repo
stringlengths 7
55
| path
stringlengths 4
127
| func_name
stringlengths 1
88
| original_string
stringlengths 75
19.8k
| language
stringclasses 1
value | code
stringlengths 75
19.8k
| code_tokens
list | docstring
stringlengths 3
17.3k
| docstring_tokens
list | sha
stringlengths 40
40
| url
stringlengths 87
242
| partition
stringclasses 1
value |
---|---|---|---|---|---|---|---|---|---|---|---|
emre/storm | storm/__main__.py | web | def web(port, debug=False, theme="modern", ssh_config=None):
"""Starts the web UI."""
from storm import web as _web
_web.run(port, debug, theme, ssh_config) | python | def web(port, debug=False, theme="modern", ssh_config=None):
"""Starts the web UI."""
from storm import web as _web
_web.run(port, debug, theme, ssh_config) | [
"def",
"web",
"(",
"port",
",",
"debug",
"=",
"False",
",",
"theme",
"=",
"\"modern\"",
",",
"ssh_config",
"=",
"None",
")",
":",
"from",
"storm",
"import",
"web",
"as",
"_web",
"_web",
".",
"run",
"(",
"port",
",",
"debug",
",",
"theme",
",",
"ssh_config",
")"
] | Starts the web UI. | [
"Starts",
"the",
"web",
"UI",
"."
] | c752defc1b718cfffbf0e0e15532fa1d7840bf6d | https://github.com/emre/storm/blob/c752defc1b718cfffbf0e0e15532fa1d7840bf6d/storm/__main__.py#L310-L313 | train |
diging/tethne | tethne/writers/collection.py | _strip_list_attributes | def _strip_list_attributes(graph_):
"""Converts lists attributes to strings for all nodes and edges in G."""
for n_ in graph_.nodes(data=True):
for k,v in n_[1].iteritems():
if type(v) is list:
graph_.node[n_[0]][k] = unicode(v)
for e_ in graph_.edges(data=True):
for k,v in e_[2].iteritems():
if type(v) is list:
graph_.edge[e_[0]][e_[1]][k] = unicode(v)
return graph_ | python | def _strip_list_attributes(graph_):
"""Converts lists attributes to strings for all nodes and edges in G."""
for n_ in graph_.nodes(data=True):
for k,v in n_[1].iteritems():
if type(v) is list:
graph_.node[n_[0]][k] = unicode(v)
for e_ in graph_.edges(data=True):
for k,v in e_[2].iteritems():
if type(v) is list:
graph_.edge[e_[0]][e_[1]][k] = unicode(v)
return graph_ | [
"def",
"_strip_list_attributes",
"(",
"graph_",
")",
":",
"for",
"n_",
"in",
"graph_",
".",
"nodes",
"(",
"data",
"=",
"True",
")",
":",
"for",
"k",
",",
"v",
"in",
"n_",
"[",
"1",
"]",
".",
"iteritems",
"(",
")",
":",
"if",
"type",
"(",
"v",
")",
"is",
"list",
":",
"graph_",
".",
"node",
"[",
"n_",
"[",
"0",
"]",
"]",
"[",
"k",
"]",
"=",
"unicode",
"(",
"v",
")",
"for",
"e_",
"in",
"graph_",
".",
"edges",
"(",
"data",
"=",
"True",
")",
":",
"for",
"k",
",",
"v",
"in",
"e_",
"[",
"2",
"]",
".",
"iteritems",
"(",
")",
":",
"if",
"type",
"(",
"v",
")",
"is",
"list",
":",
"graph_",
".",
"edge",
"[",
"e_",
"[",
"0",
"]",
"]",
"[",
"e_",
"[",
"1",
"]",
"]",
"[",
"k",
"]",
"=",
"unicode",
"(",
"v",
")",
"return",
"graph_"
] | Converts lists attributes to strings for all nodes and edges in G. | [
"Converts",
"lists",
"attributes",
"to",
"strings",
"for",
"all",
"nodes",
"and",
"edges",
"in",
"G",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/writers/collection.py#L189-L200 | train |
diging/tethne | tethne/writers/collection.py | _safe_type | def _safe_type(value):
"""Converts Python type names to XGMML-safe type names."""
if type(value) is str: dtype = 'string'
if type(value) is unicode: dtype = 'string'
if type(value) is int: dtype = 'integer'
if type(value) is float: dtype = 'real'
return dtype | python | def _safe_type(value):
"""Converts Python type names to XGMML-safe type names."""
if type(value) is str: dtype = 'string'
if type(value) is unicode: dtype = 'string'
if type(value) is int: dtype = 'integer'
if type(value) is float: dtype = 'real'
return dtype | [
"def",
"_safe_type",
"(",
"value",
")",
":",
"if",
"type",
"(",
"value",
")",
"is",
"str",
":",
"dtype",
"=",
"'string'",
"if",
"type",
"(",
"value",
")",
"is",
"unicode",
":",
"dtype",
"=",
"'string'",
"if",
"type",
"(",
"value",
")",
"is",
"int",
":",
"dtype",
"=",
"'integer'",
"if",
"type",
"(",
"value",
")",
"is",
"float",
":",
"dtype",
"=",
"'real'",
"return",
"dtype"
] | Converts Python type names to XGMML-safe type names. | [
"Converts",
"Python",
"type",
"names",
"to",
"XGMML",
"-",
"safe",
"type",
"names",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/writers/collection.py#L202-L210 | train |
diging/tethne | tethne/readers/wos.py | read | def read(path, corpus=True, index_by='wosid', streaming=False, parse_only=None,
corpus_class=Corpus, **kwargs):
"""
Parse one or more WoS field-tagged data files.
Examples
--------
.. code-block:: python
>>> from tethne.readers import wos
>>> corpus = wos.read("/path/to/some/wos/data")
>>> corpus
<tethne.classes.corpus.Corpus object at 0x10057c2d0>
Parameters
----------
path : str
Path to WoS field-tagged data. Can be a path directly to a single data
file, or to a directory containing several data files.
corpus : bool
If True (default), returns a :class:`.Corpus`\. If False, will return
only a list of :class:`.Paper`\s.
Returns
-------
:class:`.Corpus` or :class:`.Paper`
"""
if not os.path.exists(path):
raise ValueError('No such file or directory')
# We need the primary index field in the parse results.
if parse_only:
parse_only.append(index_by)
if streaming:
return streaming_read(path, corpus=corpus, index_by=index_by,
parse_only=parse_only, **kwargs)
if os.path.isdir(path): # Directory containing 1+ WoS data files.
papers = []
for sname in os.listdir(path):
if sname.endswith('txt') and not sname.startswith('.'):
papers += read(os.path.join(path, sname),
corpus=False,
parse_only=parse_only)
else: # A single data file.
papers = WoSParser(path).parse(parse_only=parse_only)
if corpus:
return corpus_class(papers, index_by=index_by, **kwargs)
return papers | python | def read(path, corpus=True, index_by='wosid', streaming=False, parse_only=None,
corpus_class=Corpus, **kwargs):
"""
Parse one or more WoS field-tagged data files.
Examples
--------
.. code-block:: python
>>> from tethne.readers import wos
>>> corpus = wos.read("/path/to/some/wos/data")
>>> corpus
<tethne.classes.corpus.Corpus object at 0x10057c2d0>
Parameters
----------
path : str
Path to WoS field-tagged data. Can be a path directly to a single data
file, or to a directory containing several data files.
corpus : bool
If True (default), returns a :class:`.Corpus`\. If False, will return
only a list of :class:`.Paper`\s.
Returns
-------
:class:`.Corpus` or :class:`.Paper`
"""
if not os.path.exists(path):
raise ValueError('No such file or directory')
# We need the primary index field in the parse results.
if parse_only:
parse_only.append(index_by)
if streaming:
return streaming_read(path, corpus=corpus, index_by=index_by,
parse_only=parse_only, **kwargs)
if os.path.isdir(path): # Directory containing 1+ WoS data files.
papers = []
for sname in os.listdir(path):
if sname.endswith('txt') and not sname.startswith('.'):
papers += read(os.path.join(path, sname),
corpus=False,
parse_only=parse_only)
else: # A single data file.
papers = WoSParser(path).parse(parse_only=parse_only)
if corpus:
return corpus_class(papers, index_by=index_by, **kwargs)
return papers | [
"def",
"read",
"(",
"path",
",",
"corpus",
"=",
"True",
",",
"index_by",
"=",
"'wosid'",
",",
"streaming",
"=",
"False",
",",
"parse_only",
"=",
"None",
",",
"corpus_class",
"=",
"Corpus",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"path",
")",
":",
"raise",
"ValueError",
"(",
"'No such file or directory'",
")",
"# We need the primary index field in the parse results.",
"if",
"parse_only",
":",
"parse_only",
".",
"append",
"(",
"index_by",
")",
"if",
"streaming",
":",
"return",
"streaming_read",
"(",
"path",
",",
"corpus",
"=",
"corpus",
",",
"index_by",
"=",
"index_by",
",",
"parse_only",
"=",
"parse_only",
",",
"*",
"*",
"kwargs",
")",
"if",
"os",
".",
"path",
".",
"isdir",
"(",
"path",
")",
":",
"# Directory containing 1+ WoS data files.",
"papers",
"=",
"[",
"]",
"for",
"sname",
"in",
"os",
".",
"listdir",
"(",
"path",
")",
":",
"if",
"sname",
".",
"endswith",
"(",
"'txt'",
")",
"and",
"not",
"sname",
".",
"startswith",
"(",
"'.'",
")",
":",
"papers",
"+=",
"read",
"(",
"os",
".",
"path",
".",
"join",
"(",
"path",
",",
"sname",
")",
",",
"corpus",
"=",
"False",
",",
"parse_only",
"=",
"parse_only",
")",
"else",
":",
"# A single data file.",
"papers",
"=",
"WoSParser",
"(",
"path",
")",
".",
"parse",
"(",
"parse_only",
"=",
"parse_only",
")",
"if",
"corpus",
":",
"return",
"corpus_class",
"(",
"papers",
",",
"index_by",
"=",
"index_by",
",",
"*",
"*",
"kwargs",
")",
"return",
"papers"
] | Parse one or more WoS field-tagged data files.
Examples
--------
.. code-block:: python
>>> from tethne.readers import wos
>>> corpus = wos.read("/path/to/some/wos/data")
>>> corpus
<tethne.classes.corpus.Corpus object at 0x10057c2d0>
Parameters
----------
path : str
Path to WoS field-tagged data. Can be a path directly to a single data
file, or to a directory containing several data files.
corpus : bool
If True (default), returns a :class:`.Corpus`\. If False, will return
only a list of :class:`.Paper`\s.
Returns
-------
:class:`.Corpus` or :class:`.Paper` | [
"Parse",
"one",
"or",
"more",
"WoS",
"field",
"-",
"tagged",
"data",
"files",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/wos.py#L350-L401 | train |
diging/tethne | tethne/readers/wos.py | WoSParser.parse_author | def parse_author(self, value):
"""
Attempts to split an author name into last and first parts.
"""
tokens = tuple([t.upper().strip() for t in value.split(',')])
if len(tokens) == 1:
tokens = value.split(' ')
if len(tokens) > 0:
if len(tokens) > 1:
aulast, auinit = tokens[0:2] # Ignore JR, II, III, etc.
else:
aulast = tokens[0]
auinit = ''
else:
aulast, auinit = tokens[0], ''
aulast = _strip_punctuation(aulast).upper()
auinit = _strip_punctuation(auinit).upper()
return aulast, auinit | python | def parse_author(self, value):
"""
Attempts to split an author name into last and first parts.
"""
tokens = tuple([t.upper().strip() for t in value.split(',')])
if len(tokens) == 1:
tokens = value.split(' ')
if len(tokens) > 0:
if len(tokens) > 1:
aulast, auinit = tokens[0:2] # Ignore JR, II, III, etc.
else:
aulast = tokens[0]
auinit = ''
else:
aulast, auinit = tokens[0], ''
aulast = _strip_punctuation(aulast).upper()
auinit = _strip_punctuation(auinit).upper()
return aulast, auinit | [
"def",
"parse_author",
"(",
"self",
",",
"value",
")",
":",
"tokens",
"=",
"tuple",
"(",
"[",
"t",
".",
"upper",
"(",
")",
".",
"strip",
"(",
")",
"for",
"t",
"in",
"value",
".",
"split",
"(",
"','",
")",
"]",
")",
"if",
"len",
"(",
"tokens",
")",
"==",
"1",
":",
"tokens",
"=",
"value",
".",
"split",
"(",
"' '",
")",
"if",
"len",
"(",
"tokens",
")",
">",
"0",
":",
"if",
"len",
"(",
"tokens",
")",
">",
"1",
":",
"aulast",
",",
"auinit",
"=",
"tokens",
"[",
"0",
":",
"2",
"]",
"# Ignore JR, II, III, etc.",
"else",
":",
"aulast",
"=",
"tokens",
"[",
"0",
"]",
"auinit",
"=",
"''",
"else",
":",
"aulast",
",",
"auinit",
"=",
"tokens",
"[",
"0",
"]",
",",
"''",
"aulast",
"=",
"_strip_punctuation",
"(",
"aulast",
")",
".",
"upper",
"(",
")",
"auinit",
"=",
"_strip_punctuation",
"(",
"auinit",
")",
".",
"upper",
"(",
")",
"return",
"aulast",
",",
"auinit"
] | Attempts to split an author name into last and first parts. | [
"Attempts",
"to",
"split",
"an",
"author",
"name",
"into",
"last",
"and",
"first",
"parts",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/wos.py#L112-L129 | train |
diging/tethne | tethne/readers/wos.py | WoSParser.handle_CR | def handle_CR(self, value):
"""
Parses cited references.
"""
citation = self.entry_class()
value = strip_tags(value)
# First-author name and publication date.
ptn = '([\w\s\W]+),\s([0-9]{4}),\s([\w\s]+)'
ny_match = re.match(ptn, value, flags=re.U)
nj_match = re.match('([\w\s\W]+),\s([\w\s]+)',
value, flags=re.U)
if ny_match is not None:
name_raw, date, journal = ny_match.groups()
elif nj_match is not None:
name_raw, journal = nj_match.groups()
date = None
else:
return
datematch = re.match('([0-9]{4})', value)
if datematch:
date = datematch.group(1)
name_raw = None
if name_raw:
name_tokens = [t.replace('.', '') for t in name_raw.split(' ')]
if len(name_tokens) > 4 or value.startswith('*'): # Probably not a person.
proc = lambda x: _strip_punctuation(x)
aulast = ' '.join([proc(n) for n in name_tokens]).upper()
auinit = ''
elif len(name_tokens) > 0:
aulast = name_tokens[0].upper()
proc = lambda x: _space_sep(_strip_punctuation(x))
auinit = ' '.join([proc(n) for n in name_tokens[1:]]).upper()
else:
aulast = name_tokens[0].upper()
auinit = ''
setattr(citation, 'authors_init', [(aulast, auinit)])
if date:
date = int(date)
setattr(citation, 'date', date)
setattr(citation, 'journal', journal)
# Volume.
v_match = re.search('\,\s+V([0-9A-Za-z]+)', value)
if v_match is not None:
volume = v_match.group(1)
else:
volume = None
setattr(citation, 'volume', volume)
# Start page.
p_match = re.search('\,\s+[Pp]([0-9A-Za-z]+)', value)
if p_match is not None:
page = p_match.group(1)
else:
page = None
setattr(citation, 'pageStart', page)
# DOI.
doi_match = re.search('DOI\s(.*)', value)
if doi_match is not None:
doi = doi_match.group(1)
else:
doi = None
setattr(citation, 'doi', doi)
return citation | python | def handle_CR(self, value):
"""
Parses cited references.
"""
citation = self.entry_class()
value = strip_tags(value)
# First-author name and publication date.
ptn = '([\w\s\W]+),\s([0-9]{4}),\s([\w\s]+)'
ny_match = re.match(ptn, value, flags=re.U)
nj_match = re.match('([\w\s\W]+),\s([\w\s]+)',
value, flags=re.U)
if ny_match is not None:
name_raw, date, journal = ny_match.groups()
elif nj_match is not None:
name_raw, journal = nj_match.groups()
date = None
else:
return
datematch = re.match('([0-9]{4})', value)
if datematch:
date = datematch.group(1)
name_raw = None
if name_raw:
name_tokens = [t.replace('.', '') for t in name_raw.split(' ')]
if len(name_tokens) > 4 or value.startswith('*'): # Probably not a person.
proc = lambda x: _strip_punctuation(x)
aulast = ' '.join([proc(n) for n in name_tokens]).upper()
auinit = ''
elif len(name_tokens) > 0:
aulast = name_tokens[0].upper()
proc = lambda x: _space_sep(_strip_punctuation(x))
auinit = ' '.join([proc(n) for n in name_tokens[1:]]).upper()
else:
aulast = name_tokens[0].upper()
auinit = ''
setattr(citation, 'authors_init', [(aulast, auinit)])
if date:
date = int(date)
setattr(citation, 'date', date)
setattr(citation, 'journal', journal)
# Volume.
v_match = re.search('\,\s+V([0-9A-Za-z]+)', value)
if v_match is not None:
volume = v_match.group(1)
else:
volume = None
setattr(citation, 'volume', volume)
# Start page.
p_match = re.search('\,\s+[Pp]([0-9A-Za-z]+)', value)
if p_match is not None:
page = p_match.group(1)
else:
page = None
setattr(citation, 'pageStart', page)
# DOI.
doi_match = re.search('DOI\s(.*)', value)
if doi_match is not None:
doi = doi_match.group(1)
else:
doi = None
setattr(citation, 'doi', doi)
return citation | [
"def",
"handle_CR",
"(",
"self",
",",
"value",
")",
":",
"citation",
"=",
"self",
".",
"entry_class",
"(",
")",
"value",
"=",
"strip_tags",
"(",
"value",
")",
"# First-author name and publication date.",
"ptn",
"=",
"'([\\w\\s\\W]+),\\s([0-9]{4}),\\s([\\w\\s]+)'",
"ny_match",
"=",
"re",
".",
"match",
"(",
"ptn",
",",
"value",
",",
"flags",
"=",
"re",
".",
"U",
")",
"nj_match",
"=",
"re",
".",
"match",
"(",
"'([\\w\\s\\W]+),\\s([\\w\\s]+)'",
",",
"value",
",",
"flags",
"=",
"re",
".",
"U",
")",
"if",
"ny_match",
"is",
"not",
"None",
":",
"name_raw",
",",
"date",
",",
"journal",
"=",
"ny_match",
".",
"groups",
"(",
")",
"elif",
"nj_match",
"is",
"not",
"None",
":",
"name_raw",
",",
"journal",
"=",
"nj_match",
".",
"groups",
"(",
")",
"date",
"=",
"None",
"else",
":",
"return",
"datematch",
"=",
"re",
".",
"match",
"(",
"'([0-9]{4})'",
",",
"value",
")",
"if",
"datematch",
":",
"date",
"=",
"datematch",
".",
"group",
"(",
"1",
")",
"name_raw",
"=",
"None",
"if",
"name_raw",
":",
"name_tokens",
"=",
"[",
"t",
".",
"replace",
"(",
"'.'",
",",
"''",
")",
"for",
"t",
"in",
"name_raw",
".",
"split",
"(",
"' '",
")",
"]",
"if",
"len",
"(",
"name_tokens",
")",
">",
"4",
"or",
"value",
".",
"startswith",
"(",
"'*'",
")",
":",
"# Probably not a person.",
"proc",
"=",
"lambda",
"x",
":",
"_strip_punctuation",
"(",
"x",
")",
"aulast",
"=",
"' '",
".",
"join",
"(",
"[",
"proc",
"(",
"n",
")",
"for",
"n",
"in",
"name_tokens",
"]",
")",
".",
"upper",
"(",
")",
"auinit",
"=",
"''",
"elif",
"len",
"(",
"name_tokens",
")",
">",
"0",
":",
"aulast",
"=",
"name_tokens",
"[",
"0",
"]",
".",
"upper",
"(",
")",
"proc",
"=",
"lambda",
"x",
":",
"_space_sep",
"(",
"_strip_punctuation",
"(",
"x",
")",
")",
"auinit",
"=",
"' '",
".",
"join",
"(",
"[",
"proc",
"(",
"n",
")",
"for",
"n",
"in",
"name_tokens",
"[",
"1",
":",
"]",
"]",
")",
".",
"upper",
"(",
")",
"else",
":",
"aulast",
"=",
"name_tokens",
"[",
"0",
"]",
".",
"upper",
"(",
")",
"auinit",
"=",
"''",
"setattr",
"(",
"citation",
",",
"'authors_init'",
",",
"[",
"(",
"aulast",
",",
"auinit",
")",
"]",
")",
"if",
"date",
":",
"date",
"=",
"int",
"(",
"date",
")",
"setattr",
"(",
"citation",
",",
"'date'",
",",
"date",
")",
"setattr",
"(",
"citation",
",",
"'journal'",
",",
"journal",
")",
"# Volume.",
"v_match",
"=",
"re",
".",
"search",
"(",
"'\\,\\s+V([0-9A-Za-z]+)'",
",",
"value",
")",
"if",
"v_match",
"is",
"not",
"None",
":",
"volume",
"=",
"v_match",
".",
"group",
"(",
"1",
")",
"else",
":",
"volume",
"=",
"None",
"setattr",
"(",
"citation",
",",
"'volume'",
",",
"volume",
")",
"# Start page.",
"p_match",
"=",
"re",
".",
"search",
"(",
"'\\,\\s+[Pp]([0-9A-Za-z]+)'",
",",
"value",
")",
"if",
"p_match",
"is",
"not",
"None",
":",
"page",
"=",
"p_match",
".",
"group",
"(",
"1",
")",
"else",
":",
"page",
"=",
"None",
"setattr",
"(",
"citation",
",",
"'pageStart'",
",",
"page",
")",
"# DOI.",
"doi_match",
"=",
"re",
".",
"search",
"(",
"'DOI\\s(.*)'",
",",
"value",
")",
"if",
"doi_match",
"is",
"not",
"None",
":",
"doi",
"=",
"doi_match",
".",
"group",
"(",
"1",
")",
"else",
":",
"doi",
"=",
"None",
"setattr",
"(",
"citation",
",",
"'doi'",
",",
"doi",
")",
"return",
"citation"
] | Parses cited references. | [
"Parses",
"cited",
"references",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/wos.py#L157-L227 | train |
diging/tethne | tethne/readers/wos.py | WoSParser.postprocess_WC | def postprocess_WC(self, entry):
"""
Parse WC keywords.
Subject keywords are usually semicolon-delimited.
"""
if type(entry.WC) not in [str, unicode]:
WC= u' '.join([unicode(k) for k in entry.WC])
else:
WC= entry.WC
entry.WC= [k.strip().upper() for k in WC.split(';')] | python | def postprocess_WC(self, entry):
"""
Parse WC keywords.
Subject keywords are usually semicolon-delimited.
"""
if type(entry.WC) not in [str, unicode]:
WC= u' '.join([unicode(k) for k in entry.WC])
else:
WC= entry.WC
entry.WC= [k.strip().upper() for k in WC.split(';')] | [
"def",
"postprocess_WC",
"(",
"self",
",",
"entry",
")",
":",
"if",
"type",
"(",
"entry",
".",
"WC",
")",
"not",
"in",
"[",
"str",
",",
"unicode",
"]",
":",
"WC",
"=",
"u' '",
".",
"join",
"(",
"[",
"unicode",
"(",
"k",
")",
"for",
"k",
"in",
"entry",
".",
"WC",
"]",
")",
"else",
":",
"WC",
"=",
"entry",
".",
"WC",
"entry",
".",
"WC",
"=",
"[",
"k",
".",
"strip",
"(",
")",
".",
"upper",
"(",
")",
"for",
"k",
"in",
"WC",
".",
"split",
"(",
"';'",
")",
"]"
] | Parse WC keywords.
Subject keywords are usually semicolon-delimited. | [
"Parse",
"WC",
"keywords",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/wos.py#L229-L240 | train |
diging/tethne | tethne/readers/wos.py | WoSParser.postprocess_subject | def postprocess_subject(self, entry):
"""
Parse subject keywords.
Subject keywords are usually semicolon-delimited.
"""
if type(entry.subject) not in [str, unicode]:
subject = u' '.join([unicode(k) for k in entry.subject])
else:
subject = entry.subject
entry.subject = [k.strip().upper() for k in subject.split(';')] | python | def postprocess_subject(self, entry):
"""
Parse subject keywords.
Subject keywords are usually semicolon-delimited.
"""
if type(entry.subject) not in [str, unicode]:
subject = u' '.join([unicode(k) for k in entry.subject])
else:
subject = entry.subject
entry.subject = [k.strip().upper() for k in subject.split(';')] | [
"def",
"postprocess_subject",
"(",
"self",
",",
"entry",
")",
":",
"if",
"type",
"(",
"entry",
".",
"subject",
")",
"not",
"in",
"[",
"str",
",",
"unicode",
"]",
":",
"subject",
"=",
"u' '",
".",
"join",
"(",
"[",
"unicode",
"(",
"k",
")",
"for",
"k",
"in",
"entry",
".",
"subject",
"]",
")",
"else",
":",
"subject",
"=",
"entry",
".",
"subject",
"entry",
".",
"subject",
"=",
"[",
"k",
".",
"strip",
"(",
")",
".",
"upper",
"(",
")",
"for",
"k",
"in",
"subject",
".",
"split",
"(",
"';'",
")",
"]"
] | Parse subject keywords.
Subject keywords are usually semicolon-delimited. | [
"Parse",
"subject",
"keywords",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/wos.py#L242-L253 | train |
diging/tethne | tethne/readers/wos.py | WoSParser.postprocess_authorKeywords | def postprocess_authorKeywords(self, entry):
"""
Parse author keywords.
Author keywords are usually semicolon-delimited.
"""
if type(entry.authorKeywords) not in [str, unicode]:
aK = u' '.join([unicode(k) for k in entry.authorKeywords])
else:
aK = entry.authorKeywords
entry.authorKeywords = [k.strip().upper() for k in aK.split(';')] | python | def postprocess_authorKeywords(self, entry):
"""
Parse author keywords.
Author keywords are usually semicolon-delimited.
"""
if type(entry.authorKeywords) not in [str, unicode]:
aK = u' '.join([unicode(k) for k in entry.authorKeywords])
else:
aK = entry.authorKeywords
entry.authorKeywords = [k.strip().upper() for k in aK.split(';')] | [
"def",
"postprocess_authorKeywords",
"(",
"self",
",",
"entry",
")",
":",
"if",
"type",
"(",
"entry",
".",
"authorKeywords",
")",
"not",
"in",
"[",
"str",
",",
"unicode",
"]",
":",
"aK",
"=",
"u' '",
".",
"join",
"(",
"[",
"unicode",
"(",
"k",
")",
"for",
"k",
"in",
"entry",
".",
"authorKeywords",
"]",
")",
"else",
":",
"aK",
"=",
"entry",
".",
"authorKeywords",
"entry",
".",
"authorKeywords",
"=",
"[",
"k",
".",
"strip",
"(",
")",
".",
"upper",
"(",
")",
"for",
"k",
"in",
"aK",
".",
"split",
"(",
"';'",
")",
"]"
] | Parse author keywords.
Author keywords are usually semicolon-delimited. | [
"Parse",
"author",
"keywords",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/wos.py#L255-L266 | train |
diging/tethne | tethne/readers/wos.py | WoSParser.postprocess_keywordsPlus | def postprocess_keywordsPlus(self, entry):
"""
Parse WoS "Keyword Plus" keywords.
Keyword Plus keywords are usually semicolon-delimited.
"""
if type(entry.keywordsPlus) in [str, unicode]:
entry.keywordsPlus = [k.strip().upper() for k
in entry.keywordsPlus.split(';')] | python | def postprocess_keywordsPlus(self, entry):
"""
Parse WoS "Keyword Plus" keywords.
Keyword Plus keywords are usually semicolon-delimited.
"""
if type(entry.keywordsPlus) in [str, unicode]:
entry.keywordsPlus = [k.strip().upper() for k
in entry.keywordsPlus.split(';')] | [
"def",
"postprocess_keywordsPlus",
"(",
"self",
",",
"entry",
")",
":",
"if",
"type",
"(",
"entry",
".",
"keywordsPlus",
")",
"in",
"[",
"str",
",",
"unicode",
"]",
":",
"entry",
".",
"keywordsPlus",
"=",
"[",
"k",
".",
"strip",
"(",
")",
".",
"upper",
"(",
")",
"for",
"k",
"in",
"entry",
".",
"keywordsPlus",
".",
"split",
"(",
"';'",
")",
"]"
] | Parse WoS "Keyword Plus" keywords.
Keyword Plus keywords are usually semicolon-delimited. | [
"Parse",
"WoS",
"Keyword",
"Plus",
"keywords",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/wos.py#L268-L277 | train |
diging/tethne | tethne/readers/wos.py | WoSParser.postprocess_funding | def postprocess_funding(self, entry):
"""
Separates funding agency from grant numbers.
"""
if type(entry.funding) not in [str, unicode]:
return
sources = [fu.strip() for fu in entry.funding.split(';')]
sources_processed = []
for source in sources:
m = re.search('(.*)?\s+\[(.+)\]', source)
if m:
agency, grant = m.groups()
else:
agency, grant = source, None
sources_processed.append((agency, grant))
entry.funding = sources_processed | python | def postprocess_funding(self, entry):
"""
Separates funding agency from grant numbers.
"""
if type(entry.funding) not in [str, unicode]:
return
sources = [fu.strip() for fu in entry.funding.split(';')]
sources_processed = []
for source in sources:
m = re.search('(.*)?\s+\[(.+)\]', source)
if m:
agency, grant = m.groups()
else:
agency, grant = source, None
sources_processed.append((agency, grant))
entry.funding = sources_processed | [
"def",
"postprocess_funding",
"(",
"self",
",",
"entry",
")",
":",
"if",
"type",
"(",
"entry",
".",
"funding",
")",
"not",
"in",
"[",
"str",
",",
"unicode",
"]",
":",
"return",
"sources",
"=",
"[",
"fu",
".",
"strip",
"(",
")",
"for",
"fu",
"in",
"entry",
".",
"funding",
".",
"split",
"(",
"';'",
")",
"]",
"sources_processed",
"=",
"[",
"]",
"for",
"source",
"in",
"sources",
":",
"m",
"=",
"re",
".",
"search",
"(",
"'(.*)?\\s+\\[(.+)\\]'",
",",
"source",
")",
"if",
"m",
":",
"agency",
",",
"grant",
"=",
"m",
".",
"groups",
"(",
")",
"else",
":",
"agency",
",",
"grant",
"=",
"source",
",",
"None",
"sources_processed",
".",
"append",
"(",
"(",
"agency",
",",
"grant",
")",
")",
"entry",
".",
"funding",
"=",
"sources_processed"
] | Separates funding agency from grant numbers. | [
"Separates",
"funding",
"agency",
"from",
"grant",
"numbers",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/wos.py#L279-L296 | train |
diging/tethne | tethne/readers/wos.py | WoSParser.postprocess_authors_full | def postprocess_authors_full(self, entry):
"""
If only a single author was found, ensure that ``authors_full`` is
nonetheless a list.
"""
if type(entry.authors_full) is not list:
entry.authors_full = [entry.authors_full] | python | def postprocess_authors_full(self, entry):
"""
If only a single author was found, ensure that ``authors_full`` is
nonetheless a list.
"""
if type(entry.authors_full) is not list:
entry.authors_full = [entry.authors_full] | [
"def",
"postprocess_authors_full",
"(",
"self",
",",
"entry",
")",
":",
"if",
"type",
"(",
"entry",
".",
"authors_full",
")",
"is",
"not",
"list",
":",
"entry",
".",
"authors_full",
"=",
"[",
"entry",
".",
"authors_full",
"]"
] | If only a single author was found, ensure that ``authors_full`` is
nonetheless a list. | [
"If",
"only",
"a",
"single",
"author",
"was",
"found",
"ensure",
"that",
"authors_full",
"is",
"nonetheless",
"a",
"list",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/wos.py#L298-L304 | train |
diging/tethne | tethne/readers/wos.py | WoSParser.postprocess_authors_init | def postprocess_authors_init(self, entry):
"""
If only a single author was found, ensure that ``authors_init`` is
nonetheless a list.
"""
if type(entry.authors_init) is not list:
entry.authors_init = [entry.authors_init] | python | def postprocess_authors_init(self, entry):
"""
If only a single author was found, ensure that ``authors_init`` is
nonetheless a list.
"""
if type(entry.authors_init) is not list:
entry.authors_init = [entry.authors_init] | [
"def",
"postprocess_authors_init",
"(",
"self",
",",
"entry",
")",
":",
"if",
"type",
"(",
"entry",
".",
"authors_init",
")",
"is",
"not",
"list",
":",
"entry",
".",
"authors_init",
"=",
"[",
"entry",
".",
"authors_init",
"]"
] | If only a single author was found, ensure that ``authors_init`` is
nonetheless a list. | [
"If",
"only",
"a",
"single",
"author",
"was",
"found",
"ensure",
"that",
"authors_init",
"is",
"nonetheless",
"a",
"list",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/wos.py#L306-L312 | train |
diging/tethne | tethne/readers/wos.py | WoSParser.postprocess_citedReferences | def postprocess_citedReferences(self, entry):
"""
If only a single cited reference was found, ensure that
``citedReferences`` is nonetheless a list.
"""
if type(entry.citedReferences) is not list:
entry.citedReferences = [entry.citedReferences] | python | def postprocess_citedReferences(self, entry):
"""
If only a single cited reference was found, ensure that
``citedReferences`` is nonetheless a list.
"""
if type(entry.citedReferences) is not list:
entry.citedReferences = [entry.citedReferences] | [
"def",
"postprocess_citedReferences",
"(",
"self",
",",
"entry",
")",
":",
"if",
"type",
"(",
"entry",
".",
"citedReferences",
")",
"is",
"not",
"list",
":",
"entry",
".",
"citedReferences",
"=",
"[",
"entry",
".",
"citedReferences",
"]"
] | If only a single cited reference was found, ensure that
``citedReferences`` is nonetheless a list. | [
"If",
"only",
"a",
"single",
"cited",
"reference",
"was",
"found",
"ensure",
"that",
"citedReferences",
"is",
"nonetheless",
"a",
"list",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/wos.py#L314-L320 | train |
diging/tethne | tethne/plot/__init__.py | plot_burstness | def plot_burstness(corpus, B, **kwargs):
"""
Generate a figure depicting burstness profiles for ``feature``.
Parameters
----------
B
Returns
-------
fig : :class:`matplotlib.figure.Figure`
Examples
--------
.. code-block:: python
>>> from tethne.analyze.corpus import burstness
>>> fig = plot_burstness(corpus, 'citations', topn=2, perslice=True)
>>> fig.savefig('~/burstness.png')
Years prior to the first occurrence of each feature are grayed out. Periods
in which the feature was bursty are depicted by colored blocks, the opacity
of which indicates burstness intensity.
.. figure:: _static/images/burstness.png
:width: 600
:align: center
"""
try:
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
except ImportError:
raise RuntimeError('This method requires the package matplotlib.')
color = kwargs.get('color', 'red')
# Get width based on slices.
years = sorted(corpus.indices['date'].keys())
width = years[1] - years[0]
height = 1.0
fig = plt.figure(figsize=(10,len(B)/4.))
f = 1
axes = {}
for key, value in B.iteritems():
x,y = value
ax = fig.add_subplot(len(B),1,f)
f+=1
ax.set_yticks([])
ax.set_xbound(min(years), max(years) + 1)
if not f == len(B)+1: # Only show xticks on the bottom subplot.
ax.set_xticklabels([])
# Block out years until first occurrence of feature.
rect = mpatches.Rectangle((min(years), 0), sorted(x)[0]-min(years),
height, fill=True, linewidth=0.0)
rect.set_facecolor('black')
rect.set_alpha(0.3)
ax.add_patch(rect)
# Add a rectangle for each year, shaded according to burstness state.
for d in xrange(min(x), max(x)):
try:
i = x.index(d)
except ValueError:
continue
xy = (d, 0.)
state = y[i]
rect = mpatches.Rectangle(xy, width, height,
fill=True, linewidth=0.0)
rect.set_facecolor(color)
rect.set_alpha(state)
ax.add_patch(rect)
ax.set_ylabel(key, rotation=0,
horizontalalignment='right',
verticalalignment='center')
plt.subplots_adjust(left=0.5)
fig.tight_layout(h_pad=0.25)
plt.show() | python | def plot_burstness(corpus, B, **kwargs):
"""
Generate a figure depicting burstness profiles for ``feature``.
Parameters
----------
B
Returns
-------
fig : :class:`matplotlib.figure.Figure`
Examples
--------
.. code-block:: python
>>> from tethne.analyze.corpus import burstness
>>> fig = plot_burstness(corpus, 'citations', topn=2, perslice=True)
>>> fig.savefig('~/burstness.png')
Years prior to the first occurrence of each feature are grayed out. Periods
in which the feature was bursty are depicted by colored blocks, the opacity
of which indicates burstness intensity.
