repo
stringlengths 7
55
| path
stringlengths 4
127
| func_name
stringlengths 1
88
| original_string
stringlengths 75
19.8k
| language
stringclasses 1
value | code
stringlengths 75
19.8k
| code_tokens
sequence | docstring
stringlengths 3
17.3k
| docstring_tokens
sequence | sha
stringlengths 40
40
| url
stringlengths 87
242
| partition
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|
wistful/pympris | pympris/Player.py | Player.SetPosition | def SetPosition(self, track_id, position):
"""Sets the current track position in microseconds.
:param str track_id: The currently playing track's identifier.
:param int position: Track position in microseconds.
This must be between 0 and <track_length>.
If the Position argument is less than 0, do nothing.
If the Position argument is greater than the track length, do nothing.
If the CanSeek property is false, this has no effect.
"""
self.iface.SetPosition(convert2dbus(track_id, 'o'),
convert2dbus(position, 'x')) | python | def SetPosition(self, track_id, position):
"""Sets the current track position in microseconds.
:param str track_id: The currently playing track's identifier.
:param int position: Track position in microseconds.
This must be between 0 and <track_length>.
If the Position argument is less than 0, do nothing.
If the Position argument is greater than the track length, do nothing.
If the CanSeek property is false, this has no effect.
"""
self.iface.SetPosition(convert2dbus(track_id, 'o'),
convert2dbus(position, 'x')) | [
"def",
"SetPosition",
"(",
"self",
",",
"track_id",
",",
"position",
")",
":",
"self",
".",
"iface",
".",
"SetPosition",
"(",
"convert2dbus",
"(",
"track_id",
",",
"'o'",
")",
",",
"convert2dbus",
"(",
"position",
",",
"'x'",
")",
")"
] | Sets the current track position in microseconds.
:param str track_id: The currently playing track's identifier.
:param int position: Track position in microseconds.
This must be between 0 and <track_length>.
If the Position argument is less than 0, do nothing.
If the Position argument is greater than the track length, do nothing.
If the CanSeek property is false, this has no effect. | [
"Sets",
"the",
"current",
"track",
"position",
"in",
"microseconds",
"."
] | 4bd64a1f0d151f2adfc392ab34fd9b38894786cb | https://github.com/wistful/pympris/blob/4bd64a1f0d151f2adfc392ab34fd9b38894786cb/pympris/Player.py#L79-L91 | train |
inveniosoftware-contrib/json-merger | json_merger/comparator.py | BaseComparator.process_lists | def process_lists(self):
"""Do any preprocessing of the lists."""
for l1_idx, obj1 in enumerate(self.l1):
for l2_idx, obj2 in enumerate(self.l2):
if self.equal(obj1, obj2):
self.matches.add((l1_idx, l2_idx)) | python | def process_lists(self):
"""Do any preprocessing of the lists."""
for l1_idx, obj1 in enumerate(self.l1):
for l2_idx, obj2 in enumerate(self.l2):
if self.equal(obj1, obj2):
self.matches.add((l1_idx, l2_idx)) | [
"def",
"process_lists",
"(",
"self",
")",
":",
"for",
"l1_idx",
",",
"obj1",
"in",
"enumerate",
"(",
"self",
".",
"l1",
")",
":",
"for",
"l2_idx",
",",
"obj2",
"in",
"enumerate",
"(",
"self",
".",
"l2",
")",
":",
"if",
"self",
".",
"equal",
"(",
"obj1",
",",
"obj2",
")",
":",
"self",
".",
"matches",
".",
"add",
"(",
"(",
"l1_idx",
",",
"l2_idx",
")",
")"
] | Do any preprocessing of the lists. | [
"Do",
"any",
"preprocessing",
"of",
"the",
"lists",
"."
] | adc6d372da018427e1db7b92424d3471e01a4118 | https://github.com/inveniosoftware-contrib/json-merger/blob/adc6d372da018427e1db7b92424d3471e01a4118/json_merger/comparator.py#L45-L50 | train |
inveniosoftware-contrib/json-merger | json_merger/comparator.py | BaseComparator.get_matches | def get_matches(self, src, src_idx):
"""Get elements equal to the idx'th in src from the other list.
e.g. get_matches(self, 'l1', 0) will return all elements from self.l2
matching with self.l1[0]
"""
if src not in ('l1', 'l2'):
raise ValueError('Must have one of "l1" or "l2" as src')
if src == 'l1':
target_list = self.l2
else:
target_list = self.l1
comparator = {
'l1': lambda s_idx, t_idx: (s_idx, t_idx) in self.matches,
'l2': lambda s_idx, t_idx: (t_idx, s_idx) in self.matches,
}[src]
return [(trg_idx, obj) for trg_idx, obj in enumerate(target_list)
if comparator(src_idx, trg_idx)] | python | def get_matches(self, src, src_idx):
"""Get elements equal to the idx'th in src from the other list.
e.g. get_matches(self, 'l1', 0) will return all elements from self.l2
matching with self.l1[0]
"""
if src not in ('l1', 'l2'):
raise ValueError('Must have one of "l1" or "l2" as src')
if src == 'l1':
target_list = self.l2
else:
target_list = self.l1
comparator = {
'l1': lambda s_idx, t_idx: (s_idx, t_idx) in self.matches,
'l2': lambda s_idx, t_idx: (t_idx, s_idx) in self.matches,
}[src]
return [(trg_idx, obj) for trg_idx, obj in enumerate(target_list)
if comparator(src_idx, trg_idx)] | [
"def",
"get_matches",
"(",
"self",
",",
"src",
",",
"src_idx",
")",
":",
"if",
"src",
"not",
"in",
"(",
"'l1'",
",",
"'l2'",
")",
":",
"raise",
"ValueError",
"(",
"'Must have one of \"l1\" or \"l2\" as src'",
")",
"if",
"src",
"==",
"'l1'",
":",
"target_list",
"=",
"self",
".",
"l2",
"else",
":",
"target_list",
"=",
"self",
".",
"l1",
"comparator",
"=",
"{",
"'l1'",
":",
"lambda",
"s_idx",
",",
"t_idx",
":",
"(",
"s_idx",
",",
"t_idx",
")",
"in",
"self",
".",
"matches",
",",
"'l2'",
":",
"lambda",
"s_idx",
",",
"t_idx",
":",
"(",
"t_idx",
",",
"s_idx",
")",
"in",
"self",
".",
"matches",
",",
"}",
"[",
"src",
"]",
"return",
"[",
"(",
"trg_idx",
",",
"obj",
")",
"for",
"trg_idx",
",",
"obj",
"in",
"enumerate",
"(",
"target_list",
")",
"if",
"comparator",
"(",
"src_idx",
",",
"trg_idx",
")",
"]"
] | Get elements equal to the idx'th in src from the other list.
e.g. get_matches(self, 'l1', 0) will return all elements from self.l2
matching with self.l1[0] | [
"Get",
"elements",
"equal",
"to",
"the",
"idx",
"th",
"in",
"src",
"from",
"the",
"other",
"list",
"."
] | adc6d372da018427e1db7b92424d3471e01a4118 | https://github.com/inveniosoftware-contrib/json-merger/blob/adc6d372da018427e1db7b92424d3471e01a4118/json_merger/comparator.py#L56-L74 | train |
ldomic/lintools | lintools/data.py | Data.find_the_closest_atoms | def find_the_closest_atoms(self,topology):
"""
This function defines the ligand atoms that are closest to the residues that will be plotted
in the final graph.
"""
# The measurements are made to ligand molecule without hydrogen atoms (ligand_noH) because the
# hydrogen atoms are not plotted in the final graph
self.universe.load_new(topology)
self.universe.ligand_noH = self.universe.ligand.select_atoms("not name H*")
ligand_positions = self.universe.ligand_noH.positions
for residue in self.dict_of_plotted_res.keys():
residue_selection = self.universe.select_atoms("resname "+residue[0]+" and resid "+residue[1]+" and segid "+ residue[2])
residue_positions = residue_selection.positions
dist_array = MDAnalysis.analysis.distances.distance_array(ligand_positions,residue_positions)
min_values_per_atom={}
i=0
for atom in self.universe.ligand_noH:
min_values_per_atom[atom.name]=dist_array[i].min()
i+=1
sorted_min_values = sorted(min_values_per_atom.items(), key=operator.itemgetter(1))
self.closest_atoms[residue]=[(sorted_min_values[0][0],sorted_min_values[0][1])] | python | def find_the_closest_atoms(self,topology):
"""
This function defines the ligand atoms that are closest to the residues that will be plotted
in the final graph.
"""
# The measurements are made to ligand molecule without hydrogen atoms (ligand_noH) because the
# hydrogen atoms are not plotted in the final graph
self.universe.load_new(topology)
self.universe.ligand_noH = self.universe.ligand.select_atoms("not name H*")
ligand_positions = self.universe.ligand_noH.positions
for residue in self.dict_of_plotted_res.keys():
residue_selection = self.universe.select_atoms("resname "+residue[0]+" and resid "+residue[1]+" and segid "+ residue[2])
residue_positions = residue_selection.positions
dist_array = MDAnalysis.analysis.distances.distance_array(ligand_positions,residue_positions)
min_values_per_atom={}
i=0
for atom in self.universe.ligand_noH:
min_values_per_atom[atom.name]=dist_array[i].min()
i+=1
sorted_min_values = sorted(min_values_per_atom.items(), key=operator.itemgetter(1))
self.closest_atoms[residue]=[(sorted_min_values[0][0],sorted_min_values[0][1])] | [
"def",
"find_the_closest_atoms",
"(",
"self",
",",
"topology",
")",
":",
"# The measurements are made to ligand molecule without hydrogen atoms (ligand_noH) because the",
"# hydrogen atoms are not plotted in the final graph",
"self",
".",
"universe",
".",
"load_new",
"(",
"topology",
")",
"self",
".",
"universe",
".",
"ligand_noH",
"=",
"self",
".",
"universe",
".",
"ligand",
".",
"select_atoms",
"(",
"\"not name H*\"",
")",
"ligand_positions",
"=",
"self",
".",
"universe",
".",
"ligand_noH",
".",
"positions",
"for",
"residue",
"in",
"self",
".",
"dict_of_plotted_res",
".",
"keys",
"(",
")",
":",
"residue_selection",
"=",
"self",
".",
"universe",
".",
"select_atoms",
"(",
"\"resname \"",
"+",
"residue",
"[",
"0",
"]",
"+",
"\" and resid \"",
"+",
"residue",
"[",
"1",
"]",
"+",
"\" and segid \"",
"+",
"residue",
"[",
"2",
"]",
")",
"residue_positions",
"=",
"residue_selection",
".",
"positions",
"dist_array",
"=",
"MDAnalysis",
".",
"analysis",
".",
"distances",
".",
"distance_array",
"(",
"ligand_positions",
",",
"residue_positions",
")",
"min_values_per_atom",
"=",
"{",
"}",
"i",
"=",
"0",
"for",
"atom",
"in",
"self",
".",
"universe",
".",
"ligand_noH",
":",
"min_values_per_atom",
"[",
"atom",
".",
"name",
"]",
"=",
"dist_array",
"[",
"i",
"]",
".",
"min",
"(",
")",
"i",
"+=",
"1",
"sorted_min_values",
"=",
"sorted",
"(",
"min_values_per_atom",
".",
"items",
"(",
")",
",",
"key",
"=",
"operator",
".",
"itemgetter",
"(",
"1",
")",
")",
"self",
".",
"closest_atoms",
"[",
"residue",
"]",
"=",
"[",
"(",
"sorted_min_values",
"[",
"0",
"]",
"[",
"0",
"]",
",",
"sorted_min_values",
"[",
"0",
"]",
"[",
"1",
"]",
")",
"]"
] | This function defines the ligand atoms that are closest to the residues that will be plotted
in the final graph. | [
"This",
"function",
"defines",
"the",
"ligand",
"atoms",
"that",
"are",
"closest",
"to",
"the",
"residues",
"that",
"will",
"be",
"plotted",
"in",
"the",
"final",
"graph",
"."
] | d825a4a7b35f3f857d3b81b46c9aee72b0ec697a | https://github.com/ldomic/lintools/blob/d825a4a7b35f3f857d3b81b46c9aee72b0ec697a/lintools/data.py#L130-L152 | train |
ldomic/lintools | lintools/data.py | Data.load_data | def load_data(self, topology, mol_file, ligand_name, offset=0):
"""
This function loads all relevant data - except trajectories since those are dealt with one at a time.
Therefore, this process only needs to be done once, and every time a trajectory needs to be loaded, it
can be loaded seperataly and the Data object can be shared across LINTools processes.
"""
self.load_topology(topology)
self.renumber_system(offset)
self.rename_ligand(ligand_name,mol_file)
self.load_mol(mol_file) | python | def load_data(self, topology, mol_file, ligand_name, offset=0):
"""
This function loads all relevant data - except trajectories since those are dealt with one at a time.
Therefore, this process only needs to be done once, and every time a trajectory needs to be loaded, it
can be loaded seperataly and the Data object can be shared across LINTools processes.
"""
self.load_topology(topology)
self.renumber_system(offset)
self.rename_ligand(ligand_name,mol_file)
self.load_mol(mol_file) | [
"def",
"load_data",
"(",
"self",
",",
"topology",
",",
"mol_file",
",",
"ligand_name",
",",
"offset",
"=",
"0",
")",
":",
"self",
".",
"load_topology",
"(",
"topology",
")",
"self",
".",
"renumber_system",
"(",
"offset",
")",
"self",
".",
"rename_ligand",
"(",
"ligand_name",
",",
"mol_file",
")",
"self",
".",
"load_mol",
"(",
"mol_file",
")"
] | This function loads all relevant data - except trajectories since those are dealt with one at a time.
Therefore, this process only needs to be done once, and every time a trajectory needs to be loaded, it
can be loaded seperataly and the Data object can be shared across LINTools processes. | [
"This",
"function",
"loads",
"all",
"relevant",
"data",
"-",
"except",
"trajectories",
"since",
"those",
"are",
"dealt",
"with",
"one",
"at",
"a",
"time",
".",
"Therefore",
"this",
"process",
"only",
"needs",
"to",
"be",
"done",
"once",
"and",
"every",
"time",
"a",
"trajectory",
"needs",
"to",
"be",
"loaded",
"it",
"can",
"be",
"loaded",
"seperataly",
"and",
"the",
"Data",
"object",
"can",
"be",
"shared",
"across",
"LINTools",
"processes",
"."
] | d825a4a7b35f3f857d3b81b46c9aee72b0ec697a | https://github.com/ldomic/lintools/blob/d825a4a7b35f3f857d3b81b46c9aee72b0ec697a/lintools/data.py#L153-L163 | train |
ldomic/lintools | lintools/data.py | Data.analyse_topology | def analyse_topology(self,topology, cutoff=3.5):
"""
In case user wants to analyse only a single topology file, this process will determine the residues
that should be plotted and find the ligand atoms closest to these residues.
"""
self.define_residues_for_plotting_topology(cutoff)
self.find_the_closest_atoms(topology) | python | def analyse_topology(self,topology, cutoff=3.5):
"""
In case user wants to analyse only a single topology file, this process will determine the residues
that should be plotted and find the ligand atoms closest to these residues.
"""
self.define_residues_for_plotting_topology(cutoff)
self.find_the_closest_atoms(topology) | [
"def",
"analyse_topology",
"(",
"self",
",",
"topology",
",",
"cutoff",
"=",
"3.5",
")",
":",
"self",
".",
"define_residues_for_plotting_topology",
"(",
"cutoff",
")",
"self",
".",
"find_the_closest_atoms",
"(",
"topology",
")"
] | In case user wants to analyse only a single topology file, this process will determine the residues
that should be plotted and find the ligand atoms closest to these residues. | [
"In",
"case",
"user",
"wants",
"to",
"analyse",
"only",
"a",
"single",
"topology",
"file",
"this",
"process",
"will",
"determine",
"the",
"residues",
"that",
"should",
"be",
"plotted",
"and",
"find",
"the",
"ligand",
"atoms",
"closest",
"to",
"these",
"residues",
"."
] | d825a4a7b35f3f857d3b81b46c9aee72b0ec697a | https://github.com/ldomic/lintools/blob/d825a4a7b35f3f857d3b81b46c9aee72b0ec697a/lintools/data.py#L165-L172 | train |
robinandeer/puzzle | puzzle/utils/headers.py | get_header | def get_header(vcf_file_path):
"""Parse the header and return a header object
Args:
vcf_file_path(str): Path to vcf
Returns:
head: A HeaderParser object
"""
logger.info("Parsing header of file {0}".format(vcf_file_path))
head = HeaderParser()
handle = get_vcf_handle(infile=vcf_file_path)
# Parse the header
for line in handle:
line = line.rstrip()
if line.startswith('#'):
if line.startswith('##'):
head.parse_meta_data(line)
else:
head.parse_header_line(line)
else:
break
handle.close()
return head | python | def get_header(vcf_file_path):
"""Parse the header and return a header object
Args:
vcf_file_path(str): Path to vcf
Returns:
head: A HeaderParser object
"""
logger.info("Parsing header of file {0}".format(vcf_file_path))
head = HeaderParser()
handle = get_vcf_handle(infile=vcf_file_path)
# Parse the header
for line in handle:
line = line.rstrip()
if line.startswith('#'):
if line.startswith('##'):
head.parse_meta_data(line)
else:
head.parse_header_line(line)
else:
break
handle.close()
return head | [
"def",
"get_header",
"(",
"vcf_file_path",
")",
":",
"logger",
".",
"info",
"(",
"\"Parsing header of file {0}\"",
".",
"format",
"(",
"vcf_file_path",
")",
")",
"head",
"=",
"HeaderParser",
"(",
")",
"handle",
"=",
"get_vcf_handle",
"(",
"infile",
"=",
"vcf_file_path",
")",
"# Parse the header",
"for",
"line",
"in",
"handle",
":",
"line",
"=",
"line",
".",
"rstrip",
"(",
")",
"if",
"line",
".",
"startswith",
"(",
"'#'",
")",
":",
"if",
"line",
".",
"startswith",
"(",
"'##'",
")",
":",
"head",
".",
"parse_meta_data",
"(",
"line",
")",
"else",
":",
"head",
".",
"parse_header_line",
"(",
"line",
")",
"else",
":",
"break",
"handle",
".",
"close",
"(",
")",
"return",
"head"
] | Parse the header and return a header object
Args:
vcf_file_path(str): Path to vcf
Returns:
head: A HeaderParser object | [
"Parse",
"the",
"header",
"and",
"return",
"a",
"header",
"object"
] | 9476f05b416d3a5135d25492cb31411fdf831c58 | https://github.com/robinandeer/puzzle/blob/9476f05b416d3a5135d25492cb31411fdf831c58/puzzle/utils/headers.py#L20-L45 | train |
DarkEnergySurvey/ugali | ugali/analysis/kernel.py | EllipticalKernel.sample_lonlat | def sample_lonlat(self, n):
"""
Sample 2D distribution of points in lon, lat
"""
# From http://en.wikipedia.org/wiki/Ellipse#General_parametric_form
# However, Martin et al. (2009) use PA theta "from North to East"
# Definition of phi (position angle) is offset by pi/4
# Definition of t (eccentric anamoly) remains the same (x,y-frame usual)
# In the end, everything is trouble because we use glon, glat...
radius = self.sample_radius(n)
a = radius; b = self.jacobian * radius
t = 2. * np.pi * np.random.rand(n)
cost,sint = np.cos(t),np.sin(t)
phi = np.pi/2. - np.deg2rad(self.theta)
cosphi,sinphi = np.cos(phi),np.sin(phi)
x = a*cost*cosphi - b*sint*sinphi
y = a*cost*sinphi + b*sint*cosphi
if self.projector is None:
logger.debug("Creating AITOFF projector for sampling")
projector = Projector(self.lon,self.lat,'ait')
else:
projector = self.projector
lon, lat = projector.imageToSphere(x, y)
return lon, lat | python | def sample_lonlat(self, n):
"""
Sample 2D distribution of points in lon, lat
"""
# From http://en.wikipedia.org/wiki/Ellipse#General_parametric_form
# However, Martin et al. (2009) use PA theta "from North to East"
# Definition of phi (position angle) is offset by pi/4
# Definition of t (eccentric anamoly) remains the same (x,y-frame usual)
# In the end, everything is trouble because we use glon, glat...
radius = self.sample_radius(n)
a = radius; b = self.jacobian * radius
t = 2. * np.pi * np.random.rand(n)
cost,sint = np.cos(t),np.sin(t)
phi = np.pi/2. - np.deg2rad(self.theta)
cosphi,sinphi = np.cos(phi),np.sin(phi)
x = a*cost*cosphi - b*sint*sinphi
y = a*cost*sinphi + b*sint*cosphi
if self.projector is None:
logger.debug("Creating AITOFF projector for sampling")
projector = Projector(self.lon,self.lat,'ait')
else:
projector = self.projector
lon, lat = projector.imageToSphere(x, y)
return lon, lat | [
"def",
"sample_lonlat",
"(",
"self",
",",
"n",
")",
":",
"# From http://en.wikipedia.org/wiki/Ellipse#General_parametric_form",
"# However, Martin et al. (2009) use PA theta \"from North to East\"",
"# Definition of phi (position angle) is offset by pi/4",
"# Definition of t (eccentric anamoly) remains the same (x,y-frame usual)",
"# In the end, everything is trouble because we use glon, glat...",
"radius",
"=",
"self",
".",
"sample_radius",
"(",
"n",
")",
"a",
"=",
"radius",
"b",
"=",
"self",
".",
"jacobian",
"*",
"radius",
"t",
"=",
"2.",
"*",
"np",
".",
"pi",
"*",
"np",
".",
"random",
".",
"rand",
"(",
"n",
")",
"cost",
",",
"sint",
"=",
"np",
".",
"cos",
"(",
"t",
")",
",",
"np",
".",
"sin",
"(",
"t",
")",
"phi",
"=",
"np",
".",
"pi",
"/",
"2.",
"-",
"np",
".",
"deg2rad",
"(",
"self",
".",
"theta",
")",
"cosphi",
",",
"sinphi",
"=",
"np",
".",
"cos",
"(",
"phi",
")",
",",
"np",
".",
"sin",
"(",
"phi",
")",
"x",
"=",
"a",
"*",
"cost",
"*",
"cosphi",
"-",
"b",
"*",
"sint",
"*",
"sinphi",
"y",
"=",
"a",
"*",
"cost",
"*",
"sinphi",
"+",
"b",
"*",
"sint",
"*",
"cosphi",
"if",
"self",
".",
"projector",
"is",
"None",
":",
"logger",
".",
"debug",
"(",
"\"Creating AITOFF projector for sampling\"",
")",
"projector",
"=",
"Projector",
"(",
"self",
".",
"lon",
",",
"self",
".",
"lat",
",",
"'ait'",
")",
"else",
":",
"projector",
"=",
"self",
".",
"projector",
"lon",
",",
"lat",
"=",
"projector",
".",
"imageToSphere",
"(",
"x",
",",
"y",
")",
"return",
"lon",
",",
"lat"
] | Sample 2D distribution of points in lon, lat | [
"Sample",
"2D",
"distribution",
"of",
"points",
"in",
"lon",
"lat"
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/analysis/kernel.py#L196-L222 | train |
alphagov/performanceplatform-collector | performanceplatform/collector/ga/plugins/aggregate.py | group | def group(iterable, key):
"""
groupby which sorts the input, discards the key and returns the output
as a sequence of lists.
"""
for _, grouped in groupby(sorted(iterable, key=key), key=key):
yield list(grouped) | python | def group(iterable, key):
"""
groupby which sorts the input, discards the key and returns the output
as a sequence of lists.
"""
for _, grouped in groupby(sorted(iterable, key=key), key=key):
yield list(grouped) | [
"def",
"group",
"(",
"iterable",
",",
"key",
")",
":",
"for",
"_",
",",
"grouped",
"in",
"groupby",
"(",
"sorted",
"(",
"iterable",
",",
"key",
"=",
"key",
")",
",",
"key",
"=",
"key",
")",
":",
"yield",
"list",
"(",
"grouped",
")"
] | groupby which sorts the input, discards the key and returns the output
as a sequence of lists. | [
"groupby",
"which",
"sorts",
"the",
"input",
"discards",
"the",
"key",
"and",
"returns",
"the",
"output",
"as",
"a",
"sequence",
"of",
"lists",
"."
] | de68ab4aa500c31e436e050fa1268fa928c522a5 | https://github.com/alphagov/performanceplatform-collector/blob/de68ab4aa500c31e436e050fa1268fa928c522a5/performanceplatform/collector/ga/plugins/aggregate.py#L41-L47 | train |
alphagov/performanceplatform-collector | performanceplatform/collector/ga/plugins/aggregate.py | aggregate_count | def aggregate_count(keyname):
"""
Straightforward sum of the given keyname.
"""
def inner(docs):
return sum(doc[keyname] for doc in docs)
return keyname, inner | python | def aggregate_count(keyname):
"""
Straightforward sum of the given keyname.
"""
def inner(docs):
return sum(doc[keyname] for doc in docs)
return keyname, inner | [
"def",
"aggregate_count",
"(",
"keyname",
")",
":",
"def",
"inner",
"(",
"docs",
")",
":",
"return",
"sum",
"(",
"doc",
"[",
"keyname",
"]",
"for",
"doc",
"in",
"docs",
")",
"return",
"keyname",
",",
"inner"
] | Straightforward sum of the given keyname. | [
"Straightforward",
"sum",
"of",
"the",
"given",
"keyname",
"."
] | de68ab4aa500c31e436e050fa1268fa928c522a5 | https://github.com/alphagov/performanceplatform-collector/blob/de68ab4aa500c31e436e050fa1268fa928c522a5/performanceplatform/collector/ga/plugins/aggregate.py#L50-L57 | train |
alphagov/performanceplatform-collector | performanceplatform/collector/ga/plugins/aggregate.py | aggregate_rate | def aggregate_rate(rate_key, count_key):
"""
Compute an aggregate rate for `rate_key` weighted according to
`count_rate`.
"""
def inner(docs):
total = sum(doc[count_key] for doc in docs)
weighted_total = sum(doc[rate_key] * doc[count_key] for doc in docs)
total_rate = weighted_total / total
return total_rate
return rate_key, inner | python | def aggregate_rate(rate_key, count_key):
"""
Compute an aggregate rate for `rate_key` weighted according to
`count_rate`.
"""
def inner(docs):
total = sum(doc[count_key] for doc in docs)
weighted_total = sum(doc[rate_key] * doc[count_key] for doc in docs)
total_rate = weighted_total / total
return total_rate
return rate_key, inner | [
"def",
"aggregate_rate",
"(",
"rate_key",
",",
"count_key",
")",
":",
"def",
"inner",
"(",
"docs",
")",
":",
"total",
"=",
"sum",
"(",
"doc",
"[",
"count_key",
"]",
"for",
"doc",
"in",
"docs",
")",
"weighted_total",
"=",
"sum",
"(",
"doc",
"[",
"rate_key",
"]",
"*",
"doc",
"[",
"count_key",
"]",
"for",
"doc",
"in",
"docs",
")",
"total_rate",
"=",
"weighted_total",
"/",
"total",
"return",
"total_rate",
"return",
"rate_key",
",",
"inner"
] | Compute an aggregate rate for `rate_key` weighted according to
`count_rate`. | [
"Compute",
"an",
"aggregate",
"rate",
"for",
"rate_key",
"weighted",
"according",
"to",
"count_rate",
"."
] | de68ab4aa500c31e436e050fa1268fa928c522a5 | https://github.com/alphagov/performanceplatform-collector/blob/de68ab4aa500c31e436e050fa1268fa928c522a5/performanceplatform/collector/ga/plugins/aggregate.py#L60-L71 | train |
alphagov/performanceplatform-collector | performanceplatform/collector/ga/plugins/aggregate.py | make_aggregate | def make_aggregate(docs, aggregations):
"""
Given `docs` and `aggregations` return a single document with the
aggregations applied.
"""
new_doc = dict(docs[0])
for keyname, aggregation_function in aggregations:
new_doc[keyname] = aggregation_function(docs)
return new_doc | python | def make_aggregate(docs, aggregations):
"""
Given `docs` and `aggregations` return a single document with the
aggregations applied.
"""
new_doc = dict(docs[0])
for keyname, aggregation_function in aggregations:
new_doc[keyname] = aggregation_function(docs)
return new_doc | [
"def",
"make_aggregate",
"(",
"docs",
",",
"aggregations",
")",
":",
"new_doc",
"=",
"dict",
"(",
"docs",
"[",
"0",
"]",
")",
"for",
"keyname",
",",
"aggregation_function",
"in",
"aggregations",
":",
"new_doc",
"[",
"keyname",
"]",
"=",
"aggregation_function",
"(",
"docs",
")",
"return",
"new_doc"
] | Given `docs` and `aggregations` return a single document with the
aggregations applied. | [
"Given",
"docs",
"and",
"aggregations",
"return",
"a",
"single",
"document",
"with",
"the",
"aggregations",
"applied",
"."
] | de68ab4aa500c31e436e050fa1268fa928c522a5 | https://github.com/alphagov/performanceplatform-collector/blob/de68ab4aa500c31e436e050fa1268fa928c522a5/performanceplatform/collector/ga/plugins/aggregate.py#L74-L84 | train |
MasterKale/django-cra-helper | cra_helper/templatetags/cra_helper_tags.py | json | def json(value):
'''
Sanitize the JSON string using the Bleach HTML tag remover
'''
uncleaned = jsonlib.dumps(value)
clean = bleach.clean(uncleaned)
return mark_safe(clean) | python | def json(value):
'''
Sanitize the JSON string using the Bleach HTML tag remover
'''
uncleaned = jsonlib.dumps(value)
clean = bleach.clean(uncleaned)
return mark_safe(clean) | [
"def",
"json",
"(",
"value",
")",
":",
"uncleaned",
"=",
"jsonlib",
".",
"dumps",
"(",
"value",
")",
"clean",
"=",
"bleach",
".",
"clean",
"(",
"uncleaned",
")",
"return",
"mark_safe",
"(",
"clean",
")"
] | Sanitize the JSON string using the Bleach HTML tag remover | [
"Sanitize",
"the",
"JSON",
"string",
"using",
"the",
"Bleach",
"HTML",
"tag",
"remover"
] | ba50c643c181a18b80ee9bbdbea74b58abd6daad | https://github.com/MasterKale/django-cra-helper/blob/ba50c643c181a18b80ee9bbdbea74b58abd6daad/cra_helper/templatetags/cra_helper_tags.py#L15-L21 | train |
cfusting/fastgp | fastgp/algorithms/afpo.py | find_pareto_front | def find_pareto_front(population):
"""Finds a subset of nondominated individuals in a given list
:param population: a list of individuals
:return: a set of indices corresponding to nondominated individuals
"""
pareto_front = set(range(len(population)))
for i in range(len(population)):
if i not in pareto_front:
continue
ind1 = population[i]
for j in range(i + 1, len(population)):
ind2 = population[j]
# if individuals are equal on all objectives, mark one of them (the first encountered one) as dominated
# to prevent excessive growth of the Pareto front
if ind2.fitness.dominates(ind1.fitness) or ind1.fitness == ind2.fitness:
pareto_front.discard(i)
if ind1.fitness.dominates(ind2.fitness):
pareto_front.discard(j)
return pareto_front | python | def find_pareto_front(population):
"""Finds a subset of nondominated individuals in a given list
:param population: a list of individuals
:return: a set of indices corresponding to nondominated individuals
"""
pareto_front = set(range(len(population)))
for i in range(len(population)):
if i not in pareto_front:
continue
ind1 = population[i]
for j in range(i + 1, len(population)):
ind2 = population[j]
# if individuals are equal on all objectives, mark one of them (the first encountered one) as dominated
# to prevent excessive growth of the Pareto front
if ind2.fitness.dominates(ind1.fitness) or ind1.fitness == ind2.fitness:
pareto_front.discard(i)
if ind1.fitness.dominates(ind2.fitness):
pareto_front.discard(j)
return pareto_front | [
"def",
"find_pareto_front",
"(",
"population",
")",
":",
"pareto_front",
"=",
"set",
"(",
"range",
"(",
"len",
"(",
"population",
")",
")",
")",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"population",
")",
")",
":",
"if",
"i",
"not",
"in",
"pareto_front",
":",
"continue",
"ind1",
"=",
"population",
"[",
"i",
"]",
"for",
"j",
"in",
"range",
"(",
"i",
"+",
"1",
",",
"len",
"(",
"population",
")",
")",
":",
"ind2",
"=",
"population",
"[",
"j",
"]",
"# if individuals are equal on all objectives, mark one of them (the first encountered one) as dominated",
"# to prevent excessive growth of the Pareto front",
"if",
"ind2",
".",
"fitness",
".",
"dominates",
"(",
"ind1",
".",
"fitness",
")",
"or",
"ind1",
".",
"fitness",
"==",
"ind2",
".",
"fitness",
":",
"pareto_front",
".",
"discard",
"(",
"i",
")",
"if",
"ind1",
".",
"fitness",
".",
"dominates",
"(",
"ind2",
".",
"fitness",
")",
":",
"pareto_front",
".",
"discard",
"(",
"j",
")",
"return",
"pareto_front"
] | Finds a subset of nondominated individuals in a given list
:param population: a list of individuals
:return: a set of indices corresponding to nondominated individuals | [
"Finds",
"a",
"subset",
"of",
"nondominated",
"individuals",
"in",
"a",
"given",
"list"
] | 6cf3c5d14abedaea064feef6ca434ee806a11756 | https://github.com/cfusting/fastgp/blob/6cf3c5d14abedaea064feef6ca434ee806a11756/fastgp/algorithms/afpo.py#L28-L53 | train |
consbio/ncdjango | ncdjango/geoprocessing/evaluation.py | Parser._to_ndarray | def _to_ndarray(self, a):
"""Casts Python lists and tuples to a numpy array or raises an AssertionError."""
if isinstance(a, (list, tuple)):
a = numpy.array(a)
if not is_ndarray(a):
raise TypeError("Expected an ndarray but got object of type '{}' instead".format(type(a)))
return a | python | def _to_ndarray(self, a):
"""Casts Python lists and tuples to a numpy array or raises an AssertionError."""
if isinstance(a, (list, tuple)):
a = numpy.array(a)
if not is_ndarray(a):
raise TypeError("Expected an ndarray but got object of type '{}' instead".format(type(a)))
return a | [
"def",
"_to_ndarray",
"(",
"self",
",",
"a",
")",
":",
"if",
"isinstance",
"(",
"a",
",",
"(",
"list",
",",
"tuple",
")",
")",
":",
"a",
"=",
"numpy",
".",
"array",
"(",
"a",
")",
"if",
"not",
"is_ndarray",
"(",
"a",
")",
":",
"raise",
"TypeError",
"(",
"\"Expected an ndarray but got object of type '{}' instead\"",
".",
"format",
"(",
"type",
"(",
"a",
")",
")",
")",
"return",
"a"
] | Casts Python lists and tuples to a numpy array or raises an AssertionError. | [
"Casts",
"Python",
"lists",
"and",
"tuples",
"to",
"a",
"numpy",
"array",
"or",
"raises",
"an",
"AssertionError",
"."
