repo
stringlengths
7
55
path
stringlengths
4
127
func_name
stringlengths
1
88
original_string
stringlengths
75
19.8k
language
stringclasses
1 value
code
stringlengths
75
19.8k
code_tokens
list
docstring
stringlengths
3
17.3k
docstring_tokens
list
sha
stringlengths
40
40
url
stringlengths
87
242
partition
stringclasses
1 value
vatlab/SoS
src/sos/section_analyzer.py
get_step_output
def get_step_output(section, default_output): '''determine step output''' step_output: sos_targets = sos_targets() # if 'provides' in section.options and default_output: step_output = default_output # look for input statement. output_idx = find_statement(section, 'output') if output_idx is None: return step_output # output statement value = section.statements[output_idx][2] # output, depends, and process can be processed multiple times try: svars = ['output_from', 'named_output', 'sos_step', 'sos_variable'] old_values = { x: env.sos_dict.dict()[x] for x in svars if x in env.sos_dict.dict() } env.sos_dict.quick_update({ 'output_from': no_output_from, 'named_output': no_named_output, 'sos_step': no_sos_step, 'sos_variable': no_sos_variable, }) args, kwargs = SoS_eval( f'__null_func__({value})', extra_dict=env.sos_dict.dict()) if not any(isinstance(x, (dynamic, remote)) for x in args): step_output = sos_targets( *args, **{ x: y for x, y in kwargs.items() if x not in SOS_TARGETS_OPTIONS }) except SyntaxError: raise except Exception as e: if 'STEP' in env.config['SOS_DEBUG'] or 'ALL' in env.config['SOS_DEBUG']: env.log_to_file('STEP', f"Args {value} cannot be determined: {e}") finally: [env.sos_dict.dict().pop(x) for x in svars] env.sos_dict.quick_update(old_values) if 'provides' in section.options and default_output is not None and step_output.valid( ): for out in default_output: # 981 if not isinstance(out, sos_step) and out not in step_output: raise ValueError( f'Defined output fail to produce expected output: {step_output} generated, {default_output} expected.' ) return step_output
python
def get_step_output(section, default_output): '''determine step output''' step_output: sos_targets = sos_targets() # if 'provides' in section.options and default_output: step_output = default_output # look for input statement. output_idx = find_statement(section, 'output') if output_idx is None: return step_output # output statement value = section.statements[output_idx][2] # output, depends, and process can be processed multiple times try: svars = ['output_from', 'named_output', 'sos_step', 'sos_variable'] old_values = { x: env.sos_dict.dict()[x] for x in svars if x in env.sos_dict.dict() } env.sos_dict.quick_update({ 'output_from': no_output_from, 'named_output': no_named_output, 'sos_step': no_sos_step, 'sos_variable': no_sos_variable, }) args, kwargs = SoS_eval( f'__null_func__({value})', extra_dict=env.sos_dict.dict()) if not any(isinstance(x, (dynamic, remote)) for x in args): step_output = sos_targets( *args, **{ x: y for x, y in kwargs.items() if x not in SOS_TARGETS_OPTIONS }) except SyntaxError: raise except Exception as e: if 'STEP' in env.config['SOS_DEBUG'] or 'ALL' in env.config['SOS_DEBUG']: env.log_to_file('STEP', f"Args {value} cannot be determined: {e}") finally: [env.sos_dict.dict().pop(x) for x in svars] env.sos_dict.quick_update(old_values) if 'provides' in section.options and default_output is not None and step_output.valid( ): for out in default_output: # 981 if not isinstance(out, sos_step) and out not in step_output: raise ValueError( f'Defined output fail to produce expected output: {step_output} generated, {default_output} expected.' ) return step_output
[ "def", "get_step_output", "(", "section", ",", "default_output", ")", ":", "step_output", ":", "sos_targets", "=", "sos_targets", "(", ")", "#", "if", "'provides'", "in", "section", ".", "options", "and", "default_output", ":", "step_output", "=", "default_output", "# look for input statement.", "output_idx", "=", "find_statement", "(", "section", ",", "'output'", ")", "if", "output_idx", "is", "None", ":", "return", "step_output", "# output statement", "value", "=", "section", ".", "statements", "[", "output_idx", "]", "[", "2", "]", "# output, depends, and process can be processed multiple times", "try", ":", "svars", "=", "[", "'output_from'", ",", "'named_output'", ",", "'sos_step'", ",", "'sos_variable'", "]", "old_values", "=", "{", "x", ":", "env", ".", "sos_dict", ".", "dict", "(", ")", "[", "x", "]", "for", "x", "in", "svars", "if", "x", "in", "env", ".", "sos_dict", ".", "dict", "(", ")", "}", "env", ".", "sos_dict", ".", "quick_update", "(", "{", "'output_from'", ":", "no_output_from", ",", "'named_output'", ":", "no_named_output", ",", "'sos_step'", ":", "no_sos_step", ",", "'sos_variable'", ":", "no_sos_variable", ",", "}", ")", "args", ",", "kwargs", "=", "SoS_eval", "(", "f'__null_func__({value})'", ",", "extra_dict", "=", "env", ".", "sos_dict", ".", "dict", "(", ")", ")", "if", "not", "any", "(", "isinstance", "(", "x", ",", "(", "dynamic", ",", "remote", ")", ")", "for", "x", "in", "args", ")", ":", "step_output", "=", "sos_targets", "(", "*", "args", ",", "*", "*", "{", "x", ":", "y", "for", "x", ",", "y", "in", "kwargs", ".", "items", "(", ")", "if", "x", "not", "in", "SOS_TARGETS_OPTIONS", "}", ")", "except", "SyntaxError", ":", "raise", "except", "Exception", "as", "e", ":", "if", "'STEP'", "in", "env", ".", "config", "[", "'SOS_DEBUG'", "]", "or", "'ALL'", "in", "env", ".", "config", "[", "'SOS_DEBUG'", "]", ":", "env", ".", "log_to_file", "(", "'STEP'", ",", "f\"Args {value} cannot be determined: {e}\"", ")", "finally", ":", "[", "env", ".", "sos_dict", ".", "dict", "(", ")", ".", "pop", "(", "x", ")", "for", "x", "in", "svars", "]", "env", ".", "sos_dict", ".", "quick_update", "(", "old_values", ")", "if", "'provides'", "in", "section", ".", "options", "and", "default_output", "is", "not", "None", "and", "step_output", ".", "valid", "(", ")", ":", "for", "out", "in", "default_output", ":", "# 981", "if", "not", "isinstance", "(", "out", ",", "sos_step", ")", "and", "out", "not", "in", "step_output", ":", "raise", "ValueError", "(", "f'Defined output fail to produce expected output: {step_output} generated, {default_output} expected.'", ")", "return", "step_output" ]
determine step output
[ "determine", "step", "output" ]
6b60ed0770916d135e17322e469520d778e9d4e7
https://github.com/vatlab/SoS/blob/6b60ed0770916d135e17322e469520d778e9d4e7/src/sos/section_analyzer.py#L394-L448
train
vatlab/SoS
src/sos/section_analyzer.py
analyze_section
def analyze_section(section: SoS_Step, default_input: Optional[sos_targets] = None, default_output: Optional[sos_targets] = None, context={}, vars_and_output_only: bool = False) -> Dict[str, Any]: '''Analyze a section for how it uses input and output, what variables it uses, and input, output, etc.''' # analysis_key = (section.md5, section.step_name(), # default_input.target_name() if hasattr(default_input, 'target_name') else '', # default_output.target_name() if hasattr(default_output, 'target_name') else '', vars_and_output_only) #if analysis_key in analysis_cache: # return analysis_cache[analysis_key] # use a fresh env for analysis new_env, old_env = env.request_new() try: prepare_env(section.global_def, section.global_vars, context) env.sos_dict.set('step_name', section.step_name()) env.sos_dict.set('__null_func__', __null_func__) if 'STEP' in env.config['SOS_DEBUG'] or 'ALL' in env.config['SOS_DEBUG']: env.log_to_file( 'STEP', f'Analyzing {section.step_name()} {"(output only)" if vars_and_output_only else ""}' ) res = { 'step_name': section.step_name(), 'step_output': get_step_output(section, default_output), # variables starting with __ are internals... 'environ_vars': get_environ_vars(section), 'signature_vars': get_signature_vars(section), 'changed_vars': get_changed_vars(section) } if not vars_and_output_only: inps = get_step_input(section, default_input) res['step_input'] = inps[0] res['dynamic_input'] = inps[1] deps = get_step_depends(section) res['step_depends'] = deps[0] res['dynamic_depends'] = deps[1] # analysis_cache[analysis_key] = res finally: # restore env env.restore_to_old(new_env, old_env) # #1225 # The global section can contain a lot of variables, some of which can be large. Here we # found all variables that will be used in the step, including ones used in substep (signature_vars) # and ones that will be used in input statement etc. section.global_vars = { x: y for x, y in section.global_vars.items() if x in get_all_used_vars(section) } return res
python
def analyze_section(section: SoS_Step, default_input: Optional[sos_targets] = None, default_output: Optional[sos_targets] = None, context={}, vars_and_output_only: bool = False) -> Dict[str, Any]: '''Analyze a section for how it uses input and output, what variables it uses, and input, output, etc.''' # analysis_key = (section.md5, section.step_name(), # default_input.target_name() if hasattr(default_input, 'target_name') else '', # default_output.target_name() if hasattr(default_output, 'target_name') else '', vars_and_output_only) #if analysis_key in analysis_cache: # return analysis_cache[analysis_key] # use a fresh env for analysis new_env, old_env = env.request_new() try: prepare_env(section.global_def, section.global_vars, context) env.sos_dict.set('step_name', section.step_name()) env.sos_dict.set('__null_func__', __null_func__) if 'STEP' in env.config['SOS_DEBUG'] or 'ALL' in env.config['SOS_DEBUG']: env.log_to_file( 'STEP', f'Analyzing {section.step_name()} {"(output only)" if vars_and_output_only else ""}' ) res = { 'step_name': section.step_name(), 'step_output': get_step_output(section, default_output), # variables starting with __ are internals... 'environ_vars': get_environ_vars(section), 'signature_vars': get_signature_vars(section), 'changed_vars': get_changed_vars(section) } if not vars_and_output_only: inps = get_step_input(section, default_input) res['step_input'] = inps[0] res['dynamic_input'] = inps[1] deps = get_step_depends(section) res['step_depends'] = deps[0] res['dynamic_depends'] = deps[1] # analysis_cache[analysis_key] = res finally: # restore env env.restore_to_old(new_env, old_env) # #1225 # The global section can contain a lot of variables, some of which can be large. Here we # found all variables that will be used in the step, including ones used in substep (signature_vars) # and ones that will be used in input statement etc. section.global_vars = { x: y for x, y in section.global_vars.items() if x in get_all_used_vars(section) } return res
[ "def", "analyze_section", "(", "section", ":", "SoS_Step", ",", "default_input", ":", "Optional", "[", "sos_targets", "]", "=", "None", ",", "default_output", ":", "Optional", "[", "sos_targets", "]", "=", "None", ",", "context", "=", "{", "}", ",", "vars_and_output_only", ":", "bool", "=", "False", ")", "->", "Dict", "[", "str", ",", "Any", "]", ":", "# analysis_key = (section.md5, section.step_name(),", "# default_input.target_name() if hasattr(default_input, 'target_name') else '',", "# default_output.target_name() if hasattr(default_output, 'target_name') else '', vars_and_output_only)", "#if analysis_key in analysis_cache:", "# return analysis_cache[analysis_key]", "# use a fresh env for analysis", "new_env", ",", "old_env", "=", "env", ".", "request_new", "(", ")", "try", ":", "prepare_env", "(", "section", ".", "global_def", ",", "section", ".", "global_vars", ",", "context", ")", "env", ".", "sos_dict", ".", "set", "(", "'step_name'", ",", "section", ".", "step_name", "(", ")", ")", "env", ".", "sos_dict", ".", "set", "(", "'__null_func__'", ",", "__null_func__", ")", "if", "'STEP'", "in", "env", ".", "config", "[", "'SOS_DEBUG'", "]", "or", "'ALL'", "in", "env", ".", "config", "[", "'SOS_DEBUG'", "]", ":", "env", ".", "log_to_file", "(", "'STEP'", ",", "f'Analyzing {section.step_name()} {\"(output only)\" if vars_and_output_only else \"\"}'", ")", "res", "=", "{", "'step_name'", ":", "section", ".", "step_name", "(", ")", ",", "'step_output'", ":", "get_step_output", "(", "section", ",", "default_output", ")", ",", "# variables starting with __ are internals...", "'environ_vars'", ":", "get_environ_vars", "(", "section", ")", ",", "'signature_vars'", ":", "get_signature_vars", "(", "section", ")", ",", "'changed_vars'", ":", "get_changed_vars", "(", "section", ")", "}", "if", "not", "vars_and_output_only", ":", "inps", "=", "get_step_input", "(", "section", ",", "default_input", ")", "res", "[", "'step_input'", "]", "=", "inps", "[", "0", "]", "res", "[", "'dynamic_input'", "]", "=", "inps", "[", "1", "]", "deps", "=", "get_step_depends", "(", "section", ")", "res", "[", "'step_depends'", "]", "=", "deps", "[", "0", "]", "res", "[", "'dynamic_depends'", "]", "=", "deps", "[", "1", "]", "# analysis_cache[analysis_key] = res", "finally", ":", "# restore env", "env", ".", "restore_to_old", "(", "new_env", ",", "old_env", ")", "# #1225", "# The global section can contain a lot of variables, some of which can be large. Here we", "# found all variables that will be used in the step, including ones used in substep (signature_vars)", "# and ones that will be used in input statement etc.", "section", ".", "global_vars", "=", "{", "x", ":", "y", "for", "x", ",", "y", "in", "section", ".", "global_vars", ".", "items", "(", ")", "if", "x", "in", "get_all_used_vars", "(", "section", ")", "}", "return", "res" ]
Analyze a section for how it uses input and output, what variables it uses, and input, output, etc.
[ "Analyze", "a", "section", "for", "how", "it", "uses", "input", "and", "output", "what", "variables", "it", "uses", "and", "input", "output", "etc", "." ]
6b60ed0770916d135e17322e469520d778e9d4e7
https://github.com/vatlab/SoS/blob/6b60ed0770916d135e17322e469520d778e9d4e7/src/sos/section_analyzer.py#L514-L569
train
vatlab/SoS
src/sos/converter.py
extract_workflow
def extract_workflow(notebook): '''Extract workflow from a notebook file or notebook JSON instance''' if isinstance(notebook, str): nb = nbformat.read(notebook, nbformat.NO_CONVERT) else: nb = notebook cells = nb.cells content = '#!/usr/bin/env sos-runner\n#fileformat=SOS1.0\n\n' for cell in cells: if cell.cell_type != "code": continue # Non-sos code cells are also ignored if 'kernel' in cell.metadata and cell.metadata['kernel'] not in ('sos', 'SoS', None): continue lines = cell.source.split('\n') valid_cell = False for idx, line in enumerate(lines): if valid_cell or (line.startswith('%include') or line.startswith('%from')): content += line + '\n' elif SOS_SECTION_HEADER.match(line): valid_cell = True # look retrospectively for comments c = idx - 1 comment = '' while c >= 0 and lines[c].startswith('#'): comment = lines[c] + '\n' + comment c -= 1 content += comment + line + '\n' if valid_cell: content += '\n' return content
python
def extract_workflow(notebook): '''Extract workflow from a notebook file or notebook JSON instance''' if isinstance(notebook, str): nb = nbformat.read(notebook, nbformat.NO_CONVERT) else: nb = notebook cells = nb.cells content = '#!/usr/bin/env sos-runner\n#fileformat=SOS1.0\n\n' for cell in cells: if cell.cell_type != "code": continue # Non-sos code cells are also ignored if 'kernel' in cell.metadata and cell.metadata['kernel'] not in ('sos', 'SoS', None): continue lines = cell.source.split('\n') valid_cell = False for idx, line in enumerate(lines): if valid_cell or (line.startswith('%include') or line.startswith('%from')): content += line + '\n' elif SOS_SECTION_HEADER.match(line): valid_cell = True # look retrospectively for comments c = idx - 1 comment = '' while c >= 0 and lines[c].startswith('#'): comment = lines[c] + '\n' + comment c -= 1 content += comment + line + '\n' if valid_cell: content += '\n' return content
[ "def", "extract_workflow", "(", "notebook", ")", ":", "if", "isinstance", "(", "notebook", ",", "str", ")", ":", "nb", "=", "nbformat", ".", "read", "(", "notebook", ",", "nbformat", ".", "NO_CONVERT", ")", "else", ":", "nb", "=", "notebook", "cells", "=", "nb", ".", "cells", "content", "=", "'#!/usr/bin/env sos-runner\\n#fileformat=SOS1.0\\n\\n'", "for", "cell", "in", "cells", ":", "if", "cell", ".", "cell_type", "!=", "\"code\"", ":", "continue", "# Non-sos code cells are also ignored", "if", "'kernel'", "in", "cell", ".", "metadata", "and", "cell", ".", "metadata", "[", "'kernel'", "]", "not", "in", "(", "'sos'", ",", "'SoS'", ",", "None", ")", ":", "continue", "lines", "=", "cell", ".", "source", ".", "split", "(", "'\\n'", ")", "valid_cell", "=", "False", "for", "idx", ",", "line", "in", "enumerate", "(", "lines", ")", ":", "if", "valid_cell", "or", "(", "line", ".", "startswith", "(", "'%include'", ")", "or", "line", ".", "startswith", "(", "'%from'", ")", ")", ":", "content", "+=", "line", "+", "'\\n'", "elif", "SOS_SECTION_HEADER", ".", "match", "(", "line", ")", ":", "valid_cell", "=", "True", "# look retrospectively for comments", "c", "=", "idx", "-", "1", "comment", "=", "''", "while", "c", ">=", "0", "and", "lines", "[", "c", "]", ".", "startswith", "(", "'#'", ")", ":", "comment", "=", "lines", "[", "c", "]", "+", "'\\n'", "+", "comment", "c", "-=", "1", "content", "+=", "comment", "+", "line", "+", "'\\n'", "if", "valid_cell", ":", "content", "+=", "'\\n'", "return", "content" ]
Extract workflow from a notebook file or notebook JSON instance
[ "Extract", "workflow", "from", "a", "notebook", "file", "or", "notebook", "JSON", "instance" ]
6b60ed0770916d135e17322e469520d778e9d4e7
https://github.com/vatlab/SoS/blob/6b60ed0770916d135e17322e469520d778e9d4e7/src/sos/converter.py#L166-L199
train
vatlab/SoS
misc/vim-ipython/vim_ipython.py
vim_ipython_is_open
def vim_ipython_is_open(): """ Helper function to let us know if the vim-ipython shell is currently visible """ for w in vim.windows: if w.buffer.name is not None and w.buffer.name.endswith("vim-ipython"): return True return False
python
def vim_ipython_is_open(): """ Helper function to let us know if the vim-ipython shell is currently visible """ for w in vim.windows: if w.buffer.name is not None and w.buffer.name.endswith("vim-ipython"): return True return False
[ "def", "vim_ipython_is_open", "(", ")", ":", "for", "w", "in", "vim", ".", "windows", ":", "if", "w", ".", "buffer", ".", "name", "is", "not", "None", "and", "w", ".", "buffer", ".", "name", ".", "endswith", "(", "\"vim-ipython\"", ")", ":", "return", "True", "return", "False" ]
Helper function to let us know if the vim-ipython shell is currently visible
[ "Helper", "function", "to", "let", "us", "know", "if", "the", "vim", "-", "ipython", "shell", "is", "currently", "visible" ]
6b60ed0770916d135e17322e469520d778e9d4e7
https://github.com/vatlab/SoS/blob/6b60ed0770916d135e17322e469520d778e9d4e7/misc/vim-ipython/vim_ipython.py#L345-L353
train
vatlab/SoS
misc/vim-ipython/vim_ipython.py
with_subchannel
def with_subchannel(f,*args): "conditionally monitor subchannel" def f_with_update(*args): try: f(*args) if monitor_subchannel: update_subchannel_msgs(force=True) except AttributeError: #if kc is None echo("not connected to IPython", 'Error') return f_with_update
python
def with_subchannel(f,*args): "conditionally monitor subchannel" def f_with_update(*args): try: f(*args) if monitor_subchannel: update_subchannel_msgs(force=True) except AttributeError: #if kc is None echo("not connected to IPython", 'Error') return f_with_update
[ "def", "with_subchannel", "(", "f", ",", "*", "args", ")", ":", "def", "f_with_update", "(", "*", "args", ")", ":", "try", ":", "f", "(", "*", "args", ")", "if", "monitor_subchannel", ":", "update_subchannel_msgs", "(", "force", "=", "True", ")", "except", "AttributeError", ":", "#if kc is None", "echo", "(", "\"not connected to IPython\"", ",", "'Error'", ")", "return", "f_with_update" ]
conditionally monitor subchannel
[ "conditionally", "monitor", "subchannel" ]
6b60ed0770916d135e17322e469520d778e9d4e7
https://github.com/vatlab/SoS/blob/6b60ed0770916d135e17322e469520d778e9d4e7/misc/vim-ipython/vim_ipython.py#L570-L579
train
vatlab/SoS
misc/vim-ipython/vim_ipython.py
set_pid
def set_pid(): """ Explicitly ask the ipython kernel for its pid """ global pid lines = '\n'.join(['import os', '_pid = os.getpid()']) try: msg_id = send(lines, silent=True, user_variables=['_pid']) except TypeError: # change in IPython 3.0+ msg_id = send(lines, silent=True, user_expressions={'_pid':'_pid'}) # wait to get message back from kernel try: child = get_child_msg(msg_id) except Empty: echo("no reply from IPython kernel") return try: pid = int(child['content']['user_variables']['_pid']) except TypeError: # change in IPython 1.0.dev moved this out pid = int(child['content']['user_variables']['_pid']['data']['text/plain']) except KeyError: # change in IPython 3.0+ pid = int( child['content']['user_expressions']['_pid']['data']['text/plain']) except KeyError: # change in IPython 1.0.dev moved this out echo("Could not get PID information, kernel not running Python?") return pid
python
def set_pid(): """ Explicitly ask the ipython kernel for its pid """ global pid lines = '\n'.join(['import os', '_pid = os.getpid()']) try: msg_id = send(lines, silent=True, user_variables=['_pid']) except TypeError: # change in IPython 3.0+ msg_id = send(lines, silent=True, user_expressions={'_pid':'_pid'}) # wait to get message back from kernel try: child = get_child_msg(msg_id) except Empty: echo("no reply from IPython kernel") return try: pid = int(child['content']['user_variables']['_pid']) except TypeError: # change in IPython 1.0.dev moved this out pid = int(child['content']['user_variables']['_pid']['data']['text/plain']) except KeyError: # change in IPython 3.0+ pid = int( child['content']['user_expressions']['_pid']['data']['text/plain']) except KeyError: # change in IPython 1.0.dev moved this out echo("Could not get PID information, kernel not running Python?") return pid
[ "def", "set_pid", "(", ")", ":", "global", "pid", "lines", "=", "'\\n'", ".", "join", "(", "[", "'import os'", ",", "'_pid = os.getpid()'", "]", ")", "try", ":", "msg_id", "=", "send", "(", "lines", ",", "silent", "=", "True", ",", "user_variables", "=", "[", "'_pid'", "]", ")", "except", "TypeError", ":", "# change in IPython 3.0+", "msg_id", "=", "send", "(", "lines", ",", "silent", "=", "True", ",", "user_expressions", "=", "{", "'_pid'", ":", "'_pid'", "}", ")", "# wait to get message back from kernel", "try", ":", "child", "=", "get_child_msg", "(", "msg_id", ")", "except", "Empty", ":", "echo", "(", "\"no reply from IPython kernel\"", ")", "return", "try", ":", "pid", "=", "int", "(", "child", "[", "'content'", "]", "[", "'user_variables'", "]", "[", "'_pid'", "]", ")", "except", "TypeError", ":", "# change in IPython 1.0.dev moved this out", "pid", "=", "int", "(", "child", "[", "'content'", "]", "[", "'user_variables'", "]", "[", "'_pid'", "]", "[", "'data'", "]", "[", "'text/plain'", "]", ")", "except", "KeyError", ":", "# change in IPython 3.0+", "pid", "=", "int", "(", "child", "[", "'content'", "]", "[", "'user_expressions'", "]", "[", "'_pid'", "]", "[", "'data'", "]", "[", "'text/plain'", "]", ")", "except", "KeyError", ":", "# change in IPython 1.0.dev moved this out", "echo", "(", "\"Could not get PID information, kernel not running Python?\"", ")", "return", "pid" ]
Explicitly ask the ipython kernel for its pid
[ "Explicitly", "ask", "the", "ipython", "kernel", "for", "its", "pid" ]
6b60ed0770916d135e17322e469520d778e9d4e7
https://github.com/vatlab/SoS/blob/6b60ed0770916d135e17322e469520d778e9d4e7/misc/vim-ipython/vim_ipython.py#L646-L673
train
BradRuderman/pyhs2
pyhs2/cursor.py
Cursor.fetchmany
def fetchmany(self,size=-1): """ return a sequential set of records. This is guaranteed by locking, so that no other thread can grab a few records while a set is fetched. this has the side effect that other threads may have to wait for an arbitrary long time for the completion of the current request. """ self._cursorLock.acquire() # default value (or just checking that someone did not put a ridiculous size) if size < 0 or size > self.MAX_BLOCK_SIZE: size = self.arraysize recs = [] for i in range(0,size): recs.append(self.fetchone()) self._cursorLock.release() return recs
python
def fetchmany(self,size=-1): """ return a sequential set of records. This is guaranteed by locking, so that no other thread can grab a few records while a set is fetched. this has the side effect that other threads may have to wait for an arbitrary long time for the completion of the current request. """ self._cursorLock.acquire() # default value (or just checking that someone did not put a ridiculous size) if size < 0 or size > self.MAX_BLOCK_SIZE: size = self.arraysize recs = [] for i in range(0,size): recs.append(self.fetchone()) self._cursorLock.release() return recs
[ "def", "fetchmany", "(", "self", ",", "size", "=", "-", "1", ")", ":", "self", ".", "_cursorLock", ".", "acquire", "(", ")", "# default value (or just checking that someone did not put a ridiculous size)", "if", "size", "<", "0", "or", "size", ">", "self", ".", "MAX_BLOCK_SIZE", ":", "size", "=", "self", ".", "arraysize", "recs", "=", "[", "]", "for", "i", "in", "range", "(", "0", ",", "size", ")", ":", "recs", ".", "append", "(", "self", ".", "fetchone", "(", ")", ")", "self", ".", "_cursorLock", ".", "release", "(", ")", "return", "recs" ]
return a sequential set of records. This is guaranteed by locking, so that no other thread can grab a few records while a set is fetched. this has the side effect that other threads may have to wait for an arbitrary long time for the completion of the current request.
[ "return", "a", "sequential", "set", "of", "records", ".", "This", "is", "guaranteed", "by", "locking", "so", "that", "no", "other", "thread", "can", "grab", "a", "few", "records", "while", "a", "set", "is", "fetched", ".", "this", "has", "the", "side", "effect", "that", "other", "threads", "may", "have", "to", "wait", "for", "an", "arbitrary", "long", "time", "for", "the", "completion", "of", "the", "current", "request", "." ]
1094d4b3a1e9032ee17eeb41f3381bbbd95862c1
https://github.com/BradRuderman/pyhs2/blob/1094d4b3a1e9032ee17eeb41f3381bbbd95862c1/pyhs2/cursor.py#L143-L159
train
kashifrazzaqui/json-streamer
jsonstreamer/jsonstreamer.py
JSONStreamer.on_number
def on_number(self, ctx, value): ''' Since this is defined both integer and double callbacks are useless ''' value = int(value) if value.isdigit() else float(value) top = self._stack[-1] if top is JSONCompositeType.OBJECT: self.fire(JSONStreamer.VALUE_EVENT, value) elif top is JSONCompositeType.ARRAY: self.fire(JSONStreamer.ELEMENT_EVENT, value) else: raise RuntimeError('Invalid json-streamer state')
python
def on_number(self, ctx, value): ''' Since this is defined both integer and double callbacks are useless ''' value = int(value) if value.isdigit() else float(value) top = self._stack[-1] if top is JSONCompositeType.OBJECT: self.fire(JSONStreamer.VALUE_EVENT, value) elif top is JSONCompositeType.ARRAY: self.fire(JSONStreamer.ELEMENT_EVENT, value) else: raise RuntimeError('Invalid json-streamer state')
[ "def", "on_number", "(", "self", ",", "ctx", ",", "value", ")", ":", "value", "=", "int", "(", "value", ")", "if", "value", ".", "isdigit", "(", ")", "else", "float", "(", "value", ")", "top", "=", "self", ".", "_stack", "[", "-", "1", "]", "if", "top", "is", "JSONCompositeType", ".", "OBJECT", ":", "self", ".", "fire", "(", "JSONStreamer", ".", "VALUE_EVENT", ",", "value", ")", "elif", "top", "is", "JSONCompositeType", ".", "ARRAY", ":", "self", ".", "fire", "(", "JSONStreamer", ".", "ELEMENT_EVENT", ",", "value", ")", "else", ":", "raise", "RuntimeError", "(", "'Invalid json-streamer state'", ")" ]
Since this is defined both integer and double callbacks are useless
[ "Since", "this", "is", "defined", "both", "integer", "and", "double", "callbacks", "are", "useless" ]
f87527d57557d11682c12727a1a4eeda9cca3c8f
https://github.com/kashifrazzaqui/json-streamer/blob/f87527d57557d11682c12727a1a4eeda9cca3c8f/jsonstreamer/jsonstreamer.py#L147-L156
train
kashifrazzaqui/json-streamer
jsonstreamer/jsonstreamer.py
JSONStreamer.close
def close(self): """Closes the streamer which causes a `DOC_END_EVENT` to be fired and frees up memory used by yajl""" self.fire(JSONStreamer.DOC_END_EVENT) self._stack = None self._parser.close()
python
def close(self): """Closes the streamer which causes a `DOC_END_EVENT` to be fired and frees up memory used by yajl""" self.fire(JSONStreamer.DOC_END_EVENT) self._stack = None self._parser.close()
[ "def", "close", "(", "self", ")", ":", "self", ".", "fire", "(", "JSONStreamer", ".", "DOC_END_EVENT", ")", "self", ".", "_stack", "=", "None", "self", ".", "_parser", ".", "close", "(", ")" ]
Closes the streamer which causes a `DOC_END_EVENT` to be fired and frees up memory used by yajl
[ "Closes", "the", "streamer", "which", "causes", "a", "DOC_END_EVENT", "to", "be", "fired", "and", "frees", "up", "memory", "used", "by", "yajl" ]
f87527d57557d11682c12727a1a4eeda9cca3c8f
https://github.com/kashifrazzaqui/json-streamer/blob/f87527d57557d11682c12727a1a4eeda9cca3c8f/jsonstreamer/jsonstreamer.py#L190-L194
train
paolodragone/pymzn
pymzn/mzn/aio/minizinc.py
minizinc
async def minizinc( mzn, *dzn_files, args=None, data=None, include=None, stdlib_dir=None, globals_dir=None, declare_enums=True, allow_multiple_assignments=False, keep=False, output_vars=None, output_base=None, output_mode='dict', solver=None, timeout=None, two_pass=None, pre_passes=None, output_objective=False, non_unique=False, all_solutions=False, num_solutions=None, free_search=False, parallel=None, seed=None, rebase_arrays=True, keep_solutions=True, return_enums=False, max_queue_size=0, **kwargs ): """Coroutine version of the ``pymzn.minizinc`` function. Parameters ---------- max_queue_size : int Maximum number of solutions in the queue between the solution parser and the returned solution stream. When the queue is full, the solver execution will halt untill an item of the queue is consumed. This option is useful for memory management in cases where the solution stream gets very large and the caller cannot consume solutions as fast as they are produced. Use with care, if the full solution stream is not consumed before the execution of the Python program ends it may result in the solver becoming a zombie process. Default is ``0``, meaning an infinite queue. """ mzn_file, dzn_files, data_file, data, keep, _output_mode, types = \ _minizinc_preliminaries( mzn, *dzn_files, args=args, data=data, include=include, stdlib_dir=stdlib_dir, globals_dir=globals_dir, output_vars=output_vars, keep=keep, output_base=output_base, output_mode=output_mode, declare_enums=declare_enums, allow_multiple_assignments=allow_multiple_assignments ) if not solver: solver = config.get('solver', gecode) solver_args = {**kwargs, **config.get('solver_args', {})} proc = await solve( solver, mzn_file, *dzn_files, data=data, include=include, stdlib_dir=stdlib_dir, globals_dir=globals_dir, output_mode=_output_mode, timeout=timeout, two_pass=two_pass, pre_passes=pre_passes, output_objective=output_objective, non_unique=non_unique, all_solutions=all_solutions, num_solutions=num_solutions, free_search=free_search, parallel=parallel, seed=seed, allow_multiple_assignments=allow_multiple_assignments, **solver_args ) if output_mode == 'raw': solns = asyncio.Queue(maxsize=max_queue_size) task = asyncio.create_task(_collect(proc, solns)) else: parser = AsyncSolutionParser( solver, output_mode=output_mode, rebase_arrays=rebase_arrays, types=types, keep_solutions=keep_solutions, return_enums=return_enums, max_queue_size=max_queue_size ) solns = await parser.parse(proc) task = parser.parse_task if not keep: task.add_done_callback(partial(_cleanup_cb, [mzn_file, data_file])) return solns
python
async def minizinc( mzn, *dzn_files, args=None, data=None, include=None, stdlib_dir=None, globals_dir=None, declare_enums=True, allow_multiple_assignments=False, keep=False, output_vars=None, output_base=None, output_mode='dict', solver=None, timeout=None, two_pass=None, pre_passes=None, output_objective=False, non_unique=False, all_solutions=False, num_solutions=None, free_search=False, parallel=None, seed=None, rebase_arrays=True, keep_solutions=True, return_enums=False, max_queue_size=0, **kwargs ): """Coroutine version of the ``pymzn.minizinc`` function. Parameters ---------- max_queue_size : int Maximum number of solutions in the queue between the solution parser and the returned solution stream. When the queue is full, the solver execution will halt untill an item of the queue is consumed. This option is useful for memory management in cases where the solution stream gets very large and the caller cannot consume solutions as fast as they are produced. Use with care, if the full solution stream is not consumed before the execution of the Python program ends it may result in the solver becoming a zombie process. Default is ``0``, meaning an infinite queue. """ mzn_file, dzn_files, data_file, data, keep, _output_mode, types = \ _minizinc_preliminaries( mzn, *dzn_files, args=args, data=data, include=include, stdlib_dir=stdlib_dir, globals_dir=globals_dir, output_vars=output_vars, keep=keep, output_base=output_base, output_mode=output_mode, declare_enums=declare_enums, allow_multiple_assignments=allow_multiple_assignments ) if not solver: solver = config.get('solver', gecode) solver_args = {**kwargs, **config.get('solver_args', {})} proc = await solve( solver, mzn_file, *dzn_files, data=data, include=include, stdlib_dir=stdlib_dir, globals_dir=globals_dir, output_mode=_output_mode, timeout=timeout, two_pass=two_pass, pre_passes=pre_passes, output_objective=output_objective, non_unique=non_unique, all_solutions=all_solutions, num_solutions=num_solutions, free_search=free_search, parallel=parallel, seed=seed, allow_multiple_assignments=allow_multiple_assignments, **solver_args ) if output_mode == 'raw': solns = asyncio.Queue(maxsize=max_queue_size) task = asyncio.create_task(_collect(proc, solns)) else: parser = AsyncSolutionParser( solver, output_mode=output_mode, rebase_arrays=rebase_arrays, types=types, keep_solutions=keep_solutions, return_enums=return_enums, max_queue_size=max_queue_size ) solns = await parser.parse(proc) task = parser.parse_task if not keep: task.add_done_callback(partial(_cleanup_cb, [mzn_file, data_file])) return solns
[ "async", "def", "minizinc", "(", "mzn", ",", "*", "dzn_files", ",", "args", "=", "None", ",", "data", "=", "None", ",", "include", "=", "None", ",", "stdlib_dir", "=", "None", ",", "globals_dir", "=", "None", ",", "declare_enums", "=", "True", ",", "allow_multiple_assignments", "=", "False", ",", "keep", "=", "False", ",", "output_vars", "=", "None", ",", "output_base", "=", "None", ",", "output_mode", "=", "'dict'", ",", "solver", "=", "None", ",", "timeout", "=", "None", ",", "two_pass", "=", "None", ",", "pre_passes", "=", "None", ",", "output_objective", "=", "False", ",", "non_unique", "=", "False", ",", "all_solutions", "=", "False", ",", "num_solutions", "=", "None", ",", "free_search", "=", "False", ",", "parallel", "=", "None", ",", "seed", "=", "None", ",", "rebase_arrays", "=", "True", ",", "keep_solutions", "=", "True", ",", "return_enums", "=", "False", ",", "max_queue_size", "=", "0", ",", "*", "*", "kwargs", ")", ":", "mzn_file", ",", "dzn_files", ",", "data_file", ",", "data", ",", "keep", ",", "_output_mode", ",", "types", "=", "_minizinc_preliminaries", "(", "mzn", ",", "*", "dzn_files", ",", "args", "=", "args", ",", "data", "=", "data", ",", "include", "=", "include", ",", "stdlib_dir", "=", "stdlib_dir", ",", "globals_dir", "=", "globals_dir", ",", "output_vars", "=", "output_vars", ",", "keep", "=", "keep", ",", "output_base", "=", "output_base", ",", "output_mode", "=", "output_mode", ",", "declare_enums", "=", "declare_enums", ",", "allow_multiple_assignments", "=", "allow_multiple_assignments", ")", "if", "not", "solver", ":", "solver", "=", "config", ".", "get", "(", "'solver'", ",", "gecode", ")", "solver_args", "=", "{", "*", "*", "kwargs", ",", "*", "*", "config", ".", "get", "(", "'solver_args'", ",", "{", "}", ")", "}", "proc", "=", "await", "solve", "(", "solver", ",", "mzn_file", ",", "*", "dzn_files", ",", "data", "=", "data", ",", "include", "=", "include", ",", "stdlib_dir", "=", "stdlib_dir", ",", "globals_dir", "=", "globals_dir", ",", "output_mode", "=", "_output_mode", ",", "timeout", "=", "timeout", ",", "two_pass", "=", "two_pass", ",", "pre_passes", "=", "pre_passes", ",", "output_objective", "=", "output_objective", ",", "non_unique", "=", "non_unique", ",", "all_solutions", "=", "all_solutions", ",", "num_solutions", "=", "num_solutions", ",", "free_search", "=", "free_search", ",", "parallel", "=", "parallel", ",", "seed", "=", "seed", ",", "allow_multiple_assignments", "=", "allow_multiple_assignments", ",", "*", "*", "solver_args", ")", "if", "output_mode", "==", "'raw'", ":", "solns", "=", "asyncio", ".", "Queue", "(", "maxsize", "=", "max_queue_size", ")", "task", "=", "asyncio", ".", "create_task", "(", "_collect", "(", "proc", ",", "solns", ")", ")", "else", ":", "parser", "=", "AsyncSolutionParser", "(", "solver", ",", "output_mode", "=", "output_mode", ",", "rebase_arrays", "=", "rebase_arrays", ",", "types", "=", "types", ",", "keep_solutions", "=", "keep_solutions", ",", "return_enums", "=", "return_enums", ",", "max_queue_size", "=", "max_queue_size", ")", "solns", "=", "await", "parser", ".", "parse", "(", "proc", ")", "task", "=", "parser", ".", "parse_task", "if", "not", "keep", ":", "task", ".", "add_done_callback", "(", "partial", "(", "_cleanup_cb", ",", "[", "mzn_file", ",", "data_file", "]", ")", ")", "return", "solns" ]
Coroutine version of the ``pymzn.minizinc`` function. Parameters ---------- max_queue_size : int Maximum number of solutions in the queue between the solution parser and the returned solution stream. When the queue is full, the solver execution will halt untill an item of the queue is consumed. This option is useful for memory management in cases where the solution stream gets very large and the caller cannot consume solutions as fast as they are produced. Use with care, if the full solution stream is not consumed before the execution of the Python program ends it may result in the solver becoming a zombie process. Default is ``0``, meaning an infinite queue.
