repo_name
stringclasses 1
value | pr_number
int64 4.12k
11.2k
| pr_title
stringlengths 9
107
| pr_description
stringlengths 107
5.48k
| author
stringlengths 4
18
| date_created
unknown | date_merged
unknown | previous_commit
stringlengths 40
40
| pr_commit
stringlengths 40
40
| query
stringlengths 118
5.52k
| before_content
stringlengths 0
7.93M
| after_content
stringlengths 0
7.93M
| label
int64 -1
1
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
Get book and author data from https://openlibrary.org
ISBN: https://en.wikipedia.org/wiki/International_Standard_Book_Number
"""
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def get_openlibrary_data(olid: str = "isbn/0140328726") -> dict:
"""
Given an 'isbn/0140328726', return book data from Open Library as a Python dict.
Given an '/authors/OL34184A', return authors data as a Python dict.
This code must work for olids with or without a leading slash ('/').
# Comment out doctests if they take too long or have results that may change
# >>> get_openlibrary_data(olid='isbn/0140328726') # doctest: +ELLIPSIS
{'publishers': ['Puffin'], 'number_of_pages': 96, 'isbn_10': ['0140328726'], ...
# >>> get_openlibrary_data(olid='/authors/OL7353617A') # doctest: +ELLIPSIS
{'name': 'Adrian Brisku', 'created': {'type': '/type/datetime', ...
>>> pass # Placate https://github.com/apps/algorithms-keeper
"""
new_olid = olid.strip().strip("/") # Remove leading/trailing whitespace & slashes
if new_olid.count("/") != 1:
raise ValueError(f"{olid} is not a valid Open Library olid")
return requests.get(f"https://openlibrary.org/{new_olid}.json").json()
def summarize_book(ol_book_data: dict) -> dict:
"""
Given Open Library book data, return a summary as a Python dict.
>>> pass # Placate https://github.com/apps/algorithms-keeper
"""
desired_keys = {
"title": "Title",
"publish_date": "Publish date",
"authors": "Authors",
"number_of_pages": "Number of pages:",
"first_sentence": "First sentence",
"isbn_10": "ISBN (10)",
"isbn_13": "ISBN (13)",
}
data = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
data["Authors"] = [
get_openlibrary_data(author["key"])["name"] for author in data["Authors"]
]
data["First sentence"] = data["First sentence"]["value"]
for key, value in data.items():
if isinstance(value, list):
data[key] = ", ".join(value)
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
isbn = input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(f"Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.")
continue
print(f"\nSearching Open Library for ISBN: {isbn}...\n")
try:
book_summary = summarize_book(get_openlibrary_data(f"isbn/{isbn}"))
print("\n".join(f"{key}: {value}" for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(f"Sorry, there are no results for ISBN: {isbn}.")
| """
Get book and author data from https://openlibrary.org
ISBN: https://en.wikipedia.org/wiki/International_Standard_Book_Number
"""
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError
import requests
def get_openlibrary_data(olid: str = "isbn/0140328726") -> dict:
"""
Given an 'isbn/0140328726', return book data from Open Library as a Python dict.
Given an '/authors/OL34184A', return authors data as a Python dict.
This code must work for olids with or without a leading slash ('/').
# Comment out doctests if they take too long or have results that may change
# >>> get_openlibrary_data(olid='isbn/0140328726') # doctest: +ELLIPSIS
{'publishers': ['Puffin'], 'number_of_pages': 96, 'isbn_10': ['0140328726'], ...
# >>> get_openlibrary_data(olid='/authors/OL7353617A') # doctest: +ELLIPSIS
{'name': 'Adrian Brisku', 'created': {'type': '/type/datetime', ...
>>> pass # Placate https://github.com/apps/algorithms-keeper
"""
new_olid = olid.strip().strip("/") # Remove leading/trailing whitespace & slashes
if new_olid.count("/") != 1:
raise ValueError(f"{olid} is not a valid Open Library olid")
return requests.get(f"https://openlibrary.org/{new_olid}.json").json()
def summarize_book(ol_book_data: dict) -> dict:
"""
Given Open Library book data, return a summary as a Python dict.
>>> pass # Placate https://github.com/apps/algorithms-keeper
"""
desired_keys = {
"title": "Title",
"publish_date": "Publish date",
"authors": "Authors",
"number_of_pages": "Number of pages:",
"first_sentence": "First sentence",
"isbn_10": "ISBN (10)",
"isbn_13": "ISBN (13)",
}
data = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()}
data["Authors"] = [
get_openlibrary_data(author["key"])["name"] for author in data["Authors"]
]
data["First sentence"] = data["First sentence"]["value"]
for key, value in data.items():
if isinstance(value, list):
data[key] = ", ".join(value)
return data
if __name__ == "__main__":
import doctest
doctest.testmod()
while True:
isbn = input("\nEnter the ISBN code to search (or 'quit' to stop): ").strip()
if isbn.lower() in ("", "q", "quit", "exit", "stop"):
break
if len(isbn) not in (10, 13) or not isbn.isdigit():
print(f"Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.")
continue
print(f"\nSearching Open Library for ISBN: {isbn}...\n")
try:
book_summary = summarize_book(get_openlibrary_data(f"isbn/{isbn}"))
print("\n".join(f"{key}: {value}" for key, value in book_summary.items()))
except JSONDecodeError: # Workaround for requests.exceptions.RequestException:
print(f"Sorry, there are no results for ISBN: {isbn}.")
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| def bin_exp_mod(a, n, b):
"""
>>> bin_exp_mod(3, 4, 5)
1
>>> bin_exp_mod(7, 13, 10)
7
"""
# mod b
assert not (b == 0), "This cannot accept modulo that is == 0"
if n == 0:
return 1
if n % 2 == 1:
return (bin_exp_mod(a, n - 1, b) * a) % b
r = bin_exp_mod(a, n / 2, b)
return (r * r) % b
if __name__ == "__main__":
try:
BASE = int(input("Enter Base : ").strip())
POWER = int(input("Enter Power : ").strip())
MODULO = int(input("Enter Modulo : ").strip())
except ValueError:
print("Invalid literal for integer")
print(bin_exp_mod(BASE, POWER, MODULO))
| def bin_exp_mod(a, n, b):
"""
>>> bin_exp_mod(3, 4, 5)
1
>>> bin_exp_mod(7, 13, 10)
7
"""
# mod b
assert not (b == 0), "This cannot accept modulo that is == 0"
if n == 0:
return 1
if n % 2 == 1:
return (bin_exp_mod(a, n - 1, b) * a) % b
r = bin_exp_mod(a, n / 2, b)
return (r * r) % b
if __name__ == "__main__":
try:
BASE = int(input("Enter Base : ").strip())
POWER = int(input("Enter Power : ").strip())
MODULO = int(input("Enter Modulo : ").strip())
except ValueError:
print("Invalid literal for integer")
print(bin_exp_mod(BASE, POWER, MODULO))
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
The Reverse Polish Nation also known as Polish postfix notation
or simply postfix notation.
https://en.wikipedia.org/wiki/Reverse_Polish_notation
Classic examples of simple stack implementations
Valid operators are +, -, *, /.
Each operand may be an integer or another expression.
"""
from __future__ import annotations
from typing import Any
def evaluate_postfix(postfix_notation: list) -> int:
"""
>>> evaluate_postfix(["2", "1", "+", "3", "*"])
9
>>> evaluate_postfix(["4", "13", "5", "/", "+"])
6
>>> evaluate_postfix([])
0
"""
if not postfix_notation:
return 0
operations = {"+", "-", "*", "/"}
stack: list[Any] = []
for token in postfix_notation:
if token in operations:
b, a = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b)
elif token == "-":
stack.append(a - b)
elif token == "*":
stack.append(a * b)
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1)
else:
stack.append(a // b)
else:
stack.append(int(token))
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()
| """
The Reverse Polish Nation also known as Polish postfix notation
or simply postfix notation.
https://en.wikipedia.org/wiki/Reverse_Polish_notation
Classic examples of simple stack implementations
Valid operators are +, -, *, /.
Each operand may be an integer or another expression.
"""
from __future__ import annotations
from typing import Any
def evaluate_postfix(postfix_notation: list) -> int:
"""
>>> evaluate_postfix(["2", "1", "+", "3", "*"])
9
>>> evaluate_postfix(["4", "13", "5", "/", "+"])
6
>>> evaluate_postfix([])
0
"""
if not postfix_notation:
return 0
operations = {"+", "-", "*", "/"}
stack: list[Any] = []
for token in postfix_notation:
if token in operations:
b, a = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b)
elif token == "-":
stack.append(a - b)
elif token == "*":
stack.append(a * b)
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1)
else:
stack.append(a // b)
else:
stack.append(int(token))
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| -1 |
||
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| from __future__ import annotations
def check_polygon(nums: list[float]) -> bool:
"""
Takes list of possible side lengths and determines whether a
two-dimensional polygon with such side lengths can exist.
Returns a boolean value for the < comparison
of the largest side length with sum of the rest.
Wiki: https://en.wikipedia.org/wiki/Triangle_inequality
>>> check_polygon([6, 10, 5])
True
>>> check_polygon([3, 7, 13, 2])
False
>>> check_polygon([1, 4.3, 5.2, 12.2])
False
>>> nums = [3, 7, 13, 2]
>>> _ = check_polygon(nums) # Run function, do not show answer in output
>>> nums # Check numbers are not reordered
[3, 7, 13, 2]
>>> check_polygon([])
Traceback (most recent call last):
...
ValueError: Monogons and Digons are not polygons in the Euclidean space
>>> check_polygon([-2, 5, 6])
Traceback (most recent call last):
...
ValueError: All values must be greater than 0
"""
if len(nums) < 2:
raise ValueError("Monogons and Digons are not polygons in the Euclidean space")
if any(i <= 0 for i in nums):
raise ValueError("All values must be greater than 0")
copy_nums = nums.copy()
copy_nums.sort()
return copy_nums[-1] < sum(copy_nums[:-1])
if __name__ == "__main__":
import doctest
doctest.testmod()
| from __future__ import annotations
def check_polygon(nums: list[float]) -> bool:
"""
Takes list of possible side lengths and determines whether a
two-dimensional polygon with such side lengths can exist.
Returns a boolean value for the < comparison
of the largest side length with sum of the rest.
Wiki: https://en.wikipedia.org/wiki/Triangle_inequality
>>> check_polygon([6, 10, 5])
True
>>> check_polygon([3, 7, 13, 2])
False
>>> check_polygon([1, 4.3, 5.2, 12.2])
False
>>> nums = [3, 7, 13, 2]
>>> _ = check_polygon(nums) # Run function, do not show answer in output
>>> nums # Check numbers are not reordered
[3, 7, 13, 2]
>>> check_polygon([])
Traceback (most recent call last):
...
ValueError: Monogons and Digons are not polygons in the Euclidean space
>>> check_polygon([-2, 5, 6])
Traceback (most recent call last):
...
ValueError: All values must be greater than 0
"""
if len(nums) < 2:
raise ValueError("Monogons and Digons are not polygons in the Euclidean space")
if any(i <= 0 for i in nums):
raise ValueError("All values must be greater than 0")
copy_nums = nums.copy()
copy_nums.sort()
return copy_nums[-1] < sum(copy_nums[:-1])
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| from __future__ import annotations
END = "#"
class Trie:
def __init__(self) -> None:
self._trie: dict = {}
def insert_word(self, text: str) -> None:
trie = self._trie
for char in text:
if char not in trie:
trie[char] = {}
trie = trie[char]
trie[END] = True
def find_word(self, prefix: str) -> tuple | list:
trie = self._trie
for char in prefix:
if char in trie:
trie = trie[char]
else:
return []
return self._elements(trie)
def _elements(self, d: dict) -> tuple:
result = []
for c, v in d.items():
if c == END:
sub_result = [" "]
else:
sub_result = [c + s for s in self._elements(v)]
result.extend(sub_result)
return tuple(result)
trie = Trie()
words = ("depart", "detergent", "daring", "dog", "deer", "deal")
for word in words:
trie.insert_word(word)
def autocomplete_using_trie(string: str) -> tuple:
"""
>>> trie = Trie()
>>> for word in words:
... trie.insert_word(word)
...
>>> matches = autocomplete_using_trie("de")
>>> "detergent " in matches
True
>>> "dog " in matches
False
"""
suffixes = trie.find_word(string)
return tuple(string + word for word in suffixes)
def main() -> None:
print(autocomplete_using_trie("de"))
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| from __future__ import annotations
END = "#"
class Trie:
def __init__(self) -> None:
self._trie: dict = {}
def insert_word(self, text: str) -> None:
trie = self._trie
for char in text:
if char not in trie:
trie[char] = {}
trie = trie[char]
trie[END] = True
def find_word(self, prefix: str) -> tuple | list:
trie = self._trie
for char in prefix:
if char in trie:
trie = trie[char]
else:
return []
return self._elements(trie)
def _elements(self, d: dict) -> tuple:
result = []
for c, v in d.items():
if c == END:
sub_result = [" "]
else:
sub_result = [c + s for s in self._elements(v)]
result.extend(sub_result)
return tuple(result)
trie = Trie()
words = ("depart", "detergent", "daring", "dog", "deer", "deal")
for word in words:
trie.insert_word(word)
def autocomplete_using_trie(string: str) -> tuple:
"""
>>> trie = Trie()
>>> for word in words:
... trie.insert_word(word)
...
>>> matches = autocomplete_using_trie("de")
>>> "detergent " in matches
True
>>> "dog " in matches
False
"""
suffixes = trie.find_word(string)
return tuple(string + word for word in suffixes)
def main() -> None:
print(autocomplete_using_trie("de"))
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
Project Euler Problem 74: https://projecteuler.net/problem=74
The number 145 is well known for the property that the sum of the factorial of its
digits is equal to 145:
1! + 4! + 5! = 1 + 24 + 120 = 145
Perhaps less well known is 169, in that it produces the longest chain of numbers that
link back to 169; it turns out that there are only three such loops that exist:
169 → 363601 → 1454 → 169
871 → 45361 → 871
872 → 45362 → 872
It is not difficult to prove that EVERY starting number will eventually get stuck in
a loop. For example,
69 → 363600 → 1454 → 169 → 363601 (→ 1454)
78 → 45360 → 871 → 45361 (→ 871)
540 → 145 (→ 145)
Starting with 69 produces a chain of five non-repeating terms, but the longest
non-repeating chain with a starting number below one million is sixty terms.
How many chains, with a starting number below one million, contain exactly sixty
non-repeating terms?
"""
DIGIT_FACTORIALS = {
"0": 1,
"1": 1,
"2": 2,
"3": 6,
"4": 24,
"5": 120,
"6": 720,
"7": 5040,
"8": 40320,
"9": 362880,
}
CACHE_SUM_DIGIT_FACTORIALS = {145: 145}
CHAIN_LENGTH_CACHE = {
145: 0,
169: 3,
36301: 3,
1454: 3,
871: 2,
45361: 2,
872: 2,
}
def sum_digit_factorials(n: int) -> int:
"""
Return the sum of the factorial of the digits of n.
>>> sum_digit_factorials(145)
145
>>> sum_digit_factorials(45361)
871
>>> sum_digit_factorials(540)
145
"""
if n in CACHE_SUM_DIGIT_FACTORIALS:
return CACHE_SUM_DIGIT_FACTORIALS[n]
ret = sum(DIGIT_FACTORIALS[let] for let in str(n))
CACHE_SUM_DIGIT_FACTORIALS[n] = ret
return ret
def chain_length(n: int, previous: set = None) -> int:
"""
Calculate the length of the chain of non-repeating terms starting with n.
Previous is a set containing the previous member of the chain.
>>> chain_length(10101)
11
>>> chain_length(555)
20
>>> chain_length(178924)
39
"""
previous = previous or set()
if n in CHAIN_LENGTH_CACHE:
return CHAIN_LENGTH_CACHE[n]
next_number = sum_digit_factorials(n)
if next_number in previous:
CHAIN_LENGTH_CACHE[n] = 0
return 0
else:
previous.add(n)
ret = 1 + chain_length(next_number, previous)
CHAIN_LENGTH_CACHE[n] = ret
return ret
def solution(num_terms: int = 60, max_start: int = 1000000) -> int:
"""
Return the number of chains with a starting number below one million which
contain exactly n non-repeating terms.
>>> solution(10,1000)
28
"""
return sum(1 for i in range(1, max_start) if chain_length(i) == num_terms)
if __name__ == "__main__":
print(f"{solution() = }")
| """
Project Euler Problem 74: https://projecteuler.net/problem=74
The number 145 is well known for the property that the sum of the factorial of its
digits is equal to 145:
1! + 4! + 5! = 1 + 24 + 120 = 145
Perhaps less well known is 169, in that it produces the longest chain of numbers that
link back to 169; it turns out that there are only three such loops that exist:
169 → 363601 → 1454 → 169
871 → 45361 → 871
872 → 45362 → 872
It is not difficult to prove that EVERY starting number will eventually get stuck in
a loop. For example,
69 → 363600 → 1454 → 169 → 363601 (→ 1454)
78 → 45360 → 871 → 45361 (→ 871)
540 → 145 (→ 145)
Starting with 69 produces a chain of five non-repeating terms, but the longest
non-repeating chain with a starting number below one million is sixty terms.
How many chains, with a starting number below one million, contain exactly sixty
non-repeating terms?
"""
DIGIT_FACTORIALS = {
"0": 1,
"1": 1,
"2": 2,
"3": 6,
"4": 24,
"5": 120,
"6": 720,
"7": 5040,
"8": 40320,
"9": 362880,
}
CACHE_SUM_DIGIT_FACTORIALS = {145: 145}
CHAIN_LENGTH_CACHE = {
145: 0,
169: 3,
36301: 3,
1454: 3,
871: 2,
45361: 2,
872: 2,
}
def sum_digit_factorials(n: int) -> int:
"""
Return the sum of the factorial of the digits of n.
>>> sum_digit_factorials(145)
145
>>> sum_digit_factorials(45361)
871
>>> sum_digit_factorials(540)
145
"""
if n in CACHE_SUM_DIGIT_FACTORIALS:
return CACHE_SUM_DIGIT_FACTORIALS[n]
ret = sum(DIGIT_FACTORIALS[let] for let in str(n))
CACHE_SUM_DIGIT_FACTORIALS[n] = ret
return ret
def chain_length(n: int, previous: set = None) -> int:
"""
Calculate the length of the chain of non-repeating terms starting with n.
Previous is a set containing the previous member of the chain.
>>> chain_length(10101)
11
>>> chain_length(555)
20
>>> chain_length(178924)
39
"""
previous = previous or set()
if n in CHAIN_LENGTH_CACHE:
return CHAIN_LENGTH_CACHE[n]
next_number = sum_digit_factorials(n)
if next_number in previous:
CHAIN_LENGTH_CACHE[n] = 0
return 0
else:
previous.add(n)
ret = 1 + chain_length(next_number, previous)
CHAIN_LENGTH_CACHE[n] = ret
return ret
def solution(num_terms: int = 60, max_start: int = 1000000) -> int:
"""
Return the number of chains with a starting number below one million which
contain exactly n non-repeating terms.
>>> solution(10,1000)
28
"""
return sum(1 for i in range(1, max_start) if chain_length(i) == num_terms)
if __name__ == "__main__":
print(f"{solution() = }")
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
Problem 16: https://projecteuler.net/problem=16
2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.
What is the sum of the digits of the number 2^1000?
"""
def solution(power: int = 1000) -> int:
"""Returns the sum of the digits of the number 2^power.
>>> solution(1000)
1366
>>> solution(50)
76
>>> solution(20)
31
>>> solution(15)
26
"""
n = 2**power
r = 0
while n:
r, n = r + n % 10, n // 10
return r
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| """
Problem 16: https://projecteuler.net/problem=16
2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.
What is the sum of the digits of the number 2^1000?
"""
def solution(power: int = 1000) -> int:
"""Returns the sum of the digits of the number 2^power.
>>> solution(1000)
1366
>>> solution(50)
76
>>> solution(20)
31
>>> solution(15)
26
"""
n = 2**power
r = 0
while n:
r, n = r + n % 10, n // 10
return r
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
A perfect number is a number for which the sum of its proper divisors is exactly
equal to the number. For example, the sum of the proper divisors of 28 would be
1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect number.
A number n is called deficient if the sum of its proper divisors is less than n
and it is called abundant if this sum exceeds n.
As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, the smallest
number that can be written as the sum of two abundant numbers is 24. By
mathematical analysis, it can be shown that all integers greater than 28123
can be written as the sum of two abundant numbers. However, this upper limit
cannot be reduced any further by analysis even though it is known that the
greatest number that cannot be expressed as the sum of two abundant numbers
is less than this limit.
Find the sum of all the positive integers which cannot be written as the sum
of two abundant numbers.
"""
def solution(limit=28123):
"""
Finds the sum of all the positive integers which cannot be written as
the sum of two abundant numbers
as described by the statement above.
>>> solution()
4179871
"""
sumDivs = [1] * (limit + 1)
for i in range(2, int(limit**0.5) + 1):
sumDivs[i * i] += i
for k in range(i + 1, limit // i + 1):
sumDivs[k * i] += k + i
abundants = set()
res = 0
for n in range(1, limit + 1):
if sumDivs[n] > n:
abundants.add(n)
if not any((n - a in abundants) for a in abundants):
res += n
return res
if __name__ == "__main__":
print(solution())
| """
A perfect number is a number for which the sum of its proper divisors is exactly
equal to the number. For example, the sum of the proper divisors of 28 would be
1 + 2 + 4 + 7 + 14 = 28, which means that 28 is a perfect number.
A number n is called deficient if the sum of its proper divisors is less than n
and it is called abundant if this sum exceeds n.
As 12 is the smallest abundant number, 1 + 2 + 3 + 4 + 6 = 16, the smallest
number that can be written as the sum of two abundant numbers is 24. By
mathematical analysis, it can be shown that all integers greater than 28123
can be written as the sum of two abundant numbers. However, this upper limit
cannot be reduced any further by analysis even though it is known that the
greatest number that cannot be expressed as the sum of two abundant numbers
is less than this limit.
