto<^0,v IgNㇰwf9HЁ6YT(θXFL2)\>::Tr?{?_ホ~%TNbm1zcD{sxe+xqF x+/uY/xyKt~۱>9$99'{_{ v OoNꔉ:n!QN@b' {4ZA^ϤX?;D=I2,$pnCDx%;ȕN10גINa.#uHU Iӱ|>8!Iьa Sb4ʪOګs׿ /GϜWFWJ_4cabnI_ډJ]syF0x:*ʚaaf,$@fAnfW d_N-;r.!hL-8E} OLR70L+vp=dV|΂S<Fѵ鬅ϩ@k_ 1_DsU4Q#9Zq3ưӀ` +; Ceso=^ݛ R$1hBevOMƭ{9i*G %r-T! Q꽔#Qnh4v/Y O P=MH8(%p *sy]vrX /}y.YfOXgE g_ıǰw6ۻm$)'OA]G?Rwݏ# @HD c ?;ߓQv+秱8!+.e+98F.U7S7nܠ֋/W6M7`<n|GK/bÆsv?tŋg|vodm I<.xmD}Fn1"@ `s)(K/dN=\=By &KMEp\ҷH Nl eHAٍ^DdtszxC-Y~=uCcY((u*OoFIe*E+†8r ߮xxI!"F_<r\t".]ōhֻ1~ oz>ߢFNN<C㪡[Lu!3sLRso.عY=0w԰Q4y vI\/IK[%14&/)/Z+DZb']F}3Fܑv->hM4>ep<lūק۸LKBA=Jeu0I{St)>BsH<r>*dx^,ߣSOEX}뙹zzluK2 ,O jFW }2ib I<ql,>fovG&e<|8b~."ؽ{#vu#G9FrddrQȰarl=z <cwÛz0g+ j/sqnl۹ lozl}_z҆/ᅗh^6nۀ6c{8zvm݂玡 Gԁ,@RA/.؜ЙxNC^b1ʨNJSY"Ӱa?m'[ƍ; .w #|} q*EpюG5*\y L-R'ZR1iT7 hȽZT#76nچ^|O報 P_4mGo8n$b}Gȝg9 -:^G߰hqade\"O#ģs ) m"Nޏ`bzX3,92|0k9Uֺ}(/j@cB߀kX`:h⹴V塦<ʋΩu2W&bdz b"`(y@¥GA\s[ey0k/!aڣt*K[&O!Ƌ?m*u %S0|xDЩAog@ 8Ƴs^&=KAp PݏdF׏@ h#K1 }0x<ہ?`Y[x\+/ā{p.\t7dMD#䚂.4c$%*8tXB1)I[15"`lB 8[މ{wa;$ ;xܸs'6ߏoڂ |Nyس'oP,{7V `n2a,N\I`gzjS$j$Jb\5(rDÙS  :ʥ,R6,fӁr30)KԤ~ ;veMCiD1@B.єOvmzL64\5;{OǞI (1|mZx d.5]]Q:/:ht@k Lmih4xIj- ITL4(5i!Ҫr?GEy:@zHx֛ }0 nʡɉVӋ|sdk@Ls3<6tD=9'o]qN=CՋt79$.t9Ch*AXSE9H̪VU31$}d<{@'%"#p3ɳK)(> AJ3e;퉏L䋩{%$2;,bZHEzX(ʚ|<Xm$ j4#_ cb~yF065^2JKgFػWsL`mkT I®@^WB8~K)k#ͅps!bt] ;m6`?oVͻa3yN>q#zM긝a#u~Mxy&yݡ'wo['UK Ll:70:OOt$&`4BcHT!;M+cSULO"H$ YFl4NjbEFII#XLFyU(:arftYqeÑ q)u\]T`غ0~K/c%>M|oӯ}_~>b>;Z׶`76U:th>:"aa4\JB\2I2 :^ZY#Խ}3@jDʮy}yM"Hri<o'Y8rpJ=aa4H mksdN݂}/|װ Mk;PvRr8S epi̸6[adIxl`  ҬݻG4 Jgfd!#`R.z+efReI)=4@:@0DDj,zTr|dIH; CՑ'F{~[x-LM/,b}L.a#ـkD$$x6vS%Ps| <a8]6ͯd~1<?Me$}? z ShګжW{ؼ-?oݶ۷nۢoq˖I,uf .7nHb_xE~fno7ߨo᷿>Vw'12[,'qCy KEiBh7(A!2dS#U{K+YV}Kb6P LRwWa MPxB>z:[ٌaS_I^0uEReEyC3:-7^x 'H?͏]>&ƛYۏƖ^WfMEymmեdZL6+u /#_&mE16H@+攏,P;g1:50} 9ЧQUɕsu.pIF ӥLF c*9oF$`&N_x(؂7a/`;7:[kLPs ~7(pJ}Zzg w׮#J⛦FGDaw< q)YP iC~꥗H2&eɦKQ=b< *h2&5R :.z,Kv|!:wzW6|?JAv7:$H?OկN,eL.a< KoTGF0 "Abc%n c6N·J[Ч%&aY\dPcĬhAWOrw$Wah!]|`ۦ{Fݷ]lZm`Ӗ xeKذQh5~N&xlގ_ڄ8g zZJ?o?0M7w?yF rֽE\[oUz,¦ M}dr1uVo=VcS%xR%FoM(XJ#S70'}$N<^щZۛN"οI#31A{Ov* %ɱdVMjy v҆ng0E?~o|e|Gw5Wׁڦ:b|+@އ l.bo3|>5`w~V{Ar4zvsf) <\y8pe fficahF04>~} 4PX# ;aj,GDۆʜ#8e_ [7;>"6P._܌Ϳopalq`ˋ(pFH$ܸh xdI@,c>BUKL@CfB/p%ob <X$7Tn~+'F % c:1QXCiG&{:ʀgp#* !}~5<W xSC@uj\tN eӰE'~m1SX$ual0w$2 =/K->WI߸ʘY+  Φb=$aNl!`شg'* c;6+4+B$HalI,dV\bqT a2 }DqvBIᎦ5-C2l 8s"M <р0Hg|zwR+k0vN"KIv#ǣCvk})h._B1Ғ$}"4IU426 4 wHW4µ"\-B䕔;4#$(ټRkPҏk.4x`q&YXpoIV3ʁ6ɴ0,tn -AFTNU |,E3;`3iatXUN$$5tTU ?m8Ho8w;.p{=ZsϫT QuQ4G ak+dߝʢX뭚r#t.[bNx " XU&$:EdQvLoFk4Zi,}$7c ~څl e'QR% ,W]v~<d‚p؆bi/˨(9MP FsyKÌ<W2t?nlgG0>`ܐ1#ZLvDjܷm߀]{[ oیlٵC$8<l $ޖ]|8|MUo)Yq*qI5UEzo  3*@e) A":%1\_%,pJ+iLw_#aVIHq 1Ʌ#nTEwݎ:QtۂjGXv̆~1.H XfD5&[RjNԶip+P\^ {C'g[Q]Y3'ѳ8|,N]ߩ6x^m A]GhihPHd&2t b` eI46(=8ʚR$ ^ӥزӗ,'8Qª|t40p!F[ho@_S) 5"h)3qu2t =Qw3Z] _B9W\Tv !ʟԆg񕷟 IO*u(IMiЮ߾`N>FKIV A@v}'Pe`J K6A^vOH!b."^~d*I  փ3^9YͲĊeIk!B*UqH0At?t~'ZPT)%\P(*Ay)h:+q!I5a&,tPx5)^e"$O[~qgS&e6DѤ;6o[H 6y$۱]7n/-[l{ $ It8s)v5d"vTGSU?*<yW<T`ZI"^cMuH7xaz+/Ӑ=%XjRjRSOH)*z.mZO]v^_K\ $XXYTYN1E9"_IP  z[\ZTVE~ڱFTԖC$rJe-.WԨlQG;Hd'Iy)#Yn^/m~?<5V=w ǎVVPVA=m&D0ymyykx'K;8ƈvi %t ZTB&6t@Vsw#i9+)?up;؀[_m/Ȯ-rcZiO.^<jځSZIJ:dm_{u\O IH1m[#OR%,0EGBnJ%F|_tK$F7md\2;J)}JxVvbH"YٜȪcbTz' }Viy?0L&b\rErQk)ՆZ~HUߟ'Lo#.!#^]iL`z5ܞ7&pg<S=Q{'n۫pvvپYMa" /gmoڀ$̿el]µڇM[i6l߶6mƙQY id 71砵Ws9<yh&%뀕Mh9uZR#А5.^v02GۈH`ѕ3E"<0 u?8Ov m4, v꿉dÝBw-$:A߃@sWwiC3ݭJpjmj֣ @2 ߇&)U.8rʾ̹V(TmO":[is!|PFO9F&gLC*D0^ګ{ u?4T0mm0/E3CׄAk] 0Pmmu,;CPn^/bMطe }}ʔ+ /*#onЎWoƭ%DBPҴGiX0kh$sWl6 }ft05YAH2$@<^H?qetNV>+gk3L9J2ue8{lQeBLEjjA풝\D//vϿ:XpүAI}+U<4jqΜ>y'3AmEK]f8&ZGpTQ:Q!QLO [x0TL!|FH05*u'&(ػ{e.lٻ Ħ ?Evضwv;V OcQ|۷8](A^Up==jnO|:ƍ$A${I%;貄zHit86=O٥(pd;h$j{S(`TLTs볣JdwoH҃(5hJ=4].TmT|?/øT܌y8s2N:ϣ%J=HF)3IIC/r dIn\QbD56tCI)6ng4Ȃ &X SVlAG%e%,iE"ݎ\k|^@S8yd/Kc+عk+نLh2* >!=|㰵çp؄2<tn.~NXcg|$sYXRE%@w|Ih:NΤd"Ibk=s@}'7K/F8vԔ.], 5DN2:EM(nGn|hK8vE$V=hj@*;xҔ0 Kk[]!a`nCt0&L mFWUcOII%j+`'aaㇰe:/A91>[wx݁7$ey:~~thPqWlS,MgTD{<'.7=%XO(`1*M04 Dm 䂲ۨ&egG@ РSqPxi}]*0N/c,\ﻤơcNס u CS8ǑSp&G^qU\(,Z8m:  $*0=2,~deHJ3h\i&wP%(,<Wl$`pP&-\i3G!A)g¹ y(**V k )nƭ+؅Sr|q N߆${6{CWc6ჱm•p融|jL]$#me1 !&X^5MƑ9}H;O^C*AȐdiFe'JZ/'gD_ESFu\KOFI`Y(n}/L 9@Rס q.Wpl8y%$6Hj:n6xݒ0JHBXAI8}U3$ cR*VzYkwhm쬆uWgFWp^:nî}{ھgvک֮=q!߿GqlUB KN"nNӯ=mԉ+͑;T]4n,O`0@*vlyy9JedI%c``k*ݗC'e>0H.9uxݯ;hUGtyBe8$ݙ"B߅&Xr$1hn$4:؉h2 uR я̌ gą8s1G_ā#p$(f7 N`FRRi1<F`srR' QgKQVA@0IJ)Yx E2M s|.a4PQz UæiI/ ?8݊;^-/cm;P_p s$2ؽ OD|o3 F֨Sd!B!"Hx@<BOȽUy0H;./A" {JR̡@o,89Jl6}jL*{@2 졄"rrd,I0|ONI0v\nCNI5T\$a{zc7j[z>Pfߔ,$4fVbDK6Y t] Wk\mpuUBR m@ElEwۍSG8HwE߳>v=݃c8}4M^EǪ'~U_FAc5P^O!-$CXYBRt?&F->ߞMJ >MYT IF܍N71|?kNTlc6:.#HL/0d#?u3Nx?!Ӏڻ;8ԸdSפ?RHe={+uۆʆ^vJ߇n06~f/N8wvUQ%5a_z5.z!G$} I1R8K=6PW,N2lں2DbaEyMĽv~Fr90GAy<_2V\<VwVgmB7׆ˌsʗ&۾ell} vnƞQA?򡳦Gy8o#.ރ*v0Su 6xȩ@0=| ~޻0}~`:Òq "C.}d'#+1"XϟN|CJ2RsrG)cX26>L$^juk):AO8Qfzn?!Mk@Yc )xM-*Ӈp aZx"Q ֠jV7 ӊl`X{q㊡hDk/A_K:R S_=`1SgO峸 \/t)=u'N#=(BJTf)[email protected]>{gU:\J.sjG_+xzmxh=7ot,nB]\;(;bX!Y.s AL:R! 6x4U3?ͥ8K!.zzkAJ!VLotI@ CH}C9X<,K`~/N\<ç/reV6"͎6kFO_a7IäWJ4ңtR 4%BaI!ry_O嶓fH (:2:ҙ4\m:'+*ix XYn gQHv|ygQ{ lǁqNqؽk}NSQ\W`S9sPGdԴhТ}~SeJ9]H`VeI|ɒc9?YR]S kxpD1lsy_0ֿG4ewȒɨ ;R)v3#4H"BBOBv7IHki`A+jS'"6TF7c444r4 2'Zg֓<aPLn0$`$cRntA.H¦U4waŕs8q0rDyP\]H>eTy?sOQkU [^+_@ޕ3;8ܙU_n=.;ۏ;7棳zU%@ H%B4dMeeu 46:N[]]i{Hi'm %I` .;rnip)vQE~?uSF'%S{.m@REeQo\h ١7Y ==cywpb1#a:K~^Ui-}{ A_=&4F+$jihZRiKeOn@Gi\rQ,Ir`hr@ KE@DszʖGֆ"؊*|DS*8ً; A=ߊ x_R 9vCHR@p g|\ECy4t5GfSI2|}*%pIJ@iea&0u 5(g'N$KjIPZ*+Gi)KI`X|s\kzgH Y ِ< !󡾭խ\%̽s'v#V4Ao[^4< <$^4ʟhDf:o'eE{[[\=o-CKOv5 Uz8qh^8bWjuZ-:rv8M; ;vl,^x ظͳJ,1;SHt>ڵ%$=묣٨Eh`2}?م..,F?7!Nps u_6I?Ȩ-7I#AJ^Ue 2_*ڄ pLtwkИ09c<a*`EС!2 Dfnrm8t Gb 8r"'J9mls sݔ4qE6;I ?}@bzaKrK\$5Ë7E|p8fS~d!Ifn>ٽu @I]li5}?WI1Zjpa\;{T+䁝8{;vICsC|صvh/<_AOS-µh$Ym.$lZattt`ӧ:>Nd{`3^zK#}b:F86V]J)]kPtQgՑ=_ögj UHG$dp31A\7_sY L/jlT܅h{ :y_Way:GQ ԚEo񡦥 }u* UyaUӏ\Jr_oHQ*UQV8>O871زqE<؉s=Oߥ7 \C$PUSzkM sbjSG0z`JzU/?9R:iĽabNqc,8>0{9: =e$d{c7H0H**kсA(L"7\觿DwΘ#Ab/ 8nԥJͭ8[Grpx3B[Tۆvmcz ]:[Njbn;!%8_B|:_F1KzTP jnM]0XNQ63І`#Ͽ6A#te{X| Ǒs.ESw|b>w'͛pؿڪP<5Յȣ_:E85G B E0$"vׄ`paN٫x4{aD!hxʊBǣQp C_x!j%%< q2u~cģqK1tݞxi')lfrr4znVIba VM j(o@MeS[ :- S =!tquʢSfzHLEź)t$wF1`Pkv-ЂK!wޏ#\}s/ؾgنvbwNa=8@pY_;Osk13H I6TCX&LӓCB$-\XZC! в׼yL"T4]jח;)5,Ag|ɎJLvj X$P)K!1:o$0x{m!kAPH, z4"=W}bnm{}QqL |^7ln/_ [(BN Lf!ymhBi%[Ib~'-fSu0t!TjC҆QEaMTJMo.$H,9?si@Nۧ.&x8aj(.S>z BpBޅȻxt.2JI"]u0zVf;ANR:KJ K$`W;!D36gi<$h oU$C~o\H[uW\>d(hHԮ~<R+*}(6]}:4 m͵&`4ՙN]#j[7=PYc&hÊ&p Vgc0c"iQ3^K'b~#B~ rsϩ۷`u}/ _E FG!eFI.P;eۄ&?,>{7a:6s>~M㻸{co?{wn 3B0%]`M@On$iL@g (3481{UexI2fgluEx3 4|DI'jz\ :#9$PjӃ$BpDѥsC @Lk=#LM0ґ*Ԁ]8zGN<=| :(cs.k4KNFY̴&ZnK^Ri$YZۂZ-FhvW0zIt6}sÌv#MkC~]9v!;B_:E lڃ{HU؂KgeW 6,I  OWNITsعs7v>}Zq)Ӌ%*!A'4=0ȹS$JE_Hd9%&*|^a HL 5?_fo\K9g$P e dTBVjd}\Cjd/vJI߆BVGmkmDjs mq:5QVކsޛNQܸ1̤xVH8{KD<} WbUmf޷MҼLt_ |mA}?s8:u.FQ)xW=4͸]pۑZ1~V #FWw$J[K[丹Qt2A>Hҭj\v<Y4.ت4Tʯ~{Dz ЮەE/u{!ғzJ'0<>EL#[g C#;<y m%Ş*|{#g.Wb>'S+HbҰƳhC\~hh,*Foq~w^ K5l:򣫧:m7:z4&'2.^ TzQ@Q%FuPi@nqb׮$UA8{~a:C; Aؿk߾۷;ɣoBsYN߅+ą'!1=ҼӨ/>֊(=sru婤&ss DS$R<g\kL&u#,/LpDo?-2"@ ;XHY@% u@bܼy@Z҃D?dIi]* M%``iR<JyEK1$R젝"ym7YцBW} x=]k^J(# @z>AtG$V&0?lʍA?{r!G+Z%l޸v{c6x//Q/_Ž۱}v<(W~;䣬 ˇ.C"Eԧp2:u*OýE6nM>2-:Nˠǝo&suH]bSs`}c!9KbEIV`wiTvXC#ur"Q3!Ffr<?R6ڵ.4c%RH,M$:^W j:L]rX%uXN9N/|gPJ6ěDɁڎ޾~8].8^h5:=~^>@9h>b:{:5r՞Bϣώ*;Mh8('/kK6 F9SPX| Nnw'ٯ[K=b!i)Q:/Y9gĹ3P]~ t _?g*nwZڇ"l6LG}#3XGƹMS3 '$ [h (Kd dt%HgOL 3.ǠU('WE_lA)c*$J쾋$wpf//vϿ:X 8l17Mj.31=q]R 4",LN6nM'qkm  щKAN#|F\"pw#Q]f87@UKc]RvIxyf-$pa9+WΣ@P"4<Wd癠,p %x 0 a+0b8l%q!q 8hT"qL' UXvew_4Kd0462 Vn<qHMSII ѐQI^^W4:%JN TJ=C/4^OJQ#iMCaGqDc6Тwς>-:Bpŋk\(Ɖ~4'q.(Es /N@щ>8J#!FўPMyQNkV \tpPe| |FH`zfl uMhnӬA%6 $b<.Pe%xhن=}H /j] T6E9'I&OAHS(kOF (oDSwɂ&gfUe_:KА"}ȑE4@Z P"gL4G+B2A 4~!i7{T48:C4 aGٱP`e!e;\h(oAiM j=d9ښbv҃ yVJ Oޠ\ϒa[`{UK]:\.+Ԏ' 6c4.+1)2 G_ue6l߷ w6B vێ4y.EKs*ILQ^Y+%?GPQtca^{d|F,܋L&] rT7C /Aph^eH H0 :Wq iRS><I~^䋎d,HB@ ^dQC8KV6H"&Ҵ@ ϥv뽡:xi@إ'ҩ$ h5xQnP;2ґB4PfH˃3E-ȹ҈`ׁ8*h߻HR,-d2isB2Wd7F"UT MષXPW_H!AަGև>(>o٣ƴzEQYF{ g'hŕ3;g9c{lKp3NqMOɩc{ne)ڌSvO\@G}j/Cقd"  _ Hmb s+KT⪉,%g))D$xϗI$藲# HJ-|. H慔</Iit*yO>'A Hzd2)VݖCܦ~[]P؎V +kDm}zZˠoQpW/HơDؓ0;ǸV(kM5xx![Z16S~_]Oz:jqLt^Dж/-/ Nv> FW6Tk(*#;t?!TPCx*^|I:{/p ax6Bch69U $nEGGAݗ1Jooo7ǡWPGI'>~N/A^.ԆI2f`"yr5ՌqߋԐ40 KkUC/uNc& &] jnM=RXsU|(^p sx=b}8y `/j{2٨Vx-v, B{{+Y=_Zaɾ 74rACҐNaigmj}i@!v+x[+؂2o-WZPY| -5G͵8,kkƥǑ{4.9t_R3{'m(=2 rOA#8vx\>HFMq:j,v5S! NSƘ&S1*J DHv\덏%MّfRr(6=0퀁_5;דDV=gOQE%-AN.J&d ߁d;JD jh}UN6ؕT76D13A~59ĭ$Բʦ2R.zoB=N"\_ť=xx{ I'.LytG[ԣ~~ ضa+:ƅj/%ǩ3QV^F/Fm]Z=L#ZZi*Pل|ȿI;ܝkn`,K!Q|6\MnW1pOM)qgc$0N? +mv`HFۏQX( zoHBG| n6bc]\,o АGY[mN} P:ؚӞ]PCOޥ9-p-!Ш {cx ݪWlޠ2%aUvk7Y䱌0eΊFt=vUl$~#&좝k0Ɖch ^#vi"vi2N"iZ{:=nJKm 0;lDA>q|<z99gqbA[C!ڃP-%(!֗IL\8%PSuEEg`t#;1kK ,\%qLӋ0 ̨ N6{`_3=_V7qQoK>6[0F=PmƟ1+{MDN{፤KV(f/)?Z//vϿ:Xt*u(hE(, 4WU#hEcC5 :oڠ\.v97؄Ә4{Wo):cs \XZmG9R<9{Hv؅]wc{hٿA@cê AE!8H:tt?(LS+Nj0{| =hӆN&t,id͗8~Y/]h2O5|]R^N < qS-럓+YݩѪ錤e( 2sEI:T.A':zq [/bW((+,ϡFKSEಐ8H,=*Df#KtTuxh.Y$2gZ"MWU|XjF2 18V;r.<K@DfXwhI:RKͧ$N9'o6:0؊ ĩc{K 4rh8NRrϟD]yt)Ra쮃ԇN:T i3cy^KKFT&Ec/ςvi$@siⵓ_v ,~_NTCI䵶quotzI3ZH-f\PAXz2!QW5t<' 4hP٢!lµF\GG}iXz2Z: h5E Oى. &"uuS+kɈ[ ʨi'\lʣ k/C]yHRK/ IC]8p|?=>kspv&!">޾k+{'H$A۰upY4~5 ]\Zu,B/QW[ ZInjjPI kRm+-J%pyAcB}|_0>h=N{:^ɬI_:Lw#IcJJMR`@/=Ҁ*v:?Y%1333z83sx3)$XʔRJ.ji.<Z5걼flwkyHk7xe6/.cĿ>] XS]قv}!=Xј@"\C<?kT?!̌ܠܾ ׽CE97Bҏtۛ$jd&LvO= >5|&SO%6kpXgѐ2ε3ٱ! uM\-P3*eUFu-ٻ*^5_OBg_fL4cGKgZYZO|.)Cjno"{:diYFt[sE߸4W5 ɾ/VhиE 4PI Geg#H8 S7+`ߤ{jOʗF\@ҋ!̎v7݌7<_=|5}s&5{4&naC{?Dɪ)7M!`D? /T|i6qu-ZJ36(r!v)I}3mx _]KC47br>ğ3˿ IXr0|V۔$1@<i+6OeGK2hmd33:7|~6}~S29S;jLCxXM /kK$(J0,C,Ӯ,1/MOblױI"|:P=nnl L"{rd6 ‰E<-E" 2-%MQɟ<ߙ% n㵝D6.vH=\cS,aE׸;B<`ʐ^7u~ uuGZRM~6 (}4s}-5٨at4^c~\pΒXHDm%ynCS{7? 3udji1\K$M+yB1ɃD% "|e2gC3Xҁ<8|\ xQ9~L"=ӆhBF*MM?@0cS76ርaԛE\~L"4׏; v̑,*s-}K;|5YwIiã<>#>bgяm ϵc~F4555$M-hhsfա5u(+w5|Ur<R߳V?ſ`k= ,ȦHG\89{ ԝ:G֏~iԳ8ev'v'SHy?C: ?(@mm (;aRQm(}29I}e(dE\<.6#s~=;f.^4KZŨg<'py牡B(\KI[/ZF|~{}LQvw|-{7$+*N獍ό+8f&O^"O >ŪzP/kM4`4X2Y~/:ۛym&1G_16ك y^ ڨӍuD}jqv)n^/AR4TTENGio*C_=f;`}>N$m(Z;(介%~&I>e>Ez61yK`JԈgrg /{w^9Bx-EO<_,嚛'\m/+3kfr!u+S3behg@UkH!e2vy! GfKn~U-?Ce}fdx`v$GN,@ Zr cU;tej"~jp A=IA]9* HoT7KL*I(>zF (yuWOrKqleHfv{'rtrI. tQ1Ckwy6 i $)M\z %~1u;%Xhp%*P:a'q:T&If|bE3- NSj.z3[X#QwMS4MD`Ԃa 5Qt$6găray\yMG;8VM,I&F> ;VzH'X٣A81"Me>nl f۳stLaqA3D?R[JRZ#+&JH([&!!H:1׎aH;zHL:`sXa`E0 u|#?&):wE)$+4'xpPB2oc[J?$X. Avxun15~I_R A& h|2^(+$-4ɒȼkMг=-XBp;܈TWlKX]$yxL]cүr\+$'YN&> {p7`SO1 ljNg 1:e4浵%oBuZ:ߪ(m:eeU^K7L$و<kh9*<>"~9C]c}1<>~r?/OI*[^;#/AnM 7#x)"|lMzй*+&Lm) Dy3\oD<<M5嵏ҡҫg<B0inKBt~\k$ %L8Rh@wH"\օf7!K }@v)۰kG~vϟλ$;+tFGca>AQdD`f:ߢfUK *[Y2<VW15=R $\gzj7n:Hn(o]A+7Q_yDc> <sp n`dU'!( 1 g?0}zO>nk'ozi)&Gb]~/l Diz#R@= $`A1pLHp,CUk7MDIW::#H3^#G?4<b{QDډ5~^bchǴILyژ}E#d\=<ܾhq>3g5l~`v:͂2ܨ+/FY,Vy`ӫ6~i+*ڀfOo+ x,ǃܧؠo&hb8SWo^SIxSDëF+ uzhw4ޅ`.@^:?{Hޗ#Ϧϧ-  DPqV`:k\yMMpv 6[mr[r]8i׎{&8FJj5@Ѕʺ6Z;aFGt , Z1㒷LN[ X7!FdžrB**b!-<??4@ :"-LMMb9@7uw߆X`^tTڛuJ!]1%H 4xf/1h´zQzH݊j lh<@2sea}?zW_>û B*3/m59-6<QQF.+xZLQ%5&eΛ\e$!@_z2e5nvډo}_bK똡qdsG`35Oϗq#Κ1q9'IoDI0h|t>~n\Vtb]!ַal8cY$9%*Cum nUUU$q5ߗz {u51C-9CBb9A2*<xVWwz>ݍvW_%>y16 J秷?w #_呾wG긲>qu߽  +P5(F쇈BkwLJ4mA~1%~D f6MR)J?F#S^-g|G-ۇi`EC(9E}}j:7l!.5dJƽiXC Hehl*)ǫm%ڬ㰇|9*Ž"y2q" 6U@IcmR3Lb 3s-ͯ?hBMI*or *G}mnwceAW *O<N<C)ڮ5<|1^C%f9w_cT>Msw>rǟۏ>qo9țVܺmkcZ &Wr1F%qdVgtpKLRſ?8X0Hp173#Y b&G;,nqway>Ãy3$I _=/_"I|` E<vcbrSc]Dfd֠\evm @u]%jhoVhUx Wn_ AM<Pu(a=GCK:M2ыx~_|ECV8g{͏^gOM+\I$$Tb @`_EC>N0|]pCȺ)g*?HE@bPhO" M.07WxOnf^Fd1ߣ#C,йY./=6l,/`p|iDM {7:dd Hzdq:' IejoUB2$jVsY2,Uh|4Z*3QNd)A[1$ HEI0LgAc2bMԴ5k.W`JaY+4Aǜ:wƆt03##qp7py0J]=}}~ Ɂ  '80IN %\+F%" ()+&@P, b-Xt$rsN匢=cG~.?];P6+AQG09bKG '"ٞ'a><znUl j2CO Y}!ACC c=hk1)u\O_z^4 >.^ ׮Uەq7?և.7XhW6Ih+vV~8bo:q@1>y~7_|eF)7KO`)1k:|IHZ)Mq6ebTGg YX@0'h'K nva.Ä;a\wMکKx/p0f u6a8 - m}hœw"6ٙNr}׸sD[$ՑZKY$AZcofqEzh:5o21 Ts;$X1r 4ӫ[:4q1nߺjI00;ڃn,io05=}.$kv} - ѷܖ!+91؎zLccu,.fG~s!I Iw|9>gTPx<;/E Epm2UYL߇B"K$j\d(Q nf8"A vn<%X8!Y8#QCo15wo î<<B(ypg't̏s}I}VkGo"xKۄP7[M۶f먥M.q$bd޸uM-(WZ|xM|>ġP@A>t44rڕ2f>O?:Ϩ{^A_~/CO>k4)ݏQwN Y$FB|LJ7M񽩍G$˴'FH\q(['P]I`$Cґ'P6K:$Q':R}u0 [d']?W?D-EainGS{/{7?or?~( Mrx?|fZݝ!yʉ m B"㎮ YE>yƾ MH+0Hh/|vD=Hw01wI0A2jMӼs>tV:Ԕ@E5ܼz%Ya jo{96ڱF+q/~hzyla~]hOmi PϞ |DebS꽚(W}2\i e)KT>S~lPWUd`Q4?F\p;"^(m#ߤ$emC(mGe^Ah~ }roG^.p~Ĭgu^>>_!K8wk& #]$Ds-TV^2*.n zh^0EܺE|OшT= 3mʪO`7F?9K +>?Y=8GOsxk@^31GHl?>1]uI];oS +wiI^z]K已 ,ĩ &hcOIb~酦 ח6B86v=t=W37}e/ sc6;6 o,1sLأ<jAW(Jʛ72_bpY:"A(IO<c8wr|:t5k}E9lh+0na)Iuε5 $=; f[606=q&}[KaRaf\ӓiDKC9Z*X]Pv:ʪxl҈8f{`#VІbg#yD?Q|/<Ÿ/pK+ͭ]|OpH?R%Q&P`ꝏLC5Q$ 9${LM OMz_WSl=>S7&+]Wv ޯwkFa\oGS#vLOM"iq+$ CpDbs!1^|> B"N ?҇&tw՛u%o'wY'` `b| 5f2\#xkpM6%(j*Ccau(62)^?;/~?Ggq~O?'/V 'W_/O}56TDG%Av5^R!5U@@#ύ)3A;9qN^8FP4ch޳-#lͅm* \ybYsdILKnȍn*f%@CM{'0H!M -#HCR[TA SovYw<4Ù;0N Ў J.%}8TBp!שa=&J% }o8Maxtc&,Qk'I8,zfiCsڹDDo)FH[=p/4@w+ )Vב,"3Dmŧ}jH(ٽ BAG4;ݡe5$oIDG"t tBW[`4>Rg/'~;Z(8"PsclîܘvfTAūxtN\("nESC;A.|8ǏW g$NKӏ1OcNJĊN<x,ckCK+A]W ޺^ft2 {tOcgFQVgtZ|^nj쯗86ܺF$>*MgSmv> Sޛ?1O~gXau8b$WH|8K$G:ecyeh7ؤP5y?אF"W]aLYIfG OW2u`Eu g| "ă7C*9pWL`Z_M(zL $:98c9ƅ6 E[k0N6`hځL^Kіh3i^ח)sG@ 515 gGe1WM,dwD٨UH"K{fgV Yڝ%Y֬~F*p"A~F0?F"d5ҖS$cHG<pM$ 䢝?M_Ӂɱ! tu^LX4ƁڂNi χ%`ad-PH8D@AOKԵ@ J程Е*J2]ܣަ-%9R$FAR@K&DH4AXn;}aD5*ɌK:{n2 Է<߯i,ڵTAd&ݿr߽^BM /oƅhhHy/ o`+B'߽4`Es_6帆hlF|~k%Hjo4^ͤf#oSÈDAoR2ʪ*XE+ߟNGN0;eJ?s|<L̐:mⲙ"%V}l16@c3@~ehHӓ~fvVVY &K1ztDci H^Tv i챼iX\%oÏƢ$4kl}_I'kڨߨà=gF+W56ctI"H?wOwQʪ 61VHk6'1R}># ~n>8;@"E*`z|-ʄ{DTwm 4R<{wC'v$^[B.R}ΫaGK5䢭}}$Ch`3|7p#uaLjB4"u фI=V@eC? ksdO+H'iwX1F]'_6X۲ z0ixNs*@)\*GxI<V|^St2^-Idzg57Ubu+[Zo(&!u!b%6gG|r+{N4T6.)fYDWSp'bn瘝P7?4 fcO`ttuuu& ,e2 ._K.ݿIIH~$NTcc#|>~s ~/͈uE9-vƕ۠}y哏͎Wt/~IlA$op.}0QI= aGl}ك;x`E!.a#WVg6I0M/qFݧ/ҟ߁/!Tֶadv~QE E|^/'?E [lڟ997m2A{dl ʣaMc6 7uýx@O]1\N`u}.?{1˵ q|1-#fu5hhjG{5Zn pZgaiA2&N՜5dXŲnW?>}V7N_Q/*t.^*<7>b#=f׀ 4I%Z1Q`WE%*PnoޣgJ`'.g 8z1ڣw1GOb3 B4$DjFԮ#n?@zdVp|+ރ%Mpȅ2öSZjԢ:NLhOvcr}$C40mDiU9+@@Bkq j@EGGWif1PPo#N{'_H~^=ǧO>$egwQYEl, FO%4)WXu`26<G 6hQI2rD141篞3U.)Th'O'ˈ82Ps QcB70' ,`6gV 'pf4qyyiD`ԼI 'Yi(6lYcwwSD(TE#^;ؤ#6ǖ4wVwY11<˸R '᷍2 ck6ZI,IL{MrڊfLucj҃nOp#윅:g>W5XtSt$^t<a!r<&WGgD;#g )rLdL92x4G<W]1JGhi]5ځ/%/g-1l [N<bj n NbƝox$wEExMrNz3$ї̡$sӉ>Q tvGz0<kxeƦI- JHz:ӊtzjb?}Pu5Rb_g8;'鏿'wރy( C`wԤ:e+ldF[N`n CP+Xyzu&94R6vWq˯p.@ihozD i~~;_p{dz{b_u-f0G" ;6MmNA1AFTaWHin,%X9pd\<*[(&Vvf5)Ы#{D][!.Z2cS8cvU\]ʲ$U@oo7z(m\_cLMq}$ V$i8f$4J33 !H c5dmP ;`jI(fgǏ?3wկm[l޿("{A/[]$xDd.?@|GRã4N^*Poy;orsMtx|6.7 X=\b Oo<`!FH=@d<jKR] NrP θSK.u6`>^M0P 铕-vYEA/*At>!.RVt:n"e vWtbp|=('Ess:NO~9zw7ӟ?vpS'ysnO56#j9y]K+X*gT9mKX{n厞5L &f\wŧ_5B@HȨD:@ (K.b=kI߼<ś(kC$ǎNg@^nˤ> w/bOL_Ur-+xuД<n,dXLphۛܥ\?7}vB[S>RP~Np2NvL#3lc77~ *+GS}#::H&n(FPUmF I=_-6cE(ɫӇhrpp+4YIXI?K$QzQ%{_^%>0jFC#  7;*MUDU6nb֪Y^jXQyC񀋺oM,(_FtV^ L'j{^ZGFU' |5m!,hlј'&~}`3'{Y^wct6ؠCm (pU\xшe$PvA{;1 6UCZ[ cU(1g¿?/1gG?_#oՏ^$~{C;1t^;""~ڍQ.PH EU`:1uEGeկ-'X_yMQ)_Ë_KRx+p 697G<bK)hqJ*O1⚧ߤ_DŽ+r mu COqJ,9aeڣj^avkxD^ _cc|q>aBʁӽu~5،Lf|apt_!gŎW^/ʝØ5nwϗ5ezuV#ե ",'އcis+H&K[Ms o˟S}F1@$tye}?q9DY*Uj(1^IRڼ.JٕzWߕ(x0;%`̛40݋/F?蛶e: Gj>| eH$DM >KP3 Vhn^Nm6k'̬宮4֣o:-2U) Y Jy,c娨)+HmJdb{g#F֗b{xl0ţgTR=z)$AaQ\Юcxx]G*@IcHԈ )eJ7VJ9I2APHy'!RSr‡e;7bz+qJbXL@cj &=ILf6xhy;Fp vUFUs"i gUf2㼖jr^!#y2iΒDQ(u ##9xwB3[\5okwϐ\\C*6vV \iH胎 Sqv\'U\'<*kC=9-NP`4da-Ã` O6'Yw#Sv NcpxcV}l?%/dWMIfH LS9YHMHt:]-iut{ $ƟFB1⫅l@&O`q_$-jvFCQ)†RO(d W7LWVMfW&pG'nGGWAteIs:=@GW3DM5%Uwjz5!+7 ]Y*dVRe%|]Mc-mա 8>{] ""lyX"Q<7p-(GDc^:Փvo:*>y[gzܐ|UGTs: }z:3u^39U=8#Iz=$8}N ~ج5γI+Z P4 +>>x9{ o`*FCrk 4u "_6= (,r)Z#9n2.6a7$ʊV~U W|h; d'84XR~v4^4'L{۪^Iѳ~sq813ҍ^WTWk| p*)C0oՁV6IrK8><`}C$~L̢%5ͨC;O^L.zIҀHu-**X#qhL/C[Ą3N$?`0Il(I4% $ eg ɽ@@JWT~$2`B@aTP´!U3#$x}9$S8ًmxu h &H4g?H޴s: 8!?F[UP5PM쏖zZTTK՟Dck(` RMIi6v@@Kq|! e8= W_E^eX#Y̆uN`~Q;9ʘQ 4AIg?11> *T2׽:g Zy o@̸XٓLFATYjڙVi[:/]UVG;'?D` }-)ㇰJoO'(d+d7SȂfQ}>t K -os,ǐ!uST$I(?~b23j*Y^:5&4mFF>9xg`ul SChAEI)n^z[۸vxf)u: `a~y1$#}3p󹐗i˴ ĺu-jl͊z4 S?&Eȕ5Q٥pʪFuxN|M +ݟ}1Gl klE8b&諠e+p=~mJhzo_W_(Шߤ*[u*<k|aU><<]^SJ6b|fGx^0*1 kCcZbqbR47W 6Xprr]|HSSK Q@Rӣ TPN-Zk;:?Z~cpíEF*E$u0nj2H</sļ5%W3rNW'{ K1槆(*YbaΙvMᐟC}X8}EzOWOhvIz>ss"{&GQJ"TÙޠskM`̿j2,83t&0׆3t ս0^~_l~Qϩ ߕT +IQ6V=cH=8;}}5>+^!{V%iԽ,[?-&kGJa ,SC3ɴAPQJOx[&7n S n03eE7{C&xN} bytu cx|M?Ml@cװLjp6=TTobD"f"8bԛ;!^qoS|V@xY/ (p siYaOQaR%dV)@`A p+a; ܁0/ kY/>{͝ jFuqA8{<Ay59{`jwΜ(爋l SZMM2J IA3I}[kzZ1=1@`ыZ kAu=ABB"$A0"zh[(%hAn2A>w|<;û8-* XUz+*`CGOVVAt[ũIC|ts2Tn((+w9ty.>oHtDa:̊FQGkp!ƑnG0tO9Q6n+{h1 z#hRa"oҏ5OMT~Z$fjY:CcHN2b>X&r3"Cpja#.J#2Dy\L*/õacQ2(ikEwK3gښ٬n [I`j +@rAsr $!YHfIT0a>6nqobV;sNJa h7|5=$P@_K9#o$4 &\ LM, U=:ը<*_=$e5D"APD^Pfg`&Q=<YLsRgq_7F~OLi_j䥵暎Ě *2b znܼBgUh9&8,,$]3iGUC*jx/$`WqzWMk@=OZZQCہG!>:O~/>G)E >%qs Ķ#,EJ n`rI=S"Aѳ |LOxOt$1!ZGG\+f04J";禬@;K <辎PJt[;ʋ$MxV|ƵG](*z226Vi!QT P)#ua IVɔF d] r$IO:w\ji5l q;ve'a;1I5u19>jf7 wv mMFg{ I SӰX혞v`053<| 6x<AD#ID a||@v{saN9P2/|(PD-q+wSq1N zPhw(Ō%2הM.!K[@ Tdj,)5KI=k04i/s(gphKQ?AG7.(M6]ziBQ֘v"ooÇ.• ()'/hn2۩Nֹ44Pǥm)`4 UP]"QѕuD=J[k#1߅''/clt?C;yM<_IПkDنHׯ}u|""]ã_wҏ@-H ;6:w+F[:q^ P5f753%oTq-i]u"τ5e_aԽ4Fh@[j;P;D C_sgf{TF@Di\rHqkA꿚9]a<O&D~!|aΟan~E=v SD)/wYv"e̒05`iy㣣h"QompgzI BRЇ}L}Gc͆ /kz=Q':Z`H(&Lp!yK8E1.yI_뾮ɻ./{Q;EKջITꙥFY7)7F>l-J21~<ƭ* Xjjħr*\],/Z98<~p\~eQ}qcuI;@Ss;hk̄ZM9kA1Mد… &@} 8unhs|]5jk1F.>>3ʯ~)?zr ۴y6,IW1_(Kc W|&pDt[Q]OڼSF[Q I_AP ˉ5h#zƥ>O푈űH"|NI=ʹ8m )cC*:P300UtNQ?uG;.[nqC^Odw^/!hcU: V8N!?Қ2f I o vQ`"i*B351j v}@oKK#|>`Qx^+'pwg&Eo0&m̴cq1LyPY KJkBh.:X*Ey(Wxd1+@R_W6&3ҝLfn+cS{a|]Wv ώ+V\pӉLƒͥ~o^aȟFg)+J?㢼8Uc]xu?NQ1654֠n_/9!E}NQKe7LS[eqy uL55456I}T垮fS}[O?3<3u'WVޑ=\z d.f;ma*Z&fy. ME)u3|k6h>D9&`(i?}'fޙҾn;3i>Hza֔ŵM8nw㽦:1<A_Ьa7k) 0&&<|i*Cc '&9 ؄=4>J4-GХ=93H-摉ڱua}2k$"}3i⼯Zf_ aAfy2^~1t b`p~ӌ_a-!c?ovc,AL:tX#9>d =D^%`v)ZQW<OînrD$o PL9QX:jp$Aۦ!S%8Edi4a\5Y(OsسځWNς\i(ke>#hpG߻_kIG5kJ l=t4^, !ʪDHx}5e }hl؋ήv\pUCD&xESzP |^q ^eޮ5N BCA_$ }? _O;OKKwFz'ut.ODxU0t"I|xR賆1+ Ia!q3Qh(XZ&!1In~%u4d:$@=I$j߲yB!'иZމChMKgp ޮ4`l1'킓kܕX=@Z 5V &I>vUx¤$j+s$ivl.bDK4r|c LCAiQ?;@PMP`ؤ==5usSðO2$2D$ S <^?RE LarƂP$(3/, L}Lʹy#u 0 #BPto+ťd!,M)^5FJM {x Sٯ싂*od^/BF"P9ıYí&Np=lW5}䜠R]'ޫ &[A5hKQ<$|s*`udo}u0N1[Z> lEPOUk{#A%\]\𻨭.GGF5L+r*K>}PʐWPOׇʆv, r LO/o_?+-oΟ<W CAؒdd &+-bԓ^0Hb?ۣ4lS I-*L@-{GF)]`u!V9#T~?H=8WPgLm(I;0SIڼv("_;TvR0gR|p-}4ڒ9 Eb+p#Kec e*Vʰx-֭g89~\&um1WV XGGj@"v_3ILiI80;6Q[ :@f>xD%A E$Gniڂ) &)8$mDna )9 OP?'p0AH"AҠ ^<of$ג>UV'F+.h6##sE.;SfqdDA=;l-ehi}|7m؊A }B 5Նr)7~S/w< Kx l_i6~*81E%yn`2!~݂-*Lo@uQ-Ԩ|{CWW7qvIJJJM@PS=^ (`^S۝] *s wNP}Qz൵SM SƶM9[(ڀ8{~-j%8u<IDuTNdMpǸ.T l+d~?/~D&JH"iTiJ$ݼofJV5cR>=G/twDq߾U+f$㼆:m6yˊ WI/e $3{c#{&Ly n>:Ui"Ĭa꿙$AP( o3?gFf>&G09:lg'%LLgry1>N1k5v G0]%?D?Œ~Ì6#ӱ ;9Dvlt-;u] ɡ2I`$bBYmnhV)&кW%v!S@;z]Wv IhxBs< ]Uth=X //㏟`G<I<YGҀωP;[F ;nP6y.YVcښ3'YuWc`Ϥ ^v\^…[KepC kQ܄At IhCcgz5$u/gsD½$8M 1\+H`Á5 P<t\ dD). v(կ$ $WBP!  q(v'ϥF(HX8ѹ b(shQ.k*񾩡ˮ#˅" ]"% Rx& jDO.GC`HNPiی{!qUF1<6 ocueŤӪ92L*cn~Qn#+%];JR!Мe|` C}j`[zZ;چ֦tQ<:ѥ7lvg.<>&If-*[N+3"C=ø+@sB]!(F^M %r" $z4ș|^'}yӫ@:!o˻<<*iPٱ6TAqSo5/S9a=(|ua~Oa{%<$Fp1~g_ fR\=SEUlH#` EPEUիCsm>-V 2u…ti|p"|*6Q{ {006 QQk_V_״vdzhzeeאyw)bG\ntAti5gR t<0E0Y~P/L#]1pK?$2JK>% {/]nS%(.a"gz3UMPm =)3E QFXuz*xFtL006gD.ʵ8LIZ&' VI4{d U[4)}-S+3GHduZXJI50MDõ2Ir&ik(ZJmh^ qӵd7kwZV AmmM!M5]V߈Nb$,AanjeN \-m#}Q^Ɣ3pnL,JՏjWIR<7<{Jl&e>"Y+ =*cLVl5Vxr$idAxifLkߤڹ]Y9{>髸&+N_ ߻<3<ϹO0Gk'fvv0OrR&YWn>MWnTW/}G0.Qk>u+_~LZ^*] %1Owu-0} ZQI<1=5QhB&wpv'XO Fgx0⎠Gl$]s .b<4R2umɢvM/gQUTD@\OrV's?mJx:/רIM?JL;g&iss$!Ohd1G]=ݟ{ocx~}k^#32JW*z( i-JS> wfk-NO=J{),&NЖH_XƜmJK|\Kʒ-la`$--& -6W_[_Tנcur !ƹ;bqLĶ=ݸVZaFʶu " ka)ZHv?O? Y=R A(*IlllJde[^ SOIl\h$mlM5~+{fc?GX՛87T" ~ÏgoI|R .jp7!(ܳr G!bb}b;SoKp}\~kbȾBMu=qU\xЧ7e(@GFFF0==s[}Q؀FTOMZ07 O(A6VȠKc*(mt1xG8b"^"K<&$A*EQe " Cy=ePyf6Tx.H9(>,m !*oh@lSx9Iɣ'@I,)$蓏Hcҗ3BVnנs9mMV-q};ɝ"**ИJQ SirE&q<1u bEoJ~+i?T6`2/5Rڴlj$FTWZ4כYQA_%u(($$"i?}kc2ۺ3hF^/oF4L60K{&.L<<EGSEH@d^}*/X%& sbp@eK׍6U!>*+ߙ .ŒeHt}tJ`Y {W0dwa1ëU|& Oހdh"\:M_>Ӈ4;ץsw\M:}W}[Yq41Dew9 ͵%\q7@jF053Bߍ1 kʃgx$ǦE71_H< aȃ2dčtԌ cl$hx 1Z+e^J(23P~ vr}dިcg(:kKc;$1L) ^޷iғTrl^б4wRjGbfknE0鄵f9Iv-fzp ]CrJѩ+jF㢃 R+Tb*rχeq6ꘚ 6r8Y >$Psvީ"֪O.GRkFi{F&H:XU2t8\[7RVR:H!(PӓRTB5@ةgn@#c9Gp9ڋrVംOƧVRKsO#H6I LcAJ%[L0E=HHnz^xNNv%IH4Φ.)d0([= l44h!:2@<?Eݯt}ԏ)"Vʎ7Z:ؑOoj;O9t N )MJFϾ2)=\6I;.޼?T)AKG;* ZM8Fi$x5$$ 7{p4x ( P&,S0 ,tu{`.&M}vmbpe1~r ] x\d[1J)_hbJB5`ΧW𩙑+Y{"f$ nBnvUšiM1|Fy~Awu3,)k/Lm'J][?WBP$)X"9<$ ک({F'W:AzF;{U-]Λ&_jL,iW _ϙ(j&5ezl$w$I d |Hf %,w{+81Ntv?UT[syp0ig!~Wn7o ~%(-)5A2u̮C A~yE C.#AЇx6cJYl2k{}#C&429Aك~>ݺUswri꺸ƆMW?^}E^j (4~-75,Js4AvS͎A;" c~D%H{t̫c n<F#6`Eó4oSz\Hǭx0W}h>F R!ČJQ?_#{ '/MPF;Ņ*m"ٯkGK[Zۛ0L;DoVUW{^j+'DׅsZZzt>=^ڊqh&lc$fTk.&a]~$нFߤkoOOi l>xٮ:j06llb6!]!9xQB>Vdyw!}t4 jiu"?tdj6'r瓟l1t47m^1$=`!I|!#uX"+4z e V9?*uxl{6#ce$=i,3#q]ՈKJQ^YoRoߺFDI ܺ}Hz۔ߢ\Ax:OP+ 朴NҗwkKY=z{;]V_ UۂtΚ7?2 믮 ԁm?RyuvQt_ :~1[=Fs{C`gbivoYGNrhpNj)Ƒ~OR0uDR(p"">;C ITGf!uۨkmEEM-HG[;91AxnJ"._N^n7"N$msLl8\N̙2VX_[6 TjoRGO!!MhDv"+lLb;? QByj+"{کs" I뚌J)C4!jHq<a0E}e0Ǩ'e%ү7njb/F_]N|波v2EFM&?%z^Y::R,| Yq@̬"2H+=0=+c*pWMSQ׆K۫p-r}}9*+]RZ *cU}#\&0euMu]h:j!Ĭ߹pnV6vm'Vsݷk zl9(4iЎ6@_kAY%*QњҦ|GV6*9Wث(ov)" ̵mb ]Wv &\ L1M٤0KG,,+N֢*ajӹmHCBG>:Jw0]Ű+~uwd*oh]}k'(AUc+:G52~) 6w ݃sE}G754B08dv!-H'"4<NLh"f!H`q)²x}tn"Tm;bQ))P6Ҍ4)j1XTKI,+EOTt4)E[I[^\hTRTyFZZ7QKYx+Bt (JqtȂ馬)9m5ߘ"ML.Jh+HQ(,Nvq:4~QՎEѹ$4" f+aa}d9ts aXe%h@!WW**5)CcC5hHHiGawFVǭNL8$Q89;)acNL2nIi"] Eߛ eD(pKJ<ANN "r1Y1<lxqa6aTG-CD>o (z(꾇Lur:8ɦ7~#ˎk<zˏI\>C0*գAMG`RAH&&p6 tխ!hkG_ғ!|^i $u_ 2) S1ԏN.[HD8g11k=9*[.666tE¡]>eDsQ~ڳXԋqu9zFC$X5DAbFR(sp{Wu쁚 >Ӹ}e˯Apk+*2@Z/JDPzadqB Ӟ4𧖐Evm_(m멋pkvbO7Y&f'\ Z홴 =\~ǻy-De95:2I~Ö́W@B8 <Iݧ-Ɨ0j``|ƅFTVt6R]]gWUբ6u~k]}h# 7eaH?3O8ۃf> qzeO.l0E:Ҍi^gY+([ T ҪTm]g :M)foXc.3SEjtשQDOi:Wn<yȃOYZ [ߨ:yYH_ѣmyQZ7l<Ah1<+ \ǼAqE$Id`$uBݯ0kjDcs#yz14:dҔLyA-u0c2=VԷRi7۩!n ҩ(&a)ǣ{y~ uTkfH5>u_D6U%H76 k x GdkbHu={A}q ϛz$4q0>'Hج+V6it= 6Pz>5؋uF%, _*Dknk~%+AJ&{>9G@\kDD)m="tBc++_Ɛn Y6Y8kɐm乳q"WDy M9i0ePVי%Jnq]5룚8>>dki'%yt9Œ;@")'P6fHf%HN26C§?'Ϲ(> ث8P @bT怦X"˴<)Έ&W6>C:>M[$RB@kH~+SEh+q@Z<0?'pqLP?[*\-?z'=kž^S"np}hhnACc#ک}ݘkAooygqP@} ,P& mjhOBY1؉{ڰƣ]Q$k* #&ӮE]oY8c|$m8҄-QJ/"B`@#>^LWWcb9|SIJs xեN9os?ǃv7ө,>d_\)CǴ4-T 4 2ϣmzryy>m *{py=,Jg*<Cȵb7(HQN_Y 5>vEyĤ׿OGYy5kPQQ2Ҳ .)7#7601=eb a4ݦD1i"@L ։Iפ{z3B:I(dWSLtXIseKDU~zYWꩰ0NR%Ӽ*szJ]<^Q@+E;P@8[8ع >Mv<=24jtxNmeH mczO'vC0 ssE? w$;{H QR]%Mg2ݯF%@Em+5 NFomBmk#H|`2!m$:ޙJ K)hcI :ıJ 2٠BmbaJ;]Ӄ@س-4HMIBDC\<I.Y܅F-hjUc*C:6t9BHQ$¦I7 ul;ڟAF$dL `,,be)nJߨCϤaa5P,(]NlbBU 2 @h1PJ6hr8؜!9zϜ3N C%(H9;ᘨASFkGN-hhⵧi%4O-ݽ"ذ3_#V{?ϕ)=lҰ%Uo&QA!@7d\NG4P}|^!yU^Jd5& Pgx6ndqS[Qb&;HejhW pd. ];P G"%^iu$u|+RN| ^<;95waS:wrHFLHhu2Z 5<Z18=^Yi "q߹t*qmJ ihr%Qzizf롺L[Ϫ>B&TK\^=@jڹ8 o8ԱZۧ]zdڼB:f^g`e4 8tr."JWX H R[/3ݡ>7|Sly)[Kytb.?:kYGFi)YqfH,x>…W2͸a!APmPBkpN=v%+m5LK'7Csmo`#-`_kyVW (Xm1[zϵb\?c^ Z=Kѩv #CujG f,%姦K0sA0<9>{mCd͌uUytYA@X"_s@~Ru %nES<wxF()OL2V4NI YEs\DV0IcU oɭo089c%3@4@Ds۱7{x|{{$N~^Mo}DOIfr/iH5ꍑď;0Ez.W›|Lx(Wt_= *ꪩj^,継AuC=;ԃ^׳ӣ&e_~/<z <!/f1~ ci^E@oOPpUzSm3Avb'.&+hBx;O:xSӘjGXVWWȟ|WX=f{"ţs).*8XlcjH\B!|I~s#=z7+!.\˷+101/~P6e k-:xccy5\s-SyLqxssDZ݃lngC` E?$:S<9d /'[M$@s> YLp+KAAtvtW`Gg}|8?A Cы/ dYX?dhtu1NA(W>G/M߂RsH,o.Eѕ='>":*nRC$ )k[L$#(}]e6m]0u ?׾5Ť _9W{XX?+:joI|dVY2*IS 61 >:`zv6(M@.)˗q(P&Ik!(@ QJZ tPmz̴ĶmMxs/hۂXHqMz\}.HO4Rv CFRY+yڲ|@_Hu[A yd^gQ A+ftXV&ȜUsY9967ׂD5P{=(Spc1P? ?YW{.^w}I]uVvoS@;M'TP0Qb,v 6-W?#hF`>٥/\s# Vq gd‚nu]=C<]}hi4R5 C1X<6?Yy-ḙJ^uxZ&k^xK(\UE5*WI uUu/G)o!7k-f+zLzoS/SAAAVf+E;Pi{Z1$0!!G[Wٗ`!J׮=8R*KOp:C%ӈ̅ l D~'ǤՉޱ)k஢ ^UIpM('aQ*j4q4>::.&.Ym-hhAB$mCɊӁ=gGx;Gf?r>eDE  4O#S`繰f)nPsG3M\h~^XېOo!HAEƅ3"ap MЈi^-PTI8HE4syӬ/-{:YB5![E uLi~%xt\43BKcjD!-`Իcz_ Z.ŴWp5u:`zn2>Qy12F FOB B[0GAQcvo0;M5uO`x̊9̸<89:Acᔁ)s0yL9qM>Bю뻊S|\@Qt~Lp@i]y_(zA#Z_$&:g FHj#[3"5X:0 һvICc㚱ڨ^S|x 7ow~ GkaZ}4f;se+ufk?͵6bu2$IuC[O *( N`k`v<kz?:dꗕ}00:A@<ҏۨm@M]-xp'Ϟ?}/ɋ:{a 4>5Cѧ)P^)swO(ǦfЩ] ]*SJE~QMR.m=Z"l3Df91֐%`ƞ;v& mߍ>=nDSw Jӈ<nC:r_v7\J[5 4-fF \q;'3Y3yqWƐ,mAy$ ܹCPHsr}l٩_WĄ)@ p+#%V7Na Os2#&Cm@w/J1}FFx4౷oCSpm?V'wh?OAI'3:At[bOYI>Ο@@D~1BPR.0K!b@D\GcHLiM2D*4%<ߤYs@Aa?Zo I.?5u)q/P꿃A]K_y5',^Әڭr" ē^302^.k5l&(#(CtouTOP9~󨪎+E?߁ΖZ<GŧO~F2t`<xX5 WJE+oYj2|jl /gKCkJ} /n*+B$ :]/q$ @ˆ+AGٹwFlO=^ڸ.)#i3d9f6$1dSp}.5G'q5sQv^/lD0E_qJ,OIbĈ8׸jP*!d]=2FۈkwM4L׾ 0oKHF96tvS1L,3:5׍NccsWz#i %ͨҝz('m`hD=Q>4 m^R2(da(aW@@FU (m,D1@>`%Aae#)P((6ӲyNH.I=ĕĂV,g"~ٯ;O>UKr~SJ:54C4C4OA7[K'as`FycSzz:N_m@e(_az SM6_FӁjSVS]P0 Ǐ!ڄޮfGjIDAT_#œ/иGHSOy]kڀ~wi\H"]L1&."nN5OMЮ^M2˦s +nso0ʡ }mu4@! ;${I8Ac<ȬN/ca!.\ô3d2K+`5ALaDd9U6h8C~KOd$>Jcxwhkyb l<Z#)X` O(؃M.}ݧnu 8HO=..>a6 QCC!4Z=Espih.1"N _I'5Pv18P H PGqt%m6Xmm ҷ Ǎ }Nڨv r ɲ0?whpȬkV& \j%p2F K<%9kid(jvwD ȈE` u`b!X'$!hkFUTfi F;ҀTTTJ㕚Lڢ^SVSjr5jm@ FO;&'h0zz[ïW?۟kgx=zayjTȽRRFNޤ ]xL {{[HN yL"c { q%Sl貦5D%v\a%IXb蟋`tA[!OD~)GOd1?GIXϸƝIҮ", YTq*Ih,L@Yf"LjvfM,6s8]< 4"VE] &b)W 4 |#qш[lA18A 3ur &`(d}S3 K ܮҕQ༙[nNxh,s44!H0 B(B!`+F)!EnW zu' HuW(K+@sVչ+{=#3ABif1$ؚ >ȸkKZkf ((~_/ǂdp[+C<G=lawqF;n$)"5qnjU4k 4v 4sNq od|u&>Dաx .^e|ut"ucdp;M.3;o_/pSQ:1ul=JzOci(ϑȥH'H?ݏqkڃ;$ω=J=_"^0AK>Ph1j>Cm>EiK)-.tu3AtNous{ 6T7>ObKyqԓ`keWU% \FlZo3QvI^ ]Fx;Iq<ɉQRJӿԶMD\j5V;.]ഇ!P>-7<aXACF&g1cuSWw,-jTW7 \te-R.^ƍVt ZIR њOQFIR'|Qc$fL"ssi8p+Bֺ,w lQ :g ;MiWV <.&Lۣ:Q~j 1wE"MΝcطL"@poWSH !8v_7)^3X\}cX l |Ӷi OVַCc@Cc)%ilm䡂@(Kod[&{@}N_QW_FJx}?|˪L~Y49= ߎ.\8ǿ_˿_?>ǽ_,)G~[1O>5M դ4ǣ9;iQ ]rOU)  Oxp%:n Q?hwL11s:n6.S~m@ .zT]c^pc ']\ lyJXG;!vhUzP-yWf=a֡)_g%^E觥G;X} $BF'`*IIC/TOxU $aHl(,(u>qfjƅYtLLQ_׆~ֵҌټx Jje_C&QSk6ʵ4 /gyNq Wib7t]/ (@A@28(، Q_%- h3c "&1?*'݆촃ߺ$/1ߨ ,a'.nRO$A^'b Kɯ?~3<GƎ)He;V{(]}ğ%P@SXpdєXD=B1TwjEcSh%^oN7lsav*1Oe9ڻ:M#FTn_3jfwU:+͸z"[F􌱱)\nbQ\r_|?/p+<ubEդom<Ff`CĤ|^OD }e~1@ _@H=65NAN?4Jsya֖nP?d-}M6@͐}h~7y1[h:B>Bңbqa'u8P$I,~[ PQw[of]_8VAiS]}`8<<ԧ0ybxI=zw;<?*P6j,QAK0z9 eBӛ:juI]G_TmniCM(-6ruR|5\^+%uh靦O`V.! &tZxvl؜^GoX1` y( tyhjD]QE]1]ݗkD#S@]<J`vU'Ժv•>E#C*%W?[wxAIަ0;q: ɷdRDgdEij䧝QQNw훸zd&޺A҈xt5i}Wn—WjWyKp $`lx?ZjWK _? 4??zׯad_uk&ԯ::Pv%Vi0zH*^@3NdݼݧS|Kvg.eˢÖFB>D%8I "P:,qY&sf) Y #&vDI~d0h8Jjg(xEH+6+ADb ÌA4N-Y$iX]?5MoG/hv•B퐴*4K{t]$4=JRTKЭqU4fD$LՏەt2\sJnFEAi"@s3y>RΛב o 2xL'lݧ)bM=N,Kyy'!)R<\G-+AmfSkJ9(T0ÙJ$L`k?8=g^{ϯ .|9D=#xy} qjbFDhLh?F w*]ZOÝ\!YL[_w?o{G.C3Fh/_o}1>G]_GPK{#߷/~?!>$և}:z5Sp |?F:+OOI7x/~ю n#~}ss?V\?e{I9jq8TK>ON9ђ~MvnstVv.$;GA%DCG!OphtE<g"SÇ{X^=Orp۴IQt^֚vO C7mGR i"1?e'i8!qGBY/ вJۤmgv,Pds}N:3w|4 x㋦l QC<9,o!9E ʪαMKȴ`N7IќwR'<))¯o-Lt]G{%puЮøv((udU0IPUZRe Ӵw8BHbZ j@j&w$En.5ǥ^`=c|3o;?S 5ni!\ceӰʭ!DUpzÂ=|w?@WFS۴Poƥ޼o_xKn"}]wI(#օK} ׫q:zZހm|現5ʘK<ϐ?} ͔w+Kls2@F}wΣ>F LSM3!O@4YQ}992NY$jv:'Q\?$&Gbh++8CmONRf4J-gV 1wbu{X^~\/u~Sur\DABe2 HI-*N7=y=2んf4jaIe@z N!SSyIJy, 7sٳJ]]V\7eMĝh@ՔYI5A`җ_#z5(P·z^n@?E;2i:h}^J5FкicVYPzW Ĕ6S3 _kA%0N{F5!t߻ 򉚴>uTO>'I;?7&} S ϛSeE{H__w>ַn|%ww>@=mnķ#Jo.o_o~&!]EyeWo\lY_ku֍v*P܆/^AiY9K"ݟ'//?Ǔ/_Z*)15F{o5Q;QY"ױ^)\XL%Ya,<E&zNszl\'>odg֛kYc ı\/d6?9N`sd_kXA-`}}?}/}Wʆ{:nFqB gyY2<zE^t!0Ժ^S4-O1bQsGe oREcJ*=lW8,Z6'@]uQ5gulm4fiP F'D=Se d* 7KD89+{CߞwEkֹktNTZ b e!t n٬='=uQJ+E;PÃ$jT'c>&Oςl7?|7QO1:)Yug)3EuIuXq5AR {z?`R+p7pת* Z)+Wy y\^67oƛePY_˷f-T.l'Ƀ}||+.f kl{XݵhAB$GDAd$dJQ`ĠӐ[,I (|~91W$%>N'.6}6-xX+HrVrxWKE)w+kkѹ*bu%ivnHµk8I8<5xq70kz(a㵠)<zFL#͵,Q ɯO!(Blҏi0攙 B%Q$[ U{58.QuK4vbhk-GN[?4 0v?97lz,-n"o Ƹ4;+{HD._k젽=4F8</NӠQjʓ I z`OLAFPW" B; 'Eu <mD~iھځO[$Q KRʅ76wc<|vO[3daWC'b;d zj$ L)="Qp-]#1>9q -]٭rԶ5UD0o] ޻zDB?_55&eJ.|WH<*Z*fƱN`g}!ǤH2EDc~} 2&RpC$^ڂ.ݚ6 A%f⠬ %qm&Q9FPsSM;EgE00 ,)"uxqpz۰|tl?_z͔nP  VI}@Au΄Xm`[mx#C,8"(=hhc Qu 8J~$" }~4w? ]ChBτ =c6ԑT&fnU/k?B3MXtz ߤ]:EPbNjB_B o7RT nE#)4u.>[Ҡc5Gd3zZ7*~S37,Aα򾺃̨LŽ/?Km&a'$vh(a`-1 ~IUݸgjh}%WJ ?ŜA=ɉi -ݨjiՊ4vLt)_ )xe@/P/3rY u=DpEחueM`eIJq;06DdzdzOR>\Nl7uO=HH }"z<9titS$m@ :m떩o.u"$e22TRWwF*FԗP#J 2f~Yw$ y~˃P*S53G\1|Z #u]" R+z`4gHz~:4Ax(@ۚVgXT"ϥif|Di+ydj&kk5Ms-mlGUS'j40m&:POݯmlEUFvIR^یU p"8,Q ƳN+ 6AR)/mt\]k$WC>-K 22Zk *nY-uwGl<}  k7[,w>_ټgqe}]4rQvRNl/OPVDGw8XHdIO0{0νwli:֋t"pPczD>*9[V)g'[m}-͔ܷa&BIVr5&ӵnXYo\AaU+L'>"64,?9fW뗬cl.y-I+/k,K>g7.aϟۥKn/^k%~ύs֬];8޵b.H^eݖ,=ſfq}d q 7Lf g[Nv!?^X2$Drɾ#1q8ܦ `i{'w<`+'ݯgpXrƣ'V<K[7rg6=KW]^W dʆwf5%3hwN-,DRpʺ'w$a#M%6)Y`H6aH咝.x0 \v{mJ~FXgѲTj SNmw-.M QY[Oz }weϵ ~}J>{5ϛ`@|ws`?<QBlqlvvJ,s"Β=\pyV`jdo~>u[>O` *Dr&& @jIz2=9; bkJ2H#(+e4N)(T-*0DFdHz |0%YF?o]v] +KrW] NT.arѦKE+ 6ת ʼEu~yFJmGτc" C#E϶A  g)2q {PH x ~T@!좜sF9q> %sؠцkt' @( ROtR493'C#GX_s3Ƿ,l5fvFK󯯟H9@jDS]ґ=1!0rvڎ@ٮ+Extwod8_G۹-}/^cKJ;( /k H-Dhc OǢkLDwtzF(C7(.XWoMe*I۴]w:ӏ "Vlڑx1rm9OuOz_]Gt@A&$}-$ںN:NMhh$Y>b?99Kavfζ u{'~xk]ykf&c'N7ۊU~"u{oiGk'oJ5s XIfU:vm$.tߕv,+OqjVo.XI;+XXDvZ`.ctcP*.tV[p&cIm3NF#1'PqͮIzD0(O谾^ mmmWf*Vx\[iurKͳ:]R/aVp ֱEZ'.ChR6 {^” >HCl9 U,%YY96QҽiDY{@:Kѕ'@܎['cpm-l'kM;*s"[-RqMy""܊OT&N  {Ύ=n~, 㤾)B~^%dmɯHK}vu{E$|Ml,%ݝHf㉤ţW,T<eK"FF_7_z^m c1EGt?= (SKoyX+'4cCc{7-9[ﺎȦ=B2Ŀnv?kbz؈& GC=-ϵ~eK NKCObsV^Ij[Y?Gحt<߷.=:=tA}˭h=<YJ,D+3r([PmW;.j-Yڴ3%dGEDbN&-gl"Xfg-vtUt`Ȯ >LتtiiFfjy(3#yWއ(e Ȫ@ܤYm#g,92 ȼ AΘ+zT`tz`)|>4eKBE4F[E뇖mmZ}G lYZD3_:g|Z'-*8Գklʲ|=fOܴC9uu ;=K^=*Y:4!X~^ ;s}6JxFz;ݲtS//8ZRlnڢɬMƳQg_~}s/W.uP(ctM?+*OӱE(ҤFcA yOz}ԧDҧUSd7Hͦ))_m/ye^G.;kMX` ~of_ߐ5y[3Gksfe{ξfm;}۵;ed>Bn 5J5nݿيfdRKzv7+椃5Ue eBNZ-6e}Cz~q%}CL?Mٵ>]zw^/%[Xq+!$s3eXU[.dae,hj]X-> .6`{u{F'{J:"2k|r(udppyh[ͺϿa B^7q?m![c d'ق];l޽mwd?Vlvƌ1&<+/+ +EF]v7]QJ,kY<'(C‡Ӗ*MԔuk,>lQmj,1(;h<pϹna_fuc/uQα}7","aN^8gp<voo_߳`CN_Nww,;a33[Y,ۣeߴ?Co~`yHd"%ӹt{w\FIq]0/ۈ~Р[_=!bE6 QmFe id,ʘD4b6;FȨE,jVlg{VW`Ά5-QߴdmE%DЖ=?"r$1H%(Ÿi)}RIlgn7_0g1it\vYtuK$nm)) z9Vu7/-ζG N4ϻFy,V\x 'g37!YDp;mecڶvkZz&|22‰oOܖ3skL"9 3r0=31T!\VB:3<n7r^u{WUοn]k#YvfŖ"w\@#=Ō-ِr"O e9{= 0rf5%4w[jKY;oo? dl}}n~KDyFdpww684gj^ >"t^Efgxe{ǟos[ >d3Rn?#SGn"-fR[9E懥ӣDFB?,b?azo5:}EKL -&0"L$Sڏ[AC1Vj"5H\ӎ5g.YZQN\YmiiҲFP#bH}{H{0 tAx5YHAڇn6?=i#)>>X[FO82+=e5=k>GO]jkGr% YVH R=H&HQA FLM$f2{ܴ7UkX,]YxuѢS;"),Yqn)ӈ-Sdvb)Ypc8j]cە1mǬ$T}k&3v(\D y/^߾vɾ ri4D5ځ]{2A+"g]p'J&Y]vا0@}}?.4)c R֛^XdU.D)G@\%!`K cwL,YE_hӋvx7mvmϦrK36`ve?P[Y1O|Yh1^Y^% fHOo5mj";;jפJd&?8fCvw@Ax^znӰéDhtKJqZߐt_6cdBcjZzFGdGD fhfg6۬Z!zl7Odۋ4} ȷgDrmr/R?Uu(')G-2/pl1IJll_FןE_Bʳ|>ua9v6z/r\{Kto11Dzc|zPl;ݟX\}[ص%%7SoK[;}׈o]^11r&M6KAfoweu_b%^GѢXe%+szҼLsZ('g喅5nN$k"i7ƓvM6j߄k[mmFo%p^~2+W/g^zþU{rNfm<SNqOuV@˙b|p=H~20 @ |`|6XH|X6@E>$(Gw]' Fdֹ$X„ƂE[eՔ_#֨\nHu?On!1+?ؕ#$3AF+˜:/J(=vΦYW㩔MNNȈ @uuwXF {׬ MguIX.ع>>,R-q-[rCeǧ©k7*%+v(X-Z 2_<c!A a 0Ex{y~(#=d-Υ5<QlۿNŖ'>R Y% +d/9} ,͇(4r8eG7] Y̒|7}PMP7y=#ayG6Opun=n⎕Y%j[c3. e^L/HJ+YI"J(iH ',?&?u 4olem9Xo5?k_usRǀ]56$I:,H_<^m爿?|=.@6Ӗ[DlLc]ח!@Fy{[fꍂ-heڟm>}O@WA`V~CEvrz]8ݐq NP$fzȽ"-ڕKvGcXDbкX-ԫ! !zz}Qwg E P= ,<qVr ;4Zu)D"#s"H͠@g3a$ X@ZdYr}9h}Xנ{u5e]{Jd["Yãq0k/C)`mr2[6mUil(3$r2w]Zܠᑄ~9F-3"MЃ-{pcΡO yLHe$AmgHْƛ,,K8xu-6h\@B0Y,lw}^&Ó.p`@9s2\6oTm͂e<); X@& |\&:qOKGຜ w}d*l&8RT3Ko=.d1H9-:h:kt_wS+̮vg0g+շw?{n;5߱Y  <dqbe9ƂTIY8Lbɒ%[͗^.ڹE쵫פ#uA!:_$Wdƫ.X,wNmyerYٶvwmm{n4Zrz&V‘%DD_` ٧BlB}ߗ):Eڶћ ,"Y-C~MF˷޵9UfLe|jr o?^5Q 0^9,[, 0 gR} j`̔yYhحw={-YsmM"kJ.]4|嬥'da[Ә,4fEmnhŖ EBJVllp atbEv aYxuXnzi V}?NGszJO#z<#{PZ OTM|keTP3Zԑ"RHmOEzV#ɪע%eFYO_PelcE?- _;o3z$Zs\MOg_;CvkGD~𪐡6$NMm4pSg++JWse E3|SNo˯]p O߸rå_:DnC.@p[dL~?l.n%X*nwo۪l8mRɶmKrt,P_iX Ă|ܑ;4AI9ឬp-LvVl3&{Auo÷k@18K!" ;[A 5gge@PVc`AC*C:U..2tI=<%koN Jo@p*b <xb0u(_gK"ǛGV[> LϬhmfvv鼦0U%m2G_||Mj [VγJeI:YؾJ\/?>אI׸TD޷gS~u'?DŽ&4?E3=*'mtXv%9aq{\MeRzϖ VĐ 约{j噊-̗mof_>v͙)=?9 `4L6'3\>8 ULd,I[ re Ĉ ثl߸`C".ZWπ)kGB"SQ69ar ٰzޒŜ=z-./YRZl;k۶#Lc>gߞ]ɘx{q}Р=wra3avb=_DC9?}'6Y V<вyAâ邝}l֪}]F^<-}g$ ş?ӧ#Pse޹i:p= 5cD<<N J, ҥl53]߶ŝ=YڲH¦dzY۹ydٖ=e1]+P6'+}]/~Άa+ .oZyB[=GS~ y-B"[{{?w?>}@i|ɖ|#1Jaxu]}?KvrR[-J<YOϟ|d_ڣAR~`=f(k,\!~cvviac2#M NXX`_;Zo].a_le8tOr!dm t&.Xdcø Ypk :e|ajmm,:tā:q R"BHZΟ^ y׋A  )GV.s,O{g,1/(0p6K@ep bB XV"`2" X݆*t f&jRkQkU^҆;eYkd7PȦr3VY:)P(/ 7q&<8:w4pb7 ߱6큀;ǕJNp/ zzh + @4HONemt*:c9RjQdJ(X !mS|6NC1(%" tfۣP\6 3<Ӝȥ(8h3  % qlKju2=Hm"z:i4p)4ʶMU4 ;iS5;Bv;Lu-@=kr.;2u9Z.Fm>zboggO(K48cdfh,88ɘE+l6/"9(tg8"}Fgtv]Ld/kr6 J V!NAtM~#鲻ʮ P 4$R3 [ڴ=ڛG;AY uM+>i9ȶA ?%@H;vwf'{Nx{,Og?x"oܢ$97^XIwd]SE'LϻEw-nZ\cJ7}z&.g6oy:f3kgjN!fjO%޽iwnۃUOquޮ@REOW#3tqת"#8Kv>{WCQ럚QLվq,zCD:3kj<t Ph&X/7Z "Y u/ߐ][v9MV Pk>wD(7@(ufxTYge,0swݐ?g̈́ LRF"6?'// %k;oRNyrN럾k_7;cW~c 3F]Ը*)фs'"ybJ/v ൜] Co.tŮ{z}AJ Md̥9}6bclY_/I7`0„ (^@RgE&W6mĞk.Gm;6|!eQ"A{lE]y_}Y)X_i}u+Z7R䴶w[b{v|=[]ll}cMOK_phu]W / t|h#B") E`ݬr)HsesqDfsUkdGܲ/זEEtvt}Nvu8f=iH ^q}JzGB6`AШ]vLoYYfҵ7o?|F2UwN;H?Y'u{<-(;X:/25U֘ +&巣e:+YnEt67E^61O_Qm,mmٟ~ o_t^dy{G$EXhVlzfRU;}n 6YĤ/++z7 vyĔeR9K369X"ݙrӲyq .`:oC}nԋ.u;v|zϖWt?Ikgl{}׎٩HݯXFhlquc <HZ{DY_ \=aM!EbObuGڲjB_sό:%a=ۻn=yn 4"icsv@1M guv%`W׳IεwضdoV[Ƕwh+̠>P;U"=( k 󻀁olwzSq^>w;ttj$\F䵾7ҥ!פ34bCG13vˉm޺1.9Ҟ5oiw> O7yj@s>g۞ucP"z8~N/UH`/vooTv!Ǝ–Uf*6ך=X_|/ K0.#6%qRm>+EwNxnq2- %bWϮPt0^6Z/Nm(͉$ndjqtچ&lmqNoE6?װE;_m)󒀿$, 3u) N  z 9a\ w= bgT86FHcskn(bWڶMA *n5K|&"#M@2EuMT~hmogmON jg ;.hZ1 ukO%ivnrȼ;3eޒoauN ;.K Re ^'ejK͗m(AD[etP -U[nfUW$P-HNlL3Z}QRnx<R"q ,`Leȿ :%/x. S*@6=$^q️I2iE8#rn%,M8uWdԃF+7oAtDGZ;?x5嗶-]XNo?oK%Ĭ0gnj%%,#%+/~l@gROZdn ٥a{{. /\s;쥋3 "oq#`eZg-UjZNH YC';~2o5liwONif6uVt2 \ͱtehQGJ6\ސ |?ĥ1.d* ibFЧNΐ@PvI$a폳aBC:t1hgE8fr};y퟈.Xzls[Nhґ( B ,#HJd!k;ug;޻lnKNovMYHbXDڕ/eE4.Q>3q;u,)=x_D!(Pj:l_Xڦ[_}ٰe[\j5+T>qS]M:9ـųO{r).@({heH F|zrPa _ҽcɂk~FsY̜ Lkŭcf8igitG:'< zO\go>/%GC{- \lZ"޲__ZyRv.}FhS9ˤ[ZVvL瘞/ ɇT^uކ9uq%8t\g]zuל9^pC>:oTI:߲LeR36ʊRFVx@Z|tBSQklgؖ tK'.@) @GgȈ++` {43P`"H#=I{x^u? Xއa +%֚֘r]i&kHWe]`XryC_Q^t%[J L )]_Dv.:clO5fdђpQw|lOك=߲kJD齲+`9N\iuV獝[h"9]>Nt_ HYsyK"&<D4m㱜|ޞ5vkM0٦[e?\ z߮:kt=W6,/, xŷppkvex\]T&0ݧk[&QB&MO9gzR^ͅc|G =4ҶJr#jyO~#lOƧY0f)apJʒkn uШ6.;]h&o]΁o]D'x.r.@QGV<gbJ9KVj4r3˛_L¡)-j\-䒽v/ %2; @A!}P-Y"''P&o!\<@đîd5ηow ׅYo>{Nv @H~=>.|.KO%ɼp,h#[Z[>pV>Edyf+iav%+%Xf1atC$U7۹K]N%9m0)";iչU+ eeh&1kYk#|Soۼl$MF}`2E@)Št 1$@x>}~yy^cy )Y GBP_p6NC{溸K񚍼-{mێT880YZ֭#/GVXDoXHH4Qg8RȢ>$+@Xw(nWzo]괋"WctzFmuشg<4GhR 4 [Td{cVaBjͺ@öed&] Tvݲn5r[R?@|zL`,pc"r8࠰fUu$A$ rnF8 &r{$-6i( ) 2IΞl[o]ز{[RWuMeeJKz-ڈؐdXeXsK:g=;fcl嗒FUs2 XBq 2쁔qR 4pv ,@\cC)q 4C:Y yREzl&"K>$+ V | 'b;d7:{:D@w08;20Uѽy2+THMf E֘ /% e@z&M=] d.3y6L\ hѹ$#%(W=/_) U֭k~6M龀tUKZeܾx7qt]3K;d U;4Mf9j:_5wo<%xaƁtvo?vFǒy9i ݮ7{$*`fgEG-lh*e)͈(k501eeM0-Ұ;wxKŦ Ι{N DXvD1";g> 2˦ |"[: l"$2`@G693sg|=@J,'If]/n#ECcKԬ?^& #[^oK4 /5{tgӞ<ikDz is<p])WrMuA!]l o.+뼧k6UTaQьȲ]sV_Й.<-ڍA{rE{sv^DL]3ACJܖ퟾e?ÿTl/I6=iJ3uɖ^w55y.z-2yNXp+gDsOD@9b^A pA~N6ZݵS[?yresmC7?mm#eUI֑N,VB׮@*6|ڻ-=ksyKEu:y L%}#!(7kpe MRpFtOؐBؔM/lnمk7wpV_iZQc>+Z2cG75u o(?k#gAAt .}>^eu}yߏ x6K$niEb@ |]pU "5o޷9R(:mӺp2%Z'~hn%/EW2ĥ9v0 "5*=k)YQ_ߗϿmo>eG)ojk27Eu]Н.tZ5VNc连˼ Af[:eV-ص;Ǿtu{na~EbL ̺l¦myl?8"gU?//@8\IU>1t^#[3.ߔ-=5J6< df6o<? I=>EߢP@Xv? [F%bs}SOap$n* 7"|BUkްPaNv~c[ܹXqqK6oN`Yr^>sActZnV88 ZdH$F=䠣#6NH&by4(oHl@ )[]6!ڂidJ Ӯ[)FИY]#VC ^ 'X<ug|'q@;}E>>П;r~@_ `<&>y/o H}>d[U-Iq",ѳxS3/_veld 6k9w}/8ό|+yoJ_wlϹ|->=Shp{.FI߾onUS<q삆0@V,"_.T˲gu7kZy~Ӛk:\;wKWo.ص}}60/drҞm{~>?>췓w?|[r<#`K7~!Np k%g"BpqC]W (A(GbK2qK3uYpݲ}A'?wid(2Ԃ@cRZcqmeu@XuYOf*.`*S̖lH{0u%;Ǭg"lOI&o>⤗Ȱ0 q0pvÒ鄵^ye1AG35Y1,ҖHKmڰcnV_ᑀ$$COz7CK +Ljτ!E [ aDO &0> +5 4!A[9f&EzF 6_k/\mco[{bt/4msgղݐʀ#N>D|@xr[c7̆@5Nivֶ;ݕvٲef+NcA9lۗIR:o]'DlB'K%Wl" JN(gٺCɆ'&իڹ׌ewX5G ʮg'8#;8#G&/,{$/0,#zQ]>G)á{1y9pӖx5adm sS H" :I_# yqV5`uM;qh^* ]kdv~7m/huPr$?GROe,MPj4k 9qq%'xKL E DR51~e9qg ǥGktJj ^bcш̚Z)\8;kGKMEKnl5umD oT}L2N6셀3}@w]ֳ<"ߟ`@{r 0 I >ខxH3s6ؗ gYi3,/2句vvϺY<@{@w"Xf[̌$,.ݹfO޼m;w5Ddl5qfĩ[v%<#f*#:B(-9)fD^r68pIc!i]Ó )>h<?._﷗E^zu{UaD3,XXFy ̴SP\udFe$Gfg}!H,>B2E\P-0UammfXKWv~$B(ۯg23<k|CJt4zg"d=e*m}[N~wϿ~˟9 ]{ sJ6lI!M>lnzFmPR@A(,"Я5,0۫gtOEWF2'z,*@&bُ׮P8luZeQ$/k5[ rE@ܿ-gB%LqE.BdXeUteLD  A[H~~GGq&yėp]K8kvنҋy' Ԭ{<{~[;GE +2UTldn?zAѕYȋ}(^ X0i_|̖e$%i]gV$YXwno=>훧݇$;yj"V~/S6-q9[uAC32m=ʉ d$ѢuO$l@`2]JQ7.ڐQ!31k]k2ApkXOزûn„qCm^?|F=(HEXI Mi\S)b8KSzl爵zI蹓vX~L/$1/ΉUYo=ag%ٿ+ivoڿ'~F_Y+AOæ?id,?y&ND^ SDD K/+-;0"6$Lvip>{]D&\J8`$,[@pbن]q]V}k9x gV/溮eQt>Paf{YH xyOCpl!d@}|g(N ;_.'bMX2.ɼ{C]흴A } fpq }r>z UsVw=xJYufx֐_%)pk/RKƊ ՠ8ᠶ隍S"qĴ4:>d. r}.ؤ%,>J+;)g 8M}{ϖgu^x x/c׼ >1?Fy&>3¾"#ݮ69:oԊ2P>ٷ-ӯm_7,GV 0mr1Xw< O!G]Δ\&dCV!mYnH/)<8f}r}NW{,l=1mC"~z=Dl D`|I%-WG՚MˉXL ( DA$c H?3pO@q- ýb]g p^0S(Ő#x00&@@nEl}" @2nRYE22ʳ+ЫDnlv.h¬KcЀ6o3- |JqFraEEB.it4;3P]ޱ w{M:q=Vo(3 @jEdk#nیz}-G|XF,>DyDR}ݿcdfzG[$KnEZ.#[ -y!- Ԁ,TФ0|u )uL[vA&E:~7Y#qF dED"R 0Zɚ; ZK:!&K[jwofu ܚoQ̂}Ͽ?o{QY!3 ("PH3NR%!(i>3#Q_88+z]Ʉ@"E}o8+pKd`L: h\"&R!?,'}y¹PZBAXq}OtnbreEM/S @LMYl"r[.(U]+D=%F|d޸f+A2l]qGf % yIu59<t@^" M䚺Q{Nt)Cm1إ0kR}L0%ӂpzTJYn(_:E;>Zwht5ui.#,X@.)I7]V6䟎k{Zn&e"/Q٨5W_r(4{͏h_^^}Ut?s_b\YLj4=K 07 E 4{1=7(pF|fAL*ONjMH!|P8PA Y|t@?2^)Hu+/ W-Zs˙rwo#~jT{"  !),0qlc&Ңq-XlwkOL 26vG˾IT,؍q0# 8{r6, T4nϬZOg,W4+\H(-m&C\mizHi"J+a^re7KymsKuu { L-@ܙ̺@@r 1}zPֶ貊n ѻ߲$-G"ӝM8X( 1!ᓼεX61Yl1Ԛz]5VyIa<2 ٓ-mk9_!9 XHK7mn?ymiM-o,ݫ112'1I79}?l~YDr ؿkW.߰Ͼ~^>,Oq>i:|egCߙ]F( cAvl|"gLE@SE|$0dT~و3 N"71k%}ٹApfA9/}"Xe􃏍ŚXNՅ}{?}#a%lݕ% BɁȑ !dZzF%c;MӚ]Qj%KW/^ kW6\t7UdFx4mz)"h$K]n҈`#YEI6eGD" u+V\$Kö${KJX`B:06~܀ -` U{f!<ș'#~>L1[t}Avgo'큁vrkuL3\Q.ٝ?]rXBXփw 6P/~뇌"ϳW|FhF~}fEa)_=n>5z,lјĝ_!֙sOtܶ><2gAϔգ'~ ?<%Ҍe}wjgp>/f_x.ru>4&Cg ޗs?ޗ}Yۅ|@y~@[;&֮9$n {`ild V>iS'`M2zȉ3`p`2A@`Xڎ-mmCRǍO+-Kzd +YTƺFD "#c3[bhZG@dĆtCGD]@&, X֞ 3H &gurA)EB 3A@T]Rd8lHF0à;`pA`#(Cu#y iݬ~_fA– V$nqH9"?Xr$H%3n\NpU`}_`OģMp }^d LSi`i2 -ސX0wf[j-ƶ1PH}WQ:\e@X!aIHάpș7緬,G83zCC 'G5YDN\(ړ-v%;w]tr3YCYeu s2dNitH#*RklkK`{r2Y" xfh>8eM l)qfo(f*46>^`B*3RHEX $R @hn#гlsۇ7?j UTӻk_B`CĀzEt]:L@ nX={dơB1/l5Y6("1<JFbONJ,{|Q$!mٺnh%K.,EUD.gx*lXaFa+ J^+GAyH E $׋|:nڃ|A0&h#ҀS@5 = "I(SŹuۻ}O\v{v}`Y@1 ,Ho&k.`ʸaT9;=ٰ²q$c+" So`/EyXBxsұ+Wl`2VɸeqXz3?oHLL74*{V nG$?+=wgg pt,."~?UdR|\:?Žj#7$HS%KHq?N5Nb;cJ?bgq~H";ǫ6/{?_ӳHg2~_w~+/, ЍOsY``MpTW!GlK Z"xU~mJsK{~H?.&,}54jt OX|ZD_v;WؚH-:]ڲ|}*)꽊Sq˖ N#"! 6sX=\ӹ _?˰ ȇC%R#2~FB I@G$OCZtwޣ~&9Y,Hr+.@ddh DuۿԶewƌܿo/;oC t< '{6{rn FD5+O=2oՆ[Ѻ<Gٲ E+84G u5=79.Thaq~Rז2ݔ Q2H&ʥ..us™;M0jjπ*-,(O}Ft"ɪl{uهCKB``G2&eTxxN΂lt@ (H©JzOφ#=d;7X~i\@,>oQ/YM?+?~OkVWHKY Qq䧶d;S5wY±'][3929\3+n%bSv5]3K0K0@a2d߯X8[t\>,$?/YXu>2UpY麅3E,%6<oGwO2(^=oEdߋ{` z_bl3+yywkpsʦ% ߃;w>N|77:}Jp I,^<:CKR*[Q8H-%\NN2&dXڝ5z+0h'T02qR~^c_:+zz6\骞M՞^˕)TK\vgL&ْFt/\ 8yپpx9P3Ϗs3|<<Rρۿqծz@nB"Gq|r6nXzNeGwL2iAB͐(Ez3kn[D"4-|H}!}2gֻl9q peNrY a5:$w-1 g&ƂHCVkZkejt]ek5kK$"!rK[_Y^ ]_)P@F0[1Ʉ'eCh`9A\'zM0f?cemEP hL2; 60#o02bh8=LiPu]wa~oցu}ywWrUǴ "$BH@F^NOw&,M#(-RH,ҢHɬ?̮M_Hc,i tGչcE%ڡ$%ҌE" r,93S㤯 T^k7[oE"655f (kap&ڎɉ=x ICw |9fKe䐢O@ekflPҟ1@ҿyDe )1!p!0؟Ը0f'B" BPxݏ=\vC+ P'֕-cOe/{ J_N!.QdYizn۞|cG2-J_Kc<HƣȹO5@ҐP&9Mp>n{^~ݠ}Ig &#n-^fC{e[ش PZٲJk6lqkǚAҩ%ϖ@q+`D&SN)dY \,@_^Cp@(iDE^bH ¹!AĶsz_ ˚1Gٕ9T؎i'wKkv;B53}He7Bl˦!kcGS:չ1kl .4YTτI\v-6OlWKġom!픲)~f9KlWzA{e{5^߲Mr)M'RDCκG'^1[^ұ5DO>:1ĿF3]Jݡ茖%IIGb]3aEDz! =䌎Ⱦ@*x Bʤ-Dceh_#/yR>1"7__}Xz~7=ВCih2$KF12-6WJt/9]5N`\:.d:oCS1كMLEJ_|j^|޸e]C18f} $# ñ%EDki n,[.˕EI;)8I ̲ §e@dD1$ >=>86}=$A>| ёlr5ӲAAςCٞ}圔B>"r,9]ܑ.ɟ/ȯʿ|<Oת{-9_\o--ًy=[ըt4$]]r7C=OĄqխ=W#єA \[6.lӸER<U/Z4X7Wet?Ecݢ%Y둎]٫7WµNxILN&) ;)Aɜ8ɚ+藾Fi.+ʠ^χ(H7>%Z|crZRpbeuQEl76ߓK)pIn`4d[ϛAQ,@0㳓S" !9PEʬz&{Kgz6+ȥV-mO~ӿz|0"4~m!F.@, 3kwmaC᭒YU@=VFǓy.M߸eb}zCW:gxҮ YP҆TȮEl yH4/޼y[6@~\JfzfWma[$Uz^3<A>4{N'} t'w|?{'R}Rg 7vjk ~_vwg1w׮e 9̊#_z_Hg/׸LUVjd e\ %ս6,)1$WUr%̥Sg_ @9Xnotۍ>& 喥smɅ(uK!MSfݴ:kѺ] d:*؍д]̻_&{gۅc|}$=s[ AC~s|ޏA>׮c9`ztyݷRisu;9޲OnD58!ڲjEX]8rM΁k*Rh-Z2Ke]gDhaaA;wr]ao\ׯ_+]r#^ RL]HHO;՜-[Zjl*m-uXsՠ0q&"\oD,oo " ;h j;LX?3 f%\:>K <yN:F!7gϮ{F XsȴֵnI _;Vro! 4%p)L;I#z-Ț_ff!i B6C{Muzbdx<+mpilVmؕw&GUI @@ gJd Rd\'ʕHQ@ʒ9 n 'u9h^"āv3/[}ܓ%xM@m0IV<3 {dS_g$;% S_t CLqw&12y[_b8f krVu\oٽOe?> >+#?U' gKCq5cV;A ]3*5-)@!¥>ҥ썮NBwmpB 6 i!wNآ^zeOw\ pVRN tUΣ`SUIw̠ҖdCFZRX}uV$n&@g=%P0- @0l@e0c.( 0}[av'=P8۠ RE 4̯[email protected]KV3ʢK &-d%yiGyfme4Ceڻ=8jf"G!K`JfQ!p!Аusy_Do*,s\И5Kg,_o-5)D$oѼ<E2yj;YنlӺL:jxM qH֥:?F]ƒ>Mn H=S[@^38Y"Ϭ>_=\>ʊ̜G6#67c+k[O~`?]#9t>$c4`DJXxV\AVcm0}ؼ%UK6*&10lWjWa]i^f^f;{ݲ6NM F c6+3<ײ767gjղ՚+ԫɘ+$$]wBt?GW9:q\:2! }  6\O[-l$D- &`E*HN@>3%}&Z['|Dm+5Sxҡ ˠ"B)|>~}/J4Ft}J\ t?Ȍ7we"ww@~,q+WE 0^]0pBʞ|=:o]kƱEjKcTsY&s qVÐ-985TFcdQd(]͋S,HőxUAyDC]?}ϧ">(t B_z0.7J"ACQm#E=lw^=+פ(8 q~7oYvU~u{oޡ5j -'wfeGcR4?O47ENd{E"VE }d?QaׯݰDff V.,Z,1/x^;w^{WlB׈xAh. Xخ%v9騈ޠ6oj^v +i~tJr`gaE>$ᬗA;)cI>C,56է}>~6l|~1}u}ua}M+ҩMl ~OE~g0{K'\XI-gwb-l_y`_#+8 kjlnF,S+n+)\JAim{V]{$@cĒ]̎ZytbͥphWpV8l7(_&! ʻ%A[/;zŏ?6x3 {g){&0ocl~x;`k a1:<ek.sy>W{?4HG$X@}k6hiXDIҹY:q~Q+`^.9q=IhԆ&ǬcϮNi_l/_<`*>qE=4d#2(dte63,n}ezx"U8%io12Ds8ȡR;>@4(<@7wi3 DV 3 ٬BC`OƚM_k/EAgXMtfŪK붸6ljY Դeg]YQG|O 3;=Z"ΐo ^ݿ+{|ؖ6H4~I$Ağ@i {]+o ̈ZvReH Pf2*C>f6Yun 32R Hg{1?sKsE7v5_ݟiҾYqrӁt)\;,'c #:ұ) [j!.Ȣ > @0D35} aiؔbiYjE҂[疟䁝?}w?%uK+e]-tI (<:%ڵ yN${<b{l*ڵ>ɹv{>U+ʵn{J}jz^7,F[ru ݃6ϹN!Z1{A_|ElJӭAώde z-A03@2>Dtiňt {-XHOYFd#f(;wL5؄G)Odʛ({4 B̂RE`m,*aW6)7UE^V zP2 u$N@,$:Όx˘QpkGEl{';OPk5: |΄1ҩ5٥Q}] ?̺%ƴʱ_j2jSIӪMKWER3.6*dHw+/1sҾ٥v3M2ACFWRADd|YwF]9`@_:o">"LiZ?KlvpIW_ dȏ˗KOi,;%ul雏֝w޵" AV+!_wd5ْ_4{~#y~Ȥ{DzzN$3/]+7UWoEvI+cC?X]Cvm81g_n骤qtpIK,ݓA9gV? 羽ߨhE>fC,% IH~XC~[;Ҙ9r Yc` ~s0j` A[}jm~hyN>sfwE4V͋$ $Mc>8&"ř1D5>dED& %aق @Vm(x-[[怼&7i mk|,M@4+&e8Yn}I>-B aŊ ݇EKM=s  8l`<2vzxBn,5"nS}2ĈLDㅴ -4*?cgy齞HЯ@(1'?4N`!CG4@ i+Cڧ1bXE_Xf2a5aCvOn᭛m7ܳGo>|}/~`4&_FxVjh[cpWvSxG$'N+UKą[4^* /I1Jkv^tվxᲽr庽zrC.Lon{mx^/ >HR)ᗦ] ^ .5gK53{"KF ׎{†xB>?#0>6<OL [hjEEctbicME9~^ľ&Xl< RᙵfFܓ^1[\'g{Ȟ m8U=_OnٽNmuu4d㶄7Yޑ`% VBrK Bc7'dW˜FgsBDB>_{2n  a[RwO$.KJzNCi٩l$\>. f^p$g~,*"<#|w^~ ߏs. C.X 4Ʊm/l޶>zj_v Iqi8*zMhr_anmTȰL Es""#ϕrLddܺGcdn ڵa/c5c#iƬO/~}D.P.fqavɄ4]}0 @@g%C Є0h8"q~. r@)| O:35DHd s(VuD>#&tFD0 HIW2"8ZQƚe#iwYmV\J/0&OKǧimY!S&:v,`艢K +d'vhN$;9s)3;fRg"ƚ"w͛'f])N֬onZe~jr5ge?1#=4i=C.g4lCѼ U9<@cy,2 i9ˠ!\6t'aF/>DKƑԙ܂ e#Z+q%rR2y `08K#! HZiLc;"Xߔ=XŝuM?ꚀjF 'JN,xjɅ[++!L~];@b=W7wMU/.Gl vJcEge~2"1%688 rE_9~ԡi `ju-P l +BQҽ@]w=F+IW+d'y@#ؾ7Ô=Mi YXkdm}^w<: jf9D<!yͬ.&~ho\[t8Vv`;(B4{%A4z|BM!;3kV[VX9{hwm 9rѤٷA1܌L!1YpԠ)Ψs]]k e +]]5ϫ}vc.N YuФw5r$qg+ʱ\S怡vlg$>=t,yEJ1rž-Xss[aٖ|hW?޾Hžed iD4ExUJtݹ?ʧ$#v.u*%뛜 @8Dή)XGdںEתt[_a tHhB"e\m4^BsE/ *ݟ>Ouw"@ $C#"c |ݓ)/!əm{">a%$hC)sN@r޺~O"n9VJt \E:9cɖ~GvWmew^vEmr xI_-ؓD%")" Hw)ٜGR)alVio};9> }}6l`qzENlݍK%7HصqaFĘtENGc56(ݧ+{jHׂkvg.Gu*1 @_5GϰAt݋v~Lft#2dG.x^5l V\`$zLO!.~O>e }0\jYucÚ6#bo>GO~g V<IKn8CC|Uln_nf-Q[TC9>-;(-mdƣ?)ePخԔuF9Ogl"/"0`RiJtI.˒ |[Y~PAS/W1I_+C CO ۉ"=لx ՓE/~&e%jnYWy_}Od{چ+׬o|Ŭ0@Ͱ;?sN Ϝ,Odc~~]_C;{b[U֬l~ x֥_Mە̳T]DidF't՝*U[=:pӔtڰrc^6j/wK&u^O؅XC\X& >.ֿ7BϒgI'rg1~,?voo_,HFr,8'*V>[:qoi?}joAKIe%g1fݧwmn¬ٖOEm(<eVo42#"`1Ri̭#FiOe4ٗ9Y q1kV^bVdEY6mP[VC*tQ D]@ȁk;#׾{̨dLF!zʀB#R J:c>]nQf(<]ѻ%]n/EPn?j~tj K(6DVopʭkJ`AH搀WfGEIoZc^\@{:/ҋIA\,8`svrj+"s2ؐZ4Q0PZԀEYDF ]rҋGc׮_NL`n߰K]]Mv}x:BOmMfUY:$"lѹXDf P(JM };n[\Af +p'S{0H7{O ϘL 7m G`D[O!X!C{Fcww#v;u?pdeK؃V6Rcb]aswv+-# 1H! BTBe?7 gIT]/#ǔ,[4+Imj?gQyXN/1ےh3ѰD.·*GSӖ_ma=\C{Z߽d۷@ Ĭ;06BJR}пn?0 k-HQ@&f#=]$z3+H=,,+Zhآ}TFC=ew=k= NhJ7${i0@ۜ[>.(x!8&SzFBRŢ-꙲EEDA,|ThV~&'@}[z2)xk>w>u7ۿ}nt~mMqnFq5PtK> Do)Btg|0p3 E ||/%`}:q/*cl/}4_`m-VfY}y~O}eIvqGFvYY12$2KR8ZǟfD6?$ILaqn޶h JaS_w0AH̚tNb23.cdL6%V^.^;Y`qh읾XK y=Bދ /2N=z=z&d%N@ !CpPoox:3v#Ұ>ZPŮS[_u:5"[.k+{B}v$Wp[1۹ul7=WD}݋Apg7E+.&~e`*= +%e,LӅeu7e2YCIN*.}t=d R Pg?p|VN v^ŋ=soeyɮv إ>;l SnU2Nytޕgn:g<Ǯqt zwdp"+J&`$ g4l@&/҂,Hɮ>miea"7g߳OSBs5k$%7-T9u_|[;cTe#9Gqxz"K3.7Exs?OJgl^ǛµՊ̮-+4DE&+TGz硋  ~zb!yAH= 28yc]G.x&x)>]|4fB&k]ӵ kGOz=<ga*pcA{ r$+a3ad\NJ&2yx:}tVd7c㳺M7 kH6Qx‰yeWF3.ڿg3/l=45}# :Nҟ\t^_}`xcsyq~^s1{<gɽm/wh<? 3^u]tdڿeyhՅ[Xwg~onf2@y"`v J@' muvk=ơ*p5z̎C!My(2ssv]6}f[I1aH?ITºG\dla[6# E[^[暜[YFVD dP8a@J f#VgD|ZtM.[@`L]4 dMIxޛ^t3aDE nٴ $}ONX >k%U_Y*K&JaIʖv| ` I\`Vv4 Ҍ9 HߢA'٤jaqc?8w޾c{{~ >xP/̧LQZҕϱ2%n3pwKMI7&N[ATLڲE=jxTCik^)w$%\Yzsi0 5)@͎na A%B9 Ps%:'u}0IC&ה30"4'.@dҏ9~Λ _Yv;utEҿ-rwmkeLϭڼ؏߳`YZ0`2ƾ+sci9{GsudC@誮"&޶piV PQ.CDÌߘXOR99=jڥ)y}"kXIsoީlMYPCJ _(Ya|2J t2? M> >f{qRtsʸtbG4{VTzقL/&/,AAb>l/=4@9 DIûط~];y|Wx `f* h .*=: PcBlafMf5~%)IJktUĨfgw߲ez:qWjit6 Uúx%t {J .Su ?;xtO| .)=/4d l٦ "X(yaN,zG6vlP@J@{{~=[?<ֵIoAcW<"3B\wII;PlYcƆƞ춀ۼg_( R.{>И׽d扙.uoDDo^KK=vmH~bWGR",Oxa[jme[-eF^o_$;"=g4(1 =]¦s kLSjHV`r2C c}Hz$]zݭ~Nc]P1x?`Ax98ѸL&l$:eo}C4 FdS Gߕ9 Ҳ)mSOJTvC{޿k!A/F_=|ߟf Rk.EX{LzO%wv$شI0NE"{E:&v}<'Rpz?"[Cu Mk1zAauF|ڃ.ȧH+,xh֭mAXi恕5Vvnۃ޳?\zlAXcEzkfӧ@'@х<C=K-[;gW-?؜n[nty"ʅDF( (er92ki;7IɄ]K^Jv-Tҹ>ȚDi*KwZ9ĺY^/GȢJ @?"܋|g|?_J#[=/Nul#SIiٛ~&cI;5{$E"}}@`W~}ßwGy{}F|Hϡe/yqO 2!MMLZjX#X*. YvGȗ<š䪞0i^#vz WG3”yeJ.xn!A ~=O[LJ?F0څq? ;ڥ}voo_,369L5VkcO sOwj{w;FʖKh`6A<eHʨlǶˎ햄Avߐ :o9G,[~kHcuM]QDƺY岜R.mb՚ i02>`?M$̄ ưΏ>(h pHMV϶8w@@@A gqAO(IJR~, ۠_JLvkqɥPGXu+J$3d%=~F{}Ȋ# s ^@M R:;={=\`ǁ3iz qb" GrNAJk'7S6v9ȴ#΂   r&(7Kj 25uaaYR@DKImsF]¹):gs+q(,J0&A L&d]<@gA0.NwO[v뾟 x`v1/[PO޶bvaǑR9v݃ #ȿ:&1Y``{nɣYZ1*PlLdh{nn(CG?ao9XauxvESKD@nBNQcƤÒƑt]3xѳv:wIf. WGf\t| OGx 'fNtק=% Bƣ3o'gV ۮX\`XpMHEEeiۊs"-EY+Tgl];Chтƨl*Xe I ^ah9 (>)[vCB:^3{?anCy <ZQٸq=Tfw{_y *$ɾ ( '[1iSǧy2w0x>Htϸ]xN^|gu :+l=<$x^|ߋti.?ڳRtU(r6WN?7vSú')"#`#f97߳w}re~eQ/mi <巵n(o٨١=gi 8^rQc@TR%pm<l|XfL m"!c-~<IS-B|n]KV3du$1z?:@pً._1qғdRU&SwV>-x!Da$q٠@//| Ln߶sWKF ɚtHJ Jm^klq>HBy$Pε%-6mH;ֻlp{Ы#syӮ 5A{Ê+={$tLe6g?&@XqHLP2ŊAEf ؗA>zOJeϿ{>X%3^Ȱe&32@.X&m𽐨H+p2 yba7|d+/mX?<~Џ)V'P "dN[rN~YkҳEKY'I-ɆCkonC1?%D4$;>M{>_Y)?Y ՈxQad~2s:'00 O'd8Ƞ'Ap-Bge~6mg3$BDѓy<?pn5srR<Lܹoo\Ni+UdtXy}/ù{y8ƊA4eU"ۆ{Oߵ|hk;{6jWһMg#! ]TBO%=Wʭb2(<S)ol؝>S6!}6Pl}qp'~{ y a3 Mt_^}Ѐ϶|voo_,H)$u8hG*-+0CCik'@!j5WB!U˖Id4*y{ps?<4z4_a&l뱶6Cz@/Arn6yћ[2 2אz".qUjcrXԹq$cϭ \#5:GuDq/D ;ˎp B\C?%d @@*G ' hyG(Cj k--e%Khbeb A Ʋb 2pYε[}Wm@D#@ 0֕+7,bhPb[9nIǯ6{Ղspb(tcV뀠ˁcadbJ4鍱,ˈQ q3r9{GxtWׁ1}&Z p/k sdo -H0uD[we xw2 nYM7]3>=k?[%cRúi kzs T36N0E0*s=Y\ڤNX &X5قofv>H3 5CQ.eIK/}Ht_&@4 m1,ˉEu58s|w/ x,Ο⧟Je~l?Ƙ> g5]'H59k=@$Ya,[(ro60=cσ!`PΩOq@tqI%=S)d&c#])ݘP Kݲb%! 灶@0׋ 08$N\qIش')7-][@KD) BJbIJDXR(> A;i?~=^$yA[Ev }`| #m﷋,"9p:S}Ԧ6 ѭ/?Xin]pE'Q;%ݤqkvnR9W4,4ksvS״} ˦ke#Ao|5OװH%89\z1y1[L[/C4&5*s*9DU`ʧ$lEz2n&%g P{=Ǟ* @3׳%@@`!02)M%x/H>JD"i+;mtbEW@ C> 7*G4f]O5ϺG,IZDY]YGS}y^}t_t}H68UwAN2'Ҧl=؋nS­e5sºY @+U;jb =?uG>a߫i/C=>%AAH n@D]0tzv߲G65kLfj=ݻgU'by{ We7# u\vt0HevOj ;" ĚM!—,)b8yG@Z!dՈ3i Q?+ȼqlτzP!DĊ|J2`u]G(* 3G <Yq}r3O=tL<aG\;y.cѽmr}KȪ<vwBcr)VwP~؇}c| ?}>*?',x8f7Ɋݐ͸>,Kq?N6\7 }LULnV%y]oNb,o[8t ?/>H`& D3^ۜ^p͜w|`g}v<|7e|~x;`MGd0MɱKƉS'wKd.! HXcvٷcL;$SV-7"&4o0qtdLqt2%2 pp3!8 FDĥBSC҅i+f\2A3PV _fs#}R`%D@]Wjd.AP[frȮG! gp ̓YvMY$yLѢMhGu'[E9V hs+-7(0-pSvr` {"ɱrFτ{w%ky DBQDb =v ޻5 7gXKРq |nmnmI,[:LeILƄ&i.9np_{C޹Y뼃 UgRq;ASܣKI%gdݽ} ' `B[_38v;LLܬ 3ˊ쟐wg?\qQW:"k+]q!*0QnKt[ͧ}'9:o{M `GzJug-wlbZ /  )X!UY@ZxWD!-"C_ (-٦KЁr K@">?N?;ks%a2A u}a\fH0.dpA-akZX8Wºh('ʹw3/]񄳑n=_?yu]4 P:D&v"UeoV7lpkuf|T:SN=Mk{:%45 wQ ڌ|tc][o+AG\NΩmJLAE[m=>b }lcϿy?y 9oBiy;.ZY?/grU7Y ˥#zЎn `[jCDVzWؓo"p(_.`\:o߰A JFWț!8@o (OiKY +L1chZEieSLDL% Kidۮ^H2KRgK׏?o#oNJ\6@ R}v>= ){]nIg'5":(2q [8H2+.ŧ nbsc+{,!0u vK{=ҋNHǤ_B vAFwowDNЕbxӞ8j{GC',8 &G}7BK633Q;1<Wy9^\$"^vzFq?{<:w::.D8[/7HiBIqpbХѣ'm, dᗟO#+J6;Z/, / YrLeom׽ Uhtq>,tz3,y!`vϰ@NpVl%Mk"/(}{`'>(హ}'>^lC0 n#QN,)H,<? v}<$ȱo'3HrL? (2 %olξ5WdoT"4OSۯdC: @?Ùο"Rx\bC+-!}.O}DoCW7k 2*|@t/3as@Kg7VxhwخqוIS6jEmkS)@Ö5Cf%mHӠ[B#Jw Q] bf~޾wd'MV٧ÿn9"nd|x5Ș'Y*ȀPͶ=H:H%\Rr%Vk[.n=G`/^xO|J;N96?G!ny)8O-51,A->GޗLOȡKHe"G8\풂Ȭ[?ƒ!SUZ2Bޱk}ry΋8@̎9+H&~Xu}&+1@W\F%[Gvx RRMAγ8'+t R.Ipmph"a]cvGlxd:F,J`4.!y&mp}n)='mn={<K 3$0>/\=w2VA^ cC$pV$ (pgAp{\s@Ffip2V'6-g) ?y`/]49"+#.'@jaX:D-c* ,If4S'o>{om=;9ھt2BrG$#;|Ci@䡎1iOkܑQDvIv@aRLCBe^(+PNҭ"沱< %$pf3:c=䮤Dy;go>/D!d0úvfS 4&p0*='ݿtg*gI9ױߺo9]C$a|Ş~[/YyV O?Z2 vUّ},Kk|>¦ݹo't|*V߾k݇69DϩGGr}N,@51H ]KW5uaʟ1f[.0^Ƥ{m3`E4dO}캷!Ŀ~^ho L VA^ =C=?u3Wf/v)Oߵ,Utiz ˮ9&m$Ƨ e{}{]-=9 (Nw4^dKvFX؟OmBb {,i<.d!} gVrB)g87VlHy+4-'Lg EXpt/qp0ƴE8㽳Qyqznd=xؐ@&I!;@^iqP$2=*=Hlz'bUu]e 7o?eZLH'4D'՗L:!õMGuMnaWϛ_am70nv۶+_#b3{2Du/xc<gWGvm4|*nBW'+]Wo ؗs9;c4naא> Ȋ P{FDx>.{F/(h?s r g]#w5$=P 8fw2$`B&=fp$haٯ ?\sC݉ Dt\Vgvc&j+kug:]1w]yړ%DžbHtnJdH,.L\3<OJyCxa? ?>ǟ?Gǿϵ}/gY}cgxg3G'BT ͻVjއ6~`E4)'rH0s0@n_W,|WirQ=&evnޱ[llZiUgMc}}B (A?nIƓv^/^js3"{qV#[^;?v y _O|@Eǟp~gΖ߆<voo__@mfkX捴Dx<ګ.'][~C8 .2d<:OPj3"75]tL'@0 { g5ᵀ M aI%m|dkoKq8p'RTB?gQMI@-A@{?D]p@q,.߃!HRI*5 @&t3N`r,0dhhF'@$5(<B WWgmmi:{>~s`\JSvC.]#?9P#!$3es+ֲ-hFw ) )@5rޤϑ2'KQd:E P9WH<sN,gQ]=vӮZx5mZ0^$1K+lYOJUI"H<٠> B@e H|(24 lun<HL@O8uL?GitcD8@kX!pgCI_d`//.cvIRJ{ڟYdndⱐ=zwl}L_5`t PVw+}t_L$W$!H)!'" )pG7ko=cj&2e'] 3.36`<d?(Aq8u@A=Hp{o-si8@M01E2Ba֭G9dխt=ō==u; ٤]YiQt^<Mg˅tv|Lɗ+cg ;l[!g0]-~I<qz&5 ^NhRj_>b/]/]/uVOkŖƍ":2{RF o63"PD sEe߳h2>i&`ů:'"`ݥI-&-7-X:oew+A<َH"V5}HǦ[$Q?A &H?&0懲34sGz~.,}ah[_o2dHyx>X^Bfl{ ދ8G p]F :F!a)]kpk'6!;(TCϿ)d<=[H@_8ʉUVnZiM2 H5v 97qJ@/.;=gU2g0Np<`Yl/:n%P%$ $!•e7:X̆R'YcaޕT0;/;}Ǡdg}tٓ{-vmH#Axqf3|~J$(,,7ڴ1ټ|?%D'?=ciw\8S~A_ʐgOAtW5WdC+s{{vË K7<$m ԰d(e<< ݨk;^d~;!hVd3͋4!0!Op(nRr$]/l~' O{R鉻 c?^v^f!D7?8=M;Ҹ흌ږ-llx4!\ͣS˗d[ֳw1?TTM&IcնvLoMmm[Xp='_팒4cA [ڹ?_ٹ}ʐ}}jEߪ=c9IK{y1o<ϒ#\ENvE? ]W &x]A@|}a='G(?57߷ +dT\s3${rDYvr; )6_Fj\  8OE]ARP4<\'RI1@P9\2<M%}'bڦ%a$P3"2}=222rϬ}/6H` AR$[DZl[͘i FwW>ϹFDVe Y~v9Ԓ#XU`p0s: X8Fϡp5 KXYݧ|NHGw)mRo4vpBY6|c߄';7?pQBTɕ0.|BߎEJGaJm ʁy{c0qHGnX ka|ƺ+QS"(8)1!9xŒz}* /3{jpU𤭶-uK (r*"GD>FLpc̘1N#H нl˅!V K쿮 aw S9Dx{- pbMep]ַcʹN]S+wߔ9?7?6IRA(p$ eO}hyלSR~=<~U+?$C7) gjB9.ESն}* D?BM8!a8Pm+atv>̈WDR< -ޓ$݋NS!@P@FO}$ܓ* .^jȸ ?M$us#KS]Y&o0z{' [U蝘c(زFGspTf[ʐ!O ]#a`?;o"+^qTRnVo"dĊd® _")Y;a&m.s )'# \ S+eE=U]CPj"Ms=ps@cHc]/ows7^iZo?%K'Yp'̪/L'P0(137-z\fA@)Rv%K`WB#4c:AL [}AG$f־ɣE g#NU:l-F;`Q{<u Ky-̼g?SϘq̀h4 16Np`mDOύ081z$3?Ct_q0jS[W`#u+ ,N#cz#Sop,LL/!uMv<p 9n;K/[ۯW,նwLg K_6-"q*vPt8(5⑑OŸuDƦzjlCST=)2l?:qJvANwhu?2$}?0f_Yu[?џy} LQ_ؑ/`xaaqX{_>Ae˫Dt Dy:*钶ң`+dx{t`rc[<iw#i'w&stf9̯lͽ0N^j n濧!];׍>?oS4^KB S;:6U|0#F v6{LN_0k1 -N;6S'ώt{<;3ŵ0(?:'ÈIv]Ļwȳ^]AV8(W?ZK뜞 adВh_m`4isDKmNHTQQ͓\Ӏ)p>3; YluqAx7a6oVW_|!wpe}4R[@BUX Q1+!#76lZݢs2@n\(%6FFΈ`g14YБEX-w\{--}sLoB/ Ÿv:s:ϱ0qF9~JqtD>qm3}Lzm(z0pcνECFMn{j)ܿ{zGö@ؐ5'9"M R>"X`Oy<()P`ZƊ pX$<^l +D0,^VnK'kRՖWl!;>epCh00# :HP.G<8!5D Va 0) 煾#6%H5K{Nps (s螔8a* 6v5H#Qژ p/Nvp_g[4Ux)s;m톉vyoþ8E" çtͮ#}캅 c0f?% RUn2V^SR&BܿnYqjĝ1Pu0㰰Ţ ĈEG-{<-(Q0ABQA߇G#] Rv> K1#ZP^P0Q6,pE8ħ+lnhFE<}Ccwp4~0.αY}'zyrV"_VZ#|PFa0-Zm鑡>01GGCĄiM92D8ѰC'0w/,> +/`N?+^KR:٢)>lu"]SΡy xQlAKq-Q.n(8<Zm1B}C; Ej*}@OnܗV/H~\ya8{'~9l.nU)d w-*aR~\jրmE[ӳ{pxuēMT`^D,; uHz,F&*d}t4-~!#<FU0#%]@(DFäðq` /rM2'jaߝsZts$+ 4.ӴN^lْ/}o1nPC6^Ȧ(Z6EMEn> LG"_4:$ _zF_z>@NWY $nODn"zDlB,*GdShqxB?<F&ؼxŠN\vnXۑ@ȶɺͰve<,堾`ڟ/R[l;*Ð=̬شnum]ozOsz_l ]:*]WQ{jռ[C/by2:*" صg/ޣqKF"z˒G6~Mt'zz03<xk 2.ai tv ۯ/(d.kYDEqĴE cA:F/S|}8p,>*G \O̯e EлrC:g4vC=i~餑Ǎ>78X\|?xy=Oz ;K۸g  Nlܿ$acF]=qEi"i9';Wt2qjNua4 Nχ~vB-fp>}޺pL(HN$a0/  ]XгNѭ0#9?%#zڜGM;y57; m{޴/xIHS8ߙ,43,L`NpF%o޺?Vʫfh@g+/E|HDVז×_)잀0Hl0zle G7 𐽸Z*NXPqZJĎş^\ SKsavq6̮ny11$$sL;H#O4HHu4m(9 6qIJf$DcXD@qae:>nωji5H3ba`j )Q#`[آzkk:]ۓp]Ү#0Q) #F2&m:h& *c+m]^9=ܵ癇X B!# A,A0oS vP!* <bb 9S7eY;Zp8?~-|AF.[Xhon;v]{pM^ Z{56^a$i LN_˸`w7RX( OGF 7ۢH|1 wP#Zq\$t?s EP7Y5<WҒq-L}KypDe  MGS'碞߉N- q_@ߜR;أ (j7:Z_=#j@?6 } 8h-h< v]YŏW[/ai{[ 204 hbJHhhހS1}9C Jő w0'A?Nztp']VcAF/F7fW+"#7 B|O p(y%o|AE:0*;9 1o}6‹o~+[ vؗ)8DD%ɇGۮ$F+}-mnXchIt,=@zs@7[SE9ⶣ L[1hlRb۩q=+,Dc2 6^|0#Z=L])~`4HB+G?U.$ÄlKo`^bWu)?@6t pw̲mp" s].$َآR>yXёJAܙ@i*%Q+mŰ{V/X KǓ ; D™8 8x2- 떰P{GS_w=~Jo?車 ύ.GOwZ/st/x4*W( .7u?!#GF|qZ˨_u_^] k;'1Q{n7Ĉ_983—&^GǬ5@9!fY@ v?G7s`X}Rtn֨0un&gNx86-G者ЪK:imMSCˡN{p|wx;ou#̦+_ߎyG$^~x,I~XX?.v mh Q?C@}{ѡfXZ˻{aF2`T2}X<S 8 >7@þ8_N Ya!bO_X] ˽fS?*]=鳖.=u~*{Rv*HoϹO)p>࿳G 4,ߔ"p33awQ+7 HǸwd Lݰn _zM X0Ab:d8@% %db$oR8|sfa`m [ͭ0^a`ፀ1EQ0`L HiFuN1 s?:8 PU0|g2.4^_20054HZ Sֱx萂5W~%M8EEJ蒒ˬHql ĩ6J?y3ܻsܿ<8X4@mBa5ַ޸PR! sd;yH/geޙލE8Y.Gc&:3HsguB G*=: N?,;Q!qCn%=E38FÈgHbʁwj(}C0eQGCBm.mG~ڻ}p^z][ww0|~`(|5GBCsТѤ *őJ8C}Hm T NU) 6*7.X`՜?/~@<Q)QԞމ\zBvtZP;wِ>طN<<VV%ȈkSC@% [8{8p\_o mi8g)O!2n01? }cr&N̅^u=SuGN+ꃌ: p~`V|u'?8~Jx_ ^-,P8%q(!w^2b1uN" d̜ER}1Ehظdʛ\Եy)ni. x7}hҠNh21VSE 4 4J\ceitLF'NէSCg.8RQ0,^Xmͽw$%S׎/ ~?wQH n/L]_3NFKNn?=aua}Cx>{@߭YB42Šq.0d9 hRU #˒28}$du8|a*YI;pź ;p|<G}_=]Ѽ@'_?/:巵fwx& #Sara={lBF'gA`Q96BMuUU۫)08/Qpow}?[aiHF "pMH/OxuXeKv>Ү(Ϲ4DDAzx5l aQ"Зcs'G@)m4#/6-DԥDz9z7SDk}v8JWcp{.ŸٿCcb#sf#e G='ӧWeυ[᷿aQ[ Jt<@k7MN @:Y!Y44[0\힓={]: 9 gG+XNhMc@Ӝ? ,ʃ Ar9wK7PAjXrnyK._Mt'3SaKhX_[ {{{aa~5 t\EcxiN/KBWN8n=2gGKo;C}0 HHY@_uw@}MDz/''B2Dx ٲ(gZJGb)1oK#m*k})xv<O*k4YxˌG/6oc(>/9u|}`qPnH `h㸈|UCǍ-y!oqL.ab`)a V FmDbhQʥZx]RXXl&E PN3ݠmdQA31_] ? <=2`8b!,TҢC'F(D S )lelqDC *A o;:6lG尰旗°e*Y  @JΈqsmP}Lq8}V^x(ܿ}80`{z^B;( (F:D RBh " 0B/!1:r~NJa|GŜc<e7rxx "އv،63*~_txhѾ8bK`D"jC8bO<,U‚m+ S;*ԇ#( 3'~`_ŭ0,}mf-<xamkI@ʵ/#c1q’+Xpf[PNX=2k<{#?eRbo;hآg%_|OF!i a s+{x,n`^˻G'&a {[/H+hWbm-1tfNG>#E.,F30u#m 2z zO]2].qdrVa7,m)S&p ,8$Hqټ2 ce}m[fq^X0~v$GKy8ǢLGZ6C%N(`As3( R(`$GA܆Ү\1Rנ4 e~ Rv' ' 9tk]Ii87~x%-gQ{ _n++΂hh~h{F3k fdw"_xNz) K߲š̟M/G1,mɠrC;ahXt)Z<|7=$#|Thpfc" HdkXT2_׍^O݅vtխ@VvŷR(NN9S)b[炦unIG3\tnJm+ \8a֑8 ض)y;8%z~^էwf(z [a~z]֥#3:$Wĝ@޳hj1:hB-F:+͂kanNXn w>6έٺE ކӁUC[7#|quA3gy/ ],gYbZv=2!:X=,ވ\d0ܜ302/pxt4[NFFC? Vy <h(2EFz, 8!~t58FWo/{_[oZVԿԟ7 wAwm]a{;J88< V_-:`aTO܊:>utԂNd]0tA3H14ыVӭ"06<agvbJF:ot_\Kvzͯ 1=vÑcFcG/p2 %vHfZFQ+6h;86Ve^&SKaRpG~D6sk ^b+a҆)ۏͰ+{ð}VX.*~rUrg v:lş9~?}zR7nҹg??eBwhY2mF]6=0| 7Vu}&MKi?YȢ74a-]//~7,ߔ/BD-A`F~Z Ƿ0 i(F cd9GRL"`%8J#!3#D}PG Q&}`~S̮0fV7L1Zt?<oq~?clSG40#'AT c8A1 dcPހ-'J3^ 3+axzɶ[Y_ C,>6hȸfBnuKh^PgO!+bj .i1[<O{^e0QV;qЁc 1L" )!F)31DzE`a@J Q1d #Q)m"$DAA( 1& cC#>0x!nnG݋q7e9=n1Q|è41,6CGB7NR 8(V€{WX΅M)darN_&$1qF6↫k᭯|-՗," x+)HcK_6EeK Qptсa@D OG$"8 q)37m* yQ!f_0F} QBjH# 966%dH#8'9Gahơ\c!öN9b`Au]ؿFgh$޻l06B3R 1#3B@1ֻcHt¤EO[JIlMn_Meҡ{__F JA.ť IZc< 6|xTdpE7Wo:->'v3\\ zX'gAo2sg\[f7x=LWEW[are5Wao1((v*=k>|Wzq`[GFn?GHs1"ert^2OX(ƑdܺCRs*os#r&!b(%)[^s }cGΎӆ1'[{.`v {mqsd8 'gCh[rGyAb=瑆DA1+#~'#n!=F8ضwz Ls1 #v$CyKcIBѼp^.8P.wn)IDATlŌ߸nςI uwS&(#Q) )Ә+P/MZݿ+S?+L9mqͺd0q?L&wZv~#l WE#Q6"[>QC_ѫ?590#Qr S pXD>_x>̶7-By nANutck[!M3ۡu7(>ے4 B gI JX;!7t[t+adn6 u$blF:e{}Fyv'?FHw[gip'D<u-z)[Px;ҽ +RO|gvt3PPwfp ۄ/:n$|/$^+o_nba# ሰ^dUx= O+(td-1Rw pD#@2Gd0L/07zW68`qt"z3-$fk0W40YV"*Ka,`#yd]B9ʄceq>0ePXa沅olo}QSp28 A߉@u a3P]m۠kEFhJ)8h LY$1  ܎&Pr8X0VlfN~ x/p+.QPq$ gA 2J. G& xN~7N~ "":M*d#8/QLM]tL>JC7=I GCQW;^Z\ +a鐽-`rNXFE ⒄|x/}Yڍ&P}[ܱ4c Xh1݈рQ4CC0!APx; Ak'N<BFCn pcStNa[`PUNTCRg征 •sCਔ<SpBc]/p ?wF=s <o hK8j/L,$qQ*PѠs Zue>),>zlݻC>_o~wed/w$ex"Wo{aZ4>¸o#"Cs8 l:TN&t΂x.e_< y/udnt5TQm: 93`? 0EsݟIOn@u|У6^tEZCIτ}a`?\ 54&eV0)H.q-5׻'ǝ b@Szvk\}8 pJ͙SWt$@vu ᎇ:աLVd]ypbNb΃35Tw;ڕUGEȿpQ~煷l{:l!$}inɿ[{ajEڶts",o,(=(|l.M/7_R9IֽSNncX1):5 n0^?:/Wxli_ <GzUx;)y]qp,p  ]:>3p#DX<xgIGmd#+{mjIvJؼy[<p*tٕpx(m=12R|n{ǟsO^7>N<8?o3JG:'{(,!wfg5F0zw6CG~~z/~{ߔ`&6 `e4ay{7Nxb}.QsAD#QYD\`|9 !q@ W rP|kՉ0"汭{C -!!z1 Շo2qO 1 (a'F_S,c_BCG<7ʄwH0A./坅 {> A.C`i}3L·ީn ǻP_K<R $met)!