[ "Coroutine", "version", "of", "the", "pymzn", ".", "minizinc", "function", "." ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/mzn/aio/minizinc.py#L35-L101
train
paolodragone/pymzn
pymzn/dzn/parse.py
parse_value
def parse_value(val, var_type=None, enums=None, rebase_arrays=True): """Parses the value of a dzn statement. Parameters ---------- val : str A value in dzn format. var_type : dict The dictionary of variable type as returned by the command ``minizinc --model-types-only``. Default is ``None``, in which case the type of the variable is inferred from its value. To parse an enum value as a Python enum type its ``var_type`` is required, otherwise the value is simply returned as a string. enums : dict of IntEnum A dictionary containing Python enums, with their respective names as keys. These enums are available to the parser to convert enum values into corresponding values of their respective enum types. Enum values can only be parsed if also the ``var_type`` of the variable is available. rebase_arrays : bool If the parsed value is an array and ``rebase_arrays`` is ``True``, return it as zero-based lists. If ``rebase_arrays`` is ``False``, instead, return it as a dictionary, preserving the original index-set. Returns ------- object The parsed object. The type of the object depends on the dzn value. """ if not var_type: p_val = _parse_array( val, rebase_arrays=rebase_arrays, enums=enums, raise_errors=False ) if p_val is not None: return p_val return _parse_val(val, enums=enums) if 'dims' in var_type: return _parse_array( val, rebase_arrays=rebase_arrays, var_type=var_type, enums=enums ) return _parse_val(val, var_type=var_type, enums=enums)
python
def parse_value(val, var_type=None, enums=None, rebase_arrays=True): """Parses the value of a dzn statement. Parameters ---------- val : str A value in dzn format. var_type : dict The dictionary of variable type as returned by the command ``minizinc --model-types-only``. Default is ``None``, in which case the type of the variable is inferred from its value. To parse an enum value as a Python enum type its ``var_type`` is required, otherwise the value is simply returned as a string. enums : dict of IntEnum A dictionary containing Python enums, with their respective names as keys. These enums are available to the parser to convert enum values into corresponding values of their respective enum types. Enum values can only be parsed if also the ``var_type`` of the variable is available. rebase_arrays : bool If the parsed value is an array and ``rebase_arrays`` is ``True``, return it as zero-based lists. If ``rebase_arrays`` is ``False``, instead, return it as a dictionary, preserving the original index-set. Returns ------- object The parsed object. The type of the object depends on the dzn value. """ if not var_type: p_val = _parse_array( val, rebase_arrays=rebase_arrays, enums=enums, raise_errors=False ) if p_val is not None: return p_val return _parse_val(val, enums=enums) if 'dims' in var_type: return _parse_array( val, rebase_arrays=rebase_arrays, var_type=var_type, enums=enums ) return _parse_val(val, var_type=var_type, enums=enums)
[ "def", "parse_value", "(", "val", ",", "var_type", "=", "None", ",", "enums", "=", "None", ",", "rebase_arrays", "=", "True", ")", ":", "if", "not", "var_type", ":", "p_val", "=", "_parse_array", "(", "val", ",", "rebase_arrays", "=", "rebase_arrays", ",", "enums", "=", "enums", ",", "raise_errors", "=", "False", ")", "if", "p_val", "is", "not", "None", ":", "return", "p_val", "return", "_parse_val", "(", "val", ",", "enums", "=", "enums", ")", "if", "'dims'", "in", "var_type", ":", "return", "_parse_array", "(", "val", ",", "rebase_arrays", "=", "rebase_arrays", ",", "var_type", "=", "var_type", ",", "enums", "=", "enums", ")", "return", "_parse_val", "(", "val", ",", "var_type", "=", "var_type", ",", "enums", "=", "enums", ")" ]
Parses the value of a dzn statement. Parameters ---------- val : str A value in dzn format. var_type : dict The dictionary of variable type as returned by the command ``minizinc --model-types-only``. Default is ``None``, in which case the type of the variable is inferred from its value. To parse an enum value as a Python enum type its ``var_type`` is required, otherwise the value is simply returned as a string. enums : dict of IntEnum A dictionary containing Python enums, with their respective names as keys. These enums are available to the parser to convert enum values into corresponding values of their respective enum types. Enum values can only be parsed if also the ``var_type`` of the variable is available. rebase_arrays : bool If the parsed value is an array and ``rebase_arrays`` is ``True``, return it as zero-based lists. If ``rebase_arrays`` is ``False``, instead, return it as a dictionary, preserving the original index-set. Returns ------- object The parsed object. The type of the object depends on the dzn value.
[ "Parses", "the", "value", "of", "a", "dzn", "statement", "." ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/dzn/parse.py#L395-L438
train
paolodragone/pymzn
pymzn/dzn/parse.py
dzn2dict
def dzn2dict(dzn, *, rebase_arrays=True, types=None, return_enums=False): """Parses a dzn string or file into a dictionary of variable assignments. Parameters ---------- dzn : str A dzn content string or a path to a dzn file. rebase_arrays : bool Whether to return arrays as zero-based lists or to return them as dictionaries, preserving the original index-sets. types : dict Dictionary of variable types. Types can either be dictionaries, as returned by the ``minizinc --model-types-only``, or strings containing a type in dzn format. If the type is a string, it can either be the name of an enum type or one of the following: ``bool``, ``int``, ``float``, ``enum``, ``set of <type>``, ``array[<index_sets>] of <type>``. The default value for ``var_types`` is ``None``, in which case the type of most dzn assignments will be inferred automatically from the value. Enum values can only be parsed if their respective types are available. return_enums : bool Whether to return the parsed enum types included in the dzn content. Returns ------- dict A dictionary containing the variable assignments parsed from the input file or string. """ dzn_ext = os.path.splitext(dzn)[1] if dzn_ext == '.dzn': with open(dzn) as f: dzn = f.read() var_types = None if types: var_types = {} for var, var_type in types.items(): if isinstance(var_type, str): var_types[var] = _to_var_type(var, var_type) elif isinstance(var_type, dict): var_types[var] = var_type else: err = 'Type of variable {} must be a string or a dict.' raise ValueError(err.format(var)) enum_types = None if var_types: enum_types = [] for var, var_type in var_types.items(): if 'enum_type' in var_type and var_type['enum_type'] == var: enum_types.append(var) var_list = [] dzn = _comm_p.sub('\n', dzn) stmts = _stmt_p.findall(dzn) for stmt in stmts: var_m = _var_p.match(stmt) if var_m: var = var_m.group('var') val = var_m.group('val') var_list.append((var, val)) else: raise ValueError( 'Unsupported parsing for statement:\n{}'.format(repr(stmt)) ) enums = None if enum_types: enums = {} remaining = [] while len(var_list) > 0: var, val = var_list.pop(0) if var in enum_types: enum = None enum_m = _enum_p.match(val) if enum_m: vals = enum_m.group('vals').strip() if vals: enum_vals = _parse_enum_vals(vals.split(',')) enum = IntEnum( var, {v: i + 1 for i, v in enumerate(enum_vals)} ) if enum is None: raise ValueError( 'Cannot parse enum type \'{} = {}\'.'.format(var, val) ) enums[var] = enum else: remaining.append((var, val)) var_list = remaining assign = {} for var, val in var_list: var_type = None if var_types: var_type = var_types.get(var, None) assign[var] = parse_value( val, var_type=var_type, enums=enums, rebase_arrays=rebase_arrays ) if return_enums and enums: assign.update(enums) return assign
python
def dzn2dict(dzn, *, rebase_arrays=True, types=None, return_enums=False): """Parses a dzn string or file into a dictionary of variable assignments. Parameters ---------- dzn : str A dzn content string or a path to a dzn file. rebase_arrays : bool Whether to return arrays as zero-based lists or to return them as dictionaries, preserving the original index-sets. types : dict Dictionary of variable types. Types can either be dictionaries, as returned by the ``minizinc --model-types-only``, or strings containing a type in dzn format. If the type is a string, it can either be the name of an enum type or one of the following: ``bool``, ``int``, ``float``, ``enum``, ``set of <type>``, ``array[<index_sets>] of <type>``. The default value for ``var_types`` is ``None``, in which case the type of most dzn assignments will be inferred automatically from the value. Enum values can only be parsed if their respective types are available. return_enums : bool Whether to return the parsed enum types included in the dzn content. Returns ------- dict A dictionary containing the variable assignments parsed from the input file or string. """ dzn_ext = os.path.splitext(dzn)[1] if dzn_ext == '.dzn': with open(dzn) as f: dzn = f.read() var_types = None if types: var_types = {} for var, var_type in types.items(): if isinstance(var_type, str): var_types[var] = _to_var_type(var, var_type) elif isinstance(var_type, dict): var_types[var] = var_type else: err = 'Type of variable {} must be a string or a dict.' raise ValueError(err.format(var)) enum_types = None if var_types: enum_types = [] for var, var_type in var_types.items(): if 'enum_type' in var_type and var_type['enum_type'] == var: enum_types.append(var) var_list = [] dzn = _comm_p.sub('\n', dzn) stmts = _stmt_p.findall(dzn) for stmt in stmts: var_m = _var_p.match(stmt) if var_m: var = var_m.group('var') val = var_m.group('val') var_list.append((var, val)) else: raise ValueError( 'Unsupported parsing for statement:\n{}'.format(repr(stmt)) ) enums = None if enum_types: enums = {} remaining = [] while len(var_list) > 0: var, val = var_list.pop(0) if var in enum_types: enum = None enum_m = _enum_p.match(val) if enum_m: vals = enum_m.group('vals').strip() if vals: enum_vals = _parse_enum_vals(vals.split(',')) enum = IntEnum( var, {v: i + 1 for i, v in enumerate(enum_vals)} ) if enum is None: raise ValueError( 'Cannot parse enum type \'{} = {}\'.'.format(var, val) ) enums[var] = enum else: remaining.append((var, val)) var_list = remaining assign = {} for var, val in var_list: var_type = None if var_types: var_type = var_types.get(var, None) assign[var] = parse_value( val, var_type=var_type, enums=enums, rebase_arrays=rebase_arrays ) if return_enums and enums: assign.update(enums) return assign
[ "def", "dzn2dict", "(", "dzn", ",", "*", ",", "rebase_arrays", "=", "True", ",", "types", "=", "None", ",", "return_enums", "=", "False", ")", ":", "dzn_ext", "=", "os", ".", "path", ".", "splitext", "(", "dzn", ")", "[", "1", "]", "if", "dzn_ext", "==", "'.dzn'", ":", "with", "open", "(", "dzn", ")", "as", "f", ":", "dzn", "=", "f", ".", "read", "(", ")", "var_types", "=", "None", "if", "types", ":", "var_types", "=", "{", "}", "for", "var", ",", "var_type", "in", "types", ".", "items", "(", ")", ":", "if", "isinstance", "(", "var_type", ",", "str", ")", ":", "var_types", "[", "var", "]", "=", "_to_var_type", "(", "var", ",", "var_type", ")", "elif", "isinstance", "(", "var_type", ",", "dict", ")", ":", "var_types", "[", "var", "]", "=", "var_type", "else", ":", "err", "=", "'Type of variable {} must be a string or a dict.'", "raise", "ValueError", "(", "err", ".", "format", "(", "var", ")", ")", "enum_types", "=", "None", "if", "var_types", ":", "enum_types", "=", "[", "]", "for", "var", ",", "var_type", "in", "var_types", ".", "items", "(", ")", ":", "if", "'enum_type'", "in", "var_type", "and", "var_type", "[", "'enum_type'", "]", "==", "var", ":", "enum_types", ".", "append", "(", "var", ")", "var_list", "=", "[", "]", "dzn", "=", "_comm_p", ".", "sub", "(", "'\\n'", ",", "dzn", ")", "stmts", "=", "_stmt_p", ".", "findall", "(", "dzn", ")", "for", "stmt", "in", "stmts", ":", "var_m", "=", "_var_p", ".", "match", "(", "stmt", ")", "if", "var_m", ":", "var", "=", "var_m", ".", "group", "(", "'var'", ")", "val", "=", "var_m", ".", "group", "(", "'val'", ")", "var_list", ".", "append", "(", "(", "var", ",", "val", ")", ")", "else", ":", "raise", "ValueError", "(", "'Unsupported parsing for statement:\\n{}'", ".", "format", "(", "repr", "(", "stmt", ")", ")", ")", "enums", "=", "None", "if", "enum_types", ":", "enums", "=", "{", "}", "remaining", "=", "[", "]", "while", "len", "(", "var_list", ")", ">", "0", ":", "var", ",", "val", "=", "var_list", ".", "pop", "(", "0", ")", "if", "var", "in", "enum_types", ":", "enum", "=", "None", "enum_m", "=", "_enum_p", ".", "match", "(", "val", ")", "if", "enum_m", ":", "vals", "=", "enum_m", ".", "group", "(", "'vals'", ")", ".", "strip", "(", ")", "if", "vals", ":", "enum_vals", "=", "_parse_enum_vals", "(", "vals", ".", "split", "(", "','", ")", ")", "enum", "=", "IntEnum", "(", "var", ",", "{", "v", ":", "i", "+", "1", "for", "i", ",", "v", "in", "enumerate", "(", "enum_vals", ")", "}", ")", "if", "enum", "is", "None", ":", "raise", "ValueError", "(", "'Cannot parse enum type \\'{} = {}\\'.'", ".", "format", "(", "var", ",", "val", ")", ")", "enums", "[", "var", "]", "=", "enum", "else", ":", "remaining", ".", "append", "(", "(", "var", ",", "val", ")", ")", "var_list", "=", "remaining", "assign", "=", "{", "}", "for", "var", ",", "val", "in", "var_list", ":", "var_type", "=", "None", "if", "var_types", ":", "var_type", "=", "var_types", ".", "get", "(", "var", ",", "None", ")", "assign", "[", "var", "]", "=", "parse_value", "(", "val", ",", "var_type", "=", "var_type", ",", "enums", "=", "enums", ",", "rebase_arrays", "=", "rebase_arrays", ")", "if", "return_enums", "and", "enums", ":", "assign", ".", "update", "(", "enums", ")", "return", "assign" ]
Parses a dzn string or file into a dictionary of variable assignments. Parameters ---------- dzn : str A dzn content string or a path to a dzn file. rebase_arrays : bool Whether to return arrays as zero-based lists or to return them as dictionaries, preserving the original index-sets. types : dict Dictionary of variable types. Types can either be dictionaries, as returned by the ``minizinc --model-types-only``, or strings containing a type in dzn format. If the type is a string, it can either be the name of an enum type or one of the following: ``bool``, ``int``, ``float``, ``enum``, ``set of <type>``, ``array[<index_sets>] of <type>``. The default value for ``var_types`` is ``None``, in which case the type of most dzn assignments will be inferred automatically from the value. Enum values can only be parsed if their respective types are available. return_enums : bool Whether to return the parsed enum types included in the dzn content. Returns ------- dict A dictionary containing the variable assignments parsed from the input file or string.
[ "Parses", "a", "dzn", "string", "or", "file", "into", "a", "dictionary", "of", "variable", "assignments", "." ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/dzn/parse.py#L490-L593
train
paolodragone/pymzn
pymzn/mzn/solvers.py
Solver.args
def args( self, all_solutions=False, num_solutions=None, free_search=False, parallel=None, seed=None, **kwargs ): """Returns a list of command line arguments for the specified options. If the solver parser is able to parse statistics, this function should always add options to display statistics. Parameters ---------- all_solutions : bool Whether all the solutions must be returned (default is False). num_solutions : int The maximum number of solutions to be returned (only used in satisfation problems). free_search : bool Whether the solver should be instructed to perform a free search. parallel : int The number of parallel threads the solver should use. seed : int The random number generator seed to pass to the solver. """ args = ['-s', '-v'] if all_solutions: args.append('-a') if num_solutions is not None: args += ['-n', num_solutions] if free_search: args.append('-f') if parallel is not None: args += ['-p', parallel] if seed is not None: args += ['-r', seed] return args
python
def args( self, all_solutions=False, num_solutions=None, free_search=False, parallel=None, seed=None, **kwargs ): """Returns a list of command line arguments for the specified options. If the solver parser is able to parse statistics, this function should always add options to display statistics. Parameters ---------- all_solutions : bool Whether all the solutions must be returned (default is False). num_solutions : int The maximum number of solutions to be returned (only used in satisfation problems). free_search : bool Whether the solver should be instructed to perform a free search. parallel : int The number of parallel threads the solver should use. seed : int The random number generator seed to pass to the solver. """ args = ['-s', '-v'] if all_solutions: args.append('-a') if num_solutions is not None: args += ['-n', num_solutions] if free_search: args.append('-f') if parallel is not None: args += ['-p', parallel] if seed is not None: args += ['-r', seed] return args
[ "def", "args", "(", "self", ",", "all_solutions", "=", "False", ",", "num_solutions", "=", "None", ",", "free_search", "=", "False", ",", "parallel", "=", "None", ",", "seed", "=", "None", ",", "*", "*", "kwargs", ")", ":", "args", "=", "[", "'-s'", ",", "'-v'", "]", "if", "all_solutions", ":", "args", ".", "append", "(", "'-a'", ")", "if", "num_solutions", "is", "not", "None", ":", "args", "+=", "[", "'-n'", ",", "num_solutions", "]", "if", "free_search", ":", "args", ".", "append", "(", "'-f'", ")", "if", "parallel", "is", "not", "None", ":", "args", "+=", "[", "'-p'", ",", "parallel", "]", "if", "seed", "is", "not", "None", ":", "args", "+=", "[", "'-r'", ",", "seed", "]", "return", "args" ]
Returns a list of command line arguments for the specified options. If the solver parser is able to parse statistics, this function should always add options to display statistics. Parameters ---------- all_solutions : bool Whether all the solutions must be returned (default is False). num_solutions : int The maximum number of solutions to be returned (only used in satisfation problems). free_search : bool Whether the solver should be instructed to perform a free search. parallel : int The number of parallel threads the solver should use. seed : int The random number generator seed to pass to the solver.
[ "Returns", "a", "list", "of", "command", "line", "arguments", "for", "the", "specified", "options", "." ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/mzn/solvers.py#L96-L130
train
paolodragone/pymzn
pymzn/log.py
debug
def debug(dbg=True): """Enables or disables debugging messages on the standard output.""" global _debug_handler if dbg and _debug_handler is None: _debug_handler = logging.StreamHandler() logger.addHandler(_debug_handler) logger.setLevel(logging.DEBUG) elif not dbg and _debug_handler is not None: logger.removeHandler(_debug_handler) _debug_handler = None logger.setLevel(logging.WARNING)
python
def debug(dbg=True): """Enables or disables debugging messages on the standard output.""" global _debug_handler if dbg and _debug_handler is None: _debug_handler = logging.StreamHandler() logger.addHandler(_debug_handler) logger.setLevel(logging.DEBUG) elif not dbg and _debug_handler is not None: logger.removeHandler(_debug_handler) _debug_handler = None logger.setLevel(logging.WARNING)
[ "def", "debug", "(", "dbg", "=", "True", ")", ":", "global", "_debug_handler", "if", "dbg", "and", "_debug_handler", "is", "None", ":", "_debug_handler", "=", "logging", ".", "StreamHandler", "(", ")", "logger", ".", "addHandler", "(", "_debug_handler", ")", "logger", ".", "setLevel", "(", "logging", ".", "DEBUG", ")", "elif", "not", "dbg", "and", "_debug_handler", "is", "not", "None", ":", "logger", ".", "removeHandler", "(", "_debug_handler", ")", "_debug_handler", "=", "None", "logger", ".", "setLevel", "(", "logging", ".", "WARNING", ")" ]
Enables or disables debugging messages on the standard output.
[ "Enables", "or", "disables", "debugging", "messages", "on", "the", "standard", "output", "." ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/log.py#L15-L25
train
paolodragone/pymzn
pymzn/mzn/minizinc.py
minizinc_version
def minizinc_version(): """Returns the version of the found minizinc executable.""" vs = _run_minizinc('--version') m = re.findall('version ([\d\.]+)', vs) if not m: raise RuntimeError('MiniZinc executable not found.') return m[0]
python
def minizinc_version(): """Returns the version of the found minizinc executable.""" vs = _run_minizinc('--version') m = re.findall('version ([\d\.]+)', vs) if not m: raise RuntimeError('MiniZinc executable not found.') return m[0]
[ "def", "minizinc_version", "(", ")", ":", "vs", "=", "_run_minizinc", "(", "'--version'", ")", "m", "=", "re", ".", "findall", "(", "'version ([\\d\\.]+)'", ",", "vs", ")", "if", "not", "m", ":", "raise", "RuntimeError", "(", "'MiniZinc executable not found.'", ")", "return", "m", "[", "0", "]" ]
Returns the version of the found minizinc executable.
[ "Returns", "the", "version", "of", "the", "found", "minizinc", "executable", "." ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/mzn/minizinc.py#L64-L70
train
paolodragone/pymzn
pymzn/mzn/minizinc.py
preprocess_model
def preprocess_model(model, rewrap=True, **kwargs): """Preprocess a MiniZinc model. This function takes care of preprocessing the model by resolving the template using the arguments passed as keyword arguments to this function. Optionally, this function can also "rewrap" the model, deleting spaces at the beginning of the lines while preserving indentation. Parameters ---------- model : str The minizinc model (i.e. the content of a ``.mzn`` file). rewrap : bool Whether to "rewrap" the model, i.e. to delete leading spaces, while preserving indentation. Default is ``True``. **kwargs Additional arguments to pass to the template engine. Returns ------- str The preprocessed model. """ args = {**kwargs, **config.get('args', {})} model = _process_template(model, **args) if rewrap: model = rewrap_model(model) return model
python
def preprocess_model(model, rewrap=True, **kwargs): """Preprocess a MiniZinc model. This function takes care of preprocessing the model by resolving the template using the arguments passed as keyword arguments to this function. Optionally, this function can also "rewrap" the model, deleting spaces at the beginning of the lines while preserving indentation. Parameters ---------- model : str The minizinc model (i.e. the content of a ``.mzn`` file). rewrap : bool Whether to "rewrap" the model, i.e. to delete leading spaces, while preserving indentation. Default is ``True``. **kwargs Additional arguments to pass to the template engine. Returns ------- str The preprocessed model. """ args = {**kwargs, **config.get('args', {})} model = _process_template(model, **args) if rewrap: model = rewrap_model(model) return model
[ "def", "preprocess_model", "(", "model", ",", "rewrap", "=", "True", ",", "*", "*", "kwargs", ")", ":", "args", "=", "{", "*", "*", "kwargs", ",", "*", "*", "config", ".", "get", "(", "'args'", ",", "{", "}", ")", "}", "model", "=", "_process_template", "(", "model", ",", "*", "*", "args", ")", "if", "rewrap", ":", "model", "=", "rewrap_model", "(", "model", ")", "return", "model" ]
Preprocess a MiniZinc model. This function takes care of preprocessing the model by resolving the template using the arguments passed as keyword arguments to this function. Optionally, this function can also "rewrap" the model, deleting spaces at the beginning of the lines while preserving indentation. Parameters ---------- model : str The minizinc model (i.e. the content of a ``.mzn`` file). rewrap : bool Whether to "rewrap" the model, i.e. to delete leading spaces, while preserving indentation. Default is ``True``. **kwargs Additional arguments to pass to the template engine. Returns ------- str The preprocessed model.
[ "Preprocess", "a", "MiniZinc", "model", "." ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/mzn/minizinc.py#L179-L209
train
paolodragone/pymzn
pymzn/mzn/minizinc.py
save_model
def save_model(model, output_file=None, output_dir=None, output_prefix='pymzn'): """Save a model to file. Parameters ---------- model : str The minizinc model (i.e. the content of a ``.mzn`` file). output_file : str The path to the output file. If this parameter is ``None`` (default), a temporary file is created with the given model in the specified output directory, using the specified prefix. output_dir : str The directory where to create the file in case ``output_file`` is None. Default is ``None``, which creates a file in the system temporary directory. output_prefix : str The prefix for the output file if created. Default is ``'pymzn'``. Returns ------- str The path to the newly created ``.mzn`` file. """ if output_file: mzn_file = output_file output_file = open(output_file, 'w+', buffering=1) else: output_prefix += '_' output_file = NamedTemporaryFile( dir=output_dir, prefix=output_prefix, suffix='.mzn', delete=False, mode='w+', buffering=1 ) mzn_file = output_file.name output_file.write(model) output_file.close() logger.info('Generated file {}'.format(mzn_file)) return mzn_file
python
def save_model(model, output_file=None, output_dir=None, output_prefix='pymzn'): """Save a model to file. Parameters ---------- model : str The minizinc model (i.e. the content of a ``.mzn`` file). output_file : str The path to the output file. If this parameter is ``None`` (default), a temporary file is created with the given model in the specified output directory, using the specified prefix. output_dir : str The directory where to create the file in case ``output_file`` is None. Default is ``None``, which creates a file in the system temporary directory. output_prefix : str The prefix for the output file if created. Default is ``'pymzn'``. Returns ------- str The path to the newly created ``.mzn`` file. """ if output_file: mzn_file = output_file output_file = open(output_file, 'w+', buffering=1) else: output_prefix += '_' output_file = NamedTemporaryFile( dir=output_dir, prefix=output_prefix, suffix='.mzn', delete=False, mode='w+', buffering=1 ) mzn_file = output_file.name output_file.write(model) output_file.close() logger.info('Generated file {}'.format(mzn_file)) return mzn_file
[ "def", "save_model", "(", "model", ",", "output_file", "=", "None", ",", "output_dir", "=", "None", ",", "output_prefix", "=", "'pymzn'", ")", ":", "if", "output_file", ":", "mzn_file", "=", "output_file", "output_file", "=", "open", "(", "output_file", ",", "'w+'", ",", "buffering", "=", "1", ")", "else", ":", "output_prefix", "+=", "'_'", "output_file", "=", "NamedTemporaryFile", "(", "dir", "=", "output_dir", ",", "prefix", "=", "output_prefix", ",", "suffix", "=", "'.mzn'", ",", "delete", "=", "False", ",", "mode", "=", "'w+'", ",", "buffering", "=", "1", ")", "mzn_file", "=", "output_file", ".", "name", "output_file", ".", "write", "(", "model", ")", "output_file", ".", "close", "(", ")", "logger", ".", "info", "(", "'Generated file {}'", ".", "format", "(", "mzn_file", ")", ")", "return", "mzn_file" ]
Save a model to file. Parameters ---------- model : str The minizinc model (i.e. the content of a ``.mzn`` file). output_file : str The path to the output file. If this parameter is ``None`` (default), a temporary file is created with the given model in the specified output directory, using the specified prefix. output_dir : str The directory where to create the file in case ``output_file`` is None. Default is ``None``, which creates a file in the system temporary directory. output_prefix : str The prefix for the output file if created. Default is ``'pymzn'``. Returns ------- str The path to the newly created ``.mzn`` file.
[ "Save", "a", "model", "to", "file", "." ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/mzn/minizinc.py#L212-L249
train
paolodragone/pymzn
pymzn/mzn/minizinc.py
check_instance
def check_instance( mzn, *dzn_files, data=None, include=None, stdlib_dir=None, globals_dir=None, allow_multiple_assignments=False ): """Perform instance checking on a model + data. This function calls the command ``minizinc --instance-check-only`` to check for consistency of the given model + data. Parameters ---------- mzn : str The minizinc model. This can be either the path to the ``.mzn`` file or the content of the model itself. *dzn_files A list of paths to dzn files to attach to the minizinc execution, provided as positional arguments; by default no data file is attached. data : dict Additional data as a list of strings containing dzn variables assignments. include : str or list One or more additional paths to search for included ``.mzn`` files. stdlib_dir : str The path to the MiniZinc standard library. Provide it only if it is different from the default one. globals_dir : str The path to the MiniZinc globals directory. Provide it only if it is different from the default one. allow_multiple_assignments : bool Whether to allow multiple assignments of variables. Sometimes is convenient to simply let the data file override the value already assigned in the minizinc file. Default is ``False``. Raises ------ ``MiniZincError`` if instance checking fails. """ args = ['--instance-check-only'] args += _flattening_args( mzn, *dzn_files, data=data, include=include, stdlib_dir=stdlib_dir, globals_dir=globals_dir, allow_multiple_assignments=allow_multiple_assignments ) input = mzn if args[-1] == '-' else None proc = _run_minizinc_proc(*args, input=input) if proc.stderr_data: raise MiniZincError( mzn if input is None else '\n' + mzn + '\n', args, proc.stderr_data )
python
def check_instance( mzn, *dzn_files, data=None, include=None, stdlib_dir=None, globals_dir=None, allow_multiple_assignments=False ): """Perform instance checking on a model + data. This function calls the command ``minizinc --instance-check-only`` to check for consistency of the given model + data. Parameters ---------- mzn : str The minizinc model. This can be either the path to the ``.mzn`` file or the content of the model itself. *dzn_files A list of paths to dzn files to attach to the minizinc execution, provided as positional arguments; by default no data file is attached. data : dict Additional data as a list of strings containing dzn variables assignments. include : str or list One or more additional paths to search for included ``.mzn`` files. stdlib_dir : str The path to the MiniZinc standard library. Provide it only if it is different from the default one. globals_dir : str The path to the MiniZinc globals directory. Provide it only if it is different from the default one. allow_multiple_assignments : bool Whether to allow multiple assignments of variables. Sometimes is convenient to simply let the data file override the value already assigned in the minizinc file. Default is ``False``. Raises ------ ``MiniZincError`` if instance checking fails. """ args = ['--instance-check-only'] args += _flattening_args( mzn, *dzn_files, data=data, include=include, stdlib_dir=stdlib_dir, globals_dir=globals_dir, allow_multiple_assignments=allow_multiple_assignments ) input = mzn if args[-1] == '-' else None proc = _run_minizinc_proc(*args, input=input) if proc.stderr_data: raise MiniZincError( mzn if input is None else '\n' + mzn + '\n', args, proc.stderr_data )
[ "def", "check_instance", "(", "mzn", ",", "*", "dzn_files", ",", "data", "=", "None", ",", "include", "=", "None", ",", "stdlib_dir", "=", "None", ",", "globals_dir", "=", "None", ",", "allow_multiple_assignments", "=", "False", ")", ":", "args", "=", "[", "'--instance-check-only'", "]", "args", "+=", "_flattening_args", "(", "mzn", ",", "*", "dzn_files", ",", "data", "=", "data", ",", "include", "=", "include", ",", "stdlib_dir", "=", "stdlib_dir", ",", "globals_dir", "=", "globals_dir", ",", "allow_multiple_assignments", "=", "allow_multiple_assignments", ")", "input", "=", "mzn", "if", "args", "[", "-", "1", "]", "==", "'-'", "else", "None", "proc", "=", "_run_minizinc_proc", "(", "*", "args", ",", "input", "=", "input", ")", "if", "proc", ".", "stderr_data", ":", "raise", "MiniZincError", "(", "mzn", "if", "input", "is", "None", "else", "'\\n'", "+", "mzn", "+", "'\\n'", ",", "args", ",", "proc", ".", "stderr_data", ")" ]
Perform instance checking on a model + data. This function calls the command ``minizinc --instance-check-only`` to check for consistency of the given model + data. Parameters ---------- mzn : str The minizinc model. This can be either the path to the ``.mzn`` file or the content of the model itself. *dzn_files A list of paths to dzn files to attach to the minizinc execution, provided as positional arguments; by default no data file is attached. data : dict Additional data as a list of strings containing dzn variables assignments. include : str or list One or more additional paths to search for included ``.mzn`` files. stdlib_dir : str The path to the MiniZinc standard library. Provide it only if it is different from the default one. globals_dir : str The path to the MiniZinc globals directory. Provide it only if it is different from the default one. allow_multiple_assignments : bool Whether to allow multiple assignments of variables. Sometimes is convenient to simply let the data file override the value already assigned in the minizinc file. Default is ``False``. Raises ------ ``MiniZincError`` if instance checking fails.
[ "Perform", "instance", "checking", "on", "a", "model", "+", "data", "." ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/mzn/minizinc.py#L327-L378
train
paolodragone/pymzn
pymzn/mzn/minizinc.py
check_model
def check_model( mzn, *, include=None, stdlib_dir=None, globals_dir=None ): """Perform model checking on a given model. This function calls the command ``minizinc --model-check-only`` to check for consistency of the given model. Parameters ---------- mzn : str The minizinc model. This can be either the path to the ``.mzn`` file or the content of the model itself. include : str or list One or more additional paths to search for included ``.mzn`` files. stdlib_dir : str The path to the MiniZinc standard library. Provide it only if it is different from the default one. globals_dir : str The path to the MiniZinc globals directory. Provide it only if it is different from the default one. Raises ------ ``MiniZincError`` if model checking fails. """ args = ['--model-check-only'] args += _flattening_args( mzn, include=include, stdlib_dir=stdlib_dir, globals_dir=globals_dir ) input = mzn if args[-1] == '-' else None proc = _run_minizinc_proc(*args, input=input) if proc.stderr_data: raise MiniZincError( mzn if input is None else '\n' + mzn + '\n', args, proc.stderr_data )
python
def check_model( mzn, *, include=None, stdlib_dir=None, globals_dir=None ): """Perform model checking on a given model. This function calls the command ``minizinc --model-check-only`` to check for consistency of the given model. Parameters ---------- mzn : str The minizinc model. This can be either the path to the ``.mzn`` file or the content of the model itself. include : str or list One or more additional paths to search for included ``.mzn`` files. stdlib_dir : str The path to the MiniZinc standard library. Provide it only if it is different from the default one. globals_dir : str The path to the MiniZinc globals directory. Provide it only if it is different from the default one. Raises ------ ``MiniZincError`` if model checking fails. """ args = ['--model-check-only'] args += _flattening_args( mzn, include=include, stdlib_dir=stdlib_dir, globals_dir=globals_dir ) input = mzn if args[-1] == '-' else None proc = _run_minizinc_proc(*args, input=input) if proc.stderr_data: raise MiniZincError( mzn if input is None else '\n' + mzn + '\n', args, proc.stderr_data )
[ "def", "check_model", "(", "mzn", ",", "*", ",", "include", "=", "None", ",", "stdlib_dir", "=", "None", ",", "globals_dir", "=", "None", ")", ":", "args", "=", "[", "'--model-check-only'", "]", "args", "+=", "_flattening_args", "(", "mzn", ",", "include", "=", "include", ",", "stdlib_dir", "=", "stdlib_dir", ",", "globals_dir", "=", "globals_dir", ")", "input", "=", "mzn", "if", "args", "[", "-", "1", "]", "==", "'-'", "else", "None", "proc", "=", "_run_minizinc_proc", "(", "*", "args", ",", "input", "=", "input", ")", "if", "proc", ".", "stderr_data", ":", "raise", "MiniZincError", "(", "mzn", "if", "input", "is", "None", "else", "'\\n'", "+", "mzn", "+", "'\\n'", ",", "args", ",", "proc", ".", "stderr_data", ")" ]
Perform model checking on a given model. This function calls the command ``minizinc --model-check-only`` to check for consistency of the given model. Parameters ---------- mzn : str The minizinc model. This can be either the path to the ``.mzn`` file or the content of the model itself. include : str or list One or more additional paths to search for included ``.mzn`` files. stdlib_dir : str The path to the MiniZinc standard library. Provide it only if it is different from the default one. globals_dir : str The path to the MiniZinc globals directory. Provide it only if it is different from the default one. Raises ------ ``MiniZincError`` if model checking fails.
