repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
sequence
docstring
stringlengths
3
17.3k
docstring_tokens
sequence
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
uberVU/mongo-pool
mongo_pool/mongo_pool.py
MongoPool._validate_config
def _validate_config(config): """Validate that the provided configurtion is valid. Each dictionary in the configuration list must have the following mandatory entries : {label: {host(string), port(int), dbpath(string|list of strings)}} It can also contain 1 optional key: {read_preference(string)} Args: config: the list of configurations provided at instantiation Raises: TypeError: a fault in the configurations is found """ if not isinstance(config, list): raise TypeError('Config must be a list') for config_dict in config: if not isinstance(config_dict, dict): raise TypeError('Config must be a list of dictionaries') label = config_dict.keys()[0] cfg = config_dict[label] if not isinstance(cfg, dict): raise TypeError('Config structure is broken') if 'host' not in cfg: raise TypeError('Config entries must have a value for host') if not isinstance(cfg['host'], str) and not isinstance(cfg['host'], list): raise TypeError('Host must be a string or a list.') if 'port' not in cfg: raise TypeError('Config entries must have a value for port') if not isinstance(cfg['port'], int): raise TypeError('Port must be an int') if 'dbpath' not in cfg: raise TypeError('Config entries must have a value for dbpath') if not isinstance(cfg['dbpath'], str): if not isinstance(cfg['dbpath'], list): raise TypeError('Dbpath must either a string or a list of ' 'strings') for dbpath in cfg['dbpath']: if not isinstance(dbpath, str): raise TypeError('Dbpath must either a string or a list ' 'of strings') if ('read_preference' in cfg and not isinstance(cfg['read_preference'], str)): raise TypeError('Read_preference must be a string') if ('replicaSet' in cfg and not isinstance(cfg['replicaSet'], str)): raise TypeError('replicaSet must be a string')
python
def _validate_config(config): """Validate that the provided configurtion is valid. Each dictionary in the configuration list must have the following mandatory entries : {label: {host(string), port(int), dbpath(string|list of strings)}} It can also contain 1 optional key: {read_preference(string)} Args: config: the list of configurations provided at instantiation Raises: TypeError: a fault in the configurations is found """ if not isinstance(config, list): raise TypeError('Config must be a list') for config_dict in config: if not isinstance(config_dict, dict): raise TypeError('Config must be a list of dictionaries') label = config_dict.keys()[0] cfg = config_dict[label] if not isinstance(cfg, dict): raise TypeError('Config structure is broken') if 'host' not in cfg: raise TypeError('Config entries must have a value for host') if not isinstance(cfg['host'], str) and not isinstance(cfg['host'], list): raise TypeError('Host must be a string or a list.') if 'port' not in cfg: raise TypeError('Config entries must have a value for port') if not isinstance(cfg['port'], int): raise TypeError('Port must be an int') if 'dbpath' not in cfg: raise TypeError('Config entries must have a value for dbpath') if not isinstance(cfg['dbpath'], str): if not isinstance(cfg['dbpath'], list): raise TypeError('Dbpath must either a string or a list of ' 'strings') for dbpath in cfg['dbpath']: if not isinstance(dbpath, str): raise TypeError('Dbpath must either a string or a list ' 'of strings') if ('read_preference' in cfg and not isinstance(cfg['read_preference'], str)): raise TypeError('Read_preference must be a string') if ('replicaSet' in cfg and not isinstance(cfg['replicaSet'], str)): raise TypeError('replicaSet must be a string')
[ "def", "_validate_config", "(", "config", ")", ":", "if", "not", "isinstance", "(", "config", ",", "list", ")", ":", "raise", "TypeError", "(", "'Config must be a list'", ")", "for", "config_dict", "in", "config", ":", "if", "not", "isinstance", "(", "config_dict", ",", "dict", ")", ":", "raise", "TypeError", "(", "'Config must be a list of dictionaries'", ")", "label", "=", "config_dict", ".", "keys", "(", ")", "[", "0", "]", "cfg", "=", "config_dict", "[", "label", "]", "if", "not", "isinstance", "(", "cfg", ",", "dict", ")", ":", "raise", "TypeError", "(", "'Config structure is broken'", ")", "if", "'host'", "not", "in", "cfg", ":", "raise", "TypeError", "(", "'Config entries must have a value for host'", ")", "if", "not", "isinstance", "(", "cfg", "[", "'host'", "]", ",", "str", ")", "and", "not", "isinstance", "(", "cfg", "[", "'host'", "]", ",", "list", ")", ":", "raise", "TypeError", "(", "'Host must be a string or a list.'", ")", "if", "'port'", "not", "in", "cfg", ":", "raise", "TypeError", "(", "'Config entries must have a value for port'", ")", "if", "not", "isinstance", "(", "cfg", "[", "'port'", "]", ",", "int", ")", ":", "raise", "TypeError", "(", "'Port must be an int'", ")", "if", "'dbpath'", "not", "in", "cfg", ":", "raise", "TypeError", "(", "'Config entries must have a value for dbpath'", ")", "if", "not", "isinstance", "(", "cfg", "[", "'dbpath'", "]", ",", "str", ")", ":", "if", "not", "isinstance", "(", "cfg", "[", "'dbpath'", "]", ",", "list", ")", ":", "raise", "TypeError", "(", "'Dbpath must either a string or a list of '", "'strings'", ")", "for", "dbpath", "in", "cfg", "[", "'dbpath'", "]", ":", "if", "not", "isinstance", "(", "dbpath", ",", "str", ")", ":", "raise", "TypeError", "(", "'Dbpath must either a string or a list '", "'of strings'", ")", "if", "(", "'read_preference'", "in", "cfg", "and", "not", "isinstance", "(", "cfg", "[", "'read_preference'", "]", ",", "str", ")", ")", ":", "raise", "TypeError", "(", "'Read_preference must be a string'", ")", "if", "(", "'replicaSet'", "in", "cfg", "and", "not", "isinstance", "(", "cfg", "[", "'replicaSet'", "]", ",", "str", ")", ")", ":", "raise", "TypeError", "(", "'replicaSet must be a string'", ")" ]
Validate that the provided configurtion is valid. Each dictionary in the configuration list must have the following mandatory entries : {label: {host(string), port(int), dbpath(string|list of strings)}} It can also contain 1 optional key: {read_preference(string)} Args: config: the list of configurations provided at instantiation Raises: TypeError: a fault in the configurations is found
[ "Validate", "that", "the", "provided", "configurtion", "is", "valid", "." ]
286d1d8e0b3c17d5d7d4860487fe69358941067d
https://github.com/uberVU/mongo-pool/blob/286d1d8e0b3c17d5d7d4860487fe69358941067d/mongo_pool/mongo_pool.py#L45-L98
train
uberVU/mongo-pool
mongo_pool/mongo_pool.py
MongoPool._parse_configs
def _parse_configs(self, config): """Builds a dict with information to connect to Clusters. Parses the list of configuration dictionaries passed by the user and builds an internal dict (_clusters) that holds information for creating Clients connecting to Clusters and matching database names. Args: config: A list of dictionaries containing connecting and identification information about Clusters. A dict has the following structure: {label: {host, port, read_preference, dbpath}}. Raises: Exception('No configuration provided'): no configuration provided. """ for config_dict in config: label = config_dict.keys()[0] cfg = config_dict[label] # Transform dbpath to something digestable by regexp. dbpath = cfg['dbpath'] pattern = self._parse_dbpath(dbpath) read_preference = cfg.get('read_preference', 'primary').upper() read_preference = self._get_read_preference(read_preference) # Put all parameters that could be passed to pymongo.MongoClient # in a separate dict, to ease MongoClient creation. cluster_config = { 'params': { 'host': cfg['host'], 'port': cfg['port'], 'read_preference': read_preference, 'replicaSet': cfg.get('replicaSet') }, 'pattern': pattern, 'label': label } self._clusters.append(cluster_config)
python
def _parse_configs(self, config): """Builds a dict with information to connect to Clusters. Parses the list of configuration dictionaries passed by the user and builds an internal dict (_clusters) that holds information for creating Clients connecting to Clusters and matching database names. Args: config: A list of dictionaries containing connecting and identification information about Clusters. A dict has the following structure: {label: {host, port, read_preference, dbpath}}. Raises: Exception('No configuration provided'): no configuration provided. """ for config_dict in config: label = config_dict.keys()[0] cfg = config_dict[label] # Transform dbpath to something digestable by regexp. dbpath = cfg['dbpath'] pattern = self._parse_dbpath(dbpath) read_preference = cfg.get('read_preference', 'primary').upper() read_preference = self._get_read_preference(read_preference) # Put all parameters that could be passed to pymongo.MongoClient # in a separate dict, to ease MongoClient creation. cluster_config = { 'params': { 'host': cfg['host'], 'port': cfg['port'], 'read_preference': read_preference, 'replicaSet': cfg.get('replicaSet') }, 'pattern': pattern, 'label': label } self._clusters.append(cluster_config)
[ "def", "_parse_configs", "(", "self", ",", "config", ")", ":", "for", "config_dict", "in", "config", ":", "label", "=", "config_dict", ".", "keys", "(", ")", "[", "0", "]", "cfg", "=", "config_dict", "[", "label", "]", "# Transform dbpath to something digestable by regexp.", "dbpath", "=", "cfg", "[", "'dbpath'", "]", "pattern", "=", "self", ".", "_parse_dbpath", "(", "dbpath", ")", "read_preference", "=", "cfg", ".", "get", "(", "'read_preference'", ",", "'primary'", ")", ".", "upper", "(", ")", "read_preference", "=", "self", ".", "_get_read_preference", "(", "read_preference", ")", "# Put all parameters that could be passed to pymongo.MongoClient", "# in a separate dict, to ease MongoClient creation.", "cluster_config", "=", "{", "'params'", ":", "{", "'host'", ":", "cfg", "[", "'host'", "]", ",", "'port'", ":", "cfg", "[", "'port'", "]", ",", "'read_preference'", ":", "read_preference", ",", "'replicaSet'", ":", "cfg", ".", "get", "(", "'replicaSet'", ")", "}", ",", "'pattern'", ":", "pattern", ",", "'label'", ":", "label", "}", "self", ".", "_clusters", ".", "append", "(", "cluster_config", ")" ]
Builds a dict with information to connect to Clusters. Parses the list of configuration dictionaries passed by the user and builds an internal dict (_clusters) that holds information for creating Clients connecting to Clusters and matching database names. Args: config: A list of dictionaries containing connecting and identification information about Clusters. A dict has the following structure: {label: {host, port, read_preference, dbpath}}. Raises: Exception('No configuration provided'): no configuration provided.
[ "Builds", "a", "dict", "with", "information", "to", "connect", "to", "Clusters", "." ]
286d1d8e0b3c17d5d7d4860487fe69358941067d
https://github.com/uberVU/mongo-pool/blob/286d1d8e0b3c17d5d7d4860487fe69358941067d/mongo_pool/mongo_pool.py#L100-L139
train
uberVU/mongo-pool
mongo_pool/mongo_pool.py
MongoPool._parse_dbpath
def _parse_dbpath(dbpath): """Converts the dbpath to a regexp pattern. Transforms dbpath from a string or an array of strings to a regexp pattern which will be used to match database names. Args: dbpath: a string or an array containing the databases to be matched from a cluster. Returns: A regexp pattern that will match any of the desired databases on on a cluster. """ if isinstance(dbpath, list): # Support dbpath param as an array. dbpath = '|'.join(dbpath) # Append $ (end of string) so that twit will not match twitter! if not dbpath.endswith('$'): dbpath = '(%s)$' % dbpath return dbpath
python
def _parse_dbpath(dbpath): """Converts the dbpath to a regexp pattern. Transforms dbpath from a string or an array of strings to a regexp pattern which will be used to match database names. Args: dbpath: a string or an array containing the databases to be matched from a cluster. Returns: A regexp pattern that will match any of the desired databases on on a cluster. """ if isinstance(dbpath, list): # Support dbpath param as an array. dbpath = '|'.join(dbpath) # Append $ (end of string) so that twit will not match twitter! if not dbpath.endswith('$'): dbpath = '(%s)$' % dbpath return dbpath
[ "def", "_parse_dbpath", "(", "dbpath", ")", ":", "if", "isinstance", "(", "dbpath", ",", "list", ")", ":", "# Support dbpath param as an array.", "dbpath", "=", "'|'", ".", "join", "(", "dbpath", ")", "# Append $ (end of string) so that twit will not match twitter!", "if", "not", "dbpath", ".", "endswith", "(", "'$'", ")", ":", "dbpath", "=", "'(%s)$'", "%", "dbpath", "return", "dbpath" ]
Converts the dbpath to a regexp pattern. Transforms dbpath from a string or an array of strings to a regexp pattern which will be used to match database names. Args: dbpath: a string or an array containing the databases to be matched from a cluster. Returns: A regexp pattern that will match any of the desired databases on on a cluster.
[ "Converts", "the", "dbpath", "to", "a", "regexp", "pattern", "." ]
286d1d8e0b3c17d5d7d4860487fe69358941067d
https://github.com/uberVU/mongo-pool/blob/286d1d8e0b3c17d5d7d4860487fe69358941067d/mongo_pool/mongo_pool.py#L142-L164
train
uberVU/mongo-pool
mongo_pool/mongo_pool.py
MongoPool._get_read_preference
def _get_read_preference(read_preference): """Converts read_preference from string to pymongo.ReadPreference value. Args: read_preference: string containig the read_preference from the config file Returns: A value from the pymongo.ReadPreference enum Raises: Exception: Invalid read preference""" read_preference = getattr(pymongo.ReadPreference, read_preference, None) if read_preference is None: raise ValueError('Invalid read preference: %s' % read_preference) return read_preference
python
def _get_read_preference(read_preference): """Converts read_preference from string to pymongo.ReadPreference value. Args: read_preference: string containig the read_preference from the config file Returns: A value from the pymongo.ReadPreference enum Raises: Exception: Invalid read preference""" read_preference = getattr(pymongo.ReadPreference, read_preference, None) if read_preference is None: raise ValueError('Invalid read preference: %s' % read_preference) return read_preference
[ "def", "_get_read_preference", "(", "read_preference", ")", ":", "read_preference", "=", "getattr", "(", "pymongo", ".", "ReadPreference", ",", "read_preference", ",", "None", ")", "if", "read_preference", "is", "None", ":", "raise", "ValueError", "(", "'Invalid read preference: %s'", "%", "read_preference", ")", "return", "read_preference" ]
Converts read_preference from string to pymongo.ReadPreference value. Args: read_preference: string containig the read_preference from the config file Returns: A value from the pymongo.ReadPreference enum Raises: Exception: Invalid read preference
[ "Converts", "read_preference", "from", "string", "to", "pymongo", ".", "ReadPreference", "value", "." ]
286d1d8e0b3c17d5d7d4860487fe69358941067d
https://github.com/uberVU/mongo-pool/blob/286d1d8e0b3c17d5d7d4860487fe69358941067d/mongo_pool/mongo_pool.py#L167-L181
train
uberVU/mongo-pool
mongo_pool/mongo_pool.py
MongoPool.set_timeout
def set_timeout(self, network_timeout): """Set the timeout for existing and future Clients. Close all current connections. This will cause future operations to create new Clients with the network_timeout passed through socketTimeoutMS optional parameter. Args: network_timeout: The new value in milliseconds for the timeout. """ # Do nothing if attempting to set the same timeout twice. if network_timeout == self._network_timeout: return self._network_timeout = network_timeout self._disconnect()
python
def set_timeout(self, network_timeout): """Set the timeout for existing and future Clients. Close all current connections. This will cause future operations to create new Clients with the network_timeout passed through socketTimeoutMS optional parameter. Args: network_timeout: The new value in milliseconds for the timeout. """ # Do nothing if attempting to set the same timeout twice. if network_timeout == self._network_timeout: return self._network_timeout = network_timeout self._disconnect()
[ "def", "set_timeout", "(", "self", ",", "network_timeout", ")", ":", "# Do nothing if attempting to set the same timeout twice.", "if", "network_timeout", "==", "self", ".", "_network_timeout", ":", "return", "self", ".", "_network_timeout", "=", "network_timeout", "self", ".", "_disconnect", "(", ")" ]
Set the timeout for existing and future Clients. Close all current connections. This will cause future operations to create new Clients with the network_timeout passed through socketTimeoutMS optional parameter. Args: network_timeout: The new value in milliseconds for the timeout.
[ "Set", "the", "timeout", "for", "existing", "and", "future", "Clients", "." ]
286d1d8e0b3c17d5d7d4860487fe69358941067d
https://github.com/uberVU/mongo-pool/blob/286d1d8e0b3c17d5d7d4860487fe69358941067d/mongo_pool/mongo_pool.py#L183-L197
train
uberVU/mongo-pool
mongo_pool/mongo_pool.py
MongoPool._disconnect
def _disconnect(self): """Disconnect from all MongoDB Clients.""" for cluster in self._clusters: if 'connection' in cluster: connection = cluster.pop('connection') connection.close() # Remove all attributes that are database names so that next time # when they are accessed, __getattr__ will be called and will create # new Clients for dbname in self._mapped_databases: self.__delattr__(dbname) self._mapped_databases = []
python
def _disconnect(self): """Disconnect from all MongoDB Clients.""" for cluster in self._clusters: if 'connection' in cluster: connection = cluster.pop('connection') connection.close() # Remove all attributes that are database names so that next time # when they are accessed, __getattr__ will be called and will create # new Clients for dbname in self._mapped_databases: self.__delattr__(dbname) self._mapped_databases = []
[ "def", "_disconnect", "(", "self", ")", ":", "for", "cluster", "in", "self", ".", "_clusters", ":", "if", "'connection'", "in", "cluster", ":", "connection", "=", "cluster", ".", "pop", "(", "'connection'", ")", "connection", ".", "close", "(", ")", "# Remove all attributes that are database names so that next time", "# when they are accessed, __getattr__ will be called and will create", "# new Clients", "for", "dbname", "in", "self", ".", "_mapped_databases", ":", "self", ".", "__delattr__", "(", "dbname", ")", "self", ".", "_mapped_databases", "=", "[", "]" ]
Disconnect from all MongoDB Clients.
[ "Disconnect", "from", "all", "MongoDB", "Clients", "." ]
286d1d8e0b3c17d5d7d4860487fe69358941067d
https://github.com/uberVU/mongo-pool/blob/286d1d8e0b3c17d5d7d4860487fe69358941067d/mongo_pool/mongo_pool.py#L199-L210
train
uberVU/mongo-pool
mongo_pool/mongo_pool.py
MongoPool._get_connection
def _get_connection(self, cluster): """Return a connection to a Cluster. Return a MongoClient or a MongoReplicaSetClient for the given Cluster. This is done in a lazy manner (if there is already a Client connected to the Cluster, it is returned and no other Client is created). Args: cluster: A dict containing information about a cluster. Returns: A MongoClient or MongoReplicaSetClient instance connected to the desired cluster """ # w=1 because: # http://stackoverflow.com/questions/14798552/is-mongodb-2-x-write-concern-w-1-truly-equals-to-safe-true if 'connection' not in cluster: cluster['connection'] = self._connection_class( socketTimeoutMS=self._network_timeout, w=1, j=self.j, **cluster['params']) return cluster['connection']
python
def _get_connection(self, cluster): """Return a connection to a Cluster. Return a MongoClient or a MongoReplicaSetClient for the given Cluster. This is done in a lazy manner (if there is already a Client connected to the Cluster, it is returned and no other Client is created). Args: cluster: A dict containing information about a cluster. Returns: A MongoClient or MongoReplicaSetClient instance connected to the desired cluster """ # w=1 because: # http://stackoverflow.com/questions/14798552/is-mongodb-2-x-write-concern-w-1-truly-equals-to-safe-true if 'connection' not in cluster: cluster['connection'] = self._connection_class( socketTimeoutMS=self._network_timeout, w=1, j=self.j, **cluster['params']) return cluster['connection']
[ "def", "_get_connection", "(", "self", ",", "cluster", ")", ":", "# w=1 because:", "# http://stackoverflow.com/questions/14798552/is-mongodb-2-x-write-concern-w-1-truly-equals-to-safe-true", "if", "'connection'", "not", "in", "cluster", ":", "cluster", "[", "'connection'", "]", "=", "self", ".", "_connection_class", "(", "socketTimeoutMS", "=", "self", ".", "_network_timeout", ",", "w", "=", "1", ",", "j", "=", "self", ".", "j", ",", "*", "*", "cluster", "[", "'params'", "]", ")", "return", "cluster", "[", "'connection'", "]" ]
Return a connection to a Cluster. Return a MongoClient or a MongoReplicaSetClient for the given Cluster. This is done in a lazy manner (if there is already a Client connected to the Cluster, it is returned and no other Client is created). Args: cluster: A dict containing information about a cluster. Returns: A MongoClient or MongoReplicaSetClient instance connected to the desired cluster
[ "Return", "a", "connection", "to", "a", "Cluster", "." ]
286d1d8e0b3c17d5d7d4860487fe69358941067d
https://github.com/uberVU/mongo-pool/blob/286d1d8e0b3c17d5d7d4860487fe69358941067d/mongo_pool/mongo_pool.py#L212-L235
train
uberVU/mongo-pool
mongo_pool/mongo_pool.py
MongoPool._match_dbname
def _match_dbname(self, dbname): """Map a database name to the Cluster that holds the database. Args: dbname: A database name. Returns: A dict containing the information about the Cluster that holds the database. """ for config in self._clusters: if re.match(config['pattern'], dbname): return config raise Exception('No such database %s.' % dbname)
python
def _match_dbname(self, dbname): """Map a database name to the Cluster that holds the database. Args: dbname: A database name. Returns: A dict containing the information about the Cluster that holds the database. """ for config in self._clusters: if re.match(config['pattern'], dbname): return config raise Exception('No such database %s.' % dbname)
[ "def", "_match_dbname", "(", "self", ",", "dbname", ")", ":", "for", "config", "in", "self", ".", "_clusters", ":", "if", "re", ".", "match", "(", "config", "[", "'pattern'", "]", ",", "dbname", ")", ":", "return", "config", "raise", "Exception", "(", "'No such database %s.'", "%", "dbname", ")" ]
Map a database name to the Cluster that holds the database. Args: dbname: A database name. Returns: A dict containing the information about the Cluster that holds the database.
[ "Map", "a", "database", "name", "to", "the", "Cluster", "that", "holds", "the", "database", "." ]
286d1d8e0b3c17d5d7d4860487fe69358941067d
https://github.com/uberVU/mongo-pool/blob/286d1d8e0b3c17d5d7d4860487fe69358941067d/mongo_pool/mongo_pool.py#L237-L250
train
MacHu-GWU/single_file_module-project
sfm/flow.py
try_ntime
def try_ntime(max_try, func, *args, **kwargs): """ Try execute a function n times, until no exception raised or tried ``max_try`` times. **中文文档** 反复尝试执行一个函数若干次。直到成功为止或是重复尝试 ``max_try`` 次。期间 只要有一次成功, 就正常返回。如果一次都没有成功, 则行为跟最后一次执行了 ``func(*args, **kwargs)`` 一样。 """ if max_try < 1: raise ValueError for i in range(max_try): try: return func(*args, **kwargs) except Exception as e: last_exception = e raise last_exception
python
def try_ntime(max_try, func, *args, **kwargs): """ Try execute a function n times, until no exception raised or tried ``max_try`` times. **中文文档** 反复尝试执行一个函数若干次。直到成功为止或是重复尝试 ``max_try`` 次。期间 只要有一次成功, 就正常返回。如果一次都没有成功, 则行为跟最后一次执行了 ``func(*args, **kwargs)`` 一样。 """ if max_try < 1: raise ValueError for i in range(max_try): try: return func(*args, **kwargs) except Exception as e: last_exception = e raise last_exception
[ "def", "try_ntime", "(", "max_try", ",", "func", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "max_try", "<", "1", ":", "raise", "ValueError", "for", "i", "in", "range", "(", "max_try", ")", ":", "try", ":", "return", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "except", "Exception", "as", "e", ":", "last_exception", "=", "e", "raise", "last_exception" ]
Try execute a function n times, until no exception raised or tried ``max_try`` times. **中文文档** 反复尝试执行一个函数若干次。直到成功为止或是重复尝试 ``max_try`` 次。期间 只要有一次成功, 就正常返回。如果一次都没有成功, 则行为跟最后一次执行了 ``func(*args, **kwargs)`` 一样。
[ "Try", "execute", "a", "function", "n", "times", "until", "no", "exception", "raised", "or", "tried", "max_try", "times", "." ]
01f7a6b250853bebfd73de275895bf274325cfc1
https://github.com/MacHu-GWU/single_file_module-project/blob/01f7a6b250853bebfd73de275895bf274325cfc1/sfm/flow.py#L9-L29
train
MounirMesselmeni/django-highlightjs
highlightjs/templatetags/highlightjs.py
highlightjs_javascript
def highlightjs_javascript(jquery=None): """ Return HTML for highlightjs JavaScript. Adjust url in settings. If no url is returned, we don't want this statement to return any HTML. This is intended behavior. Default value: ``None`` This value is configurable, see Settings section **Tag name**:: highlightjs_javascript **Parameters**: :jquery: Truthy to include jQuery as well as highlightjs **usage**:: {% highlightjs_javascript %} **example**:: {% highlightjs_javascript jquery=1 %} """ javascript = '' # See if we have to include jQuery if jquery is None: jquery = get_highlightjs_setting('include_jquery', False) if jquery: url = highlightjs_jquery_url() if url: javascript += '<script src="{url}"></script>'.format(url=url) url = highlightjs_url() if url: javascript += '<script src="{url}"></script>'.format(url=url) javascript += '<script>hljs.initHighlightingOnLoad();</script>' return javascript
python
def highlightjs_javascript(jquery=None): """ Return HTML for highlightjs JavaScript. Adjust url in settings. If no url is returned, we don't want this statement to return any HTML. This is intended behavior. Default value: ``None`` This value is configurable, see Settings section **Tag name**:: highlightjs_javascript **Parameters**: :jquery: Truthy to include jQuery as well as highlightjs **usage**:: {% highlightjs_javascript %} **example**:: {% highlightjs_javascript jquery=1 %} """ javascript = '' # See if we have to include jQuery if jquery is None: jquery = get_highlightjs_setting('include_jquery', False) if jquery: url = highlightjs_jquery_url() if url: javascript += '<script src="{url}"></script>'.format(url=url) url = highlightjs_url() if url: javascript += '<script src="{url}"></script>'.format(url=url) javascript += '<script>hljs.initHighlightingOnLoad();</script>' return javascript
[ "def", "highlightjs_javascript", "(", "jquery", "=", "None", ")", ":", "javascript", "=", "''", "# See if we have to include jQuery", "if", "jquery", "is", "None", ":", "jquery", "=", "get_highlightjs_setting", "(", "'include_jquery'", ",", "False", ")", "if", "jquery", ":", "url", "=", "highlightjs_jquery_url", "(", ")", "if", "url", ":", "javascript", "+=", "'<script src=\"{url}\"></script>'", ".", "format", "(", "url", "=", "url", ")", "url", "=", "highlightjs_url", "(", ")", "if", "url", ":", "javascript", "+=", "'<script src=\"{url}\"></script>'", ".", "format", "(", "url", "=", "url", ")", "javascript", "+=", "'<script>hljs.initHighlightingOnLoad();</script>'", "return", "javascript" ]
Return HTML for highlightjs JavaScript. Adjust url in settings. If no url is returned, we don't want this statement to return any HTML. This is intended behavior. Default value: ``None`` This value is configurable, see Settings section **Tag name**:: highlightjs_javascript **Parameters**: :jquery: Truthy to include jQuery as well as highlightjs **usage**:: {% highlightjs_javascript %} **example**:: {% highlightjs_javascript jquery=1 %}
[ "Return", "HTML", "for", "highlightjs", "JavaScript", "." ]
3758cae67ed15f38641fb51a71ca9ed85af78345
https://github.com/MounirMesselmeni/django-highlightjs/blob/3758cae67ed15f38641fb51a71ca9ed85af78345/highlightjs/templatetags/highlightjs.py#L39-L79
train
ariebovenberg/snug
tutorial/composed0.py
repo
def repo(name: str, owner: str) -> snug.Query[dict]: """a repository lookup by owner and name""" return json.loads((yield f'/repos/{owner}/{name}').content)
python
def repo(name: str, owner: str) -> snug.Query[dict]: """a repository lookup by owner and name""" return json.loads((yield f'/repos/{owner}/{name}').content)
[ "def", "repo", "(", "name", ":", "str", ",", "owner", ":", "str", ")", "->", "snug", ".", "Query", "[", "dict", "]", ":", "return", "json", ".", "loads", "(", "(", "yield", "f'/repos/{owner}/{name}'", ")", ".", "content", ")" ]
a repository lookup by owner and name
[ "a", "repository", "lookup", "by", "owner", "and", "name" ]
4f5cd30e6b7b2c3f0ad3cc10be865bd8900b38ef
https://github.com/ariebovenberg/snug/blob/4f5cd30e6b7b2c3f0ad3cc10be865bd8900b38ef/tutorial/composed0.py#L13-L15
train
ariebovenberg/snug
tutorial/executing_queries.py
repo
def repo(name: str, owner: str) -> snug.Query[dict]: """a repo lookup by owner and name""" request = snug.GET(f'https://api.github.com/repos/{owner}/{name}') response = yield request return json.loads(response.content)
python
def repo(name: str, owner: str) -> snug.Query[dict]: """a repo lookup by owner and name""" request = snug.GET(f'https://api.github.com/repos/{owner}/{name}') response = yield request return json.loads(response.content)
[ "def", "repo", "(", "name", ":", "str", ",", "owner", ":", "str", ")", "->", "snug", ".", "Query", "[", "dict", "]", ":", "request", "=", "snug", ".", "GET", "(", "f'https://api.github.com/repos/{owner}/{name}'", ")", "response", "=", "yield", "request", "return", "json", ".", "loads", "(", "response", ".", "content", ")" ]
a repo lookup by owner and name
[ "a", "repo", "lookup", "by", "owner", "and", "name" ]
4f5cd30e6b7b2c3f0ad3cc10be865bd8900b38ef
https://github.com/ariebovenberg/snug/blob/4f5cd30e6b7b2c3f0ad3cc10be865bd8900b38ef/tutorial/executing_queries.py#L6-L10
train
ariebovenberg/snug
tutorial/executing_queries.py
follow
def follow(name: str) -> snug.Query[bool]: """follow another user""" request = snug.PUT(f'https://api.github.com/user/following/{name}') response = yield request return response.status_code == 204
python
def follow(name: str) -> snug.Query[bool]: """follow another user""" request = snug.PUT(f'https://api.github.com/user/following/{name}') response = yield request return response.status_code == 204
[ "def", "follow", "(", "name", ":", "str", ")", "->", "snug", ".", "Query", "[", "bool", "]", ":", "request", "=", "snug", ".", "PUT", "(", "f'https://api.github.com/user/following/{name}'", ")", "response", "=", "yield", "request", "return", "response", ".", "status_code", "==", "204" ]
