Datasets:
The dataset viewer is not available for this split.
Error code: StreamingRowsError Exception: CastError Message: Couldn't cast answer: string image_url: string original_order: string parquet_path: string question: string speciality: string flag_answer_format: string flag_image_type: string flag_cognitive_process: string flag_rarity: string flag_difficulty_llms: string image: struct<bytes: binary, path: string> child 0, bytes: binary child 1, path: string original_problem_id: string permutation_number: string problem_id: string order: int64 -- schema metadata -- huggingface: '{"info": {"features": {"answer": {"dtype": "string", "_type' + 835 to {'question': Value(dtype='string', id=None), 'answer': Value(dtype='string', id=None), 'image': Image(mode=None, decode=True, id=None), 'image_url': Value(dtype='string', id=None), 'problem_id': Value(dtype='string', id=None), 'order': Value(dtype='int64', id=None), 'parquet_path': Value(dtype='string', id=None), 'speciality': Value(dtype='string', id=None), 'flag_answer_format': Value(dtype='string', id=None), 'flag_image_type': Value(dtype='string', id=None), 'flag_cognitive_process': Value(dtype='string', id=None), 'flag_rarity': Value(dtype='string', id=None), 'flag_difficulty_llms': Value(dtype='string', id=None)} because column names don't match Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise return get_rows( File "/src/libs/libcommon/src/libcommon/utils.py", line 272, in decorator return func(*args, **kwargs) File "/src/services/worker/src/worker/utils.py", line 77, in get_rows rows_plus_one = list(itertools.islice(ds, rows_max_number + 1)) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2285, in __iter__ for key, example in ex_iterable: File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1856, in __iter__ for key, pa_table in self._iter_arrow(): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1879, in _iter_arrow for key, pa_table in self.ex_iterable._iter_arrow(): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 476, in _iter_arrow for key, pa_table in iterator: File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 323, in _iter_arrow for key, pa_table in self.generate_tables_fn(**gen_kwags): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py", line 106, in _generate_tables yield f"{file_idx}_{batch_idx}", self._cast_table(pa_table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/packaged_modules/parquet/parquet.py", line 73, in _cast_table pa_table = table_cast(pa_table, self.info.features.arrow_schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast answer: string image_url: string original_order: string parquet_path: string question: string speciality: string flag_answer_format: string flag_image_type: string flag_cognitive_process: string flag_rarity: string flag_difficulty_llms: string image: struct<bytes: binary, path: string> child 0, bytes: binary child 1, path: string original_problem_id: string permutation_number: string problem_id: string order: int64 -- schema metadata -- huggingface: '{"info": {"features": {"answer": {"dtype": "string", "_type' + 835 to {'question': Value(dtype='string', id=None), 'answer': Value(dtype='string', id=None), 'image': Image(mode=None, decode=True, id=None), 'image_url': Value(dtype='string', id=None), 'problem_id': Value(dtype='string', id=None), 'order': Value(dtype='int64', id=None), 'parquet_path': Value(dtype='string', id=None), 'speciality': Value(dtype='string', id=None), 'flag_answer_format': Value(dtype='string', id=None), 'flag_image_type': Value(dtype='string', id=None), 'flag_cognitive_process': Value(dtype='string', id=None), 'flag_rarity': Value(dtype='string', id=None), 'flag_difficulty_llms': Value(dtype='string', id=None)} because column names don't match
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
SMMILE: An Expert-Driven Benchmark for Multimodal Medical In-Context Learning
Paper | Project page | Code

Introduction
Multimodal in-context learning (ICL) remains underexplored despite the profound potential it could have in complex application domains such as medicine. Clinicians routinely face a long tail of tasks which they need to learn to solve from few examples, such as considering few relevant previous cases or few differential diagnoses. While MLLMs have shown impressive advances in medical visual question answering (VQA) or multi-turn chatting, their ability to learn multimodal tasks from context is largely unknown.
We introduce SMMILE (Stanford Multimodal Medical In-context Learning Evaluation), the first multimodal medical ICL benchmark. A set of clinical experts curated ICL problems to scrutinize MLLM's ability to learn multimodal tasks at inference time from context.
Dataset Access
The SMMILE dataset is available on HuggingFace:
from datasets import load_dataset
load_dataset('smmile/SMMILE', token=YOUR_HF_TOKEN)
load_dataset('smmile/SMMILE-plusplus', token=YOUR_HF_TOKEN)
Note: You need to set your HuggingFace token as an environment variable:
export HF_TOKEN=your_token_here
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Citation
If you find our dataset useful for your research, please cite the following paper:
@article{rieff2025smmile,
title={SMMILE: An Expert-Driven Benchmark for Multimodal Medical In-Context Learning},
author={Melanie Rieff and Maya Varma and Ossian Rabow and Subathra Adithan and Julie Kim and Ken Chang and Hannah Lee and Nidhi Rohatgi and Christian Bluethgen and Mohamed S. Muneer and Jean-Benoit Delbrouck and Michael Moor},
year={2025},
eprint={2506.21355},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2506.21355},
}
Acknowledgments
We thank the clinical experts who contributed to curating the benchmark dataset.
- Downloads last month
- 131