repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
what-studio/profiling
profiling/viewer.py
StatisticsWidget.get_mark
def get_mark(self): """Gets an expanded, collapsed, or leaf icon.""" if self.is_leaf: char = self.icon_chars[2] else: char = self.icon_chars[int(self.expanded)] return urwid.SelectableIcon(('mark', char), 0)
python
def get_mark(self): """Gets an expanded, collapsed, or leaf icon.""" if self.is_leaf: char = self.icon_chars[2] else: char = self.icon_chars[int(self.expanded)] return urwid.SelectableIcon(('mark', char), 0)
[ "def", "get_mark", "(", "self", ")", ":", "if", "self", ".", "is_leaf", ":", "char", "=", "self", ".", "icon_chars", "[", "2", "]", "else", ":", "char", "=", "self", ".", "icon_chars", "[", "int", "(", "self", ".", "expanded", ")", "]", "return", "urwid", ".", "SelectableIcon", "(", "(", "'mark'", ",", "char", ")", ",", "0", ")" ]
Gets an expanded, collapsed, or leaf icon.
[ "Gets", "an", "expanded", "collapsed", "or", "leaf", "icon", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/viewer.py#L271-L277
train
what-studio/profiling
profiling/viewer.py
StatisticsTable.get_path
def get_path(self): """Gets the path to the focused statistics. Each step is a hash of statistics object. """ path = deque() __, node = self.get_focus() while not node.is_root(): stats = node.get_value() path.appendleft(hash(stats)) node = node.get_parent() return path
python
def get_path(self): """Gets the path to the focused statistics. Each step is a hash of statistics object. """ path = deque() __, node = self.get_focus() while not node.is_root(): stats = node.get_value() path.appendleft(hash(stats)) node = node.get_parent() return path
[ "def", "get_path", "(", "self", ")", ":", "path", "=", "deque", "(", ")", "__", ",", "node", "=", "self", ".", "get_focus", "(", ")", "while", "not", "node", ".", "is_root", "(", ")", ":", "stats", "=", "node", ".", "get_value", "(", ")", "path", ".", "appendleft", "(", "hash", "(", "stats", ")", ")", "node", "=", "node", ".", "get_parent", "(", ")", "return", "path" ]
Gets the path to the focused statistics. Each step is a hash of statistics object.
[ "Gets", "the", "path", "to", "the", "focused", "statistics", ".", "Each", "step", "is", "a", "hash", "of", "statistics", "object", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/viewer.py#L551-L561
train
what-studio/profiling
profiling/viewer.py
StatisticsTable.find_node
def find_node(self, node, path): """Finds a node by the given path from the given node.""" for hash_value in path: if isinstance(node, LeafStatisticsNode): break for stats in node.get_child_keys(): if hash(stats) == hash_value: node = node.get_child_node(stats) break else: break return node
python
def find_node(self, node, path): """Finds a node by the given path from the given node.""" for hash_value in path: if isinstance(node, LeafStatisticsNode): break for stats in node.get_child_keys(): if hash(stats) == hash_value: node = node.get_child_node(stats) break else: break return node
[ "def", "find_node", "(", "self", ",", "node", ",", "path", ")", ":", "for", "hash_value", "in", "path", ":", "if", "isinstance", "(", "node", ",", "LeafStatisticsNode", ")", ":", "break", "for", "stats", "in", "node", ".", "get_child_keys", "(", ")", ":", "if", "hash", "(", "stats", ")", "==", "hash_value", ":", "node", "=", "node", ".", "get_child_node", "(", "stats", ")", "break", "else", ":", "break", "return", "node" ]
Finds a node by the given path from the given node.
[ "Finds", "a", "node", "by", "the", "given", "path", "from", "the", "given", "node", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/viewer.py#L563-L574
train
what-studio/profiling
profiling/viewer.py
StatisticsViewer.update_result
def update_result(self): """Updates the result on the table.""" try: if self.paused: result = self._paused_result else: result = self._final_result except AttributeError: self.table.update_frame() return stats, cpu_time, wall_time, title, at = result self.table.set_result(stats, cpu_time, wall_time, title, at)
python
def update_result(self): """Updates the result on the table.""" try: if self.paused: result = self._paused_result else: result = self._final_result except AttributeError: self.table.update_frame() return stats, cpu_time, wall_time, title, at = result self.table.set_result(stats, cpu_time, wall_time, title, at)
[ "def", "update_result", "(", "self", ")", ":", "try", ":", "if", "self", ".", "paused", ":", "result", "=", "self", ".", "_paused_result", "else", ":", "result", "=", "self", ".", "_final_result", "except", "AttributeError", ":", "self", ".", "table", ".", "update_frame", "(", ")", "return", "stats", ",", "cpu_time", ",", "wall_time", ",", "title", ",", "at", "=", "result", "self", ".", "table", ".", "set_result", "(", "stats", ",", "cpu_time", ",", "wall_time", ",", "title", ",", "at", ")" ]
Updates the result on the table.
[ "Updates", "the", "result", "on", "the", "table", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/viewer.py#L812-L823
train
what-studio/profiling
profiling/__main__.py
option_getter
def option_getter(type): """Gets an unbound method to get a configuration option as the given type. """ option_getters = {None: ConfigParser.get, int: ConfigParser.getint, float: ConfigParser.getfloat, bool: ConfigParser.getboolean} return option_getters.get(type, option_getters[None])
python
def option_getter(type): """Gets an unbound method to get a configuration option as the given type. """ option_getters = {None: ConfigParser.get, int: ConfigParser.getint, float: ConfigParser.getfloat, bool: ConfigParser.getboolean} return option_getters.get(type, option_getters[None])
[ "def", "option_getter", "(", "type", ")", ":", "option_getters", "=", "{", "None", ":", "ConfigParser", ".", "get", ",", "int", ":", "ConfigParser", ".", "getint", ",", "float", ":", "ConfigParser", ".", "getfloat", ",", "bool", ":", "ConfigParser", ".", "getboolean", "}", "return", "option_getters", ".", "get", "(", "type", ",", "option_getters", "[", "None", "]", ")" ]
Gets an unbound method to get a configuration option as the given type.
[ "Gets", "an", "unbound", "method", "to", "get", "a", "configuration", "option", "as", "the", "given", "type", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/__main__.py#L116-L123
train
what-studio/profiling
profiling/__main__.py
config_default
def config_default(option, default=None, type=None, section=cli.name): """Guesses a default value of a CLI option from the configuration. :: @click.option('--locale', default=config_default('locale')) """ def f(option=option, default=default, type=type, section=section): config = read_config() if type is None and default is not None: # detect type from default. type = builtins.type(default) get_option = option_getter(type) try: return get_option(config, section, option) except (NoOptionError, NoSectionError): return default return f
python
def config_default(option, default=None, type=None, section=cli.name): """Guesses a default value of a CLI option from the configuration. :: @click.option('--locale', default=config_default('locale')) """ def f(option=option, default=default, type=type, section=section): config = read_config() if type is None and default is not None: # detect type from default. type = builtins.type(default) get_option = option_getter(type) try: return get_option(config, section, option) except (NoOptionError, NoSectionError): return default return f
[ "def", "config_default", "(", "option", ",", "default", "=", "None", ",", "type", "=", "None", ",", "section", "=", "cli", ".", "name", ")", ":", "def", "f", "(", "option", "=", "option", ",", "default", "=", "default", ",", "type", "=", "type", ",", "section", "=", "section", ")", ":", "config", "=", "read_config", "(", ")", "if", "type", "is", "None", "and", "default", "is", "not", "None", ":", "# detect type from default.", "type", "=", "builtins", ".", "type", "(", "default", ")", "get_option", "=", "option_getter", "(", "type", ")", "try", ":", "return", "get_option", "(", "config", ",", "section", ",", "option", ")", "except", "(", "NoOptionError", ",", "NoSectionError", ")", ":", "return", "default", "return", "f" ]
Guesses a default value of a CLI option from the configuration. :: @click.option('--locale', default=config_default('locale'))
[ "Guesses", "a", "default", "value", "of", "a", "CLI", "option", "from", "the", "configuration", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/__main__.py#L126-L144
train
what-studio/profiling
profiling/__main__.py
config_flag
def config_flag(option, value, default=False, section=cli.name): """Guesses whether a CLI flag should be turned on or off from the configuration. If the configuration option value is same with the given value, it returns ``True``. :: @click.option('--ko-kr', 'locale', is_flag=True, default=config_flag('locale', 'ko_KR')) """ class x(object): def __bool__(self, option=option, value=value, default=default, section=section): config = read_config() type = builtins.type(value) get_option = option_getter(type) try: return get_option(config, section, option) == value except (NoOptionError, NoSectionError): return default __nonzero__ = __bool__ return x()
python
def config_flag(option, value, default=False, section=cli.name): """Guesses whether a CLI flag should be turned on or off from the configuration. If the configuration option value is same with the given value, it returns ``True``. :: @click.option('--ko-kr', 'locale', is_flag=True, default=config_flag('locale', 'ko_KR')) """ class x(object): def __bool__(self, option=option, value=value, default=default, section=section): config = read_config() type = builtins.type(value) get_option = option_getter(type) try: return get_option(config, section, option) == value except (NoOptionError, NoSectionError): return default __nonzero__ = __bool__ return x()
[ "def", "config_flag", "(", "option", ",", "value", ",", "default", "=", "False", ",", "section", "=", "cli", ".", "name", ")", ":", "class", "x", "(", "object", ")", ":", "def", "__bool__", "(", "self", ",", "option", "=", "option", ",", "value", "=", "value", ",", "default", "=", "default", ",", "section", "=", "section", ")", ":", "config", "=", "read_config", "(", ")", "type", "=", "builtins", ".", "type", "(", "value", ")", "get_option", "=", "option_getter", "(", "type", ")", "try", ":", "return", "get_option", "(", "config", ",", "section", ",", "option", ")", "==", "value", "except", "(", "NoOptionError", ",", "NoSectionError", ")", ":", "return", "default", "__nonzero__", "=", "__bool__", "return", "x", "(", ")" ]
Guesses whether a CLI flag should be turned on or off from the configuration. If the configuration option value is same with the given value, it returns ``True``. :: @click.option('--ko-kr', 'locale', is_flag=True, default=config_flag('locale', 'ko_KR'))
[ "Guesses", "whether", "a", "CLI", "flag", "should", "be", "turned", "on", "or", "off", "from", "the", "configuration", ".", "If", "the", "configuration", "option", "value", "is", "same", "with", "the", "given", "value", "it", "returns", "True", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/__main__.py#L147-L169
train
what-studio/profiling
profiling/__main__.py
get_title
def get_title(src_name, src_type=None): """Normalizes a source name as a string to be used for viewer's title.""" if src_type == 'tcp': return '{0}:{1}'.format(*src_name) return os.path.basename(src_name)
python
def get_title(src_name, src_type=None): """Normalizes a source name as a string to be used for viewer's title.""" if src_type == 'tcp': return '{0}:{1}'.format(*src_name) return os.path.basename(src_name)
[ "def", "get_title", "(", "src_name", ",", "src_type", "=", "None", ")", ":", "if", "src_type", "==", "'tcp'", ":", "return", "'{0}:{1}'", ".", "format", "(", "*", "src_name", ")", "return", "os", ".", "path", ".", "basename", "(", "src_name", ")" ]
Normalizes a source name as a string to be used for viewer's title.
[ "Normalizes", "a", "source", "name", "as", "a", "string", "to", "be", "used", "for", "viewer", "s", "title", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/__main__.py#L172-L176
train
what-studio/profiling
profiling/__main__.py
spawn_thread
def spawn_thread(func, *args, **kwargs): """Spawns a daemon thread.""" thread = threading.Thread(target=func, args=args, kwargs=kwargs) thread.daemon = True thread.start() return thread
python
def spawn_thread(func, *args, **kwargs): """Spawns a daemon thread.""" thread = threading.Thread(target=func, args=args, kwargs=kwargs) thread.daemon = True thread.start() return thread
[ "def", "spawn_thread", "(", "func", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "thread", "=", "threading", ".", "Thread", "(", "target", "=", "func", ",", "args", "=", "args", ",", "kwargs", "=", "kwargs", ")", "thread", ".", "daemon", "=", "True", "thread", ".", "start", "(", ")", "return", "thread" ]
Spawns a daemon thread.
[ "Spawns", "a", "daemon", "thread", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/__main__.py#L189-L194
train
what-studio/profiling
profiling/__main__.py
spawn
def spawn(mode, func, *args, **kwargs): """Spawns a thread-like object which runs the given function concurrently. Available modes: - `threading` - `greenlet` - `eventlet` """ if mode is None: # 'threading' is the default mode. mode = 'threading' elif mode not in spawn.modes: # validate the given mode. raise ValueError('Invalid spawn mode: %s' % mode) if mode == 'threading': return spawn_thread(func, *args, **kwargs) elif mode == 'gevent': import gevent import gevent.monkey gevent.monkey.patch_select() gevent.monkey.patch_socket() return gevent.spawn(func, *args, **kwargs) elif mode == 'eventlet': import eventlet eventlet.patcher.monkey_patch(select=True, socket=True) return eventlet.spawn(func, *args, **kwargs) assert False
python
def spawn(mode, func, *args, **kwargs): """Spawns a thread-like object which runs the given function concurrently. Available modes: - `threading` - `greenlet` - `eventlet` """ if mode is None: # 'threading' is the default mode. mode = 'threading' elif mode not in spawn.modes: # validate the given mode. raise ValueError('Invalid spawn mode: %s' % mode) if mode == 'threading': return spawn_thread(func, *args, **kwargs) elif mode == 'gevent': import gevent import gevent.monkey gevent.monkey.patch_select() gevent.monkey.patch_socket() return gevent.spawn(func, *args, **kwargs) elif mode == 'eventlet': import eventlet eventlet.patcher.monkey_patch(select=True, socket=True) return eventlet.spawn(func, *args, **kwargs) assert False
[ "def", "spawn", "(", "mode", ",", "func", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "mode", "is", "None", ":", "# 'threading' is the default mode.", "mode", "=", "'threading'", "elif", "mode", "not", "in", "spawn", ".", "modes", ":", "# validate the given mode.", "raise", "ValueError", "(", "'Invalid spawn mode: %s'", "%", "mode", ")", "if", "mode", "==", "'threading'", ":", "return", "spawn_thread", "(", "func", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "mode", "==", "'gevent'", ":", "import", "gevent", "import", "gevent", ".", "monkey", "gevent", ".", "monkey", ".", "patch_select", "(", ")", "gevent", ".", "monkey", ".", "patch_socket", "(", ")", "return", "gevent", ".", "spawn", "(", "func", ",", "*", "args", ",", "*", "*", "kwargs", ")", "elif", "mode", "==", "'eventlet'", ":", "import", "eventlet", "eventlet", ".", "patcher", ".", "monkey_patch", "(", "select", "=", "True", ",", "socket", "=", "True", ")", "return", "eventlet", ".", "spawn", "(", "func", ",", "*", "args", ",", "*", "*", "kwargs", ")", "assert", "False" ]
Spawns a thread-like object which runs the given function concurrently. Available modes: - `threading` - `greenlet` - `eventlet`
[ "Spawns", "a", "thread", "-", "like", "object", "which", "runs", "the", "given", "function", "concurrently", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/__main__.py#L197-L225
train
what-studio/profiling
profiling/__main__.py
profile
def profile(script, argv, profiler_factory, pickle_protocol, dump_filename, mono): """Profile a Python script.""" filename, code, globals_ = script sys.argv[:] = [filename] + list(argv) __profile__(filename, code, globals_, profiler_factory, pickle_protocol=pickle_protocol, dump_filename=dump_filename, mono=mono)
python
def profile(script, argv, profiler_factory, pickle_protocol, dump_filename, mono): """Profile a Python script.""" filename, code, globals_ = script sys.argv[:] = [filename] + list(argv) __profile__(filename, code, globals_, profiler_factory, pickle_protocol=pickle_protocol, dump_filename=dump_filename, mono=mono)
[ "def", "profile", "(", "script", ",", "argv", ",", "profiler_factory", ",", "pickle_protocol", ",", "dump_filename", ",", "mono", ")", ":", "filename", ",", "code", ",", "globals_", "=", "script", "sys", ".", "argv", "[", ":", "]", "=", "[", "filename", "]", "+", "list", "(", "argv", ")", "__profile__", "(", "filename", ",", "code", ",", "globals_", ",", "profiler_factory", ",", "pickle_protocol", "=", "pickle_protocol", ",", "dump_filename", "=", "dump_filename", ",", "mono", "=", "mono", ")" ]
Profile a Python script.
[ "Profile", "a", "Python", "script", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/__main__.py#L582-L589
train
what-studio/profiling
profiling/__main__.py
live_profile
def live_profile(script, argv, profiler_factory, interval, spawn, signum, pickle_protocol, mono): """Profile a Python script continuously.""" filename, code, globals_ = script sys.argv[:] = [filename] + list(argv) parent_sock, child_sock = socket.socketpair() stderr_r_fd, stderr_w_fd = os.pipe() pid = os.fork() if pid: # parent os.close(stderr_w_fd) viewer, loop = make_viewer(mono) # loop.screen._term_output_file = open(os.devnull, 'w') title = get_title(filename) client = ProfilingClient(viewer, loop.event_loop, parent_sock, title) client.start() try: loop.run() except KeyboardInterrupt: os.kill(pid, signal.SIGINT) except BaseException: # unexpected profiler error. os.kill(pid, signal.SIGTERM) raise finally: parent_sock.close() # get exit code of child. w_pid, status = os.waitpid(pid, os.WNOHANG) if w_pid == 0: os.kill(pid, signal.SIGTERM) exit_code = os.WEXITSTATUS(status) # print stderr of child. with os.fdopen(stderr_r_fd, 'r') as f: child_stderr = f.read() if child_stderr: sys.stdout.flush() sys.stderr.write(child_stderr) # exit with exit code of child. sys.exit(exit_code) else: # child os.close(stderr_r_fd) # mute stdin, stdout. devnull = os.open(os.devnull, os.O_RDWR) for f in [sys.stdin, sys.stdout]: os.dup2(devnull, f.fileno()) # redirect stderr to parent. os.dup2(stderr_w_fd, sys.stderr.fileno()) frame = sys._getframe() profiler = profiler_factory(base_frame=frame, base_code=code) profiler_trigger = BackgroundProfiler(profiler, signum) profiler_trigger.prepare() server_args = (interval, noop, pickle_protocol) server = SelectProfilingServer(None, profiler_trigger, *server_args) server.clients.add(child_sock) spawn(server.connected, child_sock) try: exec_(code, globals_) finally: os.close(stderr_w_fd) child_sock.shutdown(socket.SHUT_WR)
python
def live_profile(script, argv, profiler_factory, interval, spawn, signum, pickle_protocol, mono): """Profile a Python script continuously.""" filename, code, globals_ = script sys.argv[:] = [filename] + list(argv) parent_sock, child_sock = socket.socketpair() stderr_r_fd, stderr_w_fd = os.pipe() pid = os.fork() if pid: # parent os.close(stderr_w_fd) viewer, loop = make_viewer(mono) # loop.screen._term_output_file = open(os.devnull, 'w') title = get_title(filename) client = ProfilingClient(viewer, loop.event_loop, parent_sock, title) client.start() try: loop.run() except KeyboardInterrupt: os.kill(pid, signal.SIGINT) except BaseException: # unexpected profiler error. os.kill(pid, signal.SIGTERM) raise finally: parent_sock.close() # get exit code of child. w_pid, status = os.waitpid(pid, os.WNOHANG) if w_pid == 0: os.kill(pid, signal.SIGTERM) exit_code = os.WEXITSTATUS(status) # print stderr of child. with os.fdopen(stderr_r_fd, 'r') as f: child_stderr = f.read() if child_stderr: sys.stdout.flush() sys.stderr.write(child_stderr) # exit with exit code of child. sys.exit(exit_code) else: # child os.close(stderr_r_fd) # mute stdin, stdout. devnull = os.open(os.devnull, os.O_RDWR) for f in [sys.stdin, sys.stdout]: os.dup2(devnull, f.fileno()) # redirect stderr to parent. os.dup2(stderr_w_fd, sys.stderr.fileno()) frame = sys._getframe() profiler = profiler_factory(base_frame=frame, base_code=code) profiler_trigger = BackgroundProfiler(profiler, signum) profiler_trigger.prepare() server_args = (interval, noop, pickle_protocol) server = SelectProfilingServer(None, profiler_trigger, *server_args) server.clients.add(child_sock) spawn(server.connected, child_sock) try: exec_(code, globals_) finally: os.close(stderr_w_fd) child_sock.shutdown(socket.SHUT_WR)
[ "def", "live_profile", "(", "script", ",", "argv", ",", "profiler_factory", ",", "interval", ",", "spawn", ",", "signum", ",", "pickle_protocol", ",", "mono", ")", ":", "filename", ",", "code", ",", "globals_", "=", "script", "sys", ".", "argv", "[", ":", "]", "=", "[", "filename", "]", "+", "list", "(", "argv", ")", "parent_sock", ",", "child_sock", "=", "socket", ".", "socketpair", "(", ")", "stderr_r_fd", ",", "stderr_w_fd", "=", "os", ".", "pipe", "(", ")", "pid", "=", "os", ".", "fork", "(", ")", "if", "pid", ":", "# parent", "os", ".", "close", "(", "stderr_w_fd", ")", "viewer", ",", "loop", "=", "make_viewer", "(", "mono", ")", "# loop.screen._term_output_file = open(os.devnull, 'w')", "title", "=", "get_title", "(", "filename", ")", "client", "=", "ProfilingClient", "(", "viewer", ",", "loop", ".", "event_loop", ",", "parent_sock", ",", "title", ")", "client", ".", "start", "(", ")", "try", ":", "loop", ".", "run", "(", ")", "except", "KeyboardInterrupt", ":", "os", ".", "kill", "(", "pid", ",", "signal", ".", "SIGINT", ")", "except", "BaseException", ":", "# unexpected profiler error.", "os", ".", "kill", "(", "pid", ",", "signal", ".", "SIGTERM", ")", "raise", "finally", ":", "parent_sock", ".", "close", "(", ")", "# get exit code of child.", "w_pid", ",", "status", "=", "os", ".", "waitpid", "(", "pid", ",", "os", ".", "WNOHANG", ")", "if", "w_pid", "==", "0", ":", "os", ".", "kill", "(", "pid", ",", "signal", ".", "SIGTERM", ")", "exit_code", "=", "os", ".", "WEXITSTATUS", "(", "status", ")", "# print stderr of child.", "with", "os", ".", "fdopen", "(", "stderr_r_fd", ",", "'r'", ")", "as", "f", ":", "child_stderr", "=", "f", ".", "read", "(", ")", "if", "child_stderr", ":", "sys", ".", "stdout", ".", "flush", "(", ")", "sys", ".", "stderr", ".", "write", "(", "child_stderr", ")", "# exit with exit code of child.", "sys", ".", "exit", "(", "exit_code", ")", "else", ":", "# child", "os", ".", "close", "(", "stderr_r_fd", ")", "# mute stdin, stdout.", "devnull", "=", "os", ".", "open", "(", "os", ".", "devnull", ",", "os", ".", "O_RDWR", ")", "for", "f", "in", "[", "sys", ".", "stdin", ",", "sys", ".", "stdout", "]", ":", "os", ".", "dup2", "(", "devnull", ",", "f", ".", "fileno", "(", ")", ")", "# redirect stderr to parent.", "os", ".", "dup2", "(", "stderr_w_fd", ",", "sys", ".", "stderr", ".", "fileno", "(", ")", ")", "frame", "=", "sys", ".", "_getframe", "(", ")", "profiler", "=", "profiler_factory", "(", "base_frame", "=", "frame", ",", "base_code", "=", "code", ")", "profiler_trigger", "=", "BackgroundProfiler", "(", "profiler", ",", "signum", ")", "profiler_trigger", ".", "prepare", "(", ")", "server_args", "=", "(", "interval", ",", "noop", ",", "pickle_protocol", ")", "server", "=", "SelectProfilingServer", "(", "None", ",", "profiler_trigger", ",", "*", "server_args", ")", "server", ".", "clients", ".", "add", "(", "child_sock", ")", "spawn", "(", "server", ".", "connected", ",", "child_sock", ")", "try", ":", "exec_", "(", "code", ",", "globals_", ")", "finally", ":", "os", ".", "close", "(", "stderr_w_fd", ")", "child_sock", ".", "shutdown", "(", "socket", ".", "SHUT_WR", ")" ]
Profile a Python script continuously.
[ "Profile", "a", "Python", "script", "continuously", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/__main__.py#L597-L657
train
what-studio/profiling
profiling/__main__.py
view
def view(src, mono): """Inspect statistics by TUI view.""" src_type, src_name = src title = get_title(src_name, src_type) viewer, loop = make_viewer(mono) if src_type == 'dump': time = datetime.fromtimestamp(os.path.getmtime(src_name)) with open(src_name, 'rb') as f: profiler_class, (stats, cpu_time, wall_time) = pickle.load(f) viewer.set_profiler_class(profiler_class) viewer.set_result(stats, cpu_time, wall_time, title=title, at=time) viewer.activate() elif src_type in ('tcp', 'sock'): family = {'tcp': socket.AF_INET, 'sock': socket.AF_UNIX}[src_type] client = FailoverProfilingClient(viewer, loop.event_loop, src_name, family, title=title) client.start() try: loop.run() except KeyboardInterrupt: pass
python
def view(src, mono): """Inspect statistics by TUI view.""" src_type, src_name = src title = get_title(src_name, src_type) viewer, loop = make_viewer(mono) if src_type == 'dump': time = datetime.fromtimestamp(os.path.getmtime(src_name)) with open(src_name, 'rb') as f: profiler_class, (stats, cpu_time, wall_time) = pickle.load(f) viewer.set_profiler_class(profiler_class) viewer.set_result(stats, cpu_time, wall_time, title=title, at=time) viewer.activate() elif src_type in ('tcp', 'sock'): family = {'tcp': socket.AF_INET, 'sock': socket.AF_UNIX}[src_type] client = FailoverProfilingClient(viewer, loop.event_loop, src_name, family, title=title) client.start() try: loop.run() except KeyboardInterrupt: pass
[ "def", "view", "(", "src", ",", "mono", ")", ":", "src_type", ",", "src_name", "=", "src", "title", "=", "get_title", "(", "src_name", ",", "src_type", ")", "viewer", ",", "loop", "=", "make_viewer", "(", "mono", ")", "if", "src_type", "==", "'dump'", ":", "time", "=", "datetime", ".", "fromtimestamp", "(", "os", ".", "path", ".", "getmtime", "(", "src_name", ")", ")", "with", "open", "(", "src_name", ",", "'rb'", ")", "as", "f", ":", "profiler_class", ",", "(", "stats", ",", "cpu_time", ",", "wall_time", ")", "=", "pickle", ".", "load", "(", "f", ")", "viewer", ".", "set_profiler_class", "(", "profiler_class", ")", "viewer", ".", "set_result", "(", "stats", ",", "cpu_time", ",", "wall_time", ",", "title", "=", "title", ",", "at", "=", "time", ")", "viewer", ".", "activate", "(", ")", "elif", "src_type", "in", "(", "'tcp'", ",", "'sock'", ")", ":", "family", "=", "{", "'tcp'", ":", "socket", ".", "AF_INET", ",", "'sock'", ":", "socket", ".", "AF_UNIX", "}", "[", "src_type", "]", "client", "=", "FailoverProfilingClient", "(", "viewer", ",", "loop", ".", "event_loop", ",", "src_name", ",", "family", ",", "title", "=", "title", ")", "client", ".", "start", "(", ")", "try", ":", "loop", ".", "run", "(", ")", "except", "KeyboardInterrupt", ":", "pass" ]
Inspect statistics by TUI view.
[ "Inspect", "statistics", "by", "TUI", "view", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/__main__.py#L707-L727
train
what-studio/profiling
profiling/__main__.py
timeit_profile
def timeit_profile(stmt, number, repeat, setup, profiler_factory, pickle_protocol, dump_filename, mono, **_ignored): """Profile a Python statement like timeit.""" del _ignored globals_ = {} exec_(setup, globals_) if number is None: # determine number so that 0.2 <= total time < 2.0 like timeit. dummy_profiler = profiler_factory() dummy_profiler.start() for x in range(1, 10): number = 10 ** x t = time.time() for y in range(number): exec_(stmt, globals_) if time.time() - t >= 0.2: break dummy_profiler.stop() del dummy_profiler code = compile('for _ in range(%d): %s' % (number, stmt), 'STATEMENT', 'exec') __profile__(stmt, code, globals_, profiler_factory, pickle_protocol=pickle_protocol, dump_filename=dump_filename, mono=mono)
python
def timeit_profile(stmt, number, repeat, setup, profiler_factory, pickle_protocol, dump_filename, mono, **_ignored): """Profile a Python statement like timeit.""" del _ignored globals_ = {} exec_(setup, globals_) if number is None: # determine number so that 0.2 <= total time < 2.0 like timeit. dummy_profiler = profiler_factory() dummy_profiler.start() for x in range(1, 10): number = 10 ** x t = time.time() for y in range(number): exec_(stmt, globals_) if time.time() - t >= 0.2: break dummy_profiler.stop() del dummy_profiler code = compile('for _ in range(%d): %s' % (number, stmt), 'STATEMENT', 'exec') __profile__(stmt, code, globals_, profiler_factory, pickle_protocol=pickle_protocol, dump_filename=dump_filename, mono=mono)
[ "def", "timeit_profile", "(", "stmt", ",", "number", ",", "repeat", ",", "setup", ",", "profiler_factory", ",", "pickle_protocol", ",", "dump_filename", ",", "mono", ",", "*", "*", "_ignored", ")", ":", "del", "_ignored", "globals_", "=", "{", "}", "exec_", "(", "setup", ",", "globals_", ")", "if", "number", "is", "None", ":", "# determine number so that 0.2 <= total time < 2.0 like timeit.", "dummy_profiler", "=", "profiler_factory", "(", ")", "dummy_profiler", ".", "start", "(", ")", "for", "x", "in", "range", "(", "1", ",", "10", ")", ":", "number", "=", "10", "**", "x", "t", "=", "time", ".", "time", "(", ")", "for", "y", "in", "range", "(", "number", ")", ":", "exec_", "(", "stmt", ",", "globals_", ")", "if", "time", ".", "time", "(", ")", "-", "t", ">=", "0.2", ":", "break", "dummy_profiler", ".", "stop", "(", ")", "del", "dummy_profiler", "code", "=", "compile", "(", "'for _ in range(%d): %s'", "%", "(", "number", ",", "stmt", ")", ",", "'STATEMENT'", ",", "'exec'", ")", "__profile__", "(", "stmt", ",", "code", ",", "globals_", ",", "profiler_factory", ",", "pickle_protocol", "=", "pickle_protocol", ",", "dump_filename", "=", "dump_filename", ",", "mono", "=", "mono", ")" ]
Profile a Python statement like timeit.
[ "Profile", "a", "Python", "statement", "like", "timeit", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/__main__.py#L744-L768
train
what-studio/profiling
profiling/stats.py
spread_stats
def spread_stats(stats, spreader=False): """Iterates all descendant statistics under the given root statistics. When ``spreader=True``, each iteration yields a descendant statistics and `spread()` function together. You should call `spread()` if you want to spread the yielded statistics also. """ spread = spread_t() if spreader else True descendants = deque(stats) while descendants: _stats = descendants.popleft() if spreader: spread.clear() yield _stats, spread else: yield _stats if spread: descendants.extend(_stats)
python
def spread_stats(stats, spreader=False): """Iterates all descendant statistics under the given root statistics. When ``spreader=True``, each iteration yields a descendant statistics and `spread()` function together. You should call `spread()` if you want to spread the yielded statistics also. """ spread = spread_t() if spreader else True descendants = deque(stats) while descendants: _stats = descendants.popleft() if spreader: spread.clear() yield _stats, spread else: yield _stats if spread: descendants.extend(_stats)
[ "def", "spread_stats", "(", "stats", ",", "spreader", "=", "False", ")", ":", "spread", "=", "spread_t", "(", ")", "if", "spreader", "else", "True", "descendants", "=", "deque", "(", "stats", ")", "while", "descendants", ":", "_stats", "=", "descendants", ".", "popleft", "(", ")", "if", "spreader", ":", "spread", ".", "clear", "(", ")", "yield", "_stats", ",", "spread", "else", ":", "yield", "_stats", "if", "spread", ":", "descendants", ".", "extend", "(", "_stats", ")" ]
Iterates all descendant statistics under the given root statistics. When ``spreader=True``, each iteration yields a descendant statistics and `spread()` function together. You should call `spread()` if you want to spread the yielded statistics also.
[ "Iterates", "all", "descendant", "statistics", "under", "the", "given", "root", "statistics", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/stats.py#L38-L56
train
what-studio/profiling
profiling/stats.py
Statistics.own_time
def own_time(self): """The exclusive execution time.""" sub_time = sum(stats.deep_time for stats in self) return max(0., self.deep_time - sub_time)
python
def own_time(self): """The exclusive execution time.""" sub_time = sum(stats.deep_time for stats in self) return max(0., self.deep_time - sub_time)
[ "def", "own_time", "(", "self", ")", ":", "sub_time", "=", "sum", "(", "stats", ".", "deep_time", "for", "stats", "in", "self", ")", "return", "max", "(", "0.", ",", "self", ".", "deep_time", "-", "sub_time", ")" ]
The exclusive execution time.
[ "The", "exclusive", "execution", "time", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/stats.py#L137-L140
train
what-studio/profiling
profiling/stats.py
FlatFrozenStatistics.flatten
def flatten(cls, stats): """Makes a flat statistics from the given statistics.""" flat_children = {} for _stats in spread_stats(stats): key = (_stats.name, _stats.filename, _stats.lineno, _stats.module) try: flat_stats = flat_children[key] except KeyError: flat_stats = flat_children[key] = cls(*key) flat_stats.own_hits += _stats.own_hits flat_stats.deep_hits += _stats.deep_hits flat_stats.own_time += _stats.own_time flat_stats.deep_time += _stats.deep_time children = list(itervalues(flat_children)) return cls(stats.name, stats.filename, stats.lineno, stats.module, stats.own_hits, stats.deep_hits, stats.own_time, stats.deep_time, children)
python
def flatten(cls, stats): """Makes a flat statistics from the given statistics.""" flat_children = {} for _stats in spread_stats(stats): key = (_stats.name, _stats.filename, _stats.lineno, _stats.module) try: flat_stats = flat_children[key] except KeyError: flat_stats = flat_children[key] = cls(*key) flat_stats.own_hits += _stats.own_hits flat_stats.deep_hits += _stats.deep_hits flat_stats.own_time += _stats.own_time flat_stats.deep_time += _stats.deep_time children = list(itervalues(flat_children)) return cls(stats.name, stats.filename, stats.lineno, stats.module, stats.own_hits, stats.deep_hits, stats.own_time, stats.deep_time, children)
[ "def", "flatten", "(", "cls", ",", "stats", ")", ":", "flat_children", "=", "{", "}", "for", "_stats", "in", "spread_stats", "(", "stats", ")", ":", "key", "=", "(", "_stats", ".", "name", ",", "_stats", ".", "filename", ",", "_stats", ".", "lineno", ",", "_stats", ".", "module", ")", "try", ":", "flat_stats", "=", "flat_children", "[", "key", "]", "except", "KeyError", ":", "flat_stats", "=", "flat_children", "[", "key", "]", "=", "cls", "(", "*", "key", ")", "flat_stats", ".", "own_hits", "+=", "_stats", ".", "own_hits", "flat_stats", ".", "deep_hits", "+=", "_stats", ".", "deep_hits", "flat_stats", ".", "own_time", "+=", "_stats", ".", "own_time", "flat_stats", ".", "deep_time", "+=", "_stats", ".", "deep_time", "children", "=", "list", "(", "itervalues", "(", "flat_children", ")", ")", "return", "cls", "(", "stats", ".", "name", ",", "stats", ".", "filename", ",", "stats", ".", "lineno", ",", "stats", ".", "module", ",", "stats", ".", "own_hits", ",", "stats", ".", "deep_hits", ",", "stats", ".", "own_time", ",", "stats", ".", "deep_time", ",", "children", ")" ]
Makes a flat statistics from the given statistics.