Find the sum of all the positive integers which cannot be written as the sum
of two abundant numbers.
"""
def solution(limit=28123):
"""
Finds the sum of all the positive integers which cannot be written as
the sum of two abundant numbers
as described by the statement above.
>>> solution()
4179871
"""
sumDivs = [1] * (limit + 1)
for i in range(2, int(limit**0.5) + 1):
sumDivs[i * i] += i
for k in range(i + 1, limit // i + 1):
sumDivs[k * i] += k + i
abundants = set()
res = 0
for n in range(1, limit + 1):
if sumDivs[n] > n:
abundants.add(n)
if not any((n - a in abundants) for a in abundants):
res += n
return res
if __name__ == "__main__":
print(solution())
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| -1 |
||
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
Prime permutations
Problem 49
The arithmetic sequence, 1487, 4817, 8147, in which each of
the terms increases by 3330, is unusual in two ways:
(i) each of the three terms are prime,
(ii) each of the 4-digit numbers are permutations of one another.
There are no arithmetic sequences made up of three 1-, 2-, or 3-digit primes,
exhibiting this property, but there is one other 4-digit increasing sequence.
What 12-digit number do you form by concatenating the three terms in this sequence?
Solution:
First, we need to generate all 4 digits prime numbers. Then greedy
all of them and use permutation to form new numbers. Use binary search
to check if the permutated numbers is in our prime list and include
them in a candidate list.
After that, bruteforce all passed candidates sequences using
3 nested loops since we know the answer will be 12 digits.
The bruteforce of this solution will be about 1 sec.
"""
import math
from itertools import permutations
def is_prime(number: int) -> bool:
"""Checks to see if a number is a prime in O(sqrt(n)).
A number is prime if it has exactly two factors: 1 and itself.
>>> is_prime(0)
False
>>> is_prime(1)
False
>>> is_prime(2)
True
>>> is_prime(3)
True
>>> is_prime(27)
False
>>> is_prime(87)
False
>>> is_prime(563)
True
>>> is_prime(2999)
True
>>> is_prime(67483)
False
"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def search(target: int, prime_list: list) -> bool:
"""
function to search a number in a list using Binary Search.
>>> search(3, [1, 2, 3])
True
>>> search(4, [1, 2, 3])
False
>>> search(101, list(range(-100, 100)))
False
"""
left, right = 0, len(prime_list) - 1
while left <= right:
middle = (left + right) // 2
if prime_list[middle] == target:
return True
elif prime_list[middle] < target:
left = middle + 1
else:
right = middle - 1
return False
def solution():
"""
Return the solution of the problem.
>>> solution()
296962999629
"""
prime_list = [n for n in range(1001, 10000, 2) if is_prime(n)]
candidates = []
for number in prime_list:
tmp_numbers = []
for prime_member in permutations(list(str(number))):
prime = int("".join(prime_member))
if prime % 2 == 0:
continue
if search(prime, prime_list):
tmp_numbers.append(prime)
tmp_numbers.sort()
if len(tmp_numbers) >= 3:
candidates.append(tmp_numbers)
passed = []
for candidate in candidates:
length = len(candidate)
found = False
for i in range(length):
for j in range(i + 1, length):
for k in range(j + 1, length):
if (
abs(candidate[i] - candidate[j])
== abs(candidate[j] - candidate[k])
and len({candidate[i], candidate[j], candidate[k]}) == 3
):
passed.append(
sorted([candidate[i], candidate[j], candidate[k]])
)
found = True
if found:
break
if found:
break
if found:
break
answer = set()
for seq in passed:
answer.add("".join([str(i) for i in seq]))
return max(int(x) for x in answer)
if __name__ == "__main__":
print(solution())
| """
Prime permutations
Problem 49
The arithmetic sequence, 1487, 4817, 8147, in which each of
the terms increases by 3330, is unusual in two ways:
(i) each of the three terms are prime,
(ii) each of the 4-digit numbers are permutations of one another.
There are no arithmetic sequences made up of three 1-, 2-, or 3-digit primes,
exhibiting this property, but there is one other 4-digit increasing sequence.
What 12-digit number do you form by concatenating the three terms in this sequence?
Solution:
First, we need to generate all 4 digits prime numbers. Then greedy
all of them and use permutation to form new numbers. Use binary search
to check if the permutated numbers is in our prime list and include
them in a candidate list.
After that, bruteforce all passed candidates sequences using
3 nested loops since we know the answer will be 12 digits.
The bruteforce of this solution will be about 1 sec.
"""
import math
from itertools import permutations
def is_prime(number: int) -> bool:
"""Checks to see if a number is a prime in O(sqrt(n)).
A number is prime if it has exactly two factors: 1 and itself.
>>> is_prime(0)
False
>>> is_prime(1)
False
>>> is_prime(2)
True
>>> is_prime(3)
True
>>> is_prime(27)
False
>>> is_prime(87)
False
>>> is_prime(563)
True
>>> is_prime(2999)
True
>>> is_prime(67483)
False
"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def search(target: int, prime_list: list) -> bool:
"""
function to search a number in a list using Binary Search.
>>> search(3, [1, 2, 3])
True
>>> search(4, [1, 2, 3])
False
>>> search(101, list(range(-100, 100)))
False
"""
left, right = 0, len(prime_list) - 1
while left <= right:
middle = (left + right) // 2
if prime_list[middle] == target:
return True
elif prime_list[middle] < target:
left = middle + 1
else:
right = middle - 1
return False
def solution():
"""
Return the solution of the problem.
>>> solution()
296962999629
"""
prime_list = [n for n in range(1001, 10000, 2) if is_prime(n)]
candidates = []
for number in prime_list:
tmp_numbers = []
for prime_member in permutations(list(str(number))):
prime = int("".join(prime_member))
if prime % 2 == 0:
continue
if search(prime, prime_list):
tmp_numbers.append(prime)
tmp_numbers.sort()
if len(tmp_numbers) >= 3:
candidates.append(tmp_numbers)
passed = []
for candidate in candidates:
length = len(candidate)
found = False
for i in range(length):
for j in range(i + 1, length):
for k in range(j + 1, length):
if (
abs(candidate[i] - candidate[j])
== abs(candidate[j] - candidate[k])
and len({candidate[i], candidate[j], candidate[k]}) == 3
):
passed.append(
sorted([candidate[i], candidate[j], candidate[k]])
)
found = True
if found:
break
if found:
break
if found:
break
answer = set()
for seq in passed:
answer.add("".join([str(i) for i in seq]))
return max(int(x) for x in answer)
if __name__ == "__main__":
print(solution())
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| # Numbers of alphabet which we call base
alphabet_size = 256
# Modulus to hash a string
modulus = 1000003
def rabin_karp(pattern: str, text: str) -> bool:
"""
The Rabin-Karp Algorithm for finding a pattern within a piece of text
with complexity O(nm), most efficient when it is used with multiple patterns
as it is able to check if any of a set of patterns match a section of text in o(1)
given the precomputed hashes.
This will be the simple version which only assumes one pattern is being searched
for but it's not hard to modify
1) Calculate pattern hash
2) Step through the text one character at a time passing a window with the same
length as the pattern
calculating the hash of the text within the window compare it with the hash
of the pattern. Only testing equality if the hashes match
"""
p_len = len(pattern)
t_len = len(text)
if p_len > t_len:
return False
p_hash = 0
text_hash = 0
modulus_power = 1
# Calculating the hash of pattern and substring of text
for i in range(p_len):
p_hash = (ord(pattern[i]) + p_hash * alphabet_size) % modulus
text_hash = (ord(text[i]) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
modulus_power = (modulus_power * alphabet_size) % modulus
for i in range(0, t_len - p_len + 1):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
text_hash = (
(text_hash - ord(text[i]) * modulus_power) * alphabet_size
+ ord(text[i + p_len])
) % modulus
return False
def test_rabin_karp() -> None:
"""
>>> test_rabin_karp()
Success.
"""
# Test 1)
pattern = "abc1abc12"
text1 = "alskfjaldsabc1abc1abc12k23adsfabcabc"
text2 = "alskfjaldsk23adsfabcabc"
assert rabin_karp(pattern, text1) and not rabin_karp(pattern, text2)
# Test 2)
pattern = "ABABX"
text = "ABABZABABYABABX"
assert rabin_karp(pattern, text)
# Test 3)
pattern = "AAAB"
text = "ABAAAAAB"
assert rabin_karp(pattern, text)
# Test 4)
pattern = "abcdabcy"
text = "abcxabcdabxabcdabcdabcy"
assert rabin_karp(pattern, text)
# Test 5)
pattern = "Lü"
text = "Lüsai"
assert rabin_karp(pattern, text)
pattern = "Lue"
assert not rabin_karp(pattern, text)
print("Success.")
if __name__ == "__main__":
test_rabin_karp()
| # Numbers of alphabet which we call base
alphabet_size = 256
# Modulus to hash a string
modulus = 1000003
def rabin_karp(pattern: str, text: str) -> bool:
"""
The Rabin-Karp Algorithm for finding a pattern within a piece of text
with complexity O(nm), most efficient when it is used with multiple patterns
as it is able to check if any of a set of patterns match a section of text in o(1)
given the precomputed hashes.
This will be the simple version which only assumes one pattern is being searched
for but it's not hard to modify
1) Calculate pattern hash
2) Step through the text one character at a time passing a window with the same
length as the pattern
calculating the hash of the text within the window compare it with the hash
of the pattern. Only testing equality if the hashes match
"""
p_len = len(pattern)
t_len = len(text)
if p_len > t_len:
return False
p_hash = 0
text_hash = 0
modulus_power = 1
# Calculating the hash of pattern and substring of text
for i in range(p_len):
p_hash = (ord(pattern[i]) + p_hash * alphabet_size) % modulus
text_hash = (ord(text[i]) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
modulus_power = (modulus_power * alphabet_size) % modulus
for i in range(0, t_len - p_len + 1):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
text_hash = (
(text_hash - ord(text[i]) * modulus_power) * alphabet_size
+ ord(text[i + p_len])
) % modulus
return False
def test_rabin_karp() -> None:
"""
>>> test_rabin_karp()
Success.
"""
# Test 1)
pattern = "abc1abc12"
text1 = "alskfjaldsabc1abc1abc12k23adsfabcabc"
text2 = "alskfjaldsk23adsfabcabc"
assert rabin_karp(pattern, text1) and not rabin_karp(pattern, text2)
# Test 2)
pattern = "ABABX"
text = "ABABZABABYABABX"
assert rabin_karp(pattern, text)
# Test 3)
pattern = "AAAB"
text = "ABAAAAAB"
assert rabin_karp(pattern, text)
# Test 4)
pattern = "abcdabcy"
text = "abcxabcdabxabcdabcdabcy"
assert rabin_karp(pattern, text)
# Test 5)
pattern = "Lü"
text = "Lüsai"
assert rabin_karp(pattern, text)
pattern = "Lue"
assert not rabin_karp(pattern, text)
print("Success.")
if __name__ == "__main__":
test_rabin_karp()
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
Finding the peak of a unimodal list using divide and conquer.
A unimodal array is defined as follows: array is increasing up to index p,
then decreasing afterwards. (for p >= 1)
An obvious solution can be performed in O(n),
to find the maximum of the array.
(From Kleinberg and Tardos. Algorithm Design.
Addison Wesley 2006: Chapter 5 Solved Exercise 1)
"""
from __future__ import annotations
def peak(lst: list[int]) -> int:
"""
Return the peak value of `lst`.
>>> peak([1, 2, 3, 4, 5, 4, 3, 2, 1])
5
>>> peak([1, 10, 9, 8, 7, 6, 5, 4])
10
>>> peak([1, 9, 8, 7])
9
>>> peak([1, 2, 3, 4, 5, 6, 7, 0])
7
>>> peak([1, 2, 3, 4, 3, 2, 1, 0, -1, -2])
4
"""
# middle index
m = len(lst) // 2
# choose the middle 3 elements
three = lst[m - 1 : m + 2]
# if middle element is peak
if three[1] > three[0] and three[1] > three[2]:
return three[1]
# if increasing, recurse on right
elif three[0] < three[2]:
if len(lst[:m]) == 2:
m -= 1
return peak(lst[m:])
# decreasing
else:
if len(lst[:m]) == 2:
m += 1
return peak(lst[:m])
if __name__ == "__main__":
import doctest
doctest.testmod()
| """
Finding the peak of a unimodal list using divide and conquer.
A unimodal array is defined as follows: array is increasing up to index p,
then decreasing afterwards. (for p >= 1)
An obvious solution can be performed in O(n),
to find the maximum of the array.
(From Kleinberg and Tardos. Algorithm Design.
Addison Wesley 2006: Chapter 5 Solved Exercise 1)
"""
from __future__ import annotations
def peak(lst: list[int]) -> int:
"""
Return the peak value of `lst`.
>>> peak([1, 2, 3, 4, 5, 4, 3, 2, 1])
5
>>> peak([1, 10, 9, 8, 7, 6, 5, 4])
10
>>> peak([1, 9, 8, 7])
9
>>> peak([1, 2, 3, 4, 5, 6, 7, 0])
7
>>> peak([1, 2, 3, 4, 3, 2, 1, 0, -1, -2])
4
"""
# middle index
m = len(lst) // 2
# choose the middle 3 elements
three = lst[m - 1 : m + 2]
# if middle element is peak
if three[1] > three[0] and three[1] > three[2]:
return three[1]
# if increasing, recurse on right
elif three[0] < three[2]:
if len(lst[:m]) == 2:
m -= 1
return peak(lst[m:])
# decreasing
else:
if len(lst[:m]) == 2:
m += 1
return peak(lst[:m])
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
Project Euler Problem 10: https://projecteuler.net/problem=10
Summation of primes
The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
Find the sum of all the primes below two million.
References:
- https://en.wikipedia.org/wiki/Prime_number
"""
import math
from collections.abc import Iterator
from itertools import takewhile
def is_prime(number: int) -> bool:
"""Checks to see if a number is a prime in O(sqrt(n)).
A number is prime if it has exactly two factors: 1 and itself.
Returns boolean representing primality of given number num (i.e., if the
result is true, then the number is indeed prime else it is not).
>>> is_prime(2)
True
>>> is_prime(3)
True
>>> is_prime(27)
False
>>> is_prime(2999)
True
>>> is_prime(0)
False
>>> is_prime(1)
False
"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def prime_generator() -> Iterator[int]:
"""
Generate a list sequence of prime numbers
"""
num = 2
while True:
if is_prime(num):
yield num
num += 1
def solution(n: int = 2000000) -> int:
"""
Returns the sum of all the primes below n.
>>> solution(1000)
76127
>>> solution(5000)
1548136
>>> solution(10000)
5736396
>>> solution(7)
10
"""
return sum(takewhile(lambda x: x < n, prime_generator()))
if __name__ == "__main__":
print(f"{solution() = }")
| """
Project Euler Problem 10: https://projecteuler.net/problem=10
Summation of primes
The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
Find the sum of all the primes below two million.
References:
- https://en.wikipedia.org/wiki/Prime_number
"""
import math
from collections.abc import Iterator
from itertools import takewhile
def is_prime(number: int) -> bool:
"""Checks to see if a number is a prime in O(sqrt(n)).
A number is prime if it has exactly two factors: 1 and itself.
Returns boolean representing primality of given number num (i.e., if the
result is true, then the number is indeed prime else it is not).
>>> is_prime(2)
True
>>> is_prime(3)
True
>>> is_prime(27)
False
>>> is_prime(2999)
True
>>> is_prime(0)
False
>>> is_prime(1)
False
"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def prime_generator() -> Iterator[int]:
"""
Generate a list sequence of prime numbers
"""
num = 2
while True:
if is_prime(num):
yield num
num += 1
def solution(n: int = 2000000) -> int:
"""
Returns the sum of all the primes below n.
>>> solution(1000)
76127
>>> solution(5000)
1548136
>>> solution(10000)
5736396
>>> solution(7)
10
"""
return sum(takewhile(lambda x: x < n, prime_generator()))
if __name__ == "__main__":
print(f"{solution() = }")
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| class BinaryHeap:
"""
A max-heap implementation in Python
>>> binary_heap = BinaryHeap()
>>> binary_heap.insert(6)
>>> binary_heap.insert(10)
>>> binary_heap.insert(15)
>>> binary_heap.insert(12)
>>> binary_heap.pop()
15
>>> binary_heap.pop()
12
>>> binary_heap.get_list
[10, 6]
>>> len(binary_heap)
2
"""
def __init__(self):
self.__heap = [0]
self.__size = 0
def __swap_up(self, i: int) -> None:
"""Swap the element up"""
temporary = self.__heap[i]
while i // 2 > 0:
if self.__heap[i] > self.__heap[i // 2]:
self.__heap[i] = self.__heap[i // 2]
self.__heap[i // 2] = temporary
i //= 2
def insert(self, value: int) -> None:
"""Insert new element"""
self.__heap.append(value)
self.__size += 1
self.__swap_up(self.__size)
def __swap_down(self, i: int) -> None:
"""Swap the element down"""
while self.__size >= 2 * i:
if 2 * i + 1 > self.__size:
bigger_child = 2 * i
else:
if self.__heap[2 * i] > self.__heap[2 * i + 1]:
bigger_child = 2 * i
else:
bigger_child = 2 * i + 1
temporary = self.__heap[i]
if self.__heap[i] < self.__heap[bigger_child]:
self.__heap[i] = self.__heap[bigger_child]
self.__heap[bigger_child] = temporary
i = bigger_child
def pop(self) -> int:
"""Pop the root element"""
max_value = self.__heap[1]
self.__heap[1] = self.__heap[self.__size]
self.__size -= 1
self.__heap.pop()
self.__swap_down(1)
return max_value
@property
def get_list(self):
return self.__heap[1:]
def __len__(self):
"""Length of the array"""
return self.__size
if __name__ == "__main__":
import doctest
doctest.testmod()
# create an instance of BinaryHeap
binary_heap = BinaryHeap()
binary_heap.insert(6)
binary_heap.insert(10)
binary_heap.insert(15)
binary_heap.insert(12)
# pop root(max-values because it is max heap)
print(binary_heap.pop()) # 15
print(binary_heap.pop()) # 12
# get the list and size after operations
print(binary_heap.get_list)
print(len(binary_heap))
| class BinaryHeap:
"""
A max-heap implementation in Python
>>> binary_heap = BinaryHeap()
>>> binary_heap.insert(6)
>>> binary_heap.insert(10)
>>> binary_heap.insert(15)
>>> binary_heap.insert(12)
>>> binary_heap.pop()
15
>>> binary_heap.pop()
12
>>> binary_heap.get_list
[10, 6]
>>> len(binary_heap)
2
"""
def __init__(self):
self.__heap = [0]
self.__size = 0
def __swap_up(self, i: int) -> None:
"""Swap the element up"""
temporary = self.__heap[i]
while i // 2 > 0:
if self.__heap[i] > self.__heap[i // 2]:
self.__heap[i] = self.__heap[i // 2]
self.__heap[i // 2] = temporary
i //= 2
def insert(self, value: int) -> None:
"""Insert new element"""
self.__heap.append(value)
self.__size += 1
self.__swap_up(self.__size)
def __swap_down(self, i: int) -> None:
"""Swap the element down"""
while self.__size >= 2 * i:
if 2 * i + 1 > self.__size:
bigger_child = 2 * i
else:
if self.__heap[2 * i] > self.__heap[2 * i + 1]:
bigger_child = 2 * i
else:
bigger_child = 2 * i + 1
temporary = self.__heap[i]
if self.__heap[i] < self.__heap[bigger_child]:
self.__heap[i] = self.__heap[bigger_child]
self.__heap[bigger_child] = temporary
i = bigger_child
def pop(self) -> int:
"""Pop the root element"""
max_value = self.__heap[1]
self.__heap[1] = self.__heap[self.__size]
self.__size -= 1
self.__heap.pop()
self.__swap_down(1)
return max_value
@property
def get_list(self):
return self.__heap[1:]
def __len__(self):
"""Length of the array"""
return self.__size
if __name__ == "__main__":
import doctest
doctest.testmod()
# create an instance of BinaryHeap
binary_heap = BinaryHeap()
binary_heap.insert(6)
binary_heap.insert(10)
binary_heap.insert(15)
binary_heap.insert(12)
# pop root(max-values because it is max heap)
print(binary_heap.pop()) # 15
print(binary_heap.pop()) # 12
# get the list and size after operations
print(binary_heap.get_list)
print(len(binary_heap))
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """Author Alexandre De Zotti
Draws Julia sets of quadratic polynomials and exponential maps.
More specifically, this iterates the function a fixed number of times
then plots whether the absolute value of the last iterate is greater than
a fixed threshold (named "escape radius"). For the exponential map this is not
really an escape radius but rather a convenient way to approximate the Julia
set with bounded orbits.
The examples presented here are:
- The Cauliflower Julia set, see e.g.
https://en.wikipedia.org/wiki/File:Julia_z2%2B0,25.png
- Other examples from https://en.wikipedia.org/wiki/Julia_set
- An exponential map Julia set, ambiantly homeomorphic to the examples in
http://www.math.univ-toulouse.fr/~cheritat/GalII/galery.html
and
https://ddd.uab.cat/pub/pubmat/02141493v43n1/02141493v43n1p27.pdf
Remark: Some overflow runtime warnings are suppressed. This is because of the
way the iteration loop is implemented, using numpy's efficient computations.
Overflows and infinites are replaced after each step by a large number.
"""
import warnings
from collections.abc import Callable
from typing import Any
import numpy
from matplotlib import pyplot
c_cauliflower = 0.25 + 0.0j
c_polynomial_1 = -0.4 + 0.6j
c_polynomial_2 = -0.1 + 0.651j
c_exponential = -2.0
nb_iterations = 56
window_size = 2.0
nb_pixels = 666
def eval_exponential(c_parameter: complex, z_values: numpy.ndarray) -> numpy.ndarray:
"""
Evaluate $e^z + c$.
