text
stringlengths
0
1.73k
source
stringlengths
35
119
category
stringclasses
2 values
torch.gather torch.gather(input, dim, index, *, sparse_grad=False, out=None) -> Tensor Gathers values along an axis specified by dim. For a 3-D tensor the output is specified by: out[i][j][k] = input[index[i][j][k]][j][k] # if dim == 0 out[i][j][k] = input[i][index[i][j][k]][k] # if dim == 1 out[i][j][k] = input[i][j][index[i][j][k]] # if dim == 2 "input" and "index" must have the same number of dimensions. It is also required that "index.size(d) <= input.size(d)" for all dimensions "d != dim". "out" will have the same shape as "index". Note that "input" and "index" do not broadcast against each other. Parameters: * input (Tensor) -- the source tensor * **dim** (*int*) -- the axis along which to index * **index** (*LongTensor*) -- the indices of elements to gather Keyword Arguments: * sparse_grad (bool, optional) -- If "True", gradient w.r.t. "input" will be a sparse tensor.
https://pytorch.org/docs/stable/generated/torch.gather.html
pytorch docs
w.r.t. "input" will be a sparse tensor. * **out** (*Tensor**, **optional*) -- the destination tensor Example: >>> t = torch.tensor([[1, 2], [3, 4]]) >>> torch.gather(t, 1, torch.tensor([[0, 0], [1, 0]])) tensor([[ 1, 1], [ 4, 3]])
https://pytorch.org/docs/stable/generated/torch.gather.html
pytorch docs
torch.quantize_per_channel torch.quantize_per_channel(input, scales, zero_points, axis, dtype) -> Tensor Converts a float tensor to a per-channel quantized tensor with given scales and zero points. Parameters: * input (Tensor) -- float tensor to quantize * **scales** (*Tensor*) -- float 1D tensor of scales to use, size should match "input.size(axis)" * **zero_points** (*int*) -- integer 1D tensor of offset to use, size should match "input.size(axis)" * **axis** (*int*) -- dimension on which apply per-channel quantization * **dtype** ("torch.dtype") -- the desired data type of returned tensor. Has to be one of the quantized dtypes: "torch.quint8", "torch.qint8", "torch.qint32" Returns: A newly quantized tensor Return type: Tensor Example: >>> x = torch.tensor([[-1.0, 0.0], [1.0, 2.0]])
https://pytorch.org/docs/stable/generated/torch.quantize_per_channel.html
pytorch docs
torch.quantize_per_channel(x, torch.tensor([0.1, 0.01]), torch.tensor([10, 0]), 0, torch.quint8) tensor([[-1., 0.], [ 1., 2.]], size=(2, 2), dtype=torch.quint8, quantization_scheme=torch.per_channel_affine, scale=tensor([0.1000, 0.0100], dtype=torch.float64), zero_point=tensor([10, 0]), axis=0) >>> torch.quantize_per_channel(x, torch.tensor([0.1, 0.01]), torch.tensor([10, 0]), 0, torch.quint8).int_repr() tensor([[ 0, 10], [100, 200]], dtype=torch.uint8)
https://pytorch.org/docs/stable/generated/torch.quantize_per_channel.html
pytorch docs
torch.signal.windows.blackman torch.signal.windows.blackman(M, *, sym=True, dtype=None, layout=torch.strided, device=None, requires_grad=False) Computes the Blackman window. The Blackman window is defined as follows: w_n = 0.42 - 0.5 \cos \left( \frac{2 \pi n}{M - 1} \right) + 0.08 \cos \left( \frac{4 \pi n}{M - 1} \right) The window is normalized to 1 (maximum value is 1). However, the 1 doesn't appear if "M" is even and "sym" is True. Parameters: M (int) -- the length of the window. In other words, the number of points of the returned window. Keyword Arguments: * sym (bool, optional) -- If False, returns a periodic window suitable for use in spectral analysis. If True, returns a symmetric window suitable for use in filter design. Default: True. * **dtype** ("torch.dtype", optional) -- the desired data type
https://pytorch.org/docs/stable/generated/torch.signal.windows.blackman.html
pytorch docs
of returned tensor. Default: if "None", uses a global default (see "torch.set_default_tensor_type()"). * **layout** ("torch.layout", optional) -- the desired layout of returned Tensor. Default: "torch.strided". * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if "None", uses the current device for the default tensor type (see "torch.set_default_tensor_type()"). "device" will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". Return type: Tensor Examples: >>> # Generates a symmetric Blackman window. >>> torch.signal.windows.blackman(5) tensor([-1.4901e-08, 3.4000e-01, 1.0000e+00, 3.4000e-01, -1.4901e-08]) >>> # Generates a periodic Blackman window.
https://pytorch.org/docs/stable/generated/torch.signal.windows.blackman.html
pytorch docs
Generates a periodic Blackman window. >>> torch.signal.windows.blackman(5, sym=False) tensor([-1.4901e-08, 2.0077e-01, 8.4923e-01, 8.4923e-01, 2.0077e-01])
https://pytorch.org/docs/stable/generated/torch.signal.windows.blackman.html
pytorch docs
torch.nn.functional.softsign torch.nn.functional.softsign(input) -> Tensor Applies element-wise, the function \text{SoftSign}(x) = \frac{x}{1 + |x|} See "Softsign" for more details.
https://pytorch.org/docs/stable/generated/torch.nn.functional.softsign.html
pytorch docs
Event class torch.cuda.Event(enable_timing=False, blocking=False, interprocess=False) Wrapper around a CUDA event. CUDA events are synchronization markers that can be used to monitor the device's progress, to accurately measure timing, and to synchronize CUDA streams. The underlying CUDA events are lazily initialized when the event is first recorded or exported to another process. After creation, only streams on the same device may record the event. However, streams on any device can wait on the event. Parameters: * enable_timing (bool, optional) -- indicates if the event should measure time (default: "False") * **blocking** (*bool**, **optional*) -- if "True", "wait()" will be blocking (default: "False") * **interprocess** (*bool*) -- if "True", the event can be shared between processes (default: "False") elapsed_time(end_event) Returns the time elapsed in milliseconds after the event was
https://pytorch.org/docs/stable/generated/torch.cuda.Event.html
pytorch docs
recorded and before the end_event was recorded. classmethod from_ipc_handle(device, handle) Reconstruct an event from an IPC handle on the given device. ipc_handle() Returns an IPC handle of this event. If not recorded yet, the event will use the current device. query() Checks if all work currently captured by event has completed. Returns: A boolean indicating if all work currently captured by event has completed. record(stream=None) Records the event in a given stream. Uses "torch.cuda.current_stream()" if no stream is specified. The stream's device must match the event's device. synchronize() Waits for the event to complete. Waits until the completion of all work currently captured in this event. This prevents the CPU thread from proceeding until the event completes. Note: This is a wrapper around "cudaEventSynchronize()": see CUDA
https://pytorch.org/docs/stable/generated/torch.cuda.Event.html
pytorch docs
Event documentation for more info. wait(stream=None) Makes all future work submitted to the given stream wait for this event. Use "torch.cuda.current_stream()" if no stream is specified. Note: This is a wrapper around "cudaStreamWaitEvent()": see CUDA Event documentation for more info.
https://pytorch.org/docs/stable/generated/torch.cuda.Event.html
pytorch docs
torch.argsort torch.argsort(input, dim=- 1, descending=False, stable=False) -> Tensor Returns the indices that sort a tensor along a given dimension in ascending order by value. This is the second value returned by "torch.sort()". See its documentation for the exact semantics of this method. If "stable" is "True" then the sorting routine becomes stable, preserving the order of equivalent elements. If "False", the relative order of values which compare equal is not guaranteed. "True" is slower. Parameters: * input (Tensor) -- the input tensor. * **dim** (*int**, **optional*) -- the dimension to sort along * **descending** (*bool**, **optional*) -- controls the sorting order (ascending or descending) * **stable** (*bool**, **optional*) -- controls the relative order of equivalent elements Example: >>> a = torch.randn(4, 4) >>> a tensor([[ 0.0785, 1.5267, -0.8521, 0.4065],
https://pytorch.org/docs/stable/generated/torch.argsort.html
pytorch docs
[ 0.1598, 0.0788, -0.0745, -1.2700], [ 1.2208, 1.0722, -0.7064, 1.2564], [ 0.0669, -0.2318, -0.8229, -0.9280]]) >>> torch.argsort(a, dim=1) tensor([[2, 0, 3, 1], [3, 2, 1, 0], [2, 1, 0, 3], [3, 2, 1, 0]])
https://pytorch.org/docs/stable/generated/torch.argsort.html
pytorch docs
torch.is_grad_enabled torch.is_grad_enabled() Returns True if grad mode is currently enabled.