[ "Makes", "a", "flat", "statistics", "from", "the", "given", "statistics", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/stats.py#L357-L373
train
what-studio/profiling
setup.py
requirements
def requirements(filename): """Reads requirements from a file.""" with open(filename) as f: return [x.strip() for x in f.readlines() if x.strip()]
python
def requirements(filename): """Reads requirements from a file.""" with open(filename) as f: return [x.strip() for x in f.readlines() if x.strip()]
[ "def", "requirements", "(", "filename", ")", ":", "with", "open", "(", "filename", ")", "as", "f", ":", "return", "[", "x", ".", "strip", "(", ")", "for", "x", "in", "f", ".", "readlines", "(", ")", "if", "x", ".", "strip", "(", ")", "]" ]
Reads requirements from a file.
[ "Reads", "requirements", "from", "a", "file", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/setup.py#L68-L71
train
what-studio/profiling
profiling/sampling/__init__.py
SamplingProfiler.sample
def sample(self, frame): """Samples the given frame.""" frames = self.frame_stack(frame) if frames: frames.pop() parent_stats = self.stats for f in frames: parent_stats = parent_stats.ensure_child(f.f_code, void) stats = parent_stats.ensure_child(frame.f_code, RecordingStatistics) stats.own_hits += 1
python
def sample(self, frame): """Samples the given frame.""" frames = self.frame_stack(frame) if frames: frames.pop() parent_stats = self.stats for f in frames: parent_stats = parent_stats.ensure_child(f.f_code, void) stats = parent_stats.ensure_child(frame.f_code, RecordingStatistics) stats.own_hits += 1
[ "def", "sample", "(", "self", ",", "frame", ")", ":", "frames", "=", "self", ".", "frame_stack", "(", "frame", ")", "if", "frames", ":", "frames", ".", "pop", "(", ")", "parent_stats", "=", "self", ".", "stats", "for", "f", "in", "frames", ":", "parent_stats", "=", "parent_stats", ".", "ensure_child", "(", "f", ".", "f_code", ",", "void", ")", "stats", "=", "parent_stats", ".", "ensure_child", "(", "frame", ".", "f_code", ",", "RecordingStatistics", ")", "stats", ".", "own_hits", "+=", "1" ]
Samples the given frame.
[ "Samples", "the", "given", "frame", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/sampling/__init__.py#L65-L74
train
what-studio/profiling
profiling/utils.py
deferral
def deferral(): """Defers a function call when it is being required like Go. :: with deferral() as defer: sys.setprofile(f) defer(sys.setprofile, None) # do something. """ deferred = [] defer = lambda f, *a, **k: deferred.append((f, a, k)) try: yield defer finally: while deferred: f, a, k = deferred.pop() f(*a, **k)
python
def deferral(): """Defers a function call when it is being required like Go. :: with deferral() as defer: sys.setprofile(f) defer(sys.setprofile, None) # do something. """ deferred = [] defer = lambda f, *a, **k: deferred.append((f, a, k)) try: yield defer finally: while deferred: f, a, k = deferred.pop() f(*a, **k)
[ "def", "deferral", "(", ")", ":", "deferred", "=", "[", "]", "defer", "=", "lambda", "f", ",", "*", "a", ",", "*", "*", "k", ":", "deferred", ".", "append", "(", "(", "f", ",", "a", ",", "k", ")", ")", "try", ":", "yield", "defer", "finally", ":", "while", "deferred", ":", "f", ",", "a", ",", "k", "=", "deferred", ".", "pop", "(", ")", "f", "(", "*", "a", ",", "*", "*", "k", ")" ]
Defers a function call when it is being required like Go. :: with deferral() as defer: sys.setprofile(f) defer(sys.setprofile, None) # do something.
[ "Defers", "a", "function", "call", "when", "it", "is", "being", "required", "like", "Go", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/utils.py#L135-L153
train
what-studio/profiling
profiling/utils.py
Runnable.start
def start(self, *args, **kwargs): """Starts the instance. :raises RuntimeError: has been already started. :raises TypeError: :meth:`run` is not canonical. """ if self.is_running(): raise RuntimeError('Already started') self._running = self.run(*args, **kwargs) try: yielded = next(self._running) except StopIteration: raise TypeError('run() must yield just one time') if yielded is not None: raise TypeError('run() must yield without value')
python
def start(self, *args, **kwargs): """Starts the instance. :raises RuntimeError: has been already started. :raises TypeError: :meth:`run` is not canonical. """ if self.is_running(): raise RuntimeError('Already started') self._running = self.run(*args, **kwargs) try: yielded = next(self._running) except StopIteration: raise TypeError('run() must yield just one time') if yielded is not None: raise TypeError('run() must yield without value')
[ "def", "start", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "if", "self", ".", "is_running", "(", ")", ":", "raise", "RuntimeError", "(", "'Already started'", ")", "self", ".", "_running", "=", "self", ".", "run", "(", "*", "args", ",", "*", "*", "kwargs", ")", "try", ":", "yielded", "=", "next", "(", "self", ".", "_running", ")", "except", "StopIteration", ":", "raise", "TypeError", "(", "'run() must yield just one time'", ")", "if", "yielded", "is", "not", "None", ":", "raise", "TypeError", "(", "'run() must yield without value'", ")" ]
Starts the instance. :raises RuntimeError: has been already started. :raises TypeError: :meth:`run` is not canonical.
[ "Starts", "the", "instance", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/utils.py#L38-L53
train
what-studio/profiling
profiling/utils.py
Runnable.stop
def stop(self): """Stops the instance. :raises RuntimeError: has not been started. :raises TypeError: :meth:`run` is not canonical. """ if not self.is_running(): raise RuntimeError('Not started') running, self._running = self._running, None try: next(running) except StopIteration: # expected. pass else: raise TypeError('run() must yield just one time')
python
def stop(self): """Stops the instance. :raises RuntimeError: has not been started. :raises TypeError: :meth:`run` is not canonical. """ if not self.is_running(): raise RuntimeError('Not started') running, self._running = self._running, None try: next(running) except StopIteration: # expected. pass else: raise TypeError('run() must yield just one time')
[ "def", "stop", "(", "self", ")", ":", "if", "not", "self", ".", "is_running", "(", ")", ":", "raise", "RuntimeError", "(", "'Not started'", ")", "running", ",", "self", ".", "_running", "=", "self", ".", "_running", ",", "None", "try", ":", "next", "(", "running", ")", "except", "StopIteration", ":", "# expected.", "pass", "else", ":", "raise", "TypeError", "(", "'run() must yield just one time'", ")" ]
Stops the instance. :raises RuntimeError: has not been started. :raises TypeError: :meth:`run` is not canonical.
[ "Stops", "the", "instance", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/utils.py#L55-L71
train
what-studio/profiling
profiling/remote/select.py
SelectProfilingServer.sockets
def sockets(self): """Returns the set of the sockets.""" if self.listener is None: return self.clients else: return self.clients.union([self.listener])
python
def sockets(self): """Returns the set of the sockets.""" if self.listener is None: return self.clients else: return self.clients.union([self.listener])
[ "def", "sockets", "(", "self", ")", ":", "if", "self", ".", "listener", "is", "None", ":", "return", "self", ".", "clients", "else", ":", "return", "self", ".", "clients", ".", "union", "(", "[", "self", ".", "listener", "]", ")" ]
Returns the set of the sockets.
[ "Returns", "the", "set", "of", "the", "sockets", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/remote/select.py#L62-L67
train
what-studio/profiling
profiling/remote/select.py
SelectProfilingServer.select_sockets
def select_sockets(self, timeout=None): """EINTR safe version of `select`. It focuses on just incoming sockets. """ if timeout is not None: t = time.time() while True: try: ready, __, __ = select.select(self.sockets(), (), (), timeout) except ValueError: # there's fd=0 socket. pass except select.error as exc: # ignore an interrupted system call. if exc.args[0] != EINTR: raise else: # succeeded. return ready # retry. if timeout is None: continue # decrease timeout. t2 = time.time() timeout -= t2 - t t = t2 if timeout <= 0: # timed out. return []
python
def select_sockets(self, timeout=None): """EINTR safe version of `select`. It focuses on just incoming sockets. """ if timeout is not None: t = time.time() while True: try: ready, __, __ = select.select(self.sockets(), (), (), timeout) except ValueError: # there's fd=0 socket. pass except select.error as exc: # ignore an interrupted system call. if exc.args[0] != EINTR: raise else: # succeeded. return ready # retry. if timeout is None: continue # decrease timeout. t2 = time.time() timeout -= t2 - t t = t2 if timeout <= 0: # timed out. return []
[ "def", "select_sockets", "(", "self", ",", "timeout", "=", "None", ")", ":", "if", "timeout", "is", "not", "None", ":", "t", "=", "time", ".", "time", "(", ")", "while", "True", ":", "try", ":", "ready", ",", "__", ",", "__", "=", "select", ".", "select", "(", "self", ".", "sockets", "(", ")", ",", "(", ")", ",", "(", ")", ",", "timeout", ")", "except", "ValueError", ":", "# there's fd=0 socket.", "pass", "except", "select", ".", "error", "as", "exc", ":", "# ignore an interrupted system call.", "if", "exc", ".", "args", "[", "0", "]", "!=", "EINTR", ":", "raise", "else", ":", "# succeeded.", "return", "ready", "# retry.", "if", "timeout", "is", "None", ":", "continue", "# decrease timeout.", "t2", "=", "time", ".", "time", "(", ")", "timeout", "-=", "t2", "-", "t", "t", "=", "t2", "if", "timeout", "<=", "0", ":", "# timed out.", "return", "[", "]" ]
EINTR safe version of `select`. It focuses on just incoming sockets.
[ "EINTR", "safe", "version", "of", "select", ".", "It", "focuses", "on", "just", "incoming", "sockets", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/remote/select.py#L69-L97
train
what-studio/profiling
profiling/remote/select.py
SelectProfilingServer.dispatch_sockets
def dispatch_sockets(self, timeout=None): """Dispatches incoming sockets.""" for sock in self.select_sockets(timeout=timeout): if sock is self.listener: listener = sock sock, addr = listener.accept() self.connected(sock) else: try: sock.recv(1) except socket.error as exc: if exc.errno != ECONNRESET: raise self.disconnected(sock)
python
def dispatch_sockets(self, timeout=None): """Dispatches incoming sockets.""" for sock in self.select_sockets(timeout=timeout): if sock is self.listener: listener = sock sock, addr = listener.accept() self.connected(sock) else: try: sock.recv(1) except socket.error as exc: if exc.errno != ECONNRESET: raise self.disconnected(sock)
[ "def", "dispatch_sockets", "(", "self", ",", "timeout", "=", "None", ")", ":", "for", "sock", "in", "self", ".", "select_sockets", "(", "timeout", "=", "timeout", ")", ":", "if", "sock", "is", "self", ".", "listener", ":", "listener", "=", "sock", "sock", ",", "addr", "=", "listener", ".", "accept", "(", ")", "self", ".", "connected", "(", "sock", ")", "else", ":", "try", ":", "sock", ".", "recv", "(", "1", ")", "except", "socket", ".", "error", "as", "exc", ":", "if", "exc", ".", "errno", "!=", "ECONNRESET", ":", "raise", "self", ".", "disconnected", "(", "sock", ")" ]
Dispatches incoming sockets.
[ "Dispatches", "incoming", "sockets", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/remote/select.py#L99-L112
train
what-studio/profiling
profiling/tracing/__init__.py
TracingProfiler.record_entering
def record_entering(self, time, code, frame_key, parent_stats): """Entered to a function call.""" stats = parent_stats.ensure_child(code, RecordingStatistics) self._times_entered[(code, frame_key)] = time stats.own_hits += 1
python
def record_entering(self, time, code, frame_key, parent_stats): """Entered to a function call.""" stats = parent_stats.ensure_child(code, RecordingStatistics) self._times_entered[(code, frame_key)] = time stats.own_hits += 1
[ "def", "record_entering", "(", "self", ",", "time", ",", "code", ",", "frame_key", ",", "parent_stats", ")", ":", "stats", "=", "parent_stats", ".", "ensure_child", "(", "code", ",", "RecordingStatistics", ")", "self", ".", "_times_entered", "[", "(", "code", ",", "frame_key", ")", "]", "=", "time", "stats", ".", "own_hits", "+=", "1" ]
Entered to a function call.
[ "Entered", "to", "a", "function", "call", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/tracing/__init__.py#L110-L114
train
what-studio/profiling
profiling/tracing/__init__.py
TracingProfiler.record_leaving
def record_leaving(self, time, code, frame_key, parent_stats): """Left from a function call.""" try: stats = parent_stats.get_child(code) time_entered = self._times_entered.pop((code, frame_key)) except KeyError: return time_elapsed = time - time_entered stats.deep_time += max(0, time_elapsed)
python
def record_leaving(self, time, code, frame_key, parent_stats): """Left from a function call.""" try: stats = parent_stats.get_child(code) time_entered = self._times_entered.pop((code, frame_key)) except KeyError: return time_elapsed = time - time_entered stats.deep_time += max(0, time_elapsed)
[ "def", "record_leaving", "(", "self", ",", "time", ",", "code", ",", "frame_key", ",", "parent_stats", ")", ":", "try", ":", "stats", "=", "parent_stats", ".", "get_child", "(", "code", ")", "time_entered", "=", "self", ".", "_times_entered", ".", "pop", "(", "(", "code", ",", "frame_key", ")", ")", "except", "KeyError", ":", "return", "time_elapsed", "=", "time", "-", "time_entered", "stats", ".", "deep_time", "+=", "max", "(", "0", ",", "time_elapsed", ")" ]
Left from a function call.
[ "Left", "from", "a", "function", "call", "." ]
49666ba3ea295eb73782ae6c18a4ec7929d7d8b7
https://github.com/what-studio/profiling/blob/49666ba3ea295eb73782ae6c18a4ec7929d7d8b7/profiling/tracing/__init__.py#L116-L124
train
semiversus/python-broqer
broqer/op/subscribers/sink.py
build_sink
def build_sink(function: Callable[..., None] = None, *, unpack: bool = False): """ Decorator to wrap a function to return a Sink subscriber. :param function: function to be wrapped :param unpack: value from emits will be unpacked (*value) """ def _build_sink(function: Callable[..., None]): @wraps(function) def _wrapper(*args, **kwargs) -> Sink: if 'unpack' in kwargs: raise TypeError('"unpack" has to be defined by decorator') return Sink(function, *args, unpack=unpack, **kwargs) return _wrapper if function: return _build_sink(function) return _build_sink
python
def build_sink(function: Callable[..., None] = None, *, unpack: bool = False): """ Decorator to wrap a function to return a Sink subscriber. :param function: function to be wrapped :param unpack: value from emits will be unpacked (*value) """ def _build_sink(function: Callable[..., None]): @wraps(function) def _wrapper(*args, **kwargs) -> Sink: if 'unpack' in kwargs: raise TypeError('"unpack" has to be defined by decorator') return Sink(function, *args, unpack=unpack, **kwargs) return _wrapper if function: return _build_sink(function) return _build_sink
[ "def", "build_sink", "(", "function", ":", "Callable", "[", "...", ",", "None", "]", "=", "None", ",", "*", ",", "unpack", ":", "bool", "=", "False", ")", ":", "def", "_build_sink", "(", "function", ":", "Callable", "[", "...", ",", "None", "]", ")", ":", "@", "wraps", "(", "function", ")", "def", "_wrapper", "(", "*", "args", ",", "*", "*", "kwargs", ")", "->", "Sink", ":", "if", "'unpack'", "in", "kwargs", ":", "raise", "TypeError", "(", "'\"unpack\" has to be defined by decorator'", ")", "return", "Sink", "(", "function", ",", "*", "args", ",", "unpack", "=", "unpack", ",", "*", "*", "kwargs", ")", "return", "_wrapper", "if", "function", ":", "return", "_build_sink", "(", "function", ")", "return", "_build_sink" ]
Decorator to wrap a function to return a Sink subscriber. :param function: function to be wrapped :param unpack: value from emits will be unpacked (*value)
[ "Decorator", "to", "wrap", "a", "function", "to", "return", "a", "Sink", "subscriber", "." ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/op/subscribers/sink.py#L62-L80
train
semiversus/python-broqer
broqer/op/map_.py
build_map
def build_map(function: Callable[[Any], Any] = None, unpack: bool = False): """ Decorator to wrap a function to return a Map operator. :param function: function to be wrapped :param unpack: value from emits will be unpacked (*value) """ def _build_map(function: Callable[[Any], Any]): @wraps(function) def _wrapper(*args, **kwargs) -> Map: if 'unpack' in kwargs: raise TypeError('"unpack" has to be defined by decorator') return Map(function, *args, unpack=unpack, **kwargs) return _wrapper if function: return _build_map(function) return _build_map
python
def build_map(function: Callable[[Any], Any] = None, unpack: bool = False): """ Decorator to wrap a function to return a Map operator. :param function: function to be wrapped :param unpack: value from emits will be unpacked (*value) """ def _build_map(function: Callable[[Any], Any]): @wraps(function) def _wrapper(*args, **kwargs) -> Map: if 'unpack' in kwargs: raise TypeError('"unpack" has to be defined by decorator') return Map(function, *args, unpack=unpack, **kwargs) return _wrapper if function: return _build_map(function) return _build_map
[ "def", "build_map", "(", "function", ":", "Callable", "[", "[", "Any", "]", ",", "Any", "]", "=", "None", ",", "unpack", ":", "bool", "=", "False", ")", ":", "def", "_build_map", "(", "function", ":", "Callable", "[", "[", "Any", "]", ",", "Any", "]", ")", ":", "@", "wraps", "(", "function", ")", "def", "_wrapper", "(", "*", "args", ",", "*", "*", "kwargs", ")", "->", "Map", ":", "if", "'unpack'", "in", "kwargs", ":", "raise", "TypeError", "(", "'\"unpack\" has to be defined by decorator'", ")", "return", "Map", "(", "function", ",", "*", "args", ",", "unpack", "=", "unpack", ",", "*", "*", "kwargs", ")", "return", "_wrapper", "if", "function", ":", "return", "_build_map", "(", "function", ")", "return", "_build_map" ]
Decorator to wrap a function to return a Map operator. :param function: function to be wrapped :param unpack: value from emits will be unpacked (*value)
[ "Decorator", "to", "wrap", "a", "function", "to", "return", "a", "Map", "operator", "." ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/op/map_.py#L92-L110
train
semiversus/python-broqer
broqer/op/subscribers/trace.py
Trace._trace_handler
def _trace_handler(publisher, value, label=None): """ Default trace handler is printing the timestamp, the publisher name and the emitted value """ line = '--- %8.3f: ' % (time() - Trace._timestamp_start) line += repr(publisher) if label is None else label line += ' %r' % (value,) print(line)
python
def _trace_handler(publisher, value, label=None): """ Default trace handler is printing the timestamp, the publisher name and the emitted value """ line = '--- %8.3f: ' % (time() - Trace._timestamp_start) line += repr(publisher) if label is None else label line += ' %r' % (value,) print(line)
[ "def", "_trace_handler", "(", "publisher", ",", "value", ",", "label", "=", "None", ")", ":", "line", "=", "'--- %8.3f: '", "%", "(", "time", "(", ")", "-", "Trace", ".", "_timestamp_start", ")", "line", "+=", "repr", "(", "publisher", ")", "if", "label", "is", "None", "else", "label", "line", "+=", "' %r'", "%", "(", "value", ",", ")", "print", "(", "line", ")" ]
Default trace handler is printing the timestamp, the publisher name and the emitted value
[ "Default", "trace", "handler", "is", "printing", "the", "timestamp", "the", "publisher", "name", "and", "the", "emitted", "value" ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/op/subscribers/trace.py#L45-L52
train
semiversus/python-broqer
broqer/op/subscribers/sink_async.py
build_sink_async
def build_sink_async(coro=None, *, mode=None, unpack: bool = False): """ Decorator to wrap a coroutine to return a SinkAsync subscriber. :param coro: coroutine to be wrapped :param mode: behavior when a value is currently processed :param unpack: value from emits will be unpacked (*value) """ _mode = mode def _build_sink_async(coro): @wraps(coro) def _wrapper(*args, mode=None, **kwargs) -> SinkAsync: if 'unpack' in kwargs: raise TypeError('"unpack" has to be defined by decorator') if mode is None: mode = MODE.CONCURRENT if _mode is None else _mode return SinkAsync(coro, *args, mode=mode, unpack=unpack, **kwargs) return _wrapper if coro: return _build_sink_async(coro) return _build_sink_async
python
def build_sink_async(coro=None, *, mode=None, unpack: bool = False): """ Decorator to wrap a coroutine to return a SinkAsync subscriber. :param coro: coroutine to be wrapped :param mode: behavior when a value is currently processed :param unpack: value from emits will be unpacked (*value) """ _mode = mode def _build_sink_async(coro): @wraps(coro) def _wrapper(*args, mode=None, **kwargs) -> SinkAsync: if 'unpack' in kwargs: raise TypeError('"unpack" has to be defined by decorator') if mode is None: mode = MODE.CONCURRENT if _mode is None else _mode return SinkAsync(coro, *args, mode=mode, unpack=unpack, **kwargs) return _wrapper if coro: return _build_sink_async(coro) return _build_sink_async
[ "def", "build_sink_async", "(", "coro", "=", "None", ",", "*", ",", "mode", "=", "None", ",", "unpack", ":", "bool", "=", "False", ")", ":", "_mode", "=", "mode", "def", "_build_sink_async", "(", "coro", ")", ":", "@", "wraps", "(", "coro", ")", "def", "_wrapper", "(", "*", "args", ",", "mode", "=", "None", ",", "*", "*", "kwargs", ")", "->", "SinkAsync", ":", "if", "'unpack'", "in", "kwargs", ":", "raise", "TypeError", "(", "'\"unpack\" has to be defined by decorator'", ")", "if", "mode", "is", "None", ":", "mode", "=", "MODE", ".", "CONCURRENT", "if", "_mode", "is", "None", "else", "_mode", "return", "SinkAsync", "(", "coro", ",", "*", "args", ",", "mode", "=", "mode", ",", "unpack", "=", "unpack", ",", "*", "*", "kwargs", ")", "return", "_wrapper", "if", "coro", ":", "return", "_build_sink_async", "(", "coro", ")", "return", "_build_sink_async" ]
Decorator to wrap a coroutine to return a SinkAsync subscriber. :param coro: coroutine to be wrapped :param mode: behavior when a value is currently processed :param unpack: value from emits will be unpacked (*value)
[ "Decorator", "to", "wrap", "a", "coroutine", "to", "return", "a", "SinkAsync", "subscriber", "." ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/op/subscribers/sink_async.py#L60-L82
train
semiversus/python-broqer
broqer/op/accumulate.py
build_accumulate
def build_accumulate(function: Callable[[Any, Any], Tuple[Any, Any]] = None, *, init: Any = NONE): """ Decorator to wrap a function to return an Accumulate operator. :param function: function to be wrapped :param init: optional initialization for state """ _init = init def _build_accumulate(function: Callable[[Any, Any], Tuple[Any, Any]]): @wraps(function) def _wrapper(init=NONE) -> Accumulate: init = _init if init is NONE else init if init is NONE: raise TypeError('"init" argument has to be defined') return Accumulate(function, init=init) return _wrapper if function: return _build_accumulate(function) return _build_accumulate
python
def build_accumulate(function: Callable[[Any, Any], Tuple[Any, Any]] = None, *, init: Any = NONE): """ Decorator to wrap a function to return an Accumulate operator. :param function: function to be wrapped :param init: optional initialization for state """ _init = init def _build_accumulate(function: Callable[[Any, Any], Tuple[Any, Any]]): @wraps(function) def _wrapper(init=NONE) -> Accumulate: init = _init if init is NONE else init if init is NONE: raise TypeError('"init" argument has to be defined') return Accumulate(function, init=init) return _wrapper if function: return _build_accumulate(function) return _build_accumulate
[ "def", "build_accumulate", "(", "function", ":", "Callable", "[", "[", "Any", ",", "Any", "]", ",", "Tuple", "[", "Any", ",", "Any", "]", "]", "=", "None", ",", "*", ",", "init", ":", "Any", "=", "NONE", ")", ":", "_init", "=", "init", "def", "_build_accumulate", "(", "function", ":", "Callable", "[", "[", "Any", ",", "Any", "]", ",", "Tuple", "[", "Any", ",", "Any", "]", "]", ")", ":", "@", "wraps", "(", "function", ")", "def", "_wrapper", "(", "init", "=", "NONE", ")", "->", "Accumulate", ":", "init", "=", "_init", "if", "init", "is", "NONE", "else", "init", "if", "init", "is", "NONE", ":", "raise", "TypeError", "(", "'\"init\" argument has to be defined'", ")", "return", "Accumulate", "(", "function", ",", "init", "=", "init", ")", "return", "_wrapper", "if", "function", ":", "return", "_build_accumulate", "(", "function", ")", "return", "_build_accumulate" ]
Decorator to wrap a function to return an Accumulate operator. :param function: function to be wrapped :param init: optional initialization for state
[ "Decorator", "to", "wrap", "a", "function", "to", "return", "an", "Accumulate", "operator", "." ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/op/accumulate.py#L75-L96
train
semiversus/python-broqer
broqer/hub/utils/datatype_check.py
resolve_meta_key
def resolve_meta_key(hub, key, meta): """ Resolve a value when it's a string and starts with '>' """ if key not in meta: return None value = meta[key] if isinstance(value, str) and value[0] == '>': topic = value[1:] if topic not in hub: raise KeyError('topic %s not found in hub' % topic) return hub[topic].get() return value
python
def resolve_meta_key(hub, key, meta): """ Resolve a value when it's a string and starts with '>' """ if key not in meta: return None value = meta[key] if isinstance(value, str) and value[0] == '>': topic = value[1:] if topic not in hub: raise KeyError('topic %s not found in hub' % topic) return hub[topic].get() return value
[ "def", "resolve_meta_key", "(", "hub", ",", "key", ",", "meta", ")", ":", "if", "key", "not", "in", "meta", ":", "return", "None", "value", "=", "meta", "[", "key", "]", "if", "isinstance", "(", "value", ",", "str", ")", "and", "value", "[", "0", "]", "==", "'>'", ":", "topic", "=", "value", "[", "1", ":", "]", "if", "topic", "not", "in", "hub", ":", "raise", "KeyError", "(", "'topic %s not found in hub'", "%", "topic", ")", "return", "hub", "[", "topic", "]", ".", "get", "(", ")", "return", "value" ]
Resolve a value when it's a string and starts with '>'
[ "Resolve", "a", "value", "when", "it", "s", "a", "string", "and", "starts", "with", ">" ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/hub/utils/datatype_check.py#L10-L20
train
semiversus/python-broqer
broqer/hub/utils/datatype_check.py
DTTopic.checked_emit
def checked_emit(self, value: Any) -> asyncio.Future: """ Casting and checking in one call """ if not isinstance(self._subject, Subscriber): raise TypeError('Topic %r has to be a subscriber' % self._path) value = self.cast(value) self.check(value) return self._subject.emit(value, who=self)
python
def checked_emit(self, value: Any) -> asyncio.Future: """ Casting and checking in one call """ if not isinstance(self._subject, Subscriber): raise TypeError('Topic %r has to be a subscriber' % self._path) value = self.cast(value) self.check(value) return self._subject.emit(value, who=self)
[ "def", "checked_emit", "(", "self", ",", "value", ":", "Any", ")", "->", "asyncio", ".", "Future", ":", "if", "not", "isinstance", "(", "self", ".", "_subject", ",", "Subscriber", ")", ":", "raise", "TypeError", "(", "'Topic %r has to be a subscriber'", "%", "self", ".", "_path", ")", "value", "=", "self", ".", "cast", "(", "value", ")", "self", ".", "check", "(", "value", ")", "return", "self", ".", "_subject", ".", "emit", "(", "value", ",", "who", "=", "self", ")" ]
Casting and checking in one call
[ "Casting", "and", "checking", "in", "one", "call" ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/hub/utils/datatype_check.py#L178-L186
train
semiversus/python-broqer
broqer/hub/utils/datatype_check.py
DTRegistry.add_datatype
def add_datatype(self, name: str, datatype: DT): """ Register the datatype with it's name """ self._datatypes[name] = datatype
python
def add_datatype(self, name: str, datatype: DT): """ Register the datatype with it's name """ self._datatypes[name] = datatype
[ "def", "add_datatype", "(", "self", ",", "name", ":", "str", ",", "datatype", ":", "DT", ")", ":", "self", ".", "_datatypes", "[", "name", "]", "=", "datatype" ]
Register the datatype with it's name
[ "Register", "the", "datatype", "with", "it", "s", "name" ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/hub/utils/datatype_check.py#L202-L204
train
semiversus/python-broqer
broqer/hub/utils/datatype_check.py
DTRegistry.cast
def cast(self, topic, value): """ Cast a string to the value based on the datatype """ datatype_key = topic.meta.get('datatype', 'none') result = self._datatypes[datatype_key].cast(topic, value) validate_dt = topic.meta.get('validate', None) if validate_dt: result = self._datatypes[validate_dt].cast(topic, result) return result
python
def cast(self, topic, value): """ Cast a string to the value based on the datatype """ datatype_key = topic.meta.get('datatype', 'none') result = self._datatypes[datatype_key].cast(topic, value) validate_dt = topic.meta.get('validate', None) if validate_dt: result = self._datatypes[validate_dt].cast(topic, result) return result
[ "def", "cast", "(", "self", ",", "topic", ",", "value", ")", ":", "datatype_key", "=", "topic", ".", "meta", ".", "get", "(", "'datatype'", ",", "'none'", ")", "result", "=", "self", ".", "_datatypes", "[", "datatype_key", "]", ".", "cast", "(", "topic", ",", "value", ")", "validate_dt", "=", "topic", ".", "meta", ".", "get", "(", "'validate'", ",", "None", ")", "if", "validate_dt", ":", "result", "=", "self", ".", "_datatypes", "[", "validate_dt", "]", ".", "cast", "(", "topic", ",", "result", ")", "return", "result" ]
Cast a string to the value based on the datatype
[ "Cast", "a", "string", "to", "the", "value", "based", "on", "the", "datatype" ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/hub/utils/datatype_check.py#L213-L220
train
semiversus/python-broqer
broqer/hub/utils/datatype_check.py
DTRegistry.check
def check(self, topic, value): """ Checking the value if it fits into the given specification """ datatype_key = topic.meta.get('datatype', 'none') self._datatypes[datatype_key].check(topic, value) validate_dt = topic.meta.get('validate', None) if validate_dt: self._datatypes[validate_dt].check(topic, value)
python
def check(self, topic, value): """ Checking the value if it fits into the given specification """ datatype_key = topic.meta.get('datatype', 'none') self._datatypes[datatype_key].check(topic, value) validate_dt = topic.meta.get('validate', None) if validate_dt: self._datatypes[validate_dt].check(topic, value)
[ "def", "check", "(", "self", ",", "topic", ",", "value", ")", ":", "datatype_key", "=", "topic", ".", "meta", ".", "get", "(", "'datatype'", ",", "'none'", ")", "self", ".", "_datatypes", "[", "datatype_key", "]", ".", "check", "(", "topic", ",", "value", ")", "validate_dt", "=", "topic", ".", "meta", ".", "get", "(", "'validate'", ",", "None", ")", "if", "validate_dt", ":", "self", ".", "_datatypes", "[", "validate_dt", "]", ".", "check", "(", "topic", ",", "value", ")" ]
Checking the value if it fits into the given specification
[ "Checking", "the", "value", "if", "it", "fits", "into", "the", "given", "specification" ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/hub/utils/datatype_check.py#L222-L228
train
semiversus/python-broqer
broqer/op/partition.py
Partition.flush
def flush(self): """ Emits the current queue and clears the queue """ self.notify(tuple(self._queue)) self._queue.clear()
python
def flush(self): """ Emits the current queue and clears the queue """ self.notify(tuple(self._queue)) self._queue.clear()
[ "def", "flush", "(", "self", ")", ":", "self", ".", "notify", "(", "tuple", "(", "self", ".", "_queue", ")", ")", "self", ".", "_queue", ".", "clear", "(", ")" ]
Emits the current queue and clears the queue
[ "Emits", "the", "current", "queue", "and", "clears", "the", "queue" ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/op/partition.py#L66-L69
train
semiversus/python-broqer
broqer/op/sample.py
Sample._periodic_callback
def _periodic_callback(self): """ Will be started on first emit """ try: self.notify(self._state) # emit to all subscribers except Exception: # pylint: disable=broad-except self._error_callback(*sys.exc_info()) if self._subscriptions: # if there are still subscriptions register next _periodic callback self._call_later_handle = \ self._loop.call_later(self._interval, self._periodic_callback) else: self._state = NONE self._call_later_handle = None
python
def _periodic_callback(self): """ Will be started on first emit """ try: self.notify(self._state) # emit to all subscribers except Exception: # pylint: disable=broad-except self._error_callback(*sys.exc_info()) if self._subscriptions: # if there are still subscriptions register next _periodic callback self._call_later_handle = \ self._loop.call_later(self._interval, self._periodic_callback) else: self._state = NONE self._call_later_handle = None
[ "def", "_periodic_callback", "(", "self", ")", ":", "try", ":", "self", ".", "notify", "(", "self", ".", "_state", ")", "# emit to all subscribers", "except", "Exception", ":", "# pylint: disable=broad-except", "self", ".", "_error_callback", "(", "*", "sys", ".", "exc_info", "(", ")", ")", "if", "self", ".", "_subscriptions", ":", "# if there are still subscriptions register next _periodic callback", "self", ".", "_call_later_handle", "=", "self", ".", "_loop", ".", "call_later", "(", "self", ".", "_interval", ",", "self", ".", "_periodic_callback", ")", "else", ":", "self", ".", "_state", "=", "NONE", "self", ".", "_call_later_handle", "=", "None" ]
Will be started on first emit
[ "Will", "be", "started", "on", "first", "emit" ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/op/sample.py#L84-L97
train
semiversus/python-broqer
broqer/op/reduce.py
build_reduce
def build_reduce(function: Callable[[Any, Any], Any] = None, *, init: Any = NONE): """ Decorator to wrap a function to return a Reduce operator. :param function: function to be wrapped :param init: optional initialization for state """ _init = init def _build_reduce(function: Callable[[Any, Any], Any]): @wraps(function) def _wrapper(init=NONE) -> Reduce: init = _init if init is NONE else init if init is NONE: raise TypeError('init argument has to be defined') return Reduce(function, init=init) return _wrapper if function: return _build_reduce(function) return _build_reduce
python
def build_reduce(function: Callable[[Any, Any], Any] = None, *, init: Any = NONE): """ Decorator to wrap a function to return a Reduce operator. :param function: function to be wrapped :param init: optional initialization for state """ _init = init def _build_reduce(function: Callable[[Any, Any], Any]): @wraps(function) def _wrapper(init=NONE) -> Reduce: init = _init if init is NONE else init if init is NONE: raise TypeError('init argument has to be defined') return Reduce(function, init=init) return _wrapper if function: return _build_reduce(function) return _build_reduce
[ "def", "build_reduce", "(", "function", ":", "Callable", "[", "[", "Any", ",", "Any", "]", ",", "Any", "]", "=", "None", ",", "*", ",", "init", ":", "Any", "=", "NONE", ")", ":", "_init", "=", "init", "def", "_build_reduce", "(", "function", ":", "Callable", "[", "[", "Any", ",", "Any", "]", ",", "Any", "]", ")", ":", "@", "wraps", "(", "function", ")", "def", "_wrapper", "(", "init", "=", "NONE", ")", "->", "Reduce", ":", "init", "=", "_init", "if", "init", "is", "NONE", "else", "init", "if", "init", "is", "NONE", ":", "raise", "TypeError", "(", "'init argument has to be defined'", ")", "return", "Reduce", "(", "function", ",", "init", "=", "init", ")", "return", "_wrapper", "if", "function", ":", "return", "_build_reduce", "(", "function", ")", "return", "_build_reduce" ]