>>> eval_exponential(0, 0)
1.0
>>> abs(eval_exponential(1, numpy.pi*1.j)) < 1e-15
True
>>> abs(eval_exponential(1.j, 0)-1-1.j) < 1e-15
True
"""
return numpy.exp(z_values) + c_parameter
def eval_quadratic_polynomial(
c_parameter: complex, z_values: numpy.ndarray
) -> numpy.ndarray:
"""
>>> eval_quadratic_polynomial(0, 2)
4
>>> eval_quadratic_polynomial(-1, 1)
0
>>> round(eval_quadratic_polynomial(1.j, 0).imag)
1
>>> round(eval_quadratic_polynomial(1.j, 0).real)
0
"""
return z_values * z_values + c_parameter
def prepare_grid(window_size: float, nb_pixels: int) -> numpy.ndarray:
"""
Create a grid of complex values of size nb_pixels*nb_pixels with real and
imaginary parts ranging from -window_size to window_size (inclusive).
Returns a numpy array.
>>> prepare_grid(1,3)
array([[-1.-1.j, -1.+0.j, -1.+1.j],
[ 0.-1.j, 0.+0.j, 0.+1.j],
[ 1.-1.j, 1.+0.j, 1.+1.j]])
"""
x = numpy.linspace(-window_size, window_size, nb_pixels)
x = x.reshape((nb_pixels, 1))
y = numpy.linspace(-window_size, window_size, nb_pixels)
y = y.reshape((1, nb_pixels))
return x + 1.0j * y
def iterate_function(
eval_function: Callable[[Any, numpy.ndarray], numpy.ndarray],
function_params: Any,
nb_iterations: int,
z_0: numpy.ndarray,
infinity: float = None,
) -> numpy.ndarray:
"""
Iterate the function "eval_function" exactly nb_iterations times.
The first argument of the function is a parameter which is contained in
function_params. The variable z_0 is an array that contains the initial
values to iterate from.
This function returns the final iterates.
>>> iterate_function(eval_quadratic_polynomial, 0, 3, numpy.array([0,1,2])).shape
(3,)
>>> numpy.round(iterate_function(eval_quadratic_polynomial,
... 0,
... 3,
... numpy.array([0,1,2]))[0])
0j
>>> numpy.round(iterate_function(eval_quadratic_polynomial,
... 0,
... 3,
... numpy.array([0,1,2]))[1])
(1+0j)
>>> numpy.round(iterate_function(eval_quadratic_polynomial,
... 0,
... 3,
... numpy.array([0,1,2]))[2])
(256+0j)
"""
z_n = z_0.astype("complex64")
for i in range(nb_iterations):
z_n = eval_function(function_params, z_n)
if infinity is not None:
numpy.nan_to_num(z_n, copy=False, nan=infinity)
z_n[abs(z_n) == numpy.inf] = infinity
return z_n
def show_results(
function_label: str,
function_params: Any,
escape_radius: float,
z_final: numpy.ndarray,
) -> None:
"""
Plots of whether the absolute value of z_final is greater than
the value of escape_radius. Adds the function_label and function_params to
the title.
>>> show_results('80', 0, 1, numpy.array([[0,1,.5],[.4,2,1.1],[.2,1,1.3]]))
"""
abs_z_final = (abs(z_final)).transpose()
abs_z_final[:, :] = abs_z_final[::-1, :]
pyplot.matshow(abs_z_final < escape_radius)
pyplot.title(f"Julia set of ${function_label}$, $c={function_params}$")
pyplot.show()
def ignore_overflow_warnings() -> None:
"""
Ignore some overflow and invalid value warnings.
>>> ignore_overflow_warnings()
"""
warnings.filterwarnings(
"ignore", category=RuntimeWarning, message="overflow encountered in multiply"
)
warnings.filterwarnings(
"ignore",
category=RuntimeWarning,
message="invalid value encountered in multiply",
)
warnings.filterwarnings(
"ignore", category=RuntimeWarning, message="overflow encountered in absolute"
)
warnings.filterwarnings(
"ignore", category=RuntimeWarning, message="overflow encountered in exp"
)
if __name__ == "__main__":
z_0 = prepare_grid(window_size, nb_pixels)
ignore_overflow_warnings() # See file header for explanations
nb_iterations = 24
escape_radius = 2 * abs(c_cauliflower) + 1
z_final = iterate_function(
eval_quadratic_polynomial,
c_cauliflower,
nb_iterations,
z_0,
infinity=1.1 * escape_radius,
)
show_results("z^2+c", c_cauliflower, escape_radius, z_final)
nb_iterations = 64
escape_radius = 2 * abs(c_polynomial_1) + 1
z_final = iterate_function(
eval_quadratic_polynomial,
c_polynomial_1,
nb_iterations,
z_0,
infinity=1.1 * escape_radius,
)
show_results("z^2+c", c_polynomial_1, escape_radius, z_final)
nb_iterations = 161
escape_radius = 2 * abs(c_polynomial_2) + 1
z_final = iterate_function(
eval_quadratic_polynomial,
c_polynomial_2,
nb_iterations,
z_0,
infinity=1.1 * escape_radius,
)
show_results("z^2+c", c_polynomial_2, escape_radius, z_final)
nb_iterations = 12
escape_radius = 10000.0
z_final = iterate_function(
eval_exponential,
c_exponential,
nb_iterations,
z_0 + 2,
infinity=1.0e10,
)
show_results("e^z+c", c_exponential, escape_radius, z_final)
| """Author Alexandre De Zotti
Draws Julia sets of quadratic polynomials and exponential maps.
More specifically, this iterates the function a fixed number of times
then plots whether the absolute value of the last iterate is greater than
a fixed threshold (named "escape radius"). For the exponential map this is not
really an escape radius but rather a convenient way to approximate the Julia
set with bounded orbits.
The examples presented here are:
- The Cauliflower Julia set, see e.g.
https://en.wikipedia.org/wiki/File:Julia_z2%2B0,25.png
- Other examples from https://en.wikipedia.org/wiki/Julia_set
- An exponential map Julia set, ambiantly homeomorphic to the examples in
http://www.math.univ-toulouse.fr/~cheritat/GalII/galery.html
and
https://ddd.uab.cat/pub/pubmat/02141493v43n1/02141493v43n1p27.pdf
Remark: Some overflow runtime warnings are suppressed. This is because of the
way the iteration loop is implemented, using numpy's efficient computations.
Overflows and infinites are replaced after each step by a large number.
"""
import warnings
from collections.abc import Callable
from typing import Any
import numpy
from matplotlib import pyplot
c_cauliflower = 0.25 + 0.0j
c_polynomial_1 = -0.4 + 0.6j
c_polynomial_2 = -0.1 + 0.651j
c_exponential = -2.0
nb_iterations = 56
window_size = 2.0
nb_pixels = 666
def eval_exponential(c_parameter: complex, z_values: numpy.ndarray) -> numpy.ndarray:
"""
Evaluate $e^z + c$.
>>> eval_exponential(0, 0)
1.0
>>> abs(eval_exponential(1, numpy.pi*1.j)) < 1e-15
True
>>> abs(eval_exponential(1.j, 0)-1-1.j) < 1e-15
True
"""
return numpy.exp(z_values) + c_parameter
def eval_quadratic_polynomial(
c_parameter: complex, z_values: numpy.ndarray
) -> numpy.ndarray:
"""
>>> eval_quadratic_polynomial(0, 2)
4
>>> eval_quadratic_polynomial(-1, 1)
0
>>> round(eval_quadratic_polynomial(1.j, 0).imag)
1
>>> round(eval_quadratic_polynomial(1.j, 0).real)
0
"""
return z_values * z_values + c_parameter
def prepare_grid(window_size: float, nb_pixels: int) -> numpy.ndarray:
"""
Create a grid of complex values of size nb_pixels*nb_pixels with real and
imaginary parts ranging from -window_size to window_size (inclusive).
Returns a numpy array.
>>> prepare_grid(1,3)
array([[-1.-1.j, -1.+0.j, -1.+1.j],
[ 0.-1.j, 0.+0.j, 0.+1.j],
[ 1.-1.j, 1.+0.j, 1.+1.j]])
"""
x = numpy.linspace(-window_size, window_size, nb_pixels)
x = x.reshape((nb_pixels, 1))
y = numpy.linspace(-window_size, window_size, nb_pixels)
y = y.reshape((1, nb_pixels))
return x + 1.0j * y
def iterate_function(
eval_function: Callable[[Any, numpy.ndarray], numpy.ndarray],
function_params: Any,
nb_iterations: int,
z_0: numpy.ndarray,
infinity: float = None,
) -> numpy.ndarray:
"""
Iterate the function "eval_function" exactly nb_iterations times.
The first argument of the function is a parameter which is contained in
function_params. The variable z_0 is an array that contains the initial
values to iterate from.
This function returns the final iterates.
>>> iterate_function(eval_quadratic_polynomial, 0, 3, numpy.array([0,1,2])).shape
(3,)
>>> numpy.round(iterate_function(eval_quadratic_polynomial,
... 0,
... 3,
... numpy.array([0,1,2]))[0])
0j
>>> numpy.round(iterate_function(eval_quadratic_polynomial,
... 0,
... 3,
... numpy.array([0,1,2]))[1])
(1+0j)
>>> numpy.round(iterate_function(eval_quadratic_polynomial,
... 0,
... 3,
... numpy.array([0,1,2]))[2])
(256+0j)
"""
z_n = z_0.astype("complex64")
for i in range(nb_iterations):
z_n = eval_function(function_params, z_n)
if infinity is not None:
numpy.nan_to_num(z_n, copy=False, nan=infinity)
z_n[abs(z_n) == numpy.inf] = infinity
return z_n
def show_results(
function_label: str,
function_params: Any,
escape_radius: float,
z_final: numpy.ndarray,
) -> None:
"""
Plots of whether the absolute value of z_final is greater than
the value of escape_radius. Adds the function_label and function_params to
the title.
>>> show_results('80', 0, 1, numpy.array([[0,1,.5],[.4,2,1.1],[.2,1,1.3]]))
"""
abs_z_final = (abs(z_final)).transpose()
abs_z_final[:, :] = abs_z_final[::-1, :]
pyplot.matshow(abs_z_final < escape_radius)
pyplot.title(f"Julia set of ${function_label}$, $c={function_params}$")
pyplot.show()
def ignore_overflow_warnings() -> None:
"""
Ignore some overflow and invalid value warnings.
>>> ignore_overflow_warnings()
"""
warnings.filterwarnings(
"ignore", category=RuntimeWarning, message="overflow encountered in multiply"
)
warnings.filterwarnings(
"ignore",
category=RuntimeWarning,
message="invalid value encountered in multiply",
)
warnings.filterwarnings(
"ignore", category=RuntimeWarning, message="overflow encountered in absolute"
)
warnings.filterwarnings(
"ignore", category=RuntimeWarning, message="overflow encountered in exp"
)
if __name__ == "__main__":
z_0 = prepare_grid(window_size, nb_pixels)
ignore_overflow_warnings() # See file header for explanations
nb_iterations = 24
escape_radius = 2 * abs(c_cauliflower) + 1
z_final = iterate_function(
eval_quadratic_polynomial,
c_cauliflower,
nb_iterations,
z_0,
infinity=1.1 * escape_radius,
)
show_results("z^2+c", c_cauliflower, escape_radius, z_final)
nb_iterations = 64
escape_radius = 2 * abs(c_polynomial_1) + 1
z_final = iterate_function(
eval_quadratic_polynomial,
c_polynomial_1,
nb_iterations,
z_0,
infinity=1.1 * escape_radius,
)
show_results("z^2+c", c_polynomial_1, escape_radius, z_final)
nb_iterations = 161
escape_radius = 2 * abs(c_polynomial_2) + 1
z_final = iterate_function(
eval_quadratic_polynomial,
c_polynomial_2,
nb_iterations,
z_0,
infinity=1.1 * escape_radius,
)
show_results("z^2+c", c_polynomial_2, escape_radius, z_final)
nb_iterations = 12
escape_radius = 10000.0
z_final = iterate_function(
eval_exponential,
c_exponential,
nb_iterations,
z_0 + 2,
infinity=1.0e10,
)
show_results("e^z+c", c_exponential, escape_radius, z_final)
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
Convert International System of Units (SI) and Binary prefixes
"""
from __future__ import annotations
from enum import Enum
class SI_Unit(Enum):
yotta = 24
zetta = 21
exa = 18
peta = 15
tera = 12
giga = 9
mega = 6
kilo = 3
hecto = 2
deca = 1
deci = -1
centi = -2
milli = -3
micro = -6
nano = -9
pico = -12
femto = -15
atto = -18
zepto = -21
yocto = -24
class Binary_Unit(Enum):
yotta = 8
zetta = 7
exa = 6
peta = 5
tera = 4
giga = 3
mega = 2
kilo = 1
def convert_si_prefix(
known_amount: float,
known_prefix: str | SI_Unit,
unknown_prefix: str | SI_Unit,
) -> float:
"""
Wikipedia reference: https://en.wikipedia.org/wiki/Binary_prefix
Wikipedia reference: https://en.wikipedia.org/wiki/International_System_of_Units
>>> convert_si_prefix(1, SI_Unit.giga, SI_Unit.mega)
1000
>>> convert_si_prefix(1, SI_Unit.mega, SI_Unit.giga)
0.001
>>> convert_si_prefix(1, SI_Unit.kilo, SI_Unit.kilo)
1
>>> convert_si_prefix(1, 'giga', 'mega')
1000
>>> convert_si_prefix(1, 'gIGa', 'mEGa')
1000
"""
if isinstance(known_prefix, str):
known_prefix = SI_Unit[known_prefix.lower()]
if isinstance(unknown_prefix, str):
unknown_prefix = SI_Unit[unknown_prefix.lower()]
unknown_amount: float = known_amount * (
10 ** (known_prefix.value - unknown_prefix.value)
)
return unknown_amount
def convert_binary_prefix(
known_amount: float,
known_prefix: str | Binary_Unit,
unknown_prefix: str | Binary_Unit,
) -> float:
"""
Wikipedia reference: https://en.wikipedia.org/wiki/Metric_prefix
>>> convert_binary_prefix(1, Binary_Unit.giga, Binary_Unit.mega)
1024
>>> convert_binary_prefix(1, Binary_Unit.mega, Binary_Unit.giga)
0.0009765625
>>> convert_binary_prefix(1, Binary_Unit.kilo, Binary_Unit.kilo)
1
>>> convert_binary_prefix(1, 'giga', 'mega')
1024
>>> convert_binary_prefix(1, 'gIGa', 'mEGa')
1024
"""
if isinstance(known_prefix, str):
known_prefix = Binary_Unit[known_prefix.lower()]
if isinstance(unknown_prefix, str):
unknown_prefix = Binary_Unit[unknown_prefix.lower()]
unknown_amount: float = known_amount * (
2 ** ((known_prefix.value - unknown_prefix.value) * 10)
)
return unknown_amount
if __name__ == "__main__":
import doctest
doctest.testmod()
| """
Convert International System of Units (SI) and Binary prefixes
"""
from __future__ import annotations
from enum import Enum
class SI_Unit(Enum):
yotta = 24
zetta = 21
exa = 18
peta = 15
tera = 12
giga = 9
mega = 6
kilo = 3
hecto = 2
deca = 1
deci = -1
centi = -2
milli = -3
micro = -6
nano = -9
pico = -12
femto = -15
atto = -18
zepto = -21
yocto = -24
class Binary_Unit(Enum):
yotta = 8
zetta = 7
exa = 6
peta = 5
tera = 4
giga = 3
mega = 2
kilo = 1
def convert_si_prefix(
known_amount: float,
known_prefix: str | SI_Unit,
unknown_prefix: str | SI_Unit,
) -> float:
"""
Wikipedia reference: https://en.wikipedia.org/wiki/Binary_prefix
Wikipedia reference: https://en.wikipedia.org/wiki/International_System_of_Units
>>> convert_si_prefix(1, SI_Unit.giga, SI_Unit.mega)
1000
>>> convert_si_prefix(1, SI_Unit.mega, SI_Unit.giga)
0.001
>>> convert_si_prefix(1, SI_Unit.kilo, SI_Unit.kilo)
1
>>> convert_si_prefix(1, 'giga', 'mega')
1000
>>> convert_si_prefix(1, 'gIGa', 'mEGa')
1000
"""
if isinstance(known_prefix, str):
known_prefix = SI_Unit[known_prefix.lower()]
if isinstance(unknown_prefix, str):
unknown_prefix = SI_Unit[unknown_prefix.lower()]
unknown_amount: float = known_amount * (
10 ** (known_prefix.value - unknown_prefix.value)
)
return unknown_amount
def convert_binary_prefix(
known_amount: float,
known_prefix: str | Binary_Unit,
unknown_prefix: str | Binary_Unit,
) -> float:
"""
Wikipedia reference: https://en.wikipedia.org/wiki/Metric_prefix
>>> convert_binary_prefix(1, Binary_Unit.giga, Binary_Unit.mega)
1024
>>> convert_binary_prefix(1, Binary_Unit.mega, Binary_Unit.giga)
0.0009765625
>>> convert_binary_prefix(1, Binary_Unit.kilo, Binary_Unit.kilo)
1
>>> convert_binary_prefix(1, 'giga', 'mega')
1024
>>> convert_binary_prefix(1, 'gIGa', 'mEGa')
1024
"""
if isinstance(known_prefix, str):
known_prefix = Binary_Unit[known_prefix.lower()]
if isinstance(unknown_prefix, str):
unknown_prefix = Binary_Unit[unknown_prefix.lower()]
unknown_amount: float = known_amount * (
2 ** ((known_prefix.value - unknown_prefix.value) * 10)
)
return unknown_amount
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
Created on Mon Feb 26 14:29:11 2018
@author: Christian Bender
@license: MIT-license
This module contains some useful classes and functions for dealing
with linear algebra in python.
Overview:
- class Vector
- function zero_vector(dimension)
- function unit_basis_vector(dimension, pos)
- function axpy(scalar, vector1, vector2)
- function random_vector(N, a, b)
- class Matrix
- function square_zero_matrix(N)
- function random_matrix(W, H, a, b)
"""
from __future__ import annotations
import math
import random
from collections.abc import Collection
from typing import overload
class Vector:
"""
This class represents a vector of arbitrary size.
You need to give the vector components.
Overview of the methods:
__init__(components: Collection[float] | None): init the vector
__len__(): gets the size of the vector (number of components)
__str__(): returns a string representation
__add__(other: Vector): vector addition
__sub__(other: Vector): vector subtraction
__mul__(other: float): scalar multiplication
__mul__(other: Vector): dot product
set(components: Collection[float]): changes the vector components
copy(): copies this vector and returns it
component(i): gets the i-th component (0-indexed)
change_component(pos: int, value: float): changes specified component
euclidean_length(): returns the euclidean length of the vector
angle(other: Vector, deg: bool): returns the angle between two vectors
TODO: compare-operator
"""
def __init__(self, components: Collection[float] | None = None) -> None:
"""
input: components or nothing
simple constructor for init the vector
"""
if components is None:
components = []
self.__components = list(components)
def __len__(self) -> int:
"""
returns the size of the vector
"""
return len(self.__components)
def __str__(self) -> str:
"""
returns a string representation of the vector
"""
return "(" + ",".join(map(str, self.__components)) + ")"
def __add__(self, other: Vector) -> Vector:
"""
input: other vector
assumes: other vector has the same size
returns a new vector that represents the sum.
"""
size = len(self)
if size == len(other):
result = [self.__components[i] + other.component(i) for i in range(size)]
return Vector(result)
else:
raise Exception("must have the same size")
def __sub__(self, other: Vector) -> Vector:
"""
input: other vector
assumes: other vector has the same size
returns a new vector that represents the difference.
"""
size = len(self)
if size == len(other):
result = [self.__components[i] - other.component(i) for i in range(size)]
return Vector(result)
else: # error case
raise Exception("must have the same size")
@overload
def __mul__(self, other: float) -> Vector:
...
@overload
def __mul__(self, other: Vector) -> float:
...
def __mul__(self, other: float | Vector) -> float | Vector:
"""
mul implements the scalar multiplication
and the dot-product
"""
if isinstance(other, float) or isinstance(other, int):
ans = [c * other for c in self.__components]
return Vector(ans)
elif isinstance(other, Vector) and len(self) == len(other):
size = len(self)
prods = [self.__components[i] * other.component(i) for i in range(size)]
return sum(prods)
else: # error case
raise Exception("invalid operand!")
def set(self, components: Collection[float]) -> None:
"""
input: new components
changes the components of the vector.
replaces the components with newer one.
"""
if len(components) > 0:
self.__components = list(components)
else:
raise Exception("please give any vector")
def copy(self) -> Vector:
"""
copies this vector and returns it.
"""
return Vector(self.__components)
def component(self, i: int) -> float:
"""
input: index (0-indexed)
output: the i-th component of the vector.
"""
if type(i) is int and -len(self.__components) <= i < len(self.__components):
return self.__components[i]
else:
raise Exception("index out of range")
def change_component(self, pos: int, value: float) -> None:
"""
input: an index (pos) and a value
changes the specified component (pos) with the
'value'
"""
# precondition
assert -len(self.__components) <= pos < len(self.__components)
self.__components[pos] = value
def euclidean_length(self) -> float:
"""
returns the euclidean length of the vector
>>> Vector([2, 3, 4]).euclidean_length()
5.385164807134504
>>> Vector([1]).euclidean_length()
1.0
>>> Vector([0, -1, -2, -3, 4, 5, 6]).euclidean_length()
9.539392014169456
>>> Vector([]).euclidean_length()
Traceback (most recent call last):
...
Exception: Vector is empty
"""
if len(self.__components) == 0:
raise Exception("Vector is empty")
squares = [c**2 for c in self.__components]
return math.sqrt(sum(squares))
def angle(self, other: Vector, deg: bool = False) -> float:
"""
find angle between two Vector (self, Vector)
>>> Vector([3, 4, -1]).angle(Vector([2, -1, 1]))
1.4906464636572374
>>> Vector([3, 4, -1]).angle(Vector([2, -1, 1]), deg = True)
85.40775111366095
>>> Vector([3, 4, -1]).angle(Vector([2, -1]))
Traceback (most recent call last):
...
