repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
sequence
docstring
stringlengths
3
17.3k
docstring_tokens
sequence
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
lekhakpadmanabh/Summarizer
smrzr/core.py
_title_similarity_score
def _title_similarity_score(full_text, title): """Similarity scores for sentences with title in descending order""" sentences = sentence_tokenizer(full_text) norm = _normalize([title]+sentences) similarity_matrix = pairwise_kernels(norm, metric='cosine') return sorted(zip( similarity_matrix[0,1:], range(len(similarity_matrix)), sentences ), key = lambda tup: tup[0], reverse=True )
python
def _title_similarity_score(full_text, title): """Similarity scores for sentences with title in descending order""" sentences = sentence_tokenizer(full_text) norm = _normalize([title]+sentences) similarity_matrix = pairwise_kernels(norm, metric='cosine') return sorted(zip( similarity_matrix[0,1:], range(len(similarity_matrix)), sentences ), key = lambda tup: tup[0], reverse=True )
[ "def", "_title_similarity_score", "(", "full_text", ",", "title", ")", ":", "sentences", "=", "sentence_tokenizer", "(", "full_text", ")", "norm", "=", "_normalize", "(", "[", "title", "]", "+", "sentences", ")", "similarity_matrix", "=", "pairwise_kernels", "(", "norm", ",", "metric", "=", "'cosine'", ")", "return", "sorted", "(", "zip", "(", "similarity_matrix", "[", "0", ",", "1", ":", "]", ",", "range", "(", "len", "(", "similarity_matrix", ")", ")", ",", "sentences", ")", ",", "key", "=", "lambda", "tup", ":", "tup", "[", "0", "]", ",", "reverse", "=", "True", ")" ]
Similarity scores for sentences with title in descending order
[ "Similarity", "scores", "for", "sentences", "with", "title", "in", "descending", "order" ]
143456a48217905c720d87331f410e5c8b4e24aa
https://github.com/lekhakpadmanabh/Summarizer/blob/143456a48217905c720d87331f410e5c8b4e24aa/smrzr/core.py#L77-L91
train
lekhakpadmanabh/Summarizer
smrzr/core.py
_aggregrate_scores
def _aggregrate_scores(its,tss,num_sentences): """rerank the two vectors by min aggregrate rank, reorder""" final = [] for i,el in enumerate(its): for j, le in enumerate(tss): if el[2] == le[2]: assert el[1] == le[1] final.append((el[1],i+j,el[2])) _final = sorted(final, key = lambda tup: tup[1])[:num_sentences] return sorted(_final, key = lambda tup: tup[0])
python
def _aggregrate_scores(its,tss,num_sentences): """rerank the two vectors by min aggregrate rank, reorder""" final = [] for i,el in enumerate(its): for j, le in enumerate(tss): if el[2] == le[2]: assert el[1] == le[1] final.append((el[1],i+j,el[2])) _final = sorted(final, key = lambda tup: tup[1])[:num_sentences] return sorted(_final, key = lambda tup: tup[0])
[ "def", "_aggregrate_scores", "(", "its", ",", "tss", ",", "num_sentences", ")", ":", "final", "=", "[", "]", "for", "i", ",", "el", "in", "enumerate", "(", "its", ")", ":", "for", "j", ",", "le", "in", "enumerate", "(", "tss", ")", ":", "if", "el", "[", "2", "]", "==", "le", "[", "2", "]", ":", "assert", "el", "[", "1", "]", "==", "le", "[", "1", "]", "final", ".", "append", "(", "(", "el", "[", "1", "]", ",", "i", "+", "j", ",", "el", "[", "2", "]", ")", ")", "_final", "=", "sorted", "(", "final", ",", "key", "=", "lambda", "tup", ":", "tup", "[", "1", "]", ")", "[", ":", "num_sentences", "]", "return", "sorted", "(", "_final", ",", "key", "=", "lambda", "tup", ":", "tup", "[", "0", "]", ")" ]
rerank the two vectors by min aggregrate rank, reorder
[ "rerank", "the", "two", "vectors", "by", "min", "aggregrate", "rank", "reorder" ]
143456a48217905c720d87331f410e5c8b4e24aa
https://github.com/lekhakpadmanabh/Summarizer/blob/143456a48217905c720d87331f410e5c8b4e24aa/smrzr/core.py#L102-L112
train
lekhakpadmanabh/Summarizer
smrzr/core.py
_eval_meta_as_summary
def _eval_meta_as_summary(meta): """some crude heuristics for now most are implemented on bot-side with domain whitelists""" if meta == '': return False if len(meta)>500: return False if 'login' in meta.lower(): return False return True
python
def _eval_meta_as_summary(meta): """some crude heuristics for now most are implemented on bot-side with domain whitelists""" if meta == '': return False if len(meta)>500: return False if 'login' in meta.lower(): return False return True
[ "def", "_eval_meta_as_summary", "(", "meta", ")", ":", "if", "meta", "==", "''", ":", "return", "False", "if", "len", "(", "meta", ")", ">", "500", ":", "return", "False", "if", "'login'", "in", "meta", ".", "lower", "(", ")", ":", "return", "False", "return", "True" ]
some crude heuristics for now most are implemented on bot-side with domain whitelists
[ "some", "crude", "heuristics", "for", "now", "most", "are", "implemented", "on", "bot", "-", "side", "with", "domain", "whitelists" ]
143456a48217905c720d87331f410e5c8b4e24aa
https://github.com/lekhakpadmanabh/Summarizer/blob/143456a48217905c720d87331f410e5c8b4e24aa/smrzr/core.py#L115-L126
train
digidotcom/python-wvalib
wva/core.py
WVA.get_subscriptions
def get_subscriptions(self): """Return a list of subscriptions currently active for this WVA device :raises WVAError: if there is a problem getting the subscription list from the WVA :returns: A list of :class:`WVASubscription` instances """ # Example: {'subscriptions': ['subscriptions/TripDistance~sub', 'subscriptions/FuelRate~sub', ]} subscriptions = [] for uri in self.get_http_client().get("subscriptions").get('subscriptions'): subscriptions.append(self.get_subscription(uri.split("/")[-1])) return subscriptions
python
def get_subscriptions(self): """Return a list of subscriptions currently active for this WVA device :raises WVAError: if there is a problem getting the subscription list from the WVA :returns: A list of :class:`WVASubscription` instances """ # Example: {'subscriptions': ['subscriptions/TripDistance~sub', 'subscriptions/FuelRate~sub', ]} subscriptions = [] for uri in self.get_http_client().get("subscriptions").get('subscriptions'): subscriptions.append(self.get_subscription(uri.split("/")[-1])) return subscriptions
[ "def", "get_subscriptions", "(", "self", ")", ":", "# Example: {'subscriptions': ['subscriptions/TripDistance~sub', 'subscriptions/FuelRate~sub', ]}", "subscriptions", "=", "[", "]", "for", "uri", "in", "self", ".", "get_http_client", "(", ")", ".", "get", "(", "\"subscriptions\"", ")", ".", "get", "(", "'subscriptions'", ")", ":", "subscriptions", ".", "append", "(", "self", ".", "get_subscription", "(", "uri", ".", "split", "(", "\"/\"", ")", "[", "-", "1", "]", ")", ")", "return", "subscriptions" ]
Return a list of subscriptions currently active for this WVA device :raises WVAError: if there is a problem getting the subscription list from the WVA :returns: A list of :class:`WVASubscription` instances
[ "Return", "a", "list", "of", "subscriptions", "currently", "active", "for", "this", "WVA", "device" ]
4252735e2775f80ebaffd813fbe84046d26906b3
https://github.com/digidotcom/python-wvalib/blob/4252735e2775f80ebaffd813fbe84046d26906b3/wva/core.py#L90-L100
train
digidotcom/python-wvalib
wva/core.py
WVA.get_event_stream
def get_event_stream(self): """Get the event stream associated with this WVA Note that this event stream is shared across all users of this WVA device as the WVA only supports a single event stream. :return: a new :class:`WVAEventStream` instance """ if self._event_stream is None: self._event_stream = WVAEventStream(self._http_client) return self._event_stream
python
def get_event_stream(self): """Get the event stream associated with this WVA Note that this event stream is shared across all users of this WVA device as the WVA only supports a single event stream. :return: a new :class:`WVAEventStream` instance """ if self._event_stream is None: self._event_stream = WVAEventStream(self._http_client) return self._event_stream
[ "def", "get_event_stream", "(", "self", ")", ":", "if", "self", ".", "_event_stream", "is", "None", ":", "self", ".", "_event_stream", "=", "WVAEventStream", "(", "self", ".", "_http_client", ")", "return", "self", ".", "_event_stream" ]
Get the event stream associated with this WVA Note that this event stream is shared across all users of this WVA device as the WVA only supports a single event stream. :return: a new :class:`WVAEventStream` instance
[ "Get", "the", "event", "stream", "associated", "with", "this", "WVA" ]
4252735e2775f80ebaffd813fbe84046d26906b3
https://github.com/digidotcom/python-wvalib/blob/4252735e2775f80ebaffd813fbe84046d26906b3/wva/core.py#L102-L112
train
spacetelescope/stsci.imagestats
stsci/imagestats/histogram1d.py
histogram1d._populateHistogram
def _populateHistogram(self): """Call the C-code that actually populates the histogram""" try : buildHistogram.populate1DHist(self._data, self.histogram, self.minValue, self.maxValue, self.binWidth) except: if ((self._data.max() - self._data.min()) < self.binWidth): raise ValueError("In histogram1d class, the binWidth is " "greater than the data range of the array " "object.") else: raise SystemError("An error processing the array object " "information occured in the buildHistogram " "module of histogram1d.")
python
def _populateHistogram(self): """Call the C-code that actually populates the histogram""" try : buildHistogram.populate1DHist(self._data, self.histogram, self.minValue, self.maxValue, self.binWidth) except: if ((self._data.max() - self._data.min()) < self.binWidth): raise ValueError("In histogram1d class, the binWidth is " "greater than the data range of the array " "object.") else: raise SystemError("An error processing the array object " "information occured in the buildHistogram " "module of histogram1d.")
[ "def", "_populateHistogram", "(", "self", ")", ":", "try", ":", "buildHistogram", ".", "populate1DHist", "(", "self", ".", "_data", ",", "self", ".", "histogram", ",", "self", ".", "minValue", ",", "self", ".", "maxValue", ",", "self", ".", "binWidth", ")", "except", ":", "if", "(", "(", "self", ".", "_data", ".", "max", "(", ")", "-", "self", ".", "_data", ".", "min", "(", ")", ")", "<", "self", ".", "binWidth", ")", ":", "raise", "ValueError", "(", "\"In histogram1d class, the binWidth is \"", "\"greater than the data range of the array \"", "\"object.\"", ")", "else", ":", "raise", "SystemError", "(", "\"An error processing the array object \"", "\"information occured in the buildHistogram \"", "\"module of histogram1d.\"", ")" ]
Call the C-code that actually populates the histogram
[ "Call", "the", "C", "-", "code", "that", "actually", "populates", "the", "histogram" ]
d7fc9fe9783f7ed3dc9e4af47acd357a5ccd68e3
https://github.com/spacetelescope/stsci.imagestats/blob/d7fc9fe9783f7ed3dc9e4af47acd357a5ccd68e3/stsci/imagestats/histogram1d.py#L55-L68
train
spacetelescope/stsci.imagestats
stsci/imagestats/histogram1d.py
histogram1d.getCenters
def getCenters(self): """ Returns histogram's centers. """ return np.arange(self.histogram.size) * self.binWidth + self.minValue
python
def getCenters(self): """ Returns histogram's centers. """ return np.arange(self.histogram.size) * self.binWidth + self.minValue
[ "def", "getCenters", "(", "self", ")", ":", "return", "np", ".", "arange", "(", "self", ".", "histogram", ".", "size", ")", "*", "self", ".", "binWidth", "+", "self", ".", "minValue" ]
Returns histogram's centers.
[ "Returns", "histogram", "s", "centers", "." ]
d7fc9fe9783f7ed3dc9e4af47acd357a5ccd68e3
https://github.com/spacetelescope/stsci.imagestats/blob/d7fc9fe9783f7ed3dc9e4af47acd357a5ccd68e3/stsci/imagestats/histogram1d.py#L70-L72
train
pennlabs/penn-sdk-python
penn/wharton.py
Wharton.book_reservation
def book_reservation(self, sessionid, roomid, start, end): """ Book a reservation given the session id, the room id as an integer, and the start and end time as datetimes. """ duration = int((end - start).seconds / 60) format = "%Y-%m-%dT%H:%M:%S-{}".format(self.get_dst_gmt_timezone()) booking_url = "{}/reserve/{}/{}/?d={}".format(BASE_URL, roomid, start.strftime(format), duration) resp = requests.get(booking_url, cookies={"sessionid": sessionid}) if resp.status_code == 403: return {"success": False, "error": "Your account does not have permission to book Wharton GSRs!"} resp.raise_for_status() csrfheader = re.search(r"csrftoken=(.*?);", resp.headers["Set-Cookie"]).group(1) csrftoken = re.search(r"<input name=\"csrfmiddlewaretoken\" type=\"hidden\" value=\"(.*?)\"/>", resp.content.decode("utf8")).group(1) start_string = start.strftime("%I:%M %p") if start_string[0] == "0": start_string = start_string[1:] resp = requests.post( booking_url, cookies={"sessionid": sessionid, "csrftoken": csrfheader}, headers={"Referer": booking_url}, data={ "csrfmiddlewaretoken": csrftoken, "room": roomid, "start_time": start_string, "end_time": end.strftime("%a %b %d %H:%M:%S %Y"), "date": start.strftime("%B %d, %Y") } ) resp.raise_for_status() content = resp.content.decode("utf8") if "errorlist" in content: error_msg = re.search(r"class=\"errorlist\"><li>(.*?)</li>", content).group(1) return {"success": False, "error": error_msg} return {"success": True}
python
def book_reservation(self, sessionid, roomid, start, end): """ Book a reservation given the session id, the room id as an integer, and the start and end time as datetimes. """ duration = int((end - start).seconds / 60) format = "%Y-%m-%dT%H:%M:%S-{}".format(self.get_dst_gmt_timezone()) booking_url = "{}/reserve/{}/{}/?d={}".format(BASE_URL, roomid, start.strftime(format), duration) resp = requests.get(booking_url, cookies={"sessionid": sessionid}) if resp.status_code == 403: return {"success": False, "error": "Your account does not have permission to book Wharton GSRs!"} resp.raise_for_status() csrfheader = re.search(r"csrftoken=(.*?);", resp.headers["Set-Cookie"]).group(1) csrftoken = re.search(r"<input name=\"csrfmiddlewaretoken\" type=\"hidden\" value=\"(.*?)\"/>", resp.content.decode("utf8")).group(1) start_string = start.strftime("%I:%M %p") if start_string[0] == "0": start_string = start_string[1:] resp = requests.post( booking_url, cookies={"sessionid": sessionid, "csrftoken": csrfheader}, headers={"Referer": booking_url}, data={ "csrfmiddlewaretoken": csrftoken, "room": roomid, "start_time": start_string, "end_time": end.strftime("%a %b %d %H:%M:%S %Y"), "date": start.strftime("%B %d, %Y") } ) resp.raise_for_status() content = resp.content.decode("utf8") if "errorlist" in content: error_msg = re.search(r"class=\"errorlist\"><li>(.*?)</li>", content).group(1) return {"success": False, "error": error_msg} return {"success": True}
[ "def", "book_reservation", "(", "self", ",", "sessionid", ",", "roomid", ",", "start", ",", "end", ")", ":", "duration", "=", "int", "(", "(", "end", "-", "start", ")", ".", "seconds", "/", "60", ")", "format", "=", "\"%Y-%m-%dT%H:%M:%S-{}\"", ".", "format", "(", "self", ".", "get_dst_gmt_timezone", "(", ")", ")", "booking_url", "=", "\"{}/reserve/{}/{}/?d={}\"", ".", "format", "(", "BASE_URL", ",", "roomid", ",", "start", ".", "strftime", "(", "format", ")", ",", "duration", ")", "resp", "=", "requests", ".", "get", "(", "booking_url", ",", "cookies", "=", "{", "\"sessionid\"", ":", "sessionid", "}", ")", "if", "resp", ".", "status_code", "==", "403", ":", "return", "{", "\"success\"", ":", "False", ",", "\"error\"", ":", "\"Your account does not have permission to book Wharton GSRs!\"", "}", "resp", ".", "raise_for_status", "(", ")", "csrfheader", "=", "re", ".", "search", "(", "r\"csrftoken=(.*?);\"", ",", "resp", ".", "headers", "[", "\"Set-Cookie\"", "]", ")", ".", "group", "(", "1", ")", "csrftoken", "=", "re", ".", "search", "(", "r\"<input name=\\\"csrfmiddlewaretoken\\\" type=\\\"hidden\\\" value=\\\"(.*?)\\\"/>\"", ",", "resp", ".", "content", ".", "decode", "(", "\"utf8\"", ")", ")", ".", "group", "(", "1", ")", "start_string", "=", "start", ".", "strftime", "(", "\"%I:%M %p\"", ")", "if", "start_string", "[", "0", "]", "==", "\"0\"", ":", "start_string", "=", "start_string", "[", "1", ":", "]", "resp", "=", "requests", ".", "post", "(", "booking_url", ",", "cookies", "=", "{", "\"sessionid\"", ":", "sessionid", ",", "\"csrftoken\"", ":", "csrfheader", "}", ",", "headers", "=", "{", "\"Referer\"", ":", "booking_url", "}", ",", "data", "=", "{", "\"csrfmiddlewaretoken\"", ":", "csrftoken", ",", "\"room\"", ":", "roomid", ",", "\"start_time\"", ":", "start_string", ",", "\"end_time\"", ":", "end", ".", "strftime", "(", "\"%a %b %d %H:%M:%S %Y\"", ")", ",", "\"date\"", ":", "start", ".", "strftime", "(", "\"%B %d, %Y\"", ")", "}", ")", "resp", ".", "raise_for_status", "(", ")", "content", "=", "resp", ".", "content", ".", "decode", "(", "\"utf8\"", ")", "if", "\"errorlist\"", "in", "content", ":", "error_msg", "=", "re", ".", "search", "(", "r\"class=\\\"errorlist\\\"><li>(.*?)</li>\"", ",", "content", ")", ".", "group", "(", "1", ")", "return", "{", "\"success\"", ":", "False", ",", "\"error\"", ":", "error_msg", "}", "return", "{", "\"success\"", ":", "True", "}" ]
Book a reservation given the session id, the room id as an integer, and the start and end time as datetimes.
[ "Book", "a", "reservation", "given", "the", "session", "id", "the", "room", "id", "as", "an", "integer", "and", "the", "start", "and", "end", "time", "as", "datetimes", "." ]
31ff12c20d69438d63bc7a796f83ce4f4c828396
https://github.com/pennlabs/penn-sdk-python/blob/31ff12c20d69438d63bc7a796f83ce4f4c828396/penn/wharton.py#L53-L90
train
pennlabs/penn-sdk-python
penn/wharton.py
Wharton.delete_booking
def delete_booking(self, sessionid, booking_id): """ Deletes a Wharton GSR Booking for a given booking and session id. """ url = "{}{}{}/".format(BASE_URL, "/delete/", booking_id) cookies = dict(sessionid=sessionid) try: resp = requests.get(url, cookies=cookies, headers={'Referer': '{}{}'.format(BASE_URL, "/reservations/")}) except resp.exceptions.HTTPError as error: raise APIError("Server Error: {}".format(error)) if resp.status_code == 404: raise APIError("Booking could not be found on server.") html = resp.content.decode("utf8") if "https://weblogin.pennkey.upenn.edu" in html: raise APIError("Wharton Auth Failed. Session ID is not valid.") resp.raise_for_status() soup = BeautifulSoup(html, "html5lib") middleware_token = soup.find("input", {'name': "csrfmiddlewaretoken"}).get('value') csrftoken = resp.cookies['csrftoken'] cookies2 = {'sessionid': sessionid, 'csrftoken': csrftoken} headers = {'Referer': url} payload = {'csrfmiddlewaretoken': middleware_token} try: resp2 = requests.post(url, cookies=cookies2, data=payload, headers=headers) except resp2.exceptions.HTTPError as error: raise APIError("Server Error: {}".format(error)) return {"success": True}
python
def delete_booking(self, sessionid, booking_id): """ Deletes a Wharton GSR Booking for a given booking and session id. """ url = "{}{}{}/".format(BASE_URL, "/delete/", booking_id) cookies = dict(sessionid=sessionid) try: resp = requests.get(url, cookies=cookies, headers={'Referer': '{}{}'.format(BASE_URL, "/reservations/")}) except resp.exceptions.HTTPError as error: raise APIError("Server Error: {}".format(error)) if resp.status_code == 404: raise APIError("Booking could not be found on server.") html = resp.content.decode("utf8") if "https://weblogin.pennkey.upenn.edu" in html: raise APIError("Wharton Auth Failed. Session ID is not valid.") resp.raise_for_status() soup = BeautifulSoup(html, "html5lib") middleware_token = soup.find("input", {'name': "csrfmiddlewaretoken"}).get('value') csrftoken = resp.cookies['csrftoken'] cookies2 = {'sessionid': sessionid, 'csrftoken': csrftoken} headers = {'Referer': url} payload = {'csrfmiddlewaretoken': middleware_token} try: resp2 = requests.post(url, cookies=cookies2, data=payload, headers=headers) except resp2.exceptions.HTTPError as error: raise APIError("Server Error: {}".format(error)) return {"success": True}
[ "def", "delete_booking", "(", "self", ",", "sessionid", ",", "booking_id", ")", ":", "url", "=", "\"{}{}{}/\"", ".", "format", "(", "BASE_URL", ",", "\"/delete/\"", ",", "booking_id", ")", "cookies", "=", "dict", "(", "sessionid", "=", "sessionid", ")", "try", ":", "resp", "=", "requests", ".", "get", "(", "url", ",", "cookies", "=", "cookies", ",", "headers", "=", "{", "'Referer'", ":", "'{}{}'", ".", "format", "(", "BASE_URL", ",", "\"/reservations/\"", ")", "}", ")", "except", "resp", ".", "exceptions", ".", "HTTPError", "as", "error", ":", "raise", "APIError", "(", "\"Server Error: {}\"", ".", "format", "(", "error", ")", ")", "if", "resp", ".", "status_code", "==", "404", ":", "raise", "APIError", "(", "\"Booking could not be found on server.\"", ")", "html", "=", "resp", ".", "content", ".", "decode", "(", "\"utf8\"", ")", "if", "\"https://weblogin.pennkey.upenn.edu\"", "in", "html", ":", "raise", "APIError", "(", "\"Wharton Auth Failed. Session ID is not valid.\"", ")", "resp", ".", "raise_for_status", "(", ")", "soup", "=", "BeautifulSoup", "(", "html", ",", "\"html5lib\"", ")", "middleware_token", "=", "soup", ".", "find", "(", "\"input\"", ",", "{", "'name'", ":", "\"csrfmiddlewaretoken\"", "}", ")", ".", "get", "(", "'value'", ")", "csrftoken", "=", "resp", ".", "cookies", "[", "'csrftoken'", "]", "cookies2", "=", "{", "'sessionid'", ":", "sessionid", ",", "'csrftoken'", ":", "csrftoken", "}", "headers", "=", "{", "'Referer'", ":", "url", "}", "payload", "=", "{", "'csrfmiddlewaretoken'", ":", "middleware_token", "}", "try", ":", "resp2", "=", "requests", ".", "post", "(", "url", ",", "cookies", "=", "cookies2", ",", "data", "=", "payload", ",", "headers", "=", "headers", ")", "except", "resp2", ".", "exceptions", ".", "HTTPError", "as", "error", ":", "raise", "APIError", "(", "\"Server Error: {}\"", ".", "format", "(", "error", ")", ")", "return", "{", "\"success\"", ":", "True", "}" ]
Deletes a Wharton GSR Booking for a given booking and session id.
[ "Deletes", "a", "Wharton", "GSR", "Booking", "for", "a", "given", "booking", "and", "session", "id", "." ]
31ff12c20d69438d63bc7a796f83ce4f4c828396
https://github.com/pennlabs/penn-sdk-python/blob/31ff12c20d69438d63bc7a796f83ce4f4c828396/penn/wharton.py#L92-L124
train
pennlabs/penn-sdk-python
penn/wharton.py
Wharton.get_wharton_gsrs
def get_wharton_gsrs(self, sessionid, date=None): """ Make a request to retrieve Wharton GSR listings. """ if date: date += " {}".format(self.get_dst_gmt_timezone()) else: date = datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%S") resp = requests.get('https://apps.wharton.upenn.edu/gsr/api/app/grid_view/', params={ 'search_time': date }, cookies={ 'sessionid': sessionid }) if resp.status_code == 200: return resp.json() else: raise APIError('Remote server returned status code {}.'.format(resp.status_code))
python
def get_wharton_gsrs(self, sessionid, date=None): """ Make a request to retrieve Wharton GSR listings. """ if date: date += " {}".format(self.get_dst_gmt_timezone()) else: date = datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%S") resp = requests.get('https://apps.wharton.upenn.edu/gsr/api/app/grid_view/', params={ 'search_time': date }, cookies={ 'sessionid': sessionid }) if resp.status_code == 200: return resp.json() else: raise APIError('Remote server returned status code {}.'.format(resp.status_code))
[ "def", "get_wharton_gsrs", "(", "self", ",", "sessionid", ",", "date", "=", "None", ")", ":", "if", "date", ":", "date", "+=", "\" {}\"", ".", "format", "(", "self", ".", "get_dst_gmt_timezone", "(", ")", ")", "else", ":", "date", "=", "datetime", ".", "datetime", ".", "utcnow", "(", ")", ".", "strftime", "(", "\"%Y-%m-%d %H:%S\"", ")", "resp", "=", "requests", ".", "get", "(", "'https://apps.wharton.upenn.edu/gsr/api/app/grid_view/'", ",", "params", "=", "{", "'search_time'", ":", "date", "}", ",", "cookies", "=", "{", "'sessionid'", ":", "sessionid", "}", ")", "if", "resp", ".", "status_code", "==", "200", ":", "return", "resp", ".", "json", "(", ")", "else", ":", "raise", "APIError", "(", "'Remote server returned status code {}.'", ".", "format", "(", "resp", ".", "status_code", ")", ")" ]
Make a request to retrieve Wharton GSR listings.
[ "Make", "a", "request", "to", "retrieve", "Wharton", "GSR", "listings", "." ]
31ff12c20d69438d63bc7a796f83ce4f4c828396
https://github.com/pennlabs/penn-sdk-python/blob/31ff12c20d69438d63bc7a796f83ce4f4c828396/penn/wharton.py#L126-L140
train
pennlabs/penn-sdk-python
penn/wharton.py
Wharton.switch_format
def switch_format(self, gsr): """ Convert the Wharton GSR format into the studyspaces API format. """ if "error" in gsr: return gsr categories = { "cid": 1, "name": "Huntsman Hall", "rooms": [] } for time in gsr["times"]: for entry in time: entry["name"] = entry["room_number"] del entry["room_number"] start_time_str = entry["start_time"] end_time = datetime.datetime.strptime(start_time_str[:-6], '%Y-%m-%dT%H:%M:%S') + datetime.timedelta(minutes=30) end_time_str = end_time.strftime("%Y-%m-%dT%H:%M:%S") + "-{}".format(self.get_dst_gmt_timezone()) time = { "available": not entry["reserved"], "start": entry["start_time"], "end": end_time_str, } exists = False for room in categories["rooms"]: if room["name"] == entry["name"]: room["times"].append(time) exists = True if not exists: del entry["booked_by_user"] del entry["building"] if "reservation_id" in entry: del entry["reservation_id"] entry["lid"] = 1 entry["gid"] = 1 entry["capacity"] = 5 entry["room_id"] = int(entry["id"]) del entry["id"] entry["times"] = [time] del entry["reserved"] del entry["end_time"] del entry["start_time"] categories["rooms"].append(entry) return {"categories": [categories], "rooms": categories["rooms"]}
python
def switch_format(self, gsr): """ Convert the Wharton GSR format into the studyspaces API format. """ if "error" in gsr: return gsr categories = { "cid": 1, "name": "Huntsman Hall", "rooms": [] } for time in gsr["times"]: for entry in time: entry["name"] = entry["room_number"] del entry["room_number"] start_time_str = entry["start_time"] end_time = datetime.datetime.strptime(start_time_str[:-6], '%Y-%m-%dT%H:%M:%S') + datetime.timedelta(minutes=30) end_time_str = end_time.strftime("%Y-%m-%dT%H:%M:%S") + "-{}".format(self.get_dst_gmt_timezone()) time = { "available": not entry["reserved"], "start": entry["start_time"], "end": end_time_str, } exists = False for room in categories["rooms"]: if room["name"] == entry["name"]: room["times"].append(time) exists = True if not exists: del entry["booked_by_user"] del entry["building"] if "reservation_id" in entry: del entry["reservation_id"] entry["lid"] = 1 entry["gid"] = 1 entry["capacity"] = 5 entry["room_id"] = int(entry["id"]) del entry["id"] entry["times"] = [time] del entry["reserved"] del entry["end_time"] del entry["start_time"] categories["rooms"].append(entry) return {"categories": [categories], "rooms": categories["rooms"]}
[ "def", "switch_format", "(", "self", ",", "gsr", ")", ":", "if", "\"error\"", "in", "gsr", ":", "return", "gsr", "categories", "=", "{", "\"cid\"", ":", "1", ",", "\"name\"", ":", "\"Huntsman Hall\"", ",", "\"rooms\"", ":", "[", "]", "}", "for", "time", "in", "gsr", "[", "\"times\"", "]", ":", "for", "entry", "in", "time", ":", "entry", "[", "\"name\"", "]", "=", "entry", "[", "\"room_number\"", "]", "del", "entry", "[", "\"room_number\"", "]", "start_time_str", "=", "entry", "[", "\"start_time\"", "]", "end_time", "=", "datetime", ".", "datetime", ".", "strptime", "(", "start_time_str", "[", ":", "-", "6", "]", ",", "'%Y-%m-%dT%H:%M:%S'", ")", "+", "datetime", ".", "timedelta", "(", "minutes", "=", "30", ")", "end_time_str", "=", "end_time", ".", "strftime", "(", "\"%Y-%m-%dT%H:%M:%S\"", ")", "+", "\"-{}\"", ".", "format", "(", "self", ".", "get_dst_gmt_timezone", "(", ")", ")", "time", "=", "{", "\"available\"", ":", "not", "entry", "[", "\"reserved\"", "]", ",", "\"start\"", ":", "entry", "[", "\"start_time\"", "]", ",", "\"end\"", ":", "end_time_str", ",", "}", "exists", "=", "False", "for", "room", "in", "categories", "[", "\"rooms\"", "]", ":", "if", "room", "[", "\"name\"", "]", "==", "entry", "[", "\"name\"", "]", ":", "room", "[", "\"times\"", "]", ".", "append", "(", "time", ")", "exists", "=", "True", "if", "not", "exists", ":", "del", "entry", "[", "\"booked_by_user\"", "]", "del", "entry", "[", "\"building\"", "]", "if", "\"reservation_id\"", "in", "entry", ":", "del", "entry", "[", "\"reservation_id\"", "]", "entry", "[", "\"lid\"", "]", "=", "1", "entry", "[", "\"gid\"", "]", "=", "1", "entry", "[", "\"capacity\"", "]", "=", "5", "entry", "[", "\"room_id\"", "]", "=", "int", "(", "entry", "[", "\"id\"", "]", ")", "del", "entry", "[", "\"id\"", "]", "entry", "[", "\"times\"", "]", "=", "[", "time", "]", "del", "entry", "[", "\"reserved\"", "]", "del", "entry", "[", "\"end_time\"", "]", "del", "entry", "[", "\"start_time\"", "]", "categories", "[", "\"rooms\"", "]", ".", "append", "(", "entry", ")", "return", "{", "\"categories\"", ":", "[", "categories", "]", ",", "\"rooms\"", ":", "categories", "[", "\"rooms\"", "]", "}" ]
Convert the Wharton GSR format into the studyspaces API format.
[ "Convert", "the", "Wharton", "GSR", "format", "into", "the", "studyspaces", "API", "format", "." ]
31ff12c20d69438d63bc7a796f83ce4f4c828396
https://github.com/pennlabs/penn-sdk-python/blob/31ff12c20d69438d63bc7a796f83ce4f4c828396/penn/wharton.py#L142-L184
train
pennlabs/penn-sdk-python
penn/wharton.py
Wharton.get_wharton_gsrs_formatted
def get_wharton_gsrs_formatted(self, sessionid, date=None): """ Return the wharton GSR listing formatted in studyspaces format. """ gsrs = self.get_wharton_gsrs(sessionid, date) return self.switch_format(gsrs)
python
def get_wharton_gsrs_formatted(self, sessionid, date=None): """ Return the wharton GSR listing formatted in studyspaces format. """ gsrs = self.get_wharton_gsrs(sessionid, date) return self.switch_format(gsrs)
[ "def", "get_wharton_gsrs_formatted", "(", "self", ",", "sessionid", ",", "date", "=", "None", ")", ":", "gsrs", "=", "self", ".", "get_wharton_gsrs", "(", "sessionid", ",", "date", ")", "return", "self", ".", "switch_format", "(", "gsrs", ")" ]
Return the wharton GSR listing formatted in studyspaces format.
[ "Return", "the", "wharton", "GSR", "listing", "formatted", "in", "studyspaces", "format", "." ]
31ff12c20d69438d63bc7a796f83ce4f4c828396
https://github.com/pennlabs/penn-sdk-python/blob/31ff12c20d69438d63bc7a796f83ce4f4c828396/penn/wharton.py#L186-L189
train
cloudbase/python-hnvclient
hnv/config/options.py
get_options
def get_options(): """Collect all the options info from the other modules.""" options = collections.defaultdict(list) for opt_class in config_factory.get_options(): if not issubclass(opt_class, config_base.Options): continue config_options = opt_class(None) options[config_options.group_name].extend(config_options.list()) return [(key, value) for key, value in options.items()]
python
def get_options(): """Collect all the options info from the other modules.""" options = collections.defaultdict(list) for opt_class in config_factory.get_options(): if not issubclass(opt_class, config_base.Options): continue config_options = opt_class(None) options[config_options.group_name].extend(config_options.list()) return [(key, value) for key, value in options.items()]
[ "def", "get_options", "(", ")", ":", "options", "=", "collections", ".", "defaultdict", "(", "list", ")", "for", "opt_class", "in", "config_factory", ".", "get_options", "(", ")", ":", "if", "not", "issubclass", "(", "opt_class", ",", "config_base", ".", "Options", ")", ":", "continue", "config_options", "=", "opt_class", "(", "None", ")", "options", "[", "config_options", ".", "group_name", "]", ".", "extend", "(", "config_options", ".", "list", "(", ")", ")", "return", "[", "(", "key", ",", "value", ")", "for", "key", ",", "value", "in", "options", ".", "items", "(", ")", "]" ]
Collect all the options info from the other modules.