.. figure:: _static/images/burstness.png
:width: 600
:align: center
"""
try:
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
except ImportError:
raise RuntimeError('This method requires the package matplotlib.')
color = kwargs.get('color', 'red')
# Get width based on slices.
years = sorted(corpus.indices['date'].keys())
width = years[1] - years[0]
height = 1.0
fig = plt.figure(figsize=(10,len(B)/4.))
f = 1
axes = {}
for key, value in B.iteritems():
x,y = value
ax = fig.add_subplot(len(B),1,f)
f+=1
ax.set_yticks([])
ax.set_xbound(min(years), max(years) + 1)
if not f == len(B)+1: # Only show xticks on the bottom subplot.
ax.set_xticklabels([])
# Block out years until first occurrence of feature.
rect = mpatches.Rectangle((min(years), 0), sorted(x)[0]-min(years),
height, fill=True, linewidth=0.0)
rect.set_facecolor('black')
rect.set_alpha(0.3)
ax.add_patch(rect)
# Add a rectangle for each year, shaded according to burstness state.
for d in xrange(min(x), max(x)):
try:
i = x.index(d)
except ValueError:
continue
xy = (d, 0.)
state = y[i]
rect = mpatches.Rectangle(xy, width, height,
fill=True, linewidth=0.0)
rect.set_facecolor(color)
rect.set_alpha(state)
ax.add_patch(rect)
ax.set_ylabel(key, rotation=0,
horizontalalignment='right',
verticalalignment='center')
plt.subplots_adjust(left=0.5)
fig.tight_layout(h_pad=0.25)
plt.show() | [
"def",
"plot_burstness",
"(",
"corpus",
",",
"B",
",",
"*",
"*",
"kwargs",
")",
":",
"try",
":",
"import",
"matplotlib",
".",
"pyplot",
"as",
"plt",
"import",
"matplotlib",
".",
"patches",
"as",
"mpatches",
"except",
"ImportError",
":",
"raise",
"RuntimeError",
"(",
"'This method requires the package matplotlib.'",
")",
"color",
"=",
"kwargs",
".",
"get",
"(",
"'color'",
",",
"'red'",
")",
"# Get width based on slices.",
"years",
"=",
"sorted",
"(",
"corpus",
".",
"indices",
"[",
"'date'",
"]",
".",
"keys",
"(",
")",
")",
"width",
"=",
"years",
"[",
"1",
"]",
"-",
"years",
"[",
"0",
"]",
"height",
"=",
"1.0",
"fig",
"=",
"plt",
".",
"figure",
"(",
"figsize",
"=",
"(",
"10",
",",
"len",
"(",
"B",
")",
"/",
"4.",
")",
")",
"f",
"=",
"1",
"axes",
"=",
"{",
"}",
"for",
"key",
",",
"value",
"in",
"B",
".",
"iteritems",
"(",
")",
":",
"x",
",",
"y",
"=",
"value",
"ax",
"=",
"fig",
".",
"add_subplot",
"(",
"len",
"(",
"B",
")",
",",
"1",
",",
"f",
")",
"f",
"+=",
"1",
"ax",
".",
"set_yticks",
"(",
"[",
"]",
")",
"ax",
".",
"set_xbound",
"(",
"min",
"(",
"years",
")",
",",
"max",
"(",
"years",
")",
"+",
"1",
")",
"if",
"not",
"f",
"==",
"len",
"(",
"B",
")",
"+",
"1",
":",
"# Only show xticks on the bottom subplot.",
"ax",
".",
"set_xticklabels",
"(",
"[",
"]",
")",
"# Block out years until first occurrence of feature.",
"rect",
"=",
"mpatches",
".",
"Rectangle",
"(",
"(",
"min",
"(",
"years",
")",
",",
"0",
")",
",",
"sorted",
"(",
"x",
")",
"[",
"0",
"]",
"-",
"min",
"(",
"years",
")",
",",
"height",
",",
"fill",
"=",
"True",
",",
"linewidth",
"=",
"0.0",
")",
"rect",
".",
"set_facecolor",
"(",
"'black'",
")",
"rect",
".",
"set_alpha",
"(",
"0.3",
")",
"ax",
".",
"add_patch",
"(",
"rect",
")",
"# Add a rectangle for each year, shaded according to burstness state.",
"for",
"d",
"in",
"xrange",
"(",
"min",
"(",
"x",
")",
",",
"max",
"(",
"x",
")",
")",
":",
"try",
":",
"i",
"=",
"x",
".",
"index",
"(",
"d",
")",
"except",
"ValueError",
":",
"continue",
"xy",
"=",
"(",
"d",
",",
"0.",
")",
"state",
"=",
"y",
"[",
"i",
"]",
"rect",
"=",
"mpatches",
".",
"Rectangle",
"(",
"xy",
",",
"width",
",",
"height",
",",
"fill",
"=",
"True",
",",
"linewidth",
"=",
"0.0",
")",
"rect",
".",
"set_facecolor",
"(",
"color",
")",
"rect",
".",
"set_alpha",
"(",
"state",
")",
"ax",
".",
"add_patch",
"(",
"rect",
")",
"ax",
".",
"set_ylabel",
"(",
"key",
",",
"rotation",
"=",
"0",
",",
"horizontalalignment",
"=",
"'right'",
",",
"verticalalignment",
"=",
"'center'",
")",
"plt",
".",
"subplots_adjust",
"(",
"left",
"=",
"0.5",
")",
"fig",
".",
"tight_layout",
"(",
"h_pad",
"=",
"0.25",
")",
"plt",
".",
"show",
"(",
")"
] | Generate a figure depicting burstness profiles for ``feature``.
Parameters
----------
B
Returns
-------
fig : :class:`matplotlib.figure.Figure`
Examples
--------
.. code-block:: python
>>> from tethne.analyze.corpus import burstness
>>> fig = plot_burstness(corpus, 'citations', topn=2, perslice=True)
>>> fig.savefig('~/burstness.png')
Years prior to the first occurrence of each feature are grayed out. Periods
in which the feature was bursty are depicted by colored blocks, the opacity
of which indicates burstness intensity.
.. figure:: _static/images/burstness.png
:width: 600
:align: center | [
"Generate",
"a",
"figure",
"depicting",
"burstness",
"profiles",
"for",
"feature",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/plot/__init__.py#L11-L97 | train |
diging/tethne | tethne/networks/helpers.py | simplify_multigraph | def simplify_multigraph(multigraph, time=False):
"""
Simplifies a graph by condensing multiple edges between the same node pair
into a single edge, with a weight attribute equal to the number of edges.
Parameters
----------
graph : networkx.MultiGraph
E.g. a coauthorship graph.
time : bool
If True, will generate 'start' and 'end' attributes for each edge,
corresponding to the earliest and latest 'date' values for that edge.
Returns
-------
graph : networkx.Graph
A NetworkX :class:`.graph` .
"""
graph = nx.Graph()
for node in multigraph.nodes(data=True):
u = node[0]
node_attribs = node[1]
graph.add_node(u, node_attribs)
for v in multigraph[u]:
edges = multigraph.get_edge_data(u, v) # Dict.
edge_attribs = { 'weight': len(edges) }
if time: # Look for a date in each edge.
start = 3000
end = 0
found_date = False
for edge in edges.values():
try:
found_date = True
if edge['date'] < start:
start = edge['date']
if edge['date'] > end:
end = edge['date']
except KeyError: # No date to be found.
pass
if found_date: # If no date found, don't add start/end atts.
edge_attribs['start'] = start
edge_attribs['end'] = end
graph.add_edge(u, v, edge_attribs)
return graph | python | def simplify_multigraph(multigraph, time=False):
"""
Simplifies a graph by condensing multiple edges between the same node pair
into a single edge, with a weight attribute equal to the number of edges.
Parameters
----------
graph : networkx.MultiGraph
E.g. a coauthorship graph.
time : bool
If True, will generate 'start' and 'end' attributes for each edge,
corresponding to the earliest and latest 'date' values for that edge.
Returns
-------
graph : networkx.Graph
A NetworkX :class:`.graph` .
"""
graph = nx.Graph()
for node in multigraph.nodes(data=True):
u = node[0]
node_attribs = node[1]
graph.add_node(u, node_attribs)
for v in multigraph[u]:
edges = multigraph.get_edge_data(u, v) # Dict.
edge_attribs = { 'weight': len(edges) }
if time: # Look for a date in each edge.
start = 3000
end = 0
found_date = False
for edge in edges.values():
try:
found_date = True
if edge['date'] < start:
start = edge['date']
if edge['date'] > end:
end = edge['date']
except KeyError: # No date to be found.
pass
if found_date: # If no date found, don't add start/end atts.
edge_attribs['start'] = start
edge_attribs['end'] = end
graph.add_edge(u, v, edge_attribs)
return graph | [
"def",
"simplify_multigraph",
"(",
"multigraph",
",",
"time",
"=",
"False",
")",
":",
"graph",
"=",
"nx",
".",
"Graph",
"(",
")",
"for",
"node",
"in",
"multigraph",
".",
"nodes",
"(",
"data",
"=",
"True",
")",
":",
"u",
"=",
"node",
"[",
"0",
"]",
"node_attribs",
"=",
"node",
"[",
"1",
"]",
"graph",
".",
"add_node",
"(",
"u",
",",
"node_attribs",
")",
"for",
"v",
"in",
"multigraph",
"[",
"u",
"]",
":",
"edges",
"=",
"multigraph",
".",
"get_edge_data",
"(",
"u",
",",
"v",
")",
"# Dict.",
"edge_attribs",
"=",
"{",
"'weight'",
":",
"len",
"(",
"edges",
")",
"}",
"if",
"time",
":",
"# Look for a date in each edge.",
"start",
"=",
"3000",
"end",
"=",
"0",
"found_date",
"=",
"False",
"for",
"edge",
"in",
"edges",
".",
"values",
"(",
")",
":",
"try",
":",
"found_date",
"=",
"True",
"if",
"edge",
"[",
"'date'",
"]",
"<",
"start",
":",
"start",
"=",
"edge",
"[",
"'date'",
"]",
"if",
"edge",
"[",
"'date'",
"]",
">",
"end",
":",
"end",
"=",
"edge",
"[",
"'date'",
"]",
"except",
"KeyError",
":",
"# No date to be found.",
"pass",
"if",
"found_date",
":",
"# If no date found, don't add start/end atts.",
"edge_attribs",
"[",
"'start'",
"]",
"=",
"start",
"edge_attribs",
"[",
"'end'",
"]",
"=",
"end",
"graph",
".",
"add_edge",
"(",
"u",
",",
"v",
",",
"edge_attribs",
")",
"return",
"graph"
] | Simplifies a graph by condensing multiple edges between the same node pair
into a single edge, with a weight attribute equal to the number of edges.
Parameters
----------
graph : networkx.MultiGraph
E.g. a coauthorship graph.
time : bool
If True, will generate 'start' and 'end' attributes for each edge,
corresponding to the earliest and latest 'date' values for that edge.
Returns
-------
graph : networkx.Graph
A NetworkX :class:`.graph` . | [
"Simplifies",
"a",
"graph",
"by",
"condensing",
"multiple",
"edges",
"between",
"the",
"same",
"node",
"pair",
"into",
"a",
"single",
"edge",
"with",
"a",
"weight",
"attribute",
"equal",
"to",
"the",
"number",
"of",
"edges",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/networks/helpers.py#L28-L81 | train |
diging/tethne | tethne/networks/helpers.py | citation_count | def citation_count(papers, key='ayjid', verbose=False):
"""
Generates citation counts for all of the papers cited by papers.
Parameters
----------
papers : list
A list of :class:`.Paper` instances.
key : str
Property to use as node key. Default is 'ayjid' (recommended).
verbose : bool
If True, prints status messages.
Returns
-------
counts : dict
Citation counts for all papers cited by papers.
"""
if verbose:
print "Generating citation counts for "+unicode(len(papers))+" papers..."
counts = Counter()
for P in papers:
if P['citations'] is not None:
for p in P['citations']:
counts[p[key]] += 1
return counts | python | def citation_count(papers, key='ayjid', verbose=False):
"""
Generates citation counts for all of the papers cited by papers.
Parameters
----------
papers : list
A list of :class:`.Paper` instances.
key : str
Property to use as node key. Default is 'ayjid' (recommended).
verbose : bool
If True, prints status messages.
Returns
-------
counts : dict
Citation counts for all papers cited by papers.
"""
if verbose:
print "Generating citation counts for "+unicode(len(papers))+" papers..."
counts = Counter()
for P in papers:
if P['citations'] is not None:
for p in P['citations']:
counts[p[key]] += 1
return counts | [
"def",
"citation_count",
"(",
"papers",
",",
"key",
"=",
"'ayjid'",
",",
"verbose",
"=",
"False",
")",
":",
"if",
"verbose",
":",
"print",
"\"Generating citation counts for \"",
"+",
"unicode",
"(",
"len",
"(",
"papers",
")",
")",
"+",
"\" papers...\"",
"counts",
"=",
"Counter",
"(",
")",
"for",
"P",
"in",
"papers",
":",
"if",
"P",
"[",
"'citations'",
"]",
"is",
"not",
"None",
":",
"for",
"p",
"in",
"P",
"[",
"'citations'",
"]",
":",
"counts",
"[",
"p",
"[",
"key",
"]",
"]",
"+=",
"1",
"return",
"counts"
] | Generates citation counts for all of the papers cited by papers.
Parameters
----------
papers : list
A list of :class:`.Paper` instances.
key : str
Property to use as node key. Default is 'ayjid' (recommended).
verbose : bool
If True, prints status messages.
Returns
-------
counts : dict
Citation counts for all papers cited by papers. | [
"Generates",
"citation",
"counts",
"for",
"all",
"of",
"the",
"papers",
"cited",
"by",
"papers",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/networks/helpers.py#L83-L111 | train |
diging/tethne | tethne/analyze/collection.py | connected | def connected(G, method_name, **kwargs):
"""
Performs analysis methods from networkx.connected on each graph in the
collection.
Parameters
----------
G : :class:`.GraphCollection`
The :class:`.GraphCollection` to analyze. The specified method will be
applied to each graph in ``G``.
method : string
Name of method in networkx.connected.
**kwargs : kwargs
Keyword arguments, passed directly to method.
Returns
-------
results : dict
Keys are graph indices, values are output of method for that graph.
Raises
------
ValueError
If name is not in networkx.connected, or if no such method exists.
"""
warnings.warn("To be removed in 0.8. Use GraphCollection.analyze instead.",
DeprecationWarning)
return G.analyze(['connected', method_name], **kwargs) | python | def connected(G, method_name, **kwargs):
"""
Performs analysis methods from networkx.connected on each graph in the
collection.
Parameters
----------
G : :class:`.GraphCollection`
The :class:`.GraphCollection` to analyze. The specified method will be
applied to each graph in ``G``.
method : string
Name of method in networkx.connected.
**kwargs : kwargs
Keyword arguments, passed directly to method.
Returns
-------
results : dict
Keys are graph indices, values are output of method for that graph.
Raises
------
ValueError
If name is not in networkx.connected, or if no such method exists.
"""
warnings.warn("To be removed in 0.8. Use GraphCollection.analyze instead.",
DeprecationWarning)
return G.analyze(['connected', method_name], **kwargs) | [
"def",
"connected",
"(",
"G",
",",
"method_name",
",",
"*",
"*",
"kwargs",
")",
":",
"warnings",
".",
"warn",
"(",
"\"To be removed in 0.8. Use GraphCollection.analyze instead.\"",
",",
"DeprecationWarning",
")",
"return",
"G",
".",
"analyze",
"(",
"[",
"'connected'",
",",
"method_name",
"]",
",",
"*",
"*",
"kwargs",
")"
] | Performs analysis methods from networkx.connected on each graph in the
collection.
Parameters
----------
G : :class:`.GraphCollection`
The :class:`.GraphCollection` to analyze. The specified method will be
applied to each graph in ``G``.
method : string
Name of method in networkx.connected.
**kwargs : kwargs
Keyword arguments, passed directly to method.
Returns
-------
results : dict
Keys are graph indices, values are output of method for that graph.
Raises
------
ValueError
If name is not in networkx.connected, or if no such method exists. | [
"Performs",
"analysis",
"methods",
"from",
"networkx",
".",
"connected",
"on",
"each",
"graph",
"in",
"the",
"collection",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/analyze/collection.py#L72-L101 | train |
diging/tethne | tethne/analyze/collection.py | attachment_probability | def attachment_probability(G):
"""
Calculates the observed attachment probability for each node at each
time-step.
Attachment probability is calculated based on the observed new edges in the
next time-step. So if a node acquires new edges at time t, this will accrue
to the node's attachment probability at time t-1. Thus at a given time,
one can ask whether degree and attachment probability are related.
Parameters
----------
G : :class:`.GraphCollection`
Must be sliced by 'date'. See :func:`.GraphCollection.slice`\.
Returns
-------
probs : dict
Keyed by index in G.graphs, and then by node.
"""
warnings.warn("Removed in 0.8. Too domain-specific.")
probs = {}
G_ = None
k_ = None
for k,g in G.graphs.iteritems():
new_edges = {}
if G_ is not None:
for n in g.nodes():
try:
old_neighbors = set(G_[n].keys())
if len(old_neighbors) > 0:
new_neighbors = set(g[n].keys()) - old_neighbors
new_edges[n] = float(len(new_neighbors))
else:
new_edges[n] = 0.
except KeyError:
pass
N = sum( new_edges.values() )
probs[k_] = { n:0. for n in G_.nodes() }
if N > 0.:
for n in G.nodes():
try:
probs[k_][n] = new_edges[n]/N
except KeyError:
pass
if probs[k_] is not None:
networkx.set_node_attributes(G.graphs[k_],
'attachment_probability',
probs[k_])
G_ = G
k_ = k
# Handle last graph (no values).
key = G.graphs.keys()[-1]
zprobs = { n:0. for n in G.graphs[key].nodes() }
networkx.set_node_attributes(G.graphs[key], 'attachment_probability', zprobs)
return probs | python | def attachment_probability(G):
"""
Calculates the observed attachment probability for each node at each
time-step.
Attachment probability is calculated based on the observed new edges in the
next time-step. So if a node acquires new edges at time t, this will accrue
to the node's attachment probability at time t-1. Thus at a given time,
one can ask whether degree and attachment probability are related.
Parameters
----------
G : :class:`.GraphCollection`
Must be sliced by 'date'. See :func:`.GraphCollection.slice`\.
Returns
-------
probs : dict
Keyed by index in G.graphs, and then by node.
"""
warnings.warn("Removed in 0.8. Too domain-specific.")
probs = {}
G_ = None
k_ = None
for k,g in G.graphs.iteritems():
new_edges = {}
if G_ is not None:
for n in g.nodes():
try:
old_neighbors = set(G_[n].keys())
if len(old_neighbors) > 0:
new_neighbors = set(g[n].keys()) - old_neighbors
new_edges[n] = float(len(new_neighbors))
else:
new_edges[n] = 0.
except KeyError:
pass
N = sum( new_edges.values() )
probs[k_] = { n:0. for n in G_.nodes() }
if N > 0.:
for n in G.nodes():
try:
probs[k_][n] = new_edges[n]/N
except KeyError:
pass
if probs[k_] is not None:
networkx.set_node_attributes(G.graphs[k_],
'attachment_probability',
probs[k_])
G_ = G
k_ = k
# Handle last graph (no values).
key = G.graphs.keys()[-1]
zprobs = { n:0. for n in G.graphs[key].nodes() }
networkx.set_node_attributes(G.graphs[key], 'attachment_probability', zprobs)
return probs | [
"def",
"attachment_probability",
"(",
"G",
")",
":",
"warnings",
".",
"warn",
"(",
"\"Removed in 0.8. Too domain-specific.\"",
")",
"probs",
"=",
"{",
"}",
"G_",
"=",
"None",
"k_",
"=",
"None",
"for",
"k",
",",
"g",
"in",
"G",
".",
"graphs",
".",
"iteritems",
"(",
")",
":",
"new_edges",
"=",
"{",
"}",
"if",
"G_",
"is",
"not",
"None",
":",
"for",
"n",
"in",
"g",
".",
"nodes",
"(",
")",
":",
"try",
":",
"old_neighbors",
"=",
"set",
"(",
"G_",
"[",
"n",
"]",
".",
"keys",
"(",
")",
")",
"if",
"len",
"(",
"old_neighbors",
")",
">",
"0",
":",
"new_neighbors",
"=",
"set",
"(",
"g",
"[",
"n",
"]",
".",
"keys",
"(",
")",
")",
"-",
"old_neighbors",
"new_edges",
"[",
"n",
"]",
"=",
"float",
"(",
"len",
"(",
"new_neighbors",
")",
")",
"else",
":",
"new_edges",
"[",
"n",
"]",
"=",
"0.",
"except",
"KeyError",
":",
"pass",
"N",
"=",
"sum",
"(",
"new_edges",
".",
"values",
"(",
")",
")",
"probs",
"[",
"k_",
"]",
"=",
"{",
"n",
":",
"0.",
"for",
"n",
"in",
"G_",
".",
"nodes",
"(",
")",
"}",
"if",
"N",
">",
"0.",
":",
"for",
"n",
"in",
"G",
".",
"nodes",
"(",
")",
":",
"try",
":",
"probs",
"[",
"k_",
"]",
"[",
"n",
"]",
"=",
"new_edges",
"[",
"n",
"]",
"/",
"N",
"except",
"KeyError",
":",
"pass",
"if",
"probs",
"[",
"k_",
"]",
"is",
"not",
"None",
":",
"networkx",
".",
"set_node_attributes",
"(",
"G",
".",
"graphs",
"[",
"k_",
"]",
",",
"'attachment_probability'",
",",
"probs",
"[",
"k_",
"]",
")",
"G_",
"=",
"G",
"k_",
"=",
"k",
"# Handle last graph (no values).",
"key",
"=",
"G",
".",
"graphs",
".",
"keys",
"(",
")",
"[",
"-",
"1",
"]",
"zprobs",
"=",
"{",
"n",
":",
"0.",
"for",
"n",
"in",
"G",
".",
"graphs",
"[",
"key",
"]",
".",
"nodes",
"(",
")",
"}",
"networkx",
".",
"set_node_attributes",
"(",
"G",
".",
"graphs",
"[",
"key",
"]",
",",
"'attachment_probability'",
",",
"zprobs",
")",
"return",
"probs"
] | Calculates the observed attachment probability for each node at each
time-step.
Attachment probability is calculated based on the observed new edges in the
next time-step. So if a node acquires new edges at time t, this will accrue
to the node's attachment probability at time t-1. Thus at a given time,
one can ask whether degree and attachment probability are related.
Parameters
----------
G : :class:`.GraphCollection`
Must be sliced by 'date'. See :func:`.GraphCollection.slice`\.
Returns
-------
probs : dict
Keyed by index in G.graphs, and then by node. | [
"Calculates",
"the",
"observed",
"attachment",
"probability",
"for",
"each",
"node",
"at",
"each",
"time",
"-",
"step",
".",
"Attachment",
"probability",
"is",
"calculated",
"based",
"on",
"the",
"observed",
"new",
"edges",
"in",
"the",
"next",
"time",
"-",
"step",
".",
"So",
"if",
"a",
"node",
"acquires",
"new",
"edges",
"at",
"time",
"t",
"this",
"will",
"accrue",
"to",
"the",
"node",
"s",
"attachment",
"probability",
"at",
"time",
"t",
"-",
"1",
".",
"Thus",
"at",
"a",
"given",
"time",
"one",
"can",
"ask",
"whether",
"degree",
"and",
"attachment",
"probability",
"are",
"related",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/analyze/collection.py#L104-L166 | train |
diging/tethne | tethne/analyze/graph.py | global_closeness_centrality | def global_closeness_centrality(g, node=None, normalize=True):
"""
Calculates global closeness centrality for one or all nodes in the network.
See :func:`.node_global_closeness_centrality` for more information.
Parameters
----------
g : networkx.Graph
normalize : boolean
If True, normalizes centrality based on the average shortest path
length. Default is True.
Returns
-------
C : dict
Dictionary of results, with node identifiers as keys and gcc as values.
"""
if not node:
C = {}
for node in g.nodes():
C[node] = global_closeness_centrality(g, node, normalize=normalize)
return C
values = nx.shortest_path_length(g, node).values()
c = sum([1./pl for pl in values if pl != 0.]) / len(g)
if normalize:
ac = 0
for sg in nx.connected_component_subgraphs(g):
if len(sg.nodes()) > 1:
aspl = nx.average_shortest_path_length(sg)
ac += (1./aspl) * (float(len(sg)) / float(len(g))**2 )
c = c/ac
return c | python | def global_closeness_centrality(g, node=None, normalize=True):
"""
Calculates global closeness centrality for one or all nodes in the network.
See :func:`.node_global_closeness_centrality` for more information.
Parameters
----------
g : networkx.Graph
normalize : boolean
If True, normalizes centrality based on the average shortest path
length. Default is True.
Returns
-------
C : dict
Dictionary of results, with node identifiers as keys and gcc as values.
"""
if not node:
C = {}
for node in g.nodes():
C[node] = global_closeness_centrality(g, node, normalize=normalize)
return C
values = nx.shortest_path_length(g, node).values()
c = sum([1./pl for pl in values if pl != 0.]) / len(g)
if normalize:
ac = 0
for sg in nx.connected_component_subgraphs(g):
if len(sg.nodes()) > 1:
aspl = nx.average_shortest_path_length(sg)
ac += (1./aspl) * (float(len(sg)) / float(len(g))**2 )
c = c/ac
return c | [
"def",
"global_closeness_centrality",
"(",
"g",
",",
"node",
"=",
"None",
",",
"normalize",
"=",
"True",
")",
":",
"if",
"not",
"node",
":",
"C",
"=",
"{",
"}",
"for",
"node",
"in",
"g",
".",
"nodes",
"(",
")",
":",
"C",
"[",
"node",
"]",
"=",
"global_closeness_centrality",
"(",
"g",
",",
"node",
",",
"normalize",
"=",
"normalize",
")",
"return",
"C",
"values",
"=",
"nx",
".",
"shortest_path_length",
"(",
"g",
",",
"node",
")",
".",
"values",
"(",
")",
"c",
"=",
"sum",
"(",
"[",
"1.",
"/",
"pl",
"for",
"pl",
"in",
"values",
"if",
"pl",
"!=",
"0.",
"]",
")",
"/",
"len",
"(",
"g",
")",
"if",
"normalize",
":",
"ac",
"=",
"0",
"for",
"sg",
"in",
"nx",
".",
"connected_component_subgraphs",
"(",
"g",
")",
":",
"if",
"len",
"(",
"sg",
".",
"nodes",
"(",
")",
")",
">",
"1",
":",
"aspl",
"=",
"nx",
".",
"average_shortest_path_length",
"(",
"sg",
")",
"ac",
"+=",
"(",
"1.",
"/",
"aspl",
")",
"*",
"(",
"float",
"(",
"len",
"(",
"sg",
")",
")",
"/",
"float",
"(",
"len",
"(",
"g",
")",
")",
"**",
"2",
")",
"c",
"=",
"c",
"/",
"ac",
"return",
"c"
] | Calculates global closeness centrality for one or all nodes in the network.
See :func:`.node_global_closeness_centrality` for more information.
Parameters
----------
g : networkx.Graph
normalize : boolean
If True, normalizes centrality based on the average shortest path
length. Default is True.
Returns
-------
C : dict
Dictionary of results, with node identifiers as keys and gcc as values. | [
"Calculates",
"global",
"closeness",
"centrality",
"for",
"one",
"or",
"all",
"nodes",
"in",
"the",
"network",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/analyze/graph.py#L13-L49 | train |
diging/tethne | tethne/readers/dfr.py | ngrams | def ngrams(path, elem, ignore_hash=True):
"""
Yields N-grams from a JSTOR DfR dataset.
Parameters
----------
path : string
Path to unzipped JSTOR DfR folder containing N-grams.
elem : string
Name of subdirectory containing N-grams. (e.g. 'bigrams').
ignore_hash : bool
If True, will exclude all N-grams that contain the hash '#' character.
Returns
-------
ngrams : :class:`.FeatureSet`
"""
grams = GramGenerator(path, elem, ignore_hash=ignore_hash)
return FeatureSet({k: Feature(f) for k, f in grams}) | python | def ngrams(path, elem, ignore_hash=True):
"""
Yields N-grams from a JSTOR DfR dataset.
Parameters
----------
path : string
Path to unzipped JSTOR DfR folder containing N-grams.
elem : string
Name of subdirectory containing N-grams. (e.g. 'bigrams').
ignore_hash : bool
If True, will exclude all N-grams that contain the hash '#' character.
Returns
-------
ngrams : :class:`.FeatureSet`
"""
grams = GramGenerator(path, elem, ignore_hash=ignore_hash)
return FeatureSet({k: Feature(f) for k, f in grams}) | [
"def",
"ngrams",
"(",
"path",
",",
"elem",
",",
"ignore_hash",
"=",
"True",
")",
":",
"grams",
"=",
"GramGenerator",
"(",
"path",
",",
"elem",
",",
"ignore_hash",
"=",
"ignore_hash",
")",
"return",
"FeatureSet",
"(",
"{",
"k",
":",
"Feature",
"(",
"f",
")",
"for",
"k",
",",
"f",
"in",
"grams",
"}",
")"
] | Yields N-grams from a JSTOR DfR dataset.
Parameters
----------
path : string
Path to unzipped JSTOR DfR folder containing N-grams.
elem : string
Name of subdirectory containing N-grams. (e.g. 'bigrams').
ignore_hash : bool
If True, will exclude all N-grams that contain the hash '#' character.
Returns
-------
ngrams : :class:`.FeatureSet` | [
"Yields",
"N",
"-",
"grams",
"from",
"a",
"JSTOR",
"DfR",
"dataset",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/dfr.py#L294-L314 | train |
diging/tethne | tethne/readers/dfr.py | tokenize | def tokenize(ngrams, min_tf=2, min_df=2, min_len=3, apply_stoplist=False):
"""
Builds a vocabulary, and replaces words with vocab indices.
Parameters
----------
ngrams : dict
Keys are paper DOIs, values are lists of (Ngram, frequency) tuples.
apply_stoplist : bool
If True, will exclude all N-grams that contain words in the NLTK
stoplist.
Returns
-------
t_ngrams : dict
Tokenized ngrams, as doi:{i:count}.
vocab : dict
Vocabulary as i:term.
token_tf : :class:`.Counter`
Term counts for corpus, as i:count.
"""
vocab = {}
vocab_ = {}
word_tf = Counter()
word_df = Counter()
token_tf = Counter()
token_df = Counter()
t_ngrams = {}
# Get global word counts, first.
for grams in ngrams.values():
for g,c in grams:
word_tf[g] += c
word_df[g] += 1
if apply_stoplist:
stoplist = stopwords.words()
# Now tokenize.
for doi, grams in ngrams.iteritems():
t_ngrams[doi] = []
for g,c in grams:
ignore = False
# Ignore extremely rare words (probably garbage).
if word_tf[g] < min_tf or word_df[g] < min_df or len(g) < min_len:
ignore = True
# Stoplist.
elif apply_stoplist:
for w in g.split():
if w in stoplist:
ignore = True
if not ignore:
# Coerce unicode to string.
if type(g) is str:
g = unicode(g)
g = unidecode(g)
if g not in vocab.values():
i = len(vocab)
vocab[i] = g
vocab_[g] = i
else:
i = vocab_[g]
token_tf[i] += c
token_df[i] += 1
t_ngrams[doi].append( (i,c) )
return t_ngrams, vocab, token_tf | python | def tokenize(ngrams, min_tf=2, min_df=2, min_len=3, apply_stoplist=False):
"""
Builds a vocabulary, and replaces words with vocab indices.
Parameters
----------
ngrams : dict
Keys are paper DOIs, values are lists of (Ngram, frequency) tuples.
apply_stoplist : bool
If True, will exclude all N-grams that contain words in the NLTK
stoplist.
Returns
-------
t_ngrams : dict
Tokenized ngrams, as doi:{i:count}.
vocab : dict
Vocabulary as i:term.
token_tf : :class:`.Counter`
Term counts for corpus, as i:count.
"""
vocab = {}
vocab_ = {}
word_tf = Counter()
word_df = Counter()
token_tf = Counter()
token_df = Counter()
t_ngrams = {}
# Get global word counts, first.
for grams in ngrams.values():
for g,c in grams:
word_tf[g] += c
word_df[g] += 1
if apply_stoplist:
stoplist = stopwords.words()
# Now tokenize.
for doi, grams in ngrams.iteritems():
t_ngrams[doi] = []
for g,c in grams:
ignore = False
# Ignore extremely rare words (probably garbage).
if word_tf[g] < min_tf or word_df[g] < min_df or len(g) < min_len:
ignore = True
# Stoplist.
elif apply_stoplist:
for w in g.split():
if w in stoplist:
ignore = True
if not ignore:
# Coerce unicode to string.
if type(g) is str:
g = unicode(g)
g = unidecode(g)
if g not in vocab.values():
i = len(vocab)
vocab[i] = g
vocab_[g] = i
else:
i = vocab_[g]
token_tf[i] += c
token_df[i] += 1
t_ngrams[doi].append( (i,c) )
return t_ngrams, vocab, token_tf | [
"def",
"tokenize",
"(",
"ngrams",
",",
"min_tf",
"=",
"2",
",",
"min_df",
"=",
"2",
",",
"min_len",
"=",
"3",
",",
"apply_stoplist",
"=",
"False",
")",
":",
"vocab",
"=",
"{",
"}",
"vocab_",
"=",
"{",
"}",
"word_tf",
"=",
"Counter",
"(",
")",
"word_df",
"=",
"Counter",
"(",
")",
"token_tf",
"=",
"Counter",
"(",
")",
"token_df",
"=",
"Counter",
"(",
")",
"t_ngrams",
"=",
"{",
"}",
"# Get global word counts, first.",
"for",
"grams",
"in",
"ngrams",
".",
"values",
"(",
")",
":",
"for",
"g",
",",
"c",
"in",
"grams",
":",
"word_tf",
"[",
"g",
"]",
"+=",
"c",
"word_df",
"[",
"g",
"]",
"+=",
"1",
"if",
"apply_stoplist",
":",
"stoplist",
"=",
"stopwords",
".",
"words",
"(",
")",
"# Now tokenize.",
"for",
"doi",
",",
"grams",
"in",
"ngrams",
".",
"iteritems",
"(",
")",
":",
"t_ngrams",
"[",
"doi",
"]",
"=",
"[",
"]",
"for",
"g",
",",
"c",
"in",
"grams",
":",
"ignore",
"=",
"False",
"# Ignore extremely rare words (probably garbage).",
"if",
"word_tf",
"[",
"g",
"]",
"<",
"min_tf",
"or",
"word_df",
"[",
"g",
"]",
"<",
"min_df",
"or",
"len",
"(",
"g",
")",
"<",
"min_len",
":",
"ignore",
"=",
"True",
"# Stoplist.",
"elif",
"apply_stoplist",
":",
"for",
"w",
"in",
"g",
".",
"split",
"(",
")",
":",
"if",
"w",
"in",
"stoplist",
":",
"ignore",
"=",
"True",
"if",
"not",
"ignore",
":",
"# Coerce unicode to string.",
"if",
"type",
"(",
"g",
")",
"is",
"str",
":",
"g",
"=",
"unicode",
"(",
"g",
")",
"g",
"=",
"unidecode",
"(",
"g",
")",
"if",
"g",
"not",
"in",
"vocab",
".",
"values",
"(",
")",
":",
"i",
"=",
"len",
"(",
"vocab",
")",
"vocab",
"[",
"i",
"]",
"=",
"g",
"vocab_",
"[",
"g",
"]",
"=",
"i",
"else",
":",
"i",
"=",
"vocab_",
"[",
"g",
"]",
"token_tf",
"[",
"i",
"]",
"+=",
"c",
"token_df",
"[",
"i",
"]",
"+=",
"1",
"t_ngrams",
"[",
"doi",
"]",
".",
"append",
"(",
"(",
"i",
",",
"c",
")",
")",
"return",
"t_ngrams",
",",
"vocab",
",",
"token_tf"
] | Builds a vocabulary, and replaces words with vocab indices.
Parameters
----------
ngrams : dict
Keys are paper DOIs, values are lists of (Ngram, frequency) tuples.
apply_stoplist : bool
If True, will exclude all N-grams that contain words in the NLTK
stoplist.
Returns
-------
t_ngrams : dict
Tokenized ngrams, as doi:{i:count}.
vocab : dict
Vocabulary as i:term.
token_tf : :class:`.Counter`
Term counts for corpus, as i:count. | [
"Builds",
"a",
"vocabulary",
"and",
"replaces",
"words",
"with",
"vocab",
"indices",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/dfr.py#L317-L390 | train |
diging/tethne | tethne/readers/dfr.py | _handle_pagerange | def _handle_pagerange(pagerange):
"""
Yields start and end pages from DfR pagerange field.
Parameters
----------
pagerange : str or unicode
DfR-style pagerange, e.g. "pp. 435-444".
Returns
-------
start : str
Start page.
end : str
End page.
"""
try:
pr = re.compile("pp\.\s([0-9]+)\-([0-9]+)")
start, end = re.findall(pr, pagerange)[0]
except IndexError:
start = end = 0
return unicode(start), unicode(end) | python | def _handle_pagerange(pagerange):
"""
Yields start and end pages from DfR pagerange field.
Parameters
----------
pagerange : str or unicode
DfR-style pagerange, e.g. "pp. 435-444".
Returns
-------
start : str
Start page.
end : str
End page.
"""
try:
pr = re.compile("pp\.\s([0-9]+)\-([0-9]+)")
start, end = re.findall(pr, pagerange)[0]
except IndexError:
start = end = 0
return unicode(start), unicode(end) | [
"def",
"_handle_pagerange",
"(",
"pagerange",
")",
":",
"try",
":",
"pr",
"=",
"re",
".",
"compile",
"(",
"\"pp\\.\\s([0-9]+)\\-([0-9]+)\"",
")",
"start",
",",
"end",
"=",
"re",
".",
"findall",
"(",
"pr",
",",
"pagerange",
")",
"[",
"0",
"]",
"except",
"IndexError",
":",
"start",
"=",
"end",
"=",
"0",
"return",
"unicode",
"(",
"start",
")",
",",
"unicode",
"(",
"end",
")"
] | Yields start and end pages from DfR pagerange field.
Parameters
----------
pagerange : str or unicode
DfR-style pagerange, e.g. "pp. 435-444".
Returns
-------
start : str
Start page.
end : str
End page. | [
"Yields",
"start",
"and",
"end",
"pages",
"from",
"DfR",
"pagerange",
"field",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/dfr.py#L430-L453 | train |
diging/tethne | tethne/readers/dfr.py | _handle_authors | def _handle_authors(authors):
"""
Yields aulast and auinit lists from value of authors node.
Parameters
----------
authors : list, str, or unicode
Value or values of 'author' element in DfR XML.
Returns
-------
aulast : list
A list of author surnames (string).
auinit : list
A list of author first-initials (string).
"""
aulast = []
auinit = []
if type(authors) is list:
for author in authors:
if type(author) is str:
author = unicode(author)
author = unidecode(author)
try:
l,i = _handle_author(author)
aulast.append(l)
auinit.append(i)
except ValueError:
pass
elif type(authors) is str or type(authors) is unicode:
if type(authors) is str:
authors = unicode(authors)
author = unidecode(authors)
try:
l,i = _handle_author(author)
aulast.append(l)
auinit.append(i)
except ValueError:
pass
else:
raise ValueError("authors must be a list or a string")
return aulast, auinit | python | def _handle_authors(authors):
"""
Yields aulast and auinit lists from value of authors node.
Parameters
----------
authors : list, str, or unicode
Value or values of 'author' element in DfR XML.
Returns
-------
aulast : list
A list of author surnames (string).
auinit : list
A list of author first-initials (string).
"""
aulast = []
auinit = []
if type(authors) is list:
for author in authors:
if type(author) is str:
author = unicode(author)
author = unidecode(author)
try:
l,i = _handle_author(author)
aulast.append(l)
auinit.append(i)
except ValueError:
pass
elif type(authors) is str or type(authors) is unicode:
if type(authors) is str:
authors = unicode(authors)
author = unidecode(authors)
try:
l,i = _handle_author(author)
aulast.append(l)
auinit.append(i)
except ValueError:
pass
else:
raise ValueError("authors must be a list or a string")
return aulast, auinit | [
"def",
"_handle_authors",
"(",
"authors",
")",
":",
"aulast",
"=",
"[",
"]",
"auinit",
"=",
"[",
"]",
"if",
"type",
"(",
"authors",
")",
"is",
"list",
":",
"for",
"author",
"in",
"authors",
":",
"if",
"type",
"(",
"author",
")",
"is",
"str",
":",
"author",
"=",
"unicode",
"(",
"author",
")",
"author",
"=",
"unidecode",
"(",
"author",
")",
"try",
":",
"l",
",",
"i",
"=",
"_handle_author",
"(",
"author",
")",
"aulast",
".",
"append",
"(",
"l",
")",
"auinit",
".",
"append",
"(",
"i",
")",
"except",
"ValueError",
":",
"pass",
"elif",
"type",
"(",
"authors",
")",
"is",
"str",
"or",
"type",
"(",
"authors",
")",
"is",
"unicode",
":",
"if",
"type",
"(",
"authors",
")",
"is",
"str",
":",
"authors",
"=",
"unicode",
"(",
"authors",
")",
"author",
"=",
"unidecode",
"(",
"authors",
")",
"try",
":",
"l",
",",
"i",
"=",
"_handle_author",
"(",
"author",
")",
"aulast",
".",
"append",
"(",
"l",
")",
"auinit",
".",
"append",
"(",
"i",
")",
"except",
"ValueError",
":",
"pass",
"else",
":",
"raise",
"ValueError",
"(",
"\"authors must be a list or a string\"",
")",
"return",
"aulast",
",",
"auinit"
] | Yields aulast and auinit lists from value of authors node.
Parameters
----------
authors : list, str, or unicode
Value or values of 'author' element in DfR XML.