攀ad3c:i9(d !*u#CKF ( :GAqPPs DU  P:bMR1.`wc] yBX8Fs^cǘ7^_:)`sDGs1`fR< W@ Ct%ψ-dHMBr|;,< ^jQw_x x^`[ n*9t}ta1޺Fغq',0e>Rw%D=l؝(=20&uzUJڊn qCG@jC$~V4thWʏB=3S -(tG$}7݇{t,\3,o};.+=R-6@*[4Q8,`"810p'?ƽ#5=s6  zcBt4Ϩ଍`2zy _iW0"yՖYc GW˨}-dPrрhp畯ȜdĔx_߄{ꦭ5Adҍ0-a|f\n,-[Fعyv!b7Y/p@FK >P{w {w2DYFE8 ,`e7Ȩa~C{ A$&hߝ~i/,zA8hmjMa?>:L,hF_A7&E!4(; 9']#$ s &Cd6[^ d& hJQ^Gek1)c@G]xN>pnht,,R4 2P/-V~-Y Vpڗ7̨O[,rzE&w^ Sètѩ01v%o`[ƩAQr'?2sc LөuLƴ; :^OtЧ>:$6:+ڢ7p8>F2&Fw2n n0w|NwsCލ]@> {a`BϽ WzBWh"޼~/\ǐEt.mٟx:eaS:SDݶi̓ex42:2)p>3; <ܟ| :=d_N< k,XQ~Zq[po?ݾ p`tn1 VuQ0bb],ThLEsc+wԾ`ec.,͇Eza `n9ٴs[@D~~ DAP4#80*zd~0BDDĈ=qb6q*59.Qh2&Y? pm-̎Ӌfx/] xW ǒ6㽎P`!285T[D'A 9 B FA<.## q^28 'dcAJwyzxwF|T2!¨Lj9 瀎 p`FHY0ɨP`z !C;r]dž"1E#1Fgёun #mY *)̌ hW}%,m]cl{3<y])320vDq1!>0&dPK8m8 SEF9<c0 FT8$P j`\1R˨ ,hlQe1a{Kz/hHѐOy|7N(m8^;kfAD;WcMn ۡR.^!/=#[@kz7*G8rmC9s^G-/>Q)pp 69zG 팅A@:=8<m/ hEe P)K(%O[*Ҫ{r|vZZW' s\}NtBsw{0' Y0 ImťpѣvPXa~QpN׳{mM@OɦváۜLL*[fN" gz&wz?8^+:8FCq,8xO#G¬ccq!p"Rg<wG< ѣpqߊ蝅Řo>ߛ4ZWe ?z9$3/] G? pڐp" SM"3[%#bTSѝ$-@ymp&'8CeA`:y5 tSŁIQ#4=&C:G0~h;~ hsT$}~-,`}+ѮNj{tC[a`r6ɟ;oHc-V k”{ᵰw^Z/Ao㸆r0 4N<5tA 5n3@4Dt޻dVG͈tEӹy gz%6Gtz9Ʋ^խsG3 wӽ.MM4Sc 3sy`<<|0&ffǕpZw?aχWxĮH#4">ڞ>ٟtN=γxC{\/M;p_u~~ ; Y@Be5򄹵ð3,!jxo A)0Bz;j6)n:!WGl/:YC(F!OǺ&1!5{S{$ >l^W%L)eg:7HΏJa5$s ':_$Hqu(Q4b΁- h<xq|X郌 3(qs jv<(o+TldGu&2\m;ato6̊<y-\H*'&03$##֚@ !D# A0 0݀k/:"~@uh. .v09z aT.]#/#!( 12q6eSAр4n< W#o:7pHdqn|Kgt΂K 蝦 }`KaPs4 ʳ6Z,3`oBzax}Y~=!a(C7~o]Y3-dwRA(7nd +δzף! >@Z46<q])6]2^ջ7EV~wwa<-; y^w*PuCa~N?HbL(Qqx=^ Dwu7hɉ?1<~)̬ntrwЏuP! B?M@QGF1q ϖ Y+ EAt I}h^׌?;^Q8$@46T F2H"fDt: $,/~:DQ t䱎Qԡ8-%)e[4#Y1ɟA~;,]oAԶx^R[~ppmڦ(kD?46µ[9!Eܝ ~(DnQhߜs+aa)j pm( <݁#a7zzՉ`2 }|ER ͘to^$] .Kt ͆k=c/~)L-.6jcFs;.vHΑ2 D/8@6'+юq0CKuH$(Ή`sנfо@]=U)t)1.M,9 N,0BC P <2HA;,!1SSi:ȸf0魛G"3:gZW045~Iw{z/2E71{hi޽ _ 㳡o|.tI'bLdkJ=t̮}>u׍B7A@u.Wth"j[I>N SYg]=M`rߏH^ 4-uh=CaCSQ RC65li_kȳy08=oٹ0>=GÃ_3]/v^? E8ʤI|ߍ~-upwó|~mgO> wpW|#2v8> Hi?Yǘ#b1:*":@ƞ9+oo;/?2c9ϑv0s=Lh+u3DAhbK}NJ [!w4+;X@D 4q8(DqQ5~TXX S_6ώ_ ! H$[8-إbQ:J96BUiL/q)}IY`@TY guP/)1V{YI(x"]ga>] w K1`fu3H 0o#T />C /=dXwD-:SuGˉ"k hqSz 0S-lʅչ9 t4QF#QI1 !xOsDx@T90ؚM`6p e0pN?:,0c((O0esU>8+`2P/aJqeRW٢Pʺ55Fz$f\XX _Ÿ_y[m4Eyan \(lYhmyK #2* U40rSnPPxHnX@hD# Kxȳm3/Xc:Y'ݪ=+~:ܰѾ4=uTH 7(F79wá_vB 6aN@` ?uR?}Ef@JW_ ó3ahz*; wΡq : %]tyu$a DVF~8BWz杷`W{.GI<7t(d00D#a4-ZCzTp3b$5* v}(e,풬1'8#rSau{-7~gct3%9+|w[aas_Ւ2|я1!Ys$tw8C#pSq/SV ǝ?u2xG(xTBJl #δ"oY Gw[o.O JG._{Q4"8n O? ɸ]Ht;'F~iNzsߩ§D演Vi#t_; رaP5ؤzy>%"tStߩ1^ofh_|8e) Vt utP-^sG%).H+pyuLWu=˔#[kAiJG`͝𥯾/wm@ݰ~-^onv[5Dm]^VYr wE?Fajt:,@ss߭oܶGl\g+ÍN(O멡J>OH[mQtF)g{rlr^5l9~Eω_\cݒ=:^~086F&&Mp{(\?ˤsy;G~\砬wuq:P uҽg)p>3; 01 Ȝ Zy֞[/G / G [Rֶn={aȶa:[2l}߽٘ :d09<0gYqѶ"R' 8 kSac-UP~@0@ah ڑ41 =9 }ų  F !2#4?Žqtkx<DJG;9/ A\]J݇ j<;".Xhm!!h[Bg5/Cަ L*-G'@Տv@Y P; tMJ6AQ+`yoJУ{}] 1W&qMfq'P*)8 8hsx@>JAΐ< (EDA4BMc": CcMBbr0yK@i g4n6ƂGw94&[4ë￧G{Q&Ew(af^z7lSɞgb*ĵHlW/ vDC]]y:#eĝE3p` -JW?b79vn13J!O)v{6Hc,qj?߆o7C9l}   L{bT ѻEߙ2=z"կ.ɠ[[;Rg`X۵EXQ G)ν=wDchSF{tGs)ݕ Oit 6 ϗxHC M'ZoZch_tM)_k*Cܝ8]l:ˀ& y=(r|<G .~7|&9hl釼B#1.18fFxO_`xG .b?-#zj; dh6,lpafA., tfNFhQ^ʦ/_t{'f{6z` hE q "Fՙ Z^ hFDqG|qӾӬ=0B9 0'$HT84$ʧ.gKëDGfWDR'w-h{l* ͪ/ BסO@60`r@0@u|w,twJ,T]}58@8Jփ"P=k8paSҵNs0g/=]@Hy?b>N80$^ FWpITUhwHu3;F%ϑs8ݶd<.IN,/?Go)ZS]I>;nKLc:_ zK[aݰtp'<~'lyh1v#iD-@rCԍK,gY :[vJ 7ɾYHhtk[QJtss024]\)02(s7}t _Ge|[ +{7Bp^X7ݵ:,9 a*^7耈p 6zI<"-}㺿gƝ^'GwP&rݟt?uTyNy^~:xYi;,`=FЎ8+;R_ (c<[email protected]ƗwŒX o;6a+! t})3,x€B⏀PrP'oI҃#!c 5ItII kMd ?*8+:gThsy1J *1C)"z ؈N"_14r)*),RA 9  “ѠHDۢdz0&ŁV R_*AlK24PX!q1H,0,B@etI5'PtJ@s&؁mjFH^)4*E2G#ɧg y#pTt KQ )0Dc(coy#e5.6-IeJqPG MCp#Sc RbF5 P-ZDxwM2R?vػ}S'A&`) b0Vb]^/[D13&o2<\#tD|HCѽeڷ&1fb_A1&wG @eضXkw0<w Eq+ :G@H:$ F4G06Is80Ń'WRdOox7B@v90f;Qξb$z4G|t`WrmgRi)p;8i΂݇; 4w.8kP8 C-3/yAtS>0ڿ azn2|׿]I.ljєM|sLe9 ?x;|F10 QScLlޱs w"Ti[email protected]-D]g2LohN@ 8 DO`z}t_FÔtd9BތHQJ~s6-ܢ0%<./<wɩ0(>14.gEjMtJ'Ց8uX 0> h*c;Lj@EY,spbuEd%`N 8aQ83; |d9 t2 $hwN>kXw.H.6G޽{aX\] ֯? ;nHlwʈ\:X]0`62F=JذIwnڈ}1u*z:F$1ߣ#۫ IVZOw {Gahgxt#ɟN<7N\Α1P.dצepc6 Y/5_-#:;]enҍnx'wp0t9ѓBBijM}ƎQ{h傪i`Bƾ9t?:ߜ#ysH|z\|Oxii>/ Z]:yHi?=@–xyQm-) [afy5 _ 7ܵQ;}Xb. {+ĦVnXU|C< n)gV*BX9@>QLϜQBEY>]#,j|! M =[E :֣R`J? ?9샠GQVV9 ֮ 1;:wqeݏ#a _#J)1: ^.b0z#>; Ju$$$}bq1̭蟘 v*8P^J/F3#q1@Wp1n %gm!Z%Njع 1-ap&P.Ft6u F@c[53RLwHЃN F9m I@]yGmR"GD' QP"H||fPs2蟗"t,/<bI^L (!8`jei2:Tוa4< PaѲhpa=<oÿvq%¥#RƖ=֜Y aPWbO3 (Q9Bs[cH;\vA9<àV`2#hs8 Py8 ȯokb2*+#GA$Ƃ?i\ØwQ9pG@g鍃0 ]"}_fBGgLKREexziC&t=2HgZh¯G\u@+U)Waӝ 8ElA4G(q1fA3͍{[Ux_CZoi;hDtbF݌Hðux' ;~?\s[2wEn_)È % sF;G*a\ و78Fs WAN*<9‹GNŝ0vaB<'A7u0_El vlIޤ; 4G 9gCn\^dQ@huR ֝;+{an ,}pݰu0ڰh~p<@/2&m??asGڗRG(Nd}t"4r7K9e7-A]jcvtpt*DLh8'pݢX5 LCNG:>?1͏1^VZY_G}7D+Y-ƚ#N;͛/}aF_ 뇡G4ݳvn> {gŽ[aC |m2h) 8qBx 7݈uG9]j{ˢ֮1%U aj}Oz{3\1pA݉^A|_5]^gPR6G'lK=\rpc5Š,gYػ#} \_*[nOqxE@yfyiu͑###xgmS$-ןmw']>(^s})<ef[{?Ǵ L< ,0AD=,y|l1?voUwt{ۯlsFVtzZq70v$fE+µ~ ԇq/VN LI Tu4µ#L39Lv%` 9X_ Saj^ 2ʆMw%;qR\+@c{Ébt@Tpp ұkR A]Gx Ǡ #(":BUewYy!b_eG<z,X KaykKy{zW#Cꐄ!3CߋUG (Z(6h `F!ld@t( c`,΄+#ӆȌHe) pyh2\bQ"À+v+Ӡ{|NuE]@8~ C : 87eΧЄrA` ݝKDЗWbKw1^8"KnwXX۔/Nc+Lّrq-P৶W'ln+6?'z_2@GWoXKY8ѩ>֑ 7Mx{CAc1U16nZFTCp@k?za BC:.VBj#1 Q_"up;b@tx0pgA~ڝ>n8xg&B]aaPƒJC  l ;RFFk]aqr=[ )`u|20# ƍE81𼩑Q0kpY|Oĩ,Qp8Z%BqNG{jܧ}3k|CZ#<>*([w zk2ۯ/M8~@yW°Љ"ᘛ[@\qG7{%ˈt ~X*rn$rF8% "@&-Sqzqȇ^uÿ w¹Ӡ5ws0>_!>gJW$:F?t!}CwE92]ȧ \41/>>0:.tvwA=d?N7w̹`3Fq'8|ACqu';@掋V;DK,MLGi5U,}U/[-^/E;$tQ!Nj5AH);ݓz)ß:b["}{~‘)%+hxb^WNZt7_ =S,XǡwUX.}Sf\ۿvn? hst qLr@C!nad#fxͮ.@?yUHb7T(MÍst|1v{~[ޢl0yN9;:׸0{LzN_n  KaxRq9\s+\7,zS뫫`:x{FFIYy~:^G3JCi=uHUۗ֙Ӳ=_k7LkZVJ) " (߮՞0!b?&6?2*^z ?p՗0{/ 24FLPWj8uh;آ" G⨾: ,FݥtG|!\$$-2@G[Wט2` Ί A8S"i0HpgED%)7ǰqQB&q+@noz&;6i`FƺADX/[hlXX6=.a-/|@ ͋a'Dqlԇh$MQ`aF{P&"∥EZ#?* D~<8"Xcu# 2#9dp(B03 ~/d"iN=SPp ՖsQєxR>ݨoᅶf$7oV1p|k7'?^~AץI {ky΢mʌ0N,oGFe_靰0e"|~5F*Q7PM:ک͹O pq+Ŧ@2#g|B'%3x|HSOI꽠pT ]pq#5eFcΛ.>Å=26my񏱙H甇'BpA$(n O!e)mSDcqQ\4l"( ܐh4;U9 _蟮|ut;6.n);aa~S~= i]H_Z ^{'ͫτ)8)`9 !N@Oi :sz"}[cD} k2 DsabMKF B 2# hpgItUʲ֡sӻ;H9GjC@eD{5A}l KvHLVE̬E.Dra2\p#iM[>OshJ4xEQ'~MsT( 3 E8!C# ɦ"O; 6Ž8~(i2ql^ ~F[dA,XWD(|R߾FXxA;/=sʧ~Km~aѹ_l ~Y|gETUt]#ޣ 8F9bPbp!\ctڧ 5 zµbyh`a5̬o1lxuz'UDb170hD'mK 8O{HO}={>kn3qg51R}5UH9^ßs/߻ׁ)o_.9ƹ'歃穢./"[خ8>ϓzi~ex9u]\w9ڝ~ ;l X3aFXέۿ^y:l N0'}nu-ܽw m3l`sA>Bvr0'?й:vt x(>I?[M·wEШ//iH@vOI : $(IQI PA bY8 J #@75$Xxh!sae en|"I (B=GgCD,ĭRЯV' (i8 TgRR' <3 voL) XgpYFEI Xf4FtDrlt3 # A$R`6<' :(Cpi KCR>~?7 EG `$lB,Y`ws_ $T ` &]WÍ7kaxt 6ڗ3> A<b`fǿC(1yzW򭯋ܨƁпY}^<ߍqFmAB7! )caHC!GIF 2X0t*GS\:2UJG)ȇsV;ÙhN{rQ'^e1{ãĒ|s")Wip1*FBHHST$qr20\&E >E%X>Ps;t jԓCeE"h=@~)F_i^|7L˘n]+ɂ9"D,`Ma} o7{G1^?yiDžE8?Hihsx"&eHvN8o "πsKS>8B曎_w IL# 9}(G:58zzGzWl*28(mnu krJg{ 5g!@FOw:L7yMW:s"XE? / NHFNHJ&N繁q;HAѫ-<8zZ )w<';$f^O Ux׹hkh"G9}3* \ WDww7c:Ý|?lnNMs"d'0Ȃz VV8>hVQ\'3QE#4 ݮ!+Q~f6tܹ0~3:=8Hn˪Bʢn G) za{nAg{:GyHwCGF8g '5c{ͬES3l$ܸ}#ቡ0(y?1nSƺij{VLJn{ͺdyxOwTE~ϛ^Hw;!?ksz~?I9z/sy}2sg)p>3; ։Wf€'L`c{7LI(͆w+ (D F8N2XaV*G ( :udӈ9 ,3j! W:Bԕ3 { l00bFVI֑|瞘f Q9G8y:}YWW>Fm]g) x cBP%x<ʦ8bO;a t7e yYА) Tyc057V`0X0uqPޅ 8%pNDE@e 쁄9 ';9PETDGWP:QD"50C gY` N)muDʔ&0Ps8 $svD{Ty GGma9~0<l8 mʆ 1ڄ"GDK{ ,<*%Q0%u5K7/x$pX,Ht1= RQܧ 9*co޴cj-x4q0#7ٕ0</:/*Kmr_=YLj@\ )i Rq86Z t&<>Jz\ث SE7C,`65orpL542Un/F AMF#5.1PSFA Օ^qoa%ѸMI1l( R/ Xa|Xs=qyAM"y/~4  ZuFU`$jii/.aX\:  7D2Ν0#9xQx$3$fC;߮qёd9[p&JeuFغq7/mo9E` ed:SDdN iN7RhyGXԁL}fl"tO bK~ (6=5hfw^j<fyu&AbN1Fgyw8-3NhĪ 5qD8}/ љipM|_z蒌?hI)w4ϛ_),yӱzBI@:8pA8 8^ (:Ĵy ='ȰB߼)΂PpgaӰoG?)J86RGxPG3q]SfKI\w+77_9-o셫20;e'0# NC+#۲)dP˧"(},[%zٶ\ÉFnpFXjt9 zZLC0gx ra(C70wF^ưdϋ1usyh9YHèwVp9/m[ Krb"L,dž~zsL't9o{G:};K>څV._~RpzO]>^0S˒J ͝~59r<M#/࿃r{=uMHZ:u?3ͯS8ߙ209X%Qdpec3Lo%) ko +YE?0cF𙂰–: B(8 p=΂+=wCZBPqP)9JF!n6'0 g^k= D.rcDahBP z$^|)Ywma0` sⳠT`PFxCmbCm4A!؏,Xߗq'alf6LH(# >ʣl ^1(/an΁c> M#_Ӑ#Quz.gA\sg Z[_ak7ʸ %9~sD<nJ \7?ץtc$0z7L7?輸/:b8lo} sETC<!#%D8hQ`y' ڗ[>ݱɶ 4w }Hixݗ70Ӣy h_[َszy)ݿms\T M;!tY2KP0/f+Mh#ۜ6*!M#2L/ OFp! 3(O|FfE?<;w nUՋ0 "A>퇶tC e(#< i[آ5HGS:ā%%ydz!-g8#VaCz?8|:iоI#Dzo)Ks ~FDIїsj̻]$g!H>tAq#)дѷTH *Z/<1 6#Mx>SПh5 yK 7zME`HT AH EfE,J/b܋D^7.w^ orǿاq$]Pfq!)v90?կ. LsQ^cd G+G:|Na F "}Žw K~̢8AE /=uhO_4MsE{SG5<T!!P,tL\0#*D/jF۪YCbz&†=2m@C tpjw⧎!ȗ\5҅O>5mw#r 5Dk6 zƌN폋ΐQ |hZ!k lңaA^ Λ F":*4^)h31_ޣǡJx᛿02;OuAc2"YԻKz8S&W/%{"=RcXct^iu vs7Pk\:5;tωd4Jo s1Ɇ'FGy=fpؑyn̵m򀿇*DgvMM%pؿwFG´t}?+x -P*c^zҮ/{٬K <}{^wv!v7 }7P'q5<uOwCөZm&?6L!~}6, ~Fg32>ȴل~ ߩ΂gYQBvddddddddddddddd%dgAFFFFFFFFFFFFFFF YQBvddddddddddddddd%dgAFFFFFFFFFFFFFFF OYw?/] <[OkuxojSw-ӂɋvjhВ}FY/]5?z߼r uEPW?<{?i55PWɨE{ 4SY)9K[+!'2޿2ퟅ'4B'xLg)33M+Yh8 @KA{;L2(:EgtO%3ӇVK!?ķ$)FxY >DxO'J°Fi4? ^o? zՕf4) {~dEiYgO}G+zY[iYS} +iD>O,(wkw{dt-2>ijd|8AX9M}aUǾ:~s"C}=e^жU,:~Jmr4e ipܮ֓fYRƧOп2<;iS=ѠQ9V3?hؿg oӓ|̺N=L4bqѡcgj):gny?ޑrO"QDBTҼMv:ZMue&+5R JeeyO9 FlsU>YLJu @ Ym([_BV|F,g<Q.~aZNpem/!־oWA4Mvo>R;iS{g~'g|*ii)3M.XL&>?Lv.pҳ֠ikidgeFT3*x'lS_i* ^.eV'b*i2UvѴޟ➴L=5暈 NzE@"ڮ'y*JmhEJk"ORV}>3ShԼϓo@K߸ڣ}Hcۤu7Nژڿ{ }UZ92ֶV~_eyVܘľ)A7}h?E1~zv_nK83?hdo<ɻIUʼ}iSsR'\q^5;p?vJJeʫ\ܞkWFk*NoPb>UPE} XLٮv5Qzj[|wPnu+g+ISzO頖?/Q|3+oby[hqo]{:_Be#{;+CQn]%VqC _yG jN/5$.-3AM_ʴ ~wSj]+(;3]dAEiu׫]&~S8j vvTGkLJyjA: O{ו>q;Ckp*frޛ?~%hNCKIh]0F<i*$Vo{w,蝹u'{mMY懲SƧ8K,~羽FǭOlS gW뮝?=L> jOj˫tR]߈];NagjG,m:0?W)OͳY=-ò[yG؆qvjRi95elxQϧ~DQ,-Dľ(]oSEG[qR0|{n/Pyֶ|i|O ʩ;CR*8{=o>vگ'}'i^ٞ5]~L>Q0Dx 4YGkQ*RZVUO qR uW 5Ok/^ij0p'mVԗenaJMs/^]?SBfjWBB[8:'RFͻ[WGxZ miyg}ueطI꭭d|*P?ퟡ}i 2Q+NzOu[iDwr})~K6MrJ<ʴ8 8-D;AZjZP BJ:p)LZ^q?eVl'Lmh/] ӊ{<i;6T묫e_'_j.)R_b%fQ7*TYjkU)*؏V<sڎj?}gxg)|o"4oM_<|-ԟky;*ڠ_hy'Yi{ߢs{%gMLgwvh}ϭ$}hL6Ц?d?SYKh7X@[4BgOY;n$j_!𖴆qݒV){p;Jel۪M 5QNK맖n{C-N<]5=gi.jKubRg݀gQ'<iJyT^։gxg -:œ H'_y>q=K[]lu4YV*Ymo-ݟrP6umPj^oIƧ+޿>ڶIfL)~g_Oz6ZK \ e<egS=9NbNO 3 $$~"#gLMdxftDVJǪe,tdgE|%ǀyLOg|wx֑i?#㳉L>1|'Av|HdgSGKhZv|oA!~Fg32>|j?dgAFFFFFFFFFFFFFFF YQBvddddddddddddddd%dgAFFFFFFFFFFFFFFF YQBvddddddddddddddd%dgAFFFFFFFFFFFFFFF YQBvddddddddddddddd%dgAFFFFFFFFFFFFFFF YQGtǗ¥KAi}m@oꮝ u?^{gˋGw't\_*/Gyg8<}O??>}8I?y }FX^{miA ?|'geddddd|D<gAHyó,.$yۚدwMOgagnjGYiEv|D%Yf׍|WMqY |#C{xؐI|2S4*buHpQ#ۯGERPTqQ[r? 7#SI~k7JyZ 4 [zO,8aŲIu'5+Wʊm"ZVQf כ~䭾veDy7)/AA;)urI\}(Tʳ>^~w| mF'=y^J}zi{oyoyTa =V~}~TvPI4UTڮ3Kl-8{egwpʳQF>]4֚&ԾQE?[M$moJ?W];K(0wV_\vo'UtFFFFFg\dAE *jR0oP&J@S< ŢP +Z5 GU1IF׻? WcyK !VJKUR*JUgMU߫Z_[qվ!ʩ[Z,UXSXH~w#(+XP >3=<ޗ9j,h~\~3Sܓ2UK7坽? v=kmH7@Er?j;5{³/t2?vTFwk;]M+ CYN_ic˻n2vӾeQI}K_8 LAU90(L(+Ua_T~=BI(AZS,HnhFc<hu 8Tއ]9o]=OWJ\VTqm~bq h܎HE ֠YP6꣱7D@H&}?M3B}u_'W-SzgNz7TZ+xAjli yD3YLj;kgk'*~sMTE߽O|?e|R|3 '#####㳌O.P,/5.+Y5uW:Ŭu7^P΂vvgASg.U4EUl/X~6'DlQvj[ӢX.A<S_,+e4gh=M5 gå<ETK-OD>;h>wkzF9O],8[7?۝;JƀkOo(Q{wmյӞiIugZf6p__TNUh|gmV^mK]~{i"7ѬTfm-ϐ;0#####㳃OY`B= 6 HQSGr'U> gݓcY пcЬ~W߾VGjlvWcM+ibI'9 iABC[z*! |b΂so_oԵ‰?i~jLzN{maZի=!} u_6n]m- O:߭]jѓK]F6[Bz<?9-ڽsKp6dddddd| : b^OM 'sŰ22T@Z{MuZmJJѾvJYjhYHGqY,8OU=R}/~nY }7NWTFhκvW(zҁ`e7*Nv,?|NC(iFWiZNӗ7OF"ZwQ{uX1ݝ^o<-)l/ T냥*1wxw/@wluyU(C"Ro[-OcӮgddddd|V9 T2W*k(UT*"%2ţlEC0Ꟃ 5άR=U3mQ0fzrҶ>`8C_)I1ETnQFyR+}-[h3FhE;車 Y[הUg ΂qOOf/IOeҿZhKPg|/_Q R%h};K߫*8K{=U򞥎:)c72U7]O[3}v<QOW/qݻoB(w$|$_w?߭'8 :EwXnї neTP@UEalT?-G?Y ʌW 2T)]9w֬[z|RUl=K;eQQFzYo"hGl>Zꯥ[Y~]h3r['Le>R\/mX|KqJī>։'>k;K+Qy['*8f'U䫡(douE%e7ZQjw>vz|ڊ(_/whs֢!R{$XYC+|DgU ##΂$jQGAԁ!v)Gvdd|GOYnCKYtg1`#`d&kG3222222~^U4&$ Rd> ΂j8{v ױ?OxO,(!; 222222222222222J΂ ##############,(!; 222222222222222J΂ ##############,(DgAFFFFFFFFFFFFFFg,ȿ˿˿˿˿˿˿˿㗝WegA_______~Y/?+*DIENDB`
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Given a sorted array of integers, return indices of the two numbers such that they add up to a specific target using the two pointers technique. You may assume that each input would have exactly one solution, and you may not use the same element twice. This is an alternative solution of the two-sum problem, which uses a map to solve the problem. Hence can not solve the issue if there is a constraint not use the same index twice. [1] Example: Given nums = [2, 7, 11, 15], target = 9, Because nums[0] + nums[1] = 2 + 7 = 9, return [0, 1]. [1]: https://github.com/TheAlgorithms/Python/blob/master/other/two_sum.py """ from __future__ import annotations def two_pointer(nums: list[int], target: int) -> list[int]: """ >>> two_pointer([2, 7, 11, 15], 9) [0, 1] >>> two_pointer([2, 7, 11, 15], 17) [0, 3] >>> two_pointer([2, 7, 11, 15], 18) [1, 2] >>> two_pointer([2, 7, 11, 15], 26) [2, 3] >>> two_pointer([1, 3, 3], 6) [1, 2] >>> two_pointer([2, 7, 11, 15], 8) [] >>> two_pointer([3 * i for i in range(10)], 19) [] >>> two_pointer([1, 2, 3], 6) [] """ i = 0 j = len(nums) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: i = i + 1 else: j = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
""" Given a sorted array of integers, return indices of the two numbers such that they add up to a specific target using the two pointers technique. You may assume that each input would have exactly one solution, and you may not use the same element twice. This is an alternative solution of the two-sum problem, which uses a map to solve the problem. Hence can not solve the issue if there is a constraint not use the same index twice. [1] Example: Given nums = [2, 7, 11, 15], target = 9, Because nums[0] + nums[1] = 2 + 7 = 9, return [0, 1]. [1]: https://github.com/TheAlgorithms/Python/blob/master/other/two_sum.py """ from __future__ import annotations def two_pointer(nums: list[int], target: int) -> list[int]: """ >>> two_pointer([2, 7, 11, 15], 9) [0, 1] >>> two_pointer([2, 7, 11, 15], 17) [0, 3] >>> two_pointer([2, 7, 11, 15], 18) [1, 2] >>> two_pointer([2, 7, 11, 15], 26) [2, 3] >>> two_pointer([1, 3, 3], 6) [1, 2] >>> two_pointer([2, 7, 11, 15], 8) [] >>> two_pointer([3 * i for i in range(10)], 19) [] >>> two_pointer([1, 2, 3], 6) [] """ i = 0 j = len(nums) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: i = i + 1 else: j = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Just to check """ def add(a, b): """ >>> add(2, 2) 4 >>> add(2, -2) 0 """ return a + b if __name__ == "__main__": a = 5 b = 6 print(f"The sum of {a} + {b} is {add(a, b)}")
""" Just to check """ def add(a, b): """ >>> add(2, 2) 4 >>> add(2, -2) 0 """ return a + b if __name__ == "__main__": a = 5 b = 6 print(f"The sum of {a} + {b} is {add(a, b)}")
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 10: https://projecteuler.net/problem=10 Summation of primes The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17. Find the sum of all the primes below two million. References: - https://en.wikipedia.org/wiki/Prime_number """ import math from itertools import takewhile from typing import Iterator def is_prime(number: int) -> bool: """ Returns boolean representing primality of given number num. >>> is_prime(2) True >>> is_prime(3) True >>> is_prime(27) False >>> is_prime(2999) True """ if number % 2 == 0 and number > 2: return False return all(number % i for i in range(3, int(math.sqrt(number)) + 1, 2)) def prime_generator() -> Iterator[int]: """ Generate a list sequence of prime numbers """ num = 2 while True: if is_prime(num): yield num num += 1 def solution(n: int = 2000000) -> int: """ Returns the sum of all the primes below n. >>> solution(1000) 76127 >>> solution(5000) 1548136 >>> solution(10000) 5736396 >>> solution(7) 10 """ return sum(takewhile(lambda x: x < n, prime_generator())) if __name__ == "__main__": print(f"{solution() = }")
""" Project Euler Problem 10: https://projecteuler.net/problem=10 Summation of primes The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17. Find the sum of all the primes below two million. References: - https://en.wikipedia.org/wiki/Prime_number """ import math from itertools import takewhile from typing import Iterator def is_prime(number: int) -> bool: """ Returns boolean representing primality of given number num. >>> is_prime(2) True >>> is_prime(3) True >>> is_prime(27) False >>> is_prime(2999) True """ if number % 2 == 0 and number > 2: return False return all(number % i for i in range(3, int(math.sqrt(number)) + 1, 2)) def prime_generator() -> Iterator[int]: """ Generate a list sequence of prime numbers """ num = 2 while True: if is_prime(num): yield num num += 1 def solution(n: int = 2000000) -> int: """ Returns the sum of all the primes below n. >>> solution(1000) 76127 >>> solution(5000) 1548136 >>> solution(10000) 5736396 >>> solution(7) 10 """ return sum(takewhile(lambda x: x < n, prime_generator())) if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
def lower(word: str) -> str: """ Will convert the entire string to lowecase letters >>> lower("wow") 'wow' >>> lower("HellZo") 'hellzo' >>> lower("WHAT") 'what' >>> lower("wh[]32") 'wh[]32' >>> lower("whAT") 'what' """ # converting to ascii value int value and checking to see if char is a capital # letter if it is a capital letter it is getting shift by 32 which makes it a lower # case letter return "".join(chr(ord(char) + 32) if "A" <= char <= "Z" else char for char in word) if __name__ == "__main__": from doctest import testmod testmod()
def lower(word: str) -> str: """ Will convert the entire string to lowecase letters >>> lower("wow") 'wow' >>> lower("HellZo") 'hellzo' >>> lower("WHAT") 'what' >>> lower("wh[]32") 'wh[]32' >>> lower("whAT") 'what' """ # converting to ascii value int value and checking to see if char is a capital # letter if it is a capital letter it is getting shift by 32 which makes it a lower # case letter return "".join(chr(ord(char) + 32) if "A" <= char <= "Z" else char for char in word) if __name__ == "__main__": from doctest import testmod testmod()
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" python/black : true flake8 : passed """ from typing import Iterator, Optional class RedBlackTree: """ A Red-Black tree, which is a self-balancing BST (binary search tree). This tree has similar performance to AVL trees, but the balancing is less strict, so it will perform faster for writing/deleting nodes and slower for reading in the average case, though, because they're both balanced binary search trees, both will get the same asymptotic performance. To read more about them, https://en.wikipedia.org/wiki/Red–black_tree Unless otherwise specified, all asymptotic runtimes are specified in terms of the size of the tree. """ def __init__( self, label: Optional[int] = None, color: int = 0, parent: Optional["RedBlackTree"] = None, left: Optional["RedBlackTree"] = None, right: Optional["RedBlackTree"] = None, ) -> None: """Initialize a new Red-Black Tree node with the given values: label: The value associated with this node color: 0 if black, 1 if red parent: The parent to this node left: This node's left child right: This node's right child """ self.label = label self.parent = parent self.left = left self.right = right self.color = color # Here are functions which are specific to red-black trees def rotate_left(self) -> "RedBlackTree": """Rotate the subtree rooted at this node to the left and returns the new root to this subtree. Performing one rotation can be done in O(1). """ parent = self.parent right = self.right self.right = right.left if self.right: self.right.parent = self self.parent = right right.left = self if parent is not None: if parent.left == self: parent.left = right else: parent.right = right right.parent = parent return right def rotate_right(self) -> "RedBlackTree": """Rotate the subtree rooted at this node to the right and returns the new root to this subtree. Performing one rotation can be done in O(1). """ parent = self.parent left = self.left self.left = left.right if self.left: self.left.parent = self self.parent = left left.right = self if parent is not None: if parent.right is self: parent.right = left else: parent.left = left left.parent = parent return left def insert(self, label: int) -> "RedBlackTree": """Inserts label into the subtree rooted at self, performs any rotations necessary to maintain balance, and then returns the new root to this subtree (likely self). This is guaranteed to run in O(log(n)) time. """ if self.label is None: # Only possible with an empty tree self.label = label return self if self.label == label: return self elif self.label > label: if self.left: self.left.insert(label) else: self.left = RedBlackTree(label, 1, self) self.left._insert_repair() else: if self.right: self.right.insert(label) else: self.right = RedBlackTree(label, 1, self) self.right._insert_repair() return self.parent or self def _insert_repair(self) -> None: """Repair the coloring from inserting into a tree.""" if self.parent is None: # This node is the root, so it just needs to be black self.color = 0 elif color(self.parent) == 0: # If the parent is black, then it just needs to be red self.color = 1 else: uncle = self.parent.sibling if color(uncle) == 0: if self.is_left() and self.parent.is_right(): self.parent.rotate_right() self.right._insert_repair() elif self.is_right() and self.parent.is_left(): self.parent.rotate_left() self.left._insert_repair() elif self.is_left(): self.grandparent.rotate_right() self.parent.color = 0 self.parent.right.color = 1 else: self.grandparent.rotate_left() self.parent.color = 0 self.parent.left.color = 1 else: self.parent.color = 0 uncle.color = 0 self.grandparent.color = 1 self.grandparent._insert_repair() def remove(self, label: int) -> "RedBlackTree": """Remove label from this tree.""" if self.label == label: if self.left and self.right: # It's easier to balance a node with at most one child, # so we replace this node with the greatest one less than # it and remove that. value = self.left.get_max() self.label = value self.left.remove(value) else: # This node has at most one non-None child, so we don't # need to replace child = self.left or self.right if self.color == 1: # This node is red, and its child is black # The only way this happens to a node with one child # is if both children are None leaves. # We can just remove this node and call it a day. if self.is_left(): self.parent.left = None else: self.parent.right = None else: # The node is black if child is None: # This node and its child are black if self.parent is None: # The tree is now empty return RedBlackTree(None) else: self._remove_repair() if self.is_left(): self.parent.left = None else: self.parent.right = None self.parent = None else: # This node is black and its child is red # Move the child node here and make it black self.label = child.label self.left = child.left self.right = child.right if self.left: self.left.parent = self if self.right: self.right.parent = self elif self.label > label: if self.left: self.left.remove(label) else: if self.right: self.right.remove(label) return self.parent or self def _remove_repair(self) -> None: """Repair the coloring of the tree that may have been messed up.""" if color(self.sibling) == 1: self.sibling.color = 0 self.parent.color = 1 if self.is_left(): self.parent.rotate_left() else: self.parent.rotate_right() if ( color(self.parent) == 0 and color(self.sibling) == 0 and color(self.sibling.left) == 0 and color(self.sibling.right) == 0 ): self.sibling.color = 1 self.parent._remove_repair() return if ( color(self.parent) == 1 and color(self.sibling) == 0 and color(self.sibling.left) == 0 and color(self.sibling.right) == 0 ): self.sibling.color = 1 self.parent.color = 0 return if ( self.is_left() and color(self.sibling) == 0 and color(self.sibling.right) == 0 and color(self.sibling.left) == 1 ): self.sibling.rotate_right() self.sibling.color = 0 self.sibling.right.color = 1 if ( self.is_right() and color(self.sibling) == 0 and color(self.sibling.right) == 1 and color(self.sibling.left) == 0 ): self.sibling.rotate_left() self.sibling.color = 0 self.sibling.left.color = 1 if ( self.is_left() and color(self.sibling) == 0 and color(self.sibling.right) == 1 ): self.parent.rotate_left() self.grandparent.color = self.parent.color self.parent.color = 0 self.parent.sibling.color = 0 if ( self.is_right() and color(self.sibling) == 0 and color(self.sibling.left) == 1 ): self.parent.rotate_right() self.grandparent.color = self.parent.color self.parent.color = 0 self.parent.sibling.color = 0 def check_color_properties(self) -> bool: """Check the coloring of the tree, and return True iff the tree is colored in a way which matches these five properties: (wording stolen from wikipedia article) 1. Each node is either red or black. 2. The root node is black. 3. All leaves are black. 4. If a node is red, then both its children are black. 5. Every path from any node to all of its descendent NIL nodes has the same number of black nodes. This function runs in O(n) time, because properties 4 and 5 take that long to check. """ # I assume property 1 to hold because there is nothing that can # make the color be anything other than 0 or 1. # Property 2 if self.color: # The root was red print("Property 2") return False # Property 3 does not need to be checked, because None is assumed # to be black and is all the leaves. # Property 4 if not self.check_coloring(): print("Property 4") return False # Property 5 if self.black_height() is None: print("Property 5") return False # All properties were met return True def check_coloring(self) -> None: """A helper function to recursively check Property 4 of a Red-Black Tree. See check_color_properties for more info. """ if self.color == 1: if color(self.left) == 1 or color(self.right) == 1: return False if self.left and not self.left.check_coloring(): return False if self.right and not self.right.check_coloring(): return False return True def black_height(self) -> int: """Returns the number of black nodes from this node to the leaves of the tree, or None if there isn't one such value (the tree is color incorrectly). """ if self is None: # If we're already at a leaf, there is no path return 1 left = RedBlackTree.black_height(self.left) right = RedBlackTree.black_height(self.right) if left is None or right is None: # There are issues with coloring below children nodes return None if left != right: # The two children have unequal depths return None # Return the black depth of children, plus one if this node is # black return left + (1 - self.color) # Here are functions which are general to all binary search trees def __contains__(self, label) -> bool: """Search through the tree for label, returning True iff it is found somewhere in the tree. Guaranteed to run in O(log(n)) time. """ return self.search(label) is not None def search(self, label: int) -> "RedBlackTree": """Search through the tree for label, returning its node if it's found, and None otherwise. This method is guaranteed to run in O(log(n)) time. """ if self.label == label: return self elif label > self.label: if self.right is None: return None else: return self.right.search(label) else: if self.left is None: return None else: return self.left.search(label) def floor(self, label: int) -> int: """Returns the largest element in this tree which is at most label. This method is guaranteed to run in O(log(n)) time.""" if self.label == label: return self.label elif self.label > label: if self.left: return self.left.floor(label) else: return None else: if self.right: attempt = self.right.floor(label) if attempt is not None: return attempt return self.label def ceil(self, label: int) -> int: """Returns the smallest element in this tree which is at least label. This method is guaranteed to run in O(log(n)) time. """ if self.label == label: return self.label elif self.label < label: if self.right: return self.right.ceil(label) else: return None else: if self.left: attempt = self.left.ceil(label) if attempt is not None: return attempt return self.label def get_max(self) -> int: """Returns the largest element in this tree. This method is guaranteed to run in O(log(n)) time. """ if self.right: # Go as far right as possible return self.right.get_max() else: return self.label def get_min(self) -> int: """Returns the smallest element in this tree. This method is guaranteed to run in O(log(n)) time. """ if self.left: # Go as far left as possible return self.left.get_min() else: return self.label @property def grandparent(self) -> "RedBlackTree": """Get the current node's grandparent, or None if it doesn't exist.""" if self.parent is None: return None else: return self.parent.parent @property def sibling(self) -> "RedBlackTree": """Get the current node's sibling, or None if it doesn't exist.""" if self.parent is None: return None elif self.parent.left is self: return self.parent.right else: return self.parent.left def is_left(self) -> bool: """Returns true iff this node is the left child of its parent.""" return self.parent and self.parent.left is self def is_right(self) -> bool: """Returns true iff this node is the right child of its parent.""" return self.parent and self.parent.right is self def __bool__(self) -> bool: return True def __len__(self) -> int: """ Return the number of nodes in this tree. """ ln = 1 if self.left: ln += len(self.left) if self.right: ln += len(self.right) return ln def preorder_traverse(self) -> Iterator[int]: yield self.label if self.left: yield from self.left.preorder_traverse() if self.right: yield from self.right.preorder_traverse() def inorder_traverse(self) -> Iterator[int]: if self.left: yield from self.left.inorder_traverse() yield self.label if self.right: yield from self.right.inorder_traverse() def postorder_traverse(self) -> Iterator[int]: if self.left: yield from self.left.postorder_traverse() if self.right: yield from self.right.postorder_traverse() yield self.label def __repr__(self) -> str: from pprint import pformat if self.left is None and self.right is None: return f"'{self.label} {(self.color and 'red') or 'blk'}'" return pformat( { f"{self.label} {(self.color and 'red') or 'blk'}": ( self.left, self.right, ) }, indent=1, ) def __eq__(self, other) -> bool: """Test if two trees are equal.""" if self.label == other.label: return self.left == other.left and self.right == other.right else: return False def color(node) -> int: """Returns the color of a node, allowing for None leaves.""" if node is None: return 0 else: return node.color """ Code for testing the various functions of the red-black tree. """ def test_rotations() -> bool: """Test that the rotate_left and rotate_right functions work.""" # Make a tree to test on tree = RedBlackTree(0) tree.left = RedBlackTree(-10, parent=tree) tree.right = RedBlackTree(10, parent=tree) tree.left.left = RedBlackTree(-20, parent=tree.left) tree.left.right = RedBlackTree(-5, parent=tree.left) tree.right.left = RedBlackTree(5, parent=tree.right) tree.right.right = RedBlackTree(20, parent=tree.right) # Make the right rotation left_rot = RedBlackTree(10) left_rot.left = RedBlackTree(0, parent=left_rot) left_rot.left.left = RedBlackTree(-10, parent=left_rot.left) left_rot.left.right = RedBlackTree(5, parent=left_rot.left) left_rot.left.left.left = RedBlackTree(-20, parent=left_rot.left.left) left_rot.left.left.right = RedBlackTree(-5, parent=left_rot.left.left) left_rot.right = RedBlackTree(20, parent=left_rot) tree = tree.rotate_left() if tree != left_rot: return False tree = tree.rotate_right() tree = tree.rotate_right() # Make the left rotation right_rot = RedBlackTree(-10) right_rot.left = RedBlackTree(-20, parent=right_rot) right_rot.right = RedBlackTree(0, parent=right_rot) right_rot.right.left = RedBlackTree(-5, parent=right_rot.right) right_rot.right.right = RedBlackTree(10, parent=right_rot.right) right_rot.right.right.left = RedBlackTree(5, parent=right_rot.right.right) right_rot.right.right.right = RedBlackTree(20, parent=right_rot.right.right) if tree != right_rot: return False return True def test_insertion_speed() -> bool: """Test that the tree balances inserts to O(log(n)) by doing a lot of them. """ tree = RedBlackTree(-1) for i in range(300000): tree = tree.insert(i) return True def test_insert() -> bool: """Test the insert() method of the tree correctly balances, colors, and inserts. """ tree = RedBlackTree(0) tree.insert(8) tree.insert(-8) tree.insert(4) tree.insert(12) tree.insert(10) tree.insert(11) ans = RedBlackTree(0, 0) ans.left = RedBlackTree(-8, 0, ans) ans.right = RedBlackTree(8, 1, ans) ans.right.left = RedBlackTree(4, 0, ans.right) ans.right.right = RedBlackTree(11, 0, ans.right) ans.right.right.left = RedBlackTree(10, 1, ans.right.right) ans.right.right.right = RedBlackTree(12, 1, ans.right.right) return tree == ans def test_insert_and_search() -> bool: """Tests searching through the tree for values.""" tree = RedBlackTree(0) tree.insert(8) tree.insert(-8) tree.insert(4) tree.insert(12) tree.insert(10) tree.insert(11) if 5 in tree or -6 in tree or -10 in tree or 13 in tree: # Found something not in there return False if not (11 in tree and 12 in tree and -8 in tree and 0 in tree): # Didn't find something in there return False return True def test_insert_delete() -> bool: """Test the insert() and delete() method of the tree, verifying the insertion and removal of elements, and the balancing of the tree. """ tree = RedBlackTree(0) tree = tree.insert(-12) tree = tree.insert(8) tree = tree.insert(-8) tree = tree.insert(15) tree = tree.insert(4) tree = tree.insert(12) tree = tree.insert(10) tree = tree.insert(9) tree = tree.insert(11) tree = tree.remove(15) tree = tree.remove(-12) tree = tree.remove(9) if not tree.check_color_properties(): return False if list(tree.inorder_traverse()) != [-8, 0, 4, 8, 10, 11, 12]: return False return True def test_floor_ceil() -> bool: """Tests the floor and ceiling functions in the tree.""" tree = RedBlackTree(0) tree.insert(-16) tree.insert(16) tree.insert(8) tree.insert(24) tree.insert(20) tree.insert(22) tuples = [(-20, None, -16), (-10, -16, 0), (8, 8, 8), (50, 24, None)] for val, floor, ceil in tuples: if tree.floor(val) != floor or tree.ceil(val) != ceil: return False return True def test_min_max() -> bool: """Tests the min and max functions in the tree.""" tree = RedBlackTree(0) tree.insert(-16) tree.insert(16) tree.insert(8) tree.insert(24) tree.insert(20) tree.insert(22) if tree.get_max() != 22 or tree.get_min() != -16: return False return True def test_tree_traversal() -> bool: """Tests the three different tree traversal functions.""" tree = RedBlackTree(0) tree = tree.insert(-16) tree.insert(16) tree.insert(8) tree.insert(24) tree.insert(20) tree.insert(22) if list(tree.inorder_traverse()) != [-16, 0, 8, 16, 20, 22, 24]: return False if list(tree.preorder_traverse()) != [0, -16, 16, 8, 22, 20, 24]: return False if list(tree.postorder_traverse()) != [-16, 8, 20, 24, 22, 16, 0]: return False return True def test_tree_chaining() -> bool: """Tests the three different tree chaining functions.""" tree = RedBlackTree(0) tree = tree.insert(-16).insert(16).insert(8).insert(24).insert(20).insert(22) if list(tree.inorder_traverse()) != [-16, 0, 8, 16, 20, 22, 24]: return False if list(tree.preorder_traverse()) != [0, -16, 16, 8, 22, 20, 24]: return False if list(tree.postorder_traverse()) != [-16, 8, 20, 24, 22, 16, 0]: return False return True def print_results(msg: str, passes: bool) -> None: print(str(msg), "works!" if passes else "doesn't work :(") def pytests() -> None: assert test_rotations() assert test_insert() assert test_insert_and_search() assert test_insert_delete() assert test_floor_ceil() assert test_tree_traversal() assert test_tree_chaining() def main() -> None: """ >>> pytests() """ print_results("Rotating right and left", test_rotations()) print_results("Inserting", test_insert()) print_results("Searching", test_insert_and_search()) print_results("Deleting", test_insert_delete()) print_results("Floor and ceil", test_floor_ceil()) print_results("Tree traversal", test_tree_traversal()) print_results("Tree traversal", test_tree_chaining()) print("Testing tree balancing...") print("This should only be a few seconds.") test_insertion_speed() print("Done!") if __name__ == "__main__": main()
""" python/black : true flake8 : passed """ from typing import Iterator, Optional class RedBlackTree: """ A Red-Black tree, which is a self-balancing BST (binary search tree). This tree has similar performance to AVL trees, but the balancing is less strict, so it will perform faster for writing/deleting nodes and slower for reading in the average case, though, because they're both balanced binary search trees, both will get the same asymptotic performance. To read more about them, https://en.wikipedia.org/wiki/Red–black_tree Unless otherwise specified, all asymptotic runtimes are specified in terms of the size of the tree. """ def __init__( self, label: Optional[int] = None, color: int = 0, parent: Optional["RedBlackTree"] = None, left: Optional["RedBlackTree"] = None, right: Optional["RedBlackTree"] = None, ) -> None: """Initialize a new Red-Black Tree node with the given values: label: The value associated with this node color: 0 if black, 1 if red parent: The parent to this node left: This node's left child right: This node's right child """ self.label = label self.parent = parent self.left = left self.right = right self.color = color # Here are functions which are specific to red-black trees def rotate_left(self) -> "RedBlackTree": """Rotate the subtree rooted at this node to the left and returns the new root to this subtree. Performing one rotation can be done in O(1). """ parent = self.parent right = self.right self.right = right.left if self.right: self.right.parent = self self.parent = right right.left = self if parent is not None: if parent.left == self: parent.left = right else: parent.right = right right.parent = parent return right def rotate_right(self) -> "RedBlackTree": """Rotate the subtree rooted at this node to the right and returns the new root to this subtree. Performing one rotation can be done in O(1). """ parent = self.parent left = self.left self.left = left.right if self.left: self.left.parent = self self.parent = left left.right = self if parent is not None: if parent.right is self: parent.right = left else: parent.left = left left.parent = parent return left def insert(self, label: int) -> "RedBlackTree": """Inserts label into the subtree rooted at self, performs any rotations necessary to maintain balance, and then returns the new root to this subtree (likely self). This is guaranteed to run in O(log(n)) time. """ if self.label is None: # Only possible with an empty tree self.label = label return self if self.label == label: return self elif self.label > label: if self.left: self.left.insert(label) else: self.left = RedBlackTree(label, 1, self) self.left._insert_repair() else: if self.right: self.right.insert(label) else: self.right = RedBlackTree(label, 1, self) self.right._insert_repair() return self.parent or self def _insert_repair(self) -> None: """Repair the coloring from inserting into a tree.""" if self.parent is None: # This node is the root, so it just needs to be black self.color = 0 elif color(self.parent) == 0: # If the parent is black, then it just needs to be red self.color = 1 else: uncle = self.parent.sibling if color(uncle) == 0: if self.is_left() and self.parent.is_right(): self.parent.rotate_right() self.right._insert_repair() elif self.is_right() and self.parent.is_left(): self.parent.rotate_left() self.left._insert_repair() elif self.is_left(): self.grandparent.rotate_right() self.parent.color = 0 self.parent.right.color = 1 else: self.grandparent.rotate_left() self.parent.color = 0 self.parent.left.color = 1 else: self.parent.color = 0 uncle.color = 0 self.grandparent.color = 1 self.grandparent._insert_repair() def remove(self, label: int) -> "RedBlackTree": """Remove label from this tree.""" if self.label == label: if self.left and self.right: # It's easier to balance a node with at most one child, # so we replace this node with the greatest one less than # it and remove that. value = self.left.get_max() self.label = value self.left.remove(value) else: # This node has at most one non-None child, so we don't # need to replace child = self.left or self.right if self.color == 1: # This node is red, and its child is black # The only way this happens to a node with one child # is if both children are None leaves. # We can just remove this node and call it a day. if self.is_left(): self.parent.left = None else: self.parent.right = None else: # The node is black if child is None: # This node and its child are black if self.parent is None: # The tree is now empty return RedBlackTree(None) else: self._remove_repair() if self.is_left(): self.parent.left = None else: self.parent.right = None self.parent = None else: # This node is black and its child is red # Move the child node here and make it black self.label = child.label self.left = child.left self.right = child.right if self.left: self.left.parent = self if self.right: self.right.parent = self elif self.label > label: if self.left: self.left.remove(label) else: if self.right: self.right.remove(label) return self.parent or self def _remove_repair(self) -> None: """Repair the coloring of the tree that may have been messed up.""" if color(self.sibling) == 1: self.sibling.color = 0 self.parent.color = 1 if self.is_left(): self.parent.rotate_left() else: self.parent.rotate_right() if ( color(self.parent) == 0 and color(self.sibling) == 0 and color(self.sibling.left) == 0 and color(self.sibling.right) == 0 ): self.sibling.color = 1 self.parent._remove_repair() return if ( color(self.parent) == 1 and color(self.sibling) == 0 and color(self.sibling.left) == 0 and color(self.sibling.right) == 0 ): self.sibling.color = 1 self.parent.color = 0 return if ( self.is_left() and color(self.sibling) == 0 and color(self.sibling.right) == 0 and color(self.sibling.left) == 1 ): self.sibling.rotate_right() self.sibling.color = 0 self.sibling.right.color = 1 if ( self.is_right() and color(self.sibling) == 0 and color(self.sibling.right) == 1 and color(self.sibling.left) == 0 ): self.sibling.rotate_left() self.sibling.color = 0 self.sibling.left.color = 1 if ( self.is_left() and color(self.sibling) == 0 and color(self.sibling.right) == 1 ): self.parent.rotate_left() self.grandparent.color = self.parent.color self.parent.color = 0 self.parent.sibling.color = 0 if ( self.is_right() and color(self.sibling) == 0 and color(self.sibling.left) == 1 ): self.parent.rotate_right() self.grandparent.color = self.parent.color self.parent.color = 0 self.parent.sibling.color = 0 def check_color_properties(self) -> bool: """Check the coloring of the tree, and return True iff the tree is colored in a way which matches these five properties: (wording stolen from wikipedia article) 1. Each node is either red or black. 2. The root node is black. 3. All leaves are black. 4. If a node is red, then both its children are black. 5. Every path from any node to all of its descendent NIL nodes has the same number of black nodes. This function runs in O(n) time, because properties 4 and 5 take that long to check. """ # I assume property 1 to hold because there is nothing that can # make the color be anything other than 0 or 1. # Property 2 if self.color: # The root was red print("Property 2") return False # Property 3 does not need to be checked, because None is assumed # to be black and is all the leaves. # Property 4 if not self.check_coloring(): print("Property 4") return False # Property 5 if self.black_height() is None: print("Property 5") return False # All properties were met return True def check_coloring(self) -> None: """A helper function to recursively check Property 4 of a Red-Black Tree. See check_color_properties for more info. """ if self.color == 1: if color(self.left) == 1 or color(self.right) == 1: return False if self.left and not self.left.check_coloring(): return False if self.right and not self.right.check_coloring(): return False return True def black_height(self) -> int: """Returns the number of black nodes from this node to the leaves of the tree, or None if there isn't one such value (the tree is color incorrectly). """ if self is None: # If we're already at a leaf, there is no path return 1 left = RedBlackTree.black_height(self.left) right = RedBlackTree.black_height(self.right) if left is None or right is None: # There are issues with coloring below children nodes return None if left != right: # The two children have unequal depths return None # Return the black depth of children, plus one if this node is # black return left + (1 - self.color) # Here are functions which are general to all binary search trees def __contains__(self, label) -> bool: """Search through the tree for label, returning True iff it is found somewhere in the tree. Guaranteed to run in O(log(n)) time. """ return self.search(label) is not None def search(self, label: int) -> "RedBlackTree": """Search through the tree for label, returning its node if it's found, and None otherwise. This method is guaranteed to run in O(log(n)) time. """ if self.label == label: return self elif label > self.label: if self.right is None: return None else: return self.right.search(label) else: if self.left is None: return None else: return self.left.search(label) def floor(self, label: int) -> int: """Returns the largest element in this tree which is at most label. This method is guaranteed to run in O(log(n)) time.""" if self.label == label: return self.label elif self.label > label: if self.left: return self.left.floor(label) else: return None else: if self.right: attempt = self.right.floor(label) if attempt is not None: return attempt return self.label def ceil(self, label: int) -> int: """Returns the smallest element in this tree which is at least label. This method is guaranteed to run in O(log(n)) time. """ if self.label == label: return self.label elif self.label < label: if self.right: return self.right.ceil(label) else: return None else: if self.left: attempt = self.left.ceil(label) if attempt is not None: return attempt return self.label def get_max(self) -> int: """Returns the largest element in this tree. This method is guaranteed to run in O(log(n)) time. """ if self.right: # Go as far right as possible return self.right.get_max() else: return self.label def get_min(self) -> int: """Returns the smallest element in this tree. This method is guaranteed to run in O(log(n)) time. """ if self.left: # Go as far left as possible return self.left.get_min() else: return self.label @property def grandparent(self) -> "RedBlackTree": """Get the current node's grandparent, or None if it doesn't exist.""" if self.parent is None: return None else: return self.parent.parent @property def sibling(self) -> "RedBlackTree": """Get the current node's sibling, or None if it doesn't exist.""" if self.parent is None: return None elif self.parent.left is self: return self.parent.right else: return self.parent.left def is_left(self) -> bool: """Returns true iff this node is the left child of its parent.""" return self.parent and self.parent.left is self def is_right(self) -> bool: """Returns true iff this node is the right child of its parent.""" return self.parent and self.parent.right is self def __bool__(self) -> bool: return True def __len__(self) -> int: """ Return the number of nodes in this tree. """ ln = 1 if self.left: ln += len(self.left) if self.right: ln += len(self.right) return ln def preorder_traverse(self) -> Iterator[int]: yield self.label if self.left: yield from self.left.preorder_traverse() if self.right: yield from self.right.preorder_traverse() def inorder_traverse(self) -> Iterator[int]: if self.left: yield from self.left.inorder_traverse() yield self.label if self.right: yield from self.right.inorder_traverse() def postorder_traverse(self) -> Iterator[int]: if self.left: yield from self.left.postorder_traverse() if self.right: yield from self.right.postorder_traverse() yield self.label def __repr__(self) -> str: from pprint import pformat if self.left is None and self.right is None: return f"'{self.label} {(self.color and 'red') or 'blk'}'" return pformat( { f"{self.label} {(self.color and 'red') or 'blk'}": ( self.left, self.right, ) }, indent=1, ) def __eq__(self, other) -> bool: """Test if two trees are equal.""" if self.label == other.label: return self.left == other.left and self.right == other.right else: return False def color(node) -> int: """Returns the color of a node, allowing for None leaves.""" if node is None: return 0 else: return node.color """ Code for testing the various functions of the red-black tree. """ def test_rotations() -> bool: """Test that the rotate_left and rotate_right functions work.""" # Make a tree to test on tree = RedBlackTree(0) tree.left = RedBlackTree(-10, parent=tree) tree.right = RedBlackTree(10, parent=tree) tree.left.left = RedBlackTree(-20, parent=tree.left) tree.left.right = RedBlackTree(-5, parent=tree.left) tree.right.left = RedBlackTree(5, parent=tree.right) tree.right.right = RedBlackTree(20, parent=tree.right) # Make the right rotation left_rot = RedBlackTree(10) left_rot.left = RedBlackTree(0, parent=left_rot) left_rot.left.left = RedBlackTree(-10, parent=left_rot.left) left_rot.left.right = RedBlackTree(5, parent=left_rot.left) left_rot.left.left.left = RedBlackTree(-20, parent=left_rot.left.left) left_rot.left.left.right = RedBlackTree(-5, parent=left_rot.left.left) left_rot.right = RedBlackTree(20, parent=left_rot) tree = tree.rotate_left() if tree != left_rot: return False tree = tree.rotate_right() tree = tree.rotate_right() # Make the left rotation right_rot = RedBlackTree(-10) right_rot.left = RedBlackTree(-20, parent=right_rot) right_rot.right = RedBlackTree(0, parent=right_rot) right_rot.right.left = RedBlackTree(-5, parent=right_rot.right) right_rot.right.right = RedBlackTree(10, parent=right_rot.right) right_rot.right.right.left = RedBlackTree(5, parent=right_rot.right.right) right_rot.right.right.right = RedBlackTree(20, parent=right_rot.right.right) if tree != right_rot: return False return True def test_insertion_speed() -> bool: """Test that the tree balances inserts to O(log(n)) by doing a lot of them. """ tree = RedBlackTree(-1) for i in range(300000): tree = tree.insert(i) return True def test_insert() -> bool: """Test the insert() method of the tree correctly balances, colors, and inserts. """ tree = RedBlackTree(0) tree.insert(8) tree.insert(-8) tree.insert(4) tree.insert(12) tree.insert(10) tree.insert(11) ans = RedBlackTree(0, 0) ans.left = RedBlackTree(-8, 0, ans) ans.right = RedBlackTree(8, 1, ans) ans.right.left = RedBlackTree(4, 0, ans.right) ans.right.right = RedBlackTree(11, 0, ans.right) ans.right.right.left = RedBlackTree(10, 1, ans.right.right) ans.right.right.right = RedBlackTree(12, 1, ans.right.right) return tree == ans def test_insert_and_search() -> bool: """Tests searching through the tree for values.""" tree = RedBlackTree(0) tree.insert(8) tree.insert(-8) tree.insert(4) tree.insert(12) tree.insert(10) tree.insert(11) if 5 in tree or -6 in tree or -10 in tree or 13 in tree: # Found something not in there return False if not (11 in tree and 12 in tree and -8 in tree and 0 in tree): # Didn't find something in there return False return True def test_insert_delete() -> bool: """Test the insert() and delete() method of the tree, verifying the insertion and removal of elements, and the balancing of the tree. """ tree = RedBlackTree(0) tree = tree.insert(-12) tree = tree.insert(8) tree = tree.insert(-8) tree = tree.insert(15) tree = tree.insert(4) tree = tree.insert(12) tree = tree.insert(10) tree = tree.insert(9) tree = tree.insert(11) tree = tree.remove(15) tree = tree.remove(-12) tree = tree.remove(9) if not tree.check_color_properties(): return False if list(tree.inorder_traverse()) != [-8, 0, 4, 8, 10, 11, 12]: return False return True def test_floor_ceil() -> bool: """Tests the floor and ceiling functions in the tree.""" tree = RedBlackTree(0) tree.insert(-16) tree.insert(16) tree.insert(8) tree.insert(24) tree.insert(20) tree.insert(22) tuples = [(-20, None, -16), (-10, -16, 0), (8, 8, 8), (50, 24, None)] for val, floor, ceil in tuples: if tree.floor(val) != floor or tree.ceil(val) != ceil: return False return True def test_min_max() -> bool: """Tests the min and max functions in the tree.""" tree = RedBlackTree(0) tree.insert(-16) tree.insert(16) tree.insert(8) tree.insert(24) tree.insert(20) tree.insert(22) if tree.get_max() != 22 or tree.get_min() != -16: return False return True def test_tree_traversal() -> bool: """Tests the three different tree traversal functions.""" tree = RedBlackTree(0) tree = tree.insert(-16) tree.insert(16) tree.insert(8) tree.insert(24) tree.insert(20) tree.insert(22) if list(tree.inorder_traverse()) != [-16, 0, 8, 16, 20, 22, 24]: return False if list(tree.preorder_traverse()) != [0, -16, 16, 8, 22, 20, 24]: return False if list(tree.postorder_traverse()) != [-16, 8, 20, 24, 22, 16, 0]: return False return True def test_tree_chaining() -> bool: """Tests the three different tree chaining functions.""" tree = RedBlackTree(0) tree = tree.insert(-16).insert(16).insert(8).insert(24).insert(20).insert(22) if list(tree.inorder_traverse()) != [-16, 0, 8, 16, 20, 22, 24]: return False if list(tree.preorder_traverse()) != [0, -16, 16, 8, 22, 20, 24]: return False if list(tree.postorder_traverse()) != [-16, 8, 20, 24, 22, 16, 0]: return False return True def print_results(msg: str, passes: bool) -> None: print(str(msg), "works!" if passes else "doesn't work :(") def pytests() -> None: assert test_rotations() assert test_insert() assert test_insert_and_search() assert test_insert_delete() assert test_floor_ceil() assert test_tree_traversal() assert test_tree_chaining() def main() -> None: """ >>> pytests() """ print_results("Rotating right and left", test_rotations()) print_results("Inserting", test_insert()) print_results("Searching", test_insert_and_search()) print_results("Deleting", test_insert_delete()) print_results("Floor and ceil", test_floor_ceil()) print_results("Tree traversal", test_tree_traversal()) print_results("Tree traversal", test_tree_chaining()) print("Testing tree balancing...") print("This should only be a few seconds.") test_insertion_speed() print("Done!") if __name__ == "__main__": main()