[ "Collect", "all", "the", "options", "info", "from", "the", "other", "modules", "." ]
b019452af01db22629809b8930357a2ebf6494be
https://github.com/cloudbase/python-hnvclient/blob/b019452af01db22629809b8930357a2ebf6494be/hnv/config/options.py#L26-L34
train
pennlabs/penn-sdk-python
penn/laundry.py
Laundry.check_is_working
def check_is_working(self): """ Returns True if the wash alert web interface seems to be working properly, or False otherwise. >>> l.check_is_working() """ try: r = requests.post("http://{}/".format(LAUNDRY_DOMAIN), timeout=60, data={ "locationid": "5faec7e9-a4aa-47c2-a514-950c03fac460", "email": "[email protected]", "washers": 0, "dryers": 0, "locationalert": "OK" }) r.raise_for_status() return "The transaction log for database 'QuantumCoin' is full due to 'LOG_BACKUP'." not in r.text except requests.exceptions.HTTPError: return False
python
def check_is_working(self): """ Returns True if the wash alert web interface seems to be working properly, or False otherwise. >>> l.check_is_working() """ try: r = requests.post("http://{}/".format(LAUNDRY_DOMAIN), timeout=60, data={ "locationid": "5faec7e9-a4aa-47c2-a514-950c03fac460", "email": "[email protected]", "washers": 0, "dryers": 0, "locationalert": "OK" }) r.raise_for_status() return "The transaction log for database 'QuantumCoin' is full due to 'LOG_BACKUP'." not in r.text except requests.exceptions.HTTPError: return False
[ "def", "check_is_working", "(", "self", ")", ":", "try", ":", "r", "=", "requests", ".", "post", "(", "\"http://{}/\"", ".", "format", "(", "LAUNDRY_DOMAIN", ")", ",", "timeout", "=", "60", ",", "data", "=", "{", "\"locationid\"", ":", "\"5faec7e9-a4aa-47c2-a514-950c03fac460\"", ",", "\"email\"", ":", "\"[email protected]\"", ",", "\"washers\"", ":", "0", ",", "\"dryers\"", ":", "0", ",", "\"locationalert\"", ":", "\"OK\"", "}", ")", "r", ".", "raise_for_status", "(", ")", "return", "\"The transaction log for database 'QuantumCoin' is full due to 'LOG_BACKUP'.\"", "not", "in", "r", ".", "text", "except", "requests", ".", "exceptions", ".", "HTTPError", ":", "return", "False" ]
Returns True if the wash alert web interface seems to be working properly, or False otherwise. >>> l.check_is_working()
[ "Returns", "True", "if", "the", "wash", "alert", "web", "interface", "seems", "to", "be", "working", "properly", "or", "False", "otherwise", "." ]
31ff12c20d69438d63bc7a796f83ce4f4c828396
https://github.com/pennlabs/penn-sdk-python/blob/31ff12c20d69438d63bc7a796f83ce4f4c828396/penn/laundry.py#L153-L170
train
pennlabs/penn-sdk-python
penn/laundry.py
Laundry.machine_usage
def machine_usage(self, hall_no): """Returns the average usage of laundry machines every hour for a given hall. The usages are returned in a dictionary, with the key being the day of the week, and the value being an array listing the usages per hour. :param hall_no: integer corresponding to the id number for the hall. Thus number is returned as part of the all_status call. >>> english_house = l.machine_usage(2) """ try: num = int(hall_no) except ValueError: raise ValueError("Room Number must be integer") r = requests.get(USAGE_BASE_URL + str(num), timeout=60) parsed = BeautifulSoup(r.text, 'html5lib') usage_table = parsed.find_all('table', width='504px')[0] rows = usage_table.find_all('tr') usages = {} for i, row in enumerate(rows): day = [] hours = row.find_all('td') for hour in hours: day.append(self.busy_dict[str(hour['class'][0])]) usages[self.days[i]] = day return usages
python
def machine_usage(self, hall_no): """Returns the average usage of laundry machines every hour for a given hall. The usages are returned in a dictionary, with the key being the day of the week, and the value being an array listing the usages per hour. :param hall_no: integer corresponding to the id number for the hall. Thus number is returned as part of the all_status call. >>> english_house = l.machine_usage(2) """ try: num = int(hall_no) except ValueError: raise ValueError("Room Number must be integer") r = requests.get(USAGE_BASE_URL + str(num), timeout=60) parsed = BeautifulSoup(r.text, 'html5lib') usage_table = parsed.find_all('table', width='504px')[0] rows = usage_table.find_all('tr') usages = {} for i, row in enumerate(rows): day = [] hours = row.find_all('td') for hour in hours: day.append(self.busy_dict[str(hour['class'][0])]) usages[self.days[i]] = day return usages
[ "def", "machine_usage", "(", "self", ",", "hall_no", ")", ":", "try", ":", "num", "=", "int", "(", "hall_no", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "\"Room Number must be integer\"", ")", "r", "=", "requests", ".", "get", "(", "USAGE_BASE_URL", "+", "str", "(", "num", ")", ",", "timeout", "=", "60", ")", "parsed", "=", "BeautifulSoup", "(", "r", ".", "text", ",", "'html5lib'", ")", "usage_table", "=", "parsed", ".", "find_all", "(", "'table'", ",", "width", "=", "'504px'", ")", "[", "0", "]", "rows", "=", "usage_table", ".", "find_all", "(", "'tr'", ")", "usages", "=", "{", "}", "for", "i", ",", "row", "in", "enumerate", "(", "rows", ")", ":", "day", "=", "[", "]", "hours", "=", "row", ".", "find_all", "(", "'td'", ")", "for", "hour", "in", "hours", ":", "day", ".", "append", "(", "self", ".", "busy_dict", "[", "str", "(", "hour", "[", "'class'", "]", "[", "0", "]", ")", "]", ")", "usages", "[", "self", ".", "days", "[", "i", "]", "]", "=", "day", "return", "usages" ]
Returns the average usage of laundry machines every hour for a given hall. The usages are returned in a dictionary, with the key being the day of the week, and the value being an array listing the usages per hour. :param hall_no: integer corresponding to the id number for the hall. Thus number is returned as part of the all_status call. >>> english_house = l.machine_usage(2)
[ "Returns", "the", "average", "usage", "of", "laundry", "machines", "every", "hour", "for", "a", "given", "hall", "." ]
31ff12c20d69438d63bc7a796f83ce4f4c828396
https://github.com/pennlabs/penn-sdk-python/blob/31ff12c20d69438d63bc7a796f83ce4f4c828396/penn/laundry.py#L172-L202
train
lambdalisue/notify
src/notify/mailer.py
create_message
def create_message(from_addr, to_addr, subject, body, encoding=None): """ Create message object for sending email Parameters ---------- from_addr : string An email address used for 'From' attribute to_addr : string An email address used for 'To' attribute subject : string An email subject string body : string An email body string encoding : string An email encoding string (Default: utf8) Returns ------- object An instance of email.mime.text.MIMEText """ if encoding == "None": encoding = None if not encoding: encoding = 'utf-8' msg = MIMEText(body.encode(encoding), 'plain', encoding) msg['Subject'] = Header(subject.encode(encoding), encoding) msg['From'] = from_addr msg['To'] = to_addr msg['Date'] = formatdate() return msg
python
def create_message(from_addr, to_addr, subject, body, encoding=None): """ Create message object for sending email Parameters ---------- from_addr : string An email address used for 'From' attribute to_addr : string An email address used for 'To' attribute subject : string An email subject string body : string An email body string encoding : string An email encoding string (Default: utf8) Returns ------- object An instance of email.mime.text.MIMEText """ if encoding == "None": encoding = None if not encoding: encoding = 'utf-8' msg = MIMEText(body.encode(encoding), 'plain', encoding) msg['Subject'] = Header(subject.encode(encoding), encoding) msg['From'] = from_addr msg['To'] = to_addr msg['Date'] = formatdate() return msg
[ "def", "create_message", "(", "from_addr", ",", "to_addr", ",", "subject", ",", "body", ",", "encoding", "=", "None", ")", ":", "if", "encoding", "==", "\"None\"", ":", "encoding", "=", "None", "if", "not", "encoding", ":", "encoding", "=", "'utf-8'", "msg", "=", "MIMEText", "(", "body", ".", "encode", "(", "encoding", ")", ",", "'plain'", ",", "encoding", ")", "msg", "[", "'Subject'", "]", "=", "Header", "(", "subject", ".", "encode", "(", "encoding", ")", ",", "encoding", ")", "msg", "[", "'From'", "]", "=", "from_addr", "msg", "[", "'To'", "]", "=", "to_addr", "msg", "[", "'Date'", "]", "=", "formatdate", "(", ")", "return", "msg" ]
Create message object for sending email Parameters ---------- from_addr : string An email address used for 'From' attribute to_addr : string An email address used for 'To' attribute subject : string An email subject string body : string An email body string encoding : string An email encoding string (Default: utf8) Returns ------- object An instance of email.mime.text.MIMEText
[ "Create", "message", "object", "for", "sending", "email" ]
1b6d7d1faa2cea13bfaa1f35130f279a0115e686
https://github.com/lambdalisue/notify/blob/1b6d7d1faa2cea13bfaa1f35130f279a0115e686/src/notify/mailer.py#L11-L42
train
pennlabs/penn-sdk-python
penn/studyspaces.py
StudySpaces._obtain_token
def _obtain_token(self): """Obtain an auth token from client id and client secret.""" # don't renew token if hasn't expired yet if self.expiration and self.expiration > datetime.datetime.now(): return resp = requests.post("{}/1.1/oauth/token".format(API_URL), data={ "client_id": self.client_id, "client_secret": self.client_secret, "grant_type": "client_credentials" }).json() if "error" in resp: raise APIError("LibCal Auth Failed: {}, {}".format(resp["error"], resp.get("error_description"))) self.expiration = datetime.datetime.now() + datetime.timedelta(seconds=resp["expires_in"]) self.token = resp["access_token"] print(self.token)
python
def _obtain_token(self): """Obtain an auth token from client id and client secret.""" # don't renew token if hasn't expired yet if self.expiration and self.expiration > datetime.datetime.now(): return resp = requests.post("{}/1.1/oauth/token".format(API_URL), data={ "client_id": self.client_id, "client_secret": self.client_secret, "grant_type": "client_credentials" }).json() if "error" in resp: raise APIError("LibCal Auth Failed: {}, {}".format(resp["error"], resp.get("error_description"))) self.expiration = datetime.datetime.now() + datetime.timedelta(seconds=resp["expires_in"]) self.token = resp["access_token"] print(self.token)
[ "def", "_obtain_token", "(", "self", ")", ":", "# don't renew token if hasn't expired yet", "if", "self", ".", "expiration", "and", "self", ".", "expiration", ">", "datetime", ".", "datetime", ".", "now", "(", ")", ":", "return", "resp", "=", "requests", ".", "post", "(", "\"{}/1.1/oauth/token\"", ".", "format", "(", "API_URL", ")", ",", "data", "=", "{", "\"client_id\"", ":", "self", ".", "client_id", ",", "\"client_secret\"", ":", "self", ".", "client_secret", ",", "\"grant_type\"", ":", "\"client_credentials\"", "}", ")", ".", "json", "(", ")", "if", "\"error\"", "in", "resp", ":", "raise", "APIError", "(", "\"LibCal Auth Failed: {}, {}\"", ".", "format", "(", "resp", "[", "\"error\"", "]", ",", "resp", ".", "get", "(", "\"error_description\"", ")", ")", ")", "self", ".", "expiration", "=", "datetime", ".", "datetime", ".", "now", "(", ")", "+", "datetime", ".", "timedelta", "(", "seconds", "=", "resp", "[", "\"expires_in\"", "]", ")", "self", ".", "token", "=", "resp", "[", "\"access_token\"", "]", "print", "(", "self", ".", "token", ")" ]
Obtain an auth token from client id and client secret.
[ "Obtain", "an", "auth", "token", "from", "client", "id", "and", "client", "secret", "." ]
31ff12c20d69438d63bc7a796f83ce4f4c828396
https://github.com/pennlabs/penn-sdk-python/blob/31ff12c20d69438d63bc7a796f83ce4f4c828396/penn/studyspaces.py#L30-L48
train
pennlabs/penn-sdk-python
penn/studyspaces.py
StudySpaces._request
def _request(self, *args, **kwargs): """Make a signed request to the libcal API.""" if not self.token: self._obtain_token() headers = { "Authorization": "Bearer {}".format(self.token) } # add authorization headers if "headers" in kwargs: kwargs["headers"].update(headers) else: kwargs["headers"] = headers # add api site to url args = list(args) if not args[1].startswith("http"): args[1] = "{}{}".format(API_URL, args[1]) has_no_token = kwargs.get("no_token") if has_no_token: del kwargs["no_token"] resp = requests.request(*args, **kwargs) if resp.status_code == 401 and not has_no_token: self._obtain_token() kwargs["no_token"] = True self._request(*args, **kwargs) return resp
python
def _request(self, *args, **kwargs): """Make a signed request to the libcal API.""" if not self.token: self._obtain_token() headers = { "Authorization": "Bearer {}".format(self.token) } # add authorization headers if "headers" in kwargs: kwargs["headers"].update(headers) else: kwargs["headers"] = headers # add api site to url args = list(args) if not args[1].startswith("http"): args[1] = "{}{}".format(API_URL, args[1]) has_no_token = kwargs.get("no_token") if has_no_token: del kwargs["no_token"] resp = requests.request(*args, **kwargs) if resp.status_code == 401 and not has_no_token: self._obtain_token() kwargs["no_token"] = True self._request(*args, **kwargs) return resp
[ "def", "_request", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "not", "self", ".", "token", ":", "self", ".", "_obtain_token", "(", ")", "headers", "=", "{", "\"Authorization\"", ":", "\"Bearer {}\"", ".", "format", "(", "self", ".", "token", ")", "}", "# add authorization headers", "if", "\"headers\"", "in", "kwargs", ":", "kwargs", "[", "\"headers\"", "]", ".", "update", "(", "headers", ")", "else", ":", "kwargs", "[", "\"headers\"", "]", "=", "headers", "# add api site to url", "args", "=", "list", "(", "args", ")", "if", "not", "args", "[", "1", "]", ".", "startswith", "(", "\"http\"", ")", ":", "args", "[", "1", "]", "=", "\"{}{}\"", ".", "format", "(", "API_URL", ",", "args", "[", "1", "]", ")", "has_no_token", "=", "kwargs", ".", "get", "(", "\"no_token\"", ")", "if", "has_no_token", ":", "del", "kwargs", "[", "\"no_token\"", "]", "resp", "=", "requests", ".", "request", "(", "*", "args", ",", "*", "*", "kwargs", ")", "if", "resp", ".", "status_code", "==", "401", "and", "not", "has_no_token", ":", "self", ".", "_obtain_token", "(", ")", "kwargs", "[", "\"no_token\"", "]", "=", "True", "self", ".", "_request", "(", "*", "args", ",", "*", "*", "kwargs", ")", "return", "resp" ]
Make a signed request to the libcal API.
[ "Make", "a", "signed", "request", "to", "the", "libcal", "API", "." ]
31ff12c20d69438d63bc7a796f83ce4f4c828396
https://github.com/pennlabs/penn-sdk-python/blob/31ff12c20d69438d63bc7a796f83ce4f4c828396/penn/studyspaces.py#L50-L78
train
pennlabs/penn-sdk-python
penn/studyspaces.py
StudySpaces.get_rooms
def get_rooms(self, lid, start=None, end=None): """Returns a list of rooms and their availabilities, grouped by category. :param lid: The ID of the location to retrieve rooms for. :type lid: int :param start: The start range for the availabilities to retrieve, in YYYY-MM-DD format. :type start: str :param end: The end range for the availabilities to retrieve, in YYYY-MM-DD format. :type end: str """ range_str = "availability" if start: start_datetime = datetime.datetime.combine(datetime.datetime.strptime(start, "%Y-%m-%d").date(), datetime.datetime.min.time()) range_str += "=" + start if end and not start == end: range_str += "," + end else: start_datetime = None resp = self._request("GET", "/1.1/space/categories/{}".format(lid)).json() if "error" in resp: raise APIError(resp["error"]) output = {"id": lid, "categories": []} # if there aren't any rooms associated with this location, return if len(resp) < 1: return output if "error" in resp[0]: raise APIError(resp[0]["error"]) if "categories" not in resp[0]: return output categories = resp[0]["categories"] id_to_category = {i["cid"]: i["name"] for i in categories} categories = ",".join([str(x["cid"]) for x in categories]) resp = self._request("GET", "/1.1/space/category/{}".format(categories)) for category in resp.json(): cat_out = {"cid": category["cid"], "name": id_to_category[category["cid"]], "rooms": []} # ignore equipment categories if cat_out["name"].endswith("Equipment"): continue items = category["items"] items = ",".join([str(x) for x in items]) resp = self._request("GET", "/1.1/space/item/{}?{}".format(items, range_str)) for room in resp.json(): if room["id"] in ROOM_BLACKLIST: continue # prepend protocol to urls if "image" in room and room["image"]: if not room["image"].startswith("http"): room["image"] = "https:" + room["image"] # convert html descriptions to text if "description" in room: description = room["description"].replace(u'\xa0', u' ') room["description"] = BeautifulSoup(description, "html.parser").text.strip() # remove extra fields if "formid" in room: del room["formid"] # enforce date filter # API returns dates outside of the range, fix this manually if start_datetime: out_times = [] for time in room["availability"]: parsed_start = datetime.datetime.strptime(time["from"][:-6], "%Y-%m-%dT%H:%M:%S") if parsed_start >= start_datetime: out_times.append(time) room["availability"] = out_times cat_out["rooms"].append(room) if cat_out["rooms"]: output["categories"].append(cat_out) return output
python
def get_rooms(self, lid, start=None, end=None): """Returns a list of rooms and their availabilities, grouped by category. :param lid: The ID of the location to retrieve rooms for. :type lid: int :param start: The start range for the availabilities to retrieve, in YYYY-MM-DD format. :type start: str :param end: The end range for the availabilities to retrieve, in YYYY-MM-DD format. :type end: str """ range_str = "availability" if start: start_datetime = datetime.datetime.combine(datetime.datetime.strptime(start, "%Y-%m-%d").date(), datetime.datetime.min.time()) range_str += "=" + start if end and not start == end: range_str += "," + end else: start_datetime = None resp = self._request("GET", "/1.1/space/categories/{}".format(lid)).json() if "error" in resp: raise APIError(resp["error"]) output = {"id": lid, "categories": []} # if there aren't any rooms associated with this location, return if len(resp) < 1: return output if "error" in resp[0]: raise APIError(resp[0]["error"]) if "categories" not in resp[0]: return output categories = resp[0]["categories"] id_to_category = {i["cid"]: i["name"] for i in categories} categories = ",".join([str(x["cid"]) for x in categories]) resp = self._request("GET", "/1.1/space/category/{}".format(categories)) for category in resp.json(): cat_out = {"cid": category["cid"], "name": id_to_category[category["cid"]], "rooms": []} # ignore equipment categories if cat_out["name"].endswith("Equipment"): continue items = category["items"] items = ",".join([str(x) for x in items]) resp = self._request("GET", "/1.1/space/item/{}?{}".format(items, range_str)) for room in resp.json(): if room["id"] in ROOM_BLACKLIST: continue # prepend protocol to urls if "image" in room and room["image"]: if not room["image"].startswith("http"): room["image"] = "https:" + room["image"] # convert html descriptions to text if "description" in room: description = room["description"].replace(u'\xa0', u' ') room["description"] = BeautifulSoup(description, "html.parser").text.strip() # remove extra fields if "formid" in room: del room["formid"] # enforce date filter # API returns dates outside of the range, fix this manually if start_datetime: out_times = [] for time in room["availability"]: parsed_start = datetime.datetime.strptime(time["from"][:-6], "%Y-%m-%dT%H:%M:%S") if parsed_start >= start_datetime: out_times.append(time) room["availability"] = out_times cat_out["rooms"].append(room) if cat_out["rooms"]: output["categories"].append(cat_out) return output
[ "def", "get_rooms", "(", "self", ",", "lid", ",", "start", "=", "None", ",", "end", "=", "None", ")", ":", "range_str", "=", "\"availability\"", "if", "start", ":", "start_datetime", "=", "datetime", ".", "datetime", ".", "combine", "(", "datetime", ".", "datetime", ".", "strptime", "(", "start", ",", "\"%Y-%m-%d\"", ")", ".", "date", "(", ")", ",", "datetime", ".", "datetime", ".", "min", ".", "time", "(", ")", ")", "range_str", "+=", "\"=\"", "+", "start", "if", "end", "and", "not", "start", "==", "end", ":", "range_str", "+=", "\",\"", "+", "end", "else", ":", "start_datetime", "=", "None", "resp", "=", "self", ".", "_request", "(", "\"GET\"", ",", "\"/1.1/space/categories/{}\"", ".", "format", "(", "lid", ")", ")", ".", "json", "(", ")", "if", "\"error\"", "in", "resp", ":", "raise", "APIError", "(", "resp", "[", "\"error\"", "]", ")", "output", "=", "{", "\"id\"", ":", "lid", ",", "\"categories\"", ":", "[", "]", "}", "# if there aren't any rooms associated with this location, return", "if", "len", "(", "resp", ")", "<", "1", ":", "return", "output", "if", "\"error\"", "in", "resp", "[", "0", "]", ":", "raise", "APIError", "(", "resp", "[", "0", "]", "[", "\"error\"", "]", ")", "if", "\"categories\"", "not", "in", "resp", "[", "0", "]", ":", "return", "output", "categories", "=", "resp", "[", "0", "]", "[", "\"categories\"", "]", "id_to_category", "=", "{", "i", "[", "\"cid\"", "]", ":", "i", "[", "\"name\"", "]", "for", "i", "in", "categories", "}", "categories", "=", "\",\"", ".", "join", "(", "[", "str", "(", "x", "[", "\"cid\"", "]", ")", "for", "x", "in", "categories", "]", ")", "resp", "=", "self", ".", "_request", "(", "\"GET\"", ",", "\"/1.1/space/category/{}\"", ".", "format", "(", "categories", ")", ")", "for", "category", "in", "resp", ".", "json", "(", ")", ":", "cat_out", "=", "{", "\"cid\"", ":", "category", "[", "\"cid\"", "]", ",", "\"name\"", ":", "id_to_category", "[", "category", "[", "\"cid\"", "]", "]", ",", "\"rooms\"", ":", "[", "]", "}", "# ignore equipment categories", "if", "cat_out", "[", "\"name\"", "]", ".", "endswith", "(", "\"Equipment\"", ")", ":", "continue", "items", "=", "category", "[", "\"items\"", "]", "items", "=", "\",\"", ".", "join", "(", "[", "str", "(", "x", ")", "for", "x", "in", "items", "]", ")", "resp", "=", "self", ".", "_request", "(", "\"GET\"", ",", "\"/1.1/space/item/{}?{}\"", ".", "format", "(", "items", ",", "range_str", ")", ")", "for", "room", "in", "resp", ".", "json", "(", ")", ":", "if", "room", "[", "\"id\"", "]", "in", "ROOM_BLACKLIST", ":", "continue", "# prepend protocol to urls", "if", "\"image\"", "in", "room", "and", "room", "[", "\"image\"", "]", ":", "if", "not", "room", "[", "\"image\"", "]", ".", "startswith", "(", "\"http\"", ")", ":", "room", "[", "\"image\"", "]", "=", "\"https:\"", "+", "room", "[", "\"image\"", "]", "# convert html descriptions to text", "if", "\"description\"", "in", "room", ":", "description", "=", "room", "[", "\"description\"", "]", ".", "replace", "(", "u'\\xa0'", ",", "u' '", ")", "room", "[", "\"description\"", "]", "=", "BeautifulSoup", "(", "description", ",", "\"html.parser\"", ")", ".", "text", ".", "strip", "(", ")", "# remove extra fields", "if", "\"formid\"", "in", "room", ":", "del", "room", "[", "\"formid\"", "]", "# enforce date filter", "# API returns dates outside of the range, fix this manually", "if", "start_datetime", ":", "out_times", "=", "[", "]", "for", "time", "in", "room", "[", "\"availability\"", "]", ":", "parsed_start", "=", "datetime", ".", "datetime", ".", "strptime", "(", "time", "[", "\"from\"", "]", "[", ":", "-", "6", "]", ",", "\"%Y-%m-%dT%H:%M:%S\"", ")", "if", "parsed_start", ">=", "start_datetime", ":", "out_times", ".", "append", "(", "time", ")", "room", "[", "\"availability\"", "]", "=", "out_times", "cat_out", "[", "\"rooms\"", "]", ".", "append", "(", "room", ")", "if", "cat_out", "[", "\"rooms\"", "]", ":", "output", "[", "\"categories\"", "]", ".", "append", "(", "cat_out", ")", "return", "output" ]
Returns a list of rooms and their availabilities, grouped by category. :param lid: The ID of the location to retrieve rooms for. :type lid: int :param start: The start range for the availabilities to retrieve, in YYYY-MM-DD format. :type start: str :param end: The end range for the availabilities to retrieve, in YYYY-MM-DD format. :type end: str
[ "Returns", "a", "list", "of", "rooms", "and", "their", "availabilities", "grouped", "by", "category", "." ]
31ff12c20d69438d63bc7a796f83ce4f4c828396
https://github.com/pennlabs/penn-sdk-python/blob/31ff12c20d69438d63bc7a796f83ce4f4c828396/penn/studyspaces.py#L93-L167
train
pennlabs/penn-sdk-python
penn/studyspaces.py
StudySpaces.book_room
def book_room(self, item, start, end, fname, lname, email, nickname, custom={}, test=False): """Books a room given the required information. :param item: The ID of the room to book. :type item: int :param start: The start time range of when to book the room, in the format returned by the LibCal API. :type start: str :param end: The end time range of when to book the room, in the format returned by the LibCal API. :type end: str :param fname: The first name of the user booking the room. :type fname: str :param lname: The last name of the user booking the room. :type lname: str :param email: The email of the user booking the room. :type email: str :param nickname: The name of the reservation. :type nickname: str :param custom: Any other custom fields required to book the room. :type custom: dict :param test: If this is set to true, don't actually book the room. Default is false. :type test: bool :returns: Dictionary containing a success and error field. """ data = { "start": start, "fname": fname, "lname": lname, "email": email, "nickname": nickname, "bookings": [ { "id": item, "to": end } ], "test": test } data.update(custom) resp = self._request("POST", "/1.1/space/reserve", json=data) out = resp.json() if "errors" in out and "error" not in out: errors = out["errors"] if isinstance(errors, list): errors = " ".join(errors) out["error"] = BeautifulSoup(errors.replace("\n", " "), "html.parser").text.strip() del out["errors"] if "results" not in out: if "error" not in out: out["error"] = None out["results"] = True else: out["results"] = False return out
python
def book_room(self, item, start, end, fname, lname, email, nickname, custom={}, test=False): """Books a room given the required information. :param item: The ID of the room to book. :type item: int :param start: The start time range of when to book the room, in the format returned by the LibCal API. :type start: str :param end: The end time range of when to book the room, in the format returned by the LibCal API. :type end: str :param fname: The first name of the user booking the room. :type fname: str :param lname: The last name of the user booking the room. :type lname: str :param email: The email of the user booking the room. :type email: str :param nickname: The name of the reservation. :type nickname: str :param custom: Any other custom fields required to book the room. :type custom: dict :param test: If this is set to true, don't actually book the room. Default is false. :type test: bool :returns: Dictionary containing a success and error field. """ data = { "start": start, "fname": fname, "lname": lname, "email": email, "nickname": nickname, "bookings": [ { "id": item, "to": end } ], "test": test } data.update(custom) resp = self._request("POST", "/1.1/space/reserve", json=data) out = resp.json() if "errors" in out and "error" not in out: errors = out["errors"] if isinstance(errors, list): errors = " ".join(errors) out["error"] = BeautifulSoup(errors.replace("\n", " "), "html.parser").text.strip() del out["errors"] if "results" not in out: if "error" not in out: out["error"] = None out["results"] = True else: out["results"] = False return out
[ "def", "book_room", "(", "self", ",", "item", ",", "start", ",", "end", ",", "fname", ",", "lname", ",", "email", ",", "nickname", ",", "custom", "=", "{", "}", ",", "test", "=", "False", ")", ":", "data", "=", "{", "\"start\"", ":", "start", ",", "\"fname\"", ":", "fname", ",", "\"lname\"", ":", "lname", ",", "\"email\"", ":", "email", ",", "\"nickname\"", ":", "nickname", ",", "\"bookings\"", ":", "[", "{", "\"id\"", ":", "item", ",", "\"to\"", ":", "end", "}", "]", ",", "\"test\"", ":", "test", "}", "data", ".", "update", "(", "custom", ")", "resp", "=", "self", ".", "_request", "(", "\"POST\"", ",", "\"/1.1/space/reserve\"", ",", "json", "=", "data", ")", "out", "=", "resp", ".", "json", "(", ")", "if", "\"errors\"", "in", "out", "and", "\"error\"", "not", "in", "out", ":", "errors", "=", "out", "[", "\"errors\"", "]", "if", "isinstance", "(", "errors", ",", "list", ")", ":", "errors", "=", "\" \"", ".", "join", "(", "errors", ")", "out", "[", "\"error\"", "]", "=", "BeautifulSoup", "(", "errors", ".", "replace", "(", "\"\\n\"", ",", "\" \"", ")", ",", "\"html.parser\"", ")", ".", "text", ".", "strip", "(", ")", "del", "out", "[", "\"errors\"", "]", "if", "\"results\"", "not", "in", "out", ":", "if", "\"error\"", "not", "in", "out", ":", "out", "[", "\"error\"", "]", "=", "None", "out", "[", "\"results\"", "]", "=", "True", "else", ":", "out", "[", "\"results\"", "]", "=", "False", "return", "out" ]
Books a room given the required information. :param item: The ID of the room to book. :type item: int :param start: The start time range of when to book the room, in the format returned by the LibCal API. :type start: str :param end: The end time range of when to book the room, in the format returned by the LibCal API. :type end: str :param fname: The first name of the user booking the room. :type fname: str :param lname: The last name of the user booking the room. :type lname: str :param email: The email of the user booking the room. :type email: str :param nickname: The name of the reservation. :type nickname: str :param custom: Any other custom fields required to book the room. :type custom: dict :param test: If this is set to true, don't actually book the room. Default is false. :type test: bool :returns: Dictionary containing a success and error field.
[ "Books", "a", "room", "given", "the", "required", "information", "." ]
31ff12c20d69438d63bc7a796f83ce4f4c828396
https://github.com/pennlabs/penn-sdk-python/blob/31ff12c20d69438d63bc7a796f83ce4f4c828396/penn/studyspaces.py#L169-L231
train
pennlabs/penn-sdk-python
penn/studyspaces.py
StudySpaces.cancel_room
def cancel_room(self, booking_id): """Cancel a room given a booking id. :param booking_id: A booking id or a list of booking ids (separated by commas) to cancel. :type booking_id: str """ resp = self._request("POST", "/1.1/space/cancel/{}".format(booking_id)) return resp.json()
python
def cancel_room(self, booking_id): """Cancel a room given a booking id. :param booking_id: A booking id or a list of booking ids (separated by commas) to cancel. :type booking_id: str """ resp = self._request("POST", "/1.1/space/cancel/{}".format(booking_id)) return resp.json()
[ "def", "cancel_room", "(", "self", ",", "booking_id", ")", ":", "resp", "=", "self", ".", "_request", "(", "\"POST\"", ",", "\"/1.1/space/cancel/{}\"", ".", "format", "(", "booking_id", ")", ")", "return", "resp", ".", "json", "(", ")" ]
Cancel a room given a booking id. :param booking_id: A booking id or a list of booking ids (separated by commas) to cancel. :type booking_id: str
[ "Cancel", "a", "room", "given", "a", "booking", "id", "." ]
31ff12c20d69438d63bc7a796f83ce4f4c828396
https://github.com/pennlabs/penn-sdk-python/blob/31ff12c20d69438d63bc7a796f83ce4f4c828396/penn/studyspaces.py#L233-L240
train
pennlabs/penn-sdk-python
penn/studyspaces.py
StudySpaces.get_reservations
def get_reservations(self, email, date, timeout=None): """Gets reservations for a given email. :param email: the email of the user who's reservations are to be fetched :type email: str """ try: resp = self._request("GET", "/1.1/space/bookings?email={}&date={}&limit=100".format(email, date), timeout=timeout) except resp.exceptions.HTTPError as error: raise APIError("Server Error: {}".format(error)) except requests.exceptions.ConnectTimeout: raise APIError("Timeout Error") return resp.json()
python
def get_reservations(self, email, date, timeout=None): """Gets reservations for a given email. :param email: the email of the user who's reservations are to be fetched :type email: str """ try: resp = self._request("GET", "/1.1/space/bookings?email={}&date={}&limit=100".format(email, date), timeout=timeout) except resp.exceptions.HTTPError as error: raise APIError("Server Error: {}".format(error)) except requests.exceptions.ConnectTimeout: raise APIError("Timeout Error") return resp.json()
[ "def", "get_reservations", "(", "self", ",", "email", ",", "date", ",", "timeout", "=", "None", ")", ":", "try", ":", "resp", "=", "self", ".", "_request", "(", "\"GET\"", ",", "\"/1.1/space/bookings?email={}&date={}&limit=100\"", ".", "format", "(", "email", ",", "date", ")", ",", "timeout", "=", "timeout", ")", "except", "resp", ".", "exceptions", ".", "HTTPError", "as", "error", ":", "raise", "APIError", "(", "\"Server Error: {}\"", ".", "format", "(", "error", ")", ")", "except", "requests", ".", "exceptions", ".", "ConnectTimeout", ":", "raise", "APIError", "(", "\"Timeout Error\"", ")", "return", "resp", ".", "json", "(", ")" ]
Gets reservations for a given email. :param email: the email of the user who's reservations are to be fetched :type email: str
[ "Gets", "reservations", "for", "a", "given", "email", "." ]
31ff12c20d69438d63bc7a796f83ce4f4c828396
https://github.com/pennlabs/penn-sdk-python/blob/31ff12c20d69438d63bc7a796f83ce4f4c828396/penn/studyspaces.py#L242-L254
train
pennlabs/penn-sdk-python
penn/studyspaces.py
StudySpaces.get_reservations_for_booking_ids
def get_reservations_for_booking_ids(self, booking_ids): """Gets booking information for a given list of booking ids. :param booking_ids: a booking id or a list of room ids (comma separated). :type booking_ids: string """ try: resp = self._request("GET", "/1.1/space/booking/{}".format(booking_ids)) except resp.exceptions.HTTPError as error: raise APIError("Server Error: {}".format(error)) return resp.json()
python
def get_reservations_for_booking_ids(self, booking_ids): """Gets booking information for a given list of booking ids. :param booking_ids: a booking id or a list of room ids (comma separated). :type booking_ids: string """ try: resp = self._request("GET", "/1.1/space/booking/{}".format(booking_ids)) except resp.exceptions.HTTPError as error: raise APIError("Server Error: {}".format(error)) return resp.json()
[ "def", "get_reservations_for_booking_ids", "(", "self", ",", "booking_ids", ")", ":", "try", ":", "resp", "=", "self", ".", "_request", "(", "\"GET\"", ",", "\"/1.1/space/booking/{}\"", ".", "format", "(", "booking_ids", ")", ")", "except", "resp", ".", "exceptions", ".", "HTTPError", "as", "error", ":", "raise", "APIError", "(", "\"Server Error: {}\"", ".", "format", "(", "error", ")", ")", "return", "resp", ".", "json", "(", ")" ]
Gets booking information for a given list of booking ids. :param booking_ids: a booking id or a list of room ids (comma separated). :type booking_ids: string
[ "Gets", "booking", "information", "for", "a", "given", "list", "of", "booking", "ids", "." ]
31ff12c20d69438d63bc7a796f83ce4f4c828396
https://github.com/pennlabs/penn-sdk-python/blob/31ff12c20d69438d63bc7a796f83ce4f4c828396/penn/studyspaces.py#L256-L266
train
pennlabs/penn-sdk-python
penn/studyspaces.py
StudySpaces.get_room_info
def get_room_info(self, room_ids): """Gets room information for a given list of ids. :param room_ids: a room id or a list of room ids (comma separated). :type room_ids: string """ try: resp = self._request("GET", "/1.1/space/item/{}".format(room_ids)) rooms = resp.json() for room in rooms: if not room["image"].startswith("http"): room["image"] = "https:" + room["image"] if "description" in room: description = room["description"].replace(u'\xa0', u' ') room["description"] = BeautifulSoup(description, "html.parser").text.strip() except resp.exceptions.HTTPError as error: raise APIError("Server Error: {}".format(error)) return rooms
python
def get_room_info(self, room_ids): """Gets room information for a given list of ids. :param room_ids: a room id or a list of room ids (comma separated). :type room_ids: string """ try: resp = self._request("GET", "/1.1/space/item/{}".format(room_ids)) rooms = resp.json() for room in rooms: if not room["image"].startswith("http"): room["image"] = "https:" + room["image"] if "description" in room: description = room["description"].replace(u'\xa0', u' ') room["description"] = BeautifulSoup(description, "html.parser").text.strip() except resp.exceptions.HTTPError as error: raise APIError("Server Error: {}".format(error)) return rooms
[ "def", "get_room_info", "(", "self", ",", "room_ids", ")", ":", "try", ":", "resp", "=", "self", ".", "_request", "(", "\"GET\"", ",", "\"/1.1/space/item/{}\"", ".", "format", "(", "room_ids", ")", ")", "rooms", "=", "resp", ".", "json", "(", ")", "for", "room", "in", "rooms", ":", "if", "not", "room", "[", "\"image\"", "]", ".", "startswith", "(", "\"http\"", ")", ":", "room", "[", "\"image\"", "]", "=", "\"https:\"", "+", "room", "[", "\"image\"", "]", "if", "\"description\"", "in", "room", ":", "description", "=", "room", "[", "\"description\"", "]", ".", "replace", "(", "u'\\xa0'", ",", "u' '", ")", "room", "[", "\"description\"", "]", "=", "BeautifulSoup", "(", "description", ",", "\"html.parser\"", ")", ".", "text", ".", "strip", "(", ")", "except", "resp", ".", "exceptions", ".", "HTTPError", "as", "error", ":", "raise", "APIError", "(", "\"Server Error: {}\"", ".", "format", "(", "error", ")", ")", "return", "rooms" ]
Gets room information for a given list of ids. :param room_ids: a room id or a list of room ids (comma separated). :type room_ids: string
[ "Gets", "room", "information", "for", "a", "given", "list", "of", "ids", "." ]
31ff12c20d69438d63bc7a796f83ce4f4c828396
https://github.com/pennlabs/penn-sdk-python/blob/31ff12c20d69438d63bc7a796f83ce4f4c828396/penn/studyspaces.py#L268-L286
train
evolbioinfo/pastml
pastml/acr.py
reconstruct_ancestral_states
def reconstruct_ancestral_states(tree, character, states, prediction_method=MPPA, model=F81, params=None, avg_br_len=None, num_nodes=None, num_tips=None, force_joint=True): """ Reconstructs ancestral states for the given character on the given tree. :param character: character whose ancestral states are to be reconstructed. :type character: str :param tree: tree whose ancestral state are to be reconstructed, annotated with the feature specified as `character` containing node states when known. :type tree: ete3.Tree :param states: possible character states. :type states: numpy.array :param avg_br_len: (optional) average non-zero branch length for this tree. If not specified, will be calculated. :type avg_br_len: float :param model: (optional, default is F81) state evolution model to be used by PASTML. :type model: str :param prediction_method: (optional, default is MPPA) ancestral state prediction method to be used by PASTML. :type prediction_method: str :param num_nodes: (optional) total number of nodes in the given tree (including tips). If not specified, will be calculated. :type num_nodes: int :param num_tips: (optional) total number of tips in the given tree. If not specified, will be calculated. :type num_tips: int :param params: an optional way to fix some parameters, must be in a form {param: value}, where param can be a state (then the value should specify its frequency between 0 and 1), or "scaling factor" (then the value should be the scaling factor for three branches, e.g. set to 1 to keep the original branches). Could also be in a form path_to_param_file. Only makes sense for ML methods. :type params: dict or str :return: ACR result dictionary whose values depend on the prediction method. :rtype: dict """ logging.getLogger('pastml').debug('ACR settings for {}:\n\tMethod:\t{}{}.' .format(character, prediction_method, '\n\tModel:\t{}'.format(model) if model and is_ml(prediction_method) else '')) if COPY == prediction_method: return {CHARACTER: character, STATES: states, METHOD: prediction_method} if not num_nodes: num_nodes = sum(1 for _ in tree.traverse()) if not num_tips: num_tips = len(tree) if is_ml(prediction_method): if avg_br_len is None: avg_br_len = np.mean(n.dist for n in tree.traverse() if n.dist) freqs, sf, kappa = None, None, None if params is not None: freqs, sf, kappa = _parse_pastml_parameters(params, states) return ml_acr(tree=tree, character=character, prediction_method=prediction_method, model=model, states=states, avg_br_len=avg_br_len, num_nodes=num_nodes, num_tips=num_tips, freqs=freqs, sf=sf, kappa=kappa, force_joint=force_joint) if is_parsimonious(prediction_method): return parsimonious_acr(tree, character, prediction_method, states, num_nodes, num_tips) raise ValueError('Method {} is unknown, should be one of ML ({}), one of MP ({}) or {}' .format(prediction_method, ', '.join(ML_METHODS), ', '.join(MP_METHODS), COPY))
