repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
sequence
docstring
stringlengths
3
17.3k
docstring_tokens
sequence
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
coderholic/pyradio
pyradio/config.py
PyRadioStations._playlist_format_changed
def _playlist_format_changed(self): """ Check if we have new or old format and report if format has changed Format type can change by editing encoding, deleting a non-utf-8 station etc. """ new_format = False for n in self.stations: if n[2] != '': new_format = True break if self.new_format == new_format: return False else: return True
python
def _playlist_format_changed(self): """ Check if we have new or old format and report if format has changed Format type can change by editing encoding, deleting a non-utf-8 station etc. """ new_format = False for n in self.stations: if n[2] != '': new_format = True break if self.new_format == new_format: return False else: return True
[ "def", "_playlist_format_changed", "(", "self", ")", ":", "new_format", "=", "False", "for", "n", "in", "self", ".", "stations", ":", "if", "n", "[", "2", "]", "!=", "''", ":", "new_format", "=", "True", "break", "if", "self", ".", "new_format", "==", "new_format", ":", "return", "False", "else", ":", "return", "True" ]
Check if we have new or old format and report if format has changed Format type can change by editing encoding, deleting a non-utf-8 station etc.
[ "Check", "if", "we", "have", "new", "or", "old", "format", "and", "report", "if", "format", "has", "changed" ]
c5219d350bccbccd49dbd627c1f886a952ea1963
https://github.com/coderholic/pyradio/blob/c5219d350bccbccd49dbd627c1f886a952ea1963/pyradio/config.py#L241-L256
train
coderholic/pyradio
pyradio/config.py
PyRadioStations.save_playlist_file
def save_playlist_file(self, stationFile=''): """ Save a playlist Create a txt file and write stations in it. Then rename it to final target return 0: All ok -1: Error writing file -2: Error renaming file """ if self._playlist_format_changed(): self.dirty_playlist = True self.new_format = not self.new_format if stationFile: st_file = stationFile else: st_file = self.stations_file if not self.dirty_playlist: if logger.isEnabledFor(logging.DEBUG): logger.debug('Playlist not modified...') return 0 st_new_file = st_file.replace('.csv', '.txt') tmp_stations = self.stations[:] tmp_stations.reverse() if self.new_format: tmp_stations.append([ '# Find lots more stations at http://www.iheart.com' , '', '' ]) else: tmp_stations.append([ '# Find lots more stations at http://www.iheart.com' , '' ]) tmp_stations.reverse() try: with open(st_new_file, 'w') as cfgfile: writter = csv.writer(cfgfile) for a_station in tmp_stations: writter.writerow(self._format_playlist_row(a_station)) except: if logger.isEnabledFor(logging.DEBUG): logger.debug('Cannot open playlist file for writing,,,') return -1 try: move(st_new_file, st_file) except: if logger.isEnabledFor(logging.DEBUG): logger.debug('Cannot rename playlist file...') return -2 self.dirty_playlist = False return 0
python
def save_playlist_file(self, stationFile=''): """ Save a playlist Create a txt file and write stations in it. Then rename it to final target return 0: All ok -1: Error writing file -2: Error renaming file """ if self._playlist_format_changed(): self.dirty_playlist = True self.new_format = not self.new_format if stationFile: st_file = stationFile else: st_file = self.stations_file if not self.dirty_playlist: if logger.isEnabledFor(logging.DEBUG): logger.debug('Playlist not modified...') return 0 st_new_file = st_file.replace('.csv', '.txt') tmp_stations = self.stations[:] tmp_stations.reverse() if self.new_format: tmp_stations.append([ '# Find lots more stations at http://www.iheart.com' , '', '' ]) else: tmp_stations.append([ '# Find lots more stations at http://www.iheart.com' , '' ]) tmp_stations.reverse() try: with open(st_new_file, 'w') as cfgfile: writter = csv.writer(cfgfile) for a_station in tmp_stations: writter.writerow(self._format_playlist_row(a_station)) except: if logger.isEnabledFor(logging.DEBUG): logger.debug('Cannot open playlist file for writing,,,') return -1 try: move(st_new_file, st_file) except: if logger.isEnabledFor(logging.DEBUG): logger.debug('Cannot rename playlist file...') return -2 self.dirty_playlist = False return 0
[ "def", "save_playlist_file", "(", "self", ",", "stationFile", "=", "''", ")", ":", "if", "self", ".", "_playlist_format_changed", "(", ")", ":", "self", ".", "dirty_playlist", "=", "True", "self", ".", "new_format", "=", "not", "self", ".", "new_format", "if", "stationFile", ":", "st_file", "=", "stationFile", "else", ":", "st_file", "=", "self", ".", "stations_file", "if", "not", "self", ".", "dirty_playlist", ":", "if", "logger", ".", "isEnabledFor", "(", "logging", ".", "DEBUG", ")", ":", "logger", ".", "debug", "(", "'Playlist not modified...'", ")", "return", "0", "st_new_file", "=", "st_file", ".", "replace", "(", "'.csv'", ",", "'.txt'", ")", "tmp_stations", "=", "self", ".", "stations", "[", ":", "]", "tmp_stations", ".", "reverse", "(", ")", "if", "self", ".", "new_format", ":", "tmp_stations", ".", "append", "(", "[", "'# Find lots more stations at http://www.iheart.com'", ",", "''", ",", "''", "]", ")", "else", ":", "tmp_stations", ".", "append", "(", "[", "'# Find lots more stations at http://www.iheart.com'", ",", "''", "]", ")", "tmp_stations", ".", "reverse", "(", ")", "try", ":", "with", "open", "(", "st_new_file", ",", "'w'", ")", "as", "cfgfile", ":", "writter", "=", "csv", ".", "writer", "(", "cfgfile", ")", "for", "a_station", "in", "tmp_stations", ":", "writter", ".", "writerow", "(", "self", ".", "_format_playlist_row", "(", "a_station", ")", ")", "except", ":", "if", "logger", ".", "isEnabledFor", "(", "logging", ".", "DEBUG", ")", ":", "logger", ".", "debug", "(", "'Cannot open playlist file for writing,,,'", ")", "return", "-", "1", "try", ":", "move", "(", "st_new_file", ",", "st_file", ")", "except", ":", "if", "logger", ".", "isEnabledFor", "(", "logging", ".", "DEBUG", ")", ":", "logger", ".", "debug", "(", "'Cannot rename playlist file...'", ")", "return", "-", "2", "self", ".", "dirty_playlist", "=", "False", "return", "0" ]
Save a playlist Create a txt file and write stations in it. Then rename it to final target return 0: All ok -1: Error writing file -2: Error renaming file
[ "Save", "a", "playlist", "Create", "a", "txt", "file", "and", "write", "stations", "in", "it", ".", "Then", "rename", "it", "to", "final", "target" ]
c5219d350bccbccd49dbd627c1f886a952ea1963
https://github.com/coderholic/pyradio/blob/c5219d350bccbccd49dbd627c1f886a952ea1963/pyradio/config.py#L258-L306
train
coderholic/pyradio
pyradio/config.py
PyRadioStations._bytes_to_human
def _bytes_to_human(self, B): ''' Return the given bytes as a human friendly KB, MB, GB, or TB string ''' KB = float(1024) MB = float(KB ** 2) # 1,048,576 GB = float(KB ** 3) # 1,073,741,824 TB = float(KB ** 4) # 1,099,511,627,776 if B < KB: return '{0} B'.format(B) B = float(B) if KB <= B < MB: return '{0:.2f} KB'.format(B/KB) elif MB <= B < GB: return '{0:.2f} MB'.format(B/MB) elif GB <= B < TB: return '{0:.2f} GB'.format(B/GB) elif TB <= B: return '{0:.2f} TB'.format(B/TB)
python
def _bytes_to_human(self, B): ''' Return the given bytes as a human friendly KB, MB, GB, or TB string ''' KB = float(1024) MB = float(KB ** 2) # 1,048,576 GB = float(KB ** 3) # 1,073,741,824 TB = float(KB ** 4) # 1,099,511,627,776 if B < KB: return '{0} B'.format(B) B = float(B) if KB <= B < MB: return '{0:.2f} KB'.format(B/KB) elif MB <= B < GB: return '{0:.2f} MB'.format(B/MB) elif GB <= B < TB: return '{0:.2f} GB'.format(B/GB) elif TB <= B: return '{0:.2f} TB'.format(B/TB)
[ "def", "_bytes_to_human", "(", "self", ",", "B", ")", ":", "KB", "=", "float", "(", "1024", ")", "MB", "=", "float", "(", "KB", "**", "2", ")", "# 1,048,576", "GB", "=", "float", "(", "KB", "**", "3", ")", "# 1,073,741,824", "TB", "=", "float", "(", "KB", "**", "4", ")", "# 1,099,511,627,776", "if", "B", "<", "KB", ":", "return", "'{0} B'", ".", "format", "(", "B", ")", "B", "=", "float", "(", "B", ")", "if", "KB", "<=", "B", "<", "MB", ":", "return", "'{0:.2f} KB'", ".", "format", "(", "B", "/", "KB", ")", "elif", "MB", "<=", "B", "<", "GB", ":", "return", "'{0:.2f} MB'", ".", "format", "(", "B", "/", "MB", ")", "elif", "GB", "<=", "B", "<", "TB", ":", "return", "'{0:.2f} GB'", ".", "format", "(", "B", "/", "GB", ")", "elif", "TB", "<=", "B", ":", "return", "'{0:.2f} TB'", ".", "format", "(", "B", "/", "TB", ")" ]
Return the given bytes as a human friendly KB, MB, GB, or TB string
[ "Return", "the", "given", "bytes", "as", "a", "human", "friendly", "KB", "MB", "GB", "or", "TB", "string" ]
c5219d350bccbccd49dbd627c1f886a952ea1963
https://github.com/coderholic/pyradio/blob/c5219d350bccbccd49dbd627c1f886a952ea1963/pyradio/config.py#L321-L338
train
coderholic/pyradio
pyradio/config.py
PyRadioStations.append_station
def append_station(self, params, stationFile=''): """ Append a station to csv file return 0: All ok -2 - playlist not found -3 - negative number specified -4 - number not found -5: Error writing file -6: Error renaming file """ if self.new_format: if stationFile: st_file = stationFile else: st_file = self.stations_file st_file, ret = self._get_playlist_abspath_from_data(st_file) if ret < -1: return ret try: with open(st_file, 'a') as cfgfile: writter = csv.writer(cfgfile) writter.writerow(params) return 0 except: return -5 else: self.stations.append([ params[0], params[1], params[2] ]) self.dirty_playlist = True st_file, ret = self._get_playlist_abspath_from_data(stationFile) if ret < -1: return ret ret = self.save_playlist_file(st_file) if ret < 0: ret -= 4 return ret
python
def append_station(self, params, stationFile=''): """ Append a station to csv file return 0: All ok -2 - playlist not found -3 - negative number specified -4 - number not found -5: Error writing file -6: Error renaming file """ if self.new_format: if stationFile: st_file = stationFile else: st_file = self.stations_file st_file, ret = self._get_playlist_abspath_from_data(st_file) if ret < -1: return ret try: with open(st_file, 'a') as cfgfile: writter = csv.writer(cfgfile) writter.writerow(params) return 0 except: return -5 else: self.stations.append([ params[0], params[1], params[2] ]) self.dirty_playlist = True st_file, ret = self._get_playlist_abspath_from_data(stationFile) if ret < -1: return ret ret = self.save_playlist_file(st_file) if ret < 0: ret -= 4 return ret
[ "def", "append_station", "(", "self", ",", "params", ",", "stationFile", "=", "''", ")", ":", "if", "self", ".", "new_format", ":", "if", "stationFile", ":", "st_file", "=", "stationFile", "else", ":", "st_file", "=", "self", ".", "stations_file", "st_file", ",", "ret", "=", "self", ".", "_get_playlist_abspath_from_data", "(", "st_file", ")", "if", "ret", "<", "-", "1", ":", "return", "ret", "try", ":", "with", "open", "(", "st_file", ",", "'a'", ")", "as", "cfgfile", ":", "writter", "=", "csv", ".", "writer", "(", "cfgfile", ")", "writter", ".", "writerow", "(", "params", ")", "return", "0", "except", ":", "return", "-", "5", "else", ":", "self", ".", "stations", ".", "append", "(", "[", "params", "[", "0", "]", ",", "params", "[", "1", "]", ",", "params", "[", "2", "]", "]", ")", "self", ".", "dirty_playlist", "=", "True", "st_file", ",", "ret", "=", "self", ".", "_get_playlist_abspath_from_data", "(", "stationFile", ")", "if", "ret", "<", "-", "1", ":", "return", "ret", "ret", "=", "self", ".", "save_playlist_file", "(", "st_file", ")", "if", "ret", "<", "0", ":", "ret", "-=", "4", "return", "ret" ]
Append a station to csv file return 0: All ok -2 - playlist not found -3 - negative number specified -4 - number not found -5: Error writing file -6: Error renaming file
[ "Append", "a", "station", "to", "csv", "file" ]
c5219d350bccbccd49dbd627c1f886a952ea1963
https://github.com/coderholic/pyradio/blob/c5219d350bccbccd49dbd627c1f886a952ea1963/pyradio/config.py#L340-L375
train
coderholic/pyradio
pyradio/config.py
PyRadioConfig._check_config_file
def _check_config_file(self, usr): ''' Make sure a config file exists in the config dir ''' package_config_file = path.join(path.dirname(__file__), 'config') user_config_file = path.join(usr, 'config') ''' restore config from bck file ''' if path.exists(user_config_file + '.restore'): try: copyfile(user_config_file + '.restore', user_config_file) remove(self.user_config_file + '.restore') except: pass ''' Copy package config into user dir ''' if not path.exists(user_config_file): copyfile(package_config_file, user_config_file)
python
def _check_config_file(self, usr): ''' Make sure a config file exists in the config dir ''' package_config_file = path.join(path.dirname(__file__), 'config') user_config_file = path.join(usr, 'config') ''' restore config from bck file ''' if path.exists(user_config_file + '.restore'): try: copyfile(user_config_file + '.restore', user_config_file) remove(self.user_config_file + '.restore') except: pass ''' Copy package config into user dir ''' if not path.exists(user_config_file): copyfile(package_config_file, user_config_file)
[ "def", "_check_config_file", "(", "self", ",", "usr", ")", ":", "package_config_file", "=", "path", ".", "join", "(", "path", ".", "dirname", "(", "__file__", ")", ",", "'config'", ")", "user_config_file", "=", "path", ".", "join", "(", "usr", ",", "'config'", ")", "''' restore config from bck file '''", "if", "path", ".", "exists", "(", "user_config_file", "+", "'.restore'", ")", ":", "try", ":", "copyfile", "(", "user_config_file", "+", "'.restore'", ",", "user_config_file", ")", "remove", "(", "self", ".", "user_config_file", "+", "'.restore'", ")", "except", ":", "pass", "''' Copy package config into user dir '''", "if", "not", "path", ".", "exists", "(", "user_config_file", ")", ":", "copyfile", "(", "package_config_file", ",", "user_config_file", ")" ]
Make sure a config file exists in the config dir
[ "Make", "sure", "a", "config", "file", "exists", "in", "the", "config", "dir" ]
c5219d350bccbccd49dbd627c1f886a952ea1963
https://github.com/coderholic/pyradio/blob/c5219d350bccbccd49dbd627c1f886a952ea1963/pyradio/config.py#L566-L581
train
coderholic/pyradio
pyradio/config.py
PyRadioConfig.save_config
def save_config(self): """ Save config file Creates config.restore (back up file) Returns: -1: Error saving config 0: Config saved successfully 1: Config not saved (not modified""" if not self.opts['dirty_config'][1]: if logger.isEnabledFor(logging.INFO): logger.info('Config not saved (not modified)') return 1 txt ='''# PyRadio Configuration File # Player selection # This is the equivalent to the -u , --use-player command line parameter # Specify the player to use with PyRadio, or the player detection order # Example: # player = vlc # or # player = vlc,mpv, mplayer # Default value: mpv,mplayer,vlc player = {0} # Default playlist # This is the playlist to open if none is specified # You can scecify full path to CSV file, or if the playlist is in the # config directory, playlist name (filename without extension) or # playlist number (as reported by -ls command line option) # Default value: stations default_playlist = {1} # Default station # This is the equivalent to the -p , --play command line parameter # The station number within the default playlist to play # Value is 1..number of stations, "-1" or "False" means no auto play # "0" or "Random" means play a random station # Default value: False default_station = {2} # Default encoding # This is the encoding used by default when reading data provided by # a station (such as song title, etc.) If reading said data ends up # in an error, 'utf-8' will be used instead. # # A valid encoding list can be found at: # https://docs.python.org/2.7/library/codecs.html#standard-encodings # replacing 2.7 with specific version: # 3.0 up to current python version. # # Default value: utf-8 default_encoding = {3} # Connection timeout # PyRadio will wait for this number of seconds to get a station/server # message indicating that playback has actually started. # If this does not happen (within this number of seconds after the # connection is initiated), PyRadio will consider the station # unreachable, and display the "Failed to connect to: [station]" # message. # # Valid values: 5 - 60 # Default value: 10 connection_timeout = {4} # Default theme # Hardcooded themes: # dark (default) (8 colors) # light (8 colors) # dark_16_colors (16 colors dark theme alternative) # light_16_colors (16 colors light theme alternative) # black_on_white (bow) (256 colors) # white_on_black (wob) (256 colors) # Default value = 'dark' theme = {5} # Transparency setting # If False, theme colors will be used. # If True and a compositor is running, the stations' window # background will be transparent. If True and a compositor is # not running, the terminal's background color will be used. # Valid values: True, true, False, false # Default value: False use_transparency = {6} # Playlist management # # Specify whether you will be asked to confirm # every station deletion action # Valid values: True, true, False, false # Default value: True confirm_station_deletion = {7} # Specify whether you will be asked to confirm # playlist reloading, when the playlist has not # been modified within Pyradio # Valid values: True, true, False, false # Default value: True confirm_playlist_reload = {8} # Specify whether you will be asked to save a # modified playlist whenever it needs saving # Valid values: True, true, False, false # Default value: False auto_save_playlist = {9} ''' copyfile(self.config_file, self.config_file + '.restore') if self.opts['default_station'][1] is None: self.opts['default_station'][1] = '-1' try: with open(self.config_file, 'w') as cfgfile: cfgfile.write(txt.format(self.opts['player'][1], self.opts['default_playlist'][1], self.opts['default_station'][1], self.opts['default_encoding'][1], self.opts['connection_timeout'][1], self.opts['theme'][1], self.opts['use_transparency'][1], self.opts['confirm_station_deletion'][1], self.opts['confirm_playlist_reload'][1], self.opts['auto_save_playlist'][1])) except: if logger.isEnabledFor(logging.ERROR): logger.error('Error saving config') return -1 try: remove(self.config_file + '.restore') except: pass if logger.isEnabledFor(logging.INFO): logger.info('Config saved') self.opts['dirty_config'][1] = False return 0
python
def save_config(self): """ Save config file Creates config.restore (back up file) Returns: -1: Error saving config 0: Config saved successfully 1: Config not saved (not modified""" if not self.opts['dirty_config'][1]: if logger.isEnabledFor(logging.INFO): logger.info('Config not saved (not modified)') return 1 txt ='''# PyRadio Configuration File # Player selection # This is the equivalent to the -u , --use-player command line parameter # Specify the player to use with PyRadio, or the player detection order # Example: # player = vlc # or # player = vlc,mpv, mplayer # Default value: mpv,mplayer,vlc player = {0} # Default playlist # This is the playlist to open if none is specified # You can scecify full path to CSV file, or if the playlist is in the # config directory, playlist name (filename without extension) or # playlist number (as reported by -ls command line option) # Default value: stations default_playlist = {1} # Default station # This is the equivalent to the -p , --play command line parameter # The station number within the default playlist to play # Value is 1..number of stations, "-1" or "False" means no auto play # "0" or "Random" means play a random station # Default value: False default_station = {2} # Default encoding # This is the encoding used by default when reading data provided by # a station (such as song title, etc.) If reading said data ends up # in an error, 'utf-8' will be used instead. # # A valid encoding list can be found at: # https://docs.python.org/2.7/library/codecs.html#standard-encodings # replacing 2.7 with specific version: # 3.0 up to current python version. # # Default value: utf-8 default_encoding = {3} # Connection timeout # PyRadio will wait for this number of seconds to get a station/server # message indicating that playback has actually started. # If this does not happen (within this number of seconds after the # connection is initiated), PyRadio will consider the station # unreachable, and display the "Failed to connect to: [station]" # message. # # Valid values: 5 - 60 # Default value: 10 connection_timeout = {4} # Default theme # Hardcooded themes: # dark (default) (8 colors) # light (8 colors) # dark_16_colors (16 colors dark theme alternative) # light_16_colors (16 colors light theme alternative) # black_on_white (bow) (256 colors) # white_on_black (wob) (256 colors) # Default value = 'dark' theme = {5} # Transparency setting # If False, theme colors will be used. # If True and a compositor is running, the stations' window # background will be transparent. If True and a compositor is # not running, the terminal's background color will be used. # Valid values: True, true, False, false # Default value: False use_transparency = {6} # Playlist management # # Specify whether you will be asked to confirm # every station deletion action # Valid values: True, true, False, false # Default value: True confirm_station_deletion = {7} # Specify whether you will be asked to confirm # playlist reloading, when the playlist has not # been modified within Pyradio # Valid values: True, true, False, false # Default value: True confirm_playlist_reload = {8} # Specify whether you will be asked to save a # modified playlist whenever it needs saving # Valid values: True, true, False, false # Default value: False auto_save_playlist = {9} ''' copyfile(self.config_file, self.config_file + '.restore') if self.opts['default_station'][1] is None: self.opts['default_station'][1] = '-1' try: with open(self.config_file, 'w') as cfgfile: cfgfile.write(txt.format(self.opts['player'][1], self.opts['default_playlist'][1], self.opts['default_station'][1], self.opts['default_encoding'][1], self.opts['connection_timeout'][1], self.opts['theme'][1], self.opts['use_transparency'][1], self.opts['confirm_station_deletion'][1], self.opts['confirm_playlist_reload'][1], self.opts['auto_save_playlist'][1])) except: if logger.isEnabledFor(logging.ERROR): logger.error('Error saving config') return -1 try: remove(self.config_file + '.restore') except: pass if logger.isEnabledFor(logging.INFO): logger.info('Config saved') self.opts['dirty_config'][1] = False return 0
[ "def", "save_config", "(", "self", ")", ":", "if", "not", "self", ".", "opts", "[", "'dirty_config'", "]", "[", "1", "]", ":", "if", "logger", ".", "isEnabledFor", "(", "logging", ".", "INFO", ")", ":", "logger", ".", "info", "(", "'Config not saved (not modified)'", ")", "return", "1", "txt", "=", "'''# PyRadio Configuration File\n\n# Player selection\n# This is the equivalent to the -u , --use-player command line parameter\n# Specify the player to use with PyRadio, or the player detection order\n# Example:\n# player = vlc\n# or\n# player = vlc,mpv, mplayer\n# Default value: mpv,mplayer,vlc\nplayer = {0}\n\n# Default playlist\n# This is the playlist to open if none is specified\n# You can scecify full path to CSV file, or if the playlist is in the\n# config directory, playlist name (filename without extension) or\n# playlist number (as reported by -ls command line option)\n# Default value: stations\ndefault_playlist = {1}\n\n# Default station\n# This is the equivalent to the -p , --play command line parameter\n# The station number within the default playlist to play\n# Value is 1..number of stations, \"-1\" or \"False\" means no auto play\n# \"0\" or \"Random\" means play a random station\n# Default value: False\ndefault_station = {2}\n\n# Default encoding\n# This is the encoding used by default when reading data provided by\n# a station (such as song title, etc.) If reading said data ends up\n# in an error, 'utf-8' will be used instead.\n#\n# A valid encoding list can be found at:\n# https://docs.python.org/2.7/library/codecs.html#standard-encodings\n# replacing 2.7 with specific version:\n# 3.0 up to current python version.\n#\n# Default value: utf-8\ndefault_encoding = {3}\n\n# Connection timeout\n# PyRadio will wait for this number of seconds to get a station/server\n# message indicating that playback has actually started.\n# If this does not happen (within this number of seconds after the\n# connection is initiated), PyRadio will consider the station\n# unreachable, and display the \"Failed to connect to: [station]\"\n# message.\n#\n# Valid values: 5 - 60\n# Default value: 10\nconnection_timeout = {4}\n\n# Default theme\n# Hardcooded themes:\n# dark (default) (8 colors)\n# light (8 colors)\n# dark_16_colors (16 colors dark theme alternative)\n# light_16_colors (16 colors light theme alternative)\n# black_on_white (bow) (256 colors)\n# white_on_black (wob) (256 colors)\n# Default value = 'dark'\ntheme = {5}\n\n# Transparency setting\n# If False, theme colors will be used.\n# If True and a compositor is running, the stations' window\n# background will be transparent. If True and a compositor is\n# not running, the terminal's background color will be used.\n# Valid values: True, true, False, false\n# Default value: False\nuse_transparency = {6}\n\n\n# Playlist management\n#\n# Specify whether you will be asked to confirm\n# every station deletion action\n# Valid values: True, true, False, false\n# Default value: True\nconfirm_station_deletion = {7}\n\n# Specify whether you will be asked to confirm\n# playlist reloading, when the playlist has not\n# been modified within Pyradio\n# Valid values: True, true, False, false\n# Default value: True\nconfirm_playlist_reload = {8}\n\n# Specify whether you will be asked to save a\n# modified playlist whenever it needs saving\n# Valid values: True, true, False, false\n# Default value: False\nauto_save_playlist = {9}\n\n'''", "copyfile", "(", "self", ".", "config_file", ",", "self", ".", "config_file", "+", "'.restore'", ")", "if", "self", ".", "opts", "[", "'default_station'", "]", "[", "1", "]", "is", "None", ":", "self", ".", "opts", "[", "'default_station'", "]", "[", "1", "]", "=", "'-1'", "try", ":", "with", "open", "(", "self", ".", "config_file", ",", "'w'", ")", "as", "cfgfile", ":", "cfgfile", ".", "write", "(", "txt", ".", "format", "(", "self", ".", "opts", "[", "'player'", "]", "[", "1", "]", ",", "self", ".", "opts", "[", "'default_playlist'", "]", "[", "1", "]", ",", "self", ".", "opts", "[", "'default_station'", "]", "[", "1", "]", ",", "self", ".", "opts", "[", "'default_encoding'", "]", "[", "1", "]", ",", "self", ".", "opts", "[", "'connection_timeout'", "]", "[", "1", "]", ",", "self", ".", "opts", "[", "'theme'", "]", "[", "1", "]", ",", "self", ".", "opts", "[", "'use_transparency'", "]", "[", "1", "]", ",", "self", ".", "opts", "[", "'confirm_station_deletion'", "]", "[", "1", "]", ",", "self", ".", "opts", "[", "'confirm_playlist_reload'", "]", "[", "1", "]", ",", "self", ".", "opts", "[", "'auto_save_playlist'", "]", "[", "1", "]", ")", ")", "except", ":", "if", "logger", ".", "isEnabledFor", "(", "logging", ".", "ERROR", ")", ":", "logger", ".", "error", "(", "'Error saving config'", ")", "return", "-", "1", "try", ":", "remove", "(", "self", ".", "config_file", "+", "'.restore'", ")", "except", ":", "pass", "if", "logger", ".", "isEnabledFor", "(", "logging", ".", "INFO", ")", ":", "logger", ".", "info", "(", "'Config saved'", ")", "self", ".", "opts", "[", "'dirty_config'", "]", "[", "1", "]", "=", "False", "return", "0" ]
Save config file Creates config.restore (back up file) Returns: -1: Error saving config 0: Config saved successfully 1: Config not saved (not modified
[ "Save", "config", "file" ]
c5219d350bccbccd49dbd627c1f886a952ea1963
https://github.com/coderholic/pyradio/blob/c5219d350bccbccd49dbd627c1f886a952ea1963/pyradio/config.py#L639-L773
train
coderholic/pyradio
pyradio/radio.py
PyRadio.ctrl_c_handler
def ctrl_c_handler(self, signum, frame): self.ctrl_c_pressed = True if self._cnf.dirty_playlist: """ Try to auto save playlist on exit Do not check result!!! """ self.saveCurrentPlaylist() """ Try to auto save config on exit Do not check result!!! """ self._cnf.save_config()
python
def ctrl_c_handler(self, signum, frame): self.ctrl_c_pressed = True if self._cnf.dirty_playlist: """ Try to auto save playlist on exit Do not check result!!! """ self.saveCurrentPlaylist() """ Try to auto save config on exit Do not check result!!! """ self._cnf.save_config()
[ "def", "ctrl_c_handler", "(", "self", ",", "signum", ",", "frame", ")", ":", "self", ".", "ctrl_c_pressed", "=", "True", "if", "self", ".", "_cnf", ".", "dirty_playlist", ":", "\"\"\" Try to auto save playlist on exit\n Do not check result!!! \"\"\"", "self", ".", "saveCurrentPlaylist", "(", ")", "self", ".", "_cnf", ".", "save_config", "(", ")" ]
Try to auto save config on exit Do not check result!!!
[ "Try", "to", "auto", "save", "config", "on", "exit", "Do", "not", "check", "result!!!" ]
c5219d350bccbccd49dbd627c1f886a952ea1963
https://github.com/coderholic/pyradio/blob/c5219d350bccbccd49dbd627c1f886a952ea1963/pyradio/radio.py#L432-L440
train
coderholic/pyradio
pyradio/radio.py
PyRadio._goto_playing_station
def _goto_playing_station(self, changing_playlist=False): """ make sure playing station is visible """ if (self.player.isPlaying() or self.operation_mode == PLAYLIST_MODE) and \ (self.selection != self.playing or changing_playlist): if changing_playlist: self.startPos = 0 max_lines = self.bodyMaxY - 2 if logger.isEnabledFor(logging.INFO): logger.info('max_lines = {0}, self.playing = {1}'.format(max_lines, self.playing)) if self.number_of_items < max_lines: self.startPos = 0 elif self.playing < self.startPos or \ self.playing >= self.startPos + max_lines: if logger.isEnabledFor(logging.INFO): logger.info('=== _goto:adjusting startPos') if self.playing < max_lines: self.startPos = 0 if self.playing - int(max_lines/2) > 0: self.startPos = self.playing - int(max_lines/2) elif self.playing > self.number_of_items - max_lines: self.startPos = self.number_of_items - max_lines else: self.startPos = int(self.playing+1/max_lines) - int(max_lines/2) if logger.isEnabledFor(logging.INFO): logger.info('===== _goto:startPos = {0}, changing_playlist = {1}'.format(self.startPos, changing_playlist)) self.selection = self.playing self.refreshBody()
python
def _goto_playing_station(self, changing_playlist=False): """ make sure playing station is visible """ if (self.player.isPlaying() or self.operation_mode == PLAYLIST_MODE) and \ (self.selection != self.playing or changing_playlist): if changing_playlist: self.startPos = 0 max_lines = self.bodyMaxY - 2 if logger.isEnabledFor(logging.INFO): logger.info('max_lines = {0}, self.playing = {1}'.format(max_lines, self.playing)) if self.number_of_items < max_lines: self.startPos = 0 elif self.playing < self.startPos or \ self.playing >= self.startPos + max_lines: if logger.isEnabledFor(logging.INFO): logger.info('=== _goto:adjusting startPos') if self.playing < max_lines: self.startPos = 0 if self.playing - int(max_lines/2) > 0: self.startPos = self.playing - int(max_lines/2) elif self.playing > self.number_of_items - max_lines: self.startPos = self.number_of_items - max_lines else: self.startPos = int(self.playing+1/max_lines) - int(max_lines/2) if logger.isEnabledFor(logging.INFO): logger.info('===== _goto:startPos = {0}, changing_playlist = {1}'.format(self.startPos, changing_playlist)) self.selection = self.playing self.refreshBody()
[ "def", "_goto_playing_station", "(", "self", ",", "changing_playlist", "=", "False", ")", ":", "if", "(", "self", ".", "player", ".", "isPlaying", "(", ")", "or", "self", ".", "operation_mode", "==", "PLAYLIST_MODE", ")", "and", "(", "self", ".", "selection", "!=", "self", ".", "playing", "or", "changing_playlist", ")", ":", "if", "changing_playlist", ":", "self", ".", "startPos", "=", "0", "max_lines", "=", "self", ".", "bodyMaxY", "-", "2", "if", "logger", ".", "isEnabledFor", "(", "logging", ".", "INFO", ")", ":", "logger", ".", "info", "(", "'max_lines = {0}, self.playing = {1}'", ".", "format", "(", "max_lines", ",", "self", ".", "playing", ")", ")", "if", "self", ".", "number_of_items", "<", "max_lines", ":", "self", ".", "startPos", "=", "0", "elif", "self", ".", "playing", "<", "self", ".", "startPos", "or", "self", ".", "playing", ">=", "self", ".", "startPos", "+", "max_lines", ":", "if", "logger", ".", "isEnabledFor", "(", "logging", ".", "INFO", ")", ":", "logger", ".", "info", "(", "'=== _goto:adjusting startPos'", ")", "if", "self", ".", "playing", "<", "max_lines", ":", "self", ".", "startPos", "=", "0", "if", "self", ".", "playing", "-", "int", "(", "max_lines", "/", "2", ")", ">", "0", ":", "self", ".", "startPos", "=", "self", ".", "playing", "-", "int", "(", "max_lines", "/", "2", ")", "elif", "self", ".", "playing", ">", "self", ".", "number_of_items", "-", "max_lines", ":", "self", ".", "startPos", "=", "self", ".", "number_of_items", "-", "max_lines", "else", ":", "self", ".", "startPos", "=", "int", "(", "self", ".", "playing", "+", "1", "/", "max_lines", ")", "-", "int", "(", "max_lines", "/", "2", ")", "if", "logger", ".", "isEnabledFor", "(", "logging", ".", "INFO", ")", ":", "logger", ".", "info", "(", "'===== _goto:startPos = {0}, changing_playlist = {1}'", ".", "format", "(", "self", ".", "startPos", ",", "changing_playlist", ")", ")", "self", ".", "selection", "=", "self", ".", "playing", "self", ".", "refreshBody", "(", ")" ]
make sure playing station is visible
[ "make", "sure", "playing", "station", "is", "visible" ]
c5219d350bccbccd49dbd627c1f886a952ea1963
https://github.com/coderholic/pyradio/blob/c5219d350bccbccd49dbd627c1f886a952ea1963/pyradio/radio.py#L442-L468
train
coderholic/pyradio
pyradio/radio.py
PyRadio.setStation
def setStation(self, number): """ Select the given station number """ # If we press up at the first station, we go to the last one # and if we press down on the last one we go back to the first one. if number < 0: number = len(self.stations) - 1 elif number >= len(self.stations): number = 0 self.selection = number maxDisplayedItems = self.bodyMaxY - 2 if self.selection - self.startPos >= maxDisplayedItems: self.startPos = self.selection - maxDisplayedItems + 1 elif self.selection < self.startPos: self.startPos = self.selection
python
def setStation(self, number): """ Select the given station number """ # If we press up at the first station, we go to the last one # and if we press down on the last one we go back to the first one. if number < 0: number = len(self.stations) - 1 elif number >= len(self.stations): number = 0 self.selection = number maxDisplayedItems = self.bodyMaxY - 2 if self.selection - self.startPos >= maxDisplayedItems: self.startPos = self.selection - maxDisplayedItems + 1 elif self.selection < self.startPos: self.startPos = self.selection
[ "def", "setStation", "(", "self", ",", "number", ")", ":", "# If we press up at the first station, we go to the last one", "# and if we press down on the last one we go back to the first one.", "if", "number", "<", "0", ":", "number", "=", "len", "(", "self", ".", "stations", ")", "-", "1", "elif", "number", ">=", "len", "(", "self", ".", "stations", ")", ":", "number", "=", "0", "self", ".", "selection", "=", "number", "maxDisplayedItems", "=", "self", ".", "bodyMaxY", "-", "2", "if", "self", ".", "selection", "-", "self", ".", "startPos", ">=", "maxDisplayedItems", ":", "self", ".", "startPos", "=", "self", ".", "selection", "-", "maxDisplayedItems", "+", "1", "elif", "self", ".", "selection", "<", "self", ".", "startPos", ":", "self", ".", "startPos", "=", "self", ".", "selection" ]
Select the given station number
[ "Select", "the", "given", "station", "number" ]
c5219d350bccbccd49dbd627c1f886a952ea1963
https://github.com/coderholic/pyradio/blob/c5219d350bccbccd49dbd627c1f886a952ea1963/pyradio/radio.py#L489-L504
train
coderholic/pyradio
pyradio/radio.py
PyRadio._format_playlist_line
def _format_playlist_line(self, lineNum, pad, station): """ format playlist line so that if fills self.maxX """ line = "{0}. {1}".format(str(lineNum + self.startPos + 1).rjust(pad), station[0]) f_data = ' [{0}, {1}]'.format(station[2], station[1]) if version_info < (3, 0): if len(line.decode('utf-8', 'replace')) + len(f_data.decode('utf-8', 'replace')) > self.bodyMaxX -2: """ this is too long, try to shorten it by removing file size """ f_data = ' [{0}]'.format(station[1]) if len(line.decode('utf-8', 'replace')) + len(f_data.decode('utf-8', 'replace')) > self.bodyMaxX - 2: """ still too long. start removing chars """ while len(line.decode('utf-8', 'replace')) + len(f_data.decode('utf-8', 'replace')) > self.bodyMaxX - 3: f_data = f_data[:-1] f_data += ']' """ if too short, pad f_data to the right """ if len(line.decode('utf-8', 'replace')) + len(f_data.decode('utf-8', 'replace')) < self.maxX - 2: while len(line.decode('utf-8', 'replace')) + len(f_data.decode('utf-8', 'replace')) < self.maxX - 2: line += ' ' else: if len(line) + len(f_data) > self.bodyMaxX -2: """ this is too long, try to shorten it by removing file size """ f_data = ' [{0}]'.format(station[1]) if len(line) + len(f_data) > self.bodyMaxX - 2: """ still too long. start removing chars """ while len(line) + len(f_data) > self.bodyMaxX - 3: f_data = f_data[:-1] f_data += ']' """ if too short, pad f_data to the right """ if len(line) + len(f_data) < self.maxX - 2: while len(line) + len(f_data) < self.maxX - 2: line += ' ' line += f_data return line
python
def _format_playlist_line(self, lineNum, pad, station): """ format playlist line so that if fills self.maxX """ line = "{0}. {1}".format(str(lineNum + self.startPos + 1).rjust(pad), station[0]) f_data = ' [{0}, {1}]'.format(station[2], station[1]) if version_info < (3, 0): if len(line.decode('utf-8', 'replace')) + len(f_data.decode('utf-8', 'replace')) > self.bodyMaxX -2: """ this is too long, try to shorten it by removing file size """ f_data = ' [{0}]'.format(station[1]) if len(line.decode('utf-8', 'replace')) + len(f_data.decode('utf-8', 'replace')) > self.bodyMaxX - 2: """ still too long. start removing chars """ while len(line.decode('utf-8', 'replace')) + len(f_data.decode('utf-8', 'replace')) > self.bodyMaxX - 3: f_data = f_data[:-1] f_data += ']' """ if too short, pad f_data to the right """ if len(line.decode('utf-8', 'replace')) + len(f_data.decode('utf-8', 'replace')) < self.maxX - 2: while len(line.decode('utf-8', 'replace')) + len(f_data.decode('utf-8', 'replace')) < self.maxX - 2: line += ' ' else: if len(line) + len(f_data) > self.bodyMaxX -2: """ this is too long, try to shorten it by removing file size """ f_data = ' [{0}]'.format(station[1]) if len(line) + len(f_data) > self.bodyMaxX - 2: """ still too long. start removing chars """ while len(line) + len(f_data) > self.bodyMaxX - 3: f_data = f_data[:-1] f_data += ']' """ if too short, pad f_data to the right """ if len(line) + len(f_data) < self.maxX - 2: while len(line) + len(f_data) < self.maxX - 2: line += ' ' line += f_data return line
[ "def", "_format_playlist_line", "(", "self", ",", "lineNum", ",", "pad", ",", "station", ")", ":", "line", "=", "\"{0}. {1}\"", ".", "format", "(", "str", "(", "lineNum", "+", "self", ".", "startPos", "+", "1", ")", ".", "rjust", "(", "pad", ")", ",", "station", "[", "0", "]", ")", "f_data", "=", "' [{0}, {1}]'", ".", "format", "(", "station", "[", "2", "]", ",", "station", "[", "1", "]", ")", "if", "version_info", "<", "(", "3", ",", "0", ")", ":", "if", "len", "(", "line", ".", "decode", "(", "'utf-8'", ",", "'replace'", ")", ")", "+", "len", "(", "f_data", ".", "decode", "(", "'utf-8'", ",", "'replace'", ")", ")", ">", "self", ".", "bodyMaxX", "-", "2", ":", "\"\"\" this is too long, try to shorten it\n by removing file size \"\"\"", "f_data", "=", "' [{0}]'", ".", "format", "(", "station", "[", "1", "]", ")", "if", "len", "(", "line", ".", "decode", "(", "'utf-8'", ",", "'replace'", ")", ")", "+", "len", "(", "f_data", ".", "decode", "(", "'utf-8'", ",", "'replace'", ")", ")", ">", "self", ".", "bodyMaxX", "-", "2", ":", "\"\"\" still too long. start removing chars \"\"\"", "while", "len", "(", "line", ".", "decode", "(", "'utf-8'", ",", "'replace'", ")", ")", "+", "len", "(", "f_data", ".", "decode", "(", "'utf-8'", ",", "'replace'", ")", ")", ">", "self", ".", "bodyMaxX", "-", "3", ":", "f_data", "=", "f_data", "[", ":", "-", "1", "]", "f_data", "+=", "']'", "\"\"\" if too short, pad f_data to the right \"\"\"", "if", "len", "(", "line", ".", "decode", "(", "'utf-8'", ",", "'replace'", ")", ")", "+", "len", "(", "f_data", ".", "decode", "(", "'utf-8'", ",", "'replace'", ")", ")", "<", "self", ".", "maxX", "-", "2", ":", "while", "len", "(", "line", ".", "decode", "(", "'utf-8'", ",", "'replace'", ")", ")", "+", "len", "(", "f_data", ".", "decode", "(", "'utf-8'", ",", "'replace'", ")", ")", "<", "self", ".", "maxX", "-", "2", ":", "line", "+=", "' '", "else", ":", "if", "len", "(", "line", ")", "+", "len", "(", "f_data", ")", ">", "self", ".", "bodyMaxX", "-", "2", ":", "\"\"\" this is too long, try to shorten it\n by removing file size \"\"\"", "f_data", "=", "' [{0}]'", ".", "format", "(", "station", "[", "1", "]", ")", "if", "len", "(", "line", ")", "+", "len", "(", "f_data", ")", ">", "self", ".", "bodyMaxX", "-", "2", ":", "\"\"\" still too long. start removing chars \"\"\"", "while", "len", "(", "line", ")", "+", "len", "(", "f_data", ")", ">", "self", ".", "bodyMaxX", "-", "3", ":", "f_data", "=", "f_data", "[", ":", "-", "1", "]", "f_data", "+=", "']'", "\"\"\" if too short, pad f_data to the right \"\"\"", "if", "len", "(", "line", ")", "+", "len", "(", "f_data", ")", "<", "self", ".", "maxX", "-", "2", ":", "while", "len", "(", "line", ")", "+", "len", "(", "f_data", ")", "<", "self", ".", "maxX", "-", "2", ":", "line", "+=", "' '", "line", "+=", "f_data", "return", "line" ]
format playlist line so that if fills self.maxX
[ "format", "playlist", "line", "so", "that", "if", "fills", "self", ".", "maxX" ]
c5219d350bccbccd49dbd627c1f886a952ea1963
https://github.com/coderholic/pyradio/blob/c5219d350bccbccd49dbd627c1f886a952ea1963/pyradio/radio.py#L772-L805
train
coderholic/pyradio
pyradio/config_window.py
PyRadioSelectEncodings._resize
def _resize(self, init=False): col, row = self._selection_to_col_row(self.selection) if not (self.startPos <= row <= self.startPos + self.list_maxY - 1): while row > self.startPos: self.startPos += 1 while row < self.startPos + self.list_maxY - 1: self.startPos -= 1 ''' if the selection at the end of the list, try to scroll down ''' if init and row > self.list_maxY: new_startPos = self._num_of_rows - self.list_maxY + 1 if row > new_startPos: if logger.isEnabledFor(logging.DEBUG): logger.debug('setting startPos at {}'.format(new_startPos)) self.startPos = new_startPos self.refresh_selection()
python
def _resize(self, init=False): col, row = self._selection_to_col_row(self.selection) if not (self.startPos <= row <= self.startPos + self.list_maxY - 1): while row > self.startPos: self.startPos += 1 while row < self.startPos + self.list_maxY - 1: self.startPos -= 1 ''' if the selection at the end of the list, try to scroll down ''' if init and row > self.list_maxY: new_startPos = self._num_of_rows - self.list_maxY + 1 if row > new_startPos: if logger.isEnabledFor(logging.DEBUG): logger.debug('setting startPos at {}'.format(new_startPos)) self.startPos = new_startPos self.refresh_selection()
[ "def", "_resize", "(", "self", ",", "init", "=", "False", ")", ":", "col", ",", "row", "=", "self", ".", "_selection_to_col_row", "(", "self", ".", "selection", ")", "if", "not", "(", "self", ".", "startPos", "<=", "row", "<=", "self", ".", "startPos", "+", "self", ".", "list_maxY", "-", "1", ")", ":", "while", "row", ">", "self", ".", "startPos", ":", "self", ".", "startPos", "+=", "1", "while", "row", "<", "self", ".", "startPos", "+", "self", ".", "list_maxY", "-", "1", ":", "self", ".", "startPos", "-=", "1", "if", "init", "and", "row", ">", "self", ".", "list_maxY", ":", "new_startPos", "=", "self", ".", "_num_of_rows", "-", "self", ".", "list_maxY", "+", "1", "if", "row", ">", "new_startPos", ":", "if", "logger", ".", "isEnabledFor", "(", "logging", ".", "DEBUG", ")", ":", "logger", ".", "debug", "(", "'setting startPos at {}'", ".", "format", "(", "new_startPos", ")", ")", "self", ".", "startPos", "=", "new_startPos", "self", ".", "refresh_selection", "(", ")" ]
if the selection at the end of the list, try to scroll down
[ "if", "the", "selection", "at", "the", "end", "of", "the", "list", "try", "to", "scroll", "down" ]
c5219d350bccbccd49dbd627c1f886a952ea1963
https://github.com/coderholic/pyradio/blob/c5219d350bccbccd49dbd627c1f886a952ea1963/pyradio/config_window.py#L745-L760
train
coderholic/pyradio
pyradio/simple_curses_widgets.py
SimpleCursesLineEdit._get_char
def _get_char(self, win, char): def get_check_next_byte(): char = win.getch() if 128 <= char <= 191: return char else: raise UnicodeError bytes = [] if char <= 127: # 1 bytes bytes.append(char) #elif 194 <= char <= 223: elif 192 <= char <= 223: # 2 bytes bytes.append(char) bytes.append(get_check_next_byte()) elif 224 <= char <= 239: # 3 bytes bytes.append(char) bytes.append(get_check_next_byte()) bytes.append(get_check_next_byte()) elif 240 <= char <= 244: # 4 bytes bytes.append(char) bytes.append(get_check_next_byte()) bytes.append(get_check_next_byte()) bytes.append(get_check_next_byte()) #print('bytes = {}'.format(bytes)) """ no zero byte allowed """ while 0 in bytes: bytes.remove(0) if version_info < (3, 0): out = ''.join([chr(b) for b in bytes]) else: buf = bytearray(bytes) out = self._decode_string(buf) #out = buf.decode('utf-8') return out
python
def _get_char(self, win, char): def get_check_next_byte(): char = win.getch() if 128 <= char <= 191: return char else: raise UnicodeError bytes = [] if char <= 127: # 1 bytes bytes.append(char) #elif 194 <= char <= 223: elif 192 <= char <= 223: # 2 bytes bytes.append(char) bytes.append(get_check_next_byte()) elif 224 <= char <= 239: # 3 bytes bytes.append(char) bytes.append(get_check_next_byte()) bytes.append(get_check_next_byte()) elif 240 <= char <= 244: # 4 bytes bytes.append(char) bytes.append(get_check_next_byte()) bytes.append(get_check_next_byte()) bytes.append(get_check_next_byte()) #print('bytes = {}'.format(bytes)) """ no zero byte allowed """ while 0 in bytes: bytes.remove(0) if version_info < (3, 0): out = ''.join([chr(b) for b in bytes]) else: buf = bytearray(bytes) out = self._decode_string(buf) #out = buf.decode('utf-8') return out
[ "def", "_get_char", "(", "self", ",", "win", ",", "char", ")", ":", "def", "get_check_next_byte", "(", ")", ":", "char", "=", "win", ".", "getch", "(", ")", "if", "128", "<=", "char", "<=", "191", ":", "return", "char", "else", ":", "raise", "UnicodeError", "bytes", "=", "[", "]", "if", "char", "<=", "127", ":", "# 1 bytes", "bytes", ".", "append", "(", "char", ")", "#elif 194 <= char <= 223:", "elif", "192", "<=", "char", "<=", "223", ":", "# 2 bytes", "bytes", ".", "append", "(", "char", ")", "bytes", ".", "append", "(", "get_check_next_byte", "(", ")", ")", "elif", "224", "<=", "char", "<=", "239", ":", "# 3 bytes", "bytes", ".", "append", "(", "char", ")", "bytes", ".", "append", "(", "get_check_next_byte", "(", ")", ")", "bytes", ".", "append", "(", "get_check_next_byte", "(", ")", ")", "elif", "240", "<=", "char", "<=", "244", ":", "# 4 bytes", "bytes", ".", "append", "(", "char", ")", "bytes", ".", "append", "(", "get_check_next_byte", "(", ")", ")", "bytes", ".", "append", "(", "get_check_next_byte", "(", ")", ")", "bytes", ".", "append", "(", "get_check_next_byte", "(", ")", ")", "#print('bytes = {}'.format(bytes))", "while", "0", "in", "bytes", ":", "bytes", ".", "remove", "(", "0", ")", "if", "version_info", "<", "(", "3", ",", "0", ")", ":", "out", "=", "''", ".", "join", "(", "[", "chr", "(", "b", ")", "for", "b", "in", "bytes", "]", ")", "else", ":", "buf", "=", "bytearray", "(", "bytes", ")", "out", "=", "self", ".", "_decode_string", "(", "buf", ")", "#out = buf.decode('utf-8')", "return", "out" ]
no zero byte allowed
[ "no", "zero", "byte", "allowed" ]
c5219d350bccbccd49dbd627c1f886a952ea1963
https://github.com/coderholic/pyradio/blob/c5219d350bccbccd49dbd627c1f886a952ea1963/pyradio/simple_curses_widgets.py#L342-L380
train
coderholic/pyradio
pyradio/edit.py
PyRadioSearch._get_history_next
def _get_history_next(self): """ callback function for key down """ if self._has_history: ret = self._input_history.return_history(1) self.string = ret self._curs_pos = len(ret)
python
def _get_history_next(self): """ callback function for key down """ if self._has_history: ret = self._input_history.return_history(1) self.string = ret self._curs_pos = len(ret)
[ "def", "_get_history_next", "(", "self", ")", ":", "if", "self", ".", "_has_history", ":", "ret", "=", "self", ".", "_input_history", ".", "return_history", "(", "1", ")", "self", ".", "string", "=", "ret", "self", ".", "_curs_pos", "=", "len", "(", "ret", ")" ]
callback function for key down
[ "callback", "function", "for", "key", "down" ]
c5219d350bccbccd49dbd627c1f886a952ea1963
https://github.com/coderholic/pyradio/blob/c5219d350bccbccd49dbd627c1f886a952ea1963/pyradio/edit.py#L49-L54
train
bids-standard/pybids
bids/analysis/analysis.py
apply_transformations
def apply_transformations(collection, transformations, select=None): ''' Apply all transformations to the variables in the collection. Args: transformations (list): List of transformations to apply. select (list): Optional list of names of variables to retain after all transformations are applied. ''' for t in transformations: kwargs = dict(t) func = kwargs.pop('name') cols = kwargs.pop('input', None) if isinstance(func, string_types): if func in ('and', 'or'): func += '_' if not hasattr(transform, func): raise ValueError("No transformation '%s' found!" % func) func = getattr(transform, func) func(collection, cols, **kwargs) if select is not None: transform.Select(collection, select) return collection
python
def apply_transformations(collection, transformations, select=None): ''' Apply all transformations to the variables in the collection. Args: transformations (list): List of transformations to apply. select (list): Optional list of names of variables to retain after all transformations are applied. ''' for t in transformations: kwargs = dict(t) func = kwargs.pop('name') cols = kwargs.pop('input', None) if isinstance(func, string_types): if func in ('and', 'or'): func += '_' if not hasattr(transform, func): raise ValueError("No transformation '%s' found!" % func) func = getattr(transform, func) func(collection, cols, **kwargs) if select is not None: transform.Select(collection, select) return collection
[ "def", "apply_transformations", "(", "collection", ",", "transformations", ",", "select", "=", "None", ")", ":", "for", "t", "in", "transformations", ":", "kwargs", "=", "dict", "(", "t", ")", "func", "=", "kwargs", ".", "pop", "(", "'name'", ")", "cols", "=", "kwargs", ".", "pop", "(", "'input'", ",", "None", ")", "if", "isinstance", "(", "func", ",", "string_types", ")", ":", "if", "func", "in", "(", "'and'", ",", "'or'", ")", ":", "func", "+=", "'_'", "if", "not", "hasattr", "(", "transform", ",", "func", ")", ":", "raise", "ValueError", "(", "\"No transformation '%s' found!\"", "%", "func", ")", "func", "=", "getattr", "(", "transform", ",", "func", ")", "func", "(", "collection", ",", "cols", ",", "*", "*", "kwargs", ")", "if", "select", "is", "not", "None", ":", "transform", ".", "Select", "(", "collection", ",", "select", ")", "return", "collection" ]
Apply all transformations to the variables in the collection. Args: transformations (list): List of transformations to apply. select (list): Optional list of names of variables to retain after all transformations are applied.
