text
stringlengths
0
1.73k
source
stringlengths
35
119
category
stringclasses
2 values
embedding dimension "embed_dim". * **attn_output_weights** - Only returned when "need_weights=True". If "average_attn_weights=True", returns attention weights averaged across heads of shape (L, S) when input is unbatched or (N, L, S), where N is the batch size, L is the target sequence length, and S is the source sequence length. If "average_attn_weights=False", returns attention weights per head of shape (\text{num\_heads}, L, S) when input is unbatched or (N, \text{num\_heads}, L, S). Note: *batch_first* argument is ignored for unbatched inputs. merge_masks(attn_mask, key_padding_mask, query) Determine mask type and combine masks if necessary. If only one mask is provided, that mask and the corresponding mask type will be returned. If both masks are provided, they will be both expanded to shape "(batch_size, num_heads, seq_len, seq_len)",
https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html
pytorch docs
combined with logical "or" and mask type 2 will be returned :param attn_mask: attention mask of shape "(seq_len, seq_len)", mask type 0 :param key_padding_mask: padding mask of shape "(batch_size, seq_len)", mask type 1 :param query: query embeddings of shape "(batch_size, seq_len, embed_dim)" Returns: merged mask mask_type: merged mask type (0, 1, or 2) Return type: merged_mask
https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html
pytorch docs
torch.bitwise_xor torch.bitwise_xor(input, other, *, out=None) -> Tensor Computes the bitwise XOR of "input" and "other". The input tensor must be of integral or Boolean types. For bool tensors, it computes the logical XOR. Parameters: * input -- the first input tensor * **other** -- the second input tensor Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> torch.bitwise_xor(torch.tensor([-1, -2, 3], dtype=torch.int8), torch.tensor([1, 0, 3], dtype=torch.int8)) tensor([-2, -2, 0], dtype=torch.int8) >>> torch.bitwise_xor(torch.tensor([True, True, False]), torch.tensor([False, True, False])) tensor([ True, False, False])
https://pytorch.org/docs/stable/generated/torch.bitwise_xor.html
pytorch docs
torch.cuda.list_gpu_processes torch.cuda.list_gpu_processes(device=None) Returns a human-readable printout of the running processes and their GPU memory use for a given device. This can be useful to display periodically during training, or when handling out-of-memory exceptions. Parameters: device (torch.device or int, optional) -- selected device. Returns printout for the current device, given by "current_device()", if "device" is "None" (default). Return type: str
https://pytorch.org/docs/stable/generated/torch.cuda.list_gpu_processes.html
pytorch docs
torch.full_like torch.full_like(input, fill_value, *, dtype=None, layout=torch.strided, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor Returns a tensor with the same size as "input" filled with "fill_value". "torch.full_like(input, fill_value)" is equivalent to "torch.full(input.size(), fill_value, dtype=input.dtype, layout=input.layout, device=input.device)". Parameters: * input (Tensor) -- the size of "input" will determine size of the output tensor. * **fill_value** -- the number to fill the output tensor with. Keyword Arguments: * dtype ("torch.dtype", optional) -- the desired data type of returned Tensor. Default: if "None", defaults to the dtype of "input". * **layout** ("torch.layout", optional) -- the desired layout of returned tensor. Default: if "None", defaults to the layout of "input".
https://pytorch.org/docs/stable/generated/torch.full_like.html
pytorch docs
"input". * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if "None", defaults to the device of "input". * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". * **memory_format** ("torch.memory_format", optional) -- the desired memory format of returned Tensor. Default: "torch.preserve_format".
https://pytorch.org/docs/stable/generated/torch.full_like.html
pytorch docs
ConvTranspose2d class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, groups=1, bias=True, dilation=1, padding_mode='zeros', device=None, dtype=None) Applies a 2D transposed convolution operator over an input image composed of several input planes. This module can be seen as the gradient of Conv2d with respect to its input. It is also known as a fractionally-strided convolution or a deconvolution (although it is not an actual deconvolution operation as it does not compute a true inverse of convolution). For more information, see the visualizations here and the Deconvolutional Networks paper. This module supports TensorFloat32. On certain ROCm devices, when using float16 inputs this module will use different precision for backward. "stride" controls the stride for the cross-correlation. "padding" controls the amount of implicit zero padding on both
https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
pytorch docs
sides for "dilation * (kernel_size - 1) - padding" number of points. See note below for details. "output_padding" controls the additional size added to one side of the output shape. See note below for details. "dilation" controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but the link here has a nice visualization of what "dilation" does. "groups" controls the connections between inputs and outputs. "in_channels" and "out_channels" must both be divisible by "groups". For example, * At groups=1, all inputs are convolved to all outputs. * At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels and producing half the output channels, and both subsequently concatenated. * At groups= "in_channels", each input channel is convolved with its own set of filters (of size
https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
pytorch docs
with its own set of filters (of size \frac{\text{out_channels}}{\text{in_channels}}). The parameters "kernel_size", "stride", "padding", "output_padding" can either be: * a single "int" -- in which case the same value is used for the height and width dimensions * a "tuple" of two ints -- in which case, the first *int* is used for the height dimension, and the second *int* for the width dimension Note: The "padding" argument effectively adds "dilation * (kernel_size - 1) - padding" amount of zero padding to both sizes of the input. This is set so that when a "Conv2d" and a "ConvTranspose2d" are initialized with same parameters, they are inverses of each other in regard to the input and output shapes. However, when "stride > 1", "Conv2d" maps multiple input shapes to the same output shape. "output_padding" is provided to resolve this ambiguity by effectively increasing the calculated output
https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
pytorch docs
shape on one side. Note that "output_padding" is only used to find output shape, but does not actually add zero-padding to output. Note: In some circumstances when given tensors on a CUDA device and using CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting "torch.backends.cudnn.deterministic = True". See Reproducibility for more information. Parameters: * in_channels (int) -- Number of channels in the input image * **out_channels** (*int*) -- Number of channels produced by the convolution * **kernel_size** (*int** or **tuple*) -- Size of the convolving kernel * **stride** (*int** or **tuple**, **optional*) -- Stride of the convolution. Default: 1 * **padding** (*int** or **tuple**, **optional*) -- "dilation *
https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
pytorch docs
(kernel_size - 1) - padding" zero-padding will be added to both sides of each dimension in the input. Default: 0 * **output_padding** (*int** or **tuple**, **optional*) -- Additional size added to one side of each dimension in the output shape. Default: 0 * **groups** (*int**, **optional*) -- Number of blocked connections from input channels to output channels. Default: 1 * **bias** (*bool**, **optional*) -- If "True", adds a learnable bias to the output. Default: "True" * **dilation** (*int** or **tuple**, **optional*) -- Spacing between kernel elements. Default: 1 Shape: * Input: (N, C_{in}, H_{in}, W_{in}) or (C_{in}, H_{in}, W_{in}) * Output: (N, C_{out}, H_{out}, W_{out}) or (C_{out}, H_{out}, W_{out}), where H_{out} = (H_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{dilation}[0] \times
https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
pytorch docs
(\text{kernel_size}[0] - 1) + \text{output_padding}[0] + 1 W_{out} = (W_{in} - 1) \times \text{stride}[1] - 2 \times \text{padding}[1] + \text{dilation}[1] \times (\text{kernel\_size}[1] - 1) + \text{output\_padding}[1] + 1 Variables: * weight (Tensor) -- the learnable weights of the module of shape (\text{in_channels}, \frac{\text{out_channels}}{\text{groups}}, \text{kernel_size[0]}, \text{kernel_size[1]}). The values of these weights are sampled from \mathcal{U}(-\sqrt{k}, \sqrt{k}) where k = \frac{groups}{C_\text{out} * \prod_{i=0}^{1}\text{kernel_size}[i]} * **bias** (*Tensor*) -- the learnable bias of the module of shape (out_channels) If "bias" is "True", then the values of these weights are sampled from \mathcal{U}(-\sqrt{k}, \sqrt{k}) where k = \frac{groups}{C_\text{out} * \prod_{i=0}^{1}\text{kernel\_size}[i]} Examples:
https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
pytorch docs
Examples: >>> # With square kernels and equal stride >>> m = nn.ConvTranspose2d(16, 33, 3, stride=2) >>> # non-square kernels and unequal stride and with padding >>> m = nn.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2)) >>> input = torch.randn(20, 16, 50, 100) >>> output = m(input) >>> # exact output size can be also specified as an argument >>> input = torch.randn(1, 16, 12, 12) >>> downsample = nn.Conv2d(16, 16, 3, stride=2, padding=1) >>> upsample = nn.ConvTranspose2d(16, 16, 3, stride=2, padding=1) >>> h = downsample(input) >>> h.size() torch.Size([1, 16, 6, 6]) >>> output = upsample(h, output_size=input.size()) >>> output.size() torch.Size([1, 16, 12, 12])
https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
pytorch docs
torch.cuda.comm.reduce_add torch.cuda.comm.reduce_add(inputs, destination=None) Sums tensors from multiple GPUs. All inputs should have matching shapes, dtype, and layout. The output tensor will be of the same shape, dtype, and layout. Parameters: * inputs (Iterable[Tensor]) -- an iterable of tensors to add. * **destination** (*int**, **optional*) -- a device on which the output will be placed (default: current device). Returns: A tensor containing an elementwise sum of all inputs, placed on the "destination" device.