follow another user
[ "follow", "another", "user" ]
4f5cd30e6b7b2c3f0ad3cc10be865bd8900b38ef
https://github.com/ariebovenberg/snug/blob/4f5cd30e6b7b2c3f0ad3cc10be865bd8900b38ef/tutorial/executing_queries.py#L13-L17
train
envi-idl/envipyengine
envipyengine/taskengine/task.py
Task.taskinfo
def taskinfo(self): """ Retrieve the Task Information """ task_input = {'taskName': 'QueryTask', 'inputParameters': {"Task_Name": self._name}} info = taskengine.execute(task_input, self._engine, cwd=self._cwd) task_def = info['outputParameters']['DEFINITION'] task_def['name'] = str(task_def.pop('NAME')) task_def['description'] = str(task_def.pop('DESCRIPTION')) task_def['displayName'] = str(task_def.pop('DISPLAY_NAME')) if 'COMMUTE_ON_SUBSET' in task_def: task_def['commute_on_subset'] = task_def.pop('COMMUTE_ON_SUBSET') if 'COMMUTE_ON_DOWNSAMPLE' in task_def: task_def['commute_on_downsample'] = task_def.pop('COMMUTE_ON_DOWNSAMPLE') # Convert PARAMETERS into a list instead of a dictionary # which matches the gsf side things task_def['parameters'] = \ [v for v in task_def['PARAMETERS'].values()] task_def.pop('PARAMETERS') parameters = task_def['parameters'] for parameter in parameters: parameter['name'] = str(parameter.pop('NAME')) parameter['description'] = str(parameter.pop('DESCRIPTION')) parameter['display_name'] = str(parameter.pop('DISPLAY_NAME')) parameter['required'] = bool(parameter.pop('REQUIRED')) if 'MIN' in parameter: parameter['min'] = parameter.pop('MIN') if 'MAX' in parameter: parameter['max'] = parameter.pop('MAX') if parameter['TYPE'].count('['): parameter['type'], parameter['dimensions'] = parameter.pop('TYPE').split('[') parameter['dimensions'] = '[' + parameter['dimensions'] parameter['type'] = str(parameter['type']) else: parameter['type'] = str(parameter.pop('TYPE').split('ARRAY')[0]) if 'DIMENSIONS' in parameter: parameter['dimensions'] = parameter.pop('DIMENSIONS') if 'DIRECTION' in parameter: parameter['direction'] = parameter.pop('DIRECTION').lower() if 'DEFAULT' in parameter: if parameter['DEFAULT'] is not None: parameter['default_value'] = parameter.pop('DEFAULT') else: parameter.pop('DEFAULT') if 'CHOICE_LIST' in parameter: if parameter['CHOICE_LIST'] is not None: parameter['choice_list'] = parameter.pop('CHOICE_LIST') else: parameter.pop('CHOICE_LIST') if 'FOLD_CASE' in parameter: parameter['fold_case'] = parameter.pop('FOLD_CASE') if 'AUTO_EXTENSION' in parameter: parameter['auto_extension'] = parameter.pop('AUTO_EXTENSION') if 'IS_TEMPORARY' in parameter: parameter['is_temporary'] = parameter.pop('IS_TEMPORARY') if 'IS_DIRECTORY' in parameter: parameter['is_directory'] = parameter.pop('IS_DIRECTORY') return task_def
python
def taskinfo(self): """ Retrieve the Task Information """ task_input = {'taskName': 'QueryTask', 'inputParameters': {"Task_Name": self._name}} info = taskengine.execute(task_input, self._engine, cwd=self._cwd) task_def = info['outputParameters']['DEFINITION'] task_def['name'] = str(task_def.pop('NAME')) task_def['description'] = str(task_def.pop('DESCRIPTION')) task_def['displayName'] = str(task_def.pop('DISPLAY_NAME')) if 'COMMUTE_ON_SUBSET' in task_def: task_def['commute_on_subset'] = task_def.pop('COMMUTE_ON_SUBSET') if 'COMMUTE_ON_DOWNSAMPLE' in task_def: task_def['commute_on_downsample'] = task_def.pop('COMMUTE_ON_DOWNSAMPLE') # Convert PARAMETERS into a list instead of a dictionary # which matches the gsf side things task_def['parameters'] = \ [v for v in task_def['PARAMETERS'].values()] task_def.pop('PARAMETERS') parameters = task_def['parameters'] for parameter in parameters: parameter['name'] = str(parameter.pop('NAME')) parameter['description'] = str(parameter.pop('DESCRIPTION')) parameter['display_name'] = str(parameter.pop('DISPLAY_NAME')) parameter['required'] = bool(parameter.pop('REQUIRED')) if 'MIN' in parameter: parameter['min'] = parameter.pop('MIN') if 'MAX' in parameter: parameter['max'] = parameter.pop('MAX') if parameter['TYPE'].count('['): parameter['type'], parameter['dimensions'] = parameter.pop('TYPE').split('[') parameter['dimensions'] = '[' + parameter['dimensions'] parameter['type'] = str(parameter['type']) else: parameter['type'] = str(parameter.pop('TYPE').split('ARRAY')[0]) if 'DIMENSIONS' in parameter: parameter['dimensions'] = parameter.pop('DIMENSIONS') if 'DIRECTION' in parameter: parameter['direction'] = parameter.pop('DIRECTION').lower() if 'DEFAULT' in parameter: if parameter['DEFAULT'] is not None: parameter['default_value'] = parameter.pop('DEFAULT') else: parameter.pop('DEFAULT') if 'CHOICE_LIST' in parameter: if parameter['CHOICE_LIST'] is not None: parameter['choice_list'] = parameter.pop('CHOICE_LIST') else: parameter.pop('CHOICE_LIST') if 'FOLD_CASE' in parameter: parameter['fold_case'] = parameter.pop('FOLD_CASE') if 'AUTO_EXTENSION' in parameter: parameter['auto_extension'] = parameter.pop('AUTO_EXTENSION') if 'IS_TEMPORARY' in parameter: parameter['is_temporary'] = parameter.pop('IS_TEMPORARY') if 'IS_DIRECTORY' in parameter: parameter['is_directory'] = parameter.pop('IS_DIRECTORY') return task_def
[ "def", "taskinfo", "(", "self", ")", ":", "task_input", "=", "{", "'taskName'", ":", "'QueryTask'", ",", "'inputParameters'", ":", "{", "\"Task_Name\"", ":", "self", ".", "_name", "}", "}", "info", "=", "taskengine", ".", "execute", "(", "task_input", ",", "self", ".", "_engine", ",", "cwd", "=", "self", ".", "_cwd", ")", "task_def", "=", "info", "[", "'outputParameters'", "]", "[", "'DEFINITION'", "]", "task_def", "[", "'name'", "]", "=", "str", "(", "task_def", ".", "pop", "(", "'NAME'", ")", ")", "task_def", "[", "'description'", "]", "=", "str", "(", "task_def", ".", "pop", "(", "'DESCRIPTION'", ")", ")", "task_def", "[", "'displayName'", "]", "=", "str", "(", "task_def", ".", "pop", "(", "'DISPLAY_NAME'", ")", ")", "if", "'COMMUTE_ON_SUBSET'", "in", "task_def", ":", "task_def", "[", "'commute_on_subset'", "]", "=", "task_def", ".", "pop", "(", "'COMMUTE_ON_SUBSET'", ")", "if", "'COMMUTE_ON_DOWNSAMPLE'", "in", "task_def", ":", "task_def", "[", "'commute_on_downsample'", "]", "=", "task_def", ".", "pop", "(", "'COMMUTE_ON_DOWNSAMPLE'", ")", "# Convert PARAMETERS into a list instead of a dictionary", "# which matches the gsf side things", "task_def", "[", "'parameters'", "]", "=", "[", "v", "for", "v", "in", "task_def", "[", "'PARAMETERS'", "]", ".", "values", "(", ")", "]", "task_def", ".", "pop", "(", "'PARAMETERS'", ")", "parameters", "=", "task_def", "[", "'parameters'", "]", "for", "parameter", "in", "parameters", ":", "parameter", "[", "'name'", "]", "=", "str", "(", "parameter", ".", "pop", "(", "'NAME'", ")", ")", "parameter", "[", "'description'", "]", "=", "str", "(", "parameter", ".", "pop", "(", "'DESCRIPTION'", ")", ")", "parameter", "[", "'display_name'", "]", "=", "str", "(", "parameter", ".", "pop", "(", "'DISPLAY_NAME'", ")", ")", "parameter", "[", "'required'", "]", "=", "bool", "(", "parameter", ".", "pop", "(", "'REQUIRED'", ")", ")", "if", "'MIN'", "in", "parameter", ":", "parameter", "[", "'min'", "]", "=", "parameter", ".", "pop", "(", "'MIN'", ")", "if", "'MAX'", "in", "parameter", ":", "parameter", "[", "'max'", "]", "=", "parameter", ".", "pop", "(", "'MAX'", ")", "if", "parameter", "[", "'TYPE'", "]", ".", "count", "(", "'['", ")", ":", "parameter", "[", "'type'", "]", ",", "parameter", "[", "'dimensions'", "]", "=", "parameter", ".", "pop", "(", "'TYPE'", ")", ".", "split", "(", "'['", ")", "parameter", "[", "'dimensions'", "]", "=", "'['", "+", "parameter", "[", "'dimensions'", "]", "parameter", "[", "'type'", "]", "=", "str", "(", "parameter", "[", "'type'", "]", ")", "else", ":", "parameter", "[", "'type'", "]", "=", "str", "(", "parameter", ".", "pop", "(", "'TYPE'", ")", ".", "split", "(", "'ARRAY'", ")", "[", "0", "]", ")", "if", "'DIMENSIONS'", "in", "parameter", ":", "parameter", "[", "'dimensions'", "]", "=", "parameter", ".", "pop", "(", "'DIMENSIONS'", ")", "if", "'DIRECTION'", "in", "parameter", ":", "parameter", "[", "'direction'", "]", "=", "parameter", ".", "pop", "(", "'DIRECTION'", ")", ".", "lower", "(", ")", "if", "'DEFAULT'", "in", "parameter", ":", "if", "parameter", "[", "'DEFAULT'", "]", "is", "not", "None", ":", "parameter", "[", "'default_value'", "]", "=", "parameter", ".", "pop", "(", "'DEFAULT'", ")", "else", ":", "parameter", ".", "pop", "(", "'DEFAULT'", ")", "if", "'CHOICE_LIST'", "in", "parameter", ":", "if", "parameter", "[", "'CHOICE_LIST'", "]", "is", "not", "None", ":", "parameter", "[", "'choice_list'", "]", "=", "parameter", ".", "pop", "(", "'CHOICE_LIST'", ")", "else", ":", "parameter", ".", "pop", "(", "'CHOICE_LIST'", ")", "if", "'FOLD_CASE'", "in", "parameter", ":", "parameter", "[", "'fold_case'", "]", "=", "parameter", ".", "pop", "(", "'FOLD_CASE'", ")", "if", "'AUTO_EXTENSION'", "in", "parameter", ":", "parameter", "[", "'auto_extension'", "]", "=", "parameter", ".", "pop", "(", "'AUTO_EXTENSION'", ")", "if", "'IS_TEMPORARY'", "in", "parameter", ":", "parameter", "[", "'is_temporary'", "]", "=", "parameter", ".", "pop", "(", "'IS_TEMPORARY'", ")", "if", "'IS_DIRECTORY'", "in", "parameter", ":", "parameter", "[", "'is_directory'", "]", "=", "parameter", ".", "pop", "(", "'IS_DIRECTORY'", ")", "return", "task_def" ]
Retrieve the Task Information
[ "Retrieve", "the", "Task", "Information" ]
567b639d6592deec3289f6122a9e3d18f2f98432
https://github.com/envi-idl/envipyengine/blob/567b639d6592deec3289f6122a9e3d18f2f98432/envipyengine/taskengine/task.py#L57-L133
train
koszullab/metaTOR
metator/scripts/hicstuff.py
despeckle_simple
def despeckle_simple(B, th2=2): """Single-chromosome despeckling Simple speckle removing function on a single chromomsome. It also works for multiple chromosomes but trends may be disrupted. Parameters ---------- B : array_like The input matrix to despeckle th2 : float The number of standard deviations above the mean beyond which despeckling should be performed Returns ------- array_like The despeckled matrix """ A = np.copy(B) n1 = A.shape[0] dist = {u: np.diag(A, u) for u in range(n1)} medians, stds = {}, {} for u in dist: medians[u] = np.median(dist[u]) stds[u] = np.std(dist[u]) for nw, j in itertools.product(range(n1), range(n1)): lp = j + nw kp = j - nw if lp < n1: if A[j, lp] > medians[nw] + th2 * stds[nw]: A[j, lp] = medians[nw] if kp >= 0: if A[j, kp] > medians[nw] + th2 * stds[nw]: A[j, kp] = medians[nw] return A
python
def despeckle_simple(B, th2=2): """Single-chromosome despeckling Simple speckle removing function on a single chromomsome. It also works for multiple chromosomes but trends may be disrupted. Parameters ---------- B : array_like The input matrix to despeckle th2 : float The number of standard deviations above the mean beyond which despeckling should be performed Returns ------- array_like The despeckled matrix """ A = np.copy(B) n1 = A.shape[0] dist = {u: np.diag(A, u) for u in range(n1)} medians, stds = {}, {} for u in dist: medians[u] = np.median(dist[u]) stds[u] = np.std(dist[u]) for nw, j in itertools.product(range(n1), range(n1)): lp = j + nw kp = j - nw if lp < n1: if A[j, lp] > medians[nw] + th2 * stds[nw]: A[j, lp] = medians[nw] if kp >= 0: if A[j, kp] > medians[nw] + th2 * stds[nw]: A[j, kp] = medians[nw] return A
[ "def", "despeckle_simple", "(", "B", ",", "th2", "=", "2", ")", ":", "A", "=", "np", ".", "copy", "(", "B", ")", "n1", "=", "A", ".", "shape", "[", "0", "]", "dist", "=", "{", "u", ":", "np", ".", "diag", "(", "A", ",", "u", ")", "for", "u", "in", "range", "(", "n1", ")", "}", "medians", ",", "stds", "=", "{", "}", ",", "{", "}", "for", "u", "in", "dist", ":", "medians", "[", "u", "]", "=", "np", ".", "median", "(", "dist", "[", "u", "]", ")", "stds", "[", "u", "]", "=", "np", ".", "std", "(", "dist", "[", "u", "]", ")", "for", "nw", ",", "j", "in", "itertools", ".", "product", "(", "range", "(", "n1", ")", ",", "range", "(", "n1", ")", ")", ":", "lp", "=", "j", "+", "nw", "kp", "=", "j", "-", "nw", "if", "lp", "<", "n1", ":", "if", "A", "[", "j", ",", "lp", "]", ">", "medians", "[", "nw", "]", "+", "th2", "*", "stds", "[", "nw", "]", ":", "A", "[", "j", ",", "lp", "]", "=", "medians", "[", "nw", "]", "if", "kp", ">=", "0", ":", "if", "A", "[", "j", ",", "kp", "]", ">", "medians", "[", "nw", "]", "+", "th2", "*", "stds", "[", "nw", "]", ":", "A", "[", "j", ",", "kp", "]", "=", "medians", "[", "nw", "]", "return", "A" ]
Single-chromosome despeckling Simple speckle removing function on a single chromomsome. It also works for multiple chromosomes but trends may be disrupted. Parameters ---------- B : array_like The input matrix to despeckle th2 : float The number of standard deviations above the mean beyond which despeckling should be performed Returns ------- array_like The despeckled matrix
[ "Single", "-", "chromosome", "despeckling" ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L32-L70
train
koszullab/metaTOR
metator/scripts/hicstuff.py
bin_sparse
def bin_sparse(M, subsampling_factor=3): """Perform the bin_dense procedure for sparse matrices. Remaining rows and cols are lumped with the rest at the end. """ try: from scipy.sparse import coo_matrix except ImportError as e: print(str(e)) print("I am peforming dense binning by default.") return bin_dense(M.todense()) N = M.tocoo() n, m = N.shape row, col, data = N.row, N.col, N.data # Divide row and column indices - duplicate coordinates are added in # sparse matrix construction binned_row = row // subsampling_factor binned_col = col // subsampling_factor binned_n = n // subsampling_factor binned_m = m // subsampling_factor # Attach remaining columns and rows to the last one binned_row[binned_row >= binned_n] -= n % subsampling_factor binned_col[binned_col >= binned_m] -= m % subsampling_factor result = coo_matrix((data, (binned_row, binned_col)), shape=(binned_n, binned_m)) return result
python
def bin_sparse(M, subsampling_factor=3): """Perform the bin_dense procedure for sparse matrices. Remaining rows and cols are lumped with the rest at the end. """ try: from scipy.sparse import coo_matrix except ImportError as e: print(str(e)) print("I am peforming dense binning by default.") return bin_dense(M.todense()) N = M.tocoo() n, m = N.shape row, col, data = N.row, N.col, N.data # Divide row and column indices - duplicate coordinates are added in # sparse matrix construction binned_row = row // subsampling_factor binned_col = col // subsampling_factor binned_n = n // subsampling_factor binned_m = m // subsampling_factor # Attach remaining columns and rows to the last one binned_row[binned_row >= binned_n] -= n % subsampling_factor binned_col[binned_col >= binned_m] -= m % subsampling_factor result = coo_matrix((data, (binned_row, binned_col)), shape=(binned_n, binned_m)) return result
[ "def", "bin_sparse", "(", "M", ",", "subsampling_factor", "=", "3", ")", ":", "try", ":", "from", "scipy", ".", "sparse", "import", "coo_matrix", "except", "ImportError", "as", "e", ":", "print", "(", "str", "(", "e", ")", ")", "print", "(", "\"I am peforming dense binning by default.\"", ")", "return", "bin_dense", "(", "M", ".", "todense", "(", ")", ")", "N", "=", "M", ".", "tocoo", "(", ")", "n", ",", "m", "=", "N", ".", "shape", "row", ",", "col", ",", "data", "=", "N", ".", "row", ",", "N", ".", "col", ",", "N", ".", "data", "# Divide row and column indices - duplicate coordinates are added in", "# sparse matrix construction", "binned_row", "=", "row", "//", "subsampling_factor", "binned_col", "=", "col", "//", "subsampling_factor", "binned_n", "=", "n", "//", "subsampling_factor", "binned_m", "=", "m", "//", "subsampling_factor", "# Attach remaining columns and rows to the last one", "binned_row", "[", "binned_row", ">=", "binned_n", "]", "-=", "n", "%", "subsampling_factor", "binned_col", "[", "binned_col", ">=", "binned_m", "]", "-=", "m", "%", "subsampling_factor", "result", "=", "coo_matrix", "(", "(", "data", ",", "(", "binned_row", ",", "binned_col", ")", ")", ",", "shape", "=", "(", "binned_n", ",", "binned_m", ")", ")", "return", "result" ]
Perform the bin_dense procedure for sparse matrices. Remaining rows and cols are lumped with the rest at the end.
[ "Perform", "the", "bin_dense", "procedure", "for", "sparse", "matrices", ".", "Remaining", "rows", "and", "cols", "are", "lumped", "with", "the", "rest", "at", "the", "end", "." ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L174-L205
train
koszullab/metaTOR
metator/scripts/hicstuff.py
bin_matrix
def bin_matrix(M, subsampling_factor=3): """Bin either sparse or dense matrices. """ try: from scipy.sparse import issparse if issparse(M): return bin_sparse(M, subsampling_factor=subsampling_factor) else: raise ImportError except ImportError: return bin_dense(M, subsampling_factor=subsampling_factor)
python
def bin_matrix(M, subsampling_factor=3): """Bin either sparse or dense matrices. """ try: from scipy.sparse import issparse if issparse(M): return bin_sparse(M, subsampling_factor=subsampling_factor) else: raise ImportError except ImportError: return bin_dense(M, subsampling_factor=subsampling_factor)
[ "def", "bin_matrix", "(", "M", ",", "subsampling_factor", "=", "3", ")", ":", "try", ":", "from", "scipy", ".", "sparse", "import", "issparse", "if", "issparse", "(", "M", ")", ":", "return", "bin_sparse", "(", "M", ",", "subsampling_factor", "=", "subsampling_factor", ")", "else", ":", "raise", "ImportError", "except", "ImportError", ":", "return", "bin_dense", "(", "M", ",", "subsampling_factor", "=", "subsampling_factor", ")" ]
Bin either sparse or dense matrices.
[ "Bin", "either", "sparse", "or", "dense", "matrices", "." ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L208-L219
train
koszullab/metaTOR
metator/scripts/hicstuff.py
bin_annotation
def bin_annotation(annotation=None, subsampling_factor=3): """Perform binning on genome annotations such as contig information or bin positions. """ if annotation is None: annotation = np.array([]) n = len(annotation) binned_positions = [annotation[i] for i in range(n) if i % subsampling_factor == 0] if len(binned_positions) == 0: binned_positions.append(0) return np.array(binned_positions)
python
def bin_annotation(annotation=None, subsampling_factor=3): """Perform binning on genome annotations such as contig information or bin positions. """ if annotation is None: annotation = np.array([]) n = len(annotation) binned_positions = [annotation[i] for i in range(n) if i % subsampling_factor == 0] if len(binned_positions) == 0: binned_positions.append(0) return np.array(binned_positions)
[ "def", "bin_annotation", "(", "annotation", "=", "None", ",", "subsampling_factor", "=", "3", ")", ":", "if", "annotation", "is", "None", ":", "annotation", "=", "np", ".", "array", "(", "[", "]", ")", "n", "=", "len", "(", "annotation", ")", "binned_positions", "=", "[", "annotation", "[", "i", "]", "for", "i", "in", "range", "(", "n", ")", "if", "i", "%", "subsampling_factor", "==", "0", "]", "if", "len", "(", "binned_positions", ")", "==", "0", ":", "binned_positions", ".", "append", "(", "0", ")", "return", "np", ".", "array", "(", "binned_positions", ")" ]
Perform binning on genome annotations such as contig information or bin positions.
[ "Perform", "binning", "on", "genome", "annotations", "such", "as", "contig", "information", "or", "bin", "positions", "." ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L222-L234
train
koszullab/metaTOR
metator/scripts/hicstuff.py
build_pyramid
def build_pyramid(M, subsampling_factor=3): """Iterate over a given number of times on matrix M so as to compute smaller and smaller matrices with bin_dense. """ subs = int(subsampling_factor) if subs < 1: raise ValueError( "Subsampling factor needs to be an integer greater than 1.") N = [M] while min(N[-1].shape) > 1: N.append(bin_matrix(N[-1], subsampling_factor=subs)) return N
python
def build_pyramid(M, subsampling_factor=3): """Iterate over a given number of times on matrix M so as to compute smaller and smaller matrices with bin_dense. """ subs = int(subsampling_factor) if subs < 1: raise ValueError( "Subsampling factor needs to be an integer greater than 1.") N = [M] while min(N[-1].shape) > 1: N.append(bin_matrix(N[-1], subsampling_factor=subs)) return N
[ "def", "build_pyramid", "(", "M", ",", "subsampling_factor", "=", "3", ")", ":", "subs", "=", "int", "(", "subsampling_factor", ")", "if", "subs", "<", "1", ":", "raise", "ValueError", "(", "\"Subsampling factor needs to be an integer greater than 1.\"", ")", "N", "=", "[", "M", "]", "while", "min", "(", "N", "[", "-", "1", "]", ".", "shape", ")", ">", "1", ":", "N", ".", "append", "(", "bin_matrix", "(", "N", "[", "-", "1", "]", ",", "subsampling_factor", "=", "subs", ")", ")", "return", "N" ]
Iterate over a given number of times on matrix M so as to compute smaller and smaller matrices with bin_dense.
[ "Iterate", "over", "a", "given", "number", "of", "times", "on", "matrix", "M", "so", "as", "to", "compute", "smaller", "and", "smaller", "matrices", "with", "bin_dense", "." ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L251-L263
train
koszullab/metaTOR
metator/scripts/hicstuff.py
bin_exact_kb_dense
def bin_exact_kb_dense(M, positions, length=10): """Perform the kb-binning procedure with total bin lengths being exactly set to that of the specified input. Fragments overlapping two potential bins will be split and related contact counts will be divided according to overlap proportions in each bin. """ unit = 10**3 ul = unit * length units = positions / ul n = len(positions) idx = [i for i in range( n - 1) if np.ceil(units[i]) < np.ceil(units[i + 1])] m = len(idx) - 1 N = np.zeros((m, m)) remainders = [0] + [np.abs(units[i] - units[i + 1]) for i in range(m)] for i in range(m): N[i] = np.array([(M[idx[j]:idx[j + 1], idx[i]:idx[i + 1]].sum() - remainders[j] * M[i][j] + remainders[j + 1] * M[i + 1][j]) for j in range(m)]) return N
python
def bin_exact_kb_dense(M, positions, length=10): """Perform the kb-binning procedure with total bin lengths being exactly set to that of the specified input. Fragments overlapping two potential bins will be split and related contact counts will be divided according to overlap proportions in each bin. """ unit = 10**3 ul = unit * length units = positions / ul n = len(positions) idx = [i for i in range( n - 1) if np.ceil(units[i]) < np.ceil(units[i + 1])] m = len(idx) - 1 N = np.zeros((m, m)) remainders = [0] + [np.abs(units[i] - units[i + 1]) for i in range(m)] for i in range(m): N[i] = np.array([(M[idx[j]:idx[j + 1], idx[i]:idx[i + 1]].sum() - remainders[j] * M[i][j] + remainders[j + 1] * M[i + 1][j]) for j in range(m)]) return N
[ "def", "bin_exact_kb_dense", "(", "M", ",", "positions", ",", "length", "=", "10", ")", ":", "unit", "=", "10", "**", "3", "ul", "=", "unit", "*", "length", "units", "=", "positions", "/", "ul", "n", "=", "len", "(", "positions", ")", "idx", "=", "[", "i", "for", "i", "in", "range", "(", "n", "-", "1", ")", "if", "np", ".", "ceil", "(", "units", "[", "i", "]", ")", "<", "np", ".", "ceil", "(", "units", "[", "i", "+", "1", "]", ")", "]", "m", "=", "len", "(", "idx", ")", "-", "1", "N", "=", "np", ".", "zeros", "(", "(", "m", ",", "m", ")", ")", "remainders", "=", "[", "0", "]", "+", "[", "np", ".", "abs", "(", "units", "[", "i", "]", "-", "units", "[", "i", "+", "1", "]", ")", "for", "i", "in", "range", "(", "m", ")", "]", "for", "i", "in", "range", "(", "m", ")", ":", "N", "[", "i", "]", "=", "np", ".", "array", "(", "[", "(", "M", "[", "idx", "[", "j", "]", ":", "idx", "[", "j", "+", "1", "]", ",", "idx", "[", "i", "]", ":", "idx", "[", "i", "+", "1", "]", "]", ".", "sum", "(", ")", "-", "remainders", "[", "j", "]", "*", "M", "[", "i", "]", "[", "j", "]", "+", "remainders", "[", "j", "+", "1", "]", "*", "M", "[", "i", "+", "1", "]", "[", "j", "]", ")", "for", "j", "in", "range", "(", "m", ")", "]", ")", "return", "N" ]
Perform the kb-binning procedure with total bin lengths being exactly set to that of the specified input. Fragments overlapping two potential bins will be split and related contact counts will be divided according to overlap proportions in each bin.
[ "Perform", "the", "kb", "-", "binning", "procedure", "with", "total", "bin", "lengths", "being", "exactly", "set", "to", "that", "of", "the", "specified", "input", ".", "Fragments", "overlapping", "two", "potential", "bins", "will", "be", "split", "and", "related", "contact", "counts", "will", "be", "divided", "according", "to", "overlap", "proportions", "in", "each", "bin", "." ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L290-L311
train
koszullab/metaTOR
metator/scripts/hicstuff.py
bin_kb_sparse
def bin_kb_sparse(M, positions, length=10): """Perform the exact kb-binning procedure on a sparse matrix. """ try: from scipy.sparse import coo_matrix except ImportError as e: print(str(e)) print("I am peforming dense normalization by default.") return bin_kb_dense(M.todense(), positions=positions) r = M.tocoo() unit = 10**3 ul = unit * length units = positions / ul n = len(positions) indices = np.floor(units) row = [indices[np.floor(i)] for i in r.row / ul] col = [indices[np.floor(j)] for j in r.col / ul] binned_indices = positions[ [i for i in range(n - 1) if np.ceil(units[i]) < np.ceil(units[i + 1])]] return coo_matrix((r.data, (row, col))), binned_indices
python
def bin_kb_sparse(M, positions, length=10): """Perform the exact kb-binning procedure on a sparse matrix. """ try: from scipy.sparse import coo_matrix except ImportError as e: print(str(e)) print("I am peforming dense normalization by default.") return bin_kb_dense(M.todense(), positions=positions) r = M.tocoo() unit = 10**3 ul = unit * length units = positions / ul n = len(positions) indices = np.floor(units) row = [indices[np.floor(i)] for i in r.row / ul] col = [indices[np.floor(j)] for j in r.col / ul] binned_indices = positions[ [i for i in range(n - 1) if np.ceil(units[i]) < np.ceil(units[i + 1])]] return coo_matrix((r.data, (row, col))), binned_indices
[ "def", "bin_kb_sparse", "(", "M", ",", "positions", ",", "length", "=", "10", ")", ":", "try", ":", "from", "scipy", ".", "sparse", "import", "coo_matrix", "except", "ImportError", "as", "e", ":", "print", "(", "str", "(", "e", ")", ")", "print", "(", "\"I am peforming dense normalization by default.\"", ")", "return", "bin_kb_dense", "(", "M", ".", "todense", "(", ")", ",", "positions", "=", "positions", ")", "r", "=", "M", ".", "tocoo", "(", ")", "unit", "=", "10", "**", "3", "ul", "=", "unit", "*", "length", "units", "=", "positions", "/", "ul", "n", "=", "len", "(", "positions", ")", "indices", "=", "np", ".", "floor", "(", "units", ")", "row", "=", "[", "indices", "[", "np", ".", "floor", "(", "i", ")", "]", "for", "i", "in", "r", ".", "row", "/", "ul", "]", "col", "=", "[", "indices", "[", "np", ".", "floor", "(", "j", ")", "]", "for", "j", "in", "r", ".", "col", "/", "ul", "]", "binned_indices", "=", "positions", "[", "[", "i", "for", "i", "in", "range", "(", "n", "-", "1", ")", "if", "np", ".", "ceil", "(", "units", "[", "i", "]", ")", "<", "np", ".", "ceil", "(", "units", "[", "i", "+", "1", "]", ")", "]", "]", "return", "coo_matrix", "(", "(", "r", ".", "data", ",", "(", "row", ",", "col", ")", ")", ")", ",", "binned_indices" ]
Perform the exact kb-binning procedure on a sparse matrix.
[ "Perform", "the", "exact", "kb", "-", "binning", "procedure", "on", "a", "sparse", "matrix", "." ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L314-L334
train
koszullab/metaTOR
metator/scripts/hicstuff.py
trim_sparse
def trim_sparse(M, n_std=3, s_min=None, s_max=None): """Apply the trimming procedure to a sparse matrix. """ try: from scipy.sparse import coo_matrix except ImportError as e: print(str(e)) print("I am peforming dense normalization by default.") return trim_dense(M.todense()) r = M.tocoo() sparsity = np.array(r.sum(axis=1)).flatten() mean = np.mean(sparsity) std = np.std(sparsity) if s_min is None: s_min = mean - n_std * std if s_max is None: s_max = mean + n_std * std f = (sparsity > s_min) * (sparsity < s_max) indices = [u for u in range(len(r.data)) if f[r.row[u]] and f[r.col[u]]] rows = np.array([r.row[i] for i in indices]) cols = np.array([r.col[j] for j in indices]) data = np.array([r.data[k] for k in indices]) N = coo_matrix((data, (rows, cols))) return N
python
def trim_sparse(M, n_std=3, s_min=None, s_max=None): """Apply the trimming procedure to a sparse matrix. """ try: from scipy.sparse import coo_matrix except ImportError as e: print(str(e)) print("I am peforming dense normalization by default.") return trim_dense(M.todense()) r = M.tocoo() sparsity = np.array(r.sum(axis=1)).flatten() mean = np.mean(sparsity) std = np.std(sparsity) if s_min is None: s_min = mean - n_std * std if s_max is None: s_max = mean + n_std * std f = (sparsity > s_min) * (sparsity < s_max) indices = [u for u in range(len(r.data)) if f[r.row[u]] and f[r.col[u]]] rows = np.array([r.row[i] for i in indices]) cols = np.array([r.col[j] for j in indices]) data = np.array([r.data[k] for k in indices]) N = coo_matrix((data, (rows, cols))) return N
[ "def", "trim_sparse", "(", "M", ",", "n_std", "=", "3", ",", "s_min", "=", "None", ",", "s_max", "=", "None", ")", ":", "try", ":", "from", "scipy", ".", "sparse", "import", "coo_matrix", "except", "ImportError", "as", "e", ":", "print", "(", "str", "(", "e", ")", ")", "print", "(", "\"I am peforming dense normalization by default.\"", ")", "return", "trim_dense", "(", "M", ".", "todense", "(", ")", ")", "r", "=", "M", ".", "tocoo", "(", ")", "sparsity", "=", "np", ".", "array", "(", "r", ".", "sum", "(", "axis", "=", "1", ")", ")", ".", "flatten", "(", ")", "mean", "=", "np", ".", "mean", "(", "sparsity", ")", "std", "=", "np", ".", "std", "(", "sparsity", ")", "if", "s_min", "is", "None", ":", "s_min", "=", "mean", "-", "n_std", "*", "std", "if", "s_max", "is", "None", ":", "s_max", "=", "mean", "+", "n_std", "*", "std", "f", "=", "(", "sparsity", ">", "s_min", ")", "*", "(", "sparsity", "<", "s_max", ")", "indices", "=", "[", "u", "for", "u", "in", "range", "(", "len", "(", "r", ".", "data", ")", ")", "if", "f", "[", "r", ".", "row", "[", "u", "]", "]", "and", "f", "[", "r", ".", "col", "[", "u", "]", "]", "]", "rows", "=", "np", ".", "array", "(", "[", "r", ".", "row", "[", "i", "]", "for", "i", "in", "indices", "]", ")", "cols", "=", "np", ".", "array", "(", "[", "r", ".", "col", "[", "j", "]", "for", "j", "in", "indices", "]", ")", "data", "=", "np", ".", "array", "(", "[", "r", ".", "data", "[", "k", "]", "for", "k", "in", "indices", "]", ")", "N", "=", "coo_matrix", "(", "(", "data", ",", "(", "rows", ",", "cols", ")", ")", ")", "return", "N" ]
Apply the trimming procedure to a sparse matrix.
