metadata
dataset_info:
- config_name: corpus
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 2740852
num_examples: 5035
download_size: 1772984
dataset_size: 2740852
- config_name: queries
features:
- name: _id
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 3132
num_examples: 50
download_size: 3453
dataset_size: 3132
- config_name: relevance
features:
- name: query-id
dtype: string
- name: positive-corpus-ids
sequence: string
- name: bm25-ranked-ids
sequence: string
splits:
- name: train
num_bytes: 3388510
num_examples: 50
download_size: 442548
dataset_size: 3388510
configs:
- config_name: corpus
data_files:
- split: train
path: corpus/train-*
- config_name: queries
data_files:
- split: train
path: queries/train-*
- config_name: relevance
data_files:
- split: train
path: relevance/train-*
language:
- en
tags:
- sentence-transformers
size_categories:
- 1K<n<10K
NanoBEIR NQ with BM25 rankings
This dataset is an updated variant of NanoNQ, which is a subset of the NQ dataset from the Benchmark for Information Retrieval (BEIR).
NQ was created as a subset of the rather large BEIR, designed to be more efficient to run. This dataset adds a bm25-ranked-ids
column to the relevance
subset, which contains a ranking of every single passage in the corpus to the query.
This dataset is used in Sentence Transformers for evaluating CrossEncoder (i.e. reranker) models on NanoBEIR by reranking the top k results from BM25.