Returns
-------
aulast : list
A list of author surnames (string).
auinit : list
A list of author first-initials (string). | [
"Yields",
"aulast",
"and",
"auinit",
"lists",
"from",
"value",
"of",
"authors",
"node",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/dfr.py#L462-L505 | train |
diging/tethne | tethne/readers/dfr.py | _handle_author | def _handle_author(author):
"""
Yields aulast and auinit from an author's full name.
Parameters
----------
author : str or unicode
Author fullname, e.g. "Richard L. Nixon".
Returns
-------
aulast : str
Author surname.
auinit : str
Author first-initial.
"""
lname = author.split(' ')
try:
auinit = lname[0][0]
final = lname[-1].upper()
if final in ['JR.', 'III']:
aulast = lname[-2].upper() + " " + final.strip(".")
else:
aulast = final
except IndexError:
raise ValueError("malformed author name")
return aulast, auinit | python | def _handle_author(author):
"""
Yields aulast and auinit from an author's full name.
Parameters
----------
author : str or unicode
Author fullname, e.g. "Richard L. Nixon".
Returns
-------
aulast : str
Author surname.
auinit : str
Author first-initial.
"""
lname = author.split(' ')
try:
auinit = lname[0][0]
final = lname[-1].upper()
if final in ['JR.', 'III']:
aulast = lname[-2].upper() + " " + final.strip(".")
else:
aulast = final
except IndexError:
raise ValueError("malformed author name")
return aulast, auinit | [
"def",
"_handle_author",
"(",
"author",
")",
":",
"lname",
"=",
"author",
".",
"split",
"(",
"' '",
")",
"try",
":",
"auinit",
"=",
"lname",
"[",
"0",
"]",
"[",
"0",
"]",
"final",
"=",
"lname",
"[",
"-",
"1",
"]",
".",
"upper",
"(",
")",
"if",
"final",
"in",
"[",
"'JR.'",
",",
"'III'",
"]",
":",
"aulast",
"=",
"lname",
"[",
"-",
"2",
"]",
".",
"upper",
"(",
")",
"+",
"\" \"",
"+",
"final",
".",
"strip",
"(",
"\".\"",
")",
"else",
":",
"aulast",
"=",
"final",
"except",
"IndexError",
":",
"raise",
"ValueError",
"(",
"\"malformed author name\"",
")",
"return",
"aulast",
",",
"auinit"
] | Yields aulast and auinit from an author's full name.
Parameters
----------
author : str or unicode
Author fullname, e.g. "Richard L. Nixon".
Returns
-------
aulast : str
Author surname.
auinit : str
Author first-initial. | [
"Yields",
"aulast",
"and",
"auinit",
"from",
"an",
"author",
"s",
"full",
"name",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/dfr.py#L507-L536 | train |
diging/tethne | tethne/readers/dfr.py | GramGenerator._get | def _get(self, i):
"""
Retrieve data for the ith file in the dataset.
"""
with open(os.path.join(self.path, self.elem, self.files[i]), 'r') as f:
# JSTOR hasn't always produced valid XML.
contents = re.sub('(&)(?!amp;)', lambda match: '&', f.read())
root = ET.fromstring(contents)
doi = root.attrib['id']
if self.K: # Keys only.
return doi
grams = []
for gram in root.findall(self.elem_xml):
text = unidecode(unicode(gram.text.strip()))
if ( not self.ignore_hash or '#' not in list(text) ):
c = ( text, number(gram.attrib['weight']) )
grams.append(c)
if self.V: # Values only.
return grams
return doi, grams | python | def _get(self, i):
"""
Retrieve data for the ith file in the dataset.
"""
with open(os.path.join(self.path, self.elem, self.files[i]), 'r') as f:
# JSTOR hasn't always produced valid XML.
contents = re.sub('(&)(?!amp;)', lambda match: '&', f.read())
root = ET.fromstring(contents)
doi = root.attrib['id']
if self.K: # Keys only.
return doi
grams = []
for gram in root.findall(self.elem_xml):
text = unidecode(unicode(gram.text.strip()))
if ( not self.ignore_hash or '#' not in list(text) ):
c = ( text, number(gram.attrib['weight']) )
grams.append(c)
if self.V: # Values only.
return grams
return doi, grams | [
"def",
"_get",
"(",
"self",
",",
"i",
")",
":",
"with",
"open",
"(",
"os",
".",
"path",
".",
"join",
"(",
"self",
".",
"path",
",",
"self",
".",
"elem",
",",
"self",
".",
"files",
"[",
"i",
"]",
")",
",",
"'r'",
")",
"as",
"f",
":",
"# JSTOR hasn't always produced valid XML.",
"contents",
"=",
"re",
".",
"sub",
"(",
"'(&)(?!amp;)'",
",",
"lambda",
"match",
":",
"'&'",
",",
"f",
".",
"read",
"(",
")",
")",
"root",
"=",
"ET",
".",
"fromstring",
"(",
"contents",
")",
"doi",
"=",
"root",
".",
"attrib",
"[",
"'id'",
"]",
"if",
"self",
".",
"K",
":",
"# Keys only.",
"return",
"doi",
"grams",
"=",
"[",
"]",
"for",
"gram",
"in",
"root",
".",
"findall",
"(",
"self",
".",
"elem_xml",
")",
":",
"text",
"=",
"unidecode",
"(",
"unicode",
"(",
"gram",
".",
"text",
".",
"strip",
"(",
")",
")",
")",
"if",
"(",
"not",
"self",
".",
"ignore_hash",
"or",
"'#'",
"not",
"in",
"list",
"(",
"text",
")",
")",
":",
"c",
"=",
"(",
"text",
",",
"number",
"(",
"gram",
".",
"attrib",
"[",
"'weight'",
"]",
")",
")",
"grams",
".",
"append",
"(",
"c",
")",
"if",
"self",
".",
"V",
":",
"# Values only.",
"return",
"grams",
"return",
"doi",
",",
"grams"
] | Retrieve data for the ith file in the dataset. | [
"Retrieve",
"data",
"for",
"the",
"ith",
"file",
"in",
"the",
"dataset",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/dfr.py#L175-L198 | train |
diging/tethne | tethne/model/corpus/mallet.py | LDAModel._generate_corpus | def _generate_corpus(self):
"""
Writes a corpus to disk amenable to MALLET topic modeling.
"""
target = self.temp + 'mallet'
paths = write_documents(self.corpus, target, self.featureset_name,
['date', 'title'])
self.corpus_path, self.metapath = paths
self._export_corpus() | python | def _generate_corpus(self):
"""
Writes a corpus to disk amenable to MALLET topic modeling.
"""
target = self.temp + 'mallet'
paths = write_documents(self.corpus, target, self.featureset_name,
['date', 'title'])
self.corpus_path, self.metapath = paths
self._export_corpus() | [
"def",
"_generate_corpus",
"(",
"self",
")",
":",
"target",
"=",
"self",
".",
"temp",
"+",
"'mallet'",
"paths",
"=",
"write_documents",
"(",
"self",
".",
"corpus",
",",
"target",
",",
"self",
".",
"featureset_name",
",",
"[",
"'date'",
",",
"'title'",
"]",
")",
"self",
".",
"corpus_path",
",",
"self",
".",
"metapath",
"=",
"paths",
"self",
".",
"_export_corpus",
"(",
")"
] | Writes a corpus to disk amenable to MALLET topic modeling. | [
"Writes",
"a",
"corpus",
"to",
"disk",
"amenable",
"to",
"MALLET",
"topic",
"modeling",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/model/corpus/mallet.py#L151-L161 | train |
diging/tethne | tethne/model/corpus/mallet.py | LDAModel._export_corpus | def _export_corpus(self):
"""
Calls MALLET's `import-file` method.
"""
# bin/mallet import-file --input /Users/erickpeirson/mycorpus_docs.txt
# --output mytopic-input.mallet --keep-sequence --remove-stopwords
if not os.path.exists(self.mallet_bin):
raise IOError("MALLET path invalid or non-existent.")
self.input_path = os.path.join(self.temp, "input.mallet")
exit = subprocess.call([
self.mallet_bin,
'import-file',
'--input', self.corpus_path,
'--output', self.input_path,
'--keep-sequence', # Required for LDA.
'--remove-stopwords']) # Probably redundant.
if exit != 0:
msg = "MALLET import-file failed with exit code {0}.".format(exit)
raise RuntimeError(msg) | python | def _export_corpus(self):
"""
Calls MALLET's `import-file` method.
"""
# bin/mallet import-file --input /Users/erickpeirson/mycorpus_docs.txt
# --output mytopic-input.mallet --keep-sequence --remove-stopwords
if not os.path.exists(self.mallet_bin):
raise IOError("MALLET path invalid or non-existent.")
self.input_path = os.path.join(self.temp, "input.mallet")
exit = subprocess.call([
self.mallet_bin,
'import-file',
'--input', self.corpus_path,
'--output', self.input_path,
'--keep-sequence', # Required for LDA.
'--remove-stopwords']) # Probably redundant.
if exit != 0:
msg = "MALLET import-file failed with exit code {0}.".format(exit)
raise RuntimeError(msg) | [
"def",
"_export_corpus",
"(",
"self",
")",
":",
"# bin/mallet import-file --input /Users/erickpeirson/mycorpus_docs.txt",
"# --output mytopic-input.mallet --keep-sequence --remove-stopwords",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"self",
".",
"mallet_bin",
")",
":",
"raise",
"IOError",
"(",
"\"MALLET path invalid or non-existent.\"",
")",
"self",
".",
"input_path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"self",
".",
"temp",
",",
"\"input.mallet\"",
")",
"exit",
"=",
"subprocess",
".",
"call",
"(",
"[",
"self",
".",
"mallet_bin",
",",
"'import-file'",
",",
"'--input'",
",",
"self",
".",
"corpus_path",
",",
"'--output'",
",",
"self",
".",
"input_path",
",",
"'--keep-sequence'",
",",
"# Required for LDA.",
"'--remove-stopwords'",
"]",
")",
"# Probably redundant.",
"if",
"exit",
"!=",
"0",
":",
"msg",
"=",
"\"MALLET import-file failed with exit code {0}.\"",
".",
"format",
"(",
"exit",
")",
"raise",
"RuntimeError",
"(",
"msg",
")"
] | Calls MALLET's `import-file` method. | [
"Calls",
"MALLET",
"s",
"import",
"-",
"file",
"method",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/model/corpus/mallet.py#L163-L184 | train |
diging/tethne | tethne/model/corpus/mallet.py | LDAModel.run | def run(self, **kwargs):
"""
Calls MALLET's `train-topic` method.
"""
#$ bin/mallet train-topics --input mytopic-input.mallet
#> --num-topics 100
#> --output-doc-topics /Users/erickpeirson/doc_top
#> --word-topic-counts-file /Users/erickpeirson/word_top
#> --output-topic-keys /Users/erickpeirson/topic_keys
if not os.path.exists(self.mallet_bin):
raise IOError("MALLET path invalid or non-existent.")
for attr in ['Z', 'max_iter']:
if not hasattr(self, attr):
raise AttributeError('Please set {0}'.format(attr))
self.ll = []
self.num_iters = 0
logger.debug('run() with k={0} for {1} iterations'.format(self.Z, self.max_iter))
prog = re.compile(u'\<([^\)]+)\>')
ll_prog = re.compile(r'(\d+)')
p = subprocess.Popen([
self.mallet_bin,
'train-topics',
'--input', self.input_path,
'--num-topics', unicode(self.Z),
'--num-iterations', unicode(self.max_iter),
'--output-doc-topics', self.dt,
'--word-topic-counts-file', self.wt,
'--output-model', self.om],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
# Handle output of MALLET in real time.
while p.poll() is None:
l = p.stderr.readline()
# Keep track of LL/topic.
try:
this_ll = float(re.findall(u'([-+]\d+\.\d+)', l)[0])
self.ll.append(this_ll)
except IndexError: # Not every line will match.
pass
# Keep track of modeling progress.
try:
this_iter = float(prog.match(l).groups()[0])
progress = int(100. * this_iter/self.max_iter)
print 'Modeling progress: {0}%.\r'.format(progress),
except AttributeError: # Not every line will match.
pass
self.num_iters += self.max_iter
self.load() | python | def run(self, **kwargs):
"""
Calls MALLET's `train-topic` method.
"""
#$ bin/mallet train-topics --input mytopic-input.mallet
#> --num-topics 100
#> --output-doc-topics /Users/erickpeirson/doc_top
#> --word-topic-counts-file /Users/erickpeirson/word_top
#> --output-topic-keys /Users/erickpeirson/topic_keys
if not os.path.exists(self.mallet_bin):
raise IOError("MALLET path invalid or non-existent.")
for attr in ['Z', 'max_iter']:
if not hasattr(self, attr):
raise AttributeError('Please set {0}'.format(attr))
self.ll = []
self.num_iters = 0
logger.debug('run() with k={0} for {1} iterations'.format(self.Z, self.max_iter))
prog = re.compile(u'\<([^\)]+)\>')
ll_prog = re.compile(r'(\d+)')
p = subprocess.Popen([
self.mallet_bin,
'train-topics',
'--input', self.input_path,
'--num-topics', unicode(self.Z),
'--num-iterations', unicode(self.max_iter),
'--output-doc-topics', self.dt,
'--word-topic-counts-file', self.wt,
'--output-model', self.om],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
# Handle output of MALLET in real time.
while p.poll() is None:
l = p.stderr.readline()
# Keep track of LL/topic.
try:
this_ll = float(re.findall(u'([-+]\d+\.\d+)', l)[0])
self.ll.append(this_ll)
except IndexError: # Not every line will match.
pass
# Keep track of modeling progress.
try:
this_iter = float(prog.match(l).groups()[0])
progress = int(100. * this_iter/self.max_iter)
print 'Modeling progress: {0}%.\r'.format(progress),
except AttributeError: # Not every line will match.
pass
self.num_iters += self.max_iter
self.load() | [
"def",
"run",
"(",
"self",
",",
"*",
"*",
"kwargs",
")",
":",
"#$ bin/mallet train-topics --input mytopic-input.mallet",
"#> --num-topics 100",
"#> --output-doc-topics /Users/erickpeirson/doc_top",
"#> --word-topic-counts-file /Users/erickpeirson/word_top",
"#> --output-topic-keys /Users/erickpeirson/topic_keys",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"self",
".",
"mallet_bin",
")",
":",
"raise",
"IOError",
"(",
"\"MALLET path invalid or non-existent.\"",
")",
"for",
"attr",
"in",
"[",
"'Z'",
",",
"'max_iter'",
"]",
":",
"if",
"not",
"hasattr",
"(",
"self",
",",
"attr",
")",
":",
"raise",
"AttributeError",
"(",
"'Please set {0}'",
".",
"format",
"(",
"attr",
")",
")",
"self",
".",
"ll",
"=",
"[",
"]",
"self",
".",
"num_iters",
"=",
"0",
"logger",
".",
"debug",
"(",
"'run() with k={0} for {1} iterations'",
".",
"format",
"(",
"self",
".",
"Z",
",",
"self",
".",
"max_iter",
")",
")",
"prog",
"=",
"re",
".",
"compile",
"(",
"u'\\<([^\\)]+)\\>'",
")",
"ll_prog",
"=",
"re",
".",
"compile",
"(",
"r'(\\d+)'",
")",
"p",
"=",
"subprocess",
".",
"Popen",
"(",
"[",
"self",
".",
"mallet_bin",
",",
"'train-topics'",
",",
"'--input'",
",",
"self",
".",
"input_path",
",",
"'--num-topics'",
",",
"unicode",
"(",
"self",
".",
"Z",
")",
",",
"'--num-iterations'",
",",
"unicode",
"(",
"self",
".",
"max_iter",
")",
",",
"'--output-doc-topics'",
",",
"self",
".",
"dt",
",",
"'--word-topic-counts-file'",
",",
"self",
".",
"wt",
",",
"'--output-model'",
",",
"self",
".",
"om",
"]",
",",
"stdout",
"=",
"subprocess",
".",
"PIPE",
",",
"stderr",
"=",
"subprocess",
".",
"PIPE",
")",
"# Handle output of MALLET in real time.",
"while",
"p",
".",
"poll",
"(",
")",
"is",
"None",
":",
"l",
"=",
"p",
".",
"stderr",
".",
"readline",
"(",
")",
"# Keep track of LL/topic.",
"try",
":",
"this_ll",
"=",
"float",
"(",
"re",
".",
"findall",
"(",
"u'([-+]\\d+\\.\\d+)'",
",",
"l",
")",
"[",
"0",
"]",
")",
"self",
".",
"ll",
".",
"append",
"(",
"this_ll",
")",
"except",
"IndexError",
":",
"# Not every line will match.",
"pass",
"# Keep track of modeling progress.",
"try",
":",
"this_iter",
"=",
"float",
"(",
"prog",
".",
"match",
"(",
"l",
")",
".",
"groups",
"(",
")",
"[",
"0",
"]",
")",
"progress",
"=",
"int",
"(",
"100.",
"*",
"this_iter",
"/",
"self",
".",
"max_iter",
")",
"print",
"'Modeling progress: {0}%.\\r'",
".",
"format",
"(",
"progress",
")",
",",
"except",
"AttributeError",
":",
"# Not every line will match.",
"pass",
"self",
".",
"num_iters",
"+=",
"self",
".",
"max_iter",
"self",
".",
"load",
"(",
")"
] | Calls MALLET's `train-topic` method. | [
"Calls",
"MALLET",
"s",
"train",
"-",
"topic",
"method",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/model/corpus/mallet.py#L186-L241 | train |
diging/tethne | tethne/model/corpus/mallet.py | LDAModel.topics_in | def topics_in(self, d, topn=5):
"""
List the top ``topn`` topics in document ``d``.
"""
return self.theta.features[d].top(topn) | python | def topics_in(self, d, topn=5):
"""
List the top ``topn`` topics in document ``d``.
"""
return self.theta.features[d].top(topn) | [
"def",
"topics_in",
"(",
"self",
",",
"d",
",",
"topn",
"=",
"5",
")",
":",
"return",
"self",
".",
"theta",
".",
"features",
"[",
"d",
"]",
".",
"top",
"(",
"topn",
")"
] | List the top ``topn`` topics in document ``d``. | [
"List",
"the",
"top",
"topn",
"topics",
"in",
"document",
"d",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/model/corpus/mallet.py#L307-L311 | train |
diging/tethne | tethne/model/corpus/mallet.py | LDAModel.list_topic | def list_topic(self, k, Nwords=10):
"""
List the top ``topn`` words for topic ``k``.
Examples
--------
.. code-block:: python
>>> model.list_topic(1, Nwords=5)
[ 'opposed', 'terminates', 'trichinosis', 'cistus', 'acaule' ]
"""
return [(self.vocabulary[w], p) for w, p
in self.phi.features[k].top(Nwords)] | python | def list_topic(self, k, Nwords=10):
"""
List the top ``topn`` words for topic ``k``.
Examples
--------
.. code-block:: python
>>> model.list_topic(1, Nwords=5)
[ 'opposed', 'terminates', 'trichinosis', 'cistus', 'acaule' ]
"""
return [(self.vocabulary[w], p) for w, p
in self.phi.features[k].top(Nwords)] | [
"def",
"list_topic",
"(",
"self",
",",
"k",
",",
"Nwords",
"=",
"10",
")",
":",
"return",
"[",
"(",
"self",
".",
"vocabulary",
"[",
"w",
"]",
",",
"p",
")",
"for",
"w",
",",
"p",
"in",
"self",
".",
"phi",
".",
"features",
"[",
"k",
"]",
".",
"top",
"(",
"Nwords",
")",
"]"
] | List the top ``topn`` words for topic ``k``.
Examples
--------
.. code-block:: python
>>> model.list_topic(1, Nwords=5)
[ 'opposed', 'terminates', 'trichinosis', 'cistus', 'acaule' ] | [
"List",
"the",
"top",
"topn",
"words",
"for",
"topic",
"k",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/model/corpus/mallet.py#L313-L329 | train |
diging/tethne | tethne/model/corpus/mallet.py | LDAModel.list_topics | def list_topics(self, Nwords=10):
"""
List the top ``Nwords`` words for each topic.
"""
return [(k, self.list_topic(k, Nwords)) for k in xrange(len(self.phi))] | python | def list_topics(self, Nwords=10):
"""
List the top ``Nwords`` words for each topic.
"""
return [(k, self.list_topic(k, Nwords)) for k in xrange(len(self.phi))] | [
"def",
"list_topics",
"(",
"self",
",",
"Nwords",
"=",
"10",
")",
":",
"return",
"[",
"(",
"k",
",",
"self",
".",
"list_topic",
"(",
"k",
",",
"Nwords",
")",
")",
"for",
"k",
"in",
"xrange",
"(",
"len",
"(",
"self",
".",
"phi",
")",
")",
"]"
] | List the top ``Nwords`` words for each topic. | [
"List",
"the",
"top",
"Nwords",
"words",
"for",
"each",
"topic",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/model/corpus/mallet.py#L331-L335 | train |
diging/tethne | tethne/model/corpus/mallet.py | LDAModel.print_topics | def print_topics(self, Nwords=10):
"""
Print the top ``Nwords`` words for each topic.
"""
print('Topic\tTop %i words' % Nwords)
for k, words in self.list_topics(Nwords):
print(unicode(k).ljust(3) + '\t' + ' '.join(list(zip(*words))[0])) | python | def print_topics(self, Nwords=10):
"""
Print the top ``Nwords`` words for each topic.
"""
print('Topic\tTop %i words' % Nwords)
for k, words in self.list_topics(Nwords):
print(unicode(k).ljust(3) + '\t' + ' '.join(list(zip(*words))[0])) | [
"def",
"print_topics",
"(",
"self",
",",
"Nwords",
"=",
"10",
")",
":",
"print",
"(",
"'Topic\\tTop %i words'",
"%",
"Nwords",
")",
"for",
"k",
",",
"words",
"in",
"self",
".",
"list_topics",
"(",
"Nwords",
")",
":",
"print",
"(",
"unicode",
"(",
"k",
")",
".",
"ljust",
"(",
"3",
")",
"+",
"'\\t'",
"+",
"' '",
".",
"join",
"(",
"list",
"(",
"zip",
"(",
"*",
"words",
")",
")",
"[",
"0",
"]",
")",
")"
] | Print the top ``Nwords`` words for each topic. | [
"Print",
"the",
"top",
"Nwords",
"words",
"for",
"each",
"topic",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/model/corpus/mallet.py#L338-L344 | train |
diging/tethne | tethne/model/corpus/mallet.py | LDAModel.topic_over_time | def topic_over_time(self, k, mode='counts', slice_kwargs={}):
"""
Calculate the representation of topic ``k`` in the corpus over time.
"""
return self.corpus.feature_distribution('topics', k, mode=mode,
**slice_kwargs) | python | def topic_over_time(self, k, mode='counts', slice_kwargs={}):
"""
Calculate the representation of topic ``k`` in the corpus over time.
"""
return self.corpus.feature_distribution('topics', k, mode=mode,
**slice_kwargs) | [
"def",
"topic_over_time",
"(",
"self",
",",
"k",
",",
"mode",
"=",
"'counts'",
",",
"slice_kwargs",
"=",
"{",
"}",
")",
":",
"return",
"self",
".",
"corpus",
".",
"feature_distribution",
"(",
"'topics'",
",",
"k",
",",
"mode",
"=",
"mode",
",",
"*",
"*",
"slice_kwargs",
")"
] | Calculate the representation of topic ``k`` in the corpus over time. | [
"Calculate",
"the",
"representation",
"of",
"topic",
"k",
"in",
"the",
"corpus",
"over",
"time",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/model/corpus/mallet.py#L347-L353 | train |
diging/tethne | tethne/classes/corpus.py | Corpus.distribution | def distribution(self, **slice_kwargs):
"""
Calculates the number of papers in each slice, as defined by
``slice_kwargs``.
Examples
--------
.. code-block:: python
>>> corpus.distribution(step_size=1, window_size=1)
[5, 5]
Parameters
----------
slice_kwargs : kwargs
Keyword arguments to be passed to :meth:`.Corpus.slice`\.
Returns
-------
list
"""
values = []
keys = []
for key, size in self.slice(count_only=True, **slice_kwargs):
values.append(size)
keys.append(key)
return keys, values | python | def distribution(self, **slice_kwargs):
"""
Calculates the number of papers in each slice, as defined by
``slice_kwargs``.
Examples
--------
.. code-block:: python
>>> corpus.distribution(step_size=1, window_size=1)
[5, 5]
Parameters
----------
slice_kwargs : kwargs
Keyword arguments to be passed to :meth:`.Corpus.slice`\.
Returns
-------
list
"""
values = []
keys = []
for key, size in self.slice(count_only=True, **slice_kwargs):
values.append(size)
keys.append(key)
return keys, values | [
"def",
"distribution",
"(",
"self",
",",
"*",
"*",
"slice_kwargs",
")",
":",
"values",
"=",
"[",
"]",
"keys",
"=",
"[",
"]",
"for",
"key",
",",
"size",
"in",
"self",
".",
"slice",
"(",
"count_only",
"=",
"True",
",",
"*",
"*",
"slice_kwargs",
")",
":",
"values",
".",
"append",
"(",
"size",
")",
"keys",
".",
"append",
"(",
"key",
")",
"return",
"keys",
",",
"values"
] | Calculates the number of papers in each slice, as defined by
``slice_kwargs``.
Examples
--------
.. code-block:: python
>>> corpus.distribution(step_size=1, window_size=1)
[5, 5]
Parameters
----------
slice_kwargs : kwargs
Keyword arguments to be passed to :meth:`.Corpus.slice`\.
Returns
-------
list | [
"Calculates",
"the",
"number",
"of",
"papers",
"in",
"each",
"slice",
"as",
"defined",
"by",
"slice_kwargs",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/classes/corpus.py#L595-L622 | train |
diging/tethne | tethne/classes/corpus.py | Corpus.feature_distribution | def feature_distribution(self, featureset_name, feature, mode='counts',
**slice_kwargs):
"""
Calculates the distribution of a feature across slices of the corpus.
Examples
--------
.. code-block:: python
>>> corpus.feature_distribution(featureset_name='citations', \
... feature='DOLE RJ 1965 CELL', \
... step_size=1, window_size=1)
[2, 15, 25, 1]
Parameters
----------
featureset_name : str
Name of a :class:`.FeatureSet` in the :class:`.Corpus`\.
feature : str
Name of the specific feature of interest. E.g. if
``featureset_name='citations'``, then ``feature`` could be
something like ``'DOLE RJ 1965 CELL'``.
mode : str
(default: ``'counts'``) If set to ``'counts'``, values will be the
sum of all count values for the feature in each slice. If set to
``'documentCounts'``, values will be the number of papers in which
the feature occurs in each slice.
slice_kwargs : kwargs
Keyword arguments to be passed to :meth:`.Corpus.slice`\.
Returns
-------
list
"""
values = []
keys = []
fset = self.features[featureset_name]
for key, papers in self.slice(subcorpus=False, **slice_kwargs):
allfeatures = [v for v
in chain(*[fset.features[self._generate_index(p)]
for p in papers
if self._generate_index(p)
in fset.features])]
if len(allfeatures) < 1:
keys.append(key)
values.append(0.)
continue
count = 0.
for elem, v in allfeatures:
if elem != feature:
continue
if mode == 'counts':
count += v
else:
count += 1.
values.append(count)
keys.append(key)
return keys, values | python | def feature_distribution(self, featureset_name, feature, mode='counts',
**slice_kwargs):
"""
Calculates the distribution of a feature across slices of the corpus.
Examples
--------
.. code-block:: python
>>> corpus.feature_distribution(featureset_name='citations', \
... feature='DOLE RJ 1965 CELL', \
... step_size=1, window_size=1)
[2, 15, 25, 1]
Parameters
----------
featureset_name : str
Name of a :class:`.FeatureSet` in the :class:`.Corpus`\.
feature : str
Name of the specific feature of interest. E.g. if
``featureset_name='citations'``, then ``feature`` could be
something like ``'DOLE RJ 1965 CELL'``.
mode : str
(default: ``'counts'``) If set to ``'counts'``, values will be the
sum of all count values for the feature in each slice. If set to
``'documentCounts'``, values will be the number of papers in which
the feature occurs in each slice.
slice_kwargs : kwargs
Keyword arguments to be passed to :meth:`.Corpus.slice`\.
Returns
-------
list
"""
values = []
keys = []
fset = self.features[featureset_name]
for key, papers in self.slice(subcorpus=False, **slice_kwargs):
allfeatures = [v for v
in chain(*[fset.features[self._generate_index(p)]
for p in papers
if self._generate_index(p)
in fset.features])]
if len(allfeatures) < 1:
keys.append(key)
values.append(0.)
continue
count = 0.
for elem, v in allfeatures:
if elem != feature:
continue
if mode == 'counts':
count += v
else:
count += 1.
values.append(count)
keys.append(key)
return keys, values | [
"def",
"feature_distribution",
"(",
"self",
",",
"featureset_name",
",",
"feature",
",",
"mode",
"=",
"'counts'",
",",
"*",
"*",
"slice_kwargs",
")",
":",
"values",
"=",
"[",
"]",
"keys",
"=",
"[",
"]",
"fset",
"=",
"self",
".",
"features",
"[",
"featureset_name",
"]",
"for",
"key",
",",
"papers",
"in",
"self",
".",
"slice",
"(",
"subcorpus",
"=",
"False",
",",
"*",
"*",
"slice_kwargs",
")",
":",
"allfeatures",
"=",
"[",
"v",
"for",
"v",
"in",
"chain",
"(",
"*",
"[",
"fset",
".",
"features",
"[",
"self",
".",
"_generate_index",
"(",
"p",
")",
"]",
"for",
"p",
"in",
"papers",
"if",
"self",
".",
"_generate_index",
"(",
"p",
")",
"in",
"fset",
".",
"features",
"]",
")",
"]",
"if",
"len",
"(",
"allfeatures",
")",
"<",
"1",
":",
"keys",
".",
"append",
"(",
"key",
")",
"values",
".",
"append",
"(",
"0.",
")",
"continue",
"count",
"=",
"0.",
"for",
"elem",
",",
"v",
"in",
"allfeatures",
":",
"if",
"elem",
"!=",
"feature",
":",
"continue",
"if",
"mode",
"==",
"'counts'",
":",
"count",
"+=",
"v",
"else",
":",
"count",
"+=",
"1.",
"values",
".",
"append",
"(",
"count",
")",
"keys",
".",
"append",
"(",
"key",
")",
"return",
"keys",
",",
"values"
] | Calculates the distribution of a feature across slices of the corpus.
Examples
--------
.. code-block:: python
>>> corpus.feature_distribution(featureset_name='citations', \
... feature='DOLE RJ 1965 CELL', \
... step_size=1, window_size=1)
[2, 15, 25, 1]
Parameters
----------
featureset_name : str
Name of a :class:`.FeatureSet` in the :class:`.Corpus`\.
feature : str
Name of the specific feature of interest. E.g. if
``featureset_name='citations'``, then ``feature`` could be
something like ``'DOLE RJ 1965 CELL'``.
mode : str
(default: ``'counts'``) If set to ``'counts'``, values will be the
sum of all count values for the feature in each slice. If set to
``'documentCounts'``, values will be the number of papers in which
the feature occurs in each slice.
slice_kwargs : kwargs
Keyword arguments to be passed to :meth:`.Corpus.slice`\.
Returns
-------
list | [
"Calculates",
"the",
"distribution",
"of",
"a",
"feature",
"across",
"slices",
"of",
"the",
"corpus",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/classes/corpus.py#L624-L685 | train |
diging/tethne | tethne/classes/corpus.py | Corpus.top_features | def top_features(self, featureset_name, topn=20, by='counts',
perslice=False, slice_kwargs={}):
"""
Retrieves the top ``topn`` most numerous features in the corpus.
Parameters
----------
featureset_name : str
Name of a :class:`.FeatureSet` in the :class:`.Corpus`\.
topn : int
(default: ``20``) Number of features to return.
by : str
(default: ``'counts'``) If ``'counts'``, uses the sum of feature
count values to rank features. If ``'documentCounts'``, uses the
number of papers in which features occur.
perslice : bool
(default: False) If True, retrieves the top ``topn`` features in
each slice.
slice_kwargs : kwargs
If ``perslice=True``, these keyword arguments are passed to
:meth:`.Corpus.slice`\.
"""
if perslice:
return [(k, subcorpus.features[featureset_name].top(topn, by=by))
for k, subcorpus in self.slice(**slice_kwargs)]
return self.features[featureset_name].top(topn, by=by) | python | def top_features(self, featureset_name, topn=20, by='counts',
perslice=False, slice_kwargs={}):
"""
Retrieves the top ``topn`` most numerous features in the corpus.
Parameters
----------
featureset_name : str
Name of a :class:`.FeatureSet` in the :class:`.Corpus`\.
topn : int
(default: ``20``) Number of features to return.
by : str
(default: ``'counts'``) If ``'counts'``, uses the sum of feature
count values to rank features. If ``'documentCounts'``, uses the
number of papers in which features occur.
perslice : bool
(default: False) If True, retrieves the top ``topn`` features in
each slice.
slice_kwargs : kwargs
If ``perslice=True``, these keyword arguments are passed to
:meth:`.Corpus.slice`\.
"""
if perslice:
return [(k, subcorpus.features[featureset_name].top(topn, by=by))
for k, subcorpus in self.slice(**slice_kwargs)]
return self.features[featureset_name].top(topn, by=by) | [
"def",
"top_features",
"(",
"self",
",",
"featureset_name",
",",
"topn",
"=",
"20",
",",
"by",
"=",
"'counts'",
",",
"perslice",
"=",
"False",
",",
"slice_kwargs",
"=",
"{",
"}",
")",
":",
"if",
"perslice",
":",
"return",
"[",
"(",
"k",
",",
"subcorpus",
".",
"features",
"[",
"featureset_name",
"]",
".",
"top",
"(",
"topn",
",",
"by",
"=",
"by",
")",
")",
"for",
"k",
",",
"subcorpus",
"in",
"self",
".",
"slice",
"(",
"*",
"*",
"slice_kwargs",
")",
"]",
"return",
"self",
".",
"features",
"[",
"featureset_name",
"]",
".",
"top",
"(",
"topn",
",",
"by",
"=",
"by",
")"
] | Retrieves the top ``topn`` most numerous features in the corpus.
Parameters
----------
featureset_name : str
Name of a :class:`.FeatureSet` in the :class:`.Corpus`\.
topn : int
(default: ``20``) Number of features to return.
by : str
(default: ``'counts'``) If ``'counts'``, uses the sum of feature
count values to rank features. If ``'documentCounts'``, uses the
number of papers in which features occur.
perslice : bool
(default: False) If True, retrieves the top ``topn`` features in
each slice.
slice_kwargs : kwargs
If ``perslice=True``, these keyword arguments are passed to
:meth:`.Corpus.slice`\. | [
"Retrieves",
"the",
"top",
"topn",
"most",
"numerous",
"features",
"in",
"the",
"corpus",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/classes/corpus.py#L687-L713 | train |
diging/tethne | tethne/analyze/corpus.py | feature_burstness | def feature_burstness(corpus, featureset_name, feature, k=5, normalize=True,
s=1.1, gamma=1., **slice_kwargs):
"""
Estimate burstness profile for a feature over the ``'date'`` axis.
Parameters
----------
corpus : :class:`.Corpus`
feature : str
Name of featureset in ``corpus``. E.g. ``'citations'``.
findex : int
Index of ``feature`` in ``corpus``.
k : int
(default: 5) Number of burst states.
normalize : bool
(default: True) If True, burstness is expressed relative to the hightest
possible state (``k-1``). Otherwise, states themselves are returned.
kwargs : kwargs
Parameters for burstness automaton HMM.
"""
if featureset_name not in corpus.features:
corpus.index_feature(featureset_name)
if 'date' not in corpus.indices:
corpus.index('date')
# Get time-intervals between occurrences.
dates = [min(corpus.indices['date'].keys()) - 1] # Pad start.
X_ = [1.]
years, values = corpus.feature_distribution(featureset_name, feature)
for year, N in izip(years, values):
if N == 0:
continue
if N > 1:
if year == dates[-1] + 1:
for n in xrange(int(N)):
X_.append(1./N)
dates.append(year)
else:
X_.append(float(year - dates[-1]))
dates.append(year)
for n in xrange(int(N) - 1):
X_.append(1./(N - 1))
dates.append(year)
else:
X_.append(float(year - dates[-1]))
dates.append(year)
# Get optimum state sequence.
st = _forward(map(lambda x: x*100, X_), s=s, gamma=gamma, k=k)
# Bin by date.
A = defaultdict(list)
for i in xrange(len(X_)):
A[dates[i]].append(st[i])
# Normalize.
if normalize:
A = {key: mean(values)/k for key, values in A.items()}
else:
A = {key: mean(values) for key, values in A.items()}
D = sorted(A.keys())
return D[1:], [A[d] for d in D[1:]] | python | def feature_burstness(corpus, featureset_name, feature, k=5, normalize=True,
s=1.1, gamma=1., **slice_kwargs):
"""
Estimate burstness profile for a feature over the ``'date'`` axis.
Parameters
----------
corpus : :class:`.Corpus`
feature : str
Name of featureset in ``corpus``. E.g. ``'citations'``.
findex : int
Index of ``feature`` in ``corpus``.
k : int
(default: 5) Number of burst states.
normalize : bool
(default: True) If True, burstness is expressed relative to the hightest
possible state (``k-1``). Otherwise, states themselves are returned.
kwargs : kwargs
Parameters for burstness automaton HMM.
"""
if featureset_name not in corpus.features:
corpus.index_feature(featureset_name)
if 'date' not in corpus.indices:
corpus.index('date')
# Get time-intervals between occurrences.
dates = [min(corpus.indices['date'].keys()) - 1] # Pad start.