https://pytorch.org/docs/stable/generated/torch.cuda.comm.reduce_add.html
pytorch docs
torch.Tensor.negative Tensor.negative() -> Tensor See "torch.negative()"
https://pytorch.org/docs/stable/generated/torch.Tensor.negative.html
pytorch docs
torch.Tensor.t Tensor.t() -> Tensor See "torch.t()"
https://pytorch.org/docs/stable/generated/torch.Tensor.t.html
pytorch docs
torch.Tensor.cauchy_ Tensor.cauchy_(median=0, sigma=1, *, generator=None) -> Tensor Fills the tensor with numbers drawn from the Cauchy distribution: f(x) = \dfrac{1}{\pi} \dfrac{\sigma}{(x - \text{median})^2 + \sigma^2}
https://pytorch.org/docs/stable/generated/torch.Tensor.cauchy_.html
pytorch docs
torch.autograd.functional.hvp torch.autograd.functional.hvp(func, inputs, v=None, create_graph=False, strict=False) Function that computes the dot product between the Hessian of a given scalar function and a vector "v" at the point given by the inputs. Parameters: * func (function) -- a Python function that takes Tensor inputs and returns a Tensor with a single element. * **inputs** (*tuple of Tensors** or **Tensor*) -- inputs to the function "func". * **v** (*tuple of Tensors** or **Tensor*) -- The vector for which the Hessian vector product is computed. Must be the same size as the input of "func". This argument is optional when "func"'s input contains a single element and (if it is not provided) will be set as a Tensor containing a single "1". * **create_graph** (*bool**, **optional*) -- If "True", both the output and result will be computed in a differentiable way.
https://pytorch.org/docs/stable/generated/torch.autograd.functional.hvp.html
pytorch docs
Note that when "strict" is "False", the result can not require gradients or be disconnected from the inputs. Defaults to "False". * **strict** (*bool**, **optional*) -- If "True", an error will be raised when we detect that there exists an input such that all the outputs are independent of it. If "False", we return a Tensor of zeros as the hvp for said inputs, which is the expected mathematical value. Defaults to "False". Returns: tuple with: func_output (tuple of Tensors or Tensor): output of "func(inputs)" hvp (tuple of Tensors or Tensor): result of the dot product with the same shape as the inputs. Return type: output (tuple) -[ Example ]- def pow_reducer(x): ... return x.pow(3).sum() inputs = torch.rand(2, 2) v = torch.ones(2, 2) hvp(pow_reducer, inputs, v) (tensor(0.1448), tensor([[2.0239, 1.6456], [2.4988, 1.4310]]))
https://pytorch.org/docs/stable/generated/torch.autograd.functional.hvp.html
pytorch docs
[2.4988, 1.4310]])) hvp(pow_reducer, inputs, v, create_graph=True) (tensor(0.1448, grad_fn=), tensor([[2.0239, 1.6456], [2.4988, 1.4310]], grad_fn=)) def pow_adder_reducer(x, y): ... return (2 * x.pow(2) + 3 * y.pow(2)).sum() inputs = (torch.rand(2), torch.rand(2)) v = (torch.zeros(2), torch.ones(2)) hvp(pow_adder_reducer, inputs, v) (tensor(2.3030), (tensor([0., 0.]), tensor([6., 6.]))) Note: This function is significantly slower than *vhp* due to backward mode AD constraints. If your functions is twice continuously differentiable, then hvp = vhp.t(). So if you know that your function satisfies this condition, you should use vhp instead that is much faster with the current implementation.
https://pytorch.org/docs/stable/generated/torch.autograd.functional.hvp.html
pytorch docs
torch.Tensor.tril Tensor.tril(diagonal=0) -> Tensor See "torch.tril()"
https://pytorch.org/docs/stable/generated/torch.Tensor.tril.html
pytorch docs
torch.Tensor.lt Tensor.lt(other) -> Tensor See "torch.lt()".
https://pytorch.org/docs/stable/generated/torch.Tensor.lt.html
pytorch docs
torch.Tensor.exp Tensor.exp() -> Tensor See "torch.exp()"
https://pytorch.org/docs/stable/generated/torch.Tensor.exp.html
pytorch docs
torch.nn.functional.conv2d torch.nn.functional.conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor Applies a 2D convolution over an input image composed of several input planes. This operator supports TensorFloat32. See "Conv2d" for details and output shape. Note: In some circumstances when given tensors on a CUDA device and using CuDNN, this operator may select a nondeterministic algorithm to increase performance. If this is undesirable, you can try to make the operation deterministic (potentially at a performance cost) by setting "torch.backends.cudnn.deterministic = True". See Reproducibility for more information. Note: This operator supports complex data types i.e. "complex32, complex64, complex128". Parameters: * input -- input tensor of shape (\text{minibatch} , \text{in_channels} , iH , iW) * **weight** -- filters of shape (\text{out\_channels} ,
https://pytorch.org/docs/stable/generated/torch.nn.functional.conv2d.html
pytorch docs
\frac{\text{in_channels}}{\text{groups}} , kH , kW) * **bias** -- optional bias tensor of shape (\text{out\_channels}). Default: "None" * **stride** -- the stride of the convolving kernel. Can be a single number or a tuple *(sH, sW)*. Default: 1 * **padding** -- implicit paddings on both sides of the input. Can be a string {'valid', 'same'}, single number or a tuple *(padH, padW)*. Default: 0 "padding='valid'" is the same as no padding. "padding='same'" pads the input so the output has the same shape as the input. However, this mode doesn't support any stride values other than 1. Warning: For "padding='same'", if the "weight" is even-length and "dilation" is odd in any dimension, a full "pad()" operation may be needed internally. Lowering performance. * **dilation** -- the spacing between kernel elements. Can be a single number or a tuple *(dH, dW)*. Default: 1
https://pytorch.org/docs/stable/generated/torch.nn.functional.conv2d.html
pytorch docs
groups -- split input into groups, \text{in_channels} should be divisible by the number of groups. Default: 1 Examples: >>> # With square kernels and equal stride >>> filters = torch.randn(8, 4, 3, 3) >>> inputs = torch.randn(1, 4, 5, 5) >>> F.conv2d(inputs, filters, padding=1)
https://pytorch.org/docs/stable/generated/torch.nn.functional.conv2d.html
pytorch docs
torch.func.vmap torch.func.vmap(func, in_dims=0, out_dims=0, randomness='error', *, chunk_size=None) vmap is the vectorizing map; "vmap(func)" returns a new function that maps "func" over some dimension of the inputs. Semantically, vmap pushes the map into PyTorch operations called by "func", effectively vectorizing those operations. vmap is useful for handling batch dimensions: one can write a function "func" that runs on examples and then lift it to a function that can take batches of examples with "vmap(func)". vmap can also be used to compute batched gradients when composed with autograd. Note: "torch.vmap()" is aliased to "torch.func.vmap()" for convenience. Use whichever one you'd like. Parameters: * func (function) -- A Python function that takes one or more arguments. Must return one or more Tensors. * **in_dims** (*int** or **nested structure*) -- Specifies which
https://pytorch.org/docs/stable/generated/torch.func.vmap.html
pytorch docs
dimension of the inputs should be mapped over. "in_dims" should have a structure like the inputs. If the "in_dim" for a particular input is None, then that indicates there is no map dimension. Default: 0. * **out_dims** (*int** or **Tuple**[**int**]*) -- Specifies where the mapped dimension should appear in the outputs. If "out_dims" is a Tuple, then it should have one element per output. Default: 0. * **randomness** (*str*) -- Specifies whether the randomness in this vmap should be the same or different across batches. If 'different', the randomness for each batch will be different. If 'same', the randomness will be the same across batches. If 'error', any calls to random functions will error. Default: 'error'. WARNING: this flag only applies to random PyTorch operations and does not apply to Python's random module or numpy randomness.
