id
int64
393k
2.82B
repo
stringclasses
68 values
title
stringlengths
1
936
body
stringlengths
0
256k
labels
stringlengths
2
508
priority
stringclasses
3 values
severity
stringclasses
3 values
2,680,286,630
ollama
Llama3.2 Safetensors adapter not supported?
### What is the issue? Hi Guys, First thanks for creating such a wonderful tool. I have run into a problem which I believe is a bug but I may be incorrect and I could be asking for a feature request. Basically I have fine-tuned a llama3.2 model on some local data and then saved this in safetensors format. Now I create a model file like below and point it to the safe tensor adapter files. Now when I run the command ollama create myllama3.2 --file myllama3.2.modelfile I see the below output which I believe tells me it has been a success. transferring model data 100% converting model But when I run the Ollama list command my newly created model is not displayed. My modelfile starts like the below providing the directory where the safetensors adapter file is stored: FROM llama3.2:1b ADAPTER /home/shuaib/tmp/Llama-3.2-1B/ In the Ollama docs and the modelfile markdown file [https://github.com/ollama/ollama/blob/main/docs/modelfile.md](url) it says: Currently supported Safetensor adapters: Llama (including Llama 2, Llama 3, and Llama 3.1) Is this why my attempt at creating a model from my fine-tuned model is failing? Because the llama3.2 safetensor adapters are not supported yet? Or am I missing something? Also is there a plan to support the llamam3.2 safentensors adapters anytime soon? If it is the case because of the lack of support for the llama3.2 safe tensors adapters, should my workaround be to convert my fine-tuned safetensors file into gguf format? ### OS Linux ### GPU Nvidia ### CPU Intel ### Ollama version 0.4.1
bug
low
Critical
2,680,288,618
deno
`deno compile --include-code-cache`
Surfing on the new `deno compile --include`-style flags, it would be great if the compiled binary could have its own [code cache](https://github.com/denoland/deno/pull/26528#issuecomment-2491735952) included. Code cache right now will only cache in the first execution and then reuse it in subsequent ones. As I had stated [here](https://github.com/denoland/deno/pull/26528#issuecomment-2455421250), this new flag would make a lot of sense in ephemeral environments like docker containers, where the first execution is also the only execution, rendering code cache a bit useless in this scenario (to be fair, it should be able to work around the issue by running the application once during `docker build`, but running an application isn't always ok to do). On my tests on some application, the code cache seems very small: ```console # let's make sure we don't have any prior cache ❯ deno clean Removed /home/felipecrs/.cache/deno (7569 files, 86.04MB) ❯ ./pkgx-cc --sync ❯ deno clean Removed /home/felipecrs/.cache/deno (4 files, **76.27KB)** ``` Only 76.27 KB in this example. A negligible size increase considering the whole binary size. Maybe it should be even made the default?
feat,compile
low
Minor
2,680,345,258
deno
`deno compile --code-cache-path`
With the new [code cache](https://github.com/denoland/deno/pull/26528), compiled programs would end up writing to `~/.cache/deno`. This may not be desirable. The program may have its own cache directory for example. Also, it would end up creating this directory in systems where Deno isn't even installed, which could lead to end-user confusion. End-users may not even know what is Deno.
suggestion,compile
low
Major
2,680,389,508
vscode
Unable to interact with Code windows on Mac Os after window maximization
Does this issue occur when all extensions are disabled?: Yes I have an intermittent issue that I only see in VS code on Mac, although it may be partially due to electron bugs (I ruled out an open-source window management utility called Rectangle that I am also using) I am using multiple displays and using Rectangle to move application windows between or minimize or maximize. I haven't fully isolated the exact trigger, but at some point if I try to maximize one of the VS code windows.VS code windows become unresponsive. I can change the window focus by clicking on the windows and I can open new windows from the dock, but the menu bar and the application is unresponsive. I have to force quit VS Code and things return to normal I also can't updated to newer versions of VS code 1.85, since the remote SSH extensions in the later versions have an incompatibility with the remote machines I connect to. Version: 1.85.2 (Universal) Commit: 8b3775030ed1a69b13e4f4c628c612102e30a681 Date: 2024-01-18T06:40:32.531Z (10 mos ago) Electron: 25.9.7 ElectronBuildId: 26354273 Chromium: 114.0.5735.289 Node.js: 18.15.0 V8: 11.4.183.29-electron.0 OS: Darwin arm64 23.6.0 Sonoma 14.7.1 Steps to Reproduce: 1. Run VS code opening multiple remote windows 2. Maximize a window
info-needed
low
Critical
2,680,416,327
pytorch
Enhanced Feedback for `load_state_dict` with `strict=False`
### 🚀 The feature, motivation and pitch When developers use `load_state_dict` with `strict=False`, they often face significant challenges, especially around debugging weight loading issues. The current behavior does not provide sufficient visibility into what weights were successfully loaded and which keys were unexpected or missing. This creates confusion, as many users unknowingly end up with mismatched or unloaded weights, leading to silent failures and hours of debugging. This is especially useful for people like me who load partial weights, especially for fine-tuning tasks and domain adaptation. I end up writing my own script to do this all the time and I believe other researchers like me will find it very useful. Why This is Critical 1. Lack of Feedback: - Developers using `strict=False` are left in the dark about what was actually loaded. - There’s no direct mechanism to verify mismatches or missing weights without additional manual inspection. 2. Silent Errors: - If the weights are not loaded as intended, there’s no clear indication. Many users proceed without realizing their model isn’t correctly initialized. 3. Common Pitfall: - This is a recurring issue for many developers. A seemingly harmless choice to use `strict=False` often results in broken workflows, especially for those less familiar with PyTorch’s internals. ### Alternatives Introduce a argument to log detailed information when `load_state_dict` is called with `strict=False`. This feedback can include: Input ```python state_dict = torch.load("checkpoint.pth", map_location="cpu") model.load_state_dict(state_dict, strict=False, verbose=True) # default verbose=False print('Model Loaded') ``` Output ```python Loaded Keys: ['layer1.weight', 'layer1.bias', 'layer2.weight'] Unexpected Keys in Checkpoint: ['deprecated_layer.weight', 'old_bias'] Missing Keys in Model: ['layer3.weight', 'layer3.bias'] Model Loaded ``` 1. Verbosity: Provide a verbosity flag (e.g., verbose=True) to enable or disable this detailed output, ensuring backward compatibility for users who prefer silence. 2. Loaded Keys: Explicitly list the keys from the checkpoint that were successfully matched and loaded. 3. Unexpected Keys:Clearly display keys in the checkpoint that were not found in the model. 4. Missing Keys: Highlight model keys that have no corresponding weights in the checkpoint. ### Additional context Benefits of This Feature - Transparency: Users can immediately identify loading issues without digging through checkpoint files or model definitions. - Efficiency: Reduces debugging time significantly, especially for models with complex architectures or experimental workflows. - Better Debugging: Makes it clear whether the mismatch is due to model changes, checkpoint errors, or other reasons. - Improved User Experience: Aligns with the needs of both beginner and advanced users, ensuring everyone can leverage `load_state_dict` effectively. I would be happy to contribute these changes to Pytorch and send a PR cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
module: nn,triaged
low
Critical
2,680,423,505
yt-dlp
For the Bilibili website, yt-dlp is unable to obtain the uploader and upload date for videos that contain multiple parts (P).
### DO NOT REMOVE OR SKIP THE ISSUE TEMPLATE - [X] I understand that I will be **blocked** if I *intentionally* remove or skip any mandatory\* field ### Checklist - [X] I'm requesting a site-specific feature - [X] I've verified that I have **updated yt-dlp to nightly or master** ([update instructions](https://github.com/yt-dlp/yt-dlp#update-channels)) - [X] I've checked that all provided URLs are playable in a browser with the same IP and same login details - [X] I've searched [known issues](https://github.com/yt-dlp/yt-dlp/issues/3766) and the [bugtracker](https://github.com/yt-dlp/yt-dlp/issues?q=) for similar issues **including closed ones**. DO NOT post duplicates - [X] I've read the [guidelines for opening an issue](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#opening-an-issue) - [X] I've read about [sharing account credentials](https://github.com/yt-dlp/yt-dlp/blob/master/CONTRIBUTING.md#are-you-willing-to-share-account-details-if-needed) and I'm willing to share it if required ### Region China ### Example URLs https://www.bilibili.com/video/BV1GJ41117iw ### Provide a description that is worded well enough to be understood When downloading a video list, for the P0 JSON file, the fields `%(uploader)s` and `%(upload_date>%Y-%m-%d)s` cannot be correctly obtained and are displayed as NA. For P1, P2, etc., the `%(uploader)s` and `%(upload_date>%Y-%m-%d)s` fields are correctly obtained. > Note, This Bilibili video looks like a playlist, but it is actually a single video containing multiple parts (P), and all parts share the same `BVID` number. Bilibili also has another type of video collection, which is the one that contains multiple independent videos, where each individual video has a different `BVID`. For this type of video collection, yt-dlp is able to correctly obtain the `%(uploader)s` and `%(upload_date>%Y-%m-%d)s` fields for the P0 JSON file. How can I correctly get the `%(uploader)s` and `%(upload_date>%Y-%m-%d)s` fields for P0? Here is a list of output filenames: ``` [NA]-[《狄仁杰断案传奇》86版(高清)]-P[000]-[NA]-[《狄仁杰断案传奇》86版(高清)].info.json [一品豆腐坊少掌柜弟]-[《狄仁杰断案传奇》86版(高清)]-P[001]-[2019-12-12]-[《狄仁杰断案传奇》86版(高清) p01 第1集].info.json [一品豆腐坊少掌柜弟]-[《狄仁杰断案传奇》86版(高清)]-P[002]-[2019-12-12]-[《狄仁杰断案传奇》86版(高清) p02 第2集].info.json [一品豆腐坊少掌柜弟]-[《狄仁杰断案传奇》86版(高清)]-P[003]-[2019-12-12]-[《狄仁杰断案传奇》86版(高清) p03 第3集].info.json [一品豆腐坊少掌柜弟]-[《狄仁杰断案传奇》86版(高清)]-P[004]-[2019-12-12]-[《狄仁杰断案传奇》86版(高清) p04 第4集].info.json ``` ### Provide verbose output that clearly demonstrates the problem - [X] Run **your** yt-dlp command with **-vU** flag added (`yt-dlp -vU <your command line>`) - [X] If using API, add `'verbose': True` to `YoutubeDL` params instead - [X] Copy the WHOLE output (starting with `[debug] Command-line config`) and insert it below ### Complete Verbose Output ```shell [debug] Command-line config: ['-vU', '--output', '[%(uploader)s]-[%(playlist)s]-P[%(playlist_index)03d]-[%(upload_date>%Y-%m-%d)s]-[%(title)s].%(ext)s', '--cookies', 'C:\\Users\\username\\Downloads\\cookies.txt', '--write-info-json', '--skip-download', '--paths', 'G:\\test', 'https://www.bilibili.com/video/BV1GJ41117iw'] [debug] Encodings: locale cp936, fs utf-8, pref cp936, out utf-8, error utf-8, screen utf-8 [debug] yt-dlp version [email protected] from yt-dlp/yt-dlp [7ea278792] (win_exe) [debug] Python 3.10.11 (CPython AMD64 64bit) - Windows-10-10.0.19041-SP0 (OpenSSL 1.1.1t 7 Feb 2023) [debug] exe versions: ffmpeg 7.1-full_build-www.gyan.dev (setts), ffprobe 7.1-full_build-www.gyan.dev [debug] Optional libraries: Cryptodome-3.21.0, brotli-1.1.0, certifi-2024.08.30, curl_cffi-0.5.10, mutagen-1.47.0, requests-2.32.3, sqlite3-3.40.1, urllib3-2.2.3, websockets-13.1 [debug] Proxy map: {} [debug] Request Handlers: urllib, requests, websockets, curl_cffi [debug] Loaded 1837 extractors [debug] Fetching release info: https://api.github.com/repos/yt-dlp/yt-dlp/releases/latest Latest version: [email protected] from yt-dlp/yt-dlp yt-dlp is up to date ([email protected] from yt-dlp/yt-dlp) [BiliBili] Extracting URL: https://www.bilibili.com/video/BV1GJ41117iw [BiliBili] 1GJ41117iw: Downloading webpage [BiliBili] BV1GJ41117iw: Extracting videos in anthology [BiliBili] Downloading playlist BV1GJ41117iw - add --no-playlist to download just the video BV1GJ41117iw [download] Downloading playlist: 《狄仁杰断案传奇》86版(高清) [info] Writing playlist metadata as JSON to: G:\test\[NA]-[《狄仁杰断案传奇》86版(高清)]-P[000]-[NA]-[《狄仁杰断案传奇》86版(高清)].info.json [BiliBili] Playlist 《狄仁杰断案传奇》86版(高清): Downloading 14 items of 14 [download] Downloading item 1 of 14 [BiliBili] Extracting URL: https://www.bilibili.com/video/BV1GJ41117iw?p=1 [BiliBili] 1GJ41117iw: Downloading webpage [BiliBili] BV1GJ41117iw: Extracting videos in anthology [BiliBili] 78895467: Extracting chapters [debug] Formats sorted by: hasvid, ie_pref, lang, quality, res, fps, hdr:12(7), vcodec, channels, acodec, size, br, asr, proto, vext, aext, hasaud, source, id [debug] Default format spec: bestvideo*+bestaudio/best [info] BV1GJ41117iw_p1: Downloading 1 format(s): 100024+30280 [info] Writing video metadata as JSON to: G:\test\[一品豆腐坊少掌柜弟]-[《狄仁杰断案传奇》86版(高清)]-P[001]-[2019-12-12]-[《狄仁杰断案传奇》86版(高清) p01 第1集].info.json ```
site-enhancement,triage
low
Critical
2,680,455,827
pytorch
`torch.compile` fails with runtime error on Numpy scalar operations
### 🐛 Describe the bug The following pattern shows up in a model from User Empathy Day: https://github.com/suno-ai/bark/blob/f4f32d4cd480dfec1c245d258174bc9bde3c2148/bark/generation.py#L602-L607 ```python @torch.compile(backend="eager") def run(x): n = int(round(np.floor(3.1))) return x + n run(torch.ones(1)) ``` ### Error logs ``` Traceback (most recent call last): File "/Users/ryanguo99/Documents/work/scratch/test.py", line 26, in <module> test() File "/Users/ryanguo99/Documents/work/scratch/test.py", line 24, in test run(torch.ones(1)) File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/eval_frame.py", line 556, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/convert_frame.py", line 1403, in __call__ return self._torchdynamo_orig_callable( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/convert_frame.py", line 1187, in __call__ result = self._inner_convert( ^^^^^^^^^^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/convert_frame.py", line 549, in __call__ return _compile( ^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/convert_frame.py", line 984, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/convert_frame.py", line 712, in compile_inner return _compile_inner(code, one_graph, hooks, transform) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_utils_internal.py", line 95, in wrapper_function return function(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/convert_frame.py", line 747, in _compile_inner out_code = transform_code_object(code, transform) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/bytecode_transformation.py", line 1348, in transform_code_object transformations(instructions, code_options) File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/convert_frame.py", line 233, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/convert_frame.py", line 664, in transform tracer.run() File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/symbolic_convert.py", line 2841, in run super().run() File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/symbolic_convert.py", line 1032, in run while self.step(): ^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/symbolic_convert.py", line 944, in step self.dispatch_table[inst.opcode](self, inst) File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/symbolic_convert.py", line 641, in wrapper return inner_fn(self, inst) ^^^^^^^^^^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/symbolic_convert.py", line 2314, in CALL self._call(inst) File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/symbolic_convert.py", line 2308, in _call self.call_function(fn, args, kwargs) File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/symbolic_convert.py", line 879, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/variables/builtin.py", line 1004, in call_function return handler(tx, args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/variables/builtin.py", line 852, in builtin_dispatch rv = fn(tx, args, kwargs) ^^^^^^^^^^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/variables/builtin.py", line 772, in call_self_handler result = self_handler(tx, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/variables/builtin.py", line 1235, in call_round return round_method.call_function(tx, args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/variables/misc.py", line 1032, in call_function return self.obj.call_method(tx, self.name, args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/variables/tensor.py", line 1334, in call_method return NumpyNdarrayVariable.create(tx, proxy) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/variables/tensor.py", line 1238, in create return wrap_fx_proxy_cls( ^^^^^^^^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/variables/builder.py", line 2182, in wrap_fx_proxy_cls return _wrap_fx_proxy( ^^^^^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/variables/builder.py", line 2278, in _wrap_fx_proxy example_value = get_fake_value(proxy.node, tx, allow_non_graph_fake=True) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/utils.py", line 2377, in get_fake_value raise TorchRuntimeError(str(e)).with_traceback(e.__traceback__) from None File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/utils.py", line 2312, in get_fake_value ret_val = wrap_fake_exception( ^^^^^^^^^^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/utils.py", line 1858, in wrap_fake_exception return fn() ^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/utils.py", line 2313, in <lambda> lambda: run_node(tx.output, node, args, kwargs, nnmodule) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/utils.py", line 2445, in run_node raise RuntimeError(make_error_message(e)).with_traceback( File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/utils.py", line 2427, in run_node return node.target(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/ryanguo99/Documents/work/pytorch/torch/_dynamo/utils.py", line 2770, in __call__ method_callable = getattr(obj, self.method) ^^^^^^^^^^^^^^^^^^^^^^^^^ torch._dynamo.exc.TorchRuntimeError: Failed running call_function <Wrapped method <original __round__>>(*(FakeTensor(..., size=(), dtype=torch.float64),), **{}): 'ndarray' object has no attribute '__round__' from user code: File "/Users/ryanguo99/Documents/work/scratch/test.py", line 22, in run n = int(round(np.floor(3.1))) Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information You can suppress this exception and fall back to eager by setting: import torch._dynamo torch._dynamo.config.suppress_errors = True ``` ### Versions `7ced49d2ccf`, Python 3.12 cc @mruberry @rgommers @chauhang @penguinwu
triaged,module: numpy,oncall: pt2,dynamo-user-empathy-day
low
Critical
2,680,457,321
PowerToys
Fail to initialize plugins: OneNote
### Microsoft PowerToys version v0.86.0 ### Installation method GitHub ### Running as admin Yes ### Area(s) with issue? PowerToys Run ### Steps to reproduce Power Toys Run - Plugin Loading Error Fail to load plugin: OneNote Please report the bug to https://aka.ms/powerToysReportBug. (For third-party plugins, please contact the plugin author.) ### ✔️ Expected Behavior I should press alt space and have powertoys run work (which it does), but this error is thrown ### ❌ Actual Behavior I got an error: Power Toys Run - Plugin Loading Error Fail to load plugin: OneNote Please report the bug to https://aka.ms/powerToysReportBug. (For third-party plugins, please contact the plugin author.) I do need powertoys run to work for oennote for it to work. ### Other Software _No response_
Issue-Bug,Needs-Triage
low
Critical
2,680,464,777
pytorch
Consider relaxing torch.cond's requirement that the outputs of each branch have matching requires_grad metadata
### 🐛 Describe the bug Here is a surprising behavior I found while working on https://github.com/pytorch/pytorch/pull/140979 ```python import torch torch.set_default_device("cuda") def cond_relu(x): return torch.cond(x > 0, lambda x: x, lambda _: torch.zeros_like(x), [x]) def imperative_relu(x): if x > 0: return x else: return torch.zeros_like(x) x = -torch.ones((), requires_grad=False) # Works y1 = torch.nn.functional.relu(x) # Works y2 = imperative_relu(x) # Works y3 = cond_relu(x) x = -torch.ones((), requires_grad=True) # Works y1 = torch.nn.functional.relu(x) # Works y2 = imperative_relu(x) # Does not work y3 = cond_relu(x) ``` When the input of cond_relu has requires_grad=True, we get the following error: ``` Traceback (most recent call last): File "/home/dgalvez/scratch/code/asr/pytorch/torch/_dynamo/variables/higher_order_ops.py", line 54, in graph_break_as_hard_error return fn(*args, **kwargs) File "/home/dgalvez/scratch/code/asr/pytorch/torch/_dynamo/variables/higher_order_ops.py", line 872, in call_function unimplemented( File "/home/dgalvez/scratch/code/asr/pytorch/torch/_dynamo/exc.py", line 313, in unimplemented raise Unsupported(msg, case_name=case_name) torch._dynamo.exc.Unsupported: Expected branches to return tensors with same metadata. [(tensor_pair, difference)...]:[('pair0:', TensorMetadata(shape=torch.Size([]), dtype=torch.float32, requires_grad=True, stride=(), memory_format=None, is_quantized=False, qparams={}), TensorMetadata(shape=torch.Size([]), dtype=torch.float32, requires_grad=False, stride=(), memory_format=None, is_quantized=False, qparams={}))] The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/dgalvez/scratch/code/asr/pytorch/repros/cond_quirks2.py", line 29, in <module> y2 = cond_relu(x) File "/home/dgalvez/scratch/code/asr/pytorch/repros/cond_quirks2.py", line 6, in cond_relu return torch.cond(x > 0, lambda x: x, lambda _: torch.zeros_like(x), [x]) File "/home/dgalvez/scratch/code/asr/pytorch/torch/_higher_order_ops/cond.py", line 207, in cond return torch.compile(_cond_op_wrapper, backend=backend, fullgraph=True)( File "/home/dgalvez/scratch/code/asr/pytorch/torch/_dynamo/eval_frame.py", line 556, in _fn return fn(*args, **kwargs) File "/home/dgalvez/scratch/code/asr/pytorch/torch/_dynamo/convert_frame.py", line 1419, in __call__ return self._torchdynamo_orig_callable( File "/home/dgalvez/scratch/code/asr/pytorch/torch/_dynamo/convert_frame.py", line 567, in __call__ return _compile( File "/home/dgalvez/scratch/code/asr/pytorch/torch/_dynamo/convert_frame.py", line 1000, in _compile guarded_code = compile_inner(code, one_graph, hooks, transform) File "/home/dgalvez/scratch/code/asr/pytorch/torch/_dynamo/convert_frame.py", line 730, in compile_inner return _compile_inner(code, one_graph, hooks, transform) File "/home/dgalvez/scratch/code/asr/pytorch/torch/_utils_internal.py", line 95, in wrapper_function return function(*args, **kwargs) File "/home/dgalvez/scratch/code/asr/pytorch/torch/_dynamo/convert_frame.py", line 765, in _compile_inner out_code = transform_code_object(code, transform) File "/home/dgalvez/scratch/code/asr/pytorch/torch/_dynamo/bytecode_transformation.py", line 1348, in transform_code_object transformations(instructions, code_options) File "/home/dgalvez/scratch/code/asr/pytorch/torch/_dynamo/convert_frame.py", line 248, in _fn return fn(*args, **kwargs) File "/home/dgalvez/scratch/code/asr/pytorch/torch/_dynamo/convert_frame.py", line 682, in transform tracer.run() File "/home/dgalvez/scratch/code/asr/pytorch/torch/_dynamo/symbolic_convert.py", line 2841, in run super().run() File "/home/dgalvez/scratch/code/asr/pytorch/torch/_dynamo/symbolic_convert.py", line 1032, in run while self.step(): File "/home/dgalvez/scratch/code/asr/pytorch/torch/_dynamo/symbolic_convert.py", line 944, in step self.dispatch_table[inst.opcode](self, inst) File "/home/dgalvez/scratch/code/asr/pytorch/torch/_dynamo/symbolic_convert.py", line 641, in wrapper return inner_fn(self, inst) File "/home/dgalvez/scratch/code/asr/pytorch/torch/_dynamo/symbolic_convert.py", line 1714, in CALL_FUNCTION_EX self.call_function(fn, argsvars.items, kwargsvars) File "/home/dgalvez/scratch/code/asr/pytorch/torch/_dynamo/symbolic_convert.py", line 879, in call_function self.push(fn.call_function(self, args, kwargs)) # type: ignore[arg-type] File "/home/dgalvez/scratch/code/asr/pytorch/torch/_dynamo/variables/higher_order_ops.py", line 57, in graph_break_as_hard_error raise UncapturedHigherOrderOpError(reason + msg) from e torch._dynamo.exc.UncapturedHigherOrderOpError: Cond doesn't work unless it is captured completely with torch.compile. Scroll up to find out what causes the graph break. from user code: File "/home/dgalvez/scratch/code/asr/pytorch/torch/_higher_order_ops/cond.py", line 197, in _cond_op_wrapper return cond_op(*args, **kwargs) Set TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information You can suppress this exception and fall back to eager by setting: import torch._dynamo torch._dynamo.config.suppress_errors = True ``` The important part is this: ``` torch._dynamo.exc.Unsupported: Expected branches to return tensors with same metadata. [(tensor_pair, difference)...]:[('pair0:', TensorMetadata(shape=torch.Size([]), dtype=torch.float32, requires_grad=True, stride=(), memory_format=None, is_quantized=False, qparams={}), TensorMetadata(shape=torch.Size([]), dtype=torch.float32, requires_grad=False, stride=(), memory_format=None, is_quantized=False, qparams={}))] ``` You can see that the only difference between the branches is that one output has requires_grad=True, while the other has requires_grad=False. This is a little bit unfortunate since it doesn't match some other existing behaviors. I don't think that simply promoting a tensor with requires_grad=False to have requires_grad=True if the corresponding output from the other branch has requires_grad=True will be problematic. At the very least, this would not affect the ability to run the backward pass via conditional nodes in cuda graphs. This would match the behavior of existing code, where sometimes a gradient is not backpropagated based on runtime values. What do you think? @bohnstingl @ydwu4 @eellison ### Versions ``` Collecting environment information... PyTorch version: 2.6.0a0+git13535e2 Is debug build: True CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 24.04.1 LTS (x86_64) GCC version: (Ubuntu 13.2.0-23ubuntu4) 13.2.0 Clang version: 18.1.3 (1ubuntu1) CMake version: version 3.27.7 Libc version: glibc-2.39 Python version: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.8.0-47-generic-x86_64-with-glibc2.39 Is CUDA available: True CUDA runtime version: 12.4.99 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA A100 80GB PCIe Nvidia driver version: 560.35.03 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: False CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 45 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 16 On-line CPU(s) list: 0-15 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz CPU family: 6 Model: 85 Thread(s) per core: 1 Core(s) per socket: 1 Socket(s): 16 Stepping: 4 BogoMIPS: 4190.15 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon nopl xtopology tsc_reliable nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch cpuid_fault pti ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 avx2 smep bmi2 invpcid avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat pku ospke md_clear flush_l1d arch_capabilities Hypervisor vendor: VMware Virtualization type: full L1d cache: 512 KiB (16 instances) L1i cache: 512 KiB (16 instances) L2 cache: 16 MiB (16 instances) L3 cache: 528 MiB (16 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-15 Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status Vulnerability Itlb multihit: KVM: Mitigation: VMX unsupported Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT Host state unknown Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] cudnn==1.1.0 [pip3] flake8==6.1.0 [pip3] flake8-bugbear==23.3.23 [pip3] flake8-comprehensions==3.15.0 [pip3] flake8-executable==2.1.3 [pip3] flake8-logging-format==0.9.0 [pip3] flake8-pyi==23.3.1 [pip3] flake8-simplify==0.19.3 [pip3] mypy==1.11.2 [pip3] mypy-extensions==1.0.0 [pip3] numpy==1.22.4 [pip3] nvidia-cublas-cu12==12.1.3.1 [pip3] nvidia-cuda-cupti-cu12==12.1.105 [pip3] nvidia-cuda-nvrtc-cu12==12.1.105 [pip3] nvidia-cuda-runtime-cu12==12.1.105 [pip3] nvidia-cudnn-cu12==8.9.2.26 [pip3] nvidia-cufft-cu12==11.0.2.54 [pip3] nvidia-curand-cu12==10.3.2.106 [pip3] nvidia-cusolver-cu12==11.4.5.107 [pip3] nvidia-cusparse-cu12==12.1.0.106 [pip3] nvidia-nccl-cu12==2.20.5 [pip3] nvidia-nvjitlink-cu12==12.3.101 [pip3] nvidia-nvtx-cu12==12.1.105 [pip3] nvidia-pytriton==0.5.3 [pip3] nvtx==0.2.10 [pip3] onnx==1.17.0 [pip3] onnx-graphsurgeon==0.3.27 [pip3] onnxruntime==1.16.3 [pip3] onnxruntime-gpu==1.16.3 [pip3] onnxscript==0.1.0.dev20240817 [pip3] open-clip-torch==2.24.0 [pip3] optree==0.13.0 [pip3] pytorch-lightning==2.2.1 [pip3] pytorch-triton==3.0.0+901819d2b6 [pip3] torch==2.6.0a0+git13535e2 [pip3] torchdiffeq==0.2.3 [pip3] torchmetrics==1.2.0 [pip3] torchsde==0.2.6 [pip3] triton==3.1.0 [pip3] triton-model-navigator==0.7.5 [pip3] tritonclient==2.43.0 [conda] blas 1.0 mkl [conda] cudnn 1.1.0 pypi_0 pypi [conda] mkl 2023.1.0 h213fc3f_46344 [conda] mkl-service 2.4.0 py310h5eee18b_1 [conda] mkl_fft 1.3.10 py310h5eee18b_0 [conda] mkl_random 1.2.7 py310h1128e8f_0 [conda] numpy 1.24.4 pypi_0 pypi [conda] nvidia-cublas-cu12 12.1.3.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cudnn-cu12 8.9.2.26 pypi_0 pypi [conda] nvidia-cufft-cu12 11.0.2.54 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.2.106 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.4.5.107 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.1.0.106 pypi_0 pypi [conda] nvidia-nccl-cu12 2.20.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.3.101 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.1.105 pypi_0 pypi [conda] nvidia-pytriton 0.5.3 pypi_0 pypi [conda] nvtx 0.2.10 pypi_0 pypi [conda] open-clip-torch 2.24.0 pypi_0 pypi [conda] optree 0.13.0 pypi_0 pypi [conda] pytorch-lightning 2.2.1 pypi_0 pypi [conda] pytorch-triton 3.0.0+901819d2b6 pypi_0 pypi [conda] torch 2.6.0a0+git13535e2 dev_0 <develop> [conda] torchdiffeq 0.2.3 pypi_0 pypi [conda] torchfix 0.4.0 pypi_0 pypi [conda] torchmetrics 1.2.0 pypi_0 pypi [conda] torchsde 0.2.6 pypi_0 pypi [conda] triton 3.1.0 pypi_0 pypi [conda] triton-model-navigator 0.7.5 pypi_0 pypi [conda] tritonclient 2.43.0 pypi_0 pypi ``` cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @chauhang @penguinwu @ydwu4 @bdhirsh @yf225
triaged,oncall: pt2,module: higher order operators,module: pt2-dispatcher
low
Critical
2,680,551,473
pytorch
Use expecttest in test_compiled_optimizers.py
### 🐛 Describe the bug @ezyang pointed out that it's kind of annoying to update the kernel counts in https://github.com/pytorch/pytorch/blob/723498aab8803702dfd508be05a1ebe525112ebd/test/inductor/test_compiled_optimizers.py#L4 We should update this to use expecttest like our other tests. ### Versions N/A cc @mruberry @ZainRizvi @chauhang @penguinwu
good first issue,module: tests,triaged,enhancement,actionable,oncall: pt2
low
Critical
2,680,578,882
ui
[bug]: dialog was not found
### Describe the bug Something went wrong. Please check the error below for more details. If the problem persists, please open an issue on GitHub. The component at https://ui.shadcn.com/r/styles/default/dalog.json was not found. It may not exist at the registry. Please make sure it is a valid component. ### Affected component/components Dialog and Alert dialog ### How to reproduce npx shadcn@latest add dalog ### Codesandbox/StackBlitz link _No response_ ### Logs _No response_ ### System Info ```bash chrome ``` ### Before submitting - [X] I've made research efforts and searched the documentation - [X] I've searched for existing issues
bug
low
Critical
2,680,584,110
pytorch
rope perf improvement
Tracking issue for improving perf of this kernel. cc @voznesenskym @penguinwu @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @chauhang @aakhundov
triaged,oncall: pt2,module: inductor
low
Minor
2,680,586,087
material-ui
Select onFocus called way too many times
### Steps to reproduce Steps: 1. Open this link to live example: https://codesandbox.io/p/sandbox/q649qz 2. Open console to see logs 3. Click into the select box 4. Click off the select box 5. Click off the select box again ### Current behavior On the initial focus, onFocus is called 4 times. On initial blur, onFocus is called 2 more times and onBlur is not called. On second blur, onBlur is called. ### Expected behavior On initial focus, onFocus should be called once and not again until component is blurred and refocused. onBlur should be called when input is initially blurred. ### Context I have a code associated to with onFocus event that is being called 4 times when I expect it to be called once. ### Your environment <details> <summary><code>npx @mui/envinfo</code></summary> ``` Don't forget to mention which browser you used. Output from `npx @mui/envinfo` goes here. ``` </details> **Search keywords**: mui select onfocus multiple times
performance,component: select,enhancement
low
Minor
2,680,607,003
vscode
Terminal suggest: Make sure `cd -` completions play nice in pwsh
I see this coming in https://github.com/microsoft/vscode/pull/234363: ```js { name: '-', description: 'Switch to the last used folder', hidden: true, } ``` In pwsh it's actually - as in -/+ and they navigate a history stack, not just toggle between the last directory (`$OLDPWD` in bash). We could improve the wording for pwsh and add cd + as well (especially if `hidden` does what I think it does and doesn't show it unless typed), similar to the pwsh support from the script: ![Image](https://github.com/user-attachments/assets/c01ec9d1-9dc0-4e05-ab56-abfb08d59cc0) When I looked into it this history stack is internal so we can't resolve the folder and stick it on the right for pwsh unfortunately, we might be able to do it on shells that use `$OLDPWD`.