python
def reconstruct_ancestral_states(tree, character, states, prediction_method=MPPA, model=F81, params=None, avg_br_len=None, num_nodes=None, num_tips=None, force_joint=True): """ Reconstructs ancestral states for the given character on the given tree. :param character: character whose ancestral states are to be reconstructed. :type character: str :param tree: tree whose ancestral state are to be reconstructed, annotated with the feature specified as `character` containing node states when known. :type tree: ete3.Tree :param states: possible character states. :type states: numpy.array :param avg_br_len: (optional) average non-zero branch length for this tree. If not specified, will be calculated. :type avg_br_len: float :param model: (optional, default is F81) state evolution model to be used by PASTML. :type model: str :param prediction_method: (optional, default is MPPA) ancestral state prediction method to be used by PASTML. :type prediction_method: str :param num_nodes: (optional) total number of nodes in the given tree (including tips). If not specified, will be calculated. :type num_nodes: int :param num_tips: (optional) total number of tips in the given tree. If not specified, will be calculated. :type num_tips: int :param params: an optional way to fix some parameters, must be in a form {param: value}, where param can be a state (then the value should specify its frequency between 0 and 1), or "scaling factor" (then the value should be the scaling factor for three branches, e.g. set to 1 to keep the original branches). Could also be in a form path_to_param_file. Only makes sense for ML methods. :type params: dict or str :return: ACR result dictionary whose values depend on the prediction method. :rtype: dict """ logging.getLogger('pastml').debug('ACR settings for {}:\n\tMethod:\t{}{}.' .format(character, prediction_method, '\n\tModel:\t{}'.format(model) if model and is_ml(prediction_method) else '')) if COPY == prediction_method: return {CHARACTER: character, STATES: states, METHOD: prediction_method} if not num_nodes: num_nodes = sum(1 for _ in tree.traverse()) if not num_tips: num_tips = len(tree) if is_ml(prediction_method): if avg_br_len is None: avg_br_len = np.mean(n.dist for n in tree.traverse() if n.dist) freqs, sf, kappa = None, None, None if params is not None: freqs, sf, kappa = _parse_pastml_parameters(params, states) return ml_acr(tree=tree, character=character, prediction_method=prediction_method, model=model, states=states, avg_br_len=avg_br_len, num_nodes=num_nodes, num_tips=num_tips, freqs=freqs, sf=sf, kappa=kappa, force_joint=force_joint) if is_parsimonious(prediction_method): return parsimonious_acr(tree, character, prediction_method, states, num_nodes, num_tips) raise ValueError('Method {} is unknown, should be one of ML ({}), one of MP ({}) or {}' .format(prediction_method, ', '.join(ML_METHODS), ', '.join(MP_METHODS), COPY))
[ "def", "reconstruct_ancestral_states", "(", "tree", ",", "character", ",", "states", ",", "prediction_method", "=", "MPPA", ",", "model", "=", "F81", ",", "params", "=", "None", ",", "avg_br_len", "=", "None", ",", "num_nodes", "=", "None", ",", "num_tips", "=", "None", ",", "force_joint", "=", "True", ")", ":", "logging", ".", "getLogger", "(", "'pastml'", ")", ".", "debug", "(", "'ACR settings for {}:\\n\\tMethod:\\t{}{}.'", ".", "format", "(", "character", ",", "prediction_method", ",", "'\\n\\tModel:\\t{}'", ".", "format", "(", "model", ")", "if", "model", "and", "is_ml", "(", "prediction_method", ")", "else", "''", ")", ")", "if", "COPY", "==", "prediction_method", ":", "return", "{", "CHARACTER", ":", "character", ",", "STATES", ":", "states", ",", "METHOD", ":", "prediction_method", "}", "if", "not", "num_nodes", ":", "num_nodes", "=", "sum", "(", "1", "for", "_", "in", "tree", ".", "traverse", "(", ")", ")", "if", "not", "num_tips", ":", "num_tips", "=", "len", "(", "tree", ")", "if", "is_ml", "(", "prediction_method", ")", ":", "if", "avg_br_len", "is", "None", ":", "avg_br_len", "=", "np", ".", "mean", "(", "n", ".", "dist", "for", "n", "in", "tree", ".", "traverse", "(", ")", "if", "n", ".", "dist", ")", "freqs", ",", "sf", ",", "kappa", "=", "None", ",", "None", ",", "None", "if", "params", "is", "not", "None", ":", "freqs", ",", "sf", ",", "kappa", "=", "_parse_pastml_parameters", "(", "params", ",", "states", ")", "return", "ml_acr", "(", "tree", "=", "tree", ",", "character", "=", "character", ",", "prediction_method", "=", "prediction_method", ",", "model", "=", "model", ",", "states", "=", "states", ",", "avg_br_len", "=", "avg_br_len", ",", "num_nodes", "=", "num_nodes", ",", "num_tips", "=", "num_tips", ",", "freqs", "=", "freqs", ",", "sf", "=", "sf", ",", "kappa", "=", "kappa", ",", "force_joint", "=", "force_joint", ")", "if", "is_parsimonious", "(", "prediction_method", ")", ":", "return", "parsimonious_acr", "(", "tree", ",", "character", ",", "prediction_method", ",", "states", ",", "num_nodes", ",", "num_tips", ")", "raise", "ValueError", "(", "'Method {} is unknown, should be one of ML ({}), one of MP ({}) or {}'", ".", "format", "(", "prediction_method", ",", "', '", ".", "join", "(", "ML_METHODS", ")", ",", "', '", ".", "join", "(", "MP_METHODS", ")", ",", "COPY", ")", ")" ]
Reconstructs ancestral states for the given character on the given tree. :param character: character whose ancestral states are to be reconstructed. :type character: str :param tree: tree whose ancestral state are to be reconstructed, annotated with the feature specified as `character` containing node states when known. :type tree: ete3.Tree :param states: possible character states. :type states: numpy.array :param avg_br_len: (optional) average non-zero branch length for this tree. If not specified, will be calculated. :type avg_br_len: float :param model: (optional, default is F81) state evolution model to be used by PASTML. :type model: str :param prediction_method: (optional, default is MPPA) ancestral state prediction method to be used by PASTML. :type prediction_method: str :param num_nodes: (optional) total number of nodes in the given tree (including tips). If not specified, will be calculated. :type num_nodes: int :param num_tips: (optional) total number of tips in the given tree. If not specified, will be calculated. :type num_tips: int :param params: an optional way to fix some parameters, must be in a form {param: value}, where param can be a state (then the value should specify its frequency between 0 and 1), or "scaling factor" (then the value should be the scaling factor for three branches, e.g. set to 1 to keep the original branches). Could also be in a form path_to_param_file. Only makes sense for ML methods. :type params: dict or str :return: ACR result dictionary whose values depend on the prediction method. :rtype: dict
[ "Reconstructs", "ancestral", "states", "for", "the", "given", "character", "on", "the", "given", "tree", "." ]
df8a375841525738383e59548eed3441b07dbd3e
https://github.com/evolbioinfo/pastml/blob/df8a375841525738383e59548eed3441b07dbd3e/pastml/acr.py#L137-L197
train
evolbioinfo/pastml
pastml/acr.py
acr
def acr(tree, df, prediction_method=MPPA, model=F81, column2parameters=None, force_joint=True): """ Reconstructs ancestral states for the given tree and all the characters specified as columns of the given annotation dataframe. :param df: dataframe indexed with tree node names and containing characters for which ACR should be performed as columns. :type df: pandas.DataFrame :param tree: tree whose ancestral state are to be reconstructed. :type tree: ete3.Tree :param model: (optional, default is F81) model(s) to be used by PASTML, can be either one model to be used for all the characters, or a list of different models (in the same order as the annotation dataframe columns) :type model: str or list(str) :param prediction_method: (optional, default is MPPA) ancestral state prediction method(s) to be used by PASTML, can be either one method to be used for all the characters, or a list of different methods (in the same order as the annotation dataframe columns) :type prediction_method: str or list(str) :param column2parameters: an optional way to fix some parameters, must be in a form {column: {param: value}}, where param can be a character state (then the value should specify its frequency between 0 and 1), or pastml.ml.SCALING_FACTOR (then the value should be the scaling factor for three branches, e.g. set to 1 to keep the original branches). Could also be in a form {column: path_to_param_file}. :type column2parameters: dict :param force_joint: (optional, default is True) whether the JOINT state should be added to the MPPA prediction even when not selected by the Brier score :type force_joint: bool :return: list of ACR result dictionaries, one per character. :rtype: list(dict) """ for c in df.columns: df[c] = df[c].apply(lambda _: '' if pd.isna(_) else _.encode('ASCII', 'replace').decode()) columns = preannotate_tree(df, tree) name_tree(tree) collapse_zero_branches(tree, features_to_be_merged=df.columns) avg_br_len, num_nodes, num_tips = get_tree_stats(tree) logging.getLogger('pastml').debug('\n=============ACR===============================') column2parameters = column2parameters if column2parameters else {} def _work(args): return reconstruct_ancestral_states(*args, avg_br_len=avg_br_len, num_nodes=num_nodes, num_tips=num_tips, force_joint=force_joint) prediction_methods = value2list(len(columns), prediction_method, MPPA) models = value2list(len(columns), model, F81) def get_states(method, model, column): df_states = [_ for _ in df[column].unique() if pd.notnull(_) and _ != ''] if not is_ml(method) or model not in {HKY, JTT}: return np.sort(df_states) states = HKY_STATES if HKY == model else JTT_STATES if not set(df_states) & set(states): raise ValueError('The allowed states for model {} are {}, ' 'but your annotation file specifies {} as states in column {}.' .format(model, ', '.join(states), ', '.join(df_states), column)) state_set = set(states) df[column] = df[column].apply(lambda _: _ if _ in state_set else '') return states with ThreadPool() as pool: acr_results = \ pool.map(func=_work, iterable=((tree, column, get_states(method, model, column), method, model, column2parameters[column] if column in column2parameters else None) for (column, method, model) in zip(columns, prediction_methods, models))) result = [] for acr_res in acr_results: if isinstance(acr_res, list): result.extend(acr_res) else: result.append(acr_res) return result
python
def acr(tree, df, prediction_method=MPPA, model=F81, column2parameters=None, force_joint=True): """ Reconstructs ancestral states for the given tree and all the characters specified as columns of the given annotation dataframe. :param df: dataframe indexed with tree node names and containing characters for which ACR should be performed as columns. :type df: pandas.DataFrame :param tree: tree whose ancestral state are to be reconstructed. :type tree: ete3.Tree :param model: (optional, default is F81) model(s) to be used by PASTML, can be either one model to be used for all the characters, or a list of different models (in the same order as the annotation dataframe columns) :type model: str or list(str) :param prediction_method: (optional, default is MPPA) ancestral state prediction method(s) to be used by PASTML, can be either one method to be used for all the characters, or a list of different methods (in the same order as the annotation dataframe columns) :type prediction_method: str or list(str) :param column2parameters: an optional way to fix some parameters, must be in a form {column: {param: value}}, where param can be a character state (then the value should specify its frequency between 0 and 1), or pastml.ml.SCALING_FACTOR (then the value should be the scaling factor for three branches, e.g. set to 1 to keep the original branches). Could also be in a form {column: path_to_param_file}. :type column2parameters: dict :param force_joint: (optional, default is True) whether the JOINT state should be added to the MPPA prediction even when not selected by the Brier score :type force_joint: bool :return: list of ACR result dictionaries, one per character. :rtype: list(dict) """ for c in df.columns: df[c] = df[c].apply(lambda _: '' if pd.isna(_) else _.encode('ASCII', 'replace').decode()) columns = preannotate_tree(df, tree) name_tree(tree) collapse_zero_branches(tree, features_to_be_merged=df.columns) avg_br_len, num_nodes, num_tips = get_tree_stats(tree) logging.getLogger('pastml').debug('\n=============ACR===============================') column2parameters = column2parameters if column2parameters else {} def _work(args): return reconstruct_ancestral_states(*args, avg_br_len=avg_br_len, num_nodes=num_nodes, num_tips=num_tips, force_joint=force_joint) prediction_methods = value2list(len(columns), prediction_method, MPPA) models = value2list(len(columns), model, F81) def get_states(method, model, column): df_states = [_ for _ in df[column].unique() if pd.notnull(_) and _ != ''] if not is_ml(method) or model not in {HKY, JTT}: return np.sort(df_states) states = HKY_STATES if HKY == model else JTT_STATES if not set(df_states) & set(states): raise ValueError('The allowed states for model {} are {}, ' 'but your annotation file specifies {} as states in column {}.' .format(model, ', '.join(states), ', '.join(df_states), column)) state_set = set(states) df[column] = df[column].apply(lambda _: _ if _ in state_set else '') return states with ThreadPool() as pool: acr_results = \ pool.map(func=_work, iterable=((tree, column, get_states(method, model, column), method, model, column2parameters[column] if column in column2parameters else None) for (column, method, model) in zip(columns, prediction_methods, models))) result = [] for acr_res in acr_results: if isinstance(acr_res, list): result.extend(acr_res) else: result.append(acr_res) return result
[ "def", "acr", "(", "tree", ",", "df", ",", "prediction_method", "=", "MPPA", ",", "model", "=", "F81", ",", "column2parameters", "=", "None", ",", "force_joint", "=", "True", ")", ":", "for", "c", "in", "df", ".", "columns", ":", "df", "[", "c", "]", "=", "df", "[", "c", "]", ".", "apply", "(", "lambda", "_", ":", "''", "if", "pd", ".", "isna", "(", "_", ")", "else", "_", ".", "encode", "(", "'ASCII'", ",", "'replace'", ")", ".", "decode", "(", ")", ")", "columns", "=", "preannotate_tree", "(", "df", ",", "tree", ")", "name_tree", "(", "tree", ")", "collapse_zero_branches", "(", "tree", ",", "features_to_be_merged", "=", "df", ".", "columns", ")", "avg_br_len", ",", "num_nodes", ",", "num_tips", "=", "get_tree_stats", "(", "tree", ")", "logging", ".", "getLogger", "(", "'pastml'", ")", ".", "debug", "(", "'\\n=============ACR==============================='", ")", "column2parameters", "=", "column2parameters", "if", "column2parameters", "else", "{", "}", "def", "_work", "(", "args", ")", ":", "return", "reconstruct_ancestral_states", "(", "*", "args", ",", "avg_br_len", "=", "avg_br_len", ",", "num_nodes", "=", "num_nodes", ",", "num_tips", "=", "num_tips", ",", "force_joint", "=", "force_joint", ")", "prediction_methods", "=", "value2list", "(", "len", "(", "columns", ")", ",", "prediction_method", ",", "MPPA", ")", "models", "=", "value2list", "(", "len", "(", "columns", ")", ",", "model", ",", "F81", ")", "def", "get_states", "(", "method", ",", "model", ",", "column", ")", ":", "df_states", "=", "[", "_", "for", "_", "in", "df", "[", "column", "]", ".", "unique", "(", ")", "if", "pd", ".", "notnull", "(", "_", ")", "and", "_", "!=", "''", "]", "if", "not", "is_ml", "(", "method", ")", "or", "model", "not", "in", "{", "HKY", ",", "JTT", "}", ":", "return", "np", ".", "sort", "(", "df_states", ")", "states", "=", "HKY_STATES", "if", "HKY", "==", "model", "else", "JTT_STATES", "if", "not", "set", "(", "df_states", ")", "&", "set", "(", "states", ")", ":", "raise", "ValueError", "(", "'The allowed states for model {} are {}, '", "'but your annotation file specifies {} as states in column {}.'", ".", "format", "(", "model", ",", "', '", ".", "join", "(", "states", ")", ",", "', '", ".", "join", "(", "df_states", ")", ",", "column", ")", ")", "state_set", "=", "set", "(", "states", ")", "df", "[", "column", "]", "=", "df", "[", "column", "]", ".", "apply", "(", "lambda", "_", ":", "_", "if", "_", "in", "state_set", "else", "''", ")", "return", "states", "with", "ThreadPool", "(", ")", "as", "pool", ":", "acr_results", "=", "pool", ".", "map", "(", "func", "=", "_work", ",", "iterable", "=", "(", "(", "tree", ",", "column", ",", "get_states", "(", "method", ",", "model", ",", "column", ")", ",", "method", ",", "model", ",", "column2parameters", "[", "column", "]", "if", "column", "in", "column2parameters", "else", "None", ")", "for", "(", "column", ",", "method", ",", "model", ")", "in", "zip", "(", "columns", ",", "prediction_methods", ",", "models", ")", ")", ")", "result", "=", "[", "]", "for", "acr_res", "in", "acr_results", ":", "if", "isinstance", "(", "acr_res", ",", "list", ")", ":", "result", ".", "extend", "(", "acr_res", ")", "else", ":", "result", ".", "append", "(", "acr_res", ")", "return", "result" ]
Reconstructs ancestral states for the given tree and all the characters specified as columns of the given annotation dataframe. :param df: dataframe indexed with tree node names and containing characters for which ACR should be performed as columns. :type df: pandas.DataFrame :param tree: tree whose ancestral state are to be reconstructed. :type tree: ete3.Tree :param model: (optional, default is F81) model(s) to be used by PASTML, can be either one model to be used for all the characters, or a list of different models (in the same order as the annotation dataframe columns) :type model: str or list(str) :param prediction_method: (optional, default is MPPA) ancestral state prediction method(s) to be used by PASTML, can be either one method to be used for all the characters, or a list of different methods (in the same order as the annotation dataframe columns) :type prediction_method: str or list(str) :param column2parameters: an optional way to fix some parameters, must be in a form {column: {param: value}}, where param can be a character state (then the value should specify its frequency between 0 and 1), or pastml.ml.SCALING_FACTOR (then the value should be the scaling factor for three branches, e.g. set to 1 to keep the original branches). Could also be in a form {column: path_to_param_file}. :type column2parameters: dict :param force_joint: (optional, default is True) whether the JOINT state should be added to the MPPA prediction even when not selected by the Brier score :type force_joint: bool :return: list of ACR result dictionaries, one per character. :rtype: list(dict)
[ "Reconstructs", "ancestral", "states", "for", "the", "given", "tree", "and", "all", "the", "characters", "specified", "as", "columns", "of", "the", "given", "annotation", "dataframe", "." ]
df8a375841525738383e59548eed3441b07dbd3e
https://github.com/evolbioinfo/pastml/blob/df8a375841525738383e59548eed3441b07dbd3e/pastml/acr.py#L200-L276
train
geophysics-ubonn/reda
lib/reda/utils/eit_fzj_utils.py
compute_correction_factors
def compute_correction_factors(data, true_conductivity, elem_file, elec_file): """Compute correction factors for 2D rhizotron geometries, following Weigand and Kemna, 2017, Biogeosciences https://doi.org/10.5194/bg-14-921-2017 Parameters ---------- data : :py:class:`pandas.DataFrame` measured data true_conductivity : float Conductivity in S/m elem_file : string path to CRTomo FE mesh file (elem.dat) elec_file : string path to CRTomo FE electrode file (elec.dat) Returns ------- correction_factors : Nx5 :py:class.`numpy.ndarray` measurement configurations and correction factors (a,b,m,n,correction_factor) """ settings = { 'rho': 100, 'pha': 0, 'elem': 'elem.dat', 'elec': 'elec.dat', '2D': True, 'sink_node': 100, } K = geometric_factors.compute_K_numerical(data, settings=settings) data = geometric_factors.apply_K(data, K) data = fixK.fix_sign_with_K(data) frequency = 100 data_onef = data.query('frequency == {}'.format(frequency)) rho_measured = data_onef['r'] * data_onef['k'] rho_true = 1 / true_conductivity * 1e4 correction_factors = rho_true / rho_measured collection = np.hstack(( data_onef[['a', 'b', 'm', 'n']].values, np.abs(correction_factors)[:, np.newaxis] )) return collection
python
def compute_correction_factors(data, true_conductivity, elem_file, elec_file): """Compute correction factors for 2D rhizotron geometries, following Weigand and Kemna, 2017, Biogeosciences https://doi.org/10.5194/bg-14-921-2017 Parameters ---------- data : :py:class:`pandas.DataFrame` measured data true_conductivity : float Conductivity in S/m elem_file : string path to CRTomo FE mesh file (elem.dat) elec_file : string path to CRTomo FE electrode file (elec.dat) Returns ------- correction_factors : Nx5 :py:class.`numpy.ndarray` measurement configurations and correction factors (a,b,m,n,correction_factor) """ settings = { 'rho': 100, 'pha': 0, 'elem': 'elem.dat', 'elec': 'elec.dat', '2D': True, 'sink_node': 100, } K = geometric_factors.compute_K_numerical(data, settings=settings) data = geometric_factors.apply_K(data, K) data = fixK.fix_sign_with_K(data) frequency = 100 data_onef = data.query('frequency == {}'.format(frequency)) rho_measured = data_onef['r'] * data_onef['k'] rho_true = 1 / true_conductivity * 1e4 correction_factors = rho_true / rho_measured collection = np.hstack(( data_onef[['a', 'b', 'm', 'n']].values, np.abs(correction_factors)[:, np.newaxis] )) return collection
[ "def", "compute_correction_factors", "(", "data", ",", "true_conductivity", ",", "elem_file", ",", "elec_file", ")", ":", "settings", "=", "{", "'rho'", ":", "100", ",", "'pha'", ":", "0", ",", "'elem'", ":", "'elem.dat'", ",", "'elec'", ":", "'elec.dat'", ",", "'2D'", ":", "True", ",", "'sink_node'", ":", "100", ",", "}", "K", "=", "geometric_factors", ".", "compute_K_numerical", "(", "data", ",", "settings", "=", "settings", ")", "data", "=", "geometric_factors", ".", "apply_K", "(", "data", ",", "K", ")", "data", "=", "fixK", ".", "fix_sign_with_K", "(", "data", ")", "frequency", "=", "100", "data_onef", "=", "data", ".", "query", "(", "'frequency == {}'", ".", "format", "(", "frequency", ")", ")", "rho_measured", "=", "data_onef", "[", "'r'", "]", "*", "data_onef", "[", "'k'", "]", "rho_true", "=", "1", "/", "true_conductivity", "*", "1e4", "correction_factors", "=", "rho_true", "/", "rho_measured", "collection", "=", "np", ".", "hstack", "(", "(", "data_onef", "[", "[", "'a'", ",", "'b'", ",", "'m'", ",", "'n'", "]", "]", ".", "values", ",", "np", ".", "abs", "(", "correction_factors", ")", "[", ":", ",", "np", ".", "newaxis", "]", ")", ")", "return", "collection" ]
Compute correction factors for 2D rhizotron geometries, following Weigand and Kemna, 2017, Biogeosciences https://doi.org/10.5194/bg-14-921-2017 Parameters ---------- data : :py:class:`pandas.DataFrame` measured data true_conductivity : float Conductivity in S/m elem_file : string path to CRTomo FE mesh file (elem.dat) elec_file : string path to CRTomo FE electrode file (elec.dat) Returns ------- correction_factors : Nx5 :py:class.`numpy.ndarray` measurement configurations and correction factors (a,b,m,n,correction_factor)
[ "Compute", "correction", "factors", "for", "2D", "rhizotron", "geometries", "following", "Weigand", "and", "Kemna", "2017", "Biogeosciences" ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/utils/eit_fzj_utils.py#L12-L62
train
shexSpec/grammar
parsers/python/pyshexc/parser_impl/generate_shexj.py
rdf_suffix
def rdf_suffix(fmt: str) -> str: """ Map the RDF format to the approproate suffix """ for k, v in SUFFIX_FORMAT_MAP.items(): if fmt == v: return k return 'rdf'
python
def rdf_suffix(fmt: str) -> str: """ Map the RDF format to the approproate suffix """ for k, v in SUFFIX_FORMAT_MAP.items(): if fmt == v: return k return 'rdf'
[ "def", "rdf_suffix", "(", "fmt", ":", "str", ")", "->", "str", ":", "for", "k", ",", "v", "in", "SUFFIX_FORMAT_MAP", ".", "items", "(", ")", ":", "if", "fmt", "==", "v", ":", "return", "k", "return", "'rdf'" ]
Map the RDF format to the approproate suffix
[ "Map", "the", "RDF", "format", "to", "the", "approproate", "suffix" ]
4497cd1f73fa6703bca6e2cb53ba9c120f22e48c
https://github.com/shexSpec/grammar/blob/4497cd1f73fa6703bca6e2cb53ba9c120f22e48c/parsers/python/pyshexc/parser_impl/generate_shexj.py#L143-L148
train
geophysics-ubonn/reda
lib/reda/exporters/bert.py
export_bert
def export_bert(data, electrodes, filename): """Export to unified data format used in pyGIMLi & BERT. Parameters ---------- data : :py:class:`pandas.DataFrame` DataFrame with at least a, b, m, n and r. electrodes : :py:class:`pandas.DataFrame` DataFrame with electrode positions. filename : str String of the output filename. """ # Check for multiple timesteps if has_multiple_timesteps(data): for i, timestep in enumerate(split_timesteps(data)): export_bert(timestep, electrodes, filename.replace(".", "_%.3d." % i)) # TODO: Make ABMN consistent # index_full = ert.data.groupby(list("abmn")).groups.keys() # g = ert.data.groupby('timestep') # q = ert.data.pivot_table(values='r', index=list("abmn"), columns="timestep", dropna=True) # ert.data.reset_index(list("abmn")) f = open(filename, 'w') f.write("%d\n" % len(electrodes)) f.write("# ") # Make temporary copies for renaming electrodes = electrodes.copy() data = data.copy() electrodes.columns = electrodes.columns.str.lower() data.columns = data.columns.str.lower() # Remove unnecessary columns and rename according to bert conventions # https://gitlab.com/resistivity-net/bert#the-unified-data-format cols_to_export = ["a", "b", "m", "n", "u", "i", "r", "rho_a", "error"] data.drop(data.columns.difference(cols_to_export), 1, inplace=True) data.rename(columns={"rho_a": "rhoa", "error": "err"}, inplace=True) for key in electrodes.keys(): f.write("%s " % key) f.write("\n") for row in electrodes.itertuples(index=False): for val in row: f.write("%5.3f " % val) f.write("\n") f.write("%d\n" % len(data)) f.write("# ") # Make sure that a, b, m, n are the first 4 columns columns = data.columns.tolist() for c in "abmn": columns.remove(c) columns = list("abmn") + columns data = data[columns] for key in data.keys(): f.write("%s " % key) f.write("\n") for row in data.itertuples(index=False): for i, val in enumerate(row): if i < 4: f.write("%d " % val) else: f.write("%E " % val) f.write("\n") f.close()
python
def export_bert(data, electrodes, filename): """Export to unified data format used in pyGIMLi & BERT. Parameters ---------- data : :py:class:`pandas.DataFrame` DataFrame with at least a, b, m, n and r. electrodes : :py:class:`pandas.DataFrame` DataFrame with electrode positions. filename : str String of the output filename. """ # Check for multiple timesteps if has_multiple_timesteps(data): for i, timestep in enumerate(split_timesteps(data)): export_bert(timestep, electrodes, filename.replace(".", "_%.3d." % i)) # TODO: Make ABMN consistent # index_full = ert.data.groupby(list("abmn")).groups.keys() # g = ert.data.groupby('timestep') # q = ert.data.pivot_table(values='r', index=list("abmn"), columns="timestep", dropna=True) # ert.data.reset_index(list("abmn")) f = open(filename, 'w') f.write("%d\n" % len(electrodes)) f.write("# ") # Make temporary copies for renaming electrodes = electrodes.copy() data = data.copy() electrodes.columns = electrodes.columns.str.lower() data.columns = data.columns.str.lower() # Remove unnecessary columns and rename according to bert conventions # https://gitlab.com/resistivity-net/bert#the-unified-data-format cols_to_export = ["a", "b", "m", "n", "u", "i", "r", "rho_a", "error"] data.drop(data.columns.difference(cols_to_export), 1, inplace=True) data.rename(columns={"rho_a": "rhoa", "error": "err"}, inplace=True) for key in electrodes.keys(): f.write("%s " % key) f.write("\n") for row in electrodes.itertuples(index=False): for val in row: f.write("%5.3f " % val) f.write("\n") f.write("%d\n" % len(data)) f.write("# ") # Make sure that a, b, m, n are the first 4 columns columns = data.columns.tolist() for c in "abmn": columns.remove(c) columns = list("abmn") + columns data = data[columns] for key in data.keys(): f.write("%s " % key) f.write("\n") for row in data.itertuples(index=False): for i, val in enumerate(row): if i < 4: f.write("%d " % val) else: f.write("%E " % val) f.write("\n") f.close()
[ "def", "export_bert", "(", "data", ",", "electrodes", ",", "filename", ")", ":", "# Check for multiple timesteps", "if", "has_multiple_timesteps", "(", "data", ")", ":", "for", "i", ",", "timestep", "in", "enumerate", "(", "split_timesteps", "(", "data", ")", ")", ":", "export_bert", "(", "timestep", ",", "electrodes", ",", "filename", ".", "replace", "(", "\".\"", ",", "\"_%.3d.\"", "%", "i", ")", ")", "# TODO: Make ABMN consistent", "# index_full = ert.data.groupby(list(\"abmn\")).groups.keys()", "# g = ert.data.groupby('timestep')", "# q = ert.data.pivot_table(values='r', index=list(\"abmn\"), columns=\"timestep\", dropna=True)", "# ert.data.reset_index(list(\"abmn\"))", "f", "=", "open", "(", "filename", ",", "'w'", ")", "f", ".", "write", "(", "\"%d\\n\"", "%", "len", "(", "electrodes", ")", ")", "f", ".", "write", "(", "\"# \"", ")", "# Make temporary copies for renaming", "electrodes", "=", "electrodes", ".", "copy", "(", ")", "data", "=", "data", ".", "copy", "(", ")", "electrodes", ".", "columns", "=", "electrodes", ".", "columns", ".", "str", ".", "lower", "(", ")", "data", ".", "columns", "=", "data", ".", "columns", ".", "str", ".", "lower", "(", ")", "# Remove unnecessary columns and rename according to bert conventions", "# https://gitlab.com/resistivity-net/bert#the-unified-data-format", "cols_to_export", "=", "[", "\"a\"", ",", "\"b\"", ",", "\"m\"", ",", "\"n\"", ",", "\"u\"", ",", "\"i\"", ",", "\"r\"", ",", "\"rho_a\"", ",", "\"error\"", "]", "data", ".", "drop", "(", "data", ".", "columns", ".", "difference", "(", "cols_to_export", ")", ",", "1", ",", "inplace", "=", "True", ")", "data", ".", "rename", "(", "columns", "=", "{", "\"rho_a\"", ":", "\"rhoa\"", ",", "\"error\"", ":", "\"err\"", "}", ",", "inplace", "=", "True", ")", "for", "key", "in", "electrodes", ".", "keys", "(", ")", ":", "f", ".", "write", "(", "\"%s \"", "%", "key", ")", "f", ".", "write", "(", "\"\\n\"", ")", "for", "row", "in", "electrodes", ".", "itertuples", "(", "index", "=", "False", ")", ":", "for", "val", "in", "row", ":", "f", ".", "write", "(", "\"%5.3f \"", "%", "val", ")", "f", ".", "write", "(", "\"\\n\"", ")", "f", ".", "write", "(", "\"%d\\n\"", "%", "len", "(", "data", ")", ")", "f", ".", "write", "(", "\"# \"", ")", "# Make sure that a, b, m, n are the first 4 columns", "columns", "=", "data", ".", "columns", ".", "tolist", "(", ")", "for", "c", "in", "\"abmn\"", ":", "columns", ".", "remove", "(", "c", ")", "columns", "=", "list", "(", "\"abmn\"", ")", "+", "columns", "data", "=", "data", "[", "columns", "]", "for", "key", "in", "data", ".", "keys", "(", ")", ":", "f", ".", "write", "(", "\"%s \"", "%", "key", ")", "f", ".", "write", "(", "\"\\n\"", ")", "for", "row", "in", "data", ".", "itertuples", "(", "index", "=", "False", ")", ":", "for", "i", ",", "val", "in", "enumerate", "(", "row", ")", ":", "if", "i", "<", "4", ":", "f", ".", "write", "(", "\"%d \"", "%", "val", ")", "else", ":", "f", ".", "write", "(", "\"%E \"", "%", "val", ")", "f", ".", "write", "(", "\"\\n\"", ")", "f", ".", "close", "(", ")" ]
Export to unified data format used in pyGIMLi & BERT. Parameters ---------- data : :py:class:`pandas.DataFrame` DataFrame with at least a, b, m, n and r. electrodes : :py:class:`pandas.DataFrame` DataFrame with electrode positions. filename : str String of the output filename.
[ "Export", "to", "unified", "data", "format", "used", "in", "pyGIMLi", "&", "BERT", "." ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/exporters/bert.py#L4-L73
train
cfobel/webcam-recorder
webcam_recorder/view.py
VideoSelectorView.reset
def reset(self, index=None): ''' Reset the points for the specified index position. If no index is specified, reset points for all point handlers. ''' points_handler_count = len(self.registration_view.points) if index is None: indexes = range(points_handler_count) else: indexes = [index] indexes = [i for i in indexes if i < points_handler_count] for i in indexes: self.registration_view.points[i].reset() if indexes: self.registration_view.update_transform()
python
def reset(self, index=None): ''' Reset the points for the specified index position. If no index is specified, reset points for all point handlers. ''' points_handler_count = len(self.registration_view.points) if index is None: indexes = range(points_handler_count) else: indexes = [index] indexes = [i for i in indexes if i < points_handler_count] for i in indexes: self.registration_view.points[i].reset() if indexes: self.registration_view.update_transform()
[ "def", "reset", "(", "self", ",", "index", "=", "None", ")", ":", "points_handler_count", "=", "len", "(", "self", ".", "registration_view", ".", "points", ")", "if", "index", "is", "None", ":", "indexes", "=", "range", "(", "points_handler_count", ")", "else", ":", "indexes", "=", "[", "index", "]", "indexes", "=", "[", "i", "for", "i", "in", "indexes", "if", "i", "<", "points_handler_count", "]", "for", "i", "in", "indexes", ":", "self", ".", "registration_view", ".", "points", "[", "i", "]", ".", "reset", "(", ")", "if", "indexes", ":", "self", ".", "registration_view", ".", "update_transform", "(", ")" ]
Reset the points for the specified index position. If no index is specified, reset points for all point handlers.
[ "Reset", "the", "points", "for", "the", "specified", "index", "position", ".", "If", "no", "index", "is", "specified", "reset", "points", "for", "all", "point", "handlers", "." ]
ffeb57c9044033fbea6372b3e642b83fd42dea87
https://github.com/cfobel/webcam-recorder/blob/ffeb57c9044033fbea6372b3e642b83fd42dea87/webcam_recorder/view.py#L102-L118
train
geophysics-ubonn/reda
lib/reda/importers/res2dinv.py
_read_file
def _read_file(filename): """ Read a res2dinv-file and return the header Parameters ---------- filename : string Data filename Returns ------ type : int type of array extracted from header file_data : :py:class:`StringIO.StringIO` content of file in a StringIO object """ # read data with open(filename, 'r') as fid2: abem_data_orig = fid2.read() fid = StringIO() fid.write(abem_data_orig) fid.seek(0) # determine type of array fid.readline() fid.readline() file_type = int(fid.readline().strip()) # reset file pointer fid.seek(0) return file_type, fid
python
def _read_file(filename): """ Read a res2dinv-file and return the header Parameters ---------- filename : string Data filename Returns ------ type : int type of array extracted from header file_data : :py:class:`StringIO.StringIO` content of file in a StringIO object """ # read data with open(filename, 'r') as fid2: abem_data_orig = fid2.read() fid = StringIO() fid.write(abem_data_orig) fid.seek(0) # determine type of array fid.readline() fid.readline() file_type = int(fid.readline().strip()) # reset file pointer fid.seek(0) return file_type, fid
[ "def", "_read_file", "(", "filename", ")", ":", "# read data", "with", "open", "(", "filename", ",", "'r'", ")", "as", "fid2", ":", "abem_data_orig", "=", "fid2", ".", "read", "(", ")", "fid", "=", "StringIO", "(", ")", "fid", ".", "write", "(", "abem_data_orig", ")", "fid", ".", "seek", "(", "0", ")", "# determine type of array", "fid", ".", "readline", "(", ")", "fid", ".", "readline", "(", ")", "file_type", "=", "int", "(", "fid", ".", "readline", "(", ")", ".", "strip", "(", ")", ")", "# reset file pointer", "fid", ".", "seek", "(", "0", ")", "return", "file_type", ",", "fid" ]
Read a res2dinv-file and return the header Parameters ---------- filename : string Data filename Returns ------ type : int type of array extracted from header file_data : :py:class:`StringIO.StringIO` content of file in a StringIO object
[ "Read", "a", "res2dinv", "-", "file", "and", "return", "the", "header" ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/importers/res2dinv.py#L15-L46
train
geophysics-ubonn/reda
lib/reda/importers/res2dinv.py
add_dat_file
def add_dat_file(filename, settings, container=None, **kwargs): """ Read a RES2DINV-style file produced by the ABEM export program. """ # each type is read by a different function importers = { # general array type 11: _read_general_type, } file_type, content = _read_file(filename) if file_type not in importers: raise Exception( 'type of RES2DINV data file not recognized: {0}'.format(file_type) ) header, data = importers[file_type](content, settings) timestep = settings.get('timestep', 0) # add timestep column data['timestep'] = timestep if container is None: container = ERT(data) else: container.data = pd.concat((container.data, data)) return container
python
def add_dat_file(filename, settings, container=None, **kwargs): """ Read a RES2DINV-style file produced by the ABEM export program. """ # each type is read by a different function importers = { # general array type 11: _read_general_type, } file_type, content = _read_file(filename) if file_type not in importers: raise Exception( 'type of RES2DINV data file not recognized: {0}'.format(file_type) ) header, data = importers[file_type](content, settings) timestep = settings.get('timestep', 0) # add timestep column data['timestep'] = timestep if container is None: container = ERT(data) else: container.data = pd.concat((container.data, data)) return container
[ "def", "add_dat_file", "(", "filename", ",", "settings", ",", "container", "=", "None", ",", "*", "*", "kwargs", ")", ":", "# each type is read by a different function", "importers", "=", "{", "# general array type", "11", ":", "_read_general_type", ",", "}", "file_type", ",", "content", "=", "_read_file", "(", "filename", ")", "if", "file_type", "not", "in", "importers", ":", "raise", "Exception", "(", "'type of RES2DINV data file not recognized: {0}'", ".", "format", "(", "file_type", ")", ")", "header", ",", "data", "=", "importers", "[", "file_type", "]", "(", "content", ",", "settings", ")", "timestep", "=", "settings", ".", "get", "(", "'timestep'", ",", "0", ")", "# add timestep column", "data", "[", "'timestep'", "]", "=", "timestep", "if", "container", "is", "None", ":", "container", "=", "ERT", "(", "data", ")", "else", ":", "container", ".", "data", "=", "pd", ".", "concat", "(", "(", "container", ".", "data", ",", "data", ")", ")", "return", "container" ]
Read a RES2DINV-style file produced by the ABEM export program.