X_ = [1.]
years, values = corpus.feature_distribution(featureset_name, feature)
for year, N in izip(years, values):
if N == 0:
continue
if N > 1:
if year == dates[-1] + 1:
for n in xrange(int(N)):
X_.append(1./N)
dates.append(year)
else:
X_.append(float(year - dates[-1]))
dates.append(year)
for n in xrange(int(N) - 1):
X_.append(1./(N - 1))
dates.append(year)
else:
X_.append(float(year - dates[-1]))
dates.append(year)
# Get optimum state sequence.
st = _forward(map(lambda x: x*100, X_), s=s, gamma=gamma, k=k)
# Bin by date.
A = defaultdict(list)
for i in xrange(len(X_)):
A[dates[i]].append(st[i])
# Normalize.
if normalize:
A = {key: mean(values)/k for key, values in A.items()}
else:
A = {key: mean(values) for key, values in A.items()}
D = sorted(A.keys())
return D[1:], [A[d] for d in D[1:]] | [
"def",
"feature_burstness",
"(",
"corpus",
",",
"featureset_name",
",",
"feature",
",",
"k",
"=",
"5",
",",
"normalize",
"=",
"True",
",",
"s",
"=",
"1.1",
",",
"gamma",
"=",
"1.",
",",
"*",
"*",
"slice_kwargs",
")",
":",
"if",
"featureset_name",
"not",
"in",
"corpus",
".",
"features",
":",
"corpus",
".",
"index_feature",
"(",
"featureset_name",
")",
"if",
"'date'",
"not",
"in",
"corpus",
".",
"indices",
":",
"corpus",
".",
"index",
"(",
"'date'",
")",
"# Get time-intervals between occurrences.",
"dates",
"=",
"[",
"min",
"(",
"corpus",
".",
"indices",
"[",
"'date'",
"]",
".",
"keys",
"(",
")",
")",
"-",
"1",
"]",
"# Pad start.",
"X_",
"=",
"[",
"1.",
"]",
"years",
",",
"values",
"=",
"corpus",
".",
"feature_distribution",
"(",
"featureset_name",
",",
"feature",
")",
"for",
"year",
",",
"N",
"in",
"izip",
"(",
"years",
",",
"values",
")",
":",
"if",
"N",
"==",
"0",
":",
"continue",
"if",
"N",
">",
"1",
":",
"if",
"year",
"==",
"dates",
"[",
"-",
"1",
"]",
"+",
"1",
":",
"for",
"n",
"in",
"xrange",
"(",
"int",
"(",
"N",
")",
")",
":",
"X_",
".",
"append",
"(",
"1.",
"/",
"N",
")",
"dates",
".",
"append",
"(",
"year",
")",
"else",
":",
"X_",
".",
"append",
"(",
"float",
"(",
"year",
"-",
"dates",
"[",
"-",
"1",
"]",
")",
")",
"dates",
".",
"append",
"(",
"year",
")",
"for",
"n",
"in",
"xrange",
"(",
"int",
"(",
"N",
")",
"-",
"1",
")",
":",
"X_",
".",
"append",
"(",
"1.",
"/",
"(",
"N",
"-",
"1",
")",
")",
"dates",
".",
"append",
"(",
"year",
")",
"else",
":",
"X_",
".",
"append",
"(",
"float",
"(",
"year",
"-",
"dates",
"[",
"-",
"1",
"]",
")",
")",
"dates",
".",
"append",
"(",
"year",
")",
"# Get optimum state sequence.",
"st",
"=",
"_forward",
"(",
"map",
"(",
"lambda",
"x",
":",
"x",
"*",
"100",
",",
"X_",
")",
",",
"s",
"=",
"s",
",",
"gamma",
"=",
"gamma",
",",
"k",
"=",
"k",
")",
"# Bin by date.",
"A",
"=",
"defaultdict",
"(",
"list",
")",
"for",
"i",
"in",
"xrange",
"(",
"len",
"(",
"X_",
")",
")",
":",
"A",
"[",
"dates",
"[",
"i",
"]",
"]",
".",
"append",
"(",
"st",
"[",
"i",
"]",
")",
"# Normalize.",
"if",
"normalize",
":",
"A",
"=",
"{",
"key",
":",
"mean",
"(",
"values",
")",
"/",
"k",
"for",
"key",
",",
"values",
"in",
"A",
".",
"items",
"(",
")",
"}",
"else",
":",
"A",
"=",
"{",
"key",
":",
"mean",
"(",
"values",
")",
"for",
"key",
",",
"values",
"in",
"A",
".",
"items",
"(",
")",
"}",
"D",
"=",
"sorted",
"(",
"A",
".",
"keys",
"(",
")",
")",
"return",
"D",
"[",
"1",
":",
"]",
",",
"[",
"A",
"[",
"d",
"]",
"for",
"d",
"in",
"D",
"[",
"1",
":",
"]",
"]"
] | Estimate burstness profile for a feature over the ``'date'`` axis.
Parameters
----------
corpus : :class:`.Corpus`
feature : str
Name of featureset in ``corpus``. E.g. ``'citations'``.
findex : int
Index of ``feature`` in ``corpus``.
k : int
(default: 5) Number of burst states.
normalize : bool
(default: True) If True, burstness is expressed relative to the hightest
possible state (``k-1``). Otherwise, states themselves are returned.
kwargs : kwargs
Parameters for burstness automaton HMM. | [
"Estimate",
"burstness",
"profile",
"for",
"a",
"feature",
"over",
"the",
"date",
"axis",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/analyze/corpus.py#L157-L224 | train |
diging/tethne | tethne/networks/papers.py | cocitation | def cocitation(corpus, min_weight=1, edge_attrs=['ayjid', 'date'], **kwargs):
"""
Generate a cocitation network.
A **cocitation network** is a network in which vertices are papers, and
edges indicate that two papers were cited by the same third paper.
`CiteSpace
<http://cluster.cis.drexel.edu/~cchen/citespace/doc/jasist2006.pdf>`_
is a popular desktop application for co-citation analysis, and you can read
about the theory behind it
`here <http://cluster.cis.drexel.edu/~cchen/citespace/>`_.
"""
return cooccurrence(corpus, 'citations', min_weight=min_weight,
edge_attrs=edge_attrs, **kwargs) | python | def cocitation(corpus, min_weight=1, edge_attrs=['ayjid', 'date'], **kwargs):
"""
Generate a cocitation network.
A **cocitation network** is a network in which vertices are papers, and
edges indicate that two papers were cited by the same third paper.
`CiteSpace
<http://cluster.cis.drexel.edu/~cchen/citespace/doc/jasist2006.pdf>`_
is a popular desktop application for co-citation analysis, and you can read
about the theory behind it
`here <http://cluster.cis.drexel.edu/~cchen/citespace/>`_.
"""
return cooccurrence(corpus, 'citations', min_weight=min_weight,
edge_attrs=edge_attrs, **kwargs) | [
"def",
"cocitation",
"(",
"corpus",
",",
"min_weight",
"=",
"1",
",",
"edge_attrs",
"=",
"[",
"'ayjid'",
",",
"'date'",
"]",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"cooccurrence",
"(",
"corpus",
",",
"'citations'",
",",
"min_weight",
"=",
"min_weight",
",",
"edge_attrs",
"=",
"edge_attrs",
",",
"*",
"*",
"kwargs",
")"
] | Generate a cocitation network.
A **cocitation network** is a network in which vertices are papers, and
edges indicate that two papers were cited by the same third paper.
`CiteSpace
<http://cluster.cis.drexel.edu/~cchen/citespace/doc/jasist2006.pdf>`_
is a popular desktop application for co-citation analysis, and you can read
about the theory behind it
`here <http://cluster.cis.drexel.edu/~cchen/citespace/>`_. | [
"Generate",
"a",
"cocitation",
"network",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/networks/papers.py#L43-L56 | train |
diging/tethne | tethne/classes/feature.py | StructuredFeature.context_chunk | def context_chunk(self, context, j):
"""
Retrieve the tokens in the ``j``th chunk of context ``context``.
Parameters
----------
context : str
Context name.
j : int
Index of a context chunk.
Returns
-------
chunk : list
List of tokens in the selected chunk.
"""
N_chunks = len(self.contexts[context])
start = self.contexts[context][j]
if j == N_chunks - 1:
end = len(self)
else:
end = self.contexts[context][j+1]
return [self[i] for i in xrange(start, end)] | python | def context_chunk(self, context, j):
"""
Retrieve the tokens in the ``j``th chunk of context ``context``.
Parameters
----------
context : str
Context name.
j : int
Index of a context chunk.
Returns
-------
chunk : list
List of tokens in the selected chunk.
"""
N_chunks = len(self.contexts[context])
start = self.contexts[context][j]
if j == N_chunks - 1:
end = len(self)
else:
end = self.contexts[context][j+1]
return [self[i] for i in xrange(start, end)] | [
"def",
"context_chunk",
"(",
"self",
",",
"context",
",",
"j",
")",
":",
"N_chunks",
"=",
"len",
"(",
"self",
".",
"contexts",
"[",
"context",
"]",
")",
"start",
"=",
"self",
".",
"contexts",
"[",
"context",
"]",
"[",
"j",
"]",
"if",
"j",
"==",
"N_chunks",
"-",
"1",
":",
"end",
"=",
"len",
"(",
"self",
")",
"else",
":",
"end",
"=",
"self",
".",
"contexts",
"[",
"context",
"]",
"[",
"j",
"+",
"1",
"]",
"return",
"[",
"self",
"[",
"i",
"]",
"for",
"i",
"in",
"xrange",
"(",
"start",
",",
"end",
")",
"]"
] | Retrieve the tokens in the ``j``th chunk of context ``context``.
Parameters
----------
context : str
Context name.
j : int
Index of a context chunk.
Returns
-------
chunk : list
List of tokens in the selected chunk. | [
"Retrieve",
"the",
"tokens",
"in",
"the",
"j",
"th",
"chunk",
"of",
"context",
"context",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/classes/feature.py#L108-L131 | train |
diging/tethne | tethne/classes/feature.py | StructuredFeature.add_context | def add_context(self, name, indices, level=None):
"""
Add a new context level to the hierarchy.
By default, new contexts are added to the lowest level of the hierarchy.
To insert the context elsewhere in the hierarchy, use the ``level``
argument. For example, ``level=0`` would insert the context at the
highest level of the hierarchy.
Parameters
----------
name : str
indices : list
Token indices at which each chunk in the context begins.
level : int
Level in the hierarchy at which to insert the context. By default,
inserts context at the lowest level of the hierarchy
"""
self._validate_context((name, indices))
if level is None:
level = len(self.contexts_ranked)
self.contexts_ranked.insert(level, name)
self.contexts[name] = indices | python | def add_context(self, name, indices, level=None):
"""
Add a new context level to the hierarchy.
By default, new contexts are added to the lowest level of the hierarchy.
To insert the context elsewhere in the hierarchy, use the ``level``
argument. For example, ``level=0`` would insert the context at the
highest level of the hierarchy.
Parameters
----------
name : str
indices : list
Token indices at which each chunk in the context begins.
level : int
Level in the hierarchy at which to insert the context. By default,
inserts context at the lowest level of the hierarchy
"""
self._validate_context((name, indices))
if level is None:
level = len(self.contexts_ranked)
self.contexts_ranked.insert(level, name)
self.contexts[name] = indices | [
"def",
"add_context",
"(",
"self",
",",
"name",
",",
"indices",
",",
"level",
"=",
"None",
")",
":",
"self",
".",
"_validate_context",
"(",
"(",
"name",
",",
"indices",
")",
")",
"if",
"level",
"is",
"None",
":",
"level",
"=",
"len",
"(",
"self",
".",
"contexts_ranked",
")",
"self",
".",
"contexts_ranked",
".",
"insert",
"(",
"level",
",",
"name",
")",
"self",
".",
"contexts",
"[",
"name",
"]",
"=",
"indices"
] | Add a new context level to the hierarchy.
By default, new contexts are added to the lowest level of the hierarchy.
To insert the context elsewhere in the hierarchy, use the ``level``
argument. For example, ``level=0`` would insert the context at the
highest level of the hierarchy.
Parameters
----------
name : str
indices : list
Token indices at which each chunk in the context begins.
level : int
Level in the hierarchy at which to insert the context. By default,
inserts context at the lowest level of the hierarchy | [
"Add",
"a",
"new",
"context",
"level",
"to",
"the",
"hierarchy",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/classes/feature.py#L170-L195 | train |
diging/tethne | tethne/classes/graphcollection.py | GraphCollection.index | def index(self, name, graph):
"""
Index any new nodes in `graph`, and relabel the nodes in `graph` using
the index.
Parameters
----------
name : hashable
Unique name used to identify the `graph`.
graph : networkx.Graph
Returns
-------
indexed_graph : networkx.Graph
"""
nodes = graph.nodes()
# Index new nodes.
new_nodes = list(set(nodes) - set(self.node_index.values()))
start = max(len(self.node_index) - 1, max(self.node_index.keys()))
for i in xrange(start, start + len(new_nodes)):
n = new_nodes.pop()
self.node_index[i], self.node_lookup[n] = n, i
self.graphs_containing[n].append(name)
# Relabel nodes in `graph`.
new_labels = {n: self.node_lookup[n] for n in nodes}
indexed_graph = nx.relabel.relabel_nodes(graph, new_labels, copy=True)
return indexed_graph | python | def index(self, name, graph):
"""
Index any new nodes in `graph`, and relabel the nodes in `graph` using
the index.
Parameters
----------
name : hashable
Unique name used to identify the `graph`.
graph : networkx.Graph
Returns
-------
indexed_graph : networkx.Graph
"""
nodes = graph.nodes()
# Index new nodes.
new_nodes = list(set(nodes) - set(self.node_index.values()))
start = max(len(self.node_index) - 1, max(self.node_index.keys()))
for i in xrange(start, start + len(new_nodes)):
n = new_nodes.pop()
self.node_index[i], self.node_lookup[n] = n, i
self.graphs_containing[n].append(name)
# Relabel nodes in `graph`.
new_labels = {n: self.node_lookup[n] for n in nodes}
indexed_graph = nx.relabel.relabel_nodes(graph, new_labels, copy=True)
return indexed_graph | [
"def",
"index",
"(",
"self",
",",
"name",
",",
"graph",
")",
":",
"nodes",
"=",
"graph",
".",
"nodes",
"(",
")",
"# Index new nodes.",
"new_nodes",
"=",
"list",
"(",
"set",
"(",
"nodes",
")",
"-",
"set",
"(",
"self",
".",
"node_index",
".",
"values",
"(",
")",
")",
")",
"start",
"=",
"max",
"(",
"len",
"(",
"self",
".",
"node_index",
")",
"-",
"1",
",",
"max",
"(",
"self",
".",
"node_index",
".",
"keys",
"(",
")",
")",
")",
"for",
"i",
"in",
"xrange",
"(",
"start",
",",
"start",
"+",
"len",
"(",
"new_nodes",
")",
")",
":",
"n",
"=",
"new_nodes",
".",
"pop",
"(",
")",
"self",
".",
"node_index",
"[",
"i",
"]",
",",
"self",
".",
"node_lookup",
"[",
"n",
"]",
"=",
"n",
",",
"i",
"self",
".",
"graphs_containing",
"[",
"n",
"]",
".",
"append",
"(",
"name",
")",
"# Relabel nodes in `graph`.",
"new_labels",
"=",
"{",
"n",
":",
"self",
".",
"node_lookup",
"[",
"n",
"]",
"for",
"n",
"in",
"nodes",
"}",
"indexed_graph",
"=",
"nx",
".",
"relabel",
".",
"relabel_nodes",
"(",
"graph",
",",
"new_labels",
",",
"copy",
"=",
"True",
")",
"return",
"indexed_graph"
] | Index any new nodes in `graph`, and relabel the nodes in `graph` using
the index.
Parameters
----------
name : hashable
Unique name used to identify the `graph`.
graph : networkx.Graph
Returns
-------
indexed_graph : networkx.Graph | [
"Index",
"any",
"new",
"nodes",
"in",
"graph",
"and",
"relabel",
"the",
"nodes",
"in",
"graph",
"using",
"the",
"index",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/classes/graphcollection.py#L159-L188 | train |
diging/tethne | tethne/networks/topics.py | terms | def terms(model, threshold=0.01, **kwargs):
"""
Two terms are coupled if the posterior probability for both terms is
greather than ``threshold`` for the same topic.
Parameters
----------
model : :class:`.LDAModel`
threshold : float
Default: 0.01
kwargs : kwargs
Passed on to :func:`.cooccurrence`\.
Returns
-------
:ref:`networkx.Graph <networkx:graph>`
"""
select = lambda f, v, c, dc: v > threshold
graph = cooccurrence(model.phi, filter=select, **kwargs)
# Only include labels for terms that are actually in the graph.
label_map = {k: v for k, v in model.vocabulary.items()
if k in graph.nodes()}
graph.name = ''
return networkx.relabel_nodes(graph, label_map) | python | def terms(model, threshold=0.01, **kwargs):
"""
Two terms are coupled if the posterior probability for both terms is
greather than ``threshold`` for the same topic.
Parameters
----------
model : :class:`.LDAModel`
threshold : float
Default: 0.01
kwargs : kwargs
Passed on to :func:`.cooccurrence`\.
Returns
-------
:ref:`networkx.Graph <networkx:graph>`
"""
select = lambda f, v, c, dc: v > threshold
graph = cooccurrence(model.phi, filter=select, **kwargs)
# Only include labels for terms that are actually in the graph.
label_map = {k: v for k, v in model.vocabulary.items()
if k in graph.nodes()}
graph.name = ''
return networkx.relabel_nodes(graph, label_map) | [
"def",
"terms",
"(",
"model",
",",
"threshold",
"=",
"0.01",
",",
"*",
"*",
"kwargs",
")",
":",
"select",
"=",
"lambda",
"f",
",",
"v",
",",
"c",
",",
"dc",
":",
"v",
">",
"threshold",
"graph",
"=",
"cooccurrence",
"(",
"model",
".",
"phi",
",",
"filter",
"=",
"select",
",",
"*",
"*",
"kwargs",
")",
"# Only include labels for terms that are actually in the graph.",
"label_map",
"=",
"{",
"k",
":",
"v",
"for",
"k",
",",
"v",
"in",
"model",
".",
"vocabulary",
".",
"items",
"(",
")",
"if",
"k",
"in",
"graph",
".",
"nodes",
"(",
")",
"}",
"graph",
".",
"name",
"=",
"''",
"return",
"networkx",
".",
"relabel_nodes",
"(",
"graph",
",",
"label_map",
")"
] | Two terms are coupled if the posterior probability for both terms is
greather than ``threshold`` for the same topic.
Parameters
----------
model : :class:`.LDAModel`
threshold : float
Default: 0.01
kwargs : kwargs
Passed on to :func:`.cooccurrence`\.
Returns
-------
:ref:`networkx.Graph <networkx:graph>` | [
"Two",
"terms",
"are",
"coupled",
"if",
"the",
"posterior",
"probability",
"for",
"both",
"terms",
"is",
"greather",
"than",
"threshold",
"for",
"the",
"same",
"topic",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/networks/topics.py#L24-L50 | train |
diging/tethne | tethne/networks/topics.py | topic_coupling | def topic_coupling(model, threshold=None, **kwargs):
"""
Two papers are coupled if they both contain a shared topic above a
``threshold``.
Parameters
----------
model : :class:`.LDAModel`
threshold : float
Default: ``3./model.Z``
kwargs : kwargs
Passed on to :func:`.coupling`\.
Returns
-------
:ref:`networkx.Graph <networkx:graph>`
"""
if not threshold:
threshold = 3./model.Z
select = lambda f, v, c, dc: v > threshold
graph = coupling(model.corpus, 'topics', filter=select, **kwargs)
graph.name = ''
return graph | python | def topic_coupling(model, threshold=None, **kwargs):
"""
Two papers are coupled if they both contain a shared topic above a
``threshold``.
Parameters
----------
model : :class:`.LDAModel`
threshold : float
Default: ``3./model.Z``
kwargs : kwargs
Passed on to :func:`.coupling`\.
Returns
-------
:ref:`networkx.Graph <networkx:graph>`
"""
if not threshold:
threshold = 3./model.Z
select = lambda f, v, c, dc: v > threshold
graph = coupling(model.corpus, 'topics', filter=select, **kwargs)
graph.name = ''
return graph | [
"def",
"topic_coupling",
"(",
"model",
",",
"threshold",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"not",
"threshold",
":",
"threshold",
"=",
"3.",
"/",
"model",
".",
"Z",
"select",
"=",
"lambda",
"f",
",",
"v",
",",
"c",
",",
"dc",
":",
"v",
">",
"threshold",
"graph",
"=",
"coupling",
"(",
"model",
".",
"corpus",
",",
"'topics'",
",",
"filter",
"=",
"select",
",",
"*",
"*",
"kwargs",
")",
"graph",
".",
"name",
"=",
"''",
"return",
"graph"
] | Two papers are coupled if they both contain a shared topic above a
``threshold``.
Parameters
----------
model : :class:`.LDAModel`
threshold : float
Default: ``3./model.Z``
kwargs : kwargs
Passed on to :func:`.coupling`\.
Returns
-------
:ref:`networkx.Graph <networkx:graph>` | [
"Two",
"papers",
"are",
"coupled",
"if",
"they",
"both",
"contain",
"a",
"shared",
"topic",
"above",
"a",
"threshold",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/networks/topics.py#L53-L77 | train |
diging/tethne | tethne/analyze/features.py | kl_divergence | def kl_divergence(V_a, V_b):
"""
Calculate Kullback-Leibler distance.
Uses the smoothing method described in `Bigi 2003
<http://lvk.cs.msu.su/~bruzz/articles/classification/Using%20Kullback-Leibler%20Distance%20for%20Text%20Categorization.pdf>`_
to facilitate better comparisons between vectors describing wordcounts.
Parameters
----------
V_a : list
V_b : list
Returns
-------
divergence : float
KL divergence.
"""
# Find shared features.
Ndiff = _shared_features(V_a, V_b)
# aprob and bprob should each sum to 1.0
aprob = map(lambda v: float(v)/sum(V_a), V_a)
bprob = map(lambda v: float(v)/sum(V_b), V_b)
# Smooth according to Bigi 2003.
aprob, bprob = _smooth(aprob, bprob, Ndiff)
return sum(map(lambda a, b: (a-b)*log(a/b), aprob, bprob)) | python | def kl_divergence(V_a, V_b):
"""
Calculate Kullback-Leibler distance.
Uses the smoothing method described in `Bigi 2003
<http://lvk.cs.msu.su/~bruzz/articles/classification/Using%20Kullback-Leibler%20Distance%20for%20Text%20Categorization.pdf>`_
to facilitate better comparisons between vectors describing wordcounts.
Parameters
----------
V_a : list
V_b : list
Returns
-------
divergence : float
KL divergence.
"""
# Find shared features.
Ndiff = _shared_features(V_a, V_b)
# aprob and bprob should each sum to 1.0
aprob = map(lambda v: float(v)/sum(V_a), V_a)
bprob = map(lambda v: float(v)/sum(V_b), V_b)
# Smooth according to Bigi 2003.
aprob, bprob = _smooth(aprob, bprob, Ndiff)
return sum(map(lambda a, b: (a-b)*log(a/b), aprob, bprob)) | [
"def",
"kl_divergence",
"(",
"V_a",
",",
"V_b",
")",
":",
"# Find shared features.",
"Ndiff",
"=",
"_shared_features",
"(",
"V_a",
",",
"V_b",
")",
"# aprob and bprob should each sum to 1.0",
"aprob",
"=",
"map",
"(",
"lambda",
"v",
":",
"float",
"(",
"v",
")",
"/",
"sum",
"(",
"V_a",
")",
",",
"V_a",
")",
"bprob",
"=",
"map",
"(",
"lambda",
"v",
":",
"float",
"(",
"v",
")",
"/",
"sum",
"(",
"V_b",
")",
",",
"V_b",
")",
"# Smooth according to Bigi 2003.",
"aprob",
",",
"bprob",
"=",
"_smooth",
"(",
"aprob",
",",
"bprob",
",",
"Ndiff",
")",
"return",
"sum",
"(",
"map",
"(",
"lambda",
"a",
",",
"b",
":",
"(",
"a",
"-",
"b",
")",
"*",
"log",
"(",
"a",
"/",
"b",
")",
",",
"aprob",
",",
"bprob",
")",
")"
] | Calculate Kullback-Leibler distance.
Uses the smoothing method described in `Bigi 2003
<http://lvk.cs.msu.su/~bruzz/articles/classification/Using%20Kullback-Leibler%20Distance%20for%20Text%20Categorization.pdf>`_
to facilitate better comparisons between vectors describing wordcounts.
Parameters
----------
V_a : list
V_b : list
Returns
-------
divergence : float
KL divergence. | [
"Calculate",
"Kullback",
"-",
"Leibler",
"distance",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/analyze/features.py#L18-L47 | train |
diging/tethne | tethne/analyze/features.py | _shared_features | def _shared_features(adense, bdense):
"""
Number of features in ``adense`` that are also in ``bdense``.
"""
a_indices = set(nonzero(adense))
b_indices = set(nonzero(bdense))
shared = list(a_indices & b_indices)
diff = list(a_indices - b_indices)
Ndiff = len(diff)
return Ndiff | python | def _shared_features(adense, bdense):
"""
Number of features in ``adense`` that are also in ``bdense``.
"""
a_indices = set(nonzero(adense))
b_indices = set(nonzero(bdense))
shared = list(a_indices & b_indices)
diff = list(a_indices - b_indices)
Ndiff = len(diff)
return Ndiff | [
"def",
"_shared_features",
"(",
"adense",
",",
"bdense",
")",
":",
"a_indices",
"=",
"set",
"(",
"nonzero",
"(",
"adense",
")",
")",
"b_indices",
"=",
"set",
"(",
"nonzero",
"(",
"bdense",
")",
")",
"shared",
"=",
"list",
"(",
"a_indices",
"&",
"b_indices",
")",
"diff",
"=",
"list",
"(",
"a_indices",
"-",
"b_indices",
")",
"Ndiff",
"=",
"len",
"(",
"diff",
")",
"return",
"Ndiff"
] | Number of features in ``adense`` that are also in ``bdense``. | [
"Number",
"of",
"features",
"in",
"adense",
"that",
"are",
"also",
"in",
"bdense",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/analyze/features.py#L100-L111 | train |
diging/tethne | tethne/networks/base.py | cooccurrence | def cooccurrence(corpus_or_featureset, featureset_name=None, min_weight=1,
edge_attrs=['ayjid', 'date'],
filter=None):
"""
A network of feature elements linked by their joint occurrence in papers.
"""
if not filter:
filter = lambda f, v, c, dc: dc >= min_weight
featureset = _get_featureset(corpus_or_featureset, featureset_name)
if type(corpus_or_featureset) in [Corpus, StreamingCorpus]:
attributes = {i: {a: corpus_or_featureset.indices_lookup[i][a] for a in edge_attrs}
for i in corpus_or_featureset.indexed_papers.keys()}
c = lambda f: featureset.count(f) # Overall count.
dc = lambda f: featureset.documentCount(f) # Document count.
attributes = {}
# select applies filter to the elements in a (Structured)Feature. The
# iteration behavior of Feature and StructuredFeature are different, as is
# the manner in which the count for an element in each (Structured)Feature.
if type(featureset) is FeatureSet:
select = lambda feature: [f for f, v in feature
if filter(f, v, c(f), dc(f))]
elif type(featureset) is StructuredFeatureSet:
select = lambda feature: [f for f in feature
if filter(f, feature.count(f), c(f), dc(f))]
pairs = Counter()
eattrs = defaultdict(dict)
nattrs = defaultdict(dict)
nset = set()
for paper, feature in featureset.iteritems():
if len(feature) == 0:
continue
selected = select(feature)
nset |= set(selected)
for combo in combinations(selected, 2):
combo = tuple(sorted(combo))
pairs[combo] += 1
if paper in attributes:
eattrs[combo] = attributes[paper]
# Generate node attributes.
for n in list(nset):
nattrs[n]['count'] = featureset.count(n)
nattrs[n]['documentCount'] = featureset.documentCount(n)
return _generate_graph(nx.Graph, pairs, edge_attrs=eattrs,
node_attrs=nattrs, min_weight=min_weight) | python | def cooccurrence(corpus_or_featureset, featureset_name=None, min_weight=1,
edge_attrs=['ayjid', 'date'],
filter=None):
"""
A network of feature elements linked by their joint occurrence in papers.
"""
if not filter:
filter = lambda f, v, c, dc: dc >= min_weight
featureset = _get_featureset(corpus_or_featureset, featureset_name)
if type(corpus_or_featureset) in [Corpus, StreamingCorpus]:
attributes = {i: {a: corpus_or_featureset.indices_lookup[i][a] for a in edge_attrs}
for i in corpus_or_featureset.indexed_papers.keys()}
c = lambda f: featureset.count(f) # Overall count.
dc = lambda f: featureset.documentCount(f) # Document count.
attributes = {}
# select applies filter to the elements in a (Structured)Feature. The
# iteration behavior of Feature and StructuredFeature are different, as is
# the manner in which the count for an element in each (Structured)Feature.
if type(featureset) is FeatureSet:
select = lambda feature: [f for f, v in feature
if filter(f, v, c(f), dc(f))]
elif type(featureset) is StructuredFeatureSet:
select = lambda feature: [f for f in feature
if filter(f, feature.count(f), c(f), dc(f))]
pairs = Counter()
eattrs = defaultdict(dict)
nattrs = defaultdict(dict)
nset = set()
for paper, feature in featureset.iteritems():
if len(feature) == 0:
continue
selected = select(feature)
nset |= set(selected)
for combo in combinations(selected, 2):
combo = tuple(sorted(combo))
pairs[combo] += 1
if paper in attributes:
eattrs[combo] = attributes[paper]
# Generate node attributes.
for n in list(nset):
nattrs[n]['count'] = featureset.count(n)
nattrs[n]['documentCount'] = featureset.documentCount(n)
return _generate_graph(nx.Graph, pairs, edge_attrs=eattrs,
node_attrs=nattrs, min_weight=min_weight) | [
"def",
"cooccurrence",
"(",
"corpus_or_featureset",
",",
"featureset_name",
"=",
"None",
",",
"min_weight",
"=",
"1",
",",
"edge_attrs",
"=",
"[",
"'ayjid'",
",",
"'date'",
"]",
",",
"filter",
"=",
"None",
")",
":",
"if",
"not",
"filter",
":",
"filter",
"=",
"lambda",
"f",
",",
"v",
",",
"c",
",",
"dc",
":",
"dc",
">=",
"min_weight",
"featureset",
"=",
"_get_featureset",
"(",
"corpus_or_featureset",
",",
"featureset_name",
")",
"if",
"type",
"(",
"corpus_or_featureset",
")",
"in",
"[",
"Corpus",
",",
"StreamingCorpus",
"]",
":",
"attributes",
"=",
"{",
"i",
":",
"{",
"a",
":",
"corpus_or_featureset",
".",
"indices_lookup",
"[",
"i",
"]",
"[",
"a",
"]",
"for",
"a",
"in",
"edge_attrs",
"}",
"for",
"i",
"in",
"corpus_or_featureset",
".",
"indexed_papers",
".",
"keys",
"(",
")",
"}",
"c",
"=",
"lambda",
"f",
":",
"featureset",
".",
"count",
"(",
"f",
")",
"# Overall count.",
"dc",
"=",
"lambda",
"f",
":",
"featureset",
".",
"documentCount",
"(",
"f",
")",
"# Document count.",
"attributes",
"=",
"{",
"}",
"# select applies filter to the elements in a (Structured)Feature. The",
"# iteration behavior of Feature and StructuredFeature are different, as is",
"# the manner in which the count for an element in each (Structured)Feature.",
"if",
"type",
"(",
"featureset",
")",
"is",
"FeatureSet",
":",
"select",
"=",
"lambda",
"feature",
":",
"[",
"f",
"for",
"f",
",",
"v",
"in",
"feature",
"if",
"filter",
"(",
"f",
",",
"v",
",",
"c",
"(",
"f",
")",
",",
"dc",
"(",
"f",
")",
")",
"]",
"elif",
"type",
"(",
"featureset",
")",
"is",
"StructuredFeatureSet",
":",
"select",
"=",
"lambda",
"feature",
":",
"[",
"f",
"for",
"f",
"in",
"feature",
"if",
"filter",
"(",
"f",
",",
"feature",
".",
"count",
"(",
"f",
")",
",",
"c",
"(",
"f",
")",
",",
"dc",
"(",
"f",
")",
")",
"]",
"pairs",
"=",
"Counter",
"(",
")",
"eattrs",
"=",
"defaultdict",
"(",
"dict",
")",
"nattrs",
"=",
"defaultdict",
"(",
"dict",
")",
"nset",
"=",
"set",
"(",
")",
"for",
"paper",
",",
"feature",
"in",
"featureset",
".",
"iteritems",
"(",
")",
":",
"if",
"len",
"(",
"feature",
")",
"==",
"0",
":",
"continue",
"selected",
"=",
"select",
"(",
"feature",
")",
"nset",
"|=",
"set",
"(",
"selected",
")",
"for",
"combo",
"in",
"combinations",
"(",
"selected",
",",
"2",
")",
":",
"combo",
"=",
"tuple",
"(",
"sorted",
"(",
"combo",
")",
")",
"pairs",
"[",
"combo",
"]",
"+=",
"1",
"if",
"paper",
"in",
"attributes",
":",
"eattrs",
"[",
"combo",
"]",
"=",
"attributes",
"[",
"paper",
"]",
"# Generate node attributes.",
"for",
"n",
"in",
"list",
"(",
"nset",
")",
":",
"nattrs",
"[",
"n",
"]",
"[",
"'count'",
"]",
"=",
"featureset",
".",
"count",
"(",
"n",
")",
"nattrs",
"[",
"n",
"]",
"[",
"'documentCount'",
"]",
"=",
"featureset",
".",
"documentCount",
"(",
"n",
")",
"return",
"_generate_graph",
"(",
"nx",
".",
"Graph",
",",
"pairs",
",",
"edge_attrs",
"=",
"eattrs",
",",
"node_attrs",
"=",
"nattrs",
",",
"min_weight",
"=",
"min_weight",
")"
] | A network of feature elements linked by their joint occurrence in papers. | [
"A",
"network",
"of",
"feature",
"elements",
"linked",
"by",
"their",
"joint",
"occurrence",
"in",
"papers",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/networks/base.py#L39-L93 | train |
diging/tethne | tethne/networks/base.py | coupling | def coupling(corpus_or_featureset, featureset_name=None,
min_weight=1, filter=lambda f, v, c, dc: True,
node_attrs=[]):
"""
A network of papers linked by their joint posession of features.
"""
featureset = _get_featureset(corpus_or_featureset, featureset_name)
c = lambda f: featureset.count(f) # Overall count.
dc = lambda f: featureset.documentCount(f) # Document count.
f = lambda elem: featureset.index[elem]
v = lambda p, f: featureset.features[p].value(f)
select = lambda p, elem: filter(f(elem), v(p, f(elem)), c(f(elem)), dc(f(elem)))
pairs = defaultdict(list)
for elem, papers in featureset.with_feature.iteritems():
selected = [p for p in papers if select(p, elem)]
for combo in combinations(selected, 2):
combo = tuple(sorted(combo))
pairs[combo].append(featureset.index[elem])
graph = nx.Graph()
for combo, features in pairs.iteritems():
count = len(features)
if count >= min_weight:
graph.add_edge(combo[0], combo[1], features=features, weight=count)
# Add node attributes.
for attr in node_attrs:
for node in graph.nodes():
value = ''
if node in corpus_or_featureset:
paper = corpus_or_featureset[node]
if hasattr(paper, attr):
value = getattr(paper, attr)
if value is None:
value = ''
elif callable(value):
value = value()
graph.node[node][attr] = value
return graph | python | def coupling(corpus_or_featureset, featureset_name=None,
min_weight=1, filter=lambda f, v, c, dc: True,
node_attrs=[]):
"""
A network of papers linked by their joint posession of features.
"""
featureset = _get_featureset(corpus_or_featureset, featureset_name)
c = lambda f: featureset.count(f) # Overall count.
dc = lambda f: featureset.documentCount(f) # Document count.
f = lambda elem: featureset.index[elem]
v = lambda p, f: featureset.features[p].value(f)
select = lambda p, elem: filter(f(elem), v(p, f(elem)), c(f(elem)), dc(f(elem)))
pairs = defaultdict(list)
for elem, papers in featureset.with_feature.iteritems():
selected = [p for p in papers if select(p, elem)]
for combo in combinations(selected, 2):
combo = tuple(sorted(combo))
pairs[combo].append(featureset.index[elem])
graph = nx.Graph()
for combo, features in pairs.iteritems():
count = len(features)
if count >= min_weight:
graph.add_edge(combo[0], combo[1], features=features, weight=count)
# Add node attributes.
for attr in node_attrs:
for node in graph.nodes():
value = ''
if node in corpus_or_featureset:
paper = corpus_or_featureset[node]
if hasattr(paper, attr):
value = getattr(paper, attr)
if value is None:
value = ''
elif callable(value):
value = value()
graph.node[node][attr] = value
return graph | [
"def",
"coupling",
"(",
"corpus_or_featureset",
",",
"featureset_name",
"=",
"None",
",",
"min_weight",
"=",
"1",
",",
"filter",
"=",
"lambda",
"f",
",",
"v",
",",
"c",
",",
"dc",
":",
"True",
",",
"node_attrs",
"=",
"[",
"]",
")",
":",
"featureset",
"=",
"_get_featureset",
"(",
"corpus_or_featureset",
",",
"featureset_name",
")",
"c",
"=",
"lambda",
"f",
":",
"featureset",
".",
"count",
"(",
"f",
")",
"# Overall count.",
"dc",
"=",
"lambda",
"f",
":",
"featureset",
".",
"documentCount",
"(",
"f",
")",
"# Document count.",
"f",
"=",
"lambda",
"elem",
":",
"featureset",
".",
"index",
"[",
"elem",
"]",
"v",
"=",
"lambda",
"p",
",",
"f",
":",
"featureset",
".",
"features",
"[",
"p",
"]",
".",
"value",
"(",
"f",
")",
"select",
"=",
"lambda",
"p",
",",
"elem",
":",
"filter",
"(",
"f",
"(",
"elem",
")",
",",
"v",
"(",
"p",
",",
"f",
"(",
"elem",
")",
")",
",",
"c",
"(",
"f",
"(",
"elem",
")",
")",
",",
"dc",
"(",
"f",
"(",
"elem",
")",
")",
")",
"pairs",
"=",
"defaultdict",
"(",
"list",
")",
"for",
"elem",
",",
"papers",
"in",
"featureset",
".",
"with_feature",
".",
"iteritems",
"(",
")",
":",
"selected",
"=",
"[",
"p",
"for",
"p",
"in",
"papers",
"if",
"select",
"(",
"p",
",",
"elem",
")",
"]",
"for",
"combo",
"in",
"combinations",
"(",
"selected",
",",
"2",
")",
":",
"combo",
"=",
"tuple",
"(",
"sorted",
"(",
"combo",
")",
")",
"pairs",
"[",
"combo",
"]",
".",
"append",
"(",
"featureset",
".",
"index",
"[",
"elem",
"]",
")",
"graph",
"=",
"nx",
".",
"Graph",
"(",
")",
"for",
"combo",
",",
"features",
"in",
"pairs",
".",
"iteritems",
"(",
")",
":",
"count",
"=",
"len",
"(",
"features",
")",
"if",
"count",
">=",
"min_weight",
":",
"graph",
".",
"add_edge",
"(",
"combo",
"[",
"0",
"]",
",",
"combo",
"[",
"1",
"]",
",",
"features",
"=",
"features",
",",
"weight",
"=",
"count",
")",
"# Add node attributes.",
"for",
"attr",
"in",
"node_attrs",
":",
"for",
"node",
"in",
"graph",
".",
"nodes",
"(",
")",
":",
"value",
"=",
"''",
"if",
"node",
"in",
"corpus_or_featureset",
":",
"paper",
"=",
"corpus_or_featureset",
"[",
"node",
"]",
"if",
"hasattr",
"(",
"paper",
",",
"attr",
")",
":",
"value",
"=",
"getattr",
"(",
"paper",
",",
"attr",
")",
"if",
"value",
"is",
"None",
":",
"value",
"=",
"''",
"elif",
"callable",
"(",
"value",
")",
":",
"value",
"=",
"value",
"(",
")",
"graph",
".",
"node",
"[",
"node",
"]",
"[",
"attr",
"]",
"=",
"value",
"return",
"graph"
] | A network of papers linked by their joint posession of features. | [
"A",
"network",
"of",
"papers",
"linked",
"by",
"their",
"joint",
"posession",
"of",
"features",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/networks/base.py#L97-L140 | train |
diging/tethne | tethne/networks/base.py | multipartite | def multipartite(corpus, featureset_names, min_weight=1, filters={}):
"""
A network of papers and one or more featuresets.
"""
pairs = Counter()
node_type = {corpus._generate_index(p): {'type': 'paper'}
for p in corpus.papers}
for featureset_name in featureset_names:
ftypes = {}
featureset = _get_featureset(corpus, featureset_name)
for paper, feature in featureset.iteritems():
if featureset_name in filters:
if not filters[featureset_name](featureset, feature):
continue
if len(feature) < 1:
continue
for f in list(zip(*feature))[0]:
ftypes[f] = {'type': featureset_name}
pairs[(paper, f)] += 1
node_type.update(ftypes)
return _generate_graph(nx.DiGraph, pairs, node_attrs=node_type,
min_weight=min_weight) | python | def multipartite(corpus, featureset_names, min_weight=1, filters={}):
"""
A network of papers and one or more featuresets.