feature-request,terminal-suggest
low
Minor
2,680,675,181
kubernetes
[FG:InPlacePodVerticalScaling] Revisit ResizeStatus and state transitions
/kind feature There are several problems with the current approach to pod ResizeStatus, including: 1. Race condition setting the status: the kubelet can overwrite the Proposed status set by the API server (https://github.com/kubernetes/kubernetes/issues/125394) 2. Can technically have 2 parallel resize statuses: a {Proposed/Deferred/Infeasible} resize when desired resources != allocated resources, and an InProgress resize when allocated resources != actual resources. Currently the former just overrides the latter. 3. Separate mechanism for surfacing details related to error states (Deferred, Infeasible, stuck InProgress) 4. No status to capture desired memory limit < actual memory usage, which can lead to a resize stuck in InProgress (maybe this should move to the deferred state?) Before graduating to Beta, we should revisit the design of ResizeStatus, and take a holistic look at the user experience. /sig node /priority important-soon /milestone v1.33 /triage accepted /cc @yujuhong
priority/important-soon,sig/node,kind/feature,triage/accepted
low
Critical
2,680,705,641
go
encoding/binary: Write does not optimise the case of native-format slices
### Go version go version go1.23.3 linux/amd64 ### Output of `go env` in your module/workspace: ```shell Irrelevant, but happy to provide. ``` ### What did you do? I wrote a (large) number of slices of little-endian IEEE floats using `binary.Write` on a little-endian machine. I was expecting the library to recognise that I was writing in the native format, and special-case the write. However, it did not, and the performance was about 3000 slower than expected. https://go.dev/play/p/wNWegxHXjlG ### What did you see happen? ``` BenchmarkPutFloats-8 196766 5958 ns/op 671.41 MB/s BenchmarkPutFloatsUnsafe-8 465501314 2.246 ns/op 1781336.18 MB/s ``` ### What did you expect to see? I was expecting the performance of the two implementations to be similar.
Performance,NeedsInvestigation
low
Major
2,680,707,844
ui
[bug]: Inconsistent Scrolling Behavior with Dialog and ScrollArea
### Describe the bug When using a dialog containing a scroll area component, the expected behavior is that the scroll area should handle scrolling when the dialog is active. However, the following issues occur: 1. The scroll area within the dialog does not respond to scroll interactions. 2. In some cases, the background page (outside the dialog) scrolls instead. 3. This behavior often disrupts the overall scroll functionality of the page, rendering it inconsistent. This issue appears to occur specifically when combining `Dialog` and `ScrollArea` components, leading to broken scroll behavior for both the dialog and the page. ### Affected component/components Dialog, ScrollArea ### How to reproduce here's a quick v0 code for the same: https://v0.dev/chat/8TUcPpED3by?b=b_XFselDzUnJH ### Codesandbox/StackBlitz link _No response_ ### Logs _No response_ ### System Info ```bash Win11, Edge. (Note: am explicitly using JSX with vite & not TSX) ``` ### Before submitting - [X] I've made research efforts and searched the documentation - [X] I've searched for existing issues
bug
low
Critical
2,680,782,048
pytorch
Multiple torch.{*}_copy variants are not in generated docs/docs skiplist
### 🐛 Describe the bug to track https://github.com/pytorch/pytorch/pull/140045#discussion_r1852591819 `torch.{*}_copy` variants of functions are not in generated docs despite being public Some examples are `torch.expand_copy`, `torch.diagonal_copy` etc see [here](https://github.com/twaclaw/pytorch/blob/9a30f686fe5496f3562e98b15b7ab15c26b5db11/torch/_torch_docs.py#L13805-L13843) 1. Is not having these in generated docs intentional? 2. I don't see them on the [coverage test skip list](https://github.com/pytorch/pytorch/blob/main/docs/source/conf.py?fbclid=IwZXh0bgNhZW0CMTEAAR0fbujOxNi9AmkYPYVPWNjmN36WcVVPWOk-ULliwfxjohC7ocLyHeYx5eg_aem_SSUJa4GtZyrmoeWPIEdAbA), are our coverage tests working as expected here? Please close if this was intentional :) ### Versions main cc @svekars @brycebortree @sekyondaMeta @AlannaBurke
module: docs,triaged
low
Critical
2,680,875,769
go
crypto/tls: re-enable two TLS tests with fips140tls.Required
Two small TODOs that came out of [CR 629736](https://go-review.googlesource.com/c/go/+/629736): 1. In `handshake_server_test.go` the "RSA" and "RSA with ec_point_format" subtests of `TestTLSPointFormats` are skipped when `fips140tls.Requried()` is enabled, otherwise a handshake failure error is observed. This should be debugged (I suspect I'm overlooking someting small) and the subtests re-enabled for FIPS TLS mode. 2. The `TestRenegotiationExtension` test is skipped when `fips140tls.Required()` is enabled due to its use of RC4 ciphersuites and the RSA 1024 test certificate hiearchy. This _should_ be possible to enable in FIPS TLS mode by replacing RC4 with an AES ciphersuite and using RSA 2048 test certs. Doing so was giving a "Server returned short message of length 7" error. This should be debugged and the test re-enabled for FIPS TLS mode.
NeedsFix
low
Critical
2,680,906,786
node
Add zlib/promise module
### What is the problem this feature will solve? To work with promise we need to use the `promisify` util to converte the callback function version. ### What is the feature you are proposing to solve the problem? I would like to add this new module to use promises instead of callbacks, similar to the `fs/promises` module. ### What alternatives have you considered? _No response_
feature request
low
Minor
2,680,947,072
deno
deno test `--require` or `--import` (setup file)
I can't really figure how to do some browser mocking in deno. I'm using the node command like this, which works: `node --experimental-strip-types --test --import ./test/mock-browser.ts` ([link to code](https://github.com/birkskyum/maplibre-gl-draw/blob/01cc0dcecea8e280b9d931ca27727da812639f27/package.json#L31)) But with deno i get: `deno test --no-check`: ``` error: ReferenceError: document is not defined container: document.createElement("div"), ``` I have in my deno.json ``` "lib": [ "deno.window", "dom" ] ``` The mock-browser.ts being: ```ts import MockBrowser from "mock-browser"; const mock = new MockBrowser.mocks.MockBrowser(); global.document = mock.getDocument(); global.window = {}; // Polyfill based on https://gist.github.com/paulirish/1579671 let lastTime = 0; global.requestAnimationFrame = function (fn) { const now = Date.now(); const nextTime = Math.max(lastTime + 16, now); setTimeout(() => fn(lastTime = nextTime), nextTime - now); }; ``` For node compat, I believe I need a way to do a similar `--import` in deno test, or another way to give a setup file, which I believe [vitest calls it](https://vitest.dev/config/#setupfiles)
suggestion,testing
low
Critical
2,680,973,456
go
x/mobile: seccomp prevented call to disallowed arm64 system call 434
### Go version go version 1.22.9 darwin/arm64 ### Output of `go env` in your module/workspace: ```shell GO111MODULE='on' GOARCH='arm64' GOBIN='' GOCACHE='/Users/azaza/Library/Caches/go-build' GOENV='/Users/azaza/Library/Application Support/go/env' GOEXE='' GOEXPERIMENT='' GOFLAGS='' GOHOSTARCH='arm64' GOHOSTOS='darwin' GOINSECURE='' GOMODCACHE='/Users/azaza/go/pkg/mod' GONOPROXY='github.com/anyproto/*' GONOSUMDB='github.com/anyproto/*' GOOS='darwin' GOPATH='/Users/azaza/go' GOPRIVATE='github.com/anyproto/*' GOPROXY='https://proxy.golang.org,direct' GOROOT='/opt/homebrew/Cellar/[email protected]/1.22.9/libexec' GOSUMDB='sum.golang.org' GOTMPDIR='' GOTOOLCHAIN='local' GOTOOLDIR='/opt/homebrew/Cellar/[email protected]/1.22.9/libexec/pkg/tool/darwin_arm64' GOVCS='' GOVERSION='go1.22.9' GCCGO='gccgo' AR='ar' CC='cc' CXX='c++' CGO_ENABLED='1' GOMOD='/Users/azaza/anytype-heart/go.mod' GOWORK='' CGO_CFLAGS='-O2 -g' CGO_CPPFLAGS='' CGO_CXXFLAGS='-O2 -g' CGO_FFLAGS='-O2 -g' CGO_LDFLAGS='-O2 -g' PKG_CONFIG='pkg-config' GOGCCFLAGS='-fPIC -arch arm64 -pthread -fno-caret-diagnostics -Qunused-arguments -fmessage-length=0 -ffile-prefix-map=/var/folders/9v/ytsyk_250mg_q5dlkzlg_85c0000gn/T/go-build314952532=/tmp/go-build -gno-record-gcc-switches -fno-common' ``` ### What did you do? I am attempting to build our project library for the Android team using Go 1.23.3. You can refer to revert of the changes here: [Pull Request #1856](https://github.com/anyproto/anytype-heart/pull/1856/files). ### What did you see happen? I've noticed crashes when running on Android versions below 12. It seems this issue should be resolved here. https://github.com/golang/go/commit/9563300f6e262589ae25c71d778bfcd646d4a750 https://gpages.juszkiewicz.com.pl/syscalls-table/syscalls.html 434 - seems https://www.man7.org/linux/man-pages/man2/pidfd_open.2.html Android log ``` *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** *** 2024-11-21 11:15:03.968 DEBUG Build fingerprint: 'google/sdk_gphone64_arm64/emulator64_arm64:10/QSR1.210802.001/7603624:user/release-keys' 2024-11-21 11:15:03.968 DEBUG Revision: '0' 2024-11-21 11:15:03.968 DEBUG ABI: 'arm64' 2024-11-21 11:15:03.968 DEBUG Timestamp: 2024-11-21 11:15:03+0100 2024-11-21 11:15:03.968 DEBUG pid: 2169, tid: 2234, name: ytype.app.debug >>> io.anytype.app.debug <<< 2024-11-21 11:15:03.968 DEBUG uid: 10148 2024-11-21 11:15:03.968 DEBUG signal 31 (SIGSYS), code 1 (SYS_SECCOMP), fault addr -------- 2024-11-21 11:15:03.968 DEBUG Cause: seccomp prevented call to disallowed arm64 system call 434 2024-11-21 11:15:03.968 DEBUG x0 0000000000000879 x1 0000000000000000 x2 0000000000000000 x3 0000000000000000 2024-11-21 11:15:03.968 DEBUG x4 0000000000000000 x5 0000000000000000 x6 0000000000000000 x7 0000000000000002 2024-11-21 11:15:03.968 DEBUG x8 00000000000001b2 x9 0000000000000002 x10 0000000000000000 x11 0000000000000000 2024-11-21 11:15:03.968 DEBUG x12 0000000000000001 x13 0000000000000010 x14 0000000000000168 x15 0000000000000169 2024-11-21 11:15:03.968 DEBUG x16 00000040006803a0 x17 000000400068f780 x18 0000007d958a4000 x19 0000000000000070 2024-11-21 11:15:03.968 DEBUG x20 000000400068f960 x21 0000004000255980 x22 0000000000000001 x23 7a696d6974706f20 2024-11-21 11:15:03.968 DEBUG x24 0000007d9a13cbe0 x25 ffffffffffffffff x26 0000007d9a536478 x27 0000000000000000 2024-11-21 11:15:03.968 DEBUG x28 00000040000021c0 x29 000000400068f608 2024-11-21 11:15:03.968 DEBUG sp 000000400068f610 lr 0000007d97b5ea7c pc 0000007d97b49b10 2024-11-21 11:15:03.969 DEBUG backtrace: 2024-11-21 11:15:03.969 DEBUG #00 pc 0000000001588b10 /data/app/io.anytype.app.debug-AmXN-qfNKsfLdIRgZoRbZw==/base.apk (offset 0x207c000) 2024-11-21 11:15:03.982 ConnectivityService requestNetwork for uid/pid:10148/2169 NetworkRequest [ TRACK_DEFAULT id=160, [ Capabilities: INTERNET&NOT_RESTRICTED&TRUSTED Uid: 10148] ] 2024-11-21 11:15:03.983 WifiNetworkFactory got request NetworkRequest [ TRACK_DEFAULT id=160, [ Capabilities: INTERNET&NOT_RESTRICTED&TRUSTED Uid: 10148] ] with score 60 and serial -1 2024-11-21 11:15:03.983 UntrustedWifiNetworkFactory got request NetworkRequest [ TRACK_DEFAULT id=160, [ Capabilities: INTERNET&NOT_RESTRICTED&TRUSTED Uid: 10148] ] with score 60 and serial -1 2024-11-21 11:15:03.983 PhoneSwitcherNetworkRequstListener got request NetworkRequest [ TRACK_DEFAULT id=160, [ Capabilities: INTERNET&NOT_RESTRICTED&TRUSTED Uid: 10148] ] with score 60 and serial -1 2024-11-21 11:15:04.176 /system/bin/tombstoned Tombstone written to: /data/tombstones/tombstone_01 ``` ### What did you expect to see? When I use Go 1.22.9, everything works as expected (see the PR above). TL;DR: The fix for the incorrect syscall in Go 1.23.3 doesn't seem to work.
NeedsInvestigation,mobile
low
Critical
2,680,980,753
pytorch
MPS operator coverage tracking issue (2.6+ version)
### 🐛 Describe the bug ### This issue is to have a centralized place to list and track work on adding support to new ops for the MPS backend. [**PyTorch MPS Ops Project**](https://github.com/users/kulinseth/projects/1/views/1) : Project to track all the ops for MPS backend. There are a very large number of operators in pytorch and so they are not all yet implemented. We will be prioritizing adding new operators based on user feedback. If possible, please also provide link to the network or use-case where this op is getting used. As Ops are requested we will add " *To Triage*" pool. If we have 3+ requests for an operation and given its complexity/need the operation will be moved "*To be implemented*" pool. If you want to work on adding support for such op, feel free to comment below to get assigned one. Please avoid pickup up an op that is already being worked on tracked in "*In progress*" pool. [Link to the wiki for details](https://github.com/pytorch/pytorch/wiki/MPS-Backend) on how to add these ops and example PRs. [**MPS operators coverage matrix**](https://qqaatw.github.io/pytorch-mps-ops-coverage/) - The matrix covers most of the supported operators but is not exhaustive. **Please look at the `In vx.x.x` column, if the box is green, it means that the op implementation is included in the latest release; on the other hand, if the box is yellow, it means the op implementation is in the nightly and has not yet included in the latest release.** Before you comment below, please take a look at this matrix to make sure the operator you're requesting has not been implemented in nightly. More details can be found on the [readme](https://github.com/qqaatw/pytorch-mps-ops-coverage). This is a spiritual successor of https://github.com/pytorch/pytorch/issues/77764, but hopefully it will not receive requests for the OPs that has been added already since 1.13 but until 2.6 cc @kulinseth @albanD @DenisVieriu97 @jhavukainen
feature,triaged,tracker,module: mps
low
Critical
2,680,984,962
pytorch
Enhancement Request: improve this error message
### 🚀 The feature, motivation and pitch Currently this error message confuses me, and the comment said I could submit an enhancement request ERROR 2024-11-21T21:14:00.063730401Z [resource.labels.containerName: pytorch] [rank14]: File "/usr/local/lib/python3.10/dist-packages/torch/nn/functional.py", line 4047, in interpolate ERROR 2024-11-21T21:14:00.063732261Z [resource.labels.containerName: pytorch] [rank14]: return torch._C._nn.upsample_nearest3d(input, output_size, scale_factors) ERROR 2024-11-21T21:14:00.063734879Z [resource.labels.containerName: pytorch] [rank14]: RuntimeError: Expected output.numel() <= std::numeric_limits<int32_t>::max() to be true, but got false. (Could this error message be improved? If so, please report an enhancement request to PyTorch.) ### Alternatives i mean not the end of the world if no one changes this, it's a "nice-to-have" ### Additional context _No response_ cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki
module: nn,triaged
low
Critical
2,680,997,073
flutter
[in_app_purchase_storekit] Audit import headers to prevent unneeded headers from being public
See here: https://github.com/flutter/packages/pull/7912#discussion_r1814265121 > https://github.com/flutter/packages/blob/a87eddf0c281d5d017093125c1a8d9161257741f/packages/in_app_purchase/in_app_purchase_storekit/darwin/in_app_purchase_storekit.podspec#L21 > > https://guides.cocoapods.org/syntax/podspec.html#public_header_files > > Public headers should not use file (quote) imports, but should use angle brackets. https://developer.apple.com/documentation/xcode/build-settings-reference#Quoted-Include-In-Framework-Header > > Also the [import order](https://google.github.io/styleguide/objcguide.html#order-of-includes) should be > > ``` > #import <Foundation/Foundation.h> > #import <StoreKit/StoreKit.h> > ``` > > then > > When in doubt, open up an Apple header and copy their pattern. For example, this is StoreKit's `SKAdImpression` header: > > ```objc > // > // SKAdImpression.h > // StoreKit > // > // Copyright © 2020 Apple Inc. All rights reserved. > // > > #import <Foundation/Foundation.h> > #import <StoreKit/StoreKitDefines.h> > ``` >
P2,team-ios,triaged-ios
low
Major
2,681,009,483
flutter
Loading the same asset between several widget tests loads infinitely
### Steps to reproduce 1. Create a test file 2. Create a widget test and call `await rootBundle.loadString(...);` 3. Create a second widget test and call the same method **with the same asset path** ### Expected results Both tests pass ### Actual results The second test never completes ### Code sample <details open><summary>Code sample</summary> ```dart void main() { testWidgets('load assets 1', (tester) async { await rootBundle.loadString('assets/flutter_logo.png'); }); testWidgets('load assets 2', (tester) async { await rootBundle.loadString('assets/flutter_logo.png'); }); } ``` </details> ### Screenshots or Video _No response_ ### Logs <details open><summary>Logs</summary> ```console [Paste your logs here] ``` </details> ### Flutter Doctor output <details open><summary>Doctor output</summary> ```console [✓] Flutter (Channel master, 3.27.0-1.0.pre.111, on macOS 14.7.1 23H222 darwin-arm64, locale en-US) • Flutter version 3.27.0-1.0.pre.111 on channel master at /Users/.../fvm/versions/master • Upstream repository https://github.com/flutter/flutter.git • Framework revision 32cb866d3a (5 weeks ago), 2024-10-18 21:33:22 +0200 • Engine revision 76d310e42c • Dart version 3.7.0 (build 3.7.0-34.0.dev) • DevTools version 2.40.1 [!] Android toolchain - develop for Android devices (Android SDK version 35.0.0) • Android SDK at /Users/.../Library/Android/sdk ✗ cmdline-tools component is missing Run `path/to/sdkmanager --install "cmdline-tools;latest"` See https://developer.android.com/studio/command-line for more details. ✗ Android license status unknown. Run `flutter doctor --android-licenses` to accept the SDK licenses. See https://flutter.dev/to/macos-android-setup for more details. [✓] Xcode - develop for iOS and macOS (Xcode 16.1) • Xcode at /Applications/Xcode.app/Contents/Developer • Build 16B40 • CocoaPods version 1.15.2 [✓] Chrome - develop for the web • Chrome at /Applications/Google Chrome.app/Contents/MacOS/Google Chrome [✓] Android Studio (version 2024.1) • Android Studio at /Applications/Android Studio.app/Contents • Flutter plugin can be installed from: 🔨 https://plugins.jetbrains.com/plugin/9212-flutter • Dart plugin can be installed from: 🔨 https://plugins.jetbrains.com/plugin/6351-dart • Java version OpenJDK Runtime Environment (build 17.0.11+0-17.0.11b1207.24-11852314) [✓] VS Code (version 1.95.3) • VS Code at /Applications/Visual Studio Code.app/Contents • Flutter extension version 3.100.0 [✓] Connected device (6 available) • iPhone 16 Pro (mobile) • EB579C74-6193-4E82-9ADD-20E2908F59FD • ios • com.apple.CoreSimulator.SimRuntime.iOS-18-1 (simulator) • iPhone 16 Pro Max (mobile) • DE1E2B51-91C5-48F3-8E5A-03FD5834F7EF • ios • com.apple.CoreSimulator.SimRuntime.iOS-18-1 (simulator) • iPad Pro 13-inch (M4) (mobile) • 1F462CE1-F1CE-43D4-AC7F-4A7235A3F31C • ios • com.apple.CoreSimulator.SimRuntime.iOS-18-1 (simulator) • macOS (desktop) • macos • darwin-arm64 • macOS 14.7.1 23H222 darwin-arm64 • Mac Designed for iPad (desktop) • mac-designed-for-ipad • darwin • macOS 14.7.1 23H222 darwin-arm64 • Chrome (web) • chrome • web-javascript • Google Chrome 131.0.6778.85 [✓] Network resources • All expected network resources are available. ``` </details>
a: tests,framework,a: assets,has reproducible steps,P3,team-framework,triaged-framework,found in release: 3.24,found in release: 3.27
low
Major
2,681,064,222
electron
Ability to set ELECTRON_NO_ATTACH_CONSOLE from app
### Preflight Checklist - [x] I have read the [Contributing Guidelines](https://github.com/electron/electron/blob/main/CONTRIBUTING.md) for this project. - [x] I agree to follow the [Code of Conduct](https://github.com/electron/electron/blob/main/CODE_OF_CONDUCT.md) that this project adheres to. - [x] I have searched the [issue tracker](https://www.github.com/electron/electron/issues) for a feature request that matches the one I want to file, without success. ### Problem Description I previous post https://github.com/electron/electron/issues/20266 incorrectly posted this as an Issue and not a Feature Request So here it is! Im about to launch an Electron app, although i've just discovered that when you run the app from the command line in Windows the terminal session attaches to the log output from the Electron app. You can't quit the terminal session because it will kill the app. I need my app to be launched on startup of Windows, without having the ugly terminal screen there. I would also like people to be able to script it's start without needing the terminal to stay alive. I know I can do this with the ELECTRON_NO_ATTACH_CONSOLE env var, but there doesn't seem to be a way to force this to be always on. I don't want to tell people they need to set ELECTRON_NO_ATTACH_CONSOLE=true before running the app, thats ugly. Using Electron builder to build the production app. Have tried forcing env.ELECTRON_NO_ATTACH_CONSOLE=true at the top of my main file, before anything else loads, but that seems to do nothing. As far as I can tell, it's not possible right now (really happy if someone can prove me wrong). ### Proposed Solution Have the ability to configure this option (ELECTRON_NO_ATTACH_CONSOLE) from within the app without the need for environment variable. ### Alternatives Considered The alternative is to have the user set ELECTRON_NO_ATTACH_CONSOLE=true in their batch files before running the app This is not intuitive and I've never seen any other apps besides electron do this. The end user should not have to make changes for a production app if they use batch files in their workflow. ### Additional Information It is currently an env variable, if more then one electron app are in the the batch file, then this affects the others as well, so the user must be mindful of which app needs to attach to the console and others that don't.