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# git ls-files --others --exclude-from=.git/info/exclude # Lines that start with '#' are comments. # For a project mostly in C, the following would be a good set of # exclude patterns (uncomment them if you want to use them): # *.[oa] # *~
# git ls-files --others --exclude-from=.git/info/exclude # Lines that start with '#' are comments. # For a project mostly in C, the following would be a good set of # exclude patterns (uncomment them if you want to use them): # *.[oa] # *~
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 77: https://projecteuler.net/problem=77 It is possible to write ten as the sum of primes in exactly five different ways: 7 + 3 5 + 5 5 + 3 + 2 3 + 3 + 2 + 2 2 + 2 + 2 + 2 + 2 What is the first value which can be written as the sum of primes in over five thousand different ways? """ from functools import lru_cache from math import ceil from typing import Optional, Set NUM_PRIMES = 100 primes = set(range(3, NUM_PRIMES, 2)) primes.add(2) prime: int for prime in range(3, ceil(NUM_PRIMES ** 0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100) def partition(number_to_partition: int) -> Set[int]: """ Return a set of integers corresponding to unique prime partitions of n. The unique prime partitions can be represented as unique prime decompositions, e.g. (7+3) <-> 7*3 = 12, (3+3+2+2) = 3*3*2*2 = 36 >>> partition(10) {32, 36, 21, 25, 30} >>> partition(15) {192, 160, 105, 44, 112, 243, 180, 150, 216, 26, 125, 126} >>> len(partition(20)) 26 """ if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} ret: Set[int] = set() prime: int sub: int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime): ret.add(sub * prime) return ret def solution(number_unique_partitions: int = 5000) -> Optional[int]: """ Return the smallest integer that can be written as the sum of primes in over m unique ways. >>> solution(4) 10 >>> solution(500) 45 >>> solution(1000) 53 """ for number_to_partition in range(1, NUM_PRIMES): if len(partition(number_to_partition)) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"{solution() = }")
""" Project Euler Problem 77: https://projecteuler.net/problem=77 It is possible to write ten as the sum of primes in exactly five different ways: 7 + 3 5 + 5 5 + 3 + 2 3 + 3 + 2 + 2 2 + 2 + 2 + 2 + 2 What is the first value which can be written as the sum of primes in over five thousand different ways? """ from functools import lru_cache from math import ceil from typing import Optional, Set NUM_PRIMES = 100 primes = set(range(3, NUM_PRIMES, 2)) primes.add(2) prime: int for prime in range(3, ceil(NUM_PRIMES ** 0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100) def partition(number_to_partition: int) -> Set[int]: """ Return a set of integers corresponding to unique prime partitions of n. The unique prime partitions can be represented as unique prime decompositions, e.g. (7+3) <-> 7*3 = 12, (3+3+2+2) = 3*3*2*2 = 36 >>> partition(10) {32, 36, 21, 25, 30} >>> partition(15) {192, 160, 105, 44, 112, 243, 180, 150, 216, 26, 125, 126} >>> len(partition(20)) 26 """ if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} ret: Set[int] = set() prime: int sub: int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime): ret.add(sub * prime) return ret def solution(number_unique_partitions: int = 5000) -> Optional[int]: """ Return the smallest integer that can be written as the sum of primes in over m unique ways. >>> solution(4) 10 >>> solution(500) 45 >>> solution(1000) 53 """ for number_to_partition in range(1, NUM_PRIMES): if len(partition(number_to_partition)) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Problem 125: https://projecteuler.net/problem=125 The palindromic number 595 is interesting because it can be written as the sum of consecutive squares: 6^2 + 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2. There are exactly eleven palindromes below one-thousand that can be written as consecutive square sums, and the sum of these palindromes is 4164. Note that 1 = 0^2 + 1^2 has not been included as this problem is concerned with the squares of positive integers. Find the sum of all the numbers less than 10^8 that are both palindromic and can be written as the sum of consecutive squares. """ def is_palindrome(n: int) -> bool: """ Check if an integer is palindromic. >>> is_palindrome(12521) True >>> is_palindrome(12522) False >>> is_palindrome(12210) False """ if n % 10 == 0: return False s = str(n) return s == s[::-1] def solution() -> int: """ Returns the sum of all numbers less than 1e8 that are both palindromic and can be written as the sum of consecutive squares. """ LIMIT = 10 ** 8 answer = set() first_square = 1 sum_squares = 5 while sum_squares < LIMIT: last_square = first_square + 1 while sum_squares < LIMIT: if is_palindrome(sum_squares): answer.add(sum_squares) last_square += 1 sum_squares += last_square ** 2 first_square += 1 sum_squares = first_square ** 2 + (first_square + 1) ** 2 return sum(answer) if __name__ == "__main__": print(solution())
""" Problem 125: https://projecteuler.net/problem=125 The palindromic number 595 is interesting because it can be written as the sum of consecutive squares: 6^2 + 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2. There are exactly eleven palindromes below one-thousand that can be written as consecutive square sums, and the sum of these palindromes is 4164. Note that 1 = 0^2 + 1^2 has not been included as this problem is concerned with the squares of positive integers. Find the sum of all the numbers less than 10^8 that are both palindromic and can be written as the sum of consecutive squares. """ def is_palindrome(n: int) -> bool: """ Check if an integer is palindromic. >>> is_palindrome(12521) True >>> is_palindrome(12522) False >>> is_palindrome(12210) False """ if n % 10 == 0: return False s = str(n) return s == s[::-1] def solution() -> int: """ Returns the sum of all numbers less than 1e8 that are both palindromic and can be written as the sum of consecutive squares. """ LIMIT = 10 ** 8 answer = set() first_square = 1 sum_squares = 5 while sum_squares < LIMIT: last_square = first_square + 1 while sum_squares < LIMIT: if is_palindrome(sum_squares): answer.add(sum_squares) last_square += 1 sum_squares += last_square ** 2 first_square += 1 sum_squares = first_square ** 2 + (first_square + 1) ** 2 return sum(answer) if __name__ == "__main__": print(solution())
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Problem 81: https://projecteuler.net/problem=81 In the 5 by 5 matrix below, the minimal path sum from the top left to the bottom right, by only moving to the right and down, is indicated in bold red and is equal to 2427. [131] 673 234 103 18 [201] [96] [342] 965 150 630 803 [746] [422] 111 537 699 497 [121] 956 805 732 524 [37] [331] Find the minimal path sum from the top left to the bottom right by only moving right and down in matrix.txt (https://projecteuler.net/project/resources/p081_matrix.txt), a 31K text file containing an 80 by 80 matrix. """ import os def solution(filename: str = "matrix.txt") -> int: """ Returns the minimal path sum from the top left to the bottom right of the matrix. >>> solution() 427337 """ with open(os.path.join(os.path.dirname(__file__), filename), "r") as in_file: data = in_file.read() grid = [[int(cell) for cell in row.split(",")] for row in data.strip().splitlines()] dp = [[0 for cell in row] for row in grid] n = len(grid[0]) dp = [[0 for i in range(n)] for j in range(n)] dp[0][0] = grid[0][0] for i in range(1, n): dp[0][i] = grid[0][i] + dp[0][i - 1] for i in range(1, n): dp[i][0] = grid[i][0] + dp[i - 1][0] for i in range(1, n): for j in range(1, n): dp[i][j] = grid[i][j] + min(dp[i - 1][j], dp[i][j - 1]) return dp[-1][-1] if __name__ == "__main__": print(f"{solution() = }")
""" Problem 81: https://projecteuler.net/problem=81 In the 5 by 5 matrix below, the minimal path sum from the top left to the bottom right, by only moving to the right and down, is indicated in bold red and is equal to 2427. [131] 673 234 103 18 [201] [96] [342] 965 150 630 803 [746] [422] 111 537 699 497 [121] 956 805 732 524 [37] [331] Find the minimal path sum from the top left to the bottom right by only moving right and down in matrix.txt (https://projecteuler.net/project/resources/p081_matrix.txt), a 31K text file containing an 80 by 80 matrix. """ import os def solution(filename: str = "matrix.txt") -> int: """ Returns the minimal path sum from the top left to the bottom right of the matrix. >>> solution() 427337 """ with open(os.path.join(os.path.dirname(__file__), filename), "r") as in_file: data = in_file.read() grid = [[int(cell) for cell in row.split(",")] for row in data.strip().splitlines()] dp = [[0 for cell in row] for row in grid] n = len(grid[0]) dp = [[0 for i in range(n)] for j in range(n)] dp[0][0] = grid[0][0] for i in range(1, n): dp[0][i] = grid[0][i] + dp[0][i - 1] for i in range(1, n): dp[i][0] = grid[i][0] + dp[i - 1][0] for i in range(1, n): for j in range(1, n): dp[i][j] = grid[i][j] + min(dp[i - 1][j], dp[i][j - 1]) return dp[-1][-1] if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" You have m types of coins available in infinite quantities where the value of each coins is given in the array S=[S0,... Sm-1] Can you determine number of ways of making change for n units using the given types of coins? https://www.hackerrank.com/challenges/coin-change/problem """ def dp_count(S, n): """ >>> dp_count([1, 2, 3], 4) 4 >>> dp_count([1, 2, 3], 7) 8 >>> dp_count([2, 5, 3, 6], 10) 5 >>> dp_count([10], 99) 0 >>> dp_count([4, 5, 6], 0) 1 >>> dp_count([1, 2, 3], -5) 0 """ if n < 0: return 0 # table[i] represents the number of ways to get to amount i table = [0] * (n + 1) # There is exactly 1 way to get to zero(You pick no coins). table[0] = 1 # Pick all coins one by one and update table[] values # after the index greater than or equal to the value of the # picked coin for coin_val in S: for j in range(coin_val, n + 1): table[j] += table[j - coin_val] return table[n] if __name__ == "__main__": import doctest doctest.testmod()
""" You have m types of coins available in infinite quantities where the value of each coins is given in the array S=[S0,... Sm-1] Can you determine number of ways of making change for n units using the given types of coins? https://www.hackerrank.com/challenges/coin-change/problem """ def dp_count(S, n): """ >>> dp_count([1, 2, 3], 4) 4 >>> dp_count([1, 2, 3], 7) 8 >>> dp_count([2, 5, 3, 6], 10) 5 >>> dp_count([10], 99) 0 >>> dp_count([4, 5, 6], 0) 1 >>> dp_count([1, 2, 3], -5) 0 """ if n < 0: return 0 # table[i] represents the number of ways to get to amount i table = [0] * (n + 1) # There is exactly 1 way to get to zero(You pick no coins). table[0] = 1 # Pick all coins one by one and update table[] values # after the index greater than or equal to the value of the # picked coin for coin_val in S: for j in range(coin_val, n + 1): table[j] += table[j - coin_val] return table[n] if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
def reverse_letters(input_str: str) -> str: """ Reverses letters in a given string without adjusting the position of the words >>> reverse_letters('The cat in the hat') 'ehT tac ni eht tah' >>> reverse_letters('The quick brown fox jumped over the lazy dog.') 'ehT kciuq nworb xof depmuj revo eht yzal .god' >>> reverse_letters('Is this true?') 'sI siht ?eurt' >>> reverse_letters("I love Python") 'I evol nohtyP' """ return " ".join([word[::-1] for word in input_str.split()]) if __name__ == "__main__": import doctest doctest.testmod()
def reverse_letters(input_str: str) -> str: """ Reverses letters in a given string without adjusting the position of the words >>> reverse_letters('The cat in the hat') 'ehT tac ni eht tah' >>> reverse_letters('The quick brown fox jumped over the lazy dog.') 'ehT kciuq nworb xof depmuj revo eht yzal .god' >>> reverse_letters('Is this true?') 'sI siht ?eurt' >>> reverse_letters("I love Python") 'I evol nohtyP' """ return " ".join([word[::-1] for word in input_str.split()]) if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/usr/bin/env python # # Sort large text files in a minimum amount of memory # import argparse import os class FileSplitter: BLOCK_FILENAME_FORMAT = "block_{0}.dat" def __init__(self, filename): self.filename = filename self.block_filenames = [] def write_block(self, data, block_number): filename = self.BLOCK_FILENAME_FORMAT.format(block_number) with open(filename, "w") as file: file.write(data) self.block_filenames.append(filename) def get_block_filenames(self): return self.block_filenames def split(self, block_size, sort_key=None): i = 0 with open(self.filename) as file: while True: lines = file.readlines(block_size) if lines == []: break if sort_key is None: lines.sort() else: lines.sort(key=sort_key) self.write_block("".join(lines), i) i += 1 def cleanup(self): map(lambda f: os.remove(f), self.block_filenames) class NWayMerge: def select(self, choices): min_index = -1 min_str = None for i in range(len(choices)): if min_str is None or choices[i] < min_str: min_index = i return min_index class FilesArray: def __init__(self, files): self.files = files self.empty = set() self.num_buffers = len(files) self.buffers = {i: None for i in range(self.num_buffers)} def get_dict(self): return { i: self.buffers[i] for i in range(self.num_buffers) if i not in self.empty } def refresh(self): for i in range(self.num_buffers): if self.buffers[i] is None and i not in self.empty: self.buffers[i] = self.files[i].readline() if self.buffers[i] == "": self.empty.add(i) self.files[i].close() if len(self.empty) == self.num_buffers: return False return True def unshift(self, index): value = self.buffers[index] self.buffers[index] = None return value class FileMerger: def __init__(self, merge_strategy): self.merge_strategy = merge_strategy def merge(self, filenames, outfilename, buffer_size): buffers = FilesArray(self.get_file_handles(filenames, buffer_size)) with open(outfilename, "w", buffer_size) as outfile: while buffers.refresh(): min_index = self.merge_strategy.select(buffers.get_dict()) outfile.write(buffers.unshift(min_index)) def get_file_handles(self, filenames, buffer_size): files = {} for i in range(len(filenames)): files[i] = open(filenames[i], "r", buffer_size) return files class ExternalSort: def __init__(self, block_size): self.block_size = block_size def sort(self, filename, sort_key=None): num_blocks = self.get_number_blocks(filename, self.block_size) splitter = FileSplitter(filename) splitter.split(self.block_size, sort_key) merger = FileMerger(NWayMerge()) buffer_size = self.block_size / (num_blocks + 1) merger.merge(splitter.get_block_filenames(), filename + ".out", buffer_size) splitter.cleanup() def get_number_blocks(self, filename, block_size): return (os.stat(filename).st_size / block_size) + 1 def parse_memory(string): if string[-1].lower() == "k": return int(string[:-1]) * 1024 elif string[-1].lower() == "m": return int(string[:-1]) * 1024 * 1024 elif string[-1].lower() == "g": return int(string[:-1]) * 1024 * 1024 * 1024 else: return int(string) def main(): parser = argparse.ArgumentParser() parser.add_argument( "-m", "--mem", help="amount of memory to use for sorting", default="100M" ) parser.add_argument( "filename", metavar="<filename>", nargs=1, help="name of file to sort" ) args = parser.parse_args() sorter = ExternalSort(parse_memory(args.mem)) sorter.sort(args.filename[0]) if __name__ == "__main__": main()
#!/usr/bin/env python # # Sort large text files in a minimum amount of memory # import argparse import os class FileSplitter: BLOCK_FILENAME_FORMAT = "block_{0}.dat" def __init__(self, filename): self.filename = filename self.block_filenames = [] def write_block(self, data, block_number): filename = self.BLOCK_FILENAME_FORMAT.format(block_number) with open(filename, "w") as file: file.write(data) self.block_filenames.append(filename) def get_block_filenames(self): return self.block_filenames def split(self, block_size, sort_key=None): i = 0 with open(self.filename) as file: while True: lines = file.readlines(block_size) if lines == []: break if sort_key is None: lines.sort() else: lines.sort(key=sort_key) self.write_block("".join(lines), i) i += 1 def cleanup(self): map(lambda f: os.remove(f), self.block_filenames) class NWayMerge: def select(self, choices): min_index = -1 min_str = None for i in range(len(choices)): if min_str is None or choices[i] < min_str: min_index = i return min_index class FilesArray: def __init__(self, files): self.files = files self.empty = set() self.num_buffers = len(files) self.buffers = {i: None for i in range(self.num_buffers)} def get_dict(self): return { i: self.buffers[i] for i in range(self.num_buffers) if i not in self.empty } def refresh(self): for i in range(self.num_buffers): if self.buffers[i] is None and i not in self.empty: self.buffers[i] = self.files[i].readline() if self.buffers[i] == "": self.empty.add(i) self.files[i].close() if len(self.empty) == self.num_buffers: return False return True def unshift(self, index): value = self.buffers[index] self.buffers[index] = None return value class FileMerger: def __init__(self, merge_strategy): self.merge_strategy = merge_strategy def merge(self, filenames, outfilename, buffer_size): buffers = FilesArray(self.get_file_handles(filenames, buffer_size)) with open(outfilename, "w", buffer_size) as outfile: while buffers.refresh(): min_index = self.merge_strategy.select(buffers.get_dict()) outfile.write(buffers.unshift(min_index)) def get_file_handles(self, filenames, buffer_size): files = {} for i in range(len(filenames)): files[i] = open(filenames[i], "r", buffer_size) return files class ExternalSort: def __init__(self, block_size): self.block_size = block_size def sort(self, filename, sort_key=None): num_blocks = self.get_number_blocks(filename, self.block_size) splitter = FileSplitter(filename) splitter.split(self.block_size, sort_key) merger = FileMerger(NWayMerge()) buffer_size = self.block_size / (num_blocks + 1) merger.merge(splitter.get_block_filenames(), filename + ".out", buffer_size) splitter.cleanup() def get_number_blocks(self, filename, block_size): return (os.stat(filename).st_size / block_size) + 1 def parse_memory(string): if string[-1].lower() == "k": return int(string[:-1]) * 1024 elif string[-1].lower() == "m": return int(string[:-1]) * 1024 * 1024 elif string[-1].lower() == "g": return int(string[:-1]) * 1024 * 1024 * 1024 else: return int(string) def main(): parser = argparse.ArgumentParser() parser.add_argument( "-m", "--mem", help="amount of memory to use for sorting", default="100M" ) parser.add_argument( "filename", metavar="<filename>", nargs=1, help="name of file to sort" ) args = parser.parse_args() sorter = ExternalSort(parse_memory(args.mem)) sorter.sort(args.filename[0]) if __name__ == "__main__": main()
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
JFIF``C      C  9:" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?361@MK` 4wgNc]wb;[Y,T~5i_58Da^a&o uNE*twimCYNӚӶR6.۷8"K5Γo& ȀFepEH!(Vr$i ufH\p[gJ᷇iv!b.x]>,'Z?ZGo$Cq#z5` (`T /i!5 XXdz<,!+YgRPV5+ \Y]WҖ0Xp›@Mej52[ڣ4揭^Ib?Mt+ w(mt?صzmˏ0>JZE 81(-|CebI>֬kDԜOOmIԴɧVݞ#`. ?h.i'h"TcpWxMui@}o4ʹfD|W#k)fM23@aDl`1PԒO.9֤uUUA*lE'h#^Nj,$dwEui+(ygkeĆOMpcc_TMNj4S2?z>&['ՀTmR3ϽryEx*ɫ2_[HæhYB+ \լQh/+կ4 ^ahwC7 Q |o]SJOisZe޸KsAlbyZgnhdz"26Ҽ.GޫfnVaz iK=v~nhЬ0? }^55sp.KmKmQl_.~}7)$bcw<{HgrHsCjE*C8㚩D[H换?ĺ"{[k9<U.G3=+& :nu"C_MqcgZ˸m~cP3㿅Qk[wԂ 8n&hf3V+ܴK;}ni.dPF~0Eid+U +u umtb9@#J=q=讋<6v_OZh((((&S_WpqUg Uz(L`20jޡdu~Vʐp2}JO+8=(B Xv\һ,v&4ow]}kҞ7R`sR {z!UX}Ze-f٣gҲ,VŚ]H*h4n8@Z?)M=PnÖeQ2ɍ[ )HGo3Em=MlGxcߨ~R$iFI_JdvFZoܿ=IL^vs?T.Ll?v6҅0;@o& zԒx_1wְ'l̾/ rWPvm=Zwo5+&Il<{ǂeK}=;F5𕇄mCy`C?ZƱpj% d*H?fO rQqpWjB-6f 2W9+;G]4.iZiXQ*Ѹ~MxD6Q~oqL:)w^(#4"ȮgWY.H&U8F$AoL ݑ#I!<{$کη}xګM;I4azݸUU=qUoU5n#@тMs3Ku sdֺ7'NBz$]]Yʌeg^n,ۏU_ZpHjI6y#Sր5<A\A!8º٣{UW` MVؚIgnOMWqs@F>8`eB>cKw$ݕ9+)#h7[̍;OVtMnO BVifIctdEbrj:pDbO?p(`u>BNњ;]~.e (ʏz5]d)*O )|<ǟ\i23ƠoכIA#+)VS_UMrlkpw^o'D~ P_dB0'{-j4Zq>5'n1q޼sm&Xmв6VV8bi~ i Z$t7Y *0H3Ҵ[Heޣh@X$|5n b}\E&^I}5|Sb}vDFcu1Y|A&c,~m}tSXE8dX#Pzc[009}4ֹF[9$o Ok#7v(ͷF3hOWQS^7v,qYz<2+04&!Uh]]\EeUhv)cՋ{Ȼ|G^FoIx٦+ O<Tz X͊?Z5n Z_iáܺs2Qrk6i~uѪ]SFY"[cT66KUf~CJE.eW|oq[Iow ,cޫ\4%TI>Քk׭o4~[)_JŠ(((((( nԐjfPc!qUh VhZ~Ii.9Qj>;|N&6۸㎕Ӷ0RCXTڃ\_--%ǘ+vQ~q#6k0|=( %Ys6Ԙ|è:Us )\5+Sk?g)oG@c\H4d?"j}g$|~b. ̙MpFh1>KsZ% H5P no 5 d~ڴtZPmBlqia 0WYfԆ-HI%Q;d2+#BburKTVuYff91fk;WUm ;dd6*REPAl[Qq u5KẒѻ֡-ôqq#F*XHL?ʽg\Oت4U%:ϸQV6$P-_1&;E1o R˴n՝t4*~D#$ۙF 97ݗj}PK{8i${g8%(Rᷥ1KDPI9nhJYmH&6~G"ȿ3j͒{s'2Hڡ/'z*wր/XV9$nV-/)8#| ;u -1ڀ5- d8ӒOUmm01ޱ'ْ))HTڀ:R^GcS-۝oqd?׮ I۫E뒸k-ŨЩ\lSՃoF)Ui}MK&%|SMZ"7\O8AC |d?wEMn_ EW`Iy644Q8VdGSS_ֶ $q<j~"@5Xvkus>`{PKq5Sw;U;NK,f8I!@V[6]<g؛Ҁ&=ry}Od{<Su+4}K~#b&^7Pzm$rOmKO[/.lplsIcZ[[;VMޫĪТ0q@\嫒}2LsY:]60#)2̣ր-H$t.haS @yg%q1p=w:h^oq|Uloʿ`Zʟu/9-^V%Vc8+N%vۺ2m2(n[U1v죑LHD-2N:BU ~-S*h&m4~׹-|ĞMEq6ce,~@9oYt֞au=6")rPڀ1VVm>M%Y0%kKSvGtm>J{ٕ<`|O-,+z{As ,8{. zZfvbEo ^#tr`Oր0m~p 27L3eskW!y^YʳF$7Oh%hH8b\$֭UEk򌝳7-̲[*?{ݶ,LxȠ6dd?2E 9S$Gq{Y<a}.v011P]Uõv& xBLhwF2(.tоR:M((((Q@Q@Q@(-Bu yfaqGe$e:zNS,mx$NKfxu4׾)&Em55 |~Sr1hefST~eCёFM,6"U(Eq[) IޣF{v:j>FmsI5žU|&iqo2FX>P{UYJ Ɛ䢳|IPJsz 9.wͻf:_HOWHx3אhBE`s55i K 7cWU+TR3 (r3IHRPj|<|sg"enl~>psހ7"HzҖ)n^>cֱmbcON^zP]zޟ#c zg6f_,,+cJ]s=eY>m|Df~##$$zܳQ}{eB˚S}✎ajZEKבH~:^FA拏Fhujkeo0 0:ֱϛ/{Fwo"S{d]hԦe*1CȬUq L<.x Lv2V]#z-İachěsS>Z,qҳ|=-Ȫmcojnh6vz&hB I3s}؞դUޔQ-m&xf|lu5WU_i7(:}jMj8Fxsm Q@ oqwvw c2K^ֵ/nDmo0V^qֲf9rzyeˍTmJhZUddu]>E>.pzջ8rk,3ڀ9oxsCTUܟ}zU4K/~nBk]?e5;q\BE1@1]Ejw2;ܰe=1֋BE4YGU?Whnh0Qh<qT~Ic'RzU`5ydQiKeNN ȬU2Rq^ej^'nl> 9 76=B&b}ckm(>P2>%\<E3VeSiUGPj|&qjb#6en6:E|Aᔑ2(\gn4mڀ7'q'ZMs1kuX^bYdn@IX0 RJ⡃IX'ܬr@<K4\|D#]l_,]9+Nb,sN$C)o4x~ B[nEj_i&n;V:S~%ᇘ6p@Gqn͵ѕz[QѬD2*l^Ik~MnZK\e@{ir+FR9(((?((((! ,wOl'\0 9Oj_+ YPȧ1Uf"g¬pFj[!iv=sz8cqnf{@3fs#ڳum]chSW$ [k@Q/hb |c0ln+6͘E _RhzqWl4$ӎ( [/dcHg<vi5'-^'8[9G=HGe.XO~n=*^dE$f!Fq^| lfy 20+r}F8I%Ļ#zV|%ԙWe}oݪ@,zr1*w'3nEii߳qGok~˰}2D:@kVPL)w_BzWu vV8HGZ=҇UU[޳5FUUUƀ4hZHc߷gfIvyZ654"T:ɞFVr2ꣽt,VS=AvcL$xGL3qk3JOQIØA@5NJ{x(Wr=MQYI&U=Eb<q2;;Gjqk53+ "8[Y$Xس8mKZe\mW|VŤIFAՄha~HQՐ6ⶓgE!rq"T&k,AOq%ʈfrhӯa6[iۑ*֠f,6OaF=j9`0ެY}]5$p( gpnRcZ1\34{±]ٴt <k6ֺ찪3gGޠqG$+isż6{,~dظ^xMn rhv[[{ 5c5[I^kspՇƺe´o$խo{2M$Z5IknUh,Ѷ+.?ӍѤ &0J\"kaǠ_L.t g ,[vzw3kfA*8ozfaRmҀ4{X[Бei;L6y*k4um5]N1@iK\Jc k>Ķz+[;TH?ZXO,vV)=EL2=sy0܅Mִ_=Bq6wGڦV[L[ IbGW.YwDžn€#k/7Z\Wjc+G]>]2>ްo4o4&WIe!O_1Oz? `Ƕ:U;=FAuVRЃֻ)kgfPc z@4mF=Jrj֎\~Uh[վl\{:43s뚞[<bF=F>7(]f6P@ ]e.Eo19wbW+qUy`T $aʓրmiyO)wF;0fzYck/cw<#g7,ϙ> _DHr z5yfajigڲC6r@h:@CIk-Xx ( ( )͜{PhQEQE}C+i$b 8*zs,DaP~#uZgpټxcP+mMxi=+J XHяP:k,>]Jz 괯eY<K*++x 5 5H76h?xjZi{|}ܑ֭y>JczP|4+IpNk]6 iZՓ_j,__F5`PƬm|fdY5b \UPv77*7Ff#t=ɇ#{?Bdm<U^l5uAȥy'Ҁ5'u[uQF|o-j7աFHvG'U^JZ}ŹVY8k:?yNBK}]DR2iӵb@ù47373Ixr>\'=*_]XgPKbvݪ v \a?΂HV9!3-gU<;5Ө޹x=*2H bT][Ɏ1岵szYjD[OAWtȲ L|E!k"λ=Ƞ 6X!}I&=z95 ԣK|ts ,=@2'pUA.ZXxWԚbzQφY;=tIjv5>ڸY|g5YeFI[Ys@@Tegn@'Yޛ &Ue<St Nj O d t!IާQBbhn$ \G[UagZhvxRL)_ֵ̉~PhRKiJJ j#Z6<GCD+EeTSҥH٦z(IV~cH\h[mjFZ^&EeSPj.c"euTVZ~d=4mNGݪ+GdMV}ӦaFfn=*aܩ5FT:-ipL{hSG551č;Tҝ .Gs!YqM,Qmm܌jسo._}:.M4C =EE5ڮUcżqsw]%ʖY GVm2XV;-(4agow_j*`4r(i6TbRVkӄKc9R;W LͽkY[dZə;^ր9'ďk:tM]TeLCdX5h1\chtVӅ1^9=hǹ˵ s#̴MB1 Q5l?,\iM91.u]\|nW,N; jny$MCum ج{U8O3fn4r'/9c@ -!ӧY~= y4pp z4< $8DȑXÞz h\V45Hm!:VJ\PӚ279dr@#bJG:ЁJ6wn2vziBw>5.lsL+Ͼ(QO>mۻ S(mxmv`i4w Tω>Qޚҳmeqz8}J-qA6u.i >As@]=J*Is{$g8j9J_cT&mVc(_jd(S(X,j́6I7-P;,󪕖M.uU)uhl\Dp=f<h+w5Z;4^EJג0#ALex6βfY8 =}*5nVmLjj"ޮ&w :) 4Ny431)uoZK8 *_],"<d$7m)zSnV;Ź#v;bHt{|v*u@IlDfUZxofqދmtzSo.XBoZn7,s7fg\,z .8ɡ^  SӢ[i:(gY$UqQ\}1hՆޣ79?%v~r&Yy~g@ >-IJ,tOן_IutHgri&I1=Ubp,ˎO|kƺrxvM$YWH`=5xSX+&0M`~|UV8$RKo/P+ͭn<i#r}ˁ`aAIZ,w=u믵yCZEq["A|odo1󢏣ր G_-cidrj[[=;T;ŸmĶFem;hմQ]5[u{_PӵH/1YϻZn5ƁnTPjZΰm]mTkB㲲{{=)@ M2$i*M?@-ٙ4݂)4j#p~5G_#zZ۪ȸݞtk3Eݩx"'կ[} {-?+p(эsx#((lӠe3yc!aT46<޴R8m&n+֒mF(n ZV۷#)V}& O٥fHNwky.4i57Kt,(썥0Lfan-ҪO% (qSNǸH$v$H!]!H嶑p!/31+~N٤!hEY k"#v-\jl%3yqU3Pwtn6}?5AYahzqV-fRiѲ,{@6' HTUl!0R$k,?e+p\oD#Y恊)U^M "E"?ڧkAA4UܫŤrFa8 \nz$cQ Ҁ9tf$-ٙZiyǹG-o '_nCPӳ/gH9=*T\*-fiZfH)-*-0[lnHҴjzT+(mtNݥR=(hQc<ȗR#̴=j~jݡ߼G=~^J̴𿗥|ٷLeYpis4|2FZNB!mn1_6GV tk[|vI%쥊#gfҀ2=I1HDۭ>%)2C@>Y LScMsoTOiqmGysR7m_)e'o|sZ nLJHPp ~m5k=Ğs/joIr77DȠ L_A^NuR,ĎS&ø\: CAlۻ6uK(G:]2HI$=ơ%,lY#S.fKP]H#k OS]F&Y0Ӝ#?E\!7%ٷC.חM .1Ҁ$YfU(:Q{\2\O9:=u1.AZisO o.9<'Ln/UGxXO,SK' ۹6>ż9:P;yiYfbLŏO ; xpd#V.,Z-r(vNwJz;emXN:S)yPA\Al֡?(4[ȍ,JAY.& czVv,.$RnM/u[{_3'rTVYxW3?jR24q?/xohD;ڹO4ZCPb>WߎP7j_ΌݻN:?w m]GQ7CVcpЃ &+5ʯ< \y׭(+9wfwI ʞ_A\]Zg\kwzuܑty$ԬpW)Ցa_)E5iX*n.mg4ePX юdgdžcq\jѱޝٶa[8x2ChO#,t_@D\̓Zj> t[Stڮ[$jW:Vm.>\ N uujo ""SEjzT"i~+Kiz埈t֖h䍐|5s~SVvE6;]."Ul3vAf;8yLabFYWM@<jxc\6љYÊh-_#haV^մ-bKr0۽fRo|`VoV m tݑҀ9mF]+ShHGF}(i'qc[5Y4fynEg|_{F6?5U/m "jBCV\w+?OPPVx`1C{yuy1~X<pW|Rf<rj;v,R2/:kps#Zsc3ZD'<W3}G[&Ԍ?u|f8X:xQww'8 ffoet5zE86v*hyiM7i}(VІ/ J$G}}L`w/QSހ+EqTs9%J6NjGwɽᙋ/gg[.v{{QfjZhh@]QJFUk}q˥Fi#ڊoE=z(ac¢䊑sc_EGF"v"x)luǘn 72"ْV O̚Mmr(e{ªr+&]2Kpj#xNO/zt{YG@~<<rHܙ۷'8-CJxK|- #*<zT+\ʷOjH!STG㿯X,{Ծbhgt<RϪHAOk}[ZVi%㉰ Yע<leܠ, k-CR}.hHI}*hgoO!m'95'oj~i$I nx (N;<sH>Rk6;X]Ň1ɦ3F6gl R\]>nEx<o#YArҷNj!^ObsLB@FsPr򖑛UWYU[JxF[G3$*quޣsr VH U']QJ8_N2h^nL$m<]Lmqyj;s*[/z鷑y iV?xTiز:z7~Q*ic߶1R@i.ZK=G-ZLҩkڤR=x.Kn?8 32ǭ$+/R.6۲>5y c]\I;ycpieҕ wA9'!yT|Tt Sd9l&!n]s3ۇZYWF ]qMhӜPy-18Ft3ynI>y`{T`rAִlYw'Nk<o֬ZJM@çya!o2pq.W/+2eZCog%T;Zo.4멒x%wMSЉvqOOZy5_6|GUVm {fwֵ ;RWYݡx t%貞Oz|P}mj$Q"l3w[xۏq@o:^c2=*햵IlvSt~ʶڔ|Qm&[?"X8V#mw m-KDT?:ϵ\KKG˷XV.xվmu}Bm&<k} kK2QKdiNא*{:ޏ4r,qOJڃM[y[ooJS"mVZOJ}\pt9j~&m?QB@ʐZ FYXmݏ\nbVqQu֖ _)|REe@b]*G OuY.6m3UTcf8>cYZgsv 6r+BB+c ̿Oc(9khHU[ˉ9 0Wk8n#b(<O]<ߞ^Zig?,\]!l)ֺhvw(㡠9b\`硭d]F>47˻77F̾p'^ .mVQQfib ff&W`,VmUPѺ< M :mU;{A$sn:l˞=h4=j"ە+ĢUSzPb@ E>XP=)]rnhs(?v-6Ȧjau=h +Ż ѐ9*sMǀc<t FNեk^, `mJ'Uy5 >}iȦV_GJ,yl Uu(C%Z%!q$4)$xffp3sw6bpwn]COgۚߖ6ip2W6V42lRצjݲCP68}JRfր=;FHHm gk\ͷtȣj<O}`J4r;=kֲe*ۭng>Cמi]ѪƵīxW#gr@dkflYrIo~_=khҬq#y|MQfKqox-$my-5OLyksw'P~"X Y[z޸_#PA|n{$lws\蠅U VNU-ՕOǨPPGjj3xO5&^Ru;#e$6)n4C<°bNjXa|,ioVfch#Xsa#X1#4{T#b8Wl_5WlUJo,{U b*nn:>c|_lV_-J@evPF)J=)(ߵO˻TU 9l#@ $tiK{~Dui-![\@0nE6sր%-RJjY]sw4vҮ+g-ckɳ*:WUmlazgu{c*nWڻ2;T#G/`ԭػFz^cE CT[G\[3B߻l5nB{|9XkMВ(Z0vV}Xv0\M,3t|~t^T>lźbc_Yj^^x h0^lrʏMO%o0_j~mל43BG(;zonFMeϯfiv)<H@V!ʍ.8DaI>nV΍+ yjO̾՞F=ԉ3\B2}#HGcIBzb295&Ծ ¨=EE,c?6тjY} aO%T'v2(KZ+;\7sTXk~`K@t֨Z-MQm8/_-aBz=( #hY'jд%cl2KAr#/EgY4EhcTVDV_)Ub@'ojw B h'DGZ#%5vrIh3kY$ڂǸҮ_B-X> d:Hd\WOg,v~dwBh'ۓsK?`w{U'|K<K}9K[cA44L4j2*Սu"*x{O3q& 2Fs@;=)dzQԅq|S (@^>v*$ۊ#-"1y4ًE74- >bx9V%eX1})U0 1ˊɼ$<SK[QB#/= P% on]/F~]UgV[~:Y~ᗶh\0-{:SXgf=(?/={#il뎴G^hڸF2^G9ccnGi$M`ZT,޻BW_8Z%=>P}+p{կ{~|rh˴ȼd>n>f.=j-=dH8ZuBHDmT2@@Nxmu F%dd0KeqGZf]wrbc%ښvJi0W׽C>-zP-4niJm"E*q_$n*(Uzk}AUC\J>]ʼςUFLP*~V;ִcO[įMQ`Uі}Uv}f6 \_@% R][t`x7Rr1(aiD`Ӛ]2ґ}"LH=qLPSŸ]{;@ Y1ʚNM"f?*@ܿ\ c:>jnh~޶4MO1w|v\<Ҁ;ek_:[wܬYjSxN,2: ޭ͖bO[ֺ}2I$R|Z[h "5nH<(?vx{Zͮ^vhʪ#/MR]t M OMch,-hiZ--qeМ(=ꦇGA$jqi7z ؑj6J[ZpK~3,v쏭;S5}5Ud*0TMՖ#x/Ӯ#+79SM ZYrH2S֪jz%ڦK6-o^&|Y&bkHsiz}vbmk/3P-#n2a63@֡c-lc@>t8ZH$6P+/L>U(e@<rIѓ"m,faq 5¬YMtxKC2zrHh@%*cjxf8Z!%+pw[{4Vo|Ȧc"W%[O Y$֪HVd fD+RğGX,VI8@'<O,36*HI-}jǎoČjcPH0PmE6]O94ELNNLm6<W-nÞPn#bH0GZ ~ t ir틽4\o5U;dSˈ];$yaw?J56/29x!F~7`2Xyw< qҝ c3.n@j2 M4o˵vgNK_9|e5|nۆ;~j%ʦ26P{{tp˵S,jfvظTZv;w/^1ذ3']Qi;c,۷`8d*客RòǥQFw~NkI~niʮ޴{W@(QTt)"Wjk[3B~*ޣ2=jhu2VTpvv Y4]V`"],yViYXŒv*47"qNkId# 6k1TKwdViJdeUIrpۉ*p_ -@iH,ku#:s6EjElіm3{қ}Ý߅g?^46g үUi6?둂(ZVI8ic%# xSսM9!>fgQ6L TV+N2qZ2폺xKvvF={oa+.LiXn>q$- W+K0)]I *w\vn+s$x?Q@*[55!tOf6c?<юv/ӏ-wP9G4jV ǥwLr7=ԴmWO=T;˽5GK/4ۏ3/nǕnYp[n3Kk$\̲&zP,1녹vX WIԉ+NIm k;Aӯ4yn&IUMBUucfº*#,%l<Oݪo$r&5AykcF](};\\i naq=h!62}oɾׁCj$kGi4۴3H84i$̣<hXIV6y$+R}$RBKHiY!o?o1;Vր*]'RVpq׵7X:ݤUA=p{StM?OE3yL M{[2v+LPG#W!Z6Y1n7iѴ@|WyEm%nUC00zU/gn0w:cItۚ8 ;^j\ %?/!s+zvXTCHOII']Ŷg=H+%я#qڞd{36W̙Wr_ޯZ2OWݜ:ݰ|r^7YP dVPp֮[!QPos!cIy"Z媱:Бym6_ky-3) 8#n޵ad{^R0l#Q={*q2ph1,72OBic9ǽ:u.VhRcs@ E;͌t01N}pR06YqҀ#^5s梷hV?:UUMĝښbf,ހ" ygҳuY Vh٤kB[f y}qY:lt-@zpiwZ4?2:TZl^q4P=']JCjRkS7 9ӧN`S|TC8<5[[V{$3/\v=CIpZ&8 _;Z.r:ץMdVI<b?3};Px;GM /PcqIlNmqVn=kZ]`3km}̟>0a@B9m<J7g 笵4U/TVbu D ~cGo̭WPP޴Knmzv*9^I$W, AU)P."e cWD+*ɹĚmP:zul5ݙ秵'Jnvh<Tdvd~i4-DlWԘۜ@ vҕ9}zRI4ScMr)@ UqNս엊=NN[ѬXWˌFZc}A>WH7ZO*CZ [h2MFfCTڏ!<@<srAx k)uɗkGKb̚ ۆJ'OӭK'd:G#ӮZuf8@j 'Nx8vg}v v# Rj:k'JcoCm{]82"`5+Iv&~RV4[UM>8;QR>%=̜Zlz=խI$͵Bpt9AI.6< sNXh}FtNeXgd=wpH|?1PhQ|ƏzA<v"qC~˱mmNkhn @(3@~)Lf+h?=Uu65OJn?t 6]8N8'iOʲ2ep:M3[k?ژcڹu8Sgw 8*(ХI|˸ޕ[~ͶSeowJ׼"ځ9#=h&ʯNzVť5oWeeڥe۸mf]wgjqڧ.*sֱu=ʠ6zַu)n1@;0y<CTVAjr{P}?ۊ[y=k*ݽI dGf^\anǵBbiȬGʣhtk3L1mA5ia H/oQQ#s6@yJ_v>.Æ;j[?kHV.k+7Zό ְۏ2!lZ%dmOZŽ\jTq@ZZ$: c%W>/oiJm*1WC?G(]vc^=(;uU9qӇVK}w]UqskE^QjR_])0UFh c$*z⸍gm֜%yȯj)wx -*'^hVFYe뚉^m:W ?D߹&xZ9RK0jgᑕAM8s@KRdèv&,dNd)-؜n{SfWڱPxٽM4[UYihyFb͸zm8~gr}9fz'ktR:PYY$o-Xddײ 0VLOďzNR2F.1Ҁ0C`0xz[*Vi q VU px&g܄+6Fz֋d犢~V$e[84W~R m5PpU*)ljцTz?pa@lT҃C<krv5`je6=(fH/:֟3L LHx_̵]wCv>V4G;žޔurz=iͬFѐ{F -۵enD\/Z|/uʥ#,u JV5f".Ь[ހxa #}㚷 壱EKpCo!<(_Eu}~V_ڏ1:8\Y6]ޡ !`_IQ,`h |qU 6QxY#U@jsH&UU&X(ڴ~ Ps2$o1' U ƛ3a< #]A,EP-3q" XE嬯hE4v:z‚U2B,|Ƅ(AKv4'ۍ(mĒl3kVɄP MaC J^"gKy$^V6!Q5޹>m>r+)^>uヌZMl>zk7niWqY߆4i?x+U/ >l<Pqg0qV^~sXZU7_z۷#h\BV߼,%ݪI4G'͌zMlѷHqu+yzlq3ɷ?k7eH%m+'#Cq0qHH#& *ÅF1* Wr?{N( QVm 栐32S  ydP459'ր(_۴36=럲Mr[mGm3ӵ`h8Qzֵco +jYvtxg+/WIAW<f_}(JK -vv/s5.!fo#%x۝.M(ҫi`~%P.fc *I$9hW'ޛG~a~y!n.ҳ/YY.9wgGdyZӭcI²kKZt GYm?]m6>hwLƫY>dm^ElaV6 OC\&%M 5cѳχrK`vk! A\ii0*8 jcc揳sh=ѳ?ÊuӶZti+c+P x~+p]E[$M)KF*GZokmq_,4Dd=x87yto? )zK{w|ƟSOHfX~/{k pC5ۈ+#)e4x@[ }JG[続%Ո"YmPWq:QnL6xj0UGvXGp~e}Mgk0d/2/f `Ȫ6DV J]4b1S݉Rv=^|v=Ew )6|p՟hRMxD@whw va>b+-xw-qްn|(Y2䒼o_~BNew*̓nϽ^o61HVXU:syWtM?RYW}&M`+c95oMmxl5hT;Z'QmFP\XZ4VeNAKtWTT+>*HE>ЅWb+ۥO5~ uzۤiEmp{=,kN(W0iP{AD[6˶%(xn 63zzֆu eBI4x<&ەEEH59 o9qVɔEɡPMgmu]Uhs@c4wJtG. L.Q\FѶJzU__t\'9 d-U ̗pIesZZ5ė0|c{?{u &E'<PHUU]zr"+J3wQ< S9@QMpo Ui $qYȯ˻FU|q@&n")*+k'FkC=+1`>eJH#=h.>i:rmcZme>TްZmahvEWҤ,Z&:(65ctpcDm8=*HQInBf)L=K#c}E<}슊NV34ݢ<)fFf{mn>O7v5VI=i:u rU7F8Hz((7Uy&co-ز^uitnq|l͎[Vyv`y?ʰ46N1ۚ|:=0F~^+]5j7@s>3/-O1aPpG=ċaү]x}-8QVy@Fn x +Xۉ<]X4vndhyRUwuG  qY ԯ䷆II RGݠ ũʗR+E*j@nQ{@tvS{$04|qހ1'f]ZgbEuhciYC2 5pr]]kM 픱UEIwkoٵI"Ip$o|?W9,w*9Y]JX(.XȫiӋV^z&;G"4mrj靼qz e#6?yI#tc#\duG*Q0YO;f n~^n85 ۓ\wtuەWzUۏ1wuv04(႞OAMuITti-KR$hS#8ݎl̎0yw١12Ȭ0Q,%lp VݕƑiq I 6ZFig"k+[F#< x]jk{R7^Ovf!h© 5QO굟?^]ܹNb>d1@@[vg IH.eu<2o51+Y{h65iqpnXދy0"oY |Wy>o$IJ?z4;8(yFUҘS[h..1 u߅-ueu;¶ "䵺 tu<@K=VI՜;Au6RgpkAg/=sYfpðV8(3ĺm ی yJ0u>.i$gy~jgp5h7ƫ{PKpw[]GMnR}>d*@\q:A'vMgF3&sHGVzC;mA)?R3Wm5b檨W U|c1SWy$XtZ},1/VZnvdsZ䴉dZu41VSI#clZ_ "qґ]J<˓ֱXiӅ|l 8ペPԖd<̠x,#~fmߒ>fqʑQmahԒdBtwG Yg?{.=s5+b]*煠_Ht2WSln?fũv~oU. vڝzPʰyqZ"m빇?Z9s2;UY.}[ӭjw6S\IEe%jT`$l<P^_є~LOFEY~a/؄<NX|_сXkzVmu!q LL~=2)88⸆DH|}jn~x᩷1 w#'Qhi~4~{.Y6z(U l`*z 5n׽$5쪍wiZA6 60ڽ+oY,An/ \ax*ϒfu#^tgl߀ Gv$!MFeXfMS:Kqܢ#@y3?YjzCn@yϏ|1nTegq@i:_̸kGĠGއ{?\@R6$qER1bųw:<Mk$X|V[IUY#nckVe5 ZޥX]L,6Ƞ?Ol ĜeI=CQ6͋B-1@7M{]Nm=-~tlmu9sZx[Fѥ<Z "C@qggi6Asp[|!ZQk2xLةi;xd=Ȥeykn-fo9$Wdc7hBB~?Ro"UmlV8'x^GakMF&fdn:/u-0GmJgImmbB>RB6Izul]Cd8$q׽yɣ^IV)>ypu#pk!gG+~b_k%³mlSJu#4mhg ։Tuk`EU/p k0VcP^ 2Qqf|k3ךmmYfPP@M3R{h hum=g^ MF?I8ǵhZiVzȷVEiO?T'z6>9r+gú0̉oOCҕm,#KZN&f֩4Ve@5>O8#Z 7]Ҽyk]-D.gsx"۰m3 ,6C7jϞUo#Sf񭶗<6w#ސQou+[NzԺd:xI.ι`a[ʰγB䗐pkSքgr|@4OԖ}'I[\kۇ˸Ik2F,sHq5QYi7s78D@x>l'VAѫMc!^w$2jI^xO_Zoo <JVnWle*&62pk:ua9-%5Z<4^iY%_#8)n$'ɋ;Fq{Vcܨy5ORҮ.uT.lcKNyڴ3!Ç}8+_9Ub'BkrU;jq5͗$Ft>z>pcX⢎G1\\|>"wĞY=[Jc7汉d,z`rހ7d}ִۤF\{V7_eM7V <] o3D.zt39A8X[D/{ϲ;3o9*Ϻk˟0_J]z׶HK4}Vdl1QwvS+ګ1,O@SZFJŬ}7œo{yY+ {KLXcqO|*1#D[ũ\ZЊ<:ܴg}L2k@ܙcݹU=sIwIc_Ǖ 4!]ʪNC\:>GO6`Wq@oh85,K.￸d:-ϻ޴-v;PV)%֦C8Zm8V *ֻ<20&ٖ%a5žLݳXVZy.e Tտ~i=L|'pơSZ>iՉe%-oi$4 xeUŻzbY4eè\Sj6UOD@6kv5XN#jOGa?\ e&F}=MW:zgr0c&;H%o"20xOG4 {{ Jר 4w3yl }K/ztVj]d'qThm,OV& @?yD=Cw[9eTm, cc @hM4pO|P'׌m6;ˋ(´3gG"S6}]< 9< 8N:-UԵ(۸^{Tqny/#; P:z]1<2V񅭶W4Jmj?.dx 鞔ɼh:/ ]-@j֡i_*Ƭ_Z=fK2s.LDOt^,ծJ5XdUmçĺ");}i:얻~Y{WQ$nۂhKGRq -"=kM0}XgVV<zUɢUa(1޹94hW]uDXc܍}hX_}h_t/)UuD"aqI8V-#C]2['qޖcd!:OnqY.n5Ukv#C~GVuM& Wo>tݬpd]A2̻c]{1iI"ə ڂoYǨ}2*ziwc%ͫ2H ;±|GXp;o<dRY yYϲ#݃kx_[Z8[̈Sq`y<c3Fy`!xcP0FafE2G$dךvkۛŲhڬ Rj=BFh|XUkZIR{{PƳᡬq+lP0Y>.Sg6?Үx_\}hwuNFҮ^ضߓ* QU՞ţ127;M?PX!ןJt9Gڤm>UѪ\> r-io!-X~UOnTV6\6+-af9[Z/x[D{@orh~af@?ZC[Uh3Rhc[{˖nqTv@|I,L[9m*2;! #IyZ.oĦKVNU/ş?&2YQG^w}e&3G7 $k<QrBe]&MÚ=c-ݮ|m徴>~-JiIZ6xaGp8?J(s6ڀ2ۛ8y#o0+SMKua /d̉RK`ݨ,gpUrƀ-H֣?wR ;~5 rZO1GP0h|HWQCH ҕfBi<ԛjooqUpNiN743r@%8JwlzT"~?ZVQ@:SC{n*l^ɠ j*|QG%ʫNt*ҷOOE[M|ӒHUloUb6psRR\Fv@A@nn#Yo5LLr7Z,4:*C_|YZ0+(s^ki׀gudnܿ+nu[}:6mxfx[hfMҀ<@L:aqҖG #֬xߑs[mk]~×-k8W :l򬋴xXv̰VMݲțeV8ݞv9fgl[yI 1VheZSY8GdYzhH-Ck+~ȐZ{-tJHI5Ф_Aqb$luF{ds$U{l+I%Y:x+xColj#ܫ2KX[ti֠B^^̠a[ yi'o΀3|Ksc{ o6EdIo j2G~Cx {JKldSKdjǨF>ʡik: </o9 Vt.&uv *|N@ GgkekY3|SnI̊2MU5/K/Pmk::20ή3Z^ ޖrCUbj\ΟwtZ8G:k6xeo i6.,4xM.D];d\P)w)'2Oi[j7-n>BchbViMMGb9;Q@ #jugjjru! ΦOk2G֤MMݶm~XMѠCGXiX g-l'Kp$]ثtuF(ޅdH`e5W~ҷ;AT{q]M;X⍘YT8Sv44IVkV-Znf]C[MXc\n m,u]C&~aBŒKggS Vŵg[.HA.>R}+"]ӢrگZlKhdi1'kp}׼g(IY7VP.YaS}̳y} ۫[o &(n9#V/Ҳ5Oݱnќkk>&Mq<oʰ-Z`C5׌<ހ(vvl- ]A~ پX)+u';_{y-գ*6"`x:Ho"X)P`D=+O \h@\~3v?zw u*<grm>Zm9v/J./?~qYڦ 4VWy~`Ǿ±sR{Bp(PŅ:ulzЧwP bMgiX>o)`-=m4Scyn1:PE4œӗ%hŔ?6(kSEH퇛1 HV%k k4-Offo1=au%r:Qai4W.xQZcՍFz-X#UUUP<vi(J r@,=hA|SdVFc"À>3P/ZC-RR'fgyjpQ7i> ^oA fӦ R_ukxզ]w\8tCK)Ly:I5 2Ֆ5d7 u/FiLōۿXwo&d&?+WI<< c7*}kQ6Zwf;cW!@2jeWjsަ/!4$y 1XV-2CyEK5|"7c/ԛ/d7hǒ2VMۋj5gV<iQj>VsNG"9CѽB 8[Y#_1d:) ZMt-Gu2(sP{K_3?t8Ʊ8_3;`G8KvV# YzΗ[ޘ[ I٣XTMt7#@_i:\o+;jIUkZž-^ɣ0Y8ݎ1ڀ:]J5Ē%H0Cweo=YwP:VΚ͹WڪZhqiD+@,ٕ[ jZ ;ee6u?wڞ^g<u_>=sʎSLӦE2`!{{_ Zd4rCx~X Q[-f+.}Kn f6Wj&gk3e)p$3S4#=~JZ1鸟PM _ 4 u˃9(,˒ZHy#?zub*?VV]-41CvZy,3b+:HeDs֍KVw57~ UҮ-m$sVIG-@hf,Uaוz՛H5;YZ9ʃY'<-I I N; n5J($RGp̶qAmt7U9Lc&S^uouq'F"Yk[wSH푨U';WAYlQZO-UPC֫7xN[</9hb4{?㙃q6UuYlZ;oʎ]AupUX!GN+mgiK`@д;kf2ڹ-Oᅦ ~^lK/Ka-♭HUP5kI$!Kc">1ڀ8*Mlsn0N֎[kma†ܱ=yhaxY媏<5.$k;xVQր9-I/ ϟ)xn伅 ejϠѐ^߅/!!2"@<Qi3&Qq5z6;A<f9S!zgwVvV|UxS$&ihԳV5:].Hf]Fy_oQUJ(7楓@ =hMEPM.b#;`-4Pi>v;Rh{)ڂw^#h'R>qҕ|{E[wFAeV=v4nGP)m<Fn[k tpGE,CU-5H|ɺjVң[h.;6אpQR 7qw]h:dPUu\,(Pz|3nV&i8=ƭ{=}u?rZy W,3U<<$״<߬PޫAi?U]֯oX}'&\=/_PN>Ygz)aFR#(jOI$IGtxHӵ-aV?1$èh_ʍɫ+IඓP`d6u팒=MO厳;~n.h+6pV{OL0h-'w[P+#F8'h$cIKeL+jQkMOMPvaTwz̷Y#*"uz>G%M8ǵr>:sмϘߥoD:*} 142n_^^@vaZGc~5YmR6х^ t8 ׽6⪤M sޛ&%EVG4c؎T@ox̿ι?hqnk&SZ46cN;PYjMr+e eV+V&%GsWWR:lN(g]I4 f<8f"1'G̸].MIo KV:b޳42'VOJwpV[!e v0kgĖhaV1u%n4.$ShgRaL[bHogMfR*kT@h މ8Q ; thk.]M/-hc_Ec*m+FO[RY؟-y-M֮\ڤ;G ?ڦѴxc}}p(Yt}jr.V]T[;&RNUec媞i^^n%c@|;G]Bfi7vJKMaZHc~V\7^ܼ:7zwcouhG=MèYIoG՘pj+X`v}mWM=2, POtiۣ<g_\FC+>Kqn9SRP"Ss@u}{u<O5Cm;vi$X㞴Zd Pq)O[4N+:Bv+9pNsZOguwdsQYqZqlJN+B'_.;<uYրFL4j7bxTմx#SK/Z<UѺR8XY1s<a`Oܽ(oMq5֟5vr[!ϥwޗ-o55W<VG4*̬nҀ<kKXKxPVƩ{}X[eSNTm7ܮ1XR[+VQWp_c@/[WIp>yMmk; exR9SڽGέWwQ>d{X)7ӥBszk&֠ 8rhQ(%ӌozvqFߛ5ǟN%(_}7ooHco( ڀؠo)HiD(%~|4nWL&ۭiKiЬfM_Ca̗XOSPul'ۅq{{,8ڜ@ 6vmIE2uǥ%#n3JM;AkmA$6H-.ojU=Ga@ R$MqtFmL.۔9-]sTFn*(jy'|';jWQtBWjq:嬓(##+I ]x;[X8dya(|*Gdž%:b-<Mw;Eiԕ ;Vy<=Wn8PxdxBLLWד\qV|.嬅 zbk j{[Yni8*9 ;ht[-7yiyZ׌n-mKUm1T/t.EX\|.jow29]q6J>&ѬhIgֹkI v'pEO[7Qj±2ހ,xsE@u"p JUTn[޶7^`XfeG*ZiiM6LD|vX/ΏqY,m9>=w$,q÷s>(&Qa\ʀ3ax`mjtfTЌԗZMœUdGUeZ 8y_<W `mx)bTj}V|Lcpzy'fm]NzqX:&fz X ܊uUخNm1(=+cN[Y<pp+mV]VS rnzd_}sjmf PݥrJ`zN}ʕI ր12TfY$\9ҵ"3 ~4AfY6~8hB˿w?Wrսk;ǞֱA;we)ZKe? 'P݃[H8OZxU N;fLVZ6ZFvoj?KkmRقL)j}cP,[;vz2Z-t!l|~Y5ٮ|Z@u5V@= VT1+gaZ↚r}e,Vg[U4Oa67Z#d8OsZޯj4,C&266rVhP5? dNy jo.Y#ngvxzQXV&>w -?JDk#[}ǭIuk*ߪT>.K9 _-Ď`(xī̭56ʚ,-cHٱX͟CEIrTGZײ2@(Լ@8;x,?ڝ7m[`N int/fXaTMm9g;n"2yv8T^vcVi{En=Y֍GQK$r_=:KX.<(>R~40$Ʒ?Z5쬱Tea)XpMy_ğV2I lʪ>S\<}6&&i3r_^IQxj,γ-=v噹SKsҕsϿm36 bBր0jn5%n4P ~9 #F*Pdf VރwzA)h+[܁Yu^x c\;kf>l`zVB!<Tkhp_\UQi c1Ҁ.ȗ8Măˆi3y{qW %0y(͕jsZG>"ms-9$u-ìjp;V/ i$UJ<*m^inW1b+mni,o/Iγ? ʺ'MҴHE8W)_ֺͽlxW<g{]2(!16=-οi>mcp9ǵTeHTbos"Y)ߌ8e\3'AMuyl( vmu_BZ1&Ij~%M޶ z|k SY.]$PZC 5X)[sf*:#Fk{ n*aEBȭ}5fc':S 'Y6|'gGK+pHf[V8b$n=akXVPhvE0wG75sQ+It9ªتFQIdrz psPt`*,9Tn?NnM M1.Ģv.ɽY^5+*{Gkgbo;wj&MFP1$kW]e| 9GL8f8PɴSV۴xeQ׸[7⹻K紸Uך4ڎ VMUT7i9咵ıﮖHn,2?7I-S\ޣu?ͷδ5ۍB4U4j:V|6t wSWxSN Y#j^%ݹv6;sWPsl,3oD ; ެ<42.@nux\;5um|=2ՌkGq43cqM2-3Z|ݮ %d\,P;]u -b pDREԳ:W/kˆ˚~l[ki2͵8<t W7:=%,;T>o+Y>a Fl)m㵞5u7㩨:\m- y=sNk~)Ðı$sM;+} +#>\}UOQ8lr>[i"p>u"MOzzI1hͲΗAWnx=*{+IϺ6h|/]kj7 uLT٥m4mb\m=W53ij?4hXw?uAK*=pMnƿsk,aTd㨬/x3<rf@r2TKՌ6m ~5[^ͽ27̱rNr+זĶ]i\6HQ+ZĒx;˹CuhІ( EP4f{rXrՏoe,6BƭiŦi9@#-okH5m #8 s]^ݖ{.J& Zʼ;W>LRhekߵ_ CI%ƅYhp)Tv7 ??vA#uo4hk[pmw݇ǨD:AP94sJPt5Ͱܿ1ֱ3 =eϥuC$W6bGAF3YrijƥZ^)',":o1/o 句A53@sV^;4w R{4h:dneZ먨Q[oo[$o"Ouw:zPωY CZod9Y,txa-1A[MBVEvwChf! ׾[%~SZ>4Oxfd,+Q| &7ӡ;h&E;A~jiG*̼V_gӂɟz4K]& [OP# _y^b3cF(G6zkd>X᫦d df[ٮn6!I{7Kyh - J"_hx6F wp[b~1ҴŚ/;vԟ-mtn @[:kILF0~?KFHˌn⢻kc{ jY~xs\%"O)1CGM2mUV/[zVq7דdkBE2yIw?s/KOdlU+ymYcU̞t`nG1E^(vqi7r9w 9oA<ѕ2,tO&]}Uýr>%pY/( @W1\NU[՝!dkIH@O>hf]t?OxtOlp= (CFդ/Hrzֻ+V,q.:T8Үiwe0}##ր=+2kx9JGD5 hT3?vll$Sր)R]Yg#;Xڢ#ҞViZMO,x)qKZvku7|ýH6JtTrΤ/Ե7>CtW5}NeOr[lؿʱ޳-$ᦅ\t_i@#Vݽ~SCṴAtmEZ5-Z8f`TkrKFhg\:x~8[[tqկ -vHԞvqƟee<|ɸW[frvTneԴv}>RtgX|t`O,(m/\Ec$w4HymZedO7őx)-hZ|:Uūe ,ZLnr*yGRlTSZEFLzG@<]qLɵx5[ˏݰn: ÿ񵾓kin;ֶ;[hl4 ր.mpyVO _ [F,sy~т;Y #r?Zxb4729"-iv?B*6MnnYpacKu >R۟0/Qր9ܖ>[=4/'9 I^c0Æz0I5 V 4NeW0]­>44WLQ-ƦTCQQO/C u[,D1~!Tk:OڢϚr=+a.kņ )֍AVwUb?=¥9&@ǧ5|FJ_]1 sZ"+PzQE3q?~q@ޔbg4)S NၘdW8սd. asY^X吶E{P,˷C}żKɶ0 ֢RiQk+o,H8[K'^oA8"_|7SMѪ7@Y@n2t Wp$!˂>\?g?ٿ!-VyO1#iAq͓ZHnyIèU/YӵVͭb>W Y^#i p2[Ƚ1Vݕeڀ:7} %TtMm9eF*s]g-.ArV7jWl}~?A ح8Ԭ}hymɎ[9j&M7 $G <b4e㻲I.㏦T@ Y:;%7ny~Ʊ̜oJtf9]E9ПpP7:/.V͞hŻaXcuqoxхo6E9rzfo<Of,\ V=ēG`ֶ-Kyl|KvYg{Xlk>m#>Fcr,k pku?#Wl0?ŎQjXI Œc5[Z8Er3(8 w 7~ƩZ̓]:xu_N|gkK[Bo?1?Uk7<v%Ɵoplg46M1 O9Q2Bq$/ 6CzuMdUy$XtVUl}rxu&qIlv {W0#M?xnF9bp;W6#%jƫ|ܪCsmI X9SD:63@BM:lz)(̓6pR>#Ye"@$7?ߡ^TQci9lxw2x`CT+wqjM65Hdcgb*+.#+C5$vfEp*qcqڀ.[Yd|LJcM# Hjvn$Heު:u|Eb\(EVM?Y{]5դpZ9$cg4H!z{:h2Fw@Zs/5C2x56oP95SY>t@vq2Ys2 oZxX?#6Wjr@kWGNs-/(|+s}{x_͈[=k)[m~O<xmmlDE9 Mpo#ߕXetXe+Ѽq"1]UON:U B(Ybq"(vʘ0Y[email protected]}LבqPki:elcy iv6k[P\I^>l[ʾJMÁYZo.-4Y~=O rm/衿P+jD{MexƤ={[%pKTRFUHaހg&Cq5r`(5<ZmԞdiP?1gq mkwie?uj L}yLgHQrpխa.4Əxx8DvSRCڸV؉_͕~#6SP>>^*sn W GLPtmC)>ԗ{o,SAs|v=E|? G*(Wq_7hy9x &9goN{/OBf]µm*g=s4|1\d$WBȥGv'9y ;ޭ;L{Hj|ɪ:ƑuP[nz/ d󙟨t"kVEڝ-Wt8v{RgVUTPI-;c8?ȼnS]yQWҵ) N>3YRfgau@1=~İhY 6*r1ڀ=:姆8H#l S4$%ǵpV~0|F tnd҂ikq4lkGUH"@]wdS\,̿($eo[$x`܂ǨȯbڭL>hڬFolA`ݨb+d.GzC}GfiMB[Wִk"jjwZ1hW"?z]&h?0P: bE p{֕qHchdxVuTVXnXcuڪe?0Ut~=UMטTuS7Enu;<_1g >7\]]>FTRx[ŗz֣'>kv}Fq gRڍƱn6,3#0js39\ɨooZݼ̘Wj #&~BO^qxؙvzgq+_ʍ ^E;#@ {mNHSu,C=?Fd<7U}jGb5̊sP2;0 t4|ˎ(|_-k_FLPÔڍAۮs@弲\,,@h=[z:r\ )QR C޼N՟OE+Okwm'xA\ζz;*umha+96*SfRM>M0SG#X'@t^y5fm£Y3EIQ֍յlu|9Z^u9QdYۗWsp3֜Vh#`˸psޛ#XZeSʿi:쉫Ild>BG[[UJJ.<,?taMVXn-)k{lцE8>ƀ,iZ,efBfroY$N[m%kgKc`?'w-@P!pДTY {mنSIml\m*hy=(Ҽ }̸Vʄ߅Uia /F&(Q9VBOJID6 Osڀ05f!)-HVHi#_4UkvڣTOڮѳ}@<>5kaxjd/ үq~MHS3*ٛF"c @&OX`}E#nl [X H"OxZ_%TWxmEWaYɖ42ZŠam7Xuh^&hXb(sĐ6a3+ڹ-Hyu^/$/]}+o2 I3ߨ45Rܻqy[Fn(6[fDb`x u%jFA8c)1ӏ+&)Q0. l8-€"Fz4?nm]'Sm-ZЋGC @ceR քw0*:cvg2{V݅u ݃ڴK,2t݌;W6sڬ&̱m#=eEI&i*!1<޴XV=8OН#ҷ4cFa 7jUn?ګ+ aY28Fx <|Һ Kxdj1[w SV^(~Zkb$Qxtm20Z۰{d}O?s٢;_X_[7IGZX^aKncfS@c,y7Bչ`Ӗ;v]kδY\>k[Kqnhjq+?5H4M~h=E`Z)^B}1V!cHJcj4_e$UB*D `gZfxA4ۛoݟNh^6Kn,'cΏXkI#!'5k5=hrPuk7j0ܒGJy}w5u4p6z@|uԆ6ڻ wV~L}ܭ:%XqWy MoF"Y#mP$i3of͗pjMGqSRpKqډeS<wgl7\eTYïPA ,r<RMl,f- OFLMg޸SA;Dۣ8nBѤӵS4M2xj֩|[m k q5UVWڵ!+HMuj~p#CM7K9tLSlVg,Pw5g}KLdFȠ#8@o>ne#mKKMGNh6Gz˵]J$L"rd~L}FYSI! sݭ;_1ޕ:م/1uY-w kыPR5N]/x jM1hؕcn9\1.C[Ʌ銃NveLjk87E"CܞT\F{Q<_25RM>m=P,+[dh[G ƫx"kaN1U̷VvHq@ ڄɏ*`%k<b8R&aqaE+YIf*72};륊6fnP^_?%\w">UtKyνWҲ5˿촚E&(?@MlT1cI]P&i׳}| B}j;&MʫɎk5̭n{;k phaY9&$h>eDm)YJU72cSfv{DdG@lcߥ5f$Ǡɸ7"YSڀXJkwQ)?{@Jw&OW\|(*3!ǠZ۶m wd o8WuM>Uv˵j[@CN֦G:ǝ+khb"/Tdiz䞞<#;7%iC2ƨݍ,֫4"?Z m*ݣ_4b}f-Xj_HIYLP}F<Pj-/֡I[sIƝ3To$\P^3UfP2K8)02Rx]Ƞ &oNx& 4G͊K(ˍKe E ͖Jjd" $֭x/7nƁo$I&>V{KV,Py ϭ\P]ی5Be .t&+/>a8K)F  f7{~muڠR+ͣ9"Q}U[uGǰIu87]~DbٙV^q maϵK2NGԵ1ْ [*LfCnqo\QibTg&c΅:8V|pqNIde*tW͆fLGd/ ՛d/Q`yE~(RdzglH~QDM@8Jpa6bOe85kvZ9(8XI&Ӥb*+M=X7^(hݴ~; vZֽ$,ՎkkFVҹ}ԡ=h<9HӚ791YҵXu ?sq2Mys؞WKylpPgaVJʲNHg1Ҿ$}/D'fMnwʃ'v5YpJCd,}rZjn@$ֺ6Y-L'ݕ#aG{&CвiRUZV0Z3ր4ewɝ=1ު<k#Vh7JйgUe=T&_56Qh&ixVPIoc7́Yωԭmm-t2UNdڛG=k6=T\u(m-f(=M`6e$(Z<C#U MjO3l:/51|GV%kK/"I$Y5xUE^_s^=7F>\gY4-Y4Umn۵B;hF?= \4yodݷ֢U}h7ZUԜ})d޴TG@wu<RvJ翽6 qAN:q\u?6x^W???Z 2]̼ GjZ2t^+@Y>QڏEh[{ nS$_g,3/.zYHѤj̻~g9h *ۑz@}ukA.x. /%1:]Fxf?0eM4ad!ܪxz۩ !<JvZ9'(~jιo<RĶi3e t!UM {rjnkI+& vJܘLl-q3WM*Ia +SWC[ȶH`Pfaăs=O;[${\Uk) xMZ!4/B6YzT۬SnUzStr6݌MgX,`ޠKnl{U֛ݓe`di<`rvaYCu>&$[ kTB5:Ay۸h U0=|/Mlރb{h=/X-VI;8q*촯ُOdI:(Y6t~lZlk;<-uWt[ոwuһˋ";|;ZtfE#~(ٺܫU6kgXТV+2CWstoI0ʻqxVF 6;hmqb{1Fo_Ӂ1>K Z&#dDq>=}(7]WǗd\)t&$k-ʏq3La,㷆5%l;St9Ҁ0|g[mo݃NKEǞgCWZi<n56`40q(>,SI0 r>,ceyܣW]{sg^--L`ր<G& M yЯ nHE<澂ӠF`*ڼ_d71*!of;6ݧpUkP4l[Gr2""e9QL4ҡ|s[&q3-?Ś,)t2d {U| mϸhX~&KqEnEeYGZ7!7C1Ul;q^4FЮn#jfܫ"Rijy7npJ.|>*ʫۭ4y[ o8UhKmaiW.0[.VFWl<*֐ʭ#v ^%ˁi`Z-ei6s Iy4.HS Yf*6zP%v@+Koj* lPjl/;}a^w/MJ0Y;0r12m!uہPn5U{ Gi ygt8'Dwrǭ@%.l(*'ٕlri :F[49ͪ/s@&]Q]u41y%Q^1{Qs@ ?4(zJ|kOҢ0n?Sʲ4_u8:\g^{/MB1׽t^-dzitֿ0 U&1:VUߘ̭&>F+ZͶP7ZXun'oZXӡ0]:X,ٸyv0b:*E8VDwN#3+mX>71nnqPT̺co*ޜ ɨnaAVNYsؕ߅Wݟǚ*F-9l@ݸ"vEuKc(Li/l&Vj=ߕwGC|}#ˑҺ CFR2c'c@yy[{Tfѭ]6e0*YOU#hޮvD*v۵"O֔6fo1 nڧq]g/3xYW(Xdfaդ`3_DWEoe l7mhiJ@(;@U*ݦ1c>)Hܬ˅?0KN}Q~(Veq mܾj Yn8ז崭*GtE8@Љ61жxY[֟V-9iIZ1בi{sP{^ź6[!DoO,-uXm6OtcP}*eO-8Z$;nޣ@oZeZƾYw\s0 l7 &$t2GտpZ;qҵG~5K_zּwrGL0(  +[QxGӴEs] {֮PEyM˃UGH·g~h:Z0ƻ5im_`/ma?z+{yѶO0 =UFQ޸Vʦ~V1ҽ^-p㌅p+|Qgv[€9 9Lh/zyÚK*uQlR[8We$py+3qU<vԯ}ȎpGZ+M|Gqe˷|=y=pAG-ɵ{5G`Ȼ@ghx:K7M- c- w]M8X?2>\\֩k]k$90 z ־kpn$UB2u|;n**]N<͌VΨʛTZd?;792GtsF9N*QrDZM0QՈ9ǭg9lF0L&"84ʸ}9dm+ԁր)çGTn}ȟMm/lʌ<)8"Ѿ}[Jv 47vfѴ٭Y'+\®s~+iݾj(B8渐d$eq@%#ߍE<lyPzҴ1=q>9J r>¤fH-{H{ {|)] [;:_68R Ҁ[jYpͺ%6b eުR*kn {qhEWX7 ܯJFxo]I'ހ;Ox\ʫ"񸞵C?*Ñ+̭ߘ߽t*͖b@<Pj8Y}SQϾ}i;v%. a@h3N\.cΝuypV(&o||?Ԉy?u_j(Q'W$IުsT9(2rUvRVփ@Ci^c lv5ifD2W9~P( vJ~\WQuqXs͵.Tu47Q}=뛽h~U ZS(ўՠfqy#Yn мjmCpVլ#>P;PTLrMrsJ{={#"*Yhտg&<zѯH^c{oxFI9a0ңҼ cUdU2{VĿڣ_fHBrj0g㑿xvIo#nD-7|qTm|^YۭH#LWqq4MyX;kVVOީ̟8힕=Ԟ$M£.̚~Lq2ۨsހ4$e`@a7FA Ci QFj"8YW]g:m.og5 h)w3m (}=6Q_\<,%5[?,m'ۜtTH)s*; ·j!4G KդBw|ޕ0hTX[-r!O4.vMĺ0X+J\cV&/qT,4{;A[ԚJ&m>)%;Th$3E f|1ҵoc6i~cxfMRErpZ}\;II3?ZGof2G b=KMh剙])Oex|;pm٦Mdž8ē ӮjKvYH=*[i8 K43H3A@ŁUw kkh3,s3Hd`@fiZƞF9^4"X.Z6hA|@K5UˏJӀyMzW=a]]ظ8ʭuB)<@9h%Lc0Sڱ|m~c"I]VknnBˀExn2(qᗗW/$kbH%!籫{2y.285M.X#[dy5$v)&FJ aBq@ ba[P J|;UGXfvfrIՈ4Uo94+G$;x SԮⲑd Avְ mUWtc] @1Y7A_,˅LLҼet\w?}A&\pʶO><W붉k3|Q~)1.oJ[GjsEN?3M 6籠fg=Nŷ隑Sa9~|YG%U9TP{_4⣞-q֠\corsҘw6UiGĝ*@yҎhb\/Εa%Cn 2ƀHO vWH#^sP[Y V`$_++x2h9@2QcOboNG&UD1֓+ YldUBsrGVM6&56+.8ʞ,6 oi.Zl,Ƕ)NA<qҀ>F9CXNmu23-BBؚa(,^9HTy@姉}V.)K:(<XhЧ]wJu']n4=qQKqqz#mnJIji<f?{ޠUNOZd3ssҷ|leݻsiktG9|xik+WDl5%e2MsYUjihЫ7]Abh X6=6?, Y7nn:0*8g<}tJdrH ci#XD-º\K/psZW\mTrk]I 4țd4ne6qqO8vm $٤>a;z9?/9-lMTw4[Em;2i%.LmCPDQڡ๒f}Igi!-ޤ='8 s$EDa,ۂu$WQp|x\ڤ@-ȐAsm; ~\}\e[~3ռEwoj[{+lyfpá m7(>:^6;I=G B^F4ܪ ^%2Iz굉w[PI,&TzWIiG}bQ2`@j? \jD0`ƍ\.݀pF9}-&Vp>^ps]e ck/VZՄ'2ZT6\h EbXSd-dlt+ F}zU\q ҽ+:Q-TF3T^}G\ '* OI9u 1KG8cC 9I1H/Y-"`W5vwkXv;1;}xkM~V;ֵ \VzխC rc.dǾ2n6|y iCooGZRa@ l}+o-y0siZw i7~TumT;$mxju EM%x/JFԯR$c?w>V=!j'1ҫl40/hn㯵9%sHtf[d}%*Q~;QG::2t{P6ی<ݐzJf5χ=k 즒I eRsX'/EwbA]àFE6A<^MGLkOLYv1q3. j"Y\LFuSLyڥ~w3zHAܧE (`Usqk\gU4 SP?̧ M#oLзQoR*XY$3g:- zSB aoa@q0횓Lf6v<*Wx }D[{ɏ0 @7ա-Fk{i? VO)o.IdZ6/j«)m[߽Ҁ#a1#y3IPi ",N $p+giϧnēI.(a| *d#(6BẰ<mz淅[U/dy`;4hᵳ1NÁL .?*;y XGY{;/m}i|E5 tj~c_SF|idbGUO'ٙտgɡԮ=3B|t.B u F2y۟;jUo1›$㏯1J{β&o Mv?JqE92XOjЮ`A95X_lqؠXP´,5u[s7octӞt;mkNHbTVnROFVPekv;v:N6[l+gRuX6r}Y>KCz.t ^{:v>s{5nɏZIc&ڹ3+dRyQCA%+CTNIxҀ3|U_\[[Hd/+xsPR:KoՐ :h Z/u4qҺsh'1#c'\ ֻ&f0SOu!}b7u9jѷC^ipYʎk'AH9n V浐дZ%!Xt ,(<$z/ȉ?/'# q'7˥FEeBKޓPlY^aȊAM$7?@Qu%67m:t6!x~U"y"[vDk sNâLdʢŷick}wz<O|M,ʫ=5cP[es6One7Y!9(>=BQ{#@Db= \7ƽa|o m8I4,py?a/PqkC@1]tsr9Uq~l7z0gRnl5xK}+TU|PzPl3۴MoլJ&;!V"'@Gɴ=6v7kC> JKZ8$heul}ƺ LKsX>1 ƊVHcsP{=SEoZd7]dҀ:iF%+ިeM /z_tB $lˮYq!hqI./w3<1>^U#H U۽mu=>5sD}YRN7П&&XW8ϠOR1Nnc89cՀ@<XTM+)Nc[[|"r:)EZ1^ /eEcjZm7W-<̭#+5.EXP`|amoiOY #Um:M1]9ܹh+nfUr#-WcIà<b&y\ä\)<\ěm|%.FeF^€<Yu[Fl֛&yߥ;V|y0_45 :SҀ}>(~‘|.[TmH0's l7lV<#yAmlyr:b燮<Ikk LB:{jo h<` @>#]M@WhpSC#`T:$2xѨ.$gdc4F6:f-#I61tK$M{}k &Ȳ'U=plYV c$P,JP:KsM5ZG^Hr;TqA'2q@%ZV'xjVci<sNaXmMl:$G&rǮ(d:E*Z*kUeڧ.n䔯#$gs*UuU$pO|es+{w МȻs'͹x d*ve=hip692)̭ߚmQEQE*`ҥ[m6zW{bpP֝wvQ\T2 i}>fr3zo-Hط"7fyqۯ_z~w`˃k>xuXYWRؓqUJk&̛h9<畨ai̫=q@ŧ:6Gj6;X9.̍r@Po0z=J- yK,vdw^\|Iۚ56"B +;yrF7h#RR8HÞ@?Zu6E>8]IcդÌTKqq?8Y6V3 H0Pw.4P_5~Q#p+S±Q-\Tm<5&pfݸ)٧NSOZԻi% 3pKxm<͆IL2si'qҴJZi%#%Fn>60z t\Ek947J|3&li$<sƳGogxc>b^[mdFcvk7]hћlGB;Nehl8iײ#Ibv@+7QmG2a+3 Yڶ7s@TJ6_'c?*I.C$WT$rۏ$4 M=O`@f]]葷Dqǵt+nJIc ?ajo9YV|I}Z r (yov]j|CI3dKnp,Z=ZK ͌m55#ƾހ-O&mF;#62ҽKF!c@xu 7W{>٥iյH j6˶,Y|2ndo qDwЪv EOar)O-źՃNѦcf!4TzVmC4+vR~_lHc:UlC<";I!fAh6XͰv58af 1N#ʗr h[no4Y_2sKt0| Wn{%H|lbHL'@f6|vA _Wi$=܀[=w`cſjd23r(_ŏx;CAK]- P |S P"'"t?V#KsxKx=sH9<NIɤoyf-t$qc9``ʥpXtD6ϵUK/rj*w'*qmN$zW~#MB֚{P\|{q}vQH^eZ[*x9ڢ4EVhִyvdhͷrOLTrV 2zmKۛ}&ZLңV_ ,c9;ln5jgU}F[Ǝ5,?I";vQ>Dҷ CҀ m4iS0F侑goAN$We;py_۬)pn  ?!ծ#[$gt̾J~ qnQN[QYcn sja,(%mѴpwvxf>?<q֛F((ӟZ(Kƕd*(4T蘕@;Y?zɠGҒcgҐQ@ ʎOԶ YzԪ ۞hR0H]KgrɶE: kr2ڞe`|h/{? owjYP9e2zzרݵ>Ma&\#ҡUZi1}Foc>J9 ک[ݘՋzUɮK-|}({/T*p9Td[y`Ir!Rbb_)[ F ,mo3]CfK V2͹չOJBfY 㹾jq{%͇SoVZ͒ X/~Oj~ز&V@\H (2}ȿ) ֲ_tq/ *xf=_Mkveyq@Ua'U<Li53_XzMbj>wr[[n1PsRKV gq~,-~scʊ]gU%cuJEP78$o|}w|+I 5 +/_je결ݝU9<Î^дwpy]9 hn噸Ʊ|?Ȉ̪ ;Wi 坼nR(U2ZU~}~aSxCO ʊ7㚱jM},Y9- "Xo"h Z+[6 Ӌ(_kp .ҽ@_–IVBCV _}.uw@7ltBAg3 `U[H3֥tb[1cx`*)_n_}OS@5k?\6u,[#4<ǭaj|E4ur̶βGsʮ[t=P9쎵i 0eX뚯zp3ڀ.<,/w^Y4V?5`>jA+繢+۔2~q8@^;aiq̎zt<p6G\ҵ /lj)mͷ>l扚Nހ%ӧrѲ\ݎ}?/nGk |uڶ5 ?nn!/'[/M2m< :/x^0CesdVG%'UgbI(w=hcq)!OK!Y7,la@~}M7?SE*YeeflĊ,.H1s@4?\Ċ6# |##ofyt5?,zJO⾤ql@Enkc%ǒUu kQ$VV<pMG"1jGCucS֝Qgܽ꽼ma 2{5 4`r_U% ti؛njm<}'f*$ek{v۟#IgF)#/ U Y~ˁ^h4Nf\nWfc;P /r$͵Ͻ0h|&Pk"JhhU#nw[s/'>l4Y9#LyQ ?a.+S\LzG˺P3|wJ_Q |I:(-:wP@ZrPXhWI?֭I3M((Q@±>VqW"vӾyQ5!>z-j8jŲqV!ψm pWK`RאΟ3Zv3۞NxUu!_S+3ZlQ@zJFH.+Sep1 3 Ǖ_7EU6*+++O,_R!++2(O*GޭK[qoF~SU+_o#hZ(|U.8:f2ѕ^Uޟm3lsz+,(;gV>ϦMMw7l&qy5ЫQ<{U)ԿUʀ;O{,eV]k+~̸. OŸ[Z:k,/坥HY!Mm |WIR?@B~It6 O:Wo=?UռCcٙ/h5ej~+iP8 Oi_!tPf70}_ nOioy7989rQfxi{[-`e F6S.Ϝ{TwfQkZC$ ۡSiX͖o69EV TEvB -u8?7Zo߳~VZۏk7y@uo뚒N0_ *;/IBIvj/I''=?,ZY4ŷ1 t&hWG@{Ww/hr86(EW4FP͹*cvjt_ m@H|D iP lj,Tp3֣<N\@SH#>b1Luv҆=Oj~X=@mlU<S.(lWZ/EW,|sdb|ʁL1/ҝPgYkLUX [r^qESB: |SxO;FLq}[ȿY{@|;WqVo~}Es