"""
pairs = Counter()
node_type = {corpus._generate_index(p): {'type': 'paper'}
for p in corpus.papers}
for featureset_name in featureset_names:
ftypes = {}
featureset = _get_featureset(corpus, featureset_name)
for paper, feature in featureset.iteritems():
if featureset_name in filters:
if not filters[featureset_name](featureset, feature):
continue
if len(feature) < 1:
continue
for f in list(zip(*feature))[0]:
ftypes[f] = {'type': featureset_name}
pairs[(paper, f)] += 1
node_type.update(ftypes)
return _generate_graph(nx.DiGraph, pairs, node_attrs=node_type,
min_weight=min_weight) | [
"def",
"multipartite",
"(",
"corpus",
",",
"featureset_names",
",",
"min_weight",
"=",
"1",
",",
"filters",
"=",
"{",
"}",
")",
":",
"pairs",
"=",
"Counter",
"(",
")",
"node_type",
"=",
"{",
"corpus",
".",
"_generate_index",
"(",
"p",
")",
":",
"{",
"'type'",
":",
"'paper'",
"}",
"for",
"p",
"in",
"corpus",
".",
"papers",
"}",
"for",
"featureset_name",
"in",
"featureset_names",
":",
"ftypes",
"=",
"{",
"}",
"featureset",
"=",
"_get_featureset",
"(",
"corpus",
",",
"featureset_name",
")",
"for",
"paper",
",",
"feature",
"in",
"featureset",
".",
"iteritems",
"(",
")",
":",
"if",
"featureset_name",
"in",
"filters",
":",
"if",
"not",
"filters",
"[",
"featureset_name",
"]",
"(",
"featureset",
",",
"feature",
")",
":",
"continue",
"if",
"len",
"(",
"feature",
")",
"<",
"1",
":",
"continue",
"for",
"f",
"in",
"list",
"(",
"zip",
"(",
"*",
"feature",
")",
")",
"[",
"0",
"]",
":",
"ftypes",
"[",
"f",
"]",
"=",
"{",
"'type'",
":",
"featureset_name",
"}",
"pairs",
"[",
"(",
"paper",
",",
"f",
")",
"]",
"+=",
"1",
"node_type",
".",
"update",
"(",
"ftypes",
")",
"return",
"_generate_graph",
"(",
"nx",
".",
"DiGraph",
",",
"pairs",
",",
"node_attrs",
"=",
"node_type",
",",
"min_weight",
"=",
"min_weight",
")"
] | A network of papers and one or more featuresets. | [
"A",
"network",
"of",
"papers",
"and",
"one",
"or",
"more",
"featuresets",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/networks/base.py#L143-L167 | train |
diging/tethne | tethne/utilities.py | _strip_punctuation | def _strip_punctuation(s):
"""
Removes all punctuation characters from a string.
"""
if type(s) is str and not PYTHON_3: # Bytestring (default in Python 2.x).
return s.translate(string.maketrans("",""), string.punctuation)
else: # Unicode string (default in Python 3.x).
translate_table = dict((ord(char), u'') for char in u'!"#%\'()*+,-./:;<=>?@[\]^_`{|}~')
return s.translate(translate_table) | python | def _strip_punctuation(s):
"""
Removes all punctuation characters from a string.
"""
if type(s) is str and not PYTHON_3: # Bytestring (default in Python 2.x).
return s.translate(string.maketrans("",""), string.punctuation)
else: # Unicode string (default in Python 3.x).
translate_table = dict((ord(char), u'') for char in u'!"#%\'()*+,-./:;<=>?@[\]^_`{|}~')
return s.translate(translate_table) | [
"def",
"_strip_punctuation",
"(",
"s",
")",
":",
"if",
"type",
"(",
"s",
")",
"is",
"str",
"and",
"not",
"PYTHON_3",
":",
"# Bytestring (default in Python 2.x).",
"return",
"s",
".",
"translate",
"(",
"string",
".",
"maketrans",
"(",
"\"\"",
",",
"\"\"",
")",
",",
"string",
".",
"punctuation",
")",
"else",
":",
"# Unicode string (default in Python 3.x).",
"translate_table",
"=",
"dict",
"(",
"(",
"ord",
"(",
"char",
")",
",",
"u''",
")",
"for",
"char",
"in",
"u'!\"#%\\'()*+,-./:;<=>?@[\\]^_`{|}~'",
")",
"return",
"s",
".",
"translate",
"(",
"translate_table",
")"
] | Removes all punctuation characters from a string. | [
"Removes",
"all",
"punctuation",
"characters",
"from",
"a",
"string",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/utilities.py#L115-L123 | train |
diging/tethne | tethne/utilities.py | overlap | def overlap(listA, listB):
"""
Return list of objects shared by listA, listB.
"""
if (listA is None) or (listB is None):
return []
else:
return list(set(listA) & set(listB)) | python | def overlap(listA, listB):
"""
Return list of objects shared by listA, listB.
"""
if (listA is None) or (listB is None):
return []
else:
return list(set(listA) & set(listB)) | [
"def",
"overlap",
"(",
"listA",
",",
"listB",
")",
":",
"if",
"(",
"listA",
"is",
"None",
")",
"or",
"(",
"listB",
"is",
"None",
")",
":",
"return",
"[",
"]",
"else",
":",
"return",
"list",
"(",
"set",
"(",
"listA",
")",
"&",
"set",
"(",
"listB",
")",
")"
] | Return list of objects shared by listA, listB. | [
"Return",
"list",
"of",
"objects",
"shared",
"by",
"listA",
"listB",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/utilities.py#L174-L181 | train |
diging/tethne | tethne/utilities.py | subdict | def subdict(super_dict, keys):
"""
Returns a subset of the super_dict with the specified keys.
"""
sub_dict = {}
valid_keys = super_dict.keys()
for key in keys:
if key in valid_keys:
sub_dict[key] = super_dict[key]
return sub_dict | python | def subdict(super_dict, keys):
"""
Returns a subset of the super_dict with the specified keys.
"""
sub_dict = {}
valid_keys = super_dict.keys()
for key in keys:
if key in valid_keys:
sub_dict[key] = super_dict[key]
return sub_dict | [
"def",
"subdict",
"(",
"super_dict",
",",
"keys",
")",
":",
"sub_dict",
"=",
"{",
"}",
"valid_keys",
"=",
"super_dict",
".",
"keys",
"(",
")",
"for",
"key",
"in",
"keys",
":",
"if",
"key",
"in",
"valid_keys",
":",
"sub_dict",
"[",
"key",
"]",
"=",
"super_dict",
"[",
"key",
"]",
"return",
"sub_dict"
] | Returns a subset of the super_dict with the specified keys. | [
"Returns",
"a",
"subset",
"of",
"the",
"super_dict",
"with",
"the",
"specified",
"keys",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/utilities.py#L184-L194 | train |
diging/tethne | tethne/utilities.py | concat_list | def concat_list(listA, listB, delim=' '):
"""
Concatenate list elements pair-wise with the delim character
Returns the concatenated list
Raises index error if lists are not parallel
"""
# Lists must be of equal length.
if len(listA) != len(listB):
raise IndexError('Input lists are not parallel.')
# Concatenate lists.
listC = []
for i in xrange(len(listA)):
app = listA[i] + delim + listB[i]
listC.append(app)
return listC | python | def concat_list(listA, listB, delim=' '):
"""
Concatenate list elements pair-wise with the delim character
Returns the concatenated list
Raises index error if lists are not parallel
"""
# Lists must be of equal length.
if len(listA) != len(listB):
raise IndexError('Input lists are not parallel.')
# Concatenate lists.
listC = []
for i in xrange(len(listA)):
app = listA[i] + delim + listB[i]
listC.append(app)
return listC | [
"def",
"concat_list",
"(",
"listA",
",",
"listB",
",",
"delim",
"=",
"' '",
")",
":",
"# Lists must be of equal length.",
"if",
"len",
"(",
"listA",
")",
"!=",
"len",
"(",
"listB",
")",
":",
"raise",
"IndexError",
"(",
"'Input lists are not parallel.'",
")",
"# Concatenate lists.",
"listC",
"=",
"[",
"]",
"for",
"i",
"in",
"xrange",
"(",
"len",
"(",
"listA",
")",
")",
":",
"app",
"=",
"listA",
"[",
"i",
"]",
"+",
"delim",
"+",
"listB",
"[",
"i",
"]",
"listC",
".",
"append",
"(",
"app",
")",
"return",
"listC"
] | Concatenate list elements pair-wise with the delim character
Returns the concatenated list
Raises index error if lists are not parallel | [
"Concatenate",
"list",
"elements",
"pair",
"-",
"wise",
"with",
"the",
"delim",
"character",
"Returns",
"the",
"concatenated",
"list",
"Raises",
"index",
"error",
"if",
"lists",
"are",
"not",
"parallel"
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/utilities.py#L212-L229 | train |
diging/tethne | tethne/utilities.py | strip_non_ascii | def strip_non_ascii(s):
"""
Returns the string without non-ASCII characters.
Parameters
----------
string : string
A string that may contain non-ASCII characters.
Returns
-------
clean_string : string
A string that does not contain non-ASCII characters.
"""
stripped = (c for c in s if 0 < ord(c) < 127)
clean_string = u''.join(stripped)
return clean_string | python | def strip_non_ascii(s):
"""
Returns the string without non-ASCII characters.
Parameters
----------
string : string
A string that may contain non-ASCII characters.
Returns
-------
clean_string : string
A string that does not contain non-ASCII characters.
"""
stripped = (c for c in s if 0 < ord(c) < 127)
clean_string = u''.join(stripped)
return clean_string | [
"def",
"strip_non_ascii",
"(",
"s",
")",
":",
"stripped",
"=",
"(",
"c",
"for",
"c",
"in",
"s",
"if",
"0",
"<",
"ord",
"(",
"c",
")",
"<",
"127",
")",
"clean_string",
"=",
"u''",
".",
"join",
"(",
"stripped",
")",
"return",
"clean_string"
] | Returns the string without non-ASCII characters.
Parameters
----------
string : string
A string that may contain non-ASCII characters.
Returns
-------
clean_string : string
A string that does not contain non-ASCII characters. | [
"Returns",
"the",
"string",
"without",
"non",
"-",
"ASCII",
"characters",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/utilities.py#L231-L248 | train |
diging/tethne | tethne/utilities.py | dict_from_node | def dict_from_node(node, recursive=False):
"""
Converts ElementTree node to a dictionary.
Parameters
----------
node : ElementTree node
recursive : boolean
If recursive=False, the value of any field with children will be the
number of children.
Returns
-------
dict : nested dictionary.
Tags as keys and values as values. Sub-elements that occur multiple
times in an element are contained in a list.
"""
dict = {}
for snode in node:
if len(snode) > 0:
if recursive:
# Will drill down until len(snode) <= 0.
value = dict_from_node(snode, True)
else:
value = len(snode)
elif snode.text is not None:
value = snode.text
else:
value = u''
if snode.tag in dict.keys(): # If there are multiple subelements
# with the same tag, then the value
# of the element should be a list
# rather than a dict.
if type(dict[snode.tag]) is list: # If a list has already been
# started, just append to
# it.
dict[snode.tag].append(value)
else:
dict[snode.tag] = [ dict[snode.tag], value ]
else:
dict[snode.tag] = value # Default behavior.
return dict | python | def dict_from_node(node, recursive=False):
"""
Converts ElementTree node to a dictionary.
Parameters
----------
node : ElementTree node
recursive : boolean
If recursive=False, the value of any field with children will be the
number of children.
Returns
-------
dict : nested dictionary.
Tags as keys and values as values. Sub-elements that occur multiple
times in an element are contained in a list.
"""
dict = {}
for snode in node:
if len(snode) > 0:
if recursive:
# Will drill down until len(snode) <= 0.
value = dict_from_node(snode, True)
else:
value = len(snode)
elif snode.text is not None:
value = snode.text
else:
value = u''
if snode.tag in dict.keys(): # If there are multiple subelements
# with the same tag, then the value
# of the element should be a list
# rather than a dict.
if type(dict[snode.tag]) is list: # If a list has already been
# started, just append to
# it.
dict[snode.tag].append(value)
else:
dict[snode.tag] = [ dict[snode.tag], value ]
else:
dict[snode.tag] = value # Default behavior.
return dict | [
"def",
"dict_from_node",
"(",
"node",
",",
"recursive",
"=",
"False",
")",
":",
"dict",
"=",
"{",
"}",
"for",
"snode",
"in",
"node",
":",
"if",
"len",
"(",
"snode",
")",
">",
"0",
":",
"if",
"recursive",
":",
"# Will drill down until len(snode) <= 0.",
"value",
"=",
"dict_from_node",
"(",
"snode",
",",
"True",
")",
"else",
":",
"value",
"=",
"len",
"(",
"snode",
")",
"elif",
"snode",
".",
"text",
"is",
"not",
"None",
":",
"value",
"=",
"snode",
".",
"text",
"else",
":",
"value",
"=",
"u''",
"if",
"snode",
".",
"tag",
"in",
"dict",
".",
"keys",
"(",
")",
":",
"# If there are multiple subelements",
"# with the same tag, then the value",
"# of the element should be a list",
"# rather than a dict.",
"if",
"type",
"(",
"dict",
"[",
"snode",
".",
"tag",
"]",
")",
"is",
"list",
":",
"# If a list has already been",
"# started, just append to",
"# it.",
"dict",
"[",
"snode",
".",
"tag",
"]",
".",
"append",
"(",
"value",
")",
"else",
":",
"dict",
"[",
"snode",
".",
"tag",
"]",
"=",
"[",
"dict",
"[",
"snode",
".",
"tag",
"]",
",",
"value",
"]",
"else",
":",
"dict",
"[",
"snode",
".",
"tag",
"]",
"=",
"value",
"# Default behavior.",
"return",
"dict"
] | Converts ElementTree node to a dictionary.
Parameters
----------
node : ElementTree node
recursive : boolean
If recursive=False, the value of any field with children will be the
number of children.
Returns
-------
dict : nested dictionary.
Tags as keys and values as values. Sub-elements that occur multiple
times in an element are contained in a list. | [
"Converts",
"ElementTree",
"node",
"to",
"a",
"dictionary",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/utilities.py#L255-L298 | train |
diging/tethne | tethne/utilities.py | MLStripper.feed | def feed(self, data):
"""
added this check as sometimes we are getting the data in integer format instead of string
"""
try:
self.rawdata = self.rawdata + data
except TypeError:
data = unicode(data)
self.rawdata = self.rawdata + data
self.goahead(0) | python | def feed(self, data):
"""
added this check as sometimes we are getting the data in integer format instead of string
"""
try:
self.rawdata = self.rawdata + data
except TypeError:
data = unicode(data)
self.rawdata = self.rawdata + data
self.goahead(0) | [
"def",
"feed",
"(",
"self",
",",
"data",
")",
":",
"try",
":",
"self",
".",
"rawdata",
"=",
"self",
".",
"rawdata",
"+",
"data",
"except",
"TypeError",
":",
"data",
"=",
"unicode",
"(",
"data",
")",
"self",
".",
"rawdata",
"=",
"self",
".",
"rawdata",
"+",
"data",
"self",
".",
"goahead",
"(",
"0",
")"
] | added this check as sometimes we are getting the data in integer format instead of string | [
"added",
"this",
"check",
"as",
"sometimes",
"we",
"are",
"getting",
"the",
"data",
"in",
"integer",
"format",
"instead",
"of",
"string"
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/utilities.py#L50-L60 | train |
diging/tethne | tethne/serialize/paper.py | Serialize.serializePaper | def serializePaper(self):
"""
This method creates a fixture for the "django-tethne_paper" model.
Returns
-------
paper_details in JSON format, which can written to a file.
"""
pid = tethnedao.getMaxPaperID();
papers_details = []
for paper in self.corpus:
pid = pid + 1
paper_key = getattr(paper, Serialize.paper_source_map[self.source])
self.paperIdMap[paper_key] = pid
paper_data = {
"model": "django-tethne.paper",
"pk": self.paperIdMap[paper_key],
"fields": {
"paper_id": paper_key,
"corpus":self.corpus_id,
"pub_date": getattr(paper, 'date', ''),
"volume": getattr(paper, 'volume', ''),
"title": getattr(paper, 'title', ''),
"abstract": getattr(paper, 'abstract', ''),
}
}
papers_details.append(paper_data)
return papers_details | python | def serializePaper(self):
"""
This method creates a fixture for the "django-tethne_paper" model.
Returns
-------
paper_details in JSON format, which can written to a file.
"""
pid = tethnedao.getMaxPaperID();
papers_details = []
for paper in self.corpus:
pid = pid + 1
paper_key = getattr(paper, Serialize.paper_source_map[self.source])
self.paperIdMap[paper_key] = pid
paper_data = {
"model": "django-tethne.paper",
"pk": self.paperIdMap[paper_key],
"fields": {
"paper_id": paper_key,
"corpus":self.corpus_id,
"pub_date": getattr(paper, 'date', ''),
"volume": getattr(paper, 'volume', ''),
"title": getattr(paper, 'title', ''),
"abstract": getattr(paper, 'abstract', ''),
}
}
papers_details.append(paper_data)
return papers_details | [
"def",
"serializePaper",
"(",
"self",
")",
":",
"pid",
"=",
"tethnedao",
".",
"getMaxPaperID",
"(",
")",
"papers_details",
"=",
"[",
"]",
"for",
"paper",
"in",
"self",
".",
"corpus",
":",
"pid",
"=",
"pid",
"+",
"1",
"paper_key",
"=",
"getattr",
"(",
"paper",
",",
"Serialize",
".",
"paper_source_map",
"[",
"self",
".",
"source",
"]",
")",
"self",
".",
"paperIdMap",
"[",
"paper_key",
"]",
"=",
"pid",
"paper_data",
"=",
"{",
"\"model\"",
":",
"\"django-tethne.paper\"",
",",
"\"pk\"",
":",
"self",
".",
"paperIdMap",
"[",
"paper_key",
"]",
",",
"\"fields\"",
":",
"{",
"\"paper_id\"",
":",
"paper_key",
",",
"\"corpus\"",
":",
"self",
".",
"corpus_id",
",",
"\"pub_date\"",
":",
"getattr",
"(",
"paper",
",",
"'date'",
",",
"''",
")",
",",
"\"volume\"",
":",
"getattr",
"(",
"paper",
",",
"'volume'",
",",
"''",
")",
",",
"\"title\"",
":",
"getattr",
"(",
"paper",
",",
"'title'",
",",
"''",
")",
",",
"\"abstract\"",
":",
"getattr",
"(",
"paper",
",",
"'abstract'",
",",
"''",
")",
",",
"}",
"}",
"papers_details",
".",
"append",
"(",
"paper_data",
")",
"return",
"papers_details"
] | This method creates a fixture for the "django-tethne_paper" model.
Returns
-------
paper_details in JSON format, which can written to a file. | [
"This",
"method",
"creates",
"a",
"fixture",
"for",
"the",
"django",
"-",
"tethne_paper",
"model",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/serialize/paper.py#L108-L137 | train |
diging/tethne | tethne/serialize/paper.py | Serialize.serializeCitation | def serializeCitation(self):
"""
This method creates a fixture for the "django-tethne_citation" model.
Returns
-------
citation details which can be written to a file
"""
citation_details = []
citation_id = tethnedao.getMaxCitationID()
for citation in self.corpus.features['citations'].index.values():
date_match = re.search(r'(\d+)', citation)
if date_match is not None:
date = date_match.group(1)
if date_match is None:
date_match = re.search(r"NONE", citation)
date = date_match.group()
first_author = citation.replace('_', ' ').split(date)[0].rstrip()
journal = citation.replace('_', ' ').split(date)[1].lstrip()
citation_key = citation
if citation_key not in self.citationIdMap:
citation_id += 1
self.citationIdMap[citation_key] = citation_id
citation_data = {
"model": "django-tethne.citation",
"pk": citation_id,
"fields": {
"literal": citation,
"journal": journal,
"first_author": first_author,
"date": date
}
}
citation_details.append(citation_data)
return citation_details | python | def serializeCitation(self):
"""
This method creates a fixture for the "django-tethne_citation" model.
Returns
-------
citation details which can be written to a file
"""
citation_details = []
citation_id = tethnedao.getMaxCitationID()
for citation in self.corpus.features['citations'].index.values():
date_match = re.search(r'(\d+)', citation)
if date_match is not None:
date = date_match.group(1)
if date_match is None:
date_match = re.search(r"NONE", citation)
date = date_match.group()
first_author = citation.replace('_', ' ').split(date)[0].rstrip()
journal = citation.replace('_', ' ').split(date)[1].lstrip()
citation_key = citation
if citation_key not in self.citationIdMap:
citation_id += 1
self.citationIdMap[citation_key] = citation_id
citation_data = {
"model": "django-tethne.citation",
"pk": citation_id,
"fields": {
"literal": citation,
"journal": journal,
"first_author": first_author,
"date": date
}
}
citation_details.append(citation_data)
return citation_details | [
"def",
"serializeCitation",
"(",
"self",
")",
":",
"citation_details",
"=",
"[",
"]",
"citation_id",
"=",
"tethnedao",
".",
"getMaxCitationID",
"(",
")",
"for",
"citation",
"in",
"self",
".",
"corpus",
".",
"features",
"[",
"'citations'",
"]",
".",
"index",
".",
"values",
"(",
")",
":",
"date_match",
"=",
"re",
".",
"search",
"(",
"r'(\\d+)'",
",",
"citation",
")",
"if",
"date_match",
"is",
"not",
"None",
":",
"date",
"=",
"date_match",
".",
"group",
"(",
"1",
")",
"if",
"date_match",
"is",
"None",
":",
"date_match",
"=",
"re",
".",
"search",
"(",
"r\"NONE\"",
",",
"citation",
")",
"date",
"=",
"date_match",
".",
"group",
"(",
")",
"first_author",
"=",
"citation",
".",
"replace",
"(",
"'_'",
",",
"' '",
")",
".",
"split",
"(",
"date",
")",
"[",
"0",
"]",
".",
"rstrip",
"(",
")",
"journal",
"=",
"citation",
".",
"replace",
"(",
"'_'",
",",
"' '",
")",
".",
"split",
"(",
"date",
")",
"[",
"1",
"]",
".",
"lstrip",
"(",
")",
"citation_key",
"=",
"citation",
"if",
"citation_key",
"not",
"in",
"self",
".",
"citationIdMap",
":",
"citation_id",
"+=",
"1",
"self",
".",
"citationIdMap",
"[",
"citation_key",
"]",
"=",
"citation_id",
"citation_data",
"=",
"{",
"\"model\"",
":",
"\"django-tethne.citation\"",
",",
"\"pk\"",
":",
"citation_id",
",",
"\"fields\"",
":",
"{",
"\"literal\"",
":",
"citation",
",",
"\"journal\"",
":",
"journal",
",",
"\"first_author\"",
":",
"first_author",
",",
"\"date\"",
":",
"date",
"}",
"}",
"citation_details",
".",
"append",
"(",
"citation_data",
")",
"return",
"citation_details"
] | This method creates a fixture for the "django-tethne_citation" model.
Returns
-------
citation details which can be written to a file | [
"This",
"method",
"creates",
"a",
"fixture",
"for",
"the",
"django",
"-",
"tethne_citation",
"model",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/serialize/paper.py#L210-L246 | train |
diging/tethne | tethne/serialize/paper.py | Serialize.serializeInstitution | def serializeInstitution(self):
"""
This method creates a fixture for the "django-tethne_citation_institution" model.
Returns
-------
institution details which can be written to a file
"""
institution_data = []
institution_instance_data = []
affiliation_data = []
affiliation_id = tethnedao.getMaxAffiliationID()
institution_id = tethnedao.getMaxInstitutionID()
institution_instance_id = tethnedao.getMaxInstitutionInstanceID()
for paper in self.corpus:
if hasattr(paper, 'authorAddress'):
paper_key = getattr(paper, Serialize.paper_source_map[self.source])
if type(paper.authorAddress) is unicode:
institution_id += 1
institution_instance_id += 1
institute_literal, authors = SerializeUtility.get_auth_inst(paper.authorAddress)
institute_row, institute_instance_row = self.get_details_from_inst_literal(institute_literal,
institution_id,
institution_instance_id,
paper_key)
if institute_row:
institution_data.append(institute_row)
institution_instance_data.append(institute_instance_row)
if authors:
for author in authors:
affiliation_id += 1
affiliation_row = self.get_affiliation_details(author, affiliation_id, institute_literal)
affiliation_data.append(affiliation_row)
elif type(paper.authorAddress) is list:
for address in paper.authorAddress:
institution_id += 1
institution_instance_id += 1
institute_literal, authors = SerializeUtility.get_auth_inst(address)
institute_row, institute_instance_row = self.get_details_from_inst_literal(institute_literal,
institution_id,
institution_instance_id,
paper_key)
if institute_row:
institution_data.append(institute_row)
institution_instance_data.append(institute_instance_row)
if authors is None:
authors = prevAuthors
for author in authors:
affiliation_id += 1
affiliation_row = self.get_affiliation_details(author, affiliation_id, institute_literal)
affiliation_data.append(affiliation_row)
prevAuthors = authors
return institution_data, institution_instance_data, affiliation_data | python | def serializeInstitution(self):
"""
This method creates a fixture for the "django-tethne_citation_institution" model.
Returns
-------
institution details which can be written to a file
"""
institution_data = []
institution_instance_data = []
affiliation_data = []
affiliation_id = tethnedao.getMaxAffiliationID()
institution_id = tethnedao.getMaxInstitutionID()
institution_instance_id = tethnedao.getMaxInstitutionInstanceID()
for paper in self.corpus:
if hasattr(paper, 'authorAddress'):
paper_key = getattr(paper, Serialize.paper_source_map[self.source])
if type(paper.authorAddress) is unicode:
institution_id += 1
institution_instance_id += 1
institute_literal, authors = SerializeUtility.get_auth_inst(paper.authorAddress)
institute_row, institute_instance_row = self.get_details_from_inst_literal(institute_literal,
institution_id,
institution_instance_id,
paper_key)
if institute_row:
institution_data.append(institute_row)
institution_instance_data.append(institute_instance_row)
if authors:
for author in authors:
affiliation_id += 1
affiliation_row = self.get_affiliation_details(author, affiliation_id, institute_literal)
affiliation_data.append(affiliation_row)
elif type(paper.authorAddress) is list:
for address in paper.authorAddress:
institution_id += 1
institution_instance_id += 1
institute_literal, authors = SerializeUtility.get_auth_inst(address)
institute_row, institute_instance_row = self.get_details_from_inst_literal(institute_literal,
institution_id,
institution_instance_id,
paper_key)
if institute_row:
institution_data.append(institute_row)
institution_instance_data.append(institute_instance_row)
if authors is None:
authors = prevAuthors
for author in authors:
affiliation_id += 1
affiliation_row = self.get_affiliation_details(author, affiliation_id, institute_literal)
affiliation_data.append(affiliation_row)
prevAuthors = authors
return institution_data, institution_instance_data, affiliation_data | [
"def",
"serializeInstitution",
"(",
"self",
")",
":",
"institution_data",
"=",
"[",
"]",
"institution_instance_data",
"=",
"[",
"]",
"affiliation_data",
"=",
"[",
"]",
"affiliation_id",
"=",
"tethnedao",
".",
"getMaxAffiliationID",
"(",
")",
"institution_id",
"=",
"tethnedao",
".",
"getMaxInstitutionID",
"(",
")",
"institution_instance_id",
"=",
"tethnedao",
".",
"getMaxInstitutionInstanceID",
"(",
")",
"for",
"paper",
"in",
"self",
".",
"corpus",
":",
"if",
"hasattr",
"(",
"paper",
",",
"'authorAddress'",
")",
":",
"paper_key",
"=",
"getattr",
"(",
"paper",
",",
"Serialize",
".",
"paper_source_map",
"[",
"self",
".",
"source",
"]",
")",
"if",
"type",
"(",
"paper",
".",
"authorAddress",
")",
"is",
"unicode",
":",
"institution_id",
"+=",
"1",
"institution_instance_id",
"+=",
"1",
"institute_literal",
",",
"authors",
"=",
"SerializeUtility",
".",
"get_auth_inst",
"(",
"paper",
".",
"authorAddress",
")",
"institute_row",
",",
"institute_instance_row",
"=",
"self",
".",
"get_details_from_inst_literal",
"(",
"institute_literal",
",",
"institution_id",
",",
"institution_instance_id",
",",
"paper_key",
")",
"if",
"institute_row",
":",
"institution_data",
".",
"append",
"(",
"institute_row",
")",
"institution_instance_data",
".",
"append",
"(",
"institute_instance_row",
")",
"if",
"authors",
":",
"for",
"author",
"in",
"authors",
":",
"affiliation_id",
"+=",
"1",
"affiliation_row",
"=",
"self",
".",
"get_affiliation_details",
"(",
"author",
",",
"affiliation_id",
",",
"institute_literal",
")",
"affiliation_data",
".",
"append",
"(",
"affiliation_row",
")",
"elif",
"type",
"(",
"paper",
".",
"authorAddress",
")",
"is",
"list",
":",
"for",
"address",
"in",
"paper",
".",
"authorAddress",
":",
"institution_id",
"+=",
"1",
"institution_instance_id",
"+=",
"1",
"institute_literal",
",",
"authors",
"=",
"SerializeUtility",
".",
"get_auth_inst",
"(",
"address",
")",
"institute_row",
",",
"institute_instance_row",
"=",
"self",
".",
"get_details_from_inst_literal",
"(",
"institute_literal",
",",
"institution_id",
",",
"institution_instance_id",
",",
"paper_key",
")",
"if",
"institute_row",
":",
"institution_data",
".",
"append",
"(",
"institute_row",
")",
"institution_instance_data",
".",
"append",
"(",
"institute_instance_row",
")",
"if",
"authors",
"is",
"None",
":",
"authors",
"=",
"prevAuthors",
"for",
"author",
"in",
"authors",
":",
"affiliation_id",
"+=",
"1",
"affiliation_row",
"=",
"self",
".",
"get_affiliation_details",
"(",
"author",
",",
"affiliation_id",
",",
"institute_literal",
")",
"affiliation_data",
".",
"append",
"(",
"affiliation_row",
")",
"prevAuthors",
"=",
"authors",
"return",
"institution_data",
",",
"institution_instance_data",
",",
"affiliation_data"
] | This method creates a fixture for the "django-tethne_citation_institution" model.
Returns
-------
institution details which can be written to a file | [
"This",
"method",
"creates",
"a",
"fixture",
"for",
"the",
"django",
"-",
"tethne_citation_institution",
"model",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/serialize/paper.py#L289-L344 | train |
diging/tethne | tethne/serialize/paper.py | Serialize.get_details_from_inst_literal | def get_details_from_inst_literal(self, institute_literal, institution_id, institution_instance_id, paper_key):
"""
This method parses the institute literal to get the following
1. Department naame
2. Country
3. University name
4. ZIP, STATE AND CITY (Only if the country is USA. For other countries the standard may vary. So parsing these
values becomes very difficult. However, the complete address can be found in the column "AddressLine1"
Parameters
----------
institute_literal -> The literal value of the institute
institution_id -> the Primary key value which is to be added in the fixture
institution_instance_id -> Primary key value which is to be added in the fixture
paper_key -> The Paper key which is used for the Institution Instance
Returns
-------
"""
institute_details = institute_literal.split(',')
institute_name = institute_details[0]
country = institute_details[len(institute_details)-1].lstrip().replace('.', '')
institute_row = None
zipcode = ""
state = ""
city = ""
if 'USA' in country:
temp = country
if(len(temp.split())) == 3:
country = temp.split()[2]
zipcode = temp.split()[1]
state = temp.split()[0]
elif(len(temp.split())) == 2:
country = temp.split()[1]
state = temp.split()[0]
city = institute_details[len(institute_details)-2].lstrip()
addressline1 = ""
for i in range(1, len(institute_details)-1, 1):
if i != len(institute_details)-2:
addressline1 = addressline1 + institute_details[i]+','
else:
addressline1 = addressline1 + institute_details[i]
if institute_literal not in self.instituteIdMap:
self.instituteIdMap[institute_literal] = institution_id
institute_row = {
"model": "django-tethne.institution",
"pk": institution_id,
"fields": {
"institute_name": institute_name,
"addressLine1": addressline1,
"country": country,
"zip": zipcode,
"state": state,
"city": city
}
}
department = ""
if re.search('Dept([^,]*),', institute_literal) is not None:
department = re.search('Dept([^,]*),', institute_literal).group().replace(',', '')
institute_instance_row = {
"model": "django-tethne.institution_instance",
"pk": institution_instance_id,
"fields": {
"institution": self.instituteIdMap[institute_literal],
"literal": institute_literal,
"institute_name": institute_name,
"addressLine1": addressline1,
"country": country,
"paper": self.paperIdMap[paper_key],
"department": department,
"zip": zipcode,
"state": state,
"city": city
}
}
return institute_row, institute_instance_row | python | def get_details_from_inst_literal(self, institute_literal, institution_id, institution_instance_id, paper_key):
"""
This method parses the institute literal to get the following
1. Department naame
2. Country
3. University name
4. ZIP, STATE AND CITY (Only if the country is USA. For other countries the standard may vary. So parsing these
values becomes very difficult. However, the complete address can be found in the column "AddressLine1"
Parameters
----------
institute_literal -> The literal value of the institute
institution_id -> the Primary key value which is to be added in the fixture
institution_instance_id -> Primary key value which is to be added in the fixture
paper_key -> The Paper key which is used for the Institution Instance
Returns
-------
"""
institute_details = institute_literal.split(',')
institute_name = institute_details[0]
country = institute_details[len(institute_details)-1].lstrip().replace('.', '')
institute_row = None
zipcode = ""
state = ""
city = ""
if 'USA' in country:
temp = country
if(len(temp.split())) == 3:
country = temp.split()[2]
zipcode = temp.split()[1]
state = temp.split()[0]
elif(len(temp.split())) == 2:
country = temp.split()[1]
state = temp.split()[0]
city = institute_details[len(institute_details)-2].lstrip()
addressline1 = ""
for i in range(1, len(institute_details)-1, 1):
if i != len(institute_details)-2:
addressline1 = addressline1 + institute_details[i]+','
else:
addressline1 = addressline1 + institute_details[i]
if institute_literal not in self.instituteIdMap:
self.instituteIdMap[institute_literal] = institution_id
institute_row = {
"model": "django-tethne.institution",
"pk": institution_id,
"fields": {
"institute_name": institute_name,
"addressLine1": addressline1,
"country": country,
"zip": zipcode,
"state": state,
"city": city
}
}
department = ""
if re.search('Dept([^,]*),', institute_literal) is not None:
department = re.search('Dept([^,]*),', institute_literal).group().replace(',', '')
institute_instance_row = {
"model": "django-tethne.institution_instance",
"pk": institution_instance_id,
"fields": {
"institution": self.instituteIdMap[institute_literal],
"literal": institute_literal,
"institute_name": institute_name,
"addressLine1": addressline1,
"country": country,
"paper": self.paperIdMap[paper_key],
"department": department,
"zip": zipcode,
"state": state,
"city": city
}
}
return institute_row, institute_instance_row | [
"def",
"get_details_from_inst_literal",
"(",
"self",
",",
"institute_literal",
",",
"institution_id",
",",
"institution_instance_id",
",",
"paper_key",
")",
":",
"institute_details",
"=",
"institute_literal",
".",
"split",
"(",
"','",
")",
"institute_name",
"=",
"institute_details",
"[",
"0",
"]",
"country",
"=",
"institute_details",
"[",
"len",
"(",
"institute_details",
")",
"-",
"1",
"]",
".",
"lstrip",
"(",
")",
".",
"replace",
"(",
"'.'",
",",
"''",
")",
"institute_row",
"=",
"None",
"zipcode",
"=",
"\"\"",
"state",
"=",
"\"\"",
"city",
"=",
"\"\"",
"if",
"'USA'",
"in",
"country",
":",
"temp",
"=",
"country",
"if",
"(",
"len",
"(",
"temp",
".",
"split",
"(",
")",
")",
")",
"==",
"3",
":",
"country",
"=",
"temp",
".",
"split",
"(",
")",
"[",
"2",
"]",
"zipcode",
"=",
"temp",
".",
"split",
"(",
")",
"[",
"1",
"]",
"state",
"=",
"temp",
".",
"split",
"(",
")",
"[",
"0",
"]",
"elif",
"(",
"len",
"(",
"temp",
".",
"split",
"(",
")",
")",
")",
"==",
"2",
":",
"country",
"=",
"temp",
".",
"split",
"(",
")",
"[",
"1",
"]",
"state",
"=",
"temp",
".",
"split",
"(",
")",
"[",
"0",
"]",
"city",
"=",
"institute_details",
"[",
"len",
"(",
"institute_details",
")",
"-",
"2",
"]",
".",
"lstrip",
"(",
")",
"addressline1",
"=",
"\"\"",
"for",
"i",
"in",
"range",
"(",
"1",
",",
"len",
"(",
"institute_details",
")",
"-",
"1",
",",
"1",
")",
":",
"if",
"i",
"!=",
"len",
"(",
"institute_details",
")",
"-",
"2",
":",
"addressline1",
"=",
"addressline1",
"+",
"institute_details",
"[",
"i",
"]",
"+",
"','",
"else",
":",
"addressline1",
"=",
"addressline1",
"+",
"institute_details",
"[",
"i",
"]",
"if",
"institute_literal",
"not",
"in",
"self",
".",
"instituteIdMap",
":",
"self",
".",
"instituteIdMap",
"[",
"institute_literal",
"]",
"=",
"institution_id",
"institute_row",
"=",
"{",
"\"model\"",
":",
"\"django-tethne.institution\"",
",",
"\"pk\"",
":",
"institution_id",
",",
"\"fields\"",
":",
"{",
"\"institute_name\"",
":",
"institute_name",
",",
"\"addressLine1\"",
":",
"addressline1",
",",
"\"country\"",
":",
"country",
",",
"\"zip\"",
":",
"zipcode",
",",
"\"state\"",
":",
"state",
",",
"\"city\"",
":",
"city",
"}",
"}",
"department",
"=",
"\"\"",
"if",
"re",
".",
"search",
"(",
"'Dept([^,]*),'",
",",
"institute_literal",
")",
"is",
"not",
"None",
":",
"department",
"=",
"re",
".",
"search",
"(",
"'Dept([^,]*),'",
",",
"institute_literal",
")",
".",
"group",
"(",
")",
".",
"replace",
"(",
"','",
",",
"''",
")",
"institute_instance_row",
"=",
"{",
"\"model\"",
":",
"\"django-tethne.institution_instance\"",
",",
"\"pk\"",
":",
"institution_instance_id",
",",
"\"fields\"",
":",
"{",
"\"institution\"",
":",
"self",
".",
"instituteIdMap",
"[",
"institute_literal",
"]",
",",
"\"literal\"",
":",
"institute_literal",
",",
"\"institute_name\"",
":",
"institute_name",
",",
"\"addressLine1\"",
":",
"addressline1",
",",
"\"country\"",
":",
"country",
",",
"\"paper\"",
":",
"self",
".",
"paperIdMap",
"[",
"paper_key",
"]",
",",
"\"department\"",
":",
"department",
",",
"\"zip\"",
":",
"zipcode",
",",
"\"state\"",
":",
"state",
",",
"\"city\"",
":",
"city",
"}",
"}",
"return",
"institute_row",
",",
"institute_instance_row"
] | This method parses the institute literal to get the following
1. Department naame
2. Country
3. University name
4. ZIP, STATE AND CITY (Only if the country is USA. For other countries the standard may vary. So parsing these
values becomes very difficult. However, the complete address can be found in the column "AddressLine1"
Parameters
----------
institute_literal -> The literal value of the institute
institution_id -> the Primary key value which is to be added in the fixture
institution_instance_id -> Primary key value which is to be added in the fixture
paper_key -> The Paper key which is used for the Institution Instance
Returns
------- | [
"This",
"method",
"parses",
"the",
"institute",
"literal",
"to",
"get",
"the",
"following",
"1",
".",
"Department",
"naame",
"2",
".",
"Country",
"3",
".",
"University",
"name",
"4",
".",
"ZIP",
"STATE",
"AND",
"CITY",
"(",
"Only",
"if",
"the",
"country",
"is",
"USA",
".",
"For",
"other",
"countries",
"the",
"standard",
"may",
"vary",
".",
"So",
"parsing",
"these",
"values",
"becomes",
"very",
"difficult",
".",
"However",
"the",
"complete",
"address",
"can",
"be",
"found",
"in",
"the",
"column",
"AddressLine1"
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/serialize/paper.py#L346-L424 | train |
diging/tethne | tethne/serialize/paper.py | Serialize.get_affiliation_details | def get_affiliation_details(self, value, affiliation_id, institute_literal):
"""
This method is used to map the Affiliation between an author and Institution.