https://pytorch.org/docs/stable/generated/torch.is_grad_enabled.html
pytorch docs
CosineEmbeddingLoss class torch.nn.CosineEmbeddingLoss(margin=0.0, size_average=None, reduce=None, reduction='mean') Creates a criterion that measures the loss given input tensors x_1, x_2 and a Tensor label y with values 1 or -1. This is used for measuring whether two inputs are similar or dissimilar, using the cosine similarity, and is typically used for learning nonlinear embeddings or semi-supervised learning. The loss function for each sample is: \text{loss}(x, y) = \begin{cases} 1 - \cos(x_1, x_2), & \text{if } y = 1 \\ \max(0, \cos(x_1, x_2) - \text{margin}), & \text{if } y = -1 \end{cases} Parameters: * margin (float, optional) -- Should be a number from -1 to 1, 0 to 0.5 is suggested. If "margin" is missing, the default value is 0. * **size_average** (*bool**, **optional*) -- Deprecated (see "reduction"). By default, the losses are averaged over each
https://pytorch.org/docs/stable/generated/torch.nn.CosineEmbeddingLoss.html
pytorch docs
loss element in the batch. Note that for some losses, there are multiple elements per sample. If the field "size_average" is set to "False", the losses are instead summed for each minibatch. Ignored when "reduce" is "False". Default: "True" * **reduce** (*bool**, **optional*) -- Deprecated (see "reduction"). By default, the losses are averaged or summed over observations for each minibatch depending on "size_average". When "reduce" is "False", returns a loss per batch element instead and ignores "size_average". Default: "True" * **reduction** (*str**, **optional*) -- Specifies the reduction to apply to the output: "'none'" | "'mean'" | "'sum'". "'none'": no reduction will be applied, "'mean'": the sum of the output will be divided by the number of elements in the output, "'sum'": the output will be summed. Note: "size_average" and "reduce" are in the process of being
https://pytorch.org/docs/stable/generated/torch.nn.CosineEmbeddingLoss.html
pytorch docs
deprecated, and in the meantime, specifying either of those two args will override "reduction". Default: "'mean'" Shape: * Input1: (N, D) or (D), where N is the batch size and D is the embedding dimension. * Input2: (N, D) or (D), same shape as Input1. * Target: (N) or (). * Output: If "reduction" is "'none'", then (N), otherwise scalar.
https://pytorch.org/docs/stable/generated/torch.nn.CosineEmbeddingLoss.html
pytorch docs
torch.arccosh torch.arccosh(input, *, out=None) -> Tensor Alias for "torch.acosh()".
https://pytorch.org/docs/stable/generated/torch.arccosh.html
pytorch docs
ConvReLU2d class torch.ao.nn.intrinsic.qat.ConvReLU2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', qconfig=None) A ConvReLU2d module is a fused module of Conv2d and ReLU, attached with FakeQuantize modules for weight for quantization aware training. We combined the interface of "Conv2d" and "BatchNorm2d". Variables: weight_fake_quant -- fake quant module for weight
https://pytorch.org/docs/stable/generated/torch.ao.nn.intrinsic.qat.ConvReLU2d.html
pytorch docs
torch.vstack torch.vstack(tensors, *, out=None) -> Tensor Stack tensors in sequence vertically (row wise). This is equivalent to concatenation along the first axis after all 1-D tensors have been reshaped by "torch.atleast_2d()". Parameters: tensors (sequence of Tensors) -- sequence of tensors to concatenate Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.tensor([1, 2, 3]) >>> b = torch.tensor([4, 5, 6]) >>> torch.vstack((a,b)) tensor([[1, 2, 3], [4, 5, 6]]) >>> a = torch.tensor([[1],[2],[3]]) >>> b = torch.tensor([[4],[5],[6]]) >>> torch.vstack((a,b)) tensor([[1], [2], [3], [4], [5], [6]])
https://pytorch.org/docs/stable/generated/torch.vstack.html
pytorch docs
torch.flip torch.flip(input, dims) -> Tensor Reverse the order of an n-D tensor along given axis in dims. Note: *torch.flip* makes a copy of "input"'s data. This is different from NumPy's *np.flip*, which returns a view in constant time. Since copying a tensor's data is more work than viewing that data, *torch.flip* is expected to be slower than *np.flip*. Parameters: * input (Tensor) -- the input tensor. * **dims** (*a list** or **tuple*) -- axis to flip on Example: >>> x = torch.arange(8).view(2, 2, 2) >>> x tensor([[[ 0, 1], [ 2, 3]], [[ 4, 5], [ 6, 7]]]) >>> torch.flip(x, [0, 1]) tensor([[[ 6, 7], [ 4, 5]], [[ 2, 3], [ 0, 1]]])
https://pytorch.org/docs/stable/generated/torch.flip.html
pytorch docs
torch.Tensor.frexp Tensor.frexp(input) -> (Tensor mantissa, Tensor exponent) See "torch.frexp()"
https://pytorch.org/docs/stable/generated/torch.Tensor.frexp.html
pytorch docs
torch.median torch.median(input) -> Tensor Returns the median of the values in "input". Note: The median is not unique for "input" tensors with an even number of elements. In this case the lower of the two medians is returned. To compute the mean of both medians, use "torch.quantile()" with "q=0.5" instead. Warning: This function produces deterministic (sub)gradients unlike "median(dim=0)" Parameters: input (Tensor) -- the input tensor. Example: >>> a = torch.randn(1, 3) >>> a tensor([[ 1.5219, -1.5212, 0.2202]]) >>> torch.median(a) tensor(0.2202) torch.median(input, dim=- 1, keepdim=False, *, out=None) Returns a namedtuple "(values, indices)" where "values" contains the median of each row of "input" in the dimension "dim", and "indices" contains the index of the median values found in the dimension "dim". By default, "dim" is the last dimension of the "input" tensor.
https://pytorch.org/docs/stable/generated/torch.median.html
pytorch docs
If "keepdim" is "True", the output tensors are of the same size as "input" except in the dimension "dim" where they are of size 1. Otherwise, "dim" is squeezed (see "torch.squeeze()"), resulting in the outputs tensor having 1 fewer dimension than "input". Note: The median is not unique for "input" tensors with an even number of elements in the dimension "dim". In this case the lower of the two medians is returned. To compute the mean of both medians in "input", use "torch.quantile()" with "q=0.5" instead. Warning: "indices" does not necessarily contain the first occurrence of each median value found, unless it is unique. The exact implementation details are device-specific. Do not expect the same result when run on CPU and GPU in general. For the same reason do not expect the gradients to be deterministic. Parameters: * input (Tensor) -- the input tensor. * **dim** (*int*) -- the dimension to reduce.