https://pytorch.org/docs/stable/generated/torch.func.vmap.html
pytorch docs
numpy randomness. * **chunk_size** (*None** or **int*) -- If None (default), apply a single vmap over inputs. If not None, then compute the vmap "chunk_size" samples at a time. Note that "chunk_size=1" is equivalent to computing the vmap with a for-loop. If you run into memory issues computing the vmap, please try a non-None chunk_size. Returns: Returns a new "batched" function. It takes the same inputs as "func", except each input has an extra dimension at the index specified by "in_dims". It takes returns the same outputs as "func", except each output has an extra dimension at the index specified by "out_dims". Return type: Callable One example of using "vmap()" is to compute batched dot products. PyTorch doesn't provide a batched "torch.dot" API; instead of unsuccessfully rummaging through docs, use "vmap()" to construct a new function.
https://pytorch.org/docs/stable/generated/torch.func.vmap.html
pytorch docs
new function. torch.dot # [D], [D] -> [] batched_dot = torch.func.vmap(torch.dot) # [N, D], [N, D] -> [N] x, y = torch.randn(2, 5), torch.randn(2, 5) batched_dot(x, y) "vmap()" can be helpful in hiding batch dimensions, leading to a simpler model authoring experience. batch_size, feature_size = 3, 5 weights = torch.randn(feature_size, requires_grad=True) def model(feature_vec): # Very simple linear model with activation return feature_vec.dot(weights).relu() examples = torch.randn(batch_size, feature_size) result = torch.vmap(model)(examples) "vmap()" can also help vectorize computations that were previously difficult or impossible to batch. One example is higher-order gradient computation. The PyTorch autograd engine computes vjps (vector-Jacobian products). Computing a full Jacobian matrix for some function f: R^N -> R^N usually requires N calls to
https://pytorch.org/docs/stable/generated/torch.func.vmap.html
pytorch docs
"autograd.grad", one per Jacobian row. Using "vmap()", we can vectorize the whole computation, computing the Jacobian in a single call to "autograd.grad". Setup N = 5 f = lambda x: x ** 2 x = torch.randn(N, requires_grad=True) y = f(x) I_N = torch.eye(N) Sequential approach jacobian_rows = [torch.autograd.grad(y, x, v, retain_graph=True)[0] for v in I_N.unbind()] jacobian = torch.stack(jacobian_rows) vectorized gradient computation def get_vjp(v): return torch.autograd.grad(y, x, v) jacobian = torch.vmap(get_vjp)(I_N) "vmap()" can also be nested, producing an output with multiple batched dimensions torch.dot # [D], [D] -> [] batched_dot = torch.vmap(torch.vmap(torch.dot)) # [N1, N0, D], [N1, N0, D] -> [N1, N0] x, y = torch.randn(2, 3, 5), torch.randn(2, 3, 5) batched_dot(x, y) # tensor of size [2, 3]
https://pytorch.org/docs/stable/generated/torch.func.vmap.html
pytorch docs
batched_dot(x, y) # tensor of size [2, 3] If the inputs are not batched along the first dimension, "in_dims" specifies the dimension that each inputs are batched along as torch.dot # [N], [N] -> [] batched_dot = torch.vmap(torch.dot, in_dims=1) # [N, D], [N, D] -> [D] x, y = torch.randn(2, 5), torch.randn(2, 5) batched_dot(x, y) # output is [5] instead of [2] if batched along the 0th dimension If there are multiple inputs each of which is batched along different dimensions, "in_dims" must be a tuple with the batch dimension for each input as torch.dot # [D], [D] -> [] batched_dot = torch.vmap(torch.dot, in_dims=(0, None)) # [N, D], [D] -> [N] x, y = torch.randn(2, 5), torch.randn(5) batched_dot(x, y) # second arg doesn't have a batch dim because in_dim[1] was None If the input is a Python struct, "in_dims" must be a tuple
https://pytorch.org/docs/stable/generated/torch.func.vmap.html
pytorch docs
containing a struct matching the shape of the input: f = lambda dict: torch.dot(dict['x'], dict['y']) x, y = torch.randn(2, 5), torch.randn(5) input = {'x': x, 'y': y} batched_dot = torch.vmap(f, in_dims=({'x': 0, 'y': None},)) batched_dot(input) By default, the output is batched along the first dimension. However, it can be batched along any dimension by using "out_dims" f = lambda x: x ** 2 x = torch.randn(2, 5) batched_pow = torch.vmap(f, out_dims=1) batched_pow(x) # [5, 2] For any function that uses kwargs, the returned function will not batch the kwargs but will accept kwargs x = torch.randn([2, 5]) def fn(x, scale=4.): return x * scale batched_pow = torch.vmap(fn) assert torch.allclose(batched_pow(x), x * 4) batched_pow(x, scale=x) # scale is not batched, output has shape [2, 2, 5] Note: vmap does not provide general autobatching or handle variable-
https://pytorch.org/docs/stable/generated/torch.func.vmap.html
pytorch docs
length sequences out of the box.
https://pytorch.org/docs/stable/generated/torch.func.vmap.html
pytorch docs
torch.Tensor.bernoulli_ Tensor.bernoulli_(p=0.5, *, generator=None) -> Tensor Fills each location of "self" with an independent sample from \text{Bernoulli}(\texttt{p}). "self" can have integral "dtype". "p" should either be a scalar or tensor containing probabilities to be used for drawing the binary random number. If it is a tensor, the \text{i}^{th} element of "self" tensor will be set to a value sampled from \text{Bernoulli}(\texttt{p_tensor[i]}). In this case p must have floating point "dtype". See also "bernoulli()" and "torch.bernoulli()"
https://pytorch.org/docs/stable/generated/torch.Tensor.bernoulli_.html
pytorch docs
torch.Tensor.is_meta Tensor.is_meta Is "True" if the Tensor is a meta tensor, "False" otherwise. Meta tensors are like normal tensors, but they carry no data.
https://pytorch.org/docs/stable/generated/torch.Tensor.is_meta.html
pytorch docs
torch.jit.onednn_fusion_enabled torch.jit.onednn_fusion_enabled() Returns whether onednn JIT fusion is enabled
https://pytorch.org/docs/stable/generated/torch.jit.onednn_fusion_enabled.html
pytorch docs
torch.Tensor.absolute_ Tensor.absolute_() -> Tensor In-place version of "absolute()" Alias for "abs_()"
https://pytorch.org/docs/stable/generated/torch.Tensor.absolute_.html
pytorch docs
torch.logaddexp2 torch.logaddexp2(input, other, *, out=None) -> Tensor Logarithm of the sum of exponentiations of the inputs in base-2. Calculates pointwise \log_2\left(2^x + 2^y\right). See "torch.logaddexp()" for more details. Parameters: * input (Tensor) -- the input tensor. * **other** (*Tensor*) -- the second input tensor Keyword Arguments: out (Tensor, optional) -- the output tensor.
https://pytorch.org/docs/stable/generated/torch.logaddexp2.html
pytorch docs
torch.cuda.memory_snapshot torch.cuda.memory_snapshot() Returns a snapshot of the CUDA memory allocator state across all devices. Interpreting the output of this function requires familiarity with the memory allocator internals. Note: See Memory management for more details about GPU memory management.