Parameters
----------
value - The author name
affiliation_id - Primary key of the affiliation table
institute_literal
Returns
-------
Affiliation details(JSON fixture) which can be written to a file
"""
tokens = tuple([t.upper().strip() for t in value.split(',')])
if len(tokens) == 1:
tokens = value.split()
if len(tokens) > 0:
if len(tokens) > 1:
aulast, auinit = tokens[0:2]
else:
aulast = tokens[0]
auinit = ''
else:
aulast, auinit = tokens[0], ''
aulast = _strip_punctuation(aulast).upper()
auinit = _strip_punctuation(auinit).upper()
author_key = auinit+aulast
affiliation_row = {
"model": "django-tethne.affiliation",
"pk": affiliation_id,
"fields": {
"author": self.authorIdMap[author_key],
"institution": self.instituteIdMap[institute_literal]
}
}
return affiliation_row | python | def get_affiliation_details(self, value, affiliation_id, institute_literal):
"""
This method is used to map the Affiliation between an author and Institution.
Parameters
----------
value - The author name
affiliation_id - Primary key of the affiliation table
institute_literal
Returns
-------
Affiliation details(JSON fixture) which can be written to a file
"""
tokens = tuple([t.upper().strip() for t in value.split(',')])
if len(tokens) == 1:
tokens = value.split()
if len(tokens) > 0:
if len(tokens) > 1:
aulast, auinit = tokens[0:2]
else:
aulast = tokens[0]
auinit = ''
else:
aulast, auinit = tokens[0], ''
aulast = _strip_punctuation(aulast).upper()
auinit = _strip_punctuation(auinit).upper()
author_key = auinit+aulast
affiliation_row = {
"model": "django-tethne.affiliation",
"pk": affiliation_id,
"fields": {
"author": self.authorIdMap[author_key],
"institution": self.instituteIdMap[institute_literal]
}
}
return affiliation_row | [
"def",
"get_affiliation_details",
"(",
"self",
",",
"value",
",",
"affiliation_id",
",",
"institute_literal",
")",
":",
"tokens",
"=",
"tuple",
"(",
"[",
"t",
".",
"upper",
"(",
")",
".",
"strip",
"(",
")",
"for",
"t",
"in",
"value",
".",
"split",
"(",
"','",
")",
"]",
")",
"if",
"len",
"(",
"tokens",
")",
"==",
"1",
":",
"tokens",
"=",
"value",
".",
"split",
"(",
")",
"if",
"len",
"(",
"tokens",
")",
">",
"0",
":",
"if",
"len",
"(",
"tokens",
")",
">",
"1",
":",
"aulast",
",",
"auinit",
"=",
"tokens",
"[",
"0",
":",
"2",
"]",
"else",
":",
"aulast",
"=",
"tokens",
"[",
"0",
"]",
"auinit",
"=",
"''",
"else",
":",
"aulast",
",",
"auinit",
"=",
"tokens",
"[",
"0",
"]",
",",
"''",
"aulast",
"=",
"_strip_punctuation",
"(",
"aulast",
")",
".",
"upper",
"(",
")",
"auinit",
"=",
"_strip_punctuation",
"(",
"auinit",
")",
".",
"upper",
"(",
")",
"author_key",
"=",
"auinit",
"+",
"aulast",
"affiliation_row",
"=",
"{",
"\"model\"",
":",
"\"django-tethne.affiliation\"",
",",
"\"pk\"",
":",
"affiliation_id",
",",
"\"fields\"",
":",
"{",
"\"author\"",
":",
"self",
".",
"authorIdMap",
"[",
"author_key",
"]",
",",
"\"institution\"",
":",
"self",
".",
"instituteIdMap",
"[",
"institute_literal",
"]",
"}",
"}",
"return",
"affiliation_row"
] | This method is used to map the Affiliation between an author and Institution.
Parameters
----------
value - The author name
affiliation_id - Primary key of the affiliation table
institute_literal
Returns
-------
Affiliation details(JSON fixture) which can be written to a file | [
"This",
"method",
"is",
"used",
"to",
"map",
"the",
"Affiliation",
"between",
"an",
"author",
"and",
"Institution",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/serialize/paper.py#L426-L464 | train |
diging/tethne | tethne/readers/base.py | IterParser.start | def start(self):
"""
Find the first data entry and prepare to parse.
"""
while not self.is_start(self.current_tag):
self.next()
self.new_entry() | python | def start(self):
"""
Find the first data entry and prepare to parse.
"""
while not self.is_start(self.current_tag):
self.next()
self.new_entry() | [
"def",
"start",
"(",
"self",
")",
":",
"while",
"not",
"self",
".",
"is_start",
"(",
"self",
".",
"current_tag",
")",
":",
"self",
".",
"next",
"(",
")",
"self",
".",
"new_entry",
"(",
")"
] | Find the first data entry and prepare to parse. | [
"Find",
"the",
"first",
"data",
"entry",
"and",
"prepare",
"to",
"parse",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/base.py#L129-L136 | train |
diging/tethne | tethne/readers/base.py | IterParser.handle | def handle(self, tag, data):
"""
Process a single line of data, and store the result.
Parameters
----------
tag : str
data :
"""
if self.is_end(tag):
self.postprocess_entry()
if self.is_start(tag):
self.new_entry()
if not data or not tag:
return
if getattr(self, 'parse_only', None) and tag not in self.parse_only:
return
# TODO: revisit encoding here.
if isinstance(data, unicode):
data = unicodedata.normalize('NFKD', data)#.encode('utf-8','ignore')
handler = self._get_handler(tag)
if handler is not None:
data = handler(data)
if tag in self.tags: # Rename the field.
tag = self.tags[tag]
# Multiline fields are represented as lists of values.
if hasattr(self.data[-1], tag):
value = getattr(self.data[-1], tag)
if tag in self.concat_fields:
value = ' '.join([value, unicode(data)])
elif type(value) is list:
value.append(data)
elif value not in [None, '']:
value = [value, data]
else:
value = data
setattr(self.data[-1], tag, value)
self.fields.add(tag) | python | def handle(self, tag, data):
"""
Process a single line of data, and store the result.
Parameters
----------
tag : str
data :
"""
if self.is_end(tag):
self.postprocess_entry()
if self.is_start(tag):
self.new_entry()
if not data or not tag:
return
if getattr(self, 'parse_only', None) and tag not in self.parse_only:
return
# TODO: revisit encoding here.
if isinstance(data, unicode):
data = unicodedata.normalize('NFKD', data)#.encode('utf-8','ignore')
handler = self._get_handler(tag)
if handler is not None:
data = handler(data)
if tag in self.tags: # Rename the field.
tag = self.tags[tag]
# Multiline fields are represented as lists of values.
if hasattr(self.data[-1], tag):
value = getattr(self.data[-1], tag)
if tag in self.concat_fields:
value = ' '.join([value, unicode(data)])
elif type(value) is list:
value.append(data)
elif value not in [None, '']:
value = [value, data]
else:
value = data
setattr(self.data[-1], tag, value)
self.fields.add(tag) | [
"def",
"handle",
"(",
"self",
",",
"tag",
",",
"data",
")",
":",
"if",
"self",
".",
"is_end",
"(",
"tag",
")",
":",
"self",
".",
"postprocess_entry",
"(",
")",
"if",
"self",
".",
"is_start",
"(",
"tag",
")",
":",
"self",
".",
"new_entry",
"(",
")",
"if",
"not",
"data",
"or",
"not",
"tag",
":",
"return",
"if",
"getattr",
"(",
"self",
",",
"'parse_only'",
",",
"None",
")",
"and",
"tag",
"not",
"in",
"self",
".",
"parse_only",
":",
"return",
"# TODO: revisit encoding here.",
"if",
"isinstance",
"(",
"data",
",",
"unicode",
")",
":",
"data",
"=",
"unicodedata",
".",
"normalize",
"(",
"'NFKD'",
",",
"data",
")",
"#.encode('utf-8','ignore')",
"handler",
"=",
"self",
".",
"_get_handler",
"(",
"tag",
")",
"if",
"handler",
"is",
"not",
"None",
":",
"data",
"=",
"handler",
"(",
"data",
")",
"if",
"tag",
"in",
"self",
".",
"tags",
":",
"# Rename the field.",
"tag",
"=",
"self",
".",
"tags",
"[",
"tag",
"]",
"# Multiline fields are represented as lists of values.",
"if",
"hasattr",
"(",
"self",
".",
"data",
"[",
"-",
"1",
"]",
",",
"tag",
")",
":",
"value",
"=",
"getattr",
"(",
"self",
".",
"data",
"[",
"-",
"1",
"]",
",",
"tag",
")",
"if",
"tag",
"in",
"self",
".",
"concat_fields",
":",
"value",
"=",
"' '",
".",
"join",
"(",
"[",
"value",
",",
"unicode",
"(",
"data",
")",
"]",
")",
"elif",
"type",
"(",
"value",
")",
"is",
"list",
":",
"value",
".",
"append",
"(",
"data",
")",
"elif",
"value",
"not",
"in",
"[",
"None",
",",
"''",
"]",
":",
"value",
"=",
"[",
"value",
",",
"data",
"]",
"else",
":",
"value",
"=",
"data",
"setattr",
"(",
"self",
".",
"data",
"[",
"-",
"1",
"]",
",",
"tag",
",",
"value",
")",
"self",
".",
"fields",
".",
"add",
"(",
"tag",
")"
] | Process a single line of data, and store the result.
Parameters
----------
tag : str
data : | [
"Process",
"a",
"single",
"line",
"of",
"data",
"and",
"store",
"the",
"result",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/base.py#L138-L183 | train |
diging/tethne | tethne/readers/base.py | FTParser.open | def open(self):
"""
Open the data file.
"""
if not os.path.exists(self.path):
raise IOError("No such path: {0}".format(self.path))
with open(self.path, "rb") as f:
msg = f.read()
result = chardet.detect(msg)
self.buffer = codecs.open(self.path, "rb", encoding=result['encoding'])
self.at_eof = False | python | def open(self):
"""
Open the data file.
"""
if not os.path.exists(self.path):
raise IOError("No such path: {0}".format(self.path))
with open(self.path, "rb") as f:
msg = f.read()
result = chardet.detect(msg)
self.buffer = codecs.open(self.path, "rb", encoding=result['encoding'])
self.at_eof = False | [
"def",
"open",
"(",
"self",
")",
":",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"self",
".",
"path",
")",
":",
"raise",
"IOError",
"(",
"\"No such path: {0}\"",
".",
"format",
"(",
"self",
".",
"path",
")",
")",
"with",
"open",
"(",
"self",
".",
"path",
",",
"\"rb\"",
")",
"as",
"f",
":",
"msg",
"=",
"f",
".",
"read",
"(",
")",
"result",
"=",
"chardet",
".",
"detect",
"(",
"msg",
")",
"self",
".",
"buffer",
"=",
"codecs",
".",
"open",
"(",
"self",
".",
"path",
",",
"\"rb\"",
",",
"encoding",
"=",
"result",
"[",
"'encoding'",
"]",
")",
"self",
".",
"at_eof",
"=",
"False"
] | Open the data file. | [
"Open",
"the",
"data",
"file",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/base.py#L206-L221 | train |
diging/tethne | tethne/readers/base.py | FTParser.next | def next(self):
"""
Get the next line of data.
Returns
-------
tag : str
data :
"""
line = self.buffer.readline()
while line == '\n': # Skip forward to the next line with content.
line = self.buffer.readline()
if line == '': # End of file.
self.at_eof = True
return None, None
match = re.match('([A-Z]{2}|[C][1])\W(.*)', line)
if match is not None:
self.current_tag, data = match.groups()
else:
self.current_tag = self.last_tag
data = line.strip()
return self.current_tag, _cast(data) | python | def next(self):
"""
Get the next line of data.
Returns
-------
tag : str
data :
"""
line = self.buffer.readline()
while line == '\n': # Skip forward to the next line with content.
line = self.buffer.readline()
if line == '': # End of file.
self.at_eof = True
return None, None
match = re.match('([A-Z]{2}|[C][1])\W(.*)', line)
if match is not None:
self.current_tag, data = match.groups()
else:
self.current_tag = self.last_tag
data = line.strip()
return self.current_tag, _cast(data) | [
"def",
"next",
"(",
"self",
")",
":",
"line",
"=",
"self",
".",
"buffer",
".",
"readline",
"(",
")",
"while",
"line",
"==",
"'\\n'",
":",
"# Skip forward to the next line with content.",
"line",
"=",
"self",
".",
"buffer",
".",
"readline",
"(",
")",
"if",
"line",
"==",
"''",
":",
"# End of file.",
"self",
".",
"at_eof",
"=",
"True",
"return",
"None",
",",
"None",
"match",
"=",
"re",
".",
"match",
"(",
"'([A-Z]{2}|[C][1])\\W(.*)'",
",",
"line",
")",
"if",
"match",
"is",
"not",
"None",
":",
"self",
".",
"current_tag",
",",
"data",
"=",
"match",
".",
"groups",
"(",
")",
"else",
":",
"self",
".",
"current_tag",
"=",
"self",
".",
"last_tag",
"data",
"=",
"line",
".",
"strip",
"(",
")",
"return",
"self",
".",
"current_tag",
",",
"_cast",
"(",
"data",
")"
] | Get the next line of data.
Returns
-------
tag : str
data : | [
"Get",
"the",
"next",
"line",
"of",
"data",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/base.py#L223-L247 | train |
diging/tethne | tethne/networks/authors.py | coauthors | def coauthors(corpus, min_weight=1, edge_attrs=['ayjid', 'date'], **kwargs):
"""
A graph describing joint authorship in ``corpus``.
"""
return cooccurrence(corpus, 'authors', min_weight=min_weight,
edge_attrs=edge_attrs, **kwargs) | python | def coauthors(corpus, min_weight=1, edge_attrs=['ayjid', 'date'], **kwargs):
"""
A graph describing joint authorship in ``corpus``.
"""
return cooccurrence(corpus, 'authors', min_weight=min_weight,
edge_attrs=edge_attrs, **kwargs) | [
"def",
"coauthors",
"(",
"corpus",
",",
"min_weight",
"=",
"1",
",",
"edge_attrs",
"=",
"[",
"'ayjid'",
",",
"'date'",
"]",
",",
"*",
"*",
"kwargs",
")",
":",
"return",
"cooccurrence",
"(",
"corpus",
",",
"'authors'",
",",
"min_weight",
"=",
"min_weight",
",",
"edge_attrs",
"=",
"edge_attrs",
",",
"*",
"*",
"kwargs",
")"
] | A graph describing joint authorship in ``corpus``. | [
"A",
"graph",
"describing",
"joint",
"authorship",
"in",
"corpus",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/networks/authors.py#L22-L27 | train |
diging/tethne | tethne/readers/zotero.py | extract_text | def extract_text(fpath):
"""
Extracts structured text content from a plain-text file at ``fpath``.
Parameters
----------
fpath : str
Path to the text file..
Returns
-------
:class:`.StructuredFeature`
A :class:`.StructuredFeature` that contains sentence context.
"""
with codecs.open(fpath, 'r') as f: # Determine the encoding of the file.
document = f.read()
encoding = chardet.detect(document)['encoding']
document = document.decode(encoding)
tokens = []
sentences = []
i = 0
for sentence in nltk.tokenize.sent_tokenize(document):
sentences.append(i)
for word in nltk.tokenize.word_tokenize(sentence):
tokens.append(word)
i += 1
contexts = [('sentence', sentences)]
return StructuredFeature(tokens, contexts) | python | def extract_text(fpath):
"""
Extracts structured text content from a plain-text file at ``fpath``.
Parameters
----------
fpath : str
Path to the text file..
Returns
-------
:class:`.StructuredFeature`
A :class:`.StructuredFeature` that contains sentence context.
"""
with codecs.open(fpath, 'r') as f: # Determine the encoding of the file.
document = f.read()
encoding = chardet.detect(document)['encoding']
document = document.decode(encoding)
tokens = []
sentences = []
i = 0
for sentence in nltk.tokenize.sent_tokenize(document):
sentences.append(i)
for word in nltk.tokenize.word_tokenize(sentence):
tokens.append(word)
i += 1
contexts = [('sentence', sentences)]
return StructuredFeature(tokens, contexts) | [
"def",
"extract_text",
"(",
"fpath",
")",
":",
"with",
"codecs",
".",
"open",
"(",
"fpath",
",",
"'r'",
")",
"as",
"f",
":",
"# Determine the encoding of the file.",
"document",
"=",
"f",
".",
"read",
"(",
")",
"encoding",
"=",
"chardet",
".",
"detect",
"(",
"document",
")",
"[",
"'encoding'",
"]",
"document",
"=",
"document",
".",
"decode",
"(",
"encoding",
")",
"tokens",
"=",
"[",
"]",
"sentences",
"=",
"[",
"]",
"i",
"=",
"0",
"for",
"sentence",
"in",
"nltk",
".",
"tokenize",
".",
"sent_tokenize",
"(",
"document",
")",
":",
"sentences",
".",
"append",
"(",
"i",
")",
"for",
"word",
"in",
"nltk",
".",
"tokenize",
".",
"word_tokenize",
"(",
"sentence",
")",
":",
"tokens",
".",
"append",
"(",
"word",
")",
"i",
"+=",
"1",
"contexts",
"=",
"[",
"(",
"'sentence'",
",",
"sentences",
")",
"]",
"return",
"StructuredFeature",
"(",
"tokens",
",",
"contexts",
")"
] | Extracts structured text content from a plain-text file at ``fpath``.
Parameters
----------
fpath : str
Path to the text file..
Returns
-------
:class:`.StructuredFeature`
A :class:`.StructuredFeature` that contains sentence context. | [
"Extracts",
"structured",
"text",
"content",
"from",
"a",
"plain",
"-",
"text",
"file",
"at",
"fpath",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/zotero.py#L86-L117 | train |
diging/tethne | tethne/readers/zotero.py | extract_pdf | def extract_pdf(fpath):
"""
Extracts structured text content from a PDF at ``fpath``.
Parameters
----------
fpath : str
Path to the PDF.
Returns
-------
:class:`.StructuredFeature`
A :class:`.StructuredFeature` that contains page and sentence contexts.
"""
with codecs.open(fpath, 'r') as f: # Determine the encoding of the file.
document = slate.PDF(f)
encoding = chardet.detect(document[0])
tokens = []
pages = []
sentences = []
tokenizer = nltk.tokenize.TextTilingTokenizer()
i = 0
for page in document:
pages.append(i)
# Decode using the correct encoding.
page = page.decode(encoding['encoding'])
for sentence in nltk.tokenize.sent_tokenize(page):
sentences.append(i)
for word in nltk.tokenize.word_tokenize(sentence):
if len(word) > 15:
words = nltk.tokenize.word_tokenize(_infer_spaces(word))
if mean([len(w) for w in words]) > 2:
for w in words:
tokens.append(w)
i += 1
continue
tokens.append(word)
i += 1
contexts = [('page', pages), ('sentence', sentences)]
return StructuredFeature(tokens, contexts) | python | def extract_pdf(fpath):
"""
Extracts structured text content from a PDF at ``fpath``.
Parameters
----------
fpath : str
Path to the PDF.
Returns
-------
:class:`.StructuredFeature`
A :class:`.StructuredFeature` that contains page and sentence contexts.
"""
with codecs.open(fpath, 'r') as f: # Determine the encoding of the file.
document = slate.PDF(f)
encoding = chardet.detect(document[0])
tokens = []
pages = []
sentences = []
tokenizer = nltk.tokenize.TextTilingTokenizer()
i = 0
for page in document:
pages.append(i)
# Decode using the correct encoding.
page = page.decode(encoding['encoding'])
for sentence in nltk.tokenize.sent_tokenize(page):
sentences.append(i)
for word in nltk.tokenize.word_tokenize(sentence):
if len(word) > 15:
words = nltk.tokenize.word_tokenize(_infer_spaces(word))
if mean([len(w) for w in words]) > 2:
for w in words:
tokens.append(w)
i += 1
continue
tokens.append(word)
i += 1
contexts = [('page', pages), ('sentence', sentences)]
return StructuredFeature(tokens, contexts) | [
"def",
"extract_pdf",
"(",
"fpath",
")",
":",
"with",
"codecs",
".",
"open",
"(",
"fpath",
",",
"'r'",
")",
"as",
"f",
":",
"# Determine the encoding of the file.",
"document",
"=",
"slate",
".",
"PDF",
"(",
"f",
")",
"encoding",
"=",
"chardet",
".",
"detect",
"(",
"document",
"[",
"0",
"]",
")",
"tokens",
"=",
"[",
"]",
"pages",
"=",
"[",
"]",
"sentences",
"=",
"[",
"]",
"tokenizer",
"=",
"nltk",
".",
"tokenize",
".",
"TextTilingTokenizer",
"(",
")",
"i",
"=",
"0",
"for",
"page",
"in",
"document",
":",
"pages",
".",
"append",
"(",
"i",
")",
"# Decode using the correct encoding.",
"page",
"=",
"page",
".",
"decode",
"(",
"encoding",
"[",
"'encoding'",
"]",
")",
"for",
"sentence",
"in",
"nltk",
".",
"tokenize",
".",
"sent_tokenize",
"(",
"page",
")",
":",
"sentences",
".",
"append",
"(",
"i",
")",
"for",
"word",
"in",
"nltk",
".",
"tokenize",
".",
"word_tokenize",
"(",
"sentence",
")",
":",
"if",
"len",
"(",
"word",
")",
">",
"15",
":",
"words",
"=",
"nltk",
".",
"tokenize",
".",
"word_tokenize",
"(",
"_infer_spaces",
"(",
"word",
")",
")",
"if",
"mean",
"(",
"[",
"len",
"(",
"w",
")",
"for",
"w",
"in",
"words",
"]",
")",
">",
"2",
":",
"for",
"w",
"in",
"words",
":",
"tokens",
".",
"append",
"(",
"w",
")",
"i",
"+=",
"1",
"continue",
"tokens",
".",
"append",
"(",
"word",
")",
"i",
"+=",
"1",
"contexts",
"=",
"[",
"(",
"'page'",
",",
"pages",
")",
",",
"(",
"'sentence'",
",",
"sentences",
")",
"]",
"return",
"StructuredFeature",
"(",
"tokens",
",",
"contexts",
")"
] | Extracts structured text content from a PDF at ``fpath``.
Parameters
----------
fpath : str
Path to the PDF.
Returns
-------
:class:`.StructuredFeature`
A :class:`.StructuredFeature` that contains page and sentence contexts. | [
"Extracts",
"structured",
"text",
"content",
"from",
"a",
"PDF",
"at",
"fpath",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/zotero.py#L120-L167 | train |
diging/tethne | tethne/readers/zotero.py | read | def read(path, corpus=True, index_by='uri', follow_links=False, **kwargs):
"""
Read bibliographic data from Zotero RDF.
Examples
--------
Assuming that the Zotero collection was exported to the directory
``/my/working/dir`` with the name ``myCollection``, a subdirectory should
have been created at ``/my/working/dir/myCollection``, and an RDF file
should exist at ``/my/working/dir/myCollection/myCollection.rdf``.
.. code-block:: python
>>> from tethne.readers.zotero import read
>>> myCorpus = read('/my/working/dir/myCollection')
>>> myCorpus
<tethne.classes.corpus.Corpus object at 0x10047e350>
Parameters
----------
path : str
Path to the output directory created by Zotero. Expected to contain a
file called ``[directory_name].rdf``.
corpus : bool
(default: True) If True, returns a :class:`.Corpus`\. Otherwise,
returns a list of :class:`.Paper`\s.
index_by : str
(default: ``'identifier'``) :class:`.Paper` attribute name to use as
the primary indexing field. If the field is missing on a
:class:`.Paper`\, a unique identifier will be generated based on the
title and author names.
follow_links : bool
If ``True``, attempts to load full-text content from attached files
(e.g. PDFs with embedded text). Default: False.
kwargs : kwargs
Passed to the :class:`.Corpus` constructor.
Returns
-------
corpus : :class:`.Corpus`
"""
# TODO: is there a case where `from_dir` would make sense?
parser = ZoteroParser(path, index_by=index_by, follow_links=follow_links)
papers = parser.parse()
if corpus:
c = Corpus(papers, index_by=index_by, **kwargs)
if c.duplicate_papers:
warnings.warn("Duplicate papers detected. Use the 'duplicate_papers' attribute of the corpus to get the list", UserWarning)
for fset_name, fset_values in parser.full_text.iteritems():
c.features[fset_name] = StructuredFeatureSet(fset_values)
return c
return papers | python | def read(path, corpus=True, index_by='uri', follow_links=False, **kwargs):
"""
Read bibliographic data from Zotero RDF.
Examples
--------
Assuming that the Zotero collection was exported to the directory
``/my/working/dir`` with the name ``myCollection``, a subdirectory should
have been created at ``/my/working/dir/myCollection``, and an RDF file
should exist at ``/my/working/dir/myCollection/myCollection.rdf``.
.. code-block:: python
>>> from tethne.readers.zotero import read
>>> myCorpus = read('/my/working/dir/myCollection')
>>> myCorpus
<tethne.classes.corpus.Corpus object at 0x10047e350>
Parameters
----------
path : str
Path to the output directory created by Zotero. Expected to contain a
file called ``[directory_name].rdf``.
corpus : bool
(default: True) If True, returns a :class:`.Corpus`\. Otherwise,
returns a list of :class:`.Paper`\s.
index_by : str
(default: ``'identifier'``) :class:`.Paper` attribute name to use as
the primary indexing field. If the field is missing on a
:class:`.Paper`\, a unique identifier will be generated based on the
title and author names.
follow_links : bool
If ``True``, attempts to load full-text content from attached files
(e.g. PDFs with embedded text). Default: False.
kwargs : kwargs
Passed to the :class:`.Corpus` constructor.
Returns
-------
corpus : :class:`.Corpus`
"""
# TODO: is there a case where `from_dir` would make sense?
parser = ZoteroParser(path, index_by=index_by, follow_links=follow_links)
papers = parser.parse()
if corpus:
c = Corpus(papers, index_by=index_by, **kwargs)
if c.duplicate_papers:
warnings.warn("Duplicate papers detected. Use the 'duplicate_papers' attribute of the corpus to get the list", UserWarning)
for fset_name, fset_values in parser.full_text.iteritems():
c.features[fset_name] = StructuredFeatureSet(fset_values)
return c
return papers | [
"def",
"read",
"(",
"path",
",",
"corpus",
"=",
"True",
",",
"index_by",
"=",
"'uri'",
",",
"follow_links",
"=",
"False",
",",
"*",
"*",
"kwargs",
")",
":",
"# TODO: is there a case where `from_dir` would make sense?",
"parser",
"=",
"ZoteroParser",
"(",
"path",
",",
"index_by",
"=",
"index_by",
",",
"follow_links",
"=",
"follow_links",
")",
"papers",
"=",
"parser",
".",
"parse",
"(",
")",
"if",
"corpus",
":",
"c",
"=",
"Corpus",
"(",
"papers",
",",
"index_by",
"=",
"index_by",
",",
"*",
"*",
"kwargs",
")",
"if",
"c",
".",
"duplicate_papers",
":",
"warnings",
".",
"warn",
"(",
"\"Duplicate papers detected. Use the 'duplicate_papers' attribute of the corpus to get the list\"",
",",
"UserWarning",
")",
"for",
"fset_name",
",",
"fset_values",
"in",
"parser",
".",
"full_text",
".",
"iteritems",
"(",
")",
":",
"c",
".",
"features",
"[",
"fset_name",
"]",
"=",
"StructuredFeatureSet",
"(",
"fset_values",
")",
"return",
"c",
"return",
"papers"
] | Read bibliographic data from Zotero RDF.
Examples
--------
Assuming that the Zotero collection was exported to the directory
``/my/working/dir`` with the name ``myCollection``, a subdirectory should
have been created at ``/my/working/dir/myCollection``, and an RDF file
should exist at ``/my/working/dir/myCollection/myCollection.rdf``.
.. code-block:: python
>>> from tethne.readers.zotero import read
>>> myCorpus = read('/my/working/dir/myCollection')
>>> myCorpus
<tethne.classes.corpus.Corpus object at 0x10047e350>
Parameters
----------
path : str
Path to the output directory created by Zotero. Expected to contain a
file called ``[directory_name].rdf``.
corpus : bool
(default: True) If True, returns a :class:`.Corpus`\. Otherwise,
returns a list of :class:`.Paper`\s.
index_by : str
(default: ``'identifier'``) :class:`.Paper` attribute name to use as
the primary indexing field. If the field is missing on a
:class:`.Paper`\, a unique identifier will be generated based on the
title and author names.
follow_links : bool
If ``True``, attempts to load full-text content from attached files
(e.g. PDFs with embedded text). Default: False.
kwargs : kwargs
Passed to the :class:`.Corpus` constructor.
Returns
-------
corpus : :class:`.Corpus` | [
"Read",
"bibliographic",
"data",
"from",
"Zotero",
"RDF",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/zotero.py#L391-L446 | train |
diging/tethne | tethne/readers/zotero.py | ZoteroParser.handle_date | def handle_date(self, value):
"""
Attempt to coerced date to ISO8601.
"""
try:
return iso8601.parse_date(unicode(value)).year
except iso8601.ParseError:
for datefmt in ("%B %d, %Y", "%Y-%m", "%Y-%m-%d", "%m/%d/%Y"):
try:
# TODO: remove str coercion.
return datetime.strptime(unicode(value), datefmt).date().year
except ValueError:
pass | python | def handle_date(self, value):
"""
Attempt to coerced date to ISO8601.
"""
try:
return iso8601.parse_date(unicode(value)).year
except iso8601.ParseError:
for datefmt in ("%B %d, %Y", "%Y-%m", "%Y-%m-%d", "%m/%d/%Y"):
try:
# TODO: remove str coercion.
return datetime.strptime(unicode(value), datefmt).date().year
except ValueError:
pass | [
"def",
"handle_date",
"(",
"self",
",",
"value",
")",
":",
"try",
":",
"return",
"iso8601",
".",
"parse_date",
"(",
"unicode",
"(",
"value",
")",
")",
".",
"year",
"except",
"iso8601",
".",
"ParseError",
":",
"for",
"datefmt",
"in",
"(",
"\"%B %d, %Y\"",
",",
"\"%Y-%m\"",
",",
"\"%Y-%m-%d\"",
",",
"\"%m/%d/%Y\"",
")",
":",
"try",
":",
"# TODO: remove str coercion.",
"return",
"datetime",
".",
"strptime",
"(",
"unicode",
"(",
"value",
")",
",",
"datefmt",
")",
".",
"date",
"(",
")",
".",
"year",
"except",
"ValueError",
":",
"pass"
] | Attempt to coerced date to ISO8601. | [
"Attempt",
"to",
"coerced",
"date",
"to",
"ISO8601",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/zotero.py#L242-L254 | train |
diging/tethne | tethne/readers/zotero.py | ZoteroParser.postprocess_link | def postprocess_link(self, entry):
"""
Attempt to load full-text content from resource.
"""
if not self.follow_links:
return
if type(entry.link) is not list:
entry.link = [entry.link]
for link in list(entry.link):
if not os.path.exists(link):
continue
mime_type = magic.from_file(link, mime=True)
if mime_type == 'application/pdf':
structuredfeature = extract_pdf(link)
elif mime_type == 'text/plain':
structuredfeature = extract_text(link)
else:
structuredfeature = None
if not structuredfeature:
continue
fset_name = mime_type.split('/')[-1] + '_text'
if not fset_name in self.full_text:
self.full_text[fset_name] = {}
if hasattr(self, 'index_by'):
ident = getattr(entry, self.index_by)
if type(ident) is list:
ident = ident[0]
else: # If `index_by` is not set, use `uri` by default.
ident = entry.uri
self.full_text[fset_name][ident] = structuredfeature | python | def postprocess_link(self, entry):
"""
Attempt to load full-text content from resource.
"""
if not self.follow_links:
return
if type(entry.link) is not list:
entry.link = [entry.link]
for link in list(entry.link):
if not os.path.exists(link):
continue
mime_type = magic.from_file(link, mime=True)
if mime_type == 'application/pdf':
structuredfeature = extract_pdf(link)
elif mime_type == 'text/plain':
structuredfeature = extract_text(link)
else:
structuredfeature = None
if not structuredfeature:
continue
fset_name = mime_type.split('/')[-1] + '_text'
if not fset_name in self.full_text:
self.full_text[fset_name] = {}
if hasattr(self, 'index_by'):
ident = getattr(entry, self.index_by)
if type(ident) is list:
ident = ident[0]
else: # If `index_by` is not set, use `uri` by default.
ident = entry.uri
self.full_text[fset_name][ident] = structuredfeature | [
"def",
"postprocess_link",
"(",
"self",
",",
"entry",
")",
":",
"if",
"not",
"self",
".",
"follow_links",
":",
"return",
"if",
"type",
"(",
"entry",
".",
"link",
")",
"is",
"not",
"list",
":",
"entry",
".",
"link",
"=",
"[",
"entry",
".",
"link",
"]",
"for",
"link",
"in",
"list",
"(",
"entry",
".",
"link",
")",
":",
"if",
"not",
"os",
".",
"path",
".",
"exists",
"(",
"link",
")",
":",
"continue",
"mime_type",
"=",
"magic",
".",
"from_file",
"(",
"link",
",",
"mime",
"=",
"True",
")",
"if",
"mime_type",
"==",
"'application/pdf'",
":",
"structuredfeature",
"=",
"extract_pdf",
"(",
"link",
")",
"elif",
"mime_type",
"==",
"'text/plain'",
":",
"structuredfeature",
"=",
"extract_text",
"(",
"link",
")",
"else",
":",
"structuredfeature",
"=",
"None",
"if",
"not",
"structuredfeature",
":",
"continue",
"fset_name",
"=",
"mime_type",
".",
"split",
"(",
"'/'",
")",
"[",
"-",
"1",
"]",
"+",
"'_text'",
"if",
"not",
"fset_name",
"in",
"self",
".",
"full_text",
":",
"self",
".",
"full_text",
"[",
"fset_name",
"]",
"=",
"{",
"}",
"if",
"hasattr",
"(",
"self",
",",
"'index_by'",
")",
":",
"ident",
"=",
"getattr",
"(",
"entry",
",",
"self",
".",
"index_by",
")",
"if",
"type",
"(",
"ident",
")",
"is",
"list",
":",
"ident",
"=",
"ident",
"[",
"0",
"]",
"else",
":",
"# If `index_by` is not set, use `uri` by default.",
"ident",
"=",
"entry",
".",
"uri",
"self",
".",
"full_text",
"[",
"fset_name",
"]",
"[",
"ident",
"]",
"=",
"structuredfeature"
] | Attempt to load full-text content from resource. | [
"Attempt",
"to",
"load",
"full",
"-",
"text",
"content",
"from",
"resource",
"."
] | ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f | https://github.com/diging/tethne/blob/ba10eeb264b7a3f2dbcce71cfd5cb2d6bbf7055f/tethne/readers/zotero.py#L351-L388 | train |
web-push-libs/pywebpush | pywebpush/__init__.py | webpush | def webpush(subscription_info,
data=None,
vapid_private_key=None,
vapid_claims=None,
content_encoding="aes128gcm",
curl=False,
timeout=None,
ttl=0):
"""
One call solution to endcode and send `data` to the endpoint
contained in `subscription_info` using optional VAPID auth headers.
in example:
.. code-block:: python
from pywebpush import python
webpush(
subscription_info={
"endpoint": "https://push.example.com/v1/abcd",
"keys": {"p256dh": "0123abcd...",
"auth": "001122..."}
},
data="Mary had a little lamb, with a nice mint jelly",
vapid_private_key="path/to/key.pem",
vapid_claims={"sub": "[email protected]"}
)
No additional method call is required. Any non-success will throw a
`WebPushException`.
:param subscription_info: Provided by the client call
:type subscription_info: dict
:param data: Serialized data to send
:type data: str
:param vapid_private_key: Vapid instance or path to vapid private key PEM \
or encoded str
:type vapid_private_key: Union[Vapid, str]
:param vapid_claims: Dictionary of claims ('sub' required)
:type vapid_claims: dict
:param content_encoding: Optional content type string
:type content_encoding: str
:param curl: Return as "curl" string instead of sending
:type curl: bool
:param timeout: POST requests timeout
:type timeout: float or tuple
:param ttl: Time To Live
:type ttl: int
:return requests.Response or string
"""
vapid_headers = None
if vapid_claims:
if not vapid_claims.get('aud'):
url = urlparse(subscription_info.get('endpoint'))
aud = "{}://{}".format(url.scheme, url.netloc)
vapid_claims['aud'] = aud
if not vapid_claims.get('exp'):
# encryption lives for 12 hours
vapid_claims['exp'] = int(time.time()) + (12 * 60 * 60)
if not vapid_private_key:
raise WebPushException("VAPID dict missing 'private_key'")
if isinstance(vapid_private_key, Vapid):
vv = vapid_private_key
elif os.path.isfile(vapid_private_key):
# Presume that key from file is handled correctly by
# py_vapid.
vv = Vapid.from_file(
private_key_file=vapid_private_key) # pragma no cover
else:
vv = Vapid.from_string(private_key=vapid_private_key)
vapid_headers = vv.sign(vapid_claims)
response = WebPusher(subscription_info).send(
data,
vapid_headers,
ttl=ttl,
content_encoding=content_encoding,
curl=curl,
timeout=timeout,
)
if not curl and response.status_code > 202:
raise WebPushException("Push failed: {} {}".format(
response.status_code, response.reason),
response=response)
return response | python | def webpush(subscription_info,
data=None,
vapid_private_key=None,
vapid_claims=None,
content_encoding="aes128gcm",
curl=False,
timeout=None,
ttl=0):
"""
One call solution to endcode and send `data` to the endpoint
contained in `subscription_info` using optional VAPID auth headers.
in example:
.. code-block:: python
from pywebpush import python
webpush(
subscription_info={
"endpoint": "https://push.example.com/v1/abcd",
"keys": {"p256dh": "0123abcd...",
"auth": "001122..."}
},
data="Mary had a little lamb, with a nice mint jelly",
vapid_private_key="path/to/key.pem",
vapid_claims={"sub": "[email protected]"}
)
No additional method call is required. Any non-success will throw a
`WebPushException`.