Exception: invalid operand!
"""
num = self * other
den = self.euclidean_length() * other.euclidean_length()
if deg:
return math.degrees(math.acos(num / den))
else:
return math.acos(num / den)
def zero_vector(dimension: int) -> Vector:
"""
returns a zero-vector of size 'dimension'
"""
# precondition
assert isinstance(dimension, int)
return Vector([0] * dimension)
def unit_basis_vector(dimension: int, pos: int) -> Vector:
"""
returns a unit basis vector with a One
at index 'pos' (indexing at 0)
"""
# precondition
assert isinstance(dimension, int) and (isinstance(pos, int))
ans = [0] * dimension
ans[pos] = 1
return Vector(ans)
def axpy(scalar: float, x: Vector, y: Vector) -> Vector:
"""
input: a 'scalar' and two vectors 'x' and 'y'
output: a vector
computes the axpy operation
"""
# precondition
assert (
isinstance(x, Vector)
and isinstance(y, Vector)
and (isinstance(scalar, int) or isinstance(scalar, float))
)
return x * scalar + y
def random_vector(n: int, a: int, b: int) -> Vector:
"""
input: size (N) of the vector.
random range (a,b)
output: returns a random vector of size N, with
random integer components between 'a' and 'b'.
"""
random.seed(None)
ans = [random.randint(a, b) for _ in range(n)]
return Vector(ans)
class Matrix:
"""
class: Matrix
This class represents an arbitrary matrix.
Overview of the methods:
__init__():
__str__(): returns a string representation
__add__(other: Matrix): matrix addition
__sub__(other: Matrix): matrix subtraction
__mul__(other: float): scalar multiplication
__mul__(other: Vector): vector multiplication
height() : returns height
width() : returns width
component(x: int, y: int): returns specified component
change_component(x: int, y: int, value: float): changes specified component
minor(x: int, y: int): returns minor along (x, y)
cofactor(x: int, y: int): returns cofactor along (x, y)
determinant() : returns determinant
"""
def __init__(self, matrix: list[list[float]], w: int, h: int) -> None:
"""
simple constructor for initializing the matrix with components.
"""
self.__matrix = matrix
self.__width = w
self.__height = h
def __str__(self) -> str:
"""
returns a string representation of this matrix.
"""
ans = ""
for i in range(self.__height):
ans += "|"
for j in range(self.__width):
if j < self.__width - 1:
ans += str(self.__matrix[i][j]) + ","
else:
ans += str(self.__matrix[i][j]) + "|\n"
return ans
def __add__(self, other: Matrix) -> Matrix:
"""
implements matrix addition.
"""
if self.__width == other.width() and self.__height == other.height():
matrix = []
for i in range(self.__height):
row = [
self.__matrix[i][j] + other.component(i, j)
for j in range(self.__width)
]
matrix.append(row)
return Matrix(matrix, self.__width, self.__height)
else:
raise Exception("matrix must have the same dimension!")
def __sub__(self, other: Matrix) -> Matrix:
"""
implements matrix subtraction.
"""
if self.__width == other.width() and self.__height == other.height():
matrix = []
for i in range(self.__height):
row = [
self.__matrix[i][j] - other.component(i, j)
for j in range(self.__width)
]
matrix.append(row)
return Matrix(matrix, self.__width, self.__height)
else:
raise Exception("matrices must have the same dimension!")
@overload
def __mul__(self, other: float) -> Matrix:
...
@overload
def __mul__(self, other: Vector) -> Vector:
...
def __mul__(self, other: float | Vector) -> Vector | Matrix:
"""
implements the matrix-vector multiplication.
implements the matrix-scalar multiplication
"""
if isinstance(other, Vector): # matrix-vector
if len(other) == self.__width:
ans = zero_vector(self.__height)
for i in range(self.__height):
prods = [
self.__matrix[i][j] * other.component(j)
for j in range(self.__width)
]
ans.change_component(i, sum(prods))
return ans
else:
raise Exception(
"vector must have the same size as the "
"number of columns of the matrix!"
)
elif isinstance(other, int) or isinstance(other, float): # matrix-scalar
matrix = [
[self.__matrix[i][j] * other for j in range(self.__width)]
for i in range(self.__height)
]
return Matrix(matrix, self.__width, self.__height)
def height(self) -> int:
"""
getter for the height
"""
return self.__height
def width(self) -> int:
"""
getter for the width
"""
return self.__width
def component(self, x: int, y: int) -> float:
"""
returns the specified (x,y) component
"""
if 0 <= x < self.__height and 0 <= y < self.__width:
return self.__matrix[x][y]
else:
raise Exception("change_component: indices out of bounds")
def change_component(self, x: int, y: int, value: float) -> None:
"""
changes the x-y component of this matrix
"""
if 0 <= x < self.__height and 0 <= y < self.__width:
self.__matrix[x][y] = value
else:
raise Exception("change_component: indices out of bounds")
def minor(self, x: int, y: int) -> float:
"""
returns the minor along (x, y)
"""
if self.__height != self.__width:
raise Exception("Matrix is not square")
minor = self.__matrix[:x] + self.__matrix[x + 1 :]
for i in range(len(minor)):
minor[i] = minor[i][:y] + minor[i][y + 1 :]
return Matrix(minor, self.__width - 1, self.__height - 1).determinant()
def cofactor(self, x: int, y: int) -> float:
"""
returns the cofactor (signed minor) along (x, y)
"""
if self.__height != self.__width:
raise Exception("Matrix is not square")
if 0 <= x < self.__height and 0 <= y < self.__width:
return (-1) ** (x + y) * self.minor(x, y)
else:
raise Exception("Indices out of bounds")
def determinant(self) -> float:
"""
returns the determinant of an nxn matrix using Laplace expansion
"""
if self.__height != self.__width:
raise Exception("Matrix is not square")
if self.__height < 1:
raise Exception("Matrix has no element")
elif self.__height == 1:
return self.__matrix[0][0]
elif self.__height == 2:
return (
self.__matrix[0][0] * self.__matrix[1][1]
- self.__matrix[0][1] * self.__matrix[1][0]
)
else:
cofactor_prods = [
self.__matrix[0][y] * self.cofactor(0, y) for y in range(self.__width)
]
return sum(cofactor_prods)
def square_zero_matrix(n: int) -> Matrix:
"""
returns a square zero-matrix of dimension NxN
"""
ans: list[list[float]] = [[0] * n for _ in range(n)]
return Matrix(ans, n, n)
def random_matrix(width: int, height: int, a: int, b: int) -> Matrix:
"""
returns a random matrix WxH with integer components
between 'a' and 'b'
"""
random.seed(None)
matrix: list[list[float]] = [
[random.randint(a, b) for _ in range(width)] for _ in range(height)
]
return Matrix(matrix, width, height)
| """
Created on Mon Feb 26 14:29:11 2018
@author: Christian Bender
@license: MIT-license
This module contains some useful classes and functions for dealing
with linear algebra in python.
Overview:
- class Vector
- function zero_vector(dimension)
- function unit_basis_vector(dimension, pos)
- function axpy(scalar, vector1, vector2)
- function random_vector(N, a, b)
- class Matrix
- function square_zero_matrix(N)
- function random_matrix(W, H, a, b)
"""
from __future__ import annotations
import math
import random
from collections.abc import Collection
from typing import overload
class Vector:
"""
This class represents a vector of arbitrary size.
You need to give the vector components.
Overview of the methods:
__init__(components: Collection[float] | None): init the vector
__len__(): gets the size of the vector (number of components)
__str__(): returns a string representation
__add__(other: Vector): vector addition
__sub__(other: Vector): vector subtraction
__mul__(other: float): scalar multiplication
__mul__(other: Vector): dot product
set(components: Collection[float]): changes the vector components
copy(): copies this vector and returns it
component(i): gets the i-th component (0-indexed)
change_component(pos: int, value: float): changes specified component
euclidean_length(): returns the euclidean length of the vector
angle(other: Vector, deg: bool): returns the angle between two vectors
TODO: compare-operator
"""
def __init__(self, components: Collection[float] | None = None) -> None:
"""
input: components or nothing
simple constructor for init the vector
"""
if components is None:
components = []
self.__components = list(components)
def __len__(self) -> int:
"""
returns the size of the vector
"""
return len(self.__components)
def __str__(self) -> str:
"""
returns a string representation of the vector
"""
return "(" + ",".join(map(str, self.__components)) + ")"
def __add__(self, other: Vector) -> Vector:
"""
input: other vector
assumes: other vector has the same size
returns a new vector that represents the sum.
"""
size = len(self)
if size == len(other):
result = [self.__components[i] + other.component(i) for i in range(size)]
return Vector(result)
else:
raise Exception("must have the same size")
def __sub__(self, other: Vector) -> Vector:
"""
input: other vector
assumes: other vector has the same size
returns a new vector that represents the difference.
"""
size = len(self)
if size == len(other):
result = [self.__components[i] - other.component(i) for i in range(size)]
return Vector(result)
else: # error case
raise Exception("must have the same size")
@overload
def __mul__(self, other: float) -> Vector:
...
@overload
def __mul__(self, other: Vector) -> float:
...
def __mul__(self, other: float | Vector) -> float | Vector:
"""
mul implements the scalar multiplication
and the dot-product
"""
if isinstance(other, float) or isinstance(other, int):
ans = [c * other for c in self.__components]
return Vector(ans)
elif isinstance(other, Vector) and len(self) == len(other):
size = len(self)
prods = [self.__components[i] * other.component(i) for i in range(size)]
return sum(prods)
else: # error case
raise Exception("invalid operand!")
def set(self, components: Collection[float]) -> None:
"""
input: new components
changes the components of the vector.
replaces the components with newer one.
"""
if len(components) > 0:
self.__components = list(components)
else:
raise Exception("please give any vector")
def copy(self) -> Vector:
"""
copies this vector and returns it.
"""
return Vector(self.__components)
def component(self, i: int) -> float:
"""
input: index (0-indexed)
output: the i-th component of the vector.
"""
if type(i) is int and -len(self.__components) <= i < len(self.__components):
return self.__components[i]
else:
raise Exception("index out of range")
def change_component(self, pos: int, value: float) -> None:
"""
input: an index (pos) and a value
changes the specified component (pos) with the
'value'
"""
# precondition
assert -len(self.__components) <= pos < len(self.__components)
self.__components[pos] = value
def euclidean_length(self) -> float:
"""
returns the euclidean length of the vector
>>> Vector([2, 3, 4]).euclidean_length()
5.385164807134504
>>> Vector([1]).euclidean_length()
1.0
>>> Vector([0, -1, -2, -3, 4, 5, 6]).euclidean_length()
9.539392014169456
>>> Vector([]).euclidean_length()
Traceback (most recent call last):
...
Exception: Vector is empty
"""
if len(self.__components) == 0:
raise Exception("Vector is empty")
squares = [c**2 for c in self.__components]
return math.sqrt(sum(squares))
def angle(self, other: Vector, deg: bool = False) -> float:
"""
find angle between two Vector (self, Vector)
>>> Vector([3, 4, -1]).angle(Vector([2, -1, 1]))
1.4906464636572374
>>> Vector([3, 4, -1]).angle(Vector([2, -1, 1]), deg = True)
85.40775111366095
>>> Vector([3, 4, -1]).angle(Vector([2, -1]))
Traceback (most recent call last):
...
Exception: invalid operand!
"""
num = self * other
den = self.euclidean_length() * other.euclidean_length()
if deg:
return math.degrees(math.acos(num / den))
else:
return math.acos(num / den)
def zero_vector(dimension: int) -> Vector:
"""
returns a zero-vector of size 'dimension'
"""
# precondition
assert isinstance(dimension, int)
return Vector([0] * dimension)
def unit_basis_vector(dimension: int, pos: int) -> Vector:
"""
returns a unit basis vector with a One
at index 'pos' (indexing at 0)
"""
# precondition
assert isinstance(dimension, int) and (isinstance(pos, int))
ans = [0] * dimension
ans[pos] = 1
return Vector(ans)
def axpy(scalar: float, x: Vector, y: Vector) -> Vector:
"""
input: a 'scalar' and two vectors 'x' and 'y'
output: a vector
computes the axpy operation
"""
# precondition
assert (
isinstance(x, Vector)
and isinstance(y, Vector)
and (isinstance(scalar, int) or isinstance(scalar, float))
)
return x * scalar + y
def random_vector(n: int, a: int, b: int) -> Vector:
"""
input: size (N) of the vector.
random range (a,b)
output: returns a random vector of size N, with
random integer components between 'a' and 'b'.
"""
random.seed(None)
ans = [random.randint(a, b) for _ in range(n)]
return Vector(ans)
class Matrix:
"""
class: Matrix
This class represents an arbitrary matrix.
Overview of the methods:
__init__():
__str__(): returns a string representation
__add__(other: Matrix): matrix addition
__sub__(other: Matrix): matrix subtraction
__mul__(other: float): scalar multiplication
__mul__(other: Vector): vector multiplication
height() : returns height
width() : returns width
component(x: int, y: int): returns specified component
change_component(x: int, y: int, value: float): changes specified component
minor(x: int, y: int): returns minor along (x, y)
cofactor(x: int, y: int): returns cofactor along (x, y)
determinant() : returns determinant
"""
def __init__(self, matrix: list[list[float]], w: int, h: int) -> None:
"""
simple constructor for initializing the matrix with components.
"""
self.__matrix = matrix
self.__width = w
self.__height = h
def __str__(self) -> str:
"""
returns a string representation of this matrix.
"""
ans = ""
for i in range(self.__height):
ans += "|"
for j in range(self.__width):
if j < self.__width - 1:
ans += str(self.__matrix[i][j]) + ","
else:
ans += str(self.__matrix[i][j]) + "|\n"
return ans
def __add__(self, other: Matrix) -> Matrix:
"""
implements matrix addition.
"""
if self.__width == other.width() and self.__height == other.height():
matrix = []
for i in range(self.__height):
row = [
self.__matrix[i][j] + other.component(i, j)
for j in range(self.__width)
]
matrix.append(row)
return Matrix(matrix, self.__width, self.__height)
else:
raise Exception("matrix must have the same dimension!")
def __sub__(self, other: Matrix) -> Matrix:
"""
implements matrix subtraction.
"""
if self.__width == other.width() and self.__height == other.height():
matrix = []
for i in range(self.__height):
row = [
self.__matrix[i][j] - other.component(i, j)
for j in range(self.__width)
]
matrix.append(row)
return Matrix(matrix, self.__width, self.__height)
else:
raise Exception("matrices must have the same dimension!")
@overload
def __mul__(self, other: float) -> Matrix:
...
@overload
def __mul__(self, other: Vector) -> Vector:
...
def __mul__(self, other: float | Vector) -> Vector | Matrix:
"""
implements the matrix-vector multiplication.
implements the matrix-scalar multiplication
"""
if isinstance(other, Vector): # matrix-vector
if len(other) == self.__width:
ans = zero_vector(self.__height)
for i in range(self.__height):
prods = [
self.__matrix[i][j] * other.component(j)
for j in range(self.__width)
]
ans.change_component(i, sum(prods))
return ans
else:
raise Exception(
"vector must have the same size as the "
"number of columns of the matrix!"
)
elif isinstance(other, int) or isinstance(other, float): # matrix-scalar
matrix = [
[self.__matrix[i][j] * other for j in range(self.__width)]
for i in range(self.__height)
]
return Matrix(matrix, self.__width, self.__height)
def height(self) -> int:
"""
getter for the height
"""
return self.__height
def width(self) -> int:
"""
getter for the width
"""
return self.__width
def component(self, x: int, y: int) -> float:
"""
returns the specified (x,y) component
"""
if 0 <= x < self.__height and 0 <= y < self.__width:
return self.__matrix[x][y]
else:
raise Exception("change_component: indices out of bounds")
def change_component(self, x: int, y: int, value: float) -> None:
"""
changes the x-y component of this matrix
"""
if 0 <= x < self.__height and 0 <= y < self.__width:
self.__matrix[x][y] = value
else:
raise Exception("change_component: indices out of bounds")
def minor(self, x: int, y: int) -> float:
"""
returns the minor along (x, y)
"""
if self.__height != self.__width:
raise Exception("Matrix is not square")
minor = self.__matrix[:x] + self.__matrix[x + 1 :]
for i in range(len(minor)):
minor[i] = minor[i][:y] + minor[i][y + 1 :]
return Matrix(minor, self.__width - 1, self.__height - 1).determinant()
def cofactor(self, x: int, y: int) -> float:
"""
returns the cofactor (signed minor) along (x, y)
"""
if self.__height != self.__width:
raise Exception("Matrix is not square")
if 0 <= x < self.__height and 0 <= y < self.__width:
return (-1) ** (x + y) * self.minor(x, y)
else:
raise Exception("Indices out of bounds")
def determinant(self) -> float:
"""
returns the determinant of an nxn matrix using Laplace expansion
"""
if self.__height != self.__width:
raise Exception("Matrix is not square")
if self.__height < 1:
raise Exception("Matrix has no element")
elif self.__height == 1:
return self.__matrix[0][0]
elif self.__height == 2:
return (
self.__matrix[0][0] * self.__matrix[1][1]
- self.__matrix[0][1] * self.__matrix[1][0]
)
else:
cofactor_prods = [
self.__matrix[0][y] * self.cofactor(0, y) for y in range(self.__width)
]
return sum(cofactor_prods)
def square_zero_matrix(n: int) -> Matrix:
"""
returns a square zero-matrix of dimension NxN
"""
ans: list[list[float]] = [[0] * n for _ in range(n)]
return Matrix(ans, n, n)
def random_matrix(width: int, height: int, a: int, b: int) -> Matrix:
"""
returns a random matrix WxH with integer components
between 'a' and 'b'
"""
random.seed(None)
matrix: list[list[float]] = [
[random.randint(a, b) for _ in range(width)] for _ in range(height)
]
return Matrix(matrix, width, height)
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
Implementation Burke's algorithm (dithering)
"""
import numpy as np
from cv2 import destroyAllWindows, imread, imshow, waitKey
class Burkes:
"""
Burke's algorithm is using for converting grayscale image to black and white version
Source: Source: https://en.wikipedia.org/wiki/Dither
Note:
* Best results are given with threshold= ~1/2 * max greyscale value.
* This implementation get RGB image and converts it to greyscale in runtime.
"""
def __init__(self, input_img, threshold: int):
self.min_threshold = 0
# max greyscale value for #FFFFFF
self.max_threshold = int(self.get_greyscale(255, 255, 255))
if not self.min_threshold < threshold < self.max_threshold:
raise ValueError(f"Factor value should be from 0 to {self.max_threshold}")
self.input_img = input_img
self.threshold = threshold
self.width, self.height = self.input_img.shape[1], self.input_img.shape[0]
# error table size (+4 columns and +1 row) greater than input image because of
# lack of if statements
self.error_table = [
[0 for _ in range(self.height + 4)] for __ in range(self.width + 1)
]
self.output_img = np.ones((self.width, self.height, 3), np.uint8) * 255
@classmethod
def get_greyscale(cls, blue: int, green: int, red: int) -> float:
"""
>>> Burkes.get_greyscale(3, 4, 5)
3.753
"""
return 0.114 * blue + 0.587 * green + 0.2126 * red
def process(self) -> None:
for y in range(self.height):
for x in range(self.width):
greyscale = int(self.get_greyscale(*self.input_img[y][x]))
if self.threshold > greyscale + self.error_table[y][x]:
self.output_img[y][x] = (0, 0, 0)
current_error = greyscale + self.error_table[x][y]
else:
self.output_img[y][x] = (255, 255, 255)
current_error = greyscale + self.error_table[x][y] - 255
"""
Burkes error propagation (`*` is current pixel):
* 8/32 4/32
2/32 4/32 8/32 4/32 2/32
"""
self.error_table[y][x + 1] += int(8 / 32 * current_error)
self.error_table[y][x + 2] += int(4 / 32 * current_error)
self.error_table[y + 1][x] += int(8 / 32 * current_error)
self.error_table[y + 1][x + 1] += int(4 / 32 * current_error)
self.error_table[y + 1][x + 2] += int(2 / 32 * current_error)
self.error_table[y + 1][x - 1] += int(4 / 32 * current_error)
self.error_table[y + 1][x - 2] += int(2 / 32 * current_error)
if __name__ == "__main__":
# create Burke's instances with original images in greyscale
burkes_instances = [
Burkes(imread("image_data/lena.jpg", 1), threshold)
for threshold in (1, 126, 130, 140)
]
for burkes in burkes_instances:
burkes.process()
for burkes in burkes_instances:
imshow(
f"Original image with dithering threshold: {burkes.threshold}",
burkes.output_img,
)
waitKey(0)
destroyAllWindows()
| """
Implementation Burke's algorithm (dithering)
"""
import numpy as np
from cv2 import destroyAllWindows, imread, imshow, waitKey
class Burkes:
"""
Burke's algorithm is using for converting grayscale image to black and white version
Source: Source: https://en.wikipedia.org/wiki/Dither
Note:
* Best results are given with threshold= ~1/2 * max greyscale value.
* This implementation get RGB image and converts it to greyscale in runtime.