[ "Apply", "the", "trimming", "procedure", "to", "a", "sparse", "matrix", "." ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L361-L386
train
koszullab/metaTOR
metator/scripts/hicstuff.py
normalize_dense
def normalize_dense(M, norm="frag", order=1, iterations=3): """Apply one of the many normalization types to input dense matrix. Will also apply any callable norms such as a user-made or a lambda function. """ s = np.array(M, np.float64) floatorder = np.float64(order) if norm == "SCN": for _ in range(0, iterations): sumrows = s.sum(axis=1) maskrows = (sumrows != 0)[:, None] * (sumrows != 0)[None, :] sums_row = sumrows[:, None] * np.ones(sumrows.shape)[None, :] s[maskrows] = 1. * s[maskrows] / sums_row[maskrows] sumcols = s.sum(axis=0) maskcols = (sumcols != 0)[:, None] * (sumcols != 0)[None, :] sums_col = sumcols[None, :] * np.ones(sumcols.shape)[:, None] s[maskcols] = 1. * s[maskcols] / sums_col[maskcols] elif norm == "mirnylib": try: from mirnylib import numutils as ntls s = ntls.iterativeCorrection(s, iterations)[0] except ImportError as e: print(str(e)) print("I can't find mirnylib.") print("Please install it from " "https://bitbucket.org/mirnylab/mirnylib") print("I will use default norm as fallback.") return normalize_dense(M, order=order, iterations=iterations) elif norm == "frag": for _ in range(1, iterations): s_norm_x = np.linalg.norm(s, ord=floatorder, axis=0) s_norm_y = np.linalg.norm(s, ord=floatorder, axis=1) s_norm = np.tensordot(s_norm_x, s_norm_y, axes=0) s[s_norm != 0] = 1. * s[s_norm != 0] / s_norm[s_norm != 0] elif norm == "global": s_norm = np.linalg.norm(s, ord=floatorder) s /= 1. * s_norm elif callable(norm): s = norm(M) else: print("Unknown norm. Returning input as fallback") return (s + s.T) / 2
python
def normalize_dense(M, norm="frag", order=1, iterations=3): """Apply one of the many normalization types to input dense matrix. Will also apply any callable norms such as a user-made or a lambda function. """ s = np.array(M, np.float64) floatorder = np.float64(order) if norm == "SCN": for _ in range(0, iterations): sumrows = s.sum(axis=1) maskrows = (sumrows != 0)[:, None] * (sumrows != 0)[None, :] sums_row = sumrows[:, None] * np.ones(sumrows.shape)[None, :] s[maskrows] = 1. * s[maskrows] / sums_row[maskrows] sumcols = s.sum(axis=0) maskcols = (sumcols != 0)[:, None] * (sumcols != 0)[None, :] sums_col = sumcols[None, :] * np.ones(sumcols.shape)[:, None] s[maskcols] = 1. * s[maskcols] / sums_col[maskcols] elif norm == "mirnylib": try: from mirnylib import numutils as ntls s = ntls.iterativeCorrection(s, iterations)[0] except ImportError as e: print(str(e)) print("I can't find mirnylib.") print("Please install it from " "https://bitbucket.org/mirnylab/mirnylib") print("I will use default norm as fallback.") return normalize_dense(M, order=order, iterations=iterations) elif norm == "frag": for _ in range(1, iterations): s_norm_x = np.linalg.norm(s, ord=floatorder, axis=0) s_norm_y = np.linalg.norm(s, ord=floatorder, axis=1) s_norm = np.tensordot(s_norm_x, s_norm_y, axes=0) s[s_norm != 0] = 1. * s[s_norm != 0] / s_norm[s_norm != 0] elif norm == "global": s_norm = np.linalg.norm(s, ord=floatorder) s /= 1. * s_norm elif callable(norm): s = norm(M) else: print("Unknown norm. Returning input as fallback") return (s + s.T) / 2
[ "def", "normalize_dense", "(", "M", ",", "norm", "=", "\"frag\"", ",", "order", "=", "1", ",", "iterations", "=", "3", ")", ":", "s", "=", "np", ".", "array", "(", "M", ",", "np", ".", "float64", ")", "floatorder", "=", "np", ".", "float64", "(", "order", ")", "if", "norm", "==", "\"SCN\"", ":", "for", "_", "in", "range", "(", "0", ",", "iterations", ")", ":", "sumrows", "=", "s", ".", "sum", "(", "axis", "=", "1", ")", "maskrows", "=", "(", "sumrows", "!=", "0", ")", "[", ":", ",", "None", "]", "*", "(", "sumrows", "!=", "0", ")", "[", "None", ",", ":", "]", "sums_row", "=", "sumrows", "[", ":", ",", "None", "]", "*", "np", ".", "ones", "(", "sumrows", ".", "shape", ")", "[", "None", ",", ":", "]", "s", "[", "maskrows", "]", "=", "1.", "*", "s", "[", "maskrows", "]", "/", "sums_row", "[", "maskrows", "]", "sumcols", "=", "s", ".", "sum", "(", "axis", "=", "0", ")", "maskcols", "=", "(", "sumcols", "!=", "0", ")", "[", ":", ",", "None", "]", "*", "(", "sumcols", "!=", "0", ")", "[", "None", ",", ":", "]", "sums_col", "=", "sumcols", "[", "None", ",", ":", "]", "*", "np", ".", "ones", "(", "sumcols", ".", "shape", ")", "[", ":", ",", "None", "]", "s", "[", "maskcols", "]", "=", "1.", "*", "s", "[", "maskcols", "]", "/", "sums_col", "[", "maskcols", "]", "elif", "norm", "==", "\"mirnylib\"", ":", "try", ":", "from", "mirnylib", "import", "numutils", "as", "ntls", "s", "=", "ntls", ".", "iterativeCorrection", "(", "s", ",", "iterations", ")", "[", "0", "]", "except", "ImportError", "as", "e", ":", "print", "(", "str", "(", "e", ")", ")", "print", "(", "\"I can't find mirnylib.\"", ")", "print", "(", "\"Please install it from \"", "\"https://bitbucket.org/mirnylab/mirnylib\"", ")", "print", "(", "\"I will use default norm as fallback.\"", ")", "return", "normalize_dense", "(", "M", ",", "order", "=", "order", ",", "iterations", "=", "iterations", ")", "elif", "norm", "==", "\"frag\"", ":", "for", "_", "in", "range", "(", "1", ",", "iterations", ")", ":", "s_norm_x", "=", "np", ".", "linalg", ".", "norm", "(", "s", ",", "ord", "=", "floatorder", ",", "axis", "=", "0", ")", "s_norm_y", "=", "np", ".", "linalg", ".", "norm", "(", "s", ",", "ord", "=", "floatorder", ",", "axis", "=", "1", ")", "s_norm", "=", "np", ".", "tensordot", "(", "s_norm_x", ",", "s_norm_y", ",", "axes", "=", "0", ")", "s", "[", "s_norm", "!=", "0", "]", "=", "1.", "*", "s", "[", "s_norm", "!=", "0", "]", "/", "s_norm", "[", "s_norm", "!=", "0", "]", "elif", "norm", "==", "\"global\"", ":", "s_norm", "=", "np", ".", "linalg", ".", "norm", "(", "s", ",", "ord", "=", "floatorder", ")", "s", "/=", "1.", "*", "s_norm", "elif", "callable", "(", "norm", ")", ":", "s", "=", "norm", "(", "M", ")", "else", ":", "print", "(", "\"Unknown norm. Returning input as fallback\"", ")", "return", "(", "s", "+", "s", ".", "T", ")", "/", "2" ]
Apply one of the many normalization types to input dense matrix. Will also apply any callable norms such as a user-made or a lambda function.
[ "Apply", "one", "of", "the", "many", "normalization", "types", "to", "input", "dense", "matrix", ".", "Will", "also", "apply", "any", "callable", "norms", "such", "as", "a", "user", "-", "made", "or", "a", "lambda", "function", "." ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L389-L440
train
koszullab/metaTOR
metator/scripts/hicstuff.py
normalize_sparse
def normalize_sparse(M, norm="frag", order=1, iterations=3): """Applies a normalization type to a sparse matrix. """ try: from scipy.sparse import csr_matrix except ImportError as e: print(str(e)) print("I am peforming dense normalization by default.") return normalize_dense(M.todense()) r = csr_matrix(M) if norm == "SCN": for _ in range(1, iterations): row_sums = np.array(r.sum(axis=1)).flatten() col_sums = np.array(r.sum(axis=0)).flatten() row_indices, col_indices = r.nonzero() r.data /= row_sums[row_indices] * col_sums[col_indices] elif norm == "global": try: from scipy.sparse import linalg r = linalg.norm(M, ord=order) except (ImportError, AttributeError) as e: print(str(e)) print("I can't import linalg tools for sparse matrices.") print("Please upgrade your scipy version to 0.16.0.") elif callable(norm): r = norm(M) else: print("Unknown norm. Returning input as fallback") return r
python
def normalize_sparse(M, norm="frag", order=1, iterations=3): """Applies a normalization type to a sparse matrix. """ try: from scipy.sparse import csr_matrix except ImportError as e: print(str(e)) print("I am peforming dense normalization by default.") return normalize_dense(M.todense()) r = csr_matrix(M) if norm == "SCN": for _ in range(1, iterations): row_sums = np.array(r.sum(axis=1)).flatten() col_sums = np.array(r.sum(axis=0)).flatten() row_indices, col_indices = r.nonzero() r.data /= row_sums[row_indices] * col_sums[col_indices] elif norm == "global": try: from scipy.sparse import linalg r = linalg.norm(M, ord=order) except (ImportError, AttributeError) as e: print(str(e)) print("I can't import linalg tools for sparse matrices.") print("Please upgrade your scipy version to 0.16.0.") elif callable(norm): r = norm(M) else: print("Unknown norm. Returning input as fallback") return r
[ "def", "normalize_sparse", "(", "M", ",", "norm", "=", "\"frag\"", ",", "order", "=", "1", ",", "iterations", "=", "3", ")", ":", "try", ":", "from", "scipy", ".", "sparse", "import", "csr_matrix", "except", "ImportError", "as", "e", ":", "print", "(", "str", "(", "e", ")", ")", "print", "(", "\"I am peforming dense normalization by default.\"", ")", "return", "normalize_dense", "(", "M", ".", "todense", "(", ")", ")", "r", "=", "csr_matrix", "(", "M", ")", "if", "norm", "==", "\"SCN\"", ":", "for", "_", "in", "range", "(", "1", ",", "iterations", ")", ":", "row_sums", "=", "np", ".", "array", "(", "r", ".", "sum", "(", "axis", "=", "1", ")", ")", ".", "flatten", "(", ")", "col_sums", "=", "np", ".", "array", "(", "r", ".", "sum", "(", "axis", "=", "0", ")", ")", ".", "flatten", "(", ")", "row_indices", ",", "col_indices", "=", "r", ".", "nonzero", "(", ")", "r", ".", "data", "/=", "row_sums", "[", "row_indices", "]", "*", "col_sums", "[", "col_indices", "]", "elif", "norm", "==", "\"global\"", ":", "try", ":", "from", "scipy", ".", "sparse", "import", "linalg", "r", "=", "linalg", ".", "norm", "(", "M", ",", "ord", "=", "order", ")", "except", "(", "ImportError", ",", "AttributeError", ")", "as", "e", ":", "print", "(", "str", "(", "e", ")", ")", "print", "(", "\"I can't import linalg tools for sparse matrices.\"", ")", "print", "(", "\"Please upgrade your scipy version to 0.16.0.\"", ")", "elif", "callable", "(", "norm", ")", ":", "r", "=", "norm", "(", "M", ")", "else", ":", "print", "(", "\"Unknown norm. Returning input as fallback\"", ")", "return", "r" ]
Applies a normalization type to a sparse matrix.
[ "Applies", "a", "normalization", "type", "to", "a", "sparse", "matrix", "." ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L443-L476
train
koszullab/metaTOR
metator/scripts/hicstuff.py
GC_wide
def GC_wide(genome, window=1000): """Compute GC across a window of given length. :note: Requires Biopython """ GC = [] from Bio import SeqIO with open(genome) as handle: sequence = "".join([str(record.seq) for record in SeqIO.parse(handle, "fasta")]) n = len(sequence) for i in range(0, n, window): portion = sequence[i:min(i + window, n)] GC.append(GC_partial(portion)) return GC
python
def GC_wide(genome, window=1000): """Compute GC across a window of given length. :note: Requires Biopython """ GC = [] from Bio import SeqIO with open(genome) as handle: sequence = "".join([str(record.seq) for record in SeqIO.parse(handle, "fasta")]) n = len(sequence) for i in range(0, n, window): portion = sequence[i:min(i + window, n)] GC.append(GC_partial(portion)) return GC
[ "def", "GC_wide", "(", "genome", ",", "window", "=", "1000", ")", ":", "GC", "=", "[", "]", "from", "Bio", "import", "SeqIO", "with", "open", "(", "genome", ")", "as", "handle", ":", "sequence", "=", "\"\"", ".", "join", "(", "[", "str", "(", "record", ".", "seq", ")", "for", "record", "in", "SeqIO", ".", "parse", "(", "handle", ",", "\"fasta\"", ")", "]", ")", "n", "=", "len", "(", "sequence", ")", "for", "i", "in", "range", "(", "0", ",", "n", ",", "window", ")", ":", "portion", "=", "sequence", "[", "i", ":", "min", "(", "i", "+", "window", ",", "n", ")", "]", "GC", ".", "append", "(", "GC_partial", "(", "portion", ")", ")", "return", "GC" ]
Compute GC across a window of given length. :note: Requires Biopython
[ "Compute", "GC", "across", "a", "window", "of", "given", "length", "." ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L492-L509
train
koszullab/metaTOR
metator/scripts/hicstuff.py
to_dade_matrix
def to_dade_matrix(M, annotations="", filename=None): """Returns a Dade matrix from input numpy matrix. Any annotations are added as header. If filename is provided and valid, said matrix is also saved as text. """ n, m = M.shape A = np.zeros((n + 1, m + 1)) A[1:, 1:] = M if not annotations: annotations = np.array(["" for _ in n], dtype=str) A[0, :] = annotations A[:, 0] = annotations.T if filename: try: np.savetxt(filename, A, fmt='%i') print("I saved input matrix in dade format as " + str(filename)) except ValueError as e: print("I couldn't save input matrix.") print(str(e)) finally: return A return A
python
def to_dade_matrix(M, annotations="", filename=None): """Returns a Dade matrix from input numpy matrix. Any annotations are added as header. If filename is provided and valid, said matrix is also saved as text. """ n, m = M.shape A = np.zeros((n + 1, m + 1)) A[1:, 1:] = M if not annotations: annotations = np.array(["" for _ in n], dtype=str) A[0, :] = annotations A[:, 0] = annotations.T if filename: try: np.savetxt(filename, A, fmt='%i') print("I saved input matrix in dade format as " + str(filename)) except ValueError as e: print("I couldn't save input matrix.") print(str(e)) finally: return A return A
[ "def", "to_dade_matrix", "(", "M", ",", "annotations", "=", "\"\"", ",", "filename", "=", "None", ")", ":", "n", ",", "m", "=", "M", ".", "shape", "A", "=", "np", ".", "zeros", "(", "(", "n", "+", "1", ",", "m", "+", "1", ")", ")", "A", "[", "1", ":", ",", "1", ":", "]", "=", "M", "if", "not", "annotations", ":", "annotations", "=", "np", ".", "array", "(", "[", "\"\"", "for", "_", "in", "n", "]", ",", "dtype", "=", "str", ")", "A", "[", "0", ",", ":", "]", "=", "annotations", "A", "[", ":", ",", "0", "]", "=", "annotations", ".", "T", "if", "filename", ":", "try", ":", "np", ".", "savetxt", "(", "filename", ",", "A", ",", "fmt", "=", "'%i'", ")", "print", "(", "\"I saved input matrix in dade format as \"", "+", "str", "(", "filename", ")", ")", "except", "ValueError", "as", "e", ":", "print", "(", "\"I couldn't save input matrix.\"", ")", "print", "(", "str", "(", "e", ")", ")", "finally", ":", "return", "A", "return", "A" ]
Returns a Dade matrix from input numpy matrix. Any annotations are added as header. If filename is provided and valid, said matrix is also saved as text.
[ "Returns", "a", "Dade", "matrix", "from", "input", "numpy", "matrix", ".", "Any", "annotations", "are", "added", "as", "header", ".", "If", "filename", "is", "provided", "and", "valid", "said", "matrix", "is", "also", "saved", "as", "text", "." ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L678-L701
train
koszullab/metaTOR
metator/scripts/hicstuff.py
largest_connected_component
def largest_connected_component(matrix): """Compute the adjacency matrix of the largest connected component of the graph whose input matrix is adjacent. """ try: import scipy.sparse n, components = scipy.sparse.csgraph.connected_components( matrix, directed=False) print("I found " + str(n) + " connected components.") component_dist = collections.Counter(components) print("Distribution of components: " + str(component_dist)) most_common, _ = component_dist.most_common(1)[0] ilcc = (components == most_common) return matrix[:, ilcc][ilcc] except ImportError as e: print("I couldn't find scipy which is needed for graph routines.") print(str(e)) print("Returning input matrix as fallback.") return matrix
python
def largest_connected_component(matrix): """Compute the adjacency matrix of the largest connected component of the graph whose input matrix is adjacent. """ try: import scipy.sparse n, components = scipy.sparse.csgraph.connected_components( matrix, directed=False) print("I found " + str(n) + " connected components.") component_dist = collections.Counter(components) print("Distribution of components: " + str(component_dist)) most_common, _ = component_dist.most_common(1)[0] ilcc = (components == most_common) return matrix[:, ilcc][ilcc] except ImportError as e: print("I couldn't find scipy which is needed for graph routines.") print(str(e)) print("Returning input matrix as fallback.") return matrix
[ "def", "largest_connected_component", "(", "matrix", ")", ":", "try", ":", "import", "scipy", ".", "sparse", "n", ",", "components", "=", "scipy", ".", "sparse", ".", "csgraph", ".", "connected_components", "(", "matrix", ",", "directed", "=", "False", ")", "print", "(", "\"I found \"", "+", "str", "(", "n", ")", "+", "\" connected components.\"", ")", "component_dist", "=", "collections", ".", "Counter", "(", "components", ")", "print", "(", "\"Distribution of components: \"", "+", "str", "(", "component_dist", ")", ")", "most_common", ",", "_", "=", "component_dist", ".", "most_common", "(", "1", ")", "[", "0", "]", "ilcc", "=", "(", "components", "==", "most_common", ")", "return", "matrix", "[", ":", ",", "ilcc", "]", "[", "ilcc", "]", "except", "ImportError", "as", "e", ":", "print", "(", "\"I couldn't find scipy which is needed for graph routines.\"", ")", "print", "(", "str", "(", "e", ")", ")", "print", "(", "\"Returning input matrix as fallback.\"", ")", "return", "matrix" ]
Compute the adjacency matrix of the largest connected component of the graph whose input matrix is adjacent.
[ "Compute", "the", "adjacency", "matrix", "of", "the", "largest", "connected", "component", "of", "the", "graph", "whose", "input", "matrix", "is", "adjacent", "." ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L736-L756
train
koszullab/metaTOR
metator/scripts/hicstuff.py
to_structure
def to_structure(matrix, alpha=1): """Compute best matching 3D genome structure from underlying input matrix using ShRec3D-derived method from Lesne et al., 2014. Link: https://www.ncbi.nlm.nih.gov/pubmed/25240436 The method performs two steps: first compute distance matrix by treating contact data as an adjacency graph (of weights equal to a power law function of the data), then embed the resulting distance matrix into 3D space. The alpha parameter influences the weighting of contacts: if alpha < 1 long-range interactions are prioritized; if alpha >> 1 short-range interactions have more weight wahen computing the distance matrix. """ connected = largest_connected_component(matrix) distances = to_distance(connected, alpha) n, m = connected.shape bary = np.sum(np.triu(distances, 1)) / (n**2) # barycenters d = np.array(np.sum(distances**2, 0) / n - bary) # distances to origin gram = np.array([(d[i] + d[j] - distances[i][j]**2) / 2 for i, j in itertools.product(range(n), range(m))]).reshape(n, m) normalized = gram / np.linalg.norm(gram, 'fro') try: symmetric = np.array((normalized + normalized.T) / 2, dtype=np.longfloat) # just in case except AttributeError: symmetric = np.array((normalized + normalized.T) / 2) from scipy import linalg eigen_values, eigen_vectors = linalg.eigh(symmetric) if not (eigen_values >= 0).all(): warnings.warn("Negative eigen values were found.") idx = eigen_values.argsort()[-3:][::-1] values = eigen_values[idx] vectors = eigen_vectors[:, idx] coordinates = vectors * np.sqrt(values) return coordinates
python
def to_structure(matrix, alpha=1): """Compute best matching 3D genome structure from underlying input matrix using ShRec3D-derived method from Lesne et al., 2014. Link: https://www.ncbi.nlm.nih.gov/pubmed/25240436 The method performs two steps: first compute distance matrix by treating contact data as an adjacency graph (of weights equal to a power law function of the data), then embed the resulting distance matrix into 3D space. The alpha parameter influences the weighting of contacts: if alpha < 1 long-range interactions are prioritized; if alpha >> 1 short-range interactions have more weight wahen computing the distance matrix. """ connected = largest_connected_component(matrix) distances = to_distance(connected, alpha) n, m = connected.shape bary = np.sum(np.triu(distances, 1)) / (n**2) # barycenters d = np.array(np.sum(distances**2, 0) / n - bary) # distances to origin gram = np.array([(d[i] + d[j] - distances[i][j]**2) / 2 for i, j in itertools.product(range(n), range(m))]).reshape(n, m) normalized = gram / np.linalg.norm(gram, 'fro') try: symmetric = np.array((normalized + normalized.T) / 2, dtype=np.longfloat) # just in case except AttributeError: symmetric = np.array((normalized + normalized.T) / 2) from scipy import linalg eigen_values, eigen_vectors = linalg.eigh(symmetric) if not (eigen_values >= 0).all(): warnings.warn("Negative eigen values were found.") idx = eigen_values.argsort()[-3:][::-1] values = eigen_values[idx] vectors = eigen_vectors[:, idx] coordinates = vectors * np.sqrt(values) return coordinates
[ "def", "to_structure", "(", "matrix", ",", "alpha", "=", "1", ")", ":", "connected", "=", "largest_connected_component", "(", "matrix", ")", "distances", "=", "to_distance", "(", "connected", ",", "alpha", ")", "n", ",", "m", "=", "connected", ".", "shape", "bary", "=", "np", ".", "sum", "(", "np", ".", "triu", "(", "distances", ",", "1", ")", ")", "/", "(", "n", "**", "2", ")", "# barycenters", "d", "=", "np", ".", "array", "(", "np", ".", "sum", "(", "distances", "**", "2", ",", "0", ")", "/", "n", "-", "bary", ")", "# distances to origin", "gram", "=", "np", ".", "array", "(", "[", "(", "d", "[", "i", "]", "+", "d", "[", "j", "]", "-", "distances", "[", "i", "]", "[", "j", "]", "**", "2", ")", "/", "2", "for", "i", ",", "j", "in", "itertools", ".", "product", "(", "range", "(", "n", ")", ",", "range", "(", "m", ")", ")", "]", ")", ".", "reshape", "(", "n", ",", "m", ")", "normalized", "=", "gram", "/", "np", ".", "linalg", ".", "norm", "(", "gram", ",", "'fro'", ")", "try", ":", "symmetric", "=", "np", ".", "array", "(", "(", "normalized", "+", "normalized", ".", "T", ")", "/", "2", ",", "dtype", "=", "np", ".", "longfloat", ")", "# just in case", "except", "AttributeError", ":", "symmetric", "=", "np", ".", "array", "(", "(", "normalized", "+", "normalized", ".", "T", ")", "/", "2", ")", "from", "scipy", "import", "linalg", "eigen_values", ",", "eigen_vectors", "=", "linalg", ".", "eigh", "(", "symmetric", ")", "if", "not", "(", "eigen_values", ">=", "0", ")", ".", "all", "(", ")", ":", "warnings", ".", "warn", "(", "\"Negative eigen values were found.\"", ")", "idx", "=", "eigen_values", ".", "argsort", "(", ")", "[", "-", "3", ":", "]", "[", ":", ":", "-", "1", "]", "values", "=", "eigen_values", "[", "idx", "]", "vectors", "=", "eigen_vectors", "[", ":", ",", "idx", "]", "coordinates", "=", "vectors", "*", "np", ".", "sqrt", "(", "values", ")", "return", "coordinates" ]
Compute best matching 3D genome structure from underlying input matrix using ShRec3D-derived method from Lesne et al., 2014. Link: https://www.ncbi.nlm.nih.gov/pubmed/25240436 The method performs two steps: first compute distance matrix by treating contact data as an adjacency graph (of weights equal to a power law function of the data), then embed the resulting distance matrix into 3D space. The alpha parameter influences the weighting of contacts: if alpha < 1 long-range interactions are prioritized; if alpha >> 1 short-range interactions have more weight wahen computing the distance matrix.
[ "Compute", "best", "matching", "3D", "genome", "structure", "from", "underlying", "input", "matrix", "using", "ShRec3D", "-", "derived", "method", "from", "Lesne", "et", "al", ".", "2014", "." ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L759-L798
train
koszullab/metaTOR
metator/scripts/hicstuff.py
get_missing_bins
def get_missing_bins(original, trimmed): """Retrieve indices of a trimmed matrix with respect to the original matrix. Fairly fast but is only correct if diagonal values are different, which is always the case in practice. """ original_diag = np.diag(original) trimmed_diag = np.diag(trimmed) index = [] m = min(original.shape) for j in range(min(trimmed.shape)): k = 0 while original_diag[j + k] != trimmed_diag[j] and k < 2 * m: k += 1 index.append(k + j) return np.array(index)
python
def get_missing_bins(original, trimmed): """Retrieve indices of a trimmed matrix with respect to the original matrix. Fairly fast but is only correct if diagonal values are different, which is always the case in practice. """ original_diag = np.diag(original) trimmed_diag = np.diag(trimmed) index = [] m = min(original.shape) for j in range(min(trimmed.shape)): k = 0 while original_diag[j + k] != trimmed_diag[j] and k < 2 * m: k += 1 index.append(k + j) return np.array(index)
[ "def", "get_missing_bins", "(", "original", ",", "trimmed", ")", ":", "original_diag", "=", "np", ".", "diag", "(", "original", ")", "trimmed_diag", "=", "np", ".", "diag", "(", "trimmed", ")", "index", "=", "[", "]", "m", "=", "min", "(", "original", ".", "shape", ")", "for", "j", "in", "range", "(", "min", "(", "trimmed", ".", "shape", ")", ")", ":", "k", "=", "0", "while", "original_diag", "[", "j", "+", "k", "]", "!=", "trimmed_diag", "[", "j", "]", "and", "k", "<", "2", "*", "m", ":", "k", "+=", "1", "index", ".", "append", "(", "k", "+", "j", ")", "return", "np", ".", "array", "(", "index", ")" ]
Retrieve indices of a trimmed matrix with respect to the original matrix. Fairly fast but is only correct if diagonal values are different, which is always the case in practice.
[ "Retrieve", "indices", "of", "a", "trimmed", "matrix", "with", "respect", "to", "the", "original", "matrix", ".", "Fairly", "fast", "but", "is", "only", "correct", "if", "diagonal", "values", "are", "different", "which", "is", "always", "the", "case", "in", "practice", "." ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L801-L816
train
koszullab/metaTOR
metator/scripts/hicstuff.py
distance_to_contact
def distance_to_contact(D, alpha=1): """Compute contact matrix from input distance matrix. Distance values of zeroes are given the largest contact count otherwise inferred non-zero distance values. """ if callable(alpha): distance_function = alpha else: try: a = np.float64(alpha) def distance_function(x): return 1 / (x ** (1 / a)) except TypeError: print("Alpha parameter must be callable or an array-like") raise except ZeroDivisionError: raise ValueError("Alpha parameter must be non-zero") m = np.max(distance_function(D[D != 0])) M = np.zeros(D.shape) M[D != 0] = distance_function(D[D != 0]) M[D == 0] = m return M
python
def distance_to_contact(D, alpha=1): """Compute contact matrix from input distance matrix. Distance values of zeroes are given the largest contact count otherwise inferred non-zero distance values. """ if callable(alpha): distance_function = alpha else: try: a = np.float64(alpha) def distance_function(x): return 1 / (x ** (1 / a)) except TypeError: print("Alpha parameter must be callable or an array-like") raise except ZeroDivisionError: raise ValueError("Alpha parameter must be non-zero") m = np.max(distance_function(D[D != 0])) M = np.zeros(D.shape) M[D != 0] = distance_function(D[D != 0]) M[D == 0] = m return M
[ "def", "distance_to_contact", "(", "D", ",", "alpha", "=", "1", ")", ":", "if", "callable", "(", "alpha", ")", ":", "distance_function", "=", "alpha", "else", ":", "try", ":", "a", "=", "np", ".", "float64", "(", "alpha", ")", "def", "distance_function", "(", "x", ")", ":", "return", "1", "/", "(", "x", "**", "(", "1", "/", "a", ")", ")", "except", "TypeError", ":", "print", "(", "\"Alpha parameter must be callable or an array-like\"", ")", "raise", "except", "ZeroDivisionError", ":", "raise", "ValueError", "(", "\"Alpha parameter must be non-zero\"", ")", "m", "=", "np", ".", "max", "(", "distance_function", "(", "D", "[", "D", "!=", "0", "]", ")", ")", "M", "=", "np", ".", "zeros", "(", "D", ".", "shape", ")", "M", "[", "D", "!=", "0", "]", "=", "distance_function", "(", "D", "[", "D", "!=", "0", "]", ")", "M", "[", "D", "==", "0", "]", "=", "m", "return", "M" ]
Compute contact matrix from input distance matrix. Distance values of zeroes are given the largest contact count otherwise inferred non-zero distance values.
[ "Compute", "contact", "matrix", "from", "input", "distance", "matrix", ".", "Distance", "values", "of", "zeroes", "are", "given", "the", "largest", "contact", "count", "otherwise", "inferred", "non", "-", "zero", "distance", "values", "." ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L918-L942
train
koszullab/metaTOR
metator/scripts/hicstuff.py
pdb_to_structure
def pdb_to_structure(filename): """Import a structure object from a PDB file. """ try: from Bio.PDB import PDB except ImportError: print("I can't import Biopython which is needed to handle PDB files.") raise p = PDB.PDBParser() structure = p.get_structure('S', filename) for _ in structure.get_chains(): atoms = [np.array(atom.get_coord()) for atom in structure.get_atoms()] return atoms
python
def pdb_to_structure(filename): """Import a structure object from a PDB file. """ try: from Bio.PDB import PDB except ImportError: print("I can't import Biopython which is needed to handle PDB files.") raise p = PDB.PDBParser() structure = p.get_structure('S', filename) for _ in structure.get_chains(): atoms = [np.array(atom.get_coord()) for atom in structure.get_atoms()] return atoms
[ "def", "pdb_to_structure", "(", "filename", ")", ":", "try", ":", "from", "Bio", ".", "PDB", "import", "PDB", "except", "ImportError", ":", "print", "(", "\"I can't import Biopython which is needed to handle PDB files.\"", ")", "raise", "p", "=", "PDB", ".", "PDBParser", "(", ")", "structure", "=", "p", ".", "get_structure", "(", "'S'", ",", "filename", ")", "for", "_", "in", "structure", ".", "get_chains", "(", ")", ":", "atoms", "=", "[", "np", ".", "array", "(", "atom", ".", "get_coord", "(", ")", ")", "for", "atom", "in", "structure", ".", "get_atoms", "(", ")", "]", "return", "atoms" ]
Import a structure object from a PDB file.