enhancement :sparkles:
low
Minor
2,681,066,362
pytorch
DISABLED test_linear_backward_memory_usage_cuda_float32 (__main__.TestNestedTensorSubclassCUDA)
Platforms: rocm, linux This test was disabled because it is failing in CI. See [recent examples](https://hud.pytorch.org/flakytest?name=test_linear_backward_memory_usage_cuda_float32&suite=TestNestedTensorSubclassCUDA&limit=100) and the most recent trunk [workflow logs](https://github.com/pytorch/pytorch/runs/33336917353). Over the past 3 hours, it has been determined flaky in 4 workflow(s) with 8 failures and 4 successes. **Debugging instructions (after clicking on the recent samples link):** DO NOT ASSUME THINGS ARE OKAY IF THE CI IS GREEN. We now shield flaky tests from developers so CI will thus be green but it will be harder to parse the logs. To find relevant log snippets: 1. Click on the workflow logs linked above 2. Click on the Test step of the job so that it is expanded. Otherwise, the grepping will not work. 3. Grep for `test_linear_backward_memory_usage_cuda_float32` 4. There should be several instances run (as flaky tests are rerun in CI) from which you can study the logs. <details><summary>Sample error message</summary> ``` Traceback (most recent call last): File "/var/lib/jenkins/pytorch/test/test_nestedtensor.py", line 3819, in test_linear_backward_memory_usage self.assertEqual(max_after_gb, 0) File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/testing/_internal/common_utils.py", line 3999, in assertEqual raise error_metas.pop()[0].to_error( AssertionError: Scalars are not equal! Expected 0 but got 1. Absolute difference: 1 Relative difference: inf To execute this test, run the following from the base repo dir: PYTORCH_TEST_WITH_ROCM=1 python test/test_nestedtensor.py TestNestedTensorSubclassCUDA.test_linear_backward_memory_usage_cuda_float32 This message can be suppressed by setting PYTORCH_PRINT_REPRO_ON_FAILURE=0 ``` </details> Test file path: `test_nestedtensor.py` cc @jeffdaily @sunway513 @jithunnair-amd @pruthvistony @ROCmSupport @dllehr-amd @jataylo @hongxiayang @naromero77amd @clee2000 @wdvr @cpuhrsch @jbschlosser @bhosmer @drisspg @soulitzer @davidberard98 @YuqingJ
triaged,module: flaky-tests,module: nestedtensor,skipped
low
Critical
2,681,115,955
go
cmd/compile: cannot build runtime in coverage mode on Wasm
### Go version go version go1.23.3 linux/s390x ### Output of `go env` in your module/workspace: ```shell GO111MODULE='' GOARCH='s390x' GOBIN='' GOCACHE='/home/linux1/.cache/go-build' GOENV='/home/linux1/.config/go/env' GOEXE='' GOEXPERIMENT='' GOFLAGS='' GOHOSTARCH='s390x' GOHOSTOS='linux' GOINSECURE='' GOMODCACHE='/home/linux1/go/pkg/mod' GONOPROXY='' GONOSUMDB='' GOOS='linux' GOPATH='/home/linux1/go' GOPRIVATE='' GOPROXY='https://proxy.golang.org,direct' GOROOT='/snap/go/10737' GOSUMDB='sum.golang.org' GOTMPDIR='' GOTOOLCHAIN='auto' GOTOOLDIR='/snap/go/10737/pkg/tool/linux_s390x' GOVCS='' GOVERSION='go1.23.3' GODEBUG='' GOTELEMETRY='local' GOTELEMETRYDIR='/home/linux1/.config/go/telemetry' GCCGO='gccgo' AR='ar' CC='gcc' CXX='g++' CGO_ENABLED='1' GOMOD='/dev/null' GOWORK='' CGO_CFLAGS='-O2 -g' CGO_CPPFLAGS='' CGO_CXXFLAGS='-O2 -g' CGO_FFLAGS='-O2 -g' CGO_LDFLAGS='-O2 -g' PKG_CONFIG='pkg-config' GOGCCFLAGS='-fPIC -m64 -march=z196 -pthread -Wl,--no-gc-sections -fmessage-length=0 -ffile-prefix-map=/tmp/go-build3325072388=/tmp/go-build -gno-record-gcc-switches' ``` ### What did you do? Run following command ``` git clone https://github.com/Zxilly/go-size-analyzer.git GOOS=js GOARCH=wasm go test -v -covermode=atomic -cover -coverpkg=../../... ``` Then build failed. ### What did you see happen? ``` # runtime ../../_tool/go/1.23.2/s390x/src/runtime/panic.go:652:10: write barrier prohibited by caller; preprintpanics ../../_tool/go/1.23.2/s390x/src/runtime/panic.go:802:77: called by gopanic ../../_tool/go/1.23.2/s390x/src/runtime/panic.go:171:7: called by goPanicSlice3AlenU ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:253:71: called by (*bucket).stk ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:309:68: called by stkbucket ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:854:16: called by saveBlockEventStack ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:840:21: called by (*mLockProfile).store ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:773:13: called by (*mLockProfile).recordUnlock ../../_tool/go/1.23.2/s390x/src/runtime/panic.go:819:12: write barrier prohibited by caller; (*_panic).start ../../_tool/go/1.23.2/s390x/src/runtime/panic.go:779:9: called by gopanic ../../_tool/go/1.23.2/s390x/src/runtime/panic.go:171:7: called by goPanicSlice3AlenU ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:253:71: called by (*bucket).stk ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:309:68: called by stkbucket ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:854:16: called by saveBlockEventStack ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:840:21: called by (*mLockProfile).store ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:773:13: called by (*mLockProfile).recordUnlock ../../_tool/go/1.23.2/s390x/src/runtime/panic.go:872:69: write barrier prohibited by caller; (*_panic).nextDefer ../../_tool/go/1.23.2/s390x/src/runtime/panic.go:781:24: called by gopanic ../../_tool/go/1.23.2/s390x/src/runtime/panic.go:171:7: called by goPanicSlice3AlenU ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:253:71: called by (*bucket).stk ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:309:68: called by stkbucket ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:854:16: called by saveBlockEventStack ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:840:21: called by (*mLockProfile).store ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:773:13: called by (*mLockProfile).recordUnlock ../../_tool/go/1.23.2/s390x/src/runtime/malloc.go:1187:19: write barrier prohibited by caller; mallocgc ../../_tool/go/1.23.2/s390x/src/runtime/iface.go:360:74: called by convTnoptr ../../_tool/go/1.23.2/s390x/src/runtime/panic.go:171:19: called by goPanicSlice3AlenU ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:253:71: called by (*bucket).stk ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:309:68: called by stkbucket ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:854:16: called by saveBlockEventStack ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:840:21: called by (*mLockProfile).store ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:773:13: called by (*mLockProfile).recordUnlock ../../_tool/go/1.23.2/s390x/src/runtime/runtime.go:172:8: write barrier prohibited by caller; (*godebugInc).IncNonDefault ../../_tool/go/1.23.2/s390x/src/runtime/panic.go:740:26: called by gopanic ../../_tool/go/1.23.2/s390x/src/runtime/panic.go:171:7: called by goPanicSlice3AlenU ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:253:71: called by (*bucket).stk ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:309:68: called by stkbucket ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:854:16: called by saveBlockEventStack ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:840:21: called by (*mLockProfile).store ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:773:13: called by (*mLockProfile).recordUnlock ../../_tool/go/1.23.2/s390x/src/runtime/trace.go:493:17: write barrier prohibited by caller; traceAdvance ../../_tool/go/1.23.2/s390x/src/runtime/panic.go:795:15: called by gopanic ../../_tool/go/1.23.2/s390x/src/runtime/panic.go:171:7: called by goPanicSlice3AlenU ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:253:71: called by (*bucket).stk ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:309:68: called by stkbucket ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:854:16: called by saveBlockEventStack ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:840:21: called by (*mLockProfile).store ../../_tool/go/1.23.2/s390x/src/runtime/mprof.go:773:13: called by (*mLockProfile).recordUnlock FAIL github.com/Zxilly/go-size-analyzer [build failed] ``` ### What did you expect to see? Works correctly
NeedsInvestigation,arch-wasm,compiler/runtime
low
Critical
2,681,136,885
kubernetes
Empty pod env var always causes server-side apply conflict
### What happened? I applied a manifest that contains an empty env var in a `PodTemplate` (like `env: [{ name: foo, value: "" }]`). Then, I tried to apply the same spec, with a different field-manager. This produced a conflict: ``` error: Apply failed with 1 conflict: conflict with "kubectl": .spec.containers[name="foo"].env[name="foo"].value Please review the fields above--they currently have other managers. Here are the ways you can resolve this warning: * If you intend to manage all of these fields, please re-run the apply command with the `--force-conflicts` flag. * If you do not intend to manage all of the fields, please edit your manifest to remove references to the fields that should keep their current managers. * You may co-own fields by updating your manifest to match the existing value; in this case, you'll become the manager if the other manager(s) stop managing the field (remove it from their configuration). ``` ### What did you expect to happen? I expect the apply to succeed without a conflict, and the field to be co-owned by both managers (since they are both applying the same value). ### How can we reproduce it (as minimally and precisely as possible)? Apply the following manifest twice: 1. `kubectl apply --server-side -f ./repro.yaml` 2. `kubectl apply --server-side -f ./repro.yaml --field-manager test` ```yaml apiVersion: v1 kind: Pod metadata: name: foo spec: containers: - name: foo image: busybox args: ["sleep", "1000"] env: - name: foo value: "" # works as expected if this field is removed, or set to a non-empty value ``` ### Anything else we need to know? I don't think this is `kubectl`-specific, it happens when using `client-go` directly as well. The behaviour around env values is a bit strange in general - if I specify an empty env var value, the value is listed under `managedFields`, but not actually returned in the response object: ```yaml apiVersion: v1 kind: Pod metadata: managedFields: - apiVersion: v1 fieldsType: FieldsV1 fieldsV1: f:spec: f:containers: k:{"name":"foo"}: .: {} f:args: {} f:env: k:{"name":"foo"}: .: {} f:name: {} f:value: {} # value is a managed field f:image: {} f:name: {} name: foo namespace: default spec: containers: - args: - sleep - "1000" env: - name: foo # but there is no value in the returned object! image: busybox name: foo ``` ### Kubernetes version <details> ```console > kubectl version Client Version: v1.31.0 Kustomize Version: v5.4.2 Server Version: v1.31.0 ``` </details> ### Cloud provider <details> N/A, using kind </details> ### OS version <details> N/A, using kind </details> ### Install tools <details> kind </details> ### Container runtime (CRI) and version (if applicable) <details> </details> ### Related plugins (CNI, CSI, ...) and versions (if applicable) <details> </details>
kind/bug,sig/api-machinery,triage/accepted
low
Critical
2,681,137,485
pytorch
Memory efficient reshape for stride-0 tensors
### 🚀 The feature, motivation and pitch We have many tensors with large shape, but several stride=0 dimensions, i.e. expanded/broadcasted dimensions. If a reshape that cannot be done as a view is performed, the whole tensor is made full sized and contiguous, resulting in a huge allocation. IT would be nice if the expanded dimensions could be kept if possible. Example: ```python import torch a=torch.rand(1,2,1).expand(100,2,2) print("a", a.shape, "stride:", a.stride()) print("storage a", a.untyped_storage().nbytes(), "bytes") b=a.reshape(-1,4) print("b", b.shape, "stride:", b.stride()) print("storage b", b.untyped_storage().nbytes(), "bytes") c=a[:1].reshape(-1,4).expand(100,-1) print("c", c.shape, "stride:", c.stride()) print("storage c", c.untyped_storage().nbytes(), "bytes") torch.testing.assert_close(b,c) ``` ``` a torch.Size([100, 2, 2]) stride: (0, 1, 0) storage a 8 bytes b torch.Size([100, 4]) stride: (4, 1) storage b 1600 bytes c torch.Size([100, 4]) stride: (0, 1) storage c 16 bytes ``` similarly, if a were non-contiguous in some dimensions involved in the reshape. Is there a smart way to do the reshape? ### Alternatives We can manually figure out which axes will be joined or split in the reshape and undo the expand in all other stride-0 dimensions before the reshape, and expand after the reshape. It would be nice to have this as an efficient C function available. Unfortunatly, I think changing the default reshape behaviour might be considered a breaking change -- as it would then return non contiguous tensors where it previously did not. ### Additional context _No response_ cc @albanD
triaged,enhancement,module: python frontend
low
Minor
2,681,138,074
flutter
iOS simulator test have confusing logspam.
The following logs are emitted constantly but the results seem to be benign: ``` 2024-11-21 14:23:13.025619-0800 IosUnitTests[79897:22772182] [ERROR:flutter/runtime/isolate_configuration.cc(223)] application_kernel_asset or application_kernel_list_asset must be set 2024-11-21 14:23:13.025783-0800 IosUnitTests[79897:22772182] [ERROR:flutter/shell/common/engine.cc(215)] Engine run configuration was invalid. 2024-11-21 14:23:13.025912-0800 IosUnitTests[79897:22772182] [ERROR:flutter/shell/common/shell.cc(675)] Could not launch engine with configuration. ``` Invocation: ``` ./flutter/testing/run_tests.py --type objc --variant host_debug_unopt_arm64 --ios-variant ios_debug_sim_unopt_arm64 ```
a: tests,engine,P3,team-ios,triaged-ios
low
Critical
2,681,181,475
pytorch
Pytorch notifications
### 🚀 The feature, motivation and pitch **Note: this feature is under review, this is a first rough proposal, looking for user feedback right now whether this is needed or not.** Developers within the PyTorch ecosystem have quite some signal to deal with: - Github notifications for cc'ed issues - failing CI tests on HUD / monitoring for successful tests to merge - PR reverts - Infra failures (infra teams) - oncall health for some repos (TTR for issues/reviews), regression for i.e. daily benchmarks This leads to delays in merging, late response times, frustration with the build and test system. Additionally, some PRs fall off peoples review list, and developers end up using Dev Infra Office Hours to request reviews. Some people rely on e-mail notifications and custom mail rules to triage their signals, some people use the Github notifications, others rely on manual pings in slack/other chat tools from colleagues. The proposal here is to look into a general purpose notification system that users can subscribe to, that can ping either oncalls for certain metrics (TTR too long, regression detected, infra down), or individuals (your PR is ready to merge, you have failing tests to look into). ### Alternatives - we could stick to Github notitfications, ccbot, [probot]([pytorch-probot](https://github.com/pytorch/test-infra/torchci)) that subscribes people to labels - We could split this up in multiple use cases, and make a 'stale PR' dashboard per repo, develop an infra-failure solution, and write a simple @notify bot for benchmark regressions ### Additional context right now we're looking to interview developers on how they deal with this workflow, how they experience developing PyTorch and how they deal with the above mentioned challenges. If you're interested in giving feedback, feel free to do so as a comment to this issue, or contact @wdvr. cc @ZainRizvi @kit1980 @huydhn @clee2000
feature,triaged,module: devx
low
Critical
2,681,224,486
langchain
PydanticUndefinedAnnotation: name 'SafetySetting' is not defined using ChatVertexAI
### Checked other resources - [X] I added a very descriptive title to this issue. - [X] I searched the LangChain documentation with the integrated search. - [X] I used the GitHub search to find a similar question and didn't find it. - [X] I am sure that this is a bug in LangChain rather than my code. - [X] The bug is not resolved by updating to the latest stable version of LangChain (or the specific integration package). ### Example Code ```python # Ensure your VertexAI credentials are configured from langchain_google_vertexai import ChatVertexAI model = ChatVertexAI(model="gemini-1.5-flash") model.invoke("Hello, world!") ``` ### Error Message and Stack Trace (if applicable) ```python --------------------------------------------------------------------------- NameError Traceback (most recent call last) File /opt/conda/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py:815, in GenerateSchema._resolve_forward_ref(self, obj) 814 try: --> 815 obj = _typing_extra.eval_type_backport(obj, *self._types_namespace) 816 except NameError as e: File /opt/conda/lib/python3.10/site-packages/pydantic/_internal/_typing_extra.py:534, in eval_type_backport(value, globalns, localns, type_params) 533 try: --> 534 return _eval_type_backport(value, globalns, localns, type_params) 535 except TypeError as e: File /opt/conda/lib/python3.10/site-packages/pydantic/_internal/_typing_extra.py:558, in _eval_type_backport(value, globalns, localns, type_params) 557 try: --> 558 return _eval_type(value, globalns, localns, type_params) 559 except TypeError as e: File /opt/conda/lib/python3.10/site-packages/pydantic/_internal/_typing_extra.py:592, in _eval_type(value, globalns, localns, type_params) 591 else: --> 592 return typing._eval_type( # type: ignore 593 value, globalns, localns 594 ) File /opt/conda/lib/python3.10/typing.py:327, in _eval_type(t, globalns, localns, recursive_guard) 326 if isinstance(t, ForwardRef): --> 327 return t._evaluate(globalns, localns, recursive_guard) 328 if isinstance(t, (_GenericAlias, GenericAlias, types.UnionType)): File /opt/conda/lib/python3.10/typing.py:699, in ForwardRef._evaluate(self, globalns, localns, recursive_guard) 693 type_ = _type_check( 694 eval(self.__forward_code__, globalns, localns), 695 "Forward references must evaluate to types.", 696 is_argument=self.__forward_is_argument__, 697 allow_special_forms=self.__forward_is_class__, 698 ) --> 699 self.__forward_value__ = _eval_type( 700 type_, globalns, localns, recursive_guard | {self.__forward_arg__} 701 ) 702 self.__forward_evaluated__ = True File /opt/conda/lib/python3.10/typing.py:329, in _eval_type(t, globalns, localns, recursive_guard) 328 if isinstance(t, (_GenericAlias, GenericAlias, types.UnionType)): --> 329 ev_args = tuple(_eval_type(a, globalns, localns, recursive_guard) for a in t.__args__) 330 if ev_args == t.__args__: File /opt/conda/lib/python3.10/typing.py:329, in <genexpr>(.0) 328 if isinstance(t, (_GenericAlias, GenericAlias, types.UnionType)): --> 329 ev_args = tuple(_eval_type(a, globalns, localns, recursive_guard) for a in t.__args__) 330 if ev_args == t.__args__: File /opt/conda/lib/python3.10/typing.py:327, in _eval_type(t, globalns, localns, recursive_guard) 326 if isinstance(t, ForwardRef): --> 327 return t._evaluate(globalns, localns, recursive_guard) 328 if isinstance(t, (_GenericAlias, GenericAlias, types.UnionType)): File /opt/conda/lib/python3.10/typing.py:699, in ForwardRef._evaluate(self, globalns, localns, recursive_guard) 693 type_ = _type_check( 694 eval(self.__forward_code__, globalns, localns), 695 "Forward references must evaluate to types.", 696 is_argument=self.__forward_is_argument__, 697 allow_special_forms=self.__forward_is_class__, 698 ) --> 699 self.__forward_value__ = _eval_type( 700 type_, globalns, localns, recursive_guard | {self.__forward_arg__} 701 ) 702 self.__forward_evaluated__ = True File /opt/conda/lib/python3.10/typing.py:329, in _eval_type(t, globalns, localns, recursive_guard) 328 if isinstance(t, (_GenericAlias, GenericAlias, types.UnionType)): --> 329 ev_args = tuple(_eval_type(a, globalns, localns, recursive_guard) for a in t.__args__) 330 if ev_args == t.__args__: File /opt/conda/lib/python3.10/typing.py:329, in <genexpr>(.0) 328 if isinstance(t, (_GenericAlias, GenericAlias, types.UnionType)): --> 329 ev_args = tuple(_eval_type(a, globalns, localns, recursive_guard) for a in t.__args__) 330 if ev_args == t.__args__: File /opt/conda/lib/python3.10/typing.py:329, in _eval_type(t, globalns, localns, recursive_guard) 328 if isinstance(t, (_GenericAlias, GenericAlias, types.UnionType)): --> 329 ev_args = tuple(_eval_type(a, globalns, localns, recursive_guard) for a in t.__args__) 330 if ev_args == t.__args__: File /opt/conda/lib/python3.10/typing.py:329, in <genexpr>(.0) 328 if isinstance(t, (_GenericAlias, GenericAlias, types.UnionType)): --> 329 ev_args = tuple(_eval_type(a, globalns, localns, recursive_guard) for a in t.__args__) 330 if ev_args == t.__args__: File /opt/conda/lib/python3.10/typing.py:327, in _eval_type(t, globalns, localns, recursive_guard) 326 if isinstance(t, ForwardRef): --> 327 return t._evaluate(globalns, localns, recursive_guard) 328 if isinstance(t, (_GenericAlias, GenericAlias, types.UnionType)): File /opt/conda/lib/python3.10/typing.py:694, in ForwardRef._evaluate(self, globalns, localns, recursive_guard) 690 globalns = getattr( 691 sys.modules.get(self.__forward_module__, None), '__dict__', globalns 692 ) 693 type_ = _type_check( --> 694 eval(self.__forward_code__, globalns, localns), 695 "Forward references must evaluate to types.", 696 is_argument=self.__forward_is_argument__, 697 allow_special_forms=self.__forward_is_class__, 698 ) 699 self.__forward_value__ = _eval_type( 700 type_, globalns, localns, recursive_guard | {self.__forward_arg__} 701 ) File <string>:1 NameError: name 'SafetySetting' is not defined The above exception was the direct cause of the following exception: PydanticUndefinedAnnotation Traceback (most recent call last) Cell In[15], line 1 ----> 1 from langchain_google_vertexai import ChatVertexAI 3 model = ChatVertexAI(model="gemini-1.5-flash") 5 model.invoke("Hello, world!") File ~/.local/lib/python3.10/site-packages/langchain_google_vertexai/__init__.py:16 14 from langchain_google_vertexai.chains import create_structured_runnable 15 from langchain_google_vertexai.chat_models import ChatVertexAI ---> 16 from langchain_google_vertexai.embeddings import VertexAIEmbeddings 17 from langchain_google_vertexai.evaluators.evaluation import ( 18 VertexPairWiseStringEvaluator, 19 VertexStringEvaluator, 20 ) 21 from langchain_google_vertexai.functions_utils import ( 22 PydanticFunctionsOutputParser, 23 ) File ~/.local/lib/python3.10/site-packages/langchain_google_vertexai/embeddings.py:544 540 embeddings.append(result.image_embedding) 541 return embeddings --> 544 VertexAIEmbeddings.model_rebuild() File /opt/conda/lib/python3.10/site-packages/pydantic/main.py:589, in BaseModel.model_rebuild(cls, force, raise_errors, _parent_namespace_depth, _types_namespace) 587 # manually override defer_build so complete_model_class doesn't skip building the model again 588 config = {**cls.model_config, 'defer_build': False} --> 589 return _model_construction.complete_model_class( 590 cls, 591 cls.__name__, 592 _config.ConfigWrapper(config, check=False), 593 raise_errors=raise_errors, 594 ns_resolver=ns_resolver, 595 ) File /opt/conda/lib/python3.10/site-packages/pydantic/_internal/_model_construction.py:658, in complete_model_class(cls, cls_name, config_wrapper, raise_errors, ns_resolver, create_model_module) 651 handler = CallbackGetCoreSchemaHandler( 652 partial(gen_schema.generate_schema, from_dunder_get_core_schema=False), 653 gen_schema, 654 ref_mode='unpack', 655 ) 657 try: --> 658 schema = cls.__get_pydantic_core_schema__(cls, handler) 659 except PydanticUndefinedAnnotation as e: 660 if raise_errors: File /opt/conda/lib/python3.10/site-packages/pydantic/main.py:697, in BaseModel.__get_pydantic_core_schema__(cls, source, handler) 694 if not cls.__pydantic_generic_metadata__['origin']: 695 return cls.__pydantic_core_schema__ --> 697 return handler(source) File /opt/conda/lib/python3.10/site-packages/pydantic/_internal/_schema_generation_shared.py:84, in CallbackGetCoreSchemaHandler.__call__(self, source_type) 83 def __call__(self, source_type: Any, /) -> core_schema.CoreSchema: ---> 84 schema = self._handler(source_type) 85 ref = schema.get('ref') 86 if self._ref_mode == 'to-def': File /opt/conda/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py:612, in GenerateSchema.generate_schema(self, obj, from_dunder_get_core_schema) 609 schema = from_property 611 if schema is None: --> 612 schema = self._generate_schema_inner(obj) 614 metadata_js_function = _extract_get_pydantic_json_schema(obj, schema) 615 if metadata_js_function is not None: File /opt/conda/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py:881, in GenerateSchema._generate_schema_inner(self, obj) 879 if lenient_issubclass(obj, BaseModel): 880 with self.model_type_stack.push(obj): --> 881 return self._model_schema(obj) 883 if isinstance(obj, PydanticRecursiveRef): 884 return core_schema.definition_reference_schema(schema_ref=obj.type_ref) File /opt/conda/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py:693, in GenerateSchema._model_schema(self, cls) 681 model_schema = core_schema.model_schema( 682 cls, 683 inner_schema, (...) 689 ref=model_ref, 690 ) 691 else: 692 fields_schema: core_schema.CoreSchema = core_schema.model_fields_schema( --> 693 {k: self._generate_md_field_schema(k, v, decorators) for k, v in fields.items()}, 694 computed_fields=[ 695 self._computed_field_schema(d, decorators.field_serializers) 696 for d in computed_fields.values() 697 ], 698 extras_schema=extras_schema, 699 model_name=cls.__name__, 700 ) 701 inner_schema = apply_validators(fields_schema, decorators.root_validators.values(), None) 702 new_inner_schema = define_expected_missing_refs(inner_schema, recursively_defined_type_refs()) File /opt/conda/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py:693, in <dictcomp>(.0) 681 model_schema = core_schema.model_schema( 682 cls, 683 inner_schema, (...) 689 ref=model_ref, 690 ) 691 else: 692 fields_schema: core_schema.CoreSchema = core_schema.model_fields_schema( --> 693 {k: self._generate_md_field_schema(k, v, decorators) for k, v in fields.items()}, 694 computed_fields=[ 695 self._computed_field_schema(d, decorators.field_serializers) 696 for d in computed_fields.values() 697 ], 698 extras_schema=extras_schema, 699 model_name=cls.__name__, 700 ) 701 inner_schema = apply_validators(fields_schema, decorators.root_validators.values(), None) 702 new_inner_schema = define_expected_missing_refs(inner_schema, recursively_defined_type_refs()) File /opt/conda/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py:1073, in GenerateSchema._generate_md_field_schema(self, name, field_info, decorators) 1066 def _generate_md_field_schema( 1067 self, 1068 name: str, 1069 field_info: FieldInfo, 1070 decorators: DecoratorInfos, 1071 ) -> core_schema.ModelField: 1072 """Prepare a ModelField to represent a model field.""" -> 1073 common_field = self._common_field_schema(name, field_info, decorators) 1074 return core_schema.model_field( 1075 common_field['schema'], 1076 serialization_exclude=common_field['serialization_exclude'], (...) 1080 metadata=common_field['metadata'], 1081 ) File /opt/conda/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py:1261, in GenerateSchema._common_field_schema(self, name, field_info, decorators) 1257 schema = self._apply_annotations( 1258 source_type, annotations + validators_from_decorators, transform_inner_schema=set_discriminator 1259 ) 1260 else: -> 1261 schema = self._apply_annotations( 1262 source_type, 1263 annotations + validators_from_decorators, 1264 ) 1266 # This V1 compatibility shim should eventually be removed 1267 # push down any `each_item=True` validators 1268 # note that this won't work for any Annotated types that get wrapped by a function validator 1269 # but that's okay because that didn't exist in V1 1270 this_field_validators = filter_field_decorator_info_by_field(decorators.validators.values(), name) File /opt/conda/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py:2051, in GenerateSchema._apply_annotations(self, source_type, annotations, transform_inner_schema) 2046 continue 2047 get_inner_schema = self._get_wrapped_inner_schema( 2048 get_inner_schema, annotation, pydantic_js_annotation_functions 2049 ) -> 2051 schema = get_inner_schema(source_type) 2052 if pydantic_js_annotation_functions: 2053 core_metadata = schema.setdefault('metadata', {}) File /opt/conda/lib/python3.10/site-packages/pydantic/_internal/_schema_generation_shared.py:84, in CallbackGetCoreSchemaHandler.__call__(self, source_type) 83 def __call__(self, source_type: Any, /) -> core_schema.CoreSchema: ---> 84 schema = self._handler(source_type) 85 ref = schema.get('ref') 86 if self._ref_mode == 'to-def': File /opt/conda/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py:2032, in GenerateSchema._apply_annotations.<locals>.inner_handler(obj) 2030 from_property = self._generate_schema_from_property(obj, source_type) 2031 if from_property is None: -> 2032 schema = self._generate_schema_inner(obj) 2033 else: 2034 schema = from_property File /opt/conda/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py:875, in GenerateSchema._generate_schema_inner(self, obj) 872 obj = ForwardRef(obj) 874 if isinstance(obj, ForwardRef): --> 875 return self.generate_schema(self._resolve_forward_ref(obj)) 877 BaseModel = import_cached_base_model() 879 if lenient_issubclass(obj, BaseModel): File /opt/conda/lib/python3.10/site-packages/pydantic/_internal/_generate_schema.py:817, in GenerateSchema._resolve_forward_ref(self, obj) 815 obj = _typing_extra.eval_type_backport(obj, *self._types_namespace) 816 except NameError as e: --> 817 raise PydanticUndefinedAnnotation.from_name_error(e) from e 819 # if obj is still a ForwardRef, it means we can't evaluate it, raise PydanticUndefinedAnnotation 820 if isinstance(obj, ForwardRef): PydanticUndefinedAnnotation: name 'SafetySetting' is not defined For further information visit https://errors.pydantic.dev/2.10/u/undefined-annotation ``` ### Description Using the exact example from [documentation](https://python.langchain.com/docs/integrations/chat/) the following error occur ### System Info System Information ------------------ > OS: Linux > OS Version: #1 SMP Debian 5.10.223-1 (2024-08-10) > Python Version: 3.10.15 | packaged by conda-forge | (main, Sep 20 2024, 16:37:05) [GCC 13.3.0] Package Information ------------------- > langchain_core: 0.3.19 > langchain: 0.3.7 > langchain_community: 0.3.5 > langsmith: 0.1.144 > langchain_google_genai: 2.0.5 > langchain_google_vertexai: 2.0.7 > langchain_openai: 0.2.5 > langchain_text_splitters: 0.3.2 Optional packages not installed ------------------------------- > langgraph > langserve Other Dependencies ------------------ > aiohttp: 3.10.5 > anthropic[vertexai]: Installed. No version info available. > async-timeout: 4.0.3 > dataclasses-json: 0.6.7 > google-cloud-aiplatform: 1.73.0 > google-cloud-storage: 2.18.2 > google-generativeai: 0.8.3 > httpx: 0.27.2 > httpx-sse: 0.4.0 > jsonpatch: 1.33 > langchain-mistralai: Installed. No version info available. > numpy: 1.25.2 > openai: 1.55.0 > orjson: 3.10.11 > packaging: 24.1 > pydantic: 2.10.0 > pydantic-settings: 2.6.1 > PyYAML: 6.0.2 > requests: 2.32.3 > requests-toolbelt: 1.0.0 > SQLAlchemy: 2.0.35 > tenacity: 9.0.0 > tiktoken: 0.8.0 > typing-extensions: 4.12.2
🤖:bug,investigate
medium
Critical
2,681,233,440
pytorch
Consider making torch.cond return zero rather than None for the gradients of tensors that are in the not-taken branch of the if-else.