"""
def __init__(self, input_img, threshold: int):
self.min_threshold = 0
# max greyscale value for #FFFFFF
self.max_threshold = int(self.get_greyscale(255, 255, 255))
if not self.min_threshold < threshold < self.max_threshold:
raise ValueError(f"Factor value should be from 0 to {self.max_threshold}")
self.input_img = input_img
self.threshold = threshold
self.width, self.height = self.input_img.shape[1], self.input_img.shape[0]
# error table size (+4 columns and +1 row) greater than input image because of
# lack of if statements
self.error_table = [
[0 for _ in range(self.height + 4)] for __ in range(self.width + 1)
]
self.output_img = np.ones((self.width, self.height, 3), np.uint8) * 255
@classmethod
def get_greyscale(cls, blue: int, green: int, red: int) -> float:
"""
>>> Burkes.get_greyscale(3, 4, 5)
3.753
"""
return 0.114 * blue + 0.587 * green + 0.2126 * red
def process(self) -> None:
for y in range(self.height):
for x in range(self.width):
greyscale = int(self.get_greyscale(*self.input_img[y][x]))
if self.threshold > greyscale + self.error_table[y][x]:
self.output_img[y][x] = (0, 0, 0)
current_error = greyscale + self.error_table[x][y]
else:
self.output_img[y][x] = (255, 255, 255)
current_error = greyscale + self.error_table[x][y] - 255
"""
Burkes error propagation (`*` is current pixel):
* 8/32 4/32
2/32 4/32 8/32 4/32 2/32
"""
self.error_table[y][x + 1] += int(8 / 32 * current_error)
self.error_table[y][x + 2] += int(4 / 32 * current_error)
self.error_table[y + 1][x] += int(8 / 32 * current_error)
self.error_table[y + 1][x + 1] += int(4 / 32 * current_error)
self.error_table[y + 1][x + 2] += int(2 / 32 * current_error)
self.error_table[y + 1][x - 1] += int(4 / 32 * current_error)
self.error_table[y + 1][x - 2] += int(2 / 32 * current_error)
if __name__ == "__main__":
# create Burke's instances with original images in greyscale
burkes_instances = [
Burkes(imread("image_data/lena.jpg", 1), threshold)
for threshold in (1, 126, 130, 140)
]
for burkes in burkes_instances:
burkes.process()
for burkes in burkes_instances:
imshow(
f"Original image with dithering threshold: {burkes.threshold}",
burkes.output_img,
)
waitKey(0)
destroyAllWindows()
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| import cv2
import numpy as np
def get_neighbors_pixel(
image: np.ndarray, x_coordinate: int, y_coordinate: int, center: int
) -> int:
"""
Comparing local neighborhood pixel value with threshold value of centre pixel.
Exception is required when neighborhood value of a center pixel value is null.
i.e. values present at boundaries.
:param image: The image we're working with
:param x_coordinate: x-coordinate of the pixel
:param y_coordinate: The y coordinate of the pixel
:param center: center pixel value
:return: The value of the pixel is being returned.
"""
try:
return int(image[x_coordinate][y_coordinate] >= center)
except (IndexError, TypeError):
return 0
def local_binary_value(image: np.ndarray, x_coordinate: int, y_coordinate: int) -> int:
"""
It takes an image, an x and y coordinate, and returns the
decimal value of the local binary patternof the pixel
at that coordinate
:param image: the image to be processed
:param x_coordinate: x coordinate of the pixel
:param y_coordinate: the y coordinate of the pixel
:return: The decimal value of the binary value of the pixels
around the center pixel.
"""
center = image[x_coordinate][y_coordinate]
powers = [1, 2, 4, 8, 16, 32, 64, 128]
# skip get_neighbors_pixel if center is null
if center is None:
return 0
# Starting from the top right, assigning value to pixels clockwise
binary_values = [
get_neighbors_pixel(image, x_coordinate - 1, y_coordinate + 1, center),
get_neighbors_pixel(image, x_coordinate, y_coordinate + 1, center),
get_neighbors_pixel(image, x_coordinate - 1, y_coordinate, center),
get_neighbors_pixel(image, x_coordinate + 1, y_coordinate + 1, center),
get_neighbors_pixel(image, x_coordinate + 1, y_coordinate, center),
get_neighbors_pixel(image, x_coordinate + 1, y_coordinate - 1, center),
get_neighbors_pixel(image, x_coordinate, y_coordinate - 1, center),
get_neighbors_pixel(image, x_coordinate - 1, y_coordinate - 1, center),
]
# Converting the binary value to decimal.
return sum(
binary_value * power for binary_value, power in zip(binary_values, powers)
)
if __name__ == "main":
# Reading the image and converting it to grayscale.
image = cv2.imread(
"digital_image_processing/image_data/lena.jpg", cv2.IMREAD_GRAYSCALE
)
# Create a numpy array as the same height and width of read image
lbp_image = np.zeros((image.shape[0], image.shape[1]))
# Iterating through the image and calculating the
# local binary pattern value for each pixel.
for i in range(0, image.shape[0]):
for j in range(0, image.shape[1]):
lbp_image[i][j] = local_binary_value(image, i, j)
cv2.imshow("local binary pattern", lbp_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
| import cv2
import numpy as np
def get_neighbors_pixel(
image: np.ndarray, x_coordinate: int, y_coordinate: int, center: int
) -> int:
"""
Comparing local neighborhood pixel value with threshold value of centre pixel.
Exception is required when neighborhood value of a center pixel value is null.
i.e. values present at boundaries.
:param image: The image we're working with
:param x_coordinate: x-coordinate of the pixel
:param y_coordinate: The y coordinate of the pixel
:param center: center pixel value
:return: The value of the pixel is being returned.
"""
try:
return int(image[x_coordinate][y_coordinate] >= center)
except (IndexError, TypeError):
return 0
def local_binary_value(image: np.ndarray, x_coordinate: int, y_coordinate: int) -> int:
"""
It takes an image, an x and y coordinate, and returns the
decimal value of the local binary patternof the pixel
at that coordinate
:param image: the image to be processed
:param x_coordinate: x coordinate of the pixel
:param y_coordinate: the y coordinate of the pixel
:return: The decimal value of the binary value of the pixels
around the center pixel.
"""
center = image[x_coordinate][y_coordinate]
powers = [1, 2, 4, 8, 16, 32, 64, 128]
# skip get_neighbors_pixel if center is null
if center is None:
return 0
# Starting from the top right, assigning value to pixels clockwise
binary_values = [
get_neighbors_pixel(image, x_coordinate - 1, y_coordinate + 1, center),
get_neighbors_pixel(image, x_coordinate, y_coordinate + 1, center),
get_neighbors_pixel(image, x_coordinate - 1, y_coordinate, center),
get_neighbors_pixel(image, x_coordinate + 1, y_coordinate + 1, center),
get_neighbors_pixel(image, x_coordinate + 1, y_coordinate, center),
get_neighbors_pixel(image, x_coordinate + 1, y_coordinate - 1, center),
get_neighbors_pixel(image, x_coordinate, y_coordinate - 1, center),
get_neighbors_pixel(image, x_coordinate - 1, y_coordinate - 1, center),
]
# Converting the binary value to decimal.
return sum(
binary_value * power for binary_value, power in zip(binary_values, powers)
)
if __name__ == "main":
# Reading the image and converting it to grayscale.
image = cv2.imread(
"digital_image_processing/image_data/lena.jpg", cv2.IMREAD_GRAYSCALE
)
# Create a numpy array as the same height and width of read image
lbp_image = np.zeros((image.shape[0], image.shape[1]))
# Iterating through the image and calculating the
# local binary pattern value for each pixel.
for i in range(0, image.shape[0]):
for j in range(0, image.shape[1]):
lbp_image[i][j] = local_binary_value(image, i, j)
cv2.imshow("local binary pattern", lbp_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| -1 |
||
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| -1 |
||
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """ Convert Base 10 (Decimal) Values to Hexadecimal Representations """
# set decimal value for each hexadecimal digit
values = {
0: "0",
1: "1",
2: "2",
3: "3",
4: "4",
5: "5",
6: "6",
7: "7",
8: "8",
9: "9",
10: "a",
11: "b",
12: "c",
13: "d",
14: "e",
15: "f",
}
def decimal_to_hexadecimal(decimal: float) -> str:
"""
take integer decimal value, return hexadecimal representation as str beginning
with 0x
>>> decimal_to_hexadecimal(5)
'0x5'
>>> decimal_to_hexadecimal(15)
'0xf'
>>> decimal_to_hexadecimal(37)
'0x25'
>>> decimal_to_hexadecimal(255)
'0xff'
>>> decimal_to_hexadecimal(4096)
'0x1000'
>>> decimal_to_hexadecimal(999098)
'0xf3eba'
>>> # negatives work too
>>> decimal_to_hexadecimal(-256)
'-0x100'
>>> # floats are acceptable if equivalent to an int
>>> decimal_to_hexadecimal(17.0)
'0x11'
>>> # other floats will error
>>> decimal_to_hexadecimal(16.16) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
AssertionError
>>> # strings will error as well
>>> decimal_to_hexadecimal('0xfffff') # doctest: +ELLIPSIS
Traceback (most recent call last):
...
AssertionError
>>> # results are the same when compared to Python's default hex function
>>> decimal_to_hexadecimal(-256) == hex(-256)
True
"""
assert type(decimal) in (int, float) and decimal == int(decimal)
decimal = int(decimal)
hexadecimal = ""
negative = False
if decimal < 0:
negative = True
decimal *= -1
while decimal > 0:
decimal, remainder = divmod(decimal, 16)
hexadecimal = values[remainder] + hexadecimal
hexadecimal = "0x" + hexadecimal
if negative:
hexadecimal = "-" + hexadecimal
return hexadecimal
if __name__ == "__main__":
import doctest
doctest.testmod()
| """ Convert Base 10 (Decimal) Values to Hexadecimal Representations """
# set decimal value for each hexadecimal digit
values = {
0: "0",
1: "1",
2: "2",
3: "3",
4: "4",
5: "5",
6: "6",
7: "7",
8: "8",
9: "9",
10: "a",
11: "b",
12: "c",
13: "d",
14: "e",
15: "f",
}
def decimal_to_hexadecimal(decimal: float) -> str:
"""
take integer decimal value, return hexadecimal representation as str beginning
with 0x
>>> decimal_to_hexadecimal(5)
'0x5'
>>> decimal_to_hexadecimal(15)
'0xf'
>>> decimal_to_hexadecimal(37)
'0x25'
>>> decimal_to_hexadecimal(255)
'0xff'
>>> decimal_to_hexadecimal(4096)
'0x1000'
>>> decimal_to_hexadecimal(999098)
'0xf3eba'
>>> # negatives work too
>>> decimal_to_hexadecimal(-256)
'-0x100'
>>> # floats are acceptable if equivalent to an int
>>> decimal_to_hexadecimal(17.0)
'0x11'
>>> # other floats will error
>>> decimal_to_hexadecimal(16.16) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
AssertionError
>>> # strings will error as well
>>> decimal_to_hexadecimal('0xfffff') # doctest: +ELLIPSIS
Traceback (most recent call last):
...
AssertionError
>>> # results are the same when compared to Python's default hex function
>>> decimal_to_hexadecimal(-256) == hex(-256)
True
"""
assert type(decimal) in (int, float) and decimal == int(decimal)
decimal = int(decimal)
hexadecimal = ""
negative = False
if decimal < 0:
negative = True
decimal *= -1
while decimal > 0:
decimal, remainder = divmod(decimal, 16)
hexadecimal = values[remainder] + hexadecimal
hexadecimal = "0x" + hexadecimal
if negative:
hexadecimal = "-" + hexadecimal
return hexadecimal
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| -1 |
||
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
Truncatable primes
Problem 37: https://projecteuler.net/problem=37
The number 3797 has an interesting property. Being prime itself, it is possible
to continuously remove digits from left to right, and remain prime at each stage:
3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3.
Find the sum of the only eleven primes that are both truncatable from left to right
and right to left.
NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.
"""
from __future__ import annotations
import math
def is_prime(number: int) -> bool:
"""Checks to see if a number is a prime in O(sqrt(n)).
A number is prime if it has exactly two factors: 1 and itself.
>>> is_prime(0)
False
>>> is_prime(1)
False
>>> is_prime(2)
True
>>> is_prime(3)
True
>>> is_prime(27)
False
>>> is_prime(87)
False
>>> is_prime(563)
True
>>> is_prime(2999)
True
>>> is_prime(67483)
False
"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def list_truncated_nums(n: int) -> list[int]:
"""
Returns a list of all left and right truncated numbers of n
>>> list_truncated_nums(927628)
[927628, 27628, 92762, 7628, 9276, 628, 927, 28, 92, 8, 9]
>>> list_truncated_nums(467)
[467, 67, 46, 7, 4]
>>> list_truncated_nums(58)
[58, 8, 5]
"""
str_num = str(n)
list_nums = [n]
for i in range(1, len(str_num)):
list_nums.append(int(str_num[i:]))
list_nums.append(int(str_num[:-i]))
return list_nums
def validate(n: int) -> bool:
"""
To optimize the approach, we will rule out the numbers above 1000,
whose first or last three digits are not prime
>>> validate(74679)
False
>>> validate(235693)
False
>>> validate(3797)
True
"""
if len(str(n)) > 3:
if not is_prime(int(str(n)[-3:])) or not is_prime(int(str(n)[:3])):
return False
return True
def compute_truncated_primes(count: int = 11) -> list[int]:
"""
Returns the list of truncated primes
>>> compute_truncated_primes(11)
[23, 37, 53, 73, 313, 317, 373, 797, 3137, 3797, 739397]
"""
list_truncated_primes: list[int] = []
num = 13
while len(list_truncated_primes) != count:
if validate(num):
list_nums = list_truncated_nums(num)
if all(is_prime(i) for i in list_nums):
list_truncated_primes.append(num)
num += 2
return list_truncated_primes
def solution() -> int:
"""
Returns the sum of truncated primes
"""
return sum(compute_truncated_primes(11))
if __name__ == "__main__":
print(f"{sum(compute_truncated_primes(11)) = }")
| """
Truncatable primes
Problem 37: https://projecteuler.net/problem=37
The number 3797 has an interesting property. Being prime itself, it is possible
to continuously remove digits from left to right, and remain prime at each stage:
3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3.
Find the sum of the only eleven primes that are both truncatable from left to right
and right to left.
NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.
"""
from __future__ import annotations
import math
def is_prime(number: int) -> bool:
"""Checks to see if a number is a prime in O(sqrt(n)).
A number is prime if it has exactly two factors: 1 and itself.
>>> is_prime(0)
False
>>> is_prime(1)
False
>>> is_prime(2)
True
>>> is_prime(3)
True
>>> is_prime(27)
False
>>> is_prime(87)
False
>>> is_prime(563)
True
>>> is_prime(2999)
True
>>> is_prime(67483)
False
"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def list_truncated_nums(n: int) -> list[int]:
"""
Returns a list of all left and right truncated numbers of n
>>> list_truncated_nums(927628)
[927628, 27628, 92762, 7628, 9276, 628, 927, 28, 92, 8, 9]
>>> list_truncated_nums(467)
[467, 67, 46, 7, 4]
>>> list_truncated_nums(58)
[58, 8, 5]
"""
str_num = str(n)
list_nums = [n]
for i in range(1, len(str_num)):
list_nums.append(int(str_num[i:]))
list_nums.append(int(str_num[:-i]))
return list_nums
def validate(n: int) -> bool:
"""
To optimize the approach, we will rule out the numbers above 1000,
whose first or last three digits are not prime
>>> validate(74679)
False
>>> validate(235693)
False
>>> validate(3797)
True
"""
if len(str(n)) > 3:
if not is_prime(int(str(n)[-3:])) or not is_prime(int(str(n)[:3])):
return False
return True
def compute_truncated_primes(count: int = 11) -> list[int]:
"""
Returns the list of truncated primes
>>> compute_truncated_primes(11)
[23, 37, 53, 73, 313, 317, 373, 797, 3137, 3797, 739397]
"""
list_truncated_primes: list[int] = []
num = 13
while len(list_truncated_primes) != count:
if validate(num):
list_nums = list_truncated_nums(num)
if all(is_prime(i) for i in list_nums):
list_truncated_primes.append(num)
num += 2
return list_truncated_primes
def solution() -> int:
"""
Returns the sum of truncated primes
"""
return sum(compute_truncated_primes(11))
if __name__ == "__main__":
print(f"{sum(compute_truncated_primes(11)) = }")
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| from __future__ import annotations
from string import ascii_letters
def encrypt(input_string: str, key: int, alphabet: str | None = None) -> str:
"""
encrypt
=======
Encodes a given string with the caesar cipher and returns the encoded
message
Parameters:
-----------
* input_string: the plain-text that needs to be encoded
* key: the number of letters to shift the message by
Optional:
* alphabet (None): the alphabet used to encode the cipher, if not
specified, the standard english alphabet with upper and lowercase
letters is used
Returns:
* A string containing the encoded cipher-text
More on the caesar cipher
=========================
The caesar cipher is named after Julius Caesar who used it when sending
secret military messages to his troops. This is a simple substitution cipher
where very character in the plain-text is shifted by a certain number known
as the "key" or "shift".
Example:
Say we have the following message:
"Hello, captain"
And our alphabet is made up of lower and uppercase letters:
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
And our shift is "2"
We can then encode the message, one letter at a time. "H" would become "J",
since "J" is two letters away, and so on. If the shift is ever two large, or
our letter is at the end of the alphabet, we just start at the beginning
("Z" would shift to "a" then "b" and so on).
Our final message would be "Jgnnq, ecrvckp"
Further reading
===============
* https://en.m.wikipedia.org/wiki/Caesar_cipher
Doctests
========
>>> encrypt('The quick brown fox jumps over the lazy dog', 8)
'bpm yCqks jzwEv nwF rCuxA wDmz Bpm tiHG lwo'
>>> encrypt('A very large key', 8000)
's nWjq dSjYW cWq'
>>> encrypt('a lowercase alphabet', 5, 'abcdefghijklmnopqrstuvwxyz')
'f qtbjwhfxj fqumfgjy'
"""
# Set default alphabet to lower and upper case english chars
alpha = alphabet or ascii_letters
# The final result string
result = ""
for character in input_string:
if character not in alpha:
# Append without encryption if character is not in the alphabet
result += character
else:
# Get the index of the new key and make sure it isn't too large
new_key = (alpha.index(character) + key) % len(alpha)
# Append the encoded character to the alphabet
result += alpha[new_key]
return result
def decrypt(input_string: str, key: int, alphabet: str | None = None) -> str:
"""
decrypt
=======
Decodes a given string of cipher-text and returns the decoded plain-text
Parameters:
-----------
* input_string: the cipher-text that needs to be decoded
* key: the number of letters to shift the message backwards by to decode
Optional:
* alphabet (None): the alphabet used to decode the cipher, if not
specified, the standard english alphabet with upper and lowercase
letters is used
Returns:
* A string containing the decoded plain-text
More on the caesar cipher
=========================
The caesar cipher is named after Julius Caesar who used it when sending
secret military messages to his troops. This is a simple substitution cipher
where very character in the plain-text is shifted by a certain number known
as the "key" or "shift". Please keep in mind, here we will be focused on
decryption.
Example:
Say we have the following cipher-text:
"Jgnnq, ecrvckp"
And our alphabet is made up of lower and uppercase letters:
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
And our shift is "2"
To decode the message, we would do the same thing as encoding, but in
reverse. The first letter, "J" would become "H" (remember: we are decoding)
because "H" is two letters in reverse (to the left) of "J". We would
continue doing this. A letter like "a" would shift back to the end of
the alphabet, and would become "Z" or "Y" and so on.
Our final message would be "Hello, captain"
Further reading
===============
* https://en.m.wikipedia.org/wiki/Caesar_cipher
Doctests
========
>>> decrypt('bpm yCqks jzwEv nwF rCuxA wDmz Bpm tiHG lwo', 8)
'The quick brown fox jumps over the lazy dog'
>>> decrypt('s nWjq dSjYW cWq', 8000)
'A very large key'
>>> decrypt('f qtbjwhfxj fqumfgjy', 5, 'abcdefghijklmnopqrstuvwxyz')
'a lowercase alphabet'
"""
# Turn on decode mode by making the key negative
key *= -1
return encrypt(input_string, key, alphabet)
def brute_force(input_string: str, alphabet: str | None = None) -> dict[int, str]:
"""
brute_force
===========
Returns all the possible combinations of keys and the decoded strings in the
form of a dictionary
Parameters:
-----------
* input_string: the cipher-text that needs to be used during brute-force
Optional:
* alphabet: (None): the alphabet used to decode the cipher, if not
specified, the standard english alphabet with upper and lowercase
letters is used
More about brute force
======================
Brute force is when a person intercepts a message or password, not knowing
the key and tries every single combination. This is easy with the caesar
cipher since there are only all the letters in the alphabet. The more
complex the cipher, the larger amount of time it will take to do brute force
Ex:
Say we have a 5 letter alphabet (abcde), for simplicity and we intercepted the
following message:
"dbc"
we could then just write out every combination:
ecd... and so on, until we reach a combination that makes sense:
"cab"
Further reading
===============
* https://en.wikipedia.org/wiki/Brute_force
Doctests
========
>>> brute_force("jFyuMy xIH'N vLONy zILwy Gy!")[20]
"Please don't brute force me!"
>>> brute_force(1)
Traceback (most recent call last):
TypeError: 'int' object is not iterable
"""
# Set default alphabet to lower and upper case english chars
alpha = alphabet or ascii_letters
# To store data on all the combinations
brute_force_data = {}
# Cycle through each combination
for key in range(1, len(alpha) + 1):
# Decrypt the message and store the result in the data
brute_force_data[key] = decrypt(input_string, key, alpha)
return brute_force_data
if __name__ == "__main__":
while True:
print(f'\n{"-" * 10}\n Menu\n{"-" * 10}')
print(*["1.Encrypt", "2.Decrypt", "3.BruteForce", "4.Quit"], sep="\n")
# get user input
choice = input("\nWhat would you like to do?: ").strip() or "4"
# run functions based on what the user chose
if choice not in ("1", "2", "3", "4"):
print("Invalid choice, please enter a valid choice")
elif choice == "1":
input_string = input("Please enter the string to be encrypted: ")
key = int(input("Please enter off-set: ").strip())
print(encrypt(input_string, key))
elif choice == "2":
input_string = input("Please enter the string to be decrypted: ")
key = int(input("Please enter off-set: ").strip())
print(decrypt(input_string, key))
elif choice == "3":
input_string = input("Please enter the string to be decrypted: ")
brute_force_data = brute_force(input_string)
for key, value in brute_force_data.items():
print(f"Key: {key} | Message: {value}")
elif choice == "4":
print("Goodbye.")
break
| from __future__ import annotations
from string import ascii_letters
def encrypt(input_string: str, key: int, alphabet: str | None = None) -> str:
"""
encrypt
=======
Encodes a given string with the caesar cipher and returns the encoded
message
Parameters:
-----------
* input_string: the plain-text that needs to be encoded
* key: the number of letters to shift the message by
Optional:
* alphabet (None): the alphabet used to encode the cipher, if not
specified, the standard english alphabet with upper and lowercase
letters is used
Returns:
* A string containing the encoded cipher-text
More on the caesar cipher
=========================
The caesar cipher is named after Julius Caesar who used it when sending
secret military messages to his troops. This is a simple substitution cipher
where very character in the plain-text is shifted by a certain number known
as the "key" or "shift".