[ "Perform", "model", "checking", "on", "a", "given", "model", "." ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/mzn/minizinc.py#L381-L419
train
paolodragone/pymzn
pymzn/mzn/minizinc.py
minizinc
def minizinc( mzn, *dzn_files, args=None, data=None, include=None, stdlib_dir=None, globals_dir=None, declare_enums=True, allow_multiple_assignments=False, keep=False, output_vars=None, output_base=None, output_mode='dict', solver=None, timeout=None, two_pass=None, pre_passes=None, output_objective=False, non_unique=False, all_solutions=False, num_solutions=None, free_search=False, parallel=None, seed=None, rebase_arrays=True, keep_solutions=True, return_enums=False, **kwargs ): """Implements the workflow for solving a CSP problem encoded with MiniZinc. Parameters ---------- mzn : str The minizinc model. This can be either the path to the ``.mzn`` file or the content of the model itself. *dzn_files A list of paths to dzn files to attach to the minizinc execution, provided as positional arguments; by default no data file is attached. args : dict Arguments for the template engine. data : dict Additional data as a dictionary of variables assignments to supply to the minizinc executable. The dictionary is automatically converted to dzn format by the ``pymzn.dict2dzn`` function. include : str or list One or more additional paths to search for included ``.mzn`` files. stdlib_dir : str The path to the MiniZinc standard library. Provide it only if it is different from the default one. globals_dir : str The path to the MiniZinc globals directory. Provide it only if it is different from the default one. declare_enums : bool Whether to declare enum types when converting inline data into dzn format. If the enum types are declared elsewhere this option should be False. Default is ``True``. allow_multiple_assignments : bool Whether to allow multiple assignments of variables. Sometimes is convenient to simply let the data file override the value already assigned in the minizinc file. Default is ``False``. keep : bool Whether to keep the generated ``.mzn``, ``.dzn``, ``.fzn`` and ``.ozn`` files or not. If False, the generated files are created as temporary files which will be deleted right after the problem is solved. Though files generated by PyMzn are not intended to be kept, this property can be used for debugging purpose. Note that in case of error the files are not deleted even if this parameter is ``False``. Default is ``False``. output_vars : list of str A list of output variables. These variables will be the ones included in the output dictionary. Only available if ``ouptut_mode='dict'``. output_base : str Output directory for the files generated by PyMzn. The default (``None``) is the temporary directory of your OS (if ``keep=False``) or the current working directory (if ``keep=True``). output_mode : {'dict', 'item', 'dzn', 'json', 'raw'} The desired output format. The default is ``'dict'`` which returns a stream of solutions decoded as python dictionaries. The ``'item'`` format outputs a stream of strings as returned by the ``solns2out`` tool, formatted according to the output statement of the MiniZinc model. The ``'dzn'`` and ``'json'`` formats output a stream of strings formatted in dzn of json respectively. The ``'raw'`` format, instead returns the whole solution stream, without parsing. solver : Solver The ``Solver`` instance to use. The default solver is ``gecode``. timeout : int The timeout in seconds for the flattening + solving process. two_pass : bool or int If ``two_pass`` is True, then it is equivalent to the ``--two-pass`` option for the ``minizinc`` executable. If ``two_pass`` is an integer ``<n>``, instead, it is equivalent to the ``-O<n>`` option for the ``minizinc`` executable. pre_passes : int Equivalent to the ``--pre-passes`` option for the ``minizinc`` executable. output_objective : bool Equivalent to the ``--output-objective`` option for the ``minizinc`` executable. Adds a field ``_objective`` to all solutions. non_unique : bool Equivalent to the ``--non-unique`` option for the ``minizinc`` executable. all_solutions : bool Whether all the solutions must be returned. This option might not work if the solver does not support it. Default is ``False``. num_solutions : int The upper bound on the number of solutions to be returned. This option might not work if the solver does not support it. Default is ``1``. free_search : bool If ``True``, instruct the solver to perform free search. parallel : int The number of parallel threads the solver can utilize for the solving. seed : int The random number generator seed to pass to the solver. rebase_arrays : bool Whether to "rebase" parsed arrays (see the `Dzn files <http://paolodragone.com/pymzn/reference/dzn>`__ section). Default is True. keep_solutions : bool Whether to store the solutions in memory after solving is done. If ``keep_solutions`` is ``False``, the returned solution stream can only be iterated once and cannot be addressed as a list. return_enums : bool Wheter to return enum types along with the variable assignments in the solutions. Only used if ``output_mode='dict'``. Default is ``False``. **kwargs Additional arguments to pass to the solver, provided as additional keyword arguments to this function. Check the solver documentation for the available arguments. Returns ------- Solutions or str If ``output_mode`` is not ``'raw'``, returns a list-like object containing the solutions found by the solver. The format of the solution depends on the specified ``output_mode``. If ``keep_solutions=False``, the returned object cannot be addressed as a list and can only be iterated once. If ``output_mode='raw'``, the function returns the whole solution stream as a single string. """ mzn_file, dzn_files, data_file, data, keep, _output_mode, types = \ _minizinc_preliminaries( mzn, *dzn_files, args=args, data=data, include=include, stdlib_dir=stdlib_dir, globals_dir=globals_dir, output_vars=output_vars, keep=keep, output_base=output_base, output_mode=output_mode, declare_enums=declare_enums, allow_multiple_assignments=allow_multiple_assignments ) if not solver: solver = config.get('solver', gecode) solver_args = {**kwargs, **config.get('solver_args', {})} proc = solve( solver, mzn_file, *dzn_files, data=data, include=include, stdlib_dir=stdlib_dir, globals_dir=globals_dir, output_mode=_output_mode, timeout=timeout, two_pass=two_pass, pre_passes=pre_passes, output_objective=output_objective, non_unique=non_unique, all_solutions=all_solutions, num_solutions=num_solutions, free_search=free_search, parallel=parallel, seed=seed, allow_multiple_assignments=allow_multiple_assignments, **solver_args ) if not keep: _cleanup([mzn_file, data_file]) if output_mode == 'raw': return proc.stdout_data parser = SolutionParser( solver, output_mode=output_mode, rebase_arrays=rebase_arrays, types=types, keep_solutions=keep_solutions, return_enums=return_enums ) solns = parser.parse(proc) return solns
python
def minizinc( mzn, *dzn_files, args=None, data=None, include=None, stdlib_dir=None, globals_dir=None, declare_enums=True, allow_multiple_assignments=False, keep=False, output_vars=None, output_base=None, output_mode='dict', solver=None, timeout=None, two_pass=None, pre_passes=None, output_objective=False, non_unique=False, all_solutions=False, num_solutions=None, free_search=False, parallel=None, seed=None, rebase_arrays=True, keep_solutions=True, return_enums=False, **kwargs ): """Implements the workflow for solving a CSP problem encoded with MiniZinc. Parameters ---------- mzn : str The minizinc model. This can be either the path to the ``.mzn`` file or the content of the model itself. *dzn_files A list of paths to dzn files to attach to the minizinc execution, provided as positional arguments; by default no data file is attached. args : dict Arguments for the template engine. data : dict Additional data as a dictionary of variables assignments to supply to the minizinc executable. The dictionary is automatically converted to dzn format by the ``pymzn.dict2dzn`` function. include : str or list One or more additional paths to search for included ``.mzn`` files. stdlib_dir : str The path to the MiniZinc standard library. Provide it only if it is different from the default one. globals_dir : str The path to the MiniZinc globals directory. Provide it only if it is different from the default one. declare_enums : bool Whether to declare enum types when converting inline data into dzn format. If the enum types are declared elsewhere this option should be False. Default is ``True``. allow_multiple_assignments : bool Whether to allow multiple assignments of variables. Sometimes is convenient to simply let the data file override the value already assigned in the minizinc file. Default is ``False``. keep : bool Whether to keep the generated ``.mzn``, ``.dzn``, ``.fzn`` and ``.ozn`` files or not. If False, the generated files are created as temporary files which will be deleted right after the problem is solved. Though files generated by PyMzn are not intended to be kept, this property can be used for debugging purpose. Note that in case of error the files are not deleted even if this parameter is ``False``. Default is ``False``. output_vars : list of str A list of output variables. These variables will be the ones included in the output dictionary. Only available if ``ouptut_mode='dict'``. output_base : str Output directory for the files generated by PyMzn. The default (``None``) is the temporary directory of your OS (if ``keep=False``) or the current working directory (if ``keep=True``). output_mode : {'dict', 'item', 'dzn', 'json', 'raw'} The desired output format. The default is ``'dict'`` which returns a stream of solutions decoded as python dictionaries. The ``'item'`` format outputs a stream of strings as returned by the ``solns2out`` tool, formatted according to the output statement of the MiniZinc model. The ``'dzn'`` and ``'json'`` formats output a stream of strings formatted in dzn of json respectively. The ``'raw'`` format, instead returns the whole solution stream, without parsing. solver : Solver The ``Solver`` instance to use. The default solver is ``gecode``. timeout : int The timeout in seconds for the flattening + solving process. two_pass : bool or int If ``two_pass`` is True, then it is equivalent to the ``--two-pass`` option for the ``minizinc`` executable. If ``two_pass`` is an integer ``<n>``, instead, it is equivalent to the ``-O<n>`` option for the ``minizinc`` executable. pre_passes : int Equivalent to the ``--pre-passes`` option for the ``minizinc`` executable. output_objective : bool Equivalent to the ``--output-objective`` option for the ``minizinc`` executable. Adds a field ``_objective`` to all solutions. non_unique : bool Equivalent to the ``--non-unique`` option for the ``minizinc`` executable. all_solutions : bool Whether all the solutions must be returned. This option might not work if the solver does not support it. Default is ``False``. num_solutions : int The upper bound on the number of solutions to be returned. This option might not work if the solver does not support it. Default is ``1``. free_search : bool If ``True``, instruct the solver to perform free search. parallel : int The number of parallel threads the solver can utilize for the solving. seed : int The random number generator seed to pass to the solver. rebase_arrays : bool Whether to "rebase" parsed arrays (see the `Dzn files <http://paolodragone.com/pymzn/reference/dzn>`__ section). Default is True. keep_solutions : bool Whether to store the solutions in memory after solving is done. If ``keep_solutions`` is ``False``, the returned solution stream can only be iterated once and cannot be addressed as a list. return_enums : bool Wheter to return enum types along with the variable assignments in the solutions. Only used if ``output_mode='dict'``. Default is ``False``. **kwargs Additional arguments to pass to the solver, provided as additional keyword arguments to this function. Check the solver documentation for the available arguments. Returns ------- Solutions or str If ``output_mode`` is not ``'raw'``, returns a list-like object containing the solutions found by the solver. The format of the solution depends on the specified ``output_mode``. If ``keep_solutions=False``, the returned object cannot be addressed as a list and can only be iterated once. If ``output_mode='raw'``, the function returns the whole solution stream as a single string. """ mzn_file, dzn_files, data_file, data, keep, _output_mode, types = \ _minizinc_preliminaries( mzn, *dzn_files, args=args, data=data, include=include, stdlib_dir=stdlib_dir, globals_dir=globals_dir, output_vars=output_vars, keep=keep, output_base=output_base, output_mode=output_mode, declare_enums=declare_enums, allow_multiple_assignments=allow_multiple_assignments ) if not solver: solver = config.get('solver', gecode) solver_args = {**kwargs, **config.get('solver_args', {})} proc = solve( solver, mzn_file, *dzn_files, data=data, include=include, stdlib_dir=stdlib_dir, globals_dir=globals_dir, output_mode=_output_mode, timeout=timeout, two_pass=two_pass, pre_passes=pre_passes, output_objective=output_objective, non_unique=non_unique, all_solutions=all_solutions, num_solutions=num_solutions, free_search=free_search, parallel=parallel, seed=seed, allow_multiple_assignments=allow_multiple_assignments, **solver_args ) if not keep: _cleanup([mzn_file, data_file]) if output_mode == 'raw': return proc.stdout_data parser = SolutionParser( solver, output_mode=output_mode, rebase_arrays=rebase_arrays, types=types, keep_solutions=keep_solutions, return_enums=return_enums ) solns = parser.parse(proc) return solns
[ "def", "minizinc", "(", "mzn", ",", "*", "dzn_files", ",", "args", "=", "None", ",", "data", "=", "None", ",", "include", "=", "None", ",", "stdlib_dir", "=", "None", ",", "globals_dir", "=", "None", ",", "declare_enums", "=", "True", ",", "allow_multiple_assignments", "=", "False", ",", "keep", "=", "False", ",", "output_vars", "=", "None", ",", "output_base", "=", "None", ",", "output_mode", "=", "'dict'", ",", "solver", "=", "None", ",", "timeout", "=", "None", ",", "two_pass", "=", "None", ",", "pre_passes", "=", "None", ",", "output_objective", "=", "False", ",", "non_unique", "=", "False", ",", "all_solutions", "=", "False", ",", "num_solutions", "=", "None", ",", "free_search", "=", "False", ",", "parallel", "=", "None", ",", "seed", "=", "None", ",", "rebase_arrays", "=", "True", ",", "keep_solutions", "=", "True", ",", "return_enums", "=", "False", ",", "*", "*", "kwargs", ")", ":", "mzn_file", ",", "dzn_files", ",", "data_file", ",", "data", ",", "keep", ",", "_output_mode", ",", "types", "=", "_minizinc_preliminaries", "(", "mzn", ",", "*", "dzn_files", ",", "args", "=", "args", ",", "data", "=", "data", ",", "include", "=", "include", ",", "stdlib_dir", "=", "stdlib_dir", ",", "globals_dir", "=", "globals_dir", ",", "output_vars", "=", "output_vars", ",", "keep", "=", "keep", ",", "output_base", "=", "output_base", ",", "output_mode", "=", "output_mode", ",", "declare_enums", "=", "declare_enums", ",", "allow_multiple_assignments", "=", "allow_multiple_assignments", ")", "if", "not", "solver", ":", "solver", "=", "config", ".", "get", "(", "'solver'", ",", "gecode", ")", "solver_args", "=", "{", "*", "*", "kwargs", ",", "*", "*", "config", ".", "get", "(", "'solver_args'", ",", "{", "}", ")", "}", "proc", "=", "solve", "(", "solver", ",", "mzn_file", ",", "*", "dzn_files", ",", "data", "=", "data", ",", "include", "=", "include", ",", "stdlib_dir", "=", "stdlib_dir", ",", "globals_dir", "=", "globals_dir", ",", "output_mode", "=", "_output_mode", ",", "timeout", "=", "timeout", ",", "two_pass", "=", "two_pass", ",", "pre_passes", "=", "pre_passes", ",", "output_objective", "=", "output_objective", ",", "non_unique", "=", "non_unique", ",", "all_solutions", "=", "all_solutions", ",", "num_solutions", "=", "num_solutions", ",", "free_search", "=", "free_search", ",", "parallel", "=", "parallel", ",", "seed", "=", "seed", ",", "allow_multiple_assignments", "=", "allow_multiple_assignments", ",", "*", "*", "solver_args", ")", "if", "not", "keep", ":", "_cleanup", "(", "[", "mzn_file", ",", "data_file", "]", ")", "if", "output_mode", "==", "'raw'", ":", "return", "proc", ".", "stdout_data", "parser", "=", "SolutionParser", "(", "solver", ",", "output_mode", "=", "output_mode", ",", "rebase_arrays", "=", "rebase_arrays", ",", "types", "=", "types", ",", "keep_solutions", "=", "keep_solutions", ",", "return_enums", "=", "return_enums", ")", "solns", "=", "parser", ".", "parse", "(", "proc", ")", "return", "solns" ]
Implements the workflow for solving a CSP problem encoded with MiniZinc. Parameters ---------- mzn : str The minizinc model. This can be either the path to the ``.mzn`` file or the content of the model itself. *dzn_files A list of paths to dzn files to attach to the minizinc execution, provided as positional arguments; by default no data file is attached. args : dict Arguments for the template engine. data : dict Additional data as a dictionary of variables assignments to supply to the minizinc executable. The dictionary is automatically converted to dzn format by the ``pymzn.dict2dzn`` function. include : str or list One or more additional paths to search for included ``.mzn`` files. stdlib_dir : str The path to the MiniZinc standard library. Provide it only if it is different from the default one. globals_dir : str The path to the MiniZinc globals directory. Provide it only if it is different from the default one. declare_enums : bool Whether to declare enum types when converting inline data into dzn format. If the enum types are declared elsewhere this option should be False. Default is ``True``. allow_multiple_assignments : bool Whether to allow multiple assignments of variables. Sometimes is convenient to simply let the data file override the value already assigned in the minizinc file. Default is ``False``. keep : bool Whether to keep the generated ``.mzn``, ``.dzn``, ``.fzn`` and ``.ozn`` files or not. If False, the generated files are created as temporary files which will be deleted right after the problem is solved. Though files generated by PyMzn are not intended to be kept, this property can be used for debugging purpose. Note that in case of error the files are not deleted even if this parameter is ``False``. Default is ``False``. output_vars : list of str A list of output variables. These variables will be the ones included in the output dictionary. Only available if ``ouptut_mode='dict'``. output_base : str Output directory for the files generated by PyMzn. The default (``None``) is the temporary directory of your OS (if ``keep=False``) or the current working directory (if ``keep=True``). output_mode : {'dict', 'item', 'dzn', 'json', 'raw'} The desired output format. The default is ``'dict'`` which returns a stream of solutions decoded as python dictionaries. The ``'item'`` format outputs a stream of strings as returned by the ``solns2out`` tool, formatted according to the output statement of the MiniZinc model. The ``'dzn'`` and ``'json'`` formats output a stream of strings formatted in dzn of json respectively. The ``'raw'`` format, instead returns the whole solution stream, without parsing. solver : Solver The ``Solver`` instance to use. The default solver is ``gecode``. timeout : int The timeout in seconds for the flattening + solving process. two_pass : bool or int If ``two_pass`` is True, then it is equivalent to the ``--two-pass`` option for the ``minizinc`` executable. If ``two_pass`` is an integer ``<n>``, instead, it is equivalent to the ``-O<n>`` option for the ``minizinc`` executable. pre_passes : int Equivalent to the ``--pre-passes`` option for the ``minizinc`` executable. output_objective : bool Equivalent to the ``--output-objective`` option for the ``minizinc`` executable. Adds a field ``_objective`` to all solutions. non_unique : bool Equivalent to the ``--non-unique`` option for the ``minizinc`` executable. all_solutions : bool Whether all the solutions must be returned. This option might not work if the solver does not support it. Default is ``False``. num_solutions : int The upper bound on the number of solutions to be returned. This option might not work if the solver does not support it. Default is ``1``. free_search : bool If ``True``, instruct the solver to perform free search. parallel : int The number of parallel threads the solver can utilize for the solving. seed : int The random number generator seed to pass to the solver. rebase_arrays : bool Whether to "rebase" parsed arrays (see the `Dzn files <http://paolodragone.com/pymzn/reference/dzn>`__ section). Default is True. keep_solutions : bool Whether to store the solutions in memory after solving is done. If ``keep_solutions`` is ``False``, the returned solution stream can only be iterated once and cannot be addressed as a list. return_enums : bool Wheter to return enum types along with the variable assignments in the solutions. Only used if ``output_mode='dict'``. Default is ``False``. **kwargs Additional arguments to pass to the solver, provided as additional keyword arguments to this function. Check the solver documentation for the available arguments. Returns ------- Solutions or str If ``output_mode`` is not ``'raw'``, returns a list-like object containing the solutions found by the solver. The format of the solution depends on the specified ``output_mode``. If ``keep_solutions=False``, the returned object cannot be addressed as a list and can only be iterated once. If ``output_mode='raw'``, the function returns the whole solution stream as a single string.
[ "Implements", "the", "workflow", "for", "solving", "a", "CSP", "problem", "encoded", "with", "MiniZinc", "." ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/mzn/minizinc.py#L502-L658
train
paolodragone/pymzn
pymzn/mzn/minizinc.py
solve
def solve( solver, mzn, *dzn_files, data=None, include=None, stdlib_dir=None, globals_dir=None, allow_multiple_assignments=False, output_mode='item', timeout=None, two_pass=None, pre_passes=None, output_objective=False, non_unique=False, all_solutions=False, num_solutions=None, free_search=False, parallel=None, seed=None, **kwargs ): """Flatten and solve a MiniZinc program. Parameters ---------- solver : Solver The ``Solver`` instance to use. mzn : str The path to the minizinc model file. *dzn_files A list of paths to dzn files to attach to the minizinc execution, provided as positional arguments; by default no data file is attached. data : list of str Additional data as a list of strings containing dzn variables assignments. include : str or list One or more additional paths to search for included ``.mzn`` files. stdlib_dir : str The path to the MiniZinc standard library. Provide it only if it is different from the default one. globals_dir : str The path to the MiniZinc globals directory. Provide it only if it is different from the default one. allow_multiple_assignments : bool Whether to allow multiple assignments of variables. Sometimes is convenient to simply let the data file override the value already assigned in the minizinc file. Default is ``False``. output_mode : {'item', 'dzn', 'json'} The desired output format. The default is ``'item'`` which outputs a stream of strings as returned by the ``solns2out`` tool, formatted according to the output statement of the MiniZinc model. The ``'dzn'`` and ``'json'`` formats output a stream of strings formatted in dzn and json respectively. timeout : int The timeout in seconds for the flattening + solving process. two_pass : bool or int If ``two_pass`` is True, then it is equivalent to the ``--two-pass`` option for the ``minizinc`` executable. If ``two_pass`` is an integer ``<n>``, instead, it is equivalent to the ``-O<n>`` option for the ``minizinc`` executable. pre_passes : int Equivalent to the ``--pre-passes`` option for the ``minizinc`` executable. output_objective : bool Equivalent to the ``--output-objective`` option for the ``minizinc`` executable. Adds a field ``_objective`` to all solutions. non_unique : bool Equivalent to the ``--non-unique`` option for the ``minizinc`` executable. all_solutions : bool Whether all the solutions must be returned. This option might not work if the solver does not support it. Default is ``False``. num_solutions : int The upper bound on the number of solutions to be returned. This option might not work if the solver does not support it. Default is ``1``. free_search : bool If True, instruct the solver to perform free search. parallel : int The number of parallel threads the solver can utilize for the solving. seed : int The random number generator seed to pass to the solver. **kwargs Additional arguments to pass to the solver, provided as additional keyword arguments to this function. Check the solver documentation for the available arguments. Returns ------- Object wrapping the executed process. """ args = _solve_args( solver, timeout=timeout, two_pass=two_pass, pre_passes=pre_passes, output_objective=output_objective, non_unique=non_unique, all_solutions=all_solutions, num_solutions=num_solutions, free_search=free_search, parallel=parallel, seed=seed, **kwargs ) args += _flattening_args( mzn, *dzn_files, data=data, stdlib_dir=stdlib_dir, globals_dir=globals_dir, output_mode=output_mode, include=include, allow_multiple_assignments=allow_multiple_assignments ) input = mzn if args[-1] == '-' else None t0 = _time() try: proc = _run_minizinc_proc(*args, input=input) except RuntimeError as err: raise MiniZincError(mzn_file, args) from err solve_time = _time() - t0 logger.info('Solving completed in {:>3.2f} sec'.format(solve_time)) return proc
python
def solve( solver, mzn, *dzn_files, data=None, include=None, stdlib_dir=None, globals_dir=None, allow_multiple_assignments=False, output_mode='item', timeout=None, two_pass=None, pre_passes=None, output_objective=False, non_unique=False, all_solutions=False, num_solutions=None, free_search=False, parallel=None, seed=None, **kwargs ): """Flatten and solve a MiniZinc program. Parameters ---------- solver : Solver The ``Solver`` instance to use. mzn : str The path to the minizinc model file. *dzn_files A list of paths to dzn files to attach to the minizinc execution, provided as positional arguments; by default no data file is attached. data : list of str Additional data as a list of strings containing dzn variables assignments. include : str or list One or more additional paths to search for included ``.mzn`` files. stdlib_dir : str The path to the MiniZinc standard library. Provide it only if it is different from the default one. globals_dir : str The path to the MiniZinc globals directory. Provide it only if it is different from the default one. allow_multiple_assignments : bool Whether to allow multiple assignments of variables. Sometimes is convenient to simply let the data file override the value already assigned in the minizinc file. Default is ``False``. output_mode : {'item', 'dzn', 'json'} The desired output format. The default is ``'item'`` which outputs a stream of strings as returned by the ``solns2out`` tool, formatted according to the output statement of the MiniZinc model. The ``'dzn'`` and ``'json'`` formats output a stream of strings formatted in dzn and json respectively. timeout : int The timeout in seconds for the flattening + solving process. two_pass : bool or int If ``two_pass`` is True, then it is equivalent to the ``--two-pass`` option for the ``minizinc`` executable. If ``two_pass`` is an integer ``<n>``, instead, it is equivalent to the ``-O<n>`` option for the ``minizinc`` executable. pre_passes : int Equivalent to the ``--pre-passes`` option for the ``minizinc`` executable. output_objective : bool Equivalent to the ``--output-objective`` option for the ``minizinc`` executable. Adds a field ``_objective`` to all solutions. non_unique : bool Equivalent to the ``--non-unique`` option for the ``minizinc`` executable. all_solutions : bool Whether all the solutions must be returned. This option might not work if the solver does not support it. Default is ``False``. num_solutions : int The upper bound on the number of solutions to be returned. This option might not work if the solver does not support it. Default is ``1``. free_search : bool If True, instruct the solver to perform free search. parallel : int The number of parallel threads the solver can utilize for the solving. seed : int The random number generator seed to pass to the solver. **kwargs Additional arguments to pass to the solver, provided as additional keyword arguments to this function. Check the solver documentation for the available arguments. Returns ------- Object wrapping the executed process. """ args = _solve_args( solver, timeout=timeout, two_pass=two_pass, pre_passes=pre_passes, output_objective=output_objective, non_unique=non_unique, all_solutions=all_solutions, num_solutions=num_solutions, free_search=free_search, parallel=parallel, seed=seed, **kwargs ) args += _flattening_args( mzn, *dzn_files, data=data, stdlib_dir=stdlib_dir, globals_dir=globals_dir, output_mode=output_mode, include=include, allow_multiple_assignments=allow_multiple_assignments ) input = mzn if args[-1] == '-' else None t0 = _time() try: proc = _run_minizinc_proc(*args, input=input) except RuntimeError as err: raise MiniZincError(mzn_file, args) from err solve_time = _time() - t0 logger.info('Solving completed in {:>3.2f} sec'.format(solve_time)) return proc
[ "def", "solve", "(", "solver", ",", "mzn", ",", "*", "dzn_files", ",", "data", "=", "None", ",", "include", "=", "None", ",", "stdlib_dir", "=", "None", ",", "globals_dir", "=", "None", ",", "allow_multiple_assignments", "=", "False", ",", "output_mode", "=", "'item'", ",", "timeout", "=", "None", ",", "two_pass", "=", "None", ",", "pre_passes", "=", "None", ",", "output_objective", "=", "False", ",", "non_unique", "=", "False", ",", "all_solutions", "=", "False", ",", "num_solutions", "=", "None", ",", "free_search", "=", "False", ",", "parallel", "=", "None", ",", "seed", "=", "None", ",", "*", "*", "kwargs", ")", ":", "args", "=", "_solve_args", "(", "solver", ",", "timeout", "=", "timeout", ",", "two_pass", "=", "two_pass", ",", "pre_passes", "=", "pre_passes", ",", "output_objective", "=", "output_objective", ",", "non_unique", "=", "non_unique", ",", "all_solutions", "=", "all_solutions", ",", "num_solutions", "=", "num_solutions", ",", "free_search", "=", "free_search", ",", "parallel", "=", "parallel", ",", "seed", "=", "seed", ",", "*", "*", "kwargs", ")", "args", "+=", "_flattening_args", "(", "mzn", ",", "*", "dzn_files", ",", "data", "=", "data", ",", "stdlib_dir", "=", "stdlib_dir", ",", "globals_dir", "=", "globals_dir", ",", "output_mode", "=", "output_mode", ",", "include", "=", "include", ",", "allow_multiple_assignments", "=", "allow_multiple_assignments", ")", "input", "=", "mzn", "if", "args", "[", "-", "1", "]", "==", "'-'", "else", "None", "t0", "=", "_time", "(", ")", "try", ":", "proc", "=", "_run_minizinc_proc", "(", "*", "args", ",", "input", "=", "input", ")", "except", "RuntimeError", "as", "err", ":", "raise", "MiniZincError", "(", "mzn_file", ",", "args", ")", "from", "err", "solve_time", "=", "_time", "(", ")", "-", "t0", "logger", ".", "info", "(", "'Solving completed in {:>3.2f} sec'", ".", "format", "(", "solve_time", ")", ")", "return", "proc" ]
Flatten and solve a MiniZinc program. Parameters ---------- solver : Solver The ``Solver`` instance to use. mzn : str The path to the minizinc model file. *dzn_files A list of paths to dzn files to attach to the minizinc execution, provided as positional arguments; by default no data file is attached. data : list of str Additional data as a list of strings containing dzn variables assignments. include : str or list One or more additional paths to search for included ``.mzn`` files. stdlib_dir : str The path to the MiniZinc standard library. Provide it only if it is different from the default one. globals_dir : str The path to the MiniZinc globals directory. Provide it only if it is different from the default one. allow_multiple_assignments : bool Whether to allow multiple assignments of variables. Sometimes is convenient to simply let the data file override the value already assigned in the minizinc file. Default is ``False``. output_mode : {'item', 'dzn', 'json'} The desired output format. The default is ``'item'`` which outputs a stream of strings as returned by the ``solns2out`` tool, formatted according to the output statement of the MiniZinc model. The ``'dzn'`` and ``'json'`` formats output a stream of strings formatted in dzn and json respectively. timeout : int The timeout in seconds for the flattening + solving process. two_pass : bool or int If ``two_pass`` is True, then it is equivalent to the ``--two-pass`` option for the ``minizinc`` executable. If ``two_pass`` is an integer ``<n>``, instead, it is equivalent to the ``-O<n>`` option for the ``minizinc`` executable. pre_passes : int Equivalent to the ``--pre-passes`` option for the ``minizinc`` executable. output_objective : bool Equivalent to the ``--output-objective`` option for the ``minizinc`` executable. Adds a field ``_objective`` to all solutions. non_unique : bool Equivalent to the ``--non-unique`` option for the ``minizinc`` executable. all_solutions : bool Whether all the solutions must be returned. This option might not work if the solver does not support it. Default is ``False``. num_solutions : int The upper bound on the number of solutions to be returned. This option might not work if the solver does not support it. Default is ``1``. free_search : bool If True, instruct the solver to perform free search. parallel : int The number of parallel threads the solver can utilize for the solving. seed : int The random number generator seed to pass to the solver. **kwargs Additional arguments to pass to the solver, provided as additional keyword arguments to this function. Check the solver documentation for the available arguments. Returns ------- Object wrapping the executed process.