### 🐛 Describe the bug While working on #140979, I noticed that torch.cond()'s current backward pass will return None for the gradients of inputs that are not used in the branch selected by `pred`. There are a few challenges with this: 1. This makes it basically impossible to capture torch.cond with a cuda graph. By specifying that a tensor's gradient is None rather than a tensor of zeros, we cannot pass this gradient into a kernel. Therefore, we cannot capture a single static cuda graph that can handle both sides of a torch.cond, unfortunately, since the arguments to later kernels would be dependent upon whether pred is true or false. We would be forced to fall back to cuda graph trees rather than using a single cuda graph for workloads using torch.cond that need to compute gradients, which is disappointing. This argument likely also applies to other accelerators like TPU's. Here is an example that demonstrates this point: ``` import torch torch.set_default_device("cuda") def cond_branch(x, w1, w2): return torch.cond(x > 0, lambda x: w1 * x, lambda x: w2 * x, [x]) def imperative_branch(x, w1, w2): if x > 0: return w1 * x else: return w2 * x x = torch.ones((), requires_grad=False) neg_x = -torch.ones((), requires_grad=False) w1 = torch.zeros((), requires_grad=True) w2 = torch.zeros((), requires_grad=True) y2 = cond_branch(x, w1, w2) grad_w = torch.autograd.grad(y2, [w1, w2], allow_unused=True) print("GALVEZ:grads=", grad_w) ``` Prints: ``` GALVEZ:grads= (tensor(1., device='cuda:0'), None) ``` Rather than ``` GALVEZ:grads= (tensor(1., device='cuda:0'), tensor(0., device='cuda:0')) ``` 2. This does not match the behavior of torch.vmap(torch.cond()), which does return a tensor of 0's. There are a few optimizers that are not no-ops when the gradient is 0. One obvious example is ADAM. Therefore, I think that we may encounter subtle differences under a transformation that *should* retain parity in terms of semantics. Here is an example. ``` import torch torch.set_default_device("cuda") def cond_branch(x, w1, w2): return torch.cond(x > 0, lambda x: w1 * x, lambda x: w2 * x, [x]) def imperative_branch(x, w1, w2): if x > 0: return w1 * x else: return w2 * x x = torch.ones((), requires_grad=False) neg_x = -torch.ones((), requires_grad=False) w1 = torch.zeros((), requires_grad=True) w2 = torch.zeros((), requires_grad=True) y2 = torch.vmap(cond_branch)(torch.unsqueeze(x, 0), torch.unsqueeze(w1, 0), torch.unsqueeze(w2, 0)) grad_w = torch.autograd.grad(y2, [w1, w2], allow_unused=True) print("GALVEZ:grads=", grad_w) ``` Prints: ``` GALVEZ:grads= (tensor(1., device='cuda:0'), tensor(0., device='cuda:0')) ``` 3. Some may not care about this, but it doesn't match the behavior of jax.lax.cond. I surmise that the reason for jax.lax.cond's behavior is that it TPU is a target, which cannot handle gradients being set to None rather than being set to 0, for similar to cuda graphs, because then it won't be able to create a single static compute graph. ```python import jax import jax.numpy as jnp # Define the conditional branch function using jax.lax.cond def cond_branch(x, w1, w2): return jax.lax.cond( x > 0, lambda x: w1 * x, lambda x: w2 * x, x, ) # Inputs x = jnp.ones(()) neg_x = -jnp.ones(()) w1 = jnp.zeros(()) w2 = jnp.zeros(()) w_grads = jax.grad(cond_branch, [1, 2])(x, w1, w2) print("GALVEZ:", w_grads[0], w_grads[1]) ``` Prints: ``` GALVEZ: 1.0 0.0 ``` (Rather than 1.0 None) Now, there is a "problem" with my proposal, which is that currently torch.cond does match the behavior of imperative if-else in python. See here: ``` torch.set_default_device("cuda") def cond_branch(x, w1, w2): return torch.cond(x > 0, lambda x: w1 * x, lambda x: w2 * x, [x]) def imperative_branch(x, w1, w2): if x > 0: return w1 * x else: return w2 * x x = torch.ones((), requires_grad=False) neg_x = -torch.ones((), requires_grad=False) w1 = torch.zeros((), requires_grad=True) w2 = torch.zeros((), requires_grad=True) y2 = imperative_branch(x, w1, w2) y2.backward() print(w1.grad) print(w2.grad) ``` ``` tensor(1., device='cuda:0') None ``` I hope that this isn't consider to be particularly problematic, though. I think the benefits of being able to build a single static cuda graph for your workload outweigh the benefits of matching. Another option, of course, is to add a new flag to torch.cond() to make it output torch.zeros() rather than None in the situations I have described, if backwards compatibility is considered important. @ydwu4 @eellison @bohnstingl ### Versions Not important in this case, but same as #141259 cc @ezyang @gchanan @zou3519 @kadeng @msaroufim @chauhang @penguinwu @ydwu4 @bdhirsh @yf225
high priority,triaged,oncall: pt2,module: higher order operators,module: pt2-dispatcher
low
Critical
2,681,236,448
rust
Unexpected error when resolving bounds involving associated types
<!-- Thank you for filing a bug report! 🐛 Please provide a short summary of the bug, along with any information you feel relevant to replicating the bug. --> I am trying to compile the following code ```rust struct MyBlock; trait Block { type Header; } impl Block for MyBlock { type Header = (); } trait Header {} impl Header for () {} trait FullBlock: Block<Header: Header> {} impl<T> FullBlock for T where T: Block<Header: Header> {} trait Primitives { type Block; } trait FullPrimitives: Primitives<Block: FullBlock<Header = Self::Header>> { type Header; } impl<T> FullPrimitives for T where T: Primitives<Block: FullBlock> { type Header = <<T as Primitives>::Block as Block>::Header; } fn test<P: FullPrimitives<Block = MyBlock>>() {} ``` The compilation is failing with: ``` error[E0283]: type annotations needed: cannot satisfy `MyBlock: FullBlock` --> src/main.rs:30:12 | 30 | fn test<P: FullPrimitives<Block = MyBlock>>() {} | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ | = note: cannot satisfy `MyBlock: FullBlock` note: required by a bound in `FullPrimitives` --> src/main.rs:22:41 | 22 | trait FullPrimitives: Primitives<Block: FullBlock<Header = Self::Header>> { | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ required by this bound in `FullPrimitives` For more information about this error, try `rustc --explain E0283`. error: could not compile `my_project` (bin "my") due to 1 previous error ``` However, if I relax the `FullBlock` trait requirements it compiles fine ```diff -trait FullBlock: Block<Header: Header> {} -impl<T> FullBlock for T where T: Block<Header: Header> {} +trait FullBlock: Block {} +impl<T> FullBlock for T where T: Block {} ``` ### Meta <!-- If you're using the stable version of the compiler, you should also check if the bug also exists in the beta or nightly versions. --> `rustc --version --verbose`: ``` rustc 1.84.0-nightly (c1db4dc24 2024-10-25) binary: rustc commit-hash: c1db4dc24267a707409c9bf2e67cf3c7323975c8 commit-date: 2024-10-25 host: aarch64-apple-darwin release: 1.84.0-nightly LLVM version: 19.1.1 ``` </p> </details>
A-trait-system,T-compiler,A-impl-trait,C-bug,fixed-by-next-solver
low
Critical
2,681,267,333
rust
`if` and `else` have incompatible types in a `let` statement, where `else` block's evaluation will never be assigned
<!-- Thank you for filing a bug report! 🐛 Please provide a short summary of the bug, along with any information you feel relevant to replicating the bug. --> I apologize if this was already reported in a separate issue, or if this is a known issue - I wasn't sure how to best search for previous issues like this. I also realize this might not be a "bug" per se, but the other issue templates didn't seem to quite fit either. I tried this code: ```rust enum Cause { Cause1, Cause2 } struct MyErr { x: Cause } fn main() { _ = f(); } fn f() -> Result<i32, MyErr> { let res = could_fail(); let x = if let Ok(x) = res { x } else if let Err(e) = res { cleanup(); return Err(e); }; Ok(x) } fn could_fail() -> Result<i32, MyErr> { // ... code that could fail and return an Err ... Ok(0) } fn cleanup() { // ... cleanup code ... } ``` Playground: https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=60acf4e59e3c6403104e01aa409aa395 I expected the code to compile successfully, since the `else if` branch unconditionally returns. Because the `else if` branch always returns, `x` will always be an `i32`. Instead, I get this compiler error: ``` error[E0308]: `if` and `else` have incompatible types --> src/main.rs:12:12 | 10 | let x = if let Ok(x) = res { | ______________- 11 | | x | | - expected because of this 12 | | } else if let Err(e) = res { | | ____________^ 13 | || cleanup(); 14 | || return Err(e); 15 | || }; | || ^ | ||_____| | |_____`if` and `else` have incompatible types | expected `i32`, found `()` ``` ### Meta <!-- If you're using the stable version of the compiler, you should also check if the bug also exists in the beta or nightly versions. --> `rustc --version --verbose`: ``` rustc 1.82.0 (f6e511eec 2024-10-15) binary: rustc commit-hash: f6e511eec7342f59a25f7c0534f1dbea00d01b14 commit-date: 2024-10-15 host: x86_64-unknown-linux-gnu release: 1.82.0 LLVM version: 19.1.1 ```
A-diagnostics,T-compiler,D-confusing,D-terse,A-control-flow
low
Critical
2,681,272,541
rustdesk
Online status indicator doesn't work for remotes added via `id@server/r`
### Bug Description I have a remote client that I usually connect to. The remote client is using a relay server and an ID server on its end. When I want to connect to that specific remote via its pure `<id>`, I have to change the networking settings on my client to add that relay and ID server globally. When I do that, everything works just fine and the online status indicator for that remote updates correctly. Since the adding and deleting of relay and ID servers on my client for connecting to that remote client was becoming cumbersome, I researched this repository and found out that [an alternative method has been added in v1.3.0](https://github.com/rustdesk/rustdesk/issues/6198#issuecomment-1794694273) that allows connecting to remotes behind an ID and a relay server without having to change these settings globally. Therefore, I gave it a shot and am now able to connect to my remote client via `<id>@<server>/r` without having to set the relay and ID servers globally on my client. Although this works great, the issue I'm experiencing with this method is that it no longer updates the small online status indicator for that remote correctly and it always stays orange, even though I'm able to connect to it just fine and if I use the old method it is able to detect when the remote is online and shows it as green. ### How to Reproduce 1. Install RustDesk on 2 machines (I tested on 2 Windows machines). 2. Open up the settings on machine 1 and go to networking and assign it to a custom (public) ID and relay server. 3. Now try connecting to machine 1 from machine 2 via `<id>@<server>/r` without changing the global networking settings on machine 2. 4. You should be able to connect to machine 1 but the online status indicator won't work and it'll stay orange. ### Expected Behavior The online status indicator should turn green when the remote behind the ID and relay server is ready to receive connections. ### Operating system(s) on local (controlling) side and remote (controlled) side Windows 11 -> Windows 11 ### RustDesk Version(s) on local (controlling) side and remote (controlled) side 1.3.0 -> 1.3.0 ### Screenshots ![image](https://github.com/user-attachments/assets/df2d3012-f879-437f-9df4-54990b919908) ![image](https://github.com/user-attachments/assets/bd7f761c-5576-44f9-8272-9809b81d6017) ### Additional Context _No response_ <!-- POLAR PLEDGE BADGE START --> ## Upvote & Fund - We're using [Polar.sh](https://polar.sh/rustdesk) so you can upvote and help fund this issue. - We receive the funding once the issue is completed & confirmed by you. - Thank you in advance for helping prioritize & fund our backlog. <a href="https://polar.sh/rustdesk/rustdesk/issues/10005"> <picture> <source media="(prefers-color-scheme: dark)" srcset="https://polar.sh/api/github/rustdesk/rustdesk/issues/10005/pledge.svg?darkmode=1"> <img alt="Fund with Polar" src="https://polar.sh/api/github/rustdesk/rustdesk/issues/10005/pledge.svg"> </picture> </a> <!-- POLAR PLEDGE BADGE END -->
bug,Fund
low
Critical
2,681,282,748
vscode
Codes Crashes after about 15 Minutes
Type: <b>Performance Issue</b> Hello, i am trying to code a Pythen Application. But VS Code keeps consinstently crashing after about 15 Minutes. I have a core dump from journalctl. All Extensions (Not the Python ones) are disabled. Here is the beginning of the Core Dump: Nov 22 00:19:11 debian plasmashell[79249]: <--- Last few GCs ---> Nov 22 00:19:11 debian plasmashell[79249]: [79249:0x38dc0011c000] 1375313 ms: Mark-Compact 3664.0 (4086.1) -> 3658.4 (4087.6) MB, pooled: 1 MB, 35.18 / 0.00 ms (average mu = 0.995, current mu = 0.766) task; scavenge might not succeed Nov 22 00:19:11 debian plasmashell[79249]: [79249:0x38dc0011c000] 1375467 ms: Mark-Compact 3665.7 (4087.6) -> 3659.9 (4089.3) MB, pooled: 0 MB, 39.36 / 0.00 ms (average mu = 0.990, current mu = 0.745) task; scavenge might not succeed Nov 22 00:19:11 debian plasmashell[79249]: <--- JS stacktrace ---> Nov 22 00:19:11 debian plasmashell[79249]: FATAL ERROR: Reached heap limit Allocation failed - JavaScript heap out of memory Nov 22 00:19:11 debian plasmashell[79249]: ----- Native stack trace ----- Nov 22 00:19:11 debian plasmashell[79275]: [1122/001911.776191:ERROR:elf_dynamic_array_reader.h(64)] tag not found Nov 22 00:19:11 debian plasmashell[79275]: [1122/001911.776530:ERROR:elf_dynamic_array_reader.h(64)] tag not found Nov 22 00:19:11 debian plasmashell[79275]: [1122/001911.776682:ERROR:elf_dynamic_array_reader.h(64)] tag not found Nov 22 00:19:11 debian plasmashell[79275]: [1122/001911.792050:ERROR:directory_reader_posix.cc(43)] opendir /home/marvin/.config/Code/Crashpad/attachments/a2b04a1d-7e42-44f8-9285-1bc787e4b08c: No such file or directory (2) Nov 22 00:19:19 debian systemd-coredump[83388]: [🡕] Process 79249 (code) of user 1000 dumped core. If possible i can send the rest of the dumped Core too. But this happens at almost exactly 15 Minutes every time. Last one: Consumed 14min 55.100s CPU time Before: Consumed 16min 43.285s CPU time. And before that: Consumed 14min 27.663s CPU time. If you need more informate i can provide everything you need. Thanks in advance VS Code version: Code 1.95.3 (f1a4fb101478ce6ec82fe9627c43efbf9e98c813, 2024-11-13T14:50:04.152Z) OS version: Linux x64 6.1.0-27-amd64 Modes: <details> <summary>System Info</summary> |Item|Value| |---|---| |CPUs|AMD Ryzen 7 3800X 8-Core Processor (16 x 2199)| |GPU Status|2d_canvas: enabled<br>canvas_oop_rasterization: enabled_on<br>direct_rendering_display_compositor: disabled_off_ok<br>gpu_compositing: enabled<br>multiple_raster_threads: enabled_on<br>opengl: enabled_on<br>rasterization: enabled<br>raw_draw: disabled_off_ok<br>skia_graphite: disabled_off<br>video_decode: enabled<br>video_encode: disabled_software<br>vulkan: disabled_off<br>webgl: enabled<br>webgl2: enabled<br>webgpu: disabled_off<br>webnn: disabled_off| |Load (avg)|1, 2, 2| |Memory (System)|46.96GB (38.32GB free)| |Process Argv|--crash-reporter-id 9e41d979-2ff7-435d-b01a-c6add81964e1| |Screen Reader|no| |VM|0%| |DESKTOP_SESSION|plasma| |XDG_CURRENT_DESKTOP|KDE| |XDG_SESSION_DESKTOP|KDE| |XDG_SESSION_TYPE|x11| </details><details> <summary>Process Info</summary> ``` CPU % Mem MB PID Process 0 192 83645 code main 0 0 83649 zygote 0 240 83686 gpu-process 0 0 83746 broker 0 0 83650 zygote 0 0 83652 zygote 0 337 83707 window [1] (camper.py - camper - Visual Studio Code) 0 48 83691 utility-network-service 0 192 83784 extensionHost [1] 0 0 83882 /home/marvin/.vscode/extensions/ms-python.python-2024.20.0-linux-x64/python-env-tools/bin/pet server 0 144 83796 shared-process 0 0 84070 /bin/sh -c /usr/bin/ps -ax -o pid=,ppid=,pcpu=,pmem=,command= 0 96 83797 fileWatcher [1] 0 96 83851 ptyHost 0 0 83868 /usr/bin/bash --init-file /usr/share/code/resources/app/out/vs/workbench/contrib/terminal/common/scripts/shellIntegration-bash.sh 0 0 83973 /usr/bin/bash --init-file /usr/share/code/resources/app/out/vs/workbench/contrib/terminal/common/scripts/shellIntegration-bash.sh ``` </details> <details> <summary>Workspace Info</summary> ``` | Window (camper.py - camper - Visual Studio Code) | Folder (camper): 42 files | File types: png(19) py(8) test(3) suo(1) json(1) md(1) old(1) sh(1) | Conf files:; ``` </details> <details><summary>Extensions (3)</summary> Extension|Author (truncated)|Version ---|---|--- debugpy|ms-|2024.12.0 python|ms-|2024.20.0 vscode-pylance|ms-|2024.11.2 </details> <!-- generated by issue reporter -->
bug,freeze-slow-crash-leak,terminal-process
low
Critical
2,681,326,368
godot
Dance pad buttons detected as Joypad D-pad prevent left+right and up+down
### Tested versions Reproducible in: v4.3.stable.official.77dcf97d8 v4.2.2.stable.official.15073afe3 ### System information MXLinux 23.3; 6.1.0-11-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.38-4 (2023-08-08) x86_64 GNU/Linux ### Issue description I'm using a Mayflash GameCube controller to a Wii dance pad. ![Image](https://github.com/user-attachments/assets/ce7d0944-d50c-4590-9488-8890f537946f) I mapped my inputs as seen here. Using the keyboard input, I have no problem generating left + right at same time and up + down at same time. ![Image](https://github.com/user-attachments/assets/ccd3feca-f4e1-42e2-8412-ef678277aa3e) However, when using the dance pad: ```gdscript var pressed = "" if Input.is_action_pressed("Up"): pressed += "u" if Input.is_action_pressed("Down"): pressed += "d" if Input.is_action_pressed("Left"): pressed += "l" if Input.is_action_pressed("Right"): pressed += "r" print ("Pressed: " + pressed) ``` Shows that up + down and left + right will not work. up + down ==> down. left + right ==> right. I think this is because GODOT think's it's a dpad and doesn't allow these combinations. --> SDL and OS level otherwise show things working. But jstest-gtk [is this using SDL?] and sdl-jstest show all buttons working together: https://github.com/Grumbel/sdl-jstest ![Image](https://github.com/user-attachments/assets/bdb89244-18e4-4fd0-8c08-ff00b5884d8f) ### Steps to reproduce Use any(?) dance pad. I imagine any d-pad controller would not be physically able to reproduce this. (I did try re-mapping buttons as a work around, but failed --> perhaps you can re-map buttons the other way to succeed in reproducing if you don't have a dance pad?). Otherwise I used: https://www.amazon.com/gp/product/B00RSXRLUE Konami Wii dance pad. RU054 ![Image](https://github.com/user-attachments/assets/97b22280-86f5-48de-8a58-245a4fdbac84) As a side note, I could get all "directions" pressed using my keyboard arrow keys either, only two. Using wasd allowed me to get all depressed. Of course dance pad should allow all buttons to be depressed at same time. ### Minimal reproduction project (MRP) This simple application will allow you to see the uplf (up, down, left, right) print in console. [dance_pad_test.zip](https://github.com/user-attachments/files/17853242/dance_pad_test.zip) There's also: Joypads (Gamepads) Demo: https://godotengine.org/asset-library/asset/2785
bug,needs testing,topic:input
medium
Critical
2,681,423,521
go
crypto/tls: reject TLS 1.3 empty NewSessionTicket messages
We are currently failing the new `SendEmptySessionTicket-TLS13` BoGo test. Harmless but worth fixing.
NeedsFix
low
Minor
2,681,429,030
deno
`deno task` should support caching based on input/output
I really like that I'm able to remove more and more dependencies using Deno! v2.1 release is awesome. Perhaps this is already discussed internally, but I couldn't find any tickets here. So here we go. With the help of task inputs and outputs it will be possible to cache task results. [NX](https://nx.dev/recipes/running-tasks/configure-inputs) and [Turbo repo](https://turbo.build/repo/docs/crafting-your-repository/caching) uses similar model to achieve task caching. High level API looks like this: 1. User defines task inputs and outputs 2. Deno hashes task inputs and outputs 3. Deno saves outputs in internal cache Next time task is run: 1. Deno hashes input files again 2. Deno compares new input hash with the previous input hash. 3a. If the input hashes don't match, Deno clears previous cached content (output) and runs task again. 3b. If the input hashes match, deno hashes output files and compares with the previous output hash. If the output hashes don't match, restore output contents from the previous output hash. If the output hashes match, do nothing.