Example:
Say we have the following message:
"Hello, captain"
And our alphabet is made up of lower and uppercase letters:
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
And our shift is "2"
We can then encode the message, one letter at a time. "H" would become "J",
since "J" is two letters away, and so on. If the shift is ever two large, or
our letter is at the end of the alphabet, we just start at the beginning
("Z" would shift to "a" then "b" and so on).
Our final message would be "Jgnnq, ecrvckp"
Further reading
===============
* https://en.m.wikipedia.org/wiki/Caesar_cipher
Doctests
========
>>> encrypt('The quick brown fox jumps over the lazy dog', 8)
'bpm yCqks jzwEv nwF rCuxA wDmz Bpm tiHG lwo'
>>> encrypt('A very large key', 8000)
's nWjq dSjYW cWq'
>>> encrypt('a lowercase alphabet', 5, 'abcdefghijklmnopqrstuvwxyz')
'f qtbjwhfxj fqumfgjy'
"""
# Set default alphabet to lower and upper case english chars
alpha = alphabet or ascii_letters
# The final result string
result = ""
for character in input_string:
if character not in alpha:
# Append without encryption if character is not in the alphabet
result += character
else:
# Get the index of the new key and make sure it isn't too large
new_key = (alpha.index(character) + key) % len(alpha)
# Append the encoded character to the alphabet
result += alpha[new_key]
return result
def decrypt(input_string: str, key: int, alphabet: str | None = None) -> str:
"""
decrypt
=======
Decodes a given string of cipher-text and returns the decoded plain-text
Parameters:
-----------
* input_string: the cipher-text that needs to be decoded
* key: the number of letters to shift the message backwards by to decode
Optional:
* alphabet (None): the alphabet used to decode the cipher, if not
specified, the standard english alphabet with upper and lowercase
letters is used
Returns:
* A string containing the decoded plain-text
More on the caesar cipher
=========================
The caesar cipher is named after Julius Caesar who used it when sending
secret military messages to his troops. This is a simple substitution cipher
where very character in the plain-text is shifted by a certain number known
as the "key" or "shift". Please keep in mind, here we will be focused on
decryption.
Example:
Say we have the following cipher-text:
"Jgnnq, ecrvckp"
And our alphabet is made up of lower and uppercase letters:
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
And our shift is "2"
To decode the message, we would do the same thing as encoding, but in
reverse. The first letter, "J" would become "H" (remember: we are decoding)
because "H" is two letters in reverse (to the left) of "J". We would
continue doing this. A letter like "a" would shift back to the end of
the alphabet, and would become "Z" or "Y" and so on.
Our final message would be "Hello, captain"
Further reading
===============
* https://en.m.wikipedia.org/wiki/Caesar_cipher
Doctests
========
>>> decrypt('bpm yCqks jzwEv nwF rCuxA wDmz Bpm tiHG lwo', 8)
'The quick brown fox jumps over the lazy dog'
>>> decrypt('s nWjq dSjYW cWq', 8000)
'A very large key'
>>> decrypt('f qtbjwhfxj fqumfgjy', 5, 'abcdefghijklmnopqrstuvwxyz')
'a lowercase alphabet'
"""
# Turn on decode mode by making the key negative
key *= -1
return encrypt(input_string, key, alphabet)
def brute_force(input_string: str, alphabet: str | None = None) -> dict[int, str]:
"""
brute_force
===========
Returns all the possible combinations of keys and the decoded strings in the
form of a dictionary
Parameters:
-----------
* input_string: the cipher-text that needs to be used during brute-force
Optional:
* alphabet: (None): the alphabet used to decode the cipher, if not
specified, the standard english alphabet with upper and lowercase
letters is used
More about brute force
======================
Brute force is when a person intercepts a message or password, not knowing
the key and tries every single combination. This is easy with the caesar
cipher since there are only all the letters in the alphabet. The more
complex the cipher, the larger amount of time it will take to do brute force
Ex:
Say we have a 5 letter alphabet (abcde), for simplicity and we intercepted the
following message:
"dbc"
we could then just write out every combination:
ecd... and so on, until we reach a combination that makes sense:
"cab"
Further reading
===============
* https://en.wikipedia.org/wiki/Brute_force
Doctests
========
>>> brute_force("jFyuMy xIH'N vLONy zILwy Gy!")[20]
"Please don't brute force me!"
>>> brute_force(1)
Traceback (most recent call last):
TypeError: 'int' object is not iterable
"""
# Set default alphabet to lower and upper case english chars
alpha = alphabet or ascii_letters
# To store data on all the combinations
brute_force_data = {}
# Cycle through each combination
for key in range(1, len(alpha) + 1):
# Decrypt the message and store the result in the data
brute_force_data[key] = decrypt(input_string, key, alpha)
return brute_force_data
if __name__ == "__main__":
while True:
print(f'\n{"-" * 10}\n Menu\n{"-" * 10}')
print(*["1.Encrypt", "2.Decrypt", "3.BruteForce", "4.Quit"], sep="\n")
# get user input
choice = input("\nWhat would you like to do?: ").strip() or "4"
# run functions based on what the user chose
if choice not in ("1", "2", "3", "4"):
print("Invalid choice, please enter a valid choice")
elif choice == "1":
input_string = input("Please enter the string to be encrypted: ")
key = int(input("Please enter off-set: ").strip())
print(encrypt(input_string, key))
elif choice == "2":
input_string = input("Please enter the string to be decrypted: ")
key = int(input("Please enter off-set: ").strip())
print(decrypt(input_string, key))
elif choice == "3":
input_string = input("Please enter the string to be decrypted: ")
brute_force_data = brute_force(input_string)
for key, value in brute_force_data.items():
print(f"Key: {key} | Message: {value}")
elif choice == "4":
print("Goodbye.")
break
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| #!/usr/bin/env python3
"""
Provide the current worldwide COVID-19 statistics.
This data is being scrapped from 'https://www.worldometers.info/coronavirus/'.
"""
import requests
from bs4 import BeautifulSoup
def world_covid19_stats(url: str = "https://www.worldometers.info/coronavirus") -> dict:
"""
Return a dict of current worldwide COVID-19 statistics
"""
soup = BeautifulSoup(requests.get(url).text, "html.parser")
keys = soup.findAll("h1")
values = soup.findAll("div", {"class": "maincounter-number"})
keys += soup.findAll("span", {"class": "panel-title"})
values += soup.findAll("div", {"class": "number-table-main"})
return {key.text.strip(): value.text.strip() for key, value in zip(keys, values)}
if __name__ == "__main__":
print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n")
for key, value in world_covid19_stats().items():
print(f"{key}\n{value}\n")
| #!/usr/bin/env python3
"""
Provide the current worldwide COVID-19 statistics.
This data is being scrapped from 'https://www.worldometers.info/coronavirus/'.
"""
import requests
from bs4 import BeautifulSoup
def world_covid19_stats(url: str = "https://www.worldometers.info/coronavirus") -> dict:
"""
Return a dict of current worldwide COVID-19 statistics
"""
soup = BeautifulSoup(requests.get(url).text, "html.parser")
keys = soup.findAll("h1")
values = soup.findAll("div", {"class": "maincounter-number"})
keys += soup.findAll("span", {"class": "panel-title"})
values += soup.findAll("div", {"class": "number-table-main"})
return {key.text.strip(): value.text.strip() for key, value in zip(keys, values)}
if __name__ == "__main__":
print("\033[1m" + "COVID-19 Status of the World" + "\033[0m\n")
for key, value in world_covid19_stats().items():
print(f"{key}\n{value}\n")
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
Horizontal Projectile Motion problem in physics.
This algorithm solves a specific problem in which
the motion starts from the ground as can be seen below:
(v = 0)
**
* *
* *
* *
* *
* *
GROUND GROUND
For more info: https://en.wikipedia.org/wiki/Projectile_motion
"""
# Importing packages
from math import radians as angle_to_radians
from math import sin
# Acceleration Constant on Earth (unit m/s^2)
g = 9.80665
def check_args(init_velocity: float, angle: float) -> None:
"""
Check that the arguments are valid
"""
# Ensure valid instance
if not isinstance(init_velocity, (int, float)):
raise TypeError("Invalid velocity. Should be a positive number.")
if not isinstance(angle, (int, float)):
raise TypeError("Invalid angle. Range is 1-90 degrees.")
# Ensure valid angle
if angle > 90 or angle < 1:
raise ValueError("Invalid angle. Range is 1-90 degrees.")
# Ensure valid velocity
if init_velocity < 0:
raise ValueError("Invalid velocity. Should be a positive number.")
def horizontal_distance(init_velocity: float, angle: float) -> float:
"""
Returns the horizontal distance that the object cover
Formula:
v_0^2 * sin(2 * alpha)
---------------------
g
v_0 - initial velocity
alpha - angle
>>> horizontal_distance(30, 45)
91.77
>>> horizontal_distance(100, 78)
414.76
>>> horizontal_distance(-1, 20)
Traceback (most recent call last):
...
ValueError: Invalid velocity. Should be a positive number.
>>> horizontal_distance(30, -20)
Traceback (most recent call last):
...
ValueError: Invalid angle. Range is 1-90 degrees.
"""
check_args(init_velocity, angle)
radians = angle_to_radians(2 * angle)
return round(init_velocity**2 * sin(radians) / g, 2)
def max_height(init_velocity: float, angle: float) -> float:
"""
Returns the maximum height that the object reach
Formula:
v_0^2 * sin^2(alpha)
--------------------
2g
v_0 - initial velocity
alpha - angle
>>> max_height(30, 45)
22.94
>>> max_height(100, 78)
487.82
>>> max_height("a", 20)
Traceback (most recent call last):
...
TypeError: Invalid velocity. Should be a positive number.
>>> horizontal_distance(30, "b")
Traceback (most recent call last):
...
TypeError: Invalid angle. Range is 1-90 degrees.
"""
check_args(init_velocity, angle)
radians = angle_to_radians(angle)
return round(init_velocity**2 * sin(radians) ** 2 / (2 * g), 2)
def total_time(init_velocity: float, angle: float) -> float:
"""
Returns total time of the motion
Formula:
2 * v_0 * sin(alpha)
--------------------
g
v_0 - initial velocity
alpha - angle
>>> total_time(30, 45)
4.33
>>> total_time(100, 78)
19.95
>>> total_time(-10, 40)
Traceback (most recent call last):
...
ValueError: Invalid velocity. Should be a positive number.
>>> total_time(30, "b")
Traceback (most recent call last):
...
TypeError: Invalid angle. Range is 1-90 degrees.
"""
check_args(init_velocity, angle)
radians = angle_to_radians(angle)
return round(2 * init_velocity * sin(radians) / g, 2)
def test_motion() -> None:
"""
>>> test_motion()
"""
v0, angle = 25, 20
assert horizontal_distance(v0, angle) == 40.97
assert max_height(v0, angle) == 3.73
assert total_time(v0, angle) == 1.74
if __name__ == "__main__":
from doctest import testmod
testmod()
# Get input from user
init_vel = float(input("Initial Velocity: ").strip())
# Get input from user
angle = float(input("angle: ").strip())
# Print results
print()
print("Results: ")
print(f"Horizontal Distance: {str(horizontal_distance(init_vel, angle))} [m]")
print(f"Maximum Height: {str(max_height(init_vel, angle))} [m]")
print(f"Total Time: {str(total_time(init_vel, angle))} [s]")
| """
Horizontal Projectile Motion problem in physics.
This algorithm solves a specific problem in which
the motion starts from the ground as can be seen below:
(v = 0)
**
* *
* *
* *
* *
* *
GROUND GROUND
For more info: https://en.wikipedia.org/wiki/Projectile_motion
"""
# Importing packages
from math import radians as angle_to_radians
from math import sin
# Acceleration Constant on Earth (unit m/s^2)
g = 9.80665
def check_args(init_velocity: float, angle: float) -> None:
"""
Check that the arguments are valid
"""
# Ensure valid instance
if not isinstance(init_velocity, (int, float)):
raise TypeError("Invalid velocity. Should be a positive number.")
if not isinstance(angle, (int, float)):
raise TypeError("Invalid angle. Range is 1-90 degrees.")
# Ensure valid angle
if angle > 90 or angle < 1:
raise ValueError("Invalid angle. Range is 1-90 degrees.")
# Ensure valid velocity
if init_velocity < 0:
raise ValueError("Invalid velocity. Should be a positive number.")
def horizontal_distance(init_velocity: float, angle: float) -> float:
"""
Returns the horizontal distance that the object cover
Formula:
v_0^2 * sin(2 * alpha)
---------------------
g
v_0 - initial velocity
alpha - angle
>>> horizontal_distance(30, 45)
91.77
>>> horizontal_distance(100, 78)
414.76
>>> horizontal_distance(-1, 20)
Traceback (most recent call last):
...
ValueError: Invalid velocity. Should be a positive number.
>>> horizontal_distance(30, -20)
Traceback (most recent call last):
...
ValueError: Invalid angle. Range is 1-90 degrees.
"""
check_args(init_velocity, angle)
radians = angle_to_radians(2 * angle)
return round(init_velocity**2 * sin(radians) / g, 2)
def max_height(init_velocity: float, angle: float) -> float:
"""
Returns the maximum height that the object reach
Formula:
v_0^2 * sin^2(alpha)
--------------------
2g
v_0 - initial velocity
alpha - angle
>>> max_height(30, 45)
22.94
>>> max_height(100, 78)
487.82
>>> max_height("a", 20)
Traceback (most recent call last):
...
TypeError: Invalid velocity. Should be a positive number.
>>> horizontal_distance(30, "b")
Traceback (most recent call last):
...
TypeError: Invalid angle. Range is 1-90 degrees.
"""
check_args(init_velocity, angle)
radians = angle_to_radians(angle)
return round(init_velocity**2 * sin(radians) ** 2 / (2 * g), 2)
def total_time(init_velocity: float, angle: float) -> float:
"""
Returns total time of the motion
Formula:
2 * v_0 * sin(alpha)
--------------------
g
v_0 - initial velocity
alpha - angle
>>> total_time(30, 45)
4.33
>>> total_time(100, 78)
19.95
>>> total_time(-10, 40)
Traceback (most recent call last):
...
ValueError: Invalid velocity. Should be a positive number.
>>> total_time(30, "b")
Traceback (most recent call last):
...
TypeError: Invalid angle. Range is 1-90 degrees.
"""
check_args(init_velocity, angle)
radians = angle_to_radians(angle)
return round(2 * init_velocity * sin(radians) / g, 2)
def test_motion() -> None:
"""
>>> test_motion()
"""
v0, angle = 25, 20
assert horizontal_distance(v0, angle) == 40.97
assert max_height(v0, angle) == 3.73
assert total_time(v0, angle) == 1.74
if __name__ == "__main__":
from doctest import testmod
testmod()
# Get input from user
init_vel = float(input("Initial Velocity: ").strip())
# Get input from user
angle = float(input("angle: ").strip())
# Print results
print()
print("Results: ")
print(f"Horizontal Distance: {str(horizontal_distance(init_vel, angle))} [m]")
print(f"Maximum Height: {str(max_height(init_vel, angle))} [m]")
print(f"Total Time: {str(total_time(init_vel, angle))} [s]")
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
== Perfect Number ==
In number theory, a perfect number is a positive integer that is equal to the sum of
its positive divisors, excluding the number itself.
For example: 6 ==> divisors[1, 2, 3, 6]
Excluding 6, the sum(divisors) is 1 + 2 + 3 = 6
So, 6 is a Perfect Number
Other examples of Perfect Numbers: 28, 486, ...
https://en.wikipedia.org/wiki/Perfect_number
"""
def perfect(number: int) -> bool:
"""
>>> perfect(27)
False
>>> perfect(28)
True
>>> perfect(29)
False
Start from 1 because dividing by 0 will raise ZeroDivisionError.
A number at most can be divisible by the half of the number except the number
itself. For example, 6 is at most can be divisible by 3 except by 6 itself.
"""
return sum(i for i in range(1, number // 2 + 1) if number % i == 0) == number
if __name__ == "__main__":
print("Program to check whether a number is a Perfect number or not...")
number = int(input("Enter number: ").strip())
print(f"{number} is {'' if perfect(number) else 'not '}a Perfect Number.")
| """
== Perfect Number ==
In number theory, a perfect number is a positive integer that is equal to the sum of
its positive divisors, excluding the number itself.
For example: 6 ==> divisors[1, 2, 3, 6]
Excluding 6, the sum(divisors) is 1 + 2 + 3 = 6
So, 6 is a Perfect Number
Other examples of Perfect Numbers: 28, 486, ...
https://en.wikipedia.org/wiki/Perfect_number
"""
def perfect(number: int) -> bool:
"""
>>> perfect(27)
False
>>> perfect(28)
True
>>> perfect(29)
False
Start from 1 because dividing by 0 will raise ZeroDivisionError.
A number at most can be divisible by the half of the number except the number
itself. For example, 6 is at most can be divisible by 3 except by 6 itself.
"""
return sum(i for i in range(1, number // 2 + 1) if number % i == 0) == number
if __name__ == "__main__":
print("Program to check whether a number is a Perfect number or not...")
number = int(input("Enter number: ").strip())
print(f"{number} is {'' if perfect(number) else 'not '}a Perfect Number.")
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| #!/usr/bin/env python3
import hashlib
import importlib.util
import json
import os
import pathlib
from types import ModuleType
import pytest
import requests
PROJECT_EULER_DIR_PATH = pathlib.Path.cwd().joinpath("project_euler")
PROJECT_EULER_ANSWERS_PATH = pathlib.Path.cwd().joinpath(
"scripts", "project_euler_answers.json"
)
with open(PROJECT_EULER_ANSWERS_PATH) as file_handle:
PROBLEM_ANSWERS: dict[str, str] = json.load(file_handle)
def convert_path_to_module(file_path: pathlib.Path) -> ModuleType:
"""Converts a file path to a Python module"""
spec = importlib.util.spec_from_file_location(file_path.name, str(file_path))
module = importlib.util.module_from_spec(spec) # type: ignore
spec.loader.exec_module(module) # type: ignore
return module
def all_solution_file_paths() -> list[pathlib.Path]:
"""Collects all the solution file path in the Project Euler directory"""
solution_file_paths = []
for problem_dir_path in PROJECT_EULER_DIR_PATH.iterdir():
if problem_dir_path.is_file() or problem_dir_path.name.startswith("_"):
continue
for file_path in problem_dir_path.iterdir():
if file_path.suffix != ".py" or file_path.name.startswith(("_", "test")):
continue
solution_file_paths.append(file_path)
return solution_file_paths
def get_files_url() -> str:
"""Return the pull request number which triggered this action."""
with open(os.environ["GITHUB_EVENT_PATH"]) as file:
event = json.load(file)
return event["pull_request"]["url"] + "/files"
def added_solution_file_path() -> list[pathlib.Path]:
"""Collects only the solution file path which got added in the current
pull request.
This will only be triggered if the script is ran from GitHub Actions.
"""
solution_file_paths = []
headers = {
"Accept": "application/vnd.github.v3+json",
"Authorization": "token " + os.environ["GITHUB_TOKEN"],
}
files = requests.get(get_files_url(), headers=headers).json()
for file in files:
filepath = pathlib.Path.cwd().joinpath(file["filename"])
if (
filepath.suffix != ".py"
or filepath.name.startswith(("_", "test"))
or not filepath.name.startswith("sol")
):
continue
solution_file_paths.append(filepath)
return solution_file_paths
def collect_solution_file_paths() -> list[pathlib.Path]:
if os.environ.get("CI") and os.environ.get("GITHUB_EVENT_NAME") == "pull_request":
# Return only if there are any, otherwise default to all solutions
if filepaths := added_solution_file_path():
return filepaths
return all_solution_file_paths()
@pytest.mark.parametrize(
"solution_path",
collect_solution_file_paths(),
ids=lambda path: f"{path.parent.name}/{path.name}",
)
def test_project_euler(solution_path: pathlib.Path) -> None:
"""Testing for all Project Euler solutions"""
# problem_[extract this part] and pad it with zeroes for width 3
problem_number: str = solution_path.parent.name[8:].zfill(3)
expected: str = PROBLEM_ANSWERS[problem_number]
solution_module = convert_path_to_module(solution_path)
answer = str(solution_module.solution()) # type: ignore
answer = hashlib.sha256(answer.encode()).hexdigest()
assert (
answer == expected
), f"Expected solution to {problem_number} to have hash {expected}, got {answer}"
| #!/usr/bin/env python3
import hashlib
import importlib.util
import json
import os
import pathlib
from types import ModuleType
import pytest
import requests
PROJECT_EULER_DIR_PATH = pathlib.Path.cwd().joinpath("project_euler")
PROJECT_EULER_ANSWERS_PATH = pathlib.Path.cwd().joinpath(
"scripts", "project_euler_answers.json"
)
with open(PROJECT_EULER_ANSWERS_PATH) as file_handle:
PROBLEM_ANSWERS: dict[str, str] = json.load(file_handle)
def convert_path_to_module(file_path: pathlib.Path) -> ModuleType:
"""Converts a file path to a Python module"""
spec = importlib.util.spec_from_file_location(file_path.name, str(file_path))
module = importlib.util.module_from_spec(spec) # type: ignore
spec.loader.exec_module(module) # type: ignore
return module
def all_solution_file_paths() -> list[pathlib.Path]:
"""Collects all the solution file path in the Project Euler directory"""
solution_file_paths = []
for problem_dir_path in PROJECT_EULER_DIR_PATH.iterdir():
if problem_dir_path.is_file() or problem_dir_path.name.startswith("_"):
continue
for file_path in problem_dir_path.iterdir():
if file_path.suffix != ".py" or file_path.name.startswith(("_", "test")):
continue
solution_file_paths.append(file_path)
return solution_file_paths
def get_files_url() -> str:
"""Return the pull request number which triggered this action."""
with open(os.environ["GITHUB_EVENT_PATH"]) as file:
event = json.load(file)
return event["pull_request"]["url"] + "/files"
def added_solution_file_path() -> list[pathlib.Path]:
"""Collects only the solution file path which got added in the current
pull request.