https://pytorch.org/docs/stable/generated/torch.median.html
pytorch docs
keepdim (bool) -- whether the output tensor has "dim" retained or not. Keyword Arguments: out ((Tensor, Tensor), optional) -- The first tensor will be populated with the median values and the second tensor, which must have dtype long, with their indices in the dimension "dim" of "input". Example: >>> a = torch.randn(4, 5) >>> a tensor([[ 0.2505, -0.3982, -0.9948, 0.3518, -1.3131], [ 0.3180, -0.6993, 1.0436, 0.0438, 0.2270], [-0.2751, 0.7303, 0.2192, 0.3321, 0.2488], [ 1.0778, -1.9510, 0.7048, 0.4742, -0.7125]]) >>> torch.median(a, 1) torch.return_types.median(values=tensor([-0.3982, 0.2270, 0.2488, 0.4742]), indices=tensor([1, 4, 4, 3]))
https://pytorch.org/docs/stable/generated/torch.median.html
pytorch docs
ConstantPad1d class torch.nn.ConstantPad1d(padding, value) Pads the input tensor boundaries with a constant value. For N-dimensional padding, use "torch.nn.functional.pad()". Parameters: padding (int, tuple) -- the size of the padding. If is int, uses the same padding in both boundaries. If a 2-tuple, uses (\text{padding_left}, \text{padding_right}) Shape: * Input: (C, W_{in}) or (N, C, W_{in}). * Output: (C, W_{out}) or (N, C, W_{out}), where W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right} Examples: >>> m = nn.ConstantPad1d(2, 3.5) >>> input = torch.randn(1, 2, 4) >>> input tensor([[[-1.0491, -0.7152, -0.0749, 0.8530], [-1.3287, 1.8966, 0.1466, -0.2771]]]) >>> m(input) tensor([[[ 3.5000, 3.5000, -1.0491, -0.7152, -0.0749, 0.8530, 3.5000, 3.5000],
https://pytorch.org/docs/stable/generated/torch.nn.ConstantPad1d.html
pytorch docs
3.5000], [ 3.5000, 3.5000, -1.3287, 1.8966, 0.1466, -0.2771, 3.5000, 3.5000]]]) >>> m = nn.ConstantPad1d(2, 3.5) >>> input = torch.randn(1, 2, 3) >>> input tensor([[[ 1.6616, 1.4523, -1.1255], [-3.6372, 0.1182, -1.8652]]]) >>> m(input) tensor([[[ 3.5000, 3.5000, 1.6616, 1.4523, -1.1255, 3.5000, 3.5000], [ 3.5000, 3.5000, -3.6372, 0.1182, -1.8652, 3.5000, 3.5000]]]) >>> # using different paddings for different sides >>> m = nn.ConstantPad1d((3, 1), 3.5) >>> m(input) tensor([[[ 3.5000, 3.5000, 3.5000, 1.6616, 1.4523, -1.1255, 3.5000], [ 3.5000, 3.5000, 3.5000, -3.6372, 0.1182, -1.8652, 3.5000]]])
https://pytorch.org/docs/stable/generated/torch.nn.ConstantPad1d.html
pytorch docs
ZeroPad2d class torch.nn.ZeroPad2d(padding) Pads the input tensor boundaries with zero. For N-dimensional padding, use "torch.nn.functional.pad()". Parameters: padding (int, tuple) -- the size of the padding. If is int, uses the same padding in all boundaries. If a 4-tuple, uses (\text{padding_left}, \text{padding_right}, \text{padding_top}, \text{padding_bottom}) Shape: * Input: (N, C, H_{in}, W_{in}) or (C, H_{in}, W_{in}). * Output: (N, C, H_{out}, W_{out}) or (C, H_{out}, W_{out}), where H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom} W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right} Examples: >>> m = nn.ZeroPad2d(2) >>> input = torch.randn(1, 1, 3, 3) >>> input tensor([[[[-0.1678, -0.4418, 1.9466], [ 0.9604, -0.4219, -0.5241], [-0.9162, -0.5436, -0.6446]]]]) >>> m(input)
https://pytorch.org/docs/stable/generated/torch.nn.ZeroPad2d.html
pytorch docs
m(input) tensor([[[[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.0000, 0.0000, -0.1678, -0.4418, 1.9466, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.9604, -0.4219, -0.5241, 0.0000, 0.0000], [ 0.0000, 0.0000, -0.9162, -0.5436, -0.6446, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]]) >>> # using different paddings for different sides >>> m = nn.ZeroPad2d((1, 1, 2, 0)) >>> m(input) tensor([[[[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [ 0.0000, -0.1678, -0.4418, 1.9466, 0.0000], [ 0.0000, 0.9604, -0.4219, -0.5241, 0.0000], [ 0.0000, -0.9162, -0.5436, -0.6446, 0.0000]]]])
https://pytorch.org/docs/stable/generated/torch.nn.ZeroPad2d.html
pytorch docs
torch.Tensor.copysign Tensor.copysign(other) -> Tensor See "torch.copysign()"
https://pytorch.org/docs/stable/generated/torch.Tensor.copysign.html
pytorch docs
torch.true_divide torch.true_divide(dividend, divisor, *, out) -> Tensor Alias for "torch.div()" with "rounding_mode=None".
https://pytorch.org/docs/stable/generated/torch.true_divide.html
pytorch docs
torch.Tensor.scatter_reduce Tensor.scatter_reduce(dim, index, src, reduce, *, include_self=True) -> Tensor Out-of-place version of "torch.Tensor.scatter_reduce_()"
https://pytorch.org/docs/stable/generated/torch.Tensor.scatter_reduce.html
pytorch docs
torch.linalg.ldl_solve torch.linalg.ldl_solve(LD, pivots, B, *, hermitian=False, out=None) -> Tensor Computes the solution of a system of linear equations using the LDL factorization. "LD" and "pivots" are the compact representation of the LDL factorization and are expected to be computed by "torch.linalg.ldl_factor_ex()". "hermitian" argument to this function should be the same as the corresponding arguments in "torch.linalg.ldl_factor_ex()". Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if "A" is a batch of matrices then the output has the same batch dimensions. Warning: This function is "experimental" and it may change in a future PyTorch release. Parameters: * LD (Tensor) -- the n times n matrix or the batch of such matrices of size (, n, n)* where *** is one or more batch dimensions.
https://pytorch.org/docs/stable/generated/torch.linalg.ldl_solve.html
pytorch docs
batch dimensions. * **pivots** (*Tensor*) -- the pivots corresponding to the LDL factorization of "LD". * **B** (*Tensor*) -- right-hand side tensor of shape *(*, n, k)*. Keyword Arguments: * hermitian (bool, optional) -- whether to consider the decomposed matrix to be Hermitian or symmetric. For real- valued matrices, this switch has no effect. Default: False. * **out** (*tuple**, **optional*) -- output tensor. *B* may be passed as *out* and the result is computed in-place on *B*. Ignored if *None*. Default: *None*. Examples: >>> A = torch.randn(2, 3, 3) >>> A = A @ A.mT # make symmetric >>> LD, pivots, info = torch.linalg.ldl_factor_ex(A) >>> B = torch.randn(2, 3, 4) >>> X = torch.linalg.ldl_solve(LD, pivots, B) >>> torch.linalg.norm(A @ X - B) >>> tensor(0.0001)
https://pytorch.org/docs/stable/generated/torch.linalg.ldl_solve.html
pytorch docs
torch.tan torch.tan(input, *, out=None) -> Tensor Returns a new tensor with the tangent of the elements of "input". \text{out}_{i} = \tan(\text{input}_{i}) Parameters: input (Tensor) -- the input tensor. Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.randn(4) >>> a tensor([-1.2027, -1.7687, 0.4412, -1.3856]) >>> torch.tan(a) tensor([-2.5930, 4.9859, 0.4722, -5.3366])
https://pytorch.org/docs/stable/generated/torch.tan.html
pytorch docs
torch.Tensor.greater_equal_ Tensor.greater_equal_(other) -> Tensor In-place version of "greater_equal()".