suggestion,task runner
low
Minor
2,681,433,913
deno
[CLI] Network access can support representing IP segments
For example, I want to prohibit scripts from accessing the local area network ```bash deno run --allow-net --deny-net=127.0.0.1,10.0.0.0/8,172.16.0.0/12,192.168.0.0/16 script.ts ```
permissions,suggestion
low
Minor
2,681,458,020
tauri
[bug] Cannot connect android device to local nor remote server
### Describe the bug Android app is calling localhost instead of my local server's ip. I followed the tauri documentation and setup the frontend, vite.cofig, tauri.conf.json based on that. I'm running using `pnpm tauri android dev --host`. Calling the remote server gives me another error even though I allowed `tauri:localhost` origin. `Access to XMLHttpRequest at 'https://api.redacted' from origin 'http://tauri.localhost/' has been blocked by CORS policy: No 'Access-Control-Allow-Origin' header is present on the requested resource.` On iOS everything works fine. Non of the relevant issues provide a solution. ### Reproduction _No response_ ### Expected behavior Calls to localhost should be routed to my local server's ip ### Full `tauri info` output ```text [✔] Environment - OS: Mac OS 15.1.1 x86_64 (X64) ✔ Xcode Command Line Tools: installed ✔ rustc: 1.82.0 (f6e511eec 2024-10-15) ✔ cargo: 1.82.0 (8f40fc59f 2024-08-21) ✔ rustup: 1.27.1 (54dd3d00f 2024-04-24) ✔ Rust toolchain: stable-x86_64-apple-darwin (default) - node: 22.11.0 - pnpm: 9.13.2 - npm: 10.9.0 [-] Packages - tauri 🦀: 2.1.1 - tauri-build 🦀: 2.0.3 - wry 🦀: 0.47.0 - tao 🦀: 0.30.8 - @tauri-apps/api : 2.1.1 - @tauri-apps/cli : 2.1.0 [-] Plugins - tauri-plugin-store 🦀: 2.1.0 - @tauri-apps/plugin-store : 2.1.0 - tauri-plugin-shell 🦀: 2.0.2 - @tauri-apps/plugin-shell : 2.0.1 - tauri-plugin-fs 🦀: 2.0.3 - @tauri-apps/plugin-fs : 2.0.2 - tauri-plugin-log 🦀: 2.0.2 - @tauri-apps/plugin-log : 2.0.0 - tauri-plugin-dialog 🦀: 2.0.3 - @tauri-apps/plugin-dialog : 2.0.1 - tauri-plugin-global-shortcut 🦀: 2.0.1 - @tauri-apps/plugin-global-shortcut : 2.0.0 [-] App - build-type: bundle - CSP: - frontendDist: ../dist - devUrl: http://localhost:1420/ - framework: React - bundler: Vite ``` ### Stack trace _No response_ ### Additional context Device running Android 14
type: bug,status: needs triage,platform: Android
low
Critical
2,681,460,070
langchain
langchain-chroma== 0.1.4 method get_by_ids is listed in documentation BUT I am getting NotImplementedError
### Checked other resources - [X] I added a very descriptive title to this issue. - [X] I searched the LangChain documentation with the integrated search. - [X] I used the GitHub search to find a similar question and didn't find it. - [X] I am sure that this is a bug in LangChain rather than my code. - [X] The bug is not resolved by updating to the latest stable version of LangChain (or the specific integration package). ### Example Code ``` #---------------- # HuggingFace embedding (no issue) from langchain_huggingface import HuggingFaceEmbeddings embeddings = HuggingFaceEmbeddings(model="sentence-transformers/all-mpnet-base-v2") #---------------- # create langchain-chroma persistent client with collection name 'example_collection; (no issue) from langchain_chroma import Chroma vector_store = Chroma( collection_name="example_collection", # collection is "table" in vectore store embedding_function=hf, # hf is huggingface embeddings derived from the previous step persist_directory="./vectorstore/chroma_langchain_db", # Where to save data locally, remove if not necessary ) #---------------- # add at least one document into vector collection (no issue) from uuid import uuid4 from langchain_core.documents import Document document_1 = Document( page_content="I had chocolate chip pancakes and scrambled eggs for breakfast this morning.", metadata={"source": "tweet"}, id=1, ) documents = [ document_1, ] uuids = [str(uuid4()) for _ in range(len(documents))] vector_store.add_documents(documents=documents, ids=uuids) #---------------- ERROR ENCOUNTERED when running get_by_ids # attempt to run get_by_Ids yields NotImplementedError vector_store.get_by_ids(['6314982d-455f-47cc-bf97-6e5324f6af62']) ``` ### Error Message and Stack Trace (if applicable) { "name": "NotImplementedError", "message": "Chroma does not yet support get_by_ids.", "stack": "--------------------------------------------------------------------------- NotImplementedError Traceback (most recent call last) Cell In[87], line 3 1 # testing get the first two document ids 2 # ids = ['db1e5f74-f18d-4765-a193-d30eaed7552f', '12861b34-df54-4e40-8e1e-ae9ea901d378'] ----> 3 vector_store.get_by_ids(['6314982d-455f-47cc-bf97-6e5324f6af62']) 5 # get_by_ids() functionality is not avaiable until v0.2.11 File ~/Documents/0_-_Python_Projects/05_Gen_AI/venv_3_11/lib/python3.11/site-packages/langchain_core/vectorstores/base.py:164, in VectorStore.get_by_ids(self, ids) 140 \"\"\"Get documents by their IDs. 141 142 The returned documents are expected to have the ID field set to the ID of the (...) 161 .. versionadded:: 0.2.11 162 \"\"\" 163 msg = f\"{self.__class__.__name__} does not yet support get_by_ids.\" --> 164 raise NotImplementedError(msg) NotImplementedError: Chroma does not yet support get_by_ids." } ### Description I am just trying to run the vector_store method `get_by_ids` - it is listed as one of the available methods in [here](https://python.langchain.com/api_reference/chroma/vectorstores/langchain_chroma.vectorstores.Chroma.html) ### System Info $ python -m langchain_core.sys_info System Information ------------------ > OS: Darwin > OS Version: Darwin Kernel Version 23.6.0: Mon Jul 29 21:13:00 PDT 2024; root:xnu-10063.141.2~1/RELEASE_X86_64 > Python Version: 3.11.10 (main, Nov 19 2024, 15:24:32) [Clang 12.0.0 (clang-1200.0.32.29)] Package Information ------------------- > langchain_core: 0.3.19 > langchain: 0.3.7 > langchain_community: 0.3.4 > langsmith: 0.1.143 > langchain_chroma: 0.1.4 > langchain_experimental: 0.3.3 > langchain_groq: 0.2.1 > langchain_huggingface: 0.1.2 > langchain_text_splitters: 0.3.2 Optional packages not installed ------------------------------- > langgraph > langserve Other Dependencies ------------------ > aiohttp: 3.11.6 > async-timeout: Installed. No version info available. > chromadb: 0.5.20 > dataclasses-json: 0.6.7 > fastapi: 0.115.5 > groq: 0.12.0 > httpx: 0.27.2 > httpx-sse: 0.4.0 > huggingface-hub: 0.26.2 > jsonpatch: 1.33 > numpy: 1.26.4 > orjson: 3.10.11 > packaging: 24.2 > pydantic: 2.9.2 > pydantic-settings: 2.6.1 > PyYAML: 6.0.2 > requests: 2.32.3 > requests-toolbelt: 1.0.0 > sentence-transformers: 3.3.1 > SQLAlchemy: 2.0.36 > tenacity: 9.0.0 > tokenizers: 0.20.3 > transformers: 4.46.3 > typing-extensions: 4.12.2
Ɑ: vector store
low
Critical
2,681,508,371
tauri
[feat] iOS: theme resolution / subscription
### Describe the problem Currently, there is no way to get current theme (color mode) on iOS. `Webview` object doesn't have the same methods as desktop (and I'm not sure it react on `tauri://theme-changed` event, couldn't reproduce on simulator) e.g. `onThemeChanged()` and `theme()`. ### Describe the solution you'd like `Window` should not throw `Window does not exist on Mobile client` / `Webview` should offer theme-related methods. ### Alternatives considered No "system" theme on iOS. ### Additional context _No response_
type: feature request,platform: Linux,platform: Android
low
Minor
2,681,523,294
PowerToys
Administrator protection/adminless mode breaks relaunch
### Microsoft PowerToys version 0.86.0 ### Installation method WinGet ### Running as admin Yes ### Area(s) with issue? General ### Steps to reproduce 1. Install a 27* series canary build of windows 2. Enable admin protection as detailed [here](https://techcommunity.microsoft.com/blog/windows-itpro-blog/administrator-protection-on-windows-11/4303482) 3. Launch powertoys as admin & set it to always launch as admin 4. Reboot ### ✔️ Expected Behavior Powertoys to launch with the machine ### ❌ Actual Behavior Nothing, and powertoys had to be launched manually ### Other Software _No response_
Issue-Bug,Needs-Triage
low
Minor
2,681,578,290
go
crypto: test fips140=only mode
`fips140=only` from #70123 breaks any non-FIPS cryptography. Testing a mode designed to break things is tricky. Running the whole test suite is prohibitive. Instead, we should probably write a dedicated test that goes through things that are expected to work, and things that are not expected to work.
Testing,NeedsFix
low
Minor
2,681,579,961
tensorflow
Floating point exception (core dumped) in `tf.raw_ops.Reshape`
### Issue type Bug ### Have you reproduced the bug with TensorFlow Nightly? Yes ### Source source ### TensorFlow version tf2.17.0 ### Custom code Yes ### OS platform and distribution Ubuntu 20.04 ### Mobile device _No response_ ### Python version 3.11 ### Bazel version _No response_ ### GCC/compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current behavior? Under specific inputs, `tf.raw_ops.Reshape` triggered a crash. ### Standalone code to reproduce the issue ```shell import tensorflow as tf tensor = tf.constant(-3.5e+35, shape=[5], dtype=tf.float32) shape = tf.constant([0, 1879048192, 100000000, 1610612736, -1], dtype=tf.int32) tf.raw_ops.Reshape(tensor=tensor, shape=shape) ``` ### Relevant log output ```shell Floating point exception (core dumped) ```
stat:awaiting tensorflower,type:bug,comp:ops,2.17
medium
Critical
2,681,590,573
go
net/http: TestTransportRemovesH2ConnsAfterIdle/h2 failures
``` #!watchflakes default <- pkg == "net/http" && test == "TestTransportRemovesH2ConnsAfterIdle/h2" ``` Issue created automatically to collect these failures. Example ([log](https://ci.chromium.org/b/8730607166746745185)): === RUN TestTransportRemovesH2ConnsAfterIdle/h2 2024/11/22 02:11:36 Error enabling Transport HTTP/2 support: protocol https already registered transport_test.go:4259: got error: Get "https://127.0.0.1:46039": http2: client conn could not be established --- FAIL: TestTransportRemovesH2ConnsAfterIdle/h2 (0.01s) — [watchflakes](https://go.dev/wiki/Watchflakes)
NeedsInvestigation
low
Critical
2,681,639,444
ant-design
rc-slider有支持的startPoint属性,为什么antd的slider的ts定义文件和文档都不写?实际是有效果的
### Reproduction link [![Edit on CodeSandbox](https://codesandbox.io/static/img/play-codesandbox.svg)](https://codesandbox.io/p/sandbox/ji-ben-antd-5-21-6-forked-tnjzqf) ### Steps to reproduce ```tsx <Slider min={-50} max={50} startPoint={0} /> ``` ### What is expected? ts不要给startPoint属性报错,更新文档 ### What is actually happening? ts报错了,文档也不写这个属性 | Environment | Info | | --- | --- | | antd | undefined | | React | 18 | | System | windows 11 | | Browser | chrome | <!-- generated by ant-design-issue-helper. DO NOT REMOVE -->
🗣 Discussion,Inactive
low
Minor
2,681,663,533
neovim
vim.lsp.rpc.request is nil
### Problem Running `:h vim.lsp.rpc.request` show the document of the function However I cannot use it because `:lua =vim.lsp.rpc.request` outputs `nil` ### Steps to reproduce ```bash nvim --clean ``` ```vim :h vim.lsp.rpc.request " Show document of the function :lua =vim.lsp.rpc.request " Returns nil ``` ### Expected behavior `vim.lsp.rpc.request` should be a function, I guess, instead of `nil` ### Nvim version (nvim -v) NVIM v0.11.0-dev-1205+g07db909eb5 Build type: RelWithDebInfo LuaJIT 2.1.1731601260 ### Vim (not Nvim) behaves the same? No, Vim doesn't have built-in LSP client ### Operating system/version Kubuntu 24.04.1 ### Terminal name/version Konsole 23.08.5 ### $TERM environment variable xterm-256colors ### Installation snap
bug,documentation,lsp
low
Minor
2,681,667,391
pytorch
[Inductor] Different results with Conv2d and BN2d not in `eval mode`
### 🐛 Describe the bug If I use Inductor to compile `Conv2d` and `BN2d` **not use** `eval mode`. The results are inconsistent. The problem seems to be with BN2d ```python import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv = nn.Conv2d(3, 16, kernel_size=3, padding=2, dilation=2, groups=1) self.bn = nn.BatchNorm2d(16) self.global_avg_pool = nn.AdaptiveAvgPool2d((1, 1)) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.global_avg_pool(x) return x m = Model() x = torch.randn(1, 3, 128, 128) # With the increase of height and width, the error becomes more obvious output = m(x) compiled_model = torch.compile(m) c_output = compiled_model(x) print(output) print(c_output) res = torch.allclose(output, c_output) print(res) ``` <details> <summary>click here to see the err log</summary> ``` tensor([[[[-8.6147e-09]], [[ 9.8953e-10]], [[-3.4925e-10]], [[ 4.0745e-09]], [[-3.9581e-09]], [[-1.3970e-09]], [[ 1.2107e-08]], [[ 4.6566e-10]], [[-2.2119e-09]], [[ 5.5879e-09]], [[ 9.5170e-09]], [[-6.9849e-10]], [[ 1.1525e-08]], [[-1.6298e-09]], [[-2.1537e-09]], [[ 5.1223e-09]]]], grad_fn=<MeanBackward1>) ``` ``` tensor([[[[ 2.1268e-08]], [[ 5.0095e-08]], [[ 4.3936e-08]], [[-1.0681e-07]], [[-5.3694e-07]], [[-1.0622e-07]], [[-1.0726e-06]], [[-9.5417e-08]], [[ 4.2513e-07]], [[-8.6298e-08]], [[ 2.0579e-07]], [[ 2.8708e-08]], [[ 1.4902e-07]], [[-5.8193e-08]], [[-1.7331e-07]], [[-2.9289e-08]]]], grad_fn=<CompiledFunctionBackward>) ``` ``` False ``` </details> If there is a problem with my use, feel free to let me know :) ### Versions <details> <summary>click here to view the version env</summary> Collecting environment information... PyTorch version: 2.6.0.dev20241115+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 20.04.6 LTS (x86_64) GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 Clang version: 16.0.1 CMake version: version 3.26.0 Libc version: glibc-2.31 Python version: 3.12.7 | packaged by Anaconda, Inc. | (main, Oct 4 2024, 13:27:36) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-5.4.0-200-generic-x86_64-with-glibc2.31 Is CUDA available: True CUDA runtime version: 12.6.68 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: Tesla V100-SXM2-32GB GPU 1: Tesla V100-SXM2-32GB GPU 2: Tesla V100-SXM2-32GB GPU 3: Tesla V100-SXM2-32GB Nvidia driver version: 560.35.03 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.4.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.4.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian Address sizes: 40 bits physical, 48 bits virtual CPU(s): 20 On-line CPU(s) list: 0-19 Thread(s) per core: 1 Core(s) per socket: 20 Socket(s): 1 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 85 Model name: Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz Stepping: 7 CPU MHz: 2499.994 BogoMIPS: 4999.98 Hypervisor vendor: KVM Virtualization type: full L1d cache: 640 KiB L1i cache: 640 KiB L2 cache: 80 MiB L3 cache: 16 MiB NUMA node0 CPU(s): 0-19 Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status Vulnerability Itlb multihit: KVM: Vulnerable Vulnerability L1tf: Mitigation; PTE Inversion Vulnerability Mds: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI SW loop, KVM SW loop Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch topoext cpuid_fault invpcid_single pti ssbd ibrs ibpb fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat umip pku ospke avx512_vnni Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] optree==0.13.1 [pip3] pytorch-triton==3.1.0+cf34004b8a [pip3] torch==2.6.0.dev20241115+cu124 [pip3] torchaudio==2.5.0.dev20241115+cu124 [pip3] torchvision==0.20.0.dev20241115+cu124 [pip3] triton==3.0.0 [conda] numpy 1.26.4 pypi_0 pypi [conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi [conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi [conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi [conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi [conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi [conda] optree 0.13.1 pypi_0 pypi [conda] pytorch-triton 3.1.0+cf34004b8a pypi_0 pypi [conda] torch 2.6.0.dev20241115+cu124 pypi_0 pypi [conda] torchaudio 2.5.0.dev20241115+cu124 pypi_0 pypi [conda] torchvision 0.20.0.dev20241115+cu124 pypi_0 pypi [conda] triton 3.0.0 pypi_0 pypi </details> cc @chauhang @penguinwu @voznesenskym @EikanWang @jgong5 @Guobing-Chen @XiaobingSuper @zhuhaozhe @blzheng @wenzhe-nrv @jiayisunx @ipiszy @yf225 @chenyang78 @kadeng @muchulee8 @ColinPeppler @amjames @desertfire @aakhundov
triaged,oncall: pt2,module: inductor
low
Critical
2,681,667,499
angular
Need a splice like method in Reactive Form Arrays.
### Which @angular/* package(s) are relevant/related to the feature request? forms ### Description They need to provide a solution for the deletion of one index to another specific index. i.e. I have a 100 elements in Reactive Form Array, and I need to remove 30 to 60 index elements. I need to handle this in for loop. As you already provided us removeAt(), then it will be very helpful to provide this feature. ### Proposed solution FormArray.removeSplice(start, end); something like that. ### Alternatives considered not fo rnow.
area: forms
low
Minor
2,681,672,192
godot
Autowraping Label within AspectRatioContainer causes crash
### Tested versions Godot_v4.3-stable_mono_win64 ### System information Godot v4.3.stable.mono - Windows 10.0.19045 - GLES3 (Compatibility) - NVIDIA GeForce RTX 3070 (NVIDIA; 32.0.15.6081) - Intel(R) Core(TM) i7-10700K CPU @ 3.80GHz (16 Threads) ### Issue description A Label with Autowrap inside an AspectRatioContainer too small to fit it will crash not only a project but the Godot editor itself. If you're experiencing this issue and it hasn't ben resolved yet, setting the Text Overrun Behavior of the label to anything other than "Trim Nothing" will prevent the crash. This is not a full workaround though, as it forces the label to shrink to it's minimum size when in a container with other controls, which may not be your desired behavior. ### Steps to reproduce 1. Create a new project 2. Create a new scene with root node of type AspectRatioContainer and set its anchor preset to full rect 3. Nest a Label node inside the AspectRatioContainer node 4. Set the Label's Custom Minimum Size to (32,32) 5. Set the Label's Autowrap Mode to Arbitrary (also occurs on Word and Word (Smart)) 6. Set the Label's 'Text' property to a string long enough such that it overflows the bounds of the container -Expected Result- The label expands the bounds of the container to accomidate, similarly to how a label with Autowrap off will expand the container. -Result- The Godot editor stops responding and crashes ### Minimal reproduction project (MRP) [aspectratiocontainerissue.zip](https://github.com/user-attachments/files/17856666/aspectratiocontainerissue.zip)
bug,crash,topic:gui
low
Critical
2,681,723,790
kubernetes
scheduler: removed the deprecated metric scheduler_cache_size in v1.33
scheduler: removed the deprecated metric scheduler_scheduler_cache_size in v1.33 more detail: https://github.com/kubernetes/kubernetes/pull/128810#discussion_r1851486291
kind/cleanup,sig/scheduling,needs-triage
low
Minor
2,681,818,678
go
crypto/internal/fips140test:exe_external: unrecognized failures
``` #!watchflakes default <- pkg == "crypto/internal/fips140test:exe_external" && test == "" ``` Issue created automatically to collect these failures. Example ([log](https://ci.chromium.org/b/8730628651224099649)): FAIL crypto/internal/fips140test [build failed] — [watchflakes](https://go.dev/wiki/Watchflakes)
NeedsInvestigation,arch-riscv
medium
Critical
2,681,836,643
rust
ICE: unstable fingerprints for evaluate_obligation
### Code i dont know what i was writing when happened, i made many changes after it happened without noticing. however, the code i was writing wasnt anything crazy like 1035935 repeated vec! macros or something. i was editing my rng crate ### Affected release channels - [ ] Previous Stable - [ ] Current Stable - [ ] Current Beta - [x] Current Nightly ### Rust Version ```Shell rustc 1.84.0-nightly (8adb4b30f 2024-11-13) binary: rustc commit-hash: 8adb4b30f40e6fbd21dc1ba26c3301c7eeb6de3c commit-date: 2024-11-13 host: x86_64-pc-windows-msvc release: 1.84.0-nightly LLVM version: 19.1.3 ``` ### Current error output ```Shell - ``` ### Backtrace ```Shell - ``` ### Anything else? [rustc-ice-2024-11-22T03_08_30-5056.txt](https://github.com/user-attachments/files/17861764/rustc-ice-2024-11-22T03_08_30-5056.txt) [rustc-ice-2024-11-22T03_08_30-11016.txt](https://github.com/user-attachments/files/17861763/rustc-ice-2024-11-22T03_08_30-11016.txt)
I-ICE,T-compiler,A-incr-comp,C-bug,S-needs-repro
low
Critical
2,681,937,344
go
os/user: TestLookupGroupIdServiceAccount failures
``` #!watchflakes default <- pkg == "os/user" && test == "TestLookupGroupIdServiceAccount" ``` Issue created automatically to collect these failures. Example ([log](https://ci.chromium.org/b/8730598809761491761)): === RUN TestLookupGroupIdServiceAccount === PAUSE TestLookupGroupIdServiceAccount — [watchflakes](https://go.dev/wiki/Watchflakes)
OS-Windows,NeedsInvestigation
low
Critical
2,682,061,679
next.js
notfound() uses fallback instead of app/not-found.tsx with route group (turbopack)
### Link to the code that reproduces this issue https://github.com/twillhorn/next_not_found_bug ### To Reproduce 1. next dev --turbopack 2. go to localhost:3000 and notice that the fallback 404 page is shown instead of not-found.tsx ### Current vs. Expected behavior Expected: not-found.tsx to be used Actual: fallback not found page is used ### Provide environment information ```bash Operating System: Platform: darwin Arch: arm64 Version: Darwin Kernel Version 24.1.0: Thu Oct 10 21:00:32 PDT 2024; root:xnu-11215.41.3~2/RELEASE_ARM64_T6030 Available memory (MB): 18432 Available CPU cores: 11 Binaries: Node: 20.16.0 npm: 10.8.1 Yarn: N/A pnpm: 9.12.3 Relevant Packages: next: 15.0.4-canary.23 // Latest available version is detected (15.0.4-canary.23). eslint-config-next: N/A react: 19.0.0-rc-380f5d67-20241113 react-dom: 19.0.0-rc-380f5d67-20241113 typescript: 5.3.3 Next.js Config: output: N/A ``` ### Which area(s) are affected? (Select all that apply) Navigation, Turbopack ### Which stage(s) are affected? (Select all that apply) next dev (local) ### Additional context _No response_
bug,Navigation,Turbopack
low
Critical
2,682,127,836
ollama
Don't try to parse images property for non image model
### What is the issue? Some clients missbehave as demonstrated in this third party client: https://github.com/longy2k/obsidian-bmo-chatbot/issues/105#issuecomment-2487862451. They sent image paths instead of a base64 representation of the image While this client misbehaves and this issue should be fixed on their site, this is also something I expect ollama to catch, the linked comment showed that llama3.2 is used, a non image capable model. Therefore the image property should not be evaluated and no error messages should be returned. This is a low priority thing which would be a nice to have but in no way is required ### OS Windows ### GPU Nvidia ### CPU Intel ### Ollama version 0.4.2
bug
low
Critical
2,682,173,975
opencv
Refresh stitching module
### Describe the feature and motivation 1. Update features after features2d reorg. Use SIFT by default. 2. Use modern LevMarq implementation from 5.x instead of CvLevMarq. 3. Handle bool masks 4. Use USAC 5. DNN-based features and matching (?) ### Additional context _No response_
feature,category: stitching
low
Minor
2,682,202,626
godot
`CTRL+C` and `CTRL+V` of `EditorProperty::shortcut_input` hide shortcuts of `SceneTreeDock`
### Tested versions - Reproducible in 4.4.dev5, 4.4.dev4 ### System information Windows 11 - Godot v4.4.dev5 - Windows 10.0.22631 - Multi-window, 1 monitor - Vulkan (Forward+) - dedicated NVIDIA GeForce RTX 3060 Ti (NVIDIA; 32.0.15.6094) - 13th Gen Intel(R) Core(TM) i5-13600KF (20 threads) ### Issue description 1. Click a node in SceneTreeDock 2. Click a property name of the node in Inspector 3. Click this node in SceneTreeDock agian (can click on the icon or hide button to avoid renaming) 4. CTRL+C 5. CTRL+V (will notice there is a message in output and the node is not duplicated) https://github.com/user-attachments/assets/499da9a0-f248-426e-a873-1abf0adf4d67 10s, 11s, 13s, 23s triggered CTRL+V in the video. ### Steps to reproduce See above ### Minimal reproduction project (MRP) NA
bug,topic:editor,usability
low
Minor
2,682,245,032
vscode
Formatter messes up indentation (even its own)
<!-- ⚠️⚠️ Do Not Delete This! bug_report_template ⚠️⚠️ --> <!-- Please read our Rules of Conduct: https://opensource.microsoft.com/codeofconduct/ --> <!-- 🕮 Read our guide about submitting issues: https://github.com/microsoft/vscode/wiki/Submitting-Bugs-and-Suggestions --> <!-- 🔎 Search existing issues to avoid creating duplicates. --> <!-- 🧪 Test using the latest Insiders build to see if your issue has already been fixed: https://code.visualstudio.com/insiders/ --> <!-- 💡 Instead of creating your report here, use 'Report Issue' from the 'Help' menu in VS Code to pre-fill useful information. --> <!-- 🔧 Launch with `code --disable-extensions` to check. --> Does this issue occur when all extensions are disabled?: Yes/No yes <!-- 🪓 If you answered No above, use 'Help: Start Extension Bisect' from Command Palette to try to identify the cause. --> <!-- 📣 Issues caused by an extension need to be reported directly to the extension publisher. The 'Help > Report Issue' dialog can assist with this. --> - VS Code Version: 1.95.3 Commit: f1a4fb101478ce6ec82fe9627c43efbf9e98c813 Date: 2024-11-13T14:50:04.152Z Electron: 32.2.1 ElectronBuildId: 10427718 Chromium: 128.0.6613.186 Node.js: 20.18.0 V8: 12.8.374.38-electron.0 OS: Darwin arm64 24.1.0 Steps to Reproduce: 1. Open the attached TypeScript file in VS Code. Or not, since this site inexplicably won't let me attach the source file. So put the code below in a .ts file and open it in VS Code. 2. Set the default formatter to the built-in JavaScript/TypeScript one. 3. In the formatting settings, have "format on paste" off. 4. Select a full `if` statement and right-click, then say "format selection." Note that the resulting _indentation_ is correct. 5. Put the insertion point in front of the brace on the first line of the `if` statement and press Return. Note incorrect indentation. 6. Undo that and highlight a whole `if` statement, and then cut it. 7. Paste. Note incorrect indentation of the braces and body. If you turn "format on paste" **_on_**, this erroneous pasting behavior stops. But it shouldn't happen with "format on paste" **_off_** either, because you're cutting and pasting entire lines, all the way from the left margin. No reformatting is necessary. Screen grab attached.https://github.com/user-attachments/assets/b52f28cd-4163-4921-97c0-40e8a88ab7a3 I'm not using any third-party formatter. Also, the JavaScript/TypeScript formatting options are being ignored. Screen shot of those options attached too.![Image](https://github.com/user-attachments/assets/2a14ae86-6c18-4d98-9b62-400650ebdd2f) This page won't let me attach the source file (fix that), so I'll paste its contents here: ``` class CommManager { public sendOTP(OTP: string, EMail: string, phoneNbr: string): void { if (!OTP || (!EMail && !phoneNbr)) { console.error("Missing OTP or E-mail & phone number for user verification."); return; } // This doesn't preclude sending to both, if we want to someday. if(EMail) { console.log(`Sending OTP to ${EMail}.`); } if(phoneNbr) { console.log(`Sending OTP to ${phoneNbr}.`); } } } export const commMgr = new CommManager(); ```
bug,typescript,javascript,editor-autoindent
low
Critical
2,682,254,414
vscode
Allow selecting extensions when copying a profile
Type: <b>Feature Request</b> v:1.95.3 When creating a new configuration file and choosing to copy from the default configuration, there is no separate option to select which extensions to use in the extensions section. The only options are to select all or none. What is the difference between the new configuration and the original one created this way? VS Code version: Code 1.95.3 (f1a4fb101478ce6ec82fe9627c43efbf9e98c813, 2024-11-13T14:50:04.152Z) OS version: Windows_NT x64 10.0.22631 Modes: ![Image](https://github.com/user-attachments/assets/f03dc9dc-6026-4c37-baf2-e432bcacc707) <!-- generated by issue reporter -->
feature-request,user-profiles
medium
Major
2,682,259,723
flutter
[google_maps_flutter] Maps clustering won't cluster items on mobile