Decorator to wrap a function to return a Reduce operator. :param function: function to be wrapped :param init: optional initialization for state
[ "Decorator", "to", "wrap", "a", "function", "to", "return", "a", "Reduce", "operator", "." ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/op/reduce.py#L54-L75
train
semiversus/python-broqer
broqer/op/sliding_window.py
SlidingWindow.flush
def flush(self): """ Flush the queue - this will emit the current queue """ if not self._emit_partial and len(self._state) != self._state.maxlen: self.notify(tuple(self._state)) self._state.clear()
python
def flush(self): """ Flush the queue - this will emit the current queue """ if not self._emit_partial and len(self._state) != self._state.maxlen: self.notify(tuple(self._state)) self._state.clear()
[ "def", "flush", "(", "self", ")", ":", "if", "not", "self", ".", "_emit_partial", "and", "len", "(", "self", ".", "_state", ")", "!=", "self", ".", "_state", ".", "maxlen", ":", "self", ".", "notify", "(", "tuple", "(", "self", ".", "_state", ")", ")", "self", ".", "_state", ".", "clear", "(", ")" ]
Flush the queue - this will emit the current queue
[ "Flush", "the", "queue", "-", "this", "will", "emit", "the", "current", "queue" ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/op/sliding_window.py#L73-L77
train
semiversus/python-broqer
broqer/op/map_async.py
build_map_async
def build_map_async(coro=None, *, mode=None, unpack: bool = False): """ Decorator to wrap a coroutine to return a MapAsync operator. :param coro: coroutine to be wrapped :param mode: behavior when a value is currently processed :param unpack: value from emits will be unpacked (*value) """ _mode = mode def _build_map_async(coro): @wraps(coro) def _wrapper(*args, mode=None, **kwargs) -> MapAsync: if 'unpack' in kwargs: raise TypeError('"unpack" has to be defined by decorator') if mode is None: mode = MODE.CONCURRENT if _mode is None else _mode return MapAsync(coro, *args, mode=mode, unpack=unpack, **kwargs) return _wrapper if coro: return _build_map_async(coro) return _build_map_async
python
def build_map_async(coro=None, *, mode=None, unpack: bool = False): """ Decorator to wrap a coroutine to return a MapAsync operator. :param coro: coroutine to be wrapped :param mode: behavior when a value is currently processed :param unpack: value from emits will be unpacked (*value) """ _mode = mode def _build_map_async(coro): @wraps(coro) def _wrapper(*args, mode=None, **kwargs) -> MapAsync: if 'unpack' in kwargs: raise TypeError('"unpack" has to be defined by decorator') if mode is None: mode = MODE.CONCURRENT if _mode is None else _mode return MapAsync(coro, *args, mode=mode, unpack=unpack, **kwargs) return _wrapper if coro: return _build_map_async(coro) return _build_map_async
[ "def", "build_map_async", "(", "coro", "=", "None", ",", "*", ",", "mode", "=", "None", ",", "unpack", ":", "bool", "=", "False", ")", ":", "_mode", "=", "mode", "def", "_build_map_async", "(", "coro", ")", ":", "@", "wraps", "(", "coro", ")", "def", "_wrapper", "(", "*", "args", ",", "mode", "=", "None", ",", "*", "*", "kwargs", ")", "->", "MapAsync", ":", "if", "'unpack'", "in", "kwargs", ":", "raise", "TypeError", "(", "'\"unpack\" has to be defined by decorator'", ")", "if", "mode", "is", "None", ":", "mode", "=", "MODE", ".", "CONCURRENT", "if", "_mode", "is", "None", "else", "_mode", "return", "MapAsync", "(", "coro", ",", "*", "args", ",", "mode", "=", "mode", ",", "unpack", "=", "unpack", ",", "*", "*", "kwargs", ")", "return", "_wrapper", "if", "coro", ":", "return", "_build_map_async", "(", "coro", ")", "return", "_build_map_async" ]
Decorator to wrap a coroutine to return a MapAsync operator. :param coro: coroutine to be wrapped :param mode: behavior when a value is currently processed :param unpack: value from emits will be unpacked (*value)
[ "Decorator", "to", "wrap", "a", "coroutine", "to", "return", "a", "MapAsync", "operator", "." ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/op/map_async.py#L234-L256
train
semiversus/python-broqer
broqer/op/map_async.py
MapAsync._future_done
def _future_done(self, future): """ Will be called when the coroutine is done """ try: # notify the subscribers (except result is an exception or NONE) result = future.result() # may raise exception if result is not NONE: self.notify(result) # may also raise exception except asyncio.CancelledError: return except Exception: # pylint: disable=broad-except self._options.error_callback(*sys.exc_info()) # check if queue is present and something is in the queue if self._queue: value = self._queue.popleft() # start the coroutine self._run_coro(value) else: self._future = None
python
def _future_done(self, future): """ Will be called when the coroutine is done """ try: # notify the subscribers (except result is an exception or NONE) result = future.result() # may raise exception if result is not NONE: self.notify(result) # may also raise exception except asyncio.CancelledError: return except Exception: # pylint: disable=broad-except self._options.error_callback(*sys.exc_info()) # check if queue is present and something is in the queue if self._queue: value = self._queue.popleft() # start the coroutine self._run_coro(value) else: self._future = None
[ "def", "_future_done", "(", "self", ",", "future", ")", ":", "try", ":", "# notify the subscribers (except result is an exception or NONE)", "result", "=", "future", ".", "result", "(", ")", "# may raise exception", "if", "result", "is", "not", "NONE", ":", "self", ".", "notify", "(", "result", ")", "# may also raise exception", "except", "asyncio", ".", "CancelledError", ":", "return", "except", "Exception", ":", "# pylint: disable=broad-except", "self", ".", "_options", ".", "error_callback", "(", "*", "sys", ".", "exc_info", "(", ")", ")", "# check if queue is present and something is in the queue", "if", "self", ".", "_queue", ":", "value", "=", "self", ".", "_queue", ".", "popleft", "(", ")", "# start the coroutine", "self", ".", "_run_coro", "(", "value", ")", "else", ":", "self", ".", "_future", "=", "None" ]
Will be called when the coroutine is done
[ "Will", "be", "called", "when", "the", "coroutine", "is", "done" ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/op/map_async.py#L188-L207
train
semiversus/python-broqer
broqer/op/map_async.py
MapAsync._run_coro
def _run_coro(self, value): """ Start the coroutine as task """ # when LAST_DISTINCT is used only start coroutine when value changed if self._options.mode is MODE.LAST_DISTINCT and \ value == self._last_emit: self._future = None return # store the value to be emitted for LAST_DISTINCT self._last_emit = value # publish the start of the coroutine self.scheduled.notify(value) # build the coroutine values = value if self._options.unpack else (value,) coro = self._options.coro(*values, *self._options.args, **self._options.kwargs) # create a task out of it and add ._future_done as callback self._future = asyncio.ensure_future(coro) self._future.add_done_callback(self._future_done)
python
def _run_coro(self, value): """ Start the coroutine as task """ # when LAST_DISTINCT is used only start coroutine when value changed if self._options.mode is MODE.LAST_DISTINCT and \ value == self._last_emit: self._future = None return # store the value to be emitted for LAST_DISTINCT self._last_emit = value # publish the start of the coroutine self.scheduled.notify(value) # build the coroutine values = value if self._options.unpack else (value,) coro = self._options.coro(*values, *self._options.args, **self._options.kwargs) # create a task out of it and add ._future_done as callback self._future = asyncio.ensure_future(coro) self._future.add_done_callback(self._future_done)
[ "def", "_run_coro", "(", "self", ",", "value", ")", ":", "# when LAST_DISTINCT is used only start coroutine when value changed", "if", "self", ".", "_options", ".", "mode", "is", "MODE", ".", "LAST_DISTINCT", "and", "value", "==", "self", ".", "_last_emit", ":", "self", ".", "_future", "=", "None", "return", "# store the value to be emitted for LAST_DISTINCT", "self", ".", "_last_emit", "=", "value", "# publish the start of the coroutine", "self", ".", "scheduled", ".", "notify", "(", "value", ")", "# build the coroutine", "values", "=", "value", "if", "self", ".", "_options", ".", "unpack", "else", "(", "value", ",", ")", "coro", "=", "self", ".", "_options", ".", "coro", "(", "*", "values", ",", "*", "self", ".", "_options", ".", "args", ",", "*", "*", "self", ".", "_options", ".", "kwargs", ")", "# create a task out of it and add ._future_done as callback", "self", ".", "_future", "=", "asyncio", ".", "ensure_future", "(", "coro", ")", "self", ".", "_future", ".", "add_done_callback", "(", "self", ".", "_future_done", ")" ]
Start the coroutine as task
[ "Start", "the", "coroutine", "as", "task" ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/op/map_async.py#L209-L231
train
semiversus/python-broqer
broqer/op/filter_.py
build_filter
def build_filter(predicate: Callable[[Any], bool] = None, *, unpack: bool = False): """ Decorator to wrap a function to return a Filter operator. :param predicate: function to be wrapped :param unpack: value from emits will be unpacked (*value) """ def _build_filter(predicate: Callable[[Any], bool]): @wraps(predicate) def _wrapper(*args, **kwargs) -> Filter: if 'unpack' in kwargs: raise TypeError('"unpack" has to be defined by decorator') return Filter(predicate, *args, unpack=unpack, **kwargs) return _wrapper if predicate: return _build_filter(predicate) return _build_filter
python
def build_filter(predicate: Callable[[Any], bool] = None, *, unpack: bool = False): """ Decorator to wrap a function to return a Filter operator. :param predicate: function to be wrapped :param unpack: value from emits will be unpacked (*value) """ def _build_filter(predicate: Callable[[Any], bool]): @wraps(predicate) def _wrapper(*args, **kwargs) -> Filter: if 'unpack' in kwargs: raise TypeError('"unpack" has to be defined by decorator') return Filter(predicate, *args, unpack=unpack, **kwargs) return _wrapper if predicate: return _build_filter(predicate) return _build_filter
[ "def", "build_filter", "(", "predicate", ":", "Callable", "[", "[", "Any", "]", ",", "bool", "]", "=", "None", ",", "*", ",", "unpack", ":", "bool", "=", "False", ")", ":", "def", "_build_filter", "(", "predicate", ":", "Callable", "[", "[", "Any", "]", ",", "bool", "]", ")", ":", "@", "wraps", "(", "predicate", ")", "def", "_wrapper", "(", "*", "args", ",", "*", "*", "kwargs", ")", "->", "Filter", ":", "if", "'unpack'", "in", "kwargs", ":", "raise", "TypeError", "(", "'\"unpack\" has to be defined by decorator'", ")", "return", "Filter", "(", "predicate", ",", "*", "args", ",", "unpack", "=", "unpack", ",", "*", "*", "kwargs", ")", "return", "_wrapper", "if", "predicate", ":", "return", "_build_filter", "(", "predicate", ")", "return", "_build_filter" ]
Decorator to wrap a function to return a Filter operator. :param predicate: function to be wrapped :param unpack: value from emits will be unpacked (*value)
[ "Decorator", "to", "wrap", "a", "function", "to", "return", "a", "Filter", "operator", "." ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/op/filter_.py#L119-L137
train
semiversus/python-broqer
broqer/op/operator_overloading.py
apply_operator_overloading
def apply_operator_overloading(): """ Function to apply operator overloading to Publisher class """ # operator overloading is (unfortunately) not working for the following # cases: # int, float, str - should return appropriate type instead of a Publisher # len - should return an integer # "x in y" - is using __bool__ which is not working with Publisher for method in ( '__lt__', '__le__', '__eq__', '__ne__', '__ge__', '__gt__', '__add__', '__and__', '__lshift__', '__mod__', '__mul__', '__pow__', '__rshift__', '__sub__', '__xor__', '__concat__', '__getitem__', '__floordiv__', '__truediv__'): def _op(operand_left, operand_right, operation=method): if isinstance(operand_right, Publisher): return CombineLatest(operand_left, operand_right, map_=getattr(operator, operation)) return _MapConstant(operand_left, operand_right, getattr(operator, operation)) setattr(Publisher, method, _op) for method, _method in ( ('__radd__', '__add__'), ('__rand__', '__and__'), ('__rlshift__', '__lshift__'), ('__rmod__', '__mod__'), ('__rmul__', '__mul__'), ('__rpow__', '__pow__'), ('__rrshift__', '__rshift__'), ('__rsub__', '__sub__'), ('__rxor__', '__xor__'), ('__rfloordiv__', '__floordiv__'), ('__rtruediv__', '__truediv__')): def _op(operand_left, operand_right, operation=_method): return _MapConstantReverse(operand_left, operand_right, getattr(operator, operation)) setattr(Publisher, method, _op) for method, _method in ( ('__neg__', operator.neg), ('__pos__', operator.pos), ('__abs__', operator.abs), ('__invert__', operator.invert), ('__round__', round), ('__trunc__', math.trunc), ('__floor__', math.floor), ('__ceil__', math.ceil)): def _op_unary(operand, operation=_method): return _MapUnary(operand, operation) setattr(Publisher, method, _op_unary) def _getattr(publisher, attribute_name): if not publisher.inherited_type or \ not hasattr(publisher.inherited_type, attribute_name): raise AttributeError('Attribute %r not found' % attribute_name) return _GetAttr(publisher, attribute_name) setattr(Publisher, '__getattr__', _getattr)
python
def apply_operator_overloading(): """ Function to apply operator overloading to Publisher class """ # operator overloading is (unfortunately) not working for the following # cases: # int, float, str - should return appropriate type instead of a Publisher # len - should return an integer # "x in y" - is using __bool__ which is not working with Publisher for method in ( '__lt__', '__le__', '__eq__', '__ne__', '__ge__', '__gt__', '__add__', '__and__', '__lshift__', '__mod__', '__mul__', '__pow__', '__rshift__', '__sub__', '__xor__', '__concat__', '__getitem__', '__floordiv__', '__truediv__'): def _op(operand_left, operand_right, operation=method): if isinstance(operand_right, Publisher): return CombineLatest(operand_left, operand_right, map_=getattr(operator, operation)) return _MapConstant(operand_left, operand_right, getattr(operator, operation)) setattr(Publisher, method, _op) for method, _method in ( ('__radd__', '__add__'), ('__rand__', '__and__'), ('__rlshift__', '__lshift__'), ('__rmod__', '__mod__'), ('__rmul__', '__mul__'), ('__rpow__', '__pow__'), ('__rrshift__', '__rshift__'), ('__rsub__', '__sub__'), ('__rxor__', '__xor__'), ('__rfloordiv__', '__floordiv__'), ('__rtruediv__', '__truediv__')): def _op(operand_left, operand_right, operation=_method): return _MapConstantReverse(operand_left, operand_right, getattr(operator, operation)) setattr(Publisher, method, _op) for method, _method in ( ('__neg__', operator.neg), ('__pos__', operator.pos), ('__abs__', operator.abs), ('__invert__', operator.invert), ('__round__', round), ('__trunc__', math.trunc), ('__floor__', math.floor), ('__ceil__', math.ceil)): def _op_unary(operand, operation=_method): return _MapUnary(operand, operation) setattr(Publisher, method, _op_unary) def _getattr(publisher, attribute_name): if not publisher.inherited_type or \ not hasattr(publisher.inherited_type, attribute_name): raise AttributeError('Attribute %r not found' % attribute_name) return _GetAttr(publisher, attribute_name) setattr(Publisher, '__getattr__', _getattr)
[ "def", "apply_operator_overloading", "(", ")", ":", "# operator overloading is (unfortunately) not working for the following", "# cases:", "# int, float, str - should return appropriate type instead of a Publisher", "# len - should return an integer", "# \"x in y\" - is using __bool__ which is not working with Publisher", "for", "method", "in", "(", "'__lt__'", ",", "'__le__'", ",", "'__eq__'", ",", "'__ne__'", ",", "'__ge__'", ",", "'__gt__'", ",", "'__add__'", ",", "'__and__'", ",", "'__lshift__'", ",", "'__mod__'", ",", "'__mul__'", ",", "'__pow__'", ",", "'__rshift__'", ",", "'__sub__'", ",", "'__xor__'", ",", "'__concat__'", ",", "'__getitem__'", ",", "'__floordiv__'", ",", "'__truediv__'", ")", ":", "def", "_op", "(", "operand_left", ",", "operand_right", ",", "operation", "=", "method", ")", ":", "if", "isinstance", "(", "operand_right", ",", "Publisher", ")", ":", "return", "CombineLatest", "(", "operand_left", ",", "operand_right", ",", "map_", "=", "getattr", "(", "operator", ",", "operation", ")", ")", "return", "_MapConstant", "(", "operand_left", ",", "operand_right", ",", "getattr", "(", "operator", ",", "operation", ")", ")", "setattr", "(", "Publisher", ",", "method", ",", "_op", ")", "for", "method", ",", "_method", "in", "(", "(", "'__radd__'", ",", "'__add__'", ")", ",", "(", "'__rand__'", ",", "'__and__'", ")", ",", "(", "'__rlshift__'", ",", "'__lshift__'", ")", ",", "(", "'__rmod__'", ",", "'__mod__'", ")", ",", "(", "'__rmul__'", ",", "'__mul__'", ")", ",", "(", "'__rpow__'", ",", "'__pow__'", ")", ",", "(", "'__rrshift__'", ",", "'__rshift__'", ")", ",", "(", "'__rsub__'", ",", "'__sub__'", ")", ",", "(", "'__rxor__'", ",", "'__xor__'", ")", ",", "(", "'__rfloordiv__'", ",", "'__floordiv__'", ")", ",", "(", "'__rtruediv__'", ",", "'__truediv__'", ")", ")", ":", "def", "_op", "(", "operand_left", ",", "operand_right", ",", "operation", "=", "_method", ")", ":", "return", "_MapConstantReverse", "(", "operand_left", ",", "operand_right", ",", "getattr", "(", "operator", ",", "operation", ")", ")", "setattr", "(", "Publisher", ",", "method", ",", "_op", ")", "for", "method", ",", "_method", "in", "(", "(", "'__neg__'", ",", "operator", ".", "neg", ")", ",", "(", "'__pos__'", ",", "operator", ".", "pos", ")", ",", "(", "'__abs__'", ",", "operator", ".", "abs", ")", ",", "(", "'__invert__'", ",", "operator", ".", "invert", ")", ",", "(", "'__round__'", ",", "round", ")", ",", "(", "'__trunc__'", ",", "math", ".", "trunc", ")", ",", "(", "'__floor__'", ",", "math", ".", "floor", ")", ",", "(", "'__ceil__'", ",", "math", ".", "ceil", ")", ")", ":", "def", "_op_unary", "(", "operand", ",", "operation", "=", "_method", ")", ":", "return", "_MapUnary", "(", "operand", ",", "operation", ")", "setattr", "(", "Publisher", ",", "method", ",", "_op_unary", ")", "def", "_getattr", "(", "publisher", ",", "attribute_name", ")", ":", "if", "not", "publisher", ".", "inherited_type", "or", "not", "hasattr", "(", "publisher", ".", "inherited_type", ",", "attribute_name", ")", ":", "raise", "AttributeError", "(", "'Attribute %r not found'", "%", "attribute_name", ")", "return", "_GetAttr", "(", "publisher", ",", "attribute_name", ")", "setattr", "(", "Publisher", ",", "'__getattr__'", ",", "_getattr", ")" ]
Function to apply operator overloading to Publisher class
[ "Function", "to", "apply", "operator", "overloading", "to", "Publisher", "class" ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/op/operator_overloading.py#L112-L162
train
semiversus/python-broqer
broqer/hub/hub.py
Topic.assign
def assign(self, subject): """ Assigns the given subject to the topic """ if not isinstance(subject, (Publisher, Subscriber)): raise TypeError('Assignee has to be Publisher or Subscriber') # check if not already assigned if self._subject is not None: raise SubscriptionError('Topic %r already assigned' % self._path) self._subject = subject # subscribe to subject if topic has subscriptions if self._subscriptions: self._subject.subscribe(self) # if topic received emits before assignment replay those emits if self._pre_assign_emit is not None: for value in self._pre_assign_emit: self._subject.emit(value, who=self) self._pre_assign_emit = None return subject
python
def assign(self, subject): """ Assigns the given subject to the topic """ if not isinstance(subject, (Publisher, Subscriber)): raise TypeError('Assignee has to be Publisher or Subscriber') # check if not already assigned if self._subject is not None: raise SubscriptionError('Topic %r already assigned' % self._path) self._subject = subject # subscribe to subject if topic has subscriptions if self._subscriptions: self._subject.subscribe(self) # if topic received emits before assignment replay those emits if self._pre_assign_emit is not None: for value in self._pre_assign_emit: self._subject.emit(value, who=self) self._pre_assign_emit = None return subject
[ "def", "assign", "(", "self", ",", "subject", ")", ":", "if", "not", "isinstance", "(", "subject", ",", "(", "Publisher", ",", "Subscriber", ")", ")", ":", "raise", "TypeError", "(", "'Assignee has to be Publisher or Subscriber'", ")", "# check if not already assigned", "if", "self", ".", "_subject", "is", "not", "None", ":", "raise", "SubscriptionError", "(", "'Topic %r already assigned'", "%", "self", ".", "_path", ")", "self", ".", "_subject", "=", "subject", "# subscribe to subject if topic has subscriptions", "if", "self", ".", "_subscriptions", ":", "self", ".", "_subject", ".", "subscribe", "(", "self", ")", "# if topic received emits before assignment replay those emits", "if", "self", ".", "_pre_assign_emit", "is", "not", "None", ":", "for", "value", "in", "self", ".", "_pre_assign_emit", ":", "self", ".", "_subject", ".", "emit", "(", "value", ",", "who", "=", "self", ")", "self", ".", "_pre_assign_emit", "=", "None", "return", "subject" ]
Assigns the given subject to the topic
[ "Assigns", "the", "given", "subject", "to", "the", "topic" ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/hub/hub.py#L149-L170
train
semiversus/python-broqer
broqer/hub/hub.py
Hub.freeze
def freeze(self, freeze: bool = True): """ Freezing the hub means that each topic has to be assigned and no new topics can be created after this point. """ for topic in self._topics.values(): topic.freeze() self._frozen = freeze
python
def freeze(self, freeze: bool = True): """ Freezing the hub means that each topic has to be assigned and no new topics can be created after this point. """ for topic in self._topics.values(): topic.freeze() self._frozen = freeze
[ "def", "freeze", "(", "self", ",", "freeze", ":", "bool", "=", "True", ")", ":", "for", "topic", "in", "self", ".", "_topics", ".", "values", "(", ")", ":", "topic", ".", "freeze", "(", ")", "self", ".", "_frozen", "=", "freeze" ]
Freezing the hub means that each topic has to be assigned and no new topics can be created after this point.
[ "Freezing", "the", "hub", "means", "that", "each", "topic", "has", "to", "be", "assigned", "and", "no", "new", "topics", "can", "be", "created", "after", "this", "point", "." ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/hub/hub.py#L247-L253
train
semiversus/python-broqer
broqer/op/throttle.py
Throttle.reset
def reset(self): """ Reseting duration for throttling """ if self._call_later_handler is not None: self._call_later_handler.cancel() self._call_later_handler = None self._wait_done_cb()
python
def reset(self): """ Reseting duration for throttling """ if self._call_later_handler is not None: self._call_later_handler.cancel() self._call_later_handler = None self._wait_done_cb()
[ "def", "reset", "(", "self", ")", ":", "if", "self", ".", "_call_later_handler", "is", "not", "None", ":", "self", ".", "_call_later_handler", ".", "cancel", "(", ")", "self", ".", "_call_later_handler", "=", "None", "self", ".", "_wait_done_cb", "(", ")" ]
Reseting duration for throttling
[ "Reseting", "duration", "for", "throttling" ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/op/throttle.py#L82-L87
train
semiversus/python-broqer
broqer/op/map_threaded.py
build_map_threaded
def build_map_threaded(function: Callable[[Any], Any] = None, mode=MODE.CONCURRENT, unpack: bool = False): """ Decorator to wrap a function to return a MapThreaded operator. :param function: function to be wrapped :param mode: behavior when a value is currently processed :param unpack: value from emits will be unpacked (*value) """ _mode = mode def _build_map_threaded(function: Callable[[Any], Any]): @wraps(function) def _wrapper(*args, mode=None, **kwargs) -> MapThreaded: if 'unpack' in kwargs: raise TypeError('"unpack" has to be defined by decorator') if mode is None: mode = MODE.CONCURRENT if _mode is None else _mode return MapThreaded(function, *args, mode=mode, unpack=unpack, **kwargs) return _wrapper if function: return _build_map_threaded(function) return _build_map_threaded
python
def build_map_threaded(function: Callable[[Any], Any] = None, mode=MODE.CONCURRENT, unpack: bool = False): """ Decorator to wrap a function to return a MapThreaded operator. :param function: function to be wrapped :param mode: behavior when a value is currently processed :param unpack: value from emits will be unpacked (*value) """ _mode = mode def _build_map_threaded(function: Callable[[Any], Any]): @wraps(function) def _wrapper(*args, mode=None, **kwargs) -> MapThreaded: if 'unpack' in kwargs: raise TypeError('"unpack" has to be defined by decorator') if mode is None: mode = MODE.CONCURRENT if _mode is None else _mode return MapThreaded(function, *args, mode=mode, unpack=unpack, **kwargs) return _wrapper if function: return _build_map_threaded(function) return _build_map_threaded
[ "def", "build_map_threaded", "(", "function", ":", "Callable", "[", "[", "Any", "]", ",", "Any", "]", "=", "None", ",", "mode", "=", "MODE", ".", "CONCURRENT", ",", "unpack", ":", "bool", "=", "False", ")", ":", "_mode", "=", "mode", "def", "_build_map_threaded", "(", "function", ":", "Callable", "[", "[", "Any", "]", ",", "Any", "]", ")", ":", "@", "wraps", "(", "function", ")", "def", "_wrapper", "(", "*", "args", ",", "mode", "=", "None", ",", "*", "*", "kwargs", ")", "->", "MapThreaded", ":", "if", "'unpack'", "in", "kwargs", ":", "raise", "TypeError", "(", "'\"unpack\" has to be defined by decorator'", ")", "if", "mode", "is", "None", ":", "mode", "=", "MODE", ".", "CONCURRENT", "if", "_mode", "is", "None", "else", "_mode", "return", "MapThreaded", "(", "function", ",", "*", "args", ",", "mode", "=", "mode", ",", "unpack", "=", "unpack", ",", "*", "*", "kwargs", ")", "return", "_wrapper", "if", "function", ":", "return", "_build_map_threaded", "(", "function", ")", "return", "_build_map_threaded" ]
Decorator to wrap a function to return a MapThreaded operator. :param function: function to be wrapped :param mode: behavior when a value is currently processed :param unpack: value from emits will be unpacked (*value)
[ "Decorator", "to", "wrap", "a", "function", "to", "return", "a", "MapThreaded", "operator", "." ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/op/map_threaded.py#L130-L154
train
semiversus/python-broqer
broqer/op/map_threaded.py
MapThreaded._thread_coro
async def _thread_coro(self, *args): """ Coroutine called by MapAsync. It's wrapping the call of run_in_executor to run the synchronous function as thread """ return await self._loop.run_in_executor( self._executor, self._function, *args)
python
async def _thread_coro(self, *args): """ Coroutine called by MapAsync. It's wrapping the call of run_in_executor to run the synchronous function as thread """ return await self._loop.run_in_executor( self._executor, self._function, *args)
[ "async", "def", "_thread_coro", "(", "self", ",", "*", "args", ")", ":", "return", "await", "self", ".", "_loop", ".", "run_in_executor", "(", "self", ".", "_executor", ",", "self", ".", "_function", ",", "*", "args", ")" ]
Coroutine called by MapAsync. It's wrapping the call of run_in_executor to run the synchronous function as thread
[ "Coroutine", "called", "by", "MapAsync", ".", "It", "s", "wrapping", "the", "call", "of", "run_in_executor", "to", "run", "the", "synchronous", "function", "as", "thread" ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/op/map_threaded.py#L123-L127
train
semiversus/python-broqer
broqer/op/debounce.py
Debounce.reset
def reset(self): """ Reset the debounce time """ if self._retrigger_value is not NONE: self.notify(self._retrigger_value) self._state = self._retrigger_value self._next_state = self._retrigger_value if self._call_later_handler: self._call_later_handler.cancel() self._call_later_handler = None
python
def reset(self): """ Reset the debounce time """ if self._retrigger_value is not NONE: self.notify(self._retrigger_value) self._state = self._retrigger_value self._next_state = self._retrigger_value if self._call_later_handler: self._call_later_handler.cancel() self._call_later_handler = None
[ "def", "reset", "(", "self", ")", ":", "if", "self", ".", "_retrigger_value", "is", "not", "NONE", ":", "self", ".", "notify", "(", "self", ".", "_retrigger_value", ")", "self", ".", "_state", "=", "self", ".", "_retrigger_value", "self", ".", "_next_state", "=", "self", ".", "_retrigger_value", "if", "self", ".", "_call_later_handler", ":", "self", ".", "_call_later_handler", ".", "cancel", "(", ")", "self", ".", "_call_later_handler", "=", "None" ]
Reset the debounce time
[ "Reset", "the", "debounce", "time" ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/op/debounce.py#L136-L144
train
semiversus/python-broqer
broqer/publisher.py
Publisher.subscribe
def subscribe(self, subscriber: 'Subscriber', prepend: bool = False) -> SubscriptionDisposable: """ Subscribing the given subscriber. :param subscriber: subscriber to add :param prepend: For internal use - usually the subscribers will be added at the end of a list. When prepend is True, it will be added in front of the list. This will habe an effect in the order the subscribers are called. :raises SubscriptionError: if subscriber already subscribed """ # `subscriber in self._subscriptions` is not working because # tuple.__contains__ is using __eq__ which is overwritten and returns # a new publisher - not helpful here if any(subscriber is s for s in self._subscriptions): raise SubscriptionError('Subscriber already registered') if prepend: self._subscriptions.insert(0, subscriber) else: self._subscriptions.append(subscriber) return SubscriptionDisposable(self, subscriber)
python
def subscribe(self, subscriber: 'Subscriber', prepend: bool = False) -> SubscriptionDisposable: """ Subscribing the given subscriber. :param subscriber: subscriber to add :param prepend: For internal use - usually the subscribers will be added at the end of a list. When prepend is True, it will be added in front of the list. This will habe an effect in the order the subscribers are called. :raises SubscriptionError: if subscriber already subscribed """ # `subscriber in self._subscriptions` is not working because # tuple.__contains__ is using __eq__ which is overwritten and returns # a new publisher - not helpful here if any(subscriber is s for s in self._subscriptions): raise SubscriptionError('Subscriber already registered') if prepend: self._subscriptions.insert(0, subscriber) else: self._subscriptions.append(subscriber) return SubscriptionDisposable(self, subscriber)
[ "def", "subscribe", "(", "self", ",", "subscriber", ":", "'Subscriber'", ",", "prepend", ":", "bool", "=", "False", ")", "->", "SubscriptionDisposable", ":", "# `subscriber in self._subscriptions` is not working because", "# tuple.__contains__ is using __eq__ which is overwritten and returns", "# a new publisher - not helpful here", "if", "any", "(", "subscriber", "is", "s", "for", "s", "in", "self", ".", "_subscriptions", ")", ":", "raise", "SubscriptionError", "(", "'Subscriber already registered'", ")", "if", "prepend", ":", "self", ".", "_subscriptions", ".", "insert", "(", "0", ",", "subscriber", ")", "else", ":", "self", ".", "_subscriptions", ".", "append", "(", "subscriber", ")", "return", "SubscriptionDisposable", "(", "self", ",", "subscriber", ")" ]
Subscribing the given subscriber. :param subscriber: subscriber to add :param prepend: For internal use - usually the subscribers will be added at the end of a list. When prepend is True, it will be added in front of the list. This will habe an effect in the order the subscribers are called. :raises SubscriptionError: if subscriber already subscribed
[ "Subscribing", "the", "given", "subscriber", "." ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/publisher.py#L45-L68
train
semiversus/python-broqer
broqer/publisher.py
Publisher.unsubscribe
def unsubscribe(self, subscriber: 'Subscriber') -> None: """ Unsubscribe the given subscriber :param subscriber: subscriber to unsubscribe :raises SubscriptionError: if subscriber is not subscribed (anymore) """ # here is a special implementation which is replacing the more # obvious one: self._subscriptions.remove(subscriber) - this will not # work because list.remove(x) is doing comparision for equality. # Applied to publishers this will return another publisher instead of # a boolean result for i, _s in enumerate(self._subscriptions): if _s is subscriber: self._subscriptions.pop(i) return raise SubscriptionError('Subscriber is not registered')
python
def unsubscribe(self, subscriber: 'Subscriber') -> None: """ Unsubscribe the given subscriber :param subscriber: subscriber to unsubscribe :raises SubscriptionError: if subscriber is not subscribed (anymore) """ # here is a special implementation which is replacing the more # obvious one: self._subscriptions.remove(subscriber) - this will not # work because list.remove(x) is doing comparision for equality. # Applied to publishers this will return another publisher instead of # a boolean result for i, _s in enumerate(self._subscriptions): if _s is subscriber: self._subscriptions.pop(i) return raise SubscriptionError('Subscriber is not registered')
[ "def", "unsubscribe", "(", "self", ",", "subscriber", ":", "'Subscriber'", ")", "->", "None", ":", "# here is a special implementation which is replacing the more", "# obvious one: self._subscriptions.remove(subscriber) - this will not", "# work because list.remove(x) is doing comparision for equality.", "# Applied to publishers this will return another publisher instead of", "# a boolean result", "for", "i", ",", "_s", "in", "enumerate", "(", "self", ".", "_subscriptions", ")", ":", "if", "_s", "is", "subscriber", ":", "self", ".", "_subscriptions", ".", "pop", "(", "i", ")", "return", "raise", "SubscriptionError", "(", "'Subscriber is not registered'", ")" ]
Unsubscribe the given subscriber :param subscriber: subscriber to unsubscribe :raises SubscriptionError: if subscriber is not subscribed (anymore)
[ "Unsubscribe", "the", "given", "subscriber" ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/publisher.py#L70-L85
train
semiversus/python-broqer
broqer/publisher.py
Publisher.inherit_type
def inherit_type(self, type_cls: Type[TInherit]) \ -> Union[TInherit, 'Publisher']: """ enables the usage of method and attribute overloading for this publisher. """ self._inherited_type = type_cls return self
python
def inherit_type(self, type_cls: Type[TInherit]) \ -> Union[TInherit, 'Publisher']: """ enables the usage of method and attribute overloading for this publisher. """ self._inherited_type = type_cls return self
[ "def", "inherit_type", "(", "self", ",", "type_cls", ":", "Type", "[", "TInherit", "]", ")", "->", "Union", "[", "TInherit", ",", "'Publisher'", "]", ":", "self", ".", "_inherited_type", "=", "type_cls", "return", "self" ]
enables the usage of method and attribute overloading for this publisher.