[ "Read", "a", "RES2DINV", "-", "style", "file", "produced", "by", "the", "ABEM", "export", "program", "." ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/importers/res2dinv.py#L142-L170
train
lambdalisue/notify
src/notify/wizard.py
console_input
def console_input(default, validation=None, allow_empty=False): """ Get user input value from stdin Parameters ---------- default : string A default value. It will be used when user input nothing. validation : callable A validation function. The validation function must raise an error when validation has failed. Returns ------- string or any A user input string or validated value """ value = raw_input("> ") or default if value == "" and not allow_empty: print "Invalid: Empty value is not permitted." return console_input(default, validation) if validation: try: return validation(value) except ValidationError, e: print "Invalid: ", e return console_input(default, validation) return value
python
def console_input(default, validation=None, allow_empty=False): """ Get user input value from stdin Parameters ---------- default : string A default value. It will be used when user input nothing. validation : callable A validation function. The validation function must raise an error when validation has failed. Returns ------- string or any A user input string or validated value """ value = raw_input("> ") or default if value == "" and not allow_empty: print "Invalid: Empty value is not permitted." return console_input(default, validation) if validation: try: return validation(value) except ValidationError, e: print "Invalid: ", e return console_input(default, validation) return value
[ "def", "console_input", "(", "default", ",", "validation", "=", "None", ",", "allow_empty", "=", "False", ")", ":", "value", "=", "raw_input", "(", "\"> \"", ")", "or", "default", "if", "value", "==", "\"\"", "and", "not", "allow_empty", ":", "print", "\"Invalid: Empty value is not permitted.\"", "return", "console_input", "(", "default", ",", "validation", ")", "if", "validation", ":", "try", ":", "return", "validation", "(", "value", ")", "except", "ValidationError", ",", "e", ":", "print", "\"Invalid: \"", ",", "e", "return", "console_input", "(", "default", ",", "validation", ")", "return", "value" ]
Get user input value from stdin Parameters ---------- default : string A default value. It will be used when user input nothing. validation : callable A validation function. The validation function must raise an error when validation has failed. Returns ------- string or any A user input string or validated value
[ "Get", "user", "input", "value", "from", "stdin" ]
1b6d7d1faa2cea13bfaa1f35130f279a0115e686
https://github.com/lambdalisue/notify/blob/1b6d7d1faa2cea13bfaa1f35130f279a0115e686/src/notify/wizard.py#L22-L49
train
south-coast-science/scs_core
src/scs_core/gas/a4_temp_comp.py
A4TempComp.correct
def correct(self, calib, temp, we_t, ae_t): """ Compute weC from weT, aeT """ if not A4TempComp.in_range(temp): return None if self.__algorithm == 1: return self.__eq1(temp, we_t, ae_t) if self.__algorithm == 2: return self.__eq2(temp, we_t, ae_t, calib.we_cal_mv, calib.ae_cal_mv) if self.__algorithm == 3: return self.__eq3(temp, we_t, ae_t, calib.we_cal_mv, calib.ae_cal_mv) if self.__algorithm == 4: return self.__eq4(temp, we_t, calib.we_cal_mv) raise ValueError("A4TempComp.conv: unrecognised algorithm: %d." % self.__algorithm)
python
def correct(self, calib, temp, we_t, ae_t): """ Compute weC from weT, aeT """ if not A4TempComp.in_range(temp): return None if self.__algorithm == 1: return self.__eq1(temp, we_t, ae_t) if self.__algorithm == 2: return self.__eq2(temp, we_t, ae_t, calib.we_cal_mv, calib.ae_cal_mv) if self.__algorithm == 3: return self.__eq3(temp, we_t, ae_t, calib.we_cal_mv, calib.ae_cal_mv) if self.__algorithm == 4: return self.__eq4(temp, we_t, calib.we_cal_mv) raise ValueError("A4TempComp.conv: unrecognised algorithm: %d." % self.__algorithm)
[ "def", "correct", "(", "self", ",", "calib", ",", "temp", ",", "we_t", ",", "ae_t", ")", ":", "if", "not", "A4TempComp", ".", "in_range", "(", "temp", ")", ":", "return", "None", "if", "self", ".", "__algorithm", "==", "1", ":", "return", "self", ".", "__eq1", "(", "temp", ",", "we_t", ",", "ae_t", ")", "if", "self", ".", "__algorithm", "==", "2", ":", "return", "self", ".", "__eq2", "(", "temp", ",", "we_t", ",", "ae_t", ",", "calib", ".", "we_cal_mv", ",", "calib", ".", "ae_cal_mv", ")", "if", "self", ".", "__algorithm", "==", "3", ":", "return", "self", ".", "__eq3", "(", "temp", ",", "we_t", ",", "ae_t", ",", "calib", ".", "we_cal_mv", ",", "calib", ".", "ae_cal_mv", ")", "if", "self", ".", "__algorithm", "==", "4", ":", "return", "self", ".", "__eq4", "(", "temp", ",", "we_t", ",", "calib", ".", "we_cal_mv", ")", "raise", "ValueError", "(", "\"A4TempComp.conv: unrecognised algorithm: %d.\"", "%", "self", ".", "__algorithm", ")" ]
Compute weC from weT, aeT
[ "Compute", "weC", "from", "weT", "aeT" ]
a4152b0bbed6acbbf257e1bba6a912f6ebe578e5
https://github.com/south-coast-science/scs_core/blob/a4152b0bbed6acbbf257e1bba6a912f6ebe578e5/src/scs_core/gas/a4_temp_comp.py#L82-L101
train
south-coast-science/scs_core
src/scs_core/gas/a4_temp_comp.py
A4TempComp.cf_t
def cf_t(self, temp): """ Compute the linear-interpolated temperature compensation factor. """ index = int((temp - A4TempComp.__MIN_TEMP) // A4TempComp.__INTERVAL) # index of start of interval # on boundary... if temp % A4TempComp.__INTERVAL == 0: return self.__values[index] # all others... y1 = self.__values[index] # y value at start of interval y2 = self.__values[index + 1] # y value at end of interval delta_y = y2 - y1 delta_x = float(temp % A4TempComp.__INTERVAL) / A4TempComp.__INTERVAL # proportion of interval cf_t = y1 + (delta_y * delta_x) # print("A4TempComp.cf_t: alg:%d, temp:%f y1:%f y2:%f delta_y:%f delta_x:%f cf_t:%f " % # (self.__algorithm, temp, y1, y2, delta_y, delta_x, cf_t), file=sys.stderr) return cf_t
python
def cf_t(self, temp): """ Compute the linear-interpolated temperature compensation factor. """ index = int((temp - A4TempComp.__MIN_TEMP) // A4TempComp.__INTERVAL) # index of start of interval # on boundary... if temp % A4TempComp.__INTERVAL == 0: return self.__values[index] # all others... y1 = self.__values[index] # y value at start of interval y2 = self.__values[index + 1] # y value at end of interval delta_y = y2 - y1 delta_x = float(temp % A4TempComp.__INTERVAL) / A4TempComp.__INTERVAL # proportion of interval cf_t = y1 + (delta_y * delta_x) # print("A4TempComp.cf_t: alg:%d, temp:%f y1:%f y2:%f delta_y:%f delta_x:%f cf_t:%f " % # (self.__algorithm, temp, y1, y2, delta_y, delta_x, cf_t), file=sys.stderr) return cf_t
[ "def", "cf_t", "(", "self", ",", "temp", ")", ":", "index", "=", "int", "(", "(", "temp", "-", "A4TempComp", ".", "__MIN_TEMP", ")", "//", "A4TempComp", ".", "__INTERVAL", ")", "# index of start of interval", "# on boundary...", "if", "temp", "%", "A4TempComp", ".", "__INTERVAL", "==", "0", ":", "return", "self", ".", "__values", "[", "index", "]", "# all others...", "y1", "=", "self", ".", "__values", "[", "index", "]", "# y value at start of interval", "y2", "=", "self", ".", "__values", "[", "index", "+", "1", "]", "# y value at end of interval", "delta_y", "=", "y2", "-", "y1", "delta_x", "=", "float", "(", "temp", "%", "A4TempComp", ".", "__INTERVAL", ")", "/", "A4TempComp", ".", "__INTERVAL", "# proportion of interval", "cf_t", "=", "y1", "+", "(", "delta_y", "*", "delta_x", ")", "# print(\"A4TempComp.cf_t: alg:%d, temp:%f y1:%f y2:%f delta_y:%f delta_x:%f cf_t:%f \" %", "# (self.__algorithm, temp, y1, y2, delta_y, delta_x, cf_t), file=sys.stderr)", "return", "cf_t" ]
Compute the linear-interpolated temperature compensation factor.
[ "Compute", "the", "linear", "-", "interpolated", "temperature", "compensation", "factor", "." ]
a4152b0bbed6acbbf257e1bba6a912f6ebe578e5
https://github.com/south-coast-science/scs_core/blob/a4152b0bbed6acbbf257e1bba6a912f6ebe578e5/src/scs_core/gas/a4_temp_comp.py#L152-L175
train
cloudbase/python-hnvclient
hnv/common/utils.py
run_once
def run_once(function, state={}, errors={}): """A memoization decorator, whose purpose is to cache calls.""" @six.wraps(function) def _wrapper(*args, **kwargs): if function in errors: # Deliberate use of LBYL. six.reraise(*errors[function]) try: return state[function] except KeyError: try: state[function] = result = function(*args, **kwargs) return result except Exception: errors[function] = sys.exc_info() raise return _wrapper
python
def run_once(function, state={}, errors={}): """A memoization decorator, whose purpose is to cache calls.""" @six.wraps(function) def _wrapper(*args, **kwargs): if function in errors: # Deliberate use of LBYL. six.reraise(*errors[function]) try: return state[function] except KeyError: try: state[function] = result = function(*args, **kwargs) return result except Exception: errors[function] = sys.exc_info() raise return _wrapper
[ "def", "run_once", "(", "function", ",", "state", "=", "{", "}", ",", "errors", "=", "{", "}", ")", ":", "@", "six", ".", "wraps", "(", "function", ")", "def", "_wrapper", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "function", "in", "errors", ":", "# Deliberate use of LBYL.", "six", ".", "reraise", "(", "*", "errors", "[", "function", "]", ")", "try", ":", "return", "state", "[", "function", "]", "except", "KeyError", ":", "try", ":", "state", "[", "function", "]", "=", "result", "=", "function", "(", "*", "args", ",", "*", "*", "kwargs", ")", "return", "result", "except", "Exception", ":", "errors", "[", "function", "]", "=", "sys", ".", "exc_info", "(", ")", "raise", "return", "_wrapper" ]
A memoization decorator, whose purpose is to cache calls.
[ "A", "memoization", "decorator", "whose", "purpose", "is", "to", "cache", "calls", "." ]
b019452af01db22629809b8930357a2ebf6494be
https://github.com/cloudbase/python-hnvclient/blob/b019452af01db22629809b8930357a2ebf6494be/hnv/common/utils.py#L187-L204
train
cloudbase/python-hnvclient
hnv/common/utils.py
_HNVClient._session
def _session(self): """The current session used by the client. The Session object allows you to persist certain parameters across requests. It also persists cookies across all requests made from the Session instance, and will use urllib3's connection pooling. So if you're making several requests to the same host, the underlying TCP connection will be reused, which can result in a significant performance increase. """ if self._http_session is None: self._http_session = requests.Session() self._http_session.headers.update(self._get_headers()) self._http_session.verify = self._verify_https_request() if all(self._credentials): username, password = self._credentials self._http_session.auth = requests_ntlm.HttpNtlmAuth( username=username, password=password) return self._http_session
python
def _session(self): """The current session used by the client. The Session object allows you to persist certain parameters across requests. It also persists cookies across all requests made from the Session instance, and will use urllib3's connection pooling. So if you're making several requests to the same host, the underlying TCP connection will be reused, which can result in a significant performance increase. """ if self._http_session is None: self._http_session = requests.Session() self._http_session.headers.update(self._get_headers()) self._http_session.verify = self._verify_https_request() if all(self._credentials): username, password = self._credentials self._http_session.auth = requests_ntlm.HttpNtlmAuth( username=username, password=password) return self._http_session
[ "def", "_session", "(", "self", ")", ":", "if", "self", ".", "_http_session", "is", "None", ":", "self", ".", "_http_session", "=", "requests", ".", "Session", "(", ")", "self", ".", "_http_session", ".", "headers", ".", "update", "(", "self", ".", "_get_headers", "(", ")", ")", "self", ".", "_http_session", ".", "verify", "=", "self", ".", "_verify_https_request", "(", ")", "if", "all", "(", "self", ".", "_credentials", ")", ":", "username", ",", "password", "=", "self", ".", "_credentials", "self", ".", "_http_session", ".", "auth", "=", "requests_ntlm", ".", "HttpNtlmAuth", "(", "username", "=", "username", ",", "password", "=", "password", ")", "return", "self", ".", "_http_session" ]
The current session used by the client. The Session object allows you to persist certain parameters across requests. It also persists cookies across all requests made from the Session instance, and will use urllib3's connection pooling. So if you're making several requests to the same host, the underlying TCP connection will be reused, which can result in a significant performance increase.
[ "The", "current", "session", "used", "by", "the", "client", "." ]
b019452af01db22629809b8930357a2ebf6494be
https://github.com/cloudbase/python-hnvclient/blob/b019452af01db22629809b8930357a2ebf6494be/hnv/common/utils.py#L59-L79
train
cloudbase/python-hnvclient
hnv/common/utils.py
_HNVClient.get_resource
def get_resource(self, path): """Getting the required information from the API.""" response = self._http_request(path) try: return response.json() except ValueError: raise exception.ServiceException("Invalid service response.")
python
def get_resource(self, path): """Getting the required information from the API.""" response = self._http_request(path) try: return response.json() except ValueError: raise exception.ServiceException("Invalid service response.")
[ "def", "get_resource", "(", "self", ",", "path", ")", ":", "response", "=", "self", ".", "_http_request", "(", "path", ")", "try", ":", "return", "response", ".", "json", "(", ")", "except", "ValueError", ":", "raise", "exception", ".", "ServiceException", "(", "\"Invalid service response.\"", ")" ]
Getting the required information from the API.
[ "Getting", "the", "required", "information", "from", "the", "API", "." ]
b019452af01db22629809b8930357a2ebf6494be
https://github.com/cloudbase/python-hnvclient/blob/b019452af01db22629809b8930357a2ebf6494be/hnv/common/utils.py#L164-L170
train
cloudbase/python-hnvclient
hnv/common/utils.py
_HNVClient.update_resource
def update_resource(self, path, data, if_match=None): """Update the required resource.""" response = self._http_request(resource=path, method="PUT", body=data, if_match=if_match) try: return response.json() except ValueError: raise exception.ServiceException("Invalid service response.")
python
def update_resource(self, path, data, if_match=None): """Update the required resource.""" response = self._http_request(resource=path, method="PUT", body=data, if_match=if_match) try: return response.json() except ValueError: raise exception.ServiceException("Invalid service response.")
[ "def", "update_resource", "(", "self", ",", "path", ",", "data", ",", "if_match", "=", "None", ")", ":", "response", "=", "self", ".", "_http_request", "(", "resource", "=", "path", ",", "method", "=", "\"PUT\"", ",", "body", "=", "data", ",", "if_match", "=", "if_match", ")", "try", ":", "return", "response", ".", "json", "(", ")", "except", "ValueError", ":", "raise", "exception", ".", "ServiceException", "(", "\"Invalid service response.\"", ")" ]
Update the required resource.
[ "Update", "the", "required", "resource", "." ]
b019452af01db22629809b8930357a2ebf6494be
https://github.com/cloudbase/python-hnvclient/blob/b019452af01db22629809b8930357a2ebf6494be/hnv/common/utils.py#L172-L179
train
Metatab/geoid
geoid/civick.py
GVid.summarize
def summarize(self): """Convert all of the values to their max values. This form is used to represent the summary level""" s = str(self.allval()) return self.parse(s[:2]+ ''.join(['Z']*len(s[2:])))
python
def summarize(self): """Convert all of the values to their max values. This form is used to represent the summary level""" s = str(self.allval()) return self.parse(s[:2]+ ''.join(['Z']*len(s[2:])))
[ "def", "summarize", "(", "self", ")", ":", "s", "=", "str", "(", "self", ".", "allval", "(", ")", ")", "return", "self", ".", "parse", "(", "s", "[", ":", "2", "]", "+", "''", ".", "join", "(", "[", "'Z'", "]", "*", "len", "(", "s", "[", "2", ":", "]", ")", ")", ")" ]
Convert all of the values to their max values. This form is used to represent the summary level
[ "Convert", "all", "of", "the", "values", "to", "their", "max", "values", ".", "This", "form", "is", "used", "to", "represent", "the", "summary", "level" ]
4b7769406b00e59376fb6046b42a2f8ed706b33b
https://github.com/Metatab/geoid/blob/4b7769406b00e59376fb6046b42a2f8ed706b33b/geoid/civick.py#L41-L46
train
geophysics-ubonn/reda
lib/reda/utils/filter_config_types.py
_filter_schlumberger
def _filter_schlumberger(configs): """Filter Schlumberger configurations Schlumberger configurations are selected using the following criteria: * For a given voltage dipole, there need to be at least two current injections with electrodes located on the left and the right of the voltage dipole. * The distance between the current electrodes and the next voltage electrode is the same on both sides. Parameters ---------- configs: numpy.ndarray Nx4 array with N measurement configurations Returns ------- configs: numpy.ndarray Remaining configurations, all Schlumberger configurations are set to numpy.nan schl_indices: dict with one entry: numpy.ndarray indices of Schlumberger configurations """ # sort configs configs_sorted = np.hstack(( np.sort(configs[:, 0:2], axis=1), np.sort(configs[:, 2:4], axis=1), )).astype(int) # determine unique voltage dipoles MN = configs_sorted[:, 2:4].copy() MN_unique = np.unique( MN.view( MN.dtype.descr * 2 ) ) MN_unique_reshape = MN_unique.view( MN.dtype ).reshape(-1, 2) schl_indices_list = [] for mn in MN_unique_reshape: # check if there are more than one associated current injections nr_current_binary = ( (configs_sorted[:, 2] == mn[0]) & (configs_sorted[:, 3] == mn[1]) ) if len(np.where(nr_current_binary)[0]) < 2: continue # now which of these configurations have current electrodes on both # sides of the voltage dipole nr_left_right = ( (configs_sorted[:, 0] < mn[0]) & (configs_sorted[:, 1] > mn[0]) & nr_current_binary ) # now check that the left/right distances are equal distance_left = np.abs( configs_sorted[nr_left_right, 0] - mn[0] ).squeeze() distance_right = np.abs( configs_sorted[nr_left_right, 1] - mn[1] ).squeeze() nr_equal_distances = np.where(distance_left == distance_right)[0] indices = np.where(nr_left_right)[0][nr_equal_distances] if indices.size > 2: schl_indices_list.append(indices) # set Schlumberger configs to nan if len(schl_indices_list) == 0: return configs, {0: np.array([])} else: schl_indices = np.hstack(schl_indices_list).squeeze() configs[schl_indices, :] = np.nan return configs, {0: schl_indices}
python
def _filter_schlumberger(configs): """Filter Schlumberger configurations Schlumberger configurations are selected using the following criteria: * For a given voltage dipole, there need to be at least two current injections with electrodes located on the left and the right of the voltage dipole. * The distance between the current electrodes and the next voltage electrode is the same on both sides. Parameters ---------- configs: numpy.ndarray Nx4 array with N measurement configurations Returns ------- configs: numpy.ndarray Remaining configurations, all Schlumberger configurations are set to numpy.nan schl_indices: dict with one entry: numpy.ndarray indices of Schlumberger configurations """ # sort configs configs_sorted = np.hstack(( np.sort(configs[:, 0:2], axis=1), np.sort(configs[:, 2:4], axis=1), )).astype(int) # determine unique voltage dipoles MN = configs_sorted[:, 2:4].copy() MN_unique = np.unique( MN.view( MN.dtype.descr * 2 ) ) MN_unique_reshape = MN_unique.view( MN.dtype ).reshape(-1, 2) schl_indices_list = [] for mn in MN_unique_reshape: # check if there are more than one associated current injections nr_current_binary = ( (configs_sorted[:, 2] == mn[0]) & (configs_sorted[:, 3] == mn[1]) ) if len(np.where(nr_current_binary)[0]) < 2: continue # now which of these configurations have current electrodes on both # sides of the voltage dipole nr_left_right = ( (configs_sorted[:, 0] < mn[0]) & (configs_sorted[:, 1] > mn[0]) & nr_current_binary ) # now check that the left/right distances are equal distance_left = np.abs( configs_sorted[nr_left_right, 0] - mn[0] ).squeeze() distance_right = np.abs( configs_sorted[nr_left_right, 1] - mn[1] ).squeeze() nr_equal_distances = np.where(distance_left == distance_right)[0] indices = np.where(nr_left_right)[0][nr_equal_distances] if indices.size > 2: schl_indices_list.append(indices) # set Schlumberger configs to nan if len(schl_indices_list) == 0: return configs, {0: np.array([])} else: schl_indices = np.hstack(schl_indices_list).squeeze() configs[schl_indices, :] = np.nan return configs, {0: schl_indices}
[ "def", "_filter_schlumberger", "(", "configs", ")", ":", "# sort configs", "configs_sorted", "=", "np", ".", "hstack", "(", "(", "np", ".", "sort", "(", "configs", "[", ":", ",", "0", ":", "2", "]", ",", "axis", "=", "1", ")", ",", "np", ".", "sort", "(", "configs", "[", ":", ",", "2", ":", "4", "]", ",", "axis", "=", "1", ")", ",", ")", ")", ".", "astype", "(", "int", ")", "# determine unique voltage dipoles", "MN", "=", "configs_sorted", "[", ":", ",", "2", ":", "4", "]", ".", "copy", "(", ")", "MN_unique", "=", "np", ".", "unique", "(", "MN", ".", "view", "(", "MN", ".", "dtype", ".", "descr", "*", "2", ")", ")", "MN_unique_reshape", "=", "MN_unique", ".", "view", "(", "MN", ".", "dtype", ")", ".", "reshape", "(", "-", "1", ",", "2", ")", "schl_indices_list", "=", "[", "]", "for", "mn", "in", "MN_unique_reshape", ":", "# check if there are more than one associated current injections", "nr_current_binary", "=", "(", "(", "configs_sorted", "[", ":", ",", "2", "]", "==", "mn", "[", "0", "]", ")", "&", "(", "configs_sorted", "[", ":", ",", "3", "]", "==", "mn", "[", "1", "]", ")", ")", "if", "len", "(", "np", ".", "where", "(", "nr_current_binary", ")", "[", "0", "]", ")", "<", "2", ":", "continue", "# now which of these configurations have current electrodes on both", "# sides of the voltage dipole", "nr_left_right", "=", "(", "(", "configs_sorted", "[", ":", ",", "0", "]", "<", "mn", "[", "0", "]", ")", "&", "(", "configs_sorted", "[", ":", ",", "1", "]", ">", "mn", "[", "0", "]", ")", "&", "nr_current_binary", ")", "# now check that the left/right distances are equal", "distance_left", "=", "np", ".", "abs", "(", "configs_sorted", "[", "nr_left_right", ",", "0", "]", "-", "mn", "[", "0", "]", ")", ".", "squeeze", "(", ")", "distance_right", "=", "np", ".", "abs", "(", "configs_sorted", "[", "nr_left_right", ",", "1", "]", "-", "mn", "[", "1", "]", ")", ".", "squeeze", "(", ")", "nr_equal_distances", "=", "np", ".", "where", "(", "distance_left", "==", "distance_right", ")", "[", "0", "]", "indices", "=", "np", ".", "where", "(", "nr_left_right", ")", "[", "0", "]", "[", "nr_equal_distances", "]", "if", "indices", ".", "size", ">", "2", ":", "schl_indices_list", ".", "append", "(", "indices", ")", "# set Schlumberger configs to nan", "if", "len", "(", "schl_indices_list", ")", "==", "0", ":", "return", "configs", ",", "{", "0", ":", "np", ".", "array", "(", "[", "]", ")", "}", "else", ":", "schl_indices", "=", "np", ".", "hstack", "(", "schl_indices_list", ")", ".", "squeeze", "(", ")", "configs", "[", "schl_indices", ",", ":", "]", "=", "np", ".", "nan", "return", "configs", ",", "{", "0", ":", "schl_indices", "}" ]
Filter Schlumberger configurations Schlumberger configurations are selected using the following criteria: * For a given voltage dipole, there need to be at least two current injections with electrodes located on the left and the right of the voltage dipole. * The distance between the current electrodes and the next voltage electrode is the same on both sides. Parameters ---------- configs: numpy.ndarray Nx4 array with N measurement configurations Returns ------- configs: numpy.ndarray Remaining configurations, all Schlumberger configurations are set to numpy.nan schl_indices: dict with one entry: numpy.ndarray indices of Schlumberger configurations
[ "Filter", "Schlumberger", "configurations" ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/utils/filter_config_types.py#L17-L97
train
geophysics-ubonn/reda
lib/reda/utils/filter_config_types.py
_filter_dipole_dipole
def _filter_dipole_dipole(configs): """Filter dipole-dipole configurations A dipole-dipole configuration is defined using the following criteria: * equal distance between the two current electrodes and between the two voltage electrodes * no overlap of dipoles Parameters ---------- configs: numpy.ndarray Nx4 array with N measurement configurations Returns ------- configs: numpy.ndarray Remaining configurations, all dipole-dipole configurations are set to numpy.nan dd_indices: numpy.ndarray indices of dipole-dipole configurations """ # check that dipoles have equal size dist_ab = np.abs(configs[:, 0] - configs[:, 1]) dist_mn = np.abs(configs[:, 2] - configs[:, 3]) distances_equal = (dist_ab == dist_mn) # check that they are not overlapping not_overlapping = ( # either a,b < m,n ( (configs[:, 0] < configs[:, 2]) & (configs[:, 1] < configs[:, 2]) & (configs[:, 0] < configs[:, 3]) & (configs[:, 1] < configs[:, 3]) ) | # or m,n < a,b ( (configs[:, 2] < configs[:, 0]) & (configs[:, 3] < configs[:, 0]) & (configs[:, 2] < configs[:, 1]) & (configs[:, 3] < configs[:, 1]) ) ) is_dipole_dipole = (distances_equal & not_overlapping) dd_indices = np.where(is_dipole_dipole)[0] dd_indices_sorted = _sort_dd_skips(configs[dd_indices, :], dd_indices) # set all dd configs to nan configs[dd_indices, :] = np.nan return configs, dd_indices_sorted
python
def _filter_dipole_dipole(configs): """Filter dipole-dipole configurations A dipole-dipole configuration is defined using the following criteria: * equal distance between the two current electrodes and between the two voltage electrodes * no overlap of dipoles Parameters ---------- configs: numpy.ndarray Nx4 array with N measurement configurations Returns ------- configs: numpy.ndarray Remaining configurations, all dipole-dipole configurations are set to numpy.nan dd_indices: numpy.ndarray indices of dipole-dipole configurations """ # check that dipoles have equal size dist_ab = np.abs(configs[:, 0] - configs[:, 1]) dist_mn = np.abs(configs[:, 2] - configs[:, 3]) distances_equal = (dist_ab == dist_mn) # check that they are not overlapping not_overlapping = ( # either a,b < m,n ( (configs[:, 0] < configs[:, 2]) & (configs[:, 1] < configs[:, 2]) & (configs[:, 0] < configs[:, 3]) & (configs[:, 1] < configs[:, 3]) ) | # or m,n < a,b ( (configs[:, 2] < configs[:, 0]) & (configs[:, 3] < configs[:, 0]) & (configs[:, 2] < configs[:, 1]) & (configs[:, 3] < configs[:, 1]) ) ) is_dipole_dipole = (distances_equal & not_overlapping) dd_indices = np.where(is_dipole_dipole)[0] dd_indices_sorted = _sort_dd_skips(configs[dd_indices, :], dd_indices) # set all dd configs to nan configs[dd_indices, :] = np.nan return configs, dd_indices_sorted
[ "def", "_filter_dipole_dipole", "(", "configs", ")", ":", "# check that dipoles have equal size", "dist_ab", "=", "np", ".", "abs", "(", "configs", "[", ":", ",", "0", "]", "-", "configs", "[", ":", ",", "1", "]", ")", "dist_mn", "=", "np", ".", "abs", "(", "configs", "[", ":", ",", "2", "]", "-", "configs", "[", ":", ",", "3", "]", ")", "distances_equal", "=", "(", "dist_ab", "==", "dist_mn", ")", "# check that they are not overlapping", "not_overlapping", "=", "(", "# either a,b < m,n", "(", "(", "configs", "[", ":", ",", "0", "]", "<", "configs", "[", ":", ",", "2", "]", ")", "&", "(", "configs", "[", ":", ",", "1", "]", "<", "configs", "[", ":", ",", "2", "]", ")", "&", "(", "configs", "[", ":", ",", "0", "]", "<", "configs", "[", ":", ",", "3", "]", ")", "&", "(", "configs", "[", ":", ",", "1", "]", "<", "configs", "[", ":", ",", "3", "]", ")", ")", "|", "# or m,n < a,b", "(", "(", "configs", "[", ":", ",", "2", "]", "<", "configs", "[", ":", ",", "0", "]", ")", "&", "(", "configs", "[", ":", ",", "3", "]", "<", "configs", "[", ":", ",", "0", "]", ")", "&", "(", "configs", "[", ":", ",", "2", "]", "<", "configs", "[", ":", ",", "1", "]", ")", "&", "(", "configs", "[", ":", ",", "3", "]", "<", "configs", "[", ":", ",", "1", "]", ")", ")", ")", "is_dipole_dipole", "=", "(", "distances_equal", "&", "not_overlapping", ")", "dd_indices", "=", "np", ".", "where", "(", "is_dipole_dipole", ")", "[", "0", "]", "dd_indices_sorted", "=", "_sort_dd_skips", "(", "configs", "[", "dd_indices", ",", ":", "]", ",", "dd_indices", ")", "# set all dd configs to nan", "configs", "[", "dd_indices", ",", ":", "]", "=", "np", ".", "nan", "return", "configs", ",", "dd_indices_sorted" ]
Filter dipole-dipole configurations A dipole-dipole configuration is defined using the following criteria: * equal distance between the two current electrodes and between the two voltage electrodes * no overlap of dipoles Parameters ---------- configs: numpy.ndarray Nx4 array with N measurement configurations Returns ------- configs: numpy.ndarray Remaining configurations, all dipole-dipole configurations are set to numpy.nan dd_indices: numpy.ndarray indices of dipole-dipole configurations
[ "Filter", "dipole", "-", "dipole", "configurations" ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/utils/filter_config_types.py#L100-L155
train
geophysics-ubonn/reda
lib/reda/utils/filter_config_types.py
_sort_dd_skips
def _sort_dd_skips(configs, dd_indices_all): """Given a set of dipole-dipole configurations, sort them according to their current skip. Parameters ---------- configs: Nx4 numpy.ndarray Dipole-Dipole configurations Returns ------- dd_configs_sorted: dict dictionary with the skip as keys, and arrays/lists with indices to these skips. """ config_current_skips = np.abs(configs[:, 1] - configs[:, 0]) if np.all(np.isnan(config_current_skips)): return {0: []} # determine skips available_skips_raw = np.unique(config_current_skips) available_skips = available_skips_raw[ ~np.isnan(available_skips_raw) ].astype(int) # now determine the configurations dd_configs_sorted = {} for skip in available_skips: indices = np.where(config_current_skips == skip)[0] dd_configs_sorted[skip - 1] = dd_indices_all[indices] return dd_configs_sorted
python
def _sort_dd_skips(configs, dd_indices_all): """Given a set of dipole-dipole configurations, sort them according to their current skip. Parameters ---------- configs: Nx4 numpy.ndarray Dipole-Dipole configurations Returns ------- dd_configs_sorted: dict dictionary with the skip as keys, and arrays/lists with indices to these skips. """ config_current_skips = np.abs(configs[:, 1] - configs[:, 0]) if np.all(np.isnan(config_current_skips)): return {0: []} # determine skips available_skips_raw = np.unique(config_current_skips) available_skips = available_skips_raw[ ~np.isnan(available_skips_raw) ].astype(int) # now determine the configurations dd_configs_sorted = {} for skip in available_skips: indices = np.where(config_current_skips == skip)[0] dd_configs_sorted[skip - 1] = dd_indices_all[indices] return dd_configs_sorted
[ "def", "_sort_dd_skips", "(", "configs", ",", "dd_indices_all", ")", ":", "config_current_skips", "=", "np", ".", "abs", "(", "configs", "[", ":", ",", "1", "]", "-", "configs", "[", ":", ",", "0", "]", ")", "if", "np", ".", "all", "(", "np", ".", "isnan", "(", "config_current_skips", ")", ")", ":", "return", "{", "0", ":", "[", "]", "}", "# determine skips", "available_skips_raw", "=", "np", ".", "unique", "(", "config_current_skips", ")", "available_skips", "=", "available_skips_raw", "[", "~", "np", ".", "isnan", "(", "available_skips_raw", ")", "]", ".", "astype", "(", "int", ")", "# now determine the configurations", "dd_configs_sorted", "=", "{", "}", "for", "skip", "in", "available_skips", ":", "indices", "=", "np", ".", "where", "(", "config_current_skips", "==", "skip", ")", "[", "0", "]", "dd_configs_sorted", "[", "skip", "-", "1", "]", "=", "dd_indices_all", "[", "indices", "]", "return", "dd_configs_sorted" ]
Given a set of dipole-dipole configurations, sort them according to their current skip. Parameters ---------- configs: Nx4 numpy.ndarray Dipole-Dipole configurations Returns ------- dd_configs_sorted: dict dictionary with the skip as keys, and arrays/lists with indices to these skips.