### What package does this bug report belong to? google_maps_flutter ### What target platforms are you seeing this bug on? Android ### Have you already upgraded your packages? Yes ### Dependency versions <details><summary>pubspec.lock</summary> ```lock # Generated by pub # See https://dart.dev/tools/pub/glossary#lockfile packages: _flutterfire_internals: dependency: transitive description: name: _flutterfire_internals sha256: "71c01c1998c40b3af1944ad0a5f374b4e6fef7f3d2df487f3970dbeadaeb25a1" url: "https://pub.dev" source: hosted version: "1.3.46" async: dependency: transitive description: name: async sha256: "947bfcf187f74dbc5e146c9eb9c0f10c9f8b30743e341481c1e2ed3ecc18c20c" url: "https://pub.dev" source: hosted version: "2.11.0" boolean_selector: dependency: transitive description: name: boolean_selector sha256: "6cfb5af12253eaf2b368f07bacc5a80d1301a071c73360d746b7f2e32d762c66" url: "https://pub.dev" source: hosted version: "2.1.1" characters: dependency: transitive description: name: characters sha256: "04a925763edad70e8443c99234dc3328f442e811f1d8fd1a72f1c8ad0f69a605" url: "https://pub.dev" source: hosted version: "1.3.0" clock: dependency: transitive description: name: clock sha256: cb6d7f03e1de671e34607e909a7213e31d7752be4fb66a86d29fe1eb14bfb5cf url: "https://pub.dev" source: hosted version: "1.1.1" collection: dependency: transitive description: name: collection sha256: ee67cb0715911d28db6bf4af1026078bd6f0128b07a5f66fb2ed94ec6783c09a url: "https://pub.dev" source: hosted version: "1.18.0" csslib: dependency: transitive description: name: csslib sha256: "09bad715f418841f976c77db72d5398dc1253c21fb9c0c7f0b0b985860b2d58e" url: "https://pub.dev" source: hosted version: "1.0.2" cupertino_icons: dependency: "direct main" description: name: cupertino_icons sha256: ba631d1c7f7bef6b729a622b7b752645a2d076dba9976925b8f25725a30e1ee6 url: "https://pub.dev" source: hosted version: "1.0.8" fake_async: dependency: transitive description: name: fake_async sha256: "511392330127add0b769b75a987850d136345d9227c6b94c96a04cf4a391bf78" url: "https://pub.dev" source: hosted version: "1.3.1" firebase_auth: dependency: "direct main" description: name: firebase_auth sha256: "49c356bac95ed234805e3bb928a86d5b21a4d3745d77be53ecf2d61409ddb802" url: "https://pub.dev" source: hosted version: "5.3.3" firebase_auth_platform_interface: dependency: transitive description: name: firebase_auth_platform_interface sha256: "9bc336ce673ea90a9dbdb04f0e9a3e52a32321898dc869cdefe6cc0f0db369ed" url: "https://pub.dev" source: hosted version: "7.4.9" firebase_auth_web: dependency: transitive description: name: firebase_auth_web sha256: "56dcce4293e2a2c648c33ab72c09e888bd0e64cbb1681a32575ec9dc9c2f67f3" url: "https://pub.dev" source: hosted version: "5.13.4" firebase_core: dependency: "direct main" description: name: firebase_core sha256: "2438a75ad803e818ad3bd5df49137ee619c46b6fc7101f4dbc23da07305ce553" url: "https://pub.dev" source: hosted version: "3.8.0" firebase_core_platform_interface: dependency: transitive description: name: firebase_core_platform_interface sha256: e30da58198a6d4b49d5bce4e852f985c32cb10db329ebef9473db2b9f09ce810 url: "https://pub.dev" source: hosted version: "5.3.0" firebase_core_web: dependency: transitive description: name: firebase_core_web sha256: f967a7138f5d2ffb1ce15950e2a382924239eaa521150a8f144af34e68b3b3e5 url: "https://pub.dev" source: hosted version: "2.18.1" flutter: dependency: "direct main" description: flutter source: sdk version: "0.0.0" flutter_lints: dependency: "direct dev" description: name: flutter_lints sha256: "3f41d009ba7172d5ff9be5f6e6e6abb4300e263aab8866d2a0842ed2a70f8f0c" url: "https://pub.dev" source: hosted version: "4.0.0" flutter_plugin_android_lifecycle: dependency: transitive description: name: flutter_plugin_android_lifecycle sha256: "9b78450b89f059e96c9ebb355fa6b3df1d6b330436e0b885fb49594c41721398" url: "https://pub.dev" source: hosted version: "2.0.23" flutter_test: dependency: "direct dev" description: flutter source: sdk version: "0.0.0" flutter_web_plugins: dependency: transitive description: flutter source: sdk version: "0.0.0" google_maps: dependency: transitive description: name: google_maps sha256: "4d6e199c561ca06792c964fa24b2bac7197bf4b401c2e1d23e345e5f9939f531" url: "https://pub.dev" source: hosted version: "8.1.1" google_maps_flutter: dependency: "direct main" description: name: google_maps_flutter sha256: "209856c8e5571626afba7182cf634b2910069dc567954e76ec3e3fb37f5e9db3" url: "https://pub.dev" source: hosted version: "2.10.0" google_maps_flutter_android: dependency: transitive description: name: google_maps_flutter_android sha256: bccf64ccbb2ea672dc62a61177b315a340af86b0228564484b023657544a3fd5 url: "https://pub.dev" source: hosted version: "2.14.11" google_maps_flutter_ios: dependency: transitive description: name: google_maps_flutter_ios sha256: "6f798adb0aa1db5adf551f2e39e24bd06c8c0fbe4de912fb2d9b5b3f48147b02" url: "https://pub.dev" source: hosted version: "2.13.2" google_maps_flutter_platform_interface: dependency: "direct main" description: name: google_maps_flutter_platform_interface sha256: a951981c22d790848efb9f114f81794945bc5c06bc566238a419a92f110af6cb url: "https://pub.dev" source: hosted version: "2.9.5" google_maps_flutter_web: dependency: transitive description: name: google_maps_flutter_web sha256: ff39211bd25d7fad125d19f757eba85bd154460907cd4d135e07e3d0f98a4130 url: "https://pub.dev" source: hosted version: "0.5.10" html: dependency: transitive description: name: html sha256: "1fc58edeaec4307368c60d59b7e15b9d658b57d7f3125098b6294153c75337ec" url: "https://pub.dev" source: hosted version: "0.15.5" http_parser: dependency: transitive description: name: http_parser sha256: "2aa08ce0341cc9b354a498388e30986515406668dbcc4f7c950c3e715496693b" url: "https://pub.dev" source: hosted version: "4.0.2" leak_tracker: dependency: transitive description: name: leak_tracker sha256: "3f87a60e8c63aecc975dda1ceedbc8f24de75f09e4856ea27daf8958f2f0ce05" url: "https://pub.dev" source: hosted version: "10.0.5" leak_tracker_flutter_testing: dependency: transitive description: name: leak_tracker_flutter_testing sha256: "932549fb305594d82d7183ecd9fa93463e9914e1b67cacc34bc40906594a1806" url: "https://pub.dev" source: hosted version: "3.0.5" leak_tracker_testing: dependency: transitive description: name: leak_tracker_testing sha256: "6ba465d5d76e67ddf503e1161d1f4a6bc42306f9d66ca1e8f079a47290fb06d3" url: "https://pub.dev" source: hosted version: "3.0.1" lints: dependency: transitive description: name: lints sha256: "976c774dd944a42e83e2467f4cc670daef7eed6295b10b36ae8c85bcbf828235" url: "https://pub.dev" source: hosted version: "4.0.0" matcher: dependency: transitive description: name: matcher sha256: d2323aa2060500f906aa31a895b4030b6da3ebdcc5619d14ce1aada65cd161cb url: "https://pub.dev" source: hosted version: "0.12.16+1" material_color_utilities: dependency: transitive description: name: material_color_utilities sha256: f7142bb1154231d7ea5f96bc7bde4bda2a0945d2806bb11670e30b850d56bdec url: "https://pub.dev" source: hosted version: "0.11.1" meta: dependency: transitive description: name: meta sha256: bdb68674043280c3428e9ec998512fb681678676b3c54e773629ffe74419f8c7 url: "https://pub.dev" source: hosted version: "1.15.0" path: dependency: transitive description: name: path sha256: "087ce49c3f0dc39180befefc60fdb4acd8f8620e5682fe2476afd0b3688bb4af" url: "https://pub.dev" source: hosted version: "1.9.0" plugin_platform_interface: dependency: transitive description: name: plugin_platform_interface sha256: "4820fbfdb9478b1ebae27888254d445073732dae3d6ea81f0b7e06d5dedc3f02" url: "https://pub.dev" source: hosted version: "2.1.8" sanitize_html: dependency: transitive description: name: sanitize_html sha256: "12669c4a913688a26555323fb9cec373d8f9fbe091f2d01c40c723b33caa8989" url: "https://pub.dev" source: hosted version: "2.1.0" sky_engine: dependency: transitive description: flutter source: sdk version: "0.0.99" source_span: dependency: transitive description: name: source_span sha256: "53e943d4206a5e30df338fd4c6e7a077e02254531b138a15aec3bd143c1a8b3c" url: "https://pub.dev" source: hosted version: "1.10.0" stack_trace: dependency: transitive description: name: stack_trace sha256: "73713990125a6d93122541237550ee3352a2d84baad52d375a4cad2eb9b7ce0b" url: "https://pub.dev" source: hosted version: "1.11.1" stream_channel: dependency: transitive description: name: stream_channel sha256: ba2aa5d8cc609d96bbb2899c28934f9e1af5cddbd60a827822ea467161eb54e7 url: "https://pub.dev" source: hosted version: "2.1.2" stream_transform: dependency: transitive description: name: stream_transform sha256: "14a00e794c7c11aa145a170587321aedce29769c08d7f58b1d141da75e3b1c6f" url: "https://pub.dev" source: hosted version: "2.1.0" string_scanner: dependency: transitive description: name: string_scanner sha256: "556692adab6cfa87322a115640c11f13cb77b3f076ddcc5d6ae3c20242bedcde" url: "https://pub.dev" source: hosted version: "1.2.0" term_glyph: dependency: transitive description: name: term_glyph sha256: a29248a84fbb7c79282b40b8c72a1209db169a2e0542bce341da992fe1bc7e84 url: "https://pub.dev" source: hosted version: "1.2.1" test_api: dependency: transitive description: name: test_api sha256: "5b8a98dafc4d5c4c9c72d8b31ab2b23fc13422348d2997120294d3bac86b4ddb" url: "https://pub.dev" source: hosted version: "0.7.2" typed_data: dependency: transitive description: name: typed_data sha256: f9049c039ebfeb4cf7a7104a675823cd72dba8297f264b6637062516699fa006 url: "https://pub.dev" source: hosted version: "1.4.0" vector_math: dependency: transitive description: name: vector_math sha256: "80b3257d1492ce4d091729e3a67a60407d227c27241d6927be0130c98e741803" url: "https://pub.dev" source: hosted version: "2.1.4" vm_service: dependency: transitive description: name: vm_service sha256: "5c5f338a667b4c644744b661f309fb8080bb94b18a7e91ef1dbd343bed00ed6d" url: "https://pub.dev" source: hosted version: "14.2.5" web: dependency: transitive description: name: web sha256: cd3543bd5798f6ad290ea73d210f423502e71900302dde696f8bff84bf89a1cb url: "https://pub.dev" source: hosted version: "1.1.0" sdks: dart: ">=3.5.3 <4.0.0" flutter: ">=3.24.0" ``` </details> ### Steps to reproduce 1. Open the app with some markers 2. Zoom out and see that they're not getting clustered Same code works on web, but not on android or iOS. According to [android maps utils](https://github.com/googlemaps/android-maps-utils) that was referenced in https://github.com/flutter/packages/pull/4319 I added `implementation 'com.google.maps.android:android-maps-utils:3.9.0'` dependency into `build.gradle`, but that does not seem to change anything. ### Expected results The markers should be clustered. Run the same code on chrome and it clusters it, see screenshot below ![image](https://github.com/user-attachments/assets/cec23456-5634-4228-ac16-66747c5b1d01) ### Actual results The markers are not getting clustered ### Code sample <details open><summary>Code sample</summary> ```dart import 'package:flutter/material.dart'; import 'package:google_maps_flutter/google_maps_flutter.dart'; const clusterManagerID = ClusterManagerId('1'); class GoogleMapScreen extends StatelessWidget { const GoogleMapScreen({super.key}); @override Widget build(BuildContext context) { final Set<Marker> markers = { Marker( markerId: const MarkerId('1'), clusterManagerId: clusterManagerID, position: const LatLng(1.2830173, 103.8513365), onTap: () {}, ), Marker( markerId: const MarkerId('2'), clusterManagerId: clusterManagerID, position: const LatLng(1.2830173, 103.8413365), onTap: () {}, ), }; return GoogleMap( initialCameraPosition: const CameraPosition(target: LatLng(1.2830173, 103.8413365), zoom: 14), clusterManagers: { ClusterManager( clusterManagerId: clusterManagerID, onClusterTap: (cluster) {}, ), }, onMapCreated: (controller) {}, markers: markers, ); } } ``` </details> ### Screenshots or Videos <details open> <summary>Screenshots / Video demonstration</summary> Initial Map load all looks ok ![image](https://github.com/user-attachments/assets/d167c10e-cd3f-42bb-9429-ba8d7c0247c2) When scrolling out it won't cluster the 2 markers ![image](https://github.com/user-attachments/assets/44652cb7-8cce-47ee-9187-1564168829c6) </details> ### Logs <details open><summary>Logs</summary> ```console D/zzcc ( 4604): preferredRenderer: null I/Google Android Maps SDK( 4604): Google Play services package version: 244433035 I/Google Android Maps SDK( 4604): Google Play services maps renderer version(maps_core): 244125202 I/m.ccu ( 4604): FpsProfiler MAIN created on main I/m.dsu ( 4604): Map using legacy labeler I/m.drw ( 4604): Network fetching: false I/m.drw ( 4604): requestDrawingConfig for epoch 713 legend ROADMAP I/m.drw ( 4604): Network fetching: true I/m.ekp ( 4604): Found 43 zoom mappings I/m.ekp ( 4604): Zoom tables loaded I/m.drw ( 4604): requestDrawingConfig for epoch 713 legend ROADMAP I/m.ekp ( 4604): Found 43 zoom mappings I/m.ekp ( 4604): Zoom tables loaded I/m.drw ( 4604): Network fetching: true I/m.drw ( 4604): requestDrawingConfig for epoch 713 legend ROADMAP 3 I/m.drw ( 4604): Network fetching: true I/PlatformViewsController( 4604): Hosting view in view hierarchy for platform view: 0 I/PlatformViewsController( 4604): PlatformView is using SurfaceProducer backend I/GoogleMapController( 4604): Installing custom TextureView driven invalidator. E/GoogleMapController( 4604): Cannot enable MyLocation layer as location permissions are not granted I/le.expenses_app( 4604): Background concurrent mark compact GC freed 29MB AllocSpace bytes, 169(6756KB) LOS objects, 34% free, 46MB/70MB, paused 494us,3.411ms total 216.329ms I/m.bzu ( 4604): Initial labeling completed. ``` </details> ### Flutter Doctor output <details open><summary>Doctor output</summary> ```console [✓] Flutter (Channel stable, 3.24.5, on macOS 15.0 24A335 darwin-arm64, locale en-US) • Flutter version 3.24.5 on channel stable at /Users/zilvinasskuodys/Desktop/flutter • Upstream repository https://github.com/flutter/flutter.git • Framework revision dec2ee5c1f (9 days ago), 2024-11-13 11:13:06 -0800 • Engine revision a18df97ca5 • Dart version 3.5.4 • DevTools version 2.37.3 [✓] Android toolchain - develop for Android devices (Android SDK version 34.0.0) • Android SDK at /Users/zilvinasskuodys/Library/Android/sdk • Platform android-34, build-tools 34.0.0 • Java binary at: /Applications/Android Studio.app/Contents/jbr/Contents/Home/bin/java • Java version OpenJDK Runtime Environment (build 17.0.11+0-17.0.11b1207.24-11852314) • All Android licenses accepted. [✓] Xcode - develop for iOS and macOS (Xcode 16.1) • Xcode at /Applications/Xcode.app/Contents/Developer • Build 16B40 • CocoaPods version 1.15.2 [✓] Chrome - develop for the web • Chrome at /Applications/Google Chrome.app/Contents/MacOS/Google Chrome [✓] Android Studio (version 2024.1) • Android Studio at /Applications/Android Studio.app/Contents • Flutter plugin can be installed from: 🔨 https://plugins.jetbrains.com/plugin/9212-flutter • Dart plugin can be installed from: 🔨 https://plugins.jetbrains.com/plugin/6351-dart • Java version OpenJDK Runtime Environment (build 17.0.11+0-17.0.11b1207.24-11852314) [✓] VS Code (version 1.95.3) • VS Code at /Applications/Visual Studio Code.app/Contents • Flutter extension version 3.100.0 [✓] Connected device (4 available) • sdk gphone64 arm64 (mobile) • emulator-5554 • android-arm64 • Android 15 (API 35) (emulator) • macOS (desktop) • macos • darwin-arm64 • macOS 15.0 24A335 darwin-arm64 • Mac Designed for iPad (desktop) • mac-designed-for-ipad • darwin • macOS 15.0 24A335 darwin-arm64 • Chrome (web) • chrome • web-javascript • Google Chrome 131.0.6778.86 [✓] Network resources • All expected network resources are available. • No issues found! ``` </details>
platform-android,platform-ios,p: maps,package,team-ecosystem,has reproducible steps,P2,triaged-ecosystem,found in release: 3.24,found in release: 3.27
low
Critical
2,682,278,064
vscode
Javascript/Typescript formatting options are ignored
![Image](https://github.com/user-attachments/assets/aaf7ac23-c067-409e-8e64-32ab6a30c309) https://github.com/user-attachments/assets/89f74df8-9c1a-482b-962d-25b3bcaf8a12 <!-- ⚠️⚠️ Do Not Delete This! bug_report_template ⚠️⚠️ --> <!-- Please read our Rules of Conduct: https://opensource.microsoft.com/codeofconduct/ --> <!-- 🕮 Read our guide about submitting issues: https://github.com/microsoft/vscode/wiki/Submitting-Bugs-and-Suggestions --> <!-- 🔎 Search existing issues to avoid creating duplicates. --> <!-- 🧪 Test using the latest Insiders build to see if your issue has already been fixed: https://code.visualstudio.com/insiders/ --> <!-- 💡 Instead of creating your report here, use 'Report Issue' from the 'Help' menu in VS Code to pre-fill useful information. --> <!-- 🔧 Launch with `code --disable-extensions` to check. --> Does this issue occur when all extensions are disabled?: Yes/No yes <!-- 🪓 If you answered No above, use 'Help: Start Extension Bisect' from Command Palette to try to identify the cause. --> <!-- 📣 Issues caused by an extension need to be reported directly to the extension publisher. The 'Help > Report Issue' dialog can assist with this. --> Version: 1.95.3 Commit: f1a4fb101478ce6ec82fe9627c43efbf9e98c813 Date: 2024-11-13T14:50:04.152Z Electron: 32.2.1 ElectronBuildId: 10427718 Chromium: 128.0.6613.186 Node.js: 20.18.0 V8: 12.8.374.38-electron.0 OS: Darwin arm64 24.1.0 Steps to Reproduce: 1. Open Settings and search for "Javascript." 2. Scroll about halfway down until you find "JavaScript > Format: Place open brace..." and turn both those options on. 3. Perform the steps in https://github.com/microsoft/vscode/issues/234401 and note the disregard for the above settings.
bug,javascript,formatting
low
Critical
2,682,303,987
rust
"macabi" is not an "ABI" in the same sense as e.g. "gnueabihf"
I know it has the literal characters "abi" in it but it's not an "ABI" in the sense of "gnueabihf", the HF and SF targets use actually-different calling conventions. It should probably have been a `target_env`. Same story with the Apple "sim" targets.
O-macos,O-ios,T-compiler,C-bug,A-targets
low
Minor
2,682,353,547
godot
Changing texture width height on Line2D with tiled texture doesn't update properly automatically
### Tested versions Reproducible in: v4.2.2.stable.official [15073afe3] v4.3.stable.official.77dcf97d8 v4.4.dev5.official.9e6098432 ### System information MX Linux 23.3, 6.1.0-11-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.38-4 (2023-08-08) x86_64 GNU/Linux, OpenGL API 3.3.0 NVIDIA 535.183.01 - Compatibility - Using Device: NVIDIA - NVIDIA GeForce RTX 3060 Ti ### Issue description Here is a view of the Line2D with a tiled texture. ![Image](https://github.com/user-attachments/assets/5ce376f0-a6fe-4ef3-a74f-c4bea57793dd) Here I change height from 512 to 256. While the texture update, it doesn't properly reflect how it should be textured. ![Image](https://github.com/user-attachments/assets/8f521d22-1f9c-44de-ab79-fcf1f5805e64) After toggling visibility, texture updates properly. ![Image](https://github.com/user-attachments/assets/333306e2-2d67-4c26-96bb-e3da1a529d92) Changing texture size should trigger similar updates as toggling visibility (or changing width of line) --> this also causes proper update of texture. --- Also see my document feedback where I encountered this: https://github.com/godotengine/godot-docs/issues/10297 ### Steps to reproduce Described above. ### Minimal reproduction project (MRP) [mrp-line2d-tiledtexture-texturesizechanged.zip](https://github.com/user-attachments/files/17867316/mrp-line2d-tiledtexture-texturesizechanged.zip)
bug,topic:2d
low
Minor
2,682,430,199
tensorflow
Not GPU detected using tensorflow/tensorflow:latest-gpu docker image
### Issue type Support ### Have you reproduced the bug with TensorFlow Nightly? No ### Source source ### TensorFlow version tensorflow/tensorflow:latest-gpu ### Custom code Yes ### OS platform and distribution Ubuntu 20.04 ### Mobile device _No response_ ### Python version _No response_ ### Bazel version _No response_ ### GCC/compiler version _No response_ ### CUDA/cuDNN version _No response_ ### GPU model and memory _No response_ ### Current behavior? sudo docker run --gpus all -it --rm tensorflow/tensorflow:latest-gpu python -c "import tensorflow as tf; print('Num GPUs Available:', len(tf.config.list_physical_devices('GPU')))" 2024-11-22 08:20:55.695121: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:477] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered WARNING: All log messages before absl::InitializeLog() is called are written to STDERR E0000 00:00:1732263655.707089 1 cuda_dnn.cc:8310] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered E0000 00:00:1732263655.710704 1 cuda_blas.cc:1418] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered 2024-11-22 08:20:55.722395: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. 2024-11-22 08:20:57.119693: E external/local_xla/xla/stream_executor/cuda/cuda_driver.cc:152] failed call to cuInit: INTERNAL: CUDA error: Failed call to cuInit: CUDA_ERROR_COMPAT_NOT_SUPPORTED_ON_DEVICE: forward compatibility was attempted on non supported HW 2024-11-22 08:20:57.119716: I external/local_xla/xla/stream_executor/cuda/cuda_diagnostics.cc:137] retrieving CUDA diagnostic information for host: 81f8d81af78d 2024-11-22 08:20:57.119720: I external/local_xla/xla/stream_executor/cuda/cuda_diagnostics.cc:144] hostname: 81f8d81af78d 2024-11-22 08:20:57.119789: I external/local_xla/xla/stream_executor/cuda/cuda_diagnostics.cc:168] libcuda reported version is: 545.23.6 2024-11-22 08:20:57.119804: I external/local_xla/xla/stream_executor/cuda/cuda_diagnostics.cc:172] kernel reported version is: 470.256.2 2024-11-22 08:20:57.119808: E external/local_xla/xla/stream_executor/cuda/cuda_diagnostics.cc:262] kernel version 470.256.2 does not match DSO version 545.23.6 -- cannot find working devices in this configuration Num GPUs Available: 0 ### Standalone code to reproduce the issue ```shell sudo docker run --gpus all -it --rm tensorflow/tensorflow:latest-gpu python -c "import tensorflow as tf; print('Num GPUs Available:', len(tf.config.list_physical_devices('GPU')))" I've also followed this recommendation. https://stackoverflow.com/questions/79127647/tensorflow-docker-not-using-gpu/79214187#79214187 ``` ### Relevant log output ```shell root@35b972e97b30:/# nvidia-smi Fri Nov 22 08:44:56 2024 +-----------------------------------------------------------------------------+ | NVIDIA-SMI 470.256.02 Driver Version: 470.256.02 CUDA Version: 12.3 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |===============================+======================+======================| | 0 NVIDIA GeForce ... Off | 00000000:01:00.0 Off | N/A | | N/A 38C P0 22W / N/A | 10MiB / 5946MiB | 0% Default | | | | N/A | +-------------------------------+----------------------+----------------------+ +-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| +-----------------------------------------------------------------------------+ root@35b972e97b30:/# nvcc --version nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2023 NVIDIA Corporation Built on Wed_Nov_22_10:17:15_PST_2023 Cuda compilation tools, release 12.3, V12.3.107 Build cuda_12.3.r12.3/compiler.33567101_0 ```
stat:awaiting tensorflower,type:support,comp:gpu,TF 2.18
low
Critical
2,682,441,507
rust
Tracking Issue for `const_array_as_mut_slice`
Add the `const` specifier to `<[T; N]>::as_mut_slice`. ### Public API ```rust impl<T, const N: usize> { pub const fn as_mut_slice(&mut self) -> &mut [T]; } ``` ### Steps / History - [x] Implementation: #133332 - [ ] Final comment period (FCP) - [ ] Stabilization PR ### Unresolved Questions - None yet.
T-libs-api,C-tracking-issue
low
Major
2,682,450,804
pytorch
Rounding issue of tensor sizes when sharding
### 🐛 Describe the bug I have noticed `test_linear_row_wise_parallel` fails when run with 6 GPUs https://github.com/pytorch/pytorch/blob/f2f7ef9d5908f53a5fd7991ed0a1ef99069813a1/test/distributed/tensor/parallel/test_parallelize_api.py#L137 it raises 2 kinds of errors (first from 5 process, the last from 1 process): ``` RuntimeError: a and b must have same reduction dim, but got [9, 18] X [16, 10]. RuntimeError: a and b must have same reduction dim, but got [9, 6] X [16, 10]. ``` The issue is the sharding of the input tensor of `inp_size = [9, 16]`. It results (correctly) in a sharding of `[3, 3, 3, 3, 3, 1]` but at some point the code assumes even sharding leading to `3 * 6 = 18` and `1 * 6 = 6` as the input size to the linear layer. This can be reproduced with this code: ```python import torch import torch.distributed as dist from torch.distributed._tensor import DeviceMesh from torch.distributed.tensor.parallel.api import parallelize_module from torch.distributed.tensor.parallel.style import RowwiseParallel import tempfile WORLD_SIZE = 6 def run(rank, file_name): dist.init_process_group( backend="gloo", world_size=WORLD_SIZE, rank=rank, init_method=f"file://{file_name}", ) inp_size = [9, 8*3] model = torch.nn.Linear(inp_size[-1], 10) device_mesh = DeviceMesh("cpu", list(range(WORLD_SIZE))) model = parallelize_module(model, device_mesh, RowwiseParallel()) inp = torch.rand(*inp_size) inp = inp.chunk(WORLD_SIZE, dim=-1)[rank] model(inp) dist.barrier() dist.destroy_process_group() if __name__ == '__main__': file_name = tempfile.NamedTemporaryFile(delete=False).name torch.multiprocessing.spawn(run, args=(file_name,), nprocs=WORLD_SIZE, join=True, daemon=False) ``` ### Versions ``` PyTorch version: 2.5.1+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Linux Mint 21.3 (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] (64-bit runtime) ``` Note that this could "just" be a design issue of the test: - for the row-wise distribution it uses a size of [`16`](https://github.com/pytorch/pytorch/blob/f2f7ef9d5908f53a5fd7991ed0a1ef99069813a1/test/distributed/tensor/parallel/test_parallelize_api.py#L139) - for the col-wise distribution it uses a size of [`12`](https://github.com/pytorch/pytorch/blob/f2f7ef9d5908f53a5fd7991ed0a1ef99069813a1/test/distributed/tensor/parallel/test_parallelize_api.py#L118) It uses ALL GPUs if there is an even number of GPUs, else only 4: https://github.com/pytorch/pytorch/blob/f2f7ef9d5908f53a5fd7991ed0a1ef99069813a1/test/distributed/tensor/parallel/test_parallelize_api.py#L35 From the sizes it is clear that the first test works only for 2,4,8,16 GPUs and the second only for 2,3,4,6,12 GPUs so both together only work for 2 or 4 GPUs --> The test should run ONLY with a world_size of 4 or the implementation fixed if it is intended to work cc @H-Huang @awgu @kwen2501 @wanchaol @fegin @fduwjj @wz337 @wconstab @d4l3k @c-p-i-o
oncall: distributed,triaged
low
Critical
2,682,473,001
flutter
[asset_transformers] Provide the current target platform in the asset transformer
### Use case Developers wanting to transform assets, based on the current target platform (i.e. `flutter build web` -> web; `flutter build apk` -> android), currently cannot infer the target platform during the asset transformation. ### Proposal I propose that the target platform of the `flutter build` invocation is provided as either an argument, or in `Platform.environment`. I initially tried checking what is inside `Platform.environment` and the `FLUTTER_BUILD_MODE` seems to be there already? Then I think the easiest thing to do is to also add something like `FLUTTER_BUILD_TARGET_PLATFORM` to `Platform.environment` or the args that are passed to the asset transformer, whichever makes more sense / is cleaner from a tool perspective. Context: I was initially exploring if I could work around the absence of https://github.com/flutter/flutter/issues/141371 using an asset transformer
c: new feature,tool,a: assets,c: proposal,a: build,P2,team-tool,triaged-tool
low
Minor
2,682,485,861
deno
fmt(svelte): formatter error on dynamic style in svelte
Version: Deno 2.1.1 ```svelte <script lang="ts"> const { color }: { color: string | null } = $props(); </script> <div style="background-color: {color || 'blueviolet'};" > </div> ``` ```txt deno fmt --unstable-component Error formatting: C:\temp\deno-init\test.svelte syntax error at line 6, col 28: expect token `<ident>`, but found `{` Checked 4 files ```
bug,upstream,deno fmt
low
Critical
2,682,562,136
ollama
LLM(vision) GGUF Recommendation: Is there any LLM(vision) with great performance in GGUF format?