[ "Apply", "all", "transformations", "to", "the", "variables", "in", "the", "collection", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/analysis/analysis.py#L489-L513
train
bids-standard/pybids
bids/analysis/analysis.py
Analysis.setup
def setup(self, steps=None, drop_na=False, **kwargs): ''' Set up the sequence of steps for analysis. Args: steps (list): Optional list of steps to set up. Each element must be either an int giving the index of the step in the JSON config block list, or a str giving the (unique) name of the step, as specified in the JSON config. Steps that do not match either index or name will be skipped. drop_na (bool): Boolean indicating whether or not to automatically drop events that have a n/a amplitude when reading in data from event files. ''' # In the beginning, there was nothing input_nodes = None # Use inputs from model, and update with kwargs selectors = self.model.get('input', {}).copy() selectors.update(kwargs) for i, b in enumerate(self.steps): # Skip any steps whose names or indexes don't match block list if steps is not None and i not in steps and b.name not in steps: continue b.setup(input_nodes, drop_na=drop_na, **selectors) input_nodes = b.output_nodes
python
def setup(self, steps=None, drop_na=False, **kwargs): ''' Set up the sequence of steps for analysis. Args: steps (list): Optional list of steps to set up. Each element must be either an int giving the index of the step in the JSON config block list, or a str giving the (unique) name of the step, as specified in the JSON config. Steps that do not match either index or name will be skipped. drop_na (bool): Boolean indicating whether or not to automatically drop events that have a n/a amplitude when reading in data from event files. ''' # In the beginning, there was nothing input_nodes = None # Use inputs from model, and update with kwargs selectors = self.model.get('input', {}).copy() selectors.update(kwargs) for i, b in enumerate(self.steps): # Skip any steps whose names or indexes don't match block list if steps is not None and i not in steps and b.name not in steps: continue b.setup(input_nodes, drop_na=drop_na, **selectors) input_nodes = b.output_nodes
[ "def", "setup", "(", "self", ",", "steps", "=", "None", ",", "drop_na", "=", "False", ",", "*", "*", "kwargs", ")", ":", "# In the beginning, there was nothing", "input_nodes", "=", "None", "# Use inputs from model, and update with kwargs", "selectors", "=", "self", ".", "model", ".", "get", "(", "'input'", ",", "{", "}", ")", ".", "copy", "(", ")", "selectors", ".", "update", "(", "kwargs", ")", "for", "i", ",", "b", "in", "enumerate", "(", "self", ".", "steps", ")", ":", "# Skip any steps whose names or indexes don't match block list", "if", "steps", "is", "not", "None", "and", "i", "not", "in", "steps", "and", "b", ".", "name", "not", "in", "steps", ":", "continue", "b", ".", "setup", "(", "input_nodes", ",", "drop_na", "=", "drop_na", ",", "*", "*", "selectors", ")", "input_nodes", "=", "b", ".", "output_nodes" ]
Set up the sequence of steps for analysis. Args: steps (list): Optional list of steps to set up. Each element must be either an int giving the index of the step in the JSON config block list, or a str giving the (unique) name of the step, as specified in the JSON config. Steps that do not match either index or name will be skipped. drop_na (bool): Boolean indicating whether or not to automatically drop events that have a n/a amplitude when reading in data from event files.
[ "Set", "up", "the", "sequence", "of", "steps", "for", "analysis", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/analysis/analysis.py#L62-L90
train
bids-standard/pybids
bids/analysis/analysis.py
Step.setup
def setup(self, input_nodes=None, drop_na=False, **kwargs): ''' Set up the Step and construct the design matrix. Args: input_nodes (list): Optional list of Node objects produced by the preceding Step in the analysis. If None, uses any inputs passed in at Step initialization. drop_na (bool): Boolean indicating whether or not to automatically drop events that have a n/a amplitude when reading in data from event files. kwargs: Optional keyword arguments to pass onto load_variables. ''' self.output_nodes = [] input_nodes = input_nodes or self.input_nodes or [] # TODO: remove the scan_length argument entirely once we switch tests # to use the synthetic dataset with image headers. if self.level != 'run': kwargs = kwargs.copy() kwargs.pop('scan_length', None) collections = self.layout.get_collections(self.level, drop_na=drop_na, **kwargs) objects = collections + input_nodes objects, kwargs = self._filter_objects(objects, kwargs) groups = self._group_objects(objects) # Set up and validate variable lists model = self.model or {} X = model.get('x', []) for grp in groups: # Split into separate lists of Collections and Nodes input_nodes = [o for o in grp if isinstance(o, AnalysisNode)] colls = list(set(grp) - set(input_nodes)) if input_nodes: node_coll = self._concatenate_input_nodes(input_nodes) colls.append(node_coll) coll = merge_collections(colls) if len(colls) > 1 else colls[0] coll = apply_transformations(coll, self.transformations) if X: transform.Select(coll, X) node = AnalysisNode(self.level, coll, self.contrasts, input_nodes, self.auto_contrasts) self.output_nodes.append(node)
python
def setup(self, input_nodes=None, drop_na=False, **kwargs): ''' Set up the Step and construct the design matrix. Args: input_nodes (list): Optional list of Node objects produced by the preceding Step in the analysis. If None, uses any inputs passed in at Step initialization. drop_na (bool): Boolean indicating whether or not to automatically drop events that have a n/a amplitude when reading in data from event files. kwargs: Optional keyword arguments to pass onto load_variables. ''' self.output_nodes = [] input_nodes = input_nodes or self.input_nodes or [] # TODO: remove the scan_length argument entirely once we switch tests # to use the synthetic dataset with image headers. if self.level != 'run': kwargs = kwargs.copy() kwargs.pop('scan_length', None) collections = self.layout.get_collections(self.level, drop_na=drop_na, **kwargs) objects = collections + input_nodes objects, kwargs = self._filter_objects(objects, kwargs) groups = self._group_objects(objects) # Set up and validate variable lists model = self.model or {} X = model.get('x', []) for grp in groups: # Split into separate lists of Collections and Nodes input_nodes = [o for o in grp if isinstance(o, AnalysisNode)] colls = list(set(grp) - set(input_nodes)) if input_nodes: node_coll = self._concatenate_input_nodes(input_nodes) colls.append(node_coll) coll = merge_collections(colls) if len(colls) > 1 else colls[0] coll = apply_transformations(coll, self.transformations) if X: transform.Select(coll, X) node = AnalysisNode(self.level, coll, self.contrasts, input_nodes, self.auto_contrasts) self.output_nodes.append(node)
[ "def", "setup", "(", "self", ",", "input_nodes", "=", "None", ",", "drop_na", "=", "False", ",", "*", "*", "kwargs", ")", ":", "self", ".", "output_nodes", "=", "[", "]", "input_nodes", "=", "input_nodes", "or", "self", ".", "input_nodes", "or", "[", "]", "# TODO: remove the scan_length argument entirely once we switch tests", "# to use the synthetic dataset with image headers.", "if", "self", ".", "level", "!=", "'run'", ":", "kwargs", "=", "kwargs", ".", "copy", "(", ")", "kwargs", ".", "pop", "(", "'scan_length'", ",", "None", ")", "collections", "=", "self", ".", "layout", ".", "get_collections", "(", "self", ".", "level", ",", "drop_na", "=", "drop_na", ",", "*", "*", "kwargs", ")", "objects", "=", "collections", "+", "input_nodes", "objects", ",", "kwargs", "=", "self", ".", "_filter_objects", "(", "objects", ",", "kwargs", ")", "groups", "=", "self", ".", "_group_objects", "(", "objects", ")", "# Set up and validate variable lists", "model", "=", "self", ".", "model", "or", "{", "}", "X", "=", "model", ".", "get", "(", "'x'", ",", "[", "]", ")", "for", "grp", "in", "groups", ":", "# Split into separate lists of Collections and Nodes", "input_nodes", "=", "[", "o", "for", "o", "in", "grp", "if", "isinstance", "(", "o", ",", "AnalysisNode", ")", "]", "colls", "=", "list", "(", "set", "(", "grp", ")", "-", "set", "(", "input_nodes", ")", ")", "if", "input_nodes", ":", "node_coll", "=", "self", ".", "_concatenate_input_nodes", "(", "input_nodes", ")", "colls", ".", "append", "(", "node_coll", ")", "coll", "=", "merge_collections", "(", "colls", ")", "if", "len", "(", "colls", ")", ">", "1", "else", "colls", "[", "0", "]", "coll", "=", "apply_transformations", "(", "coll", ",", "self", ".", "transformations", ")", "if", "X", ":", "transform", ".", "Select", "(", "coll", ",", "X", ")", "node", "=", "AnalysisNode", "(", "self", ".", "level", ",", "coll", ",", "self", ".", "contrasts", ",", "input_nodes", ",", "self", ".", "auto_contrasts", ")", "self", ".", "output_nodes", ".", "append", "(", "node", ")" ]
Set up the Step and construct the design matrix. Args: input_nodes (list): Optional list of Node objects produced by the preceding Step in the analysis. If None, uses any inputs passed in at Step initialization. drop_na (bool): Boolean indicating whether or not to automatically drop events that have a n/a amplitude when reading in data from event files. kwargs: Optional keyword arguments to pass onto load_variables.
[ "Set", "up", "the", "Step", "and", "construct", "the", "design", "matrix", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/analysis/analysis.py#L168-L218
train
bids-standard/pybids
bids/reports/utils.py
get_slice_info
def get_slice_info(slice_times): """ Extract slice order from slice timing info. TODO: Be more specific with slice orders. Currently anything where there's some kind of skipping is interpreted as interleaved of some kind. Parameters ---------- slice_times : array-like A list of slice times in seconds or milliseconds or whatever. Returns ------- slice_order_name : :obj:`str` The name of the slice order sequence. """ # Slice order slice_times = remove_duplicates(slice_times) slice_order = sorted(range(len(slice_times)), key=lambda k: slice_times[k]) if slice_order == range(len(slice_order)): slice_order_name = 'sequential ascending' elif slice_order == reversed(range(len(slice_order))): slice_order_name = 'sequential descending' elif slice_order[0] < slice_order[1]: # We're allowing some wiggle room on interleaved. slice_order_name = 'interleaved ascending' elif slice_order[0] > slice_order[1]: slice_order_name = 'interleaved descending' else: slice_order = [str(s) for s in slice_order] raise Exception('Unknown slice order: [{0}]'.format(', '.join(slice_order))) return slice_order_name
python
def get_slice_info(slice_times): """ Extract slice order from slice timing info. TODO: Be more specific with slice orders. Currently anything where there's some kind of skipping is interpreted as interleaved of some kind. Parameters ---------- slice_times : array-like A list of slice times in seconds or milliseconds or whatever. Returns ------- slice_order_name : :obj:`str` The name of the slice order sequence. """ # Slice order slice_times = remove_duplicates(slice_times) slice_order = sorted(range(len(slice_times)), key=lambda k: slice_times[k]) if slice_order == range(len(slice_order)): slice_order_name = 'sequential ascending' elif slice_order == reversed(range(len(slice_order))): slice_order_name = 'sequential descending' elif slice_order[0] < slice_order[1]: # We're allowing some wiggle room on interleaved. slice_order_name = 'interleaved ascending' elif slice_order[0] > slice_order[1]: slice_order_name = 'interleaved descending' else: slice_order = [str(s) for s in slice_order] raise Exception('Unknown slice order: [{0}]'.format(', '.join(slice_order))) return slice_order_name
[ "def", "get_slice_info", "(", "slice_times", ")", ":", "# Slice order", "slice_times", "=", "remove_duplicates", "(", "slice_times", ")", "slice_order", "=", "sorted", "(", "range", "(", "len", "(", "slice_times", ")", ")", ",", "key", "=", "lambda", "k", ":", "slice_times", "[", "k", "]", ")", "if", "slice_order", "==", "range", "(", "len", "(", "slice_order", ")", ")", ":", "slice_order_name", "=", "'sequential ascending'", "elif", "slice_order", "==", "reversed", "(", "range", "(", "len", "(", "slice_order", ")", ")", ")", ":", "slice_order_name", "=", "'sequential descending'", "elif", "slice_order", "[", "0", "]", "<", "slice_order", "[", "1", "]", ":", "# We're allowing some wiggle room on interleaved.", "slice_order_name", "=", "'interleaved ascending'", "elif", "slice_order", "[", "0", "]", ">", "slice_order", "[", "1", "]", ":", "slice_order_name", "=", "'interleaved descending'", "else", ":", "slice_order", "=", "[", "str", "(", "s", ")", "for", "s", "in", "slice_order", "]", "raise", "Exception", "(", "'Unknown slice order: [{0}]'", ".", "format", "(", "', '", ".", "join", "(", "slice_order", ")", ")", ")", "return", "slice_order_name" ]
Extract slice order from slice timing info. TODO: Be more specific with slice orders. Currently anything where there's some kind of skipping is interpreted as interleaved of some kind. Parameters ---------- slice_times : array-like A list of slice times in seconds or milliseconds or whatever. Returns ------- slice_order_name : :obj:`str` The name of the slice order sequence.
[ "Extract", "slice", "order", "from", "slice", "timing", "info", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/reports/utils.py#L70-L104
train
bids-standard/pybids
bids/reports/utils.py
get_sizestr
def get_sizestr(img): """ Extract and reformat voxel size, matrix size, field of view, and number of slices into pretty strings. Parameters ---------- img : :obj:`nibabel.Nifti1Image` Image from scan from which to derive parameters. Returns ------- n_slices : :obj:`int` Number of slices. voxel_size : :obj:`str` Voxel size string (e.g., '2x2x2') matrix_size : :obj:`str` Matrix size string (e.g., '128x128') fov : :obj:`str` Field of view string (e.g., '256x256') """ n_x, n_y, n_slices = img.shape[:3] import numpy as np voxel_dims = np.array(img.header.get_zooms()[:3]) matrix_size = '{0}x{1}'.format(num_to_str(n_x), num_to_str(n_y)) voxel_size = 'x'.join([num_to_str(s) for s in voxel_dims]) fov = [n_x, n_y] * voxel_dims[:2] fov = 'x'.join([num_to_str(s) for s in fov]) return n_slices, voxel_size, matrix_size, fov
python
def get_sizestr(img): """ Extract and reformat voxel size, matrix size, field of view, and number of slices into pretty strings. Parameters ---------- img : :obj:`nibabel.Nifti1Image` Image from scan from which to derive parameters. Returns ------- n_slices : :obj:`int` Number of slices. voxel_size : :obj:`str` Voxel size string (e.g., '2x2x2') matrix_size : :obj:`str` Matrix size string (e.g., '128x128') fov : :obj:`str` Field of view string (e.g., '256x256') """ n_x, n_y, n_slices = img.shape[:3] import numpy as np voxel_dims = np.array(img.header.get_zooms()[:3]) matrix_size = '{0}x{1}'.format(num_to_str(n_x), num_to_str(n_y)) voxel_size = 'x'.join([num_to_str(s) for s in voxel_dims]) fov = [n_x, n_y] * voxel_dims[:2] fov = 'x'.join([num_to_str(s) for s in fov]) return n_slices, voxel_size, matrix_size, fov
[ "def", "get_sizestr", "(", "img", ")", ":", "n_x", ",", "n_y", ",", "n_slices", "=", "img", ".", "shape", "[", ":", "3", "]", "import", "numpy", "as", "np", "voxel_dims", "=", "np", ".", "array", "(", "img", ".", "header", ".", "get_zooms", "(", ")", "[", ":", "3", "]", ")", "matrix_size", "=", "'{0}x{1}'", ".", "format", "(", "num_to_str", "(", "n_x", ")", ",", "num_to_str", "(", "n_y", ")", ")", "voxel_size", "=", "'x'", ".", "join", "(", "[", "num_to_str", "(", "s", ")", "for", "s", "in", "voxel_dims", "]", ")", "fov", "=", "[", "n_x", ",", "n_y", "]", "*", "voxel_dims", "[", ":", "2", "]", "fov", "=", "'x'", ".", "join", "(", "[", "num_to_str", "(", "s", ")", "for", "s", "in", "fov", "]", ")", "return", "n_slices", ",", "voxel_size", ",", "matrix_size", ",", "fov" ]
Extract and reformat voxel size, matrix size, field of view, and number of slices into pretty strings. Parameters ---------- img : :obj:`nibabel.Nifti1Image` Image from scan from which to derive parameters. Returns ------- n_slices : :obj:`int` Number of slices. voxel_size : :obj:`str` Voxel size string (e.g., '2x2x2') matrix_size : :obj:`str` Matrix size string (e.g., '128x128') fov : :obj:`str` Field of view string (e.g., '256x256')
[ "Extract", "and", "reformat", "voxel", "size", "matrix", "size", "field", "of", "view", "and", "number", "of", "slices", "into", "pretty", "strings", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/reports/utils.py#L138-L166
train
bids-standard/pybids
bids/layout/layout.py
add_config_paths
def add_config_paths(**kwargs): """ Add to the pool of available configuration files for BIDSLayout. Args: kwargs: dictionary specifying where to find additional config files. Keys are names, values are paths to the corresponding .json file. Example: > add_config_paths(my_config='/path/to/config') > layout = BIDSLayout('/path/to/bids', config=['bids', 'my_config']) """ for k, path in kwargs.items(): if not os.path.exists(path): raise ValueError( 'Configuration file "{}" does not exist'.format(k)) if k in cf.get_option('config_paths'): raise ValueError('Configuration {!r} already exists'.format(k)) kwargs.update(**cf.get_option('config_paths')) cf.set_option('config_paths', kwargs)
python
def add_config_paths(**kwargs): """ Add to the pool of available configuration files for BIDSLayout. Args: kwargs: dictionary specifying where to find additional config files. Keys are names, values are paths to the corresponding .json file. Example: > add_config_paths(my_config='/path/to/config') > layout = BIDSLayout('/path/to/bids', config=['bids', 'my_config']) """ for k, path in kwargs.items(): if not os.path.exists(path): raise ValueError( 'Configuration file "{}" does not exist'.format(k)) if k in cf.get_option('config_paths'): raise ValueError('Configuration {!r} already exists'.format(k)) kwargs.update(**cf.get_option('config_paths')) cf.set_option('config_paths', kwargs)
[ "def", "add_config_paths", "(", "*", "*", "kwargs", ")", ":", "for", "k", ",", "path", "in", "kwargs", ".", "items", "(", ")", ":", "if", "not", "os", ".", "path", ".", "exists", "(", "path", ")", ":", "raise", "ValueError", "(", "'Configuration file \"{}\" does not exist'", ".", "format", "(", "k", ")", ")", "if", "k", "in", "cf", ".", "get_option", "(", "'config_paths'", ")", ":", "raise", "ValueError", "(", "'Configuration {!r} already exists'", ".", "format", "(", "k", ")", ")", "kwargs", ".", "update", "(", "*", "*", "cf", ".", "get_option", "(", "'config_paths'", ")", ")", "cf", ".", "set_option", "(", "'config_paths'", ",", "kwargs", ")" ]
Add to the pool of available configuration files for BIDSLayout. Args: kwargs: dictionary specifying where to find additional config files. Keys are names, values are paths to the corresponding .json file. Example: > add_config_paths(my_config='/path/to/config') > layout = BIDSLayout('/path/to/bids', config=['bids', 'my_config'])
[ "Add", "to", "the", "pool", "of", "available", "configuration", "files", "for", "BIDSLayout", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/layout/layout.py#L77-L97
train
bids-standard/pybids
bids/layout/layout.py
BIDSLayout.add_derivatives
def add_derivatives(self, path, **kwargs): ''' Add BIDS-Derivatives datasets to tracking. Args: path (str, list): One or more paths to BIDS-Derivatives datasets. Each path can point to either a derivatives/ directory containing one more more pipeline directories, or to a single pipeline directory (e.g., derivatives/fmriprep). kwargs (dict): Optional keyword arguments to pass on to BIDSLayout() when initializing each of the derivative datasets. Note: Every derivatives directory intended for indexing MUST contain a valid dataset_description.json file. See the BIDS-Derivatives specification for details. ''' paths = listify(path) deriv_dirs = [] # Collect all paths that contain a dataset_description.json def check_for_description(dir): dd = os.path.join(dir, 'dataset_description.json') return os.path.exists(dd) for p in paths: p = os.path.abspath(p) if os.path.exists(p): if check_for_description(p): deriv_dirs.append(p) else: subdirs = [d for d in os.listdir(p) if os.path.isdir(os.path.join(p, d))] for sd in subdirs: sd = os.path.join(p, sd) if check_for_description(sd): deriv_dirs.append(sd) if not deriv_dirs: warnings.warn("Derivative indexing was enabled, but no valid " "derivatives datasets were found in any of the " "provided or default locations. Please make sure " "all derivatives datasets you intend to index " "contain a 'dataset_description.json' file, as " "described in the BIDS-derivatives specification.") for deriv in deriv_dirs: dd = os.path.join(deriv, 'dataset_description.json') with open(dd, 'r', encoding='utf-8') as ddfd: description = json.load(ddfd) pipeline_name = description.get( 'PipelineDescription', {}).get('Name') if pipeline_name is None: raise ValueError("Every valid BIDS-derivatives dataset must " "have a PipelineDescription.Name field set " "inside dataset_description.json.") if pipeline_name in self.derivatives: raise ValueError("Pipeline name '%s' has already been added " "to this BIDSLayout. Every added pipeline " "must have a unique name!") # Default config and sources values kwargs['config'] = kwargs.get('config') or ['bids', 'derivatives'] kwargs['sources'] = kwargs.get('sources') or self self.derivatives[pipeline_name] = BIDSLayout(deriv, **kwargs) # Consolidate all entities post-indexing. Note: no conflicts occur b/c # multiple entries with the same name all point to the same instance. for deriv in self.derivatives.values(): self.entities.update(deriv.entities)
python
def add_derivatives(self, path, **kwargs): ''' Add BIDS-Derivatives datasets to tracking. Args: path (str, list): One or more paths to BIDS-Derivatives datasets. Each path can point to either a derivatives/ directory containing one more more pipeline directories, or to a single pipeline directory (e.g., derivatives/fmriprep). kwargs (dict): Optional keyword arguments to pass on to BIDSLayout() when initializing each of the derivative datasets. Note: Every derivatives directory intended for indexing MUST contain a valid dataset_description.json file. See the BIDS-Derivatives specification for details. ''' paths = listify(path) deriv_dirs = [] # Collect all paths that contain a dataset_description.json def check_for_description(dir): dd = os.path.join(dir, 'dataset_description.json') return os.path.exists(dd) for p in paths: p = os.path.abspath(p) if os.path.exists(p): if check_for_description(p): deriv_dirs.append(p) else: subdirs = [d for d in os.listdir(p) if os.path.isdir(os.path.join(p, d))] for sd in subdirs: sd = os.path.join(p, sd) if check_for_description(sd): deriv_dirs.append(sd) if not deriv_dirs: warnings.warn("Derivative indexing was enabled, but no valid " "derivatives datasets were found in any of the " "provided or default locations. Please make sure " "all derivatives datasets you intend to index " "contain a 'dataset_description.json' file, as " "described in the BIDS-derivatives specification.") for deriv in deriv_dirs: dd = os.path.join(deriv, 'dataset_description.json') with open(dd, 'r', encoding='utf-8') as ddfd: description = json.load(ddfd) pipeline_name = description.get( 'PipelineDescription', {}).get('Name') if pipeline_name is None: raise ValueError("Every valid BIDS-derivatives dataset must " "have a PipelineDescription.Name field set " "inside dataset_description.json.") if pipeline_name in self.derivatives: raise ValueError("Pipeline name '%s' has already been added " "to this BIDSLayout. Every added pipeline " "must have a unique name!") # Default config and sources values kwargs['config'] = kwargs.get('config') or ['bids', 'derivatives'] kwargs['sources'] = kwargs.get('sources') or self self.derivatives[pipeline_name] = BIDSLayout(deriv, **kwargs) # Consolidate all entities post-indexing. Note: no conflicts occur b/c # multiple entries with the same name all point to the same instance. for deriv in self.derivatives.values(): self.entities.update(deriv.entities)
[ "def", "add_derivatives", "(", "self", ",", "path", ",", "*", "*", "kwargs", ")", ":", "paths", "=", "listify", "(", "path", ")", "deriv_dirs", "=", "[", "]", "# Collect all paths that contain a dataset_description.json", "def", "check_for_description", "(", "dir", ")", ":", "dd", "=", "os", ".", "path", ".", "join", "(", "dir", ",", "'dataset_description.json'", ")", "return", "os", ".", "path", ".", "exists", "(", "dd", ")", "for", "p", "in", "paths", ":", "p", "=", "os", ".", "path", ".", "abspath", "(", "p", ")", "if", "os", ".", "path", ".", "exists", "(", "p", ")", ":", "if", "check_for_description", "(", "p", ")", ":", "deriv_dirs", ".", "append", "(", "p", ")", "else", ":", "subdirs", "=", "[", "d", "for", "d", "in", "os", ".", "listdir", "(", "p", ")", "if", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "p", ",", "d", ")", ")", "]", "for", "sd", "in", "subdirs", ":", "sd", "=", "os", ".", "path", ".", "join", "(", "p", ",", "sd", ")", "if", "check_for_description", "(", "sd", ")", ":", "deriv_dirs", ".", "append", "(", "sd", ")", "if", "not", "deriv_dirs", ":", "warnings", ".", "warn", "(", "\"Derivative indexing was enabled, but no valid \"", "\"derivatives datasets were found in any of the \"", "\"provided or default locations. Please make sure \"", "\"all derivatives datasets you intend to index \"", "\"contain a 'dataset_description.json' file, as \"", "\"described in the BIDS-derivatives specification.\"", ")", "for", "deriv", "in", "deriv_dirs", ":", "dd", "=", "os", ".", "path", ".", "join", "(", "deriv", ",", "'dataset_description.json'", ")", "with", "open", "(", "dd", ",", "'r'", ",", "encoding", "=", "'utf-8'", ")", "as", "ddfd", ":", "description", "=", "json", ".", "load", "(", "ddfd", ")", "pipeline_name", "=", "description", ".", "get", "(", "'PipelineDescription'", ",", "{", "}", ")", ".", "get", "(", "'Name'", ")", "if", "pipeline_name", "is", "None", ":", "raise", "ValueError", "(", "\"Every valid BIDS-derivatives dataset must \"", "\"have a PipelineDescription.Name field set \"", "\"inside dataset_description.json.\"", ")", "if", "pipeline_name", "in", "self", ".", "derivatives", ":", "raise", "ValueError", "(", "\"Pipeline name '%s' has already been added \"", "\"to this BIDSLayout. Every added pipeline \"", "\"must have a unique name!\"", ")", "# Default config and sources values", "kwargs", "[", "'config'", "]", "=", "kwargs", ".", "get", "(", "'config'", ")", "or", "[", "'bids'", ",", "'derivatives'", "]", "kwargs", "[", "'sources'", "]", "=", "kwargs", ".", "get", "(", "'sources'", ")", "or", "self", "self", ".", "derivatives", "[", "pipeline_name", "]", "=", "BIDSLayout", "(", "deriv", ",", "*", "*", "kwargs", ")", "# Consolidate all entities post-indexing. Note: no conflicts occur b/c", "# multiple entries with the same name all point to the same instance.", "for", "deriv", "in", "self", ".", "derivatives", ".", "values", "(", ")", ":", "self", ".", "entities", ".", "update", "(", "deriv", ".", "entities", ")" ]
Add BIDS-Derivatives datasets to tracking. Args: path (str, list): One or more paths to BIDS-Derivatives datasets. Each path can point to either a derivatives/ directory containing one more more pipeline directories, or to a single pipeline directory (e.g., derivatives/fmriprep). kwargs (dict): Optional keyword arguments to pass on to BIDSLayout() when initializing each of the derivative datasets. Note: Every derivatives directory intended for indexing MUST contain a valid dataset_description.json file. See the BIDS-Derivatives specification for details.
[ "Add", "BIDS", "-", "Derivatives", "datasets", "to", "tracking", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/layout/layout.py#L352-L418
train
bids-standard/pybids
bids/layout/layout.py
BIDSLayout.get_file
def get_file(self, filename, scope='all'): ''' Returns the BIDSFile object with the specified path. Args: filename (str): The path of the file to retrieve. Must be either an absolute path, or relative to the root of this BIDSLayout. scope (str, list): Scope of the search space. If passed, only BIDSLayouts that match the specified scope will be searched. See BIDSLayout docstring for valid values. Returns: A BIDSFile, or None if no match was found. ''' filename = os.path.abspath(os.path.join(self.root, filename)) layouts = self._get_layouts_in_scope(scope) for ly in layouts: if filename in ly.files: return ly.files[filename] return None
python
def get_file(self, filename, scope='all'): ''' Returns the BIDSFile object with the specified path. Args: filename (str): The path of the file to retrieve. Must be either an absolute path, or relative to the root of this BIDSLayout. scope (str, list): Scope of the search space. If passed, only BIDSLayouts that match the specified scope will be searched. See BIDSLayout docstring for valid values. Returns: A BIDSFile, or None if no match was found. ''' filename = os.path.abspath(os.path.join(self.root, filename)) layouts = self._get_layouts_in_scope(scope) for ly in layouts: if filename in ly.files: return ly.files[filename] return None
[ "def", "get_file", "(", "self", ",", "filename", ",", "scope", "=", "'all'", ")", ":", "filename", "=", "os", ".", "path", ".", "abspath", "(", "os", ".", "path", ".", "join", "(", "self", ".", "root", ",", "filename", ")", ")", "layouts", "=", "self", ".", "_get_layouts_in_scope", "(", "scope", ")", "for", "ly", "in", "layouts", ":", "if", "filename", "in", "ly", ".", "files", ":", "return", "ly", ".", "files", "[", "filename", "]", "return", "None" ]
Returns the BIDSFile object with the specified path. Args: filename (str): The path of the file to retrieve. Must be either an absolute path, or relative to the root of this BIDSLayout. scope (str, list): Scope of the search space. If passed, only BIDSLayouts that match the specified scope will be searched. See BIDSLayout docstring for valid values. Returns: A BIDSFile, or None if no match was found.
[ "Returns", "the", "BIDSFile", "object", "with", "the", "specified", "path", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/layout/layout.py#L600-L617
train
bids-standard/pybids
bids/layout/layout.py
BIDSLayout.get_collections
def get_collections(self, level, types=None, variables=None, merge=False, sampling_rate=None, skip_empty=False, **kwargs): """Return one or more variable Collections in the BIDS project. Args: level (str): The level of analysis to return variables for. Must be one of 'run', 'session', 'subject', or 'dataset'. types (str, list): Types of variables to retrieve. All valid values reflect the filename stipulated in the BIDS spec for each kind of variable. Valid values include: 'events', 'physio', 'stim', 'scans', 'participants', 'sessions', and 'regressors'. variables (list): Optional list of variables names to return. If None, all available variables are returned. merge (bool): If True, variables are merged across all observations of the current level. E.g., if level='subject', variables from all subjects will be merged into a single collection. If False, each observation is handled separately, and the result is returned as a list. sampling_rate (int, str): If level='run', the sampling rate to pass onto the returned BIDSRunVariableCollection. skip_empty (bool): Whether or not to skip empty Variables (i.e., where there are no rows/records in a file after applying any filtering operations like dropping NaNs). kwargs: Optional additional arguments to pass onto load_variables. """ from bids.variables import load_variables index = load_variables(self, types=types, levels=level, skip_empty=skip_empty, **kwargs) return index.get_collections(level, variables, merge, sampling_rate=sampling_rate)
python
def get_collections(self, level, types=None, variables=None, merge=False, sampling_rate=None, skip_empty=False, **kwargs): """Return one or more variable Collections in the BIDS project. Args: level (str): The level of analysis to return variables for. Must be one of 'run', 'session', 'subject', or 'dataset'. types (str, list): Types of variables to retrieve. All valid values reflect the filename stipulated in the BIDS spec for each kind of variable. Valid values include: 'events', 'physio', 'stim', 'scans', 'participants', 'sessions', and 'regressors'. variables (list): Optional list of variables names to return. If None, all available variables are returned. merge (bool): If True, variables are merged across all observations of the current level. E.g., if level='subject', variables from all subjects will be merged into a single collection. If False, each observation is handled separately, and the result is returned as a list. sampling_rate (int, str): If level='run', the sampling rate to pass onto the returned BIDSRunVariableCollection. skip_empty (bool): Whether or not to skip empty Variables (i.e., where there are no rows/records in a file after applying any filtering operations like dropping NaNs). kwargs: Optional additional arguments to pass onto load_variables. """ from bids.variables import load_variables index = load_variables(self, types=types, levels=level, skip_empty=skip_empty, **kwargs) return index.get_collections(level, variables, merge, sampling_rate=sampling_rate)
[ "def", "get_collections", "(", "self", ",", "level", ",", "types", "=", "None", ",", "variables", "=", "None", ",", "merge", "=", "False", ",", "sampling_rate", "=", "None", ",", "skip_empty", "=", "False", ",", "*", "*", "kwargs", ")", ":", "from", "bids", ".", "variables", "import", "load_variables", "index", "=", "load_variables", "(", "self", ",", "types", "=", "types", ",", "levels", "=", "level", ",", "skip_empty", "=", "skip_empty", ",", "*", "*", "kwargs", ")", "return", "index", ".", "get_collections", "(", "level", ",", "variables", ",", "merge", ",", "sampling_rate", "=", "sampling_rate", ")" ]
Return one or more variable Collections in the BIDS project. Args: level (str): The level of analysis to return variables for. Must be one of 'run', 'session', 'subject', or 'dataset'. types (str, list): Types of variables to retrieve. All valid values reflect the filename stipulated in the BIDS spec for each kind of variable. Valid values include: 'events', 'physio', 'stim', 'scans', 'participants', 'sessions', and 'regressors'. variables (list): Optional list of variables names to return. If None, all available variables are returned. merge (bool): If True, variables are merged across all observations of the current level. E.g., if level='subject', variables from all subjects will be merged into a single collection. If False, each observation is handled separately, and the result is returned as a list. sampling_rate (int, str): If level='run', the sampling rate to pass onto the returned BIDSRunVariableCollection. skip_empty (bool): Whether or not to skip empty Variables (i.e., where there are no rows/records in a file after applying any filtering operations like dropping NaNs). kwargs: Optional additional arguments to pass onto load_variables.