[ "Flatten", "and", "solve", "a", "MiniZinc", "program", "." ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/mzn/minizinc.py#L694-L796
train
paolodragone/pymzn
pymzn/mzn/minizinc.py
mzn2fzn
def mzn2fzn( mzn, *dzn_files, args=None, data=None, include=None, stdlib_dir=None, globals_dir=None, declare_enums=True, allow_multiple_assignments=False, keep=False, output_vars=None, output_base=None, output_mode='item', no_ozn=False ): """Flatten a MiniZinc model into a FlatZinc one. This function is equivalent to the command ``minizinc --compile``. Parameters ---------- mzn : str The minizinc model. This can be either the path to the ``.mzn`` file or the content of the model itself. *dzn_files A list of paths to dzn files to attach to the minizinc execution, provided as positional arguments; by default no data file is attached. args : dict Arguments for the template engine. data : dict Additional data as a dictionary of variables assignments to supply to the minizinc executable. The dictionary is automatically converted to dzn format by the ``pymzn.dict2dzn`` function. include : str or list One or more additional paths to search for included ``.mzn`` files. stdlib_dir : str The path to the MiniZinc standard library. Provide it only if it is different from the default one. globals_dir : str The path to the MiniZinc globals directory. Provide it only if it is different from the default one. declare_enums : bool Whether to declare enum types when converting inline data into dzn format. If the enum types are declared elsewhere this option should be False. Default is ``True``. allow_multiple_assignments : bool Whether to allow multiple assignments of variables. Sometimes is convenient to simply let the data file override the value already assigned in the minizinc file. Default is ``False``. keep : bool Whether to keep the generated ``.mzn``, ``.dzn``, ``.fzn`` and ``.ozn`` files or not. If False, the generated files are created as temporary files which will be deleted right after the problem is solved. Though files generated by PyMzn are not intended to be kept, this property can be used for debugging purpose. Note that in case of error the files are not deleted even if this parameter is ``False``. Default is ``False``. output_vars : list of str A list of output variables. These variables will be the ones included in the output dictionary. Only available if ``ouptut_mode='dict'``. output_base : str Output directory for the files generated by PyMzn. The default (``None``) is the temporary directory of your OS (if ``keep=False``) or the current working directory (if ``keep=True``). output_mode : {'dict', 'item', 'dzn', 'json', 'raw'} The desired output format. The default is ``'dict'`` which returns a stream of solutions decoded as python dictionaries. The ``'item'`` format outputs a stream of strings as returned by the ``solns2out`` tool, formatted according to the output statement of the MiniZinc model. The ``'dzn'`` and ``'json'`` formats output a stream of strings formatted in dzn and json respectively. The ``'raw'`` format, instead returns the whole solution stream, without parsing. no_ozn : bool If ``True``, the ozn file is not produced, ``False`` otherwise. Returns ------- tuple (str, str) The paths to the generated fzn and ozn files. If ``no_ozn=True``, the second argument is ``None``. """ mzn_file, dzn_files, data_file, data, keep, _output_mode, types = \ _minizinc_preliminaries( mzn, *dzn_files, args=args, data=data, include=include, stdlib_dir=stdlib_dir, globals_dir=globals_dir, output_vars=output_vars, keep=keep, output_base=output_base, output_mode=output_mode, declare_enums=declare_enums, allow_multiple_assignments=allow_multiple_assignments ) args = ['--compile'] args += _flattening_args( mzn_file, *dzn_files, data=data, stdlib_dir=stdlib_dir, globals_dir=globals_dir, output_mode=output_mode, include=include, no_ozn=no_ozn, output_base=output_base, allow_multiple_assignments=allow_multiple_assignments ) t0 = _time() _run_minizinc(*args) flattening_time = _time() - t0 logger.info('Flattening completed in {:>3.2f} sec'.format(flattening_time)) if not keep: with contextlib.suppress(FileNotFoundError): if data_file: os.remove(data_file) logger.info('Deleted file: {}'.format(data_file)) if output_base: mzn_base = output_base else: mzn_base = os.path.splitext(mzn_file)[0] fzn_file = '.'.join([mzn_base, 'fzn']) fzn_file = fzn_file if os.path.isfile(fzn_file) else None ozn_file = '.'.join([mzn_base, 'ozn']) ozn_file = ozn_file if os.path.isfile(ozn_file) else None if fzn_file: logger.info('Generated file: {}'.format(fzn_file)) if ozn_file: logger.info('Generated file: {}'.format(ozn_file)) return fzn_file, ozn_file
python
def mzn2fzn( mzn, *dzn_files, args=None, data=None, include=None, stdlib_dir=None, globals_dir=None, declare_enums=True, allow_multiple_assignments=False, keep=False, output_vars=None, output_base=None, output_mode='item', no_ozn=False ): """Flatten a MiniZinc model into a FlatZinc one. This function is equivalent to the command ``minizinc --compile``. Parameters ---------- mzn : str The minizinc model. This can be either the path to the ``.mzn`` file or the content of the model itself. *dzn_files A list of paths to dzn files to attach to the minizinc execution, provided as positional arguments; by default no data file is attached. args : dict Arguments for the template engine. data : dict Additional data as a dictionary of variables assignments to supply to the minizinc executable. The dictionary is automatically converted to dzn format by the ``pymzn.dict2dzn`` function. include : str or list One or more additional paths to search for included ``.mzn`` files. stdlib_dir : str The path to the MiniZinc standard library. Provide it only if it is different from the default one. globals_dir : str The path to the MiniZinc globals directory. Provide it only if it is different from the default one. declare_enums : bool Whether to declare enum types when converting inline data into dzn format. If the enum types are declared elsewhere this option should be False. Default is ``True``. allow_multiple_assignments : bool Whether to allow multiple assignments of variables. Sometimes is convenient to simply let the data file override the value already assigned in the minizinc file. Default is ``False``. keep : bool Whether to keep the generated ``.mzn``, ``.dzn``, ``.fzn`` and ``.ozn`` files or not. If False, the generated files are created as temporary files which will be deleted right after the problem is solved. Though files generated by PyMzn are not intended to be kept, this property can be used for debugging purpose. Note that in case of error the files are not deleted even if this parameter is ``False``. Default is ``False``. output_vars : list of str A list of output variables. These variables will be the ones included in the output dictionary. Only available if ``ouptut_mode='dict'``. output_base : str Output directory for the files generated by PyMzn. The default (``None``) is the temporary directory of your OS (if ``keep=False``) or the current working directory (if ``keep=True``). output_mode : {'dict', 'item', 'dzn', 'json', 'raw'} The desired output format. The default is ``'dict'`` which returns a stream of solutions decoded as python dictionaries. The ``'item'`` format outputs a stream of strings as returned by the ``solns2out`` tool, formatted according to the output statement of the MiniZinc model. The ``'dzn'`` and ``'json'`` formats output a stream of strings formatted in dzn and json respectively. The ``'raw'`` format, instead returns the whole solution stream, without parsing. no_ozn : bool If ``True``, the ozn file is not produced, ``False`` otherwise. Returns ------- tuple (str, str) The paths to the generated fzn and ozn files. If ``no_ozn=True``, the second argument is ``None``. """ mzn_file, dzn_files, data_file, data, keep, _output_mode, types = \ _minizinc_preliminaries( mzn, *dzn_files, args=args, data=data, include=include, stdlib_dir=stdlib_dir, globals_dir=globals_dir, output_vars=output_vars, keep=keep, output_base=output_base, output_mode=output_mode, declare_enums=declare_enums, allow_multiple_assignments=allow_multiple_assignments ) args = ['--compile'] args += _flattening_args( mzn_file, *dzn_files, data=data, stdlib_dir=stdlib_dir, globals_dir=globals_dir, output_mode=output_mode, include=include, no_ozn=no_ozn, output_base=output_base, allow_multiple_assignments=allow_multiple_assignments ) t0 = _time() _run_minizinc(*args) flattening_time = _time() - t0 logger.info('Flattening completed in {:>3.2f} sec'.format(flattening_time)) if not keep: with contextlib.suppress(FileNotFoundError): if data_file: os.remove(data_file) logger.info('Deleted file: {}'.format(data_file)) if output_base: mzn_base = output_base else: mzn_base = os.path.splitext(mzn_file)[0] fzn_file = '.'.join([mzn_base, 'fzn']) fzn_file = fzn_file if os.path.isfile(fzn_file) else None ozn_file = '.'.join([mzn_base, 'ozn']) ozn_file = ozn_file if os.path.isfile(ozn_file) else None if fzn_file: logger.info('Generated file: {}'.format(fzn_file)) if ozn_file: logger.info('Generated file: {}'.format(ozn_file)) return fzn_file, ozn_file
[ "def", "mzn2fzn", "(", "mzn", ",", "*", "dzn_files", ",", "args", "=", "None", ",", "data", "=", "None", ",", "include", "=", "None", ",", "stdlib_dir", "=", "None", ",", "globals_dir", "=", "None", ",", "declare_enums", "=", "True", ",", "allow_multiple_assignments", "=", "False", ",", "keep", "=", "False", ",", "output_vars", "=", "None", ",", "output_base", "=", "None", ",", "output_mode", "=", "'item'", ",", "no_ozn", "=", "False", ")", ":", "mzn_file", ",", "dzn_files", ",", "data_file", ",", "data", ",", "keep", ",", "_output_mode", ",", "types", "=", "_minizinc_preliminaries", "(", "mzn", ",", "*", "dzn_files", ",", "args", "=", "args", ",", "data", "=", "data", ",", "include", "=", "include", ",", "stdlib_dir", "=", "stdlib_dir", ",", "globals_dir", "=", "globals_dir", ",", "output_vars", "=", "output_vars", ",", "keep", "=", "keep", ",", "output_base", "=", "output_base", ",", "output_mode", "=", "output_mode", ",", "declare_enums", "=", "declare_enums", ",", "allow_multiple_assignments", "=", "allow_multiple_assignments", ")", "args", "=", "[", "'--compile'", "]", "args", "+=", "_flattening_args", "(", "mzn_file", ",", "*", "dzn_files", ",", "data", "=", "data", ",", "stdlib_dir", "=", "stdlib_dir", ",", "globals_dir", "=", "globals_dir", ",", "output_mode", "=", "output_mode", ",", "include", "=", "include", ",", "no_ozn", "=", "no_ozn", ",", "output_base", "=", "output_base", ",", "allow_multiple_assignments", "=", "allow_multiple_assignments", ")", "t0", "=", "_time", "(", ")", "_run_minizinc", "(", "*", "args", ")", "flattening_time", "=", "_time", "(", ")", "-", "t0", "logger", ".", "info", "(", "'Flattening completed in {:>3.2f} sec'", ".", "format", "(", "flattening_time", ")", ")", "if", "not", "keep", ":", "with", "contextlib", ".", "suppress", "(", "FileNotFoundError", ")", ":", "if", "data_file", ":", "os", ".", "remove", "(", "data_file", ")", "logger", ".", "info", "(", "'Deleted file: {}'", ".", "format", "(", "data_file", ")", ")", "if", "output_base", ":", "mzn_base", "=", "output_base", "else", ":", "mzn_base", "=", "os", ".", "path", ".", "splitext", "(", "mzn_file", ")", "[", "0", "]", "fzn_file", "=", "'.'", ".", "join", "(", "[", "mzn_base", ",", "'fzn'", "]", ")", "fzn_file", "=", "fzn_file", "if", "os", ".", "path", ".", "isfile", "(", "fzn_file", ")", "else", "None", "ozn_file", "=", "'.'", ".", "join", "(", "[", "mzn_base", ",", "'ozn'", "]", ")", "ozn_file", "=", "ozn_file", "if", "os", ".", "path", ".", "isfile", "(", "ozn_file", ")", "else", "None", "if", "fzn_file", ":", "logger", ".", "info", "(", "'Generated file: {}'", ".", "format", "(", "fzn_file", ")", ")", "if", "ozn_file", ":", "logger", ".", "info", "(", "'Generated file: {}'", ".", "format", "(", "ozn_file", ")", ")", "return", "fzn_file", ",", "ozn_file" ]
Flatten a MiniZinc model into a FlatZinc one. This function is equivalent to the command ``minizinc --compile``. Parameters ---------- mzn : str The minizinc model. This can be either the path to the ``.mzn`` file or the content of the model itself. *dzn_files A list of paths to dzn files to attach to the minizinc execution, provided as positional arguments; by default no data file is attached. args : dict Arguments for the template engine. data : dict Additional data as a dictionary of variables assignments to supply to the minizinc executable. The dictionary is automatically converted to dzn format by the ``pymzn.dict2dzn`` function. include : str or list One or more additional paths to search for included ``.mzn`` files. stdlib_dir : str The path to the MiniZinc standard library. Provide it only if it is different from the default one. globals_dir : str The path to the MiniZinc globals directory. Provide it only if it is different from the default one. declare_enums : bool Whether to declare enum types when converting inline data into dzn format. If the enum types are declared elsewhere this option should be False. Default is ``True``. allow_multiple_assignments : bool Whether to allow multiple assignments of variables. Sometimes is convenient to simply let the data file override the value already assigned in the minizinc file. Default is ``False``. keep : bool Whether to keep the generated ``.mzn``, ``.dzn``, ``.fzn`` and ``.ozn`` files or not. If False, the generated files are created as temporary files which will be deleted right after the problem is solved. Though files generated by PyMzn are not intended to be kept, this property can be used for debugging purpose. Note that in case of error the files are not deleted even if this parameter is ``False``. Default is ``False``. output_vars : list of str A list of output variables. These variables will be the ones included in the output dictionary. Only available if ``ouptut_mode='dict'``. output_base : str Output directory for the files generated by PyMzn. The default (``None``) is the temporary directory of your OS (if ``keep=False``) or the current working directory (if ``keep=True``). output_mode : {'dict', 'item', 'dzn', 'json', 'raw'} The desired output format. The default is ``'dict'`` which returns a stream of solutions decoded as python dictionaries. The ``'item'`` format outputs a stream of strings as returned by the ``solns2out`` tool, formatted according to the output statement of the MiniZinc model. The ``'dzn'`` and ``'json'`` formats output a stream of strings formatted in dzn and json respectively. The ``'raw'`` format, instead returns the whole solution stream, without parsing. no_ozn : bool If ``True``, the ozn file is not produced, ``False`` otherwise. Returns ------- tuple (str, str) The paths to the generated fzn and ozn files. If ``no_ozn=True``, the second argument is ``None``.
[ "Flatten", "a", "MiniZinc", "model", "into", "a", "FlatZinc", "one", "." ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/mzn/minizinc.py#L799-L914
train
paolodragone/pymzn
pymzn/mzn/output.py
Solutions.print
def print(self, output_file=sys.stdout, log=False): """Print the solution stream""" for soln in iter(self): print(soln, file=output_file) print(SOLN_SEP, file=output_file) if self.status == 0: print(SEARCH_COMPLETE, file=output_file) if (self.status == 1 and self._n_solns == 0) or self.status >= 2: print({ Status.INCOMPLETE : ERROR, Status.UNKNOWN: UNKNOWN, Status.UNSATISFIABLE: UNSATISFIABLE, Status.UNBOUNDED: UNBOUNDED, Status.UNSATorUNBOUNDED: UNSATorUNBOUNDED, Status.ERROR: ERROR }[self.status], file=output_file) if self.stderr: print(self.stderr.strip(), file=sys.stderr) elif log: print(str(self.log), file=output_file)
python
def print(self, output_file=sys.stdout, log=False): """Print the solution stream""" for soln in iter(self): print(soln, file=output_file) print(SOLN_SEP, file=output_file) if self.status == 0: print(SEARCH_COMPLETE, file=output_file) if (self.status == 1 and self._n_solns == 0) or self.status >= 2: print({ Status.INCOMPLETE : ERROR, Status.UNKNOWN: UNKNOWN, Status.UNSATISFIABLE: UNSATISFIABLE, Status.UNBOUNDED: UNBOUNDED, Status.UNSATorUNBOUNDED: UNSATorUNBOUNDED, Status.ERROR: ERROR }[self.status], file=output_file) if self.stderr: print(self.stderr.strip(), file=sys.stderr) elif log: print(str(self.log), file=output_file)
[ "def", "print", "(", "self", ",", "output_file", "=", "sys", ".", "stdout", ",", "log", "=", "False", ")", ":", "for", "soln", "in", "iter", "(", "self", ")", ":", "print", "(", "soln", ",", "file", "=", "output_file", ")", "print", "(", "SOLN_SEP", ",", "file", "=", "output_file", ")", "if", "self", ".", "status", "==", "0", ":", "print", "(", "SEARCH_COMPLETE", ",", "file", "=", "output_file", ")", "if", "(", "self", ".", "status", "==", "1", "and", "self", ".", "_n_solns", "==", "0", ")", "or", "self", ".", "status", ">=", "2", ":", "print", "(", "{", "Status", ".", "INCOMPLETE", ":", "ERROR", ",", "Status", ".", "UNKNOWN", ":", "UNKNOWN", ",", "Status", ".", "UNSATISFIABLE", ":", "UNSATISFIABLE", ",", "Status", ".", "UNBOUNDED", ":", "UNBOUNDED", ",", "Status", ".", "UNSATorUNBOUNDED", ":", "UNSATorUNBOUNDED", ",", "Status", ".", "ERROR", ":", "ERROR", "}", "[", "self", ".", "status", "]", ",", "file", "=", "output_file", ")", "if", "self", ".", "stderr", ":", "print", "(", "self", ".", "stderr", ".", "strip", "(", ")", ",", "file", "=", "sys", ".", "stderr", ")", "elif", "log", ":", "print", "(", "str", "(", "self", ".", "log", ")", ",", "file", "=", "output_file", ")" ]
Print the solution stream
[ "Print", "the", "solution", "stream" ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/mzn/output.py#L143-L167
train
paolodragone/pymzn
pymzn/config.py
Config.dump
def dump(self): """Writes the changes to the configuration file.""" try: import yaml cfg_file = self._cfg_file() cfg_dir, __ = os.path.split(cfg_file) os.makedirs(cfg_dir, exist_ok=True) with open(cfg_file, 'w') as f: yaml.dump(self, f) except ImportError as err: raise RuntimeError( 'Cannot dump the configuration settings to file. You need to ' 'install the necessary dependencies (pyyaml, appdirs).' ) from err
python
def dump(self): """Writes the changes to the configuration file.""" try: import yaml cfg_file = self._cfg_file() cfg_dir, __ = os.path.split(cfg_file) os.makedirs(cfg_dir, exist_ok=True) with open(cfg_file, 'w') as f: yaml.dump(self, f) except ImportError as err: raise RuntimeError( 'Cannot dump the configuration settings to file. You need to ' 'install the necessary dependencies (pyyaml, appdirs).' ) from err
[ "def", "dump", "(", "self", ")", ":", "try", ":", "import", "yaml", "cfg_file", "=", "self", ".", "_cfg_file", "(", ")", "cfg_dir", ",", "__", "=", "os", ".", "path", ".", "split", "(", "cfg_file", ")", "os", ".", "makedirs", "(", "cfg_dir", ",", "exist_ok", "=", "True", ")", "with", "open", "(", "cfg_file", ",", "'w'", ")", "as", "f", ":", "yaml", ".", "dump", "(", "self", ",", "f", ")", "except", "ImportError", "as", "err", ":", "raise", "RuntimeError", "(", "'Cannot dump the configuration settings to file. You need to '", "'install the necessary dependencies (pyyaml, appdirs).'", ")", "from", "err" ]
Writes the changes to the configuration file.
[ "Writes", "the", "changes", "to", "the", "configuration", "file", "." ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/config.py#L102-L115
train
paolodragone/pymzn
pymzn/mzn/templates.py
discretize
def discretize(value, factor=100): """Discretize the given value, pre-multiplying by the given factor""" if not isinstance(value, Iterable): return int(value * factor) int_value = list(deepcopy(value)) for i in range(len(int_value)): int_value[i] = int(int_value[i] * factor) return int_value
python
def discretize(value, factor=100): """Discretize the given value, pre-multiplying by the given factor""" if not isinstance(value, Iterable): return int(value * factor) int_value = list(deepcopy(value)) for i in range(len(int_value)): int_value[i] = int(int_value[i] * factor) return int_value
[ "def", "discretize", "(", "value", ",", "factor", "=", "100", ")", ":", "if", "not", "isinstance", "(", "value", ",", "Iterable", ")", ":", "return", "int", "(", "value", "*", "factor", ")", "int_value", "=", "list", "(", "deepcopy", "(", "value", ")", ")", "for", "i", "in", "range", "(", "len", "(", "int_value", ")", ")", ":", "int_value", "[", "i", "]", "=", "int", "(", "int_value", "[", "i", "]", "*", "factor", ")", "return", "int_value" ]
Discretize the given value, pre-multiplying by the given factor
[ "Discretize", "the", "given", "value", "pre", "-", "multiplying", "by", "the", "given", "factor" ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/mzn/templates.py#L87-L94
train
paolodragone/pymzn
pymzn/mzn/templates.py
from_string
def from_string(source, args=None): """Renders a template string""" if _has_jinja: logger.info('Precompiling model with arguments: {}'.format(args)) return _jenv.from_string(source).render(args or {}) if args: raise RuntimeError(_except_text) return source
python
def from_string(source, args=None): """Renders a template string""" if _has_jinja: logger.info('Precompiling model with arguments: {}'.format(args)) return _jenv.from_string(source).render(args or {}) if args: raise RuntimeError(_except_text) return source
[ "def", "from_string", "(", "source", ",", "args", "=", "None", ")", ":", "if", "_has_jinja", ":", "logger", ".", "info", "(", "'Precompiling model with arguments: {}'", ".", "format", "(", "args", ")", ")", "return", "_jenv", ".", "from_string", "(", "source", ")", ".", "render", "(", "args", "or", "{", "}", ")", "if", "args", ":", "raise", "RuntimeError", "(", "_except_text", ")", "return", "source" ]
Renders a template string
[ "Renders", "a", "template", "string" ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/mzn/templates.py#L146-L153
train
paolodragone/pymzn
pymzn/mzn/templates.py
add_package
def add_package(package_name, package_path='templates', encoding='utf-8'): """Adds the given package to the template search routine""" if not _has_jinja: raise RuntimeError(_except_text) _jload.add_loader(PackageLoader(package_name, package_path, encoding))
python
def add_package(package_name, package_path='templates', encoding='utf-8'): """Adds the given package to the template search routine""" if not _has_jinja: raise RuntimeError(_except_text) _jload.add_loader(PackageLoader(package_name, package_path, encoding))
[ "def", "add_package", "(", "package_name", ",", "package_path", "=", "'templates'", ",", "encoding", "=", "'utf-8'", ")", ":", "if", "not", "_has_jinja", ":", "raise", "RuntimeError", "(", "_except_text", ")", "_jload", ".", "add_loader", "(", "PackageLoader", "(", "package_name", ",", "package_path", ",", "encoding", ")", ")" ]
Adds the given package to the template search routine
[ "Adds", "the", "given", "package", "to", "the", "template", "search", "routine" ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/mzn/templates.py#L155-L159
train
paolodragone/pymzn
pymzn/mzn/templates.py
add_path
def add_path(searchpath, encoding='utf-8', followlinks=False): """Adds the given path to the template search routine""" if not _has_jinja: raise RuntimeError(_except_text) _jload.add_loader(FileSystemLoader(searchpath, encoding, followlinks))
python
def add_path(searchpath, encoding='utf-8', followlinks=False): """Adds the given path to the template search routine""" if not _has_jinja: raise RuntimeError(_except_text) _jload.add_loader(FileSystemLoader(searchpath, encoding, followlinks))
[ "def", "add_path", "(", "searchpath", ",", "encoding", "=", "'utf-8'", ",", "followlinks", "=", "False", ")", ":", "if", "not", "_has_jinja", ":", "raise", "RuntimeError", "(", "_except_text", ")", "_jload", ".", "add_loader", "(", "FileSystemLoader", "(", "searchpath", ",", "encoding", ",", "followlinks", ")", ")" ]
Adds the given path to the template search routine
[ "Adds", "the", "given", "path", "to", "the", "template", "search", "routine" ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/mzn/templates.py#L162-L166
train
paolodragone/pymzn
pymzn/dzn/marsh.py
val2dzn
def val2dzn(val, wrap=True): """Serializes a value into its dzn representation. The supported types are ``bool``, ``int``, ``float``, ``set``, ``array``. Parameters ---------- val The value to serialize wrap : bool Whether to wrap the serialized value. Returns ------- str The serialized dzn representation of the given value. """ if _is_value(val): dzn_val = _dzn_val(val) elif _is_set(val): dzn_val = _dzn_set(val) elif _is_array_type(val): dzn_val =_dzn_array_nd(val) else: raise TypeError( 'Unsupported serialization of value: {}'.format(repr(val)) ) if wrap: wrapper = _get_wrapper() dzn_val = wrapper.fill(dzn_val) return dzn_val
python
def val2dzn(val, wrap=True): """Serializes a value into its dzn representation. The supported types are ``bool``, ``int``, ``float``, ``set``, ``array``. Parameters ---------- val The value to serialize wrap : bool Whether to wrap the serialized value. Returns ------- str The serialized dzn representation of the given value. """ if _is_value(val): dzn_val = _dzn_val(val) elif _is_set(val): dzn_val = _dzn_set(val) elif _is_array_type(val): dzn_val =_dzn_array_nd(val) else: raise TypeError( 'Unsupported serialization of value: {}'.format(repr(val)) ) if wrap: wrapper = _get_wrapper() dzn_val = wrapper.fill(dzn_val) return dzn_val
[ "def", "val2dzn", "(", "val", ",", "wrap", "=", "True", ")", ":", "if", "_is_value", "(", "val", ")", ":", "dzn_val", "=", "_dzn_val", "(", "val", ")", "elif", "_is_set", "(", "val", ")", ":", "dzn_val", "=", "_dzn_set", "(", "val", ")", "elif", "_is_array_type", "(", "val", ")", ":", "dzn_val", "=", "_dzn_array_nd", "(", "val", ")", "else", ":", "raise", "TypeError", "(", "'Unsupported serialization of value: {}'", ".", "format", "(", "repr", "(", "val", ")", ")", ")", "if", "wrap", ":", "wrapper", "=", "_get_wrapper", "(", ")", "dzn_val", "=", "wrapper", ".", "fill", "(", "dzn_val", ")", "return", "dzn_val" ]
Serializes a value into its dzn representation. The supported types are ``bool``, ``int``, ``float``, ``set``, ``array``. Parameters ---------- val The value to serialize wrap : bool Whether to wrap the serialized value. Returns ------- str The serialized dzn representation of the given value.
[ "Serializes", "a", "value", "into", "its", "dzn", "representation", "." ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/dzn/marsh.py#L215-L247
train
paolodragone/pymzn
pymzn/dzn/marsh.py
stmt2dzn
def stmt2dzn(name, val, declare=True, assign=True, wrap=True): """Returns a dzn statement declaring and assigning the given value. Parameters ---------- val The value to serialize. declare : bool Whether to include the declaration of the variable in the statement or just the assignment. assign : bool Wheter to include the assignment of the value in the statement or just the declaration. wrap : bool Whether to wrap the serialized value. Returns ------- str The serialized dzn representation of the value. """ if not (declare or assign): raise ValueError( 'The statement must be a declaration or an assignment.' ) stmt = [] if declare: val_type = _dzn_type(val) stmt.append('{}: '.format(val_type)) stmt.append(name) if assign: val_str = val2dzn(val, wrap=wrap) stmt.append(' = {}'.format(val_str)) stmt.append(';') return ''.join(stmt)
python
def stmt2dzn(name, val, declare=True, assign=True, wrap=True): """Returns a dzn statement declaring and assigning the given value. Parameters ---------- val The value to serialize. declare : bool Whether to include the declaration of the variable in the statement or just the assignment. assign : bool Wheter to include the assignment of the value in the statement or just the declaration. wrap : bool Whether to wrap the serialized value. Returns ------- str The serialized dzn representation of the value. """ if not (declare or assign): raise ValueError( 'The statement must be a declaration or an assignment.' ) stmt = [] if declare: val_type = _dzn_type(val) stmt.append('{}: '.format(val_type)) stmt.append(name) if assign: val_str = val2dzn(val, wrap=wrap) stmt.append(' = {}'.format(val_str)) stmt.append(';') return ''.join(stmt)
[ "def", "stmt2dzn", "(", "name", ",", "val", ",", "declare", "=", "True", ",", "assign", "=", "True", ",", "wrap", "=", "True", ")", ":", "if", "not", "(", "declare", "or", "assign", ")", ":", "raise", "ValueError", "(", "'The statement must be a declaration or an assignment.'", ")", "stmt", "=", "[", "]", "if", "declare", ":", "val_type", "=", "_dzn_type", "(", "val", ")", "stmt", ".", "append", "(", "'{}: '", ".", "format", "(", "val_type", ")", ")", "stmt", ".", "append", "(", "name", ")", "if", "assign", ":", "val_str", "=", "val2dzn", "(", "val", ",", "wrap", "=", "wrap", ")", "stmt", ".", "append", "(", "' = {}'", ".", "format", "(", "val_str", ")", ")", "stmt", ".", "append", "(", "';'", ")", "return", "''", ".", "join", "(", "stmt", ")" ]
Returns a dzn statement declaring and assigning the given value. Parameters ---------- val The value to serialize. declare : bool Whether to include the declaration of the variable in the statement or just the assignment. assign : bool Wheter to include the assignment of the value in the statement or just the declaration. wrap : bool Whether to wrap the serialized value. Returns ------- str The serialized dzn representation of the value.
[ "Returns", "a", "dzn", "statement", "declaring", "and", "assigning", "the", "given", "value", "." ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/dzn/marsh.py#L250-L285
train
paolodragone/pymzn
pymzn/dzn/marsh.py
stmt2enum
def stmt2enum(enum_type, declare=True, assign=True, wrap=True): """Returns a dzn enum declaration from an enum type. Parameters ---------- enum_type : Enum The enum to serialize. declare : bool Whether to include the ``enum`` declatation keyword in the statement or just the assignment. assign : bool Wheter to include the assignment of the enum in the statement or just the declaration. wrap : bool Whether to wrap the serialized enum. Returns ------- str The serialized dzn representation of the enum. """ if not (declare or assign): raise ValueError( 'The statement must be a declaration or an assignment.' ) stmt = [] if declare: stmt.append('enum ') stmt.append(enum_type.__name__) if assign: val_str = [] for v in list(enum_type): val_str.append(v.name) val_str = ''.join(['{', ','.join(val_str), '}']) if wrap: wrapper = _get_wrapper() val_str = wrapper.fill(val_str) stmt.append(' = {}'.format(val_str)) stmt.append(';') return ''.join(stmt)
python
def stmt2enum(enum_type, declare=True, assign=True, wrap=True): """Returns a dzn enum declaration from an enum type. Parameters ---------- enum_type : Enum The enum to serialize. declare : bool Whether to include the ``enum`` declatation keyword in the statement or just the assignment. assign : bool Wheter to include the assignment of the enum in the statement or just the declaration. wrap : bool Whether to wrap the serialized enum. Returns ------- str The serialized dzn representation of the enum. """ if not (declare or assign): raise ValueError( 'The statement must be a declaration or an assignment.' ) stmt = [] if declare: stmt.append('enum ') stmt.append(enum_type.__name__) if assign: val_str = [] for v in list(enum_type): val_str.append(v.name) val_str = ''.join(['{', ','.join(val_str), '}']) if wrap: wrapper = _get_wrapper() val_str = wrapper.fill(val_str) stmt.append(' = {}'.format(val_str)) stmt.append(';') return ''.join(stmt)
[ "def", "stmt2enum", "(", "enum_type", ",", "declare", "=", "True", ",", "assign", "=", "True", ",", "wrap", "=", "True", ")", ":", "if", "not", "(", "declare", "or", "assign", ")", ":", "raise", "ValueError", "(", "'The statement must be a declaration or an assignment.'", ")", "stmt", "=", "[", "]", "if", "declare", ":", "stmt", ".", "append", "(", "'enum '", ")", "stmt", ".", "append", "(", "enum_type", ".", "__name__", ")", "if", "assign", ":", "val_str", "=", "[", "]", "for", "v", "in", "list", "(", "enum_type", ")", ":", "val_str", ".", "append", "(", "v", ".", "name", ")", "val_str", "=", "''", ".", "join", "(", "[", "'{'", ",", "','", ".", "join", "(", "val_str", ")", ",", "'}'", "]", ")", "if", "wrap", ":", "wrapper", "=", "_get_wrapper", "(", ")", "val_str", "=", "wrapper", ".", "fill", "(", "val_str", ")", "stmt", ".", "append", "(", "' = {}'", ".", "format", "(", "val_str", ")", ")", "stmt", ".", "append", "(", "';'", ")", "return", "''", ".", "join", "(", "stmt", ")" ]
Returns a dzn enum declaration from an enum type. Parameters ---------- enum_type : Enum The enum to serialize. declare : bool Whether to include the ``enum`` declatation keyword in the statement or just the assignment. assign : bool Wheter to include the assignment of the enum in the statement or just the declaration. wrap : bool Whether to wrap the serialized enum. Returns ------- str The serialized dzn representation of the enum.
[ "Returns", "a", "dzn", "enum", "declaration", "from", "an", "enum", "type", "." ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/dzn/marsh.py#L288-L331
train
paolodragone/pymzn
pymzn/dzn/marsh.py
dict2dzn
def dict2dzn( objs, declare=False, assign=True, declare_enums=True, wrap=True, fout=None ): """Serializes the objects in input and produces a list of strings encoding them into dzn format. Optionally, the produced dzn is written on a file. Supported types of objects include: ``str``, ``int``, ``float``, ``set``, ``list`` or ``dict``. List and dict are serialized into dzn (multi-dimensional) arrays. The key-set of a dict is used as index-set of dzn arrays. The index-set of a list is implicitly set to ``1 .. len(list)``. Parameters ---------- objs : dict A dictionary containing the objects to serialize, the keys are the names of the variables. declare : bool Whether to include the declaration of the variable in the statements or just the assignment. Default is ``False``. assign : bool Whether to include assignment of the value in the statements or just the declaration. declare_enums : bool Whether to declare the enums found as types of the objects to serialize. Default is ``True``. wrap : bool Whether to wrap the serialized values. fout : str Path to the output file, if None no output file is written. Returns ------- list List of strings containing the dzn-encoded objects. """ log = logging.getLogger(__name__) vals = [] enums = set() for key, val in objs.items(): if _is_enum(val) and declare_enums: enum_type = type(val) enum_name = enum_type.__name__ if enum_name not in enums: enum_stmt = stmt2enum( enum_type, declare=declare, assign=assign, wrap=wrap ) vals.append(enum_stmt) enums.add(enum_name) stmt = stmt2dzn(key, val, declare=declare, assign=assign, wrap=wrap) vals.append(stmt) if fout: log.debug('Writing file: {}'.format(fout)) with open(fout, 'w') as f: for val in vals: f.write('{}\n\n'.format(val)) return vals
python
def dict2dzn( objs, declare=False, assign=True, declare_enums=True, wrap=True, fout=None ): """Serializes the objects in input and produces a list of strings encoding them into dzn format. Optionally, the produced dzn is written on a file. Supported types of objects include: ``str``, ``int``, ``float``, ``set``, ``list`` or ``dict``. List and dict are serialized into dzn (multi-dimensional) arrays. The key-set of a dict is used as index-set of dzn arrays. The index-set of a list is implicitly set to ``1 .. len(list)``. Parameters ---------- objs : dict A dictionary containing the objects to serialize, the keys are the names of the variables. declare : bool Whether to include the declaration of the variable in the statements or just the assignment. Default is ``False``. assign : bool Whether to include assignment of the value in the statements or just the declaration. declare_enums : bool Whether to declare the enums found as types of the objects to serialize. Default is ``True``. wrap : bool Whether to wrap the serialized values. fout : str Path to the output file, if None no output file is written. Returns ------- list List of strings containing the dzn-encoded objects. """ log = logging.getLogger(__name__) vals = [] enums = set() for key, val in objs.items(): if _is_enum(val) and declare_enums: enum_type = type(val) enum_name = enum_type.__name__ if enum_name not in enums: enum_stmt = stmt2enum( enum_type, declare=declare, assign=assign, wrap=wrap ) vals.append(enum_stmt) enums.add(enum_name) stmt = stmt2dzn(key, val, declare=declare, assign=assign, wrap=wrap) vals.append(stmt) if fout: log.debug('Writing file: {}'.format(fout)) with open(fout, 'w') as f: for val in vals: f.write('{}\n\n'.format(val)) return vals
[ "def", "dict2dzn", "(", "objs", ",", "declare", "=", "False", ",", "assign", "=", "True", ",", "declare_enums", "=", "True", ",", "wrap", "=", "True", ",", "fout", "=", "None", ")", ":", "log", "=", "logging", ".", "getLogger", "(", "__name__", ")", "vals", "=", "[", "]", "enums", "=", "set", "(", ")", "for", "key", ",", "val", "in", "objs", ".", "items", "(", ")", ":", "if", "_is_enum", "(", "val", ")", "and", "declare_enums", ":", "enum_type", "=", "type", "(", "val", ")", "enum_name", "=", "enum_type", ".", "__name__", "if", "enum_name", "not", "in", "enums", ":", "enum_stmt", "=", "stmt2enum", "(", "enum_type", ",", "declare", "=", "declare", ",", "assign", "=", "assign", ",", "wrap", "=", "wrap", ")", "vals", ".", "append", "(", "enum_stmt", ")", "enums", ".", "add", "(", "enum_name", ")", "stmt", "=", "stmt2dzn", "(", "key", ",", "val", ",", "declare", "=", "declare", ",", "assign", "=", "assign", ",", "wrap", "=", "wrap", ")", "vals", ".", "append", "(", "stmt", ")", "if", "fout", ":", "log", ".", "debug", "(", "'Writing file: {}'", ".", "format", "(", "fout", ")", ")", "with", "open", "(", "fout", ",", "'w'", ")", "as", "f", ":", "for", "val", "in", "vals", ":", "f", ".", "write", "(", "'{}\\n\\n'", ".", "format", "(", "val", ")", ")", "return", "vals" ]
Serializes the objects in input and produces a list of strings encoding them into dzn format. Optionally, the produced dzn is written on a file. Supported types of objects include: ``str``, ``int``, ``float``, ``set``, ``list`` or ``dict``. List and dict are serialized into dzn (multi-dimensional) arrays. The key-set of a dict is used as index-set of dzn arrays. The index-set of a list is implicitly set to ``1 .. len(list)``. Parameters ---------- objs : dict A dictionary containing the objects to serialize, the keys are the names of the variables. declare : bool Whether to include the declaration of the variable in the statements or just the assignment. Default is ``False``. assign : bool Whether to include assignment of the value in the statements or just the declaration. declare_enums : bool Whether to declare the enums found as types of the objects to serialize. Default is ``True``. wrap : bool Whether to wrap the serialized values. fout : str Path to the output file, if None no output file is written. Returns ------- list List of strings containing the dzn-encoded objects.
[ "Serializes", "the", "objects", "in", "input", "and", "produces", "a", "list", "of", "strings", "encoding", "them", "into", "dzn", "format", ".", "Optionally", "the", "produced", "dzn", "is", "written", "on", "a", "file", "." ]
35b04cfb244918551649b9bb8a0ab65d37c31fe4
https://github.com/paolodragone/pymzn/blob/35b04cfb244918551649b9bb8a0ab65d37c31fe4/pymzn/dzn/marsh.py#L334-L391
train
PolicyStat/jobtastic
jobtastic/task.py
JobtasticTask.async_or_eager
def async_or_eager(self, **options): """ Attempt to call self.apply_async, or if that fails because of a problem with the broker, run the task eagerly and return an EagerResult. """ args = options.pop("args", None) kwargs = options.pop("kwargs", None) possible_broker_errors = self._get_possible_broker_errors_tuple() try: return self.apply_async(args, kwargs, **options) except possible_broker_errors: return self.apply(args, kwargs, **options)
python
def async_or_eager(self, **options): """ Attempt to call self.apply_async, or if that fails because of a problem with the broker, run the task eagerly and return an EagerResult. """ args = options.pop("args", None) kwargs = options.pop("kwargs", None) possible_broker_errors = self._get_possible_broker_errors_tuple() try: return self.apply_async(args, kwargs, **options) except possible_broker_errors: return self.apply(args, kwargs, **options)
[ "def", "async_or_eager", "(", "self", ",", "*", "*", "options", ")", ":", "args", "=", "options", ".", "pop", "(", "\"args\"", ",", "None", ")", "kwargs", "=", "options", ".", "pop", "(", "\"kwargs\"", ",", "None", ")", "possible_broker_errors", "=", "self", ".", "_get_possible_broker_errors_tuple", "(", ")", "try", ":", "return", "self", ".", "apply_async", "(", "args", ",", "kwargs", ",", "*", "*", "options", ")", "except", "possible_broker_errors", ":", "return", "self", ".", "apply", "(", "args", ",", "kwargs", ",", "*", "*", "options", ")" ]
Attempt to call self.apply_async, or if that fails because of a problem with the broker, run the task eagerly and return an EagerResult.
[ "Attempt", "to", "call", "self", ".", "apply_async", "or", "if", "that", "fails", "because", "of", "a", "problem", "with", "the", "broker", "run", "the", "task", "eagerly", "and", "return", "an", "EagerResult", "." ]
19cd3137ebf46877cee1ee5155d318bb6261ee1c
https://github.com/PolicyStat/jobtastic/blob/19cd3137ebf46877cee1ee5155d318bb6261ee1c/jobtastic/task.py#L90-L101
train
PolicyStat/jobtastic
jobtastic/task.py
JobtasticTask.async_or_fail
def async_or_fail(self, **options): """ Attempt to call self.apply_async, but if that fails with an exception, we fake the task completion using the exception as the result. This allows us to seamlessly handle errors on task creation the same way we handle errors when a task runs, simplifying the user interface. """ args = options.pop("args", None) kwargs = options.pop("kwargs", None) possible_broker_errors = self._get_possible_broker_errors_tuple() try: return self.apply_async(args, kwargs, **options) except possible_broker_errors as e: return self.simulate_async_error(e)
python
def async_or_fail(self, **options): """ Attempt to call self.apply_async, but if that fails with an exception, we fake the task completion using the exception as the result. This allows us to seamlessly handle errors on task creation the same way we handle errors when a task runs, simplifying the user interface. """ args = options.pop("args", None) kwargs = options.pop("kwargs", None) possible_broker_errors = self._get_possible_broker_errors_tuple() try: return self.apply_async(args, kwargs, **options) except possible_broker_errors as e: return self.simulate_async_error(e)
[ "def", "async_or_fail", "(", "self", ",", "*", "*", "options", ")", ":", "args", "=", "options", ".", "pop", "(", "\"args\"", ",", "None", ")", "kwargs", "=", "options", ".", "pop", "(", "\"kwargs\"", ",", "None", ")", "possible_broker_errors", "=", "self", ".", "_get_possible_broker_errors_tuple", "(", ")", "try", ":", "return", "self", ".", "apply_async", "(", "args", ",", "kwargs", ",", "*", "*", "options", ")", "except", "possible_broker_errors", "as", "e", ":", "return", "self", ".", "simulate_async_error", "(", "e", ")" ]
Attempt to call self.apply_async, but if that fails with an exception, we fake the task completion using the exception as the result. This allows us to seamlessly handle errors on task creation the same way we handle errors when a task runs, simplifying the user interface.