https://pytorch.org/docs/stable/generated/torch.Tensor.greater_equal_.html
pytorch docs
default_fused_per_channel_wt_fake_quant torch.quantization.fake_quantize.default_fused_per_channel_wt_fake_quant alias of functools.partial(, observer=, quant_min=-128, quant_max=127, dtype=torch.qint8, qscheme=torch.per_channel_symmetric){}
https://pytorch.org/docs/stable/generated/torch.quantization.fake_quantize.default_fused_per_channel_wt_fake_quant.html
pytorch docs
torch.optim.Optimizer.state_dict Optimizer.state_dict() Returns the state of the optimizer as a "dict". It contains two entries: state - a dict holding current optimization state. Its content differs between optimizer classes. param_groups - a list containing all parameter groups where each parameter group is a dict
https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.state_dict.html
pytorch docs
leaky_relu class torch.ao.nn.quantized.functional.leaky_relu(input, negative_slope=0.01, inplace=False, scale=None, zero_point=None) Quantized version of the. leaky_relu(input, negative_slope=0.01, inplace=False, scale, zero_point) -> Tensor Applies element-wise, \text{LeakyReLU}(x) = \max(0, x) + \text{negative_slope} * \min(0, x) Parameters: * input (Tensor) -- Quantized input * **negative_slope** (*float*) -- The slope of the negative input * **inplace** (*bool*) -- Inplace modification of the input tensor * **scale** (*Optional**[**float**]*) -- Scale and zero point of the output tensor. * **zero_point** (*Optional**[**int**]*) -- Scale and zero point of the output tensor. See "LeakyReLU" for more details.
https://pytorch.org/docs/stable/generated/torch.ao.nn.quantized.functional.leaky_relu.html
pytorch docs
torch.func.jacfwd torch.func.jacfwd(func, argnums=0, has_aux=False, *, randomness='error') Computes the Jacobian of "func" with respect to the arg(s) at index "argnum" using forward-mode autodiff Parameters: * func (function) -- A Python function that takes one or more arguments, one of which must be a Tensor, and returns one or more Tensors * **argnums** (*int** or **Tuple**[**int**]*) -- Optional, integer or tuple of integers, saying which arguments to get the Jacobian with respect to. Default: 0. * **has_aux** (*bool*) -- Flag indicating that "func" returns a "(output, aux)" tuple where the first element is the output of the function to be differentiated and the second element is auxiliary objects that will not be differentiated. Default: False. * **randomness** (*str*) -- Flag indicating what type of randomness to use. See "vmap()" for more detail. Allowed:
https://pytorch.org/docs/stable/generated/torch.func.jacfwd.html
pytorch docs
"different", "same", "error". Default: "error" Returns: Returns a function that takes in the same inputs as "func" and returns the Jacobian of "func" with respect to the arg(s) at "argnums". If "has_aux is True", then the returned function instead returns a "(jacobian, aux)" tuple where "jacobian" is the Jacobian and "aux" is auxiliary objects returned by "func". Note: You may see this API error out with "forward-mode AD not implemented for operator X". If so, please file a bug report and we will prioritize it. An alternative is to use "jacrev()", which has better operator coverage. A basic usage with a pointwise, unary operation will give a diagonal array as the Jacobian from torch.func import jacfwd x = torch.randn(5) jacobian = jacfwd(torch.sin)(x) expected = torch.diag(torch.cos(x)) assert torch.allclose(jacobian, expected) "jacfwd()" can be composed with vmap to produce batched Jacobians:
https://pytorch.org/docs/stable/generated/torch.func.jacfwd.html
pytorch docs
from torch.func import jacfwd, vmap x = torch.randn(64, 5) jacobian = vmap(jacfwd(torch.sin))(x) assert jacobian.shape == (64, 5, 5) If you would like to compute the output of the function as well as the jacobian of the function, use the "has_aux" flag to return the output as an auxiliary object: from torch.func import jacfwd x = torch.randn(5) def f(x): return x.sin() def g(x): result = f(x) return result, result jacobian_f, f_x = jacfwd(g, has_aux=True)(x) assert torch.allclose(f_x, f(x)) Additionally, "jacrev()" can be composed with itself or "jacrev()" to produce Hessians from torch.func import jacfwd, jacrev def f(x): return x.sin().sum() x = torch.randn(5) hessian = jacfwd(jacrev(f))(x) assert torch.allclose(hessian, torch.diag(-x.sin())) By default, "jacfwd()" computes the Jacobian with respect to the
https://pytorch.org/docs/stable/generated/torch.func.jacfwd.html
pytorch docs
first input. However, it can compute the Jacboian with respect to a different argument by using "argnums": from torch.func import jacfwd def f(x, y): return x + y ** 2 x, y = torch.randn(5), torch.randn(5) jacobian = jacfwd(f, argnums=1)(x, y) expected = torch.diag(2 * y) assert torch.allclose(jacobian, expected) Additionally, passing a tuple to "argnums" will compute the Jacobian with respect to multiple arguments from torch.func import jacfwd def f(x, y): return x + y ** 2 x, y = torch.randn(5), torch.randn(5) jacobian = jacfwd(f, argnums=(0, 1))(x, y) expectedX = torch.diag(torch.ones_like(x)) expectedY = torch.diag(2 * y) assert torch.allclose(jacobian[0], expectedX) assert torch.allclose(jacobian[1], expectedY)
https://pytorch.org/docs/stable/generated/torch.func.jacfwd.html
pytorch docs
torch._foreach_exp torch._foreach_exp(self: List[Tensor]) -> List[Tensor] Apply "torch.exp()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_exp.html
pytorch docs
torch.linalg.solve_ex torch.linalg.solve_ex(A, B, *, left=True, check_errors=False, out=None) A version of "solve()" that does not perform error checks unless "check_errors"= True. It also returns the "info" tensor returned by LAPACK's getrf. Note: When the inputs are on a CUDA device, this function synchronizes only when "check_errors"*= True*. Warning: This function is "experimental" and it may change in a future PyTorch release. Parameters: A (Tensor) -- tensor of shape (, n, n)* where *** is zero or more batch dimensions. Keyword Arguments: * left (bool, optional) -- whether to solve the system AX=B or XA = B. Default: True. * **check_errors** (*bool**, **optional*) -- controls whether to check the content of "infos" and raise an error if it is non- zero. Default: *False*. * **out** (*tuple**, **optional*) -- tuple of two tensors to
https://pytorch.org/docs/stable/generated/torch.linalg.solve_ex.html
pytorch docs
write the output to. Ignored if None. Default: None. Returns: A named tuple (result, info). Examples: >>> A = torch.randn(3, 3) >>> Ainv, info = torch.linalg.solve_ex(A) >>> torch.dist(torch.linalg.inv(A), Ainv) tensor(0.) >>> info tensor(0, dtype=torch.int32)
https://pytorch.org/docs/stable/generated/torch.linalg.solve_ex.html
pytorch docs
torch.nn.functional.smooth_l1_loss torch.nn.functional.smooth_l1_loss(input, target, size_average=None, reduce=None, reduction='mean', beta=1.0) Function that uses a squared term if the absolute element-wise error falls below beta and an L1 term otherwise. See "SmoothL1Loss" for details. Return type: Tensor
https://pytorch.org/docs/stable/generated/torch.nn.functional.smooth_l1_loss.html
pytorch docs
MaxPool2d class torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False) Applies a 2D max pooling over an input signal composed of several input planes. In the simplest case, the output value of the layer with input size (N, C, H, W), output (N, C, H_{out}, W_{out}) and "kernel_size" (kH, kW) can be precisely described as: \begin{aligned} out(N_i, C_j, h, w) ={} & \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1} \\ & \text{input}(N_i, C_j, \text{stride[0]} \times h + m, \text{stride[1]} \times w + n) \end{aligned} If "padding" is non-zero, then the input is implicitly padded with negative infinity on both sides for "padding" number of points. "dilation" controls the spacing between the kernel points. It is harder to describe, but this link has a nice visualization of what "dilation" does. Note:
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html
pytorch docs
"dilation" does. Note: When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding or the input. Sliding windows that would start in the right padded region are ignored. The parameters "kernel_size", "stride", "padding", "dilation" can either be: * a single "int" -- in which case the same value is used for the height and width dimension * a "tuple" of two ints -- in which case, the first *int* is used for the height dimension, and the second *int* for the width dimension Parameters: * kernel_size (Union[int, Tuple[int, int]]) -- the size of the window to take a max over * **stride** (*Union**[**int**, **Tuple**[**int**, **int**]**]*) -- the stride of the window. Default value is "kernel_size" * **padding** (*Union**[**int**, **Tuple**[**int**, **int**]**]*) -- Implicit negative infinity padding to be
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html
pytorch docs
added on both sides * **dilation** (*Union**[**int**, **Tuple**[**int**, **int**]**]*) -- a parameter that controls the stride of elements in the window * **return_indices** (*bool*) -- if "True", will return the max indices along with the outputs. Useful for "torch.nn.MaxUnpool2d" later * **ceil_mode** (*bool*) -- when True, will use *ceil* instead of *floor* to compute the output shape Shape: * Input: (N, C, H_{in}, W_{in}) or (C, H_{in}, W_{in}) * Output: (N, C, H_{out}, W_{out}) or (C, H_{out}, W_{out}), where H_{out} = \left\lfloor\frac{H_{in} + 2 * \text{padding[0]} - \text{dilation[0]} \times (\text{kernel\_size[0]} - 1) - 1}{\text{stride[0]}} + 1\right\rfloor W_{out} = \left\lfloor\frac{W_{in} + 2 * \text{padding[1]} - \text{dilation[1]} \times (\text{kernel\_size[1]} - 1) - 1}{\text{stride[1]}} + 1\right\rfloor Examples:
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html
pytorch docs
Examples: >>> # pool of square window of size=3, stride=2 >>> m = nn.MaxPool2d(3, stride=2) >>> # pool of non-square window >>> m = nn.MaxPool2d((3, 2), stride=(2, 1)) >>> input = torch.randn(20, 16, 50, 32) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html
pytorch docs
torch.jit.fork torch.jit.fork(func, args, *kwargs) Creates an asynchronous task executing func and a reference to the value of the result of this execution. fork will return immediately, so the return value of func may not have been computed yet. To force completion of the task and access the return value invoke torch.jit.wait on the Future. fork invoked with a func which returns T is typed as torch.jit.Future[T]. fork calls can be arbitrarily nested, and may be invoked with positional and keyword arguments. Asynchronous execution will only occur when run in TorchScript. If run in pure python, fork will not execute in parallel. fork will also not execute in parallel when invoked while tracing, however the fork and wait calls will be captured in the exported IR Graph. Warning: *fork* tasks will execute non-deterministically. We recommend only spawning parallel fork tasks for pure functions that do not
https://pytorch.org/docs/stable/generated/torch.jit.fork.html
pytorch docs
modify their inputs, module attributes, or global state. Parameters: * func (callable or torch.nn.Module) -- A Python function or torch.nn.Module that will be invoked. If executed in TorchScript, it will execute asynchronously, otherwise it will not. Traced invocations of fork will be captured in the IR. * ***args** -- arguments to invoke *func* with. * ****kwargs** -- arguments to invoke *func* with. Returns: a reference to the execution of func. The value T can only be accessed by forcing completion of func through torch.jit.wait. Return type: torch.jit.Future[T] Example (fork a free function): import torch from torch import Tensor def foo(a : Tensor, b : int) -> Tensor: return a + b def bar(a): fut : torch.jit.Future[Tensor] = torch.jit.fork(foo, a, b=2) return torch.jit.wait(fut) script_bar = torch.jit.script(bar)
https://pytorch.org/docs/stable/generated/torch.jit.fork.html
pytorch docs
script_bar = torch.jit.script(bar) input = torch.tensor(2) # only the scripted version executes asynchronously assert script_bar(input) == bar(input) # trace is not run asynchronously, but fork is captured in IR graph = torch.jit.trace(bar, (input,)).graph assert "fork" in str(graph) Example (fork a module method): import torch from torch import Tensor class AddMod(torch.nn.Module): def forward(self, a: Tensor, b : int): return a + b class Mod(torch.nn.Module): def __init__(self): super(self).__init__() self.mod = AddMod() def forward(self, input): fut = torch.jit.fork(self.mod, a, b=2) return torch.jit.wait(fut) input = torch.tensor(2) mod = Mod() assert mod(input) == torch.jit.script(mod).forward(input)
https://pytorch.org/docs/stable/generated/torch.jit.fork.html
pytorch docs
torch.Tensor.conj Tensor.conj() -> Tensor See "torch.conj()"
https://pytorch.org/docs/stable/generated/torch.Tensor.conj.html
pytorch docs
torch.nn.functional.logsigmoid torch.nn.functional.logsigmoid(input) -> Tensor Applies element-wise \text{LogSigmoid}(x_i) = \log \left(\frac{1}{1 + \exp(-x_i)}\right) See "LogSigmoid" for more details.
https://pytorch.org/docs/stable/generated/torch.nn.functional.logsigmoid.html
pytorch docs
Parameter class torch.nn.parameter.Parameter(data=None, requires_grad=True) A kind of Tensor that is to be considered a module parameter. Parameters are "Tensor" subclasses, that have a very special property when used with "Module" s - when they're assigned as Module attributes they are automatically added to the list of its parameters, and will appear e.g. in "parameters()" iterator. Assigning a Tensor doesn't have such effect. This is because one might want to cache some temporary state, like last hidden state of the RNN, in the model. If there was no such class as "Parameter", these temporaries would get registered too. Parameters: * data (Tensor) -- parameter tensor. * **requires_grad** (*bool**, **optional*) -- if the parameter requires gradient. See Locally disabling gradient computation for more details. Default: *True*
https://pytorch.org/docs/stable/generated/torch.nn.parameter.Parameter.html
pytorch docs
torch.foreach_lgamma torch.foreach_lgamma(self: List[Tensor]) -> None Apply "torch.lgamma()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_lgamma_.html
pytorch docs
torch.Tensor.q_zero_point Tensor.q_zero_point() -> int Given a Tensor quantized by linear(affine) quantization, returns the zero_point of the underlying quantizer().
https://pytorch.org/docs/stable/generated/torch.Tensor.q_zero_point.html
pytorch docs
torch.Tensor.dim Tensor.dim() -> int Returns the number of dimensions of "self" tensor.
https://pytorch.org/docs/stable/generated/torch.Tensor.dim.html
pytorch docs
PlaceholderObserver class torch.quantization.observer.PlaceholderObserver(dtype=torch.float32, custom_op_name='', compute_dtype=None, quant_min=None, quant_max=None, is_dynamic=False) Observer that doesn't do anything and just passes its configuration to the quantized module's ".from_float()". Can be used for quantization to float16 which doesn't require determining ranges. Parameters: * dtype -- dtype argument to the quantize node needed to implement the reference model spec. * **quant_min** -- minimum value in quantized domain (TODO: align behavior with other observers) * **quant_min** -- maximum value in quantized domain * **custom_op_name** -- (temporary) specify this observer for an operator that doesn't require any observation (Can be used in Graph Mode Passes for special case ops). * **compute_dtype** (*deprecated*) -- if set, marks the future
https://pytorch.org/docs/stable/generated/torch.quantization.observer.PlaceholderObserver.html
pytorch docs
quantize function to use dynamic quantization instead of static quantization. This field is deprecated, use is_dynamic=True instead. * **is_dynamic** -- if True, the *quantize* function in the reference model representation taking stats from this observer instance will use dynamic quantization.