[ "enables", "the", "usage", "of", "method", "and", "attribute", "overloading", "for", "this", "publisher", "." ]
8957110b034f982451392072d9fa16761adc9c9e
https://github.com/semiversus/python-broqer/blob/8957110b034f982451392072d9fa16761adc9c9e/broqer/publisher.py#L150-L156
train
astropy/photutils
photutils/extern/sigma_clipping.py
_move_tuple_axes_first
def _move_tuple_axes_first(array, axis): """ Bottleneck can only take integer axis, not tuple, so this function takes all the axes to be operated on and combines them into the first dimension of the array so that we can then use axis=0 """ # Figure out how many axes we are operating over naxis = len(axis) # Add remaining axes to the axis tuple axis += tuple(i for i in range(array.ndim) if i not in axis) # The new position of each axis is just in order destination = tuple(range(array.ndim)) # Reorder the array so that the axes being operated on are at the beginning array_new = np.moveaxis(array, axis, destination) # Figure out the size of the product of the dimensions being operated on first = np.prod(array_new.shape[:naxis]) # Collapse the dimensions being operated on into a single dimension so that # we can then use axis=0 with the bottleneck functions array_new = array_new.reshape((first,) + array_new.shape[naxis:]) return array_new
python
def _move_tuple_axes_first(array, axis): """ Bottleneck can only take integer axis, not tuple, so this function takes all the axes to be operated on and combines them into the first dimension of the array so that we can then use axis=0 """ # Figure out how many axes we are operating over naxis = len(axis) # Add remaining axes to the axis tuple axis += tuple(i for i in range(array.ndim) if i not in axis) # The new position of each axis is just in order destination = tuple(range(array.ndim)) # Reorder the array so that the axes being operated on are at the beginning array_new = np.moveaxis(array, axis, destination) # Figure out the size of the product of the dimensions being operated on first = np.prod(array_new.shape[:naxis]) # Collapse the dimensions being operated on into a single dimension so that # we can then use axis=0 with the bottleneck functions array_new = array_new.reshape((first,) + array_new.shape[naxis:]) return array_new
[ "def", "_move_tuple_axes_first", "(", "array", ",", "axis", ")", ":", "# Figure out how many axes we are operating over", "naxis", "=", "len", "(", "axis", ")", "# Add remaining axes to the axis tuple", "axis", "+=", "tuple", "(", "i", "for", "i", "in", "range", "(", "array", ".", "ndim", ")", "if", "i", "not", "in", "axis", ")", "# The new position of each axis is just in order", "destination", "=", "tuple", "(", "range", "(", "array", ".", "ndim", ")", ")", "# Reorder the array so that the axes being operated on are at the beginning", "array_new", "=", "np", ".", "moveaxis", "(", "array", ",", "axis", ",", "destination", ")", "# Figure out the size of the product of the dimensions being operated on", "first", "=", "np", ".", "prod", "(", "array_new", ".", "shape", "[", ":", "naxis", "]", ")", "# Collapse the dimensions being operated on into a single dimension so that", "# we can then use axis=0 with the bottleneck functions", "array_new", "=", "array_new", ".", "reshape", "(", "(", "first", ",", ")", "+", "array_new", ".", "shape", "[", "naxis", ":", "]", ")", "return", "array_new" ]
Bottleneck can only take integer axis, not tuple, so this function takes all the axes to be operated on and combines them into the first dimension of the array so that we can then use axis=0
[ "Bottleneck", "can", "only", "take", "integer", "axis", "not", "tuple", "so", "this", "function", "takes", "all", "the", "axes", "to", "be", "operated", "on", "and", "combines", "them", "into", "the", "first", "dimension", "of", "the", "array", "so", "that", "we", "can", "then", "use", "axis", "=", "0" ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/extern/sigma_clipping.py#L22-L48
train
astropy/photutils
photutils/extern/sigma_clipping.py
_nanmean
def _nanmean(array, axis=None): """Bottleneck nanmean function that handle tuple axis.""" if isinstance(axis, tuple): array = _move_tuple_axes_first(array, axis=axis) axis = 0 return bottleneck.nanmean(array, axis=axis)
python
def _nanmean(array, axis=None): """Bottleneck nanmean function that handle tuple axis.""" if isinstance(axis, tuple): array = _move_tuple_axes_first(array, axis=axis) axis = 0 return bottleneck.nanmean(array, axis=axis)
[ "def", "_nanmean", "(", "array", ",", "axis", "=", "None", ")", ":", "if", "isinstance", "(", "axis", ",", "tuple", ")", ":", "array", "=", "_move_tuple_axes_first", "(", "array", ",", "axis", "=", "axis", ")", "axis", "=", "0", "return", "bottleneck", ".", "nanmean", "(", "array", ",", "axis", "=", "axis", ")" ]
Bottleneck nanmean function that handle tuple axis.
[ "Bottleneck", "nanmean", "function", "that", "handle", "tuple", "axis", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/extern/sigma_clipping.py#L51-L57
train
astropy/photutils
photutils/extern/sigma_clipping.py
_nanmedian
def _nanmedian(array, axis=None): """Bottleneck nanmedian function that handle tuple axis.""" if isinstance(axis, tuple): array = _move_tuple_axes_first(array, axis=axis) axis = 0 return bottleneck.nanmedian(array, axis=axis)
python
def _nanmedian(array, axis=None): """Bottleneck nanmedian function that handle tuple axis.""" if isinstance(axis, tuple): array = _move_tuple_axes_first(array, axis=axis) axis = 0 return bottleneck.nanmedian(array, axis=axis)
[ "def", "_nanmedian", "(", "array", ",", "axis", "=", "None", ")", ":", "if", "isinstance", "(", "axis", ",", "tuple", ")", ":", "array", "=", "_move_tuple_axes_first", "(", "array", ",", "axis", "=", "axis", ")", "axis", "=", "0", "return", "bottleneck", ".", "nanmedian", "(", "array", ",", "axis", "=", "axis", ")" ]
Bottleneck nanmedian function that handle tuple axis.
[ "Bottleneck", "nanmedian", "function", "that", "handle", "tuple", "axis", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/extern/sigma_clipping.py#L60-L66
train
astropy/photutils
photutils/extern/sigma_clipping.py
_nanstd
def _nanstd(array, axis=None, ddof=0): """Bottleneck nanstd function that handle tuple axis.""" if isinstance(axis, tuple): array = _move_tuple_axes_first(array, axis=axis) axis = 0 return bottleneck.nanstd(array, axis=axis, ddof=ddof)
python
def _nanstd(array, axis=None, ddof=0): """Bottleneck nanstd function that handle tuple axis.""" if isinstance(axis, tuple): array = _move_tuple_axes_first(array, axis=axis) axis = 0 return bottleneck.nanstd(array, axis=axis, ddof=ddof)
[ "def", "_nanstd", "(", "array", ",", "axis", "=", "None", ",", "ddof", "=", "0", ")", ":", "if", "isinstance", "(", "axis", ",", "tuple", ")", ":", "array", "=", "_move_tuple_axes_first", "(", "array", ",", "axis", "=", "axis", ")", "axis", "=", "0", "return", "bottleneck", ".", "nanstd", "(", "array", ",", "axis", "=", "axis", ",", "ddof", "=", "ddof", ")" ]
Bottleneck nanstd function that handle tuple axis.
[ "Bottleneck", "nanstd", "function", "that", "handle", "tuple", "axis", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/extern/sigma_clipping.py#L69-L75
train
astropy/photutils
photutils/extern/sigma_clipping.py
sigma_clip
def sigma_clip(data, sigma=3, sigma_lower=None, sigma_upper=None, maxiters=5, cenfunc='median', stdfunc='std', axis=None, masked=True, return_bounds=False, copy=True): """ Perform sigma-clipping on the provided data. The data will be iterated over, each time rejecting values that are less or more than a specified number of standard deviations from a center value. Clipped (rejected) pixels are those where:: data < cenfunc(data [,axis=int]) - (sigma_lower * stdfunc(data [,axis=int])) data > cenfunc(data [,axis=int]) + (sigma_upper * stdfunc(data [,axis=int])) Invalid data values (i.e. NaN or inf) are automatically clipped. For an object-oriented interface to sigma clipping, see :class:`SigmaClip`. .. note:: `scipy.stats.sigmaclip <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.sigmaclip.html>`_ provides a subset of the functionality in this class. Also, its input data cannot be a masked array and it does not handle data that contains invalid values (i.e. NaN or inf). Also note that it uses the mean as the centering function. If your data is a `~numpy.ndarray` with no invalid values and you want to use the mean as the centering function with ``axis=None`` and iterate to convergence, then `scipy.stats.sigmaclip` is ~25-30% faster than the equivalent settings here (``sigma_clip(data, cenfunc='mean', maxiters=None, axis=None)``). Parameters ---------- data : array-like or `~numpy.ma.MaskedArray` The data to be sigma clipped. sigma : float, optional The number of standard deviations to use for both the lower and upper clipping limit. These limits are overridden by ``sigma_lower`` and ``sigma_upper``, if input. The default is 3. sigma_lower : float or `None`, optional The number of standard deviations to use as the lower bound for the clipping limit. If `None` then the value of ``sigma`` is used. The default is `None`. sigma_upper : float or `None`, optional The number of standard deviations to use as the upper bound for the clipping limit. If `None` then the value of ``sigma`` is used. The default is `None`. maxiters : int or `None`, optional The maximum number of sigma-clipping iterations to perform or `None` to clip until convergence is achieved (i.e., iterate until the last iteration clips nothing). If convergence is achieved prior to ``maxiters`` iterations, the clipping iterations will stop. The default is 5. cenfunc : {'median', 'mean'} or callable, optional The statistic or callable function/object used to compute the center value for the clipping. If set to ``'median'`` or ``'mean'`` then having the optional `bottleneck`_ package installed will result in the best performance. If using a callable function/object and the ``axis`` keyword is used, then it must be callable that can ignore NaNs (e.g. `numpy.nanmean`) and has an ``axis`` keyword to return an array with axis dimension(s) removed. The default is ``'median'``. .. _bottleneck: https://github.com/kwgoodman/bottleneck stdfunc : {'std'} or callable, optional The statistic or callable function/object used to compute the standard deviation about the center value. If set to ``'std'`` then having the optional `bottleneck`_ package installed will result in the best performance. If using a callable function/object and the ``axis`` keyword is used, then it must be callable that can ignore NaNs (e.g. `numpy.nanstd`) and has an ``axis`` keyword to return an array with axis dimension(s) removed. The default is ``'std'``. axis : `None` or int or tuple of int, optional The axis or axes along which to sigma clip the data. If `None`, then the flattened data will be used. ``axis`` is passed to the ``cenfunc`` and ``stdfunc``. The default is `None`. masked : bool, optional If `True`, then a `~numpy.ma.MaskedArray` is returned, where the mask is `True` for clipped values. If `False`, then a `~numpy.ndarray` and the minimum and maximum clipping thresholds are returned. The default is `True`. return_bounds : bool, optional If `True`, then the minimum and maximum clipping bounds are also returned. copy : bool, optional If `True`, then the ``data`` array will be copied. If `False` and ``masked=True``, then the returned masked array data will contain the same array as the input ``data`` (if ``data`` is a `~numpy.ndarray` or `~numpy.ma.MaskedArray`). The default is `True`. Returns ------- result : flexible If ``masked=True``, then a `~numpy.ma.MaskedArray` is returned, where the mask is `True` for clipped values. If ``masked=False``, then a `~numpy.ndarray` is returned. If ``return_bounds=True``, then in addition to the (masked) array above, the minimum and maximum clipping bounds are returned. If ``masked=False`` and ``axis=None``, then the output array is a flattened 1D `~numpy.ndarray` where the clipped values have been removed. If ``return_bounds=True`` then the returned minimum and maximum thresholds are scalars. If ``masked=False`` and ``axis`` is specified, then the output `~numpy.ndarray` will have the same shape as the input ``data`` and contain ``np.nan`` where values were clipped. If ``return_bounds=True`` then the returned minimum and maximum clipping thresholds will be be `~numpy.ndarray`\\s. See Also -------- SigmaClip, sigma_clipped_stats Examples -------- This example uses a data array of random variates from a Gaussian distribution. We clip all points that are more than 2 sample standard deviations from the median. The result is a masked array, where the mask is `True` for clipped data:: >>> from astropy.stats import sigma_clip >>> from numpy.random import randn >>> randvar = randn(10000) >>> filtered_data = sigma_clip(randvar, sigma=2, maxiters=5) This example clips all points that are more than 3 sigma relative to the sample *mean*, clips until convergence, returns an unmasked `~numpy.ndarray`, and does not copy the data:: >>> from astropy.stats import sigma_clip >>> from numpy.random import randn >>> from numpy import mean >>> randvar = randn(10000) >>> filtered_data = sigma_clip(randvar, sigma=3, maxiters=None, ... cenfunc=mean, masked=False, copy=False) This example sigma clips along one axis:: >>> from astropy.stats import sigma_clip >>> from numpy.random import normal >>> from numpy import arange, diag, ones >>> data = arange(5) + normal(0., 0.05, (5, 5)) + diag(ones(5)) >>> filtered_data = sigma_clip(data, sigma=2.3, axis=0) Note that along the other axis, no points would be clipped, as the standard deviation is higher. """ sigclip = SigmaClip(sigma=sigma, sigma_lower=sigma_lower, sigma_upper=sigma_upper, maxiters=maxiters, cenfunc=cenfunc, stdfunc=stdfunc) return sigclip(data, axis=axis, masked=masked, return_bounds=return_bounds, copy=copy)
python
def sigma_clip(data, sigma=3, sigma_lower=None, sigma_upper=None, maxiters=5, cenfunc='median', stdfunc='std', axis=None, masked=True, return_bounds=False, copy=True): """ Perform sigma-clipping on the provided data. The data will be iterated over, each time rejecting values that are less or more than a specified number of standard deviations from a center value. Clipped (rejected) pixels are those where:: data < cenfunc(data [,axis=int]) - (sigma_lower * stdfunc(data [,axis=int])) data > cenfunc(data [,axis=int]) + (sigma_upper * stdfunc(data [,axis=int])) Invalid data values (i.e. NaN or inf) are automatically clipped. For an object-oriented interface to sigma clipping, see :class:`SigmaClip`. .. note:: `scipy.stats.sigmaclip <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.sigmaclip.html>`_ provides a subset of the functionality in this class. Also, its input data cannot be a masked array and it does not handle data that contains invalid values (i.e. NaN or inf). Also note that it uses the mean as the centering function. If your data is a `~numpy.ndarray` with no invalid values and you want to use the mean as the centering function with ``axis=None`` and iterate to convergence, then `scipy.stats.sigmaclip` is ~25-30% faster than the equivalent settings here (``sigma_clip(data, cenfunc='mean', maxiters=None, axis=None)``). Parameters ---------- data : array-like or `~numpy.ma.MaskedArray` The data to be sigma clipped. sigma : float, optional The number of standard deviations to use for both the lower and upper clipping limit. These limits are overridden by ``sigma_lower`` and ``sigma_upper``, if input. The default is 3. sigma_lower : float or `None`, optional The number of standard deviations to use as the lower bound for the clipping limit. If `None` then the value of ``sigma`` is used. The default is `None`. sigma_upper : float or `None`, optional The number of standard deviations to use as the upper bound for the clipping limit. If `None` then the value of ``sigma`` is used. The default is `None`. maxiters : int or `None`, optional The maximum number of sigma-clipping iterations to perform or `None` to clip until convergence is achieved (i.e., iterate until the last iteration clips nothing). If convergence is achieved prior to ``maxiters`` iterations, the clipping iterations will stop. The default is 5. cenfunc : {'median', 'mean'} or callable, optional The statistic or callable function/object used to compute the center value for the clipping. If set to ``'median'`` or ``'mean'`` then having the optional `bottleneck`_ package installed will result in the best performance. If using a callable function/object and the ``axis`` keyword is used, then it must be callable that can ignore NaNs (e.g. `numpy.nanmean`) and has an ``axis`` keyword to return an array with axis dimension(s) removed. The default is ``'median'``. .. _bottleneck: https://github.com/kwgoodman/bottleneck stdfunc : {'std'} or callable, optional The statistic or callable function/object used to compute the standard deviation about the center value. If set to ``'std'`` then having the optional `bottleneck`_ package installed will result in the best performance. If using a callable function/object and the ``axis`` keyword is used, then it must be callable that can ignore NaNs (e.g. `numpy.nanstd`) and has an ``axis`` keyword to return an array with axis dimension(s) removed. The default is ``'std'``. axis : `None` or int or tuple of int, optional The axis or axes along which to sigma clip the data. If `None`, then the flattened data will be used. ``axis`` is passed to the ``cenfunc`` and ``stdfunc``. The default is `None`. masked : bool, optional If `True`, then a `~numpy.ma.MaskedArray` is returned, where the mask is `True` for clipped values. If `False`, then a `~numpy.ndarray` and the minimum and maximum clipping thresholds are returned. The default is `True`. return_bounds : bool, optional If `True`, then the minimum and maximum clipping bounds are also returned. copy : bool, optional If `True`, then the ``data`` array will be copied. If `False` and ``masked=True``, then the returned masked array data will contain the same array as the input ``data`` (if ``data`` is a `~numpy.ndarray` or `~numpy.ma.MaskedArray`). The default is `True`. Returns ------- result : flexible If ``masked=True``, then a `~numpy.ma.MaskedArray` is returned, where the mask is `True` for clipped values. If ``masked=False``, then a `~numpy.ndarray` is returned. If ``return_bounds=True``, then in addition to the (masked) array above, the minimum and maximum clipping bounds are returned. If ``masked=False`` and ``axis=None``, then the output array is a flattened 1D `~numpy.ndarray` where the clipped values have been removed. If ``return_bounds=True`` then the returned minimum and maximum thresholds are scalars. If ``masked=False`` and ``axis`` is specified, then the output `~numpy.ndarray` will have the same shape as the input ``data`` and contain ``np.nan`` where values were clipped. If ``return_bounds=True`` then the returned minimum and maximum clipping thresholds will be be `~numpy.ndarray`\\s. See Also -------- SigmaClip, sigma_clipped_stats Examples -------- This example uses a data array of random variates from a Gaussian distribution. We clip all points that are more than 2 sample standard deviations from the median. The result is a masked array, where the mask is `True` for clipped data:: >>> from astropy.stats import sigma_clip >>> from numpy.random import randn >>> randvar = randn(10000) >>> filtered_data = sigma_clip(randvar, sigma=2, maxiters=5) This example clips all points that are more than 3 sigma relative to the sample *mean*, clips until convergence, returns an unmasked `~numpy.ndarray`, and does not copy the data:: >>> from astropy.stats import sigma_clip >>> from numpy.random import randn >>> from numpy import mean >>> randvar = randn(10000) >>> filtered_data = sigma_clip(randvar, sigma=3, maxiters=None, ... cenfunc=mean, masked=False, copy=False) This example sigma clips along one axis:: >>> from astropy.stats import sigma_clip >>> from numpy.random import normal >>> from numpy import arange, diag, ones >>> data = arange(5) + normal(0., 0.05, (5, 5)) + diag(ones(5)) >>> filtered_data = sigma_clip(data, sigma=2.3, axis=0) Note that along the other axis, no points would be clipped, as the standard deviation is higher. """ sigclip = SigmaClip(sigma=sigma, sigma_lower=sigma_lower, sigma_upper=sigma_upper, maxiters=maxiters, cenfunc=cenfunc, stdfunc=stdfunc) return sigclip(data, axis=axis, masked=masked, return_bounds=return_bounds, copy=copy)
[ "def", "sigma_clip", "(", "data", ",", "sigma", "=", "3", ",", "sigma_lower", "=", "None", ",", "sigma_upper", "=", "None", ",", "maxiters", "=", "5", ",", "cenfunc", "=", "'median'", ",", "stdfunc", "=", "'std'", ",", "axis", "=", "None", ",", "masked", "=", "True", ",", "return_bounds", "=", "False", ",", "copy", "=", "True", ")", ":", "sigclip", "=", "SigmaClip", "(", "sigma", "=", "sigma", ",", "sigma_lower", "=", "sigma_lower", ",", "sigma_upper", "=", "sigma_upper", ",", "maxiters", "=", "maxiters", ",", "cenfunc", "=", "cenfunc", ",", "stdfunc", "=", "stdfunc", ")", "return", "sigclip", "(", "data", ",", "axis", "=", "axis", ",", "masked", "=", "masked", ",", "return_bounds", "=", "return_bounds", ",", "copy", "=", "copy", ")" ]
Perform sigma-clipping on the provided data. The data will be iterated over, each time rejecting values that are less or more than a specified number of standard deviations from a center value. Clipped (rejected) pixels are those where:: data < cenfunc(data [,axis=int]) - (sigma_lower * stdfunc(data [,axis=int])) data > cenfunc(data [,axis=int]) + (sigma_upper * stdfunc(data [,axis=int])) Invalid data values (i.e. NaN or inf) are automatically clipped. For an object-oriented interface to sigma clipping, see :class:`SigmaClip`. .. note:: `scipy.stats.sigmaclip <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.sigmaclip.html>`_ provides a subset of the functionality in this class. Also, its input data cannot be a masked array and it does not handle data that contains invalid values (i.e. NaN or inf). Also note that it uses the mean as the centering function. If your data is a `~numpy.ndarray` with no invalid values and you want to use the mean as the centering function with ``axis=None`` and iterate to convergence, then `scipy.stats.sigmaclip` is ~25-30% faster than the equivalent settings here (``sigma_clip(data, cenfunc='mean', maxiters=None, axis=None)``). Parameters ---------- data : array-like or `~numpy.ma.MaskedArray` The data to be sigma clipped. sigma : float, optional The number of standard deviations to use for both the lower and upper clipping limit. These limits are overridden by ``sigma_lower`` and ``sigma_upper``, if input. The default is 3. sigma_lower : float or `None`, optional The number of standard deviations to use as the lower bound for the clipping limit. If `None` then the value of ``sigma`` is used. The default is `None`. sigma_upper : float or `None`, optional The number of standard deviations to use as the upper bound for the clipping limit. If `None` then the value of ``sigma`` is used. The default is `None`. maxiters : int or `None`, optional The maximum number of sigma-clipping iterations to perform or `None` to clip until convergence is achieved (i.e., iterate until the last iteration clips nothing). If convergence is achieved prior to ``maxiters`` iterations, the clipping iterations will stop. The default is 5. cenfunc : {'median', 'mean'} or callable, optional The statistic or callable function/object used to compute the center value for the clipping. If set to ``'median'`` or ``'mean'`` then having the optional `bottleneck`_ package installed will result in the best performance. If using a callable function/object and the ``axis`` keyword is used, then it must be callable that can ignore NaNs (e.g. `numpy.nanmean`) and has an ``axis`` keyword to return an array with axis dimension(s) removed. The default is ``'median'``. .. _bottleneck: https://github.com/kwgoodman/bottleneck stdfunc : {'std'} or callable, optional The statistic or callable function/object used to compute the standard deviation about the center value. If set to ``'std'`` then having the optional `bottleneck`_ package installed will result in the best performance. If using a callable function/object and the ``axis`` keyword is used, then it must be callable that can ignore NaNs (e.g. `numpy.nanstd`) and has an ``axis`` keyword to return an array with axis dimension(s) removed. The default is ``'std'``. axis : `None` or int or tuple of int, optional The axis or axes along which to sigma clip the data. If `None`, then the flattened data will be used. ``axis`` is passed to the ``cenfunc`` and ``stdfunc``. The default is `None`. masked : bool, optional If `True`, then a `~numpy.ma.MaskedArray` is returned, where the mask is `True` for clipped values. If `False`, then a `~numpy.ndarray` and the minimum and maximum clipping thresholds are returned. The default is `True`. return_bounds : bool, optional If `True`, then the minimum and maximum clipping bounds are also returned. copy : bool, optional If `True`, then the ``data`` array will be copied. If `False` and ``masked=True``, then the returned masked array data will contain the same array as the input ``data`` (if ``data`` is a `~numpy.ndarray` or `~numpy.ma.MaskedArray`). The default is `True`. Returns ------- result : flexible If ``masked=True``, then a `~numpy.ma.MaskedArray` is returned, where the mask is `True` for clipped values. If ``masked=False``, then a `~numpy.ndarray` is returned. If ``return_bounds=True``, then in addition to the (masked) array above, the minimum and maximum clipping bounds are returned. If ``masked=False`` and ``axis=None``, then the output array is a flattened 1D `~numpy.ndarray` where the clipped values have been removed. If ``return_bounds=True`` then the returned minimum and maximum thresholds are scalars. If ``masked=False`` and ``axis`` is specified, then the output `~numpy.ndarray` will have the same shape as the input ``data`` and contain ``np.nan`` where values were clipped. If ``return_bounds=True`` then the returned minimum and maximum clipping thresholds will be be `~numpy.ndarray`\\s. See Also -------- SigmaClip, sigma_clipped_stats Examples -------- This example uses a data array of random variates from a Gaussian distribution. We clip all points that are more than 2 sample standard deviations from the median. The result is a masked array, where the mask is `True` for clipped data:: >>> from astropy.stats import sigma_clip >>> from numpy.random import randn >>> randvar = randn(10000) >>> filtered_data = sigma_clip(randvar, sigma=2, maxiters=5) This example clips all points that are more than 3 sigma relative to the sample *mean*, clips until convergence, returns an unmasked `~numpy.ndarray`, and does not copy the data:: >>> from astropy.stats import sigma_clip >>> from numpy.random import randn >>> from numpy import mean >>> randvar = randn(10000) >>> filtered_data = sigma_clip(randvar, sigma=3, maxiters=None, ... cenfunc=mean, masked=False, copy=False) This example sigma clips along one axis:: >>> from astropy.stats import sigma_clip >>> from numpy.random import normal >>> from numpy import arange, diag, ones >>> data = arange(5) + normal(0., 0.05, (5, 5)) + diag(ones(5)) >>> filtered_data = sigma_clip(data, sigma=2.3, axis=0) Note that along the other axis, no points would be clipped, as the standard deviation is higher.
[ "Perform", "sigma", "-", "clipping", "on", "the", "provided", "data", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/extern/sigma_clipping.py#L467-L640
train
astropy/photutils
photutils/extern/sigma_clipping.py
sigma_clipped_stats
def sigma_clipped_stats(data, mask=None, mask_value=None, sigma=3.0, sigma_lower=None, sigma_upper=None, maxiters=5, cenfunc='median', stdfunc='std', std_ddof=0, axis=None): """ Calculate sigma-clipped statistics on the provided data. Parameters ---------- data : array-like or `~numpy.ma.MaskedArray` Data array or object that can be converted to an array. mask : `numpy.ndarray` (bool), optional A boolean mask with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Masked pixels are excluded when computing the statistics. mask_value : float, optional A data value (e.g., ``0.0``) that is ignored when computing the statistics. ``mask_value`` will be masked in addition to any input ``mask``. sigma : float, optional The number of standard deviations to use for both the lower and upper clipping limit. These limits are overridden by ``sigma_lower`` and ``sigma_upper``, if input. The default is 3. sigma_lower : float or `None`, optional The number of standard deviations to use as the lower bound for the clipping limit. If `None` then the value of ``sigma`` is used. The default is `None`. sigma_upper : float or `None`, optional The number of standard deviations to use as the upper bound for the clipping limit. If `None` then the value of ``sigma`` is used. The default is `None`. maxiters : int or `None`, optional The maximum number of sigma-clipping iterations to perform or `None` to clip until convergence is achieved (i.e., iterate until the last iteration clips nothing). If convergence is achieved prior to ``maxiters`` iterations, the clipping iterations will stop. The default is 5. cenfunc : {'median', 'mean'} or callable, optional The statistic or callable function/object used to compute the center value for the clipping. If set to ``'median'`` or ``'mean'`` then having the optional `bottleneck`_ package installed will result in the best performance. If using a callable function/object and the ``axis`` keyword is used, then it must be callable that can ignore NaNs (e.g. `numpy.nanmean`) and has an ``axis`` keyword to return an array with axis dimension(s) removed. The default is ``'median'``. .. _bottleneck: https://github.com/kwgoodman/bottleneck stdfunc : {'std'} or callable, optional The statistic or callable function/object used to compute the standard deviation about the center value. If set to ``'std'`` then having the optional `bottleneck`_ package installed will result in the best performance. If using a callable function/object and the ``axis`` keyword is used, then it must be callable that can ignore NaNs (e.g. `numpy.nanstd`) and has an ``axis`` keyword to return an array with axis dimension(s) removed. The default is ``'std'``. std_ddof : int, optional The delta degrees of freedom for the standard deviation calculation. The divisor used in the calculation is ``N - std_ddof``, where ``N`` represents the number of elements. The default is 0. axis : `None` or int or tuple of int, optional The axis or axes along which to sigma clip the data. If `None`, then the flattened data will be used. ``axis`` is passed to the ``cenfunc`` and ``stdfunc``. The default is `None`. Returns ------- mean, median, stddev : float The mean, median, and standard deviation of the sigma-clipped data. See Also -------- SigmaClip, sigma_clip """ if mask is not None: data = np.ma.MaskedArray(data, mask) if mask_value is not None: data = np.ma.masked_values(data, mask_value) sigclip = SigmaClip(sigma=sigma, sigma_lower=sigma_lower, sigma_upper=sigma_upper, maxiters=maxiters, cenfunc=cenfunc, stdfunc=stdfunc) data_clipped = sigclip(data, axis=axis, masked=False, return_bounds=False, copy=False) if HAS_BOTTLENECK: mean = _nanmean(data_clipped, axis=axis) median = _nanmedian(data_clipped, axis=axis) std = _nanstd(data_clipped, ddof=std_ddof, axis=axis) else: # pragma: no cover mean = np.nanmean(data_clipped, axis=axis) median = np.nanmedian(data_clipped, axis=axis) std = np.nanstd(data_clipped, ddof=std_ddof, axis=axis) return mean, median, std
python
def sigma_clipped_stats(data, mask=None, mask_value=None, sigma=3.0, sigma_lower=None, sigma_upper=None, maxiters=5, cenfunc='median', stdfunc='std', std_ddof=0, axis=None): """ Calculate sigma-clipped statistics on the provided data. Parameters ---------- data : array-like or `~numpy.ma.MaskedArray` Data array or object that can be converted to an array. mask : `numpy.ndarray` (bool), optional A boolean mask with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Masked pixels are excluded when computing the statistics. mask_value : float, optional A data value (e.g., ``0.0``) that is ignored when computing the statistics. ``mask_value`` will be masked in addition to any input ``mask``. sigma : float, optional The number of standard deviations to use for both the lower and upper clipping limit. These limits are overridden by ``sigma_lower`` and ``sigma_upper``, if input. The default is 3. sigma_lower : float or `None`, optional The number of standard deviations to use as the lower bound for the clipping limit. If `None` then the value of ``sigma`` is used. The default is `None`. sigma_upper : float or `None`, optional The number of standard deviations to use as the upper bound for the clipping limit. If `None` then the value of ``sigma`` is used. The default is `None`. maxiters : int or `None`, optional The maximum number of sigma-clipping iterations to perform or `None` to clip until convergence is achieved (i.e., iterate until the last iteration clips nothing). If convergence is achieved prior to ``maxiters`` iterations, the clipping iterations will stop. The default is 5. cenfunc : {'median', 'mean'} or callable, optional The statistic or callable function/object used to compute the center value for the clipping. If set to ``'median'`` or ``'mean'`` then having the optional `bottleneck`_ package installed will result in the best performance. If using a callable function/object and the ``axis`` keyword is used, then it must be callable that can ignore NaNs (e.g. `numpy.nanmean`) and has an ``axis`` keyword to return an array with axis dimension(s) removed. The default is ``'median'``. .. _bottleneck: https://github.com/kwgoodman/bottleneck stdfunc : {'std'} or callable, optional The statistic or callable function/object used to compute the standard deviation about the center value. If set to ``'std'`` then having the optional `bottleneck`_ package installed will result in the best performance. If using a callable function/object and the ``axis`` keyword is used, then it must be callable that can ignore NaNs (e.g. `numpy.nanstd`) and has an ``axis`` keyword to return an array with axis dimension(s) removed. The default is ``'std'``. std_ddof : int, optional The delta degrees of freedom for the standard deviation calculation. The divisor used in the calculation is ``N - std_ddof``, where ``N`` represents the number of elements. The default is 0. axis : `None` or int or tuple of int, optional The axis or axes along which to sigma clip the data. If `None`, then the flattened data will be used. ``axis`` is passed to the ``cenfunc`` and ``stdfunc``. The default is `None`. Returns ------- mean, median, stddev : float The mean, median, and standard deviation of the sigma-clipped data. See Also -------- SigmaClip, sigma_clip """ if mask is not None: data = np.ma.MaskedArray(data, mask) if mask_value is not None: data = np.ma.masked_values(data, mask_value) sigclip = SigmaClip(sigma=sigma, sigma_lower=sigma_lower, sigma_upper=sigma_upper, maxiters=maxiters, cenfunc=cenfunc, stdfunc=stdfunc) data_clipped = sigclip(data, axis=axis, masked=False, return_bounds=False, copy=False) if HAS_BOTTLENECK: mean = _nanmean(data_clipped, axis=axis) median = _nanmedian(data_clipped, axis=axis) std = _nanstd(data_clipped, ddof=std_ddof, axis=axis) else: # pragma: no cover mean = np.nanmean(data_clipped, axis=axis) median = np.nanmedian(data_clipped, axis=axis) std = np.nanstd(data_clipped, ddof=std_ddof, axis=axis) return mean, median, std
[ "def", "sigma_clipped_stats", "(", "data", ",", "mask", "=", "None", ",", "mask_value", "=", "None", ",", "sigma", "=", "3.0", ",", "sigma_lower", "=", "None", ",", "sigma_upper", "=", "None", ",", "maxiters", "=", "5", ",", "cenfunc", "=", "'median'", ",", "stdfunc", "=", "'std'", ",", "std_ddof", "=", "0", ",", "axis", "=", "None", ")", ":", "if", "mask", "is", "not", "None", ":", "data", "=", "np", ".", "ma", ".", "MaskedArray", "(", "data", ",", "mask", ")", "if", "mask_value", "is", "not", "None", ":", "data", "=", "np", ".", "ma", ".", "masked_values", "(", "data", ",", "mask_value", ")", "sigclip", "=", "SigmaClip", "(", "sigma", "=", "sigma", ",", "sigma_lower", "=", "sigma_lower", ",", "sigma_upper", "=", "sigma_upper", ",", "maxiters", "=", "maxiters", ",", "cenfunc", "=", "cenfunc", ",", "stdfunc", "=", "stdfunc", ")", "data_clipped", "=", "sigclip", "(", "data", ",", "axis", "=", "axis", ",", "masked", "=", "False", ",", "return_bounds", "=", "False", ",", "copy", "=", "False", ")", "if", "HAS_BOTTLENECK", ":", "mean", "=", "_nanmean", "(", "data_clipped", ",", "axis", "=", "axis", ")", "median", "=", "_nanmedian", "(", "data_clipped", ",", "axis", "=", "axis", ")", "std", "=", "_nanstd", "(", "data_clipped", ",", "ddof", "=", "std_ddof", ",", "axis", "=", "axis", ")", "else", ":", "# pragma: no cover", "mean", "=", "np", ".", "nanmean", "(", "data_clipped", ",", "axis", "=", "axis", ")", "median", "=", "np", ".", "nanmedian", "(", "data_clipped", ",", "axis", "=", "axis", ")", "std", "=", "np", ".", "nanstd", "(", "data_clipped", ",", "ddof", "=", "std_ddof", ",", "axis", "=", "axis", ")", "return", "mean", ",", "median", ",", "std" ]
Calculate sigma-clipped statistics on the provided data. Parameters ---------- data : array-like or `~numpy.ma.MaskedArray` Data array or object that can be converted to an array. mask : `numpy.ndarray` (bool), optional A boolean mask with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Masked pixels are excluded when computing the statistics. mask_value : float, optional A data value (e.g., ``0.0``) that is ignored when computing the statistics. ``mask_value`` will be masked in addition to any input ``mask``. sigma : float, optional The number of standard deviations to use for both the lower and upper clipping limit. These limits are overridden by ``sigma_lower`` and ``sigma_upper``, if input. The default is 3. sigma_lower : float or `None`, optional The number of standard deviations to use as the lower bound for the clipping limit. If `None` then the value of ``sigma`` is used. The default is `None`. sigma_upper : float or `None`, optional The number of standard deviations to use as the upper bound for the clipping limit. If `None` then the value of ``sigma`` is used. The default is `None`. maxiters : int or `None`, optional The maximum number of sigma-clipping iterations to perform or `None` to clip until convergence is achieved (i.e., iterate until the last iteration clips nothing). If convergence is achieved prior to ``maxiters`` iterations, the clipping iterations will stop. The default is 5. cenfunc : {'median', 'mean'} or callable, optional The statistic or callable function/object used to compute the center value for the clipping. If set to ``'median'`` or ``'mean'`` then having the optional `bottleneck`_ package installed will result in the best performance. If using a callable function/object and the ``axis`` keyword is used, then it must be callable that can ignore NaNs (e.g. `numpy.nanmean`) and has an ``axis`` keyword to return an array with axis dimension(s) removed. The default is ``'median'``. .. _bottleneck: https://github.com/kwgoodman/bottleneck stdfunc : {'std'} or callable, optional The statistic or callable function/object used to compute the standard deviation about the center value. If set to ``'std'`` then having the optional `bottleneck`_ package installed will result in the best performance. If using a callable function/object and the ``axis`` keyword is used, then it must be callable that can ignore NaNs (e.g. `numpy.nanstd`) and has an ``axis`` keyword to return an array with axis dimension(s) removed. The default is ``'std'``. std_ddof : int, optional The delta degrees of freedom for the standard deviation calculation. The divisor used in the calculation is ``N - std_ddof``, where ``N`` represents the number of elements. The default is 0. axis : `None` or int or tuple of int, optional The axis or axes along which to sigma clip the data. If `None`, then the flattened data will be used. ``axis`` is passed to the ``cenfunc`` and ``stdfunc``. The default is `None`. Returns ------- mean, median, stddev : float The mean, median, and standard deviation of the sigma-clipped data. See Also -------- SigmaClip, sigma_clip
[ "Calculate", "sigma", "-", "clipped", "statistics", "on", "the", "provided", "data", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/extern/sigma_clipping.py#L644-L753
train
astropy/photutils
photutils/extern/sigma_clipping.py
SigmaClip._sigmaclip_noaxis
def _sigmaclip_noaxis(self, data, masked=True, return_bounds=False, copy=True): """ Sigma clip the data when ``axis`` is None. In this simple case, we remove clipped elements from the flattened array during each iteration. """ filtered_data = data.ravel() # remove masked values and convert to ndarray if isinstance(filtered_data, np.ma.MaskedArray): filtered_data = filtered_data.data[~filtered_data.mask] # remove invalid values good_mask = np.isfinite(filtered_data) if np.any(~good_mask): filtered_data = filtered_data[good_mask] warnings.warn('Input data contains invalid values (NaNs or ' 'infs), which were automatically clipped.', AstropyUserWarning) nchanged = 1 iteration = 0 while nchanged != 0 and (iteration < self.maxiters): iteration += 1 size = filtered_data.size self._compute_bounds(filtered_data, axis=None) filtered_data = filtered_data[(filtered_data >= self._min_value) & (filtered_data <= self._max_value)] nchanged = size - filtered_data.size self._niterations = iteration if masked: # return a masked array and optional bounds filtered_data = np.ma.masked_invalid(data, copy=copy) # update the mask in place, ignoring RuntimeWarnings for # comparisons with NaN data values with np.errstate(invalid='ignore'): filtered_data.mask |= np.logical_or(data < self._min_value, data > self._max_value) if return_bounds: return filtered_data, self._min_value, self._max_value else: return filtered_data
python
def _sigmaclip_noaxis(self, data, masked=True, return_bounds=False, copy=True): """ Sigma clip the data when ``axis`` is None. In this simple case, we remove clipped elements from the flattened array during each iteration. """ filtered_data = data.ravel() # remove masked values and convert to ndarray if isinstance(filtered_data, np.ma.MaskedArray): filtered_data = filtered_data.data[~filtered_data.mask] # remove invalid values good_mask = np.isfinite(filtered_data) if np.any(~good_mask): filtered_data = filtered_data[good_mask] warnings.warn('Input data contains invalid values (NaNs or ' 'infs), which were automatically clipped.', AstropyUserWarning) nchanged = 1 iteration = 0 while nchanged != 0 and (iteration < self.maxiters): iteration += 1 size = filtered_data.size self._compute_bounds(filtered_data, axis=None) filtered_data = filtered_data[(filtered_data >= self._min_value) & (filtered_data <= self._max_value)] nchanged = size - filtered_data.size self._niterations = iteration if masked: # return a masked array and optional bounds filtered_data = np.ma.masked_invalid(data, copy=copy) # update the mask in place, ignoring RuntimeWarnings for # comparisons with NaN data values with np.errstate(invalid='ignore'): filtered_data.mask |= np.logical_or(data < self._min_value, data > self._max_value) if return_bounds: return filtered_data, self._min_value, self._max_value else: return filtered_data
[ "def", "_sigmaclip_noaxis", "(", "self", ",", "data", ",", "masked", "=", "True", ",", "return_bounds", "=", "False", ",", "copy", "=", "True", ")", ":", "filtered_data", "=", "data", ".", "ravel", "(", ")", "# remove masked values and convert to ndarray", "if", "isinstance", "(", "filtered_data", ",", "np", ".", "ma", ".", "MaskedArray", ")", ":", "filtered_data", "=", "filtered_data", ".", "data", "[", "~", "filtered_data", ".", "mask", "]", "# remove invalid values", "good_mask", "=", "np", ".", "isfinite", "(", "filtered_data", ")", "if", "np", ".", "any", "(", "~", "good_mask", ")", ":", "filtered_data", "=", "filtered_data", "[", "good_mask", "]", "warnings", ".", "warn", "(", "'Input data contains invalid values (NaNs or '", "'infs), which were automatically clipped.'", ",", "AstropyUserWarning", ")", "nchanged", "=", "1", "iteration", "=", "0", "while", "nchanged", "!=", "0", "and", "(", "iteration", "<", "self", ".", "maxiters", ")", ":", "iteration", "+=", "1", "size", "=", "filtered_data", ".", "size", "self", ".", "_compute_bounds", "(", "filtered_data", ",", "axis", "=", "None", ")", "filtered_data", "=", "filtered_data", "[", "(", "filtered_data", ">=", "self", ".", "_min_value", ")", "&", "(", "filtered_data", "<=", "self", ".", "_max_value", ")", "]", "nchanged", "=", "size", "-", "filtered_data", ".", "size", "self", ".", "_niterations", "=", "iteration", "if", "masked", ":", "# return a masked array and optional bounds", "filtered_data", "=", "np", ".", "ma", ".", "masked_invalid", "(", "data", ",", "copy", "=", "copy", ")", "# update the mask in place, ignoring RuntimeWarnings for", "# comparisons with NaN data values", "with", "np", ".", "errstate", "(", "invalid", "=", "'ignore'", ")", ":", "filtered_data", ".", "mask", "|=", "np", ".", "logical_or", "(", "data", "<", "self", ".", "_min_value", ",", "data", ">", "self", ".", "_max_value", ")", "if", "return_bounds", ":", "return", "filtered_data", ",", "self", ".", "_min_value", ",", "self", ".", "_max_value", "else", ":", "return", "filtered_data" ]
Sigma clip the data when ``axis`` is None. In this simple case, we remove clipped elements from the flattened array during each iteration.