] | f807bfd1e4083ab29fbc3c4d4418be108383a710 | https://github.com/consbio/ncdjango/blob/f807bfd1e4083ab29fbc3c4d4418be108383a710/ncdjango/geoprocessing/evaluation.py#L310-L319 | train |
consbio/ncdjango | ncdjango/geoprocessing/evaluation.py | Parser.fn_abs | def fn_abs(self, value):
"""
Return the absolute value of a number.
:param value: The number.
:return: The absolute value of the number.
"""
if is_ndarray(value):
return numpy.absolute(value)
else:
return abs(value) | python | def fn_abs(self, value):
"""
Return the absolute value of a number.
:param value: The number.
:return: The absolute value of the number.
"""
if is_ndarray(value):
return numpy.absolute(value)
else:
return abs(value) | [
"def",
"fn_abs",
"(",
"self",
",",
"value",
")",
":",
"if",
"is_ndarray",
"(",
"value",
")",
":",
"return",
"numpy",
".",
"absolute",
"(",
"value",
")",
"else",
":",
"return",
"abs",
"(",
"value",
")"
] | Return the absolute value of a number.
:param value: The number.
:return: The absolute value of the number. | [
"Return",
"the",
"absolute",
"value",
"of",
"a",
"number",
"."
] | f807bfd1e4083ab29fbc3c4d4418be108383a710 | https://github.com/consbio/ncdjango/blob/f807bfd1e4083ab29fbc3c4d4418be108383a710/ncdjango/geoprocessing/evaluation.py#L321-L332 | train |
consbio/ncdjango | ncdjango/geoprocessing/evaluation.py | Parser.fn_get_mask | def fn_get_mask(self, value):
"""
Return an array mask.
:param value: The array.
:return: The array mask.
"""
value = self._to_ndarray(value)
if numpy.ma.is_masked(value):
return value.mask
else:
return numpy.zeros(value.shape).astype(bool) | python | def fn_get_mask(self, value):
"""
Return an array mask.
:param value: The array.
:return: The array mask.
"""
value = self._to_ndarray(value)
if numpy.ma.is_masked(value):
return value.mask
else:
return numpy.zeros(value.shape).astype(bool) | [
"def",
"fn_get_mask",
"(",
"self",
",",
"value",
")",
":",
"value",
"=",
"self",
".",
"_to_ndarray",
"(",
"value",
")",
"if",
"numpy",
".",
"ma",
".",
"is_masked",
"(",
"value",
")",
":",
"return",
"value",
".",
"mask",
"else",
":",
"return",
"numpy",
".",
"zeros",
"(",
"value",
".",
"shape",
")",
".",
"astype",
"(",
"bool",
")"
] | Return an array mask.
:param value: The array.
:return: The array mask. | [
"Return",
"an",
"array",
"mask",
"."
] | f807bfd1e4083ab29fbc3c4d4418be108383a710 | https://github.com/consbio/ncdjango/blob/f807bfd1e4083ab29fbc3c4d4418be108383a710/ncdjango/geoprocessing/evaluation.py#L334-L347 | train |
consbio/ncdjango | ncdjango/geoprocessing/evaluation.py | Parser.fn_min | def fn_min(self, a, axis=None):
"""
Return the minimum of an array, ignoring any NaNs.
:param a: The array.
:return: The minimum value of the array.
"""
return numpy.nanmin(self._to_ndarray(a), axis=axis) | python | def fn_min(self, a, axis=None):
"""
Return the minimum of an array, ignoring any NaNs.
:param a: The array.
:return: The minimum value of the array.
"""
return numpy.nanmin(self._to_ndarray(a), axis=axis) | [
"def",
"fn_min",
"(",
"self",
",",
"a",
",",
"axis",
"=",
"None",
")",
":",
"return",
"numpy",
".",
"nanmin",
"(",
"self",
".",
"_to_ndarray",
"(",
"a",
")",
",",
"axis",
"=",
"axis",
")"
] | Return the minimum of an array, ignoring any NaNs.
:param a: The array.
:return: The minimum value of the array. | [
"Return",
"the",
"minimum",
"of",
"an",
"array",
"ignoring",
"any",
"NaNs",
"."
] | f807bfd1e4083ab29fbc3c4d4418be108383a710 | https://github.com/consbio/ncdjango/blob/f807bfd1e4083ab29fbc3c4d4418be108383a710/ncdjango/geoprocessing/evaluation.py#L349-L357 | train |
consbio/ncdjango | ncdjango/geoprocessing/evaluation.py | Parser.fn_max | def fn_max(self, a, axis=None):
"""
Return the maximum of an array, ignoring any NaNs.
:param a: The array.
:return: The maximum value of the array
"""
return numpy.nanmax(self._to_ndarray(a), axis=axis) | python | def fn_max(self, a, axis=None):
"""
Return the maximum of an array, ignoring any NaNs.
:param a: The array.
:return: The maximum value of the array
"""
return numpy.nanmax(self._to_ndarray(a), axis=axis) | [
"def",
"fn_max",
"(",
"self",
",",
"a",
",",
"axis",
"=",
"None",
")",
":",
"return",
"numpy",
".",
"nanmax",
"(",
"self",
".",
"_to_ndarray",
"(",
"a",
")",
",",
"axis",
"=",
"axis",
")"
] | Return the maximum of an array, ignoring any NaNs.
:param a: The array.
:return: The maximum value of the array | [
"Return",
"the",
"maximum",
"of",
"an",
"array",
"ignoring",
"any",
"NaNs",
"."
] | f807bfd1e4083ab29fbc3c4d4418be108383a710 | https://github.com/consbio/ncdjango/blob/f807bfd1e4083ab29fbc3c4d4418be108383a710/ncdjango/geoprocessing/evaluation.py#L370-L378 | train |
consbio/ncdjango | ncdjango/geoprocessing/evaluation.py | Parser.fn_median | def fn_median(self, a, axis=None):
"""
Compute the median of an array, ignoring NaNs.
:param a: The array.
:return: The median value of the array.
"""
return numpy.nanmedian(self._to_ndarray(a), axis=axis) | python | def fn_median(self, a, axis=None):
"""
Compute the median of an array, ignoring NaNs.
:param a: The array.
:return: The median value of the array.
"""
return numpy.nanmedian(self._to_ndarray(a), axis=axis) | [
"def",
"fn_median",
"(",
"self",
",",
"a",
",",
"axis",
"=",
"None",
")",
":",
"return",
"numpy",
".",
"nanmedian",
"(",
"self",
".",
"_to_ndarray",
"(",
"a",
")",
",",
"axis",
"=",
"axis",
")"
] | Compute the median of an array, ignoring NaNs.
:param a: The array.
:return: The median value of the array. | [
"Compute",
"the",
"median",
"of",
"an",
"array",
"ignoring",
"NaNs",
"."
] | f807bfd1e4083ab29fbc3c4d4418be108383a710 | https://github.com/consbio/ncdjango/blob/f807bfd1e4083ab29fbc3c4d4418be108383a710/ncdjango/geoprocessing/evaluation.py#L380-L388 | train |
consbio/ncdjango | ncdjango/geoprocessing/evaluation.py | Parser.fn_mean | def fn_mean(self, a, axis=None):
"""
Compute the arithmetic mean of an array, ignoring NaNs.
:param a: The array.
:return: The arithmetic mean of the array.
"""
return numpy.nanmean(self._to_ndarray(a), axis=axis) | python | def fn_mean(self, a, axis=None):
"""
Compute the arithmetic mean of an array, ignoring NaNs.
:param a: The array.
:return: The arithmetic mean of the array.
"""
return numpy.nanmean(self._to_ndarray(a), axis=axis) | [
"def",
"fn_mean",
"(",
"self",
",",
"a",
",",
"axis",
"=",
"None",
")",
":",
"return",
"numpy",
".",
"nanmean",
"(",
"self",
".",
"_to_ndarray",
"(",
"a",
")",
",",
"axis",
"=",
"axis",
")"
] | Compute the arithmetic mean of an array, ignoring NaNs.
:param a: The array.
:return: The arithmetic mean of the array. | [
"Compute",
"the",
"arithmetic",
"mean",
"of",
"an",
"array",
"ignoring",
"NaNs",
"."
] | f807bfd1e4083ab29fbc3c4d4418be108383a710 | https://github.com/consbio/ncdjango/blob/f807bfd1e4083ab29fbc3c4d4418be108383a710/ncdjango/geoprocessing/evaluation.py#L390-L398 | train |
consbio/ncdjango | ncdjango/geoprocessing/evaluation.py | Parser.fn_std | def fn_std(self, a, axis=None):
"""
Compute the standard deviation of an array, ignoring NaNs.
:param a: The array.
:return: The standard deviation of the array.
"""
return numpy.nanstd(self._to_ndarray(a), axis=axis) | python | def fn_std(self, a, axis=None):
"""
Compute the standard deviation of an array, ignoring NaNs.
:param a: The array.
:return: The standard deviation of the array.
"""
return numpy.nanstd(self._to_ndarray(a), axis=axis) | [
"def",
"fn_std",
"(",
"self",
",",
"a",
",",
"axis",
"=",
"None",
")",
":",
"return",
"numpy",
".",
"nanstd",
"(",
"self",
".",
"_to_ndarray",
"(",
"a",
")",
",",
"axis",
"=",
"axis",
")"
] | Compute the standard deviation of an array, ignoring NaNs.
:param a: The array.
:return: The standard deviation of the array. | [
"Compute",
"the",
"standard",
"deviation",
"of",
"an",
"array",
"ignoring",
"NaNs",
"."
] | f807bfd1e4083ab29fbc3c4d4418be108383a710 | https://github.com/consbio/ncdjango/blob/f807bfd1e4083ab29fbc3c4d4418be108383a710/ncdjango/geoprocessing/evaluation.py#L400-L408 | train |
consbio/ncdjango | ncdjango/geoprocessing/evaluation.py | Parser.fn_var | def fn_var(self, a, axis=None):
"""
Compute the variance of an array, ignoring NaNs.
:param a: The array.
:return: The variance of the array.
"""
return numpy.nanvar(self._to_ndarray(a), axis=axis) | python | def fn_var(self, a, axis=None):
"""
Compute the variance of an array, ignoring NaNs.
:param a: The array.
:return: The variance of the array.
"""
return numpy.nanvar(self._to_ndarray(a), axis=axis) | [
"def",
"fn_var",
"(",
"self",
",",
"a",
",",
"axis",
"=",
"None",
")",
":",
"return",
"numpy",
".",
"nanvar",
"(",
"self",
".",
"_to_ndarray",
"(",
"a",
")",
",",
"axis",
"=",
"axis",
")"
] | Compute the variance of an array, ignoring NaNs.
:param a: The array.
:return: The variance of the array. | [
"Compute",
"the",
"variance",
"of",
"an",
"array",
"ignoring",
"NaNs",
"."
] | f807bfd1e4083ab29fbc3c4d4418be108383a710 | https://github.com/consbio/ncdjango/blob/f807bfd1e4083ab29fbc3c4d4418be108383a710/ncdjango/geoprocessing/evaluation.py#L410-L418 | train |
consbio/ncdjango | ncdjango/geoprocessing/evaluation.py | Parser.fn_ceil | def fn_ceil(self, value):
"""
Return the ceiling of a number.
:param value: The number.
:return: The ceiling of the number.
"""
if is_ndarray(value) or isinstance(value, (list, tuple)):
return numpy.ceil(self._to_ndarray(value))
else:
return math.ceil(value) | python | def fn_ceil(self, value):
"""
Return the ceiling of a number.
:param value: The number.
:return: The ceiling of the number.
"""
if is_ndarray(value) or isinstance(value, (list, tuple)):
return numpy.ceil(self._to_ndarray(value))
else:
return math.ceil(value) | [
"def",
"fn_ceil",
"(",
"self",
",",
"value",
")",
":",
"if",
"is_ndarray",
"(",
"value",
")",
"or",
"isinstance",
"(",
"value",
",",
"(",
"list",
",",
"tuple",
")",
")",
":",
"return",
"numpy",
".",
"ceil",
"(",
"self",
".",
"_to_ndarray",
"(",
"value",
")",
")",
"else",
":",
"return",
"math",
".",
"ceil",
"(",
"value",
")"
] | Return the ceiling of a number.
:param value: The number.
:return: The ceiling of the number. | [
"Return",
"the",
"ceiling",
"of",
"a",
"number",
"."
] | f807bfd1e4083ab29fbc3c4d4418be108383a710 | https://github.com/consbio/ncdjango/blob/f807bfd1e4083ab29fbc3c4d4418be108383a710/ncdjango/geoprocessing/evaluation.py#L433-L444 | train |
consbio/ncdjango | ncdjango/geoprocessing/evaluation.py | Parser.fn_int | def fn_int(self, value):
"""
Return the value cast to an int.
:param value: The number.
:return: The number as an int.
"""
if is_ndarray(value) or isinstance(value, (list, tuple)):
return self._to_ndarray(value).astype('int')
else:
return int(value) | python | def fn_int(self, value):
"""
Return the value cast to an int.
:param value: The number.
:return: The number as an int.
"""
if is_ndarray(value) or isinstance(value, (list, tuple)):
return self._to_ndarray(value).astype('int')
else:
return int(value) | [
"def",
"fn_int",
"(",
"self",
",",
"value",
")",
":",
"if",
"is_ndarray",
"(",
"value",
")",
"or",
"isinstance",
"(",
"value",
",",
"(",
"list",
",",
"tuple",
")",
")",
":",
"return",
"self",
".",
"_to_ndarray",
"(",
"value",
")",
".",
"astype",
"(",
"'int'",
")",
"else",
":",
"return",
"int",
"(",
"value",
")"
] | Return the value cast to an int.
:param value: The number.
:return: The number as an int. | [
"Return",
"the",
"value",
"cast",
"to",
"an",
"int",
"."
] | f807bfd1e4083ab29fbc3c4d4418be108383a710 | https://github.com/consbio/ncdjango/blob/f807bfd1e4083ab29fbc3c4d4418be108383a710/ncdjango/geoprocessing/evaluation.py#L446-L457 | train |
consbio/ncdjango | ncdjango/geoprocessing/evaluation.py | Parser.fn_float | def fn_float(self, value):
"""
Return the value cast to a float.
:param value: The number.
:return: The number as a float.
"""
if is_ndarray(value) or isinstance(value, (list, tuple)):
return self._to_ndarray(value).astype('float')
else:
return float(value) | python | def fn_float(self, value):
"""
Return the value cast to a float.
:param value: The number.
:return: The number as a float.
"""
if is_ndarray(value) or isinstance(value, (list, tuple)):
return self._to_ndarray(value).astype('float')
else:
return float(value) | [
"def",
"fn_float",
"(",
"self",
",",
"value",
")",
":",
"if",
"is_ndarray",
"(",
"value",
")",
"or",
"isinstance",
"(",
"value",
",",
"(",
"list",
",",
"tuple",
")",
")",
":",
"return",
"self",
".",
"_to_ndarray",
"(",
"value",
")",
".",
"astype",
"(",
"'float'",
")",
"else",
":",
"return",
"float",
"(",
"value",
")"
] | Return the value cast to a float.
:param value: The number.
:return: The number as a float. | [
"Return",
"the",
"value",
"cast",
"to",
"a",
"float",
"."
] | f807bfd1e4083ab29fbc3c4d4418be108383a710 | https://github.com/consbio/ncdjango/blob/f807bfd1e4083ab29fbc3c4d4418be108383a710/ncdjango/geoprocessing/evaluation.py#L511-L522 | train |
totalgood/pugnlp | src/pugnlp/tutil.py | make_datetime | def make_datetime(dt, date_parser=parse_date):
"""Coerce a datetime or string into datetime.datetime object
Arguments:
dt (str or datetime.datetime or atetime.time or numpy.Timestamp): time or date
to be coerced into a `datetime.date` object
Returns:
datetime.time: Time of day portion of a `datetime` string or object
>>> make_date('')
datetime.date(1970, 1, 1)
>>> make_date(None)
datetime.date(1970, 1, 1)
>>> make_date("11:59 PM") == datetime.date.today()
True
>>> make_date(datetime.datetime(1999, 12, 31, 23, 59, 59))
datetime.date(1999, 12, 31)
>>> make_datetime(['1970-10-31', '1970-12-25']) # doctest: +NORMALIZE_WHITESPACE
[datetime.datetime(1970, 10, 31, 0, 0), datetime.datetime(1970, 12, 25, 0, 0)]
"""
if (isinstance(dt, (datetime.datetime, datetime.date, datetime.time, pd.Timestamp, np.datetime64)) or
dt in (float('nan'), float('inf'), float('-inf'), None, '')):
return dt
if isinstance(dt, (float, int)):
return datetime_from_ordinal_float(dt)
if isinstance(dt, datetime.date):
return datetime.datetime(dt.year, dt.month, dt.day)
if isinstance(dt, datetime.time):
return datetime.datetime(1, 1, 1, dt.hour, dt.minute, dt.second, dt.microsecond)
if not dt:
return datetime.datetime(1970, 1, 1)
if isinstance(dt, basestring):
try:
return date_parser(dt)
except ValueError:
print('Unable to make_datetime({})'.format(dt))
raise
try:
return datetime.datetime(*dt.timetuple()[:7])
except AttributeError:
try:
dt = list(dt)
if 0 < len(dt) < 7:
try:
return datetime.datetime(*dt[:7])
except (TypeError, IndexError, ValueError):
pass
except (TypeError, IndexError, ValueError, AttributeError):
# dt is not iterable
return dt
return [make_datetime(val, date_parser=date_parser) for val in dt] | python | def make_datetime(dt, date_parser=parse_date):
"""Coerce a datetime or string into datetime.datetime object
Arguments:
dt (str or datetime.datetime or atetime.time or numpy.Timestamp): time or date
to be coerced into a `datetime.date` object
Returns:
datetime.time: Time of day portion of a `datetime` string or object
>>> make_date('')
datetime.date(1970, 1, 1)
>>> make_date(None)
datetime.date(1970, 1, 1)
>>> make_date("11:59 PM") == datetime.date.today()
True
>>> make_date(datetime.datetime(1999, 12, 31, 23, 59, 59))
datetime.date(1999, 12, 31)
>>> make_datetime(['1970-10-31', '1970-12-25']) # doctest: +NORMALIZE_WHITESPACE
[datetime.datetime(1970, 10, 31, 0, 0), datetime.datetime(1970, 12, 25, 0, 0)]
"""
if (isinstance(dt, (datetime.datetime, datetime.date, datetime.time, pd.Timestamp, np.datetime64)) or
dt in (float('nan'), float('inf'), float('-inf'), None, '')):
return dt
if isinstance(dt, (float, int)):
return datetime_from_ordinal_float(dt)
if isinstance(dt, datetime.date):
return datetime.datetime(dt.year, dt.month, dt.day)
if isinstance(dt, datetime.time):
return datetime.datetime(1, 1, 1, dt.hour, dt.minute, dt.second, dt.microsecond)
if not dt:
return datetime.datetime(1970, 1, 1)
if isinstance(dt, basestring):
try:
return date_parser(dt)
except ValueError:
print('Unable to make_datetime({})'.format(dt))
raise
try:
return datetime.datetime(*dt.timetuple()[:7])
except AttributeError:
try:
dt = list(dt)
if 0 < len(dt) < 7:
try:
return datetime.datetime(*dt[:7])
except (TypeError, IndexError, ValueError):
pass
except (TypeError, IndexError, ValueError, AttributeError):
# dt is not iterable
return dt
return [make_datetime(val, date_parser=date_parser) for val in dt] | [
"def",
"make_datetime",
"(",
"dt",
",",
"date_parser",
"=",
"parse_date",
")",
":",
"if",
"(",
"isinstance",
"(",
"dt",
",",
"(",
"datetime",
".",
"datetime",
",",
"datetime",
".",
"date",
",",
"datetime",
".",
"time",
",",
"pd",
".",
"Timestamp",
",",
"np",
".",
"datetime64",
")",
")",
"or",
"dt",
"in",
"(",
"float",
"(",
"'nan'",
")",
",",
"float",
"(",
"'inf'",
")",
",",
"float",
"(",
"'-inf'",
")",
",",
"None",
",",
"''",
")",
")",
":",
"return",
"dt",
"if",
"isinstance",
"(",
"dt",
",",
"(",
"float",
",",
"int",
")",
")",
":",
"return",
"datetime_from_ordinal_float",
"(",
"dt",
")",
"if",
"isinstance",
"(",
"dt",
",",
"datetime",
".",
"date",
")",
":",
"return",
"datetime",
".",
"datetime",
"(",
"dt",
".",
"year",
",",
"dt",
".",
"month",
",",
"dt",
".",
"day",
")",
"if",
"isinstance",
"(",
"dt",
",",
"datetime",
".",
"time",
")",
":",
"return",
"datetime",
".",
"datetime",
"(",
"1",
",",
"1",
",",
"1",
",",
"dt",
".",
"hour",
",",
"dt",
".",
"minute",
",",
"dt",
".",
"second",
",",
"dt",
".",
"microsecond",
")",
"if",
"not",
"dt",
":",
"return",
"datetime",
".",
"datetime",
"(",
"1970",
",",
"1",
",",
"1",
")",
"if",
"isinstance",
"(",
"dt",
",",
"basestring",
")",
":",
"try",
":",
"return",
"date_parser",
"(",
"dt",
")",
"except",
"ValueError",
":",
"print",
"(",
"'Unable to make_datetime({})'",
".",
"format",
"(",
"dt",
")",
")",
"raise",
"try",
":",
"return",
"datetime",
".",
"datetime",
"(",
"*",
"dt",
".",
"timetuple",
"(",
")",
"[",
":",
"7",
"]",
")",
"except",
"AttributeError",
":",
"try",
":",
"dt",
"=",
"list",
"(",
"dt",
")",
"if",
"0",
"<",
"len",
"(",
"dt",
")",
"<",
"7",
":",
"try",
":",
"return",
"datetime",
".",
"datetime",
"(",
"*",
"dt",
"[",
":",
"7",
"]",
")",
"except",
"(",
"TypeError",
",",
"IndexError",
",",
"ValueError",
")",
":",
"pass",
"except",
"(",
"TypeError",
",",
"IndexError",
",",
"ValueError",
",",
"AttributeError",
")",
":",
"# dt is not iterable",
"return",
"dt",
"return",
"[",
"make_datetime",
"(",
"val",
",",
"date_parser",
"=",
"date_parser",
")",
"for",
"val",
"in",
"dt",
"]"
] | Coerce a datetime or string into datetime.datetime object
Arguments:
dt (str or datetime.datetime or atetime.time or numpy.Timestamp): time or date
to be coerced into a `datetime.date` object
Returns:
datetime.time: Time of day portion of a `datetime` string or object
>>> make_date('')
datetime.date(1970, 1, 1)
>>> make_date(None)
datetime.date(1970, 1, 1)
>>> make_date("11:59 PM") == datetime.date.today()
True
>>> make_date(datetime.datetime(1999, 12, 31, 23, 59, 59))
datetime.date(1999, 12, 31)
>>> make_datetime(['1970-10-31', '1970-12-25']) # doctest: +NORMALIZE_WHITESPACE
[datetime.datetime(1970, 10, 31, 0, 0), datetime.datetime(1970, 12, 25, 0, 0)] | [
"Coerce",
"a",
"datetime",
"or",
"string",
"into",
"datetime",
".",
"datetime",
"object"
] | c43445b14afddfdeadc5f3076675c9e8fc1ee67c | https://github.com/totalgood/pugnlp/blob/c43445b14afddfdeadc5f3076675c9e8fc1ee67c/src/pugnlp/tutil.py#L140-L192 | train |
totalgood/pugnlp | src/pugnlp/tutil.py | quantize_datetime | def quantize_datetime(dt, resolution=None):
"""Quantize a datetime to integer years, months, days, hours, minutes, seconds or microseconds
Also works with a `datetime.timetuple` or `time.struct_time` or a 1to9-tuple of ints or floats.
Also works with a sequenece of struct_times, tuples, or datetimes
>>> quantize_datetime(datetime.datetime(1970,1,2,3,4,5,6), resolution=3)
datetime.datetime(1970, 1, 2, 0, 0)
Notice that 6 is the highest resolution value with any utility
>>> quantize_datetime(datetime.datetime(1970,1,2,3,4,5,6), resolution=7)
datetime.datetime(1970, 1, 2, 3, 4, 5)
>>> quantize_datetime(datetime.datetime(1971,2,3,4,5,6,7), 1)
datetime.datetime(1971, 1, 1, 0, 0)
"""
# FIXME: this automatically truncates off microseconds just because timtuple() only goes out to sec
resolution = int(resolution or 6)
if hasattr(dt, 'timetuple'):
dt = dt.timetuple() # strips timezone info
if isinstance(dt, time.struct_time):
# strip last 3 fields (tm_wday, tm_yday, tm_isdst)
dt = list(dt)[:6]
# struct_time has no microsecond, but accepts float seconds
dt += [int((dt[5] - int(dt[5])) * 1000000)]
dt[5] = int(dt[5])
return datetime.datetime(*(dt[:resolution] + [1] * max(3 - resolution, 0)))
if isinstance(dt, tuple) and len(dt) <= 9 and all(isinstance(val, (float, int)) for val in dt):
dt = list(dt) + [0] * (max(6 - len(dt), 0))
# if the 6th element of the tuple looks like a float set of seconds need to add microseconds
if len(dt) == 6 and isinstance(dt[5], float):
dt = list(dt) + [1000000 * (dt[5] - int(dt[5]))]
dt[5] = int(dt[5])
dt = tuple(int(val) for val in dt)
return datetime.datetime(*(dt[:resolution] + [1] * max(resolution - 3, 0)))
return [quantize_datetime(value) for value in dt] | python | def quantize_datetime(dt, resolution=None):
"""Quantize a datetime to integer years, months, days, hours, minutes, seconds or microseconds
Also works with a `datetime.timetuple` or `time.struct_time` or a 1to9-tuple of ints or floats.
Also works with a sequenece of struct_times, tuples, or datetimes
>>> quantize_datetime(datetime.datetime(1970,1,2,3,4,5,6), resolution=3)
datetime.datetime(1970, 1, 2, 0, 0)
Notice that 6 is the highest resolution value with any utility
>>> quantize_datetime(datetime.datetime(1970,1,2,3,4,5,6), resolution=7)
datetime.datetime(1970, 1, 2, 3, 4, 5)
>>> quantize_datetime(datetime.datetime(1971,2,3,4,5,6,7), 1)
datetime.datetime(1971, 1, 1, 0, 0)
"""
# FIXME: this automatically truncates off microseconds just because timtuple() only goes out to sec
resolution = int(resolution or 6)
if hasattr(dt, 'timetuple'):
dt = dt.timetuple() # strips timezone info
if isinstance(dt, time.struct_time):
# strip last 3 fields (tm_wday, tm_yday, tm_isdst)
dt = list(dt)[:6]
# struct_time has no microsecond, but accepts float seconds
dt += [int((dt[5] - int(dt[5])) * 1000000)]
dt[5] = int(dt[5])
return datetime.datetime(*(dt[:resolution] + [1] * max(3 - resolution, 0)))
if isinstance(dt, tuple) and len(dt) <= 9 and all(isinstance(val, (float, int)) for val in dt):
dt = list(dt) + [0] * (max(6 - len(dt), 0))
# if the 6th element of the tuple looks like a float set of seconds need to add microseconds
if len(dt) == 6 and isinstance(dt[5], float):
dt = list(dt) + [1000000 * (dt[5] - int(dt[5]))]
dt[5] = int(dt[5])
dt = tuple(int(val) for val in dt)
return datetime.datetime(*(dt[:resolution] + [1] * max(resolution - 3, 0)))
return [quantize_datetime(value) for value in dt] | [
"def",
"quantize_datetime",
"(",
"dt",
",",
"resolution",
"=",
"None",
")",
":",
"# FIXME: this automatically truncates off microseconds just because timtuple() only goes out to sec",
"resolution",
"=",
"int",
"(",
"resolution",
"or",
"6",
")",
"if",
"hasattr",
"(",
"dt",
",",
"'timetuple'",
")",
":",
"dt",
"=",
"dt",
".",
"timetuple",
"(",
")",
"# strips timezone info",
"if",
"isinstance",
"(",
"dt",
",",
"time",
".",
"struct_time",
")",
":",
"# strip last 3 fields (tm_wday, tm_yday, tm_isdst)",
"dt",
"=",
"list",
"(",
"dt",
")",
"[",
":",
"6",
"]",
"# struct_time has no microsecond, but accepts float seconds",
"dt",
"+=",
"[",
"int",
"(",
"(",
"dt",
"[",
"5",
"]",
"-",
"int",
"(",
"dt",
"[",
"5",
"]",
")",
")",
"*",
"1000000",
")",
"]",
"dt",
"[",
"5",
"]",
"=",
"int",
"(",
"dt",
"[",
"5",
"]",
")",
"return",
"datetime",
".",
"datetime",
"(",
"*",
"(",
"dt",
"[",
":",
"resolution",
"]",
"+",
"[",
"1",
"]",
"*",
"max",
"(",
"3",
"-",
"resolution",
",",
"0",
")",
")",
")",
"if",
"isinstance",
"(",
"dt",
",",
"tuple",
")",
"and",
"len",
"(",
"dt",
")",
"<=",
"9",
"and",
"all",
"(",
"isinstance",
"(",
"val",
",",
"(",
"float",
",",
"int",
")",
")",
"for",
"val",
"in",
"dt",
")",
":",
"dt",
"=",
"list",
"(",
"dt",
")",
"+",
"[",
"0",
"]",
"*",
"(",
"max",
"(",
"6",
"-",
"len",
"(",
"dt",
")",
",",
"0",
")",
")",
"# if the 6th element of the tuple looks like a float set of seconds need to add microseconds",
"if",
"len",
"(",
"dt",
")",
"==",
"6",
"and",
"isinstance",
"(",
"dt",
"[",
"5",
"]",
",",
"float",
")",
":",
"dt",
"=",
"list",
"(",
"dt",
")",
"+",
"[",
"1000000",
"*",
"(",
"dt",
"[",
"5",
"]",
"-",
"int",
"(",
"dt",
"[",
"5",
"]",
")",
")",
"]",
"dt",
"[",
"5",
"]",
"=",
"int",
"(",
"dt",
"[",
"5",
"]",
")",
"dt",
"=",
"tuple",
"(",
"int",
"(",
"val",
")",
"for",
"val",
"in",
"dt",
")",
"return",
"datetime",
".",
"datetime",
"(",
"*",
"(",
"dt",
"[",
":",
"resolution",
"]",
"+",
"[",
"1",
"]",
"*",
"max",
"(",
"resolution",
"-",
"3",
",",
"0",
")",
")",
")",
"return",
"[",
"quantize_datetime",
"(",
"value",
")",
"for",
"value",
"in",
"dt",
"]"
] | Quantize a datetime to integer years, months, days, hours, minutes, seconds or microseconds
Also works with a `datetime.timetuple` or `time.struct_time` or a 1to9-tuple of ints or floats.
Also works with a sequenece of struct_times, tuples, or datetimes
>>> quantize_datetime(datetime.datetime(1970,1,2,3,4,5,6), resolution=3)
datetime.datetime(1970, 1, 2, 0, 0)
Notice that 6 is the highest resolution value with any utility
>>> quantize_datetime(datetime.datetime(1970,1,2,3,4,5,6), resolution=7)
datetime.datetime(1970, 1, 2, 3, 4, 5)
>>> quantize_datetime(datetime.datetime(1971,2,3,4,5,6,7), 1)
datetime.datetime(1971, 1, 1, 0, 0) | [
"Quantize",
"a",
"datetime",
"to",
"integer",
"years",
"months",
"days",
"hours",
"minutes",
"seconds",
"or",
"microseconds"
] | c43445b14afddfdeadc5f3076675c9e8fc1ee67c | https://github.com/totalgood/pugnlp/blob/c43445b14afddfdeadc5f3076675c9e8fc1ee67c/src/pugnlp/tutil.py#L229-L266 | train |
totalgood/pugnlp | src/pugnlp/tutil.py | timetag_str | def timetag_str(dt=None, sep='-', filler='0', resolution=6):
"""Generate a date-time tag suitable for appending to a file name.
>>> timetag_str(resolution=3) == '-'.join('{0:02d}'.format(i) for i in
... tuple(datetime.datetime.now().timetuple()[:3]))
True
>>> timetag_str(datetime.datetime(2004,12,8,1,2,3,400000))
'2004-12-08-01-02-03'
>>> timetag_str(datetime.datetime(2004,12,8))
'2004-12-08-00-00-00'
>>> timetag_str(datetime.datetime(2003,6,19), filler='')
'2003-6-19-0-0-0'
"""
resolution = int(resolution or 6)
if sep in (None, False):
sep = ''
sep = str(sep)
dt = datetime.datetime.now() if dt is None else dt
# FIXME: don't use timetuple which truncates microseconds
return sep.join(('{0:' + filler + ('2' if filler else '') + 'd}').format(i)
for i in tuple(dt.timetuple()[:resolution])) | python | def timetag_str(dt=None, sep='-', filler='0', resolution=6):
"""Generate a date-time tag suitable for appending to a file name.
>>> timetag_str(resolution=3) == '-'.join('{0:02d}'.format(i) for i in
... tuple(datetime.datetime.now().timetuple()[:3]))
True
>>> timetag_str(datetime.datetime(2004,12,8,1,2,3,400000))
'2004-12-08-01-02-03'
>>> timetag_str(datetime.datetime(2004,12,8))
'2004-12-08-00-00-00'
>>> timetag_str(datetime.datetime(2003,6,19), filler='')
'2003-6-19-0-0-0'
"""
resolution = int(resolution or 6)
if sep in (None, False):
sep = ''
sep = str(sep)
dt = datetime.datetime.now() if dt is None else dt
# FIXME: don't use timetuple which truncates microseconds
return sep.join(('{0:' + filler + ('2' if filler else '') + 'd}').format(i)
for i in tuple(dt.timetuple()[:resolution])) | [
"def",
"timetag_str",
"(",
"dt",
"=",
"None",
",",
"sep",
"=",
"'-'",
",",
"filler",
"=",
"'0'",
",",
"resolution",
"=",
"6",
")",
":",
"resolution",
"=",
"int",
"(",
"resolution",
"or",
"6",
")",
"if",
"sep",
"in",
"(",
"None",
",",
"False",
")",
":",
"sep",
"=",
"''",
"sep",
"=",
"str",
"(",
"sep",
")",
"dt",
"=",
"datetime",
".",
"datetime",
".",
"now",
"(",
")",
"if",
"dt",
"is",
"None",
"else",
"dt",
"# FIXME: don't use timetuple which truncates microseconds",
"return",
"sep",
".",
"join",
"(",
"(",
"'{0:'",
"+",
"filler",
"+",
"(",
"'2'",
"if",
"filler",
"else",
"''",
")",
"+",
"'d}'",
")",
".",
"format",
"(",
"i",
")",
"for",
"i",
"in",
"tuple",
"(",
"dt",
".",
"timetuple",
"(",
")",
"[",
":",
"resolution",
"]",
")",
")"
] | Generate a date-time tag suitable for appending to a file name.