https://pytorch.org/docs/stable/generated/torch.quantization.observer.PlaceholderObserver.html
pytorch docs
torch.Tensor.element_size Tensor.element_size() -> int Returns the size in bytes of an individual element. Example: >>> torch.tensor([]).element_size() 4 >>> torch.tensor([], dtype=torch.uint8).element_size() 1
https://pytorch.org/docs/stable/generated/torch.Tensor.element_size.html
pytorch docs
torch.Tensor.sin_ Tensor.sin_() -> Tensor In-place version of "sin()"
https://pytorch.org/docs/stable/generated/torch.Tensor.sin_.html
pytorch docs
torch.Tensor.lcm Tensor.lcm(other) -> Tensor See "torch.lcm()"
https://pytorch.org/docs/stable/generated/torch.Tensor.lcm.html
pytorch docs
torch.nn.utils.parametrize.is_parametrized torch.nn.utils.parametrize.is_parametrized(module, tensor_name=None) Returns "True" if module has an active parametrization. If the argument "tensor_name" is specified, returns "True" if "module[tensor_name]" is parametrized. Parameters: * module (nn.Module) -- module to query * **tensor_name** (*str**, **optional*) -- attribute in the module to query Default: "None" Return type: bool
https://pytorch.org/docs/stable/generated/torch.nn.utils.parametrize.is_parametrized.html
pytorch docs
torch.Tensor.scatter_reduce_ Tensor.scatter_reduce_(dim, index, src, reduce, *, include_self=True) -> Tensor Reduces all values from the "src" tensor to the indices specified in the "index" tensor in the "self" tensor using the applied reduction defined via the "reduce" argument (""sum"", ""prod"", ""mean"", ""amax"", ""amin""). For each value in "src", it is reduced to an index in "self" which is specified by its index in "src" for "dimension != dim" and by the corresponding value in "index" for "dimension = dim". If "include_self="True"", the values in the "self" tensor are included in the reduction. "self", "index" and "src" should all have the same number of dimensions. It is also required that "index.size(d) <= src.size(d)" for all dimensions "d", and that "index.size(d) <= self.size(d)" for all dimensions "d != dim". Note that "index" and "src" do not broadcast. For a 3-D tensor with "reduce="sum"" and "include_self=True" the
https://pytorch.org/docs/stable/generated/torch.Tensor.scatter_reduce_.html
pytorch docs
output is given as: self[index[i][j][k]][j][k] += src[i][j][k] # if dim == 0 self[i][index[i][j][k]][k] += src[i][j][k] # if dim == 1 self[i][j][index[i][j][k]] += src[i][j][k] # if dim == 2 Note: This operation may behave nondeterministically when given tensors on a CUDA device. See Reproducibility for more information. Note: The backward pass is implemented only for "src.shape == index.shape". Warning: This function is in beta and may change in the near future. Parameters: * dim (int) -- the axis along which to index * **index** (*LongTensor*) -- the indices of elements to scatter and reduce. * **src** (*Tensor*) -- the source elements to scatter and reduce * **reduce** (*str*) -- the reduction operation to apply for non-unique indices (""sum"", ""prod"", ""mean"", ""amax"", ""amin"") * **include_self** (*bool*) -- whether elements from the "self"
https://pytorch.org/docs/stable/generated/torch.Tensor.scatter_reduce_.html
pytorch docs
tensor are included in the reduction Example: >>> src = torch.tensor([1., 2., 3., 4., 5., 6.]) >>> index = torch.tensor([0, 1, 0, 1, 2, 1]) >>> input = torch.tensor([1., 2., 3., 4.]) >>> input.scatter_reduce(0, index, src, reduce="sum") tensor([5., 14., 8., 4.]) >>> input.scatter_reduce(0, index, src, reduce="sum", include_self=False) tensor([4., 12., 5., 4.]) >>> input2 = torch.tensor([5., 4., 3., 2.]) >>> input2.scatter_reduce(0, index, src, reduce="amax") tensor([5., 6., 5., 2.]) >>> input2.scatter_reduce(0, index, src, reduce="amax", include_self=False) tensor([3., 6., 5., 2.])
https://pytorch.org/docs/stable/generated/torch.Tensor.scatter_reduce_.html
pytorch docs
torch._foreach_sinh torch._foreach_sinh(self: List[Tensor]) -> List[Tensor] Apply "torch.sinh()" to each Tensor of the input list.
https://pytorch.org/docs/stable/generated/torch._foreach_sinh.html
pytorch docs
torch.negative torch.negative(input, *, out=None) -> Tensor Alias for "torch.neg()"
https://pytorch.org/docs/stable/generated/torch.negative.html
pytorch docs
ReflectionPad3d class torch.nn.ReflectionPad3d(padding) Pads the input tensor using the reflection of the input boundary. For N-dimensional padding, use "torch.nn.functional.pad()". Parameters: padding (int, tuple) -- the size of the padding. If is int, uses the same padding in all boundaries. If a 6-tuple, uses (\text{padding_left}, \text{padding_right}, \text{padding_top}, \text{padding_bottom}, \text{padding_front}, \text{padding_back}) Shape: * Input: (N, C, D_{in}, H_{in}, W_{in}) or (C, D_{in}, H_{in}, W_{in}). * Output: (N, C, D_{out}, H_{out}, W_{out}) or (C, D_{out}, H_{out}, W_{out}), where D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back} H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom} W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right} Examples: >>> m = nn.ReflectionPad3d(1)
https://pytorch.org/docs/stable/generated/torch.nn.ReflectionPad3d.html
pytorch docs
Examples: >>> m = nn.ReflectionPad3d(1) >>> input = torch.arange(8, dtype=torch.float).reshape(1, 1, 2, 2, 2) >>> m(input) tensor([[[[[7., 6., 7., 6.], [5., 4., 5., 4.], [7., 6., 7., 6.], [5., 4., 5., 4.]], [[3., 2., 3., 2.], [1., 0., 1., 0.], [3., 2., 3., 2.], [1., 0., 1., 0.]], [[7., 6., 7., 6.], [5., 4., 5., 4.], [7., 6., 7., 6.], [5., 4., 5., 4.]], [[3., 2., 3., 2.], [1., 0., 1., 0.], [3., 2., 3., 2.], [1., 0., 1., 0.]]]]])
https://pytorch.org/docs/stable/generated/torch.nn.ReflectionPad3d.html
pytorch docs
torch.nn.functional.grid_sample torch.nn.functional.grid_sample(input, grid, mode='bilinear', padding_mode='zeros', align_corners=None) Given an "input" and a flow-field "grid", computes the "output" using "input" values and pixel locations from "grid". Currently, only spatial (4-D) and volumetric (5-D) "input" are supported. In the spatial (4-D) case, for "input" with shape (N, C, H_\text{in}, W_\text{in}) and "grid" with shape (N, H_\text{out}, W_\text{out}, 2), the output will have shape (N, C, H_\text{out}, W_\text{out}). For each output location "output[n, :, h, w]", the size-2 vector "grid[n, h, w]" specifies "input" pixel locations "x" and "y", which are used to interpolate the output value "output[n, :, h, w]". In the case of 5D inputs, "grid[n, d, h, w]" specifies the "x", "y", "z" pixel locations for interpolating "output[n, :, d, h, w]". "mode" argument specifies "nearest" or "bilinear"
https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html
pytorch docs
interpolation method to sample the input pixels. "grid" specifies the sampling pixel locations normalized by the "input" spatial dimensions. Therefore, it should have most values in the range of "[-1, 1]". For example, values "x = -1, y = -1" is the left-top pixel of "input", and values "x = 1, y = 1" is the right-bottom pixel of "input". If "grid" has values outside the range of "[-1, 1]", the corresponding outputs are handled as defined by "padding_mode". Options are * "padding_mode="zeros"": use "0" for out-of-bound grid locations, * "padding_mode="border"": use border values for out-of-bound grid locations, * "padding_mode="reflection"": use values at locations reflected by the border for out-of-bound grid locations. For location far away from the border, it will keep being reflected until becoming in bound, e.g., (normalized) pixel location "x = -3.5" reflects by border "-1" and becomes "x' = 1.5", then
https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html
pytorch docs
reflects by border "1" and becomes "x'' = -0.5". Note: This function is often used in conjunction with "affine_grid()" to build Spatial Transformer Networks . Note: When using the CUDA backend, this operation may induce nondeterministic behaviour in its backward pass that is not easily switched off. Please see the notes on Reproducibility for background. Note: NaN values in "grid" would be interpreted as "-1". Parameters: * input (Tensor) -- input of shape (N, C, H_\text{in}, W_\text{in}) (4-D case) or (N, C, D_\text{in}, H_\text{in}, W_\text{in}) (5-D case) * **grid** (*Tensor*) -- flow-field of shape (N, H_\text{out}, W_\text{out}, 2) (4-D case) or (N, D_\text{out}, H_\text{out}, W_\text{out}, 3) (5-D case) * **mode** (*str*) -- interpolation mode to calculate output values "'bilinear'" | "'nearest'" | "'bicubic'". Default:
https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html
pytorch docs
"'bilinear'" Note: "mode='bicubic'" supports only 4-D input. When "mode='bilinear'" and the input is 5-D, the interpolation mode used internally will actually be trilinear. However, when the input is 4-D, the interpolation mode will legitimately be bilinear. * **padding_mode** (*str*) -- padding mode for outside grid values "'zeros'" | "'border'" | "'reflection'". Default: "'zeros'" * **align_corners** (*bool**, **optional*) -- Geometrically, we consider the pixels of the input as squares rather than points. If set to "True", the extrema ("-1" and "1") are considered as referring to the center points of the input's corner pixels. If set to "False", they are instead considered as referring to the corner points of the input's corner pixels, making the sampling more resolution agnostic. This option parallels the "align_corners" option in
https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html
pytorch docs
"interpolate()", and so whichever option is used here should also be used there to resize the input image before grid sampling. Default: "False" Returns: output Tensor Return type: output (Tensor) Warning: When "align_corners = True", the grid positions depend on the pixel size relative to the input image size, and so the locations sampled by "grid_sample()" will differ for the same input given at different resolutions (that is, after being upsampled or downsampled). The default behavior up to version 1.2.0 was "align_corners = True". Since then, the default behavior has been changed to "align_corners = False", in order to bring it in line with the default for "interpolate()". Note: "mode='bicubic'" is implemented using the cubic convolution algorithm with \alpha=-0.75. The constant \alpha might be different from packages to packages. For example, PIL and OpenCV
https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html
pytorch docs
use -0.5 and -0.75 respectively. This algorithm may "overshoot" the range of values it's interpolating. For example, it may produce negative values or values greater than 255 when interpolating input in [0, 255]. Clamp the results with :func: torch.clamp to ensure they are within the valid range.
