depth
int64
11
47
width
int64
509
88.2k
tokens
int64
6.48B
3,027B
FLOPs_per_token
float64
636M
33,033B
FLOPs
float64
4,120,605,235B
99,979,649,681,170,780B
params
float64
54.4M
5,486B
params_with_embeds
float64
102M
5,494B
FLOPs_6N
float64
2,116,153,502B
99,624,955,125,929,460B
params_pred_loss
float64
2.24
3.91
wd_ratio
float64
36.4
2.11k
wd_pred_loss
float64
2.14
3.8
bucket
stringlengths
31
48
14
509
6,480,719,826
635,825,239.5
4,120,605,235,498,848,000
54,421,771
102,046,865
2,116,153,501,714,391,000
3.913806
36.357143
3.801099
(1e+18, 4.1246263829013647e+18]
13
897
11,591,196,185
1,467,007,395.75
17,004,370,528,984,185,000
156,922,974
245,640,759
10,913,549,865,405,925,000
3.400098
69
3.353341
(4.1246263829013647e+18, 1.7012542798525858e+19]
15
1,367
20,731,621,274
3,383,504,418.75
70,145,532,188,430,510,000
420,497,402
552,676,733
52,305,557,309,789,580,000
3.053754
91.133333
3.037555
(1.7012542798525858e+19, 7.017038286703836e+19]
11
2,576
36,317,859,190
7,966,275,492
289,318,071,587,203,970,000
1,094,962,288
1,352,768,368
238,600,117,163,665,360,000
2.814876
234.181818
2.836559
(7.017038286703836e+19, 2.89426612471674e+20]
15
3,579
61,033,902,880
19,546,104,543.75
1,192,975,046,405,564,100,000
2,882,190,174
3,215,584,761
1,055,467,890,969,637,800,000
2.646707
238.6
2.658221
(2.89426612471674e+20, 1.1937766417144357e+21]
14
5,935
102,570,398,801
47,989,967,842.5
4,922,350,140,052,391,000,000
7,397,259,365
7,982,652,155
4,552,439,058,614,892,000,000
2.52674
423.928571
2.545147
(1.1937766417144357e+21, 4.923882631706752e+21]
14
9,430
172,374,470,806
117,777,168,465
20,301,777,087,183,486,000,000
18,674,502,470
19,572,276,190
19,314,044,884,989,540,000,000
2.440307
673.571429
2.457013
(4.923882631706752e+21, 2.0309176209047305e+22]
18
13,427
277,899,506,501
301,395,714,589.5
83,757,720,345,938,300,000,000
48,677,265,629
49,944,747,575
81,164,328,576,703,140,000,000
2.377552
745.944444
2.371825
(2.0309176209047305e+22, 8.376776400682923e+22]
15
23,661
448,025,367,982
770,686,831,406.25
345,287,251,239,666,740,000,000
125,965,390,716
128,229,819,399
338,614,143,171,193,840,000,000
2.331793
1,577.4
2.333569
(8.376776400682923e+22, 3.455107294592233e+23]
22
31,698
707,455,942,281
2,014,240,265,127
1,424,986,244,745,753,000,000,000
331,573,283,730
334,501,544,970
1,407,440,939,258,475,000,000,000
2.298312
1,440.818182
2.265183
(3.455107294592233e+23, 1.4251026703029964e+24]
26
46,246
1,164,480,618,372
5,044,778,877,687
5,874,547,227,038,962,000,000,000
834,092,532,278
838,454,270,014
5,827,707,526,599,317,000,000,000
2.27378
1,778.692308
2.222053
(1.4251026703029964e+24, 5.878016072274924e+24]
32
67,471
1,838,776,980,082
13,178,281,143,939
24,231,920,004,523,720,000,000,000
2,185,125,589,295
2,191,540,192,207
24,107,751,793,102,565,000,000,000
2.255774
2,108.46875
2.183951
(5.878016072274924e+24, 2.4244620170823405e+25]
47
88,213
3,026,648,059,395
33,033,126,983,768.25
99,979,649,681,170,790,000,000,000
5,485,989,405,380
5,494,072,450,783
99,624,955,125,929,450,000,000,000
2.242549
1,876.87234
2.143538
(2.4244620170823405e+25, 1e+26]

This dataset is my cache for the scaling-laws related to the gemstone models.

In data_cache is the approach 3 data cache with the mins for delta=1e-4, the mins for delta=1e-3 are in mins_1e-3.

This is the code I used to upload it:

import pandas as pd
from datasets import Dataset
import os
import gc


def get_data_dict(path):
    contents = os.listdir(path)

    ds_store = {}
    for i, file in enumerate(contents):
        gc.collect()
        df = pd.read_parquet(f"{path}{file}")
        for col in df.columns:
            if pd.api.types.is_interval_dtype(df[col]):
                df[col] = df[col].astype(str)

        hf_dataset = Dataset.from_pandas(df)
        ds_store[file.replace(".parquet", "")] = hf_dataset
        hf_dataset.push_to_hub(
            "smcleish/scaling-laws-cache",
            private=True,
            data_dir=path.split("/")[1] + "/" + file.replace(".parquet", ""),
        )
        gc.collect()


ds_1 = get_data_dict("plotters/data_cache/")
ds_2 = get_data_dict("plotters/mins_1e-3/")

To download it do the oppostite of this. The cache is very large, so maybe target specific files you would like. The approach 3 code is expecting pandas .parquet files. Please open a discussion with any questions as this is currently very experimental.

Downloads last month
35