[ "Import", "a", "structure", "object", "from", "a", "PDB", "file", "." ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L980-L993
train
koszullab/metaTOR
metator/scripts/hicstuff.py
positions_to_contigs
def positions_to_contigs(positions): """Flattens and converts a positions array to a contigs array, if applicable. """ if isinstance(positions, np.ndarray): flattened_positions = positions.flatten() else: try: flattened_positions = np.array( [pos for contig in positions for pos in contig]) except TypeError: flattened_positions = np.array(positions) if (np.diff(positions) == 0).any() and not (0 in set(positions)): warnings.warn("I detected identical consecutive nonzero values.") return positions n = len(flattened_positions) contigs = np.ones(n) counter = 0 for i in range(1, n): if positions[i] == 0: counter += 1 contigs[i] += counter else: contigs[i] = contigs[i - 1] return contigs
python
def positions_to_contigs(positions): """Flattens and converts a positions array to a contigs array, if applicable. """ if isinstance(positions, np.ndarray): flattened_positions = positions.flatten() else: try: flattened_positions = np.array( [pos for contig in positions for pos in contig]) except TypeError: flattened_positions = np.array(positions) if (np.diff(positions) == 0).any() and not (0 in set(positions)): warnings.warn("I detected identical consecutive nonzero values.") return positions n = len(flattened_positions) contigs = np.ones(n) counter = 0 for i in range(1, n): if positions[i] == 0: counter += 1 contigs[i] += counter else: contigs[i] = contigs[i - 1] return contigs
[ "def", "positions_to_contigs", "(", "positions", ")", ":", "if", "isinstance", "(", "positions", ",", "np", ".", "ndarray", ")", ":", "flattened_positions", "=", "positions", ".", "flatten", "(", ")", "else", ":", "try", ":", "flattened_positions", "=", "np", ".", "array", "(", "[", "pos", "for", "contig", "in", "positions", "for", "pos", "in", "contig", "]", ")", "except", "TypeError", ":", "flattened_positions", "=", "np", ".", "array", "(", "positions", ")", "if", "(", "np", ".", "diff", "(", "positions", ")", "==", "0", ")", ".", "any", "(", ")", "and", "not", "(", "0", "in", "set", "(", "positions", ")", ")", ":", "warnings", ".", "warn", "(", "\"I detected identical consecutive nonzero values.\"", ")", "return", "positions", "n", "=", "len", "(", "flattened_positions", ")", "contigs", "=", "np", ".", "ones", "(", "n", ")", "counter", "=", "0", "for", "i", "in", "range", "(", "1", ",", "n", ")", ":", "if", "positions", "[", "i", "]", "==", "0", ":", "counter", "+=", "1", "contigs", "[", "i", "]", "+=", "counter", "else", ":", "contigs", "[", "i", "]", "=", "contigs", "[", "i", "-", "1", "]", "return", "contigs" ]
Flattens and converts a positions array to a contigs array, if applicable.
[ "Flattens", "and", "converts", "a", "positions", "array", "to", "a", "contigs", "array", "if", "applicable", "." ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L1005-L1031
train
koszullab/metaTOR
metator/scripts/hicstuff.py
distance_diagonal_law
def distance_diagonal_law(matrix, positions=None): """Compute a distance law trend using the contact averages of equal distances. Specific positions can be supplied if needed. """ n = min(matrix.shape) if positions is None: return np.array([np.average(np.diagonal(matrix, j)) for j in range(n)]) else: contigs = positions_to_contigs(positions) def is_intra(i, j): return contigs[i] == contigs[j] max_intra_distance = max((len(contigs == u) for u in set(contigs))) intra_contacts = [] inter_contacts = [np.average(np.diagonal(matrix, j)) for j in range(max_intra_distance, n)] for j in range(max_intra_distance): D = np.diagonal(matrix, j) for i in range(len(D)): diagonal_intra = [] if is_intra(i, j): diagonal_intra.append(D[i]) # else: # diagonal_inter.append(D[i]) # inter_contacts.append(np.average(np.array(diagonal_inter))) intra_contacts.append(np.average(np.array(diagonal_intra))) intra_contacts.extend(inter_contacts) return [positions, np.array(intra_contacts)]
python
def distance_diagonal_law(matrix, positions=None): """Compute a distance law trend using the contact averages of equal distances. Specific positions can be supplied if needed. """ n = min(matrix.shape) if positions is None: return np.array([np.average(np.diagonal(matrix, j)) for j in range(n)]) else: contigs = positions_to_contigs(positions) def is_intra(i, j): return contigs[i] == contigs[j] max_intra_distance = max((len(contigs == u) for u in set(contigs))) intra_contacts = [] inter_contacts = [np.average(np.diagonal(matrix, j)) for j in range(max_intra_distance, n)] for j in range(max_intra_distance): D = np.diagonal(matrix, j) for i in range(len(D)): diagonal_intra = [] if is_intra(i, j): diagonal_intra.append(D[i]) # else: # diagonal_inter.append(D[i]) # inter_contacts.append(np.average(np.array(diagonal_inter))) intra_contacts.append(np.average(np.array(diagonal_intra))) intra_contacts.extend(inter_contacts) return [positions, np.array(intra_contacts)]
[ "def", "distance_diagonal_law", "(", "matrix", ",", "positions", "=", "None", ")", ":", "n", "=", "min", "(", "matrix", ".", "shape", ")", "if", "positions", "is", "None", ":", "return", "np", ".", "array", "(", "[", "np", ".", "average", "(", "np", ".", "diagonal", "(", "matrix", ",", "j", ")", ")", "for", "j", "in", "range", "(", "n", ")", "]", ")", "else", ":", "contigs", "=", "positions_to_contigs", "(", "positions", ")", "def", "is_intra", "(", "i", ",", "j", ")", ":", "return", "contigs", "[", "i", "]", "==", "contigs", "[", "j", "]", "max_intra_distance", "=", "max", "(", "(", "len", "(", "contigs", "==", "u", ")", "for", "u", "in", "set", "(", "contigs", ")", ")", ")", "intra_contacts", "=", "[", "]", "inter_contacts", "=", "[", "np", ".", "average", "(", "np", ".", "diagonal", "(", "matrix", ",", "j", ")", ")", "for", "j", "in", "range", "(", "max_intra_distance", ",", "n", ")", "]", "for", "j", "in", "range", "(", "max_intra_distance", ")", ":", "D", "=", "np", ".", "diagonal", "(", "matrix", ",", "j", ")", "for", "i", "in", "range", "(", "len", "(", "D", ")", ")", ":", "diagonal_intra", "=", "[", "]", "if", "is_intra", "(", "i", ",", "j", ")", ":", "diagonal_intra", ".", "append", "(", "D", "[", "i", "]", ")", "# else:", "# diagonal_inter.append(D[i])", "# inter_contacts.append(np.average(np.array(diagonal_inter)))", "intra_contacts", ".", "append", "(", "np", ".", "average", "(", "np", ".", "array", "(", "diagonal_intra", ")", ")", ")", "intra_contacts", ".", "extend", "(", "inter_contacts", ")", "return", "[", "positions", ",", "np", ".", "array", "(", "intra_contacts", ")", "]" ]
Compute a distance law trend using the contact averages of equal distances. Specific positions can be supplied if needed.
[ "Compute", "a", "distance", "law", "trend", "using", "the", "contact", "averages", "of", "equal", "distances", ".", "Specific", "positions", "can", "be", "supplied", "if", "needed", "." ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L1034-L1066
train
koszullab/metaTOR
metator/scripts/hicstuff.py
rippe_parameters
def rippe_parameters(matrix, positions, lengths=None, init=None, circ=False): """Estimate parameters from the model described in Rippe et al., 2001. """ n, _ = matrix.shape if lengths is None: lengths = np.abs(np.diff(positions)) measurements, bins = [], [] for i in range(n): for j in range(1, i): mean_length = (lengths[i] + lengths[j]) / 2. if positions[i] < positions[j]: d = (((positions[j] - positions[i] - lengths[i]) + mean_length) / 1000.) else: d = (((positions[i] - positions[j] - lengths[j]) + mean_length) / 1000.) bins.append(np.abs(d)) measurements.append(matrix[i, j]) parameters = estimate_param_rippe(measurements, bins, init=init, circ=circ) print(parameters) return parameters[0]
python
def rippe_parameters(matrix, positions, lengths=None, init=None, circ=False): """Estimate parameters from the model described in Rippe et al., 2001. """ n, _ = matrix.shape if lengths is None: lengths = np.abs(np.diff(positions)) measurements, bins = [], [] for i in range(n): for j in range(1, i): mean_length = (lengths[i] + lengths[j]) / 2. if positions[i] < positions[j]: d = (((positions[j] - positions[i] - lengths[i]) + mean_length) / 1000.) else: d = (((positions[i] - positions[j] - lengths[j]) + mean_length) / 1000.) bins.append(np.abs(d)) measurements.append(matrix[i, j]) parameters = estimate_param_rippe(measurements, bins, init=init, circ=circ) print(parameters) return parameters[0]
[ "def", "rippe_parameters", "(", "matrix", ",", "positions", ",", "lengths", "=", "None", ",", "init", "=", "None", ",", "circ", "=", "False", ")", ":", "n", ",", "_", "=", "matrix", ".", "shape", "if", "lengths", "is", "None", ":", "lengths", "=", "np", ".", "abs", "(", "np", ".", "diff", "(", "positions", ")", ")", "measurements", ",", "bins", "=", "[", "]", ",", "[", "]", "for", "i", "in", "range", "(", "n", ")", ":", "for", "j", "in", "range", "(", "1", ",", "i", ")", ":", "mean_length", "=", "(", "lengths", "[", "i", "]", "+", "lengths", "[", "j", "]", ")", "/", "2.", "if", "positions", "[", "i", "]", "<", "positions", "[", "j", "]", ":", "d", "=", "(", "(", "(", "positions", "[", "j", "]", "-", "positions", "[", "i", "]", "-", "lengths", "[", "i", "]", ")", "+", "mean_length", ")", "/", "1000.", ")", "else", ":", "d", "=", "(", "(", "(", "positions", "[", "i", "]", "-", "positions", "[", "j", "]", "-", "lengths", "[", "j", "]", ")", "+", "mean_length", ")", "/", "1000.", ")", "bins", ".", "append", "(", "np", ".", "abs", "(", "d", ")", ")", "measurements", ".", "append", "(", "matrix", "[", "i", ",", "j", "]", ")", "parameters", "=", "estimate_param_rippe", "(", "measurements", ",", "bins", ",", "init", "=", "init", ",", "circ", "=", "circ", ")", "print", "(", "parameters", ")", "return", "parameters", "[", "0", "]" ]
Estimate parameters from the model described in Rippe et al., 2001.
[ "Estimate", "parameters", "from", "the", "model", "described", "in", "Rippe", "et", "al", ".", "2001", "." ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L1069-L1095
train
koszullab/metaTOR
metator/scripts/hicstuff.py
scalogram
def scalogram(M, circ=False): """Computes so-called 'scalograms' used to easily visualize contacts at different distance scales. Edge cases have been painstakingly taken care of. """ # Sanity checks if not type(M) is np.ndarray: M = np.array(M) if M.shape[0] != M.shape[1]: raise ValueError("Matrix is not square.") try: n = min(M.shape) except AttributeError: n = M.size N = np.zeros(M.shape) for i in range(n): for j in range(n): if i + j < n and i >= j: N[i, j] = M[i, i - j:i + j + 1].sum() elif circ and i + j < n and i < j: N[i, j] = M[i, i - j:].sum() + M[i, :i + j + 1].sum() elif circ and i >= j and i + j >= n: N[i, j] = M[i, i - j:].sum() + M[i, :i + j - n + 1].sum() elif circ and i < j and i + j >= n: N[i, j] = (M[i, i - j:].sum() + M[i, :].sum() + M[i, :i + j - n + 1].sum()) return N
python
def scalogram(M, circ=False): """Computes so-called 'scalograms' used to easily visualize contacts at different distance scales. Edge cases have been painstakingly taken care of. """ # Sanity checks if not type(M) is np.ndarray: M = np.array(M) if M.shape[0] != M.shape[1]: raise ValueError("Matrix is not square.") try: n = min(M.shape) except AttributeError: n = M.size N = np.zeros(M.shape) for i in range(n): for j in range(n): if i + j < n and i >= j: N[i, j] = M[i, i - j:i + j + 1].sum() elif circ and i + j < n and i < j: N[i, j] = M[i, i - j:].sum() + M[i, :i + j + 1].sum() elif circ and i >= j and i + j >= n: N[i, j] = M[i, i - j:].sum() + M[i, :i + j - n + 1].sum() elif circ and i < j and i + j >= n: N[i, j] = (M[i, i - j:].sum() + M[i, :].sum() + M[i, :i + j - n + 1].sum()) return N
[ "def", "scalogram", "(", "M", ",", "circ", "=", "False", ")", ":", "# Sanity checks", "if", "not", "type", "(", "M", ")", "is", "np", ".", "ndarray", ":", "M", "=", "np", ".", "array", "(", "M", ")", "if", "M", ".", "shape", "[", "0", "]", "!=", "M", ".", "shape", "[", "1", "]", ":", "raise", "ValueError", "(", "\"Matrix is not square.\"", ")", "try", ":", "n", "=", "min", "(", "M", ".", "shape", ")", "except", "AttributeError", ":", "n", "=", "M", ".", "size", "N", "=", "np", ".", "zeros", "(", "M", ".", "shape", ")", "for", "i", "in", "range", "(", "n", ")", ":", "for", "j", "in", "range", "(", "n", ")", ":", "if", "i", "+", "j", "<", "n", "and", "i", ">=", "j", ":", "N", "[", "i", ",", "j", "]", "=", "M", "[", "i", ",", "i", "-", "j", ":", "i", "+", "j", "+", "1", "]", ".", "sum", "(", ")", "elif", "circ", "and", "i", "+", "j", "<", "n", "and", "i", "<", "j", ":", "N", "[", "i", ",", "j", "]", "=", "M", "[", "i", ",", "i", "-", "j", ":", "]", ".", "sum", "(", ")", "+", "M", "[", "i", ",", ":", "i", "+", "j", "+", "1", "]", ".", "sum", "(", ")", "elif", "circ", "and", "i", ">=", "j", "and", "i", "+", "j", ">=", "n", ":", "N", "[", "i", ",", "j", "]", "=", "M", "[", "i", ",", "i", "-", "j", ":", "]", ".", "sum", "(", ")", "+", "M", "[", "i", ",", ":", "i", "+", "j", "-", "n", "+", "1", "]", ".", "sum", "(", ")", "elif", "circ", "and", "i", "<", "j", "and", "i", "+", "j", ">=", "n", ":", "N", "[", "i", ",", "j", "]", "=", "(", "M", "[", "i", ",", "i", "-", "j", ":", "]", ".", "sum", "(", ")", "+", "M", "[", "i", ",", ":", "]", ".", "sum", "(", ")", "+", "M", "[", "i", ",", ":", "i", "+", "j", "-", "n", "+", "1", "]", ".", "sum", "(", ")", ")", "return", "N" ]
Computes so-called 'scalograms' used to easily visualize contacts at different distance scales. Edge cases have been painstakingly taken care of.
[ "Computes", "so", "-", "called", "scalograms", "used", "to", "easily", "visualize", "contacts", "at", "different", "distance", "scales", ".", "Edge", "cases", "have", "been", "painstakingly", "taken", "care", "of", "." ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L1288-L1321
train
koszullab/metaTOR
metator/scripts/hicstuff.py
asd
def asd(M1, M2): """Compute a Fourier transform based distance between two matrices. Inspired from Galiez et al., 2015 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4535829/) """ from scipy.fftpack import fft2 spectra1 = np.abs(fft2(M1)) spectra2 = np.abs(fft2(M2)) return np.linalg.norm(spectra2 - spectra1)
python
def asd(M1, M2): """Compute a Fourier transform based distance between two matrices. Inspired from Galiez et al., 2015 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4535829/) """ from scipy.fftpack import fft2 spectra1 = np.abs(fft2(M1)) spectra2 = np.abs(fft2(M2)) return np.linalg.norm(spectra2 - spectra1)
[ "def", "asd", "(", "M1", ",", "M2", ")", ":", "from", "scipy", ".", "fftpack", "import", "fft2", "spectra1", "=", "np", ".", "abs", "(", "fft2", "(", "M1", ")", ")", "spectra2", "=", "np", ".", "abs", "(", "fft2", "(", "M2", ")", ")", "return", "np", ".", "linalg", ".", "norm", "(", "spectra2", "-", "spectra1", ")" ]
Compute a Fourier transform based distance between two matrices. Inspired from Galiez et al., 2015 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4535829/)
[ "Compute", "a", "Fourier", "transform", "based", "distance", "between", "two", "matrices", "." ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L1324-L1336
train
koszullab/metaTOR
metator/scripts/hicstuff.py
remove_intra
def remove_intra(M, contigs): """Remove intrachromosomal contacts Given a contact map and a list attributing each position to a given chromosome, set all contacts within each chromosome or contig to zero. Useful to perform calculations on interchromosomal contacts only. Parameters ---------- M : array_like The initial contact map contigs : list or array_like A 1D array whose value at index i reflect the contig label of the row i in the matrix M. The length of the array must be equal to the (identical) shape value of the matrix. Returns ------- N : numpy.ndarray The output contact map with no intrachromosomal contacts """ N = np.copy(M) n = len(N) assert n == len(contigs) # Naive implmentation for now for (i, j) in itertools.product(range(n), range(n)): if contigs[i] == contigs[j]: N[i, j] = 0 return N
python
def remove_intra(M, contigs): """Remove intrachromosomal contacts Given a contact map and a list attributing each position to a given chromosome, set all contacts within each chromosome or contig to zero. Useful to perform calculations on interchromosomal contacts only. Parameters ---------- M : array_like The initial contact map contigs : list or array_like A 1D array whose value at index i reflect the contig label of the row i in the matrix M. The length of the array must be equal to the (identical) shape value of the matrix. Returns ------- N : numpy.ndarray The output contact map with no intrachromosomal contacts """ N = np.copy(M) n = len(N) assert n == len(contigs) # Naive implmentation for now for (i, j) in itertools.product(range(n), range(n)): if contigs[i] == contigs[j]: N[i, j] = 0 return N
[ "def", "remove_intra", "(", "M", ",", "contigs", ")", ":", "N", "=", "np", ".", "copy", "(", "M", ")", "n", "=", "len", "(", "N", ")", "assert", "n", "==", "len", "(", "contigs", ")", "# Naive implmentation for now", "for", "(", "i", ",", "j", ")", "in", "itertools", ".", "product", "(", "range", "(", "n", ")", ",", "range", "(", "n", ")", ")", ":", "if", "contigs", "[", "i", "]", "==", "contigs", "[", "j", "]", ":", "N", "[", "i", ",", "j", "]", "=", "0", "return", "N" ]
Remove intrachromosomal contacts Given a contact map and a list attributing each position to a given chromosome, set all contacts within each chromosome or contig to zero. Useful to perform calculations on interchromosomal contacts only. Parameters ---------- M : array_like The initial contact map contigs : list or array_like A 1D array whose value at index i reflect the contig label of the row i in the matrix M. The length of the array must be equal to the (identical) shape value of the matrix. Returns ------- N : numpy.ndarray The output contact map with no intrachromosomal contacts
[ "Remove", "intrachromosomal", "contacts" ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L1378-L1412
train
koszullab/metaTOR
metator/scripts/hicstuff.py
positions_to_contigs
def positions_to_contigs(positions): """Label contigs according to relative positions Given a list of positions, return an ordered list of labels reflecting where the positions array started over (and presumably a new contig began). Parameters ---------- positions : list or array_like A piece-wise ordered list of integers representing positions Returns ------- contig_labels : numpy.ndarray The list of contig labels """ contig_labels = np.zeros_like(positions) contig_index = 0 for i, p in enumerate(positions): if p == 0: contig_index += 1 contig_labels[i] = contig_index return contig_labels
python
def positions_to_contigs(positions): """Label contigs according to relative positions Given a list of positions, return an ordered list of labels reflecting where the positions array started over (and presumably a new contig began). Parameters ---------- positions : list or array_like A piece-wise ordered list of integers representing positions Returns ------- contig_labels : numpy.ndarray The list of contig labels """ contig_labels = np.zeros_like(positions) contig_index = 0 for i, p in enumerate(positions): if p == 0: contig_index += 1 contig_labels[i] = contig_index return contig_labels
[ "def", "positions_to_contigs", "(", "positions", ")", ":", "contig_labels", "=", "np", ".", "zeros_like", "(", "positions", ")", "contig_index", "=", "0", "for", "i", ",", "p", "in", "enumerate", "(", "positions", ")", ":", "if", "p", "==", "0", ":", "contig_index", "+=", "1", "contig_labels", "[", "i", "]", "=", "contig_index", "return", "contig_labels" ]
Label contigs according to relative positions Given a list of positions, return an ordered list of labels reflecting where the positions array started over (and presumably a new contig began). Parameters ---------- positions : list or array_like A piece-wise ordered list of integers representing positions Returns ------- contig_labels : numpy.ndarray The list of contig labels
[ "Label", "contigs", "according", "to", "relative", "positions" ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L1452-L1480
train
koszullab/metaTOR
metator/scripts/hicstuff.py
contigs_to_positions
def contigs_to_positions(contigs, binning=10000): """Build positions from contig labels From a list of contig labels and a binning parameter, build a list of positions that's essentially a concatenation of linspaces with step equal to the binning. Parameters ---------- contigs : list or array_like The list of contig labels, must be sorted. binning : int, optional The step for the list of positions. Default is 10000. Returns ------- positions : numpy.ndarray The piece-wise sorted list of positions """ positions = np.zeros_like(contigs) index = 0 for _, chunk in itertools.groubpy(contigs): l = len(chunk) positions[index : index + l] = np.arange(list(chunk)) * binning index += l return positions
python
def contigs_to_positions(contigs, binning=10000): """Build positions from contig labels From a list of contig labels and a binning parameter, build a list of positions that's essentially a concatenation of linspaces with step equal to the binning. Parameters ---------- contigs : list or array_like The list of contig labels, must be sorted. binning : int, optional The step for the list of positions. Default is 10000. Returns ------- positions : numpy.ndarray The piece-wise sorted list of positions """ positions = np.zeros_like(contigs) index = 0 for _, chunk in itertools.groubpy(contigs): l = len(chunk) positions[index : index + l] = np.arange(list(chunk)) * binning index += l return positions
[ "def", "contigs_to_positions", "(", "contigs", ",", "binning", "=", "10000", ")", ":", "positions", "=", "np", ".", "zeros_like", "(", "contigs", ")", "index", "=", "0", "for", "_", ",", "chunk", "in", "itertools", ".", "groubpy", "(", "contigs", ")", ":", "l", "=", "len", "(", "chunk", ")", "positions", "[", "index", ":", "index", "+", "l", "]", "=", "np", ".", "arange", "(", "list", "(", "chunk", ")", ")", "*", "binning", "index", "+=", "l", "return", "positions" ]
Build positions from contig labels From a list of contig labels and a binning parameter, build a list of positions that's essentially a concatenation of linspaces with step equal to the binning. Parameters ---------- contigs : list or array_like The list of contig labels, must be sorted. binning : int, optional The step for the list of positions. Default is 10000. Returns ------- positions : numpy.ndarray The piece-wise sorted list of positions
[ "Build", "positions", "from", "contig", "labels" ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L1482-L1511
train
koszullab/metaTOR
metator/scripts/hicstuff.py
split_matrix
def split_matrix(M, contigs): """Split multiple chromosome matrix Split a labeled matrix with multiple chromosomes into unlabeled single-chromosome matrices. Inter chromosomal contacts are discarded. Parameters ---------- M : array_like The multiple chromosome matrix to be split contigs : list or array_like The list of contig labels """ index = 0 for _, chunk in itertools.groubpy(contigs): l = len(chunk) yield M[index : index + l, index : index + l] index += l
python
def split_matrix(M, contigs): """Split multiple chromosome matrix Split a labeled matrix with multiple chromosomes into unlabeled single-chromosome matrices. Inter chromosomal contacts are discarded. Parameters ---------- M : array_like The multiple chromosome matrix to be split contigs : list or array_like The list of contig labels """ index = 0 for _, chunk in itertools.groubpy(contigs): l = len(chunk) yield M[index : index + l, index : index + l] index += l
[ "def", "split_matrix", "(", "M", ",", "contigs", ")", ":", "index", "=", "0", "for", "_", ",", "chunk", "in", "itertools", ".", "groubpy", "(", "contigs", ")", ":", "l", "=", "len", "(", "chunk", ")", "yield", "M", "[", "index", ":", "index", "+", "l", ",", "index", ":", "index", "+", "l", "]", "index", "+=", "l" ]
Split multiple chromosome matrix Split a labeled matrix with multiple chromosomes into unlabeled single-chromosome matrices. Inter chromosomal contacts are discarded. Parameters ---------- M : array_like The multiple chromosome matrix to be split contigs : list or array_like The list of contig labels
[ "Split", "multiple", "chromosome", "matrix" ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/hicstuff.py#L1514-L1533
train
MacHu-GWU/single_file_module-project
sfm/binarysearch.py
find_nearest
def find_nearest(sorted_list, x): """ Find the nearest item of x from sorted array. :type array: list :param array: an iterable object that support inex :param x: a comparable value note: for finding the nearest item from a descending array, I recommend find_nearest(sorted_list[::-1], x). Because the built-in list[::-1] method is super fast. Usage:: >>> find_nearest([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 5.1) 5 **中文文档** 在正序数组中, 返回最接近x的数。 """ if x <= sorted_list[0]: return sorted_list[0] elif x >= sorted_list[-1]: return sorted_list[-1] else: lower = find_le(sorted_list, x) upper = find_ge(sorted_list, x) if (x - lower) > (upper - x): return upper else: return lower
python
def find_nearest(sorted_list, x): """ Find the nearest item of x from sorted array. :type array: list :param array: an iterable object that support inex :param x: a comparable value note: for finding the nearest item from a descending array, I recommend find_nearest(sorted_list[::-1], x). Because the built-in list[::-1] method is super fast. Usage:: >>> find_nearest([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 5.1) 5 **中文文档** 在正序数组中, 返回最接近x的数。 """ if x <= sorted_list[0]: return sorted_list[0] elif x >= sorted_list[-1]: return sorted_list[-1] else: lower = find_le(sorted_list, x) upper = find_ge(sorted_list, x) if (x - lower) > (upper - x): return upper else: return lower
[ "def", "find_nearest", "(", "sorted_list", ",", "x", ")", ":", "if", "x", "<=", "sorted_list", "[", "0", "]", ":", "return", "sorted_list", "[", "0", "]", "elif", "x", ">=", "sorted_list", "[", "-", "1", "]", ":", "return", "sorted_list", "[", "-", "1", "]", "else", ":", "lower", "=", "find_le", "(", "sorted_list", ",", "x", ")", "upper", "=", "find_ge", "(", "sorted_list", ",", "x", ")", "if", "(", "x", "-", "lower", ")", ">", "(", "upper", "-", "x", ")", ":", "return", "upper", "else", ":", "return", "lower" ]
Find the nearest item of x from sorted array. :type array: list :param array: an iterable object that support inex :param x: a comparable value note: for finding the nearest item from a descending array, I recommend find_nearest(sorted_list[::-1], x). Because the built-in list[::-1] method is super fast. Usage:: >>> find_nearest([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 5.1) 5 **中文文档** 在正序数组中, 返回最接近x的数。
[ "Find", "the", "nearest", "item", "of", "x", "from", "sorted", "array", "." ]
01f7a6b250853bebfd73de275895bf274325cfc1
https://github.com/MacHu-GWU/single_file_module-project/blob/01f7a6b250853bebfd73de275895bf274325cfc1/sfm/binarysearch.py#L146-L178
train
MacHu-GWU/single_file_module-project
sfm/matplot_mate.py
format_x_tick
def format_x_tick(axis, major_locator=None, major_formatter=None, minor_locator=None, minor_formatter=None): """Set x axis's format. This method is designed for time axis. **中文文档** 设置X轴格式。 """ if major_locator: axis.xaxis.set_major_locator(major_locator) if major_formatter: axis.xaxis.set_major_formatter(major_formatter) if minor_locator: axis.xaxis.set_minor_locator(minor_locator) if minor_formatter: axis.xaxis.set_minor_formatter(minor_formatter) axis.autoscale_view() plt.setp(axis.xaxis.get_majorticklabels(), rotation=90) plt.setp(axis.xaxis.get_minorticklabels(), rotation=90) axis.grid()
python
def format_x_tick(axis, major_locator=None, major_formatter=None, minor_locator=None, minor_formatter=None): """Set x axis's format. This method is designed for time axis. **中文文档** 设置X轴格式。 """ if major_locator: axis.xaxis.set_major_locator(major_locator) if major_formatter: axis.xaxis.set_major_formatter(major_formatter) if minor_locator: axis.xaxis.set_minor_locator(minor_locator) if minor_formatter: axis.xaxis.set_minor_formatter(minor_formatter) axis.autoscale_view() plt.setp(axis.xaxis.get_majorticklabels(), rotation=90) plt.setp(axis.xaxis.get_minorticklabels(), rotation=90) axis.grid()
[ "def", "format_x_tick", "(", "axis", ",", "major_locator", "=", "None", ",", "major_formatter", "=", "None", ",", "minor_locator", "=", "None", ",", "minor_formatter", "=", "None", ")", ":", "if", "major_locator", ":", "axis", ".", "xaxis", ".", "set_major_locator", "(", "major_locator", ")", "if", "major_formatter", ":", "axis", ".", "xaxis", ".", "set_major_formatter", "(", "major_formatter", ")", "if", "minor_locator", ":", "axis", ".", "xaxis", ".", "set_minor_locator", "(", "minor_locator", ")", "if", "minor_formatter", ":", "axis", ".", "xaxis", ".", "set_minor_formatter", "(", "minor_formatter", ")", "axis", ".", "autoscale_view", "(", ")", "plt", ".", "setp", "(", "axis", ".", "xaxis", ".", "get_majorticklabels", "(", ")", ",", "rotation", "=", "90", ")", "plt", ".", "setp", "(", "axis", ".", "xaxis", ".", "get_minorticklabels", "(", ")", ",", "rotation", "=", "90", ")", "axis", ".", "grid", "(", ")" ]
Set x axis's format. This method is designed for time axis. **中文文档** 设置X轴格式。
[ "Set", "x", "axis", "s", "format", "." ]
01f7a6b250853bebfd73de275895bf274325cfc1
https://github.com/MacHu-GWU/single_file_module-project/blob/01f7a6b250853bebfd73de275895bf274325cfc1/sfm/matplot_mate.py#L60-L85
train
MacHu-GWU/single_file_module-project
sfm/matplot_mate.py
set_legend
def set_legend(axis, lines, legend): """Set line legend. **中文文档** 设置图例。 """ try: if legend: axis.legend(lines, legend) except Exception as e: raise ValueError("invalid 'legend', Error: %s" % e)
python
def set_legend(axis, lines, legend): """Set line legend. **中文文档** 设置图例。 """ try: if legend: axis.legend(lines, legend) except Exception as e: raise ValueError("invalid 'legend', Error: %s" % e)
[ "def", "set_legend", "(", "axis", ",", "lines", ",", "legend", ")", ":", "try", ":", "if", "legend", ":", "axis", ".", "legend", "(", "lines", ",", "legend", ")", "except", "Exception", "as", "e", ":", "raise", "ValueError", "(", "\"invalid 'legend', Error: %s\"", "%", "e", ")" ]
Set line legend. **中文文档** 设置图例。
[ "Set", "line", "legend", "." ]
01f7a6b250853bebfd73de275895bf274325cfc1
https://github.com/MacHu-GWU/single_file_module-project/blob/01f7a6b250853bebfd73de275895bf274325cfc1/sfm/matplot_mate.py#L119-L130
train
MacHu-GWU/single_file_module-project
sfm/matplot_mate.py
get_max
def get_max(array): """Get maximum value of an array. Automatically ignore invalid data. **中文文档** 获得最大值。 """ largest = -np.inf for i in array: try: if i > largest: largest = i except: pass if np.isinf(largest): raise ValueError("there's no numeric value in array!") else: return largest
python
def get_max(array): """Get maximum value of an array. Automatically ignore invalid data. **中文文档** 获得最大值。 """ largest = -np.inf for i in array: try: if i > largest: largest = i except: pass if np.isinf(largest): raise ValueError("there's no numeric value in array!") else: return largest
[ "def", "get_max", "(", "array", ")", ":", "largest", "=", "-", "np", ".", "inf", "for", "i", "in", "array", ":", "try", ":", "if", "i", ">", "largest", ":", "largest", "=", "i", "except", ":", "pass", "if", "np", ".", "isinf", "(", "largest", ")", ":", "raise", "ValueError", "(", "\"there's no numeric value in array!\"", ")", "else", ":", "return", "largest" ]
Get maximum value of an array. Automatically ignore invalid data. **中文文档** 获得最大值。
[ "Get", "maximum", "value", "of", "an", "array", ".", "Automatically", "ignore", "invalid", "data", "." ]
01f7a6b250853bebfd73de275895bf274325cfc1
https://github.com/MacHu-GWU/single_file_module-project/blob/01f7a6b250853bebfd73de275895bf274325cfc1/sfm/matplot_mate.py#L133-L150
train
MacHu-GWU/single_file_module-project
sfm/matplot_mate.py
get_min
def get_min(array): """Get minimum value of an array. Automatically ignore invalid data. **中文文档** 获得最小值。 """ smallest = np.inf for i in array: try: if i < smallest: smallest = i except: pass if np.isinf(smallest): raise ValueError("there's no numeric value in array!") else: return smallest
python
def get_min(array): """Get minimum value of an array. Automatically ignore invalid data. **中文文档** 获得最小值。 """ smallest = np.inf for i in array: try: if i < smallest: smallest = i except: pass if np.isinf(smallest): raise ValueError("there's no numeric value in array!") else: return smallest
[ "def", "get_min", "(", "array", ")", ":", "smallest", "=", "np", ".", "inf", "for", "i", "in", "array", ":", "try", ":", "if", "i", "<", "smallest", ":", "smallest", "=", "i", "except", ":", "pass", "if", "np", ".", "isinf", "(", "smallest", ")", ":", "raise", "ValueError", "(", "\"there's no numeric value in array!\"", ")", "else", ":", "return", "smallest" ]
Get minimum value of an array. Automatically ignore invalid data. **中文文档** 获得最小值。
[ "Get", "minimum", "value", "of", "an", "array", ".", "Automatically", "ignore", "invalid", "data", "." ]
01f7a6b250853bebfd73de275895bf274325cfc1
https://github.com/MacHu-GWU/single_file_module-project/blob/01f7a6b250853bebfd73de275895bf274325cfc1/sfm/matplot_mate.py#L153-L170
train
MacHu-GWU/single_file_module-project
sfm/matplot_mate.py
get_yAxis_limit
def get_yAxis_limit(y, lower=0.05, upper=0.2): """Find optimal y_min and y_max that guarantee enough space for legend and plot. **中文文档** 计算y坐标轴的最小和最大坐标。 :params lower: ymin为 y的最小值再减去gap的一定倍率 :params upper: ymax为 y的最大值再加上gap的一定倍率 """ smallest = get_min(y) largest = get_max(y) gap = largest - smallest if gap >= 0.000001: y_min = smallest - lower * gap y_max = largest + upper * gap else: y_min = smallest - lower * abs(smallest) y_max = largest + upper * abs(largest) return y_min, y_max
python
def get_yAxis_limit(y, lower=0.05, upper=0.2): """Find optimal y_min and y_max that guarantee enough space for legend and plot. **中文文档** 计算y坐标轴的最小和最大坐标。 :params lower: ymin为 y的最小值再减去gap的一定倍率 :params upper: ymax为 y的最大值再加上gap的一定倍率 """ smallest = get_min(y) largest = get_max(y) gap = largest - smallest if gap >= 0.000001: y_min = smallest - lower * gap y_max = largest + upper * gap else: y_min = smallest - lower * abs(smallest) y_max = largest + upper * abs(largest) return y_min, y_max
[ "def", "get_yAxis_limit", "(", "y", ",", "lower", "=", "0.05", ",", "upper", "=", "0.2", ")", ":", "smallest", "=", "get_min", "(", "y", ")", "largest", "=", "get_max", "(", "y", ")", "gap", "=", "largest", "-", "smallest", "if", "gap", ">=", "0.000001", ":", "y_min", "=", "smallest", "-", "lower", "*", "gap", "y_max", "=", "largest", "+", "upper", "*", "gap", "else", ":", "y_min", "=", "smallest", "-", "lower", "*", "abs", "(", "smallest", ")", "y_max", "=", "largest", "+", "upper", "*", "abs", "(", "largest", ")", "return", "y_min", ",", "y_max" ]
Find optimal y_min and y_max that guarantee enough space for legend and plot. **中文文档** 计算y坐标轴的最小和最大坐标。 :params lower: ymin为 y的最小值再减去gap的一定倍率 :params upper: ymax为 y的最大值再加上gap的一定倍率
[ "Find", "optimal", "y_min", "and", "y_max", "that", "guarantee", "enough", "space", "for", "legend", "and", "plot", "." ]
01f7a6b250853bebfd73de275895bf274325cfc1
https://github.com/MacHu-GWU/single_file_module-project/blob/01f7a6b250853bebfd73de275895bf274325cfc1/sfm/matplot_mate.py#L173-L193
train
MacHu-GWU/single_file_module-project
sfm/matplot_mate.py
create_figure
def create_figure(width=20, height=10): """Create a figure instance. :params width: figure width :params height: figure height """ figure = plt.figure(figsize=(width, height)) axis = figure.add_subplot(1, 1, 1) return figure, axis
python
def create_figure(width=20, height=10): """Create a figure instance. :params width: figure width :params height: figure height """ figure = plt.figure(figsize=(width, height)) axis = figure.add_subplot(1, 1, 1) return figure, axis
[ "def", "create_figure", "(", "width", "=", "20", ",", "height", "=", "10", ")", ":", "figure", "=", "plt", ".", "figure", "(", "figsize", "=", "(", "width", ",", "height", ")", ")", "axis", "=", "figure", ".", "add_subplot", "(", "1", ",", "1", ",", "1", ")", "return", "figure", ",", "axis" ]
Create a figure instance. :params width: figure width :params height: figure height
[ "Create", "a", "figure", "instance", "." ]
01f7a6b250853bebfd73de275895bf274325cfc1
https://github.com/MacHu-GWU/single_file_module-project/blob/01f7a6b250853bebfd73de275895bf274325cfc1/sfm/matplot_mate.py#L196-L204
train
MacHu-GWU/single_file_module-project
sfm/matplot_mate.py
preprocess_x_y
def preprocess_x_y(x, y): """Preprocess x, y input data. Returns list of list style. **中文文档** 预处理输入的x, y数据。 """ def is_iterable_slicable(a): if hasattr(a, "__iter__") and hasattr(a, "__getitem__"): return True else: return False if is_iterable_slicable(x): if is_iterable_slicable(x[0]): return x, y else: return (x,), (y,) else: raise ValueError("invalid input!")