JFIF``C      C  9:" }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?361@MK` 4wgNc]wb;[Y,T~5i_58Da^a&o uNE*twimCYNӚӶR6.۷8"K5Γo& ȀFepEH!(Vr$i ufH\p[gJ᷇iv!b.x]>,'Z?ZGo$Cq#z5` (`T /i!5 XXdz<,!+YgRPV5+ \Y]WҖ0Xp›@Mej52[ڣ4揭^Ib?Mt+ w(mt?صzmˏ0>JZE 81(-|CebI>֬kDԜOOmIԴɧVݞ#`. ?h.i'h"TcpWxMui@}o4ʹfD|W#k)fM23@aDl`1PԒO.9֤uUUA*lE'h#^Nj,$dwEui+(ygkeĆOMpcc_TMNj4S2?z>&['ՀTmR3ϽryEx*ɫ2_[HæhYB+ \լQh/+կ4 ^ahwC7 Q |o]SJOisZe޸KsAlbyZgnhdz"26Ҽ.GޫfnVaz iK=v~nhЬ0? }^55sp.KmKmQl_.~}7)$bcw<{HgrHsCjE*C8㚩D[H换?ĺ"{[k9<U.G3=+& :nu"C_MqcgZ˸m~cP3㿅Qk[wԂ 8n&hf3V+ܴK;}ni.dPF~0Eid+U +u umtb9@#J=q=讋<6v_OZh((((&S_WpqUg Uz(L`20jޡdu~Vʐp2}JO+8=(B Xv\һ,v&4ow]}kҞ7R`sR {z!UX}Ze-f٣gҲ,VŚ]H*h4n8@Z?)M=PnÖeQ2ɍ[ )HGo3Em=MlGxcߨ~R$iFI_JdvFZoܿ=IL^vs?T.Ll?v6҅0;@o& zԒx_1wְ'l̾/ rWPvm=Zwo5+&Il<{ǂeK}=;F5𕇄mCy`C?ZƱpj% d*H?fO rQqpWjB-6f 2W9+;G]4.iZiXQ*Ѹ~MxD6Q~oqL:)w^(#4"ȮgWY.H&U8F$AoL ݑ#I!<{$کη}xګM;I4azݸUU=qUoU5n#@тMs3Ku sdֺ7'NBz$]]Yʌeg^n,ۏU_ZpHjI6y#Sր5<A\A!8º٣{UW` MVؚIgnOMWqs@F>8`eB>cKw$ݕ9+)#h7[̍;OVtMnO BVifIctdEbrj:pDbO?p(`u>BNњ;]~.e (ʏz5]d)*O )|<ǟ\i23ƠoכIA#+)VS_UMrlkpw^o'D~ P_dB0'{-j4Zq>5'n1q޼sm&Xmв6VV8bi~ i Z$t7Y *0H3Ҵ[Heޣh@X$|5n b}\E&^I}5|Sb}vDFcu1Y|A&c,~m}tSXE8dX#Pzc[009}4ֹF[9$o Ok#7v(ͷF3hOWQS^7v,qYz<2+04&!Uh]]\EeUhv)cՋ{Ȼ|G^FoIx٦+ O<Tz X͊?Z5n Z_iáܺs2Qrk6i~uѪ]SFY"[cT66KUf~CJE.eW|oq[Iow ,cޫ\4%TI>Քk׭o4~[)_JŠ(((((( nԐjfPc!qUh VhZ~Ii.9Qj>;|N&6۸㎕Ӷ0RCXTڃ\_--%ǘ+vQ~q#6k0|=( %Ys6Ԙ|è:Us )\5+Sk?g)oG@c\H4d?"j}g$|~b. ̙MpFh1>KsZ% H5P no 5 d~ڴtZPmBlqia 0WYfԆ-HI%Q;d2+#BburKTVuYff91fk;WUm ;dd6*REPAl[Qq u5KẒѻ֡-ôqq#F*XHL?ʽg\Oت4U%:ϸQV6$P-_1&;E1o R˴n՝t4*~D#$ۙF 97ݗj}PK{8i${g8%(Rᷥ1KDPI9nhJYmH&6~G"ȿ3j͒{s'2Hڡ/'z*wր/XV9$nV-/)8#| ;u -1ڀ5- d8ӒOUmm01ޱ'ْ))HTڀ:R^GcS-۝oqd?׮ I۫E뒸k-ŨЩ\lSՃoF)Ui}MK&%|SMZ"7\O8AC |d?wEMn_ EW`Iy644Q8VdGSS_ֶ $q<j~"@5Xvkus>`{PKq5Sw;U;NK,f8I!@V[6]<g؛Ҁ&=ry}Od{<Su+4}K~#b&^7Pzm$rOmKO[/.lplsIcZ[[;VMޫĪТ0q@\嫒}2LsY:]60#)2̣ր-H$t.haS @yg%q1p=w:h^oq|Uloʿ`Zʟu/9-^V%Vc8+N%vۺ2m2(n[U1v죑LHD-2N:BU ~-S*h&m4~׹-|ĞMEq6ce,~@9oYt֞au=6")rPڀ1VVm>M%Y0%kKSvGtm>J{ٕ<`|O-,+z{As ,8{. zZfvbEo ^#tr`Oր0m~p 27L3eskW!y^YʳF$7Oh%hH8b\$֭UEk򌝳7-̲[*?{ݶ,LxȠ6dd?2E 9S$Gq{Y<a}.v011P]Uõv& xBLhwF2(.tоR:M((((Q@Q@Q@(-Bu yfaqGe$e:zNS,mx$NKfxu4׾)&Em55 |~Sr1hefST~eCёFM,6"U(Eq[) IޣF{v:j>FmsI5žU|&iqo2FX>P{UYJ Ɛ䢳|IPJsz 9.wͻf:_HOWHx3אhBE`s55i K 7cWU+TR3 (r3IHRPj|<|sg"enl~>psހ7"HzҖ)n^>cֱmbcON^zP]zޟ#c zg6f_,,+cJ]s=eY>m|Df~##$$zܳQ}{eB˚S}✎ajZEKבH~:^FA拏Fhujkeo0 0:ֱϛ/{Fwo"S{d]hԦe*1CȬUq L<.x Lv2V]#z-İachěsS>Z,qҳ|=-Ȫmcojnh6vz&hB I3s}؞դUޔQ-m&xf|lu5WU_i7(:}jMj8Fxsm Q@ oqwvw c2K^ֵ/nDmo0V^qֲf9rzyeˍTmJhZUddu]>E>.pzջ8rk,3ڀ9oxsCTUܟ}zU4K/~nBk]?e5;q\BE1@1]Ejw2;ܰe=1֋BE4YGU?Whnh0Qh<qT~Ic'RzU`5ydQiKeNN ȬU2Rq^ej^'nl> 9 76=B&b}ckm(>P2>%\<E3VeSiUGPj|&qjb#6en6:E|Aᔑ2(\gn4mڀ7'q'ZMs1kuX^bYdn@IX0 RJ⡃IX'ܬr@<K4\|D#]l_,]9+Nb,sN$C)o4x~ B[nEj_i&n;V:S~%ᇘ6p@Gqn͵ѕz[QѬD2*l^Ik~MnZK\e@{ir+FR9(((?((((! ,wOl'\0 9Oj_+ YPȧ1Uf"g¬pFj[!iv=sz8cqnf{@3fs#ڳum]chSW$ [k@Q/hb |c0ln+6͘E _RhzqWl4$ӎ( [/dcHg<vi5'-^'8[9G=HGe.XO~n=*^dE$f!Fq^| lfy 20+r}F8I%Ļ#zV|%ԙWe}oݪ@,zr1*w'3nEii߳qGok~˰}2D:@kVPL)w_BzWu vV8HGZ=҇UU[޳5FUUUƀ4hZHc߷gfIvyZ654"T:ɞFVr2ꣽt,VS=AvcL$xGL3qk3JOQIØA@5NJ{x(Wr=MQYI&U=Eb<q2;;Gjqk53+ "8[Y$Xس8mKZe\mW|VŤIFAՄha~HQՐ6ⶓgE!rq"T&k,AOq%ʈfrhӯa6[iۑ*֠f,6OaF=j9`0ެY}]5$p( gpnRcZ1\34{±]ٴt <k6ֺ찪3gGޠqG$+isż6{,~dظ^xMn rhv[[{ 5c5[I^kspՇƺe´o$խo{2M$Z5IknUh,Ѷ+.?ӍѤ &0J\"kaǠ_L.t g ,[vzw3kfA*8ozfaRmҀ4{X[Бei;L6y*k4um5]N1@iK\Jc k>Ķz+[;TH?ZXO,vV)=EL2=sy0܅Mִ_=Bq6wGڦV[L[ IbGW.YwDžn€#k/7Z\Wjc+G]>]2>ްo4o4&WIe!O_1Oz? `Ƕ:U;=FAuVRЃֻ)kgfPc z@4mF=Jrj֎\~Uh[վl\{:43s뚞[<bF=F>7(]f6P@ ]e.Eo19wbW+qUy`T $aʓրmiyO)wF;0fzYck/cw<#g7,ϙ> _DHr z5yfajigڲC6r@h:@CIk-Xx ( ( )͜{PhQEQE}C+i$b 8*zs,DaP~#uZgpټxcP+mMxi=+J XHяP:k,>]Jz 괯eY<K*++x 5 5H76h?xjZi{|}ܑ֭y>JczP|4+IpNk]6 iZՓ_j,__F5`PƬm|fdY5b \UPv77*7Ff#t=ɇ#{?Bdm<U^l5uAȥy'Ҁ5'u[uQF|o-j7աFHvG'U^JZ}ŹVY8k:?yNBK}]DR2iӵb@ù47373Ixr>\'=*_]XgPKbvݪ v \a?΂HV9!3-gU<;5Ө޹x=*2H bT][Ɏ1岵szYjD[OAWtȲ L|E!k"λ=Ƞ 6X!}I&=z95 ԣK|ts ,=@2'pUA.ZXxWԚbzQφY;=tIjv5>ڸY|g5YeFI[Ys@@Tegn@'Yޛ &Ue<St Nj O d t!IާQBbhn$ \G[UagZhvxRL)_ֵ̉~PhRKiJJ j#Z6<GCD+EeTSҥH٦z(IV~cH\h[mjFZ^&EeSPj.c"euTVZ~d=4mNGݪ+GdMV}ӦaFfn=*aܩ5FT:-ipL{hSG551č;Tҝ .Gs!YqM,Qmm܌jسo._}:.M4C =EE5ڮUcżqsw]%ʖY GVm2XV;-(4agow_j*`4r(i6TbRVkӄKc9R;W LͽkY[dZə;^ր9'ďk:tM]TeLCdX5h1\chtVӅ1^9=hǹ˵ s#̴MB1 Q5l?,\iM91.u]\|nW,N; jny$MCum ج{U8O3fn4r'/9c@ -!ӧY~= y4pp z4< $8DȑXÞz h\V45Hm!:VJ\PӚ279dr@#bJG:ЁJ6wn2vziBw>5.lsL+Ͼ(QO>mۻ S(mxmv`i4w Tω>Qޚҳmeqz8}J-qA6u.i >As@]=J*Is{$g8j9J_cT&mVc(_jd(S(X,j́6I7-P;,󪕖M.uU)uhl\Dp=f<h+w5Z;4^EJג0#ALex6βfY8 =}*5nVmLjj"ޮ&w :) 4Ny431)uoZK8 *_],"<d$7m)zSnV;Ź#v;bHt{|v*u@IlDfUZxofqދmtzSo.XBoZn7,s7fg\,z .8ɡ^  SӢ[i:(gY$UqQ\}1hՆޣ79?%v~r&Yy~g@ >-IJ,tOן_IutHgri&I1=Ubp,ˎO|kƺrxvM$YWH`=5xSX+&0M`~|UV8$RKo/P+ͭn<i#r}ˁ`aAIZ,w=u믵yCZEq["A|odo1󢏣ր G_-cidrj[[=;T;ŸmĶFem;hմQ]5[u{_PӵH/1YϻZn5ƁnTPjZΰm]mTkB㲲{{=)@ M2$i*M?@-ٙ4݂)4j#p~5G_#zZ۪ȸݞtk3Eݩx"'կ[} {-?+p(эsx#((lӠe3yc!aT46<޴R8m&n+֒mF(n ZV۷#)V}& O٥fHNwky.4i57Kt,(썥0Lfan-ҪO% (qSNǸH$v$H!]!H嶑p!/31+~N٤!hEY k"#v-\jl%3yqU3Pwtn6}?5AYahzqV-fRiѲ,{@6' HTUl!0R$k,?e+p\oD#Y恊)U^M "E"?ڧkAA4UܫŤrFa8 \nz$cQ Ҁ9tf$-ٙZiyǹG-o '_nCPӳ/gH9=*T\*-fiZfH)-*-0[lnHҴjzT+(mtNݥR=(hQc<ȗR#̴=j~jݡ߼G=~^J̴𿗥|ٷLeYpis4|2FZNB!mn1_6GV tk[|vI%쥊#gfҀ2=I1HDۭ>%)2C@>Y LScMsoTOiqmGysR7m_)e'o|sZ nLJHPp ~m5k=Ğs/joIr77DȠ L_A^NuR,ĎS&ø\: CAlۻ6uK(G:]2HI$=ơ%,lY#S.fKP]H#k OS]F&Y0Ӝ#?E\!7%ٷC.חM .1Ҁ$YfU(:Q{\2\O9:=u1.AZisO o.9<'Ln/UGxXO,SK' ۹6>ż9:P;yiYfbLŏO ; xpd#V.,Z-r(vNwJz;emXN:S)yPA\Al֡?(4[ȍ,JAY.& czVv,.$RnM/u[{_3'rTVYxW3?jR24q?/xohD;ڹO4ZCPb>WߎP7j_ΌݻN:?w m]GQ7CVcpЃ &+5ʯ< \y׭(+9wfwI ʞ_A\]Zg\kwzuܑty$ԬpW)Ցa_)E5iX*n.mg4ePX юdgdžcq\jѱޝٶa[8x2ChO#,t_@D\̓Zj> t[Stڮ[$jW:Vm.>\ N uujo ""SEjzT"i~+Kiz埈t֖h䍐|5s~SVvE6;]."Ul3vAf;8yLabFYWM@<jxc\6љYÊh-_#haV^մ-bKr0۽fRo|`VoV m tݑҀ9mF]+ShHGF}(i'qc[5Y4fynEg|_{F6?5U/m "jBCV\w+?OPPVx`1C{yuy1~X<pW|Rf<rj;v,R2/:kps#Zsc3ZD'<W3}G[&Ԍ?u|f8X:xQww'8 ffoet5zE86v*hyiM7i}(VІ/ J$G}}L`w/QSހ+EqTs9%J6NjGwɽᙋ/gg[.v{{QfjZhh@]QJFUk}q˥Fi#ڊoE=z(ac¢䊑sc_EGF"v"x)luǘn 72"ْV O̚Mmr(e{ªr+&]2Kpj#xNO/zt{YG@~<<rHܙ۷'8-CJxK|- #*<zT+\ʷOjH!STG㿯X,{Ծbhgt<RϪHAOk}[ZVi%㉰ Yע<leܠ, k-CR}.hHI}*hgoO!m'95'oj~i$I nx (N;<sH>Rk6;X]Ň1ɦ3F6gl R\]>nEx<o#YArҷNj!^ObsLB@FsPr򖑛UWYU[JxF[G3$*quޣsr VH U']QJ8_N2h^nL$m<]Lmqyj;s*[/z鷑y iV?xTiز:z7~Q*ic߶1R@i.ZK=G-ZLҩkڤR=x.Kn?8 32ǭ$+/R.6۲>5y c]\I;ycpieҕ wA9'!yT|Tt Sd9l&!n]s3ۇZYWF ]qMhӜPy-18Ft3ynI>y`{T`rAִlYw'Nk<o֬ZJM@çya!o2pq.W/+2eZCog%T;Zo.4멒x%wMSЉvqOOZy5_6|GUVm {fwֵ ;RWYݡx t%貞Oz|P}mj$Q"l3w[xۏq@o:^c2=*햵IlvSt~ʶڔ|Qm&[?"X8V#mw m-KDT?:ϵ\KKG˷XV.xվmu}Bm&<k} kK2QKdiNא*{:ޏ4r,qOJڃM[y[ooJS"mVZOJ}\pt9j~&m?QB@ʐZ FYXmݏ\nbVqQu֖ _)|REe@b]*G OuY.6m3UTcf8>cYZgsv 6r+BB+c ̿Oc(9khHU[ˉ9 0Wk8n#b(<O]<ߞ^Zig?,\]!l)ֺhvw(㡠9b\`硭d]F>47˻77F̾p'^ .mVQQfib ff&W`,VmUPѺ< M :mU;{A$sn:l˞=h4=j"ە+ĢUSzPb@ E>XP=)]rnhs(?v-6Ȧjau=h +Ż ѐ9*sMǀc<t FNեk^, `mJ'Uy5 >}iȦV_GJ,yl Uu(C%Z%!q$4)$xffp3sw6bpwn]COgۚߖ6ip2W6V42lRצjݲCP68}JRfր=;FHHm gk\ͷtȣj<O}`J4r;=kֲe*ۭng>Cמi]ѪƵīxW#gr@dkflYrIo~_=khҬq#y|MQfKqox-$my-5OLyksw'P~"X Y[z޸_#PA|n{$lws\蠅U VNU-ՕOǨPPGjj3xO5&^Ru;#e$6)n4C<°bNjXa|,ioVfch#Xsa#X1#4{T#b8Wl_5WlUJo,{U b*nn:>c|_lV_-J@evPF)J=)(ߵO˻TU 9l#@ $tiK{~Dui-![\@0nE6sր%-RJjY]sw4vҮ+g-ckɳ*:WUmlazgu{c*nWڻ2;T#G/`ԭػFz^cE CT[G\[3B߻l5nB{|9XkMВ(Z0vV}Xv0\M,3t|~t^T>lźbc_Yj^^x h0^lrʏMO%o0_j~mל43BG(;zonFMeϯfiv)<H@V!ʍ.8DaI>nV΍+ yjO̾՞F=ԉ3\B2}#HGcIBzb295&Ծ ¨=EE,c?6тjY} aO%T'v2(KZ+;\7sTXk~`K@t֨Z-MQm8/_-aBz=( #hY'jд%cl2KAr#/EgY4EhcTVDV_)Ub@'ojw B h'DGZ#%5vrIh3kY$ڂǸҮ_B-X> d:Hd\WOg,v~dwBh'ۓsK?`w{U'|K<K}9K[cA44L4j2*Սu"*x{O3q& 2Fs@;=)dzQԅq|S (@^>v*$ۊ#-"1y4ًE74- >bx9V%eX1})U0 1ˊɼ$<SK[QB#/= P% on]/F~]UgV[~:Y~ᗶh\0-{:SXgf=(?/={#il뎴G^hڸF2^G9ccnGi$M`ZT,޻BW_8Z%=>P}+p{կ{~|rh˴ȼd>n>f.=j-=dH8ZuBHDmT2@@Nxmu F%dd0KeqGZf]wrbc%ښvJi0W׽C>-zP-4niJm"E*q_$n*(Uzk}AUC\J>]ʼςUFLP*~V;ִcO[įMQ`Uі}Uv}f6 \_@% R][t`x7Rr1(aiD`Ӛ]2ґ}"LH=qLPSŸ]{;@ Y1ʚNM"f?*@ܿ\ c:>jnh~޶4MO1w|v\<Ҁ;ek_:[wܬYjSxN,2: ޭ͖bO[ֺ}2I$R|Z[h "5nH<(?vx{Zͮ^vhʪ#/MR]t M OMch,-hiZ--qeМ(=ꦇGA$jqi7z ؑj6J[ZpK~3,v쏭;S5}5Ud*0TMՖ#x/Ӯ#+79SM ZYrH2S֪jz%ڦK6-o^&|Y&bkHsiz}vbmk/3P-#n2a63@֡c-lc@>t8ZH$6P+/L>U(e@<rIѓ"m,faq 5¬YMtxKC2zrHh@%*cjxf8Z!%+pw[{4Vo|Ȧc"W%[O Y$֪HVd fD+RğGX,VI8@'<O,36*HI-}jǎoČjcPH0PmE6]O94ELNNLm6<W-nÞPn#bH0GZ ~ t ir틽4\o5U;dSˈ];$yaw?J56/29x!F~7`2Xyw< qҝ c3.n@j2 M4o˵vgNK_9|e5|nۆ;~j%ʦ26P{{tp˵S,jfvظTZv;w/^1ذ3']Qi;c,۷`8d*客RòǥQFw~NkI~niʮ޴{W@(QTt)"Wjk[3B~*ޣ2=jhu2VTpvv Y4]V`"],yViYXŒv*47"qNkId# 6k1TKwdViJdeUIrpۉ*p_ -@iH,ku#:s6EjElіm3{қ}Ý߅g?^46g үUi6?둂(ZVI8ic%# xSսM9!>fgQ6L TV+N2qZ2폺xKvvF={oa+.LiXn>q$- W+K0)]I *w\vn+s$x?Q@*[55!tOf6c?<юv/ӏ-wP9G4jV ǥwLr7=ԴmWO=T;˽5GK/4ۏ3/nǕnYp[n3Kk$\̲&zP,1녹vX WIԉ+NIm k;Aӯ4yn&IUMBUucfº*#,%l<Oݪo$r&5AykcF](};\\i naq=h!62}oɾׁCj$kGi4۴3H84i$̣<hXIV6y$+R}$RBKHiY!o?o1;Vր*]'RVpq׵7X:ݤUA=p{StM?OE3yL M{[2v+LPG#W!Z6Y1n7iѴ@|WyEm%nUC00zU/gn0w:cItۚ8 ;^j\ %?/!s+zvXTCHOII']Ŷg=H+%я#qڞd{36W̙Wr_ޯZ2OWݜ:ݰ|r^7YP dVPp֮[!QPos!cIy"Z媱:Бym6_ky-3) 8#n޵ad{^R0l#Q={*q2ph1,72OBic9ǽ:u.VhRcs@ E;͌t01N}pR06YqҀ#^5s梷hV?:UUMĝښbf,ހ" ygҳuY Vh٤kB[f y}qY:lt-@zpiwZ4?2:TZl^q4P=']JCjRkS7 9ӧN`S|TC8<5[[V{$3/\v=CIpZ&8 _;Z.r:ץMdVI<b?3};Px;GM /PcqIlNmqVn=kZ]`3km}̟>0a@B9m<J7g 笵4U/TVbu D ~cGo̭WPP޴Knmzv*9^I$W, AU)P."e cWD+*ɹĚmP:zul5ݙ秵'Jnvh<Tdvd~i4-DlWԘۜ@ vҕ9}zRI4ScMr)@ UqNս엊=NN[ѬXWˌFZc}A>WH7ZO*CZ [h2MFfCTڏ!<@<srAx k)uɗkGKb̚ ۆJ'OӭK'd:G#ӮZuf8@j 'Nx8vg}v v# Rj:k'JcoCm{]82"`5+Iv&~RV4[UM>8;QR>%=̜Zlz=խI$͵Bpt9AI.6< sNXh}FtNeXgd=wpH|?1PhQ|ƏzA<v"qC~˱mmNkhn @(3@~)Lf+h?=Uu65OJn?t 6]8N8'iOʲ2ep:M3[k?ژcڹu8Sgw 8*(ХI|˸ޕ[~ͶSeowJ׼"ځ9#=h&ʯNzVť5oWeeڥe۸mf]wgjqڧ.*sֱu=ʠ6zַu)n1@;0y<CTVAjr{P}?ۊ[y=k*ݽI dGf^\anǵBbiȬGʣhtk3L1mA5ia H/oQQ#s6@yJ_v>.Æ;j[?kHV.k+7Zό ְۏ2!lZ%dmOZŽ\jTq@ZZ$: c%W>/oiJm*1WC?G(]vc^=(;uU9qӇVK}w]UqskE^QjR_])0UFh c$*z⸍gm֜%yȯj)wx -*'^hVFYe뚉^m:W ?D߹&xZ9RK0jgᑕAM8s@KRdèv&,dNd)-؜n{SfWڱPxٽM4[UYihyFb͸zm8~gr}9fz'ktR:PYY$o-Xddײ 0VLOďzNR2F.1Ҁ0C`0xz[*Vi q VU px&g܄+6Fz֋d犢~V$e[84W~R m5PpU*)ljцTz?pa@lT҃C<krv5`je6=(fH/:֟3L LHx_̵]wCv>V4G;žޔurz=iͬFѐ{F -۵enD\/Z|/uʥ#,u JV5f".Ь[ހxa #}㚷 壱EKpCo!<(_Eu}~V_ڏ1:8\Y6]ޡ !`_IQ,`h |qU 6QxY#U@jsH&UU&X(ڴ~ Ps2$o1' U ƛ3a< #]A,EP-3q" XE嬯hE4v:z‚U2B,|Ƅ(AKv4'ۍ(mĒl3kVɄP MaC J^"gKy$^V6!Q5޹>m>r+)^>uヌZMl>zk7niWqY߆4i?x+U/ >l<Pqg0qV^~sXZU7_z۷#h\BV߼,%ݪI4G'͌zMlѷHqu+yzlq3ɷ?k7eH%m+'#Cq0qHH#& *ÅF1* Wr?{N( QVm 栐32S  ydP459'ր(_۴36=럲Mr[mGm3ӵ`h8Qzֵco +jYvtxg+/WIAW<f_}(JK -vv/s5.!fo#%x۝.M(ҫi`~%P.fc *I$9hW'ޛG~a~y!n.ҳ/YY.9wgGdyZӭcI²kKZt GYm?]m6>hwLƫY>dm^ElaV6 OC\&%M 5cѳχrK`vk! A\ii0*8 jcc揳sh=ѳ?ÊuӶZti+c+P x~+p]E[$M)KF*GZokmq_,4Dd=x87yto? )zK{w|ƟSOHfX~/{k pC5ۈ+#)e4x@[ }JG[続%Ո"YmPWq:QnL6xj0UGvXGp~e}Mgk0d/2/f `Ȫ6DV J]4b1S݉Rv=^|v=Ew )6|p՟hRMxD@whw va>b+-xw-qްn|(Y2䒼o_~BNew*̓nϽ^o61HVXU:syWtM?RYW}&M`+c95oMmxl5hT;Z'QmFP\XZ4VeNAKtWTT+>*HE>ЅWb+ۥO5~ uzۤiEmp{=,kN(W0iP{AD[6˶%(xn 63zzֆu eBI4x<&ەEEH59 o9qVɔEɡPMgmu]Uhs@c4wJtG. L.Q\FѶJzU__t\'9 d-U ̗pIesZZ5ė0|c{?{u &E'<PHUU]zr"+J3wQ< S9@QMpo Ui $qYȯ˻FU|q@&n")*+k'FkC=+1`>eJH#=h.>i:rmcZme>TްZmahvEWҤ,Z&:(65ctpcDm8=*HQInBf)L=K#c}E<}슊NV34ݢ<)fFf{mn>O7v5VI=i:u rU7F8Hz((7Uy&co-ز^uitnq|l͎[Vyv`y?ʰ46N1ۚ|:=0F~^+]5j7@s>3/-O1aPpG=ċaү]x}-8QVy@Fn x +Xۉ<]X4vndhyRUwuG  qY ԯ䷆II RGݠ ũʗR+E*j@nQ{@tvS{$04|qހ1'f]ZgbEuhciYC2 5pr]]kM 픱UEIwkoٵI"Ip$o|?W9,w*9Y]JX(.XȫiӋV^z&;G"4mrj靼qz e#6?yI#tc#\duG*Q0YO;f n~^n85 ۓ\wtuەWzUۏ1wuv04(႞OAMuITti-KR$hS#8ݎl̎0yw١12Ȭ0Q,%lp VݕƑiq I 6ZFig"k+[F#< x]jk{R7^Ovf!h© 5QO굟?^]ܹNb>d1@@[vg IH.eu<2o51+Y{h65iqpnXދy0"oY |Wy>o$IJ?z4;8(yFUҘS[h..1 u߅-ueu;¶ "䵺 tu<@K=VI՜;Au6RgpkAg/=sYfpðV8(3ĺm ی yJ0u>.i$gy~jgp5h7ƫ{PKpw[]GMnR}>d*@\q:A'vMgF3&sHGVzC;mA)?R3Wm5b檨W U|c1SWy$XtZ},1/VZnvdsZ䴉dZu41VSI#clZ_ "qґ]J<˓ֱXiӅ|l 8ペPԖd<̠x,#~fmߒ>fqʑQmahԒdBtwG Yg?{.=s5+b]*煠_Ht2WSln?fũv~oU. vڝzPʰyqZ"m빇?Z9s2;UY.}[ӭjw6S\IEe%jT`$l<P^_є~LOFEY~a/؄<NX|_сXkzVmu!q LL~=2)88⸆DH|}jn~x᩷1 w#'Qhi~4~{.Y6z(U l`*z 5n׽$5쪍wiZA6 60ڽ+oY,An/ \ax*ϒfu#^tgl߀ Gv$!MFeXfMS:Kqܢ#@y3?YjzCn@yϏ|1nTegq@i:_̸kGĠGއ{?\@R6$qER1bųw:<Mk$X|V[IUY#nckVe5 ZޥX]L,6Ƞ?Ol ĜeI=CQ6͋B-1@7M{]Nm=-~tlmu9sZx[Fѥ<Z "C@qggi6Asp[|!ZQk2xLةi;xd=Ȥeykn-fo9$Wdc7hBB~?Ro"UmlV8'x^GakMF&fdn:/u-0GmJgImmbB>RB6Izul]Cd8$q׽yɣ^IV)>ypu#pk!gG+~b_k%³mlSJu#4mhg ։Tuk`EU/p k0VcP^ 2Qqf|k3ךmmYfPP@M3R{h hum=g^ MF?I8ǵhZiVzȷVEiO?T'z6>9r+gú0̉oOCҕm,#KZN&f֩4Ve@5>O8#Z 7]Ҽyk]-D.gsx"۰m3 ,6C7jϞUo#Sf񭶗<6w#ސQou+[NzԺd:xI.ι`a[ʰγB䗐pkSքgr|@4OԖ}'I[\kۇ˸Ik2F,sHq5QYi7s78D@x>l'VAѫMc!^w$2jI^xO_Zoo <JVnWle*&62pk:ua9-%5Z<4^iY%_#8)n$'ɋ;Fq{Vcܨy5ORҮ.uT.lcKNyڴ3!Ç}8+_9Ub'BkrU;jq5͗$Ft>z>pcX⢎G1\\|>"wĞY=[Jc7汉d,z`rހ7d}ִۤF\{V7_eM7V <] o3D.zt39A8X[D/{ϲ;3o9*Ϻk˟0_J]z׶HK4}Vdl1QwvS+ګ1,O@SZFJŬ}7œo{yY+ {KLXcqO|*1#D[ũ\ZЊ<:ܴg}L2k@ܙcݹU=sIwIc_Ǖ 4!]ʪNC\:>GO6`Wq@oh85,K.￸d:-ϻ޴-v;PV)%֦C8Zm8V *ֻ<20&ٖ%a5žLݳXVZy.e Tտ~i=L|'pơSZ>iՉe%-oi$4 xeUŻzbY4eè\Sj6UOD@6kv5XN#jOGa?\ e&F}=MW:zgr0c&;H%o"20xOG4 {{ Jר 4w3yl }K/ztVj]d'qThm,OV& @?yD=Cw[9eTm, cc @hM4pO|P'׌m6;ˋ(´3gG"S6}]< 9< 8N:-UԵ(۸^{Tqny/#; P:z]1<2V񅭶W4Jmj?.dx 鞔ɼh:/ ]-@j֡i_*Ƭ_Z=fK2s.LDOt^,ծJ5XdUmçĺ");}i:얻~Y{WQ$nۂhKGRq -"=kM0}XgVV<zUɢUa(1޹94hW]uDXc܍}hX_}h_t/)UuD"aqI8V-#C]2['qޖcd!:OnqY.n5Ukv#C~GVuM& Wo>tݬpd]A2̻c]{1iI"ə ڂoYǨ}2*ziwc%ͫ2H ;±|GXp;o<dRY yYϲ#݃kx_[Z8[̈Sq`y<c3Fy`!xcP0FafE2G$dךvkۛŲhڬ Rj=BFh|XUkZIR{{PƳᡬq+lP0Y>.Sg6?Үx_\}hwuNFҮ^ضߓ* QU՞ţ127;M?PX!ןJt9Gڤm>UѪ\> r-io!-X~UOnTV6\6+-af9[Z/x[D{@orh~af@?ZC[Uh3Rhc[{˖nqTv@|I,L[9m*2;! #IyZ.oĦKVNU/ş?&2YQG^w}e&3G7 $k<QrBe]&MÚ=c-ݮ|m徴>~-JiIZ6xaGp8?J(s6ڀ2ۛ8y#o0+SMKua /d̉RK`ݨ,gpUrƀ-H֣?wR ;~5 rZO1GP0h|HWQCH ҕfBi<ԛjooqUpNiN743r@%8JwlzT"~?ZVQ@:SC{n*l^ɠ j*|QG%ʫNt*ҷOOE[M|ӒHUloUb6psRR\Fv@A@nn#Yo5LLr7Z,4:*C_|YZ0+(s^ki׀gudnܿ+nu[}:6mxfx[hfMҀ<@L:aqҖG #֬xߑs[mk]~×-k8W :l򬋴xXv̰VMݲțeV8ݞv9fgl[yI 1VheZSY8GdYzhH-Ck+~ȐZ{-tJHI5Ф_Aqb$luF{ds$U{l+I%Y:x+xColj#ܫ2KX[ti֠B^^̠a[ yi'o΀3|Ksc{ o6EdIo j2G~Cx {JKldSKdjǨF>ʡik: </o9 Vt.&uv *|N@ GgkekY3|SnI̊2MU5/K/Pmk::20ή3Z^ ޖrCUbj\ΟwtZ8G:k6xeo i6.,4xM.D];d\P)w)'2Oi[j7-n>BchbViMMGb9;Q@ #jugjjru! ΦOk2G֤MMݶm~XMѠCGXiX g-l'Kp$]ثtuF(ޅdH`e5W~ҷ;AT{q]M;X⍘YT8Sv44IVkV-Znf]C[MXc\n m,u]C&~aBŒKggS Vŵg[.HA.>R}+"]ӢrگZlKhdi1'kp}׼g(IY7VP.YaS}̳y} ۫[o &(n9#V/Ҳ5Oݱnќkk>&Mq<oʰ-Z`C5׌<ހ(vvl- ]A~ پX)+u';_{y-գ*6"`x:Ho"X)P`D=+O \h@\~3v?zw u*<grm>Zm9v/J./?~qYڦ 4VWy~`Ǿ±sR{Bp(PŅ:ulzЧwP bMgiX>o)`-=m4Scyn1:PE4œӗ%hŔ?6(kSEH퇛1 HV%k k4-Offo1=au%r:Qai4W.xQZcՍFz-X#UUUP<vi(J r@,=hA|SdVFc"À>3P/ZC-RR'fgyjpQ7i> ^oA fӦ R_ukxզ]w\8tCK)Ly:I5 2Ֆ5d7 u/FiLōۿXwo&d&?+WI<< c7*}kQ6Zwf;cW!@2jeWjsަ/!4$y 1XV-2CyEK5|"7c/ԛ/d7hǒ2VMۋj5gV<iQj>VsNG"9CѽB 8[Y#_1d:) ZMt-Gu2(sP{K_3?t8Ʊ8_3;`G8KvV# YzΗ[ޘ[ I٣XTMt7#@_i:\o+;jIUkZž-^ɣ0Y8ݎ1ڀ:]J5Ē%H0Cweo=YwP:VΚ͹WڪZhqiD+@,ٕ[ jZ ;ee6u?wڞ^g<u_>=sʎSLӦE2`!{{_ Zd4rCx~X Q[-f+.}Kn f6Wj&gk3e)p$3S4#=~JZ1鸟PM _ 4 u˃9(,˒ZHy#?zub*?VV]-41CvZy,3b+:HeDs֍KVw57~ UҮ-m$sVIG-@hf,Uaוz՛H5;YZ9ʃY'<-I I N; n5J($RGp̶qAmt7U9Lc&S^uouq'F"Yk[wSH푨U';WAYlQZO-UPC֫7xN[</9hb4{?㙃q6UuYlZ;oʎ]AupUX!GN+mgiK`@д;kf2ڹ-Oᅦ ~^lK/Ka-♭HUP5kI$!Kc">1ڀ8*Mlsn0N֎[kma†ܱ=yhaxY媏<5.$k;xVQր9-I/ ϟ)xn伅 ejϠѐ^߅/!!2"@<Qi3&Qq5z6;A<f9S!zgwVvV|UxS$&ihԳV5:].Hf]Fy_oQUJ(7楓@ =hMEPM.b#;`-4Pi>v;Rh{)ڂw^#h'R>qҕ|{E[wFAeV=v4nGP)m<Fn[k tpGE,CU-5H|ɺjVң[h.;6אpQR 7qw]h:dPUu\,(Pz|3nV&i8=ƭ{=}u?rZy W,3U<<$״<߬PޫAi?U]֯oX}'&\=/_PN>Ygz)aFR#(jOI$IGtxHӵ-aV?1$èh_ʍɫ+IඓP`d6u팒=MO厳;~n.h+6pV{OL0h-'w[P+#F8'h$cIKeL+jQkMOMPvaTwz̷Y#*"uz>G%M8ǵr>:sмϘߥoD:*} 142n_^^@vaZGc~5YmR6х^ t8 ׽6⪤M sޛ&%EVG4c؎T@ox̿ι?hqnk&SZ46cN;PYjMr+e eV+V&%GsWWR:lN(g]I4 f<8f"1'G̸].MIo KV:b޳42'VOJwpV[!e v0kgĖhaV1u%n4.$ShgRaL[bHogMfR*kT@h މ8Q ; thk.]M/-hc_Ec*m+FO[RY؟-y-M֮\ڤ;G ?ڦѴxc}}p(Yt}jr.V]T[;&RNUec媞i^^n%c@|;G]Bfi7vJKMaZHc~V\7^ܼ:7zwcouhG=MèYIoG՘pj+X`v}mWM=2, POtiۣ<g_\FC+>Kqn9SRP"Ss@u}{u<O5Cm;vi$X㞴Zd Pq)O[4N+:Bv+9pNsZOguwdsQYqZqlJN+B'_.;<uYրFL4j7bxTմx#SK/Z<UѺR8XY1s<a`Oܽ(oMq5֟5vr[!ϥwޗ-o55W<VG4*̬nҀ<kKXKxPVƩ{}X[eSNTm7ܮ1XR[+VQWp_c@/[WIp>yMmk; exR9SڽGέWwQ>d{X)7ӥBszk&֠ 8rhQ(%ӌozvqFߛ5ǟN%(_}7ooHco( ڀؠo)HiD(%~|4nWL&ۭiKiЬfM_Ca̗XOSPul'ۅq{{,8ڜ@ 6vmIE2uǥ%#n3JM;AkmA$6H-.ojU=Ga@ R$MqtFmL.۔9-]sTFn*(jy'|';jWQtBWjq:嬓(##+I ]x;[X8dya(|*Gdž%:b-<Mw;Eiԕ ;Vy<=Wn8PxdxBLLWד\qV|.嬅 zbk j{[Yni8*9 ;ht[-7yiyZ׌n-mKUm1T/t.EX\|.jow29]q6J>&ѬhIgֹkI v'pEO[7Qj±2ހ,xsE@u"p JUTn[޶7^`XfeG*ZiiM6LD|vX/ΏqY,m9>=w$,q÷s>(&Qa\ʀ3ax`mjtfTЌԗZMœUdGUeZ 8y_<W `mx)bTj}V|Lcpzy'fm]NzqX:&fz X ܊uUخNm1(=+cN[Y<pp+mV]VS rnzd_}sjmf PݥrJ`zN}ʕI ր12TfY$\9ҵ"3 ~4AfY6~8hB˿w?Wrսk;ǞֱA;we)ZKe? 'P݃[H8OZxU N;fLVZ6ZFvoj?KkmRقL)j}cP,[;vz2Z-t!l|~Y5ٮ|Z@u5V@= VT1+gaZ↚r}e,Vg[U4Oa67Z#d8OsZޯj4,C&266rVhP5? dNy jo.Y#ngvxzQXV&>w -?JDk#[}ǭIuk*ߪT>.K9 _-Ď`(xī̭56ʚ,-cHٱX͟CEIrTGZײ2@(Լ@8;x,?ڝ7m[`N int/fXaTMm9g;n"2yv8T^vcVi{En=Y֍GQK$r_=:KX.<(>R~40$Ʒ?Z5쬱Tea)XpMy_ğV2I lʪ>S\<}6&&i3r_^IQxj,γ-=v噹SKsҕsϿm36 bBր0jn5%n4P ~9 #F*Pdf VރwzA)h+[܁Yu^x c\;kf>l`zVB!<Tkhp_\UQi c1Ҁ.ȗ8Măˆi3y{qW %0y(͕jsZG>"ms-9$u-ìjp;V/ i$UJ<*m^inW1b+mni,o/Iγ? ʺ'MҴHE8W)_ֺͽlxW<g{]2(!16=-οi>mcp9ǵTeHTbos"Y)ߌ8e\3'AMuyl( vmu_BZ1&Ij~%M޶ z|k SY.]$PZC 5X)[sf*:#Fk{ n*aEBȭ}5fc':S 'Y6|'gGK+pHf[V8b$n=akXVPhvE0wG75sQ+It9ªتFQIdrz psPt`*,9Tn?NnM M1.Ģv.ɽY^5+*{Gkgbo;wj&MFP1$kW]e| 9GL8f8PɴSV۴xeQ׸[7⹻K紸Uך4ڎ VMUT7i9咵ıﮖHn,2?7I-S\ޣu?ͷδ5ۍB4U4j:V|6t wSWxSN Y#j^%ݹv6;sWPsl,3oD ; ެ<42.@nux\;5um|=2ՌkGq43cqM2-3Z|ݮ %d\,P;]u -b pDREԳ:W/kˆ˚~l[ki2͵8<t W7:=%,;T>o+Y>a Fl)m㵞5u7㩨:\m- y=sNk~)Ðı$sM;+} +#>\}UOQ8lr>[i"p>u"MOzzI1hͲΗAWnx=*{+IϺ6h|/]kj7 uLT٥m4mb\m=W53ij?4hXw?uAK*=pMnƿsk,aTd㨬/x3<rf@r2TKՌ6m ~5[^ͽ27̱rNr+זĶ]i\6HQ+ZĒx;˹CuhІ( EP4f{rXrՏoe,6BƭiŦi9@#-okH5m #8 s]^ݖ{.J& Zʼ;W>LRhekߵ_ CI%ƅYhp)Tv7 ??vA#uo4hk[pmw݇ǨD:AP94sJPt5Ͱܿ1ֱ3 =eϥuC$W6bGAF3YrijƥZ^)',":o1/o 句A53@sV^;4w R{4h:dneZ먨Q[oo[$o"Ouw:zPωY CZod9Y,txa-1A[MBVEvwChf! ׾[%~SZ>4Oxfd,+Q| &7ӡ;h&E;A~jiG*̼V_gӂɟz4K]& [OP# _y^b3cF(G6zkd>X᫦d df[ٮn6!I{7Kyh - J"_hx6F wp[b~1ҴŚ/;vԟ-mtn @[:kILF0~?KFHˌn⢻kc{ jY~xs\%"O)1CGM2mUV/[zVq7דdkBE2yIw?s/KOdlU+ymYcU̞t`nG1E^(vqi7r9w 9oA<ѕ2,tO&]}Uýr>%pY/( @W1\NU[՝!dkIH@O>hf]t?OxtOlp= (CFդ/Hrzֻ+V,q.:T8Үiwe0}##ր=+2kx9JGD5 hT3?vll$Sր)R]Yg#;Xڢ#ҞViZMO,x)qKZvku7|ýH6JtTrΤ/Ե7>CtW5}NeOr[lؿʱ޳-$ᦅ\t_i@#Vݽ~SCṴAtmEZ5-Z8f`TkrKFhg\:x~8[[tqկ -vHԞvqƟee<|ɸW[frvTneԴv}>RtgX|t`O,(m/\Ec$w4HymZedO7őx)-hZ|:Uūe ,ZLnr*yGRlTSZEFLzG@<]qLɵx5[ˏݰn: ÿ񵾓kin;ֶ;[hl4 ր.mpyVO _ [F,sy~т;Y #r?Zxb4729"-iv?B*6MnnYpacKu >R۟0/Qր9ܖ>[=4/'9 I^c0Æz0I5 V 4NeW0]­>44WLQ-ƦTCQQO/C u[,D1~!Tk:OڢϚr=+a.kņ )֍AVwUb?=¥9&@ǧ5|FJ_]1 sZ"+PzQE3q?~q@ޔbg4)S NၘdW8սd. asY^X吶E{P,˷C}żKɶ0 ֢RiQk+o,H8[K'^oA8"_|7SMѪ7@Y@n2t Wp$!˂>\?g?ٿ!-VyO1#iAq͓ZHnyIèU/YӵVͭb>W Y^#i p2[Ƚ1Vݕeڀ:7} %TtMm9eF*s]g-.ArV7jWl}~?A ح8Ԭ}hymɎ[9j&M7 $G <b4e㻲I.㏦T@ Y:;%7ny~Ʊ̜oJtf9]E9ПpP7:/.V͞hŻaXcuqoxхo6E9rzfo<Of,\ V=ēG`ֶ-Kyl|KvYg{Xlk>m#>Fcr,k pku?#Wl0?ŎQjXI Œc5[Z8Er3(8 w 7~ƩZ̓]:xu_N|gkK[Bo?1?Uk7<v%Ɵoplg46M1 O9Q2Bq$/ 6CzuMdUy$XtVUl}rxu&qIlv {W0#M?xnF9bp;W6#%jƫ|ܪCsmI X9SD:63@BM:lz)(̓6pR>#Ye"@$7?ߡ^TQci9lxw2x`CT+wqjM65Hdcgb*+.#+C5$vfEp*qcqڀ.[Yd|LJcM# Hjvn$Heު:u|Eb\(EVM?Y{]5դpZ9$cg4H!z{:h2Fw@Zs/5C2x56oP95SY>t@vq2Ys2 oZxX?#6Wjr@kWGNs-/(|+s}{x_͈[=k)[m~O<xmmlDE9 Mpo#ߕXetXe+Ѽq"1]UON:U B(Ybq"(vʘ0Y[email protected]}LבqPki:elcy iv6k[P\I^>l[ʾJMÁYZo.-4Y~=O rm/衿P+jD{MexƤ={[%pKTRFUHaހg&Cq5r`(5<ZmԞdiP?1gq mkwie?uj L}yLgHQrpխa.4Əxx8DvSRCڸV؉_͕~#6SP>>^*sn W GLPtmC)>ԗ{o,SAs|v=E|? G*(Wq_7hy9x &9goN{/OBf]µm*g=s4|1\d$WBȥGv'9y ;ޭ;L{Hj|ɪ:ƑuP[nz/ d󙟨t"kVEڝ-Wt8v{RgVUTPI-;c8?ȼnS]yQWҵ) N>3YRfgau@1=~İhY 6*r1ڀ=:姆8H#l S4$%ǵpV~0|F tnd҂ikq4lkGUH"@]wdS\,̿($eo[$x`܂ǨȯbڭL>hڬFolA`ݨb+d.GzC}GfiMB[Wִk"jjwZ1hW"?z]&h?0P: bE p{֕qHchdxVuTVXnXcuڪe?0Ut~=UMטTuS7Enu;<_1g >7\]]>FTRx[ŗz֣'>kv}Fq gRڍƱn6,3#0js39\ɨooZݼ̘Wj #&~BO^qxؙvzgq+_ʍ ^E;#@ {mNHSu,C=?Fd<7U}jGb5̊sP2;0 t4|ˎ(|_-k_FLPÔڍAۮs@弲\,,@h=[z:r\ )QR C޼N՟OE+Okwm'xA\ζz;*umha+96*SfRM>M0SG#X'@t^y5fm£Y3EIQ֍յlu|9Z^u9QdYۗWsp3֜Vh#`˸psޛ#XZeSʿi:쉫Ild>BG[[UJJ.<,?taMVXn-)k{lцE8>ƀ,iZ,efBfroY$N[m%kgKc`?'w-@P!pДTY {mنSIml\m*hy=(Ҽ }̸Vʄ߅Uia /F&(Q9VBOJID6 Osڀ05f!)-HVHi#_4UkvڣTOڮѳ}@<>5kaxjd/ үq~MHS3*ٛF"c @&OX`}E#nl [X H"OxZ_%TWxmEWaYɖ42ZŠam7Xuh^&hXb(sĐ6a3+ڹ-Hyu^/$/]}+o2 I3ߨ45Rܻqy[Fn(6[fDb`x u%jFA8c)1ӏ+&)Q0. l8-€"Fz4?nm]'Sm-ZЋGC @ceR քw0*:cvg2{V݅u ݃ڴK,2t݌;W6sڬ&̱m#=eEI&i*!1<޴XV=8OН#ҷ4cFa 7jUn?ګ+ aY28Fx <|Һ Kxdj1[w SV^(~Zkb$Qxtm20Z۰{d}O?s٢;_X_[7IGZX^aKncfS@c,y7Bչ`Ӗ;v]kδY\>k[Kqnhjq+?5H4M~h=E`Z)^B}1V!cHJcj4_e$UB*D `gZfxA4ۛoݟNh^6Kn,'cΏXkI#!'5k5=hrPuk7j0ܒGJy}w5u4p6z@|uԆ6ڻ wV~L}ܭ:%XqWy MoF"Y#mP$i3of͗pjMGqSRpKqډeS<wgl7\eTYïPA ,r<RMl,f- OFLMg޸SA;Dۣ8nBѤӵS4M2xj֩|[m k q5UVWڵ!+HMuj~p#CM7K9tLSlVg,Pw5g}KLdFȠ#8@o>ne#mKKMGNh6Gz˵]J$L"rd~L}FYSI! sݭ;_1ޕ:م/1uY-w kыPR5N]/x jM1hؕcn9\1.C[Ʌ銃NveLjk87E"CܞT\F{Q<_25RM>m=P,+[dh[G ƫx"kaN1U̷VvHq@ ڄɏ*`%k<b8R&aqaE+YIf*72};륊6fnP^_?%\w">UtKyνWҲ5˿촚E&(?@MlT1cI]P&i׳}| B}j;&MʫɎk5̭n{;k phaY9&$h>eDm)YJU72cSfv{DdG@lcߥ5f$Ǡɸ7"YSڀXJkwQ)?{@Jw&OW\|(*3!ǠZ۶m wd o8WuM>Uv˵j[@CN֦G:ǝ+khb"/Tdiz䞞<#;7%iC2ƨݍ,֫4"?Z m*ݣ_4b}f-Xj_HIYLP}F<Pj-/֡I[sIƝ3To$\P^3UfP2K8)02Rx]Ƞ &oNx& 4G͊K(ˍKe E ͖Jjd" $֭x/7nƁo$I&>V{KV,Py ϭ\P]ی5Be .t&+/>a8K)F  f7{~muڠR+ͣ9"Q}U[uGǰIu87]~DbٙV^q maϵK2NGԵ1ْ [*LfCnqo\QibTg&c΅:8V|pqNIde*tW͆fLGd/ ՛d/Q`yE~(RdzglH~QDM@8Jpa6bOe85kvZ9(8XI&Ӥb*+M=X7^(hݴ~; vZֽ$,ՎkkFVҹ}ԡ=h<9HӚ791YҵXu ?sq2Mys؞WKylpPgaVJʲNHg1Ҿ$}/D'fMnwʃ'v5YpJCd,}rZjn@$ֺ6Y-L'ݕ#aG{&CвiRUZV0Z3ր4ewɝ=1ު<k#Vh7JйgUe=T&_56Qh&ixVPIoc7́Yωԭmm-t2UNdڛG=k6=T\u(m-f(=M`6e$(Z<C#U MjO3l:/51|GV%kK/"I$Y5xUE^_s^=7F>\gY4-Y4Umn۵B;hF?= \4yodݷ֢U}h7ZUԜ})d޴TG@wu<RvJ翽6 qAN:q\u?6x^W???Z 2]̼ GjZ2t^+@Y>QڏEh[{ nS$_g,3/.zYHѤj̻~g9h *ۑz@}ukA.x. /%1:]Fxf?0eM4ad!ܪxz۩ !<JvZ9'(~jιo<RĶi3e t!UM {rjnkI+& vJܘLl-q3WM*Ia +SWC[ȶH`Pfaăs=O;[${\Uk) xMZ!4/B6YzT۬SnUzStr6݌MgX,`ޠKnl{U֛ݓe`di<`rvaYCu>&$[ kTB5:Ay۸h U0=|/Mlރb{h=/X-VI;8q*촯ُOdI:(Y6t~lZlk;<-uWt[ոwuһˋ";|;ZtfE#~(ٺܫU6kgXТV+2CWstoI0ʻqxVF 6;hmqb{1Fo_Ӂ1>K Z&#dDq>=}(7]WǗd\)t&$k-ʏq3La,㷆5%l;St9Ҁ0|g[mo݃NKEǞgCWZi<n56`40q(>,SI0 r>,ceyܣW]{sg^--L`ր<G& M yЯ nHE<澂ӠF`*ڼ_d71*!of;6ݧpUkP4l[Gr2""e9QL4ҡ|s[&q3-?Ś,)t2d {U| mϸhX~&KqEnEeYGZ7!7C1Ul;q^4FЮn#jfܫ"Rijy7npJ.|>*ʫۭ4y[ o8UhKmaiW.0[.VFWl<*֐ʭ#v ^%ˁi`Z-ei6s Iy4.HS Yf*6zP%v@+Koj* lPjl/;}a^w/MJ0Y;0r12m!uہPn5U{ Gi ygt8'Dwrǭ@%.l(*'ٕlri :F[49ͪ/s@&]Q]u41y%Q^1{Qs@ ?4(zJ|kOҢ0n?Sʲ4_u8:\g^{/MB1׽t^-dzitֿ0 U&1:VUߘ̭&>F+ZͶP7ZXun'oZXӡ0]:X,ٸyv0b:*E8VDwN#3+mX>71nnqPT̺co*ޜ ɨnaAVNYsؕ߅Wݟǚ*F-9l@ݸ"vEuKc(Li/l&Vj=ߕwGC|}#ˑҺ CFR2c'c@yy[{Tfѭ]6e0*YOU#hޮvD*v۵"O֔6fo1 nڧq]g/3xYW(Xdfaդ`3_DWEoe l7mhiJ@(;@U*ݦ1c>)Hܬ˅?0KN}Q~(Veq mܾj Yn8ז崭*GtE8@Љ61жxY[֟V-9iIZ1בi{sP{^ź6[!DoO,-uXm6OtcP}*eO-8Z$;nޣ@oZeZƾYw\s0 l7 &$t2GտpZ;qҵG~5K_zּwrGL0(  +[QxGӴEs] {֮PEyM˃UGH·g~h:Z0ƻ5im_`/ma?z+{yѶO0 =UFQ޸Vʦ~V1ҽ^-p㌅p+|Qgv[€9 9Lh/zyÚK*uQlR[8We$py+3qU<vԯ}ȎpGZ+M|Gqe˷|=y=pAG-ɵ{5G`Ȼ@ghx:K7M- c- w]M8X?2>\\֩k]k$90 z ־kpn$UB2u|;n**]N<͌VΨʛTZd?;792GtsF9N*QrDZM0QՈ9ǭg9lF0L&"84ʸ}9dm+ԁր)çGTn}ȟMm/lʌ<)8"Ѿ}[Jv 47vfѴ٭Y'+\®s~+iݾj(B8渐d$eq@%#ߍE<lyPzҴ1=q>9J r>¤fH-{H{ {|)] [;:_68R Ҁ[jYpͺ%6b eުR*kn {qhEWX7 ܯJFxo]I'ހ;Ox\ʫ"񸞵C?*Ñ+̭ߘ߽t*͖b@<Pj8Y}SQϾ}i;v%. a@h3N\.cΝuypV(&o||?Ԉy?u_j(Q'W$IުsT9(2rUvRVփ@Ci^c lv5ifD2W9~P( vJ~\WQuqXs͵.Tu47Q}=뛽h~U ZS(ўՠfqy#Yn мjmCpVլ#>P;PTLrMrsJ{={#"*Yhտg&<zѯH^c{oxFI9a0ңҼ cUdU2{VĿڣ_fHBrj0g㑿xvIo#nD-7|qTm|^YۭH#LWqq4MyX;kVVOީ̟8힕=Ԟ$M£.̚~Lq2ۨsހ4$e`@a7FA Ci QFj"8YW]g:m.og5 h)w3m (}=6Q_\<,%5[?,m'ۜtTH)s*; ·j!4G KդBw|ޕ0hTX[-r!O4.vMĺ0X+J\cV&/qT,4{;A[ԚJ&m>)%;Th$3E f|1ҵoc6i~cxfMRErpZ}\;II3?ZGof2G b=KMh剙])Oex|;pm٦Mdž8ē ӮjKvYH=*[i8 K43H3A@ŁUw kkh3,s3Hd`@fiZƞF9^4"X.Z6hA|@K5UˏJӀyMzW=a]]ظ8ʭuB)<@9h%Lc0Sڱ|m~c"I]VknnBˀExn2(qᗗW/$kbH%!籫{2y.285M.X#[dy5$v)&FJ aBq@ ba[P J|;UGXfvfrIՈ4Uo94+G$;x SԮⲑd Avְ mUWtc] @1Y7A_,˅LLҼet\w?}A&\pʶO><W붉k3|Q~)1.oJ[GjsEN?3M 6籠fg=Nŷ隑Sa9~|YG%U9TP{_4⣞-q֠\corsҘw6UiGĝ*@yҎhb\/Εa%Cn 2ƀHO vWH#^sP[Y V`$_++x2h9@2QcOboNG&UD1֓+ YldUBsrGVM6&56+.8ʞ,6 oi.Zl,Ƕ)NA<qҀ>F9CXNmu23-BBؚa(,^9HTy@姉}V.)K:(<XhЧ]wJu']n4=qQKqqz#mnJIji<f?{ޠUNOZd3ssҷ|leݻsiktG9|xik+WDl5%e2MsYUjihЫ7]Abh X6=6?, Y7nn:0*8g<}tJdrH ci#XD-º\K/psZW\mTrk]I 4țd4ne6qqO8vm $٤>a;z9?/9-lMTw4[Em;2i%.LmCPDQڡ๒f}Igi!-ޤ='8 s$EDa,ۂu$WQp|x\ڤ@-ȐAsm; ~\}\e[~3ռEwoj[{+lyfpá m7(>:^6;I=G B^F4ܪ ^%2Iz굉w[PI,&TzWIiG}bQ2`@j? \jD0`ƍ\.݀pF9}-&Vp>^ps]e ck/VZՄ'2ZT6\h EbXSd-dlt+ F}zU\q ҽ+:Q-TF3T^}G\ '* OI9u 1KG8cC 9I1H/Y-"`W5vwkXv;1;}xkM~V;ֵ \VzխC rc.dǾ2n6|y iCooGZRa@ l}+o-y0siZw i7~TumT;$mxju EM%x/JFԯR$c?w>V=!j'1ҫl40/hn㯵9%sHtf[d}%*Q~;QG::2t{P6ی<ݐzJf5χ=k 즒I eRsX'/EwbA]àFE6A<^MGLkOLYv1q3. j"Y\LFuSLyڥ~w3zHAܧE (`Usqk\gU4 SP?̧ M#oLзQoR*XY$3g:- zSB aoa@q0횓Lf6v<*Wx }D[{ɏ0 @7ա-Fk{i? VO)o.IdZ6/j«)m[߽Ҁ#a1#y3IPi ",N $p+giϧnēI.(a| *d#(6BẰ<mz淅[U/dy`;4hᵳ1NÁL .?*;y XGY{;/m}i|E5 tj~c_SF|idbGUO'ٙտgɡԮ=3B|t.B u F2y۟;jUo1›$㏯1J{β&o Mv?JqE92XOjЮ`A95X_lqؠXP´,5u[s7octӞt;mkNHbTVnROFVPekv;v:N6[l+gRuX6r}Y>KCz.t ^{:v>s{5nɏZIc&ڹ3+dRyQCA%+CTNIxҀ3|U_\[[Hd/+xsPR:KoՐ :h Z/u4qҺsh'1#c'\ ֻ&f0SOu!}b7u9jѷC^ipYʎk'AH9n V浐дZ%!Xt ,(<$z/ȉ?/'# q'7˥FEeBKޓPlY^aȊAM$7?@Qu%67m:t6!x~U"y"[vDk sNâLdʢŷick}wz<O|M,ʫ=5cP[es6One7Y!9(>=BQ{#@Db= \7ƽa|o m8I4,py?a/PqkC@1]tsr9Uq~l7z0gRnl5xK}+TU|PzPl3۴MoլJ&;!V"'@Gɴ=6v7kC> JKZ8$heul}ƺ LKsX>1 ƊVHcsP{=SEoZd7]dҀ:iF%+ިeM /z_tB $lˮYq!hqI./w3<1>^U#H U۽mu=>5sD}YRN7П&&XW8ϠOR1Nnc89cՀ@<XTM+)Nc[[|"r:)EZ1^ /eEcjZm7W-<̭#+5.EXP`|amoiOY #Um:M1]9ܹh+nfUr#-WcIà<b&y\ä\)<\ěm|%.FeF^€<Yu[Fl֛&yߥ;V|y0_45 :SҀ}>(~‘|.[TmH0's l7lV<#yAmlyr:b燮<Ikk LB:{jo h<` @>#]M@WhpSC#`T:$2xѨ.$gdc4F6:f-#I61tK$M{}k &Ȳ'U=plYV c$P,JP:KsM5ZG^Hr;TqA'2q@%ZV'xjVci<sNaXmMl:$G&rǮ(d:E*Z*kUeڧ.n䔯#$gs*UuU$pO|es+{w МȻs'͹x d*ve=hip692)̭ߚmQEQE*`ҥ[m6zW{bpP֝wvQ\T2 i}>fr3zo-Hط"7fyqۯ_z~w`˃k>xuXYWRؓqUJk&̛h9<畨ai̫=q@ŧ:6Gj6;X9.̍r@Po0z=J- yK,vdw^\|Iۚ56"B +;yrF7h#RR8HÞ@?Zu6E>8]IcդÌTKqq?8Y6V3 H0Pw.4P_5~Q#p+S±Q-\Tm<5&pfݸ)٧NSOZԻi% 3pKxm<͆IL2si'qҴJZi%#%Fn>60z t\Ek947J|3&li$<sƳGogxc>b^[mdFcvk7]hћlGB;Nehl8iײ#Ibv@+7QmG2a+3 Yڶ7s@TJ6_'c?*I.C$WT$rۏ$4 M=O`@f]]葷Dqǵt+nJIc ?ajo9YV|I}Z r (yov]j|CI3dKnp,Z=ZK ͌m55#ƾހ-O&mF;#62ҽKF!c@xu 7W{>٥iյH j6˶,Y|2ndo qDwЪv EOar)O-źՃNѦcf!4TzVmC4+vR~_lHc:UlC<";I!fAh6XͰv58af 1N#ʗr h[no4Y_2sKt0| Wn{%H|lbHL'@f6|vA _Wi$=܀[=w`cſjd23r(_ŏx;CAK]- P |S P"'"t?V#KsxKx=sH9<NIɤoyf-t$qc9``ʥpXtD6ϵUK/rj*w'*qmN$zW~#MB֚{P\|{q}vQH^eZ[*x9ڢ4EVhִyvdhͷrOLTrV 2zmKۛ}&ZLңV_ ,c9;ln5jgU}F[Ǝ5,?I";vQ>Dҷ CҀ m4iS0F侑goAN$We;py_۬)pn  ?!ծ#[$gt̾J~ qnQN[QYcn sja,(%mѴpwvxf>?<q֛F((ӟZ(Kƕd*(4T蘕@;Y?zɠGҒcgҐQ@ ʎOԶ YzԪ ۞hR0H]KgrɶE: kr2ڞe`|h/{? owjYP9e2zzרݵ>Ma&\#ҡUZi1}Foc>J9 ک[ݘՋzUɮK-|}({/T*p9Td[y`Ir!Rbb_)[ F ,mo3]CfK V2͹չOJBfY 㹾jq{%͇SoVZ͒ X/~Oj~ز&V@\H (2}ȿ) ֲ_tq/ *xf=_Mkveyq@Ua'U<Li53_XzMbj>wr[[n1PsRKV gq~,-~scʊ]gU%cuJEP78$o|}w|+I 5 +/_je결ݝU9<Î^дwpy]9 hn噸Ʊ|?Ȉ̪ ;Wi 坼nR(U2ZU~}~aSxCO ʊ7㚱jM},Y9- "Xo"h Z+[6 Ӌ(_kp .ҽ@_–IVBCV _}.uw@7ltBAg3 `U[H3֥tb[1cx`*)_n_}OS@5k?\6u,[#4<ǭaj|E4ur̶βGsʮ[t=P9쎵i 0eX뚯zp3ڀ.<,/w^Y4V?5`>jA+繢+۔2~q8@^;aiq̎zt<p6G\ҵ /lj)mͷ>l扚Nހ%ӧrѲ\ݎ}?/nGk |uڶ5 ?nn!/'[/M2m< :/x^0CesdVG%'UgbI(w=hcq)!OK!Y7,la@~}M7?SE*YeeflĊ,.H1s@4?\Ċ6# |##ofyt5?,zJO⾤ql@Enkc%ǒUu kQ$VV<pMG"1jGCucS֝Qgܽ꽼ma 2{5 4`r_U% ti؛njm<}'f*$ek{v۟#IgF)#/ U Y~ˁ^h4Nf\nWfc;P /r$͵Ͻ0h|&Pk"JhhU#nw[s/'>l4Y9#LyQ ?a.+S\LzG˺P3|wJ_Q |I:(-:wP@ZrPXhWI?֭I3M((Q@±>VqW"vӾyQ5!>z-j8jŲqV!ψm pWK`RאΟ3Zv3۞NxUu!_S+3ZlQ@zJFH.+Sep1 3 Ǖ_7EU6*+++O,_R!++2(O*GޭK[qoF~SU+_o#hZ(|U.8:f2ѕ^Uޟm3lsz+,(;gV>ϦMMw7l&qy5ЫQ<{U)ԿUʀ;O{,eV]k+~̸. OŸ[Z:k,/坥HY!Mm |WIR?@B~It6 O:Wo=?UռCcٙ/h5ej~+iP8 Oi_!tPf70}_ nOioy7989rQfxi{[-`e F6S.Ϝ{TwfQkZC$ ۡSiX͖o69EV TEvB -u8?7Zo߳~VZۏk7y@uo뚒N0_ *;/IBIvj/I''=?,ZY4ŷ1 t&hWG@{Ww/hr86(EW4FP͹*cvjt_ m@H|D iP lj,Tp3֣<N\@SH#>b1Luv҆=Oj~X=@mlU<S.(lWZ/EW,|sdb|ʁL1/ҝPgYkLUX [r^qESB: |SxO;FLq}[ȿY{@|;WqVo~}Es
-1
TheAlgorithms/Python
4,273
Update our pre-commit dependencies
### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
cclauss
2021-03-19T09:34:15Z
2021-03-20T05:12:17Z
b8a19ccfea0ceca9f83912aa2f5ad2c15114416a
987567360e53da1bef786364580e9d5c6dce3fc6
Update our pre-commit dependencies. ### **Describe your change:** * [ ] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? * [ ] Update our dependencies ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [x] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
def binary_search(lst, item, start, end): if start == end: return start if lst[start] > item else start + 1 if start > end: return start mid = (start + end) // 2 if lst[mid] < item: return binary_search(lst, item, mid + 1, end) elif lst[mid] > item: return binary_search(lst, item, start, mid - 1) else: return mid def insertion_sort(lst): length = len(lst) for index in range(1, length): value = lst[index] pos = binary_search(lst, value, 0, index - 1) lst = lst[:pos] + [value] + lst[pos:index] + lst[index + 1 :] return lst def merge(left, right): if not left: return right if not right: return left if left[0] < right[0]: return [left[0]] + merge(left[1:], right) return [right[0]] + merge(left, right[1:]) def tim_sort(lst): """ >>> tim_sort("Python") ['P', 'h', 'n', 'o', 't', 'y'] >>> tim_sort((1.1, 1, 0, -1, -1.1)) [-1.1, -1, 0, 1, 1.1] >>> tim_sort(list(reversed(list(range(7))))) [0, 1, 2, 3, 4, 5, 6] >>> tim_sort([3, 2, 1]) == insertion_sort([3, 2, 1]) True >>> tim_sort([3, 2, 1]) == sorted([3, 2, 1]) True """ length = len(lst) runs, sorted_runs = [], [] new_run = [lst[0]] sorted_array = [] i = 1 while i < length: if lst[i] < lst[i - 1]: runs.append(new_run) new_run = [lst[i]] else: new_run.append(lst[i]) i += 1 runs.append(new_run) for run in runs: sorted_runs.append(insertion_sort(run)) for run in sorted_runs: sorted_array = merge(sorted_array, run) return sorted_array def main(): lst = [5, 9, 10, 3, -4, 5, 178, 92, 46, -18, 0, 7] sorted_lst = tim_sort(lst) print(sorted_lst) if __name__ == "__main__": main()
def binary_search(lst, item, start, end): if start == end: return start if lst[start] > item else start + 1 if start > end: return start mid = (start + end) // 2 if lst[mid] < item: return binary_search(lst, item, mid + 1, end) elif lst[mid] > item: return binary_search(lst, item, start, mid - 1) else: return mid def insertion_sort(lst): length = len(lst) for index in range(1, length): value = lst[index] pos = binary_search(lst, value, 0, index - 1) lst = lst[:pos] + [value] + lst[pos:index] + lst[index + 1 :] return lst def merge(left, right): if not left: return right if not right: return left if left[0] < right[0]: return [left[0]] + merge(left[1:], right) return [right[0]] + merge(left, right[1:]) def tim_sort(lst): """ >>> tim_sort("Python") ['P', 'h', 'n', 'o', 't', 'y'] >>> tim_sort((1.1, 1, 0, -1, -1.1)) [-1.1, -1, 0, 1, 1.1] >>> tim_sort(list(reversed(list(range(7))))) [0, 1, 2, 3, 4, 5, 6] >>> tim_sort([3, 2, 1]) == insertion_sort([3, 2, 1]) True >>> tim_sort([3, 2, 1]) == sorted([3, 2, 1]) True """ length = len(lst) runs, sorted_runs = [], [] new_run = [lst[0]] sorted_array = [] i = 1 while i < length: if lst[i] < lst[i - 1]: runs.append(new_run) new_run = [lst[i]] else: new_run.append(lst[i]) i += 1 runs.append(new_run) for run in runs: sorted_runs.append(insertion_sort(run)) for run in sorted_runs: sorted_array = merge(sorted_array, run) return sorted_array def main(): lst = [5, 9, 10, 3, -4, 5, 178, 92, 46, -18, 0, 7] sorted_lst = tim_sort(lst) print(sorted_lst) if __name__ == "__main__": main()
-1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
## Arithmetic Analysis * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py) * [Gaussian Elimination](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/gaussian_elimination.py) * [In Static Equilibrium](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/in_static_equilibrium.py) * [Intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py) * [Lu Decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py) * [Newton Forward Interpolation](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_forward_interpolation.py) * [Newton Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_raphson.py) * [Secant Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/secant_method.py) ## Backtracking * [All Combinations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_combinations.py) * [All Permutations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_permutations.py) * [All Subsequences](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_subsequences.py) * [Coloring](https://github.com/TheAlgorithms/Python/blob/master/backtracking/coloring.py) * [Hamiltonian Cycle](https://github.com/TheAlgorithms/Python/blob/master/backtracking/hamiltonian_cycle.py) * [Knight Tour](https://github.com/TheAlgorithms/Python/blob/master/backtracking/knight_tour.py) * [Minimax](https://github.com/TheAlgorithms/Python/blob/master/backtracking/minimax.py) * [N Queens](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens.py) * [N Queens Math](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens_math.py) * [Rat In Maze](https://github.com/TheAlgorithms/Python/blob/master/backtracking/rat_in_maze.py) * [Sudoku](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sudoku.py) * [Sum Of Subsets](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sum_of_subsets.py) ## Bit Manipulation * [Binary And Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_and_operator.py) * [Binary Count Setbits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_count_setbits.py) * [Binary Count Trailing Zeros](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_count_trailing_zeros.py) * [Binary Or Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_or_operator.py) * [Binary Shifts](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_shifts.py) * [Binary Twos Complement](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_twos_complement.py) * [Binary Xor Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_xor_operator.py) * [Count Number Of One Bits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/count_number_of_one_bits.py) * [Reverse Bits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/reverse_bits.py) * [Single Bit Manipulation Operations](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/single_bit_manipulation_operations.py) ## Blockchain * [Chinese Remainder Theorem](https://github.com/TheAlgorithms/Python/blob/master/blockchain/chinese_remainder_theorem.py) * [Diophantine Equation](https://github.com/TheAlgorithms/Python/blob/master/blockchain/diophantine_equation.py) * [Modular Division](https://github.com/TheAlgorithms/Python/blob/master/blockchain/modular_division.py) ## Boolean Algebra * [Quine Mc Cluskey](https://github.com/TheAlgorithms/Python/blob/master/boolean_algebra/quine_mc_cluskey.py) ## Cellular Automata * [Conways Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/conways_game_of_life.py) * [Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/game_of_life.py) * [One Dimensional](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/one_dimensional.py) ## Ciphers * [A1Z26](https://github.com/TheAlgorithms/Python/blob/master/ciphers/a1z26.py) * [Affine Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/affine_cipher.py) * [Atbash](https://github.com/TheAlgorithms/Python/blob/master/ciphers/atbash.py) * [Base16](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base16.py) * [Base32](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base32.py) * [Base64 Encoding](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base64_encoding.py) * [Base85](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base85.py) * [Beaufort Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/beaufort_cipher.py) * [Brute Force Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/brute_force_caesar_cipher.py) * [Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/caesar_cipher.py) * [Cryptomath Module](https://github.com/TheAlgorithms/Python/blob/master/ciphers/cryptomath_module.py) * [Decrypt Caesar With Chi Squared](https://github.com/TheAlgorithms/Python/blob/master/ciphers/decrypt_caesar_with_chi_squared.py) * [Deterministic Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/ciphers/deterministic_miller_rabin.py) * [Diffie](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie.py) * [Diffie Hellman](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie_hellman.py) * [Elgamal Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/elgamal_key_generator.py) * [Enigma Machine2](https://github.com/TheAlgorithms/Python/blob/master/ciphers/enigma_machine2.py) * [Hill Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/hill_cipher.py) * [Mixed Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mixed_keyword_cypher.py) * [Mono Alphabetic Ciphers](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mono_alphabetic_ciphers.py) * [Morse Code Implementation](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_code_implementation.py) * [Onepad Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) * [Playfair Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) * [Porta Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/porta_cipher.py) * [Rabin Miller](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rabin_miller.py) * [Rail Fence Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rail_fence_cipher.py) * [Rot13](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rot13.py) * [Rsa Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_cipher.py) * [Rsa Factorization](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_factorization.py) * [Rsa Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_key_generator.py) * [Shuffled Shift Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/shuffled_shift_cipher.py) * [Simple Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_keyword_cypher.py) * [Simple Substitution Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_substitution_cipher.py) * [Trafid Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/trafid_cipher.py) * [Transposition Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher.py) * [Transposition Cipher Encrypt Decrypt File](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher_encrypt_decrypt_file.py) * [Vigenere Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/vigenere_cipher.py) * [Xor Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/xor_cipher.py) ## Compression * [Burrows Wheeler](https://github.com/TheAlgorithms/Python/blob/master/compression/burrows_wheeler.py) * [Huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) * [Lempel Ziv](https://github.com/TheAlgorithms/Python/blob/master/compression/lempel_ziv.py) * [Lempel Ziv Decompress](https://github.com/TheAlgorithms/Python/blob/master/compression/lempel_ziv_decompress.py) * [Peak Signal To Noise Ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py) ## Computer Vision * [Harris Corner](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/harris_corner.py) * [Mean Threshold](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/mean_threshold.py) ## Conversions * [Binary To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/binary_to_decimal.py) * [Binary To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/binary_to_octal.py) * [Decimal To Any](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_any.py) * [Decimal To Binary](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary.py) * [Decimal To Binary Recursion](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary_recursion.py) * [Decimal To Hexadecimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_hexadecimal.py) * [Decimal To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_octal.py) * [Hex To Bin](https://github.com/TheAlgorithms/Python/blob/master/conversions/hex_to_bin.py) * [Hexadecimal To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/hexadecimal_to_decimal.py) * [Molecular Chemistry](https://github.com/TheAlgorithms/Python/blob/master/conversions/molecular_chemistry.py) * [Octal To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/octal_to_decimal.py) * [Prefix Conversions](https://github.com/TheAlgorithms/Python/blob/master/conversions/prefix_conversions.py) * [Rgb Hsv Conversion](https://github.com/TheAlgorithms/Python/blob/master/conversions/rgb_hsv_conversion.py) * [Roman Numerals](https://github.com/TheAlgorithms/Python/blob/master/conversions/roman_numerals.py) * [Temperature Conversions](https://github.com/TheAlgorithms/Python/blob/master/conversions/temperature_conversions.py) * [Weight Conversion](https://github.com/TheAlgorithms/Python/blob/master/conversions/weight_conversion.py) ## Data Structures * Binary Tree * [Avl Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/avl_tree.py) * [Basic Binary Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/basic_binary_tree.py) * [Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree.py) * [Binary Search Tree Recursive](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree_recursive.py) * [Binary Tree Mirror](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_tree_mirror.py) * [Binary Tree Traversals](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_tree_traversals.py) * [Fenwick Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/fenwick_tree.py) * [Lazy Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lazy_segment_tree.py) * [Lowest Common Ancestor](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lowest_common_ancestor.py) * [Merge Two Binary Trees](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/merge_two_binary_trees.py) * [Non Recursive Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/non_recursive_segment_tree.py) * [Number Of Possible Binary Trees](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/number_of_possible_binary_trees.py) * [Red Black Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/red_black_tree.py) * [Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree.py) * [Segment Tree Other](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree_other.py) * [Treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/treap.py) * Disjoint Set * [Alternate Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/alternate_disjoint_set.py) * [Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/disjoint_set.py) * Hashing * [Double Hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/double_hash.py) * [Hash Table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table.py) * [Hash Table With Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table_with_linked_list.py) * Number Theory * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/number_theory/prime_numbers.py) * [Quadratic Probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/quadratic_probing.py) * Heap * [Binomial Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/binomial_heap.py) * [Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py) * [Heap Generic](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap_generic.py) * [Max Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/max_heap.py) * [Min Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/min_heap.py) * [Randomized Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/randomized_heap.py) * [Skew Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/skew_heap.py) * Linked List * [Circular Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/circular_linked_list.py) * [Deque Doubly](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/deque_doubly.py) * [Doubly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list.py) * [Doubly Linked List Two](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list_two.py) * [From Sequence](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/from_sequence.py) * [Has Loop](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/has_loop.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_palindrome.py) * [Merge Two Lists](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/merge_two_lists.py) * [Middle Element Of Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/middle_element_of_linked_list.py) * [Print Reverse](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/print_reverse.py) * [Singly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) * [Skip List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/skip_list.py) * [Swap Nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swap_nodes.py) * Queue * [Circular Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/circular_queue.py) * [Double Ended Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/double_ended_queue.py) * [Linked Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/linked_queue.py) * [Priority Queue Using List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/priority_queue_using_list.py) * [Queue On List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_list.py) * [Queue On Pseudo Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_pseudo_stack.py) * Stacks * [Balanced Parentheses](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/balanced_parentheses.py) * [Dijkstras Two Stack Algorithm](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/dijkstras_two_stack_algorithm.py) * [Evaluate Postfix Notations](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/evaluate_postfix_notations.py) * [Infix To Postfix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_postfix_conversion.py) * [Infix To Prefix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_prefix_conversion.py) * [Linked Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/linked_stack.py) * [Next Greater Element](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/next_greater_element.py) * [Postfix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/postfix_evaluation.py) * [Prefix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/prefix_evaluation.py) * [Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack.py) * [Stack Using Dll](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack_using_dll.py) * [Stock Span Problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stock_span_problem.py) * Trie * [Trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py) ## Digital Image Processing * [Change Brightness](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_brightness.py) * [Change Contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py) * [Convert To Negative](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/convert_to_negative.py) * Dithering * [Burkes](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/dithering/burkes.py) * Edge Detection * [Canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/edge_detection/canny.py) * Filters * [Bilateral Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/bilateral_filter.py) * [Convolve](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/convolve.py) * [Gaussian Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py) * [Median Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py) * [Sobel Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/sobel_filter.py) * Histogram Equalization * [Histogram Stretch](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/histogram_equalization/histogram_stretch.py) * [Index Calculation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/index_calculation.py) * Resize * [Resize](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/resize/resize.py) * Rotation * [Rotation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/rotation/rotation.py) * [Sepia](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/sepia.py) * [Test Digital Image Processing](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/test_digital_image_processing.py) ## Divide And Conquer * [Closest Pair Of Points](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/closest_pair_of_points.py) * [Convex Hull](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/convex_hull.py) * [Heaps Algorithm](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/heaps_algorithm.py) * [Heaps Algorithm Iterative](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/heaps_algorithm_iterative.py) * [Inversions](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/inversions.py) * [Kth Order Statistic](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/kth_order_statistic.py) * [Max Difference Pair](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_difference_pair.py) * [Max Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py) * [Mergesort](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/mergesort.py) * [Peak](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/peak.py) * [Power](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/power.py) * [Strassen Matrix Multiplication](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/strassen_matrix_multiplication.py) ## Dynamic Programming * [Abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py) * [Bitmask](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/bitmask.py) * [Climbing Stairs](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/climbing_stairs.py) * [Edit Distance](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/edit_distance.py) * [Factorial](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/factorial.py) * [Fast Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fast_fibonacci.py) * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fibonacci.py) * [Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/floyd_warshall.py) * [Fractional Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack.py) * [Fractional Knapsack 2](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack_2.py) * [Integer Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/integer_partition.py) * [Iterating Through Submasks](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/iterating_through_submasks.py) * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/knapsack.py) * [Longest Common Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_common_subsequence.py) * [Longest Increasing Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence.py) * [Longest Increasing Subsequence O(Nlogn)](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence_o(nlogn).py) * [Longest Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_sub_array.py) * [Matrix Chain Order](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/matrix_chain_order.py) * [Max Non Adjacent Sum](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_non_adjacent_sum.py) * [Max Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) * [Max Sum Contiguous Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sum_contiguous_subsequence.py) * [Minimum Coin Change](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_coin_change.py) * [Minimum Cost Path](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_cost_path.py) * [Minimum Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) * [Minimum Steps To One](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_steps_to_one.py) * [Optimal Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/optimal_binary_search_tree.py) * [Rod Cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) * [Subset Generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) * [Sum Of Subset](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/sum_of_subset.py) ## Electronics * [Electric Power](https://github.com/TheAlgorithms/Python/blob/master/electronics/electric_power.py) * [Ohms Law](https://github.com/TheAlgorithms/Python/blob/master/electronics/ohms_law.py) ## File Transfer * [Receive File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/receive_file.py) * [Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/send_file.py) * Tests * [Test Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/tests/test_send_file.py) ## Fractals * [Koch Snowflake](https://github.com/TheAlgorithms/Python/blob/master/fractals/koch_snowflake.py) * [Mandelbrot](https://github.com/TheAlgorithms/Python/blob/master/fractals/mandelbrot.py) * [Sierpinski Triangle](https://github.com/TheAlgorithms/Python/blob/master/fractals/sierpinski_triangle.py) ## Fuzzy Logic * [Fuzzy Operations](https://github.com/TheAlgorithms/Python/blob/master/fuzzy_logic/fuzzy_operations.py) ## Genetic Algorithm * [Basic String](https://github.com/TheAlgorithms/Python/blob/master/genetic_algorithm/basic_string.py) ## Geodesy * [Haversine Distance](https://github.com/TheAlgorithms/Python/blob/master/geodesy/haversine_distance.py) * [Lamberts Ellipsoidal Distance](https://github.com/TheAlgorithms/Python/blob/master/geodesy/lamberts_ellipsoidal_distance.py) ## Graphics * [Bezier Curve](https://github.com/TheAlgorithms/Python/blob/master/graphics/bezier_curve.py) * [Vector3 For 2D Rendering](https://github.com/TheAlgorithms/Python/blob/master/graphics/vector3_for_2d_rendering.py) ## Graphs * [A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/a_star.py) * [Articulation Points](https://github.com/TheAlgorithms/Python/blob/master/graphs/articulation_points.py) * [Basic Graphs](https://github.com/TheAlgorithms/Python/blob/master/graphs/basic_graphs.py) * [Bellman Ford](https://github.com/TheAlgorithms/Python/blob/master/graphs/bellman_ford.py) * [Bfs Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_shortest_path.py) * [Bfs Zero One Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_zero_one_shortest_path.py) * [Bidirectional A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/bidirectional_a_star.py) * [Bidirectional Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/bidirectional_breadth_first_search.py) * [Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search.py) * [Breadth First Search 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search_2.py) * [Breadth First Search Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search_shortest_path.py) * [Check Bipartite Graph Bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_bfs.py) * [Check Bipartite Graph Dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_dfs.py) * [Connected Components](https://github.com/TheAlgorithms/Python/blob/master/graphs/connected_components.py) * [Depth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search.py) * [Depth First Search 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search_2.py) * [Dijkstra](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra.py) * [Dijkstra 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_2.py) * [Dijkstra Algorithm](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_algorithm.py) * [Dinic](https://github.com/TheAlgorithms/Python/blob/master/graphs/dinic.py) * [Directed And Undirected (Weighted) Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/directed_and_undirected_(weighted)_graph.py) * [Edmonds Karp Multiple Source And Sink](https://github.com/TheAlgorithms/Python/blob/master/graphs/edmonds_karp_multiple_source_and_sink.py) * [Eulerian Path And Circuit For Undirected Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/eulerian_path_and_circuit_for_undirected_graph.py) * [Even Tree](https://github.com/TheAlgorithms/Python/blob/master/graphs/even_tree.py) * [Finding Bridges](https://github.com/TheAlgorithms/Python/blob/master/graphs/finding_bridges.py) * [Frequent Pattern Graph Miner](https://github.com/TheAlgorithms/Python/blob/master/graphs/frequent_pattern_graph_miner.py) * [G Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/graphs/g_topological_sort.py) * [Gale Shapley Bigraph](https://github.com/TheAlgorithms/Python/blob/master/graphs/gale_shapley_bigraph.py) * [Graph List](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_list.py) * [Graph Matrix](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_matrix.py) * [Graphs Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/graphs_floyd_warshall.py) * [Greedy Best First](https://github.com/TheAlgorithms/Python/blob/master/graphs/greedy_best_first.py) * [Kahns Algorithm Long](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_long.py) * [Kahns Algorithm Topo](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_topo.py) * [Karger](https://github.com/TheAlgorithms/Python/blob/master/graphs/karger.py) * [Markov Chain](https://github.com/TheAlgorithms/Python/blob/master/graphs/markov_chain.py) * [Minimum Spanning Tree Boruvka](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_boruvka.py) * [Minimum Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py) * [Minimum