>>> timetag_str(resolution=3) == '-'.join('{0:02d}'.format(i) for i in
... tuple(datetime.datetime.now().timetuple()[:3]))
True
>>> timetag_str(datetime.datetime(2004,12,8,1,2,3,400000))
'2004-12-08-01-02-03'
>>> timetag_str(datetime.datetime(2004,12,8))
'2004-12-08-00-00-00'
>>> timetag_str(datetime.datetime(2003,6,19), filler='')
'2003-6-19-0-0-0' | [
"Generate",
"a",
"date",
"-",
"time",
"tag",
"suitable",
"for",
"appending",
"to",
"a",
"file",
"name",
"."
] | c43445b14afddfdeadc5f3076675c9e8fc1ee67c | https://github.com/totalgood/pugnlp/blob/c43445b14afddfdeadc5f3076675c9e8fc1ee67c/src/pugnlp/tutil.py#L319-L339 | train |
totalgood/pugnlp | src/pugnlp/tutil.py | make_tz_aware | def make_tz_aware(dt, tz='UTC', is_dst=None):
"""Add timezone information to a datetime object, only if it is naive.
>>> make_tz_aware(datetime.datetime(2001, 9, 8, 7, 6))
datetime.datetime(2001, 9, 8, 7, 6, tzinfo=<UTC>)
>>> make_tz_aware(['2010-01-01'], 'PST')
[datetime.datetime(2010, 1, 1, 0, 0, tzinfo=<DstTzInfo 'US/Pacific' PST-1 day, 16:00:00 STD>)]
>>> make_tz_aware(['1970-10-31', '1970-12-25', '1971-07-04'], 'CDT') # doctest: +NORMALIZE_WHITESPACE
[datetime.datetime(1970, 10, 31, 0, 0, tzinfo=<DstTzInfo 'US/Central' CST-1 day, 18:00:00 STD>),
datetime.datetime(1970, 12, 25, 0, 0, tzinfo=<DstTzInfo 'US/Central' CST-1 day, 18:00:00 STD>),
datetime.datetime(1971, 7, 4, 0, 0, tzinfo=<DstTzInfo 'US/Central' CDT-1 day, 19:00:00 DST>)]
>>> make_tz_aware([None, float('nan'), float('inf'), 1980, 1979.25*365.25, '1970-10-31',
... '1970-12-25', '1971-07-04'],
... 'CDT') # doctest: +NORMALIZE_WHITESPACE
[None, nan, inf,
datetime.datetime(6, 6, 3, 0, 0, tzinfo=<DstTzInfo 'US/Central' LMT-1 day, 18:09:00 STD>),
datetime.datetime(1980, 4, 16, 1, 30, tzinfo=<DstTzInfo 'US/Central' CST-1 day, 18:00:00 STD>),
datetime.datetime(1970, 10, 31, 0, 0, tzinfo=<DstTzInfo 'US/Central' CST-1 day, 18:00:00 STD>),
datetime.datetime(1970, 12, 25, 0, 0, tzinfo=<DstTzInfo 'US/Central' CST-1 day, 18:00:00 STD>),
datetime.datetime(1971, 7, 4, 0, 0, tzinfo=<DstTzInfo 'US/Central' CDT-1 day, 19:00:00 DST>)]
>>> make_tz_aware(datetime.time(22, 23, 59, 123456))
datetime.time(22, 23, 59, 123456, tzinfo=<UTC>)
>>> make_tz_aware(datetime.time(22, 23, 59, 123456), 'PDT', is_dst=True)
datetime.time(22, 23, 59, 123456, tzinfo=<DstTzInfo 'US/Pacific' LMT-1 day, 16:07:00 STD>)
"""
# make sure dt is a datetime, time, or list of datetime/times
dt = make_datetime(dt)
if not isinstance(dt, (list, datetime.datetime, datetime.date, datetime.time, pd.Timestamp)):
return dt
# TODO: deal with sequence of timezones
try:
tz = dt.tzinfo or tz
except (ValueError, AttributeError, TypeError):
pass
try:
tzstr = str(tz).strip().upper()
if tzstr in TZ_ABBREV_NAME:
is_dst = is_dst or tzstr.endswith('DT')
tz = TZ_ABBREV_NAME.get(tzstr, tz)
except (ValueError, AttributeError, TypeError):
pass
try:
tz = pytz.timezone(tz)
except (ValueError, AttributeError, TypeError):
# from traceback import print_exc
# print_exc()
pass
try:
return tz.localize(dt, is_dst=is_dst)
except (ValueError, AttributeError, TypeError):
# from traceback import print_exc
# print_exc() # TypeError: unsupported operand type(s) for +: 'datetime.time' and 'datetime.timedelta'
pass
# could be datetime.time, which can't be localized. Insted `replace` the TZ
# don't try/except in case dt is not a datetime or time type -- should raise an exception
if not isinstance(dt, list):
return dt.replace(tzinfo=tz)
return [make_tz_aware(dt0, tz=tz, is_dst=is_dst) for dt0 in dt] | python | def make_tz_aware(dt, tz='UTC', is_dst=None):
"""Add timezone information to a datetime object, only if it is naive.
>>> make_tz_aware(datetime.datetime(2001, 9, 8, 7, 6))
datetime.datetime(2001, 9, 8, 7, 6, tzinfo=<UTC>)
>>> make_tz_aware(['2010-01-01'], 'PST')
[datetime.datetime(2010, 1, 1, 0, 0, tzinfo=<DstTzInfo 'US/Pacific' PST-1 day, 16:00:00 STD>)]
>>> make_tz_aware(['1970-10-31', '1970-12-25', '1971-07-04'], 'CDT') # doctest: +NORMALIZE_WHITESPACE
[datetime.datetime(1970, 10, 31, 0, 0, tzinfo=<DstTzInfo 'US/Central' CST-1 day, 18:00:00 STD>),
datetime.datetime(1970, 12, 25, 0, 0, tzinfo=<DstTzInfo 'US/Central' CST-1 day, 18:00:00 STD>),
datetime.datetime(1971, 7, 4, 0, 0, tzinfo=<DstTzInfo 'US/Central' CDT-1 day, 19:00:00 DST>)]
>>> make_tz_aware([None, float('nan'), float('inf'), 1980, 1979.25*365.25, '1970-10-31',
... '1970-12-25', '1971-07-04'],
... 'CDT') # doctest: +NORMALIZE_WHITESPACE
[None, nan, inf,
datetime.datetime(6, 6, 3, 0, 0, tzinfo=<DstTzInfo 'US/Central' LMT-1 day, 18:09:00 STD>),
datetime.datetime(1980, 4, 16, 1, 30, tzinfo=<DstTzInfo 'US/Central' CST-1 day, 18:00:00 STD>),
datetime.datetime(1970, 10, 31, 0, 0, tzinfo=<DstTzInfo 'US/Central' CST-1 day, 18:00:00 STD>),
datetime.datetime(1970, 12, 25, 0, 0, tzinfo=<DstTzInfo 'US/Central' CST-1 day, 18:00:00 STD>),
datetime.datetime(1971, 7, 4, 0, 0, tzinfo=<DstTzInfo 'US/Central' CDT-1 day, 19:00:00 DST>)]
>>> make_tz_aware(datetime.time(22, 23, 59, 123456))
datetime.time(22, 23, 59, 123456, tzinfo=<UTC>)
>>> make_tz_aware(datetime.time(22, 23, 59, 123456), 'PDT', is_dst=True)
datetime.time(22, 23, 59, 123456, tzinfo=<DstTzInfo 'US/Pacific' LMT-1 day, 16:07:00 STD>)
"""
# make sure dt is a datetime, time, or list of datetime/times
dt = make_datetime(dt)
if not isinstance(dt, (list, datetime.datetime, datetime.date, datetime.time, pd.Timestamp)):
return dt
# TODO: deal with sequence of timezones
try:
tz = dt.tzinfo or tz
except (ValueError, AttributeError, TypeError):
pass
try:
tzstr = str(tz).strip().upper()
if tzstr in TZ_ABBREV_NAME:
is_dst = is_dst or tzstr.endswith('DT')
tz = TZ_ABBREV_NAME.get(tzstr, tz)
except (ValueError, AttributeError, TypeError):
pass
try:
tz = pytz.timezone(tz)
except (ValueError, AttributeError, TypeError):
# from traceback import print_exc
# print_exc()
pass
try:
return tz.localize(dt, is_dst=is_dst)
except (ValueError, AttributeError, TypeError):
# from traceback import print_exc
# print_exc() # TypeError: unsupported operand type(s) for +: 'datetime.time' and 'datetime.timedelta'
pass
# could be datetime.time, which can't be localized. Insted `replace` the TZ
# don't try/except in case dt is not a datetime or time type -- should raise an exception
if not isinstance(dt, list):
return dt.replace(tzinfo=tz)
return [make_tz_aware(dt0, tz=tz, is_dst=is_dst) for dt0 in dt] | [
"def",
"make_tz_aware",
"(",
"dt",
",",
"tz",
"=",
"'UTC'",
",",
"is_dst",
"=",
"None",
")",
":",
"# make sure dt is a datetime, time, or list of datetime/times",
"dt",
"=",
"make_datetime",
"(",
"dt",
")",
"if",
"not",
"isinstance",
"(",
"dt",
",",
"(",
"list",
",",
"datetime",
".",
"datetime",
",",
"datetime",
".",
"date",
",",
"datetime",
".",
"time",
",",
"pd",
".",
"Timestamp",
")",
")",
":",
"return",
"dt",
"# TODO: deal with sequence of timezones",
"try",
":",
"tz",
"=",
"dt",
".",
"tzinfo",
"or",
"tz",
"except",
"(",
"ValueError",
",",
"AttributeError",
",",
"TypeError",
")",
":",
"pass",
"try",
":",
"tzstr",
"=",
"str",
"(",
"tz",
")",
".",
"strip",
"(",
")",
".",
"upper",
"(",
")",
"if",
"tzstr",
"in",
"TZ_ABBREV_NAME",
":",
"is_dst",
"=",
"is_dst",
"or",
"tzstr",
".",
"endswith",
"(",
"'DT'",
")",
"tz",
"=",
"TZ_ABBREV_NAME",
".",
"get",
"(",
"tzstr",
",",
"tz",
")",
"except",
"(",
"ValueError",
",",
"AttributeError",
",",
"TypeError",
")",
":",
"pass",
"try",
":",
"tz",
"=",
"pytz",
".",
"timezone",
"(",
"tz",
")",
"except",
"(",
"ValueError",
",",
"AttributeError",
",",
"TypeError",
")",
":",
"# from traceback import print_exc",
"# print_exc()",
"pass",
"try",
":",
"return",
"tz",
".",
"localize",
"(",
"dt",
",",
"is_dst",
"=",
"is_dst",
")",
"except",
"(",
"ValueError",
",",
"AttributeError",
",",
"TypeError",
")",
":",
"# from traceback import print_exc",
"# print_exc() # TypeError: unsupported operand type(s) for +: 'datetime.time' and 'datetime.timedelta'",
"pass",
"# could be datetime.time, which can't be localized. Insted `replace` the TZ",
"# don't try/except in case dt is not a datetime or time type -- should raise an exception",
"if",
"not",
"isinstance",
"(",
"dt",
",",
"list",
")",
":",
"return",
"dt",
".",
"replace",
"(",
"tzinfo",
"=",
"tz",
")",
"return",
"[",
"make_tz_aware",
"(",
"dt0",
",",
"tz",
"=",
"tz",
",",
"is_dst",
"=",
"is_dst",
")",
"for",
"dt0",
"in",
"dt",
"]"
] | Add timezone information to a datetime object, only if it is naive.
>>> make_tz_aware(datetime.datetime(2001, 9, 8, 7, 6))
datetime.datetime(2001, 9, 8, 7, 6, tzinfo=<UTC>)
>>> make_tz_aware(['2010-01-01'], 'PST')
[datetime.datetime(2010, 1, 1, 0, 0, tzinfo=<DstTzInfo 'US/Pacific' PST-1 day, 16:00:00 STD>)]
>>> make_tz_aware(['1970-10-31', '1970-12-25', '1971-07-04'], 'CDT') # doctest: +NORMALIZE_WHITESPACE
[datetime.datetime(1970, 10, 31, 0, 0, tzinfo=<DstTzInfo 'US/Central' CST-1 day, 18:00:00 STD>),
datetime.datetime(1970, 12, 25, 0, 0, tzinfo=<DstTzInfo 'US/Central' CST-1 day, 18:00:00 STD>),
datetime.datetime(1971, 7, 4, 0, 0, tzinfo=<DstTzInfo 'US/Central' CDT-1 day, 19:00:00 DST>)]
>>> make_tz_aware([None, float('nan'), float('inf'), 1980, 1979.25*365.25, '1970-10-31',
... '1970-12-25', '1971-07-04'],
... 'CDT') # doctest: +NORMALIZE_WHITESPACE
[None, nan, inf,
datetime.datetime(6, 6, 3, 0, 0, tzinfo=<DstTzInfo 'US/Central' LMT-1 day, 18:09:00 STD>),
datetime.datetime(1980, 4, 16, 1, 30, tzinfo=<DstTzInfo 'US/Central' CST-1 day, 18:00:00 STD>),
datetime.datetime(1970, 10, 31, 0, 0, tzinfo=<DstTzInfo 'US/Central' CST-1 day, 18:00:00 STD>),
datetime.datetime(1970, 12, 25, 0, 0, tzinfo=<DstTzInfo 'US/Central' CST-1 day, 18:00:00 STD>),
datetime.datetime(1971, 7, 4, 0, 0, tzinfo=<DstTzInfo 'US/Central' CDT-1 day, 19:00:00 DST>)]
>>> make_tz_aware(datetime.time(22, 23, 59, 123456))
datetime.time(22, 23, 59, 123456, tzinfo=<UTC>)
>>> make_tz_aware(datetime.time(22, 23, 59, 123456), 'PDT', is_dst=True)
datetime.time(22, 23, 59, 123456, tzinfo=<DstTzInfo 'US/Pacific' LMT-1 day, 16:07:00 STD>) | [
"Add",
"timezone",
"information",
"to",
"a",
"datetime",
"object",
"only",
"if",
"it",
"is",
"naive",
"."
] | c43445b14afddfdeadc5f3076675c9e8fc1ee67c | https://github.com/totalgood/pugnlp/blob/c43445b14afddfdeadc5f3076675c9e8fc1ee67c/src/pugnlp/tutil.py#L349-L408 | train |
hootnot/postcode-api-wrapper | postcodepy/typedefs.py | translate_addresstype | def translate_addresstype(f):
"""decorator to translate the addressType field.
translate the value of the addressType field of the API response into a
translated type.
"""
@wraps(f)
def wr(r, pc):
at = r["addressType"]
try:
r.update({"addressType": POSTCODE_API_TYPEDEFS_ADDRESS_TYPES[at]})
except:
logger.warning("Warning: {}: "
"unknown 'addressType': {}".format(pc, at))
return f(r, pc)
return wr | python | def translate_addresstype(f):
"""decorator to translate the addressType field.
translate the value of the addressType field of the API response into a
translated type.
"""
@wraps(f)
def wr(r, pc):
at = r["addressType"]
try:
r.update({"addressType": POSTCODE_API_TYPEDEFS_ADDRESS_TYPES[at]})
except:
logger.warning("Warning: {}: "
"unknown 'addressType': {}".format(pc, at))
return f(r, pc)
return wr | [
"def",
"translate_addresstype",
"(",
"f",
")",
":",
"@",
"wraps",
"(",
"f",
")",
"def",
"wr",
"(",
"r",
",",
"pc",
")",
":",
"at",
"=",
"r",
"[",
"\"addressType\"",
"]",
"try",
":",
"r",
".",
"update",
"(",
"{",
"\"addressType\"",
":",
"POSTCODE_API_TYPEDEFS_ADDRESS_TYPES",
"[",
"at",
"]",
"}",
")",
"except",
":",
"logger",
".",
"warning",
"(",
"\"Warning: {}: \"",
"\"unknown 'addressType': {}\"",
".",
"format",
"(",
"pc",
",",
"at",
")",
")",
"return",
"f",
"(",
"r",
",",
"pc",
")",
"return",
"wr"
] | decorator to translate the addressType field.
translate the value of the addressType field of the API response into a
translated type. | [
"decorator",
"to",
"translate",
"the",
"addressType",
"field",
"."
] | 42359cb9402f84a06f7d58f889f1156d653f5ea9 | https://github.com/hootnot/postcode-api-wrapper/blob/42359cb9402f84a06f7d58f889f1156d653f5ea9/postcodepy/typedefs.py#L55-L72 | train |
hootnot/postcode-api-wrapper | postcodepy/typedefs.py | translate_purposes | def translate_purposes(f):
"""decorator to translate the purposes field.
translate the values of the purposes field of the API response into
translated values.
"""
@wraps(f)
def wr(r, pc):
tmp = []
for P in r["purposes"]:
try:
tmp.append(POSTCODE_API_TYPEDEFS_PURPOSES[P])
except:
logger.warning("Warning: {}: "
"cannot translate 'purpose': {}".format(pc, P))
tmp.append(P)
r.update({"purposes": tmp})
return f(r, pc)
return wr | python | def translate_purposes(f):
"""decorator to translate the purposes field.
translate the values of the purposes field of the API response into
translated values.
"""
@wraps(f)
def wr(r, pc):
tmp = []
for P in r["purposes"]:
try:
tmp.append(POSTCODE_API_TYPEDEFS_PURPOSES[P])
except:
logger.warning("Warning: {}: "
"cannot translate 'purpose': {}".format(pc, P))
tmp.append(P)
r.update({"purposes": tmp})
return f(r, pc)
return wr | [
"def",
"translate_purposes",
"(",
"f",
")",
":",
"@",
"wraps",
"(",
"f",
")",
"def",
"wr",
"(",
"r",
",",
"pc",
")",
":",
"tmp",
"=",
"[",
"]",
"for",
"P",
"in",
"r",
"[",
"\"purposes\"",
"]",
":",
"try",
":",
"tmp",
".",
"append",
"(",
"POSTCODE_API_TYPEDEFS_PURPOSES",
"[",
"P",
"]",
")",
"except",
":",
"logger",
".",
"warning",
"(",
"\"Warning: {}: \"",
"\"cannot translate 'purpose': {}\"",
".",
"format",
"(",
"pc",
",",
"P",
")",
")",
"tmp",
".",
"append",
"(",
"P",
")",
"r",
".",
"update",
"(",
"{",
"\"purposes\"",
":",
"tmp",
"}",
")",
"return",
"f",
"(",
"r",
",",
"pc",
")",
"return",
"wr"
] | decorator to translate the purposes field.
translate the values of the purposes field of the API response into
translated values. | [
"decorator",
"to",
"translate",
"the",
"purposes",
"field",
"."
] | 42359cb9402f84a06f7d58f889f1156d653f5ea9 | https://github.com/hootnot/postcode-api-wrapper/blob/42359cb9402f84a06f7d58f889f1156d653f5ea9/postcodepy/typedefs.py#L75-L95 | train |
consbio/ncdjango | ncdjango/interfaces/data/classify.py | quantile | def quantile(data, num_breaks):
"""
Calculate quantile breaks.
Arguments:
data -- Array of values to classify.
num_breaks -- Number of breaks to perform.
"""
def scipy_mquantiles(a, prob=list([.25,.5,.75]), alphap=.4, betap=.4, axis=None, limit=()):
""" function copied from scipy 0.13.3::scipy.stats.mstats.mquantiles """
def _quantiles1D(data,m,p):
x = numpy.sort(data.compressed())
n = len(x)
if n == 0:
return numpy.ma.array(numpy.empty(len(p), dtype=float), mask=True)
elif n == 1:
return numpy.ma.array(numpy.resize(x, p.shape), mask=numpy.ma.nomask)
aleph = (n*p + m)
k = numpy.floor(aleph.clip(1, n-1)).astype(int)
gamma = (aleph-k).clip(0,1)
return (1.-gamma)*x[(k-1).tolist()] + gamma*x[k.tolist()]
# Initialization & checks ---------
data = numpy.ma.array(a, copy=False)
if data.ndim > 2:
raise TypeError("Array should be 2D at most !")
#
if limit:
condition = (limit[0] < data) & (data < limit[1])
data[~condition.filled(True)] = numpy.ma.masked
#
p = numpy.array(prob, copy=False, ndmin=1)
m = alphap + p*(1.-alphap-betap)
# Computes quantiles along axis (or globally)
if (axis is None):
return _quantiles1D(data, m, p)
return numpy.ma.apply_along_axis(_quantiles1D, axis, data, m, p)
return scipy_mquantiles(data, numpy.linspace(1.0 / num_breaks, 1, num_breaks)) | python | def quantile(data, num_breaks):
"""
Calculate quantile breaks.
Arguments:
data -- Array of values to classify.
num_breaks -- Number of breaks to perform.
"""
def scipy_mquantiles(a, prob=list([.25,.5,.75]), alphap=.4, betap=.4, axis=None, limit=()):
""" function copied from scipy 0.13.3::scipy.stats.mstats.mquantiles """
def _quantiles1D(data,m,p):
x = numpy.sort(data.compressed())
n = len(x)
if n == 0:
return numpy.ma.array(numpy.empty(len(p), dtype=float), mask=True)
elif n == 1:
return numpy.ma.array(numpy.resize(x, p.shape), mask=numpy.ma.nomask)
aleph = (n*p + m)
k = numpy.floor(aleph.clip(1, n-1)).astype(int)
gamma = (aleph-k).clip(0,1)
return (1.-gamma)*x[(k-1).tolist()] + gamma*x[k.tolist()]
# Initialization & checks ---------
data = numpy.ma.array(a, copy=False)
if data.ndim > 2:
raise TypeError("Array should be 2D at most !")
#
if limit:
condition = (limit[0] < data) & (data < limit[1])
data[~condition.filled(True)] = numpy.ma.masked
#
p = numpy.array(prob, copy=False, ndmin=1)
m = alphap + p*(1.-alphap-betap)
# Computes quantiles along axis (or globally)
if (axis is None):
return _quantiles1D(data, m, p)
return numpy.ma.apply_along_axis(_quantiles1D, axis, data, m, p)
return scipy_mquantiles(data, numpy.linspace(1.0 / num_breaks, 1, num_breaks)) | [
"def",
"quantile",
"(",
"data",
",",
"num_breaks",
")",
":",
"def",
"scipy_mquantiles",
"(",
"a",
",",
"prob",
"=",
"list",
"(",
"[",
".25",
",",
".5",
",",
".75",
"]",
")",
",",
"alphap",
"=",
".4",
",",
"betap",
"=",
".4",
",",
"axis",
"=",
"None",
",",
"limit",
"=",
"(",
")",
")",
":",
"\"\"\" function copied from scipy 0.13.3::scipy.stats.mstats.mquantiles \"\"\"",
"def",
"_quantiles1D",
"(",
"data",
",",
"m",
",",
"p",
")",
":",
"x",
"=",
"numpy",
".",
"sort",
"(",
"data",
".",
"compressed",
"(",
")",
")",
"n",
"=",
"len",
"(",
"x",
")",
"if",
"n",
"==",
"0",
":",
"return",
"numpy",
".",
"ma",
".",
"array",
"(",
"numpy",
".",
"empty",
"(",
"len",
"(",
"p",
")",
",",
"dtype",
"=",
"float",
")",
",",
"mask",
"=",
"True",
")",
"elif",
"n",
"==",
"1",
":",
"return",
"numpy",
".",
"ma",
".",
"array",
"(",
"numpy",
".",
"resize",
"(",
"x",
",",
"p",
".",
"shape",
")",
",",
"mask",
"=",
"numpy",
".",
"ma",
".",
"nomask",
")",
"aleph",
"=",
"(",
"n",
"*",
"p",
"+",
"m",
")",
"k",
"=",
"numpy",
".",
"floor",
"(",
"aleph",
".",
"clip",
"(",
"1",
",",
"n",
"-",
"1",
")",
")",
".",
"astype",
"(",
"int",
")",
"gamma",
"=",
"(",
"aleph",
"-",
"k",
")",
".",
"clip",
"(",
"0",
",",
"1",
")",
"return",
"(",
"1.",
"-",
"gamma",
")",
"*",
"x",
"[",
"(",
"k",
"-",
"1",
")",
".",
"tolist",
"(",
")",
"]",
"+",
"gamma",
"*",
"x",
"[",
"k",
".",
"tolist",
"(",
")",
"]",
"# Initialization & checks ---------",
"data",
"=",
"numpy",
".",
"ma",
".",
"array",
"(",
"a",
",",
"copy",
"=",
"False",
")",
"if",
"data",
".",
"ndim",
">",
"2",
":",
"raise",
"TypeError",
"(",
"\"Array should be 2D at most !\"",
")",
"#",
"if",
"limit",
":",
"condition",
"=",
"(",
"limit",
"[",
"0",
"]",
"<",
"data",
")",
"&",
"(",
"data",
"<",
"limit",
"[",
"1",
"]",
")",
"data",
"[",
"~",
"condition",
".",
"filled",
"(",
"True",
")",
"]",
"=",
"numpy",
".",
"ma",
".",
"masked",
"#",
"p",
"=",
"numpy",
".",
"array",
"(",
"prob",
",",
"copy",
"=",
"False",
",",
"ndmin",
"=",
"1",
")",
"m",
"=",
"alphap",
"+",
"p",
"*",
"(",
"1.",
"-",
"alphap",
"-",
"betap",
")",
"# Computes quantiles along axis (or globally)",
"if",
"(",
"axis",
"is",
"None",
")",
":",
"return",
"_quantiles1D",
"(",
"data",
",",
"m",
",",
"p",
")",
"return",
"numpy",
".",
"ma",
".",
"apply_along_axis",
"(",
"_quantiles1D",
",",
"axis",
",",
"data",
",",
"m",
",",
"p",
")",
"return",
"scipy_mquantiles",
"(",
"data",
",",
"numpy",
".",
"linspace",
"(",
"1.0",
"/",
"num_breaks",
",",
"1",
",",
"num_breaks",
")",
")"
] | Calculate quantile breaks.
Arguments:
data -- Array of values to classify.
num_breaks -- Number of breaks to perform. | [
"Calculate",
"quantile",
"breaks",
"."
] | f807bfd1e4083ab29fbc3c4d4418be108383a710 | https://github.com/consbio/ncdjango/blob/f807bfd1e4083ab29fbc3c4d4418be108383a710/ncdjango/interfaces/data/classify.py#L91-L131 | train |
consbio/ncdjango | ncdjango/interfaces/data/classify.py | equal | def equal(data, num_breaks):
"""
Calculate equal interval breaks.
Arguments:
data -- Array of values to classify.
num_breaks -- Number of breaks to perform.
"""
step = (numpy.amax(data) - numpy.amin(data)) / num_breaks
return numpy.linspace(numpy.amin(data) + step, numpy.amax(data), num_breaks) | python | def equal(data, num_breaks):
"""
Calculate equal interval breaks.
Arguments:
data -- Array of values to classify.
num_breaks -- Number of breaks to perform.
"""
step = (numpy.amax(data) - numpy.amin(data)) / num_breaks
return numpy.linspace(numpy.amin(data) + step, numpy.amax(data), num_breaks) | [
"def",
"equal",
"(",
"data",
",",
"num_breaks",
")",
":",
"step",
"=",
"(",
"numpy",
".",
"amax",
"(",
"data",
")",
"-",
"numpy",
".",
"amin",
"(",
"data",
")",
")",
"/",
"num_breaks",
"return",
"numpy",
".",
"linspace",
"(",
"numpy",
".",
"amin",
"(",
"data",
")",
"+",
"step",
",",
"numpy",
".",
"amax",
"(",
"data",
")",
",",
"num_breaks",
")"
] | Calculate equal interval breaks.
Arguments:
data -- Array of values to classify.
num_breaks -- Number of breaks to perform. | [
"Calculate",
"equal",
"interval",
"breaks",
"."
] | f807bfd1e4083ab29fbc3c4d4418be108383a710 | https://github.com/consbio/ncdjango/blob/f807bfd1e4083ab29fbc3c4d4418be108383a710/ncdjango/interfaces/data/classify.py#L134-L144 | train |
DarkEnergySurvey/ugali | ugali/utils/fileio.py | add_column | def add_column(filename,column,formula,force=False):
""" Add a column to a FITS file.
ADW: Could this be replaced by a ftool?
"""
columns = parse_formula(formula)
logger.info("Running file: %s"%filename)
logger.debug(" Reading columns: %s"%columns)
data = fitsio.read(filename,columns=columns)
logger.debug(' Evaluating formula: %s'%formula)
col = eval(formula)
col = np.asarray(col,dtype=[(column,col.dtype)])
insert_columns(filename,col,force=force)
return True | python | def add_column(filename,column,formula,force=False):
""" Add a column to a FITS file.
ADW: Could this be replaced by a ftool?
"""
columns = parse_formula(formula)
logger.info("Running file: %s"%filename)
logger.debug(" Reading columns: %s"%columns)
data = fitsio.read(filename,columns=columns)
logger.debug(' Evaluating formula: %s'%formula)
col = eval(formula)
col = np.asarray(col,dtype=[(column,col.dtype)])
insert_columns(filename,col,force=force)
return True | [
"def",
"add_column",
"(",
"filename",
",",
"column",
",",
"formula",
",",
"force",
"=",
"False",
")",
":",
"columns",
"=",
"parse_formula",
"(",
"formula",
")",
"logger",
".",
"info",
"(",
"\"Running file: %s\"",
"%",
"filename",
")",
"logger",
".",
"debug",
"(",
"\" Reading columns: %s\"",
"%",
"columns",
")",
"data",
"=",
"fitsio",
".",
"read",
"(",
"filename",
",",
"columns",
"=",
"columns",
")",
"logger",
".",
"debug",
"(",
"' Evaluating formula: %s'",
"%",
"formula",
")",
"col",
"=",
"eval",
"(",
"formula",
")",
"col",
"=",
"np",
".",
"asarray",
"(",
"col",
",",
"dtype",
"=",
"[",
"(",
"column",
",",
"col",
".",
"dtype",
")",
"]",
")",
"insert_columns",
"(",
"filename",
",",
"col",
",",
"force",
"=",
"force",
")",
"return",
"True"
] | Add a column to a FITS file.
ADW: Could this be replaced by a ftool? | [
"Add",
"a",
"column",
"to",
"a",
"FITS",
"file",
"."
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/utils/fileio.py#L70-L85 | train |
DarkEnergySurvey/ugali | ugali/utils/fileio.py | load_files | def load_files(filenames,multiproc=False,**kwargs):
""" Load a set of FITS files with kwargs. """
filenames = np.atleast_1d(filenames)
logger.debug("Loading %s files..."%len(filenames))
kwargs = [dict(filename=f,**kwargs) for f in filenames]
if multiproc:
from multiprocessing import Pool
processes = multiproc if multiproc > 0 else None
p = Pool(processes,maxtasksperchild=1)
out = p.map(load_file,kwargs)
else:
out = [load_file(kw) for kw in kwargs]
dtype = out[0].dtype
for i,d in enumerate(out):
if d.dtype != dtype:
# ADW: Not really safe...
logger.warn("Casting input data to same type.")
out[i] = d.astype(dtype,copy=False)
logger.debug('Concatenating arrays...')
return np.concatenate(out) | python | def load_files(filenames,multiproc=False,**kwargs):
""" Load a set of FITS files with kwargs. """
filenames = np.atleast_1d(filenames)
logger.debug("Loading %s files..."%len(filenames))
kwargs = [dict(filename=f,**kwargs) for f in filenames]
if multiproc:
from multiprocessing import Pool
processes = multiproc if multiproc > 0 else None
p = Pool(processes,maxtasksperchild=1)
out = p.map(load_file,kwargs)
else:
out = [load_file(kw) for kw in kwargs]
dtype = out[0].dtype
for i,d in enumerate(out):
if d.dtype != dtype:
# ADW: Not really safe...
logger.warn("Casting input data to same type.")
out[i] = d.astype(dtype,copy=False)
logger.debug('Concatenating arrays...')
return np.concatenate(out) | [
"def",
"load_files",
"(",
"filenames",
",",
"multiproc",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"filenames",
"=",
"np",
".",
"atleast_1d",
"(",
"filenames",
")",
"logger",
".",
"debug",
"(",
"\"Loading %s files...\"",
"%",
"len",
"(",
"filenames",
")",
")",
"kwargs",
"=",
"[",
"dict",
"(",
"filename",
"=",
"f",
",",
"*",
"*",
"kwargs",
")",
"for",
"f",
"in",
"filenames",
"]",
"if",
"multiproc",
":",
"from",
"multiprocessing",
"import",
"Pool",
"processes",
"=",
"multiproc",
"if",
"multiproc",
">",
"0",
"else",
"None",
"p",
"=",
"Pool",
"(",
"processes",
",",
"maxtasksperchild",
"=",
"1",
")",
"out",
"=",
"p",
".",
"map",
"(",
"load_file",
",",
"kwargs",
")",
"else",
":",
"out",
"=",
"[",
"load_file",
"(",
"kw",
")",
"for",
"kw",
"in",
"kwargs",
"]",
"dtype",
"=",
"out",
"[",
"0",
"]",
".",
"dtype",
"for",
"i",
",",
"d",
"in",
"enumerate",
"(",
"out",
")",
":",
"if",
"d",
".",
"dtype",
"!=",
"dtype",
":",
"# ADW: Not really safe...",
"logger",
".",
"warn",
"(",
"\"Casting input data to same type.\"",
")",
"out",
"[",
"i",
"]",
"=",
"d",
".",
"astype",
"(",
"dtype",
",",
"copy",
"=",
"False",
")",
"logger",
".",
"debug",
"(",
"'Concatenating arrays...'",
")",
"return",
"np",
".",
"concatenate",
"(",
"out",
")"
] | Load a set of FITS files with kwargs. | [
"Load",
"a",
"set",
"of",
"FITS",
"files",
"with",
"kwargs",
"."