https://pytorch.org/docs/stable/generated/torch.nn.functional.grid_sample.html
pytorch docs
torch.isin torch.isin(elements, test_elements, *, assume_unique=False, invert=False) -> Tensor Tests if each element of "elements" is in "test_elements". Returns a boolean tensor of the same shape as "elements" that is True for elements in "test_elements" and False otherwise. Note: One of "elements" or "test_elements" can be a scalar, but not both. Parameters: * elements (Tensor or Scalar) -- Input elements * **test_elements** (*Tensor** or **Scalar*) -- Values against which to test for each input element * **assume_unique** (*bool**, **optional*) -- If True, assumes both "elements" and "test_elements" contain unique elements, which can speed up the calculation. Default: False * **invert** (*bool**, **optional*) -- If True, inverts the boolean return tensor, resulting in True values for elements *not* in "test_elements". Default: False Returns:
https://pytorch.org/docs/stable/generated/torch.isin.html
pytorch docs
Returns: A boolean tensor of the same shape as "elements" that is True for elements in "test_elements" and False otherwise -[ Example ]- torch.isin(torch.tensor([[1, 2], [3, 4]]), torch.tensor([2, 3])) tensor([[False, True], [ True, False]])
https://pytorch.org/docs/stable/generated/torch.isin.html
pytorch docs
BackendPatternConfig class torch.ao.quantization.backend_config.BackendPatternConfig(pattern=None) Config object that specifies quantization behavior for a given operator pattern. For a detailed example usage, see "BackendConfig". add_dtype_config(dtype_config) Add a set of supported data types passed as arguments to quantize ops in the reference model spec. Return type: *BackendPatternConfig* classmethod from_dict(backend_pattern_config_dict) Create a "BackendPatternConfig" from a dictionary with the following items: "pattern": the pattern being configured "observation_type": the "ObservationType" that specifies how observers should be inserted for this pattern "dtype_configs": a list of dictionaries that represents "DTypeConfig" s "root_module": a "torch.nn.Module" that represents the root for this pattern "qat_module": a "torch.nn.Module" that represents the QAT
https://pytorch.org/docs/stable/generated/torch.ao.quantization.backend_config.BackendPatternConfig.html
pytorch docs
implementation for this pattern "reference_quantized_module": a "torch.nn.Module" that represents the reference quantized implementation for this pattern's root module. "fused_module": a "torch.nn.Module" that represents the fused implementation for this pattern "fuser_method": a function that specifies how to fuse the pattern for this pattern "pattern_complex_format": the pattern specified in the reversed nested tuple format (deprecated) Return type: *BackendPatternConfig* set_dtype_configs(dtype_configs) Set the supported data types passed as arguments to quantize ops in the reference model spec, overriding all previously registered data types. Return type: *BackendPatternConfig* set_fused_module(fused_module) Set the module that represents the fused implementation for this pattern. Return type: *BackendPatternConfig*
https://pytorch.org/docs/stable/generated/torch.ao.quantization.backend_config.BackendPatternConfig.html
pytorch docs
BackendPatternConfig set_fuser_method(fuser_method) Set the function that specifies how to fuse this BackendPatternConfig's pattern. The first argument of this function should be *is_qat*, and the rest of the arguments should be the items in the tuple pattern. The return value of this function should be the resulting fused module. For example, the fuser method for the pattern *(torch.nn.Linear, torch.nn.ReLU)* can be: def fuse_linear_relu(is_qat, linear, relu): return torch.ao.nn.intrinsic.LinearReLU(linear, relu) For a more complicated example, see https://gist.github.com/jer ryzh168/8bea7180a8ba3c279f2c9b050f2a69a6. Return type: *BackendPatternConfig* set_observation_type(observation_type) Set how observers should be inserted in the graph for this pattern. Observation type here refers to how observers (or quant-dequant
https://pytorch.org/docs/stable/generated/torch.ao.quantization.backend_config.BackendPatternConfig.html
pytorch docs
ops) will be placed in the graph. This is used to produce the desired reference patterns understood by the backend. Weighted ops such as linear and conv require different observers (or quantization parameters passed to quantize ops in the reference model) for the input and the output. There are two observation types: *OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT* (default): the output observer instance will be different from the input. This is the most common observation type. *OUTPUT_SHARE_OBSERVER_WITH_INPUT*: the output observer instance will be the same as the input. This is useful for operators like *cat*. Note: This will be renamed in the near future, since we will soon insert QuantDeQuantStubs with observers (and fake quantizes) attached instead of observers themselves. Return type: *BackendPatternConfig* set_pattern(pattern) Set the pattern to configure.
https://pytorch.org/docs/stable/generated/torch.ao.quantization.backend_config.BackendPatternConfig.html
pytorch docs
Set the pattern to configure. The pattern can be a float module, functional operator, pytorch operator, or a tuple combination of the above. Tuple patterns are treated as sequential patterns, and currently only tuples of 2 or 3 elements are supported. Return type: *BackendPatternConfig* set_qat_module(qat_module) Set the module that represents the QAT implementation for this pattern. Return type: *BackendPatternConfig* set_reference_quantized_module(reference_quantized_module) Set the module that represents the reference quantized implementation for this pattern's root module. For more detail, see "set_root_module()". Return type: *BackendPatternConfig* set_root_module(root_module) Set the module that represents the root for this pattern. When we construct the reference quantized model during the convert phase, the root modules (e.g. torch.nn.Linear for
https://pytorch.org/docs/stable/generated/torch.ao.quantization.backend_config.BackendPatternConfig.html
pytorch docs
torch.ao.nn.intrinsic.LinearReLU) will be swapped to the corresponding reference quantized modules (e.g. torch.ao.nn.reference.quantized.Linear). This allows custom backends to specify custom reference quantized module implementations to match the numerics of their lowered operators. Since this is a one-to-one mapping, both the root module and the reference quantized module must be specified in the same BackendPatternConfig in order for the conversion to take place. Return type: *BackendPatternConfig* to_dict() Convert this "BackendPatternConfig" to a dictionary with the items described in "from_dict()". Return type: *Dict*[str, *Any*]
https://pytorch.org/docs/stable/generated/torch.ao.quantization.backend_config.BackendPatternConfig.html
pytorch docs
torch.randn torch.randn(size, , out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False) -> Tensor Returns a tensor filled with random numbers from a normal distribution with mean 0 and variance 1 (also called the standard normal distribution). \text{out}_{i} \sim \mathcal{N}(0, 1) The shape of the tensor is defined by the variable argument "size". Parameters: size (int...) -- a sequence of integers defining the shape of the output tensor. Can be a variable number of arguments or a collection like a list or tuple. Keyword Arguments: * generator ("torch.Generator", optional) -- a pseudorandom number generator for sampling * **out** (*Tensor**, **optional*) -- the output tensor. * **dtype** ("torch.dtype", optional) -- the desired data type of returned tensor. Default: if "None", uses a global default (see "torch.set_default_tensor_type()").