[ "Attempt", "to", "call", "self", ".", "apply_async", "but", "if", "that", "fails", "with", "an", "exception", "we", "fake", "the", "task", "completion", "using", "the", "exception", "as", "the", "result", ".", "This", "allows", "us", "to", "seamlessly", "handle", "errors", "on", "task", "creation", "the", "same", "way", "we", "handle", "errors", "when", "a", "task", "runs", "simplifying", "the", "user", "interface", "." ]
19cd3137ebf46877cee1ee5155d318bb6261ee1c
https://github.com/PolicyStat/jobtastic/blob/19cd3137ebf46877cee1ee5155d318bb6261ee1c/jobtastic/task.py#L104-L117
train
PolicyStat/jobtastic
jobtastic/task.py
JobtasticTask.delay_or_eager
def delay_or_eager(self, *args, **kwargs): """ Wrap async_or_eager with a convenience signiture like delay """ return self.async_or_eager(args=args, kwargs=kwargs)
python
def delay_or_eager(self, *args, **kwargs): """ Wrap async_or_eager with a convenience signiture like delay """ return self.async_or_eager(args=args, kwargs=kwargs)
[ "def", "delay_or_eager", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "self", ".", "async_or_eager", "(", "args", "=", "args", ",", "kwargs", "=", "kwargs", ")" ]
Wrap async_or_eager with a convenience signiture like delay
[ "Wrap", "async_or_eager", "with", "a", "convenience", "signiture", "like", "delay" ]
19cd3137ebf46877cee1ee5155d318bb6261ee1c
https://github.com/PolicyStat/jobtastic/blob/19cd3137ebf46877cee1ee5155d318bb6261ee1c/jobtastic/task.py#L120-L124
train
PolicyStat/jobtastic
jobtastic/task.py
JobtasticTask.delay_or_run
def delay_or_run(self, *args, **kwargs): """ Attempt to call self.delay, or if that fails, call self.run. Returns a tuple, (result, required_fallback). ``result`` is the result of calling delay or run. ``required_fallback`` is True if the broker failed we had to resort to `self.run`. """ warnings.warn( "delay_or_run is deprecated. Please use delay_or_eager", DeprecationWarning, ) possible_broker_errors = self._get_possible_broker_errors_tuple() try: result = self.apply_async(args=args, kwargs=kwargs) required_fallback = False except possible_broker_errors: result = self().run(*args, **kwargs) required_fallback = True return result, required_fallback
python
def delay_or_run(self, *args, **kwargs): """ Attempt to call self.delay, or if that fails, call self.run. Returns a tuple, (result, required_fallback). ``result`` is the result of calling delay or run. ``required_fallback`` is True if the broker failed we had to resort to `self.run`. """ warnings.warn( "delay_or_run is deprecated. Please use delay_or_eager", DeprecationWarning, ) possible_broker_errors = self._get_possible_broker_errors_tuple() try: result = self.apply_async(args=args, kwargs=kwargs) required_fallback = False except possible_broker_errors: result = self().run(*args, **kwargs) required_fallback = True return result, required_fallback
[ "def", "delay_or_run", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "warnings", ".", "warn", "(", "\"delay_or_run is deprecated. Please use delay_or_eager\"", ",", "DeprecationWarning", ",", ")", "possible_broker_errors", "=", "self", ".", "_get_possible_broker_errors_tuple", "(", ")", "try", ":", "result", "=", "self", ".", "apply_async", "(", "args", "=", "args", ",", "kwargs", "=", "kwargs", ")", "required_fallback", "=", "False", "except", "possible_broker_errors", ":", "result", "=", "self", "(", ")", ".", "run", "(", "*", "args", ",", "*", "*", "kwargs", ")", "required_fallback", "=", "True", "return", "result", ",", "required_fallback" ]
Attempt to call self.delay, or if that fails, call self.run. Returns a tuple, (result, required_fallback). ``result`` is the result of calling delay or run. ``required_fallback`` is True if the broker failed we had to resort to `self.run`.
[ "Attempt", "to", "call", "self", ".", "delay", "or", "if", "that", "fails", "call", "self", ".", "run", "." ]
19cd3137ebf46877cee1ee5155d318bb6261ee1c
https://github.com/PolicyStat/jobtastic/blob/19cd3137ebf46877cee1ee5155d318bb6261ee1c/jobtastic/task.py#L127-L146
train
PolicyStat/jobtastic
jobtastic/task.py
JobtasticTask.delay_or_fail
def delay_or_fail(self, *args, **kwargs): """ Wrap async_or_fail with a convenience signiture like delay """ return self.async_or_fail(args=args, kwargs=kwargs)
python
def delay_or_fail(self, *args, **kwargs): """ Wrap async_or_fail with a convenience signiture like delay """ return self.async_or_fail(args=args, kwargs=kwargs)
[ "def", "delay_or_fail", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "return", "self", ".", "async_or_fail", "(", "args", "=", "args", ",", "kwargs", "=", "kwargs", ")" ]
Wrap async_or_fail with a convenience signiture like delay
[ "Wrap", "async_or_fail", "with", "a", "convenience", "signiture", "like", "delay" ]
19cd3137ebf46877cee1ee5155d318bb6261ee1c
https://github.com/PolicyStat/jobtastic/blob/19cd3137ebf46877cee1ee5155d318bb6261ee1c/jobtastic/task.py#L149-L153
train
PolicyStat/jobtastic
jobtastic/task.py
JobtasticTask.simulate_async_error
def simulate_async_error(self, exception): """ Take this exception and store it as an error in the result backend. This unifies the handling of broker-connection errors with any other type of error that might occur when running the task. So the same error-handling that might retry a task or display a useful message to the user can also handle this error. """ task_id = gen_unique_id() async_result = self.AsyncResult(task_id) einfo = ExceptionInfo(sys.exc_info()) async_result.backend.mark_as_failure( task_id, exception, traceback=einfo.traceback, ) return async_result
python
def simulate_async_error(self, exception): """ Take this exception and store it as an error in the result backend. This unifies the handling of broker-connection errors with any other type of error that might occur when running the task. So the same error-handling that might retry a task or display a useful message to the user can also handle this error. """ task_id = gen_unique_id() async_result = self.AsyncResult(task_id) einfo = ExceptionInfo(sys.exc_info()) async_result.backend.mark_as_failure( task_id, exception, traceback=einfo.traceback, ) return async_result
[ "def", "simulate_async_error", "(", "self", ",", "exception", ")", ":", "task_id", "=", "gen_unique_id", "(", ")", "async_result", "=", "self", ".", "AsyncResult", "(", "task_id", ")", "einfo", "=", "ExceptionInfo", "(", "sys", ".", "exc_info", "(", ")", ")", "async_result", ".", "backend", ".", "mark_as_failure", "(", "task_id", ",", "exception", ",", "traceback", "=", "einfo", ".", "traceback", ",", ")", "return", "async_result" ]
Take this exception and store it as an error in the result backend. This unifies the handling of broker-connection errors with any other type of error that might occur when running the task. So the same error-handling that might retry a task or display a useful message to the user can also handle this error.
[ "Take", "this", "exception", "and", "store", "it", "as", "an", "error", "in", "the", "result", "backend", ".", "This", "unifies", "the", "handling", "of", "broker", "-", "connection", "errors", "with", "any", "other", "type", "of", "error", "that", "might", "occur", "when", "running", "the", "task", ".", "So", "the", "same", "error", "-", "handling", "that", "might", "retry", "a", "task", "or", "display", "a", "useful", "message", "to", "the", "user", "can", "also", "handle", "this", "error", "." ]
19cd3137ebf46877cee1ee5155d318bb6261ee1c
https://github.com/PolicyStat/jobtastic/blob/19cd3137ebf46877cee1ee5155d318bb6261ee1c/jobtastic/task.py#L178-L196
train
PolicyStat/jobtastic
jobtastic/task.py
JobtasticTask.calc_progress
def calc_progress(self, completed_count, total_count): """ Calculate the percentage progress and estimated remaining time based on the current number of items completed of the total. Returns a tuple of ``(percentage_complete, seconds_remaining)``. """ self.logger.debug( "calc_progress(%s, %s)", completed_count, total_count, ) current_time = time.time() time_spent = current_time - self.start_time self.logger.debug("Progress time spent: %s", time_spent) if total_count == 0: return 100, 1 completion_fraction = completed_count / total_count if completion_fraction == 0: completion_fraction = 1 total_time = 0 total_time = time_spent / completion_fraction time_remaining = total_time - time_spent completion_display = completion_fraction * 100 if completion_display == 100: return 100, 1 # 1 second to finish up return completion_display, time_remaining
python
def calc_progress(self, completed_count, total_count): """ Calculate the percentage progress and estimated remaining time based on the current number of items completed of the total. Returns a tuple of ``(percentage_complete, seconds_remaining)``. """ self.logger.debug( "calc_progress(%s, %s)", completed_count, total_count, ) current_time = time.time() time_spent = current_time - self.start_time self.logger.debug("Progress time spent: %s", time_spent) if total_count == 0: return 100, 1 completion_fraction = completed_count / total_count if completion_fraction == 0: completion_fraction = 1 total_time = 0 total_time = time_spent / completion_fraction time_remaining = total_time - time_spent completion_display = completion_fraction * 100 if completion_display == 100: return 100, 1 # 1 second to finish up return completion_display, time_remaining
[ "def", "calc_progress", "(", "self", ",", "completed_count", ",", "total_count", ")", ":", "self", ".", "logger", ".", "debug", "(", "\"calc_progress(%s, %s)\"", ",", "completed_count", ",", "total_count", ",", ")", "current_time", "=", "time", ".", "time", "(", ")", "time_spent", "=", "current_time", "-", "self", ".", "start_time", "self", ".", "logger", ".", "debug", "(", "\"Progress time spent: %s\"", ",", "time_spent", ")", "if", "total_count", "==", "0", ":", "return", "100", ",", "1", "completion_fraction", "=", "completed_count", "/", "total_count", "if", "completion_fraction", "==", "0", ":", "completion_fraction", "=", "1", "total_time", "=", "0", "total_time", "=", "time_spent", "/", "completion_fraction", "time_remaining", "=", "total_time", "-", "time_spent", "completion_display", "=", "completion_fraction", "*", "100", "if", "completion_display", "==", "100", ":", "return", "100", ",", "1", "# 1 second to finish up", "return", "completion_display", ",", "time_remaining" ]
Calculate the percentage progress and estimated remaining time based on the current number of items completed of the total. Returns a tuple of ``(percentage_complete, seconds_remaining)``.
[ "Calculate", "the", "percentage", "progress", "and", "estimated", "remaining", "time", "based", "on", "the", "current", "number", "of", "items", "completed", "of", "the", "total", "." ]
19cd3137ebf46877cee1ee5155d318bb6261ee1c
https://github.com/PolicyStat/jobtastic/blob/19cd3137ebf46877cee1ee5155d318bb6261ee1c/jobtastic/task.py#L246-L278
train
PolicyStat/jobtastic
jobtastic/task.py
JobtasticTask.update_progress
def update_progress( self, completed_count, total_count, update_frequency=1, ): """ Update the task backend with both an estimated percentage complete and number of seconds remaining until completion. ``completed_count`` Number of task "units" that have been completed out of ``total_count`` total "units." ``update_frequency`` Only actually store the updated progress in the background at most every ``N`` ``completed_count``. """ if completed_count - self._last_update_count < update_frequency: # We've updated the progress too recently. Don't stress out the # result backend return # Store progress for display progress_percent, time_remaining = self.calc_progress( completed_count, total_count) self.logger.debug( "Updating progress: %s percent, %s remaining", progress_percent, time_remaining) if self.request.id: self._last_update_count = completed_count self.update_state(None, PROGRESS, { "progress_percent": progress_percent, "time_remaining": time_remaining, })
python
def update_progress( self, completed_count, total_count, update_frequency=1, ): """ Update the task backend with both an estimated percentage complete and number of seconds remaining until completion. ``completed_count`` Number of task "units" that have been completed out of ``total_count`` total "units." ``update_frequency`` Only actually store the updated progress in the background at most every ``N`` ``completed_count``. """ if completed_count - self._last_update_count < update_frequency: # We've updated the progress too recently. Don't stress out the # result backend return # Store progress for display progress_percent, time_remaining = self.calc_progress( completed_count, total_count) self.logger.debug( "Updating progress: %s percent, %s remaining", progress_percent, time_remaining) if self.request.id: self._last_update_count = completed_count self.update_state(None, PROGRESS, { "progress_percent": progress_percent, "time_remaining": time_remaining, })
[ "def", "update_progress", "(", "self", ",", "completed_count", ",", "total_count", ",", "update_frequency", "=", "1", ",", ")", ":", "if", "completed_count", "-", "self", ".", "_last_update_count", "<", "update_frequency", ":", "# We've updated the progress too recently. Don't stress out the", "# result backend", "return", "# Store progress for display", "progress_percent", ",", "time_remaining", "=", "self", ".", "calc_progress", "(", "completed_count", ",", "total_count", ")", "self", ".", "logger", ".", "debug", "(", "\"Updating progress: %s percent, %s remaining\"", ",", "progress_percent", ",", "time_remaining", ")", "if", "self", ".", "request", ".", "id", ":", "self", ".", "_last_update_count", "=", "completed_count", "self", ".", "update_state", "(", "None", ",", "PROGRESS", ",", "{", "\"progress_percent\"", ":", "progress_percent", ",", "\"time_remaining\"", ":", "time_remaining", ",", "}", ")" ]
Update the task backend with both an estimated percentage complete and number of seconds remaining until completion. ``completed_count`` Number of task "units" that have been completed out of ``total_count`` total "units." ``update_frequency`` Only actually store the updated progress in the background at most every ``N`` ``completed_count``.
[ "Update", "the", "task", "backend", "with", "both", "an", "estimated", "percentage", "complete", "and", "number", "of", "seconds", "remaining", "until", "completion", "." ]
19cd3137ebf46877cee1ee5155d318bb6261ee1c
https://github.com/PolicyStat/jobtastic/blob/19cd3137ebf46877cee1ee5155d318bb6261ee1c/jobtastic/task.py#L280-L311
train
PolicyStat/jobtastic
jobtastic/task.py
JobtasticTask._validate_required_class_vars
def _validate_required_class_vars(self): """ Ensure that this subclass has defined all of the required class variables. """ required_members = ( 'significant_kwargs', 'herd_avoidance_timeout', ) for required_member in required_members: if not hasattr(self, required_member): raise Exception( "JobtasticTask's must define a %s" % required_member)
python
def _validate_required_class_vars(self): """ Ensure that this subclass has defined all of the required class variables. """ required_members = ( 'significant_kwargs', 'herd_avoidance_timeout', ) for required_member in required_members: if not hasattr(self, required_member): raise Exception( "JobtasticTask's must define a %s" % required_member)
[ "def", "_validate_required_class_vars", "(", "self", ")", ":", "required_members", "=", "(", "'significant_kwargs'", ",", "'herd_avoidance_timeout'", ",", ")", "for", "required_member", "in", "required_members", ":", "if", "not", "hasattr", "(", "self", ",", "required_member", ")", ":", "raise", "Exception", "(", "\"JobtasticTask's must define a %s\"", "%", "required_member", ")" ]
Ensure that this subclass has defined all of the required class variables.
[ "Ensure", "that", "this", "subclass", "has", "defined", "all", "of", "the", "required", "class", "variables", "." ]
19cd3137ebf46877cee1ee5155d318bb6261ee1c
https://github.com/PolicyStat/jobtastic/blob/19cd3137ebf46877cee1ee5155d318bb6261ee1c/jobtastic/task.py#L378-L390
train
PolicyStat/jobtastic
jobtastic/task.py
JobtasticTask.on_success
def on_success(self, retval, task_id, args, kwargs): """ Store results in the backend even if we're always eager. This ensures the `delay_or_run` calls always at least have results. """ if self.request.is_eager: # Store the result because celery wouldn't otherwise self.update_state(task_id, SUCCESS, retval)
python
def on_success(self, retval, task_id, args, kwargs): """ Store results in the backend even if we're always eager. This ensures the `delay_or_run` calls always at least have results. """ if self.request.is_eager: # Store the result because celery wouldn't otherwise self.update_state(task_id, SUCCESS, retval)
[ "def", "on_success", "(", "self", ",", "retval", ",", "task_id", ",", "args", ",", "kwargs", ")", ":", "if", "self", ".", "request", ".", "is_eager", ":", "# Store the result because celery wouldn't otherwise", "self", ".", "update_state", "(", "task_id", ",", "SUCCESS", ",", "retval", ")" ]
Store results in the backend even if we're always eager. This ensures the `delay_or_run` calls always at least have results.
[ "Store", "results", "in", "the", "backend", "even", "if", "we", "re", "always", "eager", ".", "This", "ensures", "the", "delay_or_run", "calls", "always", "at", "least", "have", "results", "." ]
19cd3137ebf46877cee1ee5155d318bb6261ee1c
https://github.com/PolicyStat/jobtastic/blob/19cd3137ebf46877cee1ee5155d318bb6261ee1c/jobtastic/task.py#L392-L399
train
PolicyStat/jobtastic
jobtastic/task.py
JobtasticTask._get_cache
def _get_cache(self): """ Return the cache to use for thundering herd protection, etc. """ if not self._cache: self._cache = get_cache(self.app) return self._cache
python
def _get_cache(self): """ Return the cache to use for thundering herd protection, etc. """ if not self._cache: self._cache = get_cache(self.app) return self._cache
[ "def", "_get_cache", "(", "self", ")", ":", "if", "not", "self", ".", "_cache", ":", "self", ".", "_cache", "=", "get_cache", "(", "self", ".", "app", ")", "return", "self", ".", "_cache" ]
Return the cache to use for thundering herd protection, etc.
[ "Return", "the", "cache", "to", "use", "for", "thundering", "herd", "protection", "etc", "." ]
19cd3137ebf46877cee1ee5155d318bb6261ee1c
https://github.com/PolicyStat/jobtastic/blob/19cd3137ebf46877cee1ee5155d318bb6261ee1c/jobtastic/task.py#L405-L411
train
PolicyStat/jobtastic
jobtastic/task.py
JobtasticTask._get_cache_key
def _get_cache_key(self, **kwargs): """ Take this task's configured ``significant_kwargs`` and build a hash that all equivalent task calls will match. Takes in kwargs and returns a string. To change the way the cache key is generated or do more in-depth processing, override this method. """ m = md5() for significant_kwarg in self.significant_kwargs: key, to_str = significant_kwarg try: m.update(to_str(kwargs[key])) except (TypeError, UnicodeEncodeError): # Python 3.x strings aren't accepted by hash.update(). # String should be byte-encoded first. m.update(to_str(kwargs[key]).encode('utf-8')) if hasattr(self, 'cache_prefix'): cache_prefix = self.cache_prefix else: cache_prefix = '%s.%s' % (self.__module__, self.__name__) return '%s:%s' % (cache_prefix, m.hexdigest())
python
def _get_cache_key(self, **kwargs): """ Take this task's configured ``significant_kwargs`` and build a hash that all equivalent task calls will match. Takes in kwargs and returns a string. To change the way the cache key is generated or do more in-depth processing, override this method. """ m = md5() for significant_kwarg in self.significant_kwargs: key, to_str = significant_kwarg try: m.update(to_str(kwargs[key])) except (TypeError, UnicodeEncodeError): # Python 3.x strings aren't accepted by hash.update(). # String should be byte-encoded first. m.update(to_str(kwargs[key]).encode('utf-8')) if hasattr(self, 'cache_prefix'): cache_prefix = self.cache_prefix else: cache_prefix = '%s.%s' % (self.__module__, self.__name__) return '%s:%s' % (cache_prefix, m.hexdigest())
[ "def", "_get_cache_key", "(", "self", ",", "*", "*", "kwargs", ")", ":", "m", "=", "md5", "(", ")", "for", "significant_kwarg", "in", "self", ".", "significant_kwargs", ":", "key", ",", "to_str", "=", "significant_kwarg", "try", ":", "m", ".", "update", "(", "to_str", "(", "kwargs", "[", "key", "]", ")", ")", "except", "(", "TypeError", ",", "UnicodeEncodeError", ")", ":", "# Python 3.x strings aren't accepted by hash.update().", "# String should be byte-encoded first.", "m", ".", "update", "(", "to_str", "(", "kwargs", "[", "key", "]", ")", ".", "encode", "(", "'utf-8'", ")", ")", "if", "hasattr", "(", "self", ",", "'cache_prefix'", ")", ":", "cache_prefix", "=", "self", ".", "cache_prefix", "else", ":", "cache_prefix", "=", "'%s.%s'", "%", "(", "self", ".", "__module__", ",", "self", ".", "__name__", ")", "return", "'%s:%s'", "%", "(", "cache_prefix", ",", "m", ".", "hexdigest", "(", ")", ")" ]
Take this task's configured ``significant_kwargs`` and build a hash that all equivalent task calls will match. Takes in kwargs and returns a string. To change the way the cache key is generated or do more in-depth processing, override this method.
[ "Take", "this", "task", "s", "configured", "significant_kwargs", "and", "build", "a", "hash", "that", "all", "equivalent", "task", "calls", "will", "match", "." ]
19cd3137ebf46877cee1ee5155d318bb6261ee1c
https://github.com/PolicyStat/jobtastic/blob/19cd3137ebf46877cee1ee5155d318bb6261ee1c/jobtastic/task.py#L426-L450
train
PolicyStat/jobtastic
jobtastic/cache/__init__.py
get_cache
def get_cache(app): """ Attempt to find a valid cache from the Celery configuration If the setting is a valid cache, just use it. Otherwise, if Django is installed, then: If the setting is a valid Django cache entry, then use that. If the setting is empty use the default cache Otherwise, if Werkzeug is installed, then: If the setting is a valid Celery Memcache or Redis Backend, then use that. If the setting is empty and the default Celery Result Backend is Memcache or Redis, then use that Otherwise fail """ jobtastic_cache_setting = app.conf.get('JOBTASTIC_CACHE') if isinstance(jobtastic_cache_setting, BaseCache): return jobtastic_cache_setting if 'Django' in CACHES: if jobtastic_cache_setting: try: return WrappedCache(get_django_cache(jobtastic_cache_setting)) except InvalidCacheBackendError: pass else: return WrappedCache(get_django_cache('default')) if 'Werkzeug' in CACHES: if jobtastic_cache_setting: backend, url = get_backend_by_url(jobtastic_cache_setting) backend = backend(app=app, url=url) else: backend = app.backend if isinstance(backend, CacheBackend): return WrappedCache(MemcachedCache(backend.client)) elif isinstance(backend, RedisBackend): return WrappedCache(RedisCache(backend.client)) # Give up raise RuntimeError('Cannot find a suitable cache for Jobtastic')
python
def get_cache(app): """ Attempt to find a valid cache from the Celery configuration If the setting is a valid cache, just use it. Otherwise, if Django is installed, then: If the setting is a valid Django cache entry, then use that. If the setting is empty use the default cache Otherwise, if Werkzeug is installed, then: If the setting is a valid Celery Memcache or Redis Backend, then use that. If the setting is empty and the default Celery Result Backend is Memcache or Redis, then use that Otherwise fail """ jobtastic_cache_setting = app.conf.get('JOBTASTIC_CACHE') if isinstance(jobtastic_cache_setting, BaseCache): return jobtastic_cache_setting if 'Django' in CACHES: if jobtastic_cache_setting: try: return WrappedCache(get_django_cache(jobtastic_cache_setting)) except InvalidCacheBackendError: pass else: return WrappedCache(get_django_cache('default')) if 'Werkzeug' in CACHES: if jobtastic_cache_setting: backend, url = get_backend_by_url(jobtastic_cache_setting) backend = backend(app=app, url=url) else: backend = app.backend if isinstance(backend, CacheBackend): return WrappedCache(MemcachedCache(backend.client)) elif isinstance(backend, RedisBackend): return WrappedCache(RedisCache(backend.client)) # Give up raise RuntimeError('Cannot find a suitable cache for Jobtastic')
[ "def", "get_cache", "(", "app", ")", ":", "jobtastic_cache_setting", "=", "app", ".", "conf", ".", "get", "(", "'JOBTASTIC_CACHE'", ")", "if", "isinstance", "(", "jobtastic_cache_setting", ",", "BaseCache", ")", ":", "return", "jobtastic_cache_setting", "if", "'Django'", "in", "CACHES", ":", "if", "jobtastic_cache_setting", ":", "try", ":", "return", "WrappedCache", "(", "get_django_cache", "(", "jobtastic_cache_setting", ")", ")", "except", "InvalidCacheBackendError", ":", "pass", "else", ":", "return", "WrappedCache", "(", "get_django_cache", "(", "'default'", ")", ")", "if", "'Werkzeug'", "in", "CACHES", ":", "if", "jobtastic_cache_setting", ":", "backend", ",", "url", "=", "get_backend_by_url", "(", "jobtastic_cache_setting", ")", "backend", "=", "backend", "(", "app", "=", "app", ",", "url", "=", "url", ")", "else", ":", "backend", "=", "app", ".", "backend", "if", "isinstance", "(", "backend", ",", "CacheBackend", ")", ":", "return", "WrappedCache", "(", "MemcachedCache", "(", "backend", ".", "client", ")", ")", "elif", "isinstance", "(", "backend", ",", "RedisBackend", ")", ":", "return", "WrappedCache", "(", "RedisCache", "(", "backend", ".", "client", ")", ")", "# Give up", "raise", "RuntimeError", "(", "'Cannot find a suitable cache for Jobtastic'", ")" ]
Attempt to find a valid cache from the Celery configuration If the setting is a valid cache, just use it. Otherwise, if Django is installed, then: If the setting is a valid Django cache entry, then use that. If the setting is empty use the default cache Otherwise, if Werkzeug is installed, then: If the setting is a valid Celery Memcache or Redis Backend, then use that. If the setting is empty and the default Celery Result Backend is Memcache or Redis, then use that Otherwise fail
[ "Attempt", "to", "find", "a", "valid", "cache", "from", "the", "Celery", "configuration" ]
19cd3137ebf46877cee1ee5155d318bb6261ee1c
https://github.com/PolicyStat/jobtastic/blob/19cd3137ebf46877cee1ee5155d318bb6261ee1c/jobtastic/cache/__init__.py#L29-L70
train
dodger487/dplython
dplython/dplython.py
select
def select(*args): """Select specific columns from DataFrame. Output will be DplyFrame type. Order of columns will be the same as input into select. >>> diamonds >> select(X.color, X.carat) >> head(3) Out: color carat 0 E 0.23 1 E 0.21 2 E 0.23 Grouping variables are implied in selection. >>> df >> group_by(X.a, X.b) >> select(X.c) returns a dataframe like `df[[X.a, X.b, X.c]]` with the variables appearing in grouped order before the selected column(s), unless a grouped variable is explicitly selected >>> df >> group_by(X.a, X.b) >> select(X.c, X.b) returns a dataframe like `df[[X.a, X.c, X.b]]` """ def select_columns(df, args): columns = [column._name for column in args] if df._grouped_on: for col in df._grouped_on[::-1]: if col not in columns: columns.insert(0, col) return columns return lambda df: df[select_columns(df, args)]
python
def select(*args): """Select specific columns from DataFrame. Output will be DplyFrame type. Order of columns will be the same as input into select. >>> diamonds >> select(X.color, X.carat) >> head(3) Out: color carat 0 E 0.23 1 E 0.21 2 E 0.23 Grouping variables are implied in selection. >>> df >> group_by(X.a, X.b) >> select(X.c) returns a dataframe like `df[[X.a, X.b, X.c]]` with the variables appearing in grouped order before the selected column(s), unless a grouped variable is explicitly selected >>> df >> group_by(X.a, X.b) >> select(X.c, X.b) returns a dataframe like `df[[X.a, X.c, X.b]]` """ def select_columns(df, args): columns = [column._name for column in args] if df._grouped_on: for col in df._grouped_on[::-1]: if col not in columns: columns.insert(0, col) return columns return lambda df: df[select_columns(df, args)]
[ "def", "select", "(", "*", "args", ")", ":", "def", "select_columns", "(", "df", ",", "args", ")", ":", "columns", "=", "[", "column", ".", "_name", "for", "column", "in", "args", "]", "if", "df", ".", "_grouped_on", ":", "for", "col", "in", "df", ".", "_grouped_on", "[", ":", ":", "-", "1", "]", ":", "if", "col", "not", "in", "columns", ":", "columns", ".", "insert", "(", "0", ",", "col", ")", "return", "columns", "return", "lambda", "df", ":", "df", "[", "select_columns", "(", "df", ",", "args", ")", "]" ]
Select specific columns from DataFrame. Output will be DplyFrame type. Order of columns will be the same as input into select. >>> diamonds >> select(X.color, X.carat) >> head(3) Out: color carat 0 E 0.23 1 E 0.21 2 E 0.23 Grouping variables are implied in selection. >>> df >> group_by(X.a, X.b) >> select(X.c) returns a dataframe like `df[[X.a, X.b, X.c]]` with the variables appearing in grouped order before the selected column(s), unless a grouped variable is explicitly selected >>> df >> group_by(X.a, X.b) >> select(X.c, X.b) returns a dataframe like `df[[X.a, X.c, X.b]]`
[ "Select", "specific", "columns", "from", "DataFrame", "." ]
09c2a5f4ca67221b2a59928366ca8274357f7234
https://github.com/dodger487/dplython/blob/09c2a5f4ca67221b2a59928366ca8274357f7234/dplython/dplython.py#L203-L232
train
dodger487/dplython
dplython/dplython.py
arrange
def arrange(*args): """Sort DataFrame by the input column arguments. >>> diamonds >> sample_n(5) >> arrange(X.price) >> select(X.depth, X.price) Out: depth price 28547 61.0 675 35132 59.1 889 42526 61.3 1323 3468 61.6 3392 23829 62.0 11903 """ names = [column._name for column in args] def f(df): sortby_df = df >> mutate(*args) index = sortby_df.sort_values([str(arg) for arg in args]).index return df.loc[index] return f
python
def arrange(*args): """Sort DataFrame by the input column arguments. >>> diamonds >> sample_n(5) >> arrange(X.price) >> select(X.depth, X.price) Out: depth price 28547 61.0 675 35132 59.1 889 42526 61.3 1323 3468 61.6 3392 23829 62.0 11903 """ names = [column._name for column in args] def f(df): sortby_df = df >> mutate(*args) index = sortby_df.sort_values([str(arg) for arg in args]).index return df.loc[index] return f
[ "def", "arrange", "(", "*", "args", ")", ":", "names", "=", "[", "column", ".", "_name", "for", "column", "in", "args", "]", "def", "f", "(", "df", ")", ":", "sortby_df", "=", "df", ">>", "mutate", "(", "*", "args", ")", "index", "=", "sortby_df", ".", "sort_values", "(", "[", "str", "(", "arg", ")", "for", "arg", "in", "args", "]", ")", ".", "index", "return", "df", ".", "loc", "[", "index", "]", "return", "f" ]
Sort DataFrame by the input column arguments. >>> diamonds >> sample_n(5) >> arrange(X.price) >> select(X.depth, X.price) Out: depth price 28547 61.0 675 35132 59.1 889 42526 61.3 1323 3468 61.6 3392 23829 62.0 11903
[ "Sort", "DataFrame", "by", "the", "input", "column", "arguments", "." ]
09c2a5f4ca67221b2a59928366ca8274357f7234
https://github.com/dodger487/dplython/blob/09c2a5f4ca67221b2a59928366ca8274357f7234/dplython/dplython.py#L377-L394
train
dodger487/dplython
dplython/dplython.py
rename
def rename(**kwargs): """Rename one or more columns, leaving other columns unchanged Example usage: diamonds >> rename(new_name=old_name) """ def rename_columns(df): column_assignments = {old_name_later._name: new_name for new_name, old_name_later in kwargs.items()} return df.rename(columns=column_assignments) return rename_columns
python
def rename(**kwargs): """Rename one or more columns, leaving other columns unchanged Example usage: diamonds >> rename(new_name=old_name) """ def rename_columns(df): column_assignments = {old_name_later._name: new_name for new_name, old_name_later in kwargs.items()} return df.rename(columns=column_assignments) return rename_columns
[ "def", "rename", "(", "*", "*", "kwargs", ")", ":", "def", "rename_columns", "(", "df", ")", ":", "column_assignments", "=", "{", "old_name_later", ".", "_name", ":", "new_name", "for", "new_name", ",", "old_name_later", "in", "kwargs", ".", "items", "(", ")", "}", "return", "df", ".", "rename", "(", "columns", "=", "column_assignments", ")", "return", "rename_columns" ]
Rename one or more columns, leaving other columns unchanged Example usage: diamonds >> rename(new_name=old_name)
[ "Rename", "one", "or", "more", "columns", "leaving", "other", "columns", "unchanged" ]
09c2a5f4ca67221b2a59928366ca8274357f7234
https://github.com/dodger487/dplython/blob/09c2a5f4ca67221b2a59928366ca8274357f7234/dplython/dplython.py#L453-L463
train
dodger487/dplython
dplython/dplython.py
transmute
def transmute(*args, **kwargs): """ Similar to `select` but allows mutation in column definitions. In : (diamonds >> head(3) >> transmute(new_price=X.price * 2, x_plus_y=X.x + X.y)) Out: new_price x_plus_y 0 652 7.93 1 652 7.73 2 654 8.12 """ mutate_dateframe_fn = mutate(*args, **dict(kwargs)) column_names_args = [str(arg) for arg in args] column_names_kwargs = [name for name, _ in _dict_to_possibly_ordered_tuples(kwargs)] column_names = column_names_args + column_names_kwargs return lambda df: mutate_dateframe_fn(df)[column_names]
python
def transmute(*args, **kwargs): """ Similar to `select` but allows mutation in column definitions. In : (diamonds >> head(3) >> transmute(new_price=X.price * 2, x_plus_y=X.x + X.y)) Out: new_price x_plus_y 0 652 7.93 1 652 7.73 2 654 8.12 """ mutate_dateframe_fn = mutate(*args, **dict(kwargs)) column_names_args = [str(arg) for arg in args] column_names_kwargs = [name for name, _ in _dict_to_possibly_ordered_tuples(kwargs)] column_names = column_names_args + column_names_kwargs return lambda df: mutate_dateframe_fn(df)[column_names]
[ "def", "transmute", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "mutate_dateframe_fn", "=", "mutate", "(", "*", "args", ",", "*", "*", "dict", "(", "kwargs", ")", ")", "column_names_args", "=", "[", "str", "(", "arg", ")", "for", "arg", "in", "args", "]", "column_names_kwargs", "=", "[", "name", "for", "name", ",", "_", "in", "_dict_to_possibly_ordered_tuples", "(", "kwargs", ")", "]", "column_names", "=", "column_names_args", "+", "column_names_kwargs", "return", "lambda", "df", ":", "mutate_dateframe_fn", "(", "df", ")", "[", "column_names", "]" ]
Similar to `select` but allows mutation in column definitions. In : (diamonds >> head(3) >> transmute(new_price=X.price * 2, x_plus_y=X.x + X.y)) Out: new_price x_plus_y 0 652 7.93 1 652 7.73 2 654 8.12
[ "Similar", "to", "select", "but", "allows", "mutation", "in", "column", "definitions", "." ]
09c2a5f4ca67221b2a59928366ca8274357f7234
https://github.com/dodger487/dplython/blob/09c2a5f4ca67221b2a59928366ca8274357f7234/dplython/dplython.py#L467-L484
train
dodger487/dplython
dplython/dplython.py
get_join_cols
def get_join_cols(by_entry): """ helper function used for joins builds left and right join list for join function """ left_cols = [] right_cols = [] for col in by_entry: if isinstance(col, str): left_cols.append(col) right_cols.append(col) else: left_cols.append(col[0]) right_cols.append(col[1]) return left_cols, right_cols
python
def get_join_cols(by_entry): """ helper function used for joins builds left and right join list for join function """ left_cols = [] right_cols = [] for col in by_entry: if isinstance(col, str): left_cols.append(col) right_cols.append(col) else: left_cols.append(col[0]) right_cols.append(col[1]) return left_cols, right_cols
[ "def", "get_join_cols", "(", "by_entry", ")", ":", "left_cols", "=", "[", "]", "right_cols", "=", "[", "]", "for", "col", "in", "by_entry", ":", "if", "isinstance", "(", "col", ",", "str", ")", ":", "left_cols", ".", "append", "(", "col", ")", "right_cols", ".", "append", "(", "col", ")", "else", ":", "left_cols", ".", "append", "(", "col", "[", "0", "]", ")", "right_cols", ".", "append", "(", "col", "[", "1", "]", ")", "return", "left_cols", ",", "right_cols" ]
helper function used for joins builds left and right join list for join function
[ "helper", "function", "used", "for", "joins", "builds", "left", "and", "right", "join", "list", "for", "join", "function" ]
09c2a5f4ca67221b2a59928366ca8274357f7234
https://github.com/dodger487/dplython/blob/09c2a5f4ca67221b2a59928366ca8274357f7234/dplython/dplython.py#L504-L517
train
dodger487/dplython
dplython/dplython.py
mutating_join
def mutating_join(*args, **kwargs): """ generic function for mutating dplyr-style joins """ # candidate for improvement left = args[0] right = args[1] if 'by' in kwargs: left_cols, right_cols = get_join_cols(kwargs['by']) else: left_cols, right_cols = None, None if 'suffixes' in kwargs: dsuffixes = kwargs['suffixes'] else: dsuffixes = ('_x', '_y') if left._grouped_on: outDf = (DplyFrame((left >> ungroup()) .merge(right, how=kwargs['how'], left_on=left_cols, right_on=right_cols, suffixes=dsuffixes)) .regroup(left._grouped_on)) else: outDf = DplyFrame(left.merge(right, how=kwargs['how'], left_on=left_cols, right_on=right_cols, suffixes=dsuffixes)) return outDf
python
def mutating_join(*args, **kwargs): """ generic function for mutating dplyr-style joins """ # candidate for improvement left = args[0] right = args[1] if 'by' in kwargs: left_cols, right_cols = get_join_cols(kwargs['by']) else: left_cols, right_cols = None, None if 'suffixes' in kwargs: dsuffixes = kwargs['suffixes'] else: dsuffixes = ('_x', '_y') if left._grouped_on: outDf = (DplyFrame((left >> ungroup()) .merge(right, how=kwargs['how'], left_on=left_cols, right_on=right_cols, suffixes=dsuffixes)) .regroup(left._grouped_on)) else: outDf = DplyFrame(left.merge(right, how=kwargs['how'], left_on=left_cols, right_on=right_cols, suffixes=dsuffixes)) return outDf
[ "def", "mutating_join", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# candidate for improvement", "left", "=", "args", "[", "0", "]", "right", "=", "args", "[", "1", "]", "if", "'by'", "in", "kwargs", ":", "left_cols", ",", "right_cols", "=", "get_join_cols", "(", "kwargs", "[", "'by'", "]", ")", "else", ":", "left_cols", ",", "right_cols", "=", "None", ",", "None", "if", "'suffixes'", "in", "kwargs", ":", "dsuffixes", "=", "kwargs", "[", "'suffixes'", "]", "else", ":", "dsuffixes", "=", "(", "'_x'", ",", "'_y'", ")", "if", "left", ".", "_grouped_on", ":", "outDf", "=", "(", "DplyFrame", "(", "(", "left", ">>", "ungroup", "(", ")", ")", ".", "merge", "(", "right", ",", "how", "=", "kwargs", "[", "'how'", "]", ",", "left_on", "=", "left_cols", ",", "right_on", "=", "right_cols", ",", "suffixes", "=", "dsuffixes", ")", ")", ".", "regroup", "(", "left", ".", "_grouped_on", ")", ")", "else", ":", "outDf", "=", "DplyFrame", "(", "left", ".", "merge", "(", "right", ",", "how", "=", "kwargs", "[", "'how'", "]", ",", "left_on", "=", "left_cols", ",", "right_on", "=", "right_cols", ",", "suffixes", "=", "dsuffixes", ")", ")", "return", "outDf" ]
generic function for mutating dplyr-style joins
[ "generic", "function", "for", "mutating", "dplyr", "-", "style", "joins" ]
09c2a5f4ca67221b2a59928366ca8274357f7234
https://github.com/dodger487/dplython/blob/09c2a5f4ca67221b2a59928366ca8274357f7234/dplython/dplython.py#L520-L542
train
mher/chartkick.py
chartkick/ext.py
ChartExtension._chart_support
def _chart_support(self, name, data, caller, **kwargs): "template chart support function" id = 'chart-%s' % next(self.id) name = self._chart_class_name(name) options = dict(self.environment.options) options.update(name=name, id=id) # jinja2 prepends 'l_' or 'l_{{ n }}'(ver>=2.9) to keys if jinja2.__version__ >= '2.9': kwargs = dict((k[4:], v) for (k, v) in kwargs.items()) else: kwargs = dict((k[2:], v) for (k, v) in kwargs.items()) if self._library is None: self._library = self.load_library() id = kwargs.get('id', '') library = self._library.get(id, {}) # apply options from a tag library.update(kwargs.get('library', {})) # apply options from chartkick.json kwargs.update(library=library) options.update(kwargs) return CHART_HTML.format(data=data, options=json.dumps(kwargs), **options)
python
def _chart_support(self, name, data, caller, **kwargs): "template chart support function" id = 'chart-%s' % next(self.id) name = self._chart_class_name(name) options = dict(self.environment.options) options.update(name=name, id=id) # jinja2 prepends 'l_' or 'l_{{ n }}'(ver>=2.9) to keys if jinja2.__version__ >= '2.9': kwargs = dict((k[4:], v) for (k, v) in kwargs.items()) else: kwargs = dict((k[2:], v) for (k, v) in kwargs.items()) if self._library is None: self._library = self.load_library() id = kwargs.get('id', '') library = self._library.get(id, {}) # apply options from a tag library.update(kwargs.get('library', {})) # apply options from chartkick.json kwargs.update(library=library) options.update(kwargs) return CHART_HTML.format(data=data, options=json.dumps(kwargs), **options)
[ "def", "_chart_support", "(", "self", ",", "name", ",", "data", ",", "caller", ",", "*", "*", "kwargs", ")", ":", "id", "=", "'chart-%s'", "%", "next", "(", "self", ".", "id", ")", "name", "=", "self", ".", "_chart_class_name", "(", "name", ")", "options", "=", "dict", "(", "self", ".", "environment", ".", "options", ")", "options", ".", "update", "(", "name", "=", "name", ",", "id", "=", "id", ")", "# jinja2 prepends 'l_' or 'l_{{ n }}'(ver>=2.9) to keys", "if", "jinja2", ".", "__version__", ">=", "'2.9'", ":", "kwargs", "=", "dict", "(", "(", "k", "[", "4", ":", "]", ",", "v", ")", "for", "(", "k", ",", "v", ")", "in", "kwargs", ".", "items", "(", ")", ")", "else", ":", "kwargs", "=", "dict", "(", "(", "k", "[", "2", ":", "]", ",", "v", ")", "for", "(", "k", ",", "v", ")", "in", "kwargs", ".", "items", "(", ")", ")", "if", "self", ".", "_library", "is", "None", ":", "self", ".", "_library", "=", "self", ".", "load_library", "(", ")", "id", "=", "kwargs", ".", "get", "(", "'id'", ",", "''", ")", "library", "=", "self", ".", "_library", ".", "get", "(", "id", ",", "{", "}", ")", "# apply options from a tag", "library", ".", "update", "(", "kwargs", ".", "get", "(", "'library'", ",", "{", "}", ")", ")", "# apply options from chartkick.json", "kwargs", ".", "update", "(", "library", "=", "library", ")", "options", ".", "update", "(", "kwargs", ")", "return", "CHART_HTML", ".", "format", "(", "data", "=", "data", ",", "options", "=", "json", ".", "dumps", "(", "kwargs", ")", ",", "*", "*", "options", ")" ]
template chart support function
[ "template", "chart", "support", "function" ]
3411f36a069560fe1ba218e0a35f68c413332f63
https://github.com/mher/chartkick.py/blob/3411f36a069560fe1ba218e0a35f68c413332f63/chartkick/ext.py#L63-L88
train
mher/chartkick.py
chartkick/ext.py
ChartExtension.load_library
def load_library(self): "loads configuration options" try: filename = self.environment.get_template('chartkick.json').filename except TemplateNotFound: return {} else: options = Options() options.load(filename) return options
python
def load_library(self): "loads configuration options" try: filename = self.environment.get_template('chartkick.json').filename except TemplateNotFound: return {} else: options = Options() options.load(filename) return options
[ "def", "load_library", "(", "self", ")", ":", "try", ":", "filename", "=", "self", ".", "environment", ".", "get_template", "(", "'chartkick.json'", ")", ".", "filename", "except", "TemplateNotFound", ":", "return", "{", "}", "else", ":", "options", "=", "Options", "(", ")", "options", ".", "load", "(", "filename", ")", "return", "options" ]
loads configuration options
[ "loads", "configuration", "options" ]
3411f36a069560fe1ba218e0a35f68c413332f63
https://github.com/mher/chartkick.py/blob/3411f36a069560fe1ba218e0a35f68c413332f63/chartkick/ext.py#L94-L103
train
mher/chartkick.py
chartkick/__init__.py
js
def js(): "returns home directory of js" return os.path.join(os.path.dirname(os.path.abspath(__file__)), 'js')
python
def js(): "returns home directory of js" return os.path.join(os.path.dirname(os.path.abspath(__file__)), 'js')
[ "def", "js", "(", ")", ":", "return", "os", ".", "path", ".", "join", "(", "os", ".", "path", ".", "dirname", "(", "os", ".", "path", ".", "abspath", "(", "__file__", ")", ")", ",", "'js'", ")" ]
returns home directory of js
[ "returns", "home", "directory", "of", "js" ]
3411f36a069560fe1ba218e0a35f68c413332f63
https://github.com/mher/chartkick.py/blob/3411f36a069560fe1ba218e0a35f68c413332f63/chartkick/__init__.py#L8-L10
train
mher/chartkick.py
chartkick/templatetags/chartkick.py
parse_options
def parse_options(source): """parses chart tag options""" options = {} tokens = [t.strip() for t in source.split('=')] name = tokens[0] for token in tokens[1:-1]: value, next_name = token.rsplit(' ', 1) options[name.strip()] = value name = next_name options[name.strip()] = tokens[-1].strip() return options
python
def parse_options(source): """parses chart tag options""" options = {} tokens = [t.strip() for t in source.split('=')] name = tokens[0] for token in tokens[1:-1]: value, next_name = token.rsplit(' ', 1) options[name.strip()] = value name = next_name options[name.strip()] = tokens[-1].strip() return options
[ "def", "parse_options", "(", "source", ")", ":", "options", "=", "{", "}", "tokens", "=", "[", "t", ".", "strip", "(", ")", "for", "t", "in", "source", ".", "split", "(", "'='", ")", "]", "name", "=", "tokens", "[", "0", "]", "for", "token", "in", "tokens", "[", "1", ":", "-", "1", "]", ":", "value", ",", "next_name", "=", "token", ".", "rsplit", "(", "' '", ",", "1", ")", "options", "[", "name", ".", "strip", "(", ")", "]", "=", "value", "name", "=", "next_name", "options", "[", "name", ".", "strip", "(", ")", "]", "=", "tokens", "[", "-", "1", "]", ".", "strip", "(", ")", "return", "options" ]
parses chart tag options
[ "parses", "chart", "tag", "options" ]
3411f36a069560fe1ba218e0a35f68c413332f63
https://github.com/mher/chartkick.py/blob/3411f36a069560fe1ba218e0a35f68c413332f63/chartkick/templatetags/chartkick.py#L91-L102
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
RigidTransform.copy
def copy(self): """Returns a copy of the RigidTransform. Returns ------- :obj:`RigidTransform` A deep copy of the RigidTransform. """ return RigidTransform(np.copy(self.rotation), np.copy(self.translation), self.from_frame, self.to_frame)
python
def copy(self): """Returns a copy of the RigidTransform. Returns ------- :obj:`RigidTransform` A deep copy of the RigidTransform. """ return RigidTransform(np.copy(self.rotation), np.copy(self.translation), self.from_frame, self.to_frame)
[ "def", "copy", "(", "self", ")", ":", "return", "RigidTransform", "(", "np", ".", "copy", "(", "self", ".", "rotation", ")", ",", "np", ".", "copy", "(", "self", ".", "translation", ")", ",", "self", ".", "from_frame", ",", "self", ".", "to_frame", ")" ]
Returns a copy of the RigidTransform. Returns ------- :obj:`RigidTransform` A deep copy of the RigidTransform.