:param subscription_info: Provided by the client call
:type subscription_info: dict
:param data: Serialized data to send
:type data: str
:param vapid_private_key: Vapid instance or path to vapid private key PEM \
or encoded str
:type vapid_private_key: Union[Vapid, str]
:param vapid_claims: Dictionary of claims ('sub' required)
:type vapid_claims: dict
:param content_encoding: Optional content type string
:type content_encoding: str
:param curl: Return as "curl" string instead of sending
:type curl: bool
:param timeout: POST requests timeout
:type timeout: float or tuple
:param ttl: Time To Live
:type ttl: int
:return requests.Response or string
"""
vapid_headers = None
if vapid_claims:
if not vapid_claims.get('aud'):
url = urlparse(subscription_info.get('endpoint'))
aud = "{}://{}".format(url.scheme, url.netloc)
vapid_claims['aud'] = aud
if not vapid_claims.get('exp'):
# encryption lives for 12 hours
vapid_claims['exp'] = int(time.time()) + (12 * 60 * 60)
if not vapid_private_key:
raise WebPushException("VAPID dict missing 'private_key'")
if isinstance(vapid_private_key, Vapid):
vv = vapid_private_key
elif os.path.isfile(vapid_private_key):
# Presume that key from file is handled correctly by
# py_vapid.
vv = Vapid.from_file(
private_key_file=vapid_private_key) # pragma no cover
else:
vv = Vapid.from_string(private_key=vapid_private_key)
vapid_headers = vv.sign(vapid_claims)
response = WebPusher(subscription_info).send(
data,
vapid_headers,
ttl=ttl,
content_encoding=content_encoding,
curl=curl,
timeout=timeout,
)
if not curl and response.status_code > 202:
raise WebPushException("Push failed: {} {}".format(
response.status_code, response.reason),
response=response)
return response | [
"def",
"webpush",
"(",
"subscription_info",
",",
"data",
"=",
"None",
",",
"vapid_private_key",
"=",
"None",
",",
"vapid_claims",
"=",
"None",
",",
"content_encoding",
"=",
"\"aes128gcm\"",
",",
"curl",
"=",
"False",
",",
"timeout",
"=",
"None",
",",
"ttl",
"=",
"0",
")",
":",
"vapid_headers",
"=",
"None",
"if",
"vapid_claims",
":",
"if",
"not",
"vapid_claims",
".",
"get",
"(",
"'aud'",
")",
":",
"url",
"=",
"urlparse",
"(",
"subscription_info",
".",
"get",
"(",
"'endpoint'",
")",
")",
"aud",
"=",
"\"{}://{}\"",
".",
"format",
"(",
"url",
".",
"scheme",
",",
"url",
".",
"netloc",
")",
"vapid_claims",
"[",
"'aud'",
"]",
"=",
"aud",
"if",
"not",
"vapid_claims",
".",
"get",
"(",
"'exp'",
")",
":",
"# encryption lives for 12 hours",
"vapid_claims",
"[",
"'exp'",
"]",
"=",
"int",
"(",
"time",
".",
"time",
"(",
")",
")",
"+",
"(",
"12",
"*",
"60",
"*",
"60",
")",
"if",
"not",
"vapid_private_key",
":",
"raise",
"WebPushException",
"(",
"\"VAPID dict missing 'private_key'\"",
")",
"if",
"isinstance",
"(",
"vapid_private_key",
",",
"Vapid",
")",
":",
"vv",
"=",
"vapid_private_key",
"elif",
"os",
".",
"path",
".",
"isfile",
"(",
"vapid_private_key",
")",
":",
"# Presume that key from file is handled correctly by",
"# py_vapid.",
"vv",
"=",
"Vapid",
".",
"from_file",
"(",
"private_key_file",
"=",
"vapid_private_key",
")",
"# pragma no cover",
"else",
":",
"vv",
"=",
"Vapid",
".",
"from_string",
"(",
"private_key",
"=",
"vapid_private_key",
")",
"vapid_headers",
"=",
"vv",
".",
"sign",
"(",
"vapid_claims",
")",
"response",
"=",
"WebPusher",
"(",
"subscription_info",
")",
".",
"send",
"(",
"data",
",",
"vapid_headers",
",",
"ttl",
"=",
"ttl",
",",
"content_encoding",
"=",
"content_encoding",
",",
"curl",
"=",
"curl",
",",
"timeout",
"=",
"timeout",
",",
")",
"if",
"not",
"curl",
"and",
"response",
".",
"status_code",
">",
"202",
":",
"raise",
"WebPushException",
"(",
"\"Push failed: {} {}\"",
".",
"format",
"(",
"response",
".",
"status_code",
",",
"response",
".",
"reason",
")",
",",
"response",
"=",
"response",
")",
"return",
"response"
] | One call solution to endcode and send `data` to the endpoint
contained in `subscription_info` using optional VAPID auth headers.
in example:
.. code-block:: python
from pywebpush import python
webpush(
subscription_info={
"endpoint": "https://push.example.com/v1/abcd",
"keys": {"p256dh": "0123abcd...",
"auth": "001122..."}
},
data="Mary had a little lamb, with a nice mint jelly",
vapid_private_key="path/to/key.pem",
vapid_claims={"sub": "[email protected]"}
)
No additional method call is required. Any non-success will throw a
`WebPushException`.
:param subscription_info: Provided by the client call
:type subscription_info: dict
:param data: Serialized data to send
:type data: str
:param vapid_private_key: Vapid instance or path to vapid private key PEM \
or encoded str
:type vapid_private_key: Union[Vapid, str]
:param vapid_claims: Dictionary of claims ('sub' required)
:type vapid_claims: dict
:param content_encoding: Optional content type string
:type content_encoding: str
:param curl: Return as "curl" string instead of sending
:type curl: bool
:param timeout: POST requests timeout
:type timeout: float or tuple
:param ttl: Time To Live
:type ttl: int
:return requests.Response or string | [
"One",
"call",
"solution",
"to",
"endcode",
"and",
"send",
"data",
"to",
"the",
"endpoint",
"contained",
"in",
"subscription_info",
"using",
"optional",
"VAPID",
"auth",
"headers",
"."
] | 2a23f45b7819e31bd030de9fe1357a1cf7dcfdc4 | https://github.com/web-push-libs/pywebpush/blob/2a23f45b7819e31bd030de9fe1357a1cf7dcfdc4/pywebpush/__init__.py#L350-L435 | train |
web-push-libs/pywebpush | pywebpush/__init__.py | WebPusher.encode | def encode(self, data, content_encoding="aes128gcm"):
"""Encrypt the data.
:param data: A serialized block of byte data (String, JSON, bit array,
etc.) Make sure that whatever you send, your client knows how
to understand it.
:type data: str
:param content_encoding: The content_encoding type to use to encrypt
the data. Defaults to RFC8188 "aes128gcm". The previous draft-01 is
"aesgcm", however this format is now deprecated.
:type content_encoding: enum("aesgcm", "aes128gcm")
"""
# Salt is a random 16 byte array.
if not data:
return
if not self.auth_key or not self.receiver_key:
raise WebPushException("No keys specified in subscription info")
salt = None
if content_encoding not in self.valid_encodings:
raise WebPushException("Invalid content encoding specified. "
"Select from " +
json.dumps(self.valid_encodings))
if content_encoding == "aesgcm":
salt = os.urandom(16)
# The server key is an ephemeral ECDH key used only for this
# transaction
server_key = ec.generate_private_key(ec.SECP256R1, default_backend())
crypto_key = server_key.public_key().public_bytes(
encoding=serialization.Encoding.X962,
format=serialization.PublicFormat.UncompressedPoint
)
if isinstance(data, six.string_types):
data = bytes(data.encode('utf8'))
if content_encoding == "aes128gcm":
encrypted = http_ece.encrypt(
data,
salt=salt,
private_key=server_key,
dh=self.receiver_key,
auth_secret=self.auth_key,
version=content_encoding)
reply = CaseInsensitiveDict({
'body': encrypted
})
else:
crypto_key = base64.urlsafe_b64encode(crypto_key).strip(b'=')
encrypted = http_ece.encrypt(
data,
salt=salt,
private_key=server_key,
keyid=crypto_key.decode(),
dh=self.receiver_key,
auth_secret=self.auth_key,
version=content_encoding)
reply = CaseInsensitiveDict({
'crypto_key': crypto_key,
'body': encrypted,
})
if salt:
reply['salt'] = base64.urlsafe_b64encode(salt).strip(b'=')
return reply | python | def encode(self, data, content_encoding="aes128gcm"):
"""Encrypt the data.
:param data: A serialized block of byte data (String, JSON, bit array,
etc.) Make sure that whatever you send, your client knows how
to understand it.
:type data: str
:param content_encoding: The content_encoding type to use to encrypt
the data. Defaults to RFC8188 "aes128gcm". The previous draft-01 is
"aesgcm", however this format is now deprecated.
:type content_encoding: enum("aesgcm", "aes128gcm")
"""
# Salt is a random 16 byte array.
if not data:
return
if not self.auth_key or not self.receiver_key:
raise WebPushException("No keys specified in subscription info")
salt = None
if content_encoding not in self.valid_encodings:
raise WebPushException("Invalid content encoding specified. "
"Select from " +
json.dumps(self.valid_encodings))
if content_encoding == "aesgcm":
salt = os.urandom(16)
# The server key is an ephemeral ECDH key used only for this
# transaction
server_key = ec.generate_private_key(ec.SECP256R1, default_backend())
crypto_key = server_key.public_key().public_bytes(
encoding=serialization.Encoding.X962,
format=serialization.PublicFormat.UncompressedPoint
)
if isinstance(data, six.string_types):
data = bytes(data.encode('utf8'))
if content_encoding == "aes128gcm":
encrypted = http_ece.encrypt(
data,
salt=salt,
private_key=server_key,
dh=self.receiver_key,
auth_secret=self.auth_key,
version=content_encoding)
reply = CaseInsensitiveDict({
'body': encrypted
})
else:
crypto_key = base64.urlsafe_b64encode(crypto_key).strip(b'=')
encrypted = http_ece.encrypt(
data,
salt=salt,
private_key=server_key,
keyid=crypto_key.decode(),
dh=self.receiver_key,
auth_secret=self.auth_key,
version=content_encoding)
reply = CaseInsensitiveDict({
'crypto_key': crypto_key,
'body': encrypted,
})
if salt:
reply['salt'] = base64.urlsafe_b64encode(salt).strip(b'=')
return reply | [
"def",
"encode",
"(",
"self",
",",
"data",
",",
"content_encoding",
"=",
"\"aes128gcm\"",
")",
":",
"# Salt is a random 16 byte array.",
"if",
"not",
"data",
":",
"return",
"if",
"not",
"self",
".",
"auth_key",
"or",
"not",
"self",
".",
"receiver_key",
":",
"raise",
"WebPushException",
"(",
"\"No keys specified in subscription info\"",
")",
"salt",
"=",
"None",
"if",
"content_encoding",
"not",
"in",
"self",
".",
"valid_encodings",
":",
"raise",
"WebPushException",
"(",
"\"Invalid content encoding specified. \"",
"\"Select from \"",
"+",
"json",
".",
"dumps",
"(",
"self",
".",
"valid_encodings",
")",
")",
"if",
"content_encoding",
"==",
"\"aesgcm\"",
":",
"salt",
"=",
"os",
".",
"urandom",
"(",
"16",
")",
"# The server key is an ephemeral ECDH key used only for this",
"# transaction",
"server_key",
"=",
"ec",
".",
"generate_private_key",
"(",
"ec",
".",
"SECP256R1",
",",
"default_backend",
"(",
")",
")",
"crypto_key",
"=",
"server_key",
".",
"public_key",
"(",
")",
".",
"public_bytes",
"(",
"encoding",
"=",
"serialization",
".",
"Encoding",
".",
"X962",
",",
"format",
"=",
"serialization",
".",
"PublicFormat",
".",
"UncompressedPoint",
")",
"if",
"isinstance",
"(",
"data",
",",
"six",
".",
"string_types",
")",
":",
"data",
"=",
"bytes",
"(",
"data",
".",
"encode",
"(",
"'utf8'",
")",
")",
"if",
"content_encoding",
"==",
"\"aes128gcm\"",
":",
"encrypted",
"=",
"http_ece",
".",
"encrypt",
"(",
"data",
",",
"salt",
"=",
"salt",
",",
"private_key",
"=",
"server_key",
",",
"dh",
"=",
"self",
".",
"receiver_key",
",",
"auth_secret",
"=",
"self",
".",
"auth_key",
",",
"version",
"=",
"content_encoding",
")",
"reply",
"=",
"CaseInsensitiveDict",
"(",
"{",
"'body'",
":",
"encrypted",
"}",
")",
"else",
":",
"crypto_key",
"=",
"base64",
".",
"urlsafe_b64encode",
"(",
"crypto_key",
")",
".",
"strip",
"(",
"b'='",
")",
"encrypted",
"=",
"http_ece",
".",
"encrypt",
"(",
"data",
",",
"salt",
"=",
"salt",
",",
"private_key",
"=",
"server_key",
",",
"keyid",
"=",
"crypto_key",
".",
"decode",
"(",
")",
",",
"dh",
"=",
"self",
".",
"receiver_key",
",",
"auth_secret",
"=",
"self",
".",
"auth_key",
",",
"version",
"=",
"content_encoding",
")",
"reply",
"=",
"CaseInsensitiveDict",
"(",
"{",
"'crypto_key'",
":",
"crypto_key",
",",
"'body'",
":",
"encrypted",
",",
"}",
")",
"if",
"salt",
":",
"reply",
"[",
"'salt'",
"]",
"=",
"base64",
".",
"urlsafe_b64encode",
"(",
"salt",
")",
".",
"strip",
"(",
"b'='",
")",
"return",
"reply"
] | Encrypt the data.
:param data: A serialized block of byte data (String, JSON, bit array,
etc.) Make sure that whatever you send, your client knows how
to understand it.
:type data: str
:param content_encoding: The content_encoding type to use to encrypt
the data. Defaults to RFC8188 "aes128gcm". The previous draft-01 is
"aesgcm", however this format is now deprecated.
:type content_encoding: enum("aesgcm", "aes128gcm") | [
"Encrypt",
"the",
"data",
"."
] | 2a23f45b7819e31bd030de9fe1357a1cf7dcfdc4 | https://github.com/web-push-libs/pywebpush/blob/2a23f45b7819e31bd030de9fe1357a1cf7dcfdc4/pywebpush/__init__.py#L162-L224 | train |
web-push-libs/pywebpush | pywebpush/__init__.py | WebPusher.send | def send(self, data=None, headers=None, ttl=0, gcm_key=None, reg_id=None,
content_encoding="aes128gcm", curl=False, timeout=None):
"""Encode and send the data to the Push Service.
:param data: A serialized block of data (see encode() ).
:type data: str
:param headers: A dictionary containing any additional HTTP headers.
:type headers: dict
:param ttl: The Time To Live in seconds for this message if the
recipient is not online. (Defaults to "0", which discards the
message immediately if the recipient is unavailable.)
:type ttl: int
:param gcm_key: API key obtained from the Google Developer Console.
Needed if endpoint is https://android.googleapis.com/gcm/send
:type gcm_key: string
:param reg_id: registration id of the recipient. If not provided,
it will be extracted from the endpoint.
:type reg_id: str
:param content_encoding: ECE content encoding (defaults to "aes128gcm")
:type content_encoding: str
:param curl: Display output as `curl` command instead of sending
:type curl: bool
:param timeout: POST requests timeout
:type timeout: float or tuple
"""
# Encode the data.
if headers is None:
headers = dict()
encoded = {}
headers = CaseInsensitiveDict(headers)
if data:
encoded = self.encode(data, content_encoding)
if "crypto_key" in encoded:
# Append the p256dh to the end of any existing crypto-key
crypto_key = headers.get("crypto-key", "")
if crypto_key:
# due to some confusion by a push service provider, we
# should use ';' instead of ',' to append the headers.
# see
# https://github.com/webpush-wg/webpush-encryption/issues/6
crypto_key += ';'
crypto_key += (
"dh=" + encoded["crypto_key"].decode('utf8'))
headers.update({
'crypto-key': crypto_key
})
if "salt" in encoded:
headers.update({
'encryption': "salt=" + encoded['salt'].decode('utf8')
})
headers.update({
'content-encoding': content_encoding,
})
if gcm_key:
# guess if it is a legacy GCM project key or actual FCM key
# gcm keys are all about 40 chars (use 100 for confidence),
# fcm keys are 153-175 chars
if len(gcm_key) < 100:
endpoint = 'https://android.googleapis.com/gcm/send'
else:
endpoint = 'https://fcm.googleapis.com/fcm/send'
reg_ids = []
if not reg_id:
reg_id = self.subscription_info['endpoint'].rsplit('/', 1)[-1]
reg_ids.append(reg_id)
gcm_data = dict()
gcm_data['registration_ids'] = reg_ids
if data:
gcm_data['raw_data'] = base64.b64encode(
encoded.get('body')).decode('utf8')
gcm_data['time_to_live'] = int(
headers['ttl'] if 'ttl' in headers else ttl)
encoded_data = json.dumps(gcm_data)
headers.update({
'Authorization': 'key='+gcm_key,
'Content-Type': 'application/json',
})
else:
encoded_data = encoded.get('body')
endpoint = self.subscription_info['endpoint']
if 'ttl' not in headers or ttl:
headers['ttl'] = str(ttl or 0)
# Additionally useful headers:
# Authorization / Crypto-Key (VAPID headers)
if curl:
return self.as_curl(endpoint, encoded_data, headers)
return self.requests_method.post(endpoint,
data=encoded_data,
headers=headers,
timeout=timeout) | python | def send(self, data=None, headers=None, ttl=0, gcm_key=None, reg_id=None,
content_encoding="aes128gcm", curl=False, timeout=None):
"""Encode and send the data to the Push Service.
:param data: A serialized block of data (see encode() ).
:type data: str
:param headers: A dictionary containing any additional HTTP headers.
:type headers: dict
:param ttl: The Time To Live in seconds for this message if the
recipient is not online. (Defaults to "0", which discards the
message immediately if the recipient is unavailable.)
:type ttl: int
:param gcm_key: API key obtained from the Google Developer Console.
Needed if endpoint is https://android.googleapis.com/gcm/send
:type gcm_key: string
:param reg_id: registration id of the recipient. If not provided,
it will be extracted from the endpoint.
:type reg_id: str
:param content_encoding: ECE content encoding (defaults to "aes128gcm")
:type content_encoding: str
:param curl: Display output as `curl` command instead of sending
:type curl: bool
:param timeout: POST requests timeout
:type timeout: float or tuple
"""
# Encode the data.
if headers is None:
headers = dict()
encoded = {}
headers = CaseInsensitiveDict(headers)
if data:
encoded = self.encode(data, content_encoding)
if "crypto_key" in encoded:
# Append the p256dh to the end of any existing crypto-key
crypto_key = headers.get("crypto-key", "")
if crypto_key:
# due to some confusion by a push service provider, we
# should use ';' instead of ',' to append the headers.
# see
# https://github.com/webpush-wg/webpush-encryption/issues/6
crypto_key += ';'
crypto_key += (
"dh=" + encoded["crypto_key"].decode('utf8'))
headers.update({
'crypto-key': crypto_key
})
if "salt" in encoded:
headers.update({
'encryption': "salt=" + encoded['salt'].decode('utf8')
})
headers.update({
'content-encoding': content_encoding,
})
if gcm_key:
# guess if it is a legacy GCM project key or actual FCM key
# gcm keys are all about 40 chars (use 100 for confidence),
# fcm keys are 153-175 chars
if len(gcm_key) < 100:
endpoint = 'https://android.googleapis.com/gcm/send'
else:
endpoint = 'https://fcm.googleapis.com/fcm/send'
reg_ids = []
if not reg_id:
reg_id = self.subscription_info['endpoint'].rsplit('/', 1)[-1]
reg_ids.append(reg_id)
gcm_data = dict()
gcm_data['registration_ids'] = reg_ids
if data:
gcm_data['raw_data'] = base64.b64encode(
encoded.get('body')).decode('utf8')
gcm_data['time_to_live'] = int(
headers['ttl'] if 'ttl' in headers else ttl)
encoded_data = json.dumps(gcm_data)
headers.update({
'Authorization': 'key='+gcm_key,
'Content-Type': 'application/json',
})
else:
encoded_data = encoded.get('body')
endpoint = self.subscription_info['endpoint']
if 'ttl' not in headers or ttl:
headers['ttl'] = str(ttl or 0)
# Additionally useful headers:
# Authorization / Crypto-Key (VAPID headers)
if curl:
return self.as_curl(endpoint, encoded_data, headers)
return self.requests_method.post(endpoint,
data=encoded_data,
headers=headers,
timeout=timeout) | [
"def",
"send",
"(",
"self",
",",
"data",
"=",
"None",
",",
"headers",
"=",
"None",
",",
"ttl",
"=",
"0",
",",
"gcm_key",
"=",
"None",
",",
"reg_id",
"=",
"None",
",",
"content_encoding",
"=",
"\"aes128gcm\"",
",",
"curl",
"=",
"False",
",",
"timeout",
"=",
"None",
")",
":",
"# Encode the data.",
"if",
"headers",
"is",
"None",
":",
"headers",
"=",
"dict",
"(",
")",
"encoded",
"=",
"{",
"}",
"headers",
"=",
"CaseInsensitiveDict",
"(",
"headers",
")",
"if",
"data",
":",
"encoded",
"=",
"self",
".",
"encode",
"(",
"data",
",",
"content_encoding",
")",
"if",
"\"crypto_key\"",
"in",
"encoded",
":",
"# Append the p256dh to the end of any existing crypto-key",
"crypto_key",
"=",
"headers",
".",
"get",
"(",
"\"crypto-key\"",
",",
"\"\"",
")",
"if",
"crypto_key",
":",
"# due to some confusion by a push service provider, we",
"# should use ';' instead of ',' to append the headers.",
"# see",
"# https://github.com/webpush-wg/webpush-encryption/issues/6",
"crypto_key",
"+=",
"';'",
"crypto_key",
"+=",
"(",
"\"dh=\"",
"+",
"encoded",
"[",
"\"crypto_key\"",
"]",
".",
"decode",
"(",
"'utf8'",
")",
")",
"headers",
".",
"update",
"(",
"{",
"'crypto-key'",
":",
"crypto_key",
"}",
")",
"if",
"\"salt\"",
"in",
"encoded",
":",
"headers",
".",
"update",
"(",
"{",
"'encryption'",
":",
"\"salt=\"",
"+",
"encoded",
"[",
"'salt'",
"]",
".",
"decode",
"(",
"'utf8'",
")",
"}",
")",
"headers",
".",
"update",
"(",
"{",
"'content-encoding'",
":",
"content_encoding",
",",
"}",
")",
"if",
"gcm_key",
":",
"# guess if it is a legacy GCM project key or actual FCM key",
"# gcm keys are all about 40 chars (use 100 for confidence),",
"# fcm keys are 153-175 chars",
"if",
"len",
"(",
"gcm_key",
")",
"<",
"100",
":",
"endpoint",
"=",
"'https://android.googleapis.com/gcm/send'",
"else",
":",
"endpoint",
"=",
"'https://fcm.googleapis.com/fcm/send'",
"reg_ids",
"=",
"[",
"]",
"if",
"not",
"reg_id",
":",
"reg_id",
"=",
"self",
".",
"subscription_info",
"[",
"'endpoint'",
"]",
".",
"rsplit",
"(",
"'/'",
",",
"1",
")",
"[",
"-",
"1",
"]",
"reg_ids",
".",
"append",
"(",
"reg_id",
")",
"gcm_data",
"=",
"dict",
"(",
")",
"gcm_data",
"[",
"'registration_ids'",
"]",
"=",
"reg_ids",
"if",
"data",
":",
"gcm_data",
"[",
"'raw_data'",
"]",
"=",
"base64",
".",
"b64encode",
"(",
"encoded",
".",
"get",
"(",
"'body'",
")",
")",
".",
"decode",
"(",
"'utf8'",
")",
"gcm_data",
"[",
"'time_to_live'",
"]",
"=",
"int",
"(",
"headers",
"[",
"'ttl'",
"]",
"if",
"'ttl'",
"in",
"headers",
"else",
"ttl",
")",
"encoded_data",
"=",
"json",
".",
"dumps",
"(",
"gcm_data",
")",
"headers",
".",
"update",
"(",
"{",
"'Authorization'",
":",
"'key='",
"+",
"gcm_key",
",",
"'Content-Type'",
":",
"'application/json'",
",",
"}",
")",
"else",
":",
"encoded_data",
"=",
"encoded",
".",
"get",
"(",
"'body'",
")",
"endpoint",
"=",
"self",
".",
"subscription_info",
"[",
"'endpoint'",
"]",
"if",
"'ttl'",
"not",
"in",
"headers",
"or",
"ttl",
":",
"headers",
"[",
"'ttl'",
"]",
"=",
"str",
"(",
"ttl",
"or",
"0",
")",
"# Additionally useful headers:",
"# Authorization / Crypto-Key (VAPID headers)",
"if",
"curl",
":",
"return",
"self",
".",
"as_curl",
"(",
"endpoint",
",",
"encoded_data",
",",
"headers",
")",
"return",
"self",
".",
"requests_method",
".",
"post",
"(",
"endpoint",
",",
"data",
"=",
"encoded_data",
",",
"headers",
"=",
"headers",
",",
"timeout",
"=",
"timeout",
")"
] | Encode and send the data to the Push Service.
:param data: A serialized block of data (see encode() ).
:type data: str
:param headers: A dictionary containing any additional HTTP headers.
:type headers: dict
:param ttl: The Time To Live in seconds for this message if the
recipient is not online. (Defaults to "0", which discards the
message immediately if the recipient is unavailable.)
:type ttl: int
:param gcm_key: API key obtained from the Google Developer Console.
Needed if endpoint is https://android.googleapis.com/gcm/send
:type gcm_key: string
:param reg_id: registration id of the recipient. If not provided,
it will be extracted from the endpoint.
:type reg_id: str
:param content_encoding: ECE content encoding (defaults to "aes128gcm")
:type content_encoding: str
:param curl: Display output as `curl` command instead of sending
:type curl: bool
:param timeout: POST requests timeout
:type timeout: float or tuple | [
"Encode",
"and",
"send",
"the",
"data",
"to",
"the",
"Push",
"Service",
"."
] | 2a23f45b7819e31bd030de9fe1357a1cf7dcfdc4 | https://github.com/web-push-libs/pywebpush/blob/2a23f45b7819e31bd030de9fe1357a1cf7dcfdc4/pywebpush/__init__.py#L256-L347 | train |
martijnvermaat/calmap | calmap/__init__.py | calendarplot | def calendarplot(data, how='sum', yearlabels=True, yearascending=True, yearlabel_kws=None,
subplot_kws=None, gridspec_kws=None, fig_kws=None, **kwargs):
"""
Plot a timeseries as a calendar heatmap.
Parameters
----------
data : Series
Data for the plot. Must be indexed by a DatetimeIndex.
how : string
Method for resampling data by day. If `None`, assume data is already
sampled by day and don't resample. Otherwise, this is passed to Pandas
`Series.resample`.
yearlabels : bool
Whether or not to draw the year for each subplot.
yearascending : bool
Sort the calendar in ascending or descending order.
yearlabel_kws : dict
Keyword arguments passed to the matplotlib `set_ylabel` call which is
used to draw the year for each subplot.
subplot_kws : dict
Keyword arguments passed to the matplotlib `add_subplot` call used to
create each subplot.
gridspec_kws : dict
Keyword arguments passed to the matplotlib `GridSpec` constructor used
to create the grid the subplots are placed on.
fig_kws : dict
Keyword arguments passed to the matplotlib `figure` call.
kwargs : other keyword arguments
All other keyword arguments are passed to `yearplot`.
Returns
-------
fig, axes : matplotlib Figure and Axes
Tuple where `fig` is the matplotlib Figure object `axes` is an array
of matplotlib Axes objects with the calendar heatmaps, one per year.
Examples
--------
With `calendarplot` we can plot several years in one figure:
.. plot::
:context: close-figs
calmap.calendarplot(events)
"""
yearlabel_kws = yearlabel_kws or {}
subplot_kws = subplot_kws or {}
gridspec_kws = gridspec_kws or {}
fig_kws = fig_kws or {}
years = np.unique(data.index.year)
if not yearascending:
years = years[::-1]
fig, axes = plt.subplots(nrows=len(years), ncols=1, squeeze=False,
subplot_kw=subplot_kws,
gridspec_kw=gridspec_kws, **fig_kws)
axes = axes.T[0]
# We explicitely resample by day only once. This is an optimization.
if how is None:
by_day = data
else:
if _pandas_18:
by_day = data.resample('D').agg(how)
else:
by_day = data.resample('D', how=how)
ylabel_kws = dict(
fontsize=32,
color=kwargs.get('fillcolor', 'whitesmoke'),
fontweight='bold',
fontname='Arial',
ha='center')
ylabel_kws.update(yearlabel_kws)
max_weeks = 0
for year, ax in zip(years, axes):
yearplot(by_day, year=year, how=None, ax=ax, **kwargs)
max_weeks = max(max_weeks, ax.get_xlim()[1])
if yearlabels:
ax.set_ylabel(str(year), **ylabel_kws)
# In a leap year it might happen that we have 54 weeks (e.g., 2012).
# Here we make sure the width is consistent over all years.
for ax in axes:
ax.set_xlim(0, max_weeks)
# Make the axes look good.
plt.tight_layout()
return fig, axes | python | def calendarplot(data, how='sum', yearlabels=True, yearascending=True, yearlabel_kws=None,
subplot_kws=None, gridspec_kws=None, fig_kws=None, **kwargs):
"""
Plot a timeseries as a calendar heatmap.
Parameters
----------
data : Series
Data for the plot. Must be indexed by a DatetimeIndex.
how : string
Method for resampling data by day. If `None`, assume data is already
sampled by day and don't resample. Otherwise, this is passed to Pandas
`Series.resample`.
yearlabels : bool
Whether or not to draw the year for each subplot.
yearascending : bool
Sort the calendar in ascending or descending order.
yearlabel_kws : dict
Keyword arguments passed to the matplotlib `set_ylabel` call which is
used to draw the year for each subplot.
subplot_kws : dict
Keyword arguments passed to the matplotlib `add_subplot` call used to
create each subplot.
gridspec_kws : dict
Keyword arguments passed to the matplotlib `GridSpec` constructor used
to create the grid the subplots are placed on.
fig_kws : dict
Keyword arguments passed to the matplotlib `figure` call.
kwargs : other keyword arguments
All other keyword arguments are passed to `yearplot`.
Returns
-------
fig, axes : matplotlib Figure and Axes
Tuple where `fig` is the matplotlib Figure object `axes` is an array
of matplotlib Axes objects with the calendar heatmaps, one per year.
Examples
--------
With `calendarplot` we can plot several years in one figure:
.. plot::
:context: close-figs
calmap.calendarplot(events)
"""
yearlabel_kws = yearlabel_kws or {}
subplot_kws = subplot_kws or {}
gridspec_kws = gridspec_kws or {}
fig_kws = fig_kws or {}
years = np.unique(data.index.year)
if not yearascending:
years = years[::-1]
fig, axes = plt.subplots(nrows=len(years), ncols=1, squeeze=False,
subplot_kw=subplot_kws,
gridspec_kw=gridspec_kws, **fig_kws)
axes = axes.T[0]
# We explicitely resample by day only once. This is an optimization.
if how is None:
by_day = data
else:
if _pandas_18:
by_day = data.resample('D').agg(how)
else:
by_day = data.resample('D', how=how)
ylabel_kws = dict(
fontsize=32,
color=kwargs.get('fillcolor', 'whitesmoke'),
fontweight='bold',
fontname='Arial',
ha='center')
ylabel_kws.update(yearlabel_kws)
max_weeks = 0
for year, ax in zip(years, axes):
yearplot(by_day, year=year, how=None, ax=ax, **kwargs)
max_weeks = max(max_weeks, ax.get_xlim()[1])
if yearlabels:
ax.set_ylabel(str(year), **ylabel_kws)
# In a leap year it might happen that we have 54 weeks (e.g., 2012).
# Here we make sure the width is consistent over all years.
for ax in axes:
ax.set_xlim(0, max_weeks)
# Make the axes look good.
plt.tight_layout()
return fig, axes | [
"def",
"calendarplot",
"(",
"data",
",",
"how",
"=",
"'sum'",
",",
"yearlabels",
"=",
"True",
",",
"yearascending",
"=",
"True",
",",
"yearlabel_kws",
"=",
"None",
",",
"subplot_kws",
"=",
"None",
",",
"gridspec_kws",
"=",
"None",
",",
"fig_kws",
"=",
"None",
",",
"*",
"*",
"kwargs",
")",
":",
"yearlabel_kws",
"=",
"yearlabel_kws",
"or",
"{",
"}",
"subplot_kws",
"=",
"subplot_kws",
"or",
"{",
"}",
"gridspec_kws",
"=",
"gridspec_kws",
"or",
"{",
"}",
"fig_kws",
"=",
"fig_kws",
"or",
"{",
"}",
"years",
"=",
"np",
".",
"unique",
"(",
"data",
".",
"index",
".",
"year",
")",
"if",
"not",
"yearascending",
":",
"years",
"=",
"years",
"[",
":",
":",
"-",
"1",
"]",
"fig",
",",
"axes",
"=",
"plt",
".",
"subplots",
"(",
"nrows",
"=",
"len",
"(",
"years",
")",
",",
"ncols",
"=",
"1",
",",
"squeeze",
"=",
"False",
",",
"subplot_kw",
"=",
"subplot_kws",
",",
"gridspec_kw",
"=",
"gridspec_kws",
",",
"*",
"*",
"fig_kws",
")",
"axes",
"=",
"axes",
".",
"T",
"[",
"0",
"]",
"# We explicitely resample by day only once. This is an optimization.",
"if",
"how",
"is",
"None",
":",
"by_day",
"=",
"data",
"else",
":",
"if",
"_pandas_18",
":",
"by_day",
"=",
"data",
".",
"resample",
"(",
"'D'",
")",
".",
"agg",
"(",
"how",
")",
"else",
":",
"by_day",
"=",
"data",
".",
"resample",
"(",
"'D'",
",",
"how",
"=",
"how",
")",
"ylabel_kws",
"=",
"dict",
"(",
"fontsize",
"=",
"32",
",",
"color",
"=",
"kwargs",
".",
"get",
"(",
"'fillcolor'",
",",
"'whitesmoke'",
")",
",",
"fontweight",
"=",
"'bold'",
",",
"fontname",
"=",
"'Arial'",
",",
"ha",
"=",
"'center'",
")",
"ylabel_kws",
".",
"update",
"(",
"yearlabel_kws",
")",
"max_weeks",
"=",
"0",
"for",
"year",
",",
"ax",
"in",
"zip",
"(",
"years",
",",
"axes",
")",
":",
"yearplot",
"(",
"by_day",
",",
"year",
"=",
"year",
",",
"how",
"=",
"None",
",",
"ax",
"=",
"ax",
",",
"*",
"*",
"kwargs",
")",
"max_weeks",
"=",
"max",
"(",
"max_weeks",
",",
"ax",
".",
"get_xlim",
"(",
")",
"[",
"1",
"]",
")",
"if",
"yearlabels",
":",
"ax",
".",
"set_ylabel",
"(",
"str",
"(",
"year",
")",
",",
"*",
"*",
"ylabel_kws",
")",
"# In a leap year it might happen that we have 54 weeks (e.g., 2012).",
"# Here we make sure the width is consistent over all years.",
"for",
"ax",
"in",
"axes",
":",
"ax",
".",
"set_xlim",
"(",
"0",
",",
"max_weeks",
")",
"# Make the axes look good.",
"plt",
".",
"tight_layout",
"(",
")",
"return",
"fig",
",",
"axes"
] | Plot a timeseries as a calendar heatmap.
Parameters
----------
data : Series
Data for the plot. Must be indexed by a DatetimeIndex.
how : string
Method for resampling data by day. If `None`, assume data is already
sampled by day and don't resample. Otherwise, this is passed to Pandas
`Series.resample`.
yearlabels : bool
Whether or not to draw the year for each subplot.
yearascending : bool
Sort the calendar in ascending or descending order.
yearlabel_kws : dict
Keyword arguments passed to the matplotlib `set_ylabel` call which is
used to draw the year for each subplot.
subplot_kws : dict
Keyword arguments passed to the matplotlib `add_subplot` call used to
create each subplot.
gridspec_kws : dict
Keyword arguments passed to the matplotlib `GridSpec` constructor used
to create the grid the subplots are placed on.
fig_kws : dict
Keyword arguments passed to the matplotlib `figure` call.
kwargs : other keyword arguments
All other keyword arguments are passed to `yearplot`.
Returns
-------
fig, axes : matplotlib Figure and Axes
Tuple where `fig` is the matplotlib Figure object `axes` is an array
of matplotlib Axes objects with the calendar heatmaps, one per year.
Examples
--------
With `calendarplot` we can plot several years in one figure:
.. plot::
:context: close-figs
calmap.calendarplot(events) | [
"Plot",
"a",
"timeseries",
"as",
"a",
"calendar",
"heatmap",
"."
] | 83e2a9a0bdc773c9e48e05772fb412ac8deb8bae | https://github.com/martijnvermaat/calmap/blob/83e2a9a0bdc773c9e48e05772fb412ac8deb8bae/calmap/__init__.py#L233-L329 | train |
Frojd/wagtail-geo-widget | wagtailgeowidget/helpers.py | geosgeometry_str_to_struct | def geosgeometry_str_to_struct(value):
'''
Parses a geosgeometry string into struct.
Example:
SRID=5432;POINT(12.0 13.0)
Returns:
>> [5432, 12.0, 13.0]
'''
result = geos_ptrn.match(value)
if not result:
return None
return {
'srid': result.group(1),
'x': result.group(2),
'y': result.group(3),
} | python | def geosgeometry_str_to_struct(value):
'''
Parses a geosgeometry string into struct.
Example:
SRID=5432;POINT(12.0 13.0)
Returns:
>> [5432, 12.0, 13.0]
'''
result = geos_ptrn.match(value)
if not result:
return None
return {
'srid': result.group(1),
'x': result.group(2),
'y': result.group(3),
} | [
"def",
"geosgeometry_str_to_struct",
"(",
"value",
")",
":",
"result",
"=",
"geos_ptrn",
".",
"match",
"(",
"value",
")",
"if",
"not",
"result",
":",
"return",
"None",
"return",
"{",
"'srid'",
":",
"result",
".",
"group",
"(",
"1",
")",
",",
"'x'",
":",
"result",
".",
"group",
"(",
"2",
")",
",",
"'y'",
":",
"result",
".",
"group",
"(",
"3",
")",
",",
"}"
] | Parses a geosgeometry string into struct.
Example:
SRID=5432;POINT(12.0 13.0)
Returns:
>> [5432, 12.0, 13.0] | [
"Parses",
"a",
"geosgeometry",
"string",
"into",
"struct",
"."