Spanning Tree Kruskal2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal2.py) * [Minimum Spanning Tree Prims](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims.py) * [Minimum Spanning Tree Prims2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims2.py) * [Multi Heuristic Astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_heuristic_astar.py) * [Page Rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py) * [Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py) * [Scc Kosaraju](https://github.com/TheAlgorithms/Python/blob/master/graphs/scc_kosaraju.py) * [Strongly Connected Components](https://github.com/TheAlgorithms/Python/blob/master/graphs/strongly_connected_components.py) * [Tarjans Scc](https://github.com/TheAlgorithms/Python/blob/master/graphs/tarjans_scc.py) * Tests * [Test Min Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/tests/test_min_spanning_tree_kruskal.py) * [Test Min Spanning Tree Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/tests/test_min_spanning_tree_prim.py) ## Hashes * [Adler32](https://github.com/TheAlgorithms/Python/blob/master/hashes/adler32.py) * [Chaos Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/chaos_machine.py) * [Djb2](https://github.com/TheAlgorithms/Python/blob/master/hashes/djb2.py) * [Enigma Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/enigma_machine.py) * [Hamming Code](https://github.com/TheAlgorithms/Python/blob/master/hashes/hamming_code.py) * [Md5](https://github.com/TheAlgorithms/Python/blob/master/hashes/md5.py) * [Sdbm](https://github.com/TheAlgorithms/Python/blob/master/hashes/sdbm.py) * [Sha1](https://github.com/TheAlgorithms/Python/blob/master/hashes/sha1.py) ## Knapsack * [Greedy Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/greedy_knapsack.py) * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/knapsack.py) * Tests * [Test Greedy Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/tests/test_greedy_knapsack.py) * [Test Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/tests/test_knapsack.py) ## Linear Algebra * Src * [Conjugate Gradient](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/conjugate_gradient.py) * [Lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/lib.py) * [Polynom For Points](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/polynom_for_points.py) * [Power Iteration](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/power_iteration.py) * [Rayleigh Quotient](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/rayleigh_quotient.py) * [Test Linear Algebra](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/test_linear_algebra.py) * [Transformations 2D](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/transformations_2d.py) ## Machine Learning * [Astar](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/astar.py) * [Data Transformations](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/data_transformations.py) * [Decision Tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py) * Forecasting * [Run](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/forecasting/run.py) * [Gaussian Naive Bayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gaussian_naive_bayes.py) * [Gradient Boosting Regressor](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_boosting_regressor.py) * [Gradient Descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py) * [K Means Clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py) * [K Nearest Neighbours](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_nearest_neighbours.py) * [Knn Sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py) * [Linear Discriminant Analysis](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_discriminant_analysis.py) * [Linear Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) * [Logistic Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) * Lstm * [Lstm Prediction](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/lstm/lstm_prediction.py) * [Multilayer Perceptron Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/multilayer_perceptron_classifier.py) * [Polymonial Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/polymonial_regression.py) * [Random Forest Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classifier.py) * [Random Forest Regressor](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regressor.py) * [Scoring Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) * [Sequential Minimum Optimization](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/sequential_minimum_optimization.py) * [Similarity Search](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/similarity_search.py) * [Support Vector Machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/support_vector_machines.py) * [Word Frequency Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/word_frequency_functions.py) ## Maths * [3N Plus 1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n_plus_1.py) * [Abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) * [Abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) * [Abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) * [Add](https://github.com/TheAlgorithms/Python/blob/master/maths/add.py) * [Aliquot Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/aliquot_sum.py) * [Allocation Number](https://github.com/TheAlgorithms/Python/blob/master/maths/allocation_number.py) * [Area](https://github.com/TheAlgorithms/Python/blob/master/maths/area.py) * [Area Under Curve](https://github.com/TheAlgorithms/Python/blob/master/maths/area_under_curve.py) * [Armstrong Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/armstrong_numbers.py) * [Average Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py) * [Average Median](https://github.com/TheAlgorithms/Python/blob/master/maths/average_median.py) * [Average Mode](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mode.py) * [Bailey Borwein Plouffe](https://github.com/TheAlgorithms/Python/blob/master/maths/bailey_borwein_plouffe.py) * [Basic Maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py) * [Binary Exp Mod](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exp_mod.py) * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py) * [Binary Exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation_2.py) * [Binary Exponentiation 3](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation_3.py) * [Binomial Coefficient](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_coefficient.py) * [Binomial Distribution](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_distribution.py) * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/maths/bisection.py) * [Ceil](https://github.com/TheAlgorithms/Python/blob/master/maths/ceil.py) * [Chudnovsky Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/chudnovsky_algorithm.py) * [Collatz Sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/collatz_sequence.py) * [Combinations](https://github.com/TheAlgorithms/Python/blob/master/maths/combinations.py) * [Decimal Isolate](https://github.com/TheAlgorithms/Python/blob/master/maths/decimal_isolate.py) * [Entropy](https://github.com/TheAlgorithms/Python/blob/master/maths/entropy.py) * [Euclidean Distance](https://github.com/TheAlgorithms/Python/blob/master/maths/euclidean_distance.py) * [Euclidean Gcd](https://github.com/TheAlgorithms/Python/blob/master/maths/euclidean_gcd.py) * [Euler Method](https://github.com/TheAlgorithms/Python/blob/master/maths/euler_method.py) * [Eulers Totient](https://github.com/TheAlgorithms/Python/blob/master/maths/eulers_totient.py) * [Extended Euclidean Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) * [Factorial Iterative](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_iterative.py) * [Factorial Python](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_python.py) * [Factorial Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_recursive.py) * [Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/factors.py) * [Fermat Little Theorem](https://github.com/TheAlgorithms/Python/blob/master/maths/fermat_little_theorem.py) * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci.py) * [Fibonacci Sequence Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci_sequence_recursion.py) * [Find Max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py) * [Find Max Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max_recursion.py) * [Find Min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py) * [Find Min Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min_recursion.py) * [Floor](https://github.com/TheAlgorithms/Python/blob/master/maths/floor.py) * [Gamma](https://github.com/TheAlgorithms/Python/blob/master/maths/gamma.py) * [Gaussian](https://github.com/TheAlgorithms/Python/blob/master/maths/gaussian.py) * [Greatest Common Divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greatest_common_divisor.py) * [Greedy Coin Change](https://github.com/TheAlgorithms/Python/blob/master/maths/greedy_coin_change.py) * [Hardy Ramanujanalgo](https://github.com/TheAlgorithms/Python/blob/master/maths/hardy_ramanujanalgo.py) * [Integration By Simpson Approx](https://github.com/TheAlgorithms/Python/blob/master/maths/integration_by_simpson_approx.py) * [Is Square Free](https://github.com/TheAlgorithms/Python/blob/master/maths/is_square_free.py) * [Jaccard Similarity](https://github.com/TheAlgorithms/Python/blob/master/maths/jaccard_similarity.py) * [Kadanes](https://github.com/TheAlgorithms/Python/blob/master/maths/kadanes.py) * [Karatsuba](https://github.com/TheAlgorithms/Python/blob/master/maths/karatsuba.py) * [Krishnamurthy Number](https://github.com/TheAlgorithms/Python/blob/master/maths/krishnamurthy_number.py) * [Kth Lexicographic Permutation](https://github.com/TheAlgorithms/Python/blob/master/maths/kth_lexicographic_permutation.py) * [Largest Of Very Large Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_of_very_large_numbers.py) * [Largest Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_subarray_sum.py) * [Least Common Multiple](https://github.com/TheAlgorithms/Python/blob/master/maths/least_common_multiple.py) * [Line Length](https://github.com/TheAlgorithms/Python/blob/master/maths/line_length.py) * [Lucas Lehmer Primality Test](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_lehmer_primality_test.py) * [Lucas Series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py) * [Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/matrix_exponentiation.py) * [Max Sum Sliding Window](https://github.com/TheAlgorithms/Python/blob/master/maths/max_sum_sliding_window.py) * [Median Of Two Arrays](https://github.com/TheAlgorithms/Python/blob/master/maths/median_of_two_arrays.py) * [Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/maths/miller_rabin.py) * [Mobius Function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) * [Modular Exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) * [Monte Carlo](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo.py) * [Monte Carlo Dice](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo_dice.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) * [Number Of Digits](https://github.com/TheAlgorithms/Python/blob/master/maths/number_of_digits.py) * [Numerical Integration](https://github.com/TheAlgorithms/Python/blob/master/maths/numerical_integration.py) * [Perfect Cube](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_cube.py) * [Perfect Number](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_number.py) * [Perfect Square](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_square.py) * [Pi Monte Carlo Estimation](https://github.com/TheAlgorithms/Python/blob/master/maths/pi_monte_carlo_estimation.py) * [Polynomial Evaluation](https://github.com/TheAlgorithms/Python/blob/master/maths/polynomial_evaluation.py) * [Power Using Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/power_using_recursion.py) * [Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) * [Prime Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py) * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_numbers.py) * [Prime Sieve Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_sieve_eratosthenes.py) * [Primelib](https://github.com/TheAlgorithms/Python/blob/master/maths/primelib.py) * [Pythagoras](https://github.com/TheAlgorithms/Python/blob/master/maths/pythagoras.py) * [Qr Decomposition](https://github.com/TheAlgorithms/Python/blob/master/maths/qr_decomposition.py) * [Quadratic Equations Complex Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/quadratic_equations_complex_numbers.py) * [Radians](https://github.com/TheAlgorithms/Python/blob/master/maths/radians.py) * [Radix2 Fft](https://github.com/TheAlgorithms/Python/blob/master/maths/radix2_fft.py) * [Relu](https://github.com/TheAlgorithms/Python/blob/master/maths/relu.py) * [Runge Kutta](https://github.com/TheAlgorithms/Python/blob/master/maths/runge_kutta.py) * [Segmented Sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py) * Series * [Arithmetic Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/series/arithmetic_mean.py) * [Geometric Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/series/geometric_mean.py) * [Geometric Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/geometric_series.py) * [Harmonic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/harmonic_series.py) * [P Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/p_series.py) * [Sieve Of Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py) * [Sigmoid](https://github.com/TheAlgorithms/Python/blob/master/maths/sigmoid.py) * [Simpson Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py) * [Softmax](https://github.com/TheAlgorithms/Python/blob/master/maths/softmax.py) * [Square Root](https://github.com/TheAlgorithms/Python/blob/master/maths/square_root.py) * [Sum Of Arithmetic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_arithmetic_series.py) * [Sum Of Digits](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_digits.py) * [Sum Of Geometric Progression](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_geometric_progression.py) * [Test Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/test_prime_check.py) * [Trapezoidal Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/trapezoidal_rule.py) * [Triplet Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/triplet_sum.py) * [Two Pointer](https://github.com/TheAlgorithms/Python/blob/master/maths/two_pointer.py) * [Two Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/two_sum.py) * [Ugly Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/ugly_numbers.py) * [Volume](https://github.com/TheAlgorithms/Python/blob/master/maths/volume.py) * [Zellers Congruence](https://github.com/TheAlgorithms/Python/blob/master/maths/zellers_congruence.py) ## Matrix * [Count Islands In Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/count_islands_in_matrix.py) * [Inverse Of Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/inverse_of_matrix.py) * [Matrix Class](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_class.py) * [Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_operation.py) * [Nth Fibonacci Using Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/matrix/nth_fibonacci_using_matrix_exponentiation.py) * [Rotate Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/rotate_matrix.py) * [Searching In Sorted Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) * [Sherman Morrison](https://github.com/TheAlgorithms/Python/blob/master/matrix/sherman_morrison.py) * [Spiral Print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py) * Tests * [Test Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/tests/test_matrix_operation.py) ## Networking Flow * [Ford Fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py) * [Minimum Cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py) ## Neural Network * [2 Hidden Layers Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/2_hidden_layers_neural_network.py) * [Back Propagation Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py) * [Convolution Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) * [Perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) ## Other * [Activity Selection](https://github.com/TheAlgorithms/Python/blob/master/other/activity_selection.py) * [Davis–Putnam–Logemann–Loveland](https://github.com/TheAlgorithms/Python/blob/master/other/davis–putnam–logemann–loveland.py) * [Dijkstra Bankers Algorithm](https://github.com/TheAlgorithms/Python/blob/master/other/dijkstra_bankers_algorithm.py) * [Doomsday](https://github.com/TheAlgorithms/Python/blob/master/other/doomsday.py) * [Fischer Yates Shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) * [Gauss Easter](https://github.com/TheAlgorithms/Python/blob/master/other/gauss_easter.py) * [Graham Scan](https://github.com/TheAlgorithms/Python/blob/master/other/graham_scan.py) * [Greedy](https://github.com/TheAlgorithms/Python/blob/master/other/greedy.py) * [Least Recently Used](https://github.com/TheAlgorithms/Python/blob/master/other/least_recently_used.py) * [Lfu Cache](https://github.com/TheAlgorithms/Python/blob/master/other/lfu_cache.py) * [Linear Congruential Generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) * [Lru Cache](https://github.com/TheAlgorithms/Python/blob/master/other/lru_cache.py) * [Magicdiamondpattern](https://github.com/TheAlgorithms/Python/blob/master/other/magicdiamondpattern.py) * [Nested Brackets](https://github.com/TheAlgorithms/Python/blob/master/other/nested_brackets.py) * [Password Generator](https://github.com/TheAlgorithms/Python/blob/master/other/password_generator.py) * [Scoring Algorithm](https://github.com/TheAlgorithms/Python/blob/master/other/scoring_algorithm.py) * [Sdes](https://github.com/TheAlgorithms/Python/blob/master/other/sdes.py) * [Tower Of Hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py) ## Physics * [N Body Simulation](https://github.com/TheAlgorithms/Python/blob/master/physics/n_body_simulation.py) ## Project Euler * Problem 001 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol4.py) * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol5.py) * [Sol6](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol6.py) * [Sol7](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol7.py) * Problem 002 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol4.py) * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol5.py) * Problem 003 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol3.py) * Problem 004 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_004/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_004/sol2.py) * Problem 005 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_005/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_005/sol2.py) * Problem 006 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol4.py) * Problem 007 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol3.py) * Problem 008 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol3.py) * Problem 009 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol3.py) * Problem 010 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol3.py) * Problem 011 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_011/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_011/sol2.py) * Problem 012 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_012/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_012/sol2.py) * Problem 013 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_013/sol1.py) * Problem 014 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_014/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_014/sol2.py) * Problem 015 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_015/sol1.py) * Problem 016 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_016/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_016/sol2.py) * Problem 017 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_017/sol1.py) * Problem 018 * [Solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_018/solution.py) * Problem 019 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_019/sol1.py) * Problem 020 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol4.py) * Problem 021 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_021/sol1.py) * Problem 022 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_022/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_022/sol2.py) * Problem 023 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_023/sol1.py) * Problem 024 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_024/sol1.py) * Problem 025 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol3.py) * Problem 026 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_026/sol1.py) * Problem 027 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_027/sol1.py) * Problem 028 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_028/sol1.py) * Problem 029 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_029/sol1.py) * Problem 030 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_030/sol1.py) * Problem 031 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_031/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_031/sol2.py) * Problem 032 * [Sol32](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_032/sol32.py) * Problem 033 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_033/sol1.py) * Problem 034 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_034/sol1.py) * Problem 035 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_035/sol1.py) * Problem 036 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_036/sol1.py) * Problem 037 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_037/sol1.py) * Problem 038 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_038/sol1.py) * Problem 039 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_039/sol1.py) * Problem 040 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_040/sol1.py) * Problem 041 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_041/sol1.py) * Problem 042 * [Solution42](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_042/solution42.py) * Problem 043 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_043/sol1.py) * Problem 044 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_044/sol1.py) * Problem 045 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_045/sol1.py) * Problem 046 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_046/sol1.py) * Problem 047 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_047/sol1.py) * Problem 048 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_048/sol1.py) * Problem 049 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_049/sol1.py) * Problem 050 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_050/sol1.py) * Problem 051 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_051/sol1.py) * Problem 052 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_052/sol1.py) * Problem 053 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_053/sol1.py) * Problem 054 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_054/sol1.py) * [Test Poker Hand](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_054/test_poker_hand.py) * Problem 055 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_055/sol1.py) * Problem 056 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_056/sol1.py) * Problem 057 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_057/sol1.py) * Problem 058 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_058/sol1.py) * Problem 059 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_059/sol1.py) * Problem 062 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_062/sol1.py) * Problem 063 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_063/sol1.py) * Problem 064 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_064/sol1.py) * Problem 065 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_065/sol1.py) * Problem 067 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_067/sol1.py) * Problem 069 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_069/sol1.py) * Problem 070 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_070/sol1.py) * Problem 071 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_071/sol1.py) * Problem 072 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_072/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_072/sol2.py) * Problem 074 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_074/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_074/sol2.py) * Problem 075 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_075/sol1.py) * Problem 076 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_076/sol1.py) * Problem 077 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_077/sol1.py) * Problem 080 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_080/sol1.py) * Problem 081 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_081/sol1.py) * Problem 085 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_085/sol1.py) * Problem 086 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_086/sol1.py) * Problem 087 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_087/sol1.py) * Problem 089 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_089/sol1.py) * Problem 091 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_091/sol1.py) * Problem 097 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_097/sol1.py) * Problem 099 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_099/sol1.py) * Problem 101 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_101/sol1.py) * Problem 102 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_102/sol1.py) * Problem 107 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_107/sol1.py) * Problem 109 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_109/sol1.py) * Problem 112 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_112/sol1.py) * Problem 113 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_113/sol1.py) * Problem 119 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_119/sol1.py) * Problem 120 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_120/sol1.py) * Problem 121 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_121/sol1.py) * Problem 123 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_123/sol1.py) * Problem 125 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_125/sol1.py) * Problem 129 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_129/sol1.py) * Problem 135 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_135/sol1.py) * Problem 173 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_173/sol1.py) * Problem 174 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_174/sol1.py) * Problem 180 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_180/sol1.py) * Problem 188 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_188/sol1.py) * Problem 191 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_191/sol1.py) * Problem 203 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_203/sol1.py) * Problem 206 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_206/sol1.py) * Problem 207 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_207/sol1.py) * Problem 234 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_234/sol1.py) * Problem 301 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_301/sol1.py) * Problem 551 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_551/sol1.py) ## Quantum * [Deutsch Jozsa](https://github.com/TheAlgorithms/Python/blob/master/quantum/deutsch_jozsa.py) * [Half Adder](https://github.com/TheAlgorithms/Python/blob/master/quantum/half_adder.py) * [Not Gate](https://github.com/TheAlgorithms/Python/blob/master/quantum/not_gate.py) * [Quantum Entanglement](https://github.com/TheAlgorithms/Python/blob/master/quantum/quantum_entanglement.py) * [Ripple Adder Classic](https://github.com/TheAlgorithms/Python/blob/master/quantum/ripple_adder_classic.py) * [Single Qubit Measure](https://github.com/TheAlgorithms/Python/blob/master/quantum/single_qubit_measure.py) ## Scheduling * [First Come First Served](https://github.com/TheAlgorithms/Python/blob/master/scheduling/first_come_first_served.py) * [Round Robin](https://github.com/TheAlgorithms/Python/blob/master/scheduling/round_robin.py) * [Shortest Job First](https://github.com/TheAlgorithms/Python/blob/master/scheduling/shortest_job_first.py) ## Searches * [Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) * [Binary Tree Traversal](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_tree_traversal.py) * [Double Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/double_linear_search.py) * [Double Linear Search Recursion](https://github.com/TheAlgorithms/Python/blob/master/searches/double_linear_search_recursion.py) * [Fibonacci Search](https://github.com/TheAlgorithms/Python/blob/master/searches/fibonacci_search.py) * [Hill Climbing](https://github.com/TheAlgorithms/Python/blob/master/searches/hill_climbing.py) * [Interpolation Search](https://github.com/TheAlgorithms/Python/blob/master/searches/interpolation_search.py) * [Jump Search](https://github.com/TheAlgorithms/Python/blob/master/searches/jump_search.py) * [Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/linear_search.py) * [Quick Select](https://github.com/TheAlgorithms/Python/blob/master/searches/quick_select.py) * [Sentinel Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/sentinel_linear_search.py) * [Simple Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/simple_binary_search.py) * [Simulated Annealing](https://github.com/TheAlgorithms/Python/blob/master/searches/simulated_annealing.py) * [Tabu Search](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_search.py) * [Ternary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/ternary_search.py) ## Sorts * [Bead Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bead_sort.py) * [Bitonic Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bitonic_sort.py) * [Bogo Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bogo_sort.py) * [Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bubble_sort.py) * [Bucket Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bucket_sort.py) * [Cocktail Shaker Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cocktail_shaker_sort.py) * [Comb Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/comb_sort.py) * [Counting Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/counting_sort.py) * [Cycle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cycle_sort.py) * [Double Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/double_sort.py) * [External Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/external_sort.py) * [Gnome Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/gnome_sort.py) * [Heap Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/heap_sort.py) * [Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/insertion_sort.py) * [Intro Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/intro_sort.py) * [Iterative Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/iterative_merge_sort.py) * [Merge Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_insertion_sort.py) * [Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort.py) * [Msd Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/msd_radix_sort.py) * [Natural Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/natural_sort.py) * [Odd Even Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_sort.py) * [Odd Even Transposition Parallel](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_parallel.py) * [Odd Even Transposition Single Threaded](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_single_threaded.py) * [Pancake Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pancake_sort.py) * [Patience Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/patience_sort.py) * [Pigeon Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeon_sort.py) * [Pigeonhole Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeonhole_sort.py) * [Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort.py) * [Quick Sort 3 Partition](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort_3_partition.py) * [Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/radix_sort.py) * [Random Normal Distribution Quicksort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_normal_distribution_quicksort.py) * [Random Pivot Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_pivot_quick_sort.py) * [Recursive Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_bubble_sort.py) * [Recursive Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_insertion_sort.py) * [Recursive Mergesort Array](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_mergesort_array.py) * [Recursive Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_quick_sort.py) * [Selection Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/selection_sort.py) * [Shell Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) * [Slowsort](https://github.com/TheAlgorithms/Python/blob/master/sorts/slowsort.py) * [Stooge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/stooge_sort.py) * [Strand Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/strand_sort.py) * [Tim Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py) * [Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py) * [Tree Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py) * [Unknown Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/unknown_sort.py) * [Wiggle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/wiggle_sort.py) ## Strings * [Aho Corasick](https://github.com/TheAlgorithms/Python/blob/master/strings/aho_corasick.py) * [Anagrams](https://github.com/TheAlgorithms/Python/blob/master/strings/anagrams.py) * [Autocomplete Using Trie](https://github.com/TheAlgorithms/Python/blob/master/strings/autocomplete_using_trie.py) * [Boyer Moore Search](https://github.com/TheAlgorithms/Python/blob/master/strings/boyer_moore_search.py) * [Can String Be Rearranged As Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/can_string_be_rearranged_as_palindrome.py) * [Capitalize](https://github.com/TheAlgorithms/Python/blob/master/strings/capitalize.py) * [Check Anagrams](https://github.com/TheAlgorithms/Python/blob/master/strings/check_anagrams.py) * [Check Pangram](https://github.com/TheAlgorithms/Python/blob/master/strings/check_pangram.py) * [Detecting English Programmatically](https://github.com/TheAlgorithms/Python/blob/master/strings/detecting_english_programmatically.py) * [Frequency Finder](https://github.com/TheAlgorithms/Python/blob/master/strings/frequency_finder.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/is_palindrome.py) * [Jaro Winkler](https://github.com/TheAlgorithms/Python/blob/master/strings/jaro_winkler.py) * [Knuth Morris Pratt](https://github.com/TheAlgorithms/Python/blob/master/strings/knuth_morris_pratt.py) * [Levenshtein Distance](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py) * [Lower](https://github.com/TheAlgorithms/Python/blob/master/strings/lower.py) * [Manacher](https://github.com/TheAlgorithms/Python/blob/master/strings/manacher.py) * [Min Cost String Conversion](https://github.com/TheAlgorithms/Python/blob/master/strings/min_cost_string_conversion.py) * [Naive String Search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_string_search.py) * [Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/palindrome.py) * [Prefix Function](https://github.com/TheAlgorithms/Python/blob/master/strings/prefix_function.py) * [Rabin Karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) * [Remove Duplicate](https://github.com/TheAlgorithms/Python/blob/master/strings/remove_duplicate.py) * [Reverse Letters](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_letters.py) * [Reverse Words](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_words.py) * [Split](https://github.com/TheAlgorithms/Python/blob/master/strings/split.py) * [Swap Case](https://github.com/TheAlgorithms/Python/blob/master/strings/swap_case.py) * [Upper](https://github.com/TheAlgorithms/Python/blob/master/strings/upper.py) * [Word Occurrence](https://github.com/TheAlgorithms/Python/blob/master/strings/word_occurrence.py) * [Word Patterns](https://github.com/TheAlgorithms/Python/blob/master/strings/word_patterns.py) * [Z Function](https://github.com/TheAlgorithms/Python/blob/master/strings/z_function.py) ## Web Programming * [Co2 Emission](https://github.com/TheAlgorithms/Python/blob/master/web_programming/co2_emission.py) * [Covid Stats Via Xpath](https://github.com/TheAlgorithms/Python/blob/master/web_programming/covid_stats_via_xpath.py) * [Crawl Google Results](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_results.py) * [Crawl Google Scholar Citation](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_scholar_citation.py) * [Currency Converter](https://github.com/TheAlgorithms/Python/blob/master/web_programming/currency_converter.py) * [Current Stock Price](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_stock_price.py) * [Current Weather](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_weather.py) * [Daily Horoscope](https://github.com/TheAlgorithms/Python/blob/master/web_programming/daily_horoscope.py) * [Emails From Url](https://github.com/TheAlgorithms/Python/blob/master/web_programming/emails_from_url.py) * [Fetch Bbc News](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_bbc_news.py) * [Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_github_info.py) * [Fetch Jobs](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_jobs.py) * [Get Imdb Top 250 Movies Csv](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdb_top_250_movies_csv.py) * [Get Imdbtop](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdbtop.py) * [Instagram Crawler](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_crawler.py) * [Instagram Pic](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_pic.py) * [Instagram Video](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_video.py) * [Recaptcha Verification](https://github.com/TheAlgorithms/Python/blob/master/web_programming/recaptcha_verification.py) * [Slack Message](https://github.com/TheAlgorithms/Python/blob/master/web_programming/slack_message.py) * [Test Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/test_fetch_github_info.py) * [World Covid19 Stats](https://github.com/TheAlgorithms/Python/blob/master/web_programming/world_covid19_stats.py)
## Arithmetic Analysis * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/bisection.py) * [Gaussian Elimination](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/gaussian_elimination.py) * [In Static Equilibrium](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/in_static_equilibrium.py) * [Intersection](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/intersection.py) * [Lu Decomposition](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/lu_decomposition.py) * [Newton Forward Interpolation](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_forward_interpolation.py) * [Newton Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_method.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/newton_raphson.py) * [Secant Method](https://github.com/TheAlgorithms/Python/blob/master/arithmetic_analysis/secant_method.py) ## Backtracking * [All Combinations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_combinations.py) * [All Permutations](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_permutations.py) * [All Subsequences](https://github.com/TheAlgorithms/Python/blob/master/backtracking/all_subsequences.py) * [Coloring](https://github.com/TheAlgorithms/Python/blob/master/backtracking/coloring.py) * [Hamiltonian Cycle](https://github.com/TheAlgorithms/Python/blob/master/backtracking/hamiltonian_cycle.py) * [Knight Tour](https://github.com/TheAlgorithms/Python/blob/master/backtracking/knight_tour.py) * [Minimax](https://github.com/TheAlgorithms/Python/blob/master/backtracking/minimax.py) * [N Queens](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens.py) * [N Queens Math](https://github.com/TheAlgorithms/Python/blob/master/backtracking/n_queens_math.py) * [Rat In Maze](https://github.com/TheAlgorithms/Python/blob/master/backtracking/rat_in_maze.py) * [Sudoku](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sudoku.py) * [Sum Of Subsets](https://github.com/TheAlgorithms/Python/blob/master/backtracking/sum_of_subsets.py) ## Bit Manipulation * [Binary And Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_and_operator.py) * [Binary Count Setbits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_count_setbits.py) * [Binary Count Trailing Zeros](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_count_trailing_zeros.py) * [Binary Or Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_or_operator.py) * [Binary Shifts](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_shifts.py) * [Binary Twos Complement](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_twos_complement.py) * [Binary Xor Operator](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/binary_xor_operator.py) * [Count Number Of One Bits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/count_number_of_one_bits.py) * [Reverse Bits](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/reverse_bits.py) * [Single Bit Manipulation Operations](https://github.com/TheAlgorithms/Python/blob/master/bit_manipulation/single_bit_manipulation_operations.py) ## Blockchain * [Chinese Remainder Theorem](https://github.com/TheAlgorithms/Python/blob/master/blockchain/chinese_remainder_theorem.py) * [Diophantine Equation](https://github.com/TheAlgorithms/Python/blob/master/blockchain/diophantine_equation.py) * [Modular Division](https://github.com/TheAlgorithms/Python/blob/master/blockchain/modular_division.py) ## Boolean Algebra * [Quine Mc Cluskey](https://github.com/TheAlgorithms/Python/blob/master/boolean_algebra/quine_mc_cluskey.py) ## Cellular Automata * [Conways Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/conways_game_of_life.py) * [Game Of Life](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/game_of_life.py) * [One Dimensional](https://github.com/TheAlgorithms/Python/blob/master/cellular_automata/one_dimensional.py) ## Ciphers * [A1Z26](https://github.com/TheAlgorithms/Python/blob/master/ciphers/a1z26.py) * [Affine Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/affine_cipher.py) * [Atbash](https://github.com/TheAlgorithms/Python/blob/master/ciphers/atbash.py) * [Base16](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base16.py) * [Base32](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base32.py) * [Base64 Encoding](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base64_encoding.py) * [Base85](https://github.com/TheAlgorithms/Python/blob/master/ciphers/base85.py) * [Beaufort Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/beaufort_cipher.py) * [Brute Force Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/brute_force_caesar_cipher.py) * [Caesar Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/caesar_cipher.py) * [Cryptomath Module](https://github.com/TheAlgorithms/Python/blob/master/ciphers/cryptomath_module.py) * [Decrypt Caesar With Chi Squared](https://github.com/TheAlgorithms/Python/blob/master/ciphers/decrypt_caesar_with_chi_squared.py) * [Deterministic Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/ciphers/deterministic_miller_rabin.py) * [Diffie](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie.py) * [Diffie Hellman](https://github.com/TheAlgorithms/Python/blob/master/ciphers/diffie_hellman.py) * [Elgamal Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/elgamal_key_generator.py) * [Enigma Machine2](https://github.com/TheAlgorithms/Python/blob/master/ciphers/enigma_machine2.py) * [Hill Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/hill_cipher.py) * [Mixed Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mixed_keyword_cypher.py) * [Mono Alphabetic Ciphers](https://github.com/TheAlgorithms/Python/blob/master/ciphers/mono_alphabetic_ciphers.py) * [Morse Code Implementation](https://github.com/TheAlgorithms/Python/blob/master/ciphers/morse_code_implementation.py) * [Onepad Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/onepad_cipher.py) * [Playfair Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/playfair_cipher.py) * [Porta Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/porta_cipher.py) * [Rabin Miller](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rabin_miller.py) * [Rail Fence Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rail_fence_cipher.py) * [Rot13](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rot13.py) * [Rsa Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_cipher.py) * [Rsa Factorization](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_factorization.py) * [Rsa Key Generator](https://github.com/TheAlgorithms/Python/blob/master/ciphers/rsa_key_generator.py) * [Shuffled Shift Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/shuffled_shift_cipher.py) * [Simple Keyword Cypher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_keyword_cypher.py) * [Simple Substitution Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/simple_substitution_cipher.py) * [Trafid Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/trafid_cipher.py) * [Transposition Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher.py) * [Transposition Cipher Encrypt Decrypt File](https://github.com/TheAlgorithms/Python/blob/master/ciphers/transposition_cipher_encrypt_decrypt_file.py) * [Vigenere Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/vigenere_cipher.py) * [Xor Cipher](https://github.com/TheAlgorithms/Python/blob/master/ciphers/xor_cipher.py) ## Compression * [Burrows Wheeler](https://github.com/TheAlgorithms/Python/blob/master/compression/burrows_wheeler.py) * [Huffman](https://github.com/TheAlgorithms/Python/blob/master/compression/huffman.py) * [Lempel Ziv](https://github.com/TheAlgorithms/Python/blob/master/compression/lempel_ziv.py) * [Lempel Ziv Decompress](https://github.com/TheAlgorithms/Python/blob/master/compression/lempel_ziv_decompress.py) * [Peak Signal To Noise Ratio](https://github.com/TheAlgorithms/Python/blob/master/compression/peak_signal_to_noise_ratio.py) ## Computer Vision * [Harris Corner](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/harris_corner.py) * [Mean Threshold](https://github.com/TheAlgorithms/Python/blob/master/computer_vision/mean_threshold.py) ## Conversions * [Binary To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/binary_to_decimal.py) * [Binary To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/binary_to_octal.py) * [Decimal To Any](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_any.py) * [Decimal To Binary](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary.py) * [Decimal To Binary Recursion](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_binary_recursion.py) * [Decimal To Hexadecimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_hexadecimal.py) * [Decimal To Octal](https://github.com/TheAlgorithms/Python/blob/master/conversions/decimal_to_octal.py) * [Hex To Bin](https://github.com/TheAlgorithms/Python/blob/master/conversions/hex_to_bin.py) * [Hexadecimal To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/hexadecimal_to_decimal.py) * [Molecular Chemistry](https://github.com/TheAlgorithms/Python/blob/master/conversions/molecular_chemistry.py) * [Octal To Decimal](https://github.com/TheAlgorithms/Python/blob/master/conversions/octal_to_decimal.py) * [Prefix Conversions](https://github.com/TheAlgorithms/Python/blob/master/conversions/prefix_conversions.py) * [Rgb Hsv Conversion](https://github.com/TheAlgorithms/Python/blob/master/conversions/rgb_hsv_conversion.py) * [Roman Numerals](https://github.com/TheAlgorithms/Python/blob/master/conversions/roman_numerals.py) * [Temperature Conversions](https://github.com/TheAlgorithms/Python/blob/master/conversions/temperature_conversions.py) * [Weight Conversion](https://github.com/TheAlgorithms/Python/blob/master/conversions/weight_conversion.py) ## Data Structures * Binary Tree * [Avl Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/avl_tree.py) * [Basic Binary Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/basic_binary_tree.py) * [Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree.py) * [Binary Search Tree Recursive](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_search_tree_recursive.py) * [Binary Tree Mirror](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_tree_mirror.py) * [Binary Tree Traversals](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/binary_tree_traversals.py) * [Fenwick Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/fenwick_tree.py) * [Lazy Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lazy_segment_tree.py) * [Lowest Common Ancestor](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/lowest_common_ancestor.py) * [Merge Two Binary Trees](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/merge_two_binary_trees.py) * [Non Recursive Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/non_recursive_segment_tree.py) * [Number Of Possible Binary Trees](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/number_of_possible_binary_trees.py) * [Red Black Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/red_black_tree.py) * [Segment Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree.py) * [Segment Tree Other](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/segment_tree_other.py) * [Treap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/treap.py) * [Wavelet Tree](https://github.com/TheAlgorithms/Python/blob/master/data_structures/binary_tree/wavelet_tree.py) * Disjoint Set * [Alternate Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/alternate_disjoint_set.py) * [Disjoint Set](https://github.com/TheAlgorithms/Python/blob/master/data_structures/disjoint_set/disjoint_set.py) * Hashing * [Double Hash](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/double_hash.py) * [Hash Table](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table.py) * [Hash Table With Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/hash_table_with_linked_list.py) * Number Theory * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/number_theory/prime_numbers.py) * [Quadratic Probing](https://github.com/TheAlgorithms/Python/blob/master/data_structures/hashing/quadratic_probing.py) * Heap * [Binomial Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/binomial_heap.py) * [Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap.py) * [Heap Generic](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/heap_generic.py) * [Max Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/max_heap.py) * [Min Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/min_heap.py) * [Randomized Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/randomized_heap.py) * [Skew Heap](https://github.com/TheAlgorithms/Python/blob/master/data_structures/heap/skew_heap.py) * Linked List * [Circular Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/circular_linked_list.py) * [Deque Doubly](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/deque_doubly.py) * [Doubly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list.py) * [Doubly Linked List Two](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/doubly_linked_list_two.py) * [From Sequence](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/from_sequence.py) * [Has Loop](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/has_loop.