https://pytorch.org/docs/stable/generated/torch.cuda.memory_snapshot.html
pytorch docs
torch.Tensor.sigmoid Tensor.sigmoid() -> Tensor See "torch.sigmoid()"
https://pytorch.org/docs/stable/generated/torch.Tensor.sigmoid.html
pytorch docs
LazyInstanceNorm2d class torch.nn.LazyInstanceNorm2d(eps=1e-05, momentum=0.1, affine=True, track_running_stats=True, device=None, dtype=None) A "torch.nn.InstanceNorm2d" module with lazy initialization of the "num_features" argument of the "InstanceNorm2d" that is inferred from the "input.size(1)". The attributes that will be lazily initialized are weight, bias, running_mean and running_var. Check the "torch.nn.modules.lazy.LazyModuleMixin" for further documentation on lazy modules and their limitations. Parameters: * num_features -- C from an expected input of size (N, C, H, W) or (C, H, W) * **eps** (*float*) -- a value added to the denominator for numerical stability. Default: 1e-5 * **momentum** (*float*) -- the value used for the running_mean and running_var computation. Default: 0.1 * **affine** (*bool*) -- a boolean value that when set to
https://pytorch.org/docs/stable/generated/torch.nn.LazyInstanceNorm2d.html
pytorch docs
"True", this module has learnable affine parameters, initialized the same way as done for batch normalization. Default: "False". * **track_running_stats** (*bool*) -- a boolean value that when set to "True", this module tracks the running mean and variance, and when set to "False", this module does not track such statistics and always uses batch statistics in both training and eval modes. Default: "False" Shape: * Input: (N, C, H, W) or (C, H, W) * Output: (N, C, H, W) or (C, H, W) (same shape as input) cls_to_become alias of "InstanceNorm2d"
https://pytorch.org/docs/stable/generated/torch.nn.LazyInstanceNorm2d.html
pytorch docs
torch.isreal torch.isreal(input) -> Tensor Returns a new tensor with boolean elements representing if each element of "input" is real-valued or not. All real-valued types are considered real. Complex values are considered real when their imaginary part is 0. Parameters: input (Tensor) -- the input tensor. Returns: A boolean tensor that is True where "input" is real and False elsewhere Example: >>> torch.isreal(torch.tensor([1, 1+1j, 2+0j])) tensor([True, False, True])
https://pytorch.org/docs/stable/generated/torch.isreal.html
pytorch docs
TransformerEncoderLayer class torch.nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward=2048, dropout=0.1, activation=, layer_norm_eps=1e-05, batch_first=False, norm_first=False, device=None, dtype=None) TransformerEncoderLayer is made up of self-attn and feedforward network. This standard encoder layer is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users may modify or implement in a different way during application. Parameters: * d_model (int) -- the number of expected features in the input (required). * **nhead** (*int*) -- the number of heads in the multiheadattention models (required). * **dim_feedforward** (*int*) -- the dimension of the
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html
pytorch docs
feedforward network model (default=2048). * **dropout** (*float*) -- the dropout value (default=0.1). * **activation** (*Union**[**str**, **Callable**[**[**Tensor**]**, **Tensor**]**]*) -- the activation function of the intermediate layer, can be a string ("relu" or "gelu") or a unary callable. Default: relu * **layer_norm_eps** (*float*) -- the eps value in layer normalization components (default=1e-5). * **batch_first** (*bool*) -- If "True", then the input and output tensors are provided as (batch, seq, feature). Default: "False" (seq, batch, feature). * **norm_first** (*bool*) -- if "True", layer norm is done prior to attention and feedforward operations, respectively. Otherwise it's done after. Default: "False" (after). Examples:: >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8) >>> src = torch.rand(10, 32, 512) >>> out = encoder_layer(src)
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html
pytorch docs
out = encoder_layer(src) Alternatively, when "batch_first" is "True": >>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True) >>> src = torch.rand(32, 10, 512) >>> out = encoder_layer(src) Fast path: forward() will use a special optimized implementation if all of the following conditions are met: * Either autograd is disabled (using "torch.inference_mode" or "torch.no_grad") or no tensor argument "requires_grad" * training is disabled (using ".eval()") * batch_first is "True" and the input is batched (i.e., "src.dim() == 3") * activation is one of: ""relu"", ""gelu"", "torch.functional.relu", or "torch.functional.gelu" * at most one of "src_mask" and "src_key_padding_mask" is passed * if src is a NestedTensor, neither "src_mask" nor "src_key_padding_mask" is passed * the two "LayerNorm" instances have a consistent "eps" value
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html
pytorch docs
(this will naturally be the case unless the caller has manually modified one without modifying the other) If the optimized implementation is in use, a NestedTensor can be passed for "src" to represent padding more efficiently than using a padding mask. In this case, a NestedTensor will be returned, and an additional speedup proportional to the fraction of the input that is padding can be expected. forward(src, src_mask=None, src_key_padding_mask=None, is_causal=False) Pass the input through the encoder layer. Parameters: * **src** (*Tensor*) -- the sequence to the encoder layer (required). * **src_mask** (*Optional**[**Tensor**]*) -- the mask for the src sequence (optional). * **is_causal** (*bool*) -- If specified, applies a causal mask as src_mask. Mutually exclusive with providing src_mask. Default: "False".
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html
pytorch docs
src_mask. Default: "False". * **src_key_padding_mask** (*Optional**[**Tensor**]*) -- the mask for the src keys per batch (optional). Return type: *Tensor* Shape: see the docs in Transformer class.
https://pytorch.org/docs/stable/generated/torch.nn.TransformerEncoderLayer.html
pytorch docs
MaxUnpool3d class torch.nn.MaxUnpool3d(kernel_size, stride=None, padding=0) Computes a partial inverse of "MaxPool3d". "MaxPool3d" is not fully invertible, since the non-maximal values are lost. "MaxUnpool3d" takes in as input the output of "MaxPool3d" including the indices of the maximal values and computes a partial inverse in which all non-maximal values are set to zero. Note: "MaxPool3d" can map several input sizes to the same output sizes. Hence, the inversion process can get ambiguous. To accommodate this, you can provide the needed output size as an additional argument "output_size" in the forward call. See the Inputs section below. Parameters: * kernel_size (int or tuple) -- Size of the max pooling window. * **stride** (*int** or **tuple*) -- Stride of the max pooling window. It is set to "kernel_size" by default. * **padding** (*int** or **tuple*) -- Padding that was added to
https://pytorch.org/docs/stable/generated/torch.nn.MaxUnpool3d.html
pytorch docs
the input Inputs: * input: the input Tensor to invert * *indices*: the indices given out by "MaxPool3d" * *output_size* (optional): the targeted output size Shape: * Input: (N, C, D_{in}, H_{in}, W_{in}) or (C, D_{in}, H_{in}, W_{in}). * Output: (N, C, D_{out}, H_{out}, W_{out}) or (C, D_{out}, H_{out}, W_{out}), where D_{out} = (D_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]} H_{out} = (H_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]} W_{out} = (W_{in} - 1) \times \text{stride[2]} - 2 \times \text{padding[2]} + \text{kernel\_size[2]} or as given by "output_size" in the call operator Example: >>> # pool of square window of size=3, stride=2 >>> pool = nn.MaxPool3d(3, stride=2, return_indices=True) >>> unpool = nn.MaxUnpool3d(3, stride=2)
https://pytorch.org/docs/stable/generated/torch.nn.MaxUnpool3d.html
pytorch docs
unpool = nn.MaxUnpool3d(3, stride=2) >>> output, indices = pool(torch.randn(20, 16, 51, 33, 15)) >>> unpooled_output = unpool(output, indices) >>> unpooled_output.size() torch.Size([20, 16, 51, 33, 15])
https://pytorch.org/docs/stable/generated/torch.nn.MaxUnpool3d.html
pytorch docs