[ "Returns", "a", "copy", "of", "the", "RigidTransform", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L81-L89
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
RigidTransform._check_valid_rotation
def _check_valid_rotation(self, rotation): """Checks that the given rotation matrix is valid. """ if not isinstance(rotation, np.ndarray) or not np.issubdtype(rotation.dtype, np.number): raise ValueError('Rotation must be specified as numeric numpy array') if len(rotation.shape) != 2 or rotation.shape[0] != 3 or rotation.shape[1] != 3: raise ValueError('Rotation must be specified as a 3x3 ndarray') if np.abs(np.linalg.det(rotation) - 1.0) > 1e-3: raise ValueError('Illegal rotation. Must have determinant == 1.0')
python
def _check_valid_rotation(self, rotation): """Checks that the given rotation matrix is valid. """ if not isinstance(rotation, np.ndarray) or not np.issubdtype(rotation.dtype, np.number): raise ValueError('Rotation must be specified as numeric numpy array') if len(rotation.shape) != 2 or rotation.shape[0] != 3 or rotation.shape[1] != 3: raise ValueError('Rotation must be specified as a 3x3 ndarray') if np.abs(np.linalg.det(rotation) - 1.0) > 1e-3: raise ValueError('Illegal rotation. Must have determinant == 1.0')
[ "def", "_check_valid_rotation", "(", "self", ",", "rotation", ")", ":", "if", "not", "isinstance", "(", "rotation", ",", "np", ".", "ndarray", ")", "or", "not", "np", ".", "issubdtype", "(", "rotation", ".", "dtype", ",", "np", ".", "number", ")", ":", "raise", "ValueError", "(", "'Rotation must be specified as numeric numpy array'", ")", "if", "len", "(", "rotation", ".", "shape", ")", "!=", "2", "or", "rotation", ".", "shape", "[", "0", "]", "!=", "3", "or", "rotation", ".", "shape", "[", "1", "]", "!=", "3", ":", "raise", "ValueError", "(", "'Rotation must be specified as a 3x3 ndarray'", ")", "if", "np", ".", "abs", "(", "np", ".", "linalg", ".", "det", "(", "rotation", ")", "-", "1.0", ")", ">", "1e-3", ":", "raise", "ValueError", "(", "'Illegal rotation. Must have determinant == 1.0'", ")" ]
Checks that the given rotation matrix is valid.
[ "Checks", "that", "the", "given", "rotation", "matrix", "is", "valid", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L91-L101
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
RigidTransform._check_valid_translation
def _check_valid_translation(self, translation): """Checks that the translation vector is valid. """ if not isinstance(translation, np.ndarray) or not np.issubdtype(translation.dtype, np.number): raise ValueError('Translation must be specified as numeric numpy array') t = translation.squeeze() if len(t.shape) != 1 or t.shape[0] != 3: raise ValueError('Translation must be specified as a 3-vector, 3x1 ndarray, or 1x3 ndarray')
python
def _check_valid_translation(self, translation): """Checks that the translation vector is valid. """ if not isinstance(translation, np.ndarray) or not np.issubdtype(translation.dtype, np.number): raise ValueError('Translation must be specified as numeric numpy array') t = translation.squeeze() if len(t.shape) != 1 or t.shape[0] != 3: raise ValueError('Translation must be specified as a 3-vector, 3x1 ndarray, or 1x3 ndarray')
[ "def", "_check_valid_translation", "(", "self", ",", "translation", ")", ":", "if", "not", "isinstance", "(", "translation", ",", "np", ".", "ndarray", ")", "or", "not", "np", ".", "issubdtype", "(", "translation", ".", "dtype", ",", "np", ".", "number", ")", ":", "raise", "ValueError", "(", "'Translation must be specified as numeric numpy array'", ")", "t", "=", "translation", ".", "squeeze", "(", ")", "if", "len", "(", "t", ".", "shape", ")", "!=", "1", "or", "t", ".", "shape", "[", "0", "]", "!=", "3", ":", "raise", "ValueError", "(", "'Translation must be specified as a 3-vector, 3x1 ndarray, or 1x3 ndarray'", ")" ]
Checks that the translation vector is valid.
[ "Checks", "that", "the", "translation", "vector", "is", "valid", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L103-L111
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
RigidTransform.interpolate_with
def interpolate_with(self, other_tf, t): """Interpolate with another rigid transformation. Parameters ---------- other_tf : :obj:`RigidTransform` The transform to interpolate with. t : float The interpolation step in [0,1], where 0 favors this RigidTransform. Returns ------- :obj:`RigidTransform` The interpolated RigidTransform. Raises ------ ValueError If t isn't in [0,1]. """ if t < 0 or t > 1: raise ValueError('Must interpolate between 0 and 1') interp_translation = (1.0 - t) * self.translation + t * other_tf.translation interp_rotation = transformations.quaternion_slerp(self.quaternion, other_tf.quaternion, t) interp_tf = RigidTransform(rotation=interp_rotation, translation=interp_translation, from_frame = self.from_frame, to_frame = self.to_frame) return interp_tf
python
def interpolate_with(self, other_tf, t): """Interpolate with another rigid transformation. Parameters ---------- other_tf : :obj:`RigidTransform` The transform to interpolate with. t : float The interpolation step in [0,1], where 0 favors this RigidTransform. Returns ------- :obj:`RigidTransform` The interpolated RigidTransform. Raises ------ ValueError If t isn't in [0,1]. """ if t < 0 or t > 1: raise ValueError('Must interpolate between 0 and 1') interp_translation = (1.0 - t) * self.translation + t * other_tf.translation interp_rotation = transformations.quaternion_slerp(self.quaternion, other_tf.quaternion, t) interp_tf = RigidTransform(rotation=interp_rotation, translation=interp_translation, from_frame = self.from_frame, to_frame = self.to_frame) return interp_tf
[ "def", "interpolate_with", "(", "self", ",", "other_tf", ",", "t", ")", ":", "if", "t", "<", "0", "or", "t", ">", "1", ":", "raise", "ValueError", "(", "'Must interpolate between 0 and 1'", ")", "interp_translation", "=", "(", "1.0", "-", "t", ")", "*", "self", ".", "translation", "+", "t", "*", "other_tf", ".", "translation", "interp_rotation", "=", "transformations", ".", "quaternion_slerp", "(", "self", ".", "quaternion", ",", "other_tf", ".", "quaternion", ",", "t", ")", "interp_tf", "=", "RigidTransform", "(", "rotation", "=", "interp_rotation", ",", "translation", "=", "interp_translation", ",", "from_frame", "=", "self", ".", "from_frame", ",", "to_frame", "=", "self", ".", "to_frame", ")", "return", "interp_tf" ]
Interpolate with another rigid transformation. Parameters ---------- other_tf : :obj:`RigidTransform` The transform to interpolate with. t : float The interpolation step in [0,1], where 0 favors this RigidTransform. Returns ------- :obj:`RigidTransform` The interpolated RigidTransform. Raises ------ ValueError If t isn't in [0,1].
[ "Interpolate", "with", "another", "rigid", "transformation", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L288-L316
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
RigidTransform.linear_trajectory_to
def linear_trajectory_to(self, target_tf, traj_len): """Creates a trajectory of poses linearly interpolated from this tf to a target tf. Parameters ---------- target_tf : :obj:`RigidTransform` The RigidTransform to interpolate to. traj_len : int The number of RigidTransforms in the returned trajectory. Returns ------- :obj:`list` of :obj:`RigidTransform` A list of interpolated transforms from this transform to the target. """ if traj_len < 0: raise ValueError('Traj len must at least 0') delta_t = 1.0 / (traj_len + 1) t = 0.0 traj = [] while t < 1.0: traj.append(self.interpolate_with(target_tf, t)) t += delta_t traj.append(target_tf) return traj
python
def linear_trajectory_to(self, target_tf, traj_len): """Creates a trajectory of poses linearly interpolated from this tf to a target tf. Parameters ---------- target_tf : :obj:`RigidTransform` The RigidTransform to interpolate to. traj_len : int The number of RigidTransforms in the returned trajectory. Returns ------- :obj:`list` of :obj:`RigidTransform` A list of interpolated transforms from this transform to the target. """ if traj_len < 0: raise ValueError('Traj len must at least 0') delta_t = 1.0 / (traj_len + 1) t = 0.0 traj = [] while t < 1.0: traj.append(self.interpolate_with(target_tf, t)) t += delta_t traj.append(target_tf) return traj
[ "def", "linear_trajectory_to", "(", "self", ",", "target_tf", ",", "traj_len", ")", ":", "if", "traj_len", "<", "0", ":", "raise", "ValueError", "(", "'Traj len must at least 0'", ")", "delta_t", "=", "1.0", "/", "(", "traj_len", "+", "1", ")", "t", "=", "0.0", "traj", "=", "[", "]", "while", "t", "<", "1.0", ":", "traj", ".", "append", "(", "self", ".", "interpolate_with", "(", "target_tf", ",", "t", ")", ")", "t", "+=", "delta_t", "traj", ".", "append", "(", "target_tf", ")", "return", "traj" ]
Creates a trajectory of poses linearly interpolated from this tf to a target tf. Parameters ---------- target_tf : :obj:`RigidTransform` The RigidTransform to interpolate to. traj_len : int The number of RigidTransforms in the returned trajectory. Returns ------- :obj:`list` of :obj:`RigidTransform` A list of interpolated transforms from this transform to the target.
[ "Creates", "a", "trajectory", "of", "poses", "linearly", "interpolated", "from", "this", "tf", "to", "a", "target", "tf", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L318-L342
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
RigidTransform.apply
def apply(self, points): """Applies the rigid transformation to a set of 3D objects. Parameters ---------- points : :obj:`BagOfPoints` A set of objects to transform. Could be any subclass of BagOfPoints. Returns ------- :obj:`BagOfPoints` A transformed set of objects of the same type as the input. Raises ------ ValueError If the input is not a Bag of 3D points or if the points are not in this transform's from_frame. """ if not isinstance(points, BagOfPoints): raise ValueError('Rigid transformations can only be applied to bags of points') if points.dim != 3: raise ValueError('Rigid transformations can only be applied to 3-dimensional points') if points.frame != self._from_frame: raise ValueError('Cannot transform points in frame %s with rigid transformation from frame %s to frame %s' %(points.frame, self._from_frame, self._to_frame)) if isinstance(points, BagOfVectors): # rotation only x = points.data x_tf = self.rotation.dot(x) else: # extract numpy data, homogenize, and transform x = points.data if len(x.shape) == 1: x = x[:,np.newaxis] x_homog = np.r_[x, np.ones([1, points.num_points])] x_homog_tf = self.matrix.dot(x_homog) x_tf = x_homog_tf[0:3,:] # output in BagOfPoints format if isinstance(points, PointCloud): return PointCloud(x_tf, frame=self._to_frame) elif isinstance(points, Point): return Point(x_tf, frame=self._to_frame) elif isinstance(points, Direction): return Direction(x_tf, frame=self._to_frame) elif isinstance(points, NormalCloud): return NormalCloud(x_tf, frame=self._to_frame) raise ValueError('Type %s not yet supported' %(type(points)))
python
def apply(self, points): """Applies the rigid transformation to a set of 3D objects. Parameters ---------- points : :obj:`BagOfPoints` A set of objects to transform. Could be any subclass of BagOfPoints. Returns ------- :obj:`BagOfPoints` A transformed set of objects of the same type as the input. Raises ------ ValueError If the input is not a Bag of 3D points or if the points are not in this transform's from_frame. """ if not isinstance(points, BagOfPoints): raise ValueError('Rigid transformations can only be applied to bags of points') if points.dim != 3: raise ValueError('Rigid transformations can only be applied to 3-dimensional points') if points.frame != self._from_frame: raise ValueError('Cannot transform points in frame %s with rigid transformation from frame %s to frame %s' %(points.frame, self._from_frame, self._to_frame)) if isinstance(points, BagOfVectors): # rotation only x = points.data x_tf = self.rotation.dot(x) else: # extract numpy data, homogenize, and transform x = points.data if len(x.shape) == 1: x = x[:,np.newaxis] x_homog = np.r_[x, np.ones([1, points.num_points])] x_homog_tf = self.matrix.dot(x_homog) x_tf = x_homog_tf[0:3,:] # output in BagOfPoints format if isinstance(points, PointCloud): return PointCloud(x_tf, frame=self._to_frame) elif isinstance(points, Point): return Point(x_tf, frame=self._to_frame) elif isinstance(points, Direction): return Direction(x_tf, frame=self._to_frame) elif isinstance(points, NormalCloud): return NormalCloud(x_tf, frame=self._to_frame) raise ValueError('Type %s not yet supported' %(type(points)))
[ "def", "apply", "(", "self", ",", "points", ")", ":", "if", "not", "isinstance", "(", "points", ",", "BagOfPoints", ")", ":", "raise", "ValueError", "(", "'Rigid transformations can only be applied to bags of points'", ")", "if", "points", ".", "dim", "!=", "3", ":", "raise", "ValueError", "(", "'Rigid transformations can only be applied to 3-dimensional points'", ")", "if", "points", ".", "frame", "!=", "self", ".", "_from_frame", ":", "raise", "ValueError", "(", "'Cannot transform points in frame %s with rigid transformation from frame %s to frame %s'", "%", "(", "points", ".", "frame", ",", "self", ".", "_from_frame", ",", "self", ".", "_to_frame", ")", ")", "if", "isinstance", "(", "points", ",", "BagOfVectors", ")", ":", "# rotation only", "x", "=", "points", ".", "data", "x_tf", "=", "self", ".", "rotation", ".", "dot", "(", "x", ")", "else", ":", "# extract numpy data, homogenize, and transform", "x", "=", "points", ".", "data", "if", "len", "(", "x", ".", "shape", ")", "==", "1", ":", "x", "=", "x", "[", ":", ",", "np", ".", "newaxis", "]", "x_homog", "=", "np", ".", "r_", "[", "x", ",", "np", ".", "ones", "(", "[", "1", ",", "points", ".", "num_points", "]", ")", "]", "x_homog_tf", "=", "self", ".", "matrix", ".", "dot", "(", "x_homog", ")", "x_tf", "=", "x_homog_tf", "[", "0", ":", "3", ",", ":", "]", "# output in BagOfPoints format", "if", "isinstance", "(", "points", ",", "PointCloud", ")", ":", "return", "PointCloud", "(", "x_tf", ",", "frame", "=", "self", ".", "_to_frame", ")", "elif", "isinstance", "(", "points", ",", "Point", ")", ":", "return", "Point", "(", "x_tf", ",", "frame", "=", "self", ".", "_to_frame", ")", "elif", "isinstance", "(", "points", ",", "Direction", ")", ":", "return", "Direction", "(", "x_tf", ",", "frame", "=", "self", ".", "_to_frame", ")", "elif", "isinstance", "(", "points", ",", "NormalCloud", ")", ":", "return", "NormalCloud", "(", "x_tf", ",", "frame", "=", "self", ".", "_to_frame", ")", "raise", "ValueError", "(", "'Type %s not yet supported'", "%", "(", "type", "(", "points", ")", ")", ")" ]
Applies the rigid transformation to a set of 3D objects. Parameters ---------- points : :obj:`BagOfPoints` A set of objects to transform. Could be any subclass of BagOfPoints. Returns ------- :obj:`BagOfPoints` A transformed set of objects of the same type as the input. Raises ------ ValueError If the input is not a Bag of 3D points or if the points are not in this transform's from_frame.
[ "Applies", "the", "rigid", "transformation", "to", "a", "set", "of", "3D", "objects", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L344-L392
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
RigidTransform.dot
def dot(self, other_tf): """Compose this rigid transform with another. This transform is on the left-hand side of the composition. Parameters ---------- other_tf : :obj:`RigidTransform` The other RigidTransform to compose with this one. Returns ------- :obj:`RigidTransform` A RigidTransform that represents the composition. Raises ------ ValueError If the to_frame of other_tf is not identical to this transform's from_frame. """ if other_tf.to_frame != self.from_frame: raise ValueError('To frame of right hand side ({0}) must match from frame of left hand side ({1})'.format(other_tf.to_frame, self.from_frame)) pose_tf = self.matrix.dot(other_tf.matrix) rotation, translation = RigidTransform.rotation_and_translation_from_matrix(pose_tf) if isinstance(other_tf, SimilarityTransform): return SimilarityTransform(self.rotation, self.translation, scale=1.0, from_frame=self.from_frame, to_frame=self.to_frame) * other_tf return RigidTransform(rotation, translation, from_frame=other_tf.from_frame, to_frame=self.to_frame)
python
def dot(self, other_tf): """Compose this rigid transform with another. This transform is on the left-hand side of the composition. Parameters ---------- other_tf : :obj:`RigidTransform` The other RigidTransform to compose with this one. Returns ------- :obj:`RigidTransform` A RigidTransform that represents the composition. Raises ------ ValueError If the to_frame of other_tf is not identical to this transform's from_frame. """ if other_tf.to_frame != self.from_frame: raise ValueError('To frame of right hand side ({0}) must match from frame of left hand side ({1})'.format(other_tf.to_frame, self.from_frame)) pose_tf = self.matrix.dot(other_tf.matrix) rotation, translation = RigidTransform.rotation_and_translation_from_matrix(pose_tf) if isinstance(other_tf, SimilarityTransform): return SimilarityTransform(self.rotation, self.translation, scale=1.0, from_frame=self.from_frame, to_frame=self.to_frame) * other_tf return RigidTransform(rotation, translation, from_frame=other_tf.from_frame, to_frame=self.to_frame)
[ "def", "dot", "(", "self", ",", "other_tf", ")", ":", "if", "other_tf", ".", "to_frame", "!=", "self", ".", "from_frame", ":", "raise", "ValueError", "(", "'To frame of right hand side ({0}) must match from frame of left hand side ({1})'", ".", "format", "(", "other_tf", ".", "to_frame", ",", "self", ".", "from_frame", ")", ")", "pose_tf", "=", "self", ".", "matrix", ".", "dot", "(", "other_tf", ".", "matrix", ")", "rotation", ",", "translation", "=", "RigidTransform", ".", "rotation_and_translation_from_matrix", "(", "pose_tf", ")", "if", "isinstance", "(", "other_tf", ",", "SimilarityTransform", ")", ":", "return", "SimilarityTransform", "(", "self", ".", "rotation", ",", "self", ".", "translation", ",", "scale", "=", "1.0", ",", "from_frame", "=", "self", ".", "from_frame", ",", "to_frame", "=", "self", ".", "to_frame", ")", "*", "other_tf", "return", "RigidTransform", "(", "rotation", ",", "translation", ",", "from_frame", "=", "other_tf", ".", "from_frame", ",", "to_frame", "=", "self", ".", "to_frame", ")" ]
Compose this rigid transform with another. This transform is on the left-hand side of the composition. Parameters ---------- other_tf : :obj:`RigidTransform` The other RigidTransform to compose with this one. Returns ------- :obj:`RigidTransform` A RigidTransform that represents the composition. Raises ------ ValueError If the to_frame of other_tf is not identical to this transform's from_frame.
[ "Compose", "this", "rigid", "transform", "with", "another", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L394-L427
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
RigidTransform.inverse
def inverse(self): """Take the inverse of the rigid transform. Returns ------- :obj:`RigidTransform` The inverse of this RigidTransform. """ inv_rotation = self.rotation.T inv_translation = np.dot(-self.rotation.T, self.translation) return RigidTransform(inv_rotation, inv_translation, from_frame=self._to_frame, to_frame=self._from_frame)
python
def inverse(self): """Take the inverse of the rigid transform. Returns ------- :obj:`RigidTransform` The inverse of this RigidTransform. """ inv_rotation = self.rotation.T inv_translation = np.dot(-self.rotation.T, self.translation) return RigidTransform(inv_rotation, inv_translation, from_frame=self._to_frame, to_frame=self._from_frame)
[ "def", "inverse", "(", "self", ")", ":", "inv_rotation", "=", "self", ".", "rotation", ".", "T", "inv_translation", "=", "np", ".", "dot", "(", "-", "self", ".", "rotation", ".", "T", ",", "self", ".", "translation", ")", "return", "RigidTransform", "(", "inv_rotation", ",", "inv_translation", ",", "from_frame", "=", "self", ".", "_to_frame", ",", "to_frame", "=", "self", ".", "_from_frame", ")" ]
Take the inverse of the rigid transform. Returns ------- :obj:`RigidTransform` The inverse of this RigidTransform.
[ "Take", "the", "inverse", "of", "the", "rigid", "transform", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L456-L468
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
RigidTransform.save
def save(self, filename): """Save the RigidTransform to a file. The file format is: from_frame to_frame translation (space separated) rotation_row_0 (space separated) rotation_row_1 (space separated) rotation_row_2 (space separated) Parameters ---------- filename : :obj:`str` The file to save the transform to. Raises ------ ValueError If filename's extension isn't .tf. """ file_root, file_ext = os.path.splitext(filename) if file_ext.lower() != TF_EXTENSION: raise ValueError('Extension %s not supported for RigidTransform. Must be stored with extension %s' %(file_ext, TF_EXTENSION)) f = open(filename, 'w') f.write('%s\n' %(self._from_frame)) f.write('%s\n' %(self._to_frame)) f.write('%f %f %f\n' %(self._translation[0], self._translation[1], self._translation[2])) f.write('%f %f %f\n' %(self._rotation[0, 0], self._rotation[0, 1], self._rotation[0, 2])) f.write('%f %f %f\n' %(self._rotation[1, 0], self._rotation[1, 1], self._rotation[1, 2])) f.write('%f %f %f\n' %(self._rotation[2, 0], self._rotation[2, 1], self._rotation[2, 2])) f.close()
python
def save(self, filename): """Save the RigidTransform to a file. The file format is: from_frame to_frame translation (space separated) rotation_row_0 (space separated) rotation_row_1 (space separated) rotation_row_2 (space separated) Parameters ---------- filename : :obj:`str` The file to save the transform to. Raises ------ ValueError If filename's extension isn't .tf. """ file_root, file_ext = os.path.splitext(filename) if file_ext.lower() != TF_EXTENSION: raise ValueError('Extension %s not supported for RigidTransform. Must be stored with extension %s' %(file_ext, TF_EXTENSION)) f = open(filename, 'w') f.write('%s\n' %(self._from_frame)) f.write('%s\n' %(self._to_frame)) f.write('%f %f %f\n' %(self._translation[0], self._translation[1], self._translation[2])) f.write('%f %f %f\n' %(self._rotation[0, 0], self._rotation[0, 1], self._rotation[0, 2])) f.write('%f %f %f\n' %(self._rotation[1, 0], self._rotation[1, 1], self._rotation[1, 2])) f.write('%f %f %f\n' %(self._rotation[2, 0], self._rotation[2, 1], self._rotation[2, 2])) f.close()
[ "def", "save", "(", "self", ",", "filename", ")", ":", "file_root", ",", "file_ext", "=", "os", ".", "path", ".", "splitext", "(", "filename", ")", "if", "file_ext", ".", "lower", "(", ")", "!=", "TF_EXTENSION", ":", "raise", "ValueError", "(", "'Extension %s not supported for RigidTransform. Must be stored with extension %s'", "%", "(", "file_ext", ",", "TF_EXTENSION", ")", ")", "f", "=", "open", "(", "filename", ",", "'w'", ")", "f", ".", "write", "(", "'%s\\n'", "%", "(", "self", ".", "_from_frame", ")", ")", "f", ".", "write", "(", "'%s\\n'", "%", "(", "self", ".", "_to_frame", ")", ")", "f", ".", "write", "(", "'%f %f %f\\n'", "%", "(", "self", ".", "_translation", "[", "0", "]", ",", "self", ".", "_translation", "[", "1", "]", ",", "self", ".", "_translation", "[", "2", "]", ")", ")", "f", ".", "write", "(", "'%f %f %f\\n'", "%", "(", "self", ".", "_rotation", "[", "0", ",", "0", "]", ",", "self", ".", "_rotation", "[", "0", ",", "1", "]", ",", "self", ".", "_rotation", "[", "0", ",", "2", "]", ")", ")", "f", ".", "write", "(", "'%f %f %f\\n'", "%", "(", "self", ".", "_rotation", "[", "1", ",", "0", "]", ",", "self", ".", "_rotation", "[", "1", ",", "1", "]", ",", "self", ".", "_rotation", "[", "1", ",", "2", "]", ")", ")", "f", ".", "write", "(", "'%f %f %f\\n'", "%", "(", "self", ".", "_rotation", "[", "2", ",", "0", "]", ",", "self", ".", "_rotation", "[", "2", ",", "1", "]", ",", "self", ".", "_rotation", "[", "2", ",", "2", "]", ")", ")", "f", ".", "close", "(", ")" ]
Save the RigidTransform to a file. The file format is: from_frame to_frame translation (space separated) rotation_row_0 (space separated) rotation_row_1 (space separated) rotation_row_2 (space separated) Parameters ---------- filename : :obj:`str` The file to save the transform to. Raises ------ ValueError If filename's extension isn't .tf.
[ "Save", "the", "RigidTransform", "to", "a", "file", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L470-L502
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
RigidTransform.as_frames
def as_frames(self, from_frame, to_frame='world'): """Return a shallow copy of this rigid transform with just the frames changed. Parameters ---------- from_frame : :obj:`str` The new from_frame. to_frame : :obj:`str` The new to_frame. Returns ------- :obj:`RigidTransform` The RigidTransform with new frames. """ return RigidTransform(self.rotation, self.translation, from_frame, to_frame)
python
def as_frames(self, from_frame, to_frame='world'): """Return a shallow copy of this rigid transform with just the frames changed. Parameters ---------- from_frame : :obj:`str` The new from_frame. to_frame : :obj:`str` The new to_frame. Returns ------- :obj:`RigidTransform` The RigidTransform with new frames. """ return RigidTransform(self.rotation, self.translation, from_frame, to_frame)
[ "def", "as_frames", "(", "self", ",", "from_frame", ",", "to_frame", "=", "'world'", ")", ":", "return", "RigidTransform", "(", "self", ".", "rotation", ",", "self", ".", "translation", ",", "from_frame", ",", "to_frame", ")" ]
Return a shallow copy of this rigid transform with just the frames changed. Parameters ---------- from_frame : :obj:`str` The new from_frame. to_frame : :obj:`str` The new to_frame. Returns ------- :obj:`RigidTransform` The RigidTransform with new frames.
[ "Return", "a", "shallow", "copy", "of", "this", "rigid", "transform", "with", "just", "the", "frames", "changed", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L504-L521
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
RigidTransform.rotation_from_quaternion
def rotation_from_quaternion(q_wxyz): """Convert quaternion array to rotation matrix. Parameters ---------- q_wxyz : :obj:`numpy.ndarray` of float A quaternion in wxyz order. Returns ------- :obj:`numpy.ndarray` of float A 3x3 rotation matrix made from the quaternion. """ q_xyzw = np.array([q_wxyz[1], q_wxyz[2], q_wxyz[3], q_wxyz[0]]) R = transformations.quaternion_matrix(q_xyzw)[:3,:3] return R
python
def rotation_from_quaternion(q_wxyz): """Convert quaternion array to rotation matrix. Parameters ---------- q_wxyz : :obj:`numpy.ndarray` of float A quaternion in wxyz order. Returns ------- :obj:`numpy.ndarray` of float A 3x3 rotation matrix made from the quaternion. """ q_xyzw = np.array([q_wxyz[1], q_wxyz[2], q_wxyz[3], q_wxyz[0]]) R = transformations.quaternion_matrix(q_xyzw)[:3,:3] return R
[ "def", "rotation_from_quaternion", "(", "q_wxyz", ")", ":", "q_xyzw", "=", "np", ".", "array", "(", "[", "q_wxyz", "[", "1", "]", ",", "q_wxyz", "[", "2", "]", ",", "q_wxyz", "[", "3", "]", ",", "q_wxyz", "[", "0", "]", "]", ")", "R", "=", "transformations", ".", "quaternion_matrix", "(", "q_xyzw", ")", "[", ":", "3", ",", ":", "3", "]", "return", "R" ]
Convert quaternion array to rotation matrix. Parameters ---------- q_wxyz : :obj:`numpy.ndarray` of float A quaternion in wxyz order. Returns ------- :obj:`numpy.ndarray` of float A 3x3 rotation matrix made from the quaternion.