] | 3482891be8903293812738d9128b9bda03b9a2ba | https://github.com/Frojd/wagtail-geo-widget/blob/3482891be8903293812738d9128b9bda03b9a2ba/wagtailgeowidget/helpers.py#L8-L27 | train |
Frojd/wagtail-geo-widget | example/examplesite/settings/__init__.py | get_env | def get_env(name, default=None):
"""Get the environment variable or return exception"""
if name in os.environ:
return os.environ[name]
if default is not None:
return default
error_msg = "Set the {} env variable".format(name)
raise ImproperlyConfigured(error_msg) | python | def get_env(name, default=None):
"""Get the environment variable or return exception"""
if name in os.environ:
return os.environ[name]
if default is not None:
return default
error_msg = "Set the {} env variable".format(name)
raise ImproperlyConfigured(error_msg) | [
"def",
"get_env",
"(",
"name",
",",
"default",
"=",
"None",
")",
":",
"if",
"name",
"in",
"os",
".",
"environ",
":",
"return",
"os",
".",
"environ",
"[",
"name",
"]",
"if",
"default",
"is",
"not",
"None",
":",
"return",
"default",
"error_msg",
"=",
"\"Set the {} env variable\"",
".",
"format",
"(",
"name",
")",
"raise",
"ImproperlyConfigured",
"(",
"error_msg",
")"
] | Get the environment variable or return exception | [
"Get",
"the",
"environment",
"variable",
"or",
"return",
"exception"
] | 3482891be8903293812738d9128b9bda03b9a2ba | https://github.com/Frojd/wagtail-geo-widget/blob/3482891be8903293812738d9128b9bda03b9a2ba/example/examplesite/settings/__init__.py#L6-L15 | train |
newville/asteval | asteval/asteval.py | Interpreter.user_defined_symbols | def user_defined_symbols(self):
"""Return a set of symbols that have been added to symtable after
construction.
I.e., the symbols from self.symtable that are not in
self.no_deepcopy.
Returns
-------
unique_symbols : set
symbols in symtable that are not in self.no_deepcopy
"""
sym_in_current = set(self.symtable.keys())
sym_from_construction = set(self.no_deepcopy)
unique_symbols = sym_in_current.difference(sym_from_construction)
return unique_symbols | python | def user_defined_symbols(self):
"""Return a set of symbols that have been added to symtable after
construction.
I.e., the symbols from self.symtable that are not in
self.no_deepcopy.
Returns
-------
unique_symbols : set
symbols in symtable that are not in self.no_deepcopy
"""
sym_in_current = set(self.symtable.keys())
sym_from_construction = set(self.no_deepcopy)
unique_symbols = sym_in_current.difference(sym_from_construction)
return unique_symbols | [
"def",
"user_defined_symbols",
"(",
"self",
")",
":",
"sym_in_current",
"=",
"set",
"(",
"self",
".",
"symtable",
".",
"keys",
"(",
")",
")",
"sym_from_construction",
"=",
"set",
"(",
"self",
".",
"no_deepcopy",
")",
"unique_symbols",
"=",
"sym_in_current",
".",
"difference",
"(",
"sym_from_construction",
")",
"return",
"unique_symbols"
] | Return a set of symbols that have been added to symtable after
construction.
I.e., the symbols from self.symtable that are not in
self.no_deepcopy.
Returns
-------
unique_symbols : set
symbols in symtable that are not in self.no_deepcopy | [
"Return",
"a",
"set",
"of",
"symbols",
"that",
"have",
"been",
"added",
"to",
"symtable",
"after",
"construction",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L216-L232 | train |
newville/asteval | asteval/asteval.py | Interpreter.unimplemented | def unimplemented(self, node):
"""Unimplemented nodes."""
self.raise_exception(node, exc=NotImplementedError,
msg="'%s' not supported" %
(node.__class__.__name__)) | python | def unimplemented(self, node):
"""Unimplemented nodes."""
self.raise_exception(node, exc=NotImplementedError,
msg="'%s' not supported" %
(node.__class__.__name__)) | [
"def",
"unimplemented",
"(",
"self",
",",
"node",
")",
":",
"self",
".",
"raise_exception",
"(",
"node",
",",
"exc",
"=",
"NotImplementedError",
",",
"msg",
"=",
"\"'%s' not supported\"",
"%",
"(",
"node",
".",
"__class__",
".",
"__name__",
")",
")"
] | Unimplemented nodes. | [
"Unimplemented",
"nodes",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L234-L238 | train |
newville/asteval | asteval/asteval.py | Interpreter.raise_exception | def raise_exception(self, node, exc=None, msg='', expr=None,
lineno=None):
"""Add an exception."""
if self.error is None:
self.error = []
if expr is None:
expr = self.expr
if len(self.error) > 0 and not isinstance(node, ast.Module):
msg = '%s' % msg
err = ExceptionHolder(node, exc=exc, msg=msg, expr=expr, lineno=lineno)
self._interrupt = ast.Break()
self.error.append(err)
if self.error_msg is None:
self.error_msg = "at expr='%s'" % (self.expr)
elif len(msg) > 0:
self.error_msg = msg
if exc is None:
try:
exc = self.error[0].exc
except:
exc = RuntimeError
raise exc(self.error_msg) | python | def raise_exception(self, node, exc=None, msg='', expr=None,
lineno=None):
"""Add an exception."""
if self.error is None:
self.error = []
if expr is None:
expr = self.expr
if len(self.error) > 0 and not isinstance(node, ast.Module):
msg = '%s' % msg
err = ExceptionHolder(node, exc=exc, msg=msg, expr=expr, lineno=lineno)
self._interrupt = ast.Break()
self.error.append(err)
if self.error_msg is None:
self.error_msg = "at expr='%s'" % (self.expr)
elif len(msg) > 0:
self.error_msg = msg
if exc is None:
try:
exc = self.error[0].exc
except:
exc = RuntimeError
raise exc(self.error_msg) | [
"def",
"raise_exception",
"(",
"self",
",",
"node",
",",
"exc",
"=",
"None",
",",
"msg",
"=",
"''",
",",
"expr",
"=",
"None",
",",
"lineno",
"=",
"None",
")",
":",
"if",
"self",
".",
"error",
"is",
"None",
":",
"self",
".",
"error",
"=",
"[",
"]",
"if",
"expr",
"is",
"None",
":",
"expr",
"=",
"self",
".",
"expr",
"if",
"len",
"(",
"self",
".",
"error",
")",
">",
"0",
"and",
"not",
"isinstance",
"(",
"node",
",",
"ast",
".",
"Module",
")",
":",
"msg",
"=",
"'%s'",
"%",
"msg",
"err",
"=",
"ExceptionHolder",
"(",
"node",
",",
"exc",
"=",
"exc",
",",
"msg",
"=",
"msg",
",",
"expr",
"=",
"expr",
",",
"lineno",
"=",
"lineno",
")",
"self",
".",
"_interrupt",
"=",
"ast",
".",
"Break",
"(",
")",
"self",
".",
"error",
".",
"append",
"(",
"err",
")",
"if",
"self",
".",
"error_msg",
"is",
"None",
":",
"self",
".",
"error_msg",
"=",
"\"at expr='%s'\"",
"%",
"(",
"self",
".",
"expr",
")",
"elif",
"len",
"(",
"msg",
")",
">",
"0",
":",
"self",
".",
"error_msg",
"=",
"msg",
"if",
"exc",
"is",
"None",
":",
"try",
":",
"exc",
"=",
"self",
".",
"error",
"[",
"0",
"]",
".",
"exc",
"except",
":",
"exc",
"=",
"RuntimeError",
"raise",
"exc",
"(",
"self",
".",
"error_msg",
")"
] | Add an exception. | [
"Add",
"an",
"exception",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L240-L261 | train |
newville/asteval | asteval/asteval.py | Interpreter.run | def run(self, node, expr=None, lineno=None, with_raise=True):
"""Execute parsed Ast representation for an expression."""
# Note: keep the 'node is None' test: internal code here may run
# run(None) and expect a None in return.
if time.time() - self.start_time > self.max_time:
raise RuntimeError(ERR_MAX_TIME.format(self.max_time))
out = None
if len(self.error) > 0:
return out
if node is None:
return out
if isinstance(node, str):
node = self.parse(node)
if lineno is not None:
self.lineno = lineno
if expr is not None:
self.expr = expr
# get handler for this node:
# on_xxx with handle nodes of type 'xxx', etc
try:
handler = self.node_handlers[node.__class__.__name__.lower()]
except KeyError:
return self.unimplemented(node)
# run the handler: this will likely generate
# recursive calls into this run method.
try:
ret = handler(node)
if isinstance(ret, enumerate):
ret = list(ret)
return ret
except:
if with_raise:
self.raise_exception(node, expr=expr) | python | def run(self, node, expr=None, lineno=None, with_raise=True):
"""Execute parsed Ast representation for an expression."""
# Note: keep the 'node is None' test: internal code here may run
# run(None) and expect a None in return.
if time.time() - self.start_time > self.max_time:
raise RuntimeError(ERR_MAX_TIME.format(self.max_time))
out = None
if len(self.error) > 0:
return out
if node is None:
return out
if isinstance(node, str):
node = self.parse(node)
if lineno is not None:
self.lineno = lineno
if expr is not None:
self.expr = expr
# get handler for this node:
# on_xxx with handle nodes of type 'xxx', etc
try:
handler = self.node_handlers[node.__class__.__name__.lower()]
except KeyError:
return self.unimplemented(node)
# run the handler: this will likely generate
# recursive calls into this run method.
try:
ret = handler(node)
if isinstance(ret, enumerate):
ret = list(ret)
return ret
except:
if with_raise:
self.raise_exception(node, expr=expr) | [
"def",
"run",
"(",
"self",
",",
"node",
",",
"expr",
"=",
"None",
",",
"lineno",
"=",
"None",
",",
"with_raise",
"=",
"True",
")",
":",
"# Note: keep the 'node is None' test: internal code here may run",
"# run(None) and expect a None in return.",
"if",
"time",
".",
"time",
"(",
")",
"-",
"self",
".",
"start_time",
">",
"self",
".",
"max_time",
":",
"raise",
"RuntimeError",
"(",
"ERR_MAX_TIME",
".",
"format",
"(",
"self",
".",
"max_time",
")",
")",
"out",
"=",
"None",
"if",
"len",
"(",
"self",
".",
"error",
")",
">",
"0",
":",
"return",
"out",
"if",
"node",
"is",
"None",
":",
"return",
"out",
"if",
"isinstance",
"(",
"node",
",",
"str",
")",
":",
"node",
"=",
"self",
".",
"parse",
"(",
"node",
")",
"if",
"lineno",
"is",
"not",
"None",
":",
"self",
".",
"lineno",
"=",
"lineno",
"if",
"expr",
"is",
"not",
"None",
":",
"self",
".",
"expr",
"=",
"expr",
"# get handler for this node:",
"# on_xxx with handle nodes of type 'xxx', etc",
"try",
":",
"handler",
"=",
"self",
".",
"node_handlers",
"[",
"node",
".",
"__class__",
".",
"__name__",
".",
"lower",
"(",
")",
"]",
"except",
"KeyError",
":",
"return",
"self",
".",
"unimplemented",
"(",
"node",
")",
"# run the handler: this will likely generate",
"# recursive calls into this run method.",
"try",
":",
"ret",
"=",
"handler",
"(",
"node",
")",
"if",
"isinstance",
"(",
"ret",
",",
"enumerate",
")",
":",
"ret",
"=",
"list",
"(",
"ret",
")",
"return",
"ret",
"except",
":",
"if",
"with_raise",
":",
"self",
".",
"raise_exception",
"(",
"node",
",",
"expr",
"=",
"expr",
")"
] | Execute parsed Ast representation for an expression. | [
"Execute",
"parsed",
"Ast",
"representation",
"for",
"an",
"expression",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L279-L313 | train |
newville/asteval | asteval/asteval.py | Interpreter.eval | def eval(self, expr, lineno=0, show_errors=True):
"""Evaluate a single statement."""
self.lineno = lineno
self.error = []
self.start_time = time.time()
try:
node = self.parse(expr)
except:
errmsg = exc_info()[1]
if len(self.error) > 0:
errmsg = "\n".join(self.error[0].get_error())
if not show_errors:
try:
exc = self.error[0].exc
except:
exc = RuntimeError
raise exc(errmsg)
print(errmsg, file=self.err_writer)
return
try:
return self.run(node, expr=expr, lineno=lineno)
except:
errmsg = exc_info()[1]
if len(self.error) > 0:
errmsg = "\n".join(self.error[0].get_error())
if not show_errors:
try:
exc = self.error[0].exc
except:
exc = RuntimeError
raise exc(errmsg)
print(errmsg, file=self.err_writer)
return | python | def eval(self, expr, lineno=0, show_errors=True):
"""Evaluate a single statement."""
self.lineno = lineno
self.error = []
self.start_time = time.time()
try:
node = self.parse(expr)
except:
errmsg = exc_info()[1]
if len(self.error) > 0:
errmsg = "\n".join(self.error[0].get_error())
if not show_errors:
try:
exc = self.error[0].exc
except:
exc = RuntimeError
raise exc(errmsg)
print(errmsg, file=self.err_writer)
return
try:
return self.run(node, expr=expr, lineno=lineno)
except:
errmsg = exc_info()[1]
if len(self.error) > 0:
errmsg = "\n".join(self.error[0].get_error())
if not show_errors:
try:
exc = self.error[0].exc
except:
exc = RuntimeError
raise exc(errmsg)
print(errmsg, file=self.err_writer)
return | [
"def",
"eval",
"(",
"self",
",",
"expr",
",",
"lineno",
"=",
"0",
",",
"show_errors",
"=",
"True",
")",
":",
"self",
".",
"lineno",
"=",
"lineno",
"self",
".",
"error",
"=",
"[",
"]",
"self",
".",
"start_time",
"=",
"time",
".",
"time",
"(",
")",
"try",
":",
"node",
"=",
"self",
".",
"parse",
"(",
"expr",
")",
"except",
":",
"errmsg",
"=",
"exc_info",
"(",
")",
"[",
"1",
"]",
"if",
"len",
"(",
"self",
".",
"error",
")",
">",
"0",
":",
"errmsg",
"=",
"\"\\n\"",
".",
"join",
"(",
"self",
".",
"error",
"[",
"0",
"]",
".",
"get_error",
"(",
")",
")",
"if",
"not",
"show_errors",
":",
"try",
":",
"exc",
"=",
"self",
".",
"error",
"[",
"0",
"]",
".",
"exc",
"except",
":",
"exc",
"=",
"RuntimeError",
"raise",
"exc",
"(",
"errmsg",
")",
"print",
"(",
"errmsg",
",",
"file",
"=",
"self",
".",
"err_writer",
")",
"return",
"try",
":",
"return",
"self",
".",
"run",
"(",
"node",
",",
"expr",
"=",
"expr",
",",
"lineno",
"=",
"lineno",
")",
"except",
":",
"errmsg",
"=",
"exc_info",
"(",
")",
"[",
"1",
"]",
"if",
"len",
"(",
"self",
".",
"error",
")",
">",
"0",
":",
"errmsg",
"=",
"\"\\n\"",
".",
"join",
"(",
"self",
".",
"error",
"[",
"0",
"]",
".",
"get_error",
"(",
")",
")",
"if",
"not",
"show_errors",
":",
"try",
":",
"exc",
"=",
"self",
".",
"error",
"[",
"0",
"]",
".",
"exc",
"except",
":",
"exc",
"=",
"RuntimeError",
"raise",
"exc",
"(",
"errmsg",
")",
"print",
"(",
"errmsg",
",",
"file",
"=",
"self",
".",
"err_writer",
")",
"return"
] | Evaluate a single statement. | [
"Evaluate",
"a",
"single",
"statement",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L319-L351 | train |
newville/asteval | asteval/asteval.py | Interpreter.on_module | def on_module(self, node): # ():('body',)
"""Module def."""
out = None
for tnode in node.body:
out = self.run(tnode)
return out | python | def on_module(self, node): # ():('body',)
"""Module def."""
out = None
for tnode in node.body:
out = self.run(tnode)
return out | [
"def",
"on_module",
"(",
"self",
",",
"node",
")",
":",
"# ():('body',)",
"out",
"=",
"None",
"for",
"tnode",
"in",
"node",
".",
"body",
":",
"out",
"=",
"self",
".",
"run",
"(",
"tnode",
")",
"return",
"out"
] | Module def. | [
"Module",
"def",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L378-L383 | train |
newville/asteval | asteval/asteval.py | Interpreter.on_assert | def on_assert(self, node): # ('test', 'msg')
"""Assert statement."""
if not self.run(node.test):
self.raise_exception(node, exc=AssertionError, msg=node.msg)
return True | python | def on_assert(self, node): # ('test', 'msg')
"""Assert statement."""
if not self.run(node.test):
self.raise_exception(node, exc=AssertionError, msg=node.msg)
return True | [
"def",
"on_assert",
"(",
"self",
",",
"node",
")",
":",
"# ('test', 'msg')",
"if",
"not",
"self",
".",
"run",
"(",
"node",
".",
"test",
")",
":",
"self",
".",
"raise_exception",
"(",
"node",
",",
"exc",
"=",
"AssertionError",
",",
"msg",
"=",
"node",
".",
"msg",
")",
"return",
"True"
] | Assert statement. | [
"Assert",
"statement",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L411-L415 | train |
newville/asteval | asteval/asteval.py | Interpreter.on_name | def on_name(self, node): # ('id', 'ctx')
"""Name node."""
ctx = node.ctx.__class__
if ctx in (ast.Param, ast.Del):
return str(node.id)
else:
if node.id in self.symtable:
return self.symtable[node.id]
else:
msg = "name '%s' is not defined" % node.id
self.raise_exception(node, exc=NameError, msg=msg) | python | def on_name(self, node): # ('id', 'ctx')
"""Name node."""
ctx = node.ctx.__class__
if ctx in (ast.Param, ast.Del):
return str(node.id)
else:
if node.id in self.symtable:
return self.symtable[node.id]
else:
msg = "name '%s' is not defined" % node.id
self.raise_exception(node, exc=NameError, msg=msg) | [
"def",
"on_name",
"(",
"self",
",",
"node",
")",
":",
"# ('id', 'ctx')",
"ctx",
"=",
"node",
".",
"ctx",
".",
"__class__",
"if",
"ctx",
"in",
"(",
"ast",
".",
"Param",
",",
"ast",
".",
"Del",
")",
":",
"return",
"str",
"(",
"node",
".",
"id",
")",
"else",
":",
"if",
"node",
".",
"id",
"in",
"self",
".",
"symtable",
":",
"return",
"self",
".",
"symtable",
"[",
"node",
".",
"id",
"]",
"else",
":",
"msg",
"=",
"\"name '%s' is not defined\"",
"%",
"node",
".",
"id",
"self",
".",
"raise_exception",
"(",
"node",
",",
"exc",
"=",
"NameError",
",",
"msg",
"=",
"msg",
")"
] | Name node. | [
"Name",
"node",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L442-L452 | train |
newville/asteval | asteval/asteval.py | Interpreter.on_attribute | def on_attribute(self, node): # ('value', 'attr', 'ctx')
"""Extract attribute."""
ctx = node.ctx.__class__
if ctx == ast.Store:
msg = "attribute for storage: shouldn't be here!"
self.raise_exception(node, exc=RuntimeError, msg=msg)
sym = self.run(node.value)
if ctx == ast.Del:
return delattr(sym, node.attr)
# ctx is ast.Load
fmt = "cannnot access attribute '%s' for %s"
if node.attr not in UNSAFE_ATTRS:
fmt = "no attribute '%s' for %s"
try:
return getattr(sym, node.attr)
except AttributeError:
pass
# AttributeError or accessed unsafe attribute
obj = self.run(node.value)
msg = fmt % (node.attr, obj)
self.raise_exception(node, exc=AttributeError, msg=msg) | python | def on_attribute(self, node): # ('value', 'attr', 'ctx')
"""Extract attribute."""
ctx = node.ctx.__class__
if ctx == ast.Store:
msg = "attribute for storage: shouldn't be here!"
self.raise_exception(node, exc=RuntimeError, msg=msg)
sym = self.run(node.value)
if ctx == ast.Del:
return delattr(sym, node.attr)
# ctx is ast.Load
fmt = "cannnot access attribute '%s' for %s"
if node.attr not in UNSAFE_ATTRS:
fmt = "no attribute '%s' for %s"
try:
return getattr(sym, node.attr)
except AttributeError:
pass
# AttributeError or accessed unsafe attribute
obj = self.run(node.value)
msg = fmt % (node.attr, obj)
self.raise_exception(node, exc=AttributeError, msg=msg) | [
"def",
"on_attribute",
"(",
"self",
",",
"node",
")",
":",
"# ('value', 'attr', 'ctx')",
"ctx",
"=",
"node",
".",
"ctx",
".",
"__class__",
"if",
"ctx",
"==",
"ast",
".",
"Store",
":",
"msg",
"=",
"\"attribute for storage: shouldn't be here!\"",
"self",
".",
"raise_exception",
"(",
"node",
",",
"exc",
"=",
"RuntimeError",
",",
"msg",
"=",
"msg",
")",
"sym",
"=",
"self",
".",
"run",
"(",
"node",
".",
"value",
")",
"if",
"ctx",
"==",
"ast",
".",
"Del",
":",
"return",
"delattr",
"(",
"sym",
",",
"node",
".",
"attr",
")",
"# ctx is ast.Load",
"fmt",
"=",
"\"cannnot access attribute '%s' for %s\"",
"if",
"node",
".",
"attr",
"not",
"in",
"UNSAFE_ATTRS",
":",
"fmt",
"=",
"\"no attribute '%s' for %s\"",
"try",
":",
"return",
"getattr",
"(",
"sym",
",",
"node",
".",
"attr",
")",
"except",
"AttributeError",
":",
"pass",
"# AttributeError or accessed unsafe attribute",
"obj",
"=",
"self",
".",
"run",
"(",
"node",
".",
"value",
")",
"msg",
"=",
"fmt",
"%",
"(",
"node",
".",
"attr",
",",
"obj",
")",
"self",
".",
"raise_exception",
"(",
"node",
",",
"exc",
"=",
"AttributeError",
",",
"msg",
"=",
"msg",
")"
] | Extract attribute. | [
"Extract",
"attribute",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L496-L519 | train |
newville/asteval | asteval/asteval.py | Interpreter.on_assign | def on_assign(self, node): # ('targets', 'value')
"""Simple assignment."""
val = self.run(node.value)
for tnode in node.targets:
self.node_assign(tnode, val)
return | python | def on_assign(self, node): # ('targets', 'value')
"""Simple assignment."""
val = self.run(node.value)
for tnode in node.targets:
self.node_assign(tnode, val)
return | [
"def",
"on_assign",
"(",
"self",
",",
"node",
")",
":",
"# ('targets', 'value')",
"val",
"=",
"self",
".",
"run",
"(",
"node",
".",
"value",
")",
"for",
"tnode",
"in",
"node",
".",
"targets",
":",
"self",
".",
"node_assign",
"(",
"tnode",
",",
"val",
")",
"return"
] | Simple assignment. | [
"Simple",
"assignment",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L521-L526 | train |
newville/asteval | asteval/asteval.py | Interpreter.on_augassign | def on_augassign(self, node): # ('target', 'op', 'value')
"""Augmented assign."""
return self.on_assign(ast.Assign(targets=[node.target],
value=ast.BinOp(left=node.target,
op=node.op,
right=node.value))) | python | def on_augassign(self, node): # ('target', 'op', 'value')
"""Augmented assign."""
return self.on_assign(ast.Assign(targets=[node.target],
value=ast.BinOp(left=node.target,
op=node.op,
right=node.value))) | [
"def",
"on_augassign",
"(",
"self",
",",
"node",
")",
":",
"# ('target', 'op', 'value')",
"return",
"self",
".",
"on_assign",
"(",
"ast",
".",
"Assign",
"(",
"targets",
"=",
"[",
"node",
".",
"target",
"]",
",",
"value",
"=",
"ast",
".",
"BinOp",
"(",
"left",
"=",
"node",
".",
"target",
",",
"op",
"=",
"node",
".",
"op",
",",
"right",
"=",
"node",
".",
"value",
")",
")",
")"
] | Augmented assign. | [
"Augmented",
"assign",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L528-L533 | train |
newville/asteval | asteval/asteval.py | Interpreter.on_slice | def on_slice(self, node): # ():('lower', 'upper', 'step')
"""Simple slice."""
return slice(self.run(node.lower),
self.run(node.upper),
self.run(node.step)) | python | def on_slice(self, node): # ():('lower', 'upper', 'step')
"""Simple slice."""
return slice(self.run(node.lower),
self.run(node.upper),
self.run(node.step)) | [
"def",
"on_slice",
"(",
"self",
",",
"node",
")",
":",
"# ():('lower', 'upper', 'step')",
"return",
"slice",
"(",
"self",
".",
"run",
"(",
"node",
".",
"lower",
")",
",",
"self",
".",
"run",
"(",
"node",
".",
"upper",
")",
",",
"self",
".",
"run",
"(",
"node",
".",
"step",
")",
")"
] | Simple slice. | [
"Simple",
"slice",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L535-L539 | train |
newville/asteval | asteval/asteval.py | Interpreter.on_extslice | def on_extslice(self, node): # ():('dims',)
"""Extended slice."""
return tuple([self.run(tnode) for tnode in node.dims]) | python | def on_extslice(self, node): # ():('dims',)
"""Extended slice."""
return tuple([self.run(tnode) for tnode in node.dims]) | [
"def",
"on_extslice",
"(",
"self",
",",
"node",
")",
":",
"# ():('dims',)",
"return",
"tuple",
"(",
"[",
"self",
".",
"run",
"(",
"tnode",
")",
"for",
"tnode",
"in",
"node",
".",
"dims",
"]",
")"
] | Extended slice. | [
"Extended",
"slice",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L541-L543 | train |
newville/asteval | asteval/asteval.py | Interpreter.on_delete | def on_delete(self, node): # ('targets',)
"""Delete statement."""
for tnode in node.targets:
if tnode.ctx.__class__ != ast.Del:
break
children = []
while tnode.__class__ == ast.Attribute:
children.append(tnode.attr)
tnode = tnode.value
if tnode.__class__ == ast.Name and tnode.id not in self.readonly_symbols:
children.append(tnode.id)
children.reverse()
self.symtable.pop('.'.join(children))
else:
msg = "could not delete symbol"
self.raise_exception(node, msg=msg) | python | def on_delete(self, node): # ('targets',)
"""Delete statement."""
for tnode in node.targets:
if tnode.ctx.__class__ != ast.Del:
break
children = []
while tnode.__class__ == ast.Attribute:
children.append(tnode.attr)
tnode = tnode.value
if tnode.__class__ == ast.Name and tnode.id not in self.readonly_symbols:
children.append(tnode.id)
children.reverse()
self.symtable.pop('.'.join(children))
else:
msg = "could not delete symbol"
self.raise_exception(node, msg=msg) | [
"def",
"on_delete",
"(",
"self",
",",
"node",
")",
":",
"# ('targets',)",
"for",
"tnode",
"in",
"node",
".",
"targets",
":",
"if",
"tnode",
".",
"ctx",
".",
"__class__",
"!=",
"ast",
".",
"Del",
":",
"break",
"children",
"=",
"[",
"]",
"while",
"tnode",
".",
"__class__",
"==",
"ast",
".",
"Attribute",
":",
"children",
".",
"append",
"(",
"tnode",
".",
"attr",
")",
"tnode",
"=",
"tnode",
".",
"value",
"if",
"tnode",
".",
"__class__",
"==",
"ast",
".",
"Name",
"and",
"tnode",
".",
"id",
"not",
"in",
"self",
".",
"readonly_symbols",
":",
"children",
".",
"append",
"(",
"tnode",
".",
"id",
")",
"children",
".",
"reverse",
"(",
")",
"self",
".",
"symtable",
".",
"pop",
"(",
"'.'",
".",
"join",
"(",
"children",
")",
")",
"else",
":",
"msg",
"=",
"\"could not delete symbol\"",
"self",
".",
"raise_exception",
"(",
"node",
",",
"msg",
"=",
"msg",
")"
] | Delete statement. | [
"Delete",
"statement",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L559-L575 | train |
newville/asteval | asteval/asteval.py | Interpreter.on_unaryop | def on_unaryop(self, node): # ('op', 'operand')
"""Unary operator."""
return op2func(node.op)(self.run(node.operand)) | python | def on_unaryop(self, node): # ('op', 'operand')
"""Unary operator."""
return op2func(node.op)(self.run(node.operand)) | [
"def",
"on_unaryop",
"(",
"self",
",",
"node",
")",
":",
"# ('op', 'operand')",
"return",
"op2func",
"(",
"node",
".",
"op",
")",
"(",
"self",
".",
"run",
"(",
"node",
".",
"operand",
")",
")"
] | Unary operator. | [
"Unary",
"operator",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L577-L579 | train |
newville/asteval | asteval/asteval.py | Interpreter.on_binop | def on_binop(self, node): # ('left', 'op', 'right')
"""Binary operator."""
return op2func(node.op)(self.run(node.left),
self.run(node.right)) | python | def on_binop(self, node): # ('left', 'op', 'right')
"""Binary operator."""
return op2func(node.op)(self.run(node.left),
self.run(node.right)) | [
"def",
"on_binop",
"(",
"self",
",",
"node",
")",
":",
"# ('left', 'op', 'right')",
"return",
"op2func",
"(",
"node",
".",
"op",
")",
"(",
"self",
".",
"run",
"(",
"node",
".",
"left",
")",
",",
"self",
".",
"run",
"(",
"node",
".",
"right",
")",
")"
] | Binary operator. | [
"Binary",
"operator",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L581-L584 | train |
newville/asteval | asteval/asteval.py | Interpreter.on_boolop | def on_boolop(self, node): # ('op', 'values')
"""Boolean operator."""
val = self.run(node.values[0])
is_and = ast.And == node.op.__class__
if (is_and and val) or (not is_and and not val):
for n in node.values[1:]:
val = op2func(node.op)(val, self.run(n))
if (is_and and not val) or (not is_and and val):
break
return val | python | def on_boolop(self, node): # ('op', 'values')
"""Boolean operator."""
val = self.run(node.values[0])
is_and = ast.And == node.op.__class__
if (is_and and val) or (not is_and and not val):
for n in node.values[1:]:
val = op2func(node.op)(val, self.run(n))
if (is_and and not val) or (not is_and and val):
break
return val | [
"def",
"on_boolop",
"(",
"self",
",",
"node",
")",
":",
"# ('op', 'values')",
"val",
"=",
"self",
".",
"run",
"(",
"node",
".",
"values",
"[",
"0",
"]",
")",
"is_and",
"=",
"ast",
".",
"And",
"==",
"node",
".",
"op",
".",
"__class__",
"if",
"(",
"is_and",
"and",
"val",
")",
"or",
"(",
"not",
"is_and",
"and",
"not",
"val",
")",
":",
"for",
"n",
"in",
"node",
".",
"values",
"[",
"1",
":",
"]",
":",
"val",
"=",
"op2func",
"(",
"node",
".",
"op",
")",
"(",
"val",
",",
"self",
".",
"run",
"(",
"n",
")",
")",
"if",
"(",
"is_and",
"and",
"not",
"val",
")",
"or",
"(",
"not",
"is_and",
"and",
"val",
")",
":",
"break",
"return",
"val"
] | Boolean operator. | [
"Boolean",
"operator",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L586-L595 | train |
newville/asteval | asteval/asteval.py | Interpreter._printer | def _printer(self, *out, **kws):
"""Generic print function."""
flush = kws.pop('flush', True)
fileh = kws.pop('file', self.writer)
sep = kws.pop('sep', ' ')
end = kws.pop('sep', '\n')
print(*out, file=fileh, sep=sep, end=end)
if flush:
fileh.flush() | python | def _printer(self, *out, **kws):
"""Generic print function."""
flush = kws.pop('flush', True)
fileh = kws.pop('file', self.writer)
sep = kws.pop('sep', ' ')
end = kws.pop('sep', '\n')
print(*out, file=fileh, sep=sep, end=end)
if flush:
fileh.flush() | [
"def",
"_printer",
"(",
"self",
",",
"*",
"out",
",",
"*",
"*",
"kws",
")",
":",
"flush",
"=",
"kws",
".",
"pop",
"(",
"'flush'",
",",
"True",
")",
"fileh",
"=",
"kws",
".",
"pop",
"(",
"'file'",
",",
"self",
".",
"writer",
")",
"sep",
"=",
"kws",
".",
"pop",
"(",
"'sep'",
",",
"' '",
")",
"end",
"=",
"kws",
".",
"pop",
"(",
"'sep'",
",",
"'\\n'",
")",
"print",
"(",
"*",
"out",
",",
"file",
"=",
"fileh",
",",
"sep",
"=",
"sep",
",",
"end",
"=",
"end",
")",
"if",
"flush",
":",
"fileh",
".",
"flush",
"(",
")"
] | Generic print function. | [
"Generic",
"print",
"function",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L626-L635 | train |
newville/asteval | asteval/asteval.py | Interpreter.on_if | def on_if(self, node): # ('test', 'body', 'orelse')
"""Regular if-then-else statement."""
block = node.body
if not self.run(node.test):
block = node.orelse
for tnode in block:
self.run(tnode) | python | def on_if(self, node): # ('test', 'body', 'orelse')
"""Regular if-then-else statement."""
block = node.body
if not self.run(node.test):
block = node.orelse
for tnode in block:
self.run(tnode) | [
"def",
"on_if",
"(",
"self",
",",
"node",
")",
":",
"# ('test', 'body', 'orelse')",
"block",
"=",
"node",
".",
"body",
"if",
"not",
"self",
".",
"run",
"(",
"node",
".",
"test",
")",
":",
"block",
"=",
"node",
".",
"orelse",
"for",
"tnode",
"in",
"block",
":",
"self",
".",
"run",
"(",
"tnode",
")"
] | Regular if-then-else statement. | [
"Regular",
"if",
"-",
"then",
"-",
"else",
"statement",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L637-L643 | train |
newville/asteval | asteval/asteval.py | Interpreter.on_ifexp | def on_ifexp(self, node): # ('test', 'body', 'orelse')
"""If expressions."""
expr = node.orelse
if self.run(node.test):
expr = node.body
return self.run(expr) | python | def on_ifexp(self, node): # ('test', 'body', 'orelse')
"""If expressions."""
expr = node.orelse
if self.run(node.test):
expr = node.body
return self.run(expr) | [
"def",
"on_ifexp",
"(",
"self",
",",
"node",
")",
":",
"# ('test', 'body', 'orelse')",
"expr",
"=",
"node",
".",
"orelse",
"if",
"self",
".",
"run",
"(",
"node",
".",
"test",
")",
":",
"expr",
"=",
"node",
".",
"body",
"return",
"self",
".",
"run",
"(",
"expr",
")"
] | If expressions. | [
"If",
"expressions",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L645-L650 | train |
newville/asteval | asteval/asteval.py | Interpreter.on_while | def on_while(self, node): # ('test', 'body', 'orelse')
"""While blocks."""
while self.run(node.test):
self._interrupt = None
for tnode in node.body:
self.run(tnode)
if self._interrupt is not None:
break
if isinstance(self._interrupt, ast.Break):
break
else:
for tnode in node.orelse:
self.run(tnode)
self._interrupt = None | python | def on_while(self, node): # ('test', 'body', 'orelse')
"""While blocks."""
while self.run(node.test):
self._interrupt = None
for tnode in node.body:
self.run(tnode)
if self._interrupt is not None:
break
if isinstance(self._interrupt, ast.Break):
break
else:
for tnode in node.orelse:
self.run(tnode)
self._interrupt = None | [
"def",
"on_while",
"(",
"self",
",",
"node",
")",
":",
"# ('test', 'body', 'orelse')",
"while",
"self",
".",
"run",
"(",
"node",
".",
"test",
")",
":",
"self",
".",
"_interrupt",
"=",
"None",
"for",
"tnode",
"in",
"node",
".",
"body",
":",
"self",
".",
"run",
"(",
"tnode",
")",
"if",
"self",
".",
"_interrupt",
"is",
"not",
"None",
":",
"break",
"if",
"isinstance",
"(",
"self",
".",
"_interrupt",
",",
"ast",
".",
"Break",
")",
":",
"break",
"else",
":",
"for",
"tnode",
"in",
"node",
".",
"orelse",
":",
"self",
".",
"run",
"(",
"tnode",
")",
"self",
".",
"_interrupt",
"=",
"None"
] | While blocks. | [
"While",
"blocks",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L652-L665 | train |
newville/asteval | asteval/asteval.py | Interpreter.on_for | def on_for(self, node): # ('target', 'iter', 'body', 'orelse')
"""For blocks."""
for val in self.run(node.iter):
self.node_assign(node.target, val)
self._interrupt = None
for tnode in node.body:
self.run(tnode)
if self._interrupt is not None:
break
if isinstance(self._interrupt, ast.Break):
break
else:
for tnode in node.orelse:
self.run(tnode)
self._interrupt = None | python | def on_for(self, node): # ('target', 'iter', 'body', 'orelse')
"""For blocks."""
for val in self.run(node.iter):
self.node_assign(node.target, val)
self._interrupt = None
for tnode in node.body:
self.run(tnode)
if self._interrupt is not None:
break
if isinstance(self._interrupt, ast.Break):
break
else:
for tnode in node.orelse:
self.run(tnode)
self._interrupt = None | [
"def",
"on_for",
"(",
"self",
",",
"node",
")",
":",
"# ('target', 'iter', 'body', 'orelse')",
"for",
"val",
"in",
"self",
".",
"run",
"(",
"node",
".",
"iter",
")",
":",
"self",
".",
"node_assign",
"(",
"node",
".",
"target",
",",
"val",
")",
"self",
".",
"_interrupt",
"=",
"None",
"for",
"tnode",
"in",
"node",
".",
"body",
":",
"self",
".",
"run",
"(",
"tnode",
")",
"if",
"self",
".",
"_interrupt",
"is",
"not",
"None",
":",
"break",
"if",
"isinstance",
"(",
"self",
".",
"_interrupt",
",",
"ast",
".",
"Break",
")",
":",
"break",
"else",
":",
"for",
"tnode",
"in",
"node",
".",
"orelse",
":",
"self",
".",
"run",
"(",
"tnode",
")",
"self",
".",
"_interrupt",
"=",
"None"
] | For blocks. | [
"For",
"blocks",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L667-L681 | train |
newville/asteval | asteval/asteval.py | Interpreter.on_listcomp | def on_listcomp(self, node): # ('elt', 'generators')
"""List comprehension."""
out = []
for tnode in node.generators:
if tnode.__class__ == ast.comprehension:
for val in self.run(tnode.iter):
self.node_assign(tnode.target, val)
add = True
for cond in tnode.ifs:
add = add and self.run(cond)
if add:
out.append(self.run(node.elt))
return out | python | def on_listcomp(self, node): # ('elt', 'generators')
"""List comprehension."""
out = []
for tnode in node.generators:
if tnode.__class__ == ast.comprehension:
for val in self.run(tnode.iter):
self.node_assign(tnode.target, val)
add = True
for cond in tnode.ifs:
add = add and self.run(cond)
if add:
out.append(self.run(node.elt))
return out | [
"def",
"on_listcomp",
"(",
"self",
",",
"node",
")",
":",
"# ('elt', 'generators')",
"out",
"=",
"[",
"]",
"for",
"tnode",
"in",
"node",
".",
"generators",
":",
"if",
"tnode",
".",
"__class__",
"==",
"ast",
".",
"comprehension",
":",
"for",
"val",
"in",
"self",
".",
"run",
"(",
"tnode",
".",
"iter",
")",
":",
"self",
".",
"node_assign",
"(",
"tnode",
".",
"target",
",",
"val",
")",
"add",
"=",
"True",
"for",
"cond",
"in",
"tnode",
".",
"ifs",
":",
"add",
"=",
"add",
"and",
"self",
".",
"run",
"(",
"cond",
")",
"if",
"add",
":",
"out",
".",
"append",
"(",
"self",
".",
"run",
"(",
"node",
".",
"elt",
")",
")",
"return",
"out"
] | List comprehension. | [
"List",
"comprehension",
"."
] | bb7d3a95079f96ead75ea55662014bbcc82f9b28 | https://github.com/newville/asteval/blob/bb7d3a95079f96ead75ea55662014bbcc82f9b28/asteval/asteval.py#L683-L695 | train |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.