torch.Tensor.is_leaf Tensor.is_leaf All Tensors that have "requires_grad" which is "False" will be leaf Tensors by convention. For Tensors that have "requires_grad" which is "True", they will be leaf Tensors if they were created by the user. This means that they are not the result of an operation and so "grad_fn" is None. Only leaf Tensors will have their "grad" populated during a call to "backward()". To get "grad" populated for non-leaf Tensors, you can use "retain_grad()". Example: >>> a = torch.rand(10, requires_grad=True) >>> a.is_leaf True >>> b = torch.rand(10, requires_grad=True).cuda() >>> b.is_leaf False # b was created by the operation that cast a cpu Tensor into a cuda Tensor >>> c = torch.rand(10, requires_grad=True) + 2 >>> c.is_leaf False # c was created by the addition operation >>> d = torch.rand(10).cuda() >>> d.is_leaf True
https://pytorch.org/docs/stable/generated/torch.Tensor.is_leaf.html
pytorch docs
d.is_leaf True # d does not require gradients and so has no operation creating it (that is tracked by the autograd engine) >>> e = torch.rand(10).cuda().requires_grad_() >>> e.is_leaf True # e requires gradients and has no operations creating it >>> f = torch.rand(10, requires_grad=True, device="cuda") >>> f.is_leaf True # f requires grad, has no operation creating it
https://pytorch.org/docs/stable/generated/torch.Tensor.is_leaf.html
pytorch docs
torch.jit.wait torch.jit.wait(future) Forces completion of a torch.jit.Future[T] asynchronous task, returning the result of the task. See "fork()" for docs and examples. :param future: an asynchronous task reference, created through torch.jit.fork :type future: torch.jit.Future[T] Returns: the return value of the the completed task Return type: T
https://pytorch.org/docs/stable/generated/torch.jit.wait.html
pytorch docs
torch.Tensor.scatter_add Tensor.scatter_add(dim, index, src) -> Tensor Out-of-place version of "torch.Tensor.scatter_add_()"
https://pytorch.org/docs/stable/generated/torch.Tensor.scatter_add.html
pytorch docs
torch.Tensor.reshape Tensor.reshape(*shape) -> Tensor Returns a tensor with the same data and number of elements as "self" but with the specified shape. This method returns a view if "shape" is compatible with the current shape. See "torch.Tensor.view()" on when it is possible to return a view. See "torch.reshape()" Parameters: shape (tuple of ints or int...) -- the desired shape
https://pytorch.org/docs/stable/generated/torch.Tensor.reshape.html
pytorch docs
ObserverBase class torch.quantization.observer.ObserverBase(dtype) Base observer Module. Any observer implementation should derive from this class. Concrete observers should follow the same API. In forward, they will update the statistics of the observed Tensor. And they should provide a calculate_qparams function that computes the quantization parameters given the collected statistics. Parameters: dtype -- dtype argument to the quantize node needed to implement the reference model spec. classmethod with_args(**kwargs) Wrapper that allows creation of class factories. This can be useful when there is a need to create classes with the same constructor arguments, but different instances. Can be used in conjunction with _callable_args Example: >>> Foo.with_args = classmethod(_with_args) >>> foo_builder = Foo.with_args(a=3, b=4).with_args(answer=42) >>> foo_instance1 = foo_builder()
https://pytorch.org/docs/stable/generated/torch.quantization.observer.ObserverBase.html
pytorch docs
foo_instance1 = foo_builder() >>> foo_instance2 = foo_builder() >>> id(foo_instance1) == id(foo_instance2) False classmethod with_callable_args(**kwargs) Wrapper that allows creation of class factories args that need to be called at construction time. This can be useful when there is a need to create classes with the same constructor arguments, but different instances and those arguments should only be calculated at construction time. Can be used in conjunction with _with_args Example: >>> Foo.with_callable_args = classmethod(_with_callable_args) >>> Foo.with_args = classmethod(_with_args) >>> foo_builder = Foo.with_callable_args(cur_time=get_time_func).with_args(name="dan") >>> foo_instance1 = foo_builder() >>> # wait 50 >>> foo_instance2 = foo_builder() >>> id(foo_instance1.creation_time) == id(foo_instance2.creation_time) False
https://pytorch.org/docs/stable/generated/torch.quantization.observer.ObserverBase.html
pytorch docs
torch.Tensor.igamma_ Tensor.igamma_(other) -> Tensor In-place version of "igamma()"
https://pytorch.org/docs/stable/generated/torch.Tensor.igamma_.html
pytorch docs
torch.Tensor.log10 Tensor.log10() -> Tensor See "torch.log10()"
https://pytorch.org/docs/stable/generated/torch.Tensor.log10.html
pytorch docs
torch.cuda.can_device_access_peer torch.cuda.can_device_access_peer(device, peer_device) Checks if peer access between two devices is possible. Return type: bool
https://pytorch.org/docs/stable/generated/torch.cuda.can_device_access_peer.html
pytorch docs
torch.linalg.det torch.linalg.det(A, *, out=None) -> Tensor Computes the determinant of a square matrix. Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if "A" is a batch of matrices then the output has the same batch dimensions. See also: "torch.linalg.slogdet()" computes the sign and natural logarithm of the absolute value of the determinant of square matrices. Parameters: A (Tensor) -- tensor of shape (, n, n)* where *** is zero or more batch dimensions. Keyword Arguments: out (Tensor, optional) -- output tensor. Ignored if None. Default: None. Examples: >>> A = torch.randn(3, 3) >>> torch.linalg.det(A) tensor(0.0934) >>> A = torch.randn(3, 2, 2) >>> torch.linalg.det(A) tensor([1.1990, 0.4099, 0.7386])
https://pytorch.org/docs/stable/generated/torch.linalg.det.html
pytorch docs
TripletMarginWithDistanceLoss class torch.nn.TripletMarginWithDistanceLoss(*, distance_function=None, margin=1.0, swap=False, reduction='mean') Creates a criterion that measures the triplet loss given input tensors a, p, and n (representing anchor, positive, and negative examples, respectively), and a nonnegative, real-valued function ("distance function") used to compute the relationship between the anchor and positive example ("positive distance") and the anchor and negative example ("negative distance"). The unreduced loss (i.e., with "reduction" set to "'none'") can be described as: \ell(a, p, n) = L = \{l_1,\dots,l_N\}^\top, \quad l_i = \max \{d(a_i, p_i) - d(a_i, n_i) + {\rm margin}, 0\} where N is the batch size; d is a nonnegative, real-valued function quantifying the closeness of two tensors, referred to as the "distance_function"; and margin is a nonnegative margin
https://pytorch.org/docs/stable/generated/torch.nn.TripletMarginWithDistanceLoss.html
pytorch docs
representing the minimum difference between the positive and negative distances that is required for the loss to be 0. The input tensors have N elements each and can be of any shape that the distance function can handle. If "reduction" is not "'none'" (default "'mean'"), then: \ell(x, y) = \begin{cases} \operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\ \operatorname{sum}(L), & \text{if reduction} = \text{`sum'.} \end{cases} See also "TripletMarginLoss", which computes the triplet loss for input tensors using the l_p distance as the distance function. Parameters: * distance_function (Callable, optional) -- A nonnegative, real-valued function that quantifies the closeness of two tensors. If not specified, nn.PairwiseDistance will be used. Default: "None" * **margin** (*float**, **optional*) -- A nonnegative margin representing the minimum difference between the positive and
https://pytorch.org/docs/stable/generated/torch.nn.TripletMarginWithDistanceLoss.html
pytorch docs
negative distances required for the loss to be 0. Larger margins penalize cases where the negative examples are not distant enough from the anchors, relative to the positives. Default: 1. * **swap** (*bool**, **optional*) -- Whether to use the distance swap described in the paper *Learning shallow convolutional feature descriptors with triplet losses* by V. Balntas, E. Riba et al. If True, and if the positive example is closer to the negative example than the anchor is, swaps the positive example and the anchor in the loss computation. Default: "False". * **reduction** (*str**, **optional*) -- Specifies the (optional) reduction to apply to the output: "'none'" | "'mean'" | "'sum'". "'none'": no reduction will be applied, "'mean'": the sum of the output will be divided by the number of elements in the output, "'sum'": the output will be summed. Default: "'mean'" Shape:
https://pytorch.org/docs/stable/generated/torch.nn.TripletMarginWithDistanceLoss.html