[ "Given", "a", "set", "of", "dipole", "-", "dipole", "configurations", "sort", "them", "according", "to", "their", "current", "skip", "." ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/utils/filter_config_types.py#L158-L189
train
geophysics-ubonn/reda
lib/reda/utils/filter_config_types.py
filter
def filter(configs, settings): """Main entry function to filtering configuration types Parameters ---------- configs: Nx4 array array containing A-B-M-N configurations settings: dict 'only_types': ['dd', 'other'], # filter only for those types Returns ------- dict results dict containing filter results (indices) for all registered filter functions. All remaining configs are stored under the keywords 'remaining' """ if isinstance(configs, pd.DataFrame): configs = configs[['a', 'b', 'm', 'n']].values # assign short labels to Python functions filter_funcs = { 'dd': _filter_dipole_dipole, 'schlumberger': _filter_schlumberger, } # we need a list to fix the call order of filter functions keys = ['dd', 'schlumberger', ] allowed_keys = settings.get('only_types', filter_funcs.keys()) results = {} # we operate iteratively on the configs, set the first round here # rows are iteratively set to nan when filters remove them! configs_filtered = configs.copy().astype(float) for key in keys: if key in allowed_keys: configs_filtered, indices_filtered = filter_funcs[key]( configs_filtered, ) if len(indices_filtered) > 0: results[key] = indices_filtered # add all remaining indices to the results dict results['not_sorted'] = np.where( ~np.all(np.isnan(configs_filtered), axis=1) )[0] return results
python
def filter(configs, settings): """Main entry function to filtering configuration types Parameters ---------- configs: Nx4 array array containing A-B-M-N configurations settings: dict 'only_types': ['dd', 'other'], # filter only for those types Returns ------- dict results dict containing filter results (indices) for all registered filter functions. All remaining configs are stored under the keywords 'remaining' """ if isinstance(configs, pd.DataFrame): configs = configs[['a', 'b', 'm', 'n']].values # assign short labels to Python functions filter_funcs = { 'dd': _filter_dipole_dipole, 'schlumberger': _filter_schlumberger, } # we need a list to fix the call order of filter functions keys = ['dd', 'schlumberger', ] allowed_keys = settings.get('only_types', filter_funcs.keys()) results = {} # we operate iteratively on the configs, set the first round here # rows are iteratively set to nan when filters remove them! configs_filtered = configs.copy().astype(float) for key in keys: if key in allowed_keys: configs_filtered, indices_filtered = filter_funcs[key]( configs_filtered, ) if len(indices_filtered) > 0: results[key] = indices_filtered # add all remaining indices to the results dict results['not_sorted'] = np.where( ~np.all(np.isnan(configs_filtered), axis=1) )[0] return results
[ "def", "filter", "(", "configs", ",", "settings", ")", ":", "if", "isinstance", "(", "configs", ",", "pd", ".", "DataFrame", ")", ":", "configs", "=", "configs", "[", "[", "'a'", ",", "'b'", ",", "'m'", ",", "'n'", "]", "]", ".", "values", "# assign short labels to Python functions", "filter_funcs", "=", "{", "'dd'", ":", "_filter_dipole_dipole", ",", "'schlumberger'", ":", "_filter_schlumberger", ",", "}", "# we need a list to fix the call order of filter functions", "keys", "=", "[", "'dd'", ",", "'schlumberger'", ",", "]", "allowed_keys", "=", "settings", ".", "get", "(", "'only_types'", ",", "filter_funcs", ".", "keys", "(", ")", ")", "results", "=", "{", "}", "# we operate iteratively on the configs, set the first round here", "# rows are iteratively set to nan when filters remove them!", "configs_filtered", "=", "configs", ".", "copy", "(", ")", ".", "astype", "(", "float", ")", "for", "key", "in", "keys", ":", "if", "key", "in", "allowed_keys", ":", "configs_filtered", ",", "indices_filtered", "=", "filter_funcs", "[", "key", "]", "(", "configs_filtered", ",", ")", "if", "len", "(", "indices_filtered", ")", ">", "0", ":", "results", "[", "key", "]", "=", "indices_filtered", "# add all remaining indices to the results dict", "results", "[", "'not_sorted'", "]", "=", "np", ".", "where", "(", "~", "np", ".", "all", "(", "np", ".", "isnan", "(", "configs_filtered", ")", ",", "axis", "=", "1", ")", ")", "[", "0", "]", "return", "results" ]
Main entry function to filtering configuration types Parameters ---------- configs: Nx4 array array containing A-B-M-N configurations settings: dict 'only_types': ['dd', 'other'], # filter only for those types Returns ------- dict results dict containing filter results (indices) for all registered filter functions. All remaining configs are stored under the keywords 'remaining'
[ "Main", "entry", "function", "to", "filtering", "configuration", "types" ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/utils/filter_config_types.py#L192-L241
train
geophysics-ubonn/reda
lib/reda/exporters/crtomo.py
save_block_to_crt
def save_block_to_crt(filename, group, norrec='all', store_errors=False): """Save a dataset to a CRTomo-compatible .crt file Parameters ---------- filename : string Output filename group : pandas.group Data group norrec : string Which data to export Possible values: all|nor|rec store_errors : bool If true, store errors of the data in a separate column """ if norrec != 'all': group = group.query('norrec == "{0}"'.format(norrec)) # todo: we need to fix the global naming scheme for columns! with open(filename, 'wb') as fid: fid.write( bytes('{0}\n'.format(len(group)), 'UTF-8') ) AB = group['a'] * 1e4 + group['b'] MN = group['m'] * 1e4 + group['n'] line = [ AB.values.astype(int), MN.values.astype(int), group['r'].values, ] if 'rpha' in group: line.append(group['rpha'].values) else: line.append(group['r'].values * 0.0) fmt = '%i %i %f %f' if store_errors: line += ( group['d|Z|_[Ohm]'].values, group['dphi_[mrad]'].values, ) fmt += ' %f %f' subdata = np.array(line).T np.savetxt(fid, subdata, fmt=fmt)
python
def save_block_to_crt(filename, group, norrec='all', store_errors=False): """Save a dataset to a CRTomo-compatible .crt file Parameters ---------- filename : string Output filename group : pandas.group Data group norrec : string Which data to export Possible values: all|nor|rec store_errors : bool If true, store errors of the data in a separate column """ if norrec != 'all': group = group.query('norrec == "{0}"'.format(norrec)) # todo: we need to fix the global naming scheme for columns! with open(filename, 'wb') as fid: fid.write( bytes('{0}\n'.format(len(group)), 'UTF-8') ) AB = group['a'] * 1e4 + group['b'] MN = group['m'] * 1e4 + group['n'] line = [ AB.values.astype(int), MN.values.astype(int), group['r'].values, ] if 'rpha' in group: line.append(group['rpha'].values) else: line.append(group['r'].values * 0.0) fmt = '%i %i %f %f' if store_errors: line += ( group['d|Z|_[Ohm]'].values, group['dphi_[mrad]'].values, ) fmt += ' %f %f' subdata = np.array(line).T np.savetxt(fid, subdata, fmt=fmt)
[ "def", "save_block_to_crt", "(", "filename", ",", "group", ",", "norrec", "=", "'all'", ",", "store_errors", "=", "False", ")", ":", "if", "norrec", "!=", "'all'", ":", "group", "=", "group", ".", "query", "(", "'norrec == \"{0}\"'", ".", "format", "(", "norrec", ")", ")", "# todo: we need to fix the global naming scheme for columns!", "with", "open", "(", "filename", ",", "'wb'", ")", "as", "fid", ":", "fid", ".", "write", "(", "bytes", "(", "'{0}\\n'", ".", "format", "(", "len", "(", "group", ")", ")", ",", "'UTF-8'", ")", ")", "AB", "=", "group", "[", "'a'", "]", "*", "1e4", "+", "group", "[", "'b'", "]", "MN", "=", "group", "[", "'m'", "]", "*", "1e4", "+", "group", "[", "'n'", "]", "line", "=", "[", "AB", ".", "values", ".", "astype", "(", "int", ")", ",", "MN", ".", "values", ".", "astype", "(", "int", ")", ",", "group", "[", "'r'", "]", ".", "values", ",", "]", "if", "'rpha'", "in", "group", ":", "line", ".", "append", "(", "group", "[", "'rpha'", "]", ".", "values", ")", "else", ":", "line", ".", "append", "(", "group", "[", "'r'", "]", ".", "values", "*", "0.0", ")", "fmt", "=", "'%i %i %f %f'", "if", "store_errors", ":", "line", "+=", "(", "group", "[", "'d|Z|_[Ohm]'", "]", ".", "values", ",", "group", "[", "'dphi_[mrad]'", "]", ".", "values", ",", ")", "fmt", "+=", "' %f %f'", "subdata", "=", "np", ".", "array", "(", "line", ")", ".", "T", "np", ".", "savetxt", "(", "fid", ",", "subdata", ",", "fmt", "=", "fmt", ")" ]
Save a dataset to a CRTomo-compatible .crt file Parameters ---------- filename : string Output filename group : pandas.group Data group norrec : string Which data to export Possible values: all|nor|rec store_errors : bool If true, store errors of the data in a separate column
[ "Save", "a", "dataset", "to", "a", "CRTomo", "-", "compatible", ".", "crt", "file" ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/exporters/crtomo.py#L7-L53
train
geophysics-ubonn/reda
lib/reda/eis/units.py
get_label
def get_label(parameter, ptype, flavor=None, mpl=None): """Return the label of a given SIP parameter Parameters ---------- parameter: string type of parameter, e.g. rmag|rpha|cre|cim ptype: string material|meas. Either return the material property (e.g. resistivity) or the measurement parameter (e.g., impedance) flavor: string, optional if set, must be one of latex|mathml. Return a label for latex processing, or for mathml processing mpl: matplotlib, optional if set, infer flavor from mpl.rcParams. Will not be used if flavor is set Returns ------- label: string the requested label """ # determine flavor if flavor is not None: if flavor not in ('latex', 'mathml'): raise Exception('flavor not recognized: {}'.format(flavor)) else: if mpl is None: raise Exception('either the flavor or mpl must be provided') rendering = mpl.rcParams['text.usetex'] if rendering: flavor = 'latex' else: flavor = 'mathml' # check if the requested label is present if parameter not in labels: raise Exception('parameter not known') if ptype not in labels[parameter]: raise Exception('ptype not known') if flavor not in labels[parameter][ptype]: raise Exception('flavor not known') return labels[parameter][ptype][flavor]
python
def get_label(parameter, ptype, flavor=None, mpl=None): """Return the label of a given SIP parameter Parameters ---------- parameter: string type of parameter, e.g. rmag|rpha|cre|cim ptype: string material|meas. Either return the material property (e.g. resistivity) or the measurement parameter (e.g., impedance) flavor: string, optional if set, must be one of latex|mathml. Return a label for latex processing, or for mathml processing mpl: matplotlib, optional if set, infer flavor from mpl.rcParams. Will not be used if flavor is set Returns ------- label: string the requested label """ # determine flavor if flavor is not None: if flavor not in ('latex', 'mathml'): raise Exception('flavor not recognized: {}'.format(flavor)) else: if mpl is None: raise Exception('either the flavor or mpl must be provided') rendering = mpl.rcParams['text.usetex'] if rendering: flavor = 'latex' else: flavor = 'mathml' # check if the requested label is present if parameter not in labels: raise Exception('parameter not known') if ptype not in labels[parameter]: raise Exception('ptype not known') if flavor not in labels[parameter][ptype]: raise Exception('flavor not known') return labels[parameter][ptype][flavor]
[ "def", "get_label", "(", "parameter", ",", "ptype", ",", "flavor", "=", "None", ",", "mpl", "=", "None", ")", ":", "# determine flavor", "if", "flavor", "is", "not", "None", ":", "if", "flavor", "not", "in", "(", "'latex'", ",", "'mathml'", ")", ":", "raise", "Exception", "(", "'flavor not recognized: {}'", ".", "format", "(", "flavor", ")", ")", "else", ":", "if", "mpl", "is", "None", ":", "raise", "Exception", "(", "'either the flavor or mpl must be provided'", ")", "rendering", "=", "mpl", ".", "rcParams", "[", "'text.usetex'", "]", "if", "rendering", ":", "flavor", "=", "'latex'", "else", ":", "flavor", "=", "'mathml'", "# check if the requested label is present", "if", "parameter", "not", "in", "labels", ":", "raise", "Exception", "(", "'parameter not known'", ")", "if", "ptype", "not", "in", "labels", "[", "parameter", "]", ":", "raise", "Exception", "(", "'ptype not known'", ")", "if", "flavor", "not", "in", "labels", "[", "parameter", "]", "[", "ptype", "]", ":", "raise", "Exception", "(", "'flavor not known'", ")", "return", "labels", "[", "parameter", "]", "[", "ptype", "]", "[", "flavor", "]" ]
Return the label of a given SIP parameter Parameters ---------- parameter: string type of parameter, e.g. rmag|rpha|cre|cim ptype: string material|meas. Either return the material property (e.g. resistivity) or the measurement parameter (e.g., impedance) flavor: string, optional if set, must be one of latex|mathml. Return a label for latex processing, or for mathml processing mpl: matplotlib, optional if set, infer flavor from mpl.rcParams. Will not be used if flavor is set Returns ------- label: string the requested label
[ "Return", "the", "label", "of", "a", "given", "SIP", "parameter" ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/eis/units.py#L47-L90
train
geophysics-ubonn/reda
lib/reda/eis/plots.py
sip_response._add_labels
def _add_labels(self, axes, dtype): """Given a 2x2 array of axes, add x and y labels Parameters ---------- axes: numpy.ndarray, 2x2 A numpy array containing the four principal axes of an SIP plot dtype: string Can be either 'rho' or 'r', indicating the type of data that is plotted: 'rho' stands for resistivities/conductivities, 'r' stands for impedances/condactances Returns ------- None """ for ax in axes[1, :].flat: ax.set_xlabel('frequency [Hz]') if dtype == 'rho': axes[0, 0].set_ylabel(r'$|\rho| [\Omega m]$') axes[0, 1].set_ylabel(r'$-\phi [mrad]$') axes[1, 0].set_ylabel(r"$\sigma' [S/m]$") axes[1, 1].set_ylabel(r"$\sigma'' [S/m]$") elif dtype == 'r': axes[0, 0].set_ylabel(r'$|R| [\Omega]$') axes[0, 1].set_ylabel(r'$-\phi [mrad]$') axes[1, 0].set_ylabel(r"$Y' [S]$") axes[1, 1].set_ylabel(r"$Y'' [S]$") else: raise Exception('dtype not known: {}'.format(dtype))
python
def _add_labels(self, axes, dtype): """Given a 2x2 array of axes, add x and y labels Parameters ---------- axes: numpy.ndarray, 2x2 A numpy array containing the four principal axes of an SIP plot dtype: string Can be either 'rho' or 'r', indicating the type of data that is plotted: 'rho' stands for resistivities/conductivities, 'r' stands for impedances/condactances Returns ------- None """ for ax in axes[1, :].flat: ax.set_xlabel('frequency [Hz]') if dtype == 'rho': axes[0, 0].set_ylabel(r'$|\rho| [\Omega m]$') axes[0, 1].set_ylabel(r'$-\phi [mrad]$') axes[1, 0].set_ylabel(r"$\sigma' [S/m]$") axes[1, 1].set_ylabel(r"$\sigma'' [S/m]$") elif dtype == 'r': axes[0, 0].set_ylabel(r'$|R| [\Omega]$') axes[0, 1].set_ylabel(r'$-\phi [mrad]$') axes[1, 0].set_ylabel(r"$Y' [S]$") axes[1, 1].set_ylabel(r"$Y'' [S]$") else: raise Exception('dtype not known: {}'.format(dtype))
[ "def", "_add_labels", "(", "self", ",", "axes", ",", "dtype", ")", ":", "for", "ax", "in", "axes", "[", "1", ",", ":", "]", ".", "flat", ":", "ax", ".", "set_xlabel", "(", "'frequency [Hz]'", ")", "if", "dtype", "==", "'rho'", ":", "axes", "[", "0", ",", "0", "]", ".", "set_ylabel", "(", "r'$|\\rho| [\\Omega m]$'", ")", "axes", "[", "0", ",", "1", "]", ".", "set_ylabel", "(", "r'$-\\phi [mrad]$'", ")", "axes", "[", "1", ",", "0", "]", ".", "set_ylabel", "(", "r\"$\\sigma' [S/m]$\"", ")", "axes", "[", "1", ",", "1", "]", ".", "set_ylabel", "(", "r\"$\\sigma'' [S/m]$\"", ")", "elif", "dtype", "==", "'r'", ":", "axes", "[", "0", ",", "0", "]", ".", "set_ylabel", "(", "r'$|R| [\\Omega]$'", ")", "axes", "[", "0", ",", "1", "]", ".", "set_ylabel", "(", "r'$-\\phi [mrad]$'", ")", "axes", "[", "1", ",", "0", "]", ".", "set_ylabel", "(", "r\"$Y' [S]$\"", ")", "axes", "[", "1", ",", "1", "]", ".", "set_ylabel", "(", "r\"$Y'' [S]$\"", ")", "else", ":", "raise", "Exception", "(", "'dtype not known: {}'", ".", "format", "(", "dtype", ")", ")" ]
Given a 2x2 array of axes, add x and y labels Parameters ---------- axes: numpy.ndarray, 2x2 A numpy array containing the four principal axes of an SIP plot dtype: string Can be either 'rho' or 'r', indicating the type of data that is plotted: 'rho' stands for resistivities/conductivities, 'r' stands for impedances/condactances Returns ------- None
[ "Given", "a", "2x2", "array", "of", "axes", "add", "x", "and", "y", "labels" ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/eis/plots.py#L78-L108
train
geophysics-ubonn/reda
lib/reda/eis/plots.py
multi_sip_response.add
def add(self, response, label=None): """add one response object to the list """ if not isinstance(response, sip_response.sip_response): raise Exception( 'can only add sip_reponse.sip_response objects' ) self.objects.append(response) if label is None: self.labels.append('na') else: self.labels.append(label)
python
def add(self, response, label=None): """add one response object to the list """ if not isinstance(response, sip_response.sip_response): raise Exception( 'can only add sip_reponse.sip_response objects' ) self.objects.append(response) if label is None: self.labels.append('na') else: self.labels.append(label)
[ "def", "add", "(", "self", ",", "response", ",", "label", "=", "None", ")", ":", "if", "not", "isinstance", "(", "response", ",", "sip_response", ".", "sip_response", ")", ":", "raise", "Exception", "(", "'can only add sip_reponse.sip_response objects'", ")", "self", ".", "objects", ".", "append", "(", "response", ")", "if", "label", "is", "None", ":", "self", ".", "labels", ".", "append", "(", "'na'", ")", "else", ":", "self", ".", "labels", ".", "append", "(", "label", ")" ]
add one response object to the list
[ "add", "one", "response", "object", "to", "the", "list" ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/eis/plots.py#L358-L370
train
geophysics-ubonn/reda
lib/reda/eis/convert.py
split_data
def split_data(data, squeeze=False): """ Split 1D or 2D into two parts, using the last axis Parameters ---------- data: squeeze : squeeze results to remove unnecessary dimensions """ vdata = np.atleast_2d(data) nr_freqs = int(vdata.shape[1] / 2) part1 = vdata[:, 0:nr_freqs] part2 = vdata[:, nr_freqs:] if(squeeze): part1 = part1.squeeze() part2 = part2.squeeze() return part1, part2
python
def split_data(data, squeeze=False): """ Split 1D or 2D into two parts, using the last axis Parameters ---------- data: squeeze : squeeze results to remove unnecessary dimensions """ vdata = np.atleast_2d(data) nr_freqs = int(vdata.shape[1] / 2) part1 = vdata[:, 0:nr_freqs] part2 = vdata[:, nr_freqs:] if(squeeze): part1 = part1.squeeze() part2 = part2.squeeze() return part1, part2
[ "def", "split_data", "(", "data", ",", "squeeze", "=", "False", ")", ":", "vdata", "=", "np", ".", "atleast_2d", "(", "data", ")", "nr_freqs", "=", "int", "(", "vdata", ".", "shape", "[", "1", "]", "/", "2", ")", "part1", "=", "vdata", "[", ":", ",", "0", ":", "nr_freqs", "]", "part2", "=", "vdata", "[", ":", ",", "nr_freqs", ":", "]", "if", "(", "squeeze", ")", ":", "part1", "=", "part1", ".", "squeeze", "(", ")", "part2", "=", "part2", ".", "squeeze", "(", ")", "return", "part1", ",", "part2" ]
Split 1D or 2D into two parts, using the last axis Parameters ---------- data: squeeze : squeeze results to remove unnecessary dimensions
[ "Split", "1D", "or", "2D", "into", "two", "parts", "using", "the", "last", "axis" ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/eis/convert.py#L14-L30
train
geophysics-ubonn/reda
lib/reda/eis/convert.py
convert
def convert(input_format, output_format, data, one_spectrum=False): """ Convert from the given format to the requested format Parameters ---------- input_format : format of input data (parameter 'data') output_format : format of output data data : numpy array containing data in specified input format one_spectrum : True|False, the input data comprises one spectrum. This allows for an additional format of the data array. Possible input/output formats: ------------------------------ 'lnrmag_rpha' 'log10rmag_rpha' 'rmag_rpha' 'rre_rim' 'rre_rmim' 'cmag_cpha' 'cre_cim' 'cre_cmim' 'ccomplex' 'rcomplex' Array format ------------ data is either 1D or 2D. A 1D array correspond to one spectrum, with double the size of the frequencies (which are not needed for the conversion). Thus, the first halt either comprises a magnitude data, and the second one phase data, or the parts comprise real and imaginary parts. For the 2D case there exist two possibilities: First, if one_spectrum is False, then the first axis denotes the spectrum number, and each spectrum is stored on the second axis as described for the 1D case. Second, if one_spectrum is True, and the first axis has the size two, then the axis denotes either magnitude (index 0) and phase (index 1), or real (index 0) and imaginary (index 1) parts. The second axis has the same size as there are frequencies. Internally we always convert to real part and imaginary part of conductivity, and then convert back to the output format. Return values are of the same dimensions as input variables. """ if input_format == output_format: return data if input_format not in from_converters: raise KeyError('Input format {0} not known!'.format(input_format)) if output_format not in to_converters: raise KeyError('Output format {0} not known!'.format(output_format)) # internally we always work with the second axis of double the frequency # size if len(data.shape) == 2 and data.shape[0] == 2 and one_spectrum: work_data = np.hstack((data[0, :], data[1, :])) one_spec_2d = True else: work_data = data one_spec_2d = False cre, cim = from_converters[input_format](work_data) converted_data = to_converters[output_format](cre, cim) if one_spec_2d: part1, part2 = split_data(converted_data, True) converted_data = np.vstack((part1, part2)) # reshape to input size (this should only be necessary for 1D data) if len(data.shape) == 1: converted_data = np.squeeze(converted_data) return converted_data
python
def convert(input_format, output_format, data, one_spectrum=False): """ Convert from the given format to the requested format Parameters ---------- input_format : format of input data (parameter 'data') output_format : format of output data data : numpy array containing data in specified input format one_spectrum : True|False, the input data comprises one spectrum. This allows for an additional format of the data array. Possible input/output formats: ------------------------------ 'lnrmag_rpha' 'log10rmag_rpha' 'rmag_rpha' 'rre_rim' 'rre_rmim' 'cmag_cpha' 'cre_cim' 'cre_cmim' 'ccomplex' 'rcomplex' Array format ------------ data is either 1D or 2D. A 1D array correspond to one spectrum, with double the size of the frequencies (which are not needed for the conversion). Thus, the first halt either comprises a magnitude data, and the second one phase data, or the parts comprise real and imaginary parts. For the 2D case there exist two possibilities: First, if one_spectrum is False, then the first axis denotes the spectrum number, and each spectrum is stored on the second axis as described for the 1D case. Second, if one_spectrum is True, and the first axis has the size two, then the axis denotes either magnitude (index 0) and phase (index 1), or real (index 0) and imaginary (index 1) parts. The second axis has the same size as there are frequencies. Internally we always convert to real part and imaginary part of conductivity, and then convert back to the output format. Return values are of the same dimensions as input variables. """ if input_format == output_format: return data if input_format not in from_converters: raise KeyError('Input format {0} not known!'.format(input_format)) if output_format not in to_converters: raise KeyError('Output format {0} not known!'.format(output_format)) # internally we always work with the second axis of double the frequency # size if len(data.shape) == 2 and data.shape[0] == 2 and one_spectrum: work_data = np.hstack((data[0, :], data[1, :])) one_spec_2d = True else: work_data = data one_spec_2d = False cre, cim = from_converters[input_format](work_data) converted_data = to_converters[output_format](cre, cim) if one_spec_2d: part1, part2 = split_data(converted_data, True) converted_data = np.vstack((part1, part2)) # reshape to input size (this should only be necessary for 1D data) if len(data.shape) == 1: converted_data = np.squeeze(converted_data) return converted_data
[ "def", "convert", "(", "input_format", ",", "output_format", ",", "data", ",", "one_spectrum", "=", "False", ")", ":", "if", "input_format", "==", "output_format", ":", "return", "data", "if", "input_format", "not", "in", "from_converters", ":", "raise", "KeyError", "(", "'Input format {0} not known!'", ".", "format", "(", "input_format", ")", ")", "if", "output_format", "not", "in", "to_converters", ":", "raise", "KeyError", "(", "'Output format {0} not known!'", ".", "format", "(", "output_format", ")", ")", "# internally we always work with the second axis of double the frequency", "# size", "if", "len", "(", "data", ".", "shape", ")", "==", "2", "and", "data", ".", "shape", "[", "0", "]", "==", "2", "and", "one_spectrum", ":", "work_data", "=", "np", ".", "hstack", "(", "(", "data", "[", "0", ",", ":", "]", ",", "data", "[", "1", ",", ":", "]", ")", ")", "one_spec_2d", "=", "True", "else", ":", "work_data", "=", "data", "one_spec_2d", "=", "False", "cre", ",", "cim", "=", "from_converters", "[", "input_format", "]", "(", "work_data", ")", "converted_data", "=", "to_converters", "[", "output_format", "]", "(", "cre", ",", "cim", ")", "if", "one_spec_2d", ":", "part1", ",", "part2", "=", "split_data", "(", "converted_data", ",", "True", ")", "converted_data", "=", "np", ".", "vstack", "(", "(", "part1", ",", "part2", ")", ")", "# reshape to input size (this should only be necessary for 1D data)", "if", "len", "(", "data", ".", "shape", ")", "==", "1", ":", "converted_data", "=", "np", ".", "squeeze", "(", "converted_data", ")", "return", "converted_data" ]
Convert from the given format to the requested format Parameters ---------- input_format : format of input data (parameter 'data') output_format : format of output data data : numpy array containing data in specified input format one_spectrum : True|False, the input data comprises one spectrum. This allows for an additional format of the data array. Possible input/output formats: ------------------------------ 'lnrmag_rpha' 'log10rmag_rpha' 'rmag_rpha' 'rre_rim' 'rre_rmim' 'cmag_cpha' 'cre_cim' 'cre_cmim' 'ccomplex' 'rcomplex' Array format ------------ data is either 1D or 2D. A 1D array correspond to one spectrum, with double the size of the frequencies (which are not needed for the conversion). Thus, the first halt either comprises a magnitude data, and the second one phase data, or the parts comprise real and imaginary parts. For the 2D case there exist two possibilities: First, if one_spectrum is False, then the first axis denotes the spectrum number, and each spectrum is stored on the second axis as described for the 1D case. Second, if one_spectrum is True, and the first axis has the size two, then the axis denotes either magnitude (index 0) and phase (index 1), or real (index 0) and imaginary (index 1) parts. The second axis has the same size as there are frequencies. Internally we always convert to real part and imaginary part of conductivity, and then convert back to the output format. Return values are of the same dimensions as input variables.
[ "Convert", "from", "the", "given", "format", "to", "the", "requested", "format" ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/eis/convert.py#L233-L311
train
pennlabs/penn-sdk-python
penn/directory.py
Directory.search
def search(self, params, standardize=False): """Get a list of person objects for the given search params. :param params: Dictionary specifying the query parameters :param standardize: Whether to standardize names and other features, currently disabled for backwards compatibility. Currently standardizes names, lowercases emails, and removes faculty label from affiliation. >>> people = d.search({'first_name': 'tobias', 'last_name': 'funke'}) """ resp = self._request(ENDPOINTS['SEARCH'], params) if not standardize: return resp # Standardization logic for res in resp['result_data']: res = self.standardize(res) return resp
python
def search(self, params, standardize=False): """Get a list of person objects for the given search params. :param params: Dictionary specifying the query parameters :param standardize: Whether to standardize names and other features, currently disabled for backwards compatibility. Currently standardizes names, lowercases emails, and removes faculty label from affiliation. >>> people = d.search({'first_name': 'tobias', 'last_name': 'funke'}) """ resp = self._request(ENDPOINTS['SEARCH'], params) if not standardize: return resp # Standardization logic for res in resp['result_data']: res = self.standardize(res) return resp
[ "def", "search", "(", "self", ",", "params", ",", "standardize", "=", "False", ")", ":", "resp", "=", "self", ".", "_request", "(", "ENDPOINTS", "[", "'SEARCH'", "]", ",", "params", ")", "if", "not", "standardize", ":", "return", "resp", "# Standardization logic", "for", "res", "in", "resp", "[", "'result_data'", "]", ":", "res", "=", "self", ".", "standardize", "(", "res", ")", "return", "resp" ]
Get a list of person objects for the given search params. :param params: Dictionary specifying the query parameters :param standardize: Whether to standardize names and other features, currently disabled for backwards compatibility. Currently standardizes names, lowercases emails, and removes faculty label from affiliation. >>> people = d.search({'first_name': 'tobias', 'last_name': 'funke'})
[ "Get", "a", "list", "of", "person", "objects", "for", "the", "given", "search", "params", "." ]
31ff12c20d69438d63bc7a796f83ce4f4c828396
https://github.com/pennlabs/penn-sdk-python/blob/31ff12c20d69438d63bc7a796f83ce4f4c828396/penn/directory.py#L41-L58
train
pennlabs/penn-sdk-python
penn/directory.py
Directory.detail_search
def detail_search(self, params, standardize=False): """Get a detailed list of person objects for the given search params. :param params: Dictionary specifying the query parameters >>> people_detailed = d.detail_search({'first_name': 'tobias', 'last_name': 'funke'}) """ response = self._request(ENDPOINTS['SEARCH'], params) result_data = [] for person in response['result_data']: try: detail = self.person_details(person['person_id'], standardize=standardize) except ValueError: pass else: result_data.append(detail) response['result_data'] = result_data return response
python
def detail_search(self, params, standardize=False): """Get a detailed list of person objects for the given search params. :param params: Dictionary specifying the query parameters >>> people_detailed = d.detail_search({'first_name': 'tobias', 'last_name': 'funke'}) """ response = self._request(ENDPOINTS['SEARCH'], params) result_data = [] for person in response['result_data']: try: detail = self.person_details(person['person_id'], standardize=standardize) except ValueError: pass else: result_data.append(detail) response['result_data'] = result_data return response
[ "def", "detail_search", "(", "self", ",", "params", ",", "standardize", "=", "False", ")", ":", "response", "=", "self", ".", "_request", "(", "ENDPOINTS", "[", "'SEARCH'", "]", ",", "params", ")", "result_data", "=", "[", "]", "for", "person", "in", "response", "[", "'result_data'", "]", ":", "try", ":", "detail", "=", "self", ".", "person_details", "(", "person", "[", "'person_id'", "]", ",", "standardize", "=", "standardize", ")", "except", "ValueError", ":", "pass", "else", ":", "result_data", ".", "append", "(", "detail", ")", "response", "[", "'result_data'", "]", "=", "result_data", "return", "response" ]
Get a detailed list of person objects for the given search params. :param params: Dictionary specifying the query parameters >>> people_detailed = d.detail_search({'first_name': 'tobias', 'last_name': 'funke'})
[ "Get", "a", "detailed", "list", "of", "person", "objects", "for", "the", "given", "search", "params", "." ]
31ff12c20d69438d63bc7a796f83ce4f4c828396
https://github.com/pennlabs/penn-sdk-python/blob/31ff12c20d69438d63bc7a796f83ce4f4c828396/penn/directory.py#L60-L81
train
pennlabs/penn-sdk-python
penn/directory.py
Directory.person_details
def person_details(self, person_id, standardize=False): """Get a detailed person object :param person_id: String corresponding to the person's id. >>> instructor = d.person('jhs878sfd03b38b0d463b16320b5e438') """ resp = self._request(path.join(ENDPOINTS['DETAILS'], person_id)) if standardize: resp['result_data'] = [self.standardize(res) for res in resp['result_data']] return resp
python
def person_details(self, person_id, standardize=False): """Get a detailed person object :param person_id: String corresponding to the person's id. >>> instructor = d.person('jhs878sfd03b38b0d463b16320b5e438') """ resp = self._request(path.join(ENDPOINTS['DETAILS'], person_id)) if standardize: resp['result_data'] = [self.standardize(res) for res in resp['result_data']] return resp
[ "def", "person_details", "(", "self", ",", "person_id", ",", "standardize", "=", "False", ")", ":", "resp", "=", "self", ".", "_request", "(", "path", ".", "join", "(", "ENDPOINTS", "[", "'DETAILS'", "]", ",", "person_id", ")", ")", "if", "standardize", ":", "resp", "[", "'result_data'", "]", "=", "[", "self", ".", "standardize", "(", "res", ")", "for", "res", "in", "resp", "[", "'result_data'", "]", "]", "return", "resp" ]
Get a detailed person object :param person_id: String corresponding to the person's id. >>> instructor = d.person('jhs878sfd03b38b0d463b16320b5e438')
[ "Get", "a", "detailed", "person", "object" ]
31ff12c20d69438d63bc7a796f83ce4f4c828396
https://github.com/pennlabs/penn-sdk-python/blob/31ff12c20d69438d63bc7a796f83ce4f4c828396/penn/directory.py#L83-L94
train
geophysics-ubonn/reda
lib/reda/plotters/pseudoplots.py
plot_ps_extra
def plot_ps_extra(dataobj, key, **kwargs): """Create grouped pseudoplots for one or more time steps Parameters ---------- dataobj: :class:`reda.containers.ERT` An ERT container with loaded data key: string The column name to plot subquery: string, optional cbmin: float, optional cbmax: float, optional Examples -------- >>> import reda.testing.containers >>> ert = reda.testing.containers.ERTContainer_nr >>> import reda.plotters.pseudoplots as PS >>> fig = PS.plot_ps_extra(ert, key='r') """ if isinstance(dataobj, pd.DataFrame): df_raw = dataobj else: df_raw = dataobj.data if kwargs.get('subquery', False): df = df_raw.query(kwargs.get('subquery')) else: df = df_raw def fancyfy(axes, N): for ax in axes[0:-1, :].flat: ax.set_xlabel('') for ax in axes[:, 1:].flat: ax.set_ylabel('') g = df.groupby('timestep') N = len(g.groups.keys()) nrx = min((N, 5)) nry = int(np.ceil(N / nrx)) # the sizes are heuristics [inches] sizex = nrx * 3 sizey = nry * 4 - 1 fig, axes = plt.subplots( nry, nrx, sharex=True, sharey=True, figsize=(sizex, sizey), ) axes = np.atleast_2d(axes) cbs = [] for ax, (name, group) in zip(axes.flat, g): fig1, axes1, cb1 = plot_pseudosection_type2( group, key, ax=ax, log10=False, cbmin=kwargs.get('cbmin', None), cbmax=kwargs.get('cbmax', None), ) cbs.append(cb1) ax.set_title('timestep: {0}'.format(int(name))) ax.xaxis.set_ticks_position('bottom') ax.set_aspect('equal') for cb in np.array(cbs).reshape(axes.shape)[:, 0:-1].flat: cb.ax.set_visible(False) fancyfy(axes, N) fig.tight_layout() return fig
python
def plot_ps_extra(dataobj, key, **kwargs): """Create grouped pseudoplots for one or more time steps Parameters ---------- dataobj: :class:`reda.containers.ERT` An ERT container with loaded data key: string The column name to plot subquery: string, optional cbmin: float, optional cbmax: float, optional Examples -------- >>> import reda.testing.containers >>> ert = reda.testing.containers.ERTContainer_nr >>> import reda.plotters.pseudoplots as PS >>> fig = PS.plot_ps_extra(ert, key='r') """ if isinstance(dataobj, pd.DataFrame): df_raw = dataobj else: df_raw = dataobj.data if kwargs.get('subquery', False): df = df_raw.query(kwargs.get('subquery')) else: df = df_raw def fancyfy(axes, N): for ax in axes[0:-1, :].flat: ax.set_xlabel('') for ax in axes[:, 1:].flat: ax.set_ylabel('') g = df.groupby('timestep') N = len(g.groups.keys()) nrx = min((N, 5)) nry = int(np.ceil(N / nrx)) # the sizes are heuristics [inches] sizex = nrx * 3 sizey = nry * 4 - 1 fig, axes = plt.subplots( nry, nrx, sharex=True, sharey=True, figsize=(sizex, sizey), ) axes = np.atleast_2d(axes) cbs = [] for ax, (name, group) in zip(axes.flat, g): fig1, axes1, cb1 = plot_pseudosection_type2( group, key, ax=ax, log10=False, cbmin=kwargs.get('cbmin', None), cbmax=kwargs.get('cbmax', None), ) cbs.append(cb1) ax.set_title('timestep: {0}'.format(int(name))) ax.xaxis.set_ticks_position('bottom') ax.set_aspect('equal') for cb in np.array(cbs).reshape(axes.shape)[:, 0:-1].flat: cb.ax.set_visible(False) fancyfy(axes, N) fig.tight_layout() return fig
[ "def", "plot_ps_extra", "(", "dataobj", ",", "key", ",", "*", "*", "kwargs", ")", ":", "if", "isinstance", "(", "dataobj", ",", "pd", ".", "DataFrame", ")", ":", "df_raw", "=", "dataobj", "else", ":", "df_raw", "=", "dataobj", ".", "data", "if", "kwargs", ".", "get", "(", "'subquery'", ",", "False", ")", ":", "df", "=", "df_raw", ".", "query", "(", "kwargs", ".", "get", "(", "'subquery'", ")", ")", "else", ":", "df", "=", "df_raw", "def", "fancyfy", "(", "axes", ",", "N", ")", ":", "for", "ax", "in", "axes", "[", "0", ":", "-", "1", ",", ":", "]", ".", "flat", ":", "ax", ".", "set_xlabel", "(", "''", ")", "for", "ax", "in", "axes", "[", ":", ",", "1", ":", "]", ".", "flat", ":", "ax", ".", "set_ylabel", "(", "''", ")", "g", "=", "df", ".", "groupby", "(", "'timestep'", ")", "N", "=", "len", "(", "g", ".", "groups", ".", "keys", "(", ")", ")", "nrx", "=", "min", "(", "(", "N", ",", "5", ")", ")", "nry", "=", "int", "(", "np", ".", "ceil", "(", "N", "/", "nrx", ")", ")", "# the sizes are heuristics [inches]", "sizex", "=", "nrx", "*", "3", "sizey", "=", "nry", "*", "4", "-", "1", "fig", ",", "axes", "=", "plt", ".", "subplots", "(", "nry", ",", "nrx", ",", "sharex", "=", "True", ",", "sharey", "=", "True", ",", "figsize", "=", "(", "sizex", ",", "sizey", ")", ",", ")", "axes", "=", "np", ".", "atleast_2d", "(", "axes", ")", "cbs", "=", "[", "]", "for", "ax", ",", "(", "name", ",", "group", ")", "in", "zip", "(", "axes", ".", "flat", ",", "g", ")", ":", "fig1", ",", "axes1", ",", "cb1", "=", "plot_pseudosection_type2", "(", "group", ",", "key", ",", "ax", "=", "ax", ",", "log10", "=", "False", ",", "cbmin", "=", "kwargs", ".", "get", "(", "'cbmin'", ",", "None", ")", ",", "cbmax", "=", "kwargs", ".", "get", "(", "'cbmax'", ",", "None", ")", ",", ")", "cbs", ".", "append", "(", "cb1", ")", "ax", ".", "set_title", "(", "'timestep: {0}'", ".", "format", "(", "int", "(", "name", ")", ")", ")", "ax", ".", "xaxis", ".", "set_ticks_position", "(", "'bottom'", ")", "ax", ".", "set_aspect", "(", "'equal'", ")", "for", "cb", "in", "np", ".", "array", "(", "cbs", ")", ".", "reshape", "(", "axes", ".", "shape", ")", "[", ":", ",", "0", ":", "-", "1", "]", ".", "flat", ":", "cb", ".", "ax", ".", "set_visible", "(", "False", ")", "fancyfy", "(", "axes", ",", "N", ")", "fig", ".", "tight_layout", "(", ")", "return", "fig" ]
Create grouped pseudoplots for one or more time steps Parameters ---------- dataobj: :class:`reda.containers.ERT` An ERT container with loaded data key: string The column name to plot subquery: string, optional cbmin: float, optional cbmax: float, optional Examples -------- >>> import reda.testing.containers >>> ert = reda.testing.containers.ERTContainer_nr >>> import reda.plotters.pseudoplots as PS >>> fig = PS.plot_ps_extra(ert, key='r')
[ "Create", "grouped", "pseudoplots", "for", "one", "or", "more", "time", "steps" ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/plotters/pseudoplots.py#L314-L385
train
fuzeman/PyUPnP
pyupnp/util.py
twisted_absolute_path
def twisted_absolute_path(path, request): """Hack to fix twisted not accepting absolute URIs""" parsed = urlparse.urlparse(request.uri) if parsed.scheme != '': path_parts = parsed.path.lstrip('/').split('/') request.prepath = path_parts[0:1] request.postpath = path_parts[1:] path = request.prepath[0] return path, request
python
def twisted_absolute_path(path, request): """Hack to fix twisted not accepting absolute URIs""" parsed = urlparse.urlparse(request.uri) if parsed.scheme != '': path_parts = parsed.path.lstrip('/').split('/') request.prepath = path_parts[0:1] request.postpath = path_parts[1:] path = request.prepath[0] return path, request
[ "def", "twisted_absolute_path", "(", "path", ",", "request", ")", ":", "parsed", "=", "urlparse", ".", "urlparse", "(", "request", ".", "uri", ")", "if", "parsed", ".", "scheme", "!=", "''", ":", "path_parts", "=", "parsed", ".", "path", ".", "lstrip", "(", "'/'", ")", ".", "split", "(", "'/'", ")", "request", ".", "prepath", "=", "path_parts", "[", "0", ":", "1", "]", "request", ".", "postpath", "=", "path_parts", "[", "1", ":", "]", "path", "=", "request", ".", "prepath", "[", "0", "]", "return", "path", ",", "request" ]
Hack to fix twisted not accepting absolute URIs
[ "Hack", "to", "fix", "twisted", "not", "accepting", "absolute", "URIs" ]
6dea64be299952346a14300ab6cc7dac42736433
https://github.com/fuzeman/PyUPnP/blob/6dea64be299952346a14300ab6cc7dac42736433/pyupnp/util.py#L24-L32
train
geophysics-ubonn/reda
lib/reda/importers/legacy/eit40.py
_add_rhoa
def _add_rhoa(df, spacing): """a simple wrapper to compute K factors and add rhoa """ df['k'] = redaK.compute_K_analytical(df, spacing=spacing) df['rho_a'] = df['r'] * df['k'] if 'Zt' in df.columns: df['rho_a_complex'] = df['Zt'] * df['k'] return df
python
def _add_rhoa(df, spacing): """a simple wrapper to compute K factors and add rhoa """ df['k'] = redaK.compute_K_analytical(df, spacing=spacing) df['rho_a'] = df['r'] * df['k'] if 'Zt' in df.columns: df['rho_a_complex'] = df['Zt'] * df['k'] return df
[ "def", "_add_rhoa", "(", "df", ",", "spacing", ")", ":", "df", "[", "'k'", "]", "=", "redaK", ".", "compute_K_analytical", "(", "df", ",", "spacing", "=", "spacing", ")", "df", "[", "'rho_a'", "]", "=", "df", "[", "'r'", "]", "*", "df", "[", "'k'", "]", "if", "'Zt'", "in", "df", ".", "columns", ":", "df", "[", "'rho_a_complex'", "]", "=", "df", "[", "'Zt'", "]", "*", "df", "[", "'k'", "]", "return", "df" ]
a simple wrapper to compute K factors and add rhoa
[ "a", "simple", "wrapper", "to", "compute", "K", "factors", "and", "add", "rhoa" ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/importers/legacy/eit40.py#L52-L59
train
Metatab/geoid
geoid/util.py
simplify
def simplify(geoids): """ Given a list of geoids, reduce it to a simpler set. If there are five or more geoids at one summary level convert them to a single geoid at the higher level. :param geoids: :return: """ from collections import defaultdict aggregated = defaultdict(set) d = {} for g in geoids: if not bool(g): continue av = g.allval() d[av] = None aggregated[av].add(g) compiled = set() for k, v in aggregated.items(): if len(v) >= 5: compiled.add(k) compiled.add(k.promote()) else: compiled |= v return compiled
python
def simplify(geoids): """ Given a list of geoids, reduce it to a simpler set. If there are five or more geoids at one summary level convert them to a single geoid at the higher level. :param geoids: :return: """ from collections import defaultdict aggregated = defaultdict(set) d = {} for g in geoids: if not bool(g): continue av = g.allval() d[av] = None aggregated[av].add(g) compiled = set() for k, v in aggregated.items(): if len(v) >= 5: compiled.add(k) compiled.add(k.promote()) else: compiled |= v return compiled
[ "def", "simplify", "(", "geoids", ")", ":", "from", "collections", "import", "defaultdict", "aggregated", "=", "defaultdict", "(", "set", ")", "d", "=", "{", "}", "for", "g", "in", "geoids", ":", "if", "not", "bool", "(", "g", ")", ":", "continue", "av", "=", "g", ".", "allval", "(", ")", "d", "[", "av", "]", "=", "None", "aggregated", "[", "av", "]", ".", "add", "(", "g", ")", "compiled", "=", "set", "(", ")", "for", "k", ",", "v", "in", "aggregated", ".", "items", "(", ")", ":", "if", "len", "(", "v", ")", ">=", "5", ":", "compiled", ".", "add", "(", "k", ")", "compiled", ".", "add", "(", "k", ".", "promote", "(", ")", ")", "else", ":", "compiled", "|=", "v", "return", "compiled" ]
Given a list of geoids, reduce it to a simpler set. If there are five or more geoids at one summary level convert them to a single geoid at the higher level. :param geoids: :return:
[ "Given", "a", "list", "of", "geoids", "reduce", "it", "to", "a", "simpler", "set", ".", "If", "there", "are", "five", "or", "more", "geoids", "at", "one", "summary", "level", "convert", "them", "to", "a", "single", "geoid", "at", "the", "higher", "level", "." ]
4b7769406b00e59376fb6046b42a2f8ed706b33b
https://github.com/Metatab/geoid/blob/4b7769406b00e59376fb6046b42a2f8ed706b33b/geoid/util.py#L3-L38
train
Metatab/geoid
geoid/util.py
isimplify
def isimplify(geoids): """Iteratively simplify until the set stops getting smaller. """ s0 = list(geoids) for i in range(10): s1 = simplify(s0) if len(s1) == len(s0): return s1 s0 = s1
python
def isimplify(geoids): """Iteratively simplify until the set stops getting smaller. """ s0 = list(geoids) for i in range(10): s1 = simplify(s0) if len(s1) == len(s0): return s1 s0 = s1
[ "def", "isimplify", "(", "geoids", ")", ":", "s0", "=", "list", "(", "geoids", ")", "for", "i", "in", "range", "(", "10", ")", ":", "s1", "=", "simplify", "(", "s0", ")", "if", "len", "(", "s1", ")", "==", "len", "(", "s0", ")", ":", "return", "s1", "s0", "=", "s1" ]
Iteratively simplify until the set stops getting smaller.