[ "Sigma", "clip", "the", "data", "when", "axis", "is", "None", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/extern/sigma_clipping.py#L265-L313
train
astropy/photutils
photutils/extern/sigma_clipping.py
SigmaClip._sigmaclip_withaxis
def _sigmaclip_withaxis(self, data, axis=None, masked=True, return_bounds=False, copy=True): """ Sigma clip the data when ``axis`` is specified. In this case, we replace clipped values with NaNs as placeholder values. """ # float array type is needed to insert nans into the array filtered_data = data.astype(float) # also makes a copy # remove invalid values bad_mask = ~np.isfinite(filtered_data) if np.any(bad_mask): filtered_data[bad_mask] = np.nan warnings.warn('Input data contains invalid values (NaNs or ' 'infs), which were automatically clipped.', AstropyUserWarning) # remove masked values and convert to plain ndarray if isinstance(filtered_data, np.ma.MaskedArray): filtered_data = np.ma.masked_invalid(filtered_data).astype(float) filtered_data = filtered_data.filled(np.nan) # convert negative axis/axes if not isiterable(axis): axis = (axis,) axis = tuple(filtered_data.ndim + n if n < 0 else n for n in axis) # define the shape of min/max arrays so that they can be broadcast # with the data mshape = tuple(1 if dim in axis else size for dim, size in enumerate(filtered_data.shape)) nchanged = 1 iteration = 0 while nchanged != 0 and (iteration < self.maxiters): iteration += 1 n_nan = np.count_nonzero(np.isnan(filtered_data)) self._compute_bounds(filtered_data, axis=axis) if not np.isscalar(self._min_value): self._min_value = self._min_value.reshape(mshape) self._max_value = self._max_value.reshape(mshape) with np.errstate(invalid='ignore'): filtered_data[(filtered_data < self._min_value) | (filtered_data > self._max_value)] = np.nan nchanged = n_nan - np.count_nonzero(np.isnan(filtered_data)) self._niterations = iteration if masked: # create an output masked array if copy: filtered_data = np.ma.masked_invalid(filtered_data) else: # ignore RuntimeWarnings for comparisons with NaN data values with np.errstate(invalid='ignore'): out = np.ma.masked_invalid(data, copy=False) filtered_data = np.ma.masked_where(np.logical_or( out < self._min_value, out > self._max_value), out, copy=False) if return_bounds: return filtered_data, self._min_value, self._max_value else: return filtered_data
python
def _sigmaclip_withaxis(self, data, axis=None, masked=True, return_bounds=False, copy=True): """ Sigma clip the data when ``axis`` is specified. In this case, we replace clipped values with NaNs as placeholder values. """ # float array type is needed to insert nans into the array filtered_data = data.astype(float) # also makes a copy # remove invalid values bad_mask = ~np.isfinite(filtered_data) if np.any(bad_mask): filtered_data[bad_mask] = np.nan warnings.warn('Input data contains invalid values (NaNs or ' 'infs), which were automatically clipped.', AstropyUserWarning) # remove masked values and convert to plain ndarray if isinstance(filtered_data, np.ma.MaskedArray): filtered_data = np.ma.masked_invalid(filtered_data).astype(float) filtered_data = filtered_data.filled(np.nan) # convert negative axis/axes if not isiterable(axis): axis = (axis,) axis = tuple(filtered_data.ndim + n if n < 0 else n for n in axis) # define the shape of min/max arrays so that they can be broadcast # with the data mshape = tuple(1 if dim in axis else size for dim, size in enumerate(filtered_data.shape)) nchanged = 1 iteration = 0 while nchanged != 0 and (iteration < self.maxiters): iteration += 1 n_nan = np.count_nonzero(np.isnan(filtered_data)) self._compute_bounds(filtered_data, axis=axis) if not np.isscalar(self._min_value): self._min_value = self._min_value.reshape(mshape) self._max_value = self._max_value.reshape(mshape) with np.errstate(invalid='ignore'): filtered_data[(filtered_data < self._min_value) | (filtered_data > self._max_value)] = np.nan nchanged = n_nan - np.count_nonzero(np.isnan(filtered_data)) self._niterations = iteration if masked: # create an output masked array if copy: filtered_data = np.ma.masked_invalid(filtered_data) else: # ignore RuntimeWarnings for comparisons with NaN data values with np.errstate(invalid='ignore'): out = np.ma.masked_invalid(data, copy=False) filtered_data = np.ma.masked_where(np.logical_or( out < self._min_value, out > self._max_value), out, copy=False) if return_bounds: return filtered_data, self._min_value, self._max_value else: return filtered_data
[ "def", "_sigmaclip_withaxis", "(", "self", ",", "data", ",", "axis", "=", "None", ",", "masked", "=", "True", ",", "return_bounds", "=", "False", ",", "copy", "=", "True", ")", ":", "# float array type is needed to insert nans into the array", "filtered_data", "=", "data", ".", "astype", "(", "float", ")", "# also makes a copy", "# remove invalid values", "bad_mask", "=", "~", "np", ".", "isfinite", "(", "filtered_data", ")", "if", "np", ".", "any", "(", "bad_mask", ")", ":", "filtered_data", "[", "bad_mask", "]", "=", "np", ".", "nan", "warnings", ".", "warn", "(", "'Input data contains invalid values (NaNs or '", "'infs), which were automatically clipped.'", ",", "AstropyUserWarning", ")", "# remove masked values and convert to plain ndarray", "if", "isinstance", "(", "filtered_data", ",", "np", ".", "ma", ".", "MaskedArray", ")", ":", "filtered_data", "=", "np", ".", "ma", ".", "masked_invalid", "(", "filtered_data", ")", ".", "astype", "(", "float", ")", "filtered_data", "=", "filtered_data", ".", "filled", "(", "np", ".", "nan", ")", "# convert negative axis/axes", "if", "not", "isiterable", "(", "axis", ")", ":", "axis", "=", "(", "axis", ",", ")", "axis", "=", "tuple", "(", "filtered_data", ".", "ndim", "+", "n", "if", "n", "<", "0", "else", "n", "for", "n", "in", "axis", ")", "# define the shape of min/max arrays so that they can be broadcast", "# with the data", "mshape", "=", "tuple", "(", "1", "if", "dim", "in", "axis", "else", "size", "for", "dim", ",", "size", "in", "enumerate", "(", "filtered_data", ".", "shape", ")", ")", "nchanged", "=", "1", "iteration", "=", "0", "while", "nchanged", "!=", "0", "and", "(", "iteration", "<", "self", ".", "maxiters", ")", ":", "iteration", "+=", "1", "n_nan", "=", "np", ".", "count_nonzero", "(", "np", ".", "isnan", "(", "filtered_data", ")", ")", "self", ".", "_compute_bounds", "(", "filtered_data", ",", "axis", "=", "axis", ")", "if", "not", "np", ".", "isscalar", "(", "self", ".", "_min_value", ")", ":", "self", ".", "_min_value", "=", "self", ".", "_min_value", ".", "reshape", "(", "mshape", ")", "self", ".", "_max_value", "=", "self", ".", "_max_value", ".", "reshape", "(", "mshape", ")", "with", "np", ".", "errstate", "(", "invalid", "=", "'ignore'", ")", ":", "filtered_data", "[", "(", "filtered_data", "<", "self", ".", "_min_value", ")", "|", "(", "filtered_data", ">", "self", ".", "_max_value", ")", "]", "=", "np", ".", "nan", "nchanged", "=", "n_nan", "-", "np", ".", "count_nonzero", "(", "np", ".", "isnan", "(", "filtered_data", ")", ")", "self", ".", "_niterations", "=", "iteration", "if", "masked", ":", "# create an output masked array", "if", "copy", ":", "filtered_data", "=", "np", ".", "ma", ".", "masked_invalid", "(", "filtered_data", ")", "else", ":", "# ignore RuntimeWarnings for comparisons with NaN data values", "with", "np", ".", "errstate", "(", "invalid", "=", "'ignore'", ")", ":", "out", "=", "np", ".", "ma", ".", "masked_invalid", "(", "data", ",", "copy", "=", "False", ")", "filtered_data", "=", "np", ".", "ma", ".", "masked_where", "(", "np", ".", "logical_or", "(", "out", "<", "self", ".", "_min_value", ",", "out", ">", "self", ".", "_max_value", ")", ",", "out", ",", "copy", "=", "False", ")", "if", "return_bounds", ":", "return", "filtered_data", ",", "self", ".", "_min_value", ",", "self", ".", "_max_value", "else", ":", "return", "filtered_data" ]
Sigma clip the data when ``axis`` is specified. In this case, we replace clipped values with NaNs as placeholder values.
[ "Sigma", "clip", "the", "data", "when", "axis", "is", "specified", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/extern/sigma_clipping.py#L315-L385
train
astropy/photutils
photutils/aperture/core.py
PixelAperture.do_photometry
def do_photometry(self, data, error=None, mask=None, method='exact', subpixels=5, unit=None): """ Perform aperture photometry on the input data. Parameters ---------- data : array_like or `~astropy.units.Quantity` instance The 2D array on which to perform photometry. ``data`` should be background subtracted. error : array_like or `~astropy.units.Quantity`, optional The pixel-wise Gaussian 1-sigma errors of the input ``data``. ``error`` is assumed to include *all* sources of error, including the Poisson error of the sources (see `~photutils.utils.calc_total_error`) . ``error`` must have the same shape as the input ``data``. mask : array_like (bool), optional A boolean mask with the same shape as ``data`` where a `True` value indicates the corresponding element of ``data`` is masked. Masked data are excluded from all calculations. method : {'exact', 'center', 'subpixel'}, optional The method used to determine the overlap of the aperture on the pixel grid. Not all options are available for all aperture types. Note that the more precise methods are generally slower. The following methods are available: * ``'exact'`` (default): The the exact fractional overlap of the aperture and each pixel is calculated. The returned mask will contain values between 0 and 1. * ``'center'``: A pixel is considered to be entirely in or out of the aperture depending on whether its center is in or out of the aperture. The returned mask will contain values only of 0 (out) and 1 (in). * ``'subpixel'`` A pixel is divided into subpixels (see the ``subpixels`` keyword), each of which are considered to be entirely in or out of the aperture depending on whether its center is in or out of the aperture. If ``subpixels=1``, this method is equivalent to ``'center'``. The returned mask will contain values between 0 and 1. subpixels : int, optional For the ``'subpixel'`` method, resample pixels by this factor in each dimension. That is, each pixel is divided into ``subpixels ** 2`` subpixels. unit : `~astropy.units.UnitBase` object or str, optional An object that represents the unit associated with the input ``data`` and ``error`` arrays. Must be a `~astropy.units.UnitBase` object or a string parseable by the :mod:`~astropy.units` package. If ``data`` or ``error`` already have a different unit, the input ``unit`` will not be used and a warning will be raised. Returns ------- aperture_sums : `~numpy.ndarray` or `~astropy.units.Quantity` The sums within each aperture. aperture_sum_errs : `~numpy.ndarray` or `~astropy.units.Quantity` The errors on the sums within each aperture. """ data = np.asanyarray(data) if mask is not None: mask = np.asanyarray(mask) data = copy.deepcopy(data) # do not modify input data data[mask] = 0 if error is not None: # do not modify input data error = copy.deepcopy(np.asanyarray(error)) error[mask] = 0. aperture_sums = [] aperture_sum_errs = [] for mask in self.to_mask(method=method, subpixels=subpixels): data_cutout = mask.cutout(data) if data_cutout is None: aperture_sums.append(np.nan) else: aperture_sums.append(np.sum(data_cutout * mask.data)) if error is not None: error_cutout = mask.cutout(error) if error_cutout is None: aperture_sum_errs.append(np.nan) else: aperture_var = np.sum(error_cutout ** 2 * mask.data) aperture_sum_errs.append(np.sqrt(aperture_var)) # handle Quantity objects and input units aperture_sums = self._prepare_photometry_output(aperture_sums, unit=unit) aperture_sum_errs = self._prepare_photometry_output(aperture_sum_errs, unit=unit) return aperture_sums, aperture_sum_errs
python
def do_photometry(self, data, error=None, mask=None, method='exact', subpixels=5, unit=None): """ Perform aperture photometry on the input data. Parameters ---------- data : array_like or `~astropy.units.Quantity` instance The 2D array on which to perform photometry. ``data`` should be background subtracted. error : array_like or `~astropy.units.Quantity`, optional The pixel-wise Gaussian 1-sigma errors of the input ``data``. ``error`` is assumed to include *all* sources of error, including the Poisson error of the sources (see `~photutils.utils.calc_total_error`) . ``error`` must have the same shape as the input ``data``. mask : array_like (bool), optional A boolean mask with the same shape as ``data`` where a `True` value indicates the corresponding element of ``data`` is masked. Masked data are excluded from all calculations. method : {'exact', 'center', 'subpixel'}, optional The method used to determine the overlap of the aperture on the pixel grid. Not all options are available for all aperture types. Note that the more precise methods are generally slower. The following methods are available: * ``'exact'`` (default): The the exact fractional overlap of the aperture and each pixel is calculated. The returned mask will contain values between 0 and 1. * ``'center'``: A pixel is considered to be entirely in or out of the aperture depending on whether its center is in or out of the aperture. The returned mask will contain values only of 0 (out) and 1 (in). * ``'subpixel'`` A pixel is divided into subpixels (see the ``subpixels`` keyword), each of which are considered to be entirely in or out of the aperture depending on whether its center is in or out of the aperture. If ``subpixels=1``, this method is equivalent to ``'center'``. The returned mask will contain values between 0 and 1. subpixels : int, optional For the ``'subpixel'`` method, resample pixels by this factor in each dimension. That is, each pixel is divided into ``subpixels ** 2`` subpixels. unit : `~astropy.units.UnitBase` object or str, optional An object that represents the unit associated with the input ``data`` and ``error`` arrays. Must be a `~astropy.units.UnitBase` object or a string parseable by the :mod:`~astropy.units` package. If ``data`` or ``error`` already have a different unit, the input ``unit`` will not be used and a warning will be raised. Returns ------- aperture_sums : `~numpy.ndarray` or `~astropy.units.Quantity` The sums within each aperture. aperture_sum_errs : `~numpy.ndarray` or `~astropy.units.Quantity` The errors on the sums within each aperture. """ data = np.asanyarray(data) if mask is not None: mask = np.asanyarray(mask) data = copy.deepcopy(data) # do not modify input data data[mask] = 0 if error is not None: # do not modify input data error = copy.deepcopy(np.asanyarray(error)) error[mask] = 0. aperture_sums = [] aperture_sum_errs = [] for mask in self.to_mask(method=method, subpixels=subpixels): data_cutout = mask.cutout(data) if data_cutout is None: aperture_sums.append(np.nan) else: aperture_sums.append(np.sum(data_cutout * mask.data)) if error is not None: error_cutout = mask.cutout(error) if error_cutout is None: aperture_sum_errs.append(np.nan) else: aperture_var = np.sum(error_cutout ** 2 * mask.data) aperture_sum_errs.append(np.sqrt(aperture_var)) # handle Quantity objects and input units aperture_sums = self._prepare_photometry_output(aperture_sums, unit=unit) aperture_sum_errs = self._prepare_photometry_output(aperture_sum_errs, unit=unit) return aperture_sums, aperture_sum_errs
[ "def", "do_photometry", "(", "self", ",", "data", ",", "error", "=", "None", ",", "mask", "=", "None", ",", "method", "=", "'exact'", ",", "subpixels", "=", "5", ",", "unit", "=", "None", ")", ":", "data", "=", "np", ".", "asanyarray", "(", "data", ")", "if", "mask", "is", "not", "None", ":", "mask", "=", "np", ".", "asanyarray", "(", "mask", ")", "data", "=", "copy", ".", "deepcopy", "(", "data", ")", "# do not modify input data", "data", "[", "mask", "]", "=", "0", "if", "error", "is", "not", "None", ":", "# do not modify input data", "error", "=", "copy", ".", "deepcopy", "(", "np", ".", "asanyarray", "(", "error", ")", ")", "error", "[", "mask", "]", "=", "0.", "aperture_sums", "=", "[", "]", "aperture_sum_errs", "=", "[", "]", "for", "mask", "in", "self", ".", "to_mask", "(", "method", "=", "method", ",", "subpixels", "=", "subpixels", ")", ":", "data_cutout", "=", "mask", ".", "cutout", "(", "data", ")", "if", "data_cutout", "is", "None", ":", "aperture_sums", ".", "append", "(", "np", ".", "nan", ")", "else", ":", "aperture_sums", ".", "append", "(", "np", ".", "sum", "(", "data_cutout", "*", "mask", ".", "data", ")", ")", "if", "error", "is", "not", "None", ":", "error_cutout", "=", "mask", ".", "cutout", "(", "error", ")", "if", "error_cutout", "is", "None", ":", "aperture_sum_errs", ".", "append", "(", "np", ".", "nan", ")", "else", ":", "aperture_var", "=", "np", ".", "sum", "(", "error_cutout", "**", "2", "*", "mask", ".", "data", ")", "aperture_sum_errs", ".", "append", "(", "np", ".", "sqrt", "(", "aperture_var", ")", ")", "# handle Quantity objects and input units", "aperture_sums", "=", "self", ".", "_prepare_photometry_output", "(", "aperture_sums", ",", "unit", "=", "unit", ")", "aperture_sum_errs", "=", "self", ".", "_prepare_photometry_output", "(", "aperture_sum_errs", ",", "unit", "=", "unit", ")", "return", "aperture_sums", ",", "aperture_sum_errs" ]
Perform aperture photometry on the input data. Parameters ---------- data : array_like or `~astropy.units.Quantity` instance The 2D array on which to perform photometry. ``data`` should be background subtracted. error : array_like or `~astropy.units.Quantity`, optional The pixel-wise Gaussian 1-sigma errors of the input ``data``. ``error`` is assumed to include *all* sources of error, including the Poisson error of the sources (see `~photutils.utils.calc_total_error`) . ``error`` must have the same shape as the input ``data``. mask : array_like (bool), optional A boolean mask with the same shape as ``data`` where a `True` value indicates the corresponding element of ``data`` is masked. Masked data are excluded from all calculations. method : {'exact', 'center', 'subpixel'}, optional The method used to determine the overlap of the aperture on the pixel grid. Not all options are available for all aperture types. Note that the more precise methods are generally slower. The following methods are available: * ``'exact'`` (default): The the exact fractional overlap of the aperture and each pixel is calculated. The returned mask will contain values between 0 and 1. * ``'center'``: A pixel is considered to be entirely in or out of the aperture depending on whether its center is in or out of the aperture. The returned mask will contain values only of 0 (out) and 1 (in). * ``'subpixel'`` A pixel is divided into subpixels (see the ``subpixels`` keyword), each of which are considered to be entirely in or out of the aperture depending on whether its center is in or out of the aperture. If ``subpixels=1``, this method is equivalent to ``'center'``. The returned mask will contain values between 0 and 1. subpixels : int, optional For the ``'subpixel'`` method, resample pixels by this factor in each dimension. That is, each pixel is divided into ``subpixels ** 2`` subpixels. unit : `~astropy.units.UnitBase` object or str, optional An object that represents the unit associated with the input ``data`` and ``error`` arrays. Must be a `~astropy.units.UnitBase` object or a string parseable by the :mod:`~astropy.units` package. If ``data`` or ``error`` already have a different unit, the input ``unit`` will not be used and a warning will be raised. Returns ------- aperture_sums : `~numpy.ndarray` or `~astropy.units.Quantity` The sums within each aperture. aperture_sum_errs : `~numpy.ndarray` or `~astropy.units.Quantity` The errors on the sums within each aperture.
[ "Perform", "aperture", "photometry", "on", "the", "input", "data", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/aperture/core.py#L301-L410
train
astropy/photutils
photutils/aperture/core.py
PixelAperture._to_sky_params
def _to_sky_params(self, wcs, mode='all'): """ Convert the pixel aperture parameters to those for a sky aperture. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- sky_params : dict A dictionary of parameters for an equivalent sky aperture. """ sky_params = {} x, y = np.transpose(self.positions) sky_params['positions'] = pixel_to_skycoord(x, y, wcs, mode=mode) # The aperture object must have a single value for each shape # parameter so we must use a single pixel scale for all positions. # Here, we define the scale at the WCS CRVAL position. crval = SkyCoord([wcs.wcs.crval], frame=wcs_to_celestial_frame(wcs), unit=wcs.wcs.cunit) scale, angle = pixel_scale_angle_at_skycoord(crval, wcs) params = self._params[:] theta_key = 'theta' if theta_key in self._params: sky_params[theta_key] = (self.theta * u.rad) - angle.to(u.rad) params.remove(theta_key) param_vals = [getattr(self, param) for param in params] for param, param_val in zip(params, param_vals): sky_params[param] = (param_val * u.pix * scale).to(u.arcsec) return sky_params
python
def _to_sky_params(self, wcs, mode='all'): """ Convert the pixel aperture parameters to those for a sky aperture. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- sky_params : dict A dictionary of parameters for an equivalent sky aperture. """ sky_params = {} x, y = np.transpose(self.positions) sky_params['positions'] = pixel_to_skycoord(x, y, wcs, mode=mode) # The aperture object must have a single value for each shape # parameter so we must use a single pixel scale for all positions. # Here, we define the scale at the WCS CRVAL position. crval = SkyCoord([wcs.wcs.crval], frame=wcs_to_celestial_frame(wcs), unit=wcs.wcs.cunit) scale, angle = pixel_scale_angle_at_skycoord(crval, wcs) params = self._params[:] theta_key = 'theta' if theta_key in self._params: sky_params[theta_key] = (self.theta * u.rad) - angle.to(u.rad) params.remove(theta_key) param_vals = [getattr(self, param) for param in params] for param, param_val in zip(params, param_vals): sky_params[param] = (param_val * u.pix * scale).to(u.arcsec) return sky_params
[ "def", "_to_sky_params", "(", "self", ",", "wcs", ",", "mode", "=", "'all'", ")", ":", "sky_params", "=", "{", "}", "x", ",", "y", "=", "np", ".", "transpose", "(", "self", ".", "positions", ")", "sky_params", "[", "'positions'", "]", "=", "pixel_to_skycoord", "(", "x", ",", "y", ",", "wcs", ",", "mode", "=", "mode", ")", "# The aperture object must have a single value for each shape", "# parameter so we must use a single pixel scale for all positions.", "# Here, we define the scale at the WCS CRVAL position.", "crval", "=", "SkyCoord", "(", "[", "wcs", ".", "wcs", ".", "crval", "]", ",", "frame", "=", "wcs_to_celestial_frame", "(", "wcs", ")", ",", "unit", "=", "wcs", ".", "wcs", ".", "cunit", ")", "scale", ",", "angle", "=", "pixel_scale_angle_at_skycoord", "(", "crval", ",", "wcs", ")", "params", "=", "self", ".", "_params", "[", ":", "]", "theta_key", "=", "'theta'", "if", "theta_key", "in", "self", ".", "_params", ":", "sky_params", "[", "theta_key", "]", "=", "(", "self", ".", "theta", "*", "u", ".", "rad", ")", "-", "angle", ".", "to", "(", "u", ".", "rad", ")", "params", ".", "remove", "(", "theta_key", ")", "param_vals", "=", "[", "getattr", "(", "self", ",", "param", ")", "for", "param", "in", "params", "]", "for", "param", ",", "param_val", "in", "zip", "(", "params", ",", "param_vals", ")", ":", "sky_params", "[", "param", "]", "=", "(", "param_val", "*", "u", ".", "pix", "*", "scale", ")", ".", "to", "(", "u", ".", "arcsec", ")", "return", "sky_params" ]
Convert the pixel aperture parameters to those for a sky aperture. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- sky_params : dict A dictionary of parameters for an equivalent sky aperture.
[ "Convert", "the", "pixel", "aperture", "parameters", "to", "those", "for", "a", "sky", "aperture", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/aperture/core.py#L526-L568
train
astropy/photutils
photutils/aperture/core.py
SkyAperture._to_pixel_params
def _to_pixel_params(self, wcs, mode='all'): """ Convert the sky aperture parameters to those for a pixel aperture. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- pixel_params : dict A dictionary of parameters for an equivalent pixel aperture. """ pixel_params = {} x, y = skycoord_to_pixel(self.positions, wcs, mode=mode) pixel_params['positions'] = np.array([x, y]).transpose() # The aperture object must have a single value for each shape # parameter so we must use a single pixel scale for all positions. # Here, we define the scale at the WCS CRVAL position. crval = SkyCoord([wcs.wcs.crval], frame=wcs_to_celestial_frame(wcs), unit=wcs.wcs.cunit) scale, angle = pixel_scale_angle_at_skycoord(crval, wcs) params = self._params[:] theta_key = 'theta' if theta_key in self._params: pixel_params[theta_key] = (self.theta + angle).to(u.radian).value params.remove(theta_key) param_vals = [getattr(self, param) for param in params] if param_vals[0].unit.physical_type == 'angle': for param, param_val in zip(params, param_vals): pixel_params[param] = (param_val / scale).to(u.pixel).value else: # pixels for param, param_val in zip(params, param_vals): pixel_params[param] = param_val.value return pixel_params
python
def _to_pixel_params(self, wcs, mode='all'): """ Convert the sky aperture parameters to those for a pixel aperture. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- pixel_params : dict A dictionary of parameters for an equivalent pixel aperture. """ pixel_params = {} x, y = skycoord_to_pixel(self.positions, wcs, mode=mode) pixel_params['positions'] = np.array([x, y]).transpose() # The aperture object must have a single value for each shape # parameter so we must use a single pixel scale for all positions. # Here, we define the scale at the WCS CRVAL position. crval = SkyCoord([wcs.wcs.crval], frame=wcs_to_celestial_frame(wcs), unit=wcs.wcs.cunit) scale, angle = pixel_scale_angle_at_skycoord(crval, wcs) params = self._params[:] theta_key = 'theta' if theta_key in self._params: pixel_params[theta_key] = (self.theta + angle).to(u.radian).value params.remove(theta_key) param_vals = [getattr(self, param) for param in params] if param_vals[0].unit.physical_type == 'angle': for param, param_val in zip(params, param_vals): pixel_params[param] = (param_val / scale).to(u.pixel).value else: # pixels for param, param_val in zip(params, param_vals): pixel_params[param] = param_val.value return pixel_params
[ "def", "_to_pixel_params", "(", "self", ",", "wcs", ",", "mode", "=", "'all'", ")", ":", "pixel_params", "=", "{", "}", "x", ",", "y", "=", "skycoord_to_pixel", "(", "self", ".", "positions", ",", "wcs", ",", "mode", "=", "mode", ")", "pixel_params", "[", "'positions'", "]", "=", "np", ".", "array", "(", "[", "x", ",", "y", "]", ")", ".", "transpose", "(", ")", "# The aperture object must have a single value for each shape", "# parameter so we must use a single pixel scale for all positions.", "# Here, we define the scale at the WCS CRVAL position.", "crval", "=", "SkyCoord", "(", "[", "wcs", ".", "wcs", ".", "crval", "]", ",", "frame", "=", "wcs_to_celestial_frame", "(", "wcs", ")", ",", "unit", "=", "wcs", ".", "wcs", ".", "cunit", ")", "scale", ",", "angle", "=", "pixel_scale_angle_at_skycoord", "(", "crval", ",", "wcs", ")", "params", "=", "self", ".", "_params", "[", ":", "]", "theta_key", "=", "'theta'", "if", "theta_key", "in", "self", ".", "_params", ":", "pixel_params", "[", "theta_key", "]", "=", "(", "self", ".", "theta", "+", "angle", ")", ".", "to", "(", "u", ".", "radian", ")", ".", "value", "params", ".", "remove", "(", "theta_key", ")", "param_vals", "=", "[", "getattr", "(", "self", ",", "param", ")", "for", "param", "in", "params", "]", "if", "param_vals", "[", "0", "]", ".", "unit", ".", "physical_type", "==", "'angle'", ":", "for", "param", ",", "param_val", "in", "zip", "(", "params", ",", "param_vals", ")", ":", "pixel_params", "[", "param", "]", "=", "(", "param_val", "/", "scale", ")", ".", "to", "(", "u", ".", "pixel", ")", ".", "value", "else", ":", "# pixels", "for", "param", ",", "param_val", "in", "zip", "(", "params", ",", "param_vals", ")", ":", "pixel_params", "[", "param", "]", "=", "param_val", ".", "value", "return", "pixel_params" ]
Convert the sky aperture parameters to those for a pixel aperture. Parameters ---------- wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. mode : {'all', 'wcs'}, optional Whether to do the transformation including distortions (``'all'``; default) or only including only the core WCS transformation (``'wcs'``). Returns ------- pixel_params : dict A dictionary of parameters for an equivalent pixel aperture.