pytorch docs
Default: "'mean'" Shape: * Input: (N, *) where * represents any number of additional dimensions as supported by the distance function. * Output: A Tensor of shape (N) if "reduction" is "'none'", or a scalar otherwise. Examples: >>> # Initialize embeddings >>> embedding = nn.Embedding(1000, 128) >>> anchor_ids = torch.randint(0, 1000, (1,)) >>> positive_ids = torch.randint(0, 1000, (1,)) >>> negative_ids = torch.randint(0, 1000, (1,)) >>> anchor = embedding(anchor_ids) >>> positive = embedding(positive_ids) >>> negative = embedding(negative_ids) >>> >>> # Built-in Distance Function >>> triplet_loss = \ >>> nn.TripletMarginWithDistanceLoss(distance_function=nn.PairwiseDistance()) >>> output = triplet_loss(anchor, positive, negative) >>> output.backward() >>> >>> # Custom Distance Function >>> def l_infinity(x1, x2):
https://pytorch.org/docs/stable/generated/torch.nn.TripletMarginWithDistanceLoss.html
pytorch docs
def l_infinity(x1, x2): >>> return torch.max(torch.abs(x1 - x2), dim=1).values >>> >>> triplet_loss = ( >>> nn.TripletMarginWithDistanceLoss(distance_function=l_infinity, margin=1.5)) >>> output = triplet_loss(anchor, positive, negative) >>> output.backward() >>> >>> # Custom Distance Function (Lambda) >>> triplet_loss = ( >>> nn.TripletMarginWithDistanceLoss( >>> distance_function=lambda x, y: 1.0 - F.cosine_similarity(x, y))) >>> output = triplet_loss(anchor, positive, negative) >>> output.backward() Reference: V. Balntas, et al.: Learning shallow convolutional feature descriptors with triplet losses: http://www.bmva.org/bmvc/2016/papers/paper119/index.html
https://pytorch.org/docs/stable/generated/torch.nn.TripletMarginWithDistanceLoss.html
pytorch docs
torch.rot90 torch.rot90(input, k=1, dims=[0, 1]) -> Tensor Rotate an n-D tensor by 90 degrees in the plane specified by dims axis. Rotation direction is from the first towards the second axis if k > 0, and from the second towards the first for k < 0. Parameters: * input (Tensor) -- the input tensor. * **k** (*int*) -- number of times to rotate. Default value is 1 * **dims** (*a list** or **tuple*) -- axis to rotate. Default value is [0, 1] Example: >>> x = torch.arange(4).view(2, 2) >>> x tensor([[0, 1], [2, 3]]) >>> torch.rot90(x, 1, [0, 1]) tensor([[1, 3], [0, 2]]) >>> x = torch.arange(8).view(2, 2, 2) >>> x tensor([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) >>> torch.rot90(x, 1, [1, 2]) tensor([[[1, 3], [0, 2]], [[5, 7], [4, 6]]])
https://pytorch.org/docs/stable/generated/torch.rot90.html
pytorch docs
torch.nn.utils.prune.global_unstructured torch.nn.utils.prune.global_unstructured(parameters, pruning_method, importance_scores=None, **kwargs) Globally prunes tensors corresponding to all parameters in "parameters" by applying the specified "pruning_method". Modifies modules in place by: adding a named buffer called "name+'_mask'" corresponding to the binary mask applied to the parameter "name" by the pruning method. replacing the parameter "name" by its pruned version, while the original (unpruned) parameter is stored in a new parameter named "name+'_orig'". Parameters: * parameters (Iterable of (module, name) tuples) -- parameters of the model to prune in a global fashion, i.e. by aggregating all weights prior to deciding which ones to prune. module must be of type "nn.Module", and name must be a string.
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.global_unstructured.html
pytorch docs
name must be a string. * **pruning_method** (*function*) -- a valid pruning function from this module, or a custom one implemented by the user that satisfies the implementation guidelines and has "PRUNING_TYPE='unstructured'". * **importance_scores** (*dict*) -- a dictionary mapping (module, name) tuples to the corresponding parameter's importance scores tensor. The tensor should be the same shape as the parameter, and is used for computing mask for pruning. If unspecified or None, the parameter will be used in place of its importance scores. * **kwargs** -- other keyword arguments such as: amount (int or float): quantity of parameters to prune across the specified parameters. If "float", should be between 0.0 and 1.0 and represent the fraction of parameters to prune. If "int", it represents the absolute number of parameters to prune. Raises:
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.global_unstructured.html
pytorch docs
Raises: TypeError -- if "PRUNING_TYPE != 'unstructured'" Note: Since global structured pruning doesn't make much sense unless the norm is normalized by the size of the parameter, we now limit the scope of global pruning to unstructured methods. -[ Examples ]- from torch.nn.utils import prune from collections import OrderedDict net = nn.Sequential(OrderedDict([ ... ('first', nn.Linear(10, 4)), ... ('second', nn.Linear(4, 1)), ... ])) parameters_to_prune = ( ... (net.first, 'weight'), ... (net.second, 'weight'), ... ) prune.global_unstructured( ... parameters_to_prune, ... pruning_method=prune.L1Unstructured, ... amount=10, ... ) print(sum(torch.nn.utils.parameters_to_vector(net.buffers()) == 0)) tensor(10)
https://pytorch.org/docs/stable/generated/torch.nn.utils.prune.global_unstructured.html
pytorch docs
TransformerDecoderLayer class torch.nn.TransformerDecoderLayer(d_model, nhead, dim_feedforward=2048, dropout=0.1, activation=, layer_norm_eps=1e-05, batch_first=False, norm_first=False, device=None, dtype=None) TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network. This standard decoder layer is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users may modify or implement in a different way during application. Parameters: * d_model (int) -- the number of expected features in the input (required). * **nhead** (*int*) -- the number of heads in the multiheadattention models (required). * **dim_feedforward** (*int*) -- the dimension of the
https://pytorch.org/docs/stable/generated/torch.nn.TransformerDecoderLayer.html
pytorch docs
feedforward network model (default=2048). * **dropout** (*float*) -- the dropout value (default=0.1). * **activation** (*Union**[**str**, **Callable**[**[**Tensor**]**, **Tensor**]**]*) -- the activation function of the intermediate layer, can be a string ("relu" or "gelu") or a unary callable. Default: relu * **layer_norm_eps** (*float*) -- the eps value in layer normalization components (default=1e-5). * **batch_first** (*bool*) -- If "True", then the input and output tensors are provided as (batch, seq, feature). Default: "False" (seq, batch, feature). * **norm_first** (*bool*) -- if "True", layer norm is done prior to self attention, multihead attention and feedforward operations, respectively. Otherwise it's done after. Default: "False" (after). Examples:: >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8) >>> memory = torch.rand(10, 32, 512)
https://pytorch.org/docs/stable/generated/torch.nn.TransformerDecoderLayer.html
pytorch docs
memory = torch.rand(10, 32, 512) >>> tgt = torch.rand(20, 32, 512) >>> out = decoder_layer(tgt, memory) Alternatively, when "batch_first" is "True": >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8, batch_first=True) >>> memory = torch.rand(32, 10, 512) >>> tgt = torch.rand(32, 20, 512) >>> out = decoder_layer(tgt, memory) forward(tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None, tgt_is_causal=False, memory_is_causal=False) Pass the inputs (and mask) through the decoder layer. Parameters: * **tgt** (*Tensor*) -- the sequence to the decoder layer (required). * **memory** (*Tensor*) -- the sequence from the last layer of the encoder (required). * **tgt_mask** (*Optional**[**Tensor**]*) -- the mask for the tgt sequence (optional). * **memory_mask** (*Optional**[**Tensor**]*) -- the mask for
https://pytorch.org/docs/stable/generated/torch.nn.TransformerDecoderLayer.html
pytorch docs
the memory sequence (optional). * **tgt_key_padding_mask** (*Optional**[**Tensor**]*) -- the mask for the tgt keys per batch (optional). * **memory_key_padding_mask** (*Optional**[**Tensor**]*) -- the mask for the memory keys per batch (optional). * **tgt_is_causal** (*bool*) -- If specified, applies a causal mask as tgt mask. Mutually exclusive with providing tgt_mask. Default: "False". * **memory_is_causal** (*bool*) -- If specified, applies a causal mask as tgt mask. Mutually exclusive with providing memory_mask. Default: "False". Return type: *Tensor* Shape: see the docs in Transformer class.