python
def preprocess_x_y(x, y): """Preprocess x, y input data. Returns list of list style. **中文文档** 预处理输入的x, y数据。 """ def is_iterable_slicable(a): if hasattr(a, "__iter__") and hasattr(a, "__getitem__"): return True else: return False if is_iterable_slicable(x): if is_iterable_slicable(x[0]): return x, y else: return (x,), (y,) else: raise ValueError("invalid input!")
[ "def", "preprocess_x_y", "(", "x", ",", "y", ")", ":", "def", "is_iterable_slicable", "(", "a", ")", ":", "if", "hasattr", "(", "a", ",", "\"__iter__\"", ")", "and", "hasattr", "(", "a", ",", "\"__getitem__\"", ")", ":", "return", "True", "else", ":", "return", "False", "if", "is_iterable_slicable", "(", "x", ")", ":", "if", "is_iterable_slicable", "(", "x", "[", "0", "]", ")", ":", "return", "x", ",", "y", "else", ":", "return", "(", "x", ",", ")", ",", "(", "y", ",", ")", "else", ":", "raise", "ValueError", "(", "\"invalid input!\"", ")" ]
Preprocess x, y input data. Returns list of list style. **中文文档** 预处理输入的x, y数据。
[ "Preprocess", "x", "y", "input", "data", ".", "Returns", "list", "of", "list", "style", "." ]
01f7a6b250853bebfd73de275895bf274325cfc1
https://github.com/MacHu-GWU/single_file_module-project/blob/01f7a6b250853bebfd73de275895bf274325cfc1/sfm/matplot_mate.py#L207-L226
train
envi-idl/envipyengine
envipyengine/taskengine/taskengine.py
execute
def execute(input_params, engine, cwd=None): """ Execute a task with the provided input parameters :param input_params: Python dictionary containg all input parameters. This will be converted to JSON before being passed to the task engine. :param engine: String specifying Task Engine type to run (ENVI, IDL, etc.) :param cwd: Optionally specify the current working directory to be used when spawning the task engine. :return: A python dictionary representing the results JSON string generated by the Task Engine. """ try: taskengine_exe = config.get('engine') except NoConfigOptionError: raise TaskEngineNotFoundError( "Task Engine config option not set." + "\nPlease verify the 'engine' configuration setting.") if not os.path.exists(taskengine_exe): raise TaskEngineNotFoundError( "Task Engine executable not found." + "\nPlease verify the 'engine' configuration setting.") # Get any arguments for the taskengine engine_args = None try: engine_args = config.get('engine-args') except NoConfigOptionError: pass # Get environment overrides if they exist environment = None config_environment = config.get_environment() if config_environment: environment = os.environ.copy() environment.update(config_environment) # Build up the args vector for popen args = [taskengine_exe, engine] if engine_args: args.append(engine_args) # Hide the Console Window on Windows OS startupinfo = None if sys.platform.startswith('win'): startupinfo = subprocess.STARTUPINFO() startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW input_json = json.dumps(input_params) process = Popen(args, stdout=PIPE, stdin=PIPE, stderr=PIPE, cwd=cwd, env=environment, startupinfo=startupinfo) # taskengine output is in UTF8. Encode/Decode to UTF8 stdout, stderr = process.communicate(input=input_json.encode('utf-8')) if process.returncode != 0: if stderr != '': raise TaskEngineExecutionError(stderr.decode('utf-8')) else: raise TaskEngineExecutionError( 'Task Engine exited with code: ' + str(process.returncode)) else: return json.loads(stdout.decode('utf-8'), object_pairs_hook=OrderedDict)
python
def execute(input_params, engine, cwd=None): """ Execute a task with the provided input parameters :param input_params: Python dictionary containg all input parameters. This will be converted to JSON before being passed to the task engine. :param engine: String specifying Task Engine type to run (ENVI, IDL, etc.) :param cwd: Optionally specify the current working directory to be used when spawning the task engine. :return: A python dictionary representing the results JSON string generated by the Task Engine. """ try: taskengine_exe = config.get('engine') except NoConfigOptionError: raise TaskEngineNotFoundError( "Task Engine config option not set." + "\nPlease verify the 'engine' configuration setting.") if not os.path.exists(taskengine_exe): raise TaskEngineNotFoundError( "Task Engine executable not found." + "\nPlease verify the 'engine' configuration setting.") # Get any arguments for the taskengine engine_args = None try: engine_args = config.get('engine-args') except NoConfigOptionError: pass # Get environment overrides if they exist environment = None config_environment = config.get_environment() if config_environment: environment = os.environ.copy() environment.update(config_environment) # Build up the args vector for popen args = [taskengine_exe, engine] if engine_args: args.append(engine_args) # Hide the Console Window on Windows OS startupinfo = None if sys.platform.startswith('win'): startupinfo = subprocess.STARTUPINFO() startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW input_json = json.dumps(input_params) process = Popen(args, stdout=PIPE, stdin=PIPE, stderr=PIPE, cwd=cwd, env=environment, startupinfo=startupinfo) # taskengine output is in UTF8. Encode/Decode to UTF8 stdout, stderr = process.communicate(input=input_json.encode('utf-8')) if process.returncode != 0: if stderr != '': raise TaskEngineExecutionError(stderr.decode('utf-8')) else: raise TaskEngineExecutionError( 'Task Engine exited with code: ' + str(process.returncode)) else: return json.loads(stdout.decode('utf-8'), object_pairs_hook=OrderedDict)
[ "def", "execute", "(", "input_params", ",", "engine", ",", "cwd", "=", "None", ")", ":", "try", ":", "taskengine_exe", "=", "config", ".", "get", "(", "'engine'", ")", "except", "NoConfigOptionError", ":", "raise", "TaskEngineNotFoundError", "(", "\"Task Engine config option not set.\"", "+", "\"\\nPlease verify the 'engine' configuration setting.\"", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "taskengine_exe", ")", ":", "raise", "TaskEngineNotFoundError", "(", "\"Task Engine executable not found.\"", "+", "\"\\nPlease verify the 'engine' configuration setting.\"", ")", "# Get any arguments for the taskengine", "engine_args", "=", "None", "try", ":", "engine_args", "=", "config", ".", "get", "(", "'engine-args'", ")", "except", "NoConfigOptionError", ":", "pass", "# Get environment overrides if they exist", "environment", "=", "None", "config_environment", "=", "config", ".", "get_environment", "(", ")", "if", "config_environment", ":", "environment", "=", "os", ".", "environ", ".", "copy", "(", ")", "environment", ".", "update", "(", "config_environment", ")", "# Build up the args vector for popen", "args", "=", "[", "taskengine_exe", ",", "engine", "]", "if", "engine_args", ":", "args", ".", "append", "(", "engine_args", ")", "# Hide the Console Window on Windows OS", "startupinfo", "=", "None", "if", "sys", ".", "platform", ".", "startswith", "(", "'win'", ")", ":", "startupinfo", "=", "subprocess", ".", "STARTUPINFO", "(", ")", "startupinfo", ".", "dwFlags", "|=", "subprocess", ".", "STARTF_USESHOWWINDOW", "input_json", "=", "json", ".", "dumps", "(", "input_params", ")", "process", "=", "Popen", "(", "args", ",", "stdout", "=", "PIPE", ",", "stdin", "=", "PIPE", ",", "stderr", "=", "PIPE", ",", "cwd", "=", "cwd", ",", "env", "=", "environment", ",", "startupinfo", "=", "startupinfo", ")", "# taskengine output is in UTF8. Encode/Decode to UTF8 ", "stdout", ",", "stderr", "=", "process", ".", "communicate", "(", "input", "=", "input_json", ".", "encode", "(", "'utf-8'", ")", ")", "if", "process", ".", "returncode", "!=", "0", ":", "if", "stderr", "!=", "''", ":", "raise", "TaskEngineExecutionError", "(", "stderr", ".", "decode", "(", "'utf-8'", ")", ")", "else", ":", "raise", "TaskEngineExecutionError", "(", "'Task Engine exited with code: '", "+", "str", "(", "process", ".", "returncode", ")", ")", "else", ":", "return", "json", ".", "loads", "(", "stdout", ".", "decode", "(", "'utf-8'", ")", ",", "object_pairs_hook", "=", "OrderedDict", ")" ]
Execute a task with the provided input parameters :param input_params: Python dictionary containg all input parameters. This will be converted to JSON before being passed to the task engine. :param engine: String specifying Task Engine type to run (ENVI, IDL, etc.) :param cwd: Optionally specify the current working directory to be used when spawning the task engine. :return: A python dictionary representing the results JSON string generated by the Task Engine.
[ "Execute", "a", "task", "with", "the", "provided", "input", "parameters" ]
567b639d6592deec3289f6122a9e3d18f2f98432
https://github.com/envi-idl/envipyengine/blob/567b639d6592deec3289f6122a9e3d18f2f98432/envipyengine/taskengine/taskengine.py#L17-L84
train
Godley/MuseParse
MuseParse/classes/Output/LilypondOutput.py
LilypondRenderer.run
def run(self, wrappers=["", ""]): ''' run the lilypond script on the hierarchy class :param wrappers: this is useful for testing: use wrappers to put something around the outputted "lilypond string" from the hierarchy class. For example if you're testing a pitch, you might put \relative c {} around the note so that lilypond handles it properly without causing an error :return: doesn't return anything, side effect that a PDF should be created. ''' opened_file = open(self.lyfile, 'w') lilystring = self.piece_obj.toLily() opened_file.writelines( wrappers[0] + "\\version \"2.18.2\" \n" + lilystring + wrappers[1]) opened_file.close() # subprocess.Popen(['sudo', self.lily_script," --output=" + # self.folder, self.lyfile]) os.system(self.lily_script + " --loglevel=WARNING --output=" + self.folder + " " + self.lyfile )
python
def run(self, wrappers=["", ""]): ''' run the lilypond script on the hierarchy class :param wrappers: this is useful for testing: use wrappers to put something around the outputted "lilypond string" from the hierarchy class. For example if you're testing a pitch, you might put \relative c {} around the note so that lilypond handles it properly without causing an error :return: doesn't return anything, side effect that a PDF should be created. ''' opened_file = open(self.lyfile, 'w') lilystring = self.piece_obj.toLily() opened_file.writelines( wrappers[0] + "\\version \"2.18.2\" \n" + lilystring + wrappers[1]) opened_file.close() # subprocess.Popen(['sudo', self.lily_script," --output=" + # self.folder, self.lyfile]) os.system(self.lily_script + " --loglevel=WARNING --output=" + self.folder + " " + self.lyfile )
[ "def", "run", "(", "self", ",", "wrappers", "=", "[", "\"\"", ",", "\"\"", "]", ")", ":", "opened_file", "=", "open", "(", "self", ".", "lyfile", ",", "'w'", ")", "lilystring", "=", "self", ".", "piece_obj", ".", "toLily", "(", ")", "opened_file", ".", "writelines", "(", "wrappers", "[", "0", "]", "+", "\"\\\\version \\\"2.18.2\\\" \\n\"", "+", "lilystring", "+", "wrappers", "[", "1", "]", ")", "opened_file", ".", "close", "(", ")", "# subprocess.Popen(['sudo', self.lily_script,\" --output=\" +", "# self.folder, self.lyfile])", "os", ".", "system", "(", "self", ".", "lily_script", "+", "\" --loglevel=WARNING --output=\"", "+", "self", ".", "folder", "+", "\" \"", "+", "self", ".", "lyfile", ")" ]
run the lilypond script on the hierarchy class :param wrappers: this is useful for testing: use wrappers to put something around the outputted "lilypond string" from the hierarchy class. For example if you're testing a pitch, you might put \relative c {} around the note so that lilypond handles it properly without causing an error :return: doesn't return anything, side effect that a PDF should be created.
[ "run", "the", "lilypond", "script", "on", "the", "hierarchy", "class" ]
23cecafa1fdc0f2d6a87760553572b459f3c9904
https://github.com/Godley/MuseParse/blob/23cecafa1fdc0f2d6a87760553572b459f3c9904/MuseParse/classes/Output/LilypondOutput.py#L42-L64
train
koszullab/metaTOR
metator/scripts/bins.py
extract_fasta
def extract_fasta( partition_file, fasta_file, output_dir, chunk_size=DEFAULT_CHUNK_SIZE, max_cores=DEFAULT_MAX_CORES, ): """Extract sequences from bins Identify bins, extract chunks belonging to each bins and gather them in a single FASTA file. Parameters ---------- partition_file : file, str or pathlib.Path The file containing, for each chunk, the communities it was assigned to at each iteration. fasta_file : file, str or pathlib.Path The initial assembly from which chunks were initialized. output_dir : str or pathlib.Path The output directory to write the FASTA chunks into. chunk_size : int, optional The size of the chunks (in bp) used in the pipeline. Default is 1000. max_cores : int, optional How many bins to extract FASTA sequences from. Default is 100. """ genome = { record.id: record.seq for record in SeqIO.parse(fasta_file, "fasta") } data_chunks = list( zip(*np.genfromtxt(partition_file, usecols=(0, 1), dtype=None)) ) chunk_names = np.array(data_chunks[0], dtype=object) cores = np.array(data_chunks[1]) for core in set(cores): if core > max_cores: continue chunks_to_keep = chunk_names[cores == core] core_name = "core_{}.fa".format(core) core_file = os.path.join(output_dir, core_name) with open(core_file, "w") as core_handle: for name in chunks_to_keep: fields = name.split("_") header_name = "_".join(fields[:-1]) chunk = int(fields[-1]) pos_start = chunk * chunk_size pos_end = min( (chunk + 1) * chunk_size, len(genome[header_name]) ) sequence = str(genome[header_name][pos_start:pos_end]) core_handle.write(">{}\n".format(name)) core_handle.write("{}\n".format(sequence))
python
def extract_fasta( partition_file, fasta_file, output_dir, chunk_size=DEFAULT_CHUNK_SIZE, max_cores=DEFAULT_MAX_CORES, ): """Extract sequences from bins Identify bins, extract chunks belonging to each bins and gather them in a single FASTA file. Parameters ---------- partition_file : file, str or pathlib.Path The file containing, for each chunk, the communities it was assigned to at each iteration. fasta_file : file, str or pathlib.Path The initial assembly from which chunks were initialized. output_dir : str or pathlib.Path The output directory to write the FASTA chunks into. chunk_size : int, optional The size of the chunks (in bp) used in the pipeline. Default is 1000. max_cores : int, optional How many bins to extract FASTA sequences from. Default is 100. """ genome = { record.id: record.seq for record in SeqIO.parse(fasta_file, "fasta") } data_chunks = list( zip(*np.genfromtxt(partition_file, usecols=(0, 1), dtype=None)) ) chunk_names = np.array(data_chunks[0], dtype=object) cores = np.array(data_chunks[1]) for core in set(cores): if core > max_cores: continue chunks_to_keep = chunk_names[cores == core] core_name = "core_{}.fa".format(core) core_file = os.path.join(output_dir, core_name) with open(core_file, "w") as core_handle: for name in chunks_to_keep: fields = name.split("_") header_name = "_".join(fields[:-1]) chunk = int(fields[-1]) pos_start = chunk * chunk_size pos_end = min( (chunk + 1) * chunk_size, len(genome[header_name]) ) sequence = str(genome[header_name][pos_start:pos_end]) core_handle.write(">{}\n".format(name)) core_handle.write("{}\n".format(sequence))
[ "def", "extract_fasta", "(", "partition_file", ",", "fasta_file", ",", "output_dir", ",", "chunk_size", "=", "DEFAULT_CHUNK_SIZE", ",", "max_cores", "=", "DEFAULT_MAX_CORES", ",", ")", ":", "genome", "=", "{", "record", ".", "id", ":", "record", ".", "seq", "for", "record", "in", "SeqIO", ".", "parse", "(", "fasta_file", ",", "\"fasta\"", ")", "}", "data_chunks", "=", "list", "(", "zip", "(", "*", "np", ".", "genfromtxt", "(", "partition_file", ",", "usecols", "=", "(", "0", ",", "1", ")", ",", "dtype", "=", "None", ")", ")", ")", "chunk_names", "=", "np", ".", "array", "(", "data_chunks", "[", "0", "]", ",", "dtype", "=", "object", ")", "cores", "=", "np", ".", "array", "(", "data_chunks", "[", "1", "]", ")", "for", "core", "in", "set", "(", "cores", ")", ":", "if", "core", ">", "max_cores", ":", "continue", "chunks_to_keep", "=", "chunk_names", "[", "cores", "==", "core", "]", "core_name", "=", "\"core_{}.fa\"", ".", "format", "(", "core", ")", "core_file", "=", "os", ".", "path", ".", "join", "(", "output_dir", ",", "core_name", ")", "with", "open", "(", "core_file", ",", "\"w\"", ")", "as", "core_handle", ":", "for", "name", "in", "chunks_to_keep", ":", "fields", "=", "name", ".", "split", "(", "\"_\"", ")", "header_name", "=", "\"_\"", ".", "join", "(", "fields", "[", ":", "-", "1", "]", ")", "chunk", "=", "int", "(", "fields", "[", "-", "1", "]", ")", "pos_start", "=", "chunk", "*", "chunk_size", "pos_end", "=", "min", "(", "(", "chunk", "+", "1", ")", "*", "chunk_size", ",", "len", "(", "genome", "[", "header_name", "]", ")", ")", "sequence", "=", "str", "(", "genome", "[", "header_name", "]", "[", "pos_start", ":", "pos_end", "]", ")", "core_handle", ".", "write", "(", "\">{}\\n\"", ".", "format", "(", "name", ")", ")", "core_handle", ".", "write", "(", "\"{}\\n\"", ".", "format", "(", "sequence", ")", ")" ]
Extract sequences from bins Identify bins, extract chunks belonging to each bins and gather them in a single FASTA file. Parameters ---------- partition_file : file, str or pathlib.Path The file containing, for each chunk, the communities it was assigned to at each iteration. fasta_file : file, str or pathlib.Path The initial assembly from which chunks were initialized. output_dir : str or pathlib.Path The output directory to write the FASTA chunks into. chunk_size : int, optional The size of the chunks (in bp) used in the pipeline. Default is 1000. max_cores : int, optional How many bins to extract FASTA sequences from. Default is 100.
[ "Extract", "sequences", "from", "bins" ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/bins.py#L183-L243
train
koszullab/metaTOR
metator/scripts/bins.py
merge_fasta
def merge_fasta(fasta_file, output_dir): """Merge chunks into complete FASTA bins Merge bin chunks by appending consecutive chunks to one another. Parameters ---------- fasta_file : file, str or pathlib.Path The FASTA file containing the chunks to merge. output_dir : str or pathlib.Path The output directory to write the merged FASTA bin into. """ # First, define some functions for ordering chunks and detecting # consecutive chunk sequences def chunk_lexicographic_order(chunk): """A quick callback to sort chunk ids lexicographically (first on original names alphabetically, then on relative position on the original contig) """ chunk_fields = chunk.split("_") chunk_name = chunk_fields[:-1] chunk_id = chunk_fields[-1] return (chunk_name, int(chunk_id)) def are_consecutive(chunk1, chunk2): if None in {chunk1, chunk2}: return False else: ord1 = chunk_lexicographic_order(chunk1) ord2 = chunk_lexicographic_order(chunk2) return (ord1[0] == ord2[0]) and (ord1[1] == ord2[1] + 1) def consecutiveness(key_chunk_pair): """A callback for the groupby magic below """ key, chunk = key_chunk_pair chunk_name, chunk_id = chunk_lexicographic_order(chunk) return (chunk_name, chunk_id - key) # Read chunks and sort them genome = { record.id: record.seq for record in SeqIO.parse(fasta_file, "fasta") } sorted_ids = sorted(genome, key=chunk_lexicographic_order) # Identify consecutive ranges and merge them new_genome = dict() for _, g in itertools.groupby(enumerate(sorted_ids), consecutiveness): chunk_range = map(operator.itemgetter(1), g) first_chunk = next(chunk_range) my_sequence = genome[first_chunk] my_chunk = None while "Reading chunk range": try: my_chunk = next(chunk_range) my_sequence += genome[my_chunk] except StopIteration: break try: last_chunk_id = my_chunk.split("_")[-1] except AttributeError: last_chunk_id = "" if last_chunk_id: new_chunk_id = "{}_{}".format(first_chunk, last_chunk_id) else: new_chunk_id = first_chunk new_genome[new_chunk_id] = my_sequence # Write the result base_name = ".".join(os.path.basename(fasta_file).split(".")[:-1]) output_name = "{}_merged.fa".format(base_name) merged_core_file = os.path.join(output_dir, output_name) with open(merged_core_file, "w") as output_handle: for my_id in sorted(new_genome, key=chunk_lexicographic_order): output_handle.write(">{}\n".format(my_id)) output_handle.write("{}\n".format(new_genome[my_id]))
python
def merge_fasta(fasta_file, output_dir): """Merge chunks into complete FASTA bins Merge bin chunks by appending consecutive chunks to one another. Parameters ---------- fasta_file : file, str or pathlib.Path The FASTA file containing the chunks to merge. output_dir : str or pathlib.Path The output directory to write the merged FASTA bin into. """ # First, define some functions for ordering chunks and detecting # consecutive chunk sequences def chunk_lexicographic_order(chunk): """A quick callback to sort chunk ids lexicographically (first on original names alphabetically, then on relative position on the original contig) """ chunk_fields = chunk.split("_") chunk_name = chunk_fields[:-1] chunk_id = chunk_fields[-1] return (chunk_name, int(chunk_id)) def are_consecutive(chunk1, chunk2): if None in {chunk1, chunk2}: return False else: ord1 = chunk_lexicographic_order(chunk1) ord2 = chunk_lexicographic_order(chunk2) return (ord1[0] == ord2[0]) and (ord1[1] == ord2[1] + 1) def consecutiveness(key_chunk_pair): """A callback for the groupby magic below """ key, chunk = key_chunk_pair chunk_name, chunk_id = chunk_lexicographic_order(chunk) return (chunk_name, chunk_id - key) # Read chunks and sort them genome = { record.id: record.seq for record in SeqIO.parse(fasta_file, "fasta") } sorted_ids = sorted(genome, key=chunk_lexicographic_order) # Identify consecutive ranges and merge them new_genome = dict() for _, g in itertools.groupby(enumerate(sorted_ids), consecutiveness): chunk_range = map(operator.itemgetter(1), g) first_chunk = next(chunk_range) my_sequence = genome[first_chunk] my_chunk = None while "Reading chunk range": try: my_chunk = next(chunk_range) my_sequence += genome[my_chunk] except StopIteration: break try: last_chunk_id = my_chunk.split("_")[-1] except AttributeError: last_chunk_id = "" if last_chunk_id: new_chunk_id = "{}_{}".format(first_chunk, last_chunk_id) else: new_chunk_id = first_chunk new_genome[new_chunk_id] = my_sequence # Write the result base_name = ".".join(os.path.basename(fasta_file).split(".")[:-1]) output_name = "{}_merged.fa".format(base_name) merged_core_file = os.path.join(output_dir, output_name) with open(merged_core_file, "w") as output_handle: for my_id in sorted(new_genome, key=chunk_lexicographic_order): output_handle.write(">{}\n".format(my_id)) output_handle.write("{}\n".format(new_genome[my_id]))
[ "def", "merge_fasta", "(", "fasta_file", ",", "output_dir", ")", ":", "# First, define some functions for ordering chunks and detecting", "# consecutive chunk sequences", "def", "chunk_lexicographic_order", "(", "chunk", ")", ":", "\"\"\"A quick callback to sort chunk ids lexicographically\n (first on original names alphabetically, then on relative\n position on the original contig)\n \"\"\"", "chunk_fields", "=", "chunk", ".", "split", "(", "\"_\"", ")", "chunk_name", "=", "chunk_fields", "[", ":", "-", "1", "]", "chunk_id", "=", "chunk_fields", "[", "-", "1", "]", "return", "(", "chunk_name", ",", "int", "(", "chunk_id", ")", ")", "def", "are_consecutive", "(", "chunk1", ",", "chunk2", ")", ":", "if", "None", "in", "{", "chunk1", ",", "chunk2", "}", ":", "return", "False", "else", ":", "ord1", "=", "chunk_lexicographic_order", "(", "chunk1", ")", "ord2", "=", "chunk_lexicographic_order", "(", "chunk2", ")", "return", "(", "ord1", "[", "0", "]", "==", "ord2", "[", "0", "]", ")", "and", "(", "ord1", "[", "1", "]", "==", "ord2", "[", "1", "]", "+", "1", ")", "def", "consecutiveness", "(", "key_chunk_pair", ")", ":", "\"\"\"A callback for the groupby magic below\n \"\"\"", "key", ",", "chunk", "=", "key_chunk_pair", "chunk_name", ",", "chunk_id", "=", "chunk_lexicographic_order", "(", "chunk", ")", "return", "(", "chunk_name", ",", "chunk_id", "-", "key", ")", "# Read chunks and sort them", "genome", "=", "{", "record", ".", "id", ":", "record", ".", "seq", "for", "record", "in", "SeqIO", ".", "parse", "(", "fasta_file", ",", "\"fasta\"", ")", "}", "sorted_ids", "=", "sorted", "(", "genome", ",", "key", "=", "chunk_lexicographic_order", ")", "# Identify consecutive ranges and merge them", "new_genome", "=", "dict", "(", ")", "for", "_", ",", "g", "in", "itertools", ".", "groupby", "(", "enumerate", "(", "sorted_ids", ")", ",", "consecutiveness", ")", ":", "chunk_range", "=", "map", "(", "operator", ".", "itemgetter", "(", "1", ")", ",", "g", ")", "first_chunk", "=", "next", "(", "chunk_range", ")", "my_sequence", "=", "genome", "[", "first_chunk", "]", "my_chunk", "=", "None", "while", "\"Reading chunk range\"", ":", "try", ":", "my_chunk", "=", "next", "(", "chunk_range", ")", "my_sequence", "+=", "genome", "[", "my_chunk", "]", "except", "StopIteration", ":", "break", "try", ":", "last_chunk_id", "=", "my_chunk", ".", "split", "(", "\"_\"", ")", "[", "-", "1", "]", "except", "AttributeError", ":", "last_chunk_id", "=", "\"\"", "if", "last_chunk_id", ":", "new_chunk_id", "=", "\"{}_{}\"", ".", "format", "(", "first_chunk", ",", "last_chunk_id", ")", "else", ":", "new_chunk_id", "=", "first_chunk", "new_genome", "[", "new_chunk_id", "]", "=", "my_sequence", "# Write the result", "base_name", "=", "\".\"", ".", "join", "(", "os", ".", "path", ".", "basename", "(", "fasta_file", ")", ".", "split", "(", "\".\"", ")", "[", ":", "-", "1", "]", ")", "output_name", "=", "\"{}_merged.fa\"", ".", "format", "(", "base_name", ")", "merged_core_file", "=", "os", ".", "path", ".", "join", "(", "output_dir", ",", "output_name", ")", "with", "open", "(", "merged_core_file", ",", "\"w\"", ")", "as", "output_handle", ":", "for", "my_id", "in", "sorted", "(", "new_genome", ",", "key", "=", "chunk_lexicographic_order", ")", ":", "output_handle", ".", "write", "(", "\">{}\\n\"", ".", "format", "(", "my_id", ")", ")", "output_handle", ".", "write", "(", "\"{}\\n\"", ".", "format", "(", "new_genome", "[", "my_id", "]", ")", ")" ]
Merge chunks into complete FASTA bins Merge bin chunks by appending consecutive chunks to one another. Parameters ---------- fasta_file : file, str or pathlib.Path The FASTA file containing the chunks to merge. output_dir : str or pathlib.Path The output directory to write the merged FASTA bin into.