[ "Convert", "the", "sky", "aperture", "parameters", "to", "those", "for", "a", "pixel", "aperture", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/aperture/core.py#L601-L647
train
astropy/photutils
photutils/segmentation/properties.py
source_properties
def source_properties(data, segment_img, error=None, mask=None, background=None, filter_kernel=None, wcs=None, labels=None): """ Calculate photometry and morphological properties of sources defined by a labeled segmentation image. Parameters ---------- data : array_like or `~astropy.units.Quantity` The 2D array from which to calculate the source photometry and properties. ``data`` should be background-subtracted. Non-finite ``data`` values (e.g. NaN or inf) are automatically masked. segment_img : `SegmentationImage` or array_like (int) A 2D segmentation image, either as a `SegmentationImage` object or an `~numpy.ndarray`, with the same shape as ``data`` where sources are labeled by different positive integer values. A value of zero is reserved for the background. error : array_like or `~astropy.units.Quantity`, optional The total error array corresponding to the input ``data`` array. ``error`` is assumed to include *all* sources of error, including the Poisson error of the sources (see `~photutils.utils.calc_total_error`) . ``error`` must have the same shape as the input ``data``. Non-finite ``error`` values (e.g. NaN or inf) are not automatically masked, unless they are at the same position of non-finite values in the input ``data`` array. Such pixels can be masked using the ``mask`` keyword. See the Notes section below for details on the error propagation. mask : array_like (bool), optional A boolean mask with the same shape as ``data`` where a `True` value indicates the corresponding element of ``data`` is masked. Masked data are excluded from all calculations. Non-finite values (e.g. NaN or inf) in the input ``data`` are automatically masked. background : float, array_like, or `~astropy.units.Quantity`, optional The background level that was *previously* present in the input ``data``. ``background`` may either be a scalar value or a 2D image with the same shape as the input ``data``. Inputting the ``background`` merely allows for its properties to be measured within each source segment. The input ``background`` does *not* get subtracted from the input ``data``, which should already be background-subtracted. Non-finite ``background`` values (e.g. NaN or inf) are not automatically masked, unless they are at the same position of non-finite values in the input ``data`` array. Such pixels can be masked using the ``mask`` keyword. filter_kernel : array-like (2D) or `~astropy.convolution.Kernel2D`, optional The 2D array of the kernel used to filter the data prior to calculating the source centroid and morphological parameters. The kernel should be the same one used in defining the source segments, i.e. the detection image (e.g., see :func:`~photutils.detect_sources`). If `None`, then the unfiltered ``data`` will be used instead. wcs : `~astropy.wcs.WCS` The WCS transformation to use. If `None`, then any sky-based properties will be set to `None`. labels : int, array-like (1D, int) The segmentation labels for which to calculate source properties. If `None` (default), then the properties will be calculated for all labeled sources. Returns ------- output : `SourceCatalog` instance A `SourceCatalog` instance containing the properties of each source. Notes ----- `SExtractor`_'s centroid and morphological parameters are always calculated from a filtered "detection" image, i.e. the image used to define the segmentation image. The usual downside of the filtering is the sources will be made more circular than they actually are. If you wish to reproduce `SExtractor`_ centroid and morphology results, then input a filtered and background-subtracted "detection" image into the ``filtered_data`` keyword. If ``filtered_data`` is `None`, then the unfiltered ``data`` will be used for the source centroid and morphological parameters. Negative data values (``filtered_data`` or ``data``) within the source segment are set to zero when calculating morphological properties based on image moments. Negative values could occur, for example, if the segmentation image was defined from a different image (e.g., different bandpass) or if the background was oversubtracted. Note that `~photutils.SourceProperties.source_sum` always includes the contribution of negative ``data`` values. The input ``error`` is assumed to include *all* sources of error, including the Poisson error of the sources. `~photutils.SourceProperties.source_sum_err` is simply the quadrature sum of the pixel-wise total errors over the non-masked pixels within the source segment: .. math:: \\Delta F = \\sqrt{\\sum_{i \\in S} \\sigma_{\\mathrm{tot}, i}^2} where :math:`\\Delta F` is `~photutils.SourceProperties.source_sum_err`, :math:`S` are the non-masked pixels in the source segment, and :math:`\\sigma_{\\mathrm{tot}, i}` is the input ``error`` array. .. _SExtractor: http://www.astromatic.net/software/sextractor See Also -------- SegmentationImage, SourceProperties, detect_sources Examples -------- >>> import numpy as np >>> from photutils import SegmentationImage, source_properties >>> image = np.arange(16.).reshape(4, 4) >>> print(image) # doctest: +SKIP [[ 0. 1. 2. 3.] [ 4. 5. 6. 7.] [ 8. 9. 10. 11.] [12. 13. 14. 15.]] >>> segm = SegmentationImage([[1, 1, 0, 0], ... [1, 0, 0, 2], ... [0, 0, 2, 2], ... [0, 2, 2, 0]]) >>> props = source_properties(image, segm) Print some properties of the first object (labeled with ``1`` in the segmentation image): >>> props[0].id # id corresponds to segment label number 1 >>> props[0].centroid # doctest: +FLOAT_CMP <Quantity [0.8, 0.2] pix> >>> props[0].source_sum # doctest: +FLOAT_CMP 5.0 >>> props[0].area # doctest: +FLOAT_CMP <Quantity 3. pix2> >>> props[0].max_value # doctest: +FLOAT_CMP 4.0 Print some properties of the second object (labeled with ``2`` in the segmentation image): >>> props[1].id # id corresponds to segment label number 2 >>> props[1].centroid # doctest: +FLOAT_CMP <Quantity [2.36363636, 2.09090909] pix> >>> props[1].perimeter # doctest: +FLOAT_CMP <Quantity 5.41421356 pix> >>> props[1].orientation # doctest: +FLOAT_CMP <Quantity -0.74175931 rad> """ if not isinstance(segment_img, SegmentationImage): segment_img = SegmentationImage(segment_img) if segment_img.shape != data.shape: raise ValueError('segment_img and data must have the same shape.') # filter the data once, instead of repeating for each source if filter_kernel is not None: filtered_data = filter_data(data, filter_kernel, mode='constant', fill_value=0.0, check_normalization=True) else: filtered_data = None if labels is None: labels = segment_img.labels labels = np.atleast_1d(labels) sources_props = [] for label in labels: if label not in segment_img.labels: warnings.warn('label {} is not in the segmentation image.' .format(label), AstropyUserWarning) continue # skip invalid labels sources_props.append(SourceProperties( data, segment_img, label, filtered_data=filtered_data, error=error, mask=mask, background=background, wcs=wcs)) if len(sources_props) == 0: raise ValueError('No sources are defined.') return SourceCatalog(sources_props, wcs=wcs)
python
def source_properties(data, segment_img, error=None, mask=None, background=None, filter_kernel=None, wcs=None, labels=None): """ Calculate photometry and morphological properties of sources defined by a labeled segmentation image. Parameters ---------- data : array_like or `~astropy.units.Quantity` The 2D array from which to calculate the source photometry and properties. ``data`` should be background-subtracted. Non-finite ``data`` values (e.g. NaN or inf) are automatically masked. segment_img : `SegmentationImage` or array_like (int) A 2D segmentation image, either as a `SegmentationImage` object or an `~numpy.ndarray`, with the same shape as ``data`` where sources are labeled by different positive integer values. A value of zero is reserved for the background. error : array_like or `~astropy.units.Quantity`, optional The total error array corresponding to the input ``data`` array. ``error`` is assumed to include *all* sources of error, including the Poisson error of the sources (see `~photutils.utils.calc_total_error`) . ``error`` must have the same shape as the input ``data``. Non-finite ``error`` values (e.g. NaN or inf) are not automatically masked, unless they are at the same position of non-finite values in the input ``data`` array. Such pixels can be masked using the ``mask`` keyword. See the Notes section below for details on the error propagation. mask : array_like (bool), optional A boolean mask with the same shape as ``data`` where a `True` value indicates the corresponding element of ``data`` is masked. Masked data are excluded from all calculations. Non-finite values (e.g. NaN or inf) in the input ``data`` are automatically masked. background : float, array_like, or `~astropy.units.Quantity`, optional The background level that was *previously* present in the input ``data``. ``background`` may either be a scalar value or a 2D image with the same shape as the input ``data``. Inputting the ``background`` merely allows for its properties to be measured within each source segment. The input ``background`` does *not* get subtracted from the input ``data``, which should already be background-subtracted. Non-finite ``background`` values (e.g. NaN or inf) are not automatically masked, unless they are at the same position of non-finite values in the input ``data`` array. Such pixels can be masked using the ``mask`` keyword. filter_kernel : array-like (2D) or `~astropy.convolution.Kernel2D`, optional The 2D array of the kernel used to filter the data prior to calculating the source centroid and morphological parameters. The kernel should be the same one used in defining the source segments, i.e. the detection image (e.g., see :func:`~photutils.detect_sources`). If `None`, then the unfiltered ``data`` will be used instead. wcs : `~astropy.wcs.WCS` The WCS transformation to use. If `None`, then any sky-based properties will be set to `None`. labels : int, array-like (1D, int) The segmentation labels for which to calculate source properties. If `None` (default), then the properties will be calculated for all labeled sources. Returns ------- output : `SourceCatalog` instance A `SourceCatalog` instance containing the properties of each source. Notes ----- `SExtractor`_'s centroid and morphological parameters are always calculated from a filtered "detection" image, i.e. the image used to define the segmentation image. The usual downside of the filtering is the sources will be made more circular than they actually are. If you wish to reproduce `SExtractor`_ centroid and morphology results, then input a filtered and background-subtracted "detection" image into the ``filtered_data`` keyword. If ``filtered_data`` is `None`, then the unfiltered ``data`` will be used for the source centroid and morphological parameters. Negative data values (``filtered_data`` or ``data``) within the source segment are set to zero when calculating morphological properties based on image moments. Negative values could occur, for example, if the segmentation image was defined from a different image (e.g., different bandpass) or if the background was oversubtracted. Note that `~photutils.SourceProperties.source_sum` always includes the contribution of negative ``data`` values. The input ``error`` is assumed to include *all* sources of error, including the Poisson error of the sources. `~photutils.SourceProperties.source_sum_err` is simply the quadrature sum of the pixel-wise total errors over the non-masked pixels within the source segment: .. math:: \\Delta F = \\sqrt{\\sum_{i \\in S} \\sigma_{\\mathrm{tot}, i}^2} where :math:`\\Delta F` is `~photutils.SourceProperties.source_sum_err`, :math:`S` are the non-masked pixels in the source segment, and :math:`\\sigma_{\\mathrm{tot}, i}` is the input ``error`` array. .. _SExtractor: http://www.astromatic.net/software/sextractor See Also -------- SegmentationImage, SourceProperties, detect_sources Examples -------- >>> import numpy as np >>> from photutils import SegmentationImage, source_properties >>> image = np.arange(16.).reshape(4, 4) >>> print(image) # doctest: +SKIP [[ 0. 1. 2. 3.] [ 4. 5. 6. 7.] [ 8. 9. 10. 11.] [12. 13. 14. 15.]] >>> segm = SegmentationImage([[1, 1, 0, 0], ... [1, 0, 0, 2], ... [0, 0, 2, 2], ... [0, 2, 2, 0]]) >>> props = source_properties(image, segm) Print some properties of the first object (labeled with ``1`` in the segmentation image): >>> props[0].id # id corresponds to segment label number 1 >>> props[0].centroid # doctest: +FLOAT_CMP <Quantity [0.8, 0.2] pix> >>> props[0].source_sum # doctest: +FLOAT_CMP 5.0 >>> props[0].area # doctest: +FLOAT_CMP <Quantity 3. pix2> >>> props[0].max_value # doctest: +FLOAT_CMP 4.0 Print some properties of the second object (labeled with ``2`` in the segmentation image): >>> props[1].id # id corresponds to segment label number 2 >>> props[1].centroid # doctest: +FLOAT_CMP <Quantity [2.36363636, 2.09090909] pix> >>> props[1].perimeter # doctest: +FLOAT_CMP <Quantity 5.41421356 pix> >>> props[1].orientation # doctest: +FLOAT_CMP <Quantity -0.74175931 rad> """ if not isinstance(segment_img, SegmentationImage): segment_img = SegmentationImage(segment_img) if segment_img.shape != data.shape: raise ValueError('segment_img and data must have the same shape.') # filter the data once, instead of repeating for each source if filter_kernel is not None: filtered_data = filter_data(data, filter_kernel, mode='constant', fill_value=0.0, check_normalization=True) else: filtered_data = None if labels is None: labels = segment_img.labels labels = np.atleast_1d(labels) sources_props = [] for label in labels: if label not in segment_img.labels: warnings.warn('label {} is not in the segmentation image.' .format(label), AstropyUserWarning) continue # skip invalid labels sources_props.append(SourceProperties( data, segment_img, label, filtered_data=filtered_data, error=error, mask=mask, background=background, wcs=wcs)) if len(sources_props) == 0: raise ValueError('No sources are defined.') return SourceCatalog(sources_props, wcs=wcs)
[ "def", "source_properties", "(", "data", ",", "segment_img", ",", "error", "=", "None", ",", "mask", "=", "None", ",", "background", "=", "None", ",", "filter_kernel", "=", "None", ",", "wcs", "=", "None", ",", "labels", "=", "None", ")", ":", "if", "not", "isinstance", "(", "segment_img", ",", "SegmentationImage", ")", ":", "segment_img", "=", "SegmentationImage", "(", "segment_img", ")", "if", "segment_img", ".", "shape", "!=", "data", ".", "shape", ":", "raise", "ValueError", "(", "'segment_img and data must have the same shape.'", ")", "# filter the data once, instead of repeating for each source", "if", "filter_kernel", "is", "not", "None", ":", "filtered_data", "=", "filter_data", "(", "data", ",", "filter_kernel", ",", "mode", "=", "'constant'", ",", "fill_value", "=", "0.0", ",", "check_normalization", "=", "True", ")", "else", ":", "filtered_data", "=", "None", "if", "labels", "is", "None", ":", "labels", "=", "segment_img", ".", "labels", "labels", "=", "np", ".", "atleast_1d", "(", "labels", ")", "sources_props", "=", "[", "]", "for", "label", "in", "labels", ":", "if", "label", "not", "in", "segment_img", ".", "labels", ":", "warnings", ".", "warn", "(", "'label {} is not in the segmentation image.'", ".", "format", "(", "label", ")", ",", "AstropyUserWarning", ")", "continue", "# skip invalid labels", "sources_props", ".", "append", "(", "SourceProperties", "(", "data", ",", "segment_img", ",", "label", ",", "filtered_data", "=", "filtered_data", ",", "error", "=", "error", ",", "mask", "=", "mask", ",", "background", "=", "background", ",", "wcs", "=", "wcs", ")", ")", "if", "len", "(", "sources_props", ")", "==", "0", ":", "raise", "ValueError", "(", "'No sources are defined.'", ")", "return", "SourceCatalog", "(", "sources_props", ",", "wcs", "=", "wcs", ")" ]
Calculate photometry and morphological properties of sources defined by a labeled segmentation image. Parameters ---------- data : array_like or `~astropy.units.Quantity` The 2D array from which to calculate the source photometry and properties. ``data`` should be background-subtracted. Non-finite ``data`` values (e.g. NaN or inf) are automatically masked. segment_img : `SegmentationImage` or array_like (int) A 2D segmentation image, either as a `SegmentationImage` object or an `~numpy.ndarray`, with the same shape as ``data`` where sources are labeled by different positive integer values. A value of zero is reserved for the background. error : array_like or `~astropy.units.Quantity`, optional The total error array corresponding to the input ``data`` array. ``error`` is assumed to include *all* sources of error, including the Poisson error of the sources (see `~photutils.utils.calc_total_error`) . ``error`` must have the same shape as the input ``data``. Non-finite ``error`` values (e.g. NaN or inf) are not automatically masked, unless they are at the same position of non-finite values in the input ``data`` array. Such pixels can be masked using the ``mask`` keyword. See the Notes section below for details on the error propagation. mask : array_like (bool), optional A boolean mask with the same shape as ``data`` where a `True` value indicates the corresponding element of ``data`` is masked. Masked data are excluded from all calculations. Non-finite values (e.g. NaN or inf) in the input ``data`` are automatically masked. background : float, array_like, or `~astropy.units.Quantity`, optional The background level that was *previously* present in the input ``data``. ``background`` may either be a scalar value or a 2D image with the same shape as the input ``data``. Inputting the ``background`` merely allows for its properties to be measured within each source segment. The input ``background`` does *not* get subtracted from the input ``data``, which should already be background-subtracted. Non-finite ``background`` values (e.g. NaN or inf) are not automatically masked, unless they are at the same position of non-finite values in the input ``data`` array. Such pixels can be masked using the ``mask`` keyword. filter_kernel : array-like (2D) or `~astropy.convolution.Kernel2D`, optional The 2D array of the kernel used to filter the data prior to calculating the source centroid and morphological parameters. The kernel should be the same one used in defining the source segments, i.e. the detection image (e.g., see :func:`~photutils.detect_sources`). If `None`, then the unfiltered ``data`` will be used instead. wcs : `~astropy.wcs.WCS` The WCS transformation to use. If `None`, then any sky-based properties will be set to `None`. labels : int, array-like (1D, int) The segmentation labels for which to calculate source properties. If `None` (default), then the properties will be calculated for all labeled sources. Returns ------- output : `SourceCatalog` instance A `SourceCatalog` instance containing the properties of each source. Notes ----- `SExtractor`_'s centroid and morphological parameters are always calculated from a filtered "detection" image, i.e. the image used to define the segmentation image. The usual downside of the filtering is the sources will be made more circular than they actually are. If you wish to reproduce `SExtractor`_ centroid and morphology results, then input a filtered and background-subtracted "detection" image into the ``filtered_data`` keyword. If ``filtered_data`` is `None`, then the unfiltered ``data`` will be used for the source centroid and morphological parameters. Negative data values (``filtered_data`` or ``data``) within the source segment are set to zero when calculating morphological properties based on image moments. Negative values could occur, for example, if the segmentation image was defined from a different image (e.g., different bandpass) or if the background was oversubtracted. Note that `~photutils.SourceProperties.source_sum` always includes the contribution of negative ``data`` values. The input ``error`` is assumed to include *all* sources of error, including the Poisson error of the sources. `~photutils.SourceProperties.source_sum_err` is simply the quadrature sum of the pixel-wise total errors over the non-masked pixels within the source segment: .. math:: \\Delta F = \\sqrt{\\sum_{i \\in S} \\sigma_{\\mathrm{tot}, i}^2} where :math:`\\Delta F` is `~photutils.SourceProperties.source_sum_err`, :math:`S` are the non-masked pixels in the source segment, and :math:`\\sigma_{\\mathrm{tot}, i}` is the input ``error`` array. .. _SExtractor: http://www.astromatic.net/software/sextractor See Also -------- SegmentationImage, SourceProperties, detect_sources Examples -------- >>> import numpy as np >>> from photutils import SegmentationImage, source_properties >>> image = np.arange(16.).reshape(4, 4) >>> print(image) # doctest: +SKIP [[ 0. 1. 2. 3.] [ 4. 5. 6. 7.] [ 8. 9. 10. 11.] [12. 13. 14. 15.]] >>> segm = SegmentationImage([[1, 1, 0, 0], ... [1, 0, 0, 2], ... [0, 0, 2, 2], ... [0, 2, 2, 0]]) >>> props = source_properties(image, segm) Print some properties of the first object (labeled with ``1`` in the segmentation image): >>> props[0].id # id corresponds to segment label number 1 >>> props[0].centroid # doctest: +FLOAT_CMP <Quantity [0.8, 0.2] pix> >>> props[0].source_sum # doctest: +FLOAT_CMP 5.0 >>> props[0].area # doctest: +FLOAT_CMP <Quantity 3. pix2> >>> props[0].max_value # doctest: +FLOAT_CMP 4.0 Print some properties of the second object (labeled with ``2`` in the segmentation image): >>> props[1].id # id corresponds to segment label number 2 >>> props[1].centroid # doctest: +FLOAT_CMP <Quantity [2.36363636, 2.09090909] pix> >>> props[1].perimeter # doctest: +FLOAT_CMP <Quantity 5.41421356 pix> >>> props[1].orientation # doctest: +FLOAT_CMP <Quantity -0.74175931 rad>
[ "Calculate", "photometry", "and", "morphological", "properties", "of", "sources", "defined", "by", "a", "labeled", "segmentation", "image", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L1223-L1412
train
astropy/photutils
photutils/segmentation/properties.py
_properties_table
def _properties_table(obj, columns=None, exclude_columns=None): """ Construct a `~astropy.table.QTable` of source properties from a `SourceProperties` or `SourceCatalog` object. Parameters ---------- obj : `SourceProperties` or `SourceCatalog` instance The object containing the source properties. columns : str or list of str, optional Names of columns, in order, to include in the output `~astropy.table.QTable`. The allowed column names are any of the attributes of `SourceProperties`. exclude_columns : str or list of str, optional Names of columns to exclude from the default properties list in the output `~astropy.table.QTable`. Returns ------- table : `~astropy.table.QTable` A table of source properties with one row per source. """ # default properties columns_all = ['id', 'xcentroid', 'ycentroid', 'sky_centroid', 'sky_centroid_icrs', 'source_sum', 'source_sum_err', 'background_sum', 'background_mean', 'background_at_centroid', 'xmin', 'xmax', 'ymin', 'ymax', 'min_value', 'max_value', 'minval_xpos', 'minval_ypos', 'maxval_xpos', 'maxval_ypos', 'area', 'equivalent_radius', 'perimeter', 'semimajor_axis_sigma', 'semiminor_axis_sigma', 'eccentricity', 'orientation', 'ellipticity', 'elongation', 'covar_sigx2', 'covar_sigxy', 'covar_sigy2', 'cxx', 'cxy', 'cyy'] table_columns = None if exclude_columns is not None: table_columns = [s for s in columns_all if s not in exclude_columns] if columns is not None: table_columns = np.atleast_1d(columns) if table_columns is None: table_columns = columns_all tbl = QTable() for column in table_columns: values = getattr(obj, column) if isinstance(obj, SourceProperties): # turn scalar values into length-1 arrays because QTable # column assignment requires an object with a length values = np.atleast_1d(values) # Unfortunately np.atleast_1d creates an array of SkyCoord # instead of a SkyCoord array (Quantity does work correctly # with np.atleast_1d). Here we make a SkyCoord array for # the output table column. if isinstance(values[0], SkyCoord): values = SkyCoord(values) # length-1 SkyCoord array tbl[column] = values return tbl
python
def _properties_table(obj, columns=None, exclude_columns=None): """ Construct a `~astropy.table.QTable` of source properties from a `SourceProperties` or `SourceCatalog` object. Parameters ---------- obj : `SourceProperties` or `SourceCatalog` instance The object containing the source properties. columns : str or list of str, optional Names of columns, in order, to include in the output `~astropy.table.QTable`. The allowed column names are any of the attributes of `SourceProperties`. exclude_columns : str or list of str, optional Names of columns to exclude from the default properties list in the output `~astropy.table.QTable`. Returns ------- table : `~astropy.table.QTable` A table of source properties with one row per source. """ # default properties columns_all = ['id', 'xcentroid', 'ycentroid', 'sky_centroid', 'sky_centroid_icrs', 'source_sum', 'source_sum_err', 'background_sum', 'background_mean', 'background_at_centroid', 'xmin', 'xmax', 'ymin', 'ymax', 'min_value', 'max_value', 'minval_xpos', 'minval_ypos', 'maxval_xpos', 'maxval_ypos', 'area', 'equivalent_radius', 'perimeter', 'semimajor_axis_sigma', 'semiminor_axis_sigma', 'eccentricity', 'orientation', 'ellipticity', 'elongation', 'covar_sigx2', 'covar_sigxy', 'covar_sigy2', 'cxx', 'cxy', 'cyy'] table_columns = None if exclude_columns is not None: table_columns = [s for s in columns_all if s not in exclude_columns] if columns is not None: table_columns = np.atleast_1d(columns) if table_columns is None: table_columns = columns_all tbl = QTable() for column in table_columns: values = getattr(obj, column) if isinstance(obj, SourceProperties): # turn scalar values into length-1 arrays because QTable # column assignment requires an object with a length values = np.atleast_1d(values) # Unfortunately np.atleast_1d creates an array of SkyCoord # instead of a SkyCoord array (Quantity does work correctly # with np.atleast_1d). Here we make a SkyCoord array for # the output table column. if isinstance(values[0], SkyCoord): values = SkyCoord(values) # length-1 SkyCoord array tbl[column] = values return tbl
[ "def", "_properties_table", "(", "obj", ",", "columns", "=", "None", ",", "exclude_columns", "=", "None", ")", ":", "# default properties", "columns_all", "=", "[", "'id'", ",", "'xcentroid'", ",", "'ycentroid'", ",", "'sky_centroid'", ",", "'sky_centroid_icrs'", ",", "'source_sum'", ",", "'source_sum_err'", ",", "'background_sum'", ",", "'background_mean'", ",", "'background_at_centroid'", ",", "'xmin'", ",", "'xmax'", ",", "'ymin'", ",", "'ymax'", ",", "'min_value'", ",", "'max_value'", ",", "'minval_xpos'", ",", "'minval_ypos'", ",", "'maxval_xpos'", ",", "'maxval_ypos'", ",", "'area'", ",", "'equivalent_radius'", ",", "'perimeter'", ",", "'semimajor_axis_sigma'", ",", "'semiminor_axis_sigma'", ",", "'eccentricity'", ",", "'orientation'", ",", "'ellipticity'", ",", "'elongation'", ",", "'covar_sigx2'", ",", "'covar_sigxy'", ",", "'covar_sigy2'", ",", "'cxx'", ",", "'cxy'", ",", "'cyy'", "]", "table_columns", "=", "None", "if", "exclude_columns", "is", "not", "None", ":", "table_columns", "=", "[", "s", "for", "s", "in", "columns_all", "if", "s", "not", "in", "exclude_columns", "]", "if", "columns", "is", "not", "None", ":", "table_columns", "=", "np", ".", "atleast_1d", "(", "columns", ")", "if", "table_columns", "is", "None", ":", "table_columns", "=", "columns_all", "tbl", "=", "QTable", "(", ")", "for", "column", "in", "table_columns", ":", "values", "=", "getattr", "(", "obj", ",", "column", ")", "if", "isinstance", "(", "obj", ",", "SourceProperties", ")", ":", "# turn scalar values into length-1 arrays because QTable", "# column assignment requires an object with a length", "values", "=", "np", ".", "atleast_1d", "(", "values", ")", "# Unfortunately np.atleast_1d creates an array of SkyCoord", "# instead of a SkyCoord array (Quantity does work correctly", "# with np.atleast_1d). Here we make a SkyCoord array for", "# the output table column.", "if", "isinstance", "(", "values", "[", "0", "]", ",", "SkyCoord", ")", ":", "values", "=", "SkyCoord", "(", "values", ")", "# length-1 SkyCoord array", "tbl", "[", "column", "]", "=", "values", "return", "tbl" ]
Construct a `~astropy.table.QTable` of source properties from a `SourceProperties` or `SourceCatalog` object. Parameters ---------- obj : `SourceProperties` or `SourceCatalog` instance The object containing the source properties. columns : str or list of str, optional Names of columns, in order, to include in the output `~astropy.table.QTable`. The allowed column names are any of the attributes of `SourceProperties`. exclude_columns : str or list of str, optional Names of columns to exclude from the default properties list in the output `~astropy.table.QTable`. Returns ------- table : `~astropy.table.QTable` A table of source properties with one row per source.
[ "Construct", "a", "~astropy", ".", "table", ".", "QTable", "of", "source", "properties", "from", "a", "SourceProperties", "or", "SourceCatalog", "object", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L1609-L1673
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties._total_mask
def _total_mask(self): """ Combination of the _segment_mask, _input_mask, and _data_mask. This mask is applied to ``data``, ``error``, and ``background`` inputs when calculating properties. """ mask = self._segment_mask | self._data_mask if self._input_mask is not None: mask |= self._input_mask return mask
python
def _total_mask(self): """ Combination of the _segment_mask, _input_mask, and _data_mask. This mask is applied to ``data``, ``error``, and ``background`` inputs when calculating properties. """ mask = self._segment_mask | self._data_mask if self._input_mask is not None: mask |= self._input_mask return mask
[ "def", "_total_mask", "(", "self", ")", ":", "mask", "=", "self", ".", "_segment_mask", "|", "self", ".", "_data_mask", "if", "self", ".", "_input_mask", "is", "not", "None", ":", "mask", "|=", "self", ".", "_input_mask", "return", "mask" ]
Combination of the _segment_mask, _input_mask, and _data_mask. This mask is applied to ``data``, ``error``, and ``background`` inputs when calculating properties.
[ "Combination", "of", "the", "_segment_mask", "_input_mask", "and", "_data_mask", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L228-L241
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.to_table
def to_table(self, columns=None, exclude_columns=None): """ Create a `~astropy.table.QTable` of properties. If ``columns`` or ``exclude_columns`` are not input, then the `~astropy.table.QTable` will include a default list of scalar-valued properties. Parameters ---------- columns : str or list of str, optional Names of columns, in order, to include in the output `~astropy.table.QTable`. The allowed column names are any of the attributes of `SourceProperties`. exclude_columns : str or list of str, optional Names of columns to exclude from the default properties list in the output `~astropy.table.QTable`. Returns ------- table : `~astropy.table.QTable` A single-row table of properties of the source. """ return _properties_table(self, columns=columns, exclude_columns=exclude_columns)
python
def to_table(self, columns=None, exclude_columns=None): """ Create a `~astropy.table.QTable` of properties. If ``columns`` or ``exclude_columns`` are not input, then the `~astropy.table.QTable` will include a default list of scalar-valued properties. Parameters ---------- columns : str or list of str, optional Names of columns, in order, to include in the output `~astropy.table.QTable`. The allowed column names are any of the attributes of `SourceProperties`. exclude_columns : str or list of str, optional Names of columns to exclude from the default properties list in the output `~astropy.table.QTable`. Returns ------- table : `~astropy.table.QTable` A single-row table of properties of the source. """ return _properties_table(self, columns=columns, exclude_columns=exclude_columns)
[ "def", "to_table", "(", "self", ",", "columns", "=", "None", ",", "exclude_columns", "=", "None", ")", ":", "return", "_properties_table", "(", "self", ",", "columns", "=", "columns", ",", "exclude_columns", "=", "exclude_columns", ")" ]
Create a `~astropy.table.QTable` of properties. If ``columns`` or ``exclude_columns`` are not input, then the `~astropy.table.QTable` will include a default list of scalar-valued properties. Parameters ---------- columns : str or list of str, optional Names of columns, in order, to include in the output `~astropy.table.QTable`. The allowed column names are any of the attributes of `SourceProperties`. exclude_columns : str or list of str, optional Names of columns to exclude from the default properties list in the output `~astropy.table.QTable`. Returns ------- table : `~astropy.table.QTable` A single-row table of properties of the source.
[ "Create", "a", "~astropy", ".", "table", ".", "QTable", "of", "properties", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L330-L356
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.data_cutout_ma
def data_cutout_ma(self): """ A 2D `~numpy.ma.MaskedArray` cutout from the data. The mask is `True` for pixels outside of the source segment (labeled region of interest), masked pixels from the ``mask`` input, or any non-finite ``data`` values (e.g. NaN or inf). """ return np.ma.masked_array(self._data[self._slice], mask=self._total_mask)
python
def data_cutout_ma(self): """ A 2D `~numpy.ma.MaskedArray` cutout from the data. The mask is `True` for pixels outside of the source segment (labeled region of interest), masked pixels from the ``mask`` input, or any non-finite ``data`` values (e.g. NaN or inf). """ return np.ma.masked_array(self._data[self._slice], mask=self._total_mask)
[ "def", "data_cutout_ma", "(", "self", ")", ":", "return", "np", ".", "ma", ".", "masked_array", "(", "self", ".", "_data", "[", "self", ".", "_slice", "]", ",", "mask", "=", "self", ".", "_total_mask", ")" ]
A 2D `~numpy.ma.MaskedArray` cutout from the data. The mask is `True` for pixels outside of the source segment (labeled region of interest), masked pixels from the ``mask`` input, or any non-finite ``data`` values (e.g. NaN or inf).
[ "A", "2D", "~numpy", ".", "ma", ".", "MaskedArray", "cutout", "from", "the", "data", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L368-L378
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.error_cutout_ma
def error_cutout_ma(self): """ A 2D `~numpy.ma.MaskedArray` cutout from the input ``error`` image. The mask is `True` for pixels outside of the source segment (labeled region of interest), masked pixels from the ``mask`` input, or any non-finite ``data`` values (e.g. NaN or inf). If ``error`` is `None`, then ``error_cutout_ma`` is also `None`. """ if self._error is None: return None else: return np.ma.masked_array(self._error[self._slice], mask=self._total_mask)
python
def error_cutout_ma(self): """ A 2D `~numpy.ma.MaskedArray` cutout from the input ``error`` image. The mask is `True` for pixels outside of the source segment (labeled region of interest), masked pixels from the ``mask`` input, or any non-finite ``data`` values (e.g. NaN or inf). If ``error`` is `None`, then ``error_cutout_ma`` is also `None`. """ if self._error is None: return None else: return np.ma.masked_array(self._error[self._slice], mask=self._total_mask)
[ "def", "error_cutout_ma", "(", "self", ")", ":", "if", "self", ".", "_error", "is", "None", ":", "return", "None", "else", ":", "return", "np", ".", "ma", ".", "masked_array", "(", "self", ".", "_error", "[", "self", ".", "_slice", "]", ",", "mask", "=", "self", ".", "_total_mask", ")" ]
A 2D `~numpy.ma.MaskedArray` cutout from the input ``error`` image. The mask is `True` for pixels outside of the source segment (labeled region of interest), masked pixels from the ``mask`` input, or any non-finite ``data`` values (e.g. NaN or inf). If ``error`` is `None`, then ``error_cutout_ma`` is also `None`.
[ "A", "2D", "~numpy", ".", "ma", ".", "MaskedArray", "cutout", "from", "the", "input", "error", "image", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L381-L397
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.background_cutout_ma
def background_cutout_ma(self): """ A 2D `~numpy.ma.MaskedArray` cutout from the input ``background``. The mask is `True` for pixels outside of the source segment (labeled region of interest), masked pixels from the ``mask`` input, or any non-finite ``data`` values (e.g. NaN or inf). If ``background`` is `None`, then ``background_cutout_ma`` is also `None`. """ if self._background is None: return None else: return np.ma.masked_array(self._background[self._slice], mask=self._total_mask)
python
def background_cutout_ma(self): """ A 2D `~numpy.ma.MaskedArray` cutout from the input ``background``. The mask is `True` for pixels outside of the source segment (labeled region of interest), masked pixels from the ``mask`` input, or any non-finite ``data`` values (e.g. NaN or inf). If ``background`` is `None`, then ``background_cutout_ma`` is also `None`. """ if self._background is None: return None else: return np.ma.masked_array(self._background[self._slice], mask=self._total_mask)
[ "def", "background_cutout_ma", "(", "self", ")", ":", "if", "self", ".", "_background", "is", "None", ":", "return", "None", "else", ":", "return", "np", ".", "ma", ".", "masked_array", "(", "self", ".", "_background", "[", "self", ".", "_slice", "]", ",", "mask", "=", "self", ".", "_total_mask", ")" ]
A 2D `~numpy.ma.MaskedArray` cutout from the input ``background``. The mask is `True` for pixels outside of the source segment (labeled region of interest), masked pixels from the ``mask`` input, or any non-finite ``data`` values (e.g. NaN or inf). If ``background`` is `None`, then ``background_cutout_ma`` is also `None`.
[ "A", "2D", "~numpy", ".", "ma", ".", "MaskedArray", "cutout", "from", "the", "input", "background", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L400-L417
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.coords
def coords(self): """ A tuple of two `~numpy.ndarray` containing the ``y`` and ``x`` pixel coordinates of unmasked pixels within the source segment. Non-finite pixel values (e.g. NaN, infs) are excluded (automatically masked). If all pixels are masked, ``coords`` will be a tuple of two empty arrays. """ yy, xx = np.nonzero(self.data_cutout_ma) return (yy + self._slice[0].start, xx + self._slice[1].start)
python
def coords(self): """ A tuple of two `~numpy.ndarray` containing the ``y`` and ``x`` pixel coordinates of unmasked pixels within the source segment. Non-finite pixel values (e.g. NaN, infs) are excluded (automatically masked). If all pixels are masked, ``coords`` will be a tuple of two empty arrays. """ yy, xx = np.nonzero(self.data_cutout_ma) return (yy + self._slice[0].start, xx + self._slice[1].start)
[ "def", "coords", "(", "self", ")", ":", "yy", ",", "xx", "=", "np", ".", "nonzero", "(", "self", ".", "data_cutout_ma", ")", "return", "(", "yy", "+", "self", ".", "_slice", "[", "0", "]", ".", "start", ",", "xx", "+", "self", ".", "_slice", "[", "1", "]", ".", "start", ")" ]
A tuple of two `~numpy.ndarray` containing the ``y`` and ``x`` pixel coordinates of unmasked pixels within the source segment. Non-finite pixel values (e.g. NaN, infs) are excluded (automatically masked). If all pixels are masked, ``coords`` will be a tuple of two empty arrays.