### Disappointing Performance It's really strange that I have tried many **LLMs with vision** in `GGUF` format, listed in the official website, such as `Llama3.2-vision`, `llava`, `llava-llama3`, `llava-phi3`. However, all of their performance is disappointing in **vision** aspect, even a simple task like recognizing an image of an apple. ### GGUF format By the way, to be quickly start, I tried all LLMs in `GGUF` format. I don't know whether it is a hinder for good performance. ### Help So, I post this issue for your help and a good LLM with vision in `GGUF` format recommendation, or **any other importing ways** to get a great performance, thanks for your help!!! ### OS Linux ### GPU Nvidia ### CPU Intel ### Ollama version 0.4.2
bug
low
Major
2,682,628,005
kubernetes
bug: RPM repo PGP check fails
<!-- Please use this template while reporting a bug and provide as much info as possible. Not doing so may result in your bug not being addressed in a timely manner. Thanks! If the matter is security related, please disclose it privately via https://kubernetes.io/security/ --> **What happened**: When trying to upgrade package using official Yum repo this occurs: ``` Running transaction Transaction failed: Signature verification failed. PGP check for package "kubectl-1.31.3-150500.1.1.x86_64" (/var/cache/libdnf5/kubernetes-3d554b2ea1b53740/packages/kubectl-1.31.3-150500.1.1.x86_64.rpm) from repo "kubernetes" has failed: Problem occurred when opening the package. ``` **What you expected to happen**: Update succeeds and package installed. **How to reproduce it (as minimally and precisely as possible)**: <!-- Please make sure you are able to reproduce the bug using a supported version and version skew of Kubernetes. See https://kubernetes.io/docs/setup/release/version-skew-policy for which versions and are currently supported. --> Add repo following https://kubernetes.io/docs/tasks/tools/install-kubectl-linux/#install-using-native-package-management and try to update RPM package. **Anything else we need to know?**: It worked until now. **Environment**: - Kubernetes client and server versions (use `kubectl version`): kubectl-1.31.3-150500.1.1.x86_64 - Cloud provider or hardware configuration: n/a/ - OS (e.g: `cat /etc/os-release`): Fedora Linux 41
kind/bug,sig/docs,sig/release,needs-triage
medium
Critical
2,682,628,604
next.js
Inconsistent behavior of `usePathname` with static rendering during build
### Link to the code that reproduces this issue https://github.com/amannn/nextjs-bug-repro-usepathnamessg/commit/c6b084df43e08a9b043548fb577be8db5f059bde ### To Reproduce Compare the output of `usePathname` in development vs during the static prerender when accessing the route `/test` which uses a rewrite in the middleware. ### Current vs. Expected behavior `usePathname` seems to pick up a request-time pathname from a middleware rewrite. However, as this information is not available during a static build, `usePathname` will return a different value in this case. Then again, when running the app in production, `usePathname` will return the pathname that's displayed in the browser (i.e. after a rewrite), but only on the client side. In the reproduction this leads to a text content mismatch, but more generally this breaks a dev/prod guarantee. I'd expect a static prerender to only be a performance optimization and not to change application logic. I guess some unification would be necessary here. Note that this only applies for static prerendering, if you use SSR in production then the behavior is the same as in dev. A more real world use case where this behavior was encountered: https://github.com/amannn/next-intl/issues/1568 ### Provide environment information ```bash Operating System: Platform: darwin Arch: x64 Version: Darwin Kernel Version 23.6.0: Mon Jul 29 21:13:00 PDT 2024; root:xnu-10063.141.2~1/RELEASE_X86_64 Available memory (MB): 16384 Available CPU cores: 12 Binaries: Node: 20.11.1 npm: 10.2.4 Yarn: 1.22.22 pnpm: 9.14.2 Relevant Packages: next: 15.0.4-canary.23 // Latest available version is detected (15.0.4-canary.23). eslint-config-next: 15.0.4-canary.23 react: 19.0.0-rc-380f5d67-20241113 react-dom: 19.0.0-rc-380f5d67-20241113 typescript: 5.6.3 Next.js Config: output: N/A ``` ### Which area(s) are affected? (Select all that apply) Middleware ### Which stage(s) are affected? (Select all that apply) next dev (local), next build (local), next start (local) ### Additional context Maybe a hook like `useInternalPathname()` (naming TBD) could help that always reliably returns the pathname that renders in Next.js, regardless of any rewrites—essentially matching the directory structure in `src/app`.
bug,Middleware
low
Critical
2,682,642,953
rust
Tracking Issue for relnotes interest group ping group
Tracking issue for creating a ping group for relnotes PRs so interested contributors can get pinged for that specific purpose (instead of pinging whole teams like T-compiler which has idk 50+ members). Note that the following steps are derived from [T-compiler notification group procedure](https://forge.rust-lang.org/compiler/notification-groups.html) but adjusted because it's compiler-specific ping groups. ### Implementation steps - [x] ~~File a tracking issue in the [rust-lang/compiler-team](https://github.com/rust-lang/compiler-team) repository to collect your progress.~~ Not compiler-specific ping group. - [x] Create a PR against the [rust-lang/team](https://github.com/rust-lang/team) repository adding the notification group. https://github.com/rust-lang/team/pull/1613 - [x] Configure the [rust-lang/rust](https://github.com/rust-lang/rust) repository to accept triagebot commands for this group. https://github.com/rust-lang/rust/pull/135032 - [ ] Configure the [rust-lang/blog.rust-lang.org](https://github.com/rust-lang/blog.rust-lang.org) repository to accept triagebot commands for this group. https://github.com/rust-lang/blog.rust-lang.org/pull/1453 - [x] ~~Create a PR for the rustc-dev-guide amending [the notification group section](https://rustc-dev-guide.rust-lang.org/notification-groups/about.html) to mention your group.~~ T-release mostly, not compiler. - [x] Create a sample PR for the [rust-lang/team](https://github.com/rust-lang/team) repository showing how one can add oneself. This will be referenced by your blog post to show people how to join. See https://github.com/rust-lang/team/pull/1613. - [ ] Create a PR for the forge release notes section to describe the relnotes interest group ping group. - [x] ~~Create a Zulip stream for the notification group. If you don’t have the permission to do, you can ask on [#t-compiler/wg-meta](https://rust-lang.zulipchat.com/#narrow/stream/185694-t-compiler.2Fwg-meta).~~ Unclear if needed, probably better to discuss on the relnotes PR itself. - [ ] Write an announcement blog post for Inside Rust and open a PR against [blog.rust-lang.org](https://github.com/rust-lang/blog.rust-lang.org). ### Relevant context - Zulip discussion: https://rust-lang.zulipchat.com/#narrow/channel/241545-t-release/topic/Please.20CC.20lang
C-tracking-issue,T-release,A-meta
low
Minor
2,682,656,292
pytorch
[export] run_decompositions fails on `torch.ops.aten.index_put_`
### 🐛 Describe the bug This example started to fail yesterday with the nightly build. ```python import torch class UpdateModel(torch.nn.Module): def __init__(self): super().__init__() self.params = torch.zeros((4, 4, 10)) def forward(self, update, index1, index2): copy = self.params.clone() copy[index1, torch.tensor([1, 2], dtype=torch.int64), index2] = update return copy model = UpdateModel() update = (torch.arange(2) + 10).reshape((2,)).to(torch.float32) index1 = torch.tensor([1, 2]).to(torch.int64) index2 = torch.tensor([7, 8]).to(torch.int64) model(update, index1, index2) ep = torch.export.export(model, (update, index1, index2)) print(ep.graph) ep.run_decompositions() # Fails here ``` ``` graph(): %c_params : [num_users=1] = placeholder[target=c_params] %c_lifted_tensor_0 : [num_users=1] = placeholder[target=c_lifted_tensor_0] %update : [num_users=1] = placeholder[target=update] %index1 : [num_users=1] = placeholder[target=index1] %index2 : [num_users=1] = placeholder[target=index2] %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%c_params,), kwargs = {}) %lift_fresh_copy : [num_users=1] = call_function[target=torch.ops.aten.lift_fresh_copy.default](args = (%c_lifted_tensor_0,), kwargs = {}) %detach_ : [num_users=1] = call_function[target=torch.ops.aten.detach_.default](args = (%lift_fresh_copy,), kwargs = {}) %index_put_ : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%clone, [%index1, %detach_, %index2], %update), kwargs = {}) return (index_put_,) File "site-packages/torch/fx/interpreter.py", line 228, in run_node return getattr(self, n.op)(n.target, args, kwargs) File "site-packages/torch/fx/interpreter.py", line 308, in call_function return target(*args, **kwargs) File "site-packages/torch/_ops.py", line 723, in __call__ return self._op(*args, **kwargs) File "site-packages/torch/_subclasses/functional_tensor.py", line 545, in __torch_dispatch__ outs_unwrapped = func._op_dk( RuntimeError: false INTERNAL ASSERT FAILED at "/pytorch/build/aten/src/ATen/RegisterFunctionalization_1.cpp":5939, please report a bug to PyTorch. mutating a non-functional tensor with a functional tensor is not allowed. Please ensure that all of your inputs are wrapped inside of a functionalize() call. While executing %index_put_ : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%clone, [%index1, %detach_, %index2], %update), kwargs = {}) Original traceback: File "test_issue_pytorch_2024_export.py", line 32, in forward copy[index1, torch.tensor([1, 2], dtype=torch.int64), index2] = update ``` ### Versions PyTorch version: 2.6.0.dev20241121+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.31.1 Libc version: glibc-2.35 Python version: 3.10.12 (main, Nov 6 2024, 20:22:13) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-5.15.167.4-microsoft-standard-WSL2-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.6.68 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4060 Laptop GPU Nvidia driver version: 538.92 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.3.0 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.3.0 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 20 On-line CPU(s) list: 0-19 Vendor ID: GenuineIntel Model name: 13th Gen Intel(R) Core(TM) i7-13800H CPU family: 6 Model: 186 Thread(s) per core: 2 Core(s) per socket: 10 Socket(s): 1 Stepping: 2 BogoMIPS: 5836.79 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq vmx ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves avx_vnni umip waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize flush_l1d arch_capabilities Virtualization: VT-x Hypervisor vendor: Microsoft Virtualization type: full L1d cache: 480 KiB (10 instances) L1i cache: 320 KiB (10 instances) L2 cache: 12.5 MiB (10 instances) L3 cache: 24 MiB (1 instance) Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Mitigation; Clear Register File Vulnerability Retbleed: Mitigation; Enhanced IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] bert_pytorch==0.0.1a4 [pip3] clip-anytorch==2.6.0 [pip3] CoCa-pytorch==0.1.0 [pip3] dalle2-pytorch==1.15.6 [pip3] ema-pytorch==0.7.0 [pip3] executorch==0.4.0 [pip3] flake8==7.1.1 [pip3] mypy==1.11.2 [pip3] mypy-extensions==1.0.0 [pip3] numpy==2.1.3 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] onnx==1.18.0 [pip3] onnx-extended==0.3.0 [pip3] onnxconverter-common==1.14.0 [pip3] onnxruntime-gpu==1.21.0 [pip3] onnxruntime-training==1.21.0+cu121 [pip3] onnxscript==0.1.0.dev20240905 [pip3] open_clip_torch==2.26.1 [pip3] pytorch-triton==3.1.0+cf34004b8a [pip3] pytorch-warmup==0.1.1 [pip3] rotary-embedding-torch==0.8.4 [pip3] torch==2.6.0.dev20241121+cu124 [pip3] torch-fidelity==0.3.0 [pip3] torch_geometric==2.4.0 [pip3] torchao==0.5.0 [pip3] torchaudio==2.5.0.dev20241121+cu124 [pip3] torchmetrics==1.4.3 [pip3] torchvision==0.20.0.dev20241121+cu124 [pip3] triton==3.1.0 [pip3] vector-quantize-pytorch==1.18.1 [conda] Could not collect cc @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
oncall: pt2,oncall: export
low
Critical
2,682,657,347
godot
[3.x] Particles2D and Multithreaded rendering throws error (Rare)
### Tested versions Tested in Godot 3.5.1, GLES2 [edit] Tested in Godot 3.6, GLES2 ### System information Ubuntu 24.04.1, 64bit, NVIDIA GeForce GTX 1050 Ti ### Issue description When toggling emission of a CPUParticles2D node it will sometimes throw the error: `emit_signal: Error calling method from signal 'frame_pre_draw': 'CPUParticles2D::': Method not found..` This seems to only occur when multithreaded render mode is enabled. The bug occurs quite rarely, and with varying behavior. Sometimes the error is just printed once, sometimes it keeps spamming very quickly, and sometimes it crashes the game process. ### Steps to reproduce - Make a particle system and an animation that toggles it on and off (no other particle system settings are required, although the issue MRP has 'one-shot' enabled) - Make a script that plays the animation repeatedly with a small random delay between plays. - Duplicate it a few hundred times, to get the error to reproduce without having to wait for hours - To speed up the reproduction, you can also increase engine_time_scale Note how the error is printed when render mode in the project settings is "Multi-Threaded", and does not occur with "Single-Safe" render mode. ### Minimal reproduction project (MRP) Reproduction project available at github.com/Tugsav/godot-particle2d-multithreading-bug Reproduction using time scale 50 should be pretty quick. Reproduction without modifying time scale can take a while (i had the error occur after ~17 min)
bug,topic:rendering,needs testing
low
Critical
2,682,663,563
ui
[feat]: Add support for react 19
### Feature description Is there any timeframe or plan to migrate components to react 19? ### Affected component/components Most if not all ### Additional Context The use of forwardRef on same/most components for example is forcing the need to implement some change on the component definition and integration. ### Before submitting - [X] I've made research efforts and searched the documentation - [X] I've searched for existing issues and PRs
area: request
low
Major
2,682,676,995
kubernetes
Failure cluster [34ae9536...] [sig-node] [sig-windows] Container runtime failed test
### Failure cluster [34ae95361eb5abbcb926](https://go.k8s.io/triage#34ae95361eb5abbcb926) ![image](https://github.com/user-attachments/assets/f4fe5ffb-9bb5-4087-969c-a02084e602ee) ##### Error text: ``` [FAILED] Timed out after 300.000s. Expected <v1.PodPhase>: Failed to equal <v1.PodPhase>: Succeeded In [It] at: k8s.io/kubernetes/test/e2e/common/node/runtime.go:157 @ 11/13/24 11:24:41.726 ``` #### Recent failures: [11/22/2024, 4:01:07 AM ci-kubernetes-e2e-windows-containerd-gce-master](https://prow.k8s.io/view/gs/kubernetes-ci-logs/logs/ci-kubernetes-e2e-windows-containerd-gce-master/1859794199298183168) [11/22/2024, 3:14:07 AM ci-kubernetes-e2e-windows-win2022-containerd-gce-master](https://prow.k8s.io/view/gs/kubernetes-ci-logs/logs/ci-kubernetes-e2e-windows-win2022-containerd-gce-master/1859782365962833920) [11/21/2024, 11:14:03 PM ci-kubernetes-e2e-windows-win2022-containerd-gce-master](https://prow.k8s.io/view/gs/kubernetes-ci-logs/logs/ci-kubernetes-e2e-windows-win2022-containerd-gce-master/1859721958103453696) [11/21/2024, 8:00:04 PM ci-kubernetes-e2e-windows-containerd-gce-master](https://prow.k8s.io/view/gs/kubernetes-ci-logs/logs/ci-kubernetes-e2e-windows-containerd-gce-master/1859673139961663488) [11/21/2024, 7:14:04 PM ci-kubernetes-e2e-windows-win2022-containerd-gce-master](https://prow.k8s.io/view/gs/kubernetes-ci-logs/logs/ci-kubernetes-e2e-windows-win2022-containerd-gce-master/1859661559568011264) /kind failing-test /kind flake Flake > 65% occurrence /sig node /sig windows
sig/node,kind/flake,sig/windows,kind/failing-test,needs-triage
low
Critical
2,682,679,379
pytorch
`torch.det` with python 3.10 and torch 2.5.0+cu121 raises RuntimeError
### 🐛 Describe the bug With python 3.10 and torch 2.5.0+cu121, `torch.det` on a cuda tensor raises the following error: ``` RuntimeError: Error in dlopen for library libnvrtc.so.12and libnvrtc-XXXXXXXX.so.12 ``` Code to reproduce: ```python import torch torch.det(torch.rand(4, 4).cuda()) ``` ### Versions PyTorch version: 2.5.0+cu121 Is debug build: False CUDA used to build PyTorch: 12.1 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.10.9 (main, Feb 8 2023, 09:53:56) [GCC 11.3.0] (64-bit runtime) Python platform: Linux-6.8.0-49-generic-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 2070 with Max-Q Design Nvidia driver version: 535.183.01 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 12 On-line CPU(s) list: 0-11 Vendor ID: GenuineIntel Model name: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz CPU family: 6 Model: 158 Thread(s) per core: 2 Core(s) per socket: 6 Socket(s): 1 Stepping: 10 CPU max MHz: 4500,0000 CPU min MHz: 800,0000 BogoMIPS: 5199.98 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb pti ssbd ibrs ibpb stibp tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid mpx rdseed adx smap clflushopt intel_pt xsaveopt xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp vnmi md_clear flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 192 KiB (6 instances) L1i cache: 192 KiB (6 instances) L2 cache: 1,5 MiB (6 instances) L3 cache: 12 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-11 Vulnerability Gather data sampling: Mitigation; Microcode Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled Vulnerability L1tf: Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable Vulnerability Mds: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Meltdown: Mitigation; PTI Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Mitigation; IBRS Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; IBRS; IBPB conditional; STIBP conditional; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Mitigation; Microcode Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.1.3 [pip3] torch==2.5.0+cu121 [conda] Could not collect cc @seemethere @malfet @osalpekar @atalman @ptrblck @msaroufim
module: binaries,module: cuda,triaged
low
Critical
2,682,723,393
rust
Tracking issue for release notes of #133293: Updates Solaris target information, adds Solaris maintainer
This issue tracks the release notes text for #133293. ### Steps - [ ] Proposed text is drafted by PR author (or team) making the noteworthy change. - [ ] Issue is nominated for release team review of clarity for wider audience. - [ ] Release team includes text in release notes/blog posts. ### Release notes text The responsible team for the underlying change should edit this section to replace the automatically generated link with a succinct description of what changed, drawing upon text proposed by the author (either in discussion or through direct editing). ````markdown # Compatibility notes - [Increase `sparcv9-sun-solaris` and `x86_64-pc-solaris` Solaris baseline to 11.4.](https://github.com/rust-lang/rust/pull/133293) ```` > [!TIP] > Use the [previous releases](https://doc.rust-lang.org/nightly/releases.html) categories to help choose which one(s) to use. > The category will be de-duplicated with all the other ones by the release team. > > *More than one section can be included if needed.* ### Release blog section If the change is notable enough for inclusion in the blog post, the responsible team should add content to this section. *Otherwise leave it empty.* ````markdown ```` cc @psumbera, @Noratrieb -- origin issue/PR authors and assignees for starting to draft text
T-compiler,relnotes,O-solaris,relnotes-tracking-issue
low
Minor
2,682,734,858
next.js
Turbopack does not respect forceSwcTransforms
### Link to the code that reproduces this issue https://codesandbox.io/p/devbox/peaceful-bhabha-n67k3g ### To Reproduce 1. Have a next config: ``` const nextConfig = { experimental: { forceSwcTransforms: true, turbo: { rules: { "*.svg": { loaders: ["@svgr/webpack"], exclude: /node_modules/, as: "*.js", }, }, }, }, }; ``` 2. Have a babel file in root 3. Run `next dev --turbopack` ### Current vs. Expected behavior You are using configuration and/or tools that are not yet supported by Next.js with Turbopack: Babel detected (babel.config.js) Babel is not yet supported. To use Turbopack at the moment, you'll need to remove your usage of Babel. - Unsupported Next.js configuration option(s) (next.config.js) To use Turbopack, remove the following configuration options: - experimental.forceSwcTransforms If you cannot make the changes above, but still want to try out Next.js with Turbopack, create the Next.js playground app by running the following commands: yarn create next-app --example with-turbopack with-turbopack-app cd with-turbopack-app yarn run dev ⚠ Learn more about Next.js and Turbopack: https://nextjs.link/with-turbopack Expected: The build should succeed, same as it does without `--turbopack`. ### Provide environment information ```bash Operating System: Platform: darwin Arch: arm64 Version: Darwin Kernel Version 24.0.0: Mon Aug 12 20:51:54 PDT 2024; root:xnu-11215.1.10~2/RELEASE_ARM64_T6000 Available memory (MB): 16384 Available CPU cores: 8 Binaries: Node: 20.11.0 npm: 10.2.4 Yarn: N/A pnpm: N/A Relevant Packages: next: 15.0.3 // Latest available version is detected (15.0.3). eslint-config-next: N/A react: 18.3.1 react-dom: 18.3.1 typescript: 5.6.3 Next.js Config: output: N/A ``` ### Which area(s) are affected? (Select all that apply) Turbopack ### Which stage(s) are affected? (Select all that apply) next dev (local) ### Additional context _No response_
bug,Turbopack
low
Minor
2,682,752,756
ui
[bug]: cli does not work for simple javascript react code.
### Describe the bug I have created a react project without typescript in `Vite`, Try to install the shadcn using cli it does not work. ```cmd PS D:\User\code\react-test> npx shadcn@latest init ✔ Preflight checks. ✔ Verifying framework. Found Vite. ✔ Validating Tailwind CSS. ✖ Validating import alias. No import alias found in your tsconfig.json file. Visit https://ui.shadcn.com/docs/installation/vite to learn how to set an import alias. ``` `tailwind.config.js`: ```js /** @type {import('tailwindcss').Config} */ export default { content: ['./index.html', './src/**/*.{js,jsx}'], theme: { extend: {}, }, plugins: [], }; ``` `vite.config.js`: ```js import { defineConfig } from 'vite'; import react from '@vitejs/plugin-react'; // https://vite.dev/config/ export default defineConfig({ plugins: [react()], resolve: { alias: { '@': path.resolve(__dirname, './src'), }, }, }); ``` ### Affected component/components cli ### How to reproduce 1. Create a new project with vite without ts. 2. try to add cli after adding tailwindcss ### Codesandbox/StackBlitz link https://github.com ### Logs _No response_ ### System Info ```bash Nodejs: 20, React: 18.3.1 ``` ### Before submitting - [X] I've made research efforts and searched the documentation - [X] I've searched for existing issues
bug
low
Critical
2,682,841,285
godot
Godot4.4-dev5: `ClassDB` provides classes AnimationNodeStartState and AnimationNodeEndStatewhere which are not registered
### Tested versions v4.4.dev5.mono.official [9e6098432] ### System information all ### Issue description I iterate over all classes provided by `ClassDB` for testing. Using `ClassDB:get_class_list()` With Godot4.4.dev5 there is now “AnimationNodeStartState”, “AnimationNodeEndState” there are not documented and cannot be instantiated. ### Steps to reproduce Can be verified by ``` extends Node func _ready() -> void: prints("AnimationNodeStartState class_exists:", ClassDB.class_exists("AnimationNodeStartState")) prints("AnimationNodeStartState can_instantiate:", ClassDB.can_instantiate("AnimationNodeStartState")) # compile error AnimationNodeStartState.new() ``` output: ``` AnimationNodeStartState class_exists: true AnimationNodeStartState can_instantiate: true ```` errors: ``` res://test.gd:7 - Parse Error: Native class GDScriptNativeClass used in script doesn't exist or isn't exposed. res://test.gd:7 - Parse Error: Static function "new()" not found in base "GDScriptNativeClass". ``` ### Minimal reproduction project (MRP) n/a
bug,topic:core,regression,topic:animation
low
Critical
2,682,847,202
react
[React 19] ForwardRef props are not referentially stable, breaking downstream memoizations
## Summary I don't know if this is a known behaviour or a bug, but something that's worth highlighting at least. ForwardRef components are not deprecated, but they're not perfectly backwards compatible either. The mere existance of `ref` prop on a ForwardRef component, even if `undefined`, makes the component `props` referentially unstable, breaking a whole host of downstream memoizations. Reproduction: https://codesandbox.io/p/sandbox/youthful-faraday-8m98cd?file=%2Fsrc%2FApp.tsx%3A34%2C23 React 18: https://codesandbox.io/p/sandbox/youthful-faraday-forked-32lrwm?workspaceId=8a8eeabe-fead-479a-a993-25a9868e8015 If it's a known behaviour – please highlight this in the docs. Don't think we would have gone ahead with upgrading yet until some of our dependencies would be supporting React 19, because a whole host of packages (charting, datagrids, etc.) that are performance sensitive, suddenly had performance issues. If not, it needs some attention, as it has pretty bad performance implications. I believe a lot of maintainers are not dropping ForwardRef yet, because they think it's perfectly backwards compatible, and it's easier to maintain backwards compatibility for them.