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/utils/fileio.py#L98-L121 | train |
DarkEnergySurvey/ugali | ugali/scratch/simulation/survey_selection_function.py | surveySelectionFunction.applyFracdet | def applyFracdet(self, lon, lat):
"""
We want to enforce minimum fracdet for a satellite to be considered detectable
True is passes fracdet cut
"""
self.loadFracdet()
fracdet_core = meanFracdet(self.m_fracdet, lon, lat, np.tile(0.1, len(lon)))
fracdet_wide = meanFracdet(self.m_fracdet, lon, lat, np.tile(0.5, len(lon)))
return (fracdet_core >= self.config[self.algorithm]['fracdet_core_threshold']) \
& (fracdet_core >= self.config[self.algorithm]['fracdet_core_threshold']) | python | def applyFracdet(self, lon, lat):
"""
We want to enforce minimum fracdet for a satellite to be considered detectable
True is passes fracdet cut
"""
self.loadFracdet()
fracdet_core = meanFracdet(self.m_fracdet, lon, lat, np.tile(0.1, len(lon)))
fracdet_wide = meanFracdet(self.m_fracdet, lon, lat, np.tile(0.5, len(lon)))
return (fracdet_core >= self.config[self.algorithm]['fracdet_core_threshold']) \
& (fracdet_core >= self.config[self.algorithm]['fracdet_core_threshold']) | [
"def",
"applyFracdet",
"(",
"self",
",",
"lon",
",",
"lat",
")",
":",
"self",
".",
"loadFracdet",
"(",
")",
"fracdet_core",
"=",
"meanFracdet",
"(",
"self",
".",
"m_fracdet",
",",
"lon",
",",
"lat",
",",
"np",
".",
"tile",
"(",
"0.1",
",",
"len",
"(",
"lon",
")",
")",
")",
"fracdet_wide",
"=",
"meanFracdet",
"(",
"self",
".",
"m_fracdet",
",",
"lon",
",",
"lat",
",",
"np",
".",
"tile",
"(",
"0.5",
",",
"len",
"(",
"lon",
")",
")",
")",
"return",
"(",
"fracdet_core",
">=",
"self",
".",
"config",
"[",
"self",
".",
"algorithm",
"]",
"[",
"'fracdet_core_threshold'",
"]",
")",
"&",
"(",
"fracdet_core",
">=",
"self",
".",
"config",
"[",
"self",
".",
"algorithm",
"]",
"[",
"'fracdet_core_threshold'",
"]",
")"
] | We want to enforce minimum fracdet for a satellite to be considered detectable
True is passes fracdet cut | [
"We",
"want",
"to",
"enforce",
"minimum",
"fracdet",
"for",
"a",
"satellite",
"to",
"be",
"considered",
"detectable"
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/scratch/simulation/survey_selection_function.py#L385-L395 | train |
DarkEnergySurvey/ugali | ugali/scratch/simulation/survey_selection_function.py | surveySelectionFunction.applyHotspot | def applyHotspot(self, lon, lat):
"""
Exclude objects that are too close to hotspot
True if passes hotspot cut
"""
self.loadRealResults()
cut_detect_real = (self.data_real['SIG'] >= self.config[self.algorithm]['sig_threshold'])
lon_real = self.data_real['RA'][cut_detect_real]
lat_real = self.data_real['DEC'][cut_detect_real]
cut_hotspot = np.tile(True, len(lon))
for ii in range(0, len(lon)):
cut_hotspot[ii] = ~np.any(angsep(lon[ii], lat[ii], lon_real, lat_real) < self.config[self.algorithm]['hotspot_angsep_threshold'])
return cut_hotspot | python | def applyHotspot(self, lon, lat):
"""
Exclude objects that are too close to hotspot
True if passes hotspot cut
"""
self.loadRealResults()
cut_detect_real = (self.data_real['SIG'] >= self.config[self.algorithm]['sig_threshold'])
lon_real = self.data_real['RA'][cut_detect_real]
lat_real = self.data_real['DEC'][cut_detect_real]
cut_hotspot = np.tile(True, len(lon))
for ii in range(0, len(lon)):
cut_hotspot[ii] = ~np.any(angsep(lon[ii], lat[ii], lon_real, lat_real) < self.config[self.algorithm]['hotspot_angsep_threshold'])
return cut_hotspot | [
"def",
"applyHotspot",
"(",
"self",
",",
"lon",
",",
"lat",
")",
":",
"self",
".",
"loadRealResults",
"(",
")",
"cut_detect_real",
"=",
"(",
"self",
".",
"data_real",
"[",
"'SIG'",
"]",
">=",
"self",
".",
"config",
"[",
"self",
".",
"algorithm",
"]",
"[",
"'sig_threshold'",
"]",
")",
"lon_real",
"=",
"self",
".",
"data_real",
"[",
"'RA'",
"]",
"[",
"cut_detect_real",
"]",
"lat_real",
"=",
"self",
".",
"data_real",
"[",
"'DEC'",
"]",
"[",
"cut_detect_real",
"]",
"cut_hotspot",
"=",
"np",
".",
"tile",
"(",
"True",
",",
"len",
"(",
"lon",
")",
")",
"for",
"ii",
"in",
"range",
"(",
"0",
",",
"len",
"(",
"lon",
")",
")",
":",
"cut_hotspot",
"[",
"ii",
"]",
"=",
"~",
"np",
".",
"any",
"(",
"angsep",
"(",
"lon",
"[",
"ii",
"]",
",",
"lat",
"[",
"ii",
"]",
",",
"lon_real",
",",
"lat_real",
")",
"<",
"self",
".",
"config",
"[",
"self",
".",
"algorithm",
"]",
"[",
"'hotspot_angsep_threshold'",
"]",
")",
"return",
"cut_hotspot"
] | Exclude objects that are too close to hotspot
True if passes hotspot cut | [
"Exclude",
"objects",
"that",
"are",
"too",
"close",
"to",
"hotspot"
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/scratch/simulation/survey_selection_function.py#L397-L412 | train |
DarkEnergySurvey/ugali | ugali/scratch/simulation/survey_selection_function.py | surveySelectionFunction.predict | def predict(self, lon, lat, **kwargs):
"""
distance, abs_mag, r_physical
"""
assert self.classifier is not None, 'ERROR'
pred = np.zeros(len(lon))
cut_geometry, flags_geometry = self.applyGeometry(lon, lat)
x_test = []
for key, operation in self.config['operation']['params_intrinsic']:
assert operation.lower() in ['linear', 'log'], 'ERROR'
if operation.lower() == 'linear':
x_test.append(kwargs[key])
else:
x_test.append(np.log10(kwargs[key]))
x_test = np.vstack(x_test).T
#import pdb; pdb.set_trace()
pred[cut_geometry] = self.classifier.predict_proba(x_test[cut_geometry])[:,1]
self.validatePredict(pred, flags_geometry, lon, lat, kwargs['r_physical'], kwargs['abs_mag'], kwargs['distance'])
return pred, flags_geometry | python | def predict(self, lon, lat, **kwargs):
"""
distance, abs_mag, r_physical
"""
assert self.classifier is not None, 'ERROR'
pred = np.zeros(len(lon))
cut_geometry, flags_geometry = self.applyGeometry(lon, lat)
x_test = []
for key, operation in self.config['operation']['params_intrinsic']:
assert operation.lower() in ['linear', 'log'], 'ERROR'
if operation.lower() == 'linear':
x_test.append(kwargs[key])
else:
x_test.append(np.log10(kwargs[key]))
x_test = np.vstack(x_test).T
#import pdb; pdb.set_trace()
pred[cut_geometry] = self.classifier.predict_proba(x_test[cut_geometry])[:,1]
self.validatePredict(pred, flags_geometry, lon, lat, kwargs['r_physical'], kwargs['abs_mag'], kwargs['distance'])
return pred, flags_geometry | [
"def",
"predict",
"(",
"self",
",",
"lon",
",",
"lat",
",",
"*",
"*",
"kwargs",
")",
":",
"assert",
"self",
".",
"classifier",
"is",
"not",
"None",
",",
"'ERROR'",
"pred",
"=",
"np",
".",
"zeros",
"(",
"len",
"(",
"lon",
")",
")",
"cut_geometry",
",",
"flags_geometry",
"=",
"self",
".",
"applyGeometry",
"(",
"lon",
",",
"lat",
")",
"x_test",
"=",
"[",
"]",
"for",
"key",
",",
"operation",
"in",
"self",
".",
"config",
"[",
"'operation'",
"]",
"[",
"'params_intrinsic'",
"]",
":",
"assert",
"operation",
".",
"lower",
"(",
")",
"in",
"[",
"'linear'",
",",
"'log'",
"]",
",",
"'ERROR'",
"if",
"operation",
".",
"lower",
"(",
")",
"==",
"'linear'",
":",
"x_test",
".",
"append",
"(",
"kwargs",
"[",
"key",
"]",
")",
"else",
":",
"x_test",
".",
"append",
"(",
"np",
".",
"log10",
"(",
"kwargs",
"[",
"key",
"]",
")",
")",
"x_test",
"=",
"np",
".",
"vstack",
"(",
"x_test",
")",
".",
"T",
"#import pdb; pdb.set_trace()",
"pred",
"[",
"cut_geometry",
"]",
"=",
"self",
".",
"classifier",
".",
"predict_proba",
"(",
"x_test",
"[",
"cut_geometry",
"]",
")",
"[",
":",
",",
"1",
"]",
"self",
".",
"validatePredict",
"(",
"pred",
",",
"flags_geometry",
",",
"lon",
",",
"lat",
",",
"kwargs",
"[",
"'r_physical'",
"]",
",",
"kwargs",
"[",
"'abs_mag'",
"]",
",",
"kwargs",
"[",
"'distance'",
"]",
")",
"return",
"pred",
",",
"flags_geometry"
] | distance, abs_mag, r_physical | [
"distance",
"abs_mag",
"r_physical"
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/scratch/simulation/survey_selection_function.py#L425-L449 | train |
DarkEnergySurvey/ugali | ugali/candidate/associate.py | catalogFactory | def catalogFactory(name, **kwargs):
"""
Factory for various catalogs.
"""
fn = lambda member: inspect.isclass(member) and member.__module__==__name__
catalogs = odict(inspect.getmembers(sys.modules[__name__], fn))
if name not in list(catalogs.keys()):
msg = "%s not found in catalogs:\n %s"%(name,list(kernels.keys()))
logger.error(msg)
msg = "Unrecognized catalog: %s"%name
raise Exception(msg)
return catalogs[name](**kwargs) | python | def catalogFactory(name, **kwargs):
"""
Factory for various catalogs.
"""
fn = lambda member: inspect.isclass(member) and member.__module__==__name__
catalogs = odict(inspect.getmembers(sys.modules[__name__], fn))
if name not in list(catalogs.keys()):
msg = "%s not found in catalogs:\n %s"%(name,list(kernels.keys()))
logger.error(msg)
msg = "Unrecognized catalog: %s"%name
raise Exception(msg)
return catalogs[name](**kwargs) | [
"def",
"catalogFactory",
"(",
"name",
",",
"*",
"*",
"kwargs",
")",
":",
"fn",
"=",
"lambda",
"member",
":",
"inspect",
".",
"isclass",
"(",
"member",
")",
"and",
"member",
".",
"__module__",
"==",
"__name__",
"catalogs",
"=",
"odict",
"(",
"inspect",
".",
"getmembers",
"(",
"sys",
".",
"modules",
"[",
"__name__",
"]",
",",
"fn",
")",
")",
"if",
"name",
"not",
"in",
"list",
"(",
"catalogs",
".",
"keys",
"(",
")",
")",
":",
"msg",
"=",
"\"%s not found in catalogs:\\n %s\"",
"%",
"(",
"name",
",",
"list",
"(",
"kernels",
".",
"keys",
"(",
")",
")",
")",
"logger",
".",
"error",
"(",
"msg",
")",
"msg",
"=",
"\"Unrecognized catalog: %s\"",
"%",
"name",
"raise",
"Exception",
"(",
"msg",
")",
"return",
"catalogs",
"[",
"name",
"]",
"(",
"*",
"*",
"kwargs",
")"
] | Factory for various catalogs. | [
"Factory",
"for",
"various",
"catalogs",
"."
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/candidate/associate.py#L447-L460 | train |
DarkEnergySurvey/ugali | ugali/analysis/results.py | write_results | def write_results(filename,config,srcfile,samples):
""" Package everything nicely """
results = createResults(config,srcfile,samples=samples)
results.write(filename) | python | def write_results(filename,config,srcfile,samples):
""" Package everything nicely """
results = createResults(config,srcfile,samples=samples)
results.write(filename) | [
"def",
"write_results",
"(",
"filename",
",",
"config",
",",
"srcfile",
",",
"samples",
")",
":",
"results",
"=",
"createResults",
"(",
"config",
",",
"srcfile",
",",
"samples",
"=",
"samples",
")",
"results",
".",
"write",
"(",
"filename",
")"
] | Package everything nicely | [
"Package",
"everything",
"nicely"
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/analysis/results.py#L347-L350 | train |
DarkEnergySurvey/ugali | ugali/analysis/results.py | Results.estimate | def estimate(self,param,burn=None,clip=10.0,alpha=0.32):
""" Estimate parameter value and uncertainties """
# FIXME: Need to add age and metallicity to composite isochrone params (currently properties)
if param not in list(self.samples.names) + list(self.source.params) + ['age','metallicity']:
msg = 'Unrecognized parameter: %s'%param
raise KeyError(msg)
# If the parameter is in the samples
if param in self.samples.names:
if param.startswith('position_angle'):
return self.estimate_position_angle(param,burn=burn,
clip=clip,alpha=alpha)
return self.samples.peak_interval(param,burn=burn,clip=clip,alpha=alpha)
mle = self.get_mle()
errors = [np.nan,np.nan]
# Set default value to the MLE value
if param in self.source.params:
err = self.source.params[param].errors
if err is not None: errors = err
# For age and metallicity from composite isochrone
return [float(mle[param]),errors] | python | def estimate(self,param,burn=None,clip=10.0,alpha=0.32):
""" Estimate parameter value and uncertainties """
# FIXME: Need to add age and metallicity to composite isochrone params (currently properties)
if param not in list(self.samples.names) + list(self.source.params) + ['age','metallicity']:
msg = 'Unrecognized parameter: %s'%param
raise KeyError(msg)
# If the parameter is in the samples
if param in self.samples.names:
if param.startswith('position_angle'):
return self.estimate_position_angle(param,burn=burn,
clip=clip,alpha=alpha)
return self.samples.peak_interval(param,burn=burn,clip=clip,alpha=alpha)
mle = self.get_mle()
errors = [np.nan,np.nan]
# Set default value to the MLE value
if param in self.source.params:
err = self.source.params[param].errors
if err is not None: errors = err
# For age and metallicity from composite isochrone
return [float(mle[param]),errors] | [
"def",
"estimate",
"(",
"self",
",",
"param",
",",
"burn",
"=",
"None",
",",
"clip",
"=",
"10.0",
",",
"alpha",
"=",
"0.32",
")",
":",
"# FIXME: Need to add age and metallicity to composite isochrone params (currently properties)",
"if",
"param",
"not",
"in",
"list",
"(",
"self",
".",
"samples",
".",
"names",
")",
"+",
"list",
"(",
"self",
".",
"source",
".",
"params",
")",
"+",
"[",
"'age'",
",",
"'metallicity'",
"]",
":",
"msg",
"=",
"'Unrecognized parameter: %s'",
"%",
"param",
"raise",
"KeyError",
"(",
"msg",
")",
"# If the parameter is in the samples",
"if",
"param",
"in",
"self",
".",
"samples",
".",
"names",
":",
"if",
"param",
".",
"startswith",
"(",
"'position_angle'",
")",
":",
"return",
"self",
".",
"estimate_position_angle",
"(",
"param",
",",
"burn",
"=",
"burn",
",",
"clip",
"=",
"clip",
",",
"alpha",
"=",
"alpha",
")",
"return",
"self",
".",
"samples",
".",
"peak_interval",
"(",
"param",
",",
"burn",
"=",
"burn",
",",
"clip",
"=",
"clip",
",",
"alpha",
"=",
"alpha",
")",
"mle",
"=",
"self",
".",
"get_mle",
"(",
")",
"errors",
"=",
"[",
"np",
".",
"nan",
",",
"np",
".",
"nan",
"]",
"# Set default value to the MLE value",
"if",
"param",
"in",
"self",
".",
"source",
".",
"params",
":",
"err",
"=",
"self",
".",
"source",
".",
"params",
"[",
"param",
"]",
".",
"errors",
"if",
"err",
"is",
"not",
"None",
":",
"errors",
"=",
"err",
"# For age and metallicity from composite isochrone",
"return",
"[",
"float",
"(",
"mle",
"[",
"param",
"]",
")",
",",
"errors",
"]"
] | Estimate parameter value and uncertainties | [
"Estimate",
"parameter",
"value",
"and",
"uncertainties"
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/analysis/results.py#L57-L81 | train |
DarkEnergySurvey/ugali | ugali/analysis/results.py | Results.estimate_params | def estimate_params(self,burn=None,clip=10.0,alpha=0.32):
""" Estimate all source parameters """
mle = self.get_mle()
out = odict()
for param in mle.keys():
out[param] = self.estimate(param,burn=burn,clip=clip,alpha=alpha)
return out | python | def estimate_params(self,burn=None,clip=10.0,alpha=0.32):
""" Estimate all source parameters """
mle = self.get_mle()
out = odict()
for param in mle.keys():
out[param] = self.estimate(param,burn=burn,clip=clip,alpha=alpha)
return out | [
"def",
"estimate_params",
"(",
"self",
",",
"burn",
"=",
"None",
",",
"clip",
"=",
"10.0",
",",
"alpha",
"=",
"0.32",
")",
":",
"mle",
"=",
"self",
".",
"get_mle",
"(",
")",
"out",
"=",
"odict",
"(",
")",
"for",
"param",
"in",
"mle",
".",
"keys",
"(",
")",
":",
"out",
"[",
"param",
"]",
"=",
"self",
".",
"estimate",
"(",
"param",
",",
"burn",
"=",
"burn",
",",
"clip",
"=",
"clip",
",",
"alpha",
"=",
"alpha",
")",
"return",
"out"
] | Estimate all source parameters | [
"Estimate",
"all",
"source",
"parameters"
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/analysis/results.py#L92-L98 | train |
DarkEnergySurvey/ugali | ugali/analysis/results.py | Results.estimate_position_angle | def estimate_position_angle(self,param='position_angle',burn=None,clip=10.0,alpha=0.32):
""" Estimate the position angle from the posterior dealing
with periodicity.
"""
# Transform so peak in the middle of the distribution
pa = self.samples.get(param,burn=burn,clip=clip)
peak = ugali.utils.stats.kde_peak(pa)
shift = 180.*((pa+90-peak)>180)
pa -= shift
# Get the kde interval
ret = ugali.utils.stats.peak_interval(pa,alpha)
if ret[0] < 0:
ret[0] += 180.; ret[1][0] += 180.; ret[1][1] += 180.;
return ret | python | def estimate_position_angle(self,param='position_angle',burn=None,clip=10.0,alpha=0.32):
""" Estimate the position angle from the posterior dealing
with periodicity.
"""
# Transform so peak in the middle of the distribution
pa = self.samples.get(param,burn=burn,clip=clip)
peak = ugali.utils.stats.kde_peak(pa)
shift = 180.*((pa+90-peak)>180)
pa -= shift
# Get the kde interval
ret = ugali.utils.stats.peak_interval(pa,alpha)
if ret[0] < 0:
ret[0] += 180.; ret[1][0] += 180.; ret[1][1] += 180.;
return ret | [
"def",
"estimate_position_angle",
"(",
"self",
",",
"param",
"=",
"'position_angle'",
",",
"burn",
"=",
"None",
",",
"clip",
"=",
"10.0",
",",
"alpha",
"=",
"0.32",
")",
":",
"# Transform so peak in the middle of the distribution",
"pa",
"=",
"self",
".",
"samples",
".",
"get",
"(",
"param",
",",
"burn",
"=",
"burn",
",",
"clip",
"=",
"clip",
")",
"peak",
"=",
"ugali",
".",
"utils",
".",
"stats",
".",
"kde_peak",
"(",
"pa",
")",
"shift",
"=",
"180.",
"*",
"(",
"(",
"pa",
"+",
"90",
"-",
"peak",
")",
">",
"180",
")",
"pa",
"-=",
"shift",
"# Get the kde interval",
"ret",
"=",
"ugali",
".",
"utils",
".",
"stats",
".",
"peak_interval",
"(",
"pa",
",",
"alpha",
")",
"if",
"ret",
"[",
"0",
"]",
"<",
"0",
":",
"ret",
"[",
"0",
"]",
"+=",
"180.",
"ret",
"[",
"1",
"]",
"[",
"0",
"]",
"+=",
"180.",
"ret",
"[",
"1",
"]",
"[",
"1",
"]",
"+=",
"180.",
"return",
"ret"
] | Estimate the position angle from the posterior dealing
with periodicity. | [
"Estimate",
"the",
"position",
"angle",
"from",
"the",
"posterior",
"dealing",
"with",
"periodicity",
"."
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/analysis/results.py#L100-L113 | train |
alphagov/performanceplatform-collector | performanceplatform/collector/webtrends/keymetrics.py | Collector.date_range_for_webtrends | def date_range_for_webtrends(cls, start_at=None, end_at=None):
"""
Get the start and end formatted for query
or the last hour if none specified.
Unlike reports, this does not aggregate periods
and so it is possible to just query a range and parse out the
individual hours.
"""
if start_at and end_at:
start_date = cls.parse_standard_date_string_to_date(
start_at)
end_date = cls.parse_standard_date_string_to_date(
end_at)
return [(
cls.parse_date_for_query(start_date),
cls.parse_date_for_query(end_date))]
else:
return [("current_hour-1", "current_hour-1")] | python | def date_range_for_webtrends(cls, start_at=None, end_at=None):
"""
Get the start and end formatted for query
or the last hour if none specified.
Unlike reports, this does not aggregate periods
and so it is possible to just query a range and parse out the
individual hours.
"""
if start_at and end_at:
start_date = cls.parse_standard_date_string_to_date(
start_at)
end_date = cls.parse_standard_date_string_to_date(
end_at)
return [(
cls.parse_date_for_query(start_date),
cls.parse_date_for_query(end_date))]
else:
return [("current_hour-1", "current_hour-1")] | [
"def",
"date_range_for_webtrends",
"(",
"cls",
",",
"start_at",
"=",
"None",
",",
"end_at",
"=",
"None",
")",
":",
"if",
"start_at",
"and",
"end_at",
":",
"start_date",
"=",
"cls",
".",
"parse_standard_date_string_to_date",
"(",
"start_at",
")",
"end_date",
"=",
"cls",
".",
"parse_standard_date_string_to_date",
"(",
"end_at",
")",
"return",
"[",
"(",
"cls",
".",
"parse_date_for_query",
"(",
"start_date",
")",
",",
"cls",
".",
"parse_date_for_query",
"(",
"end_date",
")",
")",
"]",
"else",
":",
"return",
"[",
"(",
"\"current_hour-1\"",
",",
"\"current_hour-1\"",
")",
"]"
] | Get the start and end formatted for query
or the last hour if none specified.
Unlike reports, this does not aggregate periods
and so it is possible to just query a range and parse out the
individual hours. | [
"Get",
"the",
"start",
"and",
"end",
"formatted",
"for",
"query",
"or",
"the",
"last",
"hour",
"if",
"none",
"specified",
".",
"Unlike",
"reports",
"this",
"does",
"not",
"aggregate",
"periods",
"and",
"so",
"it",
"is",
"possible",
"to",
"just",
"query",
"a",
"range",
"and",
"parse",
"out",
"the",
"individual",
"hours",
"."
] | de68ab4aa500c31e436e050fa1268fa928c522a5 | https://github.com/alphagov/performanceplatform-collector/blob/de68ab4aa500c31e436e050fa1268fa928c522a5/performanceplatform/collector/webtrends/keymetrics.py#L15-L32 | train |
DarkEnergySurvey/ugali | ugali/utils/shell.py | get_ugali_dir | def get_ugali_dir():
"""Get the path to the ugali data directory from the environment"""
dirname = os.getenv('UGALIDIR')
# Get the HOME directory
if not dirname:
dirname=os.path.join(os.getenv('HOME'),'.ugali')
if not os.path.exists(dirname):
from ugali.utils.logger import logger
msg = "Creating UGALIDIR:\n%s"%dirname
logger.warning(msg)
return mkdir(dirname) | python | def get_ugali_dir():
"""Get the path to the ugali data directory from the environment"""
dirname = os.getenv('UGALIDIR')
# Get the HOME directory
if not dirname:
dirname=os.path.join(os.getenv('HOME'),'.ugali')
if not os.path.exists(dirname):
from ugali.utils.logger import logger
msg = "Creating UGALIDIR:\n%s"%dirname
logger.warning(msg)
return mkdir(dirname) | [
"def",
"get_ugali_dir",
"(",
")",
":",
"dirname",
"=",
"os",
".",
"getenv",
"(",
"'UGALIDIR'",
")",
"# Get the HOME directory",
"if",
"not",
"dirname",
":",
"dirname",
"=",
"os",
".",
"path",
".",
"join",
"(",
"os",
".",
"getenv",
"(",
"'HOME'",
")",
",",
"'.ugali'",
")",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"dirname",
")",
":",
"from",
"ugali",
".",
"utils",
".",
"logger",
"import",
"logger",
"msg",
"=",
"\"Creating UGALIDIR:\\n%s\"",
"%",
"dirname",
"logger",
".",
"warning",
"(",
"msg",
")",
"return",
"mkdir",
"(",
"dirname",
")"
] | Get the path to the ugali data directory from the environment | [
"Get",
"the",
"path",
"to",
"the",
"ugali",
"data",
"directory",
"from",
"the",
"environment"
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/utils/shell.py#L48-L62 | train |
DarkEnergySurvey/ugali | ugali/utils/shell.py | get_iso_dir | def get_iso_dir():
"""Get the ugali isochrone directory."""
dirname = os.path.join(get_ugali_dir(),'isochrones')
if not os.path.exists(dirname):
from ugali.utils.logger import logger
msg = "Isochrone directory not found:\n%s"%dirname
logger.warning(msg)
return dirname | python | def get_iso_dir():
"""Get the ugali isochrone directory."""
dirname = os.path.join(get_ugali_dir(),'isochrones')
if not os.path.exists(dirname):
from ugali.utils.logger import logger
msg = "Isochrone directory not found:\n%s"%dirname
logger.warning(msg)
return dirname | [
"def",
"get_iso_dir",
"(",
")",
":",
"dirname",
"=",
"os",
".",
"path",
".",
"join",
"(",
"get_ugali_dir",
"(",
")",
",",
"'isochrones'",
")",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"dirname",
")",
":",
"from",
"ugali",
".",
"utils",
".",
"logger",
"import",
"logger",
"msg",
"=",
"\"Isochrone directory not found:\\n%s\"",
"%",
"dirname",
"logger",
".",
"warning",
"(",
"msg",
")",
"return",
"dirname"
] | Get the ugali isochrone directory. | [
"Get",
"the",
"ugali",
"isochrone",
"directory",
"."
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/utils/shell.py#L64-L73 | train |
warrenspe/hconf | hconf/Config.py | ConfigManager.registerParser | def registerParser(self, parser):
"""
Registers a parser to parse configuration inputs.
"""
if not isinstance(parser, Subparser):
raise TypeError("%s is not an instance of a subparser." % parser)
self.parsers.append(parser) | python | def registerParser(self, parser):
"""
Registers a parser to parse configuration inputs.
"""
if not isinstance(parser, Subparser):
raise TypeError("%s is not an instance of a subparser." % parser)
self.parsers.append(parser) | [
"def",
"registerParser",
"(",
"self",
",",
"parser",
")",
":",
"if",
"not",
"isinstance",
"(",
"parser",
",",
"Subparser",
")",
":",
"raise",
"TypeError",
"(",
"\"%s is not an instance of a subparser.\"",
"%",
"parser",
")",
"self",
".",
"parsers",
".",
"append",
"(",
"parser",
")"
] | Registers a parser to parse configuration inputs. | [
"Registers",
"a",
"parser",
"to",
"parse",
"configuration",
"inputs",
"."
] | 12074d15dc3641d3903488c95d89a507386a32d5 | https://github.com/warrenspe/hconf/blob/12074d15dc3641d3903488c95d89a507386a32d5/hconf/Config.py#L65-L73 | train |
warrenspe/hconf | hconf/Config.py | ConfigManager.addConfig | def addConfig(self, name, default=None, cast=None, required=False, description=None):
"""
Adds the given configuration option to the ConfigManager.
Inputs: name - The configuration name to accept.
required - A boolean indicating whether or not the configuration option is required or not.
cast - A type (or function accepting 1 argument and returning an object) to cast the input as.
If any error occurs during casting an InvalidConfigurationException will be raised.
default - The default value to assign to this configuration option. Note that None is not a valid
default if required=True.
description - A human readable description of this configuration parameter. Will be displayed when the
program is run with a -h flag.
"""
# Validate the name
if not self.configNameRE.match(name):
raise InvalidConfigurationException("Invalid configuration name: %s" % name)
self.configs[self._sanitizeName(name)] = {
'default': default,
'cast': cast,
'required': required,
'description': description
} | python | def addConfig(self, name, default=None, cast=None, required=False, description=None):
"""
Adds the given configuration option to the ConfigManager.
Inputs: name - The configuration name to accept.
required - A boolean indicating whether or not the configuration option is required or not.
cast - A type (or function accepting 1 argument and returning an object) to cast the input as.
If any error occurs during casting an InvalidConfigurationException will be raised.
default - The default value to assign to this configuration option. Note that None is not a valid
default if required=True.
description - A human readable description of this configuration parameter. Will be displayed when the
program is run with a -h flag.
"""
# Validate the name
if not self.configNameRE.match(name):
raise InvalidConfigurationException("Invalid configuration name: %s" % name)
self.configs[self._sanitizeName(name)] = {
'default': default,
'cast': cast,
'required': required,
'description': description
} | [
"def",
"addConfig",
"(",
"self",
",",
"name",
",",
"default",
"=",
"None",
",",
"cast",
"=",
"None",
",",
"required",
"=",
"False",
",",
"description",
"=",
"None",
")",
":",
"# Validate the name",
"if",
"not",
"self",
".",
"configNameRE",
".",
"match",
"(",
"name",
")",
":",
"raise",
"InvalidConfigurationException",
"(",
"\"Invalid configuration name: %s\"",
"%",
"name",
")",
"self",
".",
"configs",
"[",
"self",
".",
"_sanitizeName",
"(",
"name",
")",
"]",
"=",
"{",
"'default'",
":",
"default",
",",
"'cast'",
":",
"cast",
",",
"'required'",
":",
"required",
",",
"'description'",
":",
"description",
"}"
] | Adds the given configuration option to the ConfigManager.
Inputs: name - The configuration name to accept.
required - A boolean indicating whether or not the configuration option is required or not.
cast - A type (or function accepting 1 argument and returning an object) to cast the input as.
If any error occurs during casting an InvalidConfigurationException will be raised.
default - The default value to assign to this configuration option. Note that None is not a valid
default if required=True.
description - A human readable description of this configuration parameter. Will be displayed when the
program is run with a -h flag. | [
"Adds",
"the",
"given",
"configuration",
"option",
"to",
"the",
"ConfigManager",
"."
] | 12074d15dc3641d3903488c95d89a507386a32d5 | https://github.com/warrenspe/hconf/blob/12074d15dc3641d3903488c95d89a507386a32d5/hconf/Config.py#L75-L98 | train |
warrenspe/hconf | hconf/Config.py | ConfigManager.parse | def parse(self):
"""
Executes the registered parsers to parse input configurations.
"""
self._config = _Config()
self._setDefaults()
for parser in self.parsers:
for key, value in parser.parse(self, self._config).items():
key = self._sanitizeName(key)
if key not in self.configs:
raise UnknownConfigurationException(key)
if value is not None:
self._setConfig(key, value)
self._ensureRequired()
self._cast()
return self._config | python | def parse(self):
"""
Executes the registered parsers to parse input configurations.
"""
self._config = _Config()
self._setDefaults()
for parser in self.parsers:
for key, value in parser.parse(self, self._config).items():
key = self._sanitizeName(key)
if key not in self.configs:
raise UnknownConfigurationException(key)
if value is not None:
self._setConfig(key, value)
self._ensureRequired()
self._cast()
return self._config | [
"def",
"parse",
"(",
"self",
")",
":",
"self",
".",
"_config",
"=",
"_Config",
"(",
")",
"self",
".",
"_setDefaults",
"(",
")",
"for",
"parser",
"in",
"self",
".",
"parsers",
":",
"for",
"key",
",",
"value",
"in",
"parser",
".",
"parse",
"(",
"self",
",",
"self",
".",
"_config",
")",
".",
"items",
"(",
")",
":",
"key",
"=",
"self",
".",
"_sanitizeName",
"(",
"key",
")",
"if",
"key",
"not",
"in",
"self",
".",
"configs",
":",
"raise",
"UnknownConfigurationException",
"(",
"key",
")",
"if",
"value",
"is",
"not",
"None",
":",
"self",
".",
"_setConfig",
"(",
"key",
",",
"value",
")",
"self",
".",
"_ensureRequired",
"(",
")",
"self",
".",
"_cast",
"(",
")",
"return",
"self",
".",
"_config"
] | Executes the registered parsers to parse input configurations. | [
"Executes",
"the",
"registered",
"parsers",
"to",
"parse",
"input",
"configurations",
"."
] | 12074d15dc3641d3903488c95d89a507386a32d5 | https://github.com/warrenspe/hconf/blob/12074d15dc3641d3903488c95d89a507386a32d5/hconf/Config.py#L100-L120 | train |
warrenspe/hconf | hconf/Config.py | ConfigManager._setDefaults | def _setDefaults(self):
"""
Sets all the expected configuration options on the config object as either the requested default value, or None.
"""
for configName, configDict in self.configs.items():
self._setConfig(configName, configDict['default']) | python | def _setDefaults(self):
"""
Sets all the expected configuration options on the config object as either the requested default value, or None.
"""
for configName, configDict in self.configs.items():
self._setConfig(configName, configDict['default']) | [
"def",
"_setDefaults",
"(",
"self",
")",
":",
"for",
"configName",
",",
"configDict",
"in",
"self",
".",
"configs",
".",
"items",
"(",
")",
":",
"self",
".",
"_setConfig",
"(",
"configName",
",",
"configDict",
"[",
"'default'",
"]",
")"
] | Sets all the expected configuration options on the config object as either the requested default value, or None. | [
"Sets",
"all",
"the",
"expected",
"configuration",
"options",
"on",
"the",
"config",
"object",
"as",
"either",
"the",
"requested",
"default",
"value",
"or",
"None",
"."
] | 12074d15dc3641d3903488c95d89a507386a32d5 | https://github.com/warrenspe/hconf/blob/12074d15dc3641d3903488c95d89a507386a32d5/hconf/Config.py#L122-L128 | train |
warrenspe/hconf | hconf/Config.py | ConfigManager._cast | def _cast(self):
"""
Iterates through our parsed configuration options and cast any options with marked cast types.
"""
for configName, configDict in self.configs.items():
if configDict['cast'] is not None:
configValue = getattr(self._config, configName)
if configValue is not None:
try:
self._setConfig(configName, configDict['cast'](configValue))
except:
raise InvalidConfigurationException("%s: %r" % (configName, configValue)) | python | def _cast(self):
"""
Iterates through our parsed configuration options and cast any options with marked cast types.