[ "Merge", "chunks", "into", "complete", "FASTA", "bins" ]
0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a
https://github.com/koszullab/metaTOR/blob/0c1203d1dffedfa5ea380c0335b4baa9cfb7e89a/metator/scripts/bins.py#L246-L327
train
nugget/python-anthemav
anthemav/tools.py
monitor
def monitor(): """Wrapper to call console with a loop.""" log = logging.getLogger(__name__) loop = asyncio.get_event_loop() asyncio.ensure_future(console(loop, log)) loop.run_forever()
python
def monitor(): """Wrapper to call console with a loop.""" log = logging.getLogger(__name__) loop = asyncio.get_event_loop() asyncio.ensure_future(console(loop, log)) loop.run_forever()
[ "def", "monitor", "(", ")", ":", "log", "=", "logging", ".", "getLogger", "(", "__name__", ")", "loop", "=", "asyncio", ".", "get_event_loop", "(", ")", "asyncio", ".", "ensure_future", "(", "console", "(", "loop", ",", "log", ")", ")", "loop", ".", "run_forever", "(", ")" ]
Wrapper to call console with a loop.
[ "Wrapper", "to", "call", "console", "with", "a", "loop", "." ]
c3cee38f2d452c1ab1335d9885e0769ec24d5f90
https://github.com/nugget/python-anthemav/blob/c3cee38f2d452c1ab1335d9885e0769ec24d5f90/anthemav/tools.py#L60-L65
train
eclipse/unide.python
src/unide/schema.py
make_object
def make_object(cls, data): """Creates an API object of class `cls`, setting its `_data` to data. Subclasses of `Object` are required to use this to build a new, empty instance without using their constructor. """ if issubclass(cls, Object): self = object.__new__(cls) self._data = data else: self = data return self
python
def make_object(cls, data): """Creates an API object of class `cls`, setting its `_data` to data. Subclasses of `Object` are required to use this to build a new, empty instance without using their constructor. """ if issubclass(cls, Object): self = object.__new__(cls) self._data = data else: self = data return self
[ "def", "make_object", "(", "cls", ",", "data", ")", ":", "if", "issubclass", "(", "cls", ",", "Object", ")", ":", "self", "=", "object", ".", "__new__", "(", "cls", ")", "self", ".", "_data", "=", "data", "else", ":", "self", "=", "data", "return", "self" ]
Creates an API object of class `cls`, setting its `_data` to data. Subclasses of `Object` are required to use this to build a new, empty instance without using their constructor.
[ "Creates", "an", "API", "object", "of", "class", "cls", "setting", "its", "_data", "to", "data", ".", "Subclasses", "of", "Object", "are", "required", "to", "use", "this", "to", "build", "a", "new", "empty", "instance", "without", "using", "their", "constructor", "." ]
b82e6a0bf7cc44a463c5d7cdb3d2199f8320c493
https://github.com/eclipse/unide.python/blob/b82e6a0bf7cc44a463c5d7cdb3d2199f8320c493/src/unide/schema.py#L296-L306
train
eclipse/unide.python
src/unide/schema.py
String
def String(length=None, **kwargs): """A string valued property with max. `length`.""" return Property( length=length, types=stringy_types, convert=to_string, **kwargs )
python
def String(length=None, **kwargs): """A string valued property with max. `length`.""" return Property( length=length, types=stringy_types, convert=to_string, **kwargs )
[ "def", "String", "(", "length", "=", "None", ",", "*", "*", "kwargs", ")", ":", "return", "Property", "(", "length", "=", "length", ",", "types", "=", "stringy_types", ",", "convert", "=", "to_string", ",", "*", "*", "kwargs", ")" ]
A string valued property with max. `length`.
[ "A", "string", "valued", "property", "with", "max", ".", "length", "." ]
b82e6a0bf7cc44a463c5d7cdb3d2199f8320c493
https://github.com/eclipse/unide.python/blob/b82e6a0bf7cc44a463c5d7cdb3d2199f8320c493/src/unide/schema.py#L365-L372
train
eclipse/unide.python
src/unide/schema.py
Datetime
def Datetime(null=True, **kwargs): """A datetime property.""" return Property( types=datetime.datetime, convert=util.local_timezone, load=dateutil.parser.parse, null=null, **kwargs )
python
def Datetime(null=True, **kwargs): """A datetime property.""" return Property( types=datetime.datetime, convert=util.local_timezone, load=dateutil.parser.parse, null=null, **kwargs )
[ "def", "Datetime", "(", "null", "=", "True", ",", "*", "*", "kwargs", ")", ":", "return", "Property", "(", "types", "=", "datetime", ".", "datetime", ",", "convert", "=", "util", ".", "local_timezone", ",", "load", "=", "dateutil", ".", "parser", ".", "parse", ",", "null", "=", "null", ",", "*", "*", "kwargs", ")" ]
A datetime property.
[ "A", "datetime", "property", "." ]
b82e6a0bf7cc44a463c5d7cdb3d2199f8320c493
https://github.com/eclipse/unide.python/blob/b82e6a0bf7cc44a463c5d7cdb3d2199f8320c493/src/unide/schema.py#L395-L403
train
eclipse/unide.python
src/unide/schema.py
InstanceOf
def InstanceOf(cls, **kwargs): """A property that is an instance of `cls`.""" return Property(types=cls, load=cls.load, **kwargs)
python
def InstanceOf(cls, **kwargs): """A property that is an instance of `cls`.""" return Property(types=cls, load=cls.load, **kwargs)
[ "def", "InstanceOf", "(", "cls", ",", "*", "*", "kwargs", ")", ":", "return", "Property", "(", "types", "=", "cls", ",", "load", "=", "cls", ".", "load", ",", "*", "*", "kwargs", ")" ]
A property that is an instance of `cls`.
[ "A", "property", "that", "is", "an", "instance", "of", "cls", "." ]
b82e6a0bf7cc44a463c5d7cdb3d2199f8320c493
https://github.com/eclipse/unide.python/blob/b82e6a0bf7cc44a463c5d7cdb3d2199f8320c493/src/unide/schema.py#L406-L408
train
eclipse/unide.python
src/unide/schema.py
ListOf
def ListOf(cls, **kwargs): """A property that is a list of `cls`.""" def _list_load(value): return [cls.load(d) for d in value] return Property(types=list, load=_list_load, default=list, **kwargs)
python
def ListOf(cls, **kwargs): """A property that is a list of `cls`.""" def _list_load(value): return [cls.load(d) for d in value] return Property(types=list, load=_list_load, default=list, **kwargs)
[ "def", "ListOf", "(", "cls", ",", "*", "*", "kwargs", ")", ":", "def", "_list_load", "(", "value", ")", ":", "return", "[", "cls", ".", "load", "(", "d", ")", "for", "d", "in", "value", "]", "return", "Property", "(", "types", "=", "list", ",", "load", "=", "_list_load", ",", "default", "=", "list", ",", "*", "*", "kwargs", ")" ]
A property that is a list of `cls`.
[ "A", "property", "that", "is", "a", "list", "of", "cls", "." ]
b82e6a0bf7cc44a463c5d7cdb3d2199f8320c493
https://github.com/eclipse/unide.python/blob/b82e6a0bf7cc44a463c5d7cdb3d2199f8320c493/src/unide/schema.py#L411-L417
train
eclipse/unide.python
src/unide/schema.py
HasDimensions.add_dimension
def add_dimension(self, name, data=None): """Add a named dimension to this entity.""" self.dimensions.add(name) if data is None: valobj = self.__dimtype__() else: valobj = make_object(self.__dimtype__, data) self._data[name] = valobj setattr(self, name, valobj) return valobj
python
def add_dimension(self, name, data=None): """Add a named dimension to this entity.""" self.dimensions.add(name) if data is None: valobj = self.__dimtype__() else: valobj = make_object(self.__dimtype__, data) self._data[name] = valobj setattr(self, name, valobj) return valobj
[ "def", "add_dimension", "(", "self", ",", "name", ",", "data", "=", "None", ")", ":", "self", ".", "dimensions", ".", "add", "(", "name", ")", "if", "data", "is", "None", ":", "valobj", "=", "self", ".", "__dimtype__", "(", ")", "else", ":", "valobj", "=", "make_object", "(", "self", ".", "__dimtype__", ",", "data", ")", "self", ".", "_data", "[", "name", "]", "=", "valobj", "setattr", "(", "self", ",", "name", ",", "valobj", ")", "return", "valobj" ]
Add a named dimension to this entity.
[ "Add", "a", "named", "dimension", "to", "this", "entity", "." ]
b82e6a0bf7cc44a463c5d7cdb3d2199f8320c493
https://github.com/eclipse/unide.python/blob/b82e6a0bf7cc44a463c5d7cdb3d2199f8320c493/src/unide/schema.py#L323-L332
train
MoseleyBioinformaticsLab/mwtab
mwtab/mwtab.py
MWTabFile.print_block
def print_block(self, section_key, f=sys.stdout, file_format="mwtab"): """Print `mwtab` section into a file or stdout. :param str section_key: Section name. :param io.StringIO f: writable file-like stream. :param str file_format: Format to use: `mwtab` or `json`. :return: None :rtype: :py:obj:`None` """ if file_format == "mwtab": for key, value in self[section_key].items(): if section_key == "METABOLOMICS WORKBENCH" and key not in ("VERSION", "CREATED_ON"): continue if key in ("VERSION", "CREATED_ON"): cw = 20 - len(key) elif key in ("SUBJECT_SAMPLE_FACTORS", ): cw = 33 - len(key) else: cw = 30 - len(key) if "\n" in value: for line in value.split("\n"): print("{}{}{}\t{}".format(self.prefixes.get(section_key, ""), key, cw * " ", line), file=f) elif key == "SUBJECT_SAMPLE_FACTORS": for factor in value: print("{}{}\t{}".format(key, cw * " ", "\t".join(factor.values())), file=f) elif key.endswith(":UNITS"): print("{}\t{}".format(key, value), file=f) elif key.endswith("_RESULTS_FILE"): if isinstance(value, dict): print("{}{} \t{}\t{}:{}".format(self.prefixes.get(section_key, ""), *[i for pair in value.items() for i in pair]), file=f) else: print("{}{}{}\t{}".format(self.prefixes.get(section_key, ""), key, cw * " ", value), file=f) elif key.endswith("_START"): start_key = key end_key = "{}{}".format(start_key[:-5], "END") print(start_key, file=f) for data_key in value: if data_key in ("Samples", "Factors"): print("{}\t{}".format(data_key, "\t".join(self[section_key][key][data_key])), file=f) elif data_key in ("Fields", ): print("{}".format("\t".join(self[section_key][key][data_key])), file=f) elif data_key == "DATA": for data in self[section_key][key][data_key]: print("\t".join(data.values()), file=f) print(end_key, file=f) else: print("{}{}{}\t{}".format(self.prefixes.get(section_key, ""), key, cw * " ", value), file=f) elif file_format == "json": print(json.dumps(self[section_key], sort_keys=False, indent=4), file=f)
python
def print_block(self, section_key, f=sys.stdout, file_format="mwtab"): """Print `mwtab` section into a file or stdout. :param str section_key: Section name. :param io.StringIO f: writable file-like stream. :param str file_format: Format to use: `mwtab` or `json`. :return: None :rtype: :py:obj:`None` """ if file_format == "mwtab": for key, value in self[section_key].items(): if section_key == "METABOLOMICS WORKBENCH" and key not in ("VERSION", "CREATED_ON"): continue if key in ("VERSION", "CREATED_ON"): cw = 20 - len(key) elif key in ("SUBJECT_SAMPLE_FACTORS", ): cw = 33 - len(key) else: cw = 30 - len(key) if "\n" in value: for line in value.split("\n"): print("{}{}{}\t{}".format(self.prefixes.get(section_key, ""), key, cw * " ", line), file=f) elif key == "SUBJECT_SAMPLE_FACTORS": for factor in value: print("{}{}\t{}".format(key, cw * " ", "\t".join(factor.values())), file=f) elif key.endswith(":UNITS"): print("{}\t{}".format(key, value), file=f) elif key.endswith("_RESULTS_FILE"): if isinstance(value, dict): print("{}{} \t{}\t{}:{}".format(self.prefixes.get(section_key, ""), *[i for pair in value.items() for i in pair]), file=f) else: print("{}{}{}\t{}".format(self.prefixes.get(section_key, ""), key, cw * " ", value), file=f) elif key.endswith("_START"): start_key = key end_key = "{}{}".format(start_key[:-5], "END") print(start_key, file=f) for data_key in value: if data_key in ("Samples", "Factors"): print("{}\t{}".format(data_key, "\t".join(self[section_key][key][data_key])), file=f) elif data_key in ("Fields", ): print("{}".format("\t".join(self[section_key][key][data_key])), file=f) elif data_key == "DATA": for data in self[section_key][key][data_key]: print("\t".join(data.values()), file=f) print(end_key, file=f) else: print("{}{}{}\t{}".format(self.prefixes.get(section_key, ""), key, cw * " ", value), file=f) elif file_format == "json": print(json.dumps(self[section_key], sort_keys=False, indent=4), file=f)
[ "def", "print_block", "(", "self", ",", "section_key", ",", "f", "=", "sys", ".", "stdout", ",", "file_format", "=", "\"mwtab\"", ")", ":", "if", "file_format", "==", "\"mwtab\"", ":", "for", "key", ",", "value", "in", "self", "[", "section_key", "]", ".", "items", "(", ")", ":", "if", "section_key", "==", "\"METABOLOMICS WORKBENCH\"", "and", "key", "not", "in", "(", "\"VERSION\"", ",", "\"CREATED_ON\"", ")", ":", "continue", "if", "key", "in", "(", "\"VERSION\"", ",", "\"CREATED_ON\"", ")", ":", "cw", "=", "20", "-", "len", "(", "key", ")", "elif", "key", "in", "(", "\"SUBJECT_SAMPLE_FACTORS\"", ",", ")", ":", "cw", "=", "33", "-", "len", "(", "key", ")", "else", ":", "cw", "=", "30", "-", "len", "(", "key", ")", "if", "\"\\n\"", "in", "value", ":", "for", "line", "in", "value", ".", "split", "(", "\"\\n\"", ")", ":", "print", "(", "\"{}{}{}\\t{}\"", ".", "format", "(", "self", ".", "prefixes", ".", "get", "(", "section_key", ",", "\"\"", ")", ",", "key", ",", "cw", "*", "\" \"", ",", "line", ")", ",", "file", "=", "f", ")", "elif", "key", "==", "\"SUBJECT_SAMPLE_FACTORS\"", ":", "for", "factor", "in", "value", ":", "print", "(", "\"{}{}\\t{}\"", ".", "format", "(", "key", ",", "cw", "*", "\" \"", ",", "\"\\t\"", ".", "join", "(", "factor", ".", "values", "(", ")", ")", ")", ",", "file", "=", "f", ")", "elif", "key", ".", "endswith", "(", "\":UNITS\"", ")", ":", "print", "(", "\"{}\\t{}\"", ".", "format", "(", "key", ",", "value", ")", ",", "file", "=", "f", ")", "elif", "key", ".", "endswith", "(", "\"_RESULTS_FILE\"", ")", ":", "if", "isinstance", "(", "value", ",", "dict", ")", ":", "print", "(", "\"{}{} \\t{}\\t{}:{}\"", ".", "format", "(", "self", ".", "prefixes", ".", "get", "(", "section_key", ",", "\"\"", ")", ",", "*", "[", "i", "for", "pair", "in", "value", ".", "items", "(", ")", "for", "i", "in", "pair", "]", ")", ",", "file", "=", "f", ")", "else", ":", "print", "(", "\"{}{}{}\\t{}\"", ".", "format", "(", "self", ".", "prefixes", ".", "get", "(", "section_key", ",", "\"\"", ")", ",", "key", ",", "cw", "*", "\" \"", ",", "value", ")", ",", "file", "=", "f", ")", "elif", "key", ".", "endswith", "(", "\"_START\"", ")", ":", "start_key", "=", "key", "end_key", "=", "\"{}{}\"", ".", "format", "(", "start_key", "[", ":", "-", "5", "]", ",", "\"END\"", ")", "print", "(", "start_key", ",", "file", "=", "f", ")", "for", "data_key", "in", "value", ":", "if", "data_key", "in", "(", "\"Samples\"", ",", "\"Factors\"", ")", ":", "print", "(", "\"{}\\t{}\"", ".", "format", "(", "data_key", ",", "\"\\t\"", ".", "join", "(", "self", "[", "section_key", "]", "[", "key", "]", "[", "data_key", "]", ")", ")", ",", "file", "=", "f", ")", "elif", "data_key", "in", "(", "\"Fields\"", ",", ")", ":", "print", "(", "\"{}\"", ".", "format", "(", "\"\\t\"", ".", "join", "(", "self", "[", "section_key", "]", "[", "key", "]", "[", "data_key", "]", ")", ")", ",", "file", "=", "f", ")", "elif", "data_key", "==", "\"DATA\"", ":", "for", "data", "in", "self", "[", "section_key", "]", "[", "key", "]", "[", "data_key", "]", ":", "print", "(", "\"\\t\"", ".", "join", "(", "data", ".", "values", "(", ")", ")", ",", "file", "=", "f", ")", "print", "(", "end_key", ",", "file", "=", "f", ")", "else", ":", "print", "(", "\"{}{}{}\\t{}\"", ".", "format", "(", "self", ".", "prefixes", ".", "get", "(", "section_key", ",", "\"\"", ")", ",", "key", ",", "cw", "*", "\" \"", ",", "value", ")", ",", "file", "=", "f", ")", "elif", "file_format", "==", "\"json\"", ":", "print", "(", "json", ".", "dumps", "(", "self", "[", "section_key", "]", ",", "sort_keys", "=", "False", ",", "indent", "=", "4", ")", ",", "file", "=", "f", ")" ]
Print `mwtab` section into a file or stdout. :param str section_key: Section name. :param io.StringIO f: writable file-like stream. :param str file_format: Format to use: `mwtab` or `json`. :return: None :rtype: :py:obj:`None`
[ "Print", "mwtab", "section", "into", "a", "file", "or", "stdout", "." ]
8c0ae8ab2aa621662f99589ed41e481cf8b7152b
https://github.com/MoseleyBioinformaticsLab/mwtab/blob/8c0ae8ab2aa621662f99589ed41e481cf8b7152b/mwtab/mwtab.py#L233-L293
train
MoseleyBioinformaticsLab/mwtab
mwtab/mwtab.py
MWTabFile._is_mwtab
def _is_mwtab(string): """Test if input string is in `mwtab` format. :param string: Input string. :type string: :py:class:`str` or :py:class:`bytes` :return: Input string if in mwTab format or False otherwise. :rtype: :py:class:`str` or :py:obj:`False` """ if isinstance(string, str): lines = string.split("\n") elif isinstance(string, bytes): lines = string.decode("utf-8").split("\n") else: raise TypeError("Expecting <class 'str'> or <class 'bytes'>, but {} was passed".format(type(string))) lines = [line for line in lines if line] header = lines[0] if header.startswith("#METABOLOMICS WORKBENCH"): return "\n".join(lines) return False
python
def _is_mwtab(string): """Test if input string is in `mwtab` format. :param string: Input string. :type string: :py:class:`str` or :py:class:`bytes` :return: Input string if in mwTab format or False otherwise. :rtype: :py:class:`str` or :py:obj:`False` """ if isinstance(string, str): lines = string.split("\n") elif isinstance(string, bytes): lines = string.decode("utf-8").split("\n") else: raise TypeError("Expecting <class 'str'> or <class 'bytes'>, but {} was passed".format(type(string))) lines = [line for line in lines if line] header = lines[0] if header.startswith("#METABOLOMICS WORKBENCH"): return "\n".join(lines) return False
[ "def", "_is_mwtab", "(", "string", ")", ":", "if", "isinstance", "(", "string", ",", "str", ")", ":", "lines", "=", "string", ".", "split", "(", "\"\\n\"", ")", "elif", "isinstance", "(", "string", ",", "bytes", ")", ":", "lines", "=", "string", ".", "decode", "(", "\"utf-8\"", ")", ".", "split", "(", "\"\\n\"", ")", "else", ":", "raise", "TypeError", "(", "\"Expecting <class 'str'> or <class 'bytes'>, but {} was passed\"", ".", "format", "(", "type", "(", "string", ")", ")", ")", "lines", "=", "[", "line", "for", "line", "in", "lines", "if", "line", "]", "header", "=", "lines", "[", "0", "]", "if", "header", ".", "startswith", "(", "\"#METABOLOMICS WORKBENCH\"", ")", ":", "return", "\"\\n\"", ".", "join", "(", "lines", ")", "return", "False" ]
Test if input string is in `mwtab` format. :param string: Input string. :type string: :py:class:`str` or :py:class:`bytes` :return: Input string if in mwTab format or False otherwise. :rtype: :py:class:`str` or :py:obj:`False`
[ "Test", "if", "input", "string", "is", "in", "mwtab", "format", "." ]
8c0ae8ab2aa621662f99589ed41e481cf8b7152b
https://github.com/MoseleyBioinformaticsLab/mwtab/blob/8c0ae8ab2aa621662f99589ed41e481cf8b7152b/mwtab/mwtab.py#L314-L334
train
prezi/django-zipkin
django_zipkin/_thrift/zipkinQuery/ZipkinQuery.py
Client.getTraceIdsBySpanName
def getTraceIdsBySpanName(self, service_name, span_name, end_ts, limit, order): """ Fetch trace ids by service and span name. Gets "limit" number of entries from before the "end_ts". Span name is optional. Timestamps are in microseconds. Parameters: - service_name - span_name - end_ts - limit - order """ self.send_getTraceIdsBySpanName(service_name, span_name, end_ts, limit, order) return self.recv_getTraceIdsBySpanName()
python
def getTraceIdsBySpanName(self, service_name, span_name, end_ts, limit, order): """ Fetch trace ids by service and span name. Gets "limit" number of entries from before the "end_ts". Span name is optional. Timestamps are in microseconds. Parameters: - service_name - span_name - end_ts - limit - order """ self.send_getTraceIdsBySpanName(service_name, span_name, end_ts, limit, order) return self.recv_getTraceIdsBySpanName()
[ "def", "getTraceIdsBySpanName", "(", "self", ",", "service_name", ",", "span_name", ",", "end_ts", ",", "limit", ",", "order", ")", ":", "self", ".", "send_getTraceIdsBySpanName", "(", "service_name", ",", "span_name", ",", "end_ts", ",", "limit", ",", "order", ")", "return", "self", ".", "recv_getTraceIdsBySpanName", "(", ")" ]
Fetch trace ids by service and span name. Gets "limit" number of entries from before the "end_ts". Span name is optional. Timestamps are in microseconds. Parameters: - service_name - span_name - end_ts - limit - order
[ "Fetch", "trace", "ids", "by", "service", "and", "span", "name", ".", "Gets", "limit", "number", "of", "entries", "from", "before", "the", "end_ts", "." ]
158d04cf9c2fe0adcb4cda66a250d9e41eae33f3
https://github.com/prezi/django-zipkin/blob/158d04cf9c2fe0adcb4cda66a250d9e41eae33f3/django_zipkin/_thrift/zipkinQuery/ZipkinQuery.py#L286-L302
train
prezi/django-zipkin
django_zipkin/_thrift/zipkinQuery/ZipkinQuery.py
Client.getTraceIdsByServiceName
def getTraceIdsByServiceName(self, service_name, end_ts, limit, order): """ Fetch trace ids by service name. Gets "limit" number of entries from before the "end_ts". Timestamps are in microseconds. Parameters: - service_name - end_ts - limit - order """ self.send_getTraceIdsByServiceName(service_name, end_ts, limit, order) return self.recv_getTraceIdsByServiceName()
python
def getTraceIdsByServiceName(self, service_name, end_ts, limit, order): """ Fetch trace ids by service name. Gets "limit" number of entries from before the "end_ts". Timestamps are in microseconds. Parameters: - service_name - end_ts - limit - order """ self.send_getTraceIdsByServiceName(service_name, end_ts, limit, order) return self.recv_getTraceIdsByServiceName()
[ "def", "getTraceIdsByServiceName", "(", "self", ",", "service_name", ",", "end_ts", ",", "limit", ",", "order", ")", ":", "self", ".", "send_getTraceIdsByServiceName", "(", "service_name", ",", "end_ts", ",", "limit", ",", "order", ")", "return", "self", ".", "recv_getTraceIdsByServiceName", "(", ")" ]
Fetch trace ids by service name. Gets "limit" number of entries from before the "end_ts". Timestamps are in microseconds. Parameters: - service_name - end_ts - limit - order
[ "Fetch", "trace", "ids", "by", "service", "name", ".", "Gets", "limit", "number", "of", "entries", "from", "before", "the", "end_ts", "." ]
158d04cf9c2fe0adcb4cda66a250d9e41eae33f3
https://github.com/prezi/django-zipkin/blob/158d04cf9c2fe0adcb4cda66a250d9e41eae33f3/django_zipkin/_thrift/zipkinQuery/ZipkinQuery.py#L332-L346
train
prezi/django-zipkin
django_zipkin/_thrift/zipkinQuery/ZipkinQuery.py
Client.getTraceIdsByAnnotation
def getTraceIdsByAnnotation(self, service_name, annotation, value, end_ts, limit, order): """ Fetch trace ids with a particular annotation. Gets "limit" number of entries from before the "end_ts". When requesting based on time based annotations only pass in the first parameter, "annotation" and leave out the second "value". If looking for a key-value binary annotation provide both, "annotation" is then the key in the key-value. Timestamps are in microseconds. Parameters: - service_name - annotation - value - end_ts - limit - order """ self.send_getTraceIdsByAnnotation(service_name, annotation, value, end_ts, limit, order) return self.recv_getTraceIdsByAnnotation()
python
def getTraceIdsByAnnotation(self, service_name, annotation, value, end_ts, limit, order): """ Fetch trace ids with a particular annotation. Gets "limit" number of entries from before the "end_ts". When requesting based on time based annotations only pass in the first parameter, "annotation" and leave out the second "value". If looking for a key-value binary annotation provide both, "annotation" is then the key in the key-value. Timestamps are in microseconds. Parameters: - service_name - annotation - value - end_ts - limit - order """ self.send_getTraceIdsByAnnotation(service_name, annotation, value, end_ts, limit, order) return self.recv_getTraceIdsByAnnotation()
[ "def", "getTraceIdsByAnnotation", "(", "self", ",", "service_name", ",", "annotation", ",", "value", ",", "end_ts", ",", "limit", ",", "order", ")", ":", "self", ".", "send_getTraceIdsByAnnotation", "(", "service_name", ",", "annotation", ",", "value", ",", "end_ts", ",", "limit", ",", "order", ")", "return", "self", ".", "recv_getTraceIdsByAnnotation", "(", ")" ]
Fetch trace ids with a particular annotation. Gets "limit" number of entries from before the "end_ts". When requesting based on time based annotations only pass in the first parameter, "annotation" and leave out the second "value". If looking for a key-value binary annotation provide both, "annotation" is then the key in the key-value. Timestamps are in microseconds. Parameters: - service_name - annotation - value - end_ts - limit - order
[ "Fetch", "trace", "ids", "with", "a", "particular", "annotation", ".", "Gets", "limit", "number", "of", "entries", "from", "before", "the", "end_ts", "." ]
158d04cf9c2fe0adcb4cda66a250d9e41eae33f3
https://github.com/prezi/django-zipkin/blob/158d04cf9c2fe0adcb4cda66a250d9e41eae33f3/django_zipkin/_thrift/zipkinQuery/ZipkinQuery.py#L375-L395
train
prezi/django-zipkin
django_zipkin/_thrift/zipkinQuery/ZipkinQuery.py
Client.getTracesByIds
def getTracesByIds(self, trace_ids, adjust): """ Get the full traces associated with the given trace ids. Second argument is a list of methods of adjusting the trace data before returning it. Can be empty. Parameters: - trace_ids - adjust """ self.send_getTracesByIds(trace_ids, adjust) return self.recv_getTracesByIds()
python
def getTracesByIds(self, trace_ids, adjust): """ Get the full traces associated with the given trace ids. Second argument is a list of methods of adjusting the trace data before returning it. Can be empty. Parameters: - trace_ids - adjust """ self.send_getTracesByIds(trace_ids, adjust) return self.recv_getTracesByIds()
[ "def", "getTracesByIds", "(", "self", ",", "trace_ids", ",", "adjust", ")", ":", "self", ".", "send_getTracesByIds", "(", "trace_ids", ",", "adjust", ")", "return", "self", ".", "recv_getTracesByIds", "(", ")" ]
Get the full traces associated with the given trace ids. Second argument is a list of methods of adjusting the trace data before returning it. Can be empty. Parameters: - trace_ids - adjust
[ "Get", "the", "full", "traces", "associated", "with", "the", "given", "trace", "ids", "." ]
158d04cf9c2fe0adcb4cda66a250d9e41eae33f3
https://github.com/prezi/django-zipkin/blob/158d04cf9c2fe0adcb4cda66a250d9e41eae33f3/django_zipkin/_thrift/zipkinQuery/ZipkinQuery.py#L460-L472
train
prezi/django-zipkin
django_zipkin/_thrift/zipkinQuery/ZipkinQuery.py
Client.getTraceSummariesByIds
def getTraceSummariesByIds(self, trace_ids, adjust): """ Fetch trace summaries for the given trace ids. Second argument is a list of methods of adjusting the trace data before returning it. Can be empty. Note that if one of the trace ids does not have any data associated with it, it will not be represented in the output list. Parameters: - trace_ids - adjust """ self.send_getTraceSummariesByIds(trace_ids, adjust) return self.recv_getTraceSummariesByIds()
python
def getTraceSummariesByIds(self, trace_ids, adjust): """ Fetch trace summaries for the given trace ids. Second argument is a list of methods of adjusting the trace data before returning it. Can be empty. Note that if one of the trace ids does not have any data associated with it, it will not be represented in the output list. Parameters: - trace_ids - adjust """ self.send_getTraceSummariesByIds(trace_ids, adjust) return self.recv_getTraceSummariesByIds()
[ "def", "getTraceSummariesByIds", "(", "self", ",", "trace_ids", ",", "adjust", ")", ":", "self", ".", "send_getTraceSummariesByIds", "(", "trace_ids", ",", "adjust", ")", "return", "self", ".", "recv_getTraceSummariesByIds", "(", ")" ]
Fetch trace summaries for the given trace ids. Second argument is a list of methods of adjusting the trace data before returning it. Can be empty. Note that if one of the trace ids does not have any data associated with it, it will not be represented in the output list. Parameters: - trace_ids - adjust
[ "Fetch", "trace", "summaries", "for", "the", "given", "trace", "ids", "." ]
158d04cf9c2fe0adcb4cda66a250d9e41eae33f3
https://github.com/prezi/django-zipkin/blob/158d04cf9c2fe0adcb4cda66a250d9e41eae33f3/django_zipkin/_thrift/zipkinQuery/ZipkinQuery.py#L543-L558
train
prezi/django-zipkin
django_zipkin/_thrift/zipkinQuery/ZipkinQuery.py
Client.getTraceCombosByIds
def getTraceCombosByIds(self, trace_ids, adjust): """ Not content with just one of traces, summaries or timelines? Want it all? This is the method for you. Parameters: - trace_ids - adjust """ self.send_getTraceCombosByIds(trace_ids, adjust) return self.recv_getTraceCombosByIds()
python
def getTraceCombosByIds(self, trace_ids, adjust): """ Not content with just one of traces, summaries or timelines? Want it all? This is the method for you. Parameters: - trace_ids - adjust """ self.send_getTraceCombosByIds(trace_ids, adjust) return self.recv_getTraceCombosByIds()
[ "def", "getTraceCombosByIds", "(", "self", ",", "trace_ids", ",", "adjust", ")", ":", "self", ".", "send_getTraceCombosByIds", "(", "trace_ids", ",", "adjust", ")", "return", "self", ".", "recv_getTraceCombosByIds", "(", ")" ]
Not content with just one of traces, summaries or timelines? Want it all? This is the method for you. Parameters: - trace_ids - adjust
[ "Not", "content", "with", "just", "one", "of", "traces", "summaries", "or", "timelines?", "Want", "it", "all?", "This", "is", "the", "method", "for", "you", "." ]
158d04cf9c2fe0adcb4cda66a250d9e41eae33f3
https://github.com/prezi/django-zipkin/blob/158d04cf9c2fe0adcb4cda66a250d9e41eae33f3/django_zipkin/_thrift/zipkinQuery/ZipkinQuery.py#L585-L594
train
prezi/django-zipkin
django_zipkin/_thrift/zipkinQuery/ZipkinQuery.py
Client.setTraceTimeToLive
def setTraceTimeToLive(self, trace_id, ttl_seconds): """ Change the TTL of a trace. If we find an interesting trace we want to keep around for further investigation. Parameters: - trace_id - ttl_seconds """ self.send_setTraceTimeToLive(trace_id, ttl_seconds) self.recv_setTraceTimeToLive()
python
def setTraceTimeToLive(self, trace_id, ttl_seconds): """ Change the TTL of a trace. If we find an interesting trace we want to keep around for further investigation. Parameters: - trace_id - ttl_seconds """ self.send_setTraceTimeToLive(trace_id, ttl_seconds) self.recv_setTraceTimeToLive()
[ "def", "setTraceTimeToLive", "(", "self", ",", "trace_id", ",", "ttl_seconds", ")", ":", "self", ".", "send_setTraceTimeToLive", "(", "trace_id", ",", "ttl_seconds", ")", "self", ".", "recv_setTraceTimeToLive", "(", ")" ]
Change the TTL of a trace. If we find an interesting trace we want to keep around for further investigation. Parameters: - trace_id - ttl_seconds
[ "Change", "the", "TTL", "of", "a", "trace", ".", "If", "we", "find", "an", "interesting", "trace", "we", "want", "to", "keep", "around", "for", "further", "investigation", "." ]
158d04cf9c2fe0adcb4cda66a250d9e41eae33f3
https://github.com/prezi/django-zipkin/blob/158d04cf9c2fe0adcb4cda66a250d9e41eae33f3/django_zipkin/_thrift/zipkinQuery/ZipkinQuery.py#L685-L695
train
camptocamp/Studio
studio/lib/datasource_discovery.py
discover_datasource_columns
def discover_datasource_columns(datastore_str, datasource_id): """ Loop through the datastore's datasources to find the datasource identified by datasource_id, return the matching datasource's columns. """ datastore = DataStore(datastore_str) datasource = datastore.get_datasource(datasource_id) if datasource.type != "RASTER": return datasource.list_columns() else: return []
python
def discover_datasource_columns(datastore_str, datasource_id): """ Loop through the datastore's datasources to find the datasource identified by datasource_id, return the matching datasource's columns. """ datastore = DataStore(datastore_str) datasource = datastore.get_datasource(datasource_id) if datasource.type != "RASTER": return datasource.list_columns() else: return []
[ "def", "discover_datasource_columns", "(", "datastore_str", ",", "datasource_id", ")", ":", "datastore", "=", "DataStore", "(", "datastore_str", ")", "datasource", "=", "datastore", ".", "get_datasource", "(", "datasource_id", ")", "if", "datasource", ".", "type", "!=", "\"RASTER\"", ":", "return", "datasource", ".", "list_columns", "(", ")", "else", ":", "return", "[", "]" ]
Loop through the datastore's datasources to find the datasource identified by datasource_id, return the matching datasource's columns.