[ "Convert", "quaternion", "array", "to", "rotation", "matrix", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L700-L715
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
RigidTransform.quaternion_from_axis_angle
def quaternion_from_axis_angle(v): """Convert axis-angle representation to a quaternion vector. Parameters ---------- v : :obj:`numpy.ndarray` of float An axis-angle representation. Returns ------- :obj:`numpy.ndarray` of float A quaternion vector from the axis-angle vector. """ theta = np.linalg.norm(v) if theta > 0: v = v / np.linalg.norm(v) ax, ay, az = v qx = ax * np.sin(0.5 * theta) qy = ay * np.sin(0.5 * theta) qz = az * np.sin(0.5 * theta) qw = np.cos(0.5 * theta) q = np.array([qw, qx, qy, qz]) return q
python
def quaternion_from_axis_angle(v): """Convert axis-angle representation to a quaternion vector. Parameters ---------- v : :obj:`numpy.ndarray` of float An axis-angle representation. Returns ------- :obj:`numpy.ndarray` of float A quaternion vector from the axis-angle vector. """ theta = np.linalg.norm(v) if theta > 0: v = v / np.linalg.norm(v) ax, ay, az = v qx = ax * np.sin(0.5 * theta) qy = ay * np.sin(0.5 * theta) qz = az * np.sin(0.5 * theta) qw = np.cos(0.5 * theta) q = np.array([qw, qx, qy, qz]) return q
[ "def", "quaternion_from_axis_angle", "(", "v", ")", ":", "theta", "=", "np", ".", "linalg", ".", "norm", "(", "v", ")", "if", "theta", ">", "0", ":", "v", "=", "v", "/", "np", ".", "linalg", ".", "norm", "(", "v", ")", "ax", ",", "ay", ",", "az", "=", "v", "qx", "=", "ax", "*", "np", ".", "sin", "(", "0.5", "*", "theta", ")", "qy", "=", "ay", "*", "np", ".", "sin", "(", "0.5", "*", "theta", ")", "qz", "=", "az", "*", "np", ".", "sin", "(", "0.5", "*", "theta", ")", "qw", "=", "np", ".", "cos", "(", "0.5", "*", "theta", ")", "q", "=", "np", ".", "array", "(", "[", "qw", ",", "qx", ",", "qy", ",", "qz", "]", ")", "return", "q" ]
Convert axis-angle representation to a quaternion vector. Parameters ---------- v : :obj:`numpy.ndarray` of float An axis-angle representation. Returns ------- :obj:`numpy.ndarray` of float A quaternion vector from the axis-angle vector.
[ "Convert", "axis", "-", "angle", "representation", "to", "a", "quaternion", "vector", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L719-L741
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
RigidTransform.transform_from_dual_quaternion
def transform_from_dual_quaternion(dq, from_frame='unassigned', to_frame='world'): """Create a RigidTransform from a DualQuaternion. Parameters ---------- dq : :obj:`DualQuaternion` The DualQuaternion to transform. from_frame : :obj:`str` A name for the frame of reference on which this transform operates. to_frame : :obj:`str` A name for the frame of reference to which this transform moves objects. Returns ------- :obj:`RigidTransform` The RigidTransform made from the DualQuaternion. """ quaternion = dq.qr translation = 2 * dq.qd[1:] return RigidTransform(rotation=quaternion, translation=translation, from_frame=from_frame, to_frame=to_frame)
python
def transform_from_dual_quaternion(dq, from_frame='unassigned', to_frame='world'): """Create a RigidTransform from a DualQuaternion. Parameters ---------- dq : :obj:`DualQuaternion` The DualQuaternion to transform. from_frame : :obj:`str` A name for the frame of reference on which this transform operates. to_frame : :obj:`str` A name for the frame of reference to which this transform moves objects. Returns ------- :obj:`RigidTransform` The RigidTransform made from the DualQuaternion. """ quaternion = dq.qr translation = 2 * dq.qd[1:] return RigidTransform(rotation=quaternion, translation=translation, from_frame=from_frame, to_frame=to_frame)
[ "def", "transform_from_dual_quaternion", "(", "dq", ",", "from_frame", "=", "'unassigned'", ",", "to_frame", "=", "'world'", ")", ":", "quaternion", "=", "dq", ".", "qr", "translation", "=", "2", "*", "dq", ".", "qd", "[", "1", ":", "]", "return", "RigidTransform", "(", "rotation", "=", "quaternion", ",", "translation", "=", "translation", ",", "from_frame", "=", "from_frame", ",", "to_frame", "=", "to_frame", ")" ]
Create a RigidTransform from a DualQuaternion. Parameters ---------- dq : :obj:`DualQuaternion` The DualQuaternion to transform. from_frame : :obj:`str` A name for the frame of reference on which this transform operates. to_frame : :obj:`str` A name for the frame of reference to which this transform moves objects. Returns ------- :obj:`RigidTransform` The RigidTransform made from the DualQuaternion.
[ "Create", "a", "RigidTransform", "from", "a", "DualQuaternion", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L760-L783
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
RigidTransform.rotation_and_translation_from_matrix
def rotation_and_translation_from_matrix(matrix): """Helper to convert 4x4 matrix to rotation matrix and translation vector. Parameters ---------- matrix : :obj:`numpy.ndarray` of float 4x4 rigid transformation matrix to be converted. Returns ------- :obj:`tuple` of :obj:`numpy.ndarray` of float A 3x3 rotation matrix and a 3-entry translation vector. Raises ------ ValueError If the incoming matrix isn't a 4x4 ndarray. """ if not isinstance(matrix, np.ndarray) or \ matrix.shape[0] != 4 or matrix.shape[1] != 4: raise ValueError('Matrix must be specified as a 4x4 ndarray') rotation = matrix[:3,:3] translation = matrix[:3,3] return rotation, translation
python
def rotation_and_translation_from_matrix(matrix): """Helper to convert 4x4 matrix to rotation matrix and translation vector. Parameters ---------- matrix : :obj:`numpy.ndarray` of float 4x4 rigid transformation matrix to be converted. Returns ------- :obj:`tuple` of :obj:`numpy.ndarray` of float A 3x3 rotation matrix and a 3-entry translation vector. Raises ------ ValueError If the incoming matrix isn't a 4x4 ndarray. """ if not isinstance(matrix, np.ndarray) or \ matrix.shape[0] != 4 or matrix.shape[1] != 4: raise ValueError('Matrix must be specified as a 4x4 ndarray') rotation = matrix[:3,:3] translation = matrix[:3,3] return rotation, translation
[ "def", "rotation_and_translation_from_matrix", "(", "matrix", ")", ":", "if", "not", "isinstance", "(", "matrix", ",", "np", ".", "ndarray", ")", "or", "matrix", ".", "shape", "[", "0", "]", "!=", "4", "or", "matrix", ".", "shape", "[", "1", "]", "!=", "4", ":", "raise", "ValueError", "(", "'Matrix must be specified as a 4x4 ndarray'", ")", "rotation", "=", "matrix", "[", ":", "3", ",", ":", "3", "]", "translation", "=", "matrix", "[", ":", "3", ",", "3", "]", "return", "rotation", ",", "translation" ]
Helper to convert 4x4 matrix to rotation matrix and translation vector. Parameters ---------- matrix : :obj:`numpy.ndarray` of float 4x4 rigid transformation matrix to be converted. Returns ------- :obj:`tuple` of :obj:`numpy.ndarray` of float A 3x3 rotation matrix and a 3-entry translation vector. Raises ------ ValueError If the incoming matrix isn't a 4x4 ndarray.
[ "Helper", "to", "convert", "4x4", "matrix", "to", "rotation", "matrix", "and", "translation", "vector", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L786-L809
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
RigidTransform.rotation_from_axis_and_origin
def rotation_from_axis_and_origin(axis, origin, angle, to_frame='world'): """ Returns a rotation matrix around some arbitrary axis, about the point origin, using Rodrigues Formula Parameters ---------- axis : :obj:`numpy.ndarray` of float 3x1 vector representing which axis we should be rotating about origin : :obj:`numpy.ndarray` of float 3x1 vector representing where the rotation should be centered around angle : float how much to rotate (in radians) to_frame : :obj:`str` A name for the frame of reference to which this transform moves objects. """ axis_hat = np.array([[0, -axis[2], axis[1]], [axis[2], 0, -axis[0]], [-axis[1], axis[0], 0]]) # Rodrigues Formula R = RigidTransform( np.eye(3) + np.sin(angle) * axis_hat + (1 - np.cos(angle)) * axis_hat.dot(axis_hat), from_frame=to_frame, to_frame=to_frame ) return RigidTransform(translation=origin, from_frame=to_frame, to_frame=to_frame) \ .dot(R) \ .dot(RigidTransform(translation=-origin, from_frame=to_frame, to_frame=to_frame))
python
def rotation_from_axis_and_origin(axis, origin, angle, to_frame='world'): """ Returns a rotation matrix around some arbitrary axis, about the point origin, using Rodrigues Formula Parameters ---------- axis : :obj:`numpy.ndarray` of float 3x1 vector representing which axis we should be rotating about origin : :obj:`numpy.ndarray` of float 3x1 vector representing where the rotation should be centered around angle : float how much to rotate (in radians) to_frame : :obj:`str` A name for the frame of reference to which this transform moves objects. """ axis_hat = np.array([[0, -axis[2], axis[1]], [axis[2], 0, -axis[0]], [-axis[1], axis[0], 0]]) # Rodrigues Formula R = RigidTransform( np.eye(3) + np.sin(angle) * axis_hat + (1 - np.cos(angle)) * axis_hat.dot(axis_hat), from_frame=to_frame, to_frame=to_frame ) return RigidTransform(translation=origin, from_frame=to_frame, to_frame=to_frame) \ .dot(R) \ .dot(RigidTransform(translation=-origin, from_frame=to_frame, to_frame=to_frame))
[ "def", "rotation_from_axis_and_origin", "(", "axis", ",", "origin", ",", "angle", ",", "to_frame", "=", "'world'", ")", ":", "axis_hat", "=", "np", ".", "array", "(", "[", "[", "0", ",", "-", "axis", "[", "2", "]", ",", "axis", "[", "1", "]", "]", ",", "[", "axis", "[", "2", "]", ",", "0", ",", "-", "axis", "[", "0", "]", "]", ",", "[", "-", "axis", "[", "1", "]", ",", "axis", "[", "0", "]", ",", "0", "]", "]", ")", "# Rodrigues Formula", "R", "=", "RigidTransform", "(", "np", ".", "eye", "(", "3", ")", "+", "np", ".", "sin", "(", "angle", ")", "*", "axis_hat", "+", "(", "1", "-", "np", ".", "cos", "(", "angle", ")", ")", "*", "axis_hat", ".", "dot", "(", "axis_hat", ")", ",", "from_frame", "=", "to_frame", ",", "to_frame", "=", "to_frame", ")", "return", "RigidTransform", "(", "translation", "=", "origin", ",", "from_frame", "=", "to_frame", ",", "to_frame", "=", "to_frame", ")", ".", "dot", "(", "R", ")", ".", "dot", "(", "RigidTransform", "(", "translation", "=", "-", "origin", ",", "from_frame", "=", "to_frame", ",", "to_frame", "=", "to_frame", ")", ")" ]
Returns a rotation matrix around some arbitrary axis, about the point origin, using Rodrigues Formula Parameters ---------- axis : :obj:`numpy.ndarray` of float 3x1 vector representing which axis we should be rotating about origin : :obj:`numpy.ndarray` of float 3x1 vector representing where the rotation should be centered around angle : float how much to rotate (in radians) to_frame : :obj:`str` A name for the frame of reference to which this transform moves objects.
[ "Returns", "a", "rotation", "matrix", "around", "some", "arbitrary", "axis", "about", "the", "point", "origin", "using", "Rodrigues", "Formula" ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L812-L840
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
RigidTransform.x_axis_rotation
def x_axis_rotation(theta): """Generates a 3x3 rotation matrix for a rotation of angle theta about the x axis. Parameters ---------- theta : float amount to rotate, in radians Returns ------- :obj:`numpy.ndarray` of float A random 3x3 rotation matrix. """ R = np.array([[1, 0, 0,], [0, np.cos(theta), -np.sin(theta)], [0, np.sin(theta), np.cos(theta)]]) return R
python
def x_axis_rotation(theta): """Generates a 3x3 rotation matrix for a rotation of angle theta about the x axis. Parameters ---------- theta : float amount to rotate, in radians Returns ------- :obj:`numpy.ndarray` of float A random 3x3 rotation matrix. """ R = np.array([[1, 0, 0,], [0, np.cos(theta), -np.sin(theta)], [0, np.sin(theta), np.cos(theta)]]) return R
[ "def", "x_axis_rotation", "(", "theta", ")", ":", "R", "=", "np", ".", "array", "(", "[", "[", "1", ",", "0", ",", "0", ",", "]", ",", "[", "0", ",", "np", ".", "cos", "(", "theta", ")", ",", "-", "np", ".", "sin", "(", "theta", ")", "]", ",", "[", "0", ",", "np", ".", "sin", "(", "theta", ")", ",", "np", ".", "cos", "(", "theta", ")", "]", "]", ")", "return", "R" ]
Generates a 3x3 rotation matrix for a rotation of angle theta about the x axis. Parameters ---------- theta : float amount to rotate, in radians Returns ------- :obj:`numpy.ndarray` of float A random 3x3 rotation matrix.
[ "Generates", "a", "3x3", "rotation", "matrix", "for", "a", "rotation", "of", "angle", "theta", "about", "the", "x", "axis", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L843-L860
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
RigidTransform.y_axis_rotation
def y_axis_rotation(theta): """Generates a 3x3 rotation matrix for a rotation of angle theta about the y axis. Parameters ---------- theta : float amount to rotate, in radians Returns ------- :obj:`numpy.ndarray` of float A random 3x3 rotation matrix. """ R = np.array([[np.cos(theta), 0, np.sin(theta)], [0, 1, 0], [-np.sin(theta), 0, np.cos(theta)]]) return R
python
def y_axis_rotation(theta): """Generates a 3x3 rotation matrix for a rotation of angle theta about the y axis. Parameters ---------- theta : float amount to rotate, in radians Returns ------- :obj:`numpy.ndarray` of float A random 3x3 rotation matrix. """ R = np.array([[np.cos(theta), 0, np.sin(theta)], [0, 1, 0], [-np.sin(theta), 0, np.cos(theta)]]) return R
[ "def", "y_axis_rotation", "(", "theta", ")", ":", "R", "=", "np", ".", "array", "(", "[", "[", "np", ".", "cos", "(", "theta", ")", ",", "0", ",", "np", ".", "sin", "(", "theta", ")", "]", ",", "[", "0", ",", "1", ",", "0", "]", ",", "[", "-", "np", ".", "sin", "(", "theta", ")", ",", "0", ",", "np", ".", "cos", "(", "theta", ")", "]", "]", ")", "return", "R" ]
Generates a 3x3 rotation matrix for a rotation of angle theta about the y axis. Parameters ---------- theta : float amount to rotate, in radians Returns ------- :obj:`numpy.ndarray` of float A random 3x3 rotation matrix.
[ "Generates", "a", "3x3", "rotation", "matrix", "for", "a", "rotation", "of", "angle", "theta", "about", "the", "y", "axis", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L863-L880
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
RigidTransform.z_axis_rotation
def z_axis_rotation(theta): """Generates a 3x3 rotation matrix for a rotation of angle theta about the z axis. Parameters ---------- theta : float amount to rotate, in radians Returns ------- :obj:`numpy.ndarray` of float A random 3x3 rotation matrix. """ R = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) return R
python
def z_axis_rotation(theta): """Generates a 3x3 rotation matrix for a rotation of angle theta about the z axis. Parameters ---------- theta : float amount to rotate, in radians Returns ------- :obj:`numpy.ndarray` of float A random 3x3 rotation matrix. """ R = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) return R
[ "def", "z_axis_rotation", "(", "theta", ")", ":", "R", "=", "np", ".", "array", "(", "[", "[", "np", ".", "cos", "(", "theta", ")", ",", "-", "np", ".", "sin", "(", "theta", ")", ",", "0", "]", ",", "[", "np", ".", "sin", "(", "theta", ")", ",", "np", ".", "cos", "(", "theta", ")", ",", "0", "]", ",", "[", "0", ",", "0", ",", "1", "]", "]", ")", "return", "R" ]
Generates a 3x3 rotation matrix for a rotation of angle theta about the z axis. Parameters ---------- theta : float amount to rotate, in radians Returns ------- :obj:`numpy.ndarray` of float A random 3x3 rotation matrix.
[ "Generates", "a", "3x3", "rotation", "matrix", "for", "a", "rotation", "of", "angle", "theta", "about", "the", "z", "axis", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L883-L900
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
RigidTransform.random_rotation
def random_rotation(): """Generates a random 3x3 rotation matrix with SVD. Returns ------- :obj:`numpy.ndarray` of float A random 3x3 rotation matrix. """ rand_seed = np.random.rand(3, 3) U, S, V = np.linalg.svd(rand_seed) return U
python
def random_rotation(): """Generates a random 3x3 rotation matrix with SVD. Returns ------- :obj:`numpy.ndarray` of float A random 3x3 rotation matrix. """ rand_seed = np.random.rand(3, 3) U, S, V = np.linalg.svd(rand_seed) return U
[ "def", "random_rotation", "(", ")", ":", "rand_seed", "=", "np", ".", "random", ".", "rand", "(", "3", ",", "3", ")", "U", ",", "S", ",", "V", "=", "np", ".", "linalg", ".", "svd", "(", "rand_seed", ")", "return", "U" ]
Generates a random 3x3 rotation matrix with SVD. Returns ------- :obj:`numpy.ndarray` of float A random 3x3 rotation matrix.
[ "Generates", "a", "random", "3x3", "rotation", "matrix", "with", "SVD", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L903-L913
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
RigidTransform.rotation_from_axes
def rotation_from_axes(x_axis, y_axis, z_axis): """Convert specification of axis in target frame to a rotation matrix from source to target frame. Parameters ---------- x_axis : :obj:`numpy.ndarray` of float A normalized 3-vector for the target frame's x-axis. y_axis : :obj:`numpy.ndarray` of float A normalized 3-vector for the target frame's y-axis. z_axis : :obj:`numpy.ndarray` of float A normalized 3-vector for the target frame's z-axis. Returns ------- :obj:`numpy.ndarray` of float A 3x3 rotation matrix that transforms from a source frame to the given target frame. """ return np.hstack((x_axis[:,np.newaxis], y_axis[:,np.newaxis], z_axis[:,np.newaxis]))
python
def rotation_from_axes(x_axis, y_axis, z_axis): """Convert specification of axis in target frame to a rotation matrix from source to target frame. Parameters ---------- x_axis : :obj:`numpy.ndarray` of float A normalized 3-vector for the target frame's x-axis. y_axis : :obj:`numpy.ndarray` of float A normalized 3-vector for the target frame's y-axis. z_axis : :obj:`numpy.ndarray` of float A normalized 3-vector for the target frame's z-axis. Returns ------- :obj:`numpy.ndarray` of float A 3x3 rotation matrix that transforms from a source frame to the given target frame. """ return np.hstack((x_axis[:,np.newaxis], y_axis[:,np.newaxis], z_axis[:,np.newaxis]))
[ "def", "rotation_from_axes", "(", "x_axis", ",", "y_axis", ",", "z_axis", ")", ":", "return", "np", ".", "hstack", "(", "(", "x_axis", "[", ":", ",", "np", ".", "newaxis", "]", ",", "y_axis", "[", ":", ",", "np", ".", "newaxis", "]", ",", "z_axis", "[", ":", ",", "np", ".", "newaxis", "]", ")", ")" ]
Convert specification of axis in target frame to a rotation matrix from source to target frame. Parameters ---------- x_axis : :obj:`numpy.ndarray` of float A normalized 3-vector for the target frame's x-axis. y_axis : :obj:`numpy.ndarray` of float A normalized 3-vector for the target frame's y-axis. z_axis : :obj:`numpy.ndarray` of float A normalized 3-vector for the target frame's z-axis. Returns ------- :obj:`numpy.ndarray` of float A 3x3 rotation matrix that transforms from a source frame to the given target frame.
[ "Convert", "specification", "of", "axis", "in", "target", "frame", "to", "a", "rotation", "matrix", "from", "source", "to", "target", "frame", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L927-L948
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
RigidTransform.interpolate
def interpolate(T0, T1, t): """Return an interpolation of two RigidTransforms. Parameters ---------- T0 : :obj:`RigidTransform` The first RigidTransform to interpolate. T1 : :obj:`RigidTransform` The second RigidTransform to interpolate. t : float The interpolation step in [0,1]. 0 favors T0, 1 favors T1. Returns ------- :obj:`RigidTransform` The interpolated RigidTransform. Raises ------ ValueError If the to_frame of the two RigidTransforms are not identical. """ if T0.to_frame != T1.to_frame: raise ValueError('Cannot interpolate between 2 transforms with different to frames! Got T1 {0} and T2 {1}'.format(T0.to_frame, T1.to_frame)) dq0 = T0.dual_quaternion dq1 = T1.dual_quaternion dqt = DualQuaternion.interpolate(dq0, dq1, t) from_frame = "{0}_{1}_{2}".format(T0.from_frame, T1.from_frame, t) return RigidTransform.transform_from_dual_quaternion(dqt, from_frame, T0.to_frame)
python
def interpolate(T0, T1, t): """Return an interpolation of two RigidTransforms. Parameters ---------- T0 : :obj:`RigidTransform` The first RigidTransform to interpolate. T1 : :obj:`RigidTransform` The second RigidTransform to interpolate. t : float The interpolation step in [0,1]. 0 favors T0, 1 favors T1. Returns ------- :obj:`RigidTransform` The interpolated RigidTransform. Raises ------ ValueError If the to_frame of the two RigidTransforms are not identical. """ if T0.to_frame != T1.to_frame: raise ValueError('Cannot interpolate between 2 transforms with different to frames! Got T1 {0} and T2 {1}'.format(T0.to_frame, T1.to_frame)) dq0 = T0.dual_quaternion dq1 = T1.dual_quaternion dqt = DualQuaternion.interpolate(dq0, dq1, t) from_frame = "{0}_{1}_{2}".format(T0.from_frame, T1.from_frame, t) return RigidTransform.transform_from_dual_quaternion(dqt, from_frame, T0.to_frame)
[ "def", "interpolate", "(", "T0", ",", "T1", ",", "t", ")", ":", "if", "T0", ".", "to_frame", "!=", "T1", ".", "to_frame", ":", "raise", "ValueError", "(", "'Cannot interpolate between 2 transforms with different to frames! Got T1 {0} and T2 {1}'", ".", "format", "(", "T0", ".", "to_frame", ",", "T1", ".", "to_frame", ")", ")", "dq0", "=", "T0", ".", "dual_quaternion", "dq1", "=", "T1", ".", "dual_quaternion", "dqt", "=", "DualQuaternion", ".", "interpolate", "(", "dq0", ",", "dq1", ",", "t", ")", "from_frame", "=", "\"{0}_{1}_{2}\"", ".", "format", "(", "T0", ".", "from_frame", ",", "T1", ".", "from_frame", ",", "t", ")", "return", "RigidTransform", ".", "transform_from_dual_quaternion", "(", "dqt", ",", "from_frame", ",", "T0", ".", "to_frame", ")" ]
Return an interpolation of two RigidTransforms. Parameters ---------- T0 : :obj:`RigidTransform` The first RigidTransform to interpolate. T1 : :obj:`RigidTransform` The second RigidTransform to interpolate. t : float The interpolation step in [0,1]. 0 favors T0, 1 favors T1. Returns ------- :obj:`RigidTransform` The interpolated RigidTransform. Raises ------ ValueError If the to_frame of the two RigidTransforms are not identical.
[ "Return", "an", "interpolation", "of", "two", "RigidTransforms", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L973-L1004
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
RigidTransform.load
def load(filename): """Load a RigidTransform from a file. The file format is: from_frame to_frame translation (space separated) rotation_row_0 (space separated) rotation_row_1 (space separated) rotation_row_2 (space separated) Parameters ---------- filename : :obj:`str` The file to load the transform from. Returns ------- :obj:`RigidTransform` The RigidTransform read from the file. Raises ------ ValueError If filename's extension isn't .tf. """ file_root, file_ext = os.path.splitext(filename) if file_ext.lower() != TF_EXTENSION: raise ValueError('Extension %s not supported for RigidTransform. Can only load extension %s' %(file_ext, TF_EXTENSION)) f = open(filename, 'r') lines = list(f) from_frame = lines[0][:-1] to_frame = lines[1][:-1] t = np.zeros(3) t_tokens = lines[2][:-1].split() t[0] = float(t_tokens[0]) t[1] = float(t_tokens[1]) t[2] = float(t_tokens[2]) R = np.zeros([3,3]) r_tokens = lines[3][:-1].split() R[0, 0] = float(r_tokens[0]) R[0, 1] = float(r_tokens[1]) R[0, 2] = float(r_tokens[2]) r_tokens = lines[4][:-1].split() R[1, 0] = float(r_tokens[0]) R[1, 1] = float(r_tokens[1]) R[1, 2] = float(r_tokens[2]) r_tokens = lines[5][:-1].split() R[2, 0] = float(r_tokens[0]) R[2, 1] = float(r_tokens[1]) R[2, 2] = float(r_tokens[2]) f.close() return RigidTransform(rotation=R, translation=t, from_frame=from_frame, to_frame=to_frame)
python
def load(filename): """Load a RigidTransform from a file. The file format is: from_frame to_frame translation (space separated) rotation_row_0 (space separated) rotation_row_1 (space separated) rotation_row_2 (space separated) Parameters ---------- filename : :obj:`str` The file to load the transform from. Returns ------- :obj:`RigidTransform` The RigidTransform read from the file. Raises ------ ValueError If filename's extension isn't .tf. """ file_root, file_ext = os.path.splitext(filename) if file_ext.lower() != TF_EXTENSION: raise ValueError('Extension %s not supported for RigidTransform. Can only load extension %s' %(file_ext, TF_EXTENSION)) f = open(filename, 'r') lines = list(f) from_frame = lines[0][:-1] to_frame = lines[1][:-1] t = np.zeros(3) t_tokens = lines[2][:-1].split() t[0] = float(t_tokens[0]) t[1] = float(t_tokens[1]) t[2] = float(t_tokens[2]) R = np.zeros([3,3]) r_tokens = lines[3][:-1].split() R[0, 0] = float(r_tokens[0]) R[0, 1] = float(r_tokens[1]) R[0, 2] = float(r_tokens[2]) r_tokens = lines[4][:-1].split() R[1, 0] = float(r_tokens[0]) R[1, 1] = float(r_tokens[1]) R[1, 2] = float(r_tokens[2]) r_tokens = lines[5][:-1].split() R[2, 0] = float(r_tokens[0]) R[2, 1] = float(r_tokens[1]) R[2, 2] = float(r_tokens[2]) f.close() return RigidTransform(rotation=R, translation=t, from_frame=from_frame, to_frame=to_frame)
[ "def", "load", "(", "filename", ")", ":", "file_root", ",", "file_ext", "=", "os", ".", "path", ".", "splitext", "(", "filename", ")", "if", "file_ext", ".", "lower", "(", ")", "!=", "TF_EXTENSION", ":", "raise", "ValueError", "(", "'Extension %s not supported for RigidTransform. Can only load extension %s'", "%", "(", "file_ext", ",", "TF_EXTENSION", ")", ")", "f", "=", "open", "(", "filename", ",", "'r'", ")", "lines", "=", "list", "(", "f", ")", "from_frame", "=", "lines", "[", "0", "]", "[", ":", "-", "1", "]", "to_frame", "=", "lines", "[", "1", "]", "[", ":", "-", "1", "]", "t", "=", "np", ".", "zeros", "(", "3", ")", "t_tokens", "=", "lines", "[", "2", "]", "[", ":", "-", "1", "]", ".", "split", "(", ")", "t", "[", "0", "]", "=", "float", "(", "t_tokens", "[", "0", "]", ")", "t", "[", "1", "]", "=", "float", "(", "t_tokens", "[", "1", "]", ")", "t", "[", "2", "]", "=", "float", "(", "t_tokens", "[", "2", "]", ")", "R", "=", "np", ".", "zeros", "(", "[", "3", ",", "3", "]", ")", "r_tokens", "=", "lines", "[", "3", "]", "[", ":", "-", "1", "]", ".", "split", "(", ")", "R", "[", "0", ",", "0", "]", "=", "float", "(", "r_tokens", "[", "0", "]", ")", "R", "[", "0", ",", "1", "]", "=", "float", "(", "r_tokens", "[", "1", "]", ")", "R", "[", "0", ",", "2", "]", "=", "float", "(", "r_tokens", "[", "2", "]", ")", "r_tokens", "=", "lines", "[", "4", "]", "[", ":", "-", "1", "]", ".", "split", "(", ")", "R", "[", "1", ",", "0", "]", "=", "float", "(", "r_tokens", "[", "0", "]", ")", "R", "[", "1", ",", "1", "]", "=", "float", "(", "r_tokens", "[", "1", "]", ")", "R", "[", "1", ",", "2", "]", "=", "float", "(", "r_tokens", "[", "2", "]", ")", "r_tokens", "=", "lines", "[", "5", "]", "[", ":", "-", "1", "]", ".", "split", "(", ")", "R", "[", "2", ",", "0", "]", "=", "float", "(", "r_tokens", "[", "0", "]", ")", "R", "[", "2", ",", "1", "]", "=", "float", "(", "r_tokens", "[", "1", "]", ")", "R", "[", "2", ",", "2", "]", "=", "float", "(", "r_tokens", "[", "2", "]", ")", "f", ".", "close", "(", ")", "return", "RigidTransform", "(", "rotation", "=", "R", ",", "translation", "=", "t", ",", "from_frame", "=", "from_frame", ",", "to_frame", "=", "to_frame", ")" ]
Load a RigidTransform from a file. The file format is: from_frame to_frame translation (space separated) rotation_row_0 (space separated) rotation_row_1 (space separated) rotation_row_2 (space separated) Parameters ---------- filename : :obj:`str` The file to load the transform from. Returns ------- :obj:`RigidTransform` The RigidTransform read from the file. Raises ------ ValueError If filename's extension isn't .tf.
[ "Load", "a", "RigidTransform", "from", "a", "file", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L1007-L1066
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
SimilarityTransform.dot
def dot(self, other_tf): """Compose this simliarity transform with another. This transform is on the left-hand side of the composition. Parameters ---------- other_tf : :obj:`SimilarityTransform` The other SimilarityTransform to compose with this one. Returns ------- :obj:`SimilarityTransform` A SimilarityTransform that represents the composition. Raises ------ ValueError If the to_frame of other_tf is not identical to this transform's from_frame. """ if other_tf.to_frame != self.from_frame: raise ValueError('To frame of right hand side ({0}) must match from frame of left hand side ({1})'.format(other_tf.to_frame, self.from_frame)) if not isinstance(other_tf, RigidTransform): raise ValueError('Can only compose with other RigidTransform classes') other_scale = 1.0 if isinstance(other_tf, SimilarityTransform): other_scale = other_tf.scale rotation = self.rotation.dot(other_tf.rotation) translation = self.translation + self.scale * self.rotation.dot(other_tf.translation) scale = self.scale * other_scale return SimilarityTransform(rotation, translation, scale, from_frame=other_tf.from_frame, to_frame=self.to_frame)
python
def dot(self, other_tf): """Compose this simliarity transform with another. This transform is on the left-hand side of the composition. Parameters ---------- other_tf : :obj:`SimilarityTransform` The other SimilarityTransform to compose with this one. Returns ------- :obj:`SimilarityTransform` A SimilarityTransform that represents the composition. Raises ------ ValueError If the to_frame of other_tf is not identical to this transform's from_frame. """ if other_tf.to_frame != self.from_frame: raise ValueError('To frame of right hand side ({0}) must match from frame of left hand side ({1})'.format(other_tf.to_frame, self.from_frame)) if not isinstance(other_tf, RigidTransform): raise ValueError('Can only compose with other RigidTransform classes') other_scale = 1.0 if isinstance(other_tf, SimilarityTransform): other_scale = other_tf.scale rotation = self.rotation.dot(other_tf.rotation) translation = self.translation + self.scale * self.rotation.dot(other_tf.translation) scale = self.scale * other_scale return SimilarityTransform(rotation, translation, scale, from_frame=other_tf.from_frame, to_frame=self.to_frame)
[ "def", "dot", "(", "self", ",", "other_tf", ")", ":", "if", "other_tf", ".", "to_frame", "!=", "self", ".", "from_frame", ":", "raise", "ValueError", "(", "'To frame of right hand side ({0}) must match from frame of left hand side ({1})'", ".", "format", "(", "other_tf", ".", "to_frame", ",", "self", ".", "from_frame", ")", ")", "if", "not", "isinstance", "(", "other_tf", ",", "RigidTransform", ")", ":", "raise", "ValueError", "(", "'Can only compose with other RigidTransform classes'", ")", "other_scale", "=", "1.0", "if", "isinstance", "(", "other_tf", ",", "SimilarityTransform", ")", ":", "other_scale", "=", "other_tf", ".", "scale", "rotation", "=", "self", ".", "rotation", ".", "dot", "(", "other_tf", ".", "rotation", ")", "translation", "=", "self", ".", "translation", "+", "self", ".", "scale", "*", "self", ".", "rotation", ".", "dot", "(", "other_tf", ".", "translation", ")", "scale", "=", "self", ".", "scale", "*", "other_scale", "return", "SimilarityTransform", "(", "rotation", ",", "translation", ",", "scale", ",", "from_frame", "=", "other_tf", ".", "from_frame", ",", "to_frame", "=", "self", ".", "to_frame", ")" ]
Compose this simliarity transform with another. This transform is on the left-hand side of the composition. Parameters ---------- other_tf : :obj:`SimilarityTransform` The other SimilarityTransform to compose with this one. Returns ------- :obj:`SimilarityTransform` A SimilarityTransform that represents the composition. Raises ------ ValueError If the to_frame of other_tf is not identical to this transform's from_frame.
[ "Compose", "this", "simliarity", "transform", "with", "another", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L1187-L1222
train
BerkeleyAutomation/autolab_core
autolab_core/rigid_transformations.py
SimilarityTransform.inverse
def inverse(self): """Take the inverse of the similarity transform. Returns ------- :obj:`SimilarityTransform` The inverse of this SimilarityTransform. """ inv_rot = np.linalg.inv(self.rotation) inv_scale = 1.0 / self.scale inv_trans = -inv_scale * inv_rot.dot(self.translation) return SimilarityTransform(inv_rot, inv_trans, inv_scale, from_frame=self._to_frame, to_frame=self._from_frame)
python
def inverse(self): """Take the inverse of the similarity transform. Returns ------- :obj:`SimilarityTransform` The inverse of this SimilarityTransform. """ inv_rot = np.linalg.inv(self.rotation) inv_scale = 1.0 / self.scale inv_trans = -inv_scale * inv_rot.dot(self.translation) return SimilarityTransform(inv_rot, inv_trans, inv_scale, from_frame=self._to_frame, to_frame=self._from_frame)
[ "def", "inverse", "(", "self", ")", ":", "inv_rot", "=", "np", ".", "linalg", ".", "inv", "(", "self", ".", "rotation", ")", "inv_scale", "=", "1.0", "/", "self", ".", "scale", "inv_trans", "=", "-", "inv_scale", "*", "inv_rot", ".", "dot", "(", "self", ".", "translation", ")", "return", "SimilarityTransform", "(", "inv_rot", ",", "inv_trans", ",", "inv_scale", ",", "from_frame", "=", "self", ".", "_to_frame", ",", "to_frame", "=", "self", ".", "_from_frame", ")" ]
Take the inverse of the similarity transform. Returns ------- :obj:`SimilarityTransform` The inverse of this SimilarityTransform.
[ "Take", "the", "inverse", "of", "the", "similarity", "transform", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/rigid_transformations.py#L1224-L1237
train
BerkeleyAutomation/autolab_core
autolab_core/points.py
BagOfPoints.save
def save(self, filename): """Saves the collection to a file. Parameters ---------- filename : :obj:`str` The file to save the collection to. Raises ------ ValueError If the file extension is not .npy or .npz. """ file_root, file_ext = os.path.splitext(filename) if file_ext == '.npy': np.save(filename, self._data) elif file_ext == '.npz': np.savez_compressed(filename, self._data) else: raise ValueError('Extension %s not supported for point saves.' %(file_ext))
python
def save(self, filename): """Saves the collection to a file. Parameters ---------- filename : :obj:`str` The file to save the collection to. Raises ------ ValueError If the file extension is not .npy or .npz. """ file_root, file_ext = os.path.splitext(filename) if file_ext == '.npy': np.save(filename, self._data) elif file_ext == '.npz': np.savez_compressed(filename, self._data) else: raise ValueError('Extension %s not supported for point saves.' %(file_ext))
[ "def", "save", "(", "self", ",", "filename", ")", ":", "file_root", ",", "file_ext", "=", "os", ".", "path", ".", "splitext", "(", "filename", ")", "if", "file_ext", "==", "'.npy'", ":", "np", ".", "save", "(", "filename", ",", "self", ".", "_data", ")", "elif", "file_ext", "==", "'.npz'", ":", "np", ".", "savez_compressed", "(", "filename", ",", "self", ".", "_data", ")", "else", ":", "raise", "ValueError", "(", "'Extension %s not supported for point saves.'", "%", "(", "file_ext", ")", ")" ]
Saves the collection to a file. Parameters ---------- filename : :obj:`str` The file to save the collection to. Raises ------ ValueError If the file extension is not .npy or .npz.