https://pytorch.org/docs/stable/generated/torch.nn.TransformerDecoderLayer.html
pytorch docs
torch.randint_like torch.randint_like(input, low=0, high, *, dtype=None, layout=torch.strided, device=None, requires_grad=False, memory_format=torch.preserve_format) -> Tensor Returns a tensor with the same shape as Tensor "input" filled with random integers generated uniformly between "low" (inclusive) and "high" (exclusive). Parameters: * input (Tensor) -- the size of "input" will determine size of the output tensor. * **low** (*int**, **optional*) -- Lowest integer to be drawn from the distribution. Default: 0. * **high** (*int*) -- One above the highest integer to be drawn from the distribution. Keyword Arguments: * dtype ("torch.dtype", optional) -- the desired data type of returned Tensor. Default: if "None", defaults to the dtype of "input". * **layout** ("torch.layout", optional) -- the desired layout of returned tensor. Default: if "None", defaults to the layout of
https://pytorch.org/docs/stable/generated/torch.randint_like.html
pytorch docs
"input". * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if "None", defaults to the device of "input". * **requires_grad** (*bool**, **optional*) -- If autograd should record operations on the returned tensor. Default: "False". * **memory_format** ("torch.memory_format", optional) -- the desired memory format of returned Tensor. Default: "torch.preserve_format".
https://pytorch.org/docs/stable/generated/torch.randint_like.html
pytorch docs
torch.Tensor.masked_select Tensor.masked_select(mask) -> Tensor See "torch.masked_select()"
https://pytorch.org/docs/stable/generated/torch.Tensor.masked_select.html
pytorch docs
torch.Tensor.bernoulli Tensor.bernoulli(*, generator=None) -> Tensor Returns a result tensor where each \texttt{result[i]} is independently sampled from \text{Bernoulli}(\texttt{self[i]}). "self" must have floating point "dtype", and the result will have the same "dtype". See "torch.bernoulli()"
https://pytorch.org/docs/stable/generated/torch.Tensor.bernoulli.html
pytorch docs
torch.fft.fftfreq torch.fft.fftfreq(n, d=1.0, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) -> Tensor Computes the discrete Fourier Transform sample frequencies for a signal of size "n". Note: By convention, "fft()" returns positive frequency terms first, followed by the negative frequencies in reverse order, so that "f[-i]" for all 0 < i \leq n/2` in Python gives the negative frequency terms. For an FFT of length "n" and with inputs spaced in length unit "d", the frequencies are: f = [0, 1, ..., (n - 1) // 2, -(n // 2), ..., -1] / (d * n) Note: For even lengths, the Nyquist frequency at "f[n/2]" can be thought of as either negative or positive. "fftfreq()" follows NumPy's convention of taking it to be negative. Parameters: * n (int) -- the FFT length * **d** (*float**, **optional*) -- The sampling length scale.
https://pytorch.org/docs/stable/generated/torch.fft.fftfreq.html
pytorch docs
The spacing between individual samples of the FFT input. The default assumes unit spacing, dividing that result by the actual spacing gives the result in physical frequency units. Keyword Arguments: * out (Tensor, optional) -- the output tensor. * **dtype** ("torch.dtype", optional) -- the desired data type of returned tensor. Default: if "None", uses a global default (see "torch.set_default_tensor_type()"). * **layout** ("torch.layout", optional) -- the desired layout of returned Tensor. Default: "torch.strided". * **device** ("torch.device", optional) -- the desired device of returned tensor. Default: if "None", uses the current device for the default tensor type (see "torch.set_default_tensor_type()"). "device" will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types. * **requires_grad** (*bool**, **optional*) -- If autograd should
https://pytorch.org/docs/stable/generated/torch.fft.fftfreq.html
pytorch docs
record operations on the returned tensor. Default: "False". -[ Example ]- torch.fft.fftfreq(5) tensor([ 0.0000, 0.2000, 0.4000, -0.4000, -0.2000]) For even input, we can see the Nyquist frequency at "f[2]" is given as negative: torch.fft.fftfreq(4) tensor([ 0.0000, 0.2500, -0.5000, -0.2500])
https://pytorch.org/docs/stable/generated/torch.fft.fftfreq.html
pytorch docs
torch.Tensor.broadcast_to Tensor.broadcast_to(shape) -> Tensor See "torch.broadcast_to()".
https://pytorch.org/docs/stable/generated/torch.Tensor.broadcast_to.html
pytorch docs
torch.cuda.nvtx.range_push torch.cuda.nvtx.range_push(msg) Pushes a range onto a stack of nested range span. Returns zero- based depth of the range that is started. Parameters: msg (str) -- ASCII message to associate with range
https://pytorch.org/docs/stable/generated/torch.cuda.nvtx.range_push.html
pytorch docs
GELU class torch.nn.GELU(approximate='none') Applies the Gaussian Error Linear Units function: \text{GELU}(x) = x * \Phi(x) where \Phi(x) is the Cumulative Distribution Function for Gaussian Distribution. When the approximate argument is 'tanh', Gelu is estimated with: \text{GELU}(x) = 0.5 * x * (1 + \text{Tanh}(\sqrt(2 / \pi) * (x + 0.044715 * x^3))) Parameters: approximate (str, optional) -- the gelu approximation algorithm to use: "'none'" | "'tanh'". Default: "'none'" Shape: * Input: (*), where * means any number of dimensions. * Output: (*), same shape as the input. [image] Examples: >>> m = nn.GELU() >>> input = torch.randn(2) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.GELU.html
pytorch docs
torch.func.functionalize torch.func.functionalize(func, *, remove='mutations') functionalize is a transform that can be used to remove (intermediate) mutations and aliasing from a function, while preserving the function's semantics. "functionalize(func)" returns a new function with the same semantics as "func", but with all intermediate mutations removed. Every inplace operation performed on an intermediate tensor: "intermediate.foo_()" gets replaced by its out-of-place equivalent: "intermediate_updated = intermediate.foo()". functionalize is useful for shipping a pytorch program off to backends or compilers that aren't able to easily represent mutations or aliasing operators. Parameters: * func (Callable) -- A Python function that takes one or more arguments. * **remove** (*str*) -- An optional string argument, that takes on either the value 'mutations' or 'mutations_and_views'. If
https://pytorch.org/docs/stable/generated/torch.func.functionalize.html
pytorch docs
'mutations' is passed in then all mutating operators will be replaced with their non-mutating equivalents. If 'mutations_and_views' is passed in, then additionally, all aliasing operators will be replaced with their non-aliasing equivalents. Default: 'mutations'. Returns: Returns a new "functionalized" function. It takes the same inputs as "func", and has the same behavior, but any mutations (and optionally aliasing) performed on intermeidate tensors in the function will be removed. Return type: Callable functionalize will also remove mutations (and views) that were performed on function inputs. However to preserve semantics, functionalize will "fix up" the mutations after the transform has finished running, by detecting if any tensor inputs "should have" been mutated, and copying the new data back to the inputs if necessary. Example: >>> import torch
https://pytorch.org/docs/stable/generated/torch.func.functionalize.html
pytorch docs
necessary. Example: >>> import torch >>> from torch.fx.experimental.proxy_tensor import make_fx >>> from torch.func import functionalize >>> >>> # A function that uses mutations and views, but only on intermediate tensors. >>> def f(a): ... b = a + 1 ... c = b.view(-1) ... c.add_(1) ... return b ... >>> inpt = torch.randn(2) >>> >>> out1 = f(inpt) >>> out2 = functionalize(f)(inpt) >>> >>> # semantics are the same (outputs are equivalent) >>> print(torch.allclose(out1, out2)) True >>> >>> f_traced = make_fx(f)(inpt) >>> f_no_mutations_traced = make_fx(functionalize(f))(inpt) >>> f_no_mutations_and_views_traced = make_fx(functionalize(f, remove='mutations_and_views'))(inpt) >>> >>> print(f_traced.code) def forward(self, a_1): add = torch.ops.aten.add(a_1, 1); a_1 = None view = torch.ops.aten.view(add, [-1])
https://pytorch.org/docs/stable/generated/torch.func.functionalize.html
pytorch docs
view = torch.ops.aten.view(add, [-1]) add_ = torch.ops.aten.add_(view, 1); view = None return add >>> print(f_no_mutations_traced.code) def forward(self, a_1): add = torch.ops.aten.add(a_1, 1); a_1 = None view = torch.ops.aten.view(add, [-1]); add = None add_1 = torch.ops.aten.add(view, 1); view = None view_1 = torch.ops.aten.view(add_1, [2]); add_1 = None return view_1 >>> print(f_no_mutations_and_views_traced.code) def forward(self, a_1): add = torch.ops.aten.add(a_1, 1); a_1 = None view_copy = torch.ops.aten.view_copy(add, [-1]); add = None add_1 = torch.ops.aten.add(view_copy, 1); view_copy = None view_copy_1 = torch.ops.aten.view_copy(add_1, [2]); add_1 = None return view_copy_1 >>> # A function that mutates its input tensor >>> def f(a): ... b = a.view(-1) ... b.add_(1) ... return a ...