[ "Iteratively", "simplify", "until", "the", "set", "stops", "getting", "smaller", "." ]
4b7769406b00e59376fb6046b42a2f8ed706b33b
https://github.com/Metatab/geoid/blob/4b7769406b00e59376fb6046b42a2f8ed706b33b/geoid/util.py#L40-L51
train
gtaylor/django-athumb
athumb/management/commands/athumb_regen_field.py
Command.regenerate_thumbs
def regenerate_thumbs(self): """ Handle re-generating the thumbnails. All this involves is reading the original file, then saving the same exact thing. Kind of annoying, but it's simple. """ Model = self.model instances = Model.objects.all() num_instances = instances.count() # Filenames are keys in here, to help avoid re-genning something that # we have already done. regen_tracker = {} counter = 1 for instance in instances: file = getattr(instance, self.field) if not file: print "(%d/%d) ID: %d -- Skipped -- No file" % (counter, num_instances, instance.id) counter += 1 continue file_name = os.path.basename(file.name) if regen_tracker.has_key(file_name): print "(%d/%d) ID: %d -- Skipped -- Already re-genned %s" % ( counter, num_instances, instance.id, file_name) counter += 1 continue # Keep them informed on the progress. print "(%d/%d) ID: %d -- %s" % (counter, num_instances, instance.id, file_name) try: fdat = file.read() file.close() del file.file except IOError: # Key didn't exist. print "(%d/%d) ID %d -- Error -- File missing on S3" % ( counter, num_instances, instance.id) counter += 1 continue try: file_contents = ContentFile(fdat) except ValueError: # This field has no file associated with it, skip it. print "(%d/%d) ID %d -- Skipped -- No file on field)" % ( counter, num_instances, instance.id) counter += 1 continue # Saving pumps it back through the thumbnailer, if this is a # ThumbnailField. If not, it's still pretty harmless. try: file.generate_thumbs(file_name, file_contents) except IOError, e: print "(%d/%d) ID %d -- Error -- Image may be corrupt)" % ( counter, num_instances, instance.id) counter += 1 continue regen_tracker[file_name] = True counter += 1
python
def regenerate_thumbs(self): """ Handle re-generating the thumbnails. All this involves is reading the original file, then saving the same exact thing. Kind of annoying, but it's simple. """ Model = self.model instances = Model.objects.all() num_instances = instances.count() # Filenames are keys in here, to help avoid re-genning something that # we have already done. regen_tracker = {} counter = 1 for instance in instances: file = getattr(instance, self.field) if not file: print "(%d/%d) ID: %d -- Skipped -- No file" % (counter, num_instances, instance.id) counter += 1 continue file_name = os.path.basename(file.name) if regen_tracker.has_key(file_name): print "(%d/%d) ID: %d -- Skipped -- Already re-genned %s" % ( counter, num_instances, instance.id, file_name) counter += 1 continue # Keep them informed on the progress. print "(%d/%d) ID: %d -- %s" % (counter, num_instances, instance.id, file_name) try: fdat = file.read() file.close() del file.file except IOError: # Key didn't exist. print "(%d/%d) ID %d -- Error -- File missing on S3" % ( counter, num_instances, instance.id) counter += 1 continue try: file_contents = ContentFile(fdat) except ValueError: # This field has no file associated with it, skip it. print "(%d/%d) ID %d -- Skipped -- No file on field)" % ( counter, num_instances, instance.id) counter += 1 continue # Saving pumps it back through the thumbnailer, if this is a # ThumbnailField. If not, it's still pretty harmless. try: file.generate_thumbs(file_name, file_contents) except IOError, e: print "(%d/%d) ID %d -- Error -- Image may be corrupt)" % ( counter, num_instances, instance.id) counter += 1 continue regen_tracker[file_name] = True counter += 1
[ "def", "regenerate_thumbs", "(", "self", ")", ":", "Model", "=", "self", ".", "model", "instances", "=", "Model", ".", "objects", ".", "all", "(", ")", "num_instances", "=", "instances", ".", "count", "(", ")", "# Filenames are keys in here, to help avoid re-genning something that", "# we have already done.", "regen_tracker", "=", "{", "}", "counter", "=", "1", "for", "instance", "in", "instances", ":", "file", "=", "getattr", "(", "instance", ",", "self", ".", "field", ")", "if", "not", "file", ":", "print", "\"(%d/%d) ID: %d -- Skipped -- No file\"", "%", "(", "counter", ",", "num_instances", ",", "instance", ".", "id", ")", "counter", "+=", "1", "continue", "file_name", "=", "os", ".", "path", ".", "basename", "(", "file", ".", "name", ")", "if", "regen_tracker", ".", "has_key", "(", "file_name", ")", ":", "print", "\"(%d/%d) ID: %d -- Skipped -- Already re-genned %s\"", "%", "(", "counter", ",", "num_instances", ",", "instance", ".", "id", ",", "file_name", ")", "counter", "+=", "1", "continue", "# Keep them informed on the progress.", "print", "\"(%d/%d) ID: %d -- %s\"", "%", "(", "counter", ",", "num_instances", ",", "instance", ".", "id", ",", "file_name", ")", "try", ":", "fdat", "=", "file", ".", "read", "(", ")", "file", ".", "close", "(", ")", "del", "file", ".", "file", "except", "IOError", ":", "# Key didn't exist.", "print", "\"(%d/%d) ID %d -- Error -- File missing on S3\"", "%", "(", "counter", ",", "num_instances", ",", "instance", ".", "id", ")", "counter", "+=", "1", "continue", "try", ":", "file_contents", "=", "ContentFile", "(", "fdat", ")", "except", "ValueError", ":", "# This field has no file associated with it, skip it.", "print", "\"(%d/%d) ID %d -- Skipped -- No file on field)\"", "%", "(", "counter", ",", "num_instances", ",", "instance", ".", "id", ")", "counter", "+=", "1", "continue", "# Saving pumps it back through the thumbnailer, if this is a", "# ThumbnailField. If not, it's still pretty harmless.", "try", ":", "file", ".", "generate_thumbs", "(", "file_name", ",", "file_contents", ")", "except", "IOError", ",", "e", ":", "print", "\"(%d/%d) ID %d -- Error -- Image may be corrupt)\"", "%", "(", "counter", ",", "num_instances", ",", "instance", ".", "id", ")", "counter", "+=", "1", "continue", "regen_tracker", "[", "file_name", "]", "=", "True", "counter", "+=", "1" ]
Handle re-generating the thumbnails. All this involves is reading the original file, then saving the same exact thing. Kind of annoying, but it's simple.
[ "Handle", "re", "-", "generating", "the", "thumbnails", ".", "All", "this", "involves", "is", "reading", "the", "original", "file", "then", "saving", "the", "same", "exact", "thing", ".", "Kind", "of", "annoying", "but", "it", "s", "simple", "." ]
69261ace0dff81e33156a54440874456a7b38dfb
https://github.com/gtaylor/django-athumb/blob/69261ace0dff81e33156a54440874456a7b38dfb/athumb/management/commands/athumb_regen_field.py#L43-L119
train
kaustavdm/pyAvroPhonetic
pyavrophonetic/utils/count.py
count_vowels
def count_vowels(text): """Count number of occurrences of vowels in a given string""" count = 0 for i in text: if i.lower() in config.AVRO_VOWELS: count += 1 return count
python
def count_vowels(text): """Count number of occurrences of vowels in a given string""" count = 0 for i in text: if i.lower() in config.AVRO_VOWELS: count += 1 return count
[ "def", "count_vowels", "(", "text", ")", ":", "count", "=", "0", "for", "i", "in", "text", ":", "if", "i", ".", "lower", "(", ")", "in", "config", ".", "AVRO_VOWELS", ":", "count", "+=", "1", "return", "count" ]
Count number of occurrences of vowels in a given string
[ "Count", "number", "of", "occurrences", "of", "vowels", "in", "a", "given", "string" ]
26b7d567d8db025f2cac4de817e716390d7ac337
https://github.com/kaustavdm/pyAvroPhonetic/blob/26b7d567d8db025f2cac4de817e716390d7ac337/pyavrophonetic/utils/count.py#L31-L37
train
kaustavdm/pyAvroPhonetic
pyavrophonetic/utils/count.py
count_consonants
def count_consonants(text): """Count number of occurrences of consonants in a given string""" count = 0 for i in text: if i.lower() in config.AVRO_CONSONANTS: count += 1 return count
python
def count_consonants(text): """Count number of occurrences of consonants in a given string""" count = 0 for i in text: if i.lower() in config.AVRO_CONSONANTS: count += 1 return count
[ "def", "count_consonants", "(", "text", ")", ":", "count", "=", "0", "for", "i", "in", "text", ":", "if", "i", ".", "lower", "(", ")", "in", "config", ".", "AVRO_CONSONANTS", ":", "count", "+=", "1", "return", "count" ]
Count number of occurrences of consonants in a given string
[ "Count", "number", "of", "occurrences", "of", "consonants", "in", "a", "given", "string" ]
26b7d567d8db025f2cac4de817e716390d7ac337
https://github.com/kaustavdm/pyAvroPhonetic/blob/26b7d567d8db025f2cac4de817e716390d7ac337/pyavrophonetic/utils/count.py#L39-L45
train
geophysics-ubonn/reda
lib/reda/plotters/plots2d.py
_pseudodepths_wenner
def _pseudodepths_wenner(configs, spacing=1, grid=None): """Given distances between electrodes, compute Wenner pseudo depths for the provided configuration The pseudodepth is computed after Roy & Apparao, 1971, as 0.11 times the distance between the two outermost electrodes. It's not really clear why the Wenner depths are different from the Dipole-Dipole depths, given the fact that Wenner configurations are a complete subset of the Dipole-Dipole configurations. """ if grid is None: xpositions = (configs - 1) * spacing else: xpositions = grid.get_electrode_positions()[configs - 1, 0] z = np.abs(np.max(xpositions, axis=1) - np.min(xpositions, axis=1)) * -0.11 x = np.mean(xpositions, axis=1) return x, z
python
def _pseudodepths_wenner(configs, spacing=1, grid=None): """Given distances between electrodes, compute Wenner pseudo depths for the provided configuration The pseudodepth is computed after Roy & Apparao, 1971, as 0.11 times the distance between the two outermost electrodes. It's not really clear why the Wenner depths are different from the Dipole-Dipole depths, given the fact that Wenner configurations are a complete subset of the Dipole-Dipole configurations. """ if grid is None: xpositions = (configs - 1) * spacing else: xpositions = grid.get_electrode_positions()[configs - 1, 0] z = np.abs(np.max(xpositions, axis=1) - np.min(xpositions, axis=1)) * -0.11 x = np.mean(xpositions, axis=1) return x, z
[ "def", "_pseudodepths_wenner", "(", "configs", ",", "spacing", "=", "1", ",", "grid", "=", "None", ")", ":", "if", "grid", "is", "None", ":", "xpositions", "=", "(", "configs", "-", "1", ")", "*", "spacing", "else", ":", "xpositions", "=", "grid", ".", "get_electrode_positions", "(", ")", "[", "configs", "-", "1", ",", "0", "]", "z", "=", "np", ".", "abs", "(", "np", ".", "max", "(", "xpositions", ",", "axis", "=", "1", ")", "-", "np", ".", "min", "(", "xpositions", ",", "axis", "=", "1", ")", ")", "*", "-", "0.11", "x", "=", "np", ".", "mean", "(", "xpositions", ",", "axis", "=", "1", ")", "return", "x", ",", "z" ]
Given distances between electrodes, compute Wenner pseudo depths for the provided configuration The pseudodepth is computed after Roy & Apparao, 1971, as 0.11 times the distance between the two outermost electrodes. It's not really clear why the Wenner depths are different from the Dipole-Dipole depths, given the fact that Wenner configurations are a complete subset of the Dipole-Dipole configurations.
[ "Given", "distances", "between", "electrodes", "compute", "Wenner", "pseudo", "depths", "for", "the", "provided", "configuration" ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/plotters/plots2d.py#L13-L31
train
geophysics-ubonn/reda
lib/reda/plotters/plots2d.py
plot_pseudodepths
def plot_pseudodepths(configs, nr_electrodes, spacing=1, grid=None, ctypes=None, dd_merge=False, **kwargs): """Plot pseudodepths for the measurements. If grid is given, then the actual electrode positions are used, and the parameter 'spacing' is ignored' Parameters ---------- configs: :class:`numpy.ndarray` Nx4 array containing the quadrupoles for different measurements nr_electrodes: int The overall number of electrodes of the dataset. This is used to plot the surface electrodes spacing: float, optional assumed distance between electrodes. Default=1 grid: crtomo.grid.crt_grid instance, optional grid instance. Used to infer real electrode positions ctypes: list of strings, optional a list of configuration types that will be plotted. All configurations that can not be sorted into these types will not be plotted! Possible types: * dd * schlumberger dd_merge: bool, optional if True, merge all skips. Otherwise, generate individual plots for each skip Returns ------- figs: matplotlib.figure.Figure instance or list of Figure instances if only one type was plotted, then the figure instance is returned. Otherwise, return a list of figure instances. axes: axes object or list of axes ojects plot axes Examples -------- .. plot:: :include-source: from reda.plotters.plots2d import plot_pseudodepths # define a few measurements import numpy as np configs = np.array(( (1, 2, 4, 3), (1, 2, 5, 4), (1, 2, 6, 5), (2, 3, 5, 4), (2, 3, 6, 5), (3, 4, 6, 5), )) # plot fig, axes = plot_pseudodepths(configs, nr_electrodes=6, spacing=1, ctypes=['dd', ]) .. plot:: :include-source: from reda.plotters.plots2d import plot_pseudodepths # define a few measurements import numpy as np configs = np.array(( (4, 7, 5, 6), (3, 8, 5, 6), (2, 9, 5, 6), (1, 10, 5, 6), )) # plot fig, axes = plot_pseudodepths(configs, nr_electrodes=10, spacing=1, ctypes=['schlumberger', ]) """ # for each configuration type we have different ways of computing # pseudodepths pseudo_d_functions = { 'dd': _pseudodepths_dd_simple, 'schlumberger': _pseudodepths_schlumberger, 'wenner': _pseudodepths_wenner, } titles = { 'dd': 'dipole-dipole configurations', 'schlumberger': 'Schlumberger configurations', 'wenner': 'Wenner configurations', } # sort the configurations into the various types of configurations only_types = ctypes or ['dd', ] results = fT.filter(configs, settings={'only_types': only_types, }) # loop through all measurement types figs = [] axes = [] for key in sorted(results.keys()): print('plotting: ', key) if key == 'not_sorted': continue index_dict = results[key] # it is possible that we want to generate multiple plots for one # type of measurement, i.e., to separate skips of dipole-dipole # measurements. Therefore we generate two lists: # 1) list of list of indices to plot # 2) corresponding labels if key == 'dd' and not dd_merge: plot_list = [] labels_add = [] for skip in sorted(index_dict.keys()): plot_list.append(index_dict[skip]) labels_add.append(' - skip {0}'.format(skip)) else: # merge all indices plot_list = [np.hstack(index_dict.values()), ] print('schlumberger', plot_list) labels_add = ['', ] grid = None # generate plots for indices, label_add in zip(plot_list, labels_add): if len(indices) == 0: continue ddc = configs[indices] px, pz = pseudo_d_functions[key](ddc, spacing, grid) fig, ax = plt.subplots(figsize=(15 / 2.54, 5 / 2.54)) ax.scatter(px, pz, color='k', alpha=0.5) # plot electrodes if grid is not None: electrodes = grid.get_electrode_positions() ax.scatter( electrodes[:, 0], electrodes[:, 1], color='b', label='electrodes', ) else: ax.scatter( np.arange(0, nr_electrodes) * spacing, np.zeros(nr_electrodes), color='b', label='electrodes', ) ax.set_title(titles[key] + label_add) ax.set_aspect('equal') ax.set_xlabel('x [m]') ax.set_ylabel('x [z]') fig.tight_layout() figs.append(fig) axes.append(ax) if len(figs) == 1: return figs[0], axes[0] else: return figs, axes
python
def plot_pseudodepths(configs, nr_electrodes, spacing=1, grid=None, ctypes=None, dd_merge=False, **kwargs): """Plot pseudodepths for the measurements. If grid is given, then the actual electrode positions are used, and the parameter 'spacing' is ignored' Parameters ---------- configs: :class:`numpy.ndarray` Nx4 array containing the quadrupoles for different measurements nr_electrodes: int The overall number of electrodes of the dataset. This is used to plot the surface electrodes spacing: float, optional assumed distance between electrodes. Default=1 grid: crtomo.grid.crt_grid instance, optional grid instance. Used to infer real electrode positions ctypes: list of strings, optional a list of configuration types that will be plotted. All configurations that can not be sorted into these types will not be plotted! Possible types: * dd * schlumberger dd_merge: bool, optional if True, merge all skips. Otherwise, generate individual plots for each skip Returns ------- figs: matplotlib.figure.Figure instance or list of Figure instances if only one type was plotted, then the figure instance is returned. Otherwise, return a list of figure instances. axes: axes object or list of axes ojects plot axes Examples -------- .. plot:: :include-source: from reda.plotters.plots2d import plot_pseudodepths # define a few measurements import numpy as np configs = np.array(( (1, 2, 4, 3), (1, 2, 5, 4), (1, 2, 6, 5), (2, 3, 5, 4), (2, 3, 6, 5), (3, 4, 6, 5), )) # plot fig, axes = plot_pseudodepths(configs, nr_electrodes=6, spacing=1, ctypes=['dd', ]) .. plot:: :include-source: from reda.plotters.plots2d import plot_pseudodepths # define a few measurements import numpy as np configs = np.array(( (4, 7, 5, 6), (3, 8, 5, 6), (2, 9, 5, 6), (1, 10, 5, 6), )) # plot fig, axes = plot_pseudodepths(configs, nr_electrodes=10, spacing=1, ctypes=['schlumberger', ]) """ # for each configuration type we have different ways of computing # pseudodepths pseudo_d_functions = { 'dd': _pseudodepths_dd_simple, 'schlumberger': _pseudodepths_schlumberger, 'wenner': _pseudodepths_wenner, } titles = { 'dd': 'dipole-dipole configurations', 'schlumberger': 'Schlumberger configurations', 'wenner': 'Wenner configurations', } # sort the configurations into the various types of configurations only_types = ctypes or ['dd', ] results = fT.filter(configs, settings={'only_types': only_types, }) # loop through all measurement types figs = [] axes = [] for key in sorted(results.keys()): print('plotting: ', key) if key == 'not_sorted': continue index_dict = results[key] # it is possible that we want to generate multiple plots for one # type of measurement, i.e., to separate skips of dipole-dipole # measurements. Therefore we generate two lists: # 1) list of list of indices to plot # 2) corresponding labels if key == 'dd' and not dd_merge: plot_list = [] labels_add = [] for skip in sorted(index_dict.keys()): plot_list.append(index_dict[skip]) labels_add.append(' - skip {0}'.format(skip)) else: # merge all indices plot_list = [np.hstack(index_dict.values()), ] print('schlumberger', plot_list) labels_add = ['', ] grid = None # generate plots for indices, label_add in zip(plot_list, labels_add): if len(indices) == 0: continue ddc = configs[indices] px, pz = pseudo_d_functions[key](ddc, spacing, grid) fig, ax = plt.subplots(figsize=(15 / 2.54, 5 / 2.54)) ax.scatter(px, pz, color='k', alpha=0.5) # plot electrodes if grid is not None: electrodes = grid.get_electrode_positions() ax.scatter( electrodes[:, 0], electrodes[:, 1], color='b', label='electrodes', ) else: ax.scatter( np.arange(0, nr_electrodes) * spacing, np.zeros(nr_electrodes), color='b', label='electrodes', ) ax.set_title(titles[key] + label_add) ax.set_aspect('equal') ax.set_xlabel('x [m]') ax.set_ylabel('x [z]') fig.tight_layout() figs.append(fig) axes.append(ax) if len(figs) == 1: return figs[0], axes[0] else: return figs, axes
[ "def", "plot_pseudodepths", "(", "configs", ",", "nr_electrodes", ",", "spacing", "=", "1", ",", "grid", "=", "None", ",", "ctypes", "=", "None", ",", "dd_merge", "=", "False", ",", "*", "*", "kwargs", ")", ":", "# for each configuration type we have different ways of computing", "# pseudodepths", "pseudo_d_functions", "=", "{", "'dd'", ":", "_pseudodepths_dd_simple", ",", "'schlumberger'", ":", "_pseudodepths_schlumberger", ",", "'wenner'", ":", "_pseudodepths_wenner", ",", "}", "titles", "=", "{", "'dd'", ":", "'dipole-dipole configurations'", ",", "'schlumberger'", ":", "'Schlumberger configurations'", ",", "'wenner'", ":", "'Wenner configurations'", ",", "}", "# sort the configurations into the various types of configurations", "only_types", "=", "ctypes", "or", "[", "'dd'", ",", "]", "results", "=", "fT", ".", "filter", "(", "configs", ",", "settings", "=", "{", "'only_types'", ":", "only_types", ",", "}", ")", "# loop through all measurement types", "figs", "=", "[", "]", "axes", "=", "[", "]", "for", "key", "in", "sorted", "(", "results", ".", "keys", "(", ")", ")", ":", "print", "(", "'plotting: '", ",", "key", ")", "if", "key", "==", "'not_sorted'", ":", "continue", "index_dict", "=", "results", "[", "key", "]", "# it is possible that we want to generate multiple plots for one", "# type of measurement, i.e., to separate skips of dipole-dipole", "# measurements. Therefore we generate two lists:", "# 1) list of list of indices to plot", "# 2) corresponding labels", "if", "key", "==", "'dd'", "and", "not", "dd_merge", ":", "plot_list", "=", "[", "]", "labels_add", "=", "[", "]", "for", "skip", "in", "sorted", "(", "index_dict", ".", "keys", "(", ")", ")", ":", "plot_list", ".", "append", "(", "index_dict", "[", "skip", "]", ")", "labels_add", ".", "append", "(", "' - skip {0}'", ".", "format", "(", "skip", ")", ")", "else", ":", "# merge all indices", "plot_list", "=", "[", "np", ".", "hstack", "(", "index_dict", ".", "values", "(", ")", ")", ",", "]", "print", "(", "'schlumberger'", ",", "plot_list", ")", "labels_add", "=", "[", "''", ",", "]", "grid", "=", "None", "# generate plots", "for", "indices", ",", "label_add", "in", "zip", "(", "plot_list", ",", "labels_add", ")", ":", "if", "len", "(", "indices", ")", "==", "0", ":", "continue", "ddc", "=", "configs", "[", "indices", "]", "px", ",", "pz", "=", "pseudo_d_functions", "[", "key", "]", "(", "ddc", ",", "spacing", ",", "grid", ")", "fig", ",", "ax", "=", "plt", ".", "subplots", "(", "figsize", "=", "(", "15", "/", "2.54", ",", "5", "/", "2.54", ")", ")", "ax", ".", "scatter", "(", "px", ",", "pz", ",", "color", "=", "'k'", ",", "alpha", "=", "0.5", ")", "# plot electrodes", "if", "grid", "is", "not", "None", ":", "electrodes", "=", "grid", ".", "get_electrode_positions", "(", ")", "ax", ".", "scatter", "(", "electrodes", "[", ":", ",", "0", "]", ",", "electrodes", "[", ":", ",", "1", "]", ",", "color", "=", "'b'", ",", "label", "=", "'electrodes'", ",", ")", "else", ":", "ax", ".", "scatter", "(", "np", ".", "arange", "(", "0", ",", "nr_electrodes", ")", "*", "spacing", ",", "np", ".", "zeros", "(", "nr_electrodes", ")", ",", "color", "=", "'b'", ",", "label", "=", "'electrodes'", ",", ")", "ax", ".", "set_title", "(", "titles", "[", "key", "]", "+", "label_add", ")", "ax", ".", "set_aspect", "(", "'equal'", ")", "ax", ".", "set_xlabel", "(", "'x [m]'", ")", "ax", ".", "set_ylabel", "(", "'x [z]'", ")", "fig", ".", "tight_layout", "(", ")", "figs", ".", "append", "(", "fig", ")", "axes", ".", "append", "(", "ax", ")", "if", "len", "(", "figs", ")", "==", "1", ":", "return", "figs", "[", "0", "]", ",", "axes", "[", "0", "]", "else", ":", "return", "figs", ",", "axes" ]
Plot pseudodepths for the measurements. If grid is given, then the actual electrode positions are used, and the parameter 'spacing' is ignored' Parameters ---------- configs: :class:`numpy.ndarray` Nx4 array containing the quadrupoles for different measurements nr_electrodes: int The overall number of electrodes of the dataset. This is used to plot the surface electrodes spacing: float, optional assumed distance between electrodes. Default=1 grid: crtomo.grid.crt_grid instance, optional grid instance. Used to infer real electrode positions ctypes: list of strings, optional a list of configuration types that will be plotted. All configurations that can not be sorted into these types will not be plotted! Possible types: * dd * schlumberger dd_merge: bool, optional if True, merge all skips. Otherwise, generate individual plots for each skip Returns ------- figs: matplotlib.figure.Figure instance or list of Figure instances if only one type was plotted, then the figure instance is returned. Otherwise, return a list of figure instances. axes: axes object or list of axes ojects plot axes Examples -------- .. plot:: :include-source: from reda.plotters.plots2d import plot_pseudodepths # define a few measurements import numpy as np configs = np.array(( (1, 2, 4, 3), (1, 2, 5, 4), (1, 2, 6, 5), (2, 3, 5, 4), (2, 3, 6, 5), (3, 4, 6, 5), )) # plot fig, axes = plot_pseudodepths(configs, nr_electrodes=6, spacing=1, ctypes=['dd', ]) .. plot:: :include-source: from reda.plotters.plots2d import plot_pseudodepths # define a few measurements import numpy as np configs = np.array(( (4, 7, 5, 6), (3, 8, 5, 6), (2, 9, 5, 6), (1, 10, 5, 6), )) # plot fig, axes = plot_pseudodepths(configs, nr_electrodes=10, spacing=1, ctypes=['schlumberger', ])
[ "Plot", "pseudodepths", "for", "the", "measurements", ".", "If", "grid", "is", "given", "then", "the", "actual", "electrode", "positions", "are", "used", "and", "the", "parameter", "spacing", "is", "ignored" ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/plotters/plots2d.py#L72-L227
train
geophysics-ubonn/reda
lib/reda/plotters/plots2d.py
matplot
def matplot(x, y, z, ax=None, colorbar=True, **kwargs): """ Plot x, y, z as expected with correct axis labels. Examples -------- >>> import matplotlib.pyplot as plt >>> import numpy as np >>> from reda.plotters import matplot >>> a = np.arange(4) >>> b = np.arange(3) + 3 >>> def sum(a, b): ... return a + b >>> x, y = np.meshgrid(a, b) >>> c = sum(x, y) >>> fig, (ax1, ax2) = plt.subplots(1, 2) >>> im = ax1.pcolormesh(x, y, c) >>> _ = plt.colorbar(im, ax=ax1) >>> _ = ax1.set_title("plt.pcolormesh") >>> _, _ = matplot(x, y, c, ax=ax2) >>> _ = ax2.set_title("reda.plotters.matplot") >>> fig.show() Note ---- Only works for equidistant data at the moment. """ xmin = x.min() xmax = x.max() dx = np.abs(x[0, 1] - x[0, 0]) ymin = y.min() ymax = y.max() dy = np.abs(y[1, 0] - y[0, 0]) x2, y2 = np.meshgrid( np.arange(xmin, xmax + 2 * dx, dx) - dx / 2., np.arange(ymin, ymax + 2 * dy, dy) - dy / 2.) if not ax: fig, ax = plt.subplots() else: fig = ax.figure im = ax.pcolormesh(x2, y2, z, **kwargs) ax.axis([x2.min(), x2.max(), y2.min(), y2.max()]) ax.set_xticks(np.arange(xmin, xmax + dx, dx)) ax.set_yticks(np.arange(ymin, ymax + dx, dy)) if colorbar: cbar = fig.colorbar(im, ax=ax) else: cbar = None return ax, cbar
python
def matplot(x, y, z, ax=None, colorbar=True, **kwargs): """ Plot x, y, z as expected with correct axis labels. Examples -------- >>> import matplotlib.pyplot as plt >>> import numpy as np >>> from reda.plotters import matplot >>> a = np.arange(4) >>> b = np.arange(3) + 3 >>> def sum(a, b): ... return a + b >>> x, y = np.meshgrid(a, b) >>> c = sum(x, y) >>> fig, (ax1, ax2) = plt.subplots(1, 2) >>> im = ax1.pcolormesh(x, y, c) >>> _ = plt.colorbar(im, ax=ax1) >>> _ = ax1.set_title("plt.pcolormesh") >>> _, _ = matplot(x, y, c, ax=ax2) >>> _ = ax2.set_title("reda.plotters.matplot") >>> fig.show() Note ---- Only works for equidistant data at the moment. """ xmin = x.min() xmax = x.max() dx = np.abs(x[0, 1] - x[0, 0]) ymin = y.min() ymax = y.max() dy = np.abs(y[1, 0] - y[0, 0]) x2, y2 = np.meshgrid( np.arange(xmin, xmax + 2 * dx, dx) - dx / 2., np.arange(ymin, ymax + 2 * dy, dy) - dy / 2.) if not ax: fig, ax = plt.subplots() else: fig = ax.figure im = ax.pcolormesh(x2, y2, z, **kwargs) ax.axis([x2.min(), x2.max(), y2.min(), y2.max()]) ax.set_xticks(np.arange(xmin, xmax + dx, dx)) ax.set_yticks(np.arange(ymin, ymax + dx, dy)) if colorbar: cbar = fig.colorbar(im, ax=ax) else: cbar = None return ax, cbar
[ "def", "matplot", "(", "x", ",", "y", ",", "z", ",", "ax", "=", "None", ",", "colorbar", "=", "True", ",", "*", "*", "kwargs", ")", ":", "xmin", "=", "x", ".", "min", "(", ")", "xmax", "=", "x", ".", "max", "(", ")", "dx", "=", "np", ".", "abs", "(", "x", "[", "0", ",", "1", "]", "-", "x", "[", "0", ",", "0", "]", ")", "ymin", "=", "y", ".", "min", "(", ")", "ymax", "=", "y", ".", "max", "(", ")", "dy", "=", "np", ".", "abs", "(", "y", "[", "1", ",", "0", "]", "-", "y", "[", "0", ",", "0", "]", ")", "x2", ",", "y2", "=", "np", ".", "meshgrid", "(", "np", ".", "arange", "(", "xmin", ",", "xmax", "+", "2", "*", "dx", ",", "dx", ")", "-", "dx", "/", "2.", ",", "np", ".", "arange", "(", "ymin", ",", "ymax", "+", "2", "*", "dy", ",", "dy", ")", "-", "dy", "/", "2.", ")", "if", "not", "ax", ":", "fig", ",", "ax", "=", "plt", ".", "subplots", "(", ")", "else", ":", "fig", "=", "ax", ".", "figure", "im", "=", "ax", ".", "pcolormesh", "(", "x2", ",", "y2", ",", "z", ",", "*", "*", "kwargs", ")", "ax", ".", "axis", "(", "[", "x2", ".", "min", "(", ")", ",", "x2", ".", "max", "(", ")", ",", "y2", ".", "min", "(", ")", ",", "y2", ".", "max", "(", ")", "]", ")", "ax", ".", "set_xticks", "(", "np", ".", "arange", "(", "xmin", ",", "xmax", "+", "dx", ",", "dx", ")", ")", "ax", ".", "set_yticks", "(", "np", ".", "arange", "(", "ymin", ",", "ymax", "+", "dx", ",", "dy", ")", ")", "if", "colorbar", ":", "cbar", "=", "fig", ".", "colorbar", "(", "im", ",", "ax", "=", "ax", ")", "else", ":", "cbar", "=", "None", "return", "ax", ",", "cbar" ]
Plot x, y, z as expected with correct axis labels. Examples -------- >>> import matplotlib.pyplot as plt >>> import numpy as np >>> from reda.plotters import matplot >>> a = np.arange(4) >>> b = np.arange(3) + 3 >>> def sum(a, b): ... return a + b >>> x, y = np.meshgrid(a, b) >>> c = sum(x, y) >>> fig, (ax1, ax2) = plt.subplots(1, 2) >>> im = ax1.pcolormesh(x, y, c) >>> _ = plt.colorbar(im, ax=ax1) >>> _ = ax1.set_title("plt.pcolormesh") >>> _, _ = matplot(x, y, c, ax=ax2) >>> _ = ax2.set_title("reda.plotters.matplot") >>> fig.show() Note ---- Only works for equidistant data at the moment.
[ "Plot", "x", "y", "z", "as", "expected", "with", "correct", "axis", "labels", "." ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/plotters/plots2d.py#L417-L470
train
frasertweedale/ledgertools
ltlib/xn.py
Xn.summary
def summary(self): """Return a string summary of transaction""" return "\n".join([ "Transaction:", " When: " + self.date.strftime("%a %d %b %Y"), " Description: " + self.desc.replace('\n', ' '), " For amount: {}".format(self.amount), " From: {}".format( ", ".join(map(lambda x: x.account, self.src)) if self.src \ else "UNKNOWN" ), " To: {}".format( ", ".join(map(lambda x: x.account, self.dst)) if self.dst \ else "UNKNOWN" ), "" ])
python
def summary(self): """Return a string summary of transaction""" return "\n".join([ "Transaction:", " When: " + self.date.strftime("%a %d %b %Y"), " Description: " + self.desc.replace('\n', ' '), " For amount: {}".format(self.amount), " From: {}".format( ", ".join(map(lambda x: x.account, self.src)) if self.src \ else "UNKNOWN" ), " To: {}".format( ", ".join(map(lambda x: x.account, self.dst)) if self.dst \ else "UNKNOWN" ), "" ])
[ "def", "summary", "(", "self", ")", ":", "return", "\"\\n\"", ".", "join", "(", "[", "\"Transaction:\"", ",", "\" When: \"", "+", "self", ".", "date", ".", "strftime", "(", "\"%a %d %b %Y\"", ")", ",", "\" Description: \"", "+", "self", ".", "desc", ".", "replace", "(", "'\\n'", ",", "' '", ")", ",", "\" For amount: {}\"", ".", "format", "(", "self", ".", "amount", ")", ",", "\" From: {}\"", ".", "format", "(", "\", \"", ".", "join", "(", "map", "(", "lambda", "x", ":", "x", ".", "account", ",", "self", ".", "src", ")", ")", "if", "self", ".", "src", "else", "\"UNKNOWN\"", ")", ",", "\" To: {}\"", ".", "format", "(", "\", \"", ".", "join", "(", "map", "(", "lambda", "x", ":", "x", ".", "account", ",", "self", ".", "dst", ")", ")", "if", "self", ".", "dst", "else", "\"UNKNOWN\"", ")", ",", "\"\"", "]", ")" ]
Return a string summary of transaction
[ "Return", "a", "string", "summary", "of", "transaction" ]
a695f8667d72253e5448693c12f0282d09902aaa
https://github.com/frasertweedale/ledgertools/blob/a695f8667d72253e5448693c12f0282d09902aaa/ltlib/xn.py#L88-L104
train
frasertweedale/ledgertools
ltlib/xn.py
Xn.check
def check(self): """Check this transaction for completeness""" if not self.date: raise XnDataError("Missing date") if not self.desc: raise XnDataError("Missing description") if not self.dst: raise XnDataError("No destination accounts") if not self.src: raise XnDataError("No source accounts") if not self.amount: raise XnDataError("No transaction amount")
python
def check(self): """Check this transaction for completeness""" if not self.date: raise XnDataError("Missing date") if not self.desc: raise XnDataError("Missing description") if not self.dst: raise XnDataError("No destination accounts") if not self.src: raise XnDataError("No source accounts") if not self.amount: raise XnDataError("No transaction amount")
[ "def", "check", "(", "self", ")", ":", "if", "not", "self", ".", "date", ":", "raise", "XnDataError", "(", "\"Missing date\"", ")", "if", "not", "self", ".", "desc", ":", "raise", "XnDataError", "(", "\"Missing description\"", ")", "if", "not", "self", ".", "dst", ":", "raise", "XnDataError", "(", "\"No destination accounts\"", ")", "if", "not", "self", ".", "src", ":", "raise", "XnDataError", "(", "\"No source accounts\"", ")", "if", "not", "self", ".", "amount", ":", "raise", "XnDataError", "(", "\"No transaction amount\"", ")" ]
Check this transaction for completeness
[ "Check", "this", "transaction", "for", "completeness" ]
a695f8667d72253e5448693c12f0282d09902aaa
https://github.com/frasertweedale/ledgertools/blob/a695f8667d72253e5448693c12f0282d09902aaa/ltlib/xn.py#L106-L117
train
frasertweedale/ledgertools
ltlib/xn.py
Xn.balance
def balance(self): """Check this transaction for correctness""" self.check() if not sum(map(lambda x: x.amount, self.src)) == -self.amount: raise XnBalanceError("Sum of source amounts " "not equal to transaction amount") if not sum(map(lambda x: x.amount, self.dst)) == self.amount: raise XnBalanceError("Sum of destination amounts " "not equal to transaction amount") return True
python
def balance(self): """Check this transaction for correctness""" self.check() if not sum(map(lambda x: x.amount, self.src)) == -self.amount: raise XnBalanceError("Sum of source amounts " "not equal to transaction amount") if not sum(map(lambda x: x.amount, self.dst)) == self.amount: raise XnBalanceError("Sum of destination amounts " "not equal to transaction amount") return True
[ "def", "balance", "(", "self", ")", ":", "self", ".", "check", "(", ")", "if", "not", "sum", "(", "map", "(", "lambda", "x", ":", "x", ".", "amount", ",", "self", ".", "src", ")", ")", "==", "-", "self", ".", "amount", ":", "raise", "XnBalanceError", "(", "\"Sum of source amounts \"", "\"not equal to transaction amount\"", ")", "if", "not", "sum", "(", "map", "(", "lambda", "x", ":", "x", ".", "amount", ",", "self", ".", "dst", ")", ")", "==", "self", ".", "amount", ":", "raise", "XnBalanceError", "(", "\"Sum of destination amounts \"", "\"not equal to transaction amount\"", ")", "return", "True" ]
Check this transaction for correctness
[ "Check", "this", "transaction", "for", "correctness" ]
a695f8667d72253e5448693c12f0282d09902aaa
https://github.com/frasertweedale/ledgertools/blob/a695f8667d72253e5448693c12f0282d09902aaa/ltlib/xn.py#L119-L128
train
frasertweedale/ledgertools
ltlib/xn.py
Xn.match_rules
def match_rules(self, rules): """Process this transaction against the given ruleset Returns a dict of fields with ScoreSet values, which may be empty. Notably, the rule processing will be shortcircuited if the Xn is already complete - in this case, None is returned. """ try: self.check() return None except XnDataError: pass scores = {} for r in rules: outcomes = r.match(self) if not outcomes: continue for outcome in outcomes: if isinstance(outcome, rule.SourceOutcome): key = 'src' elif isinstance(outcome, rule.DestinationOutcome): key = 'dst' elif isinstance(outcome, rule.DescriptionOutcome): key = 'desc' elif isinstance(outcome, rule.DropOutcome): key = 'drop' elif isinstance(outcome, rule.RebateOutcome): key = 'rebate' else: raise KeyError if key not in scores: scores[key] = score.ScoreSet() # initialise ScoreSet scores[key].append((outcome.value, outcome.score)) return scores
python
def match_rules(self, rules): """Process this transaction against the given ruleset Returns a dict of fields with ScoreSet values, which may be empty. Notably, the rule processing will be shortcircuited if the Xn is already complete - in this case, None is returned. """ try: self.check() return None except XnDataError: pass scores = {} for r in rules: outcomes = r.match(self) if not outcomes: continue for outcome in outcomes: if isinstance(outcome, rule.SourceOutcome): key = 'src' elif isinstance(outcome, rule.DestinationOutcome): key = 'dst' elif isinstance(outcome, rule.DescriptionOutcome): key = 'desc' elif isinstance(outcome, rule.DropOutcome): key = 'drop' elif isinstance(outcome, rule.RebateOutcome): key = 'rebate' else: raise KeyError if key not in scores: scores[key] = score.ScoreSet() # initialise ScoreSet scores[key].append((outcome.value, outcome.score)) return scores
[ "def", "match_rules", "(", "self", ",", "rules", ")", ":", "try", ":", "self", ".", "check", "(", ")", "return", "None", "except", "XnDataError", ":", "pass", "scores", "=", "{", "}", "for", "r", "in", "rules", ":", "outcomes", "=", "r", ".", "match", "(", "self", ")", "if", "not", "outcomes", ":", "continue", "for", "outcome", "in", "outcomes", ":", "if", "isinstance", "(", "outcome", ",", "rule", ".", "SourceOutcome", ")", ":", "key", "=", "'src'", "elif", "isinstance", "(", "outcome", ",", "rule", ".", "DestinationOutcome", ")", ":", "key", "=", "'dst'", "elif", "isinstance", "(", "outcome", ",", "rule", ".", "DescriptionOutcome", ")", ":", "key", "=", "'desc'", "elif", "isinstance", "(", "outcome", ",", "rule", ".", "DropOutcome", ")", ":", "key", "=", "'drop'", "elif", "isinstance", "(", "outcome", ",", "rule", ".", "RebateOutcome", ")", ":", "key", "=", "'rebate'", "else", ":", "raise", "KeyError", "if", "key", "not", "in", "scores", ":", "scores", "[", "key", "]", "=", "score", ".", "ScoreSet", "(", ")", "# initialise ScoreSet", "scores", "[", "key", "]", ".", "append", "(", "(", "outcome", ".", "value", ",", "outcome", ".", "score", ")", ")", "return", "scores" ]
Process this transaction against the given ruleset Returns a dict of fields with ScoreSet values, which may be empty. Notably, the rule processing will be shortcircuited if the Xn is already complete - in this case, None is returned.