React 19
low
Critical
2,682,857,646
transformers
SmolLM is ExecuTorch Compatible
### Feature request ### Feature request Enable SmolLM to ["Export to ExecuTorch"](https://github.com/huggingface/transformers/issues/32253) workflow. #### Instructions Instructions of how to enable this model for ExecuTorch: 1. Export the model to ExportIR. For LLM, to run with performance, typically you will need to export the model with cache. #34101 is a reference of how to export and validate the model. Note that you may run into some export issue and it may require fixes in the modeling code. 2. Lower the model to ExecuTorch (to generate a .pte file). You will need to clone the github repo and create a recipe to lower the model. For example lowering the to XNNPACK is the simplest way. See the example code here: https://github.com/pytorch/executorch/blob/release/0.4/extension/export_util/export_hf_model.py#L89L106 3. Run the model with ExecuTorch. You can follow these instructions to build and run the executor runtime for llama: https://github.com/pytorch/executorch/tree/release/0.4/examples/models/llama2#step-4-run-on-your-computer-to-validate (Optional) Congrats! Once you complete step 1-3, you will be able to run the model on a host machine. Now if you would to go further like making the model faster, smaller, cheaper for your model use-case, you can create more complicated recipes with quantizations and delegations for different HW accelerators. You can find more tutorials on our website, for example to optimize and run the model with Core ML on Apple’s platform: https://pytorch.org/executorch/stable/build-run-coreml.html ### Motivation See details in #32253 ### Your contribution TBD
Feature request,ExecuTorch
low
Major
2,682,887,332
next.js
`webpackPrefetch: true` magic comment doesn't work in next v15.0.3
### Link to the code that reproduces this issue https://github.com/gavrilikhin-d/repro ### To Reproduce Test prefetching in production mode 1. ```bash npm install npm run build npm run start 2. Open http://localhost:3000 3. Open the Network tab in the browser's developer tools 4. Click on the "Load Dynamic Component" 5. See no prefetching happening ### Current vs. Expected behavior Prefetching should work ### Provide environment information ```bash Operating System: Platform: darwin Arch: arm64 Version: Darwin Kernel Version 24.1.0: Thu Oct 10 21:05:14 PDT 2024; root:xnu-11215.41.3~2/RELEASE_ARM64_T8103 Available memory (MB): 8192 Available CPU cores: 8 Binaries: Node: 22.9.0 npm: 10.8.3 Yarn: 1.22.22 pnpm: N/A Relevant Packages: next: 15.0.3 // Latest available version is detected (15.0.3). eslint-config-next: N/A react: 19.0.0-rc-66855b96-20241106 react-dom: 19.0.0-rc-66855b96-20241106 typescript: 5.6.3 Next.js Config: output: N/A ``` ### Which area(s) are affected? (Select all that apply) Lazy Loading, Webpack ### Which stage(s) are affected? (Select all that apply) next build (local), next start (local) ### Additional context Broken since `15.0.3-canary.7`, because on `15.0.3-canary.6` it works
bug,Webpack,Lazy Loading
low
Critical
2,683,019,203
next.js
`“use cache”` does not serialize the serializable value (but `unstable_cache` serializes)
### Link to the code that reproduces this issue https://codesandbox.io/p/devbox/keen-cloud-gggnf4?embed=1 ### To Reproduce unstable_cache serializes everything and everything works. All logs are output to the console 1. Try entering mail in the field with unstable_cache 2. Try to enter mail again in the field with unstable_cache and look at the logs (make sure there are no errors) 3. Try to enter the mail again in the “use cache” field and make sure that the error pops up. ``` Error: Only plain objects, and a few built-ins, can be passed to Client Components from Server Components. Classes or null prototypes are not supported. [{}] ^^ at stringify (<anonymous>) Error while saving cache key: ["development","c04d358ed385c8992fa9fcf45e6ff96556234302f3",[{"ctx":{},"type":"query","path":"user.getByEmail","rawInput":"[email protected]","meta":"$undefined","input":"[email protected]","next":"$T"}]] Error: Only plain objects, and a few built-ins, can be passed to Client Components from Server Components. Classes or null prototypes are not supported. [{}] ^^ ``` BONUS: 1. Try replacing `<main>` in `page.tsx` with a fragment (empty tag) and make sure the error does not correspond to reality ### Current vs. Expected behavior Current: error Expected: no error ### Provide environment information ```bash Operating System: Platform: win32 Arch: x64 Version: Windows 11 Pro Available memory (MB): 16320 Available CPU cores: 6 Binaries: Node: 22.10.0 npm: 10.9.0 Yarn: N/A pnpm: 9.12.2 Relevant Packages: next: 15.0.4-canary.22 // Codesandbox: (15.0.4-canary.23) eslint-config-next: 15.0.0 react: 19.0.0-rc-380f5d67-20241113 react-dom: 19.0.0-rc-380f5d67-20241113 typescript: 5.7.1-rc Next.js Config: output: standalone ``` ### Which area(s) are affected? (Select all that apply) dynamicIO ### Which stage(s) are affected? (Select all that apply) next dev (local) ### Additional context An unexplained error is displayed when trying to serialize a value. But `“use cache”` cannot serialize it, although `unstable_cache` serializes everything fine
bug,dynamicIO
low
Critical
2,683,055,870
go
proposal: net/http: add methods to Request for setting and getting Bearer tokens
### Proposal Details I propose the addition of the following two methods: ```go // SetBearerAuth, if the provided token is valid, sets the request's // Authorization header to use the Bearer authentication scheme with that token // and returns true. // Otherwise, it leaves the request unchanged and returns false. // See RFC 6750, Section 2.1. func (*Request) SetBearerAuth(token string) bool // BearerAuth returns the token provided in the request's // Authorization header, if the request uses the Bearer authentication scheme. func (r *Request) BearerAuth() (token string, ok bool) ``` --- Those methods parallel ones related to HTTP Basic Authentication already exported by net/http: - https://pkg.go.dev/net/http#Request.SetBasicAuth - https://pkg.go.dev/net/http#Request.BasicAuth At first, you may think that the logic for getting/setting a Bearer token is so trivial that it doesn't deserve its own methods in the standard library. However, I've come to realise that many implementations out there suffer from correctness issues and/or performance issues; here are two examples (among others): - [Many](https://github.com/search?q=language%3AGo+%2F%22Bearer+%22%2F+%2F%5C.Header%5C.Get%5C%28%22Authorization%22%5C%29%2F&type=code) implementations [mistakenly](https://auth0.com/blog/the-bearer-token-case/) parse "Bearer" as case-sensitive, which may cause interoperability issues. - [Many](https://github.com/search?q=language%3AGo+%2Fhttp%5C.Request%2F+%2Fstrings%5C.Split%5C%28.*%2C+%22+%22%5C%29%2F+%2F%5C.Header%5C.Get%5C%28%22Authorization%22%5C%29%2F&type=code) implementations naively rely on [`strings.Split`](https://pkg.go.dev/strings#Split), thereby facilitating [denial-of-service attacks](https://owasp.org/www-community/attacks/Denial_of_Service); see also [this tangentially related issue](https://github.com/rs/cors/issues/170) (now resolved) in [github.com/rs/cors](https://github.com/rs/cors). Moreover, and despite my lack of data to back up the following claim, I believe that Bearer is one of the most popular authentication scheme nowadays (likely even more popular than Basic), given the prominent role it plays in OAuth 2.x and OpenID Connect. Therefore, the logic required for parsing a request's Authorization header that uses Bearer arguably deserves to be enshrined in the standard library. [This playground](https://go.dev/play/p/X3VaUBsWgpm) contains a standalone implementation as well as a test suite. For convenience, `SetBearerAuth` and `BearerAuth` are presented there as package-level functions rather than as `*Request` methods.
Proposal
medium
Major
2,683,058,030
pytorch
numpy's division compiled but returning Different results
### 🐛 Describe the bug I want to compile a model with torch.compile One of the snippets I've used is ```python print(type(self.upsample_scale), self.upsample_scale, "self.upsample_scale") print(1/self.upsample_scale, type(1/self.upsample_scale), "1/self.upsample_scale") rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2), scale_factor=1/self.upsample_scale, mode="linear").transpose(1, 2) ``` And this part is actually raising the issue. Is it an issue with the compilation of numpy's division. As I see type changes before and after compilation. Or is it an issue with interpolate function, not getting proper arguments. I further tried a simple code ```python def foo(x): return 1/x x = np.float64(12) print(foo(x)) print(type(foo(x))) # Output # 0.08333333333333333 # <class 'numpy.float64'> ``` and ```python @torch.compile def foo(x): return 1/x x = np.float64(12) print(foo(x)) print(type(foo(x))) # Output # 0.08333333333333333 # <class 'numpy.ndarray'> ``` Is it an issue with numpy's division compilation or is the issue of passing this value in interpolate should cause issue or not. ### Error logs Before compile <class 'numpy.int64'> 300 self.upsample_scale 0.0033333333333333335 <class 'numpy.float64'> 1/self.upsample_scale And everything works After Compile same code returns <class 'numpy.int64'> 300 self.upsample_scale 0.0033333334 <class 'numpy.ndarray'> 1/self.upsample_scale ```txt --------------------------------------------------------------------------- TypeError Traceback (most recent call last) Cell In[11], line 33 31 for text in texts: 32 start_time = time.time() ---> 33 out = infer(text, inp_audio) 34 print(f"Time taken: {time.time() - start_time}") 35 ipd.display(ipd.Audio(out, rate=24000)) Cell In[11], line 18, in infer(text, audio) 15 wave_tensor = torch.from_numpy(wave).float().to(device) 16 encoded = encoder(wave_tensor) ---> 18 outs = model(tokens, input_lengths, encoded).cpu().numpy()[..., :-50] 19 return outs File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1736, in Module._wrapped_call_impl(self, *args, **kwargs) 1734 return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc] 1735 else: -> 1736 return self._call_impl(*args, **kwargs) File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1747, in Module._call_impl(self, *args, **kwargs) 1742 # If we don't have any hooks, we want to skip the rest of the logic in 1743 # this function, and just call forward. 1744 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks 1745 or _global_backward_pre_hooks or _global_backward_hooks 1746 or _global_forward_hooks or _global_forward_pre_hooks): -> 1747 return forward_call(*args, **kwargs) 1749 result = None 1750 called_always_called_hooks = set() File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/.venv/lib/python3.12/site-packages/torch/_dynamo/eval_frame.py:465, in _TorchDynamoContext.__call__.<locals>._fn(*args, **kwargs) 460 saved_dynamic_layer_stack_depth = ( 461 torch._C._functorch.get_dynamic_layer_stack_depth() 462 ) 464 try: --> 465 return fn(*args, **kwargs) 466 finally: 467 # Restore the dynamic layer stack depth if necessary. 468 torch._C._functorch.pop_dynamic_layer_stack_and_undo_to_depth( 469 saved_dynamic_layer_stack_depth 470 ) File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1736, in Module._wrapped_call_impl(self, *args, **kwargs) 1734 return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc] 1735 else: -> 1736 return self._call_impl(*args, **kwargs) File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1747, in Module._call_impl(self, *args, **kwargs) 1742 # If we don't have any hooks, we want to skip the rest of the logic in 1743 # this function, and just call forward. 1744 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks 1745 or _global_backward_pre_hooks or _global_backward_hooks 1746 or _global_forward_hooks or _global_forward_pre_hooks): -> 1747 return forward_call(*args, **kwargs) 1749 result = None 1750 called_always_called_hooks = set() File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/StyleTTS2/Models/StyleTTS2Catalan/models.py:3042, in StyleTTS2Catalan.forward(self, tokens, input_lengths, ref_s, alpha, beta, diffusion_steps, embedding_scale, device) 3039 self.text_aligner = ASRCNN(**args.asr_config) 3040 self.pitch_extractor = JDCNet(num_class=1, seq_len=192) -> 3042 def forward(self, tokens, input_lengths, ref_s, alpha=0.3, beta=0.7, 3043 diffusion_steps=5, embedding_scale=1, device='cuda'): 3044 # Prepare text mask 3045 text_mask = length_to_mask(input_lengths).to(device) 3047 # Text encoding File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/StyleTTS2/Models/StyleTTS2Catalan/models.py:3045, in torch_dynamo_resume_in_forward_at_3045(___stack0, self, tokens, input_lengths, ref_s, alpha, beta, diffusion_steps, embedding_scale, device) 3042 def forward(self, tokens, input_lengths, ref_s, alpha=0.3, beta=0.7, 3043 diffusion_steps=5, embedding_scale=1, device='cuda'): 3044 # Prepare text mask -> 3045 text_mask = length_to_mask(input_lengths).to(device) 3047 # Text encoding 3048 t_en = self.text_encoder(tokens, input_lengths, text_mask) File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/StyleTTS2/Models/StyleTTS2Catalan/models.py:3048, in torch_dynamo_resume_in_forward_at_3048(___stack0, self, tokens, input_lengths, ref_s, alpha, beta, diffusion_steps, embedding_scale, device, text_mask) 3045 text_mask = length_to_mask(input_lengths).to(device) 3047 # Text encoding -> 3048 t_en = self.text_encoder(tokens, input_lengths, text_mask) 3050 # Duration prediction with BERT and subsequent processing 3051 bert_dur = self.bert(tokens, attention_mask=(~text_mask).int()) File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/StyleTTS2/Models/StyleTTS2Catalan/models.py:3055, in torch_dynamo_resume_in_forward_at_3055(___stack0, self, input_lengths, ref_s, alpha, beta, device, text_mask, t_en, d_en) 3052 d_en = self.bert_encoder(bert_dur).transpose(-1, -2) 3054 # Sample from the latent space using diffusion -> 3055 s_pred = self.sampler( 3056 noise=torch.randn((1, 256)).unsqueeze(1).to(device), 3057 embedding=bert_dur, 3058 embedding_scale=embedding_scale, 3059 features=ref_s, 3060 num_steps=diffusion_steps 3061 ).squeeze(1) 3063 # Split latent variables into `s` and `ref` 3064 s = s_pred[:, 128:] File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/StyleTTS2/Models/StyleTTS2Catalan/models.py:3104, in torch_dynamo_resume_in_forward_at_3078(___stack0, self, input_lengths, device, t_en, s, ref) 3101 asr = asr_new 3103 # Decoder output -> 3104 out = self.decoder(asr, F0_pred, N_pred, ref.squeeze().unsqueeze(0)) 3106 return out.squeeze() File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1736, in Module._wrapped_call_impl(self, *args, **kwargs) 1734 return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc] 1735 else: -> 1736 return self._call_impl(*args, **kwargs) File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1747, in Module._call_impl(self, *args, **kwargs) 1742 # If we don't have any hooks, we want to skip the rest of the logic in 1743 # this function, and just call forward. 1744 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks 1745 or _global_backward_pre_hooks or _global_backward_hooks 1746 or _global_forward_hooks or _global_forward_pre_hooks): -> 1747 return forward_call(*args, **kwargs) 1749 result = None 1750 called_always_called_hooks = set() File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/StyleTTS2/Models/StyleTTS2Catalan/models.py:2826, in Decoder.forward(self, asr, F0_curve, N, s) 2818 self.asr_res = nn.Sequential( 2819 weight_norm(nn.Conv1d(512, 64, kernel_size=1)), 2820 ) 2823 self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes) -> 2826 def forward(self, asr, F0_curve, N, s): 2827 if self.training: 2828 downlist = [0, 3, 7] File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1736, in Module._wrapped_call_impl(self, *args, **kwargs) 1734 return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc] 1735 else: -> 1736 return self._call_impl(*args, **kwargs) File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1747, in Module._call_impl(self, *args, **kwargs) 1742 # If we don't have any hooks, we want to skip the rest of the logic in 1743 # this function, and just call forward. 1744 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks 1745 or _global_backward_pre_hooks or _global_backward_hooks 1746 or _global_forward_hooks or _global_forward_pre_hooks): -> 1747 return forward_call(*args, **kwargs) 1749 result = None 1750 called_always_called_hooks = set() File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/StyleTTS2/Models/StyleTTS2Catalan/models.py:2759, in Generator.forward(self, x, s, f0) 2756 self.ups.apply(init_weights) 2757 self.conv_post.apply(init_weights) -> 2759 def forward(self, x, s, f0): 2761 f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t 2763 har_source, noi_source, uv = self.m_source(f0) File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1736, in Module._wrapped_call_impl(self, *args, **kwargs) 1734 return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc] 1735 else: -> 1736 return self._call_impl(*args, **kwargs) File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1747, in Module._call_impl(self, *args, **kwargs) 1742 # If we don't have any hooks, we want to skip the rest of the logic in 1743 # this function, and just call forward. 1744 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks 1745 or _global_backward_pre_hooks or _global_backward_hooks 1746 or _global_forward_hooks or _global_forward_pre_hooks): -> 1747 return forward_call(*args, **kwargs) 1749 result = None 1750 called_always_called_hooks = set() File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/StyleTTS2/Models/StyleTTS2Catalan/models.py:2695, in SourceModuleHnNSF.forward(self, x) 2692 self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) 2693 self.l_tanh = torch.nn.Tanh() -> 2695 def forward(self, x): 2696 """ 2697 Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) 2698 F0_sampled (batchsize, length, 1) 2699 Sine_source (batchsize, length, 1) 2700 noise_source (batchsize, length 1) 2701 """ 2702 # source for harmonic branch File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1736, in Module._wrapped_call_impl(self, *args, **kwargs) 1734 return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc] 1735 else: -> 1736 return self._call_impl(*args, **kwargs) File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/.venv/lib/python3.12/site-packages/torch/nn/modules/module.py:1747, in Module._call_impl(self, *args, **kwargs) 1742 # If we don't have any hooks, we want to skip the rest of the logic in 1743 # this function, and just call forward. 1744 if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks 1745 or _global_backward_pre_hooks or _global_backward_hooks 1746 or _global_forward_hooks or _global_forward_pre_hooks): -> 1747 return forward_call(*args, **kwargs) 1749 result = None 1750 called_always_called_hooks = set() File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/StyleTTS2/Models/StyleTTS2Catalan/models.py:2632, in SineGen.forward(self, f0) 2629 sines = torch.cos(i_phase * 2 * np.pi) 2630 return sines -> 2632 def forward(self, f0): 2633 """ sine_tensor, uv = forward(f0) 2634 input F0: tensor(batchsize=1, length, dim=1) 2635 f0 for unvoiced steps should be 0 2636 output sine_tensor: tensor(batchsize=1, length, dim) 2637 output uv: tensor(batchsize=1, length, 1) 2638 """ 2639 f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, 2640 device=f0.device) File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/StyleTTS2/Models/StyleTTS2Catalan/models.py:2557, in SineGen._f02sine(self, f0_values) 2554 uv = (f0 > self.voiced_threshold).type(torch.float32) 2555 return uv -> 2557 def _f02sine(self, f0_values): 2558 """ f0_values: (batchsize, length, dim) 2559 where dim indicates fundamental tone and overtones 2560 """ 2561 # convert to F0 in rad. The interger part n can be ignored 2562 # because 2 * np.pi * n doesn't affect phase File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/StyleTTS2/Models/StyleTTS2Catalan/models.py:2585, in torch_dynamo_resume_in__f02sine_at_2585(___stack0, self, rad_values) 2571 # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad) 2572 if not self.flag_for_pulse: 2573 # # for normal case 2574 (...) 2583 2584 # phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi -> 2585 print(type(self.upsample_scale), self.upsample_scale, "self.upsample_scale") 2586 print(1/self.upsample_scale, type(1/self.upsample_scale), "1/self.upsample_scale") 2587 rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2), 2588 scale_factor=1/self.upsample_scale, 2589 mode="linear").transpose(1, 2) File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/StyleTTS2/Models/StyleTTS2Catalan/models.py:2586, in torch_dynamo_resume_in__f02sine_at_2586(___stack0, self, rad_values) 2572 if not self.flag_for_pulse: 2573 # # for normal case 2574 (...) 2583 2584 # phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi 2585 print(type(self.upsample_scale), self.upsample_scale, "self.upsample_scale") -> 2586 print(1/self.upsample_scale, type(1/self.upsample_scale), "1/self.upsample_scale") 2587 rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2), 2588 scale_factor=1/self.upsample_scale, 2589 mode="linear").transpose(1, 2) 2590 print(rad_values.shape) File ~/Desktop/dev/aiml/audio/StyleTTS2-SageMaker/.venv/lib/python3.12/site-packages/torch/nn/functional.py:4559, in interpolate(input, size, scale_factor, mode, align_corners, recompute_scale_factor, antialias) 4557 if input.dim() == 3 and mode == "linear": 4558 assert align_corners is not None -> 4559 return torch._C._nn.upsample_linear1d( 4560 input, output_size, align_corners, scale_factors 4561 ) 4562 if input.dim() == 4 and mode == "bilinear": 4563 assert align_corners is not None TypeError: upsample_linear1d() received an invalid combination of arguments - got (Tensor, NoneType, bool, list), but expected one of: * (Tensor input, tuple of ints output_size, bool align_corners, tuple of floats scale_factors) didn't match because some of the arguments have invalid types: (Tensor, !NoneType!, bool, !list of [numpy.ndarray]!) * (Tensor input, tuple of ints output_size, bool align_corners, float scales = None, *, Tensor out = None) ``` ### Versions PyTorch version: 2.5.1+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 24.04.1 LTS (x86_64) GCC version: (Ubuntu 13.2.0-23ubuntu4) 13.2.0 Clang version: 18.1.3 (1ubuntu1) CMake version: version 3.28.3 Libc version: glibc-2.39 Python version: 3.12.3 (main, Nov 6 2024, 18:32:19) [GCC 13.2.0] (64-bit runtime) Python platform: Linux-6.8.0-49-generic-x86_64-with-glibc2.39 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3050 Laptop GPU Nvidia driver version: 550.120 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 48 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 16 On-line CPU(s) list: 0-15 Vendor ID: AuthenticAMD Model name: AMD Ryzen 7 6800H with Radeon Graphics CPU family: 25 Model: 68 Thread(s) per core: 2 Core(s) per socket: 8 Socket(s): 1 Stepping: 1 CPU(s) scaling MHz: 53% CPU max MHz: 4785.0000 CPU min MHz: 400.0000 BogoMIPS: 6388.18 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm debug_swap Virtualization: AMD-V L1d cache: 256 KiB (8 instances) L1i cache: 256 KiB (8 instances) L2 cache: 4 MiB (8 instances) L3 cache: 16 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-15 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Vulnerable: Safe RET, no microcode Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.0.2 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] torch==2.5.1 [pip3] torch-model-archiver==0.12.0 [pip3] torchaudio==2.5.1 [pip3] torchserve==0.12.0 [pip3] triton==3.1.0 [conda] Could not collect cc @mruberry @rgommers @chauhang @penguinwu
triaged,module: numpy,oncall: pt2
low
Critical
2,683,098,350
bitcoin
Add support for creating v3 raw transactions in `createrawtransaction` RPC
### Please describe the feature you'd like to see added. Currently, `createrawtransaction` RPC creates only v2 raw transaction, i.e. the first byte of the serialised transaction hex is `02`. It'd be helpful for the RPC to conditionally create V3 raw transactions if such intent is passed in the arguments of the RPC call. ### Is your feature related to a problem, if so please describe it. _No response_ ### Describe the solution you'd like - A new argument to the RPC call can be passed that allows the user to create v3 raw transactions conditionally. It can be either a `bool isV3` or `int version` (with sanity checks) whichever is most compatible with the current RPC nomenclature. - Default transaction version need not change as part of this solution. ### Describe any alternatives you've considered _No response_ ### Please leave any additional context Need to double check for conformity of v3 raw transactions with other RPCs. Though I didn't notice any issue with signing and broadcasting v3 transactions after manually updating the hex during testing TRUC transactions while coming up with [V28 Testing Guide](https://github.com/bitcoin-core/bitcoin-devwiki/wiki/28.0-Release-Candidate-Testing-Guide#2-v3-transactions-truc).
Feature
low
Minor
2,683,150,077
PowerToys
Fancyzones layout - Snap zone to existing window on the desktop.
### Description of the new feature / enhancement A method of editing a zone to exactly match the edges od a window on the desktop. Maybe key combo while dragging zone highlights a window while hovering over it, then Dropping the Zone snaps it to the dimensions of that window. Maybe an option to snap the edge of a zone to the window edges of Desktop windows. ### Scenario when this would be used? I have a specific app that I sized to the exact size that I need. I cannot get a Zone to exactly match the window size. The dimensions reported by Fanchzones does not match the same dimensions of the desktop, maybe due to scaling of the desktop. ### Supporting information _No response_
Needs-Triage
low
Minor
2,683,152,024
rust
`AtomicUsize::from_mut` has incorrect alignment requirements in docs
### Location [`core::sync::atomic::AtomicUsize::from_mut`](https://doc.rust-lang.org/nightly/core/sync/atomic/struct.AtomicUsize.html#method.from_mut) [`core::sync::atomic::AtomicIsize::from_mut`](https://doc.rust-lang.org/nightly/core/sync/atomic/struct.AtomicIsize.html#method.from_mut) ### Summary The documentation for [`AtomicUsize::from_mut`](https://doc.rust-lang.org/nightly/core/sync/atomic/struct.AtomicUsize.html#method.from_mut) claims that it's only available when `usize` has alignment 8, but in reality it's available when `usize` has alignment equal to its size (AFAICT), which is different on non-64-bit platforms. For example, this code compiles on 32-bit Linux: ```rust #![feature(atomic_from_mut)] use std::sync::atomic::AtomicUsize; pub fn main(){ let mut x: usize = 0; assert_eq!(std::mem::size_of_val(&x), 4); let _y: &mut AtomicUsize = AtomicUsize::from_mut(&mut x); } ``` [Godbolt](https://godbolt.org/z/jaEev1Wos) <!-- TRIAGEBOT_START --> <!-- TRIAGEBOT_ASSIGN_START --> <!-- TRIAGEBOT_ASSIGN_DATA_START$${"user":"ARandomDev99"}$$TRIAGEBOT_ASSIGN_DATA_END --> <!-- TRIAGEBOT_ASSIGN_END --> <!-- TRIAGEBOT_END -->
E-easy,E-help-wanted,A-docs,T-libs
low
Minor
2,683,231,383
deno
Vitest Coverage v8 & Istanbul Providers Broken
Relates to #23882. Version: Deno 2.1.1 The v8 provider returns 0 for everything. The istanbul provider is just wrong: <img width="977" alt="Screenshot 2024-11-22 at 7 25 54 AM" src="https://github.com/user-attachments/assets/7cf53583-32ba-47ca-a10f-095c1f32ad32"> <img width="492" alt="Screenshot 2024-11-22 at 7 26 30 AM" src="https://github.com/user-attachments/assets/e532eec3-ce1c-4bee-ac13-b590d5ad82fc"> <img width="552" alt="Screenshot 2024-11-22 at 7 28 21 AM" src="https://github.com/user-attachments/assets/71ab738e-c354-402f-b681-2d2291a33edd"> I think instanbul is mostly just mapping the line #s wrong, but it generally looks accurate-ish.
debugger,testing,node compat
low
Critical
2,683,249,373
electron
Exiting GPU process due to errors during initialization
### Preflight Checklist - [x] I have read the [Contributing Guidelines](https://github.com/electron/electron/blob/main/CONTRIBUTING.md) for this project. - [x] I agree to follow the [Code of Conduct](https://github.com/electron/electron/blob/main/CODE_OF_CONDUCT.md) that this project adheres to. - [x] I have searched the [issue tracker](https://www.github.com/electron/electron/issues) for a bug report that matches the one I want to file, without success. ### Electron Version 33.2.0 ### What operating system(s) are you using? Ubuntu ### Operating System Version 20.04.6 ### What arch are you using? x64 ### Last Known Working Electron version _No response_ ### Expected Behavior No error being outputted in the console ### Actual Behavior When running `electron .` in the project folder, this is the output: ``` > [email protected] start > electron . [8642:1122/134210.699969:ERROR:viz_main_impl.cc(181)] Exiting GPU process due to errors during initialization ``` ### Testcase Gist URL _No response_ ### Additional Information The system is a freshly created Ubuntu VM connecting using remote desktop. The app is based on this repo: https://github.com/serialport/electron-serialport/ The application had been built initially (4 years ago) on a Windows PC that then had been formatted, and I have been asked to try to create a new building environment. I started from scratch using the repo mentioned above and imported the logic of the app to avoid issues caused by using obsolete versions of the libraries used. The weird thing is that the window opens and load the content as expected (just loading a URL). I am not sure what this error is even referring to, as the message doesn't give more details. Can someone at least explain what this error is about so I can further investigate?
platform/linux,bug :beetle:
low
Critical
2,683,275,841
rust
Confusing error message when using re-exported struct [E0423]
### Code ```Rust pub use my_mod::MyStruct; // this pub use is causing the problem mod my_mod { #[derive(Debug)] pub struct MyStruct(u32); mod my_sub_mod { use crate::MyStruct; // import the rexported struct fn my_func() { let s = MyStruct(42); println!("MyStruct: {:?}", s); } } } ``` ### Current output ```Shell error[E0423]: expected function, tuple struct or tuple variant, found struct `MyStruct` --> src/lib.rs:11:21 | 11 | let s = MyStruct(42); | ^^^^^^^^ For more information about this error, try `rustc --explain E0423`. ``` ### Desired output ```Shell Either having no error or the error saying the import is bad ``` ### Rust Version ```Shell rustc 1.81.0 ``` ### Anything else? This is a really confusing message that is not helping
A-diagnostics,T-compiler
low
Critical
2,683,276,128
next.js
Relay multi-project configuration doesn't work
### Link to the code that reproduces this issue https://codesandbox.io/p/devbox/crimson-frog-go8s7s ### To Reproduce Provide a Relay configuration that makes use of the multi-project format: ```js module.exports = { root: ".", // For simplicity I'm defining just one project but it doesn't make any difference sources: { ".": "repro", }, excludes: ["**/node_modules/**", "**/__mocks__/**", "**/__generated__/**"], projects: { "repro": { output: "__generated__", language: "typescript", schema: "schema.graphql", }, }, }; ``` Start the app (both dev mode or build) and observe the Relay integration doesn't work. ### Current vs. Expected behavior ``` ⚠ Invalid next.config.mjs options detected: ⚠ "compiler.relay.src" is missing, expected string ⚠ See more info here: https://nextjs.org/docs/messages/invalid-next-config ``` ### Provide environment information ```bash Operating System: Platform: linux Arch: x64 Version: #1 SMP PREEMPT_DYNAMIC Sun Aug 6 20:05:33 UTC 2023 Available memory (MB): 4102 Available CPU cores: 2 Binaries: Node: 20.9.0 npm: 9.8.1 Yarn: 1.22.19 pnpm: 8.10.2 Relevant Packages: next: 15.0.4-canary.23 // Latest available version is detected (15.0.4-canary.23). eslint-config-next: N/A react: 19.0.0-rc-380f5d67-20241113 react-dom: 19.0.0-rc-380f5d67-20241113 typescript: 5.3.3 Next.js Config: output: N/A Done in 3.69s. ``` ### Which area(s) are affected? (Select all that apply) Not sure ### Which stage(s) are affected? (Select all that apply) next dev (local), next build (local) ### Additional context _No response_
bug
low
Minor