[ "Return", "one", "or", "more", "variable", "Collections", "in", "the", "BIDS", "project", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/layout/layout.py#L619-L648
train
bids-standard/pybids
bids/layout/layout.py
BIDSLayout.get_metadata
def get_metadata(self, path, include_entities=False, **kwargs): """Return metadata found in JSON sidecars for the specified file. Args: path (str): Path to the file to get metadata for. include_entities (bool): If True, all available entities extracted from the filename (rather than JSON sidecars) are included in the returned metadata dictionary. kwargs (dict): Optional keyword arguments to pass onto get_nearest(). Returns: A dictionary of key/value pairs extracted from all of the target file's associated JSON sidecars. Notes: A dictionary containing metadata extracted from all matching .json files is returned. In cases where the same key is found in multiple files, the values in files closer to the input filename will take precedence, per the inheritance rules in the BIDS specification. """ f = self.get_file(path) # For querying efficiency, store metadata in the MetadataIndex cache self.metadata_index.index_file(f.path) if include_entities: entities = f.entities results = entities else: results = {} results.update(self.metadata_index.file_index[path]) return results
python
def get_metadata(self, path, include_entities=False, **kwargs): """Return metadata found in JSON sidecars for the specified file. Args: path (str): Path to the file to get metadata for. include_entities (bool): If True, all available entities extracted from the filename (rather than JSON sidecars) are included in the returned metadata dictionary. kwargs (dict): Optional keyword arguments to pass onto get_nearest(). Returns: A dictionary of key/value pairs extracted from all of the target file's associated JSON sidecars. Notes: A dictionary containing metadata extracted from all matching .json files is returned. In cases where the same key is found in multiple files, the values in files closer to the input filename will take precedence, per the inheritance rules in the BIDS specification. """ f = self.get_file(path) # For querying efficiency, store metadata in the MetadataIndex cache self.metadata_index.index_file(f.path) if include_entities: entities = f.entities results = entities else: results = {} results.update(self.metadata_index.file_index[path]) return results
[ "def", "get_metadata", "(", "self", ",", "path", ",", "include_entities", "=", "False", ",", "*", "*", "kwargs", ")", ":", "f", "=", "self", ".", "get_file", "(", "path", ")", "# For querying efficiency, store metadata in the MetadataIndex cache", "self", ".", "metadata_index", ".", "index_file", "(", "f", ".", "path", ")", "if", "include_entities", ":", "entities", "=", "f", ".", "entities", "results", "=", "entities", "else", ":", "results", "=", "{", "}", "results", ".", "update", "(", "self", ".", "metadata_index", ".", "file_index", "[", "path", "]", ")", "return", "results" ]
Return metadata found in JSON sidecars for the specified file. Args: path (str): Path to the file to get metadata for. include_entities (bool): If True, all available entities extracted from the filename (rather than JSON sidecars) are included in the returned metadata dictionary. kwargs (dict): Optional keyword arguments to pass onto get_nearest(). Returns: A dictionary of key/value pairs extracted from all of the target file's associated JSON sidecars. Notes: A dictionary containing metadata extracted from all matching .json files is returned. In cases where the same key is found in multiple files, the values in files closer to the input filename will take precedence, per the inheritance rules in the BIDS specification.
[ "Return", "metadata", "found", "in", "JSON", "sidecars", "for", "the", "specified", "file", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/layout/layout.py#L650-L684
train
bids-standard/pybids
bids/layout/layout.py
BIDSLayout.get_bval
def get_bval(self, path, **kwargs): """ Get bval file for passed path. """ result = self.get_nearest(path, extensions='bval', suffix='dwi', all_=True, **kwargs) return listify(result)[0]
python
def get_bval(self, path, **kwargs): """ Get bval file for passed path. """ result = self.get_nearest(path, extensions='bval', suffix='dwi', all_=True, **kwargs) return listify(result)[0]
[ "def", "get_bval", "(", "self", ",", "path", ",", "*", "*", "kwargs", ")", ":", "result", "=", "self", ".", "get_nearest", "(", "path", ",", "extensions", "=", "'bval'", ",", "suffix", "=", "'dwi'", ",", "all_", "=", "True", ",", "*", "*", "kwargs", ")", "return", "listify", "(", "result", ")", "[", "0", "]" ]
Get bval file for passed path.
[ "Get", "bval", "file", "for", "passed", "path", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/layout/layout.py#L794-L798
train
bids-standard/pybids
bids/layout/layout.py
BIDSLayout.copy_files
def copy_files(self, files=None, path_patterns=None, symbolic_links=True, root=None, conflicts='fail', **kwargs): """ Copies one or more BIDSFiles to new locations defined by each BIDSFile's entities and the specified path_patterns. Args: files (list): Optional list of BIDSFile objects to write out. If none provided, use files from running a get() query using remaining **kwargs. path_patterns (str, list): Write patterns to pass to each file's write_file method. symbolic_links (bool): Whether to copy each file as a symbolic link or a deep copy. root (str): Optional root directory that all patterns are relative to. Defaults to current working directory. conflicts (str): Defines the desired action when the output path already exists. Must be one of: 'fail': raises an exception 'skip' does nothing 'overwrite': overwrites the existing file 'append': adds a suffix to each file copy, starting with 1 kwargs (kwargs): Optional key word arguments to pass into a get() query. """ _files = self.get(return_type='objects', **kwargs) if files: _files = list(set(files).intersection(_files)) for f in _files: f.copy(path_patterns, symbolic_link=symbolic_links, root=self.root, conflicts=conflicts)
python
def copy_files(self, files=None, path_patterns=None, symbolic_links=True, root=None, conflicts='fail', **kwargs): """ Copies one or more BIDSFiles to new locations defined by each BIDSFile's entities and the specified path_patterns. Args: files (list): Optional list of BIDSFile objects to write out. If none provided, use files from running a get() query using remaining **kwargs. path_patterns (str, list): Write patterns to pass to each file's write_file method. symbolic_links (bool): Whether to copy each file as a symbolic link or a deep copy. root (str): Optional root directory that all patterns are relative to. Defaults to current working directory. conflicts (str): Defines the desired action when the output path already exists. Must be one of: 'fail': raises an exception 'skip' does nothing 'overwrite': overwrites the existing file 'append': adds a suffix to each file copy, starting with 1 kwargs (kwargs): Optional key word arguments to pass into a get() query. """ _files = self.get(return_type='objects', **kwargs) if files: _files = list(set(files).intersection(_files)) for f in _files: f.copy(path_patterns, symbolic_link=symbolic_links, root=self.root, conflicts=conflicts)
[ "def", "copy_files", "(", "self", ",", "files", "=", "None", ",", "path_patterns", "=", "None", ",", "symbolic_links", "=", "True", ",", "root", "=", "None", ",", "conflicts", "=", "'fail'", ",", "*", "*", "kwargs", ")", ":", "_files", "=", "self", ".", "get", "(", "return_type", "=", "'objects'", ",", "*", "*", "kwargs", ")", "if", "files", ":", "_files", "=", "list", "(", "set", "(", "files", ")", ".", "intersection", "(", "_files", ")", ")", "for", "f", "in", "_files", ":", "f", ".", "copy", "(", "path_patterns", ",", "symbolic_link", "=", "symbolic_links", ",", "root", "=", "self", ".", "root", ",", "conflicts", "=", "conflicts", ")" ]
Copies one or more BIDSFiles to new locations defined by each BIDSFile's entities and the specified path_patterns. Args: files (list): Optional list of BIDSFile objects to write out. If none provided, use files from running a get() query using remaining **kwargs. path_patterns (str, list): Write patterns to pass to each file's write_file method. symbolic_links (bool): Whether to copy each file as a symbolic link or a deep copy. root (str): Optional root directory that all patterns are relative to. Defaults to current working directory. conflicts (str): Defines the desired action when the output path already exists. Must be one of: 'fail': raises an exception 'skip' does nothing 'overwrite': overwrites the existing file 'append': adds a suffix to each file copy, starting with 1 kwargs (kwargs): Optional key word arguments to pass into a get() query.
[ "Copies", "one", "or", "more", "BIDSFiles", "to", "new", "locations", "defined", "by", "each", "BIDSFile", "s", "entities", "and", "the", "specified", "path_patterns", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/layout/layout.py#L950-L981
train
bids-standard/pybids
bids/layout/layout.py
MetadataIndex.index_file
def index_file(self, f, overwrite=False): """Index metadata for the specified file. Args: f (BIDSFile, str): A BIDSFile or path to an indexed file. overwrite (bool): If True, forces reindexing of the file even if an entry already exists. """ if isinstance(f, six.string_types): f = self.layout.get_file(f) if f.path in self.file_index and not overwrite: return if 'suffix' not in f.entities: # Skip files without suffixes return md = self._get_metadata(f.path) for md_key, md_val in md.items(): if md_key not in self.key_index: self.key_index[md_key] = {} self.key_index[md_key][f.path] = md_val self.file_index[f.path][md_key] = md_val
python
def index_file(self, f, overwrite=False): """Index metadata for the specified file. Args: f (BIDSFile, str): A BIDSFile or path to an indexed file. overwrite (bool): If True, forces reindexing of the file even if an entry already exists. """ if isinstance(f, six.string_types): f = self.layout.get_file(f) if f.path in self.file_index and not overwrite: return if 'suffix' not in f.entities: # Skip files without suffixes return md = self._get_metadata(f.path) for md_key, md_val in md.items(): if md_key not in self.key_index: self.key_index[md_key] = {} self.key_index[md_key][f.path] = md_val self.file_index[f.path][md_key] = md_val
[ "def", "index_file", "(", "self", ",", "f", ",", "overwrite", "=", "False", ")", ":", "if", "isinstance", "(", "f", ",", "six", ".", "string_types", ")", ":", "f", "=", "self", ".", "layout", ".", "get_file", "(", "f", ")", "if", "f", ".", "path", "in", "self", ".", "file_index", "and", "not", "overwrite", ":", "return", "if", "'suffix'", "not", "in", "f", ".", "entities", ":", "# Skip files without suffixes", "return", "md", "=", "self", ".", "_get_metadata", "(", "f", ".", "path", ")", "for", "md_key", ",", "md_val", "in", "md", ".", "items", "(", ")", ":", "if", "md_key", "not", "in", "self", ".", "key_index", ":", "self", ".", "key_index", "[", "md_key", "]", "=", "{", "}", "self", ".", "key_index", "[", "md_key", "]", "[", "f", ".", "path", "]", "=", "md_val", "self", ".", "file_index", "[", "f", ".", "path", "]", "[", "md_key", "]", "=", "md_val" ]
Index metadata for the specified file. Args: f (BIDSFile, str): A BIDSFile or path to an indexed file. overwrite (bool): If True, forces reindexing of the file even if an entry already exists.
[ "Index", "metadata", "for", "the", "specified", "file", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/layout/layout.py#L1036-L1059
train
bids-standard/pybids
bids/layout/layout.py
MetadataIndex.search
def search(self, files=None, defined_fields=None, **kwargs): """Search files in the layout by metadata fields. Args: files (list): Optional list of names of files to search. If None, all files in the layout are scanned. defined_fields (list): Optional list of names of fields that must be defined in the JSON sidecar in order to consider the file a match, but which don't need to match any particular value. kwargs: Optional keyword arguments defining search constraints; keys are names of metadata fields, and values are the values to match those fields against (e.g., SliceTiming=0.017) would return all files that have a SliceTiming value of 0.071 in metadata. Returns: A list of filenames that match all constraints. """ if defined_fields is None: defined_fields = [] all_keys = set(defined_fields) | set(kwargs.keys()) if not all_keys: raise ValueError("At least one field to search on must be passed.") # If no list of files is passed, use all files in layout if files is None: files = set(self.layout.files.keys()) # Index metadata for any previously unseen files for f in files: self.index_file(f) # Get file intersection of all kwargs keys--this is fast filesets = [set(self.key_index.get(k, [])) for k in all_keys] matches = reduce(lambda x, y: x & y, filesets) if files is not None: matches &= set(files) if not matches: return [] def check_matches(f, key, val): if isinstance(val, six.string_types) and '*' in val: val = ('^%s$' % val).replace('*', ".*") return re.search(str(self.file_index[f][key]), val) is not None else: return val == self.file_index[f][key] # Serially check matches against each pattern, with early termination for k, val in kwargs.items(): matches = list(filter(lambda x: check_matches(x, k, val), matches)) if not matches: return [] return matches
python
def search(self, files=None, defined_fields=None, **kwargs): """Search files in the layout by metadata fields. Args: files (list): Optional list of names of files to search. If None, all files in the layout are scanned. defined_fields (list): Optional list of names of fields that must be defined in the JSON sidecar in order to consider the file a match, but which don't need to match any particular value. kwargs: Optional keyword arguments defining search constraints; keys are names of metadata fields, and values are the values to match those fields against (e.g., SliceTiming=0.017) would return all files that have a SliceTiming value of 0.071 in metadata. Returns: A list of filenames that match all constraints. """ if defined_fields is None: defined_fields = [] all_keys = set(defined_fields) | set(kwargs.keys()) if not all_keys: raise ValueError("At least one field to search on must be passed.") # If no list of files is passed, use all files in layout if files is None: files = set(self.layout.files.keys()) # Index metadata for any previously unseen files for f in files: self.index_file(f) # Get file intersection of all kwargs keys--this is fast filesets = [set(self.key_index.get(k, [])) for k in all_keys] matches = reduce(lambda x, y: x & y, filesets) if files is not None: matches &= set(files) if not matches: return [] def check_matches(f, key, val): if isinstance(val, six.string_types) and '*' in val: val = ('^%s$' % val).replace('*', ".*") return re.search(str(self.file_index[f][key]), val) is not None else: return val == self.file_index[f][key] # Serially check matches against each pattern, with early termination for k, val in kwargs.items(): matches = list(filter(lambda x: check_matches(x, k, val), matches)) if not matches: return [] return matches
[ "def", "search", "(", "self", ",", "files", "=", "None", ",", "defined_fields", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "defined_fields", "is", "None", ":", "defined_fields", "=", "[", "]", "all_keys", "=", "set", "(", "defined_fields", ")", "|", "set", "(", "kwargs", ".", "keys", "(", ")", ")", "if", "not", "all_keys", ":", "raise", "ValueError", "(", "\"At least one field to search on must be passed.\"", ")", "# If no list of files is passed, use all files in layout", "if", "files", "is", "None", ":", "files", "=", "set", "(", "self", ".", "layout", ".", "files", ".", "keys", "(", ")", ")", "# Index metadata for any previously unseen files", "for", "f", "in", "files", ":", "self", ".", "index_file", "(", "f", ")", "# Get file intersection of all kwargs keys--this is fast", "filesets", "=", "[", "set", "(", "self", ".", "key_index", ".", "get", "(", "k", ",", "[", "]", ")", ")", "for", "k", "in", "all_keys", "]", "matches", "=", "reduce", "(", "lambda", "x", ",", "y", ":", "x", "&", "y", ",", "filesets", ")", "if", "files", "is", "not", "None", ":", "matches", "&=", "set", "(", "files", ")", "if", "not", "matches", ":", "return", "[", "]", "def", "check_matches", "(", "f", ",", "key", ",", "val", ")", ":", "if", "isinstance", "(", "val", ",", "six", ".", "string_types", ")", "and", "'*'", "in", "val", ":", "val", "=", "(", "'^%s$'", "%", "val", ")", ".", "replace", "(", "'*'", ",", "\".*\"", ")", "return", "re", ".", "search", "(", "str", "(", "self", ".", "file_index", "[", "f", "]", "[", "key", "]", ")", ",", "val", ")", "is", "not", "None", "else", ":", "return", "val", "==", "self", ".", "file_index", "[", "f", "]", "[", "key", "]", "# Serially check matches against each pattern, with early termination", "for", "k", ",", "val", "in", "kwargs", ".", "items", "(", ")", ":", "matches", "=", "list", "(", "filter", "(", "lambda", "x", ":", "check_matches", "(", "x", ",", "k", ",", "val", ")", ",", "matches", ")", ")", "if", "not", "matches", ":", "return", "[", "]", "return", "matches" ]
Search files in the layout by metadata fields. Args: files (list): Optional list of names of files to search. If None, all files in the layout are scanned. defined_fields (list): Optional list of names of fields that must be defined in the JSON sidecar in order to consider the file a match, but which don't need to match any particular value. kwargs: Optional keyword arguments defining search constraints; keys are names of metadata fields, and values are the values to match those fields against (e.g., SliceTiming=0.017) would return all files that have a SliceTiming value of 0.071 in metadata. Returns: A list of filenames that match all constraints.
[ "Search", "files", "in", "the", "layout", "by", "metadata", "fields", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/layout/layout.py#L1080-L1136
train
bids-standard/pybids
bids/analysis/auto_model.py
auto_model
def auto_model(layout, scan_length=None, one_vs_rest=False): '''Create a simple default model for each of the tasks in a BIDSLayout. Contrasts each trial type against all other trial types and trial types at the run level and then uses t-tests at each other level present to aggregate these results up. Args: layout (BIDSLayout) A BIDSLayout instance scan_length (Int) Scan length for loading event varibles in cases where the scan length can not be read from the nifti. Primarily for testing. one_vs_rest (Bool) Set to True if you would like to autogenerate contrasts of each trial type against everyother trialtype. Returns: models (list) list of model dictionaries for each task ''' base_name = split(layout.root)[-1] tasks = layout.entities['task'].unique() task_models = [] for task_name in tasks: # Populate model meta-data model = OrderedDict() model["Name"] = "_".join([base_name, task_name]) model["Description"] = ("Autogenerated model for the %s task from %s" % (task_name, base_name)) model["Input"] = {"Task": task_name} steps = [] # Make run level block transformations = OrderedDict(Name='Factor', Input=['trial_type']) run = OrderedDict(Level='Run', Name='Run', Transformations=[transformations]) # Get trial types run_nodes = load_variables(layout, task=task_name, levels=['run'], scan_length=scan_length) evs = [] for n in run_nodes.nodes: evs.extend(n.variables['trial_type'].values.values) trial_types = np.unique(evs) trial_type_factors = ["trial_type." + tt for tt in trial_types] # Add HRF run['Transformations'].append( OrderedDict(Name='Convolve', Input=trial_type_factors)) run_model = OrderedDict(X=trial_type_factors) run["Model"] = run_model if one_vs_rest: # if there are multiple trial types, build contrasts contrasts = [] for i, tt in enumerate(trial_types): cdict = OrderedDict() if len(trial_types) > 1: cdict["Name"] = "run_" + tt + "_vs_others" else: cdict["Name"] = "run_" + tt cdict["ConditionList"] = trial_type_factors # Calculate weights for contrast weights = np.ones(len(trial_types)) try: weights[trial_types != tt] = -1.0 / (len(trial_types) - 1) except ZeroDivisionError: pass cdict["Weights"] = list(weights) cdict["Type"] = "t" contrasts.append(cdict) run["Contrasts"] = contrasts steps.append(run) if one_vs_rest: # if there are multiple sessions, t-test run level contrasts at # session level sessions = layout.get_sessions() if len(sessions) > 1: # get contrasts names from previous block contrast_names = [cc["Name"] for cc in steps[-1]["Contrasts"]] steps.append(_make_passthrough_contrast("Session", contrast_names)) subjects = layout.get_subjects() if len(subjects) > 1: # get contrasts names from previous block contrast_names = [cc["Name"] for cc in steps[-1]["Contrasts"]] steps.append(_make_passthrough_contrast("Subject", contrast_names)) # get contrasts names from previous block contrast_names = [cc["Name"] for cc in steps[-1]["Contrasts"]] steps.append(_make_passthrough_contrast("Dataset", contrast_names)) model["Steps"] = steps task_models.append(model) return task_models
python
def auto_model(layout, scan_length=None, one_vs_rest=False): '''Create a simple default model for each of the tasks in a BIDSLayout. Contrasts each trial type against all other trial types and trial types at the run level and then uses t-tests at each other level present to aggregate these results up. Args: layout (BIDSLayout) A BIDSLayout instance scan_length (Int) Scan length for loading event varibles in cases where the scan length can not be read from the nifti. Primarily for testing. one_vs_rest (Bool) Set to True if you would like to autogenerate contrasts of each trial type against everyother trialtype. Returns: models (list) list of model dictionaries for each task ''' base_name = split(layout.root)[-1] tasks = layout.entities['task'].unique() task_models = [] for task_name in tasks: # Populate model meta-data model = OrderedDict() model["Name"] = "_".join([base_name, task_name]) model["Description"] = ("Autogenerated model for the %s task from %s" % (task_name, base_name)) model["Input"] = {"Task": task_name} steps = [] # Make run level block transformations = OrderedDict(Name='Factor', Input=['trial_type']) run = OrderedDict(Level='Run', Name='Run', Transformations=[transformations]) # Get trial types run_nodes = load_variables(layout, task=task_name, levels=['run'], scan_length=scan_length) evs = [] for n in run_nodes.nodes: evs.extend(n.variables['trial_type'].values.values) trial_types = np.unique(evs) trial_type_factors = ["trial_type." + tt for tt in trial_types] # Add HRF run['Transformations'].append( OrderedDict(Name='Convolve', Input=trial_type_factors)) run_model = OrderedDict(X=trial_type_factors) run["Model"] = run_model if one_vs_rest: # if there are multiple trial types, build contrasts contrasts = [] for i, tt in enumerate(trial_types): cdict = OrderedDict() if len(trial_types) > 1: cdict["Name"] = "run_" + tt + "_vs_others" else: cdict["Name"] = "run_" + tt cdict["ConditionList"] = trial_type_factors # Calculate weights for contrast weights = np.ones(len(trial_types)) try: weights[trial_types != tt] = -1.0 / (len(trial_types) - 1) except ZeroDivisionError: pass cdict["Weights"] = list(weights) cdict["Type"] = "t" contrasts.append(cdict) run["Contrasts"] = contrasts steps.append(run) if one_vs_rest: # if there are multiple sessions, t-test run level contrasts at # session level sessions = layout.get_sessions() if len(sessions) > 1: # get contrasts names from previous block contrast_names = [cc["Name"] for cc in steps[-1]["Contrasts"]] steps.append(_make_passthrough_contrast("Session", contrast_names)) subjects = layout.get_subjects() if len(subjects) > 1: # get contrasts names from previous block contrast_names = [cc["Name"] for cc in steps[-1]["Contrasts"]] steps.append(_make_passthrough_contrast("Subject", contrast_names)) # get contrasts names from previous block contrast_names = [cc["Name"] for cc in steps[-1]["Contrasts"]] steps.append(_make_passthrough_contrast("Dataset", contrast_names)) model["Steps"] = steps task_models.append(model) return task_models
[ "def", "auto_model", "(", "layout", ",", "scan_length", "=", "None", ",", "one_vs_rest", "=", "False", ")", ":", "base_name", "=", "split", "(", "layout", ".", "root", ")", "[", "-", "1", "]", "tasks", "=", "layout", ".", "entities", "[", "'task'", "]", ".", "unique", "(", ")", "task_models", "=", "[", "]", "for", "task_name", "in", "tasks", ":", "# Populate model meta-data", "model", "=", "OrderedDict", "(", ")", "model", "[", "\"Name\"", "]", "=", "\"_\"", ".", "join", "(", "[", "base_name", ",", "task_name", "]", ")", "model", "[", "\"Description\"", "]", "=", "(", "\"Autogenerated model for the %s task from %s\"", "%", "(", "task_name", ",", "base_name", ")", ")", "model", "[", "\"Input\"", "]", "=", "{", "\"Task\"", ":", "task_name", "}", "steps", "=", "[", "]", "# Make run level block", "transformations", "=", "OrderedDict", "(", "Name", "=", "'Factor'", ",", "Input", "=", "[", "'trial_type'", "]", ")", "run", "=", "OrderedDict", "(", "Level", "=", "'Run'", ",", "Name", "=", "'Run'", ",", "Transformations", "=", "[", "transformations", "]", ")", "# Get trial types", "run_nodes", "=", "load_variables", "(", "layout", ",", "task", "=", "task_name", ",", "levels", "=", "[", "'run'", "]", ",", "scan_length", "=", "scan_length", ")", "evs", "=", "[", "]", "for", "n", "in", "run_nodes", ".", "nodes", ":", "evs", ".", "extend", "(", "n", ".", "variables", "[", "'trial_type'", "]", ".", "values", ".", "values", ")", "trial_types", "=", "np", ".", "unique", "(", "evs", ")", "trial_type_factors", "=", "[", "\"trial_type.\"", "+", "tt", "for", "tt", "in", "trial_types", "]", "# Add HRF", "run", "[", "'Transformations'", "]", ".", "append", "(", "OrderedDict", "(", "Name", "=", "'Convolve'", ",", "Input", "=", "trial_type_factors", ")", ")", "run_model", "=", "OrderedDict", "(", "X", "=", "trial_type_factors", ")", "run", "[", "\"Model\"", "]", "=", "run_model", "if", "one_vs_rest", ":", "# if there are multiple trial types, build contrasts", "contrasts", "=", "[", "]", "for", "i", ",", "tt", "in", "enumerate", "(", "trial_types", ")", ":", "cdict", "=", "OrderedDict", "(", ")", "if", "len", "(", "trial_types", ")", ">", "1", ":", "cdict", "[", "\"Name\"", "]", "=", "\"run_\"", "+", "tt", "+", "\"_vs_others\"", "else", ":", "cdict", "[", "\"Name\"", "]", "=", "\"run_\"", "+", "tt", "cdict", "[", "\"ConditionList\"", "]", "=", "trial_type_factors", "# Calculate weights for contrast", "weights", "=", "np", ".", "ones", "(", "len", "(", "trial_types", ")", ")", "try", ":", "weights", "[", "trial_types", "!=", "tt", "]", "=", "-", "1.0", "/", "(", "len", "(", "trial_types", ")", "-", "1", ")", "except", "ZeroDivisionError", ":", "pass", "cdict", "[", "\"Weights\"", "]", "=", "list", "(", "weights", ")", "cdict", "[", "\"Type\"", "]", "=", "\"t\"", "contrasts", ".", "append", "(", "cdict", ")", "run", "[", "\"Contrasts\"", "]", "=", "contrasts", "steps", ".", "append", "(", "run", ")", "if", "one_vs_rest", ":", "# if there are multiple sessions, t-test run level contrasts at", "# session level", "sessions", "=", "layout", ".", "get_sessions", "(", ")", "if", "len", "(", "sessions", ")", ">", "1", ":", "# get contrasts names from previous block", "contrast_names", "=", "[", "cc", "[", "\"Name\"", "]", "for", "cc", "in", "steps", "[", "-", "1", "]", "[", "\"Contrasts\"", "]", "]", "steps", ".", "append", "(", "_make_passthrough_contrast", "(", "\"Session\"", ",", "contrast_names", ")", ")", "subjects", "=", "layout", ".", "get_subjects", "(", ")", "if", "len", "(", "subjects", ")", ">", "1", ":", "# get contrasts names from previous block", "contrast_names", "=", "[", "cc", "[", "\"Name\"", "]", "for", "cc", "in", "steps", "[", "-", "1", "]", "[", "\"Contrasts\"", "]", "]", "steps", ".", "append", "(", "_make_passthrough_contrast", "(", "\"Subject\"", ",", "contrast_names", ")", ")", "# get contrasts names from previous block", "contrast_names", "=", "[", "cc", "[", "\"Name\"", "]", "for", "cc", "in", "steps", "[", "-", "1", "]", "[", "\"Contrasts\"", "]", "]", "steps", ".", "append", "(", "_make_passthrough_contrast", "(", "\"Dataset\"", ",", "contrast_names", ")", ")", "model", "[", "\"Steps\"", "]", "=", "steps", "task_models", ".", "append", "(", "model", ")", "return", "task_models" ]
Create a simple default model for each of the tasks in a BIDSLayout. Contrasts each trial type against all other trial types and trial types at the run level and then uses t-tests at each other level present to aggregate these results up. Args: layout (BIDSLayout) A BIDSLayout instance scan_length (Int) Scan length for loading event varibles in cases where the scan length can not be read from the nifti. Primarily for testing. one_vs_rest (Bool) Set to True if you would like to autogenerate contrasts of each trial type against everyother trialtype. Returns: models (list) list of model dictionaries for each task
[ "Create", "a", "simple", "default", "model", "for", "each", "of", "the", "tasks", "in", "a", "BIDSLayout", ".", "Contrasts", "each", "trial", "type", "against", "all", "other", "trial", "types", "and", "trial", "types", "at", "the", "run", "level", "and", "then", "uses", "t", "-", "tests", "at", "each", "other", "level", "present", "to", "aggregate", "these", "results", "up", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/analysis/auto_model.py#L19-L122
train
bids-standard/pybids
bids/variables/variables.py
SimpleVariable.split
def split(self, grouper): ''' Split the current SparseRunVariable into multiple columns. Args: grouper (iterable): list to groupby, where each unique value will be taken as the name of the resulting column. Returns: A list of SparseRunVariables, one per unique value in the grouper. ''' data = self.to_df(condition=True, entities=True) data = data.drop('condition', axis=1) subsets = [] for i, (name, g) in enumerate(data.groupby(grouper)): name = '%s.%s' % (self.name, name) col = self.__class__(name=name, data=g, source=self.source, run_info=getattr(self, 'run_info', None)) subsets.append(col) return subsets
python
def split(self, grouper): ''' Split the current SparseRunVariable into multiple columns. Args: grouper (iterable): list to groupby, where each unique value will be taken as the name of the resulting column. Returns: A list of SparseRunVariables, one per unique value in the grouper. ''' data = self.to_df(condition=True, entities=True) data = data.drop('condition', axis=1) subsets = [] for i, (name, g) in enumerate(data.groupby(grouper)): name = '%s.%s' % (self.name, name) col = self.__class__(name=name, data=g, source=self.source, run_info=getattr(self, 'run_info', None)) subsets.append(col) return subsets
[ "def", "split", "(", "self", ",", "grouper", ")", ":", "data", "=", "self", ".", "to_df", "(", "condition", "=", "True", ",", "entities", "=", "True", ")", "data", "=", "data", ".", "drop", "(", "'condition'", ",", "axis", "=", "1", ")", "subsets", "=", "[", "]", "for", "i", ",", "(", "name", ",", "g", ")", "in", "enumerate", "(", "data", ".", "groupby", "(", "grouper", ")", ")", ":", "name", "=", "'%s.%s'", "%", "(", "self", ".", "name", ",", "name", ")", "col", "=", "self", ".", "__class__", "(", "name", "=", "name", ",", "data", "=", "g", ",", "source", "=", "self", ".", "source", ",", "run_info", "=", "getattr", "(", "self", ",", "'run_info'", ",", "None", ")", ")", "subsets", ".", "append", "(", "col", ")", "return", "subsets" ]
Split the current SparseRunVariable into multiple columns. Args: grouper (iterable): list to groupby, where each unique value will be taken as the name of the resulting column. Returns: A list of SparseRunVariables, one per unique value in the grouper.
[ "Split", "the", "current", "SparseRunVariable", "into", "multiple", "columns", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/variables/variables.py#L240-L260
train
bids-standard/pybids
bids/variables/variables.py
SimpleVariable.select_rows
def select_rows(self, rows): ''' Truncate internal arrays to keep only the specified rows. Args: rows (array): An integer or boolean array identifying the indices of rows to keep. ''' self.values = self.values.iloc[rows] self.index = self.index.iloc[rows, :] for prop in self._property_columns: vals = getattr(self, prop)[rows] setattr(self, prop, vals)
python
def select_rows(self, rows): ''' Truncate internal arrays to keep only the specified rows. Args: rows (array): An integer or boolean array identifying the indices of rows to keep. ''' self.values = self.values.iloc[rows] self.index = self.index.iloc[rows, :] for prop in self._property_columns: vals = getattr(self, prop)[rows] setattr(self, prop, vals)
[ "def", "select_rows", "(", "self", ",", "rows", ")", ":", "self", ".", "values", "=", "self", ".", "values", ".", "iloc", "[", "rows", "]", "self", ".", "index", "=", "self", ".", "index", ".", "iloc", "[", "rows", ",", ":", "]", "for", "prop", "in", "self", ".", "_property_columns", ":", "vals", "=", "getattr", "(", "self", ",", "prop", ")", "[", "rows", "]", "setattr", "(", "self", ",", "prop", ",", "vals", ")" ]
Truncate internal arrays to keep only the specified rows. Args: rows (array): An integer or boolean array identifying the indices of rows to keep.
[ "Truncate", "internal", "arrays", "to", "keep", "only", "the", "specified", "rows", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/variables/variables.py#L269-L280
train
bids-standard/pybids
bids/variables/variables.py
DenseRunVariable.split
def split(self, grouper): '''Split the current DenseRunVariable into multiple columns. Parameters ---------- grouper : :obj:`pandas.DataFrame` Binary DF specifying the design matrix to use for splitting. Number of rows must match current ``DenseRunVariable``; a new ``DenseRunVariable`` will be generated for each column in the grouper. Returns ------- A list of DenseRunVariables, one per unique value in the grouper. ''' values = grouper.values * self.values.values df = pd.DataFrame(values, columns=grouper.columns) return [DenseRunVariable(name='%s.%s' % (self.name, name), values=df[name].values, run_info=self.run_info, source=self.source, sampling_rate=self.sampling_rate) for i, name in enumerate(df.columns)]
python
def split(self, grouper): '''Split the current DenseRunVariable into multiple columns. Parameters ---------- grouper : :obj:`pandas.DataFrame` Binary DF specifying the design matrix to use for splitting. Number of rows must match current ``DenseRunVariable``; a new ``DenseRunVariable`` will be generated for each column in the grouper. Returns ------- A list of DenseRunVariables, one per unique value in the grouper. ''' values = grouper.values * self.values.values df = pd.DataFrame(values, columns=grouper.columns) return [DenseRunVariable(name='%s.%s' % (self.name, name), values=df[name].values, run_info=self.run_info, source=self.source, sampling_rate=self.sampling_rate) for i, name in enumerate(df.columns)]
[ "def", "split", "(", "self", ",", "grouper", ")", ":", "values", "=", "grouper", ".", "values", "*", "self", ".", "values", ".", "values", "df", "=", "pd", ".", "DataFrame", "(", "values", ",", "columns", "=", "grouper", ".", "columns", ")", "return", "[", "DenseRunVariable", "(", "name", "=", "'%s.%s'", "%", "(", "self", ".", "name", ",", "name", ")", ",", "values", "=", "df", "[", "name", "]", ".", "values", ",", "run_info", "=", "self", ".", "run_info", ",", "source", "=", "self", ".", "source", ",", "sampling_rate", "=", "self", ".", "sampling_rate", ")", "for", "i", ",", "name", "in", "enumerate", "(", "df", ".", "columns", ")", "]" ]
Split the current DenseRunVariable into multiple columns. Parameters ---------- grouper : :obj:`pandas.DataFrame` Binary DF specifying the design matrix to use for splitting. Number of rows must match current ``DenseRunVariable``; a new ``DenseRunVariable`` will be generated for each column in the grouper. Returns ------- A list of DenseRunVariables, one per unique value in the grouper.
[ "Split", "the", "current", "DenseRunVariable", "into", "multiple", "columns", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/variables/variables.py#L393-L414
train
bids-standard/pybids
bids/variables/variables.py
DenseRunVariable._build_entity_index
def _build_entity_index(self, run_info, sampling_rate): ''' Build the entity index from run information. ''' index = [] interval = int(round(1000. / sampling_rate)) _timestamps = [] for run in run_info: reps = int(math.ceil(run.duration * sampling_rate)) ent_vals = list(run.entities.values()) df = pd.DataFrame([ent_vals] * reps, columns=list(run.entities.keys())) ts = pd.date_range(0, periods=len(df), freq='%sms' % interval) _timestamps.append(ts.to_series()) index.append(df) self.timestamps = pd.concat(_timestamps, axis=0, sort=True) return pd.concat(index, axis=0, sort=True).reset_index(drop=True)
python
def _build_entity_index(self, run_info, sampling_rate): ''' Build the entity index from run information. ''' index = [] interval = int(round(1000. / sampling_rate)) _timestamps = [] for run in run_info: reps = int(math.ceil(run.duration * sampling_rate)) ent_vals = list(run.entities.values()) df = pd.DataFrame([ent_vals] * reps, columns=list(run.entities.keys())) ts = pd.date_range(0, periods=len(df), freq='%sms' % interval) _timestamps.append(ts.to_series()) index.append(df) self.timestamps = pd.concat(_timestamps, axis=0, sort=True) return pd.concat(index, axis=0, sort=True).reset_index(drop=True)
[ "def", "_build_entity_index", "(", "self", ",", "run_info", ",", "sampling_rate", ")", ":", "index", "=", "[", "]", "interval", "=", "int", "(", "round", "(", "1000.", "/", "sampling_rate", ")", ")", "_timestamps", "=", "[", "]", "for", "run", "in", "run_info", ":", "reps", "=", "int", "(", "math", ".", "ceil", "(", "run", ".", "duration", "*", "sampling_rate", ")", ")", "ent_vals", "=", "list", "(", "run", ".", "entities", ".", "values", "(", ")", ")", "df", "=", "pd", ".", "DataFrame", "(", "[", "ent_vals", "]", "*", "reps", ",", "columns", "=", "list", "(", "run", ".", "entities", ".", "keys", "(", ")", ")", ")", "ts", "=", "pd", ".", "date_range", "(", "0", ",", "periods", "=", "len", "(", "df", ")", ",", "freq", "=", "'%sms'", "%", "interval", ")", "_timestamps", ".", "append", "(", "ts", ".", "to_series", "(", ")", ")", "index", ".", "append", "(", "df", ")", "self", ".", "timestamps", "=", "pd", ".", "concat", "(", "_timestamps", ",", "axis", "=", "0", ",", "sort", "=", "True", ")", "return", "pd", ".", "concat", "(", "index", ",", "axis", "=", "0", ",", "sort", "=", "True", ")", ".", "reset_index", "(", "drop", "=", "True", ")" ]
Build the entity index from run information.
[ "Build", "the", "entity", "index", "from", "run", "information", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/variables/variables.py#L416-L430
train
bids-standard/pybids
bids/variables/variables.py
DenseRunVariable.resample
def resample(self, sampling_rate, inplace=False, kind='linear'): '''Resample the Variable to the specified sampling rate. Parameters ---------- sampling_rate : :obj:`int`, :obj:`float` Target sampling rate (in Hz). inplace : :obj:`bool`, optional If True, performs resampling in-place. If False, returns a resampled copy of the current Variable. Default is False. kind : {'linear', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic'} Argument to pass to :obj:`scipy.interpolate.interp1d`; indicates the kind of interpolation approach to use. See interp1d docs for valid values. Default is 'linear'. ''' if not inplace: var = self.clone() var.resample(sampling_rate, True, kind) return var if sampling_rate == self.sampling_rate: return old_sr = self.sampling_rate n = len(self.index) self.index = self._build_entity_index(self.run_info, sampling_rate) x = np.arange(n) num = len(self.index) from scipy.interpolate import interp1d f = interp1d(x, self.values.values.ravel(), kind=kind) x_new = np.linspace(0, n - 1, num=num) self.values = pd.DataFrame(f(x_new)) assert len(self.values) == len(self.index) self.sampling_rate = sampling_rate
python
def resample(self, sampling_rate, inplace=False, kind='linear'): '''Resample the Variable to the specified sampling rate. Parameters ---------- sampling_rate : :obj:`int`, :obj:`float` Target sampling rate (in Hz). inplace : :obj:`bool`, optional If True, performs resampling in-place. If False, returns a resampled copy of the current Variable. Default is False. kind : {'linear', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic'} Argument to pass to :obj:`scipy.interpolate.interp1d`; indicates the kind of interpolation approach to use. See interp1d docs for valid values. Default is 'linear'. ''' if not inplace: var = self.clone() var.resample(sampling_rate, True, kind) return var if sampling_rate == self.sampling_rate: return old_sr = self.sampling_rate n = len(self.index) self.index = self._build_entity_index(self.run_info, sampling_rate) x = np.arange(n) num = len(self.index) from scipy.interpolate import interp1d f = interp1d(x, self.values.values.ravel(), kind=kind) x_new = np.linspace(0, n - 1, num=num) self.values = pd.DataFrame(f(x_new)) assert len(self.values) == len(self.index) self.sampling_rate = sampling_rate
[ "def", "resample", "(", "self", ",", "sampling_rate", ",", "inplace", "=", "False", ",", "kind", "=", "'linear'", ")", ":", "if", "not", "inplace", ":", "var", "=", "self", ".", "clone", "(", ")", "var", ".", "resample", "(", "sampling_rate", ",", "True", ",", "kind", ")", "return", "var", "if", "sampling_rate", "==", "self", ".", "sampling_rate", ":", "return", "old_sr", "=", "self", ".", "sampling_rate", "n", "=", "len", "(", "self", ".", "index", ")", "self", ".", "index", "=", "self", ".", "_build_entity_index", "(", "self", ".", "run_info", ",", "sampling_rate", ")", "x", "=", "np", ".", "arange", "(", "n", ")", "num", "=", "len", "(", "self", ".", "index", ")", "from", "scipy", ".", "interpolate", "import", "interp1d", "f", "=", "interp1d", "(", "x", ",", "self", ".", "values", ".", "values", ".", "ravel", "(", ")", ",", "kind", "=", "kind", ")", "x_new", "=", "np", ".", "linspace", "(", "0", ",", "n", "-", "1", ",", "num", "=", "num", ")", "self", ".", "values", "=", "pd", ".", "DataFrame", "(", "f", "(", "x_new", ")", ")", "assert", "len", "(", "self", ".", "values", ")", "==", "len", "(", "self", ".", "index", ")", "self", ".", "sampling_rate", "=", "sampling_rate" ]
Resample the Variable to the specified sampling rate. Parameters ---------- sampling_rate : :obj:`int`, :obj:`float` Target sampling rate (in Hz). inplace : :obj:`bool`, optional If True, performs resampling in-place. If False, returns a resampled copy of the current Variable. Default is False. kind : {'linear', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic'} Argument to pass to :obj:`scipy.interpolate.interp1d`; indicates the kind of interpolation approach to use. See interp1d docs for valid values. Default is 'linear'.