[ "Loop", "through", "the", "datastore", "s", "datasources", "to", "find", "the", "datasource", "identified", "by", "datasource_id", "return", "the", "matching", "datasource", "s", "columns", "." ]
43cb7298434fb606b15136801b79b03571a2f27e
https://github.com/camptocamp/Studio/blob/43cb7298434fb606b15136801b79b03571a2f27e/studio/lib/datasource_discovery.py#L58-L67
train
camptocamp/Studio
studio/lib/datasource_discovery.py
OgrDataSource._get_column_type
def _get_column_type(self,column): """ Return 'numeric' if the column is of type integer or real, otherwise return 'string'. """ ctype = column.GetType() if ctype in [ogr.OFTInteger, ogr.OFTReal]: return 'numeric' else: return 'string'
python
def _get_column_type(self,column): """ Return 'numeric' if the column is of type integer or real, otherwise return 'string'. """ ctype = column.GetType() if ctype in [ogr.OFTInteger, ogr.OFTReal]: return 'numeric' else: return 'string'
[ "def", "_get_column_type", "(", "self", ",", "column", ")", ":", "ctype", "=", "column", ".", "GetType", "(", ")", "if", "ctype", "in", "[", "ogr", ".", "OFTInteger", ",", "ogr", ".", "OFTReal", "]", ":", "return", "'numeric'", "else", ":", "return", "'string'" ]
Return 'numeric' if the column is of type integer or real, otherwise return 'string'.
[ "Return", "numeric", "if", "the", "column", "is", "of", "type", "integer", "or", "real", "otherwise", "return", "string", "." ]
43cb7298434fb606b15136801b79b03571a2f27e
https://github.com/camptocamp/Studio/blob/43cb7298434fb606b15136801b79b03571a2f27e/studio/lib/datasource_discovery.py#L269-L276
train
camptocamp/Studio
studio/lib/datasource_discovery.py
OgrDataSource._get_default_mapfile_excerpt
def _get_default_mapfile_excerpt(self): """ Given an OGR string, an OGR connection and an OGR layer, create and return a representation of a MapFile LAYER block. """ layerobj = self._get_layer_stub() classobj = mapscript.classObj() layerobj.insertClass(classobj) styleobj = self._get_default_style() classobj.insertStyle(styleobj) return mapserializer.layerobj_to_dict(layerobj,None)
python
def _get_default_mapfile_excerpt(self): """ Given an OGR string, an OGR connection and an OGR layer, create and return a representation of a MapFile LAYER block. """ layerobj = self._get_layer_stub() classobj = mapscript.classObj() layerobj.insertClass(classobj) styleobj = self._get_default_style() classobj.insertStyle(styleobj) return mapserializer.layerobj_to_dict(layerobj,None)
[ "def", "_get_default_mapfile_excerpt", "(", "self", ")", ":", "layerobj", "=", "self", ".", "_get_layer_stub", "(", ")", "classobj", "=", "mapscript", ".", "classObj", "(", ")", "layerobj", ".", "insertClass", "(", "classobj", ")", "styleobj", "=", "self", ".", "_get_default_style", "(", ")", "classobj", ".", "insertStyle", "(", "styleobj", ")", "return", "mapserializer", ".", "layerobj_to_dict", "(", "layerobj", ",", "None", ")" ]
Given an OGR string, an OGR connection and an OGR layer, create and return a representation of a MapFile LAYER block.
[ "Given", "an", "OGR", "string", "an", "OGR", "connection", "and", "an", "OGR", "layer", "create", "and", "return", "a", "representation", "of", "a", "MapFile", "LAYER", "block", "." ]
43cb7298434fb606b15136801b79b03571a2f27e
https://github.com/camptocamp/Studio/blob/43cb7298434fb606b15136801b79b03571a2f27e/studio/lib/datasource_discovery.py#L285-L295
train
camptocamp/Studio
studio/lib/datasource_discovery.py
OgrDataSource._get_layer_stub
def _get_layer_stub(self): """ builds a minimal mapscript layerobj, with no styling """ layerobj = mapscript.layerObj() layerobj.name = self.name layerobj.status = mapscript.MS_ON projection = self.ogr_layer.GetSpatialRef() featureIdColumn = self._get_featureId_column() if featureIdColumn is not None and featureIdColumn != '' : layerobj.metadata.set('gml_featureid', featureIdColumn) if projection is not None: layerobj.setProjection(projection.ExportToProj4()) if self.datastore.connection_type == "directory": #append the extension to the shapefile until mapserver bug 2895 is fixed datastr = os.path.normpath(self.datastore.datastore_str + "/" + self.name) if os.path.exists(datastr+'.shp'): datastr = datastr+'.shp' elif os.path.exists(datastr+'.SHP'): datastr = datastr+'.SHP' layerobj.data = datastr elif self.datastore.connection_type == "postgis": layerobj.connectiontype = mapscript.MS_POSTGIS #remove the leading "PG:" from the connection string layerobj.connection = self.datastore.datastore_str[3:].strip() if featureIdColumn is not None and featureIdColumn != '' : layerobj.data = "%s from %s using unique %s" %( self.ogr_layer.GetGeometryColumn(), self.name, featureIdColumn) else: layerobj.data = "%s from %s"%(self.ogr_layer.GetGeometryColumn(),self.name) else: raise RuntimeError("unsupported connection type") if self.type == 'POINT': layerobj.type = mapscript.MS_LAYER_POINT elif self.type == 'POLYGON': layerobj.type = mapscript.MS_LAYER_POLYGON else: layerobj.type = mapscript.MS_LAYER_LINE return layerobj
python
def _get_layer_stub(self): """ builds a minimal mapscript layerobj, with no styling """ layerobj = mapscript.layerObj() layerobj.name = self.name layerobj.status = mapscript.MS_ON projection = self.ogr_layer.GetSpatialRef() featureIdColumn = self._get_featureId_column() if featureIdColumn is not None and featureIdColumn != '' : layerobj.metadata.set('gml_featureid', featureIdColumn) if projection is not None: layerobj.setProjection(projection.ExportToProj4()) if self.datastore.connection_type == "directory": #append the extension to the shapefile until mapserver bug 2895 is fixed datastr = os.path.normpath(self.datastore.datastore_str + "/" + self.name) if os.path.exists(datastr+'.shp'): datastr = datastr+'.shp' elif os.path.exists(datastr+'.SHP'): datastr = datastr+'.SHP' layerobj.data = datastr elif self.datastore.connection_type == "postgis": layerobj.connectiontype = mapscript.MS_POSTGIS #remove the leading "PG:" from the connection string layerobj.connection = self.datastore.datastore_str[3:].strip() if featureIdColumn is not None and featureIdColumn != '' : layerobj.data = "%s from %s using unique %s" %( self.ogr_layer.GetGeometryColumn(), self.name, featureIdColumn) else: layerobj.data = "%s from %s"%(self.ogr_layer.GetGeometryColumn(),self.name) else: raise RuntimeError("unsupported connection type") if self.type == 'POINT': layerobj.type = mapscript.MS_LAYER_POINT elif self.type == 'POLYGON': layerobj.type = mapscript.MS_LAYER_POLYGON else: layerobj.type = mapscript.MS_LAYER_LINE return layerobj
[ "def", "_get_layer_stub", "(", "self", ")", ":", "layerobj", "=", "mapscript", ".", "layerObj", "(", ")", "layerobj", ".", "name", "=", "self", ".", "name", "layerobj", ".", "status", "=", "mapscript", ".", "MS_ON", "projection", "=", "self", ".", "ogr_layer", ".", "GetSpatialRef", "(", ")", "featureIdColumn", "=", "self", ".", "_get_featureId_column", "(", ")", "if", "featureIdColumn", "is", "not", "None", "and", "featureIdColumn", "!=", "''", ":", "layerobj", ".", "metadata", ".", "set", "(", "'gml_featureid'", ",", "featureIdColumn", ")", "if", "projection", "is", "not", "None", ":", "layerobj", ".", "setProjection", "(", "projection", ".", "ExportToProj4", "(", ")", ")", "if", "self", ".", "datastore", ".", "connection_type", "==", "\"directory\"", ":", "#append the extension to the shapefile until mapserver bug 2895 is fixed", "datastr", "=", "os", ".", "path", ".", "normpath", "(", "self", ".", "datastore", ".", "datastore_str", "+", "\"/\"", "+", "self", ".", "name", ")", "if", "os", ".", "path", ".", "exists", "(", "datastr", "+", "'.shp'", ")", ":", "datastr", "=", "datastr", "+", "'.shp'", "elif", "os", ".", "path", ".", "exists", "(", "datastr", "+", "'.SHP'", ")", ":", "datastr", "=", "datastr", "+", "'.SHP'", "layerobj", ".", "data", "=", "datastr", "elif", "self", ".", "datastore", ".", "connection_type", "==", "\"postgis\"", ":", "layerobj", ".", "connectiontype", "=", "mapscript", ".", "MS_POSTGIS", "#remove the leading \"PG:\" from the connection string", "layerobj", ".", "connection", "=", "self", ".", "datastore", ".", "datastore_str", "[", "3", ":", "]", ".", "strip", "(", ")", "if", "featureIdColumn", "is", "not", "None", "and", "featureIdColumn", "!=", "''", ":", "layerobj", ".", "data", "=", "\"%s from %s using unique %s\"", "%", "(", "self", ".", "ogr_layer", ".", "GetGeometryColumn", "(", ")", ",", "self", ".", "name", ",", "featureIdColumn", ")", "else", ":", "layerobj", ".", "data", "=", "\"%s from %s\"", "%", "(", "self", ".", "ogr_layer", ".", "GetGeometryColumn", "(", ")", ",", "self", ".", "name", ")", "else", ":", "raise", "RuntimeError", "(", "\"unsupported connection type\"", ")", "if", "self", ".", "type", "==", "'POINT'", ":", "layerobj", ".", "type", "=", "mapscript", ".", "MS_LAYER_POINT", "elif", "self", ".", "type", "==", "'POLYGON'", ":", "layerobj", ".", "type", "=", "mapscript", ".", "MS_LAYER_POLYGON", "else", ":", "layerobj", ".", "type", "=", "mapscript", ".", "MS_LAYER_LINE", "return", "layerobj" ]
builds a minimal mapscript layerobj, with no styling
[ "builds", "a", "minimal", "mapscript", "layerobj", "with", "no", "styling" ]
43cb7298434fb606b15136801b79b03571a2f27e
https://github.com/camptocamp/Studio/blob/43cb7298434fb606b15136801b79b03571a2f27e/studio/lib/datasource_discovery.py#L303-L341
train
cocaine/cocaine-tools
cocaine/proxy/mds_direct.py
MDSDirect.reelect_app
def reelect_app(self, request, app): """tries to connect to the same app on differnet host from dist-info""" # disconnect app explicitly to break possibly existing connection app.disconnect() endpoints_size = len(app.locator.endpoints) # try x times, where x is the number of different endpoints in app locator. for _ in xrange(0, endpoints_size + 1): # last chance to take app from common pool if len(app.locator.endpoints) == 0: request.logger.info( "giving up on connecting to dist-info hosts, falling back to common pool processing") app = yield self.proxy.reelect_app(request, app) raise gen.Return(app) try: # always create new locator to prevent locking as we do connect with timeout # however lock can be still held during TCP timeout locator = Locator(endpoints=app.locator.endpoints) request.logger.info("connecting to locator %s", locator.endpoints[0]) # first try to connect to locator only on remote host with timeout yield gen.with_timeout(self.service_connect_timeout, locator.connect()) request.logger.debug("connected to locator %s for %s", locator.endpoints[0], app.name) app = Service(app.name, locator=locator, timeout=RESOLVE_TIMEOUT) # try to resolve and connect to application itself yield gen.with_timeout(self.service_connect_timeout, app.connect()) request.logger.debug("connected to application %s via %s", app.name, app.endpoints) except gen.TimeoutError: # on timeout try next endpoint first request.logger.warning("timed out while connecting to application") continue except ServiceError as err: request.logger.warning("got error while resolving app - %s", err) if err.category in LOCATORCATEGORY and err.code == ESERVICENOTAVAILABLE: # if the application is down - also try next endpoint continue else: raise err finally: # drop first endpoint to start next connection from different endpoint # we do this, as default logic of connection attempts in locator do not fit here app.locator.endpoints = app.locator.endpoints[1:] # return connected app raise gen.Return(app) raise PluginApplicationError(42, 42, "could not connect to application")
python
def reelect_app(self, request, app): """tries to connect to the same app on differnet host from dist-info""" # disconnect app explicitly to break possibly existing connection app.disconnect() endpoints_size = len(app.locator.endpoints) # try x times, where x is the number of different endpoints in app locator. for _ in xrange(0, endpoints_size + 1): # last chance to take app from common pool if len(app.locator.endpoints) == 0: request.logger.info( "giving up on connecting to dist-info hosts, falling back to common pool processing") app = yield self.proxy.reelect_app(request, app) raise gen.Return(app) try: # always create new locator to prevent locking as we do connect with timeout # however lock can be still held during TCP timeout locator = Locator(endpoints=app.locator.endpoints) request.logger.info("connecting to locator %s", locator.endpoints[0]) # first try to connect to locator only on remote host with timeout yield gen.with_timeout(self.service_connect_timeout, locator.connect()) request.logger.debug("connected to locator %s for %s", locator.endpoints[0], app.name) app = Service(app.name, locator=locator, timeout=RESOLVE_TIMEOUT) # try to resolve and connect to application itself yield gen.with_timeout(self.service_connect_timeout, app.connect()) request.logger.debug("connected to application %s via %s", app.name, app.endpoints) except gen.TimeoutError: # on timeout try next endpoint first request.logger.warning("timed out while connecting to application") continue except ServiceError as err: request.logger.warning("got error while resolving app - %s", err) if err.category in LOCATORCATEGORY and err.code == ESERVICENOTAVAILABLE: # if the application is down - also try next endpoint continue else: raise err finally: # drop first endpoint to start next connection from different endpoint # we do this, as default logic of connection attempts in locator do not fit here app.locator.endpoints = app.locator.endpoints[1:] # return connected app raise gen.Return(app) raise PluginApplicationError(42, 42, "could not connect to application")
[ "def", "reelect_app", "(", "self", ",", "request", ",", "app", ")", ":", "# disconnect app explicitly to break possibly existing connection", "app", ".", "disconnect", "(", ")", "endpoints_size", "=", "len", "(", "app", ".", "locator", ".", "endpoints", ")", "# try x times, where x is the number of different endpoints in app locator.", "for", "_", "in", "xrange", "(", "0", ",", "endpoints_size", "+", "1", ")", ":", "# last chance to take app from common pool", "if", "len", "(", "app", ".", "locator", ".", "endpoints", ")", "==", "0", ":", "request", ".", "logger", ".", "info", "(", "\"giving up on connecting to dist-info hosts, falling back to common pool processing\"", ")", "app", "=", "yield", "self", ".", "proxy", ".", "reelect_app", "(", "request", ",", "app", ")", "raise", "gen", ".", "Return", "(", "app", ")", "try", ":", "# always create new locator to prevent locking as we do connect with timeout", "# however lock can be still held during TCP timeout", "locator", "=", "Locator", "(", "endpoints", "=", "app", ".", "locator", ".", "endpoints", ")", "request", ".", "logger", ".", "info", "(", "\"connecting to locator %s\"", ",", "locator", ".", "endpoints", "[", "0", "]", ")", "# first try to connect to locator only on remote host with timeout", "yield", "gen", ".", "with_timeout", "(", "self", ".", "service_connect_timeout", ",", "locator", ".", "connect", "(", ")", ")", "request", ".", "logger", ".", "debug", "(", "\"connected to locator %s for %s\"", ",", "locator", ".", "endpoints", "[", "0", "]", ",", "app", ".", "name", ")", "app", "=", "Service", "(", "app", ".", "name", ",", "locator", "=", "locator", ",", "timeout", "=", "RESOLVE_TIMEOUT", ")", "# try to resolve and connect to application itself", "yield", "gen", ".", "with_timeout", "(", "self", ".", "service_connect_timeout", ",", "app", ".", "connect", "(", ")", ")", "request", ".", "logger", ".", "debug", "(", "\"connected to application %s via %s\"", ",", "app", ".", "name", ",", "app", ".", "endpoints", ")", "except", "gen", ".", "TimeoutError", ":", "# on timeout try next endpoint first", "request", ".", "logger", ".", "warning", "(", "\"timed out while connecting to application\"", ")", "continue", "except", "ServiceError", "as", "err", ":", "request", ".", "logger", ".", "warning", "(", "\"got error while resolving app - %s\"", ",", "err", ")", "if", "err", ".", "category", "in", "LOCATORCATEGORY", "and", "err", ".", "code", "==", "ESERVICENOTAVAILABLE", ":", "# if the application is down - also try next endpoint", "continue", "else", ":", "raise", "err", "finally", ":", "# drop first endpoint to start next connection from different endpoint", "# we do this, as default logic of connection attempts in locator do not fit here", "app", ".", "locator", ".", "endpoints", "=", "app", ".", "locator", ".", "endpoints", "[", "1", ":", "]", "# return connected app", "raise", "gen", ".", "Return", "(", "app", ")", "raise", "PluginApplicationError", "(", "42", ",", "42", ",", "\"could not connect to application\"", ")" ]
tries to connect to the same app on differnet host from dist-info
[ "tries", "to", "connect", "to", "the", "same", "app", "on", "differnet", "host", "from", "dist", "-", "info" ]
d8834f8e04ca42817d5f4e368d471484d4b3419f
https://github.com/cocaine/cocaine-tools/blob/d8834f8e04ca42817d5f4e368d471484d4b3419f/cocaine/proxy/mds_direct.py#L69-L116
train
tropo/tropo-webapi-python
samples/appengine/main.py
RecordHelloWorld
def RecordHelloWorld(handler, t): """ Demonstration of recording a message. """ url = "%s/receive_recording.py" % THIS_URL t.startRecording(url) t.say ("Hello, World.") t.stopRecording() json = t.RenderJson() logging.info ("RecordHelloWorld json: %s" % json) handler.response.out.write(json)
python
def RecordHelloWorld(handler, t): """ Demonstration of recording a message. """ url = "%s/receive_recording.py" % THIS_URL t.startRecording(url) t.say ("Hello, World.") t.stopRecording() json = t.RenderJson() logging.info ("RecordHelloWorld json: %s" % json) handler.response.out.write(json)
[ "def", "RecordHelloWorld", "(", "handler", ",", "t", ")", ":", "url", "=", "\"%s/receive_recording.py\"", "%", "THIS_URL", "t", ".", "startRecording", "(", "url", ")", "t", ".", "say", "(", "\"Hello, World.\"", ")", "t", ".", "stopRecording", "(", ")", "json", "=", "t", ".", "RenderJson", "(", ")", "logging", ".", "info", "(", "\"RecordHelloWorld json: %s\"", "%", "json", ")", "handler", ".", "response", ".", "out", ".", "write", "(", "json", ")" ]
Demonstration of recording a message.
[ "Demonstration", "of", "recording", "a", "message", "." ]
f87772644a6b45066a4c5218f0c1f6467b64ab3c
https://github.com/tropo/tropo-webapi-python/blob/f87772644a6b45066a4c5218f0c1f6467b64ab3c/samples/appengine/main.py#L69-L79
train
tropo/tropo-webapi-python
samples/appengine/main.py
RedirectDemo
def RedirectDemo(handler, t): """ Demonstration of redirecting to another number. """ # t.say ("One moment please.") t.redirect(SIP_PHONE) json = t.RenderJson() logging.info ("RedirectDemo json: %s" % json) handler.response.out.write(json)
python
def RedirectDemo(handler, t): """ Demonstration of redirecting to another number. """ # t.say ("One moment please.") t.redirect(SIP_PHONE) json = t.RenderJson() logging.info ("RedirectDemo json: %s" % json) handler.response.out.write(json)
[ "def", "RedirectDemo", "(", "handler", ",", "t", ")", ":", "# t.say (\"One moment please.\")", "t", ".", "redirect", "(", "SIP_PHONE", ")", "json", "=", "t", ".", "RenderJson", "(", ")", "logging", ".", "info", "(", "\"RedirectDemo json: %s\"", "%", "json", ")", "handler", ".", "response", ".", "out", ".", "write", "(", "json", ")" ]
Demonstration of redirecting to another number.
[ "Demonstration", "of", "redirecting", "to", "another", "number", "." ]
f87772644a6b45066a4c5218f0c1f6467b64ab3c
https://github.com/tropo/tropo-webapi-python/blob/f87772644a6b45066a4c5218f0c1f6467b64ab3c/samples/appengine/main.py#L81-L89
train
tropo/tropo-webapi-python
samples/appengine/main.py
TransferDemo
def TransferDemo(handler, t): """ Demonstration of transfering to another number """ t.say ("One moment please.") t.transfer(MY_PHONE) t.say("Hi. I am a robot") json = t.RenderJson() logging.info ("TransferDemo json: %s" % json) handler.response.out.write(json)
python
def TransferDemo(handler, t): """ Demonstration of transfering to another number """ t.say ("One moment please.") t.transfer(MY_PHONE) t.say("Hi. I am a robot") json = t.RenderJson() logging.info ("TransferDemo json: %s" % json) handler.response.out.write(json)
[ "def", "TransferDemo", "(", "handler", ",", "t", ")", ":", "t", ".", "say", "(", "\"One moment please.\"", ")", "t", ".", "transfer", "(", "MY_PHONE", ")", "t", ".", "say", "(", "\"Hi. I am a robot\"", ")", "json", "=", "t", ".", "RenderJson", "(", ")", "logging", ".", "info", "(", "\"TransferDemo json: %s\"", "%", "json", ")", "handler", ".", "response", ".", "out", ".", "write", "(", "json", ")" ]
Demonstration of transfering to another number
[ "Demonstration", "of", "transfering", "to", "another", "number" ]
f87772644a6b45066a4c5218f0c1f6467b64ab3c
https://github.com/tropo/tropo-webapi-python/blob/f87772644a6b45066a4c5218f0c1f6467b64ab3c/samples/appengine/main.py#L91-L100
train
uw-it-aca/uw-restclients-core
restclients_core/util/retry.py
retry
def retry(ExceptionToCheck, tries=4, delay=3, backoff=2, status_codes=[], logger=None): """ Decorator function for retrying the decorated function, using an exponential or fixed backoff. Original: https://wiki.python.org/moin/PythonDecoratorLibrary#Retry ExceptionToCheck: the exception to check. Can be a tuple of exceptions to check tries: number of times to try (not retry) before giving up delay: initial delay between tries in seconds backoff: backoff multiplier status_codes: list of http status codes to check for retrying, only applies when ExceptionToCheck is a DataFailureException logger: logging.Logger instance """ if backoff is None or backoff <= 0: raise ValueError("backoff must be a number greater than 0") tries = math.floor(tries) if tries < 0: raise ValueError("tries must be a number 0 or greater") if delay is None or delay <= 0: raise ValueError("delay must be a number greater than 0") def deco_retry(f): def f_retry(*args, **kwargs): mtries, mdelay = tries, delay while mtries > 1: try: return f(*args, **kwargs) except ExceptionToCheck as err: if (type(err) is DataFailureException and len(status_codes) and err.status not in status_codes): raise if logger: logger.warning('%s: %s, Retrying in %s seconds.' % ( f.__name__, err, mdelay)) time.sleep(mdelay) mtries -= 1 mdelay *= backoff return f(*args, **kwargs) return f_retry return deco_retry
python
def retry(ExceptionToCheck, tries=4, delay=3, backoff=2, status_codes=[], logger=None): """ Decorator function for retrying the decorated function, using an exponential or fixed backoff. Original: https://wiki.python.org/moin/PythonDecoratorLibrary#Retry ExceptionToCheck: the exception to check. Can be a tuple of exceptions to check tries: number of times to try (not retry) before giving up delay: initial delay between tries in seconds backoff: backoff multiplier status_codes: list of http status codes to check for retrying, only applies when ExceptionToCheck is a DataFailureException logger: logging.Logger instance """ if backoff is None or backoff <= 0: raise ValueError("backoff must be a number greater than 0") tries = math.floor(tries) if tries < 0: raise ValueError("tries must be a number 0 or greater") if delay is None or delay <= 0: raise ValueError("delay must be a number greater than 0") def deco_retry(f): def f_retry(*args, **kwargs): mtries, mdelay = tries, delay while mtries > 1: try: return f(*args, **kwargs) except ExceptionToCheck as err: if (type(err) is DataFailureException and len(status_codes) and err.status not in status_codes): raise if logger: logger.warning('%s: %s, Retrying in %s seconds.' % ( f.__name__, err, mdelay)) time.sleep(mdelay) mtries -= 1 mdelay *= backoff return f(*args, **kwargs) return f_retry return deco_retry
[ "def", "retry", "(", "ExceptionToCheck", ",", "tries", "=", "4", ",", "delay", "=", "3", ",", "backoff", "=", "2", ",", "status_codes", "=", "[", "]", ",", "logger", "=", "None", ")", ":", "if", "backoff", "is", "None", "or", "backoff", "<=", "0", ":", "raise", "ValueError", "(", "\"backoff must be a number greater than 0\"", ")", "tries", "=", "math", ".", "floor", "(", "tries", ")", "if", "tries", "<", "0", ":", "raise", "ValueError", "(", "\"tries must be a number 0 or greater\"", ")", "if", "delay", "is", "None", "or", "delay", "<=", "0", ":", "raise", "ValueError", "(", "\"delay must be a number greater than 0\"", ")", "def", "deco_retry", "(", "f", ")", ":", "def", "f_retry", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "mtries", ",", "mdelay", "=", "tries", ",", "delay", "while", "mtries", ">", "1", ":", "try", ":", "return", "f", "(", "*", "args", ",", "*", "*", "kwargs", ")", "except", "ExceptionToCheck", "as", "err", ":", "if", "(", "type", "(", "err", ")", "is", "DataFailureException", "and", "len", "(", "status_codes", ")", "and", "err", ".", "status", "not", "in", "status_codes", ")", ":", "raise", "if", "logger", ":", "logger", ".", "warning", "(", "'%s: %s, Retrying in %s seconds.'", "%", "(", "f", ".", "__name__", ",", "err", ",", "mdelay", ")", ")", "time", ".", "sleep", "(", "mdelay", ")", "mtries", "-=", "1", "mdelay", "*=", "backoff", "return", "f", "(", "*", "args", ",", "*", "*", "kwargs", ")", "return", "f_retry", "return", "deco_retry" ]
Decorator function for retrying the decorated function, using an exponential or fixed backoff. Original: https://wiki.python.org/moin/PythonDecoratorLibrary#Retry ExceptionToCheck: the exception to check. Can be a tuple of exceptions to check tries: number of times to try (not retry) before giving up delay: initial delay between tries in seconds backoff: backoff multiplier status_codes: list of http status codes to check for retrying, only applies when ExceptionToCheck is a DataFailureException logger: logging.Logger instance
[ "Decorator", "function", "for", "retrying", "the", "decorated", "function", "using", "an", "exponential", "or", "fixed", "backoff", "." ]
fda9380dceb6355ec6a3123e88c9ec66ae992682
https://github.com/uw-it-aca/uw-restclients-core/blob/fda9380dceb6355ec6a3123e88c9ec66ae992682/restclients_core/util/retry.py#L6-L58
train
uw-it-aca/uw-restclients-core
restclients_core/dao.py
DAO._custom_response_edit
def _custom_response_edit(self, method, url, headers, body, response): """ This method allows a service to edit a response. If you want to do this, you probably really want to use _edit_mock_response - this method will operate on Live resources. """ if self.get_implementation().is_mock(): delay = self.get_setting("MOCKDATA_DELAY", 0.0) time.sleep(delay) self._edit_mock_response(method, url, headers, body, response)
python
def _custom_response_edit(self, method, url, headers, body, response): """ This method allows a service to edit a response. If you want to do this, you probably really want to use _edit_mock_response - this method will operate on Live resources. """ if self.get_implementation().is_mock(): delay = self.get_setting("MOCKDATA_DELAY", 0.0) time.sleep(delay) self._edit_mock_response(method, url, headers, body, response)
[ "def", "_custom_response_edit", "(", "self", ",", "method", ",", "url", ",", "headers", ",", "body", ",", "response", ")", ":", "if", "self", ".", "get_implementation", "(", ")", ".", "is_mock", "(", ")", ":", "delay", "=", "self", ".", "get_setting", "(", "\"MOCKDATA_DELAY\"", ",", "0.0", ")", "time", ".", "sleep", "(", "delay", ")", "self", ".", "_edit_mock_response", "(", "method", ",", "url", ",", "headers", ",", "body", ",", "response", ")" ]
This method allows a service to edit a response. If you want to do this, you probably really want to use _edit_mock_response - this method will operate on Live resources.
