NanoTouche2020-bm25 / README.md
tomaarsen's picture
tomaarsen HF staff
Update README.md
dd8619b verified
metadata
dataset_info:
  - config_name: corpus
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 12592148
        num_examples: 5745
    download_size: 7248012
    dataset_size: 12592148
  - config_name: queries
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 2609
        num_examples: 49
    download_size: 3144
    dataset_size: 2609
  - config_name: relevance
    features:
      - name: query-id
        dtype: string
      - name: positive-corpus-ids
        sequence: string
      - name: bm25-ranked-ids
        sequence: string
    splits:
      - name: train
        num_bytes: 12128462
        num_examples: 49
    download_size: 559820
    dataset_size: 12128462
configs:
  - config_name: corpus
    data_files:
      - split: train
        path: corpus/train-*
  - config_name: queries
    data_files:
      - split: train
        path: queries/train-*
  - config_name: relevance
    data_files:
      - split: train
        path: relevance/train-*
language:
  - en
tags:
  - sentence-transformers
size_categories:
  - 1K<n<10K

NanoBEIR Touche2020 with BM25 rankings

This dataset is an updated variant of NanoTouche2020, which is a subset of the Touche2020 dataset from the Benchmark for Information Retrieval (BEIR). NanoTouche2020 was created as a subset of the rather large BEIR, designed to be more efficient to run. This dataset adds a bm25-ranked-ids column to the relevance subset, which contains a ranking of every single passage in the corpus to the query.

This dataset is used in Sentence Transformers for evaluating CrossEncoder (i.e. reranker) models on NanoBEIR by reranking the top k results from BM25.