[ "Resample", "the", "Variable", "to", "the", "specified", "sampling", "rate", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/variables/variables.py#L432-L469
train
bids-standard/pybids
bids/variables/variables.py
DenseRunVariable.to_df
def to_df(self, condition=True, entities=True, timing=True, sampling_rate=None): '''Convert to a DataFrame, with columns for name and entities. Parameters ---------- condition : :obj:`bool` If True, adds a column for condition name, and names the amplitude column 'amplitude'. If False, returns just onset, duration, and amplitude, and gives the amplitude column the current column name. entities : :obj:`bool` If True, adds extra columns for all entities. timing : :obj:`bool` If True, includes onset and duration columns (even though events are sampled uniformly). If False, omits them. ''' if sampling_rate not in (None, self.sampling_rate): return self.resample(sampling_rate).to_df(condition, entities) df = super(DenseRunVariable, self).to_df(condition, entities) if timing: df['onset'] = self.timestamps.values.astype(float) / 1e+9 df['duration'] = 1. / self.sampling_rate return df
python
def to_df(self, condition=True, entities=True, timing=True, sampling_rate=None): '''Convert to a DataFrame, with columns for name and entities. Parameters ---------- condition : :obj:`bool` If True, adds a column for condition name, and names the amplitude column 'amplitude'. If False, returns just onset, duration, and amplitude, and gives the amplitude column the current column name. entities : :obj:`bool` If True, adds extra columns for all entities. timing : :obj:`bool` If True, includes onset and duration columns (even though events are sampled uniformly). If False, omits them. ''' if sampling_rate not in (None, self.sampling_rate): return self.resample(sampling_rate).to_df(condition, entities) df = super(DenseRunVariable, self).to_df(condition, entities) if timing: df['onset'] = self.timestamps.values.astype(float) / 1e+9 df['duration'] = 1. / self.sampling_rate return df
[ "def", "to_df", "(", "self", ",", "condition", "=", "True", ",", "entities", "=", "True", ",", "timing", "=", "True", ",", "sampling_rate", "=", "None", ")", ":", "if", "sampling_rate", "not", "in", "(", "None", ",", "self", ".", "sampling_rate", ")", ":", "return", "self", ".", "resample", "(", "sampling_rate", ")", ".", "to_df", "(", "condition", ",", "entities", ")", "df", "=", "super", "(", "DenseRunVariable", ",", "self", ")", ".", "to_df", "(", "condition", ",", "entities", ")", "if", "timing", ":", "df", "[", "'onset'", "]", "=", "self", ".", "timestamps", ".", "values", ".", "astype", "(", "float", ")", "/", "1e+9", "df", "[", "'duration'", "]", "=", "1.", "/", "self", ".", "sampling_rate", "return", "df" ]
Convert to a DataFrame, with columns for name and entities. Parameters ---------- condition : :obj:`bool` If True, adds a column for condition name, and names the amplitude column 'amplitude'. If False, returns just onset, duration, and amplitude, and gives the amplitude column the current column name. entities : :obj:`bool` If True, adds extra columns for all entities. timing : :obj:`bool` If True, includes onset and duration columns (even though events are sampled uniformly). If False, omits them.
[ "Convert", "to", "a", "DataFrame", "with", "columns", "for", "name", "and", "entities", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/variables/variables.py#L471-L495
train
bids-standard/pybids
bids/variables/entities.py
NodeIndex.get_collections
def get_collections(self, unit, names=None, merge=False, sampling_rate=None, **entities): ''' Retrieve variable data for a specified level in the Dataset. Args: unit (str): The unit of analysis to return variables for. Must be one of 'run', 'session', 'subject', or 'dataset'. names (list): Optional list of variables names to return. If None, all available variables are returned. merge (bool): If True, variables are merged across all observations of the current unit. E.g., if unit='subject' and return_type= 'collection', variablesfrom all subjects will be merged into a single collection. If False, each observation is handled separately, and the result is returned as a list. sampling_rate (int, str): If unit='run', the sampling rate to pass onto the returned BIDSRunVariableCollection. entities: Optional constraints used to limit what gets returned. Returns: ''' nodes = self.get_nodes(unit, entities) var_sets = [] for n in nodes: var_set = list(n.variables.values()) var_set = [v for v in var_set if v.matches_entities(entities)] if names is not None: var_set = [v for v in var_set if v.name in names] # Additional filtering on Variables past run level, because their # contents are extracted from TSV files containing rows from # multiple observations if unit != 'run': var_set = [v.filter(entities) for v in var_set] var_sets.append(var_set) if merge: var_sets = [list(chain(*var_sets))] results = [] for vs in var_sets: if not vs: continue if unit == 'run': vs = clc.BIDSRunVariableCollection(vs, sampling_rate) else: vs = clc.BIDSVariableCollection(vs) results.append(vs) if merge: return results[0] if results else None return results
python
def get_collections(self, unit, names=None, merge=False, sampling_rate=None, **entities): ''' Retrieve variable data for a specified level in the Dataset. Args: unit (str): The unit of analysis to return variables for. Must be one of 'run', 'session', 'subject', or 'dataset'. names (list): Optional list of variables names to return. If None, all available variables are returned. merge (bool): If True, variables are merged across all observations of the current unit. E.g., if unit='subject' and return_type= 'collection', variablesfrom all subjects will be merged into a single collection. If False, each observation is handled separately, and the result is returned as a list. sampling_rate (int, str): If unit='run', the sampling rate to pass onto the returned BIDSRunVariableCollection. entities: Optional constraints used to limit what gets returned. Returns: ''' nodes = self.get_nodes(unit, entities) var_sets = [] for n in nodes: var_set = list(n.variables.values()) var_set = [v for v in var_set if v.matches_entities(entities)] if names is not None: var_set = [v for v in var_set if v.name in names] # Additional filtering on Variables past run level, because their # contents are extracted from TSV files containing rows from # multiple observations if unit != 'run': var_set = [v.filter(entities) for v in var_set] var_sets.append(var_set) if merge: var_sets = [list(chain(*var_sets))] results = [] for vs in var_sets: if not vs: continue if unit == 'run': vs = clc.BIDSRunVariableCollection(vs, sampling_rate) else: vs = clc.BIDSVariableCollection(vs) results.append(vs) if merge: return results[0] if results else None return results
[ "def", "get_collections", "(", "self", ",", "unit", ",", "names", "=", "None", ",", "merge", "=", "False", ",", "sampling_rate", "=", "None", ",", "*", "*", "entities", ")", ":", "nodes", "=", "self", ".", "get_nodes", "(", "unit", ",", "entities", ")", "var_sets", "=", "[", "]", "for", "n", "in", "nodes", ":", "var_set", "=", "list", "(", "n", ".", "variables", ".", "values", "(", ")", ")", "var_set", "=", "[", "v", "for", "v", "in", "var_set", "if", "v", ".", "matches_entities", "(", "entities", ")", "]", "if", "names", "is", "not", "None", ":", "var_set", "=", "[", "v", "for", "v", "in", "var_set", "if", "v", ".", "name", "in", "names", "]", "# Additional filtering on Variables past run level, because their", "# contents are extracted from TSV files containing rows from", "# multiple observations", "if", "unit", "!=", "'run'", ":", "var_set", "=", "[", "v", ".", "filter", "(", "entities", ")", "for", "v", "in", "var_set", "]", "var_sets", ".", "append", "(", "var_set", ")", "if", "merge", ":", "var_sets", "=", "[", "list", "(", "chain", "(", "*", "var_sets", ")", ")", "]", "results", "=", "[", "]", "for", "vs", "in", "var_sets", ":", "if", "not", "vs", ":", "continue", "if", "unit", "==", "'run'", ":", "vs", "=", "clc", ".", "BIDSRunVariableCollection", "(", "vs", ",", "sampling_rate", ")", "else", ":", "vs", "=", "clc", ".", "BIDSVariableCollection", "(", "vs", ")", "results", ".", "append", "(", "vs", ")", "if", "merge", ":", "return", "results", "[", "0", "]", "if", "results", "else", "None", "return", "results" ]
Retrieve variable data for a specified level in the Dataset. Args: unit (str): The unit of analysis to return variables for. Must be one of 'run', 'session', 'subject', or 'dataset'. names (list): Optional list of variables names to return. If None, all available variables are returned. merge (bool): If True, variables are merged across all observations of the current unit. E.g., if unit='subject' and return_type= 'collection', variablesfrom all subjects will be merged into a single collection. If False, each observation is handled separately, and the result is returned as a list. sampling_rate (int, str): If unit='run', the sampling rate to pass onto the returned BIDSRunVariableCollection. entities: Optional constraints used to limit what gets returned. Returns:
[ "Retrieve", "variable", "data", "for", "a", "specified", "level", "in", "the", "Dataset", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/variables/entities.py#L65-L118
train
bids-standard/pybids
bids/variables/entities.py
NodeIndex.get_or_create_node
def get_or_create_node(self, level, entities, *args, **kwargs): ''' Retrieves a child Node based on the specified criteria, creating a new Node if necessary. Args: entities (dict): Dictionary of entities specifying which Node to return. args, kwargs: Optional positional or named arguments to pass onto class-specific initializers. These arguments are only used if a Node that matches the passed entities doesn't already exist, and a new one must be created. Returns: A Node instance. ''' result = self.get_nodes(level, entities) if result: if len(result) > 1: raise ValueError("More than one matching Node found! If you're" " expecting more than one Node, use " "get_nodes() instead of get_or_create_node()." ) return result[0] # Create Node if level == 'run': node = RunNode(entities, *args, **kwargs) else: node = Node(level, entities) entities = dict(entities, node_index=len(self.nodes), level=level) self.nodes.append(node) node_row = pd.Series(entities) self.index = self.index.append(node_row, ignore_index=True) return node
python
def get_or_create_node(self, level, entities, *args, **kwargs): ''' Retrieves a child Node based on the specified criteria, creating a new Node if necessary. Args: entities (dict): Dictionary of entities specifying which Node to return. args, kwargs: Optional positional or named arguments to pass onto class-specific initializers. These arguments are only used if a Node that matches the passed entities doesn't already exist, and a new one must be created. Returns: A Node instance. ''' result = self.get_nodes(level, entities) if result: if len(result) > 1: raise ValueError("More than one matching Node found! If you're" " expecting more than one Node, use " "get_nodes() instead of get_or_create_node()." ) return result[0] # Create Node if level == 'run': node = RunNode(entities, *args, **kwargs) else: node = Node(level, entities) entities = dict(entities, node_index=len(self.nodes), level=level) self.nodes.append(node) node_row = pd.Series(entities) self.index = self.index.append(node_row, ignore_index=True) return node
[ "def", "get_or_create_node", "(", "self", ",", "level", ",", "entities", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "result", "=", "self", ".", "get_nodes", "(", "level", ",", "entities", ")", "if", "result", ":", "if", "len", "(", "result", ")", ">", "1", ":", "raise", "ValueError", "(", "\"More than one matching Node found! If you're\"", "\" expecting more than one Node, use \"", "\"get_nodes() instead of get_or_create_node().\"", ")", "return", "result", "[", "0", "]", "# Create Node", "if", "level", "==", "'run'", ":", "node", "=", "RunNode", "(", "entities", ",", "*", "args", ",", "*", "*", "kwargs", ")", "else", ":", "node", "=", "Node", "(", "level", ",", "entities", ")", "entities", "=", "dict", "(", "entities", ",", "node_index", "=", "len", "(", "self", ".", "nodes", ")", ",", "level", "=", "level", ")", "self", ".", "nodes", ".", "append", "(", "node", ")", "node_row", "=", "pd", ".", "Series", "(", "entities", ")", "self", ".", "index", "=", "self", ".", "index", ".", "append", "(", "node_row", ",", "ignore_index", "=", "True", ")", "return", "node" ]
Retrieves a child Node based on the specified criteria, creating a new Node if necessary. Args: entities (dict): Dictionary of entities specifying which Node to return. args, kwargs: Optional positional or named arguments to pass onto class-specific initializers. These arguments are only used if a Node that matches the passed entities doesn't already exist, and a new one must be created. Returns: A Node instance.
[ "Retrieves", "a", "child", "Node", "based", "on", "the", "specified", "criteria", "creating", "a", "new", "Node", "if", "necessary", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/variables/entities.py#L160-L198
train
bids-standard/pybids
bids/variables/kollekshuns.py
merge_collections
def merge_collections(collections, force_dense=False, sampling_rate='auto'): ''' Merge two or more collections at the same level of analysis. Args: collections (list): List of Collections to merge. sampling_rate (int, str): Sampling rate to use if it becomes necessary to resample DenseRunVariables. Either an integer or 'auto' (see merge_variables docstring for further explanation). Returns: A BIDSVariableCollection or BIDSRunVariableCollection, depending on the type of the input collections. ''' if len(listify(collections)) == 1: return collections levels = set([c.level for c in collections]) if len(levels) > 1: raise ValueError("At the moment, it's only possible to merge " "Collections at the same level of analysis. You " "passed collections at levels: %s." % levels) variables = list(chain(*[c.variables.values() for c in collections])) cls = collections[0].__class__ variables = cls.merge_variables(variables, sampling_rate=sampling_rate) if isinstance(collections[0], BIDSRunVariableCollection): if sampling_rate == 'auto': rates = [var.sampling_rate for var in variables if isinstance(var, DenseRunVariable)] sampling_rate = rates[0] if rates else None return cls(variables, sampling_rate) return cls(variables)
python
def merge_collections(collections, force_dense=False, sampling_rate='auto'): ''' Merge two or more collections at the same level of analysis. Args: collections (list): List of Collections to merge. sampling_rate (int, str): Sampling rate to use if it becomes necessary to resample DenseRunVariables. Either an integer or 'auto' (see merge_variables docstring for further explanation). Returns: A BIDSVariableCollection or BIDSRunVariableCollection, depending on the type of the input collections. ''' if len(listify(collections)) == 1: return collections levels = set([c.level for c in collections]) if len(levels) > 1: raise ValueError("At the moment, it's only possible to merge " "Collections at the same level of analysis. You " "passed collections at levels: %s." % levels) variables = list(chain(*[c.variables.values() for c in collections])) cls = collections[0].__class__ variables = cls.merge_variables(variables, sampling_rate=sampling_rate) if isinstance(collections[0], BIDSRunVariableCollection): if sampling_rate == 'auto': rates = [var.sampling_rate for var in variables if isinstance(var, DenseRunVariable)] sampling_rate = rates[0] if rates else None return cls(variables, sampling_rate) return cls(variables)
[ "def", "merge_collections", "(", "collections", ",", "force_dense", "=", "False", ",", "sampling_rate", "=", "'auto'", ")", ":", "if", "len", "(", "listify", "(", "collections", ")", ")", "==", "1", ":", "return", "collections", "levels", "=", "set", "(", "[", "c", ".", "level", "for", "c", "in", "collections", "]", ")", "if", "len", "(", "levels", ")", ">", "1", ":", "raise", "ValueError", "(", "\"At the moment, it's only possible to merge \"", "\"Collections at the same level of analysis. You \"", "\"passed collections at levels: %s.\"", "%", "levels", ")", "variables", "=", "list", "(", "chain", "(", "*", "[", "c", ".", "variables", ".", "values", "(", ")", "for", "c", "in", "collections", "]", ")", ")", "cls", "=", "collections", "[", "0", "]", ".", "__class__", "variables", "=", "cls", ".", "merge_variables", "(", "variables", ",", "sampling_rate", "=", "sampling_rate", ")", "if", "isinstance", "(", "collections", "[", "0", "]", ",", "BIDSRunVariableCollection", ")", ":", "if", "sampling_rate", "==", "'auto'", ":", "rates", "=", "[", "var", ".", "sampling_rate", "for", "var", "in", "variables", "if", "isinstance", "(", "var", ",", "DenseRunVariable", ")", "]", "sampling_rate", "=", "rates", "[", "0", "]", "if", "rates", "else", "None", "return", "cls", "(", "variables", ",", "sampling_rate", ")", "return", "cls", "(", "variables", ")" ]
Merge two or more collections at the same level of analysis. Args: collections (list): List of Collections to merge. sampling_rate (int, str): Sampling rate to use if it becomes necessary to resample DenseRunVariables. Either an integer or 'auto' (see merge_variables docstring for further explanation). Returns: A BIDSVariableCollection or BIDSRunVariableCollection, depending on the type of the input collections.
[ "Merge", "two", "or", "more", "collections", "at", "the", "same", "level", "of", "analysis", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/variables/kollekshuns.py#L354-L390
train
bids-standard/pybids
bids/variables/kollekshuns.py
BIDSVariableCollection.merge_variables
def merge_variables(variables, **kwargs): ''' Concatenates Variables along row axis. Args: variables (list): List of Variables to merge. Variables can have different names (and all Variables that share a name will be concatenated together). Returns: A list of Variables. ''' var_dict = OrderedDict() for v in variables: if v.name not in var_dict: var_dict[v.name] = [] var_dict[v.name].append(v) return [merge_variables(vars_, **kwargs) for vars_ in list(var_dict.values())]
python
def merge_variables(variables, **kwargs): ''' Concatenates Variables along row axis. Args: variables (list): List of Variables to merge. Variables can have different names (and all Variables that share a name will be concatenated together). Returns: A list of Variables. ''' var_dict = OrderedDict() for v in variables: if v.name not in var_dict: var_dict[v.name] = [] var_dict[v.name].append(v) return [merge_variables(vars_, **kwargs) for vars_ in list(var_dict.values())]
[ "def", "merge_variables", "(", "variables", ",", "*", "*", "kwargs", ")", ":", "var_dict", "=", "OrderedDict", "(", ")", "for", "v", "in", "variables", ":", "if", "v", ".", "name", "not", "in", "var_dict", ":", "var_dict", "[", "v", ".", "name", "]", "=", "[", "]", "var_dict", "[", "v", ".", "name", "]", ".", "append", "(", "v", ")", "return", "[", "merge_variables", "(", "vars_", ",", "*", "*", "kwargs", ")", "for", "vars_", "in", "list", "(", "var_dict", ".", "values", "(", ")", ")", "]" ]
Concatenates Variables along row axis. Args: variables (list): List of Variables to merge. Variables can have different names (and all Variables that share a name will be concatenated together). Returns: A list of Variables.
[ "Concatenates", "Variables", "along", "row", "axis", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/variables/kollekshuns.py#L69-L86
train
bids-standard/pybids
bids/variables/kollekshuns.py
BIDSVariableCollection.to_df
def to_df(self, variables=None, format='wide', fillna=np.nan, **kwargs): ''' Merge variables into a single pandas DataFrame. Args: variables (list): Optional list of column names to retain; if None, all variables are returned. format (str): Whether to return a DataFrame in 'wide' or 'long' format. In 'wide' format, each row is defined by a unique onset/duration, and each variable is in a separate column. In 'long' format, each row is a unique combination of onset, duration, and variable name, and a single 'amplitude' column provides the value. fillna: Replace missing values with the specified value. kwargs: Optional keyword arguments to pass onto each Variable's to_df() call (e.g., condition, entities, and timing). Returns: A pandas DataFrame. ''' if variables is None: variables = list(self.variables.keys()) # Can receive already-selected Variables from sub-classes if not isinstance(variables[0], BIDSVariable): variables = [v for v in self.variables.values() if v.name in variables] dfs = [v.to_df(**kwargs) for v in variables] df = pd.concat(dfs, axis=0, sort=True) if format == 'long': return df.reset_index(drop=True).fillna(fillna) ind_cols = list(set(df.columns) - {'condition', 'amplitude'}) df['amplitude'] = df['amplitude'].fillna('n/a') df = df.pivot_table(index=ind_cols, columns='condition', values='amplitude', aggfunc='first') df = df.reset_index().replace('n/a', fillna) df.columns.name = None return df
python
def to_df(self, variables=None, format='wide', fillna=np.nan, **kwargs): ''' Merge variables into a single pandas DataFrame. Args: variables (list): Optional list of column names to retain; if None, all variables are returned. format (str): Whether to return a DataFrame in 'wide' or 'long' format. In 'wide' format, each row is defined by a unique onset/duration, and each variable is in a separate column. In 'long' format, each row is a unique combination of onset, duration, and variable name, and a single 'amplitude' column provides the value. fillna: Replace missing values with the specified value. kwargs: Optional keyword arguments to pass onto each Variable's to_df() call (e.g., condition, entities, and timing). Returns: A pandas DataFrame. ''' if variables is None: variables = list(self.variables.keys()) # Can receive already-selected Variables from sub-classes if not isinstance(variables[0], BIDSVariable): variables = [v for v in self.variables.values() if v.name in variables] dfs = [v.to_df(**kwargs) for v in variables] df = pd.concat(dfs, axis=0, sort=True) if format == 'long': return df.reset_index(drop=True).fillna(fillna) ind_cols = list(set(df.columns) - {'condition', 'amplitude'}) df['amplitude'] = df['amplitude'].fillna('n/a') df = df.pivot_table(index=ind_cols, columns='condition', values='amplitude', aggfunc='first') df = df.reset_index().replace('n/a', fillna) df.columns.name = None return df
[ "def", "to_df", "(", "self", ",", "variables", "=", "None", ",", "format", "=", "'wide'", ",", "fillna", "=", "np", ".", "nan", ",", "*", "*", "kwargs", ")", ":", "if", "variables", "is", "None", ":", "variables", "=", "list", "(", "self", ".", "variables", ".", "keys", "(", ")", ")", "# Can receive already-selected Variables from sub-classes", "if", "not", "isinstance", "(", "variables", "[", "0", "]", ",", "BIDSVariable", ")", ":", "variables", "=", "[", "v", "for", "v", "in", "self", ".", "variables", ".", "values", "(", ")", "if", "v", ".", "name", "in", "variables", "]", "dfs", "=", "[", "v", ".", "to_df", "(", "*", "*", "kwargs", ")", "for", "v", "in", "variables", "]", "df", "=", "pd", ".", "concat", "(", "dfs", ",", "axis", "=", "0", ",", "sort", "=", "True", ")", "if", "format", "==", "'long'", ":", "return", "df", ".", "reset_index", "(", "drop", "=", "True", ")", ".", "fillna", "(", "fillna", ")", "ind_cols", "=", "list", "(", "set", "(", "df", ".", "columns", ")", "-", "{", "'condition'", ",", "'amplitude'", "}", ")", "df", "[", "'amplitude'", "]", "=", "df", "[", "'amplitude'", "]", ".", "fillna", "(", "'n/a'", ")", "df", "=", "df", ".", "pivot_table", "(", "index", "=", "ind_cols", ",", "columns", "=", "'condition'", ",", "values", "=", "'amplitude'", ",", "aggfunc", "=", "'first'", ")", "df", "=", "df", ".", "reset_index", "(", ")", ".", "replace", "(", "'n/a'", ",", "fillna", ")", "df", ".", "columns", ".", "name", "=", "None", "return", "df" ]
Merge variables into a single pandas DataFrame. Args: variables (list): Optional list of column names to retain; if None, all variables are returned. format (str): Whether to return a DataFrame in 'wide' or 'long' format. In 'wide' format, each row is defined by a unique onset/duration, and each variable is in a separate column. In 'long' format, each row is a unique combination of onset, duration, and variable name, and a single 'amplitude' column provides the value. fillna: Replace missing values with the specified value. kwargs: Optional keyword arguments to pass onto each Variable's to_df() call (e.g., condition, entities, and timing). Returns: A pandas DataFrame.
[ "Merge", "variables", "into", "a", "single", "pandas", "DataFrame", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/variables/kollekshuns.py#L88-L128
train
bids-standard/pybids
bids/variables/kollekshuns.py
BIDSVariableCollection.from_df
def from_df(cls, data, entities=None, source='contrast'): ''' Create a Collection from a pandas DataFrame. Args: df (DataFrame): The DataFrame to convert to a Collection. Each column will be converted to a SimpleVariable. entities (DataFrame): An optional second DataFrame containing entity information. source (str): The value to set as the source for all Variables. Returns: A BIDSVariableCollection. ''' variables = [] for col in data.columns: _data = pd.DataFrame(data[col].values, columns=['amplitude']) if entities is not None: _data = pd.concat([_data, entities], axis=1, sort=True) variables.append(SimpleVariable(name=col, data=_data, source=source)) return BIDSVariableCollection(variables)
python
def from_df(cls, data, entities=None, source='contrast'): ''' Create a Collection from a pandas DataFrame. Args: df (DataFrame): The DataFrame to convert to a Collection. Each column will be converted to a SimpleVariable. entities (DataFrame): An optional second DataFrame containing entity information. source (str): The value to set as the source for all Variables. Returns: A BIDSVariableCollection. ''' variables = [] for col in data.columns: _data = pd.DataFrame(data[col].values, columns=['amplitude']) if entities is not None: _data = pd.concat([_data, entities], axis=1, sort=True) variables.append(SimpleVariable(name=col, data=_data, source=source)) return BIDSVariableCollection(variables)
[ "def", "from_df", "(", "cls", ",", "data", ",", "entities", "=", "None", ",", "source", "=", "'contrast'", ")", ":", "variables", "=", "[", "]", "for", "col", "in", "data", ".", "columns", ":", "_data", "=", "pd", ".", "DataFrame", "(", "data", "[", "col", "]", ".", "values", ",", "columns", "=", "[", "'amplitude'", "]", ")", "if", "entities", "is", "not", "None", ":", "_data", "=", "pd", ".", "concat", "(", "[", "_data", ",", "entities", "]", ",", "axis", "=", "1", ",", "sort", "=", "True", ")", "variables", ".", "append", "(", "SimpleVariable", "(", "name", "=", "col", ",", "data", "=", "_data", ",", "source", "=", "source", ")", ")", "return", "BIDSVariableCollection", "(", "variables", ")" ]
Create a Collection from a pandas DataFrame. Args: df (DataFrame): The DataFrame to convert to a Collection. Each column will be converted to a SimpleVariable. entities (DataFrame): An optional second DataFrame containing entity information. source (str): The value to set as the source for all Variables. Returns: A BIDSVariableCollection.
[ "Create", "a", "Collection", "from", "a", "pandas", "DataFrame", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/variables/kollekshuns.py#L131-L150
train
bids-standard/pybids
bids/variables/kollekshuns.py
BIDSVariableCollection.clone
def clone(self): ''' Returns a shallow copy of the current instance, except that all variables are deep-cloned. ''' clone = copy(self) clone.variables = {k: v.clone() for (k, v) in self.variables.items()} return clone
python
def clone(self): ''' Returns a shallow copy of the current instance, except that all variables are deep-cloned. ''' clone = copy(self) clone.variables = {k: v.clone() for (k, v) in self.variables.items()} return clone
[ "def", "clone", "(", "self", ")", ":", "clone", "=", "copy", "(", "self", ")", "clone", ".", "variables", "=", "{", "k", ":", "v", ".", "clone", "(", ")", "for", "(", "k", ",", "v", ")", "in", "self", ".", "variables", ".", "items", "(", ")", "}", "return", "clone" ]
Returns a shallow copy of the current instance, except that all variables are deep-cloned.
[ "Returns", "a", "shallow", "copy", "of", "the", "current", "instance", "except", "that", "all", "variables", "are", "deep", "-", "cloned", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/variables/kollekshuns.py#L152-L158
train
bids-standard/pybids
bids/variables/kollekshuns.py
BIDSVariableCollection._index_entities
def _index_entities(self): ''' Sets current instance's entities based on the existing index. Note: Only entity key/value pairs common to all rows in all contained Variables are returned. E.g., if a Collection contains Variables extracted from runs 1, 2 and 3 from subject '01', the returned dict will be {'subject': '01'}; the runs will be excluded as they vary across the Collection contents. ''' all_ents = pd.DataFrame.from_records( [v.entities for v in self.variables.values()]) constant = all_ents.apply(lambda x: x.nunique() == 1) if constant.empty: self.entities = {} else: keep = all_ents.columns[constant] ents = {k: all_ents[k].dropna().iloc[0] for k in keep} self.entities = {k: v for k, v in ents.items() if pd.notnull(v)}
python
def _index_entities(self): ''' Sets current instance's entities based on the existing index. Note: Only entity key/value pairs common to all rows in all contained Variables are returned. E.g., if a Collection contains Variables extracted from runs 1, 2 and 3 from subject '01', the returned dict will be {'subject': '01'}; the runs will be excluded as they vary across the Collection contents. ''' all_ents = pd.DataFrame.from_records( [v.entities for v in self.variables.values()]) constant = all_ents.apply(lambda x: x.nunique() == 1) if constant.empty: self.entities = {} else: keep = all_ents.columns[constant] ents = {k: all_ents[k].dropna().iloc[0] for k in keep} self.entities = {k: v for k, v in ents.items() if pd.notnull(v)}
[ "def", "_index_entities", "(", "self", ")", ":", "all_ents", "=", "pd", ".", "DataFrame", ".", "from_records", "(", "[", "v", ".", "entities", "for", "v", "in", "self", ".", "variables", ".", "values", "(", ")", "]", ")", "constant", "=", "all_ents", ".", "apply", "(", "lambda", "x", ":", "x", ".", "nunique", "(", ")", "==", "1", ")", "if", "constant", ".", "empty", ":", "self", ".", "entities", "=", "{", "}", "else", ":", "keep", "=", "all_ents", ".", "columns", "[", "constant", "]", "ents", "=", "{", "k", ":", "all_ents", "[", "k", "]", ".", "dropna", "(", ")", ".", "iloc", "[", "0", "]", "for", "k", "in", "keep", "}", "self", ".", "entities", "=", "{", "k", ":", "v", "for", "k", ",", "v", "in", "ents", ".", "items", "(", ")", "if", "pd", ".", "notnull", "(", "v", ")", "}" ]
Sets current instance's entities based on the existing index. Note: Only entity key/value pairs common to all rows in all contained Variables are returned. E.g., if a Collection contains Variables extracted from runs 1, 2 and 3 from subject '01', the returned dict will be {'subject': '01'}; the runs will be excluded as they vary across the Collection contents.
[ "Sets", "current", "instance", "s", "entities", "based", "on", "the", "existing", "index", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/variables/kollekshuns.py#L164-L181
train
bids-standard/pybids
bids/variables/kollekshuns.py
BIDSVariableCollection.match_variables
def match_variables(self, pattern, return_type='name'): ''' Return columns whose names match the provided regex pattern. Args: pattern (str): A regex pattern to match all variable names against. return_type (str): What to return. Must be one of: 'name': Returns a list of names of matching variables. 'variable': Returns a list of Variable objects whose names match. ''' pattern = re.compile(pattern) vars_ = [v for v in self.variables.values() if pattern.search(v.name)] return vars_ if return_type.startswith('var') \ else [v.name for v in vars_]
python
def match_variables(self, pattern, return_type='name'): ''' Return columns whose names match the provided regex pattern. Args: pattern (str): A regex pattern to match all variable names against. return_type (str): What to return. Must be one of: 'name': Returns a list of names of matching variables. 'variable': Returns a list of Variable objects whose names match. ''' pattern = re.compile(pattern) vars_ = [v for v in self.variables.values() if pattern.search(v.name)] return vars_ if return_type.startswith('var') \ else [v.name for v in vars_]
[ "def", "match_variables", "(", "self", ",", "pattern", ",", "return_type", "=", "'name'", ")", ":", "pattern", "=", "re", ".", "compile", "(", "pattern", ")", "vars_", "=", "[", "v", "for", "v", "in", "self", ".", "variables", ".", "values", "(", ")", "if", "pattern", ".", "search", "(", "v", ".", "name", ")", "]", "return", "vars_", "if", "return_type", ".", "startswith", "(", "'var'", ")", "else", "[", "v", ".", "name", "for", "v", "in", "vars_", "]" ]
Return columns whose names match the provided regex pattern. Args: pattern (str): A regex pattern to match all variable names against. return_type (str): What to return. Must be one of: 'name': Returns a list of names of matching variables. 'variable': Returns a list of Variable objects whose names match.
[ "Return", "columns", "whose", "names", "match", "the", "provided", "regex", "pattern", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/variables/kollekshuns.py#L196-L209
train
bids-standard/pybids
bids/variables/kollekshuns.py
BIDSRunVariableCollection.to_df
def to_df(self, variables=None, format='wide', sparse=True, sampling_rate=None, include_sparse=True, include_dense=True, **kwargs): ''' Merge columns into a single pandas DataFrame. Args: variables (list): Optional list of variable names to retain; if None, all variables are written out. format (str): Whether to return a DataFrame in 'wide' or 'long' format. In 'wide' format, each row is defined by a unique onset/duration, and each variable is in a separate column. In 'long' format, each row is a unique combination of onset, duration, and variable name, and a single 'amplitude' column provides the value. sparse (bool): If True, variables will be kept in a sparse format provided they are all internally represented as such. If False, a dense matrix (i.e., uniform sampling rate for all events) will be exported. Will be ignored if at least one variable is dense. sampling_rate (float): If a dense matrix is written out, the sampling rate (in Hz) to use for downsampling. Defaults to the value currently set in the instance. kwargs: Optional keyword arguments to pass onto each Variable's to_df() call (e.g., condition, entities, and timing). include_sparse (bool): Whether or not to include sparse Variables. include_dense (bool): Whether or not to include dense Variables. Returns: A pandas DataFrame. ''' if not include_sparse and not include_dense: raise ValueError("You can't exclude both dense and sparse " "variables! That leaves nothing!") if variables is None: variables = list(self.variables.keys()) if not include_sparse: variables = [v for v in variables if isinstance(self.variables[v], DenseRunVariable)] if not include_dense: variables = [v for v in variables if not isinstance(self.variables[v], DenseRunVariable)] if not variables: return None _vars = [self.variables[v] for v in variables] if sparse and all(isinstance(v, SimpleVariable) for v in _vars): variables = _vars else: sampling_rate = sampling_rate or self.sampling_rate # Make sure all variables have the same sampling rate variables = list(self.resample(sampling_rate, variables, force_dense=True, in_place=False).values()) return super(BIDSRunVariableCollection, self).to_df(variables, format, **kwargs)
python
def to_df(self, variables=None, format='wide', sparse=True, sampling_rate=None, include_sparse=True, include_dense=True, **kwargs): ''' Merge columns into a single pandas DataFrame. Args: variables (list): Optional list of variable names to retain; if None, all variables are written out. format (str): Whether to return a DataFrame in 'wide' or 'long' format. In 'wide' format, each row is defined by a unique onset/duration, and each variable is in a separate column. In 'long' format, each row is a unique combination of onset, duration, and variable name, and a single 'amplitude' column provides the value. sparse (bool): If True, variables will be kept in a sparse format provided they are all internally represented as such. If False, a dense matrix (i.e., uniform sampling rate for all events) will be exported. Will be ignored if at least one variable is dense. sampling_rate (float): If a dense matrix is written out, the sampling rate (in Hz) to use for downsampling. Defaults to the value currently set in the instance. kwargs: Optional keyword arguments to pass onto each Variable's to_df() call (e.g., condition, entities, and timing). include_sparse (bool): Whether or not to include sparse Variables. include_dense (bool): Whether or not to include dense Variables. Returns: A pandas DataFrame. ''' if not include_sparse and not include_dense: raise ValueError("You can't exclude both dense and sparse " "variables! That leaves nothing!") if variables is None: variables = list(self.variables.keys()) if not include_sparse: variables = [v for v in variables if isinstance(self.variables[v], DenseRunVariable)] if not include_dense: variables = [v for v in variables if not isinstance(self.variables[v], DenseRunVariable)] if not variables: return None _vars = [self.variables[v] for v in variables] if sparse and all(isinstance(v, SimpleVariable) for v in _vars): variables = _vars else: sampling_rate = sampling_rate or self.sampling_rate # Make sure all variables have the same sampling rate variables = list(self.resample(sampling_rate, variables, force_dense=True, in_place=False).values()) return super(BIDSRunVariableCollection, self).to_df(variables, format, **kwargs)
[ "def", "to_df", "(", "self", ",", "variables", "=", "None", ",", "format", "=", "'wide'", ",", "sparse", "=", "True", ",", "sampling_rate", "=", "None", ",", "include_sparse", "=", "True", ",", "include_dense", "=", "True", ",", "*", "*", "kwargs", ")", ":", "if", "not", "include_sparse", "and", "not", "include_dense", ":", "raise", "ValueError", "(", "\"You can't exclude both dense and sparse \"", "\"variables! That leaves nothing!\"", ")", "if", "variables", "is", "None", ":", "variables", "=", "list", "(", "self", ".", "variables", ".", "keys", "(", ")", ")", "if", "not", "include_sparse", ":", "variables", "=", "[", "v", "for", "v", "in", "variables", "if", "isinstance", "(", "self", ".", "variables", "[", "v", "]", ",", "DenseRunVariable", ")", "]", "if", "not", "include_dense", ":", "variables", "=", "[", "v", "for", "v", "in", "variables", "if", "not", "isinstance", "(", "self", ".", "variables", "[", "v", "]", ",", "DenseRunVariable", ")", "]", "if", "not", "variables", ":", "return", "None", "_vars", "=", "[", "self", ".", "variables", "[", "v", "]", "for", "v", "in", "variables", "]", "if", "sparse", "and", "all", "(", "isinstance", "(", "v", ",", "SimpleVariable", ")", "for", "v", "in", "_vars", ")", ":", "variables", "=", "_vars", "else", ":", "sampling_rate", "=", "sampling_rate", "or", "self", ".", "sampling_rate", "# Make sure all variables have the same sampling rate", "variables", "=", "list", "(", "self", ".", "resample", "(", "sampling_rate", ",", "variables", ",", "force_dense", "=", "True", ",", "in_place", "=", "False", ")", ".", "values", "(", ")", ")", "return", "super", "(", "BIDSRunVariableCollection", ",", "self", ")", ".", "to_df", "(", "variables", ",", "format", ",", "*", "*", "kwargs", ")" ]
Merge columns into a single pandas DataFrame. Args: variables (list): Optional list of variable names to retain; if None, all variables are written out. format (str): Whether to return a DataFrame in 'wide' or 'long' format. In 'wide' format, each row is defined by a unique onset/duration, and each variable is in a separate column. In 'long' format, each row is a unique combination of onset, duration, and variable name, and a single 'amplitude' column provides the value. sparse (bool): If True, variables will be kept in a sparse format provided they are all internally represented as such. If False, a dense matrix (i.e., uniform sampling rate for all events) will be exported. Will be ignored if at least one variable is dense. sampling_rate (float): If a dense matrix is written out, the sampling rate (in Hz) to use for downsampling. Defaults to the value currently set in the instance. kwargs: Optional keyword arguments to pass onto each Variable's to_df() call (e.g., condition, entities, and timing). include_sparse (bool): Whether or not to include sparse Variables. include_dense (bool): Whether or not to include dense Variables. Returns: A pandas DataFrame.
[ "Merge", "columns", "into", "a", "single", "pandas", "DataFrame", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/variables/kollekshuns.py#L290-L351
train
bids-standard/pybids
bids/analysis/transformations/munge.py
Rename._transform
def _transform(self, var): ''' Rename happens automatically in the base class, so all we need to do is unset the original variable in the collection. ''' self.collection.variables.pop(var.name) return var.values
python
def _transform(self, var): ''' Rename happens automatically in the base class, so all we need to do is unset the original variable in the collection. ''' self.collection.variables.pop(var.name) return var.values
[ "def", "_transform", "(", "self", ",", "var", ")", ":", "self", ".", "collection", ".", "variables", ".", "pop", "(", "var", ".", "name", ")", "return", "var", ".", "values" ]
Rename happens automatically in the base class, so all we need to do is unset the original variable in the collection.
[ "Rename", "happens", "automatically", "in", "the", "base", "class", "so", "all", "we", "need", "to", "do", "is", "unset", "the", "original", "variable", "in", "the", "collection", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/analysis/transformations/munge.py#L215-L219
train
bids-standard/pybids
bids/layout/writing.py
replace_entities
def replace_entities(entities, pattern): """ Replaces all entity names in a given pattern with the corresponding values provided by entities. Args: entities (dict): A dictionary mapping entity names to entity values. pattern (str): A path pattern that contains entity names denoted by curly braces. Optional portions denoted by square braces. For example: 'sub-{subject}/[var-{name}/]{id}.csv' Accepted entity values, using regex matching, denoted within angle brackets. For example: 'sub-{subject<01|02>}/{task}.csv' Returns: A new string with the entity values inserted where entity names were denoted in the provided pattern. """ ents = re.findall(r'\{(.*?)\}', pattern) new_path = pattern for ent in ents: match = re.search(r'([^|<]+)(<.*?>)?(\|.*)?', ent) if match is None: return None name, valid, default = match.groups() default = default[1:] if default is not None else default if name in entities and valid is not None: ent_val = str(entities[name]) if not re.match(valid[1:-1], ent_val): if default is None: return None entities[name] = default ent_val = entities.get(name, default) if ent_val is None: return None new_path = new_path.replace('{%s}' % ent, str(ent_val)) return new_path
python
def replace_entities(entities, pattern): """ Replaces all entity names in a given pattern with the corresponding values provided by entities. Args: entities (dict): A dictionary mapping entity names to entity values. pattern (str): A path pattern that contains entity names denoted by curly braces. Optional portions denoted by square braces. For example: 'sub-{subject}/[var-{name}/]{id}.csv' Accepted entity values, using regex matching, denoted within angle brackets. For example: 'sub-{subject<01|02>}/{task}.csv' Returns: A new string with the entity values inserted where entity names were denoted in the provided pattern. """ ents = re.findall(r'\{(.*?)\}', pattern) new_path = pattern for ent in ents: match = re.search(r'([^|<]+)(<.*?>)?(\|.*)?', ent) if match is None: return None name, valid, default = match.groups() default = default[1:] if default is not None else default if name in entities and valid is not None: ent_val = str(entities[name]) if not re.match(valid[1:-1], ent_val): if default is None: return None entities[name] = default ent_val = entities.get(name, default) if ent_val is None: return None new_path = new_path.replace('{%s}' % ent, str(ent_val)) return new_path
[ "def", "replace_entities", "(", "entities", ",", "pattern", ")", ":", "ents", "=", "re", ".", "findall", "(", "r'\\{(.*?)\\}'", ",", "pattern", ")", "new_path", "=", "pattern", "for", "ent", "in", "ents", ":", "match", "=", "re", ".", "search", "(", "r'([^|<]+)(<.*?>)?(\\|.*)?'", ",", "ent", ")", "if", "match", "is", "None", ":", "return", "None", "name", ",", "valid", ",", "default", "=", "match", ".", "groups", "(", ")", "default", "=", "default", "[", "1", ":", "]", "if", "default", "is", "not", "None", "else", "default", "if", "name", "in", "entities", "and", "valid", "is", "not", "None", ":", "ent_val", "=", "str", "(", "entities", "[", "name", "]", ")", "if", "not", "re", ".", "match", "(", "valid", "[", "1", ":", "-", "1", "]", ",", "ent_val", ")", ":", "if", "default", "is", "None", ":", "return", "None", "entities", "[", "name", "]", "=", "default", "ent_val", "=", "entities", ".", "get", "(", "name", ",", "default", ")", "if", "ent_val", "is", "None", ":", "return", "None", "new_path", "=", "new_path", ".", "replace", "(", "'{%s}'", "%", "ent", ",", "str", "(", "ent_val", ")", ")", "return", "new_path" ]
Replaces all entity names in a given pattern with the corresponding values provided by entities. Args: entities (dict): A dictionary mapping entity names to entity values. pattern (str): A path pattern that contains entity names denoted by curly braces. Optional portions denoted by square braces. For example: 'sub-{subject}/[var-{name}/]{id}.csv' Accepted entity values, using regex matching, denoted within angle brackets. For example: 'sub-{subject<01|02>}/{task}.csv' Returns: A new string with the entity values inserted where entity names were denoted in the provided pattern.