"""
for configName, configDict in self.configs.items():
if configDict['cast'] is not None:
configValue = getattr(self._config, configName)
if configValue is not None:
try:
self._setConfig(configName, configDict['cast'](configValue))
except:
raise InvalidConfigurationException("%s: %r" % (configName, configValue)) | [
"def",
"_cast",
"(",
"self",
")",
":",
"for",
"configName",
",",
"configDict",
"in",
"self",
".",
"configs",
".",
"items",
"(",
")",
":",
"if",
"configDict",
"[",
"'cast'",
"]",
"is",
"not",
"None",
":",
"configValue",
"=",
"getattr",
"(",
"self",
".",
"_config",
",",
"configName",
")",
"if",
"configValue",
"is",
"not",
"None",
":",
"try",
":",
"self",
".",
"_setConfig",
"(",
"configName",
",",
"configDict",
"[",
"'cast'",
"]",
"(",
"configValue",
")",
")",
"except",
":",
"raise",
"InvalidConfigurationException",
"(",
"\"%s: %r\"",
"%",
"(",
"configName",
",",
"configValue",
")",
")"
] | Iterates through our parsed configuration options and cast any options with marked cast types. | [
"Iterates",
"through",
"our",
"parsed",
"configuration",
"options",
"and",
"cast",
"any",
"options",
"with",
"marked",
"cast",
"types",
"."
] | 12074d15dc3641d3903488c95d89a507386a32d5 | https://github.com/warrenspe/hconf/blob/12074d15dc3641d3903488c95d89a507386a32d5/hconf/Config.py#L141-L154 | train |
juju/theblues | theblues/jimm.py | JIMM.list_models | def list_models(self, macaroons):
""" Get the logged in user's models from the JIMM controller.
@param macaroons The discharged JIMM macaroons.
@return The json decoded list of environments.
"""
return make_request("{}model".format(self.url), timeout=self.timeout,
client=self._client, cookies=self.cookies) | python | def list_models(self, macaroons):
""" Get the logged in user's models from the JIMM controller.
@param macaroons The discharged JIMM macaroons.
@return The json decoded list of environments.
"""
return make_request("{}model".format(self.url), timeout=self.timeout,
client=self._client, cookies=self.cookies) | [
"def",
"list_models",
"(",
"self",
",",
"macaroons",
")",
":",
"return",
"make_request",
"(",
"\"{}model\"",
".",
"format",
"(",
"self",
".",
"url",
")",
",",
"timeout",
"=",
"self",
".",
"timeout",
",",
"client",
"=",
"self",
".",
"_client",
",",
"cookies",
"=",
"self",
".",
"cookies",
")"
] | Get the logged in user's models from the JIMM controller.
@param macaroons The discharged JIMM macaroons.
@return The json decoded list of environments. | [
"Get",
"the",
"logged",
"in",
"user",
"s",
"models",
"from",
"the",
"JIMM",
"controller",
"."
] | f4431f29e43d04fc32f38f4f86cea45cd4e6ae98 | https://github.com/juju/theblues/blob/f4431f29e43d04fc32f38f4f86cea45cd4e6ae98/theblues/jimm.py#L31-L38 | train |
accraze/python-markov-novel | src/markov_novel/novel.py | Novel.write | def write(self, novel_title='novel', filetype='txt'):
"""
Composes chapters
and writes the novel to a text file
"""
self._compose_chapters()
self._write_to_file(novel_title, filetype) | python | def write(self, novel_title='novel', filetype='txt'):
"""
Composes chapters
and writes the novel to a text file
"""
self._compose_chapters()
self._write_to_file(novel_title, filetype) | [
"def",
"write",
"(",
"self",
",",
"novel_title",
"=",
"'novel'",
",",
"filetype",
"=",
"'txt'",
")",
":",
"self",
".",
"_compose_chapters",
"(",
")",
"self",
".",
"_write_to_file",
"(",
"novel_title",
",",
"filetype",
")"
] | Composes chapters
and writes the novel to a text file | [
"Composes",
"chapters",
"and",
"writes",
"the",
"novel",
"to",
"a",
"text",
"file"
] | ff451639e93a3ac11fb0268b92bc0cffc00bfdbe | https://github.com/accraze/python-markov-novel/blob/ff451639e93a3ac11fb0268b92bc0cffc00bfdbe/src/markov_novel/novel.py#L15-L21 | train |
accraze/python-markov-novel | src/markov_novel/novel.py | Novel._compose_chapters | def _compose_chapters(self):
"""
Creates a chapters
and appends them to list
"""
for count in range(self.chapter_count):
chapter_num = count + 1
c = Chapter(self.markov, chapter_num)
self.chapters.append(c) | python | def _compose_chapters(self):
"""
Creates a chapters
and appends them to list
"""
for count in range(self.chapter_count):
chapter_num = count + 1
c = Chapter(self.markov, chapter_num)
self.chapters.append(c) | [
"def",
"_compose_chapters",
"(",
"self",
")",
":",
"for",
"count",
"in",
"range",
"(",
"self",
".",
"chapter_count",
")",
":",
"chapter_num",
"=",
"count",
"+",
"1",
"c",
"=",
"Chapter",
"(",
"self",
".",
"markov",
",",
"chapter_num",
")",
"self",
".",
"chapters",
".",
"append",
"(",
"c",
")"
] | Creates a chapters
and appends them to list | [
"Creates",
"a",
"chapters",
"and",
"appends",
"them",
"to",
"list"
] | ff451639e93a3ac11fb0268b92bc0cffc00bfdbe | https://github.com/accraze/python-markov-novel/blob/ff451639e93a3ac11fb0268b92bc0cffc00bfdbe/src/markov_novel/novel.py#L23-L31 | train |
joeyespo/path-and-address | path_and_address/validation.py | valid_address | def valid_address(address):
"""
Determines whether the specified address string is valid.
"""
if not address:
return False
components = str(address).split(':')
if len(components) > 2 or not valid_hostname(components[0]):
return False
if len(components) == 2 and not valid_port(components[1]):
return False
return True | python | def valid_address(address):
"""
Determines whether the specified address string is valid.
"""
if not address:
return False
components = str(address).split(':')
if len(components) > 2 or not valid_hostname(components[0]):
return False
if len(components) == 2 and not valid_port(components[1]):
return False
return True | [
"def",
"valid_address",
"(",
"address",
")",
":",
"if",
"not",
"address",
":",
"return",
"False",
"components",
"=",
"str",
"(",
"address",
")",
".",
"split",
"(",
"':'",
")",
"if",
"len",
"(",
"components",
")",
">",
"2",
"or",
"not",
"valid_hostname",
"(",
"components",
"[",
"0",
"]",
")",
":",
"return",
"False",
"if",
"len",
"(",
"components",
")",
"==",
"2",
"and",
"not",
"valid_port",
"(",
"components",
"[",
"1",
"]",
")",
":",
"return",
"False",
"return",
"True"
] | Determines whether the specified address string is valid. | [
"Determines",
"whether",
"the",
"specified",
"address",
"string",
"is",
"valid",
"."
] | f8193a09f4b785574d920e8a2aeeb55ea6ff4e20 | https://github.com/joeyespo/path-and-address/blob/f8193a09f4b785574d920e8a2aeeb55ea6ff4e20/path_and_address/validation.py#L7-L21 | train |
joeyespo/path-and-address | path_and_address/validation.py | valid_hostname | def valid_hostname(host):
"""
Returns whether the specified string is a valid hostname.
"""
if len(host) > 255:
return False
if host[-1:] == '.':
host = host[:-1]
return all(_hostname_re.match(c) for c in host.split('.')) | python | def valid_hostname(host):
"""
Returns whether the specified string is a valid hostname.
"""
if len(host) > 255:
return False
if host[-1:] == '.':
host = host[:-1]
return all(_hostname_re.match(c) for c in host.split('.')) | [
"def",
"valid_hostname",
"(",
"host",
")",
":",
"if",
"len",
"(",
"host",
")",
">",
"255",
":",
"return",
"False",
"if",
"host",
"[",
"-",
"1",
":",
"]",
"==",
"'.'",
":",
"host",
"=",
"host",
"[",
":",
"-",
"1",
"]",
"return",
"all",
"(",
"_hostname_re",
".",
"match",
"(",
"c",
")",
"for",
"c",
"in",
"host",
".",
"split",
"(",
"'.'",
")",
")"
] | Returns whether the specified string is a valid hostname. | [
"Returns",
"whether",
"the",
"specified",
"string",
"is",
"a",
"valid",
"hostname",
"."
] | f8193a09f4b785574d920e8a2aeeb55ea6ff4e20 | https://github.com/joeyespo/path-and-address/blob/f8193a09f4b785574d920e8a2aeeb55ea6ff4e20/path_and_address/validation.py#L24-L34 | train |
DarkEnergySurvey/ugali | ugali/analysis/imf.py | IMF.sample | def sample(self, n, mass_min=0.1, mass_max=10., steps=10000, seed=None):
"""
Sample initial mass values between mass_min and mass_max,
following the IMF distribution.
ADW: Should this be `sample` or `simulate`?
Parameters:
-----------
n : number of samples to draw
mass_min : minimum mass to sample from
mass_max : maximum mass to sample from
steps : number of steps for isochrone sampling
seed : random seed (passed to np.random.seed)
Returns:
--------
mass : array of randomly sampled mass values
"""
if seed is not None: np.random.seed(seed)
d_mass = (mass_max - mass_min) / float(steps)
mass = np.linspace(mass_min, mass_max, steps)
cdf = np.insert(np.cumsum(d_mass * self.pdf(mass[1:], log_mode=False)), 0, 0.)
cdf = cdf / cdf[-1]
f = scipy.interpolate.interp1d(cdf, mass)
return f(np.random.uniform(size=n)) | python | def sample(self, n, mass_min=0.1, mass_max=10., steps=10000, seed=None):
"""
Sample initial mass values between mass_min and mass_max,
following the IMF distribution.
ADW: Should this be `sample` or `simulate`?
Parameters:
-----------
n : number of samples to draw
mass_min : minimum mass to sample from
mass_max : maximum mass to sample from
steps : number of steps for isochrone sampling
seed : random seed (passed to np.random.seed)
Returns:
--------
mass : array of randomly sampled mass values
"""
if seed is not None: np.random.seed(seed)
d_mass = (mass_max - mass_min) / float(steps)
mass = np.linspace(mass_min, mass_max, steps)
cdf = np.insert(np.cumsum(d_mass * self.pdf(mass[1:], log_mode=False)), 0, 0.)
cdf = cdf / cdf[-1]
f = scipy.interpolate.interp1d(cdf, mass)
return f(np.random.uniform(size=n)) | [
"def",
"sample",
"(",
"self",
",",
"n",
",",
"mass_min",
"=",
"0.1",
",",
"mass_max",
"=",
"10.",
",",
"steps",
"=",
"10000",
",",
"seed",
"=",
"None",
")",
":",
"if",
"seed",
"is",
"not",
"None",
":",
"np",
".",
"random",
".",
"seed",
"(",
"seed",
")",
"d_mass",
"=",
"(",
"mass_max",
"-",
"mass_min",
")",
"/",
"float",
"(",
"steps",
")",
"mass",
"=",
"np",
".",
"linspace",
"(",
"mass_min",
",",
"mass_max",
",",
"steps",
")",
"cdf",
"=",
"np",
".",
"insert",
"(",
"np",
".",
"cumsum",
"(",
"d_mass",
"*",
"self",
".",
"pdf",
"(",
"mass",
"[",
"1",
":",
"]",
",",
"log_mode",
"=",
"False",
")",
")",
",",
"0",
",",
"0.",
")",
"cdf",
"=",
"cdf",
"/",
"cdf",
"[",
"-",
"1",
"]",
"f",
"=",
"scipy",
".",
"interpolate",
".",
"interp1d",
"(",
"cdf",
",",
"mass",
")",
"return",
"f",
"(",
"np",
".",
"random",
".",
"uniform",
"(",
"size",
"=",
"n",
")",
")"
] | Sample initial mass values between mass_min and mass_max,
following the IMF distribution.
ADW: Should this be `sample` or `simulate`?
Parameters:
-----------
n : number of samples to draw
mass_min : minimum mass to sample from
mass_max : maximum mass to sample from
steps : number of steps for isochrone sampling
seed : random seed (passed to np.random.seed)
Returns:
--------
mass : array of randomly sampled mass values | [
"Sample",
"initial",
"mass",
"values",
"between",
"mass_min",
"and",
"mass_max",
"following",
"the",
"IMF",
"distribution",
"."
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/analysis/imf.py#L56-L81 | train |
DarkEnergySurvey/ugali | ugali/analysis/imf.py | Kroupa2001.pdf | def pdf(cls, mass, log_mode=True):
""" PDF for the Kroupa IMF.
Normalization is set over the mass range from 0.1 Msun to 100 Msun
"""
log_mass = np.log10(mass)
# From Eq 2
mb = mbreak = [0.08, 0.5] # Msun
a = alpha = [0.3, 1.3, 2.3] # alpha
# Normalization set from 0.1 -- 100 Msun
norm = 0.27947743949440446
b = 1./norm
c = b * mbreak[0]**(alpha[1]-alpha[0])
d = c * mbreak[1]**(alpha[2]-alpha[1])
dn_dm = b * (mass < 0.08) * mass**(-alpha[0])
dn_dm += c * (0.08 <= mass) * (mass < 0.5) * mass**(-alpha[1])
dn_dm += d * (0.5 <= mass) * mass**(-alpha[2])
if log_mode:
# Number per logarithmic mass range, i.e., dN/dlog(M)
return dn_dm * (mass * np.log(10))
else:
# Number per linear mass range, i.e., dN/dM
return dn_dm | python | def pdf(cls, mass, log_mode=True):
""" PDF for the Kroupa IMF.
Normalization is set over the mass range from 0.1 Msun to 100 Msun
"""
log_mass = np.log10(mass)
# From Eq 2
mb = mbreak = [0.08, 0.5] # Msun
a = alpha = [0.3, 1.3, 2.3] # alpha
# Normalization set from 0.1 -- 100 Msun
norm = 0.27947743949440446
b = 1./norm
c = b * mbreak[0]**(alpha[1]-alpha[0])
d = c * mbreak[1]**(alpha[2]-alpha[1])
dn_dm = b * (mass < 0.08) * mass**(-alpha[0])
dn_dm += c * (0.08 <= mass) * (mass < 0.5) * mass**(-alpha[1])
dn_dm += d * (0.5 <= mass) * mass**(-alpha[2])
if log_mode:
# Number per logarithmic mass range, i.e., dN/dlog(M)
return dn_dm * (mass * np.log(10))
else:
# Number per linear mass range, i.e., dN/dM
return dn_dm | [
"def",
"pdf",
"(",
"cls",
",",
"mass",
",",
"log_mode",
"=",
"True",
")",
":",
"log_mass",
"=",
"np",
".",
"log10",
"(",
"mass",
")",
"# From Eq 2",
"mb",
"=",
"mbreak",
"=",
"[",
"0.08",
",",
"0.5",
"]",
"# Msun",
"a",
"=",
"alpha",
"=",
"[",
"0.3",
",",
"1.3",
",",
"2.3",
"]",
"# alpha",
"# Normalization set from 0.1 -- 100 Msun",
"norm",
"=",
"0.27947743949440446",
"b",
"=",
"1.",
"/",
"norm",
"c",
"=",
"b",
"*",
"mbreak",
"[",
"0",
"]",
"**",
"(",
"alpha",
"[",
"1",
"]",
"-",
"alpha",
"[",
"0",
"]",
")",
"d",
"=",
"c",
"*",
"mbreak",
"[",
"1",
"]",
"**",
"(",
"alpha",
"[",
"2",
"]",
"-",
"alpha",
"[",
"1",
"]",
")",
"dn_dm",
"=",
"b",
"*",
"(",
"mass",
"<",
"0.08",
")",
"*",
"mass",
"**",
"(",
"-",
"alpha",
"[",
"0",
"]",
")",
"dn_dm",
"+=",
"c",
"*",
"(",
"0.08",
"<=",
"mass",
")",
"*",
"(",
"mass",
"<",
"0.5",
")",
"*",
"mass",
"**",
"(",
"-",
"alpha",
"[",
"1",
"]",
")",
"dn_dm",
"+=",
"d",
"*",
"(",
"0.5",
"<=",
"mass",
")",
"*",
"mass",
"**",
"(",
"-",
"alpha",
"[",
"2",
"]",
")",
"if",
"log_mode",
":",
"# Number per logarithmic mass range, i.e., dN/dlog(M)",
"return",
"dn_dm",
"*",
"(",
"mass",
"*",
"np",
".",
"log",
"(",
"10",
")",
")",
"else",
":",
"# Number per linear mass range, i.e., dN/dM",
"return",
"dn_dm"
] | PDF for the Kroupa IMF.
Normalization is set over the mass range from 0.1 Msun to 100 Msun | [
"PDF",
"for",
"the",
"Kroupa",
"IMF",
"."
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/analysis/imf.py#L155-L181 | train |
DarkEnergySurvey/ugali | ugali/analysis/imf.py | Salpeter1955.pdf | def pdf(cls, mass, log_mode=True):
""" PDF for the Salpeter IMF.
Value of 'a' is set to normalize the IMF to 1 between 0.1 and 100 Msun
"""
alpha = 2.35
a = 0.060285569480482866
dn_dm = a * mass**(-alpha)
if log_mode:
# Number per logarithmic mass range, i.e., dN/dlog(M)
return dn_dm * (mass * np.log(10))
else:
# Number per linear mass range, i.e., dN/dM
return dn_dm | python | def pdf(cls, mass, log_mode=True):
""" PDF for the Salpeter IMF.
Value of 'a' is set to normalize the IMF to 1 between 0.1 and 100 Msun
"""
alpha = 2.35
a = 0.060285569480482866
dn_dm = a * mass**(-alpha)
if log_mode:
# Number per logarithmic mass range, i.e., dN/dlog(M)
return dn_dm * (mass * np.log(10))
else:
# Number per linear mass range, i.e., dN/dM
return dn_dm | [
"def",
"pdf",
"(",
"cls",
",",
"mass",
",",
"log_mode",
"=",
"True",
")",
":",
"alpha",
"=",
"2.35",
"a",
"=",
"0.060285569480482866",
"dn_dm",
"=",
"a",
"*",
"mass",
"**",
"(",
"-",
"alpha",
")",
"if",
"log_mode",
":",
"# Number per logarithmic mass range, i.e., dN/dlog(M)",
"return",
"dn_dm",
"*",
"(",
"mass",
"*",
"np",
".",
"log",
"(",
"10",
")",
")",
"else",
":",
"# Number per linear mass range, i.e., dN/dM",
"return",
"dn_dm"
] | PDF for the Salpeter IMF.
Value of 'a' is set to normalize the IMF to 1 between 0.1 and 100 Msun | [
"PDF",
"for",
"the",
"Salpeter",
"IMF",
"."
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/analysis/imf.py#L191-L206 | train |
warrenspe/hconf | hconf/subparsers/_subparser.py | ConfigFileSubparser._getConfigFile | def _getConfigFile(self, config):
"""
Retrieves a file descriptor to a configuration file to process.
Inputs: config - The _Config object which is being populated.
Outputs: An open file descriptor to the configuration file to parse in read mode if successful, else None.
"""
joinPath = lambda p: (os.path.join(p) if isinstance(p, (tuple, list)) else p)
if self.filepathConfig is not None and self.filenameConfig is not None:
if hasattr(config, self.filepathConfig) and hasattr(config, self.filenameConfig):
path = joinPath(getattr(config, self.filepathConfig))
name = getattr(config, self.filenameConfig)
if os.path.isfile(os.path.join(path, name)):
return open(os.path.join(path, name), 'r')
if self.filepath is not None and self.filename is not None:
path = joinPath(self.filepath)
name = self.filename
if os.path.isfile(os.path.join(path, name)):
return open(os.path.join(path, name), 'r') | python | def _getConfigFile(self, config):
"""
Retrieves a file descriptor to a configuration file to process.
Inputs: config - The _Config object which is being populated.
Outputs: An open file descriptor to the configuration file to parse in read mode if successful, else None.
"""
joinPath = lambda p: (os.path.join(p) if isinstance(p, (tuple, list)) else p)
if self.filepathConfig is not None and self.filenameConfig is not None:
if hasattr(config, self.filepathConfig) and hasattr(config, self.filenameConfig):
path = joinPath(getattr(config, self.filepathConfig))
name = getattr(config, self.filenameConfig)
if os.path.isfile(os.path.join(path, name)):
return open(os.path.join(path, name), 'r')
if self.filepath is not None and self.filename is not None:
path = joinPath(self.filepath)
name = self.filename
if os.path.isfile(os.path.join(path, name)):
return open(os.path.join(path, name), 'r') | [
"def",
"_getConfigFile",
"(",
"self",
",",
"config",
")",
":",
"joinPath",
"=",
"lambda",
"p",
":",
"(",
"os",
".",
"path",
".",
"join",
"(",
"p",
")",
"if",
"isinstance",
"(",
"p",
",",
"(",
"tuple",
",",
"list",
")",
")",
"else",
"p",
")",
"if",
"self",
".",
"filepathConfig",
"is",
"not",
"None",
"and",
"self",
".",
"filenameConfig",
"is",
"not",
"None",
":",
"if",
"hasattr",
"(",
"config",
",",
"self",
".",
"filepathConfig",
")",
"and",
"hasattr",
"(",
"config",
",",
"self",
".",
"filenameConfig",
")",
":",
"path",
"=",
"joinPath",
"(",
"getattr",
"(",
"config",
",",
"self",
".",
"filepathConfig",
")",
")",
"name",
"=",
"getattr",
"(",
"config",
",",
"self",
".",
"filenameConfig",
")",
"if",
"os",
".",
"path",
".",
"isfile",
"(",
"os",
".",
"path",
".",
"join",
"(",
"path",
",",
"name",
")",
")",
":",
"return",
"open",
"(",
"os",
".",
"path",
".",
"join",
"(",
"path",
",",
"name",
")",
",",
"'r'",
")",
"if",
"self",
".",
"filepath",
"is",
"not",
"None",
"and",
"self",
".",
"filename",
"is",
"not",
"None",
":",
"path",
"=",
"joinPath",
"(",
"self",
".",
"filepath",
")",
"name",
"=",
"self",
".",
"filename",
"if",
"os",
".",
"path",
".",
"isfile",
"(",
"os",
".",
"path",
".",
"join",
"(",
"path",
",",
"name",
")",
")",
":",
"return",
"open",
"(",
"os",
".",
"path",
".",
"join",
"(",
"path",
",",
"name",
")",
",",
"'r'",
")"
] | Retrieves a file descriptor to a configuration file to process.
Inputs: config - The _Config object which is being populated.
Outputs: An open file descriptor to the configuration file to parse in read mode if successful, else None. | [
"Retrieves",
"a",
"file",
"descriptor",
"to",
"a",
"configuration",
"file",
"to",
"process",
"."
] | 12074d15dc3641d3903488c95d89a507386a32d5 | https://github.com/warrenspe/hconf/blob/12074d15dc3641d3903488c95d89a507386a32d5/hconf/subparsers/_subparser.py#L83-L107 | train |
schlamar/latexmk.py | latexmake.py | _count_citations | def _count_citations(aux_file):
'''
Counts the citations in an aux-file.
@return: defaultdict(int) - {citation_name: number, ...}
'''
counter = defaultdict(int)
with open(aux_file) as fobj:
content = fobj.read()
for match in CITE_PATTERN.finditer(content):
name = match.groups()[0]
counter[name] += 1
return counter | python | def _count_citations(aux_file):
'''
Counts the citations in an aux-file.
@return: defaultdict(int) - {citation_name: number, ...}
'''
counter = defaultdict(int)
with open(aux_file) as fobj:
content = fobj.read()
for match in CITE_PATTERN.finditer(content):
name = match.groups()[0]
counter[name] += 1
return counter | [
"def",
"_count_citations",
"(",
"aux_file",
")",
":",
"counter",
"=",
"defaultdict",
"(",
"int",
")",
"with",
"open",
"(",
"aux_file",
")",
"as",
"fobj",
":",
"content",
"=",
"fobj",
".",
"read",
"(",
")",
"for",
"match",
"in",
"CITE_PATTERN",
".",
"finditer",
"(",
"content",
")",
":",
"name",
"=",
"match",
".",
"groups",
"(",
")",
"[",
"0",
"]",
"counter",
"[",
"name",
"]",
"+=",
"1",
"return",
"counter"
] | Counts the citations in an aux-file.
@return: defaultdict(int) - {citation_name: number, ...} | [
"Counts",
"the",
"citations",
"in",
"an",
"aux",
"-",
"file",
"."
] | 88baba40ff3e844e4542de60d2032503e206d996 | https://github.com/schlamar/latexmk.py/blob/88baba40ff3e844e4542de60d2032503e206d996/latexmake.py#L429-L443 | train |
schlamar/latexmk.py | latexmake.py | LatexMaker._setup_logger | def _setup_logger(self):
'''Set up a logger.'''
log = logging.getLogger('latexmk.py')
handler = logging.StreamHandler()
log.addHandler(handler)
if self.opt.verbose:
log.setLevel(logging.INFO)
return log | python | def _setup_logger(self):
'''Set up a logger.'''
log = logging.getLogger('latexmk.py')
handler = logging.StreamHandler()
log.addHandler(handler)
if self.opt.verbose:
log.setLevel(logging.INFO)
return log | [
"def",
"_setup_logger",
"(",
"self",
")",
":",
"log",
"=",
"logging",
".",
"getLogger",
"(",
"'latexmk.py'",
")",
"handler",
"=",
"logging",
".",
"StreamHandler",
"(",
")",
"log",
".",
"addHandler",
"(",
"handler",
")",
"if",
"self",
".",
"opt",
".",
"verbose",
":",
"log",
".",
"setLevel",
"(",
"logging",
".",
"INFO",
")",
"return",
"log"
] | Set up a logger. | [
"Set",
"up",
"a",
"logger",
"."
] | 88baba40ff3e844e4542de60d2032503e206d996 | https://github.com/schlamar/latexmk.py/blob/88baba40ff3e844e4542de60d2032503e206d996/latexmake.py#L84-L93 | train |
schlamar/latexmk.py | latexmake.py | LatexMaker._parse_texlipse_config | def _parse_texlipse_config(self):
'''
Read the project name from the texlipse
config file ".texlipse".
'''
# If Eclipse's workspace refresh, the
# ".texlipse"-File will be newly created,
# so try again after short sleep if
# the file is still missing.
if not os.path.isfile('.texlipse'):
time.sleep(0.1)
if not os.path.isfile('.texlipse'):
self.log.error('! Fatal error: File .texlipse is missing.')
self.log.error('! Exiting...')
sys.exit(1)
with open('.texlipse') as fobj:
content = fobj.read()
match = TEXLIPSE_MAIN_PATTERN.search(content)
if match:
project_name = match.groups()[0]
self.log.info('Found inputfile in ".texlipse": %s.tex'
% project_name)
return project_name
else:
self.log.error('! Fatal error: Parsing .texlipse failed.')
self.log.error('! Exiting...')
sys.exit(1) | python | def _parse_texlipse_config(self):
'''
Read the project name from the texlipse
config file ".texlipse".
'''
# If Eclipse's workspace refresh, the
# ".texlipse"-File will be newly created,
# so try again after short sleep if
# the file is still missing.
if not os.path.isfile('.texlipse'):
time.sleep(0.1)
if not os.path.isfile('.texlipse'):
self.log.error('! Fatal error: File .texlipse is missing.')
self.log.error('! Exiting...')
sys.exit(1)
with open('.texlipse') as fobj:
content = fobj.read()
match = TEXLIPSE_MAIN_PATTERN.search(content)
if match:
project_name = match.groups()[0]
self.log.info('Found inputfile in ".texlipse": %s.tex'
% project_name)
return project_name
else:
self.log.error('! Fatal error: Parsing .texlipse failed.')
self.log.error('! Exiting...')
sys.exit(1) | [
"def",
"_parse_texlipse_config",
"(",
"self",
")",
":",
"# If Eclipse's workspace refresh, the",
"# \".texlipse\"-File will be newly created,",
"# so try again after short sleep if",
"# the file is still missing.",
"if",
"not",
"os",
".",
"path",
".",
"isfile",
"(",
"'.texlipse'",
")",
":",
"time",
".",
"sleep",
"(",
"0.1",
")",
"if",
"not",
"os",
".",
"path",
".",
"isfile",
"(",
"'.texlipse'",
")",
":",
"self",
".",
"log",
".",
"error",
"(",
"'! Fatal error: File .texlipse is missing.'",
")",
"self",
".",
"log",
".",
"error",
"(",
"'! Exiting...'",
")",
"sys",
".",
"exit",
"(",
"1",
")",
"with",
"open",
"(",
"'.texlipse'",
")",
"as",
"fobj",
":",
"content",
"=",
"fobj",
".",
"read",
"(",
")",
"match",
"=",
"TEXLIPSE_MAIN_PATTERN",
".",
"search",
"(",
"content",
")",
"if",
"match",
":",
"project_name",
"=",
"match",
".",
"groups",
"(",
")",
"[",
"0",
"]",
"self",
".",
"log",
".",
"info",
"(",
"'Found inputfile in \".texlipse\": %s.tex'",
"%",
"project_name",
")",
"return",
"project_name",
"else",
":",
"self",
".",
"log",
".",
"error",
"(",
"'! Fatal error: Parsing .texlipse failed.'",
")",
"self",
".",
"log",
".",
"error",
"(",
"'! Exiting...'",
")",
"sys",
".",
"exit",
"(",
"1",
")"
] | Read the project name from the texlipse
config file ".texlipse". | [
"Read",
"the",
"project",
"name",
"from",
"the",
"texlipse",
"config",
"file",
".",
"texlipse",
"."
] | 88baba40ff3e844e4542de60d2032503e206d996 | https://github.com/schlamar/latexmk.py/blob/88baba40ff3e844e4542de60d2032503e206d996/latexmake.py#L95-L122 | train |
schlamar/latexmk.py | latexmake.py | LatexMaker._read_latex_files | def _read_latex_files(self):
'''
Check if some latex output files exist
before first latex run, process them and return
the generated data.
- Parsing *.aux for citations counter and
existing glossaries.
- Getting content of files to detect changes.
- *.toc file
- all available glossaries files
'''
if os.path.isfile('%s.aux' % self.project_name):
cite_counter = self.generate_citation_counter()
self.read_glossaries()
else:
cite_counter = {'%s.aux' % self.project_name:
defaultdict(int)}
fname = '%s.toc' % self.project_name
if os.path.isfile(fname):
with open(fname) as fobj:
toc_file = fobj.read()
else:
toc_file = ''
gloss_files = dict()
for gloss in self.glossaries:
ext = self.glossaries[gloss][1]
filename = '%s.%s' % (self.project_name, ext)
if os.path.isfile(filename):
with open(filename) as fobj:
gloss_files[gloss] = fobj.read()
return cite_counter, toc_file, gloss_files | python | def _read_latex_files(self):
'''
Check if some latex output files exist
before first latex run, process them and return
the generated data.
- Parsing *.aux for citations counter and
existing glossaries.
- Getting content of files to detect changes.
- *.toc file
- all available glossaries files
'''
if os.path.isfile('%s.aux' % self.project_name):
cite_counter = self.generate_citation_counter()
self.read_glossaries()
else:
cite_counter = {'%s.aux' % self.project_name:
defaultdict(int)}
fname = '%s.toc' % self.project_name
if os.path.isfile(fname):
with open(fname) as fobj:
toc_file = fobj.read()
else:
toc_file = ''
gloss_files = dict()
for gloss in self.glossaries:
ext = self.glossaries[gloss][1]
filename = '%s.%s' % (self.project_name, ext)
if os.path.isfile(filename):
with open(filename) as fobj:
gloss_files[gloss] = fobj.read()
return cite_counter, toc_file, gloss_files | [
"def",
"_read_latex_files",
"(",
"self",
")",
":",
"if",
"os",
".",
"path",
".",
"isfile",
"(",
"'%s.aux'",
"%",
"self",
".",
"project_name",
")",
":",
"cite_counter",
"=",
"self",
".",
"generate_citation_counter",
"(",
")",
"self",
".",
"read_glossaries",
"(",
")",
"else",
":",
"cite_counter",
"=",
"{",
"'%s.aux'",
"%",
"self",
".",
"project_name",
":",
"defaultdict",
"(",
"int",
")",
"}",
"fname",
"=",
"'%s.toc'",
"%",
"self",
".",
"project_name",
"if",
"os",
".",
"path",
".",
"isfile",
"(",
"fname",
")",
":",
"with",
"open",
"(",
"fname",
")",
"as",
"fobj",
":",
"toc_file",
"=",
"fobj",
".",
"read",
"(",
")",
"else",
":",
"toc_file",
"=",
"''",
"gloss_files",
"=",
"dict",
"(",
")",
"for",
"gloss",
"in",
"self",
".",
"glossaries",
":",
"ext",
"=",
"self",
".",
"glossaries",
"[",
"gloss",
"]",
"[",
"1",
"]",
"filename",
"=",
"'%s.%s'",
"%",
"(",
"self",
".",
"project_name",
",",
"ext",
")",
"if",
"os",
".",
"path",
".",
"isfile",
"(",
"filename",
")",
":",
"with",
"open",
"(",
"filename",
")",
"as",
"fobj",
":",
"gloss_files",
"[",
"gloss",
"]",
"=",
"fobj",
".",
"read",
"(",
")",
"return",
"cite_counter",
",",
"toc_file",
",",
"gloss_files"
] | Check if some latex output files exist
before first latex run, process them and return
the generated data.
- Parsing *.aux for citations counter and
existing glossaries.
- Getting content of files to detect changes.
- *.toc file
- all available glossaries files | [
"Check",
"if",
"some",
"latex",
"output",
"files",
"exist",
"before",
"first",
"latex",
"run",
"process",
"them",
"and",
"return",
"the",
"generated",
"data",
"."
] | 88baba40ff3e844e4542de60d2032503e206d996 | https://github.com/schlamar/latexmk.py/blob/88baba40ff3e844e4542de60d2032503e206d996/latexmake.py#L124-L158 | train |
schlamar/latexmk.py | latexmake.py | LatexMaker.read_glossaries | def read_glossaries(self):
'''
Read all existing glossaries in the main aux-file.
'''
filename = '%s.aux' % self.project_name
with open(filename) as fobj:
main_aux = fobj.read()
pattern = r'\\@newglossary\{(.*)\}\{.*\}\{(.*)\}\{(.*)\}'
for match in re.finditer(pattern, main_aux):
name, ext_i, ext_o = match.groups()
self.glossaries[name] = (ext_i, ext_o) | python | def read_glossaries(self):
'''
Read all existing glossaries in the main aux-file.
'''
filename = '%s.aux' % self.project_name
with open(filename) as fobj:
main_aux = fobj.read()
pattern = r'\\@newglossary\{(.*)\}\{.*\}\{(.*)\}\{(.*)\}'
for match in re.finditer(pattern, main_aux):
name, ext_i, ext_o = match.groups()
self.glossaries[name] = (ext_i, ext_o) | [
"def",
"read_glossaries",
"(",
"self",
")",
":",
"filename",
"=",
"'%s.aux'",
"%",
"self",
".",
"project_name",
"with",
"open",
"(",
"filename",
")",
"as",
"fobj",
":",
"main_aux",
"=",
"fobj",
".",
"read",
"(",
")",
"pattern",
"=",
"r'\\\\@newglossary\\{(.*)\\}\\{.*\\}\\{(.*)\\}\\{(.*)\\}'",
"for",
"match",
"in",
"re",
".",
"finditer",
"(",
"pattern",
",",
"main_aux",
")",
":",
"name",
",",
"ext_i",
",",
"ext_o",
"=",
"match",
".",
"groups",
"(",
")",
"self",
".",
"glossaries",
"[",
"name",
"]",
"=",
"(",
"ext_i",
",",
"ext_o",
")"
] | Read all existing glossaries in the main aux-file. | [
"Read",
"all",
"existing",
"glossaries",
"in",
"the",
"main",
"aux",
"-",
"file",
"."