[ "A", "tuple", "of", "two", "~numpy", ".", "ndarray", "containing", "the", "y", "and", "x", "pixel", "coordinates", "of", "unmasked", "pixels", "within", "the", "source", "segment", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L442-L455
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.sky_centroid
def sky_centroid(self): """ The sky coordinates of the centroid within the source segment, returned as a `~astropy.coordinates.SkyCoord` object. The output coordinate frame is the same as the input WCS. """ if self._wcs is not None: return pixel_to_skycoord(self.xcentroid.value, self.ycentroid.value, self._wcs, origin=0) else: return None
python
def sky_centroid(self): """ The sky coordinates of the centroid within the source segment, returned as a `~astropy.coordinates.SkyCoord` object. The output coordinate frame is the same as the input WCS. """ if self._wcs is not None: return pixel_to_skycoord(self.xcentroid.value, self.ycentroid.value, self._wcs, origin=0) else: return None
[ "def", "sky_centroid", "(", "self", ")", ":", "if", "self", ".", "_wcs", "is", "not", "None", ":", "return", "pixel_to_skycoord", "(", "self", ".", "xcentroid", ".", "value", ",", "self", ".", "ycentroid", ".", "value", ",", "self", ".", "_wcs", ",", "origin", "=", "0", ")", "else", ":", "return", "None" ]
The sky coordinates of the centroid within the source segment, returned as a `~astropy.coordinates.SkyCoord` object. The output coordinate frame is the same as the input WCS.
[ "The", "sky", "coordinates", "of", "the", "centroid", "within", "the", "source", "segment", "returned", "as", "a", "~astropy", ".", "coordinates", ".", "SkyCoord", "object", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L526-L539
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.sky_bbox_ll
def sky_bbox_ll(self): """ The sky coordinates of the lower-left vertex of the minimal bounding box of the source segment, returned as a `~astropy.coordinates.SkyCoord` object. The bounding box encloses all of the source segment pixels in their entirety, thus the vertices are at the pixel *corners*. """ if self._wcs is not None: return pixel_to_skycoord(self.xmin.value - 0.5, self.ymin.value - 0.5, self._wcs, origin=0) else: return None
python
def sky_bbox_ll(self): """ The sky coordinates of the lower-left vertex of the minimal bounding box of the source segment, returned as a `~astropy.coordinates.SkyCoord` object. The bounding box encloses all of the source segment pixels in their entirety, thus the vertices are at the pixel *corners*. """ if self._wcs is not None: return pixel_to_skycoord(self.xmin.value - 0.5, self.ymin.value - 0.5, self._wcs, origin=0) else: return None
[ "def", "sky_bbox_ll", "(", "self", ")", ":", "if", "self", ".", "_wcs", "is", "not", "None", ":", "return", "pixel_to_skycoord", "(", "self", ".", "xmin", ".", "value", "-", "0.5", ",", "self", ".", "ymin", ".", "value", "-", "0.5", ",", "self", ".", "_wcs", ",", "origin", "=", "0", ")", "else", ":", "return", "None" ]
The sky coordinates of the lower-left vertex of the minimal bounding box of the source segment, returned as a `~astropy.coordinates.SkyCoord` object. The bounding box encloses all of the source segment pixels in their entirety, thus the vertices are at the pixel *corners*.
[ "The", "sky", "coordinates", "of", "the", "lower", "-", "left", "vertex", "of", "the", "minimal", "bounding", "box", "of", "the", "source", "segment", "returned", "as", "a", "~astropy", ".", "coordinates", ".", "SkyCoord", "object", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L602-L617
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.sky_bbox_ul
def sky_bbox_ul(self): """ The sky coordinates of the upper-left vertex of the minimal bounding box of the source segment, returned as a `~astropy.coordinates.SkyCoord` object. The bounding box encloses all of the source segment pixels in their entirety, thus the vertices are at the pixel *corners*. """ if self._wcs is not None: return pixel_to_skycoord(self.xmin.value - 0.5, self.ymax.value + 0.5, self._wcs, origin=0) else: return None
python
def sky_bbox_ul(self): """ The sky coordinates of the upper-left vertex of the minimal bounding box of the source segment, returned as a `~astropy.coordinates.SkyCoord` object. The bounding box encloses all of the source segment pixels in their entirety, thus the vertices are at the pixel *corners*. """ if self._wcs is not None: return pixel_to_skycoord(self.xmin.value - 0.5, self.ymax.value + 0.5, self._wcs, origin=0) else: return None
[ "def", "sky_bbox_ul", "(", "self", ")", ":", "if", "self", ".", "_wcs", "is", "not", "None", ":", "return", "pixel_to_skycoord", "(", "self", ".", "xmin", ".", "value", "-", "0.5", ",", "self", ".", "ymax", ".", "value", "+", "0.5", ",", "self", ".", "_wcs", ",", "origin", "=", "0", ")", "else", ":", "return", "None" ]
The sky coordinates of the upper-left vertex of the minimal bounding box of the source segment, returned as a `~astropy.coordinates.SkyCoord` object. The bounding box encloses all of the source segment pixels in their entirety, thus the vertices are at the pixel *corners*.
[ "The", "sky", "coordinates", "of", "the", "upper", "-", "left", "vertex", "of", "the", "minimal", "bounding", "box", "of", "the", "source", "segment", "returned", "as", "a", "~astropy", ".", "coordinates", ".", "SkyCoord", "object", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L620-L635
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.sky_bbox_lr
def sky_bbox_lr(self): """ The sky coordinates of the lower-right vertex of the minimal bounding box of the source segment, returned as a `~astropy.coordinates.SkyCoord` object. The bounding box encloses all of the source segment pixels in their entirety, thus the vertices are at the pixel *corners*. """ if self._wcs is not None: return pixel_to_skycoord(self.xmax.value + 0.5, self.ymin.value - 0.5, self._wcs, origin=0) else: return None
python
def sky_bbox_lr(self): """ The sky coordinates of the lower-right vertex of the minimal bounding box of the source segment, returned as a `~astropy.coordinates.SkyCoord` object. The bounding box encloses all of the source segment pixels in their entirety, thus the vertices are at the pixel *corners*. """ if self._wcs is not None: return pixel_to_skycoord(self.xmax.value + 0.5, self.ymin.value - 0.5, self._wcs, origin=0) else: return None
[ "def", "sky_bbox_lr", "(", "self", ")", ":", "if", "self", ".", "_wcs", "is", "not", "None", ":", "return", "pixel_to_skycoord", "(", "self", ".", "xmax", ".", "value", "+", "0.5", ",", "self", ".", "ymin", ".", "value", "-", "0.5", ",", "self", ".", "_wcs", ",", "origin", "=", "0", ")", "else", ":", "return", "None" ]
The sky coordinates of the lower-right vertex of the minimal bounding box of the source segment, returned as a `~astropy.coordinates.SkyCoord` object. The bounding box encloses all of the source segment pixels in their entirety, thus the vertices are at the pixel *corners*.
[ "The", "sky", "coordinates", "of", "the", "lower", "-", "right", "vertex", "of", "the", "minimal", "bounding", "box", "of", "the", "source", "segment", "returned", "as", "a", "~astropy", ".", "coordinates", ".", "SkyCoord", "object", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L638-L653
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.sky_bbox_ur
def sky_bbox_ur(self): """ The sky coordinates of the upper-right vertex of the minimal bounding box of the source segment, returned as a `~astropy.coordinates.SkyCoord` object. The bounding box encloses all of the source segment pixels in their entirety, thus the vertices are at the pixel *corners*. """ if self._wcs is not None: return pixel_to_skycoord(self.xmax.value + 0.5, self.ymax.value + 0.5, self._wcs, origin=0) else: return None
python
def sky_bbox_ur(self): """ The sky coordinates of the upper-right vertex of the minimal bounding box of the source segment, returned as a `~astropy.coordinates.SkyCoord` object. The bounding box encloses all of the source segment pixels in their entirety, thus the vertices are at the pixel *corners*. """ if self._wcs is not None: return pixel_to_skycoord(self.xmax.value + 0.5, self.ymax.value + 0.5, self._wcs, origin=0) else: return None
[ "def", "sky_bbox_ur", "(", "self", ")", ":", "if", "self", ".", "_wcs", "is", "not", "None", ":", "return", "pixel_to_skycoord", "(", "self", ".", "xmax", ".", "value", "+", "0.5", ",", "self", ".", "ymax", ".", "value", "+", "0.5", ",", "self", ".", "_wcs", ",", "origin", "=", "0", ")", "else", ":", "return", "None" ]
The sky coordinates of the upper-right vertex of the minimal bounding box of the source segment, returned as a `~astropy.coordinates.SkyCoord` object. The bounding box encloses all of the source segment pixels in their entirety, thus the vertices are at the pixel *corners*.
[ "The", "sky", "coordinates", "of", "the", "upper", "-", "right", "vertex", "of", "the", "minimal", "bounding", "box", "of", "the", "source", "segment", "returned", "as", "a", "~astropy", ".", "coordinates", ".", "SkyCoord", "object", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L656-L671
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.min_value
def min_value(self): """ The minimum pixel value of the ``data`` within the source segment. """ if self._is_completely_masked: return np.nan * self._data_unit else: return np.min(self.values)
python
def min_value(self): """ The minimum pixel value of the ``data`` within the source segment. """ if self._is_completely_masked: return np.nan * self._data_unit else: return np.min(self.values)
[ "def", "min_value", "(", "self", ")", ":", "if", "self", ".", "_is_completely_masked", ":", "return", "np", ".", "nan", "*", "self", ".", "_data_unit", "else", ":", "return", "np", ".", "min", "(", "self", ".", "values", ")" ]
The minimum pixel value of the ``data`` within the source segment.
[ "The", "minimum", "pixel", "value", "of", "the", "data", "within", "the", "source", "segment", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L674-L683
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.max_value
def max_value(self): """ The maximum pixel value of the ``data`` within the source segment. """ if self._is_completely_masked: return np.nan * self._data_unit else: return np.max(self.values)
python
def max_value(self): """ The maximum pixel value of the ``data`` within the source segment. """ if self._is_completely_masked: return np.nan * self._data_unit else: return np.max(self.values)
[ "def", "max_value", "(", "self", ")", ":", "if", "self", ".", "_is_completely_masked", ":", "return", "np", ".", "nan", "*", "self", ".", "_data_unit", "else", ":", "return", "np", ".", "max", "(", "self", ".", "values", ")" ]
The maximum pixel value of the ``data`` within the source segment.
[ "The", "maximum", "pixel", "value", "of", "the", "data", "within", "the", "source", "segment", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L686-L695
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.source_sum
def source_sum(self): """ The sum of the unmasked ``data`` values within the source segment. .. math:: F = \\sum_{i \\in S} (I_i - B_i) where :math:`F` is ``source_sum``, :math:`(I_i - B_i)` is the ``data``, and :math:`S` are the unmasked pixels in the source segment. Non-finite pixel values (e.g. NaN, infs) are excluded (automatically masked). """ if self._is_completely_masked: return np.nan * self._data_unit # table output needs unit else: return np.sum(self.values)
python
def source_sum(self): """ The sum of the unmasked ``data`` values within the source segment. .. math:: F = \\sum_{i \\in S} (I_i - B_i) where :math:`F` is ``source_sum``, :math:`(I_i - B_i)` is the ``data``, and :math:`S` are the unmasked pixels in the source segment. Non-finite pixel values (e.g. NaN, infs) are excluded (automatically masked). """ if self._is_completely_masked: return np.nan * self._data_unit # table output needs unit else: return np.sum(self.values)
[ "def", "source_sum", "(", "self", ")", ":", "if", "self", ".", "_is_completely_masked", ":", "return", "np", ".", "nan", "*", "self", ".", "_data_unit", "# table output needs unit", "else", ":", "return", "np", ".", "sum", "(", "self", ".", "values", ")" ]
The sum of the unmasked ``data`` values within the source segment. .. math:: F = \\sum_{i \\in S} (I_i - B_i) where :math:`F` is ``source_sum``, :math:`(I_i - B_i)` is the ``data``, and :math:`S` are the unmasked pixels in the source segment. Non-finite pixel values (e.g. NaN, infs) are excluded (automatically masked).
[ "The", "sum", "of", "the", "unmasked", "data", "values", "within", "the", "source", "segment", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L818-L835
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.source_sum_err
def source_sum_err(self): """ The uncertainty of `~photutils.SourceProperties.source_sum`, propagated from the input ``error`` array. ``source_sum_err`` is the quadrature sum of the total errors over the non-masked pixels within the source segment: .. math:: \\Delta F = \\sqrt{\\sum_{i \\in S} \\sigma_{\\mathrm{tot}, i}^2} where :math:`\\Delta F` is ``source_sum_err``, :math:`\\sigma_{\\mathrm{tot, i}}` are the pixel-wise total errors, and :math:`S` are the non-masked pixels in the source segment. Pixel values that are masked in the input ``data``, including any non-finite pixel values (i.e. NaN, infs) that are automatically masked, are also masked in the error array. """ if self._error is not None: if self._is_completely_masked: return np.nan * self._error_unit # table output needs unit else: return np.sqrt(np.sum(self._error_values ** 2)) else: return None
python
def source_sum_err(self): """ The uncertainty of `~photutils.SourceProperties.source_sum`, propagated from the input ``error`` array. ``source_sum_err`` is the quadrature sum of the total errors over the non-masked pixels within the source segment: .. math:: \\Delta F = \\sqrt{\\sum_{i \\in S} \\sigma_{\\mathrm{tot}, i}^2} where :math:`\\Delta F` is ``source_sum_err``, :math:`\\sigma_{\\mathrm{tot, i}}` are the pixel-wise total errors, and :math:`S` are the non-masked pixels in the source segment. Pixel values that are masked in the input ``data``, including any non-finite pixel values (i.e. NaN, infs) that are automatically masked, are also masked in the error array. """ if self._error is not None: if self._is_completely_masked: return np.nan * self._error_unit # table output needs unit else: return np.sqrt(np.sum(self._error_values ** 2)) else: return None
[ "def", "source_sum_err", "(", "self", ")", ":", "if", "self", ".", "_error", "is", "not", "None", ":", "if", "self", ".", "_is_completely_masked", ":", "return", "np", ".", "nan", "*", "self", ".", "_error_unit", "# table output needs unit", "else", ":", "return", "np", ".", "sqrt", "(", "np", ".", "sum", "(", "self", ".", "_error_values", "**", "2", ")", ")", "else", ":", "return", "None" ]
The uncertainty of `~photutils.SourceProperties.source_sum`, propagated from the input ``error`` array. ``source_sum_err`` is the quadrature sum of the total errors over the non-masked pixels within the source segment: .. math:: \\Delta F = \\sqrt{\\sum_{i \\in S} \\sigma_{\\mathrm{tot}, i}^2} where :math:`\\Delta F` is ``source_sum_err``, :math:`\\sigma_{\\mathrm{tot, i}}` are the pixel-wise total errors, and :math:`S` are the non-masked pixels in the source segment. Pixel values that are masked in the input ``data``, including any non-finite pixel values (i.e. NaN, infs) that are automatically masked, are also masked in the error array.
[ "The", "uncertainty", "of", "~photutils", ".", "SourceProperties", ".", "source_sum", "propagated", "from", "the", "input", "error", "array", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L838-L865
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.background_sum
def background_sum(self): """ The sum of ``background`` values within the source segment. Pixel values that are masked in the input ``data``, including any non-finite pixel values (i.e. NaN, infs) that are automatically masked, are also masked in the background array. """ if self._background is not None: if self._is_completely_masked: return np.nan * self._background_unit # unit for table else: return np.sum(self._background_values) else: return None
python
def background_sum(self): """ The sum of ``background`` values within the source segment. Pixel values that are masked in the input ``data``, including any non-finite pixel values (i.e. NaN, infs) that are automatically masked, are also masked in the background array. """ if self._background is not None: if self._is_completely_masked: return np.nan * self._background_unit # unit for table else: return np.sum(self._background_values) else: return None
[ "def", "background_sum", "(", "self", ")", ":", "if", "self", ".", "_background", "is", "not", "None", ":", "if", "self", ".", "_is_completely_masked", ":", "return", "np", ".", "nan", "*", "self", ".", "_background_unit", "# unit for table", "else", ":", "return", "np", ".", "sum", "(", "self", ".", "_background_values", ")", "else", ":", "return", "None" ]
The sum of ``background`` values within the source segment. Pixel values that are masked in the input ``data``, including any non-finite pixel values (i.e. NaN, infs) that are automatically masked, are also masked in the background array.
[ "The", "sum", "of", "background", "values", "within", "the", "source", "segment", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L868-L883
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.background_mean
def background_mean(self): """ The mean of ``background`` values within the source segment. Pixel values that are masked in the input ``data``, including any non-finite pixel values (i.e. NaN, infs) that are automatically masked, are also masked in the background array. """ if self._background is not None: if self._is_completely_masked: return np.nan * self._background_unit # unit for table else: return np.mean(self._background_values) else: return None
python
def background_mean(self): """ The mean of ``background`` values within the source segment. Pixel values that are masked in the input ``data``, including any non-finite pixel values (i.e. NaN, infs) that are automatically masked, are also masked in the background array. """ if self._background is not None: if self._is_completely_masked: return np.nan * self._background_unit # unit for table else: return np.mean(self._background_values) else: return None
[ "def", "background_mean", "(", "self", ")", ":", "if", "self", ".", "_background", "is", "not", "None", ":", "if", "self", ".", "_is_completely_masked", ":", "return", "np", ".", "nan", "*", "self", ".", "_background_unit", "# unit for table", "else", ":", "return", "np", ".", "mean", "(", "self", ".", "_background_values", ")", "else", ":", "return", "None" ]
The mean of ``background`` values within the source segment. Pixel values that are masked in the input ``data``, including any non-finite pixel values (i.e. NaN, infs) that are automatically masked, are also masked in the background array.
[ "The", "mean", "of", "background", "values", "within", "the", "source", "segment", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L886-L901
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.background_at_centroid
def background_at_centroid(self): """ The value of the ``background`` at the position of the source centroid. The background value at fractional position values are determined using bilinear interpolation. """ from scipy.ndimage import map_coordinates if self._background is not None: # centroid can still be NaN if all data values are <= 0 if (self._is_completely_masked or np.any(~np.isfinite(self.centroid))): return np.nan * self._background_unit # unit for table else: value = map_coordinates(self._background, [[self.ycentroid.value], [self.xcentroid.value]], order=1, mode='nearest')[0] return value * self._background_unit else: return None
python
def background_at_centroid(self): """ The value of the ``background`` at the position of the source centroid. The background value at fractional position values are determined using bilinear interpolation. """ from scipy.ndimage import map_coordinates if self._background is not None: # centroid can still be NaN if all data values are <= 0 if (self._is_completely_masked or np.any(~np.isfinite(self.centroid))): return np.nan * self._background_unit # unit for table else: value = map_coordinates(self._background, [[self.ycentroid.value], [self.xcentroid.value]], order=1, mode='nearest')[0] return value * self._background_unit else: return None
[ "def", "background_at_centroid", "(", "self", ")", ":", "from", "scipy", ".", "ndimage", "import", "map_coordinates", "if", "self", ".", "_background", "is", "not", "None", ":", "# centroid can still be NaN if all data values are <= 0", "if", "(", "self", ".", "_is_completely_masked", "or", "np", ".", "any", "(", "~", "np", ".", "isfinite", "(", "self", ".", "centroid", ")", ")", ")", ":", "return", "np", ".", "nan", "*", "self", ".", "_background_unit", "# unit for table", "else", ":", "value", "=", "map_coordinates", "(", "self", ".", "_background", ",", "[", "[", "self", ".", "ycentroid", ".", "value", "]", ",", "[", "self", ".", "xcentroid", ".", "value", "]", "]", ",", "order", "=", "1", ",", "mode", "=", "'nearest'", ")", "[", "0", "]", "return", "value", "*", "self", ".", "_background_unit", "else", ":", "return", "None" ]
The value of the ``background`` at the position of the source centroid. The background value at fractional position values are determined using bilinear interpolation.
[ "The", "value", "of", "the", "background", "at", "the", "position", "of", "the", "source", "centroid", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L904-L928
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.perimeter
def perimeter(self): """ The total perimeter of the source segment, approximated lines through the centers of the border pixels using a 4-connectivity. If any masked pixels make holes within the source segment, then the perimeter around the inner hole (e.g. an annulus) will also contribute to the total perimeter. """ if self._is_completely_masked: return np.nan * u.pix # unit for table else: from skimage.measure import perimeter return perimeter(~self._total_mask, neighbourhood=4) * u.pix
python
def perimeter(self): """ The total perimeter of the source segment, approximated lines through the centers of the border pixels using a 4-connectivity. If any masked pixels make holes within the source segment, then the perimeter around the inner hole (e.g. an annulus) will also contribute to the total perimeter. """ if self._is_completely_masked: return np.nan * u.pix # unit for table else: from skimage.measure import perimeter return perimeter(~self._total_mask, neighbourhood=4) * u.pix
[ "def", "perimeter", "(", "self", ")", ":", "if", "self", ".", "_is_completely_masked", ":", "return", "np", ".", "nan", "*", "u", ".", "pix", "# unit for table", "else", ":", "from", "skimage", ".", "measure", "import", "perimeter", "return", "perimeter", "(", "~", "self", ".", "_total_mask", ",", "neighbourhood", "=", "4", ")", "*", "u", ".", "pix" ]
The total perimeter of the source segment, approximated lines through the centers of the border pixels using a 4-connectivity. If any masked pixels make holes within the source segment, then the perimeter around the inner hole (e.g. an annulus) will also contribute to the total perimeter.
[ "The", "total", "perimeter", "of", "the", "source", "segment", "approximated", "lines", "through", "the", "centers", "of", "the", "border", "pixels", "using", "a", "4", "-", "connectivity", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L957-L971
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.inertia_tensor
def inertia_tensor(self): """ The inertia tensor of the source for the rotation around its center of mass. """ mu = self.moments_central a = mu[0, 2] b = -mu[1, 1] c = mu[2, 0] return np.array([[a, b], [b, c]]) * u.pix**2
python
def inertia_tensor(self): """ The inertia tensor of the source for the rotation around its center of mass. """ mu = self.moments_central a = mu[0, 2] b = -mu[1, 1] c = mu[2, 0] return np.array([[a, b], [b, c]]) * u.pix**2
[ "def", "inertia_tensor", "(", "self", ")", ":", "mu", "=", "self", ".", "moments_central", "a", "=", "mu", "[", "0", ",", "2", "]", "b", "=", "-", "mu", "[", "1", ",", "1", "]", "c", "=", "mu", "[", "2", ",", "0", "]", "return", "np", ".", "array", "(", "[", "[", "a", ",", "b", "]", ",", "[", "b", ",", "c", "]", "]", ")", "*", "u", ".", "pix", "**", "2" ]
The inertia tensor of the source for the rotation around its center of mass.
[ "The", "inertia", "tensor", "of", "the", "source", "for", "the", "rotation", "around", "its", "center", "of", "mass", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L974-L984
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.covariance
def covariance(self): """ The covariance matrix of the 2D Gaussian function that has the same second-order moments as the source. """ mu = self.moments_central if mu[0, 0] != 0: m = mu / mu[0, 0] covariance = self._check_covariance( np.array([[m[0, 2], m[1, 1]], [m[1, 1], m[2, 0]]])) return covariance * u.pix**2 else: return np.empty((2, 2)) * np.nan * u.pix**2
python
def covariance(self): """ The covariance matrix of the 2D Gaussian function that has the same second-order moments as the source. """ mu = self.moments_central if mu[0, 0] != 0: m = mu / mu[0, 0] covariance = self._check_covariance( np.array([[m[0, 2], m[1, 1]], [m[1, 1], m[2, 0]]])) return covariance * u.pix**2 else: return np.empty((2, 2)) * np.nan * u.pix**2
[ "def", "covariance", "(", "self", ")", ":", "mu", "=", "self", ".", "moments_central", "if", "mu", "[", "0", ",", "0", "]", "!=", "0", ":", "m", "=", "mu", "/", "mu", "[", "0", ",", "0", "]", "covariance", "=", "self", ".", "_check_covariance", "(", "np", ".", "array", "(", "[", "[", "m", "[", "0", ",", "2", "]", ",", "m", "[", "1", ",", "1", "]", "]", ",", "[", "m", "[", "1", ",", "1", "]", ",", "m", "[", "2", ",", "0", "]", "]", "]", ")", ")", "return", "covariance", "*", "u", ".", "pix", "**", "2", "else", ":", "return", "np", ".", "empty", "(", "(", "2", ",", "2", ")", ")", "*", "np", ".", "nan", "*", "u", ".", "pix", "**", "2" ]
The covariance matrix of the 2D Gaussian function that has the same second-order moments as the source.
[ "The", "covariance", "matrix", "of", "the", "2D", "Gaussian", "function", "that", "has", "the", "same", "second", "-", "order", "moments", "as", "the", "source", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L987-L1000
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.covariance_eigvals
def covariance_eigvals(self): """ The two eigenvalues of the `covariance` matrix in decreasing order. """ if not np.isnan(np.sum(self.covariance)): eigvals = np.linalg.eigvals(self.covariance) if np.any(eigvals < 0): # negative variance return (np.nan, np.nan) * u.pix**2 # pragma: no cover return (np.max(eigvals), np.min(eigvals)) * u.pix**2 else: return (np.nan, np.nan) * u.pix**2
python
def covariance_eigvals(self): """ The two eigenvalues of the `covariance` matrix in decreasing order. """ if not np.isnan(np.sum(self.covariance)): eigvals = np.linalg.eigvals(self.covariance) if np.any(eigvals < 0): # negative variance return (np.nan, np.nan) * u.pix**2 # pragma: no cover return (np.max(eigvals), np.min(eigvals)) * u.pix**2 else: return (np.nan, np.nan) * u.pix**2
[ "def", "covariance_eigvals", "(", "self", ")", ":", "if", "not", "np", ".", "isnan", "(", "np", ".", "sum", "(", "self", ".", "covariance", ")", ")", ":", "eigvals", "=", "np", ".", "linalg", ".", "eigvals", "(", "self", ".", "covariance", ")", "if", "np", ".", "any", "(", "eigvals", "<", "0", ")", ":", "# negative variance", "return", "(", "np", ".", "nan", ",", "np", ".", "nan", ")", "*", "u", ".", "pix", "**", "2", "# pragma: no cover", "return", "(", "np", ".", "max", "(", "eigvals", ")", ",", "np", ".", "min", "(", "eigvals", ")", ")", "*", "u", ".", "pix", "**", "2", "else", ":", "return", "(", "np", ".", "nan", ",", "np", ".", "nan", ")", "*", "u", ".", "pix", "**", "2" ]
The two eigenvalues of the `covariance` matrix in decreasing order.
[ "The", "two", "eigenvalues", "of", "the", "covariance", "matrix", "in", "decreasing", "order", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L1024-L1036
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.eccentricity
def eccentricity(self): """ The eccentricity of the 2D Gaussian function that has the same second-order moments as the source. The eccentricity is the fraction of the distance along the semimajor axis at which the focus lies. .. math:: e = \\sqrt{1 - \\frac{b^2}{a^2}} where :math:`a` and :math:`b` are the lengths of the semimajor and semiminor axes, respectively. """ l1, l2 = self.covariance_eigvals if l1 == 0: return 0. # pragma: no cover return np.sqrt(1. - (l2 / l1))
python
def eccentricity(self): """ The eccentricity of the 2D Gaussian function that has the same second-order moments as the source. The eccentricity is the fraction of the distance along the semimajor axis at which the focus lies. .. math:: e = \\sqrt{1 - \\frac{b^2}{a^2}} where :math:`a` and :math:`b` are the lengths of the semimajor and semiminor axes, respectively. """ l1, l2 = self.covariance_eigvals if l1 == 0: return 0. # pragma: no cover return np.sqrt(1. - (l2 / l1))
[ "def", "eccentricity", "(", "self", ")", ":", "l1", ",", "l2", "=", "self", ".", "covariance_eigvals", "if", "l1", "==", "0", ":", "return", "0.", "# pragma: no cover", "return", "np", ".", "sqrt", "(", "1.", "-", "(", "l2", "/", "l1", ")", ")" ]
The eccentricity of the 2D Gaussian function that has the same second-order moments as the source. The eccentricity is the fraction of the distance along the semimajor axis at which the focus lies. .. math:: e = \\sqrt{1 - \\frac{b^2}{a^2}} where :math:`a` and :math:`b` are the lengths of the semimajor and semiminor axes, respectively.
[ "The", "eccentricity", "of", "the", "2D", "Gaussian", "function", "that", "has", "the", "same", "second", "-", "order", "moments", "as", "the", "source", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L1061-L1078
train
astropy/photutils
photutils/segmentation/properties.py
SourceProperties.orientation
def orientation(self): """ The angle in radians between the ``x`` axis and the major axis of the 2D Gaussian function that has the same second-order moments as the source. The angle increases in the counter-clockwise direction. """ a, b, b, c = self.covariance.flat if a < 0 or c < 0: # negative variance return np.nan * u.rad # pragma: no cover return 0.5 * np.arctan2(2. * b, (a - c))
python
def orientation(self): """ The angle in radians between the ``x`` axis and the major axis of the 2D Gaussian function that has the same second-order moments as the source. The angle increases in the counter-clockwise direction. """ a, b, b, c = self.covariance.flat if a < 0 or c < 0: # negative variance return np.nan * u.rad # pragma: no cover return 0.5 * np.arctan2(2. * b, (a - c))
[ "def", "orientation", "(", "self", ")", ":", "a", ",", "b", ",", "b", ",", "c", "=", "self", ".", "covariance", ".", "flat", "if", "a", "<", "0", "or", "c", "<", "0", ":", "# negative variance", "return", "np", ".", "nan", "*", "u", ".", "rad", "# pragma: no cover", "return", "0.5", "*", "np", ".", "arctan2", "(", "2.", "*", "b", ",", "(", "a", "-", "c", ")", ")" ]
The angle in radians between the ``x`` axis and the major axis of the 2D Gaussian function that has the same second-order moments as the source. The angle increases in the counter-clockwise direction.
[ "The", "angle", "in", "radians", "between", "the", "x", "axis", "and", "the", "major", "axis", "of", "the", "2D", "Gaussian", "function", "that", "has", "the", "same", "second", "-", "order", "moments", "as", "the", "source", ".", "The", "angle", "increases", "in", "the", "counter", "-", "clockwise", "direction", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/segmentation/properties.py#L1081-L1092
train
astropy/photutils
photutils/utils/stats.py
_mesh_values
def _mesh_values(data, box_size): """ Extract all the data values in boxes of size ``box_size``. Values from incomplete boxes, either because of the image edges or masked pixels, are not returned. Parameters ---------- data : 2D `~numpy.ma.MaskedArray` The input masked array. box_size : int The box size. Returns ------- result : 2D `~numpy.ndarray` A 2D array containing the data values in the boxes (along the x axis). """ data = np.ma.asanyarray(data) ny, nx = data.shape nyboxes = ny // box_size nxboxes = nx // box_size # include only complete boxes ny_crop = nyboxes * box_size nx_crop = nxboxes * box_size data = data[0:ny_crop, 0:nx_crop] # a reshaped 2D masked array with mesh data along the x axis data = np.ma.swapaxes(data.reshape( nyboxes, box_size, nxboxes, box_size), 1, 2).reshape( nyboxes * nxboxes, box_size * box_size) # include only boxes without any masked pixels idx = np.where(np.ma.count_masked(data, axis=1) == 0) return data[idx]
python
def _mesh_values(data, box_size): """ Extract all the data values in boxes of size ``box_size``. Values from incomplete boxes, either because of the image edges or masked pixels, are not returned. Parameters ---------- data : 2D `~numpy.ma.MaskedArray` The input masked array. box_size : int The box size. Returns ------- result : 2D `~numpy.ndarray` A 2D array containing the data values in the boxes (along the x axis). """ data = np.ma.asanyarray(data) ny, nx = data.shape nyboxes = ny // box_size nxboxes = nx // box_size # include only complete boxes ny_crop = nyboxes * box_size nx_crop = nxboxes * box_size data = data[0:ny_crop, 0:nx_crop] # a reshaped 2D masked array with mesh data along the x axis data = np.ma.swapaxes(data.reshape( nyboxes, box_size, nxboxes, box_size), 1, 2).reshape( nyboxes * nxboxes, box_size * box_size) # include only boxes without any masked pixels idx = np.where(np.ma.count_masked(data, axis=1) == 0) return data[idx]
[ "def", "_mesh_values", "(", "data", ",", "box_size", ")", ":", "data", "=", "np", ".", "ma", ".", "asanyarray", "(", "data", ")", "ny", ",", "nx", "=", "data", ".", "shape", "nyboxes", "=", "ny", "//", "box_size", "nxboxes", "=", "nx", "//", "box_size", "# include only complete boxes", "ny_crop", "=", "nyboxes", "*", "box_size", "nx_crop", "=", "nxboxes", "*", "box_size", "data", "=", "data", "[", "0", ":", "ny_crop", ",", "0", ":", "nx_crop", "]", "# a reshaped 2D masked array with mesh data along the x axis", "data", "=", "np", ".", "ma", ".", "swapaxes", "(", "data", ".", "reshape", "(", "nyboxes", ",", "box_size", ",", "nxboxes", ",", "box_size", ")", ",", "1", ",", "2", ")", ".", "reshape", "(", "nyboxes", "*", "nxboxes", ",", "box_size", "*", "box_size", ")", "# include only boxes without any masked pixels", "idx", "=", "np", ".", "where", "(", "np", ".", "ma", ".", "count_masked", "(", "data", ",", "axis", "=", "1", ")", "==", "0", ")", "return", "data", "[", "idx", "]" ]
Extract all the data values in boxes of size ``box_size``. Values from incomplete boxes, either because of the image edges or masked pixels, are not returned. Parameters ---------- data : 2D `~numpy.ma.MaskedArray` The input masked array. box_size : int The box size. Returns ------- result : 2D `~numpy.ndarray` A 2D array containing the data values in the boxes (along the x axis).
[ "Extract", "all", "the", "data", "values", "in", "boxes", "of", "size", "box_size", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/utils/stats.py#L9-L50
train
astropy/photutils
photutils/utils/stats.py
std_blocksum
def std_blocksum(data, block_sizes, mask=None): """ Calculate the standard deviation of block-summed data values at sizes of ``block_sizes``. Values from incomplete blocks, either because of the image edges or masked pixels, are not included. Parameters ---------- data : array-like The 2D array to block sum. block_sizes : int, array-like of int An array of integer (square) block sizes. mask : array-like (bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Blocks that contain *any* masked data are excluded from calculations. Returns ------- result : `~numpy.ndarray` An array of the standard deviations of the block-summed array for the input ``block_sizes``. """ data = np.ma.asanyarray(data) if mask is not None and mask is not np.ma.nomask: mask = np.asanyarray(mask) if data.shape != mask.shape: raise ValueError('data and mask must have the same shape.') data.mask |= mask stds = [] block_sizes = np.atleast_1d(block_sizes) for block_size in block_sizes: mesh_values = _mesh_values(data, block_size) block_sums = np.sum(mesh_values, axis=1) stds.append(np.std(block_sums)) return np.array(stds)
python
def std_blocksum(data, block_sizes, mask=None): """ Calculate the standard deviation of block-summed data values at sizes of ``block_sizes``. Values from incomplete blocks, either because of the image edges or masked pixels, are not included. Parameters ---------- data : array-like The 2D array to block sum. block_sizes : int, array-like of int An array of integer (square) block sizes. mask : array-like (bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Blocks that contain *any* masked data are excluded from calculations. Returns ------- result : `~numpy.ndarray` An array of the standard deviations of the block-summed array for the input ``block_sizes``. """ data = np.ma.asanyarray(data) if mask is not None and mask is not np.ma.nomask: mask = np.asanyarray(mask) if data.shape != mask.shape: raise ValueError('data and mask must have the same shape.') data.mask |= mask stds = [] block_sizes = np.atleast_1d(block_sizes) for block_size in block_sizes: mesh_values = _mesh_values(data, block_size) block_sums = np.sum(mesh_values, axis=1) stds.append(np.std(block_sums)) return np.array(stds)
[ "def", "std_blocksum", "(", "data", ",", "block_sizes", ",", "mask", "=", "None", ")", ":", "data", "=", "np", ".", "ma", ".", "asanyarray", "(", "data", ")", "if", "mask", "is", "not", "None", "and", "mask", "is", "not", "np", ".", "ma", ".", "nomask", ":", "mask", "=", "np", ".", "asanyarray", "(", "mask", ")", "if", "data", ".", "shape", "!=", "mask", ".", "shape", ":", "raise", "ValueError", "(", "'data and mask must have the same shape.'", ")", "data", ".", "mask", "|=", "mask", "stds", "=", "[", "]", "block_sizes", "=", "np", ".", "atleast_1d", "(", "block_sizes", ")", "for", "block_size", "in", "block_sizes", ":", "mesh_values", "=", "_mesh_values", "(", "data", ",", "block_size", ")", "block_sums", "=", "np", ".", "sum", "(", "mesh_values", ",", "axis", "=", "1", ")", "stds", ".", "append", "(", "np", ".", "std", "(", "block_sums", ")", ")", "return", "np", ".", "array", "(", "stds", ")" ]
Calculate the standard deviation of block-summed data values at sizes of ``block_sizes``. Values from incomplete blocks, either because of the image edges or masked pixels, are not included. Parameters ---------- data : array-like The 2D array to block sum. block_sizes : int, array-like of int An array of integer (square) block sizes. mask : array-like (bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Blocks that contain *any* masked data are excluded from calculations. Returns ------- result : `~numpy.ndarray` An array of the standard deviations of the block-summed array for the input ``block_sizes``.