https://pytorch.org/docs/stable/generated/torch.func.functionalize.html
pytorch docs
... return a ... >>> f_no_mutations_and_views_traced = make_fx(functionalize(f, remove='mutations_and_views'))(inpt) >>> # >>> # All mutations and views have been removed, >>> # but there is an extra copy_ in the graph to correctly apply the mutation to the input >>> # after the function has completed. >>> print(f_no_mutations_and_views_traced.code) def forward(self, a_1): view_copy = torch.ops.aten.view_copy(a_1, [-1]) add = torch.ops.aten.add(view_copy, 1); view_copy = None view_copy_1 = torch.ops.aten.view_copy(add, [2]); add = None copy_ = torch.ops.aten.copy_(a_1, view_copy_1); a_1 = None return view_copy_1 There are a few "failure modes" for functionalize that are worth calling out: 1. Like other torch.func transforms, functionalize() doesn't work with functions that directly use .backward(). The same
https://pytorch.org/docs/stable/generated/torch.func.functionalize.html
pytorch docs
is true for torch.autograd.grad. If you want to use autograd, you can compute gradients directly with functionalize(grad(f)). 2. Like other torch.func transforms, *functionalize()* doesn't work with global state. If you call *functionalize(f)* on a function that takes views / mutations of non-local state, functionalization will simply no-op and pass the view/mutation calls directly to the backend. One way to work around this is is to ensure that any non-local state creation is wrapped into a larger function, which you then call functionalize on. 3. *resize_()* has some limitations: functionalize will only work on programs that use resize_()` as long as the tensor being resized is not a view. 4. *as_strided()* has some limitations: functionalize will not work on *as_strided()* calls that result in tensors with overlapping memory.
https://pytorch.org/docs/stable/generated/torch.func.functionalize.html
pytorch docs
overlapping memory. Finally, a helpful mental model for understanding functionalization is that most user pytorch programs are writting with the public torch API. When executed, torch operators are generally decomposed into our internal C++ "ATen" API. The logic for functionalization happens entirely at the level of ATen. Functionalization knows how to take every aliasing operator in ATen, and map it to its non- aliasing equivalent (e.g. "tensor.view({-1})" -> "at::view_copy(tensor, {-1})"), and how to take every mutating operator in ATen, and map it to its non-mutating equivalent (e.g. "tensor.add_(1)" -> "at::add(tensor, -1)"), while tracking aliases and mutations out-of-line to know when to fix things up. Information about which ATen operators are aliasing or mutating all comes from https://github.com/pytorch/pytorch/blob/master/aten/src /ATen/native/native_functions.yaml.
https://pytorch.org/docs/stable/generated/torch.func.functionalize.html
pytorch docs
torch.bernoulli torch.bernoulli(input, *, generator=None, out=None) -> Tensor Draws binary random numbers (0 or 1) from a Bernoulli distribution. The "input" tensor should be a tensor containing probabilities to be used for drawing the binary random number. Hence, all values in "input" have to be in the range: 0 \leq \text{input}_i \leq 1. The \text{i}^{th} element of the output tensor will draw a value 1 according to the \text{i}^{th} probability value given in "input". \text{out}_{i} \sim \mathrm{Bernoulli}(p = \text{input}_{i}) The returned "out" tensor only has values 0 or 1 and is of the same shape as "input". "out" can have integral "dtype", but "input" must have floating point "dtype". Parameters: input (Tensor) -- the input tensor of probability values for the Bernoulli distribution Keyword Arguments: * generator ("torch.Generator", optional) -- a pseudorandom number generator for sampling
https://pytorch.org/docs/stable/generated/torch.bernoulli.html
pytorch docs
number generator for sampling * **out** (*Tensor**, **optional*) -- the output tensor. Example: >>> a = torch.empty(3, 3).uniform_(0, 1) # generate a uniform random matrix with range [0, 1] >>> a tensor([[ 0.1737, 0.0950, 0.3609], [ 0.7148, 0.0289, 0.2676], [ 0.9456, 0.8937, 0.7202]]) >>> torch.bernoulli(a) tensor([[ 1., 0., 0.], [ 0., 0., 0.], [ 1., 1., 1.]]) >>> a = torch.ones(3, 3) # probability of drawing "1" is 1 >>> torch.bernoulli(a) tensor([[ 1., 1., 1.], [ 1., 1., 1.], [ 1., 1., 1.]]) >>> a = torch.zeros(3, 3) # probability of drawing "1" is 0 >>> torch.bernoulli(a) tensor([[ 0., 0., 0.], [ 0., 0., 0.], [ 0., 0., 0.]])
https://pytorch.org/docs/stable/generated/torch.bernoulli.html
pytorch docs
torch.minimum torch.minimum(input, other, *, out=None) -> Tensor Computes the element-wise minimum of "input" and "other". Note: If one of the elements being compared is a NaN, then that element is returned. "minimum()" is not supported for tensors with complex dtypes. Parameters: * input (Tensor) -- the input tensor. * **other** (*Tensor*) -- the second input tensor Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> a = torch.tensor((1, 2, -1)) >>> b = torch.tensor((3, 0, 4)) >>> torch.minimum(a, b) tensor([1, 0, -1])
https://pytorch.org/docs/stable/generated/torch.minimum.html
pytorch docs
torch.logical_and torch.logical_and(input, other, *, out=None) -> Tensor Computes the element-wise logical AND of the given input tensors. Zeros are treated as "False" and nonzeros are treated as "True". Parameters: * input (Tensor) -- the input tensor. * **other** (*Tensor*) -- the tensor to compute AND with Keyword Arguments: out (Tensor, optional) -- the output tensor. Example: >>> torch.logical_and(torch.tensor([True, False, True]), torch.tensor([True, False, False])) tensor([ True, False, False]) >>> a = torch.tensor([0, 1, 10, 0], dtype=torch.int8) >>> b = torch.tensor([4, 0, 1, 0], dtype=torch.int8) >>> torch.logical_and(a, b) tensor([False, False, True, False]) >>> torch.logical_and(a.double(), b.double()) tensor([False, False, True, False]) >>> torch.logical_and(a.double(), b) tensor([False, False, True, False])
https://pytorch.org/docs/stable/generated/torch.logical_and.html
pytorch docs
tensor([False, False, True, False]) >>> torch.logical_and(a, b, out=torch.empty(4, dtype=torch.bool)) tensor([False, False, True, False])
https://pytorch.org/docs/stable/generated/torch.logical_and.html
pytorch docs
CELU class torch.nn.CELU(alpha=1.0, inplace=False) Applies the element-wise function: \text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1)) More details can be found in the paper Continuously Differentiable Exponential Linear Units . Parameters: * alpha (float) -- the \alpha value for the CELU formulation. Default: 1.0 * **inplace** (*bool*) -- can optionally do the operation in- place. Default: "False" Shape: * Input: (*), where * means any number of dimensions. * Output: (*), same shape as the input. [image] Examples: >>> m = nn.CELU() >>> input = torch.randn(2) >>> output = m(input)
https://pytorch.org/docs/stable/generated/torch.nn.CELU.html
pytorch docs
TransformerDecoder class torch.nn.TransformerDecoder(decoder_layer, num_layers, norm=None) TransformerDecoder is a stack of N decoder layers Parameters: * decoder_layer -- an instance of the TransformerDecoderLayer() class (required). * **num_layers** -- the number of sub-decoder-layers in the decoder (required). * **norm** -- the layer normalization component (optional). Examples:: >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8) >>> transformer_decoder = nn.TransformerDecoder(decoder_layer, num_layers=6) >>> memory = torch.rand(10, 32, 512) >>> tgt = torch.rand(20, 32, 512) >>> out = transformer_decoder(tgt, memory) forward(tgt, memory, tgt_mask=None, memory_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None) Pass the inputs (and mask) through the decoder layer in turn. Parameters: * **tgt** (*Tensor*) -- the sequence to the decoder
https://pytorch.org/docs/stable/generated/torch.nn.TransformerDecoder.html
pytorch docs