[ "Saves", "the", "collection", "to", "a", "file", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/points.py#L112-L131
train
BerkeleyAutomation/autolab_core
autolab_core/points.py
BagOfPoints.load_data
def load_data(filename): """Loads data from a file. Parameters ---------- filename : :obj:`str` The file to load the collection from. Returns ------- :obj:`numpy.ndarray` of float The data read from the file. Raises ------ ValueError If the file extension is not .npy or .npz. """ file_root, file_ext = os.path.splitext(filename) data = None if file_ext == '.npy': data = np.load(filename) elif file_ext == '.npz': data = np.load(filename)['arr_0'] else: raise ValueError('Extension %s not supported for point reads' %(file_ext)) return data
python
def load_data(filename): """Loads data from a file. Parameters ---------- filename : :obj:`str` The file to load the collection from. Returns ------- :obj:`numpy.ndarray` of float The data read from the file. Raises ------ ValueError If the file extension is not .npy or .npz. """ file_root, file_ext = os.path.splitext(filename) data = None if file_ext == '.npy': data = np.load(filename) elif file_ext == '.npz': data = np.load(filename)['arr_0'] else: raise ValueError('Extension %s not supported for point reads' %(file_ext)) return data
[ "def", "load_data", "(", "filename", ")", ":", "file_root", ",", "file_ext", "=", "os", ".", "path", ".", "splitext", "(", "filename", ")", "data", "=", "None", "if", "file_ext", "==", "'.npy'", ":", "data", "=", "np", ".", "load", "(", "filename", ")", "elif", "file_ext", "==", "'.npz'", ":", "data", "=", "np", ".", "load", "(", "filename", ")", "[", "'arr_0'", "]", "else", ":", "raise", "ValueError", "(", "'Extension %s not supported for point reads'", "%", "(", "file_ext", ")", ")", "return", "data" ]
Loads data from a file. Parameters ---------- filename : :obj:`str` The file to load the collection from. Returns ------- :obj:`numpy.ndarray` of float The data read from the file. Raises ------ ValueError If the file extension is not .npy or .npz.
[ "Loads", "data", "from", "a", "file", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/points.py#L133-L159
train
BerkeleyAutomation/autolab_core
autolab_core/points.py
Point.open
def open(filename, frame='unspecified'): """Create a Point from data saved in a file. Parameters ---------- filename : :obj:`str` The file to load data from. frame : :obj:`str` The frame to apply to the created point. Returns ------- :obj:`Point` A point created from the data in the file. """ data = BagOfPoints.load_data(filename) return Point(data, frame)
python
def open(filename, frame='unspecified'): """Create a Point from data saved in a file. Parameters ---------- filename : :obj:`str` The file to load data from. frame : :obj:`str` The frame to apply to the created point. Returns ------- :obj:`Point` A point created from the data in the file. """ data = BagOfPoints.load_data(filename) return Point(data, frame)
[ "def", "open", "(", "filename", ",", "frame", "=", "'unspecified'", ")", ":", "data", "=", "BagOfPoints", ".", "load_data", "(", "filename", ")", "return", "Point", "(", "data", ",", "frame", ")" ]
Create a Point from data saved in a file. Parameters ---------- filename : :obj:`str` The file to load data from. frame : :obj:`str` The frame to apply to the created point. Returns ------- :obj:`Point` A point created from the data in the file.
[ "Create", "a", "Point", "from", "data", "saved", "in", "a", "file", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/points.py#L371-L388
train
BerkeleyAutomation/autolab_core
autolab_core/points.py
Direction._check_valid_data
def _check_valid_data(self, data): """Checks that the incoming data is a Nx1 ndarray. Parameters ---------- data : :obj:`numpy.ndarray` The data to verify. Raises ------ ValueError If the data is not of the correct shape or if the vector is not normed. """ if len(data.shape) == 2 and data.shape[1] != 1: raise ValueError('Can only initialize Direction from a single Nx1 array') if np.abs(np.linalg.norm(data) - 1.0) > 1e-4: raise ValueError('Direction data must have norm=1.0')
python
def _check_valid_data(self, data): """Checks that the incoming data is a Nx1 ndarray. Parameters ---------- data : :obj:`numpy.ndarray` The data to verify. Raises ------ ValueError If the data is not of the correct shape or if the vector is not normed. """ if len(data.shape) == 2 and data.shape[1] != 1: raise ValueError('Can only initialize Direction from a single Nx1 array') if np.abs(np.linalg.norm(data) - 1.0) > 1e-4: raise ValueError('Direction data must have norm=1.0')
[ "def", "_check_valid_data", "(", "self", ",", "data", ")", ":", "if", "len", "(", "data", ".", "shape", ")", "==", "2", "and", "data", ".", "shape", "[", "1", "]", "!=", "1", ":", "raise", "ValueError", "(", "'Can only initialize Direction from a single Nx1 array'", ")", "if", "np", ".", "abs", "(", "np", ".", "linalg", ".", "norm", "(", "data", ")", "-", "1.0", ")", ">", "1e-4", ":", "raise", "ValueError", "(", "'Direction data must have norm=1.0'", ")" ]
Checks that the incoming data is a Nx1 ndarray. Parameters ---------- data : :obj:`numpy.ndarray` The data to verify. Raises ------ ValueError If the data is not of the correct shape or if the vector is not normed.
[ "Checks", "that", "the", "incoming", "data", "is", "a", "Nx1", "ndarray", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/points.py#L405-L422
train
BerkeleyAutomation/autolab_core
autolab_core/points.py
Direction.orthogonal_basis
def orthogonal_basis(self): """Return an orthogonal basis to this direction. Note ---- Only implemented in 3D. Returns ------- :obj:`tuple` of :obj:`Direction` The pair of normalized Direction vectors that form a basis of this direction's orthogonal complement. Raises ------ NotImplementedError If the vector is not 3D """ if self.dim == 3: x_arr = np.array([-self.data[1], self.data[0], 0]) if np.linalg.norm(x_arr) == 0: x_arr = np.array([self.data[2], 0, 0]) x_arr = x_arr / np.linalg.norm(x_arr) y_arr = np.cross(self.data, x_arr) return Direction(x_arr, frame=self.frame), Direction(y_arr, frame=self.frame) raise NotImplementedError('Orthogonal basis only supported for 3 dimensions')
python
def orthogonal_basis(self): """Return an orthogonal basis to this direction. Note ---- Only implemented in 3D. Returns ------- :obj:`tuple` of :obj:`Direction` The pair of normalized Direction vectors that form a basis of this direction's orthogonal complement. Raises ------ NotImplementedError If the vector is not 3D """ if self.dim == 3: x_arr = np.array([-self.data[1], self.data[0], 0]) if np.linalg.norm(x_arr) == 0: x_arr = np.array([self.data[2], 0, 0]) x_arr = x_arr / np.linalg.norm(x_arr) y_arr = np.cross(self.data, x_arr) return Direction(x_arr, frame=self.frame), Direction(y_arr, frame=self.frame) raise NotImplementedError('Orthogonal basis only supported for 3 dimensions')
[ "def", "orthogonal_basis", "(", "self", ")", ":", "if", "self", ".", "dim", "==", "3", ":", "x_arr", "=", "np", ".", "array", "(", "[", "-", "self", ".", "data", "[", "1", "]", ",", "self", ".", "data", "[", "0", "]", ",", "0", "]", ")", "if", "np", ".", "linalg", ".", "norm", "(", "x_arr", ")", "==", "0", ":", "x_arr", "=", "np", ".", "array", "(", "[", "self", ".", "data", "[", "2", "]", ",", "0", ",", "0", "]", ")", "x_arr", "=", "x_arr", "/", "np", ".", "linalg", ".", "norm", "(", "x_arr", ")", "y_arr", "=", "np", ".", "cross", "(", "self", ".", "data", ",", "x_arr", ")", "return", "Direction", "(", "x_arr", ",", "frame", "=", "self", ".", "frame", ")", ",", "Direction", "(", "y_arr", ",", "frame", "=", "self", ".", "frame", ")", "raise", "NotImplementedError", "(", "'Orthogonal basis only supported for 3 dimensions'", ")" ]
Return an orthogonal basis to this direction. Note ---- Only implemented in 3D. Returns ------- :obj:`tuple` of :obj:`Direction` The pair of normalized Direction vectors that form a basis of this direction's orthogonal complement. Raises ------ NotImplementedError If the vector is not 3D
[ "Return", "an", "orthogonal", "basis", "to", "this", "direction", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/points.py#L424-L449
train
BerkeleyAutomation/autolab_core
autolab_core/points.py
Direction.open
def open(filename, frame='unspecified'): """Create a Direction from data saved in a file. Parameters ---------- filename : :obj:`str` The file to load data from. frame : :obj:`str` The frame to apply to the created Direction. Returns ------- :obj:`Direction` A Direction created from the data in the file. """ data = BagOfPoints.load_data(filename) return Direction(data, frame)
python
def open(filename, frame='unspecified'): """Create a Direction from data saved in a file. Parameters ---------- filename : :obj:`str` The file to load data from. frame : :obj:`str` The frame to apply to the created Direction. Returns ------- :obj:`Direction` A Direction created from the data in the file. """ data = BagOfPoints.load_data(filename) return Direction(data, frame)
[ "def", "open", "(", "filename", ",", "frame", "=", "'unspecified'", ")", ":", "data", "=", "BagOfPoints", ".", "load_data", "(", "filename", ")", "return", "Direction", "(", "data", ",", "frame", ")" ]
Create a Direction from data saved in a file. Parameters ---------- filename : :obj:`str` The file to load data from. frame : :obj:`str` The frame to apply to the created Direction. Returns ------- :obj:`Direction` A Direction created from the data in the file.
[ "Create", "a", "Direction", "from", "data", "saved", "in", "a", "file", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/points.py#L452-L469
train
BerkeleyAutomation/autolab_core
autolab_core/points.py
Plane3D.split_points
def split_points(self, point_cloud): """Split a point cloud into two along this plane. Parameters ---------- point_cloud : :obj:`PointCloud` The PointCloud to divide in two. Returns ------- :obj:`tuple` of :obj:`PointCloud` Two new PointCloud objects. The first contains points above the plane, and the second contains points below the plane. Raises ------ ValueError If the input is not a PointCloud. """ if not isinstance(point_cloud, PointCloud): raise ValueError('Can only split point clouds') # compute indices above and below above_plane = point_cloud._data - np.tile(self._x0.data, [1, point_cloud.num_points]).T.dot(self._n) > 0 above_plane = point_cloud.z_coords > 0 & above_plane below_plane = point_cloud._data - np.tile(self._x0.data, [1, point_cloud.num_points]).T.dot(self._n) <= 0 below_plane = point_cloud.z_coords > 0 & below_plane # split data above_data = point_cloud.data[:, above_plane] below_data = point_cloud.data[:, below_plane] return PointCloud(above_data, point_cloud.frame), PointCloud(below_data, point_cloud.frame)
python
def split_points(self, point_cloud): """Split a point cloud into two along this plane. Parameters ---------- point_cloud : :obj:`PointCloud` The PointCloud to divide in two. Returns ------- :obj:`tuple` of :obj:`PointCloud` Two new PointCloud objects. The first contains points above the plane, and the second contains points below the plane. Raises ------ ValueError If the input is not a PointCloud. """ if not isinstance(point_cloud, PointCloud): raise ValueError('Can only split point clouds') # compute indices above and below above_plane = point_cloud._data - np.tile(self._x0.data, [1, point_cloud.num_points]).T.dot(self._n) > 0 above_plane = point_cloud.z_coords > 0 & above_plane below_plane = point_cloud._data - np.tile(self._x0.data, [1, point_cloud.num_points]).T.dot(self._n) <= 0 below_plane = point_cloud.z_coords > 0 & below_plane # split data above_data = point_cloud.data[:, above_plane] below_data = point_cloud.data[:, below_plane] return PointCloud(above_data, point_cloud.frame), PointCloud(below_data, point_cloud.frame)
[ "def", "split_points", "(", "self", ",", "point_cloud", ")", ":", "if", "not", "isinstance", "(", "point_cloud", ",", "PointCloud", ")", ":", "raise", "ValueError", "(", "'Can only split point clouds'", ")", "# compute indices above and below", "above_plane", "=", "point_cloud", ".", "_data", "-", "np", ".", "tile", "(", "self", ".", "_x0", ".", "data", ",", "[", "1", ",", "point_cloud", ".", "num_points", "]", ")", ".", "T", ".", "dot", "(", "self", ".", "_n", ")", ">", "0", "above_plane", "=", "point_cloud", ".", "z_coords", ">", "0", "&", "above_plane", "below_plane", "=", "point_cloud", ".", "_data", "-", "np", ".", "tile", "(", "self", ".", "_x0", ".", "data", ",", "[", "1", ",", "point_cloud", ".", "num_points", "]", ")", ".", "T", ".", "dot", "(", "self", ".", "_n", ")", "<=", "0", "below_plane", "=", "point_cloud", ".", "z_coords", ">", "0", "&", "below_plane", "# split data", "above_data", "=", "point_cloud", ".", "data", "[", ":", ",", "above_plane", "]", "below_data", "=", "point_cloud", ".", "data", "[", ":", ",", "below_plane", "]", "return", "PointCloud", "(", "above_data", ",", "point_cloud", ".", "frame", ")", ",", "PointCloud", "(", "below_data", ",", "point_cloud", ".", "frame", ")" ]
Split a point cloud into two along this plane. Parameters ---------- point_cloud : :obj:`PointCloud` The PointCloud to divide in two. Returns ------- :obj:`tuple` of :obj:`PointCloud` Two new PointCloud objects. The first contains points above the plane, and the second contains points below the plane. Raises ------ ValueError If the input is not a PointCloud.
[ "Split", "a", "point", "cloud", "into", "two", "along", "this", "plane", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/points.py#L498-L528
train
BerkeleyAutomation/autolab_core
autolab_core/points.py
PointCloud.mean
def mean(self): """Returns the average point in the cloud. Returns ------- :obj:`Point` The mean point in the PointCloud. """ mean_point_data = np.mean(self._data, axis=1) return Point(mean_point_data, self._frame)
python
def mean(self): """Returns the average point in the cloud. Returns ------- :obj:`Point` The mean point in the PointCloud. """ mean_point_data = np.mean(self._data, axis=1) return Point(mean_point_data, self._frame)
[ "def", "mean", "(", "self", ")", ":", "mean_point_data", "=", "np", ".", "mean", "(", "self", ".", "_data", ",", "axis", "=", "1", ")", "return", "Point", "(", "mean_point_data", ",", "self", ".", "_frame", ")" ]
Returns the average point in the cloud. Returns ------- :obj:`Point` The mean point in the PointCloud.
[ "Returns", "the", "average", "point", "in", "the", "cloud", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/points.py#L587-L596
train
BerkeleyAutomation/autolab_core
autolab_core/points.py
PointCloud.subsample
def subsample(self, rate, random=False): """Returns a subsampled version of the PointCloud. Parameters ---------- rate : int Only every rate-th element of the PointCloud is returned. Returns ------- :obj:`PointCloud` A subsampled point cloud with N / rate total samples. Raises ------ ValueError If rate is not a positive integer. """ if type(rate) != int and rate < 1: raise ValueError('Can only subsample with strictly positive integer rate') indices = np.arange(self.num_points) if random: np.random.shuffle(indices) subsample_inds = indices[::rate] subsampled_data = self._data[:,subsample_inds] return PointCloud(subsampled_data, self._frame), subsample_inds
python
def subsample(self, rate, random=False): """Returns a subsampled version of the PointCloud. Parameters ---------- rate : int Only every rate-th element of the PointCloud is returned. Returns ------- :obj:`PointCloud` A subsampled point cloud with N / rate total samples. Raises ------ ValueError If rate is not a positive integer. """ if type(rate) != int and rate < 1: raise ValueError('Can only subsample with strictly positive integer rate') indices = np.arange(self.num_points) if random: np.random.shuffle(indices) subsample_inds = indices[::rate] subsampled_data = self._data[:,subsample_inds] return PointCloud(subsampled_data, self._frame), subsample_inds
[ "def", "subsample", "(", "self", ",", "rate", ",", "random", "=", "False", ")", ":", "if", "type", "(", "rate", ")", "!=", "int", "and", "rate", "<", "1", ":", "raise", "ValueError", "(", "'Can only subsample with strictly positive integer rate'", ")", "indices", "=", "np", ".", "arange", "(", "self", ".", "num_points", ")", "if", "random", ":", "np", ".", "random", ".", "shuffle", "(", "indices", ")", "subsample_inds", "=", "indices", "[", ":", ":", "rate", "]", "subsampled_data", "=", "self", ".", "_data", "[", ":", ",", "subsample_inds", "]", "return", "PointCloud", "(", "subsampled_data", ",", "self", ".", "_frame", ")", ",", "subsample_inds" ]
Returns a subsampled version of the PointCloud. Parameters ---------- rate : int Only every rate-th element of the PointCloud is returned. Returns ------- :obj:`PointCloud` A subsampled point cloud with N / rate total samples. Raises ------ ValueError If rate is not a positive integer.
[ "Returns", "a", "subsampled", "version", "of", "the", "PointCloud", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/points.py#L598-L623
train
BerkeleyAutomation/autolab_core
autolab_core/points.py
PointCloud.box_mask
def box_mask(self, box): """Return a PointCloud containing only points within the given Box. Parameters ---------- box : :obj:`Box` A box whose boundaries are used to filter points. Returns ------- :obj:`PointCloud` A filtered PointCloud whose points are all in the given box. :obj:`numpy.ndarray` Array of indices of the segmented points in the original cloud Raises ------ ValueError If the input is not a box in the same frame as the PointCloud. """ if not isinstance(box, Box): raise ValueError('Must provide Box object') if box.frame != self.frame: raise ValueError('Box must be in same frame as PointCloud') all_points = self.data.T cond1 = np.all(box.min_pt <= all_points, axis=1) cond2 = np.all(all_points <= box.max_pt, axis=1) valid_point_indices = np.where(np.logical_and(cond1, cond2))[0] valid_points = all_points[valid_point_indices] return PointCloud(valid_points.T, self.frame), valid_point_indices
python
def box_mask(self, box): """Return a PointCloud containing only points within the given Box. Parameters ---------- box : :obj:`Box` A box whose boundaries are used to filter points. Returns ------- :obj:`PointCloud` A filtered PointCloud whose points are all in the given box. :obj:`numpy.ndarray` Array of indices of the segmented points in the original cloud Raises ------ ValueError If the input is not a box in the same frame as the PointCloud. """ if not isinstance(box, Box): raise ValueError('Must provide Box object') if box.frame != self.frame: raise ValueError('Box must be in same frame as PointCloud') all_points = self.data.T cond1 = np.all(box.min_pt <= all_points, axis=1) cond2 = np.all(all_points <= box.max_pt, axis=1) valid_point_indices = np.where(np.logical_and(cond1, cond2))[0] valid_points = all_points[valid_point_indices] return PointCloud(valid_points.T, self.frame), valid_point_indices
[ "def", "box_mask", "(", "self", ",", "box", ")", ":", "if", "not", "isinstance", "(", "box", ",", "Box", ")", ":", "raise", "ValueError", "(", "'Must provide Box object'", ")", "if", "box", ".", "frame", "!=", "self", ".", "frame", ":", "raise", "ValueError", "(", "'Box must be in same frame as PointCloud'", ")", "all_points", "=", "self", ".", "data", ".", "T", "cond1", "=", "np", ".", "all", "(", "box", ".", "min_pt", "<=", "all_points", ",", "axis", "=", "1", ")", "cond2", "=", "np", ".", "all", "(", "all_points", "<=", "box", ".", "max_pt", ",", "axis", "=", "1", ")", "valid_point_indices", "=", "np", ".", "where", "(", "np", ".", "logical_and", "(", "cond1", ",", "cond2", ")", ")", "[", "0", "]", "valid_points", "=", "all_points", "[", "valid_point_indices", "]", "return", "PointCloud", "(", "valid_points", ".", "T", ",", "self", ".", "frame", ")", ",", "valid_point_indices" ]
Return a PointCloud containing only points within the given Box. Parameters ---------- box : :obj:`Box` A box whose boundaries are used to filter points. Returns ------- :obj:`PointCloud` A filtered PointCloud whose points are all in the given box. :obj:`numpy.ndarray` Array of indices of the segmented points in the original cloud Raises ------ ValueError If the input is not a box in the same frame as the PointCloud.
[ "Return", "a", "PointCloud", "containing", "only", "points", "within", "the", "given", "Box", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/points.py#L625-L655
train
BerkeleyAutomation/autolab_core
autolab_core/points.py
PointCloud.best_fit_plane
def best_fit_plane(self): """Fits a plane to the point cloud using least squares. Returns ------- :obj:`tuple` of :obj:`numpy.ndarray` of float A normal vector to and point in the fitted plane. """ X = np.c_[self.x_coords, self.y_coords, np.ones(self.num_points)] y = self.z_coords A = X.T.dot(X) b = X.T.dot(y) w = np.linalg.inv(A).dot(b) n = np.array([w[0], w[1], -1]) n = n / np.linalg.norm(n) n = Direction(n, self._frame) x0 = self.mean() return n, x0
python
def best_fit_plane(self): """Fits a plane to the point cloud using least squares. Returns ------- :obj:`tuple` of :obj:`numpy.ndarray` of float A normal vector to and point in the fitted plane. """ X = np.c_[self.x_coords, self.y_coords, np.ones(self.num_points)] y = self.z_coords A = X.T.dot(X) b = X.T.dot(y) w = np.linalg.inv(A).dot(b) n = np.array([w[0], w[1], -1]) n = n / np.linalg.norm(n) n = Direction(n, self._frame) x0 = self.mean() return n, x0
[ "def", "best_fit_plane", "(", "self", ")", ":", "X", "=", "np", ".", "c_", "[", "self", ".", "x_coords", ",", "self", ".", "y_coords", ",", "np", ".", "ones", "(", "self", ".", "num_points", ")", "]", "y", "=", "self", ".", "z_coords", "A", "=", "X", ".", "T", ".", "dot", "(", "X", ")", "b", "=", "X", ".", "T", ".", "dot", "(", "y", ")", "w", "=", "np", ".", "linalg", ".", "inv", "(", "A", ")", ".", "dot", "(", "b", ")", "n", "=", "np", ".", "array", "(", "[", "w", "[", "0", "]", ",", "w", "[", "1", "]", ",", "-", "1", "]", ")", "n", "=", "n", "/", "np", ".", "linalg", ".", "norm", "(", "n", ")", "n", "=", "Direction", "(", "n", ",", "self", ".", "_frame", ")", "x0", "=", "self", ".", "mean", "(", ")", "return", "n", ",", "x0" ]
Fits a plane to the point cloud using least squares. Returns ------- :obj:`tuple` of :obj:`numpy.ndarray` of float A normal vector to and point in the fitted plane.
[ "Fits", "a", "plane", "to", "the", "point", "cloud", "using", "least", "squares", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/points.py#L657-L674
train
BerkeleyAutomation/autolab_core
autolab_core/points.py
PointCloud.remove_zero_points
def remove_zero_points(self): """Removes points with a zero in the z-axis. Note ---- This returns nothing and updates the PointCloud in-place. """ points_of_interest = np.where(self.z_coords != 0.0)[0] self._data = self.data[:, points_of_interest]
python
def remove_zero_points(self): """Removes points with a zero in the z-axis. Note ---- This returns nothing and updates the PointCloud in-place. """ points_of_interest = np.where(self.z_coords != 0.0)[0] self._data = self.data[:, points_of_interest]
[ "def", "remove_zero_points", "(", "self", ")", ":", "points_of_interest", "=", "np", ".", "where", "(", "self", ".", "z_coords", "!=", "0.0", ")", "[", "0", "]", "self", ".", "_data", "=", "self", ".", "data", "[", ":", ",", "points_of_interest", "]" ]
Removes points with a zero in the z-axis. Note ---- This returns nothing and updates the PointCloud in-place.
[ "Removes", "points", "with", "a", "zero", "in", "the", "z", "-", "axis", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/points.py#L687-L695
train
BerkeleyAutomation/autolab_core
autolab_core/points.py
PointCloud.remove_infinite_points
def remove_infinite_points(self): """Removes infinite points. Note ---- This returns nothing and updates the PointCloud in-place. """ points_of_interest = np.where(np.all(np.isfinite(self.data), axis=0))[0] self._data = self.data[:, points_of_interest]
python
def remove_infinite_points(self): """Removes infinite points. Note ---- This returns nothing and updates the PointCloud in-place. """ points_of_interest = np.where(np.all(np.isfinite(self.data), axis=0))[0] self._data = self.data[:, points_of_interest]
[ "def", "remove_infinite_points", "(", "self", ")", ":", "points_of_interest", "=", "np", ".", "where", "(", "np", ".", "all", "(", "np", ".", "isfinite", "(", "self", ".", "data", ")", ",", "axis", "=", "0", ")", ")", "[", "0", "]", "self", ".", "_data", "=", "self", ".", "data", "[", ":", ",", "points_of_interest", "]" ]
Removes infinite points. Note ---- This returns nothing and updates the PointCloud in-place.
[ "Removes", "infinite", "points", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/points.py#L697-L705
train
BerkeleyAutomation/autolab_core
autolab_core/points.py
PointCloud.open
def open(filename, frame='unspecified'): """Create a PointCloud from data saved in a file. Parameters ---------- filename : :obj:`str` The file to load data from. frame : :obj:`str` The frame to apply to the created PointCloud. Returns ------- :obj:`PointCloud` A PointCloud created from the data in the file. """ data = BagOfPoints.load_data(filename) return PointCloud(data, frame)
python
def open(filename, frame='unspecified'): """Create a PointCloud from data saved in a file. Parameters ---------- filename : :obj:`str` The file to load data from. frame : :obj:`str` The frame to apply to the created PointCloud. Returns ------- :obj:`PointCloud` A PointCloud created from the data in the file. """ data = BagOfPoints.load_data(filename) return PointCloud(data, frame)
[ "def", "open", "(", "filename", ",", "frame", "=", "'unspecified'", ")", ":", "data", "=", "BagOfPoints", ".", "load_data", "(", "filename", ")", "return", "PointCloud", "(", "data", ",", "frame", ")" ]
Create a PointCloud from data saved in a file. Parameters ---------- filename : :obj:`str` The file to load data from. frame : :obj:`str` The frame to apply to the created PointCloud. Returns ------- :obj:`PointCloud` A PointCloud created from the data in the file.
[ "Create", "a", "PointCloud", "from", "data", "saved", "in", "a", "file", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/points.py#L817-L834
train
BerkeleyAutomation/autolab_core
autolab_core/points.py
NormalCloud.subsample
def subsample(self, rate): """Returns a subsampled version of the NormalCloud. Parameters ---------- rate : int Only every rate-th element of the NormalCloud is returned. Returns ------- :obj:`RateCloud` A subsampled point cloud with N / rate total samples. Raises ------ ValueError If rate is not a positive integer. """ if type(rate) != int and rate < 1: raise ValueError('Can only subsample with strictly positive integer rate') subsample_inds = np.arange(self.num_points)[::rate] subsampled_data = self._data[:,subsample_inds] return NormalCloud(subsampled_data, self._frame)
python
def subsample(self, rate): """Returns a subsampled version of the NormalCloud. Parameters ---------- rate : int Only every rate-th element of the NormalCloud is returned. Returns ------- :obj:`RateCloud` A subsampled point cloud with N / rate total samples. Raises ------ ValueError If rate is not a positive integer. """ if type(rate) != int and rate < 1: raise ValueError('Can only subsample with strictly positive integer rate') subsample_inds = np.arange(self.num_points)[::rate] subsampled_data = self._data[:,subsample_inds] return NormalCloud(subsampled_data, self._frame)
[ "def", "subsample", "(", "self", ",", "rate", ")", ":", "if", "type", "(", "rate", ")", "!=", "int", "and", "rate", "<", "1", ":", "raise", "ValueError", "(", "'Can only subsample with strictly positive integer rate'", ")", "subsample_inds", "=", "np", ".", "arange", "(", "self", ".", "num_points", ")", "[", ":", ":", "rate", "]", "subsampled_data", "=", "self", ".", "_data", "[", ":", ",", "subsample_inds", "]", "return", "NormalCloud", "(", "subsampled_data", ",", "self", ".", "_frame", ")" ]
Returns a subsampled version of the NormalCloud. Parameters ---------- rate : int Only every rate-th element of the NormalCloud is returned. Returns ------- :obj:`RateCloud` A subsampled point cloud with N / rate total samples. Raises ------ ValueError If rate is not a positive integer.
[ "Returns", "a", "subsampled", "version", "of", "the", "NormalCloud", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/points.py#L897-L919
train
BerkeleyAutomation/autolab_core
autolab_core/points.py
NormalCloud.remove_zero_normals
def remove_zero_normals(self): """Removes normal vectors with a zero magnitude. Note ---- This returns nothing and updates the NormalCloud in-place. """ points_of_interest = np.where(np.linalg.norm(self._data, axis=0) != 0.0)[0] self._data = self._data[:, points_of_interest]
python
def remove_zero_normals(self): """Removes normal vectors with a zero magnitude. Note ---- This returns nothing and updates the NormalCloud in-place. """ points_of_interest = np.where(np.linalg.norm(self._data, axis=0) != 0.0)[0] self._data = self._data[:, points_of_interest]
[ "def", "remove_zero_normals", "(", "self", ")", ":", "points_of_interest", "=", "np", ".", "where", "(", "np", ".", "linalg", ".", "norm", "(", "self", ".", "_data", ",", "axis", "=", "0", ")", "!=", "0.0", ")", "[", "0", "]", "self", ".", "_data", "=", "self", ".", "_data", "[", ":", ",", "points_of_interest", "]" ]
Removes normal vectors with a zero magnitude. Note ---- This returns nothing and updates the NormalCloud in-place.
[ "Removes", "normal", "vectors", "with", "a", "zero", "magnitude", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/points.py#L921-L929
train
BerkeleyAutomation/autolab_core
autolab_core/points.py
NormalCloud.remove_nan_normals
def remove_nan_normals(self): """Removes normal vectors with nan magnitude. Note ---- This returns nothing and updates the NormalCloud in-place. """ points_of_interest = np.where(np.isfinite(np.linalg.norm(self._data, axis=0)))[0] self._data = self._data[:, points_of_interest]
python
def remove_nan_normals(self): """Removes normal vectors with nan magnitude. Note ---- This returns nothing and updates the NormalCloud in-place. """ points_of_interest = np.where(np.isfinite(np.linalg.norm(self._data, axis=0)))[0] self._data = self._data[:, points_of_interest]
[ "def", "remove_nan_normals", "(", "self", ")", ":", "points_of_interest", "=", "np", ".", "where", "(", "np", ".", "isfinite", "(", "np", ".", "linalg", ".", "norm", "(", "self", ".", "_data", ",", "axis", "=", "0", ")", ")", ")", "[", "0", "]", "self", ".", "_data", "=", "self", ".", "_data", "[", ":", ",", "points_of_interest", "]" ]
Removes normal vectors with nan magnitude. Note ---- This returns nothing and updates the NormalCloud in-place.
[ "Removes", "normal", "vectors", "with", "nan", "magnitude", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/points.py#L931-L939
train
BerkeleyAutomation/autolab_core
autolab_core/points.py
NormalCloud.open
def open(filename, frame='unspecified'): """Create a NormalCloud from data saved in a file. Parameters ---------- filename : :obj:`str` The file to load data from. frame : :obj:`str` The frame to apply to the created NormalCloud. Returns ------- :obj:`NormalCloud` A NormalCloud created from the data in the file. """ data = BagOfPoints.load_data(filename) return NormalCloud(data, frame)
python
def open(filename, frame='unspecified'): """Create a NormalCloud from data saved in a file. Parameters ---------- filename : :obj:`str` The file to load data from. frame : :obj:`str` The frame to apply to the created NormalCloud. Returns ------- :obj:`NormalCloud` A NormalCloud created from the data in the file. """ data = BagOfPoints.load_data(filename) return NormalCloud(data, frame)
[ "def", "open", "(", "filename", ",", "frame", "=", "'unspecified'", ")", ":", "data", "=", "BagOfPoints", ".", "load_data", "(", "filename", ")", "return", "NormalCloud", "(", "data", ",", "frame", ")" ]
Create a NormalCloud from data saved in a file. Parameters ---------- filename : :obj:`str` The file to load data from. frame : :obj:`str` The frame to apply to the created NormalCloud. Returns ------- :obj:`NormalCloud` A NormalCloud created from the data in the file.
[ "Create", "a", "NormalCloud", "from", "data", "saved", "in", "a", "file", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/points.py#L942-L959
train
BerkeleyAutomation/autolab_core
autolab_core/points.py
ImageCoords.open
def open(filename, frame='unspecified'): """Create an ImageCoords from data saved in a file. Parameters ---------- filename : :obj:`str` The file to load data from. frame : :obj:`str` The frame to apply to the created ImageCoords. Returns ------- :obj:`ImageCoords` An ImageCoords created from the data in the file. """ data = BagOfPoints.load_data(filename) return ImageCoords(data, frame)
python
def open(filename, frame='unspecified'): """Create an ImageCoords from data saved in a file. Parameters ---------- filename : :obj:`str` The file to load data from. frame : :obj:`str` The frame to apply to the created ImageCoords. Returns ------- :obj:`ImageCoords` An ImageCoords created from the data in the file. """ data = BagOfPoints.load_data(filename) return ImageCoords(data, frame)
[ "def", "open", "(", "filename", ",", "frame", "=", "'unspecified'", ")", ":", "data", "=", "BagOfPoints", ".", "load_data", "(", "filename", ")", "return", "ImageCoords", "(", "data", ",", "frame", ")" ]
Create an ImageCoords from data saved in a file. Parameters ---------- filename : :obj:`str` The file to load data from. frame : :obj:`str` The frame to apply to the created ImageCoords. Returns ------- :obj:`ImageCoords` An ImageCoords created from the data in the file.
[ "Create", "an", "ImageCoords", "from", "data", "saved", "in", "a", "file", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/points.py#L1015-L1032
train
BerkeleyAutomation/autolab_core
autolab_core/points.py
RgbCloud.open
def open(filename, frame='unspecified'): """Create a RgbCloud from data saved in a file. Parameters ---------- filename : :obj:`str` The file to load data from. frame : :obj:`str` The frame to apply to the created RgbCloud. Returns ------- :obj:`RgbCloud` A RgdCloud created from the data in the file. """ data = BagOfPoints.load_data(filename) return RgbCloud(data, frame)
python
def open(filename, frame='unspecified'): """Create a RgbCloud from data saved in a file. Parameters ---------- filename : :obj:`str` The file to load data from. frame : :obj:`str` The frame to apply to the created RgbCloud. Returns ------- :obj:`RgbCloud` A RgdCloud created from the data in the file. """ data = BagOfPoints.load_data(filename) return RgbCloud(data, frame)
[ "def", "open", "(", "filename", ",", "frame", "=", "'unspecified'", ")", ":", "data", "=", "BagOfPoints", ".", "load_data", "(", "filename", ")", "return", "RgbCloud", "(", "data", ",", "frame", ")" ]
Create a RgbCloud from data saved in a file. Parameters ---------- filename : :obj:`str` The file to load data from. frame : :obj:`str` The frame to apply to the created RgbCloud. Returns ------- :obj:`RgbCloud` A RgdCloud created from the data in the file.
[ "Create", "a", "RgbCloud", "from", "data", "saved", "in", "a", "file", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/points.py#L1093-L1110
train
BerkeleyAutomation/autolab_core
autolab_core/points.py
PointNormalCloud.remove_zero_points
def remove_zero_points(self): """Remove all elements where the norms and points are zero. Note ---- This returns nothing and updates the NormalCloud in-place. """ points_of_interest = np.where((np.linalg.norm(self.point_cloud.data, axis=0) != 0.0) & (np.linalg.norm(self.normal_cloud.data, axis=0) != 0.0) & (np.isfinite(self.normal_cloud.data[0,:])))[0] self.point_cloud._data = self.point_cloud.data[:, points_of_interest] self.normal_cloud._data = self.normal_cloud.data[:, points_of_interest]
python
def remove_zero_points(self): """Remove all elements where the norms and points are zero. Note ---- This returns nothing and updates the NormalCloud in-place. """ points_of_interest = np.where((np.linalg.norm(self.point_cloud.data, axis=0) != 0.0) & (np.linalg.norm(self.normal_cloud.data, axis=0) != 0.0) & (np.isfinite(self.normal_cloud.data[0,:])))[0] self.point_cloud._data = self.point_cloud.data[:, points_of_interest] self.normal_cloud._data = self.normal_cloud.data[:, points_of_interest]
[ "def", "remove_zero_points", "(", "self", ")", ":", "points_of_interest", "=", "np", ".", "where", "(", "(", "np", ".", "linalg", ".", "norm", "(", "self", ".", "point_cloud", ".", "data", ",", "axis", "=", "0", ")", "!=", "0.0", ")", "&", "(", "np", ".", "linalg", ".", "norm", "(", "self", ".", "normal_cloud", ".", "data", ",", "axis", "=", "0", ")", "!=", "0.0", ")", "&", "(", "np", ".", "isfinite", "(", "self", ".", "normal_cloud", ".", "data", "[", "0", ",", ":", "]", ")", ")", ")", "[", "0", "]", "self", ".", "point_cloud", ".", "_data", "=", "self", ".", "point_cloud", ".", "data", "[", ":", ",", "points_of_interest", "]", "self", ".", "normal_cloud", ".", "_data", "=", "self", ".", "normal_cloud", ".", "data", "[", ":", ",", "points_of_interest", "]" ]
Remove all elements where the norms and points are zero. Note ---- This returns nothing and updates the NormalCloud in-place.
[ "Remove", "all", "elements", "where", "the", "norms", "and", "points", "are", "zero", "." ]
8f3813f6401972868cc5e3981ba1b4382d4418d5
https://github.com/BerkeleyAutomation/autolab_core/blob/8f3813f6401972868cc5e3981ba1b4382d4418d5/autolab_core/points.py#L1201-L1212
train