https://pytorch.org/docs/stable/generated/torch.randn.html
pytorch docs
(see "torch.set_default_tensor_type()"). * **layout** ("torch.layout", optional) -- the desired layout of returned Tensor. Default: "torch.strided". * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if "None", uses the current device for the default tensor type (see "torch.set_default_tensor_type()"). "device" will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". * **pin_memory** (*bool**, **optional*) -- If set, returned tensor would be allocated in the pinned memory. Works only for CPU tensors. Default: "False". Example: >>> torch.randn(4) tensor([-2.1436, 0.9966, 2.3426, -0.6366]) >>> torch.randn(2, 3) tensor([[ 1.5954, 2.8929, -1.0923],
https://pytorch.org/docs/stable/generated/torch.randn.html
pytorch docs
tensor([[ 1.5954, 2.8929, -1.0923], [ 1.1719, -0.4709, -0.1996]])
https://pytorch.org/docs/stable/generated/torch.randn.html
pytorch docs
torch.linalg.lu_solve torch.linalg.lu_solve(LU, pivots, B, *, left=True, adjoint=False, out=None) -> Tensor Computes the solution of a square system of linear equations with a unique solution given an LU decomposition. Letting \mathbb{K} be \mathbb{R} or \mathbb{C}, this function computes the solution X \in \mathbb{K}^{n \times k} of the linear system associated to A \in \mathbb{K}^{n \times n}, B \in \mathbb{K}^{n \times k}, which is defined as AX = B where A is given factorized as returned by "lu_factor()". If "left"= False, this function returns the matrix X \in \mathbb{K}^{n \times k} that solves the system XA = B\mathrlap{\qquad A \in \mathbb{K}^{k \times k}, B \in \mathbb{K}^{n \times k}.} If "adjoint"= True (and "left"= True), given an LU factorization of :math:`A this function function returns the X \in \mathbb{K}^{n \times k} that solves the system
https://pytorch.org/docs/stable/generated/torch.linalg.lu_solve.html
pytorch docs
\mathbb{K}^{n \times k} that solves the system A^{\text{H}}X = B\mathrlap{\qquad A \in \mathbb{K}^{k \times k}, B \in \mathbb{K}^{n \times k}.} where A^{\text{H}} is the conjugate transpose when A is complex, and the transpose when A is real-valued. The "left"= False case is analogous. Supports inputs of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if the inputs are batches of matrices then the output has the same batch dimensions. Parameters: * LU (Tensor) -- tensor of shape (, n, n) (or (, k, k) if "left"= True) where *** is zero or more batch dimensions as returned by "lu_factor()". * **pivots** (*Tensor*) -- tensor of shape *(*, n)* (or *(*, k)* if "left"*= True*) where *** is zero or more batch dimensions as returned by "lu_factor()". * **B** (*Tensor*) -- right-hand side tensor of shape *(*, n, k)*. Keyword Arguments:
https://pytorch.org/docs/stable/generated/torch.linalg.lu_solve.html
pytorch docs
k)*. Keyword Arguments: * left (bool, optional) -- whether to solve the system AX=B or XA = B. Default: True. * **adjoint** (*bool**, **optional*) -- whether to solve the system AX=B or A^{\text{H}}X = B. Default: *False*. * **out** (*Tensor**, **optional*) -- output tensor. Ignored if *None*. Default: *None*. Examples: >>> A = torch.randn(3, 3) >>> LU, pivots = torch.linalg.lu_factor(A) >>> B = torch.randn(3, 2) >>> X = torch.linalg.lu_solve(LU, pivots, B) >>> torch.allclose(A @ X, B) True >>> B = torch.randn(3, 3, 2) # Broadcasting rules apply: A is broadcasted >>> X = torch.linalg.lu_solve(LU, pivots, B) >>> torch.allclose(A @ X, B) True >>> B = torch.randn(3, 5, 3) >>> X = torch.linalg.lu_solve(LU, pivots, B, left=False) >>> torch.allclose(X @ A, B) True >>> B = torch.randn(3, 3, 4) # Now solve for A^T
https://pytorch.org/docs/stable/generated/torch.linalg.lu_solve.html
pytorch docs
X = torch.linalg.lu_solve(LU, pivots, B, adjoint=True) >>> torch.allclose(A.mT @ X, B) True
https://pytorch.org/docs/stable/generated/torch.linalg.lu_solve.html
pytorch docs
torch.sgn torch.sgn(input, *, out=None) -> Tensor This function is an extension of torch.sign() to complex tensors. It computes a new tensor whose elements have the same angles as the corresponding elements of "input" and absolute values (i.e. magnitudes) of one for complex tensors and is equivalent to torch.sign() for non-complex tensors. \text{out}_{i} = \begin{cases} 0 & |\text{{input}}_i| == 0 \\ \frac{{\text{{input}}_i}}{|{\text{{input}}_i}|} & \text{otherwise} \end{cases} Parameters: input (Tensor) -- the input tensor. Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> t = torch.tensor([3+4j, 7-24j, 0, 1+2j]) >>> t.sgn() tensor([0.6000+0.8000j, 0.2800-0.9600j, 0.0000+0.0000j, 0.4472+0.8944j])
https://pytorch.org/docs/stable/generated/torch.sgn.html
pytorch docs
torch.matrix_power torch.matrix_power(input, n, *, out=None) -> Tensor Alias for "torch.linalg.matrix_power()"
https://pytorch.org/docs/stable/generated/torch.matrix_power.html
pytorch docs
torch.Tensor.storage_type Tensor.storage_type() -> type Returns the type of the underlying storage.
https://pytorch.org/docs/stable/generated/torch.Tensor.storage_type.html
pytorch docs
torch.cuda.OutOfMemoryError exception torch.cuda.OutOfMemoryError Exception raised when CUDA is out of memory
https://pytorch.org/docs/stable/generated/torch.cuda.OutOfMemoryError.html
pytorch docs
torch.as_tensor torch.as_tensor(data, dtype=None, device=None) -> Tensor Converts "data" into a tensor, sharing data and preserving autograd history if possible. If "data" is already a tensor with the requested dtype and device then "data" itself is returned, but if "data" is a tensor with a different dtype or device then it's copied as if using data.to(dtype=dtype, device=device). If "data" is a NumPy array (an ndarray) with the same dtype and device then a tensor is constructed using "torch.from_numpy()". See also: "torch.tensor()" never shares its data and creates a new "leaf tensor" (see Autograd mechanics). Parameters: * data (array_like) -- Initial data for the tensor. Can be a list, tuple, NumPy "ndarray", scalar, and other types. * **dtype** ("torch.dtype", optional) -- the desired data type of returned tensor. Default: if "None", infers data type from "data".
https://pytorch.org/docs/stable/generated/torch.as_tensor.html
pytorch docs
"data". * **device** ("torch.device", optional) -- the device of the constructed tensor. If None and data is a tensor then the device of data is used. If None and data is not a tensor then the result tensor is constructed on the CPU. Example: >>> a = numpy.array([1, 2, 3]) >>> t = torch.as_tensor(a) >>> t tensor([ 1, 2, 3]) >>> t[0] = -1 >>> a array([-1, 2, 3]) >>> a = numpy.array([1, 2, 3]) >>> t = torch.as_tensor(a, device=torch.device('cuda')) >>> t tensor([ 1, 2, 3]) >>> t[0] = -1 >>> a array([1, 2, 3])
https://pytorch.org/docs/stable/generated/torch.as_tensor.html
pytorch docs