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/is_palindrome.py) * [Merge Two Lists](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/merge_two_lists.py) * [Middle Element Of Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/middle_element_of_linked_list.py) * [Print Reverse](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/print_reverse.py) * [Singly Linked List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/singly_linked_list.py) * [Skip List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/skip_list.py) * [Swap Nodes](https://github.com/TheAlgorithms/Python/blob/master/data_structures/linked_list/swap_nodes.py) * Queue * [Circular Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/circular_queue.py) * [Double Ended Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/double_ended_queue.py) * [Linked Queue](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/linked_queue.py) * [Priority Queue Using List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/priority_queue_using_list.py) * [Queue On List](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_list.py) * [Queue On Pseudo Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/queue/queue_on_pseudo_stack.py) * Stacks * [Balanced Parentheses](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/balanced_parentheses.py) * [Dijkstras Two Stack Algorithm](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/dijkstras_two_stack_algorithm.py) * [Evaluate Postfix Notations](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/evaluate_postfix_notations.py) * [Infix To Postfix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_postfix_conversion.py) * [Infix To Prefix Conversion](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/infix_to_prefix_conversion.py) * [Linked Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/linked_stack.py) * [Next Greater Element](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/next_greater_element.py) * [Postfix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/postfix_evaluation.py) * [Prefix Evaluation](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/prefix_evaluation.py) * [Stack](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack.py) * [Stack Using Dll](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stack_using_dll.py) * [Stock Span Problem](https://github.com/TheAlgorithms/Python/blob/master/data_structures/stacks/stock_span_problem.py) * Trie * [Trie](https://github.com/TheAlgorithms/Python/blob/master/data_structures/trie/trie.py) ## Digital Image Processing * [Change Brightness](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_brightness.py) * [Change Contrast](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/change_contrast.py) * [Convert To Negative](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/convert_to_negative.py) * Dithering * [Burkes](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/dithering/burkes.py) * Edge Detection * [Canny](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/edge_detection/canny.py) * Filters * [Bilateral Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/bilateral_filter.py) * [Convolve](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/convolve.py) * [Gaussian Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/gaussian_filter.py) * [Median Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/median_filter.py) * [Sobel Filter](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/filters/sobel_filter.py) * Histogram Equalization * [Histogram Stretch](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/histogram_equalization/histogram_stretch.py) * [Index Calculation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/index_calculation.py) * Resize * [Resize](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/resize/resize.py) * Rotation * [Rotation](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/rotation/rotation.py) * [Sepia](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/sepia.py) * [Test Digital Image Processing](https://github.com/TheAlgorithms/Python/blob/master/digital_image_processing/test_digital_image_processing.py) ## Divide And Conquer * [Closest Pair Of Points](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/closest_pair_of_points.py) * [Convex Hull](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/convex_hull.py) * [Heaps Algorithm](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/heaps_algorithm.py) * [Heaps Algorithm Iterative](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/heaps_algorithm_iterative.py) * [Inversions](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/inversions.py) * [Kth Order Statistic](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/kth_order_statistic.py) * [Max Difference Pair](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_difference_pair.py) * [Max Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/max_subarray_sum.py) * [Mergesort](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/mergesort.py) * [Peak](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/peak.py) * [Power](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/power.py) * [Strassen Matrix Multiplication](https://github.com/TheAlgorithms/Python/blob/master/divide_and_conquer/strassen_matrix_multiplication.py) ## Dynamic Programming * [Abbreviation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/abbreviation.py) * [Bitmask](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/bitmask.py) * [Catalan Numbers](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/catalan_numbers.py) * [Climbing Stairs](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/climbing_stairs.py) * [Edit Distance](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/edit_distance.py) * [Factorial](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/factorial.py) * [Fast Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fast_fibonacci.py) * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fibonacci.py) * [Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/floyd_warshall.py) * [Fractional Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack.py) * [Fractional Knapsack 2](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/fractional_knapsack_2.py) * [Integer Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/integer_partition.py) * [Iterating Through Submasks](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/iterating_through_submasks.py) * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/knapsack.py) * [Longest Common Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_common_subsequence.py) * [Longest Increasing Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence.py) * [Longest Increasing Subsequence O(Nlogn)](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_increasing_subsequence_o(nlogn).py) * [Longest Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/longest_sub_array.py) * [Matrix Chain Order](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/matrix_chain_order.py) * [Max Non Adjacent Sum](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_non_adjacent_sum.py) * [Max Sub Array](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sub_array.py) * [Max Sum Contiguous Subsequence](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/max_sum_contiguous_subsequence.py) * [Minimum Coin Change](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_coin_change.py) * [Minimum Cost Path](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_cost_path.py) * [Minimum Partition](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_partition.py) * [Minimum Steps To One](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/minimum_steps_to_one.py) * [Optimal Binary Search Tree](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/optimal_binary_search_tree.py) * [Rod Cutting](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/rod_cutting.py) * [Subset Generation](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/subset_generation.py) * [Sum Of Subset](https://github.com/TheAlgorithms/Python/blob/master/dynamic_programming/sum_of_subset.py) ## Electronics * [Electric Power](https://github.com/TheAlgorithms/Python/blob/master/electronics/electric_power.py) * [Ohms Law](https://github.com/TheAlgorithms/Python/blob/master/electronics/ohms_law.py) ## File Transfer * [Receive File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/receive_file.py) * [Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/send_file.py) * Tests * [Test Send File](https://github.com/TheAlgorithms/Python/blob/master/file_transfer/tests/test_send_file.py) ## Fractals * [Koch Snowflake](https://github.com/TheAlgorithms/Python/blob/master/fractals/koch_snowflake.py) * [Mandelbrot](https://github.com/TheAlgorithms/Python/blob/master/fractals/mandelbrot.py) * [Sierpinski Triangle](https://github.com/TheAlgorithms/Python/blob/master/fractals/sierpinski_triangle.py) ## Fuzzy Logic * [Fuzzy Operations](https://github.com/TheAlgorithms/Python/blob/master/fuzzy_logic/fuzzy_operations.py) ## Genetic Algorithm * [Basic String](https://github.com/TheAlgorithms/Python/blob/master/genetic_algorithm/basic_string.py) ## Geodesy * [Haversine Distance](https://github.com/TheAlgorithms/Python/blob/master/geodesy/haversine_distance.py) * [Lamberts Ellipsoidal Distance](https://github.com/TheAlgorithms/Python/blob/master/geodesy/lamberts_ellipsoidal_distance.py) ## Graphics * [Bezier Curve](https://github.com/TheAlgorithms/Python/blob/master/graphics/bezier_curve.py) * [Vector3 For 2D Rendering](https://github.com/TheAlgorithms/Python/blob/master/graphics/vector3_for_2d_rendering.py) ## Graphs * [A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/a_star.py) * [Articulation Points](https://github.com/TheAlgorithms/Python/blob/master/graphs/articulation_points.py) * [Basic Graphs](https://github.com/TheAlgorithms/Python/blob/master/graphs/basic_graphs.py) * [Bellman Ford](https://github.com/TheAlgorithms/Python/blob/master/graphs/bellman_ford.py) * [Bfs Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_shortest_path.py) * [Bfs Zero One Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/bfs_zero_one_shortest_path.py) * [Bidirectional A Star](https://github.com/TheAlgorithms/Python/blob/master/graphs/bidirectional_a_star.py) * [Bidirectional Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/bidirectional_breadth_first_search.py) * [Breadth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search.py) * [Breadth First Search 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search_2.py) * [Breadth First Search Shortest Path](https://github.com/TheAlgorithms/Python/blob/master/graphs/breadth_first_search_shortest_path.py) * [Check Bipartite Graph Bfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_bfs.py) * [Check Bipartite Graph Dfs](https://github.com/TheAlgorithms/Python/blob/master/graphs/check_bipartite_graph_dfs.py) * [Connected Components](https://github.com/TheAlgorithms/Python/blob/master/graphs/connected_components.py) * [Depth First Search](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search.py) * [Depth First Search 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/depth_first_search_2.py) * [Dijkstra](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra.py) * [Dijkstra 2](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_2.py) * [Dijkstra Algorithm](https://github.com/TheAlgorithms/Python/blob/master/graphs/dijkstra_algorithm.py) * [Dinic](https://github.com/TheAlgorithms/Python/blob/master/graphs/dinic.py) * [Directed And Undirected (Weighted) Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/directed_and_undirected_(weighted)_graph.py) * [Edmonds Karp Multiple Source And Sink](https://github.com/TheAlgorithms/Python/blob/master/graphs/edmonds_karp_multiple_source_and_sink.py) * [Eulerian Path And Circuit For Undirected Graph](https://github.com/TheAlgorithms/Python/blob/master/graphs/eulerian_path_and_circuit_for_undirected_graph.py) * [Even Tree](https://github.com/TheAlgorithms/Python/blob/master/graphs/even_tree.py) * [Finding Bridges](https://github.com/TheAlgorithms/Python/blob/master/graphs/finding_bridges.py) * [Frequent Pattern Graph Miner](https://github.com/TheAlgorithms/Python/blob/master/graphs/frequent_pattern_graph_miner.py) * [G Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/graphs/g_topological_sort.py) * [Gale Shapley Bigraph](https://github.com/TheAlgorithms/Python/blob/master/graphs/gale_shapley_bigraph.py) * [Graph List](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_list.py) * [Graph Matrix](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_matrix.py) * [Graphs Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/graphs_floyd_warshall.py) * [Greedy Best First](https://github.com/TheAlgorithms/Python/blob/master/graphs/greedy_best_first.py) * [Kahns Algorithm Long](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_long.py) * [Kahns Algorithm Topo](https://github.com/TheAlgorithms/Python/blob/master/graphs/kahns_algorithm_topo.py) * [Karger](https://github.com/TheAlgorithms/Python/blob/master/graphs/karger.py) * [Markov Chain](https://github.com/TheAlgorithms/Python/blob/master/graphs/markov_chain.py) * [Minimum Spanning Tree Boruvka](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_boruvka.py) * [Minimum Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal.py) * [Minimum Spanning Tree Kruskal2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_kruskal2.py) * [Minimum Spanning Tree Prims](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims.py) * [Minimum Spanning Tree Prims2](https://github.com/TheAlgorithms/Python/blob/master/graphs/minimum_spanning_tree_prims2.py) * [Multi Heuristic Astar](https://github.com/TheAlgorithms/Python/blob/master/graphs/multi_heuristic_astar.py) * [Page Rank](https://github.com/TheAlgorithms/Python/blob/master/graphs/page_rank.py) * [Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/prim.py) * [Scc Kosaraju](https://github.com/TheAlgorithms/Python/blob/master/graphs/scc_kosaraju.py) * [Strongly Connected Components](https://github.com/TheAlgorithms/Python/blob/master/graphs/strongly_connected_components.py) * [Tarjans Scc](https://github.com/TheAlgorithms/Python/blob/master/graphs/tarjans_scc.py) * Tests * [Test Min Spanning Tree Kruskal](https://github.com/TheAlgorithms/Python/blob/master/graphs/tests/test_min_spanning_tree_kruskal.py) * [Test Min Spanning Tree Prim](https://github.com/TheAlgorithms/Python/blob/master/graphs/tests/test_min_spanning_tree_prim.py) ## Hashes * [Adler32](https://github.com/TheAlgorithms/Python/blob/master/hashes/adler32.py) * [Chaos Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/chaos_machine.py) * [Djb2](https://github.com/TheAlgorithms/Python/blob/master/hashes/djb2.py) * [Enigma Machine](https://github.com/TheAlgorithms/Python/blob/master/hashes/enigma_machine.py) * [Hamming Code](https://github.com/TheAlgorithms/Python/blob/master/hashes/hamming_code.py) * [Md5](https://github.com/TheAlgorithms/Python/blob/master/hashes/md5.py) * [Sdbm](https://github.com/TheAlgorithms/Python/blob/master/hashes/sdbm.py) * [Sha1](https://github.com/TheAlgorithms/Python/blob/master/hashes/sha1.py) ## Knapsack * [Greedy Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/greedy_knapsack.py) * [Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/knapsack.py) * Tests * [Test Greedy Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/tests/test_greedy_knapsack.py) * [Test Knapsack](https://github.com/TheAlgorithms/Python/blob/master/knapsack/tests/test_knapsack.py) ## Linear Algebra * Src * [Conjugate Gradient](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/conjugate_gradient.py) * [Lib](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/lib.py) * [Polynom For Points](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/polynom_for_points.py) * [Power Iteration](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/power_iteration.py) * [Rayleigh Quotient](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/rayleigh_quotient.py) * [Test Linear Algebra](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/test_linear_algebra.py) * [Transformations 2D](https://github.com/TheAlgorithms/Python/blob/master/linear_algebra/src/transformations_2d.py) ## Machine Learning * [Astar](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/astar.py) * [Data Transformations](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/data_transformations.py) * [Decision Tree](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/decision_tree.py) * Forecasting * [Run](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/forecasting/run.py) * [Gaussian Naive Bayes](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gaussian_naive_bayes.py) * [Gradient Boosting Regressor](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_boosting_regressor.py) * [Gradient Descent](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/gradient_descent.py) * [K Means Clust](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_means_clust.py) * [K Nearest Neighbours](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/k_nearest_neighbours.py) * [Knn Sklearn](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/knn_sklearn.py) * [Linear Discriminant Analysis](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_discriminant_analysis.py) * [Linear Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/linear_regression.py) * [Logistic Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/logistic_regression.py) * Lstm * [Lstm Prediction](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/lstm/lstm_prediction.py) * [Multilayer Perceptron Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/multilayer_perceptron_classifier.py) * [Polymonial Regression](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/polymonial_regression.py) * [Random Forest Classifier](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_classifier.py) * [Random Forest Regressor](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/random_forest_regressor.py) * [Scoring Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/scoring_functions.py) * [Sequential Minimum Optimization](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/sequential_minimum_optimization.py) * [Similarity Search](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/similarity_search.py) * [Support Vector Machines](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/support_vector_machines.py) * [Word Frequency Functions](https://github.com/TheAlgorithms/Python/blob/master/machine_learning/word_frequency_functions.py) ## Maths * [3N Plus 1](https://github.com/TheAlgorithms/Python/blob/master/maths/3n_plus_1.py) * [Abs](https://github.com/TheAlgorithms/Python/blob/master/maths/abs.py) * [Abs Max](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_max.py) * [Abs Min](https://github.com/TheAlgorithms/Python/blob/master/maths/abs_min.py) * [Add](https://github.com/TheAlgorithms/Python/blob/master/maths/add.py) * [Aliquot Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/aliquot_sum.py) * [Allocation Number](https://github.com/TheAlgorithms/Python/blob/master/maths/allocation_number.py) * [Area](https://github.com/TheAlgorithms/Python/blob/master/maths/area.py) * [Area Under Curve](https://github.com/TheAlgorithms/Python/blob/master/maths/area_under_curve.py) * [Armstrong Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/armstrong_numbers.py) * [Average Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mean.py) * [Average Median](https://github.com/TheAlgorithms/Python/blob/master/maths/average_median.py) * [Average Mode](https://github.com/TheAlgorithms/Python/blob/master/maths/average_mode.py) * [Bailey Borwein Plouffe](https://github.com/TheAlgorithms/Python/blob/master/maths/bailey_borwein_plouffe.py) * [Basic Maths](https://github.com/TheAlgorithms/Python/blob/master/maths/basic_maths.py) * [Binary Exp Mod](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exp_mod.py) * [Binary Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation.py) * [Binary Exponentiation 2](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation_2.py) * [Binary Exponentiation 3](https://github.com/TheAlgorithms/Python/blob/master/maths/binary_exponentiation_3.py) * [Binomial Coefficient](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_coefficient.py) * [Binomial Distribution](https://github.com/TheAlgorithms/Python/blob/master/maths/binomial_distribution.py) * [Bisection](https://github.com/TheAlgorithms/Python/blob/master/maths/bisection.py) * [Ceil](https://github.com/TheAlgorithms/Python/blob/master/maths/ceil.py) * [Chudnovsky Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/chudnovsky_algorithm.py) * [Collatz Sequence](https://github.com/TheAlgorithms/Python/blob/master/maths/collatz_sequence.py) * [Combinations](https://github.com/TheAlgorithms/Python/blob/master/maths/combinations.py) * [Decimal Isolate](https://github.com/TheAlgorithms/Python/blob/master/maths/decimal_isolate.py) * [Entropy](https://github.com/TheAlgorithms/Python/blob/master/maths/entropy.py) * [Euclidean Distance](https://github.com/TheAlgorithms/Python/blob/master/maths/euclidean_distance.py) * [Euclidean Gcd](https://github.com/TheAlgorithms/Python/blob/master/maths/euclidean_gcd.py) * [Euler Method](https://github.com/TheAlgorithms/Python/blob/master/maths/euler_method.py) * [Eulers Totient](https://github.com/TheAlgorithms/Python/blob/master/maths/eulers_totient.py) * [Extended Euclidean Algorithm](https://github.com/TheAlgorithms/Python/blob/master/maths/extended_euclidean_algorithm.py) * [Factorial Iterative](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_iterative.py) * [Factorial Python](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_python.py) * [Factorial Recursive](https://github.com/TheAlgorithms/Python/blob/master/maths/factorial_recursive.py) * [Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/factors.py) * [Fermat Little Theorem](https://github.com/TheAlgorithms/Python/blob/master/maths/fermat_little_theorem.py) * [Fibonacci](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci.py) * [Fibonacci Sequence Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/fibonacci_sequence_recursion.py) * [Find Max](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max.py) * [Find Max Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_max_recursion.py) * [Find Min](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min.py) * [Find Min Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/find_min_recursion.py) * [Floor](https://github.com/TheAlgorithms/Python/blob/master/maths/floor.py) * [Gamma](https://github.com/TheAlgorithms/Python/blob/master/maths/gamma.py) * [Gaussian](https://github.com/TheAlgorithms/Python/blob/master/maths/gaussian.py) * [Greatest Common Divisor](https://github.com/TheAlgorithms/Python/blob/master/maths/greatest_common_divisor.py) * [Greedy Coin Change](https://github.com/TheAlgorithms/Python/blob/master/maths/greedy_coin_change.py) * [Hardy Ramanujanalgo](https://github.com/TheAlgorithms/Python/blob/master/maths/hardy_ramanujanalgo.py) * [Integration By Simpson Approx](https://github.com/TheAlgorithms/Python/blob/master/maths/integration_by_simpson_approx.py) * [Is Square Free](https://github.com/TheAlgorithms/Python/blob/master/maths/is_square_free.py) * [Jaccard Similarity](https://github.com/TheAlgorithms/Python/blob/master/maths/jaccard_similarity.py) * [Kadanes](https://github.com/TheAlgorithms/Python/blob/master/maths/kadanes.py) * [Karatsuba](https://github.com/TheAlgorithms/Python/blob/master/maths/karatsuba.py) * [Krishnamurthy Number](https://github.com/TheAlgorithms/Python/blob/master/maths/krishnamurthy_number.py) * [Kth Lexicographic Permutation](https://github.com/TheAlgorithms/Python/blob/master/maths/kth_lexicographic_permutation.py) * [Largest Of Very Large Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_of_very_large_numbers.py) * [Largest Subarray Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/largest_subarray_sum.py) * [Least Common Multiple](https://github.com/TheAlgorithms/Python/blob/master/maths/least_common_multiple.py) * [Line Length](https://github.com/TheAlgorithms/Python/blob/master/maths/line_length.py) * [Lucas Lehmer Primality Test](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_lehmer_primality_test.py) * [Lucas Series](https://github.com/TheAlgorithms/Python/blob/master/maths/lucas_series.py) * [Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/maths/matrix_exponentiation.py) * [Max Sum Sliding Window](https://github.com/TheAlgorithms/Python/blob/master/maths/max_sum_sliding_window.py) * [Median Of Two Arrays](https://github.com/TheAlgorithms/Python/blob/master/maths/median_of_two_arrays.py) * [Miller Rabin](https://github.com/TheAlgorithms/Python/blob/master/maths/miller_rabin.py) * [Mobius Function](https://github.com/TheAlgorithms/Python/blob/master/maths/mobius_function.py) * [Modular Exponential](https://github.com/TheAlgorithms/Python/blob/master/maths/modular_exponential.py) * [Monte Carlo](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo.py) * [Monte Carlo Dice](https://github.com/TheAlgorithms/Python/blob/master/maths/monte_carlo_dice.py) * [Newton Raphson](https://github.com/TheAlgorithms/Python/blob/master/maths/newton_raphson.py) * [Number Of Digits](https://github.com/TheAlgorithms/Python/blob/master/maths/number_of_digits.py) * [Numerical Integration](https://github.com/TheAlgorithms/Python/blob/master/maths/numerical_integration.py) * [Perfect Cube](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_cube.py) * [Perfect Number](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_number.py) * [Perfect Square](https://github.com/TheAlgorithms/Python/blob/master/maths/perfect_square.py) * [Pi Monte Carlo Estimation](https://github.com/TheAlgorithms/Python/blob/master/maths/pi_monte_carlo_estimation.py) * [Polynomial Evaluation](https://github.com/TheAlgorithms/Python/blob/master/maths/polynomial_evaluation.py) * [Power Using Recursion](https://github.com/TheAlgorithms/Python/blob/master/maths/power_using_recursion.py) * [Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_check.py) * [Prime Factors](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_factors.py) * [Prime Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_numbers.py) * [Prime Sieve Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/prime_sieve_eratosthenes.py) * [Primelib](https://github.com/TheAlgorithms/Python/blob/master/maths/primelib.py) * [Pythagoras](https://github.com/TheAlgorithms/Python/blob/master/maths/pythagoras.py) * [Qr Decomposition](https://github.com/TheAlgorithms/Python/blob/master/maths/qr_decomposition.py) * [Quadratic Equations Complex Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/quadratic_equations_complex_numbers.py) * [Radians](https://github.com/TheAlgorithms/Python/blob/master/maths/radians.py) * [Radix2 Fft](https://github.com/TheAlgorithms/Python/blob/master/maths/radix2_fft.py) * [Relu](https://github.com/TheAlgorithms/Python/blob/master/maths/relu.py) * [Runge Kutta](https://github.com/TheAlgorithms/Python/blob/master/maths/runge_kutta.py) * [Segmented Sieve](https://github.com/TheAlgorithms/Python/blob/master/maths/segmented_sieve.py) * Series * [Arithmetic Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/series/arithmetic_mean.py) * [Geometric Mean](https://github.com/TheAlgorithms/Python/blob/master/maths/series/geometric_mean.py) * [Geometric Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/geometric_series.py) * [Harmonic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/harmonic_series.py) * [P Series](https://github.com/TheAlgorithms/Python/blob/master/maths/series/p_series.py) * [Sieve Of Eratosthenes](https://github.com/TheAlgorithms/Python/blob/master/maths/sieve_of_eratosthenes.py) * [Sigmoid](https://github.com/TheAlgorithms/Python/blob/master/maths/sigmoid.py) * [Simpson Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/simpson_rule.py) * [Softmax](https://github.com/TheAlgorithms/Python/blob/master/maths/softmax.py) * [Square Root](https://github.com/TheAlgorithms/Python/blob/master/maths/square_root.py) * [Sum Of Arithmetic Series](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_arithmetic_series.py) * [Sum Of Digits](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_digits.py) * [Sum Of Geometric Progression](https://github.com/TheAlgorithms/Python/blob/master/maths/sum_of_geometric_progression.py) * [Test Prime Check](https://github.com/TheAlgorithms/Python/blob/master/maths/test_prime_check.py) * [Trapezoidal Rule](https://github.com/TheAlgorithms/Python/blob/master/maths/trapezoidal_rule.py) * [Triplet Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/triplet_sum.py) * [Two Pointer](https://github.com/TheAlgorithms/Python/blob/master/maths/two_pointer.py) * [Two Sum](https://github.com/TheAlgorithms/Python/blob/master/maths/two_sum.py) * [Ugly Numbers](https://github.com/TheAlgorithms/Python/blob/master/maths/ugly_numbers.py) * [Volume](https://github.com/TheAlgorithms/Python/blob/master/maths/volume.py) * [Zellers Congruence](https://github.com/TheAlgorithms/Python/blob/master/maths/zellers_congruence.py) ## Matrix * [Count Islands In Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/count_islands_in_matrix.py) * [Inverse Of Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/inverse_of_matrix.py) * [Matrix Class](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_class.py) * [Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/matrix_operation.py) * [Nth Fibonacci Using Matrix Exponentiation](https://github.com/TheAlgorithms/Python/blob/master/matrix/nth_fibonacci_using_matrix_exponentiation.py) * [Rotate Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/rotate_matrix.py) * [Searching In Sorted Matrix](https://github.com/TheAlgorithms/Python/blob/master/matrix/searching_in_sorted_matrix.py) * [Sherman Morrison](https://github.com/TheAlgorithms/Python/blob/master/matrix/sherman_morrison.py) * [Spiral Print](https://github.com/TheAlgorithms/Python/blob/master/matrix/spiral_print.py) * Tests * [Test Matrix Operation](https://github.com/TheAlgorithms/Python/blob/master/matrix/tests/test_matrix_operation.py) ## Networking Flow * [Ford Fulkerson](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/ford_fulkerson.py) * [Minimum Cut](https://github.com/TheAlgorithms/Python/blob/master/networking_flow/minimum_cut.py) ## Neural Network * [2 Hidden Layers Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/2_hidden_layers_neural_network.py) * [Back Propagation Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/back_propagation_neural_network.py) * [Convolution Neural Network](https://github.com/TheAlgorithms/Python/blob/master/neural_network/convolution_neural_network.py) * [Perceptron](https://github.com/TheAlgorithms/Python/blob/master/neural_network/perceptron.py) ## Other * [Activity Selection](https://github.com/TheAlgorithms/Python/blob/master/other/activity_selection.py) * [Davis–Putnam–Logemann–Loveland](https://github.com/TheAlgorithms/Python/blob/master/other/davis–putnam–logemann–loveland.py) * [Dijkstra Bankers Algorithm](https://github.com/TheAlgorithms/Python/blob/master/other/dijkstra_bankers_algorithm.py) * [Doomsday](https://github.com/TheAlgorithms/Python/blob/master/other/doomsday.py) * [Fischer Yates Shuffle](https://github.com/TheAlgorithms/Python/blob/master/other/fischer_yates_shuffle.py) * [Gauss Easter](https://github.com/TheAlgorithms/Python/blob/master/other/gauss_easter.py) * [Graham Scan](https://github.com/TheAlgorithms/Python/blob/master/other/graham_scan.py) * [Greedy](https://github.com/TheAlgorithms/Python/blob/master/other/greedy.py) * [Least Recently Used](https://github.com/TheAlgorithms/Python/blob/master/other/least_recently_used.py) * [Lfu Cache](https://github.com/TheAlgorithms/Python/blob/master/other/lfu_cache.py) * [Linear Congruential Generator](https://github.com/TheAlgorithms/Python/blob/master/other/linear_congruential_generator.py) * [Lru Cache](https://github.com/TheAlgorithms/Python/blob/master/other/lru_cache.py) * [Magicdiamondpattern](https://github.com/TheAlgorithms/Python/blob/master/other/magicdiamondpattern.py) * [Nested Brackets](https://github.com/TheAlgorithms/Python/blob/master/other/nested_brackets.py) * [Password Generator](https://github.com/TheAlgorithms/Python/blob/master/other/password_generator.py) * [Scoring Algorithm](https://github.com/TheAlgorithms/Python/blob/master/other/scoring_algorithm.py) * [Sdes](https://github.com/TheAlgorithms/Python/blob/master/other/sdes.py) * [Tower Of Hanoi](https://github.com/TheAlgorithms/Python/blob/master/other/tower_of_hanoi.py) ## Physics * [N Body Simulation](https://github.com/TheAlgorithms/Python/blob/master/physics/n_body_simulation.py) ## Project Euler * Problem 001 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol4.py) * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol5.py) * [Sol6](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol6.py) * [Sol7](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_001/sol7.py) * Problem 002 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol4.py) * [Sol5](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_002/sol5.py) * Problem 003 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_003/sol3.py) * Problem 004 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_004/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_004/sol2.py) * Problem 005 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_005/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_005/sol2.py) * Problem 006 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_006/sol4.py) * Problem 007 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_007/sol3.py) * Problem 008 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_008/sol3.py) * Problem 009 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_009/sol3.py) * Problem 010 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_010/sol3.py) * Problem 011 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_011/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_011/sol2.py) * Problem 012 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_012/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_012/sol2.py) * Problem 013 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_013/sol1.py) * Problem 014 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_014/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_014/sol2.py) * Problem 015 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_015/sol1.py) * Problem 016 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_016/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_016/sol2.py) * Problem 017 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_017/sol1.py) * Problem 018 * [Solution](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_018/solution.py) * Problem 019 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_019/sol1.py) * Problem 020 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol3.py) * [Sol4](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_020/sol4.py) * Problem 021 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_021/sol1.py) * Problem 022 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_022/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_022/sol2.py) * Problem 023 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_023/sol1.py) * Problem 024 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_024/sol1.py) * Problem 025 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol2.py) * [Sol3](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_025/sol3.py) * Problem 026 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_026/sol1.py) * Problem 027 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_027/sol1.py) * Problem 028 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_028/sol1.py) * Problem 029 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_029/sol1.py) * Problem 030 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_030/sol1.py) * Problem 031 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_031/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_031/sol2.py) * Problem 032 * [Sol32](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_032/sol32.py) * Problem 033 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_033/sol1.py) * Problem 034 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_034/sol1.py) * Problem 035 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_035/sol1.py) * Problem 036 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_036/sol1.py) * Problem 037 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_037/sol1.py) * Problem 038 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_038/sol1.py) * Problem 039 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_039/sol1.py) * Problem 040 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_040/sol1.py) * Problem 041 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_041/sol1.py) * Problem 042 * [Solution42](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_042/solution42.py) * Problem 043 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_043/sol1.py) * Problem 044 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_044/sol1.py) * Problem 045 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_045/sol1.py) * Problem 046 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_046/sol1.py) * Problem 047 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_047/sol1.py) * Problem 048 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_048/sol1.py) * Problem 049 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_049/sol1.py) * Problem 050 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_050/sol1.py) * Problem 051 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_051/sol1.py) * Problem 052 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_052/sol1.py) * Problem 053 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_053/sol1.py) * Problem 054 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_054/sol1.py) * [Test Poker Hand](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_054/test_poker_hand.py) * Problem 055 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_055/sol1.py) * Problem 056 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_056/sol1.py) * Problem 057 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_057/sol1.py) * Problem 058 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_058/sol1.py) * Problem 059 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_059/sol1.py) * Problem 062 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_062/sol1.py) * Problem 063 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_063/sol1.py) * Problem 064 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_064/sol1.py) * Problem 065 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_065/sol1.py) * Problem 067 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_067/sol1.py) * Problem 069 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_069/sol1.py) * Problem 070 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_070/sol1.py) * Problem 071 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_071/sol1.py) * Problem 072 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_072/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_072/sol2.py) * Problem 074 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_074/sol1.py) * [Sol2](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_074/sol2.py) * Problem 075 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_075/sol1.py) * Problem 076 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_076/sol1.py) * Problem 077 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_077/sol1.py) * Problem 080 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_080/sol1.py) * Problem 081 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_081/sol1.py) * Problem 085 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_085/sol1.py) * Problem 086 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_086/sol1.py) * Problem 087 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_087/sol1.py) * Problem 089 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_089/sol1.py) * Problem 091 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_091/sol1.py) * Problem 097 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_097/sol1.py) * Problem 099 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_099/sol1.py) * Problem 101 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_101/sol1.py) * Problem 102 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_102/sol1.py) * Problem 107 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_107/sol1.py) * Problem 109 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_109/sol1.py) * Problem 112 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_112/sol1.py) * Problem 113 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_113/sol1.py) * Problem 119 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_119/sol1.py) * Problem 120 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_120/sol1.py) * Problem 121 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_121/sol1.py) * Problem 123 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_123/sol1.py) * Problem 125 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_125/sol1.py) * Problem 129 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_129/sol1.py) * Problem 135 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_135/sol1.py) * Problem 173 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_173/sol1.py) * Problem 174 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_174/sol1.py) * Problem 180 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_180/sol1.py) * Problem 188 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_188/sol1.py) * Problem 191 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_191/sol1.py) * Problem 203 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_203/sol1.py) * Problem 206 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_206/sol1.py) * Problem 207 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_207/sol1.py) * Problem 234 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_234/sol1.py) * Problem 301 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_301/sol1.py) * Problem 551 * [Sol1](https://github.com/TheAlgorithms/Python/blob/master/project_euler/problem_551/sol1.py) ## Quantum * [Deutsch Jozsa](https://github.com/TheAlgorithms/Python/blob/master/quantum/deutsch_jozsa.py) * [Half Adder](https://github.com/TheAlgorithms/Python/blob/master/quantum/half_adder.py) * [Not Gate](https://github.com/TheAlgorithms/Python/blob/master/quantum/not_gate.py) * [Quantum Entanglement](https://github.com/TheAlgorithms/Python/blob/master/quantum/quantum_entanglement.py) * [Ripple Adder Classic](https://github.com/TheAlgorithms/Python/blob/master/quantum/ripple_adder_classic.py) * [Single Qubit Measure](https://github.com/TheAlgorithms/Python/blob/master/quantum/single_qubit_measure.py) ## Scheduling * [First Come First Served](https://github.com/TheAlgorithms/Python/blob/master/scheduling/first_come_first_served.py) * [Round Robin](https://github.com/TheAlgorithms/Python/blob/master/scheduling/round_robin.py) * [Shortest Job First](https://github.com/TheAlgorithms/Python/blob/master/scheduling/shortest_job_first.py) ## Searches * [Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py) * [Binary Tree Traversal](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_tree_traversal.py) * [Double Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/double_linear_search.py) * [Double Linear Search Recursion](https://github.com/TheAlgorithms/Python/blob/master/searches/double_linear_search_recursion.py) * [Fibonacci Search](https://github.com/TheAlgorithms/Python/blob/master/searches/fibonacci_search.py) * [Hill Climbing](https://github.com/TheAlgorithms/Python/blob/master/searches/hill_climbing.py) * [Interpolation Search](https://github.com/TheAlgorithms/Python/blob/master/searches/interpolation_search.py) * [Jump Search](https://github.com/TheAlgorithms/Python/blob/master/searches/jump_search.py) * [Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/linear_search.py) * [Quick Select](https://github.com/TheAlgorithms/Python/blob/master/searches/quick_select.py) * [Sentinel Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/sentinel_linear_search.py) * [Simple Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/simple_binary_search.py) * [Simulated Annealing](https://github.com/TheAlgorithms/Python/blob/master/searches/simulated_annealing.py) * [Tabu Search](https://github.com/TheAlgorithms/Python/blob/master/searches/tabu_search.py) * [Ternary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/ternary_search.py) ## Sorts * [Bead Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bead_sort.py) * [Bitonic Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bitonic_sort.py) * [Bogo Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bogo_sort.py) * [Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bubble_sort.py) * [Bucket Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/bucket_sort.py) * [Cocktail Shaker Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cocktail_shaker_sort.py) * [Comb Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/comb_sort.py) * [Counting Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/counting_sort.py) * [Cycle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/cycle_sort.py) * [Double Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/double_sort.py) * [External Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/external_sort.py) * [Gnome Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/gnome_sort.py) * [Heap Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/heap_sort.py) * [Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/insertion_sort.py) * [Intro Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/intro_sort.py) * [Iterative Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/iterative_merge_sort.py) * [Merge Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_insertion_sort.py) * [Merge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/merge_sort.py) * [Msd Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/msd_radix_sort.py) * [Natural Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/natural_sort.py) * [Odd Even Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_sort.py) * [Odd Even Transposition Parallel](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_parallel.py) * [Odd Even Transposition Single Threaded](https://github.com/TheAlgorithms/Python/blob/master/sorts/odd_even_transposition_single_threaded.py) * [Pancake Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pancake_sort.py) * [Patience Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/patience_sort.py) * [Pigeon Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeon_sort.py) * [Pigeonhole Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/pigeonhole_sort.py) * [Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort.py) * [Quick Sort 3 Partition](https://github.com/TheAlgorithms/Python/blob/master/sorts/quick_sort_3_partition.py) * [Radix Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/radix_sort.py) * [Random Normal Distribution Quicksort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_normal_distribution_quicksort.py) * [Random Pivot Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/random_pivot_quick_sort.py) * [Recursive Bubble Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_bubble_sort.py) * [Recursive Insertion Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_insertion_sort.py) * [Recursive Mergesort Array](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_mergesort_array.py) * [Recursive Quick Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/recursive_quick_sort.py) * [Selection Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/selection_sort.py) * [Shell Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/shell_sort.py) * [Slowsort](https://github.com/TheAlgorithms/Python/blob/master/sorts/slowsort.py) * [Stooge Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/stooge_sort.py) * [Strand Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/strand_sort.py) * [Tim Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tim_sort.py) * [Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/topological_sort.py) * [Tree Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/tree_sort.py) * [Unknown Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/unknown_sort.py) * [Wiggle Sort](https://github.com/TheAlgorithms/Python/blob/master/sorts/wiggle_sort.py) ## Strings * [Aho Corasick](https://github.com/TheAlgorithms/Python/blob/master/strings/aho_corasick.py) * [Anagrams](https://github.com/TheAlgorithms/Python/blob/master/strings/anagrams.py) * [Autocomplete Using Trie](https://github.com/TheAlgorithms/Python/blob/master/strings/autocomplete_using_trie.py) * [Boyer Moore Search](https://github.com/TheAlgorithms/Python/blob/master/strings/boyer_moore_search.py) * [Can String Be Rearranged As Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/can_string_be_rearranged_as_palindrome.py) * [Capitalize](https://github.com/TheAlgorithms/Python/blob/master/strings/capitalize.py) * [Check Anagrams](https://github.com/TheAlgorithms/Python/blob/master/strings/check_anagrams.py) * [Check Pangram](https://github.com/TheAlgorithms/Python/blob/master/strings/check_pangram.py) * [Detecting English Programmatically](https://github.com/TheAlgorithms/Python/blob/master/strings/detecting_english_programmatically.py) * [Frequency Finder](https://github.com/TheAlgorithms/Python/blob/master/strings/frequency_finder.py) * [Is Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/is_palindrome.py) * [Jaro Winkler](https://github.com/TheAlgorithms/Python/blob/master/strings/jaro_winkler.py) * [Knuth Morris Pratt](https://github.com/TheAlgorithms/Python/blob/master/strings/knuth_morris_pratt.py) * [Levenshtein Distance](https://github.com/TheAlgorithms/Python/blob/master/strings/levenshtein_distance.py) * [Lower](https://github.com/TheAlgorithms/Python/blob/master/strings/lower.py) * [Manacher](https://github.com/TheAlgorithms/Python/blob/master/strings/manacher.py) * [Min Cost String Conversion](https://github.com/TheAlgorithms/Python/blob/master/strings/min_cost_string_conversion.py) * [Naive String Search](https://github.com/TheAlgorithms/Python/blob/master/strings/naive_string_search.py) * [Palindrome](https://github.com/TheAlgorithms/Python/blob/master/strings/palindrome.py) * [Prefix Function](https://github.com/TheAlgorithms/Python/blob/master/strings/prefix_function.py) * [Rabin Karp](https://github.com/TheAlgorithms/Python/blob/master/strings/rabin_karp.py) * [Remove Duplicate](https://github.com/TheAlgorithms/Python/blob/master/strings/remove_duplicate.py) * [Reverse Letters](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_letters.py) * [Reverse Words](https://github.com/TheAlgorithms/Python/blob/master/strings/reverse_words.py) * [Split](https://github.com/TheAlgorithms/Python/blob/master/strings/split.py) * [Swap Case](https://github.com/TheAlgorithms/Python/blob/master/strings/swap_case.py) * [Upper](https://github.com/TheAlgorithms/Python/blob/master/strings/upper.py) * [Word Occurrence](https://github.com/TheAlgorithms/Python/blob/master/strings/word_occurrence.py) * [Word Patterns](https://github.com/TheAlgorithms/Python/blob/master/strings/word_patterns.py) * [Z Function](https://github.com/TheAlgorithms/Python/blob/master/strings/z_function.py) ## Web Programming * [Co2 Emission](https://github.com/TheAlgorithms/Python/blob/master/web_programming/co2_emission.py) * [Covid Stats Via Xpath](https://github.com/TheAlgorithms/Python/blob/master/web_programming/covid_stats_via_xpath.py) * [Crawl Google Results](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_results.py) * [Crawl Google Scholar Citation](https://github.com/TheAlgorithms/Python/blob/master/web_programming/crawl_google_scholar_citation.py) * [Currency Converter](https://github.com/TheAlgorithms/Python/blob/master/web_programming/currency_converter.py) * [Current Stock Price](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_stock_price.py) * [Current Weather](https://github.com/TheAlgorithms/Python/blob/master/web_programming/current_weather.py) * [Daily Horoscope](https://github.com/TheAlgorithms/Python/blob/master/web_programming/daily_horoscope.py) * [Emails From Url](https://github.com/TheAlgorithms/Python/blob/master/web_programming/emails_from_url.py) * [Fetch Bbc News](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_bbc_news.py) * [Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_github_info.py) * [Fetch Jobs](https://github.com/TheAlgorithms/Python/blob/master/web_programming/fetch_jobs.py) * [Get Imdb Top 250 Movies Csv](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdb_top_250_movies_csv.py) * [Get Imdbtop](https://github.com/TheAlgorithms/Python/blob/master/web_programming/get_imdbtop.py) * [Instagram Crawler](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_crawler.py) * [Instagram Pic](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_pic.py) * [Instagram Video](https://github.com/TheAlgorithms/Python/blob/master/web_programming/instagram_video.py) * [Recaptcha Verification](https://github.com/TheAlgorithms/Python/blob/master/web_programming/recaptcha_verification.py) * [Slack Message](https://github.com/TheAlgorithms/Python/blob/master/web_programming/slack_message.py) * [Test Fetch Github Info](https://github.com/TheAlgorithms/Python/blob/master/web_programming/test_fetch_github_info.py) * [World Covid19 Stats](https://github.com/TheAlgorithms/Python/blob/master/web_programming/world_covid19_stats.py)
1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/usr/bin/env python3 from typing import Optional def decrypt_caesar_with_chi_squared( ciphertext: str, cipher_alphabet: Optional[list[str]] = None, frequencies_dict: Optional[dict[str, float]] = None, case_sensetive: bool = False, ) -> tuple[int, float, str]: """ Basic Usage =========== Arguments: * ciphertext (str): the text to decode (encoded with the caesar cipher) Optional Arguments: * cipher_alphabet (list): the alphabet used for the cipher (each letter is a string separated by commas) * frequencies_dict (dict): a dictionary of word frequencies where keys are the letters and values are a percentage representation of the frequency as a decimal/float * case_sensetive (bool): a boolean value: True if the case matters during decryption, False if it doesn't Returns: * A tuple in the form of: ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher ) where... - most_likely_cipher is an integer representing the shift of the smallest chi-squared statistic (most likely key) - most_likely_cipher_chi_squared_value is a float representing the chi-squared statistic of the most likely shift - decoded_most_likely_cipher is a string with the decoded cipher (decoded by the most_likely_cipher key) The Chi-squared test ==================== The caesar cipher ----------------- The caesar cipher is a very insecure encryption algorithm, however it has been used since Julius Caesar. The cipher is a simple substitution cipher where each character in the plain text is replaced by a character in the alphabet a certain number of characters after the original character. The number of characters away is called the shift or key. For example: Plain text: hello Key: 1 Cipher text: ifmmp (each letter in hello has been shifted one to the right in the eng. alphabet) As you can imagine, this doesn't provide lots of security. In fact decrypting ciphertext by brute-force is extremely easy even by hand. However one way to do that is the chi-squared test. The chi-squared test ------------------- Each letter in the english alphabet has a frequency, or the amount of times it shows up compared to other letters (usually expressed as a decimal representing the percentage likelihood). The most common letter in the english language is "e" with a frequency of 0.11162 or 11.162%. The test is completed in the following fashion. 