This will only be triggered if the script is ran from GitHub Actions.
"""
solution_file_paths = []
headers = {
"Accept": "application/vnd.github.v3+json",
"Authorization": "token " + os.environ["GITHUB_TOKEN"],
}
files = requests.get(get_files_url(), headers=headers).json()
for file in files:
filepath = pathlib.Path.cwd().joinpath(file["filename"])
if (
filepath.suffix != ".py"
or filepath.name.startswith(("_", "test"))
or not filepath.name.startswith("sol")
):
continue
solution_file_paths.append(filepath)
return solution_file_paths
def collect_solution_file_paths() -> list[pathlib.Path]:
if os.environ.get("CI") and os.environ.get("GITHUB_EVENT_NAME") == "pull_request":
# Return only if there are any, otherwise default to all solutions
if filepaths := added_solution_file_path():
return filepaths
return all_solution_file_paths()
@pytest.mark.parametrize(
"solution_path",
collect_solution_file_paths(),
ids=lambda path: f"{path.parent.name}/{path.name}",
)
def test_project_euler(solution_path: pathlib.Path) -> None:
"""Testing for all Project Euler solutions"""
# problem_[extract this part] and pad it with zeroes for width 3
problem_number: str = solution_path.parent.name[8:].zfill(3)
expected: str = PROBLEM_ANSWERS[problem_number]
solution_module = convert_path_to_module(solution_path)
answer = str(solution_module.solution()) # type: ignore
answer = hashlib.sha256(answer.encode()).hexdigest()
assert (
answer == expected
), f"Expected solution to {problem_number} to have hash {expected}, got {answer}"
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| from __future__ import annotations
def collatz_sequence(n: int) -> list[int]:
"""
Collatz conjecture: start with any positive integer n. The next term is
obtained as follows:
If n term is even, the next term is: n / 2 .
If n is odd, the next term is: 3 * n + 1.
The conjecture states the sequence will always reach 1 for any starting value n.
Example:
>>> collatz_sequence(2.1)
Traceback (most recent call last):
...
Exception: Sequence only defined for natural numbers
>>> collatz_sequence(0)
Traceback (most recent call last):
...
Exception: Sequence only defined for natural numbers
>>> collatz_sequence(43) # doctest: +NORMALIZE_WHITESPACE
[43, 130, 65, 196, 98, 49, 148, 74, 37, 112, 56, 28, 14, 7,
22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]
"""
if not isinstance(n, int) or n < 1:
raise Exception("Sequence only defined for natural numbers")
sequence = [n]
while n != 1:
n = 3 * n + 1 if n & 1 else n // 2
sequence.append(n)
return sequence
def main():
n = 43
sequence = collatz_sequence(n)
print(sequence)
print(f"collatz sequence from {n} took {len(sequence)} steps.")
if __name__ == "__main__":
main()
| from __future__ import annotations
def collatz_sequence(n: int) -> list[int]:
"""
Collatz conjecture: start with any positive integer n. The next term is
obtained as follows:
If n term is even, the next term is: n / 2 .
If n is odd, the next term is: 3 * n + 1.
The conjecture states the sequence will always reach 1 for any starting value n.
Example:
>>> collatz_sequence(2.1)
Traceback (most recent call last):
...
Exception: Sequence only defined for natural numbers
>>> collatz_sequence(0)
Traceback (most recent call last):
...
Exception: Sequence only defined for natural numbers
>>> collatz_sequence(43) # doctest: +NORMALIZE_WHITESPACE
[43, 130, 65, 196, 98, 49, 148, 74, 37, 112, 56, 28, 14, 7,
22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]
"""
if not isinstance(n, int) or n < 1:
raise Exception("Sequence only defined for natural numbers")
sequence = [n]
while n != 1:
n = 3 * n + 1 if n & 1 else n // 2
sequence.append(n)
return sequence
def main():
n = 43
sequence = collatz_sequence(n)
print(sequence)
print(f"collatz sequence from {n} took {len(sequence)} steps.")
if __name__ == "__main__":
main()
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
Highest response ratio next (HRRN) scheduling is a non-preemptive discipline.
It was developed as modification of shortest job next or shortest job first (SJN or SJF)
to mitigate the problem of process starvation.
https://en.wikipedia.org/wiki/Highest_response_ratio_next
"""
from statistics import mean
import numpy as np
def calculate_turn_around_time(
process_name: list, arrival_time: list, burst_time: list, no_of_process: int
) -> list:
"""
Calculate the turn around time of each processes
Return: The turn around time time for each process.
>>> calculate_turn_around_time(["A", "B", "C"], [3, 5, 8], [2, 4, 6], 3)
[2, 4, 7]
>>> calculate_turn_around_time(["A", "B", "C"], [0, 2, 4], [3, 5, 7], 3)
[3, 6, 11]
"""
current_time = 0
# Number of processes finished
finished_process_count = 0
# Displays the finished process.
# If it is 0, the performance is completed if it is 1, before the performance.
finished_process = [0] * no_of_process
# List to include calculation results
turn_around_time = [0] * no_of_process
# Sort by arrival time.
burst_time = [burst_time[i] for i in np.argsort(arrival_time)]
process_name = [process_name[i] for i in np.argsort(arrival_time)]
arrival_time.sort()
while no_of_process > finished_process_count:
"""
If the current time is less than the arrival time of
the process that arrives first among the processes that have not been performed,
change the current time.
"""
i = 0
while finished_process[i] == 1:
i += 1
if current_time < arrival_time[i]:
current_time = arrival_time[i]
response_ratio = 0
# Index showing the location of the process being performed
loc = 0
# Saves the current response ratio.
temp = 0
for i in range(0, no_of_process):
if finished_process[i] == 0 and arrival_time[i] <= current_time:
temp = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[
i
]
if response_ratio < temp:
response_ratio = temp
loc = i
# Calculate the turn around time
turn_around_time[loc] = current_time + burst_time[loc] - arrival_time[loc]
current_time += burst_time[loc]
# Indicates that the process has been performed.
finished_process[loc] = 1
# Increase finished_process_count by 1
finished_process_count += 1
return turn_around_time
def calculate_waiting_time(
process_name: list, turn_around_time: list, burst_time: list, no_of_process: int
) -> list:
"""
Calculate the waiting time of each processes.
Return: The waiting time for each process.
>>> calculate_waiting_time(["A", "B", "C"], [2, 4, 7], [2, 4, 6], 3)
[0, 0, 1]
>>> calculate_waiting_time(["A", "B", "C"], [3, 6, 11], [3, 5, 7], 3)
[0, 1, 4]
"""
waiting_time = [0] * no_of_process
for i in range(0, no_of_process):
waiting_time[i] = turn_around_time[i] - burst_time[i]
return waiting_time
if __name__ == "__main__":
no_of_process = 5
process_name = ["A", "B", "C", "D", "E"]
arrival_time = [1, 2, 3, 4, 5]
burst_time = [1, 2, 3, 4, 5]
turn_around_time = calculate_turn_around_time(
process_name, arrival_time, burst_time, no_of_process
)
waiting_time = calculate_waiting_time(
process_name, turn_around_time, burst_time, no_of_process
)
print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time")
for i in range(0, no_of_process):
print(
f"{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t"
f"{turn_around_time[i]}\t\t\t{waiting_time[i]}"
)
print(f"average waiting time : {mean(waiting_time):.5f}")
print(f"average turn around time : {mean(turn_around_time):.5f}")
| """
Highest response ratio next (HRRN) scheduling is a non-preemptive discipline.
It was developed as modification of shortest job next or shortest job first (SJN or SJF)
to mitigate the problem of process starvation.
https://en.wikipedia.org/wiki/Highest_response_ratio_next
"""
from statistics import mean
import numpy as np
def calculate_turn_around_time(
process_name: list, arrival_time: list, burst_time: list, no_of_process: int
) -> list:
"""
Calculate the turn around time of each processes
Return: The turn around time time for each process.
>>> calculate_turn_around_time(["A", "B", "C"], [3, 5, 8], [2, 4, 6], 3)
[2, 4, 7]
>>> calculate_turn_around_time(["A", "B", "C"], [0, 2, 4], [3, 5, 7], 3)
[3, 6, 11]
"""
current_time = 0
# Number of processes finished
finished_process_count = 0
# Displays the finished process.
# If it is 0, the performance is completed if it is 1, before the performance.
finished_process = [0] * no_of_process
# List to include calculation results
turn_around_time = [0] * no_of_process
# Sort by arrival time.
burst_time = [burst_time[i] for i in np.argsort(arrival_time)]
process_name = [process_name[i] for i in np.argsort(arrival_time)]
arrival_time.sort()
while no_of_process > finished_process_count:
"""
If the current time is less than the arrival time of
the process that arrives first among the processes that have not been performed,
change the current time.
"""
i = 0
while finished_process[i] == 1:
i += 1
if current_time < arrival_time[i]:
current_time = arrival_time[i]
response_ratio = 0
# Index showing the location of the process being performed
loc = 0
# Saves the current response ratio.
temp = 0
for i in range(0, no_of_process):
if finished_process[i] == 0 and arrival_time[i] <= current_time:
temp = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[
i
]
if response_ratio < temp:
response_ratio = temp
loc = i
# Calculate the turn around time
turn_around_time[loc] = current_time + burst_time[loc] - arrival_time[loc]
current_time += burst_time[loc]
# Indicates that the process has been performed.
finished_process[loc] = 1
# Increase finished_process_count by 1
finished_process_count += 1
return turn_around_time
def calculate_waiting_time(
process_name: list, turn_around_time: list, burst_time: list, no_of_process: int
) -> list:
"""
Calculate the waiting time of each processes.
Return: The waiting time for each process.
>>> calculate_waiting_time(["A", "B", "C"], [2, 4, 7], [2, 4, 6], 3)
[0, 0, 1]
>>> calculate_waiting_time(["A", "B", "C"], [3, 6, 11], [3, 5, 7], 3)
[0, 1, 4]
"""
waiting_time = [0] * no_of_process
for i in range(0, no_of_process):
waiting_time[i] = turn_around_time[i] - burst_time[i]
return waiting_time
if __name__ == "__main__":
no_of_process = 5
process_name = ["A", "B", "C", "D", "E"]
arrival_time = [1, 2, 3, 4, 5]
burst_time = [1, 2, 3, 4, 5]
turn_around_time = calculate_turn_around_time(
process_name, arrival_time, burst_time, no_of_process
)
waiting_time = calculate_waiting_time(
process_name, turn_around_time, burst_time, no_of_process
)
print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time")
for i in range(0, no_of_process):
print(
f"{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t"
f"{turn_around_time[i]}\t\t\t{waiting_time[i]}"
)
print(f"average waiting time : {mean(waiting_time):.5f}")
print(f"average turn around time : {mean(turn_around_time):.5f}")
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """ A Stack using a linked list like structure """
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
T = TypeVar("T")
class Node(Generic[T]):
def __init__(self, data: T):
self.data = data
self.next: Node[T] | None = None
def __str__(self) -> str:
return f"{self.data}"
class LinkedStack(Generic[T]):
"""
Linked List Stack implementing push (to top),
pop (from top) and is_empty
>>> stack = LinkedStack()
>>> stack.is_empty()
True
>>> stack.push(5)
>>> stack.push(9)
>>> stack.push('python')
>>> stack.is_empty()
False
>>> stack.pop()
'python'
>>> stack.push('algorithms')
>>> stack.pop()
'algorithms'
>>> stack.pop()
9
>>> stack.pop()
5
>>> stack.is_empty()
True
>>> stack.pop()
Traceback (most recent call last):
...
IndexError: pop from empty stack
"""
def __init__(self) -> None:
self.top: Node[T] | None = None
def __iter__(self) -> Iterator[T]:
node = self.top
while node:
yield node.data
node = node.next
def __str__(self) -> str:
"""
>>> stack = LinkedStack()
>>> stack.push("c")
>>> stack.push("b")
>>> stack.push("a")
>>> str(stack)
'a->b->c'
"""
return "->".join([str(item) for item in self])
def __len__(self) -> int:
"""
>>> stack = LinkedStack()
>>> len(stack) == 0
True
>>> stack.push("c")
>>> stack.push("b")
>>> stack.push("a")
>>> len(stack) == 3
True
"""
return len(tuple(iter(self)))
def is_empty(self) -> bool:
"""
>>> stack = LinkedStack()
>>> stack.is_empty()
True
>>> stack.push(1)
>>> stack.is_empty()
False
"""
return self.top is None
def push(self, item: T) -> None:
"""
>>> stack = LinkedStack()
>>> stack.push("Python")
>>> stack.push("Java")
>>> stack.push("C")
>>> str(stack)
'C->Java->Python'
"""
node = Node(item)
if not self.is_empty():
node.next = self.top
self.top = node
def pop(self) -> T:
"""
>>> stack = LinkedStack()
>>> stack.pop()
Traceback (most recent call last):
...
IndexError: pop from empty stack
>>> stack.push("c")
>>> stack.push("b")
>>> stack.push("a")
>>> stack.pop() == 'a'
True
>>> stack.pop() == 'b'
True
>>> stack.pop() == 'c'
True
"""
if self.is_empty():
raise IndexError("pop from empty stack")
assert isinstance(self.top, Node)
pop_node = self.top
self.top = self.top.next
return pop_node.data
def peek(self) -> T:
"""
>>> stack = LinkedStack()
>>> stack.push("Java")
>>> stack.push("C")
>>> stack.push("Python")
>>> stack.peek()
'Python'
"""
if self.is_empty():
raise IndexError("peek from empty stack")
assert self.top is not None
return self.top.data
def clear(self) -> None:
"""
>>> stack = LinkedStack()
>>> stack.push("Java")
>>> stack.push("C")
>>> stack.push("Python")
>>> str(stack)
'Python->C->Java'
>>> stack.clear()
>>> len(stack) == 0
True
"""
self.top = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| """ A Stack using a linked list like structure """
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
T = TypeVar("T")
class Node(Generic[T]):
def __init__(self, data: T):
self.data = data
self.next: Node[T] | None = None
def __str__(self) -> str:
return f"{self.data}"
class LinkedStack(Generic[T]):
"""
Linked List Stack implementing push (to top),
pop (from top) and is_empty
>>> stack = LinkedStack()
>>> stack.is_empty()
True
>>> stack.push(5)
>>> stack.push(9)
>>> stack.push('python')
>>> stack.is_empty()
False
>>> stack.pop()
'python'
>>> stack.push('algorithms')
>>> stack.pop()
'algorithms'
>>> stack.pop()
9
>>> stack.pop()
5
>>> stack.is_empty()
True
>>> stack.pop()
Traceback (most recent call last):
...
IndexError: pop from empty stack
"""
def __init__(self) -> None:
self.top: Node[T] | None = None
def __iter__(self) -> Iterator[T]:
node = self.top
while node:
yield node.data
node = node.next
def __str__(self) -> str:
"""
>>> stack = LinkedStack()
>>> stack.push("c")
>>> stack.push("b")
>>> stack.push("a")
>>> str(stack)
'a->b->c'
"""
return "->".join([str(item) for item in self])
def __len__(self) -> int:
"""
>>> stack = LinkedStack()
>>> len(stack) == 0
True
>>> stack.push("c")
>>> stack.push("b")
>>> stack.push("a")
>>> len(stack) == 3
True
"""
return len(tuple(iter(self)))
def is_empty(self) -> bool:
"""
>>> stack = LinkedStack()
>>> stack.is_empty()
True
>>> stack.push(1)
>>> stack.is_empty()
False
"""
return self.top is None
def push(self, item: T) -> None:
"""
>>> stack = LinkedStack()
>>> stack.push("Python")
>>> stack.push("Java")
>>> stack.push("C")
>>> str(stack)
'C->Java->Python'
"""
node = Node(item)
if not self.is_empty():
node.next = self.top
self.top = node
def pop(self) -> T:
"""
>>> stack = LinkedStack()
>>> stack.pop()
Traceback (most recent call last):
...
IndexError: pop from empty stack
>>> stack.push("c")
>>> stack.push("b")
>>> stack.push("a")
>>> stack.pop() == 'a'
True
>>> stack.pop() == 'b'
True
>>> stack.pop() == 'c'
True
"""
if self.is_empty():
raise IndexError("pop from empty stack")
assert isinstance(self.top, Node)
pop_node = self.top
self.top = self.top.next
return pop_node.data
def peek(self) -> T:
"""
>>> stack = LinkedStack()
>>> stack.push("Java")
>>> stack.push("C")
>>> stack.push("Python")
>>> stack.peek()
'Python'
"""
if self.is_empty():
raise IndexError("peek from empty stack")
assert self.top is not None
return self.top.data
def clear(self) -> None:
"""
>>> stack = LinkedStack()
>>> stack.push("Java")
>>> stack.push("C")
>>> stack.push("Python")
>>> str(stack)
'Python->C->Java'
>>> stack.clear()
>>> len(stack) == 0
True
"""
self.top = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| from __future__ import annotations
from collections import deque
class Automaton:
def __init__(self, keywords: list[str]):
self.adlist: list[dict] = list()
self.adlist.append(
{"value": "", "next_states": [], "fail_state": 0, "output": []}
)
for keyword in keywords:
self.add_keyword(keyword)
self.set_fail_transitions()
def find_next_state(self, current_state: int, char: str) -> int | None:
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def add_keyword(self, keyword: str) -> None:
current_state = 0
for character in keyword:
next_state = self.find_next_state(current_state, character)
if next_state is None:
self.adlist.append(
{
"value": character,
"next_states": [],
"fail_state": 0,
"output": [],
}
)
self.adlist[current_state]["next_states"].append(len(self.adlist) - 1)
current_state = len(self.adlist) - 1
else:
current_state = next_state
self.adlist[current_state]["output"].append(keyword)
def set_fail_transitions(self) -> None:
q: deque = deque()
for node in self.adlist[0]["next_states"]:
q.append(node)
self.adlist[node]["fail_state"] = 0
while q:
r = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(child)
state = self.adlist[r]["fail_state"]
while (
self.find_next_state(state, self.adlist[child]["value"]) is None
and state != 0
):
state = self.adlist[state]["fail_state"]
self.adlist[child]["fail_state"] = self.find_next_state(
state, self.adlist[child]["value"]
)
if self.adlist[child]["fail_state"] is None:
self.adlist[child]["fail_state"] = 0
self.adlist[child]["output"] = (
self.adlist[child]["output"]
+ self.adlist[self.adlist[child]["fail_state"]]["output"]
)
def search_in(self, string: str) -> dict[str, list[int]]:
"""
>>> A = Automaton(["what", "hat", "ver", "er"])
>>> A.search_in("whatever, err ... , wherever")
{'what': [0], 'hat': [1], 'ver': [5, 25], 'er': [6, 10, 22, 26]}
"""
result: dict = (
dict()
) # returns a dict with keywords and list of its occurrences
current_state = 0
for i in range(len(string)):
while (
self.find_next_state(current_state, string[i]) is None
and current_state != 0
):
current_state = self.adlist[current_state]["fail_state"]
next_state = self.find_next_state(current_state, string[i])
if next_state is None:
current_state = 0
else:
current_state = next_state
for key in self.adlist[current_state]["output"]:
if not (key in result):
result[key] = []
result[key].append(i - len(key) + 1)
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| from __future__ import annotations
from collections import deque
class Automaton:
def __init__(self, keywords: list[str]):
self.adlist: list[dict] = list()
self.adlist.append(
{"value": "", "next_states": [], "fail_state": 0, "output": []}
)
for keyword in keywords:
self.add_keyword(keyword)
self.set_fail_transitions()
def find_next_state(self, current_state: int, char: str) -> int | None:
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def add_keyword(self, keyword: str) -> None:
current_state = 0
for character in keyword:
next_state = self.find_next_state(current_state, character)
if next_state is None:
self.adlist.append(
{
"value": character,
"next_states": [],
"fail_state": 0,
"output": [],
}
)
self.adlist[current_state]["next_states"].append(len(self.adlist) - 1)
current_state = len(self.adlist) - 1
else:
current_state = next_state
self.adlist[current_state]["output"].append(keyword)
def set_fail_transitions(self) -> None:
q: deque = deque()
for node in self.adlist[0]["next_states"]:
q.append(node)
self.adlist[node]["fail_state"] = 0
while q:
r = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(child)
state = self.adlist[r]["fail_state"]
while (
self.find_next_state(state, self.adlist[child]["value"]) is None
and state != 0
):
state = self.adlist[state]["fail_state"]
self.adlist[child]["fail_state"] = self.find_next_state(
state, self.adlist[child]["value"]
)
if self.adlist[child]["fail_state"] is None:
self.adlist[child]["fail_state"] = 0
self.adlist[child]["output"] = (
self.adlist[child]["output"]
+ self.adlist[self.adlist[child]["fail_state"]]["output"]
)
def search_in(self, string: str) -> dict[str, list[int]]:
"""
>>> A = Automaton(["what", "hat", "ver", "er"])
>>> A.search_in("whatever, err ... , wherever")
{'what': [0], 'hat': [1], 'ver': [5, 25], 'er': [6, 10, 22, 26]}
"""
result: dict = (
dict()
) # returns a dict with keywords and list of its occurrences
current_state = 0
for i in range(len(string)):
while (
self.find_next_state(current_state, string[i]) is None
and current_state != 0
):
current_state = self.adlist[current_state]["fail_state"]
next_state = self.find_next_state(current_state, string[i])
if next_state is None:
current_state = 0
else:
current_state = next_state
for key in self.adlist[current_state]["output"]:
if not (key in result):
result[key] = []
result[key].append(i - len(key) + 1)
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
Project Euler Problem 3: https://projecteuler.net/problem=3
Largest prime factor
The prime factors of 13195 are 5, 7, 13 and 29.