[ "Replaces", "all", "entity", "names", "in", "a", "given", "pattern", "with", "the", "corresponding", "values", "provided", "by", "entities", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/layout/writing.py#L16-L55
train
bids-standard/pybids
bids/layout/writing.py
write_contents_to_file
def write_contents_to_file(path, contents=None, link_to=None, content_mode='text', root=None, conflicts='fail'): """ Uses provided filename patterns to write contents to a new path, given a corresponding entity map. Args: path (str): Destination path of the desired contents. contents (str): Raw text or binary encoded string of contents to write to the new path. link_to (str): Optional path with which to create a symbolic link to. Used as an alternative to and takes priority over the contents argument. content_mode (str): Either 'text' or 'binary' to indicate the writing mode for the new file. Only relevant if contents is provided. root (str): Optional root directory that all patterns are relative to. Defaults to current working directory. conflicts (str): One of 'fail', 'skip', 'overwrite', or 'append' that defines the desired action when the output path already exists. 'fail' raises an exception; 'skip' does nothing; 'overwrite' overwrites the existing file; 'append' adds a suffix to each file copy, starting with 1. Default is 'fail'. """ if root is None and not isabs(path): root = os.getcwd() if root: path = join(root, path) if exists(path) or islink(path): if conflicts == 'fail': msg = 'A file at path {} already exists.' raise ValueError(msg.format(path)) elif conflicts == 'skip': msg = 'A file at path {} already exists, skipping writing file.' logging.warn(msg.format(path)) return elif conflicts == 'overwrite': if isdir(path): logging.warn('New path is a directory, not going to ' 'overwrite it, skipping instead.') return os.remove(path) elif conflicts == 'append': i = 1 while i < sys.maxsize: path_splits = splitext(path) path_splits[0] = path_splits[0] + '_%d' % i appended_filename = os.extsep.join(path_splits) if not exists(appended_filename) and \ not islink(appended_filename): path = appended_filename break i += 1 else: raise ValueError('Did not provide a valid conflicts parameter') if not exists(dirname(path)): os.makedirs(dirname(path)) if link_to: os.symlink(link_to, path) elif contents: mode = 'wb' if content_mode == 'binary' else 'w' with open(path, mode) as f: f.write(contents) else: raise ValueError('One of contents or link_to must be provided.')
python
def write_contents_to_file(path, contents=None, link_to=None, content_mode='text', root=None, conflicts='fail'): """ Uses provided filename patterns to write contents to a new path, given a corresponding entity map. Args: path (str): Destination path of the desired contents. contents (str): Raw text or binary encoded string of contents to write to the new path. link_to (str): Optional path with which to create a symbolic link to. Used as an alternative to and takes priority over the contents argument. content_mode (str): Either 'text' or 'binary' to indicate the writing mode for the new file. Only relevant if contents is provided. root (str): Optional root directory that all patterns are relative to. Defaults to current working directory. conflicts (str): One of 'fail', 'skip', 'overwrite', or 'append' that defines the desired action when the output path already exists. 'fail' raises an exception; 'skip' does nothing; 'overwrite' overwrites the existing file; 'append' adds a suffix to each file copy, starting with 1. Default is 'fail'. """ if root is None and not isabs(path): root = os.getcwd() if root: path = join(root, path) if exists(path) or islink(path): if conflicts == 'fail': msg = 'A file at path {} already exists.' raise ValueError(msg.format(path)) elif conflicts == 'skip': msg = 'A file at path {} already exists, skipping writing file.' logging.warn(msg.format(path)) return elif conflicts == 'overwrite': if isdir(path): logging.warn('New path is a directory, not going to ' 'overwrite it, skipping instead.') return os.remove(path) elif conflicts == 'append': i = 1 while i < sys.maxsize: path_splits = splitext(path) path_splits[0] = path_splits[0] + '_%d' % i appended_filename = os.extsep.join(path_splits) if not exists(appended_filename) and \ not islink(appended_filename): path = appended_filename break i += 1 else: raise ValueError('Did not provide a valid conflicts parameter') if not exists(dirname(path)): os.makedirs(dirname(path)) if link_to: os.symlink(link_to, path) elif contents: mode = 'wb' if content_mode == 'binary' else 'w' with open(path, mode) as f: f.write(contents) else: raise ValueError('One of contents or link_to must be provided.')
[ "def", "write_contents_to_file", "(", "path", ",", "contents", "=", "None", ",", "link_to", "=", "None", ",", "content_mode", "=", "'text'", ",", "root", "=", "None", ",", "conflicts", "=", "'fail'", ")", ":", "if", "root", "is", "None", "and", "not", "isabs", "(", "path", ")", ":", "root", "=", "os", ".", "getcwd", "(", ")", "if", "root", ":", "path", "=", "join", "(", "root", ",", "path", ")", "if", "exists", "(", "path", ")", "or", "islink", "(", "path", ")", ":", "if", "conflicts", "==", "'fail'", ":", "msg", "=", "'A file at path {} already exists.'", "raise", "ValueError", "(", "msg", ".", "format", "(", "path", ")", ")", "elif", "conflicts", "==", "'skip'", ":", "msg", "=", "'A file at path {} already exists, skipping writing file.'", "logging", ".", "warn", "(", "msg", ".", "format", "(", "path", ")", ")", "return", "elif", "conflicts", "==", "'overwrite'", ":", "if", "isdir", "(", "path", ")", ":", "logging", ".", "warn", "(", "'New path is a directory, not going to '", "'overwrite it, skipping instead.'", ")", "return", "os", ".", "remove", "(", "path", ")", "elif", "conflicts", "==", "'append'", ":", "i", "=", "1", "while", "i", "<", "sys", ".", "maxsize", ":", "path_splits", "=", "splitext", "(", "path", ")", "path_splits", "[", "0", "]", "=", "path_splits", "[", "0", "]", "+", "'_%d'", "%", "i", "appended_filename", "=", "os", ".", "extsep", ".", "join", "(", "path_splits", ")", "if", "not", "exists", "(", "appended_filename", ")", "and", "not", "islink", "(", "appended_filename", ")", ":", "path", "=", "appended_filename", "break", "i", "+=", "1", "else", ":", "raise", "ValueError", "(", "'Did not provide a valid conflicts parameter'", ")", "if", "not", "exists", "(", "dirname", "(", "path", ")", ")", ":", "os", ".", "makedirs", "(", "dirname", "(", "path", ")", ")", "if", "link_to", ":", "os", ".", "symlink", "(", "link_to", ",", "path", ")", "elif", "contents", ":", "mode", "=", "'wb'", "if", "content_mode", "==", "'binary'", "else", "'w'", "with", "open", "(", "path", ",", "mode", ")", "as", "f", ":", "f", ".", "write", "(", "contents", ")", "else", ":", "raise", "ValueError", "(", "'One of contents or link_to must be provided.'", ")" ]
Uses provided filename patterns to write contents to a new path, given a corresponding entity map. Args: path (str): Destination path of the desired contents. contents (str): Raw text or binary encoded string of contents to write to the new path. link_to (str): Optional path with which to create a symbolic link to. Used as an alternative to and takes priority over the contents argument. content_mode (str): Either 'text' or 'binary' to indicate the writing mode for the new file. Only relevant if contents is provided. root (str): Optional root directory that all patterns are relative to. Defaults to current working directory. conflicts (str): One of 'fail', 'skip', 'overwrite', or 'append' that defines the desired action when the output path already exists. 'fail' raises an exception; 'skip' does nothing; 'overwrite' overwrites the existing file; 'append' adds a suffix to each file copy, starting with 1. Default is 'fail'.
[ "Uses", "provided", "filename", "patterns", "to", "write", "contents", "to", "a", "new", "path", "given", "a", "corresponding", "entity", "map", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/layout/writing.py#L109-L177
train
bids-standard/pybids
bids/reports/report.py
BIDSReport.generate
def generate(self, **kwargs): """Generate the methods section. Parameters ---------- task_converter : :obj:`dict`, optional A dictionary with information for converting task names from BIDS filename format to human-readable strings. Returns ------- counter : :obj:`collections.Counter` A dictionary of unique descriptions across subjects in the dataset, along with the number of times each pattern occurred. In cases where all subjects underwent the same protocol, the most common pattern is most likely the most complete. In cases where the dataset contains multiple protocols, each pattern will need to be inspected manually. Examples -------- >>> from os.path import join >>> from bids.layout import BIDSLayout >>> from bids.reports import BIDSReport >>> from bids.tests import get_test_data_path >>> layout = BIDSLayout(join(get_test_data_path(), 'synthetic')) >>> report = BIDSReport(layout) >>> counter = report.generate(session='01') >>> counter.most_common()[0][0] """ descriptions = [] subjs = self.layout.get_subjects(**kwargs) kwargs = {k: v for k, v in kwargs.items() if k != 'subject'} for sid in subjs: descriptions.append(self._report_subject(subject=sid, **kwargs)) counter = Counter(descriptions) print('Number of patterns detected: {0}'.format(len(counter.keys()))) print(utils.reminder()) return counter
python
def generate(self, **kwargs): """Generate the methods section. Parameters ---------- task_converter : :obj:`dict`, optional A dictionary with information for converting task names from BIDS filename format to human-readable strings. Returns ------- counter : :obj:`collections.Counter` A dictionary of unique descriptions across subjects in the dataset, along with the number of times each pattern occurred. In cases where all subjects underwent the same protocol, the most common pattern is most likely the most complete. In cases where the dataset contains multiple protocols, each pattern will need to be inspected manually. Examples -------- >>> from os.path import join >>> from bids.layout import BIDSLayout >>> from bids.reports import BIDSReport >>> from bids.tests import get_test_data_path >>> layout = BIDSLayout(join(get_test_data_path(), 'synthetic')) >>> report = BIDSReport(layout) >>> counter = report.generate(session='01') >>> counter.most_common()[0][0] """ descriptions = [] subjs = self.layout.get_subjects(**kwargs) kwargs = {k: v for k, v in kwargs.items() if k != 'subject'} for sid in subjs: descriptions.append(self._report_subject(subject=sid, **kwargs)) counter = Counter(descriptions) print('Number of patterns detected: {0}'.format(len(counter.keys()))) print(utils.reminder()) return counter
[ "def", "generate", "(", "self", ",", "*", "*", "kwargs", ")", ":", "descriptions", "=", "[", "]", "subjs", "=", "self", ".", "layout", ".", "get_subjects", "(", "*", "*", "kwargs", ")", "kwargs", "=", "{", "k", ":", "v", "for", "k", ",", "v", "in", "kwargs", ".", "items", "(", ")", "if", "k", "!=", "'subject'", "}", "for", "sid", "in", "subjs", ":", "descriptions", ".", "append", "(", "self", ".", "_report_subject", "(", "subject", "=", "sid", ",", "*", "*", "kwargs", ")", ")", "counter", "=", "Counter", "(", "descriptions", ")", "print", "(", "'Number of patterns detected: {0}'", ".", "format", "(", "len", "(", "counter", ".", "keys", "(", ")", ")", ")", ")", "print", "(", "utils", ".", "reminder", "(", ")", ")", "return", "counter" ]
Generate the methods section. Parameters ---------- task_converter : :obj:`dict`, optional A dictionary with information for converting task names from BIDS filename format to human-readable strings. Returns ------- counter : :obj:`collections.Counter` A dictionary of unique descriptions across subjects in the dataset, along with the number of times each pattern occurred. In cases where all subjects underwent the same protocol, the most common pattern is most likely the most complete. In cases where the dataset contains multiple protocols, each pattern will need to be inspected manually. Examples -------- >>> from os.path import join >>> from bids.layout import BIDSLayout >>> from bids.reports import BIDSReport >>> from bids.tests import get_test_data_path >>> layout = BIDSLayout(join(get_test_data_path(), 'synthetic')) >>> report = BIDSReport(layout) >>> counter = report.generate(session='01') >>> counter.most_common()[0][0]
[ "Generate", "the", "methods", "section", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/reports/report.py#L53-L92
train
bids-standard/pybids
bids/reports/report.py
BIDSReport._report_subject
def _report_subject(self, subject, **kwargs): """Write a report for a single subject. Parameters ---------- subject : :obj:`str` Subject ID. Attributes ---------- layout : :obj:`bids.layout.BIDSLayout` Layout object for a BIDS dataset. config : :obj:`dict` Configuration info for methods generation. Returns ------- description : :obj:`str` A publication-ready report of the dataset's data acquisition information. Each scan type is given its own paragraph. """ description_list = [] # Remove sess from kwargs if provided, else set sess as all available sessions = kwargs.pop('session', self.layout.get_sessions(subject=subject, **kwargs)) if not sessions: sessions = [None] elif not isinstance(sessions, list): sessions = [sessions] for ses in sessions: niftis = self.layout.get(subject=subject, extensions='nii.gz', **kwargs) if niftis: description_list.append('For session {0}:'.format(ses)) description_list += parsing.parse_niftis(self.layout, niftis, subject, self.config, session=ses) metadata = self.layout.get_metadata(niftis[0].path) else: raise Exception('No niftis for subject {0}'.format(subject)) # Assume all data were converted the same way and use the last nifti # file's json for conversion information. if 'metadata' not in vars(): raise Exception('No valid jsons found. Cannot generate final ' 'paragraph.') description = '\n\t'.join(description_list) description = description.replace('\tFor session', '\nFor session') description += '\n\n{0}'.format(parsing.final_paragraph(metadata)) return description
python
def _report_subject(self, subject, **kwargs): """Write a report for a single subject. Parameters ---------- subject : :obj:`str` Subject ID. Attributes ---------- layout : :obj:`bids.layout.BIDSLayout` Layout object for a BIDS dataset. config : :obj:`dict` Configuration info for methods generation. Returns ------- description : :obj:`str` A publication-ready report of the dataset's data acquisition information. Each scan type is given its own paragraph. """ description_list = [] # Remove sess from kwargs if provided, else set sess as all available sessions = kwargs.pop('session', self.layout.get_sessions(subject=subject, **kwargs)) if not sessions: sessions = [None] elif not isinstance(sessions, list): sessions = [sessions] for ses in sessions: niftis = self.layout.get(subject=subject, extensions='nii.gz', **kwargs) if niftis: description_list.append('For session {0}:'.format(ses)) description_list += parsing.parse_niftis(self.layout, niftis, subject, self.config, session=ses) metadata = self.layout.get_metadata(niftis[0].path) else: raise Exception('No niftis for subject {0}'.format(subject)) # Assume all data were converted the same way and use the last nifti # file's json for conversion information. if 'metadata' not in vars(): raise Exception('No valid jsons found. Cannot generate final ' 'paragraph.') description = '\n\t'.join(description_list) description = description.replace('\tFor session', '\nFor session') description += '\n\n{0}'.format(parsing.final_paragraph(metadata)) return description
[ "def", "_report_subject", "(", "self", ",", "subject", ",", "*", "*", "kwargs", ")", ":", "description_list", "=", "[", "]", "# Remove sess from kwargs if provided, else set sess as all available", "sessions", "=", "kwargs", ".", "pop", "(", "'session'", ",", "self", ".", "layout", ".", "get_sessions", "(", "subject", "=", "subject", ",", "*", "*", "kwargs", ")", ")", "if", "not", "sessions", ":", "sessions", "=", "[", "None", "]", "elif", "not", "isinstance", "(", "sessions", ",", "list", ")", ":", "sessions", "=", "[", "sessions", "]", "for", "ses", "in", "sessions", ":", "niftis", "=", "self", ".", "layout", ".", "get", "(", "subject", "=", "subject", ",", "extensions", "=", "'nii.gz'", ",", "*", "*", "kwargs", ")", "if", "niftis", ":", "description_list", ".", "append", "(", "'For session {0}:'", ".", "format", "(", "ses", ")", ")", "description_list", "+=", "parsing", ".", "parse_niftis", "(", "self", ".", "layout", ",", "niftis", ",", "subject", ",", "self", ".", "config", ",", "session", "=", "ses", ")", "metadata", "=", "self", ".", "layout", ".", "get_metadata", "(", "niftis", "[", "0", "]", ".", "path", ")", "else", ":", "raise", "Exception", "(", "'No niftis for subject {0}'", ".", "format", "(", "subject", ")", ")", "# Assume all data were converted the same way and use the last nifti", "# file's json for conversion information.", "if", "'metadata'", "not", "in", "vars", "(", ")", ":", "raise", "Exception", "(", "'No valid jsons found. Cannot generate final '", "'paragraph.'", ")", "description", "=", "'\\n\\t'", ".", "join", "(", "description_list", ")", "description", "=", "description", ".", "replace", "(", "'\\tFor session'", ",", "'\\nFor session'", ")", "description", "+=", "'\\n\\n{0}'", ".", "format", "(", "parsing", ".", "final_paragraph", "(", "metadata", ")", ")", "return", "description" ]
Write a report for a single subject. Parameters ---------- subject : :obj:`str` Subject ID. Attributes ---------- layout : :obj:`bids.layout.BIDSLayout` Layout object for a BIDS dataset. config : :obj:`dict` Configuration info for methods generation. Returns ------- description : :obj:`str` A publication-ready report of the dataset's data acquisition information. Each scan type is given its own paragraph.
[ "Write", "a", "report", "for", "a", "single", "subject", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/reports/report.py#L94-L147
train
bids-standard/pybids
bids/analysis/hrf.py
_gamma_difference_hrf
def _gamma_difference_hrf(tr, oversampling=50, time_length=32., onset=0., delay=6, undershoot=16., dispersion=1., u_dispersion=1., ratio=0.167): """ Compute an hrf as the difference of two gamma functions Parameters ---------- tr : float scan repeat time, in seconds oversampling : int, optional (default=16) temporal oversampling factor time_length : float, optional (default=32) hrf kernel length, in seconds onset: float onset time of the hrf delay: float, optional delay parameter of the hrf (in s.) undershoot: float, optional undershoot parameter of the hrf (in s.) dispersion : float, optional dispersion parameter for the first gamma function u_dispersion : float, optional dispersion parameter for the second gamma function ratio : float, optional ratio of the two gamma components Returns ------- hrf : array of shape(length / tr * oversampling, dtype=float) hrf sampling on the oversampled time grid """ from scipy.stats import gamma dt = tr / oversampling time_stamps = np.linspace(0, time_length, np.rint(float(time_length) / dt).astype(np.int)) time_stamps -= onset hrf = gamma.pdf(time_stamps, delay / dispersion, dt / dispersion) -\ ratio * gamma.pdf( time_stamps, undershoot / u_dispersion, dt / u_dispersion) hrf /= hrf.sum() return hrf
python
def _gamma_difference_hrf(tr, oversampling=50, time_length=32., onset=0., delay=6, undershoot=16., dispersion=1., u_dispersion=1., ratio=0.167): """ Compute an hrf as the difference of two gamma functions Parameters ---------- tr : float scan repeat time, in seconds oversampling : int, optional (default=16) temporal oversampling factor time_length : float, optional (default=32) hrf kernel length, in seconds onset: float onset time of the hrf delay: float, optional delay parameter of the hrf (in s.) undershoot: float, optional undershoot parameter of the hrf (in s.) dispersion : float, optional dispersion parameter for the first gamma function u_dispersion : float, optional dispersion parameter for the second gamma function ratio : float, optional ratio of the two gamma components Returns ------- hrf : array of shape(length / tr * oversampling, dtype=float) hrf sampling on the oversampled time grid """ from scipy.stats import gamma dt = tr / oversampling time_stamps = np.linspace(0, time_length, np.rint(float(time_length) / dt).astype(np.int)) time_stamps -= onset hrf = gamma.pdf(time_stamps, delay / dispersion, dt / dispersion) -\ ratio * gamma.pdf( time_stamps, undershoot / u_dispersion, dt / u_dispersion) hrf /= hrf.sum() return hrf
[ "def", "_gamma_difference_hrf", "(", "tr", ",", "oversampling", "=", "50", ",", "time_length", "=", "32.", ",", "onset", "=", "0.", ",", "delay", "=", "6", ",", "undershoot", "=", "16.", ",", "dispersion", "=", "1.", ",", "u_dispersion", "=", "1.", ",", "ratio", "=", "0.167", ")", ":", "from", "scipy", ".", "stats", "import", "gamma", "dt", "=", "tr", "/", "oversampling", "time_stamps", "=", "np", ".", "linspace", "(", "0", ",", "time_length", ",", "np", ".", "rint", "(", "float", "(", "time_length", ")", "/", "dt", ")", ".", "astype", "(", "np", ".", "int", ")", ")", "time_stamps", "-=", "onset", "hrf", "=", "gamma", ".", "pdf", "(", "time_stamps", ",", "delay", "/", "dispersion", ",", "dt", "/", "dispersion", ")", "-", "ratio", "*", "gamma", ".", "pdf", "(", "time_stamps", ",", "undershoot", "/", "u_dispersion", ",", "dt", "/", "u_dispersion", ")", "hrf", "/=", "hrf", ".", "sum", "(", ")", "return", "hrf" ]
Compute an hrf as the difference of two gamma functions Parameters ---------- tr : float scan repeat time, in seconds oversampling : int, optional (default=16) temporal oversampling factor time_length : float, optional (default=32) hrf kernel length, in seconds onset: float onset time of the hrf delay: float, optional delay parameter of the hrf (in s.) undershoot: float, optional undershoot parameter of the hrf (in s.) dispersion : float, optional dispersion parameter for the first gamma function u_dispersion : float, optional dispersion parameter for the second gamma function ratio : float, optional ratio of the two gamma components Returns ------- hrf : array of shape(length / tr * oversampling, dtype=float) hrf sampling on the oversampled time grid
[ "Compute", "an", "hrf", "as", "the", "difference", "of", "two", "gamma", "functions" ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/analysis/hrf.py#L13-L61
train
bids-standard/pybids
bids/analysis/hrf.py
spm_hrf
def spm_hrf(tr, oversampling=50, time_length=32., onset=0.): """ Implementation of the SPM hrf model Parameters ---------- tr : float scan repeat time, in seconds oversampling : int, optional temporal oversampling factor time_length : float, optional hrf kernel length, in seconds onset : float, optional hrf onset time, in seconds Returns ------- hrf: array of shape(length / tr * oversampling, dtype=float) hrf sampling on the oversampled time grid """ return _gamma_difference_hrf(tr, oversampling, time_length, onset)
python
def spm_hrf(tr, oversampling=50, time_length=32., onset=0.): """ Implementation of the SPM hrf model Parameters ---------- tr : float scan repeat time, in seconds oversampling : int, optional temporal oversampling factor time_length : float, optional hrf kernel length, in seconds onset : float, optional hrf onset time, in seconds Returns ------- hrf: array of shape(length / tr * oversampling, dtype=float) hrf sampling on the oversampled time grid """ return _gamma_difference_hrf(tr, oversampling, time_length, onset)
[ "def", "spm_hrf", "(", "tr", ",", "oversampling", "=", "50", ",", "time_length", "=", "32.", ",", "onset", "=", "0.", ")", ":", "return", "_gamma_difference_hrf", "(", "tr", ",", "oversampling", ",", "time_length", ",", "onset", ")" ]
Implementation of the SPM hrf model Parameters ---------- tr : float scan repeat time, in seconds oversampling : int, optional temporal oversampling factor time_length : float, optional hrf kernel length, in seconds onset : float, optional hrf onset time, in seconds Returns ------- hrf: array of shape(length / tr * oversampling, dtype=float) hrf sampling on the oversampled time grid
[ "Implementation", "of", "the", "SPM", "hrf", "model" ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/analysis/hrf.py#L64-L86
train
bids-standard/pybids
bids/analysis/hrf.py
glover_hrf
def glover_hrf(tr, oversampling=50, time_length=32., onset=0.): """ Implementation of the Glover hrf model Parameters ---------- tr : float scan repeat time, in seconds oversampling : int, optional temporal oversampling factor time_length : float, optional hrf kernel length, in seconds onset : float, optional onset of the response Returns ------- hrf: array of shape(length / tr * oversampling, dtype=float) hrf sampling on the oversampled time grid """ return _gamma_difference_hrf(tr, oversampling, time_length, onset, delay=6, undershoot=12., dispersion=.9, u_dispersion=.9, ratio=.35)
python
def glover_hrf(tr, oversampling=50, time_length=32., onset=0.): """ Implementation of the Glover hrf model Parameters ---------- tr : float scan repeat time, in seconds oversampling : int, optional temporal oversampling factor time_length : float, optional hrf kernel length, in seconds onset : float, optional onset of the response Returns ------- hrf: array of shape(length / tr * oversampling, dtype=float) hrf sampling on the oversampled time grid """ return _gamma_difference_hrf(tr, oversampling, time_length, onset, delay=6, undershoot=12., dispersion=.9, u_dispersion=.9, ratio=.35)
[ "def", "glover_hrf", "(", "tr", ",", "oversampling", "=", "50", ",", "time_length", "=", "32.", ",", "onset", "=", "0.", ")", ":", "return", "_gamma_difference_hrf", "(", "tr", ",", "oversampling", ",", "time_length", ",", "onset", ",", "delay", "=", "6", ",", "undershoot", "=", "12.", ",", "dispersion", "=", ".9", ",", "u_dispersion", "=", ".9", ",", "ratio", "=", ".35", ")" ]
Implementation of the Glover hrf model Parameters ---------- tr : float scan repeat time, in seconds oversampling : int, optional temporal oversampling factor time_length : float, optional hrf kernel length, in seconds onset : float, optional onset of the response Returns ------- hrf: array of shape(length / tr * oversampling, dtype=float) hrf sampling on the oversampled time grid
[ "Implementation", "of", "the", "Glover", "hrf", "model" ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/analysis/hrf.py#L89-L113
train
bids-standard/pybids
bids/analysis/hrf.py
spm_dispersion_derivative
def spm_dispersion_derivative(tr, oversampling=50, time_length=32., onset=0.): """Implementation of the SPM dispersion derivative hrf model Parameters ---------- tr: float scan repeat time, in seconds oversampling: int, optional temporal oversampling factor in seconds time_length: float, optional hrf kernel length, in seconds onset : float, optional onset of the response in seconds Returns ------- dhrf: array of shape(length / tr * oversampling), dtype=float dhrf sampling on the oversampled time grid """ dd = .01 dhrf = 1. / dd * ( - _gamma_difference_hrf(tr, oversampling, time_length, onset, dispersion=1. + dd) + _gamma_difference_hrf(tr, oversampling, time_length, onset)) return dhrf
python
def spm_dispersion_derivative(tr, oversampling=50, time_length=32., onset=0.): """Implementation of the SPM dispersion derivative hrf model Parameters ---------- tr: float scan repeat time, in seconds oversampling: int, optional temporal oversampling factor in seconds time_length: float, optional hrf kernel length, in seconds onset : float, optional onset of the response in seconds Returns ------- dhrf: array of shape(length / tr * oversampling), dtype=float dhrf sampling on the oversampled time grid """ dd = .01 dhrf = 1. / dd * ( - _gamma_difference_hrf(tr, oversampling, time_length, onset, dispersion=1. + dd) + _gamma_difference_hrf(tr, oversampling, time_length, onset)) return dhrf
[ "def", "spm_dispersion_derivative", "(", "tr", ",", "oversampling", "=", "50", ",", "time_length", "=", "32.", ",", "onset", "=", "0.", ")", ":", "dd", "=", ".01", "dhrf", "=", "1.", "/", "dd", "*", "(", "-", "_gamma_difference_hrf", "(", "tr", ",", "oversampling", ",", "time_length", ",", "onset", ",", "dispersion", "=", "1.", "+", "dd", ")", "+", "_gamma_difference_hrf", "(", "tr", ",", "oversampling", ",", "time_length", ",", "onset", ")", ")", "return", "dhrf" ]
Implementation of the SPM dispersion derivative hrf model Parameters ---------- tr: float scan repeat time, in seconds oversampling: int, optional temporal oversampling factor in seconds time_length: float, optional hrf kernel length, in seconds onset : float, optional onset of the response in seconds Returns ------- dhrf: array of shape(length / tr * oversampling), dtype=float dhrf sampling on the oversampled time grid
[ "Implementation", "of", "the", "SPM", "dispersion", "derivative", "hrf", "model" ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/analysis/hrf.py#L169-L196
train
bids-standard/pybids
bids/analysis/hrf.py
glover_dispersion_derivative
def glover_dispersion_derivative(tr, oversampling=50, time_length=32., onset=0.): """Implementation of the Glover dispersion derivative hrf model Parameters ---------- tr: float scan repeat time, in seconds oversampling: int, optional temporal oversampling factor in seconds time_length: float, optional hrf kernel length, in seconds onset : float, optional onset of the response in seconds Returns ------- dhrf: array of shape(length / tr * oversampling), dtype=float dhrf sampling on the oversampled time grid """ dd = .01 dhrf = 1. / dd * ( - _gamma_difference_hrf( tr, oversampling, time_length, onset, delay=6, undershoot=12., dispersion=.9 + dd, ratio=.35) + _gamma_difference_hrf( tr, oversampling, time_length, onset, delay=6, undershoot=12., dispersion=.9, ratio=.35)) return dhrf
python
def glover_dispersion_derivative(tr, oversampling=50, time_length=32., onset=0.): """Implementation of the Glover dispersion derivative hrf model Parameters ---------- tr: float scan repeat time, in seconds oversampling: int, optional temporal oversampling factor in seconds time_length: float, optional hrf kernel length, in seconds onset : float, optional onset of the response in seconds Returns ------- dhrf: array of shape(length / tr * oversampling), dtype=float dhrf sampling on the oversampled time grid """ dd = .01 dhrf = 1. / dd * ( - _gamma_difference_hrf( tr, oversampling, time_length, onset, delay=6, undershoot=12., dispersion=.9 + dd, ratio=.35) + _gamma_difference_hrf( tr, oversampling, time_length, onset, delay=6, undershoot=12., dispersion=.9, ratio=.35)) return dhrf
[ "def", "glover_dispersion_derivative", "(", "tr", ",", "oversampling", "=", "50", ",", "time_length", "=", "32.", ",", "onset", "=", "0.", ")", ":", "dd", "=", ".01", "dhrf", "=", "1.", "/", "dd", "*", "(", "-", "_gamma_difference_hrf", "(", "tr", ",", "oversampling", ",", "time_length", ",", "onset", ",", "delay", "=", "6", ",", "undershoot", "=", "12.", ",", "dispersion", "=", ".9", "+", "dd", ",", "ratio", "=", ".35", ")", "+", "_gamma_difference_hrf", "(", "tr", ",", "oversampling", ",", "time_length", ",", "onset", ",", "delay", "=", "6", ",", "undershoot", "=", "12.", ",", "dispersion", "=", ".9", ",", "ratio", "=", ".35", ")", ")", "return", "dhrf" ]
Implementation of the Glover dispersion derivative hrf model Parameters ---------- tr: float scan repeat time, in seconds oversampling: int, optional temporal oversampling factor in seconds time_length: float, optional hrf kernel length, in seconds onset : float, optional onset of the response in seconds Returns ------- dhrf: array of shape(length / tr * oversampling), dtype=float dhrf sampling on the oversampled time grid
[ "Implementation", "of", "the", "Glover", "dispersion", "derivative", "hrf", "model" ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/analysis/hrf.py#L199-L230
train
bids-standard/pybids
bids/analysis/hrf.py
_sample_condition
def _sample_condition(exp_condition, frame_times, oversampling=50, min_onset=-24): """Make a possibly oversampled event regressor from condition information. Parameters ---------- exp_condition : arraylike of shape (3, n_events) yields description of events for this condition as a (onsets, durations, amplitudes) triplet frame_times : array of shape(n_scans) sample time points over_sampling : int, optional factor for oversampling event regressor min_onset : float, optional minimal onset relative to frame_times[0] (in seconds) events that start before frame_times[0] + min_onset are not considered Returns ------- regressor: array of shape(over_sampling * n_scans) possibly oversampled event regressor hr_frame_times : array of shape(over_sampling * n_scans) time points used for regressor sampling """ # Find the high-resolution frame_times n = frame_times.size min_onset = float(min_onset) n_hr = ((n - 1) * 1. / (frame_times.max() - frame_times.min()) * (frame_times.max() * (1 + 1. / (n - 1)) - frame_times.min() - min_onset) * oversampling) + 1 hr_frame_times = np.linspace(frame_times.min() + min_onset, frame_times.max() * (1 + 1. / (n - 1)), np.rint(n_hr).astype(np.int)) # Get the condition information onsets, durations, values = tuple(map(np.asanyarray, exp_condition)) if (onsets < frame_times[0] + min_onset).any(): warnings.warn(('Some stimulus onsets are earlier than %s in the' ' experiment and are thus not considered in the model' % (frame_times[0] + min_onset)), UserWarning) # Set up the regressor timecourse tmax = len(hr_frame_times) regressor = np.zeros_like(hr_frame_times).astype(np.float) t_onset = np.minimum(np.searchsorted(hr_frame_times, onsets), tmax - 1) regressor[t_onset] += values t_offset = np.minimum( np.searchsorted(hr_frame_times, onsets + durations), tmax - 1) # Handle the case where duration is 0 by offsetting at t + 1 for i, t in enumerate(t_offset): if t < (tmax - 1) and t == t_onset[i]: t_offset[i] += 1 regressor[t_offset] -= values regressor = np.cumsum(regressor) return regressor, hr_frame_times
python
def _sample_condition(exp_condition, frame_times, oversampling=50, min_onset=-24): """Make a possibly oversampled event regressor from condition information. Parameters ---------- exp_condition : arraylike of shape (3, n_events) yields description of events for this condition as a (onsets, durations, amplitudes) triplet frame_times : array of shape(n_scans) sample time points over_sampling : int, optional factor for oversampling event regressor min_onset : float, optional minimal onset relative to frame_times[0] (in seconds) events that start before frame_times[0] + min_onset are not considered Returns ------- regressor: array of shape(over_sampling * n_scans) possibly oversampled event regressor hr_frame_times : array of shape(over_sampling * n_scans) time points used for regressor sampling """ # Find the high-resolution frame_times n = frame_times.size min_onset = float(min_onset) n_hr = ((n - 1) * 1. / (frame_times.max() - frame_times.min()) * (frame_times.max() * (1 + 1. / (n - 1)) - frame_times.min() - min_onset) * oversampling) + 1 hr_frame_times = np.linspace(frame_times.min() + min_onset, frame_times.max() * (1 + 1. / (n - 1)), np.rint(n_hr).astype(np.int)) # Get the condition information onsets, durations, values = tuple(map(np.asanyarray, exp_condition)) if (onsets < frame_times[0] + min_onset).any(): warnings.warn(('Some stimulus onsets are earlier than %s in the' ' experiment and are thus not considered in the model' % (frame_times[0] + min_onset)), UserWarning) # Set up the regressor timecourse tmax = len(hr_frame_times) regressor = np.zeros_like(hr_frame_times).astype(np.float) t_onset = np.minimum(np.searchsorted(hr_frame_times, onsets), tmax - 1) regressor[t_onset] += values t_offset = np.minimum( np.searchsorted(hr_frame_times, onsets + durations), tmax - 1) # Handle the case where duration is 0 by offsetting at t + 1 for i, t in enumerate(t_offset): if t < (tmax - 1) and t == t_onset[i]: t_offset[i] += 1 regressor[t_offset] -= values regressor = np.cumsum(regressor) return regressor, hr_frame_times
[ "def", "_sample_condition", "(", "exp_condition", ",", "frame_times", ",", "oversampling", "=", "50", ",", "min_onset", "=", "-", "24", ")", ":", "# Find the high-resolution frame_times", "n", "=", "frame_times", ".", "size", "min_onset", "=", "float", "(", "min_onset", ")", "n_hr", "=", "(", "(", "n", "-", "1", ")", "*", "1.", "/", "(", "frame_times", ".", "max", "(", ")", "-", "frame_times", ".", "min", "(", ")", ")", "*", "(", "frame_times", ".", "max", "(", ")", "*", "(", "1", "+", "1.", "/", "(", "n", "-", "1", ")", ")", "-", "frame_times", ".", "min", "(", ")", "-", "min_onset", ")", "*", "oversampling", ")", "+", "1", "hr_frame_times", "=", "np", ".", "linspace", "(", "frame_times", ".", "min", "(", ")", "+", "min_onset", ",", "frame_times", ".", "max", "(", ")", "*", "(", "1", "+", "1.", "/", "(", "n", "-", "1", ")", ")", ",", "np", ".", "rint", "(", "n_hr", ")", ".", "astype", "(", "np", ".", "int", ")", ")", "# Get the condition information", "onsets", ",", "durations", ",", "values", "=", "tuple", "(", "map", "(", "np", ".", "asanyarray", ",", "exp_condition", ")", ")", "if", "(", "onsets", "<", "frame_times", "[", "0", "]", "+", "min_onset", ")", ".", "any", "(", ")", ":", "warnings", ".", "warn", "(", "(", "'Some stimulus onsets are earlier than %s in the'", "' experiment and are thus not considered in the model'", "%", "(", "frame_times", "[", "0", "]", "+", "min_onset", ")", ")", ",", "UserWarning", ")", "# Set up the regressor timecourse", "tmax", "=", "len", "(", "hr_frame_times", ")", "regressor", "=", "np", ".", "zeros_like", "(", "hr_frame_times", ")", ".", "astype", "(", "np", ".", "float", ")", "t_onset", "=", "np", ".", "minimum", "(", "np", ".", "searchsorted", "(", "hr_frame_times", ",", "onsets", ")", ",", "tmax", "-", "1", ")", "regressor", "[", "t_onset", "]", "+=", "values", "t_offset", "=", "np", ".", "minimum", "(", "np", ".", "searchsorted", "(", "hr_frame_times", ",", "onsets", "+", "durations", ")", ",", "tmax", "-", "1", ")", "# Handle the case where duration is 0 by offsetting at t + 1", "for", "i", ",", "t", "in", "enumerate", "(", "t_offset", ")", ":", "if", "t", "<", "(", "tmax", "-", "1", ")", "and", "t", "==", "t_onset", "[", "i", "]", ":", "t_offset", "[", "i", "]", "+=", "1", "regressor", "[", "t_offset", "]", "-=", "values", "regressor", "=", "np", ".", "cumsum", "(", "regressor", ")", "return", "regressor", ",", "hr_frame_times" ]