[ "Calculate", "the", "standard", "deviation", "of", "block", "-", "summed", "data", "values", "at", "sizes", "of", "block_sizes", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/utils/stats.py#L53-L97
train
astropy/photutils
photutils/psf/photometry.py
BasicPSFPhotometry.nstar
def nstar(self, image, star_groups): """ Fit, as appropriate, a compound or single model to the given ``star_groups``. Groups are fitted sequentially from the smallest to the biggest. In each iteration, ``image`` is subtracted by the previous fitted group. Parameters ---------- image : numpy.ndarray Background-subtracted image. star_groups : `~astropy.table.Table` This table must contain the following columns: ``id``, ``group_id``, ``x_0``, ``y_0``, ``flux_0``. ``x_0`` and ``y_0`` are initial estimates of the centroids and ``flux_0`` is an initial estimate of the flux. Additionally, columns named as ``<param_name>_0`` are required if any other parameter in the psf model is free (i.e., the ``fixed`` attribute of that parameter is ``False``). Returns ------- result_tab : `~astropy.table.Table` Astropy table that contains photometry results. image : numpy.ndarray Residual image. """ result_tab = Table() for param_tab_name in self._pars_to_output.keys(): result_tab.add_column(Column(name=param_tab_name)) unc_tab = Table() for param, isfixed in self.psf_model.fixed.items(): if not isfixed: unc_tab.add_column(Column(name=param + "_unc")) y, x = np.indices(image.shape) star_groups = star_groups.group_by('group_id') for n in range(len(star_groups.groups)): group_psf = get_grouped_psf_model(self.psf_model, star_groups.groups[n], self._pars_to_set) usepixel = np.zeros_like(image, dtype=np.bool) for row in star_groups.groups[n]: usepixel[overlap_slices(large_array_shape=image.shape, small_array_shape=self.fitshape, position=(row['y_0'], row['x_0']), mode='trim')[0]] = True fit_model = self.fitter(group_psf, x[usepixel], y[usepixel], image[usepixel]) param_table = self._model_params2table(fit_model, len(star_groups.groups[n])) result_tab = vstack([result_tab, param_table]) if 'param_cov' in self.fitter.fit_info.keys(): unc_tab = vstack([unc_tab, self._get_uncertainties( len(star_groups.groups[n]))]) try: from astropy.nddata.utils import NoOverlapError except ImportError: raise ImportError("astropy 1.1 or greater is required in " "order to use this class.") # do not subtract if the fitting did not go well try: image = subtract_psf(image, self.psf_model, param_table, subshape=self.fitshape) except NoOverlapError: pass if 'param_cov' in self.fitter.fit_info.keys(): result_tab = hstack([result_tab, unc_tab]) return result_tab, image
python
def nstar(self, image, star_groups): """ Fit, as appropriate, a compound or single model to the given ``star_groups``. Groups are fitted sequentially from the smallest to the biggest. In each iteration, ``image`` is subtracted by the previous fitted group. Parameters ---------- image : numpy.ndarray Background-subtracted image. star_groups : `~astropy.table.Table` This table must contain the following columns: ``id``, ``group_id``, ``x_0``, ``y_0``, ``flux_0``. ``x_0`` and ``y_0`` are initial estimates of the centroids and ``flux_0`` is an initial estimate of the flux. Additionally, columns named as ``<param_name>_0`` are required if any other parameter in the psf model is free (i.e., the ``fixed`` attribute of that parameter is ``False``). Returns ------- result_tab : `~astropy.table.Table` Astropy table that contains photometry results. image : numpy.ndarray Residual image. """ result_tab = Table() for param_tab_name in self._pars_to_output.keys(): result_tab.add_column(Column(name=param_tab_name)) unc_tab = Table() for param, isfixed in self.psf_model.fixed.items(): if not isfixed: unc_tab.add_column(Column(name=param + "_unc")) y, x = np.indices(image.shape) star_groups = star_groups.group_by('group_id') for n in range(len(star_groups.groups)): group_psf = get_grouped_psf_model(self.psf_model, star_groups.groups[n], self._pars_to_set) usepixel = np.zeros_like(image, dtype=np.bool) for row in star_groups.groups[n]: usepixel[overlap_slices(large_array_shape=image.shape, small_array_shape=self.fitshape, position=(row['y_0'], row['x_0']), mode='trim')[0]] = True fit_model = self.fitter(group_psf, x[usepixel], y[usepixel], image[usepixel]) param_table = self._model_params2table(fit_model, len(star_groups.groups[n])) result_tab = vstack([result_tab, param_table]) if 'param_cov' in self.fitter.fit_info.keys(): unc_tab = vstack([unc_tab, self._get_uncertainties( len(star_groups.groups[n]))]) try: from astropy.nddata.utils import NoOverlapError except ImportError: raise ImportError("astropy 1.1 or greater is required in " "order to use this class.") # do not subtract if the fitting did not go well try: image = subtract_psf(image, self.psf_model, param_table, subshape=self.fitshape) except NoOverlapError: pass if 'param_cov' in self.fitter.fit_info.keys(): result_tab = hstack([result_tab, unc_tab]) return result_tab, image
[ "def", "nstar", "(", "self", ",", "image", ",", "star_groups", ")", ":", "result_tab", "=", "Table", "(", ")", "for", "param_tab_name", "in", "self", ".", "_pars_to_output", ".", "keys", "(", ")", ":", "result_tab", ".", "add_column", "(", "Column", "(", "name", "=", "param_tab_name", ")", ")", "unc_tab", "=", "Table", "(", ")", "for", "param", ",", "isfixed", "in", "self", ".", "psf_model", ".", "fixed", ".", "items", "(", ")", ":", "if", "not", "isfixed", ":", "unc_tab", ".", "add_column", "(", "Column", "(", "name", "=", "param", "+", "\"_unc\"", ")", ")", "y", ",", "x", "=", "np", ".", "indices", "(", "image", ".", "shape", ")", "star_groups", "=", "star_groups", ".", "group_by", "(", "'group_id'", ")", "for", "n", "in", "range", "(", "len", "(", "star_groups", ".", "groups", ")", ")", ":", "group_psf", "=", "get_grouped_psf_model", "(", "self", ".", "psf_model", ",", "star_groups", ".", "groups", "[", "n", "]", ",", "self", ".", "_pars_to_set", ")", "usepixel", "=", "np", ".", "zeros_like", "(", "image", ",", "dtype", "=", "np", ".", "bool", ")", "for", "row", "in", "star_groups", ".", "groups", "[", "n", "]", ":", "usepixel", "[", "overlap_slices", "(", "large_array_shape", "=", "image", ".", "shape", ",", "small_array_shape", "=", "self", ".", "fitshape", ",", "position", "=", "(", "row", "[", "'y_0'", "]", ",", "row", "[", "'x_0'", "]", ")", ",", "mode", "=", "'trim'", ")", "[", "0", "]", "]", "=", "True", "fit_model", "=", "self", ".", "fitter", "(", "group_psf", ",", "x", "[", "usepixel", "]", ",", "y", "[", "usepixel", "]", ",", "image", "[", "usepixel", "]", ")", "param_table", "=", "self", ".", "_model_params2table", "(", "fit_model", ",", "len", "(", "star_groups", ".", "groups", "[", "n", "]", ")", ")", "result_tab", "=", "vstack", "(", "[", "result_tab", ",", "param_table", "]", ")", "if", "'param_cov'", "in", "self", ".", "fitter", ".", "fit_info", ".", "keys", "(", ")", ":", "unc_tab", "=", "vstack", "(", "[", "unc_tab", ",", "self", ".", "_get_uncertainties", "(", "len", "(", "star_groups", ".", "groups", "[", "n", "]", ")", ")", "]", ")", "try", ":", "from", "astropy", ".", "nddata", ".", "utils", "import", "NoOverlapError", "except", "ImportError", ":", "raise", "ImportError", "(", "\"astropy 1.1 or greater is required in \"", "\"order to use this class.\"", ")", "# do not subtract if the fitting did not go well", "try", ":", "image", "=", "subtract_psf", "(", "image", ",", "self", ".", "psf_model", ",", "param_table", ",", "subshape", "=", "self", ".", "fitshape", ")", "except", "NoOverlapError", ":", "pass", "if", "'param_cov'", "in", "self", ".", "fitter", ".", "fit_info", ".", "keys", "(", ")", ":", "result_tab", "=", "hstack", "(", "[", "result_tab", ",", "unc_tab", "]", ")", "return", "result_tab", ",", "image" ]
Fit, as appropriate, a compound or single model to the given ``star_groups``. Groups are fitted sequentially from the smallest to the biggest. In each iteration, ``image`` is subtracted by the previous fitted group. Parameters ---------- image : numpy.ndarray Background-subtracted image. star_groups : `~astropy.table.Table` This table must contain the following columns: ``id``, ``group_id``, ``x_0``, ``y_0``, ``flux_0``. ``x_0`` and ``y_0`` are initial estimates of the centroids and ``flux_0`` is an initial estimate of the flux. Additionally, columns named as ``<param_name>_0`` are required if any other parameter in the psf model is free (i.e., the ``fixed`` attribute of that parameter is ``False``). Returns ------- result_tab : `~astropy.table.Table` Astropy table that contains photometry results. image : numpy.ndarray Residual image.
[ "Fit", "as", "appropriate", "a", "compound", "or", "single", "model", "to", "the", "given", "star_groups", ".", "Groups", "are", "fitted", "sequentially", "from", "the", "smallest", "to", "the", "biggest", ".", "In", "each", "iteration", "image", "is", "subtracted", "by", "the", "previous", "fitted", "group", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/photometry.py#L298-L375
train
astropy/photutils
photutils/psf/photometry.py
BasicPSFPhotometry._get_uncertainties
def _get_uncertainties(self, star_group_size): """ Retrieve uncertainties on fitted parameters from the fitter object. Parameters ---------- star_group_size : int Number of stars in the given group. Returns ------- unc_tab : `~astropy.table.Table` Table which contains uncertainties on the fitted parameters. The uncertainties are reported as one standard deviation. """ unc_tab = Table() for param_name in self.psf_model.param_names: if not self.psf_model.fixed[param_name]: unc_tab.add_column(Column(name=param_name + "_unc", data=np.empty(star_group_size))) if 'param_cov' in self.fitter.fit_info.keys(): if self.fitter.fit_info['param_cov'] is not None: k = 0 n_fit_params = len(unc_tab.colnames) for i in range(star_group_size): unc_tab[i] = np.sqrt(np.diag( self.fitter.fit_info['param_cov']) )[k: k + n_fit_params] k = k + n_fit_params return unc_tab
python
def _get_uncertainties(self, star_group_size): """ Retrieve uncertainties on fitted parameters from the fitter object. Parameters ---------- star_group_size : int Number of stars in the given group. Returns ------- unc_tab : `~astropy.table.Table` Table which contains uncertainties on the fitted parameters. The uncertainties are reported as one standard deviation. """ unc_tab = Table() for param_name in self.psf_model.param_names: if not self.psf_model.fixed[param_name]: unc_tab.add_column(Column(name=param_name + "_unc", data=np.empty(star_group_size))) if 'param_cov' in self.fitter.fit_info.keys(): if self.fitter.fit_info['param_cov'] is not None: k = 0 n_fit_params = len(unc_tab.colnames) for i in range(star_group_size): unc_tab[i] = np.sqrt(np.diag( self.fitter.fit_info['param_cov']) )[k: k + n_fit_params] k = k + n_fit_params return unc_tab
[ "def", "_get_uncertainties", "(", "self", ",", "star_group_size", ")", ":", "unc_tab", "=", "Table", "(", ")", "for", "param_name", "in", "self", ".", "psf_model", ".", "param_names", ":", "if", "not", "self", ".", "psf_model", ".", "fixed", "[", "param_name", "]", ":", "unc_tab", ".", "add_column", "(", "Column", "(", "name", "=", "param_name", "+", "\"_unc\"", ",", "data", "=", "np", ".", "empty", "(", "star_group_size", ")", ")", ")", "if", "'param_cov'", "in", "self", ".", "fitter", ".", "fit_info", ".", "keys", "(", ")", ":", "if", "self", ".", "fitter", ".", "fit_info", "[", "'param_cov'", "]", "is", "not", "None", ":", "k", "=", "0", "n_fit_params", "=", "len", "(", "unc_tab", ".", "colnames", ")", "for", "i", "in", "range", "(", "star_group_size", ")", ":", "unc_tab", "[", "i", "]", "=", "np", ".", "sqrt", "(", "np", ".", "diag", "(", "self", ".", "fitter", ".", "fit_info", "[", "'param_cov'", "]", ")", ")", "[", "k", ":", "k", "+", "n_fit_params", "]", "k", "=", "k", "+", "n_fit_params", "return", "unc_tab" ]
Retrieve uncertainties on fitted parameters from the fitter object. Parameters ---------- star_group_size : int Number of stars in the given group. Returns ------- unc_tab : `~astropy.table.Table` Table which contains uncertainties on the fitted parameters. The uncertainties are reported as one standard deviation.
[ "Retrieve", "uncertainties", "on", "fitted", "parameters", "from", "the", "fitter", "object", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/photometry.py#L403-L435
train
astropy/photutils
photutils/psf/photometry.py
BasicPSFPhotometry._model_params2table
def _model_params2table(self, fit_model, star_group_size): """ Place fitted parameters into an astropy table. Parameters ---------- fit_model : `astropy.modeling.Fittable2DModel` instance PSF or PRF model to fit the data. Could be one of the models in this package like `~photutils.psf.sandbox.DiscretePRF`, `~photutils.psf.IntegratedGaussianPRF`, or any other suitable 2D model. star_group_size : int Number of stars in the given group. Returns ------- param_tab : `~astropy.table.Table` Table that contains the fitted parameters. """ param_tab = Table() for param_tab_name in self._pars_to_output.keys(): param_tab.add_column(Column(name=param_tab_name, data=np.empty(star_group_size))) if star_group_size > 1: for i in range(star_group_size): for param_tab_name, param_name in self._pars_to_output.items(): param_tab[param_tab_name][i] = getattr(fit_model, param_name + '_' + str(i)).value else: for param_tab_name, param_name in self._pars_to_output.items(): param_tab[param_tab_name] = getattr(fit_model, param_name).value return param_tab
python
def _model_params2table(self, fit_model, star_group_size): """ Place fitted parameters into an astropy table. Parameters ---------- fit_model : `astropy.modeling.Fittable2DModel` instance PSF or PRF model to fit the data. Could be one of the models in this package like `~photutils.psf.sandbox.DiscretePRF`, `~photutils.psf.IntegratedGaussianPRF`, or any other suitable 2D model. star_group_size : int Number of stars in the given group. Returns ------- param_tab : `~astropy.table.Table` Table that contains the fitted parameters. """ param_tab = Table() for param_tab_name in self._pars_to_output.keys(): param_tab.add_column(Column(name=param_tab_name, data=np.empty(star_group_size))) if star_group_size > 1: for i in range(star_group_size): for param_tab_name, param_name in self._pars_to_output.items(): param_tab[param_tab_name][i] = getattr(fit_model, param_name + '_' + str(i)).value else: for param_tab_name, param_name in self._pars_to_output.items(): param_tab[param_tab_name] = getattr(fit_model, param_name).value return param_tab
[ "def", "_model_params2table", "(", "self", ",", "fit_model", ",", "star_group_size", ")", ":", "param_tab", "=", "Table", "(", ")", "for", "param_tab_name", "in", "self", ".", "_pars_to_output", ".", "keys", "(", ")", ":", "param_tab", ".", "add_column", "(", "Column", "(", "name", "=", "param_tab_name", ",", "data", "=", "np", ".", "empty", "(", "star_group_size", ")", ")", ")", "if", "star_group_size", ">", "1", ":", "for", "i", "in", "range", "(", "star_group_size", ")", ":", "for", "param_tab_name", ",", "param_name", "in", "self", ".", "_pars_to_output", ".", "items", "(", ")", ":", "param_tab", "[", "param_tab_name", "]", "[", "i", "]", "=", "getattr", "(", "fit_model", ",", "param_name", "+", "'_'", "+", "str", "(", "i", ")", ")", ".", "value", "else", ":", "for", "param_tab_name", ",", "param_name", "in", "self", ".", "_pars_to_output", ".", "items", "(", ")", ":", "param_tab", "[", "param_tab_name", "]", "=", "getattr", "(", "fit_model", ",", "param_name", ")", ".", "value", "return", "param_tab" ]
Place fitted parameters into an astropy table. Parameters ---------- fit_model : `astropy.modeling.Fittable2DModel` instance PSF or PRF model to fit the data. Could be one of the models in this package like `~photutils.psf.sandbox.DiscretePRF`, `~photutils.psf.IntegratedGaussianPRF`, or any other suitable 2D model. star_group_size : int Number of stars in the given group. Returns ------- param_tab : `~astropy.table.Table` Table that contains the fitted parameters.
[ "Place", "fitted", "parameters", "into", "an", "astropy", "table", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/photometry.py#L437-L473
train
astropy/photutils
photutils/psf/photometry.py
IterativelySubtractedPSFPhotometry._do_photometry
def _do_photometry(self, param_tab, n_start=1): """ Helper function which performs the iterations of the photometry process. Parameters ---------- param_names : list Names of the columns which represent the initial guesses. For example, ['x_0', 'y_0', 'flux_0'], for intial guesses on the center positions and the flux. n_start : int Integer representing the start index of the iteration. It is 1 if init_guesses are None, and 2 otherwise. Returns ------- output_table : `~astropy.table.Table` or None Table with the photometry results, i.e., centroids and fluxes estimations and the initial estimates used to start the fitting process. """ output_table = Table() self._define_fit_param_names() for (init_parname, fit_parname) in zip(self._pars_to_set.keys(), self._pars_to_output.keys()): output_table.add_column(Column(name=init_parname)) output_table.add_column(Column(name=fit_parname)) sources = self.finder(self._residual_image) n = n_start while(sources is not None and (self.niters is None or n <= self.niters)): apertures = CircularAperture((sources['xcentroid'], sources['ycentroid']), r=self.aperture_radius) sources['aperture_flux'] = aperture_photometry( self._residual_image, apertures)['aperture_sum'] init_guess_tab = Table(names=['id', 'x_0', 'y_0', 'flux_0'], data=[sources['id'], sources['xcentroid'], sources['ycentroid'], sources['aperture_flux']]) for param_tab_name, param_name in self._pars_to_set.items(): if param_tab_name not in (['x_0', 'y_0', 'flux_0']): init_guess_tab.add_column( Column(name=param_tab_name, data=(getattr(self.psf_model, param_name) * np.ones(len(sources))))) star_groups = self.group_maker(init_guess_tab) table, self._residual_image = super().nstar( self._residual_image, star_groups) star_groups = star_groups.group_by('group_id') table = hstack([star_groups, table]) table['iter_detected'] = n*np.ones(table['x_fit'].shape, dtype=np.int32) output_table = vstack([output_table, table]) # do not warn if no sources are found beyond the first iteration with warnings.catch_warnings(): warnings.simplefilter('ignore', NoDetectionsWarning) sources = self.finder(self._residual_image) n += 1 return output_table
python
def _do_photometry(self, param_tab, n_start=1): """ Helper function which performs the iterations of the photometry process. Parameters ---------- param_names : list Names of the columns which represent the initial guesses. For example, ['x_0', 'y_0', 'flux_0'], for intial guesses on the center positions and the flux. n_start : int Integer representing the start index of the iteration. It is 1 if init_guesses are None, and 2 otherwise. Returns ------- output_table : `~astropy.table.Table` or None Table with the photometry results, i.e., centroids and fluxes estimations and the initial estimates used to start the fitting process. """ output_table = Table() self._define_fit_param_names() for (init_parname, fit_parname) in zip(self._pars_to_set.keys(), self._pars_to_output.keys()): output_table.add_column(Column(name=init_parname)) output_table.add_column(Column(name=fit_parname)) sources = self.finder(self._residual_image) n = n_start while(sources is not None and (self.niters is None or n <= self.niters)): apertures = CircularAperture((sources['xcentroid'], sources['ycentroid']), r=self.aperture_radius) sources['aperture_flux'] = aperture_photometry( self._residual_image, apertures)['aperture_sum'] init_guess_tab = Table(names=['id', 'x_0', 'y_0', 'flux_0'], data=[sources['id'], sources['xcentroid'], sources['ycentroid'], sources['aperture_flux']]) for param_tab_name, param_name in self._pars_to_set.items(): if param_tab_name not in (['x_0', 'y_0', 'flux_0']): init_guess_tab.add_column( Column(name=param_tab_name, data=(getattr(self.psf_model, param_name) * np.ones(len(sources))))) star_groups = self.group_maker(init_guess_tab) table, self._residual_image = super().nstar( self._residual_image, star_groups) star_groups = star_groups.group_by('group_id') table = hstack([star_groups, table]) table['iter_detected'] = n*np.ones(table['x_fit'].shape, dtype=np.int32) output_table = vstack([output_table, table]) # do not warn if no sources are found beyond the first iteration with warnings.catch_warnings(): warnings.simplefilter('ignore', NoDetectionsWarning) sources = self.finder(self._residual_image) n += 1 return output_table
[ "def", "_do_photometry", "(", "self", ",", "param_tab", ",", "n_start", "=", "1", ")", ":", "output_table", "=", "Table", "(", ")", "self", ".", "_define_fit_param_names", "(", ")", "for", "(", "init_parname", ",", "fit_parname", ")", "in", "zip", "(", "self", ".", "_pars_to_set", ".", "keys", "(", ")", ",", "self", ".", "_pars_to_output", ".", "keys", "(", ")", ")", ":", "output_table", ".", "add_column", "(", "Column", "(", "name", "=", "init_parname", ")", ")", "output_table", ".", "add_column", "(", "Column", "(", "name", "=", "fit_parname", ")", ")", "sources", "=", "self", ".", "finder", "(", "self", ".", "_residual_image", ")", "n", "=", "n_start", "while", "(", "sources", "is", "not", "None", "and", "(", "self", ".", "niters", "is", "None", "or", "n", "<=", "self", ".", "niters", ")", ")", ":", "apertures", "=", "CircularAperture", "(", "(", "sources", "[", "'xcentroid'", "]", ",", "sources", "[", "'ycentroid'", "]", ")", ",", "r", "=", "self", ".", "aperture_radius", ")", "sources", "[", "'aperture_flux'", "]", "=", "aperture_photometry", "(", "self", ".", "_residual_image", ",", "apertures", ")", "[", "'aperture_sum'", "]", "init_guess_tab", "=", "Table", "(", "names", "=", "[", "'id'", ",", "'x_0'", ",", "'y_0'", ",", "'flux_0'", "]", ",", "data", "=", "[", "sources", "[", "'id'", "]", ",", "sources", "[", "'xcentroid'", "]", ",", "sources", "[", "'ycentroid'", "]", ",", "sources", "[", "'aperture_flux'", "]", "]", ")", "for", "param_tab_name", ",", "param_name", "in", "self", ".", "_pars_to_set", ".", "items", "(", ")", ":", "if", "param_tab_name", "not", "in", "(", "[", "'x_0'", ",", "'y_0'", ",", "'flux_0'", "]", ")", ":", "init_guess_tab", ".", "add_column", "(", "Column", "(", "name", "=", "param_tab_name", ",", "data", "=", "(", "getattr", "(", "self", ".", "psf_model", ",", "param_name", ")", "*", "np", ".", "ones", "(", "len", "(", "sources", ")", ")", ")", ")", ")", "star_groups", "=", "self", ".", "group_maker", "(", "init_guess_tab", ")", "table", ",", "self", ".", "_residual_image", "=", "super", "(", ")", ".", "nstar", "(", "self", ".", "_residual_image", ",", "star_groups", ")", "star_groups", "=", "star_groups", ".", "group_by", "(", "'group_id'", ")", "table", "=", "hstack", "(", "[", "star_groups", ",", "table", "]", ")", "table", "[", "'iter_detected'", "]", "=", "n", "*", "np", ".", "ones", "(", "table", "[", "'x_fit'", "]", ".", "shape", ",", "dtype", "=", "np", ".", "int32", ")", "output_table", "=", "vstack", "(", "[", "output_table", ",", "table", "]", ")", "# do not warn if no sources are found beyond the first iteration", "with", "warnings", ".", "catch_warnings", "(", ")", ":", "warnings", ".", "simplefilter", "(", "'ignore'", ",", "NoDetectionsWarning", ")", "sources", "=", "self", ".", "finder", "(", "self", ".", "_residual_image", ")", "n", "+=", "1", "return", "output_table" ]
Helper function which performs the iterations of the photometry process. Parameters ---------- param_names : list Names of the columns which represent the initial guesses. For example, ['x_0', 'y_0', 'flux_0'], for intial guesses on the center positions and the flux. n_start : int Integer representing the start index of the iteration. It is 1 if init_guesses are None, and 2 otherwise. Returns ------- output_table : `~astropy.table.Table` or None Table with the photometry results, i.e., centroids and fluxes estimations and the initial estimates used to start the fitting process.
[ "Helper", "function", "which", "performs", "the", "iterations", "of", "the", "photometry", "process", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/psf/photometry.py#L666-L740
train
astropy/photutils
photutils/utils/wcs_helpers.py
pixel_scale_angle_at_skycoord
def pixel_scale_angle_at_skycoord(skycoord, wcs, offset=1. * u.arcsec): """ Calculate the pixel scale and WCS rotation angle at the position of a SkyCoord coordinate. Parameters ---------- skycoord : `~astropy.coordinates.SkyCoord` The SkyCoord coordinate. wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. offset : `~astropy.units.Quantity` A small angular offset to use to compute the pixel scale and position angle. Returns ------- scale : `~astropy.units.Quantity` The pixel scale in arcsec/pixel. angle : `~astropy.units.Quantity` The angle (in degrees) measured counterclockwise from the positive x axis to the "North" axis of the celestial coordinate system. Notes ----- If distortions are present in the image, the x and y pixel scales likely differ. This function computes a single pixel scale along the North/South axis. """ # We take a point directly "above" (in latitude) the input position # and convert it to pixel coordinates, then we use the pixel deltas # between the input and offset point to calculate the pixel scale and # angle. # Find the coordinates as a representation object coord = skycoord.represent_as('unitspherical') # Add a a small perturbation in the latitude direction (since longitude # is more difficult because it is not directly an angle) coord_new = UnitSphericalRepresentation(coord.lon, coord.lat + offset) coord_offset = skycoord.realize_frame(coord_new) # Find pixel coordinates of offset coordinates and pixel deltas x_offset, y_offset = skycoord_to_pixel(coord_offset, wcs, mode='all') x, y = skycoord_to_pixel(skycoord, wcs, mode='all') dx = x_offset - x dy = y_offset - y scale = offset.to(u.arcsec) / (np.hypot(dx, dy) * u.pixel) angle = (np.arctan2(dy, dx) * u.radian).to(u.deg) return scale, angle
python
def pixel_scale_angle_at_skycoord(skycoord, wcs, offset=1. * u.arcsec): """ Calculate the pixel scale and WCS rotation angle at the position of a SkyCoord coordinate. Parameters ---------- skycoord : `~astropy.coordinates.SkyCoord` The SkyCoord coordinate. wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. offset : `~astropy.units.Quantity` A small angular offset to use to compute the pixel scale and position angle. Returns ------- scale : `~astropy.units.Quantity` The pixel scale in arcsec/pixel. angle : `~astropy.units.Quantity` The angle (in degrees) measured counterclockwise from the positive x axis to the "North" axis of the celestial coordinate system. Notes ----- If distortions are present in the image, the x and y pixel scales likely differ. This function computes a single pixel scale along the North/South axis. """ # We take a point directly "above" (in latitude) the input position # and convert it to pixel coordinates, then we use the pixel deltas # between the input and offset point to calculate the pixel scale and # angle. # Find the coordinates as a representation object coord = skycoord.represent_as('unitspherical') # Add a a small perturbation in the latitude direction (since longitude # is more difficult because it is not directly an angle) coord_new = UnitSphericalRepresentation(coord.lon, coord.lat + offset) coord_offset = skycoord.realize_frame(coord_new) # Find pixel coordinates of offset coordinates and pixel deltas x_offset, y_offset = skycoord_to_pixel(coord_offset, wcs, mode='all') x, y = skycoord_to_pixel(skycoord, wcs, mode='all') dx = x_offset - x dy = y_offset - y scale = offset.to(u.arcsec) / (np.hypot(dx, dy) * u.pixel) angle = (np.arctan2(dy, dx) * u.radian).to(u.deg) return scale, angle
[ "def", "pixel_scale_angle_at_skycoord", "(", "skycoord", ",", "wcs", ",", "offset", "=", "1.", "*", "u", ".", "arcsec", ")", ":", "# We take a point directly \"above\" (in latitude) the input position", "# and convert it to pixel coordinates, then we use the pixel deltas", "# between the input and offset point to calculate the pixel scale and", "# angle.", "# Find the coordinates as a representation object", "coord", "=", "skycoord", ".", "represent_as", "(", "'unitspherical'", ")", "# Add a a small perturbation in the latitude direction (since longitude", "# is more difficult because it is not directly an angle)", "coord_new", "=", "UnitSphericalRepresentation", "(", "coord", ".", "lon", ",", "coord", ".", "lat", "+", "offset", ")", "coord_offset", "=", "skycoord", ".", "realize_frame", "(", "coord_new", ")", "# Find pixel coordinates of offset coordinates and pixel deltas", "x_offset", ",", "y_offset", "=", "skycoord_to_pixel", "(", "coord_offset", ",", "wcs", ",", "mode", "=", "'all'", ")", "x", ",", "y", "=", "skycoord_to_pixel", "(", "skycoord", ",", "wcs", ",", "mode", "=", "'all'", ")", "dx", "=", "x_offset", "-", "x", "dy", "=", "y_offset", "-", "y", "scale", "=", "offset", ".", "to", "(", "u", ".", "arcsec", ")", "/", "(", "np", ".", "hypot", "(", "dx", ",", "dy", ")", "*", "u", ".", "pixel", ")", "angle", "=", "(", "np", ".", "arctan2", "(", "dy", ",", "dx", ")", "*", "u", ".", "radian", ")", ".", "to", "(", "u", ".", "deg", ")", "return", "scale", ",", "angle" ]
Calculate the pixel scale and WCS rotation angle at the position of a SkyCoord coordinate. Parameters ---------- skycoord : `~astropy.coordinates.SkyCoord` The SkyCoord coordinate. wcs : `~astropy.wcs.WCS` The world coordinate system (WCS) transformation to use. offset : `~astropy.units.Quantity` A small angular offset to use to compute the pixel scale and position angle. Returns ------- scale : `~astropy.units.Quantity` The pixel scale in arcsec/pixel. angle : `~astropy.units.Quantity` The angle (in degrees) measured counterclockwise from the positive x axis to the "North" axis of the celestial coordinate system. Notes ----- If distortions are present in the image, the x and y pixel scales likely differ. This function computes a single pixel scale along the North/South axis.
[ "Calculate", "the", "pixel", "scale", "and", "WCS", "rotation", "angle", "at", "the", "position", "of", "a", "SkyCoord", "coordinate", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/utils/wcs_helpers.py#L9-L62
train
astropy/photutils
photutils/utils/wcs_helpers.py
pixel_to_icrs_coords
def pixel_to_icrs_coords(x, y, wcs): """ Convert pixel coordinates to ICRS Right Ascension and Declination. This is merely a convenience function to extract RA and Dec. from a `~astropy.coordinates.SkyCoord` instance so they can be put in separate columns in a `~astropy.table.Table`. Parameters ---------- x : float or array-like The x pixel coordinate. y : float or array-like The y pixel coordinate. wcs : `~astropy.wcs.WCS` The WCS transformation to use to convert from pixel coordinates to ICRS world coordinates. `~astropy.table.Table`. Returns ------- ra : `~astropy.units.Quantity` The ICRS Right Ascension in degrees. dec : `~astropy.units.Quantity` The ICRS Declination in degrees. """ icrs_coords = pixel_to_skycoord(x, y, wcs).icrs icrs_ra = icrs_coords.ra.degree * u.deg icrs_dec = icrs_coords.dec.degree * u.deg return icrs_ra, icrs_dec
python
def pixel_to_icrs_coords(x, y, wcs): """ Convert pixel coordinates to ICRS Right Ascension and Declination. This is merely a convenience function to extract RA and Dec. from a `~astropy.coordinates.SkyCoord` instance so they can be put in separate columns in a `~astropy.table.Table`. Parameters ---------- x : float or array-like The x pixel coordinate. y : float or array-like The y pixel coordinate. wcs : `~astropy.wcs.WCS` The WCS transformation to use to convert from pixel coordinates to ICRS world coordinates. `~astropy.table.Table`. Returns ------- ra : `~astropy.units.Quantity` The ICRS Right Ascension in degrees. dec : `~astropy.units.Quantity` The ICRS Declination in degrees. """ icrs_coords = pixel_to_skycoord(x, y, wcs).icrs icrs_ra = icrs_coords.ra.degree * u.deg icrs_dec = icrs_coords.dec.degree * u.deg return icrs_ra, icrs_dec
[ "def", "pixel_to_icrs_coords", "(", "x", ",", "y", ",", "wcs", ")", ":", "icrs_coords", "=", "pixel_to_skycoord", "(", "x", ",", "y", ",", "wcs", ")", ".", "icrs", "icrs_ra", "=", "icrs_coords", ".", "ra", ".", "degree", "*", "u", ".", "deg", "icrs_dec", "=", "icrs_coords", ".", "dec", ".", "degree", "*", "u", ".", "deg", "return", "icrs_ra", ",", "icrs_dec" ]
Convert pixel coordinates to ICRS Right Ascension and Declination. This is merely a convenience function to extract RA and Dec. from a `~astropy.coordinates.SkyCoord` instance so they can be put in separate columns in a `~astropy.table.Table`. Parameters ---------- x : float or array-like The x pixel coordinate. y : float or array-like The y pixel coordinate. wcs : `~astropy.wcs.WCS` The WCS transformation to use to convert from pixel coordinates to ICRS world coordinates. `~astropy.table.Table`. Returns ------- ra : `~astropy.units.Quantity` The ICRS Right Ascension in degrees. dec : `~astropy.units.Quantity` The ICRS Declination in degrees.
[ "Convert", "pixel", "coordinates", "to", "ICRS", "Right", "Ascension", "and", "Declination", "." ]
cc9bb4534ab76bac98cb5f374a348a2573d10401
https://github.com/astropy/photutils/blob/cc9bb4534ab76bac98cb5f374a348a2573d10401/photutils/utils/wcs_helpers.py#L95-L129
train