] | 88baba40ff3e844e4542de60d2032503e206d996 | https://github.com/schlamar/latexmk.py/blob/88baba40ff3e844e4542de60d2032503e206d996/latexmake.py#L204-L215 | train |
schlamar/latexmk.py | latexmake.py | LatexMaker.check_errors | def check_errors(self):
'''
Check if errors occured during a latex run by
scanning the output.
'''
errors = ERROR_PATTTERN.findall(self.out)
# "errors" is a list of tuples
if errors:
self.log.error('! Errors occurred:')
self.log.error('\n'.join(
[error.replace('\r', '').strip() for error
in chain(*errors) if error.strip()]
))
self.log.error('! See "%s.log" for details.' % self.project_name)
if self.opt.exit_on_error:
self.log.error('! Exiting...')
sys.exit(1) | python | def check_errors(self):
'''
Check if errors occured during a latex run by
scanning the output.
'''
errors = ERROR_PATTTERN.findall(self.out)
# "errors" is a list of tuples
if errors:
self.log.error('! Errors occurred:')
self.log.error('\n'.join(
[error.replace('\r', '').strip() for error
in chain(*errors) if error.strip()]
))
self.log.error('! See "%s.log" for details.' % self.project_name)
if self.opt.exit_on_error:
self.log.error('! Exiting...')
sys.exit(1) | [
"def",
"check_errors",
"(",
"self",
")",
":",
"errors",
"=",
"ERROR_PATTTERN",
".",
"findall",
"(",
"self",
".",
"out",
")",
"# \"errors\" is a list of tuples",
"if",
"errors",
":",
"self",
".",
"log",
".",
"error",
"(",
"'! Errors occurred:'",
")",
"self",
".",
"log",
".",
"error",
"(",
"'\\n'",
".",
"join",
"(",
"[",
"error",
".",
"replace",
"(",
"'\\r'",
",",
"''",
")",
".",
"strip",
"(",
")",
"for",
"error",
"in",
"chain",
"(",
"*",
"errors",
")",
"if",
"error",
".",
"strip",
"(",
")",
"]",
")",
")",
"self",
".",
"log",
".",
"error",
"(",
"'! See \"%s.log\" for details.'",
"%",
"self",
".",
"project_name",
")",
"if",
"self",
".",
"opt",
".",
"exit_on_error",
":",
"self",
".",
"log",
".",
"error",
"(",
"'! Exiting...'",
")",
"sys",
".",
"exit",
"(",
"1",
")"
] | Check if errors occured during a latex run by
scanning the output. | [
"Check",
"if",
"errors",
"occured",
"during",
"a",
"latex",
"run",
"by",
"scanning",
"the",
"output",
"."
] | 88baba40ff3e844e4542de60d2032503e206d996 | https://github.com/schlamar/latexmk.py/blob/88baba40ff3e844e4542de60d2032503e206d996/latexmake.py#L217-L236 | train |
schlamar/latexmk.py | latexmake.py | LatexMaker.generate_citation_counter | def generate_citation_counter(self):
'''
Generate dictionary with the number of citations in all
included files. If this changes after the first latex run,
you have to run "bibtex".
'''
cite_counter = dict()
filename = '%s.aux' % self.project_name
with open(filename) as fobj:
main_aux = fobj.read()
cite_counter[filename] = _count_citations(filename)
for match in re.finditer(r'\\@input\{(.*.aux)\}', main_aux):
filename = match.groups()[0]
try:
counter = _count_citations(filename)
except IOError:
pass
else:
cite_counter[filename] = counter
return cite_counter | python | def generate_citation_counter(self):
'''
Generate dictionary with the number of citations in all
included files. If this changes after the first latex run,
you have to run "bibtex".
'''
cite_counter = dict()
filename = '%s.aux' % self.project_name
with open(filename) as fobj:
main_aux = fobj.read()
cite_counter[filename] = _count_citations(filename)
for match in re.finditer(r'\\@input\{(.*.aux)\}', main_aux):
filename = match.groups()[0]
try:
counter = _count_citations(filename)
except IOError:
pass
else:
cite_counter[filename] = counter
return cite_counter | [
"def",
"generate_citation_counter",
"(",
"self",
")",
":",
"cite_counter",
"=",
"dict",
"(",
")",
"filename",
"=",
"'%s.aux'",
"%",
"self",
".",
"project_name",
"with",
"open",
"(",
"filename",
")",
"as",
"fobj",
":",
"main_aux",
"=",
"fobj",
".",
"read",
"(",
")",
"cite_counter",
"[",
"filename",
"]",
"=",
"_count_citations",
"(",
"filename",
")",
"for",
"match",
"in",
"re",
".",
"finditer",
"(",
"r'\\\\@input\\{(.*.aux)\\}'",
",",
"main_aux",
")",
":",
"filename",
"=",
"match",
".",
"groups",
"(",
")",
"[",
"0",
"]",
"try",
":",
"counter",
"=",
"_count_citations",
"(",
"filename",
")",
"except",
"IOError",
":",
"pass",
"else",
":",
"cite_counter",
"[",
"filename",
"]",
"=",
"counter",
"return",
"cite_counter"
] | Generate dictionary with the number of citations in all
included files. If this changes after the first latex run,
you have to run "bibtex". | [
"Generate",
"dictionary",
"with",
"the",
"number",
"of",
"citations",
"in",
"all",
"included",
"files",
".",
"If",
"this",
"changes",
"after",
"the",
"first",
"latex",
"run",
"you",
"have",
"to",
"run",
"bibtex",
"."
] | 88baba40ff3e844e4542de60d2032503e206d996 | https://github.com/schlamar/latexmk.py/blob/88baba40ff3e844e4542de60d2032503e206d996/latexmake.py#L238-L259 | train |
schlamar/latexmk.py | latexmake.py | LatexMaker.latex_run | def latex_run(self):
'''
Start latex run.
'''
self.log.info('Running %s...' % self.latex_cmd)
cmd = [self.latex_cmd]
cmd.extend(LATEX_FLAGS)
cmd.append('%s.tex' % self.project_name)
try:
with open(os.devnull, 'w') as null:
Popen(cmd, stdout=null, stderr=null).wait()
except OSError:
self.log.error(NO_LATEX_ERROR % self.latex_cmd)
self.latex_run_counter += 1
fname = '%s.log' % self.project_name
with codecs.open(fname, 'r', 'utf-8', 'replace') as fobj:
self.out = fobj.read()
self.check_errors() | python | def latex_run(self):
'''
Start latex run.
'''
self.log.info('Running %s...' % self.latex_cmd)
cmd = [self.latex_cmd]
cmd.extend(LATEX_FLAGS)
cmd.append('%s.tex' % self.project_name)
try:
with open(os.devnull, 'w') as null:
Popen(cmd, stdout=null, stderr=null).wait()
except OSError:
self.log.error(NO_LATEX_ERROR % self.latex_cmd)
self.latex_run_counter += 1
fname = '%s.log' % self.project_name
with codecs.open(fname, 'r', 'utf-8', 'replace') as fobj:
self.out = fobj.read()
self.check_errors() | [
"def",
"latex_run",
"(",
"self",
")",
":",
"self",
".",
"log",
".",
"info",
"(",
"'Running %s...'",
"%",
"self",
".",
"latex_cmd",
")",
"cmd",
"=",
"[",
"self",
".",
"latex_cmd",
"]",
"cmd",
".",
"extend",
"(",
"LATEX_FLAGS",
")",
"cmd",
".",
"append",
"(",
"'%s.tex'",
"%",
"self",
".",
"project_name",
")",
"try",
":",
"with",
"open",
"(",
"os",
".",
"devnull",
",",
"'w'",
")",
"as",
"null",
":",
"Popen",
"(",
"cmd",
",",
"stdout",
"=",
"null",
",",
"stderr",
"=",
"null",
")",
".",
"wait",
"(",
")",
"except",
"OSError",
":",
"self",
".",
"log",
".",
"error",
"(",
"NO_LATEX_ERROR",
"%",
"self",
".",
"latex_cmd",
")",
"self",
".",
"latex_run_counter",
"+=",
"1",
"fname",
"=",
"'%s.log'",
"%",
"self",
".",
"project_name",
"with",
"codecs",
".",
"open",
"(",
"fname",
",",
"'r'",
",",
"'utf-8'",
",",
"'replace'",
")",
"as",
"fobj",
":",
"self",
".",
"out",
"=",
"fobj",
".",
"read",
"(",
")",
"self",
".",
"check_errors",
"(",
")"
] | Start latex run. | [
"Start",
"latex",
"run",
"."
] | 88baba40ff3e844e4542de60d2032503e206d996 | https://github.com/schlamar/latexmk.py/blob/88baba40ff3e844e4542de60d2032503e206d996/latexmake.py#L261-L279 | train |
schlamar/latexmk.py | latexmake.py | LatexMaker.bibtex_run | def bibtex_run(self):
'''
Start bibtex run.
'''
self.log.info('Running bibtex...')
try:
with open(os.devnull, 'w') as null:
Popen(['bibtex', self.project_name], stdout=null).wait()
except OSError:
self.log.error(NO_LATEX_ERROR % 'bibtex')
sys.exit(1)
shutil.copy('%s.bib' % self.bib_file,
'%s.bib.old' % self.bib_file) | python | def bibtex_run(self):
'''
Start bibtex run.
'''
self.log.info('Running bibtex...')
try:
with open(os.devnull, 'w') as null:
Popen(['bibtex', self.project_name], stdout=null).wait()
except OSError:
self.log.error(NO_LATEX_ERROR % 'bibtex')
sys.exit(1)
shutil.copy('%s.bib' % self.bib_file,
'%s.bib.old' % self.bib_file) | [
"def",
"bibtex_run",
"(",
"self",
")",
":",
"self",
".",
"log",
".",
"info",
"(",
"'Running bibtex...'",
")",
"try",
":",
"with",
"open",
"(",
"os",
".",
"devnull",
",",
"'w'",
")",
"as",
"null",
":",
"Popen",
"(",
"[",
"'bibtex'",
",",
"self",
".",
"project_name",
"]",
",",
"stdout",
"=",
"null",
")",
".",
"wait",
"(",
")",
"except",
"OSError",
":",
"self",
".",
"log",
".",
"error",
"(",
"NO_LATEX_ERROR",
"%",
"'bibtex'",
")",
"sys",
".",
"exit",
"(",
"1",
")",
"shutil",
".",
"copy",
"(",
"'%s.bib'",
"%",
"self",
".",
"bib_file",
",",
"'%s.bib.old'",
"%",
"self",
".",
"bib_file",
")"
] | Start bibtex run. | [
"Start",
"bibtex",
"run",
"."
] | 88baba40ff3e844e4542de60d2032503e206d996 | https://github.com/schlamar/latexmk.py/blob/88baba40ff3e844e4542de60d2032503e206d996/latexmake.py#L281-L294 | train |
schlamar/latexmk.py | latexmake.py | LatexMaker.makeindex_runs | def makeindex_runs(self, gloss_files):
'''
Check for each glossary if it has to be regenerated
with "makeindex".
@return: True if "makeindex" was called.
'''
gloss_changed = False
for gloss in self.glossaries:
make_gloss = False
ext_i, ext_o = self.glossaries[gloss]
fname_in = '%s.%s' % (self.project_name, ext_i)
fname_out = '%s.%s' % (self.project_name, ext_o)
if re.search('No file %s.' % fname_in, self.out):
make_gloss = True
if not os.path.isfile(fname_out):
make_gloss = True
else:
with open(fname_out) as fobj:
try:
if gloss_files[gloss] != fobj.read():
make_gloss = True
except KeyError:
make_gloss = True
if make_gloss:
self.log.info('Running makeindex (%s)...' % gloss)
try:
cmd = ['makeindex', '-q', '-s',
'%s.ist' % self.project_name,
'-o', fname_in, fname_out]
with open(os.devnull, 'w') as null:
Popen(cmd, stdout=null).wait()
except OSError:
self.log.error(NO_LATEX_ERROR % 'makeindex')
sys.exit(1)
gloss_changed = True
return gloss_changed | python | def makeindex_runs(self, gloss_files):
'''
Check for each glossary if it has to be regenerated
with "makeindex".
@return: True if "makeindex" was called.
'''
gloss_changed = False
for gloss in self.glossaries:
make_gloss = False
ext_i, ext_o = self.glossaries[gloss]
fname_in = '%s.%s' % (self.project_name, ext_i)
fname_out = '%s.%s' % (self.project_name, ext_o)
if re.search('No file %s.' % fname_in, self.out):
make_gloss = True
if not os.path.isfile(fname_out):
make_gloss = True
else:
with open(fname_out) as fobj:
try:
if gloss_files[gloss] != fobj.read():
make_gloss = True
except KeyError:
make_gloss = True
if make_gloss:
self.log.info('Running makeindex (%s)...' % gloss)
try:
cmd = ['makeindex', '-q', '-s',
'%s.ist' % self.project_name,
'-o', fname_in, fname_out]
with open(os.devnull, 'w') as null:
Popen(cmd, stdout=null).wait()
except OSError:
self.log.error(NO_LATEX_ERROR % 'makeindex')
sys.exit(1)
gloss_changed = True
return gloss_changed | [
"def",
"makeindex_runs",
"(",
"self",
",",
"gloss_files",
")",
":",
"gloss_changed",
"=",
"False",
"for",
"gloss",
"in",
"self",
".",
"glossaries",
":",
"make_gloss",
"=",
"False",
"ext_i",
",",
"ext_o",
"=",
"self",
".",
"glossaries",
"[",
"gloss",
"]",
"fname_in",
"=",
"'%s.%s'",
"%",
"(",
"self",
".",
"project_name",
",",
"ext_i",
")",
"fname_out",
"=",
"'%s.%s'",
"%",
"(",
"self",
".",
"project_name",
",",
"ext_o",
")",
"if",
"re",
".",
"search",
"(",
"'No file %s.'",
"%",
"fname_in",
",",
"self",
".",
"out",
")",
":",
"make_gloss",
"=",
"True",
"if",
"not",
"os",
".",
"path",
".",
"isfile",
"(",
"fname_out",
")",
":",
"make_gloss",
"=",
"True",
"else",
":",
"with",
"open",
"(",
"fname_out",
")",
"as",
"fobj",
":",
"try",
":",
"if",
"gloss_files",
"[",
"gloss",
"]",
"!=",
"fobj",
".",
"read",
"(",
")",
":",
"make_gloss",
"=",
"True",
"except",
"KeyError",
":",
"make_gloss",
"=",
"True",
"if",
"make_gloss",
":",
"self",
".",
"log",
".",
"info",
"(",
"'Running makeindex (%s)...'",
"%",
"gloss",
")",
"try",
":",
"cmd",
"=",
"[",
"'makeindex'",
",",
"'-q'",
",",
"'-s'",
",",
"'%s.ist'",
"%",
"self",
".",
"project_name",
",",
"'-o'",
",",
"fname_in",
",",
"fname_out",
"]",
"with",
"open",
"(",
"os",
".",
"devnull",
",",
"'w'",
")",
"as",
"null",
":",
"Popen",
"(",
"cmd",
",",
"stdout",
"=",
"null",
")",
".",
"wait",
"(",
")",
"except",
"OSError",
":",
"self",
".",
"log",
".",
"error",
"(",
"NO_LATEX_ERROR",
"%",
"'makeindex'",
")",
"sys",
".",
"exit",
"(",
"1",
")",
"gloss_changed",
"=",
"True",
"return",
"gloss_changed"
] | Check for each glossary if it has to be regenerated
with "makeindex".
@return: True if "makeindex" was called. | [
"Check",
"for",
"each",
"glossary",
"if",
"it",
"has",
"to",
"be",
"regenerated",
"with",
"makeindex",
"."
] | 88baba40ff3e844e4542de60d2032503e206d996 | https://github.com/schlamar/latexmk.py/blob/88baba40ff3e844e4542de60d2032503e206d996/latexmake.py#L296-L334 | train |
schlamar/latexmk.py | latexmake.py | LatexMaker.open_preview | def open_preview(self):
'''
Try to open a preview of the generated document.
Currently only supported on Windows.
'''
self.log.info('Opening preview...')
if self.opt.pdf:
ext = 'pdf'
else:
ext = 'dvi'
filename = '%s.%s' % (self.project_name, ext)
if sys.platform == 'win32':
try:
os.startfile(filename)
except OSError:
self.log.error(
'Preview-Error: Extension .%s is not linked to a '
'specific application!' % ext
)
elif sys.platform == 'darwin':
call(['open', filename])
else:
self.log.error(
'Preview-Error: Preview function is currently not '
'supported on Linux.'
) | python | def open_preview(self):
'''
Try to open a preview of the generated document.
Currently only supported on Windows.
'''
self.log.info('Opening preview...')
if self.opt.pdf:
ext = 'pdf'
else:
ext = 'dvi'
filename = '%s.%s' % (self.project_name, ext)
if sys.platform == 'win32':
try:
os.startfile(filename)
except OSError:
self.log.error(
'Preview-Error: Extension .%s is not linked to a '
'specific application!' % ext
)
elif sys.platform == 'darwin':
call(['open', filename])
else:
self.log.error(
'Preview-Error: Preview function is currently not '
'supported on Linux.'
) | [
"def",
"open_preview",
"(",
"self",
")",
":",
"self",
".",
"log",
".",
"info",
"(",
"'Opening preview...'",
")",
"if",
"self",
".",
"opt",
".",
"pdf",
":",
"ext",
"=",
"'pdf'",
"else",
":",
"ext",
"=",
"'dvi'",
"filename",
"=",
"'%s.%s'",
"%",
"(",
"self",
".",
"project_name",
",",
"ext",
")",
"if",
"sys",
".",
"platform",
"==",
"'win32'",
":",
"try",
":",
"os",
".",
"startfile",
"(",
"filename",
")",
"except",
"OSError",
":",
"self",
".",
"log",
".",
"error",
"(",
"'Preview-Error: Extension .%s is not linked to a '",
"'specific application!'",
"%",
"ext",
")",
"elif",
"sys",
".",
"platform",
"==",
"'darwin'",
":",
"call",
"(",
"[",
"'open'",
",",
"filename",
"]",
")",
"else",
":",
"self",
".",
"log",
".",
"error",
"(",
"'Preview-Error: Preview function is currently not '",
"'supported on Linux.'",
")"
] | Try to open a preview of the generated document.
Currently only supported on Windows. | [
"Try",
"to",
"open",
"a",
"preview",
"of",
"the",
"generated",
"document",
".",
"Currently",
"only",
"supported",
"on",
"Windows",
"."
] | 88baba40ff3e844e4542de60d2032503e206d996 | https://github.com/schlamar/latexmk.py/blob/88baba40ff3e844e4542de60d2032503e206d996/latexmake.py#L336-L361 | train |
schlamar/latexmk.py | latexmake.py | LatexMaker.need_latex_rerun | def need_latex_rerun(self):
'''
Test for all rerun patterns if they match the output.
'''
for pattern in LATEX_RERUN_PATTERNS:
if pattern.search(self.out):
return True
return False | python | def need_latex_rerun(self):
'''
Test for all rerun patterns if they match the output.
'''
for pattern in LATEX_RERUN_PATTERNS:
if pattern.search(self.out):
return True
return False | [
"def",
"need_latex_rerun",
"(",
"self",
")",
":",
"for",
"pattern",
"in",
"LATEX_RERUN_PATTERNS",
":",
"if",
"pattern",
".",
"search",
"(",
"self",
".",
"out",
")",
":",
"return",
"True",
"return",
"False"
] | Test for all rerun patterns if they match the output. | [
"Test",
"for",
"all",
"rerun",
"patterns",
"if",
"they",
"match",
"the",
"output",
"."
] | 88baba40ff3e844e4542de60d2032503e206d996 | https://github.com/schlamar/latexmk.py/blob/88baba40ff3e844e4542de60d2032503e206d996/latexmake.py#L363-L370 | train |
schlamar/latexmk.py | latexmake.py | LatexMaker.run | def run(self):
'''Run the LaTeX compilation.'''
# store files
self.old_dir = []
if self.opt.clean:
self.old_dir = os.listdir('.')
cite_counter, toc_file, gloss_files = self._read_latex_files()
self.latex_run()
self.read_glossaries()
gloss_changed = self.makeindex_runs(gloss_files)
if gloss_changed or self._is_toc_changed(toc_file):
self.latex_run()
if self._need_bib_run(cite_counter):
self.bibtex_run()
self.latex_run()
while (self.latex_run_counter < MAX_RUNS):
if not self.need_latex_rerun():
break
self.latex_run()
if self.opt.check_cite:
cites = set()
with open('%s.aux' % self.project_name) as fobj:
aux_content = fobj.read()
for match in BIBCITE_PATTERN.finditer(aux_content):
name = match.groups()[0]
cites.add(name)
with open('%s.bib' % self.bib_file) as fobj:
bib_content = fobj.read()
for match in BIBENTRY_PATTERN.finditer(bib_content):
name = match.groups()[0]
if name not in cites:
self.log.info('Bib entry not cited: "%s"' % name)
if self.opt.clean:
ending = '.dvi'
if self.opt.pdf:
ending = '.pdf'
for fname in os.listdir('.'):
if not (fname in self.old_dir or fname.endswith(ending)):
try:
os.remove(fname)
except IOError:
pass
if self.opt.preview:
self.open_preview() | python | def run(self):
'''Run the LaTeX compilation.'''
# store files
self.old_dir = []
if self.opt.clean:
self.old_dir = os.listdir('.')
cite_counter, toc_file, gloss_files = self._read_latex_files()
self.latex_run()
self.read_glossaries()
gloss_changed = self.makeindex_runs(gloss_files)
if gloss_changed or self._is_toc_changed(toc_file):
self.latex_run()
if self._need_bib_run(cite_counter):
self.bibtex_run()
self.latex_run()
while (self.latex_run_counter < MAX_RUNS):
if not self.need_latex_rerun():
break
self.latex_run()
if self.opt.check_cite:
cites = set()
with open('%s.aux' % self.project_name) as fobj:
aux_content = fobj.read()
for match in BIBCITE_PATTERN.finditer(aux_content):
name = match.groups()[0]
cites.add(name)
with open('%s.bib' % self.bib_file) as fobj:
bib_content = fobj.read()
for match in BIBENTRY_PATTERN.finditer(bib_content):
name = match.groups()[0]
if name not in cites:
self.log.info('Bib entry not cited: "%s"' % name)
if self.opt.clean:
ending = '.dvi'
if self.opt.pdf:
ending = '.pdf'
for fname in os.listdir('.'):
if not (fname in self.old_dir or fname.endswith(ending)):
try:
os.remove(fname)
except IOError:
pass
if self.opt.preview:
self.open_preview() | [
"def",
"run",
"(",
"self",
")",
":",
"# store files",
"self",
".",
"old_dir",
"=",
"[",
"]",
"if",
"self",
".",
"opt",
".",
"clean",
":",
"self",
".",
"old_dir",
"=",
"os",
".",
"listdir",
"(",
"'.'",
")",
"cite_counter",
",",
"toc_file",
",",
"gloss_files",
"=",
"self",
".",
"_read_latex_files",
"(",
")",
"self",
".",
"latex_run",
"(",
")",
"self",
".",
"read_glossaries",
"(",
")",
"gloss_changed",
"=",
"self",
".",
"makeindex_runs",
"(",
"gloss_files",
")",
"if",
"gloss_changed",
"or",
"self",
".",
"_is_toc_changed",
"(",
"toc_file",
")",
":",
"self",
".",
"latex_run",
"(",
")",
"if",
"self",
".",
"_need_bib_run",
"(",
"cite_counter",
")",
":",
"self",
".",
"bibtex_run",
"(",
")",
"self",
".",
"latex_run",
"(",
")",
"while",
"(",
"self",
".",
"latex_run_counter",
"<",
"MAX_RUNS",
")",
":",
"if",
"not",
"self",
".",
"need_latex_rerun",
"(",
")",
":",
"break",
"self",
".",
"latex_run",
"(",
")",
"if",
"self",
".",
"opt",
".",
"check_cite",
":",
"cites",
"=",
"set",
"(",
")",
"with",
"open",
"(",
"'%s.aux'",
"%",
"self",
".",
"project_name",
")",
"as",
"fobj",
":",
"aux_content",
"=",
"fobj",
".",
"read",
"(",
")",
"for",
"match",
"in",
"BIBCITE_PATTERN",
".",
"finditer",
"(",
"aux_content",
")",
":",
"name",
"=",
"match",
".",
"groups",
"(",
")",
"[",
"0",
"]",
"cites",
".",
"add",
"(",
"name",
")",
"with",
"open",
"(",
"'%s.bib'",
"%",
"self",
".",
"bib_file",
")",
"as",
"fobj",
":",
"bib_content",
"=",
"fobj",
".",
"read",
"(",
")",
"for",
"match",
"in",
"BIBENTRY_PATTERN",
".",
"finditer",
"(",
"bib_content",
")",
":",
"name",
"=",
"match",
".",
"groups",
"(",
")",
"[",
"0",
"]",
"if",
"name",
"not",
"in",
"cites",
":",
"self",
".",
"log",
".",
"info",
"(",
"'Bib entry not cited: \"%s\"'",
"%",
"name",
")",
"if",
"self",
".",
"opt",
".",
"clean",
":",
"ending",
"=",
"'.dvi'",
"if",
"self",
".",
"opt",
".",
"pdf",
":",
"ending",
"=",
"'.pdf'",
"for",
"fname",
"in",
"os",
".",
"listdir",
"(",
"'.'",
")",
":",
"if",
"not",
"(",
"fname",
"in",
"self",
".",
"old_dir",
"or",
"fname",
".",
"endswith",
"(",
"ending",
")",
")",
":",
"try",
":",
"os",
".",
"remove",
"(",
"fname",
")",
"except",
"IOError",
":",
"pass",
"if",
"self",
".",
"opt",
".",
"preview",
":",
"self",
".",
"open_preview",
"(",
")"
] | Run the LaTeX compilation. | [
"Run",
"the",
"LaTeX",
"compilation",
"."
] | 88baba40ff3e844e4542de60d2032503e206d996 | https://github.com/schlamar/latexmk.py/blob/88baba40ff3e844e4542de60d2032503e206d996/latexmake.py#L372-L426 | train |
DarkEnergySurvey/ugali | ugali/analysis/farm.py | Farm.command | def command(self, outfile, configfile, pix):
"""
Generate the command for running the likelihood scan.
"""
params = dict(script=self.config['scan']['script'],
config=configfile, outfile=outfile,
nside=self.nside_likelihood, pix=pix,
verbose='-v' if self.verbose else '')
cmd = '%(script)s %(config)s %(outfile)s --hpx %(nside)i %(pix)i %(verbose)s'%params
return cmd | python | def command(self, outfile, configfile, pix):
"""
Generate the command for running the likelihood scan.
"""
params = dict(script=self.config['scan']['script'],
config=configfile, outfile=outfile,
nside=self.nside_likelihood, pix=pix,
verbose='-v' if self.verbose else '')
cmd = '%(script)s %(config)s %(outfile)s --hpx %(nside)i %(pix)i %(verbose)s'%params
return cmd | [
"def",
"command",
"(",
"self",
",",
"outfile",
",",
"configfile",
",",
"pix",
")",
":",
"params",
"=",
"dict",
"(",
"script",
"=",
"self",
".",
"config",
"[",
"'scan'",
"]",
"[",
"'script'",
"]",
",",
"config",
"=",
"configfile",
",",
"outfile",
"=",
"outfile",
",",
"nside",
"=",
"self",
".",
"nside_likelihood",
",",
"pix",
"=",
"pix",
",",
"verbose",
"=",
"'-v'",
"if",
"self",
".",
"verbose",
"else",
"''",
")",
"cmd",
"=",
"'%(script)s %(config)s %(outfile)s --hpx %(nside)i %(pix)i %(verbose)s'",
"%",
"params",
"return",
"cmd"
] | Generate the command for running the likelihood scan. | [
"Generate",
"the",
"command",
"for",
"running",
"the",
"likelihood",
"scan",
"."
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/analysis/farm.py#L47-L56 | train |
DarkEnergySurvey/ugali | ugali/analysis/farm.py | Farm.submit_all | def submit_all(self, coords=None, queue=None, debug=False):
"""
Submit likelihood analyses on a set of coordinates. If
coords is `None`, submit all coordinates in the footprint.
Inputs:
coords : Array of target locations in Galactic coordinates.
queue : Overwrite submit queue.
debug : Don't run.
"""
if coords is None:
pixels = np.arange(hp.nside2npix(self.nside_likelihood))
else:
coords = np.asarray(coords)
if coords.ndim == 1:
coords = np.array([coords])
if coords.shape[1] == 2:
lon,lat = coords.T
radius = np.zeros(len(lon))
elif coords.shape[1] == 3:
lon,lat,radius = coords.T
else:
raise Exception("Unrecognized coords shape:"+str(coords.shape))
#ADW: targets is still in glon,glat
if self.config['coords']['coordsys'].lower() == 'cel':
lon,lat = gal2cel(lon,lat)
vec = ang2vec(lon,lat)
pixels = np.zeros(0, dtype=int)
for v,r in zip(vec,radius):
pix = query_disc(self.nside_likelihood,v,r,inclusive=True,fact=32)
pixels = np.hstack([pixels, pix])
#pixels = np.unique(pixels)
inside = ugali.utils.skymap.inFootprint(self.config,pixels)
if inside.sum() != len(pixels):
logger.warning("Ignoring pixels outside survey footprint:\n"+str(pixels[~inside]))
if inside.sum() == 0:
logger.warning("No pixels inside footprint.")
return
# Only write the configfile once
outdir = mkdir(self.config['output']['likedir'])
# Actually copy config instead of re-writing
shutil.copy(self.config.filename,outdir)
configfile = join(outdir,os.path.basename(self.config.filename))
pixels = pixels[inside]
self.submit(pixels,queue=queue,debug=debug,configfile=configfile) | python | def submit_all(self, coords=None, queue=None, debug=False):
"""
Submit likelihood analyses on a set of coordinates. If
coords is `None`, submit all coordinates in the footprint.
Inputs:
coords : Array of target locations in Galactic coordinates.
queue : Overwrite submit queue.
debug : Don't run.
"""
if coords is None:
pixels = np.arange(hp.nside2npix(self.nside_likelihood))
else:
coords = np.asarray(coords)
if coords.ndim == 1:
coords = np.array([coords])
if coords.shape[1] == 2:
lon,lat = coords.T
radius = np.zeros(len(lon))
elif coords.shape[1] == 3:
lon,lat,radius = coords.T
else:
raise Exception("Unrecognized coords shape:"+str(coords.shape))
#ADW: targets is still in glon,glat
if self.config['coords']['coordsys'].lower() == 'cel':
lon,lat = gal2cel(lon,lat)
vec = ang2vec(lon,lat)
pixels = np.zeros(0, dtype=int)
for v,r in zip(vec,radius):
pix = query_disc(self.nside_likelihood,v,r,inclusive=True,fact=32)
pixels = np.hstack([pixels, pix])
#pixels = np.unique(pixels)
inside = ugali.utils.skymap.inFootprint(self.config,pixels)
if inside.sum() != len(pixels):
logger.warning("Ignoring pixels outside survey footprint:\n"+str(pixels[~inside]))
if inside.sum() == 0:
logger.warning("No pixels inside footprint.")
return
# Only write the configfile once
outdir = mkdir(self.config['output']['likedir'])
# Actually copy config instead of re-writing
shutil.copy(self.config.filename,outdir)
configfile = join(outdir,os.path.basename(self.config.filename))
pixels = pixels[inside]
self.submit(pixels,queue=queue,debug=debug,configfile=configfile) | [
"def",
"submit_all",
"(",
"self",
",",
"coords",
"=",
"None",
",",
"queue",
"=",
"None",
",",
"debug",
"=",
"False",
")",
":",
"if",
"coords",
"is",
"None",
":",
"pixels",
"=",
"np",
".",
"arange",
"(",
"hp",
".",
"nside2npix",
"(",
"self",
".",
"nside_likelihood",
")",
")",
"else",
":",
"coords",
"=",
"np",
".",
"asarray",
"(",
"coords",
")",
"if",
"coords",
".",
"ndim",
"==",
"1",
":",
"coords",
"=",
"np",
".",
"array",
"(",
"[",
"coords",
"]",
")",
"if",
"coords",
".",
"shape",
"[",
"1",
"]",
"==",
"2",
":",
"lon",
",",
"lat",
"=",
"coords",
".",
"T",
"radius",
"=",
"np",
".",
"zeros",
"(",
"len",
"(",
"lon",
")",
")",
"elif",
"coords",
".",
"shape",
"[",
"1",
"]",
"==",
"3",
":",
"lon",
",",
"lat",
",",
"radius",
"=",
"coords",
".",
"T",
"else",
":",
"raise",
"Exception",
"(",
"\"Unrecognized coords shape:\"",
"+",
"str",
"(",
"coords",
".",
"shape",
")",
")",
"#ADW: targets is still in glon,glat",
"if",
"self",
".",
"config",
"[",
"'coords'",
"]",
"[",
"'coordsys'",
"]",
".",
"lower",
"(",
")",
"==",
"'cel'",
":",
"lon",
",",
"lat",
"=",
"gal2cel",
"(",
"lon",
",",
"lat",
")",
"vec",
"=",
"ang2vec",
"(",
"lon",
",",
"lat",
")",
"pixels",
"=",
"np",
".",
"zeros",
"(",
"0",
",",
"dtype",
"=",
"int",
")",
"for",
"v",
",",
"r",
"in",
"zip",
"(",
"vec",
",",
"radius",
")",
":",
"pix",
"=",
"query_disc",
"(",
"self",
".",
"nside_likelihood",
",",
"v",
",",
"r",
",",
"inclusive",
"=",
"True",
",",
"fact",
"=",
"32",
")",
"pixels",
"=",
"np",
".",
"hstack",
"(",
"[",
"pixels",
",",
"pix",
"]",
")",
"#pixels = np.unique(pixels)",
"inside",
"=",
"ugali",
".",
"utils",
".",
"skymap",
".",
"inFootprint",
"(",
"self",
".",
"config",
",",
"pixels",
")",
"if",
"inside",
".",
"sum",
"(",
")",
"!=",
"len",
"(",
"pixels",
")",
":",
"logger",
".",
"warning",
"(",
"\"Ignoring pixels outside survey footprint:\\n\"",
"+",
"str",
"(",
"pixels",
"[",
"~",
"inside",
"]",
")",
")",
"if",
"inside",
".",
"sum",
"(",
")",
"==",
"0",
":",
"logger",
".",
"warning",
"(",
"\"No pixels inside footprint.\"",
")",
"return",
"# Only write the configfile once",
"outdir",
"=",
"mkdir",
"(",
"self",
".",
"config",
"[",
"'output'",
"]",
"[",
"'likedir'",
"]",
")",
"# Actually copy config instead of re-writing",
"shutil",
".",
"copy",
"(",
"self",
".",
"config",
".",
"filename",
",",
"outdir",
")",
"configfile",
"=",
"join",
"(",
"outdir",
",",
"os",
".",
"path",
".",
"basename",
"(",
"self",
".",
"config",
".",
"filename",
")",
")",
"pixels",
"=",
"pixels",
"[",
"inside",
"]",
"self",
".",
"submit",
"(",
"pixels",
",",
"queue",
"=",
"queue",
",",
"debug",
"=",
"debug",
",",
"configfile",
"=",
"configfile",
")"
] | Submit likelihood analyses on a set of coordinates. If
coords is `None`, submit all coordinates in the footprint.