What is the largest prime factor of the number 600851475143?
References:
- https://en.wikipedia.org/wiki/Prime_number#Unique_factorization
"""
import math
def is_prime(number: int) -> bool:
"""Checks to see if a number is a prime in O(sqrt(n)).
A number is prime if it has exactly two factors: 1 and itself.
Returns boolean representing primality of given number (i.e., if the
result is true, then the number is indeed prime else it is not).
>>> is_prime(2)
True
>>> is_prime(3)
True
>>> is_prime(27)
False
>>> is_prime(2999)
True
>>> is_prime(0)
False
>>> is_prime(1)
False
"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def solution(n: int = 600851475143) -> int:
"""
Returns the largest prime factor of a given number n.
>>> solution(13195)
29
>>> solution(10)
5
>>> solution(17)
17
>>> solution(3.4)
3
>>> solution(0)
Traceback (most recent call last):
...
ValueError: Parameter n must be greater than or equal to one.
>>> solution(-17)
Traceback (most recent call last):
...
ValueError: Parameter n must be greater than or equal to one.
>>> solution([])
Traceback (most recent call last):
...
TypeError: Parameter n must be int or castable to int.
>>> solution("asd")
Traceback (most recent call last):
...
TypeError: Parameter n must be int or castable to int.
"""
try:
n = int(n)
except (TypeError, ValueError):
raise TypeError("Parameter n must be int or castable to int.")
if n <= 0:
raise ValueError("Parameter n must be greater than or equal to one.")
max_number = 0
if is_prime(n):
return n
while n % 2 == 0:
n //= 2
if is_prime(n):
return n
for i in range(3, int(math.sqrt(n)) + 1, 2):
if n % i == 0:
if is_prime(n // i):
max_number = n // i
break
elif is_prime(i):
max_number = i
return max_number
if __name__ == "__main__":
print(f"{solution() = }")
| """
Project Euler Problem 3: https://projecteuler.net/problem=3
Largest prime factor
The prime factors of 13195 are 5, 7, 13 and 29.
What is the largest prime factor of the number 600851475143?
References:
- https://en.wikipedia.org/wiki/Prime_number#Unique_factorization
"""
import math
def is_prime(number: int) -> bool:
"""Checks to see if a number is a prime in O(sqrt(n)).
A number is prime if it has exactly two factors: 1 and itself.
Returns boolean representing primality of given number (i.e., if the
result is true, then the number is indeed prime else it is not).
>>> is_prime(2)
True
>>> is_prime(3)
True
>>> is_prime(27)
False
>>> is_prime(2999)
True
>>> is_prime(0)
False
>>> is_prime(1)
False
"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(number) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def solution(n: int = 600851475143) -> int:
"""
Returns the largest prime factor of a given number n.
>>> solution(13195)
29
>>> solution(10)
5
>>> solution(17)
17
>>> solution(3.4)
3
>>> solution(0)
Traceback (most recent call last):
...
ValueError: Parameter n must be greater than or equal to one.
>>> solution(-17)
Traceback (most recent call last):
...
ValueError: Parameter n must be greater than or equal to one.
>>> solution([])
Traceback (most recent call last):
...
TypeError: Parameter n must be int or castable to int.
>>> solution("asd")
Traceback (most recent call last):
...
TypeError: Parameter n must be int or castable to int.
"""
try:
n = int(n)
except (TypeError, ValueError):
raise TypeError("Parameter n must be int or castable to int.")
if n <= 0:
raise ValueError("Parameter n must be greater than or equal to one.")
max_number = 0
if is_prime(n):
return n
while n % 2 == 0:
n //= 2
if is_prime(n):
return n
for i in range(3, int(math.sqrt(n)) + 1, 2):
if n % i == 0:
if is_prime(n // i):
max_number = n // i
break
elif is_prime(i):
max_number = i
return max_number
if __name__ == "__main__":
print(f"{solution() = }")
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
Numerical integration or quadrature for a smooth function f with known values at x_i
This method is the classical approach of suming 'Equally Spaced Abscissas'
method 1:
"extended trapezoidal rule"
"""
def method_1(boundary, steps):
# "extended trapezoidal rule"
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
h = (boundary[1] - boundary[0]) / steps
a = boundary[0]
b = boundary[1]
x_i = make_points(a, b, h)
y = 0.0
y += (h / 2.0) * f(a)
for i in x_i:
# print(i)
y += h * f(i)
y += (h / 2.0) * f(b)
return y
def make_points(a, b, h):
x = a + h
while x < (b - h):
yield x
x = x + h
def f(x): # enter your function here
y = (x - 0) * (x - 0)
return y
def main():
a = 0.0 # Lower bound of integration
b = 1.0 # Upper bound of integration
steps = 10.0 # define number of steps or resolution
boundary = [a, b] # define boundary of integration
y = method_1(boundary, steps)
print(f"y = {y}")
if __name__ == "__main__":
main()
| """
Numerical integration or quadrature for a smooth function f with known values at x_i
This method is the classical approach of suming 'Equally Spaced Abscissas'
method 1:
"extended trapezoidal rule"
"""
def method_1(boundary, steps):
# "extended trapezoidal rule"
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
h = (boundary[1] - boundary[0]) / steps
a = boundary[0]
b = boundary[1]
x_i = make_points(a, b, h)
y = 0.0
y += (h / 2.0) * f(a)
for i in x_i:
# print(i)
y += h * f(i)
y += (h / 2.0) * f(b)
return y
def make_points(a, b, h):
x = a + h
while x < (b - h):
yield x
x = x + h
def f(x): # enter your function here
y = (x - 0) * (x - 0)
return y
def main():
a = 0.0 # Lower bound of integration
b = 1.0 # Upper bound of integration
steps = 10.0 # define number of steps or resolution
boundary = [a, b] # define boundary of integration
y = method_1(boundary, steps)
print(f"y = {y}")
if __name__ == "__main__":
main()
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| -1 |
||
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| name: "build"
on:
pull_request:
schedule:
- cron: "0 0 * * *" # Run everyday
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/setup-python@v4
with:
python-version: 3.x
- uses: actions/cache@v3
with:
path: ~/.cache/pip
key: ${{ runner.os }}-pip-${{ hashFiles('requirements.txt') }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip setuptools six wheel
python -m pip install pytest-cov -r requirements.txt
- name: Run tests
run: pytest --doctest-modules --ignore=project_euler/ --ignore=scripts/validate_solutions.py --cov-report=term-missing:skip-covered --cov=. .
- if: ${{ success() }}
run: scripts/build_directory_md.py 2>&1 | tee DIRECTORY.md
| name: "build"
on:
pull_request:
schedule:
- cron: "0 0 * * *" # Run everyday
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/setup-python@v4
with:
python-version: 3.x
- uses: actions/cache@v3
with:
path: ~/.cache/pip
key: ${{ runner.os }}-pip-${{ hashFiles('requirements.txt') }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip setuptools six wheel
python -m pip install pytest-cov -r requirements.txt
- name: Run tests
run: pytest --doctest-modules --ignore=project_euler/ --ignore=scripts/validate_solutions.py --cov-report=term-missing:skip-covered --cov=. .
- if: ${{ success() }}
run: scripts/build_directory_md.py 2>&1 | tee DIRECTORY.md
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| #!/usr/bin/env python3
from .number_theory.prime_numbers import next_prime
class HashTable:
"""
Basic Hash Table example with open addressing and linear probing
"""
def __init__(self, size_table, charge_factor=None, lim_charge=None):
self.size_table = size_table
self.values = [None] * self.size_table
self.lim_charge = 0.75 if lim_charge is None else lim_charge
self.charge_factor = 1 if charge_factor is None else charge_factor
self.__aux_list = []
self._keys = {}
def keys(self):
return self._keys
def balanced_factor(self):
return sum(1 for slot in self.values if slot is not None) / (
self.size_table * self.charge_factor
)
def hash_function(self, key):
return key % self.size_table
def _step_by_step(self, step_ord):
print(f"step {step_ord}")
print([i for i in range(len(self.values))])
print(self.values)
def bulk_insert(self, values):
i = 1
self.__aux_list = values
for value in values:
self.insert_data(value)
self._step_by_step(i)
i += 1
def _set_value(self, key, data):
self.values[key] = data
self._keys[key] = data
def _collision_resolution(self, key, data=None):
new_key = self.hash_function(key + 1)
while self.values[new_key] is not None and self.values[new_key] != key:
if self.values.count(None) > 0:
new_key = self.hash_function(new_key + 1)
else:
new_key = None
break
return new_key
def rehashing(self):
survivor_values = [value for value in self.values if value is not None]
self.size_table = next_prime(self.size_table, factor=2)
self._keys.clear()
self.values = [None] * self.size_table # hell's pointers D: don't DRY ;/
for value in survivor_values:
self.insert_data(value)
def insert_data(self, data):
key = self.hash_function(data)
if self.values[key] is None:
self._set_value(key, data)
elif self.values[key] == data:
pass
else:
collision_resolution = self._collision_resolution(key, data)
if collision_resolution is not None:
self._set_value(collision_resolution, data)
else:
self.rehashing()
self.insert_data(data)
| #!/usr/bin/env python3
from .number_theory.prime_numbers import next_prime
class HashTable:
"""
Basic Hash Table example with open addressing and linear probing
"""
def __init__(self, size_table, charge_factor=None, lim_charge=None):
self.size_table = size_table
self.values = [None] * self.size_table
self.lim_charge = 0.75 if lim_charge is None else lim_charge
self.charge_factor = 1 if charge_factor is None else charge_factor
self.__aux_list = []
self._keys = {}
def keys(self):
return self._keys
def balanced_factor(self):
return sum(1 for slot in self.values if slot is not None) / (
self.size_table * self.charge_factor
)
def hash_function(self, key):
return key % self.size_table
def _step_by_step(self, step_ord):
print(f"step {step_ord}")
print([i for i in range(len(self.values))])
print(self.values)
def bulk_insert(self, values):
i = 1
self.__aux_list = values
for value in values:
self.insert_data(value)
self._step_by_step(i)
i += 1
def _set_value(self, key, data):
self.values[key] = data
self._keys[key] = data
def _collision_resolution(self, key, data=None):
new_key = self.hash_function(key + 1)
while self.values[new_key] is not None and self.values[new_key] != key:
if self.values.count(None) > 0:
new_key = self.hash_function(new_key + 1)
else:
new_key = None
break
return new_key
def rehashing(self):
survivor_values = [value for value in self.values if value is not None]
self.size_table = next_prime(self.size_table, factor=2)
self._keys.clear()
self.values = [None] * self.size_table # hell's pointers D: don't DRY ;/
for value in survivor_values:
self.insert_data(value)
def insert_data(self, data):
key = self.hash_function(data)
if self.values[key] is None:
self._set_value(key, data)
elif self.values[key] == data:
pass
else:
collision_resolution = self._collision_resolution(key, data)
if collision_resolution is not None:
self._set_value(collision_resolution, data)
else:
self.rehashing()
self.insert_data(data)
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| [pytest]
markers =
mat_ops: tests for matrix operations
| [pytest]
markers =
mat_ops: tests for matrix operations
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| 08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
| 08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| -1 |
||
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| from sys import maxsize
def max_sub_array_sum(a: list, size: int = 0):
"""
>>> max_sub_array_sum([-13, -3, -25, -20, -3, -16, -23, -12, -5, -22, -15, -4, -7])
-3
"""
size = size or len(a)
max_so_far = -maxsize - 1
max_ending_here = 0
for i in range(0, size):
max_ending_here = max_ending_here + a[i]
if max_so_far < max_ending_here:
max_so_far = max_ending_here
if max_ending_here < 0:
max_ending_here = 0
return max_so_far
if __name__ == "__main__":
a = [-13, -3, -25, -20, 1, -16, -23, -12, -5, -22, -15, -4, -7]
print(("Maximum contiguous sum is", max_sub_array_sum(a, len(a))))
| from sys import maxsize
def max_sub_array_sum(a: list, size: int = 0):
"""
>>> max_sub_array_sum([-13, -3, -25, -20, -3, -16, -23, -12, -5, -22, -15, -4, -7])
-3
"""
size = size or len(a)
max_so_far = -maxsize - 1
max_ending_here = 0
for i in range(0, size):
max_ending_here = max_ending_here + a[i]
if max_so_far < max_ending_here:
max_so_far = max_ending_here
if max_ending_here < 0:
max_ending_here = 0
return max_so_far
if __name__ == "__main__":
a = [-13, -3, -25, -20, 1, -16, -23, -12, -5, -22, -15, -4, -7]
print(("Maximum contiguous sum is", max_sub_array_sum(a, len(a))))
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
Project Euler Problem 587: https://projecteuler.net/problem=587
A square is drawn around a circle as shown in the diagram below on the left.
We shall call the blue shaded region the L-section.
A line is drawn from the bottom left of the square to the top right
as shown in the diagram on the right.
We shall call the orange shaded region a concave triangle.
It should be clear that the concave triangle occupies exactly half of the L-section.
Two circles are placed next to each other horizontally,
a rectangle is drawn around both circles, and
a line is drawn from the bottom left to the top right as shown in the diagram below.
This time the concave triangle occupies approximately 36.46% of the L-section.
If n circles are placed next to each other horizontally,
a rectangle is drawn around the n circles, and
a line is drawn from the bottom left to the top right,
then it can be shown that the least value of n
for which the concave triangle occupies less than 10% of the L-section is n = 15.
What is the least value of n
for which the concave triangle occupies less than 0.1% of the L-section?
"""
from itertools import count
from math import asin, pi, sqrt
def circle_bottom_arc_integral(point: float) -> float:
"""
Returns integral of circle bottom arc y = 1 / 2 - sqrt(1 / 4 - (x - 1 / 2) ^ 2)
>>> circle_bottom_arc_integral(0)
0.39269908169872414
>>> circle_bottom_arc_integral(1 / 2)
0.44634954084936207
>>> circle_bottom_arc_integral(1)
0.5
"""
return (
(1 - 2 * point) * sqrt(point - point**2) + 2 * point + asin(sqrt(1 - point))
) / 4
def concave_triangle_area(circles_number: int) -> float:
"""
Returns area of concave triangle
>>> concave_triangle_area(1)
0.026825229575318944
>>> concave_triangle_area(2)
0.01956236140083944
"""
intersection_y = (circles_number + 1 - sqrt(2 * circles_number)) / (
2 * (circles_number**2 + 1)
)
intersection_x = circles_number * intersection_y
triangle_area = intersection_x * intersection_y / 2
concave_region_area = circle_bottom_arc_integral(
1 / 2
) - circle_bottom_arc_integral(intersection_x)
return triangle_area + concave_region_area
def solution(fraction: float = 1 / 1000) -> int:
"""
Returns least value of n
for which the concave triangle occupies less than fraction of the L-section
>>> solution(1 / 10)
15
"""
l_section_area = (1 - pi / 4) / 4
for n in count(1):
if concave_triangle_area(n) / l_section_area < fraction:
return n
return -1
if __name__ == "__main__":
print(f"{solution() = }")
| """
Project Euler Problem 587: https://projecteuler.net/problem=587
A square is drawn around a circle as shown in the diagram below on the left.
We shall call the blue shaded region the L-section.
A line is drawn from the bottom left of the square to the top right
as shown in the diagram on the right.
We shall call the orange shaded region a concave triangle.
It should be clear that the concave triangle occupies exactly half of the L-section.
Two circles are placed next to each other horizontally,
a rectangle is drawn around both circles, and
a line is drawn from the bottom left to the top right as shown in the diagram below.
This time the concave triangle occupies approximately 36.46% of the L-section.
If n circles are placed next to each other horizontally,
a rectangle is drawn around the n circles, and
a line is drawn from the bottom left to the top right,
then it can be shown that the least value of n
for which the concave triangle occupies less than 10% of the L-section is n = 15.
What is the least value of n
for which the concave triangle occupies less than 0.1% of the L-section?
"""
from itertools import count
from math import asin, pi, sqrt
def circle_bottom_arc_integral(point: float) -> float:
"""
Returns integral of circle bottom arc y = 1 / 2 - sqrt(1 / 4 - (x - 1 / 2) ^ 2)
>>> circle_bottom_arc_integral(0)
0.39269908169872414
>>> circle_bottom_arc_integral(1 / 2)
0.44634954084936207
>>> circle_bottom_arc_integral(1)
0.5
"""
return (
(1 - 2 * point) * sqrt(point - point**2) + 2 * point + asin(sqrt(1 - point))
) / 4
def concave_triangle_area(circles_number: int) -> float:
"""
Returns area of concave triangle
>>> concave_triangle_area(1)
0.026825229575318944
>>> concave_triangle_area(2)
0.01956236140083944
"""
intersection_y = (circles_number + 1 - sqrt(2 * circles_number)) / (
2 * (circles_number**2 + 1)
)
intersection_x = circles_number * intersection_y
triangle_area = intersection_x * intersection_y / 2
concave_region_area = circle_bottom_arc_integral(
1 / 2
) - circle_bottom_arc_integral(intersection_x)
return triangle_area + concave_region_area
def solution(fraction: float = 1 / 1000) -> int:
"""
Returns least value of n
for which the concave triangle occupies less than fraction of the L-section
>>> solution(1 / 10)
15
"""
l_section_area = (1 - pi / 4) / 4
for n in count(1):
if concave_triangle_area(n) / l_section_area < fraction:
return n
return -1
if __name__ == "__main__":
print(f"{solution() = }")
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| """
https://en.wikipedia.org/wiki/Rayleigh_quotient
"""
from typing import Any
import numpy as np
def is_hermitian(matrix: np.ndarray) -> bool:
"""
Checks if a matrix is Hermitian.
>>> import numpy as np
>>> A = np.array([
... [2, 2+1j, 4],
... [2-1j, 3, 1j],
... [4, -1j, 1]])
>>> is_hermitian(A)
True
>>> A = np.array([
... [2, 2+1j, 4+1j],
... [2-1j, 3, 1j],
... [4, -1j, 1]])
>>> is_hermitian(A)
False
"""
return np.array_equal(matrix, matrix.conjugate().T)
def rayleigh_quotient(A: np.ndarray, v: np.ndarray) -> Any:
"""
Returns the Rayleigh quotient of a Hermitian matrix A and
vector v.
>>> import numpy as np
>>> A = np.array([
... [1, 2, 4],
... [2, 3, -1],
... [4, -1, 1]
... ])
>>> v = np.array([
... [1],
... [2],
... [3]
... ])
>>> rayleigh_quotient(A, v)
array([[3.]])
"""
v_star = v.conjugate().T
v_star_dot = v_star.dot(A)
assert isinstance(v_star_dot, np.ndarray)
return (v_star_dot.dot(v)) / (v_star.dot(v))
def tests() -> None:
A = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]])
v = np.array([[1], [2], [3]])
assert is_hermitian(A), f"{A} is not hermitian."
print(rayleigh_quotient(A, v))
A = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]])
assert is_hermitian(A), f"{A} is not hermitian."
assert rayleigh_quotient(A, v) == float(3)
if __name__ == "__main__":
import doctest
doctest.testmod()
tests()
| """
https://en.wikipedia.org/wiki/Rayleigh_quotient
"""
from typing import Any
import numpy as np
def is_hermitian(matrix: np.ndarray) -> bool:
"""
Checks if a matrix is Hermitian.
>>> import numpy as np
>>> A = np.array([
... [2, 2+1j, 4],
... [2-1j, 3, 1j],
... [4, -1j, 1]])
>>> is_hermitian(A)
True
>>> A = np.array([
... [2, 2+1j, 4+1j],
... [2-1j, 3, 1j],
... [4, -1j, 1]])
>>> is_hermitian(A)
False
"""
return np.array_equal(matrix, matrix.conjugate().T)
def rayleigh_quotient(A: np.ndarray, v: np.ndarray) -> Any:
"""
Returns the Rayleigh quotient of a Hermitian matrix A and
vector v.
>>> import numpy as np
>>> A = np.array([
... [1, 2, 4],
... [2, 3, -1],
... [4, -1, 1]
... ])
>>> v = np.array([
... [1],
... [2],
... [3]
... ])
>>> rayleigh_quotient(A, v)
array([[3.]])
"""
v_star = v.conjugate().T
v_star_dot = v_star.dot(A)
assert isinstance(v_star_dot, np.ndarray)
return (v_star_dot.dot(v)) / (v_star.dot(v))
def tests() -> None:
A = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]])
v = np.array([[1], [2], [3]])
assert is_hermitian(A), f"{A} is not hermitian."
print(rayleigh_quotient(A, v))
A = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]])
assert is_hermitian(A), f"{A} is not hermitian."
assert rayleigh_quotient(A, v) == float(3)
if __name__ == "__main__":
import doctest
doctest.testmod()
tests()
| -1 |
TheAlgorithms/Python | 6,612 | Add missing type hints in `matrix` directory | ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
| rohanr18 | "2022-10-03T12:34:11Z" | "2022-10-04T18:05:57Z" | a84fb58271b1d42da300ccad54ee8391a518a5bb | 46842e8c5b5fc78ced0f38206560deb2b8160a54 | Add missing type hints in `matrix` directory. ### Describe your change:
(because #6409 was mercilessly closed.)
* [ ] Add an algorithm?
* [x] Fix a bug or typo in an existing algorithm?
* [ ] Documentation change?
### Checklist:
* [x] I have read [CONTRIBUTING.md](https://github.com/TheAlgorithms/Python/blob/master/CONTRIBUTING.md).
* [x] This pull request is all my own work -- I have not plagiarized.
* [x] I know that pull requests will not be merged if they fail the automated tests.
* [ ] This PR only changes one algorithm file. To ease review, please open separate PRs for separate algorithms.
* [ ] All new Python files are placed inside an existing directory.
* [x] All filenames are in all lowercase characters with no spaces or dashes.
* [x] All functions and variable names follow Python naming conventions.
* [x] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [x] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms have a URL in its comments that points to Wikipedia or other similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
|