1. The ciphertext is decoded in a brute force way (every combination of the 26 possible combinations) 2. For every combination, for each letter in the combination, the average amount of times the letter should appear the message is calculated by multiplying the total number of characters by the frequency of the letter For example: In a message of 100 characters, e should appear around 11.162 times. 3. Then, to calculate the margin of error (the amount of times the letter SHOULD appear with the amount of times the letter DOES appear), we use the chi-squared test. The following formula is used: Let: - n be the number of times the letter actually appears - p be the predicted value of the number of times the letter should appear (see #2) - let v be the chi-squared test result (referred to here as chi-squared value/statistic) (n - p)^2 --------- = v p 4. Each chi squared value for each letter is then added up to the total. The total is the chi-squared statistic for that encryption key. 5. The encryption key with the lowest chi-squared value is the most likely to be the decoded answer. Further Reading ================ * http://practicalcryptography.com/cryptanalysis/text-characterisation/chi-squared- statistic/ * https://en.wikipedia.org/wiki/Letter_frequency * https://en.wikipedia.org/wiki/Chi-squared_test * https://en.m.wikipedia.org/wiki/Caesar_cipher Doctests ======== >>> decrypt_caesar_with_chi_squared( ... 'dof pz aol jhlzhy jpwoly zv wvwbshy? pa pz avv lhzf av jyhjr!' ... ) # doctest: +NORMALIZE_WHITESPACE (7, 3129.228005747531, 'why is the caesar cipher so popular? it is too easy to crack!') >>> decrypt_caesar_with_chi_squared('crybd cdbsxq') (10, 233.35343938980898, 'short string') >>> decrypt_caesar_with_chi_squared(12) Traceback (most recent call last): AttributeError: 'int' object has no attribute 'lower' """ alphabet_letters = cipher_alphabet or [chr(i) for i in range(97, 123)] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) frequencies = { "a": 0.08497, "b": 0.01492, "c": 0.02202, "d": 0.04253, "e": 0.11162, "f": 0.02228, "g": 0.02015, "h": 0.06094, "i": 0.07546, "j": 0.00153, "k": 0.01292, "l": 0.04025, "m": 0.02406, "n": 0.06749, "o": 0.07507, "p": 0.01929, "q": 0.00095, "r": 0.07587, "s": 0.06327, "t": 0.09356, "u": 0.02758, "v": 0.00978, "w": 0.02560, "x": 0.00150, "y": 0.01994, "z": 0.00077, } else: # Custom frequencies dictionary frequencies = frequencies_dict if not case_sensetive: ciphertext = ciphertext.lower() # Chi squared statistic values chi_squared_statistic_values: dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(alphabet_letters)): decrypted_with_shift = "" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet new_key = (alphabet_letters.index(letter) - shift) % len( alphabet_letters ) decrypted_with_shift += alphabet_letters[new_key] except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter chi_squared_statistic = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensetive: if letter in frequencies: # Get the amount of times the letter occurs in the message occurrences = decrypted_with_shift.count(letter) # Get the excepcted amount of times the letter should appear based # on letter frequencies expected = frequencies[letter] * occurrences # Complete the chi squared statistic formula chi_letter_value = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message occurrences = decrypted_with_shift.count(letter) # Get the excepcted amount of times the letter should appear based # on letter frequencies expected = frequencies[letter] * occurrences # Complete the chi squared statistic formula chi_letter_value = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary chi_squared_statistic_values[shift] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic most_likely_cipher: int = min( chi_squared_statistic_values, key=chi_squared_statistic_values.get ) # type: ignore # First argument to `min` is not optional # Get all the data from the most likely cipher (key, decoded message) ( most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
#!/usr/bin/env python3 from typing import Optional def decrypt_caesar_with_chi_squared( ciphertext: str, cipher_alphabet: Optional[list[str]] = None, frequencies_dict: Optional[dict[str, float]] = None, case_sensetive: bool = False, ) -> tuple[int, float, str]: """ Basic Usage =========== Arguments: * ciphertext (str): the text to decode (encoded with the caesar cipher) Optional Arguments: * cipher_alphabet (list): the alphabet used for the cipher (each letter is a string separated by commas) * frequencies_dict (dict): a dictionary of word frequencies where keys are the letters and values are a percentage representation of the frequency as a decimal/float * case_sensetive (bool): a boolean value: True if the case matters during decryption, False if it doesn't Returns: * A tuple in the form of: ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher ) where... - most_likely_cipher is an integer representing the shift of the smallest chi-squared statistic (most likely key) - most_likely_cipher_chi_squared_value is a float representing the chi-squared statistic of the most likely shift - decoded_most_likely_cipher is a string with the decoded cipher (decoded by the most_likely_cipher key) The Chi-squared test ==================== The caesar cipher ----------------- The caesar cipher is a very insecure encryption algorithm, however it has been used since Julius Caesar. The cipher is a simple substitution cipher where each character in the plain text is replaced by a character in the alphabet a certain number of characters after the original character. The number of characters away is called the shift or key. For example: Plain text: hello Key: 1 Cipher text: ifmmp (each letter in hello has been shifted one to the right in the eng. alphabet) As you can imagine, this doesn't provide lots of security. In fact decrypting ciphertext by brute-force is extremely easy even by hand. However one way to do that is the chi-squared test. The chi-squared test ------------------- Each letter in the english alphabet has a frequency, or the amount of times it shows up compared to other letters (usually expressed as a decimal representing the percentage likelihood). The most common letter in the english language is "e" with a frequency of 0.11162 or 11.162%. The test is completed in the following fashion. 1. The ciphertext is decoded in a brute force way (every combination of the 26 possible combinations) 2. For every combination, for each letter in the combination, the average amount of times the letter should appear the message is calculated by multiplying the total number of characters by the frequency of the letter For example: In a message of 100 characters, e should appear around 11.162 times. 3. Then, to calculate the margin of error (the amount of times the letter SHOULD appear with the amount of times the letter DOES appear), we use the chi-squared test. The following formula is used: Let: - n be the number of times the letter actually appears - p be the predicted value of the number of times the letter should appear (see #2) - let v be the chi-squared test result (referred to here as chi-squared value/statistic) (n - p)^2 --------- = v p 4. Each chi squared value for each letter is then added up to the total. The total is the chi-squared statistic for that encryption key. 5. The encryption key with the lowest chi-squared value is the most likely to be the decoded answer. Further Reading ================ * http://practicalcryptography.com/cryptanalysis/text-characterisation/chi-squared- statistic/ * https://en.wikipedia.org/wiki/Letter_frequency * https://en.wikipedia.org/wiki/Chi-squared_test * https://en.m.wikipedia.org/wiki/Caesar_cipher Doctests ======== >>> decrypt_caesar_with_chi_squared( ... 'dof pz aol jhlzhy jpwoly zv wvwbshy? pa pz avv lhzf av jyhjr!' ... ) # doctest: +NORMALIZE_WHITESPACE (7, 3129.228005747531, 'why is the caesar cipher so popular? it is too easy to crack!') >>> decrypt_caesar_with_chi_squared('crybd cdbsxq') (10, 233.35343938980898, 'short string') >>> decrypt_caesar_with_chi_squared(12) Traceback (most recent call last): AttributeError: 'int' object has no attribute 'lower' """ alphabet_letters = cipher_alphabet or [chr(i) for i in range(97, 123)] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) frequencies = { "a": 0.08497, "b": 0.01492, "c": 0.02202, "d": 0.04253, "e": 0.11162, "f": 0.02228, "g": 0.02015, "h": 0.06094, "i": 0.07546, "j": 0.00153, "k": 0.01292, "l": 0.04025, "m": 0.02406, "n": 0.06749, "o": 0.07507, "p": 0.01929, "q": 0.00095, "r": 0.07587, "s": 0.06327, "t": 0.09356, "u": 0.02758, "v": 0.00978, "w": 0.02560, "x": 0.00150, "y": 0.01994, "z": 0.00077, } else: # Custom frequencies dictionary frequencies = frequencies_dict if not case_sensetive: ciphertext = ciphertext.lower() # Chi squared statistic values chi_squared_statistic_values: dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(alphabet_letters)): decrypted_with_shift = "" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet new_key = (alphabet_letters.index(letter) - shift) % len( alphabet_letters ) decrypted_with_shift += alphabet_letters[new_key] except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter chi_squared_statistic = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensetive: if letter in frequencies: # Get the amount of times the letter occurs in the message occurrences = decrypted_with_shift.count(letter) # Get the excepcted amount of times the letter should appear based # on letter frequencies expected = frequencies[letter] * occurrences # Complete the chi squared statistic formula chi_letter_value = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message occurrences = decrypted_with_shift.count(letter) # Get the excepcted amount of times the letter should appear based # on letter frequencies expected = frequencies[letter] * occurrences # Complete the chi squared statistic formula chi_letter_value = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary chi_squared_statistic_values[shift] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic most_likely_cipher: int = min( # type: ignore chi_squared_statistic_values, # type: ignore key=chi_squared_statistic_values.get, # type: ignore ) # type: ignore # Get all the data from the most likely cipher (key, decoded message) ( most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
beautifulsoup4 fake_useragent keras lxml matplotlib numpy opencv-python pandas pillow qiskit requests scikit-fuzzy sklearn statsmodels sympy tensorflow xgboost
beautifulsoup4 fake_useragent keras lxml matplotlib numpy opencv-python pandas pillow qiskit requests scikit-fuzzy sklearn statsmodels sympy tensorflow types-requests xgboost
1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
#!/usr/bin/env python3 import hashlib import importlib.util import json import os import pathlib from types import ModuleType import pytest import requests PROJECT_EULER_DIR_PATH = pathlib.Path.cwd().joinpath("project_euler") PROJECT_EULER_ANSWERS_PATH = pathlib.Path.cwd().joinpath( "scripts", "project_euler_answers.json" ) with open(PROJECT_EULER_ANSWERS_PATH) as file_handle: PROBLEM_ANSWERS: dict[str, str] = json.load(file_handle) def convert_path_to_module(file_path: pathlib.Path) -> ModuleType: """Converts a file path to a Python module""" spec = importlib.util.spec_from_file_location(file_path.name, str(file_path)) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) # type: ignore return module def all_solution_file_paths() -> list[pathlib.Path]: """Collects all the solution file path in the Project Euler directory""" solution_file_paths = [] for problem_dir_path in PROJECT_EULER_DIR_PATH.iterdir(): if problem_dir_path.is_file() or problem_dir_path.name.startswith("_"): continue for file_path in problem_dir_path.iterdir(): if file_path.suffix != ".py" or file_path.name.startswith(("_", "test")): continue solution_file_paths.append(file_path) return solution_file_paths def get_files_url() -> str: """Return the pull request number which triggered this action.""" with open(os.environ["GITHUB_EVENT_PATH"]) as file: event = json.load(file) return event["pull_request"]["url"] + "/files" def added_solution_file_path() -> list[pathlib.Path]: """Collects only the solution file path which got added in the current pull request. This will only be triggered if the script is ran from GitHub Actions. """ solution_file_paths = [] headers = { "Accept": "application/vnd.github.v3+json", "Authorization": "token " + os.environ["GITHUB_TOKEN"], } files = requests.get(get_files_url(), headers=headers).json() for file in files: filepath = pathlib.Path.cwd().joinpath(file["filename"]) if ( filepath.suffix != ".py" or filepath.name.startswith(("_", "test")) or not filepath.name.startswith("sol") ): continue solution_file_paths.append(filepath) return solution_file_paths def collect_solution_file_paths() -> list[pathlib.Path]: if os.environ.get("CI") and os.environ.get("GITHUB_EVENT_NAME") == "pull_request": # Return only if there are any, otherwise default to all solutions if filepaths := added_solution_file_path(): return filepaths return all_solution_file_paths() @pytest.mark.parametrize( "solution_path", collect_solution_file_paths(), ids=lambda path: f"{path.parent.name}/{path.name}", ) def test_project_euler(solution_path: pathlib.Path) -> None: """Testing for all Project Euler solutions""" # problem_[extract this part] and pad it with zeroes for width 3 problem_number: str = solution_path.parent.name[8:].zfill(3) expected: str = PROBLEM_ANSWERS[problem_number] solution_module = convert_path_to_module(solution_path) answer = str(solution_module.solution()) # type: ignore answer = hashlib.sha256(answer.encode()).hexdigest() assert ( answer == expected ), f"Expected solution to {problem_number} to have hash {expected}, got {answer}"
#!/usr/bin/env python3 import hashlib import importlib.util import json import os import pathlib from types import ModuleType import pytest import requests PROJECT_EULER_DIR_PATH = pathlib.Path.cwd().joinpath("project_euler") PROJECT_EULER_ANSWERS_PATH = pathlib.Path.cwd().joinpath( "scripts", "project_euler_answers.json" ) with open(PROJECT_EULER_ANSWERS_PATH) as file_handle: PROBLEM_ANSWERS: dict[str, str] = json.load(file_handle) def convert_path_to_module(file_path: pathlib.Path) -> ModuleType: """Converts a file path to a Python module""" spec = importlib.util.spec_from_file_location(file_path.name, str(file_path)) module = importlib.util.module_from_spec(spec) # type: ignore spec.loader.exec_module(module) # type: ignore return module def all_solution_file_paths() -> list[pathlib.Path]: """Collects all the solution file path in the Project Euler directory""" solution_file_paths = [] for problem_dir_path in PROJECT_EULER_DIR_PATH.iterdir(): if problem_dir_path.is_file() or problem_dir_path.name.startswith("_"): continue for file_path in problem_dir_path.iterdir(): if file_path.suffix != ".py" or file_path.name.startswith(("_", "test")): continue solution_file_paths.append(file_path) return solution_file_paths def get_files_url() -> str: """Return the pull request number which triggered this action.""" with open(os.environ["GITHUB_EVENT_PATH"]) as file: event = json.load(file) return event["pull_request"]["url"] + "/files" def added_solution_file_path() -> list[pathlib.Path]: """Collects only the solution file path which got added in the current pull request. This will only be triggered if the script is ran from GitHub Actions. """ solution_file_paths = [] headers = { "Accept": "application/vnd.github.v3+json", "Authorization": "token " + os.environ["GITHUB_TOKEN"], } files = requests.get(get_files_url(), headers=headers).json() for file in files: filepath = pathlib.Path.cwd().joinpath(file["filename"]) if ( filepath.suffix != ".py" or filepath.name.startswith(("_", "test")) or not filepath.name.startswith("sol") ): continue solution_file_paths.append(filepath) return solution_file_paths def collect_solution_file_paths() -> list[pathlib.Path]: if os.environ.get("CI") and os.environ.get("GITHUB_EVENT_NAME") == "pull_request": # Return only if there are any, otherwise default to all solutions if filepaths := added_solution_file_path(): return filepaths return all_solution_file_paths() @pytest.mark.parametrize( "solution_path", collect_solution_file_paths(), ids=lambda path: f"{path.parent.name}/{path.name}", ) def test_project_euler(solution_path: pathlib.Path) -> None: """Testing for all Project Euler solutions""" # problem_[extract this part] and pad it with zeroes for width 3 problem_number: str = solution_path.parent.name[8:].zfill(3) expected: str = PROBLEM_ANSWERS[problem_number] solution_module = convert_path_to_module(solution_path) answer = str(solution_module.solution()) # type: ignore answer = hashlib.sha256(answer.encode()).hexdigest() assert ( answer == expected ), f"Expected solution to {problem_number} to have hash {expected}, got {answer}"
1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" The nested brackets problem is a problem that determines if a sequence of brackets are properly nested. A sequence of brackets s is considered properly nested if any of the following conditions are true: - s is empty - s has the form (U) or [U] or {U} where U is a properly nested string - s has the form VW where V and W are properly nested strings For example, the string "()()[()]" is properly nested but "[(()]" is not. The function called is_balanced takes as input a string S which is a sequence of brackets and returns true if S is nested and false otherwise. """ def is_balanced(S): stack = [] open_brackets = set({"(", "[", "{"}) closed_brackets = set({")", "]", "}"}) open_to_closed = dict({"{": "}", "[": "]", "(": ")"}) for i in range(len(S)): if S[i] in open_brackets: stack.append(S[i]) elif S[i] in closed_brackets: if len(stack) == 0 or ( len(stack) > 0 and open_to_closed[stack.pop()] != S[i] ): return False return len(stack) == 0 def main(): s = input("Enter sequence of brackets: ") if is_balanced(s): print(s, "is balanced") else: print(s, "is not balanced") if __name__ == "__main__": main()
""" The nested brackets problem is a problem that determines if a sequence of brackets are properly nested. A sequence of brackets s is considered properly nested if any of the following conditions are true: - s is empty - s has the form (U) or [U] or {U} where U is a properly nested string - s has the form VW where V and W are properly nested strings For example, the string "()()[()]" is properly nested but "[(()]" is not. The function called is_balanced takes as input a string S which is a sequence of brackets and returns true if S is nested and false otherwise. """ def is_balanced(S): stack = [] open_brackets = set({"(", "[", "{"}) closed_brackets = set({")", "]", "}"}) open_to_closed = dict({"{": "}", "[": "]", "(": ")"}) for i in range(len(S)): if S[i] in open_brackets: stack.append(S[i]) elif S[i] in closed_brackets: if len(stack) == 0 or ( len(stack) > 0 and open_to_closed[stack.pop()] != S[i] ): return False return len(stack) == 0 def main(): s = input("Enter sequence of brackets: ") if is_balanced(s): print(s, "is balanced") else: print(s, "is not balanced") if __name__ == "__main__": main()
-1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
def hex_to_bin(hex_num: str) -> int: """ Convert a hexadecimal value to its binary equivalent #https://stackoverflow.com/questions/1425493/convert-hex-to-binary Here, we have used the bitwise right shift operator: >> Shifts the bits of the number to the right and fills 0 on voids left as a result. Similar effect as of dividing the number with some power of two. Example: a = 10 a >> 1 = 5 >>> hex_to_bin("AC") 10101100 >>> hex_to_bin("9A4") 100110100100 >>> hex_to_bin(" 12f ") 100101111 >>> hex_to_bin("FfFf") 1111111111111111 >>> hex_to_bin("-fFfF") -1111111111111111 >>> hex_to_bin("F-f") Traceback (most recent call last): ... ValueError: Invalid value was passed to the function >>> hex_to_bin("") Traceback (most recent call last): ... ValueError: No value was passed to the function """ hex_num = hex_num.strip() if not hex_num: raise ValueError("No value was passed to the function") is_negative = hex_num[0] == "-" if is_negative: hex_num = hex_num[1:] try: int_num = int(hex_num, 16) except ValueError: raise ValueError("Invalid value was passed to the function") bin_str = "" while int_num > 0: bin_str = str(int_num % 2) + bin_str int_num >>= 1 return int(("-" + bin_str) if is_negative else bin_str) if __name__ == "__main__": import doctest doctest.testmod()
def hex_to_bin(hex_num: str) -> int: """ Convert a hexadecimal value to its binary equivalent #https://stackoverflow.com/questions/1425493/convert-hex-to-binary Here, we have used the bitwise right shift operator: >> Shifts the bits of the number to the right and fills 0 on voids left as a result. Similar effect as of dividing the number with some power of two. Example: a = 10 a >> 1 = 5 >>> hex_to_bin("AC") 10101100 >>> hex_to_bin("9A4") 100110100100 >>> hex_to_bin(" 12f ") 100101111 >>> hex_to_bin("FfFf") 1111111111111111 >>> hex_to_bin("-fFfF") -1111111111111111 >>> hex_to_bin("F-f") Traceback (most recent call last): ... ValueError: Invalid value was passed to the function >>> hex_to_bin("") Traceback (most recent call last): ... ValueError: No value was passed to the function """ hex_num = hex_num.strip() if not hex_num: raise ValueError("No value was passed to the function") is_negative = hex_num[0] == "-" if is_negative: hex_num = hex_num[1:] try: int_num = int(hex_num, 16) except ValueError: raise ValueError("Invalid value was passed to the function") bin_str = "" while int_num > 0: bin_str = str(int_num % 2) + bin_str int_num >>= 1 return int(("-" + bin_str) if is_negative else bin_str) if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" This is a python3 implementation of binary search tree using recursion To run tests: python -m unittest binary_search_tree_recursive.py To run an example: python binary_search_tree_recursive.py """ import unittest from typing import Iterator, Optional class Node: def __init__(self, label: int, parent: Optional["Node"]) -> None: self.label = label self.parent = parent self.left: Optional[Node] = None self.right: Optional[Node] = None class BinarySearchTree: def __init__(self) -> None: self.root: Optional[Node] = None def empty(self) -> None: """ Empties the tree >>> t = BinarySearchTree() >>> assert t.root is None >>> t.put(8) >>> assert t.root is not None """ self.root = None def is_empty(self) -> bool: """ Checks if the tree is empty >>> t = BinarySearchTree() >>> t.is_empty() True >>> t.put(8) >>> t.is_empty() False """ return self.root is None def put(self, label: int) -> None: """ Put a new node in the tree >>> t = BinarySearchTree() >>> t.put(8) >>> assert t.root.parent is None >>> assert t.root.label == 8 >>> t.put(10) >>> assert t.root.right.parent == t.root >>> assert t.root.right.label == 10 >>> t.put(3) >>> assert t.root.left.parent == t.root >>> assert t.root.left.label == 3 """ self.root = self._put(self.root, label) def _put( self, node: Optional[Node], label: int, parent: Optional[Node] = None ) -> Node: if node is None: node = Node(label, parent) else: if label < node.label: node.left = self._put(node.left, label, node) elif label > node.label: node.right = self._put(node.right, label, node) else: raise Exception(f"Node with label {label} already exists") return node def search(self, label: int) -> Node: """ Searches a node in the tree >>> t = BinarySearchTree() >>> t.put(8) >>> t.put(10) >>> node = t.search(8) >>> assert node.label == 8 >>> node = t.search(3) Traceback (most recent call last): ... Exception: Node with label 3 does not exist """ return self._search(self.root, label) def _search(self, node: Optional[Node], label: int) -> Node: if node is None: raise Exception(f"Node with label {label} does not exist") else: if label < node.label: node = self._search(node.left, label) elif label > node.label: node = self._search(node.right, label) return node def remove(self, label: int) -> None: """ Removes a node in the tree >>> t = BinarySearchTree() >>> t.put(8) >>> t.put(10) >>> t.remove(8) >>> assert t.root.label == 10 >>> t.remove(3) Traceback (most recent call last): ... Exception: Node with label 3 does not exist """ node = self.search(label) if node.right and node.left: lowest_node = self._get_lowest_node(node.right) lowest_node.left = node.left lowest_node.right = node.right node.left.parent = lowest_node if node.right: node.right.parent = lowest_node self._reassign_nodes(node, lowest_node) elif not node.right and node.left: self._reassign_nodes(node, node.left) elif node.right and not node.left: self._reassign_nodes(node, node.right) else: self._reassign_nodes(node, None) def _reassign_nodes(self, node: Node, new_children: Optional[Node]) -> None: if new_children: new_children.parent = node.parent if node.parent: if node.parent.right == node: node.parent.right = new_children else: node.parent.left = new_children else: self.root = new_children def _get_lowest_node(self, node: Node) -> Node: if node.left: lowest_node = self._get_lowest_node(node.left) else: lowest_node = node self._reassign_nodes(node, node.right) return lowest_node def exists(self, label: int) -> bool: """ Checks if a node exists in the tree >>> t = BinarySearchTree() >>> t.put(8) >>> t.put(10) >>> t.exists(8) True >>> t.exists(3) False """ try: self.search(label) return True except Exception: return False def get_max_label(self) -> int: """ Gets the max label inserted in the tree >>> t = BinarySearchTree() >>> t.get_max_label() Traceback (most recent call last): ... Exception: Binary search tree is empty >>> t.put(8) >>> t.put(10) >>> t.get_max_label() 10 """ if self.root is None: raise Exception("Binary search tree is empty") node = self.root while node.right is not None: node = node.right return node.label def get_min_label(self) -> int: """ Gets the min label inserted in the tree >>> t = BinarySearchTree() >>> t.get_min_label() Traceback (most recent call last): ... Exception: Binary search tree is empty >>> t.put(8) >>> t.put(10) >>> t.get_min_label() 8 """ if self.root is None: raise Exception("Binary search tree is empty") node = self.root while node.left is not None: node = node.left return node.label def inorder_traversal(self) -> Iterator[Node]: """ Return the inorder traversal of the tree >>> t = BinarySearchTree() >>> [i.label for i in t.inorder_traversal()] [] >>> t.put(8) >>> t.put(10) >>> t.put(9) >>> [i.label for i in t.inorder_traversal()] [8, 9, 10] """ return self._inorder_traversal(self.root) def _inorder_traversal(self, node: Optional[Node]) -> Iterator[Node]: if node is not None: yield from self._inorder_traversal(node.left) yield node yield from self._inorder_traversal(node.right) def preorder_traversal(self) -> Iterator[Node]: """ Return the preorder traversal of the tree >>> t = BinarySearchTree() >>> [i.label for i in t.preorder_traversal()] [] >>> t.put(8) >>> t.put(10) >>> t.put(9) >>> [i.label for i in t.preorder_traversal()] [8, 10, 9] """ return self._preorder_traversal(self.root) def _preorder_traversal(self, node: Optional[Node]) -> Iterator[Node]: if node is not None: yield node yield from self._preorder_traversal(node.left) yield from self._preorder_traversal(node.right) class BinarySearchTreeTest(unittest.TestCase): @staticmethod def _get_binary_search_tree() -> BinarySearchTree: r""" 8 / \ 3 10 / \ \ 1 6 14 / \ / 4 7 13 \ 5 """ t = BinarySearchTree() t.put(8) t.put(3) t.put(6) t.put(1) t.put(10) t.put(14) t.put(13) t.put(4) t.put(7) t.put(5) return t def test_put(self) -> None: t = BinarySearchTree() assert t.is_empty() t.put(8) r""" 8 """ assert t.root is not None assert t.root.parent is None assert t.root.label == 8 t.put(10) r""" 8 \ 10 """ assert t.root.right is not None assert t.root.right.parent == t.root assert t.root.right.label == 10 t.put(3) r""" 8 / \ 3 10 """ assert t.root.left is not None assert t.root.left.parent == t.root assert t.root.left.label == 3 t.put(6) r""" 8 / \ 3 10 \ 6 """ assert t.root.left.right is not None assert t.root.left.right.parent == t.root.left assert t.root.left.right.label == 6 t.put(1) r""" 8 / \ 3 10 / \ 1 6 """ assert t.root.left.left is not None assert t.root.left.left.parent == t.root.left assert t.root.left.left.label == 1 with self.assertRaises(Exception): t.put(1) def test_search(self) -> None: t = self._get_binary_search_tree() node = t.search(6) assert node.label == 6 node = t.search(13) assert node.label == 13 with self.assertRaises(Exception): t.search(2) def test_remove(self) -> None: t = self._get_binary_search_tree() t.remove(13) r""" 8 / \ 3 10 / \ \ 1 6 14 / \ 4 7 \ 5 """ assert t.root is not None assert t.root.right is not None assert t.root.right.right is not None assert t.root.right.right.right is None assert t.root.right.right.left is None t.remove(7) r""" 8 / \ 3 10 / \ \ 1 6 14 / 4 \ 5 """ assert t.root.left is not None assert t.root.left.right is not None assert t.root.left.right.left is not None assert t.root.left.right.right is None assert t.root.left.right.left.label == 4 t.remove(6) r""" 8 / \ 3 10 / \ \ 1 4 14 \ 5 """ assert t.root.left.left is not None assert t.root.left.right.right is not None assert t.root.left.left.label == 1 assert t.root.left.right.label == 4 assert t.root.left.right.right.label == 5 assert t.root.left.right.left is None assert t.root.left.left.parent == t.root.left assert t.root.left.right.parent == t.root.left t.remove(3) r""" 8 / \ 4 10 / \ \ 1 5 14 """ assert t.root is not None assert t.root.left.label == 4 assert t.root.left.right.label == 5 assert t.root.left.left.label == 1 assert t.root.left.parent == t.root assert t.root.left.left.parent == t.root.left assert t.root.left.right.parent == t.root.left t.remove(4) r""" 8 / \ 5 10 / \ 1 14 """ assert t.root.left is not None assert t.root.left.left is not None assert t.root.left.label == 5 assert t.root.left.right is None assert t.root.left.left.label == 1 assert t.root.left.parent == t.root assert t.root.left.left.parent == t.root.left def test_remove_2(self) -> None: t = self._get_binary_search_tree() t.remove(3) r""" 8 / \ 4 10 / \ \ 1 6 14 / \ / 5 7 13 """ assert t.root is not None assert t.root.left is not None assert t.root.left.left is not None assert t.root.left.right is not None assert t.root.left.right.left is not None assert t.root.left.right.right is not None assert t.root.left.label == 4 assert t.root.left.right.label == 6 assert t.root.left.left.label == 1 assert t.root.left.right.right.label == 7 assert t.root.left.right.left.label == 5 assert t.root.left.parent == t.root assert t.root.left.right.parent == t.root.left assert t.root.left.left.parent == t.root.left assert t.root.left.right.left.parent == t.root.left.right def test_empty(self) -> None: t = self._get_binary_search_tree() t.empty() assert t.root is None def test_is_empty(self) -> None: t = self._get_binary_search_tree() assert not t.is_empty() t.empty() assert t.is_empty() def test_exists(self) -> None: t = self._get_binary_search_tree() assert t.exists(6) assert not t.exists(-1) def test_get_max_label(self) -> None: t = self._get_binary_search_tree() assert t.get_max_label() == 14 t.empty() with self.assertRaises(Exception): t.get_max_label() def test_get_min_label(self) -> None: t = self._get_binary_search_tree() assert t.get_min_label() == 1 t.empty() with self.assertRaises(Exception): t.get_min_label() def test_inorder_traversal(self) -> None: t = self._get_binary_search_tree() inorder_traversal_nodes = [i.label for i in t.inorder_traversal()] assert inorder_traversal_nodes == [1, 3, 4, 5, 6, 7, 8, 10, 13, 14] def test_preorder_traversal(self) -> None: t = self._get_binary_search_tree() preorder_traversal_nodes = [i.label for i in t.preorder_traversal()] assert preorder_traversal_nodes == [8, 3, 1, 6, 4, 5, 7, 10, 14, 13] def binary_search_tree_example() -> None: r""" Example 8 / \ 3 10 / \ \ 1 6 14 / \ / 4 7 13 \ 5 Example After Deletion 4 / \ 1 7 \ 5 """ t = BinarySearchTree() t.put(8) t.put(3) t.put(6) t.put(1) t.put(10) t.put(14) t.put(13) t.put(4) t.put(7) t.put(5) print( """ 8 / \\ 3 10 / \\ \\ 1 6 14 / \\ / 4 7 13 \\ 5 """ ) print("Label 6 exists:", t.exists(6)) print("Label 13 exists:", t.exists(13)) print("Label -1 exists:", t.exists(-1)) print("Label 12 exists:", t.exists(12)) # Prints all the elements of the list in inorder traversal inorder_traversal_nodes = [i.label for i in t.inorder_traversal()] print("Inorder traversal:", inorder_traversal_nodes) # Prints all the elements of the list in preorder traversal preorder_traversal_nodes = [i.label for i in t.preorder_traversal()] print("Preorder traversal:", preorder_traversal_nodes) print("Max. label:", t.get_max_label()) print("Min. label:", t.get_min_label()) # Delete elements print("\nDeleting elements 13, 10, 8, 3, 6, 14") print( """ 4 / \\ 1 7 \\ 5 """ ) t.remove(13) t.remove(10) t.remove(8) t.remove(3) t.remove(6) t.remove(14) # Prints all the elements of the list in inorder traversal after delete inorder_traversal_nodes = [i.label for i in t.inorder_traversal()] print("Inorder traversal after delete:", inorder_traversal_nodes) # Prints all the elements of the list in preorder traversal after delete preorder_traversal_nodes = [i.label for i in t.preorder_traversal()] print("Preorder traversal after delete:", preorder_traversal_nodes) print("Max. label:", t.get_max_label()) print("Min. label:", t.get_min_label()) if __name__ == "__main__": binary_search_tree_example()
""" This is a python3 implementation of binary search tree using recursion To run tests: python -m unittest binary_search_tree_recursive.py To run an example: python binary_search_tree_recursive.py """ import unittest from typing import Iterator, Optional class Node: def __init__(self, label: int, parent: Optional["Node"]) -> None: self.label = label self.parent = parent self.left: Optional[Node] = None self.right: Optional[Node] = None class BinarySearchTree: def __init__(self) -> None: self.root: Optional[Node] = None def empty(self) -> None: """ Empties the tree >>> t = BinarySearchTree() >>> assert t.root is None >>> t.put(8) >>> assert t.root is not None """ self.root = None def is_empty(self) -> bool: """ Checks if the tree is empty >>> t = BinarySearchTree() >>> t.is_empty() True >>> t.put(8) >>> t.is_empty() False """ return self.root is None def put(self, label: int) -> None: """ Put a new node in the tree >>> t = BinarySearchTree() >>> t.put(8) >>> assert t.root.parent is None >>> assert t.root.label == 8 >>> t.put(10) >>> assert t.root.right.parent == t.root >>> assert t.root.right.label == 10 >>> t.put(3) >>> assert t.root.left.parent == t.root >>> assert t.root.left.label == 3 """ self.root = self._put(self.root, label) def _put( self, node: Optional[Node], label: int, parent: Optional[Node] = None ) -> Node: if node is None: node = Node(label, parent) else: if label < node.label: node.left = self._put(node.left, label, node) elif label > node.label: node.right = self._put(node.right, label, node) else: raise Exception(f"Node with label {label} already exists") return node def search(self, label: int) -> Node: """ Searches a node in the tree >>> t = BinarySearchTree() >>> t.put(8) >>> t.put(10) >>> node = t.search(8) >>> assert node.label == 8 >>> node = t.search(3) Traceback (most recent call last): ... Exception: Node with label 3 does not exist """ return self._search(self.root, label) def _search(self, node: Optional[Node], label: int) -> Node: if node is None: raise Exception(f"Node with label {label} does not exist") else: if label < node.label: node = self._search(node.left, label) elif label > node.label: node = self._search(node.right, label) return node def remove(self, label: int) -> None: """ Removes a node in the tree >>> t = BinarySearchTree() >>> t.put(8) >>> t.put(10) >>> t.remove(8) >>> assert t.root.label == 10 >>> t.remove(3) Traceback (most recent call last): ... Exception: Node with label 3 does not exist """ node = self.search(label) if node.right and node.left: lowest_node = self._get_lowest_node(node.right) lowest_node.left = node.left lowest_node.right = node.right node.left.parent = lowest_node if node.right: node.right.parent = lowest_node self._reassign_nodes(node, lowest_node) elif not node.right and node.left: self._reassign_nodes(node, node.left) elif node.right and not node.left: self._reassign_nodes(node, node.right) else: self._reassign_nodes(node, None) def _reassign_nodes(self, node: Node, new_children: Optional[Node]) -> None: if new_children: new_children.parent = node.parent if node.parent: if node.parent.right == node: node.parent.right = new_children else: node.parent.left = new_children else: self.root = new_children def _get_lowest_node(self, node: Node) -> Node: if node.left: lowest_node = self._get_lowest_node(node.left) else: lowest_node = node self._reassign_nodes(node, node.right) return lowest_node def exists(self, label: int) -> bool: """ Checks if a node exists in the tree >>> t = BinarySearchTree() >>> t.put(8) >>> t.put(10) >>> t.exists(8) True >>> t.exists(3) False """ try: self.search(label) return True except Exception: return False def get_max_label(self) -> int: """ Gets the max label inserted in the tree >>> t = BinarySearchTree() >>> t.get_max_label() Traceback (most recent call last): ... Exception: Binary search tree is empty >>> t.put(8) >>> t.put(10) >>> t.get_max_label() 10 """ if self.root is None: raise Exception("Binary search tree is empty") node = self.root while node.right is not None: node = node.right return node.label def get_min_label(self) -> int: """ Gets the min label inserted in the tree >>> t = BinarySearchTree() >>> t.get_min_label() Traceback (most recent call last): ... Exception: Binary search tree is empty >>> t.put(8) >>> t.put(10) >>> t.get_min_label() 8 """ if self.root is None: raise Exception("Binary search tree is empty") node = self.root while node.left is not None: node = node.left return node.label def inorder_traversal(self) -> Iterator[Node]: """ Return the inorder traversal of the tree >>> t = BinarySearchTree() >>> [i.label for i in t.inorder_traversal()] [] >>> t.put(8) >>> t.put(10) >>> t.put(9) >>> [i.label for i in t.inorder_traversal()] [8, 9, 10] """ return self._inorder_traversal(self.root) def _inorder_traversal(self, node: Optional[Node]) -> Iterator[Node]: if node is not None: yield from self._inorder_traversal(node.left) yield node yield from self._inorder_traversal(node.right) def preorder_traversal(self) -> Iterator[Node]: """ Return the preorder traversal of the tree >>> t = BinarySearchTree() >>> [i.label for i in t.preorder_traversal()] [] >>> t.put(8) >>> t.put(10) >>> t.put(9) >>> [i.label for i in t.preorder_traversal()] [8, 10, 9] """ return self._preorder_traversal(self.root) def _preorder_traversal(self, node: Optional[Node]) -> Iterator[Node]: if node is not None: yield node yield from self._preorder_traversal(node.left) yield from self._preorder_traversal(node.right) class BinarySearchTreeTest(unittest.TestCase): @staticmethod def _get_binary_search_tree() -> BinarySearchTree: r""" 8 / \ 3 10 / \ \ 1 6 14 / \ / 4 7 13 \ 5 """ t = BinarySearchTree() t.put(8) t.put(3) t.put(6) t.put(1) t.put(10) t.put(14) t.put(13) t.put(4) t.put(7) t.put(5) return t def test_put(self) -> None: t = BinarySearchTree() assert t.is_empty() t.put(8) r""" 8 """ assert t.root is not None assert t.root.parent is None assert t.root.label == 8 t.put(10) r""" 8 \ 10 """ assert t.root.right is not None assert t.root.right.parent == t.root assert t.root.right.label == 10 t.put(3) r""" 8 / \ 3 10 """ assert t.root.left is not None assert t.root.left.parent == t.root assert t.root.left.label == 3 t.put(6) r""" 8 / \ 3 10 \ 6 """ assert t.root.left.right is not None assert t.root.left.right.parent == t.root.left assert t.root.left.right.label == 6 t.put(1) r""" 8 / \ 3 10 / \ 1 6 """ assert t.root.left.left is not None assert t.root.left.left.parent == t.root.left assert t.root.left.left.label == 1 with self.assertRaises(Exception): t.put(1) def test_search(self) -> None: t = self._get_binary_search_tree() node = t.search(6) assert node.label == 6 node = t.search(13) assert node.label == 13 with self.assertRaises(Exception): t.search(2) def test_remove(self) -> None: t = self._get_binary_search_tree() t.remove(13) r""" 8 / \ 3 10 / \ \ 1 6 14 / \ 4 7 \ 5 """ assert t.root is not None assert t.root.right is not None assert t.root.right.right is not None assert t.root.right.right.right is None assert t.root.right.right.left is None t.remove(7) r""" 8 / \ 3 10 / \ \ 1 6 14 / 4 \ 5 """ assert t.root.left is not None assert t.root.left.right is not None assert t.root.left.right.left is not None assert t.root.left.right.right is None assert t.root.left.right.left.label == 4 t.remove(6) r""" 8 / \ 3 10 / \ \ 1 4 14 \ 5 """ assert t.root.left.left is not None assert t.root.left.right.right is not None assert t.root.left.left.label == 1 assert t.root.left.right.label == 4 assert t.root.left.right.right.label == 5 assert t.root.left.right.left is None assert t.root.left.left.parent == t.root.left assert t.root.left.right.parent == t.root.left t.remove(3) r""" 8 / \ 4 10 / \ \ 1 5 14 """ assert t.root is not None assert t.root.left.label == 4 assert t.root.left.right.label == 5 assert t.root.left.left.label == 1 assert t.root.left.parent == t.root assert t.root.left.left.parent == t.root.left assert t.root.left.right.parent == t.root.left t.remove(4) r""" 8 / \ 5 10 / \ 1 14 """ assert t.root.left is not None assert t.root.left.left is not None assert t.root.left.label == 5 assert t.root.left.right is None assert t.root.left.left.label == 1 assert t.root.left.parent == t.root assert t.root.left.left.parent == t.root.left def test_remove_2(self) -> None: t = self._get_binary_search_tree() t.remove(3) r""" 8 / \ 4 10 / \ \ 1 6 14 / \ / 5 7 13 """ assert t.root is not None assert t.root.left is not None assert t.root.left.left is not None assert t.root.left.right is not None assert t.root.left.right.left is not None assert t.root.left.right.right is not None assert t.root.left.label == 4 assert t.root.left.right.label == 6 assert t.root.left.left.label == 1 assert t.root.left.right.right.label == 7 assert t.root.left.right.left.label == 5 assert t.root.left.parent == t.root assert t.root.left.right.parent == t.root.left assert t.root.left.left.parent == t.root.left assert t.root.left.right.left.parent == t.root.left.right def test_empty(self) -> None: t = self._get_binary_search_tree() t.empty() assert t.root is None def test_is_empty(self) -> None: t = self._get_binary_search_tree() assert not t.is_empty() t.empty() assert t.is_empty() def test_exists(self) -> None: t = self._get_binary_search_tree() assert t.exists(6) assert not t.exists(-1) def test_get_max_label(self) -> None: t = self._get_binary_search_tree() assert t.get_max_label() == 14 t.empty() with self.assertRaises(Exception): t.get_max_label() def test_get_min_label(self) -> None: t = self._get_binary_search_tree() assert t.get_min_label() == 1 t.empty() with self.assertRaises(Exception): t.get_min_label() def test_inorder_traversal(self) -> None: t = self._get_binary_search_tree() inorder_traversal_nodes = [i.label for i in t.inorder_traversal()] assert inorder_traversal_nodes == [1, 3, 4, 5, 6, 7, 8, 10, 13, 14] def test_preorder_traversal(self) -> None: t = self._get_binary_search_tree() preorder_traversal_nodes = [i.label for i in t.preorder_traversal()] assert preorder_traversal_nodes == [8, 3, 1, 6, 4, 5, 7, 10, 14, 13] def binary_search_tree_example() -> None: r""" Example 8 / \ 3 10 / \ \ 1 6 14 / \ / 4 7 13 \ 5 Example After Deletion 4 / \ 1 7 \ 5 """ t = BinarySearchTree() t.put(8) t.put(3) t.put(6) t.put(1) t.put(10) t.put(14) t.put(13) t.put(4) t.put(7) t.put(5) print( """ 8 / \\ 3 10 / \\ \\ 1 6 14 / \\ / 4 7 13 \\ 5 """ ) print("Label 6 exists:", t.exists(6)) print("Label 13 exists:", t.exists(13)) print("Label -1 exists:", t.exists(-1)) print("Label 12 exists:", t.exists(12)) # Prints all the elements of the list in inorder traversal inorder_traversal_nodes = [i.label for i in t.inorder_traversal()] print("Inorder traversal:", inorder_traversal_nodes) # Prints all the elements of the list in preorder traversal preorder_traversal_nodes = [i.label for i in t.preorder_traversal()] print("Preorder traversal:", preorder_traversal_nodes) print("Max. label:", t.get_max_label()) print("Min. label:", t.get_min_label()) # Delete elements print("\nDeleting elements 13, 10, 8, 3, 6, 14") print( """ 4 / \\ 1 7 \\ 5 """ ) t.remove(13) t.remove(10) t.remove(8) t.remove(3) t.remove(6) t.remove(14) # Prints all the elements of the list in inorder traversal after delete inorder_traversal_nodes = [i.label for i in t.inorder_traversal()] print("Inorder traversal after delete:", inorder_traversal_nodes) # Prints all the elements of the list in preorder traversal after delete preorder_traversal_nodes = [i.label for i in t.preorder_traversal()] print("Preorder traversal after delete:", preorder_traversal_nodes) print("Max. label:", t.get_max_label()) print("Min. label:", t.get_min_label()) if __name__ == "__main__": binary_search_tree_example()