Inputs:
coords : Array of target locations in Galactic coordinates.
queue : Overwrite submit queue.
debug : Don't run. | [
"Submit",
"likelihood",
"analyses",
"on",
"a",
"set",
"of",
"coordinates",
".",
"If",
"coords",
"is",
"None",
"submit",
"all",
"coordinates",
"in",
"the",
"footprint",
"."
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/analysis/farm.py#L104-L153 | train |
Genida/django-appsettings | src/appsettings/__init__.py | AppSettings.check | def check(cls):
"""
Class method to check every settings.
Will raise an ``ImproperlyConfigured`` exception with explanation.
"""
if cls == AppSettings:
return None
exceptions = []
for setting in cls.settings.values():
try:
setting.check()
# pylama:ignore=W0703
except Exception as e:
exceptions.append(str(e))
if exceptions:
raise ImproperlyConfigured("\n".join(exceptions)) | python | def check(cls):
"""
Class method to check every settings.
Will raise an ``ImproperlyConfigured`` exception with explanation.
"""
if cls == AppSettings:
return None
exceptions = []
for setting in cls.settings.values():
try:
setting.check()
# pylama:ignore=W0703
except Exception as e:
exceptions.append(str(e))
if exceptions:
raise ImproperlyConfigured("\n".join(exceptions)) | [
"def",
"check",
"(",
"cls",
")",
":",
"if",
"cls",
"==",
"AppSettings",
":",
"return",
"None",
"exceptions",
"=",
"[",
"]",
"for",
"setting",
"in",
"cls",
".",
"settings",
".",
"values",
"(",
")",
":",
"try",
":",
"setting",
".",
"check",
"(",
")",
"# pylama:ignore=W0703",
"except",
"Exception",
"as",
"e",
":",
"exceptions",
".",
"append",
"(",
"str",
"(",
"e",
")",
")",
"if",
"exceptions",
":",
"raise",
"ImproperlyConfigured",
"(",
"\"\\n\"",
".",
"join",
"(",
"exceptions",
")",
")"
] | Class method to check every settings.
Will raise an ``ImproperlyConfigured`` exception with explanation. | [
"Class",
"method",
"to",
"check",
"every",
"settings",
"."
] | f98867d133558af7dc067f12b44fc1ee4edd4239 | https://github.com/Genida/django-appsettings/blob/f98867d133558af7dc067f12b44fc1ee4edd4239/src/appsettings/__init__.py#L192-L209 | train |
alphagov/performanceplatform-collector | performanceplatform/collector/arguments.py | parse_args | def parse_args(name="", args=None):
"""Parse command line argument for a collector
Returns an argparse.Namespace with 'config' and 'query' options"""
def _load_json_file(path):
with open(path) as f:
json_data = json.load(f)
json_data['path_to_json_file'] = path
return json_data
parser = argparse.ArgumentParser(description="%s collector for sending"
" data to the performance"
" platform" % name)
parser.add_argument('-c', '--credentials', dest='credentials',
type=_load_json_file,
help='JSON file containing credentials '
'for the collector',
required=True)
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument('-l', '--collector', dest='collector_slug',
type=str,
help='Collector slug to query the API for the '
'collector config')
group.add_argument('-q', '--query', dest='query',
type=_load_json_file,
help='JSON file containing details '
'about the query to make '
'against the source API '
'and the target data-set')
parser.add_argument('-t', '--token', dest='token',
type=_load_json_file,
help='JSON file containing token '
'for the collector',
required=True)
parser.add_argument('-b', '--performanceplatform',
dest='performanceplatform',
type=_load_json_file,
help='JSON file containing the Performance Platform '
'config for the collector',
required=True)
parser.add_argument('-s', '--start', dest='start_at',
type=parse_date,
help='Date to start collection from')
parser.add_argument('-e', '--end', dest='end_at',
type=parse_date,
help='Date to end collection')
parser.add_argument('--console-logging', dest='console_logging',
action='store_true',
help='Output logging to the console rather than file')
parser.add_argument('--dry-run', dest='dry_run',
action='store_true',
help='Instead of pushing to the Performance Platform '
'the collector will print out what would have '
'been pushed')
parser.set_defaults(console_logging=False, dry_run=False)
args = parser.parse_args(args)
return args | python | def parse_args(name="", args=None):
"""Parse command line argument for a collector
Returns an argparse.Namespace with 'config' and 'query' options"""
def _load_json_file(path):
with open(path) as f:
json_data = json.load(f)
json_data['path_to_json_file'] = path
return json_data
parser = argparse.ArgumentParser(description="%s collector for sending"
" data to the performance"
" platform" % name)
parser.add_argument('-c', '--credentials', dest='credentials',
type=_load_json_file,
help='JSON file containing credentials '
'for the collector',
required=True)
group = parser.add_mutually_exclusive_group(required=True)
group.add_argument('-l', '--collector', dest='collector_slug',
type=str,
help='Collector slug to query the API for the '
'collector config')
group.add_argument('-q', '--query', dest='query',
type=_load_json_file,
help='JSON file containing details '
'about the query to make '
'against the source API '
'and the target data-set')
parser.add_argument('-t', '--token', dest='token',
type=_load_json_file,
help='JSON file containing token '
'for the collector',
required=True)
parser.add_argument('-b', '--performanceplatform',
dest='performanceplatform',
type=_load_json_file,
help='JSON file containing the Performance Platform '
'config for the collector',
required=True)
parser.add_argument('-s', '--start', dest='start_at',
type=parse_date,
help='Date to start collection from')
parser.add_argument('-e', '--end', dest='end_at',
type=parse_date,
help='Date to end collection')
parser.add_argument('--console-logging', dest='console_logging',
action='store_true',
help='Output logging to the console rather than file')
parser.add_argument('--dry-run', dest='dry_run',
action='store_true',
help='Instead of pushing to the Performance Platform '
'the collector will print out what would have '
'been pushed')
parser.set_defaults(console_logging=False, dry_run=False)
args = parser.parse_args(args)
return args | [
"def",
"parse_args",
"(",
"name",
"=",
"\"\"",
",",
"args",
"=",
"None",
")",
":",
"def",
"_load_json_file",
"(",
"path",
")",
":",
"with",
"open",
"(",
"path",
")",
"as",
"f",
":",
"json_data",
"=",
"json",
".",
"load",
"(",
"f",
")",
"json_data",
"[",
"'path_to_json_file'",
"]",
"=",
"path",
"return",
"json_data",
"parser",
"=",
"argparse",
".",
"ArgumentParser",
"(",
"description",
"=",
"\"%s collector for sending\"",
"\" data to the performance\"",
"\" platform\"",
"%",
"name",
")",
"parser",
".",
"add_argument",
"(",
"'-c'",
",",
"'--credentials'",
",",
"dest",
"=",
"'credentials'",
",",
"type",
"=",
"_load_json_file",
",",
"help",
"=",
"'JSON file containing credentials '",
"'for the collector'",
",",
"required",
"=",
"True",
")",
"group",
"=",
"parser",
".",
"add_mutually_exclusive_group",
"(",
"required",
"=",
"True",
")",
"group",
".",
"add_argument",
"(",
"'-l'",
",",
"'--collector'",
",",
"dest",
"=",
"'collector_slug'",
",",
"type",
"=",
"str",
",",
"help",
"=",
"'Collector slug to query the API for the '",
"'collector config'",
")",
"group",
".",
"add_argument",
"(",
"'-q'",
",",
"'--query'",
",",
"dest",
"=",
"'query'",
",",
"type",
"=",
"_load_json_file",
",",
"help",
"=",
"'JSON file containing details '",
"'about the query to make '",
"'against the source API '",
"'and the target data-set'",
")",
"parser",
".",
"add_argument",
"(",
"'-t'",
",",
"'--token'",
",",
"dest",
"=",
"'token'",
",",
"type",
"=",
"_load_json_file",
",",
"help",
"=",
"'JSON file containing token '",
"'for the collector'",
",",
"required",
"=",
"True",
")",
"parser",
".",
"add_argument",
"(",
"'-b'",
",",
"'--performanceplatform'",
",",
"dest",
"=",
"'performanceplatform'",
",",
"type",
"=",
"_load_json_file",
",",
"help",
"=",
"'JSON file containing the Performance Platform '",
"'config for the collector'",
",",
"required",
"=",
"True",
")",
"parser",
".",
"add_argument",
"(",
"'-s'",
",",
"'--start'",
",",
"dest",
"=",
"'start_at'",
",",
"type",
"=",
"parse_date",
",",
"help",
"=",
"'Date to start collection from'",
")",
"parser",
".",
"add_argument",
"(",
"'-e'",
",",
"'--end'",
",",
"dest",
"=",
"'end_at'",
",",
"type",
"=",
"parse_date",
",",
"help",
"=",
"'Date to end collection'",
")",
"parser",
".",
"add_argument",
"(",
"'--console-logging'",
",",
"dest",
"=",
"'console_logging'",
",",
"action",
"=",
"'store_true'",
",",
"help",
"=",
"'Output logging to the console rather than file'",
")",
"parser",
".",
"add_argument",
"(",
"'--dry-run'",
",",
"dest",
"=",
"'dry_run'",
",",
"action",
"=",
"'store_true'",
",",
"help",
"=",
"'Instead of pushing to the Performance Platform '",
"'the collector will print out what would have '",
"'been pushed'",
")",
"parser",
".",
"set_defaults",
"(",
"console_logging",
"=",
"False",
",",
"dry_run",
"=",
"False",
")",
"args",
"=",
"parser",
".",
"parse_args",
"(",
"args",
")",
"return",
"args"
] | Parse command line argument for a collector
Returns an argparse.Namespace with 'config' and 'query' options | [
"Parse",
"command",
"line",
"argument",
"for",
"a",
"collector"
] | de68ab4aa500c31e436e050fa1268fa928c522a5 | https://github.com/alphagov/performanceplatform-collector/blob/de68ab4aa500c31e436e050fa1268fa928c522a5/performanceplatform/collector/arguments.py#L6-L63 | train |
consbio/ncdjango | ncdjango/config.py | RenderConfiguration.hash | def hash(self):
"""
Returns a hash of this render configuration from the variable, renderer, and time_index parameters. Used for
caching the full-extent, native projection render so that subsequent requests can be served by a warp
operation only.
"""
renderer_str = "{}|{}|{}|{}".format(
self.renderer.__class__.__name__, self.renderer.colormap, self.renderer.fill_value,
self.renderer.background_color
)
if isinstance(self.renderer, StretchedRenderer):
renderer_str = "{}|{}|{}".format(renderer_str, self.renderer.method, self.renderer.colorspace)
elif isinstance(self.renderer, UniqueValuesRenderer):
renderer_str = "{}|{}".format(renderer_str, self.renderer.labels)
return hash("{}/{}/{}".format(self.variable.pk, renderer_str, self.time_index)) | python | def hash(self):
"""
Returns a hash of this render configuration from the variable, renderer, and time_index parameters. Used for
caching the full-extent, native projection render so that subsequent requests can be served by a warp
operation only.
"""
renderer_str = "{}|{}|{}|{}".format(
self.renderer.__class__.__name__, self.renderer.colormap, self.renderer.fill_value,
self.renderer.background_color
)
if isinstance(self.renderer, StretchedRenderer):
renderer_str = "{}|{}|{}".format(renderer_str, self.renderer.method, self.renderer.colorspace)
elif isinstance(self.renderer, UniqueValuesRenderer):
renderer_str = "{}|{}".format(renderer_str, self.renderer.labels)
return hash("{}/{}/{}".format(self.variable.pk, renderer_str, self.time_index)) | [
"def",
"hash",
"(",
"self",
")",
":",
"renderer_str",
"=",
"\"{}|{}|{}|{}\"",
".",
"format",
"(",
"self",
".",
"renderer",
".",
"__class__",
".",
"__name__",
",",
"self",
".",
"renderer",
".",
"colormap",
",",
"self",
".",
"renderer",
".",
"fill_value",
",",
"self",
".",
"renderer",
".",
"background_color",
")",
"if",
"isinstance",
"(",
"self",
".",
"renderer",
",",
"StretchedRenderer",
")",
":",
"renderer_str",
"=",
"\"{}|{}|{}\"",
".",
"format",
"(",
"renderer_str",
",",
"self",
".",
"renderer",
".",
"method",
",",
"self",
".",
"renderer",
".",
"colorspace",
")",
"elif",
"isinstance",
"(",
"self",
".",
"renderer",
",",
"UniqueValuesRenderer",
")",
":",
"renderer_str",
"=",
"\"{}|{}\"",
".",
"format",
"(",
"renderer_str",
",",
"self",
".",
"renderer",
".",
"labels",
")",
"return",
"hash",
"(",
"\"{}/{}/{}\"",
".",
"format",
"(",
"self",
".",
"variable",
".",
"pk",
",",
"renderer_str",
",",
"self",
".",
"time_index",
")",
")"
] | Returns a hash of this render configuration from the variable, renderer, and time_index parameters. Used for
caching the full-extent, native projection render so that subsequent requests can be served by a warp
operation only. | [
"Returns",
"a",
"hash",
"of",
"this",
"render",
"configuration",
"from",
"the",
"variable",
"renderer",
"and",
"time_index",
"parameters",
".",
"Used",
"for",
"caching",
"the",
"full",
"-",
"extent",
"native",
"projection",
"render",
"so",
"that",
"subsequent",
"requests",
"can",
"be",
"served",
"by",
"a",
"warp",
"operation",
"only",
"."
] | f807bfd1e4083ab29fbc3c4d4418be108383a710 | https://github.com/consbio/ncdjango/blob/f807bfd1e4083ab29fbc3c4d4418be108383a710/ncdjango/config.py#L54-L70 | train |
DarkEnergySurvey/ugali | ugali/utils/factory.py | factory | def factory(type, module=None, **kwargs):
"""
Factory for creating objects. Arguments are passed directly to the
constructor of the chosen class.
"""
cls = type
if module is None: module = __name__
fn = lambda member: inspect.isclass(member) and member.__module__==module
classes = odict(inspect.getmembers(sys.modules[module], fn))
members = odict([(k.lower(),v) for k,v in classes.items()])
lower = cls.lower()
if lower not in list(members.keys()):
msg = "Unrecognized class: %s.%s"%(module,cls)
raise KeyError(msg)
return members[lower](**kwargs) | python | def factory(type, module=None, **kwargs):
"""
Factory for creating objects. Arguments are passed directly to the
constructor of the chosen class.
"""
cls = type
if module is None: module = __name__
fn = lambda member: inspect.isclass(member) and member.__module__==module
classes = odict(inspect.getmembers(sys.modules[module], fn))
members = odict([(k.lower(),v) for k,v in classes.items()])
lower = cls.lower()
if lower not in list(members.keys()):
msg = "Unrecognized class: %s.%s"%(module,cls)
raise KeyError(msg)
return members[lower](**kwargs) | [
"def",
"factory",
"(",
"type",
",",
"module",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"cls",
"=",
"type",
"if",
"module",
"is",
"None",
":",
"module",
"=",
"__name__",
"fn",
"=",
"lambda",
"member",
":",
"inspect",
".",
"isclass",
"(",
"member",
")",
"and",
"member",
".",
"__module__",
"==",
"module",
"classes",
"=",
"odict",
"(",
"inspect",
".",
"getmembers",
"(",
"sys",
".",
"modules",
"[",
"module",
"]",
",",
"fn",
")",
")",
"members",
"=",
"odict",
"(",
"[",
"(",
"k",
".",
"lower",
"(",
")",
",",
"v",
")",
"for",
"k",
",",
"v",
"in",
"classes",
".",
"items",
"(",
")",
"]",
")",
"lower",
"=",
"cls",
".",
"lower",
"(",
")",
"if",
"lower",
"not",
"in",
"list",
"(",
"members",
".",
"keys",
"(",
")",
")",
":",
"msg",
"=",
"\"Unrecognized class: %s.%s\"",
"%",
"(",
"module",
",",
"cls",
")",
"raise",
"KeyError",
"(",
"msg",
")",
"return",
"members",
"[",
"lower",
"]",
"(",
"*",
"*",
"kwargs",
")"
] | Factory for creating objects. Arguments are passed directly to the
constructor of the chosen class. | [
"Factory",
"for",
"creating",
"objects",
".",
"Arguments",
"are",
"passed",
"directly",
"to",
"the",
"constructor",
"of",
"the",
"chosen",
"class",
"."
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/utils/factory.py#L9-L23 | train |
consbio/ncdjango | ncdjango/interfaces/arcgis_extended/utils.py | get_definition_from_renderer | def get_definition_from_renderer(renderer):
"""Returns a dictionary definition of the given renderer"""
config = {
'colors': [[x[0], x[1].to_hex()] for x in renderer.colormap],
'options': {}
}
if renderer.fill_value:
config['options']['fill_value'] = renderer.fill_value
if isinstance(renderer, StretchedRenderer):
config['type'] = 'stretched'
config['options']['color_space'] = renderer.colorspace
elif isinstance(renderer, UniqueValuesRenderer):
config['type'] = 'unique'
if renderer.labels:
config['options']['labels'] = renderer.labels
elif isinstance(renderer, ClassifiedRenderer):
config['type'] = 'classified'
else:
raise ValueError('{0} is not a valid renderer type'.format(renderer.__class__.__name__))
return config | python | def get_definition_from_renderer(renderer):
"""Returns a dictionary definition of the given renderer"""
config = {
'colors': [[x[0], x[1].to_hex()] for x in renderer.colormap],
'options': {}
}
if renderer.fill_value:
config['options']['fill_value'] = renderer.fill_value
if isinstance(renderer, StretchedRenderer):
config['type'] = 'stretched'
config['options']['color_space'] = renderer.colorspace
elif isinstance(renderer, UniqueValuesRenderer):
config['type'] = 'unique'
if renderer.labels:
config['options']['labels'] = renderer.labels
elif isinstance(renderer, ClassifiedRenderer):
config['type'] = 'classified'
else:
raise ValueError('{0} is not a valid renderer type'.format(renderer.__class__.__name__))
return config | [
"def",
"get_definition_from_renderer",
"(",
"renderer",
")",
":",
"config",
"=",
"{",
"'colors'",
":",
"[",
"[",
"x",
"[",
"0",
"]",
",",
"x",
"[",
"1",
"]",
".",
"to_hex",
"(",
")",
"]",
"for",
"x",
"in",
"renderer",
".",
"colormap",
"]",
",",
"'options'",
":",
"{",
"}",
"}",
"if",
"renderer",
".",
"fill_value",
":",
"config",
"[",
"'options'",
"]",
"[",
"'fill_value'",
"]",
"=",
"renderer",
".",
"fill_value",
"if",
"isinstance",
"(",
"renderer",
",",
"StretchedRenderer",
")",
":",
"config",
"[",
"'type'",
"]",
"=",
"'stretched'",
"config",
"[",
"'options'",
"]",
"[",
"'color_space'",
"]",
"=",
"renderer",
".",
"colorspace",
"elif",
"isinstance",
"(",
"renderer",
",",
"UniqueValuesRenderer",
")",
":",
"config",
"[",
"'type'",
"]",
"=",
"'unique'",
"if",
"renderer",
".",
"labels",
":",
"config",
"[",
"'options'",
"]",
"[",
"'labels'",
"]",
"=",
"renderer",
".",
"labels",
"elif",
"isinstance",
"(",
"renderer",
",",
"ClassifiedRenderer",
")",
":",
"config",
"[",
"'type'",
"]",
"=",
"'classified'",
"else",
":",
"raise",
"ValueError",
"(",
"'{0} is not a valid renderer type'",
".",
"format",
"(",
"renderer",
".",
"__class__",
".",
"__name__",
")",
")",
"return",
"config"
] | Returns a dictionary definition of the given renderer | [
"Returns",
"a",
"dictionary",
"definition",
"of",
"the",
"given",
"renderer"
] | f807bfd1e4083ab29fbc3c4d4418be108383a710 | https://github.com/consbio/ncdjango/blob/f807bfd1e4083ab29fbc3c4d4418be108383a710/ncdjango/interfaces/arcgis_extended/utils.py#L46-L69 | train |
DarkEnergySurvey/ugali | ugali/analysis/source.py | Source.set_model | def set_model(self, name, model):
""" Set a model.
Parameters
----------
name : name of the model -- e.g., richness, kernel, isochrone, etc.
model : the model instance
Returns
-------
None
"""
# Careful to not use `hasattr`
# https://hynek.me/articles/hasattr/
try:
self.__getattribute__('models')
except AttributeError:
object.__setattr__(self, 'models',odict())
self.models[name] = model | python | def set_model(self, name, model):
""" Set a model.
Parameters
----------
name : name of the model -- e.g., richness, kernel, isochrone, etc.
model : the model instance
Returns
-------
None
"""
# Careful to not use `hasattr`
# https://hynek.me/articles/hasattr/
try:
self.__getattribute__('models')
except AttributeError:
object.__setattr__(self, 'models',odict())
self.models[name] = model | [
"def",
"set_model",
"(",
"self",
",",
"name",
",",
"model",
")",
":",
"# Careful to not use `hasattr`",
"# https://hynek.me/articles/hasattr/",
"try",
":",
"self",
".",
"__getattribute__",
"(",
"'models'",
")",
"except",
"AttributeError",
":",
"object",
".",
"__setattr__",
"(",
"self",
",",
"'models'",
",",
"odict",
"(",
")",
")",
"self",
".",
"models",
"[",
"name",
"]",
"=",
"model"
] | Set a model.
Parameters
----------
name : name of the model -- e.g., richness, kernel, isochrone, etc.
model : the model instance
Returns
-------
None | [
"Set",
"a",
"model",
"."
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/analysis/source.py#L170-L188 | train |
DarkEnergySurvey/ugali | ugali/analysis/source.py | Source.set_params | def set_params(self,**kwargs):
""" Set the parameter values """
for key,value in list(kwargs.items()):
setattr(self,key,value) | python | def set_params(self,**kwargs):
""" Set the parameter values """
for key,value in list(kwargs.items()):
setattr(self,key,value) | [
"def",
"set_params",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"for",
"key",
",",
"value",
"in",
"list",
"(",
"kwargs",
".",
"items",
"(",
")",
")",
":",
"setattr",
"(",
"self",
",",
"key",
",",
"value",
")"
] | Set the parameter values | [
"Set",
"the",
"parameter",
"values"
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/analysis/source.py#L196-L199 | train |
DarkEnergySurvey/ugali | ugali/analysis/source.py | Source.get_params | def get_params(self):
""" Get an odict of the parameter names and values """
return odict([(key,param.value) for key,param in self.params.items()]) | python | def get_params(self):
""" Get an odict of the parameter names and values """
return odict([(key,param.value) for key,param in self.params.items()]) | [
"def",
"get_params",
"(",
"self",
")",
":",
"return",
"odict",
"(",
"[",
"(",
"key",
",",
"param",
".",
"value",
")",
"for",
"key",
",",
"param",
"in",
"self",
".",
"params",
".",
"items",
"(",
")",
"]",
")"
] | Get an odict of the parameter names and values | [
"Get",
"an",
"odict",
"of",
"the",
"parameter",
"names",
"and",
"values"
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/analysis/source.py#L201-L203 | train |
DarkEnergySurvey/ugali | ugali/analysis/source.py | Source.get_free_params | def get_free_params(self):
""" Get an odict of free parameter names and values """
return odict([(key,param.value) for key,param in self.params.items() if param.free]) | python | def get_free_params(self):
""" Get an odict of free parameter names and values """
return odict([(key,param.value) for key,param in self.params.items() if param.free]) | [
"def",
"get_free_params",
"(",
"self",
")",
":",
"return",
"odict",
"(",
"[",
"(",
"key",
",",
"param",
".",
"value",
")",
"for",
"key",
",",
"param",
"in",
"self",
".",
"params",
".",
"items",
"(",
")",
"if",
"param",
".",
"free",
"]",
")"
] | Get an odict of free parameter names and values | [
"Get",
"an",
"odict",
"of",
"free",
"parameter",
"names",
"and",
"values"
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/analysis/source.py#L205-L207 | train |
totalgood/pugnlp | src/pugnlp/regexes.py | iter_finds | def iter_finds(regex_obj, s):
"""Generate all matches found within a string for a regex and yield each match as a string"""
if isinstance(regex_obj, str):
for m in re.finditer(regex_obj, s):
yield m.group()
else:
for m in regex_obj.finditer(s):
yield m.group() | python | def iter_finds(regex_obj, s):
"""Generate all matches found within a string for a regex and yield each match as a string"""
if isinstance(regex_obj, str):
for m in re.finditer(regex_obj, s):
yield m.group()
else:
for m in regex_obj.finditer(s):
yield m.group() | [
"def",
"iter_finds",
"(",
"regex_obj",
",",
"s",
")",
":",
"if",
"isinstance",
"(",
"regex_obj",
",",
"str",
")",
":",
"for",
"m",
"in",
"re",
".",
"finditer",
"(",
"regex_obj",
",",
"s",
")",
":",
"yield",
"m",
".",
"group",
"(",
")",
"else",
":",
"for",
"m",
"in",
"regex_obj",
".",
"finditer",
"(",
"s",
")",
":",
"yield",
"m",
".",
"group",
"(",
")"
] | Generate all matches found within a string for a regex and yield each match as a string | [
"Generate",
"all",
"matches",
"found",
"within",
"a",
"string",
"for",
"a",
"regex",
"and",
"yield",
"each",
"match",
"as",
"a",
"string"
] | c43445b14afddfdeadc5f3076675c9e8fc1ee67c | https://github.com/totalgood/pugnlp/blob/c43445b14afddfdeadc5f3076675c9e8fc1ee67c/src/pugnlp/regexes.py#L292-L299 | train |
DarkEnergySurvey/ugali | ugali/isochrone/composite.py | CompositeIsochrone.composite_decorator | def composite_decorator(func):
"""
Decorator for wrapping functions that calculate a weighted sum
"""
@wraps(func)
def wrapper(self, *args, **kwargs):
total = []
for weight,iso in zip(self.weights,self.isochrones):
subfunc = getattr(iso,func.__name__)
total.append(weight*subfunc(*args,**kwargs))
return np.sum(total,axis=0)
return wrapper | python | def composite_decorator(func):
"""
Decorator for wrapping functions that calculate a weighted sum
"""
@wraps(func)
def wrapper(self, *args, **kwargs):
total = []
for weight,iso in zip(self.weights,self.isochrones):
subfunc = getattr(iso,func.__name__)
total.append(weight*subfunc(*args,**kwargs))
return np.sum(total,axis=0)
return wrapper | [
"def",
"composite_decorator",
"(",
"func",
")",
":",
"@",
"wraps",
"(",
"func",
")",
"def",
"wrapper",
"(",
"self",
",",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"total",
"=",
"[",
"]",
"for",
"weight",
",",
"iso",
"in",
"zip",
"(",
"self",
".",
"weights",
",",
"self",
".",
"isochrones",
")",
":",
"subfunc",
"=",
"getattr",
"(",
"iso",
",",
"func",
".",
"__name__",
")",
"total",
".",
"append",
"(",
"weight",
"*",
"subfunc",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
")",
"return",
"np",
".",
"sum",
"(",
"total",
",",
"axis",
"=",
"0",
")",
"return",
"wrapper"
] | Decorator for wrapping functions that calculate a weighted sum | [
"Decorator",
"for",
"wrapping",
"functions",
"that",
"calculate",
"a",
"weighted",
"sum"
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/isochrone/composite.py#L83-L94 | train |
DarkEnergySurvey/ugali | ugali/observation/catalog.py | mergeCatalogs | def mergeCatalogs(catalog_list):
"""
Merge a list of Catalogs.
Parameters:
-----------
catalog_list : List of Catalog objects.
Returns:
--------
catalog : Combined Catalog object
"""
# Check the columns
for c in catalog_list:
if c.data.dtype.names != catalog_list[0].data.dtype.names:
msg = "Catalog data columns not the same."
raise Exception(msg)
data = np.concatenate([c.data for c in catalog_list])
config = catalog_list[0].config
return Catalog(config,data=data) | python | def mergeCatalogs(catalog_list):
"""
Merge a list of Catalogs.
Parameters:
-----------
catalog_list : List of Catalog objects.
Returns:
--------
catalog : Combined Catalog object
"""
# Check the columns
for c in catalog_list:
if c.data.dtype.names != catalog_list[0].data.dtype.names:
msg = "Catalog data columns not the same."
raise Exception(msg)
data = np.concatenate([c.data for c in catalog_list])
config = catalog_list[0].config
return Catalog(config,data=data) | [
"def",
"mergeCatalogs",
"(",
"catalog_list",
")",
":",
"# Check the columns",
"for",
"c",
"in",
"catalog_list",
":",
"if",
"c",
".",
"data",
".",
"dtype",
".",
"names",
"!=",
"catalog_list",
"[",
"0",
"]",
".",
"data",
".",
"dtype",
".",
"names",
":",
"msg",
"=",
"\"Catalog data columns not the same.\"",
"raise",
"Exception",
"(",
"msg",
")",
"data",
"=",
"np",
".",
"concatenate",
"(",
"[",
"c",
".",
"data",
"for",
"c",
"in",
"catalog_list",
"]",
")",
"config",
"=",
"catalog_list",
"[",
"0",
"]",
".",
"config",
"return",
"Catalog",
"(",
"config",
",",
"data",
"=",
"data",
")"
] | Merge a list of Catalogs.
Parameters:
-----------
catalog_list : List of Catalog objects.
Returns:
--------
catalog : Combined Catalog object | [
"Merge",
"a",
"list",
"of",
"Catalogs",
"."
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/observation/catalog.py#L254-L273 | train |
DarkEnergySurvey/ugali | ugali/observation/catalog.py | Catalog.applyCut | def applyCut(self, cut):
"""
Return a new catalog which is a subset of objects selected
using the input cut array.
NOTE: This is really a *selection* (i.e., objects are retained if the value of 'cut' is True)
"""
return Catalog(self.config, data=self.data[cut]) | python | def applyCut(self, cut):
"""
Return a new catalog which is a subset of objects selected
using the input cut array.
NOTE: This is really a *selection* (i.e., objects are retained if the value of 'cut' is True)
"""
return Catalog(self.config, data=self.data[cut]) | [
"def",
"applyCut",
"(",
"self",
",",
"cut",
")",
":",
"return",
"Catalog",
"(",
"self",
".",
"config",
",",
"data",
"=",
"self",
".",
"data",
"[",
"cut",
"]",
")"
] | Return a new catalog which is a subset of objects selected
using the input cut array.
NOTE: This is really a *selection* (i.e., objects are retained if the value of 'cut' is True) | [
"Return",
"a",
"new",
"catalog",
"which",
"is",
"a",
"subset",
"of",
"objects",
"selected",
"using",
"the",
"input",
"cut",
"array",
"."
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/observation/catalog.py#L54-L61 | train |
DarkEnergySurvey/ugali | ugali/observation/catalog.py | Catalog.bootstrap | def bootstrap(self, mc_bit=0x10, seed=None):
"""
Return a random catalog by boostrapping the colors of the objects in the current catalog.
"""
if seed is not None: np.random.seed(seed)
data = copy.deepcopy(self.data)
idx = np.random.randint(0,len(data),len(data))
data[self.config['catalog']['mag_1_field']][:] = self.mag_1[idx]
data[self.config['catalog']['mag_err_1_field']][:] = self.mag_err_1[idx]
data[self.config['catalog']['mag_2_field']][:] = self.mag_2[idx]
data[self.config['catalog']['mag_err_2_field']][:] = self.mag_err_2[idx]
data[self.config['catalog']['mc_source_id_field']][:] |= mc_bit
return Catalog(self.config, data=data) | python | def bootstrap(self, mc_bit=0x10, seed=None):
"""
Return a random catalog by boostrapping the colors of the objects in the current catalog.
"""
if seed is not None: np.random.seed(seed)
data = copy.deepcopy(self.data)
idx = np.random.randint(0,len(data),len(data))
data[self.config['catalog']['mag_1_field']][:] = self.mag_1[idx]
data[self.config['catalog']['mag_err_1_field']][:] = self.mag_err_1[idx]
data[self.config['catalog']['mag_2_field']][:] = self.mag_2[idx]
data[self.config['catalog']['mag_err_2_field']][:] = self.mag_err_2[idx]
data[self.config['catalog']['mc_source_id_field']][:] |= mc_bit
return Catalog(self.config, data=data) | [
"def",
"bootstrap",
"(",
"self",
",",
"mc_bit",
"=",
"0x10",
",",
"seed",
"=",
"None",
")",
":",
"if",
"seed",
"is",
"not",
"None",
":",
"np",
".",
"random",
".",
"seed",
"(",
"seed",
")",
"data",
"=",
"copy",
".",
"deepcopy",
"(",
"self",
".",
"data",
")",
"idx",
"=",
"np",
".",
"random",
".",
"randint",
"(",
"0",
",",
"len",
"(",
"data",
")",
",",
"len",
"(",
"data",
")",
")",
"data",
"[",
"self",
".",
"config",
"[",
"'catalog'",
"]",
"[",
"'mag_1_field'",
"]",
"]",
"[",
":",
"]",
"=",
"self",
".",
"mag_1",
"[",
"idx",
"]",
"data",
"[",
"self",
".",
"config",
"[",
"'catalog'",
"]",
"[",
"'mag_err_1_field'",
"]",
"]",
"[",
":",
"]",
"=",
"self",
".",
"mag_err_1",
"[",
"idx",
"]",
"data",
"[",
"self",
".",
"config",
"[",
"'catalog'",
"]",
"[",
"'mag_2_field'",
"]",
"]",
"[",
":",
"]",
"=",
"self",
".",
"mag_2",
"[",
"idx",
"]",
"data",
"[",
"self",
".",
"config",
"[",
"'catalog'",
"]",
"[",
"'mag_err_2_field'",
"]",
"]",
"[",
":",
"]",
"=",
"self",
".",
"mag_err_2",
"[",
"idx",
"]",
"data",
"[",
"self",
".",
"config",
"[",
"'catalog'",
"]",
"[",
"'mc_source_id_field'",
"]",
"]",
"[",
":",
"]",
"|=",
"mc_bit",
"return",
"Catalog",
"(",
"self",
".",
"config",
",",
"data",
"=",
"data",
")"
] | Return a random catalog by boostrapping the colors of the objects in the current catalog. | [
"Return",
"a",
"random",
"catalog",
"by",
"boostrapping",
"the",
"colors",
"of",
"the",
"objects",
"in",
"the",
"current",
"catalog",
"."