Make a possibly oversampled event regressor from condition information. Parameters ---------- exp_condition : arraylike of shape (3, n_events) yields description of events for this condition as a (onsets, durations, amplitudes) triplet frame_times : array of shape(n_scans) sample time points over_sampling : int, optional factor for oversampling event regressor min_onset : float, optional minimal onset relative to frame_times[0] (in seconds) events that start before frame_times[0] + min_onset are not considered Returns ------- regressor: array of shape(over_sampling * n_scans) possibly oversampled event regressor hr_frame_times : array of shape(over_sampling * n_scans) time points used for regressor sampling
[ "Make", "a", "possibly", "oversampled", "event", "regressor", "from", "condition", "information", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/analysis/hrf.py#L233-L295
train
bids-standard/pybids
bids/analysis/hrf.py
_resample_regressor
def _resample_regressor(hr_regressor, hr_frame_times, frame_times): """ this function sub-samples the regressors at frame times Parameters ---------- hr_regressor : array of shape(n_samples), the regressor time course sampled at high temporal resolution hr_frame_times : array of shape(n_samples), the corresponding time stamps frame_times: array of shape(n_scans), the desired time stamps Returns ------- regressor: array of shape(n_scans) the resampled regressor """ from scipy.interpolate import interp1d f = interp1d(hr_frame_times, hr_regressor) return f(frame_times).T
python
def _resample_regressor(hr_regressor, hr_frame_times, frame_times): """ this function sub-samples the regressors at frame times Parameters ---------- hr_regressor : array of shape(n_samples), the regressor time course sampled at high temporal resolution hr_frame_times : array of shape(n_samples), the corresponding time stamps frame_times: array of shape(n_scans), the desired time stamps Returns ------- regressor: array of shape(n_scans) the resampled regressor """ from scipy.interpolate import interp1d f = interp1d(hr_frame_times, hr_regressor) return f(frame_times).T
[ "def", "_resample_regressor", "(", "hr_regressor", ",", "hr_frame_times", ",", "frame_times", ")", ":", "from", "scipy", ".", "interpolate", "import", "interp1d", "f", "=", "interp1d", "(", "hr_frame_times", ",", "hr_regressor", ")", "return", "f", "(", "frame_times", ")", ".", "T" ]
this function sub-samples the regressors at frame times Parameters ---------- hr_regressor : array of shape(n_samples), the regressor time course sampled at high temporal resolution hr_frame_times : array of shape(n_samples), the corresponding time stamps frame_times: array of shape(n_scans), the desired time stamps Returns ------- regressor: array of shape(n_scans) the resampled regressor
[ "this", "function", "sub", "-", "samples", "the", "regressors", "at", "frame", "times" ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/analysis/hrf.py#L298-L319
train
bids-standard/pybids
bids/analysis/hrf.py
_orthogonalize
def _orthogonalize(X): """ Orthogonalize every column of design `X` w.r.t preceding columns Parameters ---------- X: array of shape(n, p) the data to be orthogonalized Returns ------- X: array of shape(n, p) the data after orthogonalization Notes ----- X is changed in place. The columns are not normalized """ if X.size == X.shape[0]: return X from scipy.linalg import pinv, norm for i in range(1, X.shape[1]): X[:, i] -= np.dot(np.dot(X[:, i], X[:, :i]), pinv(X[:, :i])) # X[:, i] /= norm(X[:, i]) return X
python
def _orthogonalize(X): """ Orthogonalize every column of design `X` w.r.t preceding columns Parameters ---------- X: array of shape(n, p) the data to be orthogonalized Returns ------- X: array of shape(n, p) the data after orthogonalization Notes ----- X is changed in place. The columns are not normalized """ if X.size == X.shape[0]: return X from scipy.linalg import pinv, norm for i in range(1, X.shape[1]): X[:, i] -= np.dot(np.dot(X[:, i], X[:, :i]), pinv(X[:, :i])) # X[:, i] /= norm(X[:, i]) return X
[ "def", "_orthogonalize", "(", "X", ")", ":", "if", "X", ".", "size", "==", "X", ".", "shape", "[", "0", "]", ":", "return", "X", "from", "scipy", ".", "linalg", "import", "pinv", ",", "norm", "for", "i", "in", "range", "(", "1", ",", "X", ".", "shape", "[", "1", "]", ")", ":", "X", "[", ":", ",", "i", "]", "-=", "np", ".", "dot", "(", "np", ".", "dot", "(", "X", "[", ":", ",", "i", "]", ",", "X", "[", ":", ",", ":", "i", "]", ")", ",", "pinv", "(", "X", "[", ":", ",", ":", "i", "]", ")", ")", "# X[:, i] /= norm(X[:, i])", "return", "X" ]
Orthogonalize every column of design `X` w.r.t preceding columns Parameters ---------- X: array of shape(n, p) the data to be orthogonalized Returns ------- X: array of shape(n, p) the data after orthogonalization Notes ----- X is changed in place. The columns are not normalized
[ "Orthogonalize", "every", "column", "of", "design", "X", "w", ".", "r", ".", "t", "preceding", "columns" ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/analysis/hrf.py#L322-L345
train
bids-standard/pybids
bids/analysis/hrf.py
_regressor_names
def _regressor_names(con_name, hrf_model, fir_delays=None): """ Returns a list of regressor names, computed from con-name and hrf type Parameters ---------- con_name: string identifier of the condition hrf_model: string or None, hrf model chosen fir_delays: 1D array_like, optional, Delays used in case of an FIR model Returns ------- names: list of strings, regressor names """ if hrf_model in ['glover', 'spm', None]: return [con_name] elif hrf_model in ["glover + derivative", 'spm + derivative']: return [con_name, con_name + "_derivative"] elif hrf_model in ['spm + derivative + dispersion', 'glover + derivative + dispersion']: return [con_name, con_name + "_derivative", con_name + "_dispersion"] elif hrf_model == 'fir': return [con_name + "_delay_%d" % i for i in fir_delays]
python
def _regressor_names(con_name, hrf_model, fir_delays=None): """ Returns a list of regressor names, computed from con-name and hrf type Parameters ---------- con_name: string identifier of the condition hrf_model: string or None, hrf model chosen fir_delays: 1D array_like, optional, Delays used in case of an FIR model Returns ------- names: list of strings, regressor names """ if hrf_model in ['glover', 'spm', None]: return [con_name] elif hrf_model in ["glover + derivative", 'spm + derivative']: return [con_name, con_name + "_derivative"] elif hrf_model in ['spm + derivative + dispersion', 'glover + derivative + dispersion']: return [con_name, con_name + "_derivative", con_name + "_dispersion"] elif hrf_model == 'fir': return [con_name + "_delay_%d" % i for i in fir_delays]
[ "def", "_regressor_names", "(", "con_name", ",", "hrf_model", ",", "fir_delays", "=", "None", ")", ":", "if", "hrf_model", "in", "[", "'glover'", ",", "'spm'", ",", "None", "]", ":", "return", "[", "con_name", "]", "elif", "hrf_model", "in", "[", "\"glover + derivative\"", ",", "'spm + derivative'", "]", ":", "return", "[", "con_name", ",", "con_name", "+", "\"_derivative\"", "]", "elif", "hrf_model", "in", "[", "'spm + derivative + dispersion'", ",", "'glover + derivative + dispersion'", "]", ":", "return", "[", "con_name", ",", "con_name", "+", "\"_derivative\"", ",", "con_name", "+", "\"_dispersion\"", "]", "elif", "hrf_model", "==", "'fir'", ":", "return", "[", "con_name", "+", "\"_delay_%d\"", "%", "i", "for", "i", "in", "fir_delays", "]" ]
Returns a list of regressor names, computed from con-name and hrf type Parameters ---------- con_name: string identifier of the condition hrf_model: string or None, hrf model chosen fir_delays: 1D array_like, optional, Delays used in case of an FIR model Returns ------- names: list of strings, regressor names
[ "Returns", "a", "list", "of", "regressor", "names", "computed", "from", "con", "-", "name", "and", "hrf", "type" ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/analysis/hrf.py#L348-L375
train
bids-standard/pybids
bids/analysis/hrf.py
_hrf_kernel
def _hrf_kernel(hrf_model, tr, oversampling=50, fir_delays=None): """ Given the specification of the hemodynamic model and time parameters, return the list of matching kernels Parameters ---------- hrf_model : string or None, identifier of the hrf model tr : float the repetition time in seconds oversampling : int, optional temporal oversampling factor to have a smooth hrf fir_delays : list of floats, list of delays for finite impulse response models Returns ------- hkernel : list of arrays samples of the hrf (the number depends on the hrf_model used) """ acceptable_hrfs = [ 'spm', 'spm + derivative', 'spm + derivative + dispersion', 'fir', 'glover', 'glover + derivative', 'glover + derivative + dispersion', None] if hrf_model == 'spm': hkernel = [spm_hrf(tr, oversampling)] elif hrf_model == 'spm + derivative': hkernel = [spm_hrf(tr, oversampling), spm_time_derivative(tr, oversampling)] elif hrf_model == 'spm + derivative + dispersion': hkernel = [spm_hrf(tr, oversampling), spm_time_derivative(tr, oversampling), spm_dispersion_derivative(tr, oversampling)] elif hrf_model == 'glover': hkernel = [glover_hrf(tr, oversampling)] elif hrf_model == 'glover + derivative': hkernel = [glover_hrf(tr, oversampling), glover_time_derivative(tr, oversampling)] elif hrf_model == 'glover + derivative + dispersion': hkernel = [glover_hrf(tr, oversampling), glover_time_derivative(tr, oversampling), glover_dispersion_derivative(tr, oversampling)] elif hrf_model == 'fir': hkernel = [np.hstack((np.zeros(f * oversampling), np.ones(oversampling))) for f in fir_delays] elif hrf_model is None: hkernel = [np.hstack((1, np.zeros(oversampling - 1)))] else: raise ValueError('"{0}" is not a known hrf model. Use one of {1}'. format(hrf_model, acceptable_hrfs)) return hkernel
python
def _hrf_kernel(hrf_model, tr, oversampling=50, fir_delays=None): """ Given the specification of the hemodynamic model and time parameters, return the list of matching kernels Parameters ---------- hrf_model : string or None, identifier of the hrf model tr : float the repetition time in seconds oversampling : int, optional temporal oversampling factor to have a smooth hrf fir_delays : list of floats, list of delays for finite impulse response models Returns ------- hkernel : list of arrays samples of the hrf (the number depends on the hrf_model used) """ acceptable_hrfs = [ 'spm', 'spm + derivative', 'spm + derivative + dispersion', 'fir', 'glover', 'glover + derivative', 'glover + derivative + dispersion', None] if hrf_model == 'spm': hkernel = [spm_hrf(tr, oversampling)] elif hrf_model == 'spm + derivative': hkernel = [spm_hrf(tr, oversampling), spm_time_derivative(tr, oversampling)] elif hrf_model == 'spm + derivative + dispersion': hkernel = [spm_hrf(tr, oversampling), spm_time_derivative(tr, oversampling), spm_dispersion_derivative(tr, oversampling)] elif hrf_model == 'glover': hkernel = [glover_hrf(tr, oversampling)] elif hrf_model == 'glover + derivative': hkernel = [glover_hrf(tr, oversampling), glover_time_derivative(tr, oversampling)] elif hrf_model == 'glover + derivative + dispersion': hkernel = [glover_hrf(tr, oversampling), glover_time_derivative(tr, oversampling), glover_dispersion_derivative(tr, oversampling)] elif hrf_model == 'fir': hkernel = [np.hstack((np.zeros(f * oversampling), np.ones(oversampling))) for f in fir_delays] elif hrf_model is None: hkernel = [np.hstack((1, np.zeros(oversampling - 1)))] else: raise ValueError('"{0}" is not a known hrf model. Use one of {1}'. format(hrf_model, acceptable_hrfs)) return hkernel
[ "def", "_hrf_kernel", "(", "hrf_model", ",", "tr", ",", "oversampling", "=", "50", ",", "fir_delays", "=", "None", ")", ":", "acceptable_hrfs", "=", "[", "'spm'", ",", "'spm + derivative'", ",", "'spm + derivative + dispersion'", ",", "'fir'", ",", "'glover'", ",", "'glover + derivative'", ",", "'glover + derivative + dispersion'", ",", "None", "]", "if", "hrf_model", "==", "'spm'", ":", "hkernel", "=", "[", "spm_hrf", "(", "tr", ",", "oversampling", ")", "]", "elif", "hrf_model", "==", "'spm + derivative'", ":", "hkernel", "=", "[", "spm_hrf", "(", "tr", ",", "oversampling", ")", ",", "spm_time_derivative", "(", "tr", ",", "oversampling", ")", "]", "elif", "hrf_model", "==", "'spm + derivative + dispersion'", ":", "hkernel", "=", "[", "spm_hrf", "(", "tr", ",", "oversampling", ")", ",", "spm_time_derivative", "(", "tr", ",", "oversampling", ")", ",", "spm_dispersion_derivative", "(", "tr", ",", "oversampling", ")", "]", "elif", "hrf_model", "==", "'glover'", ":", "hkernel", "=", "[", "glover_hrf", "(", "tr", ",", "oversampling", ")", "]", "elif", "hrf_model", "==", "'glover + derivative'", ":", "hkernel", "=", "[", "glover_hrf", "(", "tr", ",", "oversampling", ")", ",", "glover_time_derivative", "(", "tr", ",", "oversampling", ")", "]", "elif", "hrf_model", "==", "'glover + derivative + dispersion'", ":", "hkernel", "=", "[", "glover_hrf", "(", "tr", ",", "oversampling", ")", ",", "glover_time_derivative", "(", "tr", ",", "oversampling", ")", ",", "glover_dispersion_derivative", "(", "tr", ",", "oversampling", ")", "]", "elif", "hrf_model", "==", "'fir'", ":", "hkernel", "=", "[", "np", ".", "hstack", "(", "(", "np", ".", "zeros", "(", "f", "*", "oversampling", ")", ",", "np", ".", "ones", "(", "oversampling", ")", ")", ")", "for", "f", "in", "fir_delays", "]", "elif", "hrf_model", "is", "None", ":", "hkernel", "=", "[", "np", ".", "hstack", "(", "(", "1", ",", "np", ".", "zeros", "(", "oversampling", "-", "1", ")", ")", ")", "]", "else", ":", "raise", "ValueError", "(", "'\"{0}\" is not a known hrf model. Use one of {1}'", ".", "format", "(", "hrf_model", ",", "acceptable_hrfs", ")", ")", "return", "hkernel" ]
Given the specification of the hemodynamic model and time parameters, return the list of matching kernels Parameters ---------- hrf_model : string or None, identifier of the hrf model tr : float the repetition time in seconds oversampling : int, optional temporal oversampling factor to have a smooth hrf fir_delays : list of floats, list of delays for finite impulse response models Returns ------- hkernel : list of arrays samples of the hrf (the number depends on the hrf_model used)
[ "Given", "the", "specification", "of", "the", "hemodynamic", "model", "and", "time", "parameters", "return", "the", "list", "of", "matching", "kernels" ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/analysis/hrf.py#L378-L432
train
bids-standard/pybids
bids/analysis/hrf.py
compute_regressor
def compute_regressor(exp_condition, hrf_model, frame_times, con_id='cond', oversampling=50, fir_delays=None, min_onset=-24): """ This is the main function to convolve regressors with hrf model Parameters ---------- exp_condition : array-like of shape (3, n_events) yields description of events for this condition as a (onsets, durations, amplitudes) triplet hrf_model : {'spm', 'spm + derivative', 'spm + derivative + dispersion', 'glover', 'glover + derivative', 'fir', None} Name of the hrf model to be used frame_times : array of shape (n_scans) the desired sampling times con_id : string optional identifier of the condition oversampling : int, optional oversampling factor to perform the convolution fir_delays : 1D-array-like, optional delays (in seconds) used in case of a finite impulse reponse model min_onset : float, optional minimal onset relative to frame_times[0] (in seconds) events that start before frame_times[0] + min_onset are not considered Returns ------- computed_regressors: array of shape(n_scans, n_reg) computed regressors sampled at frame times reg_names: list of strings corresponding regressor names Notes ----- The different hemodynamic models can be understood as follows: 'spm': this is the hrf model used in SPM 'spm + derivative': SPM model plus its time derivative (2 regressors) 'spm + time + dispersion': idem, plus dispersion derivative (3 regressors) 'glover': this one corresponds to the Glover hrf 'glover + derivative': the Glover hrf + time derivative (2 regressors) 'glover + derivative + dispersion': idem + dispersion derivative (3 regressors) 'fir': finite impulse response basis, a set of delayed dirac models with arbitrary length. This one currently assumes regularly spaced frame times (i.e. fixed time of repetition). It is expected that spm standard and Glover model would not yield large differences in most cases. In case of glover and spm models, the derived regressors are orthogonalized wrt the main one. """ # this is the average tr in this session, not necessarily the true tr tr = float(frame_times.max()) / (np.size(frame_times) - 1) # 1. create the high temporal resolution regressor hr_regressor, hr_frame_times = _sample_condition( exp_condition, frame_times, oversampling, min_onset) # 2. create the hrf model(s) hkernel = _hrf_kernel(hrf_model, tr, oversampling, fir_delays) # 3. convolve the regressor and hrf, and downsample the regressor conv_reg = np.array([np.convolve(hr_regressor, h)[:hr_regressor.size] for h in hkernel]) # 4. temporally resample the regressors computed_regressors = _resample_regressor( conv_reg, hr_frame_times, frame_times) # 5. ortogonalize the regressors if hrf_model != 'fir': computed_regressors = _orthogonalize(computed_regressors) # 6 generate regressor names reg_names = _regressor_names(con_id, hrf_model, fir_delays=fir_delays) return computed_regressors, reg_names
python
def compute_regressor(exp_condition, hrf_model, frame_times, con_id='cond', oversampling=50, fir_delays=None, min_onset=-24): """ This is the main function to convolve regressors with hrf model Parameters ---------- exp_condition : array-like of shape (3, n_events) yields description of events for this condition as a (onsets, durations, amplitudes) triplet hrf_model : {'spm', 'spm + derivative', 'spm + derivative + dispersion', 'glover', 'glover + derivative', 'fir', None} Name of the hrf model to be used frame_times : array of shape (n_scans) the desired sampling times con_id : string optional identifier of the condition oversampling : int, optional oversampling factor to perform the convolution fir_delays : 1D-array-like, optional delays (in seconds) used in case of a finite impulse reponse model min_onset : float, optional minimal onset relative to frame_times[0] (in seconds) events that start before frame_times[0] + min_onset are not considered Returns ------- computed_regressors: array of shape(n_scans, n_reg) computed regressors sampled at frame times reg_names: list of strings corresponding regressor names Notes ----- The different hemodynamic models can be understood as follows: 'spm': this is the hrf model used in SPM 'spm + derivative': SPM model plus its time derivative (2 regressors) 'spm + time + dispersion': idem, plus dispersion derivative (3 regressors) 'glover': this one corresponds to the Glover hrf 'glover + derivative': the Glover hrf + time derivative (2 regressors) 'glover + derivative + dispersion': idem + dispersion derivative (3 regressors) 'fir': finite impulse response basis, a set of delayed dirac models with arbitrary length. This one currently assumes regularly spaced frame times (i.e. fixed time of repetition). It is expected that spm standard and Glover model would not yield large differences in most cases. In case of glover and spm models, the derived regressors are orthogonalized wrt the main one. """ # this is the average tr in this session, not necessarily the true tr tr = float(frame_times.max()) / (np.size(frame_times) - 1) # 1. create the high temporal resolution regressor hr_regressor, hr_frame_times = _sample_condition( exp_condition, frame_times, oversampling, min_onset) # 2. create the hrf model(s) hkernel = _hrf_kernel(hrf_model, tr, oversampling, fir_delays) # 3. convolve the regressor and hrf, and downsample the regressor conv_reg = np.array([np.convolve(hr_regressor, h)[:hr_regressor.size] for h in hkernel]) # 4. temporally resample the regressors computed_regressors = _resample_regressor( conv_reg, hr_frame_times, frame_times) # 5. ortogonalize the regressors if hrf_model != 'fir': computed_regressors = _orthogonalize(computed_regressors) # 6 generate regressor names reg_names = _regressor_names(con_id, hrf_model, fir_delays=fir_delays) return computed_regressors, reg_names
[ "def", "compute_regressor", "(", "exp_condition", ",", "hrf_model", ",", "frame_times", ",", "con_id", "=", "'cond'", ",", "oversampling", "=", "50", ",", "fir_delays", "=", "None", ",", "min_onset", "=", "-", "24", ")", ":", "# this is the average tr in this session, not necessarily the true tr", "tr", "=", "float", "(", "frame_times", ".", "max", "(", ")", ")", "/", "(", "np", ".", "size", "(", "frame_times", ")", "-", "1", ")", "# 1. create the high temporal resolution regressor", "hr_regressor", ",", "hr_frame_times", "=", "_sample_condition", "(", "exp_condition", ",", "frame_times", ",", "oversampling", ",", "min_onset", ")", "# 2. create the hrf model(s)", "hkernel", "=", "_hrf_kernel", "(", "hrf_model", ",", "tr", ",", "oversampling", ",", "fir_delays", ")", "# 3. convolve the regressor and hrf, and downsample the regressor", "conv_reg", "=", "np", ".", "array", "(", "[", "np", ".", "convolve", "(", "hr_regressor", ",", "h", ")", "[", ":", "hr_regressor", ".", "size", "]", "for", "h", "in", "hkernel", "]", ")", "# 4. temporally resample the regressors", "computed_regressors", "=", "_resample_regressor", "(", "conv_reg", ",", "hr_frame_times", ",", "frame_times", ")", "# 5. ortogonalize the regressors", "if", "hrf_model", "!=", "'fir'", ":", "computed_regressors", "=", "_orthogonalize", "(", "computed_regressors", ")", "# 6 generate regressor names", "reg_names", "=", "_regressor_names", "(", "con_id", ",", "hrf_model", ",", "fir_delays", "=", "fir_delays", ")", "return", "computed_regressors", ",", "reg_names" ]
This is the main function to convolve regressors with hrf model Parameters ---------- exp_condition : array-like of shape (3, n_events) yields description of events for this condition as a (onsets, durations, amplitudes) triplet hrf_model : {'spm', 'spm + derivative', 'spm + derivative + dispersion', 'glover', 'glover + derivative', 'fir', None} Name of the hrf model to be used frame_times : array of shape (n_scans) the desired sampling times con_id : string optional identifier of the condition oversampling : int, optional oversampling factor to perform the convolution fir_delays : 1D-array-like, optional delays (in seconds) used in case of a finite impulse reponse model min_onset : float, optional minimal onset relative to frame_times[0] (in seconds) events that start before frame_times[0] + min_onset are not considered Returns ------- computed_regressors: array of shape(n_scans, n_reg) computed regressors sampled at frame times reg_names: list of strings corresponding regressor names Notes ----- The different hemodynamic models can be understood as follows: 'spm': this is the hrf model used in SPM 'spm + derivative': SPM model plus its time derivative (2 regressors) 'spm + time + dispersion': idem, plus dispersion derivative (3 regressors) 'glover': this one corresponds to the Glover hrf 'glover + derivative': the Glover hrf + time derivative (2 regressors) 'glover + derivative + dispersion': idem + dispersion derivative (3 regressors) 'fir': finite impulse response basis, a set of delayed dirac models with arbitrary length. This one currently assumes regularly spaced frame times (i.e. fixed time of repetition). It is expected that spm standard and Glover model would not yield large differences in most cases. In case of glover and spm models, the derived regressors are orthogonalized wrt the main one.
[ "This", "is", "the", "main", "function", "to", "convolve", "regressors", "with", "hrf", "model" ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/analysis/hrf.py#L435-L516
train
bids-standard/pybids
bids/utils.py
matches_entities
def matches_entities(obj, entities, strict=False): ''' Checks whether an object's entities match the input. ''' if strict and set(obj.entities.keys()) != set(entities.keys()): return False comm_ents = list(set(obj.entities.keys()) & set(entities.keys())) for k in comm_ents: current = obj.entities[k] target = entities[k] if isinstance(target, (list, tuple)): if current not in target: return False elif current != target: return False return True
python
def matches_entities(obj, entities, strict=False): ''' Checks whether an object's entities match the input. ''' if strict and set(obj.entities.keys()) != set(entities.keys()): return False comm_ents = list(set(obj.entities.keys()) & set(entities.keys())) for k in comm_ents: current = obj.entities[k] target = entities[k] if isinstance(target, (list, tuple)): if current not in target: return False elif current != target: return False return True
[ "def", "matches_entities", "(", "obj", ",", "entities", ",", "strict", "=", "False", ")", ":", "if", "strict", "and", "set", "(", "obj", ".", "entities", ".", "keys", "(", ")", ")", "!=", "set", "(", "entities", ".", "keys", "(", ")", ")", ":", "return", "False", "comm_ents", "=", "list", "(", "set", "(", "obj", ".", "entities", ".", "keys", "(", ")", ")", "&", "set", "(", "entities", ".", "keys", "(", ")", ")", ")", "for", "k", "in", "comm_ents", ":", "current", "=", "obj", ".", "entities", "[", "k", "]", "target", "=", "entities", "[", "k", "]", "if", "isinstance", "(", "target", ",", "(", "list", ",", "tuple", ")", ")", ":", "if", "current", "not", "in", "target", ":", "return", "False", "elif", "current", "!=", "target", ":", "return", "False", "return", "True" ]
Checks whether an object's entities match the input.
[ "Checks", "whether", "an", "object", "s", "entities", "match", "the", "input", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/utils.py#L12-L26
train
bids-standard/pybids
bids/utils.py
check_path_matches_patterns
def check_path_matches_patterns(path, patterns): ''' Check if the path matches at least one of the provided patterns. ''' path = os.path.abspath(path) for patt in patterns: if isinstance(patt, six.string_types): if path == patt: return True elif patt.search(path): return True return False
python
def check_path_matches_patterns(path, patterns): ''' Check if the path matches at least one of the provided patterns. ''' path = os.path.abspath(path) for patt in patterns: if isinstance(patt, six.string_types): if path == patt: return True elif patt.search(path): return True return False
[ "def", "check_path_matches_patterns", "(", "path", ",", "patterns", ")", ":", "path", "=", "os", ".", "path", ".", "abspath", "(", "path", ")", "for", "patt", "in", "patterns", ":", "if", "isinstance", "(", "patt", ",", "six", ".", "string_types", ")", ":", "if", "path", "==", "patt", ":", "return", "True", "elif", "patt", ".", "search", "(", "path", ")", ":", "return", "True", "return", "False" ]
Check if the path matches at least one of the provided patterns.
[ "Check", "if", "the", "path", "matches", "at", "least", "one", "of", "the", "provided", "patterns", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/utils.py#L91-L100
train
bids-standard/pybids
bids/layout/core.py
Entity.count
def count(self, files=False): """ Returns a count of unique values or files. Args: files (bool): When True, counts all files mapped to the Entity. When False, counts all unique values. Returns: an int. """ return len(self.files) if files else len(self.unique())
python
def count(self, files=False): """ Returns a count of unique values or files. Args: files (bool): When True, counts all files mapped to the Entity. When False, counts all unique values. Returns: an int. """ return len(self.files) if files else len(self.unique())
[ "def", "count", "(", "self", ",", "files", "=", "False", ")", ":", "return", "len", "(", "self", ".", "files", ")", "if", "files", "else", "len", "(", "self", ".", "unique", "(", ")", ")" ]
Returns a count of unique values or files. Args: files (bool): When True, counts all files mapped to the Entity. When False, counts all unique values. Returns: an int.
[ "Returns", "a", "count", "of", "unique", "values", "or", "files", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/layout/core.py#L147-L155
train
bids-standard/pybids
bids/reports/parsing.py
general_acquisition_info
def general_acquisition_info(metadata): """ General sentence on data acquisition. Should be first sentence in MRI data acquisition section. Parameters ---------- metadata : :obj:`dict` The metadata for the dataset. Returns ------- out_str : :obj:`str` Output string with scanner information. """ out_str = ('MR data were acquired using a {tesla}-Tesla {manu} {model} ' 'MRI scanner.') out_str = out_str.format(tesla=metadata.get('MagneticFieldStrength', 'UNKNOWN'), manu=metadata.get('Manufacturer', 'MANUFACTURER'), model=metadata.get('ManufacturersModelName', 'MODEL')) return out_str
python
def general_acquisition_info(metadata): """ General sentence on data acquisition. Should be first sentence in MRI data acquisition section. Parameters ---------- metadata : :obj:`dict` The metadata for the dataset. Returns ------- out_str : :obj:`str` Output string with scanner information. """ out_str = ('MR data were acquired using a {tesla}-Tesla {manu} {model} ' 'MRI scanner.') out_str = out_str.format(tesla=metadata.get('MagneticFieldStrength', 'UNKNOWN'), manu=metadata.get('Manufacturer', 'MANUFACTURER'), model=metadata.get('ManufacturersModelName', 'MODEL')) return out_str
[ "def", "general_acquisition_info", "(", "metadata", ")", ":", "out_str", "=", "(", "'MR data were acquired using a {tesla}-Tesla {manu} {model} '", "'MRI scanner.'", ")", "out_str", "=", "out_str", ".", "format", "(", "tesla", "=", "metadata", ".", "get", "(", "'MagneticFieldStrength'", ",", "'UNKNOWN'", ")", ",", "manu", "=", "metadata", ".", "get", "(", "'Manufacturer'", ",", "'MANUFACTURER'", ")", ",", "model", "=", "metadata", ".", "get", "(", "'ManufacturersModelName'", ",", "'MODEL'", ")", ")", "return", "out_str" ]
General sentence on data acquisition. Should be first sentence in MRI data acquisition section. Parameters ---------- metadata : :obj:`dict` The metadata for the dataset. Returns ------- out_str : :obj:`str` Output string with scanner information.
[ "General", "sentence", "on", "data", "acquisition", ".", "Should", "be", "first", "sentence", "in", "MRI", "data", "acquisition", "section", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/reports/parsing.py#L22-L44
train
bids-standard/pybids
bids/reports/parsing.py
parse_niftis
def parse_niftis(layout, niftis, subj, config, **kwargs): """ Loop through niftis in a BIDSLayout and generate the appropriate description type for each scan. Compile all of the descriptions into a list. Parameters ---------- layout : :obj:`bids.layout.BIDSLayout` Layout object for a BIDS dataset. niftis : :obj:`list` or :obj:`grabbit.core.File` List of nifti files in layout corresponding to subject/session combo. subj : :obj:`str` Subject ID. config : :obj:`dict` Configuration info for methods generation. """ kwargs = {k: v for k, v in kwargs.items() if v is not None} description_list = [] skip_task = {} # Only report each task once for nifti_struct in niftis: nii_file = nifti_struct.path metadata = layout.get_metadata(nii_file) if not metadata: LOGGER.warning('No json file found for %s', nii_file) else: import nibabel as nib img = nib.load(nii_file) # Assume all data were acquired the same way. if not description_list: description_list.append(general_acquisition_info(metadata)) if nifti_struct.entities['datatype'] == 'func': if not skip_task.get(nifti_struct.entities['task'], False): echos = layout.get_echoes(subject=subj, extensions='nii.gz', task=nifti_struct.entities['task'], **kwargs) n_echos = len(echos) if n_echos > 0: metadata['EchoTime'] = [] for echo in sorted(echos): echo_struct = layout.get(subject=subj, echo=echo, extensions='nii.gz', task=nifti_struct.entities['task'], **kwargs)[0] echo_file = echo_struct.path echo_meta = layout.get_metadata(echo_file) metadata['EchoTime'].append(echo_meta['EchoTime']) n_runs = len(layout.get_runs(subject=subj, task=nifti_struct.entities['task'], **kwargs)) description_list.append(func_info(nifti_struct.entities['task'], n_runs, metadata, img, config)) skip_task[nifti_struct.entities['task']] = True elif nifti_struct.entities['datatype'] == 'anat': suffix = nifti_struct.entities['suffix'] if suffix.endswith('w'): suffix = suffix[:-1] + '-weighted' description_list.append(anat_info(suffix, metadata, img, config)) elif nifti_struct.entities['datatype'] == 'dwi': bval_file = nii_file.replace('.nii.gz', '.bval') description_list.append(dwi_info(bval_file, metadata, img, config)) elif nifti_struct.entities['datatype'] == 'fmap': description_list.append(fmap_info(metadata, img, config, layout)) return description_list
python
def parse_niftis(layout, niftis, subj, config, **kwargs): """ Loop through niftis in a BIDSLayout and generate the appropriate description type for each scan. Compile all of the descriptions into a list. Parameters ---------- layout : :obj:`bids.layout.BIDSLayout` Layout object for a BIDS dataset. niftis : :obj:`list` or :obj:`grabbit.core.File` List of nifti files in layout corresponding to subject/session combo. subj : :obj:`str` Subject ID. config : :obj:`dict` Configuration info for methods generation. """ kwargs = {k: v for k, v in kwargs.items() if v is not None} description_list = [] skip_task = {} # Only report each task once for nifti_struct in niftis: nii_file = nifti_struct.path metadata = layout.get_metadata(nii_file) if not metadata: LOGGER.warning('No json file found for %s', nii_file) else: import nibabel as nib img = nib.load(nii_file) # Assume all data were acquired the same way. if not description_list: description_list.append(general_acquisition_info(metadata)) if nifti_struct.entities['datatype'] == 'func': if not skip_task.get(nifti_struct.entities['task'], False): echos = layout.get_echoes(subject=subj, extensions='nii.gz', task=nifti_struct.entities['task'], **kwargs) n_echos = len(echos) if n_echos > 0: metadata['EchoTime'] = [] for echo in sorted(echos): echo_struct = layout.get(subject=subj, echo=echo, extensions='nii.gz', task=nifti_struct.entities['task'], **kwargs)[0] echo_file = echo_struct.path echo_meta = layout.get_metadata(echo_file) metadata['EchoTime'].append(echo_meta['EchoTime']) n_runs = len(layout.get_runs(subject=subj, task=nifti_struct.entities['task'], **kwargs)) description_list.append(func_info(nifti_struct.entities['task'], n_runs, metadata, img, config)) skip_task[nifti_struct.entities['task']] = True elif nifti_struct.entities['datatype'] == 'anat': suffix = nifti_struct.entities['suffix'] if suffix.endswith('w'): suffix = suffix[:-1] + '-weighted' description_list.append(anat_info(suffix, metadata, img, config)) elif nifti_struct.entities['datatype'] == 'dwi': bval_file = nii_file.replace('.nii.gz', '.bval') description_list.append(dwi_info(bval_file, metadata, img, config)) elif nifti_struct.entities['datatype'] == 'fmap': description_list.append(fmap_info(metadata, img, config, layout)) return description_list
[ "def", "parse_niftis", "(", "layout", ",", "niftis", ",", "subj", ",", "config", ",", "*", "*", "kwargs", ")", ":", "kwargs", "=", "{", "k", ":", "v", "for", "k", ",", "v", "in", "kwargs", ".", "items", "(", ")", "if", "v", "is", "not", "None", "}", "description_list", "=", "[", "]", "skip_task", "=", "{", "}", "# Only report each task once", "for", "nifti_struct", "in", "niftis", ":", "nii_file", "=", "nifti_struct", ".", "path", "metadata", "=", "layout", ".", "get_metadata", "(", "nii_file", ")", "if", "not", "metadata", ":", "LOGGER", ".", "warning", "(", "'No json file found for %s'", ",", "nii_file", ")", "else", ":", "import", "nibabel", "as", "nib", "img", "=", "nib", ".", "load", "(", "nii_file", ")", "# Assume all data were acquired the same way.", "if", "not", "description_list", ":", "description_list", ".", "append", "(", "general_acquisition_info", "(", "metadata", ")", ")", "if", "nifti_struct", ".", "entities", "[", "'datatype'", "]", "==", "'func'", ":", "if", "not", "skip_task", ".", "get", "(", "nifti_struct", ".", "entities", "[", "'task'", "]", ",", "False", ")", ":", "echos", "=", "layout", ".", "get_echoes", "(", "subject", "=", "subj", ",", "extensions", "=", "'nii.gz'", ",", "task", "=", "nifti_struct", ".", "entities", "[", "'task'", "]", ",", "*", "*", "kwargs", ")", "n_echos", "=", "len", "(", "echos", ")", "if", "n_echos", ">", "0", ":", "metadata", "[", "'EchoTime'", "]", "=", "[", "]", "for", "echo", "in", "sorted", "(", "echos", ")", ":", "echo_struct", "=", "layout", ".", "get", "(", "subject", "=", "subj", ",", "echo", "=", "echo", ",", "extensions", "=", "'nii.gz'", ",", "task", "=", "nifti_struct", ".", "entities", "[", "'task'", "]", ",", "*", "*", "kwargs", ")", "[", "0", "]", "echo_file", "=", "echo_struct", ".", "path", "echo_meta", "=", "layout", ".", "get_metadata", "(", "echo_file", ")", "metadata", "[", "'EchoTime'", "]", ".", "append", "(", "echo_meta", "[", "'EchoTime'", "]", ")", "n_runs", "=", "len", "(", "layout", ".", "get_runs", "(", "subject", "=", "subj", ",", "task", "=", "nifti_struct", ".", "entities", "[", "'task'", "]", ",", "*", "*", "kwargs", ")", ")", "description_list", ".", "append", "(", "func_info", "(", "nifti_struct", ".", "entities", "[", "'task'", "]", ",", "n_runs", ",", "metadata", ",", "img", ",", "config", ")", ")", "skip_task", "[", "nifti_struct", ".", "entities", "[", "'task'", "]", "]", "=", "True", "elif", "nifti_struct", ".", "entities", "[", "'datatype'", "]", "==", "'anat'", ":", "suffix", "=", "nifti_struct", ".", "entities", "[", "'suffix'", "]", "if", "suffix", ".", "endswith", "(", "'w'", ")", ":", "suffix", "=", "suffix", "[", ":", "-", "1", "]", "+", "'-weighted'", "description_list", ".", "append", "(", "anat_info", "(", "suffix", ",", "metadata", ",", "img", ",", "config", ")", ")", "elif", "nifti_struct", ".", "entities", "[", "'datatype'", "]", "==", "'dwi'", ":", "bval_file", "=", "nii_file", ".", "replace", "(", "'.nii.gz'", ",", "'.bval'", ")", "description_list", ".", "append", "(", "dwi_info", "(", "bval_file", ",", "metadata", ",", "img", ",", "config", ")", ")", "elif", "nifti_struct", ".", "entities", "[", "'datatype'", "]", "==", "'fmap'", ":", "description_list", ".", "append", "(", "fmap_info", "(", "metadata", ",", "img", ",", "config", ",", "layout", ")", ")", "return", "description_list" ]
Loop through niftis in a BIDSLayout and generate the appropriate description type for each scan. Compile all of the descriptions into a list. Parameters ---------- layout : :obj:`bids.layout.BIDSLayout` Layout object for a BIDS dataset. niftis : :obj:`list` or :obj:`grabbit.core.File` List of nifti files in layout corresponding to subject/session combo. subj : :obj:`str` Subject ID. config : :obj:`dict` Configuration info for methods generation.