[ "This", "method", "allows", "a", "service", "to", "edit", "a", "response", "." ]
fda9380dceb6355ec6a3123e88c9ec66ae992682
https://github.com/uw-it-aca/uw-restclients-core/blob/fda9380dceb6355ec6a3123e88c9ec66ae992682/restclients_core/dao.py#L64-L74
train
uw-it-aca/uw-restclients-core
restclients_core/dao.py
DAO.postURL
def postURL(self, url, headers={}, body=None): """ Request a URL using the HTTP method POST. """ return self._load_resource("POST", url, headers, body)
python
def postURL(self, url, headers={}, body=None): """ Request a URL using the HTTP method POST. """ return self._load_resource("POST", url, headers, body)
[ "def", "postURL", "(", "self", ",", "url", ",", "headers", "=", "{", "}", ",", "body", "=", "None", ")", ":", "return", "self", ".", "_load_resource", "(", "\"POST\"", ",", "url", ",", "headers", ",", "body", ")" ]
Request a URL using the HTTP method POST.
[ "Request", "a", "URL", "using", "the", "HTTP", "method", "POST", "." ]
fda9380dceb6355ec6a3123e88c9ec66ae992682
https://github.com/uw-it-aca/uw-restclients-core/blob/fda9380dceb6355ec6a3123e88c9ec66ae992682/restclients_core/dao.py#L100-L104
train
uw-it-aca/uw-restclients-core
restclients_core/dao.py
DAO.putURL
def putURL(self, url, headers, body=None): """ Request a URL using the HTTP method PUT. """ return self._load_resource("PUT", url, headers, body)
python
def putURL(self, url, headers, body=None): """ Request a URL using the HTTP method PUT. """ return self._load_resource("PUT", url, headers, body)
[ "def", "putURL", "(", "self", ",", "url", ",", "headers", ",", "body", "=", "None", ")", ":", "return", "self", ".", "_load_resource", "(", "\"PUT\"", ",", "url", ",", "headers", ",", "body", ")" ]
Request a URL using the HTTP method PUT.
[ "Request", "a", "URL", "using", "the", "HTTP", "method", "PUT", "." ]
fda9380dceb6355ec6a3123e88c9ec66ae992682
https://github.com/uw-it-aca/uw-restclients-core/blob/fda9380dceb6355ec6a3123e88c9ec66ae992682/restclients_core/dao.py#L106-L110
train
uw-it-aca/uw-restclients-core
restclients_core/dao.py
DAO.patchURL
def patchURL(self, url, headers, body): """ Request a URL using the HTTP method PATCH. """ return self._load_resource("PATCH", url, headers, body)
python
def patchURL(self, url, headers, body): """ Request a URL using the HTTP method PATCH. """ return self._load_resource("PATCH", url, headers, body)
[ "def", "patchURL", "(", "self", ",", "url", ",", "headers", ",", "body", ")", ":", "return", "self", ".", "_load_resource", "(", "\"PATCH\"", ",", "url", ",", "headers", ",", "body", ")" ]
Request a URL using the HTTP method PATCH.
[ "Request", "a", "URL", "using", "the", "HTTP", "method", "PATCH", "." ]
fda9380dceb6355ec6a3123e88c9ec66ae992682
https://github.com/uw-it-aca/uw-restclients-core/blob/fda9380dceb6355ec6a3123e88c9ec66ae992682/restclients_core/dao.py#L112-L116
train
mete0r/hypua2jamo
setup.py
setup_dir
def setup_dir(f): ''' Decorate f to run inside the directory where setup.py resides. ''' setup_dir = os.path.dirname(os.path.abspath(__file__)) def wrapped(*args, **kwargs): with chdir(setup_dir): return f(*args, **kwargs) return wrapped
python
def setup_dir(f): ''' Decorate f to run inside the directory where setup.py resides. ''' setup_dir = os.path.dirname(os.path.abspath(__file__)) def wrapped(*args, **kwargs): with chdir(setup_dir): return f(*args, **kwargs) return wrapped
[ "def", "setup_dir", "(", "f", ")", ":", "setup_dir", "=", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "abspath", "(", "__file__", ")", ")", "def", "wrapped", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "with", "chdir", "(", "setup_dir", ")", ":", "return", "f", "(", "*", "args", ",", "*", "*", "kwargs", ")", "return", "wrapped" ]
Decorate f to run inside the directory where setup.py resides.
[ "Decorate", "f", "to", "run", "inside", "the", "directory", "where", "setup", ".", "py", "resides", "." ]
caceb33a26c27645703d659a82bb1152deef1469
https://github.com/mete0r/hypua2jamo/blob/caceb33a26c27645703d659a82bb1152deef1469/setup.py#L33-L42
train
bitlabstudio/django-feedback-form
feedback_form/templatetags/feedback_tags.py
feedback_form
def feedback_form(context): """Template tag to render a feedback form.""" user = None url = None if context.get('request'): url = context['request'].path if context['request'].user.is_authenticated(): user = context['request'].user return { 'form': FeedbackForm(url=url, user=user), 'background_color': FEEDBACK_FORM_COLOR, 'text_color': FEEDBACK_FORM_TEXTCOLOR, 'text': FEEDBACK_FORM_TEXT, }
python
def feedback_form(context): """Template tag to render a feedback form.""" user = None url = None if context.get('request'): url = context['request'].path if context['request'].user.is_authenticated(): user = context['request'].user return { 'form': FeedbackForm(url=url, user=user), 'background_color': FEEDBACK_FORM_COLOR, 'text_color': FEEDBACK_FORM_TEXTCOLOR, 'text': FEEDBACK_FORM_TEXT, }
[ "def", "feedback_form", "(", "context", ")", ":", "user", "=", "None", "url", "=", "None", "if", "context", ".", "get", "(", "'request'", ")", ":", "url", "=", "context", "[", "'request'", "]", ".", "path", "if", "context", "[", "'request'", "]", ".", "user", ".", "is_authenticated", "(", ")", ":", "user", "=", "context", "[", "'request'", "]", ".", "user", "return", "{", "'form'", ":", "FeedbackForm", "(", "url", "=", "url", ",", "user", "=", "user", ")", ",", "'background_color'", ":", "FEEDBACK_FORM_COLOR", ",", "'text_color'", ":", "FEEDBACK_FORM_TEXTCOLOR", ",", "'text'", ":", "FEEDBACK_FORM_TEXT", ",", "}" ]
Template tag to render a feedback form.
[ "Template", "tag", "to", "render", "a", "feedback", "form", "." ]
e3b5acbbde37caddab2da65f0fd5d7f3a8c8c597
https://github.com/bitlabstudio/django-feedback-form/blob/e3b5acbbde37caddab2da65f0fd5d7f3a8c8c597/feedback_form/templatetags/feedback_tags.py#L11-L24
train
nickelkr/yfi
yfi/yql.py
Yql.select
def select(self, *itms): """Joins the items to be selected and inserts the current table name""" if not itms: itms = ['*'] self.terms.append("select %s from %s" % (', '.join(itms), self.table)) return self
python
def select(self, *itms): """Joins the items to be selected and inserts the current table name""" if not itms: itms = ['*'] self.terms.append("select %s from %s" % (', '.join(itms), self.table)) return self
[ "def", "select", "(", "self", ",", "*", "itms", ")", ":", "if", "not", "itms", ":", "itms", "=", "[", "'*'", "]", "self", ".", "terms", ".", "append", "(", "\"select %s from %s\"", "%", "(", "', '", ".", "join", "(", "itms", ")", ",", "self", ".", "table", ")", ")", "return", "self" ]
Joins the items to be selected and inserts the current table name
[ "Joins", "the", "items", "to", "be", "selected", "and", "inserts", "the", "current", "table", "name" ]
720773ea311abe01be83982f26a61ef744f9f648
https://github.com/nickelkr/yfi/blob/720773ea311abe01be83982f26a61ef744f9f648/yfi/yql.py#L45-L50
train
nickelkr/yfi
yfi/yql.py
Yql._in
def _in(self, *lst): """Build out the in clause. Using _in due to shadowing for in""" self.terms.append('in (%s)' % ', '.join(['"%s"' % x for x in lst])) return self
python
def _in(self, *lst): """Build out the in clause. Using _in due to shadowing for in""" self.terms.append('in (%s)' % ', '.join(['"%s"' % x for x in lst])) return self
[ "def", "_in", "(", "self", ",", "*", "lst", ")", ":", "self", ".", "terms", ".", "append", "(", "'in (%s)'", "%", "', '", ".", "join", "(", "[", "'\"%s\"'", "%", "x", "for", "x", "in", "lst", "]", ")", ")", "return", "self" ]
Build out the in clause. Using _in due to shadowing for in
[ "Build", "out", "the", "in", "clause", ".", "Using", "_in", "due", "to", "shadowing", "for", "in" ]
720773ea311abe01be83982f26a61ef744f9f648
https://github.com/nickelkr/yfi/blob/720773ea311abe01be83982f26a61ef744f9f648/yfi/yql.py#L57-L60
train
nickelkr/yfi
yfi/yql.py
Yql.compile
def compile(self): """Take all of the 'parts' components and build the complete query to be passed to Yahoo YQL""" cs = "" for term in self.terms: if cs: cs += " " cs += term self.compiled_str = urllib.parse.quote(cs) return self
python
def compile(self): """Take all of the 'parts' components and build the complete query to be passed to Yahoo YQL""" cs = "" for term in self.terms: if cs: cs += " " cs += term self.compiled_str = urllib.parse.quote(cs) return self
[ "def", "compile", "(", "self", ")", ":", "cs", "=", "\"\"", "for", "term", "in", "self", ".", "terms", ":", "if", "cs", ":", "cs", "+=", "\" \"", "cs", "+=", "term", "self", ".", "compiled_str", "=", "urllib", ".", "parse", ".", "quote", "(", "cs", ")", "return", "self" ]
Take all of the 'parts' components and build the complete query to be passed to Yahoo YQL
[ "Take", "all", "of", "the", "parts", "components", "and", "build", "the", "complete", "query", "to", "be", "passed", "to", "Yahoo", "YQL" ]
720773ea311abe01be83982f26a61ef744f9f648
https://github.com/nickelkr/yfi/blob/720773ea311abe01be83982f26a61ef744f9f648/yfi/yql.py#L69-L78
train
MoseleyBioinformaticsLab/mwtab
mwtab/fileio.py
read_files
def read_files(*sources, **kwds): """Construct a generator that yields file instances. :param sources: One or more strings representing path to file(s). """ filenames = _generate_filenames(sources) filehandles = _generate_handles(filenames) for fh, source in filehandles: try: f = mwtab.MWTabFile(source) f.read(fh) if kwds.get('validate'): validator.validate_file(mwtabfile=f, section_schema_mapping=mwschema.section_schema_mapping, validate_samples=True, validate_factors=True) yield f if VERBOSE: print("Processed file: {}".format(os.path.abspath(source))) except Exception as e: if VERBOSE: print("Error processing file: ", os.path.abspath(source), "\nReason:", e) pass
python
def read_files(*sources, **kwds): """Construct a generator that yields file instances. :param sources: One or more strings representing path to file(s). """ filenames = _generate_filenames(sources) filehandles = _generate_handles(filenames) for fh, source in filehandles: try: f = mwtab.MWTabFile(source) f.read(fh) if kwds.get('validate'): validator.validate_file(mwtabfile=f, section_schema_mapping=mwschema.section_schema_mapping, validate_samples=True, validate_factors=True) yield f if VERBOSE: print("Processed file: {}".format(os.path.abspath(source))) except Exception as e: if VERBOSE: print("Error processing file: ", os.path.abspath(source), "\nReason:", e) pass
[ "def", "read_files", "(", "*", "sources", ",", "*", "*", "kwds", ")", ":", "filenames", "=", "_generate_filenames", "(", "sources", ")", "filehandles", "=", "_generate_handles", "(", "filenames", ")", "for", "fh", ",", "source", "in", "filehandles", ":", "try", ":", "f", "=", "mwtab", ".", "MWTabFile", "(", "source", ")", "f", ".", "read", "(", "fh", ")", "if", "kwds", ".", "get", "(", "'validate'", ")", ":", "validator", ".", "validate_file", "(", "mwtabfile", "=", "f", ",", "section_schema_mapping", "=", "mwschema", ".", "section_schema_mapping", ",", "validate_samples", "=", "True", ",", "validate_factors", "=", "True", ")", "yield", "f", "if", "VERBOSE", ":", "print", "(", "\"Processed file: {}\"", ".", "format", "(", "os", ".", "path", ".", "abspath", "(", "source", ")", ")", ")", "except", "Exception", "as", "e", ":", "if", "VERBOSE", ":", "print", "(", "\"Error processing file: \"", ",", "os", ".", "path", ".", "abspath", "(", "source", ")", ",", "\"\\nReason:\"", ",", "e", ")", "pass" ]
Construct a generator that yields file instances. :param sources: One or more strings representing path to file(s).
[ "Construct", "a", "generator", "that", "yields", "file", "instances", "." ]
8c0ae8ab2aa621662f99589ed41e481cf8b7152b
https://github.com/MoseleyBioinformaticsLab/mwtab/blob/8c0ae8ab2aa621662f99589ed41e481cf8b7152b/mwtab/fileio.py#L90-L115
train
MoseleyBioinformaticsLab/mwtab
mwtab/fileio.py
GenericFilePath.is_url
def is_url(path): """Test if path represents a valid URL. :param str path: Path to file. :return: True if path is valid url string, False otherwise. :rtype: :py:obj:`True` or :py:obj:`False` """ try: parse_result = urlparse(path) return all((parse_result.scheme, parse_result.netloc, parse_result.path)) except ValueError: return False
python
def is_url(path): """Test if path represents a valid URL. :param str path: Path to file. :return: True if path is valid url string, False otherwise. :rtype: :py:obj:`True` or :py:obj:`False` """ try: parse_result = urlparse(path) return all((parse_result.scheme, parse_result.netloc, parse_result.path)) except ValueError: return False
[ "def", "is_url", "(", "path", ")", ":", "try", ":", "parse_result", "=", "urlparse", "(", "path", ")", "return", "all", "(", "(", "parse_result", ".", "scheme", ",", "parse_result", ".", "netloc", ",", "parse_result", ".", "path", ")", ")", "except", "ValueError", ":", "return", "False" ]
Test if path represents a valid URL. :param str path: Path to file. :return: True if path is valid url string, False otherwise. :rtype: :py:obj:`True` or :py:obj:`False`
[ "Test", "if", "path", "represents", "a", "valid", "URL", "." ]
8c0ae8ab2aa621662f99589ed41e481cf8b7152b
https://github.com/MoseleyBioinformaticsLab/mwtab/blob/8c0ae8ab2aa621662f99589ed41e481cf8b7152b/mwtab/fileio.py#L208-L219
train
camptocamp/Studio
studio/lib/auth.py
AuthMiddleware
def AuthMiddleware(app): """ Add authentication and authorization middleware to the ``app``. """ # url_for mustn't be used here because AuthMiddleware is built once at startup, # url path can be reconstructed only on http requests (based on environ) basic_redirect_form = BasicRedirectFormPlugin(login_form_url="/signin", login_handler_path="/login", post_login_url="/", logout_handler_path="/logout", post_logout_url="/signin", rememberer_name="cookie") return setup_sql_auth( app, user_class = model.User, group_class = model.Group, permission_class = model.Permission, dbsession = model.meta.Session, form_plugin = basic_redirect_form, cookie_secret = config['cookie_secret'], translations = { 'user_name': 'login', 'users': 'users', 'group_name': 'name', 'groups': 'groups', 'permission_name': 'name', 'permissions': 'permissions', 'validate_password': 'validate_password'}, )
python
def AuthMiddleware(app): """ Add authentication and authorization middleware to the ``app``. """ # url_for mustn't be used here because AuthMiddleware is built once at startup, # url path can be reconstructed only on http requests (based on environ) basic_redirect_form = BasicRedirectFormPlugin(login_form_url="/signin", login_handler_path="/login", post_login_url="/", logout_handler_path="/logout", post_logout_url="/signin", rememberer_name="cookie") return setup_sql_auth( app, user_class = model.User, group_class = model.Group, permission_class = model.Permission, dbsession = model.meta.Session, form_plugin = basic_redirect_form, cookie_secret = config['cookie_secret'], translations = { 'user_name': 'login', 'users': 'users', 'group_name': 'name', 'groups': 'groups', 'permission_name': 'name', 'permissions': 'permissions', 'validate_password': 'validate_password'}, )
[ "def", "AuthMiddleware", "(", "app", ")", ":", "# url_for mustn't be used here because AuthMiddleware is built once at startup,", "# url path can be reconstructed only on http requests (based on environ)", "basic_redirect_form", "=", "BasicRedirectFormPlugin", "(", "login_form_url", "=", "\"/signin\"", ",", "login_handler_path", "=", "\"/login\"", ",", "post_login_url", "=", "\"/\"", ",", "logout_handler_path", "=", "\"/logout\"", ",", "post_logout_url", "=", "\"/signin\"", ",", "rememberer_name", "=", "\"cookie\"", ")", "return", "setup_sql_auth", "(", "app", ",", "user_class", "=", "model", ".", "User", ",", "group_class", "=", "model", ".", "Group", ",", "permission_class", "=", "model", ".", "Permission", ",", "dbsession", "=", "model", ".", "meta", ".", "Session", ",", "form_plugin", "=", "basic_redirect_form", ",", "cookie_secret", "=", "config", "[", "'cookie_secret'", "]", ",", "translations", "=", "{", "'user_name'", ":", "'login'", ",", "'users'", ":", "'users'", ",", "'group_name'", ":", "'name'", ",", "'groups'", ":", "'groups'", ",", "'permission_name'", ":", "'name'", ",", "'permissions'", ":", "'permissions'", ",", "'validate_password'", ":", "'validate_password'", "}", ",", ")" ]
Add authentication and authorization middleware to the ``app``.
[ "Add", "authentication", "and", "authorization", "middleware", "to", "the", "app", "." ]
43cb7298434fb606b15136801b79b03571a2f27e
https://github.com/camptocamp/Studio/blob/43cb7298434fb606b15136801b79b03571a2f27e/studio/lib/auth.py#L154-L183
train
camptocamp/Studio
studio/lib/auth.py
BasicRedirectFormPlugin._get_full_path
def _get_full_path(self, path, environ): """ Return the full path to ``path`` by prepending the SCRIPT_NAME. If ``path`` is a URL, do nothing. """ if path.startswith('/'): path = environ.get('SCRIPT_NAME', '') + path return path
python
def _get_full_path(self, path, environ): """ Return the full path to ``path`` by prepending the SCRIPT_NAME. If ``path`` is a URL, do nothing. """ if path.startswith('/'): path = environ.get('SCRIPT_NAME', '') + path return path
[ "def", "_get_full_path", "(", "self", ",", "path", ",", "environ", ")", ":", "if", "path", ".", "startswith", "(", "'/'", ")", ":", "path", "=", "environ", ".", "get", "(", "'SCRIPT_NAME'", ",", "''", ")", "+", "path", "return", "path" ]
Return the full path to ``path`` by prepending the SCRIPT_NAME. If ``path`` is a URL, do nothing.
[ "Return", "the", "full", "path", "to", "path", "by", "prepending", "the", "SCRIPT_NAME", ".", "If", "path", "is", "a", "URL", "do", "nothing", "." ]
43cb7298434fb606b15136801b79b03571a2f27e
https://github.com/camptocamp/Studio/blob/43cb7298434fb606b15136801b79b03571a2f27e/studio/lib/auth.py#L130-L139
train
camptocamp/Studio
studio/lib/auth.py
BasicRedirectFormPlugin._replace_qs
def _replace_qs(self, url, qs): """ Replace the query string of ``url`` with ``qs`` and return the new URL. """ url_parts = list(urlparse(url)) url_parts[4] = qs return urlunparse(url_parts)
python
def _replace_qs(self, url, qs): """ Replace the query string of ``url`` with ``qs`` and return the new URL. """ url_parts = list(urlparse(url)) url_parts[4] = qs return urlunparse(url_parts)
[ "def", "_replace_qs", "(", "self", ",", "url", ",", "qs", ")", ":", "url_parts", "=", "list", "(", "urlparse", "(", "url", ")", ")", "url_parts", "[", "4", "]", "=", "qs", "return", "urlunparse", "(", "url_parts", ")" ]
Replace the query string of ``url`` with ``qs`` and return the new URL.
[ "Replace", "the", "query", "string", "of", "url", "with", "qs", "and", "return", "the", "new", "URL", "." ]
43cb7298434fb606b15136801b79b03571a2f27e
https://github.com/camptocamp/Studio/blob/43cb7298434fb606b15136801b79b03571a2f27e/studio/lib/auth.py#L141-L148
train
pjamesjoyce/lcopt
lcopt/settings.py
LcoptSettings.write
def write(self): """write the current settings to the config file""" with open(storage.config_file, 'w') as cfg: yaml.dump(self.as_dict(), cfg, default_flow_style=False) storage.refresh()
python
def write(self): """write the current settings to the config file""" with open(storage.config_file, 'w') as cfg: yaml.dump(self.as_dict(), cfg, default_flow_style=False) storage.refresh()
[ "def", "write", "(", "self", ")", ":", "with", "open", "(", "storage", ".", "config_file", ",", "'w'", ")", "as", "cfg", ":", "yaml", ".", "dump", "(", "self", ".", "as_dict", "(", ")", ",", "cfg", ",", "default_flow_style", "=", "False", ")", "storage", ".", "refresh", "(", ")" ]
write the current settings to the config file
[ "write", "the", "current", "settings", "to", "the", "config", "file" ]
3f1caca31fece4a3068a384900707e6d21d04597
https://github.com/pjamesjoyce/lcopt/blob/3f1caca31fece4a3068a384900707e6d21d04597/lcopt/settings.py#L98-L103
train
camptocamp/Studio
studio/lib/sa_types.py
JsonString.process_bind_param
def process_bind_param(self, value, dialect): """convert value from python object to json""" if value is not None: value = simplejson.dumps(value) return value
python
def process_bind_param(self, value, dialect): """convert value from python object to json""" if value is not None: value = simplejson.dumps(value) return value
[ "def", "process_bind_param", "(", "self", ",", "value", ",", "dialect", ")", ":", "if", "value", "is", "not", "None", ":", "value", "=", "simplejson", ".", "dumps", "(", "value", ")", "return", "value" ]
convert value from python object to json
[ "convert", "value", "from", "python", "object", "to", "json" ]
43cb7298434fb606b15136801b79b03571a2f27e
https://github.com/camptocamp/Studio/blob/43cb7298434fb606b15136801b79b03571a2f27e/studio/lib/sa_types.py#L26-L30
train
camptocamp/Studio
studio/lib/sa_types.py
JsonString.process_result_value
def process_result_value(self, value, dialect): """convert value from json to a python object""" if value is not None: value = simplejson.loads(value) return value
python
def process_result_value(self, value, dialect): """convert value from json to a python object""" if value is not None: value = simplejson.loads(value) return value
[ "def", "process_result_value", "(", "self", ",", "value", ",", "dialect", ")", ":", "if", "value", "is", "not", "None", ":", "value", "=", "simplejson", ".", "loads", "(", "value", ")", "return", "value" ]
convert value from json to a python object
[ "convert", "value", "from", "json", "to", "a", "python", "object" ]
43cb7298434fb606b15136801b79b03571a2f27e
https://github.com/camptocamp/Studio/blob/43cb7298434fb606b15136801b79b03571a2f27e/studio/lib/sa_types.py#L32-L36
train
SergeySatskiy/cdm-pythonparser
cdmpyparser.py
getBriefModuleInfoFromFile
def getBriefModuleInfoFromFile(fileName): """Builds the brief module info from file""" modInfo = BriefModuleInfo() _cdmpyparser.getBriefModuleInfoFromFile(modInfo, fileName) modInfo.flush() return modInfo
python
def getBriefModuleInfoFromFile(fileName): """Builds the brief module info from file""" modInfo = BriefModuleInfo() _cdmpyparser.getBriefModuleInfoFromFile(modInfo, fileName) modInfo.flush() return modInfo
[ "def", "getBriefModuleInfoFromFile", "(", "fileName", ")", ":", "modInfo", "=", "BriefModuleInfo", "(", ")", "_cdmpyparser", ".", "getBriefModuleInfoFromFile", "(", "modInfo", ",", "fileName", ")", "modInfo", ".", "flush", "(", ")", "return", "modInfo" ]
Builds the brief module info from file
[ "Builds", "the", "brief", "module", "info", "from", "file" ]
7e933aca899b1853d744082313ffc3a8b1154505
https://github.com/SergeySatskiy/cdm-pythonparser/blob/7e933aca899b1853d744082313ffc3a8b1154505/cdmpyparser.py#L609-L614
train
SergeySatskiy/cdm-pythonparser
cdmpyparser.py
getBriefModuleInfoFromMemory
def getBriefModuleInfoFromMemory(content): """Builds the brief module info from memory""" modInfo = BriefModuleInfo() _cdmpyparser.getBriefModuleInfoFromMemory(modInfo, content) modInfo.flush() return modInfo
python
def getBriefModuleInfoFromMemory(content): """Builds the brief module info from memory""" modInfo = BriefModuleInfo() _cdmpyparser.getBriefModuleInfoFromMemory(modInfo, content) modInfo.flush() return modInfo
[ "def", "getBriefModuleInfoFromMemory", "(", "content", ")", ":", "modInfo", "=", "BriefModuleInfo", "(", ")", "_cdmpyparser", ".", "getBriefModuleInfoFromMemory", "(", "modInfo", ",", "content", ")", "modInfo", ".", "flush", "(", ")", "return", "modInfo" ]
Builds the brief module info from memory
[ "Builds", "the", "brief", "module", "info", "from", "memory" ]
7e933aca899b1853d744082313ffc3a8b1154505
https://github.com/SergeySatskiy/cdm-pythonparser/blob/7e933aca899b1853d744082313ffc3a8b1154505/cdmpyparser.py#L617-L622
train
SergeySatskiy/cdm-pythonparser
cdmpyparser.py
ImportWhat.getDisplayName
def getDisplayName(self): """Provides a name for display purpose respecting the alias""" if self.alias == "": return self.name return self.name + " as " + self.alias
python
def getDisplayName(self): """Provides a name for display purpose respecting the alias""" if self.alias == "": return self.name return self.name + " as " + self.alias
[ "def", "getDisplayName", "(", "self", ")", ":", "if", "self", ".", "alias", "==", "\"\"", ":", "return", "self", ".", "name", "return", "self", ".", "name", "+", "\" as \"", "+", "self", ".", "alias" ]
Provides a name for display purpose respecting the alias
[ "Provides", "a", "name", "for", "display", "purpose", "respecting", "the", "alias" ]
7e933aca899b1853d744082313ffc3a8b1154505
https://github.com/SergeySatskiy/cdm-pythonparser/blob/7e933aca899b1853d744082313ffc3a8b1154505/cdmpyparser.py#L124-L128
train
SergeySatskiy/cdm-pythonparser
cdmpyparser.py
BriefModuleInfo.flush
def flush(self): """Flushes the collected information""" self.__flushLevel(0) if self.__lastImport is not None: self.imports.append(self.__lastImport)
python
def flush(self): """Flushes the collected information""" self.__flushLevel(0) if self.__lastImport is not None: self.imports.append(self.__lastImport)
[ "def", "flush", "(", "self", ")", ":", "self", ".", "__flushLevel", "(", "0", ")", "if", "self", ".", "__lastImport", "is", "not", "None", ":", "self", ".", "imports", ".", "append", "(", "self", ".", "__lastImport", ")" ]
Flushes the collected information
[ "Flushes", "the", "collected", "information" ]
7e933aca899b1853d744082313ffc3a8b1154505
https://github.com/SergeySatskiy/cdm-pythonparser/blob/7e933aca899b1853d744082313ffc3a8b1154505/cdmpyparser.py#L456-L460
train
SergeySatskiy/cdm-pythonparser
cdmpyparser.py
BriefModuleInfo.__flushLevel
def __flushLevel(self, level): """Merge the found objects to the required level""" objectsCount = len(self.objectsStack) while objectsCount > level: lastIndex = objectsCount - 1 if lastIndex == 0: # We have exactly one element in the stack if self.objectsStack[0].__class__.__name__ == "Class": self.classes.append(self.objectsStack[0]) else: self.functions.append(self.objectsStack[0]) self.objectsStack = [] break # Append to the previous level if self.objectsStack[lastIndex].__class__.__name__ == "Class": self.objectsStack[lastIndex - 1].classes. \ append(self.objectsStack[lastIndex]) else: self.objectsStack[lastIndex - 1].functions. \ append(self.objectsStack[lastIndex]) del self.objectsStack[lastIndex] objectsCount -= 1
python
def __flushLevel(self, level): """Merge the found objects to the required level""" objectsCount = len(self.objectsStack) while objectsCount > level: lastIndex = objectsCount - 1 if lastIndex == 0: # We have exactly one element in the stack if self.objectsStack[0].__class__.__name__ == "Class": self.classes.append(self.objectsStack[0]) else: self.functions.append(self.objectsStack[0]) self.objectsStack = [] break # Append to the previous level if self.objectsStack[lastIndex].__class__.__name__ == "Class": self.objectsStack[lastIndex - 1].classes. \ append(self.objectsStack[lastIndex]) else: self.objectsStack[lastIndex - 1].functions. \ append(self.objectsStack[lastIndex]) del self.objectsStack[lastIndex] objectsCount -= 1
[ "def", "__flushLevel", "(", "self", ",", "level", ")", ":", "objectsCount", "=", "len", "(", "self", ".", "objectsStack", ")", "while", "objectsCount", ">", "level", ":", "lastIndex", "=", "objectsCount", "-", "1", "if", "lastIndex", "==", "0", ":", "# We have exactly one element in the stack", "if", "self", ".", "objectsStack", "[", "0", "]", ".", "__class__", ".", "__name__", "==", "\"Class\"", ":", "self", ".", "classes", ".", "append", "(", "self", ".", "objectsStack", "[", "0", "]", ")", "else", ":", "self", ".", "functions", ".", "append", "(", "self", ".", "objectsStack", "[", "0", "]", ")", "self", ".", "objectsStack", "=", "[", "]", "break", "# Append to the previous level", "if", "self", ".", "objectsStack", "[", "lastIndex", "]", ".", "__class__", ".", "__name__", "==", "\"Class\"", ":", "self", ".", "objectsStack", "[", "lastIndex", "-", "1", "]", ".", "classes", ".", "append", "(", "self", ".", "objectsStack", "[", "lastIndex", "]", ")", "else", ":", "self", ".", "objectsStack", "[", "lastIndex", "-", "1", "]", ".", "functions", ".", "append", "(", "self", ".", "objectsStack", "[", "lastIndex", "]", ")", "del", "self", ".", "objectsStack", "[", "lastIndex", "]", "objectsCount", "-=", "1" ]
Merge the found objects to the required level
[ "Merge", "the", "found", "objects", "to", "the", "required", "level" ]
7e933aca899b1853d744082313ffc3a8b1154505
https://github.com/SergeySatskiy/cdm-pythonparser/blob/7e933aca899b1853d744082313ffc3a8b1154505/cdmpyparser.py#L462-L486
train
SergeySatskiy/cdm-pythonparser
cdmpyparser.py
BriefModuleInfo._onEncoding
def _onEncoding(self, encString, line, pos, absPosition): """Memorizes module encoding""" self.encoding = Encoding(encString, line, pos, absPosition)
python
def _onEncoding(self, encString, line, pos, absPosition): """Memorizes module encoding""" self.encoding = Encoding(encString, line, pos, absPosition)
[ "def", "_onEncoding", "(", "self", ",", "encString", ",", "line", ",", "pos", ",", "absPosition", ")", ":", "self", ".", "encoding", "=", "Encoding", "(", "encString", ",", "line", ",", "pos", ",", "absPosition", ")" ]
Memorizes module encoding
[ "Memorizes", "module", "encoding" ]
7e933aca899b1853d744082313ffc3a8b1154505
https://github.com/SergeySatskiy/cdm-pythonparser/blob/7e933aca899b1853d744082313ffc3a8b1154505/cdmpyparser.py#L488-L490
train