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/observation/catalog.py#L63-L75 | train |
DarkEnergySurvey/ugali | ugali/observation/catalog.py | Catalog.project | def project(self, projector = None):
"""
Project coordinates on sphere to image plane using Projector class.
"""
msg = "'%s.project': ADW 2018-05-05"%self.__class__.__name__
DeprecationWarning(msg)
if projector is None:
try:
self.projector = ugali.utils.projector.Projector(self.config['coords']['reference'][0],
self.config['coords']['reference'][1])
except KeyError:
logger.warning('Projection reference point is median (lon, lat) of catalog objects')
self.projector = ugali.utils.projector.Projector(np.median(self.lon), np.median(self.lat))
else:
self.projector = projector
self.x, self.y = self.projector.sphereToImage(self.lon, self.lat) | python | def project(self, projector = None):
"""
Project coordinates on sphere to image plane using Projector class.
"""
msg = "'%s.project': ADW 2018-05-05"%self.__class__.__name__
DeprecationWarning(msg)
if projector is None:
try:
self.projector = ugali.utils.projector.Projector(self.config['coords']['reference'][0],
self.config['coords']['reference'][1])
except KeyError:
logger.warning('Projection reference point is median (lon, lat) of catalog objects')
self.projector = ugali.utils.projector.Projector(np.median(self.lon), np.median(self.lat))
else:
self.projector = projector
self.x, self.y = self.projector.sphereToImage(self.lon, self.lat) | [
"def",
"project",
"(",
"self",
",",
"projector",
"=",
"None",
")",
":",
"msg",
"=",
"\"'%s.project': ADW 2018-05-05\"",
"%",
"self",
".",
"__class__",
".",
"__name__",
"DeprecationWarning",
"(",
"msg",
")",
"if",
"projector",
"is",
"None",
":",
"try",
":",
"self",
".",
"projector",
"=",
"ugali",
".",
"utils",
".",
"projector",
".",
"Projector",
"(",
"self",
".",
"config",
"[",
"'coords'",
"]",
"[",
"'reference'",
"]",
"[",
"0",
"]",
",",
"self",
".",
"config",
"[",
"'coords'",
"]",
"[",
"'reference'",
"]",
"[",
"1",
"]",
")",
"except",
"KeyError",
":",
"logger",
".",
"warning",
"(",
"'Projection reference point is median (lon, lat) of catalog objects'",
")",
"self",
".",
"projector",
"=",
"ugali",
".",
"utils",
".",
"projector",
".",
"Projector",
"(",
"np",
".",
"median",
"(",
"self",
".",
"lon",
")",
",",
"np",
".",
"median",
"(",
"self",
".",
"lat",
")",
")",
"else",
":",
"self",
".",
"projector",
"=",
"projector",
"self",
".",
"x",
",",
"self",
".",
"y",
"=",
"self",
".",
"projector",
".",
"sphereToImage",
"(",
"self",
".",
"lon",
",",
"self",
".",
"lat",
")"
] | Project coordinates on sphere to image plane using Projector class. | [
"Project",
"coordinates",
"on",
"sphere",
"to",
"image",
"plane",
"using",
"Projector",
"class",
"."
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/observation/catalog.py#L77-L93 | train |
DarkEnergySurvey/ugali | ugali/observation/catalog.py | Catalog.spatialBin | def spatialBin(self, roi):
"""
Calculate indices of ROI pixels corresponding to object locations.
"""
if hasattr(self,'pixel_roi_index') and hasattr(self,'pixel'):
logger.warning('Catalog alread spatially binned')
return
# ADW: Not safe to set index = -1 (since it will access last entry);
# np.inf would be better...
self.pixel = ang2pix(self.config['coords']['nside_pixel'],self.lon,self.lat)
self.pixel_roi_index = roi.indexROI(self.lon,self.lat)
logger.info("Found %i objects outside ROI"%(self.pixel_roi_index < 0).sum()) | python | def spatialBin(self, roi):
"""
Calculate indices of ROI pixels corresponding to object locations.
"""
if hasattr(self,'pixel_roi_index') and hasattr(self,'pixel'):
logger.warning('Catalog alread spatially binned')
return
# ADW: Not safe to set index = -1 (since it will access last entry);
# np.inf would be better...
self.pixel = ang2pix(self.config['coords']['nside_pixel'],self.lon,self.lat)
self.pixel_roi_index = roi.indexROI(self.lon,self.lat)
logger.info("Found %i objects outside ROI"%(self.pixel_roi_index < 0).sum()) | [
"def",
"spatialBin",
"(",
"self",
",",
"roi",
")",
":",
"if",
"hasattr",
"(",
"self",
",",
"'pixel_roi_index'",
")",
"and",
"hasattr",
"(",
"self",
",",
"'pixel'",
")",
":",
"logger",
".",
"warning",
"(",
"'Catalog alread spatially binned'",
")",
"return",
"# ADW: Not safe to set index = -1 (since it will access last entry); ",
"# np.inf would be better...",
"self",
".",
"pixel",
"=",
"ang2pix",
"(",
"self",
".",
"config",
"[",
"'coords'",
"]",
"[",
"'nside_pixel'",
"]",
",",
"self",
".",
"lon",
",",
"self",
".",
"lat",
")",
"self",
".",
"pixel_roi_index",
"=",
"roi",
".",
"indexROI",
"(",
"self",
".",
"lon",
",",
"self",
".",
"lat",
")",
"logger",
".",
"info",
"(",
"\"Found %i objects outside ROI\"",
"%",
"(",
"self",
".",
"pixel_roi_index",
"<",
"0",
")",
".",
"sum",
"(",
")",
")"
] | Calculate indices of ROI pixels corresponding to object locations. | [
"Calculate",
"indices",
"of",
"ROI",
"pixels",
"corresponding",
"to",
"object",
"locations",
"."
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/observation/catalog.py#L95-L108 | train |
DarkEnergySurvey/ugali | ugali/observation/catalog.py | Catalog.write | def write(self, outfile, clobber=True, **kwargs):
"""
Write the current object catalog to FITS file.
Parameters:
-----------
filename : the FITS file to write.
clobber : remove existing file
kwargs : passed to fitsio.write
Returns:
--------
None
"""
fitsio.write(outfile,self.data,clobber=True,**kwargs) | python | def write(self, outfile, clobber=True, **kwargs):
"""
Write the current object catalog to FITS file.
Parameters:
-----------
filename : the FITS file to write.
clobber : remove existing file
kwargs : passed to fitsio.write
Returns:
--------
None
"""
fitsio.write(outfile,self.data,clobber=True,**kwargs) | [
"def",
"write",
"(",
"self",
",",
"outfile",
",",
"clobber",
"=",
"True",
",",
"*",
"*",
"kwargs",
")",
":",
"fitsio",
".",
"write",
"(",
"outfile",
",",
"self",
".",
"data",
",",
"clobber",
"=",
"True",
",",
"*",
"*",
"kwargs",
")"
] | Write the current object catalog to FITS file.
Parameters:
-----------
filename : the FITS file to write.
clobber : remove existing file
kwargs : passed to fitsio.write
Returns:
--------
None | [
"Write",
"the",
"current",
"object",
"catalog",
"to",
"FITS",
"file",
"."
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/observation/catalog.py#L110-L124 | train |
DarkEnergySurvey/ugali | ugali/observation/catalog.py | Catalog._parse | def _parse(self, roi=None, filenames=None):
"""
Parse catalog FITS files into recarray.
Parameters:
-----------
roi : The region of interest; if 'roi=None', read all catalog files
Returns:
--------
None
"""
if (roi is not None) and (filenames is not None):
msg = "Cannot take both roi and filenames"
raise Exception(msg)
if roi is not None:
pixels = roi.getCatalogPixels()
filenames = self.config.getFilenames()['catalog'][pixels]
elif filenames is None:
filenames = self.config.getFilenames()['catalog'].compressed()
else:
filenames = np.atleast_1d(filenames)
if len(filenames) == 0:
msg = "No catalog files found."
raise Exception(msg)
# Load the data
self.data = load_infiles(filenames)
# Apply a selection cut
self._applySelection()
# Cast data to recarray (historical reasons)
self.data = self.data.view(np.recarray) | python | def _parse(self, roi=None, filenames=None):
"""
Parse catalog FITS files into recarray.
Parameters:
-----------
roi : The region of interest; if 'roi=None', read all catalog files
Returns:
--------
None
"""
if (roi is not None) and (filenames is not None):
msg = "Cannot take both roi and filenames"
raise Exception(msg)
if roi is not None:
pixels = roi.getCatalogPixels()
filenames = self.config.getFilenames()['catalog'][pixels]
elif filenames is None:
filenames = self.config.getFilenames()['catalog'].compressed()
else:
filenames = np.atleast_1d(filenames)
if len(filenames) == 0:
msg = "No catalog files found."
raise Exception(msg)
# Load the data
self.data = load_infiles(filenames)
# Apply a selection cut
self._applySelection()
# Cast data to recarray (historical reasons)
self.data = self.data.view(np.recarray) | [
"def",
"_parse",
"(",
"self",
",",
"roi",
"=",
"None",
",",
"filenames",
"=",
"None",
")",
":",
"if",
"(",
"roi",
"is",
"not",
"None",
")",
"and",
"(",
"filenames",
"is",
"not",
"None",
")",
":",
"msg",
"=",
"\"Cannot take both roi and filenames\"",
"raise",
"Exception",
"(",
"msg",
")",
"if",
"roi",
"is",
"not",
"None",
":",
"pixels",
"=",
"roi",
".",
"getCatalogPixels",
"(",
")",
"filenames",
"=",
"self",
".",
"config",
".",
"getFilenames",
"(",
")",
"[",
"'catalog'",
"]",
"[",
"pixels",
"]",
"elif",
"filenames",
"is",
"None",
":",
"filenames",
"=",
"self",
".",
"config",
".",
"getFilenames",
"(",
")",
"[",
"'catalog'",
"]",
".",
"compressed",
"(",
")",
"else",
":",
"filenames",
"=",
"np",
".",
"atleast_1d",
"(",
"filenames",
")",
"if",
"len",
"(",
"filenames",
")",
"==",
"0",
":",
"msg",
"=",
"\"No catalog files found.\"",
"raise",
"Exception",
"(",
"msg",
")",
"# Load the data",
"self",
".",
"data",
"=",
"load_infiles",
"(",
"filenames",
")",
"# Apply a selection cut",
"self",
".",
"_applySelection",
"(",
")",
"# Cast data to recarray (historical reasons)",
"self",
".",
"data",
"=",
"self",
".",
"data",
".",
"view",
"(",
"np",
".",
"recarray",
")"
] | Parse catalog FITS files into recarray.
Parameters:
-----------
roi : The region of interest; if 'roi=None', read all catalog files
Returns:
--------
None | [
"Parse",
"catalog",
"FITS",
"files",
"into",
"recarray",
"."
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/observation/catalog.py#L126-L161 | train |
DarkEnergySurvey/ugali | ugali/observation/catalog.py | Catalog._defineVariables | def _defineVariables(self):
"""
Helper funtion to define pertinent variables from catalog data.
ADW (20170627): This has largely been replaced by properties.
"""
logger.info('Catalog contains %i objects'%(len(self.data)))
mc_source_id_field = self.config['catalog']['mc_source_id_field']
if mc_source_id_field is not None:
if mc_source_id_field not in self.data.dtype.names:
array = np.zeros(len(self.data),dtype='>i8') # FITS byte-order convention
self.data = mlab.rec_append_fields(self.data,
names=mc_source_id_field,
arrs=array)
logger.info('Found %i simulated objects'%(np.sum(self.mc_source_id>0))) | python | def _defineVariables(self):
"""
Helper funtion to define pertinent variables from catalog data.
ADW (20170627): This has largely been replaced by properties.
"""
logger.info('Catalog contains %i objects'%(len(self.data)))
mc_source_id_field = self.config['catalog']['mc_source_id_field']
if mc_source_id_field is not None:
if mc_source_id_field not in self.data.dtype.names:
array = np.zeros(len(self.data),dtype='>i8') # FITS byte-order convention
self.data = mlab.rec_append_fields(self.data,
names=mc_source_id_field,
arrs=array)
logger.info('Found %i simulated objects'%(np.sum(self.mc_source_id>0))) | [
"def",
"_defineVariables",
"(",
"self",
")",
":",
"logger",
".",
"info",
"(",
"'Catalog contains %i objects'",
"%",
"(",
"len",
"(",
"self",
".",
"data",
")",
")",
")",
"mc_source_id_field",
"=",
"self",
".",
"config",
"[",
"'catalog'",
"]",
"[",
"'mc_source_id_field'",
"]",
"if",
"mc_source_id_field",
"is",
"not",
"None",
":",
"if",
"mc_source_id_field",
"not",
"in",
"self",
".",
"data",
".",
"dtype",
".",
"names",
":",
"array",
"=",
"np",
".",
"zeros",
"(",
"len",
"(",
"self",
".",
"data",
")",
",",
"dtype",
"=",
"'>i8'",
")",
"# FITS byte-order convention",
"self",
".",
"data",
"=",
"mlab",
".",
"rec_append_fields",
"(",
"self",
".",
"data",
",",
"names",
"=",
"mc_source_id_field",
",",
"arrs",
"=",
"array",
")",
"logger",
".",
"info",
"(",
"'Found %i simulated objects'",
"%",
"(",
"np",
".",
"sum",
"(",
"self",
".",
"mc_source_id",
">",
"0",
")",
")",
")"
] | Helper funtion to define pertinent variables from catalog data.
ADW (20170627): This has largely been replaced by properties. | [
"Helper",
"funtion",
"to",
"define",
"pertinent",
"variables",
"from",
"catalog",
"data",
"."
] | 21e890b4117fc810afb6fb058e8055d564f03382 | https://github.com/DarkEnergySurvey/ugali/blob/21e890b4117fc810afb6fb058e8055d564f03382/ugali/observation/catalog.py#L178-L193 | train |
consbio/ncdjango | ncdjango/geoprocessing/workflow.py | Workflow.add_node | def add_node(self, node_id, task, inputs):
"""
Adds a node to the workflow.
:param node_id: A unique identifier for the new node.
:param task: The task to run.
:param inputs: A mapping of inputs from workflow inputs, or outputs from other nodes. The format should be
`{input_name: (source, value), ...}` where `input_name` is the parameter name for the task input, source is
"input" or "dependency" and `value` is either the workflow input name (if source is "input") or a 2-tuple
with a node id and an output parameter name from that node's task to map to the input.
"""
if node_id in self.nodes_by_id:
raise ValueError('The node {0} already exists in this workflow.'.format(node_id))
node = WorkflowNode(node_id, task, inputs)
self.nodes_by_id[node_id] = node
for source, value in six.itervalues(inputs):
if source == 'dependency':
dependents = self.dependents_by_node_id.get(value[0], set())
dependents.add(node_id)
self.dependents_by_node_id[value[0]] = dependents | python | def add_node(self, node_id, task, inputs):
"""
Adds a node to the workflow.
:param node_id: A unique identifier for the new node.
:param task: The task to run.
:param inputs: A mapping of inputs from workflow inputs, or outputs from other nodes. The format should be
`{input_name: (source, value), ...}` where `input_name` is the parameter name for the task input, source is
"input" or "dependency" and `value` is either the workflow input name (if source is "input") or a 2-tuple
with a node id and an output parameter name from that node's task to map to the input.
"""
if node_id in self.nodes_by_id:
raise ValueError('The node {0} already exists in this workflow.'.format(node_id))
node = WorkflowNode(node_id, task, inputs)
self.nodes_by_id[node_id] = node
for source, value in six.itervalues(inputs):
if source == 'dependency':
dependents = self.dependents_by_node_id.get(value[0], set())
dependents.add(node_id)
self.dependents_by_node_id[value[0]] = dependents | [
"def",
"add_node",
"(",
"self",
",",
"node_id",
",",
"task",
",",
"inputs",
")",
":",
"if",
"node_id",
"in",
"self",
".",
"nodes_by_id",
":",
"raise",
"ValueError",
"(",
"'The node {0} already exists in this workflow.'",
".",
"format",
"(",
"node_id",
")",
")",
"node",
"=",
"WorkflowNode",
"(",
"node_id",
",",
"task",
",",
"inputs",
")",
"self",
".",
"nodes_by_id",
"[",
"node_id",
"]",
"=",
"node",
"for",
"source",
",",
"value",
"in",
"six",
".",
"itervalues",
"(",
"inputs",
")",
":",
"if",
"source",
"==",
"'dependency'",
":",
"dependents",
"=",
"self",
".",
"dependents_by_node_id",
".",
"get",
"(",
"value",
"[",
"0",
"]",
",",
"set",
"(",
")",
")",
"dependents",
".",
"add",
"(",
"node_id",
")",
"self",
".",
"dependents_by_node_id",
"[",
"value",
"[",
"0",
"]",
"]",
"=",
"dependents"
] | Adds a node to the workflow.
:param node_id: A unique identifier for the new node.
:param task: The task to run.
:param inputs: A mapping of inputs from workflow inputs, or outputs from other nodes. The format should be
`{input_name: (source, value), ...}` where `input_name` is the parameter name for the task input, source is
"input" or "dependency" and `value` is either the workflow input name (if source is "input") or a 2-tuple
with a node id and an output parameter name from that node's task to map to the input. | [
"Adds",
"a",
"node",
"to",
"the",
"workflow",
"."
] | f807bfd1e4083ab29fbc3c4d4418be108383a710 | https://github.com/consbio/ncdjango/blob/f807bfd1e4083ab29fbc3c4d4418be108383a710/ncdjango/geoprocessing/workflow.py#L179-L201 | train |
consbio/ncdjango | ncdjango/geoprocessing/workflow.py | Workflow.map_output | def map_output(self, node_id, node_output_name, parameter_name):
"""
Maps the output from a node to a workflow output.
:param node_id: The id of the node to map from.
:param node_output_name: The output parameter name for the node task to map to the workflow output.
:param parameter_name: The workflow output parameter name.
"""
self.output_mapping[parameter_name] = (node_id, node_output_name)
dependents = self.dependents_by_node_id.get(node_id, set())
dependents.add('output_{}'.format(parameter_name))
self.dependents_by_node_id[node_id] = dependents | python | def map_output(self, node_id, node_output_name, parameter_name):
"""
Maps the output from a node to a workflow output.
:param node_id: The id of the node to map from.
:param node_output_name: The output parameter name for the node task to map to the workflow output.
:param parameter_name: The workflow output parameter name.
"""
self.output_mapping[parameter_name] = (node_id, node_output_name)
dependents = self.dependents_by_node_id.get(node_id, set())
dependents.add('output_{}'.format(parameter_name))
self.dependents_by_node_id[node_id] = dependents | [
"def",
"map_output",
"(",
"self",
",",
"node_id",
",",
"node_output_name",
",",
"parameter_name",
")",
":",
"self",
".",
"output_mapping",
"[",
"parameter_name",
"]",
"=",
"(",
"node_id",
",",
"node_output_name",
")",
"dependents",
"=",
"self",
".",
"dependents_by_node_id",
".",
"get",
"(",
"node_id",
",",
"set",
"(",
")",
")",
"dependents",
".",
"add",
"(",
"'output_{}'",
".",
"format",
"(",
"parameter_name",
")",
")",
"self",
".",
"dependents_by_node_id",
"[",
"node_id",
"]",
"=",
"dependents"
] | Maps the output from a node to a workflow output.
:param node_id: The id of the node to map from.
:param node_output_name: The output parameter name for the node task to map to the workflow output.
:param parameter_name: The workflow output parameter name. | [
"Maps",
"the",
"output",
"from",
"a",
"node",
"to",
"a",
"workflow",
"output",
"."
] | f807bfd1e4083ab29fbc3c4d4418be108383a710 | https://github.com/consbio/ncdjango/blob/f807bfd1e4083ab29fbc3c4d4418be108383a710/ncdjango/geoprocessing/workflow.py#L203-L216 | train |
consbio/ncdjango | ncdjango/geoprocessing/workflow.py | Workflow.to_json | def to_json(self, indent=None):
"""Serialize this workflow to JSON"""
inputs = ParameterCollection(self.inputs)
d = {
'meta': {
'name': self.name,
'description': self.description
},
'inputs': [],
'workflow': [],
'outputs': [{'name': k, 'node': v} for k, v in six.iteritems(self.output_mapping)]
}
for parameter in self.inputs:
input_info = {
'name': parameter.name,
'type': parameter.id
}
args, kwargs = parameter.serialize_args()
args = list(args)
args.pop(0) # 'name' is already taken care of
kwargs.pop('required', None) # 'required' is assumed True for workflow inputs
if args or kwargs:
input_info['args'] = [args, kwargs]
d['inputs'].append(input_info)
for node in sorted(six.itervalues(self.nodes_by_id), key=lambda x: x.id):
task_name = node.task.name
if not task_name:
raise ValueError('The task {0} does not have a name and therefore cannot be serialized.'.format(
node.task.__class__.__name__)
)
node_inputs = {}
for input_name, (source, value) in six.iteritems(node.inputs):
input_info = {'source': source}
if source == 'input':
input_info['input'] = inputs.by_name[value].name
else:
input_info['node'] = value
node_inputs[input_name] = input_info
d['workflow'].append({
'id': node.id,
'task': task_name,
'inputs': node_inputs
})
return json.dumps(d, indent=indent) | python | def to_json(self, indent=None):
"""Serialize this workflow to JSON"""
inputs = ParameterCollection(self.inputs)
d = {
'meta': {
'name': self.name,
'description': self.description
},
'inputs': [],
'workflow': [],
'outputs': [{'name': k, 'node': v} for k, v in six.iteritems(self.output_mapping)]
}
for parameter in self.inputs:
input_info = {
'name': parameter.name,
'type': parameter.id
}
args, kwargs = parameter.serialize_args()
args = list(args)
args.pop(0) # 'name' is already taken care of
kwargs.pop('required', None) # 'required' is assumed True for workflow inputs
if args or kwargs:
input_info['args'] = [args, kwargs]
d['inputs'].append(input_info)
for node in sorted(six.itervalues(self.nodes_by_id), key=lambda x: x.id):
task_name = node.task.name
if not task_name:
raise ValueError('The task {0} does not have a name and therefore cannot be serialized.'.format(
node.task.__class__.__name__)
)
node_inputs = {}
for input_name, (source, value) in six.iteritems(node.inputs):
input_info = {'source': source}
if source == 'input':
input_info['input'] = inputs.by_name[value].name
else:
input_info['node'] = value
node_inputs[input_name] = input_info
d['workflow'].append({
'id': node.id,
'task': task_name,
'inputs': node_inputs
})
return json.dumps(d, indent=indent) | [
"def",
"to_json",
"(",
"self",
",",
"indent",
"=",
"None",
")",
":",
"inputs",
"=",
"ParameterCollection",
"(",
"self",
".",
"inputs",
")",
"d",
"=",
"{",
"'meta'",
":",
"{",
"'name'",
":",
"self",
".",
"name",
",",
"'description'",
":",
"self",
".",
"description",
"}",
",",
"'inputs'",
":",
"[",
"]",
",",
"'workflow'",
":",
"[",
"]",
",",
"'outputs'",
":",
"[",
"{",
"'name'",
":",
"k",
",",
"'node'",
":",
"v",
"}",
"for",
"k",
",",
"v",
"in",
"six",
".",
"iteritems",
"(",
"self",
".",
"output_mapping",
")",
"]",
"}",
"for",
"parameter",
"in",
"self",
".",
"inputs",
":",
"input_info",
"=",
"{",
"'name'",
":",
"parameter",
".",
"name",
",",
"'type'",
":",
"parameter",
".",
"id",
"}",
"args",
",",
"kwargs",
"=",
"parameter",
".",
"serialize_args",
"(",
")",
"args",
"=",
"list",
"(",
"args",
")",
"args",
".",
"pop",
"(",
"0",
")",
"# 'name' is already taken care of",
"kwargs",
".",
"pop",
"(",
"'required'",
",",
"None",
")",
"# 'required' is assumed True for workflow inputs",
"if",
"args",
"or",
"kwargs",
":",
"input_info",
"[",
"'args'",
"]",
"=",
"[",
"args",
",",
"kwargs",
"]",
"d",
"[",
"'inputs'",
"]",
".",
"append",
"(",
"input_info",
")",
"for",
"node",
"in",
"sorted",
"(",
"six",
".",
"itervalues",
"(",
"self",
".",
"nodes_by_id",
")",
",",
"key",
"=",
"lambda",
"x",
":",
"x",
".",
"id",
")",
":",
"task_name",
"=",
"node",
".",
"task",
".",
"name",
"if",
"not",
"task_name",
":",
"raise",
"ValueError",
"(",
"'The task {0} does not have a name and therefore cannot be serialized.'",
".",
"format",
"(",
"node",
".",
"task",
".",
"__class__",
".",
"__name__",
")",
")",
"node_inputs",
"=",
"{",
"}",
"for",
"input_name",
",",
"(",
"source",
",",
"value",
")",
"in",
"six",
".",
"iteritems",
"(",
"node",
".",
"inputs",
")",
":",
"input_info",
"=",
"{",
"'source'",
":",
"source",
"}",
"if",
"source",
"==",
"'input'",
":",
"input_info",
"[",
"'input'",
"]",
"=",
"inputs",
".",
"by_name",
"[",
"value",
"]",
".",
"name",
"else",
":",
"input_info",
"[",
"'node'",
"]",
"=",
"value",
"node_inputs",
"[",
"input_name",
"]",
"=",
"input_info",
"d",
"[",
"'workflow'",
"]",
".",
"append",
"(",
"{",
"'id'",
":",
"node",
".",
"id",
",",
"'task'",
":",
"task_name",
",",
"'inputs'",
":",
"node_inputs",
"}",
")",
"return",
"json",
".",
"dumps",
"(",
"d",
",",
"indent",
"=",
"indent",
")"
] | Serialize this workflow to JSON | [
"Serialize",
"this",
"workflow",
"to",
"JSON"
] | f807bfd1e4083ab29fbc3c4d4418be108383a710 | https://github.com/consbio/ncdjango/blob/f807bfd1e4083ab29fbc3c4d4418be108383a710/ncdjango/geoprocessing/workflow.py#L218-L272 | train |
consbio/ncdjango | ncdjango/geoprocessing/workflow.py | Workflow.from_json | def from_json(cls, text):
"""Return a new workflow, deserialized from a JSON string"""
d = json.loads(text)
meta = d.get('meta', {})
workflow = cls(name=meta.get('name'), description=meta.get('description'))
for workflow_input in d.get('inputs', []):
parameter_cls = Parameter.by_id(workflow_input['type'])
args = [workflow_input['name']]
kwargs = {'required': True}
if workflow_input.get('args'):
args = workflow_input['args'][0] + args
kwargs.update(workflow_input['args'][1])
args, kwargs = parameter_cls.deserialize_args(args, kwargs)
workflow.inputs.append(parameter_cls(*args, **kwargs))
for node in d.get('workflow', []):
node_inputs = {}
for k, v in six.iteritems(node.get('inputs', {})):
node_inputs[k] = (v['source'], v.get('input') or v.get('node'))
workflow.add_node(node['id'], Task.by_name(node['task'])(), node_inputs)
for output in d.get('outputs', []):
node = output['node']
node_parameters = ParameterCollection(workflow.nodes_by_id[node[0]].task.outputs)
# Add parameter to workflow output
output_param = copy.copy(node_parameters.by_name[node[1]])
output_param.name = output['name']
workflow.outputs.append(output_param)
workflow.map_output(node[0], node[1], output['name'])
return workflow | python | def from_json(cls, text):
"""Return a new workflow, deserialized from a JSON string"""
d = json.loads(text)
meta = d.get('meta', {})
workflow = cls(name=meta.get('name'), description=meta.get('description'))
for workflow_input in d.get('inputs', []):
parameter_cls = Parameter.by_id(workflow_input['type'])
args = [workflow_input['name']]
kwargs = {'required': True}
if workflow_input.get('args'):
args = workflow_input['args'][0] + args
kwargs.update(workflow_input['args'][1])
args, kwargs = parameter_cls.deserialize_args(args, kwargs)
workflow.inputs.append(parameter_cls(*args, **kwargs))
for node in d.get('workflow', []):
node_inputs = {}
for k, v in six.iteritems(node.get('inputs', {})):
node_inputs[k] = (v['source'], v.get('input') or v.get('node'))
workflow.add_node(node['id'], Task.by_name(node['task'])(), node_inputs)
for output in d.get('outputs', []):
node = output['node']
node_parameters = ParameterCollection(workflow.nodes_by_id[node[0]].task.outputs)
# Add parameter to workflow output
output_param = copy.copy(node_parameters.by_name[node[1]])
output_param.name = output['name']
workflow.outputs.append(output_param)
workflow.map_output(node[0], node[1], output['name'])
return workflow | [
"def",
"from_json",
"(",
"cls",
",",
"text",
")",
":",
"d",
"=",
"json",
".",
"loads",
"(",
"text",
")",
"meta",
"=",
"d",
".",
"get",
"(",
"'meta'",
",",
"{",
"}",
")",
"workflow",
"=",
"cls",
"(",
"name",
"=",
"meta",
".",
"get",
"(",
"'name'",
")",
",",
"description",
"=",
"meta",
".",
"get",
"(",
"'description'",
")",
")",
"for",
"workflow_input",
"in",
"d",
".",
"get",
"(",
"'inputs'",
",",
"[",
"]",
")",
":",
"parameter_cls",
"=",
"Parameter",
".",
"by_id",
"(",
"workflow_input",
"[",
"'type'",
"]",
")",
"args",
"=",
"[",
"workflow_input",
"[",
"'name'",
"]",
"]",
"kwargs",
"=",
"{",
"'required'",
":",
"True",
"}",
"if",
"workflow_input",
".",
"get",
"(",
"'args'",
")",
":",
"args",
"=",
"workflow_input",
"[",
"'args'",
"]",
"[",
"0",
"]",
"+",
"args",
"kwargs",
".",
"update",
"(",
"workflow_input",
"[",
"'args'",
"]",
"[",
"1",
"]",
")",
"args",
",",
"kwargs",
"=",
"parameter_cls",
".",
"deserialize_args",
"(",
"args",
",",
"kwargs",
")",
"workflow",
".",
"inputs",
".",
"append",
"(",
"parameter_cls",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
")",
"for",
"node",
"in",
"d",
".",
"get",
"(",
"'workflow'",
",",
"[",
"]",
")",
":",
"node_inputs",
"=",
"{",
"}",
"for",
"k",
",",
"v",
"in",
"six",
".",
"iteritems",
"(",
"node",
".",
"get",
"(",
"'inputs'",
",",
"{",
"}",
")",
")",
":",
"node_inputs",
"[",
"k",
"]",
"=",
"(",
"v",
"[",
"'source'",
"]",
",",
"v",
".",
"get",
"(",
"'input'",
")",
"or",
"v",
".",
"get",
"(",
"'node'",
")",
")",
"workflow",
".",
"add_node",
"(",
"node",
"[",
"'id'",
"]",
",",
"Task",
".",
"by_name",
"(",
"node",
"[",
"'task'",
"]",
")",
"(",
")",
",",
"node_inputs",
")",
"for",
"output",
"in",
"d",
".",
"get",
"(",
"'outputs'",
",",
"[",
"]",
")",
":",
"node",
"=",
"output",
"[",
"'node'",
"]",
"node_parameters",
"=",
"ParameterCollection",
"(",
"workflow",
".",
"nodes_by_id",
"[",
"node",
"[",
"0",
"]",
"]",
".",
"task",
".",
"outputs",
")",
"# Add parameter to workflow output",
"output_param",
"=",
"copy",
".",
"copy",
"(",
"node_parameters",
".",
"by_name",
"[",
"node",
"[",
"1",
"]",
"]",
")",
"output_param",
".",
"name",
"=",
"output",
"[",
"'name'",
"]",
"workflow",
".",
"outputs",
".",
"append",
"(",
"output_param",
")",
"workflow",
".",
"map_output",
"(",
"node",
"[",
"0",
"]",
",",
"node",
"[",
"1",
"]",
",",
"output",
"[",
"'name'",
"]",
")",
"return",
"workflow"
] | Return a new workflow, deserialized from a JSON string | [
"Return",
"a",
"new",
"workflow",
"deserialized",
"from",
"a",
"JSON",
"string"
] | f807bfd1e4083ab29fbc3c4d4418be108383a710 | https://github.com/consbio/ncdjango/blob/f807bfd1e4083ab29fbc3c4d4418be108383a710/ncdjango/geoprocessing/workflow.py#L275-L313 | train |
MasterKale/django-cra-helper | cra_helper/management/commands/runserver.py | Command.get_handler | def get_handler(self, *args, **options):
'''
Return the static files serving handler wrapping the default handler,
if static files should be served. Otherwise return the default handler.
'''
handler = super().get_handler(*args, **options)
use_static_handler = options['use_static_handler']
insecure_serving = options['insecure_serving']
if use_static_handler and (settings.DEBUG or insecure_serving):
return CRAStaticFilesHandler(handler)
return handler | python | def get_handler(self, *args, **options):
'''
Return the static files serving handler wrapping the default handler,
if static files should be served. Otherwise return the default handler.
'''
handler = super().get_handler(*args, **options)
use_static_handler = options['use_static_handler']
insecure_serving = options['insecure_serving']
if use_static_handler and (settings.DEBUG or insecure_serving):
return CRAStaticFilesHandler(handler)
return handler | [
"def",
"get_handler",
"(",
"self",
",",
"*",
"args",
",",
"*",
"*",
"options",
")",
":",
"handler",
"=",
"super",
"(",
")",
".",
"get_handler",
"(",
"*",
"args",
",",
"*",
"*",
"options",
")",
"use_static_handler",
"=",
"options",
"[",
"'use_static_handler'",
"]",
"insecure_serving",
"=",
"options",
"[",
"'insecure_serving'",
"]",
"if",
"use_static_handler",
"and",
"(",
"settings",
".",
"DEBUG",
"or",
"insecure_serving",
")",
":",
"return",
"CRAStaticFilesHandler",
"(",
"handler",
")",
"return",
"handler"
] | Return the static files serving handler wrapping the default handler,
if static files should be served. Otherwise return the default handler. | [
"Return",
"the",
"static",
"files",
"serving",
"handler",
"wrapping",
"the",
"default",
"handler",
"if",
"static",
"files",
"should",
"be",
"served",
".",
"Otherwise",
"return",
"the",
"default",
"handler",
"."
] | ba50c643c181a18b80ee9bbdbea74b58abd6daad | https://github.com/MasterKale/django-cra-helper/blob/ba50c643c181a18b80ee9bbdbea74b58abd6daad/cra_helper/management/commands/runserver.py#L11-L21 | train |
Subsets and Splits