[ "Loop", "through", "niftis", "in", "a", "BIDSLayout", "and", "generate", "the", "appropriate", "description", "type", "for", "each", "scan", ".", "Compile", "all", "of", "the", "descriptions", "into", "a", "list", "." ]
30d924ce770622bda0e390d613a8da42a2a20c32
https://github.com/bids-standard/pybids/blob/30d924ce770622bda0e390d613a8da42a2a20c32/bids/reports/parsing.py#L407-L479
train
Microsoft/ApplicationInsights-Python
applicationinsights/TelemetryClient.py
TelemetryClient.track_exception
def track_exception(self, type=None, value=None, tb=None, properties=None, measurements=None): """ Send information about a single exception that occurred in the application. Args: type (Type). the type of the exception that was thrown.\n value (:class:`Exception`). the exception that the client wants to send.\n tb (:class:`Traceback`). the traceback information as returned by :func:`sys.exc_info`.\n properties (dict). the set of custom properties the client wants attached to this data item. (defaults to: None)\n measurements (dict). the set of custom measurements the client wants to attach to this data item. (defaults to: None) """ if not type or not value or not tb: type, value, tb = sys.exc_info() if not type or not value or not tb: try: raise Exception(NULL_CONSTANT_STRING) except: type, value, tb = sys.exc_info() details = channel.contracts.ExceptionDetails() details.id = 1 details.outer_id = 0 details.type_name = type.__name__ details.message = str(value) details.has_full_stack = True counter = 0 for tb_frame_file, tb_frame_line, tb_frame_function, tb_frame_text in traceback.extract_tb(tb): frame = channel.contracts.StackFrame() frame.assembly = 'Unknown' frame.file_name = tb_frame_file frame.level = counter frame.line = tb_frame_line frame.method = tb_frame_function details.parsed_stack.append(frame) counter += 1 details.parsed_stack.reverse() data = channel.contracts.ExceptionData() data.handled_at = 'UserCode' data.exceptions.append(details) if properties: data.properties = properties if measurements: data.measurements = measurements self.track(data, self._context)
python
def track_exception(self, type=None, value=None, tb=None, properties=None, measurements=None): """ Send information about a single exception that occurred in the application. Args: type (Type). the type of the exception that was thrown.\n value (:class:`Exception`). the exception that the client wants to send.\n tb (:class:`Traceback`). the traceback information as returned by :func:`sys.exc_info`.\n properties (dict). the set of custom properties the client wants attached to this data item. (defaults to: None)\n measurements (dict). the set of custom measurements the client wants to attach to this data item. (defaults to: None) """ if not type or not value or not tb: type, value, tb = sys.exc_info() if not type or not value or not tb: try: raise Exception(NULL_CONSTANT_STRING) except: type, value, tb = sys.exc_info() details = channel.contracts.ExceptionDetails() details.id = 1 details.outer_id = 0 details.type_name = type.__name__ details.message = str(value) details.has_full_stack = True counter = 0 for tb_frame_file, tb_frame_line, tb_frame_function, tb_frame_text in traceback.extract_tb(tb): frame = channel.contracts.StackFrame() frame.assembly = 'Unknown' frame.file_name = tb_frame_file frame.level = counter frame.line = tb_frame_line frame.method = tb_frame_function details.parsed_stack.append(frame) counter += 1 details.parsed_stack.reverse() data = channel.contracts.ExceptionData() data.handled_at = 'UserCode' data.exceptions.append(details) if properties: data.properties = properties if measurements: data.measurements = measurements self.track(data, self._context)
[ "def", "track_exception", "(", "self", ",", "type", "=", "None", ",", "value", "=", "None", ",", "tb", "=", "None", ",", "properties", "=", "None", ",", "measurements", "=", "None", ")", ":", "if", "not", "type", "or", "not", "value", "or", "not", "tb", ":", "type", ",", "value", ",", "tb", "=", "sys", ".", "exc_info", "(", ")", "if", "not", "type", "or", "not", "value", "or", "not", "tb", ":", "try", ":", "raise", "Exception", "(", "NULL_CONSTANT_STRING", ")", "except", ":", "type", ",", "value", ",", "tb", "=", "sys", ".", "exc_info", "(", ")", "details", "=", "channel", ".", "contracts", ".", "ExceptionDetails", "(", ")", "details", ".", "id", "=", "1", "details", ".", "outer_id", "=", "0", "details", ".", "type_name", "=", "type", ".", "__name__", "details", ".", "message", "=", "str", "(", "value", ")", "details", ".", "has_full_stack", "=", "True", "counter", "=", "0", "for", "tb_frame_file", ",", "tb_frame_line", ",", "tb_frame_function", ",", "tb_frame_text", "in", "traceback", ".", "extract_tb", "(", "tb", ")", ":", "frame", "=", "channel", ".", "contracts", ".", "StackFrame", "(", ")", "frame", ".", "assembly", "=", "'Unknown'", "frame", ".", "file_name", "=", "tb_frame_file", "frame", ".", "level", "=", "counter", "frame", ".", "line", "=", "tb_frame_line", "frame", ".", "method", "=", "tb_frame_function", "details", ".", "parsed_stack", ".", "append", "(", "frame", ")", "counter", "+=", "1", "details", ".", "parsed_stack", ".", "reverse", "(", ")", "data", "=", "channel", ".", "contracts", ".", "ExceptionData", "(", ")", "data", ".", "handled_at", "=", "'UserCode'", "data", ".", "exceptions", ".", "append", "(", "details", ")", "if", "properties", ":", "data", ".", "properties", "=", "properties", "if", "measurements", ":", "data", ".", "measurements", "=", "measurements", "self", ".", "track", "(", "data", ",", "self", ".", "_context", ")" ]
Send information about a single exception that occurred in the application. Args: type (Type). the type of the exception that was thrown.\n value (:class:`Exception`). the exception that the client wants to send.\n tb (:class:`Traceback`). the traceback information as returned by :func:`sys.exc_info`.\n properties (dict). the set of custom properties the client wants attached to this data item. (defaults to: None)\n measurements (dict). the set of custom measurements the client wants to attach to this data item. (defaults to: None)
[ "Send", "information", "about", "a", "single", "exception", "that", "occurred", "in", "the", "application", "." ]
8452ab7126f9bb6964637d4aa1258c2af17563d6
https://github.com/Microsoft/ApplicationInsights-Python/blob/8452ab7126f9bb6964637d4aa1258c2af17563d6/applicationinsights/TelemetryClient.py#L82-L126
train
Microsoft/ApplicationInsights-Python
applicationinsights/TelemetryClient.py
TelemetryClient.track_event
def track_event(self, name, properties=None, measurements=None): """ Send information about a single event that has occurred in the context of the application. Args: name (str). the data to associate to this event.\n properties (dict). the set of custom properties the client wants attached to this data item. (defaults to: None)\n measurements (dict). the set of custom measurements the client wants to attach to this data item. (defaults to: None) """ data = channel.contracts.EventData() data.name = name or NULL_CONSTANT_STRING if properties: data.properties = properties if measurements: data.measurements = measurements self.track(data, self._context)
python
def track_event(self, name, properties=None, measurements=None): """ Send information about a single event that has occurred in the context of the application. Args: name (str). the data to associate to this event.\n properties (dict). the set of custom properties the client wants attached to this data item. (defaults to: None)\n measurements (dict). the set of custom measurements the client wants to attach to this data item. (defaults to: None) """ data = channel.contracts.EventData() data.name = name or NULL_CONSTANT_STRING if properties: data.properties = properties if measurements: data.measurements = measurements self.track(data, self._context)
[ "def", "track_event", "(", "self", ",", "name", ",", "properties", "=", "None", ",", "measurements", "=", "None", ")", ":", "data", "=", "channel", ".", "contracts", ".", "EventData", "(", ")", "data", ".", "name", "=", "name", "or", "NULL_CONSTANT_STRING", "if", "properties", ":", "data", ".", "properties", "=", "properties", "if", "measurements", ":", "data", ".", "measurements", "=", "measurements", "self", ".", "track", "(", "data", ",", "self", ".", "_context", ")" ]
Send information about a single event that has occurred in the context of the application. Args: name (str). the data to associate to this event.\n properties (dict). the set of custom properties the client wants attached to this data item. (defaults to: None)\n measurements (dict). the set of custom measurements the client wants to attach to this data item. (defaults to: None)
[ "Send", "information", "about", "a", "single", "event", "that", "has", "occurred", "in", "the", "context", "of", "the", "application", "." ]
8452ab7126f9bb6964637d4aa1258c2af17563d6
https://github.com/Microsoft/ApplicationInsights-Python/blob/8452ab7126f9bb6964637d4aa1258c2af17563d6/applicationinsights/TelemetryClient.py#L128-L143
train
Microsoft/ApplicationInsights-Python
applicationinsights/TelemetryClient.py
TelemetryClient.track_metric
def track_metric(self, name, value, type=None, count=None, min=None, max=None, std_dev=None, properties=None): """Send information about a single metric data point that was captured for the application. Args: name (str). the name of the metric that was captured.\n value (float). the value of the metric that was captured.\n type (:class:`channel.contracts.DataPointType`). the type of the metric. (defaults to: :func:`channel.contracts.DataPointType.aggregation`)\n count (int). the number of metrics that were aggregated into this data point. (defaults to: None)\n min (float). the minimum of all metrics collected that were aggregated into this data point. (defaults to: None)\n max (float). the maximum of all metrics collected that were aggregated into this data point. (defaults to: None)\n std_dev (float). the standard deviation of all metrics collected that were aggregated into this data point. (defaults to: None)\n properties (dict). the set of custom properties the client wants attached to this data item. (defaults to: None) """ dataPoint = channel.contracts.DataPoint() dataPoint.name = name or NULL_CONSTANT_STRING dataPoint.value = value or 0 dataPoint.kind = type or channel.contracts.DataPointType.aggregation dataPoint.count = count dataPoint.min = min dataPoint.max = max dataPoint.std_dev = std_dev data = channel.contracts.MetricData() data.metrics.append(dataPoint) if properties: data.properties = properties self.track(data, self._context)
python
def track_metric(self, name, value, type=None, count=None, min=None, max=None, std_dev=None, properties=None): """Send information about a single metric data point that was captured for the application. Args: name (str). the name of the metric that was captured.\n value (float). the value of the metric that was captured.\n type (:class:`channel.contracts.DataPointType`). the type of the metric. (defaults to: :func:`channel.contracts.DataPointType.aggregation`)\n count (int). the number of metrics that were aggregated into this data point. (defaults to: None)\n min (float). the minimum of all metrics collected that were aggregated into this data point. (defaults to: None)\n max (float). the maximum of all metrics collected that were aggregated into this data point. (defaults to: None)\n std_dev (float). the standard deviation of all metrics collected that were aggregated into this data point. (defaults to: None)\n properties (dict). the set of custom properties the client wants attached to this data item. (defaults to: None) """ dataPoint = channel.contracts.DataPoint() dataPoint.name = name or NULL_CONSTANT_STRING dataPoint.value = value or 0 dataPoint.kind = type or channel.contracts.DataPointType.aggregation dataPoint.count = count dataPoint.min = min dataPoint.max = max dataPoint.std_dev = std_dev data = channel.contracts.MetricData() data.metrics.append(dataPoint) if properties: data.properties = properties self.track(data, self._context)
[ "def", "track_metric", "(", "self", ",", "name", ",", "value", ",", "type", "=", "None", ",", "count", "=", "None", ",", "min", "=", "None", ",", "max", "=", "None", ",", "std_dev", "=", "None", ",", "properties", "=", "None", ")", ":", "dataPoint", "=", "channel", ".", "contracts", ".", "DataPoint", "(", ")", "dataPoint", ".", "name", "=", "name", "or", "NULL_CONSTANT_STRING", "dataPoint", ".", "value", "=", "value", "or", "0", "dataPoint", ".", "kind", "=", "type", "or", "channel", ".", "contracts", ".", "DataPointType", ".", "aggregation", "dataPoint", ".", "count", "=", "count", "dataPoint", ".", "min", "=", "min", "dataPoint", ".", "max", "=", "max", "dataPoint", ".", "std_dev", "=", "std_dev", "data", "=", "channel", ".", "contracts", ".", "MetricData", "(", ")", "data", ".", "metrics", ".", "append", "(", "dataPoint", ")", "if", "properties", ":", "data", ".", "properties", "=", "properties", "self", ".", "track", "(", "data", ",", "self", ".", "_context", ")" ]
Send information about a single metric data point that was captured for the application. Args: name (str). the name of the metric that was captured.\n value (float). the value of the metric that was captured.\n type (:class:`channel.contracts.DataPointType`). the type of the metric. (defaults to: :func:`channel.contracts.DataPointType.aggregation`)\n count (int). the number of metrics that were aggregated into this data point. (defaults to: None)\n min (float). the minimum of all metrics collected that were aggregated into this data point. (defaults to: None)\n max (float). the maximum of all metrics collected that were aggregated into this data point. (defaults to: None)\n std_dev (float). the standard deviation of all metrics collected that were aggregated into this data point. (defaults to: None)\n properties (dict). the set of custom properties the client wants attached to this data item. (defaults to: None)
[ "Send", "information", "about", "a", "single", "metric", "data", "point", "that", "was", "captured", "for", "the", "application", "." ]
8452ab7126f9bb6964637d4aa1258c2af17563d6
https://github.com/Microsoft/ApplicationInsights-Python/blob/8452ab7126f9bb6964637d4aa1258c2af17563d6/applicationinsights/TelemetryClient.py#L145-L172
train
Microsoft/ApplicationInsights-Python
applicationinsights/TelemetryClient.py
TelemetryClient.track_trace
def track_trace(self, name, properties=None, severity=None): """Sends a single trace statement. Args: name (str). the trace statement.\n properties (dict). the set of custom properties the client wants attached to this data item. (defaults to: None)\n severity (str). the severity level of this trace, one of DEBUG, INFO, WARNING, ERROR, CRITICAL """ data = channel.contracts.MessageData() data.message = name or NULL_CONSTANT_STRING if properties: data.properties = properties if severity is not None: data.severity_level = channel.contracts.MessageData.PYTHON_LOGGING_LEVELS.get(severity) self.track(data, self._context)
python
def track_trace(self, name, properties=None, severity=None): """Sends a single trace statement. Args: name (str). the trace statement.\n properties (dict). the set of custom properties the client wants attached to this data item. (defaults to: None)\n severity (str). the severity level of this trace, one of DEBUG, INFO, WARNING, ERROR, CRITICAL """ data = channel.contracts.MessageData() data.message = name or NULL_CONSTANT_STRING if properties: data.properties = properties if severity is not None: data.severity_level = channel.contracts.MessageData.PYTHON_LOGGING_LEVELS.get(severity) self.track(data, self._context)
[ "def", "track_trace", "(", "self", ",", "name", ",", "properties", "=", "None", ",", "severity", "=", "None", ")", ":", "data", "=", "channel", ".", "contracts", ".", "MessageData", "(", ")", "data", ".", "message", "=", "name", "or", "NULL_CONSTANT_STRING", "if", "properties", ":", "data", ".", "properties", "=", "properties", "if", "severity", "is", "not", "None", ":", "data", ".", "severity_level", "=", "channel", ".", "contracts", ".", "MessageData", ".", "PYTHON_LOGGING_LEVELS", ".", "get", "(", "severity", ")", "self", ".", "track", "(", "data", ",", "self", ".", "_context", ")" ]
Sends a single trace statement. Args: name (str). the trace statement.\n properties (dict). the set of custom properties the client wants attached to this data item. (defaults to: None)\n severity (str). the severity level of this trace, one of DEBUG, INFO, WARNING, ERROR, CRITICAL
[ "Sends", "a", "single", "trace", "statement", "." ]
8452ab7126f9bb6964637d4aa1258c2af17563d6
https://github.com/Microsoft/ApplicationInsights-Python/blob/8452ab7126f9bb6964637d4aa1258c2af17563d6/applicationinsights/TelemetryClient.py#L175-L190
train
Microsoft/ApplicationInsights-Python
applicationinsights/TelemetryClient.py
TelemetryClient.track_request
def track_request(self, name, url, success, start_time=None, duration=None, response_code=None, http_method=None, properties=None, measurements=None, request_id=None): """Sends a single request that was captured for the application. Args: name (str). the name for this request. All requests with the same name will be grouped together.\n url (str). the actual URL for this request (to show in individual request instances).\n success (bool). true if the request ended in success, false otherwise.\n start_time (str). the start time of the request. The value should look the same as the one returned by :func:`datetime.isoformat()` (defaults to: None)\n duration (int). the number of milliseconds that this request lasted. (defaults to: None)\n response_code (str). the response code that this request returned. (defaults to: None)\n http_method (str). the HTTP method that triggered this request. (defaults to: None)\n properties (dict). the set of custom properties the client wants attached to this data item. (defaults to: None)\n measurements (dict). the set of custom measurements the client wants to attach to this data item. (defaults to: None)\n request_id (str). the id for this request. If None, a new uuid will be generated. (defaults to: None) """ data = channel.contracts.RequestData() data.id = request_id or str(uuid.uuid4()) data.name = name data.url = url data.success = success data.start_time = start_time or datetime.datetime.utcnow().isoformat() + 'Z' data.duration = self.__ms_to_duration(duration) data.response_code = str(response_code) or '200' data.http_method = http_method or 'GET' if properties: data.properties = properties if measurements: data.measurements = measurements self.track(data, self._context)
python
def track_request(self, name, url, success, start_time=None, duration=None, response_code=None, http_method=None, properties=None, measurements=None, request_id=None): """Sends a single request that was captured for the application. Args: name (str). the name for this request. All requests with the same name will be grouped together.\n url (str). the actual URL for this request (to show in individual request instances).\n success (bool). true if the request ended in success, false otherwise.\n start_time (str). the start time of the request. The value should look the same as the one returned by :func:`datetime.isoformat()` (defaults to: None)\n duration (int). the number of milliseconds that this request lasted. (defaults to: None)\n response_code (str). the response code that this request returned. (defaults to: None)\n http_method (str). the HTTP method that triggered this request. (defaults to: None)\n properties (dict). the set of custom properties the client wants attached to this data item. (defaults to: None)\n measurements (dict). the set of custom measurements the client wants to attach to this data item. (defaults to: None)\n request_id (str). the id for this request. If None, a new uuid will be generated. (defaults to: None) """ data = channel.contracts.RequestData() data.id = request_id or str(uuid.uuid4()) data.name = name data.url = url data.success = success data.start_time = start_time or datetime.datetime.utcnow().isoformat() + 'Z' data.duration = self.__ms_to_duration(duration) data.response_code = str(response_code) or '200' data.http_method = http_method or 'GET' if properties: data.properties = properties if measurements: data.measurements = measurements self.track(data, self._context)
[ "def", "track_request", "(", "self", ",", "name", ",", "url", ",", "success", ",", "start_time", "=", "None", ",", "duration", "=", "None", ",", "response_code", "=", "None", ",", "http_method", "=", "None", ",", "properties", "=", "None", ",", "measurements", "=", "None", ",", "request_id", "=", "None", ")", ":", "data", "=", "channel", ".", "contracts", ".", "RequestData", "(", ")", "data", ".", "id", "=", "request_id", "or", "str", "(", "uuid", ".", "uuid4", "(", ")", ")", "data", ".", "name", "=", "name", "data", ".", "url", "=", "url", "data", ".", "success", "=", "success", "data", ".", "start_time", "=", "start_time", "or", "datetime", ".", "datetime", ".", "utcnow", "(", ")", ".", "isoformat", "(", ")", "+", "'Z'", "data", ".", "duration", "=", "self", ".", "__ms_to_duration", "(", "duration", ")", "data", ".", "response_code", "=", "str", "(", "response_code", ")", "or", "'200'", "data", ".", "http_method", "=", "http_method", "or", "'GET'", "if", "properties", ":", "data", ".", "properties", "=", "properties", "if", "measurements", ":", "data", ".", "measurements", "=", "measurements", "self", ".", "track", "(", "data", ",", "self", ".", "_context", ")" ]
Sends a single request that was captured for the application. Args: name (str). the name for this request. All requests with the same name will be grouped together.\n url (str). the actual URL for this request (to show in individual request instances).\n success (bool). true if the request ended in success, false otherwise.\n start_time (str). the start time of the request. The value should look the same as the one returned by :func:`datetime.isoformat()` (defaults to: None)\n duration (int). the number of milliseconds that this request lasted. (defaults to: None)\n response_code (str). the response code that this request returned. (defaults to: None)\n http_method (str). the HTTP method that triggered this request. (defaults to: None)\n properties (dict). the set of custom properties the client wants attached to this data item. (defaults to: None)\n measurements (dict). the set of custom measurements the client wants to attach to this data item. (defaults to: None)\n request_id (str). the id for this request. If None, a new uuid will be generated. (defaults to: None)
[ "Sends", "a", "single", "request", "that", "was", "captured", "for", "the", "application", "." ]
8452ab7126f9bb6964637d4aa1258c2af17563d6
https://github.com/Microsoft/ApplicationInsights-Python/blob/8452ab7126f9bb6964637d4aa1258c2af17563d6/applicationinsights/TelemetryClient.py#L193-L222
train
Microsoft/ApplicationInsights-Python
applicationinsights/TelemetryClient.py
TelemetryClient.track_dependency
def track_dependency(self, name, data, type=None, target=None, duration=None, success=None, result_code=None, properties=None, measurements=None, dependency_id=None): """Sends a single dependency telemetry that was captured for the application. Args: name (str). the name of the command initiated with this dependency call. Low cardinality value. Examples are stored procedure name and URL path template.\n data (str). the command initiated by this dependency call. Examples are SQL statement and HTTP URL with all query parameters.\n type (str). the dependency type name. Low cardinality value for logical grouping of dependencies and interpretation of other fields like commandName and resultCode. Examples are SQL, Azure table, and HTTP. (default to: None)\n target (str). the target site of a dependency call. Examples are server name, host address. (default to: None)\n duration (int). the number of milliseconds that this dependency call lasted. (defaults to: None)\n success (bool). true if the dependency call ended in success, false otherwise. (defaults to: None)\n result_code (str). the result code of a dependency call. Examples are SQL error code and HTTP status code. (defaults to: None)\n properties (dict). the set of custom properties the client wants attached to this data item. (defaults to: None)\n measurements (dict). the set of custom measurements the client wants to attach to this data item. (defaults to: None)\n id (str). the id for this dependency call. If None, a new uuid will be generated. (defaults to: None) """ dependency_data = channel.contracts.RemoteDependencyData() dependency_data.id = dependency_id or str(uuid.uuid4()) dependency_data.name = name dependency_data.data = data dependency_data.type = type dependency_data.target = target dependency_data.duration = self.__ms_to_duration(duration) dependency_data.success = success dependency_data.result_code = str(result_code) or '200' if properties: dependency_data.properties = properties if measurements: dependency_data.measurements = measurements self.track(dependency_data, self._context)
python
def track_dependency(self, name, data, type=None, target=None, duration=None, success=None, result_code=None, properties=None, measurements=None, dependency_id=None): """Sends a single dependency telemetry that was captured for the application. Args: name (str). the name of the command initiated with this dependency call. Low cardinality value. Examples are stored procedure name and URL path template.\n data (str). the command initiated by this dependency call. Examples are SQL statement and HTTP URL with all query parameters.\n type (str). the dependency type name. Low cardinality value for logical grouping of dependencies and interpretation of other fields like commandName and resultCode. Examples are SQL, Azure table, and HTTP. (default to: None)\n target (str). the target site of a dependency call. Examples are server name, host address. (default to: None)\n duration (int). the number of milliseconds that this dependency call lasted. (defaults to: None)\n success (bool). true if the dependency call ended in success, false otherwise. (defaults to: None)\n result_code (str). the result code of a dependency call. Examples are SQL error code and HTTP status code. (defaults to: None)\n properties (dict). the set of custom properties the client wants attached to this data item. (defaults to: None)\n measurements (dict). the set of custom measurements the client wants to attach to this data item. (defaults to: None)\n id (str). the id for this dependency call. If None, a new uuid will be generated. (defaults to: None) """ dependency_data = channel.contracts.RemoteDependencyData() dependency_data.id = dependency_id or str(uuid.uuid4()) dependency_data.name = name dependency_data.data = data dependency_data.type = type dependency_data.target = target dependency_data.duration = self.__ms_to_duration(duration) dependency_data.success = success dependency_data.result_code = str(result_code) or '200' if properties: dependency_data.properties = properties if measurements: dependency_data.measurements = measurements self.track(dependency_data, self._context)
[ "def", "track_dependency", "(", "self", ",", "name", ",", "data", ",", "type", "=", "None", ",", "target", "=", "None", ",", "duration", "=", "None", ",", "success", "=", "None", ",", "result_code", "=", "None", ",", "properties", "=", "None", ",", "measurements", "=", "None", ",", "dependency_id", "=", "None", ")", ":", "dependency_data", "=", "channel", ".", "contracts", ".", "RemoteDependencyData", "(", ")", "dependency_data", ".", "id", "=", "dependency_id", "or", "str", "(", "uuid", ".", "uuid4", "(", ")", ")", "dependency_data", ".", "name", "=", "name", "dependency_data", ".", "data", "=", "data", "dependency_data", ".", "type", "=", "type", "dependency_data", ".", "target", "=", "target", "dependency_data", ".", "duration", "=", "self", ".", "__ms_to_duration", "(", "duration", ")", "dependency_data", ".", "success", "=", "success", "dependency_data", ".", "result_code", "=", "str", "(", "result_code", ")", "or", "'200'", "if", "properties", ":", "dependency_data", ".", "properties", "=", "properties", "if", "measurements", ":", "dependency_data", ".", "measurements", "=", "measurements", "self", ".", "track", "(", "dependency_data", ",", "self", ".", "_context", ")" ]
Sends a single dependency telemetry that was captured for the application. Args: name (str). the name of the command initiated with this dependency call. Low cardinality value. Examples are stored procedure name and URL path template.\n data (str). the command initiated by this dependency call. Examples are SQL statement and HTTP URL with all query parameters.\n type (str). the dependency type name. Low cardinality value for logical grouping of dependencies and interpretation of other fields like commandName and resultCode. Examples are SQL, Azure table, and HTTP. (default to: None)\n target (str). the target site of a dependency call. Examples are server name, host address. (default to: None)\n duration (int). the number of milliseconds that this dependency call lasted. (defaults to: None)\n success (bool). true if the dependency call ended in success, false otherwise. (defaults to: None)\n result_code (str). the result code of a dependency call. Examples are SQL error code and HTTP status code. (defaults to: None)\n properties (dict). the set of custom properties the client wants attached to this data item. (defaults to: None)\n measurements (dict). the set of custom measurements the client wants to attach to this data item. (defaults to: None)\n id (str). the id for this dependency call. If None, a new uuid will be generated. (defaults to: None)
[ "Sends", "a", "single", "dependency", "telemetry", "that", "was", "captured", "for", "the", "application", "." ]
8452ab7126f9bb6964637d4aa1258c2af17563d6
https://github.com/Microsoft/ApplicationInsights-Python/blob/8452ab7126f9bb6964637d4aa1258c2af17563d6/applicationinsights/TelemetryClient.py#L224-L253
train
Microsoft/ApplicationInsights-Python
applicationinsights/django/common.py
dummy_client
def dummy_client(reason): """Creates a dummy channel so even if we're not logging telemetry, we can still send along the real object to things that depend on it to exist""" sender = applicationinsights.channel.NullSender() queue = applicationinsights.channel.SynchronousQueue(sender) channel = applicationinsights.channel.TelemetryChannel(None, queue) return applicationinsights.TelemetryClient("00000000-0000-0000-0000-000000000000", channel)
python
def dummy_client(reason): """Creates a dummy channel so even if we're not logging telemetry, we can still send along the real object to things that depend on it to exist""" sender = applicationinsights.channel.NullSender() queue = applicationinsights.channel.SynchronousQueue(sender) channel = applicationinsights.channel.TelemetryChannel(None, queue) return applicationinsights.TelemetryClient("00000000-0000-0000-0000-000000000000", channel)
[ "def", "dummy_client", "(", "reason", ")", ":", "sender", "=", "applicationinsights", ".", "channel", ".", "NullSender", "(", ")", "queue", "=", "applicationinsights", ".", "channel", ".", "SynchronousQueue", "(", "sender", ")", "channel", "=", "applicationinsights", ".", "channel", ".", "TelemetryChannel", "(", "None", ",", "queue", ")", "return", "applicationinsights", ".", "TelemetryClient", "(", "\"00000000-0000-0000-0000-000000000000\"", ",", "channel", ")" ]
Creates a dummy channel so even if we're not logging telemetry, we can still send along the real object to things that depend on it to exist
[ "Creates", "a", "dummy", "channel", "so", "even", "if", "we", "re", "not", "logging", "telemetry", "we", "can", "still", "send", "along", "the", "real", "object", "to", "things", "that", "depend", "on", "it", "to", "exist" ]
8452ab7126f9bb6964637d4aa1258c2af17563d6
https://github.com/Microsoft/ApplicationInsights-Python/blob/8452ab7126f9bb6964637d4aa1258c2af17563d6/applicationinsights/django/common.py#L75-L82
train
Microsoft/ApplicationInsights-Python
applicationinsights/exceptions/enable.py
enable
def enable(instrumentation_key, *args, **kwargs): """Enables the automatic collection of unhandled exceptions. Captured exceptions will be sent to the Application Insights service before being re-thrown. Multiple calls to this function with different instrumentation keys result in multiple instances being submitted, one for each key. .. code:: python from applicationinsights.exceptions import enable # set up exception capture enable('<YOUR INSTRUMENTATION KEY GOES HERE>') # raise an exception (this will be sent to the Application Insights service as an exception telemetry object) raise Exception('Boom!') Args: instrumentation_key (str). the instrumentation key to use while sending telemetry to the service. """ if not instrumentation_key: raise Exception('Instrumentation key was required but not provided') global original_excepthook global telemetry_channel telemetry_channel = kwargs.get('telemetry_channel') if not original_excepthook: original_excepthook = sys.excepthook sys.excepthook = intercept_excepthook if instrumentation_key not in enabled_instrumentation_keys: enabled_instrumentation_keys.append(instrumentation_key)
python
def enable(instrumentation_key, *args, **kwargs): """Enables the automatic collection of unhandled exceptions. Captured exceptions will be sent to the Application Insights service before being re-thrown. Multiple calls to this function with different instrumentation keys result in multiple instances being submitted, one for each key. .. code:: python from applicationinsights.exceptions import enable # set up exception capture enable('<YOUR INSTRUMENTATION KEY GOES HERE>') # raise an exception (this will be sent to the Application Insights service as an exception telemetry object) raise Exception('Boom!') Args: instrumentation_key (str). the instrumentation key to use while sending telemetry to the service. """ if not instrumentation_key: raise Exception('Instrumentation key was required but not provided') global original_excepthook global telemetry_channel telemetry_channel = kwargs.get('telemetry_channel') if not original_excepthook: original_excepthook = sys.excepthook sys.excepthook = intercept_excepthook if instrumentation_key not in enabled_instrumentation_keys: enabled_instrumentation_keys.append(instrumentation_key)
[ "def", "enable", "(", "instrumentation_key", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "not", "instrumentation_key", ":", "raise", "Exception", "(", "'Instrumentation key was required but not provided'", ")", "global", "original_excepthook", "global", "telemetry_channel", "telemetry_channel", "=", "kwargs", ".", "get", "(", "'telemetry_channel'", ")", "if", "not", "original_excepthook", ":", "original_excepthook", "=", "sys", ".", "excepthook", "sys", ".", "excepthook", "=", "intercept_excepthook", "if", "instrumentation_key", "not", "in", "enabled_instrumentation_keys", ":", "enabled_instrumentation_keys", ".", "append", "(", "instrumentation_key", ")" ]
Enables the automatic collection of unhandled exceptions. Captured exceptions will be sent to the Application Insights service before being re-thrown. Multiple calls to this function with different instrumentation keys result in multiple instances being submitted, one for each key. .. code:: python from applicationinsights.exceptions import enable # set up exception capture enable('<YOUR INSTRUMENTATION KEY GOES HERE>') # raise an exception (this will be sent to the Application Insights service as an exception telemetry object) raise Exception('Boom!') Args: instrumentation_key (str). the instrumentation key to use while sending telemetry to the service.
[ "Enables", "the", "automatic", "collection", "of", "unhandled", "exceptions", ".", "Captured", "exceptions", "will", "be", "sent", "to", "the", "Application", "Insights", "service", "before", "being", "re", "-", "thrown", ".", "Multiple", "calls", "to", "this", "function", "with", "different", "instrumentation", "keys", "result", "in", "multiple", "instances", "being", "submitted", "one", "for", "each", "key", "." ]
8452ab7126f9bb6964637d4aa1258c2af17563d6
https://github.com/Microsoft/ApplicationInsights-Python/blob/8452ab7126f9bb6964637d4aa1258c2af17563d6/applicationinsights/exceptions/enable.py#L8-L35
train
Microsoft/ApplicationInsights-Python
applicationinsights/flask/ext.py
AppInsights.init_app
def init_app(self, app): """ Initializes the extension for the provided Flask application. Args: app (flask.Flask). the Flask application for which to initialize the extension. """ self._key = app.config.get(CONF_KEY) or getenv(CONF_KEY) if not self._key: return self._endpoint_uri = app.config.get(CONF_ENDPOINT_URI) sender = AsynchronousSender(self._endpoint_uri) queue = AsynchronousQueue(sender) self._channel = TelemetryChannel(None, queue) self._init_request_logging(app) self._init_trace_logging(app) self._init_exception_logging(app)
python
def init_app(self, app): """ Initializes the extension for the provided Flask application. Args: app (flask.Flask). the Flask application for which to initialize the extension. """ self._key = app.config.get(CONF_KEY) or getenv(CONF_KEY) if not self._key: return self._endpoint_uri = app.config.get(CONF_ENDPOINT_URI) sender = AsynchronousSender(self._endpoint_uri) queue = AsynchronousQueue(sender) self._channel = TelemetryChannel(None, queue) self._init_request_logging(app) self._init_trace_logging(app) self._init_exception_logging(app)
[ "def", "init_app", "(", "self", ",", "app", ")", ":", "self", ".", "_key", "=", "app", ".", "config", ".", "get", "(", "CONF_KEY", ")", "or", "getenv", "(", "CONF_KEY", ")", "if", "not", "self", ".", "_key", ":", "return", "self", ".", "_endpoint_uri", "=", "app", ".", "config", ".", "get", "(", "CONF_ENDPOINT_URI", ")", "sender", "=", "AsynchronousSender", "(", "self", ".", "_endpoint_uri", ")", "queue", "=", "AsynchronousQueue", "(", "sender", ")", "self", ".", "_channel", "=", "TelemetryChannel", "(", "None", ",", "queue", ")", "self", ".", "_init_request_logging", "(", "app", ")", "self", ".", "_init_trace_logging", "(", "app", ")", "self", ".", "_init_exception_logging", "(", "app", ")" ]
Initializes the extension for the provided Flask application. Args: app (flask.Flask). the Flask application for which to initialize the extension.
[ "Initializes", "the", "extension", "for", "the", "provided", "Flask", "application", "." ]
8452ab7126f9bb6964637d4aa1258c2af17563d6
https://github.com/Microsoft/ApplicationInsights-Python/blob/8452ab7126f9bb6964637d4aa1258c2af17563d6/applicationinsights/flask/ext.py#L87-L107
train
Microsoft/ApplicationInsights-Python
applicationinsights/flask/ext.py
AppInsights._init_request_logging
def _init_request_logging(self, app): """ Sets up request logging unless ``APPINSIGHTS_DISABLE_REQUEST_LOGGING`` is set in the Flask config. Args: app (flask.Flask). the Flask application for which to initialize the extension. """ enabled = not app.config.get(CONF_DISABLE_REQUEST_LOGGING, False) if not enabled: return self._requests_middleware = WSGIApplication( self._key, app.wsgi_app, telemetry_channel=self._channel) app.wsgi_app = self._requests_middleware
python
def _init_request_logging(self, app): """ Sets up request logging unless ``APPINSIGHTS_DISABLE_REQUEST_LOGGING`` is set in the Flask config. Args: app (flask.Flask). the Flask application for which to initialize the extension. """ enabled = not app.config.get(CONF_DISABLE_REQUEST_LOGGING, False) if not enabled: return self._requests_middleware = WSGIApplication( self._key, app.wsgi_app, telemetry_channel=self._channel) app.wsgi_app = self._requests_middleware
[ "def", "_init_request_logging", "(", "self", ",", "app", ")", ":", "enabled", "=", "not", "app", ".", "config", ".", "get", "(", "CONF_DISABLE_REQUEST_LOGGING", ",", "False", ")", "if", "not", "enabled", ":", "return", "self", ".", "_requests_middleware", "=", "WSGIApplication", "(", "self", ".", "_key", ",", "app", ".", "wsgi_app", ",", "telemetry_channel", "=", "self", ".", "_channel", ")", "app", ".", "wsgi_app", "=", "self", ".", "_requests_middleware" ]
Sets up request logging unless ``APPINSIGHTS_DISABLE_REQUEST_LOGGING`` is set in the Flask config. Args: app (flask.Flask). the Flask application for which to initialize the extension.
[ "Sets", "up", "request", "logging", "unless", "APPINSIGHTS_DISABLE_REQUEST_LOGGING", "is", "set", "in", "the", "Flask", "config", "." ]
8452ab7126f9bb6964637d4aa1258c2af17563d6
https://github.com/Microsoft/ApplicationInsights-Python/blob/8452ab7126f9bb6964637d4aa1258c2af17563d6/applicationinsights/flask/ext.py#L119-L135
train
Microsoft/ApplicationInsights-Python
applicationinsights/flask/ext.py
AppInsights._init_trace_logging
def _init_trace_logging(self, app): """ Sets up trace logging unless ``APPINSIGHTS_DISABLE_TRACE_LOGGING`` is set in the Flask config. Args: app (flask.Flask). the Flask application for which to initialize the extension. """ enabled = not app.config.get(CONF_DISABLE_TRACE_LOGGING, False) if not enabled: return self._trace_log_handler = LoggingHandler( self._key, telemetry_channel=self._channel) app.logger.addHandler(self._trace_log_handler)
python
def _init_trace_logging(self, app): """ Sets up trace logging unless ``APPINSIGHTS_DISABLE_TRACE_LOGGING`` is set in the Flask config. Args: app (flask.Flask). the Flask application for which to initialize the extension. """ enabled = not app.config.get(CONF_DISABLE_TRACE_LOGGING, False) if not enabled: return self._trace_log_handler = LoggingHandler( self._key, telemetry_channel=self._channel) app.logger.addHandler(self._trace_log_handler)
[ "def", "_init_trace_logging", "(", "self", ",", "app", ")", ":", "enabled", "=", "not", "app", ".", "config", ".", "get", "(", "CONF_DISABLE_TRACE_LOGGING", ",", "False", ")", "if", "not", "enabled", ":", "return", "self", ".", "_trace_log_handler", "=", "LoggingHandler", "(", "self", ".", "_key", ",", "telemetry_channel", "=", "self", ".", "_channel", ")", "app", ".", "logger", ".", "addHandler", "(", "self", ".", "_trace_log_handler", ")" ]
Sets up trace logging unless ``APPINSIGHTS_DISABLE_TRACE_LOGGING`` is set in the Flask config. Args: app (flask.Flask). the Flask application for which to initialize the extension.
[ "Sets", "up", "trace", "logging", "unless", "APPINSIGHTS_DISABLE_TRACE_LOGGING", "is", "set", "in", "the", "Flask", "config", "." ]
8452ab7126f9bb6964637d4aa1258c2af17563d6
https://github.com/Microsoft/ApplicationInsights-Python/blob/8452ab7126f9bb6964637d4aa1258c2af17563d6/applicationinsights/flask/ext.py#L137-L153
train
Microsoft/ApplicationInsights-Python
applicationinsights/flask/ext.py
AppInsights._init_exception_logging
def _init_exception_logging(self, app): """ Sets up exception logging unless ``APPINSIGHTS_DISABLE_EXCEPTION_LOGGING`` is set in the Flask config. Args: app (flask.Flask). the Flask application for which to initialize the extension. """ enabled = not app.config.get(CONF_DISABLE_EXCEPTION_LOGGING, False) if not enabled: return exception_telemetry_client = TelemetryClient( self._key, telemetry_channel=self._channel) @app.errorhandler(Exception) def exception_handler(exception): if HTTPException and isinstance(exception, HTTPException): return exception try: raise exception except Exception: exception_telemetry_client.track_exception() finally: raise exception self._exception_telemetry_client = exception_telemetry_client
python
def _init_exception_logging(self, app): """ Sets up exception logging unless ``APPINSIGHTS_DISABLE_EXCEPTION_LOGGING`` is set in the Flask config. Args: app (flask.Flask). the Flask application for which to initialize the extension. """ enabled = not app.config.get(CONF_DISABLE_EXCEPTION_LOGGING, False) if not enabled: return exception_telemetry_client = TelemetryClient( self._key, telemetry_channel=self._channel) @app.errorhandler(Exception) def exception_handler(exception): if HTTPException and isinstance(exception, HTTPException): return exception try: raise exception except Exception: exception_telemetry_client.track_exception() finally: raise exception self._exception_telemetry_client = exception_telemetry_client
[ "def", "_init_exception_logging", "(", "self", ",", "app", ")", ":", "enabled", "=", "not", "app", ".", "config", ".", "get", "(", "CONF_DISABLE_EXCEPTION_LOGGING", ",", "False", ")", "if", "not", "enabled", ":", "return", "exception_telemetry_client", "=", "TelemetryClient", "(", "self", ".", "_key", ",", "telemetry_channel", "=", "self", ".", "_channel", ")", "@", "app", ".", "errorhandler", "(", "Exception", ")", "def", "exception_handler", "(", "exception", ")", ":", "if", "HTTPException", "and", "isinstance", "(", "exception", ",", "HTTPException", ")", ":", "return", "exception", "try", ":", "raise", "exception", "except", "Exception", ":", "exception_telemetry_client", ".", "track_exception", "(", ")", "finally", ":", "raise", "exception", "self", ".", "_exception_telemetry_client", "=", "exception_telemetry_client" ]
Sets up exception logging unless ``APPINSIGHTS_DISABLE_EXCEPTION_LOGGING`` is set in the Flask config. Args: app (flask.Flask). the Flask application for which to initialize the extension.
[ "Sets", "up", "exception", "logging", "unless", "APPINSIGHTS_DISABLE_EXCEPTION_LOGGING", "is", "set", "in", "the", "Flask", "config", "." ]
8452ab7126f9bb6964637d4aa1258c2af17563d6
https://github.com/Microsoft/ApplicationInsights-Python/blob/8452ab7126f9bb6964637d4aa1258c2af17563d6/applicationinsights/flask/ext.py#L155-L183
train
Microsoft/ApplicationInsights-Python
applicationinsights/flask/ext.py
AppInsights.flush
def flush(self): """Flushes the queued up telemetry to the service. """ if self._requests_middleware: self._requests_middleware.flush() if self._trace_log_handler: self._trace_log_handler.flush() if self._exception_telemetry_client: self._exception_telemetry_client.flush()
python
def flush(self): """Flushes the queued up telemetry to the service. """ if self._requests_middleware: self._requests_middleware.flush() if self._trace_log_handler: self._trace_log_handler.flush() if self._exception_telemetry_client: self._exception_telemetry_client.flush()
[ "def", "flush", "(", "self", ")", ":", "if", "self", ".", "_requests_middleware", ":", "self", ".", "_requests_middleware", ".", "flush", "(", ")", "if", "self", ".", "_trace_log_handler", ":", "self", ".", "_trace_log_handler", ".", "flush", "(", ")", "if", "self", ".", "_exception_telemetry_client", ":", "self", ".", "_exception_telemetry_client", ".", "flush", "(", ")" ]
Flushes the queued up telemetry to the service.
[ "Flushes", "the", "queued", "up", "telemetry", "to", "the", "service", "." ]
8452ab7126f9bb6964637d4aa1258c2af17563d6
https://github.com/Microsoft/ApplicationInsights-Python/blob/8452ab7126f9bb6964637d4aa1258c2af17563d6/applicationinsights/flask/ext.py#L185-L195
train
Microsoft/ApplicationInsights-Python
applicationinsights/channel/QueueBase.py
QueueBase.get
def get(self): """Gets a single item from the queue and returns it. If the queue is empty, this method will return None. Returns: :class:`contracts.Envelope`. a telemetry envelope object or None if the queue is empty. """ try: item = self._queue.get_nowait() except (Empty, PersistEmpty): return None if self._persistence_path: self._queue.task_done() return item
python
def get(self): """Gets a single item from the queue and returns it. If the queue is empty, this method will return None. Returns: :class:`contracts.Envelope`. a telemetry envelope object or None if the queue is empty. """ try: item = self._queue.get_nowait() except (Empty, PersistEmpty): return None if self._persistence_path: self._queue.task_done() return item
[ "def", "get", "(", "self", ")", ":", "try", ":", "item", "=", "self", ".", "_queue", ".", "get_nowait", "(", ")", "except", "(", "Empty", ",", "PersistEmpty", ")", ":", "return", "None", "if", "self", ".", "_persistence_path", ":", "self", ".", "_queue", ".", "task_done", "(", ")", "return", "item" ]
Gets a single item from the queue and returns it. If the queue is empty, this method will return None. Returns: :class:`contracts.Envelope`. a telemetry envelope object or None if the queue is empty.
[ "Gets", "a", "single", "item", "from", "the", "queue", "and", "returns", "it", ".", "If", "the", "queue", "is", "empty", "this", "method", "will", "return", "None", "." ]
8452ab7126f9bb6964637d4aa1258c2af17563d6
https://github.com/Microsoft/ApplicationInsights-Python/blob/8452ab7126f9bb6964637d4aa1258c2af17563d6/applicationinsights/channel/QueueBase.py#L92-L106
train
Microsoft/ApplicationInsights-Python
applicationinsights/logging/LoggingHandler.py
enable
def enable(instrumentation_key, *args, **kwargs): """Enables the Application Insights logging handler for the root logger for the supplied instrumentation key. Multiple calls to this function with different instrumentation keys result in multiple handler instances. .. code:: python import logging from applicationinsights.logging import enable # set up logging enable('<YOUR INSTRUMENTATION KEY GOES HERE>') # log something (this will be sent to the Application Insights service as a trace) logging.info('This is a message') # logging shutdown will cause a flush of all un-sent telemetry items # alternatively set up an async channel via enable('<YOUR INSTRUMENTATION KEY GOES HERE>', async_=True) Args: instrumentation_key (str). the instrumentation key to use while sending telemetry to the service. Keyword Args: async_ (bool): Whether to use an async channel for the telemetry. Defaults to False. endpoint (str): The custom endpoint to which to send the telemetry. Defaults to None. level (Union[int, str]): The level to set for the logger. Defaults to INFO. Returns: :class:`ApplicationInsightsHandler`. the newly created or existing handler. """ if not instrumentation_key: raise Exception('Instrumentation key was required but not provided') if instrumentation_key in enabled_instrumentation_keys: logging.getLogger().removeHandler(enabled_instrumentation_keys[instrumentation_key]) async_ = kwargs.pop('async_', False) endpoint = kwargs.pop('endpoint', None) telemetry_channel = kwargs.get('telemetry_channel') if telemetry_channel and async_: raise Exception('Incompatible arguments async_ and telemetry_channel') if telemetry_channel and endpoint: raise Exception('Incompatible arguments endpoint and telemetry_channel') if not telemetry_channel: if async_: sender, queue = AsynchronousSender, AsynchronousQueue else: sender, queue = SynchronousSender, SynchronousQueue kwargs['telemetry_channel'] = TelemetryChannel(queue=queue(sender(endpoint))) log_level = kwargs.pop('level', logging.INFO) handler = LoggingHandler(instrumentation_key, *args, **kwargs) handler.setLevel(log_level) enabled_instrumentation_keys[instrumentation_key] = handler logging.getLogger().addHandler(handler) return handler
python
def enable(instrumentation_key, *args, **kwargs): """Enables the Application Insights logging handler for the root logger for the supplied instrumentation key. Multiple calls to this function with different instrumentation keys result in multiple handler instances. .. code:: python import logging from applicationinsights.logging import enable # set up logging enable('<YOUR INSTRUMENTATION KEY GOES HERE>') # log something (this will be sent to the Application Insights service as a trace) logging.info('This is a message') # logging shutdown will cause a flush of all un-sent telemetry items # alternatively set up an async channel via enable('<YOUR INSTRUMENTATION KEY GOES HERE>', async_=True) Args: instrumentation_key (str). the instrumentation key to use while sending telemetry to the service. Keyword Args: async_ (bool): Whether to use an async channel for the telemetry. Defaults to False. endpoint (str): The custom endpoint to which to send the telemetry. Defaults to None. level (Union[int, str]): The level to set for the logger. Defaults to INFO. Returns: :class:`ApplicationInsightsHandler`. the newly created or existing handler. """ if not instrumentation_key: raise Exception('Instrumentation key was required but not provided') if instrumentation_key in enabled_instrumentation_keys: logging.getLogger().removeHandler(enabled_instrumentation_keys[instrumentation_key]) async_ = kwargs.pop('async_', False) endpoint = kwargs.pop('endpoint', None) telemetry_channel = kwargs.get('telemetry_channel') if telemetry_channel and async_: raise Exception('Incompatible arguments async_ and telemetry_channel') if telemetry_channel and endpoint: raise Exception('Incompatible arguments endpoint and telemetry_channel') if not telemetry_channel: if async_: sender, queue = AsynchronousSender, AsynchronousQueue else: sender, queue = SynchronousSender, SynchronousQueue kwargs['telemetry_channel'] = TelemetryChannel(queue=queue(sender(endpoint))) log_level = kwargs.pop('level', logging.INFO) handler = LoggingHandler(instrumentation_key, *args, **kwargs) handler.setLevel(log_level) enabled_instrumentation_keys[instrumentation_key] = handler logging.getLogger().addHandler(handler) return handler
[ "def", "enable", "(", "instrumentation_key", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "not", "instrumentation_key", ":", "raise", "Exception", "(", "'Instrumentation key was required but not provided'", ")", "if", "instrumentation_key", "in", "enabled_instrumentation_keys", ":", "logging", ".", "getLogger", "(", ")", ".", "removeHandler", "(", "enabled_instrumentation_keys", "[", "instrumentation_key", "]", ")", "async_", "=", "kwargs", ".", "pop", "(", "'async_'", ",", "False", ")", "endpoint", "=", "kwargs", ".", "pop", "(", "'endpoint'", ",", "None", ")", "telemetry_channel", "=", "kwargs", ".", "get", "(", "'telemetry_channel'", ")", "if", "telemetry_channel", "and", "async_", ":", "raise", "Exception", "(", "'Incompatible arguments async_ and telemetry_channel'", ")", "if", "telemetry_channel", "and", "endpoint", ":", "raise", "Exception", "(", "'Incompatible arguments endpoint and telemetry_channel'", ")", "if", "not", "telemetry_channel", ":", "if", "async_", ":", "sender", ",", "queue", "=", "AsynchronousSender", ",", "AsynchronousQueue", "else", ":", "sender", ",", "queue", "=", "SynchronousSender", ",", "SynchronousQueue", "kwargs", "[", "'telemetry_channel'", "]", "=", "TelemetryChannel", "(", "queue", "=", "queue", "(", "sender", "(", "endpoint", ")", ")", ")", "log_level", "=", "kwargs", ".", "pop", "(", "'level'", ",", "logging", ".", "INFO", ")", "handler", "=", "LoggingHandler", "(", "instrumentation_key", ",", "*", "args", ",", "*", "*", "kwargs", ")", "handler", ".", "setLevel", "(", "log_level", ")", "enabled_instrumentation_keys", "[", "instrumentation_key", "]", "=", "handler", "logging", ".", "getLogger", "(", ")", ".", "addHandler", "(", "handler", ")", "return", "handler" ]
Enables the Application Insights logging handler for the root logger for the supplied instrumentation key. Multiple calls to this function with different instrumentation keys result in multiple handler instances. .. code:: python import logging from applicationinsights.logging import enable # set up logging enable('<YOUR INSTRUMENTATION KEY GOES HERE>') # log something (this will be sent to the Application Insights service as a trace) logging.info('This is a message') # logging shutdown will cause a flush of all un-sent telemetry items # alternatively set up an async channel via enable('<YOUR INSTRUMENTATION KEY GOES HERE>', async_=True) Args: instrumentation_key (str). the instrumentation key to use while sending telemetry to the service. Keyword Args: async_ (bool): Whether to use an async channel for the telemetry. Defaults to False. endpoint (str): The custom endpoint to which to send the telemetry. Defaults to None. level (Union[int, str]): The level to set for the logger. Defaults to INFO. Returns: :class:`ApplicationInsightsHandler`. the newly created or existing handler.
