sm1rk's picture
Update README.md
a671ac8 verified
---
license: mit
task_categories:
- summarization
- text-generation
size_categories:
- n<1K
pretty_name: MCSN
dataset_info:
features:
- name: repo_name
dtype: string
- name: method_name
dtype: string
- name: method_code
dtype: string
- name: method_summary
dtype: string
- name: original_method_code
dtype: string
- name: method_path
dtype: string
splits:
- name: test
num_bytes: 1710607
num_examples: 846
download_size: 581083
dataset_size: 1710607
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
tags:
- code summarization
- python
- function-level
- repo-level
- CodeXGLUE
- CodeSearchNet
---
# Modified CodeSearchNet (MCSN) Dataset
This dataset is a modification of the CodeSearchNet dataset from CodeXGLUE benchmark, designed for evaluating code summarization models beyond the function level. It explores the impact of function and repository contexts on summary quality. The dataset includes modifications for evaluating at both function and repository levels.
Paper: [Code Summarization Beyond Function Level](https://hf.co/papers/2502.16704)
**Dataset Structure:**
The dataset contains samples with the following fields:
* `repo_name`: The repository name.
* `method_name`: The method name (including class name).
* `method_code`: The code of a method within the repository (without docstring).
* `method_summary`: The summary of the method.
* `original_method_code`: The code of a method within the repository (including docstring).
* `method_path`: The path to the file with a method within the repository.
**Dataset Splits:**
* `test`: 846 samples (806 + 40 samples for few-shot learning)
This dataset is part of a broader study investigating code summarization at various levels (function, class, and repository). The complete study details, code, and evaluation results are available on GitHub: [https://github.com/kilimanj4r0/code-summarization-beyond-function-level](https://github.com/kilimanj4r0/code-summarization-beyond-function-level).