[ "Process", "this", "transaction", "against", "the", "given", "ruleset" ]
a695f8667d72253e5448693c12f0282d09902aaa
https://github.com/frasertweedale/ledgertools/blob/a695f8667d72253e5448693c12f0282d09902aaa/ltlib/xn.py#L130-L166
train
frasertweedale/ledgertools
ltlib/xn.py
Xn.complete
def complete(self, uio, dropped=False): """Query for all missing information in the transaction""" if self.dropped and not dropped: # do nothing for dropped xn, unless specifically told to return for end in ['src', 'dst']: if getattr(self, end): continue # we have this information uio.show('\nEnter ' + end + ' for transaction:') uio.show('') uio.show(self.summary()) try: endpoints = [] remaining = self.amount while remaining: account = uio.text(' Enter account', None) amount = uio.decimal( ' Enter amount', default=remaining, lower=0, upper=remaining ) endpoints.append(Endpoint(account, amount)) remaining = self.amount \ - sum(map(lambda x: x.amount, endpoints)) except ui.RejectWarning: # bail out sys.exit("bye!") # flip amounts if it was a src outcome if end == 'src': endpoints = map( lambda x: Endpoint(x.account, -x.amount), endpoints ) # set endpoints setattr(self, end, endpoints)
python
def complete(self, uio, dropped=False): """Query for all missing information in the transaction""" if self.dropped and not dropped: # do nothing for dropped xn, unless specifically told to return for end in ['src', 'dst']: if getattr(self, end): continue # we have this information uio.show('\nEnter ' + end + ' for transaction:') uio.show('') uio.show(self.summary()) try: endpoints = [] remaining = self.amount while remaining: account = uio.text(' Enter account', None) amount = uio.decimal( ' Enter amount', default=remaining, lower=0, upper=remaining ) endpoints.append(Endpoint(account, amount)) remaining = self.amount \ - sum(map(lambda x: x.amount, endpoints)) except ui.RejectWarning: # bail out sys.exit("bye!") # flip amounts if it was a src outcome if end == 'src': endpoints = map( lambda x: Endpoint(x.account, -x.amount), endpoints ) # set endpoints setattr(self, end, endpoints)
[ "def", "complete", "(", "self", ",", "uio", ",", "dropped", "=", "False", ")", ":", "if", "self", ".", "dropped", "and", "not", "dropped", ":", "# do nothing for dropped xn, unless specifically told to", "return", "for", "end", "in", "[", "'src'", ",", "'dst'", "]", ":", "if", "getattr", "(", "self", ",", "end", ")", ":", "continue", "# we have this information", "uio", ".", "show", "(", "'\\nEnter '", "+", "end", "+", "' for transaction:'", ")", "uio", ".", "show", "(", "''", ")", "uio", ".", "show", "(", "self", ".", "summary", "(", ")", ")", "try", ":", "endpoints", "=", "[", "]", "remaining", "=", "self", ".", "amount", "while", "remaining", ":", "account", "=", "uio", ".", "text", "(", "' Enter account'", ",", "None", ")", "amount", "=", "uio", ".", "decimal", "(", "' Enter amount'", ",", "default", "=", "remaining", ",", "lower", "=", "0", ",", "upper", "=", "remaining", ")", "endpoints", ".", "append", "(", "Endpoint", "(", "account", ",", "amount", ")", ")", "remaining", "=", "self", ".", "amount", "-", "sum", "(", "map", "(", "lambda", "x", ":", "x", ".", "amount", ",", "endpoints", ")", ")", "except", "ui", ".", "RejectWarning", ":", "# bail out", "sys", ".", "exit", "(", "\"bye!\"", ")", "# flip amounts if it was a src outcome", "if", "end", "==", "'src'", ":", "endpoints", "=", "map", "(", "lambda", "x", ":", "Endpoint", "(", "x", ".", "account", ",", "-", "x", ".", "amount", ")", ",", "endpoints", ")", "# set endpoints", "setattr", "(", "self", ",", "end", ",", "endpoints", ")" ]
Query for all missing information in the transaction
[ "Query", "for", "all", "missing", "information", "in", "the", "transaction" ]
a695f8667d72253e5448693c12f0282d09902aaa
https://github.com/frasertweedale/ledgertools/blob/a695f8667d72253e5448693c12f0282d09902aaa/ltlib/xn.py#L312-L351
train
frasertweedale/ledgertools
ltlib/xn.py
Xn.process
def process(self, rules, uio, prevxn=None): """Matches rules and applies outcomes""" self.apply_outcomes(self.match_rules(rules), uio, prevxn=prevxn)
python
def process(self, rules, uio, prevxn=None): """Matches rules and applies outcomes""" self.apply_outcomes(self.match_rules(rules), uio, prevxn=prevxn)
[ "def", "process", "(", "self", ",", "rules", ",", "uio", ",", "prevxn", "=", "None", ")", ":", "self", ".", "apply_outcomes", "(", "self", ".", "match_rules", "(", "rules", ")", ",", "uio", ",", "prevxn", "=", "prevxn", ")" ]
Matches rules and applies outcomes
[ "Matches", "rules", "and", "applies", "outcomes" ]
a695f8667d72253e5448693c12f0282d09902aaa
https://github.com/frasertweedale/ledgertools/blob/a695f8667d72253e5448693c12f0282d09902aaa/ltlib/xn.py#L353-L355
train
geophysics-ubonn/reda
lib/reda/plotters/time_series.py
plot_quadpole_evolution
def plot_quadpole_evolution(dataobj, quadpole, cols, threshold=5, rolling=False, ax=None): """Visualize time-lapse evolution of a single quadropole. Parameters ---------- dataobj : :py:class:`pandas.DataFrame` DataFrame containing the data. Please refer to the documentation for required columns. quadpole : list of integers Electrode numbers of the the quadropole. cols : str The column/parameter to plot over time. threshold : float Allowed percentage deviation from the rolling standard deviation. rolling : bool Calculate rolling median values (the default is False). ax : mpl.axes Optional axes object to plot to. """ if isinstance(dataobj, pd.DataFrame): df = dataobj else: df = dataobj.data subquery = df.query( 'a == {0} and b == {1} and m == {2} and n == {3}'.format(*quadpole)) # rhoa = subquery['rho_a'].values # rhoa[30] = 300 # subquery['rho_a'] = rhoa if ax is not None: fig = ax.get_figure() else: fig, ax = plt.subplots(1, 1, figsize=(20 / 2.54, 7 / 2.54)) ax.plot( subquery['timestep'], subquery[cols], '.', color='blue', label='valid data', ) if rolling: # rolling mean rolling_m = subquery.rolling(3, center=True, min_periods=1).median() ax.plot( rolling_m['timestep'].values, rolling_m['rho_a'].values, '-', label='rolling median', ) ax.fill_between( rolling_m['timestep'].values, rolling_m['rho_a'].values * (1 - threshold), rolling_m['rho_a'].values * (1 + threshold), alpha=0.4, color='blue', label='{0}\% confidence region'.format(threshold * 100), ) # find all values that deviate by more than X percent from the # rolling_m bad_values = (np.abs( np.abs(subquery['rho_a'].values - rolling_m['rho_a'].values) / rolling_m['rho_a'].values) > threshold) bad = subquery.loc[bad_values] ax.plot( bad['timestep'].values, bad['rho_a'].values, '.', # s=15, color='r', label='discarded data', ) ax.legend(loc='upper center', fontsize=6) # ax.set_xlim(10, 20) ax.set_ylabel(r'$\rho_a$ [$\Omega$m]') ax.set_xlabel('timestep') return fig, ax
python
def plot_quadpole_evolution(dataobj, quadpole, cols, threshold=5, rolling=False, ax=None): """Visualize time-lapse evolution of a single quadropole. Parameters ---------- dataobj : :py:class:`pandas.DataFrame` DataFrame containing the data. Please refer to the documentation for required columns. quadpole : list of integers Electrode numbers of the the quadropole. cols : str The column/parameter to plot over time. threshold : float Allowed percentage deviation from the rolling standard deviation. rolling : bool Calculate rolling median values (the default is False). ax : mpl.axes Optional axes object to plot to. """ if isinstance(dataobj, pd.DataFrame): df = dataobj else: df = dataobj.data subquery = df.query( 'a == {0} and b == {1} and m == {2} and n == {3}'.format(*quadpole)) # rhoa = subquery['rho_a'].values # rhoa[30] = 300 # subquery['rho_a'] = rhoa if ax is not None: fig = ax.get_figure() else: fig, ax = plt.subplots(1, 1, figsize=(20 / 2.54, 7 / 2.54)) ax.plot( subquery['timestep'], subquery[cols], '.', color='blue', label='valid data', ) if rolling: # rolling mean rolling_m = subquery.rolling(3, center=True, min_periods=1).median() ax.plot( rolling_m['timestep'].values, rolling_m['rho_a'].values, '-', label='rolling median', ) ax.fill_between( rolling_m['timestep'].values, rolling_m['rho_a'].values * (1 - threshold), rolling_m['rho_a'].values * (1 + threshold), alpha=0.4, color='blue', label='{0}\% confidence region'.format(threshold * 100), ) # find all values that deviate by more than X percent from the # rolling_m bad_values = (np.abs( np.abs(subquery['rho_a'].values - rolling_m['rho_a'].values) / rolling_m['rho_a'].values) > threshold) bad = subquery.loc[bad_values] ax.plot( bad['timestep'].values, bad['rho_a'].values, '.', # s=15, color='r', label='discarded data', ) ax.legend(loc='upper center', fontsize=6) # ax.set_xlim(10, 20) ax.set_ylabel(r'$\rho_a$ [$\Omega$m]') ax.set_xlabel('timestep') return fig, ax
[ "def", "plot_quadpole_evolution", "(", "dataobj", ",", "quadpole", ",", "cols", ",", "threshold", "=", "5", ",", "rolling", "=", "False", ",", "ax", "=", "None", ")", ":", "if", "isinstance", "(", "dataobj", ",", "pd", ".", "DataFrame", ")", ":", "df", "=", "dataobj", "else", ":", "df", "=", "dataobj", ".", "data", "subquery", "=", "df", ".", "query", "(", "'a == {0} and b == {1} and m == {2} and n == {3}'", ".", "format", "(", "*", "quadpole", ")", ")", "# rhoa = subquery['rho_a'].values", "# rhoa[30] = 300", "# subquery['rho_a'] = rhoa", "if", "ax", "is", "not", "None", ":", "fig", "=", "ax", ".", "get_figure", "(", ")", "else", ":", "fig", ",", "ax", "=", "plt", ".", "subplots", "(", "1", ",", "1", ",", "figsize", "=", "(", "20", "/", "2.54", ",", "7", "/", "2.54", ")", ")", "ax", ".", "plot", "(", "subquery", "[", "'timestep'", "]", ",", "subquery", "[", "cols", "]", ",", "'.'", ",", "color", "=", "'blue'", ",", "label", "=", "'valid data'", ",", ")", "if", "rolling", ":", "# rolling mean", "rolling_m", "=", "subquery", ".", "rolling", "(", "3", ",", "center", "=", "True", ",", "min_periods", "=", "1", ")", ".", "median", "(", ")", "ax", ".", "plot", "(", "rolling_m", "[", "'timestep'", "]", ".", "values", ",", "rolling_m", "[", "'rho_a'", "]", ".", "values", ",", "'-'", ",", "label", "=", "'rolling median'", ",", ")", "ax", ".", "fill_between", "(", "rolling_m", "[", "'timestep'", "]", ".", "values", ",", "rolling_m", "[", "'rho_a'", "]", ".", "values", "*", "(", "1", "-", "threshold", ")", ",", "rolling_m", "[", "'rho_a'", "]", ".", "values", "*", "(", "1", "+", "threshold", ")", ",", "alpha", "=", "0.4", ",", "color", "=", "'blue'", ",", "label", "=", "'{0}\\% confidence region'", ".", "format", "(", "threshold", "*", "100", ")", ",", ")", "# find all values that deviate by more than X percent from the", "# rolling_m", "bad_values", "=", "(", "np", ".", "abs", "(", "np", ".", "abs", "(", "subquery", "[", "'rho_a'", "]", ".", "values", "-", "rolling_m", "[", "'rho_a'", "]", ".", "values", ")", "/", "rolling_m", "[", "'rho_a'", "]", ".", "values", ")", ">", "threshold", ")", "bad", "=", "subquery", ".", "loc", "[", "bad_values", "]", "ax", ".", "plot", "(", "bad", "[", "'timestep'", "]", ".", "values", ",", "bad", "[", "'rho_a'", "]", ".", "values", ",", "'.'", ",", "# s=15,", "color", "=", "'r'", ",", "label", "=", "'discarded data'", ",", ")", "ax", ".", "legend", "(", "loc", "=", "'upper center'", ",", "fontsize", "=", "6", ")", "# ax.set_xlim(10, 20)", "ax", ".", "set_ylabel", "(", "r'$\\rho_a$ [$\\Omega$m]'", ")", "ax", ".", "set_xlabel", "(", "'timestep'", ")", "return", "fig", ",", "ax" ]
Visualize time-lapse evolution of a single quadropole. Parameters ---------- dataobj : :py:class:`pandas.DataFrame` DataFrame containing the data. Please refer to the documentation for required columns. quadpole : list of integers Electrode numbers of the the quadropole. cols : str The column/parameter to plot over time. threshold : float Allowed percentage deviation from the rolling standard deviation. rolling : bool Calculate rolling median values (the default is False). ax : mpl.axes Optional axes object to plot to.
[ "Visualize", "time", "-", "lapse", "evolution", "of", "a", "single", "quadropole", "." ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/plotters/time_series.py#L9-L93
train
shexSpec/grammar
parsers/python/pyshexc/parser_impl/shex_oneofshape_parser.py
ShexOneOfShapeParser.visitSenseFlags
def visitSenseFlags(self, ctx: ShExDocParser.SenseFlagsContext): """ '!' '^'? | '^' '!'? """ if '!' in ctx.getText(): self.expression.negated = True if '^' in ctx.getText(): self.expression.inverse = True
python
def visitSenseFlags(self, ctx: ShExDocParser.SenseFlagsContext): """ '!' '^'? | '^' '!'? """ if '!' in ctx.getText(): self.expression.negated = True if '^' in ctx.getText(): self.expression.inverse = True
[ "def", "visitSenseFlags", "(", "self", ",", "ctx", ":", "ShExDocParser", ".", "SenseFlagsContext", ")", ":", "if", "'!'", "in", "ctx", ".", "getText", "(", ")", ":", "self", ".", "expression", ".", "negated", "=", "True", "if", "'^'", "in", "ctx", ".", "getText", "(", ")", ":", "self", ".", "expression", ".", "inverse", "=", "True" ]
'!' '^'? | '^' '!'?
[ "!", "^", "?", "|", "^", "!", "?" ]
4497cd1f73fa6703bca6e2cb53ba9c120f22e48c
https://github.com/shexSpec/grammar/blob/4497cd1f73fa6703bca6e2cb53ba9c120f22e48c/parsers/python/pyshexc/parser_impl/shex_oneofshape_parser.py#L114-L119
train
andy-z/ged4py
ged4py/detail/date.py
CalendarDate.as_tuple
def as_tuple(self): """Date as three-tuple of numbers""" if self._tuple is None: # extract leading digits from year year = 9999 if self.year: m = self.DIGITS.match(self.year) if m: year = int(m.group(0)) month = self.month_num or 99 day = self.day if self.day is not None else 99 # should we include calendar name in tuple too? self._tuple = year, month, day return self._tuple
python
def as_tuple(self): """Date as three-tuple of numbers""" if self._tuple is None: # extract leading digits from year year = 9999 if self.year: m = self.DIGITS.match(self.year) if m: year = int(m.group(0)) month = self.month_num or 99 day = self.day if self.day is not None else 99 # should we include calendar name in tuple too? self._tuple = year, month, day return self._tuple
[ "def", "as_tuple", "(", "self", ")", ":", "if", "self", ".", "_tuple", "is", "None", ":", "# extract leading digits from year", "year", "=", "9999", "if", "self", ".", "year", ":", "m", "=", "self", ".", "DIGITS", ".", "match", "(", "self", ".", "year", ")", "if", "m", ":", "year", "=", "int", "(", "m", ".", "group", "(", "0", ")", ")", "month", "=", "self", ".", "month_num", "or", "99", "day", "=", "self", ".", "day", "if", "self", ".", "day", "is", "not", "None", "else", "99", "# should we include calendar name in tuple too?", "self", ".", "_tuple", "=", "year", ",", "month", ",", "day", "return", "self", ".", "_tuple" ]
Date as three-tuple of numbers
[ "Date", "as", "three", "-", "tuple", "of", "numbers" ]
d0e0cceaadf0a84cbf052705e3c27303b12e1757
https://github.com/andy-z/ged4py/blob/d0e0cceaadf0a84cbf052705e3c27303b12e1757/ged4py/detail/date.py#L142-L157
train
andy-z/ged4py
ged4py/detail/date.py
DateValue._cmp_date
def _cmp_date(self): """Returns Calendar date used for comparison. Use the earliest date out of all CalendarDates in this instance, or some date in the future if there are no CalendarDates (e.g. when Date is a phrase). """ dates = sorted(val for val in self.kw.values() if isinstance(val, CalendarDate)) if dates: return dates[0] # return date very far in the future return CalendarDate()
python
def _cmp_date(self): """Returns Calendar date used for comparison. Use the earliest date out of all CalendarDates in this instance, or some date in the future if there are no CalendarDates (e.g. when Date is a phrase). """ dates = sorted(val for val in self.kw.values() if isinstance(val, CalendarDate)) if dates: return dates[0] # return date very far in the future return CalendarDate()
[ "def", "_cmp_date", "(", "self", ")", ":", "dates", "=", "sorted", "(", "val", "for", "val", "in", "self", ".", "kw", ".", "values", "(", ")", "if", "isinstance", "(", "val", ",", "CalendarDate", ")", ")", "if", "dates", ":", "return", "dates", "[", "0", "]", "# return date very far in the future", "return", "CalendarDate", "(", ")" ]
Returns Calendar date used for comparison. Use the earliest date out of all CalendarDates in this instance, or some date in the future if there are no CalendarDates (e.g. when Date is a phrase).
[ "Returns", "Calendar", "date", "used", "for", "comparison", "." ]
d0e0cceaadf0a84cbf052705e3c27303b12e1757
https://github.com/andy-z/ged4py/blob/d0e0cceaadf0a84cbf052705e3c27303b12e1757/ged4py/detail/date.py#L237-L249
train
lekhakpadmanabh/Summarizer
smrzr/better_sentences.py
better_sentences
def better_sentences(func): """takes care of some edge cases of sentence tokenization for cases when websites don't close sentences properly, usually after blockquotes, image captions or attributions""" @wraps(func) def wrapped(*args): sentences = func(*args) new_sentences = [] for i, l in enumerate(sentences): if '\n\n' in l: splits = l.split('\n\n') if len(splits)>1: for ind,spl in enumerate(splits): if len(spl) <20: #if DEBUG: print "Discarding: ", spl del splits[ind] new_sentences.extend(splits) else: new_sentences.append(l) return new_sentences return wrapped
python
def better_sentences(func): """takes care of some edge cases of sentence tokenization for cases when websites don't close sentences properly, usually after blockquotes, image captions or attributions""" @wraps(func) def wrapped(*args): sentences = func(*args) new_sentences = [] for i, l in enumerate(sentences): if '\n\n' in l: splits = l.split('\n\n') if len(splits)>1: for ind,spl in enumerate(splits): if len(spl) <20: #if DEBUG: print "Discarding: ", spl del splits[ind] new_sentences.extend(splits) else: new_sentences.append(l) return new_sentences return wrapped
[ "def", "better_sentences", "(", "func", ")", ":", "@", "wraps", "(", "func", ")", "def", "wrapped", "(", "*", "args", ")", ":", "sentences", "=", "func", "(", "*", "args", ")", "new_sentences", "=", "[", "]", "for", "i", ",", "l", "in", "enumerate", "(", "sentences", ")", ":", "if", "'\\n\\n'", "in", "l", ":", "splits", "=", "l", ".", "split", "(", "'\\n\\n'", ")", "if", "len", "(", "splits", ")", ">", "1", ":", "for", "ind", ",", "spl", "in", "enumerate", "(", "splits", ")", ":", "if", "len", "(", "spl", ")", "<", "20", ":", "#if DEBUG: print \"Discarding: \", spl", "del", "splits", "[", "ind", "]", "new_sentences", ".", "extend", "(", "splits", ")", "else", ":", "new_sentences", ".", "append", "(", "l", ")", "return", "new_sentences", "return", "wrapped" ]
takes care of some edge cases of sentence tokenization for cases when websites don't close sentences properly, usually after blockquotes, image captions or attributions
[ "takes", "care", "of", "some", "edge", "cases", "of", "sentence", "tokenization", "for", "cases", "when", "websites", "don", "t", "close", "sentences", "properly", "usually", "after", "blockquotes", "image", "captions", "or", "attributions" ]
143456a48217905c720d87331f410e5c8b4e24aa
https://github.com/lekhakpadmanabh/Summarizer/blob/143456a48217905c720d87331f410e5c8b4e24aa/smrzr/better_sentences.py#L3-L26
train
south-coast-science/scs_core
src/scs_core/gas/pid_datum.py
PIDDatum.__we_c
def __we_c(cls, calib, tc, temp, we_v): """ Compute weC from sensor temperature compensation of weV """ offset_v = calib.pid_elc_mv / 1000.0 response_v = we_v - offset_v # remove electronic zero response_c = tc.correct(temp, response_v) # correct the response component if response_c is None: return None we_c = response_c + offset_v # replace electronic zero return we_c
python
def __we_c(cls, calib, tc, temp, we_v): """ Compute weC from sensor temperature compensation of weV """ offset_v = calib.pid_elc_mv / 1000.0 response_v = we_v - offset_v # remove electronic zero response_c = tc.correct(temp, response_v) # correct the response component if response_c is None: return None we_c = response_c + offset_v # replace electronic zero return we_c
[ "def", "__we_c", "(", "cls", ",", "calib", ",", "tc", ",", "temp", ",", "we_v", ")", ":", "offset_v", "=", "calib", ".", "pid_elc_mv", "/", "1000.0", "response_v", "=", "we_v", "-", "offset_v", "# remove electronic zero", "response_c", "=", "tc", ".", "correct", "(", "temp", ",", "response_v", ")", "# correct the response component", "if", "response_c", "is", "None", ":", "return", "None", "we_c", "=", "response_c", "+", "offset_v", "# replace electronic zero", "return", "we_c" ]
Compute weC from sensor temperature compensation of weV
[ "Compute", "weC", "from", "sensor", "temperature", "compensation", "of", "weV" ]
a4152b0bbed6acbbf257e1bba6a912f6ebe578e5
https://github.com/south-coast-science/scs_core/blob/a4152b0bbed6acbbf257e1bba6a912f6ebe578e5/src/scs_core/gas/pid_datum.py#L44-L58
train
south-coast-science/scs_core
src/scs_core/gas/pid_datum.py
PIDDatum.__cnc
def __cnc(cls, calib, we_c): """ Compute cnc from weC """ if we_c is None: return None offset_v = calib.pid_elc_mv / 1000.0 response_c = we_c - offset_v # remove electronic zero cnc = response_c / calib.pid_sens_mv # pid_sens_mv set for ppb or ppm - see PID.init() return cnc
python
def __cnc(cls, calib, we_c): """ Compute cnc from weC """ if we_c is None: return None offset_v = calib.pid_elc_mv / 1000.0 response_c = we_c - offset_v # remove electronic zero cnc = response_c / calib.pid_sens_mv # pid_sens_mv set for ppb or ppm - see PID.init() return cnc
[ "def", "__cnc", "(", "cls", ",", "calib", ",", "we_c", ")", ":", "if", "we_c", "is", "None", ":", "return", "None", "offset_v", "=", "calib", ".", "pid_elc_mv", "/", "1000.0", "response_c", "=", "we_c", "-", "offset_v", "# remove electronic zero", "cnc", "=", "response_c", "/", "calib", ".", "pid_sens_mv", "# pid_sens_mv set for ppb or ppm - see PID.init()", "return", "cnc" ]
Compute cnc from weC
[ "Compute", "cnc", "from", "weC" ]
a4152b0bbed6acbbf257e1bba6a912f6ebe578e5
https://github.com/south-coast-science/scs_core/blob/a4152b0bbed6acbbf257e1bba6a912f6ebe578e5/src/scs_core/gas/pid_datum.py#L62-L74
train
cloudbase/python-hnvclient
hnv/common/model.py
Field.add_to_class
def add_to_class(self, model_class): """Replace the `Field` attribute with a named `_FieldDescriptor`. .. note:: This method is called during construction of the `Model`. """ model_class._meta.add_field(self) setattr(model_class, self.name, _FieldDescriptor(self))
python
def add_to_class(self, model_class): """Replace the `Field` attribute with a named `_FieldDescriptor`. .. note:: This method is called during construction of the `Model`. """ model_class._meta.add_field(self) setattr(model_class, self.name, _FieldDescriptor(self))
[ "def", "add_to_class", "(", "self", ",", "model_class", ")", ":", "model_class", ".", "_meta", ".", "add_field", "(", "self", ")", "setattr", "(", "model_class", ",", "self", ".", "name", ",", "_FieldDescriptor", "(", "self", ")", ")" ]
Replace the `Field` attribute with a named `_FieldDescriptor`. .. note:: This method is called during construction of the `Model`.
[ "Replace", "the", "Field", "attribute", "with", "a", "named", "_FieldDescriptor", "." ]
b019452af01db22629809b8930357a2ebf6494be
https://github.com/cloudbase/python-hnvclient/blob/b019452af01db22629809b8930357a2ebf6494be/hnv/common/model.py#L126-L133
train
cloudbase/python-hnvclient
hnv/common/model.py
_ModelOptions.add_field
def add_field(self, field): """Add the received field to the model.""" self.remove_field(field.name) self._fields[field.name] = field if field.default is not None: if six.callable(field.default): self._default_callables[field.key] = field.default else: self._defaults[field.key] = field.default
python
def add_field(self, field): """Add the received field to the model.""" self.remove_field(field.name) self._fields[field.name] = field if field.default is not None: if six.callable(field.default): self._default_callables[field.key] = field.default else: self._defaults[field.key] = field.default
[ "def", "add_field", "(", "self", ",", "field", ")", ":", "self", ".", "remove_field", "(", "field", ".", "name", ")", "self", ".", "_fields", "[", "field", ".", "name", "]", "=", "field", "if", "field", ".", "default", "is", "not", "None", ":", "if", "six", ".", "callable", "(", "field", ".", "default", ")", ":", "self", ".", "_default_callables", "[", "field", ".", "key", "]", "=", "field", ".", "default", "else", ":", "self", ".", "_defaults", "[", "field", ".", "key", "]", "=", "field", ".", "default" ]
Add the received field to the model.
[ "Add", "the", "received", "field", "to", "the", "model", "." ]
b019452af01db22629809b8930357a2ebf6494be
https://github.com/cloudbase/python-hnvclient/blob/b019452af01db22629809b8930357a2ebf6494be/hnv/common/model.py#L157-L166
train
cloudbase/python-hnvclient
hnv/common/model.py
_ModelOptions.remove_field
def remove_field(self, field_name): """Remove the field with the received field name from model.""" field = self._fields.pop(field_name, None) if field is not None and field.default is not None: if six.callable(field.default): self._default_callables.pop(field.key, None) else: self._defaults.pop(field.key, None)
python
def remove_field(self, field_name): """Remove the field with the received field name from model.""" field = self._fields.pop(field_name, None) if field is not None and field.default is not None: if six.callable(field.default): self._default_callables.pop(field.key, None) else: self._defaults.pop(field.key, None)
[ "def", "remove_field", "(", "self", ",", "field_name", ")", ":", "field", "=", "self", ".", "_fields", ".", "pop", "(", "field_name", ",", "None", ")", "if", "field", "is", "not", "None", "and", "field", ".", "default", "is", "not", "None", ":", "if", "six", ".", "callable", "(", "field", ".", "default", ")", ":", "self", ".", "_default_callables", ".", "pop", "(", "field", ".", "key", ",", "None", ")", "else", ":", "self", ".", "_defaults", ".", "pop", "(", "field", ".", "key", ",", "None", ")" ]
Remove the field with the received field name from model.
[ "Remove", "the", "field", "with", "the", "received", "field", "name", "from", "model", "." ]
b019452af01db22629809b8930357a2ebf6494be
https://github.com/cloudbase/python-hnvclient/blob/b019452af01db22629809b8930357a2ebf6494be/hnv/common/model.py#L168-L175
train
cloudbase/python-hnvclient
hnv/common/model.py
_ModelOptions.get_defaults
def get_defaults(self): """Get a dictionary that contains all the available defaults.""" defaults = self._defaults.copy() for field_key, default in self._default_callables.items(): defaults[field_key] = default() return defaults
python
def get_defaults(self): """Get a dictionary that contains all the available defaults.""" defaults = self._defaults.copy() for field_key, default in self._default_callables.items(): defaults[field_key] = default() return defaults
[ "def", "get_defaults", "(", "self", ")", ":", "defaults", "=", "self", ".", "_defaults", ".", "copy", "(", ")", "for", "field_key", ",", "default", "in", "self", ".", "_default_callables", ".", "items", "(", ")", ":", "defaults", "[", "field_key", "]", "=", "default", "(", ")", "return", "defaults" ]
Get a dictionary that contains all the available defaults.
[ "Get", "a", "dictionary", "that", "contains", "all", "the", "available", "defaults", "." ]
b019452af01db22629809b8930357a2ebf6494be
https://github.com/cloudbase/python-hnvclient/blob/b019452af01db22629809b8930357a2ebf6494be/hnv/common/model.py#L177-L182
train
newfies-dialer/python-msspeak
msspeak/msspeak.py
MSSpeak.speak
def speak(self, textstr, lang='en-US', gender='female', format='riff-16khz-16bit-mono-pcm'): """ Run will call Microsoft Translate API and and produce audio """ # print("speak(textstr=%s, lang=%s, gender=%s, format=%s)" % (textstr, lang, gender, format)) concatkey = '%s-%s-%s-%s' % (textstr, lang.lower(), gender.lower(), format) key = self.tts_engine + '' + str(hash(concatkey)) self.filename = '%s-%s.mp3' % (key, lang) # check if file exists fileloc = self.directory + self.filename if self.cache and os.path.isfile(self.directory + self.filename): return self.filename else: with open(fileloc, 'wb') as f: self.speech.speak_to_file(f, textstr, lang, gender, format) return self.filename return False
python
def speak(self, textstr, lang='en-US', gender='female', format='riff-16khz-16bit-mono-pcm'): """ Run will call Microsoft Translate API and and produce audio """ # print("speak(textstr=%s, lang=%s, gender=%s, format=%s)" % (textstr, lang, gender, format)) concatkey = '%s-%s-%s-%s' % (textstr, lang.lower(), gender.lower(), format) key = self.tts_engine + '' + str(hash(concatkey)) self.filename = '%s-%s.mp3' % (key, lang) # check if file exists fileloc = self.directory + self.filename if self.cache and os.path.isfile(self.directory + self.filename): return self.filename else: with open(fileloc, 'wb') as f: self.speech.speak_to_file(f, textstr, lang, gender, format) return self.filename return False
[ "def", "speak", "(", "self", ",", "textstr", ",", "lang", "=", "'en-US'", ",", "gender", "=", "'female'", ",", "format", "=", "'riff-16khz-16bit-mono-pcm'", ")", ":", "# print(\"speak(textstr=%s, lang=%s, gender=%s, format=%s)\" % (textstr, lang, gender, format))", "concatkey", "=", "'%s-%s-%s-%s'", "%", "(", "textstr", ",", "lang", ".", "lower", "(", ")", ",", "gender", ".", "lower", "(", ")", ",", "format", ")", "key", "=", "self", ".", "tts_engine", "+", "''", "+", "str", "(", "hash", "(", "concatkey", ")", ")", "self", ".", "filename", "=", "'%s-%s.mp3'", "%", "(", "key", ",", "lang", ")", "# check if file exists", "fileloc", "=", "self", ".", "directory", "+", "self", ".", "filename", "if", "self", ".", "cache", "and", "os", ".", "path", ".", "isfile", "(", "self", ".", "directory", "+", "self", ".", "filename", ")", ":", "return", "self", ".", "filename", "else", ":", "with", "open", "(", "fileloc", ",", "'wb'", ")", "as", "f", ":", "self", ".", "speech", ".", "speak_to_file", "(", "f", ",", "textstr", ",", "lang", ",", "gender", ",", "format", ")", "return", "self", ".", "filename", "return", "False" ]
Run will call Microsoft Translate API and and produce audio
[ "Run", "will", "call", "Microsoft", "Translate", "API", "and", "and", "produce", "audio" ]
106475122be73df152865c4fe6e9388caf974085
https://github.com/newfies-dialer/python-msspeak/blob/106475122be73df152865c4fe6e9388caf974085/msspeak/msspeak.py#L193-L210
train
lambdalisue/notify
src/notify/executor.py
call
def call(args): """ Call terminal command and return exit_code and stdout Parameters ---------- args : list A command and arguments list Returns ------- list : [exit_code, stdout] exit_code indicate the exit code of the command and stdout indicate the output of the command """ b = StringIO() p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) encoding = getattr(sys.stdout, 'encoding', None) or 'utf-8' # old python has bug in p.stdout, so the following little # hack is required. for stdout in iter(p.stdout.readline, ''): if len(stdout) == 0: break # translate non unicode to unicode stdout = force_unicode(stdout, encoding) # StringIO store unicode b.write(stdout) # stdout require non unicode sys.stdout.write(from_unicode(stdout, encoding)) sys.stdout.flush() buf = b.getvalue() p.stdout.close() return p.returncode or 0, buf
python
def call(args): """ Call terminal command and return exit_code and stdout Parameters ---------- args : list A command and arguments list Returns ------- list : [exit_code, stdout] exit_code indicate the exit code of the command and stdout indicate the output of the command """ b = StringIO() p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) encoding = getattr(sys.stdout, 'encoding', None) or 'utf-8' # old python has bug in p.stdout, so the following little # hack is required. for stdout in iter(p.stdout.readline, ''): if len(stdout) == 0: break # translate non unicode to unicode stdout = force_unicode(stdout, encoding) # StringIO store unicode b.write(stdout) # stdout require non unicode sys.stdout.write(from_unicode(stdout, encoding)) sys.stdout.flush() buf = b.getvalue() p.stdout.close() return p.returncode or 0, buf
[ "def", "call", "(", "args", ")", ":", "b", "=", "StringIO", "(", ")", "p", "=", "subprocess", ".", "Popen", "(", "args", ",", "stdout", "=", "subprocess", ".", "PIPE", ",", "stderr", "=", "subprocess", ".", "STDOUT", ")", "encoding", "=", "getattr", "(", "sys", ".", "stdout", ",", "'encoding'", ",", "None", ")", "or", "'utf-8'", "# old python has bug in p.stdout, so the following little", "# hack is required.", "for", "stdout", "in", "iter", "(", "p", ".", "stdout", ".", "readline", ",", "''", ")", ":", "if", "len", "(", "stdout", ")", "==", "0", ":", "break", "# translate non unicode to unicode", "stdout", "=", "force_unicode", "(", "stdout", ",", "encoding", ")", "# StringIO store unicode", "b", ".", "write", "(", "stdout", ")", "# stdout require non unicode", "sys", ".", "stdout", ".", "write", "(", "from_unicode", "(", "stdout", ",", "encoding", ")", ")", "sys", ".", "stdout", ".", "flush", "(", ")", "buf", "=", "b", ".", "getvalue", "(", ")", "p", ".", "stdout", ".", "close", "(", ")", "return", "p", ".", "returncode", "or", "0", ",", "buf" ]
Call terminal command and return exit_code and stdout Parameters ---------- args : list A command and arguments list Returns ------- list : [exit_code, stdout] exit_code indicate the exit code of the command and stdout indicate the output of the command
[ "Call", "terminal", "command", "and", "return", "exit_code", "and", "stdout" ]
1b6d7d1faa2cea13bfaa1f35130f279a0115e686
https://github.com/lambdalisue/notify/blob/1b6d7d1faa2cea13bfaa1f35130f279a0115e686/src/notify/executor.py#L17-L51
train
lambdalisue/notify
src/notify/executor.py
get_command_str
def get_command_str(args): """ Get terminal command string from list of command and arguments Parameters ---------- args : list A command and arguments list (unicode list) Returns ------- str A string indicate terminal command """ single_quote = "'" double_quote = '"' for i, value in enumerate(args): if " " in value and double_quote not in value: args[i] = '"%s"' % value elif " " in value and single_quote not in value: args[i] = "'%s'" % value return " ".join(args)
python
def get_command_str(args): """ Get terminal command string from list of command and arguments Parameters ---------- args : list A command and arguments list (unicode list) Returns ------- str A string indicate terminal command """ single_quote = "'" double_quote = '"' for i, value in enumerate(args): if " " in value and double_quote not in value: args[i] = '"%s"' % value elif " " in value and single_quote not in value: args[i] = "'%s'" % value return " ".join(args)
[ "def", "get_command_str", "(", "args", ")", ":", "single_quote", "=", "\"'\"", "double_quote", "=", "'\"'", "for", "i", ",", "value", "in", "enumerate", "(", "args", ")", ":", "if", "\" \"", "in", "value", "and", "double_quote", "not", "in", "value", ":", "args", "[", "i", "]", "=", "'\"%s\"'", "%", "value", "elif", "\" \"", "in", "value", "and", "single_quote", "not", "in", "value", ":", "args", "[", "i", "]", "=", "\"'%s'\"", "%", "value", "return", "\" \"", ".", "join", "(", "args", ")" ]
Get terminal command string from list of command and arguments Parameters ---------- args : list A command and arguments list (unicode list) Returns ------- str A string indicate terminal command
[ "Get", "terminal", "command", "string", "from", "list", "of", "command", "and", "arguments" ]
1b6d7d1faa2cea13bfaa1f35130f279a0115e686
https://github.com/lambdalisue/notify/blob/1b6d7d1faa2cea13bfaa1f35130f279a0115e686/src/notify/executor.py#L53-L74
train
gtaylor/django-athumb
athumb/upload_handlers/gunicorn_eventlet.py
EventletTmpFileUploadHandler.receive_data_chunk
def receive_data_chunk(self, raw_data, start): """ Over-ridden method to circumvent the worker timeouts on large uploads. """ self.file.write(raw_data) # CHANGED: This un-hangs us long enough to keep things rolling. eventlet.sleep(0)
python
def receive_data_chunk(self, raw_data, start): """ Over-ridden method to circumvent the worker timeouts on large uploads. """ self.file.write(raw_data) # CHANGED: This un-hangs us long enough to keep things rolling. eventlet.sleep(0)
[ "def", "receive_data_chunk", "(", "self", ",", "raw_data", ",", "start", ")", ":", "self", ".", "file", ".", "write", "(", "raw_data", ")", "# CHANGED: This un-hangs us long enough to keep things rolling.", "eventlet", ".", "sleep", "(", "0", ")" ]
Over-ridden method to circumvent the worker timeouts on large uploads.