[ "Enables", "the", "Application", "Insights", "logging", "handler", "for", "the", "root", "logger", "for", "the", "supplied", "instrumentation", "key", ".", "Multiple", "calls", "to", "this", "function", "with", "different", "instrumentation", "keys", "result", "in", "multiple", "handler", "instances", "." ]
8452ab7126f9bb6964637d4aa1258c2af17563d6
https://github.com/Microsoft/ApplicationInsights-Python/blob/8452ab7126f9bb6964637d4aa1258c2af17563d6/applicationinsights/logging/LoggingHandler.py#L10-L61
train
Microsoft/ApplicationInsights-Python
applicationinsights/channel/AsynchronousSender.py
AsynchronousSender.start
def start(self): """Starts a new sender thread if none is not already there """ with self._lock_send_remaining_time: if self._send_remaining_time <= 0.0: local_send_interval = self._send_interval if self._send_interval < 0.1: local_send_interval = 0.1 self._send_remaining_time = self._send_time if self._send_remaining_time < local_send_interval: self._send_remaining_time = local_send_interval thread = Thread(target=self._run) thread.daemon = True thread.start()
python
def start(self): """Starts a new sender thread if none is not already there """ with self._lock_send_remaining_time: if self._send_remaining_time <= 0.0: local_send_interval = self._send_interval if self._send_interval < 0.1: local_send_interval = 0.1 self._send_remaining_time = self._send_time if self._send_remaining_time < local_send_interval: self._send_remaining_time = local_send_interval thread = Thread(target=self._run) thread.daemon = True thread.start()
[ "def", "start", "(", "self", ")", ":", "with", "self", ".", "_lock_send_remaining_time", ":", "if", "self", ".", "_send_remaining_time", "<=", "0.0", ":", "local_send_interval", "=", "self", ".", "_send_interval", "if", "self", ".", "_send_interval", "<", "0.1", ":", "local_send_interval", "=", "0.1", "self", ".", "_send_remaining_time", "=", "self", ".", "_send_time", "if", "self", ".", "_send_remaining_time", "<", "local_send_interval", ":", "self", ".", "_send_remaining_time", "=", "local_send_interval", "thread", "=", "Thread", "(", "target", "=", "self", ".", "_run", ")", "thread", ".", "daemon", "=", "True", "thread", ".", "start", "(", ")" ]
Starts a new sender thread if none is not already there
[ "Starts", "a", "new", "sender", "thread", "if", "none", "is", "not", "already", "there" ]
8452ab7126f9bb6964637d4aa1258c2af17563d6
https://github.com/Microsoft/ApplicationInsights-Python/blob/8452ab7126f9bb6964637d4aa1258c2af17563d6/applicationinsights/channel/AsynchronousSender.py#L76-L89
train
Microsoft/ApplicationInsights-Python
applicationinsights/channel/TelemetryContext.py
device_initialize
def device_initialize(self): """ The device initializer used to assign special properties to all device context objects""" existing_device_initialize(self) self.type = 'Other' self.id = platform.node() self.os_version = platform.version() self.locale = locale.getdefaultlocale()[0]
python
def device_initialize(self): """ The device initializer used to assign special properties to all device context objects""" existing_device_initialize(self) self.type = 'Other' self.id = platform.node() self.os_version = platform.version() self.locale = locale.getdefaultlocale()[0]
[ "def", "device_initialize", "(", "self", ")", ":", "existing_device_initialize", "(", "self", ")", "self", ".", "type", "=", "'Other'", "self", ".", "id", "=", "platform", ".", "node", "(", ")", "self", ".", "os_version", "=", "platform", ".", "version", "(", ")", "self", ".", "locale", "=", "locale", ".", "getdefaultlocale", "(", ")", "[", "0", "]" ]
The device initializer used to assign special properties to all device context objects
[ "The", "device", "initializer", "used", "to", "assign", "special", "properties", "to", "all", "device", "context", "objects" ]
8452ab7126f9bb6964637d4aa1258c2af17563d6
https://github.com/Microsoft/ApplicationInsights-Python/blob/8452ab7126f9bb6964637d4aa1258c2af17563d6/applicationinsights/channel/TelemetryContext.py#L8-L14
train
hyperledger/indy-crypto
wrappers/python/indy_crypto/bls.py
Bls.sign
def sign(message: bytes, sign_key: SignKey) -> Signature: """ Signs the message and returns signature. :param: message - Message to sign :param: sign_key - Sign key :return: Signature """ logger = logging.getLogger(__name__) logger.debug("Bls::sign: >>> message: %r, sign_key: %r", message, sign_key) c_instance = c_void_p() do_call('indy_crypto_bls_sign', message, len(message), sign_key.c_instance, byref(c_instance)) res = Signature(c_instance) logger.debug("Bls::sign: <<< res: %r", res) return res
python
def sign(message: bytes, sign_key: SignKey) -> Signature: """ Signs the message and returns signature. :param: message - Message to sign :param: sign_key - Sign key :return: Signature """ logger = logging.getLogger(__name__) logger.debug("Bls::sign: >>> message: %r, sign_key: %r", message, sign_key) c_instance = c_void_p() do_call('indy_crypto_bls_sign', message, len(message), sign_key.c_instance, byref(c_instance)) res = Signature(c_instance) logger.debug("Bls::sign: <<< res: %r", res) return res
[ "def", "sign", "(", "message", ":", "bytes", ",", "sign_key", ":", "SignKey", ")", "->", "Signature", ":", "logger", "=", "logging", ".", "getLogger", "(", "__name__", ")", "logger", ".", "debug", "(", "\"Bls::sign: >>> message: %r, sign_key: %r\"", ",", "message", ",", "sign_key", ")", "c_instance", "=", "c_void_p", "(", ")", "do_call", "(", "'indy_crypto_bls_sign'", ",", "message", ",", "len", "(", "message", ")", ",", "sign_key", ".", "c_instance", ",", "byref", "(", "c_instance", ")", ")", "res", "=", "Signature", "(", "c_instance", ")", "logger", ".", "debug", "(", "\"Bls::sign: <<< res: %r\"", ",", "res", ")", "return", "res" ]
Signs the message and returns signature. :param: message - Message to sign :param: sign_key - Sign key :return: Signature
[ "Signs", "the", "message", "and", "returns", "signature", "." ]
1675e29a2a5949b44899553d3d128335cf7a61b3
https://github.com/hyperledger/indy-crypto/blob/1675e29a2a5949b44899553d3d128335cf7a61b3/wrappers/python/indy_crypto/bls.py#L229-L250
train
hyperledger/indy-crypto
wrappers/python/indy_crypto/bls.py
Bls.verify
def verify(signature: Signature, message: bytes, ver_key: VerKey, gen: Generator) -> bool: """ Verifies the message signature and returns true - if signature valid or false otherwise. :param: signature - Signature to verify :param: message - Message to verify :param: ver_key - Verification key :param: gen - Generator point :return: true if signature valid """ logger = logging.getLogger(__name__) logger.debug("Bls::verify: >>> signature: %r, message: %r, ver_key: %r, gen: %r", signature, message, ver_key, gen) valid = c_bool() do_call('indy_crypto_bsl_verify', signature.c_instance, message, len(message), ver_key.c_instance, gen.c_instance, byref(valid)) res = valid logger.debug("Bls::verify: <<< res: %r", res) return res
python
def verify(signature: Signature, message: bytes, ver_key: VerKey, gen: Generator) -> bool: """ Verifies the message signature and returns true - if signature valid or false otherwise. :param: signature - Signature to verify :param: message - Message to verify :param: ver_key - Verification key :param: gen - Generator point :return: true if signature valid """ logger = logging.getLogger(__name__) logger.debug("Bls::verify: >>> signature: %r, message: %r, ver_key: %r, gen: %r", signature, message, ver_key, gen) valid = c_bool() do_call('indy_crypto_bsl_verify', signature.c_instance, message, len(message), ver_key.c_instance, gen.c_instance, byref(valid)) res = valid logger.debug("Bls::verify: <<< res: %r", res) return res
[ "def", "verify", "(", "signature", ":", "Signature", ",", "message", ":", "bytes", ",", "ver_key", ":", "VerKey", ",", "gen", ":", "Generator", ")", "->", "bool", ":", "logger", "=", "logging", ".", "getLogger", "(", "__name__", ")", "logger", ".", "debug", "(", "\"Bls::verify: >>> signature: %r, message: %r, ver_key: %r, gen: %r\"", ",", "signature", ",", "message", ",", "ver_key", ",", "gen", ")", "valid", "=", "c_bool", "(", ")", "do_call", "(", "'indy_crypto_bsl_verify'", ",", "signature", ".", "c_instance", ",", "message", ",", "len", "(", "message", ")", ",", "ver_key", ".", "c_instance", ",", "gen", ".", "c_instance", ",", "byref", "(", "valid", ")", ")", "res", "=", "valid", "logger", ".", "debug", "(", "\"Bls::verify: <<< res: %r\"", ",", "res", ")", "return", "res" ]
Verifies the message signature and returns true - if signature valid or false otherwise. :param: signature - Signature to verify :param: message - Message to verify :param: ver_key - Verification key :param: gen - Generator point :return: true if signature valid
[ "Verifies", "the", "message", "signature", "and", "returns", "true", "-", "if", "signature", "valid", "or", "false", "otherwise", "." ]
1675e29a2a5949b44899553d3d128335cf7a61b3
https://github.com/hyperledger/indy-crypto/blob/1675e29a2a5949b44899553d3d128335cf7a61b3/wrappers/python/indy_crypto/bls.py#L253-L278
train
hyperledger/indy-crypto
wrappers/python/indy_crypto/bls.py
Bls.verify_pop
def verify_pop(pop: ProofOfPossession, ver_key: VerKey, gen: Generator) -> bool: """ Verifies the proof of possession and returns true - if signature valid or false otherwise. :param: pop - Proof of possession :param: ver_key - Verification key :param: gen - Generator point :return: true if signature valid """ logger = logging.getLogger(__name__) logger.debug("Bls::verify_pop: >>> pop: %r, ver_key: %r, gen: %r", pop, ver_key, gen) valid = c_bool() do_call('indy_crypto_bsl_verify_pop', pop.c_instance, ver_key.c_instance, gen.c_instance, byref(valid)) res = valid logger.debug("Bls::verify_pop: <<< res: %r", res) return res
python
def verify_pop(pop: ProofOfPossession, ver_key: VerKey, gen: Generator) -> bool: """ Verifies the proof of possession and returns true - if signature valid or false otherwise. :param: pop - Proof of possession :param: ver_key - Verification key :param: gen - Generator point :return: true if signature valid """ logger = logging.getLogger(__name__) logger.debug("Bls::verify_pop: >>> pop: %r, ver_key: %r, gen: %r", pop, ver_key, gen) valid = c_bool() do_call('indy_crypto_bsl_verify_pop', pop.c_instance, ver_key.c_instance, gen.c_instance, byref(valid)) res = valid logger.debug("Bls::verify_pop: <<< res: %r", res) return res
[ "def", "verify_pop", "(", "pop", ":", "ProofOfPossession", ",", "ver_key", ":", "VerKey", ",", "gen", ":", "Generator", ")", "->", "bool", ":", "logger", "=", "logging", ".", "getLogger", "(", "__name__", ")", "logger", ".", "debug", "(", "\"Bls::verify_pop: >>> pop: %r, ver_key: %r, gen: %r\"", ",", "pop", ",", "ver_key", ",", "gen", ")", "valid", "=", "c_bool", "(", ")", "do_call", "(", "'indy_crypto_bsl_verify_pop'", ",", "pop", ".", "c_instance", ",", "ver_key", ".", "c_instance", ",", "gen", ".", "c_instance", ",", "byref", "(", "valid", ")", ")", "res", "=", "valid", "logger", ".", "debug", "(", "\"Bls::verify_pop: <<< res: %r\"", ",", "res", ")", "return", "res" ]
Verifies the proof of possession and returns true - if signature valid or false otherwise. :param: pop - Proof of possession :param: ver_key - Verification key :param: gen - Generator point :return: true if signature valid
[ "Verifies", "the", "proof", "of", "possession", "and", "returns", "true", "-", "if", "signature", "valid", "or", "false", "otherwise", "." ]
1675e29a2a5949b44899553d3d128335cf7a61b3
https://github.com/hyperledger/indy-crypto/blob/1675e29a2a5949b44899553d3d128335cf7a61b3/wrappers/python/indy_crypto/bls.py#L281-L306
train
hyperledger/indy-crypto
wrappers/python/indy_crypto/bls.py
Bls.verify_multi_sig
def verify_multi_sig(multi_sig: MultiSignature, message: bytes, ver_keys: [VerKey], gen: Generator) -> bool: """ Verifies the message multi signature and returns true - if signature valid or false otherwise. :param: multi_sig - Multi signature to verify :param: message - Message to verify :param: ver_keys - List of verification keys :param: gen - Generator point :return: true if multi signature valid. """ logger = logging.getLogger(__name__) logger.debug("Bls::verify_multi_sig: >>> multi_sig: %r, message: %r, ver_keys: %r, gen: %r", multi_sig, message, ver_keys, gen) # noinspection PyCallingNonCallable,PyTypeChecker ver_key_c_instances = (c_void_p * len(ver_keys))() for i in range(len(ver_keys)): ver_key_c_instances[i] = ver_keys[i].c_instance valid = c_bool() do_call('indy_crypto_bls_verify_multi_sig', multi_sig.c_instance, message, len(message), ver_key_c_instances, len(ver_keys), gen.c_instance, byref(valid)) res = valid logger.debug("Bls::verify_multi_sig: <<< res: %r", res) return res
python
def verify_multi_sig(multi_sig: MultiSignature, message: bytes, ver_keys: [VerKey], gen: Generator) -> bool: """ Verifies the message multi signature and returns true - if signature valid or false otherwise. :param: multi_sig - Multi signature to verify :param: message - Message to verify :param: ver_keys - List of verification keys :param: gen - Generator point :return: true if multi signature valid. """ logger = logging.getLogger(__name__) logger.debug("Bls::verify_multi_sig: >>> multi_sig: %r, message: %r, ver_keys: %r, gen: %r", multi_sig, message, ver_keys, gen) # noinspection PyCallingNonCallable,PyTypeChecker ver_key_c_instances = (c_void_p * len(ver_keys))() for i in range(len(ver_keys)): ver_key_c_instances[i] = ver_keys[i].c_instance valid = c_bool() do_call('indy_crypto_bls_verify_multi_sig', multi_sig.c_instance, message, len(message), ver_key_c_instances, len(ver_keys), gen.c_instance, byref(valid)) res = valid logger.debug("Bls::verify_multi_sig: <<< res: %r", res) return res
[ "def", "verify_multi_sig", "(", "multi_sig", ":", "MultiSignature", ",", "message", ":", "bytes", ",", "ver_keys", ":", "[", "VerKey", "]", ",", "gen", ":", "Generator", ")", "->", "bool", ":", "logger", "=", "logging", ".", "getLogger", "(", "__name__", ")", "logger", ".", "debug", "(", "\"Bls::verify_multi_sig: >>> multi_sig: %r, message: %r, ver_keys: %r, gen: %r\"", ",", "multi_sig", ",", "message", ",", "ver_keys", ",", "gen", ")", "# noinspection PyCallingNonCallable,PyTypeChecker", "ver_key_c_instances", "=", "(", "c_void_p", "*", "len", "(", "ver_keys", ")", ")", "(", ")", "for", "i", "in", "range", "(", "len", "(", "ver_keys", ")", ")", ":", "ver_key_c_instances", "[", "i", "]", "=", "ver_keys", "[", "i", "]", ".", "c_instance", "valid", "=", "c_bool", "(", ")", "do_call", "(", "'indy_crypto_bls_verify_multi_sig'", ",", "multi_sig", ".", "c_instance", ",", "message", ",", "len", "(", "message", ")", ",", "ver_key_c_instances", ",", "len", "(", "ver_keys", ")", ",", "gen", ".", "c_instance", ",", "byref", "(", "valid", ")", ")", "res", "=", "valid", "logger", ".", "debug", "(", "\"Bls::verify_multi_sig: <<< res: %r\"", ",", "res", ")", "return", "res" ]
Verifies the message multi signature and returns true - if signature valid or false otherwise. :param: multi_sig - Multi signature to verify :param: message - Message to verify :param: ver_keys - List of verification keys :param: gen - Generator point :return: true if multi signature valid.
[ "Verifies", "the", "message", "multi", "signature", "and", "returns", "true", "-", "if", "signature", "valid", "or", "false", "otherwise", "." ]
1675e29a2a5949b44899553d3d128335cf7a61b3
https://github.com/hyperledger/indy-crypto/blob/1675e29a2a5949b44899553d3d128335cf7a61b3/wrappers/python/indy_crypto/bls.py#L309-L340
train
nephila/djangocms-blog
djangocms_blog/admin.py
PostAdmin.get_urls
def get_urls(self): """ Customize the modeladmin urls """ urls = [ url(r'^publish/([0-9]+)/$', self.admin_site.admin_view(self.publish_post), name='djangocms_blog_publish_article'), ] urls.extend(super(PostAdmin, self).get_urls()) return urls
python
def get_urls(self): """ Customize the modeladmin urls """ urls = [ url(r'^publish/([0-9]+)/$', self.admin_site.admin_view(self.publish_post), name='djangocms_blog_publish_article'), ] urls.extend(super(PostAdmin, self).get_urls()) return urls
[ "def", "get_urls", "(", "self", ")", ":", "urls", "=", "[", "url", "(", "r'^publish/([0-9]+)/$'", ",", "self", ".", "admin_site", ".", "admin_view", "(", "self", ".", "publish_post", ")", ",", "name", "=", "'djangocms_blog_publish_article'", ")", ",", "]", "urls", ".", "extend", "(", "super", "(", "PostAdmin", ",", "self", ")", ".", "get_urls", "(", ")", ")", "return", "urls" ]
Customize the modeladmin urls
[ "Customize", "the", "modeladmin", "urls" ]
3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d
https://github.com/nephila/djangocms-blog/blob/3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d/djangocms_blog/admin.py#L224-L233
train
nephila/djangocms-blog
djangocms_blog/admin.py
PostAdmin.publish_post
def publish_post(self, request, pk): """ Admin view to publish a single post :param request: request :param pk: primary key of the post to publish :return: Redirect to the post itself (if found) or fallback urls """ language = get_language_from_request(request, check_path=True) try: post = Post.objects.get(pk=int(pk)) post.publish = True post.save() return HttpResponseRedirect(post.get_absolute_url(language)) except Exception: try: return HttpResponseRedirect(request.META['HTTP_REFERER']) except KeyError: return HttpResponseRedirect(reverse('djangocms_blog:posts-latest'))
python
def publish_post(self, request, pk): """ Admin view to publish a single post :param request: request :param pk: primary key of the post to publish :return: Redirect to the post itself (if found) or fallback urls """ language = get_language_from_request(request, check_path=True) try: post = Post.objects.get(pk=int(pk)) post.publish = True post.save() return HttpResponseRedirect(post.get_absolute_url(language)) except Exception: try: return HttpResponseRedirect(request.META['HTTP_REFERER']) except KeyError: return HttpResponseRedirect(reverse('djangocms_blog:posts-latest'))
[ "def", "publish_post", "(", "self", ",", "request", ",", "pk", ")", ":", "language", "=", "get_language_from_request", "(", "request", ",", "check_path", "=", "True", ")", "try", ":", "post", "=", "Post", ".", "objects", ".", "get", "(", "pk", "=", "int", "(", "pk", ")", ")", "post", ".", "publish", "=", "True", "post", ".", "save", "(", ")", "return", "HttpResponseRedirect", "(", "post", ".", "get_absolute_url", "(", "language", ")", ")", "except", "Exception", ":", "try", ":", "return", "HttpResponseRedirect", "(", "request", ".", "META", "[", "'HTTP_REFERER'", "]", ")", "except", "KeyError", ":", "return", "HttpResponseRedirect", "(", "reverse", "(", "'djangocms_blog:posts-latest'", ")", ")" ]
Admin view to publish a single post :param request: request :param pk: primary key of the post to publish :return: Redirect to the post itself (if found) or fallback urls
[ "Admin", "view", "to", "publish", "a", "single", "post" ]
3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d
https://github.com/nephila/djangocms-blog/blob/3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d/djangocms_blog/admin.py#L247-L265
train
nephila/djangocms-blog
djangocms_blog/admin.py
PostAdmin.has_restricted_sites
def has_restricted_sites(self, request): """ Whether the current user has permission on one site only :param request: current request :return: boolean: user has permission on only one site """ sites = self.get_restricted_sites(request) return sites and sites.count() == 1
python
def has_restricted_sites(self, request): """ Whether the current user has permission on one site only :param request: current request :return: boolean: user has permission on only one site """ sites = self.get_restricted_sites(request) return sites and sites.count() == 1
[ "def", "has_restricted_sites", "(", "self", ",", "request", ")", ":", "sites", "=", "self", ".", "get_restricted_sites", "(", "request", ")", "return", "sites", "and", "sites", ".", "count", "(", ")", "==", "1" ]
Whether the current user has permission on one site only :param request: current request :return: boolean: user has permission on only one site
[ "Whether", "the", "current", "user", "has", "permission", "on", "one", "site", "only" ]
3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d
https://github.com/nephila/djangocms-blog/blob/3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d/djangocms_blog/admin.py#L267-L275
train
nephila/djangocms-blog
djangocms_blog/admin.py
PostAdmin.get_restricted_sites
def get_restricted_sites(self, request): """ The sites on which the user has permission on. To return the permissions, the method check for the ``get_sites`` method on the user instance (e.g.: ``return request.user.get_sites()``) which must return the queryset of enabled sites. If the attribute does not exists, the user is considered enabled for all the websites. :param request: current request :return: boolean or a queryset of available sites """ try: return request.user.get_sites() except AttributeError: # pragma: no cover return Site.objects.none()
python
def get_restricted_sites(self, request): """ The sites on which the user has permission on. To return the permissions, the method check for the ``get_sites`` method on the user instance (e.g.: ``return request.user.get_sites()``) which must return the queryset of enabled sites. If the attribute does not exists, the user is considered enabled for all the websites. :param request: current request :return: boolean or a queryset of available sites """ try: return request.user.get_sites() except AttributeError: # pragma: no cover return Site.objects.none()
[ "def", "get_restricted_sites", "(", "self", ",", "request", ")", ":", "try", ":", "return", "request", ".", "user", ".", "get_sites", "(", ")", "except", "AttributeError", ":", "# pragma: no cover", "return", "Site", ".", "objects", ".", "none", "(", ")" ]
The sites on which the user has permission on. To return the permissions, the method check for the ``get_sites`` method on the user instance (e.g.: ``return request.user.get_sites()``) which must return the queryset of enabled sites. If the attribute does not exists, the user is considered enabled for all the websites. :param request: current request :return: boolean or a queryset of available sites
[ "The", "sites", "on", "which", "the", "user", "has", "permission", "on", "." ]
3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d
https://github.com/nephila/djangocms-blog/blob/3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d/djangocms_blog/admin.py#L277-L293
train
nephila/djangocms-blog
djangocms_blog/admin.py
PostAdmin.get_fieldsets
def get_fieldsets(self, request, obj=None): """ Customize the fieldsets according to the app settings :param request: request :param obj: post :return: fieldsets configuration """ app_config_default = self._app_config_select(request, obj) if app_config_default is None and request.method == 'GET': return super(PostAdmin, self).get_fieldsets(request, obj) if not obj: config = app_config_default else: config = obj.app_config fsets = deepcopy(self._fieldsets) if config: abstract = bool(config.use_abstract) placeholder = bool(config.use_placeholder) related = bool(config.use_related) else: abstract = get_setting('USE_ABSTRACT') placeholder = get_setting('USE_PLACEHOLDER') related = get_setting('USE_RELATED') if abstract: fsets[0][1]['fields'].append('abstract') if not placeholder: fsets[0][1]['fields'].append('post_text') if get_setting('MULTISITE') and not self.has_restricted_sites(request): fsets[1][1]['fields'][0].append('sites') if request.user.is_superuser: fsets[1][1]['fields'][0].append('author') if apps.is_installed('djangocms_blog.liveblog'): fsets[2][1]['fields'][2].append('enable_liveblog') filter_function = get_setting('ADMIN_POST_FIELDSET_FILTER') if related and Post.objects.namespace(config.namespace).active_translations().exists(): fsets[1][1]['fields'][0].append('related') if callable(filter_function): fsets = filter_function(fsets, request, obj=obj) return fsets
python
def get_fieldsets(self, request, obj=None): """ Customize the fieldsets according to the app settings :param request: request :param obj: post :return: fieldsets configuration """ app_config_default = self._app_config_select(request, obj) if app_config_default is None and request.method == 'GET': return super(PostAdmin, self).get_fieldsets(request, obj) if not obj: config = app_config_default else: config = obj.app_config fsets = deepcopy(self._fieldsets) if config: abstract = bool(config.use_abstract) placeholder = bool(config.use_placeholder) related = bool(config.use_related) else: abstract = get_setting('USE_ABSTRACT') placeholder = get_setting('USE_PLACEHOLDER') related = get_setting('USE_RELATED') if abstract: fsets[0][1]['fields'].append('abstract') if not placeholder: fsets[0][1]['fields'].append('post_text') if get_setting('MULTISITE') and not self.has_restricted_sites(request): fsets[1][1]['fields'][0].append('sites') if request.user.is_superuser: fsets[1][1]['fields'][0].append('author') if apps.is_installed('djangocms_blog.liveblog'): fsets[2][1]['fields'][2].append('enable_liveblog') filter_function = get_setting('ADMIN_POST_FIELDSET_FILTER') if related and Post.objects.namespace(config.namespace).active_translations().exists(): fsets[1][1]['fields'][0].append('related') if callable(filter_function): fsets = filter_function(fsets, request, obj=obj) return fsets
[ "def", "get_fieldsets", "(", "self", ",", "request", ",", "obj", "=", "None", ")", ":", "app_config_default", "=", "self", ".", "_app_config_select", "(", "request", ",", "obj", ")", "if", "app_config_default", "is", "None", "and", "request", ".", "method", "==", "'GET'", ":", "return", "super", "(", "PostAdmin", ",", "self", ")", ".", "get_fieldsets", "(", "request", ",", "obj", ")", "if", "not", "obj", ":", "config", "=", "app_config_default", "else", ":", "config", "=", "obj", ".", "app_config", "fsets", "=", "deepcopy", "(", "self", ".", "_fieldsets", ")", "if", "config", ":", "abstract", "=", "bool", "(", "config", ".", "use_abstract", ")", "placeholder", "=", "bool", "(", "config", ".", "use_placeholder", ")", "related", "=", "bool", "(", "config", ".", "use_related", ")", "else", ":", "abstract", "=", "get_setting", "(", "'USE_ABSTRACT'", ")", "placeholder", "=", "get_setting", "(", "'USE_PLACEHOLDER'", ")", "related", "=", "get_setting", "(", "'USE_RELATED'", ")", "if", "abstract", ":", "fsets", "[", "0", "]", "[", "1", "]", "[", "'fields'", "]", ".", "append", "(", "'abstract'", ")", "if", "not", "placeholder", ":", "fsets", "[", "0", "]", "[", "1", "]", "[", "'fields'", "]", ".", "append", "(", "'post_text'", ")", "if", "get_setting", "(", "'MULTISITE'", ")", "and", "not", "self", ".", "has_restricted_sites", "(", "request", ")", ":", "fsets", "[", "1", "]", "[", "1", "]", "[", "'fields'", "]", "[", "0", "]", ".", "append", "(", "'sites'", ")", "if", "request", ".", "user", ".", "is_superuser", ":", "fsets", "[", "1", "]", "[", "1", "]", "[", "'fields'", "]", "[", "0", "]", ".", "append", "(", "'author'", ")", "if", "apps", ".", "is_installed", "(", "'djangocms_blog.liveblog'", ")", ":", "fsets", "[", "2", "]", "[", "1", "]", "[", "'fields'", "]", "[", "2", "]", ".", "append", "(", "'enable_liveblog'", ")", "filter_function", "=", "get_setting", "(", "'ADMIN_POST_FIELDSET_FILTER'", ")", "if", "related", "and", "Post", ".", "objects", ".", "namespace", "(", "config", ".", "namespace", ")", ".", "active_translations", "(", ")", ".", "exists", "(", ")", ":", "fsets", "[", "1", "]", "[", "1", "]", "[", "'fields'", "]", "[", "0", "]", ".", "append", "(", "'related'", ")", "if", "callable", "(", "filter_function", ")", ":", "fsets", "=", "filter_function", "(", "fsets", ",", "request", ",", "obj", "=", "obj", ")", "return", "fsets" ]
Customize the fieldsets according to the app settings :param request: request :param obj: post :return: fieldsets configuration
[ "Customize", "the", "fieldsets", "according", "to", "the", "app", "settings" ]
3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d
https://github.com/nephila/djangocms-blog/blob/3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d/djangocms_blog/admin.py#L302-L342
train
nephila/djangocms-blog
djangocms_blog/admin.py
BlogConfigAdmin.save_model
def save_model(self, request, obj, form, change): """ Clear menu cache when changing menu structure """ if 'config.menu_structure' in form.changed_data: from menus.menu_pool import menu_pool menu_pool.clear(all=True) return super(BlogConfigAdmin, self).save_model(request, obj, form, change)
python
def save_model(self, request, obj, form, change): """ Clear menu cache when changing menu structure """ if 'config.menu_structure' in form.changed_data: from menus.menu_pool import menu_pool menu_pool.clear(all=True) return super(BlogConfigAdmin, self).save_model(request, obj, form, change)
[ "def", "save_model", "(", "self", ",", "request", ",", "obj", ",", "form", ",", "change", ")", ":", "if", "'config.menu_structure'", "in", "form", ".", "changed_data", ":", "from", "menus", ".", "menu_pool", "import", "menu_pool", "menu_pool", ".", "clear", "(", "all", "=", "True", ")", "return", "super", "(", "BlogConfigAdmin", ",", "self", ")", ".", "save_model", "(", "request", ",", "obj", ",", "form", ",", "change", ")" ]
Clear menu cache when changing menu structure
[ "Clear", "menu", "cache", "when", "changing", "menu", "structure" ]
3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d
https://github.com/nephila/djangocms-blog/blob/3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d/djangocms_blog/admin.py#L453-L460
train
nephila/djangocms-blog
djangocms_blog/cms_wizards.py
PostWizardForm.clean_slug
def clean_slug(self): """ Generate a valid slug, in case the given one is taken """ source = self.cleaned_data.get('slug', '') lang_choice = self.language_code if not source: source = slugify(self.cleaned_data.get('title', '')) qs = Post._default_manager.active_translations(lang_choice).language(lang_choice) used = list(qs.values_list('translations__slug', flat=True)) slug = source i = 1 while slug in used: slug = '%s-%s' % (source, i) i += 1 return slug
python
def clean_slug(self): """ Generate a valid slug, in case the given one is taken """ source = self.cleaned_data.get('slug', '') lang_choice = self.language_code if not source: source = slugify(self.cleaned_data.get('title', '')) qs = Post._default_manager.active_translations(lang_choice).language(lang_choice) used = list(qs.values_list('translations__slug', flat=True)) slug = source i = 1 while slug in used: slug = '%s-%s' % (source, i) i += 1 return slug
[ "def", "clean_slug", "(", "self", ")", ":", "source", "=", "self", ".", "cleaned_data", ".", "get", "(", "'slug'", ",", "''", ")", "lang_choice", "=", "self", ".", "language_code", "if", "not", "source", ":", "source", "=", "slugify", "(", "self", ".", "cleaned_data", ".", "get", "(", "'title'", ",", "''", ")", ")", "qs", "=", "Post", ".", "_default_manager", ".", "active_translations", "(", "lang_choice", ")", ".", "language", "(", "lang_choice", ")", "used", "=", "list", "(", "qs", ".", "values_list", "(", "'translations__slug'", ",", "flat", "=", "True", ")", ")", "slug", "=", "source", "i", "=", "1", "while", "slug", "in", "used", ":", "slug", "=", "'%s-%s'", "%", "(", "source", ",", "i", ")", "i", "+=", "1", "return", "slug" ]
Generate a valid slug, in case the given one is taken
[ "Generate", "a", "valid", "slug", "in", "case", "the", "given", "one", "is", "taken" ]
3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d
https://github.com/nephila/djangocms-blog/blob/3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d/djangocms_blog/cms_wizards.py#L55-L70
train
nephila/djangocms-blog
djangocms_blog/managers.py
TaggedFilterItem.tagged
def tagged(self, other_model=None, queryset=None): """ Restituisce una queryset di elementi del model taggati, o con gli stessi tag di un model o un queryset """ tags = self._taglist(other_model, queryset) return self.get_queryset().filter(tags__in=tags).distinct()
python
def tagged(self, other_model=None, queryset=None): """ Restituisce una queryset di elementi del model taggati, o con gli stessi tag di un model o un queryset """ tags = self._taglist(other_model, queryset) return self.get_queryset().filter(tags__in=tags).distinct()
[ "def", "tagged", "(", "self", ",", "other_model", "=", "None", ",", "queryset", "=", "None", ")", ":", "tags", "=", "self", ".", "_taglist", "(", "other_model", ",", "queryset", ")", "return", "self", ".", "get_queryset", "(", ")", ".", "filter", "(", "tags__in", "=", "tags", ")", ".", "distinct", "(", ")" ]
Restituisce una queryset di elementi del model taggati, o con gli stessi tag di un model o un queryset
[ "Restituisce", "una", "queryset", "di", "elementi", "del", "model", "taggati", "o", "con", "gli", "stessi", "tag", "di", "un", "model", "o", "un", "queryset" ]
3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d
https://github.com/nephila/djangocms-blog/blob/3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d/djangocms_blog/managers.py#L16-L22
train
nephila/djangocms-blog
djangocms_blog/managers.py
TaggedFilterItem._taglist
def _taglist(self, other_model=None, queryset=None): """ Restituisce una lista di id di tag comuni al model corrente e al model o queryset passati come argomento """ from taggit.models import TaggedItem filter = None if queryset is not None: filter = set() for item in queryset.all(): filter.update(item.tags.all()) filter = set([tag.id for tag in filter]) elif other_model is not None: filter = set(TaggedItem.objects.filter( content_type__model=other_model.__name__.lower() ).values_list('tag_id', flat=True)) tags = set(TaggedItem.objects.filter( content_type__model=self.model.__name__.lower() ).values_list('tag_id', flat=True)) if filter is not None: tags = tags.intersection(filter) return list(tags)
python
def _taglist(self, other_model=None, queryset=None): """ Restituisce una lista di id di tag comuni al model corrente e al model o queryset passati come argomento """ from taggit.models import TaggedItem filter = None if queryset is not None: filter = set() for item in queryset.all(): filter.update(item.tags.all()) filter = set([tag.id for tag in filter]) elif other_model is not None: filter = set(TaggedItem.objects.filter( content_type__model=other_model.__name__.lower() ).values_list('tag_id', flat=True)) tags = set(TaggedItem.objects.filter( content_type__model=self.model.__name__.lower() ).values_list('tag_id', flat=True)) if filter is not None: tags = tags.intersection(filter) return list(tags)
[ "def", "_taglist", "(", "self", ",", "other_model", "=", "None", ",", "queryset", "=", "None", ")", ":", "from", "taggit", ".", "models", "import", "TaggedItem", "filter", "=", "None", "if", "queryset", "is", "not", "None", ":", "filter", "=", "set", "(", ")", "for", "item", "in", "queryset", ".", "all", "(", ")", ":", "filter", ".", "update", "(", "item", ".", "tags", ".", "all", "(", ")", ")", "filter", "=", "set", "(", "[", "tag", ".", "id", "for", "tag", "in", "filter", "]", ")", "elif", "other_model", "is", "not", "None", ":", "filter", "=", "set", "(", "TaggedItem", ".", "objects", ".", "filter", "(", "content_type__model", "=", "other_model", ".", "__name__", ".", "lower", "(", ")", ")", ".", "values_list", "(", "'tag_id'", ",", "flat", "=", "True", ")", ")", "tags", "=", "set", "(", "TaggedItem", ".", "objects", ".", "filter", "(", "content_type__model", "=", "self", ".", "model", ".", "__name__", ".", "lower", "(", ")", ")", ".", "values_list", "(", "'tag_id'", ",", "flat", "=", "True", ")", ")", "if", "filter", "is", "not", "None", ":", "tags", "=", "tags", ".", "intersection", "(", "filter", ")", "return", "list", "(", "tags", ")" ]
Restituisce una lista di id di tag comuni al model corrente e al model o queryset passati come argomento
[ "Restituisce", "una", "lista", "di", "id", "di", "tag", "comuni", "al", "model", "corrente", "e", "al", "model", "o", "queryset", "passati", "come", "argomento" ]
3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d
https://github.com/nephila/djangocms-blog/blob/3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d/djangocms_blog/managers.py#L24-L45
train
nephila/djangocms-blog
djangocms_blog/managers.py
TaggedFilterItem.tag_list
def tag_list(self, other_model=None, queryset=None): """ Restituisce un queryset di tag comuni al model corrente e al model o queryset passati come argomento """ from taggit.models import Tag return Tag.objects.filter(id__in=self._taglist(other_model, queryset))
python
def tag_list(self, other_model=None, queryset=None): """ Restituisce un queryset di tag comuni al model corrente e al model o queryset passati come argomento """ from taggit.models import Tag return Tag.objects.filter(id__in=self._taglist(other_model, queryset))
[ "def", "tag_list", "(", "self", ",", "other_model", "=", "None", ",", "queryset", "=", "None", ")", ":", "from", "taggit", ".", "models", "import", "Tag", "return", "Tag", ".", "objects", ".", "filter", "(", "id__in", "=", "self", ".", "_taglist", "(", "other_model", ",", "queryset", ")", ")" ]
Restituisce un queryset di tag comuni al model corrente e al model o queryset passati come argomento
[ "Restituisce", "un", "queryset", "di", "tag", "comuni", "al", "model", "corrente", "e", "al", "model", "o", "queryset", "passati", "come", "argomento" ]
3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d
https://github.com/nephila/djangocms-blog/blob/3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d/djangocms_blog/managers.py#L47-L53
train
nephila/djangocms-blog
djangocms_blog/liveblog/consumers.py
liveblog_connect
def liveblog_connect(message, apphook, lang, post): """ Connect users to the group of the given post according to the given language Return with an error message if a post cannot be found :param message: channel connect message :param apphook: apphook config namespace :param lang: language :param post: post slug """ try: post = Post.objects.namespace(apphook).language(lang).active_translations(slug=post).get() except Post.DoesNotExist: message.reply_channel.send({ 'text': json.dumps({'error': 'no_post'}), }) return Group(post.liveblog_group).add(message.reply_channel) message.reply_channel.send({"accept": True})
python
def liveblog_connect(message, apphook, lang, post): """ Connect users to the group of the given post according to the given language Return with an error message if a post cannot be found :param message: channel connect message :param apphook: apphook config namespace :param lang: language :param post: post slug """ try: post = Post.objects.namespace(apphook).language(lang).active_translations(slug=post).get() except Post.DoesNotExist: message.reply_channel.send({ 'text': json.dumps({'error': 'no_post'}), }) return Group(post.liveblog_group).add(message.reply_channel) message.reply_channel.send({"accept": True})
[ "def", "liveblog_connect", "(", "message", ",", "apphook", ",", "lang", ",", "post", ")", ":", "try", ":", "post", "=", "Post", ".", "objects", ".", "namespace", "(", "apphook", ")", ".", "language", "(", "lang", ")", ".", "active_translations", "(", "slug", "=", "post", ")", ".", "get", "(", ")", "except", "Post", ".", "DoesNotExist", ":", "message", ".", "reply_channel", ".", "send", "(", "{", "'text'", ":", "json", ".", "dumps", "(", "{", "'error'", ":", "'no_post'", "}", ")", ",", "}", ")", "return", "Group", "(", "post", ".", "liveblog_group", ")", ".", "add", "(", "message", ".", "reply_channel", ")", "message", ".", "reply_channel", ".", "send", "(", "{", "\"accept\"", ":", "True", "}", ")" ]
Connect users to the group of the given post according to the given language Return with an error message if a post cannot be found :param message: channel connect message :param apphook: apphook config namespace :param lang: language :param post: post slug
[ "Connect", "users", "to", "the", "group", "of", "the", "given", "post", "according", "to", "the", "given", "language" ]
3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d
https://github.com/nephila/djangocms-blog/blob/3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d/djangocms_blog/liveblog/consumers.py#L11-L30
train
nephila/djangocms-blog
djangocms_blog/liveblog/consumers.py
liveblog_disconnect
def liveblog_disconnect(message, apphook, lang, post): """ Disconnect users to the group of the given post according to the given language Return with an error message if a post cannot be found :param message: channel connect message :param apphook: apphook config namespace :param lang: language :param post: post slug """ try: post = Post.objects.namespace(apphook).language(lang).active_translations(slug=post).get() except Post.DoesNotExist: message.reply_channel.send({ 'text': json.dumps({'error': 'no_post'}), }) return Group(post.liveblog_group).discard(message.reply_channel)
python
def liveblog_disconnect(message, apphook, lang, post): """ Disconnect users to the group of the given post according to the given language Return with an error message if a post cannot be found :param message: channel connect message :param apphook: apphook config namespace :param lang: language :param post: post slug """ try: post = Post.objects.namespace(apphook).language(lang).active_translations(slug=post).get() except Post.DoesNotExist: message.reply_channel.send({ 'text': json.dumps({'error': 'no_post'}), }) return Group(post.liveblog_group).discard(message.reply_channel)
[ "def", "liveblog_disconnect", "(", "message", ",", "apphook", ",", "lang", ",", "post", ")", ":", "try", ":", "post", "=", "Post", ".", "objects", ".", "namespace", "(", "apphook", ")", ".", "language", "(", "lang", ")", ".", "active_translations", "(", "slug", "=", "post", ")", ".", "get", "(", ")", "except", "Post", ".", "DoesNotExist", ":", "message", ".", "reply_channel", ".", "send", "(", "{", "'text'", ":", "json", ".", "dumps", "(", "{", "'error'", ":", "'no_post'", "}", ")", ",", "}", ")", "return", "Group", "(", "post", ".", "liveblog_group", ")", ".", "discard", "(", "message", ".", "reply_channel", ")" ]
Disconnect users to the group of the given post according to the given language Return with an error message if a post cannot be found :param message: channel connect message :param apphook: apphook config namespace :param lang: language :param post: post slug
[ "Disconnect", "users", "to", "the", "group", "of", "the", "given", "post", "according", "to", "the", "given", "language" ]
3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d
https://github.com/nephila/djangocms-blog/blob/3fdfbd4ba48947df0ee4c6d42e3a1c812b6dd95d/djangocms_blog/liveblog/consumers.py#L33-L51
train
tchellomello/python-amcrest
src/amcrest/video.py
Video.video_in_option
def video_in_option(self, param, profile='Day'): """ Return video input option. Params: param - parameter, such as 'DayNightColor' profile - 'Day', 'Night' or 'Normal' """ if profile == 'Day': field = param else: field = '{}Options.{}'.format(profile, param) return utils.pretty( [opt for opt in self.video_in_options.split() if '].{}='.format(field) in opt][0])
python
def video_in_option(self, param, profile='Day'): """ Return video input option. Params: param - parameter, such as 'DayNightColor' profile - 'Day', 'Night' or 'Normal' """ if profile == 'Day': field = param else: field = '{}Options.{}'.format(profile, param) return utils.pretty( [opt for opt in self.video_in_options.split() if '].{}='.format(field) in opt][0])
[ "def", "video_in_option", "(", "self", ",", "param", ",", "profile", "=", "'Day'", ")", ":", "if", "profile", "==", "'Day'", ":", "field", "=", "param", "else", ":", "field", "=", "'{}Options.{}'", ".", "format", "(", "profile", ",", "param", ")", "return", "utils", ".", "pretty", "(", "[", "opt", "for", "opt", "in", "self", ".", "video_in_options", ".", "split", "(", ")", "if", "'].{}='", ".", "format", "(", "field", ")", "in", "opt", "]", "[", "0", "]", ")" ]
Return video input option. Params: param - parameter, such as 'DayNightColor' profile - 'Day', 'Night' or 'Normal'
[ "Return", "video", "input", "option", "." ]
ed842139e234de2eaf6ee8fb480214711cde1249
https://github.com/tchellomello/python-amcrest/blob/ed842139e234de2eaf6ee8fb480214711cde1249/src/amcrest/video.py#L132-L146
train
tchellomello/python-amcrest
src/amcrest/http.py
Http._generate_token
def _generate_token(self): """Create authentation to use with requests.""" session = self.get_session() url = self.__base_url('magicBox.cgi?action=getMachineName') try: # try old basic method auth = requests.auth.HTTPBasicAuth(self._user, self._password) req = session.get(url, auth=auth, timeout=self._timeout_default) if not req.ok: # try new digest method auth = requests.auth.HTTPDigestAuth( self._user, self._password) req = session.get( url, auth=auth, timeout=self._timeout_default) req.raise_for_status() except requests.RequestException as error: _LOGGER.error(error) raise CommError('Could not communicate with camera') # check if user passed result = req.text.lower() if 'invalid' in result or 'error' in result: _LOGGER.error('Result from camera: %s', req.text.strip().replace('\r\n', ': ')) raise LoginError('Invalid credentials') return auth
python
def _generate_token(self): """Create authentation to use with requests.""" session = self.get_session() url = self.__base_url('magicBox.cgi?action=getMachineName') try: # try old basic method auth = requests.auth.HTTPBasicAuth(self._user, self._password) req = session.get(url, auth=auth, timeout=self._timeout_default) if not req.ok: # try new digest method auth = requests.auth.HTTPDigestAuth( self._user, self._password) req = session.get( url, auth=auth, timeout=self._timeout_default) req.raise_for_status() except requests.RequestException as error: _LOGGER.error(error) raise CommError('Could not communicate with camera') # check if user passed result = req.text.lower() if 'invalid' in result or 'error' in result: _LOGGER.error('Result from camera: %s', req.text.strip().replace('\r\n', ': ')) raise LoginError('Invalid credentials') return auth
[ "def", "_generate_token", "(", "self", ")", ":", "session", "=", "self", ".", "get_session", "(", ")", "url", "=", "self", ".", "__base_url", "(", "'magicBox.cgi?action=getMachineName'", ")", "try", ":", "# try old basic method", "auth", "=", "requests", ".", "auth", ".", "HTTPBasicAuth", "(", "self", ".", "_user", ",", "self", ".", "_password", ")", "req", "=", "session", ".", "get", "(", "url", ",", "auth", "=", "auth", ",", "timeout", "=", "self", ".", "_timeout_default", ")", "if", "not", "req", ".", "ok", ":", "# try new digest method", "auth", "=", "requests", ".", "auth", ".", "HTTPDigestAuth", "(", "self", ".", "_user", ",", "self", ".", "_password", ")", "req", "=", "session", ".", "get", "(", "url", ",", "auth", "=", "auth", ",", "timeout", "=", "self", ".", "_timeout_default", ")", "req", ".", "raise_for_status", "(", ")", "except", "requests", ".", "RequestException", "as", "error", ":", "_LOGGER", ".", "error", "(", "error", ")", "raise", "CommError", "(", "'Could not communicate with camera'", ")", "# check if user passed", "result", "=", "req", ".", "text", ".", "lower", "(", ")", "if", "'invalid'", "in", "result", "or", "'error'", "in", "result", ":", "_LOGGER", ".", "error", "(", "'Result from camera: %s'", ",", "req", ".", "text", ".", "strip", "(", ")", ".", "replace", "(", "'\\r\\n'", ",", "': '", ")", ")", "raise", "LoginError", "(", "'Invalid credentials'", ")", "return", "auth" ]
Create authentation to use with requests.
[ "Create", "authentation", "to", "use", "with", "requests", "." ]
ed842139e234de2eaf6ee8fb480214711cde1249
https://github.com/tchellomello/python-amcrest/blob/ed842139e234de2eaf6ee8fb480214711cde1249/src/amcrest/http.py#L73-L99
train