-1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from .stack import Stack def balanced_parentheses(parentheses: str) -> bool: """Use a stack to check if a string of parentheses is balanced. >>> balanced_parentheses("([]{})") True >>> balanced_parentheses("[()]{}{[()()]()}") True >>> balanced_parentheses("[(])") False >>> balanced_parentheses("1+2*3-4") True >>> balanced_parentheses("") True """ stack = Stack() bracket_pairs = {"(": ")", "[": "]", "{": "}"} for bracket in parentheses: if bracket in bracket_pairs: stack.push(bracket) elif bracket in (")", "]", "}"): if stack.is_empty() or bracket_pairs[stack.pop()] != bracket: return False return stack.is_empty() if __name__ == "__main__": from doctest import testmod testmod() examples = ["((()))", "((())", "(()))"] print("Balanced parentheses demonstration:\n") for example in examples: not_str = "" if balanced_parentheses(example) else "not " print(f"{example} is {not_str}balanced")
from .stack import Stack def balanced_parentheses(parentheses: str) -> bool: """Use a stack to check if a string of parentheses is balanced. >>> balanced_parentheses("([]{})") True >>> balanced_parentheses("[()]{}{[()()]()}") True >>> balanced_parentheses("[(])") False >>> balanced_parentheses("1+2*3-4") True >>> balanced_parentheses("") True """ stack = Stack() bracket_pairs = {"(": ")", "[": "]", "{": "}"} for bracket in parentheses: if bracket in bracket_pairs: stack.push(bracket) elif bracket in (")", "]", "}"): if stack.is_empty() or bracket_pairs[stack.pop()] != bracket: return False return stack.is_empty() if __name__ == "__main__": from doctest import testmod testmod() examples = ["((()))", "((())", "(()))"] print("Balanced parentheses demonstration:\n") for example in examples: not_str = "" if balanced_parentheses(example) else "not " print(f"{example} is {not_str}balanced")
-1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 2: https://projecteuler.net/problem=2 Even Fibonacci Numbers Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms. References: - https://en.wikipedia.org/wiki/Fibonacci_number """ def solution(n: int = 4000000) -> int: """ Returns the sum of all even fibonacci sequence elements that are lower or equal to n. >>> solution(10) 10 >>> solution(15) 10 >>> solution(2) 2 >>> solution(1) 0 >>> solution(34) 44 """ fib = [0, 1] i = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 total = 0 for j in range(len(fib) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"{solution() = }")
""" Project Euler Problem 2: https://projecteuler.net/problem=2 Even Fibonacci Numbers Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms. References: - https://en.wikipedia.org/wiki/Fibonacci_number """ def solution(n: int = 4000000) -> int: """ Returns the sum of all even fibonacci sequence elements that are lower or equal to n. >>> solution(10) 10 >>> solution(15) 10 >>> solution(2) 2 >>> solution(1) 0 >>> solution(34) 44 """ fib = [0, 1] i = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1]) if fib[i + 2] > n: break i += 1 total = 0 for j in range(len(fib) - 1): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Counting Sundays Problem 19 You are given the following information, but you may prefer to do some research for yourself. 1 Jan 1900 was a Monday. Thirty days has September, April, June and November. All the rest have thirty-one, Saving February alone, Which has twenty-eight, rain or shine. And on leap years, twenty-nine. A leap year occurs on any year evenly divisible by 4, but not on a century unless it is divisible by 400. How many Sundays fell on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec 2000)? """ def solution(): """Returns the number of mondays that fall on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec 2000)? >>> solution() 171 """ days_per_month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] day = 6 month = 1 year = 1901 sundays = 0 while year < 2001: day += 7 if (year % 4 == 0 and not year % 100 == 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 day = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 day = day - 29 else: if day > days_per_month[month - 1]: month += 1 day = day - days_per_month[month - 2] if month > 12: year += 1 month = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
""" Counting Sundays Problem 19 You are given the following information, but you may prefer to do some research for yourself. 1 Jan 1900 was a Monday. Thirty days has September, April, June and November. All the rest have thirty-one, Saving February alone, Which has twenty-eight, rain or shine. And on leap years, twenty-nine. A leap year occurs on any year evenly divisible by 4, but not on a century unless it is divisible by 400. How many Sundays fell on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec 2000)? """ def solution(): """Returns the number of mondays that fall on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec 2000)? >>> solution() 171 """ days_per_month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] day = 6 month = 1 year = 1901 sundays = 0 while year < 2001: day += 7 if (year % 4 == 0 and not year % 100 == 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 day = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 day = day - 29 else: if day > days_per_month[month - 1]: month += 1 day = day - days_per_month[month - 2] if month > 12: year += 1 month = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
-1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Coin sums Problem 31: https://projecteuler.net/problem=31 In England the currency is made up of pound, £, and pence, p, and there are eight coins in general circulation: 1p, 2p, 5p, 10p, 20p, 50p, £1 (100p) and £2 (200p). It is possible to make £2 in the following way: 1×£1 + 1×50p + 2×20p + 1×5p + 1×2p + 3×1p How many different ways can £2 be made using any number of coins? """ def one_pence() -> int: return 1 def two_pence(x: int) -> int: return 0 if x < 0 else two_pence(x - 2) + one_pence() def five_pence(x: int) -> int: return 0 if x < 0 else five_pence(x - 5) + two_pence(x) def ten_pence(x: int) -> int: return 0 if x < 0 else ten_pence(x - 10) + five_pence(x) def twenty_pence(x: int) -> int: return 0 if x < 0 else twenty_pence(x - 20) + ten_pence(x) def fifty_pence(x: int) -> int: return 0 if x < 0 else fifty_pence(x - 50) + twenty_pence(x) def one_pound(x: int) -> int: return 0 if x < 0 else one_pound(x - 100) + fifty_pence(x) def two_pound(x: int) -> int: return 0 if x < 0 else two_pound(x - 200) + one_pound(x) def solution(n: int = 200) -> int: """Returns the number of different ways can n pence be made using any number of coins? >>> solution(500) 6295434 >>> solution(200) 73682 >>> solution(50) 451 >>> solution(10) 11 """ return two_pound(n) if __name__ == "__main__": print(solution(int(input().strip())))
""" Coin sums Problem 31: https://projecteuler.net/problem=31 In England the currency is made up of pound, £, and pence, p, and there are eight coins in general circulation: 1p, 2p, 5p, 10p, 20p, 50p, £1 (100p) and £2 (200p). It is possible to make £2 in the following way: 1×£1 + 1×50p + 2×20p + 1×5p + 1×2p + 3×1p How many different ways can £2 be made using any number of coins? """ def one_pence() -> int: return 1 def two_pence(x: int) -> int: return 0 if x < 0 else two_pence(x - 2) + one_pence() def five_pence(x: int) -> int: return 0 if x < 0 else five_pence(x - 5) + two_pence(x) def ten_pence(x: int) -> int: return 0 if x < 0 else ten_pence(x - 10) + five_pence(x) def twenty_pence(x: int) -> int: return 0 if x < 0 else twenty_pence(x - 20) + ten_pence(x) def fifty_pence(x: int) -> int: return 0 if x < 0 else fifty_pence(x - 50) + twenty_pence(x) def one_pound(x: int) -> int: return 0 if x < 0 else one_pound(x - 100) + fifty_pence(x) def two_pound(x: int) -> int: return 0 if x < 0 else two_pound(x - 200) + one_pound(x) def solution(n: int = 200) -> int: """Returns the number of different ways can n pence be made using any number of coins? >>> solution(500) 6295434 >>> solution(200) 73682 >>> solution(50) 451 >>> solution(10) 11 """ return two_pound(n) if __name__ == "__main__": print(solution(int(input().strip())))
-1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" This is a pure Python implementation of the quick sort algorithm For doctests run following command: python -m doctest -v radix_sort.py or python3 -m doctest -v radix_sort.py For manual testing run: python radix_sort.py """ from __future__ import annotations from typing import List def radix_sort(list_of_ints: List[int]) -> List[int]: """ Examples: >>> radix_sort([0, 5, 3, 2, 2]) [0, 2, 2, 3, 5] >>> radix_sort(list(range(15))) == sorted(range(15)) True >>> radix_sort(list(range(14,-1,-1))) == sorted(range(15)) True >>> radix_sort([1,100,10,1000]) == sorted([1,100,10,1000]) True """ RADIX = 10 placement = 1 max_digit = max(list_of_ints) while placement <= max_digit: # declare and initialize empty buckets buckets: List[list] = [list() for _ in range(RADIX)] # split list_of_ints between the buckets for i in list_of_ints: tmp = int((i / placement) % RADIX) buckets[tmp].append(i) # put each buckets' contents into list_of_ints a = 0 for b in range(RADIX): for i in buckets[b]: list_of_ints[a] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
""" This is a pure Python implementation of the quick sort algorithm For doctests run following command: python -m doctest -v radix_sort.py or python3 -m doctest -v radix_sort.py For manual testing run: python radix_sort.py """ from __future__ import annotations from typing import List def radix_sort(list_of_ints: List[int]) -> List[int]: """ Examples: >>> radix_sort([0, 5, 3, 2, 2]) [0, 2, 2, 3, 5] >>> radix_sort(list(range(15))) == sorted(range(15)) True >>> radix_sort(list(range(14,-1,-1))) == sorted(range(15)) True >>> radix_sort([1,100,10,1000]) == sorted([1,100,10,1000]) True """ RADIX = 10 placement = 1 max_digit = max(list_of_ints) while placement <= max_digit: # declare and initialize empty buckets buckets: List[list] = [list() for _ in range(RADIX)] # split list_of_ints between the buckets for i in list_of_ints: tmp = int((i / placement) % RADIX) buckets[tmp].append(i) # put each buckets' contents into list_of_ints a = 0 for b in range(RADIX): for i in buckets[b]: list_of_ints[a] = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Project Euler Problem 77: https://projecteuler.net/problem=77 It is possible to write ten as the sum of primes in exactly five different ways: 7 + 3 5 + 5 5 + 3 + 2 3 + 3 + 2 + 2 2 + 2 + 2 + 2 + 2 What is the first value which can be written as the sum of primes in over five thousand different ways? """ from functools import lru_cache from math import ceil from typing import Optional, Set NUM_PRIMES = 100 primes = set(range(3, NUM_PRIMES, 2)) primes.add(2) prime: int for prime in range(3, ceil(NUM_PRIMES ** 0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100) def partition(number_to_partition: int) -> Set[int]: """ Return a set of integers corresponding to unique prime partitions of n. The unique prime partitions can be represented as unique prime decompositions, e.g. (7+3) <-> 7*3 = 12, (3+3+2+2) = 3*3*2*2 = 36 >>> partition(10) {32, 36, 21, 25, 30} >>> partition(15) {192, 160, 105, 44, 112, 243, 180, 150, 216, 26, 125, 126} >>> len(partition(20)) 26 """ if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} ret: Set[int] = set() prime: int sub: int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime): ret.add(sub * prime) return ret def solution(number_unique_partitions: int = 5000) -> Optional[int]: """ Return the smallest integer that can be written as the sum of primes in over m unique ways. >>> solution(4) 10 >>> solution(500) 45 >>> solution(1000) 53 """ for number_to_partition in range(1, NUM_PRIMES): if len(partition(number_to_partition)) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"{solution() = }")
""" Project Euler Problem 77: https://projecteuler.net/problem=77 It is possible to write ten as the sum of primes in exactly five different ways: 7 + 3 5 + 5 5 + 3 + 2 3 + 3 + 2 + 2 2 + 2 + 2 + 2 + 2 What is the first value which can be written as the sum of primes in over five thousand different ways? """ from functools import lru_cache from math import ceil from typing import Optional, Set NUM_PRIMES = 100 primes = set(range(3, NUM_PRIMES, 2)) primes.add(2) prime: int for prime in range(3, ceil(NUM_PRIMES ** 0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100) def partition(number_to_partition: int) -> Set[int]: """ Return a set of integers corresponding to unique prime partitions of n. The unique prime partitions can be represented as unique prime decompositions, e.g. (7+3) <-> 7*3 = 12, (3+3+2+2) = 3*3*2*2 = 36 >>> partition(10) {32, 36, 21, 25, 30} >>> partition(15) {192, 160, 105, 44, 112, 243, 180, 150, 216, 26, 125, 126} >>> len(partition(20)) 26 """ if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} ret: Set[int] = set() prime: int sub: int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime): ret.add(sub * prime) return ret def solution(number_unique_partitions: int = 5000) -> Optional[int]: """ Return the smallest integer that can be written as the sum of primes in over m unique ways. >>> solution(4) 10 >>> solution(500) 45 >>> solution(1000) 53 """ for number_to_partition in range(1, NUM_PRIMES): if len(partition(number_to_partition)) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"{solution() = }")
-1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
def lower(word: str) -> str: """ Will convert the entire string to lowercase letters >>> lower("wow") 'wow' >>> lower("HellZo") 'hellzo' >>> lower("WHAT") 'what' >>> lower("wh[]32") 'wh[]32' >>> lower("whAT") 'what' """ # converting to ascii value int value and checking to see if char is a capital # letter if it is a capital letter it is getting shift by 32 which makes it a lower # case letter return "".join(chr(ord(char) + 32) if "A" <= char <= "Z" else char for char in word) if __name__ == "__main__": from doctest import testmod testmod()
def lower(word: str) -> str: """ Will convert the entire string to lowercase letters >>> lower("wow") 'wow' >>> lower("HellZo") 'hellzo' >>> lower("WHAT") 'what' >>> lower("wh[]32") 'wh[]32' >>> lower("whAT") 'what' """ # converting to ascii value int value and checking to see if char is a capital # letter if it is a capital letter it is getting shift by 32 which makes it a lower # case letter return "".join(chr(ord(char) + 32) if "A" <= char <= "Z" else char for char in word) if __name__ == "__main__": from doctest import testmod testmod()
-1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
-1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" This is a type of divide and conquer algorithm which divides the search space into 3 parts and finds the target value based on the property of the array or list (usually monotonic property). Time Complexity : O(log3 N) Space Complexity : O(1) """ from typing import List # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. precision = 10 # This is the linear search that will occur after the search space has become smaller. def lin_search(left: int, right: int, array: List[int], target: int) -> int: """Perform linear search in list. Returns -1 if element is not found. Parameters ---------- left : int left index bound. right : int right index bound. array : List[int] List of elements to be searched on target : int Element that is searched Returns ------- int index of element that is looked for. Examples -------- >>> lin_search(0, 4, [4, 5, 6, 7], 7) 3 >>> lin_search(0, 3, [4, 5, 6, 7], 7) -1 >>> lin_search(0, 2, [-18, 2], -18) 0 >>> lin_search(0, 1, [5], 5) 0 >>> lin_search(0, 3, ['a', 'c', 'd'], 'c') 1 >>> lin_search(0, 3, [.1, .4 , -.1], .1) 0 >>> lin_search(0, 3, [.1, .4 , -.1], -.1) 2 """ for i in range(left, right): if array[i] == target: return i return -1 def ite_ternary_search(array: List[int], target: int) -> int: """Iterative method of the ternary search algorithm. >>> test_list = [0, 1, 2, 8, 13, 17, 19, 32, 42] >>> ite_ternary_search(test_list, 3) -1 >>> ite_ternary_search(test_list, 13) 4 >>> ite_ternary_search([4, 5, 6, 7], 4) 0 >>> ite_ternary_search([4, 5, 6, 7], -10) -1 >>> ite_ternary_search([-18, 2], -18) 0 >>> ite_ternary_search([5], 5) 0 >>> ite_ternary_search(['a', 'c', 'd'], 'c') 1 >>> ite_ternary_search(['a', 'c', 'd'], 'f') -1 >>> ite_ternary_search([], 1) -1 >>> ite_ternary_search([.1, .4 , -.1], .1) 0 """ left = 0 right = len(array) while left <= right: if right - left < precision: return lin_search(left, right, array, target) one_third = (left + right) / 3 + 1 two_third = 2 * (left + right) / 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: right = one_third - 1 elif array[two_third] < target: left = two_third + 1 else: left = one_third + 1 right = two_third - 1 else: return -1 def rec_ternary_search(left: int, right: int, array: List[int], target: int) -> int: """Recursive method of the ternary search algorithm. >>> test_list = [0, 1, 2, 8, 13, 17, 19, 32, 42] >>> rec_ternary_search(0, len(test_list), test_list, 3) -1 >>> rec_ternary_search(4, len(test_list), test_list, 42) 8 >>> rec_ternary_search(0, 2, [4, 5, 6, 7], 4) 0 >>> rec_ternary_search(0, 3, [4, 5, 6, 7], -10) -1 >>> rec_ternary_search(0, 1, [-18, 2], -18) 0 >>> rec_ternary_search(0, 1, [5], 5) 0 >>> rec_ternary_search(0, 2, ['a', 'c', 'd'], 'c') 1 >>> rec_ternary_search(0, 2, ['a', 'c', 'd'], 'f') -1 >>> rec_ternary_search(0, 0, [], 1) -1 >>> rec_ternary_search(0, 3, [.1, .4 , -.1], .1) 0 """ if left < right: if right - left < precision: return lin_search(left, right, array, target) one_third = (left + right) / 3 + 1 two_third = 2 * (left + right) / 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(left, one_third - 1, array, target) elif array[two_third] < target: return rec_ternary_search(two_third + 1, right, array, target) else: return rec_ternary_search(one_third + 1, two_third - 1, array, target) else: return -1 if __name__ == "__main__": user_input = input("Enter numbers separated by comma:\n").strip() collection = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." target = int(input("Enter the number to be found in the list:\n").strip()) result1 = ite_ternary_search(collection, target) result2 = rec_ternary_search(0, len(collection) - 1, collection, target) if result2 != -1: print(f"Iterative search: {target} found at positions: {result1}") print(f"Recursive search: {target} found at positions: {result2}") else: print("Not found")
""" This is a type of divide and conquer algorithm which divides the search space into 3 parts and finds the target value based on the property of the array or list (usually monotonic property). Time Complexity : O(log3 N) Space Complexity : O(1) """ from typing import List # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. precision = 10 # This is the linear search that will occur after the search space has become smaller. def lin_search(left: int, right: int, array: List[int], target: int) -> int: """Perform linear search in list. Returns -1 if element is not found. Parameters ---------- left : int left index bound. right : int right index bound. array : List[int] List of elements to be searched on target : int Element that is searched Returns ------- int index of element that is looked for. Examples -------- >>> lin_search(0, 4, [4, 5, 6, 7], 7) 3 >>> lin_search(0, 3, [4, 5, 6, 7], 7) -1 >>> lin_search(0, 2, [-18, 2], -18) 0 >>> lin_search(0, 1, [5], 5) 0 >>> lin_search(0, 3, ['a', 'c', 'd'], 'c') 1 >>> lin_search(0, 3, [.1, .4 , -.1], .1) 0 >>> lin_search(0, 3, [.1, .4 , -.1], -.1) 2 """ for i in range(left, right): if array[i] == target: return i return -1 def ite_ternary_search(array: List[int], target: int) -> int: """Iterative method of the ternary search algorithm. >>> test_list = [0, 1, 2, 8, 13, 17, 19, 32, 42] >>> ite_ternary_search(test_list, 3) -1 >>> ite_ternary_search(test_list, 13) 4 >>> ite_ternary_search([4, 5, 6, 7], 4) 0 >>> ite_ternary_search([4, 5, 6, 7], -10) -1 >>> ite_ternary_search([-18, 2], -18) 0 >>> ite_ternary_search([5], 5) 0 >>> ite_ternary_search(['a', 'c', 'd'], 'c') 1 >>> ite_ternary_search(['a', 'c', 'd'], 'f') -1 >>> ite_ternary_search([], 1) -1 >>> ite_ternary_search([.1, .4 , -.1], .1) 0 """ left = 0 right = len(array) while left <= right: if right - left < precision: return lin_search(left, right, array, target) one_third = (left + right) / 3 + 1 two_third = 2 * (left + right) / 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: right = one_third - 1 elif array[two_third] < target: left = two_third + 1 else: left = one_third + 1 right = two_third - 1 else: return -1 def rec_ternary_search(left: int, right: int, array: List[int], target: int) -> int: """Recursive method of the ternary search algorithm. >>> test_list = [0, 1, 2, 8, 13, 17, 19, 32, 42] >>> rec_ternary_search(0, len(test_list), test_list, 3) -1 >>> rec_ternary_search(4, len(test_list), test_list, 42) 8 >>> rec_ternary_search(0, 2, [4, 5, 6, 7], 4) 0 >>> rec_ternary_search(0, 3, [4, 5, 6, 7], -10) -1 >>> rec_ternary_search(0, 1, [-18, 2], -18) 0 >>> rec_ternary_search(0, 1, [5], 5) 0 >>> rec_ternary_search(0, 2, ['a', 'c', 'd'], 'c') 1 >>> rec_ternary_search(0, 2, ['a', 'c', 'd'], 'f') -1 >>> rec_ternary_search(0, 0, [], 1) -1 >>> rec_ternary_search(0, 3, [.1, .4 , -.1], .1) 0 """ if left < right: if right - left < precision: return lin_search(left, right, array, target) one_third = (left + right) / 3 + 1 two_third = 2 * (left + right) / 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(left, one_third - 1, array, target) elif array[two_third] < target: return rec_ternary_search(two_third + 1, right, array, target) else: return rec_ternary_search(one_third + 1, two_third - 1, array, target) else: return -1 if __name__ == "__main__": user_input = input("Enter numbers separated by comma:\n").strip() collection = [int(item.strip()) for item in user_input.split(",")] assert collection == sorted(collection), f"List must be ordered.\n{collection}." target = int(input("Enter the number to be found in the list:\n").strip()) result1 = ite_ternary_search(collection, target) result2 = rec_ternary_search(0, len(collection) - 1, collection, target) if result2 != -1: print(f"Iterative search: {target} found at positions: {result1}") print(f"Recursive search: {target} found at positions: {result2}") else: print("Not found")
-1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
# https://www.geeksforgeeks.org/newton-forward-backward-interpolation/ import math from typing import List # for calculating u value def ucal(u: float, p: int) -> float: """ >>> ucal(1, 2) 0 >>> ucal(1.1, 2) 0.11000000000000011 >>> ucal(1.2, 2) 0.23999999999999994 """ temp = u for i in range(1, p): temp = temp * (u - i) return temp def main() -> None: n = int(input("enter the numbers of values: ")) y: List[List[float]] = [] for i in range(n): y.append([]) for i in range(n): for j in range(n): y[i].append(j) y[i][j] = 0 print("enter the values of parameters in a list: ") x = list(map(int, input().split())) print("enter the values of corresponding parameters: ") for i in range(n): y[i][0] = float(input()) value = int(input("enter the value to interpolate: ")) u = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1, n): for j in range(n - i): y[j][i] = y[j + 1][i - 1] - y[j][i - 1] summ = y[0][0] for i in range(1, n): summ += (ucal(u, i) * y[0][i]) / math.factorial(i) print(f"the value at {value} is {summ}") if __name__ == "__main__": main()
# https://www.geeksforgeeks.org/newton-forward-backward-interpolation/ import math from typing import List # for calculating u value def ucal(u: float, p: int) -> float: """ >>> ucal(1, 2) 0 >>> ucal(1.1, 2) 0.11000000000000011 >>> ucal(1.2, 2) 0.23999999999999994 """ temp = u for i in range(1, p): temp = temp * (u - i) return temp def main() -> None: n = int(input("enter the numbers of values: ")) y: List[List[float]] = [] for i in range(n): y.append([]) for i in range(n): for j in range(n): y[i].append(j) y[i][j] = 0 print("enter the values of parameters in a list: ") x = list(map(int, input().split())) print("enter the values of corresponding parameters: ") for i in range(n): y[i][0] = float(input()) value = int(input("enter the value to interpolate: ")) u = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1, n): for j in range(n - i): y[j][i] = y[j + 1][i - 1] - y[j][i - 1] summ = y[0][0] for i in range(1, n): summ += (ucal(u, i) * y[0][i]) / math.factorial(i) print(f"the value at {value} is {summ}") if __name__ == "__main__": main()
-1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
"""Conway's Game Of Life, Author Anurag Kumar(mailto:[email protected]) Requirements: - numpy - random - time - matplotlib Python: - 3.5 Usage: - $python3 game_o_life <canvas_size:int> Game-Of-Life Rules: 1. Any live cell with fewer than two live neighbours dies, as if caused by under-population. 2. Any live cell with two or three live neighbours lives on to the next generation. 3. Any live cell with more than three live neighbours dies, as if by over-population. 4. Any dead cell with exactly three live neighbours be- comes a live cell, as if by reproduction. """ import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap usage_doc = "Usage of script: script_nama <size_of_canvas:int>" choice = [0] * 100 + [1] * 10 random.shuffle(choice) def create_canvas(size): canvas = [[False for i in range(size)] for j in range(size)] return canvas def seed(canvas): for i, row in enumerate(canvas): for j, _ in enumerate(row): canvas[i][j] = bool(random.getrandbits(1)) def run(canvas): """This function runs the rules of game through all points, and changes their status accordingly.(in the same canvas) @Args: -- canvas : canvas of population to run the rules on. @returns: -- None """ canvas = np.array(canvas) next_gen_canvas = np.array(create_canvas(canvas.shape[0])) for r, row in enumerate(canvas): for c, pt in enumerate(row): # print(r-1,r+2,c-1,c+2) next_gen_canvas[r][c] = __judge_point( pt, canvas[r - 1 : r + 2, c - 1 : c + 2] ) canvas = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. return canvas.tolist() def __judge_point(pt, neighbours): dead = 0 alive = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. state = pt if pt: if alive < 2: state = False elif alive == 2 or alive == 3: state = True elif alive > 3: state = False else: if alive == 3: state = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) canvas_size = int(sys.argv[1]) # main working structure of this module. c = create_canvas(canvas_size) seed(c) fig, ax = plt.subplots() fig.show() cmap = ListedColormap(["w", "k"]) try: while True: c = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
"""Conway's Game Of Life, Author Anurag Kumar(mailto:[email protected]) Requirements: - numpy - random - time - matplotlib Python: - 3.5 Usage: - $python3 game_o_life <canvas_size:int> Game-Of-Life Rules: 1. Any live cell with fewer than two live neighbours dies, as if caused by under-population. 2. Any live cell with two or three live neighbours lives on to the next generation. 3. Any live cell with more than three live neighbours dies, as if by over-population. 4. Any dead cell with exactly three live neighbours be- comes a live cell, as if by reproduction. """ import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap usage_doc = "Usage of script: script_nama <size_of_canvas:int>" choice = [0] * 100 + [1] * 10 random.shuffle(choice) def create_canvas(size): canvas = [[False for i in range(size)] for j in range(size)] return canvas def seed(canvas): for i, row in enumerate(canvas): for j, _ in enumerate(row): canvas[i][j] = bool(random.getrandbits(1)) def run(canvas): """This function runs the rules of game through all points, and changes their status accordingly.(in the same canvas) @Args: -- canvas : canvas of population to run the rules on. @returns: -- None """ canvas = np.array(canvas) next_gen_canvas = np.array(create_canvas(canvas.shape[0])) for r, row in enumerate(canvas): for c, pt in enumerate(row): # print(r-1,r+2,c-1,c+2) next_gen_canvas[r][c] = __judge_point( pt, canvas[r - 1 : r + 2, c - 1 : c + 2] ) canvas = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. return canvas.tolist() def __judge_point(pt, neighbours): dead = 0 alive = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. state = pt if pt: if alive < 2: state = False elif alive == 2 or alive == 3: state = True elif alive > 3: state = False else: if alive == 3: state = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) canvas_size = int(sys.argv[1]) # main working structure of this module. c = create_canvas(canvas_size) seed(c) fig, ax = plt.subplots() fig.show() cmap = ListedColormap(["w", "k"]) try: while True: c = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
-1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
import sys from abc import abstractmethod from collections import deque class LRUCache: """Page Replacement Algorithm, Least Recently Used (LRU) Caching.""" dq_store = object() # Cache store of keys key_reference_map = object() # References of the keys in cache _MAX_CAPACITY: int = 10 # Maximum capacity of cache @abstractmethod def __init__(self, n: int): """Creates an empty store and map for the keys. The LRUCache is set the size n. """ self.dq_store = deque() self.key_reference_map = set() if not n: LRUCache._MAX_CAPACITY = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0.") else: LRUCache._MAX_CAPACITY = n def refer(self, x): """ Looks for a page in the cache store and adds reference to the set. Remove the least recently used key if the store is full. Update store to reflect recent access. """ if x not in self.key_reference_map: if len(self.dq_store) == LRUCache._MAX_CAPACITY: last_element = self.dq_store.pop() self.key_reference_map.remove(last_element) else: index_remove = 0 for idx, key in enumerate(self.dq_store): if key == x: index_remove = idx break self.dq_store.remove(index_remove) self.dq_store.appendleft(x) self.key_reference_map.add(x) def display(self): """ Prints all the elements in the store. """ for k in self.dq_store: print(k) if __name__ == "__main__": lru_cache = LRUCache(4) lru_cache.refer(1) lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer(1) lru_cache.refer(4) lru_cache.refer(5) lru_cache.display()
import sys from abc import abstractmethod from collections import deque class LRUCache: """Page Replacement Algorithm, Least Recently Used (LRU) Caching.""" dq_store = object() # Cache store of keys key_reference_map = object() # References of the keys in cache _MAX_CAPACITY: int = 10 # Maximum capacity of cache @abstractmethod def __init__(self, n: int): """Creates an empty store and map for the keys. The LRUCache is set the size n. """ self.dq_store = deque() self.key_reference_map = set() if not n: LRUCache._MAX_CAPACITY = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0.") else: LRUCache._MAX_CAPACITY = n def refer(self, x): """ Looks for a page in the cache store and adds reference to the set. Remove the least recently used key if the store is full. Update store to reflect recent access. """ if x not in self.key_reference_map: if len(self.dq_store) == LRUCache._MAX_CAPACITY: last_element = self.dq_store.pop() self.key_reference_map.remove(last_element) else: index_remove = 0 for idx, key in enumerate(self.dq_store): if key == x: index_remove = idx break self.dq_store.remove(index_remove) self.dq_store.appendleft(x) self.key_reference_map.add(x) def display(self): """ Prints all the elements in the store. """ for k in self.dq_store: print(k) if __name__ == "__main__": lru_cache = LRUCache(4) lru_cache.refer(1) lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer(1) lru_cache.refer(4) lru_cache.refer(5) lru_cache.display()
-1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" Multiply two numbers using Karatsuba algorithm """ def karatsuba(a, b): """ >>> karatsuba(15463, 23489) == 15463 * 23489 True >>> karatsuba(3, 9) == 3 * 9 True """ if len(str(a)) == 1 or len(str(b)) == 1: return a * b else: m1 = max(len(str(a)), len(str(b))) m2 = m1 // 2 a1, a2 = divmod(a, 10 ** m2) b1, b2 = divmod(b, 10 ** m2) x = karatsuba(a2, b2) y = karatsuba((a1 + a2), (b1 + b2)) z = karatsuba(a1, b1) return (z * 10 ** (2 * m2)) + ((y - z - x) * 10 ** (m2)) + (x) def main(): print(karatsuba(15463, 23489)) if __name__ == "__main__": main()
""" Multiply two numbers using Karatsuba algorithm """ def karatsuba(a, b): """ >>> karatsuba(15463, 23489) == 15463 * 23489 True >>> karatsuba(3, 9) == 3 * 9 True """ if len(str(a)) == 1 or len(str(b)) == 1: return a * b else: m1 = max(len(str(a)), len(str(b))) m2 = m1 // 2 a1, a2 = divmod(a, 10 ** m2) b1, b2 = divmod(b, 10 ** m2) x = karatsuba(a2, b2) y = karatsuba((a1 + a2), (b1 + b2)) z = karatsuba(a1, b1) return (z * 10 ** (2 * m2)) + ((y - z - x) * 10 ** (m2)) + (x) def main(): print(karatsuba(15463, 23489)) if __name__ == "__main__": main()
-1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
import sys import webbrowser import requests from bs4 import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") url = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) res = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) soup = BeautifulSoup(res.text, "html.parser") links = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f"http://google.com{link.get('href')}")
import sys import webbrowser import requests from bs4 import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") url = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) res = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) soup = BeautifulSoup(res.text, "html.parser") links = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f"http://google.com{link.get('href')}")
-1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
from typing import List def merge(left_half: List, right_half: List) -> List: """Helper function for mergesort. >>> left_half = [-2] >>> right_half = [-1] >>> merge(left_half, right_half) [-2, -1] >>> left_half = [1,2,3] >>> right_half = [4,5,6] >>> merge(left_half, right_half) [1, 2, 3, 4, 5, 6] >>> left_half = [-2] >>> right_half = [-1] >>> merge(left_half, right_half) [-2, -1] >>> left_half = [12, 15] >>> right_half = [13, 14] >>> merge(left_half, right_half) [12, 13, 14, 15] >>> left_half = [] >>> right_half = [] >>> merge(left_half, right_half) [] """ sorted_array = [None] * (len(right_half) + len(left_half)) pointer1 = 0 # pointer to current index for left Half pointer2 = 0 # pointer to current index for the right Half index = 0 # pointer to current index for the sorted array Half while pointer1 < len(left_half) and pointer2 < len(right_half): if left_half[pointer1] < right_half[pointer2]: sorted_array[index] = left_half[pointer1] pointer1 += 1 index += 1 else: sorted_array[index] = right_half[pointer2] pointer2 += 1 index += 1 while pointer1 < len(left_half): sorted_array[index] = left_half[pointer1] pointer1 += 1 index += 1 while pointer2 < len(right_half): sorted_array[index] = right_half[pointer2] pointer2 += 1 index += 1 return sorted_array def merge_sort(array: List) -> List: """Returns a list of sorted array elements using merge sort. >>> from random import shuffle >>> array = [-2, 3, -10, 11, 99, 100000, 100, -200] >>> shuffle(array) >>> merge_sort(array) [-200, -10, -2, 3, 11, 99, 100, 100000] >>> shuffle(array) >>> merge_sort(array) [-200, -10, -2, 3, 11, 99, 100, 100000] >>> array = [-200] >>> merge_sort(array) [-200] >>> array = [-2, 3, -10, 11, 99, 100000, 100, -200] >>> shuffle(array) >>> sorted(array) == merge_sort(array) True >>> array = [-2] >>> merge_sort(array) [-2] >>> array = [] >>> merge_sort(array) [] >>> array = [10000000, 1, -1111111111, 101111111112, 9000002] >>> sorted(array) == merge_sort(array) True """ if len(array) <= 1: return array # the actual formula to calculate the middle element = left + (right - left) // 2 # this avoids integer overflow in case of large N middle = 0 + (len(array) - 0) // 2 # Split the array into halves till the array length becomes equal to One # merge the arrays of single length returned by mergeSort function and # pass them into the merge arrays function which merges the array left_half = array[:middle] right_half = array[middle:] return merge(merge_sort(left_half), merge_sort(right_half)) if __name__ == "__main__": import doctest doctest.testmod()
from typing import List def merge(left_half: List, right_half: List) -> List: """Helper function for mergesort. >>> left_half = [-2] >>> right_half = [-1] >>> merge(left_half, right_half) [-2, -1] >>> left_half = [1,2,3] >>> right_half = [4,5,6] >>> merge(left_half, right_half) [1, 2, 3, 4, 5, 6] >>> left_half = [-2] >>> right_half = [-1] >>> merge(left_half, right_half) [-2, -1] >>> left_half = [12, 15] >>> right_half = [13, 14] >>> merge(left_half, right_half) [12, 13, 14, 15] >>> left_half = [] >>> right_half = [] >>> merge(left_half, right_half) [] """ sorted_array = [None] * (len(right_half) + len(left_half)) pointer1 = 0 # pointer to current index for left Half pointer2 = 0 # pointer to current index for the right Half index = 0 # pointer to current index for the sorted array Half while pointer1 < len(left_half) and pointer2 < len(right_half): if left_half[pointer1] < right_half[pointer2]: sorted_array[index] = left_half[pointer1] pointer1 += 1 index += 1 else: sorted_array[index] = right_half[pointer2] pointer2 += 1 index += 1 while pointer1 < len(left_half): sorted_array[index] = left_half[pointer1] pointer1 += 1 index += 1 while pointer2 < len(right_half): sorted_array[index] = right_half[pointer2] pointer2 += 1 index += 1 return sorted_array def merge_sort(array: List) -> List: """Returns a list of sorted array elements using merge sort. >>> from random import shuffle >>> array = [-2, 3, -10, 11, 99, 100000, 100, -200] >>> shuffle(array) >>> merge_sort(array) [-200, -10, -2, 3, 11, 99, 100, 100000] >>> shuffle(array) >>> merge_sort(array) [-200, -10, -2, 3, 11, 99, 100, 100000] >>> array = [-200] >>> merge_sort(array) [-200] >>> array = [-2, 3, -10, 11, 99, 100000, 100, -200] >>> shuffle(array) >>> sorted(array) == merge_sort(array) True >>> array = [-2] >>> merge_sort(array) [-2] >>> array = [] >>> merge_sort(array) [] >>> array = [10000000, 1, -1111111111, 101111111112, 9000002] >>> sorted(array) == merge_sort(array) True """ if len(array) <= 1: return array # the actual formula to calculate the middle element = left + (right - left) // 2 # this avoids integer overflow in case of large N middle = 0 + (len(array) - 0) // 2 # Split the array into halves till the array length becomes equal to One # merge the arrays of single length returned by mergeSort function and # pass them into the merge arrays function which merges the array left_half = array[:middle] right_half = array[middle:] return merge(merge_sort(left_half), merge_sort(right_half)) if __name__ == "__main__": import doctest doctest.testmod()
-1
TheAlgorithms/Python
4,267
Wavelet tree
### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
anirudnits
2021-03-14T09:36:53Z
2021-06-08T20:49:33Z
f37d415227a21017398144a090a66f1c690705eb
b743e442599a5bf7e1cb14d9dc41bd17bde1504c
Wavelet tree. ### **Describe your change:** * [x] Add an algorithm? * [ ] Fix a bug or typo in an existing algorithm? * [ ] Documentation change? ### **Checklist:** * [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md). * [x] This pull request is all my own work -- I have not plagiarized. * [x] I know that pull requests will not be merged if they fail the automated tests. * [x] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms. * [x] All new Python files are placed inside an existing directory. * [x] All filenames are in all lowercase characters with no spaces or dashes. * [x] All functions and variable names follow Python naming conventions. * [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html). * [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing. * [x] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation. * [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
""" @author: MatteoRaso """ from math import pi, sqrt from random import uniform from statistics import mean from typing import Callable def pi_estimator(iterations: int): """ An implementation of the Monte Carlo method used to find pi. 1. Draw a 2x2 square centred at (0,0). 2. Inscribe a circle within the square. 3. For each iteration, place a dot anywhere in the square. a. Record the number of dots within the circle. 4. After all the dots are placed, divide the dots in the circle by the total. 5. Multiply this value by 4 to get your estimate of pi. 6. Print the estimated and numpy value of pi """ # A local function to see if a dot lands in the circle. def is_in_circle(x: float, y: float) -> bool: distance_from_centre = sqrt((x ** 2) + (y ** 2)) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle proportion = mean( int(is_in_circle(uniform(-1.0, 1.0), uniform(-1.0, 1.0))) for _ in range(iterations) ) # The ratio of the area for circle to square is pi/4. pi_estimate = proportion * 4 print(f"The estimated value of pi is {pi_estimate}") print(f"The numpy value of pi is {pi}") print(f"The total error is {abs(pi - pi_estimate)}") def area_under_curve_estimator( iterations: int, function_to_integrate: Callable[[float], float], min_value: float = 0.0, max_value: float = 1.0, ) -> float: """ An implementation of the Monte Carlo method to find area under a single variable non-negative real-valued continuous function, say f(x), where x lies within a continuous bounded interval, say [min_value, max_value], where min_value and max_value are finite numbers 1. Let x be a uniformly distributed random variable between min_value to max_value 2. Expected value of f(x) = (integrate f(x) from min_value to max_value)/(max_value - min_value) 3. Finding expected value of f(x): a. Repeatedly draw x from uniform distribution b. Evaluate f(x) at each of the drawn x values c. Expected value = average of the function evaluations 4. Estimated value of integral = Expected value * (max_value - min_value) 5. Returns estimated value """ return mean( function_to_integrate(uniform(min_value, max_value)) for _ in range(iterations) ) * (max_value - min_value) def area_under_line_estimator_check( iterations: int, min_value: float = 0.0, max_value: float = 1.0 ) -> None: """ Checks estimation error for area_under_curve_estimator function for f(x) = x where x lies within min_value to max_value 1. Calls "area_under_curve_estimator" function 2. Compares with the expected value 3. Prints estimated, expected and error value """ def identity_function(x: float) -> float: """ Represents identity function >>> [function_to_integrate(x) for x in [-2.0, -1.0, 0.0, 1.0, 2.0]] [-2.0, -1.0, 0.0, 1.0, 2.0] """ return x estimated_value = area_under_curve_estimator( iterations, identity_function, min_value, max_value ) expected_value = (max_value * max_value - min_value * min_value) / 2 print("******************") print(f"Estimating area under y=x where x varies from {min_value} to {max_value}") print(f"Estimated value is {estimated_value}") print(f"Expected value is {expected_value}") print(f"Total error is {abs(estimated_value - expected_value)}") print("******************") def pi_estimator_using_area_under_curve(iterations: int) -> None: """ Area under curve y = sqrt(4 - x^2) where x lies in 0 to 2 is equal to pi """ def function_to_integrate(x: float) -> float: """ Represents semi-circle with radius 2 >>> [function_to_integrate(x) for x in [-2.0, 0.0, 2.0]] [0.0, 2.0, 0.0] """ return sqrt(4.0 - x * x) estimated_value = area_under_curve_estimator( iterations, function_to_integrate, 0.0, 2.0 ) print("******************") print("Estimating pi using area_under_curve_estimator") print(f"Estimated value is {estimated_value}") print(f"Expected value is {pi}") print(f"Total error is {abs(estimated_value - pi)}") print("******************") if __name__ == "__main__": import doctest doctest.testmod()
""" @author: MatteoRaso """ from math import pi, sqrt from random import uniform from statistics import mean from typing import Callable def pi_estimator(iterations: int): """ An implementation of the Monte Carlo method used to find pi. 1. Draw a 2x2 square centred at (0,0). 2. Inscribe a circle within the square. 3. For each iteration, place a dot anywhere in the square. a. Record the number of dots within the circle. 4. After all the dots are placed, divide the dots in the circle by the total. 5. Multiply this value by 4 to get your estimate of pi. 6. Print the estimated and numpy value of pi """ # A local function to see if a dot lands in the circle. def is_in_circle(x: float, y: float) -> bool: distance_from_centre = sqrt((x ** 2) + (y ** 2)) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle proportion = mean( int(is_in_circle(uniform(-1.0, 1.0), uniform(-1.0, 1.0))) for _ in range(iterations) ) # The ratio of the area for circle to square is pi/4. pi_estimate = proportion * 4 print(f"The estimated value of pi is {pi_estimate}") print(f"The numpy value of pi is {pi}") print(f"The total error is {abs(pi - pi_estimate)}") def area_under_curve_estimator( iterations: int, function_to_integrate: Callable[[float], float], min_value: float = 0.0, max_value: float = 1.0, ) -> float: """ An implementation of the Monte Carlo method to find area under a single variable non-negative real-valued continuous function, say f(x), where x lies within a continuous bounded interval, say [min_value, max_value], where min_value and max_value are finite numbers 1. Let x be a uniformly distributed random variable between min_value to max_value 2. Expected value of f(x) = (integrate f(x) from min_value to max_value)/(max_value - min_value) 3. Finding expected value of f(x): a. Repeatedly draw x from uniform distribution b. Evaluate f(x) at each of the drawn x values c. Expected value = average of the function evaluations 4. Estimated value of integral = Expected value * (max_value - min_value) 5. Returns estimated value """ return mean( function_to_integrate(uniform(min_value, max_value)) for _ in range(iterations) ) * (max_value - min_value) def area_under_line_estimator_check( iterations: int, min_value: float = 0.0, max_value: float = 1.0 ) -> None: """ Checks estimation error for area_under_curve_estimator function for f(x) = x where x lies within min_value to max_value 1. Calls "area_under_curve_estimator" function 2. Compares with the expected value 3. Prints estimated, expected and error value """ def identity_function(x: float) -> float: """ Represents identity function >>> [function_to_integrate(x) for x in [-2.0, -1.0, 0.0, 1.0, 2.0]] [-2.0, -1.0, 0.0, 1.0, 2.0] """ return x estimated_value = area_under_curve_estimator( iterations, identity_function, min_value, max_value ) expected_value = (max_value * max_value - min_value * min_value) / 2 print("******************") print(f"Estimating area under y=x where x varies from {min_value} to {max_value}") print(f"Estimated value is {estimated_value}") print(f"Expected value is {expected_value}") print(f"Total error is {abs(estimated_value - expected_value)}") print("******************") def pi_estimator_using_area_under_curve(iterations: int) -> None: """ Area under curve y = sqrt(4 - x^2) where x lies in 0 to 2 is equal to pi """ def function_to_integrate(x: float) -> float: """ Represents semi-circle with radius 2 >>> [function_to_integrate(x) for x in [-2.0, 0.0, 2.0]] [0.0, 2.0, 0.0] """ return sqrt(4.0 - x * x) estimated_value = area_under_curve_estimator( iterations, function_to_integrate, 0.0, 2.0 ) print("******************") print("Estimating pi using area_under_curve_estimator") print(f"Estimated value is {estimated_value}") print(f"Expected value is {pi}") print(f"Total error is {abs(estimated_value - pi)}") print("******************") if __name__ == "__main__": import doctest doctest.testmod()
-1