[ "Over", "-", "ridden", "method", "to", "circumvent", "the", "worker", "timeouts", "on", "large", "uploads", "." ]
69261ace0dff81e33156a54440874456a7b38dfb
https://github.com/gtaylor/django-athumb/blob/69261ace0dff81e33156a54440874456a7b38dfb/athumb/upload_handlers/gunicorn_eventlet.py#L15-L21
train
pennlabs/penn-sdk-python
penn/transit.py
Transit.stoptimes
def stoptimes(self, start_date, end_date): """Return all stop times in the date range :param start_date: The starting date for the query. :param end_date: The end date for the query. >>> import datetime >>> today = datetime.date.today() >>> trans.stoptimes(today - datetime.timedelta(days=1), today) """ params = { 'start': self.format_date(start_date), 'end': self.format_date(end_date) } response = self._request(ENDPOINTS['STOPTIMES'], params) return response
python
def stoptimes(self, start_date, end_date): """Return all stop times in the date range :param start_date: The starting date for the query. :param end_date: The end date for the query. >>> import datetime >>> today = datetime.date.today() >>> trans.stoptimes(today - datetime.timedelta(days=1), today) """ params = { 'start': self.format_date(start_date), 'end': self.format_date(end_date) } response = self._request(ENDPOINTS['STOPTIMES'], params) return response
[ "def", "stoptimes", "(", "self", ",", "start_date", ",", "end_date", ")", ":", "params", "=", "{", "'start'", ":", "self", ".", "format_date", "(", "start_date", ")", ",", "'end'", ":", "self", ".", "format_date", "(", "end_date", ")", "}", "response", "=", "self", ".", "_request", "(", "ENDPOINTS", "[", "'STOPTIMES'", "]", ",", "params", ")", "return", "response" ]
Return all stop times in the date range :param start_date: The starting date for the query. :param end_date: The end date for the query. >>> import datetime >>> today = datetime.date.today() >>> trans.stoptimes(today - datetime.timedelta(days=1), today)
[ "Return", "all", "stop", "times", "in", "the", "date", "range" ]
31ff12c20d69438d63bc7a796f83ce4f4c828396
https://github.com/pennlabs/penn-sdk-python/blob/31ff12c20d69438d63bc7a796f83ce4f4c828396/penn/transit.py#L115-L131
train
geophysics-ubonn/reda
lib/reda/main/logger.py
LoggingClass.setup_logger
def setup_logger(self): """Setup a logger """ self.log_list = [] handler = ListHandler(self.log_list) formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) logger = logging.getLogger() logger.addHandler(handler) logger.setLevel(logging.INFO) self.handler = handler self.logger = logger
python
def setup_logger(self): """Setup a logger """ self.log_list = [] handler = ListHandler(self.log_list) formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) logger = logging.getLogger() logger.addHandler(handler) logger.setLevel(logging.INFO) self.handler = handler self.logger = logger
[ "def", "setup_logger", "(", "self", ")", ":", "self", ".", "log_list", "=", "[", "]", "handler", "=", "ListHandler", "(", "self", ".", "log_list", ")", "formatter", "=", "logging", ".", "Formatter", "(", "'%(asctime)s - %(name)s - %(levelname)s - %(message)s'", ")", "handler", ".", "setFormatter", "(", "formatter", ")", "logger", "=", "logging", ".", "getLogger", "(", ")", "logger", ".", "addHandler", "(", "handler", ")", "logger", ".", "setLevel", "(", "logging", ".", "INFO", ")", "self", ".", "handler", "=", "handler", "self", ".", "logger", "=", "logger" ]
Setup a logger
[ "Setup", "a", "logger" ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/main/logger.py#L30-L46
train
frasertweedale/ledgertools
ltlib/balance.py
match_to_dict
def match_to_dict(match): """Convert a match object into a dict. Values are: indent: amount of indentation of this [sub]account parent: the parent dict (None) account_fragment: account name fragment balance: decimal.Decimal balance children: sub-accounts ([]) """ balance, indent, account_fragment = match.group(1, 2, 3) return { 'balance': decimal.Decimal(balance), 'indent': len(indent), 'account_fragment': account_fragment, 'parent': None, 'children': [], }
python
def match_to_dict(match): """Convert a match object into a dict. Values are: indent: amount of indentation of this [sub]account parent: the parent dict (None) account_fragment: account name fragment balance: decimal.Decimal balance children: sub-accounts ([]) """ balance, indent, account_fragment = match.group(1, 2, 3) return { 'balance': decimal.Decimal(balance), 'indent': len(indent), 'account_fragment': account_fragment, 'parent': None, 'children': [], }
[ "def", "match_to_dict", "(", "match", ")", ":", "balance", ",", "indent", ",", "account_fragment", "=", "match", ".", "group", "(", "1", ",", "2", ",", "3", ")", "return", "{", "'balance'", ":", "decimal", ".", "Decimal", "(", "balance", ")", ",", "'indent'", ":", "len", "(", "indent", ")", ",", "'account_fragment'", ":", "account_fragment", ",", "'parent'", ":", "None", ",", "'children'", ":", "[", "]", ",", "}" ]
Convert a match object into a dict. Values are: indent: amount of indentation of this [sub]account parent: the parent dict (None) account_fragment: account name fragment balance: decimal.Decimal balance children: sub-accounts ([])
[ "Convert", "a", "match", "object", "into", "a", "dict", "." ]
a695f8667d72253e5448693c12f0282d09902aaa
https://github.com/frasertweedale/ledgertools/blob/a695f8667d72253e5448693c12f0282d09902aaa/ltlib/balance.py#L24-L41
train
frasertweedale/ledgertools
ltlib/balance.py
balance
def balance(output): """Convert `ledger balance` output into an hierarchical data structure.""" lines = map(pattern.search, output.splitlines()) stack = [] top = [] for item in map(match_to_dict, itertools.takewhile(lambda x: x, lines)): # pop items off stack while current item has indent <= while stack and item['indent'] <= stack[-1]['indent']: stack.pop() # check if this is a top-level item if not stack: stack.append(item) top.append(item) else: item['parent'] = stack[-1] stack[-1]['children'].append(item) stack.append(item) return top
python
def balance(output): """Convert `ledger balance` output into an hierarchical data structure.""" lines = map(pattern.search, output.splitlines()) stack = [] top = [] for item in map(match_to_dict, itertools.takewhile(lambda x: x, lines)): # pop items off stack while current item has indent <= while stack and item['indent'] <= stack[-1]['indent']: stack.pop() # check if this is a top-level item if not stack: stack.append(item) top.append(item) else: item['parent'] = stack[-1] stack[-1]['children'].append(item) stack.append(item) return top
[ "def", "balance", "(", "output", ")", ":", "lines", "=", "map", "(", "pattern", ".", "search", ",", "output", ".", "splitlines", "(", ")", ")", "stack", "=", "[", "]", "top", "=", "[", "]", "for", "item", "in", "map", "(", "match_to_dict", ",", "itertools", ".", "takewhile", "(", "lambda", "x", ":", "x", ",", "lines", ")", ")", ":", "# pop items off stack while current item has indent <=", "while", "stack", "and", "item", "[", "'indent'", "]", "<=", "stack", "[", "-", "1", "]", "[", "'indent'", "]", ":", "stack", ".", "pop", "(", ")", "# check if this is a top-level item", "if", "not", "stack", ":", "stack", ".", "append", "(", "item", ")", "top", ".", "append", "(", "item", ")", "else", ":", "item", "[", "'parent'", "]", "=", "stack", "[", "-", "1", "]", "stack", "[", "-", "1", "]", "[", "'children'", "]", ".", "append", "(", "item", ")", "stack", ".", "append", "(", "item", ")", "return", "top" ]
Convert `ledger balance` output into an hierarchical data structure.
[ "Convert", "ledger", "balance", "output", "into", "an", "hierarchical", "data", "structure", "." ]
a695f8667d72253e5448693c12f0282d09902aaa
https://github.com/frasertweedale/ledgertools/blob/a695f8667d72253e5448693c12f0282d09902aaa/ltlib/balance.py#L44-L64
train
kaustavdm/pyAvroPhonetic
pyavrophonetic/utils/validate.py
is_punctuation
def is_punctuation(text): """Check if given string is a punctuation""" return not (text.lower() in config.AVRO_VOWELS or text.lower() in config.AVRO_CONSONANTS)
python
def is_punctuation(text): """Check if given string is a punctuation""" return not (text.lower() in config.AVRO_VOWELS or text.lower() in config.AVRO_CONSONANTS)
[ "def", "is_punctuation", "(", "text", ")", ":", "return", "not", "(", "text", ".", "lower", "(", ")", "in", "config", ".", "AVRO_VOWELS", "or", "text", ".", "lower", "(", ")", "in", "config", ".", "AVRO_CONSONANTS", ")" ]
Check if given string is a punctuation
[ "Check", "if", "given", "string", "is", "a", "punctuation" ]
26b7d567d8db025f2cac4de817e716390d7ac337
https://github.com/kaustavdm/pyAvroPhonetic/blob/26b7d567d8db025f2cac4de817e716390d7ac337/pyavrophonetic/utils/validate.py#L43-L46
train
kaustavdm/pyAvroPhonetic
pyavrophonetic/utils/validate.py
is_exact
def is_exact(needle, haystack, start, end, matchnot): """Check exact occurrence of needle in haystack""" return ((start >= 0 and end < len(haystack) and haystack[start:end] == needle) ^ matchnot)
python
def is_exact(needle, haystack, start, end, matchnot): """Check exact occurrence of needle in haystack""" return ((start >= 0 and end < len(haystack) and haystack[start:end] == needle) ^ matchnot)
[ "def", "is_exact", "(", "needle", ",", "haystack", ",", "start", ",", "end", ",", "matchnot", ")", ":", "return", "(", "(", "start", ">=", "0", "and", "end", "<", "len", "(", "haystack", ")", "and", "haystack", "[", "start", ":", "end", "]", "==", "needle", ")", "^", "matchnot", ")" ]
Check exact occurrence of needle in haystack
[ "Check", "exact", "occurrence", "of", "needle", "in", "haystack" ]
26b7d567d8db025f2cac4de817e716390d7ac337
https://github.com/kaustavdm/pyAvroPhonetic/blob/26b7d567d8db025f2cac4de817e716390d7ac337/pyavrophonetic/utils/validate.py#L52-L55
train
kaustavdm/pyAvroPhonetic
pyavrophonetic/utils/validate.py
fix_string_case
def fix_string_case(text): """Converts case-insensitive characters to lower case Case-sensitive characters as defined in config.AVRO_CASESENSITIVES retain their case, but others are converted to their lowercase equivalents. The result is a string with phonetic-compatible case which will the parser will understand without confusion. """ fixed = [] for i in text: if is_case_sensitive(i): fixed.append(i) else: fixed.append(i.lower()) return ''.join(fixed)
python
def fix_string_case(text): """Converts case-insensitive characters to lower case Case-sensitive characters as defined in config.AVRO_CASESENSITIVES retain their case, but others are converted to their lowercase equivalents. The result is a string with phonetic-compatible case which will the parser will understand without confusion. """ fixed = [] for i in text: if is_case_sensitive(i): fixed.append(i) else: fixed.append(i.lower()) return ''.join(fixed)
[ "def", "fix_string_case", "(", "text", ")", ":", "fixed", "=", "[", "]", "for", "i", "in", "text", ":", "if", "is_case_sensitive", "(", "i", ")", ":", "fixed", ".", "append", "(", "i", ")", "else", ":", "fixed", ".", "append", "(", "i", ".", "lower", "(", ")", ")", "return", "''", ".", "join", "(", "fixed", ")" ]
Converts case-insensitive characters to lower case Case-sensitive characters as defined in config.AVRO_CASESENSITIVES retain their case, but others are converted to their lowercase equivalents. The result is a string with phonetic-compatible case which will the parser will understand without confusion.
[ "Converts", "case", "-", "insensitive", "characters", "to", "lower", "case" ]
26b7d567d8db025f2cac4de817e716390d7ac337
https://github.com/kaustavdm/pyAvroPhonetic/blob/26b7d567d8db025f2cac4de817e716390d7ac337/pyavrophonetic/utils/validate.py#L57-L71
train
geophysics-ubonn/reda
lib/reda/configs/configManager.py
ConfigManager._crmod_to_abmn
def _crmod_to_abmn(self, configs): """convert crmod-style configurations to a Nx4 array CRMod-style configurations merge A and B, and M and N, electrode numbers into one large integer each: .. math :: AB = A \cdot 10^4 + B MN = M \cdot 10^4 + N Parameters ---------- configs: numpy.ndarray Nx2 array holding the configurations to convert Examples -------- >>> import numpy as np >>> from reda.configs.configManager import ConfigManager >>> config = ConfigManager(nr_of_electrodes=5) >>> crmod_configs = np.array(( ... (10002, 40003), ... (10010, 30004), ... )) >>> abmn = config._crmod_to_abmn(crmod_configs) >>> print(abmn) [[ 2 1 3 4] [10 1 4 3]] """ A = configs[:, 0] % 1e4 B = np.floor(configs[:, 0] / 1e4).astype(int) M = configs[:, 1] % 1e4 N = np.floor(configs[:, 1] / 1e4).astype(int) ABMN = np.hstack((A[:, np.newaxis], B[:, np.newaxis], M[:, np.newaxis], N[:, np.newaxis])).astype(int) return ABMN
python
def _crmod_to_abmn(self, configs): """convert crmod-style configurations to a Nx4 array CRMod-style configurations merge A and B, and M and N, electrode numbers into one large integer each: .. math :: AB = A \cdot 10^4 + B MN = M \cdot 10^4 + N Parameters ---------- configs: numpy.ndarray Nx2 array holding the configurations to convert Examples -------- >>> import numpy as np >>> from reda.configs.configManager import ConfigManager >>> config = ConfigManager(nr_of_electrodes=5) >>> crmod_configs = np.array(( ... (10002, 40003), ... (10010, 30004), ... )) >>> abmn = config._crmod_to_abmn(crmod_configs) >>> print(abmn) [[ 2 1 3 4] [10 1 4 3]] """ A = configs[:, 0] % 1e4 B = np.floor(configs[:, 0] / 1e4).astype(int) M = configs[:, 1] % 1e4 N = np.floor(configs[:, 1] / 1e4).astype(int) ABMN = np.hstack((A[:, np.newaxis], B[:, np.newaxis], M[:, np.newaxis], N[:, np.newaxis])).astype(int) return ABMN
[ "def", "_crmod_to_abmn", "(", "self", ",", "configs", ")", ":", "A", "=", "configs", "[", ":", ",", "0", "]", "%", "1e4", "B", "=", "np", ".", "floor", "(", "configs", "[", ":", ",", "0", "]", "/", "1e4", ")", ".", "astype", "(", "int", ")", "M", "=", "configs", "[", ":", ",", "1", "]", "%", "1e4", "N", "=", "np", ".", "floor", "(", "configs", "[", ":", ",", "1", "]", "/", "1e4", ")", ".", "astype", "(", "int", ")", "ABMN", "=", "np", ".", "hstack", "(", "(", "A", "[", ":", ",", "np", ".", "newaxis", "]", ",", "B", "[", ":", ",", "np", ".", "newaxis", "]", ",", "M", "[", ":", ",", "np", ".", "newaxis", "]", ",", "N", "[", ":", ",", "np", ".", "newaxis", "]", ")", ")", ".", "astype", "(", "int", ")", "return", "ABMN" ]
convert crmod-style configurations to a Nx4 array CRMod-style configurations merge A and B, and M and N, electrode numbers into one large integer each: .. math :: AB = A \cdot 10^4 + B MN = M \cdot 10^4 + N Parameters ---------- configs: numpy.ndarray Nx2 array holding the configurations to convert Examples -------- >>> import numpy as np >>> from reda.configs.configManager import ConfigManager >>> config = ConfigManager(nr_of_electrodes=5) >>> crmod_configs = np.array(( ... (10002, 40003), ... (10010, 30004), ... )) >>> abmn = config._crmod_to_abmn(crmod_configs) >>> print(abmn) [[ 2 1 3 4] [10 1 4 3]]
[ "convert", "crmod", "-", "style", "configurations", "to", "a", "Nx4", "array" ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/configs/configManager.py#L54-L93
train
geophysics-ubonn/reda
lib/reda/configs/configManager.py
ConfigManager.load_crmod_config
def load_crmod_config(self, filename): """Load a CRMod configuration file Parameters ---------- filename: string absolute or relative path to a crmod config.dat file """ with open(filename, 'r') as fid: nr_of_configs = int(fid.readline().strip()) configs = np.loadtxt(fid) print('loaded configs:', configs.shape) if nr_of_configs != configs.shape[0]: raise Exception( 'indicated number of measurements does not equal ' + 'to actual number of measurements') ABMN = self._crmod_to_abmn(configs[:, 0:2]) self.configs = ABMN
python
def load_crmod_config(self, filename): """Load a CRMod configuration file Parameters ---------- filename: string absolute or relative path to a crmod config.dat file """ with open(filename, 'r') as fid: nr_of_configs = int(fid.readline().strip()) configs = np.loadtxt(fid) print('loaded configs:', configs.shape) if nr_of_configs != configs.shape[0]: raise Exception( 'indicated number of measurements does not equal ' + 'to actual number of measurements') ABMN = self._crmod_to_abmn(configs[:, 0:2]) self.configs = ABMN
[ "def", "load_crmod_config", "(", "self", ",", "filename", ")", ":", "with", "open", "(", "filename", ",", "'r'", ")", "as", "fid", ":", "nr_of_configs", "=", "int", "(", "fid", ".", "readline", "(", ")", ".", "strip", "(", ")", ")", "configs", "=", "np", ".", "loadtxt", "(", "fid", ")", "print", "(", "'loaded configs:'", ",", "configs", ".", "shape", ")", "if", "nr_of_configs", "!=", "configs", ".", "shape", "[", "0", "]", ":", "raise", "Exception", "(", "'indicated number of measurements does not equal '", "+", "'to actual number of measurements'", ")", "ABMN", "=", "self", ".", "_crmod_to_abmn", "(", "configs", "[", ":", ",", "0", ":", "2", "]", ")", "self", ".", "configs", "=", "ABMN" ]
Load a CRMod configuration file Parameters ---------- filename: string absolute or relative path to a crmod config.dat file
[ "Load", "a", "CRMod", "configuration", "file" ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/configs/configManager.py#L101-L119
train
geophysics-ubonn/reda
lib/reda/configs/configManager.py
ConfigManager._get_crmod_abmn
def _get_crmod_abmn(self): """return a Nx2 array with the measurement configurations formatted CRTomo style """ ABMN = np.vstack(( self.configs[:, 0] * 1e4 + self.configs[:, 1], self.configs[:, 2] * 1e4 + self.configs[:, 3], )).T.astype(int) return ABMN
python
def _get_crmod_abmn(self): """return a Nx2 array with the measurement configurations formatted CRTomo style """ ABMN = np.vstack(( self.configs[:, 0] * 1e4 + self.configs[:, 1], self.configs[:, 2] * 1e4 + self.configs[:, 3], )).T.astype(int) return ABMN
[ "def", "_get_crmod_abmn", "(", "self", ")", ":", "ABMN", "=", "np", ".", "vstack", "(", "(", "self", ".", "configs", "[", ":", ",", "0", "]", "*", "1e4", "+", "self", ".", "configs", "[", ":", ",", "1", "]", ",", "self", ".", "configs", "[", ":", ",", "2", "]", "*", "1e4", "+", "self", ".", "configs", "[", ":", ",", "3", "]", ",", ")", ")", ".", "T", ".", "astype", "(", "int", ")", "return", "ABMN" ]
return a Nx2 array with the measurement configurations formatted CRTomo style
[ "return", "a", "Nx2", "array", "with", "the", "measurement", "configurations", "formatted", "CRTomo", "style" ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/configs/configManager.py#L156-L164
train
geophysics-ubonn/reda
lib/reda/configs/configManager.py
ConfigManager.write_crmod_volt
def write_crmod_volt(self, filename, mid): """Write the measurements to the output file in the volt.dat file format that can be read by CRTomo. Parameters ---------- filename: string output filename mid: int or [int, int] measurement ids of magnitude and phase measurements. If only one ID is given, then the phase column is filled with zeros """ ABMN = self._get_crmod_abmn() if isinstance(mid, (list, tuple)): mag_data = self.measurements[mid[0]] pha_data = self.measurements[mid[1]] else: mag_data = self.measurements[mid] pha_data = np.zeros(mag_data.shape) all_data = np.hstack((ABMN, mag_data[:, np.newaxis], pha_data[:, np.newaxis])) with open(filename, 'wb') as fid: fid.write(bytes( '{0}\n'.format(ABMN.shape[0]), 'utf-8', )) np.savetxt(fid, all_data, fmt='%i %i %f %f')
python
def write_crmod_volt(self, filename, mid): """Write the measurements to the output file in the volt.dat file format that can be read by CRTomo. Parameters ---------- filename: string output filename mid: int or [int, int] measurement ids of magnitude and phase measurements. If only one ID is given, then the phase column is filled with zeros """ ABMN = self._get_crmod_abmn() if isinstance(mid, (list, tuple)): mag_data = self.measurements[mid[0]] pha_data = self.measurements[mid[1]] else: mag_data = self.measurements[mid] pha_data = np.zeros(mag_data.shape) all_data = np.hstack((ABMN, mag_data[:, np.newaxis], pha_data[:, np.newaxis])) with open(filename, 'wb') as fid: fid.write(bytes( '{0}\n'.format(ABMN.shape[0]), 'utf-8', )) np.savetxt(fid, all_data, fmt='%i %i %f %f')
[ "def", "write_crmod_volt", "(", "self", ",", "filename", ",", "mid", ")", ":", "ABMN", "=", "self", ".", "_get_crmod_abmn", "(", ")", "if", "isinstance", "(", "mid", ",", "(", "list", ",", "tuple", ")", ")", ":", "mag_data", "=", "self", ".", "measurements", "[", "mid", "[", "0", "]", "]", "pha_data", "=", "self", ".", "measurements", "[", "mid", "[", "1", "]", "]", "else", ":", "mag_data", "=", "self", ".", "measurements", "[", "mid", "]", "pha_data", "=", "np", ".", "zeros", "(", "mag_data", ".", "shape", ")", "all_data", "=", "np", ".", "hstack", "(", "(", "ABMN", ",", "mag_data", "[", ":", ",", "np", ".", "newaxis", "]", ",", "pha_data", "[", ":", ",", "np", ".", "newaxis", "]", ")", ")", "with", "open", "(", "filename", ",", "'wb'", ")", "as", "fid", ":", "fid", ".", "write", "(", "bytes", "(", "'{0}\\n'", ".", "format", "(", "ABMN", ".", "shape", "[", "0", "]", ")", ",", "'utf-8'", ",", ")", ")", "np", ".", "savetxt", "(", "fid", ",", "all_data", ",", "fmt", "=", "'%i %i %f %f'", ")" ]
Write the measurements to the output file in the volt.dat file format that can be read by CRTomo. Parameters ---------- filename: string output filename mid: int or [int, int] measurement ids of magnitude and phase measurements. If only one ID is given, then the phase column is filled with zeros
[ "Write", "the", "measurements", "to", "the", "output", "file", "in", "the", "volt", ".", "dat", "file", "format", "that", "can", "be", "read", "by", "CRTomo", "." ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/configs/configManager.py#L166-L196
train
geophysics-ubonn/reda
lib/reda/configs/configManager.py
ConfigManager.write_crmod_config
def write_crmod_config(self, filename): """Write the configurations to a configuration file in the CRMod format All configurations are merged into one previor to writing to file Parameters ---------- filename: string absolute or relative path to output filename (usually config.dat) """ ABMN = self._get_crmod_abmn() with open(filename, 'wb') as fid: fid.write(bytes( '{0}\n'.format(ABMN.shape[0]), 'utf-8', )) np.savetxt(fid, ABMN.astype(int), fmt='%i %i')
python
def write_crmod_config(self, filename): """Write the configurations to a configuration file in the CRMod format All configurations are merged into one previor to writing to file Parameters ---------- filename: string absolute or relative path to output filename (usually config.dat) """ ABMN = self._get_crmod_abmn() with open(filename, 'wb') as fid: fid.write(bytes( '{0}\n'.format(ABMN.shape[0]), 'utf-8', )) np.savetxt(fid, ABMN.astype(int), fmt='%i %i')
[ "def", "write_crmod_config", "(", "self", ",", "filename", ")", ":", "ABMN", "=", "self", ".", "_get_crmod_abmn", "(", ")", "with", "open", "(", "filename", ",", "'wb'", ")", "as", "fid", ":", "fid", ".", "write", "(", "bytes", "(", "'{0}\\n'", ".", "format", "(", "ABMN", ".", "shape", "[", "0", "]", ")", ",", "'utf-8'", ",", ")", ")", "np", ".", "savetxt", "(", "fid", ",", "ABMN", ".", "astype", "(", "int", ")", ",", "fmt", "=", "'%i %i'", ")" ]
Write the configurations to a configuration file in the CRMod format All configurations are merged into one previor to writing to file Parameters ---------- filename: string absolute or relative path to output filename (usually config.dat)
[ "Write", "the", "configurations", "to", "a", "configuration", "file", "in", "the", "CRMod", "format", "All", "configurations", "are", "merged", "into", "one", "previor", "to", "writing", "to", "file" ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/configs/configManager.py#L198-L214
train
geophysics-ubonn/reda
lib/reda/configs/configManager.py
ConfigManager.gen_dipole_dipole
def gen_dipole_dipole(self, skipc, skipv=None, stepc=1, stepv=1, nr_voltage_dipoles=10, before_current=False, start_skip=0, N=None): """Generate dipole-dipole configurations Parameters ---------- skipc: int number of electrode positions that are skipped between electrodes of a given dipole skipv: int steplength between subsequent voltage dipoles. A steplength of 0 will produce increments by one, i.e., 3-4, 4-5, 5-6 ... stepc: int steplength between subsequent current dipoles. A steplength of 0 will produce increments by one, i.e., 3-4, 4-5, 5-6 ... stepv: int steplength between subsequent voltage dipoles. A steplength of 0 will produce increments by one, i.e., 3-4, 4-5, 5-6 ... nr_voltage_dipoles: int the number of voltage dipoles to generate for each current injection dipole before_current: bool, optional if set to True, also generate voltage dipoles in front of current dipoles. start_skip: int, optional how many electrode to skip before/after the first/second current electrode. N: int, optional number of electrodes, must be given if not already known by the config instance Examples -------- >>> from reda.configs.configManager import ConfigManager >>> config = ConfigManager(nr_of_electrodes=10) >>> config.gen_dipole_dipole(skipc=2) array([[ 1, 4, 5, 8], [ 1, 4, 6, 9], [ 1, 4, 7, 10], [ 2, 5, 6, 9], [ 2, 5, 7, 10], [ 3, 6, 7, 10]]) """ if N is None and self.nr_electrodes is None: raise Exception('You must provide the number of electrodes') elif N is None: N = self.nr_electrodes # by default, current voltage dipoles have the same size if skipv is None: skipv = skipc configs = [] # current dipoles for a in range(0, N - skipv - skipc - 3, stepc): b = a + skipc + 1 nr = 0 # potential dipoles before current injection if before_current: for n in range(a - start_skip - 1, -1, -stepv): nr += 1 if nr > nr_voltage_dipoles: continue m = n - skipv - 1 if m < 0: continue quadpole = np.array((a, b, m, n)) + 1 configs.append(quadpole) # potential dipoles after current injection nr = 0 for m in range(b + start_skip + 1, N - skipv - 1, stepv): nr += 1 if nr > nr_voltage_dipoles: continue n = m + skipv + 1 quadpole = np.array((a, b, m, n)) + 1 configs.append(quadpole) configs = np.array(configs) # now add to the instance if self.configs is None: self.configs = configs else: self.configs = np.vstack((self.configs, configs)) return configs
python
def gen_dipole_dipole(self, skipc, skipv=None, stepc=1, stepv=1, nr_voltage_dipoles=10, before_current=False, start_skip=0, N=None): """Generate dipole-dipole configurations Parameters ---------- skipc: int number of electrode positions that are skipped between electrodes of a given dipole skipv: int steplength between subsequent voltage dipoles. A steplength of 0 will produce increments by one, i.e., 3-4, 4-5, 5-6 ... stepc: int steplength between subsequent current dipoles. A steplength of 0 will produce increments by one, i.e., 3-4, 4-5, 5-6 ... stepv: int steplength between subsequent voltage dipoles. A steplength of 0 will produce increments by one, i.e., 3-4, 4-5, 5-6 ... nr_voltage_dipoles: int the number of voltage dipoles to generate for each current injection dipole before_current: bool, optional if set to True, also generate voltage dipoles in front of current dipoles. start_skip: int, optional how many electrode to skip before/after the first/second current electrode. N: int, optional number of electrodes, must be given if not already known by the config instance Examples -------- >>> from reda.configs.configManager import ConfigManager >>> config = ConfigManager(nr_of_electrodes=10) >>> config.gen_dipole_dipole(skipc=2) array([[ 1, 4, 5, 8], [ 1, 4, 6, 9], [ 1, 4, 7, 10], [ 2, 5, 6, 9], [ 2, 5, 7, 10], [ 3, 6, 7, 10]]) """ if N is None and self.nr_electrodes is None: raise Exception('You must provide the number of electrodes') elif N is None: N = self.nr_electrodes # by default, current voltage dipoles have the same size if skipv is None: skipv = skipc configs = [] # current dipoles for a in range(0, N - skipv - skipc - 3, stepc): b = a + skipc + 1 nr = 0 # potential dipoles before current injection if before_current: for n in range(a - start_skip - 1, -1, -stepv): nr += 1 if nr > nr_voltage_dipoles: continue m = n - skipv - 1 if m < 0: continue quadpole = np.array((a, b, m, n)) + 1 configs.append(quadpole) # potential dipoles after current injection nr = 0 for m in range(b + start_skip + 1, N - skipv - 1, stepv): nr += 1 if nr > nr_voltage_dipoles: continue n = m + skipv + 1 quadpole = np.array((a, b, m, n)) + 1 configs.append(quadpole) configs = np.array(configs) # now add to the instance if self.configs is None: self.configs = configs else: self.configs = np.vstack((self.configs, configs)) return configs
[ "def", "gen_dipole_dipole", "(", "self", ",", "skipc", ",", "skipv", "=", "None", ",", "stepc", "=", "1", ",", "stepv", "=", "1", ",", "nr_voltage_dipoles", "=", "10", ",", "before_current", "=", "False", ",", "start_skip", "=", "0", ",", "N", "=", "None", ")", ":", "if", "N", "is", "None", "and", "self", ".", "nr_electrodes", "is", "None", ":", "raise", "Exception", "(", "'You must provide the number of electrodes'", ")", "elif", "N", "is", "None", ":", "N", "=", "self", ".", "nr_electrodes", "# by default, current voltage dipoles have the same size", "if", "skipv", "is", "None", ":", "skipv", "=", "skipc", "configs", "=", "[", "]", "# current dipoles", "for", "a", "in", "range", "(", "0", ",", "N", "-", "skipv", "-", "skipc", "-", "3", ",", "stepc", ")", ":", "b", "=", "a", "+", "skipc", "+", "1", "nr", "=", "0", "# potential dipoles before current injection", "if", "before_current", ":", "for", "n", "in", "range", "(", "a", "-", "start_skip", "-", "1", ",", "-", "1", ",", "-", "stepv", ")", ":", "nr", "+=", "1", "if", "nr", ">", "nr_voltage_dipoles", ":", "continue", "m", "=", "n", "-", "skipv", "-", "1", "if", "m", "<", "0", ":", "continue", "quadpole", "=", "np", ".", "array", "(", "(", "a", ",", "b", ",", "m", ",", "n", ")", ")", "+", "1", "configs", ".", "append", "(", "quadpole", ")", "# potential dipoles after current injection", "nr", "=", "0", "for", "m", "in", "range", "(", "b", "+", "start_skip", "+", "1", ",", "N", "-", "skipv", "-", "1", ",", "stepv", ")", ":", "nr", "+=", "1", "if", "nr", ">", "nr_voltage_dipoles", ":", "continue", "n", "=", "m", "+", "skipv", "+", "1", "quadpole", "=", "np", ".", "array", "(", "(", "a", ",", "b", ",", "m", ",", "n", ")", ")", "+", "1", "configs", ".", "append", "(", "quadpole", ")", "configs", "=", "np", ".", "array", "(", "configs", ")", "# now add to the instance", "if", "self", ".", "configs", "is", "None", ":", "self", ".", "configs", "=", "configs", "else", ":", "self", ".", "configs", "=", "np", ".", "vstack", "(", "(", "self", ".", "configs", ",", "configs", ")", ")", "return", "configs" ]
Generate dipole-dipole configurations Parameters ---------- skipc: int number of electrode positions that are skipped between electrodes of a given dipole skipv: int steplength between subsequent voltage dipoles. A steplength of 0 will produce increments by one, i.e., 3-4, 4-5, 5-6 ... stepc: int steplength between subsequent current dipoles. A steplength of 0 will produce increments by one, i.e., 3-4, 4-5, 5-6 ... stepv: int steplength between subsequent voltage dipoles. A steplength of 0 will produce increments by one, i.e., 3-4, 4-5, 5-6 ... nr_voltage_dipoles: int the number of voltage dipoles to generate for each current injection dipole before_current: bool, optional if set to True, also generate voltage dipoles in front of current dipoles. start_skip: int, optional how many electrode to skip before/after the first/second current electrode. N: int, optional number of electrodes, must be given if not already known by the config instance Examples -------- >>> from reda.configs.configManager import ConfigManager >>> config = ConfigManager(nr_of_electrodes=10) >>> config.gen_dipole_dipole(skipc=2) array([[ 1, 4, 5, 8], [ 1, 4, 6, 9], [ 1, 4, 7, 10], [ 2, 5, 6, 9], [ 2, 5, 7, 10], [ 3, 6, 7, 10]])
[ "Generate", "dipole", "-", "dipole", "configurations" ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/configs/configManager.py#L216-L311
train
geophysics-ubonn/reda
lib/reda/configs/configManager.py
ConfigManager.gen_gradient
def gen_gradient(self, skip=0, step=1, vskip=0, vstep=1): """Generate gradient measurements Parameters ---------- skip: int distance between current electrodes step: int steplength between subsequent current dipoles vskip: int distance between voltage electrodes vstep: int steplength between subsequent voltage dipoles """ N = self.nr_electrodes quadpoles = [] for a in range(1, N - skip, step): b = a + skip + 1 for m in range(a + 1, b - vskip - 1, vstep): n = m + vskip + 1 quadpoles.append((a, b, m, n)) configs = np.array(quadpoles) if configs.size == 0: return None self.add_to_configs(configs) return configs
python
def gen_gradient(self, skip=0, step=1, vskip=0, vstep=1): """Generate gradient measurements Parameters ---------- skip: int distance between current electrodes step: int steplength between subsequent current dipoles vskip: int distance between voltage electrodes vstep: int steplength between subsequent voltage dipoles """ N = self.nr_electrodes quadpoles = [] for a in range(1, N - skip, step): b = a + skip + 1 for m in range(a + 1, b - vskip - 1, vstep): n = m + vskip + 1 quadpoles.append((a, b, m, n)) configs = np.array(quadpoles) if configs.size == 0: return None self.add_to_configs(configs) return configs
[ "def", "gen_gradient", "(", "self", ",", "skip", "=", "0", ",", "step", "=", "1", ",", "vskip", "=", "0", ",", "vstep", "=", "1", ")", ":", "N", "=", "self", ".", "nr_electrodes", "quadpoles", "=", "[", "]", "for", "a", "in", "range", "(", "1", ",", "N", "-", "skip", ",", "step", ")", ":", "b", "=", "a", "+", "skip", "+", "1", "for", "m", "in", "range", "(", "a", "+", "1", ",", "b", "-", "vskip", "-", "1", ",", "vstep", ")", ":", "n", "=", "m", "+", "vskip", "+", "1", "quadpoles", ".", "append", "(", "(", "a", ",", "b", ",", "m", ",", "n", ")", ")", "configs", "=", "np", ".", "array", "(", "quadpoles", ")", "if", "configs", ".", "size", "==", "0", ":", "return", "None", "self", ".", "add_to_configs", "(", "configs", ")", "return", "configs" ]
Generate gradient measurements Parameters ---------- skip: int distance between current electrodes step: int steplength between subsequent current dipoles vskip: int distance between voltage electrodes vstep: int steplength between subsequent voltage dipoles
[ "Generate", "gradient", "measurements" ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/configs/configManager.py#L313-L341
train
geophysics-ubonn/reda
lib/reda/configs/configManager.py
ConfigManager.remove_duplicates
def remove_duplicates(self, configs=None): """remove duplicate entries from 4-point configurations. If no configurations are provided, then use self.configs. Unique configurations are only returned if configs is not None. Parameters ---------- configs: Nx4 numpy.ndarray, optional remove duplicates from these configurations instead from self.configs. Returns ------- configs_unique: Kx4 numpy.ndarray unique configurations. Only returned if configs is not None """ if configs is None: c = self.configs else: c = configs struct = c.view(c.dtype.descr * 4) configs_unique = np.unique(struct).view(c.dtype).reshape(-1, 4) if configs is None: self.configs = configs_unique else: return configs_unique
python
def remove_duplicates(self, configs=None): """remove duplicate entries from 4-point configurations. If no configurations are provided, then use self.configs. Unique configurations are only returned if configs is not None. Parameters ---------- configs: Nx4 numpy.ndarray, optional remove duplicates from these configurations instead from self.configs. Returns ------- configs_unique: Kx4 numpy.ndarray unique configurations. Only returned if configs is not None """ if configs is None: c = self.configs else: c = configs struct = c.view(c.dtype.descr * 4) configs_unique = np.unique(struct).view(c.dtype).reshape(-1, 4) if configs is None: self.configs = configs_unique else: return configs_unique
[ "def", "remove_duplicates", "(", "self", ",", "configs", "=", "None", ")", ":", "if", "configs", "is", "None", ":", "c", "=", "self", ".", "configs", "else", ":", "c", "=", "configs", "struct", "=", "c", ".", "view", "(", "c", ".", "dtype", ".", "descr", "*", "4", ")", "configs_unique", "=", "np", ".", "unique", "(", "struct", ")", ".", "view", "(", "c", ".", "dtype", ")", ".", "reshape", "(", "-", "1", ",", "4", ")", "if", "configs", "is", "None", ":", "self", ".", "configs", "=", "configs_unique", "else", ":", "return", "configs_unique" ]
remove duplicate entries from 4-point configurations. If no configurations are provided, then use self.configs. Unique configurations are only returned if configs is not None. Parameters ---------- configs: Nx4 numpy.ndarray, optional remove duplicates from these configurations instead from self.configs. Returns ------- configs_unique: Kx4 numpy.ndarray unique configurations. Only returned if configs is not None
[ "remove", "duplicate", "entries", "from", "4", "-", "point", "configurations", ".", "If", "no", "configurations", "are", "provided", "then", "use", "self", ".", "configs", ".", "Unique", "configurations", "are", "only", "returned", "if", "configs", "is", "not", "None", "." ]
46a939729e40c7c4723315c03679c40761152e9e
https://github.com/geophysics-ubonn/reda/blob/46a939729e40c7c4723315c03679c40761152e9e/lib/reda/configs/configManager.py#L431-L457
train